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Résumé : Pour pallier les difficultés techniques substantielles qui se posent dans 'utilisation
pratique des familles génératrices pour explorer la diversité des sous-variétés legendriennes en
topologie de contact, Henry et Rutherford proposent dans un article de 2013 une perturbation
singuliere du flot de gradient qui est utilisé pour définir ’'homologie de la famille génératrice.
Ils conjecturent alors que lorsqu’ils sont finis, les espaces de modules qui interviennent dans la
définition de 'opérateur de bord de cette homologie sont en bijection avec certains espaces de
modules de trajectoires brisées en escalier.

Cette these réalise le premier pas vers une démonstration compléte par compacité et recollement
de cette conjecture. Il y est démontré que si certaines hypothéses géométriques et conditions
de transversalité sont satisfaites, alors dans la limite adiabatique de Henry et Rutherford, les
trajectoires de gradient authentiques « convergent », a extraction pres, vers des chaines d’escaliers
de gradient.

Title: Generating family homologies of Legendrian submanifolds
and moduli spaces of gradient staircases
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Morse-Bott—Cerf theories, Generating families, Moduli spaces analysis, Homology.

Abstract: Willing to overcome the substantial technical difficulties arising in the practical use
of generating families to explore the diversity of Legendrian submanifolds in contact topology,
Henry and Rutherford introduce in a 2013 paper a singular perturbation of the gradient flow, used
to define the homology of the generating family. They conjecture that when finite, the moduli
spaces used to define the boundary operator of this homology are in one-to-one correspondence
with some moduli spaces of staircase trajectories.

This thesis takes the first step towards a complete proof by compactness-gluing of this conjecture.
It is shown that provided some geometric assumptions and transversality conditions are satisfied,
then in the Henry and Rutherford adiabatic limit, genuine gradient trajectories "accumulate" on
gradient staircases chains.
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Introduction (en francais)

Cette these est consacrée a I'étude des aspects de rigidité de contact des isotopies legendriennes
parmi les sous-variétés legendriennes des variétés de contact. Toutes ces questions de rigidité sont
aujourd’hui classiquement abordées en travaillant avec I'une ou plusieurs des trois techniques

avancées suivantes :

* les courbes pseudo-holomorphes [EESO5a, EESO5b, EES07, BC14] ;
* les familles génératrices [Tra01, ST13, SS16] ; ou
* les faisceaux constructibles [GKS12, STZ17].

Depuis quelques années, I'étude de la correspondance entre ces trois différentes approches a été
un terrain fertile pour la recherche en topologie de contact [FR11, HR13, RS18, NRS*20, RS21].
Les recherches contenues ici concernent seulement les invariants par familles génératrices des
sous-variétés legendriennes, mais elles devraient également offrir des directions prometteuses
pour mieux comprendre la correspondance entre les familles génératrices et les augmentations
de l'algebre de Tchekanov-Eliashberg [HR13].

Plus concrétement, ce travail réalise la premiere étape nécessaire pour démontrer que ’homologie
des familles génératrices des sous-variétés legendriennes peut étre en pratique calculée a partir
de certains espaces de modules de trajectoires brisées. Son résultat principal est un théoreme de
compacité (Théoreme A) établissant que les escaliers de gradient proviennent d’une perturbation
singuliére du flot de gradient qui est utilisé pour définir 'homologie pour les familles génératrices.
Il est en effet attendu que ce procédé de dégénérescence de Henry et Rutherford sépare les différentes
contributions qui interviennent dans le calcul de 'application de bord du complexe de chaines des
familles génératrices (Conjecture A). D’un c6té, les contributions de la sous-variété legendrienne,
et de l'autre, celles qui sont a imputer aux bifurcations dans le complexe des points critiques des

familles génératrices.

Cette introduction est désormais consacrée a la description précise du procédé de dégénérescence
de Henry et Rutherford et des espaces de modules d’escaliers de gradient (voir la Section 1.3),
puis énonce rigoureusement les principaux résultats de ce mémoire de thése (voir la Section 2).
Il est toutefois plus commode de commencer par quelques rappels élémentaires concernant les
sous-variétés legendriennes et leurs familles génératrices.

Un peu de contexte et de motivation

Une variété de contact est une paire (M?"*1 &), o M est variété de dimension impaire et £ est

un champ maximalement non-intégrable d’hyperplans tangents a M, appelé structure de contact.

Si a est une équation locale pour &, c’est-a-dire que & est localement ker(a), alors a A (da)"
1



2 INTRODUCTION (EN FRANGAIS)

est une forme volume qui ne s’annule jamais, ou de maniere équivalente, d @ est une forme
bilinéaire alternée et non-dégénérée (de sorte que M ne puisse pas étre de dimension paire).
Alors, le théoréeme de Frobenius implique non seulement que les structures de contact ne sont
pas des feuilletages (puisque a A d a # 0), mais elles en sont aussi éloignées autant que possible.
En effet, si une sous-variété de M qui est partout tangente a &, alors elle est dimension au plus n,
et une telle variété intégrale de £ est dite étre une sous-variété legendrienne dés qu’elle est de
dimension maximale n pour cette propriété.

Contrairement aux variétés riemanniennes, les variétés de contact n’ont pas d’invariants locaux
comme la courbure, seules leurs propriétés topologiques globales sont pertinentes dans leur étude.
En effet, toutes les variétés de contact sont localement modelées sur la variété R***! munie des
coordonnées (x, y,z) € R" x R" x R, et de la structure de contact £z, donnée par

an:ker aandz—Zykdxk ,
k=1

[Gei08, Théoreme 2.5.1] et cette construction peut étre généralisée aux fibrés de premiers jets.
Soient B une variété, son fibré de premiers jets J'B = T*B x R a des coordoonées locales (g, p, 2),
ol g sont des coordonnées locales sur B, p est duale a g et z est une coordonnée globale sur R.
Alors, J'B est muni d’une structure de contact canonique donnée par &, = ker(az = dz—pdq)
et pour laquelle la section nulle de J'B est naturellement une sous-variété legendrienne.

Comme les sous-variétés legendriennes ont une grande codimension, il peut étre attendu qu’elles
soient des sous-variétés extrémement flexibles, au sens du h-principe de Gromov [ Gro86, EMO02].
Grossierement, les obstructions a l'existence d’isotopies lisses entre sous-variétés legendriennes
devraient simplement se réduire a des contraintes homotopiques. Par exemple, toute sous-variété
fermée de dimension n dans une variété de contact de dimension 2n + 1 est C°-proche d’une
sous-variété legendrienne, des que son fibré tangent satisfait une certaine condition homotopique
[Gei08, Proposition 6.3.6]. Par contre, les isotopies parmi les sous-variétés legendriennes sont
elles nettement plus rigides, puisque par exemple, un théoréme de la communauté affirme que
toute classe d’isotopie lisse d'une sous-variété legendrienne se scinde en une infinité de classes
d’isotopie legendrienne.

A cause de ces phénomeénes de rigidité de contact, il est délicat de comprendre les obstructions
a l'existence d’isotopies parmi les sous-variétés legendriennes, notamment car la frontiére entre
flexibilité la rigidité des sous-variétés legendriennes est intriquée et encore largement méconnue.
En particulier, puisque distinguer des objets munis d’une structure algébrique est bien plus facile,
ce probléme requiert de construire de nouveaux invariants pour les sous-variétés legendriennes

qui raffinent ceux qui proviennent déja de constructions classiques en topologie algébrique.

Certaines de ces constructions sont maintenant décrites, et plus des détails sur la géométrie et la
topologie de contact mettant 'accent sur leurs aspects mathématiques et physique peuvent étre
respectivement trouvés dans [Gei08] and [Arn89, Kho13].
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1. Larigidité de contact des isotopies legendriennes

Comme mentionné ci-dessus, afin de mieux comprendre les obstructions a I'existence d’isotopies
parmi les sous-variétés legendriennes, des données provenant de la topologie de contact doivent
étre prises en compte. Cette question est maintenant étudiée en vue de progresser vers I'approche
par les familles génératrices a la rigidité de contact et les contributions plus précises de cette these.

1.1. Les invariants classiques et leurs limites.

Afin de développer de nouvelles techniques pour aborder cette question, il est raisonnable de
d’abord essayer d’adapter les invariants algébriques qui existent déja afin qu'’ils puissent encoder
des données topologiques provenant de la structure de contact définie dans un voisinage de la
sous-variété legendrienne.

Soit (M, £ = ker a) une variété de contact coorientée avec I'orientation induite par a A (da)" # 0,
et soit A une sous-variété legendrienne connexe, fermée et orientée dans (M, &), dans ce contexte,
il est possible de définir deux invariants pour les isotopies parmi les sous-variétés legendriennes.
Informellement, ces invariants sont définis pour respectivement capturer le comportement de A
dans les directions tangentes et normales a £, grossiérement:

* la classe de rotation est une classe d’homotopie qui encode la rotation de TA dans & ; et
* le nombre de Thurston-Bennequin compte les vrilles faites par £ en parcourant A.

Le reste de cette sous-section est consacrée a leur définition plus précise.

1.1.1. La classe de rotation.

Soit J: & — & une structure presque complexe sur & qui est compatible avec la forme bilinéaire
alternée et non dégénérée d a: [MS95, Proposition 2.63 ], c’est-a-dire que les conditions suivantes
sont satisfaites :

e J est un endomorphisme de fibrés vectoriels sur & tel que J? = —id; ;
* pour tout X € £\ {0;}, da(X,JX)>0; et
e pourtousX €éetY €&, da(JX,JY)=da(X,Y).

Dés lors, J induit une métrique riemannienne g, = da(-,J-) sur & pour laquelle J(TA) = TA*,
de sorte que A fournisse aussi un isomorphisme de fibrés vectoriels complexes TA ®; C — &|,.
Alors, la classe de rotation de A, noté r(A), est la classe d’homotopie de TA ®g C — &), parmi les
isomorphismes de fibrés vectoriels complexes, et elle indépendante de J, car le sous-ensemble des
structures presque complexes compatibles sur (£,d a ;) est contractile [MS95, Proposition 4.1].

La classe de rotation est un invariant complet pour les homotopies régulieres parmi les sous-
variétés legendriennes immergées [EMO02, Théoréme 16.1.3], mais elle est souvent inextricable.
Elle peut cependant étre utilisée pour démontrer le théoreme sur la rigidité de contact des classes
d’isotopies des sous-variétés legendriennes.
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1.1.2. Le nombre de Thurston—-Bennequin.

Supposons pour simplifier que 'homologie relative de A dans M est nulle et soit alors L C M une
surface de Seifert immergée et orientée de A telle que l'orientation de A soit aussi induite par L.
Soit R; une section qui ne s’annule pas de TM /& et soit A, un décalage de A par R tel que L th A,
alors LN A est une sous-variété compacte de dimension 0 de M, car dim(A)+dim(L) = dim(M).
Alors, le nombre de Thurston-Bennequin de A, noté tb(A), est le nombre d’intersection algébrique
entre L et A;, ou de maniére équivalente le nombre d’enlacement de A avec A, définis par:

th(A) = #(L,A) =enl(A,A) = Y e,

XELﬂAg

ot &, € {—1,1} et &, = 1 si, et seulement si, les orientations de T, L & T, A; et T,M coincident.
En particulier, il est immédiat de vérifier que le nombre de Thurston-Bennequin de A ne dépend
pas des choix faits pour R, L et de 'orientation de A.

Quand (M, &) = (R?, &), (r,tb) est un invariant complet pour les isotopies legendriennes

* des nceuds legendriens topologiquement triviaux [EF09, Theorem 1.5] ;
* des nceuds legendriens toriques [EHO1] ; et
* des nceuds legendriens en huit [EHO1].

Ces résultats ne se généralisent aux noeuds legendriens avec des types de noeuds plus compliqués.
Par exemple, il existe au moins deux noeuds legendriens de (R®, &) qui sont lissement isotopes
a des images miroirs de 5,, mais qui ne sont pas legendriennement isotopes dans (R?, &), bien
qu’ils aient mémes classe de rotation et nombre de Thurston-Bennequin [Che02, Théoréme 1.1].
Cependant, il n’existe qu’'un nombre fini de classes d’isotopie legendriennes ayant méme type de
noeud et mémes classes de rotation et nombre de Thurston-Bennequin [CGHO09, Théoreme 10].
Donc, les nceuds legendriens de (R?, £3) sont quasiment classés par le type de nceud, la classe de
rotation et le nombre de Thurston-Bennequin.

Cette approche n’est plus viable en grande dimension, puisque lorsque n = 2, il existe notamment
une infinité de plongement legendrien de la sphére S" de dimension n dans (R>"*!, &;,) qui ont la
méme classe de rotation et le méme nombre de Thurston-Bennequin, mais qui ne sont pourtant

pas legendriennement isotopes dans (R***1, £;.) [EES05b, Théoréme 1.1].

1.2. Homologie pour les familles génératrices des sous-variétés legendriennes.

Beaucoup plus de sophistications sont nécessaires pour dépasser les simples invariants classiques
des sous-variétés legendriennes. Dans cette theése, toutes les variétés de contacts seront des fibrés
de premiers jets, ce qui permettra de travailler avec des familles génératrices [Vit92, Cha95].

La section nulle du fibré de premiers jets (J!B, &) est une sous-variété legendrienne qui se projette
difféomorphiquement sur la base. Réciproquement, quand la projection d’une sous-variété sur la
base est un diffémorphisme, alors elle provient d’'une application lisse f : B — R comme suit :

{(b, T,f, f(b)); b € B},
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et il s’agit forcément d’une sous-variété legendrienne, legendriennement isotope a la section nulle.
Cependant, une sous-variété legendrienne qui est obtenue par isotopie legendrienne de la section
nulle peut avoir des singularités, de sorte qu’elle ne puisse plus étre obtenue comme ci-dessus.
Néanmoins, elle est encore obtenue a partir d’une application lisse f : B x RY — R comme suit :
{(6.Zwm.rom)iZLom=o},
ob an

[Che96, Théoreme 2.5], et qui sera désormais appelée une famille génératrice (de fonctions).
En s’inspirant de constructions en théorie de Morse, les familles génératrices permettent de définir
de nouveaux invariants pour les isotopies parmi les sous-variétés legendriennes.

Avant de construire ces invariants par familles génératrices pour les sous-variétés legendriennes,
il est d’abord préférable de rappeler 'approche moderne a 'homologie de Morse [Wit82, Flo89].
Non seulement cela fournira un contexte utile pour comprendre le cadre plus subtil de 'homologie
pour les familles génératrices, mais cela permettra aussi ensuite de mieux décrire et motiver le

procédé de dégénérescence de Henry et Rutherford qui est au coeur de cette these.

Soit M une variété fermée et soit f : M — R une fonction de Morse, définissons CM,(f) comme
étant 'espace vectoriel librement engendré sur F, par les points critiques de f et qui est équipé de
la graduation u induite par I'indice de Morse des points critiques. Ensuite, pour faire de CM,(f)
un complexe de chaines, commencons d’abord par choisir une métrique riemannienne g sur M,
puis pour tous les points critiques c_ et c, de f, définissons M(c_,c +; f,g) comme étant 'espace
de modules des trajectoires de gradient de f pour g qui sont paramétrées et qui joignent c_ a c,.
Plus précisément, M(c_,c +; f,g) est 'ensemble des applications lisses y: R — M telles que

YVt €R,0,y(t) ==V, f(y(t)),

y(t) E) c_,

() e

Comme le groupe (R, +) agit librement par décalage temporel sur M(c_,c +f,g), quand c_ #c,,
il est naturel de définir 'ensemble des orbites de cette action

M(c_ycsf,8) = M(c_,c,; f,8)/R,

et de l'identifier avec I'espace de modules des trajectoires de gradient de f pour g qui sont ne
sont pas paramétrisées et qui joignent c_ a c,. Par ailleurs, la métrique riemannienne g peut étre
perturbée pour que le flot du gradient de f pour g soit un systeme dynamique de Morse-Smale,
et que A (c_,c,; f, g) soit alors une variété de dimension u(c_)—u(c,)—1 [Sch93, Théoréme 1].
De plus, lorsque # (c_,c,; f, g) est de dimension 0, elle est compacte [AD10, Corollaire 3.2.4] et
il est possible de construire une application linéaire J; ,: CM,(f) — CM,_;(f) en la définissant
sur les générateurs par la formule suivante

O oC_ = Z #p, M (i, f,8)c,,

ol c, est un point critique d’indice de Morse u(c_)—1 et #, est un compte modulo 2 d’éléments.
Afin d’avoir un complexe de chaines, il suffit de démontrer que J; , est bien un opérateur de bord,
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et pour cela il suffit de vérifier que le carré de J; , sannule bien sur les générateurs de CM,(f).
Apres un calcul direct, il s’agit de démontrer que

Z#Fzﬂ(qsp;f)g)#Fz'%(p7r;f:g) = 05
p

ol q, r et p sont des points critiques de f avec des indices de Morse décroissants et consécutifs.
Comme pour dans la plupart des problemes d’espaces de modules dans les théories homologiques,
cette démonstration se fait en deux temps:

* Compacité. Comprendre les points d’adhérence des suites d’élements de .#(q, p) afin
de construire une compactification m de #(q,p).

* Recollement. Démontrer que les bords de I'espace compact m sont exactement
des produits fibrés des espaces de modules utilisés pour définir 'application de bord.

Dans le cadre de ’homologie de Morse, le théoréme de compacité [AD10, Théoréme 3.2.2], ainsi
que le théoréme de recollement [AD 10, Proposition 3.2.7] démontrent que les points sur les bords
des compactifications des espaces de modules de dimension un sont en correspondance bijective

avec des trajectoires de gradient brisées et non-paramétrisées :

oM (q,p;f,8) = (a,p;f, &) x #p,73 f,8).
p

En conclusion, la somme ci-dessus est bien nulle comme souhaité, puisqu’il y a un nombre pair
de points sur le bord d’'une variété compacte de dimension un, et ’homologie de Morse HM,(f)
est alors définie comme I'homologie du complexe de chaines (CM,(f), J;,), C’est-a-dire

HM,(M) =ker(8;,: CM.(f) = CM,_,(f))/im(8;,: CM.,1(f) = CM.(f)).

L’homologie de Morse ne dépend finalement pas des choix de f et de g [AD10, Théoréme 3.4.2],
et il s’agit d’'un invariant d’homotopie des variétés fermées [AD10, Théoréme 4.6.2].

En mécanique classique, le principe fondamental de la dynamique assure qu’un objet qui est
soumis a un champ de force doit suivre un chemin dans I'espace des phases qui minimise I'énergie.
Dans une variété de contact coorientée (M, ), cette philosophie s’incarte dans I’étude de la théorie
de Morse de la fonctionnelle d’action qui est défini sur les lacets par :

ﬂa:nya.
Y

Sous des hypotheses techniques additionnelles, la théorie de Morse en dimension infinie de la
fonctionnelle d’action, qui est aussi appelée théorie symplectique des champs, fournit des invariants
intéressants des variétés de contact [EGHOO]. En particulier, quand les chemins utilisés pour
définir la fonctionnelle d’action débutent et terminent sur une méme sous-variété legendrienne,
alors la théorie symplectique des champs qui en résulte permet de construire des invariants par
isotopies legendriennes [EESO5a, EES07]. Bien que les invariants qui proviennent de la théorie
symplectique des champs sont inconditionnellement puissant, leurs constructions reposent sur
une analyse poussé et nécessitent de comprendre le comportement des solutions d’'une équation
aux dérivées partielles non linéaire.
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En mécanique classique, les familles génératrices apparaissent tres naturellement comme étant
des lagrangiens de systemes physiques et en topologie de contact, ils fournissent de maniere
similaire des modeles de dimension finie pour la fonctionnelle d’action. Plus concrétement, si
une sous-variété legendrienne de (JB, &) a une famille génératrice f : B x R¥ — R, sa fonction
différence 5: B x RN x RY — R est définie par

6(b,m1,m,) = f(b,m1) — f(b, M),

et elle mesure la longueur entre des paires de points verticalement alignés dans la legendrienne.
Choississons une métrique riemannienne g générique sur B x RY x RV, alors sous une hypothése
convenable et raisonnable sur le comportement a l'infini de la famille génératrice f, les espaces
de modules de Morse .# (c_,c,; 0, g) qui sont associés a la fonction différence & se comportent
suffisamment bien pour reproduire la construction de ’homologie de Morse des variétés fermées.
Cette construction aboutit a la définition de ’homologie des familles génératrices HFG,(f) de f,
qui est indépendante du choix de g et permet de construire des invariants intéressants pour les
isotopies legendriennes [Tra01]. En particulier, la caractéristique d’Euler—Poincaré de ’homologie
des familles génératrices permet génériquement de calculer le nombre de Thurston-Bennequin
des legendriennes dans (J'R", £.) [EES0O5b, Propositions 3.2 et 3.3] et [ST13, Proposition 3.2].
En d’autres termes, ’homologie des familles génératrices réalise une catégorification du nombre
de Thurston-Bennequin.

Dans le cadre des variétés fermées, 'homologie de Morse est un invariant d’homotopie effectif,
puisqu’elle se calcule a partir d’espaces de modules d’objets géométriques qui sont facilement
indentifiables sur la variétés, sans en connaitre beaucoup d’informations. Cela n’est cependant
plus le cas pour 'homologie des familles génératrices. Non seulement les familles génératrices des
sous-variétés legendriennes sont souvent décrites qu’en des termes trop qualitatifs pour permettre
des calculs en homologie, mais les espaces de modules utilisés ne sont aussi plus géométriques.
En effet, le flot du gradient de la fonction différence n’a désormais plus lieu sur la sous-variété
legendrienne en elle-méme, mais plutét sur un fibré vectoriel auxiliaire dans lequel elle se plonge
non-canoniquement (par 'intermédiaire de la famille génératrice).

1.3. Le procédé de dégénérescence adiabatique de Henry et Rutherford.

Puisque 'homologie pour les familles génératrices est indépendante de la métrique riemannienne,
en faire un choix soigneux peut aider a calculer en pratique I’homologie des familles génératrices.
Idéalement, les lignes de gradient de la fonction différence devrait étre tracée sur la legendrienne.
Intuitivement, cet objectif est atteint en accélérant graduellement le flot de gradient dans la fibre,
mais pour des raisons qui seront claires plus tard, il est plus commode de ralentir progressive-
ment sa composante dans la base, cela revient a réaliser la dégénérescence de Henry et Rutherford.
Rigoureusement, pour s €]0, 1], définissons d’abord

(.1
g =(s7"gs) @ gr,
ol g, et g, sont respectivement des métriques riemanniennes sur B et R*", puis prenons s — 0

dans I’équation différentielle qui caractérise le flot de gradient pour g, de la fonction différence.
Cependant, les lignes de flot qui résultent de ce flot de gradient singulierement perturbé ne sont
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pas toujours tracées sur la sous-variété legendrienne elle-méme, puisqu’un calcul (Lemme 3.1)
montre que les trajectoires du flot de gradient pour g

* sont tangentes aux fibres loin du lieu fibrement critique de la fonction différence ; et
* s’annulent le long du lieu fibrement critique de la fonction différence, mais si elles sont

1

préalablement redimensionnées par un facteur d’ordre s™, alors elles sont tangentes au

lieu fibrement critique de la fonction différence.

Ainsi, le procédé de dégénérescence de Henry—Rutherford semble donc « converger » vers des tra-
jectoires brisées obtenues par concaténation de deux types de trajectoires de gradient alternant
entre fragments verticaux (dans le premier cas) et fragments horizontaux (dans le second cas).
Quand ces trajectoires de gradient brisées n’ont qu'un nombre fini de fragments élementaires,
elles sont appelées escaliers de gradients et 'ensemble de tous les escaliers de gradients qui sont
non-paramétrisés et joignent c_ a c, est noté .#*(c_,c,; 9, g,) (Définition 3.2).

La démonstration de la version standard de 1’équivalence de cobordisme obtenue par compacité
et recollement montre que si s, €]0, 1] est suffisamment petit, .#(c_,c,; 6, g;) et A (c_,c,;06,8;,)
sont en correspondance bijective, dés qu’elles sont des variétés finies [AD10, Proposition 3.4.3].
Quand #(c_,c,; 0, gy) est remplacé par 4 *(c_,c,; 0, g,), il est également conjecturé que cette

correspondance bijective s’étende a s = 0, il s’agit de '’énoncé de la

Conjecture A (inspiré de [HR13, Conjecture 6.3], Conjecture 3.1). Si s, €]0,1] est assez petit,
alors il existe une correspondance bijective ensembliste entre 4 (c_,c,; 5, g ) et M **(c_,c,;08,81),

dés qu’il s’agit de variétés compactes de dimension O.

Cependant, comme (g,), n’est pas une homotopie de métriques riemmanniennes (puisque g,
n’est méme pas définie correctement), la Conjecture A ne peut pas étre directement déduite du

résultat usuel de compacité-recollement en théorie de Morse et qui est mentionné juste au-dessus.

Supposons que la Conjecture A soit vraie, le procédé de dégénérescence de Henry—Rutherford ne
peut alors pas « converger » vers des trajectoires de gradient qui sont entierement contenues dans
la sous-variété legendrienne, mais cet objectif était de toute fagon naif, puisque cela signifierait
que 'homologie pour les familles génératrices ne dépend que de la sous-variété legendrienne.
Cependant, la Conjecture A permet tout de méme de calculer en pratique ’homologie des familles
génératrices, puisque

* les fragments verticaux sont liés aux glissement d’anses des familles génératrices ; et

* les fragments horizontaux sont entierement déterminé par le front legendrien.

Travailler avec des espaces de modules d’escaliers de gradient permet de séparer les contributions
qui interviennent dans le calcul des bords dans le complexe de chaines des familles génératrices.
D’une part, les fragments verticaux tiennent compte des bifurcations dans les points fibrement
critiques de la famille génératrice et d’autre part, les fragments horizontaux de la géométrie de la

sous-variété legendrienne.

La Conjecture A a d’abord été introduite comme fondement géométrique a I'algebre différentielle
graduée combinatoire qui est construite a partir de familles génératrices [HR13, Théoreme 5.4].
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En particulier, la Conjecture A en conjonction avec les [HR13, Théorémes 5.4 and 5.5] permettent
de retrouver le [FR11, Théoréme 5.1] qui fait la construction d’'une augmentation de I’algebre de
Tchekanov-Eliashberg d’'un nceud legendrien a partir d’'une famille génératrice linéaire a l'infini.
Plus généralement, il est attendu que la Conjecture A joue un role important pour attaquer en
dimensions quelconques, 'équivalence complete entre familles génératrices et augmentations de

I'algebre de Tchekanov-Eliashberg.

Il est important de mentionner que des espaces de modules de trajectoires brisées et des résultats
similaires a la Conjecture A existent déja dans la littérature. Par exemple, dans le contexte

* de homologie de Morse-Bott [Fra04, Appendix A], [BH13] ;
* de homologie de contact [Bou02] ; et
* de 'homologie symplectique [BO09a, BOO9b].

Les démonstratiosn sont toutes basées sur des techniques de compacité-recollement, mais elles ont
toutes leurs propres spécificités et difficultés analytiques, et la Conjecture A n’y fait pas exception.

2. Principaux résultats de la these

Le contexte est désormais bien mis en place pour énoncer les principaux résultats de ce mémoire.
En particulier, cette section explique dans quelle mesure cette these réalise les premiers pas vers

une démonstration compléte de la Conjecture A.

2.1. Analyse sur les espaces de modules des chaines d’escaliers de gradient.

Comme nous 'avons mentionné juste au-dessus, les correspondances entre espaces de modules,
qui sont similaires a la Conjecture A, sont généralement démontrés en exploitant des techniques
par compacité et recollement, et ce mémoire s’occupe précisément de la partie compacité pour le
procédé de dégénérescence de Henry et Rutherford.

Afin de donner des énoncés plus précis, fixons quelques notations pour le reste de I'introduction.
Soit A une sous-variété legendrienne fermée et connexe de (J!B, &;), soit 6: B x R¥V x RY — R
une fonction différence d’une famille génératrice linéaire a 'infini de A et soit

& = (S_lgB) ® gy © 8w

ous €]0, 1], gz est une métrique riemannienne sur B et g, est une métrique riemannienne sur RY.
Des lors, cette these étudie le comportement limite du flot de gradient de 6 pour g, quand s — O.
Avant de pouvoir énoncer le théoreme principal de cette thése, il faut encore se rappeler qu’en
théorie de Morse standard pour toute suite v, € #(c_,c,; 0, g1), il existe une sous-suite (toujours

noté de la méme maniére), un multiplet (y,,...,Y,), appelé trajectoire brisée de gradient, avec
e pourtoutie€{l,...,m},y; € #(c;,ci11;0,81) ; et
e co=c_etCpq=¢C,;
etpour touti € {1,...,m}, une suite (7} ),y de décalages telle que y; (-+7}) —yien topologie C_. .
De méme, pour étudier les accumulations des suites y; € #(c_,c,; 5, g ), ol s, €]0,1] ets, - 0,
il est pertinent de d’abord introduire les chaines d’escaliers de gradient (Définition 3.3) qui sont
des multiplets e = (e, ..., e,) avec
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* pourtouti€{1,...,m}, &, € M*(c;,ci11;0,81) ; et

e c,=c_etcp,=¢C,;
et ’ensemble de toutes les chaines d’escaliers non-paramétrées de c_ a c, est .Z°<(c_,c,;5,g,).
Avec tous ces rappels, I'énoncé de compacité associé au procédé de dégénérescence de Henry et
Rutherford qui est présenté dans cette thése se formule désormais ainsi

Théoreme A (Théoreme 4.1). Supposons que A — B n’a que des singularités de type pli de Whitney.
Alors A peut étre perturbée de sorte que pour tout vy € M (c_,c,; 5, g, ), avec s, €]0,1] et 5, — 0,
il existe une sous-suite (noté de la méme maniére) (v, )ey et € € M (c_,c,; 5, gs,) tels que vy —e
dans la topologie de Floer—Gromov.

La convergence pour la topologie de Floer—-Gromov est expliquée dans les Définitions 3.4 et 3.5,
mais il convient d’y penser comme étant une convergence vers des trajectoires de gradient brisées,
avec tout de méme un facteur d’échelle temporel de s, ! dans le cas des fragments horizontaux,

sans quoi les trajectoires récupérées seraient constantes (voir la Section 1.3 ci-dessus).

Le Théoreme A est probablement vrai sans restriction sur les singularités de la caustique de A,
mais cela permet d’éviter des arguments combinatoires élaborés, surtout pour la Proposition 4.7.
Quoi qu’il en soit, cette hypothese revient a une question homotopique [AG18, Théoreme 1.11]
et elle satisfaite par de trés nombreux exemples significatifs de legendriennes [Ekh07, BST15].
Cependant, il est incontournable de travailler avec des sous-variété legendriennes génériques,
sans quoi le Théoreme A peut étre mis en échec pour des raisons véritablement profondes et
dont nous allons désormais discuter.

2.2. Une difficulté technique majeure : un phénomene de bouillonnement infini.

Quand un groupe non-compact agit librement sur 'ensemble des solutions d’une équation aux
dérivées partielles, alors les espaces de modules de solutions non-paramétrées qui lui sont associés
sont généralement compactifiés par I'ajout d’objets brisés.

Pour mieux illustrer ce phénoméne commun, considérons deux exemples clefs :

* En théorie de Morse, (R, +) agit librement par décalage temporel sur le flot du gradient,
et les espaces de modules des trajectoires de gradient non-paramétrées sont compactifiés
par I'ajout de trajectoires de gradient brisées [AD10, Théoréme 3.2.2].

* En théorie de Gromov-Witten, PSL(2, R) agit librement par homographie sur 'équation
de Cauchy-Riemann, et les espaces de modules des courbes pseudo-holomorphes qui
sont non-paramétrées sont compactifiés par des courbes pseudo-holomorphes brisées
[MS04, Théoréme 4.4.3].

Pour démontrer de tels résultats de compacité, il faut d’abord s’assurer que le comportement
analytique des solutions au bord des espaces de modules qu’elles forment n’est pas trop sauvage,
ce qui signifie typiquement que leurs limites ne peuvent avoir qu'un nombre fini de fragments.
Cette étape est généralement automatique, elle s’accomplit seulement en démontrant que chaque
fragment non-constant consomme une quantité prédéterminée d'une « énergie » disponible en
quantité totale finie.

