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GENERAL INTRODUCTION

Context

The traveling salesman problem (TSP) and the vehicle routing problem (VRP) have

been studied in many Ąelds as canonical combinatorial optimization problems but also

due to their practical relevance. The TSP is easy to state: given a Ąnite number of "cities"

along with the travel cost between each pair of them, Ąnd the shortest way of visiting

all the cities and returning to the starting city. Compared with the obscure origins of

the TSP, the VRP [DR59] was introduced by Dantzig and Ramser when studying the

truck dispatching problem in 1959. Since then, many works have been devoted to the

VRP and its variants. In this thesis, we focus on four representative routing problems:

the colored traveling salesman problem (CTSP) [Li+14], the minmax multiple traveling

salesmen problem (minmax mTSP) [Fra+95], the traveling salesman problems with proĄts

[FDG05] and the split delivery vehicle routing problem (SDVRP) [DT89]. The CTSP is a

node routing problem with multiple salesmen, where the cities are divided into m exclusive

city sets and one shared city set. The objective is to minimize the total traveling distance

of m Hamiltonian circuits (routes) under the following constraints: each exclusive city is

to be visited by the corresponding salesman, while each shared city can be visited by any

salesman. The minmax mTSP is a generation of the TSP and aims to minimize the longest

tour among a set of tours. The TSPs with proĄts visit some cities (vertices) to optimize

the collected proĄt and the travel costs. The SDVRP extends the classical capacitated

VRP and each customer can be visited by more than one vehicle. These routing problems

concern various relevant applications such as Ćexible manufacturing schedule [Men+17],

transportation [DT90], robotics [CK21] and unmanned aerial vehicles [MR20].

Given their theoretical and practical signiĄcance, a large number of solution ap-

proaches including exact and metaheuristic algorithms have been presented to solve these

problems. In this thesis, we aim to advance the state-of-the-art of solving large instances

of the four representative routing problems with effective metaheuristic algorithms.
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General Introduction

Objectives

This thesis focuses on working on an efficient and effective hybrid genetic algorith-

mic framework for the four routing problems. The main objectives of this thesis can be

summarized as follows.

Ů Investigate the edge assembly crossover operator and related crossover operators

applied to routing problems.

Ů Generalize the edge assembly crossover operator to rich routing problems.

Ů Integrate powerful TSP heuristics into local search for reducing the length of single

route.

Ů Analyze and compare the performances of different crossover operators.

Ů Evaluate the performances of the proposed algorithms on commonly used bench-

mark instances in comparison with state-of-the-art algorithms.

Ů Analyze the ingredients of the proposed methods to get useful insights about their

impacts on the performances of the algorithms.

Contributions

The main contributions of this thesis are summarized as follows.

Ů For the CTSP, we present the Ąrst grouping memetic algorithm for solving this

challenging problem. The algorithm includes three main components: (i) a greedy

randomized heuristic for population initialization; (ii) a dedicated local search pro-

cedure for local optima exploration; (iii) a backbone-based crossover operator for

solution recombination. We show computational results on three sets of 65 popular

benchmark instances to demonstrate the competitiveness of our algorithm. We es-

pecially report improved upper bounds for 38 instances (for more than 58% cases).

This work has been published in Information Sciences [HHW21].

Ů For the minmax mTSP, the proposed algorithm combines a generalized edge assem-

bly crossover to generate new solutions, an efficient variable neighborhood descent

to ensure local optimization as well as an aggressive post-optimization for addi-

tional solution improvements. Extensive experimental results on 77 minmax mTSP

benchmark instances and 43 minmax multidepot mTSP instances commonly used

in the literature indicate a high performance of the algorithm compared to the lead-

ing state-of-the-art algorithms. This work has been submitted to European Journal

10



General Introduction

of Operational Research.

Ů For the TSPs with proĄts, since two problems, orienteering problem (OP) and

prize-collecting traveling salesman problem (PCTSP), are representative, we intro-

duce a hybrid genetic algorithm that addresses these two problems under a uniĄed

framework. The algorithm combines an extended edge assembling crossover opera-

tor to produce promising offspring solutions and an effective local search to amelio-

rate each offspring solution. The algorithm is further enforced by a diversiĄcation-

oriented mutation and a population-diversity management. Extensive experiments

show that the method competes favorably with the best existing methods both in

terms of solution quality and computational efficiency. This work has been submit-

ted to Networks.

Ů For the SDVRP, we present an effective memetic algorithm for solving the problem

with a Ćeet of limited or unlimited vehicles. The algorithm features a general edge

assembly crossover to generate promising offspring solutions from the perspective

of assembling suitable edges and an effective local search to improve each offspring

solution. The algorithm is further reinforced by a feasibility-restoring procedure,

a diversiĄcation-oriented mutation and a quality-and-distance pool updating tech-

nique. Extensive experiments on 324 benchmark instances indicate that our algo-

rithm is able to update 143 best upper bounds in the literature and match the best

results for 156 other instances. This work has been submitted to Transportation

Science.

Furthermore, a work with presenting a two phase iterated local search algorithm to

solving the CTSP was launched in the beginning of my study period and published in

Engineering Applications of Artifcial Intelligence [HH21]. Before presenting MA to ad-

dressing the minmax mTSP, a hybrid search with neighborhood reduction for the multiple

traveling salesmen problem is also investigated and published in Computers & Operations

Research [HH22].

Finally, I also worked on the Hamiltonian p-median problem and a hybird genetic

algorithm was launched, and this paper has been submitted to IEEE Transactions on

Evolutionary Computation.

Organization

The thesis is organized in the following way:

11



General Introduction

Ů In the Ąrst chapter, we introduce the TSP, VRP and its variants Ąrst. Then the four

studied problems are described in terms of deĄnition and mathematical models.

Furthermore, representative solution approaches, including heuristic, metaheuristic

and exact algorithms are reviewed, as well as commonly used benchmark instances.

Finally, hybrid genetic algorithms for solving rich routing problems are investigated

and summarized.

Ů In the second chapter, an effective grouping memetic algorithm (GMA) is pre-

sented for the CTSP. We introduce its algorithmic components in detail. Extensive

experiments indicate the competitiveness of our algorithm. Moreover, we also shed

lights on the impacts of the key components of the algorithm.

Ů In the third chapter, a new memetic algorithm (MA) is addressed for the minmax

mTSP with single depot (the minmax mTSP) and multiple depots (the minmax

multidepot mTSP). The framework and detail components of the algorithm are in-

troduced sequentially. Experiments to assess the performance of our algorithm and

additional experimental investigations for analyzing the impacts of key components

are also carried out.

Ů In the fourth chapter, a hybrid genetic algorithm (HGA) is presented for TSPs with

proĄts. Two representative problems are concerned, that is the orienteering problem

(OP) and the prize-collecting traveling salesman problem (PCTSP), under a uniĄed

framework. Extensive experiments show that the method competes favorably with

the best existing methods both in terms of solution quality and computational

efficiency.

Ů In the Ąfth chapter, we study the split delivery vehicle routing problem. We present

an effective memetic algorithm (SplitMA) for solving the problem with a Ćeet of

limited or unlimited vehicles. Extensive experiments on well known benchmark

instances indicate that our algorithm is favourably competitive.

Ů In the last chapter, we summarize the contributions of this thesis and provide some

perspectives for future research.

12
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Part I, Chapter 1 – Introduction

1.1 Traveling salesman problem and vehicle routing

problems

The traveling salesman problem (TSP) is one of the most famous combinatorial op-

timization problems. Numerous studies have been devoted to the problem from different

perspectives, such as mathematical programming [DFJ54; Mil78; MTZ60] and heuristics

[Lin65; LK73; ML55]. Let xij be a binary variable and xij = 1 means the path goes from

city i to city j, otherwise xij = 0. The symmetric TSP on n cities can be expressed as

an integer linear program (ILP) on the binary variables xij, i < j, i = 1, · · · , n − 1;

j = i + 1, · · · , n:

(TSP ) Minimize
n−1∑

i=1

n∑

j=i+1

cijxij (1.1)

subject to xij ≥ 0 (1.2)

xij ≤ 1 (1.3)

k−1∑

i=1

xik +
n∑

j=k+1

xkj = 2 (1.4)

∑

i∈S,j∈S

xij ≤ ♣S♣ − 1 (1.5)

Constraints (1.4) are referred to as the vertex constraints and ensure that each city is

visited. Constraints 1.5 correspond to subtour elimination constraints [DFJ54].

The vehicle routing problem (VRP) concerns multiple routes starting from the depot

and ending at the depot. Without loss generality, we use set partition formulation [BQ64]

to model the VRP.

Let G = (V , E) be an undirected graph where V = ¶0, 1, · · · , n♢ is the vertex set with

0 being the depot and N = ¶1, · · · , n♢ representing n customers and E is the edge set.

Let Ω be the set of routes, each route being given by a sequence of edges that describe a

path from the depot to some customers. The travel cost cr of a route r ∈ Ω is given by

the sum of the cost of the edges in its path. Let air state the number of times customer

i is visited by route r. Let λr be a binary variable. λr = 1 if the route r is performed,

otherwise not. The set partition formulation is as follows:

(V RP ) Minimize
∑

r∈Ω

crλr (1.6)

16



1.2. Colored traveling salesmen problem

subject to
∑

r∈Ω

airλr = 1 ∀i ∈ N (1.7)

∑

r∈Ω

λr = ♣K♣, (1.8)

The objective function (1.6) minimizes the overall cost of the selected routes. Con-

straints (1.7) guarantee that each customer is visited by exactly one route. Constraint

(1.8) imposes the use of ♣K♣ vehicles. There are many models and algorithms for the

optimal and approximate solution of different versions of the VRP.

Various TSP and VRP variants exist in real-life applications. In this thesis, we in-

vestigate four problems: colored traveling salesman problem (CTSP), minmax multiple

traveling salesmen problem (minmax mTSP), traveling salesman problems with proĄts

(TSPs with proĄts) and split delivery vehicle routing problems (SDVRP), which are in-

troduced in the next sections.

1.2 Colored traveling salesmen problem

1.2.1 Problem introduction

Let G=(V , E) be a complete undirected graph, where V = ¶0, 1, 2, · · · , n−1♢ is the set

of nodes (or cities) and E = ¶¶i, j♢ : i, j ∈ V, i ̸= j♢ is the set of edges. Each edge ¶i, j♢ ∈ E

has a non-negative weight cij representing the traveling distance between cities i and j.

All cities are divided into m + 1 disjoint sets: m exclusive city sets ¶C1, C2, · · · , Cm♢, and

one shared city set S such that ∪m
k=1Ck∪S = V and ∩m

k=1Ci∩S = ∅. Let K = ¶1, 2, · · · , m♢

be a set of salesmen. The cities of an exclusive set Ck (k ∈ K) are to be visited by salesman

k only, while the shared cities can be visited by any of the m salesmen. Besides, city 0

(the depot) belongs to the shared city set S and is visited by all salesmen. The CTSP is

to determine m shortest Hamiltonian tours (routes) starting from the depot and ending

at the depot such that each exclusive city in Ck is visited exactly once by salesman k and

each shared city is visited exactly once by one of the m salesmen.

(CTSP ) Minimize
m∑

k=1

n−1∑

i=0

n−1∑

j=0

cijxijk (1.9)

n−1∑

i=1

x0ik = 1,∀k ∈ K (1.10)

17



Part I, Chapter 1 – Introduction

n−1∑

i=1

xi0k = 1,∀k ∈ K (1.11)

∑

i∈Ck∪S

∑

j∈V\(Ck∪S)

xijk = 0,∀k ∈ K (1.12)

n−1∑

j=0

m∑

k=1

xjik = 1, j ̸= i, i ∈ V\¶0♢ (1.13)

∑

l

xjlk =
∑

i

xijk, i ̸= j ̸= l, i, j, l ∈ Ck ∪ S,∀k ∈ K (1.14)

uik − ujk + n× xijk ≤ n− 1, j ̸= i, i, j ∈ V\¶0♢,∀k ∈ K (1.15)

The binary variable xijk = 1 indicates that the k-th salesman passes through edge

¶i, j♢, and otherwise xijk = 0. uik is the number of cities visited on the k-th route from

the depot up to city i. The objective function of CTSP is given by objective (1.9) and

Constraints (1.10-1.15) are the constraints of the problem. Constraints (1.10) and (1.11)

require that each salesman starts from the depot and returns to the depot. Constraint

(1.12) indicates that each salesman can only visit its own exclusive cities and some shared

cities. Constraint (1.13) means that each city except the depot can only be visited ex-

actly once. Constraint (1.14) indicates that a salesman can only arrive at its exclusive

and shared cities to continue its route. Constraints (1.14) and (1.15) are employed to

eliminate the subtours for each salesman. One notices that the Miller-Tucker-Zemlin sub-

tour elimination constraints [MTZ60] are presented to eliminate all subtours. Although

the subtour elimination constraints of Dantzig-Fulkerson-Johnson [DFJ54] concern less

decision variables, it becomes impossible when using ILP solvers directly.

The CTSP generalizes a variant of the classical traveling salesman problem (TSP),

known as the multiple traveling salesmen problem (mTSP) where all cities are shared

[Bek06; CR06]. Besides, if there is only one salesman (m = 1), the CTSP becomes the

TSP [App+06]. Given that the CTSP generalizes these NP-hard problems, solving the

CTSP is computationally challenging.

1.2.2 Related work

Given the theoretical and practical signiĄcance, the CTSP has attracted considerable

attention in recent years [He+20; He+18; Li+14] and several heuristic methods have been

presented. In this section, we review the existing solution approaches for the CTSP and

related works.
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1.2. Colored traveling salesmen problem

In 2014, Li et al. [Li+14] introduced the colored traveling salesmen problem to op-

timize routes of a dual-bridge waterjet cutting machine tool. As solution methods, they

presented four genetic algorithms (basic genetic algorithm (GA), GA with greedy ini-

tialization, hill-climbing GA and simulated annealing GA), where the dual-chromosome

encoding was used to represent the candidate solutions. The Ąrst chromosome is a per-

mutation of all cities except depot 0, while the second chromosome assigns a salesman to

each of the shared and exclusive cities in the corresponding position of the Ąrst chromo-

some. They presented computational results on 20 small scale benchmarks created from

existing symmetric TSP instances (with up to 101 vertices). They showed that the hybrid

algorithm combining simulated annealing and GA dominated the three other algorithms

and their algorithms performed better than the general mixed integer programming tool

Lingo.

Then, in 2017, Meng et al. [Men+17] proposed a variable neighborhood search (VNS)

which employs a direct-route encoding to represent the solutions. VNS consists of two

phases. The Ąrst phase perturbs the current solution by two shaking operations (In-

terchange and Relocation), while the second phase improves the perturbed solution by

applying a local search based on two search operations (neighborhood change and 2-opt).

Compared with the four GAs [Li+14], VNS showed its competitiveness on the 20 bench-

mark instances.

Later, in 2018, Pandiri and Singh [PS18] presented an artiĄcial bee colony (ABC)

based on the m-tour encoding. This encoding uses m arrays, and each array includes all

the cities visited by the corresponding salesman. They provided a proof that the size of

the solution space of the CTSP with the m-tour encoding is smaller than that of the dual-

chromosome encoding. They showed that ABC could match or update the best results

reported in [Li+14; Men+17] on the 20 small scale benchmark instances with very short

cutoff times. Besides, they introduced 8 new medium scale instances (with 229-666 cities)

and reported computational results.

Also in 2018, Dong et al. [DDC18] employed an ant colony optimization (ACO) with

multi-tasks learning for solving the CTSP. The multi-task cooperative learning was pro-

posed to improve the efficiency of ACO. To assess their algorithm, they introduced 6

medium (with 202-431 cities) and 5 large instances (with 1002 cities) and showed the

competitiveness of ACO compared with the four GAs [Li+14]. Nevertheless, this algo-

rithm did not compete well with VNS [Men+17] on the 20 small scale instances in terms

of the best and average results.
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In 2019, Dong et al. [Don+19] presented another artificial bee colony algorithm (ABC)

and reported computational results on 26 new large instances (with 2461-7397 cities).

These new large scale instances could be used by subsequent studies to evaluate their

algorithms. However, this ABC algorithm performed worse than the ABC algorithm of

[PS18] on the 20 small scale instances.

He and Hao [HH21] proposed an iterated two-phase local search (ITPLS), which is

based on a new adjacency representation of the candidate solutions. This representation

relies on an array A[m, n + 1] such that for each route r (r = 1, . . . , m), A[r, i] = j (i, j =

0, . . . , n, i ̸= j) if and only if the route goes from city i to city j. ITPLS applies jointly inter-

route optimization and intra-route optimization for solution improvement, reinforced by a

probabilistic greedy perturbation strategy to diversify the search. Extensive computational

results were reported on all the benchmark instances available in the literature (a total of

65 instances), including 29 improved best known results.

After He et al. [HHW21], Zhou et al. [Zho+22] proposed multi-neighborhood simulated

annealing-based iterated local search to solve the CTSP and experimental results indicated

it performs significantly better than the grouping memetic algorithm [HHW21]. Lastly,

Zheng et al. [Zhe+22a] addressed the CTSP by a reinforced Lin-Kernighan-Helsgaun

Algorithm and many upper bounds are updated again.

According to the computational results reported in the literature, we identify ABC

[PS18] and ITPLS [HH21] as the current state-of-the-art CTSP algorithms.

The CTSP generalizes the popular multiple traveling salesmen problem (mTSP), which

has attracted much interest in the last decades. For instance, Wang et al. [WCL17] in-

troduced a memetic algorithm for solving mTSP, which includes a variable neighborhood

descent to search local optima. Another evolutionary algorithm was proposed by Kashan

et al. [KAO15] for solving mTSP from the perspective of grouping problems. Other repre-

sentative studies were reported in [CR06; SB09; Soy15; Yua+13]. However, these methods

are not suitable for the CTSP, because of the presence of exclusive cities.

In this work, we are interested in designing a practically effective algorithm for solving

the CTSP with the memetic framework. This is motivated by two considerations. First,

one notices that the route of each salesman can be considered as a TSP solution. Therefore,

the optimization of each individual route can naturally benefit from existing powerful TSP

methods. Second, we can consider the CTSP from the perspective of grouping problems in

the sense that the shared cities are to be dispatched into m groups (m being the number of

salesmen). As such, the population-based memetic framework with a meaningful crossover
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1.3. Minmax multiple traveling salesmen problem

represents an attractive approach given that it has been applied with great success to

several difficult grouping problems (e.g., [Fal98; GBF11; ZHG18]).

1.2.3 Benchmark instances

We employ three sets of 65 benchmark instances, which were commonly used in pre-

vious studies on the CTSP. The Ąrst set (Set I) contains 20 small instances which were

introduced in [Li+14], and the number of cities is between 21 to 101 while the number of

salesmen m is between 2 and 7. The second set (Set II), introduced in [DDC18; PS18],

contains 14 medium size instances with 202, 229, 431, 666 cities, and 10 − 40 salesmen.

The last set (Set III), presented in [DDC18; Don+19], contains 31 large instances with

1002 − 7397 cities and 3 − 60 salesmen. These benchmark instances and the solution

certiĄcates for them obtained by the GMA algorithm are available online 1.

1.3 Minmax multiple traveling salesmen problem

1.3.1 Problem introduction

Let G=(V , E) be an edge-weighted graph, where V = ¶0, 1, . . . , n♢ is the vertex set

with 0 being the starting-ending city (depot) and N = ¶1, · · · , n♢ representing n cities

and E is the set of arcs (edges). Let C = (cij) be a non-negative cost (distance) matrix

associated with E , which satisĄes the triangle inequality (cij + cjk > cik for all i, j, k ∈ V

and i ̸= j ̸= k). The matrix C is said to be symmetric when cij = cji, (i, j) ∈ E and

asymmetric otherwise. The basic mTSP is to partitioning the set of the cities (N ) into

m distinct Hamiltonian tours ¶r1, r2, . . . , rm♢ starting at the depot (vertex 0), such that

1) each tour rk (k ∈ ¶1, 2, . . . , m♢) includes at least two vertices, and 2) an objective

function is minimized. From an application perspective, one of the following minimization

objectives is considered in the literature: 1) the minsum mTSP which minimizes the total

traveling distance of the m tours [SH73], and 2) the minmax mTSP which minimizes the

longest tour among the m tours [Fra+95].

It is known for a long time that the minsum mTSP can be conveniently transformed to

the TSP [HP77; Rao80]. Recently, it was shown that this transformation approach is quite

powerful and able to effectively solve the existing minsum mTSP benchmark instances by

leading TSP methods [HH22]. On the other hand, the situation is different for the minmax

1. https://leria-info.univ-angers.fr/ jinkao.hao/GMACTSP.html
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mTSP for which a number of dedicated methods have been developed. In this work, we

focus on the minmax mTSP including both the cases of single depot and multiple depots.

The minmax mTSP with single depot can be used to formulate many applications.

Meanwhile, there are other situations where multiple depots need to be considered. For

example, in humanitarian logistics, several depots are deployed in different locations to

ensure an efficient delivery of relief supplies to speciĄc places [CVH08]. The minmax mul-

tidepot vehicle routing problem was Ąrst proposed to formulate such applications, where

the objective is to minimize the longest tour [Car+09]. If the capacity constraint is ig-

nored, the problem becomes the minmax multidepot mTSP [Car+09; WGW15]. Clearly,

the minmax multidepot mTSP generalizes the minmax mTSP and has interesting appli-

cations such as allocating targets to unmanned vehicles [Ras+03] and allocating computer

networks resources where the objective is to minimize the maximum latency between a

server and a client [WGW15].

1.3.2 Related work

We brieĆy review the state-of-the-art heuristic algorithms for the minmax mTSP and

the minmax multidepot mTSP. Given that the minmax mTSP was introduced much

earlier than the minmax multidepot mTSP (1995 vs. 2009), there are more studies on the

minmax mTSP than on the minmax multidepot mTSP.

The minmax mTSP

The minmax mTSP was introduced in 1995 by França et al. [Fra+95]. Since then many

studies have been devoted to the problem. Comprehensive surveys about the applications,

solution approaches and taxonomy are available in [Bek06; CK21]. In this section, we focus

on the most recent and representative heuristics for the problem.

Population-based metaheuristics have been presented for solving the minmax mTSP.

Carter and Ragsdale [CR06] proposed a genetic algorithm in 2006. The algorithm was

based on a two-part chromosome representation and applied classic crossover operators

for the TSP to generate offspring solutions. Similarly, in 2007, Brown et al. [BRC07] intro-

duced another genetic algorithm, which adopted a two-part chromosome representation

with real values. Subsequently, in 2009, Singh and Baghel [SB09] presented a group-

ing genetic algorithm, which features a new chromosome representation and a concise

crossover operator such that the most promising tour (the shortest) from the parents was
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1.3. Minmax multiple traveling salesmen problem

inherited by the offspring. In 2013, Yuan et al. [Yua+13] presented a speciĄc crossover

operator based on the two-part chromosome representation of [CR06]. In 2017, Wang et

al. [WCL17] investigated a memetic algorithm based on sequential variable neighborhood

descent (MASVND) and the crossover operator of [SB09]. Computational experiments

on 31 instances with 51-1173 cities and 3-20 tours indicated MASVND was competitive

compared to other algorithms, especially for instances with a large number of cities. In

2021, Karabulut et al. [Kar+21] proposed an evolution strategy algorithm (ES), where a

self-adaptive Ruin and Recreate heuristic was employed to generate offspring solutions.

ES reported excellent results by improving 14 best-known solutions with 51-1173 cities

and 3-30 tours among 51 minmax mTSP instances. One notices that these algorithms are

based on crossover operators that focus on cities and tours, contrary to powerful TSP

crossovers such as EAX [NK97; NK13] where the focus is on how to inherit set of edges

(subtours) from parents to offspring solutions.

Swarm intelligence algorithms have been studied for solving the minmax mTSP, which

showed good performances. In 2015, Pandiri and Singh [PS15] presented two bio-inspired

algorithms (ABC and IWO). The IWO algorithm delivered excellent results and updated

12 best results reported in [BRC07; CR06; SB09; Yua+13] for the 25 tested instances.

Additional studies on swarm intelligence algorithms for the minmax mTSP were presented

in [LY19; ZSP18]. However, they are less competitive compared to the best algorithms

such as ES [Kar+21] and IWO [PS15].

Neighborhood-based local optimization has also been investigated for solving the min-

max mTSP. In 2015, Soylu [Soy15] presented a general variable neighborhood search

algorithm based on several move operators including 2-opt and or-opt moves. Experimen-

tal results indicated a good performance of the algorithm, though it is less competitive

compared to the IWO algorithm [PS15]. In 2022, He and Hao [HH22] introduced a hybrid

search algorithm with neighborhood reduction (HSNR), where two tabu search procedures

based on different neighborhoods were alternatively used in combination with the leading

TSP heuristic EAX [NK13]. HSNR achieved a remarkable performance by updating the

best-known solutions for 15 out of the 41 popular benchmark instances (with 51-1173 cities

and 3-30 tours). Additional results were reported on a new set of 36 large instances with

1379-5915 cities and 3-20 tours. Also in 2022, Zheng et al. [Zhe+22b] proposed an effective

iterated two-stage heuristic algorithm (ITSHA), which combines a clustering-based ran-

dom greedy initialization procedure and a variable neighborhood search with three move

operators (2-opt, Insert and Swap). Experimental results indicated that ITSHA obtained
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a good performance by improving 22 upper bounds among 44 instances.

Among the reviewed studies, Ąve algorithms (IWO [PS15], MASVND [WCL17], ES

[Kar+21], HSNR [HH22] and ITSHA [Zhe+22b]) hold the best-known results for the

minmax mTSP on the 77 benchmark instances. Thus, these methods serve as the main

reference algorithms for our comparative study.

The minmax multidepot mTSP

In 2009, Carlsson et al. [Car+09] introduced the minmax multidepot vehicle routing

problem with unbounded vehicle capacity. Interestingly, this problem is strictly equiva-

lent to the minmax multidepot mTSP studied in this work. To solve the problem, the

authors presented a LP-based heuristic based on the linear programing technique. In

2013, Narasimha et al. [Nar+13] presented an ant colony optimization algorithm for the

problem and showed interesting computation results on 11 test instances. Later in 2015,

Wang et al. [WGW15] proposed two highly effective heuristics (MD and VNS) for solv-

ing the problem. The MD algorithm consists of three stages: (1) the multidepot problem

is transformed to a single depot problem, which is then solved; (2) the longest tour is

improved with TSP heuristics; (3) all tours are improved by exchanging cities between

tours. The VNS algorithm combines variable neighborhood search with the powerful LKH

solver [Hel00]. Computational results on a new set of 43 instances with 10-500 cities and

3-20 tours indicated a high performance of these heuristics. Among the reviewed studies,

the latest MD and VNS algorithms in [WGW15] represent the state-of-the-art for solving

the minmax multidepot mTSP (i.e., the minmax multidepot vehicle routing problem with

unbounded capacity).

One notices that until now, the minmax mTSP and the minmax multidepot mTSP

have been studied separately, even if they are tightly related. We present below a uniĄed

approach to handle both problems.

1.3.3 Benchmarks

Three sets of benchmark instances are used in our experiments: Sets S and L for the

minmax mTSP and Set M for the minmax multidepot mTSP.

Set S: This set includes 41 small and medium-sized instances with 51-1173 cities and

3-30 tours. These instances were introduced in [BRC07; CR06; WCL17] and used in

[HHW21; Kar+21; PS15; WCL17; Zhe+22b].
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Set L: This set consists of 36 large-sized instances with 1379-5915 cities and 3-20 tours,

which were introduced in [HHW21].

Set M: This set includes 43 instances with 10-500 cities and 3-20 tours, which were

introduced in [WGW15] 2.

These benchmark instances and the solution certiĄcates for them obtained by the MA

algorithm are available online 3.

1.4 Traveling salesman problems with profits

1.4.1 Problem introduction

Let G = (V , E) be an undirected graph where V = ¶v0, v1, · · · , vn♢ is the vertex set

with v0 being the depot and N = ¶v1, · · · , vn♢ representing n vertices (customers) and E

is the edge set. Let pi be a non-negative proĄt associated with each vertex vi ∈ V (p0 =

0). Let C = (cij) be a non-negative cost (distance) matrix associated with E satisfying the

triangle inequality (cij + cjk > cik for vi, vj, vk ∈ V and vi ̸= vj ̸= vk). Traveling salesman

problems with proĄts seek to Ąnd an elementary circuit starting and ending at the depot,

and visiting some customers to optimize the collected proĄt and the travel costs. According

to the way the proĄt objective and the travel cost objective are considered, three different

TSPs with proĄts can be identiĄed [FDG05].

The Ąrst problem is the proĄtable tour problem (PTP), where the two objectives

are combined into a single objective function which seeks to minimize the travel costs

minus the collected proĄt. The second problem is the orienteering problem (OP) [GLV87;

VSV11], which aims to maximize the collected proĄt under the constraint that the travel

costs do not exceed a given value cmax. The OP is also known as the selective traveling

salesperson problem [GLS98b; LM90] in the literature. The third problem is the prize-

collecting TSP (PCTSP) [Bal89; Bie+93], which aims to minimize the travel costs under

the constraint that the collected proĄt must reach a given minimum value pmin. As it is

indicated in [FDG05], these problems are NP-hard and thus computationally challenging.

Also according to [FDG05], among these three problems, the OP and the PCTSP attracted

much more attention than the PTP. These TSPs with proĄts are useful models for a

broad range of applications [BM85; FDG05; FT88; GLV16; RB91; VSV11]. In this work,

2. The benchmark instances of the minmax multidepot mTSP is available at
https://drum.lib.umd.edu/handle/1903/18710

3. https://github.com/pengfeihe-angers/minmax-mTSP.git
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we follow this trend and focus on effective solving of the OP and the PCTSP.

1.4.2 Related work

We provide a literature review of the studies on TSPs with proĄts according to [FDG05]

and [VG19; VSV11].

For the OP, Table 1.1 summarizes the existing heuristic algorithms. A comprehensive

review on earlier heuristics up to 2010 is provided in [VSV11]. Our review focuses on

more recent studies posterior to that date. In 2010, Silberholz and Golden [SG10] stud-

ied the generalized orienteering problem and presented an iterated local search, where

routes were improved by 2-opt while unrouted vertices were inserted into the route when

the travel costs became less than cmax. In 2014, Campos et al. [Cam+14] introduced a

GRASP algorithm, which combines the general greedy randomized adaptive search pro-

cedure, path relinking and local search with three neighborhoods. Experimental results

indicated that the algorithm obtained high-quality solutions within a short running time.

In 2015, Marinakis et al. [Mar+15] used a GRASP procedure to construct a population

of solutions, which was evolved by applying the simple 1-point crossover and local search.

In 2016, Keshtkaran and Ziarati [KZ16] developed another GRASP, where new solutions

were generated by a segment removing strategy. Computational results showed the com-

petitiveness of the algorithm on two standard benchmark instances. In 2017, Ostrowski

et al. [Ost+17] implemented a speciĄc crossover, where common vertices involved in two

routes were considered to produce offspring solutions by changing fragments of the two

routes. In this algorithm, feasible and infeasible routes were allowed to be cross-overed,

while the Ątness function was redeĄned with respect to the travel costs.

In 2018, Kobeaga et al. [KML18] proposed an evolutionary algorithm for the orien-

teering problem (EA4OP), which features an interesting edge recombination operator to

produce offspring individuals. This recombination operator inherits two main characteris-

tics from parent solutions with respect to vertices and edges. All vertices that are common

to both parents are maintained, while vertices that belong to only one parent are included

with a probability and all vertices that did not belong any parent are excluded. Edges of

the parents were inherited as many as possible in order to pass on the maximum amount of

information and decrease length quality losses in offspring solutions. Experimental results

indicated that EA4OP was very effective and efficient. In 2019, Santini [San19] presented

an adaptive large neighborhood search algorithm (ALNS) including various destroy and

repair methods. Experiments on four sets of benchmark instances showed that the algo-
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rithm was competitive by producing a number of new best results.

In addition to these heuristic algorithms, we mention the recent revisited branch and

cut exact algorithm (RB&C) [KML20], which proved many optimal solutions and updated

numerous lower bounds for the benchmark instances.

This review reveals that for the OP, the two heuristic algorithms presented in [KML18;

San19] and the exact algorithm of [KML20] represent the current state-of-the-art for

solving the OP. They hold the best-known results on the four sets of benchmark instances

commonly tested in the literature.

Table 1.1 Ű Summary of the taxonomy of representative heuristic algorithms for the OP

Literature Year Framework
Tsiligirides [Tsi84] 1984 Stochastic algorithm
Golden et al. [GLV87] 1987 Centre of gravity heuristic
Ramesh and Brown [RB91] 1991 Tabu search
Wang et al. [Wan+95] 1995 Artificial neural network
Chao et al. [CGW96] 1996 Record-to-record
Gendreau et al. [GLS98a] 1998 Tabu search
Tasgetiren and Smith [TS00] 2000 Genetic algorithm
Liang et al. [LS06] 2006 Ant colony optimzation
Silberholz and Golden [SG10] 2010 Iterated local search
Campos et al. [Cam+14] 2014 GRASP with path relinking
Marinakis et al. [Mar+15] 2015 Memetic-GRASP
Keshtkaran and Ziarati [KZ16] 2016 GRASP
Ostrowski et al. [Ost+17] 2017 Evolution-inspired local improvement algorithm
Kobeaga et al. [KML18] 2018 Evolutionary algorithm
Santini [San19] 2019 Adaptive large neighborhood search

For the PCTSP, even though several studies have been reported under the name

"PCTSP", such as those of [CL08; CSR21; GDM00; PSC13], they deal with in reality a

different objective that aims to the minimize the sum of the travel costs and penalties

paid for each unrouted vertex. According to the terminology introduced [FDG05], these

studies concern thus the proĄtable tour problem PTP, rather than the PCTSP considered

in this work. Meanwhile, Bérubé et al. proposed a branch & cut exact algorithm (B&C)

[BGP09] and reported results on medium-sized instances with up to 532 vertices.

1.4.3 Benchmarks

For the OP, there are four sets of instances used in literature, and all of them were

introduced by Kobeaga et al. [KML18]. Each set includes 86 instances which are split into

two groups: medium-sized instances with up to 400 vertices and large-sized instances with

up to 7397 vertices. For the Ąrst three sets, the maximum travel cost cmax = ⌈α ·v(TSP )⌉,

where v(TSP ) is the length of the shortest Hamiltonian route visiting all vertices and
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α = 0.5. The proĄt of each vertex is generated by three methods given by Fischetti et al.

[FGT98]. In the last set, α takes different values while all vertices have the same proĄts as

the second set. Furthermore, Vansteenwegen and Gunawan [VG19] also collected a number

of OP benchmark instances available online 4, including many small-sized instances. Since

four sets of 344 instances in [KML18] are representative, we ignore these small-sized

instances mentioned in [VG19].

Since there are no uniĄed instances for the PCTSP, we follow the study [BGP09] and

use the same method in [FGT98] to generate three sets of 240 instances with up to 7397

vertices, where each set includes 80 instances and is further split into two groups: medium-

sized instances with up to 532 vertices and large-sized instances with up to 7397 vertices.

The proĄt of each vertex is the same as in [BGP09]. Furthermore, Vansteenwegen [Van09]

stated that the most difficult OP instances are those where the selected number of vertices

is a little more than half of the total number of vertices, we set pmin=⌊0.5 ·
∑

i∈N pi⌋.

All these 344 instances for the OP and 240 instances for the PCTSP are used in our

experiments and are available online 5.

1.5 Split delivery vehicle routing problem

1.5.1 Problem introduction

Formally, let G = (V , E) be an undirected graph where V = ¶0, 1, · · · , n♢ is the

vertex set with 0 being the depot and N = ¶1, · · · , n♢ representing n customers and E

is the edge set. Each customer i ∈ N is associated with an integer demand di ∈ Z
+.

Let C = (cij) be a non-negative cost (distance) matrix associated with E satisfying the

triangle inequality (cij + cjk > cik for all i, j, k ∈ V and i ̸= j ̸= k). Given a set of K

identical vehicles with capacity Q available at the depot, the SDVRP is to Ąnd K routes

(K can be limited or unlimited) such that 1) each route starts at the depot to serve a

number of customers and ends at the depot without exceeding the vehicle capacity Q, 2)

the demand di of customer i ∈ N can be split and served by more than one vehicle, and

3) the total traveling distance of the K routes is minimized. According to the number

K of the available vehicles (Ćeet size), the problem is called the SDVRP-LF (for limited

Ćeet size) if K is Ąxed or the SDVRP-UF (for unlimited Ćeet size) otherwise. For the

4. https://www.mech.kuleuven.be/en/cib/op
5. https://github.com/pengfeihe-angers/tsps-with-profits.git
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SDVRP-LF, K is Ąxed to Kmin = ⌈(
∑n

i=1 di/Q)⌉ to ensure the feasibility of the solution.

A mathematical formulation of both problems is shown as follows.

Given a undirected graph G = (V , E) with the vertex set V = ¶0, 1, · · · , n♢ where 0 is

the depot and N = ¶1, · · · , n♢ represents n customers, and the edge set E . Let di ∈ Z
+

be the demand of customer i ∈ N and C = (cij) a non-negative cost (distance) matrix

associated with E satisfying the triangle inequality (cij + cjk > cik for all i, j, k ∈ V and

i ̸= j ̸= k). Let Q be the capacity of K identical vehicles. The formulation of the SDVRP

is based on two decision variables. Binary variable xk
ij takes the value of 1 if vehicle k

traverses edge (i, j), and it takes the value of 0 otherwise. Variable yik is the quantity of

the demand of customer i delivered by the kth vehicle. The mathematical model for the

SDVRP-UF is described as follows.

(SDV RP ) Minimize =
K∑

k=1

n∑

i=0

n∑

j=0

cijx
k
ij (1.16)

subject to
K∑

k=1

n∑

i=0

xk
ij ≥ 1 j = 0, · · · , n (1.17)

n∑

i=0

xk
ip −

n∑

j=0

xk
pj = 0 p = 0, · · · , n; k = 1, · · · , K (1.18)

∑

i∈S

∑

j∈S

xk
ij ≤ ♣S♣ − 1 k = 1, · · · , K; S ⊆ N (1.19)

yik ≤ di

n∑

j=0

xk
ij k = 1, · · · , K; i = 1, · · · , n (1.20)

K∑

k=1

yik = di i = 1, · · · , n (1.21)

n∑

i=1

yik ≤ Q k = 1, · · · , K (1.22)

xk
ij ∈ ¶0, 1♢ i = 0, · · · , n; i = 0, · · · , n; k = 1, · · · , K (1.23)

yik ≥ 0 i = 1, · · · , n; k = 1, · · · , K (1.24)

Constraint (1.17) imposes that each vertex has to be visited at least once. Constraint

(1.18) is the Ćow conservation constraint while constraint 1.19 is used to eliminate sub-

tours. The Ąrst three constraints are classical constraints used in routing problems. Con-

straints (1.20)Ű(1.22) are related to the allocation of the demands of customers among
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vehicles. Constraint (1.20) indicates that customer i can be served by vehicle k only when

k visits it. Constraint (1.21) guarantees that the total demand of each customer must be

met. Constraint (1.22) imposes that the capacity for each vehicle cannot be exceeded.

Finally, since the SDVRP-LF limits the number of vehicles K to the minimum possible

Kmin = ⌈(
∑n

i=1 di/Q)⌉, this extra constraint (K = Kmin) needs to be added into the

model.

1.5.2 Related work

A comprehensive review of exact and heuristic solution approaches untill 2012 can be

found in [AS12]. In this section, we focus on a literature review on heuristic approaches,

while mentioning some representative studies on exact approaches developed since 2014.

Table 1.2 summarizes the methods discussed in this section.

[ABS14] presented two branch-and-cut (B&C) algorithms, where the Ąrst uses the for-

mulation of [BMM00] and the other adopts a commodity-Ćow formulation. The methods

solved 17 instances to optimality (one instance with 100 customers). [OKY18] created

a compact vehicle-indexed Ćow formulation and presented computational results includ-

ing optimal solutions for instances with 76 customers. [MS22] proposed three compact

formulations and developed a B&C algorithm, which solved 91 instances to proven opti-

mality (with up to 80 customers). For larger instances, heuristics/metaheuristics such as

neighborhood-based local search and population-based search are used to Ąnd suboptimal

solutions with a reasonable time.

The Ąrst local search algorithm for solving the SDVRP was presented by [DT89; DT90].

Two neighborhood operators, namely k-Split and RouteAddition, were combined into the

local search. The k-Split operator divides the demand of a customer and inserts the di-

vided demand into different routes with an enough residual capacity. On the contrary, the

RouteAddition operator tries to remove a split customer from all routes and create a new

route to serve the customer. These two operators were widely used in follow-up studies.

To better handle the problem and cope with the complexity of the SDVRP, other neigh-

borhood operators were presented. [BPR07] proposed two new operators where two or

three customers in two routes are swapped with the possibility of splitting their demands.

[DLV10] introduced a new relocation operator where three routes were manipulated to

explore neighboring solutions.

The tabu search metaheuristic was adapted to the SDVRP by [ASH06] for the Ąrst

time, where a neighboring solution was obtained by removing a customer from a set of
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Table 1.2 Ű Summary of the taxonomy of representative algorithms

Literature Framework Problem Solved
Exact algorithms

Archetti et al. [ABS14] Branch-and-cut Both
Ozbaygin et al. [OKY18] Vehicle indexed flow formulation Both
Munari and Savelsbergh [MS22] Branch-and-cut Both
Heuristic methods

Dror and Trudeau [DT89; DT90] Local search SDVRP-UF
Derigs et al. [DLV10] Local search SDVRP-UF
Archetti et al. [ASH06] Tabu search SDVRP-UF
Aleman and Hill [AH10] Tabu search SDVRP-UF
Berbotto et al. [BGN14] Tabu search SDVRP-LF
Zhang et al. [Zha+15] Tabu search SDVRP-UF
Chen et al. [Che+17] Priori split strategy SDVRP-UF
Aleman et al. [AZH10] Variable neighborhood descent SDVRP-LF
Han and Chu et al. [HC16] Variable neighborhood descent SDVRP-UF
Silva et al. [SSO15] Iterated local search Both
Mota et al. [MCC07] Scatter search algorithm SDVRP-LF
Campos et al. [CCM08] Scatter search algorithm SDVRP-UF
Shi et al. [Shi+18] Particle swarm optimization SDVRP-UF
Chen et al. [CGW07] Hybrid algorithm/matheuristic SDVRP-UF
Archetti et al. [ASS08] Hybrid algorithm/matheuristic SDVRP-UF
Jin et al. [JLE08] Hybrid algorithm/matheuristic SDVRP-UF
Boudia et al. [BPR07] Memetic algorithm SDVRP-UF
Wilck and Cavalier [WC12] Genetic algorithm SDVRP-LF

routes in which it was currently visited and inserting it either into a new route or into

an existing route with an enough residual capacity. This algorithm outperformed signiĄ-

cantly Dror and TrudeauŠs algorithms [DT89; DT90]. Then, [AH10] proposed a so-called

tabu search with vocabulary building approach (TSVBA). An initial set of solutions was

constructed Ąrstly and attractive solution attributes were summarized to explore new

solutions. Solutions in the set evolved along with the searching progress. The random

granular tabu search (RGTS) was proposed by [BGN14], where a heuristic pruning tech-

nique is used to Ąlter non-promising neighborhood solutions and speed up the neighbor-

hood search. Another tabu search algorithm, namely forest-based tabu search (FBTS),

was introduced by [Zha+15], where the forest structure is used to represent each solu-

tion. Several dedicated operators based on the forest structure were also designed, and

the experimental results showed that the FBTS algorithm was competitive with existing

algorithms.

[MCC07] proposed a scatter search heuristic to address the SDVRP-LF for the Ąrst

time. [CCM08] introduced another scatter search for the SDVRP-LF with two distinct

procedures for generating initial populations. [HC16] presented a multi-start solution ap-

proach for solving the SDVRP-UF. [AZH10] proposed an adaptive memory algorithm for

the SDVRP-LF, which uses a constructive procedure for initial solution generation and

a variable neighborhood descent for solution improvement. The constructive procedure
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builds an initial solution by greedily inserting customers with a mechanism called route

angle control. The VND procedure follows to seek improved solutions by exploring three

commonly used neighborhoods. [SSO15] presented a multi-start iterated local search (Spli-

tILS) for both cases of limited and unlimited Ćeet. SplitILS is composed of an efficient

perturbation procedure and a randomized variable neighborhood descent which included

numerous VRP neighborhood operators and SDVRP neighborhood operators. Extensive

experiments indicated that SplitILS dominated previous algorithms. [Che+17] introduced

a novel and efficient approach to solve the SDVRP-UF, where each customerŠs demand

was split into small pieces in advance and then the SDVRP was solved by applying lead-

ing VRP algorithms [GGW10]. [Shi+18] proposed the Ąrst particle swarm optimization

for the SDVRP-UF and reported some new upper bounds, although its performance is

generally worse than SplitILS [SSO15].

In addition to these local search approaches, two hybrid population-based approaches

were investigated. [BPR07] presented the memetic algorithm with population manage-

ment, which used the crossover operator from [Pri04] and a local search procedure includ-

ing two new swap moves. The algorithm performed competitively with the tabu search of

[ASH06] on a number of benchmark instances. [WC12] proposed another hybrid genetic

algorithm that reproduced offspring solutions using route-by-route methods and reported

competitive results with previous algorithms, although its results were signiĄcantly im-

proved by SplitILS [SSO15] later.

Our review shows that the algorithms in [AH10; AZH09; BGN14; BPR07; CCM08;

DLV10; SSO15; WC12; Zha+15] hold the best-known results for the SDVRP-LF and

SDVRP-UF. Thus, we use these approaches as our reference algorithms for the compar-

ative study.

1.5.3 Benchmark instances

Four sets of commonly tested instances are used in the experiments.

Ů Set I. It was proposed by [BMM00] and consists of 25 instances with 22Ű101 cus-

tomers. The set has been widely tested by almost all SDVRP algorithms. This

set considers two cost matrices (i.e., unrounded and rounded costs), leading to 50

distinct instances.

Ů Set II. This set was generated by [CCM08] following the procedure provided by

[ASH06]. It includes 49 test-instances with up to 199 customers. These instances

are divided into 7 groups such that the instances of a group have the same cost
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matrix and distinct demands. This set was also used to evaluate some algorithmsŠ

performances, such as SplitILS silva2015iterated, [AH10] and [AZH09].

Ů Set III. The set was presented by [ASS08] following the same approach of [ASH06].

The set is composed of 6 groups including 42 instances with 50Ű199 customers, and

the instances in each group have the same cost matrix and distinct demands.

Ů Set IV. This set was provided by [CGW07]. It includes 21 instances with 8Ű288

customers. These instances have the particularity that customers are concentrically

distributed around the depot.

All these 162 instances are used in our experiments to evaluate the performance of the

proposed SplitMA algorithm. The instances and the best solutions obtained by SplitMA

are available online at https://github.com/pengfeihe-angers/SplitMA.

1.6 An overview of hybrid genetic algorithms for rout-

ing problems

Potvin [Pot09] presented a review of evolutionary algorithms for vehicle routing prob-

lems in 2009. We provide a brief review for crossover operators applied on routing prob-

lems.

In the beginning, the path representation is naturally adopted to state each solution

when using genetic algorithms to solve the TSP. Then, the classical one-point crossover

proved inadequate, since offspring solutions are usually invalid with missing and dupli-

cated cities. Subsequently, a well-known crossover operator for the TSP was proposed by

Oliver et al. [OSH87], namely order crossover (OX). Indeed, many order-based operators

are presented to deal with sequencing problems, where the solutions differ only by the

ordering of their elements [Pot96]. For example, Tasgetiren and Smith [TS00] and Os-

trowski et al. [Ost+17] presented similar crossover operators for orienteering problems.

Indeed, such crossover operators are limited for solving the TSP since their performances

are not as good as the powerful TSP heuristic LKH [Hel00]. Nagata et al. [NK97; NK13]

proposed the most powerful genetic algorithm for solving the TSP, where the key part

is the edge assembly crossover (EAX). The algorithm assembles suitable edges from elite

solutions to produce promising offspring solutions, not arranging cities in the path. The

edge assembly crossover produces offspring solutions from edge perspective, which is dis-

tinct with other crossover operators. The crossover Ąrstly constructs a multigraph where

all edges from parent solutions are included. Then, all edges in the multigraph are parti-
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tioned into some AB-cycles, where edges are linked alternatively from father and mother

solution. Subsequently, these AB-cycles are grouped into several E-sets, where each E-set

may include one or more AB-cycles. During the fourth step, each intermediate solution

is constructed with a basic solution and an E-set. If an edge occurs in both the basic

solution and the E-set, it will be discarded. Remaining edges are combined to form an

intermediate solution. Finally, offspring solutions are produced by removing subtours. It

is worth mentioning that this genetic algorithm discards local search operators such as

2-opt and matches the state-of-the-art TSP algorithms, such as LKH [Hel00].

For the VRP, many interesting crossover operators were designed and developed. An

adaption of natural crossover is reported in Jung and Moon [JM02] for the VRP with time

windows. The operator works on a two dimensional graphical representation. A solution is

partitioned into two different classes by drawing one or more curves or geometric Ągures,

like rectangles and ellipses. Then, arcs in one class are kept and transferred to the offspring

solutions. After this stage, a repair algorithm is applied to restore feasibility of all routes.

The edge recombination crossover (ER) is originally designed for the TSP and extended

to the VRP [Kra+95; SFK97]. This operator is also applied to the OP [KML18] by

progressively extending a tour with adding edges from parent solutions. There are many

similar crossover operators such as matrix-based crossover operator [FM91] and extended

order-based crossover operator [TSZ06].

The most successfully hybrid genetic algorithm adopts an alternative paradigm, that is

route-Ąrst, cluster second. The path representation encodes a unique giant tour that cov-

ers all customers. Given such a representation, classical order-based crossover for the TSP

can be used. The giant tour then needs to be partitioned into individual feasible routes

[Bea83]. For a long time, the difficult issue is how to partition giant tours efficiently. In

2004, Prins [Pri04] presented a polynomial-time algorithm to partition the giant tour into

individual routes in an optimal way under corresponding constraints, such as capacity.

The algorithm, namely SPLIT, is further improved by Vidal et al. [Vid+12] to solve many

vehicle routing problems [Vid17; Vid22; Vid+13; Vid+14]. The hybrid genetic algorithmic

framework has been widely used to solve various routing problems, such as team orien-

teering problem [BDM10] and multi-trip vehicle routing problem [Cat+14]. Furthermore,

the EAX crossover has been extended to the capacitated VRP [NB09] and the VRP with

time windows [NBD10] with slight revision. These two papers have achieved remarkable

results compared with state-of-the-art methods.

