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ABSTRACT

To defend against sophisticated cyber-criminal organizations and APTs, IT sys-
tem operators should define and enforce strict security policies. However, defining
and maintining perfect security policies that block all attacks and do not impact
usability of the system is impossible. Therefore, security monitoring and incident
response are often entrusted to Security Operation Centres (SOC) and Computer
Emergency Response Teams (CERT). When monitoring an IT system, legitimate
behaviours repeatedly triggers false alarms. This causes alert fatigue, as analysts
are overloaded to the point they can miss subtle variations that are the conse-
quence of adversary behaviours. This thesis describes methods to allow security
analysts, with no expertise in data science, to create and adapt security analytics
that leverage machine learning models to automate more of their investigation pro-
cedures. This thesis focuses on anomaly detection to highlight unusual behaviours
and clustering to regroup similar alerts and avoid repeating the same alerts again
and again. We specifically explore the application of these methods to novel at-
tack detection. To assess our approach, we also describe a method to automatically
generate user activity to create realistic datasets.
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RÉSUMÉ SUBSTANTIEL EN FRANÇAIS

Depuis la fin des années 70 et la mise à disposition des ordinateurs personnels
pour le grand public, la société humaine est devenue de plus en plus dépendante des
technologies de l’information. De nos jours, la plupart des entreprises opèrent des
Systèmes d’Information (SI) et seraient très impactées si elles en perdaient le con-
trôle. Pour cette raison, ces dernières décennies ont vu une forte augmentation de
la profitabilité de la cyber-criminalité. Ceci a entraîné l’émergence d’organisations
cyber-criminelles hautement structurées. En parallèle, des acteurs étatiques ont
développé leurs capacités offensives dans le cyber-espace. En plus d’objectifs mil-
itaires (e.g., le cas du ver Stuxnet [55] qui a significativement impacté le pro-
gramme d’armement nucléaire de l’Iran), ces acteurs étatiques peuvent poser une
réelle menace pour les entreprises, que ce soit au travers du cyber-espionage (e.g.,
le groupe AQUATIC PANDA 1, qui est supposé avoir ciblé des industries travail-
lant dans les secteurs gouvernemental, des technologies de l’information et des
télécommunications), ou au travers d’opérations destructives qui impactent des
secteurs d’activité entiers (e.g., Lazarus Group, qui est supposé être responsable de
l’attaque ayant visé Sony Pictures Entertainment en 2014 2). Les acteurs soupçon-
nés d’être financés par ou affiliés à des états-nations sont communément appelés
Advanced Persistent Threats (APT). Ils sont constitués de personnels hautement
qualifiés et organisés, ont accès à des financements abondants, et sont par con-
séquent en mesure de mener des opérations à long terme et de grande ampleur en
obtenant et maintenant des accès illégitimes et discrets à des SI.

Se défendre face aux menaces

Pour se défendre face aux organisations cyber-criminelles sophistiquées et APT,
les opérateurs de SI doivent définir et appliquer des politiques de sécurité strictes.

1. Un rapport sur AQUATIC PANDA est disponible ici: https://www.crowdstrike.com/
blog/overwatch-exposes-aquatic-panda-in-possession-of-log-4-shell-exploit-tools/

2. Un rapport sur Lazarus Group est disponible ici: https://home.treasury.gov/news/
press-releases/sm774
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Résumé substantiel en français

Leurs objectifs sont de minimiser la surface d’attaque et l’impact des attaques
réussies. En revanche, définir, affiner et maintenir une politique de sécurité parfaite,
qui prémunit de toutes les attaques actuelles et futures sans pour autant impacter
les fonctionnalités du système, est impossible. Par conséquent, dans le but de réagir
rapidement (i.e., avant d’atteindre des dommages irréversibles) aux attaques qui
vont nécessairement avoir lieu, il est nécessaire de superviser les SI pour détecter
les violations de sécurité. Pour les grosses entités, cette supervision ainsi que la
réponse aux incidents de sécurité sont confiées aux Security Operation Centres
(SOC) et aux Computer Emergency Response Teams (CERT).

Au sein d’un SOC, les analystes en cybersécurité configurent des systèmes de
détection pour analyser les événements de sécurité et alerter dès que des schémas
d’attaque connus sont repérés. Souvent, des alertes sont déclenchées par des com-
portements légitimes. Par conséquent, les analystes doivent investiguer les alertes
pour trouver celles qui sont causées par des attaquants et doivent être consid-
érées comme incidents de sécurité. Quand un sous-ensemble de comportements
légitimes déclenche des alertes à répétition, les analystes peuvent rapidement être
surchargés au point de ne pas apercevoir des variations du comportement ayant
conduit à l’alerte, ce qui empêche de qualifier certains incidents en tant que tel.
Ce phénomène est appelé alert fatigue et est l’un des principaux problèmes que
rencontrent les analystes SOC.

Les CERT fournissent une assistance pour gérer la réponse aux incidents sécu-
rité. Pour ce faire, au moment de la réception d’un cas d’incident avéré (e.g.,
détecté par un SOC), les analystes en cybersécurité au sein du CERT mènent une
investigation poussée de données de sécurité (e.g., événements de sécurité venant
de la supervision, analyses forensiques des machines infectées, etc.) afin de décou-
vrir un maximum d’information sur les attaquants. Cette information est exploitée
pour évincer durablement les attaquants des systèmes impactés et pour enrichir
des bases de connaissance contenant du renseignement sur la menace cyber (ou
Cyber Threat Intelligence en anglais).

Cette CTI est composée d’indicateurs de compromission (e.g., adresses IP
et noms de domaines liés aux infrastructures des attaquants, signature de logi-
ciels malveillants, etc.) ainsi que de documentation des comportements adverses
observés. Ces comportements sont en général nommés Tactiques, Techniques et
Procédures (TTP), les Tactiques décrivant à haut niveau des étapes d’attaque, les
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Techniques représentant les méthodes possibles pour effectuer une étape d’attaque
et les Procédures étant des implémentations spécifiques de Techniques. En ter-
mes de détection, les indicateurs de compromission sont simples à repérer dans
les événements de sécurité mais peuvent être facilement modifiés par l’attaquant,
tandis que les TTP requièrent des stratégies de supervision avancées et des con-
figuration fines des systèmes de détection, mais sont beaucoup plus complexes à
modifier complètement pour les attaquants (voir Fig. 1).

Figure 1 – La Pyramid of Pain du threat hunting [13]

Quand elle acquiert de nouveaux renseignements sur les groupes d’attaquants,
une équipe spécifique d’analystes appelée threat hunters peut chercher des preuves
d’activité de ces attaquants au sein de l’historique des données de sécurité. Au
sein d’un SOC, les threat hunters se focalisent sur la détection de violations qui
auraient échappées à la détection, tandis que dans les CERT, ils visent également à
découvrir de nouvelles méthodologies ou des variations de méthodologies connues.
Dans tous les cas, les threat hunters analysent de vastes quantités de données et
doivent par conséquent se reposer sur des outils pour accélérer et automatiser
autant de parts de l’analyse que possible.
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Le cas de la science des données au sein des opéra-
tions de cyber sécurité

La science des données vise à trouver des méthodes pour extraire des informa-
tions d’intérêt et de la connaissance à partir de données. Cependant, bien que divers
aspects du travail des analystes en cybersécurité gravitent autour de l’extraction
d’information liées aux incidents depuis les données de supervision, les méthodes
de science des données, et en particulier le Machine Learning (ML), ne sont que
peu adoptées au sein des CERT et SOC. En particulier, l’application de la sci-
ence des données à l’assistance des analystes en cybersécurité se heurte à trois
principaux défis [116, 92, 3].

En premier lieu, la plupart des analystes n’ont pas l’expertise et la connais-
sance en science des données requises pour concevoir et opérer des méthodes à base
de ML. De manière similaire, les data scientists ne sont souvent pas familiarisés
avec les contraintes spécifiques aux opérations de cybersécurité. En particulier, la
donnée de supervision provient de multiples capteurs hétérogènes qui fournissent
un niveau de visibilité différent sur les comportements adverses, ainsi que des de-
grés variés de volumétrie et de bruit. Ceci demande des pré-traitements complexes
pour appliquer des modèles de ML à ces données. Cette fracture au niveau des
connaissances entre les data scientists et les analystes en cybersécurité exacerbe la
nature de boite noire souvent attribuée au ML par les analystes. De plus, les com-
pétences acquises intuitivement par les analystes à travers leurs expériences sont
difficilement formalisables sous une forme que les data scientists peuvent exploiter
pour concevoir des méthodes adaptées aux opérations de cybersécurité.

En second lieu, contrairement à la plupart des domaines d’application de la
science des données, les attaquants cherchent activement à contourner les outils
employés par la défense. Par conséquent, une attention particulière doit être portée
au moment de la conception pour s’assurer que les outils n’introduisent pas de
nouvelles vulnérabilités exploitables par les attaquants. Pour les modèles de ML, il
s’agit de prendre en compte les perturbations adverses (i.e., modifications des don-
nées spécifiquement pensées pour contourner les modèles), l’empoisonnement (i.e.,
modifier les données d’entrainement pour dégrader les performances des modèles),
mais également prendre en considération la totalité de la chaîne d’acquisition: si
les attaquants peuvent modifier les données de supervision, ils peuvent impacter
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très sévèrement les capacités défensives.

En dernier lieu, il est difficile d’acquérir des jeux de données représentatifs de
cas d’usage de cybersécurité pour expérimenter avec des méthodes issues de la sci-
ence des données. En effet, les données de supervision contiennent des données sen-
sibles et à caractère personnel. Bien que l’anonymisation des données peut réduire
l’exposition des individus, afin d’être efficace (i.e., conserver l’anonymat malgré un
croisement des données), elle dégrade la représentativité des jeux de données. Par
conséquent, les SOC et les CERT ont en général une interdiction légale, que ce soit
au travers de contrats ou de législations (e.g., le RGPD en Europe), de partager
de la donnée de supervision réelle. Les jeux de données partageables doivent par
conséquent venir d’un environnement de laboratoire avec des utilisateurs factices.
La génération d’activité utilisateur réaliste est requise pour fournir des données
représentatives et constitue un défi ouvert.

Conception d’analytiques pour traiter des événe-
ments de sécurité hétérogènes

Afin d’améliorer la compréhension par les analystes en cybersécurité des résul-
tats fournis par des méthodes issues de la science des données, tout en profitant
de leur expertise, nous proposons une approche mettant l’analyste au cœur de la
conception d’analytiques de sécurité (i.e., des procédures de traitement automa-
tique de données de sécurité pour assister les analyses). La méthode proposée est
adaptée d’un procédé communément employé par les threat hunters pour concevoir
des analytiques aidant à la recherche de TTP adverses [27]. La méthode proposée
permet aux analystes d’incorporer dans ces analytiques des modèles de ML pour la
détection d’anomalies et le regroupement par similarité ou clustering. Un exemple
d’un tel analytique est illustré en Fig. 2.
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Figure 2 – Exemple de cas d’usage d’un analytique incorporant un modèle de ML:
accélérer le threat hunting à partir d’indicateurs de compromission.
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Réseaux de neurones auto-encodeurs pour traiter
des événements de sécurité

Figure 3 – Structure d’un auto-encodeur pour analyser des événements DNS

L’approche proposée se focalise sur l’abstraction et l’automatisation de la con-
figuration des modèles de ML et des fonctions de pré-traitement associées (néces-
saires pour permettre aux modèles de traiter les données). Pour cela, l’approche
repose sur du Deep Learning (DL), et plus précisément des réseaux de neurones
auto-encodeurs, afin de minimiser l’implication de l’humain dans l’étape de trans-
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formation des caractéristiques (les réseaux de neurones profonds ont la capacité
d’adapter automatiquement les paramètre des fonctions de transformation). Ces
auto-encodeurs servent à fournir un score d’anomalie aux événements analysés et
aux caractéristiques qui les composent, ainsi qu’un vecteur (appelé représentation
latente), qui est exploité pour regrouper les événements similaires. La structure du
réseau est construite de manière automatique grâce à des composants génériques
pour chacun des types d’attribut les plus communs dans les événements de sécurité
(i.e., catégoriel, numérique, et chaines de caractères). Un exemple de structure est
donné en Fig. 3

Adaptation à la dérive conceptuelle par appren-
tissage actif

Au sein d’un SI, le comportement des utilisateurs évolue continuellement. En
particulier, les nouveaux comportements légitimes peuvent déclencher des alertes
et d’anciens comportements peuvent cesser de toute manifestation à l’intérieur des
données de supervision. En science des données, ce phénomène se dénomme "dérive
conceptuelle" et il requiert d’entraîner les modèles continuellement. Cependant,
un adversaire peut exploiter cet apprentissage en continu afin d’empoisonner le
modèle progressivement en distillant des traces d’apparence bénigne de son attaque
jusqu’à ce que la totalité de l’attaque soit considérée comme étant normale par
le modèle (communément appelé "attaque de la grenouille ébouillantée"). Pour
s’en prémunir, les données servant au ré-entraînement du modèle doivent être
sélectionnées avec soin (i.e., uniquement les fausses alertes). L’approche proposée
exploite la qualification d’alertes déjà effectuée par les analystes afin de sélectionner
les données qui doivent être ré-insérées dans le modèle.

Dans le cas de la détection d’attaque inconnues, les analytiques doivent traiter
en grande partie (>99%) des événements causés par des actions légitimes des
utilisateurs. Par conséquent le taux de fausses alertes peut être élevé. Bien que
le clustering aide à réduire le volume d’information à analyser, pour les SI les
plus grands, ce n’est pas suffisant pour atteindre un nombre d’alertes acceptable.
Afin de réduire ce nombre et fournir un maximum de contexte aux alertes pour
accélérer le processus d’investigation, l’approche proposée repose sur la fusion des
événements causés par les mêmes actions. Un algorithme permettant d’effectuer
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cette fusion à l’échelle est proposé. Les analystes peuvent l’exploiter en fournissant
la liste des variables pivots (i.e., attributs communs d’une source d’événement à
une autre) qu’ils utilisent habituellement pour naviguer au travers des différents
événements de sécurité pendant une investigation. Les événements ainsi fusionnés
forment des ensembles de composition variable. La structure de l’auto-encoder
doit ainsi être adaptée dynamiquement, pour chacun des ensembles d’événements
(Fig. 4). En croisant l’information de tous les événements qui composent l’ensemble
d’entrée, cet auto-encodeur dynamique est capable de détecter des anomalies en
fonction de leur contexte (e.g., des événements normaux indépendamment, mais
qui ne devraient pas se manifester ensemble).

Figure 4 – Structure dynamique de l’auto-encoder en fonction de la composition
des ensembles d’événements
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En la combinant avec le clustering, cette approche permet de réduire le nombre
d’alertes par deux ordres de grandeur. Étant donné que tous les événements liés à
l’alerte sont présentés en même temps aux analystes, ils n’ont pas besoin de nav-
iguer aux travers de multiples sources d’événements pour reconstruire le contexte
derrière une alerte, ce qui réduit le temps d’investigation. Ceci rend l’approche
viable pour de l’apprentissage actif (active learning), où la qualification des alertes
à l’issue des investigations est utilisée comme moyen de rétro-contrôle du modèle
(i.e., les faux positifs sont ré-insérés dans le modèle).

Constitution de jeux de données réalistes

La représentativité des jeux de données constitués au sein d’environnements
de laboratoire est souvent limitée par la qualité de l’activité qui y est générée.
En particulier, l’activité légitime des utilisateurs est la plus grande cause de faux
positifs pour les environnements de production, mais la qualité de sa représentation
est pourtant limitée au sein des jeux de données publics (e.g., activité réseau
uniquement, des agents qui sont visibles dans les logs, etc.).

Afin de constituer des jeux de données plus réalistes pour l’évaluation de méth-
odes issues de la science des données, l’approche proposée permet d’automatiser
la génération de l’activité légitime des utilisateurs dans une environnement de
laboratoire. Cette approche repose sur un agent qui instrumente les machines
de l’environnement au travers de la souris, du clavier, et de l’écran. Il devient
alors possible de déporter cet agent à l’extérieur des machines instrumentées et
par conséquent le rendre invisible du point de vue des outils de supervision.
L’agent est conçu en plusieurs couches d’abstraction afin de permettre aux opéra-
teurs de rapidement définir et mettre en œuvre des scénarios d’activité adaptables
aux spécificités de l’environnement (e.g., différentes versions de logiciels, systèmes
d’exploitation hétérogènes, etc.). Un orchestrateur se charge de coordonner un
ensemble d’agents (un par machine), afin de générer de l’activité à l’échelle du
système. Cet orchestrateur s’assure que chaque agent effectue la bonne action au
bon moment sur la bonne machine (e.g., un utilisateur ne peut pas répondre à un
e-mail qui n’a jamais été reçu).

Cette méthode a été employée afin de générer un jeu de données contenant sept
jours d’activité et trois scénarios d’attaques complets. C’est ce jeux de donnée qui
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a servi à l’évaluation des analytiques conçus au moyen de l’approche décrite dans
cette thèse. Il sera mis à disposition afin de permettre la reproduction des résultats
par des tiers et l’évaluation d’autres méthodes.

Perspectives

Au terme de ces travaux de recherche, quatre axes d’investigation majeurs ont
été identifiés. En particulier, l’approche proposée consiste en la définition de com-
posants qui sont requis mais non suffisant pour créer des analytiques de sécurité
complets reposant sur des méthodes issues de la science des données. Il manque
effectivement des composants requis par les analystes en cybersécurité (e.g., visu-
alisation d’alertes). Également cette approche n’a été évaluée que sur un unique
environnement et trois scénarios d’attaque. Bien que les attaques visant les mod-
èles ont été prises en compte pendant la phase de conception, de plus amples
évaluations de robustesse face à ces attaques sont requises. Enfin, des tests plus
poussés pourraient mettre en évidence des problèmes de performance, aussi bien
en termes de temps de calcul que de détection.
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INTRODUCTION

Since the introduction of the Personal Computer (PC) to the mass-market in
the late 1970’s, human society have become overly reliant on Information Tech-
nologies (IT). Today, most companies operate Information System(s) and can be
severely impacted by a loss of control over them. Due to this, in the past few
decades, profitability of cyber-criminality has risen and multiple highly organized
structures have emerged. In parallel, state actors have developed their offensive
capabilities in the domain, and in addition to military objectives (e.g., the case of
the StuxNet worm [55], which significantly hindered Iran’s nuclear program), they
can also pose a threat to major enterprises either through industrial espionage
(e.g., the AQUATIC PANDA threat actor 3, which is believed to target industries
in the governmental, information technology and telecommunication sectors), and
through destructive operations that impact entire activity sectors (e.g., the Lazarus
Group which is reportedly behind the attack against Sony Pictures Entertainment
in 2014 4). Threat actors that are allegedly sponsored by or affiliated to nation-
states are usually called Advanced Persistent Threats (APT). They are made of
highly skilled and organized personnel with abundant funding and are therefore ca-
pable of maintaining stealthy access for a long period of time to conduct large-scale
operations.

Defending against threat actors

To defend against these sophisticated cyber-criminal organizations and APTs,
IT system operators define and enforce strict security policies to minimize the
exposure of their systems and limit the impact of successful attacks. However,
defining and refining perfect security policies that account for natural evolution
of an IT system and the future threats that will target it, while not diminishing

3. See a report on AQUATIC PANDA here: https://www.crowdstrike.com/blog/
overwatch-exposes-aquatic-panda-in-possession-of-log-4-shell-exploit-tools/

4. See a report on Lazarus Group here: https://home.treasury.gov/news/
press-releases/sm774

29

https://www.crowdstrike.com/blog/overwatch-exposes-aquatic-panda-in-possession-of-log-4-shell-exploit-tools/
https://www.crowdstrike.com/blog/overwatch-exposes-aquatic-panda-in-possession-of-log-4-shell-exploit-tools/
https://home.treasury.gov/news/press-releases/sm774
https://home.treasury.gov/news/press-releases/sm774


Introduction

crucial functionalities, is nearly impossible. Therefore, to react quickly (i.e., before
damage is irreversibly done) to successful attacks that are bound to happen, it is
mandatory to monitor the system for potential security breaches. For large entities,
security monitoring and incident response are entrusted to Security Operation
Centres (SOC) and Computer Emergency Response Teams (CERT).

In a SOC, security analysts configure detection systems to analyse security
events and alerts whenever manifestations of known attack patterns have been
detected. Often, these alerts can be triggered by legitimate behaviours. Therefore,
analysts must investigate them to find the ones that are caused by attackers and are
to be considered as security incidents. When a small subset of legitimate behaviours
repeatedly triggers the same alerts, analysts can be quickly saturated and fail to
detect small but important variations in the behaviours, that, in turn, prevent
them from accurately qualifying a security incident as such. This phenomenon is
usually called alert fatigue, and is one of the biggest problems faced by SOCs.

A CERT provides help to entities for handling security incidents response. To
do so, upon receiving an incident case (e.g., from a SOC), security analysts in the
CERT perform a thorough investigations of the security data (e.g., security events
from monitoring, forensic analysis of infected machines, etc.) to uncover as much
information as possible regarding the attackers. This information is exploited to
remove the attackers from the impacted system (and prevent them from gaining
back accesses), and it is also used to enrich a knowledge base containing intelligence
on threat actors.

This Cyber Threat Intelligence (CTI) is made of Indicators of Compromise
(e.g., IP addresses and domain names of attackers’ infrastructures, malware sig-
natures, etc.) as well as documented adversary behaviours. These behaviours are
often referred to as Tactics, Techniques and Procedures (TTPs), where Tactics
describe the attackers high level steps when conducting an attack, Techniques rep-
resent possible methods to perform an attack step, and Procedures are specific
implementations of Techniques. In terms of detection, IoC are simple to detect in
security data but are easily modified by attackers, while detecting TTPs require
advanced monitoring strategy and careful configuration of the detection system,
but take more time for attacker to completely modify (see Fig. 5).

Upon acquiring new intelligence on threat actors, a specific team of security
analysts called threat hunters can look for evidence of these actors activity inside
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Figure 5 – Threat hunting Pyramid of Pain [13]

historical data. In a SOC, threat hunters will focus on detecting breaches they
potentially missed, while in a CERT, threat hunter also aim at discovering novel
attack patterns or variations of existing ones. In any case, threat hunters analyse
massive amount of data and therefore need to rely on tools to accelerate and
automate as many parts of the analysis as possible.

The case of data science for security operations

Data science aims at finding methods to extract valuable information and
knowledge from data. However, while various aspects of security analysts work
revolves around extracting information regarding security incidents from moni-
toring data, data science methods, and especially Machine Learning (ML)-based
methods, are only scarcely adopted within SOCs and CERTs. In fact, the applica-
tion of data science to support security analysts faces three main challenges [116,
92, 3].

First, most security analysts lack the required expert knowledge in data science
to design and operate machine learning based methods. Similarly, data scientists
are often not accustomed to the specific requirements of cyber security operations.
For instance, monitoring data comes from multiple heterogeneous sensors that
provide varying levels of visibility on attackers behaviours with varying volume
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and noise, which requires complex pre-processing to apply ML models to this
data. This knowledge gap between data scientists and security analysts exacerbates
the black-box nature of ML sometimes perceived by the latter. Furthermore, the
intuitive skills acquired through experience by security analysts is often difficult
to formalize in such a way that data scientists can design relevant methods to
support security operations.

Second, contrarily to most application domains in data science, attackers will
actively try to circumvent the defenders’ tools. Therefore, special care should be
taken when designing these tools to ensure it does not introduce additional vulner-
abilities that attackers can exploit. For ML models, it means accounting for adver-
sarial perturbations (i.e., modifications to the data specifically meant to evade the
model), poisoning (i.e., modifying the training datasets to degrade the performance
of the models), but also consider the whole data acquisition pipeline: if attackers
can modify monitoring data, they can severely impact defenders’ capabilities.

Finally, acquiring representative datasets to experiment with data science in-
spired methods for cyber security operations is difficult. In fact, security data
contains sensitive information and personal data. While data anonymisation can
reduce the exposure of individuals, to be effective (i.e., keeping anonymity even
when correlating data), they degrade the representativeness of the datasets. There-
fore, SOCs and CERTs are often legally prevented, both through contracts and
regulations (e.g., GDPR in Europe) to share real life security monitoring datasets.
Shareable datasets should therefore come from a laboratory environment with fake
users. Generating realistic user activity is mandatory to provide representative
datasets, and is still an open challenge.

Outline

In this thesis, we propose data science inspired methods to support security
analysts. Specifically, we focus on security analytics (i.e., automated data process-
ing to support analysis) that exploit anomaly detection and clustering to highlight
suspicious behaviours and reduce the volume of information that is presented to
analysts.