Une fois encore, cette stratégie est bien comprise dans les deux exemples ci-dessus :
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* En théorie de Morse, la valeur de la fonction de Morse décroit strictement le long des
trajectoires de gradient non-constantes.
* En théorie de Gromov-Witten, l'aire symplectique des courbes pseudo-holomorphes qui

sont non-constantes est uniformément minorée [MS04, Lemme 4.5.2].

Dans le cadre du Théoreme A, méme si la quantité totale de longueur verticale disponible est finie,
rien n’empéche les fragments verticaux de devenir arbitrairement courts au voisinage des plis.
Pour cette raison, les arguments énergétiques standards précédents ne suffisent pas a garantir
que le procédé de degénéréscence de Henry et Rutherford ne récupere que des chalnes d’escaliers
de gradient ayant un nombre fini de fragments élémentaires.

Cependant, une analyse bien plus élaborée montre que lorsque le procédé de dégénérescence de
Henry et Rutherford récupére un escalier de gradient avec une infinité de fragments élémentaires,
alors ses fragments horizontaux ont nécessairement des « tangences arbitrairement profondes »
avec I'ensemble des points critiques de la projection caustique de la sous-variété legendrienne.
Cela motive la définition des sous-variétés legendriennes génériques de gradient (Definition 1.11),
puisqu’un champ de vecteur ne peut pas étre tangent a une sous-variété générique a un ordre
supérieur a sa dimension.

Avec toutes ces observations, nous pouvons formuler le

Théoreme B (Théoreme 4.3). Sur une sous-variété legendrienne générique de gradient, le procédé
de degénérescence de Henry—Rutherford peut seulement « converger » vers des chaines d’escaliers de

gradient avec un nombre fini de fragments élémentaires.

La démonstration du Théoreme B explique pourquoi il est préférable de ralentir graduellement
le flot du gradient de la fonction différence dans la base, plutét que de I'accélérer dans la fibre,
comme il était pourtant originellement suggéré de procéder dans [HR13].

Le Théoreme B est intéressant, car les legendriennes génériques de gradient sont nombreuses.
Plus précisément, la généricité de gradient est (comme son nom l'indique) une propriété générique
parmi les sous-variétés legendriennes, il s’agit de ’énoncé du

Théoreme C (Théoreme 1.2). Le sous-ensemble formé des sous-variétés legendriennes génériques
de gradient de type topologique fixé est ouvert et dense dans 'ensemble des plongements legendriens,

muni de la topologie induite par la topologie C°° sur les applications lisses.

Le Théoreme A est parfaitement adapté pour faire des calculs en pratique, puisque :
* vérifier qu'une sous-variété legendrienne est générique de gradient ; et
* perturber une sous-variété legendrienne pour qu’elle soit générique de gradient ;

sont des procédures entierement explicites.

Organisation du mémoire

Cette thése s’organise autour de quatre chapitres mutuellement dépendants qui aboutissent a la
démonstration du Théoreme A, et elle se termine avec un cinquieme chapitre indépendant qui
contient des exemples illustrant la pertinence de la Conjecture A. Un grand soin a été apporté
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pour s’assurer que ce mémoire soit autosuffisant. En particulier, plusieurs résultats standards ont
été adaptés afin de mieux convenir a l'utilisation qui allait étre faite dans la these et plusieurs
lacunes mineures dans des articles de recherche ont également été comblées.

* Chapitre 1 — Conditions de transversalité pour les sous-variétés legendriennes

Ce chapitre est consacré aux sous-variétés legendriennes génériques de gradient (Définition 1.11)
et fournit, en particulier, la démonstration du Théoreme C (Théoreme 1.2) dans la Section 3.
Il contient des rappels élémentaires de topologie de contact dans la Section 1, d’abord dans des
variétés de contact abstraites (Section 1.1), puis dans des fibrés de premiers jets (Section 1.2).
Des rappels supplémentaires sur ’étude des sous-variétés legendriennes sont également donnés
dans la Section 2 et a la fin de la Section 3 qui contient les définitions respectives de la généricité

de front (Définition 1.8) et de la généricité des cordes (Définition 1.12).

* Chapitre 2 — Homologies pour les familles génératrices des sous-variétés legendriennes

Ce chapitre est consacré a I’étude des sous-variétés legendriennes a I'aide des familles génératrices.
La Section 1 débute avec un panoramique de la théorie des familles génératrices des sous-variétés
legendriennes, avant de rappeller leur propriété de relevement des homotopies (Théoreme 2.1).
La Section 1.2 établit un dictionnaire entre les propriétés génériques du Chapitre 1 pour les
sous-variétés legendriennes et certaines propriétés de transversalité des familles génératrices.
Ensuite, en vue de commencer a aborder la démonstration du Théoreme A, la Section 2 étudie
les familles génératrices du point de vue de la théorie de Morse (Proposition 2.4), puis deux
versions simple/mixte de ’homologie des familles génératrices sont construites (Définition 2.6).
Finalement, la Section 3 fait I'inventaire des résultats connus concernant la structure algébrique
de 'homologie pour les familles génératrices dans sa version simple (Théoremes 2.3 et 2.5).
Puis, plusieurs énoncés similaires sont également étendus a sa version mixte (Théoreme 2.4), ou
sont simplement discutés et conjecturés (Conjectures 2.1 et 2.2).

* Chapitre 3 — Le procédé de dégénérescence de Henry et Rutherford

Ce chapitre contient tout le contenu nécessaire pour formuler la Conjecture A (Conjecture 3.1)
et commencer a démontrer le Théoreme A. Dans la Section 1, le procédé de dégénérescence de
Henry et Rutherford est présenté comme étant un systeme dynamique lent-rapide pour lequel le
sous-ensemble maximalement invariant n’est pas normalement hyperbolique en codimension un.
Ensuite, la Section 2 est consacré aux escaliers et chaines d’escaliers (Définitions 3.4 et 3.5),
avec la Section 2.1 qui étudie la théorie de Morse des fragments verticaux (Proposition 3.1).
Dans la Section 3, la convergence dans la topologie de Floer—-Gromov (Définitions 3.4 et 3.5)
est étudiée et plusieurs propriétés importantes pour décrire le comportement limite du procédé
de dégenérescence de Henry et Rutherford sont également démontrées (Proposition 3.2).
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e Chapitre 4 — Compacité de Floer et Gromov pour les chaines d’escaliers de gradient

Ce chapitre est consacré a la démonstration du Théoreme A, résultat principal de cette these.
Ainsi, la Section 1 décrit des procédures récursives permettant de récupérer 'un apres 'autre des
fragments élémentaires de chalnes d’escaliers de gradient dans la limite de Henry et Rutherford.
La Section 1.1 explique d’abord comment récupérer les fragments verticaux (Proposition 4.1),
puis la Section 1.2 s’occupe du cas plus compliqué des fragments horizontaux (Théoréeme 4.2).
Ensuite, dans la Section 2, le Théoreme B (Théoreme 4.3) est démontré afin d’assurer que sur
une sous-variété legendrienne générique de gradient, les procédures récursives de la Section 1
s’arrétent apres un nombre fini d’étapes. Finalement, dans la Section 3, tous ces résultats sont
mis ensemble pour démontrer le Théoreme A (Théoreme 4.1).

* Chapitre 5 — Exemples

Ce chapitre explique comment les espaces de modules d’escaliers de gradient peuvent étre utilisés
pour réaliser en dimension quelconque des calculs homologiques avec des familles génératrices.
Ces exemples permettent de justifier I'importance de la version mixte de ’homologie pour les
familles génératrices et sont le point de départ essentiel pour aborder les conjectures soulevées
dans le Chapitre 2.

* Perspectives de recherche

Ce mémoire est enfin cléturé par la description de plusieurs directions de recherche futures qui
suivent les perspectives ouvertes par le Théoreme A.



Introduction (in English)

This thesis is concerned with the investigation of contact rigidity aspects of isotopies through
Legendrian submanifolds in contact manifolds. Nowadays, these rigidity questions are classically
tackled by working with one or several of the three following advanced techniques:

* pseudo-holomorphic curves [EES05a, EESO5b, EES07, BC14];
* generating families [Tra01, ST13, SS16]; or
* constructible sheaves [GKS12, STZ17].

In recent years, the study of the correspondence between these three different approaches has
been a fruitful research framework for contact topology [FR11, HR13, RS18, NRS*20, RS21].
The research featured here is about generating family invariants of Legendrian submanifolds, but
it should offer promising directions to understand better the correspondence between generating
families and augmentations of the Chekanov-Eliashberg algebra [HR13].

More concretely, this work is the first step towards showing that the generating family homology of
Legendrian submanifolds can be computed from convenient moduli spaces of broken trajectories.
Its main result is a compactness theorem (Theorem A), showing that gradient staircases arise from
a singular perturbation of the genuine gradient flow used to define generating family homology.
This Henry—Rutherford limiting process is expected to split apart the distinct inputs involved in the
computation of the boundary operator of the generating family chain complex (Conjecture A).
On one side, the contributions coming from the Legendrian submanifold, and on the other side,
the ones due to bifurcations in the complex of critical points of the generating families.

The rest of the introduction is devoted to the more precise exposition of the Henry—-Rutherford
limiting process and the moduli spaces of gradient staircases (see Subsection 1.3), and then
states the main results of this dissertation (see Section 2). It is, however, more appropriate to
first go through some recollections from Legendrian submanifolds and generating families.

Some context and motivation

A contact manifold is a pair (M*"*1, &), where M is a smooth odd-dimensional manifold and &
is a maximally non-integrable smooth tangent hyperplane field of M, called a contact structure.
If a is a local one-form equation for &£, meaning that & is locally equal to ker(a), then a A (da)™
is a nowhere vanishing top form, or equivalently that d |- is a non-degenerate skew-symmetric
bilinear form (so that M cannot be even-dimensional). Not only Frobenius theorem implies that
contact structures are not foliations (as a A d a # 0), they are as far away as possible from them.
Indeed, if a smooth submanifold of M is everywhere tangent to &, then it is at most n-dimensional,
and such a smooth integral submanifold of £ is a Legendrian submanifold whenever it has maximal
14
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dimension n for this property.

Unlike Riemannian manifolds, contact manifolds cannot have any local invariant, like curvature,
or to put it slightly differently, only their global topological properties are relevant to their study.
Indeed, all contact manifolds are locally modelled on R>**! with coordinates (x, y,z) € R*xR" xR,
and contact structure &g, given by

Ern =ker(aRn = dz—Zykdxk),

k=1
[Gei08, Theorem 2.5.1] and this construction can also be generalised to first order jet bundles.
Let B be a smooth manifold, its first order jet bundle J!B = T*B x R has local coordinates (g, p, z),
where g are local coordinates on B, p are dual coordinates of q and 2 is a global coordinate on R.
In this setting, J'B can be endowed with a contact structure ; = ker(az = dz — p dq) for which
the zero-section of J!B naturally defines a Legendrian submanifold.

Since Legendrian submanifolds have large codimension in contact manifolds, it can be expected
that they are highly flexible submanifolds, in the Gromov’s h-principle sense [Gro86, EM02].
Roughly speaking, the obstructions to the existence of isotopies through smooth submanifolds
between Legendrian submanifolds are expected to amount to constraints of homotopical nature.
Arguing in this direction, any closed smooth n-dimensional submanifold of a (2n+1)-dimensional
contact manifold is C°-close to a Legendrian submanifold, provided some homotopical condition
on its tangent bundle is met [ Gei08, Proposition 6.3.6]. In contrast, isotopies through Legendrian
submanifolds exhibit way more rigidity. For example, a folklore theorem asserts that the smooth
isotopy class of any Legendrian submanifold splits into infinitely many Legendrian isotopy classes.

Due to the aforementioned contact rigidity phenomena, grasping obstructions to the existence
of isotopies through Legendrian submanifolds is tricky, since for example, the interplay between
flexibility and rigidity of Legendrian submanifolds is intricate and still not yet well understood.
In particular, since it is easier to distinguish objects with an algebraic structure, making progress
on this question requires to construct invariants for Legendrian submanifolds refining the ones
already coming from classical constructions in algebraic topology.

Some of these constructions are now discussed, but in the meantime, more details about contact
geometry and topology, respectively emphasising the mathematical and physical viewpoints, can
be found in [Gei08] and [Arn89, Kho13].

1. Contact rigidity of Legendrian isotopies

As it was just mentioned, in order to better understand obstructions to the existence of isotopies
through Legendrian submanifolds, inputs from contact topology need to be taken into account.
This matter is now discussed, building towards the generating family approach to contact rigidity
of Legendrian submanifolds and the more precise contributions of this thesis.
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1.1. Classical invariants and their limitations.

Before developing new techniques to tackle this question, it is first reasonable to adapt already
existing algebraic invariants so that they can encode topological data coming from the existing
contact structure defined in a neighborhood of a Legendrian submanifold.

Let (M, & = ker a) be a cooriented contact manifold with the orientation induced by aA(d a)" # 0,
and let A be a connected, closed and oriented Legendrian submanifold of (M, &), in this setting,
it is then possible to introduce two invariants under isotopies through Legendrian isotopies of A.
Informally, these invariants are defined to respectively capture the behaviour of A in the tangent
and normal directions of &, roughly speaking:

* the rotation class of A is a homotopy class characterising how T A spins in £; and
* the Thurston—Bennequin number of A counts how many twists & makes along A.

The rest of this subsection is now devoted to their more rigorous definitions.

1.1.1. The rotation class.

Let J: & — & be an almost complex structure on & which is compatible with the non-degenerate
skew-symmetric bilinear form d a; [MS95, Proposition 2.63], meaning that the following three
conditions are satisfied:

e J is a bundle endomorphism of £ such that J2 = —idg;
e forall X € £\ {0;}, da(X,JX) > 0; and
e forallXefandY €&, da(JX,JY)=da(X,Y).

In particular, J induces a Riemannian bundle metric g; = da(-,J-) on & for which J(TA) = TA*
(since A is Legendrian), so that A also gives a complex vector bundles isomorphism TA®zC — &),.
Then, the rotation class, denoted by r(A), is the homotopy class of TA®z C — &, among complex
vector bundles isomorphisms, and it is independent of J, since the subset of compatible almost
complex structures on (&,d a;¢) is contractible [MS95, Proposition 4.1].

The rotation class is a complete invariant for regular homotopy through immersed Legendrian
submanifolds [EM02, Theorem 16.1.3], but it is often intractable. It can nonetheless be used to
prove the folklore theorem on the contact rigidity of isotopy classes of Legendrian submanifolds.

1.1.2. The Thurston—-Bennequin number.

Assume, for the sake of simplicity, that A is null-homologous in M and let L be a immersed and
oriented Seifert surface of A such that the orientation of A agrees with this that is induced by L.
Let R; be a nowhere vanishing section of TM /£ and let A, be a shift of A by R; such that L h A,
then L N A; is a compact O-dimensional submanifold of M, since dim(A) + dim(L) = dim(M).
Then, the Thurston-Bennequin number of A, denoted by tb(A), is the algebraic intersection number
between L and A, or equivalently the linking number of A and A, which are defined as:

th(A) = #(L,A) = k(A A) = > &,

XELﬂAg
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where ¢, € {—1,1} and ¢, = 1 if, and only if, the orientations of T, L ® T, A; and T, M are equal.
In particular, it is straightforward to check that the Thurston-Bennequin number of A does not
dependent on the choices of R;, L and the orientation of A.

When (M, &) = (R3, £R), the pair (r,tb) is a complete invariant for Legendrian isotopies of:

* topologically trivial Legendrian knots [EF09, Theorem 1.5];
* Legendrian torus knots [EHO1]; and
* Legendrian figure-eight knots [EHO1].

These results cannot be extended to Legendrian knots with more complicated smooth knot types.
For example, there exist at least two Legendrian knots of (R*, &) which are smoothly isotopic
to mirror images of 5, (3-twist knots), but not isotopic through Legendrian knots of (R?, &),
despite having the same rotation class and Thurston-Bennequin number [Che02, Theorem 1.1].
However, within any smooth knot type, there are only finitely many isotopy classes of Legendrian
knots having the same rotation class and Thurston-Bennequin number [ CGH09, Théoréeme 10].
Therefore, Legendrian knots of (R?, £z) are almost completely classified by the smooth knot type,
the rotation class and the Thurston-Bennequin number.

However, this approach is no longer viable in higher dimension, since when n = 2, there exist, for
example, infinitely many Legendrian embeddings of the n-dimensional sphere S™ into (R***1, &z,)
with the same rotation class and Thurston—-Bennequin number, but which are not isotopic through
Legendrian submanifolds of (R*"*!, &g,) [EES05b, Theorem 1.1].

1.2. Generating family homology of Legendrian submanifolds.

Going beyond classical invariants of Legendrian submanifolds requires some more sophistication.
In this thesis, the contact manifolds considered are always first order jet bundles of manifolds,
which allows working with generating families [Vit92, Cha95].

The zero-section of a first order jet bundle (J!B, &) is a Legendrian submanifold whose projection
onto the base is a diffeomorphism. Conversely, when the projection of a submanifold onto the
base is a diffeomorphism, it is obtained from a smooth map f : B — R as follows:

{(b,T,f, f(b)); b €B},

and it is automatically a Legendrian submanifold which is Legendrian isotopic to the zero-section.
However, a Legendrian submanifold which is obtained from the zero-section by an isotopy through
Legendrian submanifolds can have singularities, so that it can no longer be obtained as above.
Nonetheless, it is still given by a smooth map f : B x R — R by:

{(2.550.m. s i So.m =0},

[Che96, Theorem 2.5] and from now on it will be referred to as a generating family (of functions).
Mimicking constructions borrowed from Morse theory, generating families allow the definition of
new invariants for isotopies through Legendrian submanifolds.
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Before constructing invariants of Legendrian submanifolds from generating families, it is better to
start with some basic recollections from the modern approach to Morse homology [Wit82, Flo89].
It will not only provide useful background to understand the more subtle setting of generating
family homology, but also helps to describe and motivate the Henry—Rutherford limiting process
which is at the heart of this thesis.

Let M be a closed manifold and let f : M — R be a Morse function, then let us define MC,(f) as
the free vector space generated over F, by the critical points of f and endowed with the grading
u induced by the Morse index of critical points. In order to upgrade MC,(f) to a chain complex,
pick a Riemannian metric g on M and for all critical points c_ and c,, let us define Jl\(c_, s f,8)
to be the moduli space of parametrized g-gradient flow lines of f that are going from c_ to c,.
More explicitly, the set M(c_,c +; f,g) is made of the smooth maps y: R — M such that

Vt €R,0,7(t) ==V, f(r(t)),

y(t) E) c_,

()

Since the group (R, +) acts freely by time-translation on the set /7{\(c_, c.;f,g),assoonasc_#c,,
it is then only natural to define the orbit space of this action

-//Z(C—:C+;f:g) = ./71\(C_,C+;f,g)/R,

and identify it with the moduli space of unparameterized g-gradient flow lines of f from c_ to c,.
Besides, g can be smoothly perturbed so that the g-gradient flow of f is a Morse-Smale system,
and the set #(c_,c,; f, g) is then a manifold of dimension u(c_)—u(c,)—1 [Sch93, Theorem 1].
Moreover, when # (c_,c,; f, g) is zero-dimensional, it is also compact [AD10, Corollaire 3.2.4],
so that it allows to define a linear map J; ,: MC,(f) — MC,_,(f), given on the generators by

O g = Z #yp, M (s, ¢y f,8)Cs,

C+
where c, is a critical point of Morse index u(c_)— 1 and #g, is the modulo 2 count of elements.
In order to have a chain complex, it only remains to show that J , is a boundary operator and
for that purpose, it suffices to prove that J; , indeed squares to zero on the generators of MC,(f).
After a straightforward computation, it amounts showing that

Z #y, M(q,D; f, &), M(D,T;f,8) =0,
p

where g, r and p are arbitrary critical points with strictly decreasing and consecutive Morse index.
As it is customary with moduli problems in homology theories, the proof is carried in two steps:

* Compactness. Understand the limit points of the sequences of elements in .#(q, p) in
order to construct a compactification .# (q, p) of .#(q, p).

* Gluing. Prove that the boundary components of the compact space .# (g, p) are exactly
fibred products of the moduli spaces used to define the boundary operator.

In the Morse setting, the compactness theorem [AD10, Théoréme 3.2.2] and the gluing theorem
[AD10, Proposition 3.2.7] show that the boundary points of the compactified one-dimensional
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moduli spaces are in bijective correspondence with broken unparameterized gradient flow lines:
0.4(q,p; f,8) =) #(q,p; f,8) x M (p,T; f,g).
p

In the end, the above sum is indeed zero, as required, since there is a finite even number of points
on the boundary of a compact one-dimensional manifold, and the Morse homology MH,(M) is
then defined as the homology of the chain complex (MC,(f), 7 ), namely

MH, (M) = ker (&, : MC,(f) = MC,,(f))/im(3; . : MC.,,(f) = MC,(f)).

At last, Morse homology is independent of the choices for f and g [AD10, Théoréme 3.4.2] and
is an homotopy invariant for closed manifolds [AD10, Théoréme 4.6.2].

In classical mechanics, the fundamental principle of dynamics states that an object in a force field
follows an energy minimising path of the phase space. In a cooriented contact manifold (M, a),
this philosophy incarnates in the study of the Morse theoretical properties of its action functional,

%a:nya.
Y

Under some technical assumptions, the infinite-dimensional Morse theory of the action functional,

which is defined on paths by

also called symplectic field theory, results in interesting invariants for contact manifolds [EGHOO].
In particular, when the paths considered in the definition of the action functional are required
to start and end on the same Legendrian submanifold, the corresponding symplectic field theory
allows to construct invariants for isotopies through Legendrian submanifolds [EES05a, EESO7].
Even though these invariants arising from symplectic field theory are without a doubt powerful,
their constructions rely on quite involved analysis and require to understand the behaviour of the
solutions of a non-linear partial differential equation.

In classical mechanics, generating families naturally appear as Lagrangians of physical systems
and in contact topology, they similarly provide finite dimensional models of the action functional.
More concretely, if a Legendrian submanifold in (J'B, ) has a generating family f : BxR"Y — R,
its difference function 5: B x R¥ x R¥ — R is defined by

6(b,m1,m2) = f(b,m1)— f(b,ms),

and measures the length between vertically aligned pair of points in the Legendrian submanifold.
Then, letting g be a generic Riemannian metric on B x RN x RY | under a suitable mild assumption
on the behaviour at infinity of the generating family f, the Morse moduli spaces .#(c_,c,;6,g)
associated to the difference function 6 are sufficiently well-behaved to mimick the construction
of the Morse homology for closed smooth manifolds. This construction yields the definition of
the generating family homology GFH,(f) of f, which is still independent of the choice for g, and
allows to construct interesting invariants for isotopies through Legendrian submanifolds [Tra01].
In particular, the Euler—Poincaré characteristic of the generating family homology in (J'R", &g.)
generically recovers the Thurston-Bennequin number [EESO5b, Propositions 3.2 and 3.3] and
[ST13, Proposition 3.2]. In other words, the generating family homology is a categorification of
the Thurston-Bennequin number.
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In the setting of closed manifolds, Morse homology is an effective homotopy invariant, since it
is computed from moduli spaces of geometric objects that are easily identified on the manifold,
without knowing much of it. However, this is no longer true for generating family homology.
Not only the generating families of Legendrian submanifolds are often only understood in too
qualitative terms to allow any homological computation, but the moduli spaces involved are also
no longer constituted of geometric objects. Indeed, the gradient flow of the difference function
does not occur on the Legendrian submanifold itself, but rather on an auxiliary vector bundle in
which it non-canonically embeds (by the mean of the generating family).

1.3. The adiabatic limiting process of Henry and Rutherford.

Since the generating family homology is independent of the Riemmanian metric, wisely picking
it could help with the effective computation of the generating family homology, and ideally the
gradient flow lines of the difference function should be drawn on the Legendrian submanifold.
Intuitively, this goal is achieved by progressively speeding up the fibrewise gradient flow, but for
reasons that will be clear later, it is more convenient to rather slow down the base component,
this amounts to perform what will be from now on called the Henry-Rutherford limiting process.
Rigorously, for s € (0, 1], let us first define

g =(s7"gs) @ gr,
where g5 is a Riemannian metric on the base B, gy is a Riemannian metric on the fibre F, and then
let s — O in the differential equation for the g -gradient flow of the difference function. However,
the resulting flow lines of this singularly perturbed gradient flow are not always drawn on the
Legendrian submanifold itself, since a computation (Lemma 3.1) shows that when s — 0, the
gradient flow lines of the difference function with respect to g

* are tangent to fibres away from the fibrewise critical set of the difference function; and
* vanish along the fibrewise critical set of the difference function, but if rescaled by s,

they are then tangent to the fibrewise critical set of the difference function.

Therefore, the Henry—Rutherford limiting process seems to "converge" towards broken trajectories
obtained by concatenating two alternating types of elementary gradient flow lines, first vertical
fragments (in the first case above), and then horizontal fragments (in the second case above).
When these broken gradient flow lines only have a finite number of elementary fragments, they
are called gradient staircases and the set of all unparameterized gradient staircases from c_ to c,
is denoted by .#**(c_,c,; 5, g;) (Definition 3.2).

Recall from the proof of the standard cobordism-equivalence from compactness and gluing that
if s, € (0,1] is small enough, then for all s € (0,s,], #(c_,c,;6,g,) and #(c_,c,;6,g,) are
in one-to-one correspondence, whenever they are finite manifolds [AD10, Proposition 3.4.3].
Replacing #(c_,c,;0,8,) by #*(c_,c,;b,g,), it is conjectured that the previous one-to-one
correspondence extends to s = 0, this is the statement of

Conjecture A (based on [HR13, Conjecture 6.3], Conjecture 3.1). If s, € (0, 1] is small enough,
then there exists a one-to-one set correspondence between #(c_,c,;06,g; ) and M (c_,cy30,81)

as soon as they are zero-dimensional compact manifolds.
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Since (g,), is not an homotopy of Riemannian metrics (in particular, g, is not even well-defined),
Conjecture A cannot be directly deduced from the usual compactness-gluing from Morse theory
mentioned just above.

Provided Conjecture A is true, the Henry—Rutherford limiting process does not "converge" to-
wards gradient flow lines entirely drawn on the Legendrian submanifold, but this goal was naive,
since it would imply that generating family homology only depends on the Legendrian subman-
ifold. However, Conjecture A still helps with the effective computation of generating family
homology, since

* vertical fragments are related to handleslides of the generating family; and
* horizontal fragments are entirely determined by the Legendrian front.

In a manner of speaking, working with moduli spaces of gradient staircases allows splitting apart
the different types of contributions to the differential of the generating family chain complex.
Vertical fragments account for bifurcations of the fibrewise critical points of the generating family
and horizontal fragments for the geometry of the Legendrian submanifold.

Conjecture A was first introduced as a geometrical grounding for a combinatorial differential
graded algebra for Legendrian knots constructed from generating families [HR 13, Theorem 5.4].
In particular, Conjecture A with [HR13, Theorems 5.4 and 5.5] recover [FR11, Theorem 5.1]
which constructs an augmentation of the Chekanov-Eliashberg algebra of a Legendrian knot from
a linear-at-infinity generating family. More generally, Conjecture A is expected to play a crucial
role to tackle in arbitrary dimensions, the complete equivalence between generating families and
augmentations of the Chekanov-Eliashberg.

It is worth mentioning that moduli spaces of broken trajectories and results like Conjecture A
have already appeared before in the litterature. For example, in the context of

* Morse-Bott homology [Fra04, Appendix A], [BH13];

* contact homology [Bou02]; and

 symplectic homology [BO09a, BO09b].

The proofs are all based on compactness-gluing techniques, but they also all have their own
specificities and analytical difficulties, and Conjecture A is no exception.

2. Main statements of the dissertation

The context has now been correctly set up to state the main results featured in this dissertation.
In particular, this section explains to what extent this thesis constitutes the first steps towards a
complete proof of Conjecture A.

2.1. Analysis on the moduli spaces of gradient staircases chains.

As it was mentioned before, correspondence results between moduli spaces, like Conjecture A,
are generally proved using compactness-gluing techniques, and this dissertation precisely deals
with the compactness part for the Henry-Rutherford limiting process.
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In order to give more precise statements, let us fix some notations for the rest of this introduction.
Let A be a closed and connected Legendrian submanifold of (J'B, &), let 6: BxRY x R¥ — R be
the difference function of some linear-at-infinity generating family of A, and let us define

g =(57"2s) ® gn ® g,
for all s € (0,1], where g, is a Riemannian metric on B and gy is a Riemannian metric on R".
Then, this thesis is concerned with the limiting behaviour of the g.-gradient flow of 6 as s — O.
Before being able to state the main theorem of this thesis, recall from standard Morse theory that
for all sequences vy, € #(c_,c,; 0, g,), there exist a subsequence (still denoted in the same way)
and a tuple (y4,...,7,,), called a broken gradient flow line, where

e forallie{l,...,m}, v, € #(c;,ci11;0,&); and

* ¢;=c_and ¢, =c,;

-topology.

loc

and foralli € {1,...,m}, asequence (T;()keN of timeshifts such that yk(-+r}'{) =i in C!
Similarly, to study the behaviour of sequences v, € .#(c_,c,; 6, g, ), where s, € (0,1] and s - 0,

it is relevant to define gradient staircases chains (Definition 3.3) as tuples e = (e,, ..., e,,), where

e forallie{1,...,m}, e, € 4 (c;,ci11;06,8,); and

* ¢;=c_andc,,.; =c,;

and the set of all unparameterized staircases chains from c_ to c, is denoted by .#st(c_,c,; 6, g1).
With these reminders at hand, the compactness result for the Henry—Rutherford limiting sequence
that is featured in this thesis is now given by

Theorem A (Theorem 4.1). Assume that the projection A — B has only Whitney pleat singularities.
Then, A can be perturbed in a way that for all v € #(c_,c,;0, g, ), where s, € (0,1] and s, - 0,

there exist a subsequence (still denoted in the same way) and e € #5(c_,c,; 0, g,) such that y, —e

in the Floer—-Gromov topology.

The meaning for convergence in the Floer—-Gromov topology is given in Definitions 3.4 and 3.5.
As for now, it is enough to think about it as a convergence towards broken gradient flow lines, but
with an additional time-rescaling by s, ! in the case of horizontal fragments to avoid recovering

constant flow lines (see Section 1.3 above).

Restricting the type of caustic singularities of A is most likely unnecessary for Theorem A to hold.
However, it avoids involved combinatorial arguments, especially in the proof of Proposition 4.7.
In any case, this mild assumption only amounts to a homotopical question [AG18, Theorem 1.11],
and it is also satisfied by many meaningful examples of Legendrian submanifolds [ Ekh07, BST15].
However, it is mandatory to work with generic Legendrian submanifolds, otherwise Theorem A
can fail to be true for deep reasons that will now be discussed.

2.2. A major technical difficulty: an infinite bubbling-like phenomenon.

When a noncompact group acts freely on solutions of a partial differential equation, the associated
moduli spaces of unparametrized solutions are expected to be compactified with broken objects.
To better illustrate this common phenomenon, consider the following two key examples:
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* In standard Morse theory, R acts freely by time-translation on the gradient flow, and the
moduli spaces of unparametrized gradient trajectory are compactified by broken gradient
flow lines [AD10, Théoréme 3.2.2].

* In Gromov-Witten theory, PSL(2, R) acts freely by Mobius transformations on the Cauchy-
Riemann equation, and the moduli spaces of unparametrized pseudo-holomorphic curves
are compactified by broken pseudo-holomorphic curves [MS04, Theorem 4.4.3].

Proving such compactness results first requires showing that the borderline analytical behaviour
of solutions is not too wild, typically meaning that their limits have a finite number of fragments.
This step is generally straightforward and accomplished showing that each nonconstant fragment
consumes a predetermined amount of some kind of "energy", available in finite total amount.
Once more, this strategy is well understood in the above two examples:

* In Morse theory, the value of the Morse function strictly decreases along nonconstant
gradient flow lines.

* In Gromov-Witten theory, the symplectic area of a nonconstant pseudo-holomorphic
curves is uniformly bounded from below [MS04, Lemma 4.5.2].

In the setting of Theorem A, even though the total amount of vertical length available is finite,
nothing prevents vertical fragments to become arbitrarily short in neighbourhoods of cusp-edges.
For this reason, the previous standard energetical arguments are not enough to ensure that the
Henry-Rutherford limiting process only recovers gradient staircases chains with a finite number
of elementary fragments.