Indeed, we notice that hybrid genetic algorithms with giant tour crossover operators
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are associated with an obvious shortcoming, that is they require an efficient SPLIT algo-

rithm. For example, for the SDVRP, the SPLIT algorithm is not easy to be implemented

since each customer may be visited by more than one vehicle. The similar problem also

exists on the minmax mTSP. On the other hand, the EAX crossover has also a limitation

since it requires that each vertex in parent solutions should have the same degree in the

associated graph. However, for the SDVRP and TSPs with proĄts, this condition can

not be satisĄed since each vertex may have different degrees in distinct solutions. In this

thesis, one of our objectives is to present a general and effective edge assembly crossover

operator for rich routing problems.

1.7 Algorithm assessment

1.7.1 Evaluation indicators

In this thesis, in addition to classical comparison, we use the performance proĄle

[DM02], a visual and popular benchmarking tool, to show a more intuitive performance

assessment. For assessment, we focus on a comparison of our algorithm with the state-of-

the-art algorithms. Given a set of algorithms (results) S = ¶s1, s2, · · · , sk♢ and a set of

instances Q, the performance ratio rs,q of algorithm s on instance q with respect to the

best approach for the minimization objective f is given by rs,q = fs,q

min¶fa,q:a∈S♢
. The overall

performance of approach s is determined by Qs(τ) = ♣q∈Q♣rs,q≤τ ♣
♣Q♣

, which is the probability

for algorithm s that its performance ratio rs,q is within a factor τ . Qs(τ) represents the

(cumulative) distribution function for the performance ratio. Qs(τ = 1) is the percentage

of instances on which algorithm s performs the best compared to all other algorithms.

1.7.2 Statistical methods

For the experimental studies in this thesis, we constantly apply the Wilcoxon signed-

rank test with a conĄdence level of 0.05 to access our algorithm and each reference state-

of-the-art algorithm. If the p-value is less than 0.05, the null hypothesis is rejected.

1.8 Chapter conclusion

In this chapter, we presented a brief overview of the well-known traveling salesman

problem and vehicle routing problem. Four well-known variants of the TSP and VRP are
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considered and related metaheuristic algorithms are summarized. The commonly used

benchmark instances are presented subsequently. Finally, hybrid genetic algorithms for

rich routing problems are also discussed, including various crossover operators.
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Chapter 2

GROUPING MEMETIC ALGORITHM FOR

COLORED TRAVELING SALESMEN

PROBLEM

In this chapter, we present the Ąrst grouping memetic algorithm for solving the CTSP.

The algorithm includes three main components: (i) a greedy randomized heuristic for pop-

ulation initialization; (ii) a dedicated local search procedure for local optima exploration;

(iii) a backbone-based crossover operator for solution recombination. Computational re-

sults on three sets of 65 popular benchmark instances demonstrate the competitiveness

of our algorithm. We especially report improved upper bounds for 38 instances (for more

than 58% cases). First computational results with the general CPLEX solver are pre-

sented, including 10 proven optimal solutions. Finally, we shed lights on the impacts of

the key components of the algorithm. The content of this chapter is based on an article

published in Information Sciences.
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2.1 Introduction

The CTSP is a useful model for a number of practical problems [He+20; He+18;

Li+14]. Given its theoretical and practical signiĄcance, it has received more and more at-

tention. As shown in Chapter 1.2.2, the review reveals that many metaheuristic algorithms

have been presented aiming to obtain the better solutions. Although these algorithms

have reported valuable computational results on various benchmark instances, they lack

robustness and stability in particular when they are applied to solve large scale instances.

In this chapter, we investigate for the Ąrst time the powerful memetic algorithm (MA)

framework for solving the CTSP and present a competitive grouping memetic algorithm

(GMA) dedicated to the problem. Indeed, effective MAs have been proposed to solve the

related mTSP [KAO15; KFT18; LHW19; WCL17] and several vehicle routing problems

[Cat+14; NB09; Pri04; Vid+12]. However, most of these MAs are based on the so-called

giant tours and split algorithms, which are not suitable for the CTSP due to the pres-

ence of exclusive cities. We consider the CTSP from the perspective of grouping problems

[Fal98] and introduce an effective grouping memetic algorithm. The proposed algorithm

integrates two complementary key components: an original local optima exploration pro-

cedure (to Ąnd high quality local optima, Section 2.2.3) and a dedicated backbone-based

crossover operator (to generate promising new offspring, Section 2.2.4). As demonstrated

by the computational results shown in Section 2.3, the proposed algorithm competes very

favorably with the state-of-the-art CTSP algorithms on three sets of benchmark instances.

The rest of this chapter is organized as follows. The proposed grouping memetic al-

gorithm is presented in Section 2.2. Computational results and comparisons with state-

of-the-art algorithms are presented in Section 2.3. In Section 2.4, the impacts of key

components of the algorithm are discussed. Section 2.5 presents conclusions.

2.2 Grouping memetic algorithm

Given a CTSP instance, the search space explored by the CTSP is a multi-route

problem whose candidate solutions consist of m tours where the k-th tour includes city

0, the exclusive cities of Ck and some shared cities of S.

In this section, we present the grouping memetic algorithm for solving the CTSP. For

a CTSP instance, GMA explores a search space Ω composed of all candidate feasible

solutions, where a candidate solution φ consists of m tours ¶r1, r2, . . . , rm♢ with rk (k =
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1, 2, . . . , m) being the k-th route visited by the k-th salesman. Given a solution φ ∈ Ω,

its objective value f(φ) is given by the total distance of its m routes. The goal of GMA

is thus to Ąnd a solution with the smallest objective value as possible.

In the literature, three common methods were used to represent solutions of the CTSP:

dual chromosome encoding [Li+14], m-tour encoding [PS18] and adjacency representation

encoding [HH21]. In this chapter, we adopt the adjacency representation encoding, which

has the advantage of encoding each route (group of cities) independently to facilitate

inter-routes operations. The interested reader is referred to [HH21] for more details and

an illustrative example.

2.2.1 General scheme

Algorithm 1 Pseudo-code of GMA algorithm
1: Input: Instance I, population size p, number of the nearest cities Nn, parameter α;
2: Output: The best solution φ∗ found;
3: P = ¶φ1, φ2, · · · , φp♢ ← PopInitilize (I, p);/*Build an initial population of p elite solutions, Section

2.2.2*/
4: φ∗ ← arg min ¶f(φi) : i = 1, 2, · · · , p♢;
5: while Stopping condition is not met do
6: randomly and uniformly select two parents φF and φM from P;
7: φO ← Backbone_Crossover(φF , φM );/*Generate an offspring solution by backbone-based

crossover, Section 2.2.4*/
8: φO ← LOE (φO, Nn, α);/*Improve the new solution by local optima exploration, Section 2.2.3*/
9: if f(φO) < f(φ∗) then

10: φ∗ ← φO;
11: end if
12: P ← PoolUpdating(P, φO);/*Update the population with the new solution, Section 2.2.5 */
13: end while
14: return φ∗;

The proposed GMA algorithm consists of four main components: population initializa-

tion, local optima exploration, backbone-based crossover and population updating. GMA

starts with an initial population P of p solutions generated by the population initial-

ization procedure (Section 2.2.2). It then repeats a number of generations during which

new candidate solutions are sampled. At each generation, the backbone-based crossover

combines two randomly and uniformly selected parent solutions to generate a promising

offspring solution (Section 2.2.4). The local optima exploration (LOE) is then applied

to improve the offspring solution (Section 2.2.3), followed by population update (Section

2.2.5). This evolution process is terminated when a predeĄned stopping condition (e.g.,
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an allowed number of generations, an allotted cutoff time limit) is reached. In this work,

we use a cutoff time limit. The pseudo-code of GMA is shown in Algorithm 1.

2.2.2 Population initialization

The GMA starts its search with an initial population P of p high-quality (elite) so-

lutions. To construct a population, we use a greedy randomized heuristic to generate

a feasible solution, which is further improved by LOE described in Section 2.2.3. The

improved solution is then inserted into P if the solution is different from any existing so-

lution in P ; otherwise, this solution is discarded. This process is repeated until p different

solutions are generated. Thanks to the greedy randomized heuristic and subsequent LOE

improvement step, we obtain a diverse and high-quality population.

Algorithm 2 Pseudo-code of the greedy randomized heuristic
1: Input: Instance I (exclusive city sets ¶C1, C2, · · · , Cm♢, shared city set S) and distance matrix;
2: Output: A feasible solution φ;
3: φ← ∅;/*First step: build m partial routes with exclusive cities*/
4: for k = 1 to m do
5: rk ← ¶0♢;/*Initiate the route with the city 0*/
6: while Ck ̸= ∅ do
7: Select randomly and uniformly a city i from set Ck;
8: Insert city i in route rk such that the route distance increase is minimal;
9: Remove city i from set Ck;

10: end while
11: φ← φ ∪ ¶rk};
12: end for

/*Second step: dispatch the shared cities S \ ¶0♢ among m partial routes*/
13: S ′ ← S \ ¶0♢;
14: while S ′ ̸= ∅ do
15: Select randomly and uniformly a city j from set S ′;
16: Insert city j into a route of φ such that the total distance increase is minimal;
17: Remove city j from set S ′;
18: end while
19: return φ;

A feasible solution is constructed by the greedy randomized heuristic according to

the following steps: 1) build a partial route for each of the m salesmen by using the

corresponding exclusive cities; 2) dispatch the shared cities among the m partial routes

to obtain a complete solution. The pseudo-code of the greedy randomized heuristic is

shown in Algorithm 2. During the Ąrst step (lines 4-12), to create the k-th partial route

rk, one Ąrst initiates the route with the city 0. Then, the exclusive cities in Ck are selected

randomly and uniformly, and inserted one by one into rk such that the insertion gives the
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smallest increase of the route distance. When all exclusive cities of every salesman are

inserted into the corresponding route, the Ąrst step stops, leading to a partial solution φ

composed of m partial routes. During the second step (lines 14-19), the shared cities j

from S \ ¶0♢ are processed randomly and uniformly, and inserted one by one into a route

of the partial solution φ such that its total distance increase is minimal. When all shared

cities are inserted, an initial solution is obtained. The Ąrst step has a time complexity

of O(♣Cm♣
2 × m), while the second step is bounded by O(♣S♣ × n). Therefore, the time

complexity of the greedy randomized heuristic is O(♣S♣ × n).

2.2.3 Local optima exploration

Local optimization plays a key role in a memetic algorithm and constitutes one of the

driving forces for Ąnding solutions of increasing quality. For an effective examination of

local optima, GMA employes a speciĄc strategy that combines an inter-route optimization

and an intra-route optimization procedure heuristic. SpeciĄcally, our local optima explo-

ration procedure (LOE) iterates two complementary search components: the constrained

cross-exchange operator (CCE) (Section 2.2.3) and a TSP heuristic called Edge Assem-

bly Crossover (EAX) [NK13] (Section 2.2.3). CCE improves solutions by exchanging two

substrings (sub-routes) from two routes. The routes modiĄed by CCE are indicated by

a binary vector RT of length m (RT [i] = 1 if route i is changed by CCE, RT [i] = 0

otherwise). Then each modiĄed route is further optimized by EAX. CCE and EAX are

repeated until the current solution φ can not be further improved. Algorithm 3 shows the

pseudo-code of the local optima exploration procedure integrating the CCE operator and

the EAX heuristic.

Constrained cross-exchange

The conventional cross-exchange was initially designed for vehicle routing problems

[AS19a; CHD10; Tai+97]. It is a generic local search operator which performs exchanges

of two consecutive substrings (sub-routes) r̂i and r̂j from two different routes ri and rj.

However, given the particularity of exclusive cities in the CTSP, the cross-exchange can

not be used directly in our context. For this reason, we propose a constrained cross-

exchange (CCE) in this work. Moreover, it is known that the cross-exchange has a high

time complexity [AS19a; Tai+97]. CCE uses a suitable pruning technique to reduce this

complexity.
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Algorithm 3 Pseudo-code of local optima exploration
1: Input: Solution φ, number of the nearest cities Nn, parameter α;
2: Output: Improved solution φB ;
3: φB ← φ;
4: Flag ← true;
5: RT [k]← false ∀k ∈ ¶1, . . . , m♢; /*RT is a binary vector, indicating the routes modified by CCE*/
6: while Flag do
7: < φ, F lag, RT >← CCE(φ, Nn, α);/*Solution improvement by CCE, Section 2.2.3 */
8: for k = 1, . . . , m do
9: if RT [k] = true then

10: φ← φ \ ¶rk♢;
11: rk ← EAX(rk);/*Intra-route improvement by EAX, section 2.2.3*/
12: φ← φ ∪ ¶rk♢;
13: end if
14: end for
15: if f(φ) < f(φB) then
16: φB ← φ;
17: end if
18: end while
19: return φB ;

The evaluation of a CCE move for the CTSP is summarized in two steps. The Ąrst step

is to determine the start of two substrings and the second step is to identify the suitable

length of both substrings (r̂k1 and r̂k2). For the start of substring r̂k1 , we Ąrst need to Ąnd

an edge which will break route rk1 . Suppose the edge is ¶I1, I2♢. Then, a suitable new

neighbor of city I1 needs to be determined. To limit the number of candidate moves, CCE

uses the following heuristic pruning technique that only considers the neighbors among

the Nn nearest cities. Suppose that city J3 is such a neighbor, and city J3 belongs to

route rk2 . If edge ¶I1, J3♢ is added as a new edge, edge ¶J2, J3♢ or edge ¶J3, J4♢ should be

removed. Once the starts of two substrings (I2 and J3) are determined, we need to identify

the length of each substring. It is worth noting that each substring should not include

any exclusive cities because these cities are only visited by the corresponding salesman.

Because the number of cities of each substring can vary from 0 to α (a parameter),

all feasible combinations of the two substrings with their given starts can be listed, and

the move gain δ for each combination can also be calculated. There are at most (α + 1)2

combinations of two substrings. When a substring is empty and the other is non-empty

(r̂k1 = ∅ or r̂k2 = ∅), these two cases are Or-opt [Or76; Tai+97]. However, both substrings

can not be empty simultaneously. Therefore, at most (α + 1)2 − 1 combinations of two

substrings could be listed for two given starts. Then, we need to identify the best move (i.e.,

with the largest gain δl) in these combinations. So far, a CCE move < r̂k1 , r̂k2 > is acquired

44



2.2. Grouping memetic algorithm

and the lengths of two substrings are determined. For all combinations of the two starts,

the global minimal move gain δb can be identiĄed. If δb < 0, Flag ← true, RT [k1] ← 1

and RT [k2] ← 1; then, solution φ is updated by swapping two substrings (r̂k1 and r̂k2);

otherwise, solution φ, Flag and matrix RT are returned, because the stopping condition

(δb ≥ 0) of CCE is met. As for the time complexity of CCE, there are O(♣S♣ × (α + 1))

ways to select the Ąrst substring in any given route, while O(Nn × (α + 1)) ways exist

to select the second substring in another route. Therefore, the time complexity of CCE is

O(♣S♣ ×Nn × ((α + 1)2 − 1)).

For example, Fig. 2.1 illustrates two cases of determining the starts of two substrings.

Then two complete CCE moves (r̂k1 = ¶I2♢ and r̂k2 = ¶J3, J4♢ or r̂k2 = ¶J3, J2♢) are

illustrated in Fig. 2.2, where cities ¶I2, J2, J3♢ are shared. If edge ¶J2, J3♢ is broken in the

Ąrst step, the substring r̂k2 = ¶J3, J4♢ is serial and in order. However, if edge ¶J3, J4♢ is

broken in the Ąrst step, the substring r̂k2 = ¶J3, J2♢ is serial and reverse.
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Figure 2.1 Ű Illustrative example of starts for a CCE move.
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Figure 2.2 Ű Illustrative example of complete CCE moves.

One may note the following differences between CCE and cross-exchange [AS19a].

First, the cross-exchange operator used in [AS19a] does not limit the length of the sub-

strings to be exchanged; however, in CCE, the length of the substrings must be less than

or equal to the value Ąxed by the parameter α. Second, in CCE, exclusive cities are con-

strained to stay in a route and can not be moved to other routes. Therefore, the two

substrings to be exchanged should not include any exclusive cities. Finally, unlike vehicle

routing for which cross-exchange was designed, there is no capacity limitation for each

salesman in the CTSP. So CCE does not consider this capacity constraint.
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Part II, Chapter 2 – Grouping memetic algorithm for CTSP

Edge assembly crossover for TSP

For the optimization of each individual route, the constraint of exclusive cities can

be ignored. Thus optimizing each route corresponds to solving a TSP. There are several

sophisticated and powerful heuristics designed for solving TSP. For example, the well-

known fast 2-opt heuristic or LK algorithm can be used to improve each route [AS19a;

Hel00; Soy15]. In this work, we adopt the EAX heuristic [NK13] 1, which is among the

best TSP heuristics. In our case, EAX helps to keep each route to being optimal or

near-optimal in the iterative process of LOE.

2.2.4 Backbone-based crossover

Crossover is another important ingredient of a memetic algorithm and should be de-

signed with care in order to favor transmissions of useful information from parents to

offspring [Hao12], while respecting the problem speciĄc structure. One popular way of

designing meaningful crossover for grouping problems such as the CTSP is to explore the

so-called backbone information, which typically corresponds to solution attributes shared

by elite solutions [GBF11; GH99; Sun+20; ZHG18]. In this work, we follow this idea and

design a dedicated backbone crossover for the CTSP.

Let φF and φM be two parent solutions in the population. Based on φF and φM , we

divide the set of shared cities except the depot (S \¶0♢) into two categories, i.e., common

elements and non-common elements.

Definition 1: Given two parent solutions φF = ¶rF
1 , rF

2 , . . . , rF
m♢ and φM = ¶rM

1 , rM
2 , . . . , rM

m ♢,

a city i ∈ S \ ¶0♢ with respect to φF and φM is a common element if there exists a

k ∈ ¶1, . . . , m♢ such that i appears in both rF
k and rM

k (i.e., i ∈ rF
k ∩ rM

k ). If i appears in

rF
k and rM

l (k ̸= l), city i is a non-common element.

Then, an offspring solution φO is constructed in two steps. In the Ąrst step, a donor

parent is Ąrst chosen randomly and uniformly between φF and φM . A partial offspring

solution φO is then created by inheriting all m routes of the donor parent without the

shared cities. In the second step, for each city i ∈ S \ ¶0♢, if it is a common element

appearing in rF
k and rm

k , then city i is greedily inserted into route rO
k of the partial offspring

solution. If city i is a non-common element (i ∈ rF
k , i ∈ rM

l and k ̸= l), we randomly

and uniformly select one route of the partial offspring solution and then greedily insert i

into the selected route such that the insertion leads to the smallest increase of the total

1. The code of EAX is available at: https://github.com/sugia/GA-for-TSP
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distance.
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Figure 2.3 Ű Illustrative example of the backbone-based crossover

Fig. 2.3 shows an example of the crossover operator for a CTSP instance with 11 cities

{0,1,. . . ,10} and m = 2 salesmen with their sets of exclusive cites C1 = ¶1, 2, 3♢, C2 =

¶4, 5, 6♢, and the set of shared cities S\¶0♢ = ¶7, 8, 9, 10♢ (marked in red color). Let φF =

¶rF
1 = ¶0, 1, 2, 3, 8, 9♢; rF

2 = ¶0, 4, 5, 6, 7, 10♢♢ and φM = ¶rM
1 = ¶0, 2, 1, 3, 9, 10♢; rM

2 =

¶0, 6, 4, 5, 7, 8♢♢ be the parent solutions. By Definition 1, cities 7 and 9 are common

elements, while 8 and 9 are non-common elements. First, suppose that φM is the donor

parent. Then offspring φO inherits the routes rM
1 and rM

1 by deleting the four shared cities,

leading to φO ← ¶r
O
1 = ¶0, 2, 1, 3♢; rO

2 = ¶0, 6, 4, 5♢♢. Then the shared cities ¶7, 8, 9, 10♢

are successively considered until they are all inserted. City 7 is a common element of the

second routes of the parent solutions, it is thus greedily inserted into the partial route rO
2 ,

supposing this is the cheapest insertion that increases the least the total distance. City

8 is a non-common element, it is greedily inserted into the partial route rO
1 or rO

2 with

equal probability. Suppose that route rO
1 is selected, and city 8 is inserted into route rO

1

at the cheapest place leading to the smallest increase of the route distance. Cites 9 and

10 are processed in the same way. When all shared cities ¶7, 8, 9, 10♢ are inserted into φO,

a feasible offspring solution is constructed successfully, which is then submitted to LOE

for further improvement.

The time complexity of the crossover can be estimated as follows. The Ąrst step needs

to scan all the cities of the donor parent to allow its m routes to be partially inherited. This

is achieved in O(n) time. In the second step, the shared cities in S \ ¶0♢ are inserted into

the partial offspring at the most suitable places, while the time complexity of evaluating

each move gain is O(1). The second step can be performed in O(♣S♣ × n) time. As the

result, the time complexity of the crossover is O(♣S♣ × n).
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Part II, Chapter 2 – Grouping memetic algorithm for CTSP

2.2.5 Pool updating strategy

For each new offspring solution φO improved by LOE in Section 2.2.3, the pool updat-

ing strategy uses φO to update the population P as follows. If the offspring φO is different

from any existing solutions and better than the worst solution in P , φO replaces the worst

solution; otherwise φO is discarded.

2.3 Experimental results and comparisons

This section presents a performance assessment of the GMA algorithm. We show

computational studies on well-known benchmark instances (see Section 1.2.3) from the

literature, and comparisons with existing state-of-the-art algorithms for the CTSP.

2.3.1 Experimental protocol

GMA was coded in C++ and complied with a g++ compiler with the -O3 option 2.

All experiments were conducted on a computer with an AMD-6134 processor (2.3GHz

and 6G RAM) running Linux.

To assess the performance of GMA, we show comparisons with the following algo-

rithms: artiĄcial bee colony (ABC) [PS18] (2018), ant colony optimization (ACO) [DDC18]

(2018) and iterated two phase local search (ITPLS) [HH21] (2021). Indeed, computational

results reported in the literature indicate that these three algorithms represent the state-

of-the-art of solving the above benchmark instances, while ABC [PS18] and ITPLS [HH21]

are clearly two dominating algorithms. So we use ABC (source code unavailable) and IT-

PLS (source code available) as the main reference algorithms and cite ACO (source code

unavailable) when it is appropriate.

To make the comparisons as fair as possible, we faithfully re-implemented the best

ABC algorithm of [PS18] 3. We veriĄed that our implementation (denoted as re-ABC) was

able to reproduce the results reported in [PS18] (and in fact, our ABC implementation

even obtained some better results than those reported in [PS18]).

In order to assess the gaps between the heuristic solutions (from GMA and the refer-

ence algorithms) and the optimal solutions, we also investigated the general mixed integer

programming solver CPLEX (version 12.7) based on the mathematical model from [Li+14]

2. The code of our algorithm will be available at http://www.info.univ-angers.fr/pub/hao/CTSP.html
3. Our implementation of ABC [PS18] is available from the page given in footnote 2.
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(see Section 1.2.1). Our experiment indicated that CPLEX with this model can only solve

optimally 10 smallest instances of Set I within 7200 seconds, but it fails on Sets II and

III due to memory overĆow (even on a computer with 20G RAM). The results of CPLEX

could be improved by investigating more sophisticated mathematical models.

2.3.2 Parameter tuning

GMA requires 3 parameters: population size p, number of nearest cities Nn and pa-

rameter α. In order to identify a set of suitable parameters, we used the popular ŠIraceŠ

package [Lóp+16] for automatic parameters tuning. The tuning was performed on 8 bench-

mark instances with 202 to 5397 cities. For the experiment, the tuning budget was set to

500 runs, each with a time limit of half of the cutoff time. The studied and Ąnal values

(suggested by Irace) of these parameters are shown in Table 2.1.

Table 2.1 Ű Parameters tuning results

Parameters Section Description Considered values Final value
p 2.2.1 population size ¶10,15,20,25,30♢ 20
Nn 2.2.3 number of nearest cities ¶30,40,50,60,70,80,90♢ 50
α 2.2.3 maximum length of substring ¶1,2,3,4,5,6,7♢ 7

2.3.3 Computational results and comparisons with existing al-

gorithms

Computational results of GMA and the reference algorithms on set I are shown in
Table 2.2. For CPLEX, we report for each instance the upper bound (UB), the lower
bound (LB) and the Gap given by (UB − LB)/LB × 100. So Gap = 0 implies that
an optimal solution is found. Columns 6 − 17 report respectively the results of re-ABC,
ITPLS and GMA in terms of the best objective value fbest (over 20 runs), the average
objective value favg , standard deviation σ and the average time in seconds to reach the
best objective value (Time(s)). For the fbest and favg indicators, equally best values are
shown in italic font.

Given that both the upper bounds and lower bounds are available for these instances,
we include the geometric mean of each algorithm for a global assessment (row Geomean).
For CPLEX, the geometric mean is calculated with the gaps between UB and LB by

(
h∏

i=1

UBi

LBi
)

1
h where UBi and LBi are the upper and lower bound of the ith instance, respec-

tively. Similarly, for the other algorithms (re-ABC, ITPLS, and GMA), we calculate their
geometric means for the best and average objective values by replacing UBi with the fbest

and favg values, respectively.
Finally, to assess the statistically signiĄcant difference between GMA and each main

compared algorithm, Table 2.5 shows the p-values from the Wilcoxon signed-rank test.
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Part II, Chapter 2 – Grouping memetic algorithm for CTSP

With a confidence level of 95%, a p-value smaller than 0.05 indicates a statistically sig-
nificant difference between the pair of compared results.

From Table 2.2 on the 20 small instances of Set I, the following observations can be
made. First, CPLEX is able to solve optimally the 10 smallest instances with 21 − 51
cities and 2 − 4 salesmen. For the remaining instances, the gap between UB and LB
remains reasonable and tends to increase with the size of the instance. For the three
heuristic algorithms, they perform equally well in terms of solution quality by reaching
their best solutions consistently including the 10 optimal values. The geometric means
indicates that the three heuristic algorithms can reach the same results in terms of both
the best and average results. Meanwhile, the heuristic algorithms have smaller geometric
means compared with CPLEX and thus perform better for this set of instances. In terms of
computational efficiency, GMA and re-ABC perform better than ITPLS since they require
significantly less computation times to reach the same results. It is worth mentioning that
none of the other algorithms in the literature, such as GA [Li+14] (2014), VNS [Men+17] 4

(2017), ACO [DDC18] (2018), and ABC [Don+19] (2019) can reach such a performance
(they report worse results for some instances or their best results cannot be reached
consistently).

Table 2.3 presents the results of the compared algorithms (re-ABC, ITPLS and GMA)
on the 14 medium instances of Set II with 202 − 666 cities and 10 − 40 salesmen. In
addition to the main reference algorithms re-ABC and ITPLS, we also include in this
comparison ACO [DDC18] for indicative purposes, which only reported results for six
instances. The ’BKS’ values show the best-known results compiled from the literature
[DDC18; HH21; Zhe+22a; Zho+22]. For each algorithm except ACO, we show the best
and average objective values (fbest and favg), the standard deviation (σ) and the average
time to reach the best objective value (Time(s)). Equally best values are indicated in
italic font, while strictly best values are highlighted in boldface. Moreover, the last column
Imp(%) provides the percentage improvement of GMA’s best result fbest over the best
objective value fbk of the reference algorithms, computed as (fbest − fbk)/fbk × 100. Thus
a negative Imp(%) value indicates that GMA improved the best results of the reference
algorithms. For Set II, we ignored the geometric means given that the lower bounds needed
for their calculations are unavailable. In fact, we tried to obtain LB for these instances by
solving, with CPLEX, the linear programming relaxation of the model presented in the
Appendix. But CPLEX terminates abnormally due to memory overflow.

Table 2.3 indicates that GMA finds better results for 7 out of the 14 instances, and
matches the best results of two reference algorithms for 3 other instances. The Wilcoxon
signed-rank test on the fbest and favg values in Table 2.5 also confirms that GMA signifi-
cantly outperforms the two main reference algorithms. We do not insist on computation
time because the main compared algorithms report solutions of different quality. Neverthe-
less, the three main compared algorithms (re-ABC, ITPLS and GMA) require comparable
computation times to reach their best solutions. Note that the results of ACO [DDC18]

4. VNS reports a wrong result 465.28 for eil51-2 because it is smaller than the proven optimal value

478.08 from CPLEX.
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Table 2.2 Ű Comparative results of GMA and reference algorithms on Set I. The equally best values are indicated in italic.

CPLEX re-ABC ITPLS GMA (this work)
Instance UB LB t(s) Gap(%) fbest favg σ Time(s) fbest favg σ Time(s) fbest favg σ Time(s)
eil21-2 144.92 144.92 1 0.00 144.92 144.92 0.00 1.00 144.92 144.92 0.0 18.32 144.92 144.92 0.0 1.00
eil21-3 157.48 157.48 1 0.00 157.48 157.48 0.00 1.00 157.48 157.48 0.0 13.15 157.48 157.48 0.0 1.00
eil31-2 259.36 259.36 2 0.00 259.36 259.36 0.00 1.00 259.36 259.36 0.0 12.70 259.36 259.36 0.0 1.00
eil31-3 295.31 295.31 20 0.00 295.31 295.31 0.00 1.00 295.31 295.31 0.0 12.85 295.31 295.31 0.0 1.00
eil31-4 315.97 315.97 61 0.00 315.97 315.97 0.00 1.00 315.97 315.97 0.0 16.90 315.97 315.97 0.0 1.00
eil41-2 346.24 346.24 7 0.00 346.24 346.24 0.00 1.00 346.24 346.24 0.0 14.45 346.24 346.24 0.0 1.00
eil41-3 367.84 367.84 46 0.00 367.84 367.84 0.00 1.00 367.84 367.84 0.0 22.05 367.84 367.84 0.0 1.00
eil41-4 392.14 392.14 120 0.00 392.14 392.14 0.00 1.00 392.14 392.14 0.0 11.55 392.14 392.14 0.0 1.00
eil51-2 478.08 478.08 126 0.00 478.08 478.08 0.00 1.05 478.08 478.08 0.0 21.55 478.08 478.08 0.0 1.00
eil51-3 469.50 469.50 773 0.00 469.50 469.50 0.00 1.00 469.50 469.50 0.0 20.40 469.50 469.50 0.0 1.00
eil51-4 489.99 485.88 7201 0.85 489.99 489.99 0.00 1.00 489.99 489.99 0.0 28.55 489.99 489.99 0.0 1.40
eil51-5 525.98 503.84 7212 4.39 525.98 525.98 0.00 1.10 525.98 525.98 0.0 14.35 525.98 525.98 0.0 1.00
eil76-3 596.18 583.41 7211 2.19 593.28 593.28 0.00 1.00 593.28 593.28 0.0 16.40 593.28 593.28 0.0 1.00
eil76-4 603.79 585.69 7202 3.09 603.79 603.79 0.00 1.50 603.79 603.79 0.0 17.75 603.79 603.79 0.0 1.60
eil76-5 656.56 620.25 7206 5.85 651.99 651.99 0.00 1.00 651.99 651.99 0.0 6.75 651.99 651.99 0.0 1.00
eil76-6 687.43 624.25 7202 10.12 672.73 672.73 0.00 2.10 672.73 672.73 0.0 31.40 672.73 672.73 0.0 1.00
eil101-4 746.93 697.83 7204 7.04 726.82 726.82 0.00 1.30 726.82 726.82 0.0 18.45 726.82 726.82 0.0 1.00
eil101-5 854.23 750.92 7203 13.76 779.15 779.15 0.00 1.05 779.15 779.15 0.0 10.80 779.15 779.15 0.0 1.00
eil101-6 783.08 706.47 7209 10.84 759.55 759.55 0.00 1.25 759.55 759.55 0.0 12.75 759.55 759.55 0.0 1.70
eil101-7 840.60 729.92 7201 15.16 798.85 798.85 0.00 1.20 798.85 798.85 0.0 12.56 798.85 798.85 0.0 1.80
Geomean 1.0335 - - - 1.0235 1.0235 - - 1.0235 1.0235 - - 1.0235 1.0235 - -
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Table 2.3 Ű Comparative results of GMA and reference algorithms on Set II. Equally best values are indicated in italic.
The strictly best values are indicated in boldface.

re-ABC [HH21] ITPLS[HH21] GMA (this work)
Instance BKS ACO

[DDC18]
fbest favg σ Time(s) fbest favg σ Time(s) fbest favg σ Time(s) Imp(%)

gr202-12        71924 71924 99871 100033.20 110.54 329.45 99871 100009.50 112.58 93.55 99871 100162.50 185.46 396.65 39.00
gr202-25        99606  99606 173547 173596.80 54.01 348.85 173418 173523.80 46.77 141.25 173477 173594.65 75.72 211.80 74.00
gr202-35        118495 118495 233749 233817.85 70.16 316.15 233749 233857.80 73.17 156.85 233871 234003.35 72.81 93.85 97.00
gr229-10 222167 - 222167 222354.85 164.08 244.60 222167 222347.65 103.50 226.70 222167 222173.75 30.19 201.90 0.00
gr229-15 264146 - 264146 264146.00 0.00 69.60 264146 264146.00 0.00 67.00 264146 264146.00 0.00 154.85 0.00
gr229-20 319669 - 319669 319669.00 0.00 303.05 319669 319671.90 12.97 128.20 319669 319880.15 547.77 83.20 0.00
gr229-30 406664 - 406664 407194.85 375.21 301.35 406664 406884.00 225.72 186.20 406701 407389.75 279.37 73.10 0.01
gr431-12 248447 330554 249031 249682.25 293.07 300.25 249421 250036.95 613.23 221.45 248447 248447.00 0.00 29.50 0.00
gr431-25 347335 464298 348056 348431.10 203.82 333.30 348181 349238.10 417.38 253.70 347335 347559.80 420.13 394.95 0.00
gr431-40 415169 483977 416189 416758.40 249.58 355.20 416552 417963.75 958.14 296.90 415314 415387.45 88.31 159.45 0.03
gr666-10 386157 - 390188 392234.00 971.38 159.45 389583 396841.55 2716.00 485.90 387562 389594.80 3417.34 473.55 0.36
gr666-15 445849 - 448604 449997.35 716.97 248.15 448257 449635.25 800.17 223.60 446475 447123.60 328.49 506.20 0.14
gr666-20 517842 - 522157 523583.15 937.90 177.55 521149 522650.90 1006.57 249.50 519121 519773.45 397.47 512.25 0.25
gr666-30 649479 - 652587 654001.50 633.57 224.80 651801 653318.10 927.19 255.05 650116 650974.90 417.87 535.70 0.10
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2.3. Experimental results and comparisons

are somewhat inconsistent. Among the six instances tested by ACO, even if it reports
three better results than the other algorithms (indicated with a star), its results for the
three other instances as well as for most of the 20 small instances of Set I are considerably
worse than algorithms, such as ABC [PS18] and ITPLS [HH21].

Table 2.4 presents the computational results of the compared algorithms for the 31
large instances of Set III (1002−7397 cities and 3−60 salesmen) with the same information
as in Table 2.3. These results clearly show the dominance of the proposed GMA algorithm
over two algorithms for these large instances, by systematically reporting better results in
terms of the best and the average objective values. Moreover, GMA requires the shortest
computation times to reach its solutions for this set of large instances, demonstrating its
remarkable search capacity and high computational efficiency. According to the p-values
(less than 0.05) from the Wilcoxon signed-rank test shown in Table 2.5, the difference
between GMA and each compared algorithm is statistically signiĄcant.

Tables 2.2-2.4 demonstrate the high competitiveness of the proposed GMA algorithm
compared with the state-of-the-art algorithms for solving the existing CTSP benchmark
instances. Its superiority becomes more evident when medium and large instances are
solved. GMA reports improved best-known results (new upper bounds) for 7 medium
instances of Set II and all 31 large instances of Set III, which are useful for future research
on the CTSP.
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Figure 2.4 Ű Performance proĄles of GMA and two reference algorithms on the 65 instances
of sets I, II, and III.

For a more intuitive illustration of the performance assessment of the algorithms, we
use the performance profile [DM02], which is a popular benchmarking tool for rigorous
comparison of different algorithms (see Section 1.7.1).

Fig. 2.4 shows the performance proĄles of GMA, ITPLS and re-ABC. We observe that
GMA dominates the reference algorithms in terms of the best and average values. Indeed,
GMA has a much higher Qx(1) value compared with the reference algorithms, indicating
that GMA can Ąnd better or equal results for all instances. Furthermore, GMA reaches
Qx(rf ) Ąrstly, indicating a high robustness of our algorithm.
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Table 2.4 Ű Comparative results of GMA and reference algorithms on Set III. The strictly best values are indicated in
boldface.

re-ABC [HH21] ITPLS [HH21] GMA (this work)
Instance BKS fbest favg σ Time(s) fbest favg σ Time(s) fbest favg σ Time(s) Imp(%)
pr1002-5 313848 316437 317425.40 479.59 1121.95 318587 320348.80 1058.72 2053.45 313885 314083.20 128.79 1868.40 0.01
pr1002-10 379627 382201 382844.90 423.48 843.40 383112 384908.55 936.35 1615.60 379846 379911.00 162.49 1361.65 0.06
pr1002-20 513415 516256 517481.55 452.81 1606.00 517917 519664.85 794.31 1683.05 514968 515784.55 498.49 1815.70 0.30
pr1002-30 660999 664648 665676.30 559.24 2213.60 664308 666702.20 929.80 1753.65 661540 662613.10 958.81 1792.00 0.08
pr1002-40 803365 806022 807838.65 786.79 1757.50 805967 808503.35 1444.57 1946.35 803624 803642.45 74.24 953.10 0.03
fnl2461-3 105211 114188 114509.80 145.77 3562.50 110007 110553.50 413.84 2773.75 105637 105754.90 43.78 1092.55 0.40
fnl2461-6 115340 122312 122612.30 188.81 3593.50 118513 119199.15 387.44 2273.70 116128 116287.05 77.36 1882.75 0.68
fnl2461-12 142211 145800 146374.85 220.68 3597.65 145023 145688.60 284.37 3128.30 143477 143866.10 214.32 3410.40 0.89
fnl2461-24 220633 222465 223335.30 456.26 2231.65 221494 221739.80 163.09 3039.95 221116 221317.35 121.79 3376.65 0.22
fnl2461-30 266848 268431 269140.30 535.88 2188.65 267355 267593.85 169.31 2842.00 267017 267249.45 116.69 3206.00 0.06
fnl3461-3 148602 162335 162909.20 177.47 3504.05 156753 157420.50 391.84 2900.75 148917 148979.55 33.13 1744.75 0.21
fnl3461-12 159388 170762 171243.80 238.70 3612.85 165455 166525.25 512.43 3034.60 159934 160040.70 63.09 1928.10 0.34
fnl3461-12 185195 192874 193582.75 336.98 3612.90 188223 188963.25 371.47 3293.00 185363 185621.60 143.67 3188.80 0.09
fnl3461-24 263073 266686 267130.75 187.32 3504.60 265078 265672.70 342.83 3045.55 263631 263980.40 177.39 3405.60 0.21
fnl3461-30 306639 308742 308963.10 95.74 2526.10 307562 308018.40 208.49 3014.70 307071 307252.30 113.62 3268.00 0.14
fnl3461-40 384329 385443 385727.50 120.94 2313.95 385122 385296.60 113.73 2827.00 384573 384722.95 77.96 3310.50 0.06
pla5397-20 38005790 38335000 38392330 26980.76 3504.15 38331500 38494950 73265.21 3483.15 38006100 38018450 25354.72 3059.70 0.00
pla5397-30 51132597 51299400 51340355 22848.87 3205.35 51339600 51451470 82834.36 3403.30 51138000 51143260 3180.10 3174.00 0.01
pla5397-40 64079810 64408200 64476755 30612.77 3480.90 64285900 64404060 61216.52 3437.45 64097900 64121760 18498.09 2854.40 0.03
pla5397-50 73993599 74008700 74019335 5148.66 2359.50 74051200 74145910 44659.82 3407.50 73993600 73993610 30.78 2709.10 0.00
pla5397-60 85266247 85303100 85324645 10454.99 2161.00 85323100 85424400 60048.45 3046.95 85266200 85266750 235.08 3116.55 0.00
pla6397-20 35862883 36672000 36748165 37220.64 3608.95 36404600 36575675 103990.103337.10 35951800 35997920 19571.59 3062.95 0.25
pla6397-30 47322900 47689800 47750055 24229.16 3457.40 47551800 47832460 98829.28 3175.25 47346400 47368155 12197.91 3141.80 0.05
pla6397-40 56611300 56948400 57022520 31690.54 3400.30 56860500 56945530 54061.04 3040.75 56638000 56653280 11345.84 3096.10 0.05
pla6397-50 67151700 67415000 67485965 27014.35 3077.95 67347700 67419380 40122.95 2983.45 67161500 67171190 7667.49 3018.50 0.01
pla6397-60 74774800 75077200 75118385 16341.50 3314.70 74983600 75063660 52339.27 3099.85 74791200 74803075 10330.12 3235.45 0.02
pla7397-20 40936853 42262900 42432435 78855.53 14431.45 41804200 42027405 138563.8613750.30 41260500 41422195 70887.70 12204.65 0.79
pla7397-30 52502160 53648400 53717345 45595.94 14017.35 53183700 53358655 113523.0813778.95 52636900 52780890 88332.83 12932.47 0.26
pla7397-40 64742100 65847100 65919250 42106.65 14072.90 65441600 65662845 142232.6813643.15 64937200 65029520 58826.59 12906.25 0.30
pla7397-50 76214793 77194500 77265730 38981.29 14064.05 76701700 76784335 74134.09 13748.85 76331100 76406770 47628.33 12635.55 0.15
pla7397-60 86088267 87041500 87103321 35045.55 13562.42 86628200 86749490 77747.32 13763.90 86153700 86224380 48429.67 13182.35 0.08
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Table 2.5 Ű Summary of comparative results between GMA and two reference algorithms

Algorithm pair Set/Instance Indicator Better Equal Worse p − value

GMA vs. ITPLS I/20 fbest 0 20 0 0.00E+00
favg 0 20 0 0.00E+00

II/14 fbest 7 4 3 2.44E-04
favg 8 1 5 4.80E-02

III/31 fbest 31 0 0 1.17E-06
favg 31 0 0 1.17E-06

GMA vs. re-ABC I/20 fbest 0 20 0 0.00E+00
favg 0 20 0 0.00E+00

II/14 fbest 8 4 2 1.37E-02
favg 9 1 4 4.79E-02

III/31 fbest 31 0 0 1.17E-06
favg 31 0 0 1.17E-06

Finally, Table 2.5 summarizes the results reported by the compared algorithms on the
three sets of 65 instances. Column 2 gives the set name and the number of instances in the
set. Column 3 shows the quality indicators (fbest and favg). Columns 4-6 count the number
of instances for which GMA achieves a better, equal or worse value compared with each
reference algorithm. The last column presents the p-values from the Wilcoxon signed-rank
test. Table 2.5 reveals large performance gaps between GMA and each reference algorithm
on Sets II and III. We conclude that GMA is very competitive for solving the CTSP and
this is particularly true for large instances.

2.4 Discussion and analysis

2.4.1 Benefit of the key components

In this section, we justify the design choices behind the proposed GMA algorithm.
For this, we investigate the impacts of its key components: Constrained Cross-exchange,
EAX as well as backbone-based crossover. For our experiments, we used the 45 instances
of Sets II and III and ignored the instances of Set I. Indeed, for the instances of Set I,
their best-known results can be consistently reached by the state-of-the-art algorithms
including ABC, ITPLS and GMA within a very short time. As such, these instances are
too easy to be used to compare algorithm variants.

Table 2.6 Ű Comparative results on Set II between GMA and its three variants. Strictly
best values are shown in boldface.

GMA GMA0 GMA1 GMA2

Instance fbest favg fbest favg fbest favg fbest favg

gr202-12 99871.00 100162.50 100292.00 100722.85 100196.00 100573.25 99871.00 100217.90
gr202-25 173477.00 173594.65 173782.00 173828.55 173394.00 173681.40 173511.00 173643.90
gr202-35 233871.00 234003.35 234126.00 234226.30 233907.00 234074.20 233749.00 233948.20
gr229-10 222167.00 222173.75 222167.00 222255.75 223266.00 224262.85 222167.00 222167.00
gr229-15 264146.00 264146.00 264224.00 265715.20 265537.00 266727.75 264183.00 264186.90
gr229-20 319669.00 319880.15 320976.00 322435.20 319669.00 320910.90 319669.00 320424.30
gr229-30 406701.00 407389.75 407692.00 408434.25 407962.00 408942.80 407226.00 407648.55
gr431-12 248447.00 248447.00 248447.00 248462.10 252253.00 254230.25 248447.00 248447.00
gr431-25 347335.00 347559.80 347545.00 348599.25 350446.00 351721.50 347459.00 347800.20
gr431-40 415314.00 415387.45 415280.00 415560.35 416983.00 419148.30 415280.00 415342.00
gr666-10 387562.00 389594.80 392586.00 395300.20 399415.00 404852.60 387321.00 388644.95
gr666-15 446475.00 447123.60 449908.00 452081.65 453684.00 459695.45 446839.00 447329.35
gr666-20 519121.00 519773.45 523090.00 525733.00 523178.00 526787.50 519071.00 520190.70
gr666-30 650116.00 650974.90 653524.00 656015.75 652608.00 655150.05 651330.00 652005.05
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Table 2.7 Ű Comparative results on Set III between GMA and its three variants. Strictly
best values are indicated in boldface.

GMA GMA0 GMA1 GMA2

Instance fbest favg fbest favg fbest favg fbest favg

pr1002-5 313885.00 314083.20 314065.00 314495.30 324126.00 327673.20 313867.00 313946.15
pr1002-10 379846.00 379911.00 380489.00 380656.65 388221.00 391193.95 379846.00 379920.85
pr1002-20 514968.00 515784.55 515927.00 516825.70 522573.00 524484.30 513814.00 515288.60
pr1002-30 661540.00 662613.10 663314.00 664050.80 666270.00 669233.55 661540.00 662284.40
pr1002-40 803624.00 803642.45 804971.00 805937.95 808207.00 810596.10 803624.00 804251.20
fnl2461-3 105637.00 105754.90 105793.00 105943.85 112896.00 113202.90 105637.00 105753.75
fnl2461-6 116128.00 116287.05 116531.00 116761.30 120621.00 121369.65 116173.00 116273.20
fnl2461-12 143477.00 143866.10 146060.00 146259.00 145953.00 146626.45 143739.00 144100.30
fnl2461-24 221116.00 221317.35 225527.00 226078.10 222280.00 222706.05 221167.00 221439.10
fnl2461-30 267017.00 267249.45 271199.00 271586.55 267799.00 268144.30 267296.00 267441.70
fnl3461-3 148917.00 148979.55 148957.00 149065.90 160427.00 161053.00 148917.00 148978.25
fnl3461-6 159934.00 160040.70 160181.00 160340.95 169106.00 169983.65 159906.00 160052.60
fnl3461-12 185363.00 185621.60 186394.00 186910.25 192212.00 192988.60 185652.00 185814.80
fnl3461-24 263631.00 263980.40 267515.00 267723.05 267007.00 267684.65 263763.00 264050.00
fnl3461-30 307071.00 307252.30 310275.00 310787.45 308936.00 309526.70 306991.00 307148.20
fnl3461-40 384573.00 384722.95 387335.00 387810.05 385794.00 385981.80 384611.00 384752.45
pla5397-20 38006100 38018450 38049400 38084660 38527700 38625835 38006000 38013320
pla5397-30 51138000 51143260 51297400 51353685 51294600 51385805 51141700 51148700
pla5397-40 64097900 64121760 64337200 64420905 64192200 64258245 64100100 64148815
pla5397-50 73993600 73993610 73993700 73993870 74048200 74119855 73993600 73993615
pla5397-60 85266200 85266750 85269600 85281395 85347400 85397905 85266900 85267150
pla6397-20 35951800 35997920 36298800 36344680 36502300 36650005 35945200 36020685
pla6397-30 47346400 47368155 47646200 47680965 47555300 47699290 47390500 47418730
pla6397-40 56638000 56653280 56881800 56921780 56828400 56884080 56661500 56688900
pla6397-50 67161500 67171190 67297700 67370130 67293800 67359825 67181100 67207485
pla6397-60 74791200 74803075 74941900 74988450 74935800 74986940 74814700 74845785
pla7397-20 41260500 41422195 42063000 42217895 41653000 41817975 41446600 41501520
pla7397-30 52636900 52780890 53655100 53801700 52953600 53082005 52810400 52893300
pla7397-40 64937200 65029520 66045400 66163565 65151400 65267450 64993500 65070450
pla7397-50 76331100 76406770 77166800 77274005 76467400 76569390 76344200 76422895
pla7397-60 86153700 86224380 87017600 87097055 86243600 86382840 86171600 86233840

Benefit of constrained cross-exchange

To highlight the beneĄt of the constrained cross-exchange (CCE, Section 2.2.3), we
compared GMA with a variant GMA0, where CCE is removed from LOE. In other words,
only EAX is employed in GMA0 in the local optima exploration component.

Computational results of GMA and GMA0 are shown in Tables 2.6 and 2.7 and sum-
marized in Table 2.8 and Fig. 2.5. The results indicate that GMA performs signiĄcantly
better than GMA0 in terms of fbest and favg. For fbest, GMA dominates GMA0 by get-
ting 42 better results out of the 45 tested instances and reporting only one worse result.
Furthermore, the statistically signiĄcant difference between GMA and GMA0 is veriĄed
by the Wilcoxon singed-rank test with a 95% level of conĄdence in Table 2.8. Therefore,
this experiment conĄrms the usefulness of CCE for the GMA algorithm.

Benefit of EAX

To assess the beneĄt of EAX in LOE, we created another variant GMA1 in which
EAX is replaced by 2-opt [Hel00] for individual route optimization. GMA1 shares the
other ingredients of GMA.

From the results in Tables 2.6 and 2.7, we observe that GMA signiĄcantly outperforms
GMA1 on all instances, except gr202-25. For gr202-25, the best result of GMA1 is slightly
better than GMA. Furthermore, the small p-value (less than 0.05) in Table 2.8 from the
Wilcoxon singed-rank test attests the signiĄcant difference between GMA and GMA1.
Moreover, the performance proĄles of Fig. 2.5 indicate that GMA surpasses GMA1 in
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terms of fbest and favg. Indeed, GMA arrives at Qx(rf ) Ąrstly, much earlier than GMA1.
These observations illustrate the beneĄt of EAX in GMA.

