
HAL Id: tel-03966967
https://theses.hal.science/tel-03966967

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calculation of latency of real-time system and
fixed-parameter tractibility of UET-UCT scheduling

problems
Ning Tang

To cite this version:
Ning Tang. Calculation of latency of real-time system and fixed-parameter tractibility of UET-UCT
scheduling problems. Operations Research [math.OC]. Sorbonne Université, 2022. English. �NNT :
2022SORUS369�. �tel-03966967�

https://theses.hal.science/tel-03966967
https://hal.archives-ouvertes.fr

Calculation of latency of real-time system and fixed-parameter
tractibility of UET-UCT scheduling problems

Thèse de doctorat de l’Université Sorbonne

Ecole Doctorale Informatique, Télécommunications et Electronique(ED130)

Spécialité de doctorat: théorie de l’informatique

Unité de recherche : LIP6 ALSOC

Thèse présentée et soutenue à l’Université Sorbonne,

le 30/11/2022, par :

NING TANG

Composition du Jury

Alix Munier-Kordon Directeur de thèse
Professeure des universités, Sorbonne Université
Claire Hanen Président (e) du jury
Professeure des universités, Sorbonne Université
Nicod Jean-marc Examinateur
Professeur des universités, Franche-Comté Electronique Mécanique Thermique et
Optique – Sciences et Technologies
Pautet Laurent Examinateur
Professeur des universités, LTCI, Telecom Paris
Giroudeau Rodolphe Rapporteur
Maître de Conférences (HDR), Laboratoire LIRMM
T’kindt Vincent Rapporteur
Professeur des universités, Université de Tours

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . 1

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

1. Introduction . 1

1.1 Fixed-parameter tractable algorithms for fundamental scheduling optimization prob-
lem . 1

1.2 Calculation of age latency in real time systems . 2

2. Preliminary notions and context . 4

2.1 Homogeneous scheduling models with communication delays. 4
2.1.1 Problem definition and notation . 5
2.1.2 Motivations for scheduling optimization on UET-UCT model. 11

2.2 Parameterized complexity for scheduling problems . 12
2.2.1 Fixed-parameter tractability. 13
2.2.2 Fixed-parameter intractability . 14

2.2.2.1 Parameterized reductions . 14
2.2.2.2 The W-hierarchy. 15

2.3 Time windows and Pathwidth . 17
2.4 Treewidth and Courcelle’s theory . 20

2.4.1 Monadic second-order logic for graphs . 21
2.4.2 Courcelle’s Theorem’s applications to UET-UCT problem . 23

3. Kernelization of UET-UCT model. 25

3.1 Introduction to kernelization. 25
3.2 Modification on release date and deadline . 26

3.2.1 Modification algorithm on release dates. 27
3.2.2 Modification algorithms on deadlines . 28
3.2.3 A necessary condition on feasible schedules . 29

3.3 Active schedules . 30
3.3.1 Preferred sons. 31
3.3.2 A general dominance property . 34

4. Fixed-parameter complexity on optimization of makespan for UET-UCT model 37

1

4.1 Introduction. 37
4.2 Dynamic programming approach and multistage graphs . 39

4.2.1 Description of the multistage graph . 39
4.2.1.1 Nodes of S(G) . 39
4.2.1.2 Arcs of S(G) . 39

4.2.2 Description of the algorithm . 40
4.3 Correctness of the algorithms. 41
4.4 Complexity results . 44
4.5 Conclusion. 45

5. Extensions to maximum lateness . 47

5.1 Problem definition. 47
5.1.1 Problem definition . 47
5.1.2 Example . 48
5.1.3 A general dominance property of active schedules . 49

5.2 Description of the algorithm . 50
5.2.1 Description of the multistage graph . 50

5.2.1.1 Nodes of S(G) . 50
5.2.1.2 Arcs of S(G) . 51
5.2.1.3 Maximum Lateness of a node of S(G) . 51

5.2.2 Description of the algorithm . 51
5.3 Correctness of the algorithm. 53
5.4 Complexity analysis. 57
5.5 Conclusion and perspectives. 59

6. Evaluation of the Age Latency of a Real-Time Communicating System using the LET
paradigm . 60

6.1 Related works . 63
6.2 Modelling of the system . 64

6.2.1 Periodic tasks model considering LET communications . 65
6.2.2 LET dependencies . 65
6.2.3 Age latency . 67
6.2.4 Problem definition and example . 68

6.3 Construction of a partial expanded graph . 69
6.3.1 Dependence between duplicates of the partial expanded graph 69
6.3.2 Upper bound on the latency . 74
6.3.3 Definition of the partial expanded graph . 75
6.3.4 Complexity of the computation of PK(G)nd its longest paths 75

6.4 Dominant set for the expansion vector K . 76
6.4.1 Optimal value of the age latency for K = N . 77
6.4.2 Order relation between the divisors of the repetition vector N 78

6.5 Determination of an optimum vector K . 79
6.6 ROSACE Case Study . 82
6.7 Experimental results . 83

2

6.7.1 Benchmarks . 84
6.7.2 Analysis of the computation time of the Algorithm 3 . 85
6.7.3 Analysis of the partial expanded graph obtained . 85

6.8 Conclusion. 86

7. Global conclusions and perspectives . 89

7.1 Fixed-parameter tractable algorithms for fundamental scheduling optimization prob-
lem . 89

7.2 Calculation of age latency in real time systems . 90

REFERENCES . 92

LIST OF FIGURES . 102

LIST OF TABLES. 104

3

ABSTRACT

This thesis considers two main problems.

The first problem considers the minimization of the makespan and the maximum lateness for a

set of dependent tasks with unit duration, unit communication delays release times and due dates.

Each task requires one processor for its execution and duplication is not allowed. Algorithms are

given for scheduling on limited and unlimited number of processors. Time windows of tasks are

built from upper bounds of the makespan and the minimum maximum lateness respectively. A

fixed-parameter algorithm based on a dynamic programming approach is developed to solve this

optimization problem. The parameter considered is the pathwidth of the associated interval graph.

They are, as far as we know, the first fixed-parameter algorithms for a scheduling problem with

communication delays and a limited number of processors.

The second problem considers real-time systems. Automotive and avionics embedded systems

are usually composed by several tasks submitted to complex timing constraints. In this context,

LET paradigm was introduced to improve the determinism of a system of tasks that communicate

data through shared variables. The age latency corresponds to the maximum time for the propaga-

tion of a data in these systems. Its precise evaluation is an important challenging question for the

design of these systems. We considered a set of multi-periodic tasks that communicate data follow-

ing the LET paradigm. Our main contribution is the development of mathematical and algorithm

tools to model precisely the dependence between tasks executions. These tools will be considered

to experiment an original methodology for computing the age latency of the system. They allow to

handle the whole graph instead of particular chains and to extract automatically the critical parts

of the graph. Experiments on random generated graphs proved that systems with up to 90 periodic

tasks with an hyper-period bounded by 100 can be handled within a reasonable time.

ii

ACKNOWLEDGMENTS

Countless people supported my effort on this essay. First of all, I would like to thank my su-

pervisor, Alix Munier-Kordon, for her guidance throughout my thesis. she has provided invaluable

feedback on my analysis and writing, from time to time responding to emails and correcting late

at night and early in the morning. I learned what is passion for research. I learned to work hard.

We have argued and disagreed, but they will never effect my sincere love and gratefulness to her.

My parents have given me priceless and unconditional support for these three years. In their

eyes, I am always the best daughter in the world. They gave me the confidence and strength without

which I could not finish my PhD.

My boyfriend accompanied me everyday through this hard journey. He saw all my emotional

ups and downs, he knows all the positive and negative thoughts, he also laughed all my laughs and

wept all my tears. I can not imagine a day without him at my side.

I am very lucky to have all the PhDs and interns in the same office as me. Their random Greek

jokes and french complains motivated me to go to my office everyday.

Last but not least, I would like to thank Sorbonne University and Lip6 lab for providing me the

fund and help for my PhD research.

iii

1. Introduction

This thesis has two parts. The first part is to calculate the latency of real time systems; the

second part is to give fixed-parameter tractable algorithms for fundamental scheduling optimization

problems.

1.1 Fixed-parameter tractable algorithms for fundamental scheduling opti-

mization problem

The concept of scheduling dates back to ancient times: Sun Tzu [85] mentioned about schedul-

ing strategy for military management 2500 years ago. The development of scheduling tools on

computers such as Critical Path Method (CPM) can be traced back to mid 1956 with ’UNIVAC1’

computer, one of the first computers used by commercial business. After 1970s, the wave of conve-

nient and cheap personal computers (PC) spawned dozens (if not hundreds) of PC based scheduling

systems. The evolution of scheduling tools closely tracked the development of computers and it

will continue to do so.

The obstacle of scheduling problem is to find the optimal solution in a reasonable time. Fixed-

parameter tractable algorithm is a tool to solve hard problems in polynomial time when some

parameters in the problem are bounded.

In this thesis, we attempted to use fixed-parameter tractable algorithm and dynamic program-

ming tools to find optimal solutions in polynomial time with a fixed parameter in fundamental

scheduling problems.

The model we considered is unit execution time and unit communication time (UET-UCT)

scheduling model, which is one of the most researched model in scheduling theory field. We

considered this model with two different criteria, makespan and maximum lateness.

First of all, in chapter 2, we gave a mathematical definition of the model we considered, briefly

introduced parameter complexity theory and the parameter we considered. Then in chapter 3, we

1

introduced two kernelization of this model: modification of release dates and deadlines of tasks

and active schedules. In chapter 4, we gave an executable algorithm for makespan optimization on

UET-UCT model on unlimited number of machines, proved the correctness of this algorithm and

calculated the complexity which shows that this is a fixed parameter tractable algorithm. After, we

extended the algorithm to optimize maximum lateness on limited number of machines in chapter

5.

We proved in this thesis that the scheduling problem P |ri, prec, pi = 1, cij = 1|Lmax and

P |ri, prec, pi = 1, cij = 1|Cmax are fixed-parameter tractable parameterized with pathwidth of

the interval graph of time windows. We extended a previous approach [72] to tackle problems

with communications delay and a limited number of machine, also to optimize the maximum

lateness. We limit our enumeration to active schedules, which decreases the worst-case complexity

of the method. These are the first two fixed parameter tractable algorithm on scheduling with

communication delay problems.

1.2 Calculation of age latency in real time systems

Automotive and avionics embedded systems are usually composed by several tasks submitted

to complex timing constraints. In this context, safety is one of the most important features. In

LET paradigm, real-time tasks communicate through shared buffers, the time of reading input and

writing output are determined regardless of the execution time of tasks. LET is motivated by the

observation that the relevant behavior of real-time systems is determined when input is read and

output is written and not when programs execute. The age latency of real-time systems corresponds

to the maximum time for the propagation of data. The precise evaluation of the upper and lower

bounds of age latency is an important challenging question for the design of these systems.

We consider in this thesis a set of multi-periodic tasks that communicate data following the

LET paradigm. In chapter 6, we formally defined the real-time model our characterisation of the

dependence between tasks executions are presented in Section 6.2. Section 6.3 and 6.4 explain the

construction of a partial expanded graph of a real-time system. Section 6.5 presents our algorithm

2

on the partial expanded graph which leading to an optimum upper bound of the age latency. This

algorithm is experimented in Section 6.6 on a the case study ROSACE [76] and in Section 6.7 on

randomly generated graphs.

Our main contribution is the development of mathematical and algorithm tools to model pre-

cisely the dependence between tasks executions. These tools will be considered to experiment

an original methodology for computing the age latency of the system. They allow to handle the

whole graph instead of particular chains and to extract automatically the critical parts of the graph.

Experiments on random generated graphs proved that systems with up to 90 periodic tasks with an

hyper-period bounded by 100 can be handled within a reasonable time.

3

2. Preliminary notions and context

Scheduling theory is a theory about the allocation of resources to activities over time. Re-

sources can be computation processors, manufacturing machines, workers, teachers, etc. Activities

can be program tasks in computer operating systems, steps of a complex project, operations in a

production process, lessons in schools, etc. Scheduling theory can be applied in various fields like

theory of computer science, management science, etc. For machine scheduling problems, algo-

rithms have been widely investigated since the introduction of operation systems (OS) in 1950s

[21, 37, 46, 87]. In this thesis, we focused on machine (processor) scheduling problems with

specific conditions and applications.

The aim of this chapter is to give a brief view of the concepts we applied for in optimizing

schedules with communication delays respect to different criteria. First we will give an overview

on the classic scheme of machine scheduling models, then we will focus on the models with com-

munication delays, after we will discuss common criteria considered in scheduling optimization

problems. At last, we will introduce mainly researched scheduling strategies and complexities,

especially on active schedules and fixed parameter complexity.

2.1 Homogeneous scheduling models with communication delays

The study of scheduling problems with interprocessor communication delays are rapidly grow-

ing resulting from the development of parallel and distributed memory systems. This phenomenon

occurred due to a large range of applications including data mining, multimedia and bio-computing.

Despite that machine scheduling theory has been intensively study since 1950’s as we mentioned

before, the study on theories concerning communication delays is much younger and still has a big

room for expansions [23, 37, 44, 87].

In this thesis, we considered homogeneous scheduling models with communication delays,

where we have parallel identical machines fully connected and the communication between ma-

4

chines are not negligible. If two tasks are communicating and they are allocated on different

machines, a communication delay has to be considered between them. This means the higher for

the level of parallel, the higher for the time cost for communication. Therefore, we need to find

a compromise between parallel executions and sequential executions, which is main challenging

part of this problem.

In the main research field, we separate homogeneous scheduling delay models into three differ-

ent categories according to the ratio between execution time and communication time as follows:

1. Small communication time (SCT) scheduling models have tasks with communication time

smaller than execution time. SCT models have some important applications such as parallel

matrix multiplication on metacomputing platforms [57].

2. Unit execution time and unit communication time (UET-UCT) scheduling models contains

tasks with the same communication time and execution time. This model is the fundamen-

tally considered in scheduling theory.

3. Large communication time (LCT) scheduling models considers tasks with larger communi-

cation time than execution time. As the parallel and distributed systems becomes larger and

larger, this model get more and more attentions recently with application in cloud computing

[60].

2.1.1 Problem definition and notation

An instance of a homogenerous scheduling problem with communication delays is specified

by: a set T = {1, 2, . . . , n} of n tasks is to be executed on an unlimited number of machines

(sometimes also called as processors). Each machine can process at most one task at a time.

Tasks have a execution processing time pi and are partially ordered by a directed acyclic graph

G = (T ,A), also called precedence graph. Let ti be the starting time of the task i. An arc

(i, j) ∈ A is called a precedence relation between task i and task j. For any arc (i, j) ∈ A, task

i must finish its execution before the task j starts executing, i.e. ti + pi ≤ tj . If tasks i and j are

5

assigned to different processors, a communication delay with duration cij must be added after the

execution of task i, to send data to task j and thus ti + pi + cij ≤ tj .

In scheduling theory, the objective functions for optimization problems are generally limited to

regular criteria, which are defined as follows [8, 25].

Definition 2.1.1. Let Ci(σ) and G(σ) denote respectively the completion time of task i and the

value of criterion G for schedule σ. If Ci(σ) ≤ Ci(σ′),∀i ∈ {1, 2, . . . , n} implies G(σ) ≤ G(σ′)

for two schedules σ and σ′, the criterion G is said to be a regular criterion.

Some common researched criteria are listed below:

1. Makespan Cmax(σ) = max
i∈{1,2,...,n}

Ci(σ).

2. Total weighted completion time C(σ) =
n∑

i=1
wiCi(σ).

3. Total weighted tardiness with due dates
n∑

i=1
wiTi(σ) where Ti(σ) = max{Ci(σ)− di, 0}.

4. Maximum lateness with deadlines Lmax(σ) = max
i∈{1,2,...,n}

(Ci(σ)− di).

5. Total number of tardy tasks with due dates U(σ) =
n∑

i=1
Ui(σ),

where Ui(σ) =

1 if Ci(σ) > di ,

0 otherwise,

where wi is the weight of task i and di is the due date of task i, for all i ∈ {1, 2, . . . , n}.

Among these, makespan is the most basic and fundamental criterion used in scheduling re-

search. Makespan indicates the length of time that takes from the start of tasks to the end. One

may consider other objective functions f(C1(σ), . . . , Cn(σ)) depending on the completion time of

tasks such as the total weighted completion time. In manufacturing environments with due dates

constraints, criteria like maximum lateness and total weighted tardiness are more appropriate as

objective functions. As you can see, all these objective functions are monotone non-decreasing

functions in completion time Ci(σ), so they are all regular criteria. Besides, many reductions exist

6

Figure 2.1: Reductions for objective functions [91].

between scheduling problems with different objective functions, see in Figure 2.1. We have
∑

i Ti

and
∑

i Ui reduce to
∑

i wiTi and
∑

i wiUi by setting wi = 1 for all i. Furthermore, we have Cmax,∑
i Ci and

∑
i wiCi reduce to Lmax,

∑
i Li and

∑
i wiLi by setting di = 0 for all i.

Finally, for decision problems and any threshold value y, for all i ∈ {1, 2, . . . n}, we have

Lmax ≤ y ⇔ Ci − di ≤ y

⇔ Ci − (di + y) ≤ 0

⇔ max{0, Ci − (di + y)} ≤ 0

⇔
n∑

i=0
Ti =

n∑
i=0

max{0, Ci − (di + y)} ≤ 0

⇔
n∑

i=0
Ui ≤ 0.

Among all these objective functions, Cmax and Lmax are the most basic ones in optimization

7

scheduling problems. This thesis focus on optimization of makespan and maximum lateness.

To systematize scheduling models, a three field of classification α|β|γ was introduced by Gra-

ham et al. [46]. The first entry α specifies the processor environment, β indicates job characteris-

tics, and γ denotes objective functions, also called optimization criteria.

For the first field α = α1α2 specifying the machine environment, we have α1 indicates the

types of machines and α2 indicates the number of machines. Let ◦ donates the empty symbol. All

possible values of α1 are characterized as follows:

α1 = ◦: single machine;

α1 = P : identical parallel machines. Tasks have the same processing time on different ma-

chines;

α1 = Q: uniform parallel machines. A processing speed is specified for each machine;

α1 = R: unrelated parallel machines;

α1 = O: open shop;

α1 = F : flow shop;

α1 = J : job shop;

If α2 is a positive number, then there is a fixed number of machines. If α2 = ◦, then the number

of machines is unavailable.

For the second field β donating a set of tasks characteristics, we have some popular definitions

listed below:

1. pmtn: Preemption is allowed, if not specified, then preemption is not allowed.

2. prec, tree, . . . : A precedence relation between jobs is specified. An acyclic directed graph G

is used to present the precedence relation, called precedence graph. One can specify the type

of precedence graph such as tree and so on. If not mentioned, then no precedence relation is

specified.

3. ri: Release dates may differ and are specified per job. If not mentioned, we assume that

release dates are all equal to zero.

8

1

2 3

1 3

4

2 2
(a) The precedence graph to be scheduled.

1 3

2

0 1 3 542 6 7 time

1 3

1 2

(b) The best schedule without duplication above the
time axe and the best schedule with duplication below.

Figure 2.2: Example of task duplication.

4. pij = 1: Each job has unit processing time.

For the third field γ, it refers to the optimization criteria.

For example, the problem to minimize the maximum lateness on a single machine subject to a

general precedence constraints, it can be written as 1|prec|Lmax. UET-UCT scheduling problem

on unlimited number of processors can be noted using three-field notation as P |prec, pi = 1, cij =

1|Cmax.

In a schedule, if duplication is allowed, tasks can be executed more than once. Duplication of

tasks can yield a smaller duration of a schedule, see example in Figure 2.2. Besides, when duplica-

tion is allowed, the scheduling problems are easier. For example, when SCT assumptions are met,

the P |prec, pi, cij, dup|Cmax problem is proved by Colin and Chretienne [24] to be polynomial

solvable. In this thesis, we only consider the problems without duplication.

When duplication is not allowed, each task must be processed only once. So a schedule can be

entirely defined by the starting time of each task i and a assigned processor πi. Since processors

are identical, a task can be randomly assigned to a processor if there are communication delays

between this task and all its predecessors, otherwise, the task has to be assigned to the same pro-

cessor as its predecessor between which there is no communication delay. Therefore, a schedule

σ(G) can be sufficiently represented as a vector σ(G) = (t1, t2, . . . , tn) where ti is the starting time

9

of task i ∈ T .

For each task i ∈ T , let Γ+(i) (resp. Γ−(i)) be the set of successors (resp. predecessors) of i,

i.e. Γ+(i) = {j ∈ T , (i, j) ∈ A} and Γ−(i) = {j ∈ T , (j, i) ∈ A}. The problem P |prec, pi =

1, cij = 1|Cmax can be modelled by an integer linear program (P) defined below. For any arc

e = (i, j) ∈ A, we note xij as the signal of communication delay between the tasks i and j. We

set xij = 0 if the task j is executed just after the task i on the same processor; in this case, there is

no communication delay between them. Otherwise, xij = 1.

(P)

Objective : min C

∀e = (i, j) ∈ A, ti + pi + xijcij ≤ tj (1)

∀i ∈ T , ti + pi ≤ C (2)

∀i ∈ T ,
∑

j∈Γ+(i) xij ≥ |Γ+(i)| − 1 (3)

∀i ∈ T ,
∑

j∈Γ−(i) xji ≥ |Γ−(i)| − 1 (4)

∀i ∈ T , ti ∈ N (5)

∀e = (i, j) ∈ A, xij ∈ {0, 1} (6)

Variables are the starting times ti,∀i ∈ T of the tasks, the communication delays xij,∀(i, j) ∈

A and the makespan C. Inequalities (1) express precedence relations and communication delays

between tasks executions. Inequalities (2) define the makespan. Inequalities (3) express that any

task has at most one successor performed at its completion time on the same processor. Similarly,

inequalities (4) express that any task has at most one predecessor performed just before its starting

time on the same processor. Any feasible schedule σ(G) corresponds to a feasible solution of (P).

Let us consider for example the precedence graph of a UET-UCT model, presented by Fig-

ure 2.3a for T = {1, 2, . . . , 8}. Figure 2.3b presents an associated feasible schedule σ(G) of

makespan 5. Associated starting time is t = (0, 0, 1, 2, 2, 3, 3, 4).

For the problem with limited number of processors m < n, Pm|prec, pi = 1, cij = 1|Cmax,

10

1 2

3 4 5

6 7 8

(a) A precedence graph G = (T ,A).

1

2

3 4

5

6

7

8

(b) An optimum schedule for the precedence graph
G = (T ,A) of Figure 2.3a.

Figure 2.3: A precedence graph G = (T ,A) and an associated optimum schedule.

one more condition is needed to be added in the program (P):

∀α ∈ {0, 1, . . . , n− 1}, |{i, ti = α, i ∈ T }| ≤ m

Therefore, the program (P) is no longer a linear program.

2.1.2 Motivations for scheduling optimization on UET-UCT model

Large parallel and distributed systems (cluster, grid and global computing) are the main stream

in the computational world and the new challenges for researchers and developers on a large range

of domains including data mining, multimedia, bio-computing and so on. More and more com-

munication time is required in parallel and distributed systems, sometimes the communication

time between processors is even longer than the real processing time. However, it is still a very

large unexploited field to provide adequate and efficient algorithms and software tools for manag-

ing parallel resources with non negligible communication delays. This section will give existing

algorithms and complexity results on scheduling problems with unit communication delays.

Given a precedence graph G = (T ,A) to be scheduled on a parallel system, a starting time

ti is to be allotted to each task i ∈ T . In homogenerous scheduling model with communication

delays, processors are identical and fully connected. Each arc (i, j) ∈ A represents a potential

data transfer between task i and task j when i and j are processed on two different processors. So

the difficulty, in this model, is to optimize the efficiency between sequential execution and parallel

execution. Basic scheduling problems with communication delays were intensively studied since

11

the 1990s due to the importance of applications, see. the surveys [21, 23, 37, 44, 46, 87].

With the limitation on the number of processors, the problem P |prec, pi = 1, cij = 1|Cmax

is first introduced by Rayward-Smith [78], who has proved that the problem is NP -hard and

showed that an active schedule is no longer than 3 − 2/m times the optimum. A schedule is

active if no task can start earlier without increasing the start time of another task. Hoogeveen et

al. [55] have studied the decision problem and shown that P |prec, pi = 1, cij = 1|Cmax ≤ 3

can be solved in polynomial time and P |prec, pi = 1, cij = 1|Cmax ≤ 4 is NP−complete.

