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GENERAL INTRODUCTION

Context

The traveling salesman problem (TSP) and the vehicle routing problem (VRP) have been studied in many Ąelds as canonical combinatorial optimization problems but also due to their practical relevance. The TSP is easy to state: given a Ąnite number of "cities" along with the travel cost between each pair of them, Ąnd the shortest way of visiting all the cities and returning to the starting city. Compared with the obscure origins of the TSP, the VRP [START_REF] George | The truck dispatching problem ż[END_REF] was introduced by Dantzig and Ramser when studying the truck dispatching problem in 1959. Since then, many works have been devoted to the VRP and its variants. In this thesis, we focus on four representative routing problems: the colored traveling salesman problem (CTSP) [START_REF] Li | Colored traveling salesman problem ż[END_REF], the minmax multiple traveling salesmen problem (minmax mTSP) [START_REF] França | The m-traveling salesman problem with minmax objective ż[END_REF], the traveling salesman problems with proĄts [START_REF] Feillet | Traveling salesman problems with proĄts ż[END_REF] and the split delivery vehicle routing problem (SDVRP) [START_REF] Dror | Savings by split delivery routing ż[END_REF]. The CTSP is a node routing problem with multiple salesmen, where the cities are divided into m exclusive city sets and one shared city set. The objective is to minimize the total traveling distance of m Hamiltonian circuits (routes) under the following constraints: each exclusive city is to be visited by the corresponding salesman, while each shared city can be visited by any salesman. The minmax mTSP is a generation of the TSP and aims to minimize the longest tour among a set of tours. The TSPs with proĄts visit some cities (vertices) to optimize the collected proĄt and the travel costs. The SDVRP extends the classical capacitated VRP and each customer can be visited by more than one vehicle. These routing problems concern various relevant applications such as Ćexible manufacturing schedule [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem ż[END_REF], transportation [START_REF] Dror | Split delivery routing ż[END_REF], robotics [START_REF] Cheikhrouhou | A comprehensive survey on the Multiple Traveling Salesman Problem: Applications, approaches and taxonomy ż[END_REF] and unmanned aerial vehicles [START_REF] Chase | The multiple Ćying sidekicks traveling salesman problem: Parcel delivery with multiple drones ż[END_REF].

Given their theoretical and practical signiĄcance, a large number of solution approaches including exact and metaheuristic algorithms have been presented to solve these problems. In this thesis, we aim to advance the state-of-the-art of solving large instances of the four representative routing problems with effective metaheuristic algorithms.

Objectives

This thesis focuses on working on an efficient and effective hybrid genetic algorithmic framework for the four routing problems. The main objectives of this thesis can be summarized as follows.

Ů Investigate the edge assembly crossover operator and related crossover operators applied to routing problems. Ů Generalize the edge assembly crossover operator to rich routing problems. Ů Integrate powerful TSP heuristics into local search for reducing the length of single route. Ů Analyze and compare the performances of different crossover operators. Ů Evaluate the performances of the proposed algorithms on commonly used benchmark instances in comparison with state-of-the-art algorithms. Ů Analyze the ingredients of the proposed methods to get useful insights about their impacts on the performances of the algorithms.

Contributions

The main contributions of this thesis are summarized as follows.

Ů For the CTSP, we present the Ąrst grouping memetic algorithm for solving this challenging problem. The algorithm includes three main components: (i) a greedy randomized heuristic for population initialization; (ii) a dedicated local search procedure for local optima exploration; (iii) a backbone-based crossover operator for solution recombination. We show computational results on three sets of 65 popular benchmark instances to demonstrate the competitiveness of our algorithm. We especially report improved upper bounds for 38 instances (for more than 58% cases). This work has been published in Information Sciences [START_REF] He | Grouping memetic search for the colored traveling salesmen problem ż[END_REF]. Ů For the minmax mTSP, the proposed algorithm combines a generalized edge assembly crossover to generate new solutions, an efficient variable neighborhood descent to ensure local optimization as well as an aggressive post-optimization for additional solution improvements. Extensive experimental results on 77 minmax mTSP benchmark instances and 43 minmax multidepot mTSP instances commonly used in the literature indicate a high performance of the algorithm compared to the leading state-of-the-art algorithms. This work has been submitted to European Journal of Operational Research. Ů For the TSPs with proĄts, since two problems, orienteering problem (OP) and prize-collecting traveling salesman problem (PCTSP), are representative, we introduce a hybrid genetic algorithm that addresses these two problems under a uniĄed framework. The algorithm combines an extended edge assembling crossover operator to produce promising offspring solutions and an effective local search to ameliorate each offspring solution. The algorithm is further enforced by a diversiĄcationoriented mutation and a population-diversity management. Extensive experiments show that the method competes favorably with the best existing methods both in terms of solution quality and computational efficiency. This work has been submitted to Networks. Ů For the SDVRP, we present an effective memetic algorithm for solving the problem with a Ćeet of limited or unlimited vehicles. The algorithm features a general edge assembly crossover to generate promising offspring solutions from the perspective of assembling suitable edges and an effective local search to improve each offspring solution. The algorithm is further reinforced by a feasibility-restoring procedure, a diversiĄcation-oriented mutation and a quality-and-distance pool updating technique. Extensive experiments on 324 benchmark instances indicate that our algorithm is able to update 143 best upper bounds in the literature and match the best results for 156 other instances. This work has been submitted to Transportation Science. Furthermore, a work with presenting a two phase iterated local search algorithm to solving the CTSP was launched in the beginning of my study period and published in Engineering Applications of Artifcial Intelligence [START_REF] He | Iterated two-phase local search for the colored traveling salesmen problem ż[END_REF]. Before presenting MA to addressing the minmax mTSP, a hybrid search with neighborhood reduction for the multiple traveling salesmen problem is also investigated and published in Computers & Operations Research [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF].

Finally, I also worked on the Hamiltonian p-median problem and a hybird genetic algorithm was launched, and this paper has been submitted to IEEE Transactions on Evolutionary Computation.

Organization

The thesis is organized in the following way: 

Traveling salesman problem and vehicle routing problems

The traveling salesman problem (TSP) is one of the most famous combinatorial optimization problems. Numerous studies have been devoted to the problem from different perspectives, such as mathematical programming [DFJ54; Mil78; MTZ60] and heuristics [Lin65; LK73; ML55]. Let x ij be a binary variable and x ij = 1 means the path goes from city i to city j, otherwise x ij = 0. The symmetric TSP on n cities can be expressed as an integer linear program (ILP) on the binary variables x ij , i < j, i = 1, • • • , n -1;

j = i + 1, • • • , n: (T SP ) Minimize n-1 i=1 n j=i+1 c ij x ij (1.1) subject to x ij ≥ 0 (1.2) x ij ≤ 1 (1.3) k-1 i=1 x ik + n j=k+1
x kj = 2 (1.4)

i∈S,j∈S

x ij ≤ ♣S♣ -1 (1.5)

Constraints (1.4) are referred to as the vertex constraints and ensure that each city is visited. Constraints 1.5 correspond to subtour elimination constraints [START_REF] Dantzig | Solution of a largescale traveling-salesman problem ż[END_REF].

The vehicle routing problem (VRP) concerns multiple routes starting from the depot and ending at the depot. Without loss generality, we use set partition formulation [START_REF] Michel | On an integer program for a delivery problem ż[END_REF] to model the VRP.

Let G = (V, E) be an undirected graph where V = ¶0, 1, • • • , n♢ is the vertex set with 0 being the depot and N = ¶1, • • • , n♢ representing n customers and E is the edge set. Let Ω be the set of routes, each route being given by a sequence of edges that describe a path from the depot to some customers. The travel cost c r of a route r ∈ Ω is given by the sum of the cost of the edges in its path. Let a ir state the number of times customer i is visited by route r. Let λ r be a binary variable. λ r = 1 if the route r is performed, otherwise not. The set partition formulation is as follows:

(V RP ) Minimize r∈Ω c r λ r (1.6) subject to r∈Ω a ir λ r = 1 ∀i ∈ N (1.7) r∈Ω λ r = ♣K♣, (1.8) 
The objective function (1.6) minimizes the overall cost of the selected routes. Constraints (1.7) guarantee that each customer is visited by exactly one route. Constraint (1.8) imposes the use of ♣K♣ vehicles. There are many models and algorithms for the optimal and approximate solution of different versions of the VRP.

Various TSP and VRP variants exist in real-life applications. In this thesis, we investigate four problems: colored traveling salesman problem (CTSP), minmax multiple traveling salesmen problem (minmax mTSP), traveling salesman problems with proĄts (TSPs with proĄts) and split delivery vehicle routing problems (SDVRP), which are introduced in the next sections.

Colored traveling salesmen problem 1.2.1 Problem introduction

Let G=(V, E) be a complete undirected graph, where V = ¶0, 1, 2, • • • , n -1♢ is the set of nodes (or cities) and E = ¶ ¶i, j♢ : i, j ∈ V, i ̸ = j♢ is the set of edges. Each edge ¶i, j♢ ∈ E has a non-negative weight c ij representing the traveling distance between cities i and j. All cities are divided into m + 1 disjoint sets: m exclusive city sets ¶C 1 , C 2 , • • • , C m ♢, and one shared city set S such that ∪ m k=1 C k ∪S = V and ∩ m k=1 C i ∩S = ∅. Let K = ¶1, 2, • • • , m♢ be a set of salesmen. The cities of an exclusive set C k (k ∈ K) are to be visited by salesman k only, while the shared cities can be visited by any of the m salesmen. Besides, city 0 (the depot) belongs to the shared city set S and is visited by all salesmen. The CTSP is to determine m shortest Hamiltonian tours (routes) starting from the depot and ending at the depot such that each exclusive city in C k is visited exactly once by salesman k and each shared city is visited exactly once by one of the m salesmen. x i0k = 1, ∀k ∈ K (1.11)

i∈C k ∪S j∈V\(C k ∪S)
x ijk = 0, ∀k ∈ K (1.12)

n-1 j=0 m k=1

x jik = 1, j ̸ = i, i ∈ V\ ¶0♢ (1.13)

l x jlk = i x ijk , i ̸ = j ̸ = l, i, j, l ∈ C k ∪ S, ∀k ∈ K (1.14) u ik -u jk + n × x ijk ≤ n -1, j ̸ = i, i, j ∈ V\ ¶0♢, ∀k ∈ K (1.15)
The binary variable x ijk = 1 indicates that the k-th salesman passes through edge ¶i, j♢, and otherwise x ijk = 0. u ik is the number of cities visited on the k-th route from the depot up to city i. The objective function of CTSP is given by objective (1.9) and Constraints (1.10-1.15) are the constraints of the problem. Constraints (1.10) and (1.11) require that each salesman starts from the depot and returns to the depot. Constraint (1.12) indicates that each salesman can only visit its own exclusive cities and some shared cities. Constraint (1.13) means that each city except the depot can only be visited exactly once. Constraint (1.14) indicates that a salesman can only arrive at its exclusive and shared cities to continue its route. Constraints (1.14) and (1.15) are employed to eliminate the subtours for each salesman. One notices that the Miller-Tucker-Zemlin subtour elimination constraints [START_REF] Miller | Integer programming formulation of traveling salesman problems ż[END_REF] are presented to eliminate all subtours. Although the subtour elimination constraints of Dantzig-Fulkerson-Johnson [START_REF] Dantzig | Solution of a largescale traveling-salesman problem ż[END_REF] concern less decision variables, it becomes impossible when using ILP solvers directly.

The CTSP generalizes a variant of the classical traveling salesman problem (TSP), known as the multiple traveling salesmen problem (mTSP) where all cities are shared [START_REF] Bektas | The multiple traveling salesman problem: an overview of formulations and solution procedures ż[END_REF][START_REF] Arthur | A new approach to solving the multiple traveling salesperson problem using genetic algorithms ż[END_REF]. Besides, if there is only one salesman (m = 1), the CTSP becomes the TSP [START_REF] David L Applegate | The Traveling Salesman Problem: a Computational Study[END_REF]. Given that the CTSP generalizes these N P-hard problems, solving the CTSP is computationally challenging.

Related work

Given the theoretical and practical signiĄcance, the CTSP has attracted considerable attention in recent years [START_REF] He | Fields distinguished by edges and middles visited by heterogeneous vehicles to minimize non-working distances ż[END_REF][START_REF] He | Optimisation of the harvesting time of rice in moist and non-moist dispersed Ąelds ż[END_REF][START_REF] Li | Colored traveling salesman problem ż[END_REF] and several heuristic methods have been presented. In this section, we review the existing solution approaches for the CTSP and related works.

In 2014, Li et al. [START_REF] Li | Colored traveling salesman problem ż[END_REF] introduced the colored traveling salesmen problem to optimize routes of a dual-bridge waterjet cutting machine tool. As solution methods, they presented four genetic algorithms (basic genetic algorithm (GA), GA with greedy initialization, hill-climbing GA and simulated annealing GA), where the dual-chromosome encoding was used to represent the candidate solutions. The Ąrst chromosome is a permutation of all cities except depot 0, while the second chromosome assigns a salesman to each of the shared and exclusive cities in the corresponding position of the Ąrst chromosome. They presented computational results on 20 small scale benchmarks created from existing symmetric TSP instances (with up to 101 vertices). They showed that the hybrid algorithm combining simulated annealing and GA dominated the three other algorithms and their algorithms performed better than the general mixed integer programming tool Lingo.

Then, in 2017, Meng et al. [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem ż[END_REF] proposed a variable neighborhood search (VNS) which employs a direct-route encoding to represent the solutions. VNS consists of two phases. The Ąrst phase perturbs the current solution by two shaking operations (Interchange and Relocation), while the second phase improves the perturbed solution by applying a local search based on two search operations (neighborhood change and 2-opt). Compared with the four GAs [START_REF] Li | Colored traveling salesman problem ż[END_REF], VNS showed its competitiveness on the 20 benchmark instances.

Later, in 2018, Pandiri and Singh [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] presented an artiĄcial bee colony (ABC) based on the m-tour encoding. This encoding uses m arrays, and each array includes all the cities visited by the corresponding salesman. They provided a proof that the size of the solution space of the CTSP with the m-tour encoding is smaller than that of the dualchromosome encoding. They showed that ABC could match or update the best results reported in [START_REF] Li | Colored traveling salesman problem ż[END_REF][START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem ż[END_REF] on the 20 small scale benchmark instances with very short cutoff times. Besides, they introduced 8 new medium scale instances (with 229-666 cities) and reported computational results. Also in 2018, Dong et al. [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning ż[END_REF] employed an ant colony optimization (ACO) with multi-tasks learning for solving the CTSP. The multi-task cooperative learning was proposed to improve the efficiency of ACO. To assess their algorithm, they introduced 6 medium (with 202-431 cities) and 5 large instances (with 1002 cities) and showed the competitiveness of ACO compared with the four GAs [START_REF] Li | Colored traveling salesman problem ż[END_REF]. Nevertheless, this algorithm did not compete well with VNS [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem ż[END_REF] on the 20 small scale instances in terms of the best and average results.

In 2019, Dong et al. [START_REF] Dong | ArtiĄcial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem ż[END_REF] presented another artificial bee colony algorithm (ABC) and reported computational results on 26 new large instances (with 2461-7397 cities). These new large scale instances could be used by subsequent studies to evaluate their algorithms. However, this ABC algorithm performed worse than the ABC algorithm of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] on the 20 small scale instances.

He and Hao [START_REF] He | Iterated two-phase local search for the colored traveling salesmen problem ż[END_REF] proposed an iterated two-phase local search (ITPLS), which is based on a new adjacency representation of the candidate solutions. This representation relies on an array A[m, n + 1] such that for each route r (r = 1, . . . , m), A[r, i] = j (i, j = 0, . . . , n, i ̸ = j) if and only if the route goes from city i to city j. ITPLS applies jointly interroute optimization and intra-route optimization for solution improvement, reinforced by a probabilistic greedy perturbation strategy to diversify the search. Extensive computational results were reported on all the benchmark instances available in the literature (a total of 65 instances), including 29 improved best known results.

After He et al. [START_REF] He | Grouping memetic search for the colored traveling salesmen problem ż[END_REF], Zhou et al. [START_REF] Zhou | Multi-Neighborhood Simulated Annealing-Based Iterated Local Search for Colored Traveling Salesman Problems ż[END_REF] proposed multi-neighborhood simulated annealing-based iterated local search to solve the CTSP and experimental results indicated it performs significantly better than the grouping memetic algorithm [START_REF] He | Grouping memetic search for the colored traveling salesmen problem ż[END_REF]. Lastly, Zheng et al. [START_REF] Zheng | Reinforced Lin-Kernighan-Helsgaun Algorithms for the Traveling Salesman Problems ż[END_REF] addressed the CTSP by a reinforced Lin-Kernighan-Helsgaun Algorithm and many upper bounds are updated again.

According to the computational results reported in the literature, we identify ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] and ITPLS [START_REF] He | Iterated two-phase local search for the colored traveling salesmen problem ż[END_REF] as the current state-of-the-art CTSP algorithms.

The CTSP generalizes the popular multiple traveling salesmen problem (mTSP), which has attracted much interest in the last decades. For instance, Wang et al. [WCL17] introduced a memetic algorithm for solving mTSP, which includes a variable neighborhood descent to search local optima. Another evolutionary algorithm was proposed by Kashan et al. [START_REF] Husseinzadeh Kashan | ń Grouping evolution strategies: An effective approach for grouping problems ż[END_REF] for solving mTSP from the perspective of grouping problems. Other representative studies were reported in [CR06; SB09; Soy15; Yua+13]. However, these methods are not suitable for the CTSP, because of the presence of exclusive cities.

In this work, we are interested in designing a practically effective algorithm for solving the CTSP with the memetic framework. This is motivated by two considerations. First, one notices that the route of each salesman can be considered as a TSP solution. Therefore, the optimization of each individual route can naturally benefit from existing powerful TSP methods. Second, we can consider the CTSP from the perspective of grouping problems in the sense that the shared cities are to be dispatched into m groups (m being the number of salesmen). As such, the population-based memetic framework with a meaningful crossover represents an attractive approach given that it has been applied with great success to several difficult grouping problems (e.g., [START_REF] Falkenauer | Genetic Algorithms and Grouping Problems[END_REF][START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem ż[END_REF][START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs ż[END_REF]).

Benchmark instances

We employ three sets of 65 benchmark instances, which were commonly used in previous studies on the CTSP. The Ąrst set (Set I) contains 20 small instances which were introduced in [START_REF] Li | Colored traveling salesman problem ż[END_REF], and the number of cities is between 21 to 101 while the number of salesmen m is between 2 and 7. The second set (Set II), introduced in [DDC18; PS18], contains 14 medium size instances with 202, 229, 431, 666 cities, and 10 -40 salesmen. The last set (Set III), presented in [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning ż[END_REF][START_REF] Dong | ArtiĄcial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem ż[END_REF], contains 31 large instances with 1002 -7397 cities and 3 -60 salesmen. These benchmark instances and the solution certiĄcates for them obtained by the GMA algorithm are available online 1 .

Minmax multiple traveling salesmen problem 1.3.1 Problem introduction

Let G=(V, E) be an edge-weighted graph, where V = ¶0, 1, . . . , n♢ is the vertex set with 0 being the starting-ending city (depot) and N = ¶1, • • • , n♢ representing n cities and E is the set of arcs (edges). Let C = (c ij ) be a non-negative cost (distance) matrix associated with E, which satisĄes the triangle inequality (c ij + c jk > c ik for all i, j, k ∈ V and i ̸ = j ̸ = k). The matrix C is said to be symmetric when c ij = c ji , (i, j) ∈ E and asymmetric otherwise. The basic mTSP is to partitioning the set of the cities (N ) into m distinct Hamiltonian tours ¶r 1 , r 2 , . . . , r m ♢ starting at the depot (vertex 0), such that 1) each tour r k (k ∈ ¶1, 2, . . . , m♢) includes at least two vertices, and 2) an objective function is minimized. From an application perspective, one of the following minimization objectives is considered in the literature: 1) the minsum mTSP which minimizes the total traveling distance of the m tours [START_REF] Joseph | Computational experience with an m-salesman traveling salesman algorithm ż[END_REF], and 2) the minmax mTSP which minimizes the longest tour among the m tours [START_REF] França | The m-traveling salesman problem with minmax objective ż[END_REF].

It is known for a long time that the minsum mTSP can be conveniently transformed to the TSP [START_REF] Hong | A note on the symmetric multiple traveling salesman problem with Ąxed charges ż[END_REF][START_REF] Rao | A note on the multiple traveling salesmen problem ż[END_REF]. Recently, it was shown that this transformation approach is quite powerful and able to effectively solve the existing minsum mTSP benchmark instances by leading TSP methods [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF]. On the other hand, the situation is different for the minmax mTSP for which a number of dedicated methods have been developed. In this work, we focus on the minmax mTSP including both the cases of single depot and multiple depots.

The minmax mTSP with single depot can be used to formulate many applications. Meanwhile, there are other situations where multiple depots need to be considered. For example, in humanitarian logistics, several depots are deployed in different locations to ensure an efficient delivery of relief supplies to speciĄc places [START_REF] Campbell | Routing for relief efforts ż[END_REF]. The minmax multidepot vehicle routing problem was Ąrst proposed to formulate such applications, where the objective is to minimize the longest tour [START_REF] Carlsson | Solving min-max multi-depot vehicle routing problem ż[END_REF]. If the capacity constraint is ignored, the problem becomes the minmax multidepot mTSP [START_REF] Carlsson | Solving min-max multi-depot vehicle routing problem ż[END_REF][START_REF] Wang | The min-max multidepot vehicle routing problem: Heuristics and computational results ż[END_REF]. Clearly, the minmax multidepot mTSP generalizes the minmax mTSP and has interesting applications such as allocating targets to unmanned vehicles [START_REF] Rasmussen | Optimal vs. heuristic assignment of cooperative autonomous unmanned air vehicles ż[END_REF] and allocating computer networks resources where the objective is to minimize the maximum latency between a server and a client [START_REF] Wang | The min-max multidepot vehicle routing problem: Heuristics and computational results ż[END_REF].

Related work

We brieĆy review the state-of-the-art heuristic algorithms for the minmax mTSP and the minmax multidepot mTSP. Given that the minmax mTSP was introduced much earlier than the minmax multidepot mTSP (1995 vs. 2009), there are more studies on the minmax mTSP than on the minmax multidepot mTSP.

The minmax mTSP

The minmax mTSP was introduced in 1995 by França et al. [START_REF] França | The m-traveling salesman problem with minmax objective ż[END_REF]. Since then many studies have been devoted to the problem. Comprehensive surveys about the applications, solution approaches and taxonomy are available in [START_REF] Bektas | The multiple traveling salesman problem: an overview of formulations and solution procedures ż[END_REF][START_REF] Cheikhrouhou | A comprehensive survey on the Multiple Traveling Salesman Problem: Applications, approaches and taxonomy ż[END_REF]. In this section, we focus on the most recent and representative heuristics for the problem.

Population-based metaheuristics have been presented for solving the minmax mTSP. Carter and Ragsdale [START_REF] Arthur | A new approach to solving the multiple traveling salesperson problem using genetic algorithms ż[END_REF] proposed a genetic algorithm in 2006. The algorithm was based on a two-part chromosome representation and applied classic crossover operators for the TSP to generate offspring solutions. Similarly, in 2007, Brown et al. [START_REF] Brown | A grouping genetic algorithm for the multiple traveling salesperson problem ż[END_REF] introduced another genetic algorithm, which adopted a two-part chromosome representation with real values. Subsequently, in 2009, Singh and Baghel [START_REF] Singh | A new grouping genetic algorithm approach to the multiple traveling salesperson problem ż[END_REF] presented a grouping genetic algorithm, which features a new chromosome representation and a concise crossover operator such that the most promising tour (the shortest) from the parents was inherited by the offspring. In 2013, Yuan et al. [START_REF] Yuan | A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms ż[END_REF] presented a speciĄc crossover operator based on the two-part chromosome representation of [START_REF] Arthur | A new approach to solving the multiple traveling salesperson problem using genetic algorithms ż[END_REF]. In 2017, Wang et al. [WCL17] investigated a memetic algorithm based on sequential variable neighborhood descent (MASVND) and the crossover operator of [START_REF] Singh | A new grouping genetic algorithm approach to the multiple traveling salesperson problem ż[END_REF]. Computational experiments on 31 instances with 51-1173 cities and 3-20 tours indicated MASVND was competitive compared to other algorithms, especially for instances with a large number of cities. In 2021, Karabulut et al. [START_REF] Karabulut | Modeling and optimization of multiple traveling salesmen problems: An evolution strategy approach ż[END_REF] proposed an evolution strategy algorithm (ES), where a self-adaptive Ruin and Recreate heuristic was employed to generate offspring solutions. ES reported excellent results by improving 14 best-known solutions with 51-1173 cities and 3-30 tours among 51 minmax mTSP instances. One notices that these algorithms are based on crossover operators that focus on cities and tours, contrary to powerful TSP crossovers such as EAX [START_REF] Nagata | Edge Assembly Crossover: A High-Power Genetic Algorithm for the Travelling Salesman Problem ż[END_REF][START_REF] Nagata | A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem ż[END_REF] where the focus is on how to inherit set of edges (subtours) from parents to offspring solutions. Swarm intelligence algorithms have been studied for solving the minmax mTSP, which showed good performances. In 2015, Pandiri and Singh [START_REF] Pandiri | Two metaheuristic approaches for the multiple traveling salesperson problem ż[END_REF] presented two bio-inspired algorithms (ABC and IWO). The IWO algorithm delivered excellent results and updated 12 best results reported in [BRC07; CR06; SB09; Yua+13] for the 25 tested instances. Additional studies on swarm intelligence algorithms for the minmax mTSP were presented in [START_REF] Lu | Mission-oriented ant-team ACO for minŰ max MTSP ż[END_REF][START_REF] Zhou | A comparative study of improved GA and PSO in solving multiple traveling salesmen problem ż[END_REF]. However, they are less competitive compared to the best algorithms such as ES [START_REF] Karabulut | Modeling and optimization of multiple traveling salesmen problems: An evolution strategy approach ż[END_REF] and IWO [START_REF] Pandiri | Two metaheuristic approaches for the multiple traveling salesperson problem ż[END_REF].

Neighborhood-based local optimization has also been investigated for solving the minmax mTSP. In 2015, Soylu [START_REF] Soylu | A general variable neighborhood search heuristic for multiple traveling salesmen problem ż[END_REF] presented a general variable neighborhood search algorithm based on several move operators including 2-opt and or-opt moves. Experimental results indicated a good performance of the algorithm, though it is less competitive compared to the IWO algorithm [START_REF] Pandiri | Two metaheuristic approaches for the multiple traveling salesperson problem ż[END_REF]. In 2022, He and Hao [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF] introduced a hybrid search algorithm with neighborhood reduction (HSNR), where two tabu search procedures based on different neighborhoods were alternatively used in combination with the leading TSP heuristic EAX [START_REF] Nagata | A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem ż[END_REF]. HSNR achieved a remarkable performance by updating the best-known solutions for 15 out of the 41 popular benchmark instances (with 51-1173 cities and 3-30 tours). Additional results were reported on a new set of 36 large instances with 1379-5915 cities and 3-20 tours. Also in 2022, Zheng et al. [START_REF] Zheng | An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen Problem ż[END_REF] proposed an effective iterated two-stage heuristic algorithm (ITSHA), which combines a clustering-based random greedy initialization procedure and a variable neighborhood search with three move operators (2-opt, Insert and Swap). Experimental results indicated that ITSHA obtained a good performance by improving 22 upper bounds among 44 instances.

Among the reviewed studies, Ąve algorithms (IWO [START_REF] Pandiri | Two metaheuristic approaches for the multiple traveling salesperson problem ż[END_REF], MASVND [WCL17], ES [START_REF] Karabulut | Modeling and optimization of multiple traveling salesmen problems: An evolution strategy approach ż[END_REF], HSNR [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF] and ITSHA [START_REF] Zheng | An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen Problem ż[END_REF]) hold the best-known results for the minmax mTSP on the 77 benchmark instances. Thus, these methods serve as the main reference algorithms for our comparative study.

The minmax multidepot mTSP

In 2009, Carlsson et al. [START_REF] Carlsson | Solving min-max multi-depot vehicle routing problem ż[END_REF] introduced the minmax multidepot vehicle routing problem with unbounded vehicle capacity. Interestingly, this problem is strictly equivalent to the minmax multidepot mTSP studied in this work. To solve the problem, the authors presented a LP-based heuristic based on the linear programing technique. In 2013, Narasimha et al. [START_REF] Venkata Narasimha | An ant colony optimization technique for solving minŰmax multidepot vehicle routing problem ż[END_REF] presented an ant colony optimization algorithm for the problem and showed interesting computation results on 11 test instances. Later in 2015, Wang et al. [START_REF] Wang | The min-max multidepot vehicle routing problem: Heuristics and computational results ż[END_REF] proposed two highly effective heuristics (MD and VNS) for solving the problem. The MD algorithm consists of three stages: (1) the multidepot problem is transformed to a single depot problem, which is then solved; (2) the longest tour is improved with TSP heuristics; (3) all tours are improved by exchanging cities between tours. The VNS algorithm combines variable neighborhood search with the powerful LKH solver [START_REF] Helsgaun | An effective implementation of the LinŰKernighan traveling salesman heuristic ż[END_REF]. Computational results on a new set of 43 instances with 10-500 cities and 3-20 tours indicated a high performance of these heuristics. Among the reviewed studies, the latest MD and VNS algorithms in [START_REF] Wang | The min-max multidepot vehicle routing problem: Heuristics and computational results ż[END_REF] represent the state-of-the-art for solving the minmax multidepot mTSP (i.e., the minmax multidepot vehicle routing problem with unbounded capacity).

One notices that until now, the minmax mTSP and the minmax multidepot mTSP have been studied separately, even if they are tightly related. We present below a uniĄed approach to handle both problems.

Benchmarks

Three sets of benchmark instances are used in our experiments: Sets S and L for the minmax mTSP and Set M for the minmax multidepot mTSP.

Set S: This set includes 41 small and medium-sized instances with 51-1173 cities and 3-30 tours. These instances were introduced in [BRC07; CR06; WCL17] and used in [HHW21; Kar+21; PS15; WCL17; Zhe+22b].

Set L: This set consists of 36 large-sized instances with 1379-5915 cities and 3-20 tours, which were introduced in [START_REF] He | Grouping memetic search for the colored traveling salesmen problem ż[END_REF].

Set M: This set includes 43 instances with 10-500 cities and 3-20 tours, which were introduced in [WGW15]2 . These benchmark instances and the solution certiĄcates for them obtained by the MA algorithm are available online3 .

Traveling salesman problems with profits 1.4.1 Problem introduction

Let G = (V, E) be an undirected graph where

V = ¶v 0 , v 1 , • • • , v n ♢ is the vertex set with v 0 being the depot and N = ¶v 1 , • • • , v n ♢ representing n vertices (customers) and E is the edge set. Let p i be a non-negative proĄt associated with each vertex v i ∈ V (p 0 = 0). Let C = (c ij ) be a non-negative cost (distance) matrix associated with E satisfying the triangle inequality (c ij + c jk > c ik for v i , v j , v k ∈ V and v i ̸ = v j ̸ = v k ).
Traveling salesman problems with proĄts seek to Ąnd an elementary circuit starting and ending at the depot, and visiting some customers to optimize the collected proĄt and the travel costs. According to the way the proĄt objective and the travel cost objective are considered, three different TSPs with proĄts can be identiĄed [START_REF] Feillet | Traveling salesman problems with proĄts ż[END_REF].

The Ąrst problem is the proĄtable tour problem (PTP), where the two objectives are combined into a single objective function which seeks to minimize the travel costs minus the collected proĄt. The second problem is the orienteering problem (OP) [START_REF] Bruce L Golden | The orienteering problem ż[END_REF][START_REF] Vansteenwegen | The orienteering problem: A survey ż[END_REF], which aims to maximize the collected proĄt under the constraint that the travel costs do not exceed a given value c max . The OP is also known as the selective traveling salesperson problem [START_REF] Gendreau | A branch-and-cut algorithm for the undirected selective traveling salesman problem ż[END_REF][START_REF] Laporte | The selective travelling salesman problem ż[END_REF] in the literature. The third problem is the prizecollecting TSP (PCTSP) [START_REF] Balas | The prize collecting traveling salesman problem ż[END_REF][START_REF] Bienstock | A note on the prize collecting traveling salesman problem ż[END_REF], which aims to minimize the travel costs under the constraint that the collected proĄt must reach a given minimum value p min . As it is indicated in [START_REF] Feillet | Traveling salesman problems with proĄts ż[END_REF], these problems are NP-hard and thus computationally challenging. Also according to [START_REF] Feillet | Traveling salesman problems with proĄts ż[END_REF], among these three problems, the OP and the PCTSP attracted much more attention than the PTP. These TSPs with proĄts are useful models for a broad range of applications [BM85; FDG05; FT88; GLV16; RB91; VSV11]. In this work, we follow this trend and focus on effective solving of the OP and the PCTSP.