Benefit of backbone-based crossover
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Figure 2.5 Ű Performance proĄles of GMA and its three variants on the set of 45 selected
instances.

To study the effectiveness of the backbone-based crossover, we compared GMA with
a third variant GMA2. In GMA2, the backbone-based crossover is replaced by a crossover
proposed by Singh and Baghel [SB09], which was designed for the related mTSP problem.
This crossover selects one of the two parents uniformly at random and copies, from the
parent to the offspring, the most promising route (i.e., the route having the smallest ratio
of route length to the number of cities in that route). Then all the cities belonging to
the route are deleted from both parents by connecting the predecessor of each city to its
successor, and the length of the route is updated accordingly.

From the comparative results (fbest and favg) of GMA and GMA2 in Tables 2.6 and 2.7,
we observe that in terms of fbest, GMA dominates GMA2 by acquiring 25 better results,
10 equal results and 10 worse results. The Wilcoxon signed-rank test, shown in Table 2.8,
also conĄrms that GMA outperforms signiĄcantly GMA2 on the large instances (set III).
This experiment demonstrates that the backbone-based crossover operator contributes
positively to the performance of GMA, in particular for solving large instances.

Finally, Fig. 2.5 provides other useful information for the importance of each ingredient
of GMA. For example, GMA1 performs the worst because it has the worst (smallest)Qx(1)
value and reaches Qx(rf ) lastly. Therefore, we can summarize that EAX is the most
important component of GMA, followed by CCE, Ąnally the backbone-based crossover
operator.

2.4.2 Influences of selection, pool updating and mutation

In addition to the local optimization and crossover components, the performance of a
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Table 2.8 Ű Summary of comparative results between GMA and and its three variants

Algorithm pair Set/Instance Indicator Better Equal Worse p − value

GMA vs. GMA0 II/14 fbest 11 2 1 9.77E-04
favg 14 0 0 1.22E-04

III/31 fbest 31 0 0 1.17E-06
favg 31 0 0 1.17E-06

GMA vs. GMA1 II/14 fbest 12 1 1 7.32E-04
favg 14 0 0 1.22E-04

III/31 fbest 31 0 0 1.17E-06
favg 31 0 0 1.17E-06

GMA vs. GMA2 II/14 fbest 6 4 4 3.34E-01
favg 9 1 4 9.42E-02

III/31 fbest 19 6 6 1.60E-03
favg 23 0 8 9.94E-04

memetic algorithm such as GMA could be inĆuenced by other factors such as parent selec-
tion, pool updating and mutation. According to our experiments with the roulette-wheel
selection strategy and the rank-pool updating strategy [ZHG18], no signiĄcant changes
were observed regarding the performance of the GMA algorithm. In this subsection, we fo-
cus on studying the inĆuence of mutation. SpeciĄcally, when the best solution φ∗ is not im-
proved for maxNoImpor consecutive iterations (we empirically set maxNoImpor = 50),
the search is judged to be stagnating. Then a mutation operator is triggered to modify
one third of the solutions in the population (i.e., each solution is mutated with an equal
probability of 1/3). The mutation consists of displacing a certain number of randomly
and uniformly chosen shared cities. To be speciĄc, for a solution to be mutated, ♣S♣ × 0.3
shared cities are Ąrst removed, leading to a partial solution. Then these removed shared
cities are inserted into the partial solution one by one, using the second step of the greedy
randomized heuristic to minimize the distance increase. After that, each mutated solu-
tion is optimized by the local optima exploration procedure of Section 2.2.3. Comparative
results of GMA and the GMA variant extended with the mutation (called GMA3) are
shown in Tables 2.9 and 2.10.

Table 2.9 Ű Comparative results on Set II between GMA and GMA3 (with mutation).
Strictly best values are indicated in boldface.

GMA GMA3

Instance fbest favg σ fbest favg σ

gr202-12 99871.00 100162.50 185.46 99871.00 100136.95 201.03
gr202-25 173477.00 173594.65 75.72 173358.00 173569.15 100.05
gr202-35 233871.00 234003.35 72.81 233871.00 233973.20 91.05
gr229-10 222167.00 222173.75 30.19 222167.00 222167.00 0.00
gr229-15 264146.00 264146.00 0.00 264146.00 264147.85 8.27
gr229-20 319669.00 319880.15 547.77 319669.00 319776.90 332.11
gr229-30 406701.00 407389.75 279.37 406664.00 407333.55 320.53
gr431-12 248447.00 248447.00 0.00 248447.00 248447.00 0.00
gr431-25 347335.00 347559.80 420.13 347335.00 347565.85 441.71
gr431-40 415314.00 415387.45 88.31 415314.00 415364.05 73.31
gr666-10 387562.00 389594.80 3417.34 387459.00 389350.40 2939.49
gr666-15 446475.00 447123.60 328.49 446322.00 447109.50 345.89
gr666-20 519121.00 519773.45 397.47 519121.00 519664.20 360.33
gr666-30 650116.00 650974.90 417.87 650116.00 650894.35 369.63
Best/All 0/14 2/14 - 4/14 11/14 -
p-value - - - 1.25E-01 1.20E-03 -

The results indicate that in terms of fbest, GMA3 outperforms GMA by obtaining 13
better results, 28 equal results and 4 worse results. However, the Wilcoxon signed-rank test
shows that there is no statistically signiĄcant difference. On the contrary, in terms of favg,
GMA3 dominates GMA by acquiring 34 better results, 2 equal results and 9 worse results.
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Table 2.10 Ű Comparative results on Set III between GMA and GMA3 (with mutation).
Strictly best values are indicated in boldface.

GMA GMA3

Instance fbest favg σ fbest favg σ

pr1002-5 313885.00 314083.20 128.79 313885.00 314106.55 127.60
pr1002-10 379846.00 379911.00 162.49 379846.00 379902.00 140.98
pr1002-20 514968.00 515784.55 498.49 514244.00 515655.65 586.90
pr1002-30 661540.00 662613.10 958.81 661540.00 662422.80 710.68
pr1002-40 803624.00 803642.45 74.24 803624.00 803624.00 0.00
fnl2461-3 105637.00 105754.90 43.78 105637.00 105755.90 43.10
fnl2461-6 116128.00 116287.05 77.36 116128.00 116278.25 75.96
fnl2461-12 143477.00 143866.10 214.32 143477.00 143811.60 173.59
fnl2461-24 221116.00 221317.35 121.79 221105.00 221299.40 110.59
fnl2461-30 267017.00 267249.45 116.69 267017.00 267230.20 102.23
fnl3461-3 148917.00 148979.55 33.13 148917.00 148979.55 33.13
fnl3461-12 159934.00 160040.70 63.09 159934.00 160035.25 65.67
fnl3461-12 185363.00 185621.60 143.67 185363.00 185605.90 136.94
fnl3461-24 263631.00 263980.40 177.39 263672.00 263972.35 162.72
fnl3461-30 307071.00 307252.30 113.62 307026.00 307233.95 122.99
fnl3461-40 384573.00 384722.95 77.96 384573.00 384720.40 79.81
pla5397-20 38006100 38018450 25354.72 38006100 38018355 25426.04
pla5397-30 51138000 51143260 3180.10 51138000 51142525 2790.75
pla5397-40 64097900 64121760 18498.09 64097900 64120030 16710.07
pla5397-50 73993600 73993610 30.78 73993600 73993605 22.36
pla5397-60 85266200 85266750 235.08 85266300 85266710 202.35
pla6397-20 35951800 35997920 19571.59 35951800 36000990 20031.03
pla6397-30 47346400 47368155 12197.91 47346400 47370840 12919.44
pla6397-40 56638000 56653280 11345.84 56635600 56653405 12491.62
pla6397-50 67161500 67171190 7667.49 67158800 67170200 7372.00
pla6397-60 74791200 74803075 10330.12 74788500 74801030 9630.71
pla7397-20 41260500 41422195 70887.70 41311800 41425215 57057.91
pla7397-30 52636900 52780890 88332.83 52672800 52781955 71085.17
pla7397-40 64937200 65029520 58826.59 64926700 65019290 57437.00
pla7397-50 76331100 76406770 47628.33 76306200 76391380 47713.59
pla7397-60 86153700 86224380 48429.67 86121900 86210057.89 53419.75
Best/All 4/31 7/31 - 9/31 23/31 -
p-value - - - 3.31E-01 3.68E-02 -

The Wilcoxon signed-rank test conĄrms that GMA3 signiĄcantly outperforms GMA. This
experiment indicates that the mutation strategy can indeed improve the performance of
GMA. Especially, it signiĄcantly reinforces the stability of the algorithm.

2.4.3 Convergence analysis

Finally, we investigate the convergence behaviors of GMA (and the GMA3 variant
with mutation) and two key reference algorithms (re-ABC and ITPLS). For this study,
we acquired the running proĄles of these algorithms on two representative instances of
Set II (gr431-25, gr666-30). We ran each algorithm 20 times with the cutoff time of 600
seconds per run and recorded the best objective values during the process. The results of
this experiment are shown in Fig. 2.6.

One notices Ąrst that the curves of the population-based GMA and GMA3 do not
start at time 0. This is because that these algorithms spent a non-negligible portion of
the time on generating the initial population (around 60 and 100 seconds for gr431-25 and
gr666-30, respectively). From Fig. 2.6, one observes that re-ABC and ITPLS improve their
solution quality quickly at the beginning of the search, and slow down or even stagnate
as the time going. For GMA and GMA3, the population initialization step allowed them
to start the search with high-quality solutions. The best solution in the population is
continually updated when the time goes on, implying that GMA and GMA3 can better
beneĄt from the allowed time to improve their solutions.
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Figure 2.6 Ű Convergence charts (running proĄles) of re-ABC, ITPLS, GMA and GMA3 for
solving two representative instances (gr431-25 and gr666-30). The results were obtained
from 20 independent executions of each compared algorithms

2.5 Chapter conclusion

In this chapter, we presented the Ąrst grouping memetic algorithm for solving the
CTSP. The algorithm relies on a speciĄc backbone-based crossover to generate promising
offspring solutions by solution recombination and a powerful local optima exploration for
offspring improvement. Extensive computational results on three sets of 65 benchmark
instances in the literature indicate that our algorithm is very competitive compared with
existing leading algorithms. In particular, it reports 38 new upper bounds while matching
24 best-known results. We also investigated the interest of CPLEX for solving the CTSP
and reported 10 proven optimal solutions for the Ąrst time. Furthermore, we analyzed the
impacts of the main components of the algorithm on its performance.

In the next chapter, we will introduce a memetic algorithm for solving the minmax
multiple traveling salesmen problem.
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Chapter 3

MEMETIC SEARCH FOR THE MINMAX

MTSP WITH SINGLE AND MULTIPLE

DEPOTS

In this chapter, we propose a uniĄed memetic approach to solving both cases of the
minmax mTSP and the minmax multidepot mTSP. The proposed algorithm features
a generalized edge assembly crossover to generate offspring solutions, an efficient vari-
able neighborhood descent to ensure local optimization as well as an aggressive post-
optimization for additional solution improvement. Extensive experimental results on 77
minmax mTSP benchmark instances and 43 minmax multidepot mTSP instances com-
monly used in the literature indicate a high performance of the algorithm compared to the
leading algorithms. Additional experimental investigations are conducted to shed light on
the rationality of the key algorithmic ingredients. The content of this chapter is based on
an article submitted to European Journal of Operational Research.
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3.1 Introduction

Due to the practical relevance and computational challenge of these mTSP problems, a
number of solution methods have been developed. According to the review of Section 1.3.2,
the existing methods are based on general frameworks such as evolutionary algorithms,
bio-inspired methods and local searches. These methods have contributed to continually
improve the state-of-the-art of solving these problems. Meanwhile, their performances vary
typically according to the difficulty and scale of the problem instances. Moreover, existing
methods have been developed for either the minmax mTSP or the minmax multidepot
mTSP. In this chapter, we present a uniĄed population-based memetic algorithm (MA)
able to effectively deal with both the minmax mTSP and the minmax multidepot mTSP.
The contributions of this work are summarized as follows.

1. The proposed MA algorithm features several complementary search components.
First, it integrates a generalized edge assembly crossover to generate offspring solu-
tions, which is inspired by the well-known EAX crossover for the TSP [NK97; NK13].
Second, MA uses an efficient variable neighborhood descent (with streamlining tech-
niques) to improve offspring solutions. Third, the algorithm adopts an aggressive
post-optimization procedure to further optimize some particularly promising off-
spring solutions.

2. The MA algorithm reports record-breaking best results (new upper bounds) for a
number of benchmark instances commonly used in the literature. These new results
are useful for future research on these problems and performance assessments of new
algorithms.

3. We provide the code of the proposed algorithm, which can be used by researchers
and practitioners to solve various problems that can be recast to the minmax mTSP
or the minmax multidepot mTSP.

Next section provides detailed description of the MA algorithm. Section 3.3 is dedi-
cated to computational results on benchmark instances and comparisons with the litera-
ture. Key components of the algorithm are investigated in Section 3.4. Section 3.5 draws
conclusions.

3.2 Problem solving methodology

Memetic search is a general hybrid search framework based on population-based ge-
netic search and neighborhood-based local optimization [NCM12]. The basic rationale
behind this approach is take advantage of these two complementary search strategies
[Hao12]. Indeed, population-based search offers more facilities for exploration while local
optimization provides convenient means for exploitation. A suitable combination of these
two types of methods would lead to a good balance between exploitation and exploration
of the search process.
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Population-based evolutionary algorithms have been successfully applied to the TSP
[NK97; NK13], capacitated vehicle routing problem (CVRP) [NB09; Vid22] and its vari-
ants [NBD10; Vid+13; Vid+14]. In this work, we present an original memetic algo-
rithm (MA) for solving both the minmax mTSP and the minmax multidepot mTSP.
The algorithm integrates a population initialization procedure, a generalized edge assem-
bly crossover (mEAX), a variable neighborhood descent (VND), a post-optimization and
a population management procedure. Among these search components, we identify the
mEAX crossover and the post-optimization as the most innovative while VND features a
streamlining techniques to accelerate its search.

The general scheme of the MA algorithm is illustrated in Algorithm 4. The algorithm
starts with a population of initial solutions (or individuals) generated by the population
initialization procedure (Line 3, Algorithm 4). After recording the best solution φ∗ found
so far (Line 4), the algorithm performs a number of generations to evolve the population
(Lines 5-16). For this, it applies the dedicated mEAX crossover (Line 7) to combine two
random parent solutions, yielding γ (a parameter) new offspring solutions. Then each
offspring solution is Ąrst improved by the VND procedure (Line 9) and then conditionally
further improved by the post-optimization (Lines 10-13). The post-optimization is applied
only to elite offspring solutions with a quality better than the best recorded solution φ∗.
Finally, each improved offspring solution is considered by the population management
procedure to update the population (Line 14). The algorithm stops and returns the best
solution found φ∗ when a predeĄned stopping condition is reached, which is either a
maximum cutoff time or a maximum number of iterations. In the later case, one iteration
corresponds to one call to the (expensive) VND procedure at Line 9 of Algorithm 4.

Algorithm 4 Pseudo code of the memetic algorithm
1: Input: Problem instance I with a minimization objective f , population size µ, number of offspring

γ;
2: Output: The best solution φ∗ found;
3: P = ¶φ1, φ2, · · · , φµ♢ ← PopulationInitial (I);/*Section 3.2.1*/
4: φ∗ ← arg min ¶f(φi) : i = 1, 2, · · · , µ♢;/*φ∗ records the best solution found*/
5: while Stopping condition is not met do
6: ¶φA, φB♢ ← ParentSelection(P);/*Random parent selection*/
7: ¶φ1

O, φ2

O, · · · , φ
γ
O♢ ← mEAX(φA, φB , γ);/*To generate γ offspring solutions, Section 3.2.2*/

8: for i = 1 to γ do
9: φi

O ← VND(φi
O);/*To improve each offspring solution, Section 3.2.3*/

10: if f(φi
O) < f(φ∗) then

11: φi
O ← PostOptimization(φi

O);/*To further improve each elite offspring solution, Section
3.2.4*/

12: φ∗ ← φi
O;

13: end if
14: P ← PoolUpdating(P, φi

O);/*Section 3.2.5*/
15: end for
16: end while
17: return φ∗;
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3.2.1 Generation of the initial population

The MA algorithm starts its search from a population P of µ initial solutions. The
construction process of each solution is composed of three steps. First, m tours are initial-
ized with the depot. For the minmax multidepot mTSP, each salesman is located at one
of the depots, and the tour is initialized by its corresponding depot. Second, a random
unassigned city is selected and inserted into the shortest tour at the position with the least
length increase of this tour. When all cities are assigned, a feasible solution is obtained.
Finally, the solution is improved by the VND procedure (Section 3.2.3) and then added
into the population. The initialization procedure stops when µ solutions are obtained.

3.2.2 The mEAX crossover based on edge assembly

The conventional edge assembly crossover operator (EAX) was Ąrst presented for
solving the TSP [NK97; NK13]. It was subsequently applied to the CVRP [NB09] and
the vehicle routing problem with time windows (VRPTW) [NBD10]. In this work, we
introduce mEAX, which generalizes the idea of EAX to the minmax mTSP and the
minmax multidepot mTSP. It is worth noting that these mTSPs are different from the
TSP, CVRP and VRPTW. As such, the proposed mEAX crossover must consider the
speciĄc features of the minmax mTSP problems.

Given a graph G = (V , E), a candidate solution φ for the minmax mTSP or minmax
multidepot mTSP corresponds to a partial graph Gφ = (V , Eφ), where Eφ is the set of
edges traversed by φ. Let φA and φB be two parent solutions. Let GA = (V , EA) and
GB = (V , EB) be the corresponding partial graphs. The proposed mEAX crossover consists
of the following six steps (see Algorithm 5 for the general procedure and Fig. 3.1 for an
illustrative example).

Algorithm 5 Procedures of mEAX for the minmax mTSP
1: Input: Parent φA and φB , parameter γ;
2: Output: γ offspring solutions;
3: Construct GAB = (V, (EA ∪ EB)\(EA ∩ EB));
4: Generate AB-cycles by decomposing GAB;
5: Construct E-sets from AB-cycles with the block strategy;
6: Generate intermediate solutions by removing edges in φA ∩ E-sets from φA and adding edges in

φB ∩ E-sets;
7: Split giant tours in intermediate solutions for the minmax multidepot mTSP;
8: Eliminating isolated subtours in intermediate solutions to generate feasible solutions;
9: Select γ best feasible solutions;

10: return γ offspring solutions;

1. Creation of a joint graph GAB. From the parent solutions φA and φB, the joint graph
GAB = (V , (EA ∪ EB)\(EA ∩ EB)) is constructed by the symmetric difference of EA

and EB.
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Figure 3.1 Ű Illustration of the mEAX crossover steps of the minmax mTSP

2. Generation of AB-cycles. Given the joint graph GAB, a number of AB-cycles are
generated where each new AB-cycle is constructed as follows. A random vertex
associated with its edges from GAB is selected to initialize an AB-cycle. Then the
edges of EA and EB are traced alternatively to extend the ongoing AB-cycle. When
the add of a new edge leads to a closed cycle and the number of edges is even,
the AB-cycle is formed successfully. All the edges belonging to the AB-cycle are
removed from GAB before building the next AB-cycle. This process continues until
GAB = ∅ and returns all AB-cycles obtained.

3. Generation of E-sets. From the set of AB-cycles, the block strategy is used to gener-
ate the so-called E-sets. If two AB-cycles share at least one vertex (e.g., AB-cycles
1 and 3 in Fig. 3.1), these two cycles are combined to generate the E-set. In the
example of Fig. 3.1, the four AB-cycles should be combined to form one single E-set
since the depot is shared. However, for illustrative purpose of steps 4 and 5 blow,
we suppose there are four E-sets as showed in Fig. 3.1.

4. Generation of intermediate solutions. For each E-set (say Ei), an intermediate solu-
tion φ′

i is created based on φA by removing from it the edges of EA shared with Ei

and adding the edges of EB shared with Ei, i.e., φ′
i = (EA \ (Ei ∩ EA)) ∪ (Ei ∩ EB).

This strategy ensures the preservation of all common edges of φA and φB in the in-
termediate solution. Furthermore, all edges in an intermediate solution exclusively
come from the parent solutions.

5. Elimination of giant tours. For the minmax multidepot mTSP, giant tours that visit
more than one depot, may occur in intermediate solutions (e.g., the tour in the
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Part II, Chapter 3 – Memetic search for minmax mTSP

intermediate solution in Fig. 3.2 includes two depots represented by squares). These
giant tours are split by the 2-opt* operator [PR95]. If a giant tour visits k depots, two
new Hamiltonian tours are Ąrst generated by the 2-opt* operator, where one of the
two new tours only visits one single depot while the other tour visits the remaining
k-1 depots. We repeat this split operations k-1 times until k new Hamiltonian tours
are generated. During the split process, the objective is to make the new tours have
similar length and avoid too longer tours. For the giant tour with two depots in
Fig. 3.2 (lower part of the intermediate solution), it includes two segments (each
segment refers to the set of cities between two depots). The 2-opt* operator works
as follows. Two edges (dash lines) from the two segments based on the α-nearness
technique (Section 3.2.3) are replaced to create two new single depot tours such that
the length of the new shorter tour is as close as possible half of the giant tour. We
thus obtain two feasible tours which have similar lengths.

6. Elimination of isolated subtours. Isolated subtours may appear in intermediate solu-
tions (e.g., the two triangle tours in intermediate solutions a′ and b′ in Fig. 3.1). We
apply the 2-opt* approach to accommodate the particular feature of our problem
as follows. For each isolated subtour, its adjacency tours are deĄned if a vertex u is
an α neighbor (Section 3.2.3) of vertex v visited by the subtour. Then, the merges
of the subtour into its adjacency tours are evaluated by 2-opt* and the best merge
leading to the shortest tour is performed. Once all isolated subtours are eliminated,
a feasible offspring solution composed of m distinct Hamiltonian tours is obtained
(see the last sub-Ągure in Fig. 3.1).

E set

Step 5

Step 1

B
A



Steps 2 and 3

2

4

Intermediate solutionOffspring solution

Step 4

Figure 3.2 Ű Illustration of the mEAX crossover steps of the minmax multidepot mTSP

One notes that mEAX differs from EAX by the last two steps because contrary to
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the TSP and the CVRP, giant tours may appear in the case of the minmax multidepot
mTSP.

The above mEAX process typically generates numerous offspring solutions, many of
them being of bad quality and thus uninteresting. Given that the subsequent VND local
optimization (Section 3.2.3) is time consuming, we Ąlter out non-promising offspring so-
lutions with a mediocre quality to retain only the γ (a parameter) best offspring solutions
for solution improvement.

The mEAX crossover for the minmax mTSP and minmax multidepot mTSP follows
the idea of the EAX operator initially designed for the TSP [NK97; NK13]. Meanwhile,
adaptations are necessary to take into account the particular features concerning the
minmax objective and the presence of possible multiple depots. The main adaptations
concern the processing of giant tours and isolated subtours in intermediate solutions
(steps (5) and (6)).

Our way of handling isolated subtours is similar to the technique presented in [NB09]
where EAX is adapted to the CVRP. In [NB09], isolated subtours are eliminated by
testing all possible combinations with the 2-opt* heuristic [PR95] and performing the best
combination which minimizes the total traveling distance. In mEAX, since the objective
is to minimize the longest tour instead of total traveling distance, the 2-opt* heuristic is
applied with this speciĄc minimization objective. Furthermore, for the minmax multidepot
mTSP, giant tours which include two or more depots may occur in intermediate solutions
due to the presence of multiple depots. This feature cannot be resolved by the conventional
EAX operator. In mEAX, the 2-opt* based spitting strategy is introduced to split each
giant tour into feasible tours while keeping the longest tour as short as possible. In sum,
the mEAX crossover renders the idea of the EAX operator applicable to routing problems
with the minmax objective.

Since a minmax mTSP solution contains n + m − 1 edges, the space complexity of
mEAX is bounded by O(n + m). During the Ąrst four steps, 2 × (n + m − 1) edges are
involved, and the time complexity is bounded by O(n + m). In step 5, suppose that there
are g giant tours and the cycle with the largest number of edges includes ♣Eg♣ edges, the
time complexity is bounded by O(♣Eg♣×α). Furthermore, suppose that there are h isolated
tours and the longest tour includes ♣Eh♣ edges, the time complexity of step 6 is bounded
by O(♣Eh♣ × α).

3.2.3 Variable neighborhood descent

Variable neighborhood descent (VND) [MH97] is a general local search approach which
has been applied successfully to a number of routing and TSP-like problems [ISW09;
Soy15; Tod+17; WCL17]. VND explores local optima with several ordered neighborhoods
Nθ (θ = 1, 2, · · · , θmax). VND starts its descent search from the Ąrst neighborhood and
switches to the next neighborhood once a local optimum is reached. When neighborhood
Nθ (θ > 1) is examined, VND switches to the Ąrst neighborhood N1 immediately if a
better solution is found; otherwise when neighborhood Nθ (θ > 1) is exhausted, VND

67



Part II, Chapter 3 – Memetic search for minmax mTSP

moves to the next neighborhood Nθ+1. Once the last neighborhood Nθmax
is exhausted

and no better solution can be found, VND stops and returns the last local optimum. In
this work, we use VND to exploit six neighborhoods, where two neighborhoods (2-opt*
and κ-opt) are employed to solve the minmax mTSP and the minmax multidepot mTSP
for the Ąrst time. To speed up neighborhood examination, two new data structures are
introduced to accelerate the search process of VND.

Neighborhoods

The six neighborhoods adopted in this work include Ąve inter-tour neighborhoods
and one intra-tour neighborhood. Let r(π) denote the tour containing vertex π in the
incumbent solution. Let vertex δ be a neighbor of vertex π, and vertices x and y the
successor of π in r(π) and δ in r(δ), and (πa, πb) a substring from πa to πb. To avoid
the examination of non-promising candidate solutions, we use the α-nearness technique
[HH22; Hel00] and consider, for a vertex π, only α neighbor vertices. The six neighborhoods
are given by the following move operators M1-M6.

M1: If r(π) ̸= r(δ) and r(π) is the longest tour rl, then remove π and place it after δ.
M2: If r(π) ̸= r(δ) and one of them is the longest tour rl, then, swap π and δ.
M3: If r(π) ̸= r(δ) and one of them is the longest tour rl, then replace (π, x) and (δ, y)

by (π, y) and (δ, x).
M4: If r(π) ̸= r(δ) and one of them is the longest tour rl, then swap two sequencing

substrings (πa, πb) and (δa, δb).
M5: If r(π) ̸= r(δ) and one of them is the longest tour rl, then swap a sequencing

substring (πa, πb) and a reversing substring (δb, δa).
M6: This is an intra-tour optimization operator to improve a standard TSP tour. Each

tour is reĄned by the κ-opt heuristic [LK73], which was previously used in several best
heuristics for related routing problems [AGS19; AS19a; LBW21]. In this work, the upper
limit of κ is set to four.

M1 corresponds to insertion or relocation, while M2 is called swap. M3 is the 2-
opt* inter-tour move [PR95]. M4 and M5 correspond to the cross-exchange operator,
where two substrings from two tours are exchanged [HH22; Tai+97]. The cross-exchange
operator generalizes M1 and M2, and has been successfully used to solve the minmax
mTSP [HH22]. In this work, we limit the maximum length of each substring in M4 and
M5 to β (a parameter).

It is worth mentioning that M6 is used for the Ąrst time in this work and M3 was
independently used in [Zhe+22b], while the other moves were previously applied to the
minmax mTSP (e.g., [HH22; Kar+21; Soy15; WGW15; WCL17]). For the minmax multi-
depot mTSP, it is to be noted that M3 cannot be used because each salesman must start
and end at the same depot. Therefore, when solving the minmax multidepot mTSP, M3
is disabled from the VND procedure. Furthermore, this is the Ąrst time that M4-M6 are
adopted to solve the minmax multidepot mTSP.
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3.2. Problem solving methodology

Auxiliary data structures

In order to enhance the computational efficiency of our VND procedure, we introduce
two auxiliary arrays to store useful information regarding each city.

A1: A one-dimensional array of length n. It stores the variation of distance of the
current tour when a vertex is removed from the tour. For example, A1[π]=-100 means
that if vertex π is removed from tour ra, the length of tour ra is shortened by 100.

A2: A two-dimensional array of size n × n. It stores the variation of distance of the
tour when vertex π is inserted after vertex δ. For example, A2[π][δ]=100 indicates that if
π is placed after δ in tour ra, the length of tour ra is increased by 100.

In general, a neighboring solution can be obtained from the incumbent solution by
exchanging several edges. Therefore, most edges in the incumbent solution are common
with its neighboring solutions. This insight has been used to design static move descrip-
tors for several vehicle routing problems [AV21; Bee+18; ZK10]. For the minmax mTSP,
these two auxiliary arrays (A1 and A2) enable the VND procedure to avoid unnecessary
redundant calculations. As shown in Fig. 3.3, city δb is removed from tour ra and placed
after δa in tour rb. Therefore, we can easily compute the length of r′

a and r′
b as follows:

f(r′
a) = f(ra) + A1[δb] and f(r′

b) = f(rb) + A2[δb][δa]. After placing δb after δa in tour rb,
only Ąve values in A1 and 3×n values in A2 need to be updated, respectively. In general,
the time complexity of updating A1 and A2 is O(n).
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Figure 3.3 Ű Illustration of M1 move

In the VND procedure, these two auxiliary arrays are used to speed up the calculations
of M1 and M2. Furthermore, the ejection chain operator, introduced in Section 3.2.4, also
beneĄts from these data structures to accelerate the neighborhood examination.

3.2.4 Post-optimization

In addition to the above mEAX crossover and the VND procedure, the proposed MA
algorithm includes an original post-optimization phase to further improve the quality
of each global best offspring solution. The main purpose of the post-optimization is to
perform an intensiĄed search around each elite offspring solution to Ąnd possible still
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Part II, Chapter 3 – Memetic search for minmax mTSP

better solutions. This post-optimization phase is ensured jointly by an ejection chain
operator (EC) and the conventional EAX heuristic for the TSP (denoted by EAX-TSP
hereafter) [NK97; NK13].

As shown in Algorithm 6, the post-optimization applies Ąrst the EC operator to im-
prove the solution by displacing cities among different tours. A binary array T is employed
to record the tours that are modiĄed during the EC phase, such that T [i] = 1 (i = 1, ..., m)
if the ith tour is changed by EC. Then for each modiĄed tour, the EAX-TSP heuristic is
applied to shorten its distance. When neither EC nor EAX-TSP can improve the incum-
bent solution φ, the post-optimization stops and returns the best solution.

Algorithm 6 Pseudo code of the post-optimization procedure
1: Input: A solution φ;
2: Output: The best solution φ found;
3: fit← M;/*M is a big number*/
4: while fit > f(φ) do
5: fit← f(φ);
6: < φ, T >← EC(φ);/*Ejection chain*/
7: φ← EAX-TSP(φ, T );
8: end while
9: return φ;
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Figure 3.4 Ű Illustration of the ejection chain with two relocations

The ejection chain approach has been used to perform inter-tour optimization for
the CVRP [AV21; AS19a]. We adopt the same approach for the Ąrst time to handle the
minmax mTSP. Using Fig. 3.4 where the incumbent solution is composed of three tours,
we illustrate the EC process as follows. EC starts by greedily relocating a city δc from the
longest tour ra into another tour rb. This relocation operation is followed by the relocation
of another city σb from the extended tour rb into another tour rc, where ra and rc may be
same. This process continues until a maximum number of relocation moves is reached.

The EC approach is based on the following observation. Single relocation moves be-
tween two tours may increase the length of the longest tour. For example, relocating a
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city from the longest tour ra into rb shortens ra, but may increase tour rb such that rb

becomes the longest tour with a distance longer than ra. However, if we perform imme-
diately another move to relocate a city from tour rb into tour rc, then it is possible that
the longest tour of the solution is deĄnitively shorten.

Function (3.1) illustrates the calculation of the move gain of an EC move based on
the two auxiliary arrays introduced in Section 3.2.3, where b, c, s, t and q are indexes of
rb, rc, the second, third and fourth longest tours, respectively.

∆ = max¶f(r
′

a), f(r
′

b), f(r
′

c), f(rs)♢ − f(ra), if ¶b, c♢ ∩ ¶s, t♢ = ∅

∆ = max¶f(r
′

a), f(r
′

b), f(r
′

c), f(rt)♢ − f(ra), if ¶b, c♢ ∩ ¶s, t♢ = ¶s♢

∆ = max¶f(r
′

a), f(r
′

b), f(r
′

c), f(rq)♢ − f(ra), if ¶b, c♢ ∩ ¶s, t♢ = ¶s, t♢

f(r
′

a) = f(ra) + A1[δc]

f(r
′

b) = f(rb) + A2[δc][δb] + A1[σb]

f(r
′

c) = f(rc) + A2[σb][σa]

(3.1)

Based on the M1 move introduced in Section 3.2.3, if the number of relocation is 1, the
time complexity is O(n× α). When we continue the EC move by performing the second
relocation, the time complexity becomes O((n× α)2). To keep the time complexity at an
acceptable level, we limit the number of relocations to 2 in this work.

One notes two differences between the EC move applied to the CVRP [AV21; AS19a]
and the EC move applied in this study. First, the EC operator in our case does not need
to consider the capacity constraint. Second and more importantly, even if the move gain
of an EC move can be obtained in O(1) time in both cases, the practical computation in
our case is more complicated. Indeed, for the CVRP, the move gain is simply obtained by
adding up the values of A1 and A2, which themselves can be computed efficiently with
the static move descriptor technique [AV21]. In our case, the static move descriptor is no
more available and furthermore as shown in Eq. (3.1), the EC move gain evaluation needs
to consider the second, third and fourth longest tours.

After the EC phase, the EAX-TSP heuristic 1 is triggered to optimize each individual
tour that has been modiĄed by the EC procedure. Each EAX-TSP optimization stops
when the difference between the Ątness of the best solution and the average Ątness of in-
dividuals in the population is less than 0.01. The reason to choose the EAX-TSP heuristic
is that it can effectively optimize each tour to being optimal or near-optimal in a very
short time.

3.2.5 Population updating

The population updating mechanism is known to be a key component of success-
ful memetic algorithms [Hao12]. The proposed algorithm adopts the variable population
scheme presented in [Vid22; Vid+14].

The population P contains between µ and µ+λ individuals, where parameter µ is the
minimum size and parameter λ is the generation size. Unlike [Vid22], clone solutions are

1. The code of EAX-TSP is available at: https://github.com/sugia/GA-for-TSP
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not permitted to join the population. In each generation of MA, offspring solutions φi
O are

progressively added to the population (Line 14, Algorithm 4). Once the population reaches
µ + λ individuals, the survivors selection is used to eliminate λ individuals based on their
contributions to the diversity of the population. The biased Ątness of each individual is
calculated with respect to its Ątness and diversity rank in the population.

Furthermore, if the global best solution is not improved during η consecutive iterations,
the algorithm is considered to be stagnating in deep local optima. In this case, diversity
is introduced into the population as follows. The survivors selection phase is triggered
to reduce the number of individuals in P to µ individuals. Then, µ/2 individuals of the
population are randomly and uniformly selected and replaced by new solutions generated
by the initial population procedure of Section 3.2.1

3.3 Computational results and comparisons

This section is dedicated to an extensive evaluation of our MA algorithm and com-
parisons with state-of-the-art algorithms. Three sets of benchmark instances are used in
our experiments (see Section 1.3.3): Sets I and II for the minmax mTSP and Set III for
the minmax multidepot mTSP.

3.3.1 Experimental protocol and reference algorithms

Parameter setting. The MA algorithm has six parameters: population size µ, gener-
ation size λ, number of the best offspring solutions γ, neighborhood reduction parameter
α, substring size β, maximum consecutive iterations (η) without an improvement. To
calibrate these parameters, we employed the automatic parameters tuning package Irace
[Lóp+16]. The tuning was performed on 8 instances with 150-1655 cities for the minmax
mTSP and 10 instances with 100-500 cities for the minmax multidepot mTSP. The tun-
ning budget was set to be 2000 runs. Table 3.1 shows, for each parameter, the interval of
values tested by Irace, and the best value returned by the method. For the experiments
presented hereafter, we used consistently these parameter values, which can be considered
to be the default setting of the MA algorithm.

Table 3.1 Ű Parameters tuning results

Parameters Section Description Considered values
Final values

mTSP multidepot mTSP
µ 3.2.1 population size ¶10,15,20,25,30♢ 30 30
λ 3.2.5 generation size in P ¶0,5,15,20,25,30♢ 20 15
γ 3.2.2 number of the best offspring ¶1,2,3,4,5,6,7♢ 1 5
α 3.2.3 neighborhood reduction ¶10,15,20,25,30♢ 15 10
β 3.2.3 substring size ¶1,2,3,4,5,6,7♢ 4 7
η 3.2.5 maximum iterations without

improvement
¶2000,4000,6000,8000,10000,12000♢ 4000 2000

Reference algorithms. For the minmax mTSP, Ąve algorithms (IWO [PS15], MASVND
[WCL17], ES [Kar+21], HSNR [HHW21] and ITSHA [Zhe+22b]) represent the state-of-
the-art for solving the problem. In [HHW21], the authors thoroughly assessed HSNR, IWO
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and MASVND on the same computing platform as used in this work. The executable code
of ES [Kar+21] and the source code of ITSHA [Zhe+22b] were kindly provided by their
authors. For the minmax multidepot mTSP, the MD and VNS algorithms from [WGW15]
are the leading algorithms in the literature (their codes are unavailable). Thus, the re-
sults of these algorithms (obtained on a computer with an Intel Pentium CPU of a 2.2GHz
processor) are used as reference values to evaluate the performance of the MA algorithm.
According to [WGW15], both MD and VNS terminate after Ąve consecutive iterations
without an improvement.

Experimental setting and stopping condition. The MA algorithm was written
in C++ and compiled using the g++ complier with the -O3 option 2. All experiments
were conducted, like [HH22], on a computer with a Xeon E5-2670 processor of 2.5GHz
CPU and 8GB RAM running Linux.

To make the comparison as fair as possible, for the minmax mTSP, we ran 20 times our
MA algorithm and the executable code of the reference algorithm ES on our machine to
solve each instance under the cutoff limit of (n/100)×4 minutes per run (this is the same
stopping condition used in [HH22] to assess IWO, MASVND and HSNR). For the other
reference algorithms (IWO, MASVND, HSNR), we cite the results reported in [HH22],
which were obtained on the same computer used in this work. For the minmax multidepot
mTSP, MA terminates when it reaches a maximum of 30,000 iterations.

3.3.2 Computational results and comparison

To compare MA and the reference algorithms, we report a summary of the results
in Table 3.2 and the detailed results in the Appendix. The ŠBKSŠ values show the best-
known results compiled from the literature. To check the statistically signiĄcant difference
between MA and each reference algorithm, the Wilcoxon signed-rank test is applied. With
a conĄdence level of 0.05, a p-value lower than 0.05 indicates a signiĄcant difference.

Results on the minmax mTSP

The comparative results on the 77 instances of Sets S and L for the minmax mTSP are
shown in Tables 6.1 and 6.2 with the summary information in Table 3.2, where re-IWO
and re-MASVND are the re-implemented IWO [PS15] and MASVND [WCL17] algorithms
in [HH22]. According to these tables, the MA algorithm outperforms the Ąve reference
algorithms by achieving the best result for the vast majority of the instances. MA improves
the best-known solutions of 44 instances, and matches the best-known solutions of 27 other
instances. Furthermore, in terms of the average result, MA also outperforms the reference
algorithms. SpeciĄcally, for n ≤ 100, MA and the reference algorithms perform similarly
in terms of fbest. For n ≥ 150, MA outperforms the other algorithms (improvement gap
up to 8.72%). As the number of cities increases, the difference becomes more signiĄcant,
especially for the instances with few tours (e.g., m = 3, 5). The small p-values from the

2. https://github.com/pengfeihe-angers/minmax-mTSP.git
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Table 3.2 Ű Summary of comparative results between MA and reference algorithms on
the three sets of 120 instances. Sets S and L for the minmax mTSP and Set M for the
minmax multidepot mTSP.

Instances Pair algorithms
fbest favg

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

Set S (41)

MA vs. BKS 16 23 2 1.37E-03 - - - -
MA vs. ITSHA [Zhe+22b] 19 21 1 2.93E-04 23 13 5 2.25E-04
MA vs. HSNR [HHW21] 18 22 1 8.37E-04 22 13 6 7.51E-04
MA vs. ES [Kar+21] 20 20 1 9.22E-05 28 9 4 7.61E-06
MA vs. re-MASVND 20 20 1 1.23E-04 27 13 1 6.53E-06
MA vs. re-IWO 24 17 0 1.82E-05 29 12 0 3.52E-06

Set L (36)

MA vs. BKS 28 3 5 2.50E-06 - - - -
MA vs. ITSHA [Zhe+22b] 32 3 1 5.91E-07 36 0 0 1.68E-07
MA vs. HSNR [HHW21] 28 3 5 2.50E-06 29 2 5 3.18E-06
MA vs. re-MASVND 33 3 0 5.39E-07 35 1 0 2.48E-07
MA vs. re-IWO 36 0 0 1.68E-07 36 0 0 1.68E-07

Set M (43)
MA vs BKS 39 1 3 3.15E-08 - - - -
MA vs. MD [WGW15] 40 1 2 2.28E-08 - - - -
MA vs. VNS [WGW15] 41 0 2 2.04E-08 - - - -

Wilcoxon signed-rank test conĄrm the statistically signiĄcant difference between MA and
the reference algorithms for the best and average values.

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

P
er

ce
n

ta
g

e 
o

f 
p

ro
b

le
m

 s
o

lv
ed

 (
f b

es
t)

Performance ratio

MA

ITSHA

HSNR

ES

re-MASVND

re-IWO

(a) Best

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

P
er

ce
n

ta
g

e 
o

f 
p

ro
b

le
m

 s
o

lv
ed

 (
f a

vg
)

Performance ratio

MA

ITSHA

HSNR

ES

re-MASVND

re-IWO

(b) Avg.

Figure 3.5 Ű The minmax mTSP: performance proĄles of MA and the Ąve reference
algorithms on the 77 instances of Sets S and L.

In Fig. 3.5, the average gap of MA and the Ąve reference algorithms are analyzed
through their performance proĄles. Intuitively, MA dominates the reference algorithms in
terms of both the best and average results. Indeed, MA has a much higher Qs(1), meaning
that it Ąnds better or equal results for nearly all instances. Furthermore, MA reaches 1
Ąrstly, which indicates MA has a higher robustness.

Results on the minmax multidepot mTSP

Tables 3.2 and 6.3 show the results of MA as well as the two reference algorithms (MD
[WGW15] and VNS [WGW15]) on the 43 instances of Set M. According to the results,
MA dominates the reference algorithms by providing 39 new best-known solutions. Only
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for three instances, MA obtains slightly worse results. The small p-values (≪ 0.05) also
conĄrm the statistically signiĄcant differences between MA and the compared algorithms.
The performance proĄles in Fig. 3.6 illustrate that MA has a much higherQs(1) andQs(τ)
reaches 1 Ąrst. Therefore, MA competes very favorably with the best existing algorithms
for solving the minmax multidepot mTSP.
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Figure 3.6 Ű The minmax multidepot mTSP: performance proĄles of the MA and two
reference algorithms on 43 instances of set M.

Given that MA, MD and VNS were run on different computers and reported results of
different qualities, it is not straightforward to make a fair comparison of their computation
time. One observes that for the 18 instances where the time information is available for
the compared algorithms, MA is able to reach the best-known results with a time of the
same order of magnitude compared to MD and VNS, and then continue to improve these
results during the rest of its execution.

According to the results of Sections 3.3.2 and 3.3.2, we conclude that the MA algorithm
is highly effective for solving the minmax mTSP and the minmax multidepot mTSP
compared to the best performing algorithms.

3.4 Additional experiments

The computational results and comparisons with the existing algorithms on three sets
of instances illustrated the high effectiveness and efficiency of the MA algorithm. In this
section, we assess the contributions of two key components: the mEAX crossover and the
post-optimization and two new neighborhood operators. Experiments are performed to
compare MA and its variants where the assessed components are disabled. Furthermore,
we investigate the long-term convergence behavior of the MA algorithm under a relaxed
timing condition. The experiments reported in this section are based on the minmax
mTSP.
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Figure 3.7 Ű Comparative results of MA with the variants MA1 (without mEAX) and
MA2 (without the post-optimization) on the 77 instances of Sets S and L

3.4.1 Benefits of the mEAX crossover and the post-optimization

procedure
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Figure 3.8 Ű Performance proĄles of MA and its variants MA1 and MA2 on the 77 instances
of Sets S and L.

To study the beneĄts of the mEAX operator and the post-optimization procedure, we
created two MA variants MA1 and MA2 as follows. For MA1, we removed the mEAX
operator (i.e., lines 6 and 7) in Algorithm 4 and replaced γ by µ in line 8. To make sure
that MA1 consumes the given time budget effectively like MA, we repetitively re-start the
algorithm until the time limit is reached. In other words, MA1 uses the VND procedure
and the post-optimization to improve the solutions of the population within the given
time limit. For the variant MA2, we just removed in Algorithm 4 the post-optimization
(i.e., lines 9-12).

We ran MA1 and MA2 under the same condition of Section 3.3.1 to solve the 77
instances of Sets S and L. The results are summarized in Figs. 3.7 and 3.8.
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Fig. 3.7 shows the deviations of the two variants MA1 and MA2 compared to MA
(the reference line) in terms of the best results (Fig. 3.7(a)) and the average results (Fig.
3.7(b)). From these Ągures, we can make the following observations.

First, the results of MA1 indicate that removing mEAX deteriorates considerably the
performance of the MA algorithm on a large majority of the tested instances in terms
of the best and average results. The deterioration is more signiĄcant on large instances
than on small instances. These results conĄrm the critical role of the proposed mEAX
crossover.

Second, the results of MA2 indicate that the post-optimization doesnŠt really im-
pact the performance of the MA algorithm on the Ąrst 29 small instances (n ≤ 318).
However, disabling this component deteriorates much MAŠs performance on many larger
instances with n > 318. These results demonstrate the positive contributions of the post-
optimization for solving large (and hard) instances.

Third, though both mEAX and post-optimization contribute to the high performance
of the MA algorithm, the mEAX crossover plays a more general and more signiĄcant role
compared to the post-optimization component.

To further study the MA1 and MA2 variants, Fig. 3.8 shows the performance proĄles
of MA, MA1 and MA2 based on their best results (Fig. 3.8(a)) and their average results
(Fig. 3.8(b)). We observe that MA dominates its two variants in terms of the best and
average values. MA has a much higher Qs(1) compared with MA1 and MA2. Indeed, MA
reaches Qs(τ) = 1 Ąrstly, much earlier than the two variants, which indicates a higher
robustness of the MA algorithm. In summary, these experiments conĄrm that both the
mEAX crossover and the post-optimization contribute positively to the performance of
MA, while the post-optimization component is especially useful for solving large instances.

3.4.2 Benefits of the new neighborhood operators

Six neighborhood operators are applied in the local search to ameliorate offspring
solutions. We assess the contributions of the two new neighborhood operators: M3 in-
dependently used in [Zhe+22b] and M6 introduced in this work. For this purpose, two
MA variants, MA3 (without M3) and MA4 (without M6), are compared, along with the
standard MA associated with all neighborhood operators. To ensure a fair comparison, we
ran MA3 and MA4 under the same condition of Section 3.3.1 to conduct the experiments.
The results are summarized in Table 3.3 and illustrated in Fig. 3.9.

Table 3.3 Ű Summary of comparative results between MA and two variants.

Pair algorithms
fbest favg

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

MA vs. MA3 39 35 3 3.90E-08 47 20 10 4.42E-09
MA vs. MA4 47 26 4 9.15E-08 63 14 0 5.17E-12
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Figure 3.9 Ű Comparative results of MA with two variants MA3 (without operator M3)
and MA4 (without operator M6) on the 77 instances of Sets S and L.

According to Table 3.3, the two operators are critical to ensure the performance of
the MA algorithm (conĄrmed by the small p-value ≪ 0.05). Indeed, disabling them sig-
niĄcantly worsens the results in terms of both the best and average values. Moreover,
as shown in Fig. 3.9, disabling the M3 operator deteriorates MAŠs performance more
than disabling the M6 operator on many large instances with n > 2152. These results
demonstrate the positive contributions of the M3 operator for solving large instances. Fi-
nally, both neighborhood operators have marginal contributions when solving small and
medium-sized instances (n ≤ 532) in terms of the best results.

3.4.3 Convergence analysis of the MA algorithm

0

1

2

3

4

5

6

0 10000 20000 30000 40000 50000

G
a

p
 t

o
 t

h
e 

b
es

t 
re

su
lt

 (
%

)

Iterations

rat783-3

pcb1173-5

d1655-3

pr2392-5

Figure 3.10 Ű Running proĄles of the MA on four representative instances

In Section 3.3.2, the stopping condition for solving the minmax mTSP was set to the
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maximum time of (n/100) × 4 minutes in line with the literature. This section aims to
verify the convergence behavior of the MA algorithm in the long run by using a relaxed
stopping condition of 50,000 iterations. Four representative instances (rat783-3, pcb1173-
5, d1655-3, pr2392-5) with different sizes (n from 783 to 2392, m from 3 to 5) were
selected and each instance was solved 20 times while the best objective values are recorded
during the search. Fig. 3.10 shows the evolution of the gap between the current value and
the best value along the iterations. The four colored dots indicate the average objective
values obtained at the end of the standard cutoff time of (n/100)×4 minutes for the four
instances. For these instances, 50,000 iterations lead to 4061.67, 4058.71, 16858.6, 13983.4
seconds, respectively.

From Fig. 3.10, one observes that with a higher time budget, MA is able to further
improve its results reached at the end of the standard cutoff time (n/100)×4 minutes).
SpeciĄcally, the best result can be even improved by 1.19% while the average result can be
improved by 1.03%. This experiment demonstrates that the MA algorithm has a highly
desirable long-term search behavior and can effectively take advantage of a prolonged
cutoff time limit to discover still better solutions.

3.5 Chapter conclusion

In this chapter, we introduced a uniĄed memetic algorithm for solving both the min-
max mTSP and the minmax multidepot mTSP. The proposed algorithm integrates a
dedicated edge assembly crossover operator (mEAX), an efficient variable neighborhood
descent and an aggressive post-optimization procedure. By properly inheriting edges from
high-quality parent solutions, mEAX contributes to propagate favorable characteristics
from elite parent solutions to offspring. The variable neighborhood descent is able to locate
local optimal solutions effectively. The post-optimization procedure takes full advantage
of the ejection chain method and a leading TSP heuristic to further improve the quality
of new elite solutions.