To improve results’ explainability and reduce the black-box nature of data
science methods perceived by security analysts, we put security analysts at the
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centre of the analytics design process. To do so, we draw inspiration from state-
of-the-art deep learning methods applied to other domains (e.g., natural language
processing) to help automate data pre-processing, and thus lower the need for data
science knowledge.

To account for the natural evolution of legitimate behaviours, the models are
trained continuously. To prevent attackers from poisoning the models by distill-
ing gradually traces of their attack while staying under the detection threshold
(known as the frog-boiling attack), we propose to use an active learning approach,
where analysts provide feedback to the model by annotating false positives (i.e.,
legitimate behaviours that triggered alerts) that should be reintegrated inside the
model. To lower the number of alerts to investigate and reduce the investigation
type, we rely on event fusion and clustering to contextualise alerts.

Chapter 1 details the context and state of the art in analytics for security
monitoring. The deep learning approach to handle heterogeneous security events is
described in chapter 2. Chapter 3 explains the active learning approach that relies
on event fusion and dynamic neural networks to provide contextualised anomaly
detection and clustering capabilities. Finally, in chapter 4, we describe the method
we propose to automate user activity in order to generate a dataset, and we assess
our approach using this dataset. The document ends with a conclusion discussing
our results and providing perspectives for our work.
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Chapter 1

CONTEXT

1.1 Introduction to security monitoring

Monitoring is a core part of modern information system security. This section
gives an introduction to security monitoring starting by explaining why it is a
necessity to effectively defend a system. It gives an overview of what aspects of
the systems can be monitored, why they should be, and how it can be done.
The organisation of the technical and human resources behind today’s security
operations is also given, with a strong focus on Security Operations Centres (SOC).
We conclude with the notion of monitoring strategy, and gives a high level overview
of how such a strategy should be constructed.

1.1.1 The need for security monitoring

Definition of an attack

The security of an information system revolves around three fundamental prop-
erties: confidentiality, integrity and availability (also known as the CIA triad).
Confidentiality means that only authorised people, resources and processes can
access the information. Integrity means that the information should not be modi-
fied without authorisation (whether it is accidental or not). Availability means that
any authorized user can access the information whenever needed. An intrusion is
therefore an attempt to compromise any of these three properties, and an attack
is an intrusion attempt.

Protecting an information system

The protection of an information system consists in ensuring that actions per-
formed by users and processes on the system are properly authorized. But more
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importantly, it also means that authorized users can use the system as they require.
The corner stone of IT system protection is therefore to authenticate users and
processes, and to control accesses to the required resources of the system. Access
Control refers to the management and enforcement of these accesses. In summary,
protecting an information system relies on specifying what users and services are
authorized to do or not, and granting or refusing these authorizations. The spec-
ification is part of the access control policy of an information system. Properly
defining this policy is essential to the security of an information system. Prevent-
ing users from doing something they should be able to do impacts availability.
Allowing them to do actions they should not perform may impact confidentiality
and/or integrity of the system. In practice, from the network point of view, the
protection of an IT system consists in isolating machines in their own sub-networks
and interconnecting these sub-networks as required using the appropriate network
equipments (e.g., firewalls, manageable switches, etc.). From the applicative point
of view, the informations regarding users, machines, processes and their respective
rights on the systems are most often stored in a directory (e.g., Active Directory,
LDAP, etc). Users, machines and processes can then be authenticated and autho-
rizations to resources of the system are granted or denied based on the attributed
rights.

The limits of access control

In practice, exhaustively specifying what users can and cannot do is close to
impossible. Besides, such a specification needs to be constantly updated as the
needs of the users and the capabilities of the system evolve. There is always a
trade-off between the exhaustiveness of the access control policy and the cost of
defining and maintaining it.

Furthermore, enforcing an access control policy is not trivial. In fact the au-
thentication methods of users can be compromised (e.g. passwords can be stolen),
and adding additional authentication factors (e.g., biometry) has a non-negligible
impact on usability and cost of maintenance of the system. Besides there is a risk
the user itself might be compromised, whether it is intentional (e.g., a user that
wants to harm the company) or not (e.g., an attacker successfully tricking a user).

Finally, systems have flaws that an attacker can exploit. When these vulnera-
bilities are known (e.g., publicly disclosed on sites like MITRE CVE [24]) actions
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can be taken to mitigate them (e.g., by updating the system), but many of these
vulnerabilities are not documented and can be exploited by attackers.

Therefore additional measures need to be taken to verify that the access control
policy is properly enforced and to ensure that attacker(s) haven’t managed to
bypass it. This is done by tracing and recording the activity of the systems to look
for indicators of a violation of the policy or of a compromise by an attacker. This
process is called security monitoring.

Protection and supervision are two complementary pillar in cybersecurity. Mon-
itoring for illegitimate accesses to the system can help improve the access control
policy by identifying flaws in the policy or in its enforcement. On the other hand,
if the policy is too permissive, discerning illegitimate accesses from legitimate ones
is impossible.

1.1.2 Collecting monitoring data

The data collected during the monitoring process is meant to detect and char-
acterise the activities that are a risk to the monitored system’s security. It should
contain information that can be used to reconstruct the steps and the causes behind
a security incident (i.e., a verified illegitimate access to the system which impacts
its confidentiality, integrity and/or availability). Having a good understanding of
the origin and the evolution of a security incident facilitates the definition of an
incident response plan.

Definition of security events and alerts

Security monitoring consists in recording the activity of the IT system in the
search of illegitimate activity. Actions performed on a system change its state, and
information regarding these changes can be recorded inside logs in as events. Se-
curity events are the events that may be of interest to identify illegitimate actions.
To describe what has changed, events have variable parts that we call attributes.
For security events, most attributes are either numerical, categorical or text. Nu-
merical attributes are real numbers with a notion of order (e.g., 1 is bigger than
0.1), categorical are attributes with a finite set of values with no ordering (e.g., red
is neither lower or higher than blue), and text are strings of printable character
with a specific syntax and semantic and a virtually infinite number of different
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values (e.g., the name of a file).

An alert is triggered when one or more events indicate that an activity that is
considered illegitimate has been detected. For example, a process creation event
may indicate that a word processing software executed a command line interpreter,
which triggers an alert.

Network security monitoring

IT systems essentially rely on networks of interconnected machines. While per-
forming their normal operations, these machines communicate with one another.
Similarly, the attackers will interact with the network’s machines, and traces of
their presence can be seen inside network communications. Network monitoring
consists in analysing these communications in order to record and detect the ones
that can be attributed to attackers. In practice, this task is performed by Network
Intrusion Detection Systems (NIDS), that look for evidence of known misuse, or by
network sensors that analyse network protocols and record events indiscriminately.
As an example, Snort 1 and Suricata 2 are commonly used as NIDS, and Zeek 3 and
the IPFIX/NetFlow protocol are frequently employed to record network activity.

Network security monitoring is relatively easy to deploy as it can be done pas-
sively, by capturing network traffic on the system (e.g., through SPAN links on
network switches or network TAPs). It is also likely that attackers will perform ac-
tions that are visible from the network point of view (e.g., exfiltrating data to their
servers on the Internet). However, on complex network architectures, the multiple
layers of Network Address Translation (NAT) and proxies can make it difficult
to extract the exact source and destination machines from the network capture.
Capturing the traffic at the right spots inside the system is therefore critical for
network security monitoring to cover the desired perimeter and record useful in-
formation. Besides, using encrypted communication has become the norm for both
legitimate and malicious uses, considerably reducing the detection performance of
NIDS when not using SSL/TLS inspection, which is harder to deploy.

1. https://www.snort.org/
2. https://suricata.io/
3. https://zeek.org/
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File analysis

Data is commonly stored on machines as files. By extension, executable code
is stored as files. Attackers are likely to drop malicious code if the form of files
(malware) during their attack. Analysing files to look for suspicious patterns (static
file analysis) can therefore help detecting malware, which might indicate the system
has been compromised. This analysis can also be performed by executing the file in
a controlled and sealed environment to verify how it behaves and detect suspicious
intents (dynamic file analysis).

Traditionally, static analysis is performed by anti-viruses software that look for
characteristic features of known malware (signatures) when analysing files. Often,
small modifications of malware are enough to bypass this analysis. Dynamic anal-
ysis is performed within sandboxes that look for suspicious behaviour. It is much
more difficult to modify a malware behaviour without impacting its functionali-
ties, making dynamic analysis more robust than static one. However, as it requires
running the executable code in real-time, this analysis requires much more time,
and sandboxes often chose to stop the analysis after a certain amount of time,
which can be exploited by malware to avoid detection. Also, sandboxes simulate
interaction by the users, and this simulation can be detected as such by malware,
which can chose to stop their execution or perform only benign activity.

File analysis systems can be deployed directly on machines of the system (e.g.,
mail gateways, workstations, etc.) and perform their analysis as the files are written
on the machine, or they might be deployed as a dedicated platform for analysts
and security tools to submit files to.

Endpoint security monitoring

While network monitoring has been deployed in priority in the last few years,
endpoint level monitoring has seen an increase in popularity for production envi-
ronment. In particular, the generalized use of communication encryption strongly
limits the visibility of network probes, or requires the complex deployment of traffic
interception and decryption. On the other hand, actions performed on the system
by attackers can be monitored at the Operating System (OS) level. For example,
the execution of a malware can be logged as any other process execution event,
and its activity can also be recorded by the OS.
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This endpoint monitoring often consists in recording the execution of specific
system calls (e.g., the ones that are executed by specific and or privileged services
only), and checking system integrity (e.g., ensuring no configuration file has been
corrupted, that access to the registry are as expected, etc.). This host-based mon-
itoring is performed by Host Intrusion Detection Systems (HIDS), also known as
Endpoint Detection and Response (EDR).

Although endpoint monitoring provides a far better visibility on the attack-
ers actions, they are harder to deploy than network based solutions. Specifically,
deploying, managing and securing these highly privileged tools on a complete IT
system can be challenging. Besides, this specific type of sensor usually cannot be
deployed on Industrial Control Systems (ICS) and Internet of Things (IoT) de-
vices, due to the overhead endpoint detection tools carry, which is incompatible
with the specific availability requirements of such systems. Finally, once the at-
tackers have gained sufficient privileges on the system, they can simply disable
endpoint monitoring, or temper with the information that is collected.

Application layer monitoring

Any IT system hosts a collection of applications (e.g., specific software, network
services, etc.) that are used by the users. Often, production-grade applications have
the ability to log their activity (e.g., for debugging purposes, for traceability, to
monitor system health, etc.). These applications can also be subverted or targeted
by attackers. Misuses might be recorded by applications and therefore, application
logs can be valuable for security monitoring.

Nevertheless, each application can chose to implement its own logging system.
Extracting and normalizing valuable information from an unknown application is
complex. Due to this, on large systems with potentially numerous custom appli-
cations, it is close to impossible to monitor all these applications.

Digital Forensics

Real-time monitoring (i.e., files, events and alerts collection from network, end-
points and applications) is aimed at reducing the mean time to detect security
incident. It should provide information that can be used to define the nature of
the attack and the impacted assets. It is however not possible to predict all the
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attackers potential actions and capabilities. Therefore, the monitoring strategy is
bound to have visibility gaps.

On the other hand, attackers are unlikely to reinvent their complete method-
ologies and tooling with every new attacks. Specifically, developing offensive tools
and training for new attack methodologies requires time and specific skills, which
is incompatible with the cost imperative of cyber-criminal organisations and can
also be of concern for state actors. In fact, many threat actors acquire tooling
from third parties, and often exploit legitimate adversary simulation tools (e.g.,
Cobalt Strike 4, Metasploit 5, etc.). Therefore, many tools and methodologies are
reused from one operation to another (even from different threat actors), making
it possible for the defenders to detect the attackers at some point (even if it means
detecting them after damage has been done). At this point, it is possible to inves-
tigate supposedly impacted assets to confirm (or infirm) the attacker’s presence,
and gather evidences (for legal purposes). This investigation can also lead to the
discovery of novel attack methodologies that can later be used to detect similar
attacks.

While real-time monitoring can focus on a restricted view of the system, digital
forensic can have a wider scope as it focuses only on impacted machines and not
the whole system. The forensic procedure consists in taking snapshots of the state
of the machines (e.g., running processes, memory dumps, disk image, etc.) and
analysing them. However, advanced attackers will try to erase the trails they leave
on the systems, limiting the effectiveness of forensic measures.

1.1.3 The Security Operations Center

The security monitoring capabilities of large companies are often handled by
a dedicated entity (either by an internal unit or by an external service provider)
that is called the Security Operation Center (SOC), and is the combination of
technical and human resources. A SOC is in charge of detecting security incidents
and qualify them (i.e., decide whether the incident can be considered as an attack
or not). SOC analysts investigate security incidents to provide as much context
as possible to the incident response team. This team is often part of another
entity called Computer Security Incident Response Team (CSIRT) or Computer

4. https://www.cobaltstrike.com/
5. https://www.metasploit.com/
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Emergency Response Team (CERT), and is in charge (among other things) of
performing the digital forensic investigation. While the methodologies followed by
these two units have similarities, in this thesis, we focus on analysing data gathered
as part of the real-time monitoring process and therefore, we will focus on the SOC
context.

The Security Information and Event Management system

While a SOC uses multiple tools (e.g., file analysis platforms, threat intelli-
gence platforms, etc.), the SIEM (Security Information and Event Management)
is a central part of these tools. Its role is to centralize, analyse and ease the inves-
tigation (e.g., through visualization) of security events and alerts. It is in charge
of performing the correlation process which consists in the following steps [112]:

1. Normalisation. Alerts are coming from multiple sources and their format
can greatly differ from one source to another. Normalising alerts eases the
comparison of alerts across sources.

2. Enrichment. Inside the monitored system, the various monitoring sensors
only have a restricted view of the system as a whole. The enrichment phase
aims at completing the information gathered by sensors using external in-
formation (e.g., reputation system for IP addresses, using DHCP logs to
associate internal IP addresses with the corresponding machine, etc.)

3. Alert fusion. This step creates meta-alerts by regrouping alerts coming
from multiple sensors that describe the same action (e.g., the network IDS
sees a potential exploitation of a vulnerability on a server, and the host IDS
alerts on the consequences of this exploitation).

4. Alert verification. Partly due to their restricted point of view and their
lack of context on the monitored system, intrusion detection systems are
likely to generate false alarms. Correlation tools have a better overview of
the system and can therefore filter out some of the obvious false positives.

5. Multi-step correlation. This step reconstructs the different steps of the
attack to detect known patterns.

6. Global analysis. The focus here is to prioritize the alerts based on the
potential impact on the system.
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The SIEM also simplify the investigation of security events by providing the
analysts with searching and visualization capabilities.

SOC Analysts

In a SOC, analysts are in charge of investigating the security alerts resulting
from detected suspicious behaviours in order to qualify them. This investigation
consists mostly in:

1. Escalating an alert as an incident, if it is not a false positive (i.e., an obvi-
ously legitimate behaviour);

2. Attributing the incident handling to the right analyst;

3. Gathering context around the incident (i.e., searching for security events
that may be linked to it);

4. Determining criticality of the incident and its potential impact.

In most SOC, there are two levels of analysts that handle incidents:

1. Level 1 analysts perform a preliminary investigation of incoming alerts ac-
cording to pre-defined scenarios. They aim at removing obvious false posi-
tives and re-attributing the handling to the suited level 2 analyst.

2. Level 2 analysts conduct a more thorough analysis of the alert and its
context to determine the criticality and, in case of a verified incident, its
potential impact on the system.

These analysts have to handle a large amount of alerts as fast as possible
(especially for level 1 analysts). This may lead to a phenomenon called alert-
fatigue that causes recurring alerts to be ignored or mishandled as the analysts
get used to handling similar alerts mechanically and are increasingly likely to miss
subtle details.

In some SOC, a third level also exists, and is in charge of gathering intelligence
on attackers (Cyber Threat Intelligence, CTI) and searching for novel attacks
traces in events (Threat Hunting). This level is however more represented in the
CSIRT, where threat hunting and CTI analysts explore security data to uncover
novel attack methodologies and provide actionable intelligence to the SOC.
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Cyber Threat Intelligence

In a SOC, the Cyber Threat Intelligence (CTI) team gathers intelligence that
might be of interest for the SOC operations. This often consists in aggregating
CTI information from vendors, open source feeds, CERTs, etc. and processing this
intelligence to make it relevant for the systems monitored by the SOC and easily
exploitable through the SIEM. This helps detecting emerging threats more quickly
and prioritising the limited time analysts can spend on tasks that are the most
relevant.

In addition to that, CERT and CSIRT also focus on producing intelligence.
They often start from known incidents and try to find the tools and actions of
the attackers that were not accurately characterized by the monitoring tools. In
practice, this intelligence results from a combination of the results from log anal-
ysis, malware analysis (including reverse-engineering), and from the study of the
attackers organizations (their motivations, the infrastructures they rely on, the
skills they exhibit, etc.). This helps understand what attackers can do and who
they might be targeting. This intelligence is meant to be shared either publicly,
or with select partners (e.g., SOC monitoring systems likely to be targeted, other
CERT, etc.).

Threat Hunting

The Threat Hunting team is in charge of detecting potentially novel threats
that may have been missed by the real-time monitoring systems. In a SOC, Threat
Hunting is focused on gathering and analysing the context surrounding the de-
tected incidents to improve future detections (e.g., modify detection rules, add
ones that would detect the attacks earlier, etc.). In a similar manner, they investi-
gate the leads provided by the CTI. In a CERT or a CSIRT, the Threat Hunting
team works in conjunction with the CTI team to analyse and document emerging
threats.

In both cases, threat hunters start working based on hypothesis (e.g., has this
system been compromised using these techniques ? knowing the attackers have
compromised some assets, what is their usual next step ?) that they try to confirm
or infirm by analysing the monitoring data. To do so, they tend to focus on the
analysis of fine grained security events (e.g., recorded processes execution and
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system calls, IPFIX/netflow or full packet capture, etc.). Therefore, they are likely
to rely on data mining tools (e.g., search engines, prioritisation tools, etc.) to skim
through the massive amount of data faster.

1.1.4 Defining a monitoring strategy

Fine grained monitoring data (e.g., indiscriminate system call level monitor-
ing, full packet capture, etc.) generates large amount of data. Although this data
contains extremely valuable information for threat hunters, storing and analysing
it requires equally large amount of both hardware and human resources. As these
resources are scarce, the monitoring strategy should balance visibility and volume
of collected data, and the monitoring tools need to be adapted accordingly.

The monitoring strategy describes what information to collect and in what
parts of the monitored system. It is derived from the identified assets of the sys-
tem to protect and their associated risks. The monitoring strategy is adapted in
accordance with the resources available to analyse the collected data. The config-
uration and position of the different sensors depend on this strategy.

Visibility vs. volume

A good monitoring strategy prioritise sources of events that brings high vis-
ibility on the identified risks while limiting the volume of data it generates. For
example, monitoring for the use of all the possible methods an attacker can em-
ploy for inter-process communication (e.g., file accesses, sockets, named pipes, etc.)
generates massive amount of data (hundreds of thousands of events per machine
per day). While it helps better characterise malicious activity, it is difficult to ef-
fectively exploit to detect this activity (i.e., there is a vast amount of legitimate
inter-process communications and they are not easily discernible from the mali-
cious ones), and thus it only provides marginally better visibility. On the other
hand, monitoring process execution greatly improves visibility. Indeed, suspicious
process execution is almost certain to happen when the attacker gains access to
the system (e.g., unknown executables, unusual combination of legitimate executa-
bles, etc.). It is also very likely to occur multiple time during the rest of the attack.
Therefore, considering that it generates reasonable amount of data (a few thou-
sands of events per machine per day), the monitoring of process execution has a
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higher priority than the monitoring of inter process communications.

Defence in depth

Defence in depth is a core concept of information systems security. Its base
principle is that security measures should be redundant, in case the attacker man-
ages to bypass some of them. For example, in addition to auditing the code of an
application to discover and patch vulnerabilities, restricting its privileges to a min-
imum will limit the damages the attackers can do if they discover a vulnerability
the audit team did not.

The same principle can be applied to security monitoring. Indeed, attackers
will actively try to evade detection to limit the risk of being evicted from the
system by the incident response team. These evasions can range from employing
methodologies for which the defence has low visibility to impersonating legitimate
applications and actively disabling monitoring tools. Besides, even without the
intervention of attackers, these tools can fail to record the activity they are sup-
posed to (e.g., due to a bug, a misconfiguration, etc.). Having some redundancy in
the visibility provided by sensors can therefore improve resiliency against evasion
techniques and limit the impact of a failure of a monitoring tool.

As an example, endpoint monitoring solutions can be disabled once the at-
tackers have gained enough privileges on the endpoint. Relying solely on these
solutions exposes to a high risk of complete loss of visibility. It is therefore impor-
tant to have balance and redundancy between endpoint, network, and application
level monitoring.

1.2 Tactics, Techniques and Procedures and Data-
driven Security

This section details a core concept of modern attackers behaviour modelling,
namely Tactics, Techniques and Procedures (TTP). We then explain the process of
defining data analysis methods to help the hunting team look for these attackers
behaviours. Finally, we conclude by presenting recent academic work aiming at
analysing and representing the attackers behaviours, using data mining techniques.
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1.2.1 Introduction to Tactics, Techniques and Procedures

Tactics, Techniques and Procedures (TTP) are a way to describe the behaviours
of the attackers that operate on compromised information systems. Tactics describe
short term goals of the attackers (e.g., execute code on the system, gain higher priv-
ileges, etc.), techniques represent how the attackers reach these goals (e.g., exploit
a vulnerability to gain higher privileges, use command line interpreter to execute
scripts, etc.), and procedures describe the specific implementation of the tech-
niques (e.g., exploit a specific CVE, use PowerShell, etc.). MITRE ATT&CK [108]
is the most famous knowledge base of TTPs and is a common resource in Security
Operation Centers. Notably, ATT&CK provides the Enterprise matrix 6 recapit-
ulating common TTPs targeting enterprise IT systems (an extract is provided in
Fig. 1.1).

TTPs are often used by the threat hunting team to formulate hypothesis and
find evidence of exploitation of techniques inside the security events [27]. Detecting
adversaries based on TTPs often requires visibility at specific points inside the IT
system, which generate much more data than traditional detection strategies that
focus on detecting specific procedures using Indicators of Compromise (IoC). This
data is often organized into data sources 7, which represents high level categories of
security events and the information they provide (e.g., process execution, network
flows, firewall logs, etc.).

6. Available here: https://attack.mitre.org/versions/v10/matrices/enterprise/
7. Example: https://attack.mitre.org/datasources/
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Figure 1.1 – Extract of MITRE ATT&CK Enterprise matrix (version 11.0)
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1.2.2 Designing Analytics for TTP Hunting

Security analytics are data analysis processes that aim at detecting evidence
of the actions of an adversary. The MITRE corporation provides a repository
describing analytics to hunt for common techniques 8. Daszczyszak et al. [27] also
gives an in-depth overview of the design process of threat hunting analytics. Fig. 1.2
provides an overview of this process which we summarize in the following steps:

1. Data selection: Define the TTPs to look for and the required data sources;

2. Enrichment and feature selection: Enrich sensor data with informa-
tion from CTI, asset base and external sources (ex: add GeoIP, normalise
data according to a data model, derive IP addresses from hostname and
DHCP logs, etc.). Choose the data sources attributes that are useful to de-
tect targeted techniques (e.g., detecting processes spawning command line
interpreter requires the executable path of the process and its parent);

3. Define base analytics: Write the detection conditions and filter out ex-
pected False Positives (e.g., SSH network flows coming from a machine that
is not in the administrator zone can be an indicator of lateral movement);

4. Tune analytics for the system: Test False Positive Rate on available
data and adapt the analytics until a satisfactory FPR is reached (e.g., some
users may legitimately SSH into other machines). If no suitable detection
conditions are found, go back to step 1;

5. Investigate/correlate remaining hits: define what additional data should
be gathered to verify if the hits are attributable to malicious activities or
not, and provide context to the alert;

6. Automate detection: deploy the analytics to raise alerts on real-time
data;

7. Maintain ruleset: Normal evolution of the system behaviour (e.g., new
users, machines, software, etc.) may require adaptation of the analytics
(step 4).

8. MITRE CAR: https://car.mitre.org/
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Figure 1.2 – Threat Hunting process

1.2.3 Exploiting and visualizing security data

An important step of the analytics design process is to define what additional
data should be gathered to provide context to the detection. This context can help
analysts verify if the detection is truly attributable to a malicious activity, and if
it is the case, facilitates the handling of the incident.