Related work

We provide a literature review of the studies on TSPs with proĄts according to [START_REF] Feillet | Traveling salesman problems with proĄts ż[END_REF] and [START_REF] Vansteenwegen | State-of-the-art solution techniques for OP and TOP ż[END_REF][START_REF] Vansteenwegen | The orienteering problem: A survey ż[END_REF].

For the OP, Table 1.1 summarizes the existing heuristic algorithms. A comprehensive review on earlier heuristics up to 2010 is provided in [START_REF] Vansteenwegen | The orienteering problem: A survey ż[END_REF]. Our review focuses on more recent studies posterior to that date. In 2010, Silberholz and Golden [START_REF] Silberholz | The effective application of a new approach to the generalized orienteering problem ż[END_REF] studied the generalized orienteering problem and presented an iterated local search, where routes were improved by 2-opt while unrouted vertices were inserted into the route when the travel costs became less than c max . In 2014, Campos et al. [START_REF] Campos | GRASP with path relinking for the orienteering problem ż[END_REF] introduced a GRASP algorithm, which combines the general greedy randomized adaptive search procedure, path relinking and local search with three neighborhoods. Experimental results indicated that the algorithm obtained high-quality solutions within a short running time. In 2015, Marinakis et al. [START_REF] Marinakis | A memetic-grasp algorithm for the solution of the orienteering problem ż[END_REF] used a GRASP procedure to construct a population of solutions, which was evolved by applying the simple 1-point crossover and local search. In 2016, Keshtkaran and Ziarati [START_REF] Keshtkaran | A novel GRASP solution approach for the Orienteering Problem ż[END_REF] developed another GRASP, where new solutions were generated by a segment removing strategy. Computational results showed the competitiveness of the algorithm on two standard benchmark instances. In 2017, Ostrowski et al. [START_REF] Ostrowski | Evolution-inspired local improvement algorithm solving orienteering problem ż[END_REF] implemented a speciĄc crossover, where common vertices involved in two routes were considered to produce offspring solutions by changing fragments of the two routes. In this algorithm, feasible and infeasible routes were allowed to be cross-overed, while the Ątness function was redeĄned with respect to the travel costs.

In 2018, Kobeaga et al. [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF] proposed an evolutionary algorithm for the orienteering problem (EA4OP), which features an interesting edge recombination operator to produce offspring individuals. This recombination operator inherits two main characteristics from parent solutions with respect to vertices and edges. All vertices that are common to both parents are maintained, while vertices that belong to only one parent are included with a probability and all vertices that did not belong any parent are excluded. Edges of the parents were inherited as many as possible in order to pass on the maximum amount of information and decrease length quality losses in offspring solutions. Experimental results indicated that EA4OP was very effective and efficient. In 2019, Santini [START_REF] Santini | An adaptive large neighbourhood search algorithm for the orienteering problem ż[END_REF] presented an adaptive large neighborhood search algorithm (ALNS) including various destroy and repair methods. Experiments on four sets of benchmark instances showed that the algo-rithm was competitive by producing a number of new best results.

In addition to these heuristic algorithms, we mention the recent revisited branch and cut exact algorithm (RB&C) [START_REF] Kobeaga | A revisited branchand-cut algorithm for large-scale orienteering problems ż[END_REF], which proved many optimal solutions and updated numerous lower bounds for the benchmark instances. This review reveals that for the OP, the two heuristic algorithms presented in [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF][START_REF] Santini | An adaptive large neighbourhood search algorithm for the orienteering problem ż[END_REF] and the exact algorithm of [START_REF] Kobeaga | A revisited branchand-cut algorithm for large-scale orienteering problems ż[END_REF] represent the current state-of-the-art for solving the OP. They hold the best-known results on the four sets of benchmark instances commonly tested in the literature. [START_REF] Tsiligirides | Heuristic methods applied to orienteering ż[END_REF] 1984 Stochastic algorithm Golden et al. [START_REF] Bruce L Golden | The orienteering problem ż[END_REF] 1987 Centre of gravity heuristic Ramesh and Brown [START_REF] Ramesh | An efficient four-phase heuristic for the generalized orienteering problem ż[END_REF] 1991 Tabu search Wang et al. [START_REF] Wang | Using artiĄcial neural networks to solve the orienteering problem ż[END_REF] 1995 Artificial neural network Chao et al. [START_REF] Chao | A fast and effective heuristic for the orienteering problem ż[END_REF] 1996 Record-to-record Gendreau et al. [START_REF] Gendreau | A tabu search heuristic for the undirected selective travelling salesman problem ż[END_REF] 1998 Tabu search Tasgetiren and Smith [START_REF] Fatih | A genetic algorithm for the orienteering problem ż[END_REF] 2000 Genetic algorithm Liang et al. [START_REF] Liang | An ant colony approach to the orienteering problem ż[END_REF] 2006 Ant colony optimzation Silberholz and Golden [START_REF] Silberholz | The effective application of a new approach to the generalized orienteering problem ż[END_REF] 2010 Iterated local search Campos et al. [START_REF] Campos | GRASP with path relinking for the orienteering problem ż[END_REF] 2014 GRASP with path relinking Marinakis et al. [START_REF] Marinakis | A memetic-grasp algorithm for the solution of the orienteering problem ż[END_REF] 2015 Memetic-GRASP Keshtkaran and Ziarati [START_REF] Keshtkaran | A novel GRASP solution approach for the Orienteering Problem ż[END_REF] 2016 GRASP Ostrowski et al. [START_REF] Ostrowski | Evolution-inspired local improvement algorithm solving orienteering problem ż[END_REF] 2017 Evolution-inspired local improvement algorithm Kobeaga et al. [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF] 2018 Evolutionary algorithm Santini [START_REF] Santini | An adaptive large neighbourhood search algorithm for the orienteering problem ż[END_REF] 2019 Adaptive large neighborhood search

For the PCTSP, even though several studies have been reported under the name "PCTSP", such as those of [CL08; CSR21; GDM00; PSC13], they deal with in reality a different objective that aims to the minimize the sum of the travel costs and penalties paid for each unrouted vertex. According to the terminology introduced [START_REF] Feillet | Traveling salesman problems with proĄts ż[END_REF], these studies concern thus the proĄtable tour problem PTP, rather than the PCTSP considered in this work. Meanwhile, Bérubé et al. proposed a branch & cut exact algorithm (B&C) [START_REF] Bérubé | A branchand-cut algorithm for the undirected prize collecting traveling salesman problem ż[END_REF] and reported results on medium-sized instances with up to 532 vertices.

Benchmarks

For the OP, there are four sets of instances used in literature, and all of them were introduced by Kobeaga et al. [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF]. Each set includes 86 instances which are split into two groups: medium-sized instances with up to 400 vertices and large-sized instances with up to 7397 vertices. For the Ąrst three sets, the maximum travel cost c max = ⌈α •v(T SP )⌉, where v(T SP ) is the length of the shortest Hamiltonian route visiting all vertices and α = 0.5. The proĄt of each vertex is generated by three methods given by Fischetti et al. [START_REF] Fischetti | Solving the orienteering problem through branch-and-cut ż[END_REF]. In the last set, α takes different values while all vertices have the same proĄts as the second set. Furthermore, Vansteenwegen and Gunawan [START_REF] Vansteenwegen | State-of-the-art solution techniques for OP and TOP ż[END_REF] also collected a number of OP benchmark instances available online4 , including many small-sized instances. Since four sets of 344 instances in [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF] are representative, we ignore these small-sized instances mentioned in [START_REF] Vansteenwegen | State-of-the-art solution techniques for OP and TOP ż[END_REF].

Since there are no uniĄed instances for the PCTSP, we follow the study [START_REF] Bérubé | A branchand-cut algorithm for the undirected prize collecting traveling salesman problem ż[END_REF] and use the same method in [START_REF] Fischetti | Solving the orienteering problem through branch-and-cut ż[END_REF] to generate three sets of 240 instances with up to 7397 vertices, where each set includes 80 instances and is further split into two groups: mediumsized instances with up to 532 vertices and large-sized instances with up to 7397 vertices. The proĄt of each vertex is the same as in [START_REF] Bérubé | A branchand-cut algorithm for the undirected prize collecting traveling salesman problem ż[END_REF]. Furthermore, Vansteenwegen [START_REF] Vansteenwegen | Planning in tourism and public transportation ż[END_REF] stated that the most difficult OP instances are those where the selected number of vertices is a little more than half of the total number of vertices, we set p min =⌊0.5

• i∈N p i ⌋.
All these 344 instances for the OP and 240 instances for the PCTSP are used in our experiments and are available online5 .

Split delivery vehicle routing problem

Problem introduction

Formally, let G = (V, E) be an undirected graph where V = ¶0, 1, • • • , n♢ is the vertex set with 0 being the depot and N = ¶1, • • • , n♢ representing n customers and E is the edge set. Each customer i ∈ N is associated with an integer demand d i ∈ Z + . Let C = (c ij ) be a non-negative cost (distance) matrix associated with E satisfying the triangle inequality (c ij + c jk > c ik for all i, j, k ∈ V and i ̸ = j ̸ = k). Given a set of K identical vehicles with capacity Q available at the depot, the SDVRP is to Ąnd K routes (K can be limited or unlimited) such that 1) each route starts at the depot to serve a number of customers and ends at the depot without exceeding the vehicle capacity Q, 2) the demand d i of customer i ∈ N can be split and served by more than one vehicle, and 3) the total traveling distance of the K routes is minimized. According to the number K of the available vehicles (Ćeet size), the problem is called the SDVRP-LF (for limited Ćeet size) if K is Ąxed or the SDVRP-UF (for unlimited Ćeet size) otherwise. For the SDVRP-LF, K is Ąxed to K min = ⌈( n i=1 d i /Q)⌉ to ensure the feasibility of the solution. A mathematical formulation of both problems is shown as follows.

Given a undirected graph G = (V, E) with the vertex set V = ¶0, 1, • • • , n♢ where 0 is the depot and N = ¶1, • • • , n♢ represents n customers, and the edge set E. Let d i ∈ Z + be the demand of customer i ∈ N and C = (c ij ) a non-negative cost (distance) matrix associated with E satisfying the triangle inequality (c ij + c jk > c ik for all i, j, k ∈ V and i ̸ = j ̸ = k). Let Q be the capacity of K identical vehicles. The formulation of the SDVRP is based on two decision variables. Binary variable x k ij takes the value of 1 if vehicle k traverses edge (i, j), and it takes the value of 0 otherwise. Variable y ik is the quantity of the demand of customer i delivered by the kth vehicle. The mathematical model for the SDVRP-UF is described as follows.

(SDV RP ) Minimize = K k=1 n i=0 n j=0 c ij x k ij (1.16) subject to K k=1 n i=0 x k ij ≥ 1 j = 0, • • • , n (1.17) n i=0 x k ip - n j=0 x k pj = 0 p = 0, • • • , n; k = 1, • • • , K (1.18) i∈S j∈S x k ij ≤ ♣S♣ -1 k = 1, • • • , K; S ⊆ N (1.19) y ik ≤ d i n j=0 x k ij k = 1, • • • , K; i = 1, • • • , n (1.20) K k=1 y ik = d i i = 1, • • • , n (1.21) n i=1 y ik ≤ Q k = 1, • • • , K (1.22) x k ij ∈ ¶0, 1♢ i = 0, • • • , n; i = 0, • • • , n; k = 1, • • • , K (1.23) y ik ≥ 0 i = 1, • • • , n; k = 1, • • • , K (1.24)
Constraint (1.17) imposes that each vertex has to be visited at least once. Constraint (1.18) is the Ćow conservation constraint while constraint 1.19 is used to eliminate subtours. The Ąrst three constraints are classical constraints used in routing problems. Constraints (1.20)Ű(1.22) are related to the allocation of the demands of customers among vehicles. Constraint (1.20) indicates that customer i can be served by vehicle k only when k visits it. Constraint (1.21) guarantees that the total demand of each customer must be met. Constraint (1.22) imposes that the capacity for each vehicle cannot be exceeded.

Finally, since the SDVRP-LF limits the number of vehicles K to the minimum possible

K min = ⌈( n i=1 d i /Q)⌉, this extra constraint (K = K min )
needs to be added into the model.

Related work

A comprehensive review of exact and heuristic solution approaches untill 2012 can be found in [START_REF] Archetti | Vehicle routing problems with split deliveries ż[END_REF]. In this section, we focus on a literature review on heuristic approaches, while mentioning some representative studies on exact approaches developed since 2014. Table 1.2 summarizes the methods discussed in this section.

[ABS14] presented two branch-and-cut (B&C) algorithms, where the Ąrst uses the formulation of [START_REF] Belenguer | A lower bound for the split delivery vehicle routing problem ż[END_REF] and the other adopts a commodity-Ćow formulation. The methods solved 17 instances to optimality (one instance with 100 customers). [OKY18] created a compact vehicle-indexed Ćow formulation and presented computational results including optimal solutions for instances with 76 customers. [START_REF] Munari | Compact formulations for split delivery routing problems ż[END_REF] proposed three compact formulations and developed a B&C algorithm, which solved 91 instances to proven optimality (with up to 80 customers). For larger instances, heuristics/metaheuristics such as neighborhood-based local search and population-based search are used to Ąnd suboptimal solutions with a reasonable time.

The Ąrst local search algorithm for solving the SDVRP was presented by [START_REF] Dror | Savings by split delivery routing ż[END_REF][START_REF] Dror | Split delivery routing ż[END_REF]. Two neighborhood operators, namely k-Split and RouteAddition, were combined into the local search. The k-Split operator divides the demand of a customer and inserts the divided demand into different routes with an enough residual capacity. On the contrary, the RouteAddition operator tries to remove a split customer from all routes and create a new route to serve the customer. These two operators were widely used in follow-up studies. To better handle the problem and cope with the complexity of the SDVRP, other neighborhood operators were presented. [START_REF] Boudia | An effective memetic algorithm with population management for the split delivery vehicle routing problem ż[END_REF] proposed two new operators where two or three customers in two routes are swapped with the possibility of splitting their demands. [START_REF] Derigs | Local search-based metaheuristics for the split delivery vehicle routing problem ż[END_REF] introduced a new relocation operator where three routes were manipulated to explore neighboring solutions.

The tabu search metaheuristic was adapted to the SDVRP by [START_REF] Archetti | A tabu search algorithm for the split delivery vehicle routing problem ż[END_REF] for the Ąrst time, where a neighboring solution was obtained by removing a customer from a set of Branch-and-cut Both Ozbaygin et al. [START_REF] Ozbaygin | New exact solution approaches for the split delivery vehicle routing problem ż[END_REF] Vehicle indexed flow formulation Both Munari and Savelsbergh [START_REF] Munari | Compact formulations for split delivery routing problems ż[END_REF] Branch-and-cut Both Heuristic methods Dror and Trudeau [DT89;[START_REF] Dror | Split delivery routing ż[END_REF] Local search SDVRP-UF Derigs et al. [START_REF] Derigs | Local search-based metaheuristics for the split delivery vehicle routing problem ż[END_REF] Local search SDVRP-UF Archetti et al. [START_REF] Archetti | A tabu search algorithm for the split delivery vehicle routing problem ż[END_REF] Tabu search SDVRP-UF Aleman and Hill [START_REF] Rafael | A tabu search with vocabulary building approach for the vehicle routing problem with split demands ż[END_REF] Tabu search SDVRP-UF Berbotto et al. [START_REF] Berbotto | A randomized granular tabu search heuristic for the split delivery vehicle routing problem ż[END_REF] Tabu search SDVRP-LF Zhang et al. [START_REF] Zhang | An efficient forest-based tabu search algorithm for the split-delivery vehicle routing problem ż[END_REF] Tabu search SDVRP-UF Chen et al. [START_REF] Chen | A novel approach to solve the split delivery vehicle routing problem ż[END_REF] Priori split strategy SDVRP-UF Aleman et al. [START_REF] Rafael E Aleman | An adaptive memory algorithm for the split delivery vehicle routing problem ż[END_REF] Variable neighborhood descent SDVRP-LF Han and Chu et al. [START_REF] Han | A multi-start heuristic approach for the split-delivery vehicle routing problem with minimum delivery amounts ż[END_REF] Variable neighborhood descent SDVRP-UF Silva et al. [START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem ż[END_REF] Iterated local search Both Mota et al. [START_REF] Mota | A new metaheuristic for the vehicle routing problem with split demands ż[END_REF] Scatter search algorithm SDVRP-LF Campos et al. [START_REF] Campos | A scatter search algorithm for the split delivery vehicle routing problem ż[END_REF] Scatter search algorithm SDVRP-UF Shi et al. [START_REF] Shi | Particle swarm optimization for split delivery vehicle routing problem ż[END_REF] Particle swarm optimization SDVRP-UF Chen et al. [START_REF] Chen | The split delivery vehicle routing problem: Applications, algorithms, test problems, and computational results ż[END_REF] Hybrid algorithm/matheuristic SDVRP-UF Archetti et al. [START_REF] Archetti | An optimization-based heuristic for the split delivery vehicle routing problem ż[END_REF] Hybrid algorithm/matheuristic SDVRP-UF Jin et al. [START_REF] Jin | A column generation approach for the split delivery vehicle routing problem ż[END_REF] Hybrid algorithm/matheuristic SDVRP-UF Boudia et al. [START_REF] Boudia | An effective memetic algorithm with population management for the split delivery vehicle routing problem ż[END_REF] Memetic algorithm SDVRP-UF Wilck and Cavalier [START_REF] Joseph | A genetic algorithm for the split delivery vehicle routing problem ż[END_REF] Genetic algorithm SDVRP-LF routes in which it was currently visited and inserting it either into a new route or into an existing route with an enough residual capacity. This algorithm outperformed signiĄcantly Dror and TrudeauŠs algorithms [DT89; DT90]. Then, [START_REF] Rafael | A tabu search with vocabulary building approach for the vehicle routing problem with split demands ż[END_REF] proposed a so-called tabu search with vocabulary building approach (TSVBA). An initial set of solutions was constructed Ąrstly and attractive solution attributes were summarized to explore new solutions. Solutions in the set evolved along with the searching progress. The random granular tabu search (RGTS) was proposed by [START_REF] Berbotto | A randomized granular tabu search heuristic for the split delivery vehicle routing problem ż[END_REF], where a heuristic pruning technique is used to Ąlter non-promising neighborhood solutions and speed up the neighborhood search. Another tabu search algorithm, namely forest-based tabu search (FBTS), was introduced by [START_REF] Zhang | An efficient forest-based tabu search algorithm for the split-delivery vehicle routing problem ż[END_REF], where the forest structure is used to represent each solution. Several dedicated operators based on the forest structure were also designed, and the experimental results showed that the FBTS algorithm was competitive with existing algorithms.

[MCC07] proposed a scatter search heuristic to address the SDVRP-LF for the Ąrst time. [START_REF] Campos | A scatter search algorithm for the split delivery vehicle routing problem ż[END_REF] introduced another scatter search for the SDVRP-LF with two distinct procedures for generating initial populations. [START_REF] Han | A multi-start heuristic approach for the split-delivery vehicle routing problem with minimum delivery amounts ż[END_REF] presented a multi-start solution approach for solving the SDVRP-UF. [START_REF] Rafael E Aleman | An adaptive memory algorithm for the split delivery vehicle routing problem ż[END_REF] proposed an adaptive memory algorithm for the SDVRP-LF, which uses a constructive procedure for initial solution generation and a variable neighborhood descent for solution improvement. The constructive procedure builds an initial solution by greedily inserting customers with a mechanism called route angle control. The VND procedure follows to seek improved solutions by exploring three commonly used neighborhoods. [START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem ż[END_REF] presented a multi-start iterated local search (Spli-tILS) for both cases of limited and unlimited Ćeet. SplitILS is composed of an efficient perturbation procedure and a randomized variable neighborhood descent which included numerous VRP neighborhood operators and SDVRP neighborhood operators. Extensive experiments indicated that SplitILS dominated previous algorithms. [START_REF] Chen | A novel approach to solve the split delivery vehicle routing problem ż[END_REF] introduced a novel and efficient approach to solve the SDVRP-UF, where each customerŠs demand was split into small pieces in advance and then the SDVRP was solved by applying leading VRP algorithms [START_REF] Groër | A library of local search heuristics for the vehicle routing problem ż[END_REF]. [START_REF] Shi | Particle swarm optimization for split delivery vehicle routing problem ż[END_REF] proposed the Ąrst particle swarm optimization for the SDVRP-UF and reported some new upper bounds, although its performance is generally worse than SplitILS [START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem ż[END_REF].

In addition to these local search approaches, two hybrid population-based approaches were investigated. [START_REF] Boudia | An effective memetic algorithm with population management for the split delivery vehicle routing problem ż[END_REF] presented the memetic algorithm with population management, which used the crossover operator from [START_REF] Prins | A simple and effective evolutionary algorithm for the vehicle routing problem ż[END_REF] and a local search procedure including two new swap moves. The algorithm performed competitively with the tabu search of [START_REF] Archetti | A tabu search algorithm for the split delivery vehicle routing problem ż[END_REF] on a number of benchmark instances. [START_REF] Joseph | A genetic algorithm for the split delivery vehicle routing problem ż[END_REF] proposed another hybrid genetic algorithm that reproduced offspring solutions using route-by-route methods and reported competitive results with previous algorithms, although its results were signiĄcantly improved by SplitILS [SSO15] later.

Our review shows that the algorithms in [AH10; AZH09; BGN14; BPR07; CCM08; DLV10; SSO15; WC12; Zha+15] hold the best-known results for the SDVRP-LF and SDVRP-UF. Thus, we use these approaches as our reference algorithms for the comparative study.

Benchmark instances

Four sets of commonly tested instances are used in the experiments. Ů Set I. It was proposed by [START_REF] Belenguer | A lower bound for the split delivery vehicle routing problem ż[END_REF] and consists of 25 instances with 22Ű101 customers. The set has been widely tested by almost all SDVRP algorithms. This set considers two cost matrices (i.e., unrounded and rounded costs), leading to 50 distinct instances. Ů Set II. This set was generated by [START_REF] Campos | A scatter search algorithm for the split delivery vehicle routing problem ż[END_REF] following the procedure provided by [START_REF] Archetti | A tabu search algorithm for the split delivery vehicle routing problem ż[END_REF]. It includes 49 test-instances with up to 199 customers. These instances are divided into 7 groups such that the instances of a group have the same cost matrix and distinct demands. This set was also used to evaluate some algorithmsŠ performances, such as SplitILS silva2015iterated, [START_REF] Rafael | A tabu search with vocabulary building approach for the vehicle routing problem with split demands ż[END_REF] and [START_REF] Rafael E Aleman | A ring-based diver-siĄcation scheme for routing problems ż[END_REF]. Ů Set III. The set was presented by [START_REF] Archetti | An optimization-based heuristic for the split delivery vehicle routing problem ż[END_REF] following the same approach of [START_REF] Archetti | A tabu search algorithm for the split delivery vehicle routing problem ż[END_REF].

The set is composed of 6 groups including 42 instances with 50Ű199 customers, and the instances in each group have the same cost matrix and distinct demands. Ů Set IV. This set was provided by [START_REF] Chen | The split delivery vehicle routing problem: Applications, algorithms, test problems, and computational results ż[END_REF]. It includes 21 instances with 8Ű288 customers. These instances have the particularity that customers are concentrically distributed around the depot. All these 162 instances are used in our experiments to evaluate the performance of the proposed SplitMA algorithm. The instances and the best solutions obtained by SplitMA are available online at https://github.com/pengfeihe-angers/SplitMA.

An overview of hybrid genetic algorithms for routing problems

Potvin [START_REF] Potvin | State-of-the art review-Evolutionary algorithms for vehicle routing ż[END_REF] presented a review of evolutionary algorithms for vehicle routing problems in 2009. We provide a brief review for crossover operators applied on routing problems.

In the beginning, the path representation is naturally adopted to state each solution when using genetic algorithms to solve the TSP. Then, the classical one-point crossover proved inadequate, since offspring solutions are usually invalid with missing and duplicated cities. Subsequently, a well-known crossover operator for the TSP was proposed by Oliver et al. [START_REF] Oliver | Study of permutation crossover operators on the traveling salesman problem ż[END_REF], namely order crossover (OX). Indeed, many order-based operators are presented to deal with sequencing problems, where the solutions differ only by the ordering of their elements [START_REF] Potvin | Genetic algorithms for the traveling salesman problem ż[END_REF]. For example, Tasgetiren and Smith [START_REF] Fatih | A genetic algorithm for the orienteering problem ż[END_REF] and Ostrowski et al. [START_REF] Ostrowski | Evolution-inspired local improvement algorithm solving orienteering problem ż[END_REF] presented similar crossover operators for orienteering problems. Indeed, such crossover operators are limited for solving the TSP since their performances are not as good as the powerful TSP heuristic LKH [START_REF] Helsgaun | An effective implementation of the LinŰKernighan traveling salesman heuristic ż[END_REF]. Nagata et al. [NK97;[START_REF] Nagata | A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem ż[END_REF] proposed the most powerful genetic algorithm for solving the TSP, where the key part is the edge assembly crossover (EAX). The algorithm assembles suitable edges from elite solutions to produce promising offspring solutions, not arranging cities in the path. The edge assembly crossover produces offspring solutions from edge perspective, which is distinct with other crossover operators. The crossover Ąrstly constructs a multigraph where all edges from parent solutions are included. Then, all edges in the multigraph are parti-tioned into some AB-cycles, where edges are linked alternatively from father and mother solution. Subsequently, these AB-cycles are grouped into several E-sets, where each E-set may include one or more AB-cycles. During the fourth step, each intermediate solution is constructed with a basic solution and an E-set. If an edge occurs in both the basic solution and the E-set, it will be discarded. Remaining edges are combined to form an intermediate solution. Finally, offspring solutions are produced by removing subtours. It is worth mentioning that this genetic algorithm discards local search operators such as 2-opt and matches the state-of-the-art TSP algorithms, such as LKH [START_REF] Helsgaun | An effective implementation of the LinŰKernighan traveling salesman heuristic ż[END_REF].

For the VRP, many interesting crossover operators were designed and developed. An adaption of natural crossover is reported in Jung and Moon [START_REF] Jung | A Hybrid Genetic Algorithm For The Vehicle Routing Problem With Time Windows[END_REF] for the VRP with time windows. The operator works on a two dimensional graphical representation. A solution is partitioned into two different classes by drawing one or more curves or geometric Ągures, like rectangles and ellipses. Then, arcs in one class are kept and transferred to the offspring solutions. After this stage, a repair algorithm is applied to restore feasibility of all routes. The edge recombination crossover (ER) is originally designed for the TSP and extended to the VRP [START_REF] Krajcar | GA approach to solving multiple vehicle routing problem ż[END_REF][START_REF] Skrlec | A heuristic modiĄcation of genetic algorithm used for solving the single depot capacited vehicle routing problem ż[END_REF]. This operator is also applied to the OP [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF] by progressively extending a tour with adding edges from parent solutions. There are many similar crossover operators such as matrix-based crossover operator [START_REF] Fox | Genetic operators for sequencing problems ż[END_REF] and extended order-based crossover operator [START_REF] Tavakkoli-Moghaddam | A memetic algorithm for a vehicle routing problem with backhauls ż[END_REF].

The most successfully hybrid genetic algorithm adopts an alternative paradigm, that is route-Ąrst, cluster second. The path representation encodes a unique giant tour that covers all customers. Given such a representation, classical order-based crossover for the TSP can be used. The giant tour then needs to be partitioned into individual feasible routes [START_REF] Beasley | Route ĄrstŮcluster second methods for vehicle routing ż[END_REF]. For a long time, the difficult issue is how to partition giant tours efficiently. In 2004, Prins [START_REF] Prins | A simple and effective evolutionary algorithm for the vehicle routing problem ż[END_REF] presented a polynomial-time algorithm to partition the giant tour into individual routes in an optimal way under corresponding constraints, such as capacity. The algorithm, namely SPLIT, is further improved by Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm for multidepot and periodic vehicle routing problems ż[END_REF] to solve many vehicle routing problems [START_REF] Vidal | Node, edge, arc routing and turn penalties: Multiple prob-lemsŮone neighborhood extension ż[END_REF][START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF][START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows ż[END_REF][START_REF] Vidal | A uniĄed solution framework for multi-attribute vehicle routing problems ż[END_REF]. The hybrid genetic algorithmic framework has been widely used to solve various routing problems, such as team orienteering problem [START_REF] Bouly | A memetic algorithm for the team orienteering problem ż[END_REF] and multi-trip vehicle routing problem [START_REF] Cattaruzza | A memetic algorithm for the multi trip vehicle routing problem ż[END_REF]. Furthermore, the EAX crossover has been extended to the capacitated VRP [START_REF] Nagata | Edge assembly-based memetic algorithm for the capacitated vehicle routing problem ż[END_REF] and the VRP with time windows [START_REF] Nagata | A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows ż[END_REF] with slight revision. These two papers have achieved remarkable results compared with state-of-the-art methods. Indeed, we notice that hybrid genetic algorithms with giant tour crossover operators are associated with an obvious shortcoming, that is they require an efficient SPLIT algorithm. For example, for the SDVRP, the SPLIT algorithm is not easy to be implemented since each customer may be visited by more than one vehicle. The similar problem also exists on the minmax mTSP. On the other hand, the EAX crossover has also a limitation since it requires that each vertex in parent solutions should have the same degree in the associated graph. However, for the SDVRP and TSPs with proĄts, this condition can not be satisĄed since each vertex may have different degrees in distinct solutions. In this thesis, one of our objectives is to present a general and effective edge assembly crossover operator for rich routing problems.

Algorithm assessment

Evaluation indicators

In this thesis, in addition to classical comparison, we use the performance proĄle [START_REF] Elizabeth | Benchmarking optimization software with performance proĄles ż[END_REF], a visual and popular benchmarking tool, to show a more intuitive performance assessment. For assessment, we focus on a comparison of our algorithm with the state-ofthe-art algorithms. Given a set of algorithms (results) S = ¶s 1 , s 2 , • • • , s k ♢ and a set of instances Q, the performance ratio r s,q of algorithm s on instance q with respect to the best approach for the minimization objective f is given by r s,q = fs,q min ¶f a,q:a∈S ♢ . The overall performance of approach s is determined by

Q s (τ ) = ♣q∈Q♣rs,q≤τ ♣ ♣Q♣
, which is the probability for algorithm s that its performance ratio r s,q is within a factor τ . Q s (τ ) represents the (cumulative) distribution function for the performance ratio. Q s (τ = 1) is the percentage of instances on which algorithm s performs the best compared to all other algorithms.

Statistical methods

For the experimental studies in this thesis, we constantly apply the Wilcoxon signedrank test with a conĄdence level of 0.05 to access our algorithm and each reference stateof-the-art algorithm. If the p-value is less than 0.05, the null hypothesis is rejected.

Chapter conclusion

In this chapter, we presented a brief overview of the well-known traveling salesman problem and vehicle routing problem. Four well-known variants of the TSP and VRP are considered and related metaheuristic algorithms are summarized. The commonly used benchmark instances are presented subsequently. Finally, hybrid genetic algorithms for rich routing problems are also discussed, including various crossover operators.

Chapter 2

GROUPING MEMETIC ALGORITHM FOR

COLORED TRAVELING SALESMEN

PROBLEM

In this chapter, we present the Ąrst grouping memetic algorithm for solving the CTSP. The algorithm includes three main components: (i) a greedy randomized heuristic for population initialization; (ii) a dedicated local search procedure for local optima exploration; (iii) a backbone-based crossover operator for solution recombination. Computational results on three sets of 65 popular benchmark instances demonstrate the competitiveness of our algorithm. We especially report improved upper bounds for 38 instances (for more than 58% cases). First computational results with the general CPLEX solver are presented, including 10 proven optimal solutions. Finally, we shed lights on the impacts of the key components of the algorithm. The content of this chapter is based on an article published in Information Sciences.

Introduction

The CTSP is a useful model for a number of practical problems [START_REF] He | Fields distinguished by edges and middles visited by heterogeneous vehicles to minimize non-working distances ż[END_REF][START_REF] He | Optimisation of the harvesting time of rice in moist and non-moist dispersed Ąelds ż[END_REF][START_REF] Li | Colored traveling salesman problem ż[END_REF]. Given its theoretical and practical signiĄcance, it has received more and more attention. As shown in Chapter 1.2.2, the review reveals that many metaheuristic algorithms have been presented aiming to obtain the better solutions. Although these algorithms have reported valuable computational results on various benchmark instances, they lack robustness and stability in particular when they are applied to solve large scale instances.

In this chapter, we investigate for the Ąrst time the powerful memetic algorithm (MA) framework for solving the CTSP and present a competitive grouping memetic algorithm (GMA) dedicated to the problem. Indeed, effective MAs have been proposed to solve the related mTSP [KAO15; KFT18; LHW19; WCL17] and several vehicle routing problems [Cat+14; NB09; Pri04; Vid+12]. However, most of these MAs are based on the so-called giant tours and split algorithms, which are not suitable for the CTSP due to the presence of exclusive cities. We consider the CTSP from the perspective of grouping problems [START_REF] Falkenauer | Genetic Algorithms and Grouping Problems[END_REF] and introduce an effective grouping memetic algorithm. The proposed algorithm integrates two complementary key components: an original local optima exploration procedure (to Ąnd high quality local optima, Section 2.2.3) and a dedicated backbone-based crossover operator (to generate promising new offspring, Section 2.2.4). As demonstrated by the computational results shown in Section 2.3, the proposed algorithm competes very favorably with the state-of-the-art CTSP algorithms on three sets of benchmark instances.