The performance of the algorithm was evaluated on two sets of 77 minmax mTSP
instances and one set of 43 minmax multidepot mTSP instances. The computational re-
sults indicated that the algorithm reaches a high performance compared to the reference
algorithms for both problems. SpeciĄcally, it reports 44 and 39 new upper bounds for
the minmax mTSP and the minmax multidepot mTSP, respectively. We performed ad-
ditional experiments to assess the contributions of the two key algorithmic components
(i.e., mEAX and post-optimization). We also conducted a long term convergence analysis
of the algorithm to illustrate its capacity of Ąnding still better solutions if more time is
allowed.

In the next chapter, we study the traveling salesman problems with proĄts and propose
a hybrid genetic algorithm for solving two well-known problems.
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Chapter 4

A HYBRID GENETIC ALGORITHM FOR

UNDIRECTED TRAVELING SALESMAN

PROBLEMS WITH PROFITS

In this chapter, we introduce a hybrid genetic algorithm that addresses the orienteer-
ing problem (OP) and the prize-collecting traveling salesman problem (PCTSP) under a
uniĄed framework. The algorithm combines an extended edge assembling crossover oper-
ator to produce promising offspring solutions and an effective local search to ameliorate
each offspring solution. The algorithm is further enforced by a diversiĄcation-oriented
mutation and a population-diversity management. Extensive experiments show that the
method competes favorably with the best existing methods both in terms of solution
quality and computational efficiency. Additional experiments help to get insights into the
roles of the key ingredients of the proposed method. The content of this chapter is based
on an article submitted to Networks.
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4.1 Introduction

Traveling salesman problems with proĄts are useful models for a broad range of appli-
cations [BM85; FDG05; FT88; GLV16; RB91; VSV11]. As it is shown in the comprehensive
review of [FDG05], a number of studies have contributed to improve the state-of-the-art of
solving these difficult problems. On the one hand, several exact algorithms were proposed
in [Bal89; BGP09; FGT98; GLS98b; LM90; LR94] to optimally solve small and medium
instances with up to 532 vertices. Remarkably, the recent revisited branch and cut algo-
rithm presented by Kobeaga et al. [KML20] was able to Ąnd optimal solutions for OP
instances with up to 2152 vertices. On the other hand, several heuristic algorithms were
developed for TSPs with proĄts to deal with instances whose optimal solutions cannot be
determined by exact algorithms. In Section 1.4.2, we provide a review of the most rep-
resentative heuristic algorithms. Meanwhile, one notices that until now, these problems
have been studied separately with speciĄc algorithms designed for each problem without
a general and uniĄed approach. Moreover, compared to research on exact algorithms,
effective heuristic algorithms are still rare and most existing heuristic algorithms donŠt
compete well with the best exact algorithms on a number of benchmark instances.

This chapter aims to advance the state-of-the-art of solving for TSPs with proĄts with
effective heuristic algorithms. For this purpose, we introduce a uniĄed approach for the OP
and the PCTSP under the hybrid genetic search framework. Hybrid genetic algorithms,
also called memetic algorithms, take advantage of population-based genetic framework
and neighborhood-based local search framework [Hao12]. On the one hand, thanks to
the use of a population of solutions, a genetic algorithm offers, via a crossover operator,
the possibility of creating new solutions by recombination of existing solutions. On the
other hand, by exploring a neighborhood, a local search algorithm offers an effective
means to locate high-quality solutions around a seeding solution. By combining these two
complementary methods, a hybrid genetic algorithm is expected to reach a performance
that cannot be attained by each individual approach applied separately. Indeed, several
highly effective hybrid genetic algorithms have been proposed to solve various routing
problems [NB09; NBD10; Pot09; Pri04; Vid+12; Vid+13; Vid+14].

For the OP and the PCTSP, we devise a dedicated technique to adapt the popular edge
assembly crossover initially designed for the travel salesman problem [NK97; NK13] and
also applied to routing problems [NB09; NBD10]. The proposed approach relies on an ex-
tended edge assembly crossover operator and beneĄts from the synergy with effective local
search and dedicated diversiĄcation strategies such as mutation and population-diversity
management. Our experiments on well-known benchmark instances in the literature show
that the proposed algorithm competes very favorably with the best performing methods.
In particular, the algorithm is able to improve many current best bounds for both the OP
and the PCTSP.

The rest of this chapter is organized as follows. Section 4.2 presents the proposed
algorithm. Section 4.3 shows computational results and comparisons. Section 4.4 analyzes
the main ingredients of the algorithm. Section 4.5 draws conclusions.
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4.2 Hybrid genetic algorithm for TSPs with profits

This section presents the hybrid genetic algorithm (HGA) designed for the two studied
TSPs with proĄts, i.e., the orienteering problem and the prize-collecting TSP. This is a
uniĄed algorithm in the sense that, with slight adjustments, the same algorithm is used
to solve both problems effectively.

The general HGA algorithm is composed of the following Ąve steps.
Step 1 (Generation of an initial population): This step Ąlls the population P with
a number of distinct solutions with the initialization procedure presented in Sec-
tion 4.2.1. This initial population is then evolved generation-by-generation through
Steps 2Ű4.

Step 2 (Parent selection and crossover application to generate offspring solutions):
From the current population, two solutions are selected as parents using the tour-
nament selection of size of 2. The two parent solutions are then recombined by the
extended edge assembly crossover presented in Section 4.2.2 to generate β (β is a
parameter) offspring solutions ¶φ1

O, φ2
O, · · · , φβ

O♢.

Step 3 (Local search to improve each offspring solution): For each offspring solu-
tion φi

O in ¶φ1
O, φ2

O, · · · , φβ
O♢, the local search presented in Section 4.2.3 is applied

to raise the quality of the offspring.

Step 4 (Mutation and population update): Each offspring solution φi
O improved

by the local search is modiĄed by the mutation presented in Section 4.2.4 to in-
troduce diversity. The modiĄed offspring is then used to update the population as
described in Section 4.2.4.

Step 5 (Stopping) The algorithm repeats Steps 2Ű4 until a stopping condition is
satisĄed. Typical conditions are a maximum number of generations (one generation
includes Steps 2Ű4), a maximum cutoff time and a maximum number of local search
invocations. At the end of the algorithm, the best solution φ∗ ever found is returned.

Throughout the course of the algorithm, the best solution φ∗ found, which is initialized
by the best solution in the initial population, is updated each time a solution better than
the current φ∗ is discovered.

The rest of this section is dedicated to detailed presentation of the methods for popula-
tion initialization, crossover, local search and mutation as well as population management.

4.2.1 Population initialization

The initial population P is generated in two phases by a method inspired by the
technique presented in [Vid22]. Phase 1 generates a pool of 4 × λ solutions where each
solution is created greedily (see below) and then improved by the local search of Section
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4.2.3. Phase 2 uses the surviving strategy of Section 4.2.4 to retain λ solutions in P with
respect to solution quality and their contribution to the diversity of the population.

Since the OP and the PCTSP pursue different optimization objectives, the Ąrst phase
uses two greedy strategies to create each initial solution. For the OP, the greedy con-
struction works as follows. First, a solution (route) is initialized by the depot v0 and then
extended by adding a random vertex vi ∈ N . Second, for the newly added vertex vi,
an unrouted vertex vj from the δ-nearest neighborhood (Section 4.2.3) is selected and
inserted after vertex vi such that the insertion leads to the minimum increase of the travel
costs. This process stops when all vertices are inserted to the solution or the current travel
costs exceed 1.5× cmax.

For the PCTSP, the greedy construction works similarly, but the selection of the next
vertex to be added aims to maximize the collected proĄt. The construction stops when
the collected proĄt reaches 1.5× pmin.

Note that initial solutions generated this way are necessarily infeasible. Given that the
feasibility of an initial solution can be easily established by simply removing some vertices,
using an initial population of infeasible solutions is not harmful; instead, itŠs beneĄcial in
terms of search diversiĄcation.

4.2.2 Extended edge assembly crossover

The HGA algorithm relies on an extended edge assembly crossover, which is an adap-
tation of the edge assembly crossover (EAX) designed for the TSP [NK97; NK13] to TSPs
with proĄts. Critically, there is a difficulty of directly applying EAX to TSPs with proĄts
since EAX assumes that all vertices are visited exactly once in a solution of the TSP.

Indeed, given a TSP instance deĄned on a graph G = (V , E), a candidate TSP solution
φ corresponds to a partial graph Gφ = (V , Eφ) with Eφ being the set of edges traversed by
φ. Given a solution of the TSP, each vertex in V is visited exactly once and thus has the
same degree of two in Gφ. Given two parent TSP solutions and their associated partial
graphs, EAX uses this property to reassemble the edges from the parents to produce
offspring solutions.

However, the situation is different for TSPs with proĄts. Given two parent solutions,
some vertices may be visited in one parent, but not visited in the other parent. Con-
sequently, a vertex may have two distinct degrees in the partial graphs of the parent
solutions. This particularity makes it impossible to apply the EAX crossover to TSPs
with proĄt. For the OP and the PCTSP, we design the extended edge assembly crossover
(E2AX), whose key idea is to add dummy edges (self-loops) to ensure that each vertex
has the same degree in the graphs of the parent solutions.

Given an instance of the OP or the PCTSP on graph G = (V , E), let φ be a solution
visiting ♣φ♣ vertices (♣φ♣ ≤ n) and let Gφ = (V , Eφ) be the corresponding partial graph
where Eφ ⊂ E is the set of edges traversed by φ. There are two cases for each vertex in
Gφ such that: 1) the vertex is visited by φ and the degree is 2 in Gφ, 2) the vertex is not
visited by φ and the degree is 0. In the example of Fig. 4.1, red vertices are not visited
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by φA and the degree is 0 in GA, while the visited vertices in GA has a degree of 2.
Let φA and φB be two candidate solutions for the OP or the PCTSP, let GA = (V , EA)

and GB = (V , EB) be the corresponding partial graphs. We deĄne the degree difference of
vertex v in GA and GB by ∆v = ♣degA(v)− degB(v)♣ where degφ(v) denotes the degree of
vertex v in the graph Gφ. In the example of Fig. 4.1, the degree difference ∆v of a vertex
v equals 0 if v is visited by both solutions or by none of them; otherwise ∆v = 2. For each
vertex v with ∆v = 2, we can add a dummy loop (v, v) in GA or GB to make the degree
difference become 0 (see Fig. 4.1(left-middle)).

Let G ′
A = (V , E ′

A) and G ′
B = (V , E ′

B) be the graphs extended with dummy loops such
that ∆v = 0 for all vertices. Clearly, these extended graphs G ′

A and G ′
B satisfy the basic

property required by the EAX crossover, i.e., each vertex has the same degree in these
graphs. As a result, we can now beneĄt the edge assembly idea of the EAX operator to
create offspring solutions for the OP and the PCTSP.
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Figure 4.1 Ű Illustration of the E2AX crossover

Given two parent solutions φA and φB, the proposed E2AX crossover for the OP and
the PCTSP performs the following steps to generate β offspring solutions.

1. Generation of multigraph GAB with dummy loops. Build partial graphs GA = (V , EA)
and GB = (V , EB) for φA and φB. For each vertex v such that ∆v ̸= 0 in GA and GB,
add ♣degA(v)−degB(v)♣

2
dummy self-loops in φA or φB to make ∆v = 0. Build multigraph

GAB = (V , E ′
A ∪E

′
B) where E ′

A and E ′
B are the edge sets extended with dummy loops.

2. Generation of AB-cycles from GAB. An AB-cycle is a closed-path whose edges are
alternatively taken from the parents. From the multigraph GAB, build a set of AB-
cycles as follows. Initialize an AB-cycle by a random vertex with one adjacent edge in
GAB. Then add edges belonging to E ′

A and E ′
B alternatively until a cycle is obtained,
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which is an AB-cycle. Remove the edges of the AB-cycle from GAB. Repeat the
process to build the next AB-cycle until all the edges in GAB are considered.

3. Generation of E-sets. An E-set is an union of AB-cycles. Divide the set of AB-
cycles randomly and uniformly into β subsets (β = 3 in this work), each subset of
AB-cycles deĄning an E-set.

4. Generation of intermediate solutions. First remove all dummy loops in the E-sets.
Then for each E-set, produce an intermediate solution from φA by removing the
edges of EA and adding the edges of EB.

5. Elimination of isolated subtours. For each intermediate solution containing subtours,
merge the subtours with the main tour by the method presented in [NK13].

Fig. 4.1 provides an illustrative example of the recombination process with the E2AX
crossover applied to two parent solutions φA and φB. Note that the second intermediate
solution contains two small subtours that are merged with the main tour to form a single
tour.

We now provide an analysis of the time complexity of the E2AX crossover. Steps (1)Ű
(4) have to assemble ♣E ′

A♣ + ♣E ′
B♣ edges to produce β offspring solutions, implying a time

complexity of O(♣E ′
A♣ + ♣E

′
B♣). Given that a solution is necessarily an elementary tour and

n ≥ ♣E ′
A♣ ≥ ♣E

′
B♣ holds. Thus the time of steps (1)Ű(4) is bounded by O(n). For the last

step, suppose that there are m subtours including at most e edges, the time complexity
of this step is O(e× δ) [NK13], where δ is the number of closest vertices and introduced
in Section 4.2.3.

4.2.3 Offspring improvement

The HGA algorithm employs a neighborhood-based local search to improve the off-
spring solutions generated by the E2AX crossover. As discussed in [FDG05], four neigh-
borhood operators are usually used to transform a route for TSPs with proĄts: 1) adding
an unrouted vertex, 2) removing a vertex from the route, 3) resequencing the route, and
4) replacing a routed vertex with an unrouted vertex. The HGA algorithm adopts the
Ąrst three operators because our experiments show that the fourth operator is of little
interest. Also, to resequence a route, any TSP heuristic can be used. In our case, we Ąnd
the 2-opt heuristic [Cro58] quite suitable. We now explain the add and remove operators.

Add operator

This operator is applied to add unrouted vertices into the route. For the OP, a heuristic
commonly used in the literature [Cam+14; SG10] is adopted to perform vertex insertions.
For each unrouted vertex vi, its move gain ∆ = pi

cipi+ciin −cipin
is calculated, where vip

and
vin

are the vertices before and behind vi, respectively. Then the most favorable vertex
with the highest move gain is selected and added in the route. The add operator is
repetitively applied until the limit cmax of travel costs is attained. For the PCTSP, the
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vertex associated with minimum increase of the travel costs is selected and added in the
route. The add operator is triggered to insert unrouted vertices if the collected proĄt is
below the minimum proĄt threshold pmin.

The worst time complexity of the add operator is O(♣φ♣ × (n − ♣φ♣)), where ♣φ♣ is
the number of visited vertices in the solution. This complexity can be reduced to O(δ ×
(n − ♣φ♣)) by considering only the δ-nearest vertices (δ is a parameter called granularity
threshold) and using streamlining techniques of [KML18].

Remove operator

This operator is applied to remove visited vertices. For the OP, given a routed vertex
vi, the move gain of removing vi is given by ∆ = pi

cipi+ciin −cipin
, where vip

and vin
are

the vertices before and behind vi, respectively. If the solution is infeasible, i.e., the travel
costs are greater than cmax, the vertex with respect to the minimum ∆ is removed. The
remove process stops once the solution becomes feasible. For the PCTSP, if the solution
is feasible, i.e., the collected proĄt is greater than the required minimum proĄt pmin,
vertices vi can be removed from the route such that they have the maximum move gain
∆ = cipi + ciin

− cipin
, where vip

and vin
are the vertices before and behind vi, respectively.

The process terminates when the collected proĄt reaches the required minimum proĄt
pmin. The time complexity of the remove operator is bounded by O(♣φ♣).

Application of the move operators

Given the add and remove operators as well as the 2-opt operator, it is important
to decide in which order they are applied. Given that the OP and the PCTSP pursue
different objectives with different constraints, the HGA algorithm applies a speciĄc order
for each problem. For both problems, the 2-opt heuristic is Ąrst applied to reduce the
travel costs. Then, for the OP, the remove operator is used to restore the feasibility of
the solution in terms of the travel costs, followed by the add operator to increase the
proĄt. For the PCTSP, the add operator is used to satisfy the minimum proĄt constraint,
followed by the remove operator to reduce the travel costs as much as possible. Once
the solution cannot be improved by any operator, the local search phase terminates and
returns the best solution reached.

4.2.4 Diversity preservation

Diversity is a key issue of any population-based algorithm. The HGA algorithm em-
ploys two different and complementary strategies, i.e., a speciĄc mutation and a dedicated
population management, to effectively preserve population diversity.
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Mutation

An offspring solution created by the E2AX crossover inherits exclusively the edges
of its parents. In other words, the E2AX cannot introduce vertices that are not visited
by both parents in the offspring solutions. Furthermore, the local search is rarely able
to introduce unrouted vertices into the solution given that adding new vertices often
increase the travel costs, which is undesirable. Consequently, the offspring solution may
resemble much the parents even after local optimization. To maintain sufficient diversity
and avoid premature convergence, the HGA algorithm applies, with a probability τ , a
mutation to modify each offspring solution by adding new vertices. Basically, the mutation
removes some vertices from the solution and then greedily inserts unrouted vertices into
the solution while respecting to the corresponding constraints (i.e., maximum travel costs
cmax for the OP and minimum collected proĄt pmin for the PCTSP).

Given a solution φ, let Nφ and N φ be a set of routed and unrouted vertices in φ,
respectively. The mutation consists of two steps. First, l vertices (l is a parameter called
mutation length) are selected and removed one by one. SpeciĄcally, a vertex vi is selected
for removal if its removal leads to the minimum move gain ∆ = pi

cipi+ciin −cipin
, where vip

and
vin

are the vertices before and behind vi, respectively. Each removed vertex is forbidden
to be reinserted again into the route during the mutation. Second, a vertex vj is selected
from N φ\T such that its insertion leads to the maximum increase of ∆ = pi

cipi+ciin −cipin

and inserted in the solution φ. For the OP, the insertion process stops when l unrouted
vertices are inserted or if the insertion makes the solution infeasible (i.e., the travel costs
exceed cmin). For the PCTSP, the insertion terminates when l vertices are inserted or the
insertion makes the solution feasible (i.e., the collected proĄt reaches pmin). In Section
4.3.2, we experimentally show the importance of the mutation.

Population management

To maintain a suitable diversity of the population P , the HGA algorithm adopts a
variable population scheme similar to that used in [Vid22]. From an initial population of
λ solutions, the population is extended by offspring solutions until its size reaches a upper
limit µ + λ where µ is the generation size. When this happens, the surviving selection is
triggered to remove µ solutions with respect to the Ątness and their contributions to the
diversify of the population. Similar to Vidal [Vid22], the distance between two solutions
is deĄned as the number of distinct edges. Let ♣P♣ donate the number of solutions in P .
Given a solution φ, the distance between φ and other ♣P♣ − 1 solutions is computed and
sorted from the smallest to the largest. Then, the sum of the Ąrst nbClost values (nbClost
is a parameter) is used as the diversity contribution of φ to P , donated by divφ. Each
solution φ ∈ P is thus associated with a divφ value. All these values are sorted from the
smallest to the largest, and each solution is associated with a rank rdφ with respect to
divφ. Furthermore, we rank the solutions of P according to their objective values from
the worst to the best, leading to another rank roφ for each solution φ. Finally, the biased
Ątness of solution φ is deĄned as f(φ)biased = roφ + (1 − nbElite

♣P♣
) × rdφ where nbElite is
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a parameter. The solution associated with the smallest biased Ątness is removed from P
and the biased Ątness for each remaining solution in P is updated. The solution removal
process is repeated until there are λ solutions in P . Following [Vid22], we set nbClost =
5 and nbElite = 4.

If the best solution found so far φ∗ cannot be improved during γ consecutive iterations
(γ is a parameter called population rebuilding threshold and one iteration is the generation
of one offspring solution followed by the local search), the algorithm restarts by generating
a totally new population.

4.3 Computational results and comparisons

In this section, we evaluate the performance of the proposed algorithm on the OP
and the PCTSP. We present the benchmark instances (see Section 1.4.3), experimental
protocol, reference algorithms, and comparisons with the state-of-the-art methods.

4.3.1 Experimental protocol and reference algorithms

Parameter setting. HGA has six main parameters: minimum population size λ and
generation size µ, granularity threshold δ used in local search, mutation probability τ ,
mutation length l and population rebuilding threshold γ. In order to identify suitable
values for the parameters, the automatic parameter tuning package Irace [Lóp+16] is
used. The candidate and Ąnal values are shown in Table 4.1 . These parameter values can
be considered to form the default setting and are used consistently in our experiments.

Table 4.1 Ű Parameter tuning results.

Parameter Section Description Considered values
Final values

OP PCTSP
λ 4.2.1 and 4.2.4 minimal size of population ¶50, 100, 150, 200, 250♢ 100 100
µ 4.2.1 and 4.2.4 generation size ¶25, 50, 75, 100, 125♢ 50 100
δ 4.2.3 granularity threshold ¶5, 8, 10, 12, 15, 20♢ 10 12
τ 4.2.4 mutation probability ¶0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3♢ 0.15 0.1
l 4.2.4 mutation length ¶0.05, 0.1, 0.15, 0.2, 0.25♢ 0.25 0.25
γ 4.2.4 population rebuilding threshold ¶5000, 10000, 20000, 30000, 50000, 80000♢ 30000 30000

Reference algorithms. According to the review of Section 1.4.2, we identify the
following best heuristic and exact algorithms for the OP and use them for our comparative
study.

Ů BKS. This indicates the best known solutions (best lower bounds) that are compiled
from all reference heuristic and exact approaches [KML18; KML20; San19].

Ů RB&C [KML20]. This exact algorithm [KML20] was applied to solve the Ąrst three
sets of instances and was able to obtain optimal solutions for many instances under
a time limit of 18000s.

Ů ALNS [San19]. It was implemented in C++ and executed on an Intel Xeon E5
processor, running at 2.2 GHz under a time limit of 18000s or after 250000 iterations
without improvement. The algorithm was executed 10 times on each instance. It
was tested on the four sets of instances.
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Ů EA4OP [KML18]. The hybrid algorithm was implemented in C and executed on
an Intel Xeon E5-2609 v3 1.90 GHz processor with 4 GB RAM. The algorithm
terminates either when the Ąrst quartile of the populationŠs Ątness is the same as
the best Ątness or when the maximum running time exceeds 18000s. The algorithm
was executed 10 times on each instance. The EA4OP algorithm reported its results
on the four sets of instances.

Ů B&C [KML18]. This is the branch and cut algorithm presented in [FGT98] and
rerun in [KML18]. It stops when the maximum running time (18000s) is met or
when the optimal solution is found. This algorithm reported the results on the
fourth set only.

For the PCTSP, only the branch & cut algorithm (B&C) [BGP09] reported results
on medium-sized instances with up to 532 vertices. To have a reference algorithm for the
large-sized instances with up to 7397 vertices, we created a HGA variant (called HGA-
Giant) where we replaced the E2AX crossover by a giant tour crossover described in
Appendix 6.2.

Experimental setting and stopping criterion. The HGA algorithm was imple-
mented in C++ and compiled using the g++ compiler with the -O3 option 1. All experi-
ments were run on an Intel Xeon ES-2630 processor of 2.66 GHz and 6 GB RAM running
Linux with a single thread. The algorithm was executed 20 times on each instance with
distinct random seeds. Following the literature, the HGA algorithm terminates when it
reaches a time limit of 18000s or a maximum of 500,000 iterations (one iteration means
the generation of one offspring solution followed by one local search run).

4.3.2 Computational results

To compare HGA and the reference algorithms, two summarizing tables are presented
for the OP and the PCTSP, respectively.

Comparative results on the OP

Since the two reference heuristic algorithms ALNS [San19] and EA4OP [KML18] did
not report their average values, we focus on the best objective values of the compared
algorithms in Table 4.2. The detailed results on the four sets of 344 instances are provided
in Tables 6.4-6.11.

Compared to the BKS values that represent the best values ever reported by all the
algorithms, HGA updates 67 BKS values (new lower bounds) out of 344 instances (19.5%)
and matches 172 other BKS values (50%). Given that the BKS values are the best results
compiled from all existing approaches, the HGA algorithm can be considered to reach a
remarkable performance.

HGA signiĄcantly outperforms the two best heuristic algorithms ALNS and EA4OP
(p-value≪ 0.05), except ALNS on the Ąrst set. Furthermore, the two best exact algorithm

1. The code of the HGA algorithm will be available at: https://github.com/pengfeihe-angers/tsps-
with-profits.git
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RB&C and B&C can obtain many optimal solutions for medium-sized instances within
a reasonable running time, but their results and running time become unacceptable with
the increase of instance sizes. As shown in Tables 6.7, 6.9 and 6.11, HGA is able to provide
signiĄcant improvements for large-sized instances, especially for instances with at least
2000 vertices.
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Figure 4.2 Ű The OP: performance proĄles of the compared algorithms on the 86 instances
of each set

The performance proĄles illustrate the performance differences of the compared algo-
rithms. As shown in Fig. 4.2, the algorithms have different behaviors on the four sets of
instances. For the Ąrst set, it is clear that RB&C outperforms all approaches. HGA has a
lower Qs(1) but reaches 1 more quickly than the two heuristic algorithms. However, for
the other three sets, HGA dominates the reference algorithms since it reaches 1 Ąrstly,
which indicates a high robustness. The performance proĄles conĄrm that the HGA algo-
rithm dominates the state-of-the-art algorithms for the OP, except the exact algorithm
RB&C on the Ąrst set.

Tables 6.4-6.11 show the detailed results on all 344 OP instances. Although EA4OP
reports very short running time, its results are much worse than those of ALNS and HGA.
Compared with ALNS, our HGA algorithm can Ąnd better results with less running time.
It is noticeable that exact algorithms spend very short time for medium-sized instances to
obtain the optimal solutions, but the gap becomes unacceptable for large-sized instances.
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Table 4.2 Ű The OP: summary of results between HGA and reference algorithms on the
four sets of 344 instances in terms of the best objective values.

Instances Pair algorithms
Medium-sized (45) Large-sized (41)

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

Set I

HGA vs. BKS 0 35 10 2.00E-03 3 1 37 5.51E-06
HGA vs. RB&C [KML20] 0 35 10 2.00E-03 5 1 35 4.62E-05
HGA vs. EA4OP [KML18] 12 29 4 1.80E-02 32 2 7 6.70E-06
HGA vs. ALNS [San19] 3 35 7 4.59E-01 20 4 17 7.61E-02

Set II

HGA vs. BKS 0 43 2 5.00E-01 13 2 26 5.53E-01
HGA vs. RB&C [KML20] 0 43 2 5.00E-01 13 2 26 7.64E-01
HGA vs. EA4OP [KML18] 31 14 0 1.17E-06 41 0 0 2.42E-08
HGA vs. ALNS [San19] 16 29 0 4.35E-04 40 0 1 2.61E-08

Set III

HGA vs. BKS 0 43 2 5.00E-01 19 3 19 7.10E-02
HGA vs. RB&C [KML20] 0 43 2 5.00E-01 19 3 19 6.24E-02
HGA vs. EA4OP [KML18] 28 15 2 1.64E-05 39 0 2 5.26E-08
HGA vs. ALNS [San19] 14 29 2 1.13E-02 38 0 3 6.14E-08

Set IV

HGA vs. BKS 2 41 2 8.75E-01 30 4 7 1.54E-05
HGA vs. B&C [KML18] 2 41 2 8.75E-01 30 4 7 4.15E-06
HGA vs. EA4OP [KML18] 27 17 1 6.57E-05 39 0 2 7.81E-08
HGA vs. ALNS [San19] 20 24 1 1.01E-03 39 2 0 5.25E-08

Summary HGA vs. BKS 2 162 16 - 65 10 89 -

Thus, even if HGA can Ąnd high-quality solutions in a short time for small and medium-
sized instances, its main interest remains its capacity of solving large-sized OP instances.

Comparative results on the PCTSP

Table 4.3 Ű The PCTSP: summary of results between HGA and reference algorithms on
the three sets of 240 instances.

Instances Pair algorithms
Medium-sized (46)

Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

Set I
HGA vs. B&C [BGP09] 4 37 5 8.20E-01 - - - -
HGA vs. HGA-Giant 32 12 2 6.63E-06 42 0 4 5.35E-06

Set II
HGA vs. B&C [BGP09] 7 36 3 4.92E-01 - - - -
HGA vs. HGA-Giant 41 3 2 1.21E-06 43 1 2 3.68E-07

Set III
HGA vs. B&C [BGP09] 11 21 14 3.06E-01 - - - -
HGA vs. HGA-Giant 40 5 1 2.92E-08 45 0 1 4.90E-09
Summary 20 96 22 - 130 1 7 -

Large-sized (34)
Best Avg.

Set I HGA vs. HGA-Giant 33 0 1 4.78E-07 33 0 1 4.00E-07
Set II HGA vs. HGA-Giant 34 0 0 3.65E-07 34 0 0 3.65E-07
Set III HGA vs. HGA-Giant 33 0 1 1.62E-06 32 0 2 1.77E-06

Summary 100 0 2 - 99 0 3 -

As shown in Table 4.3 and Fig. 4.3, the HGA algorithm signiĄcantly outperforms
HGA-Giant since all p-values are less than 0.05. For the medium-sized instances, the exact
algorithm (B&C) performs well by obtaining many optimal solutions within a reasonable
running time. On the other hand, our algorithm Ąnds 120 new upper bounds out of 240
instances (50%), matches the best solutions for 96 instances (40%) and only misses 24
best known values (10%). The results between HGA and HGA-Giant are signiĄcantly
different on both medium-sized and large-sized instances, which indicates that E2AX is
more powerful than the giant tour crossover when solving the PCTSP. Furthermore, the
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performance proĄles conĄrm the superiority of HGA on both the best and average values
compared to the reference algorithms.
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Figure 4.3 Ű The PCTSP: performance proĄles of the compared algorithms on the 80
instances of each set

From the detail results on the PCTSP shown in Tables 6.12-6.17, we make the following
observations. First, under the same stopping condition, HGA requires only half of the
time needed by HGA-Giant to Ąnd solutions of equal or better quality on the medium-
sized instances. More importantly, HGA reaches better solutions than HGA-Giant by
spending shorter running time for the large-sized instances. Second, although B&C can
solve medium-sized instances optimally, the running time increases signiĄcantly with the
increase of the instance size. For example, for Sets II and III, B&C fails to obtain the
optimal solution of several instances with more than 400 vertices. Meanwhile, HGA can
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Table 4.4 Ű Summary of results of HGA compared to the results of HGA-Giant (using the
giant tour crossover) and HGA1 (without any crossover) on Sets II and III of the OP.

Instances Pair algorithms
Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

Set II (86)
HGA vs. HGA-Giant 51 34 1 4.25E-09 65 18 3 3.65E-11
HGA vs. HGA1 81 5 0 5.36E-15 83 3 0 2.50E-15

Set III (86)
HGA vs. HGA-Giant 57 27 2 1.55E-10 68 15 3 4.84E-12
HGA vs. HGA1 84 2 0 1.71E-15 85 1 0 1.17E-15

Ąnd high-quality solutions for large-sized instances within a short running time.

4.4 Additional experiments

In this section, we conduct additional experiments to study the beneĄts of two key
components of the proposed algorithm. The experiments are based on the instances of
Sets II and III of the OP.

4.4.1 Significance of the crossover

To assess the signiĄcance of the E2AX crossover within the HGA algorithm, we create
a HGA variant (HGA-Giant) where E2AX is replaced by the giant tour crossover [BDM10]
(see Appendix 6.2) and another HGA variant (HGA1) where the E2AX crossover is dis-
abled in HGA. We run these algorithms under the same stopping condition as before and
report the comparative results in Table 4.4 and Fig. 4.4.

From these results, one observes that the E2AX crossover plays a highly positive
role in the good performance of HGA. Indeed, HGA dominates HGA-Giant by obtaining
108 better results and 61 equal results out of the 172 tested instances. HGA1 (without
crossover) has the worst performance even compared to HGA and HGA-Giant, indicating
that crossovers such as E2AX and giant tour are highly useful for the performance of the
hybrid algorithm.

To sum, we conclude that E2AX positively contributes to the performance of HGA,
and it also outperforms the giant tour crossover.

4.4.2 Benefits of the mutation

In the HGA algorithm, the mutation operator is used as a means to preserve diversity
of the population. To assess its usefulness, a HGA variant (HGA2) is created by disabling
the mutation operator. We compare HGA and HGA2 in terms of population diversity by
using the following diversity measure. Let ♣P♣ be the number of solutions in the population
P . Let Nφ be the set of vertices visited by solution φ in P . Let H be the set of vertices
visited by all the solutions in P and H = ∪♣P♣

i=1Nφi
. Let ξ be the proportion of vertices

covered by P and ξ = ♣H♣
n

, 0 < ξ ≤ 1. We use the value of ξ to measure the diversity of
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Figure 4.4 Ű The differences between HGA and two variants for solving the instances of
Sets II and III of the OP.

the population. If ξ → 1, it means P covers many vertices, offering good possibilities for
the algorithm to explore larger search spaces, and vice versa. We present the convergence
charts of HGA and HGA2 together with the evolution of the population diversity, based
on two instances (rat783-gen3 and u1060-gen2). The results are shown in Fig. 4.5, where
HGA-R and HGA2-R indicate the best results found while HGA-P and HGA2-P are the
current diversity values ξ of the population. One notes that HGA has a better convergence
and dominates its counterpart in both instances. ItŠs observed that HGA always keeps a
higher value ξ along its evolution compared to HGA2, which indicates the contributions
of the mutation to the diversity and the performance of the HGA algorithm.
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Figure 4.5 Ű Convergence charts of HGA and HGA2 for solving two representative in-
stances.

Finally, Fig. 4.6 shows the comparative results of HGA and HGA2 in terms of both
the best and average objective values on the 86 instances of Set II and 86 instances of Set
III (the names of 15 instances are shown). The results are presented as the deviation in
percentage of the results of HGA2 compared to the results of HGA. For the medium-sized
instances, HGA and HGA2 obtains similar results. However, for instances with more than
200 vertices, HGA2 performs worse than HGA and the difference becomes more signiĄcant
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Figure 4.6 Ű Results of HGA2 (without mutation) in terms of deviation in percentage
compared to the results of HGA (with mutation).

as the size of instances increases. These results conĄrm that the mutation operator plays
a crucial role in the HGA algorithm, especially for large-sized instances.

4.5 Chapter conclusion

This chapter proposed a new hybrid genetic algorithm to efficiently address two trav-
eling salesman problems with proĄts. We introduced several methodological contributions
including an extended edge assembly crossover for producing promising solutions, an ef-
fective local search for solution reĄnement and speciĄc strategies for diversity preservation
of the population.

Extensive experiments were conducted on the orienteering problem and the prize-
collecting traveling salesman problem. For the OP, four sets of 344 commonly used in-
stances were tested and 67 new lower bounds were discovered. The algorithm also matches
the best known results for 172 other instances. For the PCTSP, results on three sets of
240 instances showed a high performance on large-sized instances including 120 new best
results never reported in the literature. Additional experiments were conducted to get
insights into the beneĄts of the proposed crossover and the mutation. The new bounds
reported in this work can be useful for future research on these problems. Moreover, the
code of our algorithm that we make available can be used by researchers and practitioners.

In the next chapter, we present a general edge assembly crossover operator for solving
the split delivery vehicle routing problem.
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Chapter 5

GENERAL EDGE ASSEMBLY CROSSOVER

DRIVEN MEMETIC SEARCH FOR THE

SPLIT DELIVERY VEHICLE ROUTING

PROBLEM

In this chapter, we present an effective memetic algorithm for solving the split delivery
vehicle routing problem with a Ćeet of limited or unlimited vehicles. The algorithm features
a general edge assembly crossover to generate promising offspring solutions from the
perspective of assembling suitable edges and an effective local search to improve each
offspring solution. The algorithm is further reinforced by a feasibility-restoring procedure,
a diversiĄcation-oriented mutation and a quality-and-distance pool updating technique.
Extensive experiments on 324 benchmark instances indicate that our algorithm is able
to update 143 best upper bounds in the literature and match the best results for 156
other instances. Additional experiments are presented to obtain insights into the roles of
the key search ingredients of the algorithm. The method was ranked second at the 12th
DIMACS Implementation Challenge on Vehicle Routing - SDVRP Track. The content of
this chapter is based on an article submitted to Transportation Science.

97



Part II, Chapter 5 – General edge assembly crossover driven memetic search for SDVRP

5.1 Introduction

Like the conventional VRP, the SDVRP has many applications such as determin-
ing routes and schedules for newspaper delivery [SLK02] and waste collection [AS04].
Meanwhile, the SDVRP has been much less investigated compared to the VRP and its
variants such as the capacitated VRP, the VRP with time windows and the VRP with
proĄts. Still, since the introduction of the SDVRP, a number of algorithms using exact
and heuristic approaches have been proposed. Representative exact algorithms are based
on various formulations [BMM00; OKY18] and the branch-and-cut framework [ABS14;
MS22]. These exact approaches are able to provide the optimal solutions for some small
or medium-sized instances with up to some 100 customers. For larger instances, heuristics
and metaheuristics are preferred to Ąnd suboptimal solutions with a reasonable time, as
reviewed in Section 1.5.2.

This chapter aims to advance the state-of-the-art for solving large SDVRP instances
effectively and efficiently. The contributions of this paper are summarized as follows.

1. The proposed memetic algorithm (SplitMA) 1 combines several complementary search
components including a general edge assembly crossover (gEAX) to generate promis-
ing offspring solutions and a local search associated with a maximum splits strat-
egy to improve offspring solutions. The gEAX crossover transmits common edges
from parent solutions to offspring solutions while reassembling non-common edges
of parent solutions. The local search exploits both VRP neighborhood operators
and SDVRP neighborhood operators reinforced by the maximum splits strategy,
which ensures that a customer will not be served by too many vehicles. The algo-
rithm additionally integrates dedicated repairing techniques to ensure the feasibility
of offspring solutions, a mutation to diversify each new solution, and an advanced
updating strategy to maintain a healthy population.

2. We illustrate the competitiveness of the algorithm on four sets of 324 instances of the
SDVRP-LF and SDVRP-UF problems compared to the state-of-the-art algorithms.
In particular, we report 143 new best upper bounds that can be useful for future
studies. We investigate the underlying algorithmic components to shed light on their
contributions to the performance of the algorithm. SpeciĄcally, we provide insights
about why the gEAX crossover works well on the SDVRP and present for the Ąrst
time experimental evidences that high-quality solutions are close to each other and
are also close to optimal solutions.

3. This work shows the interest of the general idea of the edge assembly crossover.
The gEAX crossover, which generalizes the popular EAX crossover for the TSP
nagata1997edge,nagata2013powerful, provides a powerful solution recombination
mechanism that can be advantageously applied not only to the SDVRP, but also to
other routing problems where the associated graphs of candidate solutions do not
necessarily have the same degree for their vertices.

1. The SplitMA algorithm was ranked second at the 12th DIMACS Implementation Challenge on
Vehicle Routing - SDVRP Track (http://dimacs.rutgers.edu/programs/challenge/vrp/).
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The remainder of this chapter is organized as follows. Section 5.2 presents the details of
the proposed algorithm. Section 5.3 shows computational results and comparisons. Section
5.4 investigates key ingredients of the proposed algorithm. Section 5.5 draws conclusions.

5.2 General edge assembly crossover driven memetic

algorithm

Population-based evolutionary algorithms have been successfully applied to the travel-
ing salesman problem [NK97; NK13] and several vehicle routing problems [NB09; NBD10;
Pot09; Pri04; Vid+12; Vid+13; Vid+14]. The proposed SplitMA algorithm for the SDVRP
is a population-based hybrid algorithm that uses a dedicated edge assembly crossover to
generate new solutions and an effective local optimization to improve the offspring solu-
tions. SplitMA also applies a mutation to diversify each offspring solution and an advanced
pool updating strategy to manage the population.

Algorithm 7 The memetic algorithm for the SDVRP
Input: Instance I;
Output: The best solution φ∗ found so far;

1 begin
2 P ← PopulationInitial(I); /* Initializing the population P, Section 5.2.1 */
3 φ∗ ← arg min¶f(φi)♣i = 1, 2, · · · , ♣P♣♢; /* φ∗ Record the best solution found so far

*/
4 while Stopping condition is not met do
5 ¶φA, φB♢ ←ParentSelection(P); /* Selecting two parental solutions randomly

*/

6 ¶φ1
O, φ2

O, · · · , φ
β
O♢ ←gEAX(φA, φB); /* Generating offspring solutions, Section

5.2.2 */
7 for i = 1 to β do
8 φi

O ← RestoringFeasibility(φi
O); /* Restoring feasibility, Section 5.2.3 */

9 φi
O ← Mutation(φi

O); /* Generating mutation, Section 5.2.4 */

10 φi
O ← LocalSearch(φi

O); /* Improving the offspring solution, Section
5.2.5 */

11 if SDVRP-LF then
12 φi

O ← EmptyRoute(φi
O); /* Reducing routes to Kmin, Section 5.2.5 */

13 end
14 if f(φi

O) < f(φ∗) then
15 φ∗ ← φi

O;
16 end
17 P ← PoolUpdating(P, φi

O); /* Managing the population, Section 5.2.6 */
18 end
19 end
20 return φ∗;

21 end

The general scheme of SplitMA is outlined in Algorithm 7. SplitMA starts from an
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initial population P constructed by the population initialization procedure (Line 2 of Al-
gorithm 7). Then the algorithm evolves the population through a number of generations
by applying the crossover operator, the local optimization procedure and the popula-
tion updating procedure (Lines 4-19). Of particular interest is the general edge assembly
crossover operator (gEAX) (Line 6) that creates at each generation β offspring solutions
by assembling the edges of two parent solutions. After restoring the feasibility of each off-
spring solution in terms of customer demand and vehicle capacity (Line 8), the solution
is diversiĄed by the mutation operator (Line 9) and then submitted to local optimization
for quality improvement (Line 10). Finally, each improved solution is used to update the
population by the pool updating strategy (Line 17). For the SDVRP-LF where the Ćeet
size is set to Kmin, the number of the used vehicles is reduced to this Ćeet size by emp-
tying some routes if needed (Lines 11-13). During the search, the best solution found so
far φ∗ is updated each time a solution than it is discovered (Lines 14-16). The algorithm
stops and returns the best solution φ∗ when a predeĄned stopping condition is met (e.g.,
a maximum cutoff time or maximum number of generations).

5.2.1 Population initialization

SplitMA starts its evolution from an initial population P , whose size varies between
pmin and pmax (pmax > pmin) during the search process. Similar to [Vid22], 4 × pmin

solutions are Ąrst constructed and subsequently improved by the local search (Section
5.2.5), and then inserted into P one by one. Once ♣P♣ = pmax, the surviving strategy
(Section 5.2.6) is triggered to shrink the population P to pmin solutions.

The construction process of each solution works as follows. First, Kmin = ⌈(
∑n

i=1 di/Q)⌉
routes are created where each route is initialized by the depot and a random customer.
Then, for each newly routed customer i, a random unrouted customer j from the δ-nearest
neighborhood (see Section 5.2.5) is selected and inserted into the route after the customer
i without split. This insertion process stops when no customer can be inserted into the so-
lution without violating the capacity constraint. Finally, if there are unrouted customers,
these customers are dividedly inserted into routes in a greedy way such that the insertions
lead to the minimum increase of the objective value (i.e., the total traveling distance).
Once all customers are routed, a complete solution is obtained.

5.2.2 The general edge assembly crossover operator

Crossover is a key component of memetic algorithms and constitutes one leading force
to explore the search space [Hao12]. In this section, we introduce the gEAX crossover for
the SDVRP that generalizes the edge assembly crossover (EAX) designed for the VRP
[NB09], which itself comes from the popular EAX crossover initially designed for the TSP.

The main difficulty of applying EAX to the SDVRP lies in the fact that EAX assumes
that each customer is served by exactly one vehicle. Indeed, for a given TSP and VRP
instance deĄned on a graph G, a candidate solution can be identiĄed by a partial graph of
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graph G. Given two parent solutions, each customer vertex necessarily has the same degree
of two and EAX uses this property to assemble edges from the parents. However, for the
SDVRP, given that each customer can be served by several vehicles, a solution corresponds
to a multigraph where parallel edges may exist between two vertices (see DeĄnition 5.2.2).
Indeed, given the assumption that triangle inequity holds, each edge between customers
is traversed at most once in the optimal solution. However, each edge between the depot
and a customer may still be traversed several times. Without loss of generality, we use the
term ŠvertexŠ to denote both ŠdepotŠ and ŠcustomerŠ in this paper. As a result, the same
customer vertex may have different degrees in the multigraphs of the parent solutions,
making the EAX crossover inoperative. On the other hand, the idea of assembling speciĄc
(promising) edges from the routes of high-quality solutions is highly appealing from the
perspective of solution recombination. The general edge assembly crossover gEAX that
we introduce in this work beneĄts from the basic idea of assembling suitable edges and
gets around the aforementioned difficulty related to the EAX crossover.
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Figure 5.1 Ű Illustration of adding dummy edges. (a) A portion of the multigraphs GA

and GB associated to solutions φA and φB. (b) multigraph GA and extended multigraph
GB with two dummy loops. (c) Joint multigraph of GA and extended GB.

The key idea of the gEAX crossover is to ensure that each vertex has the same degree
in the multigraphs of the parent solutions by introducing dummy edges, rendering it
possible to apply the edge assembling operations. To describe the gEAX crossover, we
Ąrst introduce the following notations.

For a SDVRP instance on graph G = (V , E), let φ be a solution composed of K
routes. Following the notation used in Section 1.5.1, let xk

ij be a Boolean variable such
that xk

ij = 1 if route (or vehicle) k goes from vertex i to vertex j and xk
ij = 0 otherwise.

Then xij(φ) =
∑K

k=1 xk
ij is the number of times edge (i, j) is traversed in the solution φ

and xij(φ) ≥ 1 holds for each edge (i, j). For example, in Fig. 5.1(a) (the square is the
depot j and the circle represents customer i), three vehicles (say k1, k2 and k3) of solution
φA (solid lines) go through the edge (i, j). These three distinct traversals on (i, j) are
identiĄed as xk1

ij = 1, xk2
ij = 1 and xk3

ij = 1. Thus xij(φA) = 3. For solution φB (dot lines),
there is only one route k passing through the edge (i, j), thus xk

ij = 1 and xij(φB) = 1.
For a solution φ of the SDVRP instance on graph G = (V , E), we deĄne its corre-

sponding multigraph Gφ = (V , Eφ) with the multiset of parallel edges Eφ such that for an
edge (i, j) of E , there are xij(φ) parallel edges in Eφ.
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Fig. 5.1(a) shows a portion of the multigraphs associated to solutions φA and φB.
For solution φA, there are three parallel edges between the depot j and the customer i,
because three vehicles traverse edge (i, j).

Given two solutions φA and φB, let GA = (V , EA) and GB = (V , EB) be the correspond-
ing multigraphs. The degree difference of vertex i in GA and GB is ∆i = ♣degA(i)−degB(i)♣
where degφ(i) denotes the degree of vertex i in solution φ. For a vertex i, if ∆i ̸= 0, GA or
GB is extended by adding one or more dummy loops (i, i) to the vertex to render ∆i = 0.

In the example of Fig. 5.1(a), ∆i = ♣degA(i) − degB(i)♣ = 6 − 4 = 2 and ∆j =
♣degA(j)− degB(j)♣ = 3− 1 = 2. Thus, GB is extended by dummy loops (i, i) and (j, j) as
shown in see Fig. 5.1(b). In what follows, an edge e ∈ EA ∪EB is called a common edge of
φA and φB if e ∈ EA ∩ EB; otherwise, e is a non-common edge.

Given two solutions φA and φB, let GA = (V , EA) and GB = (V , EB) be their extended
multigraphs such that ∆i = 0 holds for each vertex i, we deĄne the joint multigraph
GAB = (V , ¶EA ∪ EB♢\¶EA ∩ EB♢) by the symmetric difference of EA and EB.

Fig. 5.1(c) shows the joint multigraph GAB associated to two solutions φA and φB.
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Figure 5.2 Ű Illustration of the gEAX crossover.

Given two solutions φA, φB as well as their corresponding multigraphs GA = (V , EA)
and GB = (V , EB), the proposed gEAX crossover generates several offspring solutions in
Ąve steps (see Fig. 5.2 for an illustrative example).

1. Addition of dummy loops and generation of graph GAB = (V , EAB). At the
beginning, dummy loops are added to make the degree difference become 0 for all
vertices in the multigraphs GA and GB. SpeciĄcally, for each vertex i, the number
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of added dummy loops (i, i) is ♣degA(i)−degB(i)♣
2

. If degA(i) > degB(i), dummy loops
are added into EB, and vice versa, as illustrated in Fig. 5.1(b). Once the degree
difference becomes 0 for all vertices in the multigraphs GA and GB, we create the
joint multigraph GAB = (V , EAB) with EAB = ¶EA ∪EB♢\¶EA ∩EB♢). In the example
of Fig. 5.2, four dummy loops are added.

2. Generation of AB-cycles. From the joint multigraph GAB, a number of AB-cycles
are generated where each new AB-cycle is constructed as follows. A random vertex
is selected to initialize an empty AB-cycle; then edges from EA and EB are traced
alternatively to extend the ongoing AB-cycle, and each traced edge is removed from
GAB; the AB-cycle is constructed successfully when the traced edges lead to a cycle.
After the construction of the current AB-cycle, if GAB is not empty, the process
continues to build the next AB-cycle. The process stops and returns all AB-cycles
once GAB becomes empty. As shown in Fig. 5.2, three AB-cycles are generated from
GAB. One notices that each AB-cycle contains at least four edges. Let C denote the
set of m AB-cycles obtained from this step.

3. Generation of E-sets. From the set of m AB-cycles C = ¶C1, C2, · · · , Cm}, a set
of E-sets is created, where an E-set is an union of AB-cycles. Each new E-set Ei is
initialized by an AB-cycle C ′ in C and C ′ is removed from C. Then, each remaining
AB-cycle C ′′ of C are checked. If C ′′ shares at least one vertex with Ei, C ′′ is added
to Ei and removed from C. A complete E-set (Ei) is achieved when no AB-cycles
can be added into Ei. This process stops when no AB-cycle is left (i.e., C becomes
empty). In the example of Fig. 5.2, the three AB-cycles should be combined to form
one single E-set since the depot is shared. However, for illustrative purpose of steps
4 and 5 below, we suppose three E-sets as shown in Fig. 5.2. Let E denote the set
of E-sets obtained from this step.