To provide this context, provenance tracking (also known as information-flow
tracking) have been employed. It consists in tracing the entities and processes
that have influenced the state of the information (i.e., produced, delivered and/or
modified it). It is often represented as a Directed Acyclic Graph (DAG), where
nodes correspond to entities that hold or manipulate information (e.g., files, pro-
cesses, etc.) and edges to events that indicates a potential manipulation of in-
formation (e.g., process P has written data to file F). Brogi et al. [16] proposed
terminAPTor which use provenance graph to highlight dependencies between the
traces left by the attacker. Similarly, with SLEUTH, Hossain et al. [51] combined
provenance graph and rules to detect and reconstruct attack scenarios. Building
upon SLEUTH, Milajerdi et al [80] proposed HOLMES, which provides a higher
level representation that is easier to analyse, and filter out false positives using
anomaly detection. This anomaly based detection is also used by Han et al [43]
in Unicorn. With ANUBIS, Anjum et al. [5] used supervised machine learning
to detect malicious traces. Hassan et al. [44] use TTP-based detection from an
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Endpoint Detection and Response (EDR) system and contextualise it with prove-
nance tracking. Recent work by Xosanavongsa et al. [122] focused on providing a
formal definition of causality for security events (i.e., causal relationships between
events), to accurately contextualise detection. Causal dependencies is then used to
compute the provenance.

While provenance tracking is effective at providing context, the necessary infor-
mation is unlikely to be found inside the events collected by SOC, although authors
worked on making it available to production systems [10, 88]. An approximation
of provenance or causality using available data can be used to correlate events
in graph. With HERCULE, Pei et al. [91] use a graph structure and supervised
machine-learning to detect strongly correlated events that may indicate attacks.
Leichtman et al. used this graph structure for its visual representation [69], and
combined it with anomaly detection to detect attacks and investigate attacks [68,
70].

1.3 Machine Learning for Security Analytics

This sections introduces the core topic of this thesis, the application of data
science in support of security monitoring. We summarise state-of-the-art of the
anomaly detection for security, and highlight the limitations that this work tries to
address. Specifically, we focus on the possibility for security analysts (who have no
knowledge in data science) to use these methods for their specific needs, and make
the results they provide easy to understand. We also focus on the possibilities for
the attackers to evade these detection techniques (i.e., mimicry and data poisoning
methods) and how we can propose methods that are more robust against these
types of evasion. We conclude by explaining the operational use cases we aim at
addressing in this thesis.

1.3.1 Introduction to ML for security analytics

Tuning the detection conditions of an analytics for the target system specifici-
ties is a time-consuming process. ML algorithms have the ability to build models
directly from data without the need of human assistance. Applying them to the
fine tuning of security analytics could therefore reduce the time analysts dedicate
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to the adaptation of the analytics to the monitored system.
Before any model can be applied, it is necessary to prepare the data to be

processed. This consists in selecting the right data to solve the desired problem,
removing the noise (e.g., malformed data points, unwanted outliers, etc.), and
performing feature engineering. This last step consists in selecting the right char-
acteristics of the data points to model (a.k.a., feature selection), and transforming
them into a representation that is suitable for the model (usually, vectors of real
numbers). Once data is ready, ML models are often prepared in three phases:

1. A training step, where the model parameters are adapted (or learned) to
perform as good as possible on an initial set of data.

2. A testing step, which consists in validating that the model performs accu-
rately on data that has not been used for training.

3. An inference phase, where the model is deployed and applied to new data.
We can distinguish two major kinds of learning strategies, namely supervised

and unsupervised learning. In supervised learning, the training and testing datasets
are annotated (or labelled) with the expected output of the model. The model is
then trained to output values as close as possible to the provided annotations.
Supervised learning is useful to derive decision logic automatically from expert
knowledge (transmitted via the labels) without writing code explicitly. However,
it requires a data annotation phase from human experts. In cybersecurity, su-
pervised learning is often applied to malware analysis [111], mainly because it is
possible to collect malware and goodware that can be found on many different
IT systems. While authors have applied supervised learning to intrusion detection
systems [25], it is very difficult to use it on production environment because ev-
ery IT system is unique. Therefore malicious and legitimate activity will exhibit
different manifestation from one system to another. This would require analysts
to manually annotate legitimate and malicious behaviour that are specific to the
monitored system, which is unrealistic. Also, while supervised ML models are of-
ten tolerant to small variation of the data, they are ineffective against sufficiently
novel data (e.g., targeted attacks, new malware families, etc.).

On the other hand, unsupervised learning consists in training models on data
with no label. The model usually learns an approximation of the structure of the
data. This structure can be used the find similarities between data points to re-
group them (clustering), or find data points that share very little characteristics
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with the rest of the data (outlier or anomaly detection). When applied to secu-
rity analytics, unsupervised learning can help reduce the investigation time by
regrouping similar alerts, or filtering out recurring false positives by highlighting
anomaly detections. While anomaly detection models have the ability to detect
novel attacks, they often come with high False Positive Rates as anomalies are
not necessarily attributable to malicious behaviour. Also, while a characteristic
(e.g., an attribute of an event) can be a highly discriminating feature that helps
form clusters, this does not mean that the identified clusters will be useful for the
analysts. For example, while two processes from two different machines can share
the same PID (process identifier), it is unlikely that these two processes are sim-
ilar. Similarly, a PID that was never seen before might be found to be abnormal
by the model, but has no real meaning from a security point of view. Therefore,
unsupervised machine learning greatly benefits from expert knowledge during the
design and feature selection phase to perform accurately.

It is also possible to combine an unsupervised model with a supervised one
(semi-supervised learning). In this case, the unsupervised model is used to learn a
simplified representation of the structure of the data and the supervised model is
trained on a few labelled data points relying on this simpler structure.

1.3.2 Machine Learning for anomaly detection

In this thesis, we focus on security analytics for intrusion detection. Considering
that analysts do not have time to annotate data manually and that we want to be
able to detect novel attacks, we will focus on unsupervised models.

The application of machine learning to anomaly detection for different data
types have been studied by researchers for a few decades now. Kriegel et al. [15]
computes the anomaly score based on the distance with the nearest neighbours,
with a high distance to the other points indicating a potential anomaly. Pang et
al. [85] proposed a nearest neighbours based method, that scales to larger datasets
(several millions of events) by computing the pairwise distance between random
samples of point instead of the whole dataset. Ester et al. [39] proposed DBSCAN,
an approach that identifies high density of points as clusters and classify points
inside low density region as anomalies. However, these approaches are sensitive to
a high dimensional data [11], which can manifest in security events, depending on
the feature engineering step (e.g., many attributes, attributes that are transformed
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into multiple variables, etc.). As a consequence Kriegel et al. [61] proposed a work
that scales to large number of attributes in data. All the methods mentioned above
rely on a notion of distance that needs to be defined specifically for the problem
at hand. That can prove difficult, especially for complex data structures (e.g., the
distance between two strings, two events with heterogeneous attributes types, etc.)

A variant of Principal Component Analysis has been also used by Pascoal et
al. [87] to propose an approach that is robust to noise in the training dataset (e.g.,
a few attack traces in the normal data). Scholkopf et al. [103] proposed one of
the most used algorithm for anomaly detection by training SVM (Support Vector
Machines). Data Mining techniques have been used by He et al. [47] to measure
the level of anomaly of a transaction. This type of approach have been extended
by Akoglu et al. [2] to limit the number of frequent pattern used to compute the
anomaly score. Pattern mining algorithm requires categorical data as input, and
therefore a suitable transformation of the input data should be found for numerical
data.

The use of Bayesian Networks [90] has been tested by Wong et al. [120] to
perform anomaly detection. This type of approach permits also to diagnose and
explain a detected anomaly. However, Bayesian methods requires to identify the
most likely probability distribution for the events, which can be challenging.

The algorithm Isolation Forest proposed by Liu et al. [73] was applied to se-
curity by Ding et al. [35]. This permits to classify quickly the abnormal activities.
This technique does not require any kind of normalisation on numerical variables,
but it requires categorical values to be transformed into numerical values and
cannot handle text values without specific transformation methods.

Hawkins et al. [45] propose a method based on neural networks to compute
anomaly score. This approach is called Replicator Neural Networks (RNN). With
the rise of Deep Learning and more specifically Deep Neural Networks (DNN),
RNN have regain interest in the form of deep auto-encoders and a robust variant
of the algorithm has been proposed by Zhou et al. [124]. Mirsky et al. [82] relies on
an ensemble of auto-encoder to improve the robustness and accuracy. Due to re-
cent advancements in deep learning, auto-encoders can be adapted to various kind
of data (e.g., text, time-series, images, categorical, numerical, etc.). However, such
a network is computationally intensive to train and is best suited for high volume
of training data. Veeramachaneni et al. propose an active learning based approach
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for large scale security monitoring [115]. The authors combine a Principal Compo-
nent Analysis approach, auto-encoders and a distance-based approach for anomaly
detection, but they still require complex feature selection and transformation for
each event sources.

Security event analysis can be seen as a special case of log analysis. He et
al. [46] recently provided a comprehensive review of anomaly detection in logs.
Essentially, the anomalous activity identification process can be decomposed in
three major steps, namely, parsing the logs (i.e., going from unstructured logs to
structured events), extracting interesting features and finally using an anomaly
detection algorithm. Bertero et al. [12] and Du et al. [36] drew inspiration from
natural language processing to take into account the context of the events. Debnath
et al. [28] proposed a generic framework to automate the parsing phase of log
analysis. However, both approaches fail to analyze the attributes of the events
which make them less effective for security logs. For example, they would not
detect a connection to an automatically generated command and control domain
because they would see a normal DNS request followed by an HTTP(S) connection
and would not see that the domain name seems unusual.

Shen et al. [105] and Liu et al. [74] propose methods that rely on embedding
of security-related information. The former’s objective is to model the evolution
of exploitation methodology for known vulnerability, and is therefore more related
to cyber threat intelligence than security monitoring. The latter aims at detecting
attacks and relies on complex sets of rules to build graphs, which is hard to adapt
to new types of security events and threat models.

1.3.3 Challenges of ML for security analytics

While data science and machine learning method could in theory provide ben-
efits for multiple problems encountered by security operators (e.g., filtering false
positives, help hunting for targeted threats, etc.), adoption of these techniques in
security operations faces multiple challenges [116, 3]. Mainly, the plurality of use
cases, and the omnipresent notion of adversaries that actively tries to evade de-
tection requires the selection and adaptation of the right set of techniques. To do
so, it is needed to experiment with datasets that represent accurately the diversity
and specificities of the cyber security use cases. The publicly available datasets do
not cover all the use cases. In addition to this dataset problem, more recent work
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by Sarker et al. [102] have highlighted a list of open issues faced by data science
in the cyber security domain. We summarize the issues that we want to address
in this thesis.

Figure 1.3 – Generic ML process for security analytics

Introducing machine learning (ML) algorithms to security analytics requires
significant changes to the design process 1.3. Indeed, while the data selection step
only requires collecting more data to serve as a baseline to train the models, the
remaining steps relies on knowledge from the data science domain.

First, the feature selection and data enrichment step may need to be adapted to
the capabilities of the available ML algorithms. Specifically, feature types that are
commonly handled by rule-based analytics (i.e., categorical data and strings) are
not trivial to process with ML algorithms, and may require specific enrichments.
Second, most ML algorithms deal with numerical features and often behaves better
when the input space has specific mathematical properties [54] (e.g., normalised
inputs, linearly separable clusters, etc.). That introduces the need for a feature
transformation step. Its goal is to ensure that the data provided as input to the
models has the required properties. Consequently, the choice of algorithm for the
models has a strong impact on the analytics as different algorithms will require
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different feature transformations and will have different performances. Finally, de-
ploying a ML based processing pipeline for security analytics may require specific
tooling such as distributed computing framework.

While this data science knowledge is a hard requirement for implementing ML-
based security analytics, SOC analysts rarely have this expertise. Similarly, data
scientists with a good understanding of the specificities of cybersecurity operations
are also difficult to find. This gap between the two domains emphasize the "black
box" effect of machine learning algorithms perceived by security analysts.

Additionally, ML-based analytics tend to have better False Negative Rates
(FNR), at the cost of higher False Positive Rates (FPR): less attack goes under
the radar but with more false alarms. This is especially true for anomaly-based
detections because anomalies can be caused by legitimate (albeit rare) activities.
The higher FPR combined with lower explainability of the results (i.e., diagnosis
of the cause of the alert is more difficult) increases the alert fatigue for analysts.

Finally, mitigating detection evasion techniques specifically targeted at ML
model have been an active research topic for years [9, 7, 26, 52, 97]. For anomaly
detection, these evasion techniques can be regrouped in two categories:

— Mimicry attacks [118, 62, 86], whose principle is to modify attacks to look
as normal as possible;

— Poisoning attacks [14, 53, 19], that consists in introducing attack traces
inside training data. The frog-boiling attack [58, 18, 60] is a special case
targeting anomaly detection models that learns continuously.

1.3.4 Target use cases

To reinforce the explainability of the results and limit the dependency on data
science expertise, we propose an ML-based analytics design process (Fig. 1.4) that
puts the security analysts at the centre to benefit from its expertise, while lim-
iting the need for data science knowledge. We do so by automating the parts of
the traditional ML analytics design process (Fig. 1.3) to make it more similar
to the rule-based hunting analytics process (Fig. 1.2). We cover three different
anomaly detection use cases by relying on deep learning models. These use-cases
are designed to be of increasing complexity. They can be viewed as maturity mile-
stones to accompany security analysts towards taking full advantage of ML-based
approach in their operations.
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Figure 1.4 – Target process

Figure 1.5 – Base ML for security analytics (already abstracted in some Commer-
cial Off-The-Shelf)

The first use case (illustrated in Fig. 1.5) is to detect unusually high or low
volumes of events. Indeed, the monitoring tools are configured to generate events
upon detection of suspicious activity. An unusual increase of detected suspicious
activity can be an indicator of an attack. Also, monitoring tools can stop function-
ing correctly (e.g., an attacker disables them), which in turn would cause a lower
volume of events than what is expected. Here, using ML allows to automatically
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set the high and low thresholds between which the volume of event is normal, while
also taking into account the time (e.g., less events are expected during non-working
hours), and the source of the events (e.g. firewall logs often generate more events
than anti-viruses). This use-case is typically handled by SIEM tools featuring User
and Entity Behaviour Analytics, and is a time-series anomaly detection problem.
Our process simplifies the design of the analytics, especially for multivariate time-
series with different scales and sampling rate (e.g., correlating the number of EDR
alerts every 10min with the number of network connections per minute). Indeed,
the DL model can find correlations between multiple inputs and handle the scal-
ing of these inputs without human intervention. To facilitate investigation, it also
provides indications regarding what caused the anomaly.

Figure 1.6 – Ability to easily design ML based analytics for all data sources (process
execution here)

The second use case is to detect anomalies in any source of security events.
Fig. 1.6 illustrates anomaly detection in process execution events (e.g., commands
that are rarely or never used on machines, anomalous parent/child relations, etc.),
but the same process can be applied to other data sources (e.g., netflow, fire-
wall logs, opening of sockets by processes, application logs, etc.). Handling het-
erogeneous security events with ML algorithms requires careful design of the data
transformation and enrichments processes, as categorical and text attributes (the
majority for security events) cannot be processed as is by traditional ML algo-
rithms. The DL models we employ automatically handles data transformation for
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categorical, text and numerical variables. This limits the need for data scientists,
as they are usually in charge of choosing and configuring the right data transfor-
mation methods.

Figure 1.7 – Generalize ML usage for all datasources with contextualized alerting,
visualization and human in the loop

The last use case consist in detecting contextualised anomaly by crossing in-
formation from multiple sources of events. To provide as much context as possible
to each anomaly and facilitate investigation, we regroup events from multiple data
sources that describes the same actions and detect anomalous groups of events
(Fig. 1.7). Our approach also provides a way to find similar alerts which can be
used to accelerate handling of recurrent false positives, or find previous incidents
with the same characteristics. This method is designed to integrate with SOAR
(Security Orchestration Automation and Response), and its results can be visu-
alised with common security visualisation methods (e.g., graph visualisation). To
handle massive amounts of security events, special care has been taken to acceler-
ate processing with parallel and distributed computing. The objective is to improve
situational awareness by allowing finer grained security monitoring strategies with
manageable volumes of alerts. The anomaly detection models are continuously
trained with the false positives found by analysts in an active learning fashion
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(i.e., the number of elements to annotate is reduced to avoid burdening the opera-
tors). This helps mitigate frog-boiling attacks considering that only the anomalies
that have been verified by a human expert can be used for re-training the models.
Therefore, attacker will also need to bypass human verification to poison a model.

1.4 Summary

In this chapter, we introduced the concept of security monitoring and its com-
plementarity with the IT system protection measures. Defining, enforcing and
maintaining a perfect security policy that protects the system from all current and
future threats is impossible. Instead, current best practices consist in enforcing
security policies that do not impact the system’s usability, and trace and record
the system activity to detect illegitimate access or violation to the security policy
through security monitoring.

For large systems, security monitoring is entrusted to Security Operation Cen-
tres (SOC), that collect security events generated by multiple sensors inside the
system (e.g., network monitoring, endpoint detection tools, etc.). In a SOC, the
SIEM normalises and correlates these events to detect and alert on suspicious
behaviours using correlation rules. Human analysts investigate these alerts to de-
termine whether the detected behaviours are legitimate or not. Illegitimate activity
that triggered an alert are escalated as security incidents and investigated to de-
termine the potential impact and causes.

Incident response is often performed by Computer Emergency Response Teams
(CERT). In a CERT, incident responders collect additional data to extract evi-
dence of attackers activity. A thorough investigation of this data is performed to
remove the attackers from the system and prevent future breach. This data is also
analysed to look for novel attack behaviours and produce Cyber Threat Intelligence
(CTI).

In both SOC and CERT, security analysts need to analyse massive amounts
of data to detect and investigate adversary behaviours. To relieve pressure on
analysts and reduce the time to detect attackers activity, automated security data
analysis procedures (a.k.a., security analytics) have been employed. In their current
form, security analytics often consist of scripts that detect specific adversary TTP
(Tactics, Techniques and Procedures).
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To simplify the fine-tuning of the analytics and allow more advanced attack
patterns detection (including novel attack detection), ML-based approaches have
been proposed. In this thesis, we focus on unsupervised anomaly detection and
clustering, due to their ability to detect attacks without prior knowledge and data.
We find that the low adoption rate of these approaches in operational context can
be attributed to four challenges:

— Configuring ML-based approaches require extensive knowledge in data sci-
ence, which security analysts often lack;

— ML-based approaches are often viewed as black-boxes that provide results
with high amount of false positives that are difficult for analysts to qualify
and exploit;

— Their robustness against targeted attacks (i.e., mimicry and poisoning at-
tacks) can open the detection system to additional evasion techniques;

— Datasets that capture the complex and evolving nature of security moni-
toring do not exist.

In this thesis, we propose methods to address these challenges. In particular,
we propose an approach to allow security analysts with limited knowledge in data
science to design and exploit security analytics that rely on anomaly detection
and clustering in operational use cases. This approach puts the analysts at the
centre of the analytics design process to limit the black-box effect, being able to
take feedback from them. We also describe a method for generating representative
datasets, and use it to produce a dataset that we use to assess our approach.
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Chapter 2

HANDLING HETEROGENEOUS

SECURITY EVENTS

In this chapter, we describe how we can detect anomalies and perform clustering
on heterogeneous security events. Our approach relies on neural networks auto-
encoders. Their structure is automatically created based on the source of events to
analyse. This source is described by the list of attributes to analyse and their type
(categorical, numerical or string). The design is focused on minimizing the amount
of data science knowledge that is required for the security analysts to adapt the
methods to their specific needs.

2.1 Introduction

Security monitoring of information systems requires to log events happening
during the execution of processes at system level, the exchange of data via the
network or the warnings issued by applications. In addition to event logging, In-
trusion Detection Systems can produce alerts that are likely to be the consequence
of an attack. Due to the huge number of events produced, even if a monitoring
strategy has been clearly defined, it is difficult for the analysts to detect what are
important events from the security point view, i.e., what are the events that are
symptomatic of an intrusion inside the system.

The current practices consist in collecting all security events in a SIEM (Se-
curity Information and Event Management) solution. This solution is able to cor-
relate information included in multiple events in order to recognize known attack
patterns. Despite the definition of highly accurate correlation processes [66], this
treatment still requires to manually define static correlation rules. Thus, the effec-
tiveness of the detection relies on the ability of the analysts to define a complete
set of correct correlation rules for known attacks with low False Positive Rate.
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This set of rules should be updated continuously to take into account the newly
discovered threats, and remove old rules that detect obsolete threats (e.g., modifi-
cations to the monitored system security policy). This is a tremendous task, and
it is insufficient to emphasize all attack steps, especially for emerging threats. As
a consequence, a lot of anomalous events stay hidden to the analyst.

During the threat hunting process, analysts rely on prioritization tools to high-
light the most anomalous events and identify misbehaving entities in the system. If
necessary, a more thorough forensic analysis of these entities can be performed. Af-
ter this analysis, they should be able to produce a set of Indicators of Compromise
(IoC) and correlation rules.

As a way of prioritizing events, we propose an approach that associates an
anomaly score to each attribute of an event 1. These scores are then combined to
provide a global anomaly score to the event. A higher score means that the event
has a higher probability of being a consequence of an unusual behaviour. This
approach relies on the use of Artificial Intelligence mechanisms, more specifically,
neural networks auto-encoders (see Sec. 2.2).

We focus on the ability of our approach to be applicable to most types of
security events (i.e., network, system and application events). We aim at automat-
ing and abstracting as much as possible the complex task of feature engineering
that is required to transform attributes into compliant inputs for the chosen algo-
rithms (e.g., for strings, choice between feature hashing, one-hot encoding, TF-IDF,
etc.). In fact, security analysts often lack the required knowledge to perform this
task, and data science expertise is very rare within SOC and CERTS. Instead,
the method described in this chapter only requires analysts to identify events at-
tributes as being a numerical, categorical or string variable. This makes it easier
to adapt to new category of security event.

The approach also provides a way for auto-encoders to compute a cluster iden-
tifier for each event. This identifier is used to easily and accurately regroup similar
events. This clustering reduces the volume of redundant information presented to
analysts.

By combining the anomaly detection and the clustering capability with the
relative ease of configuration of our approach, we aim to facilitate the adoption

1. Attributes are the fields of an event. Connection duration, source IP address, number of
bytes received are examples of attributes for a network event. See Sec. 1.1.2
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of ML-based approaches by security analysts. Specifically, we think anomaly de-
tection can accelerate the detection engineering process (especially the fine-tuning
part). The combination of clustering and prioritisation via the provided anomaly
score can also help threat hunter and incident responders explore the security data
to find traces of novel attack patterns sooner, and investigate security incidents
faster.

In Sec. 2.2, we provide basic concepts around neural networks and auto-encoders.
The input pre-processing methods that are meant to transform heterogeneous at-
tributes into vectors that can be processed by the neural networks are given in
Sec. 2.3. Sec. 2.4 describes the building blocks of the auto-encoder, and how its
structure is automatically constructed for each type events to analyse. Finally,
Sec. 2.5 focuses on the use of such a model by security analysts.

2.2 Auto-encoders neural networks

This section covers the basics about how a neural network works. It introduces
the basics of deep learning, which heavily rely on choosing the adequate structure
of neural network according to the modelled data. The notion of constraints, that
allows guiding the training of a network, is presented. We focus more specifically on
the subtype of neural networks that our approach is based on, the auto-encoders.

2.2.1 Introduction to neural networks

A neural network is a composition of functions with trainable parameters.
These functions are called the neurons of the network [98] and the most simple
form of neuron consists of the weighted sum of the neurons input and an optional
term (called bias). A non-linear function, called activation function, is applied to
this sum. The weights of the neurons and the bias term constitute the trainable
parameters of the network. Generally, neurons are organized in successive layers,
where each neuron in a layer takes as input the output of the neurons of the pre-
vious layer. A neural network is trained to minimize an objective function, which
often contains at least a measure of the divergence between the expected out-
put and the one effectively predicted by the network. To solve this minimisation
problem, the most used algorithms derive from the gradient-descent optimisation
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method [100], which requires the gradient of the objective function for each pa-
rameter of the network. Therefore, in this document, we generalize the neural
network definition to a composition of differentiable functions, where parameters
are trained using a variant of the gradient back-propagation method, which relies
on the chain rule (i.e., differentiation of composition of function) to compute the
gradient of the objective function for each parameter of the network. Specifically,
in a feed forward neural network (i.e., organised in successive layers), the computed
gradient of layer n+1 is used to compute the gradient of layer n, hence, gradient is
back-propagated through the layers, starting from the last one. Commonly, batches
of elements from the training data are presented successively to the network, and
the weights are updated with each batch. This is especially useful for large datasets
because each elements of a batch can be handled in parallel.

f(W,b)(X) = σ(
∑
i

(wixi) + b) (2.1)

Figure 2.1 – Equation of a simple neuron. With W = (w0, w1, ...wn) the weights of
the neuron, b the bias, σ the activation function and X = (x0, x1, ...xn) the inputs.