The rest of this chapter is organized as follows. The proposed grouping memetic algorithm is presented in Section 2.2. Computational results and comparisons with stateof-the-art algorithms are presented in Section 2.3. In Section 2.4, the impacts of key components of the algorithm are discussed. Section 2.5 presents conclusions.

Grouping memetic algorithm

Given a CTSP instance, the search space explored by the CTSP is a multi-route problem whose candidate solutions consist of m tours where the k-th tour includes city 0, the exclusive cities of C k and some shared cities of S.

In this section, we present the grouping memetic algorithm for solving the CTSP. For a CTSP instance, GMA explores a search space Ω composed of all candidate feasible solutions, where a candidate solution φ consists of m tours ¶r 1 , r 2 , . . . , r m ♢ with r k (k = 1, 2, . . . , m) being the k-th route visited by the k-th salesman. Given a solution φ ∈ Ω, its objective value f (φ) is given by the total distance of its m routes. The goal of GMA is thus to Ąnd a solution with the smallest objective value as possible.

In the literature, three common methods were used to represent solutions of the CTSP: dual chromosome encoding [START_REF] Li | Colored traveling salesman problem ż[END_REF], m-tour encoding [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] and adjacency representation encoding [START_REF] He | Iterated two-phase local search for the colored traveling salesmen problem ż[END_REF]. In this chapter, we adopt the adjacency representation encoding, which has the advantage of encoding each route (group of cities) independently to facilitate inter-routes operations. The interested reader is referred to [START_REF] He | Iterated two-phase local search for the colored traveling salesmen problem ż[END_REF] for more details and an illustrative example. The proposed GMA algorithm consists of four main components: population initialization, local optima exploration, backbone-based crossover and population updating. GMA starts with an initial population P of p solutions generated by the population initialization procedure (Section 2.2.2). It then repeats a number of generations during which new candidate solutions are sampled. At each generation, the backbone-based crossover combines two randomly and uniformly selected parent solutions to generate a promising offspring solution (Section 2.2.4). The local optima exploration (LOE) is then applied to improve the offspring solution (Section 2.2.3), followed by population update (Section 2.2.5). This evolution process is terminated when a predeĄned stopping condition (e.g., an allowed number of generations, an allotted cutoff time limit) is reached. In this work, we use a cutoff time limit. The pseudo-code of GMA is shown in Algorithm 1.

General scheme

Population initialization

The GMA starts its search with an initial population P of p high-quality (elite) solutions. To construct a population, we use a greedy randomized heuristic to generate a feasible solution, which is further improved by LOE described in Section 2.2.3. The improved solution is then inserted into P if the solution is different from any existing solution in P; otherwise, this solution is discarded. This process is repeated until p different solutions are generated. Thanks to the greedy randomized heuristic and subsequent LOE improvement step, we obtain a diverse and high-quality population.

Algorithm 2 Pseudo-code of the greedy randomized heuristic A feasible solution is constructed by the greedy randomized heuristic according to the following steps: 1) build a partial route for each of the m salesmen by using the corresponding exclusive cities; 2) dispatch the shared cities among the m partial routes to obtain a complete solution. The pseudo-code of the greedy randomized heuristic is shown in Algorithm 2. During the Ąrst step (lines 4-12), to create the k-th partial route r k , one Ąrst initiates the route with the city 0. Then, the exclusive cities in C k are selected randomly and uniformly, and inserted one by one into r k such that the insertion gives the smallest increase of the route distance. When all exclusive cities of every salesman are inserted into the corresponding route, the Ąrst step stops, leading to a partial solution φ composed of m partial routes. During the second step (lines 14-19), the shared cities j from S \ ¶0♢ are processed randomly and uniformly, and inserted one by one into a route of the partial solution φ such that its total distance increase is minimal. When all shared cities are inserted, an initial solution is obtained. The Ąrst step has a time complexity of O(♣C m ♣ 2 × m), while the second step is bounded by O(♣S♣ × n). Therefore, the time complexity of the greedy randomized heuristic is O(♣S♣ × n).

1: Input: Instance I (exclusive city sets ¶C 1 , C 2 , • • • , C m ♢,

Local optima exploration

Local optimization plays a key role in a memetic algorithm and constitutes one of the driving forces for Ąnding solutions of increasing quality. For an effective examination of local optima, GMA employes a speciĄc strategy that combines an inter-route optimization and an intra-route optimization procedure heuristic. SpeciĄcally, our local optima exploration procedure (LOE) iterates two complementary search components: the constrained cross-exchange operator (CCE) (Section 2.2.3) and a TSP heuristic called Edge Assembly Crossover (EAX) [NK13] (Section 2.2.3). CCE improves solutions by exchanging two substrings (sub-routes) from two routes. The routes modiĄed by CCE are indicated by a binary vector RT of length m (RT [i] = 1 if route i is changed by CCE, RT [i] = 0 otherwise). Then each modiĄed route is further optimized by EAX. CCE and EAX are repeated until the current solution φ can not be further improved. Algorithm 3 shows the pseudo-code of the local optima exploration procedure integrating the CCE operator and the EAX heuristic.

Constrained cross-exchange

The conventional cross-exchange was initially designed for vehicle routing problems [AS19a; CHD10; Tai+97]. It is a generic local search operator which performs exchanges of two consecutive substrings (sub-routes) ri and rj from two different routes r i and r j . However, given the particularity of exclusive cities in the CTSP, the cross-exchange can not be used directly in our context. For this reason, we propose a constrained crossexchange (CCE) in this work. Moreover, it is known that the cross-exchange has a high time complexity [START_REF] Arnold | Knowledge-guided local search for the vehicle routing problem ż[END_REF][START_REF] Taillard | A tabu search heuristic for the vehicle routing problem with soft time windows ż[END_REF]. CCE uses a suitable pruning technique to reduce this complexity. The evaluation of a CCE move for the CTSP is summarized in two steps. The Ąrst step is to determine the start of two substrings and the second step is to identify the suitable length of both substrings ( r k 1 and r k 2 ). For the start of substring r k 1 , we Ąrst need to Ąnd an edge which will break route r k 1 . Suppose the edge is ¶I 1 , I 2 ♢. Then, a suitable new neighbor of city I 1 needs to be determined. To limit the number of candidate moves, CCE uses the following heuristic pruning technique that only considers the neighbors among the N n nearest cities. Suppose that city J 3 is such a neighbor, and city J 3 belongs to route r k 2 . If edge ¶I 1 , J 3 ♢ is added as a new edge, edge ¶J 2 , J 3 ♢ or edge ¶J 3 , J 4 ♢ should be removed. Once the starts of two substrings (I 2 and J 3 ) are determined, we need to identify the length of each substring. It is worth noting that each substring should not include any exclusive cities because these cities are only visited by the corresponding salesman.

Because the number of cities of each substring can vary from 0 to α (a parameter), all feasible combinations of the two substrings with their given starts can be listed, and the move gain δ for each combination can also be calculated. There are at most (α + 1) 2 combinations of two substrings. When a substring is empty and the other is non-empty ( r k 1 = ∅ or r k 2 = ∅), these two cases are [START_REF] Taillard | A tabu search heuristic for the vehicle routing problem with soft time windows ż[END_REF]. However, both substrings can not be empty simultaneously. Therefore, at most (α + 1) 2 -1 combinations of two substrings could be listed for two given starts. Then, we need to identify the best move (i.e., with the largest gain δ l ) in these combinations. So far, a CCE move < r k 1 , r k 2 > is acquired and the lengths of two substrings are determined. For all combinations of the two starts, the global minimal move gain δ b can be identiĄed. If δ b < 0, F lag ← true, RT [k 1 ] ← 1 and RT [k 2 ] ← 1; then, solution φ is updated by swapping two substrings ( r k 1 and r k 2 ); otherwise, solution φ, F lag and matrix RT are returned, because the stopping condition (δ b ≥ 0) of CCE is met. As for the time complexity of CCE, there are O(♣S♣ × (α + 1)) ways to select the Ąrst substring in any given route, while O(N n × (α + 1)) ways exist to select the second substring in another route. Therefore, the time complexity of CCE is

O(♣S♣ × N n × ((α + 1) 2 -1)).
For example, Fig. 2.1 illustrates two cases of determining the starts of two substrings. Then two complete CCE moves ( r k 1 = ¶I 2 ♢ and r k 2 = ¶J 3 , J 4 ♢ or r k 2 = ¶J 3 , J 2 ♢) are illustrated in Fig. 2.2, where cities ¶I 2 , J 2 , J 3 ♢ are shared. If edge ¶J 2 , J 3 ♢ is broken in the Ąrst step, the substring r k 2 = ¶J 3 , J 4 ♢ is serial and in order. However, if edge ¶J 3 , J 4 ♢ is broken in the Ąrst step, the substring r k 2 = ¶J 3 , J 2 ♢ is serial and reverse. One may note the following differences between CCE and cross-exchange [START_REF] Arnold | Knowledge-guided local search for the vehicle routing problem ż[END_REF]. First, the cross-exchange operator used in [START_REF] Arnold | Knowledge-guided local search for the vehicle routing problem ż[END_REF] does not limit the length of the substrings to be exchanged; however, in CCE, the length of the substrings must be less than or equal to the value Ąxed by the parameter α. Second, in CCE, exclusive cities are constrained to stay in a route and can not be moved to other routes. Therefore, the two substrings to be exchanged should not include any exclusive cities. Finally, unlike vehicle routing for which cross-exchange was designed, there is no capacity limitation for each salesman in the CTSP. So CCE does not consider this capacity constraint.

Edge assembly crossover for TSP

For the optimization of each individual route, the constraint of exclusive cities can be ignored. Thus optimizing each route corresponds to solving a TSP. There are several sophisticated and powerful heuristics designed for solving TSP. For example, the wellknown fast 2-opt heuristic or LK algorithm can be used to improve each route [START_REF] Arnold | Knowledge-guided local search for the vehicle routing problem ż[END_REF][START_REF] Helsgaun | An effective implementation of the LinŰKernighan traveling salesman heuristic ż[END_REF][START_REF] Soylu | A general variable neighborhood search heuristic for multiple traveling salesmen problem ż[END_REF]. In this work, we adopt the EAX heuristic [START_REF] Nagata | A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem ż[END_REF] 1 , which is among the best TSP heuristics. In our case, EAX helps to keep each route to being optimal or near-optimal in the iterative process of LOE.

Backbone-based crossover

Crossover is another important ingredient of a memetic algorithm and should be designed with care in order to favor transmissions of useful information from parents to offspring [START_REF] Hao | Memetic algorithms in discrete optimization ż[END_REF], while respecting the problem speciĄc structure. One popular way of designing meaningful crossover for grouping problems such as the CTSP is to explore the so-called backbone information, which typically corresponds to solution attributes shared by elite solutions [GBF11; GH99; Sun+20; ZHG18]. In this work, we follow this idea and design a dedicated backbone crossover for the CTSP.

Let φ F and φ M be two parent solutions in the population. Based on φ F and φ M , we divide the set of shared cities except the depot (S \ ¶0♢) into two categories, i.e., common elements and non-common elements. 

Definition 1: Given two parent solutions φ

F = ¶r F 1 , r F 2 , . . . , r F m ♢ and φ M = ¶r M 1 , r M 2 , . . . ,
(i.e., i ∈ r F k ∩ r M k ). If i appears in r F
k and r M l (k ̸ = l), city i is a non-common element. Then, an offspring solution φ O is constructed in two steps. In the Ąrst step, a donor parent is Ąrst chosen randomly and uniformly between φ F and φ M . A partial offspring solution φ O is then created by inheriting all m routes of the donor parent without the shared cities. In the second step, for each city i ∈ S \ ¶0♢, if it is a common element appearing in r F k and r m k , then city i is greedily inserted into route r O k of the partial offspring solution. If city i is a non-common element (i ∈ r F k , i ∈ r M l and k ̸ = l), we randomly and uniformly select one route of the partial offspring solution and then greedily insert i into the selected route such that the insertion leads to the smallest increase of the total distance.

1 { F F r   ={0,1,2,3,8,9}; 2 F r ={0,4,5,6,7,10}} 1 { M M r   ={0,2,1,3,9,10}; 2 M r ={0,6,4,5,7,8}} 1 { O O r   ={0,2,1,3}; 2 O r ={0,6,4,5}} The first step 1 { O O r   ={0,2,1,3,9,8}; ={0,6,7,4,5,10}}
The second step 3 shows an example of the crossover operator for a CTSP instance with 11 cities {0,1,. . . ,10} and m = 2 salesmen with their sets of exclusive cites C 1 = ¶1, 2, 3♢, C 2 = ¶4, 5, 6♢, and the set of shared cities S \ ¶0♢ = ¶7, 8, 9, 10♢ (marked in red color). Let φ F = ¶r F 1 = ¶0, 1, 2, 3, 8, 9♢; r F 2 = ¶0, 4, 5, 6, 7, 10♢♢ and φ M = ¶r M 1 = ¶0, 2, 1, 3, 9, 10♢; r M 2 = ¶0, 6, 4, 5, 7, 8♢♢ be the parent solutions. By Definition 1, cities 7 and 9 are common elements, while 8 and 9 are non-common elements. First, suppose that φ M is the donor parent. Then offspring φ O inherits the routes r M 1 and r M 1 by deleting the four shared cities, leading to φ O ← ¶r O 1 = ¶0, 2, 1, 3♢; r O 2 = ¶0, 6, 4, 5♢♢. Then the shared cities ¶7, 8, 9, 10♢ are successively considered until they are all inserted. City 7 is a common element of the second routes of the parent solutions, it is thus greedily inserted into the partial route r O 2 , supposing this is the cheapest insertion that increases the least the total distance. City 8 is a non-common element, it is greedily inserted into the partial route r O 1 or r O 2 with equal probability. Suppose that route r O 1 is selected, and city 8 is inserted into route r O 1 at the cheapest place leading to the smallest increase of the route distance. Cites 9 and 10 are processed in the same way. When all shared cities ¶7, 8, 9, 10♢ are inserted into φ O , a feasible offspring solution is constructed successfully, which is then submitted to LOE for further improvement.

The time complexity of the crossover can be estimated as follows. The Ąrst step needs to scan all the cities of the donor parent to allow its m routes to be partially inherited. This is achieved in O(n) time. In the second step, the shared cities in S \ ¶0♢ are inserted into the partial offspring at the most suitable places, while the time complexity of evaluating each move gain is O(1). The second step can be performed in O(♣S♣ × n) time. As the result, the time complexity of the crossover is O(♣S♣ × n).

Pool updating strategy

For each new offspring solution φ O improved by LOE in Section 2.2.3, the pool updating strategy uses φ O to update the population P as follows. If the offspring φ O is different from any existing solutions and better than the worst solution in P, φ O replaces the worst solution; otherwise φ O is discarded.

Experimental results and comparisons

This section presents a performance assessment of the GMA algorithm. We show computational studies on well-known benchmark instances (see Section 1.2.3) from the literature, and comparisons with existing state-of-the-art algorithms for the CTSP.

Experimental protocol

GMA was coded in C++ and complied with a g++ compiler with the -O3 option2 . All experiments were conducted on a computer with an AMD-6134 processor (2.3GHz and 6G RAM) running Linux.

To assess the performance of GMA, we show comparisons with the following algorithms: artiĄcial bee colony (ABC) [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] (2018), ant colony optimization (ACO) [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning ż[END_REF] (2018) and iterated two phase local search (ITPLS) [START_REF] He | Iterated two-phase local search for the colored traveling salesmen problem ż[END_REF] (2021). Indeed, computational results reported in the literature indicate that these three algorithms represent the stateof-the-art of solving the above benchmark instances, while ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] and ITPLS [START_REF] He | Iterated two-phase local search for the colored traveling salesmen problem ż[END_REF] are clearly two dominating algorithms. So we use ABC (source code unavailable) and IT-PLS (source code available) as the main reference algorithms and cite ACO (source code unavailable) when it is appropriate.

To make the comparisons as fair as possible, we faithfully re-implemented the best ABC algorithm of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] 3 . We veriĄed that our implementation (denoted as re-ABC) was able to reproduce the results reported in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] (and in fact, our ABC implementation even obtained some better results than those reported in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF]).

In order to assess the gaps between the heuristic solutions (from GMA and the reference algorithms) and the optimal solutions, we also investigated the general mixed integer programming solver CPLEX (version 12.7) based on the mathematical model from [START_REF] Li | Colored traveling salesman problem ż[END_REF] (see Section 1.2.1). Our experiment indicated that CPLEX with this model can only solve optimally 10 smallest instances of Set I within 7200 seconds, but it fails on Sets II and III due to memory overĆow (even on a computer with 20G RAM). The results of CPLEX could be improved by investigating more sophisticated mathematical models.

Parameter tuning

GMA requires 3 parameters: population size p, number of nearest cities N n and parameter α. In order to identify a set of suitable parameters, we used the popular ŠIraceŠ package [START_REF] López-Ibáijez | The irace package: Iterated racing for automatic algorithm conĄguration ż[END_REF] for automatic parameters tuning. The tuning was performed on 8 benchmark instances with 202 to 5397 cities. For the experiment, the tuning budget was set to 500 runs, each with a time limit of half of the cutoff time. The studied and Ąnal values (suggested by Irace) of these parameters are shown in Table 2.1. 

Computational results and comparisons with existing algorithms

Computational results of GMA and the reference algorithms on set I are shown in Table 2.2. For CPLEX, we report for each instance the upper bound (UB), the lower bound (LB) and the Gap given by (U B -LB)/LB × 100. So Gap = 0 implies that an optimal solution is found. Columns 6 -17 report respectively the results of re-ABC, ITPLS and GMA in terms of the best objective value f best (over 20 runs), the average objective value f avg , standard deviation σ and the average time in seconds to reach the best objective value (Time(s)). For the f best and f avg indicators, equally best values are shown in italic font.

Given that both the upper bounds and lower bounds are available for these instances, we include the geometric mean of each algorithm for a global assessment (row Geomean). For CPLEX, the geometric mean is calculated with the gaps between UB and LB by

( h i=1 U B i LB i ) 1 h
where U B i and LB i are the upper and lower bound of the ith instance, respectively. Similarly, for the other algorithms (re-ABC, ITPLS, and GMA), we calculate their geometric means for the best and average objective values by replacing U B i with the f best and f avg values, respectively.

Finally, to assess the statistically signiĄcant difference between GMA and each main compared algorithm, Table 2.5 shows the p-values from the Wilcoxon signed-rank test.

With a confidence level of 95%, a p-value smaller than 0.05 indicates a statistically significant difference between the pair of compared results.

From Table 2.2 on the 20 small instances of Set I, the following observations can be made. First, CPLEX is able to solve optimally the 10 smallest instances with 21 -51 cities and 2 -4 salesmen. For the remaining instances, the gap between UB and LB remains reasonable and tends to increase with the size of the instance. For the three heuristic algorithms, they perform equally well in terms of solution quality by reaching their best solutions consistently including the 10 optimal values. The geometric means indicates that the three heuristic algorithms can reach the same results in terms of both the best and average results. Meanwhile, the heuristic algorithms have smaller geometric means compared with CPLEX and thus perform better for this set of instances. In terms of computational efficiency, GMA and re-ABC perform better than ITPLS since they require significantly less computation times to reach the same results. It is worth mentioning that none of the other algorithms in the literature, such as GA [START_REF] Li | Colored traveling salesman problem ż[END_REF] (2014), VNS [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem ż[END_REF] 4 (2017), ACO [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning ż[END_REF] (2018), and ABC [START_REF] Dong | ArtiĄcial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem ż[END_REF] (2019) can reach such a performance (they report worse results for some instances or their best results cannot be reached consistently).

Table 2.3 presents the results of the compared algorithms (re-ABC, ITPLS and GMA) on the 14 medium instances of Set II with 202 -666 cities and 10 -40 salesmen. In addition to the main reference algorithms re-ABC and ITPLS, we also include in this comparison ACO [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning ż[END_REF] for indicative purposes, which only reported results for six instances. The 'BKS' values show the best-known results compiled from the literature [DDC18; HH21; Zhe+22a; Zho+22]. For each algorithm except ACO, we show the best and average objective values (f best and f avg ), the standard deviation (σ) and the average time to reach the best objective value (Time(s)). Equally best values are indicated in italic font, while strictly best values are highlighted in boldface. Moreover, the last column Imp(%) provides the percentage improvement of GMA's best result f best over the best objective value f bk of the reference algorithms, computed as (f best -f bk )/f bk × 100. Thus a negative Imp(%) value indicates that GMA improved the best results of the reference algorithms. For Set II, we ignored the geometric means given that the lower bounds needed for their calculations are unavailable. In fact, we tried to obtain LB for these instances by solving, with CPLEX, the linear programming relaxation of the model presented in the Appendix. But CPLEX terminates abnormally due to memory overflow.

Table 2.3 indicates that GMA finds better results for 7 out of the 14 instances, and matches the best results of two reference algorithms for 3 other instances. The Wilcoxon signed-rank test on the f best and f avg values in Table 2.5 also confirms that GMA significantly outperforms the two main reference algorithms. We do not insist on computation time because the main compared algorithms report solutions of different quality. Nevertheless, the three main compared algorithms (re-ABC, ITPLS and GMA) require comparable computation times to reach their best solutions. Note that the results of ACO [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning ż[END_REF] are somewhat inconsistent. Among the six instances tested by ACO, even if it reports three better results than the other algorithms (indicated with a star), its results for the three other instances as well as for most of the 20 small instances of Set I are considerably worse than algorithms, such as ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] and ITPLS [START_REF] He | Iterated two-phase local search for the colored traveling salesmen problem ż[END_REF]. Table 2.4 presents the computational results of the compared algorithms for the 31 large instances of Set III (1002-7397 cities and 3-60 salesmen) with the same information as in Table 2.3. These results clearly show the dominance of the proposed GMA algorithm over two algorithms for these large instances, by systematically reporting better results in terms of the best and the average objective values. Moreover, GMA requires the shortest computation times to reach its solutions for this set of large instances, demonstrating its remarkable search capacity and high computational efficiency. According to the p-values (less than 0.05) from the Wilcoxon signed-rank test shown in Table 2.5, the difference between GMA and each compared algorithm is statistically signiĄcant.

Tables 2.2-2.4 demonstrate the high competitiveness of the proposed GMA algorithm compared with the state-of-the-art algorithms for solving the existing CTSP benchmark instances. Its superiority becomes more evident when medium and large instances are solved. GMA reports improved best-known results (new upper bounds) for 7 medium instances of Set II and all 31 large instances of Set III, which are useful for future research on the CTSP. For a more intuitive illustration of the performance assessment of the algorithms, we use the performance profile [START_REF] Elizabeth | Benchmarking optimization software with performance proĄles ż[END_REF], which is a popular benchmarking tool for rigorous comparison of different algorithms (see Section 1.7.1). Fig. 2.4 shows the performance proĄles of GMA, ITPLS and re-ABC. We observe that GMA dominates the reference algorithms in terms of the best and average values. Indeed, GMA has a much higher Q x (1) value compared with the reference algorithms, indicating that GMA can Ąnd better or equal results for all instances. Furthermore, GMA reaches Q x (r f ) Ąrstly, indicating a high robustness of our algorithm.

Part II, Chapter 2 -Grouping memetic algorithm for CTSP Finally, Table 2.5 summarizes the results reported by the compared algorithms on the three sets of 65 instances. Column 2 gives the set name and the number of instances in the set. Column 3 shows the quality indicators (f best and f avg ). Columns 4-6 count the number of instances for which GMA achieves a better, equal or worse value compared with each reference algorithm. The last column presents the p-values from the Wilcoxon signed-rank test. Table 2.5 reveals large performance gaps between GMA and each reference algorithm on Sets II and III. We conclude that GMA is very competitive for solving the CTSP and this is particularly true for large instances.

Discussion and analysis

Benefit of the key components

In this section, we justify the design choices behind the proposed GMA algorithm. For this, we investigate the impacts of its key components: Constrained Cross-exchange, EAX as well as backbone-based crossover. For our experiments, we used the 45 instances of Sets II and III and ignored the instances of Set I. Indeed, for the instances of Set I, their best-known results can be consistently reached by the state-of-the-art algorithms including ABC, ITPLS and GMA within a very short time. As such, these instances are too easy to be used to compare algorithm variants. 

Benefit of constrained cross-exchange

To highlight the beneĄt of the constrained cross-exchange (CCE, Section 2.2.3), we compared GMA with a variant GMA 0 , where CCE is removed from LOE. In other words, only EAX is employed in GMA 0 in the local optima exploration component.

Computational results of GMA and GMA 0 are shown in Tables 2.6 and 2.7 and summarized in Table 2.8 and Fig. 2.5. The results indicate that GMA performs signiĄcantly better than GMA 0 in terms of f best and f avg . For f best , GMA dominates GMA 0 by getting 42 better results out of the 45 tested instances and reporting only one worse result. Furthermore, the statistically signiĄcant difference between GMA and GMA 0 is veriĄed by the Wilcoxon singed-rank test with a 95% level of conĄdence in Table 2.8. Therefore, this experiment conĄrms the usefulness of CCE for the GMA algorithm.

Benefit of EAX

To assess the beneĄt of EAX in LOE, we created another variant GMA 1 in which EAX is replaced by 2-opt [START_REF] Helsgaun | An effective implementation of the LinŰKernighan traveling salesman heuristic ż[END_REF] for individual route optimization. GMA 1 shares the other ingredients of GMA.

From the results in Tables 2.6 and 2.7, we observe that GMA signiĄcantly outperforms GMA 1 on all instances, except gr202-25. For gr202-25, the best result of GMA 1 is slightly better than GMA. Furthermore, the small p-value (less than 0.05) in Table 2.8 from the Wilcoxon singed-rank test attests the signiĄcant difference between GMA and GMA 1 . Moreover, the performance proĄles of Fig. 2.5 indicate that GMA surpasses GMA 1 in terms of f best and f avg . Indeed, GMA arrives at Q x (r f ) Ąrstly, much earlier than GMA 1 . These observations illustrate the beneĄt of EAX in GMA. To study the effectiveness of the backbone-based crossover, we compared GMA with a third variant GMA 2 . In GMA 2 , the backbone-based crossover is replaced by a crossover proposed by Singh and Baghel [START_REF] Singh | A new grouping genetic algorithm approach to the multiple traveling salesperson problem ż[END_REF], which was designed for the related mTSP problem. This crossover selects one of the two parents uniformly at random and copies, from the parent to the offspring, the most promising route (i.e., the route having the smallest ratio of route length to the number of cities in that route). Then all the cities belonging to the route are deleted from both parents by connecting the predecessor of each city to its successor, and the length of the route is updated accordingly.

Benefit of backbone-based crossover

From the comparative results (f best and f avg ) of GMA and GMA 2 in Tables 2.6 and 2.7, we observe that in terms of f best , GMA dominates GMA 2 by acquiring 25 better results, 10 equal results and 10 worse results. The Wilcoxon signed-rank test, shown in Table 2.8, also conĄrms that GMA outperforms signiĄcantly GMA 2 on the large instances (set III). This experiment demonstrates that the backbone-based crossover operator contributes positively to the performance of GMA, in particular for solving large instances.

Finally, Fig. 2.5 provides other useful information for the importance of each ingredient of GMA. For example, GMA 1 performs the worst because it has the worst (smallest) Q x (1) value and reaches Q x (r f ) lastly. Therefore, we can summarize that EAX is the most important component of GMA, followed by CCE, Ąnally the backbone-based crossover operator.

Influences of selection, pool updating and mutation

In addition to the local optimization and crossover components, the performance of a memetic algorithm such as GMA could be inĆuenced by other factors such as parent selection, pool updating and mutation. According to our experiments with the roulette-wheel selection strategy and the rank-pool updating strategy [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs ż[END_REF], no signiĄcant changes were observed regarding the performance of the GMA algorithm. In this subsection, we focus on studying the inĆuence of mutation. SpeciĄcally, when the best solution φ * is not improved for maxN oImpor consecutive iterations (we empirically set maxN oImpor = 50), the search is judged to be stagnating. Then a mutation operator is triggered to modify one third of the solutions in the population (i.e., each solution is mutated with an equal probability of 1/3). The mutation consists of displacing a certain number of randomly and uniformly chosen shared cities. To be speciĄc, for a solution to be mutated, ♣S♣ × 0.3 shared cities are Ąrst removed, leading to a partial solution. Then these removed shared cities are inserted into the partial solution one by one, using the second step of the greedy randomized heuristic to minimize the distance increase. After that, each mutated solution is optimized by the local optima exploration procedure of Section 2.2.3. Comparative results of GMA and the GMA variant extended with the mutation (called GMA 3 ) are shown in Tables 2.9 and 2.10. The results indicate that in terms of f best , GMA 3 outperforms GMA by obtaining 13 better results, 28 equal results and 4 worse results. However, the Wilcoxon signed-rank test shows that there is no statistically signiĄcant difference. On the contrary, in terms of f avg , GMA 3 dominates GMA by acquiring 34 better results, 2 equal results and 9 worse results. The Wilcoxon signed-rank test conĄrms that GMA 3 signiĄcantly outperforms GMA. This experiment indicates that the mutation strategy can indeed improve the performance of GMA. Especially, it signiĄcantly reinforces the stability of the algorithm.

Convergence analysis

Finally, we investigate the convergence behaviors of GMA (and the GMA 3 variant with mutation) and two key reference algorithms (re-ABC and ITPLS). For this study, we acquired the running proĄles of these algorithms on two representative instances of Set II (gr431-25, gr666-30). We ran each algorithm 20 times with the cutoff time of 600 seconds per run and recorded the best objective values during the process. The results of this experiment are shown in Fig. 2.6.

One notices Ąrst that the curves of the population-based GMA and GMA 3 do not start at time 0. This is because that these algorithms spent a non-negligible portion of the time on generating the initial population (around 60 and 100 seconds for gr431-25 and gr666-30, respectively). From Fig. 2.6, one observes that re-ABC and ITPLS improve their solution quality quickly at the beginning of the search, and slow down or even stagnate as the time going. For GMA and GMA 3 , the population initialization step allowed them to start the search with high-quality solutions. The best solution in the population is continually updated when the time goes on, implying that GMA and GMA 3 can better beneĄt from the allowed time to improve their solutions. Figure 2.6 Ű Convergence charts (running proĄles) of re-ABC, ITPLS, GMA and GMA 3 for solving two representative instances (gr431-25 and gr666-30). The results were obtained from 20 independent executions of each compared algorithms

Chapter conclusion

In this chapter, we presented the Ąrst grouping memetic algorithm for solving the CTSP. The algorithm relies on a speciĄc backbone-based crossover to generate promising offspring solutions by solution recombination and a powerful local optima exploration for offspring improvement. Extensive computational results on three sets of 65 benchmark instances in the literature indicate that our algorithm is very competitive compared with existing leading algorithms. In particular, it reports 38 new upper bounds while matching 24 best-known results. We also investigated the interest of CPLEX for solving the CTSP and reported 10 proven optimal solutions for the Ąrst time. Furthermore, we analyzed the impacts of the main components of the algorithm on its performance.

In the next chapter, we will introduce a memetic algorithm for solving the minmax multiple traveling salesmen problem.

MEMETIC SEARCH FOR THE MINMAX MTSP WITH SINGLE AND MULTIPLE

DEPOTS

In this chapter, we propose a uniĄed memetic approach to solving both cases of the minmax mTSP and the minmax multidepot mTSP. The proposed algorithm features a generalized edge assembly crossover to generate offspring solutions, an efficient variable neighborhood descent to ensure local optimization as well as an aggressive postoptimization for additional solution improvement. Extensive experimental results on 77 minmax mTSP benchmark instances and 43 minmax multidepot mTSP instances commonly used in the literature indicate a high performance of the algorithm compared to the leading algorithms. Additional experimental investigations are conducted to shed light on the rationality of the key algorithmic ingredients. The content of this chapter is based on an article submitted to European Journal of Operational Research.

Introduction

Due to the practical relevance and computational challenge of these mTSP problems, a number of solution methods have been developed. According to the review of Section 1.3.2, the existing methods are based on general frameworks such as evolutionary algorithms, bio-inspired methods and local searches. These methods have contributed to continually improve the state-of-the-art of solving these problems. Meanwhile, their performances vary typically according to the difficulty and scale of the problem instances. Moreover, existing methods have been developed for either the minmax mTSP or the minmax multidepot mTSP. In this chapter, we present a uniĄed population-based memetic algorithm (MA) able to effectively deal with both the minmax mTSP and the minmax multidepot mTSP. The contributions of this work are summarized as follows.