4. Generation of intermediate solutions. For each E-set Ei of E, an intermediate
solution is generated by using a random parent (say φA) as the basic solution. The
dummy loops in the E-sets Ei are Ąrst removed. Then, the intermediate solution φ′

i

is constructed based on φA by removing from it the edges of EA shared with Ei and
adding the edges of EB shared with Ei, that is, φ′

i ← (EA \ (Ei∩EA))∪ (Ei∩EB). Such
a strategy guarantees that all common edges in φA and φB are necessarily inherited
by intermediate solutions. Moreover, all edges in intermediate solutions come from
parent solutions. Fig. 5.2(a′ − c′) illustrate the three intermediate solutions from
this step.

5. Elimination of isolated subtours. An intermediate solution may include one or
more isolated subtours, such as the triangle subtour in the upper left corner of Fig.
5.2(a′). The 2-opt* heuristic [PR95] is then adopted to eliminate these subtours. For
each randomly selected subtour, an edge is removed from the subtour and an edge
is removed from another route. Then two new edges are introduced to connect two
routes. This process is exactly the same as the M8 and M9 introduced in Section
5.2.5. Fig. 5.2(a′′) illustrates the offspring solution after subtour elimination in the
solution of Fig. 5.2(a′).
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The complexity of gEAX can be summarized as follows. Suppose without loss of gen-
erality that ♣EA♣ ≥ ♣EB♣. In the Ąrst four steps, there are ♣EA♣+♣EB♣ edges involved, leading
to a time complexity of ♣EA♣. For the Ąfth step, the time complexity of 2-opt* is O(n× δ),
where δ is a parameter (Introduced in Section 5.2.5). Thus, the time complexity of gEAX
is O(n× δ). Moreover, ♣EA♣ edges are invoked and thus the space complexity is O(♣EA♣).

The gEAX crossover follows the idea of the EAX crossover initially designed for the
VRP [NB09] and inherits its advantages, while relaxing the customer demand and capacity
constraints. A pair of solutions can generate a variety of offspring solutions with relatively
short edges from the parent solutions. More importantly, gEAX overcomes the limitation
of EAX that parent solutions (precisely their multigraphs) need to possess the same degree
for each vertex. As we show in Sections 5.3 and 5.4.1, gEAX signiĄcantly contributes to
the performance of the proposed algorithm. In Section 5.4.2, we provide experimental
evidences to understand why gEAX is a meaningful crossover for the SDVRP. Finally, the
idea behind gEAX also provides a basis for designing meaningful edge assembly crossovers
for other rich routing problems such as team orienteering, location routing as well as arc
routing.

5.2.3 Restoring the feasibility of offspring solutions

The customer demand and vehicle capacity are ignored during the gEAX crossover
process. As such, an offspring solution may be infeasible in terms of these constraints.
This section describes how the feasibility of an offspring solution is restored.

Restoring customers’ demand
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Figure 5.3 Ű Illustration of balancing demands

When the routes from the parent solutions are recombined by gEAX, the total amount
of served demand of a customer in an offspring solution can be different from the cus-
tomerŠs demand. Suppose that di(rk) is the served demand of customer i by route rk. For
example, for the offspring b

′′
of Fig. 5.3, customer i (denoted by the red dot) is visited by

two routes r3 and r4 with the total amount of served demand di(r3) + di(r4). However,
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since route r4 in solution b
′′

entirely comes from φA that serves the full demand di already,
we have di(r3) + di(r4) > di. Thus, for each customer i, we need to adjust the demand
distribution among the routes visiting the customer and make sure that

∑K
k=1 di(rk) = di.

We distinguish two cases (i)
∑K

k=1 di(rk) > di, and (ii)
∑K

k=1 di(rk) < di. Let drk
be

the total load of route rk. For the Ąrst case, the capacity excess drk
−Q (Q is the vehicle

capacity) of each route rk visiting customer i is calculated, and the resulting values are
sorted from the largest to the smallest. Then, the route rk with the largest capacity
excess is identiĄed. If

∑K
k=1 di(rk)− di > di(rk), the customer i is removed from route rk.

Otherwise the amount of demand di(rk) − (
∑K

k=1 di(rk) − di) is removed from route rk,
and the demand of customer i is restored, that is

∑K
k=1 di(rk) = di. This process is looped

until the demand of all customers is restored. For the second case, the process is similar
and operates with the residual capacity of Q− drk

.

Restoring the capacity constraints

In addition to the customer demand, the offspring solutions generated by the gEAX
crossover may violate the capacity constraint as well. To restore the capacity feasibility
of an offspring solution, we apply two well-known inter-route move operators (i.e., insert*
and 2-opt*).

SpeciĄcally, let φ be an infeasible offspring solution and fc(φ) be its Ątness as deĄned
by fc(φ) = f(φ) + pc × fp(φ), where f(φ) is the traveling cost, fp(φ) is the total over-
capacity in solution φ, and pc is a penalty parameter initialized to be the ratio between
the longest edge and the largest demand. The repair process operates on an overcapac-
itated route r and uses insert* [ASH06] and 2-opt* (2-opt* corresponds to M8 and M9
of Section 5.2.5) to repair the route. During this process, a tabu list is used to prevent
a performed move from being reversed. After each repair operation involving two routes,
the set of infeasible routes Rinf is updated. The penalty parameter pc is multiplied by
10 if no feasible move can be found while there are still infeasible routes (Rinf ̸= ∅). The
procedure continues until all routes becomes feasible (Rinf = ∅), and returns the repaired
solution φ.

5.2.4 Mutation

Given that an offspring solution inherits exclusively the edges of its parents, it may
resemble much the parents even after the feasibility restoring operations. To introduce
some diversity into an offspring solution, we modify the solution with a probability pm

with the removal operator presented in [Sha98]. Basically, this operator deletes some
customers from their routes and then greedily reinserts these customers into the solution
while respecting the capacity constraint.

SpeciĄcally, the mutation removes a number of customers that are similar with respect
to a predeĄned characteristic (e.g., location or demand). In this work, we use the distance
between customers to deĄne the similarity. The mutation works in two steps as follows.
Firstly, a random customer i in route rk with its served demand di(rk) is selected to
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initialize set C. Then, the similarity between customer i and other customers (N \ C)
is calculated and sorted in ascending order, where the Ąrst customer has the maximum
similarity. A customer with its served demand in the route is selected with the roulette-
wheel selection and saved in set C subsequently. For each selected customer i, if it is
visited by more than one route, a random route is retained. The Ąrst step terminates
when l customers are considered (♣C♣ = l) (l is a parameter called the mutation length) .
More details about this step can be found in [RP06]. The second step reinserts greedily
the removed customers of set C. For each customer i ∈ C, a customer j ∈ N \C from its δ-
nearest neighborhood is selected, and the customer i is inserted after the customer j with
respect to the capacity constraint and the minimum traveling distance. This procedure
terminates when all customers in C are inserted into the solution. The worst-case time
complexity of the mutation is O(l × δ).

5.2.5 Local search

Local search is among the core components of the state-of-the-art heuristic algorithms
for several related VRPs. Enriched neighborhood operators, exploration strategies, and
speed-up techniques have been developed to allow the local search to attain high-quality
solutions within a limited time. The local search procedure of SplitMA for the SDVRP
adopts nine popular VRP neighborhood operators used in [Vid22], including eight inter-
route and one intra-route structures. To reinforce its search capacity, our local search
additionally employs four tailored SDVRP neighborhood operators proposed in [BPR07]
and [DT89; DT90]. These 13 operators are explored under the framework of variable neigh-
borhood descent according to the order in which they are presented in the forthcoming
subsections.

Before introducing the neighborhood operators, we Ąrst present three application rules.
The Ąrst rule is that once an improvement occurs with an inter-route structure, the
procedure checks whether a vehicle visits some customers twice. If so, the duplicated visits
with the largest distance reduction are removed. The second rule deĄnes the neighborhood
of each customer as the δ-nearest vertices, where δ (δ < ♣N ♣) is the granularity threshold
restricting the search to nearby vertices. This rule aims to avoid the examination of non-
promising neighboring solutions and speeds up the local search. The last rule is that the
Ąrst improvement strategy is adopted to explore each neighborhood.

To present the different neighborhood operators, we adopt the following notations.
r(u) and r(v) denote the routes which visit vertices u and v, respectively. Let v be a
neighbor of u, and x and y the successors of u in r(u) and v int r(v), respectively. (u, x)
is the substring from vertex u to x, and (v, y) is the substring from vertex v to y.

VRP neighborhood operators

We Ąrst summarize the nine commonly used VRP neighborhood operators, named
as M1ŰM9. Detailed presentations of these operators are provided in [Vid22]. Basically,
M1ŰM3 are based on the insertion operation and M4-M6 use the interchange (or swap)
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operation. M7 is the classical 2-opt for intra-route move, while M8 and M9 apply 2-opt*
[PR95] for inter-route optimization.

Ů M1: If u is a customer visit, remove u from route r(u) and place u after v;
Ů M2: If u and x are customer visits, remove them from route r(u) and place (u, x)

after v;
Ů M3: If u and x are customer visits, remove them from route r(u) and place (x, u)

after v;
Ů M4: Interchange u and v if they are customer visits;
Ů M5: Interchange (u, x) and v if they are customer visits;
Ů M6: Interchange (u, x) and (v, y) if they are customer visits;
Ů M7: This is 2-opt. If r(u) = r(v), replace (u, x) and (v, y) by (u, v) and (x, y);
Ů M8: This is 2-opt*. If r(u) ̸= r(v), replace (u, x) and (v, y) by (u, v) and (x, y);
Ů M9: This is 2-opt*. If r(u) ̸= r(v), replace (u, x) and (v, y) by (u, y) and (v, x).

SDVRP inter-route neighborhood operators

We describe now the four inter-route neighborhood operators M10ŰM13 speciĄcally
designed for the SDVRP [BPR07; DT89].

Ů M10: This operator extends M4 by modifying the amounts to be delivered to
customers with respect to the capacity constraint. Suppose that customers u and v
(customer v is a neighbor of customer u) are visited on two distinct routes, that is
r(u) ̸= r(v). There are two cases: (i) if du(r(u)) > dv(r(v)), then customer v with
demand dv(r(v)) is inserted before or after customer u in route r(u), and a copy
of u with dv(r(v)) is inserted into route r(v) at the position of customer v; (ii) if
du(r(u)) < dv(r(v)), customer u with du(r(u)) is inserted before or after customer
v, while a copy of v with du(r(u)) is removed from route r(v) and repositioned
at the position of customer u in route r(u). Please refer to [BPR07; SSO15] for a
detailed description and illustration.

Ů M11: It extends M5 by adjusting the amounts to be delivered to customers while
satisfying the capacity constraint. Suppose that customers u and v come from two
different routes. Two cases are considered: (i) if du(r(u)) + dx(r(u)) > dv(r(v))
and du(r(u)) < dv(r(v)), then customer u with du(r(u)) and a copy of x with
dv(r(v))−du(r(u)) are interchanged with customer v with dv(r(v)); (ii) if du(r(u))+
dx(r(u)) < dv(r(v)), customers u, x are inserted before or after v in route r(v), and
a copy of customer v with du(r(u))+dx(r(u)) is removed from r(v) and replaced at
the position of u in route r(u). One notices that if du(r(u)) + dx(r(u)) = dv(r(v)),
M11 becomes M5. A detailed description of M11 can be found in [BPR07; SSO15].

Ů M12 (RouteAddition): This operator was introduced by [DT89]. Firstly, suppose
that a customer u is served by two routes r(u) and r′(u), and the customer u is
removed from the routes and inserted in a new empty route. Then, four subtours
of routes r(u) and r′(u) split by customer u are considered. The best component
of combining these four route segments together with customer u is constructed
to minimize the traveling cost, and three new routes are generated. Following
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[DT89], we only consider the customer u involved in two or three routes to limit the
computational complexity of exploring this neighborhood. For example, if customer
u is visited by two routes, there are 9 components; however, if customer u is visited
by three routes, there are 19 components.

Ů M13(k-Split): This operator was also introduced by [DT89]. It splits a customer
and inserts the split demands into different routes with respect to the minimum
move gain and capacity constraint. A greedy heuristic is adopted to Ąnd the best
move quickly. For a detailed description, please refer to [SSO15].

Route elimination

For the SDVRP-LF, feasible solutions are limited to Kmin vehicles. However, this
constraint is relaxed during the mutation and local search with different neighborhood
operators. In order to obtain feasible solutions after the local search, the k-Split neigh-
borhood operator is employed to eliminate the least loaded route one by one until the
number of routes equals Kmin. For route elimination, we adopt the EmptyRoutes proce-
dure presented in [SSO15].

Maximum splits per customer

Intuitively, to minimize the objective function, it is not desirable to split too much a
customerŠs demand. As a result, in SplitMA, for each customer i, a maximum number
of splits si is determined by si = max¶smin, ⌈θ × di

Q
⌉♢, where θ is a control parameter

and smin sets the minimum of si, which prevents the maximum splits per customer from
becoming too small. In SplitMA, we experimentally set θ = 50 and smin = 5, and apply
the maximum splits strategy in neighborhood operators M10, M11 and M13. The beneĄts
of this strategy are investigated in Section 5.4.4.

5.2.6 Population management

Population management is known as an important ingredient of successful memetic al-
gorithms. SplitMA adopts a variable population scheme inspired by that used in [Vid+12].

The number of individuals in P varies between pmin and pmax (pmin < pmax) during the
evolution process. Unlike the population management strategy used in [Vid+12], clone
individuals are not allowed. Along with the evolution, the size of P increases since offspring
individuals are progressively added to the population. Once ♣P♣ > pmax, the surviving
selection is triggered to remove pmax - pmin individuals by considering their contributions
to the diversify of the population and traveling cost. Similar to [BPR07], the normalized
Hamming distance hAB between φA and φB is deĄned as the ratio between the number of
non-common edges and the number of total edges in φA and φB, hAB = ♣¶EA∪EB♢\¶EA∩EB♢♣

♣EA∪EB♣
.

Then, the biased Ątness of each solution is calculated with respect to its initial Ątness and
diversity rank in P .
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If the best solution found so far φ∗ cannot be improved during γ consecutive iterations,
the algorithm restarts by generating a totally new population.

5.3 Computational results and comparisons

In this section, we report extensive experiments to evaluate the performance of SplitMA
on popular benchmark instances (see Section 1.5.3]) in comparison with the state-of-the-
art SDVRP algorithms in the literature.

5.3.1 Experimental protocol and reference algorithms

Parameter setting. The SplitMA algorithm involves six main parameters: the mini-
mal population size pmin, the maximal population size pmax, the mutation probability pm,
the mutation length l, the granularity threshold δ and the maximum iterations without
improvement γ. To tune these parameter, we applied the automatic parameter tuning
package Irace [Lóp+16], leading to the setting shown in Table 5.1. This setting can be
considered as the default setting of the SplitMA algorithm and is consistently used for
our experiments.

Table 5.1 Ű Parameter tuning results.

Parameter Section Description Considered values Final value

pmin 5.2.1 and 5.2.6 minimal size of population ¶10, 15, 20, 25, 30♢ 30

pmax 5.2.1 and 5.2.6 maximal size of population ¶45, 50, 55, 60, 65, 70, 75♢ 60

pm 5.2.4 mutation probability ¶0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3♢ 0.2

l 5.2.4 length of mutation ¶0.05, 0.1, 0.15, 0.2, 0.25♢ 0.05

δ 5.2.5 granularity threshold ¶10, 15, 20, 25, 30♢ 20

γ 5.2.6 maximum iterations without improvement ¶5000, 10000, 15000, 20000, 25000♢ 10000

Reference algorithms. Following the review of Section 1.5.2, we adopt the following
references for the comparative study.

Ů BKS. This indicates the best known solutions (best upper bounds) that are com-
piled from all reference heuristic and exact approaches [ABS14; MS22; OKY18].

Ů SplitILS. This multistart iterated local search algorithm was proposed by [SSO15]
for solving the SDVRP-LF and SDVRP-UF. It remains one of the current best
SDVRP algorithms. The algorithm was implemented in the C++ language and
executed on an Intel Core i7 2.93 GHz with 8.0 GB of RAM memory running
Linux. Each instance was executed 20 times with distinct seeds under the single
thread. The stopping condition is the maximum iterations given by min¶Kmin ×
n, 5000♢ × 10.

Ů iVNDiv. The algorithm was proposed by [AH10] for solving the SDVRP-LF only.
The algorithm was implemented in the C# language and executed on a Pentium
4, 2.8 GHz with 512 MB of RAM. The stopping condition is a maximum number
of iterations.
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Ů RGTS. This random granular tabu search algorithm was proposed by [BGN14] for
solving the SDVRP-LF and SDVRP-UF. It was written in C++ and executed on
a personal computer with 2.10 GHz and 4 GB RAM. The algorithm stops when
the given number of non-improving moves is met.

Ů SS. This scatter search algorithm was proposed by [CCM08] for solving the SDVRP-
LF only. It was encoded by C and executed on a Pentium IV, 2.4 GHz, 1 GB RAM.
The algorithm stops when the reference set remains unchanged after combining all
the solutions or the maximum number of iterations is reached.

Ů HGA. The hybrid genetic algorithm was presented by [WC12] and tested on some
instances of Set I and Set IV. It was implemented in FORTRAN 95 and executed
on an Intel Xeon 2.94 GHz with 8 GB RAM.

Ů TSVBA. The tabu search with vocabulary building approach was proposed by
[AH10] for solving the SDVRP-UF. It was implemented in C# and run on a Pen-
tium 4, 2.8 GHz, 512 MB of RAM. The algorithm stops when a predeĄned number
of iterations without improving is reached.

Ů FBTS. The forest-based tabu search was proposed by [Zha+15]. For solving the
SDVRP-UF. It was written in C++ and executed on an Intel i5-2410 2.3 GHz, 4
GB RAM. The algorithm terminates when the number of non-improvement steps
is met.

Ů MAPM. The memetic algorithm with population management was proposed by
[BPR07]. For solving the SDVRP-UF. The algorithm was implemented in Del-
phi and executed on a 3.0 GHz personal computer. The algorithm stops when a
maximum number of iterations is reached.

Ů ABHC. The attribute based hill climber heuristic was proposed by [DLV10] for
solving the SDVRP-UF. It was executed on a 3 GHz personal computer with 2 GB
RAM.

Among these references, the BKS values can be considered as the most reliable because
they are the best results ever reached by an existing SDVRP algorithm in the literature.
On the other hand, the results of the cited algorithms enable an assessment of the proposed
algorithm compared to the current state-of-the-art methods. We contacted the authors
of the reference algorithms, and obtained the source codes of RGTS [BGN14] and FBTS
[Zha+15]. Unfortunately, for RGTS when we ran it with large scale instances such as
p03-100D4, the program terminated with unknown errors. For FBTS, when we compiled
the C++ code with g++ on our computer, there were several errors. Furthermore, two
studies [Che+17; Shi+18] are excluded for our comparative experiments because they
report inconsistent results. For several instances, their results are even better than the
proven optimal values reported in [ABS14; MS22].

Experimental setting and stopping criterion. The SplitMA algorithm was imple-
mented in C++ and compiled using the g++ compiler with the -O3 option 2. Experiments
were executed on a computer with a Xeon E5-2670 processor of 2.5 GHz and 2 GB RAM

2. Upon the publication of the paper, the code of our algorithm will be made available at https:

//github.com/pengfeihe-angers/SplitMA
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running Linux with a single thread. The algorithm was executed 20 times for each instance
with distinct random seeds. In order to provide a good compromise between computing
time and solution quality, the SplitMA algorithm terminates when it reaches a maximum
of 40,000 iterations. Since each application of the gEAX crossover produces β offspring
solutions, each iteration means an offspring solution is constructed and improved by the
local search subsequently. On our computer, one run of SplitMA under this stopping con-
dition corresponds to a maximum of 0.04 to 4470.13 seconds (only one instance requires
this longest time) according to the instance size, which is quite reasonable compared to
the time reported by most reference algorithms in the literature.

5.3.2 Computational results and comparisons

In the tables presented hereafter, column Instance indicates the name of instances;
#Instances is the number of instances; LB is the lower bound extracted from state-
of-the-art exact algorithms [ABS14; BMM00; MS22; OKY18]; Best and Avg. are the
best and average results obtained by the corresponding algorithm in the column header,
respectively; Gap is calculated as Gap = 100 × (fbest − BKS)/BKS, where fbest is the
best objective value of SplitMA. Since the SDVRP is a minimization problem, a negative
Gap (in bold) indicates an improved upper bound. Time is the average time in seconds of
20 executions. TMB is the average time needed by the algorithm to hit its best solution.
Furthermore, the dark gray color indicates that the corresponding algorithm obtains the
best result among all compared algorithms on the corresponding instance; the medium
gray color displays the second best results, and so on.

We also provide the summarizing information as follows. Average is the average value
over the instances of a benchmark set. #Best is the number of instances for a set where
an algorithm gets the best objective value. Finally, to access the statistically signiĄcant
difference between SplitMA and each reference algorithm, the p-value is shown in each
table and it is the result of the Wilcoxon signed-rank test with a conĄdence level of 0.05.
If the p-value is less than 0.05, the null hypothesis is rejected.

In the following subsections, we present the results obtained by SplitMA on all the
benchmark instances and compare them with the reference algorithms.

Comparative results on the SDVRP-LF

Table 5.2 summarizes the results of the SplitMA algorithm for the SDVRP-LF (upper
part) compared to the reference algorithms in terms of the best objective values while
Tables 6.18 - 6.22 show the detailed results on the 162 instances. From these tables, the
following observations can be made. First, as shown in Table 5.2, SplitMA Ąnds 70 new
upper bounds out of the 162 instances (43%), matches the BKS values for 75 other in-
stances (46%) and only misses 17 BKS values (10%). This performance can be considered
as remarkable given that the BKS values are the best results compiled from all exist-
ing algorithms. Furthermore, compared to the most effective heuristic SplitILS, SplitMA
obtains 76 and 97 better results in terms of the best and average values, respectively,
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Table 5.2 Ű Summary of comparative results between SplitMA and reference algorithms
in terms of the best objective values.

Pair algorithms #Instances
Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

SDVRP-LF 162 - - - - - - - -

SplitMA vs. BKS 162 70 75 17 4.28E-09 - - -

SplitMA vs. SplitILS 162 76 74 12 1.11E-12 97 29 36 7.42E-09

SplitMA vs. iVNDiv 99 92 7 0 3.15E-17 - - - -

SplitMA vs. RGTS 88 78 9 1 2.15E-14 79 8 1 2.76E-14

SplitMA vs. SS 49 44 5 0 1.74E-09 - - - -

SplitMA vs. HGA 21 12 8 1 3.09E-03 - - - -

SDVRP-UF 162 - - - - - - - -

SplitMA vs BKS 162 73 81 8 2.08E-12 - - - -

SplitMA vs. SplitILS 162 82 76 4 4.35E-16 112 33 17 6.24E-18

SplitMA vs. TSVBA 120 105 13 2 8.69E-20 - - - -

SplitMA vs. FBTS 67 67 0 0 1.12E-12 - - - -

SplitMA vs. MAPM 74 62 12 0 1.72E-12 - - - -

SplitMA vs. ABHC 36 34 2 0 1.83E-07 - - - -

while the reverse is true for 12 and 36 cases. For the remaining reference algorithms, the
dominance of SplitMA is even more evident by achieving the best results for the vast
majority of the instances. According to the Wilcoxon signed-rank test, the small p-values
(≪ 0.05) between SplitMA and the competitors indicate that the performance differences
are statistically signiĄcant.

From the detailed results shown in Tables 6.18 - 6.22, we have several observations.
First, for each benchmark set, SplitMA competes favorably with the corresponding refer-
ence algorithms in terms of the best and average results. Second, in terms of running time,
SplitMA spends a little more time to obtain slightly better results compared to SplitILS
for Set I with both rounded and unrounded costs. For the three remaining Sets, SplitMA
Ąnds better results than SplitILS with less computation time. Some algorithms, such as
RGTS, show very short times, but their results are much worse than SplitMA (and Spli-
tILS). ItŠs worth saying that given the reference algorithms were programmed in different
languages and performed on different computers under different stopping conditions, the
comments on running times are provided for indicative purposes only.

Comparative results on the SDVRP-UF

Table 5.2 summarizes the results of the SplitMA algorithm for the SDVRP-UF (lower
part) compared to the reference algorithms in terms of the best objective values while
Tables 6.23 - 6.27 show the detailed results on the 162 instances. One notices that our
algorithm updates 73 BKS values (new upper bounds) and matches 81 other BKS values.
Compared to the best reference algorithm SplitILS, our algorithm reports 82 better, 76
equal and 8 worse results, respectively. For the average results, SplitMA obtains 112 better
results compared to SplitILS. SplitMA performs much better than the other reference
algorithms (weaker than SplitILS) by obtaining the best results for the vast majority of the
instances. The small p-values (≪ 0.05) from the Wilcoxon signed-rank test indicate that
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the performance differences between SplitMA and the reference algorithms are statistically
signiĄcant.

5.4 Analysis

In this section, we conduct additional experiments to assess the contributions of two
key components of the SplitMA algorithm, that is gEAX and local search. For this, we
focus on the SDVRP-UF and the 74 instances of Sets I and II.

5.4.1 Significance of the gEAX crossover
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Figure 5.4 Ű Performance gaps of SplitGiant (with the giant tour crossover) and SplitMA1
(with the gEAX crossover disabled) compared to SplitMA on the 74 instances of Sets I
and II (a positive gap indicates a deteriorating result).
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Figure 5.5 Ű Convergence charts of SplitMA and SplitGiant for solving two representative
instances.
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Table 5.3 Ű Summary of comparative results of SplitMA compared to the results of Split-
Giant (using the giant tour crossover) and SplitMA1 (without any crossover).

Pair algorithms
Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

SplitMA vs. SplitGiant 46 28 0 3.52E-09 54 13 7 3.52E-12

SplitMA vs. SplitMA1 64 10 0 4.63E-10 68 6 0 7.64E-13

To assess the interest of the gEAX crossover, we create two variants of SplitMA as
follows. The Ąrst variant (SplitGiant) replaces in SplitMA the gEAX crossover by the
popular giant tour crossover, which has been very successful for solving routing problems
[Pot09; Vid+14] as well as the SDVRP [BPR07]. To implement this variant, we faithfully
follow the description of [BPR07] and adopt the source code of the split procedure from
[Vid22]. The second variant (SplitMA1) just disables the gEAX crossover of SplitMA. To
ensure a fair comparison, we use the average running time of SplitMA shown in Tables
6.23 and 6.25 as the stopping condition of these two variants to solve each instance. Like
SplitMA, each variant is run 20 times independently on each instance. The summarized
results are shown in Table 5.3 while the detailed results are illustrated in Fig. 5.4 where
the results of SplitMA are used as the basis and the results of SplitGiant and SplitMA1
are presented related to this basis.

From Table 5.3 and Fig. 5.4, one observes that SplitMA outperforms SplitGiant (using
the giant tour crossover) in terms of both the best and average values, by reaching 46
better results and 28 equal results out of the 74 instances. Furthermore, when the gEAX
crossover is removed from SplitMA, the results become much worse since SplitMA1 can
only matches 10 and 6 best solutions in terms of the best and average results.

To further compare SplitMA and SplitGiant, we investigate their convergence behav-
iors. SpeciĄcally, we obtain the running proĄles of these algorithms on two representative
instances (S101D3 and S101D5). Each algorithm is run 20 times with the same time
budget and the best results were recorded during the process. The results of this exper-
iment are shown in Fig. 5.5. One observes that SplitMA converges not only faster than
SplitGiant, but also converges better.

We conclude that gEAX is not only a critical search operator contributing greatly to
the performance of SplitMA, but also a more suitable crossover compared to the giant
tour crossover.

5.4.2 Rationale behind the crossover

To shed insights on why the gEAX crossover is a suitable operator for the SDVRP,
we investigate the relationship between high-quality local optimal solutions in terms of
the Hamming distance. Indeed, relevant studies on the TSP [Müh90; NK13] and VRP
[AS19b; NB09] have found that high-quality solutions share many common edges, which
form the backbone of optimal solutions. EAX thus beneĄts from this property to construct
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promising offspring solutions by inheriting the backbone information while introducing a
certain degree of diversity [NK13]. In this section, we show experimentally that the same
property remains valide for the SDVRP.
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Figure 5.7 – Hamming distance between solutions and the best/optimal solution

For our experiment, we select two representative instances: eil51 whose optimal value
is known and S101D5 whose best result is shown in Table 6.23. We run SplitMA on
these two instances and record a large number of high-quality solutions whose objective
value is within 5% of the best/optimal value. As such, 501 solutions for eil51 and 625
solutions for S101D5 are collected. Then, we calculate the normalized Hamming distance
(see the definition in Section 5.2.6) between each pair of the solutions. Informally, this
distance indicates the percentage of the non-common edges between two solutions over
the total edges of the two solutions. A value close to 0 means that the two solutions are
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very similar and vice versa. The results are showed in the two dimensional heat map of
Fig. 5.6. The abscissa and ordinate represent the rank of solutions from smallest (best) to
largest (worst) with respect to the objective value. Each colored pixel corresponds to the
normalized Hamming distance between two solutions. Hot colors show small Hamming
distances, corresponding to pairs of similar (or close) solutions, while cold colors indicate
large Hamming distances, thus pairs of distant solutions.

As one observes in Fig. 5.6, hot colors are around the bottom left corner of both
Ągures, while cold colors are around the upper right corner. This indicates that plus the
solutions are good, more they share common edges and vice versa. Furthermore, Fig. 5.7
illustrates the Hamming distance between high-quality solutions and the best/optimal
solution. Once again, one notes that high-quality solutions are closer to the best/optimal
solution compared to less good solutions. This is particularly true for S101D5, for which
high-quality solutions are very close to the best known solution (with more than 90%
common edges).

These Ąndings explain why the gEAX crossover performs well for the SDVRP. Indeed,
gEAX transmits the common edges from parents (high-quality solutions) to offspring
and conserves the backbone information of high-quality solutions while reassembling non-
common edges. It is worth noting that these Ąndings are fully consistent with the cases
of the TSP and VRP, which motivated the design of the EAX crossover.

5.4.3 Benefits of the local search and mutation
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Figure 5.8 Ű Illustration of the effects of the neighborhood operators and the mutation
operator in terms of the gap with respect to the results of the SplitMA algorithm with
all neighborhoods and the mutation operator.

SplitMA uses thirteen neighborhood operators in its local search procedure and one
mutation operator. It is interesting to know how each of these operators contributes to
the performance of the algorithm. For this purpose, we create fourteen SplitMA variants
(named V1 to V14) by disabling each of these operators. For example, variant V1 is
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Table 5.4 Ű Effect of each neighborhood and the mutation operator.

Pair algorithms
Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

SplitMA vs. V1 18 42 14 5.88E-01 31 20 23 9.01E-01

SplitMA vs. V2 13 48 13 6.94E-01 25 21 28 8.49E-01

SplitMA vs. V3 14 44 16 9.92E-01 29 22 23 9.67E-01

SplitMA vs. V4 14 45 15 9.66E-01 32 22 20 3.16E-01

SplitMA vs. V5 13 46 15 4.73E-01 27 22 25 9.75E-01

SplitMA vs. V6 18 44 12 1.53E-01 32 22 20 8.04E-02

SplitMA vs. V7 13 45 16 3.36E-01 26 22 26 2.70E-01

SplitMA vs. V8 14 45 15 9.31E-01 32 21 21 4.08E-01

SplitMA vs. V9 14 45 15 9.31E-01 32 21 21 4.08E-01

SplitMA vs. V10 32 39 3 1.05E-05 49 21 4 1.70E-09

SplitMA vs. V11 16 44 14 5.30E-01 32 21 21 3.40E-02

SplitMA vs. V12 15 42 17 4.54E-01 29 20 25 4.36E-01

SplitMA vs. V13 12 45 17 2.39E-01 39 16 19 7.13E-03

SplitMA vs. V14 26 40 8 3.76E-03 44 21 9 2.70E-07

SplitMA vs. V15 24 41 9 2.17E-02 55 14 5 1.02E-10

SplitMA vs. V16 35 36 3 3.71E-07 58 14 2 2.56E-11

the SplitMA algorithm with the M1 neighborhood being removed from the local search
procedure and V14 is SplitMA without the mutation operator. To assess the contributions
of the nine VRP neighborhoods (M1-M9) and the four SDVRP neighborhoods (M10-M13),
we create two additional SplitMA variants V15 and V16 where M1-M9 and M10-M13 are
disabled, respectively. For each of these variants, we compare its best and average results
with those obtained by SplitMA. The gaps between these variants and SplitMA are shown
in Fig. 5.8, and a positive gap implies a deteriorating performance with respect to the
original SplitMA algorithm.

From the results of Table 5.4 and Fig. 5.8, the contribution of each operator can
be summarized as follows. First, all operators inĆuence the overall process with variable
impacts. SpeciĄcally, M10 can be considered as the most critical neighborhood operator
since SplitMA deteriorates signiĄcantly its performance if M10 is disabled. Meanwhile, the
roles of M2 and M9 are rather marginal. Second, the four tailored SDVRP neighborhood
operators (M10ŰM13) are important for the local search procedure. Third, the mutation
operator cannot be ignored since it considerably inĆuences the performance of SplitMA
for the best and average results. Finally, both V15 (without the VRP neighborhoods) and
V16 (without the SDVRP neighborhoods) perform very badly, conĄrming that both types
of neighborhoods are indispensable for the local search. Meanwhile, we observe that the
SDVRP neighborhoods are more critical than the VRP neighborhoods. In summary, all
the neighborhood operators and mutation contribute to the performance of the SplitMA
algorithm, even if their contributions vary signiĄcantly.

5.4.4 Benefits of the maximum splits per customer

We now study how the maximum splits strategy contributes to the performance of
SplitMA. For this purpose, we create 10 SplitMA variants with different values of θ,
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Table 5.5 Ű Effect of the maximum splits per customer.

Pair algorithms
Best Avg.

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

SplitMA vs. MaxS20 11 46 17 4.25E-01 19 29 26 3.07E-01

SplitMA vs. MaxS30 14 47 13 8.29E-01 20 31 23 4.69E-01

SplitMA vs. MaxS40 12 53 9 2.97E-01 22 32 20 5.28E-01

SplitMA vs. MaxS60 13 56 5 8.54E-02 22 32 20 9.70E-01

SplitMA vs. MaxS70 13 57 4 5.52E-02 25 31 18 8.75E-01

SplitMA vs. MaxS80 12 56 6 1.33E-01 26 30 18 6.12E-01

SplitMA vs. MaxS90 12 46 16 5.24E-01 19 28 27 2.92E-01

SplitMA vs. MaxS100 13 57 4 5.52E-02 27 29 18 2.29E-01

SplitMA vs. MaxS150 13 57 4 4.94E-02 33 26 15 1.05E-01

SplitMA vs. MaxS200 14 55 5 3.29E-02 34 25 15 3.81E-02

which controls the number of maximum splits per customer (the larger θ, the higher
the allowed maximum splits). For example, variant MaxS30 uses θ = 30. For each of
these variants, we compare its best and average results with those obtained by SplitMA
(θ = 50). This experiment follows the same experimental protocal as before and the results
are summarized in Table 5.5.

From Table 5.5, we Ąnd that SplitMA performs signiĄcantly better than MaxS150 and
MaxS200 in terms of the best results. Indeed, the value of θ used in variant MaxS200 is
four times larger than SplitMA (θ = 50). Furthermore, if the maximum splits strategy
is removed from SplitMA, the results we obtain are nearly the same as with the variant
MaxS200. Thus, the maximum splits strategy positively contributes to the performance of
SplitMA. On the other hand, SplitMA is marginally better than the other variants except
two cases for these 74 SDVRP-UF instances, which indicates that SplitMA performs
similarly well when the maximum splits per customer are limited to an reasonable range.

5.5 Chapter conclusion

The split delivery vehicle routing problem is a useful model for a broad range of ap-
plications in various domains. This work introduced a new memetic algorithm SplitMA
that features a general edge assembly crossover for creating promising offspring solutions
and an effective local search for solution reĄnement. It also employs dedicated repairing
techniques to ensure the feasibility of offspring solutions, a mutation to diversify new off-
spring solutions, and an advanced quality-and-distance strategy for maintaining a healthy
population.

Extensive experiments on four sets of 324 commonly used instances demonstrate that
our algorithm signiĄcantly outperforms all existing SDVRP algorithms available in the
literature. The algorithms discovers 143 new upper bounds (70 for the SDVRP with a Ćeet
of limited vehicles and 73 cases for the SDVRP with a Ćeet of unlimited vehicles) and
matches the best known results for the majority of the remaining instances. Additional
experiments are shown to understand the contributions of main algorithmic components

118



5.5. Chapter conclusion

including the gEAX crossover, local search neighborhoods and mutation.
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CONCLUSIONS

This thesis investigates effective hybrid genetic algorithms for solving four routing
problems: colored traveling salesmen problem, minmax multiple traveling salesmen prob-
lem, traveling salesman problems with proĄts and split delivery vehicle routing problem.
As the literature review shown in Chapter 1, given that these problems are NP-hard
and imply numerous real-life applications, many methods have been presented for solv-
ing these problems. In this thesis, we present a hybrid genetic algorithmic framework to
solve these problems efficiently and robustly. Extensive experiments on commonly used
benchmark instances indicate that our algorithms outperform state-of-the-art algorithms.

In Chapter 2, a grouping memetic algorithm is presented for solving the CTSP. The
algorithm integrates two complementary components: a speciĄc backbone-based crossover
to produce promising offspring solutions and a powerful local optimal exploration for off-
spring improvement. The crossover operator emphasizes diversiĄcation when inheriting
information from parent solutions to offspring individuals while the local optima explo-
ration is devoted to intensiĄed search by Ąnding local optimal solutions as good as possible.
Extensive experimental results on three sets of 65 benchmark instances indicate that our
algorithm is very competitive compared with existing leading algorithms. In particular,
it is able to update 38 new upper bounds and match 24 best-known results. We also
investigate the interest of CPLEX for solving the CTSP and reported 10 proven optimal
solutions for the Ąrst time.

In Chapter 3, even that the backbone information is easy to be applied to the CTSP,
it becomes difficult when solving the minmax mTSP and other routing problems. Thus,
we need more powerful crossover operators for these problems. For this reason, we de-
sign a dedicated edge assembly crossover operator (mEAX) for the minmax mTSP with
single and multiple depots. The proposed algorithm integrates an efficient variable neigh-
borhood descent to do intensive search and an aggressive post-optimization procedure to
further advance solutionsŠ quality. By properly inheriting edges from high-quality parent
solutions, mEAX contributes to propagate favorable characteristics from elite parent so-
lutions to offspring. Extensive experimental results on commonly used instances indicate
that our algorithm performs very well for both problems by reporting 44/77 and 39/43
new upper bounds for the minmax mTSP and the minmax multidepot mTSP, respec-
tively. We performe additional experiments to assess the contributions of the two key
algorithmic components (i.e., mEAX and post-optimization). We also conducte a long
term convergence analysis of the algorithm to illustrate its capacity of Ąnding still better
solutions if more time is allowed.

In Chapter 4, we present an extended edge assembly crossover (E2AX) for traveling
salesman problems with proĄts and its associated hybrid genetic algorithm. In addition
to the E2AX, the proposed hybrid genetic algorithm integrates an effective local search
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to ameliorate each offspring solution and diversiĄcation-oriented mutation as well as a
population-diversity management. Extensive experiments are conducted on the orienteer-
ing problem (OP) and the prize-collecting traveling salesman problem (PCTSP). For the
OP, four sets of 344 commonly used instances are tested and 67 new lower bounds are
discovered. The algorithm also matches the best known results for 172 other instances.
For the PCTSP, results on three sets of 240 instances show a high performance on large-
sized instances including 120 new best results never reported in the literature. Additional
experiments are conducted to get insights into the beneĄts of the proposed crossover and
the mutation.

In Chapter 5, since Chapter 4 proposes an extended edge assembly crossover that
the limited extension cannot be applied to more complex problems. such as the split
delivery vehicle routing problem, the more general edge assembly crossover should be
presented for rich routing problems. This chapter presents an effective memetic algorithm
for solving the problem with a Ćeet of limited or unlimited vehicles. The algorithm features
a general edge assembly crossover to generate promising offspring solutions from the
perspective of assembling suitable edges and an effective local search to improve each
offspring solution. The algorithm is further reinforced by a feasibility-restoring procedure,
a diversiĄcation-oriented mutation and a quality-and-distance pool updating technique.
Extensive experiments on 324 benchmark instances indicate that our algorithm is able to
update 143 best upper bounds in the literature and match the best results for 156 other
instances. Additional experiments are presented to obtain insights into the roles of the
key search ingredients of the algorithm.

The primary interest of this thesis is to investigate hybrid genetic algorithms to tackle
a class of routing problems. We focus on a versatile and scalable edge crossover crossover
and generalize it to rich routing problems. Results on four problems show positive contri-
butions of the crossover as well as local search procedures.

Perspectives

In this thesis, a hybrid genetic algorithmic framework is presented for four routing
problems. At the time of concluding thesis, the following perspectives would be interested
in the development of efficient solution methods.

The CTSP is strongly related to the mTSP and TSP, for which powerful algorithms
exist. Ideas of these algorithms could be useful for solving the CTSP. To advance heuristic
algorithms for the mTSP, the dedicated local search techniques could be further investi-
gated to speed up neighborhood examinations without sacriĄcing quality. Furthermore,
efficient exact algorithms are still missing for the minmax mTSP and minmax multidepot
mTSP. Research on this topic is thus valuable.

The hybrid genetic algorithm can be further improved by investigating powerful stream-
line techniques to increase the computational efficiency and to deal with still large problem
instances, in terms of the traveling salesman problems with proĄts. Several directions can
be envisaged to address the split delivery vehicle routing problem. First, the local search is
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the most time-consuming component, thus it is of interest to develop speed-up techniques,
such as static move descriptors designed for the CVRP. Second, our algorithm basically
explores feasible solutions. It is interesting to carry out mixed search approaches allowing
the examination of both feasible and infeasible solutions.

Another interesting research direction would be to investigate the general idea of as-
sembling promising edges from elite parents. Indeed, the uniĄed hybrid genetic algorithmic
framework including the gEAX for rich routing problems can be further studied. For ex-
ample, it is possible to design hybrid genetic algorithms for several routing problems,
such as location routing problems and two-echelon vehicle routing problems. Many other
computational challenges arise in these cases.
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Chapter 6

APPENDIX

6.1 Computational results on the minmax mTSP and

minmax multidepot mTSP

This appendix presents detailed computational results of the proposed MA algorithm
together with the results of reference algorithms: re-IWO, re-MASVND, ES [Kar+21],
HSNR [HHW21] and ITSHA [Zhe+22b]. In the tables presented hereafter, column ŚIn-
stancesŠ indicates the name of the benchmark instance; column ŚBKSŠ shows the best-
known solution summarized from the literature. For the minmax mTSP, the starred BKS
values are optimal values. ŚfbestŠ and ŚfavgŠ are the best and average solution found by the
algorithm in the column header, respectively. ŚGapŠ is calculated as Gap = 100×(fbest-
fbk)/fbk where fbest and fbk are the best objective value of MA and the best objective value
from all reference algorithms (including BKS), respectively. Since both problems have a
minimization objective, a negative Gap indicates an improvement over the BKS value
(i.e., a new upper bound). Furthermore, the dark gray color indicates that the algorithm
obtains the best result among the compared algorithms on the corresponding instance;
the medium gray color displays the second best result, and so on. We provide additionally
information for each algorithm in terms of the best and average value. ŚAverageŠ is the
average value over the instances of a benchmark set.

As shown in Table 6.3, the time information in Table 6.3 is provided only for indicative
purposes (The Ś-Š symbol indicates the time information is unavailable for MD and VNS
or non-applicable for MA). The time (in seconds) for MD and VNS corresponds to the
average time of one run under the stopping conditions indicated in Section 3.3.1. For the
MA algorithm, ŚTTBŠ indicates the average time in seconds needed for MA to hit the
BKS values, while ŚATŠ is the average time of one run.