Structures for neural networks

Historically, neural networks have been used to map vectors from high dimen-
sional space (e.g., value of the pixels of an image, complex set of extracted features,
etc.) into more easily comprehensible values (e.g., a class, a small vector, etc.).
With the rise of deep learning, researchers moved from using only fully connected
layers of formal neurons (Eq. 2.1) to incorporating layers specifically adapted to
the structure of the data provided as an input to the model (e.g. 2-D convolution
for images, recurrent networks for text, etc.). For tasks that require the network to
output in a high dimensional space (e.g., image or text generation), the structure
of the network is often organised in two parts, an encoder which maps inputs into
a latent representation, and a decoder which takes the latent representation as
an input and outputs value into the expected vector space. The auto-encoder is
a special Encoder-Decoder model for which the output space is the same as the
input space.
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Constraints on neural network parameters

While the gradient back-propagation method combined with the huge number
of parameters prevents from predicting exactly what and how the network will
learn, it is possible to guide the training of the network. This is done by adding
constraints to the desired parameters in the form of terms added to the objective
function. For example, if the output of a layer is constrained by the term defined in
equation 2.2, the layer will tend to output smaller values to minimize this penalty.

λ
∑
i

x2
i (2.2)

Figure 2.2 – L2 regularization. λ is the weight of the penalty and xi are the inputs

2.2.2 Basics on auto-encoders

Figure 2.3 – Overview of an autoencoder

Auto-encoders (Fig. 2.3) are a particular structure of neural networks that
are trained in an unsupervised way (i.e., without the expected output value in
the training dataset) and made of an encoder that maps input vectors to a low
dimension representation (also called latent space) and a decoder that reconstructs
the original input vector from the latent space.

The input vectors are vectors containing numerical values (integers, floats or
vectors of integers or floats). For anomaly scoring, the auto-encoder is first trained
on normal data to compress and decompress the input vectors with as little loss of
information as possible (i.e., an approximation of the identity function). Then, an
inference phase takes as an input events produced during the monitoring process,
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to which the auto-encoders estimated identity function is applied. As an output
we obtain a result that can slightly differ from the input. We name this difference
"reproduction error", and we use this difference to estimate the deviation of the
input from the inputs that were learnt. More specifically, since the auto-encoder
is biased towards normal events, the reproduction error is higher for anomalous
events.

During the security monitoring process, an information system produces a huge
number of heterogeneous events. These events can for example be extracted from
the operating system (e.g., system calls), from network (e.g., connections, proto-
cols, network IDS alerts, etc.), or from specific applications (e.g., web server re-
quests logs). Moreover, different types of operating systems can be used (e.g., Win-
dows and Linux systems), generating different formats of events. Finally, within a
single source of events, the variable attributes have heterogeneous type that can
be considered as either numerical variables (e.g., a file size, a duration, etc.), cat-
egorical variables (e.g., a protocol identifier, a file type, etc.), or string variables
(e.g., content of a script, HTTP User-Agent, etc.).

Considering that an event that is the consequence of a normal behaviour on one
system might be a sign of an intruder in another, our objective is to create normal
behaviour models for each system. Models need to be able to process heterogeneous
attributes and be adaptable to the various security events that are available for
each system. Using these models, an anomaly score is computed for each event.

In addition to the anomaly score computation, an auto-encoder is able to pro-
duce a representation of its inputs, called latent representation, in a vector space
that has the desired properties for commonly used clustering algorithms (e.g.,
DBSCAN, K-Means, etc.). By exploiting this latent representation, it is possible
to provide a cluster identifier to each event, later used to regroup similar events
in clusters (2.4.5), and thus to lower the volume of information analysts have to
analyse (i.e., at most a few elements for each cluster instead of all of them).

Usually, security analysts are in charge of refining the detection capabilities
for the monitored system. Therefore, for the approach to be exploitable in an
operational use case, its configuration should be possible with the knowledge and
skills that are already available within security analysts teams.

Due to their ability to handle heterogeneous attributes, we choose to adapt
neural network auto-encoders to compute an anomaly score (2.4.6) for security
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events. This includes the use of generic blocks (Sec. 2.4) and pre-processing func-
tions (Sec. 2.3) for numerical, categorical and string variables. Using these generic
components, it is possible to limit the configuration step to the definition of the
attributes to analyse and their type (which is in line with security analysts capa-
bilities).

2.3 Pre-processing Model Inputs

This section describes the various pre-processing steps that are applied to the
inputs of our auto-encoders. These functions are meant to be generic and adaptable
automatically on the training data. When choosing the attributes to analyse and
specifying their types (categorical, numerical or string), the right transformation
function will be implicitly chosen, and its parameters adapted.

2.3.1 Input Transformation Algorithm

As explained in subsection 2.2.2, the auto-encoder takes as an input a vector of
numerical values. The goal of the input transformation process is to transform the
vector containing the value of the attributes of an event into a vector suitable as
an input for the auto-encoder. This transformation process is presented in Alg. 1.

There are three possible types of variables that can be taken as an input to
our auto-encoders. The first type, like any machine learning algorithm, is numeri-
cal variables. The second one, the categorical variables, are variables whose values
belong to a finite set and cannot be mathematically ordered (e.g., username "Bob"
is neither superior or inferior to username "Alice"). Finally, raw strings are consid-
ered as sequences of categorical values.

2.3.2 Normalising Numerical Attributes

For numerical variables (integers and floats), taking raw values as an input
is not the most efficient way of learning the normal distribution of numerical
attributes [54]. We propose as a remediation to normalise the numerical values
from a set of floats into a reduced interval (e.g., the set [0, 1]). This transformation
is produced by the ScaleValue function in Alg. 1.
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Algorithm 1 Event Attribute Vector Transformation
function TransformCategory(attribute, KnownPatterns, KnownCate-
gories)

for all pattern in KnownPatterns do
if matchPattern(pattern, attribute) then

attribute← pattern
break

end if
end for
if attribute in KnownCategories then

return value← KnownCategories[attribute]
else

return value← KnownCategories[DefaultV alue]
end if
return value

end function
function TransformString(attribute, vocabulary, variant)

tokens← TokenizeString(attribute, vocabulary)
switch variant do

case GPU
return tokens

case CPU
return GetTokensLogCount(tokens)

case CPULowLatency
return size(tokens)

size(attribute)

end function
function Transform(event, params)

V ector ← ∅
for all i in Size(event) do

attribute← event[i]
p← params[i]
switch attribute.type do

case categorical
V ector[i]← TransformCategory(attribute, p.patterns, p.categories)

case string
tokens← TransformString(attribute, p.vocabulary, p.variant)

case number
V ector[i]← ScaleValue(attribute, p.q90)

end for
return Vector

end function
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In the context of anomaly detection, outliers with extreme values can reside in
normal data. To limit their impact on the normalisation process, we find the 90th

percentile Q90 inside the training dataset (i.e., 90% of the normal values are below
Q90). The transformation then consists in dividing the input by Q90.

If the values of the attribute grow exponentially, as suggested by Kaastra et
al [54], the result of the transformation will be the logarithm of the initial value
divided by the logarithm of Q90 (Eq. 2.3).

f(x) = log(x)
log(Q90)

(2.3)

2.3.3 Normalising Categorical Attributes

To handle categorical variables, we draw inspiration from word2vec [79], a com-
monly admitted standard for Natural Language Processing (NLP). The goal of this
technique is to map each word in a continuous vector space (i.e., vectors of floats)
based on its context (other words appearing in the same sentences). This mapping
is generally called an embedding. It allows to treat natural language and perform,
for example, the recognition of semantics of the words in sentences. We use the fol-
lowing analogy: an event is a sentence and its attributes are the words composing
it.

The neural network will optimize the embedding function based on the other
attributes of the given event, that will represent the context of the transformed
attribute. This context allows to determine if the category of an attribute is normal
in a given context.

In practice, a categorical embedding layer of a neural network takes as an
input a category identifier (i.e., an integer) that represents a vector filled with as
much 0 as the total number of categories, except for a 1 for the corresponding
identifier. When the total number of categories is large, a proportionally large
number of parameters needs to be optimized. To reduce the induced computational
complexity, we propose the use of regular expressions to map every string matching
the same pattern to the same category identifier. For example, if an application
prefixes the name of its temporary files with a random combination of 8 lower case
letters and numbers, it can be interesting to consider all the files in the application
folder that matches this pattern as the same category. We can map them to the

71



Partie , Chapter 2 – Handling Heterogeneous Security Events

same identifier using a regular expression like ^\/tmp\/app\/[0-9a-f]{8}\.tmp$.
However, as usual, the regex should be carefully chosen to prevent an attacker from
bypassing them.

For a given value of an attribute, if the category is known (or if it matches
a predefined regex), it returns the corresponding identifier. In case the category
was never encountered before (frequent in the context of anomaly detection), it
returns an integer corresponding to the category "Unknown". This corresponds to
the function TransformCategory in Alg. 1.

2.3.4 Normalising Raw String Attributes

To capture the complete information of some attributes in security events, it
is interesting to handle them as natural language. As an example, command line
arguments of processes have their own strict syntax (changing a single character
may lead to different results), as well as a specific semantic (different combinations
of arguments lead to different results) [36]. With our auto-encoders, a raw array
of integers can be passed as an input to model these syntax and semantic.

Initially, we implemented the very simple approach of transforming each char-
acter of the string as its UTF-8 code (i.e., an integer between 0 and 255). However,
the deep learning algorithms used to model the syntax and semantic of raw strings
require a lot of computing power, especially during the training phase, with a
quadratic time complexity w.r.t. the size of the sequence. In the NLP field, this
problem is partially addressed by decomposing sentences into tokens. Current state
of the art [104, 64, 63] consists in identifying frequent sequences of characters and
using them as tokens. For example, in English, ’us’ and ’ing’ are quite frequent and
therefore, the word ’using’ could be transformed into a two tokens word instead of
five characters.

Drawing inspiration from [104] and pattern mining algorithms, we propose a
simple algorithm to find frequent sub-strings inside string attributes, and build a
vocabulary out of these patterns. Due to the potentially high number of events in
the datasets, we choose an approach easily implementable in a map-reduce fashion.

1. MAP: Decompose each element into patterns by iteratively and greedily
aggregating bi-grams (set of two successive characters). For example ’secure’
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is decomposed into [(se), (ec), (cu), (ur), (re), (secu), (cure), (secure)] and
’security’ into [(se), (ec), (cu), (ur), (ri), (it), (ty), (secu), (curi), (urit),
(rity), (securi), (curity), (security)]

2. REDUCE: Regroup patterns and count them. Using the same example:
the corpus [’secure’, ’security’] becomes [((se), 2), ((ec), 2), ((cu), 2), ((ur),
2), ((ri), 1), ((re), 1), ((it), 1), ((ty), 1), ((secu), 2), ((curi), 1), ((cure), 1),
((urit), 1), ((rity), 1), ((securi), 1), ((curity), 1), ((secure), 1), ((security),
1)]

3. FILTER: Keep only the patterns that have the best potential to compress
the data. This potential is calculated by multiplying the frequency of the
pattern by its size minus 1. For example, [((se), 1.0), ((ec), 1.0), ((cu), 1.0),
((ur), 1.0), ((ri), 0.5), ((re), 0.5), ((it), 0.5), ((ty), 0.5), ((secu), 3.0), ((curi),
1.5), ((cure), 1.5), ((urit), 1.5), ((rity), 1.5), ((securi), 2.5), ((curity), 2.5),
((secure), 2.5), ((security), 3.5)]

Finally, to avoid having unknown tokens, every character in the UTF-8 code
is added to the vocabulary. This way, even if no frequent sub-strings can be found
in the string, it can still be encoded, albeit with no gain in the size of the string.

This algorithm is not designed to be an accurate sub-sequence mining algo-
rithm. For instance, it will not find some frequent patterns, especially odd-sized
ones, and cannot take a gap constraint into account. However, it’s both easy to
implement and reasonably scalable. It only requires a map-reduce-filter operation
for each partition of the data in parallel, followed by a reduce-filter to aggregate
the results.

2.3.5 Alternatives to String Attributes normalisation

The tokenization that is explained in Sec. 2.3.4, is useful to reduce the com-
puting power required and ease the learning process for raw strings within our
auto-encoders (compared to only UTF-8 encoding). However, in some cases (e.g.,
no GPU available), it might be necessary to reduce the required computing re-
sources even further. To do so we can re-purpose the tokenization in two different
ways. The first one consists in using an histogram of frequency of tokens. More
specifically, we construct this histogramX using Eq. 2.4, with xi the ith value of the
histogram and ci the number of occurrence of the ith token in the string to trans-
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form. Using the logarithm instead of the raw count can limit the risk of attackers
evading detection by padding their malicious payloads with normal data [59], as
it requires orders of magnitude more frequent tokens to reduce the value of the
unexpected tokens in the histogram.

X = (x0, x1, ...xn) | xi = log(1 + ci) (2.4)

The second alternative relies on a desired property of the token identification
algorithm, that selects tokens based on their ability to compress the strings. Hence,
the compression ratio (i.e., the number of tokens in the original string divided by
the number of characters in the compressed form) should be higher for normal
data than for anomalous data. In fact, normal data should be similar to the data
the frequent tokens have been mined-on, and thus contain more of them. On the
other hand, anomalous data likely contains unknown patterns, and thus should be
less compressed. The computed ratio can then be used similarly to a numerical
variable by the auto-encoder.

The first alternative is preferred as it is more robust to evasion and loses far less
information since one still knows which tokens are present in the string and their
proportion. However, the compression ratio approach further reduces the required
computational resources, at the cost of being easy to evade (e.g., by padding the
malicious input with multiple, large and frequent tokens).

2.4 Auto-encoder structure

In this section we explain the core of our approach, i.e., how we generate an
auto-encoder structure based on the selected attributes to analyse. We detail the
block-based architecture and the design choices we made to allow the auto-encoder
to cluster events and provide a normalised anomaly score for all attributes in the
events.

2.4.1 Overview

Given the diversity of inputs, each attribute needs to be processed differently
by the auto-encoder. For the embedding part, the first layers are organized into in-
dependent blocks, one block for each input attribute. The encoded representations
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Figure 2.4 – Example network structure with a DNS event
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of each attribute (in the form of floating point vectors), provided by these blocks,
are then horizontally concatenated before being processed by the shared layers of
the encoder. Symmetrically, for the decoding part, the encoder output first passes
through shared layers of fully connected neurons, and the last shared layer output
is used as an input to every reconstruction blocks. We implemented three types of
blocks (Fig 2.4), one for each type of variables (categorical, numerical or strings),
and the function used to compute the reconstruction error. This reconstruction
error is also used as the objective function to minimize during training. As such,
for all blocks, this function needs to be differentiable.

2.4.2 Blocks for numerical variables

Originally, neural networks, like most machine learning algorithms, are meant
to process vectors of floating point numbers. Therefore, numerical variables are
easy to process in our case. Specifically, the input and output blocks are simple
neurons with the Leaky ReLU (Eq. 2.5) activation function.

gα(x) =
 x if x ≥ 0
αx otherwise. α ≤ 1 (ususally 0.1)

(2.5)

Figure 2.5 – LeakyReLU activation function, with α leak rate.

To compute the reconstruction error, we use the log of the hyperbolic cosine,
or logcosh for short (Eq. 2.6). For low error values (i.e., between 0 and 1) it
behaves similarly to the traditionally used squared error, which means training is
more and more precise when the reconstruction error gets closer to 0 (i.e., perfect
reconstruction). For higher reconstruction error, logcosh is similar to the absolute
value of the error. This is particularly useful in the context of anomaly detection,
because anomalous events are likely to be present in the training data and generate
larger error than normal events. Using the squared error would result in giving
much more importance to these anomalous data points, thus reducing robustness
of the method to noise in the training data.
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E(x, x̂) = log(e
x−x̂ + ex̂−x

2 ) (2.6)

Figure 2.6 – LogCosh loss function. x is the original value, and x̂ the estimated
reconstructed value

2.4.3 Blocks for categorical variables

As explained in section 2.3.3, we use a method similar to word2vec [79]. Its
implementation within a neural network consists in a layer with as much input as
there are possible categories, which takes sparse vectors as an input, i.e., vectors
filled with 0 for every components, except for the ith which is 1 (with i the category
identifier). This is often called a categorical embedding layer and it outputs a dense
floating point vector of lower dimension called embedding dimension.

Symmetrically, the output block has as much output as there are categories
and is trained to output a floating point vector with a higher value for the ith

component. As usual with neural networks, the softmax function (Eq. 2.7) is then
used on this output vector to compute a vector whose components sum to 1.
This is similar to a probability distribution, which allows us to use the categorical
cross-entropy function (Eq. 2.8) as the reproduction error.

softmax(xi) = exi∑n
j=0 e

xj
(2.7)

Figure 2.7 – Softmax value of the ith component for vector X = {x0, x1, ..., xn}

E(x, x̂) = −
n∑
i=0

xi log(x̂i) (2.8)

Figure 2.8 – The categorical cross-entropy loss function

2.4.4 Blocks for string variables

The blocks for strings are more complex. The chosen structure is inspired by
state of the art NLP techniques. It combines a first layer of embedding (to trans-
form a sequence of token identifiers into sequence of float vectors), a set of layers
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that performs most of the processing meant to find inter-dependencies between
the tokens to learn the semantic and syntax of the attribute, and a final layer of
pooling to transform a sequence of vectors into a single vector.

Syntax and semantic modelling

Two core concepts have been employed in NLP to model the semantics and syn-
tax behind a language to perform various tasks (e.g., translation, summary, named
entity recognition, etc.). Historically, Recurrent Neural Networks (RNN) have been
employed for these tasks, and today the Long Short-Term Memory (LSTM) neu-
ral networks [49] and Gated Recurrent Units (GRU) neural networks [21] are still
popular. In recent years, the attention mechanism have been mixed with these
techniques [8, 20, 76, 56]. It improved the models quality by highlighting the
interdependencies between the steps of the sequence (i.e., tokens, words or charac-
ters). Lately, methods that solely rely on the multi-head attention mechanism have
shown to outperform RNN and mixed approaches. Multi-head attention consists
in performing multiple attention operations (called attention heads) that attend
to different parts of the sequence, and combining their results. This provides the
ability to cross information from more tokens in a string, and is the core compo-
nent behind the Transformer neural network structure [114]. A Transformer layer
(shown in Fig. 2.9), is made of a multi-head attention block followed by a feed
forward network, consisting in two fully connected layers of formal neurons with
the ReLU (Eq. 2.9) activation function. To mitigate the vanishing gradient prob-
lem [48], a residual connection is added to these two parts (Add & normalise on
Fig. 2.9). It consists in adding the input of each part to its output and normalising
the result before passing it as an input to the next part. In our case, we choose to
use the Transformer structure to model string attributes.

g(x) =
 x if x ≥ 0

0 otherwise.
(2.9)

Token embedding

Both RNN and Transformers are designed to process sequences of floating point
vectors. Therefore we need to convert each token identifier into a float vector. To
do so, tokens can be considered as categorical variables, and thus we can use the
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Figure 2.9 – Overview of a Transformer structure within the string encoding block.

method described in Sec. 2.4.3.
In the case of Transformer models, the attention mechanism do not take the

order of the tokens into account. Therefore, to improve the model’s performance,
adding position information to the embedding (called positional embedding) is a
common practice [114]. In the end, the input of the Transformer component is the
sum of the categorical and positional embeddings of the tokens.

As a sequence of tokens can be considered as a sequence of categorical variable,
the reproduction error is simply the average cross-entropy (used for categorical
attributes, see Sec. 2.4.3) over the whole sequence.

Pooling

The Transformer part of the string processing block outputs sequences of vec-
tors. However, to be able to concatenate the encoded representation of all the
attributes, it is required that each encoding block outputs vectors. To do so, we
considered two different approaches.

The first one, called average pooling, consists in averaging all the vectors in the
sequence to end-up with a single vector. While this operation is straightforward to
implement, it tends to dilute the information contained in each token, especially
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for long sequences.
To avoid this problem, we drew inspiration from [38] for the second approach.

Specifically, we used the attention weight computed during a multi-head attention
operation to perform a weighted average instead. This way, the pooling function
can accentuate the importance of certain tokens when reducing them to a single
vector. This operation is called Attention Pooling.

For the decoding block, we need to go back from a single vector to a sequence
of vectors. To do so, we first duplicate the vector (as much time as there are tokens
in the string). Then, similarly to the input block, we add positional embedding to
this sequence of vectors. This sequence can then be processed by the Transformer
component of the decoding block.

Low resources alternatives

As mentioned in Sec. 2.3.4, Transformers and RNNs require large computa-
tional resources. Since the available resources are sometimes not sufficient to han-
dle these types of models, we proposed to handle strings using the token log-count
histogram or simply the compression ratio offered by the tokenization. For the
latter, once transformed, the variable can be handled as a numerical attribute.

On the other hand, using the histogram requires a few modifications. In fact
the encoding block becomes a feed forward network of two fully connected layers of
neurons. This network has as much input as there are possible tokens and a lower
amount of outputs (similarly to an embedding function). Symmetrically, the output
block has as much outputs as there are possible tokens. The reconstruction error
is computed by substracting the cosine similarity to 1 (Eq. 2.10). This function
is commonly used in the data science domain as a measure of divergence between
high-dimension vectors (in our case, the number of tokens can be large).

E(X, X̂) = 1− X · X̂
‖X‖‖X̂‖

(2.10)

2.4.5 Latent clustering block

In the cybersecurity domain, regrouping similar events can ease the analysis
process (i.e., analysing a few groups of events instead of all events one by one).
In addition to its interesting properties for anomaly detection, the auto-encoder
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can also provide a low dimension representation of its inputs thanks to its latent
layer. This latent layer can be used for event clustering. Recent work [34] obtained
good clustering performance by combining auto-encoders with Gaussian mixture
model. In the case of security events, we found that the dominance of categorical
variables leads to many clusters with a standard deviation close to 0, which is not
an ideal case for Gaussian models due to the division by the standard deviation in
the Gaussian equation. By outputting vectors of bits (either 0 or 1), the approach
we propose better fits the discrete nature of the variables found in security events.

The first attempt to incorporate this property in the latent layer had it divided
into 2 blocks of N components. We design the network such that the left-hand side
expresses, for each of the N components, the likelihood of it being 0, while the
right-hand side expresses the likelihood of being 1. The output vector converges to
this structure due to the back-propagation property of the neural network. Hence,
if the value of the left-hand side is higher than the value of the right-hand side,
the corresponding component in the latent space will be close to 0. Otherwise, the
component value in the latent space will be 1. We chose to use the Soft-ArgMax
function (Eq. 2.11, where β controls the steepness) so that the output of the latent
layer is either close to 0 or close to 1, while still being able to compute a gradient
(required for neural networks).

f(x0, x1) = eβx1

eβx0 + eβx1
(2.11)

However, while the gradient exists with this function, it is close to zero for
much of the input range. In fact, as shown in Fig. 2.10, unless x0 (the value of
the left-hand side) and x1 (the value of the right-hand side) are close in value,
the gradient of the function is almost null. This is also known as the vanishing
gradient problem, that causes the increments to the weights to be so close to 0,
and thus, can prevent the encoding blocks to effectively learn the structure of nor-
mal data (and also perform useful clustering). Instead, we use a single block with
a LeakySigmoid activation function, shown in Eq. 2.12, with α > 0, to control
the leak rate and λ > 0 for the steepness. Its inspiration comes from the sigmoid
function, whose output ranges between 0 and 1, but is notoriously causing the
vanishing gradient problem [48] and the LeakyReLU function (Eq. 2.5), that com-
pensates the null gradient of the ReLU function (Eq. 2.9) by multiplying its input
by a given leak rate (e.g., 0.1) when this input would cause a null gradient (i.e.,
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x < 0 for ReLU). This way, the gradient is at least equal to the leak rate instead of
0 (Fig. 2.11). Additionally, we add L2 regularization to the latent output (before
applying LeakySigmoid), to encourage the encoder to output values closer to 0,
i.e., in the range where the gradient of the Sigmoid is higher.

f(x) = αx+ x

1 + e−λx
(2.12)

Figure 2.10 – Partial derivative value of softargmax(x1, x0) w.r.t. x1

Figure 2.11 – LeakySigmoid (red dotted curve) and its gradient (blue curve), with
the leak rate α = 0.05 and λ = 4
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erf(x) = 2√
π

∫ x

0
e−t

2
dt (2.13)

CDF (x) =
1 + erf

(
x−µ
σ
√

2

)
2 (2.14)

Figure 2.12 – Cumulative Distribution Function at value x for as Gaussian distri-
bution parametrized by (µ, σ). The error function is denoted erf

In the end, if we round the output of the latent layer, it becomes a vector of
N bits. These N bits define a cluster identifier, that is later used to regroup the
events with equal identifiers. Alternatively, it is possible to use the floating point
value as an input to a typical clustering algorithm (e.g., DBSCAN, K-Means, etc.).