Lenstra et al. [63] showed that even if the precedence relation consists of a collection of trees, the

problem P |tree, pi = 1, cij = 1|Cmax is NP -hard. An exact dynamic programming algorithm

of time complexity O(2w(G).n2w(G)) was developed by Veltman [88] for P |prec, pi = 1, cij =

1|Cmax where w(G) is the width of the precedence graph G. The width of a directed graph is

the cardinality of the largest antichain of G. for the problem P |prec, pi = 1, cij = 1|Cmax and

P |prec, pi = 1, cij = 1|Lmax. Hanen and Munier [49] gave an approximation algorithm to the

problem P |prec, pi = 1, cij = 1|Cmax and proved that the worst relative performances of their

algorithms are bounded by 7/3− 4/m.

Without the limitation on the number of processors, Picouleau [77] has shown that the decision

problem P |prec, pi = 1, cij = 1|Cmax ≤ 8 is NP -complete. Hoogeveen et al. [55] have improved

the result and showed that a polynomial-time algorithm without duplication exists for solving the

problem P |prec, pi = 1, cij = 1|Cmax when the makespan is bounded by 5, but it is NP-complete

when the makespan is bounded by 6. So unless P = NP , there is no approximation algorithm

with a worst case ratio smaller than 7/6. Munier and König [71] gave a dynamic list scheduling

heuristic with a relative performance equal to 4/3 using integer linear programming.

2.2 Parameterized complexity for scheduling problems

Parameterized complexity classifies computational problems according to their difficulty with

respect to multiple parameters of the input or output. The complexity of a problem is then measured

as a function of not only the number of bits in the input but also their parameters. It classifies

12

NP−hard problems into finer sets than in the classical computational complexity theory. The first

systematic work on parameterized complexity was done by Downey and Fellows [35].

2.2.1 Fixed-parameter tractability

Under the assumption that P ̸= NP , many fundamental problems, such as k−vertex cover

[20], require exponential running time, but are polynomial in the input size and only exponential

or worse in a parameter k. Formally, a vertex cover V ′ of an undirected graph G = (V, E) is a

subset of V such that uv ∈ E ⇒ u ∈ V ′ ∨ v ∈ V ′. k−vertex cover problem is to decide if G has a

vertex cover of at most k vertices, given a graph G and a parameter k. Even though it is considered

unlikely to find an exact polynomial algorithm for NP−hard or NP−complete problems, some

problems can be solved by algorithms that are only exponential to a fixed parameter but polynomial

to the input size. Such an algorithm is named a fixed-parameter tractable (FPT-) algorithm. In

this case, the problem can be solved efficiently when the fixed parameter is bounded by a small

number. Therefore, FPT can be considered as a two-dimension complexity theory, which is defined

by Downey and Fellows [35] as follows:

Definition 2.2.1. A parameterized problem is a language L ⊆ Σ∗×N , where Σ is a finite alphabet.

The second component is called the parameter of the problem. A parameterized problem L is fixed-

parameter tractable if the question "(x, k) ∈ L?" can be decided in running time f(k) · |x|O(1),

where f is an computable function depending only on k. The corresponding complexity class is

called FPT.

This definition is to exclude functions of the form f(n, k), such as nk. Instead, we have XP as

the class of parameterized problems that can be solved in time nf(k) for some computable function

f . Thus, FPT is a strict subset of XP . Furthermore, we have the class FPL (fixed parameter

linear) as the class of parameterized problems solvable in time f(k) · |x| for some computable

function f . FPL is thus a strict subset of FPT.

For instance, for the k−vertex cover problem, the input size is the number of the vertex and

arcs, the parameter can be k: the number of vertices in the cover. In the contrary, graph coloring

13

problem parameterized by the number of colors is known not to be in FPT. An FPT algorithm

for k−coloring should have complexity in time f(k)nO(1), for k = 3, it would run in polynomial

time in size of the input, but 3−coloring problem is known as NP−hard. Thus, if graph coloring

parameterized by the number of colors were in FPT, then P = NP .

The development of fixed-parameter algorithms for NP -complete problems is a way to get

polynomial-time algorithms when some parameters are fixed [27, 36]. In many applications, the

parameter is considered to be "small" compared to the total input size. Then it is challenging

question to choose a proper parameter k and to find an algorithm which is exponential only in k,

and not in the input size.

2.2.2 Fixed-parameter intractability

The way to show the fixed-parameter tractability of parameterized problems is to find fixed-

parameter tractable algorithms and it is also very important to know how to prove that for some

problems, fixed-parameter tractable algorithms do not exist. This can save us from wasting time

on attacking the same problem over and over again with little hope of success. Besides, it is very

helpful to look into a problem in both algorithm and complexity points of view at the same time.

A failure on finding an algorithm can give a hint to the characteristics of the hard instances and

the structure of hardness proofs. Conversely, if one can point out a flaw in a hardness proof, then

it may suggest an algorithm idea of this problem. Hence a parameterized complexity theory helps

not only in finding the lower bound of the complexity but also gives a direction to the algorithm of

the questions.

2.2.2.1 Parameterized reductions

In NP−hardness proofs, polynomial-time reduction are used. A polynomial time reduction

from decision problem A to decision problem B is a polynomial-time algorithm in which the input

is any instance x of problem A and the output is a corresponding instance x′ of problem B and

the answer of problem x is "yes" if and only if the answer of problem x′ is "yes". If there is a

polynomial-time reduction from problem A to problem B and problem B is in P , then problem A

14

is also in P .

For parameterized problem, there is a parameterized reduction to transfer fixed-parameter

tractability which is defined by Downey and Fellow [32, 33, 34].

Definition 2.2.2 (Parameterized reduction). Let A, B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm satisfies:

1. input is any instance (x, k) of A, output is an instance (x′, k′) of B,

2. the answer of problem (x, k) is "yes" if and only if the answer of problem (x′, k′) is "yes",

3. k′ ≤ g(k) for some computable function g,

4. the running time is f(k) · |x|O(1) for some computable function f .

Downey and Fellow [32, 33, 34] also proved that if there is a parameterized reduction from A

to B and B is FPT , then A is also FPT .

2.2.2.2 The W-hierarchy

It is proven [35] that Independent set can be reduced to Dominating set, but it is unknown if

there is a parameterized reduction in the other direction. Therefore, Downey and Fellow [32, 33,

34] have introduced the W−hierarchy to capture different complexity levels of hard parameterized

problems.

In order to define W−hierarchy, we have to introduce the WEIGHTED CIRCUIT SATISFIA-

BILITY (WCS) problem.

Definition 2.2.3 (Boolean circuit). A Boolean circuit is a directed acyclic graph where the nodes

are labeled in the following way:

1. every node of indegree 0 is an input node,

2. every node of indegree 1 is a negation node,

3. every node of indegree ≥ 2 is either an and-node or an or-node.

15

a b c d e

∨ ∨ ∨ ∨ ∨

∧

out

Figure 2.4: A depth-2, weft-2 circuit.

Additionally, exactly one of the nodes with outdegree 0 is labeled as the output node. The

depth of a circuit is the maximum length of a path from an input node to the output node.

Assigning boolean values to the input nodes of a circuit will determine the value of the output

node. If the output node has the value 1, then we say that the assignment of the input nodes satisfies

the circuit. The weight of an assignment is the number of input nodes with value 1.

Definition 2.2.4 (WCS problem). Given a boolean circuit C and an integer k, the WCS problem

is to decide if C has a satisfying assignment of weight exactly k.

A small node in a circuit has indegree at most 2, a large node has indegree > 2. The weft of

a circuit is the maximum number of large nodes on a path from an input node to the output node.

Let Ct,d be the class of circuit with weft at most t and depth at most d. See example in Figure 2.4.

Definition 2.2.5 (W−hierarchy). For t ≥ 1, a parameterized problem L belongs to the class W [t]

if there is a parameterized reduction from L to WCS[Ct,d] for some d ≥ 1.

Mnich and van Bevern [70] surveyed main results on parameterized complexity for schedul-

ing problems and identified 15 open problems. They identified width of precedence graph as a

parameter for problems without communication delays, which is defined as the size of its largest

16

antichain. It is W [2]-hardness for problems like P |prec, pj = 1|Cmax, P2|prec, pj ∈ {1, 2}|Cmax,

and P3|prec, sizej ∈ {1, 2}|Cmax considered by Bodlaender et al. [16] and van Bevern et al. [86].

Besides, it is proved by Bodlaender et al. [17] that even for chains of jobs with exact delays, on

a single machine, parameterized by the number of chains, the problem is in XP by dynamic pro-

gramming. For UET-UCT problem, an exact dynamic programming algorithm of time complexity

O(2w(G).n2w(G)) was developed by Veltman [88] where w(G) is the width of the precedence graph

G. We can observe that it is also in XP.

2.3 Time windows and Pathwidth

A time window (ri, di) associated to the task i ∈ T is given by a release date ri ∈ N and

a deadline di ∈ N such that the task i must be completed during the time interval (ri, di), i.e.

ti ≥ ri and ti + pi ≤ di. We give the algorithms in Section 3.2.1, to any upper bound C of

the minimum makespan, to calculate feasible release date ri and deadline di for any task i ∈ T

considering the precedence graph G. For the problems to minimize the maximum lateness Lmax,

due date di for each task i is provided. With an upper bound of the maximum lateness L, we can

get the deadline di = di + L for any task i. Then we can set a upper bound of minimum makespan

C = max
i∈{1,2,...,n}

{di} = max
i∈{1,2,...,n}

{di + L}.

With time windows (ri, di) for all tasks, we can create an interval graph. An interval graph of

a set of interval is an undirected graph with one vertex per interval and an edge between vertices

whose intervals overlap. The formal definition is following.

Definition 2.3.1. An interval graph is an undirected graph I formed from a family of intervals

(ri, di),∀i ∈ {1, 2, . . . , n}

by creating one vertex vi for each interval (ri, di), and connecting two vertices vi and vj by an edge

whenever the corresponding two sets have a nonempty intersection. That is, the edge set of I is

E(I) = {{vi, vj}, (ri, di) ∩ (rj, dj) ̸= ∅}

17

It is the intersection graph of the intervals.

For example, we can associate time windows to the precedence graph of Figure 2.3a as the

follow Figure 2.5. The corresponding interval graph is as shown in Figure 2.6.

0 1 2 3 4 51
2
3
4
5
6
7
8

time unit

tasks

Figure 2.5: Time windows of precedence graph in Figure 2.3a.

In this thesis, we consider the pathwidth of interval graph of time windows as the parameter for

fixed parameter algorithm. To understand what is pathwidth, we introduce path decomposition as

follows. Path decomposition of a graph G could be interpreted as a method to represent the graph

G as a path, and the pathwidth of graph G is a measurement of the thickness of the path formed

1

2

3

4

5

6

7

8

Figure 2.6: The interval graph of time windows in Figure 2.5.

18

1, 2 1, 2, 3, 4, 3, 4, 5 3, 4, 6, 7, 8 6, 7, 8

Figure 2.7: A path-decomposition of Figure 2.6.

from G. More formally, a path decomposition of a graph G is a path, each vertex of the path is a

subset of vertices of G such that the endpoints of each edge are in the same subsets and each vertex

appears in a contiguous part of the path. The definition of path decomposition was introduced by

Robertson and Seymour [79] in their series of papers on graph minors.

Definition 2.3.2. A path decomposition of a graph G = (V, E) to be an ordered sequence P =

(X1, X2, . . . , Xn) where Xi ⊆ V, ∀i ∈ {1, 2, . . . , n}, which satisfies the following two properties:

1.
n⋃

i=1
Xi = V, meaning every vertex of G is in at least one subset Xi.

2. For each edge of G, there exists a subset Xi such that both endpoints of the edge are inside

Xi.

3. For every three indices such that i ≤ j ≤ k, we have Xi ∩Xk ⊆ Xj .

The width of a path-decomposition is defined as max
i∈{1,2,...,n}

|Xi| − 1, and the pathwidth of G is

the minimum width of any path-decomposition of G.

Figure 2.7 is an example of a path-decomposition of the interval graph of Figure 2.6.

The reason of the subtraction of one from the maximum size of Xi is to have the pathwidth

of a path graph equal to one. It is proven by Bodlaender [15] that pathwidth of graph G can

be described in many equivalent ways such as interval thickness. Interval thickness is one less

than the maximum clique size of an interval graph which contains graph G. In an interval graph,

the interval thickness is equal to the maximum clique size minu.s one. For example, the interval

graph in Figure 2.6 has a maximum clique with nodes {3, 4, 6, 7, 8} with size of 5, so the interval

thickness as well as the pathwidth of this graph is 4.

Pathwidth, and graphs of bounded pathwidth, also have applications in VLSI (Very Large Scale

Integration) design [39, 68, 74], graph drawing [54, 83], and compiler design [14]. Many problems

19

in graph algorithms may be solved efficiently on graphs of bounded pathwidth, by using dynamic

programming on a path-decomposition of the graph, see survey [6].

In this thesis, we consider the pathwidth of the interval graph of time windows of tasks. This

parameter measures the maximum number of tasks that can possibly be executed at the same time

instance. With release time ri and deadline di for all task in T , for all α ∈ {0, 1, 2, . . . , C − 1}, we

can define

Xα = {i ∈ T , (α, α + 1) ∩ (ri, di) ̸= ∅}.

The pathwidth we consider is equal to the maximum size of Xα minus 1.

Since the deadlines of tasks are calculated with an upper bound of makespan C or an upper

bound of maximum lateness L, we note pathwidth as pw(C) or pw(L) = max
α∈{0,...,C−1}

(|Xα| − 1).

2.4 Treewidth and Courcelle’s theory

Similarly to pathwidth, treewidth measures how far the structure of a graph is from a tree-like

structure. The smaller treewidth is, the better the graph can form a tree decomposition. Formally,

a tree decomposition of a graph G = (V (G), E(G)) is a pair T = (T, {Xt}t∈V (T)), where T =

(V (T), E(T)) is a tree whose every node t ∈ V (T) is assigned a vertex subset Xt ⊆ V (G), called

a bag, such that the following conditions are satisfied:

1.
⋃

t∈V (T) Xt = V (G). That is, each graph vertex is associated with at least one tree node.

2. For every edge (u, v) ∈ E(G), there exist a node t ∈ V (T) such that Xt contains both u and

v.

3. For every node u in V (G), the set Tu = {t ∈ V (T) : u ∈ Xt} induces a connected subtree

of T .

The width of a tree decomposition T = {(T, {Xt}t∈V (T))} equals max
t∈V (T)

|Xt|−1. The treewidth

of a graph G denoted by tw(G) is the minimum possible width of a tree decomposition of G. The

treewidth of trees and forests is one. For interval graph, treewidth is equal to pathwidth, which is

the maximum clique size minus one.

20

Many optimization problems can be solved by dynamic programming on a tree decomposition

and are fixed-parameter tractable when parameterized by the treewidth such as Weighted indepen-

dent set problem and dominating set problems. Courcelle’s Theorem describes unified properties

of problems which can be solved by dynamic programming over a tree decomposition and it is

presented by a logical formalism called Monadic Second-order logic on graphs (MSO2). Cour-

celle’s Theorem indicates that problems expressible in this formalism are always fixed-parameter

tractable when parameterized by treewidth. To formally state Courcelle’s Theorem, we will intro-

duce Monadic second-order logic on graphs first.

2.4.1 Monadic second-order logic for graphs

A graph can be described in a logical structure. For every graph G = (VG, edgeG), let ⌊G⌋ =

⟨VG, edgeG⟩ be a relational structure, where VG is the domain, the set of vertex, and edgeG ⊆

VG × VG such that (x, y) ∈ edgeG if and only if there exist an edge from x to y if G is directed

graph and an edge between x and y if G is undirected.

An example of an undirected complete graph of n nodes Kn can be represented as follows:

⌊Kn⌋ := ⟨[n], edgen⟩,

edgen(x, y) :⇔ x, y ∈ [n] and x ̸= y.

Besides, properties of a graph G can be expressed by relational structures in ⌊G⌋ too. For

example, if G is directed, then every vertex of G has at least one predecessor and at least one

successor if and only if

⌊G⌋ |= ∀x∃y, z(edge(y, x) ∧ edge(x, z)).

The two examples above are first-order logic formulas because the variables are vertices.

Second-order logic allows quantification over arbitrary predicates, i.e. sets of logic sentences,

as variables. Monadic second-order logic formulas only allows quantification over monadic pred-

21

icates, i.e. sets of vertices, as variables. Uppercase variables note sets of vertices and lowercase

variables note individual vertices. An example of monadic second-order logic formula are follow-

ing:

⌊G⌋ |= ∃X(∃x, x ∈ X ∧ ∃y, y /∈ X ∧ ∀x, y(edge(x, y)→ (x ∈ X ⇔ y ∈ X)))

The formula above holds if and only if G is not connected.

Variables whose evaluations are given with graph G are called free variables. Such variables

are also allowed in MSO2 formulas and we assume that the evaluation of these free variables are

provided with the graph for the evaluation of MSO2 formulas. For example the formula follows:

partition(X, Y, Z) =∀x{(x ∈ X ∨ x ∈ Y ∨ x ∈ Z)∧

[¬(x ∈ X ∧ x ∈ Y) ∧ ¬(x ∈ Y ∧ x ∈ Z) ∧ ¬(x ∈ X ∧ x ∈ Z)]}

The formula above has three free variables X, Y, Z and verifies that (X, Y, Z) is a partition of

vertex set VG.

Monadic second-order logic has many properties and applications, we have introduced the

basic definitions above. Courcelle’s Theorem identifies fixed parameter tractable problems when

parameterized by treewidth and it is presented by MSO2. For any MSO2 formula ϕ, let ||ϕ|| be

the length of encoding of ϕ as a string.

Theorem 2.4.1 (Courcelle’s Theorem [26]). Assume that ϕ is a formula of MSO2 and G is an

n-vertex graph equipped with evaluation of all the free variables of ϕ. Suppose, moreover, that a

tree decomposition of G of width t is provided. Then there exists an algorithm that verifies whether

ϕ is satisfied in G in time f(||ϕ||, t) · n, for some computable function f .

Note that the theorem above states that a decision problem modeled with MSO2 is a fixed

parameter tractable when the parameter is treewidth. However, the scheduling problems discussed

22

in this thesis are optimization problems, we would have the following optimization variant of the

theorem.

Theorem 2.4.2 ([7]). let ϕ be an MSO2 formula with p free monadic variables X1, . . . , Xp, and let

α(x1, . . . , xp) be an affine function. Assume that we are given an n−vertex graph G together with

its tree decomposition of width t, and suppose G is equipped with evaluation of all the free vari-

ables of ϕ apart from X1, X2, . . . , Xp. Then there exists an algorithm that in f(||ϕ||, t) ·n finds the

minimum or the maximum value of α(|X1|, . . . , |Xp|) for sets X1, . . . , Xp for which ϕ(X1, . . . , Xp)

is true, where f is some computable function.

In the next subsection, we will introduce how we can apply it to our scheduling problems.

2.4.2 Courcelle’s Theorem’s applications to UET-UCT problem

To model UET-UCT problem on unlimited number of machines in MSO2 formula, we have a

precedence graph G = (T ,A). The free variables are the subsets of tasks, X1, . . . , XC , where C

is an upper bound of makespan. The formula σ(X1, . . . , XC) is satisfied if and only if there exists

a feasible schedule of G with tasks in Xα executed at time α.

σ(X1, . . . , XC) =partition(X1, . . . , XC) ∧ ϕ1(X1, . . . , XC)

∧ ϕ2(X1, . . . , XC) ∧ ϕ3(X1, . . . , XC)

ϕ1(X1, . . . , XC) =∀u, v ∈ T , (edge(u, v) ∧ u ∈ Xα ∧ v ∈ Xβ → β − α ≤ 1)

ϕ2(X1, . . . , XC) =∀u ∈ T , (∃v, edge(v, u) ∧ u ∈ Xα ∧ v ∈ Xβ ∧ α− β = 1

→ ∀w ∈ T , w ̸= v ∧ edge(w, u) ∧ w ∈ Xθ ∧ α− θ > 1)

ϕ3(X1, . . . , XC) =∀u ∈ T , (∃v, edge(u, v) ∧ u ∈ Xα ∧ v ∈ Xβ ∧ α− β = −1

→ ∀w ∈ T , w ̸= v ∧ edge(u, w) ∧ w ∈ Xθ ∧ α− θ < −1)

partition(X1, . . . , XC) makes sure that all the tasks in G are scheduled and only scheduled

once. ϕ1(X1, . . . , XC), ϕ2(X1, . . . , XC), ϕ3(X1, . . . , XC) are corresponding to the constraints (1), (3), (4)

23

in the integer programming (P). According to the theorem 2.4.1, this formula shows that the deci-

sion problem if a schedule is a feasible UET-UCT problem is fixed-parameter tractable. According

to theorem 2.4.2, if there exist an affine function α(|X1|, . . . , |XC |) that values the makespan of a

schedule, then the optimization problem to minimize makespan is fixed-parameter tractable when

parameterized with treewidth.

Let us define

α(x1, . . . , xp) = p1x1 + p2x2 + . . . ppxp,

where

p1 = 1,

pi = n · (p1 + · · ·+ pi−1) + 1, ∀i ∈ {2, . . . , p},

and n is the number of tasks.

Let’s prove that for any two schedule σ1 = (X1
1 , . . . , X1

C
) and σ2 = (X2

1 , . . . , X2
C

), if the

makespan of σ1 is C1, the makespan of σ2 is C2 and C1 < C2, then α(|X1
1 |, . . . , |X1

C
|) <

α(|X2
1 |, . . . , |X2

C
|). Indeed we have

α(|X1
1 |, . . . , |X1

C
|)− α(|X2

1 |, . . . , |X2
C
|)

= p1(|X1
1 | − |X2

1 |) + p2(|X1
2 | − |X2

2 |) . . . pC1(|X1
C1| − |X

2
C1 |)− (pC1+1X

2
C1+1 + · · ·+ pC2X2

C2)

≤ n(p1 + . . . pC1)− (pC1+1X
2
C1+1 + · · ·+ pC2X2

C2)

≤ n(p1 + . . . pC1)− pC1+1

≤ 0

Therefore, we have that the problem to optimize the makespan of UET-UCT schedule on unlim-

ited number of machines is fixed-parameter tractable when parameterized by treewidth of prece-

dence graph.

24

3. Kernelization of UET-UCT model

3.1 Introduction to kernelization

Kernelization is one of the basic techniques to form a fixed-parameter tractable algorithm.

Kernelization is often a set of actions which cut away parts of the input that are easy to handle, and

the left part is called the kernel. There are two main notations to express the kernelization process,

listed as follows.

Definition 3.1.1 (Downey–Fellows notation [35]). A kernelization for a parameterized problem

L ⊆ Σ∗ × N is an algorithm that takes an instance (x, k) ∈ L and maps it in time polynomial in

|x| and k to an instance (x′, k′) such that

• (x, k) is in L if and only if (x′, k′) is in L,

• the size of x′ is bounded by a computable function f in k

• k′ is bounded by a function in k.

The output (x′, k′) of kernelization is called a kernel.

Definition 3.1.2 (Flum–Grohe notation [40]). A kernelization for a parameterized problem L is an

algorithm that takes an instance x with parameter k and maps it in polynomial time to an instance

y such that

x is in L if and only if y is in L and the size of y is bounded by a computable function f in k.

Note that in this notation, the bound on the size of y implies that the parameter of y is also bounded

by a function in k.

The function f is often referred to as the size of the kernel. If f = kO(1), it is said that L admits

a polynomial kernel. Similarly, for f = O(k), the problem admits linear kernel.

25

It is proven that a problem is fixed-parameter tractable if and only if it is kernelizable and

decidable [27]. An example of kernelization algorithm is the kernelization of k−vertex cover

problem by Buss Jonathan F. and Goldsmith Judy [18]. Given a graph G = (V, E), k−vertex

cover problem is to decide if there is a vertex cover of size at most k. The rules for kernelization

are as follows:

1. If there are more than k vertices of degree more than k, then reject.

2. Let U be the set of vertices of degree more than k and G′ be a subgraph of G induced by

V − U . If there are more than k(k − |U |) edges in G′, then reject.

In this chapter, we present the kernelizations for UET-UCT model. We have two main steps

for kernelization. In Section 3.2, we will introduce algorithms to tighten time windows of tasks.