6.2 The giant tour crossover for the prize-collecting

traveling salesman problem

Crossover operators based on the giant tour have been used to solve various rout-
ing problems [Vid+14], which rely on efficient split algorithms designed for speciĄc con-
straints, such as capacity or time windows. Indeed, the giant tour can also be applied
to TSPs with proĄts with respect to the corresponding constraints. In this section, we
introduce a giant tour crossover and an optimal split algorithm.
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We take the PCTSP as an example. Given a solution φ, let Nφ and N φ be a set of
routed and unrouted vertices in φ, respectively. Let φA and φB be two parent solutions.
First, all routed vertices (vi ∈ NφA

) in solution φA are arranged into an array A. Second, all
unrouted vertices (vi ∈ N φA

) are arranged into A after routed vertices in the sequential
order. An array B is produced using solution φB in the same way. Second, given two
giant tours A and B, an ordered crossover [OSH87] is used on a simple permutation-
based representation. Then a new giant tour S is produced. Finally, a linear-time split
algorithm with respect to the collecting prize optimally splits each giant tour by inserting
a trip delimiter. SpeciĄcally, for each vertex in S, if the delimiter is inserted after it, there
are two tours and we need O(1) time to compute proĄts and travel costs. Since there are
n vertices in S, we can optimally splits S in O(n) time. After the split, a feasible offspring
is returned.
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Table 6.1 Ű The minmax mTSP: comparative results of MA with Ąve reference algorithms on the 41 instances of Set S.

fbest favgInstances BKS
re-IWO re-

MASVND

ES

[Kar+21]

HSNR

[HHW21]

ITSHA

[Zhe+22b]

MA
Gap(%)

re-IWO re-

MASVND

ES

[Kar+21]

HSNR

[HHW21]

ITSHA

[Zhe+22b]

MA

mtsp51-3 159.57 159.57 159.57 159.57 159.57 159.57 159.57 0.00 159.57 159.57 159.57 159.85 159.57 159.57

mtsp51-5 118.13 118.13 118.13 118.13 118.13 118.13 118.13 0.00 118.13 118.13 118.13 118.13 118.13 118.13

mtsp51-10 112.07* 112.07 112.07 112.07 112.07 112.07 112.07 0.00 112.07 112.07 112.07 112.07 112.07 112.07

mtsp100-3 8509.16 8509.16 8509.16 8509.16 8509.16 8509.16 8509.16 0.00 8510.86 8602.30 8649.75 8513.75 8509.16 8509.16

mtsp100-5 6765.73 6780.37 6767.02 6767.02 6765.73 6767.82 6765.73 0.00 6833.45 6801.75 6832.74 6770.67 6772.95 6766.78

mtsp100-10 6358.49* 6358.49 6358.49 6358.49 6358.49 6358.49 6358.49 0.00 6358.49 6358.49 6358.49 6358.49 6358.49 6358.49

mtsp100-20 6358.49* 6358.49 6358.49 6358.49 6358.49 6358.49 6358.49 0.00 6358.49 6358.49 6358.49 6358.49 6358.49 6358.49

rand100-3 3031.95 3031.95 3031.95 3031.95 3031.95 3031.95 3031.95 0.00 3031.95 3047.71 3084.49 3032.67 3033.65 3031.95

rand100-5 2409.63 2409.90 2409.63 2409.63 2411.68 2412.35 2409.63 0.00 2429.50 2428.35 2422.41 2415.00 2414.65 2409.64

rand100-10 2299.16* 2299.16 2299.16 2299.16 2299.16 2299.16 2299.16 0.00 2299.16 2299.16 2299.16 2299.16 2299.16 2299.16

rand100-20 2299.16* 2299.16 2299.16 2299.16 2299.16 2299.16 2299.16 0.00 2299.16 2299.16 2299.16 2299.16 2299.16 2299.16

mtsp150-3 13075.80 13078.40 13234.10 13303.80 13075.80 13088.74 13038.30 -0.29 13259.97 13411.26 13526.70 13169.37 13210.69 13079.74

mtsp150-5 8466.00 8477.96 8493.62 8563.08 8477.96 8492.97 8417.02 -0.58 8650.11 8686.61 8757.22 8538.83 8572.77 8453.15

mtsp150-10 5557.00 5751.41 5666.45 5625.32 5590.64 5593.56 5557.41 0.00 5851.79 5763.28 5718.45 5604.92 5608.50 5588.86

mtsp150-20 5246.49* 5246.49 5246.49 5246.49 5246.49 5246.49 5246.49 0.00 5247.62 5246.49 5247.21 5246.49 5246.49 5246.49

mtsp150-30 5246.49* 5246.49 5246.49 5246.49 5246.49 5246.49 5246.49 0.00 5246.49 5246.49 5246.49 5246.49 5246.49 5246.49

gtsp150-3 2407.34 2407.34 2433.80 2423.17 2407.34 2407.34 2401.63 -0.24 2421.40 2468.12 2491.00 2435.49 2416.87 2401.86

gtsp150-5 1741.61 1744.57 1744.26 1751.85 1741.71 1741.13 1741.13 0.00 1777.90 1779.32 1797.71 1743.48 1752.06 1741.13

gtsp150-10 1554.64* 1554.64 1554.64 1554.64 1554.64 1554.64 1554.64 0.00 1557.22 1559.10 1554.64 1554.64 1554.64 1554.76

gtsp150-20 1554.64* 1554.64 1554.64 1554.64 1554.64 1554.64 1554.64 0.00 1554.64 1554.64 1554.64 1554.64 1554.64 1554.64

gtsp150-30 1554.64* 1554.64 1554.64 1554.64 1554.64 1554.64 1554.64 0.00 1554.64 1554.64 1554.64 1554.64 1554.64 1554.64

kroA200-3 10748.10 10801.30 10833.60 10883.30 10748.10 10700.57 10691.00 -0.09 10965.59 11136.70 11174.70 10987.69 10819.85 10691.41

kroA200-5 7415.54 7497.21 7484.17 7536.91 7418.87 7449.22 7412.12 -0.05 7697.45 7634.61 7770.43 7494.44 7513.67 7414.21

kroA200-10 6223.22* 6223.22 6223.22 6223.22 6223.22 6223.22 6223.22 0.00 6255.37 6266.44 6240.52 6223.22 6223.22 6249.10

kroA200-20 6223.22* 6223.22 6223.22 6223.22 6223.22 6223.22 6223.22 0.00 6223.22 6223.22 6223.22 6223.22 6223.22 6223.22

lin318-3 15902.50 16133.40 16551.60 16349.60 15902.50 15930.04 15663.50 -1.50 17006.92 16886.01 16797.80 16207.05 16088.56 15699.92

lin318-5 11295.20 12291.60 11741.60 11619.60 11295.20 11430.65 11276.80 -0.16 12882.38 12023.74 11907.90 11596.35 11601.67 11291.59

lin318-10 9731.17* 9861.64 9731.17 9731.18 9731.17 9731.17 9731.17 0.00 9963.31 9797.38 9736.17 9731.17 9731.17 9731.17

lin318-20 9731.17* 9731.17 9731.17 9731.17 9731.17 9731.17 9731.17 0.00 9731.18 9731.17 9731.18 9731.17 9731.17 9731.17

att532-3 10231.00 11258.00 10566.00 10585.00 10231.00 10158.00 9966.00 -1.89 11525.50 10853.05 10953.90 10565.30 10344.50 10064.00

att532-5 7067.00 8518.00 7279.00 7344.00 7067.00 7067.00 6986.00 -1.15 8895.80 7429.50 7463.50 7334.00 7156.80 7070.95

att532-10 5709.00 6427.00 5745.00 5761.00 5709.00 5731.00 5770.00 1.07 6552.90 5809.00 5806.75 5738.90 5787.50 5796.75

att532-20 5580.00* 5745.00 5580.00 5580.00 5580.00 5583.00 5580.00 0.00 5836.90 5582.90 5580.05 5580.00 5601.75 5589.35

rat783-3 3158.34 3688.79 3295.90 3444.20 3187.90 3131.99 3052.41 -2.54 3786.16 3364.20 3485.74 3237.29 3180.79 3083.52

rat783-5 2006.46 2627.74 2120.74 2125.53 2006.46 2018.44 1961.12 -2.26 2781.71 2145.38 2189.92 2044.32 2058.65 1989.68

rat783-10 1334.76 1692.31 1396.92 1373.46 1334.76 1357.65 1313.01 -1.63 1718.75 1424.76 1396.78 1345.88 1381.69 1325.54

rat783-20 1231.69* 1371.32 1237.97 1231.69 1231.69 1231.69 1231.69 0.00 1390.09 1244.26 1231.69 1231.69 1231.84 1235.37

pcb1173-3 20292.61 25557.90 22255.20 23193.10 20813.80 20288.75 19569.50 -3.55 26439.83 22941.19 23640.00 21144.92 20473.45 19858.77

pcb1173-5 12952.97 18703.50 14088.40 14333.00 13032.30 12816.55 12406.60 -3.20 19226.82 14305.57 14601.30 13216.99 13045.14 12639.49

pcb1173-10 7758.26 11170.00 8452.28 8222.40 7758.26 7801.18 7623.59 -1.74 11388.41 8637.95 8352.07 7897.20 7910.09 7745.00

pcb1173-20 6528.86* 8132.08 6549.14 6549.14 6528.86 6528.86 6528.86 0.00 8356.53 6623.91 6577.59 6528.86 6534.75 6548.87

Average 5998.71 6553.84 6152.15 6177.75 6015.33 6000.98 5943.29 - 6689.21 6241.85 6268.40 6076.73 6043.73 5971.30
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Table 6.2 Ű The minmax mTSP: comparative results of MA with four reference algorithms on the 36 instances of Set L.

fbest favgInstances BKS
re-IWO re-MASVND HSNR

[HHW21]

ITSHA

[Zhe+22b]

MA
Gap(%)

re-IWO re-MASVND HSNR

[HHW21]

ITSHA

[Zhe+22b]

MA

nrw1379-3 20495.90 24401.20 22236.40 20495.90 19871.21 19222.10 -3.27 25204.30 23349.12 20765.70 20085.29 19472.39

nrw1379-5 12416.50 17636.70 13368.80 12416.50 12218.09 11913.40 -2.49 18019.88 13847.14 12652.56 12493.99 12203.76

nrw1379-10 7114.71 10145.40 7583.59 7114.71 7008.61 6846.27 -2.32 10404.29 7748.69 7212.24 7136.56 6987.31

nrw1379-20 5370.82* 7082.11 5495.31 5370.82 5370.82 5381.59 0.20 7310.74 5571.01 5371.08 5402.42 5388.99

fl1400-3 9192.38 9860.63 9562.25 9192.38 8310.34 7854.97 -5.48 10140.92 10094.49 9621.59 8482.77 7989.25

fl1400-5 6268.25 8422.09 6803.42 6268.25 6360.45 6116.28 -2.42 8590.95 7134.69 6783.62 6572.53 6185.40

fl1400-10 5763.26* 7359.74 5763.26 5763.26 5763.26 5763.26 0.00 7485.43 5763.74 5763.26 5785.69 5763.26

fl1400-20 5763.26* 6687.79 5763.26 5763.26 5763.26 5763.26 0.00 6819.01 5763.26 5763.26 5763.26 5763.26

d1655-3 25229.30 32293.30 30143.30 25229.30 25403.26 23921.90 -5.18 33051.92 42813.48 25635.98 25804.06 24149.72

d1655-5 17181.20 24146.80 18719.10 17181.20 17502.88 16512.20 -3.89 24854.66 19376.15 17454.32 17824.61 16754.81

d1655-10 11660.00 15868.50 12454.00 11660.00 11814.34 11320.10 -2.92 16569.21 12623.92 11816.04 11971.60 11528.33

d1655-20 9598.94 12165.20 9893.04 9598.94 9910.12 9627.28 0.30 12605.33 10120.03 9607.73 10172.24 9669.97

u2152-3 24207.40 32354.70 43724.70 24207.40 23295.73 22127.80 -5.01 33246.73 44187.24 24747.01 23746.41 22629.25

u2152-5 15055.10 23356.00 17653.10 15055.10 14778.56 14094.00 -4.63 23534.98 18404.22 15394.85 15236.58 14442.21

u2152-10 8624.61 13454.40 9458.60 8624.61 8763.71 8332.12 -3.39 13985.98 9600.79 8780.91 9018.30 8499.64

u2152-20 6171.89 9223.98 6550.73 6171.89 6605.48 6253.35 1.32 9532.87 6727.13 6225.82 6676.91 6339.15

pr2392-3 141627.00 186013.00 254034.00 141627.00 135763.02 130015.00 -4.23 190584.70 256052.65 143703.00 137589.12 132228.70

pr2392-5 88083.20 133780.00 104977.00 88083.20 87465.60 82408.50 -5.78 135073.30 132626.10 89582.83 88179.42 84448.64

pr2392-10 51085.30 80135.10 55337.60 51085.30 50514.84 49033.60 -2.93 83131.04 56650.63 52100.80 50929.73 49985.84

pr2392-20 35325.30 56941.00 38175.60 35325.30 35999.41 35455.50 0.37 58490.18 39420.33 35709.02 36546.00 36107.77

pcb3038-3 51049.90 66159.20 85795.40 51049.90 48351.41 46994.60 -2.81 68931.99 86481.39 51582.38 49081.79 47686.85

pcb3038-5 31140.20 46465.70 66560.40 31140.20 30089.85 29223.00 -2.88 46938.10 67071.90 31495.59 30603.78 29864.61

pcb3038-10 16949.90 26954.20 19198.20 16949.90 16878.69 16031.70 -5.02 27659.07 19620.41 17450.44 16645.10 16509.95

pcb3038-20 10835.00 17772.50 12012.20 10835.00 10827.78 10769.60 -0.54 18323.59 12643.54 11004.40 11196.47 10961.26

fl3795-3 11971.00 16611.70 22444.50 11971.00 12290.18 10927.40 -8.72 17207.03 22801.50 12815.54 13022.12 11321.19

fl3795-5 7923.71 13391.00 19698.50 7923.71 8151.43 7715.36 -2.63 13809.93 19877.81 8610.84 8657.18 8014.97

fl3795-10 5763.26* 10132.30 6715.07 5763.26 5824.14 5764.85 0.03 10500.27 7120.46 5823.89 5990.03 5810.07

fl3795-20 5763.26* 8519.26 5763.26 5763.26 5763.26 5763.26 0.00 8679.69 5763.75 5763.26 5766.51 5763.74

fnl4461-3 66903.70 90062.10 108622.00 66903.70 64140.70 62016.70 -3.31 91143.24 109798.50 67971.34 65268.41 62894.65

fnl4461-5 40721.20 59532.70 83650.40 40721.20 39839.40 38265.50 -3.95 60170.68 84430.87 41777.11 39839.40 38935.22

fnl4461-10 22041.50 34068.20 25385.20 22041.50 22145.65 20671.60 -6.22 34741.06 43581.63 22891.45 22954.31 20996.25

fnl4461-20 12630.10 22142.80 14611.30 12630.10 12789.54 12347.80 -2.24 22852.80 15262.97 13046.38 12987.65 12542.14

rl5915-3 213864.00 328020.00 443748.00 213864.00 210056.49 193879.00 -7.70 332327.15 445979.00 226819.75 215466.06 198796.00

rl5915-5 133457.00 221495.00 362776.00 133457.00 125537.65 120418.00 -4.08 225566.65 364717.65 145173.07 132524.74 124718.05

rl5915-10 76585.20 133266.00 267295.00 76585.20 70853.30 66329.40 -6.38 137737.55 270354.45 84459.02 71353.13 67961.45

rl5915-20 48958.50 88081.70 51115.20 48958.50 44716.69 43121.00 -3.57 92716.25 53066.77 60306.22 46080.96 44373.90

Average 35077.55 52611.17 63141.32 35077.55 34076.09 32450.03 - 53831.71 65456.87 36713.40 34801.53 33158.00
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Table 6.3 Ű The minmax multidepot mTSP: comparative results of MA with two reference
algorithms on the 43 instances of Set M.

MD [WGW15] VNS [WGW15] MA
Instances BKS

fbest Time (s) fbest Time (s) fbest favg Gap(%) TTB (s) AT (s)

MM1 170.109 170.909 1 170.909 1 170.908 170.908 0.470 - 2

MM2 130.8 130.800 11 131.497 6 124.067 125.8095 -5.148 18 277

MM3 238.973 238.973 18 240.397 13 230.821 231.9083 -3.411 28 371

MM4 479.676 479.676 18 481.595 340 438.039 442.2707 -8.680 52 1446

MM5 315.889 315.889 33 333.376 18 299.751 299.9226 -5.109 13 1546

MM6 82.187 82.226 44 82.226 16 85.356 86.94082 3.856 - 306

MM7 189.016 189.016 2 189.016 5 189.017 189.017 0.001 - 9

MM8 217.383 217.383 30 231.493 27 203.585 204.2455 -6.347 12 460

MM9 152.504 152.504 112 156.972 57 142.355 143.4553 -6.655 55 840

MM10 182.926 197.390 4 182.926 9 181.382 181.382 -0.844 1 33

MM11 102.346 102.346 3 103.663 8 102.346 102.346 0.000 12 99

MM12 78.903 78.903 3 80.828 5 72.921 73.23033 -7.581 1 83

MM13 120.688 121.872 5 120.688 11 117.681 117.7794 -2.492 13 215

MM14 134.613 134.613 8 137.219 11 125.585 126.0707 -6.707 11 262

MM15 96.524 99.805 5 96.524 7 90.787 91.27053 -5.943 11 221

MM16 101.68 101.680 23 103.696 28 96.068 98.70936 -5.519 204 548

MM17 248.588 248.588 235 259.255 28 236.859 238.7844 -4.718 98 1038

MM18 390.16 390.160 619 400.269 58 383.617 385.4731 -1.677 324 985

MM19 365.657 365.657 616 395.371 159 339.333 344.665 -7.199 6 1046

MM20 339.92 339.920 360 356.176 152 311.737 315.116 -8.291 10 1213

MM21 259.14 259.140 - 274.100 - 245.165 246.5903 -5.393 18 551

MM22 400.6 400.600 - 413.270 - 390.934 393.2435 -2.413 61 510

MM23 374.97 374.970 - 378.710 - 363.504 363.5538 -3.058 22 280

MM24 204 204.000 - 206.220 - 195.992 198.7478 -3.925 146 801

MM25 272.61 272.610 - 274.840 - 230.690 233.9735 -15.377 4 746

MM26 364.56 364.560 - 369.100 - 349.459 351.2541 -4.142 40 1047

MM27 290.37 290.370 - 298.460 - 285.220 286.3728 -1.774 75 568

MM28 354.31 354.310 - 367.720 - 348.377 351.8489 -1.675 556 1343

MM29 364.01 364.010 - 376.180 - 357.100 359.0724 -1.898 246 1001

MM30 140.34 140.340 - 149.540 - 128.349 130.7342 -8.544 85 995

MM31 112.52 124.320 - 112.520 - 106.189 107.7453 -5.627 29 415

MM32 98.45 103.150 - 98.450 - 96.260 96.35376 -2.225 1 50

MM33 97.56 97.560 - 100.930 - 92.820 92.8197 -4.859 1 469

MM34 84.64 84.640 - 85.580 - 78.796 80.94745 -6.905 168 703

MM35 107.86 109.300 - 107.860 - 99.928 99.92959 -7.354 2 282

MM36 153.27 155.990 - 153.270 - 135.947 136.9038 -11.302 8 1187

MM37 151.19 156.410 - 151.190 - 132.937 132.937 -12.073 1 744

MM38 155.46 155.460 - 166.300 - 149.556 149.764 -3.798 10 331

MM39 209.85 209.850 - 223.670 - 195.788 198.0532 -6.701 28 676

MM40 243.47 243.470 - 250.680 - 235.961 236.2019 -3.084 15 213

MM41 255.27 257.160 - 255.270 - 237.959 241.4352 -6.781 158 1312

MM42 357.17 367.440 - 357.170 - 314.451 318.7805 -11.960 23 1046

MM43 375.16 375.160 - 375.550 - 349.380 351.95 -6.872 32 811

Average 222.449 223.794 - 227.923 - 211.132 212.964 - - -
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6.3 Computational results on the OP and PCTSP

instances

In the tables presented hereafter, column Instance indicates the name of instances;
column BKS is the best known values summarized from the literature; LB and UB are
lower and upper bounds obtained by the corresponding algorithm in the column header,
respectively; Gap associated with exact algorithms (RB&C and B&C) is calculated as
Gap = 100 × (LB − UB)/UB; Best and Avg. are the best and average results obtained
by the corresponding algorithm in the column header, respectively; Time in each column
means the running time of the corresponding algorithm; TMB is the average running time
needed by the algorithms to attain its best results. In Tables 6.4-6.11, Gap in the last
column is calculated as Gap = 100× (BKS− fbest)/fbest, where fbest is the best objective
value of the proposed HGA algorithm. In Tables 6.12-6.17, if a value is associated with
a star, it means it is the optimal solution veriĄed by exact algorithms; Gap in the last
column is calculated as Gap = 100×(fbest−BKS)/BKS, where fbest is the best objective
value of HGA and the BKS is the best results of the B&C and HGA-Giant algorithms.
In the tables, the Average row is the average value over the instances of a benchmark set.
Improved best results (new bounds) are indicated by negative Gap values highlighted in
boldface.
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Table 6.4 Ű Results for the OP on the medium-sized instances of Set I.

BKS RB&C [KML20] EA4OP [KML18] ALNS [San19] HGA
Instances LB UB LB UB Gap(%) Time Best Time Best Time Best Avg. Time TMB Gap(%)
att48 31 31 31 31 * 0.03 31 0.25 31 6.77 31 31.00 0.85 0.84 0.00
gr48 31 31 31 31 * 0.02 31 0.13 31 9.99 31 31.00 0.04 0.01 0.00
hk48 30 30 30 30 * 0.01 30 0.24 30 7.20 30 30.00 2.51 2.51 0.00
eil51 29 29 29 29 * 0.01 29 0.24 29 9.51 29 28.85 11.92 7.16 0.00
berlin52 37 37 37 37 * 0.02 37 0.30 37 9.42 37 37.00 0.04 0.01 0.00
brazil58 46 46 46 46 * 0.07 46 1.00 46 9.13 46 45.30 44.65 6.38 0.00
st70 43 43 43 43 * 0.05 43 0.32 43 15.99 43 43.00 0.66 0.66 0.00
eil76 47 47 47 47 * 0.04 46 0.32 47 20.51 47 46.05 59.01 1.96 0.00
pr76 49 49 49 49 * 0.06 49 0.61 49 18.64 49 48.05 63.37 0.94 0.00
gr96 64 64 64 64 * 0.08 64 1.44 64 20.31 64 64.00 15.44 15.44 0.00
rat99 52 52 52 52 * 0.47 52 0.66 52 27.75 52 51.80 33.95 20.86 0.00
kroA100 56 56 56 56 * 0.41 55 0.34 56 34.75 56 56.00 9.92 9.92 0.00
kroB100 58 58 58 58 * 0.27 57 0.63 58 43.06 58 56.45 68.74 25.52 0.00
kroC100 56 56 56 56 * 0.25 56 0.48 56 34.32 56 56.00 14.68 14.68 0.00
kroD100 59 59 59 59 * 0.09 58 0.65 59 34.61 59 59.00 5.82 5.82 0.00
kroE100 57 57 57 57 * 5.53 57 0.50 57 32.26 57 56.35 60.60 27.06 0.00
rd100 61 61 61 61 * 0.12 61 0.74 61 29.49 61 60.90 40.18 33.52 0.00
eil101 64 64 64 64 * 0.06 64 0.79 64 31.73 64 64.00 7.20 7.20 0.00
lin105 66 66 66 66 * 0.48 66 1.42 66 32.11 66 66.00 0.45 0.44 0.00
pr107 54 54 54 54 * 0.08 54 0.93 54 78.46 54 54.00 0.11 0.01 0.00
gr120 75 75 75 75 * 0.28 74 1.20 75 29.58 75 75.00 28.58 28.58 0.00
pr124 75 75 75 75 * 0.35 75 1.11 75 49.64 75 75.00 0.86 0.86 0.00
bier127 103 103 103 103 * 0.38 103 1.18 103 40.84 103 103.00 5.05 5.05 0.00
pr136 71 71 71 71 * 1.75 71 0.96 71 29.97 71 70.95 40.26 35.01 0.00
gr137 81 81 81 81 * 0.24 78 3.44 81 59.21 81 81.00 7.44 7.44 0.00
pr144 77 77 77 77 * 1.46 77 2.61 77 87.82 77 76.50 74.23 46.61 0.00
kroA150 86 86 86 86 * 33.87 86 1.17 86 82.79 86 85.05 113.12 33.65 0.00
kroB150 87 87 87 87 * 2.21 86 1.00 87 61.64 86 86.00 146.01 36.24 1.16
pr152 77 77 77 77 * 1.29 77 3.64 77 91.38 77 76.45 90.19 30.72 0.00
u159 93 93 93 93 * 1.82 92 1.11 93 99.63 93 92.15 122.50 37.65 0.00
rat195 102 102 102 102 * 3.71 99 1.78 102 195.57 101 100.45 139.73 56.95 0.99
d198 123 123 123 123 * 5.28 123 6.68 123 65.57 123 122.70 118.46 60.17 0.00
kroA200 117 117 117 117 * 2.5 117 1.74 117 114.75 116 114.05 227.36 83.39 0.86
kroB200 119 119 119 119 * 9.91 119 1.66 119 86.58 118 117.70 211.44 81.31 0.85
gr202 145 145 145 145 * 2.71 145 6.89 145 187.56 145 144.60 157.66 77.48 0.00
ts225 124 124 124 126 1.59 18000.00 124 1.28 124 279.52 124 124.00 0.22 0.06 0.00
tsp225 129 129 129 129 * 4.31 127 2.29 128 198.47 128 126.05 223.06 102.75 0.78
pr226 126 126 126 126 * 107.69 126 6.61 126 181.94 126 125.20 168.44 16.25 0.00
gr229 176 176 176 176 * 0.32 176 8.81 173 108.27 175 174.30 324.03 84.10 0.57
gil262 158 158 158 158 * 0.35 156 2.84 158 240.02 155 153.50 323.80 125.41 1.94
pr264 132 132 132 132 * 3.92 132 5.62 132 314.29 132 132.00 2.44 2.35 0.00
a280 147 147 147 147 * 40.65 143 3.00 144 239.06 145 142.95 272.42 134.60 1.38
pr299 162 162 162 162 * 48.85 160 3.12 162 410.90 160 159.60 280.80 87.62 1.25
lin318 205 205 205 205 * 5.49 202 7.15 203 294.23 205 203.55 403.82 153.07 0.00
rd400 239 239 239 239 * 36.71 234 6.59 237 422.56 236 233.50 623.83 294.78 1.27
Average 89.31 89.31 89.31 89.36 - 407.20 88.62 2.12 89.07 99.51 88.96 88.44 101.02 40.07 -
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Table 6.5 Ű Results for the OP on the large-sized instances of Set I.

BKS RB&C [KML20] EA4OP [KML18] ALNS [San19] HGA
Instances LB UB LB UB Gap(%) Time Best Time Best Time Best Avg. Time TMB Gap(%)
fl417 228 231 228 231 1.3 18000.00 224 11.84 228 1056.07 227 224.20 372.44 162.00 0.44
gr431 350 350 350 350 * 29.05 349 32.84 347 533.55 347 345.35 743.86 251.44 0.86
pr439 313 313 313 313 * 414.00 310 9.92 307 1263.74 312 309.85 617.75 281.02 0.32
pcb442 251 251 251 251 * 7.21 244 6.93 249 1328.72 249 248.40 544.55 161.21 0.80
d493 320 320 320 320 * 13.37 315 19.10 317 1291.93 315 310.10 852.24 312.30 1.59
att532 363 363 363 363 * 312.50 347 23.14 359 1380.54 357 356.10 1131.88 499.40 1.68
ali535 425 426 425 426 0.23 18000.00 424 73.03 422 1846.10 419 416.40 1609.74 624.85 1.43
pa561 357 357 357 357 * 245.42 348 23.18 346 1605.42 344 340.65 1141.05 526.90 3.78
u574 354 354 354 354 * 24.00 344 17.93 347 1204.18 350 346.60 1106.06 536.17 1.14
rat575 322 322 322 322 * 42.82 309 13.76 317 3109.65 310 307.95 948.33 425.64 3.87
p654 344 396 342 396 13.64 18000.00 336 28.89 343 10866.70 343 340.70 1074.49 475.42 0.29
d657 386 386 386 386 * 92.48 377 23.24 380 3152.17 381 375.30 1334.10 731.54 1.31
gr666 503 503 503 503 * 400.56 497 109.54 486 660.30 495 491.85 1746.74 977.59 1.62
u724 439 439 439 439 * 188.61 429 27.77 434 4157.30 429 426.00 1591.42 755.99 2.33
rat783 438 438 438 438 * 514.68 422 34.59 428 2962.52 420 416.80 1247.89 637.76 4.29
dsj1000 656 656 656 656 * 3828.50 632 81.20 630 17284.30 638 631.90 2962.76 1594.68 2.82
pr1002 606 606 606 606 * 4483.81 572 45.92 581 18000.00 587 581.20 2395.05 960.38 3.24
u1060 660 660 660 660 * 16716.01 627 90.04 644 18000.00 647 641.65 2440.49 1076.03 2.01
vm1084 777 777 777 777 * 5012.60 770 56.29 765 18000.00 772 770.00 3806.86 2003.13 0.65
pcb1173 675 675 675 675 * 6819.83 633 60.65 652 18000.00 650 643.10 3283.19 1529.82 3.85
d1291 715 715 715 715 * 7916.85 646 434.87 699 18000.00 698 682.75 2494.85 1392.79 2.44
rl1304 802 802 802 802 * 6269.39 766 102.45 788 18000.00 789 782.35 3464.28 2231.75 1.65
rl1323 814 814 814 814 * 7740.17 782 89.68 785 14585.10 806 795.75 4187.98 2125.59 0.99
nrw1379 815 817 815 817 0.24 18000.00 771 106.97 790 18000.00 779 772.30 4687.57 2410.17 4.62
fl1400 1048 1084 1003 1084 7.47 18000.00 1043 518.25 1048 18000.00 1041 1036.85 5391.92 2387.03 0.67
u1432 754 764 754 764 1.31 18000.00 738 121.46 749 14573.50 739 732.90 5068.57 2481.63 2.03
fl1577 897 900 897 900 0.33 18000.00 880 286.47 748 18000.00 865 858.50 4425.22 2523.23 3.70
d1655 922 924 922 924 0.22 18000.00 846 757.70 890 18000.00 887 880.95 4708.59 2906.87 3.95
vm1748 1276 1282 1276 1282 0.47 18000.00 1246 178.50 1252 16959.80 1262 1253.65 7284.97 3624.73 1.11
u1817 983 983 983 983 * 11226.88 879 975.58 947 18000.00 939 928.25 5700.99 3433.93 4.69
rl1889 1226 1226 1226 1226 * 17010.43 1167 269.81 1156 18000.00 1208 1195.95 7920.36 4909.81 1.49
d2103 1200 1200 1200 1200 * 15855.62 1069 951.27 1171 18000.00 1198 1194.60 7188.64 4012.64 0.17
u2152 1151 1151 1151 1151 * 14703.25 1048 1350.23 1111 18000.00 1095 1082.00 8348.35 6032.38 5.11
u2319 1170 1171 1170 1171 0.09 18000.00 1167 423.26 1170 6088.42 1170 1170.00 8933.50 3082.05 0.00
pr2392 1316 1415 1316 1415 7 18000.00 1292 402.29 1294 18000.00 1333 1323.25 8904.12 5243.50 -1.28
pcb3038 1727 1730 1727 1730 0.17 18000.00 1572 681.94 1626 18000.00 1623 1604.35 14596.03 9637.53 6.41
fl3795 1965 2249 1965 2249 12.63 18000.00 1815 2994.90 1818 18000.00 1904 1900.85 18000.25 10663.92 3.20
fnl4461 2541 2570 2541 2570 1.13 18000.00 2350 2462.65 2342 18000.00 2443 2410.40 18000.28 14495.34 4.01
rl5915 3593 3786 3593 3786 5.1 18000.00 3358 5361.54 3328 18000.00 3668 3626.80 18000.45 15975.74 -2.04
rl5934 3632 3752 3632 3752 3.2 18000.00 3145 5382.25 3276 18000.00 3602 3561.37 18000.66 16239.41 0.83
pla7397 5289 5657 5289 5657 6.51 18000.00 5141 15981.78 5140 18000.00 5294 5263.80 18000.02 14906.27 -0.09
Average 1039.10 1068.66 1037.95 1068.66 - 10387.03 981.22 990.82 992.93 11802.68 1022.80 1014.19 5470.48 3542.43 -
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Table 6.6 Ű Results for the OP on the medium-sized instances of Set II.

BKS RB&C [KML20] EA4OP [KML18] ALNS [San19] HGA
Instances LB UB LB UB Gap(%) Time Best Time Best Time Best Avg. Time TMB Gap(%)
att48 1717 1717 1717 1717 * 0.04 1717 0.32 1717 6.77 1717 1717.00 0.62 0.62 0.00
gr48 1761 1761 1761 1761 * 1.32 1749 0.2 1761 7.87 1761 1761.00 1.01 1.01 0.00
hk48 1614 1614 1614 1614 * 0.10 1614 0.16 1614 7.19 1614 1614.00 0.03 0.01 0.00
eil51 1674 1674 1674 1674 * 0.96 1668 0.18 1674 10.13 1674 1674.00 0.68 0.68 0.00
berlin52 1897 1897 1897 1897 * 3.23 1897 0.35 1897 10.74 1897 1897.00 0.11 0.10 0.00
brazil58 2220 2220 2220 2220 * 0.46 2218 1.52 2220 12.32 2220 2220.00 8.77 8.77 0.00
st70 2286 2286 2286 2286 * 1.77 2285 0.31 2286 21.65 2286 2286.00 8.18 8.18 0.00
eil76 2550 2550 2550 2550 * 0.62 2550 0.43 2550 16.06 2550 2550.00 9.47 9.47 0.00
pr76 2708 2708 2708 2708 * 1.46 2708 0.48 2708 19.48 2708 2708.00 3.15 3.14 0.00
gr96 3396 3396 3396 3396 * 9.50 3394 1.44 3394 31.98 3396 3396.00 24.04 24.04 0.00
rat99 2944 2944 2944 2944 * 3.25 2944 0.49 2944 32.08 2944 2944.00 1.82 1.81 0.00
kroA100 3212 3212 3212 3212 * 0.70 3212 0.57 3212 32.85 3212 3212.00 4.74 4.74 0.00
kroB100 3241 3241 3241 3241 * 13.28 3238 0.52 3239 48.39 3241 3218.25 567.89 197.48 0.00
kroC100 2947 2947 2947 2947 * 2.22 2931 0.60 2947 39.27 2947 2947.00 10.97 10.97 0.00
kroD100 3307 3307 3307 3307 * 3.62 3307 0.65 3307 30.52 3307 3307.00 3.59 3.59 0.00
kroE100 3090 3090 3090 3090 * 11.31 3082 0.50 3090 39.57 3090 3090.00 1.79 1.79 0.00
rd100 3359 3359 3359 3359 * 0.36 3359 0.50 3359 30.80 3359 3359.00 1.46 1.46 0.00
eil101 3655 3655 3655 3655 * 4.15 3655 0.82 3655 26.19 3655 3655.00 12.71 12.70 0.00
lin105 3544 3544 3544 3544 * 2.51 3530 1.10 3544 36.22 3544 3544.00 15.90 15.90 0.00
pr107 2667 2667 2667 2667 * 0.20 2667 1.05 2667 69.67 2667 2667.00 0.07 0.01 0.00
gr120 4371 4371 4371 4371 * 6.57 4356 1.37 4371 40.41 4371 4371.00 7.86 7.86 0.00
pr124 3917 3917 3917 3917 * 1.07 3899 1.34 3917 55.25 3917 3917.00 3.80 3.80 0.00
bier127 5383 5383 5383 5383 * 0.96 5381 1.71 5366 23.01 5383 5383.00 23.60 23.60 0.00
pr136 4309 4309 4309 4309 * 1.25 4309 1.15 4309 35.63 4309 4309.00 5.39 5.38 0.00
gr137 4286 4286 4286 4286 * 10.65 4099 3.09 4286 639.80 4286 4286.00 2.33 2.33 0.00
pr144 4003 4003 4003 4003 * 32.23 3965 3.02 3969 100.20 4003 4003.00 7.49 7.49 0.00
kroA150 4918 4918 4918 4918 * 60.43 4902 1.26 4918 80.06 4918 4918.00 135.04 135.04 0.00
kroB150 4869 4869 4869 4869 * 16.94 4869 1.19 4869 61.96 4869 4869.00 82.07 82.05 0.00
pr152 4279 4279 4279 4279 * 1.85 4245 3.47 4279 67.41 4279 4279.00 165.93 165.93 0.00
u159 4960 4960 4960 4960 * 14.96 4941 1.44 4950 109.59 4960 4960.00 43.12 43.11 0.00
rat195 5791 5791 5791 5791 * 46.09 5703 1.55 5782 263.23 5791 5791.00 158.24 158.22 0.00
d198 6670 6670 6670 6670 * 298.24 6660 7.33 6661 88.47 6670 6669.35 798.66 273.99 0.00
kroA200 6547 6547 6547 6547 * 16.18 6534 1.71 6547 116.11 6547 6547.00 38.12 38.09 0.00
kroB200 6419 6419 6419 6419 * 20.62 6278 1.97 6413 189.98 6419 6387.70 721.43 396.77 0.00
gr202 7789 7789 7789 7789 * 139.90 7789 8.77 7719 188.27 7789 7789.00 92.11 92.11 0.00
ts225 6834 6834 6834 6834 * 95.22 6819 1.47 6782 394.00 6834 6812.30 619.32 286.64 0.00
tsp225 6987 6987 6987 6987 * 54.09 6936 1.87 6980 299.73 6987 6985.60 514.68 370.74 0.00
pr226 6662 6662 6662 6662 * 2894.81 6658 7.29 6662 201.68 6662 6662.00 3.39 3.39 0.00
gr229 9177 9177 9177 9177 * 16.67 9174 13.19 9177 1379.35 9177 9176.95 317.14 272.63 0.00
gil262 8321 8321 8321 8321 * 64.63 8175 3.47 8269 487.41 8321 8316.25 836.53 383.89 0.00
pr264 6654 6654 6654 6654 * 13.33 6173 5.94 6654 314.27 6654 6654.00 148.53 148.42 0.00
a280 8428 8428 8428 8428 * 519.95 8304 2.85 8404 215.31 8427 8405.70 1113.10 486.86 0.01
pr299 9182 9182 9182 9182 * 623.34 9112 3.23 9147 393.12 9182 9180.50 841.19 356.78 0.00
lin318 10923 10923 10923 10923 * 367.53 10866 8.29 10801 370.64 10923 10921.90 935.97 376.82 0.00
rd400 13652 13652 13652 13652 * 769.66 13442 6.80 13562 1174.91 13650 13648.90 1430.88 652.59 0.01
Average 4869.33 4869.33 4869.33 4869.33 - 136.63 4829.20 2.38 4857.31 173.77 4869.27 4866.88 216.06 112.91 -
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Table 6.7 Ű Results for the OP on the large-sized instances of Set II.

BKS RB&C [KML20] EA4OP [KML18] ALNS [San19] HGA
Instances LB UB LB UB Gap(%) Time Best Time Best Time Best Avg. Time TMB Gap(%)
fl417 11933 12294 11933 12387 3.67 18000.00 11787 16.73 11923 2144.94 11938 11934.10 1279.24 582.48 -0.04
gr431 18318 18318 18318 18318 * 2809.41 18287 51.38 18318 2740.82 18315 18313.20 1900.40 935.74 0.02
pr439 16171 16171 16171 16171 * 3765.86 16085 11.77 16128 629.44 16171 16170.05 1283.17 574.48 0.00
pcb442 14484 14484 14484 14484 * 13760.94 14273 6.83 14411 4410.74 14465 14452.45 1677.34 700.55 0.13
d493 16995 17007 16995 17007 0.07 18000.00 16729 17.15 16820 6231.42 16991 16972.20 1956.30 1016.13 0.02
att532 19635 19800 19635 19800 0.83 18000.00 19265 23.43 19465 1564.89 19658 19653.25 2193.88 765.79 -0.12
ali535 21954 21954 21954 21973 0.09 18000.00 21910 95.05 21761 1537.87 21953 21945.15 2257.58 1432.75 0.00
pa561 19576 19576 19576 19576 * 1961.95 18894 23.45 19092 790.31 19551 19497.32 2127.67 1438.76 0.13
u574 19351 19351 19351 19351 * 1026.82 18966 16.33 19028 5389.10 19351 19330.90 2063.79 1188.99 0.00
rat575 18251 18251 18251 18251 * 9616.70 17705 14.97 17984 2089.02 18235 18215.25 1986.76 1063.03 0.09
p654 17900 21566 17753 22248 20.2 18000.00 17821 42.82 17900 18000.00 17917 17876.60 1976.04 642.42 -0.09
d657 21503 21503 21503 21503 * 554.67 21162 22.90 21231 4161.44 21499 21490.30 2421.26 1280.89 0.02
gr666 26514 26569 26514 26569 0.21 18000.00 26336 136.48 25971 1024.22 26486 26455.60 2714.55 1322.13 0.11
u724 24223 24223 24223 24223 * 9829.42 23793 28.71 23878 5755.06 24198 24143.95 2832.77 1629.65 0.10
rat783 25474 25474 25474 25474 * 12246.90 24861 32.36 24987 6622.62 25353 25214.85 2873.49 1785.02 0.48
dsj1000 35835 35915 35835 35915 0.22 18000.00 34463 83.34 34641 18000.00 35524 35436.00 4857.53 3587.65 0.88
pr1002 33030 33092 33030 33092 0.19 18000.00 31746 46.19 32120 18000.00 33005 32949.80 4285.52 2802.95 0.08
u1060 36151 36291 36151 36291 0.39 18000.00 35110 77.78 35284 18000.00 36146 36027.30 4311.82 3023.31 0.01
vm1084 40777 40952 40777 40952 0.43 18000.00 40308 55.67 40240 18000.00 40774 40750.45 4942.20 2588.10 0.01
pcb1173 37035 37100 37035 37100 0.18 18000.00 35826 69.94 35946 18000.00 36874 36741.90 4912.86 2811.80 0.44
d1291 37778 37854 37778 37854 0.2 18000.00 35153 289.25 36815 18000.00 37564 37421.15 4538.07 2613.11 0.57
rl1304 42275 42359 42275 42359 0.2 18000.00 40561 97.68 40893 12853.40 42266 41963.65 5386.89 3415.69 0.02
rl1323 43377 43450 43377 43450 0.17 18000.00 41459 89.78 41210 18000.00 43375 43160.90 5669.84 3608.18 0.00
nrw1379 46676 46787 46676 46787 0.24 18000.00 45602 117.51 45576 18000.00 46529 46398.05 6638.98 4604.15 0.32
fl1400 56692 64298 54124 64298 15.82 18000.00 56258 794.15 56692 18000.00 56883 56832.60 7843.46 6002.60 -0.34
u1432 46946 47018 46946 47018 0.15 18000.00 44810 100.91 44982 18000.00 46617 46281.40 6328.82 4648.08 0.71
fl1577 45505 50154 45326 50154 9.63 18000.00 45505 334.28 41148 18000.00 47295 46971.35 6779.32 5151.11 -3.78
d1655 49319 53083 46158 53083 13.05 18000.00 47211 683.17 49319 18000.00 50239 50038.55 7663.78 5819.46 -1.83
vm1748 68042 68303 68042 68303 0.38 18000.00 66685 195.85 66636 18000.00 68090 67938.90 11054.04 7804.15 -0.07
u1817 54245 54554 54245 54554 0.57 18000.00 50366 734.39 51676 18000.00 53506 53280.05 8443.16 7270.04 1.38
rl1889 63308 64425 63308 64425 1.73 18000.00 60084 286.07 60928 18000.00 64036 63690.90 9906.39 7719.85 -1.14
d2103 63426 63426 63426 63426 * 16593.51 57202 682.28 61636 18000.00 62977 62682.10 9309.68 7721.66 0.71
u2152 64649 64775 64649 64775 0.19 18000.00 60211 1164.38 61052 18000.00 63718 63324.30 10367.26 8976.34 1.46
u2319 80914 81139 80914 81139 0.28 18000.00 78102 447.06 77610 18000.00 80521 80272.70 13356.77 9988.59 0.49
pr2392 72843 78237 72843 78237 6.89 18000.00 71018 440.57 71851 18000.00 75272 74926.15 14470.13 12654.40 -3.23
pcb3038 97902 97995 97902 97995 0.09 18000.00 91842 820.37 91457 18000.00 95980 95276.50 18000.55 16152.89 2.00
fl3795 103397 142895 98998 142895 30.72 18000.00 103397 4788.96 102642 18000.00 110988 110604.45 18000.35 15572.33 -6.84
fnl4461 147109 150189 147109 150189 2.05 18000.00 140424 2618.15 135515 18000.00 145968 145165.15 18000.58 17089.11 0.78
rl5915 184424 197729 184424 197729 6.73 18000.00 176678 5512.40 173500 18000.00 193626 192284.80 18000.59 17431.83 -4.75
rl5934 187034 196805 187034 196805 4.96 18000.00 171649 5757.80 166368 18000.00 192968 191017.65 18000.56 17164.14 -3.08
pla7397 281977 297246 281977 297246 5.14 18000.00 272452 18000 266038 18000.00 287214 286523.55 18000.91 17905.70 -1.82
Average 56413.37 59088.10 56158.39 59107.46 - 15369.91 54195.02 1093.37 53918.83 12827.93 57074.05 56820.13 7088.20 5621.61 -
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Table 6.8 Ű Results for the OP on the medium-sized instances of Set III.

BKS RB&C [KML20] EA4OP [KML18] ALNS [San19] HGA
Instances LB UB LB UB Gap(%) Time Best Time Best Time Best Avg. Time TMB Gap(%)
att48 1049 1049 1049 1049 * 1.17 1049 0.26 1049 7.18 1049 1049.00 0.21 0.21 0.00
gr48 1480 1480 1480 1480 * 0.72 1480 0.13 1480 8.87 1480 1480.00 1.32 1.32 0.00
hk48 1764 1764 1764 1764 * 0.06 1764 0.22 1764 8.51 1764 1764.00 0.06 0.06 0.00
eil51 1399 1399 1399 1399 * 1.46 1398 0.22 1399 6.87 1399 1399.00 1.04 1.04 0.00
berlin52 1036 1036 1036 1036 * 4.61 1034 0.64 1036 12.84 1036 1036.00 43.83 43.83 0.00
brazil58 1702 1702 1702 1702 * 0.02 1702 0.71 1702 11.09 1702 1702.00 1.32 1.32 0.00
st70 2108 2108 2108 2108 * 0.49 2108 0.31 2108 9.65 2108 2108.00 36.52 36.51 0.00
eil76 2467 2467 2467 2467 * 2.96 2467 0.36 2467 20.48 2467 2467.00 3.09 3.09 0.00
pr76 2430 2430 2430 2430 * 1.07 2430 0.57 2430 20.43 2430 2430.00 0.82 0.82 0.00
gr96 3170 3170 3170 3170 * 5.66 3166 1.41 3166 15.22 3170 3170.00 1.16 1.16 0.00
rat99 2908 2908 2908 2908 * 3.01 2886 0.78 2908 42.03 2908 2907.80 202.43 123.29 0.00
kroA100 3211 3211 3211 3211 * 1.81 3180 0.38 3211 32.31 3155 3155.00 586.14 6.30 1.77
kroB100 2804 2804 2804 2804 * 0.35 2785 0.51 2804 35.83 2804 2804.00 2.13 2.13 0.00
kroC100 3155 3155 3155 3155 * 1.82 3155 0.44 3155 34.67 3155 3155.00 1.78 1.76 0.00
kroD100 3167 3167 3167 3167 * 0.70 3141 0.58 3167 31.08 3167 3167.00 2.88 2.88 0.00
kroE100 3049 3049 3049 3049 * 1.36 3049 0.47 3049 31.96 3049 3049.00 26.43 26.42 0.00
rd100 2926 2926 2926 2926 * 23.20 2923 0.48 2926 16.35 2926 2926.00 3.27 3.27 0.00
eil101 3345 3345 3345 3345 * 1.37 3345 0.56 3345 28.61 3345 3345.00 25.05 25.04 0.00
lin105 2986 2986 2986 2986 * 16.02 2973 2.09 2986 38.24 2986 2986.00 2.32 2.31 0.00
pr107 1877 1877 1877 1877 * 3297.37 1802 0.82 1877 65.16 1877 1874.45 61.01 26.07 0.00
gr120 3779 3779 3779 3779 * 2.65 3748 1.36 3777 37.94 3779 3779.00 36.22 36.22 0.00
pr124 3557 3557 3557 3557 * 4507.38 3455 0.88 3557 99.87 3557 3557.00 5.67 5.66 0.00
bier127 2365 2365 2365 2365 * 40.07 2361 2.62 2361 49.90 2365 2365.00 150.74 150.73 0.00
pr136 4390 4390 4390 4390 * 30.50 4390 1.13 4390 61.84 4390 4390.00 14.83 14.82 0.00
gr137 3954 3954 3954 3954 * 14.01 3954 1.88 3954 637.09 3954 3954.00 21.85 21.84 0.00
pr144 3745 3745 3745 3745 * 116.68 3700 2.41 3744 112.92 3745 3745.00 60.76 60.76 0.00
kroA150 5039 5039 5039 5039 * 46.43 5019 1.07 5037 104.23 5003 5003.00 782.62 24.47 0.72
kroB150 5314 5314 5314 5314 * 28.53 5314 1.04 5314 63.05 5314 5314.00 57.85 57.85 0.00
pr152 3905 3905 3905 3905 * 83.51 3902 3.62 3539 184.38 3905 3904.75 374.94 212.53 0.00
u159 5272 5272 5272 5272 * 8.59 5272 0.94 5272 94.27 5272 5272.00 4.17 4.17 0.00
rat195 6195 6195 6195 6195 * 33.56 6139 2.00 6188 188.56 6195 6195.00 198.01 198.01 0.00
d198 6320 6320 6320 6320 * 461.18 6290 7.14 6320 105.70 6320 6320.00 94.10 94.09 0.00
kroA200 6123 6123 6123 6123 * 92.41 6114 1.72 6118 232.20 6123 6123.00 90.58 90.58 0.00
kroB200 6266 6266 6266 6266 * 3.87 6213 1.77 6266 188.77 6266 6224.40 424.28 356.42 0.00
gr202 8616 8616 8616 8616 * 315.26 8605 10.45 8564 57.88 8616 8615.30 413.75 323.12 0.00
ts225 7575 7575 7575 7575 * 6.62 7575 1.14 7575 450.25 7575 7575.00 20.38 20.38 0.00
tsp225 7740 7740 7740 7740 * 38.61 7488 2.58 7514 188.53 7740 7713.50 925.06 496.93 0.00
pr226 6993 6993 6993 6993 * 1170.00 6908 8.01 6993 177.59 6993 6986.00 571.88 168.34 0.00
gr229 6328 6328 6328 6328 * 42.63 6297 11.65 6328 1298.80 6328 6301.90 837.83 277.42 0.00
gil262 9246 9246 9246 9246 * 83.29 9094 3.94 9210 649.54 9246 9245.70 787.73 500.85 0.00
pr264 8137 8137 8137 8137 * 186.59 8068 3.62 8137 357.80 8137 8095.95 780.66 229.32 0.00
a280 9774 9774 9774 9774 * 126.80 8684 3.22 8789 378.80 9774 9774.00 74.80 74.80 0.00
pr299 10343 10343 10343 10343 * 913.13 9959 3.95 10233 549.11 10343 10343.00 216.38 216.38 0.00
lin318 10368 10368 10368 10368 * 327.58 10273 6.33 10337 528.20 10368 10368.00 124.69 124.69 0.00
rd400 13223 13223 13223 13223 * 214.40 13088 7.74 13122 727.58 13223 13212.85 1431.43 720.01 0.00
Average 4724.44 4724.44 4724.44 4724.44 - 272.43 4661.04 2.31 4681.51 177.83 4722.40 4718.92 211.20 106.43 -
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Table 6.9 Ű Results for the OP on the large-sized instances of Set III.

BKS RB&C [KML20] EA4OP [KML18] ALNS [San19] HGA
Instances LB UB LB UB Gap(%) Time Best Time Best Time Best Avg. Time TMB Gap(%)
fl417 14220 14220 14219 14387 1.17 18000.00 14186 12.45 14220 1131.05 14214 14201.95 952.43 401.78 0.04
gr431 10911 10911 10911 10911 * 7814.17 10817 54.5 10907 2411.45 10911 10895.40 1586.08 863.30 0.00
pr439 15176 15296 15176 15331 1.01 18000.00 15097 10.96 15080 1328.74 15162 15161.35 1669.39 613.07 0.09
pcb442 14819 14819 14819 14819 * 11574.76 14522 6.58 14695 1192.19 14817 14800.60 1623.75 739.64 0.01
d493 25167 25188 25167 25195 0.11 18000.00 24981 19.18 24849 3829.32 25150 24814.15 1912.07 1221.13 0.07
att532 15498 15498 15498 15498 * 318.44 15342 22.75 15335 4533.36 15422 15402.35 2081.94 1337.68 0.49
ali535 9414 9472 9414 9472 0.61 18000.00 9328 94.09 9308 13313.50 9406 9402.40 2068.92 1061.64 0.09
pa561 14482 14482 14482 14482 * 2539.41 14034 21.35 14162 3020.53 14447 14419.70 2042.58 1212.60 0.24
u574 20064 20064 20064 20064 * 2693.59 19691 19.77 19841 1671.01 20061 20025.05 1873.35 1058.58 0.01
rat575 20109 20109 20109 20109 * 929.99 19879 18.03 19954 7175.13 20107 20068.95 1915.85 1179.53 0.01
p654 24492 24518 24492 24518 0.11 18000.00 24130 18.54 24427 7543.02 24492 24491.15 550.26 449.63 0.00
d657 24562 24562 24562 24562 * 8777.39 23772 21.89 23829 4600.87 24562 24554.30 2272.47 1491.07 0.00
gr666 17023 17048 17023 17060 0.22 18000.00 16902 143.87 16709 2734.75 17011 16994.40 2817.11 1577.29 0.07
u724 28348 28348 28348 28348 * 10332.54 27932 29.26 28033 12058.60 28339 28316.65 2634.43 1488.15 0.03
rat783 27566 27566 27566 27566 * 3812.98 26797 30.64 27306 16331.50 27442 27297.55 2552.72 1842.65 0.45
dsj1000 31434 31454 31434 31454 0.06 18000.00 30943 79.18 31040 15962.00 31423 31340.65 3780.24 2725.06 0.04
pr1002 39526 39526 39526 39526 * 13955.69 38762 47.30 38502 18000.00 39519 39458.30 4103.94 2631.37 0.02
u1060 37492 37569 37492 37569 0.2 18000.00 36570 75.88 36598 18000.00 37496 37392.40 3732.20 2808.55 -0.01
vm1084 37669 37669 37669 37669 * 8710.50 37508 54.21 37178 3286.89 37665 37597.50 4614.19 2735.14 0.01
pcb1173 41257 41257 41257 41257 * 15133.74 40069 66.16 40513 18000.00 40865 40731.50 4694.10 2957.94 0.96
d1291 41509 42153 41509 42153 1.53 18000.00 38132 299.87 39919 18000.00 41784 41667.40 4604.59 2792.38 -0.66
rl1304 41881 42075 41881 42075 0.46 18000.00 41214 81.11 41679 18000.00 41893 41848.70 5052.61 2756.05 -0.03
rl1323 47213 47384 47213 47384 0.36 18000.00 46641 93.53 45500 8544.44 47173 47057.05 5421.88 3513.72 0.08
nrw1379 42920 42975 42920 42975 0.13 18000.00 - - - - 42838 42763.35 4714.91 2822.60 0.19
fl1400 57470 59491 54661 59491 8.12 18000.00 57226 599.81 57470 18000.00 57548 57360.85 7359.73 5660.92 -0.14
u1432 47778 47895 47778 47895 0.24 18000.00 46657 138.02 47242 18000.00 47742 47660.40 5448.09 3420.03 0.08
fl1577 45935 48809 45768 48809 6.23 18000.00 45692 295.62 45935 18000.00 46205 46159.65 5666.76 3601.55 -0.58
d1655 62048 62945 62048 62945 1.43 18000.00 58728 674.25 60956 18000.00 62598 62491.45 6934.37 4031.41 -0.88
vm1748 71885 72010 71885 72010 0.17 18000.00 70958 225.29 71244 18000.00 71911 71865.85 8209.77 4583.09 -0.04
u1817 63639 67670 63618 67670 5.99 18000.00 63639 1302.35 63016 18000.00 65061 64851.25 7319.32 5187.11 -2.19
rl1889 70065 71106 70065 71106 1.46 18000.00 68422 244.97 68096 18000.00 70704 70532.50 9670.58 6948.90 -0.90
d2103 82787 82973 82787 82973 0.22 18000.00 77333 1168.90 81081 18000.00 82789 82710.95 9355.54 5977.87 0.00
u2152 74007 78066 74007 78066 5.2 18000.00 73400 1619.61 72733 18000.00 75117 74822.30 8681.40 6364.49 -1.48
u2319 79351 81050 79343 81050 2.11 18000.00 78113 569.76 79130 18000.00 79611 79551.90 11286.34 9192.20 -0.33
pr2392 85409 90261 85409 90261 5.38 18000.00 84094 422.73 85084 18000.00 87200 86787.50 12106.64 9306.23 -2.05
pcb3038 106928 112006 106928 112006 4.53 18000.00 104667 917.39 105337 18000.00 108475 107827.45 15247.40 13511.11 -1.43
fl3795 97707 116792 89218 116792 23.61 18000.00 97707 3158.89 95580 18000.00 100319 99971.05 18000.24 16045.69 -2.60
fnl4461 146995 152562 146995 152562 3.65 18000.00 - - - - 147641 146824.75 18000.37 17191.81 -0.44
rl5915 203695 217366 203695 217366 6.29 18000.00 199336 5593.23 201814 18000.00 211017 210311.10 18000.31 17191.88 -3.47
rl5934 212021 229405 212021 229405 7.58 18000.00 207385 5881.87 203667 18000.00 221855 219778.65 18000.61 17148.22 -4.43
pla7397 322285 334885 322285 334885 3.76 18000.00 320744 18000 312645 18000.00 325632 323903.85 18000.84 17367.57 -1.03
Average 60311.15 62669.63 60030.78 62675.02 - 14843.74 57470.51 1080.35 57451.64 12529.96 61064.00 60832.05 6501.59 5000.26 -
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Table 6.10 Ű Results for the OP on the medium-sized instances of Set IV.