2.4.6 Normalising per attribute anomaly score and com-
puting event score

Due to the diversity of attributes and types of attributes, the reproduction error
for one attribute is not directly comparable to the reproduction error of another
attribute. As an example, if error E0 for attribute a0 ranges from 0 to 1 and error
E1 for attribute a1 ranges from 1 to 1.5, then the comparison E0 < E1 is not an
indication of anything. To provide hindsight of what attribute might have caused
the anomaly, we need to be able to compare anomaly score between attributes.

During our experiments on multiple datasets and types of security events, we
found that for most attributes, distribution of the reproduction error on normal
data can be approximated by a Gaussian mixture model (Fig. 2.13). The parame-
ters of such a model are the mean µ, the standard deviation σ and the probability
φ for each of the n Gaussians. We originally computed the anomaly score of the at-
tribute using the Cumulative Distribution Function (CDF) of the Gaussian (µ0, σ0)
with the highest µ (i.e., the distribution of the least normal events). Indeed, the
CDF outputs value between 0 and 1, with 0 implying the attribute has a normal
value, and 1 implying that it is likely anomalous.

However, fitting a GMM directly within neural network is not straightforward.
Instead, the Expectation-Maximization algorithm [29] is the favoured approach to
find the parameters. Doing this requires an additional step after the training of the
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neural network weights. Moreover, in cases where the variance of the loss is close
to 0, this method provides unsatisfactory results (i.e., high score for all events or
low score even for anomalies).

(a) Cross-entropy loss for executable
name in a process event

(b) Cross-entropy loss for user-agent in
a web server access.log event

Figure 2.13 – Distribution of the reproduction error for attributes of process exe-
cution and web server access.log events.

Instead of the Gaussian mixture, we therefore propose to use a logistic distri-
bution (see Fig. 2.14). The objective is to have a score that is close to 0 for most of
the normal events, while still being close to 1 when the attribute is anomalous. To
do so, we train the parameters of the distribution accordingly, directly within the
network, by adding terms to the loss function (Fig. 2.15). The CDF equation for
the logistic regression is given in Eq. 2.15, with λ that controls the steepness of the
curve and µ the symmetry point f(µ) = 0.5. To that effect, we find µ (the point
at which the logistic CDF is 0.5) such as it approximates the highest value on the
(supposedly normal) data. To do so, we constraint the parameters of the logistic
distribution (Eq. 2.17). Specifically, a constraint is added to the µ parameter of
the attribute scoring function (Eq. 2.16). For this constraint, the lower α is, the
closer to the maximal input value µ will be, and X is the average value of the
reproduction error for a batch of data. In addition to the constraint on µ, another
one is added to avoid λ being negative (which would cause the score to be higher
for normal values than anomalous ones).

The score of an event is the weighted mean of the score of all its attributes.
The weight wi of each attribute xi is computed by a small neural network that
takes as an input the encoded representation of the event (latent representation).
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Figure 2.14 – Example of the per attribute scoring function

Minimizing the standard deviation of the weight vector is added as an objective to
discourage the weighting neural network to amplify or attenuate excessively some
attributes.

fλ,µ(x) = 1
1 + e−λ(x−µ) (2.15)

Eµ(X) = α ∗ g
(
µ−X

)
+ g

(
X − µ

)
(2.16)

E(X) = Eµ(X) + fλ,µ(X) + g(−λ) (2.17)

Figure 2.15 – Constraints for the scoring function

2.5 Configuring, training and using the model

This sections focuses on the usage of our approach, from an analyst point of
view. Specifically, it describes how analysts would configure models for their needs,
how they would train them, and more importantly, in which case and how to use
these models.

85



Partie , Chapter 2 – Handling Heterogeneous Security Events

2.5.1 Model configuration approach

Our goal is that our model is adapted by the analysts to suit their own need.
Therefore, we aim for our configuration process to be as similar as possible to a
detection engineering process (see 1.2.2), which analysts are familiar with.

Essentially, detection rules are defined following four major steps. First, the
sources of security events to be analysed need to be chosen by the analyst. The
second step is to select the list of attributes from these sources. At this point
analysts can start to implement the detection logic, i.e., the conditions that needs
to be met in order to consider an event as illegitimate. Finally, the analysts need
to fine tune the detection logic because it is likely to trigger false positives at first.
This is the longest step of the process. It is done by allow-listing some events, users,
machines, etc. or making the initial pattern matching more specific. For example,
if analysts want to detect malicious command lines executed from a document
with macros, they can analyse the events recording the execution of processes
(e.g., Event ID 1 with Sysmon, Event ID 4688 from Windows audit logs, etc.), and
from this source, they need to select at least the process and its parent names and
command line arguments, and optionally the host and user that executed these
processes (e.g., to filter out the false positive caused by departments which rely on
macros). They can then detect the execution of command line interpreters with
the text processing software as parent process. Finally, they can fine tune this rule
to account for legitimate use cases that may trigger alerts.

The process described in this chapter also implies the definition of the source
of data and its attributes. Indeed, when they design detection capabilities for a
traditional detection system, analysts implicitly define which attributes to look
at. Whereas, with our proposed system, the definition of these attributes is ex-
plicit. The proposed process also requires an additional step of defining the type
of each attributes (i.e., categorical, string or numerical). This task can be made
faster when using well defined event data models (e.g., Elastic Common Schema 2,
Splunk CIM 3, etc.). Indeed, while these data models will not take into account
specific enrichments performed by the analysts, they provide the type of most of
the common attributes found within security events. Furthermore, the extra time

2. ECS documentation: https://www.elastic.co/guide/en/ecs/current/index.html
3. Splunk CIM documentation: https://docs.splunk.com/Documentation/CIM/5.0.1/

User/Overview
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{
"process_exec": {

"process.exe": "categorical",
"process.cmd_line": "string",
"parent.exe": "categorical",
"parent.cmd_line": "string",
"username": "categorical"

}
}

Figure 2.16 – Example configuration provided by the analyst for a model that
analyses executed processes.

requested to chose the attributes and define their types are mostly compensated
during the fine tuning part that is mostly done by the model itself during the
training phase. Finally, one model configuration can be applied to multiple detec-
tion use cases, instead of a single one when designing rules. As an example, for the
use case described in the previous paragraph, and more generally for anomalous
process detection, we could use the configuration described in Fig 2.16.

2.5.2 Training the system on baseline data

With our method, there are two sets of parameters that need to be adapted
on data before the model is ready to be used. Specifically, before training the
networks weights, the transformation functions need to be adapted on the data, by
finding the known values for categorical attributes, mining the tokens for strings,
and finding the 90th percentile for the numerical variables. This is akin to the
baselining of the system that is performed when a SOC is deployed. Our method
is designed to be used as a way of automating this process.

The challenge for anomaly detection is that the monitoring data of a produc-
tion system may be tainted by previous intrusion attempt. Indeed, our method
is more precise when trained on normal activity only, as an adversary behaviour
occurring regularly might end up being considered as normal. This is a limitation
of anomaly detection-based approach. We try to limit its impact by using more
robust methods (e.g., using reconstruction error function that are less sensitive
to outlier like logcosh). Also, while having completely clean data for training is
unlikely, malicious behaviours traces in the training data would only prevent the
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detection of these specific behaviours, and not of novel ones (e.g., new attacker,
stealthy adversary starting the last phases of their attack, etc.).

2.5.3 Using the model on live monitoring data

Once trained, a model constructed with the described approach can expose two
capabilities: clustering events and computing anomaly scores. Depending on the
use case, these capabilities can be exploited differently. Specifically, we envisioned
these models to be used either as a detection mean, generating alerts based on
detected anomalies, or as a support for Exploratory Data Analysis (EDA), by
clustering and prioritising events.

When designing detection rules, a significant amount of the detection engi-
neer’s time is spent on fine tuning the filters to avoid false positives caused by
the specificities of a system. For example, some departments may require the use
of macros that execute commands, which can also be misinterpreted as malware
execution. In this case, the specific users and the macros they rely on for their
work should be allow-listed. This fine-tuning can take a lot of time and is prone
to error (i.e., white-listing adversary behaviours). Our model can be trained on
the output provided by a wider-spectrum rule (compared to a fine-tuned one) to
automatically learn the usual false positives caused by the rule for a specific sys-
tem. Doing so requires setting up a threshold for the anomaly score of the events.
Above this threshold, an event can be considered anomalous, and thus more likely
to be caused by an adversary action. An example of defining such a threshold is
provided in chapter 4.

Our approach can also be applied to automate parts of the hunting process. In
this case, the anomaly score can be used to prioritise events (i.e., the higher the
score, the higher the priority), and similar events can be clustered to reduce the
amount of time the analysts spend analysing them. The model can also be used
as a way to enrich the events indexed in the SIEM. Specifically, the anomaly score
and clustering identifier can be used to create hunting dashboards (e.g., plotting
the cumulated anomaly score through time, identifying assets with the highest
number of anomalies, etc.), and filter data using the indexer’s search capabilities
(e.g., returning only the events with a higher score than x for a given attribute,
filtering out a set of cluster identifiers, etc.).
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2.6 Summary

In this chapter, we proposed a method that relies on neural networks auto-
encoders to compute anomaly scores for heterogeneous events. It can be used to
prioritise investigations during incident response or threat hunting operations. We
proposed an original approach to exploit the latent space of the auto-encoders to
provide clustering capabilities. So as to reduce the volume of information that is
presented to the analysts by regrouping similar events together.

We drew inspiration from state-of-the-art deep learning techniques to handle
the most common attribute types found inside security events (numerical, cate-
gorical and string attributes). These techniques simplify the design of the feature
extraction and transformation processes that are required by any machine learning-
based approach. This allows to quickly create specific models for multiple sources
of security events. While other machine learning methods for anomaly detection
have already been proposed, they mostly need specific feature engineering for each
new type of events, which requires knowledge in data science that is rarely available
among Security Operation Center (SOC) analysts.

We envision two major use cases for these tools. First, we aim at reducing the
required time for detection engineer to built new detection logic by reducing the
time it takes to fine tune the detection rules to white-list legitimate and frequent
behaviours that trigger alerts. Instead, the model is in charge of automatically
performing this fine-tuning step. The second use case is focused on threat hunting
and incident investigation. In these contexts, analysts explore large amount of
security data to uncover potentially unknown attacker behaviours. The clustering
capability as well as the ability to prioritise events based on the anomaly score
can reduce the investigation time. In turn, analysts can perform more thorough
analysis, which can help them uncover traces of advanced attacker behaviours.

In the next chapter, we focus on the ability to continuously update models
without introducing attack traces. It requires to include the human analyst at
the core of the ML-based system. As such, this system needs to output contextu-
alised detection, which provides as much elements as possible for the analysts to
understand and qualify anomalous behaviours.
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Chapter 3

ADAPTABLE AND MAINTAINABLE

ANALYTICS FOR SECURITY

OPERATORS

This chapter details how we combine detection rules, scripts, data fusion and
machine learning models to build security analytics. It presents a scalable algo-
rithm to perform automatic event fusion from pivot variables identified by analysts.
We build upon the work described in chapter 2 to propose a dynamic auto-encoder
structure that can process fused events. An active learning approach is proposed
to continuously train the models in analytics while providing robustness against
frog-boiling attacks (i.e., poisoning continuously learning anomaly detection mod-
els). To avoid increasing the burden on analysts, special care is taken to limit the
volume of information presented to them, and provide as much context as possible
to improve the explainability of the provided results.

3.1 Introduction

This section introduces our vision of security analytics, which combine de-
tection rules, scripts, data fusion methods and models to process heterogeneous
security data from multiple sources. We focus on simplifying the design process
for analysts by abstracting the data science parts. We also aim at simplifying the
maintenance process, which is required to adapt to novel behaviours, and rely on
active continuous learning of models with the human analysts in the loop.
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3.1.1 Designing security analytics

SOC analysts perform intrusion detection of monitored systems thanks to au-
tomated real-time detection systems that recognize known attack patterns often
relying on sets of correlation rules. Moreover, the threat hunting analysts uncover
unknown attack methodologies by exploring events in the search of potentially
suspicious activities. The number of false alarms raised by the real-time detection
systems should be kept to a strict minimum in order for incident responders to
react as quickly as possible to known attacks (see Sec. 1.1.3). Threat hunters, on
the other hand, can dedicate more time to perform in-depth analysis of these inci-
dents to find novel attack patterns. They can also investigate events in the search
of emerging threats behaviours. Thus, due to the huge amount of data that needs
to be analysed and pieced together to investigate anomalous (and potentially mali-
cious) patterns both incident responders and the threat hunting teams can greatly
benefit from automation tools.

In recent years, multiple anomaly detection methods have been applied to se-
curity monitoring. However, multiple limitations still slows the adoption of these
methods that are mainly based on machine learning. While novel deep learning
advances can simplify the design process by being more flexible regarding the in-
put data [36], the results they provide may still be hard to interpret. This lack
of explainability can be lowered by presenting contextualized events to the ana-
lysts [80]. This prevents analysts from understanding the mechanics and hinders
their ability to qualify alerts coming from these methods. We want to implicate
analysts and detection engineers directly in the process of designing analytics, in
order for them to exploit data science capabilities more efficiently.

Recently, multiple approaches have been applied to endpoint monitoring with
interesting results such as information flow tracking [44, 16] and event causal-
ity [122]. However, in the context of a SOC, it is unlikely to have access to the
level of detail necessary to find causal links between events, and we need to rely
on approximations instead. Instead, we focus on event fusion method that enables
analysts to automatically reconstruct the context around security events and can
be configured by analysts according to the data they have access to.
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(a) Overview of the analytics structure.

(b) Example use case of an analytics: threat hunting from IoC.

Figure 3.1 – Analytics structure and use cases.

To accommodate the evolving needs (and capacities) of security operators, we
aim at providing analysts with building blocks to create, improve and exploit se-
curity analytics (i.e., automated data processing procedures to support security
analysts) for their operations. These analytics should be able to process, at scale,
multiple sources of heterogeneous data, and take into account how the results
they provide could be visualised [92]. Fig. 3.1a provides an high level view of the
structure of an analytic. Specifically, an analytic is called using a set of parame-
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ters (e.g., a time frame to analyse, a list of machines to investigate, etc.). Using
these parameters, the analytics retrieve data from multiple data sources from the
various tools that store security data, i.e., security events from the SIEM, asset
information from the asset base, and Cyber Threat Intelligence data from the CTI
or threat sharing platform (e.g., MISP 1, OpenCTI 2, etc.). Expert knowledge can
be provided in the form of detection rules (e.g., using the SIGMA format 3), or as
more flexible scripts. We aim at being able to aggregate data from all the sources
using fusion methods and mix the use of expert system with anomaly detection
and clustering models.

In Fig. 3.1b, we provide as an example a high level view of an analytics meant
to accelerate hunting based on URL that can be Indicators of Compromise (IoC).
When doing so manually, threat hunters often find false positives either due to bad
IoC (e.g., error in the CTI feed, insufficient precision of the monitoring data, etc.),
or because the IoC describes legitimate infrastructure that has been compromised
but only provides its original service to our system. Therefore, they need to inves-
tigate each match by analysing the logs of the machine from which the connection
is originated. To accelerate the process, the analytics can retrieve automatically
the logs for each match, fuse them to reconstruct the context around each of these
match and regroup similar matches to facilitate the analysis by the human expert.

3.1.2 Maintaining security analytics

The security domain has a strong specificity that requires to handle continuous
learning (i.e., updating models with novel behaviours) with extra care. Namely,
attackers will actively seek to evade the defensive measures [116]. For anomaly
detection models, continuous learning exposes another attack vector, commonly
called the frog-boiling attack (see details in Sec. 1.3.3). This attack consists in
progressively presenting to the model inputs that are increasingly similar to the
whole attack. As the model is retrained regularly on novel data, at some point,
the attacker’s activity will be considered normal.

For initial access, this type of attack is unlikely to be effective, as attackers
have limited knowledge of the target system, which prevents them from generating

1. https://www.misp-project.org/
2. https://www.opencti.io
3. https://github.com/SigmaHQ/sigma
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actions that seem normal enough not to trigger an alarm, and they need to gain
persistence rather quickly (which may be less difficult to detect) considering that
the complete implementation of the attack may take time. However, for advanced
attackers that can inject a backdoor into the target system (e.g., via a supply chain
attack like the SunBurst malware [119]), this attack is plausible, as it can limit
the visibility of the trail left by attackers on the target system.

To mitigate this attack vector, we need to limit the number of untrusted data
points that are used to incrementally train the model. Considering that the ap-
proach is meant to detect novel threats, finding an automated method to verify
if the data points are symptomatic of unwanted behaviours is not an option (i.e.,
if such a method existed, it would probably be easier to use it directly instead of
using ML models). Performing such a verification is however very similar to what
analysts do when they qualify alerts. In fact, among all the scored meta-event sets,
some can be selected (e.g., the top N with the highest score, or the ones with a
score higher than a predefined threshold), and then presented to analysts for them
to annotate (e.g., unwanted or false positive). Only verified false positives would
be inserted into the model, which adds a layer of complexity for the attackers.

3.1.3 Overview of the approach

In this chapter, we build upon the approach detailed in Chapter 2 to pro-
pose a method to detect traces of anomalous and potentially malicious activity
by analysing security events coming from multiple sources (e.g., process auditing,
network probes, web proxies, etc.). Our method does not require specific low-level
information from logs, and can therefore be configured for various monitoring
strategies (i.e., ability to configure it for various sources of events, and various
levels of visibility).

The first step of this method is to regroup events into sets that describe the
same action (e.g., a network connection seen as an opened socket by the endpoint
monitoring tool, and as a network flow by network probes). In case the action
triggers an alert, this provides context to the analysts, which allow them, in theory,
to qualify alerts quicker. To analyse these sets, we use an auto-encoder model,
derived from the approach described in chapter 2, a specific type of deep neural
network that is particularly suited for anomaly detection. We design the model so
that it can analyse any attribute contained in security events, and link information
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from all the events within each set to detect anomalies based on the context (e.g.,
reading /etc/password at start-up is normal for a web server, but reading the same
file when answering a request might not be). The model can learn incrementally
to adapt to the evolution of the normal behaviour of a system. To account for
changes in the monitoring strategy, the structure of the model can be updated
without requiring a complete retraining (which is computationally intensive).

Due to the large volumes of events that need to be analysed, whenever possible,
we choose algorithms that can benefit from parallel and distributed computing.
We give a particular attention to integrate easily into SOC analysts habits and ca-
pabilities. Specifically, the configuration step does not require advanced knowledge
in data science, and instead focuses on available expertise from SOC analysts.

3.2 The need for event aggregation

In this section, we detail why we focus on event aggregation, and especially
event fusion. We aim at proposing an efficient way for analysts to investigate and
understand results provided by analytics. Based on our experience with graph-
based contextualisation methods, we conclude that these method require to reduce
the number of nodes to be effective, as visualising more than a few tens of nodes
prevents analysts from focusing on important events, and graph processing solu-
tions in general are costly to scale with the number of nodes. We propose to do so
via event fusion, and on pivoting automatically around data sources.

3.2.1 Introduction to alert correlation

Alert correlation methods are already part of SOC tools. Valeur [112] described
extensively the correlation process (see Sec. 1.1.3), which can be summarized in
six major steps, the normalisation, the enrichment, the fusion, which consists
in fusing similar alerts and correlating multiple steps of the attack to detect known
patterns and the verification which focuses on filtering out irrelevant alerts (e.g.,
known false positives) and prioritising the others. The method described in Chap-
ter 2 shares similarities with this step (i.e., it can be used to filter false positives and
prioritise events). The step of aggregation consists in regrouping various steps
of the attack (detected during monitoring) in order to finally perform a global
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analysis of this attack on the monitored system.
In our context, we analyse both events and alerts (i.e., every behaviour, not

only suspicious ones). This allows the detection of novel attacks, but also implies
that the volume of information to process is greatly more consequent than what
is processed by an alert correlation system. In this section we do not focus on
the normalisation and enrichment of events as these are already part of SOC and
CERT processes, and extensive public resources are available for these (e.g., the
Elastic Common Schema [37] and MITRE ATT&CK® data sources [83]). Instead,
we investigate methods that can provide context to alerts in order for analysts to
recognize and understand quickly the behaviours that lead to the alerts. Conse-
quently, we consider improvements to the fusion, verification and aggregation steps
that support the global analysis.

Current trend in the literature consists in exploiting network graphs to pro-
vide this context. Based on operational feedback (Sec. 3.2.2) and experiments
(Sec. 3.2.3), we identify limitations that should be mitigated before these ap-
proaches can be employed in operational use cases.

3.2.2 Challenges of graphs for security events investigation

In section 1.2.3, we reviewed methods that employs graphs to visualise and
investigate security events and alerts. Specifically, using information flow tracking
and provenance graph can help reconstruct the various steps that constitutes a
complete attack [51, 16]. Formal methods also exist to build graphs of security
events from audit logs based on causal dependencies between them [122]. However,
for our use case, they have four major limitations:

1. Such a graph quickly becomes too big (i.e., more than a few tens of nodes)
to efficiently visualise even for short time ranges (i.e. above one hour). In
fact, in typical IT systems, some servers are contacted regularly by almost
all the machines (e.g., an Active Directory), which is translated into causal
dependencies between all the machines, as a malicious modification to the
listening processes of these could have an impact on all the others. This
quickly creates an exploding number of dependencies between events, which
implies a large dependency graph.

2. They are only used to investigate alerts, as the detection process still relies
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on a complete and complex set of detection rules.

3. They require a consequent modification to the monitoring system, as they
rely on low level events that generate massive amounts of data. This is
incompatible with operational IT systems, as SOCs and CERTs usually
cannot modify the monitoring tools deployed on the system, and even if
they could, it would be extremely costly to collect and store these events
as long as the legislation and contracts requires it (i.e., from 6 months to
multiple years, depending on the sensitivity of the system).

4. Adapting such a system to novel sources of data is complex, as the methods
employed to build the graphs are strongly correlated with the data sources
employed (i.e., they require specific attributes in specific types of events).

HOLMES [80] addresses the first limitation using a higher level graph to rep-
resent long scenarios. In fact, instead of representing one event by one node in
the graph, a node corresponds to a composition of multiple events that can be
attributed to an adversary technique. It also relaxes slightly the constraint on
the detection rule set by using anomaly detection to filter frequent false positives.
However, this higher level graph requires the definition of specific rules to match
adversary techniques and still relies on low level events and specific informations
that are not available in our case.

Instead of causal dependencies between events, it is possible to construct graph
from identified pivot variables within the events [91, 70]. This is more aligned
with our objectives, as these pivot variables are often identified intuitively by
incident responders and threat hunters to investigate security events. Furthermore,
these graphs can be used to detect suspicious patterns by combining community
detection with ML-based methods for edge weighting (supervised regression in [91],
anomaly detection in [70]). However, such a graph scales poorly with high number
of events (i.e. starting from a few millions).

In summary, to take advantage of a graph representation, we need to reduce
the number of nodes to present to the analysts. We also need this method to be
adaptable by the analysts to the available data.
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3.2.3 Experimenting with graphs and anomaly detection

To simplify the investigation by analysts of the results provided by the method
described in chapter 2, we investigated a way to combine a graph representations
with events anomaly scoring and clustering. The core assumptions are that an
isolated anomaly is rarely the consequence of a successful attack, as attackers will
perform multiple actions before reaching their goals, and that advanced attackers
can perform seemingly normal actions, that generates events called weak signals,
between the steps of their attacks (e.g., creating files on a network share to ex-
change informations with another compromised machine). The chosen approach
had the following properties:

— The constructed graph is directed and acyclic (as a provenance or causal
dependency graph). We aim at approximating, to varying degrees of fidelity
(based on the available data), the causal dependencies between events, and
according to Lamport’s happened-before relation [65], an event cannot pre-
cede its cause (hence the acyclic nature of the graph).

— Across (and within) data sources, pivot variables (provided by the analysts)
are identified to build the edges between events. For example a process
creation event will be linked to the last event recorded that implicates the
parent process (based on the process identifier).

— An edge is removed if the combined anomaly score of the previous nodes
in the graph is too low. The combination function is optimized to limit the
number of edges on baseline data (i.e., supposed without attack).

As shown in Fig. 3.2, this approach can quickly create graphs that are too
big to understand. In fact, even if the graphs presents less than a percent of the
total events, there are tens of thousands of said events per machines per day. In
a typical IT system that has more than a thousand machines, the graph will not
provide valuable insights. This is especially true if we try to visualise more than a
few minutes of activity, as the number of dependencies between events will start
to explode.
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Figure 3.2 – False positive sub-graph constructed during our experiment (in this
case, caused by a software update).