In Section 3.3, we will introduce active schedules and its necessary conditions. We will use these

two step of kernelization to form our main FPT-algorithm in the following chapters.

3.2 Modification on release date and deadline

We consider pathwidth of the interval graph of time windows of tasks as the parameter of our

FPT algorithm, so to get short time windows for every tasks is essential. We introduce in this

section a method to improve the release dates and deadlines of tasks. Garey and Johnson [42] gave

a deadline modification algorithm (GJ algorithm in short) for problem P2|prec, pi = 1, ri|∗ in

time complexity O(n3). This algorithm has been extended by Hanen and Zinder [51] to arbitrary

number of processors problem P |prec, pi = 1, ri|Lmax and they also analysed that the worst case

ratio tends to 2 when the number of processors goes to infinity. Leung, Palem and Pnueli (in

short LPP) algorithms [64] is also a deadline modification algorithm to give feasible schedules of

problems in the presence of precedence constraints, unit execution tasks, release-times, deadlines,

and fixed delays between tasks. Carlier, Hanen and Munier Kordon [19] have proved that GJ

algorithm and LPP algorithm reach the same fixed point of deadlines. Hanen, Munier Kordon and

Pedersen [50] extend both GJ algorithm and LPP algorithm to problems with arbitrary execution

26

duration tasks. Zinder et al. [92] have proposed a release date modification algorithm as the base

of their branch and bound algorithm on UET-UCT problems.

In this section, we will give release date and deadline modification algorithms on limited and

unlimited number of identical parallel processors for UET-UCT models. For unlimited number of

processors, we give recursive algorithms; for limited number of processors, we give an extension

of the algorithm given by Zinder et al. [92].

3.2.1 Modification algorithm on release dates

Let’s recall the problem UET-UCT we considered. Let T = {1, 2, . . . , n} be a set of tasks,

graph G = (T ,A) be the precedence graph of T . There are m identical parallel machines to

execute these tasks. If there is an arc (i, j) between task i and j and they are executed on executed

on different machines, there will be a communication delay added between their executions. The

execution time of each task is one unit, and the communication time between tasks is also one unit.

When there are unlimited number of processors, i.e. m ≥ n, the release dates can be calculated

as follows:

First, for tasks that have no predecessors, i.e. Γ−(i) = ∅, we set ri = 0.

For tasks that have predecessors, let the set of predecessors of task i be Γ−(i) = {ji, . . . , jp}.

To calculate the release date of i, we number the predecessors j1, . . . , jp in decreasing order of the

release dates, i.e. rj1 ≥ rj2 ≥ · · · ≥ rjp . Then, the release date ri can be calculated recursively as

follows:

ri =

rj1 + 1 if |Γ−(i)| = 1 or (|Γ−(i)| > 1 and rj1 > rj2)

rj1 + 2 if |Γ−(i)| > 1 and rj1 = rj2 .

(3.2.1)

If the number of machine m < n, the recursive algorithm for release date can be improved by

a algorithm proposed by Yakov Zinder et al. [92].It is as follows:

For any task i ∈ T , if ∀j ∈ Γ−(i), then set r̄ = max
j∈Γ−(i)

rj ,

ri = max
0≤τ≤r̄

{
τ +

⌈
|{j ∈ Γ−(i) : rj ≥ τ}| − 1

m

⌉
+ 1

}
(3.2.2)

27

The following lemma provides the feasibility of the equation 3.2.2.

Lemma 3.2.1. Any schedule σ(G) feasible for the precedence graph G is also feasible with the

release dates ri provided by equation 3.2.2.

Proof. Let σ(G) be a feasible schedule of precedence graph G, the starting time of task i ∈ T is

tσ
i . We need to prove that tσ

i ≥ ri provided by equation 3.2.2.

For i ∈ T without predecessors, ri = 0. Thus tσ
i ≥ ri. For i ∈ T with Γ−(i) ̸= ∅, for all

j ∈ Γ−(i), we assume that tσ
j ≥ rj .

For any τ ∈ [0, r], there exist one and only one k ∈ {−1, 0, 1, . . . }, such that |{j ∈ Γ−(i) :

rj ≥ τ}|− 1 ∈ (km, (k + 1)m], then there is at least one predecessor of i who has to be scheduled

after time τ + k + 1, since there are m machines available. Thus we have tσ
i ≥ τ + k + 2, which

is equal to tσ
i ≥ max

0≤τ≤r̄

{
τ +

⌈
|{j∈Γ−(i):rj≥τ}|−1

m

⌉
+ 1

}
. Thus we have tσ

i ≥ ri.

3.2.2 Modification algorithms on deadlines

For the problem to minimize the makespan Cmax, we also need to calculate the deadlines. We

assume that the release dates are given.

When we have unlimited number of machines, i.e. m ≤ n, to calculate the deadline of task i,

first, for tasks that have no predecessors, i.e. Γ−(i) = ∅, we set di = ri + 1.

Then, for the tasks that have predecessors, i.e. Γ−(i) ̸= ∅, we set di = max{ max
j∈Γ−(i)

dj + 2, ri +

1}.

When we have limited number of machines, i.e. m < n, the algorithm above will not work.

An upper bound of makespan C is need to be able to calculate the deadlines. Thus we give the

algorithm below:

First, for all tasks that have no successors, i.e. Γ+(i) = ∅, we set di = C.

Then the tasks with successors, i.e. Γ+(i) ̸= ∅, let d = min
j∈Γ+(i)

dj , we can calculate the deadlines

recursively as follows:

di = min
d≤τ≤C

{
τ −

⌈
|{j : j ∈ Γ+(i), dj ≤ τ}| − 1

m

⌉
− 1

}
(3.2.3)

28

The following lemma provides the feasibility of the equation 3.2.3.

Lemma 3.2.2. Any feasible schedule σ with makespan bounded by C for the precedence graph G

is also feasible for the deadlines di provided by equation 3.2.3.

Proof. Let σ be a feasible schedule of precedence graph G with makespan bounded by C, the

starting time of task i ∈ T is tσ
i . We need to prove that tσ

i ≤ di − 1 provided by equation 3.2.3.

For i ∈ T without successors, di = C. Thus tσ
i ≤ di − 1. For i ∈ T with Γ+(i) ̸= ∅, for all

j ∈ Γ+(i), we assume that tσ
j ≤ dj .

For any τ ∈ [d, C], there exist one and only one k ∈ {−1, 0, 1, . . . }, such that |{j ∈ Γ+(i) :

dj ≤ τ}| − 1 ∈ (km, (k + 1)m], so there is at least one successor of i who has to be scheduled

before time τ− k − 1, when there are m machines available.

Thus we have tσ
i ≤ τ− k− 3, which is equal to tσ

i ≤ min
d≤τ≤C

{
τ−

⌈
|{j∈Γ+(i):dj≤τ}|−1

m

⌉
− 1

}
− 1.

Thus we have tσ
i ≤ di − 1.

3.2.3 A necessary condition on feasible schedules

For any value α ∈ {0, . . . , C − 1}, we recall that Xα is the set of tasks that can be scheduled

at time α following release times and deadlines,

Xα = {i ∈ T , ri ≤ α, α + 1 ≤ di}.

We also denote by Zα the set of tasks than must be completed at or before time α + 1,

Zα = {i ∈ T , di ≤ α + 1}.

Figure 3.1a shows the release time and deadline of tasks from the graph presented by Figure 2.3a

with the upper bound of the makespan C = 6. Figure 3.1b shows the associated sets Xα and Zα

for α ∈ {0, 1, . . . , 5}. For this example, pw(C) = |X3| − 1 = 5.

Let us consider that σ(G) is a feasible schedule of makespan C ≤ C. For every integer α ∈

{0, . . . , C − 1}, we set T σ
α = {i ∈ T , tσ

i = α}.

29

tasks 1 2 3 4 5 6 7 8
ri 0 0 1 1 2 3 3 3
di 3 3 5 5 4 6 6 6

(a) Release times ri and deadlines di of all tasks from
Figure 2.3a for C = 6.

α Xα Zα

0 {1, 2} ∅
1 {1, 2, 3, 4} ∅
2 {1, 2, 3, 4, 5} {1, 2}
3 {3, 4, 5, 6, 7, 8} {1, 2, 5}
4 {3, 4, 6, 7, 8} {1, 2, 3, 4, 5}
5 {6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8}

(b) Sets Xα and Zα, α ∈ {0, . . . , 5}.

Figure 3.1: Release times, deadlines, and sets Xα and Zα, α ∈ {0, . . . , 5} for the instance presented
by Figure 2.3a and C = 6 on unlimited number of machines.

The following lemma will be considered further to reduce the size of the tasks sets built at each

step of our algorithm.

Lemma 3.2.3. Let σ(G) be a feasible schedule of G. For any α ∈ {0, . . . , C − 1},
α⋃

β=0
T σ

β −Zα ⊆

Xα ∩Xα+1.

Proof. Since σ(G) is feasible, for any α ∈ {0, . . . , C − 1}, T σ
α ⊆ Xα and thus, ∀i ∈

α⋃
β=0
T σ

β ,

ri ≤ α. Moreover, each task i /∈ Zα satisfies di ≥ α + 2.

Thus, for any task i ∈
α⋃

β=0
T σ

β −Zα, [α, α+2] ⊆ [ri, di]. Therefore
α⋃

β=0
T σ

β −Zα ⊆ Xα∩Xα+1,

and the lemma is proved.

For our example presented by Figure 3.1 and α = 3, we have Z3 = {1, 2, 5} and X3 ∩ X4 =

{3, 4, 6, 7, 8}. For the schedule showed in Figure 2.3, we have
3⋃

β=0
T σ

β = {1, 2, 3, 4, 5, 6, 7}. We

observe that
3⋃

β=0
T σ

β − Z3 = {3, 4, 6, 7} ⊆ X3 ∩X4.

3.3 Active schedules

The definition of active schedule is proposed by Giffler, B. and Thompson, G.L. [43]. A

feasible schedule is active if no task can start earlier without increasing the start time of other

tasks. Rayward-Smith[78] showed that an active schedule of UET-UCT problem is no longer than

3 − 2/m times the optimum. Active schedules are always considered to reduce the size of the

30

1

2

3 4

5 7

8

6

(a) An optimal non-active schedule of Figure 2.3a.

1

2

3 4

5

6

7

8

(b) An optimal active schedule of Figure 2.3a.

Figure 3.2: Example of active and non-active schedules.

solution space [88, 92]. In this section, we listed two necessary conditions for active schedules

which can be applied to the algorithms.

As shown in Figure 3.2a, task 6 can be scheduled in advance at time 3 instead of time 4 without

increasing the starting time of other task, so it is not an active schedule. For schedule shown in

Figure 3.2b, no task can start earlier without increasing the start time of other task and keep the

schedule feasible, so it is an active schedule.

3.3.1 Preferred sons

For a task i ∈ T , there is at most one successor of i can be scheduled at time ti + 1, right after

i, and on the same machine of i. There can be many candidates for this position, we call these

candidates the preferred sons of task i. The following is the formal definition and properties of

preferred sons.

Let us consider that σ(G) is a feasible schedule of makespan C. For every integer α ∈

{0, . . . , C − 1}, we set Wα =
α⋃

β=0
T σ

β and Bα = T σ
α . The set Wα contains all the tasks that

are executed in time [0, α + 1), and Bα contains all the tasks that are executed at time α. We show

hereafter that, if a task i ∈ T has one or more successors schedulable at time tσ
i + 1 (called the

preferred sons of i), then we can impose that at most one of them is executed at time tσ
i + 1 on the

same processor as the task i if there are processors available.

Definition 3.3.1 (Preferred sons). Let σ(G) be a feasible schedule of makespan C. For every

integer α ∈ {0, . . . , C − 1}, a task j ∈ T is a preferred son of a task i ∈ Bα if j is a successor of

i that is schedulable at time α + 1. The set of the preferred sons of i with respect to Wα and Bα

is defined as PSWα,Bα(i) = {j ∈ Γ+(i), Γ−(j) ⊆ Wα and Γ−(j) ∩Bα = {i}}.

31

1 2

3 4 5

6 7 8

(a) A precedence graph G = (T ,A).

1

2

3 4

5

6

7

8

(b) An optimum schedule for the precedence
graph G = (T ,A) of Figure2.3a.

Figure 3.3: Task 3 and task 4 are preferred sons of task 1, task 5 is not.

Definition 3.3.2 (Preferred sons property for unlimited resources). A feasible schedule σ(G) satis-

fies the preferred sons property for unlimited resources if, for every integer α ∈ {0, . . . , C−1},

each task i ∈ Bα such that PSWα,Bα(i) ̸= ∅ has exactly one preferred son executed at time α + 1.

Property 3.3.3 (Preferred sons property for m processors). A feasible schedule σ(G) satisfies the

preferred sons property for limited resources if, for every integer α ∈ {0, . . . , C − 1}, each

task i ∈ Bα such that PSWα,Bα(i) ̸= ∅ has exactly one preferred son executed at time α + 1 if

|Bα+1| < m.

The condition |Bα+1| < m is necessary in Preferred sons property for m processors. When

|Bα+1| = m, it is possible that the schedule is active and no preferred sons of i ∈ Bα are executed

at time α + 1 because there are no processors available.

Let us consider the precedence graph and the feasible schedule presented by Figure 2.3. The

preferred sons’ relations are presented in Figure 3.3. For α = 0, W0 = B0 = {1, 2}, PSW0,B0(1) =

{3, 4} and PSW0,B0(2) = ∅. Thus, we can enforce that exactly one task in {3, 4}would be executed

at time 1.

Lemma 3.3.4. Let σ(G) be a feasible schedule. There exists a corresponding feasible schedule

σ′(G) that satisfies the preferred sons property for m processors and such that for any task i ∈ T ,

tσ′
i ≤ tσ

i .

Proof. Let us suppose that σ(G) does not verify the preferred sons property. Let (tσ
1 , tσ

2 , . . . , tσ
n) be

the time vector and xσ be the delay signal vector. Let α ∈ {0, . . . , C − 1} be the first time instant

32

at which the property is not fulfilled, and i⋆ ∈ Bα is a corresponding task with PSWα,Bα(i⋆) ̸= ∅

and tσ
i⋆ = α. Then we have |Bα+1| < m and all the preferred sons of i⋆, i.e. j ∈ PSWα,Bα(i⋆), are

scheduled after time α + 1, i.e. tσ
j ≥ α + 2

For any task j ∈ PSWα,Bα(i⋆), its predecessors are in Wα, thus ∀k ∈ Γ−(j), tσ
k ≤ α. According

to the definition of communication delays, for every task j ∈ Γ+(i⋆), xσ
i⋆j = 1.

We build another feasible schedule σ′(G) as follows:

1. Choose a task j⋆ ∈ PSWα,Bα(i⋆). We then set tσ′
j⋆ = α + 1

2. Keep other tasks’ execution time, i.e. tσ′
i = tσ

i , ∀i ∈ T − {j⋆}

For every task i ∈ T , tσ′
i ≤ tσ

i . Now, we get

∑
ℓ∈Γ+(i⋆)

xσ′

i⋆ℓ =
∑

ℓ∈Γ+(i⋆)−{j⋆}
xσ′

iℓ + xσ′

i⋆j⋆ = |Γ+(i⋆)| − 1.

Similarly, we get

∑
ℓ∈Γ−(j⋆)

xσ′

ℓj⋆ =
∑

ℓ∈Γ−(j⋆)−{i⋆}
xσ′

ℓj⋆ + xσ′

i⋆j⋆ = |Γ−(j⋆)| − 1,

Besides, |Bα| ≤ m,∀α ∈ {0, 1, 2, . . . , C − 1}. Thus σ′(G) is feasible.

This transformation can be continued on the new schedule σ′ until we obtain a schedule that

satisfies the preferred sons’ property. Each time instance can be is considered only once and thus

this transformation is done at most C times. Thus the lemma holds.

Lemma 3.3.5. Let σ(G) be a feasible schedule. There exists a corresponding feasible schedule

σ′(G) that satisfies the preferred sons property and such that for any task i ∈ T , tσ′
i ≤ tσ

i .

Proof. We can suppose without loss of generality that tasks are scheduled by σ(G) as soon as

possible following communication delay vector xσ of σ(G), i.e. ∀i ∈ T and Γ−(i) ̸= ∅, tσ
i =

max
j∈Γ−(i)

(tσ
j + 1 + xσ

ji).

33

Let us suppose that σ(G) does not verify the preferred sons property. Let then α ∈ {0, . . . , C−

1} be the first instant for which the property is not fulfilled, and i⋆ ∈ Bα a corresponding task with

PSWα,Bα(i⋆) ̸= ∅. We show that, for every task j ∈ Γ+(i⋆), xσ
i⋆j = 1.

• Since i⋆ is performed at time α, i⋆ cannot have two successors scheduled at time α + 1. So,

every task j ∈ PSWα,Bα(i⋆) satisfies tσ
j ≥ tσ

i⋆ + 2 and by coherence of σ(G), xσ
i⋆j = 1.

• Now, any task j ∈ Γ+(i⋆)− PSWα,Bα(i⋆) is not schedulable at time α + 1, thus tσ
j ≥ tσ

i⋆ + 2

and by coherence of σ(G), xσ
i⋆j = 1.

Now, any task j ∈ PSWα,Bα(i⋆) has all its predecessors in Wα, thus ∀k ∈ Γ−(j), tσ
k + 2 ≤

tσ
i⋆ + 2 ≤ tσ

j , and by coherence of σ(G), xσ
kj = 1. We build another coherent schedule σ′(G) as

follows:

1. We first choose a task j⋆ ∈ PSWα,Bα(i⋆). We then set xσ′
i⋆j⋆ = 0 and for each arc e = (k, ℓ) ∈

A− {(i⋆, j⋆)}, xσ′
kℓ = xσ

kℓ.

2. We set ∀i ∈ T , tσ′
i = max(0, maxj∈Γ−(i)(tσ′

j + 1 + xσ′
ji)).

For every task i ∈ T , tσ′
i ≤ tσ

i . Now, we get
∑

ℓ∈Γ+(i⋆) xσ′
i⋆ℓ = ∑

ℓ∈Γ+(i⋆)−{j⋆} xσ′
iℓ + xσ′

i⋆j⋆ =

|Γ+(i⋆)| − 1. Similarly, we get
∑

ℓ∈Γ−(j⋆) xσ′
ℓj⋆ = ∑

ℓ∈Γ−(j⋆)−{i⋆} xσ′
ℓj⋆ + xσ′

i⋆j⋆ = |Γ−(j⋆)| − 1, and

thus xσ′ is feasible.

Each task i⋆ is considered at most once and thus this transformation is done at most n times. So,

it gives a feasible coherent schedule that satisfies the preferred sons property without increasing

the makespan, thus the lemma holds.

3.3.2 A general dominance property

In this section, we propose an as-soon-as-possible dominance property to reduce the number

of idle processors.

Property 3.3.6. If a schedule σ(G) satisfies the general dominance property, then we have for

any task i ∈ T , if the direct predecessors of task i are all scheduled before time α − 1 and there

34

are unoccupied processors at time α, then we have task i is scheduled before time α + 1. Thus,

If Γ−(i) ⊆
α−2⋃
β=0
T σ

β and |T σ
α | < m, then ti ≤ α.

The property above considers tasks i ∈ Bα without any preferred son. When a task i does not

have preferred sons and there are available processors, its successors are to be sure to executed

before or at ti + 2 maintaining the feasibility of the schedule.

Lemma 3.3.7. Let σ(G) be a feasible schedule.Then there exists a feasible σ′(G) satisfying the

general dominance property such that, for each task i ∈ T , tσ′
i ≤ tσ

i .

Proof. If σ(G) satisfies the general dominance property, then σ′(G) = σ(G),

Let us suppose that σ(G) does not verify the general dominance property. Let (tσ
1 , tσ

2 , . . . , tσ
n)

be the time vector and (xσ
1 , xσ

2 , . . . , xσ
n) be the delay signal vector. Let α ∈ {0, . . . , C − 1} be

the first time instant at which the property is not fulfilled, and task i⋆ is a corresponding task with

Γ−(i⋆) ⊆
α−2⋃
β=0
T σ

β , tσ
i⋆ = α + 1 and |T σ

α | < m. Therefore, we have all j ∈ Γ−(i⋆) are scheduled

before time α− 1, i.e. tσ
j ≤ α− 2

According to the definition of the delay signals vector, for every task j ∈ Γ−(i⋆), xσ
ji⋆ = 1.

We build another feasible schedule σ′(G) as follows:

1. We set tσ′
i⋆ = α

2. Keep other tasks’ execution time, i.e. tσ′
i = tσ

i ,∀i ∈ T − {i⋆}

So we have for every task i ∈ T , tσ′
i ≤ tσ

i .

Now, we get ∑
ℓ∈Γ+(i⋆)

xσ′

i⋆ℓ ≥
∑

ℓ∈Γ+(i⋆)
xσ

i⋆ℓ ≥ |Γ+(i⋆)| − 1.

∑
ℓ∈Γ−(i⋆)

xσ′

ℓi⋆ =
∑

ℓ∈Γ−(i⋆)
min{ti⋆ − tℓ − 1, 1} ≥ |Γ−(i⋆)| − 1,

Besides, |Bα| ≤ m,∀α ∈ {0, 1, 2, . . . , C − 1}. Thus σ′(G) is feasible.

35

This transformation can be continued on the new schedule σ′ until we obtain a schedule that

satisfies the preferred sons’ property. Each time instance can be is considered only once and thus

this transformation is done at most C times, where C is a upper bound of C. Thus the lemma

holds.

36

4. Fixed-parameter complexity on optimization of

makespan for UET-UCT model

In this chapter, we consider the optimization problem in the UET-UCT model on unlimited

number of processors, i.e. P |prec, pi = 1, ci = 1, ri, di|Cmax, which can be modelled using an

integer linear program (P) defined in Section 2.1.1 with pi = 1 and cij = 1.

4.1 Introduction

It is proven that problem P |prec, pi = 1, ci = 1, ri, di|Cmax is NP-hard [55], due to the im-

portance of this problem, there are many researches on UET-UCT problems to provide exact and

approximate algorithms on general and special precedence graphs.

Many authors considered scheduling problems with communication delays for a limited num-

ber of processors. An exact dynamic programming algorithm of time complexity O(2w(G).n2w(G))

was developed by Veltman [88] for P |prec, pi = 1, cij = 1|Cmax. The parameter w(G) is the width

of the precedence graph G defined as the size of its largest antichain. This algorithm can clearly

be considered for solving the problem without limitation of the number of machines by setting the

number of machines equal to the number of tasks. We can observe that it is a XP algorithm with

parameter w(G). Zinder et al. [92] have developed an exact branch-and-bound algorithm which

converges to an optimal schedule for the problem P |prec, pi = 1, cij = 1|Cmax.

This problem was proved to be polynomial-time solvable for some special classes of graphs

such as trees [22], series-parallel graphs [73] and generalized n-dimensional grid task graphs [5].

For the more general problem, P |prec, cij|Cmax, Sinnen et al. in [81] have developed an enu-

merative A⋆ algorithm coupled with pruning methods. Orr and Sinnen [75] have developed an

original techniques to reduce the space of exploration and to speed up branch-and-bound meth-

ods. Davies et. al. [29] gave a polynomial time O(log c · log m)−approximation algorithm for

this problem, where m is the number of machines and c is the communication delay, which based

37

on a Sherali-Adams lift of a linear programming relaxation and a randomized clustering of the

semimetric space induced by this lift. Jansen et. al. [56] presented an efficient polynomial time

approximation scheme (EPTAS) for scheduling fork-join task graphs with communication delay

on homogeneous processors, denoted as P |fork − graph, cij|Cmax, which is based on an integer

program. Liu et al. [67] provided an O(ln c
ln ln c

)-approximation algorithm with near-linear running

time, i.e. in Õ(|V |+ |E|) time.

Several authors also considered integer linear programming formulations (ILP in short) to solve

exactly scheduling problems with communications delays and a limited number of processors.

Davidović et al. in [28] tackled the scheduling problems for a fixed network of processors; com-

munications are proportional to both the amount of exchanged data between pairs of dependent

tasks and the distance between processors in the multiprocessor architecture. They developed two

formulations and they compared them experimentally. Later, Ait El Cadi et al. [3] improved this

approach by reducing the size of the linear program (number of variables and constraints) and by

adding cuts; they compared positively to the previous authors. Venugopalan and Sinnen in [89]

provided a new ILP formulation for the usual problem P |prec, cij|Cmax and comparison with [28]

for several classes of graphs and fixed number of processors.