B&C [KML18] EA4OP [KML18] ALNS [San19] HGA
Instances BKS LB Gap(%) Time Best Time Best Time Best Avg. Time TMB Gap(%)
att48 1870 1870 0.00 106.00 1870 0.52 1870 8.99 1870 1870.00 185.07 1.58 0.00
gr48 2264 2264 0.00 22.40 2264 0.40 2264 3.82 2264 2264.00 279.14 1.82 0.00
hk48 2177 2177 0.00 0.20 2177 0.15 2177 7.76 2177 2177.00 271.23 1.46 0.00
eil51 2490 2490 0.00 82.10 2490 0.24 2489 6.65 2490 2490.00 327.17 3.69 0.00
berlin52 2089 2089 0.00 115.00 2085 0.48 2089 10.75 2089 2089.00 253.33 9.03 0.00
brazil58 2070 2070 0.00 132.00 2060 1.08 2070 10.71 2070 2070.00 308.02 1.27 0.00
st70 3316 3316 0.00 127.70 3314 0.42 3316 7.82 3316 3315.50 450.39 118.57 0.00
eil76 3646 3646 0.00 45.10 3646 0.52 3640 9.38 3646 3646.00 471.84 31.66 0.00
pr76 3361 3361 0.00 1047.70 3361 0.62 3358 10.78 3361 3361.00 438.33 18.70 0.00
gr96 4851 4851 0.00 212.30 4851 0.37 4851 6.68 4851 4851.00 505.50 3.54 0.00
rat99 3502 3502 0.00 16.00 3502 0.60 3502 31.01 3502 3501.60 551.80 160.40 0.00
kroA100 4999 4999 0.00 187.10 4999 0.36 4999 6.44 4999 4999.00 590.22 66.04 0.00
kroB100 2935 2935 0.00 34.40 2935 0.61 2935 31.84 2935 2904.90 554.57 61.39 0.00
kroC100 1962 1962 0.00 261.60 1955 0.46 1962 31.46 1962 1962.00 336.67 2.33 0.00
kroD100 1212 1212 0.00 11.80 1212 0.41 1212 14.33 1212 1212.00 149.85 0.02 0.00
kroE100 4635 4635 0.00 203.40 4616 0.69 4631 13.14 4635 4635.00 681.46 22.99 0.00
rd100 3815 3815 0.00 164.60 3808 0.75 3815 22.99 3815 3815.00 647.49 21.46 0.00
eil101 4308 4308 0.00 90.80 4306 0.83 4308 39.55 4308 4308.00 609.52 4.68 0.00
lin105 2455 2455 0.00 1020.60 2453 0.81 2455 33.74 2455 2455.00 416.77 3.38 0.00
pr107 2072 2072 0.00 159.00 2072 1.95 2072 10.20 2072 2072.00 227.42 0.58 0.00
gr120 5830 5830 0.00 236.70 5830 1.25 5830 18.10 5830 5830.00 677.32 37.24 0.00
pr124 2036 2036 0.00 163.80 1937 1.18 2036 48.00 2036 2036.00 329.39 0.47 0.00
bier127 5068 5068 0.00 278.40 5067 2.28 5053 42.94 5068 5068.00 614.18 81.69 0.00
pr136 2860 2860 0.00 6303.60 2820 0.74 2860 51.86 2860 2858.80 542.13 210.35 0.00
gr137 6523 6523 0.00 203.10 6516 2.52 6523 35.45 6523 6523.00 779.57 15.72 0.00
pr144 5641 5641 0.00 357.90 5639 4.53 5641 70.02 5641 5639.30 855.54 228.20 0.00
kroA150 6858 6858 0.00 415.90 6855 1.69 6855 42.88 6858 6858.00 816.73 11.97 0.00
kroB150 7023 7023 0.00 303.00 7020 1.16 7014 23.86 7023 7023.00 890.59 4.47 0.00
pr152 5823 5823 0.00 483.60 5820 5.21 5823 43.79 5261 5261.00 823.84 20.03 10.68
u159 3147 3147 0.00 1145.20 3147 0.92 3147 161.92 3147 3147.00 499.78 5.35 0.00
rat195 9753 9753 0.00 205.40 9750 1.69 9737 27.11 9753 9752.75 928.42 233.11 0.00
d198 4661 4661 0.00 492.70 4654 4.95 4658 122.01 4661 4661.00 786.39 151.19 0.00
kroA200 9892 9892 0.00 340.30 9892 2.73 9854 47.90 9892 9889.85 1034.46 363.36 0.00
kroB200 9849 9849 0.00 253.20 9842 1.62 9846 20.18 9849 9849.00 1084.16 153.14 0.00
gr202 1071 1071 0.00 376.10 995 1.47 1055 30.88 1071 1071.00 116.43 0.31 0.00
ts225 11002 11002 0.00 3524.60 11002 1.87 10954 61.48 11002 11002.00 1177.47 109.28 0.00
tsp225 10972 10972 0.00 706.70 10972 2.52 10920 76.87 10973 10969.60 1128.39 516.11 -0.01
pr226 4893 4893 0.00 1183.10 4890 4.83 4893 313.81 4893 4893.00 602.26 35.66 0.00
gr229 11482 11482 0.00 563.10 11482 6.46 11397 29.97 11482 11475.85 1019.99 444.54 0.00
gil262 2031 2031 0.00 1770.50 2030 1.35 2031 93.73 2031 2031.00 469.39 2.76 0.00
pr264 10253 10253 0.00 277.50 10166 6.42 10179 180.21 10253 10158.10 1201.48 206.18 0.00
a280 12064 12064 0.00 351.80 12048 3.39 11955 217.26 12064 12049.80 1333.67 491.79 0.00
pr299 14986 14986 0.00 7771.90 14980 3.46 14959 48.86 14986 14982.05 1284.58 471.44 0.00
lin318 15132 15132 0.00 - 15119 7.91 14960 106.15 15146 15144.10 1614.19 600.93 -0.09
rd400 20107 20107 0.00 5093.10 20101 9.61 20060 103.75 20102 20097.25 1829.40 812.23 0.02
Average 5755.24 5755.24 - 837.30 5745.56 2.09 5739.00 51.93 5742.98 5739.30 682.12 127.60 -

141



Table 6.11 Ű Results for the OP on the large-sized instances of Set IV.

B&C [KML18] EA4OP [KML18] ALNS [San19] HGA
Instances BKS LB Gap(%) Time Best Time Best Time Best Avg. Time TMB Gap(%)
fl417 20496 20496 0.00 18000.00 20494 39.61 20496 165.27 20496 20493.30 1738.74 620.28 0.00
gr431 13976 13976 0.00 18000.00 13969 50.29 13807 794.43 13979 13978.60 1475.64 471.77 -0.02
pr439 19613 19613 0.00 3936.10 19510 13.61 19453 765.03 19613 19599.80 1871.00 1175.60 0.00
pcb442 5869 5839 0.51 18000.00 5650 3.40 5869 1290.30 5888 5888.00 904.60 51.57 -0.32
d493 21740 21740 0.00 18000.00 21674 21.00 21578 785.63 21744 21688.15 2240.91 1428.08 -0.02
att532 26728 26728 0.00 18000.00 26728 17.20 26684 461.68 26721 26714.95 2175.10 968.04 0.03
ali535 13520 13520 0.00 15739.60 13442 73.07 13350 2346.62 13520 13396.35 1601.36 933.42 0.00
pa561 27719 27712 0.03 18000.00 27719 24.14 27445 570.88 27729 27712.50 2845.50 1612.59 -0.04
u574 28823 28823 0.00 18000.00 28822 26.03 28815 76.97 28827 28818.10 2337.93 1089.82 -0.01
rat575 28364 28364 0.00 18000.00 28334 24.68 28237 436.44 28357 28330.10 2764.61 1590.76 0.02
p654 31814 31814 0.00 18000.00 31717 123.82 31724 267.05 31798 31748.15 2747.90 1396.04 0.05
d657 32548 32548 0.00 13485.10 32534 33.00 32378 304.43 32546 32523.45 3151.48 1861.76 0.01
gr666 21013 21013 0.00 18000.00 20901 132.65 20762 18000.00 21077 21069.40 2317.14 1205.05 -0.30
u724 34988 34988 0.00 18000.00 34921 40.93 34554 629.02 34987 34952.45 3959.01 2095.75 0.00
rat783 7829 7829 0.00 18000.00 7548 13.35 7713 8573.52 7832 7772.45 1208.69 572.72 -0.04
dsj1000 27357 27357 0.00 18000.00 25352 48.13 26573 18000.00 27431 27407.05 3693.85 2017.84 -0.27
pr1002 23527 23527 0.00 18000.00 22482 35.67 22832 11291.20 23590 23463.60 2966.59 1898.84 -0.27
u1060 51775 51768 0.01 18000.00 51775 150.58 51593 2079.50 51849 51795.15 6074.41 3741.43 -0.14
vm1084 38678 38678 0.00 18000.00 38228 50.34 37970 7560.86 38700 38695.65 4929.41 2658.18 -0.06
pcb1173 56010 55954 0.10 18000.00 56010 77.73 55618 6709.24 56018 55926.85 7185.71 5406.83 -0.01
d1291 4029 4029 0.00 2335.60 4024 45.07 4029 1707.97 4029 4029.00 1043.51 7.06 0.00
rl1304 57782 57782 0.00 18000.00 57545 112.18 57576 8261.13 58220 58137.95 7787.85 5404.39 -0.75
rl1323 65664 65476 0.29 18000.00 65664 99.81 65166 905.12 65667 65617.10 7640.51 4957.15 0.00
nrw1379 69214 69119 0.14 18000.00 69214 152.00 69150 2234.08 69184 69156.80 7689.43 3984.67 0.04
fl1400 70511 70476 0.05 18000.00 70488 287.75 70511 3310.76 70530 70528.45 7588.49 2439.46 -0.03
u1432 54540 54540 0.00 18000.00 53550 127.79 52742 14148.70 54490 54218.35 8482.44 6081.59 0.09
fl1577 33754 22191 34.26 18000.00 33754 200.71 31118 18000.00 34613 33808.55 4872.68 2631.43 -2.48
d1655 33231 29920 9.96 18000.00 31880 371.31 33231 18000.00 34203 33968.00 4756.13 3447.54 -2.84
vm1748 82126 81778 0.42 18000.00 82126 265.55 81786 18000.00 82461 82399.45 12942.79 8541.65 -0.41
u1817 37457 31800 15.10 18000.00 36416 418.80 37457 18000.00 38576 38106.95 5505.37 4524.52 -2.90
rl1889 83875 71527 14.72 18000.00 83081 363.35 83875 15860.70 84827 84708.10 14813.47 10162.37 -1.12
d2103 37124 31045 16.37 18000.00 34192 465.36 37124 18000.00 37825 37399.55 5371.52 3715.71 -1.85
u2152 55397 48472 12.50 18000.00 54744 906.84 55397 18000.00 57972 57435.30 9685.72 8004.51 -4.44
u2319 110995 110995 0.00 18000.00 110960 438.26 110555 18000.00 111327 111146.50 18000.42 15008.89 -0.30
pr2392 50944 45407 10.87 18000.00 50902 285.26 50944 18000.00 54000 53252.75 8483.59 7303.01 -5.66
pcb3038 101173 91831 9.23 18000.00 101173 800.13 99612 18000.00 104367 104010.45 18000.18 15932.87 -3.06
fl3795 80069 71328 10.92 18000.00 80069 4496.09 76916 18000.00 94492 92311.60 17333.96 16339.19 -15.26
fnl4461 85088 84098 1.16 18000.00 85088 1490.80 83032 18000.00 92721 91987.95 17380.33 14834.60 -8.23
rl5915 279430 279116 0.11 18000.00 279277 8438.60 279430 18000.00 281337 280645.75 18000.03 17349.20 -0.68
rl5934 137838 - - - 137838 4037.07 134787 18000.00 158854 157125.89 18000.55 17000.64 -13.23
pla7397 142399 106131 25.47 18000.00 142399 6667.36 136820 18000.00 154773 153488.55 18000.06 16700.21 -7.99
Average 52500.66 47789.00 - 17087.41 52195.10 767.54 51874.02 9256.99 55540.73 55255.05 7062.81 5296.76 -
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Table 6.12 Ű Results for the PCTSP on the medium-sized instances of Set I.

B&C [BGP09] HGA-Giant HGA
Instances UB Time Best Avg. Time TMB Best Avg. Time TMB Gap(%)
st70 260* 0.85 260 273.30 1266.53 664.74 260 260.00 792.75 5.85 0.00
eil76 235* 0.94 220 230.00 734.33 377.61 213 213.30 488.85 120.07 -3.18
pr76 41248* 2.39 41248 41248.30 2110.90 686.59 41248 41248.00 1262.36 13.95 0.00
gr96 20688* 38.05 20688 20688.00 2126.95 464.85 20697 20697.00 1477.65 18.70 0.04
rat99 581* 14.30 581 582.45 1682.12 642.50 581 582.00 968.70 295.95 0.00
kroA100 9184* 9.11 9184 9342.90 2045.73 440.68 9184 9184.00 1446.20 20.41 0.00
kroB100 9096* 5.72 9096 9184.60 2122.75 571.52 9096 9098.05 1199.66 274.31 0.00
kroC100 9457* 18.26 9457 9701.65 1934.45 665.54 9457 9457.00 1441.24 18.38 0.00
kroD100 8719* 6.30 8997 9434.85 2138.77 606.55 8719 8719.00 1430.61 37.08 0.00
kroE100 9097* 6.87 9097 9249.40 2148.35 770.65 9097 9097.00 1543.35 23.68 0.00
rd100 3168* 6.53 3210 3243.15 2056.05 624.37 3168 3168.00 1538.52 94.76 0.00
eil101 232* 4.36 248 257.90 1035.23 376.38 232 232.20 741.61 277.42 0.00
lin105 5920* 168.02 5954 6001.45 1986.56 432.48 5920 5920.00 1495.24 26.85 0.00
pr107 18311* 6.87 18311 18315.80 2159.51 1041.38 18311 19313.10 1506.69 525.56 0.00
pr124 22998* 13.30 22998 23183.20 2320.54 600.97 22998 22998.00 1417.57 18.90 0.00
bier127 26347* 4.49 26347 26752.15 2354.50 895.53 26347 26347.00 1361.66 33.11 0.00
ch130 2408* 8.64 2426 2499.30 2221.70 714.48 2408 2408.00 1347.44 43.04 0.00
pr136 46167* 71.88 47087 47363.85 2189.83 929.18 46167 46167.00 1591.33 233.84 0.00
gr137 29575* 10.62 29575 29593.70 2215.35 639.47 29575 29575.00 1667.00 5.24 0.00
pr144 27424* 84.26 28061 28077.55 2265.45 690.53 27424 27424.00 1767.58 44.92 0.00
ch150 2760* 22.95 2792 2913.70 2201.50 890.90 2760 2760.30 1603.15 455.81 0.00
kroA150 11496* 2137.76 11649 12051.80 2286.16 975.07 11496 11496.00 1699.46 84.79 0.00
kroB150 11357* 36.53 11452 11956.95 2124.50 875.65 11357 11357.00 1850.63 48.11 0.00
pr152 36333* 68.85 36606 36850.00 2270.58 824.73 36333 36333.00 1995.90 118.36 0.00
u159 18511* 570.01 18689 18902.80 2419.91 748.44 18511 18511.00 1764.78 26.31 0.00
rat195 1112* 156.26 1129 1143.85 2096.24 763.96 1112 1112.45 1543.24 741.92 0.00
d198 6913* 1366.88 6929 6948.10 2341.96 748.18 6913 6913.00 1991.81 38.38 0.00
kroA200 12372* 118.79 12898 13630.75 2434.66 1440.98 12372 12380.65 2186.29 974.14 0.00
kroB200 12338* 351.33 12747 13319.45 2402.80 1184.53 12338 12338.00 1777.11 54.89 0.00
gr202 13790* 328.51 13894 14072.85 2397.94 708.81 13790 13796.15 1708.05 585.02 0.00
ts225 57995 14400.00 57535 58461.45 2529.29 765.36 57535 57535.00 1998.88 6.50 0.00
tsp225 1721* 317.29 1822 1881.30 2272.71 870.35 1721 1721.75 1948.02 897.45 0.00
pr226 36720* 5429.52 36935 38738.25 2463.89 1079.71 36720 37151.00 1900.28 980.77 0.00
gr229 39875* 154.54 40822 42451.30 2518.79 916.35 39875 40144.75 1819.58 888.08 0.00
gil262 986* 165.14 1130 1186.50 2633.00 1285.05 991 994.55 2048.30 1002.03 0.51
pr264 22644* 532.23 22919 23268.90 2879.28 1740.95 22903 25727.60 2100.00 676.60 1.14
a280 1231* 303.65 1286 1326.65 2359.74 776.42 1252 1259.05 1922.74 709.23 1.71
pr299 23089 14400.00 23023 23426.00 2852.53 1176.44 22514 22522.80 2552.63 791.74 -2.21
lin318 15913* 2355.21 16418 16942.30 2652.22 948.33 15913 15913.00 2350.49 563.66 0.00
rd400 6284* 2110.73 6948 7317.45 3448.83 1987.45 6284 6316.15 2634.51 1678.07 0.00
fl417 5754 14400.00 5562 5624.00 3547.23 875.99 5449 5450.85 2771.75 994.36 -2.03
gr431 35222* 14285.70 35245 35747.50 3395.01 1295.71 35222 35224.60 2664.16 921.48 0.00
pr439 35297* 1483.28 36727 37401.65 3305.44 1200.81 35297 35350.65 2529.08 748.10 0.00
pcb442 22281 14400.00 23496 24007.00 3537.49 1244.83 22281 22301.10 3041.85 1485.59 0.00
d493 13582* 1943.26 14229 14448.15 3346.13 1587.33 13582 13600.95 3256.53 994.78 0.00
att532 8943* 10280.10 9289 9491.20 3787.90 1613.14 10433 10593.00 3270.04 1813.74 16.67
Average 16209.41 2230.44 16417.74 16711.59 2383.07 899.16 16218.61 16324.17 1813.38 443.74 -
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Table 6.13 Ű Results for the PCTSP on the large-sized instances of Set I.

HGA-Giant HGA
Instances Best Avg. Time TMB Best Avg. Time TMB Gap(%)
ali535 47890 52262.80 4519.04 2758.00 42756 42984.10 3721.87 2148.39 -10.72
u574 15780 16551.30 4189.39 3013.66 14671 14700.85 3916.90 1981.10 -7.03
rat575 3270 3348.85 4099.71 1331.54 3023 3036.85 3545.65 1864.71 -7.55
p654 16552 17626.60 3941.21 1956.80 16173 16173.00 3259.72 804.99 -2.29
d657 21784 22598.00 4461.48 2880.53 20889 20904.65 3385.33 2084.09 -4.11
gr666 84119 86308.20 4358.81 2372.07 78410 80987.20 3552.02 1650.69 -6.79
u724 18543 19301.60 4991.53 4470.48 16692 16749.25 4003.05 1612.22 -9.98
rat783 4325 4411.10 5277.20 2495.65 3938 3979.55 4783.58 1768.90 -8.95
dsj1000 6997800 7075698.35 7245.65 5423.50 6940600 6956310.00 6896.05 4090.00 -0.82
pr1002 118568 122205.35 6048.96 5157.00 106138 108198.10 5336.69 3625.03 -10.48
u1060 100381 102363.10 7231.86 5815.26 88335 88665.00 5427.29 2880.01 -12.00
vm1084 76512 90154.95 7887.30 6953.26 65255 65256.90 5796.05 1498.21 -14.71
pcb1173 26934 27469.60 6878.13 5312.04 24916 24989.15 7144.23 3451.92 -7.49
d1291 24049 24600.05 7618.76 4238.72 23276 23380.85 6738.42 3042.44 -3.21
rl1304 114795 123217.65 9369.78 6994.19 100463 101120.10 8019.14 4149.27 -12.48
rl1323 132231 138641.90 9195.54 8503.08 107724 108437.25 8577.82 5991.34 -18.53
nrw1379 25518 25954.85 10504.95 6806.16 23831 23934.25 9366.99 3989.30 -6.61
fl1400 8084 8216.20 8644.44 4470.06 8336 8343.45 9068.82 4034.91 3.12
u1432 76281 78190.90 8709.27 4461.42 72688 72908.40 9032.67 3971.92 -4.71
fl1577 9941 10083.85 9384.07 4445.69 9728 9739.85 6949.05 4495.42 -2.14
d1655 29662 30511.45 11214.47 9003.36 28321 28730.45 8465.60 4938.04 -4.52
vm1748 112141 130574.70 16281.23 15758.16 82916 83133.20 10188.62 5078.04 -26.06
u1817 28613 29363.45 13185.74 8177.49 26490 26824.50 11088.22 6072.33 -7.42
rl1889 160227 167929.95 13974.32 11564.46 113498 114168.45 13340.98 7308.52 -29.16
d2103 36513 36972.85 11210.51 6603.01 34286 34287.90 13037.04 4268.58 -6.10
u2152 32478 33222.95 15191.68 10582.24 30649 30921.55 15537.73 7965.56 -5.63
u2319 118786 119444.20 15661.34 6877.61 116000 116000.00 16073.73 496.72 -2.35
pr2392 181451 185710.90 13677.79 5550.13 164029 164955.25 17622.28 10371.24 -9.60
pcb3038 68022 69834.65 18000.38 16520.10 62174 62818.70 18000.42 17591.35 -8.60
fl3795 13594 15375.20 18000.17 16308.70 12741 13404.40 18000.27 17055.30 -6.27
fnl4461 93107 94070.45 18000.19 17465.75 81399 81720.40 18000.59 17867.45 -12.57
rl5915 315805 323273.25 18000.65 13592.38 216241 218312.65 18001.11 17855.01 -31.53
rl5934 316957 323398.55 18000.26 10025.79 218703 222194.10 18000.77 17881.14 -31.00
pla7397 8837800 8896016.67 18000.63 15546.70 8296170 8328854.00 18001.35 17803.95 -6.13
Average 537309.21 544261.89 10381.07 7453.97 507395.85 509327.19 9761.18 6226.12 -
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Table 6.14 Ű Results for the PCTSP on the medium-sized instances of Set II.

B&C [BGP09] HGA-Giant HGA
Instances UB Time Best Avg. Time TMB Best Avg. Time TMB Gap(%)
st70 247* 1.31 247 254.60 1157.24 431.77 247 247.00 456.84 2.95 0.00
eil76 200* 6.44 202 206.20 574.44 244.88 200 200.00 290.26 49.88 0.00
pr76 38330* 22.13 38850 38977.00 2034.23 802.75 38330 38330.00 976.65 15.46 0.00
gr96 19380* 34.60 19380 19380.00 2215.10 55.86 19380 19380.00 1234.05 10.74 0.00
rat99 518* 61.50 526 535.60 1665.93 725.69 518 518.40 592.64 210.63 0.00
kroA100 8519* 29.70 8795 8975.55 2111.43 906.26 8519 8519.00 1190.93 95.89 0.00
kroB100 7794* 41.70 7821 8148.30 2333.69 977.55 7794 7794.00 1177.52 25.59 0.00
kroC100 9060* 41.16 9296 9421.35 2355.78 675.91 9060 9060.00 1417.05 10.46 0.00
kroD100 8267* 30.74 8459 8561.40 2377.51 786.14 8267 8267.00 1242.05 295.46 0.00
kroE100 7644* 17.90 8180 8663.35 2166.03 579.36 7644 7644.00 1239.45 19.25 0.00
rd100 2892* 22.29 2932 3009.95 2238.05 688.31 2892 2892.00 921.78 57.41 0.00
eil101 211* 9.11 221 230.40 1044.23 267.20 211 212.55 451.24 171.27 0.00
lin105 5614* 716.02 5802 5825.85 2069.88 648.43 5614 5622.15 1308.90 245.13 0.00
pr107 26372* 76.69 26485 26639.75 2371.05 1158.75 26372 26372.00 1433.83 111.59 0.00
pr124 23150* 162.39 23868 24103.75 2344.45 581.15 23150 23150.00 1267.54 26.94 0.00
bier127 24478* 37.55 24992 25129.05 2606.16 848.59 24478 24478.00 1276.40 30.21 0.00
ch130 2220* 83.66 2366 2435.55 2382.69 1007.95 2220 2220.00 1314.72 504.62 0.00
pr136 40241 14400.00 40636 41808.25 2156.29 1033.55 40023 40023.00 1403.00 202.39 -0.54
gr137 28242* 366.15 28242 28251.70 2292.34 753.94 28242 28242.00 1752.22 16.38 0.00
pr144 27073* 284.38 27449 28700.55 2697.84 1275.77 27073 27073.00 1450.82 29.21 0.00
ch150 2476* 541.81 2648 2740.70 2468.95 972.60 2476 2478.10 1360.78 235.18 0.00
kroA150 9968* 60.85 10715 11038.15 2540.79 974.39 9968 9968.00 1521.98 33.11 0.00
kroB150 10278* 469.95 10719 10939.35 2502.28 751.03 10278 10439.50 1657.29 72.20 0.00
pr152 34474* 249.75 34710 34912.80 2384.66 1117.21 34474 34474.30 1762.78 346.99 0.00
u159 17161* 763.28 18222 18597.75 2291.02 948.67 17161 17161.00 1617.72 63.57 0.00
rat195 988* 112.81 1031 1046.30 2280.34 916.64 990 994.25 1045.83 520.83 0.20
d198 6653* 2579.62 6676 6705.95 2458.00 729.38 6653 6653.00 1604.25 419.63 0.00
kroA200 11219* 2278.69 12027 12624.50 2626.21 1387.48 11219 11251.60 1898.65 850.61 0.00
kroB200 11250* 415.38 12799 13325.25 2749.84 1116.39 11250 11250.00 1811.84 180.79 0.00
gr202 12804* 753.52 13274 13391.90 2712.00 998.64 12804 12808.10 1600.15 635.79 0.00
ts225 53102* 907.77 54975 56442.90 2530.42 918.77 53102 53102.00 1583.29 229.16 0.00
tsp225 1585* 1803.93 1723 1782.85 2517.27 661.19 1585 1589.45 1463.25 842.61 0.00
pr226 36190* 8186.06 37088 38052.90 2426.58 885.13 36190 36775.45 1947.51 686.58 0.00
gr229 35856* 3478.96 36615 37188.75 2703.52 1180.40 35856 36020.80 1960.93 407.65 0.00
gil262 865* 165.21 1043 1095.30 2942.29 1356.09 865 865.55 1463.20 639.99 0.00
pr264 23660 14400.00 22790 23118.90 2758.50 1253.41 25080 25099.60 2121.82 634.38 10.05
a280 1143 14400.00 1217 1262.25 2643.18 1115.98 1131 1138.70 1363.13 556.05 -1.05
pr299 20613 14400.00 21636 22019.90 2677.80 1171.38 20534 20591.45 2247.42 1298.94 -0.38
lin318 14909* 3394.98 15404 16223.55 2748.88 1212.81 14909 14925.95 2345.94 953.60 0.00
rd400 5590* 3102.53 7082 7226.35 3394.91 1067.25 5590 5781.40 2517.79 1409.09 0.00
fl417 5971 14400.00 5466 5542.15 3552.72 1282.62 5354 5359.15 2366.97 858.14 -2.05
gr431 31725 14400.00 33331 33932.05 3792.43 2189.49 31725 31725.00 2453.09 835.34 0.00
pr439 33110 14400.00 34534 35038.95 3943.30 1696.64 33079 33086.10 2653.69 668.86 -0.09
pcb442 19165 14400.00 21878 22446.90 3990.55 1727.80 19162 19188.05 2909.42 1160.58 -0.02
d493 12835 14400.00 14240 14554.30 3811.67 1316.84 12687 12719.25 2915.55 1106.52 -1.15
att532 8231 14400.00 9068 9200.75 4335.16 1312.68 9792 9939.30 3210.29 1526.12 18.96
Average 15266.80 3811.10 15775.22 16080.64 2542.99 971.97 15307.57 15339.76 1604.40 419.65 -
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Table 6.15 Ű Results for the PCTSP on the large-sized instances of Set II.

HGA-Giant HGA
Instances Best Avg. Time TMB Best Avg. Time TMB Gap(%)
ali535 47600 50836.75 5481.66 2164.89 40838 41073.30 3416.66 2160.47 -14.21
u574 15790 16337.25 4802.40 1522.94 13660 13738.10 3456.81 2078.83 -13.49
rat575 3005 3073.95 4746.15 2022.61 2700 2712.00 2724.57 1257.38 -10.15
p654 16233 16492.95 4757.14 2166.05 15461 15469.85 3351.91 1702.63 -4.76
d657 21075 21497.50 5872.18 1932.54 18950 18979.90 3755.76 1820.76 -10.08
gr666 83808 86094.80 5538.10 2295.56 75702 76431.60 3826.03 1844.19 -9.67
u724 18070 18984.40 4889.32 1300.49 14924 15030.60 4356.68 2933.25 -17.41
rat783 4081 4150.45 5136.55 1833.39 3446 3513.55 3926.83 1968.81 -15.56
dsj1000 6658210 6698721.50 6578.54 5468.90 6428930 6473253.50 6368.08 4346.50 -3.44
pr1002 119676 122904.35 6145.16 1718.06 98795 100118.00 6100.34 3884.73 -17.45
u1060 97788 100108.30 7116.67 1771.21 81534 82636.45 6000.21 3785.21 -16.62
vm1084 69869 78092.75 9083.64 4339.40 63684 63744.74 6639.36 3508.90 -8.85
pcb1173 26350 27363.60 9777.27 3449.71 22982 23223.75 6765.56 3839.71 -12.78
d1291 23583 24179.10 8895.48 4675.84 22148 22327.05 5478.72 3323.13 -6.08
rl1304 113099 118157.60 8620.93 3407.41 95589 96046.30 6363.72 2790.89 -15.48
rl1323 121711 129922.50 9484.58 3661.33 102312 103271.80 6746.93 4499.24 -15.94
nrw1379 25049 25339.80 12061.47 5763.69 20805 21200.75 8473.57 4805.47 -16.94
fl1400 8064 8389.95 11851.43 8180.52 7732 7780.40 6437.19 3320.17 -4.12
u1432 73071 73931.15 9896.33 3153.81 58418 59232.45 7718.68 4745.64 -20.05
fl1577 9836 10023.90 9579.35 4623.14 9111 9174.95 8257.34 5592.10 -7.37
d1655 30854 31228.80 12543.25 5283.63 26257 26735.05 9320.19 7625.40 -14.90
vm1748 92731 102265.20 14105.31 8951.64 80034 80407.85 10982.57 6402.71 -13.69
u1817 29390 30224.75 12691.13 5159.59 24316 24679.65 9936.50 7717.81 -17.26
rl1889 141203 148699.15 16072.90 5702.52 110226 111197.95 12595.92 8933.69 -21.94
d2103 35451 36533.90 14148.48 6486.04 32935 32968.20 11825.39 5348.26 -7.10
u2152 33168 33655.30 15866.23 6010.47 27543 27942.90 10232.30 8366.51 -16.96
u2319 110241 112362.63 17030.77 6024.11 84351 85185.30 12510.91 9243.60 -23.48
pr2392 180615 183115.50 18000.32 7757.63 152816 156057.50 16755.98 16166.88 -15.39
pcb3038 67488 69128.40 18000.44 9210.16 55810 56828.40 18000.24 17887.34 -17.30
fl3795 14267 15973.30 18000.34 12775.48 11859 12732.70 18000.24 17682.58 -16.88
fnl4461 90189 91179.85 18000.37 12372.52 72006 73024.85 18000.60 17851.83 -20.16
rl5915 276743 290102.75 18000.48 16072.21 209848 212486.30 18001.09 17859.98 -24.17
rl5934 278156 293190.80 18000.33 16426.86 213500 215103.75 18000.86 17781.86 -23.24
pla7397 8641000 8641000.00 18000.20 13202.50 7376900 7466082.50 18001.12 17870.27 -14.63
Average 516984.24 520978.32 11140.44 5790.79 461062.41 465599.76 9186.14 7086.67 -10.82
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Table 6.16 Ű Results for the PCTSP on the medium-sized instances of Set III.

B&C [BGP09] HGA-Giant HGA
Instances UB Time Best Avg. Time TMB Best Avg. Time TMB Gap(%)
st70 308* 7.71 309 311.65 1113.25 375.41 308 308.65 525.64 228.30 0.00
eil76 204* 9.05 206 208.85 671.13 266.01 204 204.00 375.40 14.80 0.00
pr76 42200* 24.02 42955 43378.25 2157.69 917.24 42200 42200.00 1261.54 8.22 0.00
gr96 22491* 50.48 22340 22615.75 2297.87 999.25 22316 22354.75 1407.77 413.90 -0.11
rat99 579* 55.05 600 611.05 1453.40 531.32 580 582.65 826.28 284.86 0.17
kroA100 8325* 17.47 8325 8444.70 2237.71 1008.02 8325 8325.00 1189.84 32.95 0.00
kroB100 8768* 42.17 8768 8829.25 2203.32 812.81 8768 8774.95 1222.64 403.58 0.00
kroC100 9283* 86.21 9410 9546.70 2222.38 923.35 9283 9363.90 1440.03 179.19 0.00
kroD100 8998* 57.52 8998 9063.60 2090.52 774.45 8998 8998.00 1278.01 24.81 0.00
kroE100 9313* 41.76 9398 9437.75 2273.53 722.27 9313 9313.00 1215.78 22.28 0.00
rd100 3377* 51.72 3377 3394.10 2010.36 813.90 3377 3419.00 1368.30 317.12 0.00
eil101 223* 17.55 230 232.05 1094.94 451.81 224 224.55 525.92 171.42 0.45
lin105 6547* 423.40 6667 6706.10 2172.05 845.92 6547 6547.00 1426.18 78.27 0.00
pr107 27198 14400.00 27198 27258.10 2400.69 1008.50 27184 27184.00 1097.56 24.53 -0.05
pr124 26375* 206.93 26785 27137.35 2512.35 1040.17 26375 26375.00 1184.75 10.29 0.00
bier127 42358* 4654.12 42930 43118.30 2501.51 868.81 42359 42360.40 1816.47 644.71 0.00
ch130 2305* 60.85 2338 2352.75 2408.65 632.41 2305 2312.55 1326.79 557.86 0.00
pr136 42179* 4564.78 43227 43905.45 2719.20 1166.28 42179 42188.10 1524.84 482.31 0.00
gr137 34023 14400.00 33714 34140.45 2598.89 842.07 33270 33403.95 1840.08 724.72 -1.32
pr144 30033 14400.00 30123 30402.00 2574.98 1030.72 29746 29746.00 1553.85 215.12 -0.96
ch150 2675* 132.36 2706 2740.70 2541.85 939.59 2675 2678.50 1328.33 134.24 0.00
kroA150 9409* 78.72 9750 9957.95 2601.10 1229.45 9409 9409.00 1412.88 189.20 0.00
kroB150 10392* 256.38 10763 10927.35 2428.56 617.70 10564 10564.00 1625.80 150.05 1.66
pr152 40937 14400.00 41488 41936.60 2224.23 1079.51 40599 40599.00 1511.65 27.00 -0.83
u159 17631* 328.30 17670 17803.75 2324.98 852.79 17631 17670.70 1705.66 616.38 0.00
rat195 999* 776.12 1086 1112.55 2285.45 1181.38 1013 1049.85 1257.77 458.17 1.40
d198 7388* 1974.04 7435 7472.80 2525.87 758.28 7388 7388.00 2067.25 329.20 0.00
kroA200 11987* 803.92 12293 12787.70 2760.52 847.09 12075 12104.85 1904.79 962.35 0.73
kroB200 10752* 1398.61 10888 11157.40 2858.80 1039.78 10752 10752.00 1729.95 378.08 0.00
gr202 14377* 5085.50 14806 14903.80 2780.78 928.50 14546 14558.75 1829.80 858.27 1.18
ts225 53414 14400.00 53325 53438.85 2402.22 702.62 53325 53325.00 1419.70 240.27 0.00
tsp225 1649 14400.00 1707 1749.30 2520.54 893.41 1649 1652.55 1416.66 569.65 0.00
pr226 39091 14400.00 39296 39669.05 2505.70 929.80 38874 38912.25 1946.43 875.65 -0.56
gr229 46791* 4004.14 47146 48360.10 3190.54 1254.60 46749 47162.40 2337.96 672.78 -0.09
gil262 961* 387.02 1026 1057.85 2796.33 893.21 966 970.00 1462.00 580.02 0.52
pr264 23264 14400.00 23230 24015.65 3264.81 1951.50 23093 23108.45 1539.55 220.56 -0.59
a280 1084* 4324.35 1085 1094.90 2415.33 994.18 1087 1088.80 1230.21 572.81 0.28
pr299 20317* 5129.46 21324 21577.95 2922.90 1517.35 20317 20448.00 2148.44 1495.82 0.00
lin318 16401* 6867.39 17798 18404.75 3380.24 1080.94 16401 16402.15 2370.42 871.77 0.00
rd400 5700* 2602.41 6253 6558.75 3699.86 1367.74 5877 5895.65 2376.49 857.93 3.11
fl417 5740 14400.00 5553 5620.95 4028.67 2096.99 5368 5377.45 1103.21 357.33 -3.33
gr431 56484 14400.00 63656 65237.30 4405.86 1619.90 55817 57198.60 3233.26 1842.90 -1.18
pr439 35771 14400.00 37236 37795.45 3940.71 1968.45 35788 35814.35 2473.97 967.82 0.05
pcb442 19632 14400.00 21316 21976.10 3715.95 1426.35 19666 20028.25 2413.00 1819.01 0.17
d493 13480 14400.00 14137 14542.65 3513.02 1479.74 13507 13517.30 2902.48 995.09 0.20
att532 10258 14400.00 11953 12056.35 5744.27 2534.88 10315 10477.60 3437.85 1944.92 0.56
Average 17427.63 5350.42 17887.48 18153.28 2641.16 1048.18 17376.35 17442.15 1621.59 517.97 0.03
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Table 6.17 Ű Results for the PCTSP on the large-sized instances of Set III.

HGA-Giant HGA
Instances Best Avg. Time TMB Best Avg. Time TMB Gap(%)
ali535 65661 66246.25 5730.36 2094.07 68710 69764.6 3977.863 2677.96 4.64
u574 16157 16397.70 4795.63 2385.67 13730 13822.35 3007.96 1315.915 -15.02
rat575 2917 2956.90 5530.21 2681.86 2658 2701.3 2660.836 1695.456 -8.88
p654 16085 16289.70 4901.00 2363.43 15853 15881.9 3031.258 1607.091 -1.44
d657 23671 24151.15 5338.83 1786.25 21380 21875.45 4052.302 2953.046 -9.68
gr666 95945 97270.30 7417.76 4435.51 92942 93215.35 4476.175 2486.513 -3.13
u724 16562 17093.85 5561.84 2368.25 14054 14093.9 3523.882 1816.394 -15.14
rat783 3681 3829.80 7990.99 3744.49 3503 3608 3702.949 1751.809 -4.84
dsj1000 6126650 6336921.60 6543.15 5799.36 6099840 6181059 5648.652 4855.394 -0.44
pr1002 111941 114649.10 11067.47 6027.71 92882 93979.3 5509.153 4359.783 -17.03
u1060 82282 86070.05 7319.40 2661.46 73035 73956.45 5231.196 3551.189 -11.24
vm1084 63126 66508.45 8700.17 4304.68 57945 58226.8 5199.252 3100.454 -8.21
pcb1173 24908 25581.65 13603.76 7447.96 22969 23934.6 6636.45 5696.322 -7.78
d1291 25119 25887.70 8792.17 4146.81 23049 23128.55 7140.085 3542.74 -8.24
rl1304 106362 115222.50 12498.09 6158.64 81770 82141.55 6307.316 4078.16 -23.12
rl1323 111527 117009.25 10944.81 4032.25 90419 90907.53 6129.159 4270.05 -18.93
nrw1379 22078 22430.05 18000.09 11323.12 21446 22760.75 7500.976 6377.507 -2.86
fl1400 7301 7421.05 18000.11 7555.35 6975 7007.15 5764.467 2576.688 -4.47
u1432 57658 59432.30 11420.94 5401.35 51171 51515.65 5986.278 3438.962 -11.25
fl1577 9801 10273.10 18000.14 8630.82 8967 8984.75 6507.709 3432.093 -8.51
d1655 31294 32498.55 14776.31 6702.76 27553 27646.1 8515.859 4979.303 -11.95
vm1748 103042 125572.90 18000.19 8477.87 67744 67934.45 8315.873 3773.694 -34.26
u1817 24718 25525.95 16373.74 6680.61 21427 21681.15 7770.203 5462.698 -13.31
rl1889 136123 143098.40 16635.66 7346.77 101257 101533 9976.649 6185.451 -25.61
d2103 30504 31208.05 18000.16 9900.11 29254 29261.45 8875.615 2896.752 -4.10
u2152 27756 28669.35 18000.13 8352.88 23677 24148.85 7911.774 5968.639 -14.70
u2319 95562 98274.15 18000.17 11252.63 86288 86996.95 11012.27 6800.371 -9.70
pr2392 152349 155399.85 18000.20 8465.84 151021 152901.5 13270.02 11648.99 -0.87
pcb3038 57885 59404.50 18000.18 9279.09 51095 54014.25 17992.01 17107.99 -11.73
fl3795 14806 15673.40 18000.43 7880.81 11850 11986.3 18002.67 14258.02 -19.96
fnl4461 78257 80511.60 18000.27 9824.28 77167 78417.1 18000.35 17879.18 -1.39
rl5915 263766 290963.05 18000.64 10836.60 177708 180451.5 18000.44 17735.67 -32.63
rl5934 284844 308088.90 18000.47 9457.43 183885 186586.2 18000.89 17772.43 -35.44
pla7397 6368310 6556739.50 18000.64 13159.04 6364860 6448766 18000.74 17789.99 -0.05
Average 431136.71 278919.72 12880.77 6557.82 418767.18 424261.46 8401.15 6348.31 -
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6.4 Computational results on the SDVRP instances

Detailed comparative results between the proposed SplitMA and the reference algo-
rithms on the four sets of benchmark instances are provided in Tables 6.18Ű6.27. Fol-
lowing [SSO15], we provide for the instances of Set I the results using both real and
rounded costs (the distance matrices of these instances with round costs are obtained from
http://dimacs.rutgers.edu/programs/challenge/vrp/vrpsd/). For the other bench-
mark sets, we report real value costs like in the literature.
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Table 6.18 Ű Results for the SDVRP-LF on the instances of Set I.

iVNDiv RGTS SplitILS SplitMA
Instances LB BKS

Best Time Best Avg. Time Best Avg. Time Best Avg. Gap(%) Time TMB
eil22 - 375.28 375.28 4.19 375.28 375.28 0.00 375.28 375.28 0.14 375.28 375.28 0.00 0.13 0.02
eil23 525.65 568.56 569.75 3.42 598.56 568.56 0.00 568.56 568.56 0.12 568.56 568.56 0.00 0.11 0.04
eil30 - 512.72 512.72 14.47 519.70 525.33 210.00 512.72 512.72 0.32 512.72 512.72 0.00 0.22 0.10
eil33 - 837.06 853.10 14.03 843.64 843.64 29.00 837.06 837.06 0.45 837.06 837.06 0.00 46.98 0.41
eil51 518.26 524.61 524.61 54.91 524.93 531.24 11.00 524.61 524.61 1.63 524.61 524.61 0.00 0.50 0.49
eilA76 809.67 823.89 851.24 83.28 860.86 - 37.00 823.89 825.22 27.25 823.89 823.89 0.00 122.50 19.77
eilB76 985.42 1009.04 1059.57 79.00 1023.23 1023.32 23.00 1009.04 1011.19 44.98 1009.04 1011.20 0.00 140.38 52.55
eilC76 723.55 738.67 753.29 148.20 746.34 774.20 23.00 738.67 739.83 15.68 738.67 738.67 0.00 122.60 13.84
eilD76 672.54 687.60 699.35 140.83 702.26 702.26 31.00 687.60 688.37 9.92 686.70 687.24 -0.13 117.77 27.89
eilA101 803.62 826.14 852.74 319.33 849.98 851.23 61.00 826.14 826.26 36.59 826.14 826.70 0.00 148.83 29.26
eilB101 1055.40 1076.26 1139.27 185.84 1112.15 1112.29 73.00 1076.26 1078.58 101.26 1076.01 1076.93 -0.02 169.50 74.25
S51D1 457.10 459.50 471.92 40.53 459.50 459.93 12.00 459.50 459.50 1.07 459.50 459.50 0.00 0.35 0.33
S51D2 700.40 708.42 731.01 28.34 723.97 723.32 1.00 708.42 709.54 9.98 708.42 708.60 0.00 98.05 23.32
S51D3 938.50 948.01 1001.22 14.70 970.67 970.89 4.00 948.01 949.96 14.15 947.97 947.97 0.00 104.49 9.85
S51D4 1549.70 1561.01 1680.66 16.53 1614.10 1614.90 14.00 1561.01 1563.25 59.96 1560.88 1561.21 -0.01 246.21 140.36
S51D5 1326.61 1333.67 1389.40 13.94 1381.68 1385.31 3.00 1333.67 1333.85 32.41 1333.67 1334.47 0.00 145.26 40.99
S51D6 2165.64 2169.10 2218.23 16.83 2213.93 2215.41 2.00 2169.10 2174.71 83.79 2169.10 2170.60 0.00 275.95 94.04
S76D1 592.60 598.94 606.47 476.27 629.62 629.62 101.00 598.94 598.98 4.54 598.94 598.94 0.00 101.67 4.38
S76D2 1071.30 1087.99 1143.36 46.94 1113.43 1113.43 10.00 1087.99 1089.69 74.51 1087.40 1088.53 -0.05 147.69 66.14
S76D3 1407.54 1427.81 1490.08 53.34 1459.96 1461.20 15.00 1427.81 1429.01 88.72 1425.73 1428.31 -0.15 164.97 58.95
S76D4 2059.80 2079.76 2173.61 51.84 2103.05 2103.05 14.00 2079.76 2080.76 173.55 2079.74 2079.84 0.00 217.01 104.34
S101D1 716.80 726.59 749.19 2125.58 791.21 791.55 123.00 726.59 728.44 14.16 726.59 726.62 0.00 135.55 28.87
S101D2 1358.90 1383.35 1443.44 217.91 1415.92 1417.40 21.00 1383.35 1386.45 129.94 1377.89 1384.74 -0.39 198.08 88.04
S101D3 1853.10 1876.97 1988.78 146.61 1907.92 1907.92 19.00 1876.97 1881.26 277.62 1874.84 1880.13 -0.11 245.04 142.05
S101D5 2767.60 2792.01 2984.48 104.05 2896.00 2898.50 14.00 2792.01 2795.73 696.64 2789.81 2798.39 -0.08 876.06 646.71
Average - 1085.32 1130.51 176.04 1113.516 - - 1085.32 1086.75 75.98 1084.77 1086.03 - 153.03 66.68
Best# - - 0 - 0 0 - 0 4 - 10 15 - - -
p-value - 5.46E-03 2.67E-05 - 2.70E-05 2.35E-05 5.46E-03 1.01E-02 - - - - - -
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Table 6.19 Ű Results for the SDVRP-LF on the instances of Set I with rounded costs.

iVNDiv SplitILS SplitMA
Instances LB BKS

Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
eil22 375.00 375 375 4.19 375 375 0.13 375 375.00 0.00 33.38 0.04
eil23 569.00 569 570 3.42 569 569 0.09 569 569.05 0.00 31.77 0.16
eil30 510.00 510 510 14.47 510 510 0.3 510 510.00 0.00 44.28 0.12
eil33 834.70 835 851 14.03 835 835 0.39 835 835.00 0.00 43.80 0.13
eil51 521.00 521 521 54.91 521 521.55 1.63 521 521.50 0.00 61.05 1.13
eilA76 807.60 818 847 83.28 818 820.45 25.68 818 824.30 0.00 96.83 49.36
eilB76 981.40 1002 1055 79 1002 1005.8 38.05 1002 1006.90 0.00 106.99 38.11
eilC76 717.80 733 746 148.2 733 733.55 15.17 733 737.40 0.00 88.71 20.60
eilD76 666.10 681 695 140.83 681 683 11.02 682 685.50 0.15 87.72 15.16
eilA101 799.80 814 843 319.33 815 815.85 32.7 817 819.30 0.37 106.37 12.39
eilB101 1040.60 1061 1122 185.84 1061 1065.4 75.43 1061 1075.10 0.00 120.25 61.02
S51D1 454.40 458 466 40.53 458 458 1.21 458 458.00 0.00 55.13 0.28
S51D2 694.20 703 725 28.34 703 704.65 8.32 703 703.00 0.00 81.68 14.26
S51D3 935.17 942 994 14.7 943 944.2 13.58 942 942.00 0.00 95.09 21.03
S51D4 1547.00 1551 1672 16.53 1552 1555.55 47.34 1551 1551.00 0.00 353.89 87.78
S51D5 1325.34 1328 1385 13.94 1328 1329.15 33.46 1328 1328.00 0.00 194.67 36.55
S51D6 2153.00 2153 2211 16.83 2163 2165.7 65.68 2156 2156.11 0.14 280.29 124.06
S76D1 592.00 592 600 476.27 592 592.45 4.75 592 593.25 0.00 76.83 2.87
S76D2 1061.10 1081 1138 46.94 1081 1083.35 59.2 1081 1081.80 0.00 139.35 40.61
S76D3 1395.90 1419 1485 53.34 1419 1422.05 8.07 1420 1420.20 0.07 162.39 57.44
S76D4 2046.10 2071 2160 51.84 2071 2074.3 148.48 2072 2072.95 0.05 265.37 127.91
S101D1 716.00 716 740 2125.58 716 718.4 14.17 716 719.00 0.00 91.57 13.08
S101D2 1337.10 1364 1426 217.91 1364 1370.95 116.33 1360 1369.74 -0.29 140.02 75.89
S101D3 1832.20 1859 1974 146.61 1859 1868.75 233.36 1858 1862.95 -0.05 199.14 114.72
S101D5 2737.10 2770 2970 104.05 2772 2779.65 579.68 2767 2775.56 -0.11 989.28 877.67
Avgerage - 1077.04 1123.24 176.04 1077.64 1080.07 61.37 1077.08 1079.70 - 157.83 71.70
Best# - - 0 - 3 9 - 3 12.00 - - -
p-value - 8.52E-01 4.00E-05 - 3.42E-01 4.34E-01 - - - - - -
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Table 6.20 Ű Results for the SDVRP-LF on the instances of Set II.