However, by only showing the most anomalous events, and aggregating directly
linked similar events (i.e., with the same cluster id), we found that for short peri-
ods of time, it can help understand attackers activities. Fig. 3.3 shows the graph
with nodes corresponding to aggregated events distributed horizontally by time
windows. Fig. 3.4 shows a timeline view, which highlights the most anomalous
events per time window.

100



3.2. The need for event aggregation

Figure 3.3 – Filtered representation a few steps of an attack, happening in a short
period of time (a few minutes), as a DAG.
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Figure 3.4 – Filtered representation a few steps of an attack, happening in a short
period of time (a few minutes), as a timeline.

Finally, with the approach for anomaly scoring described in chapter 2, we had
to manage and coordinate one model for each data source. When filtering and
refining the visualisation using the anomaly score (i.e., only showing the most
anomalous ones), this required the use of mechanisms to normalise the score from
one source to the other.

3.2.4 Focus on event fusion and pivoting around security
data

Our experiments with graph-based investigation of anomalous events showed
that:

— For longer periods (i.e., an hour or more), too much nodes are present in
the graph to be efficiently visualised.

— Within enterprise IT systems, some servers are regularly contacted by most
of the machines (e.g., AD, file servers, Intranet portal, etc.), which generates
spurious correlations between events. This is due to the insufficient precision
of the approximation of causality that is attainable with COTS.

— One action performed by a human (legitimate or not) and its consequences
can be recorded as tens of events in a short period of time, which further
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reduces the efficiency of the graph as an event visualisation tool.
— Managing and synchronising multiple models to solve the same problem is

not trivial.
As highlighted by Milajerdi et al. [80], to highlight multiple steps of a long-

spanning attack, adding an abstraction layer between events and nodes (i.e., one
node should be composed of more than one event) provides significant readability
improvements. In their case, they associate certain combination of events, linked
by causal dependencies, with adversary techniques, and display a graph whose
nodes represent these techniques. Furthermore, graph analysis methods (e.g., graph
databases, community detection, etc.) are expensive to scale with higher number
of nodes and edges.

In our case, we cannot rely on having access to the level of information required
to find causal dependencies. Moreover, we want analysts to be able to use our
methods to find novel attack patterns, including novel TTPs. Therefore, to abstract
nodes in the graph, we cannot rely solely on existing knowledge. Instead, we focus
on regrouping events that are the consequence of the same actions performed by
human. We also aim at designing a way for analysts to automate and scale the
frequent task of pivoting around data.

3.3 Aggregating events

This section describes heuristics used to group events in sets of meta-events.
First, we introduce the definition of a meta-event in the context of security moni-
toring. Second, we present the method we use which consists in regrouping events
by time windows and then aggregate related events within these time windows
using logic. Finally, we describe the algorithm that is used to aggregate events
within a time window. Specifically, this algorithm extracts pivot variables from
the events by combining relevant attributes (configured in the form of rules), and
then use a reduction operator to group events into sets of meta-events.

3.3.1 Definition of a meta-event

Our objective is to propose an event aggregation method that can handle large
volumes of events by taking advantage of parallel computing. Solutions for auto-
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matically identifying which events should be aggregated has already been studied
in previous work [101, 117]. In our case, we adapt a model that is already common
for alert fusion, by aggregating events that are close in time and using simple logic
rules to separate unrelated events within these time windows.

Defining rules is similar to identifying pivot variables when hunting for adver-
sary behaviours, which is a core concept known by analysts to explore security
data and follow the trails left by attackers.

Among the events collected when monitoring an information system, finding
duplicated events is highly probable. This can be attributed mostly to four facts.

1. The same action being performed several times in a short period of time
(e.g., a process spawning a pool of child processes). Due to the asynchronous
nature of modern computing, it is unlikely to have the exact time-stamp of
each events.

2. The sensor that registers the events or the chosen attributes of these events
might not provide enough information to distinguish two similar but differ-
ent actions (e.g., multiple threads connecting to the same service in parallel
will generate socket events that can be hard to distinguish if the source port
of the connection is not considered).

3. Redundant sensors or multiple implementations of these sensors (e.g., two
different IDSes) for high availability.

4. For performance reason, the log shipping method of a lot of modern mon-
itoring solutions often follow the "at least once" delivery policy by default
rather than the "exactly once" policy.

For this reason, we chose to consider a meta-event as a group of events per-
taining to the same data source during a predefined period of time and with equal
attributes 4. The proposed system aims to leverage knowledge of SOC analysts.
The definition of a meta-event therefore depends on three choices, namely, the
data sources, the size of the time window inside which events can be grouped to-
gether, and the list of attributes that needs to be equal for events to be grouped.
As long as these choices remains in the hands of analysts, the performance of our
system depends on assignments made. For the sake of this work, we define time

4. Timestamp excepted
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window, data sources and event attributes based on expert knowledge provided by
SOC analysts.

3.3.2 Linking meta-events

When monitoring an information system, the various sensors will record events
differently (e.g., an endpoint audit mechanism may attribute network socket open-
ing to processes, while network probes will focus on analysing the network proto-
col). To extract as much information as possible from available logs, we regroup
all the events related to the same action and jointly analyse them. This is known
as the alert fusion step of the correlation process [112], and we extend it to take
both audit events and IDS alerts as inputs (instead of only alerts).

To leverage the available knowledge of current SOC analysts, we chose an
approach that is similar to what is actually done for alert fusion: slicing the time
into small windows, and then using logic in the form of rules to separate events
describing different actions. Fig. 3.5 gives an overview of the complete process.

Figure 3.5 – Overview of the fusion steps

Group by time proximity

While the asynchronous nature of modern computing may render the strict
ordering of the events via their time-stamps highly improbable, the various sensors
deployed inside the monitored system are likely to react to the same action within
a short period of time (at least if the whole system is synchronized using the same
time server, or if the log shipping system is in charge of setting the time-stamps).
Therefore, the first step we perform is to regroup events appearing inside the same
time window. The size of the window is configurable as, depending on the tools
available, the time between the first event and the last event matching the same
action can vary from milliseconds to a few minutes (e.g., for NIDS that trigger
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alerts at the end of the connections). Each slice of time can be handled completely
in parallel.

Correlation of meta-events using rules

Linking security events based on causal dependencies can ease the investigation
process [122]. Indeed, each action inside an IS, such as attacks, is observed from
various sensors. Each one records different pieces of information about the root
action. We hence aim to uncover the root action through event correlation of
given groups of events. This correlation is based on two assumptions:

1. Regardless of the data source, two events coming from the same origin (e.g.,
same process, same host, same user, etc.) and within a short period of time
are more likely to share a common cause. Indeed two correlated events can
be either causally linked, caused by the same cause or a coincidence. The
probability of a coincidence is lower when analysing finer grained events
(e.g., endpoint monitoring, syscall auditing, etc.).

2. Some event attributes are common to multiple data sources [68, 91], which
enables us to regroup events from heterogeneous sensors. For instance, an
endpoint auditing mechanism can log sockets opened by processes which
can be linked with NIDS logs using the source IP address, and other end-
point logs using the process identifier. For some tools, some attributes are
specifically designed to link events together (e.g., the zeek network probe
[89] events have attributes that are meant to link each analysers results to
the original network flow).

Meta-events with attributes indicating the same origin are therefore pieced
together. The list of such attributes is called a correlation rule. From a threat
hunting analyst perspective, defining such a correlation rule is similar to explicitly
specifying pivot variables.

A rule is composed of one or more sub-rules. Each sub-rule applies to a list of
data sources (e.g., network flow and process sockets, NIDS and proxy logs, etc.),
and has a list of attributes that should all be strictly equal from one event to an-
other. Additionally, a sub-rule can contain Boolean filters, to specify which events
should be correlated. For example, HTTP(S) proxies do not necessarily record the
source port of the connections. Therefore, it can be interesting to fuse connec-
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tions recorded by a network probe with proxy events only if these connections are
outgoing HTTP(S) ones.

Figure 3.6 – Example of a a set of rules

In the example given in Fig. 3.6, rule 1 permits the aggregation of network
connections as seen by endpoints monitoring solutions and network probes (i.e.,
network flows that has the same source and destination IPs and ports). Rule 2
aggregates parent and child processes execution.

3.3.3 Scalable event fusion algorithm

To analyse large volumes of events, we aim at taking advantage of parallel and
distributed computing whenever possible. To do so we chose to adhere to the map-
reduce standard when designing our meta-event regrouping algorithm. Therefore,
we can either use functions that can be applied independently and return one
result for each value (map), or commutative functions (i.e., f(a, b) = f(b, a)) that
combines two values into a single one, i.e., f(a, b) = a

⊕
b = c with a, b, c 3 E,

where E is the whole set of events (reduce).
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Figure 3.7 – Example of parallel processing of a reduce operation.

Reduce operators can be processed in parallel. In fact, as the order of the
operands doesn’t matter and the function outputs inside the same space as its
inputs, we can group all values by pair, process each pair in parallel, and repeat
the process until there is only one result left. However, to ensure the result is avail-
able, each worker (e.g., threads, processes, nodes, etc.) needs to be synchronized
after they perform an operation. This synchronisation has a non-trivial cost, and
therefore, the traditional scheme to process a reduce operation in parallel (Fig 2),
is to partition the input data. The partitions are then processed in parallel and
the result of each partition is finally aggregated.

In the distributed scenario (i.e., workers cannot access the same memory),
each time a worker needs data that resides in another worker, it needs to be
serialized and sent via network. If this operation is done too frequently, it can
quickly negate the benefits of parallel processing (i.e., spend more time than if
processed sequentially).

Unified data structure (MAP)

Before aggregating them into sets of meta-events, each event is structured into
a common format, i.e., normalised to comply with the reduce operator expected
inputs. This operator combines two lists of meta-event sets into one. As a reminder,
a set is a collection of one or more (potentially infinite) distinct elements. We use
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the notation {elem1, elem2, ...} to represent sets.
A meta-event set is, therefore, a group of one or more distinct meta-events,

from one or more data sources. It is composed of a timestamp which is the
average value of all the events that it contains, the value of the attributes of all
the meta-events that compose it (meta-events data), organised by data source,
and the pivot variables that are used to aggregate the events.

Figure 3.8 – Overview of the map operation with a process execution event.

The map operation consists in extracting the attributes of the input event and
organising them into the desired structure, effectively creating, for each event, a list
of meta-events sets composed of a single event. To create the pivot variables, for
each applicable sub-rule in the rule set, the corresponding attributes are extracted,
combined and hashed with any algorithm that can be used to create a hash map
(e.g., xxHash [22], MurmurHash [50], etc.). These hash values are then organised
by rule identifier, as sets of values. Fig 3.8 illustrates the behaviour of this map
operation.

Regrouping events into sets of meta-events (REDUCE)

Algo. 2 describes the reduce operator that we use to aggregate events. It takes as
input two lists of meta-event sets (MEGL1 andMEGL2) and outputs a single one.
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Algorithm 2 Reduce operation for meta-event grouping
function MetaEventGroupListReduceOp(MEGL1, MEGL2)

result←MEGL1
for all MEG in MEGL2 do

FirstMatchId← −1
IdsToRemove = ∅
for i < result.size do

if MatchCorrelationRules(MEG.attr, result[i].attr) then
u← MergeMEG(MEG, result[i])
if FirstMatchId < 0 then

result[i]← u
FirstMatchId← i

else
result[FirstMatchId]← MergeMEG(result[FirstMatchId], u)
IdsToRemove.append(i)

end if
end if

end for
result.DeleteIndices(IdsToRemove)
if FirstMatchId < 0 then

result.append(MEG)
end if

end for
return result

end function
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The MatchCorrelationRules function consists in checking if there is an intersection
between any of the sets of pivot variables (one set for each applicable fusion rule) for
two meta-event sets. If so, the two sets can be merged (MergeMEG), by combining
the list of events within each meta-event sets, and removing duplicated values (i.e.,
events with the same values for all the analysed attributes).

A note on scalability

In the best case scenario where all the events can be regrouped into one meta-
event set, the inner and outer for loops of the reduction operator always have one
iteration, resulting in a O(n) time complexity (with n the number of events) if
processed sequentially. In the worst case, each event belongs to its own meta-event
set, and thus, the time complexity rises to O(n2). On average, we found that the
aggregation achieves one to two order of magnitude reduction (an average of 10 to
100 events per meta-event set), which leads to a O(nlog(n)) time complexity.

Also, while the number of elements in the list is reduced, the actual size of the
list in memory is only slightly reduced (i.e., only duplicated events and common
pivot variable values are pruned). Therefore, the algorithm cannot scale indefinitely
with more computing node. Our own testing resulted in diminishing returns after
more than 10 processing workers, but the true scalability depends on multiple
factors (the implementation, the monitored system, the chosen rules, etc.). On the
other hand, each time window can be processed completely independently, and
thus scale indefinitely, at the cost of additional latency. For example if it takes
at most 2 minutes to process a 1 minute time window, 2 workers would not be
saturated, but results would be delayed. For large volumes of events (more than
a million events per time window), scalability could be improved by organising
events into independent sets with (almost) no interdependencies (e.g., logs from
each sub-networks, each endpoints processed independently, etc.).

3.4 Dynamic auto-encoder for anomaly scoring
and clustering

Grouping together events in sets of meta-events offers a better understanding
of observed phenomenon. We go further by prioritizing sets of meta-events with
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neural network-based anomaly detection system by computing an anomaly score
for each set and the meta-events that compose it.

3.4.1 Model inputs

As described in Sec. 3.3, the inputs of the model are sets of meta-events, which
are then transformed into numerical vectors (using method descrined in Sec 2.3).
Each meta-event is composed of one or more identical events appearing in the
same period of time that are extracted from a data source. Most sets only contain
events from some of the data sources, and the number of meta-events for each
data source from one set to another is likely to be different (Fig. 3.9). Moreover
each data source have multiple attributes of potentially different types (categorical,
numerical or string attributes).

Figure 3.9 – Schematic view of the model inputs

3.4.2 Block-based architecture to handle heterogeneous at-
tributes

We build upon the work described in Chapter 2 to handle the heterogeneous
attributes inside the meta-events. In fact, using neural networks makes it possible
to integrate embedding functions for categorical and string attributes (numerical
features are handled by any machine learning algorithms), and let the network
adapt the parameters of these functions directly during training. To improve read-
ability, we summarize here the description of the blocks we employ to build the
auto-encoder’s structure (detailed in Chapter 2).

For categorical values, we use a word2vec inspired embedding function which
maps the integer indices of the categories to a continuous vector space where
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categories appearing in the same context are close.
Strings are treated as natural language using Transformer networks that ex-

ploits multi-head attention, which showed good results in Natural Language Pro-
cessing. In the context of security events, they are effective at capturing syntax
and semantic of string attributes and compress them into smaller vectors.

Once each attribute of a meta-event is transformed into a continuous float
vector, the vectors are concatenated and processed by fully connected layers of
neurons. This allows the network to find correlations between the input attributes
and in turn compress the input data into a low dimension representation. From
this low dimension, the network reverses the encoding process to reconstruct as
precisely as possible the input attributes.
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3.4.3 Dynamic structure with coherent encoded represen-
tation

Figure 3.10 – Overview of the anomaly scoring for a set of meta-events

For each data source, an encoder and a decoder are initialized at the beginning
of the training phase. One of the limitations of the solution described in Chapter 2
is that the compressed representations of the events are not comparable from one
source to another. Besides, each source of events needs its own model, which can
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be difficult to manage once the number of sources grows too high. We propose
to alleviate these limitations using a dynamic network structure combined with a
penalty added to the objective function. It encourages the encoder to encode meta-
events appearing frequently in the same sets into close vectors in the encoded space.
Fig. 3.10 provides a functional overview of the model.

For each set of meta-events, we select the encoder-decoder pairs corresponding
to each data source in the set and build an auto-encoder out of them. In addition to
the reconstruction error (i.e., the difference between the original input and the out-
put of the network), we compute the distance between the encoded representation
of each meta-event of the set and the average value of these encoded represen-
tations for the whole set. We derive the context score from this distance, and
minimizing this score is added as an objective for the encoder, which encourages
it to compute an encoded representation that is close for meta-events that fre-
quently happen in the same context (e.g., an HTTP request is often accompanied
by a DNS query).

3.4.4 Computing anomaly score

As described in Sec. 2.4.6, the score of each attribute of an event is computed
from the reconstruction error of these attributes. The parameters of a logistic distri-
bution are optimized directly within the neural network, by adding constraints 2.15
to the loss function. Thanks to this, each attribute has a score between 0 (normal)
and 1 (anomalous). The context score is weighted similarly to an attribute score.

To compute the score of a meta-event, a small part of the neural network
is dedicated to weighting each attribute, to lower the importance of frequently
anomalous attributes (e.g., a completely random field), and increase the signifi-
cance of anomalies on more predictable attributes.

The score of a set is the weighted mean of the scores of all the meta-events
that constitutes it. The weight qi for a meta-event is qi = si∑

j
sj

with si the score of
the ith meta-event in the set. Using this method to compute the weight increases
the importance of a small number of highly anomalous meta-events in the set.
This can improve the robustness against some mimicry attacks, where attackers
dilute their behaviours inside a high number of seemingly normal events (e.g., a
thousand connection to frequently accessed websites for one communication with
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the Command and Control server).

3.5 Handling concept drift

We take into account the evolution of behaviours through time which requires
training models continuously. To avoid integrating adversary behaviours within
the model (which prevents detection of said behaviours), we propose an active
learning setup, where human analysts provide feedback in the form of annotated
false positives. By combining clustering and the history of annotated alerts, we
limit the number of alerts to be verified by analysts, and reduce alert fatigue by
limiting redundant alerts.

3.5.1 Overview

Normal behaviour of an IT system is bound to evolve with time, as new be-
haviours appear and old one cease to manifest. Indeed, new users are added, old
ones are removed, software are updated, etc. In data science, this phenomenon is
called concept drift and is handled by updating the model. In the context of secu-
rity monitoring this phenomenon can manifest in different ways. First, correlations
between variables evolves (e.g., a known user started using a known command)
and/or the correlation rules used for regrouping events into sets of meta-events
(data sources do not change, only the composition of the sets) need to be changed.
In this case, only the model weights needs to be updated, and as neural networks
learn incrementally by nature, it is only a matter of performing a few training
steps on data containing the new behaviours.

The second manifestation of concept drift is a modification of the input space
which requires a modification of the pre-processing functions parameters (e.g., a
new user, a new software deployed, etc.). Finally, in some cases the data sources
schemas must be updated (e.g., new type of sensor deployed, modification of the
analysed attributes, etc.). By combining the neural networks capacity to learn in-
crementally and the design in functional blocks (for each attribute of each data
source), we can handle concept drift without requiring a costly complete retrain-
ing of the model. This can be assimilated to transfer learning, which consists in
adapting for task a model that has originally been trained for another task.
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Kirkpatrick et al.[57] proposed the Elastic Weight Consolidation (EWC) algo-
rithm in order to attenuate catastrophic forgetting of neural networks, i.e., the
network completely forgets older normal behaviours too quickly. EWC consists in
adding penalties and constraints on the network’s weight during training to avoid
modifying weights that are essential to solve the previously learned tasks. Authors
have also proposed the use of small sample of previous data either as a small
knowledge base constituted during training and used during inference (episodic
memory) [77, 107], or simply by selecting a sample of past experiences when train-
ing on new data (experience replay) [96]. We chose this second approach as it is
simpler (computationally speaking) than episodic memory, and it also applicable
to the adjusting of the transformation function parameters (EWC is only useful
for network weights).

3.5.2 Active learning setup

In the Machine Learning domain, active learning is a special case of semi-
supervised learning, which consists in asking a human expert to provide feedback
to the model to improve the latter. Usually, this consists in selecting a restricted
set of specific points (e.g., points close to the decision boundaries) and ask the
expert to annotate them with their label (i.e., the class they belong to). In this
section, we present an adaptation of this process to security alerts annotation for
continuously training anomaly detection models.

Annotation process

While the annotating alerts from rule-based and anomaly-based detections
seem similar, as anomalies are not necessarily symptomatic of malicious activ-
ity, anomaly detection can lead to higher false positive rates, especially if targeted
at novel threat detection, where finer grained events need to be analysed. This
means we need to ensure we do not saturate analysts capacities to qualify alerts.
Also, repetitively annotating similar alerts is known to cause the "alert fatigue"
problem. This prevents analysts from detecting subtle differences in alerts, and
cause annotation errors. Therefore, we need to reduce the volume of anomalies
that are presented to analysts, avoid redundant alerts, and simplify the alert un-
derstanding. This last objective is handled by the contextualised nature of the
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meta-event sets that are analysed (i.e., all the events describing the same actions
are provided).

To reach the other objectives, we combine two methods. First, meta-event sets
are clustered by taking advantage of their encoded representation (Sec. 2.4.5).
While the cluster identifier obtained by considering the encoded representation as
a vector of bits (representing an integer) is easy to use and provides good results
for clustering events, for meta-events, we had better results with density-based
clustering methods (e.g., OPTICS [6], DBSCAN [39], HDBSCAN [78], etc.). In
fact, due to varying number of events within meta-events, similar meta-events
often end up having a different (but close) latent representation. Density-based
clustering methods are better suited to regroup these types of similar meta-events,
and thus further reduce the number of clusters.

Then, we drop some of the clusters to keep only the most anomalous ones to
analyse. This is done by setting a threshold for the anomaly score, above which a
set is considered relevant for human analysis. Usually, this threshold is adapted by
the analysts, depending mostly on the volume of alert they can investigate, but also
on their tolerance to false negatives (i.e., anomalies that do not generate alerts) as
a higher threshold will potentially miss more anomalies, and thus analysts need to
arbitrate whether or not they want to reduce false positives rate at the expense of
raising false negatives rate.

We store all the previously annotated alerts inside a database. This database is
used to verify new alerts automatically (without an annotation required from the
analysts). This way, if a similar alert as already been annotated as a false positive,
it is not presented again to analysts and can also be considered a false positive.
On the other hand, if it has already been annotated as an unwanted behaviour,
its priority can be increased.

Once the number of unitary elements (i.e., clusters of alerts) has been reduced
to an acceptable level, they can be presented to analysts that will investigate them
and qualify them (i.e., define if they are false positives or unwanted behaviour).
This task can greatly benefit from visualisation methods as they can focus analysts
eyes on the relevant informations. In our case, we do not aim at defining such
visualisation methods as they are an entire research subject by themselves [23], and
instead focus on providing metrics (i.e., the various anomaly scores) and additional
data (i.e., cluster identifier and links with the original events) that can support
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these visualisations.

Generating incremental training dataset

When the number of false positives inside the annotated alert database is
sufficient to justify a incremental training step (i.e., at least a few hundreds of
meta-events, as deep neural networks learn more efficiently from larger training
datasets), we can use them to perform an incremental training of the model.

However, as explained in Sec. 3.5.1, to avoid forgetting old behaviours too
quickly, we create an incremental training dataset composed of both false positives
and historic normal behaviours from baseline database. This database is initially
composed of the initial training data of the model, and is incremented with new
data using the approach:

— For all new meta-event set that is considered normal (i.e., with an anomaly
score that is low enough to not generate an alert), if it belongs to a clus-
ter inside the baseline data, it is added to the database, otherwise it is
discarded.

— All newly annotated false positives are reinserted inside the baseline.
To perform an effective frog-boiling attack, in addition to generating inputs

that are below the alerting threshold, attackers would need to ensure these inputs
are sufficiently similar to baseline to be considered normal. While not impossible,
this significantly increases the complexity of such an attack.

To save compute time, and permit forgetting obsolete behaviours, we avoid
retraining with the whole baseline dataset, and instead take a sample from it. To
select this sample, we first organise the baseline dataset into clusters. For each
of the cluster, we consider the time ti corresponding to the latest meta-event set
contained within this cluster. When drawing a meta-event set from the baseline,
we randomly select a cluster to pick from. The probability of picking from a specific
cluster is given in 3.1. Essentially, clusters consisting in elements that haven’t been
seen in a while are less likely to be selected than more recent ones. The sample
size is given as either 1000, to constitute a sufficiently large training dataset, or as
twice the number of false positives to be incorporated in the model, whichever is the
highest, to ensure novel behaviours are not overrepresented inside the incremental
training dataset, which could cause bias toward new behaviours, and cause false
positives from older ones.
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wi = ti − t0
tn − t0

(3.1)

The complete active learning loop, from the new meta-event sets to analyse to
the generation of an incremental training dataset, is summarized in Fig. 3.11.

Figure 3.11 – Overview of the active learning loop.