1. The proposed MA algorithm features several complementary search components.

First, it integrates a generalized edge assembly crossover to generate offspring solutions, which is inspired by the well-known EAX crossover for the TSP [NK97; NK13]. Second, MA uses an efficient variable neighborhood descent (with streamlining techniques) to improve offspring solutions. Third, the algorithm adopts an aggressive post-optimization procedure to further optimize some particularly promising offspring solutions.

2. The MA algorithm reports record-breaking best results (new upper bounds) for a number of benchmark instances commonly used in the literature. These new results are useful for future research on these problems and performance assessments of new algorithms.

3. We provide the code of the proposed algorithm, which can be used by researchers and practitioners to solve various problems that can be recast to the minmax mTSP or the minmax multidepot mTSP.

Next section provides detailed description of the MA algorithm. Section 3.3 is dedicated to computational results on benchmark instances and comparisons with the literature. Key components of the algorithm are investigated in Section 3.4. Section 3.5 draws conclusions.

Problem solving methodology

Memetic search is a general hybrid search framework based on population-based genetic search and neighborhood-based local optimization [START_REF]Handbook of Memetic Algorithms[END_REF]. The basic rationale behind this approach is take advantage of these two complementary search strategies [START_REF] Hao | Memetic algorithms in discrete optimization ż[END_REF]. Indeed, population-based search offers more facilities for exploration while local optimization provides convenient means for exploitation. A suitable combination of these two types of methods would lead to a good balance between exploitation and exploration of the search process.

Population-based evolutionary algorithms have been successfully applied to the TSP [NK97; NK13], capacitated vehicle routing problem (CVRP) [NB09; Vid22] and its variants [START_REF] Nagata | A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows ż[END_REF][START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows ż[END_REF][START_REF] Vidal | A uniĄed solution framework for multi-attribute vehicle routing problems ż[END_REF]. In this work, we present an original memetic algorithm (MA) for solving both the minmax mTSP and the minmax multidepot mTSP. The algorithm integrates a population initialization procedure, a generalized edge assembly crossover (mEAX), a variable neighborhood descent (VND), a post-optimization and a population management procedure. Among these search components, we identify the mEAX crossover and the post-optimization as the most innovative while VND features a streamlining techniques to accelerate its search.

The general scheme of the MA algorithm is illustrated in Algorithm 4. The algorithm starts with a population of initial solutions (or individuals) generated by the population initialization procedure (Line 3, Algorithm 4). After recording the best solution φ * found so far (Line 4), the algorithm performs a number of generations to evolve the population (Lines 5-16). For this, it applies the dedicated mEAX crossover (Line 7) to combine two random parent solutions, yielding γ (a parameter) new offspring solutions. Then each offspring solution is Ąrst improved by the VND procedure (Line 9) and then conditionally further improved by the post-optimization (Lines 10-13). The post-optimization is applied only to elite offspring solutions with a quality better than the best recorded solution φ * . Finally, each improved offspring solution is considered by the population management procedure to update the population (Line 14). The algorithm stops and returns the best solution found φ * when a predeĄned stopping condition is reached, which is either a maximum cutoff time or a maximum number of iterations. In the later case, one iteration corresponds to one call to the (expensive) VND procedure at Line 9 of Algorithm 4.

Algorithm 4 Pseudo code of the memetic algorithm 1: Input: Problem instance I with a minimization objective f , population size µ, number of offspring γ; 2: Output: The best solution φ * found; 3: 

P = ¶φ 1 , φ 2 , • • • , φ µ ♢ ← PopulationInitial (I);/*Section 3.2.1*/ 4: φ * ← arg min ¶f (φ i ) : i = 1, 2, • • • , µ♢;/*

Generation of the initial population

The MA algorithm starts its search from a population P of µ initial solutions. The construction process of each solution is composed of three steps. First, m tours are initialized with the depot. For the minmax multidepot mTSP, each salesman is located at one of the depots, and the tour is initialized by its corresponding depot. Second, a random unassigned city is selected and inserted into the shortest tour at the position with the least length increase of this tour. When all cities are assigned, a feasible solution is obtained. Finally, the solution is improved by the VND procedure (Section 3.2.3) and then added into the population. The initialization procedure stops when µ solutions are obtained.

The mEAX crossover based on edge assembly

The conventional edge assembly crossover operator (EAX) was Ąrst presented for solving the TSP [NK97; NK13]. It was subsequently applied to the CVRP [START_REF] Nagata | Edge assembly-based memetic algorithm for the capacitated vehicle routing problem ż[END_REF] and the vehicle routing problem with time windows (VRPTW) [START_REF] Nagata | A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows ż[END_REF]. In this work, we introduce mEAX, which generalizes the idea of EAX to the minmax mTSP and the minmax multidepot mTSP. It is worth noting that these mTSPs are different from the TSP, CVRP and VRPTW. As such, the proposed mEAX crossover must consider the speciĄc features of the minmax mTSP problems.

Given a graph G = (V, E), a candidate solution φ for the minmax mTSP or minmax multidepot mTSP corresponds to a partial graph G φ = (V, E φ ), where E φ is the set of edges traversed by φ. Let φ A and φ B be two parent solutions. Let G A = (V, E A ) and G B = (V, E B ) be the corresponding partial graphs. The proposed mEAX crossover consists of the following six steps (see Algorithm 5 for the general procedure and Fig. 3.1 for an illustrative example).

Algorithm 5 Procedures of mEAX for the minmax mTSP 1: Input: Parent φ A and φ B , parameter γ; 2: Output: γ offspring solutions; 1. Creation of a joint graph G AB . From the parent solutions φ A and φ B , the joint graph 3. Generation of E-sets. From the set of AB-cycles, the block strategy is used to generate the so-called E-sets. If two AB-cycles share at least one vertex (e.g., AB-cycles 1 and 3 in Fig. 3.1), these two cycles are combined to generate the E-set. In the example of Fig. 3.1, the four AB-cycles should be combined to form one single E-set since the depot is shared. However, for illustrative purpose of steps 4 and 5 blow, we suppose there are four E-sets as showed in Fig. 3 

3: Construct G AB = (V, (E A ∪ E B )\(E A ∩ E B )); 4: Generate AB-
G AB = (V, (E A ∪ E B )\(E A ∩ E B )) is constructed by the symmetric difference of E A and E B .
= (E A \ (E i ∩ E A )) ∪ (E i ∩ E B
). This strategy ensures the preservation of all common edges of φ A and φ B in the intermediate solution. Furthermore, all edges in an intermediate solution exclusively come from the parent solutions. 3.1). We apply the 2-opt* approach to accommodate the particular feature of our problem as follows. For each isolated subtour, its adjacency tours are deĄned if a vertex u is an α neighbor (Section 3.2.3) of vertex v visited by the subtour. Then, the merges of the subtour into its adjacency tours are evaluated by 2-opt* and the best merge leading to the shortest tour is performed. Once all isolated subtours are eliminated, a feasible offspring solution composed of m distinct Hamiltonian tours is obtained (see the last sub-Ągure in Fig. 3.1).

Elimination

E set 

Step 5

Step 1 One notes that mEAX differs from EAX by the last two steps because contrary to the TSP and the CVRP, giant tours may appear in the case of the minmax multidepot mTSP.

The above mEAX process typically generates numerous offspring solutions, many of them being of bad quality and thus uninteresting. Given that the subsequent VND local optimization (Section 3.2.3) is time consuming, we Ąlter out non-promising offspring solutions with a mediocre quality to retain only the γ (a parameter) best offspring solutions for solution improvement.

The mEAX crossover for the minmax mTSP and minmax multidepot mTSP follows the idea of the EAX operator initially designed for the TSP [NK97; NK13]. Meanwhile, adaptations are necessary to take into account the particular features concerning the minmax objective and the presence of possible multiple depots. The main adaptations concern the processing of giant tours and isolated subtours in intermediate solutions (steps (5) and ( 6)).

Our way of handling isolated subtours is similar to the technique presented in [START_REF] Nagata | Edge assembly-based memetic algorithm for the capacitated vehicle routing problem ż[END_REF] where EAX is adapted to the CVRP. In [START_REF] Nagata | Edge assembly-based memetic algorithm for the capacitated vehicle routing problem ż[END_REF], isolated subtours are eliminated by testing all possible combinations with the 2-opt* heuristic [START_REF] Potvin | An exchange heuristic for routeing problems with time windows ż[END_REF] and performing the best combination which minimizes the total traveling distance. In mEAX, since the objective is to minimize the longest tour instead of total traveling distance, the 2-opt* heuristic is applied with this speciĄc minimization objective. Furthermore, for the minmax multidepot mTSP, giant tours which include two or more depots may occur in intermediate solutions due to the presence of multiple depots. This feature cannot be resolved by the conventional EAX operator. In mEAX, the 2-opt* based spitting strategy is introduced to split each giant tour into feasible tours while keeping the longest tour as short as possible. In sum, the mEAX crossover renders the idea of the EAX operator applicable to routing problems with the minmax objective.

Since a minmax mTSP solution contains n + m -1 edges, the space complexity of mEAX is bounded by O(n + m). During the Ąrst four steps, 2 × (n + m -1) edges are involved, and the time complexity is bounded by O(n + m). In step 5, suppose that there are g giant tours and the cycle with the largest number of edges includes ♣E g ♣ edges, the time complexity is bounded by O(♣E g ♣×α). Furthermore, suppose that there are h isolated tours and the longest tour includes ♣E h ♣ edges, the time complexity of step 6 is bounded by O(♣E h ♣ × α).

Variable neighborhood descent

Variable neighborhood descent (VND) [START_REF] Mladenović | Variable neighborhood search ż[END_REF] is a general local search approach which has been applied successfully to a number of routing and TSP-like problems [ISW09; Soy15; Tod+17; WCL17]. VND explores local optima with several ordered neighborhoods N θ (θ = 1, 2, • • • , θ max ). VND starts its descent search from the Ąrst neighborhood and switches to the next neighborhood once a local optimum is reached. When neighborhood N θ (θ > 1) is examined, VND switches to the Ąrst neighborhood N 1 immediately if a better solution is found; otherwise when neighborhood N θ (θ > 1) is exhausted, VND moves to the next neighborhood N θ+1 . Once the last neighborhood N θmax is exhausted and no better solution can be found, VND stops and returns the last local optimum. In this work, we use VND to exploit six neighborhoods, where two neighborhoods (2-opt* and κ-opt) are employed to solve the minmax mTSP and the minmax multidepot mTSP for the Ąrst time. To speed up neighborhood examination, two new data structures are introduced to accelerate the search process of VND.

Neighborhoods

The six neighborhoods adopted in this work include Ąve inter-tour neighborhoods and one intra-tour neighborhood. Let r(π) denote the tour containing vertex π in the incumbent solution. Let vertex δ be a neighbor of vertex π, and vertices x and y the successor of π in r(π) and δ in r(δ), and (π a , π b ) a substring from π a to π b . To avoid the examination of non-promising candidate solutions, we use the α-nearness technique [HH22; Hel00] and consider, for a vertex π, only α neighbor vertices. The six neighborhoods are given by the following move operators M1-M6.

M1: If r(π) ̸ = r(δ) and r(π) is the longest tour r l , then remove π and place it after δ. M2: If r(π) ̸ = r(δ) and one of them is the longest tour r l , then, swap π and δ. M3: If r(π) ̸ = r(δ) and one of them is the longest tour r l , then replace (π, x) and (δ, y) by (π, y) and (δ, x).

M4: If r(π) ̸ = r(δ) and one of them is the longest tour r l , then swap two sequencing substrings (π a , π b ) and (δ a , δ b ).

M5: If r(π) ̸ = r(δ) and one of them is the longest tour r l , then swap a sequencing substring (π a , π b ) and a reversing substring (δ b , δ a ).

M6: This is an intra-tour optimization operator to improve a standard TSP tour. Each tour is reĄned by the κ-opt heuristic [START_REF] Lin | An effective heuristic algorithm for the traveling-salesman problem ż[END_REF], which was previously used in several best heuristics for related routing problems [AGS19; AS19a; LBW21]. In this work, the upper limit of κ is set to four.

M1 corresponds to insertion or relocation, while M2 is called swap. M3 is the 2opt* inter-tour move [START_REF] Potvin | An exchange heuristic for routeing problems with time windows ż[END_REF]. M4 and M5 correspond to the cross-exchange operator, where two substrings from two tours are exchanged [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF][START_REF] Taillard | A tabu search heuristic for the vehicle routing problem with soft time windows ż[END_REF]. The cross-exchange operator generalizes M1 and M2, and has been successfully used to solve the minmax mTSP [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF]. In this work, we limit the maximum length of each substring in M4 and M5 to β (a parameter).

It is worth mentioning that M6 is used for the Ąrst time in this work and M3 was independently used in [START_REF] Zheng | An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen Problem ż[END_REF], while the other moves were previously applied to the minmax mTSP (e.g., [HH22; Kar+21; Soy15; WGW15; WCL17]). For the minmax multidepot mTSP, it is to be noted that M3 cannot be used because each salesman must start and end at the same depot. Therefore, when solving the minmax multidepot mTSP, M3 is disabled from the VND procedure. Furthermore, this is the Ąrst time that M4-M6 are adopted to solve the minmax multidepot mTSP.

Auxiliary data structures

In order to enhance the computational efficiency of our VND procedure, we introduce two auxiliary arrays to store useful information regarding each city.

A1: A one-dimensional array of length n. It stores the variation of distance of the current tour when a vertex is removed from the tour. For example, A1[π]=-100 means that if vertex π is removed from tour r a , the length of tour r a is shortened by 100.

A2: A two-dimensional array of size n × n. It stores the variation of distance of the tour when vertex π is inserted after vertex δ. For example, A2[π][δ]=100 indicates that if π is placed after δ in tour r a , the length of tour r a is increased by 100.

In general, a neighboring solution can be obtained from the incumbent solution by exchanging several edges. Therefore, most edges in the incumbent solution are common with its neighboring solutions. This insight has been used to design static move descriptors for several vehicle routing problems [AV21; Bee+18; ZK10]. For the minmax mTSP, these two auxiliary arrays (A1 and A2) enable the VND procedure to avoid unnecessary redundant calculations. As shown in Fig. 3.3, city δ b is removed from tour r a and placed after δ a in tour r b . Therefore, we can easily compute the length of r ′ a and r ′ b as follows:

f (r ′ a ) = f (r a ) + A1[δ b ] and f (r ′ b ) = f (r b ) + A2[δ b ][δ a ].
After placing δ b after δ a in tour r b , only Ąve values in A1 and 3 × n values in A2 need to be updated, respectively. In general, the time complexity of updating A1 and A2 is O(n). In the VND procedure, these two auxiliary arrays are used to speed up the calculations of M1 and M2. Furthermore, the ejection chain operator, introduced in Section 3.2.4, also beneĄts from these data structures to accelerate the neighborhood examination.

Post-optimization

In addition to the above mEAX crossover and the VND procedure, the proposed MA algorithm includes an original post-optimization phase to further improve the quality of each global best offspring solution. The main purpose of the post-optimization is to perform an intensiĄed search around each elite offspring solution to Ąnd possible still better solutions. This post-optimization phase is ensured jointly by an ejection chain operator (EC) and the conventional EAX heuristic for the TSP (denoted by EAX-TSP hereafter) [NK97; NK13].

As shown in Algorithm 6, the post-optimization applies Ąrst the EC operator to improve the solution by displacing cities among different tours. A binary array T is employed to record the tours that are modiĄed during the EC phase, such that T [i] = 1 (i = 1, ..., m) if the ith tour is changed by EC. Then for each modiĄed tour, the EAX-TSP heuristic is applied to shorten its distance. When neither EC nor EAX-TSP can improve the incumbent solution φ, the post-optimization stops and returns the best solution.

Algorithm 6 Pseudo code of the post-optimization procedure The ejection chain approach has been used to perform inter-tour optimization for the CVRP [AV21; AS19a]. We adopt the same approach for the Ąrst time to handle the minmax mTSP. Using Fig. 3.4 where the incumbent solution is composed of three tours, we illustrate the EC process as follows. EC starts by greedily relocating a city δ c from the longest tour r a into another tour r b . This relocation operation is followed by the relocation of another city σ b from the extended tour r b into another tour r c , where r a and r c may be same. This process continues until a maximum number of relocation moves is reached.

The EC approach is based on the following observation. Single relocation moves between two tours may increase the length of the longest tour. For example, relocating a city from the longest tour r a into r b shortens r a , but may increase tour r b such that r b becomes the longest tour with a distance longer than r a . However, if we perform immediately another move to relocate a city from tour r b into tour r c , then it is possible that the longest tour of the solution is deĄnitively shorten.

Function (3.1) illustrates the calculation of the move gain of an EC move based on the two auxiliary arrays introduced in Section 3.2.3, where b, c, s, t and q are indexes of r b , r c , the second, third and fourth longest tours, respectively.

∆ = max ¶f (r ′ a ), f (r ′ b ), f (r ′ c ), f (r s )♢ -f (r a ), if ¶b, c♢ ∩ ¶s, t♢ = ∅ ∆ = max ¶f (r ′ a ), f (r ′ b ), f (r ′ c ), f (r t )♢ -f (r a ), if ¶b, c♢ ∩ ¶s, t♢ = ¶s♢ ∆ = max ¶f (r ′ a ), f (r ′ b ), f (r ′ c ), f (r q )♢ -f (r a ), if ¶b, c♢ ∩ ¶s, t♢ = ¶s, t♢ f (r ′ a ) = f (r a ) + A1[δ c ] f (r ′ b ) = f (r b ) + A2[δ c ][δ b ] + A1[σ b ] f (r ′ c ) = f (r c ) + A2[σ b ][σ a ] (3.1)
Based on the M1 move introduced in Section 3.2.3, if the number of relocation is 1, the time complexity is O(n × α). When we continue the EC move by performing the second relocation, the time complexity becomes O((n × α) 2 ). To keep the time complexity at an acceptable level, we limit the number of relocations to 2 in this work.

One notes two differences between the EC move applied to the CVRP [AV21; AS19a] and the EC move applied in this study. First, the EC operator in our case does not need to consider the capacity constraint. Second and more importantly, even if the move gain of an EC move can be obtained in O(1) time in both cases, the practical computation in our case is more complicated. Indeed, for the CVRP, the move gain is simply obtained by adding up the values of A1 and A2, which themselves can be computed efficiently with the static move descriptor technique [START_REF] Accorsi | A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems ż[END_REF]. In our case, the static move descriptor is no more available and furthermore as shown in Eq. (3.1), the EC move gain evaluation needs to consider the second, third and fourth longest tours.

After the EC phase, the EAX-TSP heuristic 1 is triggered to optimize each individual tour that has been modiĄed by the EC procedure. Each EAX-TSP optimization stops when the difference between the Ątness of the best solution and the average Ątness of individuals in the population is less than 0.01. The reason to choose the EAX-TSP heuristic is that it can effectively optimize each tour to being optimal or near-optimal in a very short time.

Population updating

The population updating mechanism is known to be a key component of successful memetic algorithms [START_REF] Hao | Memetic algorithms in discrete optimization ż[END_REF]. The proposed algorithm adopts the variable population scheme presented in [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF][START_REF] Vidal | A uniĄed solution framework for multi-attribute vehicle routing problems ż[END_REF].

The population P contains between µ and µ + λ individuals, where parameter µ is the minimum size and parameter λ is the generation size. Unlike [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF], clone solutions are not permitted to join the population. In each generation of MA, offspring solutions φ i O are progressively added to the population (Line 14, Algorithm 4). Once the population reaches µ + λ individuals, the survivors selection is used to eliminate λ individuals based on their contributions to the diversity of the population. The biased Ątness of each individual is calculated with respect to its Ątness and diversity rank in the population.

Furthermore, if the global best solution is not improved during η consecutive iterations, the algorithm is considered to be stagnating in deep local optima. In this case, diversity is introduced into the population as follows. The survivors selection phase is triggered to reduce the number of individuals in P to µ individuals. Then, µ/2 individuals of the population are randomly and uniformly selected and replaced by new solutions generated by the initial population procedure of Section 3.2.1

Computational results and comparisons

This section is dedicated to an extensive evaluation of our MA algorithm and comparisons with state-of-the-art algorithms. Three sets of benchmark instances are used in our experiments (see Section 1.3.3): Sets I and II for the minmax mTSP and Set III for the minmax multidepot mTSP.

Experimental protocol and reference algorithms

Parameter setting. The MA algorithm has six parameters: population size µ, generation size λ, number of the best offspring solutions γ, neighborhood reduction parameter α, substring size β, maximum consecutive iterations (η) without an improvement. To calibrate these parameters, we employed the automatic parameters tuning package Irace [START_REF] López-Ibáijez | The irace package: Iterated racing for automatic algorithm conĄguration ż[END_REF]. The tuning was performed on 8 instances with 150-1655 cities for the minmax mTSP and 10 instances with 100-500 cities for the minmax multidepot mTSP. The tunning budget was set to be 2000 runs. Table 3.1 shows, for each parameter, the interval of values tested by Irace, and the best value returned by the method. For the experiments presented hereafter, we used consistently these parameter values, which can be considered to be the default setting of the MA algorithm. and MASVND on the same computing platform as used in this work. The executable code of ES [START_REF] Karabulut | Modeling and optimization of multiple traveling salesmen problems: An evolution strategy approach ż[END_REF] and the source code of ITSHA [START_REF] Zheng | An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen Problem ż[END_REF] were kindly provided by their authors. For the minmax multidepot mTSP, the MD and VNS algorithms from [START_REF] Wang | The min-max multidepot vehicle routing problem: Heuristics and computational results ż[END_REF] are the leading algorithms in the literature (their codes are unavailable). Thus, the results of these algorithms (obtained on a computer with an Intel Pentium CPU of a 2.2GHz processor) are used as reference values to evaluate the performance of the MA algorithm.

According to [START_REF] Wang | The min-max multidepot vehicle routing problem: Heuristics and computational results ż[END_REF], both MD and VNS terminate after Ąve consecutive iterations without an improvement.

Experimental setting and stopping condition. The MA algorithm was written in C++ and compiled using the g++ complier with the -O3 option2 . All experiments were conducted, like [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF], on a computer with a Xeon E5-2670 processor of 2.5GHz CPU and 8GB RAM running Linux.

To make the comparison as fair as possible, for the minmax mTSP, we ran 20 times our MA algorithm and the executable code of the reference algorithm ES on our machine to solve each instance under the cutoff limit of (n/100)×4 minutes per run (this is the same stopping condition used in [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF] to assess IWO, MASVND and HSNR). For the other reference algorithms (IWO, MASVND, HSNR), we cite the results reported in [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF], which were obtained on the same computer used in this work. For the minmax multidepot mTSP, MA terminates when it reaches a maximum of 30,000 iterations.

Computational results and comparison

To compare MA and the reference algorithms, we report a summary of the results in Table 3.2 and the detailed results in the Appendix. The ŠBKSŠ values show the bestknown results compiled from the literature. To check the statistically signiĄcant difference between MA and each reference algorithm, the Wilcoxon signed-rank test is applied. With a conĄdence level of 0.05, a p-value lower than 0.05 indicates a signiĄcant difference.

Results on the minmax mTSP

The comparative results on the 77 instances of Sets S and L for the minmax mTSP are shown in Tables 6.1 and 6.2 with the summary information in Table 3.2, where re-IWO and re-MASVND are the re-implemented IWO [START_REF] Pandiri | Two metaheuristic approaches for the multiple traveling salesperson problem ż[END_REF] and MASVND [WCL17] algorithms in [START_REF] He | Hybrid search with neighborhood reduction for the multiple traveling salesman problem ż[END_REF]. According to these tables, the MA algorithm outperforms the Ąve reference algorithms by achieving the best result for the vast majority of the instances. MA improves the best-known solutions of 44 instances, and matches the best-known solutions of 27 other instances. Furthermore, in terms of the average result, MA also outperforms the reference algorithms. SpeciĄcally, for n ≤ 100, MA and the reference algorithms perform similarly in terms of f best . For n ≥ 150, MA outperforms the other algorithms (improvement gap up to 8.72%). As the number of cities increases, the difference becomes more signiĄcant, especially for the instances with few tours (e.g., m = 3, 5). The small p-values from the Table 3.2 Ű Summary of comparative results between MA and reference algorithms on the three sets of 120 instances. Sets S and L for the minmax mTSP and Set M for the minmax multidepot mTSP. In Fig. 3.5, the average gap of MA and the Ąve reference algorithms are analyzed through their performance proĄles. Intuitively, MA dominates the reference algorithms in terms of both the best and average results. Indeed, MA has a much higher Q s (1), meaning that it Ąnds better or equal results for nearly all instances. Furthermore, MA reaches 1 Ąrstly, which indicates MA has a higher robustness.

Instances

Results on the minmax multidepot mTSP

Tables 3.2 and 6.3 show the results of MA as well as the two reference algorithms (MD [START_REF] Wang | The min-max multidepot vehicle routing problem: Heuristics and computational results ż[END_REF] and VNS [START_REF] Wang | The min-max multidepot vehicle routing problem: Heuristics and computational results ż[END_REF]) on the 43 instances of Set M. According to the results, MA dominates the reference algorithms by providing 39 new best-known solutions. Only for three instances, MA obtains slightly worse results. The small p-values (≪ 0.05) also conĄrm the statistically signiĄcant differences between MA and the compared algorithms. The performance proĄles in Fig. 3.6 illustrate that MA has a much higher Q s (1) and Q s (τ ) reaches 1 Ąrst. Therefore, MA competes very favorably with the best existing algorithms for solving the minmax multidepot mTSP. Given that MA, MD and VNS were run on different computers and reported results of different qualities, it is not straightforward to make a fair comparison of their computation time. One observes that for the 18 instances where the time information is available for the compared algorithms, MA is able to reach the best-known results with a time of the same order of magnitude compared to MD and VNS, and then continue to improve these results during the rest of its execution.

According to the results of Sections 3.3.2 and 3.3.2, we conclude that the MA algorithm is highly effective for solving the minmax mTSP and the minmax multidepot mTSP compared to the best performing algorithms.

Additional experiments

The computational results and comparisons with the existing algorithms on three sets of instances illustrated the high effectiveness and efficiency of the MA algorithm. In this section, we assess the contributions of two key components: the mEAX crossover and the post-optimization and two new neighborhood operators. Experiments are performed to compare MA and its variants where the assessed components are disabled. Furthermore, we investigate the long-term convergence behavior of the MA algorithm under a relaxed timing condition. The experiments reported in this section are based on the minmax mTSP. To study the beneĄts of the mEAX operator and the post-optimization procedure, we created two MA variants MA1 and MA2 as follows. For MA1, we removed the mEAX operator (i.e., lines 6 and 7) in Algorithm 4 and replaced γ by µ in line 8. To make sure that MA1 consumes the given time budget effectively like MA, we repetitively re-start the algorithm until the time limit is reached. In other words, MA1 uses the VND procedure and the post-optimization to improve the solutions of the population within the given time limit. For the variant MA2, we just removed in Algorithm 4 the post-optimization (i.e., lines 9-12).

We ran MA1 and MA2 under the same condition of Section 3.3.1 to solve the 77 instances of Sets S and L. The results are summarized in Figs. 3.7 and 3.8. Fig. 3.7 shows the deviations of the two variants MA1 and MA2 compared to MA (the reference line) in terms of the best results (Fig. 3.7(a)) and the average results (Fig. 3.7(b)). From these Ągures, we can make the following observations.

First, the results of MA1 indicate that removing mEAX deteriorates considerably the performance of the MA algorithm on a large majority of the tested instances in terms of the best and average results. The deterioration is more signiĄcant on large instances than on small instances. These results conĄrm the critical role of the proposed mEAX crossover.

Second, the results of MA2 indicate that the post-optimization doesnŠt really impact the performance of the MA algorithm on the Ąrst 29 small instances (n ≤ 318). However, disabling this component deteriorates much MAŠs performance on many larger instances with n > 318. These results demonstrate the positive contributions of the postoptimization for solving large (and hard) instances.

Third, though both mEAX and post-optimization contribute to the high performance of the MA algorithm, the mEAX crossover plays a more general and more signiĄcant role compared to the post-optimization component.

To further study the MA1 and MA2 variants, Fig. 3.8 shows the performance proĄles of MA, MA1 and MA2 based on their best results (Fig. 3.8(a)) and their average results (Fig. 3.8(b)). We observe that MA dominates its two variants in terms of the best and average values. MA has a much higher Q s (1) compared with MA1 and MA2. Indeed, MA reaches Q s (τ ) = 1 Ąrstly, much earlier than the two variants, which indicates a higher robustness of the MA algorithm. In summary, these experiments conĄrm that both the mEAX crossover and the post-optimization contribute positively to the performance of MA, while the post-optimization component is especially useful for solving large instances.

Benefits of the new neighborhood operators

Six neighborhood operators are applied in the local search to ameliorate offspring solutions. We assess the contributions of the two new neighborhood operators: M3 independently used in [START_REF] Zheng | An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen Problem ż[END_REF] and M6 introduced in this work. For this purpose, two MA variants, MA3 (without M3) and MA4 (without M6), are compared, along with the standard MA associated with all neighborhood operators. To ensure a fair comparison, we ran MA3 and MA4 under the same condition of Section 3.3.1 to conduct the experiments. The results are summarized in Table 3.3 and illustrated in Fig. 3.9. According to Table 3.3, the two operators are critical to ensure the performance of the MA algorithm (conĄrmed by the small p-value ≪ 0.05). Indeed, disabling them sig-niĄcantly worsens the results in terms of both the best and average values. Moreover, as shown in Fig. 3.9, disabling the M3 operator deteriorates MAŠs performance more than disabling the M6 operator on many large instances with n > 2152. These results demonstrate the positive contributions of the M3 operator for solving large instances. Finally, both neighborhood operators have marginal contributions when solving small and medium-sized instances (n ≤ 532) in terms of the best results. In Section 3.3.2, the stopping condition for solving the minmax mTSP was set to the maximum time of (n/100) × 4 minutes in line with the literature. This section aims to verify the convergence behavior of the MA algorithm in the long run by using a relaxed stopping condition of 50,000 iterations. Four representative instances (rat783-3, pcb1173-5, d1655-3, pr2392-5) with different sizes (n from 783 to 2392, m from 3 to 5) were selected and each instance was solved 20 times while the best objective values are recorded during the search. Fig. 3.10 shows the evolution of the gap between the current value and the best value along the iterations. The four colored dots indicate the average objective values obtained at the end of the standard cutoff time of (n/100)×4 minutes for the four instances. For these instances, 50,000 iterations lead to 4061.67, 4058.71, 16858.6, 13983.4 seconds, respectively.

Convergence analysis of the MA algorithm

From Fig. 3.10, one observes that with a higher time budget, MA is able to further improve its results reached at the end of the standard cutoff time (n/100)×4 minutes). SpeciĄcally, the best result can be even improved by 1.19% while the average result can be improved by 1.03%. This experiment demonstrates that the MA algorithm has a highly desirable long-term search behavior and can effectively take advantage of a prolonged cutoff time limit to discover still better solutions.

Chapter conclusion

In this chapter, we introduced a uniĄed memetic algorithm for solving both the minmax mTSP and the minmax multidepot mTSP. The proposed algorithm integrates a dedicated edge assembly crossover operator (mEAX), an efficient variable neighborhood descent and an aggressive post-optimization procedure. By properly inheriting edges from high-quality parent solutions, mEAX contributes to propagate favorable characteristics from elite parent solutions to offspring. The variable neighborhood descent is able to locate local optimal solutions effectively. The post-optimization procedure takes full advantage of the ejection chain method and a leading TSP heuristic to further improve the quality of new elite solutions.

The performance of the algorithm was evaluated on two sets of 77 minmax mTSP instances and one set of 43 minmax multidepot mTSP instances. The computational results indicated that the algorithm reaches a high performance compared to the reference algorithms for both problems. SpeciĄcally, it reports 44 and 39 new upper bounds for the minmax mTSP and the minmax multidepot mTSP, respectively. We performed additional experiments to assess the contributions of the two key algorithmic components (i.e., mEAX and post-optimization). We also conducted a long term convergence analysis of the algorithm to illustrate its capacity of Ąnding still better solutions if more time is allowed.

In the next chapter, we study the traveling salesman problems with proĄts and propose a hybrid genetic algorithm for solving two well-known problems.

A HYBRID GENETIC ALGORITHM FOR UNDIRECTED TRAVELING SALESMAN

PROBLEMS WITH PROFITS

In this chapter, we introduce a hybrid genetic algorithm that addresses the orienteering problem (OP) and the prize-collecting traveling salesman problem (PCTSP) under a uniĄed framework. The algorithm combines an extended edge assembling crossover operator to produce promising offspring solutions and an effective local search to ameliorate each offspring solution. The algorithm is further enforced by a diversiĄcation-oriented mutation and a population-diversity management. Extensive experiments show that the method competes favorably with the best existing methods both in terms of solution quality and computational efficiency. Additional experiments help to get insights into the roles of the key ingredients of the proposed method. The content of this chapter is based on an article submitted to Networks.