Extensions of usual problems with communication delays were extensively studied. For ex-

ample, the survey of Giroudeau and Koenig [45] considered a hierarchical communication model

where processors are grouped into clusters. Shimada et al. [80] developed two heuristic based

methods to consider both malleable tasks and communications delays for executing a program

on an homogeneous multi-core computing system. Ait-Aba et al. [2] provided complexity results

for an extension of the basic communication model for scheduling problems on an heterogeneous

computing systems with two different resources.

Researchers are gaining interests on fixed-parameter tractability of scheduling problems. Mnich

and van Bevern [70] surveyed main results on parameterized complexity for scheduling problems

and identified 15 open problems. Bodlaender et. al. [17] considered scheduling problems with

exact and minimum delay on chains of jobs. With exact delay and parameterized by the number

38

of chains, it is W [1]-complete on a single or a constant number of machines, and W [2]-complete

when the number of machines is a variable.

Our algorithm is parameterized by pathwidth of the interval graph of tasks’ time windows. This

parameter is first used in the work of Munier [72] which developed a fixed-parameter algorithm

for the problem P |prec, pi = 1|Cmax.

4.2 Dynamic programming approach and multistage graphs

This section presents our fixed-parameter algorithm. We start with the description of a multi-

stage graph which presents the structure of the algorithm. After, we present the executable algo-

rithm.

4.2.1 Description of the multistage graph

Let us consider a precedence graph G = (T ,A) and an upper bound C of the makespan. We

build an associated multistage graph S(G) = (N, A) with C stages in which paths from the first

stage to last stage represent all the feasible active schedules.

4.2.1.1 Nodes of S(G)

For any value α ∈ {0, . . . , C − 1}, Nα is the set of nodes at stage α of graph S(G). A node

p ∈ N is a couple (W (p), B(p)), where W (p), B(p) are subsets of tasks and B(p) ⊆ W (p) ⊆ T .

If p ∈ Nα, tasks from W (p) have to be completed at time α + 1, while those from B(p) are

scheduled exactly at time α. N0 contains only one node p0 with B(p0) = {i ∈ T , Γ−(i) = ∅} and

W (p0) = B(p0).

Observe that, for any value α ∈ {0, . . . , C − 1}, all tasks from Zα must be completed at time

α + 1, thus for any node p ∈ Nα, Zα ⊆ W (p). Moreover, by Lemma 3.2.3, W (p) − Zα ⊆

Xα ∩Xα+1.

4.2.1.2 Arcs of S(G)

For any α ∈ {0, 1, . . . , C − 2} and (p, q) ∈ Nα×Nα+1, the arc (p, q) ∈ A exists if there exists

a feasible schedule such that tasks from W (q) are all completed at time α+2 with tasks from B(q)

39

executed at time α+1 and those from B(p) at time α. The nodes p and q satisfy then the following

conditions:

A.1 Since p is associated to a partial schedule of q, W (p) ∪ B(q) = W (q) and since tasks can

only be executed once, W (p) ∩B(q) = ∅.

A.2 Any task i ∈ B(q) must be schedulable at time α + 1, thus all its predecessors must belong

to W (p). Then, B(q) ⊆ {i ∈ Xα+1, Γ
−(i) ⊆ W (p)}.

A.3 Any task i ∈ B(q) cannot have more than one predecessor scheduled at time α, thus B(q) ⊆

{i ∈ Xα+1, |Γ−(i) ∩B(p)| ≤ 1}.

A.4 Any task i ∈ Xα+1 −W (p) for which all its predecessors are completed at time α must be

scheduled at time α + 1. Thus, if Γ−(i) ⊆ W (p)−B(p), then i ∈ B(q).

A.5 For any task i ∈ B(p), if PSW (p),B(p)(i) ∩ Xα+1 ̸= ∅, then by Definition 3.3.1, these suc-

cessors of i are schedulable at time α + 1. Following Lemma 3.3.5, we impose that exactly

one among them is executed at time α on the same processor as i and thus |PSW (p),B(p)(i)∩

B(q)| = |Γ+(i) ∩ B(q)| = 1. Otherwise, if PSW (p),B(p)(i) ∩ Xα+1 = ∅, no successor of i

can be scheduled at time α + 1 which corresponds to |Γ+(i) ∩B(q)| = 0.

Remark 4.2.1. The preferred sons of a task i ∈ T were initially defined with respect to two sets of

tasks Wα and Bα built from a feasible schedule. Here, for any node p ∈ Nα, the definition of PS

is extended to consider the sets W (p) and B(p) simply by assuming that tasks from W (p) (resp.

B(p)) are those which are completed at time α + 1 (resp. performed at time α).

Figure 4.1 is the multistage graph associated with the precedence graph of Figure 2.3a and C =

6. We observe that the path (p0, p1
1, p1

2, p1
3, p1

4) corresponds to the schedule shown in Figure 2.3b.

On the same way, the path (p0, p0
1, p0

2, p0
3, p0

4) corresponds to the schedule shown by Figure 4.2.

4.2.2 Description of the algorithm

Algorithm 1 builds iteratively the multistage graph S(G) = (N, A). This algorithm returns

false if there is no feasible schedule of makespan bounded by C, otherwise it returns the optimum

40

p0 = ({1, 2}, {1, 2})

p1
1 = ({1, 2, 3}, {3})p0

1 = ({1, 2, 4}, {4})

p0
2 = ({1, 2, 3, 4, 5}, {3, 5}) p1

2 = ({1, 2, 3, 4, 5}, {4, 5})

p1
3 = ({1, 2, 3, 4, 5, 6, 7}, {6, 7})p0

3 = ({1, 2, 3, 4, 5, 6, 8}, {6, 8})

p1
4 = ({1, 2, 3, 4, 5, 6, 7, 8}, {8})p0

4 = ({1, 2, 3, 4, 5, 6, 7, 8}, {7})N4

N3

N2

N1

N0

Figure 4.1: The multistage graph associated with the precedence graph of Figure 2.3a and C = 6.

1

2

4 3

5

6

7

8

Figure 4.2: An optimum schedule corresponding to the path (p0, p0
1, p0

2, p0
3, p0

4) of Figure 4.1.

makespan. For any set of tasks X ⊆ T , let P(X) be the power set of X , i.e. the set of all subsets

of X including the empty ones. This algorithm is composed by three main sections. Lines 1 − 6

correspond to the initialization step. Lines 7− 9 build all the possible nodes. Lines 10− 17 build

the arcs and delete all the non connected nodes.

4.3 Correctness of the algorithms

In this section, we prove that all feasible active schedules are presented by a path in graph

S(G), and all paths from the first stage to a node p with W (p) = T are feasible schedules.

Lemma 4.3.1. Any feasible schedule σ(G) of makespan C ≤ C corresponds to a path of S(G)

ending with a node p with W (p) = T .

Proof. Let suppose that σ(G) is a feasible active schedule of makespan C ≤ C. By Lemma 3.3.5,

we have that σ(G) satisfies the preferred sons property and σ(G) is an as-soon-as-possible schedule,

i.e. for any task i ∈ T , tσ
i = max(0, maxi∈Γ−(j)(tσ

j + 1 + xji)).

For every integer α ∈ {0, . . . , C − 1}, we set T σ
α = {i ∈ T , tσ

i = α}. Let us consider

the sequence qα = (W (qα), B(qα)) defined as W (qα) = ⋃α
β=0 T σ

β and B(qα) = T σ
α for α ∈

41

Algorithm 1: Optimum makespan C ≤ C if it exists, false otherwise.
Input: A precedence graph G = (T ,A), an upper bound of the makespan C
Output: Optimum makespan C ≤ C if it exists, false otherwise

1 for i ∈ T do
2 Calculate ri and di

3 for α ∈ {0, 1, . . . , C − 1} do
4 Calculate Xα and Zα

5 Initialize a set of arcs A = ∅
6 Let N0 = {p0} with B(p0) = {i ∈ T , Γ−(i) = ∅} and W (p0) = B(p0)
7 for α ∈ {1, 2, . . . , C − 1} do
8 Build the sets P(Xα ∩Xα+1) and P(Xα)
9 Nα = {p = (W, B), W = Y ∪ Zα, Y ∈ P(Xα ∩Xα+1), B ∈ P(Xα), B ⊆ W}

10 for α ∈ {0, 2, . . . , C − 2} do
11 for (p, q) ∈ Nα ×Nα+1 do
12 if conditions A.1, A.2, A.3, A.4, A.5 are met for (p, q) then
13 A = A ∪ {(p, q)}
14 if W (q) = T then
15 return α + 2

16 Delete all the vertices p ∈ Nα+1 without predecessor

17 return False

{0, . . . , C − 1}.

For α = 0, W (q0) = T σ
0 = {i ∈ T , tσ

i = 0} = {i ∈ T , Γ−(i) = ∅} = W (p0), where p0 is the

only node in the first stage of graph S(G). Thus q0 has the same structure as node p0.

Since σ(G) is feasible, for every value α ∈ {0, . . . , C − 1}, T σ
α ⊆ Xα. According to Lemma

3.2.3,
⋃α

β=0 T σ
β − Zα ⊆ Xα ∩Xα+1. So the node qα = (W (qα), B(qα)) has been built at stage α.

We prove then that, for every value α ∈ {0, . . . , C − 2}, (qα, qα+1) ∈ A.

• W (qα+1) = ⋃α+1
β=0 T σ

β = ⋃α
β=0 T σ

β ∪ T σ
α+1 = W (qα) ∪ B(qα+1). Moreover, W (qα) ∩

B(qα+1) = ⋃α
β=0 T σ

β ∩ T σ
α+1 = ∅. Thus, A.1 is verified.

• Since σ(G) is feasible, tasks from B(qα+1) are schedulable at time α+1 and thus, properties

A.2 and A.3 are verified.

• Since σ(G) is an as-soon-as-possible schedule, property A.4 is fulfilled.

42

• Lastly, since σ(G) satisfies the preferred sons property, A.5 is fulfilled.

We conclude that (q0, q1, . . . , qC−1) is a path of S(G). Moreover, since σ(G) is of makespan C,

W (qC−1) = T , and thus the lemma is verified.

Lemma 4.3.2. Let C ≤ C and (p0, p1, . . . , pC−1) be a path of S(G) with W (pC−1) = T . Then,

for each task i ∈ T , there exists a unique value α ∈ {0, . . . , C − 1} such that i ∈ B(pα).

Proof. According to the definition of S(G), W (p0) ⊂ W (p1) ⊂ · · · ⊂ W (pC−1). Moreover, by

assumption, W (pC−1) = T . Thus, for each task i ∈ T , there is a unique α ∈ {0, . . . , C − 1} with

i ∈ W (pα) and i /∈ W (pα−1). Since W (pα−1) ∪B(pα) = W (pα), we get i ∈ B(pα).

Lemma 4.3.3. Every path (p0, p1, . . . , pC−1) of S(G) with C ≤ C and W (pC−1) = T is associated

to a feasible schedule whose makespan is equal to C.

Proof. Let (p0, p1, . . . , pC−1) be a path of S(G) with C ≤ C and W (pC−1) = T . A schedule σ(G)

of makespan C is defined as follows:

• By Lemma 4.3.2, for any task i ∈ T , there exists a unique value α ∈ {0, . . . , C − 1} with

i ∈ B(pα). Thus, we set tσ
i = α.

• For any arc (i, j) ∈ A, we set xσ
ij = 1 if tσ

j > tσ
i + 1, otherwise xσ

ij = 0.

We prove that the schedule σ(G) satisfies the integer linear program (P) defined in Section 2.1.1

with pi = 1 and cij = 1.

According to the condition A.2, we get Γ−(i) ⊆ W (pα−1), so tσ
j + 1 ≤ tσ

i ,∀(j, i) ∈ A.

Following the definition of xσ, we observe that equations (1) are true.

Now, by definition of σ(G), tσ
i ≤ C − 1,∀i ∈ T and thus equations (2) are validated.

According to the condition A.5, for any task i ∈ B(pα), α ∈ {0, . . . , C − 2}

C.1 If PSW (pα),B(pα)(i) ∩ Xα+1 ̸= ∅, then there is exactly one task j⋆ ∈ Γ+(i) ∩ B(pα+1), i.e.

such that tσ
j⋆ = α + 1 = tσ

i + 1. The task j⋆ is thus the unique successor of i for which

xσ
ij⋆ = 0 and ∀j ∈ Γ+(i)− {j⋆}, xσ

ij = 1. Thus, ∀i ∈ T ,
∑

j∈Γ+(i) xσ
ij = |Γ+(i)| − 1.

43

C.2 If PSW (pα),B(pα)(i) ∩ Xα+1 = ∅, then no successor of i is scheduled at time α + 1, thus

∀j ∈ Γ+(i), xσ
ij = 1 and

∑
j∈Γ+(i) xσ

ij = |Γ+(i)|.

Therefore, equations (3) are checked. Lastly, according to the condition A.3, any task i ∈ B(pα+1)

cannot have more than one predecessor in B(pα), thus i has at least one predecessor j⋆ such that

xσ
j⋆i = 0. Therefore, ∀i ∈ T ,

∑
j∈Γ−(i) xσ

ji ≥ |Γ−(i)| − 1 and equations (4) are validated. We

conclude that σ(G) is a feasible schedule, and the lemma is proved.

Theorem 4.3.4 (Validity of Algorithm 1). Algorithm 1 returns the minimum makespan C of a

feasible schedule if C ≤ C, false otherwise.

Proof. Let us suppose first that our algorithm returns C ≤ C, then the minimum path from p0 to

a node p with W (p) = T is of length C. By Lemma 4.3.3, this path is associated to a feasible

schedule of makespan C. Thus this schedule is optimal.

Now, let us suppose that such a path does not exist; in this case, Algorithm 1 returns false. By

Lemma 4.3.1, there is no feasible schedule of makespan C ≤ C and the theorem is proved.

4.4 Complexity results

In this section, we prove that Algorithm 1 is a fixed-parameter tractable algorithm.

Lemma 4.4.1. Let us denote by n the number of tasks and pw(C) the pathwidth of the interval

graph built with the upper bound C of the minimum makespan. The number of nodes |N | of the

multistage graph S(G) = (N, A) is O(n · 22pw(C)) and the number of arcs |A| is O(n · 24pw(C)).

Proof. According to Algorithm 1, each node p ∈ Nα is such that p = (W (p), B(p)) with W (p) =

Y (p) ∪ Zα and Y (p) ⊆ Xα ∩ Xα+1. The number of possibilities for Y (p) is thus bounded by

2|Xα∩Xα+1| ≤ 2|Xα|. Now, since B(p) ⊆ Xα, the number of possibilities for B(p) is bounded by

2|Xα|. Then, the number of nodes in Nα for α ∈ {0, . . . , C − 1} is bounded by 22|Xα|.

By definition of the pathwidth, the value |Xα| is bounded by pw(C) + 1, thus the number of

nodes |Nα| isO(22pw(C)). Now, since C ≤ n, the number of nodes |N | isO(n·22pw(C)). Moreover,

44

the size of Nα×Nα+1 for α ∈ {0, . . . , C − 1} is O(24pw(C)), thus the whole number of arcs |A| is

O(n · 24pw(C)), and we get the lemma.

Lemma 4.4.2. For any α ∈ {0, . . . , C − 2}, the time complexity of checking the conditions A.1 to

A.5 for a couple of nodes (p, q) ∈ Nα ×Nα+1 is O(n2 · pw(C)).

Proof. The time complexity for checking the condition A.1 is O(n). For the condition A.2, we

need to build the set {i ∈ Xα+1, Γ
−(i) ⊆ W (p)}. If we denote by m the number of arcs of

G, building this set requires to enumerate all the successors of tasks in Xα+1, which is in time

complexity equal to O(m). Since m ≤ n2, the time complexity for checking the condition A.2

is thus O(n2 · pw(C)). For the same reasons, time complexity for checking the conditions A.3

and A.4 is also O(n2 · pw(C)). For condition the A.5, the time complexity of the computation of

the preferred sons of a task i ∈ B(p) is also O(n2), and thus checking this condition also takes

O(n2 · pw(C)), and the lemma holds.

Theorem 4.4.3 (Complexity of Algorithm 1). The time complexity of Algorithm 1 isO(n3 ·pw(C)·

22pw(C)), where pw(C) is the pathwidth of the interval graph associated to the time windows [ri, di],

i ∈ T .

Proof. The time complexity of the computation of the release dates and deadlines (lines 1−2) and

the sets Xα and Zα for α ∈ {0, . . . C} (lines 3 − 4) is O(n2) since C is bounded by n. The time

complexity for building N at lines 7 − 9 is O(n · 22pw(C)) by Lemma 4.4.1. Following Lemma

4.4.1 and 4.4.2, the complexity of building arcs of S(G) in lines 10−17 isO(n3 ·pw(C) ·24pw(C)),

thus the theorem holds.

4.5 Conclusion

We have shown in this paper that the problem P |prec, pi = 1, cij = 1|Cmax is fixed-parameter

tractable. The parameter considered is the pathwidth associated with an upper bound C of the

makespan. For this purpose, we have developed a dynamic programming algorithm of complexity

O(n3 · pw(C) · 24pw(C)). This is, as far as we know, the first fixed-parameter algorithm for a

scheduling problem with communication delays.

45

This work opens up several perspectives. The first one is to test experimentally the efficiency

of this algorithm, and to compare it to other exact methods such as integer linear programming or

dedicated exact methods [75, 81]. A second perspective is to study the extension of this algorithm

to more general problems in order to get closer to applications and to evaluate if these approaches

can be considered to solve real-life problems.

46

5. Extensions to maximum lateness

In the previous chapter, we have given an algorithm to minimizing the makespan on UET-

UCT model. In this chapter, we will do some modification to the algorithm to minimizing the

maximum lateness Lmax of a schedule. It considers the minimization of the maximum lateness

for a set of dependent tasks with unit duration, unit communication delays release times and due

dates. The number of processors is limited, and each task requires one processor for its execution.

A fixed-parameter algorithm based on a dynamic programming approach is developed to solve

this optimization problem. This is, as far as we know, the first fixed-parameter algorithm for a

scheduling problem with communication delays and limited number of processors.

This chapter is submitted to journal RAIRO and is co-authored by my supervisor Alix Munier-

Kordon.

5.1 Problem definition

The scheduling problem considered is described in Section 5.1.1, while a small example is

presented in Section 5.1.2. In Section 5.1.3, a dominance property of active schedules is described.

5.1.1 Problem definition

Let G = (T ,A) be a precedence graph of unit execution time tasks. For each task i ∈ T , let

Γ+(i) (resp. Γ−(i)) be the set of direct successors (resp. predecessors) of i, i.e. Γ+(i) = {j ∈

T , (i, j) ∈ A} and Γ−(i) = {j ∈ T , (j, i) ∈ A}.

We observe that a feasible schedule σ is completely defined by the starting times vector tσ ∈

Nn. Indeed, for any arc e = (i, j) ∈ A, we note xσ
ij the communication delay between the tasks i

and j; we set xσ
ij = 0 if the execution of the task j starts right after the task i. These two tasks are

necessarily executed by a same processor and the communication delay is removed. Otherwise, a

communication delay is required between the completion time of the task i and the starting time

of the task j and thus xσ
ij = 1. We then set xσ

ij = min{tσ
j − tσ

i − 1, 1} for each arc e = (i, j) ∈ A.

47

The problem considered is expressed below. A time-indexed formulation should be considered

to transform it into an integer linear program [82] for modelling the resource constraints. We

set dmax = maxi∈T di (resp. rmax = maxi∈T ri) the maximum due date (resp. release time);

we also suppose that an upper bound of the maximum lateness L is fixed. We then observe that

C = min(rmax + 2n, dmax + L) is an upper bound of the makespan of any active feasible schedule

which maximum lateness is bounded by L.

minimize L

t ∈ Nn; L ∈ Z;∀e = (i, j) ∈ A, xij ∈ {0, 1} (1)

∀i ∈ T , L ≥ ti + 1− di and ti ≥ ri (2)

∀e = (i, j) ∈ A, xij = min{tj − ti − 1, 1} (3)

∀e = (i, j) ∈ A, ti < tj (4)

∀i ∈ T ,
∑

j∈Γ+(i)
xij ≥ |Γ+(i)| − 1 (5)

∀i ∈ T ,
∑

j∈Γ−(i)
xji ≥ |Γ−(i)| − 1 (6)

∀α ∈ {0, . . . , C}, |{i ∈ T , ti = α}| ≤ m (7)

Since communications delays and length of the tasks are unitary, starting times can be reduced

to integer values; Inequalities (2) come from the definition of the maximum lateness and the release

dates. Communication delays are defined from the starting time of the tasks (3). Inequalities (4),

(5) and (6) express the communication delay constraints: any task i has at most one successor

(resp. predecessor) performed at its completion time (resp. just before its starting time) on the

same processor. Inequalities (7) express the limitation on the number of processors.

5.1.2 Example

Let us consider an instance of our scheduling problem defined by 7 tasks of unit length. The

precedence graph, release dates and due dates are reported by Figure 5.1. The number of machines

is fixed to 2. A feasible schedule σ of maximum lateness Lmax(σ) = 2 is given by Figure 5.2.

48

1

2

3 4

5

6

7

i ∈ T 1 2 3 4 5 6 7
ri 0 0 0 1 1 2 2
di 1 1 1 2 2 3 3

Figure 5.1: An instance of P |ri, prec, pi = 1, cij = 1|Lmax with m = 2 machines.

1

2

3 4

5

6 7

Figure 5.2: A feasible schedule σ of maximum lateness Lmax(σ) = 2 associated to the example
given in Figure 5.1.

5.1.3 A general dominance property of active schedules

Let us consider that σ is a feasible schedule of maximum lateness bounded by L̄. For every

integer α ∈ {−1, . . . , C − 1}, we set Wα =
α⋃

β=0
T σ

β and Bα = T σ
α . The set Wα contains all the

tasks that are executed in time [0, α + 1), and Bα contains all the tasks that are executed at time α.

Notice that W−1 = B−1 = ∅.

For a fixed value α ∈ {−1, . . . , C−2}, we note S(Wα, Bα) to be the set of tasks from Xα+1−

Wα that are schedulable at time α + 1 following Wα and Bα. Formally, S(Wα, Bα) = {i ∈

Xα+1 −Wα, Γ−(i) ⊆ Wα and |Γ−(i) ∩Bα| ≤ 1}.

Now, we observe that a set of tasks B can be scheduled at time α + 1 following Wα and Bα if

B ⊆ S(Wα, Bα) with |B| ≤ m and there is no couple of tasks (i, j) ∈ B2 with a same predecessor

in Bα (i.e. for each couple of tasks (i, j) ∈ B2, Γ−(i)∩ Γ−(j)∩Bα = ∅). We set then C(Wα, Bα)

to be the set of all the subsets of S(Wα, Bα) that fulfills all these conditions.

Lastly, we may reduce our study to active schedules without loss of generality; then we set

A(Wα, Bα) to be the set of the elements from C(Wα, Bα) that are maximum for the inclusion.

49

Lemma 5.1.1. Let us consider that σ is an active feasible schedule of maximum lateness bounded

by L̄. For any value α ∈ {−1, . . . , C − 2}, T σ
α+1 ∈ A(Wα, Bα).

Proof. Let us suppose by contradiction that, for a fixed value α ∈ {−1, . . . , C − 2}, T σ
α+1 ̸∈

A(Wα, Bα). Since tasks from T σ
α+1 are all schedulable together at time α + 1, T σ

α+1 ∈ C(Wα, Bα),

and thus T σ
α+1 ∈ C(Wα, Bα)−A(Wα, Bα). The consequence is that T σ

α+1 is not maximum for the

inclusion in C(Wα, Bα), and thus σ is not active, a contradiction.

5.2 Description of the algorithm

This section is dedicated to the description of our algorithm. Subsection 5.2.1 describes the

multistage graph S(G) built, while Subsection 5.2.2 is devoted to the algorithm.