However, a much more involved analysis shows that when the Henry—Rutherford limiting process
recovers a gradient staircases chain with infinitely many elementary fragments, then its horizontal
fragments have arbitrarily "deep tangency" with the singular locus of the Legendrian submanifold.
Then, the definition of gradient generic Legendrian submanifolds (Definition 1.11) is only natural
since the order of tangency of a vector field with a generic manifold is bounded by its dimension.
With all these observations at hand goes the statement of

Theorem B (Theorem 4.3). On a gradient generic Legendrian submanifold, the Henry—Rutherford
limiting process can can only "converge" towards gradient staircases chains with a finite number of

elementary fragments.

Going through the proof of Theorem B explains why it was more convenient to slow down the
base component of the difference function gradient flow rather than speeding it up in the fibre,
as it was originally suggested in [HR13].

Theorem B is interesting because gradient generic Legendrian submanifolds are highly numerous.
More rigorously speaking, gradient genericity is (as the name suggests) a generic property among
all Legendrian submanifolds, this is the statement of

Theorem C (Theorem 1.2). The subset of all gradient generic Legendrian submanifolds of fixed
smooth type is open and dense in the set of all Legendrian embeddings, endowed with the topology
induced by the C°-topology on smooth maps.
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Theorem A is completely computational-friendly, since

* checking whether a Legendrian submanifold is gradient generic or not; and
* perturbing a Legendrian submanifold to make it gradient generic;

are entirely effective and explicit procedures.

Structure of the dissertation

This thesis is organised in four interdependent chapters culminating to the proof of Theorem A,
and ends with a fifth independent chapter of examples to illustrate the relevance of Conjecture A.
Great care has been taken to ensure that this dissertation is fully self-contained and in particular,
proofs of several standard results have been adapted to better suit their intended use in the thesis,
and multiple minor gaps in research articles have also been filled.

e Chapter 1 — Transversality conditions for Legendrian submanifolds

This first chapter is devoted to gradient genericity of Legendrian submanifolds (Definition 1.11)
and in particular, the proof of Theorem C (Theorem 1.2) is thoroughly given in Section 3.
It starts with reminders of elementary contact topology in Section 1, first for general abstract
contact manifolds in Section 1.1, then in the setting of first-order jet bundles in Section 1.2.
Some more recollections from the study of Legendrian submanifolds are found in Section 2 and
at the end of Section 3, respectively with the definitions of front genericity (Definition 1.8) and
chord genericity (Definition 1.12).

* Chapter 2 — Generating family homologies of Legendrian submanifolds

This second chapter is devoted to the study of Legendrian submanifolds from generating families.
Section 1 starts with an overview of generating family theory for Legendrian submanifolds and
the homotopy lifting property of generating families (Theorem 2.1) is recalled in Section 1.1.
Then, Section 1.2 establishes a complete dictionary between transversal properties of generic
Legendrian submanifolds from Chapter 1 and transversal properties of their generating families.
This chapter is lastly concerned with generating family homologies of Legendrian submanifolds.
To address Theorem A, Section 2 studies Morse theory of generating families (Proposition 2.4),
and then simple/mixed versions of generating family homology are constructed (Definition 2.6).
Finally, Section 3 starts by reviewing all the results that are already known about the algebraic
structure of the generating family homology in its usual simple version (Theorem 2.3 and 2.5).
Then, similar statements are extended to the mixed version (Theorem 2.4) or simply discussed
and conjectured (Conjectures 2.1 and 2.2).

e Chapter 3 — The Henry-Rutherford limiting process
This third chapter provides all the necessary background to state Conjecture A (Conjecture 3.1)

and start working towards a complete proof of Theorem A. In Section 1, the Henry—Rutherford
limiting process is described in terms of some fast-slow dynamical system for which the maximal
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flow invariant subset fails to be normally hyperbolic for a whole codimension one subset of points.
Then, Section 2 is concerned with staircases and staircases chains (Definition 3.4 and 3.5), with
Section 2.1 studying several Morse theoretical aspects of vertical fragments (Proposition 3.1).
Finally, Section 3 reviews convergence in the Floer-Gromov topology (Definitions 3.4 and 3.5)
and some of its relevant properties to describe the limiting behaviour of the Henry—Rutherford
limiting process are also proved (Proposition 3.2).

e Chapter 4 — Floer-Gromov compactness for gradient staircases chains

This fourth chapter is devoted to Theorem A (Theorem 4.1), the main result of this dissertation.
Section 1 describes recursive procedures to recover elementary fragments of gradient staircases
chains from the Henry-Rutherford limiting process. Section 1.1 explains how to recover vertical
fragments (Proposition 4.1) and Section 1.2 deals with horizontal fragments (Theorem 4.2).
Then, Section 2 is concerned with the proof of Theorem B (Theorem 4.3), stating that on a
gradient generic Legendrian submanifold, these procedures stop after a finite number of steps.
Finally, Section 3 gathers all these statements to prove Theorem A (Theorem 4.1).

e Chapter 5 — Examples

This fifth chapter explains how moduli spaces of gradient staircases can be used to carry explicit
homological computations with generating families in all dimension. These examples emphasise
the relevance of the mixed version of the generating family homology and are the main starting
point to tackle the conjectures from Chapter 2.

* Research prospects

This dissertation is concluded with the description of several future research directions following
the perspectives opened by Theorem A.



1.

Transversality conditions for Legendrian submanifolds

This chapter provides useful background on Legendrian submanifolds of first-order jet bundles
and in particular, several classical generic properties of Legendrian submanifolds are recalled.
However, these standard transversality conditions do not prevent the Henry-Rutherford limiting
process from recovering gradient staircases with infinitely many breaking points and fragments.
Then, the main goal of this chapter is to define new transversality conditions (Definition 1.11)
playing a crucial role in the proof of Theorem B, and to establish Theorem C, stating that these
new properties are generically satisfied by Legendrian submanifolds (Theorem 1.2).

1. Contact manifolds and their Legendrian submanifolds

This section reviews basic notions from contact topology and provides the relevant background
to formulate the transversality conditions that are needed for the proof of Theorem B.

1.1. General setting.

First, these recollections from contact topology are carried in general contact manifolds.

Definition 1.1. A one-form a on a (2n + 1)-dimensional smooth manifold M is a contact form
whenever a A (d @)" is a nowhere vanishing top form on M and its associated Reeb vector field R,,
is uniquely defined by d a(R,,-) =0 and a(R,) = 1.

Remark. A differential one-form a is a contact form whenever d a is non-degenerate on ker(a),
then the rank of £ = ker(a) is even and d a has a one-dimensional kernel which is transverse to &.
In particular, contact forms only exist on odd-dimensional manifolds and the Reeb vector field of
a contact form is always well-defined.

Definition 1.2. A pair (M, &) is a contact manifold whenever M is an odd-dimensional smooth
manifold and & is a maximally non-integrable hyperplane distribution of the tangent bundle TM,
for all open sets U of M, there exists a contact form a;; on U such that &,;; = ker(ay).

Definition 1.3. A submanifold L of a contact manifold (M, &) is isotropic whenever TL C &|;.
If M has dimension 2n + 1, then L is Legendrian whenever it is isotropic and has dimension n.

Remark. If a is a global contact form on M, a submanifold L of M is isotropic whenever a;;, = 0.
In particular, d o, = 0 and since d a;; is non-degenerate, then dim(L) is less than rk(&) —dim(L).

Therefore, Legendrian submanifolds are isotropic submanifolds of maximal dimension.

Definition 1.4. Let (M, &) be a contact manifold and let A be a Legendrian submanifold of (M, &).

Assume that a is a globally defining contact form for £, a path y: [0, T] — M is a Reeb chord of A

whenever it is a smooth integral curve of R, whose both ends y(0) and y(T) are elements of A.
26



1. CONTACT MANIFOLDS AND THEIR LEGENDRIAN SUBMANIFOLDS 27

The action functional .«/, in (M, a) is defined on smooth paths y: [0,T] — M by

T
EAG f a= J ra.
Y 0

A Reeb chord y: [0, T] — M of A is non-degenerate when (¢ 1), T,)A is transverse to T,)A in &,
where ¢ is the flow at time T of the Reeb vector field of a.

1.2. First-order jet bundle setting.

This section now focuses on the contact topology of first-order jet bundles.

Definition 1.5. The Liouville form Agz of T*B is the differential one-form on T*B defined by
VZeTT™B,Ag({) = o Tmy,

where 7t;: T*B — B is the canonical cotangent bundle projection.

Remark. Under the canonical identification between the sections of 7; and the one-forms of B,
the Liouville form is also called the tautological one-form, since it is the unique one-form of T*B
such that for all sections o of 75, the equality c*Az; = o holds.

Example 1.1. If q are local coordinates on B and p are dual coordinates to q, then
n
Ay =Y peday,
k=1
The first-order jet bundle of B is J'B = T*B x R.

Definition 1.6. The standard or canonical contact structure &, on J'B is defined by
€ =ker(ap =dz—Ap),

where z is the coordinate along R in J'B = T*B x R.

X y

Figure 1. The canonical contact structure §g = ker(dz —ydx) on J'R = R3(x,y’z).
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1 ol

Figure 2. A horizontal layer (z = z,) of £y as represented in Figure 1.

Remark. The Reeb vector field of aj is the vertical vector field given by J,.

Remark. The tautological property of the Liouville form implies that

{(b, T, f (b), f(b)); b € B}

is automatically a Legendrian submanifold of (J'B, ), where f: B — R is a smooth function.
In other words, graphs of holonomic sections are natural Legendrian submanifolds of (J!B, &;).

To conclude, let us now emphasise the relevance of first-order jet bundles in contact topology
with the standard Weinstein’s neighbourhood theorem.

Theorem 1.1 ([Gei08, Corollary 2.5.9]). Let (M, &) be a contact manifold and let A be a closed
Legendrian submanifold of (M, &), then there exists a smooth diffeomorphism ¢: U — V between
open neighbourhoods of A in M and 0, in J' A such that 0 €y =&y and (A) =0,.

Remark. Not only all contact manifold locally look alike [ Gei08, Theorem 2.5.1], Theorem 1.1
further states that neighbourhoods of Legendrian submanifolds are locally modelled on their first-
order jet bundles.

2. Thom-Boardman hierarchy for singularities of generic Legendrian caustics

First, the classical definition of front genericity (Definition 1.8) is recalled, since it is the starting
point to introduce the new crucial transversality conditions needed for the proof of Theorem B.
Then, the mild assumption appearing in Theorem A to restrict the singularities of the Legendrian
caustics is precisely defined (Definition 1.9).

Let M be a closed and connected n-dimensional manifold and let us define Leg(M, B) to be the
space of Legendrian embeddings of M into (J!B, &) endowed with the subspace topology induced
by the Whitney C°°-topology on the set of smooth maps from M to J'B.

Definition 1.7. The caustic projection is defined as the canonical bundle projection IT;: J'B — B,
and the front projection is defined as the canonical bundle projection II,: J'B — J°B = B x R.
Let A € Leg(M, B) be a Legendrian embedding, then its caustic is the set of critical values of ITg,
and its front is the image of A under II,.

Remark. Even though Legendrian submanifold are always smooth, their caustics and fronts are
in general singular submanifolds.
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For all A € Leg(M,B) and for all integers k € {0,...,n}, let us define A, to be the subset of A
consisting of elements A € A at which the differential of I1;, has a k-dimensional kernel, so that

A:A0UA1U"'UAH_1UAH,

and also define A~ to be the union of A for all k € {1,...,n}.

Definition 1.8. A Legendrian embedding A € Leg(M, B) is front generic whenever the following
two conditions:

(1) for all k € {0,...,n}, A, is a transversally cut out codimension k(k + 1)/2 submanifold;
(2) for all integers k and £ in {0,...,n}, Ig, and Ilg),, are transverse maps;

are simultaneously met.

Remark. If a Legendrian embedding is front generic, then its caustic projection is stratified by
transversally intersecting smooth immersed submanifolds whose self-intersections are transverse.
Indeed, by the lower semi-continuity of the rank, for all integers k € {0, ..., n}, the closure of A,
is the finite union of the lower-dimensional strata A; for j € {k,...,n}.

Remark. If k or £ is 0, then I, and II, are automatically transverse, provided A, is open.

Figure 3. A piece of a Legendrian knot front projection where front genericity fails.

Remark. A front generic Legendrian submanifold of (J!B, &) is uniquely determined by its front.
Indeed, if (g, p,2z) € T*B x R is a local parametrization for a Legendrian submanifold A, then
V(q,p,z) ¢ A<7pi = aa_z:
q;
and when A is front generic, A \ A~ is an open and dense subset of A, so that the above formula
continuously extends to the whole Legendrian submanifold.

Following [AGZV85, Section 2.1-2.3], in the case of smooth maps, and [AG18, Section 1.3], in the
specific case of Legendrian fibrations, Thom’s transversality theorem ensures that front genericity
is a generic property in Leg(M, B).

Proposition 1.1. The subset of front generic elements of Leg(M, B) is open and dense.
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The stratification by the rank of the differential does not suffice to fully classify the critical points
of smooth maps and in particular, front genericity is not enough to completely understand the
singularities of Legendrian caustics. Indeed, if A € Leg(M, B) is front generic, then the map IIg,_
is a submersion, but for all integers k € {1,...,n}, the map g, need not to have constant rank.
This issue is in general solved by considering the Thom-Boardman hierarchy %! of critical points,
whose construction has been initiated in [Tho56] and developed more thoroughly in [Boa67].
In the case of Legendrian caustics, the first step toward the Thom-Boardman hierarchy consists
in defining for all k € {0,...,n} and all £ € {0,...,k}, Ay, as the subset of A € A, at which the
differential of Il |, has a £-dimensional kernel, so that

Ne =N ogUN U UNg g UAgps

see [AGZV85, Section 2.4], in the case of smooth maps, and [AG18, Section 1.3], in the specific
case of Legendrian fibrations, for more details.

In this thesis, the same mild assumption as the one found in [Ekh07] is made on the Legendrian
caustics considered to avoid having to resort to the complete Thom-Boardman hierarchy, as well

as making other tedious combinatorial discussions (like induction on the number of strata).

Definition 1.9. The subset Leg,; ,(M, B) consists of A € Leg(M, B) which are at most £"%-singular,
meaning that A is front generic and A~ = A ,.

Remark. A Legendrian embedding is at most X'°-singular, if and only if, all the singularities of
its caustic are of the simplest type, they are Whitney pleats.

Hfr(A<) = Hﬁ'(ALO) Hfr(A<) = Hﬁ'(ALO) U Hﬁ'(A'l,l)

Figure 4. Front projections of a pleat (on the left) and a swallowtail (on the right).

Remark. In the one-dimensional case n = 1, using Proposition 1.1 shows that any Legendrian
embedding is isotopic through Legendrian embeddings to an at most =-singular one.

Remark. The simplification of singularities of Legendrian embeddings satisfies a full h-principle,
in the sense of [EM02], [AG18, Theorem 1.1]. In particular, roughly speaking, it implies that
a Legendrian embedding is isotopic through Legendrian embeddings to an at most X!°-singular
one whenever some obstructions of homotopical nature vanish.
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3. Gradient genericity for Legendrian submanifolds

This section first carefully defines gradient generic Legendrian submanifolds (Definition 1.11),
then shows Theorem C (Theorem 1.2) stating that the subset of all gradient generic Legendrian
submanifolds is open and dense in the subset of all at most ©:1°-singular Legendrian submanifolds.
For this thesis, gradient genericity is essential to the proof of Theorem A, since it is designed to
prevent the Henry-Rutherford limiting process from recovering gradient staircases chains with
infinitely many breaking points and elementary fragments (Theorem B).

The definition of gradient genericity amounts to the existence of

* a gradient flow coming from vertical length in the front projection (Lemma 1.2); and
* associated iterated tangency loci with the front projection singularities.

In order to define preliminary transversality conditions, similar constructions have already been
sketched in [EkhO7, Section 3.1.1], but not in a global and computational-friendly manner.

Definition 1.10. The smooth sheets of A are the connected components of A \ A~ and its strands
are the front projection of its smooth sheets.

Figure 5. Strands of a Legendrian knot (on the left) and surface (on the right).

At most ©19-singular Legendrian submanifolds only have a finite number of smooth sheets.
Lemma 1.1. Let A € Leg, (M, B), then A has a finite number of smooth sheets and they are open.

Proof. According to Definition 1.9, A~ is a codimension 1 submanifold of A, and in particular,
each connected component of A~ can give rise to at most two connected components of A \ A~.
Therefore, the proof boils down showing that A~ has a finite number of connected components.
From the remark following Definition 1.8 and Definition 1.9, notice that A~ is a compact subset,
then using tubular neighbourhoods, conclude that the connected components of A~ are isolated.
In conclusion, A~ only have a finite number of connected components and they are closed in A,
thus yielding the result. [ |

Smooth sheets of Legendrian submanifolds are graphs of real-multivalued smooth maps.

Lemma 1.2. Let A € Leg, ,(M, B), then for every smooth sheet S of A, there exists a unique f: S—R
such that S is locally everywhere the graph of the first-extension of fg o I1z ™.
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Proof. Start by noticing that Definitions 1.8 and 1.10 ensure that for A € S, T, I, is invertible.
Therefore, applying the inverse function theorem provides an open neighbourhood U ; of A in S
and an open neighbourhood Vj ; of ITz(A) in B such that Il s: Us ; — V; , is a diffeomorphism.
Hence, there exists a unique ug , : V5 ; — R such that ug , is smooth II(Us ;) is the graph of ug
and from the third remark after Definition 1.8, Us , is the graph of the first-jet extension of ug .
In particular, ug ; and all its partial derivatives of any order are uniformly bounded from above,
whence ug ; uniquely extends to a smooth map ug , : E — R such that E is the graph of j 1u§, N
To conclude, patch these locally defined smooth maps {u;A} 1es together to recover

£5(0) =, (),
which is the desired globally defined smooth map, thus yielding the result. [ |
Remark. Even though front projections of Legendrian submanifolds have no vertical tangencies,

as soon as dim(B) = 2, it is possible that some of their strands cross the vertical axis several times,
thus preventing II; from being injective on the associated smooth sheets, see Figure 7.

Figure 6. In front projection, tubes for connected sums are coiled as parking ramps.

Figure 7. Connected sum of two vertically overlapping "flying saucers".

This discussions explains why the functions constructed in Lemma 1.2 can only be defined on
the closure of the smooth sheets and not directly on their caustic projections.
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From now on, let A € Leg; ,(M, B), then let us define L = AxzAand L™ = (A~ xz A)U(A x5 A~).
According to Lemma 1.1, A has a finite number of smooth sheets and let denote them by S,...,S,,

then let also f,..., f, be the smooth maps constructed in Lemma 1.2 from S;,...,S,, respectively.
For all B = {k,£} c {1,...,r} with k # £, let also define

Without requiring any assumption on the singularities of A, Ag is a subset of A~, but if A is
assumed to be at most X°-singular, then Ag is open in A<, as a union of connected components.
Indeed, since A~ is a codimension one submanifold, for all A € A~, there exists a sufficiently small
chart (U, ¢) of A around A such that ¢(U) \ ¢ (A~ NU) has exactly two connected components,
and there exist k € {1,...,r}and £ € {1,...,r} such that k # ¢ and forall A’ € U, A’ € 95, N 38,.
Therefore, A~ is the union of A4, for all § C {1,...,r} such that || = 2.

Hﬁ‘(/\/‘))
B Mg (S,)

Figure 8. A connected component of Ag with 8 = {k, (}.

Remark. Notice that Ag is independent of the order of elements of 8, since 35, NS, = S, NIS;.
Moreover, notice that both definitions of Ap agree, since Lemma 1.1 shows that whenever k £,
then S, and S, are disjoint open sets, so that

SN S, =(5,UdS)N(S,Udsy),
=(5,NS)U(S,N3IS)uU(dS,NS,)U(3S, N3IS,),
=guUE@U@U(@S. Nas,),
=95, N35s,.

In conclusion, A4 is a well-defined subset of A~.

Let A be the diagonal of the product Ag x A4, then for alli € {1,...,r}, let us define
L =5; x5 Ap, ifiép,
= (Sl- Xg Aﬁ) \ Ag, otherwise,

which is, by construction, a subset of L~.

Remark. In the definition of Lf)’/j , it is not possible to require that i ¢ f3, since when dim(B) = 2,
closure of strands can cross the vertical axis several times, as shown in Figure 7.
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Forallie{1,...,r},all B c{1,...,r}andalla c {1,...,r} such that || =2, |a| =2and i € a,
then let us define
LIP = Ay xp Ag, if a # B,
=(Aq x5 Ag)\ Ap, otherwise. ’

which is, by construction, a subset of Lf)’ﬁ .

B Hfr(si)

Figure 9. Schematic description of points (1,,1,) € Lé’ﬁ .

The geometrical relevance of Lg’ﬁ is given by the following

Proposition 1.2. Leti € {1,...,r} and 8 C {1,...,r} such that |B| = 2, then Lé’ﬁ is a manifold
with boundary of dimension dim(B) — 1 and whose boundary is given by
oL’ = | J Lg”
}

ac{l,...,r
|a|=2,a3i

Proof. Discuss whether the closure of the three smooth sheets share a cusp-edge or not:

* Case 1. Assume that i ¢ 3 and notice that as topological subspaces of L~, then
IntLy =8, x5 Ay, LP \IntLi’ =35, x5 Ay,

since Lemma 1.1 shows that S; is open in A and it was observed that A4 is open in A~.
Besides, since A~ is the union of Ag for all 3, 35, is the union of 8S; N dS; for all j # 1,
and the boundary of L(l)’/j can therefore be written as

L \IntL” = ) Ly’

Let a € {1,...,r} such that |a| =2 and i € a, since A, and Ag are open subsets of A~,
using Definition 1.8, Mg, and HB‘A[} are transverse and LS"/j is a (dim(B)— 2)-manifold,
but since smooth sheets only meet pairwise on their boundaries, their union is disjoint.
In conclusion, the topological boundary of Lé’ﬂ is a manifold of dimension dim(B)—2, and
for similar reasons, the topological interior of L(i)’ﬂ is a manifold of dimension dim(B)—1,
thus yielding the result.

* Case 2. Assume that i € f3, then since Ay is closed in S, X Ag, L(i)’ﬁ is open in S; x Ag
and thus Case 1 yields the result.
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Together, the above two cases yield the result. [ |

Remark. Let f: X — Z and g: Y — Z be smooth maps between manifolds with boundaries.
Recall that the fibre product of f and g, symply denoted by X x, Y, is defined by

Xx; ¥ ={(x,y) €X xY; f(x)=g(¥)},

and if f and g are transverse, then X X, Y is a manifold of dimension dim(X)+ dim(Y)—dim(Z).
Indeed, let A, be the diagonal of Z x Z, then notice that by construction X x, ¥ = (f, g) "' (A,).
Besides, if (f, g) is transverse to A, if, and only if, f and g are transverse [Hir76, Exercise 3.2.14],
but according to [Hir76, Theorem 1.3.3], whenever (f, g) is transverse to A, then (f, g) }(A,)
is a submanifold of codimension codim(A,) = dim(Z).

To define gradient generic Legendrian submanifolds, let g be a Riemannian metric on A, and
then let us define a gradient flow in B, induced by the vertical length between pairs of vertically
aligned points belonging to the closure of smooth sheets of A.

Then, foralli € {1,...,r} and all j € {1,...,r}, let us define X, ;: S; xBS_j—> TB by

Xi,j()'b Ay) = TAIHB(vgfi(Al)) - T)LZHB(vgfj(AZ)):

which is a well-defined smooth map, since by construction of fibre products, I1;(A,) = II5(A,),
and according to Proposition 1.2, this map is entirely determined by A (and g).

In order to proceed further towards the definition of gradient generic Legendrian submanifolds,
define iterated tangency loci of integral curves of all the vector fields X; ; with the singular locus
of the Legendrian caustic.
Then, foralli € {1,...,r} and all = {k,£} C {1,...,r} such that | 3| = 2, let us define

LY = {(A1,4,) € Lg"3 X3 (A, 4) € T, 115 (T2, M)}

which is the set of points at which X, is tangent to the caustic projection of the cusp-edge Ag.

oy =Xikov

Ip (A/a) B

Figure 10. Schematic description of points (1,,1,) € Li’ﬁ, [z(A,) =q =TI5(A,).

Remark. Notice that the definition of Li’ﬁ is independent of the choice of an element in § = {k,{},
since Proposition 1.2 shows that the functions f,: S, — R and f,: S; — R agree along their
common cusp-edge Ag, and thus X; ; and X, , agree on S, % Ag.
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Define 1'[1[32]: JY(B) x JY(B) — B as the canonical projection onto the base of the second factor,
then according to Proposition 1.2, Li’ﬁ can be written, in a more iteratively-suitable way, as

i, i, . 2 i,
LY = {(A, 4,) € L5 X (A, ) € T a5 (T, ) LEP) } -

Then, for all nonnegative integers m, building on the above equality, let us recursively define L;’f .
In particular, provided that L;’f is well-defined and is a manifold, let us define

by = {0, A2) € LS X (A1, Ag) € T, iy 15 (T, L)}

m+1

which is the set of points at which X; ; is tangent at least to order m + 1 to the caustic projection
of the cusp-edge Ag.

Forallie{1,...,r},all B c{1,...,r}and all a c {1,...,r} such that || =2, |a| =2 and i € a,
for all nonnegative integers m, mimicking the construction of L:;f, let us recursively define Lr‘f;ﬂ.
In particular, provided that Lr‘j‘{ﬁ is well-defined and is a manifold, let us define

&P

m+1

2
={(A1, A0) € LEP; X, (A, Ay) € Tia, a5 (T, ) L2P) )

which is, by construction, a subset of L"* ..

o,y =Xikov

p(A,) Mp(Ag)

B

Figure 11. Schematic description of points (1,,1,) € L‘f’/j, [I;(A,) = q =TI5(A,).

Remark. Using the front genericity of A, Definition 1.8 shows that the caustic projection of Ag
is an immersed submanifold of B with self-transverse intersections, but generally not embedded,
and at all its double points, there is an ambiguity on the component, X; , should be tangent to.
Solving this difficulty requires to lift the tangency condition to A, where everything is embedded,
and selecting components of I1;(Az) with the projection HE;Z] at step m = 1.

Definition 1.11. The Legendrian embedding A € Leg, ((M, B) is gradient generic whenever for
all nonnegative integers m, all i € {1,...,r} and all § C {1,...,r} with two elements, L;’f is a
manifold with boundary of dimension dim(B) —m — 1 and whose boundary is given by

oL = ) 1P,

ac{l,...,r}
|a|=2,a3i

Remark. It is a straightforward consequence that on gradient generic Legendrian submanifolds,
trajectories of the gradient flow, induced in the caustic by the vertical length between pairs of
smooth sheets, are tangent at most to order dim(B) — 1 to the singular locus.
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Gradient genericity is a generic property among at most ©°-singular Legendrian submanifolds.
Theorem 1.2. The subset of gradient generic elements of Leg, o(M, B) is open and dense.

Proof. Openness is trivial, since requiring finitely many sets to be manifolds is an open condition.
Showing denseness requires more work, for an at most --singular Legendrian submanifold A,
it amounts to prove recursively on the nonnegative integer m that there exists a perturbation of A
such that fori € {1,...,r}and f C {1,...,r}, L;’f is a (dim(B) —m — 1)-manifold with boundary.

* Base step. The base step m = 0 has already been dealt with in Proposition 1.2.

* Inductive step. Let m be a nonnegative integer, and assume that for all nonnegative
integers m’ < m, alli € {1,...,r} and all 8 c {1,...,r} such that || = 2, L;n/,j is a
manifold with boundary of dimension dim(B) —m’ — 1 and whose boundary is given by

oL = | J L
}

ac{l,..,r
la|=2,a3i

Then, let us show that A can be perturbed so that

e form'€{0,...,m},ie{1,...,r}and B C{1,...,r}, L;n/,j is left unperturbed;

« forie{l,...,r}and B c{1,...,r}, L:F is a codimension 1 submanifold of L:f;
and this second property is itself achieved by carrying the following steps:

* Step 1. Perturb the topological boundary components of L:;frl to be manifolds.

* Step 2. Show that Li;[il is a manifold in an open neighbourhood of its boundary.

» Step 3. Conclude by extending the perturbation constructed in Step 1 away from
For that purpose, it is more convenient to perturb the functions provided by Lemma 1.2,

an open neighbourhood of the topological boundary of L
rather than the Legendrian submanifold itself.

Step 1. It is no surprise that this step relies on the appropriate use of the Sard’s theorem.
Leta C {1,...,r} such that |a| = 2 and i € a, then let us give a local description for Lfr‘l’fl.
Since A is at most ©°-singular, using the induction hypothesis, H532]| L
In particular, for all A € Lg{ﬁ: there must exist an open neighbourhood U; P of 2 in Lfr‘l’/3 ,

and a section vi’/j of H%z]*TB

«f 1S an immersion.
m

ep such that there are vector bundle direct sum splittings
A

given by
TB‘HEZJ(U;JJ) = THE;ZJ (TU;’ﬂ) @ RVZ’ﬂ B ifm= 0,

T (TL;’EI)W(UM =Ty (TUP?) @ Rv)*, otherwise.

since the induction hypothesis shows that Lr‘;‘l’ﬁ is a codimension one submanifold of Lf:f 1
Associated to the above decompositions, there exist a bundle projection 7 «s onto Rv:’ﬁ ,
A

and a smooth map u;’ﬁ : U;’ﬁ — R such that if i €  and k € f3, then
7100 (Xix(A)) = g (W)
a’ﬁ

m+1
and the proof boils down showing that A can be perturbed in a way that 0 is a regular

In particular, by construction, L%, N U;’ﬁ is the reverse image of 0 by ,u;’ﬁ U ;’ﬁ —R
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(H1)

(H2)

(H3)

(H4)

(H5)
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value for all ,u;’ﬁ : Uz’ﬂ —R.

Let pr; and pr, be the first and second projection of A~ xz A~ onto its factors, respectively,
since A is at most ©1%-singular, I1p -« is self-transverse, and pr; and pr, are immersions.
Thus, pr, is a local embedding and there exists a refinement of {U:’ﬁ }repes such that

For all A € Lg{ﬂ’ pr; is an embedding over all the compact subsets of U;’ﬁ

Since Lf)‘;ﬁ and Ag are disjoint, argue by contradiction with the continuity of pr, and pr,
to show to that there exists an even finer refinement of {U ;’ﬁ },eper such that

Va e L, pr, (USP) npr, (UFF) = @.

Then, by compactness of L,‘j‘;ﬂ , extract a finite subcover {U ﬁ’ﬁ Inen

.....

B
N, ) from {u; breros-
Let now define the dimension of the deformation space of parameters d by

ac{l,...,r} pc{1,..,r}
lal=2,a5i  |pl=2

then for all N € {1, ... s Ny g }, using the induction hypothesis and the assumption (H1),

there exists a compactly supported smooth map 8;’/3 : A — R such that

The smooth map s,‘f,’ﬁ has compact support in pr, (Uﬁ’ﬁ ) ;
If m > 1, then the vector field pr,"V, 8N is tangent to Lm U

The vector field prl*Vge;i‘,’/3 is transverse to L“F.

since pr; is a local embedding on Uﬁ’ﬁ and L%P is a codimension 1 submanifold of Lf:f 1
First, for all i € {1,...,r}, let us define a linear deformation F;: S; x R — R of f; by

N g
FAO=fM+ >, > doelerl ),

ac{l,...,r} pc{1,..,r} N=1
la|=2,a3i |B]|=2

and then fori€{1,...,r}and j€{1,...,r}, letus deﬁne)?i’j: S; x5 S; xR — TB by
Xi,j(a‘ln Az, t) = T)Ll 1_[B (ngi('ﬁ t)(z’l)) - TAZHB (ngk(" t)(A‘Z)) .

Besides, for all a C {1,...,r} and all C{l .,r} such that |a| =2,i € a and |B| =2,
introduce a thickened version L /3 of L deflned as the subset of (4,t) € L“ﬁ x R?
such that

X;;(A,0) € T, (T, L%P),
wherei € {1,...,r}and k € {1,...,r} are indifferently chosen in a and f3, respectively.
Associated to the vector bundle decompositions introduced at the beginning of Step 1,
and for all N € {1,...,N, 4}, there must exist a smooth map [T P Uy"” — Rsuch that

7o (X (A, 0) = By (A, 0957

“P (U xR?) is the reverse image of 0 by i’ : UT’ xR? — R,
but now, everything has been arranged for O to automatically be a regular value of ﬁ]‘f,’ﬁ .