Introduction

Traveling salesman problems with proĄts are useful models for a broad range of applications [BM85; FDG05; FT88; GLV16; RB91; VSV11]. As it is shown in the comprehensive review of [START_REF] Feillet | Traveling salesman problems with proĄts ż[END_REF], a number of studies have contributed to improve the state-of-the-art of solving these difficult problems. On the one hand, several exact algorithms were proposed in [Bal89; BGP09; FGT98; GLS98b; LM90; LR94] to optimally solve small and medium instances with up to 532 vertices. Remarkably, the recent revisited branch and cut algorithm presented by Kobeaga et al. [START_REF] Kobeaga | A revisited branchand-cut algorithm for large-scale orienteering problems ż[END_REF] was able to Ąnd optimal solutions for OP instances with up to 2152 vertices. On the other hand, several heuristic algorithms were developed for TSPs with proĄts to deal with instances whose optimal solutions cannot be determined by exact algorithms. In Section 1.4.2, we provide a review of the most representative heuristic algorithms. Meanwhile, one notices that until now, these problems have been studied separately with speciĄc algorithms designed for each problem without a general and uniĄed approach. Moreover, compared to research on exact algorithms, effective heuristic algorithms are still rare and most existing heuristic algorithms donŠt compete well with the best exact algorithms on a number of benchmark instances.

This chapter aims to advance the state-of-the-art of solving for TSPs with proĄts with effective heuristic algorithms. For this purpose, we introduce a uniĄed approach for the OP and the PCTSP under the hybrid genetic search framework. Hybrid genetic algorithms, also called memetic algorithms, take advantage of population-based genetic framework and neighborhood-based local search framework [START_REF] Hao | Memetic algorithms in discrete optimization ż[END_REF]. On the one hand, thanks to the use of a population of solutions, a genetic algorithm offers, via a crossover operator, the possibility of creating new solutions by recombination of existing solutions. On the other hand, by exploring a neighborhood, a local search algorithm offers an effective means to locate high-quality solutions around a seeding solution. By combining these two complementary methods, a hybrid genetic algorithm is expected to reach a performance that cannot be attained by each individual approach applied separately. Indeed, several highly effective hybrid genetic algorithms have been proposed to solve various routing problems [NB09; NBD10; Pot09; Pri04; Vid+12; Vid+13; Vid+14].

For the OP and the PCTSP, we devise a dedicated technique to adapt the popular edge assembly crossover initially designed for the travel salesman problem [NK97; NK13] and also applied to routing problems [NB09; NBD10]. The proposed approach relies on an extended edge assembly crossover operator and beneĄts from the synergy with effective local search and dedicated diversiĄcation strategies such as mutation and population-diversity management. Our experiments on well-known benchmark instances in the literature show that the proposed algorithm competes very favorably with the best performing methods. In particular, the algorithm is able to improve many current best bounds for both the OP and the PCTSP.

The rest of this chapter is organized as follows. Section 4.2 presents the proposed algorithm. Section 4.3 shows computational results and comparisons. Section 4.4 analyzes the main ingredients of the algorithm. Section 4.5 draws conclusions.

Hybrid genetic algorithm for TSPs with profits

This section presents the hybrid genetic algorithm (HGA) designed for the two studied TSPs with proĄts, i.e., the orienteering problem and the prize-collecting TSP. This is a uniĄed algorithm in the sense that, with slight adjustments, the same algorithm is used to solve both problems effectively.

The general HGA algorithm is composed of the following Ąve steps.

Step 1 (Generation of an initial population): This step Ąlls the population P with a number of distinct solutions with the initialization procedure presented in Section 4.2.1. This initial population is then evolved generation-by-generation through Steps 2Ű4.

Step 2 (Parent selection and crossover application to generate offspring solutions):

From the current population, two solutions are selected as parents using the tournament selection of size of 2. The two parent solutions are then recombined by the extended edge assembly crossover presented in Section 4.2.2 to generate β (β is a parameter) offspring solutions

¶φ 1 O , φ 2 O , • • • , φ β O ♢.
Step 3 (Local search to improve each offspring solution): For each offspring solu-

tion φ i O in ¶φ 1 O , φ 2 O , • • • , φ β O ♢
, the local search presented in Section 4.2.3 is applied to raise the quality of the offspring.

Step 4 (Mutation and population update): Each offspring solution φ i O improved by the local search is modiĄed by the mutation presented in Section 4.2.4 to introduce diversity. The modiĄed offspring is then used to update the population as described in Section 4.2.4.

Step 5 (Stopping) The algorithm repeats Steps 2Ű4 until a stopping condition is satisĄed. Typical conditions are a maximum number of generations (one generation includes Steps 2Ű4), a maximum cutoff time and a maximum number of local search invocations. At the end of the algorithm, the best solution φ * ever found is returned. Throughout the course of the algorithm, the best solution φ * found, which is initialized by the best solution in the initial population, is updated each time a solution better than the current φ * is discovered.

The rest of this section is dedicated to detailed presentation of the methods for population initialization, crossover, local search and mutation as well as population management.

Population initialization

The initial population P is generated in two phases by a method inspired by the technique presented in [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF]. Phase 1 generates a pool of 4 × λ solutions where each solution is created greedily (see below) and then improved by the local search of Section 4.2.3. Phase 2 uses the surviving strategy of Section 4.2.4 to retain λ solutions in P with respect to solution quality and their contribution to the diversity of the population.

Since the OP and the PCTSP pursue different optimization objectives, the Ąrst phase uses two greedy strategies to create each initial solution. For the OP, the greedy construction works as follows. First, a solution (route) is initialized by the depot v 0 and then extended by adding a random vertex v i ∈ N . Second, for the newly added vertex v i , an unrouted vertex v j from the δ-nearest neighborhood (Section 4.2.3) is selected and inserted after vertex v i such that the insertion leads to the minimum increase of the travel costs. This process stops when all vertices are inserted to the solution or the current travel costs exceed 1.5 × c max .

For the PCTSP, the greedy construction works similarly, but the selection of the next vertex to be added aims to maximize the collected proĄt. The construction stops when the collected proĄt reaches 1.5 × p min .

Note that initial solutions generated this way are necessarily infeasible. Given that the feasibility of an initial solution can be easily established by simply removing some vertices, using an initial population of infeasible solutions is not harmful; instead, itŠs beneĄcial in terms of search diversiĄcation.

Extended edge assembly crossover

The HGA algorithm relies on an extended edge assembly crossover, which is an adaptation of the edge assembly crossover (EAX) designed for the TSP [NK97; NK13] to TSPs with proĄts. Critically, there is a difficulty of directly applying EAX to TSPs with proĄts since EAX assumes that all vertices are visited exactly once in a solution of the TSP.

Indeed, given a TSP instance deĄned on a graph G = (V, E), a candidate TSP solution φ corresponds to a partial graph G φ = (V, E φ ) with E φ being the set of edges traversed by φ. Given a solution of the TSP, each vertex in V is visited exactly once and thus has the same degree of two in G φ . Given two parent TSP solutions and their associated partial graphs, EAX uses this property to reassemble the edges from the parents to produce offspring solutions.

However, the situation is different for TSPs with proĄts. Given two parent solutions, some vertices may be visited in one parent, but not visited in the other parent. Consequently, a vertex may have two distinct degrees in the partial graphs of the parent solutions. This particularity makes it impossible to apply the EAX crossover to TSPs with proĄt. For the OP and the PCTSP, we design the extended edge assembly crossover (E 2 AX), whose key idea is to add dummy edges (self-loops) to ensure that each vertex has the same degree in the graphs of the parent solutions.

Given an instance of the OP or the PCTSP on graph G = (V, E), let φ be a solution visiting ♣φ♣ vertices (♣φ♣ ≤ n) and let G φ = (V, E φ ) be the corresponding partial graph where E φ ⊂ E is the set of edges traversed by φ. There are two cases for each vertex in G φ such that: 1) the vertex is visited by φ and the degree is 2 in G φ , 2) the vertex is not visited by φ and the degree is 0. In the example of Fig. 4.1, red vertices are not visited by φ A and the degree is 0 in G A , while the visited vertices in G A has a degree of 2.

Let φ A and φ B be two candidate solutions for the OP or the PCTSP, let G A = (V, E A ) and G B = (V, E B ) be the corresponding partial graphs. We deĄne the degree difference of vertex v in G A and G B by ∆ v = ♣deg A (v)deg B (v)♣ where deg φ (v) denotes the degree of vertex v in the graph G φ . In the example of Fig. 4.1, the degree difference ∆ v of a vertex v equals 0 if v is visited by both solutions or by none of them; otherwise ∆ v = 2. For each vertex v with ∆ v = 2, we can add a dummy loop (v, v) in G A or G B to make the degree difference become 0 (see Fig. 4.1(left-middle)).

Let

G ′ A = (V, E ′ A ) and G ′ B = (V, E ′ B
) be the graphs extended with dummy loops such that ∆ v = 0 for all vertices. Clearly, these extended graphs G ′ A and G ′ B satisfy the basic property required by the EAX crossover, i.e., each vertex has the same degree in these graphs. As a result, we can now beneĄt the edge assembly idea of the EAX operator to create offspring solutions for the OP and the PCTSP.

Step 1 Given two parent solutions φ A and φ B , the proposed E 2 AX crossover for the OP and the PCTSP performs the following steps to generate β offspring solutions.

AB-cycles E-sets

Intermediate solutions Offspring solutions

Generation of multigraph G AB with dummy loops. Build partial graphs G

A = (V, E A )
and Fig. 4.1 provides an illustrative example of the recombination process with the E 2 AX crossover applied to two parent solutions φ A and φ B . Note that the second intermediate solution contains two small subtours that are merged with the main tour to form a single tour.

G B = (V, E B ) for φ A and φ B . For each vertex v such that ∆ v ̸ = 0 in G A and G B , add ♣deg A (v)-deg B (v)♣ 2 dummy self-loops in φ A or φ B to make ∆ v = 0. Build multigraph G AB = (V, E ′ A ∪ E ′ B )
We now provide an analysis of the time complexity of the E 2 AX crossover. Steps (1)Ű (4) have to assemble

♣E ′ A ♣ + ♣E ′ B ♣ edges to produce β offspring solutions, implying a time complexity of O(♣E ′ A ♣ + ♣E ′ B ♣).
Given that a solution is necessarily an elementary tour and

n ≥ ♣E ′ A ♣ ≥ ♣E ′ B ♣ holds.
Thus the time of steps (1)Ű( 4) is bounded by O(n). For the last step, suppose that there are m subtours including at most e edges, the time complexity of this step is O(e × δ) [START_REF] Nagata | A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem ż[END_REF], where δ is the number of closest vertices and introduced in Section 4.2.3.

Offspring improvement

The HGA algorithm employs a neighborhood-based local search to improve the offspring solutions generated by the E 2 AX crossover. As discussed in [START_REF] Feillet | Traveling salesman problems with proĄts ż[END_REF], four neighborhood operators are usually used to transform a route for TSPs with proĄts: 1) adding an unrouted vertex, 2) removing a vertex from the route, 3) resequencing the route, and 4) replacing a routed vertex with an unrouted vertex. The HGA algorithm adopts the Ąrst three operators because our experiments show that the fourth operator is of little interest. Also, to resequence a route, any TSP heuristic can be used. In our case, we Ąnd the 2-opt heuristic [START_REF] Georges | A method for solving traveling-salesman problems ż[END_REF] quite suitable. We now explain the add and remove operators.

Add operator

This operator is applied to add unrouted vertices into the route. For the OP, a heuristic commonly used in the literature [Cam+14; SG10] is adopted to perform vertex insertions. For each unrouted vertex v i , its move gain ∆ = p i c ipi +c iin -c ipin is calculated, where v ip and v in are the vertices before and behind v i , respectively. Then the most favorable vertex with the highest move gain is selected and added in the route. The add operator is repetitively applied until the limit c max of travel costs is attained. For the PCTSP, the vertex associated with minimum increase of the travel costs is selected and added in the route. The add operator is triggered to insert unrouted vertices if the collected proĄt is below the minimum proĄt threshold p min .

The worst time complexity of the add operator is O(♣φ♣ × (n -♣φ♣)), where ♣φ♣ is the number of visited vertices in the solution. This complexity can be reduced to O(δ × (n -♣φ♣)) by considering only the δ-nearest vertices (δ is a parameter called granularity threshold) and using streamlining techniques of [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF].

Remove operator

This operator is applied to remove visited vertices. For the OP, given a routed vertex v i , the move gain of removing v i is given by ∆ = p i c ipi +c iin -c ipin , where v ip and v in are the vertices before and behind v i , respectively. If the solution is infeasible, i.e., the travel costs are greater than c max , the vertex with respect to the minimum ∆ is removed. The remove process stops once the solution becomes feasible. For the PCTSP, if the solution is feasible, i.e., the collected proĄt is greater than the required minimum proĄt p min , vertices v i can be removed from the route such that they have the maximum move gain ∆ = c ipi + c iinc ipin , where v ip and v in are the vertices before and behind v i , respectively. The process terminates when the collected proĄt reaches the required minimum proĄt p min . The time complexity of the remove operator is bounded by O(♣φ♣).

Application of the move operators

Given the add and remove operators as well as the 2-opt operator, it is important to decide in which order they are applied. Given that the OP and the PCTSP pursue different objectives with different constraints, the HGA algorithm applies a speciĄc order for each problem. For both problems, the 2-opt heuristic is Ąrst applied to reduce the travel costs. Then, for the OP, the remove operator is used to restore the feasibility of the solution in terms of the travel costs, followed by the add operator to increase the proĄt. For the PCTSP, the add operator is used to satisfy the minimum proĄt constraint, followed by the remove operator to reduce the travel costs as much as possible. Once the solution cannot be improved by any operator, the local search phase terminates and returns the best solution reached.

Diversity preservation

Diversity is a key issue of any population-based algorithm. The HGA algorithm employs two different and complementary strategies, i.e., a speciĄc mutation and a dedicated population management, to effectively preserve population diversity.

Mutation

An offspring solution created by the E 2 AX crossover inherits exclusively the edges of its parents. In other words, the E 2 AX cannot introduce vertices that are not visited by both parents in the offspring solutions. Furthermore, the local search is rarely able to introduce unrouted vertices into the solution given that adding new vertices often increase the travel costs, which is undesirable. Consequently, the offspring solution may resemble much the parents even after local optimization. To maintain sufficient diversity and avoid premature convergence, the HGA algorithm applies, with a probability τ , a mutation to modify each offspring solution by adding new vertices. Basically, the mutation removes some vertices from the solution and then greedily inserts unrouted vertices into the solution while respecting to the corresponding constraints (i.e., maximum travel costs c max for the OP and minimum collected proĄt p min for the PCTSP).

Given a solution φ, let N φ and N φ be a set of routed and unrouted vertices in φ, respectively. The mutation consists of two steps. First, l vertices (l is a parameter called mutation length) are selected and removed one by one. SpeciĄcally, a vertex v i is selected for removal if its removal leads to the minimum move gain ∆ = p i c ipi +c iin -c ipin , where v ip and v in are the vertices before and behind v i , respectively. Each removed vertex is forbidden to be reinserted again into the route during the mutation. Second, a vertex v j is selected from N φ \T such that its insertion leads to the maximum increase of ∆ = p i c ipi +c iin -c ipin and inserted in the solution φ. For the OP, the insertion process stops when l unrouted vertices are inserted or if the insertion makes the solution infeasible (i.e., the travel costs exceed c min ). For the PCTSP, the insertion terminates when l vertices are inserted or the insertion makes the solution feasible (i.e., the collected proĄt reaches p min ). In Section 4.3.2, we experimentally show the importance of the mutation.

Population management

To maintain a suitable diversity of the population P, the HGA algorithm adopts a variable population scheme similar to that used in [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF]. From an initial population of λ solutions, the population is extended by offspring solutions until its size reaches a upper limit µ + λ where µ is the generation size. When this happens, the surviving selection is triggered to remove µ solutions with respect to the Ątness and their contributions to the diversify of the population. Similar to Vidal [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF], the distance between two solutions is deĄned as the number of distinct edges. Let ♣P♣ donate the number of solutions in P. Given a solution φ, the distance between φ and other ♣P♣ -1 solutions is computed and sorted from the smallest to the largest. Then, the sum of the Ąrst nbClost values (nbClost is a parameter) is used as the diversity contribution of φ to P, donated by div φ . Each solution φ ∈ P is thus associated with a div φ value. All these values are sorted from the smallest to the largest, and each solution is associated with a rank rd φ with respect to div φ . Furthermore, we rank the solutions of P according to their objective values from the worst to the best, leading to another rank ro φ for each solution φ. Finally, the biased Ątness of solution φ is deĄned as f (φ) biased = ro φ + (1 -nbElite ♣P♣ ) × rd φ where nbElite is a parameter. The solution associated with the smallest biased Ątness is removed from P and the biased Ątness for each remaining solution in P is updated. The solution removal process is repeated until there are λ solutions in P. Following [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF], we set nbClost = 5 and nbElite = 4. If the best solution found so far φ * cannot be improved during γ consecutive iterations (γ is a parameter called population rebuilding threshold and one iteration is the generation of one offspring solution followed by the local search), the algorithm restarts by generating a totally new population.

Computational results and comparisons

In this section, we evaluate the performance of the proposed algorithm on the OP and the PCTSP. We present the benchmark instances (see Section 1.4.3), experimental protocol, reference algorithms, and comparisons with the state-of-the-art methods.

Experimental protocol and reference algorithms

Parameter setting. HGA has six main parameters: minimum population size λ and generation size µ, granularity threshold δ used in local search, mutation probability τ , mutation length l and population rebuilding threshold γ. In order to identify suitable values for the parameters, the automatic parameter tuning package Irace [START_REF] López-Ibáijez | The irace package: Iterated racing for automatic algorithm conĄguration ż[END_REF] is used. The candidate and Ąnal values are shown in Table 4.1 . These parameter values can be considered to form the default setting and are used consistently in our experiments. Reference algorithms. According to the review of Section 1.4.2, we identify the following best heuristic and exact algorithms for the OP and use them for our comparative study.

Ů BKS. This indicates the best known solutions (best lower bounds) that are compiled from all reference heuristic and exact approaches [KML18; KML20; San19]. Ů RB&C [START_REF] Kobeaga | A revisited branchand-cut algorithm for large-scale orienteering problems ż[END_REF]. This exact algorithm [START_REF] Kobeaga | A revisited branchand-cut algorithm for large-scale orienteering problems ż[END_REF] was applied to solve the Ąrst three sets of instances and was able to obtain optimal solutions for many instances under a time limit of 18000s. Ů ALNS [START_REF] Santini | An adaptive large neighbourhood search algorithm for the orienteering problem ż[END_REF]. It was implemented in C++ and executed on an Intel Xeon E5

processor, running at 2.2 GHz under a time limit of 18000s or after 250000 iterations without improvement. The algorithm was executed 10 times on each instance. It was tested on the four sets of instances.

Ů EA4OP [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF]. The hybrid algorithm was implemented in C and executed on an Intel Xeon E5-2609 v3 1.90 GHz processor with 4 GB RAM. The algorithm terminates either when the Ąrst quartile of the populationŠs Ątness is the same as the best Ątness or when the maximum running time exceeds 18000s. The algorithm was executed 10 times on each instance. The EA4OP algorithm reported its results on the four sets of instances. Ů B&C [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF]. This is the branch and cut algorithm presented in [START_REF] Fischetti | Solving the orienteering problem through branch-and-cut ż[END_REF] and rerun in [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF]. It stops when the maximum running time (18000s) is met or when the optimal solution is found. This algorithm reported the results on the fourth set only. For the PCTSP, only the branch & cut algorithm (B&C) [START_REF] Bérubé | A branchand-cut algorithm for the undirected prize collecting traveling salesman problem ż[END_REF] reported results on medium-sized instances with up to 532 vertices. To have a reference algorithm for the large-sized instances with up to 7397 vertices, we created a HGA variant (called HGA-Giant) where we replaced the E 2 AX crossover by a giant tour crossover described in Appendix 6.2.

Experimental setting and stopping criterion. The HGA algorithm was implemented in C++ and compiled using the g++ compiler with the -O3 option1 . All experiments were run on an Intel Xeon ES-2630 processor of 2.66 GHz and 6 GB RAM running Linux with a single thread. The algorithm was executed 20 times on each instance with distinct random seeds. Following the literature, the HGA algorithm terminates when it reaches a time limit of 18000s or a maximum of 500,000 iterations (one iteration means the generation of one offspring solution followed by one local search run).

Computational results

To compare HGA and the reference algorithms, two summarizing tables are presented for the OP and the PCTSP, respectively.

Comparative results on the OP

Since the two reference heuristic algorithms ALNS [START_REF] Santini | An adaptive large neighbourhood search algorithm for the orienteering problem ż[END_REF] and EA4OP [START_REF] Kobeaga | An efficient evolutionary algorithm for the orienteering problem ż[END_REF] did not report their average values, we focus on the best objective values of the compared algorithms in Table 4.2. The detailed results on the four sets of 344 instances are provided in Tables 6.4-6.11.

Compared to the BKS values that represent the best values ever reported by all the algorithms, HGA updates 67 BKS values (new lower bounds) out of 344 instances (19.5%) and matches 172 other BKS values (50%). Given that the BKS values are the best results compiled from all existing approaches, the HGA algorithm can be considered to reach a remarkable performance.

HGA signiĄcantly outperforms the two best heuristic algorithms ALNS and EA4OP (p-value ≪ 0.05), except ALNS on the Ąrst set. Furthermore, the two best exact algorithm RB&C and B&C can obtain many optimal solutions for medium-sized instances within a reasonable running time, but their results and running time become unacceptable with the increase of instance sizes. As shown in Tables 6.7, 6.9 and 6.11, HGA is able to provide signiĄcant improvements for large-sized instances, especially for instances with at least 2000 vertices. The performance proĄles illustrate the performance differences of the compared algorithms. As shown in Fig. 4.2, the algorithms have different behaviors on the four sets of instances. For the Ąrst set, it is clear that RB&C outperforms all approaches. HGA has a lower Q s (1) but reaches 1 more quickly than the two heuristic algorithms. However, for the other three sets, HGA dominates the reference algorithms since it reaches 1 Ąrstly, which indicates a high robustness. The performance proĄles conĄrm that the HGA algorithm dominates the state-of-the-art algorithms for the OP, except the exact algorithm RB&C on the Ąrst set. Tables 6.4-6.11 show the detailed results on all 344 OP instances. Although EA4OP reports very short running time, its results are much worse than those of ALNS and HGA. Compared with ALNS, our HGA algorithm can Ąnd better results with less running time. It is noticeable that exact algorithms spend very short time for medium-sized instances to obtain the optimal solutions, but the gap becomes unacceptable for large-sized instances. Thus, even if HGA can Ąnd high-quality solutions in a short time for small and mediumsized instances, its main interest remains its capacity of solving large-sized OP instances. As shown in Table 4.3 and Fig. 4.3, the HGA algorithm signiĄcantly outperforms HGA-Giant since all p-values are less than 0.05. For the medium-sized instances, the exact algorithm (B&C) performs well by obtaining many optimal solutions within a reasonable running time. On the other hand, our algorithm Ąnds 120 new upper bounds out of 240 instances (50%), matches the best solutions for 96 instances (40%) and only misses 24 best known values (10%). The results between HGA and HGA-Giant are signiĄcantly different on both medium-sized and large-sized instances, which indicates that E 2 AX is more powerful than the giant tour crossover when solving the PCTSP. Furthermore, the performance proĄles conĄrm the superiority of HGA on both the best and average values compared to the reference algorithms. From the detail results on the PCTSP shown in Tables 6.12-6.17, we make the following observations. First, under the same stopping condition, HGA requires only half of the time needed by HGA-Giant to Ąnd solutions of equal or better quality on the mediumsized instances. More importantly, HGA reaches better solutions than HGA-Giant by spending shorter running time for the large-sized instances. Second, although B&C can solve medium-sized instances optimally, the running time increases signiĄcantly with the increase of the instance size. For example, for Sets II and III, B&C fails to obtain the optimal solution of several instances with more than 400 vertices. Meanwhile, HGA can Table 4.4 Ű Summary of results of HGA compared to the results of HGA-Giant (using the giant tour crossover) and HGA1 (without any crossover) on Sets II and III of the OP. Ąnd high-quality solutions for large-sized instances within a short running time.

Comparative results on the PCTSP

Instances

Additional experiments

In this section, we conduct additional experiments to study the beneĄts of two key components of the proposed algorithm. The experiments are based on the instances of Sets II and III of the OP.

Significance of the crossover

To assess the signiĄcance of the E 2 AX crossover within the HGA algorithm, we create a HGA variant (HGA-Giant) where E 2 AX is replaced by the giant tour crossover [START_REF] Bouly | A memetic algorithm for the team orienteering problem ż[END_REF] (see Appendix 6.2) and another HGA variant (HGA1) where the E 2 AX crossover is disabled in HGA. We run these algorithms under the same stopping condition as before and report the comparative results in Table 4.4 and Fig. 4.4.

From these results, one observes that the E 2 AX crossover plays a highly positive role in the good performance of HGA. Indeed, HGA dominates HGA-Giant by obtaining 108 better results and 61 equal results out of the 172 tested instances. HGA1 (without crossover) has the worst performance even compared to HGA and HGA-Giant, indicating that crossovers such as E 2 AX and giant tour are highly useful for the performance of the hybrid algorithm.

To sum, we conclude that E 2 AX positively contributes to the performance of HGA, and it also outperforms the giant tour crossover.

Benefits of the mutation

In the HGA algorithm, the mutation operator is used as a means to preserve diversity of the population. To assess its usefulness, a HGA variant (HGA2) is created by disabling the mutation operator. We compare HGA and HGA2 in terms of population diversity by using the following diversity measure. Let ♣P♣ be the number of solutions in the population P. Let N φ be the set of vertices visited by solution φ in P. Let H be the set of vertices visited by all the solutions in P and H = ∪ ♣P♣ i=1 N φ i . Let ξ be the proportion of vertices covered by P and ξ = ♣H♣ n , 0 < ξ ≤ 1. We use the value of ξ to measure the diversity of the population. If ξ → 1, it means P covers many vertices, offering good possibilities for the algorithm to explore larger search spaces, and vice versa. We present the convergence charts of HGA and HGA2 together with the evolution of the population diversity, based on two instances (rat783-gen3 and u1060-gen2). The results are shown in Fig. 4.5, where HGA-R and HGA2-R indicate the best results found while HGA-P and HGA2-P are the current diversity values ξ of the population. One notes that HGA has a better convergence and dominates its counterpart in both instances. ItŠs observed that HGA always keeps a higher value ξ along its evolution compared to HGA2, which indicates the contributions of the mutation to the diversity and the performance of the HGA algorithm. Finally, Fig. 4.6 shows the comparative results of HGA and HGA2 in terms of both the best and average objective values on the 86 instances of Set II and 86 instances of Set III (the names of 15 instances are shown). The results are presented as the deviation in percentage of the results of HGA2 compared to the results of HGA. For the medium-sized instances, HGA and HGA2 obtains similar results. However, for instances with more than 200 vertices, HGA2 performs worse than HGA and the difference becomes more signiĄcant as the size of instances increases. These results conĄrm that the mutation operator plays a crucial role in the HGA algorithm, especially for large-sized instances.

Chapter conclusion

This chapter proposed a new hybrid genetic algorithm to efficiently address two traveling salesman problems with proĄts. We introduced several methodological contributions including an extended edge assembly crossover for producing promising solutions, an effective local search for solution reĄnement and speciĄc strategies for diversity preservation of the population.

Extensive experiments were conducted on the orienteering problem and the prizecollecting traveling salesman problem. For the OP, four sets of 344 commonly used instances were tested and 67 new lower bounds were discovered. The algorithm also matches the best known results for 172 other instances. For the PCTSP, results on three sets of 240 instances showed a high performance on large-sized instances including 120 new best results never reported in the literature. Additional experiments were conducted to get insights into the beneĄts of the proposed crossover and the mutation. The new bounds reported in this work can be useful for future research on these problems. Moreover, the code of our algorithm that we make available can be used by researchers and practitioners.

In the next chapter, we present a general edge assembly crossover operator for solving the split delivery vehicle routing problem.

GENERAL EDGE ASSEMBLY CROSSOVER DRIVEN MEMETIC SEARCH FOR THE SPLIT DELIVERY VEHICLE ROUTING PROBLEM

In this chapter, we present an effective memetic algorithm for solving the split delivery vehicle routing problem with a Ćeet of limited or unlimited vehicles. The algorithm features a general edge assembly crossover to generate promising offspring solutions from the perspective of assembling suitable edges and an effective local search to improve each offspring solution. The algorithm is further reinforced by a feasibility-restoring procedure, a diversiĄcation-oriented mutation and a quality-and-distance pool updating technique. Extensive experiments on 324 benchmark instances indicate that our algorithm is able to update 143 best upper bounds in the literature and match the best results for 156 other instances. Additional experiments are presented to obtain insights into the roles of the key search ingredients of the algorithm. The method was ranked second at the 12th DIMACS Implementation Challenge on Vehicle Routing -SDVRP Track. The content of this chapter is based on an article submitted to Transportation Science.

Introduction

Like the conventional VRP, the SDVRP has many applications such as determining routes and schedules for newspaper delivery [START_REF] Hun | A practical approach to solving a newspaper logistics problem using a digital map ż[END_REF] and waste collection [START_REF] Archetti | Vehicle routing in the 1-skip collection problem ż[END_REF]. Meanwhile, the SDVRP has been much less investigated compared to the VRP and its variants such as the capacitated VRP, the VRP with time windows and the VRP with proĄts. Still, since the introduction of the SDVRP, a number of algorithms using exact and heuristic approaches have been proposed. Representative exact algorithms are based on various formulations [BMM00; OKY18] and the branch-and-cut framework [START_REF] Archetti | Branch-andcut algorithms for the split delivery vehicle routing problem ż[END_REF][START_REF] Munari | Compact formulations for split delivery routing problems ż[END_REF]. These exact approaches are able to provide the optimal solutions for some small or medium-sized instances with up to some 100 customers. For larger instances, heuristics and metaheuristics are preferred to Ąnd suboptimal solutions with a reasonable time, as reviewed in Section 1.5.2.

This chapter aims to advance the state-of-the-art for solving large SDVRP instances effectively and efficiently. The contributions of this paper are summarized as follows.

1. The proposed memetic algorithm (SplitMA)1 combines several complementary search components including a general edge assembly crossover (gEAX) to generate promising offspring solutions and a local search associated with a maximum splits strategy to improve offspring solutions. The gEAX crossover transmits common edges from parent solutions to offspring solutions while reassembling non-common edges of parent solutions. The local search exploits both VRP neighborhood operators and SDVRP neighborhood operators reinforced by the maximum splits strategy, which ensures that a customer will not be served by too many vehicles. The algorithm additionally integrates dedicated repairing techniques to ensure the feasibility of offspring solutions, a mutation to diversify each new solution, and an advanced updating strategy to maintain a healthy population. 2. We illustrate the competitiveness of the algorithm on four sets of 324 instances of the SDVRP-LF and SDVRP-UF problems compared to the state-of-the-art algorithms.

In particular, we report 143 new best upper bounds that can be useful for future studies. We investigate the underlying algorithmic components to shed light on their contributions to the performance of the algorithm. SpeciĄcally, we provide insights about why the gEAX crossover works well on the SDVRP and present for the Ąrst time experimental evidences that high-quality solutions are close to each other and are also close to optimal solutions. 3. This work shows the interest of the general idea of the edge assembly crossover.

The gEAX crossover, which generalizes the popular EAX crossover for the TSP nagata1997edge,nagata2013powerful, provides a powerful solution recombination mechanism that can be advantageously applied not only to the SDVRP, but also to other routing problems where the associated graphs of candidate solutions do not necessarily have the same degree for their vertices.

The remainder of this chapter is organized as follows. Section 5.2 presents the details of the proposed algorithm. Section 5.3 shows computational results and comparisons. Section 5.4 investigates key ingredients of the proposed algorithm. Section 5.5 draws conclusions.

General edge assembly crossover driven memetic algorithm

Population-based evolutionary algorithms have been successfully applied to the traveling salesman problem [NK97; NK13] and several vehicle routing problems [NB09; NBD10; Pot09; Pri04; Vid+12; Vid+13; Vid+14]. The proposed SplitMA algorithm for the SDVRP is a population-based hybrid algorithm that uses a dedicated edge assembly crossover to generate new solutions and an effective local optimization to improve the offspring solutions. SplitMA also applies a mutation to diversify each offspring solution and an advanced pool updating strategy to manage the population.

Algorithm 7

The memetic algorithm for the SDVRP The general scheme of SplitMA is outlined in Algorithm 7. SplitMA starts from an initial population P constructed by the population initialization procedure (Line 2 of Algorithm 7). Then the algorithm evolves the population through a number of generations by applying the crossover operator, the local optimization procedure and the population updating procedure (Lines 4-19). Of particular interest is the general edge assembly crossover operator (gEAX) (Line 6) that creates at each generation β offspring solutions by assembling the edges of two parent solutions. After restoring the feasibility of each offspring solution in terms of customer demand and vehicle capacity (Line 8), the solution is diversiĄed by the mutation operator (Line 9) and then submitted to local optimization for quality improvement (Line 10). Finally, each improved solution is used to update the population by the pool updating strategy (Line 17). For the SDVRP-LF where the Ćeet size is set to K min , the number of the used vehicles is reduced to this Ćeet size by emptying some routes if needed (Lines 11-13). During the search, the best solution found so far φ * is updated each time a solution than it is discovered (Lines 14-16). The algorithm stops and returns the best solution φ * when a predeĄned stopping condition is met (e.g., a maximum cutoff time or maximum number of generations).