5.2.1 Description of the multistage graph

Our algorithm builds an associated multistage graph S(G) = (N, A) described as follows:

5.2.1.1 Nodes of S(G)

The set of nodes N is partitioned into C + 1 stages. For any value α ∈ {−1, . . . , C − 1},

Nα is the set of nodes at stage α. A node p ∈ Nα is a triple (W (p), B(p), L(p)), where B(p) ⊆

W (p) ⊆ T and L(p) ∈ Z∪{+∞}. The node p is associated to the feasible schedules σ(p) of tasks

from W (p) ending at time α + 1 with tasks from B(p) scheduled at time α. L(p) is the minimum

maximum lateness among all the feasible schedules associated to p. Moreover, N−1 = {s} with

W (s) = B(s) = ∅ and L(s) = −∞. For each value α ∈ {0, . . . , C − 1}, each node p ∈ Nα fulfils

next conditions:

N.1 Tasks from Zα must be completed before time α + 1, thus for each p ∈ Nα, Zα ⊆ W (p);

N.2 For each node p ∈ Nα, the tasks from B(p) are all executed simultaneously at time α, thus

B(p) ⊆ Xα and |B(p)| ≤ m;

N.3 By Lemma 3.2.3, for each node p ∈ Nα, W (p)− Zα ⊆ Xα ∩Xα+1.

50

5.2.1.2 Arcs of S(G)

For each value α ∈ {0, . . . , C − 2} and (p, q) ∈ Nα × Nα+1, there is an arc (p, q) ∈ A if the

following conditions are fulfilled:

A.1 Tasks from W (q) are completed at time α+2 with tasks from B(q) executed at time α+1 and

those from B(p) at time α. Thus, W (p) ∪ B(q) = W (q) and since tasks are only executed

once, W (p) ∩B(q) = ∅;

A.2 Any task i ∈ B(q) must be schedulable at time α + 1 and all the schedule considered are

active, thus B(q) ∈ A(W (p), B(p));

A.3 The node s is a source of S(G), thus for any node p ∈ N0, (s, p) ∈ A.

5.2.1.3 Maximum Lateness of a node of S(G)

For any node q ∈ Nα with α ∈ {0, . . . , C − 1}, let ℓ(q) = α + 1 − min
i∈B(q)

di be the maximum

lateness of the tasks from B(q). Recall that these tasks are executed at time α.

For any value α ∈ {−1, . . . , C − 1} and q ∈ Nα, L(q) is the minimum maximum lateness of a

schedule of tasks from W (q) with B(q) ⊆ W (q) scheduled at time α. L is defined as follows:

1. by convention, L(s) = −∞;

2. for any value α ∈ {0, . . . , C − 1} and q ∈ Nα,

L(q) = max(ℓ(q), min
p∈Γ−(q)

L(p)).

Here, Γ−(q) is the set of the immediate predecessors of q in S(G).

5.2.2 Description of the algorithm

Algorithm 2 builds iteratively the multistage graph S(G) = (N, A). For any set of tasks X ⊆

T , let P(X) be the set of all subsets of X including the empty set. This algorithm returns the

minimum value of the maximum lateness if it is upper bounded by L, false otherwise.

51

The algorithm is composed by three main sections. Lines 1-4 correspond to the initialization

step. Lines 5-6 build all the possible nodes following conditions N.1, N.2 and N.3. Lines 7-18

build the arcs and delete all the non connected nodes.

Algorithm 2: Minimum maximum lateness Lopt if Lopt ≤ L, false otherwise.

1 for α ∈ {0, 1, . . . , C} do
2 Calculate Xα and Zα

3 N−1 = {s = (W, B, L), W = B = ∅ and L = −∞}
4 N = N−1, A = ∅, Lopt = +∞
5 for α ∈ {0, . . . , C − 1} do
6 Nα = {p = (W, B, L), W = Y ∪ Zα, Y ∈ P(Xα ∩Xα+1), B ∈ P(Xα), B ⊆

W, |B| ≤ m and L = +∞}
7 for α ∈ {−1, . . . , C − 2} do
8 for p ∈ Nα do
9 if W (p) ̸= T then

10 for B ∈ A(W (p), B(p)) do
11 Find q ∈ Nα+1 such that (W (p) ∪B, B) = (W (q), B(q))
12 ℓ(q) = α + 2−mini∈B(q) di

13 if L(q) > ℓ(q) then
14 L(q) = max(ℓ(q), min(L(p), L(q)))
15 A = A ∪ {(p, q)}
16 else
17 Lopt = min(Lopt, L(p))

18 Nα+1 = {q ∈ Nα+1, Γ
−(q) ̸= ∅}, N = N ∪Nα+1

19 if Lopt = +∞ then
20 return false

21 return Lopt

Figure 5.3 presents the graph S(G) built by Algorithm 2 associated to the example shown by

Figure 5.1 and the upper bound L = 2. Algorithm 2 returns the optimal value Lopt = 1.

We observe that the schedule presented by Figure 5.2 is associated to the path s→ p0 → p1 →

p2 → p3 → p4 with p0 = ({1, 2}, {1, 2}, 0), p1 = ({1, 2, 3}, {3}, 1), p2 = ({4, 5}, {4, 5}, 1),

p3 = ({6}, {6}, 1) and p4 = (∅, {7}, 2). The maximum lateness of the path is L(p4) = 2.

52

s = (∅, ∅,−∞)

({1, 2}, {1, 2}, 0) ({1, 3}, {1, 3}, 0) ({2, 3}, {2, 3}, 0)

({1, 2, 3}, {3}, 1) ({1, 2, 3, 4}, {2, 4}, 0) ({1, 2, 3, 4}, {1, 4}, 0)

({4, 5}, {4, 5}, 1) ({4, 5, 6}, {5, 6}, 1)

({6}, {6}, 1) ({6, 7}, {7}, 1)

(∅, {7}, 2)

N−1

N0

N1

N2

N3

N4

Figure 5.3: The multistage auxiliary graph S(G) = (N, A) associated with the example given in
Figure 5.1. Each node p ∈ Nα is designated by the triple (W (p) − Zα, B(p), L(p)).The nodes p
filled in gray are associated to a set of feasible schedules where minimum maximum lateness is
L(p).

Conversely, the path s→ q0 → q1 → q2 → q3 with q0 = ({1, 3}, {1, 3}, 0), q1 = ({1, 2, 3, 4}, {2, 4}, 0),

q2 = ({4, 5, 6}, {5, 6}, 1) and q3 = ({6, 7}, {7}, 1) corresponds to the active feasible schedule σ

of maximum lateness Lmax(σ) = 1 presented by Figure 5.4.

5.3 Correctness of the algorithm

This section is devoted to the proof of the correctness of Algorithm 2. Lemma 5.3.1 shows that

the evaluation of the maximum lateness L(q) for each node q ∈ N is correct with respect to the

definition of Subsection 5.2.1. Lemma 5.3.2 shows that any active feasible schedule is associated

53

1

3

2

4

5

6

7

Figure 5.4: The active feasible schedule σ of maximum lateness Lmax(σ) = 1 associated to the
path s → q0 → q1 → q2 → q3 with q0 = ({1, 3}, {1, 3}, 0), q1 = ({1, 2, 3, 4}, {2, 4}, 0), q2 =
({4, 5, 6}, {5, 6}, 1) and q3 = ({6, 7}, {7}, 1).

to a path of S(G) from s to a node without successor, while Lemma 5.3.4 proves that extremum

paths of S(G) are associated to feasible schedules. Our main theorem follows.

Lemma 5.3.1. For any node q ∈ Nα with α ∈ {−1, . . . , C − 1}, the value L(q) computed by

Algorithm 2 follows the definition of the minimum maximum lateness of a node (see. Subsection

5.2.1).

Proof. L(s) is set to −∞ and is not modified. Let us consider a node q ∈ Nα of S(G) with

α ∈ {0, . . . , C − 1} and the value ℓ(q) = α + 1−mini∈B(q) di. If α = 0, L(q) = ℓ(q) is correctly

set at line 5 of Algorithm 2.

Now, if α > 0, L(q) = +∞ at the initialization of the node q. Since q belongs to S(G), then

Γ−(q) ̸= ∅, thus the value L(q) is adjusted once for each predecessor of q. At the first adjustment,

corresponding to its predecessor p1, we set L(q) = max(ℓ(q), L(p1)) since L(q) was initialized to

+∞.

Now, if there exists a predecessor p of q such that L(p) ≤ ℓ(q), then, let p1 be the first prede-

cessor of q considered by the Algorithm 2 such that L(p1) ≤ ℓ(q). At its corresponding loop, L(q)

is set to ℓ(q) and is not modified further; the maximum lateness of q is then correct.

Otherwise, all the predecessors p of q verify L(p) > ℓ(q), thus L(q) > ℓ(q) and L(q) is then

equal to minp∈Γ−(q) L(p), which is also the right definition of the maximum lateness of q.

Lemma 5.3.2. Any active feasible schedule σ of maximum lateness bounded by L is associated

to a path ν(σ) of S(G) ending at a node p with W (p) = T . Moreover, the maximum lateness

Lmax(σ) = maxq∈ν(σ) L(q).

54

Proof. Let us consider an active feasible schedule of maximum lateness bounded by L. Let us

denote by C(σ) the length of the schedule σ, i.e. C(σ) = maxi∈T (tσ
i + 1). Clearly, since σ is

active, C(σ) ≤ C. For α ∈ {0, . . . , C(σ)− 1}, we set Wα = ⋃α
β=0 T σ

β and Bα = T σ
α .

The set A(∅, ∅) contains the maximum sets of tasks schedulable at time 0. Since σ is a feasible

active schedule, there exists q0 ∈ N0 such that W (q0) = B(q0) = W0 = B0. Moreover, (s, q0) ∈ A

and thus A.3 is verified.

Moreover, since σ is feasible, for every value α ∈ {0, . . . , C(σ) − 1}, T σ
α ⊆ Xα. According

to Lemma 3.2.3,
⋃α

β=0 T σ
β − Zα ⊆ Xα ∩Xα+1. So the node qα = (W (qα), B(qα), +∞) has been

built at stage α in the loop of lines 5-6 of Algorithm 2.

We prove that for every value α ∈ {0, . . . , C(σ)− 2}, (qα, qα+1) ∈ A.

• W (qα+1) = ⋃α+1
β=0 T σ

β = ⋃α
β=0 T σ

β ∪ T σ
α+1 = W (qα) ∪ B(qα+1). Moreover, W (qα) ∩

B(qα+1) = ⋃α
β=0 T σ

β ∩ T σ
α+1 = ∅. Thus, A.1 is verified.

• Since σ is a feasible active schedule, A.2 is verified.

We conclude that (s, q0, q1, . . . , qC(σ)−1) is a path of S(G). Moreover, W (qC(σ)−1) = T since the

schedule σ ends at time C(σ), thus p = qC(σ)−1 is an ending node.

Lastly, by Lemma 5.3.1, each value L(qα) computed by Algorithm 2 for α ∈ {0, . . . , C(σ)−1}

is the minimum maximum lateness of the sub-schedule associated to qα; the maximum lateness of

the schedule σ is thus Lmax(σ) = maxq∈ν(σ) L(q), which concludes the proof.

Lemma 5.3.3. Let (s, p0, p1, . . . , pC−1) be a path of S(G) with W (pC−1) = T . For each task

i ∈ T , there exists a unique value α ∈ {0, . . . , C − 1} such that i ∈ B(pα).

Proof. According to the definition of S(G), W (p0) ⊆ W (p1) ⊆ · · · ⊆ W (pC−1). Moreover, by

assumption, W (pC−1) = T . Thus, for each task i ∈ T , there is a unique α ∈ {0, . . . , C − 1} with

i ∈ W (pα) and i /∈ W (pα−1). Since W (pα−1) ∪B(pα) = W (pα), we get i ∈ B(pα).

Lemma 5.3.4. Each node p ∈ N such that W (p) = T is associated to an active feasible schedule

σ of maximum lateness Lmax(σ) = L(p).

55

Proof. Let us consider a node p ∈ NC−1 with W (p) = T and C ∈ {0, . . . , C − 1}. We build

iteratively a sequence of nodes p−1, p0, p1, . . . , pC−1 of S(G) as follows:

1. pC−1 = p;

2. for each k ∈ {1, . . . C − 1}, pk−1 is a predecessor of pk in S(G) such that L(pk−1) is mini-

mum;

3. p−1 = s.

This sequence is defined since each node of Nα with α ∈ {0, . . . , C − 1} has at least one prede-

cessor (or it will be deleted at line 18). Moreover, pk ∈ Nk for k ∈ {−1, . . . C − 1}.

Now, by Lemma 5.3.3, for each task i ∈ T , there exists a unique value α ∈ {0, . . . , C − 1}

with i ∈ B(pα). Thus, a starting time can be defined for i by setting tσ
i = α. We prove in the

following that these starting times define an active feasible schedule σ.

We first observe that for each value α ∈ {−1, . . . , C − 1}, B(pα) ⊆ Xα and |B(pα)| ≤ m

following the condition N.2. Thus, the maximum lateness of each task is bounded by L̄; the

constraints (2) and (7) of the problem definition are fulfilled.

Now, let consider a task i ∈ B(pα) with α ∈ {0, . . . , C−1}. By condition A.2, i is schedulable

at time α. Thus, all its predecessors are belonging to W (pα−1) and the condition (4) of the problem

definition is verified.

Moreover, B(pα) ∈ A(W (pα−1), B(pα−1)). Thus, there is at least one predecessor j of i

scheduled at time α − 1 and j has no other successor scheduled at time α. Thus, conditions (5)

and (6) of the problem definition are validated.

Lastly, elements from A(W (pα), B(pα)) for α ∈ {0, . . . , C − 1} are maximum for the inclu-

sion; this condition guarantees that σ is an active schedule.

Now, by definition of the sequence pk, L(pk) = max(ℓ(pk), L(pk−1)) with ℓ(pk) = k + 1 −

mini∈B(pk) di. Thus, L(p0) ≤ L(p1) . . . ≤ L(pC−1). By Lemma 5.3.1, the maximum lateness of

the schedule σ is Lmax(σ) = L(pC−1) = L(p) and the lemma is proved.

56

Theorem 5.3.5 (Correctness of Algorithm 2). Algorithm 2 returns the minimum maximum lateness

Lmax(σ) ≤ L̄ of a feasible schedule σ if it exists, false if there is no feasible schedule of maximum

lateness bounded by L.

Proof. Let us suppose first that Algorithm 2 returns a value L⋆. Then, let a node p ∈ N such

that L⋆ = L(p) = min{L(p), p ∈ N, W (p) = T }. By Lemma 5.3.4, p is associated to an active

feasible schedule of maximum lateness L(p), thus the minimum maximum lateness of our instance

Lopt ≤ L⋆. Now, let us suppose by contradiction that L⋆ > Lopt. Thus, there exists an active

feasible schedule σ such that Lmax(σ) = Lopt and σ is not associated to a path of S(G), which

contradicts Lemma 5.3.2, and thus L⋆ = Lopt.

Now, let us suppose that there is no node p ∈ N such that W (p) = T ; in this case, Algorithm 2

returns false. By Lemma 5.3.2, there is no active feasible schedule and the theorem is proved.

5.4 Complexity analysis

We study in this section the complexity of Algorithm 2 to conclude that our scheduling problem

is fixed-parameter tractable in the pathwidth.

Lemma 5.4.1. Let us denote by n the number of tasks and pw(L) the pathwidth associated to

the upper bound L of the maximum lateness. For any value α ∈ {0, . . . , C − 1}, the number of

elements of Nα belongs to O(22pw(L)).

Proof. By Algorithm 2, the number of nodes in Nα for α ∈ {0, . . . , C − 1} is bounded by 2|Xα| ×

2|Xα+1|. The values |Xα| and |Xα+1| are both bounded by pw(L) + 1, thus the lemma holds.

Lemma 5.4.2. The time complexity of the inner loop of Algorithm 2 (Lines 8-17) for a fixed node

p ∈ Nα and α ∈ {−1, . . . , C − 2} is O(pw(L)× 2pw(L)).

Proof. Let us suppose that W (p) ̸= T . By definition, A(W (p), B(p)) ⊆ P(Xα+1) and thus

|A(W (p), B(p))| ≤ 2|Xα+1|.

Searching for a node q in Nα+1 can be done in timeO(log |Nα+1|); By Lemma 5.4.1,O(log |Nα+1|) ⊆

O(pw(L)), thus the overall time of the inner loop is O(pw(L) × 2pw(L)), and the lemma is

proved.

57

Next lemma bounds the maximum value of the release dates and C:

Lemma 5.4.3. We can suppose that rmax = maxi∈T ri ≤ 2(n − 1) and C ≤ 4n − 2 without loss

of generality.

Proof. Let suppose by contradiction that rn > 2(n − 1), and let i⋆ be the smallest value i ∈

{1, . . . , n} with ri > 2(i− 1); since r1 = 0, we get that i⋆ > 1. For every task j ∈ {1, . . . , i⋆− 1},

rj ≤ 2(j − 1).

The biggest values for the release date of tasks j in {1, . . . , i⋆ − 1} is r′
j = 2(j − 1) and the

most constrained instance is a path 1 → 2 . . . → i⋆ − 1. In this case, the only active feasible

schedule σ is tσ
j = 2(j − 1). Thus, any active feasible schedule of tasks {1, . . . , i⋆ − 1} would

end at time 2(i⋆ − 2) + 1 or before. Since ri⋆ ≥ 2(i⋆ − 1) + 1, there will be at least two idle time

slots at time 2(i⋆ − 2) + 1 and 2(i⋆ − 1) before the beginning of tasks in {i⋆, i⋆ + 1, . . . n}. Since

release times are compatible with respect to precedence, we can treat separately the two sets of

tasks {1, . . . , i⋆ − 1} and {i⋆, . . . , n}. The second scheduling problem considers tasks {i⋆, . . . , n}

with release times r̃j = rj − ri⋆ and due dates d̃j = dj − ri⋆ . Thus, the first part of the lemma is

proved.

Now, since C = min(rmax + 2n, dmax + L), C ≤ 4n− 2 and the lemma is proved.

Theorem 5.4.4 (Complexity of Algorithm 2). The time complexity of Algorithm 2 is O(n2 + n ×

pw(L)× 23pw(L)), where pw(L) is the pathwidth of the interval graph associated to the time win-

dows (ri, di + L), i ∈ T .

Proof. The time complexity of the computation of the sets Xα and Zα for α ∈ {0, . . . , C} (lines

3-4) is O(n2) since C is bounded by 4n− 2 following Lemma 5.4.3.

The time complexity for building N at lines 7-8 is O(n × 22pw(L)) by Lemmas 5.4.1 and

5.4.3. Following Lemma 5.4.2, the whole complexity of building arcs of S(G) in lines 9-20 is

O(n× 22pw(L) × pw(L)× 2pw(L)).

The overall complexity of the algorithm is thusO(n2 + n× pw(L)× 23pw(L)), and the theorem

holds.

58

5.5 Conclusion and perspectives

We proved that the scheduling problem P |ri, prec, pi = 1, cij = 1|Lmax is fixed-parameter

tractable in the pathwidth pw(L̄) associated to an upper bound L̄ of the maximum lateness. We

extended previous approaches [72, 84] to tackle both communications delay, a limited number

of machine, and to optimize the maximum lateness. We also limit our enumeration to active

schedules, which allows to decrease the worst-case complexity of the method.

We believe that this work opens up many perspectives. From a theoretical point of view, many

fundamental questions remain open as the existence of a fixed-parameter algorithm in the width,

or the possible extension of this work to scheduling problems with large communication delays.

From a practical point of view, our algorithm defines an original exploration scheme probably

well suited to general scheduling problems. Similarly to Branch-And-Bound methods, dominance

properties allow to reduce the size of the generated multistage graph. It would then be interesting

to test this new class of algorithms to compare their performance with those from the literature.

59

6. Evaluation of the Age Latency of a Real-Time Com-

municating System using the LET paradigm

A real-time system (RTS) is a system that responds to external events created by its environ-

ment in a timely fashion [65]. It has been developed and has been researched in demand in the

market especially in industrial environments[4, 30]. Typical examples include Air Traffic Control

Systems, Networked Multimedia Systems, Command Control Systems etc. In a Real-Time System

the quality of the system services depend not only on the correctness of the computations, but also

on the instant at which the computation results are obtained. It is expected to have the correct

computation at the correct time. The responses have specified constraints or deadlines, there are

two types of real-time systems according to the timing constraints:

1. Hard real-time system: This type of system does not allowed missed deadlines such as avion-

ics or automotive control systems. These systems must verify hard timing constraints, a

missed deadline can cause system failure or disastrous consequences. Their design and anal-

ysis are usually a complex processes that require efficient methods, for example, automated

piloting systems.

2. Soft real-time system: In this type of system, missed deadline is allowed with acceptable

low probability or tardiness, for example the telephone switches systems, audio and video

steaming software for entertainment (lag will cost the quality of service but not be a disaster)

A real-time system usually communicates with its environment through sensors that detect

events and actuators that traduce its reaction. Paths from a sensor to an actuator are usually referred

to event chains (see as example [47]). The time needed to propagate a data from a sensor to an

actuator is closely related to the reaction delay of the system. One of the most important features

is that the response time of a real-time system must be predictable and limited. Several measures

can be defined to capture these delays, as presented by Feiertag et al.[38]. We limit out study to

60

the age latency, also called the end-to-end latency, which is the maximum time interval from a

specific input value on a sensor and the last corresponding output value. It can be interpreted as

the maximum delay that a specific data spends in the system. This value measures the freshness of

a data producing a response of the system, and insures that the action of the actuator is not too old.

Real-time computer systems are often associated with low-latency systems. Many applications

of real-time computing are also low-latency applications. However, a hard real-time system must

be guaranteed that the system finishes a certain task by a certain time. Therefore, it is important

that the latency in the system be measurable and a maximum allowable latency for tasks be set.

A real-time system is a system that responds to external events created by its environment in a

timely fashion [65]. In various contexts such as avionics or automotive, these systems must verify

hard timing constraints. Their design and analysis are usually a complex processes that require

efficient methods.

We consider a set T of periodic tasks with different periods that are executed following the

model of Liu and Layland [66]. A directed acyclic graph G = (T , E) defines communication links

between tasks executions. Each arc (ti, tj) ∈ E between the two tasks ti and tj is associated to a

shared memory variable that is modified by ti and read by tj . We assume that each execution of ti

updates the variable at its completion time, while each execution of tj read it at its starting time.

This communication scheme, usually known as "implicit communication" follows the AUTOSAR

requirement [1] and is commonly used for the design of automotive real-time systems.

However, the instants of the exchanges between tasks depend on the successive starting times

and completion times of the tasks, and are thus not predictable. Logical Execution Time (LET in

short) paradigm [59] delays writings to the periodic deadlines of the tasks and advances the reading

to their periodic release dates. The communication instants are then fixed before the execution of

the tasks and the system is deterministic. This communication scheme was implemented by the

time-triggered language Giotto [52]. This timing predictability makes it particularly suitable for

safety-critical applications. This model was thus considered in industrial domains as automotive

[11, 47] or avionics [53, 90]. We suppose in this chapter that tasks are periodic with different

61

periods and that all communications follow LET paradigm.

The major contribution of the chapter is to develop and to prove a general framework to model

the communications on the successive tasks executions using LET communications for a general

graph. The computation of the age latency of the application can then be seen as an example of

concrete application. Observe that most of the authors limited their methods to chains [9, 38, 69]

and that our methodology can handle easily a general graph.

Indeed, we first prove that dependencies induces by a LET communication e = (ti, tj) ∈ E

between the successive executions of ti and tj can be modelled by an original simple inequality

involving parameters of the tasks ti and tj and the execution numbers considered.

Then, it can easily be observed that, if Ti denotes the period of task ti, these dependence

relations between tasks executions are repeated within the hyper-period T = lcmti∈T (Ti). An

expanded valued graph PN(G) can then be easily built by duplicating each task Ni = T
Ti

times.

We prove in this chapter that setting any vector K with Ki ∈ {1, . . . , Ni} for any ti ∈ T , a

partial expanded graph PK(G) can be built by duplicating each task Ki times. Each arc of this

graph includes the modelling of the dependence relation between the corresponding executions of

its adjacent tasks duplicates. This partial expanded graph is inspired from Bodin et al. [12] and

de Groote [31] for Synchronous DataFlow Graph [62], for which the initial inequality modelling

dependence is slightly different.

Subsequently, we show that upper bounds of the latency between adjacent duplicates of PK(G)

can be derived and considered as a valuation of the arcs. The longest paths of PK(G) provide then

an upper bound of the latency. However, the computation of these paths has a time complexity

proportional to
∑

e=(ti,tj)∈E Ki × Kj . The main problem is then to find the values of K that

minimises this function with an exact evaluation of the age latency.