3.5.3 Updating input transformation parameters

For numerical attributes

In this case, we use the same method described in section 2.3.2 to find the
scaling factor but for the incremental training dataset (composed of both new
data and the sample of historic data). As the new factor, we take the average
between the previous value and the newly calculated one. This avoid changing the
scaling factor too brutally in case the new data is very different from the historic
data.
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For categorical attributes

New categories are likely to appear as time goes by. This is especially true if
the attributes describe low level entities (e.g., an executable file path in the local
PATH of a user). As new categories are mapped to the "unknown" category by
default, it is possible that the majorities of categories appear as "unknown" after
some time. Also, changing the number of integer index of the categorical trans-
formation function requires changing the embedding layer structure (the number
of parameters is proportional to the number of possible index). To avoid having
to change the network’s structure too frequently, we propose to initialize the cat-
egorical embedding with more potential index than there actually is inside the
training data. This way, new categories can be added to the categorical-to-integer
mappings without requiring network structure changes.

For string attributes

Similarly to the categorical attributes, changing the total number of tokens of
the tokenizer requires changing the structure of the network. Therefore, we chose
not to change the total number of tokens, and simply replace the least frequent
old patterns with the new more frequent ones.

3.5.4 Updating network structure

When a change in the network structure is required, it is still interesting to
keep as much of the original network as possible. In fact, this form of transfer
learning is an effective way to accelerate training by only requiring some parts of
the network to be updated.

The methodology we use to build the network structure is abstracted via func-
tional blocks. Indeed, the network is composed of pairs of encoder-decoder (one pair
for each data source), each encoder is composed of an embedding block for each at-
tribute of the event source and a fully connected sub-network, and symmetrically,
each decoder is composed of a fully connected sub-network and a reconstruction
block for each attribute. Adding or removing a data source is simply a matter of
adding or removing the encoder-decoder pair.

When modifying the attributes of a data source, it is also required to modify
the first layer of the fully connected sub-network of the encoder. In fact, as the
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effective operation rely on a product of matrices, the number of neurons of the
aforementioned layer must always be equal to the sum of the number of outputs
of each embedding blocks. For the same reason, modifying the number of cate-
gories of a categorical attribute requires to modify the embedding block and the
reconstruction block of this attribute.

3.6 Summary

In this chapter we presented a set of methods to build security analytics that
combine expert knowledge (in the form of detection rules and scripts) with con-
textualised anomaly detection and clustering models, enabled by a scalable event
fusion algorithm and auto-encoders with dynamic structures.

To maintain these analytics, we propose an active learning approach. Analysts
are asked to provide feedback similarly to what they do when qualifying alerts as
either false positives or true incidents. Doing so, we reduce the risk of an attacker
progressively poisoning the model by performing actions that are not anomalous
enough to trigger alarms and slowly evolve towards the desired adversary actions
(i.e., frog boiling attack). We focus on reducing the number of redundant alerts
presented to the analysts by using the clustering capabilities of the model.

In the next chapter, we will present our method to build more representative
datasets. We will also provide experimental results on a custom dataset, with an
implementation of our approach.
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Chapter 4

ASSESSMENT

In this chapter, we describe the dataset we use to assess our approach, and
the method we used to create it. Specifically, we designed a realistic user simula-
tion method for lab environments that do not interfere or leave traces inside the
collected security events. This chapter also describes the implementation of our
approach as well as the results we obtained on our dataset.

4.1 Generating realistic user activity for dataset
collection

Datasets that are representative of real environments are required to assess
detection methods. However, for security monitoring, collecting these datasets re-
mains an open challenge. Simulating user activity is one of the biggest problem
that needs to be solved to generate a dataset for security monitoring method as-
sessment. In this section, we propose an approach that instruments machines with
external agents in lab environments in order to simulate user activity at the system
level, without leaving traces of the agent within collected events.

4.1.1 Introduction

As explained by Xosanavongsa [121], assessing a method that analyses hetero-
geneous security events requires a dataset with multiple difficult-to-obtain proper-
ties. First, such a dataset requires to collect logs from heterogeneous sources (i.e.,
network, system and applications events). In our case, we focus on operational use-
cases and therefore, we should be agnostic from the monitoring sensors as they can
be any COTS that are already deployed in production environments (with only
slight modifications to the configurations). Second, to highlight the complex nature
of advanced adversaries activity, the dataset should contain attacks performed in

123



Partie , Chapter 4 – Assessment

multiple steps, on multiple machines, at all the levels of the IT system. And finally,
the biggest challenge is that the dataset should contain traces of activity related to
normal user actions on the system. This is important to constitute a control group
for any attack detection methods (i.e., to ensure False Positive Rate is contained to
an acceptable level), and it is completely mandatory for anomaly-based detection
methods which constitute baseline of legitimate activity on these traces.

To the best of our knowledge no publicly available datasets satisfies these cri-
teria. Furthermore, considering the sensitive nature of security data which can
contain personal information, regulations and contracts often prevents SOC from
sharing production environments datasets for research purposes. Also, to verify the
effectiveness of the proposed methods in various conditions, adversary emulation
would need to be performed on the clients monitored systems (authorisation is
unlikely to be granted).

To address one of the biggest challenges in the security analytics research do-
main [116, 3, 102], we need to be able to create datasets dynamically (i.e., ability
to change the monitored environment, the monitoring strategy, the emulated ad-
versaries, etc.). As having traces of the normal user activity is mandatory for such
a dataset, in this section, we propose a method to automate the simulation at scale
of these interactions on lab environments (e.g., a cyber range). As such a system is
similar to user-behaviour simulation in sandboxes [41], we also consider its use for
users simulation in detection laboratory (i.e., environments specifically designed
to analyse adversary behaviours).

Automatic realistic life generation on IT systems is a complex subject that
requires to solve multiple problems. First, instrumenting machines (to perform ac-
tions) should not leave detectable traces on them. In fact, to collect representative
dataset for security monitoring, the security events resulting from simulated user
activity should not be discernible from the ones resulting from real user activity.
To integrate the life generation method to a detection laboratory, this also sup-
poses that an observer (e.g., an attacker) cannot accurately and quickly determine
that the interactions are not performed by humans using an automated test (re-
verse Turing test [113, 17, 1]). Second, pre-defined scenarios, which are required
to control the nature of the interactions and life that is produced, do not take
into account random behaviours and noise in the lab environment (e.g., position
of a window has been changed, pop-ups, a software crash, etc.). Managing these
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behaviours and noise requires recognition and adaptation in real-time (i.e., similar
to the human user reaction time) in order to prevent the scenario from failing or
being interrupted. Similarly, the sequence of actions that constitutes the simulated
activity should be performed in a human-like timing. Finally, to simplify the im-
plementation of life generation scenarios at the scale of an entire IT system, the
human operators that control the simulation should be assisted during the creation
of said scenarios.

The approach described here is inspired by the life generation methods em-
ployed in the BEEZH platform [42]. We aim at addressing multiple limitations.
First, we gain in modularity (e.g., not bound by the virtualisation technology,
adaptable to physical machines, etc.) by organising the design of the agent that
interacts with the machines in multiple abstraction layers. The lowest abstraction
layers exposes mouse, keyboard and screen interaction in a unified way, regardless
of the actual interaction method. Adapting to various graphical environment is the
role of the middle abstraction layer, and a higher level of abstraction is provided
as a Python API to build activity scripts that are composed of unit actions (e.g.,
open a web, search for a list of keywords, etc.). We use image analysis methods
(both deterministic and based on statistical models) to allow the agent to auto-
matically adapt to minor changes in the environment (e.g., a window is moved,
screen definition changes, etc.). We propose an action builder to assist human op-
erator in creating and adapting action to their specific needs and environments.
Finally, we describe preliminary work on scheduling and building large scale life
simulation scenarios.

4.1.2 Related work

The simulation of user interaction with the machines of a lab environment is
at the cross-roads of three domains. First, graphical user interface automation has
been studied mainly for automated quality testing of software. We can distinguish
two major approaches, namely pre-recorded action replay [123, 106, 84], that re-
quires long configuration time, and full automation, that seeks viable inputs (i.e.,
mouse and keyboard) combinations [99, 41]. Both of these approaches rely on an
agent installed on instrumented machines. This agent would be a strong indicator
for an attacker, and would taint the event logs for our dataset generation use case,
and it can therefore not be applied to our problem.
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Second, to defeat malware performing reverse Turing tests, user simulation
has been studied for sandbox environments. A recent approach, MORRIGU [81],
instruments virtual machines through the VirtualBox API from a Windows host.
Although malicious behaviours detection results are encouraging, these solutions
are not designed to scale to more than a single sandbox environment, and therefore
are not applicable to large scale IT system simulation.

Finally, as an extension to sandboxes and honeypots, user simulation has been
studied to improve realism of honeynet platforms (i.e., controlled IT system de-
signed to attract and detect attackers, as well as analysing their behaviour). The
user simulation tool that best fits our requirements has been integrated to the
BEEZH [42] honeynet platform. It controls the machines through the VNC server
that is exposed by the hypervisor, and thus no agent is installed on the machines.
This tool executes life scenarios that are composed of simple unit actions (e.g.,
open the web browser, look for some keywords in a search engine, etc.). In ad-
dition to BEEZH, to automate GUI element recognition, the open-source desker
library [4] permits the use of image analysis methods derived from the computer
vision domain. Using VNC allows a wide panel of interactions with the controlled
machines. However, to ensure that the life generation does not interfere with the
behaviour of the system, using VNC restricts the use-cases to instrumenting virtual
machines. Indeed, installing a VNC server on a bare-metal machine would interfere
with the normal network behaviour. This life generation method also requires the
operator to manually adapt the scenarios to the specificities of the instrumented
system (i.e., specific software versions, themes, etc.). Finally, the chosen image
analysis method (Faster-RCNN [95]) requires large amounts of computing power,
which is incompatible with our performance and scaling constraints.

Similarly to BEEZH, our life generation agent can only get feedback from the
screen of the controlled machine. Most actions require to click on specific zones
of interest on the screen. Faster-RCNN [95] is widely used for this. Nowadays,
RetinaNet [72] and SSD [75] provide better results with shorter processing time.
Speed can be further improved by using YOLO [94, 93], to the expanse of results
quality.
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4.1.3 Life generation agent design

The agent is in charge of translating user activity scenarios into low-level actions
(keyboard, mouse and screen), and to perform theses actions on the instrumented
machines. To simplify the configuration of the user simulation tool by human
operators, we chose an approach in multiple abstraction layers (Fig. 4.1).

Figure 4.1 – Functional architecture of the agent

At the lowest level, a virtual user interacts with an instrumented machine
through the mouse, keyboard and screen. We aim at adapting the agent to multiple
virtualisation platforms (e.g. VMWare ESXi, Proxmox, etc.) as well as physical
machines, without reconfiguring the life scenarios. We focused on three interac-
tion methods, namely the Qemu monitor API 1, VNC, and as a fallback, through
an agent directly installed on the instrumented machine. We also experimented
with physical machine instrumentation by emulating USB keyboard and mouse
according to the HID protocol 2, and video capture. However, additional work is

1. https://qemu-project.gitlab.io/qemu/system/monitor.html
2. https://www.usb.org/hid
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required to ensure this method is reliable. This abstraction layer exposes basic
interactions capabilities to the layer above, namely, moving mouse to specific co-
ordinates, pressing and releasing mouse buttons and keyboard keys, and taking a
screen shot.

We add random perturbations to these interactions in order for them to look
natural to an observer. For mouse movement, these perturbations consist in moving
the cursor gradually (i.e., not teleporting it directly to the desired location), adding
momentum to this gradual movement (e.g., a long movement will result in the
cursor getting a bit further than the desired point) and adding random deviations
from the target direction. Until the desired destination is reached, the same process
is repeated. For keyboard interactions, the perturbations consist in adding random
delays between keystrokes.

The abstraction layer right above the interaction layer is meant to adapt to the
instrumented machine’s environment specificities. Indeed, while the image anal-
ysis methods that are employed (see Sec. 4.1.4) are almost insensitive to minor
graphical variations (e.g., different screen resolutions, slightly different colours,
etc.), some more important variations requires to target specific images on screen.
For example, the Thunderbird and Outlook mail client have similar functionalities,
but their user interface is completely different, which requires different interactions
with the machine.

The final abstraction is used as an Application Programming Interface (API)
for life simulation scenarios. It consists of unit actions that can be used for building
longer scenarios (e.g., open web browser, browse a web page, identify links in it,
etc.). We implemented the agent using the Python programming language, and
therefore all the life generation scenarios are defined as Python scripts.

4.1.4 Analysing screen captures

To control the state of the machine in real-time, the agent only has access to
the screen. Therefore, we use image analysis methods on screenshots to recognize
area of interest, such as user interface buttons to click, links in a web page, etc.
One of the biggest constraint we have is to have high computational efficiency,
as we want to scale the method to large instrumented systems. For this reason,
whenever possible, we limit the quantity of information to process (i.e., the size
and the number of images), and the computational complexity of the techniques
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we employ. In particular, we rely on three image analysis methods.
The first one is known as template matching. It consists in finding in an image

(i.e., a screenshot), the points that are the most similar to the desired target.
This method consumes little resources and is deterministic, but small variations
(e.g., colours, resolution, shape, etc.) may render them ineffective. This technique
is therefore dedicated to the detection of user interface elements that do not (or
only slightly) vary for a given environment (e.g., start-up menu button, windows
manipulation button, etc.).

In case template matching does not provide satisfactory result, we propose
the use of deep learning algorithms that have demonstrated good performances
for object detection. However, even the most efficient methods (e.g., SSD [75],
YOLO [94], etc.) require large amount of computational resources, which can limit
scalability as the number of instrumented machine increases. Moreover, there are
no public datasets containing annotated areas of interest in screen captures. To
collect and annotate such a dataset would require a considerable amount of time
(even though transfer learning [110] can reduce the necessary amount of labelled
information).

For these reasons, we chose an approach that exploits the geometry of the
shapes that should be detected on screen (Fig. 4.2). Specifically, by using adaptive
thresholding [71], it is reasonably simple to highlight objects in the foreground
(e.g., icons, text, etc.) and the limits between the various zones on screen (e.g.,
windows borders). For a low computational cost, we can identify potential areas of
interest with specific characteristics, by apply filtering rules on the zones identified
thanks to adaptive thresholding (e.g., an icon is a small area almost as wide as high,
a button often has a bigger width than height, etc.). However, as shown in Fig. 4.3,
this method is prone to false positives. To filter those out, we use a Convolutional
Neural Network (CNN), which is the standard deep learning structure for computer
vision. Considering the method is only applied to some smaller areas of interest,
the impact of the computational costs inherent to deep learning models is limited.

Finally, we use Optical Character Recognition (OCR) to navigate within the
user interface (e.g., file and folders labels, menu elements, etc.) as well as detect
links in web pages. The Python library tesseract [109] is used to analyse textual
elements of the user interface, and we use the same method as desker [4] to detect
links.
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Figure 4.2 – Image analysis process.

Figure 4.3 – Example of candidate area of interests detected.

4.1.5 Action creation assistance

The image analysis methods presented in the previous section allows the agent
to manipulate and adapt to the environment that is instrumented. For instance,
Firefox and Chrome web browsers, although having similar functionalities, have
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different interfaces. Therefore, the agent will look for different visual markers to
interact with these two browsers.

Using statistical methods (e.g., deep learning) allows, in theory, for a better
adaptability of image analysis techniques. In practice, to reach sufficient gener-
alisation capabilities, these methods needs to be presented with enough labelled
data. For this reason, we propose two techniques to speed-up the creation of actions
adapted to the specificities of environments, as well as the creation of datasets for
training statistical models.

At its core, this action builder relies on recording of the mouse movements and
clicks, the keys pressed and screen captures. These raw records are then aggregated,
to split the records in small actions (e.g., mouse moved from A to B, then double
click on B). Areas of interest on screen are extracted using two methods.

The first one consists in comparing screen captures when a mouse click is
recorded and at the beginning of the preceding mouse movement. Most user inter-
faces highlights elements when they are hovered by the mouse cursor. Therefore,
the comparison between the two captures around the coordinates that has been
clicked will often show which GUI element was targeted. We automatically retrieve
these elements, which can be used directly as targets for template matching. This
mechanism greatly reduces the time needed to create new actions that the agent
can perform, and also allows the operator to quickly adapt the existing actions to
newly introduced changes in the interfaces (e.g., major software update).

The second method consists in re-employing the area of interest detection tech-
nique described in Sec. 4.1.4 (Fig. 4.2). This lowers the time required to annotate
datasets for training neural Convolutional Neural Networks for detecting areas of
interest. Indeed, the areas are preselected, and the human operator only has to
label these areas (i.e., as false positive, or as a specific type of object).

4.1.6 System-wide life scenario

In the previous section, we described the inner working a single agent. In this
section, we propose to widen the scope to multiple coordinated agents in order to
simulate activity at the IT system level. This rely on a high level representation of
user profiles and their interaction (Sec. 4.1.6), as well as scheduling agent activity
in a coordinated manner (Sec. 4.1.7).
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Virtual users representation

Based on the role they have in the company and the relations they cultivate
with their colleagues, users will interact differently with the company’s IT system.
For example, two colleagues that are friends outside of work are more likely to
discuss in an informal manner via email than two colleagues that do not know
each other. Similarly, a software developer will use an Integrated Development
Environment (IDE) more often than a manager.

Figure 4.4 – Overview of the scheduler.

To simplify the set-up of cyber-training exercises and to ensure the generated
datasets are coherent, it is interesting to create avatars for each simulated users.
Each avatar is given a role in the company, a list of the relationships they have
with other avatars, the projects they work one, etc. With a bit of formalism, it
is possible to represent the avatars as a relational graph (Fig. 4.4), composed of
the various avatars, the projects they work on, their work groups, and the list and
nature of the relationships they have with other colleagues (e.g., friendly, business
only, partnership, hierarchic, etc.).
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In its current form, this graph is used as a graphical model to guide the operator
when defining life scenarios. In the future, we envision the use of this graph as
a way to automatically generate basic interactions between the avatars and the
instrumented system.

4.1.7 Agent scheduling

Each agent (Sec. 4.1.3) of the life generation system corresponds to a single
instrumented machine (and its virtual user). At the highest abstraction level, these
agents execute life activity scripts. The scheduler’s role is to coordinate these
activities at the IT system scale. For example, a mail conversation between users
corresponds to alternating mail reading and mail redaction activities.

In practice, a user A cannot read an email from a user B if this email has not
been sent yet. To represent this logic succession of actions, as is common with
many scheduling problems, we use a Directed Acyclic Graph (DAG). Each node of
the graph is an activity (and its parameters) that will be performed by an agent,
and each edge indicates a dependency between actions. Currently, the DAG is
manually generated by the operator.

We implemented the scheduling using redis 3 as a message broker. Each agent
retrieves the actions they should perform from its dedicated message queue and
the scheduler sends work on these message queues whenever the actions can be
performed by the agents. Each work order consists of an activity scenario (e.g.,
browse web) and its parameters (e.g., time of the activity, keywords to search,
etc.).

4.1.8 Summary

In this section, we described the method we use to instrument machines on a
laboratory environment. This method can simulate user activity at IT system scale.
We focused on the simplicity for human operator to adapt and deploy the method
for their needs. To do so, we use an agent that is divided in three abstraction layers,
which abstracts, at its lowest level, the interaction method in the form of keyboard
and mouse event as well as screen captures. To cope with the diversity of user
interfaces in modern systems (e.g., different OS, software, etc.), the agent embeds

3. https://redis.com
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image analysis methods based on both deterministic (e.g., template matching),
and deep learning methods (e.g., Convolutional Neural Networks). This allows us
to limit the demand on computation resources for the agent, while still taking
advantage of the flexibility provided by the statistical deep learning models. We
propose an action recorder to accelerate the configuration of the agent for new
environment. This recorder automatically extracts targeted GUI elements, and
facilitates collection and annotation of training data for statistical models.

Due to its ease of configuration and the realism of the interactions between
agents and instrumented machines, this method can be used to perform large
scale user simulation for building realistic datasets. As the agent interacts with
the mouse, keyboard and screen of the machine, it can be completely externalised.
Therefore, no agent will taint the collected security events on the machine, and
actions will be performed as they would be by a human operator. We use this
method to build an assessment dataset for our method.

The property of the simulation methods are also interesting for cyber-training
platforms. Indeed, the realism provided by the interaction methods can, as in
a production system, allow the attacker to blend in with the normal activity.
Therefore, players need to focus on finding adversaries behaviours as they will
have difficulties with white-listing user behaviours.

As a final note, we focused on the realism of the interactions, to the point
they can defeat simple reverse Turing tests performed by malware. While a hu-
man would probably be able to detect the simulated nature of the interactions, it
could prevent automated sandbox evasion that look for user interaction. Therefore,
with some refinement (e.g., more realistic long term user activity scenarios, focus-
ing specifically on sandbox evasion techniques, etc.), it could be used to simulate
activity in detection laboratories that are used to analyse adversary behaviours.

4.2 Assessment dataset description

Assessing the performance of an anomaly-based security log analysis method
requires the collection of enough logs to model the normal behaviour of the ex-
perimental monitored system. For confidentiality reasons, it is not possible to use
production data, so the data needs to be collected from a lab environment and
user interaction with this environment must be simulated. As accounting for ev-
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ery possible cases of a real IT system is impossible, this simulation is bound to
be biased. However, considering that each user inter-action is performed through
the screen, keyboard and mouse, similarly to what a human operator can do, the
collected logs will be similar to the ones collected on a production system. We
designed a life generation scenario such as:

— Normal activity corresponds mostly to office tasks (e.g., web browsing,
writing documents, sending emails, etc.) and is partially automated us-
ing method described in Sec. 4.1 (some interactions are directly performed
by the operator);

— Administration tasks are performed manually and are likely to be treated
as behavioural anomalies;

— All users have different behaviours;
— These behaviours evolve (e.g., users start conversing at some point), and

the monitored system evolves through time (e.g., Sysmon is deployed on
more machines after a few days), which forces anomaly detection methods
to be trained continuously.

We played three attack scenarios, each one during a day, with one day of only
normal activity with new behaviours between each scenario. These new behaviours
are expected to cause false positives, and must therefore be taken into account to
accurately detect the second and third attack scenarios. At the end of each scenario,
all traces left by the attacker are completely removed. The attacker tooling is
composed of publicly available threat emulation tools (e.g., PoshC2 4, Mimikatz 5,
etc.), as well as custom tools made specifically to evade detection by signature-base
detection tools (i.e., Suricata and Windows Defender).

The dataset contains 4.2 million events, over a period of 7 working days. These
events come from typical monitoring tools commonly found inside IT systems (i.e.,
Sysmon, Auditd, Windows Audit Logs, Windows Defender, Zeek IDS, Suricata IDS
and Squid HTTP Proxy). We configure these tools to record a higher volume of
information than what is usually deployed on IT systems (e.g., all available IDS
rules, process monitoring with windows audit, socket monitoring with Sysmon and
auditd, etc.). This enables us to test various levels of verbosity for assessing our
method without regenerating a datasets. The dataset will be publicly available for

4. https://github.com/nettitude/PoshC2
5. https://github.com/gentilkiwi/mimikatz
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anyone to reproduce the results or test new research with it.

4.2.1 Monitored system architecture

Considering that the monitoring tools we use are only found on mature sys-
tems, we need to ensure that the actions that are performed are representative of
such a system (e.g., admin tasks should not be performed from user workstations).
Therefore, the monitored system’s architecture (Fig. 4.5) is intended to be reason-
ably secure (well separated infrastructure, administrator and user zones, controlled
outgoing and incoming traffic, updated software and antivirus, etc.). Six simulated
users perform various office tasks (documents writing, mail, web browsing, etc.)
across Linux and Windows workstations while an administrator maintains the in-
frastructure of the system and sometimes connects to the users endpoints to install
software or update configurations.

Figure 4.5 – High-level architecture of the lab environment.
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4.2.2 Day by day scenario

Day 1-2 (14-15/06/2021): Baseline activity

The first two days of the dataset serves as a baseline of "normality" (i.e., with-
out any attack traces) that is required for anomaly detection system training. The
presence of attack traces inside the training data would prevent detection of said
attack, but attacks employing different techniques would still be detected. During
these days, in addition to the activity performed by the virtual users, the adminis-
trator connects via RDP (on Windows machines) and SSH (on Linux) to perform
slight configuration changes.

Day 3 (16/06/2021): First attack scenario

The first attack scenario (day 3) emulates an attacker with custom tooling (to
avoid detection by antivirus), but is noisy (multiple IDS alerts, a few antivirus
alerts, more trial and errors, etc.). The approximate time-line of attacker actions
is provided in Tab. 4.1.

Day 4 (17/06/2021): Novel legitimate behaviours

On the fourth day, the administrator deploys an email client (Mozilla Thun-
derbird) on a Centos machine. The user moves from using the web application to
using the newly installed client. Two users that never exchanged mail before start
to.

Day 5 (18/06/2021): Second attack scenario

The second attack scenario (day 5) reemploys the same tooling as the first
scenario, but is more subtle (generates less IDS alerts, no antivirus alerts, actions
are more precise, etc.). During the attack, the administrator diagnoses a problem
on windows machines (and therefore generate unusual activity). The approximate
time-line of attacker actions is provided in Tab. 4.2.