Population initialization

SplitMA starts its evolution from an initial population P, whose size varies between p min and p max (p max > p min ) during the search process. Similar to [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF], 4 × p min solutions are Ąrst constructed and subsequently improved by the local search (Section 5.2.5), and then inserted into P one by one. Once ♣P♣ = p max , the surviving strategy (Section 5.2.6) is triggered to shrink the population P to p min solutions.

The construction process of each solution works as follows. First, K min = ⌈( n i=1 d i /Q)⌉ routes are created where each route is initialized by the depot and a random customer. Then, for each newly routed customer i, a random unrouted customer j from the δ-nearest neighborhood (see Section 5.2.5) is selected and inserted into the route after the customer i without split. This insertion process stops when no customer can be inserted into the solution without violating the capacity constraint. Finally, if there are unrouted customers, these customers are dividedly inserted into routes in a greedy way such that the insertions lead to the minimum increase of the objective value (i.e., the total traveling distance). Once all customers are routed, a complete solution is obtained.

The general edge assembly crossover operator

Crossover is a key component of memetic algorithms and constitutes one leading force to explore the search space [START_REF] Hao | Memetic algorithms in discrete optimization ż[END_REF]. In this section, we introduce the gEAX crossover for the SDVRP that generalizes the edge assembly crossover (EAX) designed for the VRP [START_REF] Nagata | Edge assembly-based memetic algorithm for the capacitated vehicle routing problem ż[END_REF], which itself comes from the popular EAX crossover initially designed for the TSP.

The main difficulty of applying EAX to the SDVRP lies in the fact that EAX assumes that each customer is served by exactly one vehicle. Indeed, for a given TSP and VRP instance deĄned on a graph G, a candidate solution can be identiĄed by a partial graph of graph G. Given two parent solutions, each customer vertex necessarily has the same degree of two and EAX uses this property to assemble edges from the parents. However, for the SDVRP, given that each customer can be served by several vehicles, a solution corresponds to a multigraph where parallel edges may exist between two vertices (see DeĄnition 5.2.2). Indeed, given the assumption that triangle inequity holds, each edge between customers is traversed at most once in the optimal solution. However, each edge between the depot and a customer may still be traversed several times. Without loss of generality, we use the term ŠvertexŠ to denote both ŠdepotŠ and ŠcustomerŠ in this paper. As a result, the same customer vertex may have different degrees in the multigraphs of the parent solutions, making the EAX crossover inoperative. On the other hand, the idea of assembling speciĄc (promising) edges from the routes of high-quality solutions is highly appealing from the perspective of solution recombination. The general edge assembly crossover gEAX that we introduce in this work beneĄts from the basic idea of assembling suitable edges and gets around the aforementioned difficulty related to the EAX crossover. The key idea of the gEAX crossover is to ensure that each vertex has the same degree in the multigraphs of the parent solutions by introducing dummy edges, rendering it possible to apply the edge assembling operations. To describe the gEAX crossover, we Ąrst introduce the following notations.

Merge Add dummy loops

For a SDVRP instance on graph G = (V, E), let φ be a solution composed of K routes. Following the notation used in Section 1.5.1, let x k ij be a Boolean variable such that x k ij = 1 if route (or vehicle) k goes from vertex i to vertex j and x k ij = 0 otherwise. Then x ij (φ) = K k=1 x k ij is the number of times edge (i, j) is traversed in the solution φ and x ij (φ) ≥ 1 holds for each edge (i, j). For example, in Fig. 5.1(a) (the square is the depot j and the circle represents customer i), three vehicles (say k 1 , k 2 and k 3 ) of solution φ A (solid lines) go through the edge (i, j). These three distinct traversals on (i, j) are identiĄed as

x k 1 ij = 1, x k 2 ij = 1 and x k 3 ij = 1. Thus x ij (φ A ) = 3.
For solution φ B (dot lines), there is only one route k passing through the edge (i, j), thus x k ij = 1 and x ij (φ B ) = 1. For a solution φ of the SDVRP instance on graph G = (V, E), we deĄne its corresponding multigraph G φ = (V, E φ ) with the multiset of parallel edges E φ such that for an edge (i, j) of E, there are x ij (φ) parallel edges in E φ . Fig. 5.1(a) shows a portion of the multigraphs associated to solutions φ A and φ B . For solution φ A , there are three parallel edges between the depot j and the customer i, because three vehicles traverse edge (i, j).

Given two solutions φ A and φ B , let

G A = (V, E A ) and G B = (V, E B ) be the correspond- ing multigraphs. The degree difference of vertex i in G A and G B is ∆ i = ♣deg A (i) -deg B (i)♣
where deg φ (i) denotes the degree of vertex i in solution φ. For a vertex i, if ∆ i ̸ = 0, G A or G B is extended by adding one or more dummy loops (i, i) to the vertex to render ∆ i = 0.

In the example of Fig. 5.1(a),

∆ i = ♣deg A (i) -deg B (i)♣ = 6 -4 = 2 and ∆ j = ♣deg A (j) -deg B (j)♣ = 3 -1 = 2.
Thus, G B is extended by dummy loops (i, i) and (j, j) as shown in see Fig. 5.

1(b). In what follows, an edge e

∈ E A ∪ E B is called a common edge of φ A and φ B if e ∈ E A ∩ E B ; otherwise, e is a non-common edge.
Given two solutions φ A and φ B , let G A = (V, E A ) and G B = (V, E B ) be their extended multigraphs such that ∆ i = 0 holds for each vertex i, we deĄne the joint multigraph 

G AB = (V, ¶E A ∪ E B ♢\ ¶E A ∩ E B ♢)
 B 
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Step Given two solutions φ A , φ B as well as their corresponding multigraphs G A = (V, E A ) and G B = (V, E B ), the proposed gEAX crossover generates several offspring solutions in Ąve steps (see Fig. 5.2 for an illustrative example).

1. Addition of dummy loops and generation of graph G AB = (V, E AB ). At the beginning, dummy loops are added to make the degree difference become 0 for all vertices in the multigraphs G A and G B . SpeciĄcally, for each vertex i, the number of added dummy loops (i, i)

is ♣deg A (i)-deg B (i)♣ 2 . If deg A (i) > deg B (i)
, dummy loops are added into E B , and vice versa, as illustrated in Fig. 5.1(b). Once the degree difference becomes 0 for all vertices in the multigraphs G A and G B , we create the joint multigraph

G AB = (V, E AB ) with E AB = ¶E A ∪ E B ♢\ ¶E A ∩ E B ♢).
In the example of Fig. 5 

-cycles C = ¶C 1 , C 2 , • • • , C m }, a set of E-sets is created, where an E-set is an union of AB-cycles. Each new E-set E i is initialized by an AB-cycle C ′ in C and C ′ is removed from C. Then, each remaining AB-cycle C ′′ of C are checked. If C ′′ shares at least one vertex with E i , C ′′ is added to E i and removed from C. A complete E-set (E i
) is achieved when no AB-cycles can be added into E i . This process stops when no AB-cycle is left (i.e., C becomes empty). In the example of Fig. 5.2, the three AB-cycles should be combined to form one single E-set since the depot is shared. However, for illustrative purpose of steps 4 and 5 below, we suppose three E-sets as shown in Fig. 5 

E i , that is, φ ′ i ← (E A \ (E i ∩ E A )) ∪ (E i ∩ E B )
. Such a strategy guarantees that all common edges in φ A and φ B are necessarily inherited by intermediate solutions. Moreover, all edges in intermediate solutions come from parent solutions. Fig. 5.2(a ′c ′ ) illustrate the three intermediate solutions from this step. 5. Elimination of isolated subtours. An intermediate solution may include one or more isolated subtours, such as the triangle subtour in the upper left corner of Fig. 5.2(a ′ ). The 2-opt* heuristic [START_REF] Potvin | An exchange heuristic for routeing problems with time windows ż[END_REF] is then adopted to eliminate these subtours. For each randomly selected subtour, an edge is removed from the subtour and an edge is removed from another route. Then two new edges are introduced to connect two routes. This process is exactly the same as the M8 and M9 introduced in Section 5.2.5. Fig. 5.2(a ′′ ) illustrates the offspring solution after subtour elimination in the solution of Fig. 5.2(a ′ ).

The complexity of gEAX can be summarized as follows. Suppose without loss of generality that ♣E A ♣ ≥ ♣E B ♣. In the Ąrst four steps, there are ♣E A ♣+♣E B ♣ edges involved, leading to a time complexity of ♣E A ♣. For the Ąfth step, the time complexity of 2-opt* is O(n × δ), where δ is a parameter (Introduced in Section 5.2.5). Thus, the time complexity of gEAX is O(n × δ). Moreover, ♣E A ♣ edges are invoked and thus the space complexity is O(♣E A ♣).

The gEAX crossover follows the idea of the EAX crossover initially designed for the VRP [START_REF] Nagata | Edge assembly-based memetic algorithm for the capacitated vehicle routing problem ż[END_REF] and inherits its advantages, while relaxing the customer demand and capacity constraints. A pair of solutions can generate a variety of offspring solutions with relatively short edges from the parent solutions. More importantly, gEAX overcomes the limitation of EAX that parent solutions (precisely their multigraphs) need to possess the same degree for each vertex. As we show in Sections 5.3 and 5.4.1, gEAX signiĄcantly contributes to the performance of the proposed algorithm. In Section 5.4.2, we provide experimental evidences to understand why gEAX is a meaningful crossover for the SDVRP. Finally, the idea behind gEAX also provides a basis for designing meaningful edge assembly crossovers for other rich routing problems such as team orienteering, location routing as well as arc routing.

Restoring the feasibility of offspring solutions

The customer demand and vehicle capacity are ignored during the gEAX crossover process. As such, an offspring solution may be infeasible in terms of these constraints. This section describes how the feasibility of an offspring solution is restored. When the routes from the parent solutions are recombined by gEAX, the total amount of served demand of a customer in an offspring solution can be different from the cus-tomerŠs demand. Suppose that d i (r k ) is the served demand of customer i by route r k . For example, for the offspring b ′′ of Fig. 5.3, customer i (denoted by the red dot) is visited by two routes r 3 and r 4 with the total amount of served demand d i (r 3 ) + d i (r 4 ). However, since route r 4 in solution b

Restoring customers' demand

′′ entirely comes from φ A that serves the full demand d i already, we have d i (r 3 ) + d i (r 4 ) > d i . Thus, for each customer i, we need to adjust the demand distribution among the routes visiting the customer and make sure that

K k=1 d i (r k ) = d i . We distinguish two cases (i) K k=1 d i (r k ) > d i , and (ii) K k=1 d i (r k ) < d i .
Let d r k be the total load of route r k . For the Ąrst case, the capacity excess d r k -Q (Q is the vehicle capacity) of each route r k visiting customer i is calculated, and the resulting values are sorted from the largest to the smallest. Then, the route r k with the largest capacity excess is identiĄed.

If K k=1 d i (r k ) -d i > d i (r k ), the customer i is removed from route r k . Otherwise the amount of demand d i (r k ) -( K k=1 d i (r k ) -d i ) is removed from route r k , and the demand of customer i is restored, that is K k=1 d i (r k ) = d i .
This process is looped until the demand of all customers is restored. For the second case, the process is similar and operates with the residual capacity of Qd r k .

Restoring the capacity constraints

In addition to the customer demand, the offspring solutions generated by the gEAX crossover may violate the capacity constraint as well. To restore the capacity feasibility of an offspring solution, we apply two well-known inter-route move operators (i.e., insert* and 2-opt*).

SpeciĄcally, let φ be an infeasible offspring solution and f c (φ) be its Ątness as deĄned by f c (φ) = f (φ) + p c × f p (φ), where f (φ) is the traveling cost, f p (φ) is the total overcapacity in solution φ, and p c is a penalty parameter initialized to be the ratio between the longest edge and the largest demand. The repair process operates on an overcapacitated route r and uses insert* [ASH06] and 2-opt* (2-opt* corresponds to M8 and M9 of Section 5.2.5) to repair the route. During this process, a tabu list is used to prevent a performed move from being reversed. After each repair operation involving two routes, the set of infeasible routes R inf is updated. The penalty parameter p c is multiplied by 10 if no feasible move can be found while there are still infeasible routes (R inf ̸ = ∅). The procedure continues until all routes becomes feasible (R inf = ∅), and returns the repaired solution φ.

Mutation

Given that an offspring solution inherits exclusively the edges of its parents, it may resemble much the parents even after the feasibility restoring operations. To introduce some diversity into an offspring solution, we modify the solution with a probability p m with the removal operator presented in [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems ż[END_REF]. Basically, this operator deletes some customers from their routes and then greedily reinserts these customers into the solution while respecting the capacity constraint.

SpeciĄcally, the mutation removes a number of customers that are similar with respect to a predeĄned characteristic (e.g., location or demand). In this work, we use the distance between customers to deĄne the similarity. The mutation works in two steps as follows. Firstly, a random customer i in route r k with its served demand d i (r k ) is selected to initialize set C. Then, the similarity between customer i and other customers (N \ C) is calculated and sorted in ascending order, where the Ąrst customer has the maximum similarity. A customer with its served demand in the route is selected with the roulettewheel selection and saved in set C subsequently. For each selected customer i, if it is visited by more than one route, a random route is retained. The Ąrst step terminates when l customers are considered (♣C♣ = l) (l is a parameter called the mutation length) . More details about this step can be found in [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows ż[END_REF]. The second step reinserts greedily the removed customers of set C. For each customer i ∈ C, a customer j ∈ N \ C from its δnearest neighborhood is selected, and the customer i is inserted after the customer j with respect to the capacity constraint and the minimum traveling distance. This procedure terminates when all customers in C are inserted into the solution. The worst-case time complexity of the mutation is O(l × δ).

Local search

Local search is among the core components of the state-of-the-art heuristic algorithms for several related VRPs. Enriched neighborhood operators, exploration strategies, and speed-up techniques have been developed to allow the local search to attain high-quality solutions within a limited time. The local search procedure of SplitMA for the SDVRP adopts nine popular VRP neighborhood operators used in [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF], including eight interroute and one intra-route structures. To reinforce its search capacity, our local search additionally employs four tailored SDVRP neighborhood operators proposed in [START_REF] Boudia | An effective memetic algorithm with population management for the split delivery vehicle routing problem ż[END_REF] and [DT89; DT90]. These 13 operators are explored under the framework of variable neighborhood descent according to the order in which they are presented in the forthcoming subsections.

Before introducing the neighborhood operators, we Ąrst present three application rules. The Ąrst rule is that once an improvement occurs with an inter-route structure, the procedure checks whether a vehicle visits some customers twice. If so, the duplicated visits with the largest distance reduction are removed. The second rule deĄnes the neighborhood of each customer as the δ-nearest vertices, where δ (δ < ♣N ♣) is the granularity threshold restricting the search to nearby vertices. This rule aims to avoid the examination of nonpromising neighboring solutions and speeds up the local search. The last rule is that the Ąrst improvement strategy is adopted to explore each neighborhood.

To present the different neighborhood operators, we adopt the following notations. r(u) and r(v) denote the routes which visit vertices u and v, respectively. Let v be a neighbor of u, and x and y the successors of u in r(u) and v int r(v), respectively. (u, x) is the substring from vertex u to x, and (v, y) is the substring from vertex v to y.

VRP neighborhood operators

We Ąrst summarize the nine commonly used VRP neighborhood operators, named as M1ŰM9. Detailed presentations of these operators are provided in [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF]. Basically, M1ŰM3 are based on the insertion operation and M4-M6 use the interchange (or swap) operation. M7 is the classical 2-opt for intra-route move, while M8 and M9 apply 2-opt* [START_REF] Potvin | An exchange heuristic for routeing problems with time windows ż[END_REF] for inter-route optimization.

Ů M1: If u is a customer visit, remove u from route r(u) and place u after v; Ů M2: If u and x are customer visits, remove them from route r(u) and place (u, x) after v; Ů M3: If u and x are customer visits, remove them from route r(u) and place (x, u) after v; Ů M4: Interchange u and v if they are customer visits; Ů M5: Interchange (u, x) and v if they are customer visits; Ů M6: Interchange (u, x) and (v, y) if they are customer visits; Ů M7: This is 2-opt. If r(u) = r(v), replace (u, x) and (v, y) by (u, v) and (x, y); Ů M8: This is 2-opt*. If r(u) ̸ = r(v), replace (u, x) and (v, y) by (u, v) and (x, y); Ů M9: This is 2-opt*. If r(u) ̸ = r(v), replace (u, x) and (v, y) by (u, y) and (v, x).

SDVRP inter-route neighborhood operators

We describe now the four inter-route neighborhood operators M10ŰM13 speciĄcally designed for the SDVRP [BPR07; DT89].

Ů M10: This operator extends M4 by modifying the amounts to be delivered to customers with respect to the capacity constraint. Suppose that customers u and v (customer v is a neighbor of customer u) are visited on two distinct routes, that is r(u) ̸ = r(v). There are two cases:

(i) if d u (r(u)) > d v (r(v)), then customer v with demand d v (r(v)
) is inserted before or after customer u in route r(u), and a copy of u with d v (r(v)) is inserted into route r(v) at the position of customer v; (ii) if d u (r(u)) < d v (r(v)), customer u with d u (r(u)) is inserted before or after customer v, while a copy of v with d u (r(u)) is removed from route r(v) and repositioned at the position of customer u in route r(u). Please refer to [BPR07; SSO15] for a detailed description and illustration. Ů M11: It extends M5 by adjusting the amounts to be delivered to customers while satisfying the capacity constraint. Suppose that customers u and v come from two different routes. Two cases are considered:

(i) if d u (r(u)) + d x (r(u)) > d v (r(v)) and d u (r(u)) < d v (r(v))
, then customer u with d u (r(u)) and a copy of x with

d v (r(v))-d u (r(u)) are interchanged with customer v with d v (r(v)); (ii) if d u (r(u))+ d x (r(u)) < d v (r(v)
), customers u, x are inserted before or after v in route r(v), and a copy of customer v with d u (r(u)) + d x (r(u)) is removed from r(v) and replaced at the position of u in route r(u). One notices that if that a customer u is served by two routes r(u) and r ′ (u), and the customer u is removed from the routes and inserted in a new empty route. Then, four subtours of routes r(u) and r ′ (u) split by customer u are considered. The best component of combining these four route segments together with customer u is constructed to minimize the traveling cost, and three new routes are generated. Following [START_REF] Dror | Savings by split delivery routing ż[END_REF], we only consider the customer u involved in two or three routes to limit the computational complexity of exploring this neighborhood. For example, if customer u is visited by two routes, there are 9 components; however, if customer u is visited by three routes, there are 19 components. Ů M13(k-Split): This operator was also introduced by [START_REF] Dror | Savings by split delivery routing ż[END_REF]. It splits a customer and inserts the split demands into different routes with respect to the minimum move gain and capacity constraint. A greedy heuristic is adopted to Ąnd the best move quickly. For a detailed description, please refer to [START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem ż[END_REF].

d u (r(u)) + d x (r(u)) = d v (r(v)), M11 becomes 

Route elimination

For the SDVRP-LF, feasible solutions are limited to K min vehicles. However, this constraint is relaxed during the mutation and local search with different neighborhood operators. In order to obtain feasible solutions after the local search, the k-Split neighborhood operator is employed to eliminate the least loaded route one by one until the number of routes equals K min . For route elimination, we adopt the EmptyRoutes procedure presented in [START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem ż[END_REF].

Maximum splits per customer

Intuitively, to minimize the objective function, it is not desirable to split too much a customerŠs demand. As a result, in SplitMA, for each customer i, a maximum number of splits s i is determined by s i = max ¶s min , ⌈θ × d i Q ⌉♢, where θ is a control parameter and s min sets the minimum of s i , which prevents the maximum splits per customer from becoming too small. In SplitMA, we experimentally set θ = 50 and s min = 5, and apply the maximum splits strategy in neighborhood operators M10, M11 and M13. The beneĄts of this strategy are investigated in Section 5.4.4.

Population management

Population management is known as an important ingredient of successful memetic algorithms. SplitMA adopts a variable population scheme inspired by that used in [START_REF] Vidal | A hybrid genetic algorithm for multidepot and periodic vehicle routing problems ż[END_REF].

The number of individuals in P varies between p min and p max (p min < p max ) during the evolution process. Unlike the population management strategy used in [START_REF] Vidal | A hybrid genetic algorithm for multidepot and periodic vehicle routing problems ż[END_REF], clone individuals are not allowed. Along with the evolution, the size of P increases since offspring individuals are progressively added to the population. Once ♣P♣ > p max , the surviving selection is triggered to remove p maxp min individuals by considering their contributions to the diversify of the population and traveling cost. Similar to [START_REF] Boudia | An effective memetic algorithm with population management for the split delivery vehicle routing problem ż[END_REF], the normalized Hamming distance h AB between φ A and φ B is deĄned as the ratio between the number of non-common edges and the number of total edges in φ A and φ B ,

h AB = ♣ ¶E A ∪E B ♢\ ¶E A ∩E B ♢♣ ♣E A ∪E B ♣ .
Then, the biased Ątness of each solution is calculated with respect to its initial Ątness and diversity rank in P.

If the best solution found so far φ * cannot be improved during γ consecutive iterations, the algorithm restarts by generating a totally new population.

Computational results and comparisons

In this section, we report extensive experiments to evaluate the performance of SplitMA on popular benchmark instances (see Section 1.5.3]) in comparison with the state-of-theart SDVRP algorithms in the literature.

Experimental protocol and reference algorithms

Parameter setting. The SplitMA algorithm involves six main parameters: the minimal population size p min , the maximal population size p max , the mutation probability p m , the mutation length l, the granularity threshold δ and the maximum iterations without improvement γ. To tune these parameter, we applied the automatic parameter tuning package Irace [START_REF] López-Ibáijez | The irace package: Iterated racing for automatic algorithm conĄguration ż[END_REF], leading to the setting shown in Table 5.1. This setting can be considered as the default setting of the SplitMA algorithm and is consistently used for our experiments. Reference algorithms. Following the review of Section 1.5.2, we adopt the following references for the comparative study.

Ů BKS. This indicates the best known solutions (best upper bounds) that are compiled from all reference heuristic and exact approaches [ABS14; MS22; OKY18]. Ů SplitILS. This multistart iterated local search algorithm was proposed by [START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem ż[END_REF] for solving the SDVRP-LF and SDVRP-UF. It remains one of the current best SDVRP algorithms. The algorithm was implemented in the C++ language and executed on an Intel Core i7 2.93 GHz with 8.0 GB of RAM memory running Linux. Each instance was executed 20 times with distinct seeds under the single thread. The stopping condition is the maximum iterations given by min ¶K min × n, 5000♢ × 10. Ů iVNDiv. The algorithm was proposed by [START_REF] Rafael | A tabu search with vocabulary building approach for the vehicle routing problem with split demands ż[END_REF] for solving the SDVRP-LF only.

The algorithm was implemented in the C# language and executed on a Pentium 4, 2.8 GHz with 512 MB of RAM. The stopping condition is a maximum number of iterations.

Ů RGTS. This random granular tabu search algorithm was proposed by [START_REF] Berbotto | A randomized granular tabu search heuristic for the split delivery vehicle routing problem ż[END_REF] for solving the SDVRP-LF and SDVRP-UF. It was written in C++ and executed on a personal computer with 2.10 GHz and 4 GB RAM. The algorithm stops when the given number of non-improving moves is met. Ů SS. This scatter search algorithm was proposed by [START_REF] Campos | A scatter search algorithm for the split delivery vehicle routing problem ż[END_REF] for solving the SDVRP-LF only. It was encoded by C and executed on a Pentium IV, 2.4 GHz, 1 GB RAM. The algorithm stops when the reference set remains unchanged after combining all the solutions or the maximum number of iterations is reached. Ů HGA. The hybrid genetic algorithm was presented by [START_REF] Joseph | A genetic algorithm for the split delivery vehicle routing problem ż[END_REF] and tested on some instances of Set I and Set IV. It was implemented in FORTRAN 95 and executed on an Intel Xeon 2.94 GHz with 8 GB RAM. Ů TSVBA. The tabu search with vocabulary building approach was proposed by [START_REF] Rafael | A tabu search with vocabulary building approach for the vehicle routing problem with split demands ż[END_REF] for solving the SDVRP-UF. It was implemented in C# and run on a Pentium 4, 2.8 GHz, 512 MB of RAM. The algorithm stops when a predeĄned number of iterations without improving is reached. Ů FBTS. The forest-based tabu search was proposed by [START_REF] Zhang | An efficient forest-based tabu search algorithm for the split-delivery vehicle routing problem ż[END_REF]. For solving the SDVRP-UF. It was written in C++ and executed on an Intel i5-2410 2.3 GHz, 4 GB RAM. The algorithm terminates when the number of non-improvement steps is met. Ů MAPM. The memetic algorithm with population management was proposed by [START_REF] Boudia | An effective memetic algorithm with population management for the split delivery vehicle routing problem ż[END_REF]. For solving the SDVRP-UF. The algorithm was implemented in Delphi and executed on a 3.0 GHz personal computer. The algorithm stops when a maximum number of iterations is reached. Ů ABHC. The attribute based hill climber heuristic was proposed by [START_REF] Derigs | Local search-based metaheuristics for the split delivery vehicle routing problem ż[END_REF] for solving the SDVRP-UF. It was executed on a 3 GHz personal computer with 2 GB RAM. Among these references, the BKS values can be considered as the most reliable because they are the best results ever reached by an existing SDVRP algorithm in the literature. On the other hand, the results of the cited algorithms enable an assessment of the proposed algorithm compared to the current state-of-the-art methods. We contacted the authors of the reference algorithms, and obtained the source codes of RGTS [START_REF] Berbotto | A randomized granular tabu search heuristic for the split delivery vehicle routing problem ż[END_REF] and FBTS [START_REF] Zhang | An efficient forest-based tabu search algorithm for the split-delivery vehicle routing problem ż[END_REF]. Unfortunately, for RGTS when we ran it with large scale instances such as p03-100D4, the program terminated with unknown errors. For FBTS, when we compiled the C++ code with g++ on our computer, there were several errors. Furthermore, two studies [Che+17; Shi+18] are excluded for our comparative experiments because they report inconsistent results. For several instances, their results are even better than the proven optimal values reported in [START_REF] Archetti | Branch-andcut algorithms for the split delivery vehicle routing problem ż[END_REF][START_REF] Munari | Compact formulations for split delivery routing problems ż[END_REF].

Experimental setting and stopping criterion. The SplitMA algorithm was implemented in C++ and compiled using the g++ compiler with the -O3 option 2 . Experiments were executed on a computer with a Xeon E5-2670 processor of 2.5 GHz and 2 GB RAM running Linux with a single thread. The algorithm was executed 20 times for each instance with distinct random seeds. In order to provide a good compromise between computing time and solution quality, the SplitMA algorithm terminates when it reaches a maximum of 40,000 iterations. Since each application of the gEAX crossover produces β offspring solutions, each iteration means an offspring solution is constructed and improved by the local search subsequently. On our computer, one run of SplitMA under this stopping condition corresponds to a maximum of 0.04 to 4470.13 seconds (only one instance requires this longest time) according to the instance size, which is quite reasonable compared to the time reported by most reference algorithms in the literature.

Computational results and comparisons

In the tables presented hereafter, column Instance indicates the name of instances; #Instances is the number of instances; LB is the lower bound extracted from stateof-the-art exact algorithms [ABS14; BMM00; MS22; OKY18]; Best and Avg. are the best and average results obtained by the corresponding algorithm in the column header, respectively; Gap is calculated as Gap = 100 × (f best -BKS)/BKS, where f best is the best objective value of SplitMA. Since the SDVRP is a minimization problem, a negative Gap (in bold) indicates an improved upper bound. Time is the average time in seconds of 20 executions. TMB is the average time needed by the algorithm to hit its best solution. Furthermore, the dark gray color indicates that the corresponding algorithm obtains the best result among all compared algorithms on the corresponding instance; the medium gray color displays the second best results, and so on.

We also provide the summarizing information as follows. Average is the average value over the instances of a benchmark set. #Best is the number of instances for a set where an algorithm gets the best objective value. Finally, to access the statistically signiĄcant difference between SplitMA and each reference algorithm, the p-value is shown in each table and it is the result of the Wilcoxon signed-rank test with a conĄdence level of 0.05. If the p-value is less than 0.05, the null hypothesis is rejected.

In the following subsections, we present the results obtained by SplitMA on all the benchmark instances and compare them with the reference algorithms.

Comparative results on the SDVRP-LF

Table 5.2 summarizes the results of the SplitMA algorithm for the SDVRP-LF (upper part) compared to the reference algorithms in terms of the best objective values while Tables 6.18 -6.22 show the detailed results on the 162 instances. From these tables, the following observations can be made. First, as shown in Table 5.2, SplitMA Ąnds 70 new upper bounds out of the 162 instances (43%), matches the BKS values for 75 other instances (46%) and only misses 17 BKS values (10%). This performance can be considered as remarkable given that the BKS values are the best results compiled from all existing algorithms. Furthermore, compared to the most effective heuristic SplitILS, SplitMA obtains 76 and 97 better results in terms of the best and average values, respectively, the performance differences between SplitMA and the reference algorithms are statistically signiĄcant.

Analysis

In this section, we conduct additional experiments to assess the contributions of two key components of the SplitMA algorithm, that is gEAX and local search. For this, we focus on the SDVRP-UF and the 74 instances of Sets I and II. To assess the interest of the gEAX crossover, we create two variants of SplitMA as follows. The Ąrst variant (SplitGiant) replaces in SplitMA the gEAX crossover by the popular giant tour crossover, which has been very successful for solving routing problems [Pot09; Vid+14] as well as the SDVRP [START_REF] Boudia | An effective memetic algorithm with population management for the split delivery vehicle routing problem ż[END_REF]. To implement this variant, we faithfully follow the description of [START_REF] Boudia | An effective memetic algorithm with population management for the split delivery vehicle routing problem ż[END_REF] and adopt the source code of the split procedure from [START_REF] Vidal | Hybrid genetic search for the CVRP: Open-source implementation and SWAP* Neighborhood ż[END_REF]. The second variant (SplitMA1) just disables the gEAX crossover of SplitMA. To ensure a fair comparison, we use the average running time of SplitMA shown in Tables 6.23 and 6.25 as the stopping condition of these two variants to solve each instance. Like SplitMA, each variant is run 20 times independently on each instance. The summarized results are shown in Table 5.3 while the detailed results are illustrated in Fig. 5.4 where the results of SplitMA are used as the basis and the results of SplitGiant and SplitMA1 are presented related to this basis.

Significance of the gEAX crossover

From Table 5.3 and Fig. 5.4, one observes that SplitMA outperforms SplitGiant (using the giant tour crossover) in terms of both the best and average values, by reaching 46 better results and 28 equal results out of the 74 instances. Furthermore, when the gEAX crossover is removed from SplitMA, the results become much worse since SplitMA1 can only matches 10 and 6 best solutions in terms of the best and average results.

To further compare SplitMA and SplitGiant, we investigate their convergence behaviors. SpeciĄcally, we obtain the running proĄles of these algorithms on two representative instances (S101D3 and S101D5). Each algorithm is run 20 times with the same time budget and the best results were recorded during the process. The results of this experiment are shown in Fig. 5.5. One observes that SplitMA converges not only faster than SplitGiant, but also converges better.

We conclude that gEAX is not only a critical search operator contributing greatly to the performance of SplitMA, but also a more suitable crossover compared to the giant tour crossover.

Rationale behind the crossover

To shed insights on why the gEAX crossover is a suitable operator for the SDVRP, we investigate the relationship between high-quality local optimal solutions in terms of the Hamming distance. Indeed, relevant studies on the TSP [Müh90; NK13] and VRP [AS19b; NB09] have found that high-quality solutions share many common edges, which form the backbone of optimal solutions. EAX thus beneĄts from this property to construct promising offspring solutions by inheriting the backbone information while introducing a certain degree of diversity [START_REF] Nagata | A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem ż[END_REF]. In this section, we show experimentally that the same property remains valide for the SDVRP. For our experiment, we select two representative instances: eil51 whose optimal value is known and S101D5 whose best result is shown in Table 6.23. We run SplitMA on these two instances and record a large number of high-quality solutions whose objective value is within 5% of the best/optimal value. As such, 501 solutions for eil51 and 625 solutions for S101D5 are collected. Then, we calculate the normalized Hamming distance (see the definition in Section 5.2.6) between each pair of the solutions. Informally, this distance indicates the percentage of the non-common edges between two solutions over the total edges of the two solutions. A value close to 0 means that the two solutions are very similar and vice versa. The results are showed in the two dimensional heat map of Fig. 5.6. The abscissa and ordinate represent the rank of solutions from smallest (best) to largest (worst) with respect to the objective value. Each colored pixel corresponds to the normalized Hamming distance between two solutions. Hot colors show small Hamming distances, corresponding to pairs of similar (or close) solutions, while cold colors indicate large Hamming distances, thus pairs of distant solutions.