We first prove that our study can be limited to vectors K such that, for any task ti, Ki divides

Ni. We then develop a greedy algorithm that converges to a vector K⋆ that provides the exact value

of the age latency. This algorithm can be seen as an adaptation of the K-iter algorithm [13] for the

determination of the maximum throughput of a Synchonous DataFlow Graph, which is up to now

62

one of the best algorithm to solve this latter problem. Our algorithm was experimentally tested on

random generated graphs with periods inspired from automotive real-life benchmarks [48, 61].

This chapter is organised as follows. Section 6.1 presents related works. The problem and our

characterisation of the dependence between tasks executions are presented in Section 6.2. Section

6.3 is devoted to the construction of the partial expanded graph PK(G) for any fixed vector K. It

is shown in Section 6.4 that our exploration can be limited to K vectors such that, for any task

ti ∈ T , Ki is a divisor of Ni. Section 6.5 presents our greedy algorithm for the computation of

a vector K⋆ leading to an optimum value of the age latency. This algorithm is experimented in

Section 6.6 on a the Case study ROSACE [76] and in Section 6.7 on randomly generated graphs.

Section 6.8 is our conclusion.

6.1 Related works

The evaluation of the age latency of an event chain is a challenging question tackled by several

authors. Feirtag et al. [38] first introduced the definition of dependence between tasks of an

event chain and four metrics to evaluate the delay between a sensor and an actuator. Becker et

al. [9] developed a general framework to evaluate the age latency of an event chain using feasible

intervals. They built an expanded graph by evaluating the possible propagation of an input data

by the successive execution of tasks. They tested in [10] their approach against the evaluation of

the latency of a fixed schedule or under the LET hypothesis. They concluded that if there is no

information on the communications nor on the schedule, a pessimistic value of the age latency

will be obtained, which is very similar to the value obtained using LET paradigm. However, the

computation time grows exponentially with the number of tasks if an enumeration is needed, while

it remains constant for LET paradigm.

Under the LET assumption, times of the communications between tasks are known before the

executions of the tasks. This strong assumption allows to characterise the dependencies between

tasks if their parameters are fixed. Martinez et al. [69] gave a formal characterisation of the

dependencies between tasks in an event chain using time instants. They then derived the age

63

latency by enumerating all the possible paths of the corresponding expanded graph. They also

proved that the release times influence the age latency and they developed a heuristic to fix them

in order to minimise it.

All these approaches cannot be extended easily to a general graphs. Indeed, the number of

paths between two vertices is exponential. The complexity of a method that enumerates all the

paths for evaluating their age latency will thus grow exponentially following the parameters of the

graph.

Forget et al.[41] has developed a language to express the constraints and a multi-periodic syn-

chronous model to represent the whole system for a general graph. This approach supports several

metrics. However, the complexity of the method to evaluate the different latencies is equivalent to

building the expanded graph.

Khatib et al. [58] proved that constraints between the successive executions of two adjacent

tasks can be modelled using a Synchronous DataFlow Graph [62]. Our equation is slightly differ-

ent since for any arc e = (ti, tj), they do not considered the successive constraints between two

adjacent tasks if Ti > Tj , dealing only with precedence constraints. They then compute the age

latency using the expansion of the Synchronous DataFlow graph which is equivalent to PN(G).

They also proposed the computation of a polynomial upper bound of the age latency equivalent

to the determination of the longest paths of P1nG with n = |T |. Lastly, they showed that the

difference between this bound and the age latency is around 30 percent. This result motivates the

development of efficient methods to evaluate more precisely the age latency of a graph G.

6.2 Modelling of the system

This section presents formally the problem tackled in this chapter. Subsection 6.2.1 defines the

periodic tasks model considered according to LET restrictions. Subsection 6.2.2 is dedicated to

the definition of the dependence relation between the successive executions of two adjacent tasks.

Subsection 6.2.3 defines formally the age latency of a graph. Subsection 6.2.4 is devoted to the

definition of the problem and the presentation of a small pedagogic example.

64

6.2.1 Periodic tasks model considering LET communications

Let us consider a set T = {t1, . . . , tn} of real-time periodic tasks following the model of Liu

and Layland [66]. Each task ti ∈ T is characterised by a quadruplet (ri, Ci, Di, Ti) such that:

• ri is the release date (the offset) of the first execution of ti;

• Ci is the worst-case execution time of ti;

• Di is the relative deadline of ti;

• Ti is the period of ti.

For any value n ∈ N⋆, we denote by ⟨ti, n⟩ the nth execution of ti and by s(ti, n) its starting

time. For any value n ∈ N⋆, the execution of ⟨ti, n⟩ must be scheduled in its time window, that is

ri + (n− 1)× Ti ≤ s(ti, n) and s(ti, n) + Ci ≤ Di + (n− 1)× Ti.

Logical execution time communication model separates the tasks executions to the communi-

cations. In this model, data are read at the release dates of the reading tasks, while they are sent

at the deadlines of its sending task. Moreover, reading tasks always get the last emitted data. The

main advantage of this model is to define a deterministic communications system even if tasks are

delayed inside their time window.

In this chapter, we only consider LET communications and we limit the characterization of the

tasks to their successive time windows. The execution times associated to the nth execution of ti

is then set to its release date, that is S(ti, n) = ri + (n− 1)× Ti. Similarly, the completion time is

fixed to S(ti, n) + Di. Each task ti is then given by the triplet (ri, Di, Ti).

6.2.2 LET dependencies

Communications are expressed by a directed graph G = (T , E). Every arc e = (ti, tj) ∈ E

is associated to a LET communication from ti to tj . A dependence between two executions of

adjacent tasks is defined as follows:

Definition 6.2.1. Let us suppose that e = (ti, tj) ∈ E and that νi and νj are two positive integers.

There exists a dependence relation from ⟨ti, νi⟩ to ⟨tj, νj⟩ if ⟨tj, νj⟩ gets data from ⟨ti, νi⟩.

65

Figure 6.1 presents successive time windows of the first executions of two periodic tasks t1 and

t2 with a LET communication e = (t1, t2) ∈ E. Since T1 > T2 a same data from t1 can be read by

several executions of t2.

t1
1 2 3 4 5 6

t2
1 2 3 4 5 6 7 8

Figure 6.1: Time windows associated to two periodic tasks t1 and t2 with a LET dependence e =
(t1, t2). Parameters of tasks are respectively (r1, D1, T1) = (0, 3, 4) and (r2, D2, T2) = (1, 2, 3).

Next theorem characterises formally the dependence relation between the executions of two

communicating tasks:

Theorem 6.2.2. Let suppose that e = (ti, tj) ∈ E. Let gcde
T = gcd(Ti, Tj) and M e = Tj +

⌈ ri−rj+Di

gcde
T
⌉ × gcde

T . For any couple (νi, νj) ∈ N⋆ × N⋆, there exists a dependence from ⟨ti, νi⟩ to

⟨tj, νj⟩ iff Ti ≥M e + Tiνi − Tjνj > 0.

Proof. There exists a dependence from ⟨ti, νi⟩ to ⟨tj, νj⟩ iff the two following conditions hold:

1. ⟨tj, νj⟩ begins after the end of ⟨ti, νi⟩, thus S(ti, νi) + Di ≤ S(tj, νj). Since S(ti, νi) =

ri + (νi − 1)× Ti and S(tj, νj) = rj + (νj − 1)× Tj , we get

ri + (νi − 1)× Ti + Di ≤ rj + (νj − 1)× Tj,

thus,

Ti ≥ Tj + (ri − rj + Di) + Tiνi − Tjνj,

and since in the inequality above only ri − rj + Di can’t be divided by gcde
T , we obtain that

Ti ≥M e + Tiνi − Tjνj.

66

2. At the beginning of ⟨tj, νj⟩, data from ⟨ti, νi + 1⟩ are not available, thus S(ti, νi +1)+Di >

S(tj, νj) and then

ri + νiTi + Di > rj + (νj − 1)× Tj,

thus,

Tj + (ri − rj + Di) + Tiνi − Tjνj > 0.

Since M e ≥ Tj + (ri − rj + Di)

M e + Tiνi − Tjνj > 0.

Merging the two equations, we get the theorem.

Let us consider as example the two tasks t1 and t2 with the LET communication e = (t1, t2)

presented by Figure 6.1. We get gcde
T = gcd(3, 4) = 1 and M e = 3 + (0 − 1 + 3) = 5. The

inequality of Theorem 6.2.2 is 4 ≥ 5 + 4ν1 − 3ν2 ≥ 0. One can observe that the first executions

of t1 and t2 with a dependence relation correspond to the couples that verify this inequality. For

(ν1, ν2) = (1, 2), we get 5+4ν1−3ν2 = 5+4−6 = 3 ∈ {1, . . . , 4}. Similarly, for (ν1, ν2) = (2, 3),

we get 5 + 4ν1 − 3ν2 = 5 + 8 − 9 = 4 ∈ {1, . . . , 4}. Now, if we consider (ν1, ν2) = (2, 5),

5 + 4ν1 − 3ν2 = 5 + 8− 15 = −2 ̸∈ {1, . . . , 4} and there is no dependence from ⟨t1, 2⟩ to ⟨t2, 5⟩.

6.2.3 Age latency

Let us suppose that e = (ti, tj) ∈ E and let the set R(e) be the couples (νi, νj) ∈ N⋆ × N⋆

such that e induces a dependence from ⟨ti, νi⟩ to ⟨tj, νj⟩. Then, for any couple (νi, νj) ∈ R(e), the

latency of the executions ⟨ti, νi⟩ and ⟨tj, νj⟩ associated to e is

Lνi,νj
(e) = S(tj, νj)− S(ti, νi) = rj − ri + Ti − Tj − (Tiνi − Tjνj). (6.2.1)

Now, for any path p = t1e1t2e2 . . . ek−1tk of G, let us define the set R(p) as the k-uplets

(ν1, . . . , νk) ∈ N⋆k such that ∀ℓ ∈ {1, . . . , k − 1}, (νℓ, νℓ+1) ∈ R(eℓ). Then, for any k-uplet

67

t1

t2

t3

t4

ti t1 t2 t3 t4
ri 0 1 2 3
Di 1 0.5 4 3
Ti 2 1 6 3

Figure 6.2: An instance of 4 periodic tasks and the associated DAG G.

(ν1, . . . , νk) ∈ R(p), we get

Lν1,...,νk
(p) =

k−1∑
ℓ=1
Lνℓ,νℓ+1(eℓ) + Dk.

The maximum latency of a path p of G is then defined as

L⋆(p) = max{Lν1,...,νk
(p), (ν1, . . . , νk) ∈ R(p)}

and the maximum latency of a directed graph G corresponds to

L⋆(G) = max{L⋆(p), p path of G}.

Let us observe that, if the initial graph G contains circuits, its latency may be not bounded. So,

we suppose in the following that G is acyclic. Moreover, since the latency between two executions

is positive, L⋆(G) is reached for a path p such that t1 has no predecessor and tk no successor.

6.2.4 Problem definition and example

The problem tackled in this chapter can be formalised as follows: let us consider a directed

acyclic graph G = (T , E), each arc modelling a LET communication. Each periodic task ti ∈ T

is associated to a triplet (ri, Di, Ti). The problem is to compute the maximal age latency L⋆(G).

Figure 6.2 presents an instance of our problem composed by 4 periodic tasks and the associated

directed acyclic graph G. Dependence relations between the first executions of tasks t1, t2 and t4

68

are pictured by Figure 6.3.following the path p = t1t2t4 of G. The latency of the path from ⟨t1, 1⟩

to ⟨t4, 1⟩ is L1,2,1(p) = S(t4, 1)− S(t1, 1) + 2 = 3− 0 + 2 = 5. On the same way, the latency of

the path p from ⟨t1, 3⟩ to ⟨t4, 2⟩ is L3,5,2(p) = S(t4, 2)−S(t1, 3) + 2 = 6− 4 + 2 = 4. We deduce

that L⋆(p) = 5.

t1 1 2 3 4 5 6

t2 1 2 3 4 5 6 7 8 9 10 11 12

t4 1 2 3 4

Figure 6.3: A path p = t1e1t2e2t4 from the graph G pictured by Figure 6.2.

6.3 Construction of a partial expanded graph

The aim of this section is to detail and prove the construction of a partial expanded graph PKG

associated to a fixed vector K. The main idea is to duplicate any task ti Ki times and to express

the dependence directly on duplicates.

Subsection 6.3.1 is devoted to the proof of Theorem 6.3.3 that characterises the dependence

relations between the duplicates of two adjacent tasks. An upper bound of the latency between

two duplicates corresponding to dependant executions is then evaluated in Subsection 6.3.2. Sub-

section 6.3.3 defines formally the partial expanded graph PKG associated with a vector K, while

subsection 6.3.4 evaluates the complexity its computation.

6.3.1 Dependence between duplicates of the partial expanded graph

Let us suppose that for any task ti, a number of duplicates Ki ∈ N⋆ is fixed. Then, for any

ai ∈ {1, . . . , Ki}, the aith duplicate of ti is simply associated to the executions ai +pKi for p ∈ N.

Next technical lemma characterises the dependence relation between two executions of adjacent

69

tasks taking into account the number of duplicates of the tasks:

Lemma 6.3.1. Let e = (ti, tj) ∈ E and gcde
T (resp. gcde

K) the greatest common divisor between

Ti and Tj (resp. KiTi and KjTj). Let νi = ai + piKi and νj = aj + pjKj with (ai, aj) ∈

{1, . . . , Ki} × {1, . . . , Kj} and (pi, pj) ∈ N× N. Let us define the four values

• αe(ai, aj) = Tiai − Tjaj

gcde
T

,

• πe(pi, pj) = TipiKi − TjpjKj

gcde
K

,

• πmax
e (ai, aj) =

⌊
−M e + Ti − αe(ai, aj) · gcde

T

gcde
K

⌋
,

• and πmin
e (ai, aj) =

⌈
−M e + gcde

T − αe(ai, aj)gcde
T

gcde
K

⌉
.

If e induces a dependence from ⟨ti, νi⟩ to ⟨tj, νj⟩, then

Tiνi − Tjνj = πe(pi, pj) · gcde
K + α(ai, aj) · gcde

T

with πe(pi, pj) ∈ {πmin
e (ai, aj), . . . , πmax

e (ai, aj)}.

Proof. By definition of νi and νj ,

Tiνi − Tjνj = Ti × (ai + Ki · pi)− Tj × (aj + Kj · pj)

= (TiKipi − TjKjpj) + (Tiai − Tjaj)

= πe(pi, pj) · gcde
K + αe(ai, aj) · gcde

T .

By Theorem 6.2.2, Ti −M e ≥ Ti νi − Tjνj > −M e. Thus, since all the terms of this inequality

are divisible by gcde
T , its right part is equivalent to Ti −M e ≥ Ti νi − Tjνj ≥ −M e − gcde

T and

we get

Ti −M e ≥ πe(pi, pj) · gcde
K + αe(ai, aj) · gcde

T ≥ −M e + gcde
T .

70

From the right part of the inequality,

πe(pi, pj) ≥
−M e + gcde

T − αe(ai, aj) · gcde
T

gcde
K

.

Since πe(pi, pj) is an integer, we can tighter the lower bound of πe(pi, pj) by

πe(pi, pj) ≥ ⌈
−M e + gcde

T − αe(ai, aj) · gcde
T

gcde
K

⌉ = πmin
e (ai, aj).

On the same way, the left part of the previous inequality is

Ti −M e − αe(ai, aj) · gcde
T

gcde
K

≥ πe(pi, pj)

Since πe(pi, pj) is an integer, we can tighter the upper bound of πe(pi, pj) by:

⌊Ti −M e − αe(ai, aj) · gcde
T

gcde
K

⌋ ≥ πe(pi, pj)

So we get πmax
e (ai, aj) ≥ πe(pi, pj) and the lemma is proved.

Let consider as example the arc e = (t2, t4) of the example pictured by Figure 6.2 with fixed

values K2 = 4 and K4 = 2. We get gcde
T = gcd(1, 3) = 1, gcde

K = gcd(4, 6) = 2 and M e =

3 + ⌈1−3+0.5
1 ⌉ = 2. The corresponding values of αe(ai, aj), πmax

e (ai, aj) and πmin
e (ai, aj) are

reported by Table 6.1.

For the couple (a2, a4) = (3, 2), let suppose that there exists a dependence from ⟨t2, ν2⟩ to

⟨t4, ν4⟩ with ν2 = a2 + p2K2 = 3 + 4p2 and ν4 = a4 + p4K4 = 2 + 2p4.

T2ν2 − T4ν4 = ν2 − 3ν4

= (3 + 4p2)− 3(2 + 2p4)

= 2(2p2 − 3p4)− 3 = gcde
Kπe(p2, p4)− αe(3, 2).

71

a2
a4 1 2
1 −2 −5
2 −1 −4
3 0 −3
4 1 −2

αe(a2, a4)

a2
a4 1 2
1 0 2
2 0 1
3 −1 1
4 −1 0

πmax
e (a2, a4)

a2
a4 1 2
1 1 2
2 0 2
3 0 1
4 −1 1

πmin
e (a2, a4)

Table 6.1: Values αe(a2, a4), πmax
e (a2, a4) and πmin

e (a2, a4) for a2 ∈ {1, 2, 3, 4} and a4 ∈ {1, 2}.

By Lemma 6.3.1, we get πe(p2, p4) = 2p2 − 3p4 = 1.

Let consider now the couple (a2, a4) = (1, 1). Then, since πmax
e (1, 1) < πmin

e (1, 1), such a

decomposition of the difference T2ν2 − T4ν4 with ν2 = 1 + p2K2 and ν4 = 1 + p4K4 is not

possible; a simple consequence of Lemma 6.3.1 is that there is no dependence relation between

executions ⟨t2, 1 + p2K2⟩ and ⟨t4, 1 + p4K4⟩.

For the general case, let us define

A(e) = {(ai, aj) ∈ {1, . . . , Ki} × {1, . . . , Kj}, πmax
e (ai, aj) ≥ πmin

e (ai, aj)}.

Next Lemma is the reverse of Lemma 6.3.1.

Lemma 6.3.2. Let e = (ti, tj) ∈ E and a couple (ai, aj) ∈ A(e).

For any value π ∈ {πmin
e (ai, aj), . . . , πmax

e (ai, aj)}, there exist an infinite number of couples

(pi, pj) ∈ N2 such that π = πe(pi, pj). Moreover, setting νi = ai + piKi and νj = aj + pjKj , e

induces a relation from ⟨ti, νi⟩ to ⟨tj, νj⟩.

Proof. By Bezout, there exists (x, y) ∈ Z2 such that xKiTi + yKjTj = gcde
K and thus πxKiTi +

πyKjTj = πgcde
K .

For z ∈ N, let us define pi = πx + zKjTj and pj = −πy + zKiTi. Let us also consider values

νi and νj such that νi = ai + Kipi and νj = aj + Kjpj . For z sufficiently large (z ≥ z0), pi ≥ 1

72

and pj ≥ 1 and thus νi and νj are both greater than 1. Then,

TipiKi − TjpjKj = KiTi(πx + zKjTj)−KjTj(−πy + zKiTi)

= xπKiTi + yπKjTj = πgcde
K ,

thus π = πe(pi, pj). Now,

Tiνi − Tjνj = aiTi − ajTj + KiTipi −KjZjpj = aiTi − ajTj + πgcde
K

and thus, by definition of αe, Tiνi − Tjνj = αe(ai, aj)gcde
T + πgcde

K . Recall now that π ∈

{πmin
e (ai, aj), . . . , πmax

e (ai, aj)}, thus

Tiνi − Tjνj ≤ αe(ai, aj)gcde
T + πmax

e (ai, aj)gcde
K ,

and, since πmax
e (ai, aj)gcde

K ≤ −M e + Ti − αe(ai, aj)gcde
T ,

Tiνi − Tjνj ≤ −M e + Ti. (6.3.1)

Similarly, since πmin
e (ai, aj)gcde

K ≥ −M e + gcde
T − αe(ai, aj)gcde

T ,

Tiνi − Tjνj ≥ πmin
e (ai, aj)gcde

K + αe(ai, aj)gcde
T

≥ −M e + gcde
T > −M e. (6.3.2)

From equations 6.3.1 and 6.3.2, we get Ti ≥M e + Tiνi − Tjνj > 0 and by Theorem 6.2.2 there is

a dependence relation from ⟨ti, νi⟩ to ⟨tj, νj⟩. The lemma is proved.

From Lemmas 6.3.1 and 6.3.2, we deduce our following main theorem:

Theorem 6.3.3. Let ti and tj be two tasks such that ti (resp. tj) is duplicated Ki (resp. Kj)

times. Let also e = (ti, tj) ∈ E and (ai, aj) ∈ {1, . . . , Ki} × {1, . . . , Kj}. There exists

73

a dependence relation from ⟨ti, ai + piKi⟩ to ⟨tj, aj + pjKj⟩ for (pi, pj) ∈ N2 iff πe(pi, pj) ∈

{πmin
e (ai, aj), . . . , πmax

e (ai, aj)}.

For the arc e = (t2, t4) pictured by Figure 6.2 with values K2 = 4 and K4 = 2, we get from

Table 6.1 that A(e) = {(1, 2), (2, 1), (3, 2), (4, 1)}. By Theorem 6.3.3, there is no dependence

due to e between ⟨t2, a2 + 4p2⟩ to ⟨t4, a4 + 2p4⟩ for any value p2 and p4 if (a2, a4) ̸∈ A(e). Now,

if we consider for example (a2, a4) = (3, 2) ∈ A(e), the set of dependence due to e between

⟨t2, 3 + 4p2⟩ to ⟨t4, 2 + 2p4⟩ is exactly couples (p2, p4) that verifies 2p2 − 3p4 = 1.

6.3.2 Upper bound on the latency

For any arc e = (ti, tj) ∈ E and any couple (ai, aj) ∈ A(e), Theorem 6.3.3 proved the

existence of a dependence from some executions ⟨ti, νi⟩ to ⟨tj, νj⟩ with νi = ai + piKi and νj =

aj + pjKi. In order to evaluate the age latency of the whole graph G, next theorem evaluates the

maximum latency associated to these executions of ti and tj .

Theorem 6.3.4 (Upper bound of the latency between two tasks). Let ti and tj be two tasks such

that ti (resp. tj) is duplicated Ki (resp. Kj) times. Let also e = (ti, tj) ∈ E and (ai, aj) ∈ A(e).

Then

Lmax
(ai,aj)(e) = rj − ri + Ti − Tj − (πmin

e (ai, aj) · gcde
K + αe(ai, aj) · gcde

T)

is the maximal value of the latency Lνi,νj
(e) for (νi, νj) ∈ R(e) with νi = ai mod Ki and νj = aj

mod Kj .

Proof. By Equation 6.2.1, the latency between executions ⟨ti, νi⟩ and ⟨tj, νj⟩ for (νi, νj) ∈ R(e)

is Lνi,νj
(e) = rj − ri + Ti−Tj − (Tiνi−Tjνj). Assuming that νi = ai + piKi and νj = aj + pjKj

with (pi, pj) ∈ N2 we get by Lemma 6.3.1 that

Lνi,νj
(e) = rj − ri + Ti − Tj − (πe(pi, pj) · gcdb

k + αb(ai, aj) · gcdb
T) (6.3.3)

74

By Theorem 6.3.3, πe(pi, pj) ∈ {πmin
e (ai, aj), . . . , πmax

e (ai, aj)}. We conclude that Lνi,νj
(e) is

maximum for πe(pi, pj) = πmin
e (ai, aj) and the theorem is proved.

6.3.3 Definition of the partial expanded graph

We suppose that the vector K ∈ N⋆n is fixed. The associated expanded graph PK(G) =

(V, B,Lmax) is a valued directed acyclic graph defined as follows:

1. Each task ti is duplicated Ki times. For any value a ∈ {1, . . . , Ki}, the ath duplicate of ti is

denoted by ta
i and is associated to the executions ⟨ti, a + pKi⟩ for p ∈ N.

2. For any arc e = (ti, tj) ∈ E, we build an arc (ta
i , tb

j) for every couple (a, b) ∈ {1, . . . , Ki}×

{1, . . . , Kj} if πmax
e (a, b) ≥ πmin

e (a, b).

3. For every arc β = (ta
i , tb

j) ∈ B, Lmax(β) = Lmax
(a,b)(e) following Theorem 6.3.4.

4. Lastly, two additional fictitious tasks s and f are considered with the arcs defined as:

• For any duplicate ta
i without predecessor, add the arcs β = (s, ta

i) with Lmax(β) = 0;

• For any duplicate ta
i without successor, add the arcs β = (ta

i , f) with Lmax(β) = Di.