Then, by construction, L
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Indeed, from assumptions (H2) and (H3), for all (A, A,) € Uﬁ’ﬁ and all t € RY, then
Bug i (s Ay ©) = B (" A0) + 6P 1 0 (T, 11, (V425" (1)) )
=y (1,11 (Ve (1)),
= f (Tll,AZHE] (prl*Vgeﬁ’ﬂ(Al,Az))),
#0,

which is nonzero from assumption (H5), since A is assumed to be at most ©-singular,
so that [Ty, is an immersion and vectors of T A are determined by their caustic projection.

B
Therefore, Lm '
it remains to use the Sard’s theorem to pick a suitable deformation parameter in R%. For

is a manifold, since {Uﬁ’ﬁ xR}y e {1...N, 5} 1S an open covering of Lfr‘{ﬁ ,and

that purpose, let us define 7'Ea e L /5 — RY to be the projection onto the second factor,
and there exists t* € RY, arb1trar1ly close to 0, such that t* is a regular value of ﬁgf .
To conclude, define a perturbation of A by replacing f; by f;* = F;(-,t*), fori € {1,...,N}.
Indeed, foralla c {1,...,r}and all f C {1,...,r} such that |a| =2,i € a and || = 2,
notice that

* According to (H4), for all nonnegative integers m’ < m, La’/ﬁ is left unchanged.

* Since t* is a regular value of 7y, P and L;fl x {t'} = (my) Y1), Ler1 is a manifold.
Moreover, according to Proposition 1.1, if t* € RY is sufficiently close to 0, then the
above procedure constructs a Legendrian submanifold that is still at most X!°-singular,
thus almost yielding Step 1.

One subtlety has not yet been addressed, as it is still needed to show that
Vie{l,...,r},Vje{l,...,rh, YVt €R,VA € A ), Fi(A, ) = F;(A, 1),

otherwise, the deformation will tear apart the smooth sheets of A along their cusp-edges.
For that purpose, letus picki € {1,...,r}and j € {1,...,r} suchthati # jand A ;; # &,
andleta c {1,...,r}and B C {1,...,r} such that |a| =2,i € a and |8| = 2, then

VN €{1,...,N, gL, YA€ Ay, A epr, (URF) = a={i,j},

since prl(Uﬁ’ﬁ ) € A, and the smooth sheets of A only meet pairwise on their boundaries.
Therefore, forall A € A;; ;; and all t € RY, then

Nep
FAO=f+ >, > dieelert),

ac{l,..,r} pc{1,..,r}N=1
lal=2,a3i |ﬂ|:2

[using (H3) and (1)] = f,(A) + Z Z (08 0B )
BC(l,...,r} N=1
IB1=2
N .. ..
[using Lemma 1.2] = f;(A) + Z Z (B B (),
Bcil,..,r}N=1

IB1=2
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Na,ﬁ
[using (H3) and (1)] = f;(A) + Z Z Z t;’ﬁb“;’ﬁ(l),

ac{l,...,r} pc{1,...,r} N=1
lal=2,a3j |B|=2

thus yielding Step 1.

Step 2. Mimicking the proof of Proposition 1.2, the topological boundary of L:r’[il is

LB a.p
aLm-4—1 - U Lm+1’

a’/j

n+1 are manifolds,

but Step 1 provides a perturbation defined on the whole A such that L
and their union is disjoint, since smooth sheets only meet pairwise on their boundaries.
Thus, the topological boundary of L;’fil is manifold and by openness of being a manifold,

there must exist an open neighbourhood of AL"P in L such that L>* NV is manifold,

m+1 m+1

thus yielding Step 2.

Step 3. Mimimicking the proof of Step 1 shows that the perturbation can be extended
away from the open neighbourhood provided in Step 2 in a way that L:;f;l is a manifold.
However, this time the construction is even easier, since it is no more required to take
care of the cusp-edges shared by the smooth sheets of A, thus yielding Step 3.

The above three steps yields the inductive step.

Mathematical induction thus yields the result. |

Remark. Let f: X — Z and g: Y — Z be transverse maps between manifolds with boundaries.

Assume that g is an immersion, then the canonical projection p: X x,Y — X is also an immersion.

Indeed, using the remark following Proposition 1.2, X x, Y is a manifold such that

TX x,Y)={(vx, W) €ETX XxTY;Tf(vx) =Tg(vy)}.

In particular, if Tp(vy, vy) = 07y, then vy = Tp(vy, vy) = 0y, so that Tg(vy) =Tf(vyx) =0y,

but since g is an immersion, vy = Ory and in conclusion, (v, vy) = Orxy,y-

At last, further generic properties of Legendrian embeddings will also be of use in this thesis.

Definition 1.12. A Legendrian embedding A € Leg(M, B) is chord generic whenever the following

four conditions

(1) the Reeb chords of A are non-degenerate;

(2) the Reeb chords of A have distinct action values;

(3) the Reeb chords of A have disjoint images under Ilg;

(4) the ends of the Reeb chords of A stay away from an open neighbourhood of A~ in A;

are simultaneously met.

It is a folklore result that chord genericity is a generic property among Legendrian submanifolds,

see, for example, [EESO5a].
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Proposition 1.3. The subset of chord generic elements of Leg(M, B) is open and dense.

Remark. Gradient and chord genericity are independent and compatible properties of Legendrian
embeddings, so that Theorem 1.2 and Proposition 1.3 show that the subset of gradient and chord
generic Legendrian embeddings is open and dense in Leg, (M, B).



2.

Generating family homologies of Legendrian submanifolds

This chapter is an overview of the theory of generating families for Legendrian submanifolds.
First, their relevance in the study of contact rigidity phenomena of Legendrian submanifolds is
emphasised, and the homotopy lifting property of generating families (Theorem 2.1) is recalled.
Then, in view of the proof of Theorem B, the transversality conditions defined for Legendrian
submanifolds in Chapter 1 are now rephrased using strictly generating families (Section 1.2).
Afterwards, while the construction of a Morse-like homology theory for Legendrian submanifolds
from generating families is reviewed (Section 2), a useful technical result (Proposition 2.4) for
crucial estimates in the proof of Theorem A is established. At last, several results concerning the
algebraic structure of the generating family homology are discussed and conjectured (Section 3)
to motivate the study of the Henry-Rutherford limiting process in the next chapter.

1. Generating family theory overview

It was observed in Section 1.2 that holonomic sections of first-order jet bundles tautologically are
Legendrian submanifolds which are isotopic to the zero-section through Legendrian submanifolds.
Conversely, not all Legendrian submanifolds which are Legendrian isotopic to the zero-section are
holonomic sections, but they are nonetheless always obtained by reduction of holonomic sections
of stabilised first-order jet bundles. This observation is the starting point of the generating family
theory for Legendrian submanifolds.

Definition 2.1. A smooth function f: B x R¥Y — R is a generating family whenever its fibrewise
critical set 3y = 0,f ~1(0) is a transversely cut out submanifold of B x RV, meaning that 0 is a
regular value of the fibrewise derivative J, f : B x RY — RN of f.

Remark. The generating family condition explicitly reads as follows, for all (b,n) € B x RN such
that 9, f (b,n) = 0, the N x (n+ N) matrix Jac, ,y 3, f = [abznf(b, n) anznf(b, n)] has full rank,
namely it has rank N.

Remark. Sard’s theorem directly ensures that being a generating family is a generic property in
the set of smooth maps from B x R" to R endowed with the C*°-topology.

Definition 2.2. A Legendrian submanifold A of (J'B, &) is generated by a function f : BxRY — R
whenever f is a generating family and the map j; : B X RN — J1B defined in local coordinates by

]f(bz’n) = (bz 3bf(b,7)):f(b:n)):

restricts to a diffeomorphism between X, and A.

Remark. Let C = T*B x {O7.xv } and let T, be the graph of d f, then A is generated by f if, and

only if, it is obtained by lifting the symplectic reduction (Iy; N C)/ C* to J!B, by the means of f.

Indeed, for their canonical symplectic structures, C is a coisotropic submanifold of T*(B x R")
42
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and the symplectic reduction T*(B x RV)/C* is seen to be canonically symplectomorphic to T*B.
Moreover, the exact Lagrangian submanifold T of T*(B x RM) is transverse to C exactly when f

is a generating family.

Remark. The front projection of A is the Cerf’s diagram of the family of functions (f|(yxrv)pep>
namely a point (b, z) € B x R belongs to the front projection of A if, and only if, z is a critical value
of the function fj(,}gw.

Remark. Every Legendrian germ is generated by a generating family [AGZV85, Section 2.20],
but nonetheless not all Legendrian submanifolds are globally generated by a generating family.
For example, if there exists a Darboux chart (U, ¢) of A such that the front projection of ¢(ANU)
has a zig-zag disjoint from the rest of the front, then A has no generating family [AGI21, Proof
of Proposition 2.8].

Figure 12. A zig-zag that is disjoint from the rest of the front of a Legendrian knot.
Higher-dimensional zig-zags are obtained by trivial products with R"!, n > 2.

Example 2.1. For all integers n > 1, let us define f7: R" xR — R by f7(b;,...,b,,n) = %3 —bym,
then the fibrewise critical of f is a transversely cut out nth-dimensional parabolic cylinder in R**!
which is given by

S ={(by,...,b,,n) ER" xR;n* = b, } .

Figure 13. A 2-dimensional parabolic cylinder in R3.

Furthermore, the bifurcations of (f : R = R),cg2 can be described as follows:

{b}xR "
* If b; <O, then f7 is strictly increasing.
e If b; =0, then f7

* If b; > 0, then f<”|{b}XR

Therefore, f" is a generating family for the Legendrian submanifold of (J'R", g.) whose front

{b}xR

(B}xR has a unique critical point and it is degenerate.

has two critical points and they are non-degenerate.

projection is a standard nth-dimensional Whitney pleat in R"*!,
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3

b

Figure 14. Graph of the generating family f with fibrewise critical values in red.

Example 2.2. For all integers n > 1, let us consider the Legendrian submanifold Af of (J IR Ern)
which is recursively defined as follows:

* Base case. If n = 1, then A is the standard Legendrian unknot of (J'R, ) with maximal
Thurston-Bennequin number.

* Inductive step. If n > 2, then Aj is the Legendrian submanifold whose front projection
is obtained by spinning the front projection of Ag_l around the z-axis.

M (A)) CRXR (A CcR* xR

Figure 15. Front projections of A(l) (on the left) and Ag (on the right).

Let ||-|| be the usual 2-norm on R" and let us define f': R*xR — Rby f'(b, n) = n°+3(||b|[>*—1)n,

then the fibrewise critical set of ' is a transversely cut out standard n-sphere of R"*! given by
S = {(b,n) €R* x R; [|b]|* +7n* =1}

Furthermore, the bifurcations of ( fO"| bjxr- R R)cre can be described as follows:

e If ||b]| > 1, then fO”| (b}xRr 15 strictly increasing.
e If ||b|| = 1, then fO”| ()R has a unique critical point and it is degenerate.
e If ||b|| < 1, then fo”| ()R has two critical points and they are non-degenerate.

In conclusion, f' is a generating family of Af.
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1.1. Homotopy lifting property for generating families.

Only the values taken by a generating family onto its fibrewise critical set are relevant to describe
a Legendrian submanifold, but the rest of the generating family has no geometrical significance.
In particular, if a Legendrian submanifold has a generating family, it can be naturally modified to
directly produce infinitely many other, but all these generating families really should identified
and treated as one.

Definition 2.3. Two generating families defined over vector bundles with the same base are
equivalent whenever they can be made equal by applying to both of them a finite number of
the following two types of moves:
e Stabilisation move. Let f : B x R™ — R be a function, then given any non-degenerate
quadratic form Q on R™, let us define f ®Q: B x R™ x R™ — R by

(f ®Q)(b,m1,m2) = f(b,m1) +Q(Ny).

* Fibre-preserving diffeomorphism move. Let f : B x R¥ — R be a function, then given
any diffeomorphism ® = id; xp of B x RY over B, let us define f;: B x R¥ — R by

fa(b,m) = f(2(b,n)) = f (b, ¢(b,n)).

Remark. If f is a generating family, then so are f ®Q and f; for the same Legendrian immersion.
Indeed, notice first that ;47 = Xy X {Og, } and that the chain rule also shows that &, = (T ).
Moreover, if (b,n) € X, then a straightforward computation implies that

8b2nf(b: 7)) anznf(b: 7)) On,N2 — Jac(b,n) anf On,N2
O, Oy,n,  HessoQ Oy, nin,  HessoQ

which is a (N; +N,) x (n + N; + N,) matrix of rank rk(Jac, . 0, f ) + rk(Hess, Q), namely N; + N,.
Besides, if (b,n) € Xy, then using the chain rule shows that Jacy, ) 9, fs is @ N x (n+ N) matrix

Jacy, ,0)9,(f ®Q) = {

of rank rk(Jac, ) 0, f ), namely N.

Unlike real valued functions defined over the base, generating families and their equivalence

relation are well-behaved with respect to isotopies of closed Legendrian submanifolds.

Theorem 2.1 ([Cha84], [LS85], [Sik86] and [Che96, Theorem 2.5]). Let (A,),c[0,17 be an isotopy
of closed Legendrian submanifolds of (J'B, &}), then for all generating families f of A,, there exists
a homotopy (f,).e[o,1] Such that f, is a generating family of A, and f, and f are equivalent.

1.2. Properties of generating families of generic Legendrian submanifolds.

Some of the properties that were discussed in Chapter 1 for Legendrian submanifolds are now
translated within the language of generating families.

Let f: B x RY — R be a generating family, then for all k € {0,...,N}, let us define Z,(f) to
be the subset of X, consisting of elements (b,7n) € X, at which the differential of the canonical
projection 7t : % — B has a k-dimensional kernel, so that

e =So(AHUT(HU---uSy,(Fusy(f),

and also define X~ to be the union of %, (f) for all k € {1,...,N}.
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Proposition 2.1. Let f : B x RN — R be a generating family, then for all k € {0,...,n}, the equality

%(f) = {(b,n) € &;; dimker (Hess, f,) = k},
holds true, where for all b € B, f,, stands for f|}xgn-

Proof. Let (b,n) € %, then using the transversality assumption from Definition 2.1, it holds
To.m Xy = ker Tip)0y f,
=ker[82 f(b,n) 82f(b,n)],
= ker [8bznf(b, n) Hess, fb] )

Let v = v ® vguv € Ty, ,y %5, then abz,nf(b,n)vB +Hess, f,vgv = 0 € RV and Ty )7 5(v) = v3.
Therefore, it shows that v € ker T, ,y7 5 if, and only if, v; = 0 € T, B and vgy € kerHess, f},
thus yielding the result. [ |

Remark. The computations carried in the proof of Proposition 2.1 show that if f: B x RY —» R
is a generating family, then f|(;).gv is @ Morse function if, and only if, b is a regular value of 7, g,
thus for b in a codimension 0 submanifold of B, according to Sard’s theorem.

Let k € {0,...,N}, if 3, (f) is a submanifold, then for all £ € {0,...,k}, let us define %; ,(f) to
be the subset of %, (f) consisting of elements (b, n) € %,(f) at which the differential of FBIn()
has a {-dimensional kernel, so that

L(f) =T o) U (U U (U D ().
Proposition 2.2. Let A be a front generic Legendrian submanifold of (J'B, &) and let f : BxRY — R

be a generating family of A, then the following two conditions are satisfied:
(1) Forallk €{0,...,N}, Z:(f) is a transversally cut out codimension k(k+1)/2 submanifold.

(2) For all integers k and ¢ in {0,...,N}, B () and Tf B3, () AT€ transverse maps.

Moreover, if A is at most $-%-singular; then %~ = %, 4(f).

Proof. It suffices to notice that 7, 5: % — B fits in the following commutative diagram

jlf\zf
2y

A
ﬂf’Bl lﬂ:BA .

B —— B
idg

Therefore, since Definition 2.2 shows that the above two horizontal maps are diffeomorphisms,

then Definition 1.8 directly yields the result. [ |

Example 2.3. Let f7: R" x R — R be the generating family from Example 2.1, then
D= {(b,n) ER"xR;n*= bl},
Lo(f2) =20\ {b, =0},
Tp~ = (f) =2(f)n{b; =0},

and the corresponding Legendrian submanifold is indeed at most ©!°-singular.
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<
22

Zo(f3)

Figure 16. The stratification of the fibrewise critical set of f2.

Example 2.4. Let f': R" x R — R be the generating family from Example 2.1, then
Zpn = {(b,n) €R" x Ry [|b]* +7* = 1},
Zo(f) = Z(f) \ {b, = 0},
S = 5y0(f) = () N {b, = 0},

and the corresponding Legendrian submanifold is indeed at most --singular.

2:O(foz)

Figure 17. The stratification of the fibrewise critical set of f2.

Remark. As it is clear from the proofs of Propositions 2.1 and 2.2, the singularities of the caustic
of A correspond to the points (b, 1) € % such that T, )%, C {0} x RY.

Z:f Hfr(A)

Figure 18. Vertical tangencies and singularities of Legendrian caustics.
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Corollary 2.1. Let f : BxRN — R be a generating family of a Legendrian submanifold A C (J'B, &p).
If A is at most =1C-singular, then for all b € B, the critical points of fipyxrv are isolated and thus in

finite number when A is closed.

Proof. The critical set of f|;;).gv is equal to nf,B_l(b), but using Proposition 2.2, then

* the union of %y(f) and %, (f) is equal to ;
* the set 3,(f) is a codimension 0 submanifold of %; and 7 £B 154 () has rank n; and
* the set %;(f) is a codimension 1 submanifold of %; and T B5, () has rank n—1.

Therefore, the critical set of f|(,,.gv, Which can also be written as

-1 — -1 -1
s (B)=Tpppsy iy (DYU pmp ) (D),

is, by the constant rank level set theorem, the union of two 0-dimensional submanifolds of %,
but since A is compact, so is %, thus yielding the result. [ |

Remark. Despite the remark made after the proof of Proposition 2.2, Corollary 2.1 is false for

arbitrary generating families, as it is seen considering f : R¥ x R¥ — R defined by
N
f(bp---,bN:Th)---:TlN) :Zblnl
i=1

It is a generating family, since T, f = [I N ON] has rank N, but f|(g;«grv has non-isolated critical
points, since its critical set is the whole R, while for all b # 0, fj;;xgv has no critical points.
However, the (non-compact) Legendrian submanifold

A ={0} xR x {0} Cc (J'RV, Exn),

generated by f is not even front generic, since %,(A) is empty.

2. Morse theory of the difference function

In this section, the construction of a Morse-like homological theory for Legendrian submanifolds
from generating families is recalled and several technical results are established as preliminaries

for the proof of Theorem A.

Definition 2.4 ([Tra01, Definition 3.5]). Let f;: Bx R™ — R and f,: B x R™ — R be functions,
then the difference function of f; with f, is the function 5: B x R™ x R™ — R defined as

6(b,m1,m2) = f1(b,m1) — fo(b, my).

The next proposition shows that critical points of difference functions are relevant to the study of
the contact rigidity phenomena of Legendrian submanifolds.

Proposition 2.3 ([FR11, Lemma 6.1], [ST13, Proposition 3.2]). Let A C (J'B, &) be a Legendrian
submanifold, and let f;: BxRY — Rand f,: B x RY — R be two generating families of A, then if &
is the difference function of f; with f,, the critical points of 6 splits in two types:

* There exist one-to-one correspondences between the Reeb chords of A, and the negatively
and positively valued critical points of 0, respectively.

* If ¢ > 0 is small enough, then in the region {—e < & < €}, & is a Morse-Bott function
with a unique critical submanifold ¥, % is diffeomorphic to A and has Morse-Bott index N.
Furthermore, if f; = f,, then X is contained in the level set {6 = 0}.
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Moreover, if B = R" and A is chord generic, then for all Reeb chords y of A, the non-zero valued
critical points of & associated to y are non-degenerate and have Morse index CZ(y)+ N, where CZ is
the Conley-Zehnder index defined in [EESO5b, Subsection 2.3].

There is however no hope at all to extract any meaningful homological invariant for Legendrian
submanifolds from general generating families, since Morse theory is known to be ill-behaved on
non-compact manifolds, mainly for the following two reasons:

* critical points can escape to infinity; and

» gradient flow lines can wander to infinity.

In particular, Morse homology can depend on the choice of the Morse-Smale pair.

Definition 2.5. A function f: B x R¥ — R is linear-at-infinity whenever there exist a compact
subset K of B x RN and a nonzero linear form u of RN such that for all (b,n) € K, f(b,n) = u(n).
The maximal compact subset on which this equality holds is referred to as the support of f.

Remark. In view of Theorem 2.1 and the stabilisation move, it seems more natural to consider
generating families that agree outside a compact subset with a non-degenerate quadratic form,
but such generating families can generate compact Legendrian submanifolds only if B is compact.
It is no longer an issue when working with linear-at-infinity generating families, but it is needed to
show that after a suitable fibre-preserving diffeomorphism, the stabilisation of a linear-at-infinity
generating family can also be made linear-at-infinity [ST13, Lemma 3.8].

Lemma 2.1. Let g = gz ® g; ® g, be a product Riemannian metric on B x R™M x R™, then

vg5(b) M1 772) = VgBé(b) M1 772) ® vglé(b: USE T’Z) ® vgzé(bj M1 7]2),
= vg35(b7 N1 le) ® vglfl(b: T)l) & _vngZ(b7 7’2)7
where T(B x RM x R™) ~ TB @ TR™ @ TR through the canonical bundle isomorphism.

Proof. Let v= v, ® v; ® v, € T(B x RN x RV), then it follows from the definition of g that

g (VgB(S &V, 68V,0, v) =gz (Vg35, VB) +g; (Vg15, vl) +g, (Vg25, vz),

[by definition of V] = g6(vg) + 0, 6(v1) +3,,6(v,),
[since T=0,®0, ®7,,] =To(v),
[by definition of V] =g (Vg5, v) ,

thus the equality V,6 =V, 6 &V, 6 @V, 6 holds, since g is non-degenerate and v is arbitrary.
Let (b,m,,m,) € BxRY x R™ and let »; € T, R™, then it follows from the definition of V, that

&1 (Vg15(b: M1, M2)s V1) = 31;15(17: 11, M2)(71),
= 8n1f1(b:771)(7’1),
=& (vglfl(b:nl): Vl),

thus showing that V, 6(b,n;,7n,) =V, f1(b,n,), since g, is non-degenerate and v, is arbitrary.
Finally, proceeding in the exact same way, but now using that , 6(b,n;,m,) = =0, f>(b,n,),
shows that V, 6(b,n;,m,) ==V, f>(b,7n,), thus yielding the result. [ |
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Given any Riemannian metric, the gradient flow of the difference function of two linear-at-infinity
generating families is always globally defined, since

* in every compact subset, it has a uniform existence-time; and
* there exists a compact subset outside of which the flow is linear.

Thus, for all positively valued critical points c_ and c, of 6 and all Riemannian metric g on BXxR*",
it is possible to define a Morse moduli space M(c_, cy; 0, g) of parametrized trajectories as

M(c_,c,;6,8)= {y: R—BxR*;9y=—V,60yand Limy:ci}.

Then, since the additive group of real numbers acts freely by time-translations on M(c_, c,;0,8),
a Morse moduli space .#(c_,c,; 0, g) of unparametrized trajectories should also be defined as

'%(C—J C+; 5: g) = 'Jl\(c—y C+; 5: g)/R

It is possible to mimick the above definition and define Morse moduli spaces for 6 (;xgzv, b € B.
At last, notice that if A chord generic, using Definition 1.12 (1) and Proposition 2.3 shows that
the positively valued critical points of 6 are all non-degenerate and for an open dense subset
of Riemannian metrics g, the sets .#(c_,c,; 0, g) are manifolds of dimension u(c_)—u(c,)—1,
where u is the Morse index associated to 6.

Proposition 2.4. If f; and f, are linear-at-infinity, there exists a compact subset K5 of B x R¥ x RY
such that all the critical points of 6 are located in Ks. Moreover; if g = gz ® g, ® g, is any product
Riemannian metric on B x RM x RNz, then any y € /7[\(c_, cy; 0, g) takes its values in K.

Proof. Let C = Cy x C; X C, be a compact subset of B x RV x RY such that C; x C; and Cy x C,
contains the compact subsets provided by Definition 2.5, when applied to the linear-at-infinity
functions f; and f,, respectively. Then, having also fixed global trivializations of TR™ and TR

and using Lemma 2.1, there exist non-zero vectors u; € R™ and u, € R such that

(2) vb € CBCJ an € RNl) V"’)z € RNZ: vg5(b3 T’l: 772) = (05 _ulJ u2);
(3) VbeB,Vn, €5V, GRNZ,Vgﬁ(b,mmz) = U,
Vb € B> an € RNl) VTIZ € CZCJ vgz(s(bz N2> TIZ) = Uy.

In particular, V,6 does not vanish outside of C, so that the critical points of 6 are located in C.
Let also K5 = K x K; x K, be a compact subset of B x RM x R containing C in its interior and
such that Cy, C; and C, are contained in Kg, K; and K,, respectively. At last, replacing K; and K,
by their convex hulls, which are still compact subsets, assume that K; and K, are convex subsets.
From now on, proceed to show that if y is a negative g-gradient flow line of 6 leaving K, then it is

either trapped in the past or in the future outside of it. Write y in components as ¥ = (Y5, 71, Y2)»
so that using Lemma 2.1, the differential equation satisfied by y reads in components as:

0, vp(t) ==V, 6(y(1)),
)] Ory1(6) ==V, 6(y(1)),,
Biy2(t) ==V, 6(r(1)),

and now discuss on the component of y leaving Kj.
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* Case 1. Assume there exists t, € R such that b, = y5(t,) € Kz, then let us introduce
t_=inf{t <t,|yz(t)= by} € RU{—00},
t, =sup{t = tq | yp(t) = bo} € RU{+00},
and argue, for the sake of contradiction, that t_ or t, is finite. Assume that ¢t_ is finite,

then y5(t_) = b, € Cz° and there exists ¢ > 0 such that yz((t_ —¢,t_ + ¢€)) C Cz°.
Therefore, it follows from equations (2) and (4) that

Vie(te—e, ty+e),0vp(t) = _ng5(Y(t)) =0,
thus y; is constant, equal to b,, on (t. — ¢, t, + €), contradicting the minimality of ¢_.
A similar argument shows that t, is also infinite, which reads that y; = b, ¢ K; on R,
thus showing that for all t € R, y(t) € K.
* Case 2. Assume there exists t, € R such that n, = v,(t,) € K;, then let us define
D, =1y +[0,+00)u; CRM,
and argue, for the sake of contradiction, that D_ N K; and D, N K; are non-empty, then
the convexity of K; implies that 1, € K, hence a contradiction. Now arguing exactly as
in the previous case with the following times
t_=inf{t < to | y1(t) =mo + (t — to)u;} €RU{—00},
t, =sup{t = to | y1(t) = no + (t — to)uy } € RU{+ 00},
it follows from equations (3) and (4) that if D, NK; = @, then t, = 00, thus
D_NK,=@=>Vte(—oo,t,],y:(t) e D_ CcK;°
D,NK, ==Vt e[t,,+00),y,(t) € D, CK;".
This concludes that either for all ¢t < t,, y(t) € K5 or for all t = t, y(t) & K.

* Case 3. Assume there exists t, € R such that y,(t,) € K,, then proceeding exactly as in
the previous case shows that either for all t < t, y(t) & K; or for all t > ¢, y(t) € K.

If y € #(q,p;5,g), then y has range in Ks; otherwise, it follows from the previous discussion
that either c_ =limy € K;=K;5 orc, = Emy € K5, but since c_ and c, are critical points of &,
“ 0 oo

they are in C, hence contradicting that C ¢ K, thus yielding the result. [ |

Remark. The standard uniqueness result for solutions of ordinary differential equations cannot
be applied directly in the proof of Proposition 2.4, since the vector field giving the derivative of
any component of y does not only depend on this component, but also on all the others.

Definition 2.6 ([Tra01, Definition 3.9]). Let f;: BxRY — R and f,: B x R¥ — R be two linear-
at-infinity generating families, and let 5 : B x RN¥ x R¥ — R be the difference function of f; and f,.
Assume that w > & > 0 are such that all the positive critical values of § are contained in (&, w),
then the generating family homology of (f3, f,), denoted by GFH,(f;, f5), is defined to be

GFH,(f1, f2) = Heyn1({6 < 0}, {6 < e};F,).
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Moreover, the Poincaré polynomial of (fy, f,) is the Laurent polynomial T, ; (t) defined by
T, () = Z dim(GFH,(f,, f,))t*.

keZ

When f; = f,, GFH,(f}, f,) and I}, (t) are simply denoted by GFH,(f) and T;(t), respectively.

Remark. Using a one-parametric version of the standard structural result for sublevel sets of
Morse functions [ST13, Lemma 2.4], the isomorphism classes of GFH,(f;, f,) are independent of
the choices of ¢ and w [ST13, Corollary 3.10].

Proposition 2.5 ([ST13, Lemma 3.6]). Let f; and f, be two linear-at-infinity generating families.
If f, and f, are in the same equivalence class, then GFH,(f;) and GFH,(f,) are isomorphic.

Remark. The invariance of the isomorphism class of GFH, with respect to the stabilisation move
is guaranteed by the choice of the grading shift.

Remark. Let A be a Legendrian submanifold and f be a linear-at-infinity generating family of A,
then the isomorphism class of GFH, (f ) is not necessarily a Legendrian isotopy invariant of A itself,
but rather an invariant of (A, f) for Legendrian isotopies and equivalences of generating families.
Indeed, using Theorem 2.1 and Proposition 2.5, the collection of all the isomorphism classes
of generating family homologies of all linear-at-infinity generating families of A is a Legendrian
isotopy invariant of A.

Theorem 2.2. If f, and f, are linear-at-infinity generating families in the same equivalence class,
then there exist integers N; € Z and N, € Z such that for all linear-at-infinity generating families f,
there exist isomorphisms of graded F,-vector spaces such that

GFH.(f1, f) = GFH,y, (f2, ),
GFH.(f, f1) =~ GFH, ,(f, f2),

provided f,, f, and f are defined over the same vector bundle.

Proof. Let define 6y, ¢, 6, ¢, 67 and &4, to be difference functions associated to f;, f, and f,
then it is straightforward to check that 6  and 6, ;, are equivalentto &,  and 6 ; , respectively.
Thus, [ST13, Lemma 2.2] directly yields the result, as it did for Proposition 2.5. [ |

Remark. Grading shifts in Theorem 2.2 account for the asymmetry of mixed difference functions,
so that equivalence moves of generating families can now be applied independently to f; and f,.
Indeed, if f, is a Nth dimensional index k stabilisation of f;, then N; = k and N, = N —k, and
similarly, if f; is a Nth dimensional index k stabilisation of f,, then N; = —k and N, = k —N.
However, if f; and f, only differ by a fibre-preserving diffeomorphism, then N; = 0 and N, = 0.
Thus, these observations compromise the construction of a Legendrian isotopy invariant of A itself
from the mixed version of the generating family homology.

Remark. Theorem 2.2 has a pseudo-holomorphic curves analogue given in [BC14, Theorem 1.4]
and for which no grading shifts appears, meaning that N; and N, always vanish.
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3. Geography of the generating family homology

First, the long exact sequence for generating family homology (Theorem 2.3) is generalised to the
mixed version of generating family homology (Theorem 2.4). In particular, it leads to conjecture
that the mixed version of generating family homology is a complete invariant for equivalence of
generating families (Conjecture 2.1). However, the duality long exact sequence is not enough to
carry any concrete computation of the mixed version of generating family homology and only the
geography of the usual version of generating family homology can be recalled (Theorem 2.5).

Theorem 2.3 ([BST15, Theorem 6.1]). Let A" be a closed Legendrian submanifold of (J'B, ) and
let f be a linear-at-infinity generating family of A, then there exists a long exact sequence

(LES-GFH) +o+— GFH(f) = Hy(A; F,) = GFH*(£) &5 GFH,_,(f) — - - .
Moreover, the following further properties are satisfied:

(1) If D,: H"*(A;F,) = H,(A; F,) is the Poincaré duality, then T,_; is adjoint to o o D,.
(2) If A is chord generic, then t,: GFH,(f) — H,(A;F,) is surjective.