As one observes in Fig. 5.6, hot colors are around the bottom left corner of both Ągures, while cold colors are around the upper right corner. This indicates that plus the solutions are good, more they share common edges and vice versa. Furthermore, Fig. 5.7 illustrates the Hamming distance between high-quality solutions and the best/optimal solution. Once again, one notes that high-quality solutions are closer to the best/optimal solution compared to less good solutions. This is particularly true for S101D5, for which high-quality solutions are very close to the best known solution (with more than 90% common edges).

These Ąndings explain why the gEAX crossover performs well for the SDVRP. Indeed, gEAX transmits the common edges from parents (high-quality solutions) to offspring and conserves the backbone information of high-quality solutions while reassembling noncommon edges. It is worth noting that these Ąndings are fully consistent with the cases of the TSP and VRP, which motivated the design of the EAX crossover. SplitMA uses thirteen neighborhood operators in its local search procedure and one mutation operator. It is interesting to know how each of these operators contributes to the performance of the algorithm. For this purpose, we create fourteen SplitMA variants (named V1 to V14) by disabling each of these operators. For example, variant V1 is the SplitMA algorithm with the M1 neighborhood being removed from the local search procedure and V14 is SplitMA without the mutation operator. To assess the contributions of the nine VRP neighborhoods (M1-M9) and the four SDVRP neighborhoods (M10-M13), we create two additional SplitMA variants V15 and V16 where M1-M9 and M10-M13 are disabled, respectively. For each of these variants, we compare its best and average results with those obtained by SplitMA. The gaps between these variants and SplitMA are shown in Fig. 5.8, and a positive gap implies a deteriorating performance with respect to the original SplitMA algorithm.

Benefits of the local search and mutation

From the results of Table 5.4 and Fig. 5.8, the contribution of each operator can be summarized as follows. First, all operators inĆuence the overall process with variable impacts. SpeciĄcally, M10 can be considered as the most critical neighborhood operator since SplitMA deteriorates signiĄcantly its performance if M10 is disabled. Meanwhile, the roles of M2 and M9 are rather marginal. Second, the four tailored SDVRP neighborhood operators (M10ŰM13) are important for the local search procedure. Third, the mutation operator cannot be ignored since it considerably inĆuences the performance of SplitMA for the best and average results. Finally, both V15 (without the VRP neighborhoods) and V16 (without the SDVRP neighborhoods) perform very badly, conĄrming that both types of neighborhoods are indispensable for the local search. Meanwhile, we observe that the SDVRP neighborhoods are more critical than the VRP neighborhoods. In summary, all the neighborhood operators and mutation contribute to the performance of the SplitMA algorithm, even if their contributions vary signiĄcantly.

Benefits of the maximum splits per customer

We now study how the maximum splits strategy contributes to the performance of SplitMA. For this purpose, we create 10 SplitMA variants with different values of θ, which controls the number of maximum splits per customer (the larger θ, the higher the allowed maximum splits). For example, variant MaxS30 uses θ = 30. For each of these variants, we compare its best and average results with those obtained by SplitMA (θ = 50). This experiment follows the same experimental protocal as before and the results are summarized in Table 5.5. From Table 5.5, we Ąnd that SplitMA performs signiĄcantly better than MaxS150 and MaxS200 in terms of the best results. Indeed, the value of θ used in variant MaxS200 is four times larger than SplitMA (θ = 50). Furthermore, if the maximum splits strategy is removed from SplitMA, the results we obtain are nearly the same as with the variant MaxS200. Thus, the maximum splits strategy positively contributes to the performance of SplitMA. On the other hand, SplitMA is marginally better than the other variants except two cases for these 74 SDVRP-UF instances, which indicates that SplitMA performs similarly well when the maximum splits per customer are limited to an reasonable range.

Chapter conclusion

The split delivery vehicle routing problem is a useful model for a broad range of applications in various domains. This work introduced a new memetic algorithm SplitMA that features a general edge assembly crossover for creating promising offspring solutions and an effective local search for solution reĄnement. It also employs dedicated repairing techniques to ensure the feasibility of offspring solutions, a mutation to diversify new offspring solutions, and an advanced quality-and-distance strategy for maintaining a healthy population.

Extensive experiments on four sets of 324 commonly used instances demonstrate that our algorithm signiĄcantly outperforms all existing SDVRP algorithms available in the literature. The algorithms discovers 143 new upper bounds (70 for the SDVRP with a Ćeet of limited vehicles and 73 cases for the SDVRP with a Ćeet of unlimited vehicles) and matches the best known results for the majority of the remaining instances. Additional experiments are shown to understand the contributions of main algorithmic components
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CONCLUSIONS

This thesis investigates effective hybrid genetic algorithms for solving four routing problems: colored traveling salesmen problem, minmax multiple traveling salesmen problem, traveling salesman problems with proĄts and split delivery vehicle routing problem. As the literature review shown in Chapter 1, given that these problems are N P-hard and imply numerous real-life applications, many methods have been presented for solving these problems. In this thesis, we present a hybrid genetic algorithmic framework to solve these problems efficiently and robustly. Extensive experiments on commonly used benchmark instances indicate that our algorithms outperform state-of-the-art algorithms.

In Chapter 2, a grouping memetic algorithm is presented for solving the CTSP. The algorithm integrates two complementary components: a speciĄc backbone-based crossover to produce promising offspring solutions and a powerful local optimal exploration for offspring improvement. The crossover operator emphasizes diversiĄcation when inheriting information from parent solutions to offspring individuals while the local optima exploration is devoted to intensiĄed search by Ąnding local optimal solutions as good as possible. Extensive experimental results on three sets of 65 benchmark instances indicate that our algorithm is very competitive compared with existing leading algorithms. In particular, it is able to update 38 new upper bounds and match 24 best-known results. We also investigate the interest of CPLEX for solving the CTSP and reported 10 proven optimal solutions for the Ąrst time.

In Chapter 3, even that the backbone information is easy to be applied to the CTSP, it becomes difficult when solving the minmax mTSP and other routing problems. Thus, we need more powerful crossover operators for these problems. For this reason, we design a dedicated edge assembly crossover operator (mEAX) for the minmax mTSP with single and multiple depots. The proposed algorithm integrates an efficient variable neighborhood descent to do intensive search and an aggressive post-optimization procedure to further advance solutionsŠ quality. By properly inheriting edges from high-quality parent solutions, mEAX contributes to propagate favorable characteristics from elite parent solutions to offspring. Extensive experimental results on commonly used instances indicate that our algorithm performs very well for both problems by reporting 44/77 and 39/43 new upper bounds for the minmax mTSP and the minmax multidepot mTSP, respectively. We performe additional experiments to assess the contributions of the two key algorithmic components (i.e., mEAX and post-optimization). We also conducte a long term convergence analysis of the algorithm to illustrate its capacity of Ąnding still better solutions if more time is allowed.

In Chapter 4, we present an extended edge assembly crossover (E 2 AX) for traveling salesman problems with proĄts and its associated hybrid genetic algorithm. In addition to the E 2 AX, the proposed hybrid genetic algorithm integrates an effective local search to ameliorate each offspring solution and diversiĄcation-oriented mutation as well as a population-diversity management. Extensive experiments are conducted on the orienteering problem (OP) and the prize-collecting traveling salesman problem (PCTSP). For the OP, four sets of 344 commonly used instances are tested and 67 new lower bounds are discovered. The algorithm also matches the best known results for 172 other instances. For the PCTSP, results on three sets of 240 instances show a high performance on largesized instances including 120 new best results never reported in the literature. Additional experiments are conducted to get insights into the beneĄts of the proposed crossover and the mutation.

In Chapter 5, since Chapter 4 proposes an extended edge assembly crossover that the limited extension cannot be applied to more complex problems. such as the split delivery vehicle routing problem, the more general edge assembly crossover should be presented for rich routing problems. This chapter presents an effective memetic algorithm for solving the problem with a Ćeet of limited or unlimited vehicles. The algorithm features a general edge assembly crossover to generate promising offspring solutions from the perspective of assembling suitable edges and an effective local search to improve each offspring solution. The algorithm is further reinforced by a feasibility-restoring procedure, a diversiĄcation-oriented mutation and a quality-and-distance pool updating technique. Extensive experiments on 324 benchmark instances indicate that our algorithm is able to update 143 best upper bounds in the literature and match the best results for 156 other instances. Additional experiments are presented to obtain insights into the roles of the key search ingredients of the algorithm.

The primary interest of this thesis is to investigate hybrid genetic algorithms to tackle a class of routing problems. We focus on a versatile and scalable edge crossover crossover and generalize it to rich routing problems. Results on four problems show positive contributions of the crossover as well as local search procedures.

Perspectives

In this thesis, a hybrid genetic algorithmic framework is presented for four routing problems. At the time of concluding thesis, the following perspectives would be interested in the development of efficient solution methods.

The CTSP is strongly related to the mTSP and TSP, for which powerful algorithms exist. Ideas of these algorithms could be useful for solving the CTSP. To advance heuristic algorithms for the mTSP, the dedicated local search techniques could be further investigated to speed up neighborhood examinations without sacriĄcing quality. Furthermore, efficient exact algorithms are still missing for the minmax mTSP and minmax multidepot mTSP. Research on this topic is thus valuable.

The hybrid genetic algorithm can be further improved by investigating powerful streamline techniques to increase the computational efficiency and to deal with still large problem instances, in terms of the traveling salesman problems with proĄts. Several directions can be envisaged to address the split delivery vehicle routing problem. First, the local search is the most time-consuming component, thus it is of interest to develop speed-up techniques, such as static move descriptors designed for the CVRP. Second, our algorithm basically explores feasible solutions. It is interesting to carry out mixed search approaches allowing the examination of both feasible and infeasible solutions.

Another interesting research direction would be to investigate the general idea of assembling promising edges from elite parents. Indeed, the uniĄed hybrid genetic algorithmic framework including the gEAX for rich routing problems can be further studied. For example, it is possible to design hybrid genetic algorithms for several routing problems, such as location routing problems and two-echelon vehicle routing problems. Many other computational challenges arise in these cases. 
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Computational results on the minmax mTSP and minmax multidepot mTSP

This appendix presents detailed computational results of the proposed MA algorithm together with the results of reference algorithms: re-IWO, re-MASVND, ES [START_REF] Karabulut | Modeling and optimization of multiple traveling salesmen problems: An evolution strategy approach ż[END_REF], HSNR [START_REF] He | Grouping memetic search for the colored traveling salesmen problem ż[END_REF] and ITSHA [START_REF] Zheng | An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen Problem ż[END_REF]. In the tables presented hereafter, column ŚIn-stancesŠ indicates the name of the benchmark instance; column ŚBKSŠ shows the bestknown solution summarized from the literature. For the minmax mTSP, the starred BKS values are optimal values. Śf best Š and Śf avg Š are the best and average solution found by the algorithm in the column header, respectively. ŚGapŠ is calculated as Gap = 100×(f bestf bk )/f bk where f best and f bk are the best objective value of MA and the best objective value from all reference algorithms (including BKS), respectively. Since both problems have a minimization objective, a negative Gap indicates an improvement over the BKS value (i.e., a new upper bound). Furthermore, the dark gray color indicates that the algorithm obtains the best result among the compared algorithms on the corresponding instance; the medium gray color displays the second best result, and so on. We provide additionally information for each algorithm in terms of the best and average value. ŚAverageŠ is the average value over the instances of a benchmark set.

As shown in Table 6.3, the time information in Table 6.3 is provided only for indicative purposes (The Ś-Š symbol indicates the time information is unavailable for MD and VNS or non-applicable for MA). The time (in seconds) for MD and VNS corresponds to the average time of one run under the stopping conditions indicated in Section 3.3.1. For the MA algorithm, ŚTTBŠ indicates the average time in seconds needed for MA to hit the BKS values, while ŚATŠ is the average time of one run.

The giant tour crossover for the prize-collecting traveling salesman problem

Crossover operators based on the giant tour have been used to solve various routing problems [START_REF] Vidal | A uniĄed solution framework for multi-attribute vehicle routing problems ż[END_REF], which rely on efficient split algorithms designed for speciĄc constraints, such as capacity or time windows. Indeed, the giant tour can also be applied to TSPs with proĄts with respect to the corresponding constraints. In this section, we introduce a giant tour crossover and an optimal split algorithm.

We take the PCTSP as an example. Given a solution φ, let N φ and N φ be a set of routed and unrouted vertices in φ, respectively. Let φ A and φ B be two parent solutions. First, all routed vertices (v i ∈ N φ A ) in solution φ A are arranged into an array A. Second, all unrouted vertices (v i ∈ N φ A ) are arranged into A after routed vertices in the sequential order. An array B is produced using solution φ B in the same way. Second, given two giant tours A and B, an ordered crossover [START_REF] Oliver | Study of permutation crossover operators on the traveling salesman problem ż[END_REF] is used on a simple permutationbased representation. Then a new giant tour S is produced. Finally, a linear-time split algorithm with respect to the collecting prize optimally splits each giant tour by inserting a trip delimiter. SpeciĄcally, for each vertex in S, if the delimiter is inserted after it, there are two tours and we need O(1) time to compute proĄts and travel costs. Since there are n vertices in S, we can optimally splits S in O(n) time. After the split, a feasible offspring is returned. 

Computational results on the OP and PCTSP instances

In the tables presented hereafter, column Instance indicates the name of instances; column BKS is the best known values summarized from the literature; LB and UB are lower and upper bounds obtained by the corresponding algorithm in the column header, respectively; Gap associated with exact algorithms (RB&C and B&C) is calculated as Gap = 100 × (LB -U B)/U B; Best and Avg. are the best and average results obtained by the corresponding algorithm in the column header, respectively; Time in each column means the running time of the corresponding algorithm; TMB is the average running time needed by the algorithms to attain its best results. In Tables 6.4-6.11, Gap in the last column is calculated as Gap = 100 × (BKSf best )/f best , where f best is the best objective value of the proposed HGA algorithm. In Tables 6.12-6.17, if a value is associated with a star, it means it is the optimal solution veriĄed by exact algorithms; Gap in the last column is calculated as Gap = 100×(f best -BKS)/BKS, where f best is the best objective value of HGA and the BKS is the best results of the B&C and HGA-Giant algorithms. In the tables, the Average row is the average value over the instances of a benchmark set. Improved best results (new bounds) are indicated by negative Gap values highlighted in boldface. Abstract: This thesis presents hybrid genetic algorithms for four routing problems: colored traveling salesmen problem (CTSP), minmax multiple traveling salesmen problem (minmax mTSP), traveling salesman problems with profits (TSPs with profits) and split delivery vehicle routing problem (SDVRP). These problems widely exist in real-life applications and are useful to model numerous practical problems. Given that they are computational challenge, metaheuristic algorithms are naturally presented to solve large-sized instances. Four hybrid genetic algorithms associated with dedicated crossover operators and local search procedures are proposed for these problems. In particular, the powerful edge assembly crossover is extended and generalized to solve rich routing problems.

Computational studies performed on a wide range of benchmark instances indicate that the proposed approaches compete favourably with state-of-the-art algorithms. Additional experiments show the roles of the key composing ingredients of our algorithms, including the general edge assembly crossover, the local search, for the SDVRP and the diversity preservation for TSPs with profits.
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  Fig. 5.1(a) shows a portion of the multigraphs associated to solutions φ A and φ B .For solution φ A , there are three parallel edges between the depot j and the customer i, because three vehicles traverse edge (i, j).Given two solutions φ A and φ B , letG A = (V, E A ) and G B = (V, E B ) be the corresponding multigraphs. The degree difference of vertex i in G A and G B is ∆ i = ♣deg A (i)deg B (i)♣where deg φ (i) denotes the degree of vertex i in solution φ. For a vertex i, if ∆ i ̸ = 0, G A or G B is extended by adding one or more dummy loops (i, i) to the vertex to render ∆ i = 0.In the example of Fig.5.1(a),∆ i = ♣deg A (i)deg B (i)♣ = 6 -4 = 2 and ∆ j = ♣deg A (j)deg B (j)♣ = 3 -1 = 2.Thus, G B is extended by dummy loops (i, i) and (j, j) as shown in see Fig.5.1(b). In what follows, an edge e∈ E A ∪ E B is called a common edge of φ A and φ B if e ∈ E A ∩ E B ; otherwise, e is a non-common edge.Given two solutions φ A and φ B , let G A = (V, E A ) and G B = (V, E B ) be their extended multigraphs such that ∆ i = 0 holds for each vertex i, we deĄne the joint multigraphG AB = (V, ¶E A ∪ E B ♢\ ¶E A ∩ E B ♢)by the symmetric difference of E A and E B . Fig. 5.1(c) shows the joint multigraph G AB associated to two solutions φ A and φ B .
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 54 Figure 5.4 Ű Performance gaps of SplitGiant (with the giant tour crossover) and SplitMA1 (with the gEAX crossover disabled) compared to SplitMA on the 74 instances of Sets I and II (a positive gap indicates a deteriorating result).
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 58 Figure 5.8 Ű Illustration of the effects of the neighborhood operators and the mutation operator in terms of the gap with respect to the results of the SplitMA algorithm with all neighborhoods and the mutation operator.
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Titre:

  Algorithme génétique hybride pour quelques problèmes de routage de véhicules Mot clés : Problèmes de voyageur de commerce, Problème de tournées de véhicules, Algorithme génétique hybride, Croisement d'assemblage d'arc, Optimisation combinatoire. Résumé : Cette thèse présente des algorithmes génétiques hybrides pour quatre problèmes de routage : le problème de voyageurs de commerce colorés (CTSP), le problème de voyageurs de commerce minmax multiples (minmax mTSP), le problème de voyageurs de commerce avec bénéfices (TSP avec bénéfices) et le problème de routage de véhicules de livraison fractionnne (SDVRP). Ces problèmes sont largement présents dans des applications du monde réel et sont utiles pour modéliser de nombreux problèmes pratiques. Étant donné leur grande difficulté en terme de résolution, les métaheuristiques sont un choix pertinant pour résoudre les instances difficiles. Quatre algorithmes génétiques hybrides associés à des opérateurs de croisement dédiés et des procédures de recherche locale sont proposés pour résoudre ces problèmes. En particulier, le puissant croisement d'assemblage d'arc est étendu et généralisé pour résoudre des problèmes de routage riche. Les études expérimentales réalisées sur un large éventail d'instances de référence indiquent que les approches proposées rivalisent favorablement avec les algorithmes de l'état de l'art. Des expériences approfondies montrent le rôle des éléments clés de nos algorithmes, notamment le "croisement d'assemlage d'arc général" et la recherche locale pour le SDVRP et la préservation de la diversité pour le TSP avec profits. Title: Hybrid genetic algorithm for routing problems Keywords: Traveling salesman problem, Vehicle routing, Hybrid genetic algorithm, Edge assembly crossover, Combinatorial optimization.
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 1 1 Ű Summary of the taxonomy of representative heuristic algorithms for the OP

	Literature	Year	Framework
	Tsiligirides		

Table 1 .

 1 2 Ű Summary of the taxonomy of representative algorithms

	Literature	Framework	Problem Solved
	Exact algorithms		
	Archetti et al. [ABS14]		

end while 14: return φ

  

	Algorithm 1 Pseudo-code of GMA algorithm
	1: Input: Instance I, population size p, number of the nearest cities N n , parameter α;
	2: Output: The best solution φ * found;
	3: P = ¶φ 1 , φ 2 , • • • , φ p ♢ ← PopInitilize (I, p);/*Build an initial population of p elite solutions, Section
		2.2.2*/
	4: φ * ← arg min ¶f (φ i ) : i = 1, 2, • • • , p♢;
	5: while Stopping condition is not met do
	6:	randomly and uniformly select two parents φ F and φ M from P;
	7:	φ O ← Backbone_Crossover(φ F , φ M );/*Generate an offspring solution by backbone-based
		crossover, Section 2.2.4*/
	8:	φ O ← LOE (φ O , N n , α);/*Improve the new solution by local optima exploration, Section 2.2.3*/
	9:	if f (φ O ) < f (φ * ) then
	10:	φ * ← φ O ;
	11:	end if
	12:	P ← P oolU pdating(P, φ O );/*Update the population with the new solution, Section 2.2.5 */
	13:	

* ;

¶0♢ with respect to φ F and φ M is a common element if there exists a k ∈ ¶1, . . . , m♢ such that i appears in both r F k and r M k

  

	r M m ♢,
	a city i ∈ S \
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			.1 Ű Parameters tuning results	
	Parameters	Section	Description	Considered values	Final value
	p	2.2.1	population size	¶10,15,20,25,30♢	20
	Nn	2.2.3	number of nearest cities	¶30,40,50,60,70,80,90♢	50
	α	2.2.3	maximum length of substring	¶1,2,3,4,5,6,7♢	7

Table 2 .

 2 2 Ű Comparative results of GMA and reference algorithms on Set I. The equally best values are indicated in italic.

			CPLEX			re-ABC			ITPLS			GMA (this work)	
	Instance	UB	LB	t(s)	Gap(%)	f best	favg	σ	Time(s)	f best	favg	σ	Time(s)	f best	favg	σ	Time(s)
	eil21-2	144.92 144.92 1	0.00	144.92 144.92 0.00	1.00	144.92 144.92 0.0	18.32	144.92 144.92 0.0	1.00
	eil21-3	157.48 157.48 1	0.00	157.48 157.48 0.00	1.00	157.48 157.48 0.0	13.15	157.48 157.48 0.0	1.00
	eil31-2	259.36 259.36 2	0.00	259.36 259.36 0.00	1.00	259.36 259.36 0.0	12.70	259.36 259.36 0.0	1.00
	eil31-3	295.31 295.31 20	0.00	295.31 295.31 0.00	1.00	295.31 295.31 0.0	12.85	295.31 295.31 0.0	1.00
	eil31-4	315.97 315.97 61	0.00	315.97 315.97 0.00	1.00	315.97 315.97 0.0	16.90	315.97 315.97 0.0	1.00
	eil41-2	346.24 346.24 7	0.00	346.24 346.24 0.00	1.00	346.24 346.24 0.0	14.45	346.24 346.24 0.0	1.00
	eil41-3	367.84 367.84 46	0.00	367.84 367.84 0.00	1.00	367.84 367.84 0.0	22.05	367.84 367.84 0.0	1.00
	eil41-4	392.14 392.14 120	0.00	392.14 392.14 0.00	1.00	392.14 392.14 0.0	11.55	392.14 392.14 0.0	1.00
	eil51-2	478.08 478.08 126	0.00	478.08 478.08 0.00	1.05	478.08 478.08 0.0	21.55	478.08 478.08 0.0	1.00
	eil51-3	469.50 469.50 773	0.00	469.50 469.50 0.00	1.00	469.50 469.50 0.0	20.40	469.50 469.50 0.0	1.00
	eil51-4	489.99 485.88 7201 0.85	489.99 489.99 0.00	1.00	489.99 489.99 0.0	28.55	489.99 489.99 0.0	1.40
	eil51-5	525.98 503.84 7212 4.39	525.98 525.98 0.00	1.10	525.98 525.98 0.0	14.35	525.98 525.98 0.0	1.00
	eil76-3	596.18 583.41 7211 2.19	593.28 593.28 0.00	1.00	593.28 593.28 0.0	16.40	593.28 593.28 0.0	1.00
	eil76-4	603.79 585.69 7202 3.09	603.79 603.79 0.00	1.50	603.79 603.79 0.0	17.75	603.79 603.79 0.0	1.60
	eil76-5	656.56 620.25 7206 5.85	651.99 651.99 0.00	1.00	651.99 651.99 0.0	6.75	651.99 651.99 0.0	1.00
	eil76-6	687.43 624.25 7202 10.12	672.73 672.73 0.00	2.10	672.73 672.73 0.0	31.40	672.73 672.73 0.0	1.00
	eil101-4	746.93 697.83 7204 7.04	726.82 726.82 0.00	1.30	726.82 726.82 0.0	18.45	726.82 726.82 0.0	1.00
	eil101-5	854.23 750.92 7203 13.76	779.15 779.15 0.00	1.05	779.15 779.15 0.0	10.80	779.15 779.15 0.0	1.00
	eil101-6	783.08 706.47 7209 10.84	759.55 759.55 0.00	1.25	759.55 759.55 0.0	12.75	759.55 759.55 0.0	1.70
	eil101-7	840.60 729.92 7201 15.16	798.85 798.85 0.00	1.20	798.85 798.85 0.0	12.56	798.85 798.85 0.0	1.80
	Geomean	1.0335 -	-	-	1.0235 1.0235 -	-	1.0235 1.0235 -	-	1.0235 1.0235 -	-
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					re-ABC [HH21]			ITPLS[HH21]			GMA (this work)		
	Instance	BKS	ACO	f best	favg	σ	Time(s)	f best	favg	σ	Time(s)	f best	favg	σ	Time(s) Imp(%)
			[DDC18]													
	gr202-12	71924	71924	99871	100033.20	110.54	329.45	99871	100009.50	112.58	93.55	99871	100162.50	185.46	396.65 39.00
	gr202-25	99606	99606	173547	173596.80	54.01	348.85	173418	173523.80	46.77	141.25	173477	173594.65	75.72	211.80 74.00
	gr202-35	118495	118495	233749	233817.85	70.16	316.15	233749	233857.80	73.17	156.85	233871	234003.35	72.81	93.85	97.00
	gr229-10	222167	-	222167	222354.85	164.08	244.60	222167	222347.65	103.50	226.70	222167	222173.75	30.19	201.90 0.00
	gr229-15	264146	-	264146	264146.00	0.00	69.60	264146	264146.00	0.00	67.00	264146	264146.00	0.00	154.85 0.00
	gr229-20	319669	-	319669	319669.00	0.00	303.05	319669	319671.90	12.97	128.20	319669	319880.15	547.77	83.20	0.00
	gr229-30	406664	-	406664	407194.85	375.21	301.35	406664	406884.00	225.72	186.20	406701	407389.75	279.37	73.10	0.01
	gr431-12	248447	330554	249031	249682.25	293.07	300.25	249421	250036.95	613.23	221.45	248447	248447.00	0.00	29.50	0.00
	gr431-25	347335	464298	348056	348431.10	203.82	333.30	348181	349238.10	417.38	253.70	347335	347559.80	420.13	394.95 0.00
	gr431-40	415169	483977	416189	416758.40	249.58	355.20	416552	417963.75	958.14	296.90	415314	415387.45	88.31	159.45 0.03
	gr666-10	386157	-	390188	392234.00	971.38	159.45	389583	396841.55	2716.00 485.90	387562	389594.80	3417.34 473.55 0.36
	gr666-15	445849	-	448604	449997.35	716.97	248.15	448257	449635.25	800.17	223.60	446475	447123.60	328.49	506.20 0.14
	gr666-20	517842	-	522157	523583.15	937.90	177.55	521149	522650.90	1006.57 249.50	519121	519773.45	397.47	512.25 0.25
	gr666-30	649479	-	652587	654001.50	633.57	224.80	651801	653318.10	927.19	255.05	650116	650974.90	417.87	535.70 0.10

.3 Ű Comparative results of GMA and reference algorithms on Set II. Equally best values are indicated in italic. The strictly best values are indicated in boldface.

Table 2 .

 2 4 Ű Comparative results of GMA and reference algorithms on Set III. The strictly best values are indicated in boldface.Table2.5 Ű Summary of comparative results between GMA and two reference algorithms

				re-ABC [HH21]			ITPLS [HH21]			GMA (this work)		
	Instance	BKS	f best	favg	σ	Time(s)	f best	favg	σ	Time(s)	f best	favg	σ	Time(s)	Imp(%)
	pr1002-5	313848	316437	317425.40	479.59	1121.95	318587	320348.80	1058.72 2053.45	313885	314083.20	128.79	1868.40	0.01
	pr1002-10	379627	382201	382844.90	423.48	843.40	383112	384908.55	936.35	1615.60	379846	379911.00	162.49	1361.65	0.06
	pr1002-20	513415	516256	517481.55	452.81	1606.00	517917	519664.85	794.31	1683.05	514968	515784.55	498.49	1815.70	0.30
	pr1002-30	660999	664648	665676.30	559.24	2213.60	664308	666702.20	929.80	1753.65	661540	662613.10	958.81	1792.00	0.08
	pr1002-40	803365	806022	807838.65	786.79	1757.50	805967	808503.35	1444.57 1946.35	803624	803642.45	74.24	953.10	0.03
	fnl2461-3	105211	114188	114509.80	145.77	3562.50	110007	110553.50	413.84	2773.75	105637	105754.90	43.78	1092.55	0.40
	fnl2461-6	115340	122312	122612.30	188.81	3593.50	118513	119199.15	387.44	2273.70	116128	116287.05	77.36	1882.75	0.68
	fnl2461-12	142211	145800	146374.85	220.68	3597.65	145023	145688.60	284.37	3128.30	143477	143866.10	214.32	3410.40	0.89
	fnl2461-24	220633	222465	223335.30	456.26	2231.65	221494	221739.80	163.09	3039.95	221116	221317.35	121.79	3376.65	0.22
	fnl2461-30	266848	268431	269140.30	535.88	2188.65	267355	267593.85	169.31	2842.00	267017	267249.45	116.69	3206.00	0.06
	fnl3461-3	148602	162335	162909.20	177.47	3504.05	156753	157420.50	391.84	2900.75	148917	148979.55	33.13	1744.75	0.21
	fnl3461-12	159388	170762	171243.80	238.70	3612.85	165455	166525.25	512.43	3034.60	159934	160040.70	63.09	1928.10	0.34
	fnl3461-12	185195	192874	193582.75	336.98	3612.90	188223	188963.25	371.47	3293.00	185363	185621.60	143.67	3188.80	0.09
	fnl3461-24	263073	266686	267130.75	187.32	3504.60	265078	265672.70	342.83	3045.55	263631	263980.40	177.39	3405.60	0.21
	fnl3461-30	306639	308742	308963.10	95.74	2526.10	307562	308018.40	208.49	3014.70	307071	307252.30	113.62	3268.00	0.14
	fnl3461-40	384329	385443	385727.50	120.94	2313.95	385122	385296.60	113.73	2827.00	384573	384722.95	77.96	3310.50	0.06
	pla5397-20	38005790	38335000	38392330	26980.76 3504.15	38331500	38494950	73265.21 3483.15	38006100	38018450	25354.72 3059.70	0.00
	pla5397-30	51132597	51299400	51340355	22848.87 3205.35	51339600	51451470	82834.36 3403.30	51138000	51143260	3180.10 3174.00	0.01
	pla5397-40	64079810	64408200	64476755	30612.77 3480.90	64285900	64404060	61216.52 3437.45	64097900	64121760	18498.09 2854.40	0.03
	pla5397-50	73993599	74008700	74019335	5148.66 2359.50	74051200	74145910	44659.82 3407.50	73993600	73993610	30.78	2709.10	0.00
	pla5397-60	85266247	85303100	85324645	10454.99 2161.00	85323100	85424400	60048.45 3046.95	85266200 85266750	235.08	3116.55	0.00
	pla6397-20	35862883	36672000	36748165	37220.64 3608.95	36404600	36575675	103990.103337.10	35951800	35997920	19571.59 3062.95	0.25
	pla6397-30	47322900	47689800	47750055	24229.16 3457.40	47551800	47832460	98829.28 3175.25	47346400	47368155	12197.91 3141.80	0.05
	pla6397-40	56611300	56948400	57022520	31690.54 3400.30	56860500	56945530	54061.04 3040.75	56638000	56653280	11345.84 3096.10	0.05
	pla6397-50	67151700	67415000	67485965	27014.35 3077.95	67347700	67419380	40122.95 2983.45	67161500	67171190	7667.49 3018.50	0.01
	pla6397-60	74774800	75077200	75118385	16341.50 3314.70	74983600	75063660	52339.27 3099.85	74791200	74803075	10330.12 3235.45	0.02
	pla7397-20	40936853	42262900	42432435	78855.53 14431.45	41804200	42027405	138563.8613750.30	41260500	41422195	70887.70 12204.65 0.79
	pla7397-30	52502160	53648400	53717345	45595.94 14017.35	53183700	53358655	113523.0813778.95	52636900	52780890	88332.83 12932.47 0.26
	pla7397-40	64742100	65847100	65919250	42106.65 14072.90	65441600	65662845	142232.6813643.15	64937200	65029520	58826.59 12906.25 0.30
	pla7397-50	76214793	77194500	77265730	38981.29 14064.05	76701700	76784335	74134.09 13748.85	76331100	76406770	47628.33 12635.55 0.15
	pla7397-60	86088267	87041500	87103321	35045.55 13562.42	86628200	86749490	77747.32 13763.90	86153700	86224380	48429.67 13182.35 0.08
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 2 6 Ű Comparative results on Set II between GMA and its three variants. Strictly best values are shown in boldface.