Let K be a fixed positive integer vector. Let us denote by LP max(PK(G)) the length of the

longest path of the associated partial expanded graph PK(G). By Theorem 6.3.4, LP max(PK(G))

is an upper bound of the maximum latency of G.

Figure 6.4 presents the expanded graph PK(G) associated with the vector K = (2, 4, 1, 2)

for the instance pictured by Figure 6.2. The longest path is given by p = s, t2
1, t3

2, t1
3, t2

4, f with

a corresponding length equal to 12, i.e. LP max(PK(G)) = 12. We conclude that L⋆(G) ≤

LP max(PK(G)) = 12.

6.3.4 Complexity of the computation of PK(G)nd its longest paths

PK(G) is a graph without circuit. Thus, the computation of the longest paths can be done in

time complexity Θ(|V |+ |B|) by simply sorting the vertices following a topological order used in

the next step to explore the vertices.

75

s

t1
1

t2
1

t1
2

t2
2

t3
2

t4
2

t1
3

t1
4

t2
4

f

0

0

1

2

1

2

2

2

1

1

1

1

1

1

1

1

4

7
3

3

Figure 6.4: Expanded graph PK(G) = (V, B,Lmax) for the instance pictured by Figure 6.2 associ-
ated with the vector K = (2, 4, 1, 2). Arcs β ∈ B are valued by Lmax(β) in gray.

Note that the total number of vertices of PK(G) is |V | = ∑n
i=1 Ki +2, while the number of arcs

|B| is bounded by O(∑
e=(ti,tj)∈B Ki ×Kj). These two values may be huge for important values

of K. The main problem consists then in the determination of the vector K of small values such

that the bound LP max(PK(G)) is as close as possible from the optimum value of the latency.

6.4 Dominant set for the expansion vector K

This section is devoted to the study of dominance properties on K w.r.t the age latency to

reduce the set of vectors K. Subsection 6.4.1 formally proves that the value of the longest paths of

expanded graphs PN(G) associated with the hyper-period of G is the age latency L⋆(G). We prove

in Subsection 6.4.2 that we can reduce our study to the set of the partial expansions PK(G) such

that each component Ki divises Ni and we provide a partial order relation between these vectors

76

that will be exploited in next section for the computation of the latency.

6.4.1 Optimal value of the age latency for K = N

Let the least common multiplier define as T = lcmti∈T (Ti) and the vector N ∈ N∗n define as

Ni = T

Ti

for any task ti ∈ T . N is usually called the repetition vector, since if we consider Ni

successive executions of each task ti, the set of constraints between tasks are repeated. For our

example pictured by Figure 6.2, we get T = lcm(2, 1, 6, 3) = 6 and thus N = (3, 6, 1, 2).

Lemma 6.4.1 is a simple technical lemma.

Lemma 6.4.1. Let PN(G) = (V, B,Lmax) be the expanded graph with K = N and an arc e =

(Ti, tj) of G. For any arc β = (tai
i , t

aj

j) ∈ B associated with e and any couple (qi, qj) ∈ N2,

πe(qi, qj) = qi − qj .

Proof. By definition of πe, πe(qi, qj) = TiqiKi−TjqjKj

gcde
K

. As TiKi = TjKj = T = gcde
K , we get

πe(qi, qj) = qi − qj and the lemma is proved.

We prove formally in the following that the value of the longest paths of the expanded graph

PN(G) is the age latency of G, i.e. L⋆(G):

Theorem 6.4.2. For any acyclic directed graph G, LP max(PN(G)) = L⋆(G).

Proof. By Theorem 6.3.4, LP max(PN(G)) ≥ L⋆(G). We prove that LP max(PN(G)) ≤ L⋆(G).

Let consider a path pN = ta1
1 β1t

a2
2 . . . βk−1t

ak
k of PN(G) and the corresponding path p =

t1e1, . . . , ek−1tk of G. By Lemma 6.4.1, we get for any vector (q1, . . . , qk) ∈ Nk and ℓ ∈ {1, . . . , k−

1}, πeℓ
(qℓ, qℓ+1) = qℓ − qℓ+1.

Let us consider the sequence of integers q̃1, . . . , q̃k defined as follows:

• q̃ℓ+1 = q̃ℓ + πmax
eℓ

(aℓ, aℓ+1)

• q̃1 is fixed arbitrarily sufficiently large such that, ∀ℓ ∈ {1, . . . , k}, q̃ℓ ≥ 0.

This sequence verifies that, ∀ℓ ∈ {1, . . . , k − 1}, πeℓ
(q̃ℓ, q̃ℓ+1) = πmax

eℓ
(aℓ, aℓ+1), thus by Theorem

6.3.3, there is a dependence relation from ⟨tℓ, aℓ + q̃ℓKℓ⟩ to ⟨tℓ+1, aℓ+1 + q̃ℓ+1Kℓ+1⟩. Moreover, by

definition of the sequence Lmax, Lmax(βℓ) = Lq̃ℓ,q̃ℓ+1(eℓ) and then Lq̃1,...,q̃k
(p) = LP max(pN).

77

If pN is the longest path PN(G), LP max(PN(G)) = LP max(pN) = Lq̃1,...,q̃k
(p) ≤ L⋆(G), which

proves the theorem.

6.4.2 Order relation between the divisors of the repetition vector N

Next theorem introduces an order relation between vectors K ∈ N⋆n:

Theorem 6.4.3. For any acyclic directed graph G, let us suppose that K and K ′ are two different

vectors such that ∀ti ∈ T , K ′
i is a divisor of Ki, then LP max(PK′(G)) ≥ LP max(PK(G)).

Proof. Let us consider the arc e = (ti, tj) of G. By hypothesis, there exists (xi, xj) ∈ N⋆2, such that

Ki = xiK
′
i and Kj = xjK

′
j . Let β = (tai

i , t
aj

j) be an arc of PK(G) with (ai, aj) ∈ {1, . . . , Ki} ×

{1, . . . , Kj}. Then, there exists (νi, νj) ∈ N∗2 such that νi = ai + piKi, νj = aj + pjKj and the

latency between execution ⟨ti, νi⟩ and ⟨tj, νj⟩, Lνi,νj
(ti, tj), reaches the maximum latency of arc

β, i.e. Lνi,νj
(ti, tj) = Lmax(β).

Let us consider now integer values a′
i ∈ {1, 2, . . . , K ′

i}, a′
j ∈ {1, 2, . . . , K ′

j}, yi and yj such

that ai = a′
i +yiK

′
i and aj = a′

j +yjK
′
j . Thus, νi = a′

i +(yi +xipi)K ′
i and νj = a′

j +(yj +xjpj)K ′
j .

Since there is a dependence relation between ⟨ti, νi⟩ and ⟨tj, νj⟩, β′ = (ta′
i

i , t
a′

j

j) belongs to PK′(G)

and Lνi,νj
(ti, tj) ≤ Lmax(β′), thus we get Lmax(β) ≤ Lmax(β′).

For any path p = ta1
1 β1t

a2
2 β2 . . . βn−1t

aq
q in PK(G), there is a corresponding path

p′ = t
a′

1
1 β′

1t
a′

2
2 β′

2 . . . β′
n−1t

a′
q

q

in PK′(G) that includes all executions represented by path p. Therefore, LP max(PK′(G)) ≥

LP max(PK(G)).

For any couple of vectors (K, K ′) ∈ N⋆2, we set K ′ ⪯ K if, for any ti ∈ T , K ′
i divides Ki.

By Theorem 6.4.2, the optimum value of the latency is reached for K = N . The consequence of

this last theorem is that we can limit our study to the set K of vectors K ⪯ N . Let us consider the

graph H = (K,⪯). The evaluation of the age latency is improved following paths from K = 1n

78

(1, 1, 1, 1)

(3,1,1,1) (1,2,1,1) (1,3,1,1) (1,1,1,2)

(3,2,1,1) (1,2,1,2) (3,3,1,1) (1,6,1,1) (3,1,1,2) (1,3,1,2)

(3,2,1,2) (3,6,1,1) (3,3,1,2) (1,6,1,2)

(3,6,1,2)

13

13 12 13 13

12 12 13 12 13 13

12 12 13 12

12

Figure 6.5: Graph H = (K,⪯) associated with the example pictured by Figure 6.2. Values
LP max(PK(G)) is given in gray for each vertex K ∈ K.

to K = N . Figure 6.5 shows the graph H associated with the example pictured by Figure 6.2. We

observe that the optimum value of the age latency can be reached for vectors K smaller than N .

6.5 Determination of an optimum vector K

The problem considered in this section is to compute iteratively a vector K ∈ K to reach a

vector K⋆ such that LP max(PK⋆(G)) = L⋆(G). Our algorithm is based on the optimality test

expressed by next lemma:

Lemma 6.5.1 (Optimality test). Let us consider a vector K ∈ K, a longest path pK of PK(G) and

its corresponding path p of G. If, for every task ti ∈ p, Ki is a multiple of Ni(p) =
lcmtj∈p{Tj}

Ti

,

then LP max(pK) = L⋆(G).

Proof. Let a vector K and the path p of G following the assumptions of the theorem. Then, by

definition of p, LP max(PK(G)) = LP max(pK).

By optimality of L⋆, L⋆(p) ≤ L⋆(G) ≤ LP max(PK(G)). Now, since for any task ti of p, Ni(p)

79

is a divisor of Ki, we get by Theorem 6.4.3 that LP max(PN(p)(p)) ≥ LP max(pK). Moreover,

by Theorem 6.4.2, LP max(PN(p)(p)) = L⋆(p), thus L⋆(p) ≥ LP max(pK). We conclude that

L⋆(p) = LP max(pK).

Recall that pK is of maximum age latency in PK(G), thus LP max(PK(G)) = LP max(pK).

Now, L⋆(G) ≥ L⋆(p) = LP max(PK(G)). Since K ⪯ N , L⋆(G) ≤ LP max(PK(G)) by Theorem

6.4.3, and thus LP max(PK(G)) = L⋆(G) = LP max(pK), which achieves the proof.

Algoritm 3 is inspired from K-iter algorithm [13] which computes an expansion vector K

for the determination of the optimum throughput of a Synchronous DataFlow Graph. For the

initialisation phase, K = 1n. K is simply increased at each step for tasks from the longest path of

PK(G) until the optimality test is met.

Algorithm 3: Compute the maximum latency of G.
Require: A DAG G = (T , E), (ri, Di, Ti) for every ti ∈ T
Ensure: A vector K such that LP max(PK(G)) = L⋆(G)

Set K = 1n

repeat
Compute PK(G) and a longest path pK of PK(G)
Set p = s, t1, e1, . . . ek−1, tk, f to the corresponding path of G
Set T (p)← lcm(T1, . . . , Tk) and ∀i ∈ {1, . . . , k}, Ni(p)← T (p)

Ti

OptPathFound← ∀ti ∈ p, Ni(p)|Ki

if not OptPathFound then
∀i ∈ {1, . . . , k}, Ki ← lcm(Ki, Ni(p))

end if
until OptPathFound

Theorem 6.5.2 shows the convergence of the algorithm.

Theorem 6.5.2. For any directed acyclic graph G, Algoritm 3 converges to a vector K⋆ ∈ K such

that LP max(PK⋆(G)) = L⋆(G).

Proof. For any q > 0, we denote by K(q) the vector K at the end of the qth iteration. q = 0

corresponds to the initialisation phase. We show that for any integer q ≥ 0, K(q) ∈ K and

80

K(q) ⪯ K(q + 1) with K(q) ̸= K(q + 1).

• At the initialisation step, K(0) = 1n ∈ K.

• Now, let suppose that at step q, the optimality test is not true and that K(q) ∈ K.

Let consider a task ti ∈ T . If ti does not belong to p, Ki(q + 1) = Ki(q). Otherwise,

Ki(q + 1) = lcm(Ki(q), Ni(p)) where Ki(q) and Ni(p) are both divisors of Ni. Thus,

Ki(q + 1) is also a divisor of Ni, and we get that K(q + 1) ∈ K with K(q) ⪯ K(q + 1).

• Lastly, we prove by contradiction that K(q) ̸= K(q + 1). Indeed, let suppose that Ki(q) =

Ki(q + 1) for any task ti ∈ T , then since Ki(q + 1) = lcm(Ki(q), Ni(p)), we deduce that

Ni(p) is a divisor of Ki(q). We get that the optimality test is true, which is a contradiction.

We conclude that vectors K(q) are strictly increasing while the optimality test is false. By Lemma

6.5.1, the vector K(q) obtained leads to an optimal value of the age latency when the optimality

test is true. The optimality test is be true for the repetition vector N , this insures the convergence

of the algorithm.

The number of iterations of Algoritm 3 is not bounded and can be theoretically proportional to

the maximum length of a path of the graph H = (K, E⪯). We will show in Section 6.7 that it can

be bounded experimentally for our benchmark to a logarithmic function of n = |T |.

For example, let us consider the first step of Algorithm 3 for the example pictured by Figure

6.2. At the initialisation, K = 14. The corresponding partial expanded graph PK(G) is shown

by Figure 6.6. Its longest path of PK(G) is pK = s, t1
1, t1

2, t1
3, t1

4, f valued by LP max(pK) = 13.

The optimality test fails, and we get N(p) = (3, 6, 1, 2) which is here the repetition vector and

thus K⋆ = K(1) = N . Our algorithm simply obtained the repetition vector. However, our

experimentations show that in the general case, the vectors obtained are slightly inferior than the

repetition vector.

81

t1
1

t1
2

t1
3

t1
4s f

2 1

2 7
10 3

Figure 6.6: The partial expanded graph for the instance pictured by Figure 6.2 and a unit vector
K = (1, 1, 1, 1). Arcs are valued by Lmax in gray.

6.6 ROSACE Case Study

ROSACE is the acronym for Research Open-Source Avionics and Control Engineering. This

case study was developed by Pagetti et al. [76] to illustrate the implementation of a real-time

system on a many-core architecture.

Figure 6.7 presents an instance of the problem extracted from [41]. We arbitrarily set ri = 0

and Di = Ti for any task ti ∈ T .

t1 t2 t3 t4

t5 t6
ti t1 t2 t3 t4 t5 t6
ri 0 0 0 0 0 0
Di 60 60 40 30 30 30
Ti 60 60 40 30 30 30

Figure 6.7: An instance of 6 periodic tasks and the associated DAG G extracted from ROSACE
case study [41].

Figure 6.8 presents the partial expansion of the instance of Figure 6.7 for the unit expansion

vector K = 16. The path of maximum length is pK = s, t1
1, t1

2, t1
3, t1

4, f with LP max(PK(G)) =

LP max(PK(p)) = 260ms.

At the first iteration of Algorithm 3, p = s, t1, t2, t3, t4, f is expanded. We get T (p) =

lcm(60, 40, 30) = 120, N1(p) = N2(p) = 2, N3(p) = 3 and N4(p) = 4. For next iteration,

82

s ft1
1 t1

2 t1
3 t1

4

t1
5 t1

6

0 60 100 70

50 300

0

30

Figure 6.8: The partial expanded graph PK(G) for the instance pictured by Figure 6.7 and a unit
vector K = 16. Each arc β is valued by Lmax(β) in gray.

we get K = (2, 2, 3, 4, 1, 1).

The partial expanded graph PK(G) built at the second iteration is pictured by Figure 6.9. pK =

s, t1
1, t2

2, t2
3, t4

4, f is a longest path of PK(G) with LP max(PK(G)) = LP max(p) = 240 Moreover,

its associated path p = s, t1, t2, t3, t4, f verifies T (p) = lcm(30, 40, 60), N1(p) = N2(p) = 2,

N3(p) = 3 and N4(p) = 4. The optimality test is true and we get K⋆ = (2, 2, 3, 4, 1, 1). The

maximum age latency of G is thus L⋆(G) = LP max(pK⋆) = 240ms.

We observe in this example that all the tasks of the critical path (i.e. the paths p of G such that

L⋆(p) = L⋆(G)) were expanded at least following N(p). Moreover, tasks from other paths are not

necessarily duplicated: as example, K⋆
5 = K⋆

6 = 1 with repetition vectors N5 = N6 = 4. Thus,

we can identify that paths s, t5, t3, t4, f and s, t6, t4, f are not critical, thus tasks can be delayed

without influence on the age latency.

6.7 Experimental results

Our experimentations aim at testing the performance of the Algorithm 3. Following the ex-

perimentations of Khatib et al. [58], the bound obtained from the longest paths of P1n(G) can

be computed quickly, but its performance is in average around 30 percent from the optimal value

L⋆(G). Moreover, their method does not identify precisely the real critical paths w.r.t the age

latency of the initial graph.

Our Benchmarks were randomly generated: they are detailed is Subsection 6.7.1. The analysis

of the computation time of our algorithm is presented in Subsection 6.7.2. Subsection 6.7.3 deals

83

s t1
1 t1

2

t2
2

t1
3

t2
3

t3
3

t1
4

t2
4

t3
4

t4
4

t1
5

t1
6

f0

0

0

60

60 80 60

100
30

40

50
30
30
30
30

60

50

40
70

30

30

30

30

Figure 6.9: The partial expanded graph PK(G) for the instance pictured by Figure 6.7 and the
vector K = (2, 2, 3, 4, 1, 1). Each β arc is valued by Lmax(β).

with the analysis of the critical vectors K⋆ obtainde by our algorithm. All our experiments were

performed on an Intel(R) Core(TM) i5-8400 CPU (6 cores at 2.80GHz) and 15 GB of RAM.

6.7.1 Benchmarks

Random instances of n tasks were generated as follows. Periods of tasks are selected uniformly

in H = {1, 2, 5, 10, 20, 50, 100}. H is a subset of the values presented by Kramer et al. [61]

for the 2015 WATERS challenge and several authors dealing with the age latency for automotive

applications [10, 47].

Release times ri are uniformly selected in {0, 1, 2, 3, 4, 5}, while we fix the relative deadline Di

equal to the period of the task i.e. Di = Ti for any task ti ∈ T . All functions dealing with graphs

were implemented using the Python package NetworkX. Graphs are randomly generated using the

function dense_gnm_random_graph. Nodes are arbitrary numbered from 1 to n. A directed

acyclic graph is then built by replacing each edge e = {i, j} with i < j by an arc e = (i, j).

For any number n of tasks, we set the number of arcs to mℓ = ⌊ (n(n−1)
4 ⌋ arcs for low density

graphs and mh = ⌈ (n(n−1)
3 ⌉ for high density. We start with n = 5 tasks with a step of 5. For each

data point, 150 random instances were generated and an average value of the functions considered

84

are shown.

6.7.2 Analysis of the computation time of the Algorithm 3

For n sufficiently large, the hyper-period of an instance is exactly T = lcm{α ∈ H} = 100.

The consequence is that the number of duplicates (resp. the number of arcs) of the expanded graph

PN(G) is bounded by T × n (resp. T 2 × n2).

We measured the running time and the number of iterations of Algorithm 3. We stopped at

n = 90 tasks, since the running time exceeded 15 minutes in average for instances with higher

values of n. Figure 6.10 reports the average running times (on the top) and the average number of

iterations (on the bottom) following the number of tasks.

We observed that the running time of Algorithm 3 is a quadratic function of the number of tasks,

and thus is linear following the number of arcs of the graph G. With no surprise, these running

times are more important for high density graphs. This observation seems to be in opposition with

the experimental results of Becker et al.[10]: indeed, they remarked that the average running time

for the computation of the age latency of a chain is linear w.r.t the number of tasks. However the

number of arcs here equals n − 1, the running time is then also linear w.r.t the number of arcs,

which is coherent with our result.

We also noticed that the whole number of iterations of the Algorithm 3 grows in average fol-

lowing a logarithmic way. Our first experimental conclusion is thus that the convergence of the

algorithm to the exact value seems to be a logarithmic function of the number of tasks. The impor-

tant running time is thus due to the time needed to build the successive partial expansion and not

to the increase of the number of iterations of the algorithm.

6.7.3 Analysis of the partial expanded graph obtained

Figure 6.11 presents the evolution of the ratio r(n) =
∑n

i=1 K⋆
i∑n

i=1 Ni

following the number of tasks

and the density of the graph. We observed that is a roughly linear function that remains bounded

by 0.8 for high density graphs and 0.65 for low density. The consequence is that in many case we

clearly do not need to expand completely the graph to get the exact value of the age latency and

85

that good algorithms should be sought to identify critical paths of a graph.

6.8 Conclusion

We exhibited in this chapter a new definition of the dependence between the successive execu-

tions of two tasks that communicate following a LET paradigm. This definition was exploited to

build a partial expanded graph PK(G) associated to any vector K ∈ N⋆n for the computation of a

lower bound of the age latency. A greedy algorithm to compute an accurate value K⋆ leading to

the optimal value of the age latency was developed and tested on random realistic instances. This

optimal partial expansion allows to identify the critical paths of the graph G.

Many extensions of our study may be considered. This methodology can surely be applied

to evaluate accurate lower bounds of the age latency. Coupling the upper and the lower bounds

will allow then to measure precisely the error between the longest paths of PK(G) and L⋆(G).

Our general framework should also be extended to tackle other possible latencies [38]. Lastly, an

implicit communication between two tasks of same period (which corresponds to two tasks in the

same runnable for an AUTOSAR compatible system) can also easily be considered in our model.

This is the fitting function and the standard errors of the fitting below:

measurements density Fitting function standard deviation errors

iter high 1.34log(0.62(n + 5.89))− 0.64 [2.90e− 01, 1.08e + 06, 5.66e + 00, 2.32e + 06]

iter low 1.96log(1.59(n + 13.42))− 4.81 [3.01e− 01, 1.04e + 06, 6.36e + 00, 1.29e + 06]∑
i Ni high 27.04n− 11.59 [0.33, 17.57]∑
i Ni low 27.75n− 37.99 [0.37, 19.83]

rt high 2.02e− 03n2 − 0.03n + 0.29 [1.08e− 04, 1.05e− 02, 2.17e− 01]

rt low 1.53e− 03n2 − 0.05n + 0.51 [1.29e− 04, 1.26e− 02, 2.60e− 01]∑
i

Ki∑
i

Ni
high 8.67e− 04n + 0.69 [1.71e− 04, 9.26e− 03]∑

i
Ki∑

i
Ni

low 9.10e− 04n + 5.27e− 01 [2.37e− 4, 1.28e− 2]

Table 6.2: Fitting function of each measurements.

86

Figure 6.10: Average running times (on the top) and average number of iterations (on the bottom)
of Algorithm 3 for randomly generated high density and low density instances.

87

Figure 6.11: Average ratio r(n) =
∑n

i=1 K⋆
i∑n

i=1 Ni
for the partial expanded graph computed by Algo-

rithm 3 for randomly generated high density and low density instances.

88

7. Global conclusions and perspectives

7.1 Fixed-parameter tractable algorithms for fundamental scheduling opti-

mization problem

Discover the optimal schedule has always been a hard question. Fixed-parameter tractable

(FPT) algorithm is one of the methods to get an optimal solution of a hard problem in a reasonable

time. Many attempts were made to solve scheduling problems with FPT algorithms with different

parameters recently like width of precedence graph, numbers of chains etc. However, there are few

results of scheduling problems with communication delays, despite the trend of longer and longer

communication time in super computer and data centers nowadays.

In chapter 4, Algorithm 1 of UET-UCT scheduling problem i.e. P |ri, prec, pi = 1, cij =

1|Cmax was introduced and was proved to be a fixed-parameter tractable. The time complexity

of Algorithm 1 is O(n3 · pw(C) · 22pw(C)), where pw(C) is the pathwidth of the interval graph

associated to the time windows [ri, di], i ∈ T with an upper bound of makespan C.

In chapter 5, the scheduling problem P |ri, prec, pi = 1, cij = 1|Lmax was introduced and

Algorithm 2 was developed and proved to be fixed-parameter tractable in the pathwidth pw(L̄)

associated to an upper bound L̄ of the maximum lateness. The time complexity of Algorithm 2 is

O(n2 + n × pw(L) × 23pw(L)), where pw(L) is the pathwidth of the interval graph associated to

the time windows (ri, di + L), i ∈ T .