Sketch of a proof. Pick w > 0 sufficiently large and ¢ € (0, w) sufficiently small so that the real
interval (&, w) contains all the positive critical values of the difference function 6 of f with itself.
Then, using the isomorphisms induced by the diffeomorphism exchanging the two R" factors in
the domain of 6 [ST13, Lemma 7.1], the homology long exact sequence of (6, 6¢,6°) and the
cohomology long exact sequence of (6°,6°,6~¢) fit into the following commutative diagram:

— % Hy (65,675 F,) —2—% Hy y(6%,67%;F,) ——— H,,y(6%,6%F,) —

E\Lak z\Lﬁk E\L}’k

s Hn—k+N(5s’ 5—6; Fz) S“—k> Hn—k+N(6sJ 6—w; Fz) r”—k> Hn—k+N(5—e’ 5—a); Fz) s ,

where for all a € R, ¢ is a shorthand notation for {6 < a}, then it now only remains to identify

several terms in the above diagram.

* Let D“(A) be the unit negative normal bundle of A, then according to Proposition 2.3
and the structural result for sublevel sets of Morse-Bott functions [Nic11, Theorem 2.44],
6° is homotopic to the space obtained from 6° by attaching D“(A) along its boundary.
Therefore, since D(A) is a DV-bundle over A, Thom’s isomorphism yields

Hy y(6%,67%F,) >~ H y(D"(A), 9D"(A); Fy) ~ Hi (A3 Fy).

* Since f is linear-at-infinity, there exists a smooth homotopy (6;),c(o,1; such that 5, =9,
6, has no critical points and for all s € [0,1], —w and w are both regular values of &,.
Then, using a one-parametric version of the standard structural result for sublevel sets of
Morse functions [ST13, Lemma 2.4], (6“, 5 *) is homotopy equivalent to (6,%,5,; “).
Moreover, the structural result for sublevel sets of Morse functions [Nic11, Theorem 2.6]
shows that §,“ is a deformation retract of 6, “, so that the pair (6,“,6, ) is acyclic.
Therefore, (6“,56~ %) is acyclic [ST13, Lemma 3.12] and the connecting homomorphism

an_k: Hn_k+N(58, 5—a);F2) — Hn—k+N+1(6co’ 58;1;-2),

of the cohomology long exact sequence of (6“,6°,5~“) is an isomorphism.
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* Using Definition 2.6, H,,5(6%,6°) = GFH,_;(f).

At last, the desired long exact sequence is obtained by defining o, and p, as o = J,_; © B © s;
and p, =r, 0B, ' 0d, ", respectively.

Let us now establish the further two properties claimed.

(1) Using the homomorphism induced by the inclusion i: 67 < 6~°, which also appears
in the cohomology long exact sequence of (6°,6°%,6~“), the cohomology long exact
sequences of (6“,6°,67¢)and (6“,6°, 6~ ) fit into the following commutative diagram:

s Hn_k+N(5€, 5—9; Fz) dnk=Tnt" s Hn_k+N+1(5w, 55; Fz) s

l/i*ZS:l_k \Lid
aﬂ* —_
s Hn_k+N(5€, 5—0);1;-2) k s gt k+N+1(5w) 55;1:,-2) S
where d,_, is adjoint to 7,_,, since the cohomology long exact sequence of (6“,6°,6°)
is adjoint to its homology long exact sequence, whenever field coefficients are used.
Therefore, using the two commutative diagrams built in this proof shows that

/
n—k’

=0y © (ﬁk 050 ak_l):

= (G oBros)oa;

* __
Th—k — an—k oS

= O‘kOOLk_l.

Moreover, recalling that the Poincaré duality isomorphism is given by flipping the sign
of the Morse function used to compute the homology [AD10, Proposition 4.3.1] shows
that D, = o, ! and yields 7,_,* = o} o Dy.

(2) According to Theorem 2.3 (1), 7, is surjective if, and only if, o is injective, but using
the long exact sequence (LES-GFH) shows that o, is injective if, and only if, 7, is zero.
Let A be the diagonal of B x R¥ x RN and let g be a Riemannian metric of B x R¥ x RV
such that for all positively valued critical points ¢ of 6, W“(c; 6, g) th (B x A) holds, then
let us define .#(c,B x A; 8, g) to be the set of y € W"(c; 6, g) such that y(0) € B x A.
If c has Morse index N+1, then .# (c,BXx A; d, g) is a one-dimensional manifold which is
compactified, as customary in Morse theory, by adding broken negative g-gradient flow
lines ¥ = (y4,7,) of 6 such that y, starts from c and y,(0) € B x A [AB95, Lemma 3.3].
However, discussing on the breaking point of ¥ and using Proposition 2.3, shows that

* either v, ends on a positively valued critical point g of & and y, € .#(q,B x A); or
* v, ends on X and y, is constant, since ¥ and B x A are both contained in {6 = 0};
therefore, on the chains level, 7, is homotopic to 0, thus yielding the result.

Theorem 2.3 directly implies a quantitative version of the Arnol’d’s chord conjecture [Arn86],
predicting that the minimal number of Reeb chords is constrained by the singular homology of
the Legendrian submanifold, provided it is closed and generic.
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Corollary 2.2 ([ST13, Corollary 1.10]). Let A be a closed Legendrian submanifold of (J'R", Eg.).

If A is chord generic and has a linear-at-infinity generating family, then
Vk €{0,...,n}, i (A) + 141 (A) = dim H (A Fy),
where r,(A) is the number of Reeb chords of A of Conley-Zenhder index £.
Proof. Let 6: R" x R¥ x R¥ — R be the difference function of some linear-at-infinity generating

family of A and for all £ € {—N —1,...,n—1}, let m, be the number of positively valued critical
points of 6 of Morse index £ + N + 1. Then, using the the rank nullity theorem shows that

dim H,(A; F,) = dimker(o,) + rk(oy),

[using (LES-GFH)] =rk(t,) + rk(oy),
[by definition of 7, and o] < dim GFH,(f) + dim GFH" *(f),
[since fields coefficients are used] = dim GFH,(f ) + dim GFH, _,(f),
[by definition of GFH] <Sm+m,_,
[using Proposition 2.3] = Ts1 + ka1
thus yielding the result. [ |

Remark. Forgetting the grading computations, the same proof shows that if a closed and chord
generic Legendrian submanifold of (J'B, &) has a linear-at-infinity generating family, then its
number of Reeb chords is bounded from below by half the sum of its F,-Betti numbers.

The long exact sequence (LES-GFH) from Theorem 2.3 translates straightforwardly to the mixed
version of generating family homology.

Theorem 2.4. Let A" be a closed Legendrian submanifold of (J'B, &), and also f; and f, be two
linear-at-infinity generating families of A. If f; and f, are both defined over the same vector bundle,
then there exists a long exact sequence

(LES-mGFH) -+ — GFH.(fy, f) — Hy(A; Fy) = GFHX(f,, 1) 25 GFH,_,(f1, fo) — -+ -

and if D,: H"*(A;F,) = H,(A;F,) is the Poincaré duality, then t,_, is adjoint to o o D;.

Proof. It suffices to mimick the relevant parts of the proof of Theorem 2.3, now noticing that if

5f1,fz(b’ N1, M2) = f1(b, 1) — f2(b, M,),
5f2,f1(b’ T’l’ TIZ) = fZ(b’ T’l) _fl(b; T)Z);

then exchanging the two fibre factors in the domain of 6, ; leads to the following equality

5f1,f2(b’ N> M1) = _5f2,fl(b: M1, M2);
so that the desired long exact sequence features GFH*(f,, f;) instead of GFH*(f, f5). ]

Remark. However, the proof of Theorem 2.3 (2) does not straightforwardly extend to the mixed
version of generating family homology, since & is not necessarily identically zero on the diagonal.
In particular, if f; and f, are not equivalent, then 7,: GFH,(fi, f,) — H,(A;F,) from the long
exact sequence (LES-mGFH) does not need to be surjective.
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If f; and f, are equivalent linear-at-infinity generating families, then Theorems 2.2 and 2.3 (2)
ensure that 7,,: GFH, (f3, f,) = H,(A;F,) from the long exact sequence (LES-mGFH) is surjective,
and the converse is conjectured to be true.

Conjecture 2.1. Let A" be a closed, connected and chord generic Legendrian submanifold of (J'B, &),
and let f; and f, be two linear-at-infinity generating families of A, then f, and f, are in the same
equivalence class if, and only if, the map 7,,: GFH, (f;, f5) = H,(A;F,) in (LES-mGFH) is surjective.
In particular, the mixed version of generating family homology is a complete invariant for equivalence

of generating families.

Remark. The long exact sequence (LES-mGFH) has a pseudo-holomorphic curves analogue which
was established in [BC14, Theorem 1.5], and for which a version of the Conjecture 2.1 is shown
to hold in [BG19, Theorem 1.1].

Theorem 2.5 ([BST15, Theorems 1.1 and 1.2]). The following assertions hold true.

(1) Let A" be a closed and connected Legendrian submanifold of (J'B, &) and let also f be a
linear-at-infinity generating family of A. Then, there exist nonnegative integer coefficients
polynomials q and p such that

(GFH-P) Tr(t) = (qo + gt +... +q,t") +p(t) + " 'p(t™),

where for all k € {0,...,n}, qx +q,_ = dimH,(A;F,), q, # 0 and p(t) = Z pitk.
k=>|(n—1)/2]
A Laurent polynomial satisfying all conditions (GFH-P) above is GFH-admissible.

(2) Let P(t) be a GFH-admissible Laurent polynomial such that n = degP = 2 and P(0) =0,
then there exist a closed and connected Legendrian submanifold A of (J'R",&R.) and a
linear-at-infinity generating family f of A such that P(t) = T;(t).

Sketch of a proof. The two statements are proved independently.
(1) For all k € Z, let us define the following nonnegative integer coefficients:
qx = dim GFH,(f ) —dimker(7,),
pr = dimker(t,),

then using the exactness of the sequence (LES-GFH) and Theorem 2.3 (1) shows that
qx + q,—x = dimH,(A;F,) and p,_;_; = px, while Theorem 2.3 (2) implies that g, # 0,
thus yielding the result.

(2) The proof relies on the explicit construction of two types of elementary examples of
linear-at-infinity generating families of Legendrian submanifolds of (J'R", £.) and, more
importantly, on the computation of their Poincaré polynomials.

* Manifold class building blocks. ([BST15, Corollary 6.7]) Let a € {1,...,n—1},
then there exists a linear-at-infinity generating family of a connected Legendrian
submanifold of (J'R", g.) whose Poincaré polynomial is t" + t9.

* Duality classes building blocks. ([BST15, Lemma 6.10]) Let a € N, then there
exists a linear-at-infinity generating family of a Legendrian sphere of (J'R", &g.)
whose Poincaré polynomial is t" + t% + t"717¢,
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It now suffices to take the connected sum, as defined in [BST15, Corollary 6.4], of the
relevant building blocks constructed above.

Remark. The Legendrian submanifolds needed for the proof of Theorem 2.5 (2) are constructed
using spinning and surgery operations on the usual Legendrian unknot and Hopf link of (J'R, &)
and all the resulting Legendrian submanifolds of (J'R", &g.) are at most %'°-singular.

Conjecture 2.2. The following assertions hold true.

(1) Let A" be a closed and connected Legendrian submanifold of (J'B, &), and let f, and f, be
two non-equivalent linear-at-infinity generating families of A. Then, there exist nonnegative
integer coefficients polynomial q and Laurent polynomial p such that

(mGFH-P) Iy 5, (8) =q(t) + p(t),
where q has degree at most n —1 and q(0) = 1, and p further satisfies
p(—1)=0mod 2, ifn=1,
1—q(—-1 .
R
A Laurent polynomial satisfying all conditions (mGFH-P) above is mGFH-admissible.
(2) Let P(t) be a mGFH-admissible Laurent polynomial, then there exist an integer n = 1,

a closed and connected Legendrian submanifold A of (J'R",&y.), and two non-equivalent
linear-at-infinity generating families f; and f, of A such that P(t) =Ty, , (t).

Remark. The pseudo-holomorphic curves analogues of Conjecture 2.2 (1) and (2) have already
been answered in [BG19, Proposition 4.2] and [BG19, Theorem 1.3], respectively.
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The Henry-Rutherford limiting process

In this chapter, the Henry-Rutherford limiting process is now introduced as a singular perturbation
of the gradient flow used in Chapter 2 to construct the generating family homology (Section 1).
In particular, in order to explain how Conjecture A arises from the Henry-Rutherford process,
gradient staircases are precisely defined, and their analytical properties are studied (Section 2),
and at last, a topology is defined to describe convergence for this limiting process (Section 3).
All along this chapter, several useful estimates for the proof of Theorem A are derived.

1. Geometrising the boundary operators of the generating family chain complexes

Despite being similar to the Morse homology of smooth manifolds, homologies for generating
families of Legendrian submanifolds cannot be efficiently computed from geometrical data only.
Indeed, the boundary operators of the corresponding chain complexes are not easily understood
in term of the Legendrian submanifolds themselves. Even if Theorem 2.5 can sometimes be used
to overcome this difficulty in the non-mixed version of generating family homology, the long exact
sequence (LES-mGFH) is of no use for practical computations.

In any case, the differentials of the generating family chain complexes can be geometrised taking
advantage of the invariance of Morse homology with respect to the choice of a Riemannian metric.
More concretely, if 6 : B x F — R is a difference function, gz and g, are respectively Riemannian
metrics on B and F, then according to Lemma 3.1, for all parameters s € (0, 1], the gradient flow
of 6 with respect to g = gz ® g5 can be singularly perturbed in the following fashion

{@ b(t) = =5V, 6(b,(1), n,(1)),
)

atns(t) = _vgp5(bs(t): ns(t)):

where b, and 1), respectively stands for the coordinates of the solutions of (5) along B and F.
Besides, writting this system in the slow time scale T = st leads to

{ aTbS(T) = _vg35(bs(7): ns(T)):
(©)

Sarﬂs(’f) = _ng6(bs(T): ns(T))

And notice that as long as s # 0, both systems (5) and (6) are equivalent, but

* in the limit s — 0, system (5) converges to the vertical system given by
{at b,(t)=0,
atns(t) = _ngé(bs(t)) T)s(t));

whose solutions are drawn in a fibre and are determined by the generating families,

(7)

58
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* whereas when s — 0, system (6) converges to the horizontal system given by
{a’rbs(t) = _vg35(bs(T)> ns(T))y
0= _ng5(bs(T)s ns(T))’

whose solutions are drawn on {V, 6 = 0} and are determined by the Legendrian front.

(8)

Intuitively and roughly speaking, if when s — 0, the solutions of (5) and (6) correspond to the
solutions of (7) and (8), respectively, then this degenerating process is expected to split apart the
distinct inputs involved to compute the differentials of the generating family chain complexes.
On one side, the contributions coming from the Legendrian submanifold, and on the other side,
the ones due to bifurcations in the complex of critical points of the generating families.

Even if the limiting behaviour of solutions of such fast-slow systems has been extensively studied,
the techniques developped in [Fen71, Fen74, Fen77, Fen79] fail to apply to systems (5) and (6).
Since singularities of the Legendrian caustic correspond to points where normal hyperbolicity of
the maximal flow invariant set {V, 6 = 0} is lost.

The rest of this section is now devoted to the first technical preliminaries needed to analytically
describe and understand this degeneration process.

Lemma 3.1. Let g = gz® gy ® gy be a product Riemannian metricon BxRY xRN and g, = g, = gy-
Let also s € (0,1] and let us define g, = (s 'g;) ® gy ® gy, then

vgs5(ba Th» TIZ) = Svg35(b3 771; 7)2) ® vg15(ba 7)1> 7)2) @ vg25(b’ 771: 772),
= Svg36(b3 N1 772) ® vngl(b: 7)1) ® _vngZ(b) 7)2),
where T(B x RN x RV) ~ TB @& TRY & TRY through the canonical bundle isomorphism.

Proof. Since g, is a product Riemannian metric, Lemma 2.1 applies and shows that

vgs6(b: N1 772) = vs—lgB(S(b) M1 7)2) ® vgl(s(b’ M1, T)Z) ® vg26(b3 N1 772):
= vs—1g35(b1 N1,M2) ® Vngl(b, 7,) & _vngz(b, 12)-

Besides, let v; € TB, then the definitions of V, and V implies that

s7lgg
S gp (ngB 5,75) = g5 (vg35’ vs),

= 3,6(vp),

=s"lg;, (V571g35, vg),

therefore showing that V., 6 =5V, 6 holds, since s~ 'gp is non-degenerate and vy is arbitrary,
thus yielding the result. [ |

Lemma 3.2. Let g be the Sasaki bundle metric induced by g on T(B x RN x RN), then
1V5.5]l, <Iv5|

gJ
|7955]g < [|TV45]

§ B
hold true pointwise on B x RN x RN and T(B x RN x RN), respectively.
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Proof. Using Lemma 3.1, first for s = 1, then for arbitrary s, shows that

||vg55||g2 =8 (vgséfvgs5) =8 (ngB5 OV, 08V,,0,5V, 68V, 00 vgz5)’

[by definition of g] =525 (V,,6,V,,6) +81(V,6,V,,6)+82(V,,6,V,,6),
[since s < 1] <g5(V,,6,V,,6)+8(V,6,V,6)+8g(V,5,V,5),
[by definition of g] =g(v,60V,60V,5V,606V,50V,5),
=g(V,5,V,5),
=933,

Taking the square root on both sides of the above inequality thus yields the first desired inequality.
At last, proceeding in the exact same way for ||TV, & ||§2, but now using that

TV,6=sV, 086V, 068V,0,
since by Lemma 3.1, V, 6 =5V, 6 ® V, 0 ® V, §, and that g is a product Riemannian metric,
shows the last desired inequality, thus yielding the result. [ |

Definition 3.1. A sequence (Y} )rey is @ Henry-Rutherford sequence, sometimes called HR-sequence
for short, whenever there exist positively valued critical points c_ and c, of 6, and a sequence of
real numbers (s; )y in (0, 1] such that s, - Oand forallk €N, y, € A(c_,c,; 85, 0)

Remark. When HR-sequences are mentionned, the following data has implicitely been fixed

* a difference function 6 of linear-at-infinity generating families; and
* a product Riemannian metric g = gz ® gy ® gy on the domain of the difference function;

then A will always be endowed with the Sasaki bundle Riemannian metric induced by gz on J'B.
Lemma 3.3. Let (v )ren IS a Henry-Rutherford sequence, then for all k € N, & oy, is decreasing.

Proof. Let k € N, then for all t € R, the chain rule shows that

3, (6 o )(t) =T, 6 (3 ri(t)),

[by definition of V] =g (VgSk 6 (r (1)), 3t}’k(l')) )
[since 8,7, = —V,5 0 7] = g, (Y, 50,V 5(ri(1))),
= vgsk 5(Yk(t)) >
85
thus the derivative of 6 o v, is everywhere negative, thus yielding the result. [ |

2. Gradient staircases and gradient staircases chains

The main goal of this section is to give a precise definition of gradient staircases (Definition 3.2)
in order to more precisely state Conjecture A (Conjecture 3.1) and start working towards its
resolution with the first preliminaries to the proof of Theorem A (Section 2.2).

2.1. Definitions of vertical and horizontal fragments of gradient staircases.

Gradient staircases (Definition 3.2) and gradient staircases chains (Definition 3.3) are defined,
and at last, Conjecture A is stated (Conjecture 3.1).
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Let us define two subsets S; = %y x5 % CBxR* and S5~ = (B~ x3 B JU(Zf, x3 X <) C Ss.
Then, using Lemma 3.1 and Proposition 2.2, notice that

* S is the set of (b,n) € B x R*" such that 7 is a critical point of &) .gav; and

¢ S5~ is the set of (b,n) € B x R?" such that 7 is a degenerate critical point of & |{b} xR2N -

Moreover, since A is at most --singular, using the proof of Proposition 2.2 shows that

* S5~ is a closed subset of S, as ensured by the remark following Definition 1.8; and

* S5\ S5~ and S5~ are submanifolds of dimensions dim(B) and dim(B) — 1, respectively,
since it was observed in the remark following the proof of Proposition 1.2 that fibre
products of transverse maps are smooth.

Definition 3.2 (based on [HR13, Definition 6.2]). Let c_ and c, be two positively valued critical
points of 6, the set A, c +; &,0) of parametrized gradient staircases from c_ to c, consists of
tuples e = (hy, Vi, Ay, -+« s Vi1, Bne1, Vis Ryy) Such that m € N and m = 1, and furthermore
* Horizontal fragments (steps). For all i € {0,...,m}, h;: I; = S; is a continuous map,
where [, = (—00,0], I,, =[0,+00) and foralli € {1,...,m—1}, I, =[O0, t;] with t; > 0.
Moreover, the following differential equation

3fhi = —Vg (5|55\55'<) ° hi’

is satisfied wherever it makes sense.
* Vertical fragments (risers). For all j € {1,...,m}, there exists b; € B such that v; is
non-constant and v; € 4 (v;™,v;"; 6, g), where 6, stands for 5 gy -
* Junctions of the fragments. For all i € {1,...,m—1}, h;(0) = v;" and h;(¢t;) = v;;; ",
moreover hy(0) =v,~ and v,,* = h,,(0).
* Gradient staircase endpoints. The equalities c_ = 1_12)1 hyand c, = 1+1£ h,, hold.
Moreover, the set #%(c_,c,;g,6) of gradient staircases from c_ to c, consists of equivalence
classes [e] = (ho, [V; ], Ay, -« o> [Vie1)s A1, [Vin)> B,,) such that e € ;/l\“(c_, cy;8,0).

C+ L a—
+00

Figure 19. Schematic representation of a gradient staircase from c_ to c,.

Remark. Even though the differential equation for horizontal fragments of gradient staircases
is defined by the intermediate of the difference function, it is uniquely determined by the front.
Indeed, since the canonical projection 7z: B x R*¥ — B restricts to an immersion over S; \ S5~,

in a neighbourhood of every point, S5\ S5~ is a graph over B, so that §5,,s,~ is a function over B.
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Remark. On an a gradient generic Legendrian submanifold, the horizontal fragments of gradient
staircases are uniquely determined by the front, since they are required to be continuous and their
defining differential equations make sense everywhere apart from isolated points.

Remark. Despite what is claimed in [HR13, Subsection 6.1], their whole discussion does not
apply to difference functions of generating families of arbitrary Legendrian submanifolds, since
their fibrewise critical sets are not transversally cut out submanifolds, except when the caustic of

the Legendrian submanifolds considered are nonsingular (which is a strong assumption).

Conjecture 3.1 ([HR13, Conjecture 6.3]). If A is generic, then for all positively valued critical
points c_ and c,. of 6 such that u(c_) = u(c,)—1, there exists s, € (0, 1] such that for all s € (0, s,],
there exists a bijective correspondence between #(c_,c,; 0, g,) and M*(c_,c,;g,0).

Morse moduli spaces are compactified by broken gradient trajectories, [AD10, Théoréme 3.2.2].
Gradient staircases chains play the same role for moduli spaces of gradient staircases.

Definition 3.3. Let c_ and c, be positively valued critical points of &, the set .#st(c_,c,;g,6)

of parametrized gradient staircases chains from c_ to c, consists of tuples e = (ey,...,e,,), such
that m is a positive integer, for all i € {1,...,m}, e; € ﬁ(ci,ciﬂ;g,é), ¢, =c_and ¢, =c,.
Moreover, as in Definition 3.2, the set .#*(c_,c,; g, 5) of gradient /stgircases chains from c_to c,
consists of equivalence classes [e] = ([e,],...,[e,,]) such that e € .Z*(c_,c,;g,5).

2.2. Analysis of vertical fragments.

In this section, several standard results from Morse theory are extended to the fibrewise gradient
flow of generating families, and in particular, vertical fragments with relatively compact range

are shown to join critical points (Proposition 3.1).

Lemma 3.4. Let v be a vertical fragment, then for all t € R, the following equalities hold

8:5(v(1)) =—|| v 5(v(t))],” = N80l

Moreover;, 6 o v is decreasing and it is strictly decreasing if, and only if, v is non-constant.

Proof. For all t € R, the chain rule shows that

(6 0v)(t) = T,(1)6(3,v(t)),

[by definition of V] =g (V,6(v(1)),8,v(t)),

[since 8,y ==V, o] =g (Vg5(V(f)),—Vg5(V(t))):
= ||V, 50|,

[since 3,y =—V, 6 0v] :—Ilatv(t)llgz.

In particular, the derivative of § o v is everywhere negative, thus showing that it is decreasing.
Moreover, 6 o v is constant if, and only if, its derivative is everywhere vanishing, namely

Vt €R,V,6(v(t)) =0,

and then by the uniqueness result for solutions of ordinary differential equations, v is constant,
thus showing the negation of the claimed equivalence and yielding the result. [ |
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Lemma 3.5. Let v be a vertical fragment and let us define its energy E(v) € [0,+00] as

E(v) =J 18:v(O)ll,* dt.
R

If v has relatively compact range, then E(v) is finite and E(v) = sup 6 (v(t)) — %nlgé(v(t)).

teR

Proof. Let a € [0,+00), then Lemma 3.4 implies that

C) f 18:v(O)ll,* de = J 3;6(v(1)) dt=6(v(=a)) —5(v(a)).

However, 6 ov is decreasing (by Lemma 3.4) and bounded (since v has relatively compact range),
thus its limits at —oo and +00 both exist and are finite, and they furthermore satisfy:

Aim_5(v(1)) = sup 5(v(1)),

dim 5(v(t)) = 31611{5(V(t))-

Therefore, taking the limit as a — +00 in (9) shows that

0
liinoof ||8tv(t)||g2 dt= tliznoo 5(v(t))_t1i-ri-noo o(v(t)),

=sup6(v(t))— }2}{5(1/(0),

teR

thus yielding the result. [ |

Lemma 3.6. Let K be a compact subset of Bx RY x RY, then there exists a constant M > 0 such that

any vertical fragment v having range in K satisfies ||v||¢c2 , < M.

Proof. Since v has range in K, for all t € R, it holds that
16, v(E)ll; = ||Vg5(v(t))||g < sup |V, = M,.
Moreover, the chain rule and the above inequality show that for all t € R, it holds that
||at2tv(t)||§ = ||Tv(t)vg5(8tv(t))||§ S M- Sup ”Tvg5”§ =M,

hence, if d, is the Riemannian distance associated to g, letting M = max(diamdg(K ), M, M,),
which depends only on K, 6 and g, yields the result. [ |

Remark. Lemmata 3.4, 3.5 and 3.6 hold for gradient flow lines of arbitrary smooth functions.

Proposition 3.1. Let v be a vertical fragment. If A is at most %'%-singular and v has relatively

compact range, then the limits of v at —00 and 400 both exist, and are points of S;.

Proof. Using Definition 3.2, there exists b € B such that v is a g-gradient flow line of =6} xgv xrr >
let us write 6, = &;(xrvxgv and focus on the negative end of v, then the proof is carried through
the following steps:
* Step 1. The critical points of &, are the (11,71,) € RY x R" such that (b,1;,7,) € Ss.
Moreover, the number of critical points of &, is finite.
* Step 2. It holds that V,5(v(t)) —= 0.
* Step 3. The limit of v at —o0 exists and is a critical point of §,,.
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Step 1. Let us write f;, = fi)xrv @0d fo, = foip3xrv, it follows from Lemma 3.1 that

V(n1,m,) €RY x RN,Vg(Sb("h:")z) =V, f1,(m) &=V, f5 (1),

then (n,,m,) is a critical point of &, if, and only if, (b, n;,7,) € S;, thus yielding the first claim.
Moreover, Corollary 2.1 ensures that the number of critical points of f;, and f, are both finite,
therefore the number of critical points of 6, is also finite, thus yielding Step 1.

Step 2. Argue, for the sake of contradiction, that d,v(t) tﬁL) 0, then there exists € > 0 and a
sequence (t;)ien Of real numbers such that t, — =00 and for all integers k = 0, ||3,v(t,)ll, = .
Besides, using Lemma 3.6 and the mean value inequality, there exists M > 0 such that

Vi, €R, Vi, €R,[1G,v(t1) — ,v(t)ll, < Mty —t,],

£

— o bkt ﬁ], for k € N, it then follows from the triangle inequality that

thus, defining I = [tk
€
vt €I [10v (Ol = 19 (tllg — 10:v(t) = 0v(D)l, > & = Mt —t] = 7.

However, since t; 7) —o00, there exists a subsequence (still denoted in the same way) such that

£
2M°

+00 +00 2
E(v) > ov(t)ll > de > av(t)ll > de> (f) L —too
) f(_wmnt()ng ;Lut()ng 2.3) w

hence contradicting Lemma 3.5, thus J,y —— 0 and Lemma 3.4 yields Step 2.

t—>—00

forallk N, t; ., < t;— thus the intervals {I, },y are pairwise disjoints, implying that

Step 3. According to Step 1, letus define o, € S5, ..., 0, € S5 to be the distinct critical points of 6,,,
then for all k € {1,...,£}, let U, be any connected open neighbourhood of o, in {b} x R¥ x R,
Moreover, since 04, ..., 0, are pairwise distincts, assume, without loss of generality, that Uy, ..., U,
are pairwise disjoints, and let us define U to be their union. It then follows from Step 2 that there
exists T < O such that forall t < T, v(t) € U. Hence, by continuity of v, there exists k € {1,...,£}
such that for all t < T, v(t) € U,, but since U, was arbitrary, it yields 1_10r101v = 0 and Step 3.

A similar argument applied to the positive end of v shows that Erimv exists and is a point of S,
o
thus yielding the result. [ |

Remark. The proof of Proposition 3.1 more generally show that the bounded gradient flow lines
of any smooth function, having isolated critical points, converge to critical points.

Remark. If 6, was a Morse function, the proof of Proposition 3.1 would be rather standard and
straightforward (see, for example, [AD10, Proposition 2.1.6]). However, as it was remarked after
the proof of Proposition 2.1 that §, fails to be a Morse function when b is in the complement a
codimension 0 submanifold of B.

3. Floer-Gromov convergence for Henry-Rutherford sequences

This section defines and studies a good Floer-Gromov-like topology (Definitions 3.4 and 3.5)
well-behaved to analytically describe how the Henry-Rutherford limiting process straighten the
gradient flow lines of difference functions onto gradient staircases chains (Theorem A).
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Definition 3.4. A Henry-Rutherford sequence y, € Mc_, ¢y 0, g;,) converges in the Floer-Gromov

topology towards a parametrized gradient staircase e = (hy, vy, hy,..., VvV, hy) € M5 (c_,c,50,8)
whenever there exist sequences of real numbers (TZ")kEN, ey (TZ’“)keN and (7, )gens - - > (T, Dken
such that

e foralli€{0,...,m}, vi(ss 2(- + TZi)) = h; in the C. -topology; and
e forall je{1,...,m}, (- +77) - in the C -topology.

Furthermore, an unparameterized Henry-Rutherford sequence [y, ] € #(c_,c,;0, g, ) converges
in the Floer-Gromov topology towards an unparameterized gradient staircase [€] € 4% (c_,c,;5,g)
whenever there exist representatives y, € M(c_,c +30,8)of [V, ]and e € ///Z\St(c_, cy;0,g)of [e]
such that y, —e in the Floer-Gromov topology.

Remark. Since sequences of real numbers act by time-translation on Henry—Rutherford sequences,
the Floer-Gromov convergence must account for Henry-Rutherford sequences drifting to infinity.
In particular, time-shifts are used to centre Henry—Rutherford sequences around a fixed point, and
scaling allows to recover nonconstant horizontal fragments.

Remark. Definition 3.4 directly extends to Henry-Rutherford sequences (y,: I, = BXRY xRV), oy
only defined over a sequence of real intervals (I} )<y Such that |I; | — +oo.

Remark. For large enough nonnegative integers k, the sequence of time-shifts in Definition 3.4
are intertwined as follows:

ho V1 hy Vm—1 hm1 Vm hp,
T, ST, ST/ <<t st st sT7,

as it is seen from the junctions of fragments conditions in Definition 3.2, using Lemma 3.3.
In particular, Floer-Gromov convergence can be extended to gradient staircases chains.

Definition 3.5. A Henry-Rutherford sequence (y,)ien converges in the Floer-Gromov topology to
a parametrized gradient staircases chain e = (e,, ..., e,,) whenever there exist sequences of real
intervals (I )rens - - - » (I[ken such that

e forall k €N, {I},...,I"} is a partition of R; and
e forallie{1,...,m}, T 7> € in the Floer-Gromov topology.