		GMA	GMA 0	GMA 1	GMA 2
	Instance	f best	favg	f best	favg	f best	favg	f best	favg
	gr202-12	99871.00	100162.50	100292.00	100722.85	100196.00	100573.25	99871.00	100217.90
	gr202-25	173477.00	173594.65	173782.00	173828.55	173394.00	173681.40	173511.00	173643.90
	gr202-35	233871.00	234003.35	234126.00	234226.30	233907.00	234074.20	233749.00	233948.20
	gr229-10	222167.00	222173.75	222167.00	222255.75	223266.00	224262.85	222167.00	222167.00
	gr229-15	264146.00	264146.00	264224.00	265715.20	265537.00	266727.75	264183.00	264186.90
	gr229-20	319669.00	319880.15	320976.00	322435.20	319669.00	320910.90	319669.00	320424.30
	gr229-30	406701.00	407389.75	407692.00	408434.25	407962.00	408942.80	407226.00	407648.55
	gr431-12	248447.00	248447.00	248447.00	248462.10	252253.00	254230.25	248447.00	248447.00
	gr431-25	347335.00	347559.80	347545.00	348599.25	350446.00	351721.50	347459.00	347800.20
	gr431-40	415314.00	415387.45	415280.00	415560.35	416983.00	419148.30	415280.00	415342.00
	gr666-10	387562.00	389594.80	392586.00	395300.20	399415.00	404852.60	387321.00	388644.95
	gr666-15	446475.00	447123.60	449908.00	452081.65	453684.00	459695.45	446839.00	447329.35
	gr666-20	519121.00	519773.45	523090.00	525733.00	523178.00	526787.50	519071.00	520190.70
	gr666-30	650116.00	650974.90	653524.00	656015.75	652608.00	655150.05	651330.00	652005.05
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 2 7 Ű Comparative results on Set III between GMA and its three variants. Strictly best values are indicated in boldface.

		GMA	GMA 0	GMA 1	GMA 2
	Instance	f best	favg	f best	favg	f best	favg	f best	favg
	pr1002-5	313885.00	314083.20	314065.00	314495.30	324126.00	327673.20	313867.00	313946.15
	pr1002-10	379846.00	379911.00	380489.00	380656.65	388221.00	391193.95	379846.00	379920.85
	pr1002-20	514968.00	515784.55	515927.00	516825.70	522573.00	524484.30	513814.00	515288.60
	pr1002-30	661540.00	662613.10	663314.00	664050.80	666270.00	669233.55	661540.00	662284.40
	pr1002-40	803624.00	803642.45	804971.00	805937.95	808207.00	810596.10	803624.00	804251.20
	fnl2461-3	105637.00	105754.90	105793.00	105943.85	112896.00	113202.90	105637.00	105753.75
	fnl2461-6	116128.00	116287.05	116531.00	116761.30	120621.00	121369.65	116173.00	116273.20
	fnl2461-12	143477.00	143866.10	146060.00	146259.00	145953.00	146626.45	143739.00	144100.30
	fnl2461-24	221116.00	221317.35	225527.00	226078.10	222280.00	222706.05	221167.00	221439.10
	fnl2461-30	267017.00	267249.45	271199.00	271586.55	267799.00	268144.30	267296.00	267441.70
	fnl3461-3	148917.00	148979.55	148957.00	149065.90	160427.00	161053.00	148917.00	148978.25
	fnl3461-6	159934.00	160040.70	160181.00	160340.95	169106.00	169983.65	159906.00	160052.60
	fnl3461-12	185363.00	185621.60	186394.00	186910.25	192212.00	192988.60	185652.00	185814.80
	fnl3461-24	263631.00	263980.40	267515.00	267723.05	267007.00	267684.65	263763.00	264050.00
	fnl3461-30	307071.00	307252.30	310275.00	310787.45	308936.00	309526.70	306991.00	307148.20
	fnl3461-40	384573.00	384722.95	387335.00	387810.05	385794.00	385981.80	384611.00	384752.45
	pla5397-20	38006100	38018450	38049400	38084660	38527700	38625835	38006000	38013320
	pla5397-30	51138000	51143260	51297400	51353685	51294600	51385805	51141700	51148700
	pla5397-40	64097900	64121760	64337200	64420905	64192200	64258245	64100100	64148815
	pla5397-50	73993600	73993610	73993700	73993870	74048200	74119855	73993600	73993615
	pla5397-60	85266200	85266750	85269600	85281395	85347400	85397905	85266900	85267150
	pla6397-20	35951800	35997920	36298800	36344680	36502300	36650005	35945200	36020685
	pla6397-30	47346400	47368155	47646200	47680965	47555300	47699290	47390500	47418730
	pla6397-40	56638000	56653280	56881800	56921780	56828400	56884080	56661500	56688900
	pla6397-50	67161500	67171190	67297700	67370130	67293800	67359825	67181100	67207485
	pla6397-60	74791200	74803075	74941900	74988450	74935800	74986940	74814700	74845785
	pla7397-20	41260500	41422195	42063000	42217895	41653000	41817975	41446600	41501520
	pla7397-30	52636900	52780890	53655100	53801700	52953600	53082005	52810400	52893300
	pla7397-40	64937200	65029520	66045400	66163565	65151400	65267450	64993500	65070450
	pla7397-50	76331100	76406770	77166800	77274005	76467400	76569390	76344200	76422895
	pla7397-60	86153700	86224380	87017600	87097055	86243600	86382840	86171600	86233840

Table 2 .

 2 8 Ű Summary of comparative results between GMA and and its three variants

	Algorithm pair	Set/Instance	Indicator	Better	Equal	Worse	p -value
	GMA vs. GMA 0	II/14	f best	11	2	1	9.77E-04
			favg	14	0	0	1.22E-04
		III/31	f best	31	0	0	1.17E-06
			favg	31	0	0	1.17E-06
	GMA vs. GMA 1	II/14	f best	12	1	1	7.32E-04
			favg	14	0	0	1.22E-04
		III/31	f best	31	0	0	1.17E-06
			favg	31	0	0	1.17E-06
	GMA vs. GMA 2	II/14	f best	6	4	4	3.34E-01
			favg	9	1	4	9.42E-02
		III/31	f best	19	6	6	1.60E-03
			favg	23	0	8	9.94E-04

Table 2

 2 

			GMA			GMA 3	
	Instance	f best	favg	σ	f best	favg	σ
	gr202-12	99871.00	100162.50	185.46	99871.00	100136.95	201.03
	gr202-25	173477.00	173594.65	75.72	173358.00	173569.15	100.05
	gr202-35	233871.00	234003.35	72.81	233871.00	233973.20	91.05
	gr229-10	222167.00	222173.75	30.19	222167.00	222167.00	0.00
	gr229-15	264146.00	264146.00	0.00	264146.00	264147.85	8.27
	gr229-20	319669.00	319880.15	547.77	319669.00	319776.90	332.11
	gr229-30	406701.00	407389.75	279.37	406664.00	407333.55	320.53
	gr431-12	248447.00	248447.00	0.00	248447.00	248447.00	0.00
	gr431-25	347335.00	347559.80	420.13	347335.00	347565.85	441.71
	gr431-40	415314.00	415387.45	88.31	415314.00	415364.05	73.31
	gr666-10	387562.00	389594.80	3417.34	387459.00	389350.40	2939.49
	gr666-15	446475.00	447123.60	328.49	446322.00	447109.50	345.89
	gr666-20	519121.00	519773.45	397.47	519121.00	519664.20	360.33
	gr666-30	650116.00	650974.90	417.87	650116.00	650894.35	369.63
	Best/All	0/14	2/14	-	4/14	11/14	-
	p-value	-	-	-	1.25E-01	1.20E-03	-

.9 Ű Comparative results on Set II between GMA and GMA 3 (with mutation). Strictly best values are indicated in boldface.

Table 2 .

 2 10 Ű Comparative results on Set III between GMA and GMA 3 (with mutation). Strictly best values are indicated in boldface.

			GMA			GMA 3	
	Instance	f best	favg	σ	f best	favg	σ
	pr1002-5	313885.00	314083.20	128.79	313885.00	314106.55	127.60
	pr1002-10	379846.00	379911.00	162.49	379846.00	379902.00	140.98
	pr1002-20	514968.00	515784.55	498.49	514244.00	515655.65	586.90
	pr1002-30	661540.00	662613.10	958.81	661540.00	662422.80	710.68
	pr1002-40	803624.00	803642.45	74.24	803624.00	803624.00	0.00
	fnl2461-3	105637.00	105754.90	43.78	105637.00	105755.90	43.10
	fnl2461-6	116128.00	116287.05	77.36	116128.00	116278.25	75.96
	fnl2461-12	143477.00	143866.10	214.32	143477.00	143811.60	173.59
	fnl2461-24	221116.00	221317.35	121.79	221105.00	221299.40	110.59
	fnl2461-30	267017.00	267249.45	116.69	267017.00	267230.20	102.23
	fnl3461-3	148917.00	148979.55	33.13	148917.00	148979.55	33.13
	fnl3461-12	159934.00	160040.70	63.09	159934.00	160035.25	65.67
	fnl3461-12	185363.00	185621.60	143.67	185363.00	185605.90	136.94
	fnl3461-24	263631.00	263980.40	177.39	263672.00	263972.35	162.72
	fnl3461-30	307071.00	307252.30	113.62	307026.00	307233.95	122.99
	fnl3461-40	384573.00	384722.95	77.96	384573.00	384720.40	79.81
	pla5397-20	38006100	38018450	25354.72	38006100	38018355	25426.04
	pla5397-30	51138000	51143260	3180.10	51138000	51142525	2790.75
	pla5397-40	64097900	64121760	18498.09	64097900	64120030	16710.07
	pla5397-50	73993600	73993610	30.78	73993600	73993605	22.36
	pla5397-60	85266200	85266750	235.08	85266300	85266710	202.35
	pla6397-20	35951800	35997920	19571.59	35951800	36000990	20031.03
	pla6397-30	47346400	47368155	12197.91	47346400	47370840	12919.44
	pla6397-40	56638000	56653280	11345.84	56635600	56653405	12491.62
	pla6397-50	67161500	67171190	7667.49	67158800	67170200	7372.00
	pla6397-60	74791200	74803075	10330.12	74788500	74801030	9630.71
	pla7397-20	41260500	41422195	70887.70	41311800	41425215	57057.91
	pla7397-30	52636900	52780890	88332.83	52672800	52781955	71085.17
	pla7397-40	64937200	65029520	58826.59	64926700	65019290	57437.00
	pla7397-50	76331100	76406770	47628.33	76306200	76391380	47713.59
	pla7397-60	86153700	86224380	48429.67	86121900	86210057.89	53419.75
	Best/All	4/31	7/31	-	9/31	23/31	-
	p-value	-	-	-	3.31E-01	3.68E-02	-

  cycles by decomposing G AB ; 5: Construct E-sets from AB-cycles with the block strategy; 6: Generate intermediate solutions by removing edges in φ A ∩ E-sets from φ A and adding edges in

	φ B ∩ E-sets;
	7: Split giant tours in intermediate solutions for the minmax multidepot mTSP;
	8: Eliminating isolated subtours in intermediate solutions to generate feasible solutions;
	9: Select γ best feasible solutions;
	10: return γ offspring solutions;

  A by removing from it the edges of E A shared with E i and adding the edges of E B shared with E i , i.e., φ ′ i

.1. 4. Generation of intermediate solutions. For each E-set (say E i ), an intermediate solution φ ′ i is created based on φ

  of giant tours. For the minmax multidepot mTSP, giant tours that visit more than one depot, may occur in intermediate solutions (e.g., the tour in the intermediate solution in Fig.3.2 includes two depots represented by squares). These giant tours are split by the 2-opt* operator[START_REF] Potvin | An exchange heuristic for routeing problems with time windows ż[END_REF]. If a giant tour visits k depots, two new Hamiltonian tours are Ąrst generated by the 2-opt* operator, where one of the two new tours only visits one single depot while the other tour visits the remaining k-1 depots. We repeat this split operations k-1 times until k new Hamiltonian tours are generated. During the split process, the objective is to make the new tours have similar length and avoid too longer tours. For the giant tour with two depots in Fig.3.2 (lower part of the intermediate solution), it includes two segments (each segment refers to the set of cities between two depots). The 2-opt* operator works as follows. Two edges (dash lines) from the two segments based on the α-nearness technique (Section 3.2.3) are replaced to create two new single depot tours such that the length of the new shorter tour is as close as possible half of the giant tour. We thus obtain two feasible tours which have similar lengths. 6. Elimination of isolated subtours. Isolated subtours may appear in intermediate solutions (e.g., the two triangle tours in intermediate solutions a ′ and b ′ in Fig.

Table 3 .

 3 1 Ű Parameters tuning results

	Parameters	Section	Description	Considered values	mTSP	Final values multidepot mTSP
	µ	3.2.1	population size	¶10,15,20,25,30♢	30	30
	λ	3.2.5	generation size in P	¶0,5,15,20,25,30♢	20	15
	γ	3.2.2	number of the best offspring	¶1,2,3,4,5,6,7♢	1	5
	α	3.2.3	neighborhood reduction	¶10,15,20,25,30♢	15	10
	β	3.2.3	substring size	¶1,2,3,4,5,6,7♢	4	7
	η	3.2.5	maximum iterations without	¶2000,4000,6000,8000,10000,12000♢	4000	2000
			improvement			

  Wilcoxon signed-rank test conĄrm the statistically signiĄcant difference between MA and the reference algorithms for the best and average values.

		Pair algorithms	f best #Wins #Tiers #Losses p-value	favg #Wins #Tiers #Losses p-value
		MA vs. BKS	16	23	2	1.37E-03	-	-	-	-
		MA vs. ITSHA [Zhe+22b]	19	21	1	2.93E-04	23	13	5	2.25E-04
	Set S (41)	MA vs. HSNR [HHW21] MA vs. ES [Kar+21]	18 20	22 20	1 1	8.37E-04 9.22E-05	22 28	13 9	6 4	7.51E-04 7.61E-06
		MA vs. re-MASVND	20	20	1	1.23E-04	27	13	1	6.53E-06
		MA vs. re-IWO	24	17	0	1.82E-05	29	12	0	3.52E-06
		MA vs. BKS	28	3	5	2.50E-06	-	-	-	-
		MA vs. ITSHA [Zhe+22b]	32	3	1	5.91E-07	36	0	0	1.68E-07
	Set L (36)	MA vs. HSNR [HHW21]	28	3	5	2.50E-06	29	2	5	3.18E-06
		MA vs. re-MASVND	33	3	0	5.39E-07	35	1	0	2.48E-07
		MA vs. re-IWO	36	0	0	1.68E-07	36	0	0	1.68E-07
		MA vs BKS	39	1	3	3.15E-08	-	-	-	-
	Set M (43)	MA vs. MD [WGW15]	40	1	2	2.28E-08	-	-	-	-
		MA vs. VNS [WGW15]	41	0	2	2.04E-08	-	-	-	-

Table 3 .

 3 3 Ű Summary of comparative results between MA and two variants.

	Pair algorithms	f best #Wins #Tiers #Losses p-value	favg #Wins #Tiers #Losses p-value
	MA vs. MA3	39	35	3	3.90E-08	47	20	10	4.42E-09
	MA vs. MA4	47	26	4	9.15E-08	63	14	0	5.17E-12

  where E ′ A and E ′ B are the edge sets extended with dummy loops. 2. Generation of AB-cycles from G AB . An AB-cycle is a closed-path whose edges are alternatively taken from the parents. From the multigraph G Remove the edges of the AB-cycle from G AB . Repeat the process to build the next AB-cycle until all the edges in G AB are considered. 3. Generation of E-sets. An E-set is an union of AB-cycles. Divide the set of ABcycles randomly and uniformly into β subsets (β = 3 in this work), each subset of AB-cycles deĄning an E-set. 4. Generation of intermediate solutions. First remove all dummy loops in the E-sets. Then for each E-set, produce an intermediate solution from φ A by removing the edges of E A and adding the edges of E B . 5. Elimination of isolated subtours. For each intermediate solution containing subtours, merge the subtours with the main tour by the method presented in [NK13].

AB , build a set of ABcycles as follows. Initialize an AB-cycle by a random vertex with one adjacent edge in G AB . Then add edges belonging to E ′ A and E ′ B alternatively until a cycle is obtained, which is an AB-cycle.

Table 4 .

 4 1 Ű Parameter tuning results.

	Parameter Section	Description	Considered values	OP	Final values PCTSP
	λ	4.2.1 and 4.2.4	minimal size of population	¶50, 100, 150, 200, 250♢	100		100
	µ	4.2.1 and 4.2.4	generation size	¶25, 50, 75, 100, 125♢	50		100
	δ	4.2.3	granularity threshold	¶5, 8, 10, 12, 15, 20♢	10		12
	τ	4.2.4	mutation probability	¶0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3♢	0.15		0.1
	l	4.2.4	mutation length	¶0.05, 0.1, 0.15, 0.2, 0.25♢	0.25		0.25
	γ	4.2.4	population rebuilding threshold	¶5000, 10000, 20000, 30000, 50000, 80000♢ 30000	30000

Table 4 .

 4 2 Ű The OP: summary of results between HGA and reference algorithms on the four sets of 344 instances in terms of the best objective values.

	Instances	Pair algorithms	Medium-sized (45) #Wins #Tiers #Losses p-value	Large-sized (41) #Wins #Tiers #Losses p-value
		HGA vs. BKS	0	35	10	2.00E-03	3	1	37	5.51E-06
	Set I	HGA vs. RB&C [KML20] HGA vs. EA4OP [KML18]	0 12	35 29	10 4	2.00E-03 1.80E-02	5 32	1 2	35 7	4.62E-05 6.70E-06
		HGA vs. ALNS [San19]	3	35	7	4.59E-01	20	4	17	7.61E-02
		HGA vs. BKS	0	43	2	5.00E-01	13	2	26	5.53E-01
	Set II	HGA vs. RB&C [KML20] HGA vs. EA4OP [KML18]	0 31	43 14	2 0	5.00E-01 1.17E-06	13 41	2 0	26 0	7.64E-01 2.42E-08
		HGA vs. ALNS [San19]	16	29	0	4.35E-04	40	0	1	2.61E-08
		HGA vs. BKS	0	43	2	5.00E-01	19	3	19	7.10E-02
	Set III	HGA vs. RB&C [KML20] HGA vs. EA4OP [KML18]	0 28	43 15	2 2	5.00E-01 1.64E-05	19 39	3 0	19 2	6.24E-02 5.26E-08
		HGA vs. ALNS [San19]	14	29	2	1.13E-02	38	0	3	6.14E-08
		HGA vs. BKS	2	41	2	8.75E-01	30	4	7	1.54E-05
	Set IV	HGA vs. B&C [KML18] HGA vs. EA4OP [KML18]	2 27	41 17	2 1	8.75E-01 6.57E-05	30 39	4 0	7 2	4.15E-06 7.81E-08
		HGA vs. ALNS [San19]	20	24	1	1.01E-03	39	2	0	5.25E-08
	Summary	HGA vs. BKS	2	162	16	-	65	10	89	-

Table 4

 4 

						Medium-sized (46)			
	Instances	Pair algorithms			Best				Avg.	
			#Wins #Tiers #Losses p-value	#Wins #Tiers #Losses p-value
	Set I	HGA vs. B&C [BGP09] HGA vs. HGA-Giant	4 32	37 12	5 2	8.20E-01 6.63E-06	-42	-0	-4	-5.35E-06
	Set II	HGA vs. B&C [BGP09] HGA vs. HGA-Giant	7 41	36 3	3 2	4.92E-01 1.21E-06	-43	-1	-2	-3.68E-07
	Set III	HGA vs. B&C [BGP09] HGA vs. HGA-Giant	11 40	21 5	14 1	3.06E-01 2.92E-08	-45	-0	-1	-4.90E-09
		Summary	20	96	22	-	130	1	7	-
						Large-sized (34)			
					Best				Avg.	
	Set I	HGA vs. HGA-Giant	33	0	1	4.78E-07	33	0	1	4.00E-07
	Set II	HGA vs. HGA-Giant	34	0	0	3.65E-07	34	0	0	3.65E-07
	Set III	HGA vs. HGA-Giant	33	0	1	1.62E-06	32	0	2	1.77E-06
		Summary	100	0	2	-	99	0	3	-

.3 Ű The PCTSP: summary of results between HGA and reference algorithms on the three sets of 240 instances.

  .2, four dummy loops are added. 2. Generation of AB-cycles. From the joint multigraph G AB , a number of AB-cycles are generated where each new AB-cycle is constructed as follows. A random vertex is selected to initialize an empty AB-cycle; then edges from E A and E B are traced alternatively to extend the ongoing AB-cycle, and each traced edge is removed from G AB ; the AB-cycle is constructed successfully when the traced edges lead to a cycle. After the construction of the current AB-cycle, if G AB is not empty, the process continues to build the next AB-cycle. The process stops and returns all AB-cycles once G AB becomes empty. As shown in Fig. 5.2, three AB-cycles are generated from G AB . One notices that each AB-cycle contains at least four edges. Let C denote the set of m AB-cycles obtained from this step. 3. Generation of E-sets. From the set of m AB

Table 5 .

 5 1 Ű Parameter tuning results.

	Parameter Section	Description	Considered values	Final value
	p min	5.2.1 and 5.2.6	minimal size of population	¶10, 15, 20, 25, 30♢	30
	pmax	5.2.1 and 5.2.6	maximal size of population	¶45, 50, 55, 60, 65, 70, 75♢	60
	pm	5.2.4	mutation probability	¶0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3♢	0.2
	l	5.2.4	length of mutation	¶0.05, 0.1, 0.15, 0.2, 0.25♢	0.05
	δ	5.2.5	granularity threshold	¶10, 15, 20, 25, 30♢	20
	γ	5.2.6	maximum iterations without improvement	¶5000, 10000, 15000, 20000, 25000♢	10000

Table 5 .

 5 3 Ű Summary of comparative results of SplitMA compared to the results of Split-Giant (using the giant tour crossover) and SplitMA1 (without any crossover).

	Pair algorithms	#Wins	#Tiers	Best #Losses	p-value	#Wins	#Tiers	Avg. #Losses	p-value
	SplitMA vs. SplitGiant	46	28	0	3.52E-09	54	13	7	3.52E-12
	SplitMA vs. SplitMA1	64	10	0	4.63E-10	68	6	0	7.64E-13

Table 5 .

 5 4 Ű Effect of each neighborhood and the mutation operator.

	Pair algorithms	#Wins	#Tiers	Best #Losses	p-value	#Wins	#Tiers	Avg. #Losses	p-value
	SplitMA vs. V1	18	42	14	5.88E-01	31	20	23	9.01E-01
	SplitMA vs. V2	13	48	13	6.94E-01	25	21	28	8.49E-01
	SplitMA vs. V3	14	44	16	9.92E-01	29	22	23	9.67E-01
	SplitMA vs. V4	14	45	15	9.66E-01	32	22	20	3.16E-01
	SplitMA vs. V5	13	46	15	4.73E-01	27	22	25	9.75E-01
	SplitMA vs. V6	18	44	12	1.53E-01	32	22	20	8.04E-02
	SplitMA vs. V7	13	45	16	3.36E-01	26	22	26	2.70E-01
	SplitMA vs. V8	14	45	15	9.31E-01	32	21	21	4.08E-01
	SplitMA vs. V9	14	45	15	9.31E-01	32	21	21	4.08E-01
	SplitMA vs. V10	32	39	3	1.05E-05	49	21	4	1.70E-09
	SplitMA vs. V11	16	44	14	5.30E-01	32	21	21	3.40E-02
	SplitMA vs. V12	15	42	17	4.54E-01	29	20	25	4.36E-01
	SplitMA vs. V13	12	45	17	2.39E-01	39	16	19	7.13E-03
	SplitMA vs. V14	26	40	8	3.76E-03	44	21	9	2.70E-07
	SplitMA vs. V15	24	41	9	2.17E-02	55	14	5	1.02E-10
	SplitMA vs. V16	35	36	3	3.71E-07	58	14	2	2.56E-11

Table 5 .

 5 5 Ű Effect of the maximum splits per customer.

	Pair algorithms	#Wins	#Ties	Best #Losses	p-value	#Wins	#Ties	Avg. #Losses	p-value
	SplitMA vs. MaxS20	11	46	17	4.25E-01	19	29	26	3.07E-01
	SplitMA vs. MaxS30	14	47	13	8.29E-01	20	31	23	4.69E-01
	SplitMA vs. MaxS40	12	53	9	2.97E-01	22	32	20	5.28E-01
	SplitMA vs. MaxS60	13	56	5	8.54E-02	22	32	20	9.70E-01
	SplitMA vs. MaxS70	13	57	4	5.52E-02	25	31	18	8.75E-01
	SplitMA vs. MaxS80	12	56	6	1.33E-01	26	30	18	6.12E-01
	SplitMA vs. MaxS90	12	46	16	5.24E-01	19	28	27	2.92E-01
	SplitMA vs. MaxS100	13	57	4	5.52E-02	27	29	18	2.29E-01
	SplitMA vs. MaxS150	13	57	4	4.94E-02	33	26	15	1.05E-01
	SplitMA vs. MaxS200	14	55	5	3.29E-02	34	25	15	3.81E-02

Table 6 .

 6 1 Ű The minmax mTSP: comparative results of MA with Ąve reference algorithms on the 41 instances of Set S.

	f best

Table 6 .

 6 2 Ű The minmax mTSP: comparative results of MA with four reference algorithms on the 36 instances of Set L. Table 6.3 Ű The minmax multidepot mTSP: comparative results of MA with two reference algorithms on the 43 instances of Set M.

	f best

Table 6 .
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	Instances	BKS LB UB	LB	RB&C [KML20] UB Gap(%) Time	EA4OP [KML18] Best Time	ALNS [San19] Best Time	Best Avg.	HGA Time	TMB	Gap(%)
	att48	31	31	31	31	*	0.03	31	0.25	31	6.77	31	31.00	0.85	0.84	0.00
	gr48	31	31	31	31	*	0.02	31	0.13	31	9.99	31	31.00	0.04	0.01	0.00
	hk48	30	30	30	30	*	0.01	30	0.24	30	7.20	30	30.00	2.51	2.51	0.00
	eil51	29	29	29	29	*	0.01	29	0.24	29	9.51	29	28.85	11.92	7.16	0.00
	berlin52	37	37	37	37	*	0.02	37	0.30	37	9.42	37	37.00	0.04	0.01	0.00
	brazil58	46	46	46	46	*	0.07	46	1.00	46	9.13	46	45.30	44.65	6.38	0.00
	st70	43	43	43	43	*	0.05	43	0.32	43	15.99	43	43.00	0.66	0.66	0.00
	eil76	47	47	47	47	*	0.04 54.00	0.11	0.01	0.00
	gr120	75	75	75	75	*	0.28	74	1.20	75	29.58	75	75.00	28.58	28.58	0.00
	pr124	75	75	75	75	*	0.35	75	1.11	75	49.64	75	75.00	0.86	0.86	0.00
	bier127	103	103	103	103	*	0.38	103	1.18	103	40.84	103	103.00 5.05	5.05	0.00
	pr136	71	71	71	71	*	1.75	71	0.96	71	29.97	71	70.95	40.26	35.01	0.00
	gr137	81	81	81	81	*	0.24	78	3.44	81	59.21	81	81.00	7.44	7.44	0.00
	pr144	77	77	77	77	*	1.46	77	2.61	77	87.82	77	76.50	74.23	46.61	0.00
	kroA150	86	86	86	86	*	33.87	86	1.17	86	82.79	86	85.05	113.12	33.65	0.00
	kroB150	87	87	87	87	*	2.21	86	1.00	87	61.64	86	86.00	146.01	36.24	1.16
	pr152	77	77	77	77	*	1.29	77	3.64	77	91.38	77	76.45	90.19	30.72	0.00
	u159	93	93	93	93	*	1.82	92	1.11	93	99.63	93	92.15	122.50	37.65	0.00
	rat195	102	102	102	102	*	3.71	99	1.78	102	195.57	101	100.45 139.73	56.95	0.99
	d198 122.70 118.46	60.17	0.00
	kroA200	117	117	117	117	*	2.5	117	1.74	117	114.75	116	114.05 227.36	83.39	0.86
	kroB200	119	119	119	119	*	9.91	119	1.66	119	86.58	118	117.70 211.44	81.31	0.85
	gr202 ts225	145 124	145 124	145 124	145 126	* 1.59	2.71 18000.00	145 124	6.89 1.28	145 124	187.56 279.52	145 124	144.60 157.66 124.00 0.22	77.48 0.06	0.00 0.00
	tsp225	129	129	129	129	*	4.31	127	2.29	128	198.47	128	126.05 223.06	102.75	0.78
	pr226	126	126	126	126	*	107.69	126	6.61	126	181.94	126	125.20 168.44	16.25	0.00
	gr229	176	176	176	176	*	0.32	176	8.81	173	108.27	175	174.30 324.03	84.10	0.57
	gil262	158	158	158	158	*	0.35	156	2.84	158	240.02	155	153.50 323.80	125.41	1.94
	pr264	132	132	132	132	*	3.92	132	5.62	132	314.29	132	132.00 2.44	2.35	0.00
	a280	147	147	147	147	*	40.65	143	3.00	144	239.06	145	142.95 272.42	134.60	1.38
	pr299	162	162	162	162	*	48.85	160	3.12	162	410.90	160	159.60 280.80	87.62	1.25
	lin318	205	205	205	205	*	5.49	202	7.15	203	294.23	205	203.55 403.82	153.07	0.00
	rd400	239	239	239	239	*	36.71	234	6.59	237	422.56	236	233.50 623.83	294.78	1.27
	Average	89.31 89.31	89.31 89.36 -	407.20	88.62 2.12	89.07 99.51	88.96 88.44	101.02	40.07	-

The benchmark instances of the minmax multidepot mTSP is available at https://drum.lib.umd.edu/handle/1903/18710

https://github.com/pengfeihe-angers/minmax-mTSP.git

https://www.mech.kuleuven.be/en/cib/op

https://github.com/pengfeihe-angers/tsps-with-profits.git

The code of EAX is available at: https://github.com/sugia/GA-for-TSP

The code of our algorithm will be available at http://www.info.univ-angers.fr/pub/hao/CTSP.html

Our implementation of ABC[START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem ż[END_REF] is available from the page given in footnote 2.

VNS reports a wrong result 465.28 for eil51-2 because it is smaller than the proven optimal value 478.08 from CPLEX.

https://github.com/pengfeihe-angers/minmax-mTSP.git

The code of the HGA algorithm will be available at: https://github.com/pengfeihe-angers/tspswith-profits.git

The SplitMA algorithm was ranked second at the 12th DIMACS Implementation Challenge on Vehicle Routing -SDVRP Track (http://dimacs.rutgers.edu/programs/challenge/vrp/).

Upon the publication of the paper, the code of our algorithm will be made available at https: //github.com/pengfeihe-angers/SplitMA

This research has been Ąnancially supported by China Scholarship Council (CSC).
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Part II

Contributions

while the reverse is true for 12 and 36 cases. For the remaining reference algorithms, the dominance of SplitMA is even more evident by achieving the best results for the vast majority of the instances. According to the Wilcoxon signed-rank test, the small p-values (≪ 0.05) between SplitMA and the competitors indicate that the performance differences are statistically signiĄcant.

From the detailed results shown in Tables 6.18 -6.22, we have several observations. First, for each benchmark set, SplitMA competes favorably with the corresponding reference algorithms in terms of the best and average results. Second, in terms of running time, SplitMA spends a little more time to obtain slightly better results compared to SplitILS for Set I with both rounded and unrounded costs. For the three remaining Sets, SplitMA Ąnds better results than SplitILS with less computation time. Some algorithms, such as RGTS, show very short times, but their results are much worse than SplitMA (and Spli-tILS). ItŠs worth saying that given the reference algorithms were programmed in different languages and performed on different computers under different stopping conditions, the comments on running times are provided for indicative purposes only.

Comparative results on the SDVRP-UF

Table 5.2 summarizes the results of the SplitMA algorithm for the SDVRP-UF (lower part) compared to the reference algorithms in terms of the best objective values while Tables 6.23 -6.27 show the detailed results on the 162 instances. One notices that our algorithm updates 73 BKS values (new upper bounds) and matches 81 other BKS values. Compared to the best reference algorithm SplitILS, our algorithm reports 82 better, 76 equal and 8 worse results, respectively. For the average results, SplitMA obtains 112 better results compared to SplitILS. SplitMA performs much better than the other reference algorithms (weaker than SplitILS) by obtaining the best results for the vast majority of the instances. 

Computational results on the SDVRP instances

Detailed comparative results between the proposed SplitMA and the reference algorithms on the four sets of benchmark instances are provided in Tables 6.18Ű6.27. Following [START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem ż[END_REF], we provide for the instances of Set I the results using both real and rounded costs (the distance matrices of these instances with round costs are obtained from http://dimacs.rutgers.edu/programs/challenge/vrp/vrpsd/). For the other benchmark sets, we report real value costs like in the literature.