These algorithms are inspired by the work of Alix Kordon-Munier [72]. These are the first

fixed-parameter tractable algorithms for scheduling with communication delays. These results

opens the discussion of the parameter: pathwidth of interval graph of time windows. For exam-

ple, can this parameter be extended to other scheduling problems such as large communication

delay problems, problems on multiple types of machines system? Can the parameter be simplified

to numbers of chains, width or treewidth of precedence graph etc? Can it be extended to other

89

optimization criteria like total weighted tardiness and total weighted completion time? Besides,

researches on reducing the size of time windows are important for this algorithm to limit path-

width. In parameterized complexity theory, Courcelle’s theorem identifies a set of problems on

undirected graphs that can be solved with FPT algorithms with treewidth as the parameter. How-

ever, it remains open if Courcelle’s theorem be extended to scheduling problems with pathwidth

as the parameter.

In application point of view, when the parameter is bounded, comparison of the performance

between our algorithms and branch and bound method, integer linear programming method is inter-

esting. Industrial cases in which pathwidth can be tractable still need to be identified. Experiments

on industrial cases with bounded pathwidth are to be conducted.

7.2 Calculation of age latency in real time systems

The goal of this part of thesis is to develop mathematical and algorithmic tools to compute

efficiently the age latency of a real-time system of multi-periodic communicating tasks under LET

assumption. It is answered with an original method that computes efficiently the age latency of

a general task communication graph G of a real-time system without circuit. A wide number

of methods to this problem limit their study to chains, but they can not be applied efficiently

on general graph by simply enumerate them because the number of paths between two nodes is

potentially exponential.

A new definition of the dependence between the successive executions of two tasks commu-

nicating in LET paradigm was provided This definition was exploited to build a partial expanded

graph PK(G) associated to any vector K ∈ N⋆n for the computation of a lower bound of the age

latency. A greedy algorithm to compute the optimal value of the age latency was developed and

tested on random realistic instances. This algorithm also allows to identify the critical paths of the

graph G.

This research is limited to real-time systems with LET paradigm, extension to other real-time

system communication paradigm is waiting to be researched. Cooperation with automotive design

90

industry is needed to test the method in a more complex environment.

91

REFERENCES

[1] Autosar.

[2] Massinissa Ait Aba, Alix Munier-Kordon, and Guillaume Pallez. Scheduling on two un-

bounded resources with communication costs. In Euro-Par 2019: Parallel Processing - 25th

International Conference on Parallel and Distributed Computing, Göttingen, Germany, Au-

gust 26-30, 2019, Proceedings, pages 117–128, 2019.

[3] Abdessamad Ait El Cadi, Rabie Ben Atitallah, Said Hanafi, Nenad Mladenovic, and Abdel-

hakim Artiba. New MIP model for multiprocessor scheduling problem with communication

delays. Optimization Letters, page 15, 2014.

[4] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert Davis. A

comprehensive survey of industry practice in real-time systems. Real-Time Systems, 11 2021.

[5] Theodore Andronikos, Nectarios Koziris, George Papakonstantinou, and Panayiotis

Tsanakas. Optimal scheduling for uet/uet-uct generalized n-dimensional grid task graphs.

J. Parallel Distrib. Comput., 57(2):140–165, 1999.

[6] Stefan Arnborg. Efficient algorithms for combinatorial problems with bounded decompos-

ability - A survey. BIT, 25(1):1–23, 1985.

[7] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable

graphs. Journal of Algorithms, 12(2):308–340, 1991.

[8] Kenneth R Baker. Introduction to sequencing and scheduling. John Wiley & Sons, 1974.

[9] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. Syn-

thesizing job-level dependencies for automotive multi-rate effect chains. In 2016 IEEE 22nd

International Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA), pages 159–169, Aug 2016.

92

[10] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. End-

to-end timing analysis of cause-effect chains in automotive embedded systems. Journal of

Systems Architecture, 80:104 – 113, 2017.

[11] Alessandro Biondi and Marco Di Natale. Achieving predictable multicore execution of auto-

motive applications using the LET paradigm. In IEEE Real-Time and Embedded Technology

and Applications Symposium, RTAS 2018, 11-13 April 2018, Porto, Portugal, pages 240–250,

2018.

[12] Bruno Bodin, Alix Munier-Kordon, and Benoît Dupont de Dinechin. K-periodic schedules

for evaluating the maximum throughput of a synchronous dataflow graph. In 2012 Interna-

tional Conference on Embedded Computer Systems: Architectures, Modeling, and Simula-

tion, SAMOS XII, Samos, Greece, July 16-19, 2012, pages 152–159, 2012.

[13] Bruno Bodin, Alix Munier-Kordon, and Benoît Dupont de Dinechin. Optimal and fast

throughput evaluation of CSDF. In Proceedings of the 53rd Annual Design Automation Con-

ference, DAC 2016, Austin, TX, USA, June 5-9, 2016, pages 160:1–160:6, 2016.

[14] Hans Bodlaender, Jens Gustedt, and Jan Telle. Linear-time register allocation for a fixed num-

ber of registers. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,

09 2001.

[15] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical

Computer Science, 209(1):1–45, 1998.

[16] Hans L. Bodlaender and Michael R. Fellows. W[2]-hardness of precedence constrained k-

processor scheduling. Operations Research Letters, 18(2):93–97, 1995.

[17] Hans L. Bodlaender and Marieke van der Wegen. Parameterized complexity of scheduling

chains of jobs with delays, 2020.

[18] Jonathan F. Buss and J. Goldsmith. Nondeterminism within p. SIAM J. Comput., 22:560–572,

1993.

93

[19] Aurélien Carlier, Claire C. Hanen, and Alix Munier-Kordon. The equivalence of two clas-

sical list scheduling algorithms for dependent typed tasks with release dates, due dates and

precedence delays. Journal of Scheduling, pages 1–9, 2017.

[20] Maw-Shang Chang, Li-Hsuan Chen, Ling-Ju Hung, Peter Rossmanith, and Ping-Chen Su.

Fixed-parameter algorithms for vertex cover p3. Discrete Optimization, 19:12–22, 2016.

[21] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of machine scheduling: Com-

plexity, algorithms and approximability. 1998.

[22] Philippe Chrétienne. A polynomial algorithm to optimally schedule tasks on a virtual dis-

tributed system under tree-like precedence constraints. European Journal of Operational

Research, 43(2):225–230, 1989.

[23] Philippe Chrétienne and Christophe Picouleau. Scheduling with communication delays: A

survey, pages 65–90. 1995.

[24] J. Y. Colin and P. Chrétienne. C.p.m. scheduling with small communication delays and task

duplication. Oper. Res., 39(4):680–684, aug 1991.

[25] Richard Walter Conway, William L Maxwell, and Louis W Miller. Theory of scheduling.

Courier Corporation, 2003.

[26] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite

graphs. Information and Computation, 85(1):12–75, 1990.

[27] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Pub-

lishing Company, Incorporated, 1st edition, 2015.

[28] Tatjana Davidović, Leo Liberti, Nelson Maculan, and Nenad Mladenovic. Towards the opti-

mal solution of the multiprocessor scheduling problem with communication delays. In Proc.

3rd Multidisciplinary Int. Conf, 01 2007.

94

[29] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.

Scheduling with communication delays via LP hierarchies and clustering. In Sandy Irani,

editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,

Durham, NC, USA, November 16-19, 2020, pages 822–833. IEEE, 2020.

[30] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor

systems. ACM Comput. Surv., 43(4), oct 2011.

[31] Robert de Groote. On the analysis of synchronous dataflow graphs: a system-theoretic per-

spective. PhD thesis, University of Twente, 2016.

[32] R.G. Downey and M.R. Fellows. Fixed-parameter intractability. In [1992] Proceedings of

the Seventh Annual Structure in Complexity Theory Conference, pages 36–49, 1992.

[33] Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and complete-

ness. In Klaus Ambos-Spies, Steven Homer, and Uwe Schöning, editors, Complexity The-

ory: Current Research, Dagstuhl Workshop, February 2-8, 1992, pages 191–225. Cambridge

University Press, 1992.

[34] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness

I: basic results. SIAM J. Comput., 24(4):873–921, 1995.

[35] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. 1999.

[36] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

2013.

[37] Maciej Drozdowski. Scheduling for Parallel Processing. Springer, 2009.

[38] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A compositional framework

for end-to-end path delay calculation of automotive systems under different path semantics.

In IEEE Real-Time Systems Symposium, November 30-December 3. IEEE Communications

Society, 2009.

95

[39] Afonso G. Ferreira and Siang W. Song. Achieving optimality for gate matrix layout and pla

folding: a graph theoretic approach. In of Lecture, pages 173–195, 1992.

[40] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Com-

puter Science. An EATCS Series. Springer, 2006.

[41] Julien Forget, Frédéric Boniol, and Claire Pagetti. Verifying end-to-end real-time constraints

on multi-periodic models. In 22nd IEEE International Conference on Emerging Technologies

and Factory Automation, ETFA 2017, Limassol, Cyprus, September 12-15, 2017, pages 1–8,

2017.

[42] M. R. Garey and D. S. Johnson. Two-processor scheduling with start-times and deadlines.

SIAM Journal on Computing, 6(3):416–426, 1977.

[43] Bernard Giffler and Gerald Luther Thompson. Algorithms for solving production-scheduling

problems. Operations research, 8(4):487–503, 1960.

[44] Rodolphe Giroudeau and Jean-Claude König. Scheduling with Communication Delay. In

Multiprocessor Scheduling: Theory and Applications, pages 1–26. ARS Publishing, Decem-

ber 2007.

[45] Rodoplhe Giroudeau and Jean-Claude König. Scheduling with communication delays. In

Eugene Levner, editor, Multiprocessor Scheduling, chapter 4. IntechOpen, Rijeka, 2007.

[46] R. L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and ap-

proximation in deterministic sequencing and scheduling: a survey. In P.L. Hammer, E.L.

Johnson, and B.H. Korte, editors, Discrete Optimization II, volume 5 of Annals of Discrete

Mathematics, pages 287 – 326. Elsevier, 1979.

[47] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. Commu-

nication centric design in complex automotive embedded systems. In 29th Euromicro Con-

ference on Real-Time Systems, ECRTS 2017, June 27-30, 2017, Dubrovnik, Croatia, pages

10:1–10:20, 2017.

96

[48] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, Falk Wurst, and Dirk

Ziegenbein. Waters industrial challenge 2017. Bosch GmbH,Inria Grenoble – Rhône-Alpes,

2017.

[49] C Hanen and A Munier. An approximation algorithm for scheduling dependent tasks on m

processors with small communication delays. Discrete Applied Mathematics, 108(3):239 –

257, 2001.

[50] Claire Hanen, Alix Munier-Kordon, and Theo Pedersen. Two Deadline Reduction Algorithms

for Scheduling Dependent Tasks on Parallel Processors (extended version). Research report,

LIP6, Sorbonne Université, April 2021.

[51] Claire Hanen and Yakov Zinder. The worst-case analysis of the garey-johnson algorithm. J.

Sched., 12(4):389–400, 2009.

[52] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: a time-

triggered language for embedded programming. Proceedings of the IEEE, 91(1):84–99, 2003.

[53] Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A Sanvido, and Wolfgang Pree. From

control models to real-time code using Giotto. IEEE Control Systems Magazine, 23(1):50–64,

Feb 2003.

[54] Petr Hliněny. Crossing-number critical graphs have bounded path-width. Journal of Combi-

natorial Theory, Series B, 88(2):347–367, 2003.

[55] J.A. Hoogeveen, J.K. Lenstra, and B. Veltman. Three, four, five, six, or the complexity of

scheduling with communication delays. Operations Research Letters, 16(3):129 – 137, 1994.

[56] Klaus Jansen, Oliver Sinnen, and Huijun Wang. An EPTAS for scheduling fork-join graphs

with communication delay. Theor. Comput. Sci., 861:66–79, 2021.

[57] Sana Jeddi and Wahid Nasri. A poly-algorithm for efficient parallel matrix multiplication on

metacomputing platforms. In 2005 IEEE International Conference on Cluster Computing,

pages 1–9, 2005.

97

[58] Jad Khatib, Alix Munier-Kordon, Enagnon Cédric Klikpo, and Kods Trabelsi-Colibet. Com-

puting latency of a real-time system modeled by synchronous dataflow graph. In Proceedings

of the 24th International Conference on Real-Time Networks and Systems, RTNS 2016, Brest,

France, October 19-21, 2016, pages 87–96, 2016.

[59] Christoph M. Kirsch and Ana Sokolova. The logical execution time paradigm. In Samarjit

Chakraborty and Jörg Eberspächer, editors, Advances in Real-Time Systems, pages 103–120.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[60] Dzmitry Kliazovich, Johnatan E. Pecero, Andrei Tchernykh, Pascal Bouvry, Samee Ullah

Khan, and Albert Y. Zomaya. CA-DAG: modeling communication-aware applications for

scheduling in cloud computing. J. Grid Comput., 14(1):23–39, 2016.

[61] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for

free. Robert Bosch GmbH, 2015.

[62] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceeding of the

IEEE, vol. 75(no. 9):pp. 1235–1245, 1987.

[63] Jan Karel Lenstra, Marinus Veldhorst, and Bart Veltman. The complexity of scheduling trees

with communication delays. J. Algorithms, 20(1):157–173, January 1996.

[64] Allen Leung, Krishna V. Palem, and Amir Pnueli. Scheduling time-constrained instructions

on pipelined processors. ACM Trans. Program. Lang. Syst., 23(1):73–103, 2001.

[65] Qing Li and Caroline Yao. Real-time concepts for embedded systems. Taylor and Francis,

Hoboken, NJ, 2014.

[66] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM, 20(1):46–61, 1973.

[67] Quanquan C. Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Scheduling

with communication delay in near-linear time, 2021.

98

[68] A.D. Lopez and H.-F.S. Law. A dense gate matrix layout method for mos vlsi. IEEE Trans-

actions on Electron Devices, 27(8):1671–1675, 1980.

[69] Jorge Martinez, Ignacio Sañudo, and Marko Bertogna. Analytical characterization of end-

to-end communication delays with logical execution time. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 37(11):2244–2254, Nov 2018.

[70] Matthias Mnich and René Van Bevern. Parameterized complexity of machine scheduling: 15

open problems. Computers & Operations Research, 100, 2018.

[71] Alix Munier and Jean-Claude König. A heuristic for a scheduling problem with communica-

tion delays. Operations Research, 45(1):145–147, 1997.

[72] Alix Munier-Kordon. A fixed-parameter algorithm for scheduling unit dependent tasks on

parallel machines with time windows. Discrete Applied Mathematics, 290:1–6, 2021.

[73] Rolf H. Möhring and Markus W. Schäffter. Scheduling series–parallel orders subject to 0/1-

communication delays. Parallel Computing, 25(1):23 – 40, 1999.

[74] T. Ohtsuki, H. Mori, E. Kuh, T. Kashiwabara, and T. Fujisawa. One-dimensional logic gate

assignment and interval graphs. IEEE Transactions on Circuits and Systems, 26(9):675–684,

1979.

[75] Michael Orr and Oliver Sinnen. Optimal task scheduling benefits from a duplicate-free state-

space. Journal of Parallel and Distributed Computing, 146, 2020.

[76] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. The ROSACE

case study: from simulink specification to multi/many-core execution. In 2014 IEEE 19th

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 309–318,

April 2014.

[77] C. Picouleau. New complexity results on scheduling with small communication delays. Dis-

crete Applied Mathematics, 60(1):331 – 342, 1995.

99

[78] V.J. Rayward-Smith. Uet scheduling with unit interprocessor communication delays. Dis-

crete Applied Mathematics, 18(1):55 – 71, 1987.

[79] Neil Robertson and P.D. Seymour. Graph minors. i. excluding a forest. Journal of Combina-

torial Theory, Series B, 35(1):39–61, 1983.

[80] Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama. Communication-aware schedul-

ing for malleable tasks. In 2019 International Conference on Platform Technology and Ser-

vice (PlatCon), pages 1–6, 2019.

[81] Oliver Sinnen. Reducing the solution space of optimal task scheduling. Computers & Oper-

ations Research, 43:201–214, 2014.

[82] Jorge P. Sousa and Laurence A. Wolsey. A time indexed formulation of non-preemptive single

machine scheduling problems. Mathematical Programming volume, (54):353—-367, 1992.

[83] Matthew Suderman. Pathwidth and layered drawings of trees. International Journal of Com-

putational Geometry and Applications, 14, 01 2003.

[84] Ning Tang and Alix Munier-Kordon. A fixed-parameter algorithm for scheduling unit depen-

dent tasks with unit communication delays. In Leonel Sousa, Nuno Roma, and Pedro Tomás,

editors, Euro-Par 2021: Parallel Processing - 27th International Conference on Parallel and

Distributed Computing, Lisbon, Portugal, September 1-3, 2021, Proceedings, volume 12820

of Lecture Notes in Computer Science, pages 105–119. Springer, 2021.

[85] Sun Tzu. The Art of War. 5th century BC.

[86] René van Bevern, Robert Bredereck, Laurent Bulteau, Christian Komusiewicz, Nimrod Tal-

mon, and Gerhard J. Woeginger. Precedence-constrained scheduling problems parameterized

by partial order width, 2016.

[87] B Veltman, B.J Lageweg, and J.K Lenstra. Multiprocessor scheduling with communication

delays. Parallel Computing, 16(2):173 – 182, 1990.

100

[88] Bart Veltman. Multiprocessor scheduling with communication delays. PhD thesis, Eindhoven

University of Technology, 1993.

[89] S. Venugopalan and O. Sinnen. Ilp formulations for optimal task scheduling with communi-

cation delays on parallel systems. IEEE Transactions on Parallel and Distributed Systems,

26(1):142–151, 2015.

[90] Rémy Wyss, Frédéric Boniol, Claire Pagetti, and Julien Forget. End-to-end latency computa-

tion in a multi-periodic design. In 28th Symposium On Applied Computing (SAC’13), pages

1682–1687, Coimbra, Portugal, April 2013.

[91] Frederic Vivien Yves Robert. Introduction to Scheduling. CRC Press, Boca Raton, 2009.

[92] Yakov Zinder, Bo Su, Gaurav Singh, and Ron Sorli. Scheduling uet-uct tasks: Branch-and-

bound search in the priority space. Optimization and Engineering, 11:627–646, 2010.

101

LIST OF FIGURES

FIGURE Page

2.1 Reductions for objective functions [91]. 7
2.2 Example of task duplication. 9

2.3 A precedence graph G = (T ,A) and an associated optimum schedule. 11

2.4 A depth-2, weft-2 circuit. 16

2.5 Time windows of precedence graph in Figure 2.3a. 18

2.6 The interval graph of time windows in Figure 2.5. 18

2.7 A path-decomposition of Figure 2.6. 19

3.1 Release times, deadlines, and sets Xα and Zα, α ∈ {0, . . . , 5} for the instance
presented by Figure 2.3a and C = 6 on unlimited number of machines.. 30

3.2 Example of active and non-active schedules. 31

3.3 Task 3 and task 4 are preferred sons of task 1, task 5 is not. 32

4.1 The multistage graph associated with the precedence graph of Figure 2.3a and C = 6. 41

4.2 An optimum schedule corresponding to the path (p0, p0
1, p0

2, p0
3, p0

4) of Figure 4.1. 41

5.1 An instance of P |ri, prec, pi = 1, cij = 1|Lmax with m = 2 machines. 49

5.2 A feasible schedule σ of maximum lateness Lmax(σ) = 2 associated to the example
given in Figure 5.1.. 49

5.3 The multistage auxiliary graph S(G) = (N, A) associated with the example given
in Figure 5.1. Each node p ∈ Nα is designated by the triple (W (p)−Zα, B(p), L(p)).The
nodes p filled in gray are associated to a set of feasible schedules where minimum
maximum lateness is L(p). 53

5.4 The active feasible schedule σ of maximum lateness Lmax(σ) = 1 associated
to the path s → q0 → q1 → q2 → q3 with q0 = ({1, 3}, {1, 3}, 0), q1 =
({1, 2, 3, 4}, {2, 4}, 0), q2 = ({4, 5, 6}, {5, 6}, 1) and q3 = ({6, 7}, {7}, 1). 54

102

6.1 Time windows associated to two periodic tasks t1 and t2 with a LET dependence
e = (t1, t2). Parameters of tasks are respectively (r1, D1, T1) = (0, 3, 4) and
(r2, D2, T2) = (1, 2, 3). 66

6.2 An instance of 4 periodic tasks and the associated DAG G. 68

6.3 A path p = t1e1t2e2t4 from the graph G pictured by Figure 6.2. 69

6.4 Expanded graph PK(G) = (V, B,Lmax) for the instance pictured by Figure 6.2
associated with the vector K = (2, 4, 1, 2). Arcs β ∈ B are valued by Lmax(β) in
gray. 76

6.5 Graph H = (K,⪯) associated with the example pictured by Figure 6.2. Values
LP max(PK(G)) is given in gray for each vertex K ∈ K. 79

6.6 The partial expanded graph for the instance pictured by Figure 6.2 and a unit vector
K = (1, 1, 1, 1). Arcs are valued by Lmax in gray. 82

6.7 An instance of 6 periodic tasks and the associated DAG G extracted from ROSACE
case study [41]. 82

6.8 The partial expanded graph PK(G) for the instance pictured by Figure 6.7 and a
unit vector K = 16. Each arc β is valued by Lmax(β) in gray. 83

6.9 The partial expanded graph PK(G) for the instance pictured by Figure 6.7 and the
vector K = (2, 2, 3, 4, 1, 1). Each β arc is valued by Lmax(β).. 84

6.10 Average running times (on the top) and average number of iterations (on the bot-
tom) of Algorithm 3 for randomly generated high density and low density instances. 87

6.11 Average ratio r(n) =
∑n

i=1 K⋆
i∑n

i=1 Ni
for the partial expanded graph computed by Algo-

rithm 3 for randomly generated high density and low density instances. 88

103

LIST OF TABLES

TABLE Page

6.1 Values αe(a2, a4), πmax
e (a2, a4) and πmin

e (a2, a4) for a2 ∈ {1, 2, 3, 4} and a4 ∈ {1, 2}. 72
6.2 Fitting function of each measurements. 86

104

	TABLE OF CONTENTS
	ABSTRACT
	ACKNOWLEDGMENTS
	Introduction
	Fixed-parameter tractable algorithms for fundamental scheduling optimization problem
	Calculation of age latency in real time systems

	Preliminary notions and context
	Homogeneous scheduling models with communication delays
	Problem definition and notation
	Motivations for scheduling optimization on UET-UCT model

	Parameterized complexity for scheduling problems
	Fixed-parameter tractability
	Fixed-parameter intractability
	Parameterized reductions
	The W-hierarchy

	Time windows and Pathwidth
	Treewidth and Courcelle's theory
	Monadic second-order logic for graphs
	Courcelle's Theorem's applications to UET-UCT problem

	Kernelization of UET-UCT model
	Introduction to kernelization
	Modification on release date and deadline
	Modification algorithm on release dates
	Modification algorithms on deadlines
	A necessary condition on feasible schedules

	Active schedules
	Preferred sons
	A general dominance property

	Fixed-parameter complexity on optimization of makespan for UET-UCT model
	Introduction
	Dynamic programming approach and multistage graphs
	Description of the multistage graph
	Nodes of
	Arcs of

	Description of the algorithm

	Correctness of the algorithms
	Complexity results
	Conclusion

	Extensions to maximum lateness
	Problem definition
	Problem definition
	Example
	A general dominance property of active schedules

	Description of the algorithm
	Description of the multistage graph
	 Nodes of
	Arcs of
	 Maximum Lateness of a node of

	Description of the algorithm

	Correctness of the algorithm
	Complexity analysis
	Conclusion and perspectives

	Evaluation of the Age Latency of a Real-Time Communicating System using the LET paradigm
	Related works
	Modelling of the system
	Periodic tasks model considering LET communications
	LET dependencies
	Age latency
	Problem definition and example

	Construction of a partial expanded graph
	Dependence between duplicates of the partial expanded graph
	Upper bound on the latency
	Definition of the partial expanded graph
	Complexity of the computation of and its longest paths

	Dominant set for the expansion vector K
	Optimal value of the age latency for K=N
	Order relation between the divisors of the repetition vector N

	Determination of an optimum vector K
	ROSACE Case Study
	Experimental results
	Benchmarks
	Analysis of the computation time of the Algorithm 3
	Analysis of the partial expanded graph obtained

	Conclusion

	Global conclusions and perspectives
	Fixed-parameter tractable algorithms for fundamental scheduling optimization problem
	Calculation of age latency in real time systems

	REFERENCES
	LIST OF FIGURES
	LIST OF TABLES