Moreover, an unparameterized Henry-Rutherford sequence [y,] € .#(c_,c,;0, g, ) converges in
the Floer-Gromov topology to an unparametrized gradient staircases chain [€] € .#s(c_,c,;0,g)

—

whenever there exist representatives v, € M (c_, c;;0,8,)of [vy]and e € #5(c_,c,;6,g) of [€]
such that y, —e in the Floer-Gromov topology.

Remark. The first condition in Definition 3.5 ensures that no other gradient staircases can be
extracted from the Henry-Rutherford sequence considered.

Proposition 3.2. Let v and w be non-constant vertical fragments. Assume that v and w are recovered
from (yi)ren using sequences of time-shifts (7;)ren and (7} )ren, respectively, then v and w are
equivalent if, and only if, (|7} — T} |)xen is @ bounded sequence.

Proof. For all k € N, let us define T, = 7}/ — 7, so that 7} = T} + 7.
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* Necessary condition. Assume that v and w are equivalent, then there exists T € R such
that w = v(-+ T) and assume, for the sake of contradiction, that (| T}|),cy is unbounded.
Besides, for all k € N, there exists ¢, € {—1,1} such that |T,| = &, T}, then since {—1, 1}
is finite, using the pigeonhole principle, there exist ¢ € {—1,1} and a subsequence (still
denoted in the same way) such that

Vk EN)lTk| == ng.

If v and w are exchanged, the signs of (& ),y are flipped, thus it can be assumed, without
loss of generality, that € = 1, so that (T; ),y iS @ nonnegative unbounded sequence and
there exists a subsequence (denoted in the same way) such that forallk €N, T, = T +1.
Therefore, using Lemma 3.3 shows that

o (yk (—T + TZV)) =0 (yk (—T + T, + TZ)) <O (yk (1 + ’L’Z)) ,
and taking the limit for k of the above inequality yields, 6(w(—T)) = 6(v(0)) < 6(v(1)).

However, according to Lemma 3.4, 6 o v is strictly decreasing, hence a contradiction.

* Sufficient condition. Assume that (|T}|)ey is bounded, then there exists T € R and a
subsequence such that T} = T and proceed to show that for all t € R, v(t) =w(t + T).

Let k be an integer, then making several uses of the triangle inequality, notice that

lw(t)—=v(t+ Tllg < ||re (e +7}) —W(t)”g + ||y (e + ) —v(e+ 1)

( .
= ||yk(t +T‘;{V)—W(t)||g + ||yk (t + T + TZ)—v(t + T)||g,
(10) <|lve(e+7) =w@||, + ||r (e + T+ 1) = v(e + )|

gJ
+ ||re(e+ T+ 7)) =1 (e + T+ 7))

|g'

Besides, since 7, is negative g -gradient trajectory of 6, the mean value inequality yields

lre(t+ T+ 7)) =7 (e + T+ r;)||g < sup Hv&ké o7, IT — Ty,
[by Proposition 2.4] < sup ‘VgSkc‘SH T —Tyl,

K5 g
[by Lemma 3.2] < Sfl<l5p ||Vg5||g | T, — T 2 0.

Therefore, taking the limit for k on both sides of (10) shows that v and w are equivalent.

Both sides of the claimed equivalence have thus been proved. [ |
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Floer-Gromov compactness for gradient staircases chains

The goal of this chapter is to provide a complete proof of Theorem A, whose rigorous and precise

statement now reads as follows:

Theorem 4.1. Let A be a closed Legendrian submanifold of (J'B, &) with at most %1-°-singularities.
If A is gradient and chord generic, then for all parametrized Henry—Rutherford sequences (Y )rens
there exist a parametrized gradient staircases chain e and a subsequence (denoted in the same way)
such that y; —e in the Floer-Gromov topology.

Remark. Gradient genericity is meant for the Riemannian metric induced by a metric on the base,
see the remark following Definition 3.1, for more details on this construction.

Each section of this chapter corresponds to a step in the proof of Theorem 4.1:

* Step 1. First, elementary fragments of gradient staircases are recursively recovered.
Applying Arzela-Ascoli theorem easily recovers vertical fragments (Proposition 4.1),
while horizontal fragments need a more careful analysis (Theorem 4.2).

* Step 2. The recursive procedure recovering one after the other the elementary fragments
of gradient staircases is then shown to end after a finite number of steps (Theorem 4.3).
It is not straightforward and heavily relies on gradient genericity defined in Chapter 1
to prevent elementary fragments of gradient staircases from becoming arbitrarily short
and accumulating.

* Step 3. At last, it is shown that after the recursive procedure has ended, it has recovered
a complete gradient staircases chain without missing elementary fragments (Section 3).
In other words, the elementary fragments recovered have continuous junctions.

This chapter is the culmination of the thesis and materials from all previous chapters are needed.
In particular, the assumptions in the statement of Theorem 4.1 were explained in Chapter 1,
while some of the technicalities needed for the proofs were dealt with in Chapter 3.

1. Recovering elementary fragments of a gradient staircases chain from a HR-sequence

This section explains how elementary fragments of gradient staircases chains are recovered from
Henry-Rutherford-sequences in the Floer-Gromov topology sense. It first deals with the easier
case of vertical fragments (Section 1.1) and then with horizontal fragments (Section 1.2).

1.1. Recovering one vertical fragment at a time.

The convergence in the Floer-Gromov topology of Henry—Rutherford sequences towards vertical
fragments is straightforward from Ascoli-Arzela theorem, since Proposition 2.4 and Lemma 3.2
directly provides uniform C2-bounds allowing to take s — 0 in the ordinary differential equation
associated to the g,-gradient flow.

67
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Proposition 4.1. Let U be an open neighbourhood of S5 in B x R¥ x RN, Assume that for all k € N,
there exists T, € R such that y,(7,) € U, then there exist a non-constant vertical fragment v and a

subsequence (still denoted in the same way) such that v, (- + T) =V in the Cﬁ)c-topology.

Proof. For k € N, let us define ¢, = y(- + 7;) and let us write ¢, in components as ¢, = (¢ g, Cx r),
then ¢, is a negative g -gradient flow line of &, since y, is and it is an autonomous vector field.
Besides, using Lemma 3.1, the differential equation satisfied by ¢, reads in components as:

{atck,B(t) = =5, V,, 0 (ci (1)),
0,0, p(t) ==V, 8 (ck(t)),

Then, Proposition 2.4 and Lemma 3.2 show that (c; ),y is @ bounded sequence in C?-topology,

(1D

and the mean value inequality shows that (¢; ).en and (,¢; )ren are bounded and equicontinuous,
so that Arzela-Ascoli theorem applies and provides a limit point v for (¢; ),y in the Clic-topology.
Therefore, if v is written in components as v = (v, Vy), taking the limit for k in the system of
differential equations (11) satisfied by c, and recalling that s, - 0, then yields

atVB(t) =0,
{@vF(t) = —v, 5(v(t).

The above equations shows there exists b € B such that v is a g-gradient flow line of —&(;xgv xrv >
therefore v is a vertical fragment and to conclude, it only remains to show that v is non-constant.
For this purpose, start by noticing that Proposition 2.4 ensures that v has relatively compact
range, so that Proposition 3.1 applies and shows that the ends of v are both elements of S;.
Besides, argue that, by construction of (7;).en, for all k € N, it holds that ¢, (0) € U¢, then taking
the limit for k yields v(0) € Uc = US C S;° and the result. |

Remark. Whenever the conclusion of Proposition 4.1 holds, v is said to be recovered from (v )i.ens
and this definition is compatible with Definition 3.5.

1.2. Recovering one horizontal fragment at a time.

Unlike what was done in Proposition 4.1 for vertical fragments, horizontal fragments cannot be
recovered by a direct application of the Ascoli-Arzela theorem to a Henry-Rutherford sequence.
In particular, since Henry—-Rutherford sequences need to be speed-up to converge to nonconstant
horizontal fragments (Definition 3.4 and 3.5), working with horizontal fragments is trickier.
Unfortunately, this speed-up parameter also messes up the uniform C%-bounds required to apply
the Ascoli-Arzela theorem and recover horizontal fragments from Henry-Rutherford sequences.
Indeed, if y, € A (c_,c +;0,8,), then using the chain rule and Lemma 3.1 shows that

Ors(sT) ==V, 6(rsT ) @5V, 6(x (s t)),

which does not converge in the limit s — 0, unless y,(s~'t) converges sufficiently quickly onto S;.

This difficulty is overcome by conducting a careful geometrical analysis of the difference function
gradient flow resulting in upper bounds (Propositions 4.2, 4.3, 4.4 and 4.5), allowing to prove
uniform convergence on an interval from pointwise convergence on its boundary (Theorem 4.2).
Similar techniques were previously applied to the Floer equation to get [BO09b, Proposition A.3].
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Moreover, Propositions 4.2 and 4.4 are also expected to play a crucial role in the proof of the
Floer-Gromov gluing result needed for Conjecture 3.1 to hold, since [BO09b, Proposition A.3]
was at the heart of [BO09b, Proposition 4.22] and [BO09b, Theorem 3.7].

The rest of this section now conducts a careful quantitative analysis of the negative gradient flow
dynamics of the difference function when sufficiently near to its maximal flow invariant subset.
In particular, it is shown that

* fibre directions are uniformly contracted (Propositions 4.2 and 4.3); and
* base directions are controlled by the fibre ones (Propositions 4.4 and 4.5);

and in both cases, the analysis and the resulting estimates are slightly different whether or not the
open neighbourhood considered intersects the singular part of the maximal flow invariant subset;
e.g., not only nonsingular fibre directions are uniformly contracted, but with an exponential rate.
From these estimates, horizontal fragments are finally recovered (Theorem 4.2).

First, let us start working on the nonsingular fibre directions of the maximal flow invariant subset.
For that purpose, let m5: B x R* — B be the canonical projection, then by construction of S5~,
every point o € S5\S;~ has an open neighbourhood V7 in S5\ S5~ such that T, iSan embedding.
Indeed, 7 restricts to an immersion on S5 \Ss ™ and is therefore locally everywhere an embedding.
Besides, since S; \ S5~ is a submanifold of B x R?" | it is locally closed in B x R*N, and in particular,
there exists an open neighbourhood U of ¢ in B x R*N such that U N (S5 \ S5~) is closed in U°.
Moreovet, by shrinking U7, it can be assumed that U? = U7 x U7 and U° N (S5 \ S5~) C V7.
Therefore, by construction of UY, 7;: B x R?N — B restricts to an embedding on U’ N (S5 \ S5~),
and in conclusion, there exists a unique smooth map n“: Uy — Uy such that

U°N(S5\Ss™)={(b,n?(b)),b e U} =T,o.

Then, let also K’ = K x K; be a compact subset of U“.

RZN
(55 \Sﬁ<) nU? = Fn”
ns(t) @
ng(t) @
o
by(t) B

Figure 20. Visualising the quantities introduced in the proof of Proposition 4.2.
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Proposition 4.2. There exist uniform constants d, > 0, C > 0 and p > 0, depending only on 9,
such that for all s € (0,1], for all y, € M(c_, c;;0,g8) and all interval [t_,t7] C R such that
* the range of v, = (by, n,) restricted to [t_,t '] is contained in K’; and
* llne=n?lly, < do on [£7, ¢ ], where v, = (b,,n,) and nf =n° o b;
then forall t € [t_,t], Any(t) =n,(t) —n?(t) and its first-order derivative at t are bounded by
cosh(p(t —(t; +1t)/2))
cosh(p(tr —t)/2) * s) ’

for the norm that are associated to g on R and TR?", respectively.

C (max(uAns(t;)IIgF, 1An,(E)lg, )

A

@--------mmmmmmmmmmm———--
@-------mmmmmmmmmmm——————

Q
“
j=n

@

Figure 21. Shape of the upper bound derived in Proposition 4.2.
Proof. Let d; = ||[Anll,, : [t.,t7]—Rand t € (t,t), then applying twice the chain rule yields
~ ge(Any(0), 33 A0 +118.A0,(Oll, " gr(An,(0), 8,A0,(0))?
lAn(Oll,, A (OIl,,°
Besides, the Cauchy-Schwarz inequality shows that
_g(an(),88m,0F _ _laan 0’
[AXG! lan(O)llg,

and plugging the above inequality in equation (12) yields
gr(An,(t), 82 An,(t)

lAn(Oll,,
_ gp(An(t), 05n,(t)) — g5 (An,(¢), 3307 ()

lAn, (8], ’

where the equality follows from the definition of A7), the linearity of 82 and the bilinearity of g.

(12) d,”(t)

d(t) =

(13)

Recall from Lemma 3.1 that the differential equation satisfied by y, reads in components as:
{ 3,by(t) = —sV, o(y,(t)),

(14) >
atns(t) = _ng(S(Ys(t)),
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and use these equations to separately derive upper bounds for both terms on the numerator of
the right-hand side of inequality (13).

(15)

(16)

(17)

(18)

* First, using the chain rule and taking the derivative on both sides of (14) yield

0,:m,(t) = =T, () V,6(3,7,(1)),
—T, )V, 600, by(t) ® 3,m,(¢)),
[since T =3, ® I, ] =—0,V,,6(y,(t))-0,b,(t)—3,V, 6(r,(t)) - I,m,(t),
=—0,V,,6(y,(t))- 0,b,(t)—Hess, ()6 () 9,n;(t),
where in the last equality, 6, () is used as a shorthand notation standing for & (1) xgav-
Therefore, plugging equation (14) in the equality above shows that
0;Ms(t) =50,V 8(v,(6)) - V5, 8(r,(t)) + Hess, (1) 53 1) - Vi, 6(7(1)),

and the first term of (13) splits in two components that will now be separately dealt with.
For the first term, start using that § is C? and that y, has range in K° to show there exists
a constant ¢; > 0, depending only on 0, such that [|3,V, 6(y,(t)) - V,, 6 (v;(t))ll,, <cq,
then use that ||An(¢t)|l,, = d,(t) < d, and the Cauchy-Schwarz inequality to get

8r (Ans(t)jsabvgp5(}/s(t)) : vg35(Ys(t))) > _Clsds(t)'

The second of this term is dealt with applying Taylor’s formulas to X}, ;) = (V4. 0)(p. (1)} xr2v -
For that purpose, start using that y, has range in K’ and the compactness of Sz (since
the generating families considered are linear-at-infinity) to show that for all T € [0,1],
(1—7)n,(£)+7n?(t) stays in a uniform compact subset of Bx R*", depending only on &.
Thus, since & is C3, there exist ¢, > 0 and c; > 0, depending only on &, such that

sup ||Hessq oy, ()+ene) Ov, || < Cos
7€[0,1] 8F
sup ‘T(l—f)ns(t)ﬂn;’(t)HeSS(Sbs(t) S,
7€[0,1] 8F

where g; is the Sasaki bundle metric induced by the Riemannian metric g, on TR,
Recalling from Lemma 3.1 that X, ,(nJ(t)) = 0, since V, 6 vanishes exactly on S;,
applying Taylor’s formula to X}, (., between n(t) and 0 (t) shows that

1Xs, () (s (D, < collAn (O, ,

then letting A,(t) = Hess, o ;) Op (¢) and going one degree higher in the expansion gives

X, 0y(ns(t)) = A () An,(t) + R,(t),

1A, (Dllg, < ¢,

IR, (Ollg, < EBIIAm(t)IIgFZ,
Besides, since y; takes its values in K7, (b,(t), nJ(t)) stays in a compact subset of S5\ S5~
depending only on 6, and using Proposition 2.1, A,(t) = Hess, o ;) O (1) Is invertible.

Thus, since & is C?, there exists r > 0, depending only on &, such that r < ||A,(t)7}| gF_l.
Hence, since 1/r is, by construction, an upper bound for the spectral radius of A,(t)™?,
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in particular (bounding from above ||A,(t)™" - A,(t)An,(t)]] ¢,)» it then follows that

(19) 1A (D) An,(Ollg, = rllAn(Ollg, -

Moreover, let us introduce Dy(t) = Hess,, ) 6y (1y—A,(t) = Hess, () 63 ()—Hess,o(,) 65 (),
and then use mean value inequality to get

(20) ID:()lg, < csllAan,(o)ll,, -

With all these preliminaries at hand, start noticing that Hess, () 6, () = A;(t) + D,(t),
and then proceed as follows to derive the desired lower bound:

gr(An,(t),Hess, (1) 0p i Xp,y(s())) = gr(An (), A ()X} (n(ns(£)))
+ gF(Ans(t): Ds(t)sz(t)(ns(t))):

[using (17)] = g (An,(0,A(2AN,(0) + gr(An, (), A(OR,()
+ gr(An(t), D(£)X,, (1) (n,(£))),
[since & is C2, A,(t) is symmetric] = ||As(t)A’nS(t)||gF2 + gp(An,(t),A,(t)R,(t))
+ gr(An(t), Dy(£)X} (1) (1(£))),
[using (19) and > r2llan(Ollg,” — IAOR(Ollg, 1 AN, (0],
the Cauchy-Schwarz inequality] — IDs()X (0 (s ()l [1AN(Dl,, »
[using (17), (18) and (20)] > r?lAn (0l —2ccsllAn,(Dll,, >,
[since [|An,(t)ll,, < do] > (r2—262c3d0)||Ans(t)||gF2.
Therefore, provided d, < 5— 2c o let us define p = /72 —2c,c,d, > 0 so that
(21) gr(An,(t),Hess, ()5, 1V, 5(r,()) = p2llAn,(Dll,,> = p2d (0).
Finally, plugging equality (15), and using inequalities (16) and (21) yield
(22) gr(An,(6),95n, (1)) > p?d.*(t) — cy5d,(t),

ending the analysis for the first term of inequality (13).
* First, recall that n7 = 1 o b, then use the chain rule and equation (14) to show that

(23) aing () = Ty (yn° (8, bs(t)) = =s Ty (1yn (V5,6 (v,(1))).

In particular, notice from equation (23) that s 8,7 is a composition made from:
* Tn? and V, &, which are continuously differentiable maps depending only on 6,
since & is C2 and 7’ is entirely determined by Ss; and
* b, and y,, which are continuously differentiable maps whose values and the values
of their first-order derivatives stay in some compact subsets depending only on &,
as it is seen from equation (14), since § is C?, y, has range in K° and s < 1
Therefore, applying the chain rule to d,n] shows there exists a uniform constant c, > 0,
depending only on &, such that [[82n7|| ¢» S €45, then by the Cauchy-Schwarz inequality

(24) —gr(An(£), 3217 () = —c,sd (1),

ending the analysis for the second term of inequality (13).
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Finally, letting ¢ = ¢, +¢, > 0, and using inequalities (22) and (24) in inequality (13) shows that
(25) d” = p%d,(t)—cs.

Then, let us define p: [t_,tf]— R by

cosh(p(t —(t; +1t)/2)) N cs
cosh(p(t+ —1t7)/2) p?’

py(t) = max ([|An,(¢)ll,,, 1An,(¢ ), )

and let also u; = d, — p;: [t_,t]] — R, so that by construction of p, u,(t;) < 0 and u,(t]) < 0.
Let t), € [t ,t}] such that u; < uy(t,,) and assume, for the sake of contradiction, that u,(t,,) > 0,
then because u is negative on the boundary of [t,t] and t,; is a maximum of u, u,"(t,;) <O0.
However, by construction of u,, u,” > 4p?u, on (t7, t}) and u,”(t),) > 0, which is a contradiction.
Therefore, it shows that u; < u(t)) < 0 holds on [t_,t], and equivalently for all t € [t_,t]],

the following inequality holds true
cosh(p(t —(t; +t7)/2)) Lo
cosh(p(t+ —1t7)/2) p?’

yielding the desired upper bound for the zeroth-order derivative.

(26) dy(t) < max (| an (), 1An (¢, )

In order to derive the estimate for the first-order derivative, notice that since & and n° are C2,
using that y, takes its values in K’ and equation (23), there exists a uniform constant c¢g > O,
depending only on 6 (recall that n° is entirely determined by S;), such that

27) 19 (Ollg, < css.
Then, use the definition of An, and the triangle inequality to show that

1. Ang(Ollg, = 1V, 6(rs(EDl, + 18:ng ()l »

[using (14)] = X,y (s (N, +118:m (O)ll,»
[using (17) and (27)] < oollAn(O)llg, + css,
[using (26)] < ¢yp,(t) + css.

Therefore, for all t € [t t"], the following inequality holds true
cosh(p(t —(t; +1t)/2)) +(% . )S
cosh(p(t} —t7)/2) p2 )7

yielding the desired upper bound for the first-order derivative.

18:An(D)lg, < c;max (|an,(¢))llg,, A7, )

Thus, letting the uniform constant
C CyC
C = max 1,c2,—2,—2+c5 >0,
P P

depending only on 6, yields the result. [ |

Remark. The hyperbolic cosine part of the estimate from Proposition 4.2 is not surprising as it
was already found analysing similar cases in [Bou02, Section 3.2] and [BO09a, Proposition A.3].
It is however unusual to recover a linear term in the degenerating process parameter (s here),
but examining the proof of Proposition 4.2, it seems that it is unavoidable as soon as the front
projection of the Legendrian submanifold has a non-horizontal strand.
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Remark. To enlighten the statement of Proposition 4.2 and the computations carried in its proof,
let us first consider the toy model given by exponential decay towards critical points for gradient
flow of Morse functions:

* (M, g) is a Riemannian manifold;
* f: M — R is a Morse function; and
* v:R— M is a gradient trajectory of f;

then for |t| = T large enough, y stays in a Morse coordinate chart around a critical point p, of f.
In this chart, the gradient flow f is linear, thus showing there exist C, p, > 0 such that

YIt] =T, |ly(t) — pell < Ce Pt

where the decay rates p_ are controlled by the smallest absolute value of eigenvalues of Hess,, f.
Moreover, exponential decay can also be obtained without resorting to Morse coordinate charts.
First, linearise the gradient flow of f around p. to show that

Vitl = T, 031y () = pell* = 4p. 2y (6) — pell?,

and then mimick the end of the proof of Proposition 4.2, but now with semi-infinite intervals,
and thus the recovered upper bounds are negative exponentials rather than hyperbolic cosines.
Going back to Proposition 4.2, inequality (25) is derived generalizing from the above toy model
and noticing that:

* & behaves like a Morse function in a fibre above S5 \ S5~; and
* gradient flow lines of & move at speed s in the base direction.

It is worth mentioning that the notorious result from [HWZ96], stating the exponential decay of
pseudo-holomorphic curves towards degenerate Reeb orbits has been obtained applying a strategy
similar to the one developed in the proof of Proposition 4.2.

Example 4.1. Let us consider an example to check that the estimate in Proposition 4.2 is sharp.
For that purpose, let us first define f : Rx R — R by f(b,n) = ”72 — bm, then f is a generating
family for the Legendrian submanifold of (J!R, £z) whose front projection is the diagonal of R x R.
Moreover, the fast-slow system describing the Henry—Rutherford limiting process associated to f
is given in components by:

T)s(t) = bs(t) - ns(t)'
Then, since this system of differential equations is linear, let us compute its eigenvalues lf and A7,

{ by(t) = sm,(t),

their associated eigenvectors esh and e, and then let us also determine their asymptotic behaviour

in the limit s — O:

e SRR L[ LEvitds 1+s
s 2 0> & = % s=0\ s |’
, 1+V1+4s ) 1-v1+4s s

Al =—"F7—— ~ —(1+5), e, = 2 ~ ’

2 s—0 S 1 s—0\ 1



1. RECOVERING ELEMENTARY FRAGMENTS OF A GRADIENT STAIRCASES CHAIN FROM A HR-SEQUENCE 75
From these computations, there exist uniform constants A and B, independent of s, such that
A (6) = n(0) = b(£) ~ A(—s)e 9 + Bse,
S—

where the first term is responsible for the hyperbolic cosine in the estimate from Proposition 4.2
and the second one for the linear term in s.

Let us now focus on the fibrewise dynamics near a singularity of the maximal invariant subset.
In particular, it is shown that

* transversal directions to the singularity behave as nonsingular fibre directions; and
* the tangencial direction to the singularity is controlled by the transversal directions;

thus providing an analog of Proposition 4.2 for singular fibre directions (Proposition 4.3).

First, every point o~ of S5~ has an open neighbourhood V= in S5~ such that 75 . is an embedding.
Indeed, since A is at most ©'%-singular, by Proposition 2.2, 7t restricts to an immersion on Sz~.
Besides, since S5~ is a submanifold of B x R?" | it is locally closed in B x R? and in particular,
there must exist an open neighbourhood U~ of o~ in B x RN such that U NS~ is closed in U~.
Moreovet, by shrinking U<, it can also be assumed that U~ = U; x U and U NSz~ C V™,
Therefore, by construction of U=, 7;: B x R? — B restricts to an embedding on U N S;~, and

in conclusion, there exists a unique smooth map n~: U, — U/ such that
Ss*NU=={(b,n?(b));b € U;} =T,-.

Then, let also K™ = K; x K be a compact subset of U~.

For (b,n) € S5~, let us define E(/l/) .y = kerHess, 5, and let E(Lb ) be its orthogonal in R*" for gp.

Since & is C* and A is at most ©'%-singular, using Proposition 2.2 shows that
 E/ and E* are vector bundles over S5=;
 E/ and E* have orthogonal supplementary fibres in R?" for g,; and
 E/ has rank one and E* has rank 2N —1;

In particular, any section v can be uniquely written as v = v/ + v*, where v/ € E/ and v* € E*.
Finally, notice that by construction, for all (b,n) € S5~, the following properties hold true:

* Hess, 6,: R* — R stabilises E(/Z . and Eg s and
* Hess, 6,: R* — R*" restricts to a linear invertible map between E(ib ) and itself.

With this preliminaries at hand, everything is now settled to state and prove Proposition 4.3.

Proposition 4.3. There exist uniform constants d, > 0, C > 0 and p > 0, depending only on 0,
such that for all s € (0,1], for all y, € M(c_, ¢;;6,g8) and all interval [t_,t7] C R such that

* the range of v, = (by, n,) restricted to [t_,t] is contained in K~; and
e lIns—n]lly, <doon[t;,t], where y, =(bs,n,) and n  =n~o b
then for all t € [t_,t], Any(t) = n,(t) —n (t) and its first-order derivative at t are bounded by
L Lo+ /(i I ¢+ 1/2
C(max(”AnS (t, )”gp »||Ans(t; )”gp) +max(||A77S (t, )”gp , | An(t] )”gp) +s ),

for the norms associated to g on R*N and TR?", respectively.
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Proof. Let t € [t_,t]], then by assumption, y,(t) € S5~, so that by construction, Hess, (5, )
restricts to an invertible linear map between E, ;" and itself, and moreover An,*(t) € E, (,y*.
Therefore, mimicking the proof of Proposition 4.2, there exist uniform constants d, > 0, ¢; > 0
and p > 0, depending only on &, such that if ||An,|| ¢, 18 assumed to be less than d, on [t_, t],
then forall t € [t_,t]], An,1(t) and its first-order derivative at t are bounded by
cosh(p(t —(t; +1t)/2))
+s ],
cosh(p(t}—1t7)/2)
Let us define o: [t;,t}] = S5~ € B xR* by o,(t) = (b,(t), n (t)), where y,(t) = (b,(t), n,(1t)).
Moreover, using Lemma 3.1, the differential equation v, satifies writes in components as follows:
{ 0, by(t) = —sV 4, 6(r,(1)),
atns(t) = _ng(S(Ys(t)); ’

and it now remains to understand the behaviour of Ans// from equation (29) and inequality (28).

@ amax(lanel, Jante,)

(29)

For that purpose, recall that a fibre bundle defined over a contractible base is globally trivialisable,
but since E/ and E* are vector bundles of rank 1 and 2N — 1, respectively, and o is contractible,
there exist global trivialisations of o,*E// and o,*E*, and it is possible to define

* a unitary vector e; = e, for the norm associated to g spanning o,*E /s and
e a orthonormal family of vectors (e,, ..., e,y) for g; spanning o, *E*.

Besides, since E// and E* have orthogonal fibres, (e, ..., e,y) is an orthonormal basis of (R?", g;.).
Therefore, in these global trivialisations, the orthogonal projections onto o,*E//, and onto o,“E*,
are respectively given by

V// = gF(v7 el)el = gF(vJ e//)e//a

2N
1
Vo= Z gr(v, e)ey.
k=2

In particular, there exist smooth coordinates x! = y,: [t.,tf] = Rand x?,...,x*: [t_,tf] >R
such that for all t € [t

—,t], the following decompositions hold true

Ans//(t) = Xsl(t)el = ys(t)e//:
2N
AnH(0) =D xE(De.
k=2
From now on, let t € (t_,t), then using the definition of An; and the linearity of 5, shows that
atAns(t) = atns(t) - atns(t)i
[using the chain rule] = 9,n(t) — T, (nn (3, b(1)),

[using equation (29)] = —V,,6(r(t)) +5T, )N~ (V,,0(y,(t)).

I

Therefore, since 8,An,”(t) = y,/(t)e ;> orthogonally projecting the above equation onto E] iy

and then identifying the resulting components along e/, yields

(30) Yi(t)=—gp(Vg, 6(rs(t)),e)) +58p(Th yn~ (V4 6(1s(t))), €,

and it remains to estimate separately both terms on the right-hand side of this equation.
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* To deal with the first of these terms, define 6, ;) = &( (1)yxrev @nd Xp, () = =V, O (1)
then observe that in the coordinates (e, ..., e,), X, () is given by

- 90,1y 35bs(r) 35b(r)
b() ™ dey ~ dey, T Degy

Recalling from Lemma 3.1 that X, (,(n(t)) = 0, since V, 6 vanishes exactly on S,
according to the quadratic Taylor’s formula applied to X, ) between n,(t) and 1 (t),
there exists T € [0, 1] such that if n¥(t) = (1 —7)n,(t) + tn (t) and

R(t)——li ZN T (e (el | e
6 de;0e;0ede, s sETs AT v

i=1 \j,kt=1

then the following equality holds true

1 2N 2N 8 6b() .
sz(t)(ﬂs(t)) = HeSSn;(t) 6bs(t) . A’ns(t) - 5 Z (Z m(n (t))x](t)xk(t) €; +R (t)
i=1

Besides, since by construction, Hess, <,y 63 () - An,(t) = Hess, <) 6y (1) - An*t (t)EEY (0

orthogonally projecting this equation onto E/ )y only the terms with i = 1 remain, and
then identifying the resulting components along e/, yields

1 2N 3351; © . j )
8r Xy (n(t)). ) = szl—ae// Fe o OO (@)
2N
1 3 6b 3 .
—< o (O (O (Ox ().
jz’k%;:l ae//aejzaekzaegz

The right-hand side of the above equation is a polynomial in y,(t) of degree at most 3,
then since the partial derivatives of any order of &, () are symmetric (since & is smooth),
its coefficients can be extracted as follows:

* At least quadratic coefficient. Set #{j;,k; = 1} = 2 A #{j,, ky,{, = 1} = 2, then

2N

0 YOI
20 iy e - zzzae—faej“’s“”"i“)'

/1
* Linear coefficient. Set #{jl,k1 =1} =1 A#{j,, ks, £, =1} =1, then:

1035,
a(t) = —= b”( “(t))—

2 Je 68

2N 335 . . . 2N a S .
by(t) = —Z FrCIOEHORS Z e 30 go, LX)

* Constant coefficient. Set #{j,,k; = 1} =0 A #{jy, kg, €, =1} =0, then:
2N

1 <h 3%8, () < vk 1 06, " €Nk (Yol
(=3 2} 5o g TR0 =§ 3 55 B il Oxt 00,

In conclusion, by construction of the smooth coefficients ay, b, c,: (t, t:) — R above,
and by definition of X}, (), the following equality holds true

(31) _gF(ng6(Ys(t))> e//) = as(t)ys(t)z + bs(t).ys(t) + cs(t):

ending the analysis for the first term on the right-hand side of equality (30).
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¢ To deal with the second one of this term, start noticing that since § and 1~ are both C?,
then using that y, has range in K~ shows that there exists a uniform constant C; > 0,
depending only on 6 (1~ is determined by S;), such that || T}, (11~ (V,, 6 (v,())ll,, < Cs.
Therefore, since |le/||,, = 1, using the Cauchy-Schwarz inequality yields

(32) |sgr (T, n~(V g, 8(r,())), )| < Css,

ending the analysis for the second term on the right-hand side of equality (30).