SS iVNDiv SplitILS SplitMA
Instances BKS

Best Time Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
p01-50 524.61 524.61 49.70 524.61 54.91 524.61 524.61 1.87 524.61 524.61 0.00 73.29 0.62
p01-50D1 460.79 460.79 51.80 471.92 33.70 460.79 460.79 1.16 460.79 460.79 0.00 59.53 0.35
p01-50D2 741.06 741.06 66.40 766.19 19.77 741.06 741.26 9.87 741.06 741.06 0.00 88.95 2.19
p01-50D3 982.77 997.83 87.10 1039.89 18.16 982.77 983.70 18.44 982.77 982.77 0.00 110.82 29.23
p01-50D4 1456.00 1554.38 92.60 1522.43 16.36 1456.00 1456.87 46.74 1456.00 1456.00 0.00 162.84 14.05
p01-50D5 1467.47 1532.19 92.40 1540.39 15.33 1467.47 1467.47 48.93 1467.47 1467.47 0.00 145.46 13.50
p01-50D6 2154.21 2312.48 5.80 2215.34 18.70 2154.21 2154.51 83.85 2154.21 2154.63 0.00 289.48 144.16
p02-75 823.89 829.01 166.50 851.24 83.28 823.89 824.77 30.84 823.89 823.89 0.00 119.36 19.36
p02-75D1 596.25 596.99 144.00 597.46 303.77 596.25 596.25 5.00 596.25 596.25 0.00 97.13 5.57
p02-75D2 1064.49 1071.87 143.80 1099.47 73.05 1064.49 1066.87 53.42 1064.49 1065.41 0.00 145.60 50.85
p02-75D3 1393.11 1463.60 126.80 1478.67 67.80 1393.11 1393.11 101.77 1393.11 1393.18 0.00 159.46 48.46
p02-75D4 2081.38 2182.34 119.90 2200.51 71.11 2081.38 2084.62 219.74 2074.57 2080.37 -0.33 268.47 130.09
p02-75D5 2112.19 2228.90 11.10 2238.98 80.30 2112.19 2113.38 267.72 2104.37 2112.46 -0.37 272.09 150.94
p02-75D6 3179.20 3387.86 10.50 3304.24 58.05 3179.20 3181.30 441.77 3173.48 3178.53 -0.18 446.40 323.80
p03-100 826.14 829.45 276.10 852.74 319.33 826.14 826.39 40.81 826.14 826.70 0.00 147.77 28.78
p03-100D1 726.81 726.81 272.10 745.35 2194.23 726.81 730.01 17.72 726.81 726.81 0.00 140.47 32.32
p03-100D2 1376.09 1397.50 305.10 1425.90 190.53 1376.09 1380.28 182.16 1373.85 1381.60 -0.16 199.30 103.36
p03-100D3 1823.17 1908.02 225.20 1956.13 154.47 1823.17 1827.47 326.55 1822.25 1826.76 -0.05 219.96 101.25
p03-100D4 2751.13 2894.21 177.90 2865.86 126.52 2751.13 2754.52 629.59 2745.81 2750.08 -0.19 335.31 212.80
p03-100D5 2813.82 2986.33 17.00 2941.64 103.94 2813.82 2817.05 737.35 2812.04 2814.61 -0.06 344.25 197.63
p03-100D6 4294.12 4576.13 38.30 4429.21 94.98 4294.12 4298.50 731.49 4291.58 4294.52 -0.06 577.05 378.35
p04-150 1024.59 1045.22 527.10 1074.11 1361.16 1024.59 1026.60 251.66 1023.23 1024.32 -0.13 228.02 127.47
p04-150D1 866.31 871.26 743.30 891.98 3461.44 866.31 866.31 119.63 866.31 866.31 0.00 204.75 17.56
p04-150D2 1861.63 1937.20 326.60 1978.01 878.55 1861.63 1866.48 1055.54 1862.22 1869.21 0.03 294.79 187.48
p04-150D3 2528.51 2649.97 21.30 2671.62 625.83 2528.51 2531.79 1514.55 2525.51 2530.36 -0.12 399.21 269.29
p04-150D4 3988.06 4062.88 50.40 4165.18 671.36 3988.06 3997.49 1986.49 3980.33 3988.04 -0.19 886.49 686.40
p04-150D5 3986.49 4185.68 23.00 4165.18 675.39 3986.49 3996.85 2076.38 3980.33 3988.04 -0.15 889.04 688.41
p04-150D6 6231.01 6479.46 30.50 6482.11 584.84 6231.01 6233.76 1660.06 6225.41 6238.81 -0.09 2093.71 2013.53
p05-199 1289.40 1324.73 588.30 1368.67 3284.64 1289.40 1296.37 1594.46 1287.51 1295.99 -0.15 316.82 199.75
p05-199D1 1017.30 1023.14 1874.80 1073.55 15505.22 1017.30 1018.40 438.21 1017.28 1018.42 0.00 292.70 153.93
p05-199D2 2307.82 2433.17 32.10 2464.65 1457.16 2307.82 2313.37 2440.32 2306.31 2317.16 -0.07 425.89 353.13
p05-199D3 3153.01 3291.96 31.20 3411.38 2173.84 3153.01 3163.89 3895.07 3147.31 3160.63 -0.18 806.19 774.46
p05-199D4 4844.58 5074.57 50.70 5184.57 3650.59 4844.58 4855.82 3806.84 4840.46 4849.00 -0.09 1410.50 1283.91
p05-199D5 5061.25 5265.01 327.30 5363.65 3026.22 5061.25 5070.77 4570.46 5061.31 5069.56 0.00 1811.51 1669.95
p05-199D6 8045.18 8323.72 215.00 8329.55 2124.66 8045.18 8047.68 4718.09 8022.22 8030.53 -0.29 3920.84 3863.79
p06-120 1037.88 1042.12 270.30 1201.83 3414.41 1037.88 1043.41 90.06 1037.88 1037.88 0.00 171.02 46.75
p06-120D1 975.96 976.57 370.90 1087.80 3952.67 975.96 976.42 46.16 975.96 975.96 0.00 173.93 26.43
p06-120D2 2703.75 2742.60 380.80 2806.92 558.56 2703.75 2708.51 762.81 2702.50 2705.77 -0.05 277.22 165.90
p06-120D3 3907.27 3979.67 329.00 4026.53 358.56 3907.27 3910.03 1543.98 3906.96 3911.81 0.01 444.97 347.11
p06-120D4 6201.66 6357.33 20.60 6364.87 458.91 6201.66 6215.87 1975.24 6194.24 6197.24 -0.12 936.03 763.29
p06-120D5 6372.58 6481.09 20.50 6545.50 469.17 6372.58 6375.64 2289.79 6328.42 6330.36 -0.69 1165.84 931.02
p06-120D6 10001.95 10158.32 20.40 10302.16 636.72 10001.95 10005.18 2209.90 10001.70 10006.23 0.00 2832.47 2639.81
p07-100 819.56 819.56 192.40 824.78 126.08 819.56 819.56 27.99 819.56 819.56 0.00 136.50 1.34
p07-100D1 632.63 636.00 166.50 673.54 1207.42 632.63 633.11 14.38 632.63 632.63 0.00 150.36 16.89
p07-100D2 1413.85 1418.81 206.30 1428.27 123.00 1413.85 1413.91 130.70 1413.85 1413.91 0.00 185.34 40.73
p07-100D3 1967.41 1995.34 266.50 2007.11 107.47 1967.41 1967.93 260.65 1967.41 1967.47 0.00 236.64 91.15
p07-100D4 3087.75 3166.31 272.70 3156.31 96.98 3087.75 3088.96 435.09 3088.23 3088.78 0.02 319.06 159.89
p07-100D5 3125.47 3248.76 16.00 3225.63 110.05 3125.47 3126.22 619.62 3125.39 3125.81 0.00 369.35 184.86
p07-100D6 4902.81 5065.26 13.80 5028.78 178.19 4902.81 4907.00 823.19 4901.06 4902.75 -0.04 647.66 432.65
Average 2591.93 2678.74 201.40 2701.48 1130.15 2591.93 2595.12 925.59 2588.92 2592.27 -0.08 539.39 410.71
Best# - 0 - 0 - 3 10 - 26 32 - - -
p-value 2.23E-06 1.74E-09 - 1.18E-09 - 2.23E-06 2.75E-04 - - - - - -
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Table 6.21 Ű Results for the SDVRP-LF on the instances of Set III.

RGTS SplitILS SplitMA
Instances LB BKS

Best Avg. Time Best Avg. Time Best Avg. Gap(%) Time TMB
p01-50 - 524.61 529.23 535.39 13.00 524.61 524.61 1.83 524.61 524.61 0.00 72.67 0.60
p01-50D1 459.50 459.50 466.86 473.32 18.00 459.50 459.50 1.21 459.50 459.50 0.00 59.96 0.29
p01-50D2 756.71 756.71 784.60 789.83 3.00 756.71 760.52 14.55 756.71 758.02 0.00 95.68 44.36
p01-50D3 996.93 1005.75 1025.04 1036.50 1.00 1005.75 1005.93 21.48 1005.75 1005.75 0.00 113.82 19.37
p01-50D4 1485.00 1488.27 1503.33 1538.25 1.00 1488.27 1489.05 52.71 1487.18 1487.62 -0.07 184.82 61.84
p01-50D5 1474.10 1481.71 1503.21 1513.15 8.00 1481.71 1484.62 42.90 1481.71 1481.89 0.00 157.79 70.90
p01-50D6 2149.05 2156.14 2195.67 2202.50 4.00 2156.14 2160.60 84.35 2155.80 2155.80 -0.02 245.13 49.59
p02-75 - 823.89 864.64 879.35 10.00 823.89 824.39 30.31 823.89 823.89 0.00 118.45 19.08
p02-75D1 616.58 617.85 629.08 637.00 21.00 617.85 620.19 5.72 617.85 617.85 0.00 103.20 4.01
p02-75D2 1093.56 1110.43 1146.21 1161.75 8.00 1110.43 1112.70 54.11 1109.24 1110.48 -0.11 146.02 75.07
p02-75D3 1483.17 1502.05 1550.35 1584.59 12.00 1502.05 1503.42 110.02 1502.05 1503.52 0.00 161.38 59.92
p02-75D4 2270.44 2301.61 2398.40 2412.78 14.00 2301.61 2304.89 283.77 2302.12 2306.06 0.02 321.12 174.07
p02-75D5 2192.25 2219.52 2240.04 2251.50 13.00 2219.52 2222.58 261.25 2219.11 2220.02 -0.02 238.88 112.85
p02-75D6 3192.10 3223.06 3259.36 - 6.00 3223.06 3226.79 377.02 3217.51 3221.30 -0.17 416.63 282.12
p03-100 - 826.14 845.98 858.20 34.00 826.14 826.45 42.16 826.14 826.70 0.00 147.76 28.85
p03-100D1 753.12 760.00 804.86 834.16 130.00 760.00 760.70 22.00 760.00 760.00 0.00 151.50 50.93
p03-100D2 1435.23 1458.46 1491.82 1497.82 32.00 1458.46 1462.37 200.43 1458.46 1460.90 0.00 202.81 128.34
p03-100D3 1971.43 1997.76 2062.53 2019.50 51.00 1997.76 2001.83 366.31 1996.76 2002.79 -0.05 243.98 113.71
p03-100D4 3043.27 3090.65 3171.59 3182.40 54.00 3090.65 3094.91 746.44 3085.69 3088.52 -0.16 381.22 260.34
p03-100D5 2945.76 2991.22 3091.25 3111.23 54.00 2991.22 2991.89 756.18 2986.27 2991.17 -0.17 364.90 237.24
p03-100D6 4316.42 4387.32 4465.03 4474.00 75.00 4387.32 4389.19 719.27 4378.33 4384.70 -0.20 656.07 438.25
p04-150 - 1023.87 1059.71 1069.89 457.00 1023.87 1026.48 243.93 1023.23 1024.32 -0.06 228.72 128.20
p04-150D1 896.03 921.47 979.72 998.25 424.00 921.47 923.74 164.58 921.20 921.79 -0.03 224.56 116.43
p04-150D2 1986.79 2017.00 2093.21 2102.50 159.00 2017.00 2021.78 1156.99 2016.93 2025.54 0.00 313.34 180.33
p04-150D3 2811.64 2849.66 2943.54 2979.02 184.00 2849.66 2856.41 1699.36 2849.59 2853.04 0.00 431.38 315.14
p04-150D4 4474.18 4543.18 4652.10 4610.04 255.00 4543.18 4550.63 2467.51 4533.82 4547.78 -0.21 1094.75 992.48
p04-150D5 4269.77 4336.80 4460.22 4508.16 252.00 4336.80 4342.45 2366.91 4332.75 4341.43 -0.09 918.83 796.82
p04-150D6 6287.09 6396.68 6511.46 6511.46 200.00 6396.68 6402.63 2180.59 6378.28 6393.31 -0.29 2175.27 1853.53
p05-199 - 1285.79 1368.81 1401.30 698.00 1285.79 1292.79 1672.72 1287.51 1295.99 0.13 315.59 198.30
p05-199D1 1042.37 1074.18 1158.06 1151.59 989.00 1074.18 1080.65 629.08 1073.57 1081.15 -0.06 294.34 165.21
p05-199D2 2423.64 2481.44 2570.97 2570.97 324.00 2481.44 2487.28 2846.16 2478.37 2488.61 -0.12 497.44 402.65
p05-199D3 3420.17 3472.79 3592.77 3578.04 225.00 3472.79 3481.37 3015.92 3469.90 3479.66 -0.08 621.69 548.97
p05-199D4 5425.69 5526.28 5798.39 5798.39 220.00 5526.28 5530.56 5799.52 5521.61 5531.00 -0.08 3511.05 3433.92
p05-199D5 5306.11 5404.44 5556.01 5556.01 198.00 5404.44 5415.31 5706.50 5398.15 5414.40 -0.12 3460.31 3427.53
p05-199D6 8062.24 8188.47 8319.35 8319.35 241.00 8188.47 8195.06 3528.41 8181.44 8197.54 -0.09 4548.54 4470.13
p11-120 - 1037.88 1043.89 1080.30 1231.00 1037.88 1038.68 85.14 1037.88 1037.88 0.00 172.08 46.63
p11-120D1 1023.37 1043.19 1099.30 1120.10 1176.00 1043.19 1043.21 93.35 1042.80 1042.94 -0.04 169.38 76.68
p11-120D2 2879.63 2899.91 2939.41 2952.60 99.00 2899.91 2905.28 898.52 2898.25 2902.33 -0.06 318.13 226.02
p11-120D3 4162.99 4219.01 4301.53 4308.53 176.00 4219.01 4220.59 2260.39 4215.98 4218.70 -0.07 474.16 322.23
p11-120D4 6808.07 6856.11 6967.53 6967.53 301.00 6856.11 6863.96 3363.54 6849.73 6858.08 -0.09 1374.52 1220.46
p11-120D5 6584.11 6674.97 6770.14 6770.14 148.00 6674.97 6678.58 2306.51 6639.95 6645.59 -0.52 1072.92 800.01
p11-120D6 10111.11 10132.50 10132.50 10133.20 42.00 10215.90 10218.78 2006.24 10192.00 10196.90 0.59 2644.68 2223.42
Average - 2799.24 2865.42 2865.38 203.83 2801.23 2804.84 1159.19 2797.56 2802.12 - 701.08 575.64
Best# - - 1 1 - 3 10 - 25 29 - - -
p-value - 6.37E-05 7.86E-08 9.69E-08 - 5.01E-06 3.23E-04 - - - - - -
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Table 6.22 Ű Results for the SDVRP-LF on the instances of Set IV.

HGA RGTS SplitILS SplitMA
Instances LB BKS

Best Time Best Avg. Time Best Avg. Time Best Avg. Gap(%) Time TMB
SD1 228.28 228.28 228.28 0.27 228.28 228.28 0.00 228.28 228.28 0.05 228.28 228.28 0.00 10.98 0.03
SD2 708.28 708.28 708.28 1.95 708.28 708.28 0.00 708.28 708.28 0.58 708.28 708.28 0.00 53.74 0.06
SD3 430.40 430.40 430.58 1.94 430.58 430.58 0.00 430.58 430.58 0.59 430.58 430.58 0.04 41.80 0.06
SD4 631.05 631.05 631.05 6.24 633.98 633.98 0.00 631.05 631.05 2.16 631.05 631.05 0.00 84.20 0.22
SD5 1390.57 1390.57 1390.57 14.20 1401.28 1401.72 3.00 1390.57 1390.57 5.90 1390.57 1390.57 0.00 168.71 0.44
SD6 831.24 831.24 833.58 14.97 846.16 861.12 2.00 831.24 831.24 5.62 831.24 831.24 0.00 121.49 0.48
SD7 3640.00 3640.00 3640.00 28.61 3640.00 3640.00 3.00 3640.00 3640.00 13.74 3640.00 3640.00 0.00 237.60 0.26
SD8 5068.28 5068.28 5068.28 48.26 5068.28 5068.28 2.00 5068.28 5068.28 24.07 5068.28 5068.28 0.00 221.65 2.12
SD9 2044.19 2044.20 2054.84 48.91 2044.73 2058.03 1.00 2044.20 2044.43 35.86 2044.20 2044.20 0.00 215.89 2.73
SD10 2684.88 2684.88 2746.54 114.16 2701.55 2709.12 6.00 2684.88 2684.88 81.76 2684.88 2684.88 0.00 298.34 4.87
SD11 13275.00 13280.00 13280.00 231.64 13280.00 13280.00 15.00 13280.00 13280.00 136.43 13280.00 13280.00 0.00 455.49 5.45
SD12 7175.80 7213.61 7279.97 227.11 7213.62 7213.62 19.00 7213.61 7216.34 179.19 7213.61 7213.61 0.00 436.65 22.08
SD13 10053.60 10110.57 10110.57 421.95 10129.52 10129.52 61.00 10110.58 10110.58 168.07 10110.60 10110.60 0.00 526.65 12.42
SD14 10588.20 10715.53 10786.52 718.65 10783.00 10783.00 41.00 10715.53 10722.73 432.26 10715.50 10716.32 0.00 666.98 415.02
SD15 14908.50 15093.85 15160.04 1278.35 15151.06 15158.30 110.00 15093.85 15102.85 658.54 15089.60 15091.21 -0.03 939.34 559.89
SD16 3379.33 3379.33 3433.83 1225.88 3481.21 3481.21 54.00 3395.11 3395.16 580.27 3381.25 3381.26 0.06 1163.46 500.74
SD17 26317.20 26493.56 26559.92 1722.20 26512.51 26512.51 130.00 26493.56 26499.23 484.43 26493.60 26493.60 0.00 1090.71 247.79
SD18 14029.20 14197.80 14302.22 1735.83 14293.49 14293.49 61.00 14197.80 14202.85 676.77 14194.70 14203.31 -0.02 865.62 550.21
SD19 19707.20 19989.95 20152.53 3093.17 20131.94 20154.32 310.00 19989.95 20000.54 1261.95 19991.90 20003.86 0.01 1160.30 813.57
SD20 39252.80 39641.91 39706.51 6208.16 39701.96 39703.32 560.00 39641.91 39648.42 1518.12 39635.50 39638.21 -0.02 2500.54 1487.16
SD21 11271.00 11271.00 11461.20 10565.70 11365.16 11369.31 371.00 11344.96 11357.62 4326.99 11281.90 11315.20 0.10 2393.82 2242.46
Average - 9002.11 9045.97 1319.44 9035.55 9038.95 83.29 9006.39 9009.23 504.45 9002.17 9004.98 - 650.19 327.05
Best# - - 1 - 0 0 - 2 3 - 4 8 - - -
p-value - 3.66E-04 3.09E-03 - 5.35E-04 5.35E-04 3.33E-01 1.15E-01 - - - - - -
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Table 6.23 Ű Results for the SDVRP-UF on the instances of Set I.

TSVBA FBTS SplitILS SplitMA
Instances LB BKS

Best Time Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
eil22 375.28 375.28 375.28 2.58 375.30 4.00 375.28 375.28 0.15 375.28 375.28 0.00 0.13 0.02
eil23 568.56 568.56 569.75 1.59 568.60 4.00 568.56 568.56 0.13 568.56 568.56 0.00 0.11 0.04
eil30 505.01 505.01 505.01 7.45 519.00 7.00 505.01 505.01 0.24 505.01 505.01 0.00 0.23 0.23
eil33 837.05 837.06 843.64 8.38 837.10 10.00 837.06 837.06 0.51 837.06 837.06 0.00 44.48 0.37
eil51 524.61 524.61 527.67 49.84 528.00 23.00 524.61 524.61 1.79 524.61 524.61 0.00 0.62 0.62
eilA76 809.58 823.89 853.20 145.78 842.70 191.00 823.89 824.92 30.76 823.89 823.89 0.00 104.54 12.03
eilB76 984.13 1009.04 1034.21 91.36 1017.10 289.00 1009.04 1012.07 51.83 1009.04 1011.22 0.00 118.58 64.89
eilC76 722.76 738.67 761.55 151.13 754.30 73.00 738.67 739.89 16.96 738.67 738.67 0.00 102.90 15.59
eilD76 674.17 687.60 695.96 122.52 701.10 57.00 687.60 689.36 11.16 686.70 687.43 -0.13 98.84 20.79
eilA101 804.40 826.14 844.21 295.22 838.80 194.00 826.14 826.58 38.90 826.14 826.70 0.00 123.61 37.67
eilB101 1055.59 1076.26 1112.15 173.13 1096.10 280.00 1076.26 1079.15 110.61 1076.26 1077.47 0.00 146.98 72.87
S51D1 459.50 459.50 468.79 13.56 464.80 13.00 459.50 459.50 1.24 459.50 459.50 0.00 0.33 0.31
S51D2 708.41 708.42 718.69 31.66 711.90 121.00 709.29 709.49 11.20 708.42 708.51 0.00 86.84 29.75
S51D3 941.03 947.97 969.78 18.75 952.80 215.00 948.06 950.12 15.74 947.97 947.97 0.00 94.70 7.83
S51D4 1560.87 1560.88 1628.20 19.77 1587.80 134.00 1562.01 1563.29 56.28 1560.88 1561.05 0.00 194.41 113.89
S51D5 1333.66 1333.67 1362.19 15.39 1348.80 127.00 1333.67 1333.67 36.69 1333.67 1333.85 0.00 136.04 34.41
S51D6 2163.22 2169.10 2236.16 14.38 2202.20 81.00 2169.10 2177.78 62.55 2169.10 2170.32 0.00 278.82 130.03
S76D1 598.93 598.94 613.70 252.28 615.90 33.00 598.94 598.94 4.86 598.94 598.94 0.00 85.69 6.07
S76D2 1066.88 1087.40 1128.15 60.44 1103.60 329.00 1087.40 1089.45 69.36 1087.40 1088.99 0.00 131.38 76.99
S76D3 1406.85 1427.86 1472.92 51.13 1449.80 314.00 1427.86 1429.26 96.50 1426.78 1429.05 -0.07 148.34 69.86
S76D4 2053.66 2079.76 2180.13 53.56 2108.60 299.00 2079.76 2081.16 188.38 2079.74 2079.77 0.00 201.13 83.08
S101D1 716.92 726.59 749.93 860.31 745.70 223.00 726.59 728.45 15.93 726.59 726.59 0.00 109.53 16.20
S101D2 1356.78 1378.43 1409.03 219.52 1394.60 327.00 1378.43 1386.03 151.66 1377.01 1383.72 -0.10 172.17 120.33
S101D3 1845.07 1874.81 1947.62 132.19 1913.30 325.00 1874.81 1880.62 317.29 1874.65 1880.39 -0.01 222.64 141.64
S101D5 2758.21 2791.22 2910.71 131.16 2858.80 374.00 2791.22 2795.36 572.13 2789.61 2791.59 -0.06 318.60 161.87
Average - 1084.67 1116.75 116.92 1101.47 161.88 1084.75 1086.62 74.51 1084.46 1085.45 - 116.87 48.70
Best# - - 0 - 0 - 0 1 - 6 16 - - -
p-value - 5.51E-02 2.07E-05 - 1.23E-05 - 4.82E-03 5.46E-04 - - - - - -
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Table 6.24 Ű Results for the SDVRP-UF on the instances of Set I with rounded costs.

MAPM TSVBA SplitILS SplitMA
Instances LB BKS

Best Time Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
eil22 375.00 375 375 4.11 375 2.58 375 375.00 0.15 375 375.00 0.00 43.72 0.02
eil23 569.00 569 569 5.47 570 1.59 569 569.00 0.11 569 569.00 0.00 41.61 0.24
eil30 503.00 503 503 5.7 503 7.45 503 503.00 0.23 503 503.00 0.00 51.83 0.08
eil33 835.00 835 835 5.19 844 8.38 835 835.00 0.45 835 835.00 0.00 58.09 0.09
eil51 521.00 521 521 7.28 526 49.84 521 521.00 1.75 521 521.00 0.00 79.40 9.86
eilA76 792.71 818 828 35.94 847 145.78 818 821.75 24.63 818 820.60 0.00 129.57 32.56
eilB76 957.60 1002 1019 13.09 1027 91.36 1002 1007.05 37.68 1002 1005.90 0.00 144.39 67.67
eilC76 714.24 733 738 14.75 754 151.13 733 733.75 14.75 733 733.35 0.00 117.30 34.35
eilD76 667.93 682 682 23.12 691 122.52 682 683.05 10.39 680 682.70 -0.29 111.44 51.22
eilA101 792.40 814 818 25.25 834 295.22 814 816.20 32.61 814 816.65 0.00 131.91 50.99
eilB101 1017.77 1061 1082 21.81 1104 173.13 1061 1064.00 78.42 1061 1063.60 0.00 156.53 74.92
S51D1 458.00 458 458 8.77 465 13.56 458 458.00 1.17 458 458.00 0.00 73.38 0.37
S51D2 703.00 703 707 7.44 715 31.66 703 704.75 8.12 703 703.15 0.00 109.07 20.49
S51D3 933.07 943 945 7.84 966 18.75 943 944.05 13.06 942 942.00 -0.11 131.09 16.09
S51D4 1547.44 1553 1578 11.98 1621 19.77 1553 1556.50 39.25 1551 1551.00 -0.13 538.46 71.39
S51D5 1326.73 1328 1351 16.72 1357 15.39 1328 1329.25 32.07 1328 1328.00 0.00 292.13 32.91
S51D6 2153.00 2153 2182 9.92 2228 14.38 2163 2166.15 52.95 2156 2156.00 0.14 515.77 111.52
S76D1 592.00 592 592 15.23 606 252.28 592 592.30 4.75 592 592.20 0.00 97.51 13.56
S76D2 1040.67 1082 1089 30.5 1124 60.44 1082 1083.15 53.6 1080 1081.30 -0.18 192.15 65.90
S76D3 1379.57 1420 1427 12.89 1466 51.13 1420 1423.05 67.81 1418 1420.00 -0.14 235.31 97.06
S76D4 2034.70 2073 2117 8.76 2170 53.56 2073 2074.95 144.89 2071 2071.90 -0.10 389.04 142.81
S101D1 714.87 716 717 49.75 741 860.31 716 718.35 14.76 716 718.05 0.00 116.78 56.03
S101D2 1301.93 1366 1372 31.72 1398 219.52 1366 1371.40 112.47 1360 1365.65 -0.44 202.81 103.46
S101D3 1803.51 1864 1891 33.98 1936 132.19 1864 1868.05 236.05 1858 1862.10 -0.32 295.32 183.00
S101D5 2709.48 2770 2854 18.66 2897 131.16 2770 2779.10 439.49 2765 2767.80 -0.18 595.48 310.54
Average - 1077.36 1090.00 17.03 1110.60 116.92 1077.76 1079.91 56.86 1076.36 1077.72 - 194.00 61.88
Best# - 0 - 0 - 0 1 - 9 18 - - -
p-value - 2.54E-02 1.96E-04 - 2.69E-05 - 1.95E-03 3.40E-04 - - - - - -
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Table 6.25 Ű Results for the SDVRP-UF on the instances of Set II.

MAPM TSVBA SplitILS SplitMA
Instances BKS

Best Time Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
p01-50 524.61 524.61 8.53 527.67 49.84 524.61 524.61 1.82 524.61 524.61 0.00 65.81 0.52
p01-50D1 460.79 460.79 12.38 466.74 19.69 460.79 460.79 1.17 460.79 460.79 0.00 52.48 0.31
p01-50D2 741.06 751.41 10.22 753.98 23.17 741.06 741.26 9.72 741.06 741.06 0.00 80.89 1.85
p01-50D3 982.79 988.31 12.49 1023.24 17.72 982.79 983.59 18.04 982.77 983.13 0.00 99.79 14.50
p01-50D4 1456.00 1467.06 21.42 1530.81 19.11 1456.00 1457.37 42.86 1456.00 1456.00 0.00 154.69 8.24
p01-50D5 1467.47 1477.01 24.53 1505.38 19.09 1467.47 1467.47 49.42 1467.47 1467.47 0.00 137.18 10.08
p01-50D6 2150.97 2154.35 22.91 2219.32 24.41 2150.97 2152.95 51.94 2150.00 2150.15 -0.05 235.87 115.36
p02-75 823.89 823.89 35.72 853.20 145.78 823.89 824.80 30.52 823.89 823.89 0.00 104.77 12.02
p02-75D1 596.25 600.06 18.75 614.09 136.14 596.25 596.25 4.98 596.25 596.25 0.00 83.10 4.51
p02-75D2 1064.49 1074.46 34.14 1085.70 97.17 1064.49 1066.36 53.25 1064.49 1065.37 0.00 125.18 58.26
p02-75D3 1393.11 1413.80 37.38 1458.59 67.66 1393.11 1393.11 97.13 1393.11 1393.20 0.00 139.04 18.85
p02-75D4 2081.38 2102.58 46.11 2164.74 61.81 2081.38 2084.91 191.06 2076.92 2082.27 -0.21 251.73 135.55
p02-75D5 2111.83 2132.16 51.78 2182.33 55.17 2111.83 2114.03 212.38 2105.15 2112.19 -0.31 222.52 133.15
p02-75D6 3178.47 3200.35 27.48 3278.33 86.27 3178.47 3181.28 412.86 3175.61 3177.67 -0.09 420.01 234.40
p03-100 826.14 829.44 34.59 844.21 295.22 826.14 826.39 40.01 826.14 826.70 0.00 125.41 37.52
p03-100D1 726.81 726.81 37.12 741.60 1944.09 726.81 730.80 16.67 726.81 726.81 0.00 115.70 29.32
p03-100D2 1376.22 1392.85 78.06 1416.35 160.95 1376.22 1380.23 187.76 1373.85 1380.81 -0.17 171.11 81.05
p03-100D3 1823.58 1845.30 28.39 1886.70 145.05 1823.58 1827.81 313.83 1823.29 1826.80 -0.02 197.78 86.17
p03-100D4 2749.53 2780.95 84.38 2874.86 125.28 2749.53 2753.99 647.44 2745.64 2749.10 -0.14 314.73 210.32
p03-100D5 2813.52 2858.87 100.16 2929.29 134.84 2813.52 2817.05 737.91 2811.62 2815.30 -0.07 327.31 196.40
p03-100D6 4294.12 4312.95 55.75 4435.56 185.55 4294.12 4299.40 737.85 4292.05 4296.29 -0.05 573.55 416.70
p04-150 1023.66 1042.37 103.69 1079.55 2217.67 1023.66 1026.89 250.37 1023.23 1024.44 -0.04 190.31 85.11
p04-150D1 866.31 875.61 100.27 891.10 2640.95 866.31 866.31 120.92 866.31 866.31 0.00 168.47 19.19
p04-150D2 1861.63 1878.71 147.89 1929.91 755.08 1861.63 1866.95 1041.64 1865.12 1869.29 0.19 255.43 176.79
p04-150D3 2527.96 2561.65 224.89 2647.17 470.34 2527.96 2531.50 1445.25 2523.87 2530.27 -0.16 341.16 263.57
p04-150D4 3988.64 4045.87 244.91 4151.90 451.95 3988.64 3996.55 1901.05 3979.53 3985.62 -0.23 610.69 517.32
p04-150D5 3985.76 4045.87 244.86 4151.90 449.34 3985.76 3995.25 1836.14 3979.53 3985.62 -0.15 607.89 515.09
p04-150D6 6232.37 6267.48 401.62 6416.12 678.94 6232.37 6234.56 1543.69 6223.33 6235.82 -0.14 1396.79 1306.96
p05-199 1286.92 1311.59 353.84 1339.49 4514.28 1286.92 1293.71 1298.10 1283.27 1293.19 -0.28 258.95 174.95
p05-199D1 1017.28 1018.71 356.22 1069.24 11.215.52 1017.28 1018.59 431.97 1017.28 1018.99 0.00 236.00 76.64
p05-199D2 2305.70 2340.14 347.14 2408.16 1544.36 2305.70 2313.04 2296.08 2301.06 2316.42 -0.20 371.31 309.70
p05-199D3 3156.02 3191.25 436.20 3296.69 1216.69 3156.02 3163.26 3316.93 3146.79 3156.56 -0.29 532.41 438.04
p05-199D4 4843.83 4941.22 725.69 5066.24 108.63 4843.83 4855.49 3739.98 4836.17 4843.71 -0.16 1390.29 1251.93
p05-199D5 5063.89 5155.36 749.94 5281.55 119.04 5063.89 5072.74 4222.85 5054.50 5065.53 -0.18 1322.26 1218.41
p05-199D6 8037.88 8081.58 571.70 8333.61 153.12 8037.88 8048.57 4616.79 8022.89 8033.28 -0.19 3832.93 3738.14
p06-120 1037.88 1041.20 50.92 1051.24 1944.19 1037.88 1039.13 81.50 1037.88 1037.98 0.00 141.58 43.15
p06-120D1 975.96 976.57 72.98 990.59 2736.34 975.96 976.57 44.82 975.96 975.96 0.00 141.15 29.09
p06-120D2 2707.52 2720.38 144.19 2744.74 463.97 2707.52 2710.15 704.44 2702.26 2705.74 -0.19 243.22 193.95
p06-120D3 3907.27 3934.39 163.14 4010.80 340.53 3907.27 3909.28 1487.97 3909.11 3910.94 0.05 411.09 331.21
p06-120D4 6195.37 6318.37 196.14 6308.76 418.98 6195.37 6219.01 1805.91 6194.55 6197.79 -0.01 894.16 787.48
p06-120D5 6373.24 6424.71 271.39 6511.08 436.80 6373.24 6376.25 2303.70 6329.30 6331.17 -0.68 1103.03 948.83
p06-120D6 10003.99 10063.47 298.08 10186.06 30.32 10003.99 10005.29 2161.59 10003.80 10006.26 0.00 2985.43 2721.87
p07-100 819.56 819.56 42.89 819.60 75.33 819.56 819.56 27.67 819.56 819.56 0.00 121.23 1.19
p07-100D1 632.63 649.73 34.97 658.99 461.75 632.63 636.76 12.28 632.63 633.90 0.00 115.49 28.64
p07-100D2 1413.85 1417.28 43.27 1441.48 98.31 1413.85 1413.99 128.52 1413.85 1413.85 0.00 163.04 43.11
p07-100D3 1967.41 1994.59 51.31 2010.00 84.50 1967.41 1968.09 265.71 1967.41 1968.08 0.00 213.56 85.31
p07-100D4 3088.47 3113.72 52.13 3157.48 97.58 3088.47 3089.41 416.34 3087.93 3088.73 -0.02 305.53 178.16
p07-100D5 3125.47 3155.69 91.31 3200.62 96.39 3125.47 3125.98 568.97 3125.29 3125.53 -0.01 339.51 157.26
p07-100D6 4903.00 4919.48 180.11 4996.88 152.92 4903.00 4906.56 799.40 4901.06 4903.27 -0.04 614.40 429.07
Average 2591.68 2616.83 152.73 2672.32 553.59 2591.68 2595.18 872.02 2588.43 2591.03 -0.08 744.91 611.60
Best# - 0 - 0 - 2 9 - 28 34 - - -
p-value 1.81E-06 1.74E-09 - 1.11E-09 - 1.81E-06 3.63E-05 - - - - - -

157



Table 6.26 Ű Results for the SDVRP-UF on the instances of Set III.

FBTS SplitILS SplitMA
Instances LB BKS ABHC

Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
p01-50 - 524.61 524.61 532.00 18.00 524.61 524.61 1.88 524.61 524.61 0.00 65.49 0.61
p01-50D1 459.50 459.50 - 461.00 31.00 459.50 459.50 1.16 459.50 459.50 0.00 54.10 0.24
p01-50D2 754.45 757.15 776.42 759.80 307.00 757.15 761.12 13.24 756.71 758.08 -0.06 88.35 38.35
p01-50D3 999.06 1005.75 1012.56 1026.50 210.00 1005.75 1005.75 20.70 1005.75 1005.75 0.00 105.14 23.10
p01-50D4 1487.16 1487.18 1489.64 1552.10 134.00 1488.58 1488.89 43.04 1487.18 1488.01 0.00 152.96 49.01
p01-50D5 1474.34 1481.71 1488.28 1498.10 151.00 1481.71 1483.36 44.11 1481.71 1482.30 0.00 148.07 82.21
p01-50D6 2149.42 2155.80 2174.54 2191.41 107.60 2156.14 2161.31 78.49 2155.80 2155.80 0.00 229.40 71.22
p02-75 - 823.89 829.89 827.40 320.00 823.89 825.06 29.69 823.89 823.89 0.00 104.76 12.03
p02-75D1 612.45 617.85 - 637.00 44.00 617.85 619.59 5.70 617.85 617.85 0.00 86.26 3.36
p02-75D2 1095.65 1109.62 1123.97 1118.10 325.00 1109.62 1112.11 53.26 1109.24 1110.45 -0.03 130.05 45.96
p02-75D3 1482.50 1502.05 1508.73 1525.70 318.00 1502.05 1503.57 108.37 1502.05 1502.91 0.00 145.45 70.57
p02-75D4 2272.05 2298.58 2340.09 2358.80 322.00 2298.58 2301.85 207.22 2296.98 2298.01 -0.07 266.02 177.53
p02-75D5 2195.44 2219.97 2243.93 2280.30 406.00 2219.97 2224.06 265.00 2217.63 2219.51 -0.11 221.39 134.90
p02-75D6 3192.55 3223.40 3266.78 3259.00 200.00 3223.40 3226.20 378.95 3216.67 3219.88 -0.21 410.77 268.82
p03-100 - 826.14 826.14 847.40 188.00 826.14 826.45 40.52 826.14 826.70 0.00 124.75 37.31
p03-100D1 749.42 760.00 - 792.20 87.00 760.00 760.46 21.65 760.00 760.02 0.00 124.23 35.02
p03-100D2 1437.78 1458.46 1478.59 1476.90 326.00 1458.46 1462.68 179.69 1458.46 1461.61 0.00 170.89 69.89
p03-100D3 1971.34 1996.76 2035.91 2023.20 318.00 1996.76 2002.23 362.02 1996.76 2002.33 0.00 223.39 112.41
p03-100D4 3042.93 3085.69 3145.33 3181.30 339.00 3085.69 3093.64 736.52 3085.69 3089.11 0.00 366.24 274.55
p03-100D5 2945.42 2989.30 3014.08 3044.10 325.00 2989.30 2992.75 742.88 2990.34 2991.23 0.03 355.86 162.60
p03-100D6 4334.44 4387.32 4447.47 4441.70 300.00 4387.32 4389.43 675.01 4378.33 4384.69 -0.20 659.74 364.76
p04-150 - 1023.87 1028.42 1081.60 426.00 1023.87 1027.28 233.73 1023.23 1024.44 -0.06 188.78 84.70
p04-150D1 895.46 921.91 - 953.00 369.00 921.91 923.69 161.90 921.20 922.06 -0.08 183.29 75.86
p04-150D2 1986.34 2016.97 2055.18 2060.40 375.00 2016.97 2021.36 1109.88 2016.93 2026.05 0.00 268.00 166.31
p04-150D3 2811.98 2849.66 2912.08 2910.80 394.00 2849.66 2857.28 1518.82 2849.66 2853.02 0.00 374.35 261.46
p04-150D4 4474.92 4545.46 4638.74 4681.70 389.00 4545.46 4550.85 2410.48 4537.82 4548.81 -0.17 884.75 768.45
p04-150D5 4267.33 4334.71 4435.95 4483.40 372.00 4334.71 4341.15 2357.52 4328.77 4339.85 -0.14 722.75 662.86
p04-150D6 6284.76 6395.41 6467.17 6459.80 300.00 6395.41 6402.15 1926.20 6380.51 6391.51 -0.23 1463.21 1320.52
p05-199 - 1289.89 1302.89 1342.50 477.00 1289.89 1293.24 1355.25 1287.18 1293.19 -0.21 258.40 174.50
p05-199D1 1042.37 1074.18 - 1126.60 449.00 1074.18 1080.64 626.12 1074.06 1081.46 -0.01 237.69 154.62
p05-199D2 2423.99 2478.40 2540.06 2525.00 418.00 2478.40 2486.54 2661.25 2476.06 2485.54 -0.09 389.77 335.06
p05-199D3 3420.23 3471.41 3581.66 3542.50 429.00 3471.41 3480.76 3014.82 3469.18 3477.51 -0.06 559.50 477.57
p05-199D4 5422.95 5521.57 5669.26 5700.70 500.00 5521.57 5529.06 4349.61 5515.50 5519.99 -0.11 1666.05 1477.85
p05-199D5 5304.09 5409.76 5541.09 5585.10 438.00 5409.76 5417.75 4524.33 5398.71 5409.49 -0.20 1386.87 1318.93
p05-199D6 8062.14 8192.03 8297.71 8255.40 300.00 8192.03 8195.67 3258.29 8176.30 8190.21 -0.19 3462.49 3422.14
p11-120 - 1037.88 1042.12 1048.30 177.00 1037.88 1043.38 84.84 1037.88 1037.98 0.00 141.91 43.34
p11-120D1 1023.39 1043.19 - 1119.20 344.00 1043.19 1043.22 109.76 1042.80 1042.88 -0.04 139.01 66.96
p11-120D2 2867.79 2898.50 2913.09 2953.10 344.00 2898.50 2907.07 895.11 2898.25 2900.15 -0.01 294.04 199.85
p11-120D3 4156.68 4219.01 4270.38 4298.40 345.00 4219.01 4220.79 1957.37 4216.10 4219.56 -0.07 447.07 355.21
p11-120D4 6780.19 6854.09 6890.39 7206.20 358.00 6854.09 6865.23 3442.31 6850.78 6856.60 -0.05 1412.36 1171.14
p11-120D5 6593.28 6658.52 6671.04 6858.10 354.00 6673.95 6678.11 2354.02 6639.96 6645.18 -0.28 1019.33 780.82
p11-120D6 10113.55 10204.81 10233.37 10285.70 300.00 10204.81 10216.80 2279.57 10193.20 10197.45 -0.11 2718.38 2305.72
Average - 2800.28 - 2864.56 300.82 2800.69 2804.92 1062.86 2797.27 2801.08 - 534.55 420.44
Best# - - 0 0 - 1 4 - 25 35 - - -
p-value - 9.46E-06 - 1.65E-08 - 4.20E-06 8.68E-07 - - - - - -
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Table 6.27 Ű Results for the SDVRP-UF on the instances of Set IV.

TSVBA SplitILS SplitMA
Instances LB BKS

Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
SD1 228.28 228.28 228.28 0.00 228.28 228.28 0.05 228.28 228.28 0.00 7.34 0.41
SD2 708.28 708.28 708.28 0.02 708.28 708.28 0.63 708.28 708.28 0.00 37.30 0.06
SD3 430.58 430.58 430.58 0.03 430.58 430.58 0.62 430.58 430.58 0.00 32.63 0.06
SD4 631.05 631.05 631.05 0.08 631.05 631.05 2.26 631.05 631.05 0.00 73.23 0.22
SD5 1390.57 1390.57 1390.57 0.13 1390.57 1390.57 6.07 1390.57 1390.57 0.00 149.36 0.64
SD6 831.24 831.24 831.24 0.14 831.24 831.24 5.81 831.24 831.24 0.00 118.25 0.54
SD7 3639.97 3640.00 3640.00 0.09 3640.00 3640.00 14.12 3640.00 3640.00 0.00 215.58 0.25
SD8 5068.28 5068.28 5068.28 0.14 5068.28 5068.28 24.93 5068.28 5068.28 0.00 208.20 2.62
SD9 2044.18 2044.20 2071.03 0.36 2044.20 2044.20 38.78 2044.20 2044.20 0.00 204.59 2.75
SD10 2684.86 2684.88 2747.83 0.89 2684.88 2684.88 101.10 2684.88 2684.88 0.00 279.78 5.62
SD11 13280.00 13280.00 13280.00 0.41 13280.00 13280.00 152.42 13280.00 13280.00 0.00 445.85 5.24
SD12 7135.27 7213.61 7213.62 0.84 7213.61 7216.60 210.71 7213.61 7213.61 0.00 431.13 50.94
SD13 9992.74 10110.58 10110.58 1.20 10110.58 10110.58 189.45 10110.60 10110.60 0.00 507.67 10.88
SD14 10502.76 10717.53 10802.87 2.31 10717.53 10723.79 479.85 10715.50 10716.60 -0.02 602.92 310.92
SD15 14787.05 15094.48 15153.45 3.20 15094.48 15105.90 731.98 15089.60 15091.78 -0.03 863.71 500.17
SD16 3379.33 3379.33 3446.43 7.59 3381.26 3394.48 930.72 3381.25 3381.25 0.06 1100.32 458.89
SD17 26166.80 26493.56 26493.56 7.27 26496.06 26499.32 577.29 26493.60 26493.96 0.00 934.31 350.03
SD18 13892.74 14202.53 14323.04 27.95 14202.53 14205.07 834.60 14194.70 14203.06 -0.06 803.83 560.56
SD19 19584.84 19995.69 20157.10 11.95 19995.69 20007.52 1524.67 19991.30 20004.14 -0.02 1058.17 856.28
SD20 38901.37 39635.51 39722.86 11.02 39635.51 39647.61 1563.38 39635.50 39637.02 0.00 1601.22 1057.46
SD21 11254.83 11271.06 11458.76 111.56 11345.68 11365.37 5034.56 11294.50 11307.54 0.21 2156.59 2087.82
Average - 9002.44 9043.31 8.91 9006.20 9010.17 591.62 9002.74 9004.62 - 563.43 298.21
Best# - - 0 - 0 1 - 5 9 - - -
p-value - 8.53E-01 1.62E-02 - 3.47E-02 1.14E-02 - - - - - -
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Titre : Algorithme génétique hybride pour quelques problèmes de routage de véhicules

Mot clés : Problèmes de voyageur de commerce, Problème de tournées de véhicules, Algo-
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Résumé : Cette thèse présente des algo-
rithmes génétiques hybrides pour quatre pro-
blèmes de routage : le problème de voyageurs
de commerce colorés (CTSP), le problème
de voyageurs de commerce minmax multiples
(minmax mTSP), le problème de voyageurs
de commerce avec bénéfices (TSP avec bé-
néfices) et le problème de routage de véhi-
cules de livraison fractionnne (SDVRP). Ces
problèmes sont largement présents dans des
applications du monde réel et sont utiles pour
modéliser de nombreux problèmes pratiques.
Étant donné leur grande difficulté en terme de
résolution, les métaheuristiques sont un choix
pertinant pour résoudre les instances diffi-
ciles. Quatre algorithmes génétiques hybrides

associés à des opérateurs de croisement dé-
diés et des procédures de recherche locale
sont proposés pour résoudre ces problèmes.
En particulier, le puissant croisement d’as-
semblage d’arc est étendu et généralisé pour
résoudre des problèmes de routage riche. Les
études expérimentales réalisées sur un large
éventail d’instances de référence indiquent
que les approches proposées rivalisent favo-
rablement avec les algorithmes de l’état de
l’art. Des expériences approfondies montrent
le rôle des éléments clés de nos algorithmes,
notamment le "croisement d’assemlage d’arc
général" et la recherche locale pour le SDVRP
et la préservation de la diversité pour le TSP
avec profits.

Title: Hybrid genetic algorithm for routing problems

Keywords: Traveling salesman problem, Vehicle routing, Hybrid genetic algorithm, Edge as-

sembly crossover, Combinatorial optimization.

Abstract: This thesis presents hybrid ge-
netic algorithms for four routing problems:
colored traveling salesmen problem (CTSP),
minmax multiple traveling salesmen problem
(minmax mTSP), traveling salesman problems
with profits (TSPs with profits) and split deliv-
ery vehicle routing problem (SDVRP). These
problems widely exist in real-life applications
and are useful to model numerous practi-
cal problems. Given that they are computa-
tional challenge, metaheuristic algorithms are
naturally presented to solve large-sized in-
stances. Four hybrid genetic algorithms as-
sociated with dedicated crossover operators

and local search procedures are proposed
for these problems. In particular, the power-
ful edge assembly crossover is extended and
generalized to solve rich routing problems.
Computational studies performed on a wide
range of benchmark instances indicate that
the proposed approaches compete favourably
with state-of-the-art algorithms. Additional ex-
periments show the roles of the key com-
posing ingredients of our algorithms, including
the general edge assembly crossover, the lo-
cal search, for the SDVRP and the diversity
preservation for TSPs with profits.
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