In conclusion, first using equations (30) and (31) to derive an expression for y,’(t) —a,(t)y,%(t),
and in a second time applying the triangle inequality and inequality (32) on the resulting equality
shows that

(33)

.ys/(t) _as(t)ysz(t)| < |bs(t)| : |ys(t)| + |Cs(t)| + C3s'

In order to estimate further the right-hand side of inequality (33), use that n, has range in K
and the compactness of S5~ (the generating families considered are linear-at-infinity) to show
that for all T € [0, 1], (1—17)n,(t)+77n(t) stays in a uniform compact set, depending only on 6.
Therefore, since § is C°, the mean value inequality provides uniform constants ¢, > 0 and c; > 0,
depending only on &, such that for all i, j, k,£ € {1,...,2N}:

%6, 1) .
sup | —— (1 - ), () + (e[ <
refo,1]| 9e;0¢e;d ey
sup |00 <] <
TE[OI,)l] ael’aejaekaeg /r)s ns = L3

Besides, recall that

* from the Cauchy-Schwarz inequality, for all k € {2,...,2N}, |x*(¢)| < [|An,(0)]]
* from the triangle inequality;, ||Ansl(t)||gF < [lAany(®)ll,; and

&r’

* [lAan,(t)ll,, is assumed to be less than d;

—1)2 —1)2 _1)3
thus defining uniform constants C; = (2N _1)C2+M >0and C, = & 21) @4 OGN 16) ad > 0,
and then applying the triangle inequality shows that

(2N —1)?

C 2
|b,()] < (2N = D)e, [l An (0], + 2 lan (Ollg,” < Gllan (Ol

(2N —1)%c > (2N —-1)3¢
TZIIAT)&(t)IIgF +Tg

In conclusion, plugging the above inequalities in inequality (33) yields

/ 2
¥ () —a,(0)y,*(0)] < Cllan (Ol - 1y (Ol + CollAn (Dll,” + Css,

and then the desired zeroth-order estimate will be straighforwardly derived from inequality (34),

2 2
e (D)l < A (O, < Cllan (Ol -

(34)

but before, it remains to derives
* a nonzero uniform lower bound, depending only on &, for |a,|; and
* a uniform upper bound, depending only on &, for |a,]|.

For that purpose, recall that |le||,, = 1, so that the previous observations can be enhanced as
o |y, ()= ||Ans//(t)||gF and for all k € {2,...,2N}, |xf(t)| NG
o [lan/ (O, < llan,(t)ll,, and [An(0)ll,, < 1AN,(D)]l4,; and
* [lAan,(t)ll,, is assumed to be less than d;

&r?
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(3N— 1)c3

In particular, defining the uniform constant C, = 2 + b > 0, which depends only on 0,

and then using the triangle inequality shows that

c, C (2N —1)c
la,(t)] < 52 + g3|}’s(l')| +——=lAn (Dl < C,

3
Besides, also notice that for all (b,n) € S5, the partial derivative Zej’g (n) is necessarily nonzero,

2
since using Propositions 2.1 and 2.2 ensures that gejg (n) = 0is a transversally cut-out equation.

Moreover, since § is C? and S5~ is compact (since the generating families are linear-at-infinity),
it is possible to define a uniform constant £ > 0, depending only on &, by

1 3
e=— in ( )| > 0.
4 (b,n)ess= | 0 e//
Therefore, using the triangle inequality shows that

1 5b(t) < 1046 (t) Sl by(t)
== t))| = t+— - t)+ t))x!(t
2‘ae,/ ()| = [a,(6) + g = (i) 2;236//33 (3 (0)x(2)

c (2N —1)c

< lag(0)] + Eslys(t)l + TSIIAnSL(t)IIgF,

(2N +1)c5d,
3 J

(which is from now on assumed), then

< la,(0)] +
and provided that d, <

3e
2(2N+1)c3
2(2N J; Deady

1]9%60),
las(t)| = 2 W( N, ()| —

It is now time to conclude by letting t,, € [t_, t}] such that for all t € [t_, ], |y, ()| < |y,(ty)l,
and then by discussing whether t,, belongs to the interior of the interval [t_,t"] or not

* Assume that t), € (t_,t]), then y,'(t);) = 0 and thus inequality (34) becomes

|a,(ta)ys*(ta)| < CillAn ()l - Y (ea)l + Coll An ()l + Cos,

and this inequality is plotted in Figure 22 below.

A

y =ax?
y =mlx|+p
>
m+4/m2+4ap m+ 4/ m2+4ap
- 2a 2a

Figure 22. Solving the inequality a|x|?> < m|x|+p, where a >0, m > 0 and p > 0.
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Then, discussing on the sign of y,(t,,), and solving with the quadratic formula, yields

2 2
C1||AnsL(tM)”gF + \/C12||AnsL(tM)”gF + 4as(tM)(C2||AnsJ_(tM)”gF + Css)

el < :
! 2la,(ty,)|
(C, ++/C,C,) V/C
< ——llan el + 5 s

1/2

where the last inequality follows from (x + y)¥/? < x'/2 + forall x > 0and y > 0.

In particular, plugging inequality (28) in the inequality above shows that

(G + v/ CCy) v C3)51/2

(el € T max(lan, () A0 (€9),) + (q o

since s € (0, 1] and the quotient of hyperbolic cosines in inequality (28) is less than 1.
* Assume that ty € {t, ]}, then |y,(t))] < max(|An,” (¢, 1An," ().

Therefore, this discussion shows that for all t € [t,t], A (O ¢, is bounded by

(35) c1(G +8\/ CyCy)

VG §1/2
2¢e )

max (|| Ang (¢ llg, » 1AN (£, ) +max(l| An,” (), , 1 An," (7)) + ( 1

To conclude, let us define uniform constants Cs > 0 and Cy > 0, depending only on &, by
C5=c1(1+w), Ce=2c; + \/?3,
€ 2¢
therefore, using the triangle inequality on ||A7;||,,, and then plugging inequalities (28) and (35),
shows that for all t € [t, t], [|An,(t)ll,, (and in particular, ||A7)SL(t)||gF and ||Ans//(t)||gF also)
is bounded by

36)  Csmax ([|an (e, A0 (¢, ) + max (1 an/ (), 1an," (6], ) + Ces'?,

since s € (0, 1] and the quotient of hyperbolic cosines in inequality (28) is less than 1 on [t_,t].
Yielding the desired estimate for the zeroth-order derivative.

For the first-order derivative estimate, use the triangle inequality and inequality (34) to show that
/(O] < CullAn Ol - Ly (O + Cllan Ol + Cos + G [ 720

then plugging s < 1, [|An,(¢t)|l,, < d, and inequality (36) above yields

(37) . an," (0)llg, < Cymax([|An (e, A0 (t])llg,) + Cg max(l| Ang (¢l » 1A (6], ) + Cos™2,

where C, = (C,+C,+C,)Csdy > 0, Cg = (C;+C,+C,)dy > 0 and Cy = (C,+C,+C,)Cedy+Cs > 0.
Hence, using the triangle inequality on |0, An;]l,,, and then plugging inequalities (28) and (37),
ensures that for all t € (¢, t"), [13,An,(t)ll,, is bounded by

(e +C)max([An, (¢l 1A (€Dl )+ Comax(llAn,” (), AN (€, ) +(c1 +Co)s' 2,

since s € (0, 1] and the quotient of hyperbolic cosines in inequality (28) is less than 1 on [t_,t].
Yielding the desired estimate for the first-order derivative.

Conclude defining a uniform constant C > 0, depending only on 6, by

C= max(l, Cs,Ce,c1 +Cy,cq,01 + Cg) .
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Despite being derived in some coordinate chart, the above estimates still yield Proposition 4.3,
since using the chain rule and the compactness of K~ ensures that working in coordinate chart
only affects the exact value of C. [ |

Applying a similar strategy to the one used to prove Proposition 4.3, but now substituting

* base directions to the tangencial fibre direction of the degeneracy; and
* fibre directions to transverse fibre directions of degeneracy;

shows that understanding the fibrewise dynamics of the negative gradient flow of the difference
function is enough to tame the dynamics in the basis.

As earlier, let us first deals with the base dynamics away from the singularities.

Proposition 4.4. Let us define £: U] — R by £(b) = 6(b,n(b)) and let gof be the flow of =V, .
There exist uniform constants C > 0 and a > 0, depending only on 0, such that with the same
notations and assumptions from Proposition 4.2, then the following statements hold true:
(1) If the range of b, does not intersect an open neighbourhood of the critical points of ¢, then
there exists b, € B such that b,(t) — ¢',(b,) and its first-order derivative at t are bounded
by

h(p(t—(t-+t1)/2
c(max(uAm(t;)ng,,,||Am<t:)||gF)COS et +5 ) ))+s),

cosh(p(tF—1t7)/2))
for the norms associated to gz on B and T B, respectively.

(2) Ifeither b/(t]) or by(t.") converges towards a critical point of £ in the limit s — 0, then there
exists s, € (0, 1] such that for all s € (0, s, ], there also exists b, € B such that bs(t)—apft(bo)
and its first-order derivative at t are bounded by

cosh(p(t —(t; +t)/2))

cosh(p(t; —t,)/2)

for the norms associated to gz on B and TB, respectively.

C (maX(IIAm(t;)IIgF, 1At ) +(t] — ts_)sz) e,

Proof. For all b € B and for all v € T},B, the definition of V,and the chain rule show that

g5 (Vo €(b), v) = Tyl (¥) = T(ppo )5 (v @ Ty (v)),

[by definition of V] =g (Vg5(b, n?(b)),ve® Tbn"(v)) ,
[using Lemma 3.1] =g (VgB5(b, n?(b))®V, 6(b,n°(b)),ve® Tbna(v)) ,
[since (b,n° (b)) €Ss] =g (VgB?S(b,n"(b)) ® Opov, V& Tbn‘j(v)),
[since g =gz ®gr]  =g5(Vy,6(0,17(b)), ) + gr(Ogax, Ty (»),
= g5 (V,,8(b,n7(b)), v),

thus, the equality V, £(b) =V, 6(b,n7(b)) holds, since g is non-degenerate and v is arbitrary.
Besides, for all t € [t_,t]], let us define an error term &,(t) € T}, (B by

g;(t) =V, L(by(t)) =V, 6(r,(t)),
= V,,6(by(t),n; (t)) — V,,6(b,(t), (1)),
= V,,6(bs(t),n7(t)) — V,, 6(by(t), ny(t)).
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Then, using that y, has range in K and S; is compact (since f; and f, are linear-at-infinity) shows
that for all T € [0, 1], (b,(t), (1 —71)n?J(t)+7n,(t)) stays in a uniform compact subset of B x RV,
Hence, since & is C?, the mean value inequality shows there exists a uniform constant C, > 0,
depending only on &, such that for all t € [t_, 7], the quantity ||&(t)||,, is bounded by

(38) le(Dllg, < Cillng(€) —nJ (),

Therefore, Proposition 4.3 implies there exist uniform constants d, > 0, C, > 0 and p > O,
depending only on &, such that if d; is less than d, on [t_, t/] (which is from now on assumed),
then for all t € [t_,t]], the following inequality holds true:

cosh(p(t —(t; +t)/2))
cosh(p(t —t:)/2) +S) '

Let us write 7, : R = B x R* in components as v,(t) = (b,(t), n,(t)), then recall from Lemma 3.1

B9 @y, < G (maX(llAns(ts_)llgF, 1A (eI, )

that the differential equation it satifies translates in components as follows:
{ 9. by(£) = =5V, 6(r,(t)),
atns(t) = _ng5(Ys(t))s .

Therefore, using differential equation (40) and the definition of ¢, shows that

(40)

(41) 8:by(t) = =5V, £(b,(t)) +s£,(0),

and the result will follow from inequality (39) by direct integration of equation (41), discussing
whether or not b, stays away from the critical set of £, when s goes to zero.

(1) If the range of b, does not intersect an open neighbourhood of the critical points of £,
then there exists a uniform constant L > 0, depending only on §, such that t—t~ < L/s.
Indeed, since b has range in K/, there exists a uniform compact subset K., constituted
of regular points of £, depending only on 6, such that b has range in K,.,, then let us
define

Ereg :}{g”vgsellgg > 0.

Besides, let us define I, =]st_,st’[ and u: I, — R by u(t) = —{(b,(t/s)), then for t € I,
introduce 7 = t/s and use the chain rule to compute

L) = — Ty (€(, bs(T))’
3
[by definition of V,_ ] = —gB(vgBE(bS(:))’ ’ bS(T)),
[using equation (41)] = [V, £(b;(T))llg,* — 88(V g, £(by(7)), (7)),
[using Cauchy-Schwarz inequality] > ||VgB€(bs(T))||gB2 — IV g, €D ()l Il (g, »
[since b,(7) € K., and by definition of ¢,.,] 2 €reg (8reg — e, (7]l 83) ,
[using inequality (38) and [|An;ll,, < d,] Z Ereg (sreg — Cldo).

2
To proceed any further, let us define a uniform constant ¢ = E'% > 0, depending only 0,
Ereg

TR then the above inequalities show that for all t € I, u’(t) > e.

and assume that d, <



(42)

(43)
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Hence, by the definition of u, integrating u’ on I, = [st_,st] shows that
£(by(t; ) —L(by(t])) = e(st] —st.).

Let us define a uniform constant L = (supKreg l —ianreg ¢)/e+1 > 0, depending only on &,
then since b, has range in K,,,, the previous inequality divided by es yields [ —t < L/s.
Moreover, using the straightening theorem for vector fields and the compactness of K.,
there exist finitely many coordinate charts {(Uy, ¢y : Uy = R")}1<k<, of B covering K.,
and a fixed vector X € R" such that for all k € {1,...,r}, =V, { is equal to ¢,"X on Uj.
Lett € (t,t7) and 7, = (t] —t)/2, and assume, without loss of generality, that 7, < t,

then since b, is continuous and has range in K,.,, there exists a partition

eg:
T =tl<t?<...<t"l<t"=t¢t
S s s s s ’

such that for all k € {1,...,m— 1}, b, restricted to [tsk, tf“] has range in the chart U,.
Hence, in particular, for all k € {1,...,m — 1}, in the local coordinates of B given by ¢,
the differential equation (41) can be written as follows:

V© e [th, e8], 8,b,(7) = sX +sJac, () ¢ - £(7).

Let us define b, = ¢,(b,(7,)) —s7,X, directly integrating the differential equation (41)
on each subinterval of the partition 7, =t < t> <... < t"' < t™ =t shows that

fk+1

sJacy () i - &(7)d T,

2 m—1
b.(6)— 9!, (bo) = b,(t) — (Xt + by) = J sJacy o 91 £, () AT+ S J
=2 Jt

provided that for all k € {1,...,m—2}, the initial condition was carefully chosen for the
resulting trajectories on [t¥, t**'] and [t**!, t"%] to agree on the intermediate time t***.
But since K., is compact, there exists a uniform constant C; > 0, depending only on 6,
such that for all k € {1,...,k}, the inequality || Jac, () py - &(t)lly, < Cslle,(t)ll,, holds.
In particular, using the monotonicity of the integral and inequality (39) show that each
¢rs 181l ), then using
the triangle inequality in equation (42) and inequality (43) yields
t
1d ,
cosh(p(t7 —£,)/2)) L T%s
sinh(p(7 —(t; +t)/2))
sinh(p(7 —(t; +t)/2)) th—t
cosh(p(tj—1t7)/2)) 2
+ —_
cosh(p(tr—t)/2)) | 2
cosh(p(t—(t; +t/)/2)) L )
S,

J.tld’c )s.
Jt cosh(p(t — (t; +t7)/2))
; cmmmq—qwm>s+“_“w)
sz),
sinh(p(z — (¢ +£7)/2)) L)
S,
cosh(p(tr —t)/2) ' 2

term on the right-hand side of equation (42) are bounded by

Jt cosh(p(t —(t; +t1)/2))

cosh(p(tr —)2) 7

C1GoG (maX(IIAns(ts_)llgF, AN (D, ) +s

To keep notations short, let us define M; = max(||An,(t, )l

dt

+

”bs(t) - @ft(bo)”gB < mC, GG (Ms

[since t; <t <t'] <mC,C,Cs

[as |sinh| < cosh] < mC,;C,C,

[astf —t < L/s] < mC1C2C3(
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1 cosh(p(rt—(t-+tH)/2 L
[since s < 1] < mC,C,C,4 (;Ms coiﬁgp(t;i t;);z)g) ) N 53)
In conclusion, for all t € [, t}], by(t) — ¢’,(b,) is bounded by
cosh(p(7 = (t; +1)/2)) | 1
cosh(p(cr —)/2) 55)’
yielding the desired estimate from Proposition 4.4 (1) for the zeroth-order derivative.

1 _
(44) mC;C,Cs (; max (|| An (¢l A7, (eIl )

In order to control the first-order derivative from the zeroth-order derivative estimate,
start noticing that since £ is C2 and defined a compact subset, both depending only on &,
the mean value inequality provides a uniform constant C, > 0, depending only on &,
such that for all t € [t_, ], the following inequality holds true

(45) [V, £(0(60) = V0, £ (0L, (b)) ||, < C || Bo(6) =05, (Do), -

Then, derive the desired bootstrapping inequality, proceeding as follows

”at by(t)— atgoft(bo)”gﬂ - ”af by(t) +ngB€ (wft(bo))||g3 ’

[using equality (41)] = ||_Svg3€(bs(t)) +56,(t) +sV, ¢ (‘Pft(bo))”gB )
=5 ||V, € (¢!.(be)) =V, (b(£)) +&,(1)],

[since s < 1] < ||V, (#1:(bg)) — Vg, £(by(1)) + Es(f)”gB ,

[by triangle inequality] < ||VgB€(bs(t))—VgB£ (‘Pft(bo))”gB + [l&;(Olg,»

[using inequality (45)] < Cy ||bs(t) — (pft(bo)”gB + e (O, -

To conclude, apply inequalities (39) and (44) in the bootstrapping inequality above to
show that for all t € [t_,t*], 3,b,(t) — &, wft(bo) is bounded by
cosh(p(t —(t; +t1)/2)) (mL63C4 )
+ +1])s].
cosh(p(t}—1t:)/2)) 2
yielding the desired estimate from Proposition 4.4 (1) for the first-order derivative.

mC,C. -
C1C2 (( p2 k + 1)max(||Ans(ts )”gFJ ”Ans(t:)”gF)

Thus, letting the uniform constant

1 L mC;C, mLC;C,
C =(C,Cymax| —, -, +1,———+1]>0,
p 2 Jo) 2

depending only on 0, yields Proposition 4.4 (1).

(2) If either by(t,") or by(t.") converges towards some critical point p of £ in the limits — 0,
then there exist a coordinate chart around p and a linear map A such that —V, £(b) = Ab.
Indeed, this claim follows from the Morse lemma, noticing that since A is chord generic,
then applying Definition 1.12 (1) and Proposition 2.3 shows that £ is a Morse function.
Assume just for now that b, takes its values in the domain of this Morse coordinate chart,
then in this coordinate chart, the differential equation (41) translates as follows

0,b,(t) = sAb,(t) + se,(t).



1. RECOVERING ELEMENTARY FRAGMENTS OF A GRADIENT STAIRCASES CHAIN FROM A HR-SEQUENCE 85

Let 7, = (tf —t)/2 and b, = e**"b,(7,), then applying the Duhamel’s formula yields
t

(46) by(t)— goft(bo) = b,(t)—e'"*b, = J set= Mg (1)d 7.

Ts
There exists a uniform constant a > 0, depending only on 6, such that ||Ab||, < 2a]|b||,,.
In particular, let t € [t_,t7]and 7 € [min(7, t), max(7, t)], then using the power series
expansion of the exponential function and the triangle inequality; it is well known that
e e (0|, < el (0l < e (0l
where the last inequality follows from the exponential function being increasing on R.
Therefore, applying this last inequality in equality (46) yields

t t
| J S”es(t—r)AES(T)”gBdT f slles(Dllg, d
Ts Ts

Besides, notice that this integral already appeared in the proof of Proposition 4.4 (1),

< eas(t;“—ts_)

b,() — ¢!, (bo)|, =

so that carrying the same computations shows that for all t € [t "], by(ty)— cpft(bo) is
bounded by

cosh(p(v—(t; +£7)/2)) 1 . 5\ i)
cosh(p(tF —t7)/2)) + z(fs t;)s )e ,

yielding the desired estimate from Proposition 4.4 (2) for the zeroth-order derivative.

1
(47) GG (; max (|| Any(¢])llg, » AN, (1), )

Moreover, Proposition 4.4 (1) shows that away from p, (47) can be improved to (44),
and in particular, it can be assumed, without loss of generality, that b, has range in the
domain of a Morse coordinate chart around p.

In order to control the first-order derivative from the zeroth-order derivative estimate,
start by observing that there exists s, € (0, 1] such that for all s € (0,s,], s(t| —t) > 1.
Indeed, let T, = s(t] —t_") and assume, for the sake of contradiction, that T 7L0> +o00,
S
then there exist a sequence (s ),y and T > 0 such that s, € (0,1], s, > 0and T, — T.
n n
Assume, without loss of generality, that bsk(t;:) — D, then let us show that bsk(ts_k) —P.
For that purpose, use the triangle inequality twice to show that

— - L L
‘ bsk(tsk)_p . S bsk(tSk)_(pSkt;k(bo) . + (pskt;k(bo)_p gB,
- _ — 14 14
[aSStsk _St:];_Tsk] - bsk(tsk)_%kts—k(bo) ¢ + ()DSkt;]—(_TSk(bO)_p gB’
< bsk(ts_)_(Pf tf(bo) + pr T (bo)_ﬂof t+_T(bo)
k kto, . ktg =T Kt 2
14
+ (Psktgl—(_T(bO)_p gB’
— - 14 14 14
= |a =0t o)+ [0k, B0 =k 00}
[as ! is a semigroup] + ot (L. 00))
Sk gs

Let us show that all the terms of the right-hand side of this inequality goes to 0 with n:
* Using inequality (47) shows that the first term converges towards 0 as n — +00.
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* Using the mean value inequality shows that the second term is bounded by

but the right-hand side term of the above inequality converges to 0 when n — +00,

¢ ¢
Lpskt;;_Tsk (bo) - LpSk[‘sJ;{—T(bO)

Ssup ||V, L, - T, — T,
&B Ky

|

<+00

since { is C' on the compact set KJ and by construction T, —T.
n

* First, let us see that (pft+(b0) — p, using the triangle inequality to show that
s n

| ¢!, (bg) — b.(t])

and then concluding using inequality (47) and that by assumption, bsk(t;;) — p.

<|

?5i: (o) =P o (EXCGOES1

&B

Since cpr(p) = p (as p is a critical point of £), cpr is continuous and c,oft+(b0) —p,

the third term also converges towards 0 when n — +o0. S '
Therefore, bsk(ts_k) — D, contradicting the starting assumption of Proposition 4.4 (2).
In particular, there exists a constant s, € (0, 1] such that for all s € (0,s,], s(t] —t) > 1.
Assuming that s < s, then plugging s(t” —t) > 1 and e =5) > 1 in inequality (39)
shows that the quantity |[&,(t)||,, is also bounded by
cosh(p(7 —(t; +t1)/2))

cosh(p(t}—1t7)/2))

Hence, using the bootstrapping inequality derived in the proof of Proposition 4.4 (1)
shows that for all t € [t ,t], 9,b,(t)— 0, tpft(bo) is bounded by

C4 B N COSh(p(T_(t;'i't:)/z)) C4 + =2 | pas(tf—t)
clcz((;+1)max(llAns(ts)IIgF,IIAns(tS)IlgF) cosh(p(cr —£)/2) +(?+1)(f5_t3)8)e ),

yielding the desired estimate from Proposition 4.4 (2) for the first-order derivative.

S1e; (maX(llAm(ts_)llgF, lan,(e)llg, ) +(t] — ts_)sz) e,

Thus, letting the uniform constant

11¢ _C,
¢c=C(Cmax| —,=,—+1,—+1|>0,
p 2 p 2
depending only on 0, yields Proposition 4.4 (2).

Despite being derived in some coordinate charts, the above estimates still yield Proposition 4.4,
since using the chain rule and the compactness of K7 ensures that working in coordinate charts
only affects the exact value of C. [ |

Let us now focus on the base dynamics near a singularity of the maximal flow invariant subset.

Proposition 4.5. Let us define {~: Uy — Rby £(b) = 6(b,n~(b)) and let ¢! be the flow of =V L.
There exists a uniform constant C > 0, depending only on 6 such that with the same notations and
assumptions from Proposition 4.3, there exists a constant b, € B such that for all t € [t_,t]],

b,(t)— gpf:(bo) and its first-order derivative at t are bounded by

C (max(”AnsL(t;)”gF , Ansi(fj)”gp) +max(||A77s//(ts_)”gF ’|

for the norms associated to gz on B and T B, respectively.

A (D), ) +5'),
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Proof. Forall t € [t,t], let us define &,(t) = V, (b (t)) — V,, 6(y,(t)) € T}, (,B and mimick
the proof of Proposition 4.4 to show that there exist uniform constants d, > 0, p > 0 and C; > 0,
depending only on &, such that if |1 (t)—n;(t)l,, is less than d,, (which is from now on assumed),
then for all t € [t, ], the quantity ||&,(¢)]l,, is bounded by

C, (max (”Anf(ts_) |gF , ||An5L(t:)||gF) + maX(HAns//(ts_) |An5//(ts+) |gF) + s) )
Moreover, as in the proof of Proposition 4.4, the differential equation satisfied by y, implies that

9, by(t) = —sV, L7(b(t)) +se,(t),

|gF,

and the result will similarly follow by direct integration from the inequality satisfied by ||&,(t)||,,,
but this time without having to discuss whether b, stays away from the critical points of £~ or not.
Indeed, since A is chord generic, Definition 1.12 (4) shows that £~ has no critical points at all;
otherwise, using Propositions 2.2 and 2.3, there would exist a Reeb chord with an end on A~.
In conclusion, repeating the proof of Proposition 4.4 (1) with the right estimate above for ||&]l,,

thus yields the result. |

Using Propositions 4.2, 4.3, 4.4 and 4.5, horizontal fragments can now be recovered.

The following statement is used in situations where Proposition 4.1 does not apply.

Theorem 4.2. If A is gradient generic and ([t , t; ])yen is an increasing sequence of intervals of R
such that for all nonnegative integers k and all t € [t,_, t,], (y4(t))xen converges to some point of S;,
then there exist a horizontal fragment h: I — Sg, a sequence of time-shifts (T;)ien, With T, € R, and
a subsequence (still denoted in the same way) such that v (s, (- + T¢)) - h in the C|. -topology.

Proof. All the technical work has already been done, the proof only amounts to:

* Step 1. Shift and rescale [t,,t; ] bys, ™" to recover the domain of a horizontal fragment.
Discussing whether or not the Henry-Rutherford sequence gets near a critical point of 6
and proceeding as in the proof of Proposition 4.4 shows that there exists a sequence of
times-shifts (7 ),en Such that if (I, ).cy is defined for all nonnegative integers k by

Ik = [Skt; — Tklskt]-: — Tk:l ,

then the sequence of intervals (I; )<y converges to a semi-infinity or compact interval I,
either of the form (—o0,0] or [0,+00), or [0, t ] for some t > 0.

* Step 2. There exist a map h: I — S5 and a subsequence (still denoted in the same way)
such that there is a pointwise convergence (s, (- + 7.)) - h.

» Step 3. Since A is gradient generic, according to Propositions 4.3 and 4.5 shows that
the map h constructed in Step 2 can only cross the singular locus S5~ at isolated points.
For more details on Step 3, see the proof of Theorem 4.3 in Section 2.2.

* Step 4. Since A is compact, according to Step 3, h does not cross the singular locus
apart from a finite number of points, and applying Propositions 4.2 and 4.4 shows that
h is a horizontal fragment and the convergence in Step 2 occurs in the le)c—topology.

The above steps yields the result. [ |
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Remark. Since the sequence of intervals [t,, t,"] from the statement of Theorem 4.2 is increasing,
it is possible and easy to make sense of the pointwise convergence of (y,: [t ,t]]— B x R*™),cn-
Moreover, if (¢ — t; )icy is bounded, then the horizontal fragment recovered is constant.

Remark. Whenever the conclusion of Theorem 4.2 holds, h is said to be recovered from (y;)iens
and this definition is compatible with Definition 3.5.

2. Finiteness of the number of vertical fragments recovered from a HR-sequence

Since vertical fragments can become arbitrarily short near singularities of the Legendrian front,
they do not consume a positive predetermined amount of the total vertical length that is available.
In particular, nothing seems to prevent the Henry-Rutherford limiting process from converging
to a broken gradient trajectory with infinitely many pairwise non-equivalent vertical fragments.
However, on a gradient generic Legendrian submanifold, the Henry—Rutherford limiting process
must end in a finite number of steps, this is the statement of

Theorem 4.3. Using the same notations and assumptions from Theorem 4.1, the number of vertical
fragments that can be recovered from (v, )ien by applying recursively Proposition 4.1 is finite.

The proof of Theorem 4.3 is carried through the following steps:

» Step 1. First, argue, for the sake of contradiction, that the Henry-Rutherford limiting
process recovers infinitely many pairwise non-equivalent vertical fragments and show
they uniformly converge to a singularity of the Legendrian caustic (Proposition 4.6).

» Step 2. Then, in a short time interval for the domain of the Henry—Rutherford sequence,
construct infinitely many horizontal fragments crossing the singular component of the
accumulation point of the vertical fragments (Proposition 4.7).

* Step 3. At last, prove that these horizontal fragments have arbitrarily deep tangency
with the singular locus of the Legendrian front, thus yielding a contradiction with the
gradient genericity transversality conditions (Section 2.2).

This section is organised by the structure of the proof of Theorem 4.3.

2.1. Technical preliminaries and constructions.

The goal of this section is to construct the sequence of horizontal fragments (Proposition 4.7)

contradicting the gradient genericity transversality conditions.

Assume, for the sake of contradiction, that there exists a sequence (v;);ey of pairwise non-equivalent
vertical fragments that can be recovered from (y;)en-

Lemma 4.1. For all j €N, let us define £; = 6(v;") — 6(v;") 2 0, then ({;)cy is summable.

Proof. Let J € Nsuch thatJ = 1 and let I = {1,...,J}, then for all j € I, using Definition 3.5,

there exist, a sequence of real numbers (T{{) and a subsequence (still denoted in the same way)

. keN
such that v, ( + T{{) =V in the Cﬁ)c-topology. Then, let ¢ > 0 and use the continuity of 6 to show

that for all j € I, there exist K; € N and T > 0 such that

(48) VkeN,k>K; = |6 (v (£T +71))— 5 (v*)| <e.
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Besides, for all k € N, there exist o, € &; such that (TZ"U ))ja is decreasing, then using the
pigeonhole principle, there exist 0 € &, a subsequence (still denoted in the same way) such that
for all k € N, o) = 0, so that it can be assumed, without loss of generality, that

Vie{l,...,J—1}LVkeN,t, -l > 0.

Let j € I\ {J — 1}, then, using Proposition 3.2, the sequence (T{( — T{:’l)keN is also unbounded,
so that there exists KJ’. € N such that for all integers k > K;', the inequality T, — Tiﬂ = 2T holds.
j+1

¢ so that Lemma 3.3 shows that

Equivalently, for all integers k = KJ{, —T + Ti >T+1
“ VkeNk> K= 8 (1 (=T +)) < 8 (n (T +5)-

From now on, let k € N such that k = maIX(Kj,K /), then inequalities (48) and (49) yields
JE
VJ (S {1, .o .,J - 1},_5(V]+) + 5(Vj+1_) < 28.

At last, using the inequalities above and a telescoping series like simplification shows that

J

£;<6(v;)—06(vy")+2(J —2)e,

=1
[using Lemma 3.4] <6(c.)—06(cy)+2(J—2)e,

[since € > 0 is arbitrary] < 6(c_)—06(cy),

then the partial sums of the series of ({;) <y are uniformly bounded from above, since J is arbitrary.
Using Lemma 3.4, ({;);cy is a sequence of nonnegative real numbers, thus yielding the result. ®

Remark. It is crucial that all the (v;);ey are recovered from a same Henry-Rutherford sequence,
and the same will be true for all the energetical arguments used later.

Remark. The permutation of {1,...,J} is given by the reverse order of the 6(v;”) on the real line.

Proposition 4.6. There exist a singular point o and a subsequence (still denoted in the same way)

such that v; —o in the C°-topology.

Proof. The proof is carried through the following steps:

* Step 1. There exist a point o € S5 and a subsequence (still denoted in the same way)

: 0
such that v; 7 o in the C_-topology.

* Step 2. The point o € S5 constructed in Step 1 actually belongs to S;~.
e Step 3. The convergence in Step 1 actually occurs in the C°-topology.

Step 1. Since the generating families f; and f, are linear-at-infinity, S5 is compact, and using
Proposition 3.1, there exist points o_ and o, of S5, as well as a common subsequence (still
denoted in the same way) such that (v;7);ey and (v;7);ey converge to o_ and o, respectively.
Besides, using Proposition 2.4 and Lemma 3.6, the sequence (v;);cy is bounded in C 2_topology,
and the mean value inequality shows that (v;) ey and (J,v;);ey are bounded and equicontinuous,
then Arzela-Ascoli theorem applies and show there exists a vertical fragment v joining o_ to o,.
However, Lemma 4.1 and the continuity of 6 show that 6(o_) = 6(o ), then using Lemma 3.4,
the vertical fragment v is constant, so that c_ = o = o, thus yielding Step 1.
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Step 2. Let j € N and write v;: R — B xR" x R" in components as v;(t) = (b;(t), n, ;(t), n,;(t)),
then, using Definition 3.2, its components satisfy the following conditions

* b;: R — B is constant;
* 7;;: R—>R" is a gy-gradient flow line of —f1, » where f; ~stands for fll{bj}xRN; and
J J

*1ny;:R— RY is a gy -gradient flow line of fo, » where f, ~stands for f;, {b;}xRN -
J J

Let us also write v;~ and v;* in components as v;,~ = (b;,1;;7,m,;7) and v;* = (b;, 15,7, 15,7),
then, using Definition 3.2, the points v;,~ and v;" both belong to S5, which reads as
I f1 (bj’ "fh,j_) =0, 0,f, (bjs ﬂz,j_) =0,
+\) +) —
0,£1(bjm,; ) =0, 8,f(bjmz;%)=0.
Besides, using Definition 3.2, v; is non-constant, then, since b; is constant, there exists i; € {1, 2}
such that 7, ; is non-constant, then using the pigeonhole principle, there exist i € {1,2} and a
subsequence (still denoted in the same way) such that forall j €N, 7, ;: R — R" is non-constant.
Therefore, since 7, ; is a gradient flow line, n; ;= # ; ;* and it is thus possible to define
+ f—
MNij —Mij _
yym it T g g
||7)i,j — N ”gN
Moreover, since the unit sphere SV~ of RV, with respect to the Riemannian metric g, is compact,

there exist v € S*~! (v # 0) and a subsequence (still denoted in the same way) such that v, — .
j

Let us write o in components as o = (b, 1;,1,), and use the triangle inequality to show that

. < . — .
||Hessm flb ))||g < Hessni ’lb 14 Hessm)j, flbj 14 .
! N

+ |[Hess,, - fibj v—Hess, - fibj V;

&N

+ ||Hess,, - fibj V;

Let us show that each of the terms of the right-hand side of the above inequality goes to 0 with j:
* Recall that J, f; is continuously differentiable and that (b;,n; ;™) 7> (b, n;), since it was
shown during Step 2 that v;” — o, so that Hess,, - fi, v— Hess, f; v.
j i, j ] i

* Letus define BY to be the closed unit ball of RV, with respect to the Riemannian metric gy,
and let gy be the Sasaki bundle metric associated to gy, then for all j € N, applying the

mean value inequality to Hess, fl — RY between v € BY and v; € BY shows that
HHessm)j_ fibj v—Hess, - fibj Vi|| < sup || Ta—tyysey, Hess,, - fibj vy =l
8N te[0,1] 8N
. N -
[since B" is convex] < sup || T, Hess,, f =g,
xe€BN %
[since (b;,7m;;”) € L] < sup sup ||T, Hess, f; H T> 0,

(q, e)EX]f x€BN

<+(>O
since T Hess f; is continuous, ;. and B" are both compact, and v; — 0.
J
* Let j € N, applying Taylor’s formula for d,f; : RY — R" between 7, ;~ and 7, ;* and
J
then dividing both sides by [|n, ;* —n, ;~|l,, directly yields Hess, fl V; —> 0.
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Therefore, v € kerHess, f; ).y, S0 that Proposition 2.1 shows that (b,n;) € X, ~ and o € S5,
Geometrically, since v is both tangent to the fibre and to S; at o, o must be a singularity of S;.
Thus yielding Step 2.

Step 3. Let t, €R, then for all j € N and t € R, the following inequalities hold

[using the triangle inequality] d,(v;(t),0) < d (v;(ty),0) +d,(v;(t),v;(to)),

[using the definition of d, ] < dg(vi(ty),0) +

3

t
f l6,v;(D)ll; dT
to

< dg(v(to), 0) +J 16:v;()lg d,
R

[using Lemma 3.4] <d,(vi(ty),0) +6(v;7)—6(v;"),

thus, since the last bound is uniform in ¢, Step 1 and Lemma 4.1 yield Step 3.

The above steps directly yield the result. |

Proposition 4.7. There exists a sequence (h;);ey of horizontal fragments such that

* there exists t; > 0 such that h; is parametrized by [0, t;];
* the horizontal fragment h; is recovered from (y)ren; and
o there exists t;* € [0, t;] such that h;(t;*) € S5~.

. . 0
Moreover, these data satisfy t; 7> 0 and h; 7> o in the C”-topology.

Proof. All the technical work has already been done, the proof only amouts to:

* Step 1. Since A is chord generic, from Definition 1.12 (4) and Proposition 2.3, there
exists an open neighbourhood U of ¢ in Sz such that U contains no critical point of §.
Moreover, using Proposition 4.6, there exists a subsequence (denoted in the same way)
such that for all nonnegative integers j, the vertical fragment v; has range in U.

* Step 2. Using Step 1, for all nonnegative integers j, applying Theorem 4.2 recovers a
horizontal fragment h;: [0,t;] — S5 from (y)xey such that h;(0) = v;*.

* Step 3. Applying Proposition 4.1 for all nonnegative integers j shows that there exists
a vertical fragment w;: R — B x R*" recovered from (y,);cy and such that w;~ = h;(t;).
Then, mimicking the proof of Lemma 4.1 shows that there exists a subsequence (w;)en
(denoted in the same way) such that for all nonnegative integers j, w; has range in U.

* Step 4. Since A is assumed to be at most ©""*-singular, using Proposition 2.2 shows that
it is possible shrink U so that 7;(U) \ 7t5(Ss~ N U) has two connected components, but
according to Step 3, for all integers j = 0, the horizontal fragment h; has range in U.
Therefore, for connexity reasons, there must exist t;* € [0, t;] such that h;(t;*) € S5~.

* Step 5. Since all the horizontal fragments constructed in Step 2 are recovered from a
same Henry-Rutherford sequence, mimicking the energetical argument from the proof

of Lemma 4.1 shows that t; — 0.
J

* Step 6. Using Proposition 4.6 and Step 5 shows that h; — o in the C°-topology.
J

The above steps yields the result. [ |
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Remark. It is crucial that all the (h;);cy are recovered from a same Henry-Rutherford sequence.
Otherwise, Step 5 and Step 6 fails to be true and without t; — 0 and h; — o in the C°-topology,

J J
it is impossible to contradict gradient genericity and end the proof of Theorem 4.3.

2.2. Proof of Theorem 4.3.

The proof of Theorem 4.3 now only amounts to show that the sequence of horizontal fragments
constructed in Proposition 4.7 contradicts the gradient genericity of the Legendrian submanifold.
A similar statement, but without a complete proof, is given in [Ekh07, Lemma 3.10].

Proof of Theorem 4.3. Constructions from Chapter 1 are transported to S; by Proposition 2.2.
Besides, by exchanging the generating families in 0, it can be assumed, without loss of generality,
that the the singular point o, constructed in Proposition 4.6, belongs to L(i)’/5 for some i and f3.
With these preliminaries at hand, the proof now goes through the following steps:

* Step 1. For all 8 > 0, let us recursively defined L:;f(@) on m by
o Form=0, Ly’ (0) = L’;
o For m 2 1, assume that Lf;f(@) is constructed and let L;; ~,1(6) be the set of points
at which the angle between X; ; and TH}[;](TL:';P) is less or equal to 6.
By construction, for all nonnegative integers m, Lf;f(@) is an open neighbourhood of
Li;lﬁ . Then, using Proposition 4.7, for all nonnegative integers j, h;(t;") € L(i)’ﬁ(G).
» Step 2. For all nonnegative integers m, there exists a subsequence (still denoted in the
same way) of the sequence (h;);cy constructed in Proposition 4.7 such that

hi(t7), byt € LEP(8) = hy(t/) e L2, (6).

m+1

Otherwise, when ¢; is small enough, using Taylor’s formula shows that h;(t;) & Li;f(@),
but if h;(t;) and h;,(t;,,") are close enough, then h;,,(t;,;") Lf;f(@), a contradiction.
Indeed, intuitively picture a flow line leaving a submanifold with a certain angle, then
the time taken by the flow line to come back to the submanifold is at least proportionnal
to this angle.
* Step 3. Show by induction on m that for all integers m = 0, there exists an integer

J;, 2 0 such that for all integers j > J,,, h;(t;*) € Lif(@).

o Base step. For m = 0, the proof is already contained in Step 1.

o Inductive step. Let m = 0 and assume that there exists an integer J,, = 0 such that

VjeN,j>J, = h(t;) e L:F(0),
then applying Step 2 directly yields the inductive step.

Since A is gradient generic, applying Definition 1.11 shows that Lf;f is empty whenever m = n,
and thus, if 6 > 0 is small enough, then for all nonnegative integers m = n, L;’f (0) is also empty.
However, applying Step 3 and Proposition 4.7 shows that o € Lf{ﬁ(e), which is a contradiction,
thus yielding a result.

To conclude this proof, notice that none of these steps relies on the statement of Theorem 4.2,
which was indeed a crucial requirement. Indeed, showing that horizontal fragments cannot flow
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along the singular locus S5~ uses a toy model of this reasoning, where the sequence of horizontal

fragments is obtained by chopping into small pieces the original horizontal fragment. [ |

Remark. It is necessary to work with L;:[j(G) rather than L:ﬁﬂ: otherwise Step 2 fails.

3. Proof of the Floer-Gromov compactness result

Proposition 4.1, Theorem 4.2 and Theorem 4.3 are now used to prove Theorem 4.1.

Proof of Theorem 4.1. All the technical work has already been done, the proof only amounts to:

* Step 1. Since A is gradient generic, Theorem 4.3 applies and shows that only a finite
number of non-equivalent and nonconstant vertical fragments can be recovered from
recursive use of Proposition 4.1.

Step 2. According to Step 1, Proposition 4.1 can be recursively apply to recover all the
possible vertical fragments (v4,...,V,,), ordered by decreasing value of 6.

Figure 23. Schematic representation of the intervals provided by Step 2.

Step 3. Apply Theorem 4.2 in the complement of the union of intervals from Step 2 to
construct horizontal fragments (h,,...,h,,) such that

Vk S {1,...,m_ 1}!hk_ = Vk+:hk+ = Vk+1_,

and hy,” =c_,h," =v,7,and h,,” =v,,*, h,," =c,.

Step 4. Construct a gradient staircases from the data provided by Step 2 and Step 3.
For that purpose, notice that the subset of k € {1,...,m} such that either h,_ or h; is a
critical point of 6 uniquely define an ordered partition

(

e; = (ho1, V115115005 Vin,,15 hml,l)J
< € = (hO,ki Vl,k’ hl,k: ) vmk,k: hmk,k)J
\ € = (hO,r> Vl,r: hl,r: .. -:vm,,lzhmr,r):

of the ordered tuple (hg, v;,hy, . .., vy, hyy), with possible missing or constant hg . or h,,,
If so, then hy or h,, , is defined to be a constant trajectory on a semi-infinite interval,
equal to the relevant critical point of &.

Since A is chord generic, applying Proposition 2.3, and according to Definition 1.12 (1) and (2),

the set of critical values of ¢ is finite and injective, thus for all k € {1,...,r —1}, hmk’k+ =hgrs1 -

In conclusion, e = (e4,...,e,) is a gradient staircases chain, thus yielding the result. [ |



S.

Examples

This chapter explains how gradient staircases can be used to carry homological computations
with linear-at-infinity generating families of generic Legendrian submanifolds of any dimension.
In Section 1, generating families for higher-dimensional Legendrian Hopf links are constructed,
and simple and mixed versions of their generating family homology are computed in Section 2.
Following [BST15, Section 6.2] and [BG19, Section 4], these examples are the main and essential
starting point needed to tackle Conjecture 2.2.

1. Constructions of generating families

Higher-dimensional analogues A, of the standard Legendrian Hopf link of (J'R, &R) are defined,

and two different linear-at-infinity generating families f /’/’ and f,' of Af

(2 are constructed.

For all integers n = 1, the standard Legendrian Hopf link A?z) of (J'R", &g.) is defined via its front.

", consists in two overlapping vertically aligned copies of

(2
the front projection of the standard unknotted Legendrian sphere A, defined in Example 2.2.

More precisely, the front projection of A

Figure 24. Front projections of A(lz) (on the left) and A(zz) (on the right).

Recall from Example 2.2 that Aj has a generating family f': R x R — R defined by

f(b,m) =n>=3(|IblI>—1)n,
then use suitable cut-off functions to turn f' into a linear-at-infinity generating family f;” of Aj.

In this section, all the generating families constructed for A?z) will be modelled on f;”.

94
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* Parallel copies and spinning of the standard Legendrian unknot: f /’/l.

Let us first construct a generating family f it of A7, by two taking parallel copies of ]‘;”.

(2)
Step 1. Shrink f;” to define a linear-at-infinity generating family f;' of 1A}.
Step 2. Stabilise E)" by a negative one-dimensional quadratic form to produce a +1 shift
of its fibrewise Morse indices and then use a fibre-preserving diffeomorphism to recover
a linear-at-infinity generating family f,' of A}.
Step 3. Stabilise f11 by a positive one-dimensional quadratic form and then use a fibre-
preserving diffeomorphism to recover a linear-at-infinity generating family f~11 of %A(l),
but now the fibre dimensions of j?ll and f,' are the same.
Step 4. Shift slightly downward the values of f;' to define F}.
Step 5. Translate f,' in the fibre to define F, such that supp F; NsuppF, = @.
Step 6. Define f/} as the sum of F; and F, in the sense of [ST13, Definition 3.18].
Step 7. Construct f = F' + F by iteratively spinning f /} [BST15, Proposition 3.2].

For schematic representations of some of these steps, see Figure 25.

Step 1 Az Step 2 AZ

< ?

=Y

Step 4 AZ Step 6 AZ

=Y

adbg 3

Figure 25. Construction of the generating family f /7.

Remark. Step 1 prevents f /’} from having a continuum of positively valued critical points.

Remark. Because of Step 5, the generating family f /’/l has no handleslide, since it is obtained from

generating families whose support are disjoint.
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* Surgery and spinning on the standard Legendrian unknot: f .

Let us now construct a generating family f,/ of Afy by isotopy and surgery on f;“.

* Step 1. Perform a one-dimensional negative stabilisation of f;)" to produce a +1 shift of
its fibrewise Morse indices and then use a suitable fibred diffeomorphism to still recover
a linear-at-infinity generating family of A;.

* Step 2. Make two upside-down Reidemeister I moves on the lower smooth sheet of A
and then use [Swi92, Theorem B] and Theorem 2.1 to recover a new linear-at-infinity
generating family of Aj.

* Step 3. Take a connected sum between the inner cusp points of the Reidemeister I moves
and use [BST15, Theorem 4.2] to recover a linear-at-infinity generating family of A(lz).

* Step 4. Use a one-parameter version of the usual Whitney trick [HW?73, Lemma 1.2’]
to simplify the pair of handleslides located in-between the crossings of the front of A(lz).
This construction provides a linear-at-infinity generating family f ; of A(lz).

* Step 5. Construct f,' by iteratively spinning f ; [BST15, Proposition 3.2].

For schematic representations of some of these steps, see Figure 26.

Step 1 Step 2

Step 3 Step 4

Figure 26. Construction of the generating family f, (handleslides in green).

Remark. A specific construction provides one more linear-at-infinity generating family for A(lz),

which has a unique handleslide that is located in-between the crossings of its front projection.



2. HOMOLOGICAL COMPUTATIONS 97
2. Homological computations

To compute GFH,(f /’/‘), GFH,(f,) and GFH,(f 0 ), Conjecture 3.1 is now assumed to hold true.
According to [BST15, Section 6.2] and [BG19, Section 4], these computations constitute the main
ingredients to settle Conjecture 2.2 and they also provide evidence towards Conjecture 2.1.

* Generators and grading of the generating family chain complex.

Let A be a chord generic Legendrian submanifold of (J'B, £;), let § be the difference function of
any pair of linear-at-infinity generating families of A and let (C,, ) be the associated generating
family chain complex.

According to Proposition 2.3, the grading and the generators of (C,,d) only depend on A itself,
and [EESO5b, Lemma 3.4] shows that the grading can also be computed on the generators as

p(b, M1, m2) = ind(y, .y 65 +ind, 6y, )y — 1,

where the first term is the difference of the fibrewise Morse indices of the generating families,
and the second one is the Morse index of the vertical height function between sheets.

n
Observe that A(z)

but Proposition 1.3 shows there exists a Legendrian representative of A?Z) that is chord generic.

has been appropriately perturbed.

is not chord generic, since all its Reeb chords are located above a same point,

n

For the rest of this section, it is assumed that A(Z)

n

The number of critical points of 6 is the number of pairs of smooth sheets of Aty namely (;’) =6,
and their gradings are given in the following table

Critical point | ¢15 | ¢y | Con | Myp | Cop | Mys

Grading n+l|n|n| n |n=1|0

If n > 2, then using gradings: dc;, € (¢11,Con, M15), 0C1q, ICop, OMy5 € (cy1) and dmy, = dcy; =0,
and these observations will be essential to compute GFH,(f /’/1), GFH,(f,) and GFH,(f /’/l, -

Ca1
C11 M,

Co2 0

C12

Figure 27. (Front of the) standard Legendrian Hopf link and its offset Reeb chords.
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* Simple generating family homology of f /’/1.

Let us compute the differential of the generating family chain complex associated to f /’/l.

Proposition 5.1. When n = 2, the chain complex differential 8/’/1 associated to f /’/l is given by
a/’}012 = My,

and the other generators (cy1, Cy9, M1,, €57 and my,) are sent to O by 8/’/1.

Proof. Letusrecall that 9)ic, € (c11, Coa, M13), 9)iC11, 0/, 0/}Mi5 € (C1) @and 8)ymy, = 9jicyy =0,
and the proof amounts to describe all the possible gradient staircases between these generators.
For this purpose, it suffices to examine the smooth sheets between which these generators lie,
since gradient staircases decrease chord length and are determined by their vertical fragments.
Therefore, since f /’} has no handleslides, vertical fragments can only be obtained from birth-death

n

gradient trajectories of F' or F; [Cha18], and cannot jump between different components of Afyy-

In particular, the differential d ) must preserve the indices decorating the generators.

* Let us first describe the gradient staircases from c;, to ¢;;, ¢; and My,.

o It is not possible to reach c;; from c;,.

o It is not possible to reach c,, from c;,.

o There exists a unique gradient staircase from c,, to M,. It starts with a semi-infinite
horizontal fragment from c;, to the chord located above the base projection of M;,,
followed by a vertical fragment made from the birth-death gradient trajectory of F,,
and it ends with a semi-infinite constant horizontal fragment at M;,.

Therefore, 8/’/‘c12 = M;,.
* It is not possible to reach c,; from c;;, and thus 8/’/1c11 =0.
* It is not possible to reach c,; from c,,, and thus & /Ca2 =0.
* It is not possible to reach c,; from M;,, and thus 3/’/1M12 =0.

Conjecture 3.1 thus yields the result. |

In particular, Proposition 5.1 shows that the generating family homology of f /’} is equal to
GFH,(f))) = (11, 225 C21, M13),
~F,’[n]®F,[n—1]®F,[0].

Moreover, the Poincaré’s polynomial of f /’} is equal to Ff/7(t) =2t"+t"! + 1 (one dual pair).

* Simple generating family homology of f.

Let us compute the differential of the generating family chain complex associated to f,.

Proposition 5.2. When n 2 2, the chain complex differential J, associated to f,' is given by
0,/C15 = €11+ Cop + My,
9,C11 = Ca1, E
3; Cap = €15

and the other generators (My,, ¢y, and my,) are sent to 0 by 0,/
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Proof. Letusrecall that 8,/ c;, € (1, Cop, My5), )C1q, ) Cog, M5 € (Cyy) and 8my, = 0,icy; =0,
and the proof amounts to describe all the possible gradient staircases between these generators.
For this purpose, it suffices to examine the smooth sheets between which these generators lie,
since gradient staircases decrease chord length and are determined by their vertical fragments.
Therefore, since f, has handleslides, vertical fragments can be obtained

e from birth-death gradient trajectories of F{' or F;) [Chal8];
* from handleslides of f,}; or
* by concatenating these two types of gradient trajectories.

n

In particular, vertical fragments can now jump between the two connected components of Ay

and the differential J;/ no longer preserves the indices decorating the generators.

* Let us first describe the gradient staircases from c;, to ¢;;, ¢y, and M.

o There exists a unique gradient staircase from c;, to c;;. It starts with a semi-infinite
horizontal fragment from c,; to the chord located above the base projection of c,;,
followed by a vertical fragment obtained by concatenating the birth-death gradient
trajectory of F}' with an upward handleslide of f,/, and it ends with a semi-infinite
constant horizontal fragment at c;;.

o There exists a unique gradient staircase from c;, to c,,. It starts with a semi-infinite
horizontal fragment from c;, to the chord located above the base projection of c,,,
followed by a vertical fragment obtained by concatenating the birth-death gradient
trajectory of F,) with a downward handleslide of f,/, and it ends with a semi-infinite
constant horizontal fragment at c,,.

o As in Proposition 5.1, there exists a unique gradient staircase from c;, to M.

Therefore, 9,/c;5 = 17 + ¢ap + M.

* There exists a unique gradient staircase between c;; and c,;. It starts with a semi-infinite
horizontal fragment from c;; to the chord that is located above the base projection of ¢,
followed by a vertical fragment obtained from the birth-death gradient trajectory of F}'
and an upward handleslide of f,/, and it ends with a semi-infinite constant horizontal
fragment at c,;.

* There exists a unique gradient staircase between c,, and c,,. It starts with a semi-infinite
horizontal fragment from c,, to the chord that is located above the base projection of c,;,
followed by a vertical fragment obtained from the birth-death gradient trajectory of F,
and a downward handleslide of f,/, and it ends with a semi-infinite constant horizontal
fragment at c,;.

* It is not possible to reach c,; from M;,, and thus d,;M;, = 0.

Conjecture 3.1 thus yields the result. [ |

In particular, Proposition 5.2 shows that the generating family homology of f,/ is equal to

GFH,(f,)) = (c11 + a2, My),
~ F,[n]®F,[0].

Moreover, the Poincaré’s polynomial of f, is equal to ng(t) = t"+ 1 (no dual pair).

Remark. Proposition 2.5 implies that f /’} and f, are nonequivalent, since GFH, (f /’/‘) % GFH,(f,).
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* Mixed generating family homology of (f i3 )
Let us compute the differential of the generating family chain complex of (f /’/1, -

Proposition 5.3. When n = 2, the chain complex differential 9}, , associated to (f /’/l, f.) is given by

11:#
a/7,#‘312 = Cop + My,
a/’},#cn = Co1,

b

and the other generators (cyy, My, ¢ and my,) are sent to 0 by 3/’/1 4

Proof. Since f it has no handleslide and f, appears with a negative sign in the difference function,
it suffices to mimick the proof Proposition 5.2 and remove all the gradient staircases containing
at least one vertical fragment constructed by going downward an handleslide of f . [ |

In particular, Proposition 5.3 shows that the generating family homology of (f 1> f4) is equal to

GFH.(f,’Lf;) = (M, my,),
~F,[n]®F,[0].

Moreover, the Poincaré’s polynomial of (f /’/l, f.) is equal to Ff/%f;(t) = t"+ 1 (no dual pair).
Remark. Using the long exact sequence (LES-mGFH) shows that GFH,(f,, f /'/1) ~ GFH,(f /’/l, -

Example 5.1. To conclude, let us investigate a connected example constructed from f /’} and f,.
For all integers n 2 1, let us define a connected Legendrian submanifold A7 from Al as follows:

* Step 1. Start from Ay

* Step 2. Perform a Legendrian isotopy to stretch to the right the lower copy of Aj in AFz)'

* Step 3. Make an upward Reidemeister I move on the upper sheet of this stretched Aj to
adjust the fibrewise Morse indices of the generating family.

* Step 4. Take a connected sum between the two facing cusp-edges.

For schematic representations of some of these steps, see Figure 28.

Step 1 Step 2

Step 3 — Step 4

0 0

Figure 28. Construction of A} from Ay
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In particular, A] has the smooth knot type of a right-handed trefoil knot, see Figure 29.

Figure 29. Front projection of a Legendrian right-handed trefoil knot.
Applying these steps to f /’} and f, provides linear-at-infinity generating families F/’} and Fj of A].
By mimicking the proof of [BG19, Proposition 3.5] for the long exact sequence (LES-mGFH) and
identifying the manifold classes of GFH,(f/,), GFH.(f,) and GFH,(f,, f,) with gradient staircases,
the Poincaré’s polynomials of F},, F}, and (F/’}, F}) are computed from these of f 1> f+ and (f 8 ).

I’
It is found that FF;(t) ="+t 41, () = t" + t"™1+1 and FF/H/,F;(t) =1.

In particular, Proposition 2.5 does not allow to state whether F /’; and F, are equivalent or not,
but as as predicted by Conjecture 2.1, Theorem 2.2 shows that F}; and F, are not equivalent,
since dim GFH,(F}}, F}) # dim GFH,(F/’}).

In conclusion, the simple version of generating family homology does not distinguish F/’} from F,
but the mixed version of generating family homology does.



Research prospects

This work opens several natural research directions, some of them have already been discussed.
Not only this short chapter gathers them in one place, it also offers further open questions that
could likely be settled by elaborating on the scientific content already provided in this dissertation.
These research prospects are discussed by increasing level of accessibility, and for the first ones,
guidelines to work towards their proofs are also developped.

1. Answering the Henry-Rutherford conjecture
The starting point of this thesis was the Henry-Rutherford conjecture, whose statement is:

Conjecture. Let c_ and c, be positively valued critical points of 6 such that u(c_) = u(c,)—1 holds.
There exists s, € (0, 1] such that for all s € (0,s,], #(c_,c,;6,g,) and #*(c_,c,;g,5) are both

finite and in one-to-one correspondence.

It was adressed by a compactness and gluing strategy, but only the compactness part was tackled.
Completely settling the Henry-Rutherford conjecture still requires to deal with the gluing result,
whose statement reads as follows:

Conjecture. Let c_ and c, be positively valued critical points of 6, and let also e € #*(c_,c,; 5, ).
If A is generic, there exists s, € (0,1] such that for all s € (0,s,], there exists vy, € M (c_,c,;0,g,)
such that

Ys > €,
s—0

where the previous convergence occurs in the Floer-Gromov topology introduced in Definition 3.4.
Moreoever, if dim A4 *(c_,c,;6,g) =0, then the above one-parameter family is unique.

Showing this conjecture should be similar to the proof developped for [BO09a, Proposition 4.22],
and should roughly go through the following steps:

* Step 1. Construct some weighted Sobolev spaces to translate the Floer-Gromov topology.
* Step 2. Show that gradient staircases are solutions of some Fredholm operator between
the Sobolev spaces constructed in Step 1.
* Step 3. Construct a smooth approximation of the gradient staircase.
» Step 4. Apply the Newton-Raphson method to the pregluing constructed in Step 3.
Before concluding this section, let us make some further remarks on the above blueprint:
* Proposition 4.2 plays a crucial role for Step 1.
» Working with weighted Sobolev spaces are needed to ensure that the Fredholm operator
constructed in Step 3 has a right-inverse.
* Applying the Newton-Raphson method in Step 4 requires that the linearised Fredholm
operator constructed in Step 2 has a right-inverse.
Showing the gluing conjecture, and thus the Henry-Rutherford conjecture, is the main follow-up.
102
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2. Algebraic structure of the generating family homology

The main motivation behind gradient staircases and the associated Henry-Rutherford conjecture
was to allow efficient computations of generating family (co)homology on concrete examples.
Therefore, the next further questions raised by this dissertation concern homological invariants
for generating families of Legendrian submanifolds.

2.1. Geography questions for the generating family homology.
With the constructions from [BG19], the geography result from [BST15, Theorems 1.1 and 1.2]

should generalise to the mixed version of generating family homology, as follows:

Conjecture. The following assertions hold true.

(1) Let A™ C (J'B, &p) be a closed and connected Legendrian submanifold, and let f, and f, be
two linear-at-infinity generating families of A. If f, and f, are non-equivalent, then there

exist nonnegative integer coefficients polynomial q and Laurent polynomial p such that
Iy, 5, (t) = q(t) + p(2),

where q has degree at most n —1 and q(0) = 1, and p further satisfies

p(—1)=0mod 2, ifn=1,

1—qg(—1 .

p(=1)< # ifn=2,

A Laurent polynomial satisfying all conditions above is mGFH-admissible.
(2) Let P(t) be a mGFH-admissible Laurent polynomial, then there exist an integer n = 1,

a closed and connected Legendrian submanifold A of (J'R", &Eg.), and two non-equivalent
linear-at-infinity generating families f, and f, of A such that P(t) =T}, ¢, (t).

Chapter 5 already contains analogues of [BG19, Propositions 4.10 and 4.12].

According to [Mye18, Theorem 1.1], there exists a non-trivial associative product

Uy : GFH*(f) x GFH'(f) — GFH*"(f),
and [BST15, Theorems 1.1 and 1.2] already provides the graded vector space geography of GFH".
Therefore, it is also natural to ask the following question.

Question. What is the ring structure geography of GFH®?

2.2. Complete invariant for equivalence of generating families.
Recall from Theorem 2.4 that the generating family homology fits in the long exact sequence
T o e P
-+ = GFH(f1, o) = Hi(A;F) = GFH™(f, f1) = GFH 1 (fi, f2) = -+,
and according to [BST15, Theorem 6.1], if f; and f, are equivalent, then 7, is surjective.
Conjecture. Let A" C (J!B, &;) be a closed and connected Legendrian submanifold, let f; and f, be

two linear-at-infinity generating families of A, then f, and f, are in the same equivalence class if,
and only if, the map 7,: GFH,(f,, f5) — H,(A;F,) is surjective.
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According to [BG19, Corollary 1.2], the pseudo-holomorphic version of this conjecture is true,
since bilinearized Legendrian contact homology has been shown to be a complete invariant for
DGA-homotopy of augmentations of the Chekanov-Eliashberg algebra.

2.3. Operations on generating family homology.

Following [Lim16], an addition and a multiplication are naturally defined on generating families,
but the effect in homology of these operations has not yet been studied.

Question. How do these operations descend in generating family homology?

Theorem 4.1 does not apply to the Legendrian submanifolds constructed from these operations,
since they generically have non-generic singularities, thus the above question requires more work
than it could be first expected.

3. Generating families and augmentations

Understanding the correspondence between generating family and pseudo-holomorphic curves
invariants of Legendrian submanifolds has been a fruitful ground for long-standing conjectures,
whose most optimistic version states a derived category equivalence.

In particular, [FR11, Theorem 5.1] provides a partial answer to this question in dimension three,
which is still conjectured to be true in higher dimension.

Conjecture. Let f be a generating family of some connected Legendrian submanifold A C (J'B, &p).
If f is linear-at-infinity, then there exists an augmentation € of A such that

as graded F,-vector spaces.

Provided the Henry-Rutherford conjecture holds, gradient staircases offers a very promising way
to tackle this conjecture, since [HR13, Theorems 5.4 and 5.5] then recover [FR11, Theorem 5.1],
but without relying too heavily on combinatorial arguments that are not robust to the dimension.
In particular, the remaining difficulty is just showing that the candidate provided by gradient
staircases is indeed an augmentation of the Chekanov-Eliashberg algebra.
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