Day 6 (23/06/2021): New sensors and behaviours

On the sixth day, Sysmon is enabled on the remaining Windows endpoints (it
was only activated on one before), and is expected to generate a large amount of
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Time Action
10:20 Phishing mail
10:45 Malicious attachment is opened
10:50 RAT is executed
11:00 Environment discovery
11:30 User access persistence
11:45 Additional malware is downloaded
12:00 Sub-net scan
12:10 Active directory enumerated
12:30 Spyware executed
12:40 Brute force local admin password
13:00 RDP tunnel through HTTP (UAC bypass)
13:00 Admin access persistence
13:05 C:\temp excluded from antivirus
13:10 Internal spearphishing
13:35 Files are stolen
14:00 Lateral movement through SSH
15:00 Dump Domain Admin hash
15:20 Pass the hash
15:45 Administrator Access on domain controller
16:15 Cleanup

Table 4.1 – First scenario timeline
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Time Action
10:00 Phishing mail
10:05 Malicious attachment is opened
10:05 RAT is executed
10:10 Environment discovery
10:15 User access persistence
10:30 Additional malware is downloaded
10:40 Active directory enumerated
11:25 Internal spearphishing
12:00 Brute force local admin password
12:00 RDP tunnel through HTTP (UAC bypass)
12:20 Admin access persistence
12:30 C:\temp excluded from antivirus
12:30 Dump Domain Admin hash
12:30 Files are stolen
13:00 Lateral movement through SSH
13:40 Cleanup

Table 4.2 – Second scenario timeline

false positives.

Day 7 (24/06/2021): Third attack scenario

The last scenario (day 7) is much more discreet than the previous ones and relies
on new tools. The attacker limits its activity to a minimum to avoid generating
too much events. This scenario aims at emulating a more advanced threat actor.
The approximate time-line of attacker actions is provided in Tab. 4.3.

4.3 Implementation

In this section, we describe how we implemented the approach described in
chapter 2 and 3. We also describe its integration within a laboratory environment
that employs tools commonly used is SOC.
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Time Action
10:05 Phishing mail
10:10 Malicious attachment is opened
10:10 RAT is executed
10:15 Environment discovery
11:25 Additional malware is downloaded
12:00 User access persistence
12:00 Spyware executed
12:00 Passive sub-net scan
13:30 Active directory enumerated
13:40 Brute force local admin password
14:00 RDP tunnel through HTTP (UAC bypass)
14:00 Admin access persistence
14:05 C:\temp excluded from antivirus
14:10 Dump Domain Admin hash
14:40 Internal spearphishing
15:00 Files are stolen
15:10 Antivirus is disabled
15:20 Pass the hash
15:25 Administrator Access on domain controller
15:45 Lateral movement through SSH
17:00 Cleanup

Table 4.3 – Third scenario timeline
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4.3.1 Experimental platform

To verify that our method could be integrated within operational system, we
chose to implement a simplified SOC architecture (e.g., does not implement col-
laboration features, case management, etc.). This architecture (Fig. 4.6) revolves
around the Elastic Stack, which is commonly used as a SIEM within SOC 6.

Log Shipping

To ship the monitoring logs to the SOC, we used the Elastic Beats 7, which
already perform an initial normalisation of the events according to the Elastic
Common Schema [37]. The tool we used are commonly deployed on production
systems. On Linux machines, we used auditbeat 8 configured with auditd rules that
monitors all the process executed, the network sockets opened as well as various
sensitive actions 9. For Windows endpoints and servers, we use winlogbeat 10 to
ship Windows Event Logs generated by Windows audit system as well as Sysmon
(configured similarly to auditd on Linux 11). For any other log files (e.g., Suricata,
Zeek, firewalls, applications, etc.), we use filebeat 12, which is shipped with many
parser for commonly used log formats.

Big Data message bus

In a production system, such a monitoring strategy would generate massive
amount of data. While the configuration of the tools would be adapted to balance
visibility and volume (see Sec. 1.1.4), our approach is meant to accelerate log
analysis and detect anomalous behaviour, and therefore, it could be used with
more verbose monitoring strategies. Therefore, we chose to use Apache Kafka 13

as the entry point for all events in the SOC. In fact, this message bus has proven

6. https://www.elastic.co/security/siem
7. https://www.elastic.co/beats/
8. https://www.elastic.co/beats/auditbeat
9. Based on a modified version of the rules available here: https://github.com/Neo23x0/

auditd
10. https://www.elastic.co/beats/winlogbeat
11. Based on a modified version of the rules available here: https://github.com/

SwiftOnSecurity/sysmon-config
12. https://www.elastic.co/beats/filebeat
13. https://kafka.apache.org/
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its effectiveness to handle massive amount of data within production Big Data
architectures (e.g., 1M events per second, compared to 100k eps for large SOC).

The SIEM

To store and search security events, we use Elasticsearch 14, Logstash 15 and
Kibana 16, as they are frequently used to build SIEMs. In this case, Logstash
retrieves events from Kafka, enrich them with their corresponding data source (to
simplify queries later), and index them inside Elasticsearch. Kibana is used as the
Graphical User Interface to interact with Elasticsearch and investigate security
events.

Scalable analytics platform

To implement our approach, we used Python, a language that is commonly
known by security analysts and is one of the most popular among data scientists.
To run it in an organised (and reproducible) way, we decided to use JupyterLab 17.
Notebooks are simple to use to prototype Python and can be organised with com-
ments and used for data visualisation tasks. They can then be executed step by step
to reproduce results. Recently, Jupyter notebooks started to get traction within
the information security community, especially to automate parts of the threat
hunting process (e.g., Mandiant published thiri-notebook 18). In our case, analyt-
ics are implemented in Python and integrated within notebooks to test them with
various parameters (e.g., change the time window for the fusion, the list of data
sources, etc.).

To test the scalability of the method we described, we need a compute cluster.
In the data science community, such a cluster is often backed by Spark 19. However,
deploying it requires to deploy Hadoop, which greatly complexifies the architec-
ture, and is not adapted to small infrastructures (such as this lab environment).
Furthermore, due to its strong roots in the Java ecosystem, using Spark might
feel very unfamiliar to users used to Python (although possible using PySpark).

14. https://www.elastic.co/elasticsearch/
15. https://www.elastic.co/logstash/
16. https://www.elastic.co/kibana/
17. https://jupyter.org/
18. https://github.com/mandiant/thiri-notebook
19. https://spark.apache.org/
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For this reason, we chose to use Dask 20 which interacts seamlessly with a Python
environment, and can scale from a laptop to a thousand-nodes cluster.

Figure 4.6 – SOC architecture employed to test our method.

4.3.2 Security analytics library

To be able to design multiple analytics based on our approach, we implemented
an analytics design toolbox in the form of a Python library. To gain performance
on critical operations some modules (e.g., the reduction operator of the fusion
method, the tokenizer for string attributes transformation, etc.) are implemented
in Cython 21, which allows to implement functions in a language that is similar to
Python and is then translated in C and compiled into optimized machine code,
leading to 10-100x better performance than pure Python. The toolbox is organised
into four submodules described in this section.

20. https://www.dask.org/
21. https://cython.org/
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Core

In this submodule the code for building analytics and managing them is pro-
vided. Through a pipeline logic (i.e., handling task order, executing them, etc.),
this submodules calls the methods implemented in other submodules in an orga-
nized manner.

Extract Transform Load (ETL)

In terms of lines of code, this submodule is the biggest. It implements the
code necessary to move data from the SIEM to the various processing task of the
analytics, and to normalise, enrich and transform this data for it to be handled
by the event fusion and the models. One of the biggest challenges handled by
the ETL submodule is to ensure the data is formatted accordingly and to handle
formatting errors gracefully, as debugging problems that only arises for a few events
in a million takes a sizeable amount of time.

It is mostly implemented in Python using Pandas 22 to represent structured
data in the form of data frames (arrays with heterogeneous column types). It also
uses the dask library, which also handles Pandas data frames, to interface with
the cluster and scale processing function. Some processing functions (e.g., string
tokenizer) are implemented in Cython for better performances.

Aggregation

This submodule implements the map and reduce operators of the aggregation
function for event fusion described in Sec. 3.3. These are then called by the ETL
submodule that is in charge of scaling it thanks to the dask cluster. The code is
mostly implemented in Cython and exposed in Python for the rest of the library to
use. At the moment, we only applied limited optimizations to reduce the processing
time on our dataset to a reasonable amount (a few minutes).

Models

We use the Pytorch 23 library to implement the neural network part described
in chapter 2 and 3. It is a popular deep learning framework in the data science

22. https://pandas.pydata.org/
23. https://pytorch.org/

144

https://pandas.pydata.org/
https://pytorch.org/


4.3. Implementation

community and is particularly suited for building dynamic neural networks. It
has a lot of built-in standard functions for neural networks (e.g., the categorical
embedding we use, Transformer layers, most activation functions, etc.), and we
couple it with Pytorch Lightning 24 to handle the training of the network. At the
moment, we did not optimize the code to be as efficient as possible (especially on
GPUs).

4.3.3 User interface

To verify that we could automate the data science parts based on a few inputs
provided by the analysts, we implemented a basic user interface based on config-
uration files and Jupyter’s ipywidgets library 25. This interface is not meant for a
security analysts and is rather used to automate the analytics creation to simplify
the proposed method assessment with different parameters.

Data source configuration

Data source configuration is provided as a JSON file. Each data source is
defined by the Elasticsearch index template in which to look for events, the list
of fields to retrieve from events, and the list of attributes that can be analysed by
the model. Additionally, it is possible to configure filters to retrieve only specific
events. These filters are of type must, meaning all the conditions defined must be
met for the event to be retrieved, must_not which is the inverse of must (if any of
the conditions matches, the event is not considered), exists, to ensure the specified
field is defined in the event, and should, denoting that at least one of the specified
conditions should be met to consider the event. Fig 4.7 provides the configuration
we use for the network flow data source (comming from Zeek’s conn.log).

24. https://www.pytorchlightning.ai/
25. https://github.com/jupyter-widgets/ipywidgets
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netflow = {
"index": "monitoring-network-*",
"fields": [

"source.ip", "destination.ip", "network.transport",
"destination.port", "source.bytes",
"destination.bytes", "zeek.connection.state",
"source.packets", "destination.packets",
"zeek.connection.history", "source.port",
"zeek.session_id"

],
"attributes": [

"source.ip", "destination.ip", "network.transport",
"destination.port", "source.bytes",
"destination.bytes", "zeek.connection.state",
"source.packets", "destination.packets",
"zeek.connection.history", "source.port"

],
"must": [

# datasource field must be "netflow"

{"datasource": "netflow"}
],
"must_not": [

# ignore flows to and from 192.168.211.150

# (log collector address)

{"destination.ip": "192.168.211.150"},
{"source.ip": "192.168.211.150"}

]
}

Figure 4.7 – Example data source configuration for retrieving network flow events
from zeek conn.log.

In the future, for event data sources, we consider using the sigma rule format 26.
Indeed, they already provide abstraction to retrieve events from various sources

26. https://github.com/SigmaHQ/sigma
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(called logsources in sigma rules), and from multiple SIEM. This would also sim-
plify mixing rule-based detection and models in analytics. However, in our case,
it would have required more integration work to implement, as it would have to
modify the logsources mapping to take our enrichments to the ECS data model
into account, and would not have provided much benefits as we only have one
SIEM to interface with (Elastic), and we do not use rule-based detection.

Enrichment pipeline

This interface is meant to configure additional enrichment and normalisation
tasks to the data sources. It allows renaming fields (if the chosen data model does
not already normalise them), adding new fields with predefined values, applying
extra enrichments operations, and provides a preview of the modifications on ex-
ample data. The enrichment operations are applied in order of definition and can
be of three different types:

— Map: which creates (or modifies) an attribute based on an existing one
(e.g., convert a specific string attribute in upper case);

— Apply: similar to map, but takes as input all the attributes in the event
(not just a specific one);

— Dataframe: it takes the whole dataframe as input and returns a trans-
formed one. This is useful for applying aggregation functions on the inputs
(e.g., aggregating powershell script-block events to reconstruct the complete
script).

Fig. 4.8 shows the interface for extra enrichment operations on the network flow
data source. We use a similar interface to chose which (enriched and normalised)
attributes will be processed by the model, and their type.
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Figure 4.8 – Screenshot of the enrichment interface with a focus on network con-
nection events.
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Fusion rules

The rule creation interface (Fig 4.9) is designed to represent and edit the rules
(described in Sec 3.3.2) in a more efficient way. For a given sub-rule, it automati-
cally restricts the fields to those that are available in all the data sources that are
listed in the sub-rule.

(a) Rule that fuses proxy events with network connections based on the source IP address
only if they are outgoing HTTP connections.

(b) Rule that fuses network connections seen by network probe and endpoint monitoring
tools (e.g., opened sockets).

Figure 4.9 – Screenshots of the interface to create fusion rules.

To give an overview to the reader of the possible links between data sources,
we use a graph representation (Fig. 4.10) where each node is a data source and
each edge indicates that at least one rule can be used to regroup events from
the connected data sources. As expected, endpoint logs for each OS (Linux and
Windows) form highly connected clusters (because the process identifier is found
in all endpoint events), and event connected clusters are linked to each other via
the events that record network connections from the various point of views (i.e.,
network probes, endpoint monitoring and application logs).
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Figure 4.10 – Representation of the fusion rule set as a graph.

False positive annotation

The false positive annotation interface (Fig 4.11) is designed specifically to
annotate the anomalies detected with out approach, and empirically assess the
clustering capabilities. As such, it is not suitable for security analysts in a pro-
duction environment. Doing so would require improved investigation capabilities
(e.g., visualisations, dashboards, filtering, etc.).

Individual anomalies are grouped in clusters, with one tab for each cluster and
a tab for anomalies that cannot be clustered (thanks to density based methods).
Within each tab, meta event sets are ordered according to their time-stamp. For
each set, the human expert can view a table containing each attribute of the event
as well as the score associated to these attributes (and the global event score).
To assess the clustering performance, the human expert is required to annotate
each set individually as false positive or true positive. On our dataset, we did not
find a case were a cluster contains both false positives and true positives, and
sets belonging to the same cluster mostly contain the same information and are
therefore faster to annotate in a batch.
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Figure 4.11 – Screenshot of the alert annotation interface. Here, the implanted
malware executes a command retrieved from its command & control server.

In a production environment, some anomalies cannot be considered as either
false positives (that should be integrated into the model) or true positives (which
are escalated as security incidents). For instance some unwanted behaviours (e.g.,
an administrator not respecting the security policy) may be considered anomalous
but do not require immediate case handling by the incident response team and are
therefore not to be considered as true positives. The annotation data base could
store these alerts to avoid presenting them repeatedly to analysts and handle them
separately (e.g., identify why the administrator need to bypass the protocol, and
how we can adapt it accordingly). However, in our dataset, we did not simulate
this kind of behaviour, and thus, we did not take it into account for the annotation
interface.

4.4 Experimental results

In this section, we used the dataset we collected to assess the anomaly detection
performances, the clustering quality and the relevance of the annotation loop.
These results show the pertinence of our approach.
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4.4.1 Defining the assessment strategy

Commonly used quantitative metrics (e.g., False/True Positives Rates, F1
score, etc.) can provide valuable information regarding the performance of a de-
tection method, but they only give a partial view of the usefulness of the detection
system. For instance, missing 50 out of 100 connection attempts to a service in a
brute force attack would not prevent analysts from finding out the source and the
target of the attack, while increasing the False Negative Rate (FNR). However,
missing a single event that characterizes an attack would not have a major impact
on the FNR, while greatly reducing the quality of the detection.

Defining quantitative metrics to evaluate data science methods for cyber secu-
rity is a challenge [92], and thus, we propose an alternative definition of a False
Negative that is more inline with analysts practices. In fact, we know every actions
that are performed by the attacker, but annotating individually the thousands of
events that can be attributed to these actions would be time consuming and error
prone. Instead, we start from a high threshold above which we consider a set of
meta-events as an anomaly, and we lower it until we can find anomalies character-
ising every step of the attack (i.e., what is the machine impacted, the technique
employed, etc.). Any set below this threshold that is a consequence of malicious
activity will not be considered as a False Negative, as it will not add useful infor-
mation to characterise the attack. Empirically, we find that a threshold of 0.4 is a
good choice for the three scenario we have. However, this threshold is not optimal
as multiple legitimate actions can have a score higher than it. Therefore, we grad-
ually increase this threshold and we compute the precision (proportion of True
Positive in all the anomalies), recall (proportion of the attack accurately detected)
and F1 score (harmonic mean of precision and recall) to quantify the performance.
For all these metrics, a value close to 0 implies a useless anomaly detection while
a score of 1 is synonym of a good one. We consider the optimal threshold to be
the one that maximizes the F1 score.

We mitigate the impact of a lucky (or unlucky) initialisation of the model by
training 10 models with different initialisation of the parameters on the first two
days of normal data. These data are randomly splitted for each model, with 90%
used for training the model and 10% to control that the model is not over-fitting
the training data (often called validation set). We test the performance of each of
these models on the first scenario. After that, we keep only one model and use it
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4.4. Experimental results

as the base for incremental learning and evaluating the performance on the other
two scenarios.

4.4.2 Results

Figure 4.12 – Aggregated number of meta-event sets with a score above 0.5 per
hour for scenario 1.

For each of the 10 randomly initialized models, we record the best F1 score on
the first attack scenario. The average value of this score is 0.88 with the lowest
value at 0.85 and highest at 0.91. The figure 4.12 has been generated using the best
model (F1: 0.91, recall: 0.93 and precision: 0.88). The dashed black line shows the
number of anomalies per hour detected during a single day without attack. On the
opposite, red line shows number of anomalies per hour produced when an attack
occurred. As expected, we can see that the number of anomalies increases as the
attack progresses. The maximum number of anomalies is reached when most of
the machines are compromised, and especially the domain controller. The cleanup
phase is accompanied by a decreasing number of anomalies as machines progres-
sively stop exhibiting attack behaviours. This scenario shows that our system can
be used as intrusion detection system as it detects attack-related events and be-
cause it does not report more than fifty anomalies per hour from an initial number
of events of approximately 20000 per hour.

For the second scenario, we use the false positives from the first scenario and
the fourth day of the collected dataset as the input to incrementally update the
anomaly detection model. We reach a F1 score of 0.97 with a recall of 0.99 and a
precision of 0.95. Similarly, for the third scenario, we reach an F1 score of 0.92 with

153



Partie , Chapter 4 – Assessment

Figure 4.13 – Aggregated number of meta-event sets with a score above 0.5 per
hour, for scenario 2 (top) and 3 (bottom)

a precision of 0.86 and a recall of 0.98. Without retraining (i.e., using the same
model used for scenario 1), the best F1 score drops below 0.3 for both scenarios.
To highlight the effectiveness of the retraining, in Figure 4.13, we add the plot
(orange dot-dashed line) of the same normal day than the black dashed plot, but
this time analysed by the outdated model.

Similarly to the first scenario, there is an increasing number of anomalies re-
ported during the attack process of the scenario 2. We see lower numbers of anoma-
lies, which is expected considering the attack a bit less noisy. As the third scenario
is designed to be as discreet as possible, we see far less anomalies. Nevertheless,
meta-events raised by our system are sufficient for an analyst to recognize the
attack pattern. The orange line shows the necessity of the incremental learning
process for our anomaly based detection system.

The latent representation provided by the model enables the use of standard
clustering algorithms to cluster meta-event groups. Most of the time, new be-
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haviours reappear regularly. Thus, the manifestation of these new behaviours in
the log should form clusters of similar activity. In our case, we use the DBSCAN
algorithm [39] to perform this clustering and we find that the discovered cluster
permits to reduce the annotation time. Fig. 4.14 shows two anomalous meta-event
groups that are found to be similar. The first one corresponds to the events gener-
ated when the attacker enumerated local users and groups and the second to the
enumeration of domain users and groups. Preliminary results are encouraging, but
a more in depth evaluation of the clustering performance is still required.

Figure 4.14 – These two anomalous meta-event groups belong to the same cluster
in the latent space.

4.5 Discussion

The experiment we performed shows that, with our approach, when designing
security analytics that include machine learning models, it is possible to automate
most of the data engineering and abstract the parts that require data science
knowledge, while maintaining good detection capabilities. It also shows that the
use of event fusion and clustering allows the implementation of an active learning
loop, where analysts perform anomaly triage to provide feedback to the model,
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while not overloading them with too much information that is difficult to make
sense of.

Our method was integrated in a lab environment that relies on commonly used
monitoring tools (from event generation to storage and analysis in the SIEM).
Therefore, it could be exploited in a production environment without applying
massive modification to the monitoring strategy and SOC architecture. Neverthe-
less, our method is designed to lower the trade-off between visibility and burden
to the analysts. Therefore, to fully exploit the enhanced visibility that can be pro-
vided, it might be necessary to increase the scalability of the SOC architecture
(e.g., using Big Data-inspired architectures and tools), to ensure it can sustain the
increased volume of data.

While these results are encouraging, we envision four possible improvements
paths that we describe in this section.

4.5.1 Visualisation

In this thesis, visualisation was not the main focus. However, we believe that
it is an essential part for any method that wishes to assist human experts when
analysing data. These visualisation should serve two purposes, namely, helping
analysts navigate and pivot around data, as well as summarizing it to provide
a better global understanding of the situation, while still allowing analysts to
investigate low level events to get a finer understanding.

With our experiment using graph-based visualisation and analysis methods
(Sec. 3.2), we concluded that abstracting data to reduce the number of nodes was
required for these methods to provide tangible effects. For fine-grain analysis, e.g.,
investigating a short period of time (a few minutes), with a reduced set of machines
(e.g., 1-5), we could use the event fusion method we proposed to effectively reduce
the number of nodes in a Directed Acyclic Graph that approximates causal depen-
dencies, the precision of the approximation depending on the visibility provided
by the monitoring strategy. However, to provide the higher abstraction level that
is required to detect long-lived, system-wide attacks, additional research should be
done.

Graph representation is however not the only possibility and should likely be
combined with other visualisations. In fact, most SIEMs expose to analysts the ca-
pabilities to design specific dashboards. The anomaly scores and cluster identifiers
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are additional data that can be visualised with and enrich these dashboards.

4.5.2 Additional datasets

While the implementation of our approach has been done independently from
the dataset to ensure we could configure it for various monitoring strategies, we
only tested it on one dataset. While we focused on introducing realistic activity
in the dataset, its realism is bound by the realism of the simulation. Moreover, it
is not possible to simulate all the possible behaviours of users and therefore, any
dataset can only be representative of the system it has been collected on (event
for production environment). Finally, the size of the lab environment we used (ap-
proximately 20 machines) is small in comparison to some production environments
(from a few hundreds to a few hundreds of thousands of machines).

We designed an approach to simulate user interaction with lab environments.
By enriching the list of actions it can perform and improving the scheduling capa-
bilities, we could generate multiple larger datasets from various monitored envi-
ronments. Ideally, we would like to take feedback directly from security analysts,
and replicate the behaviours that troubles them in day to day operations, in or-
der to be able to design and test methods that fits their needs. In addition to
that, generated datasets are free from personal and sensitive informations, and are
therefore shareable with third parties.

4.5.3 Production use cases

The results show that the proposed system is able to monitor the attackers in
detail and offer a reduced set of anomalies that needs to be investigated by the ana-
lyst. While our system has solely been tested in a simulated environment, multiple
real-life applications have been envisioned. First, it can be used to analyze events
coming from detection labs, i.e., controlled systems specifically designed to analyse
attackers, where user activity is simulated to fool attackers. Second, considering
large SOCs can receive 10M to 20M of events per hour (compared to≈20000 for our
dataset), using the proposed method would not alleviate alert fatigue. However, it
can be integrated in current SOC practices which consist in analysing fine-grained
events (e.g., Sysmon, netflow, etc.) only for reduced perimeters. Specifically, for
known suspicious behaviours, analysts often design scripts meant to automati-
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cally retrieve the context surrounding the detected behaviour. Incorporating our
method in these scripts could allow faster handling of these investigations, which
can reduce alert fatigue, and/or permit the use of wider spectrum detection rules
(which can catch more advanced attacks). It is also possible to restrict our method
to specific assets of the monitored environments (e.g., domain controllers, servers,
etc.).

We consider that machine learning and data science is only (and is likely to still
be in the foreseeable future) a tool to support human experts in their analysis by
handling large amounts of data. Therefore, in production environments, security
analysts should be implicated deeply in the design of security analytics.

The interface we implemented to assess our approach is not meant for usage by
security analysts, but rather to verify that abstracting data science parts is still
possible with reasonable performances. Thus, the interface should be revised to
facilitate interactions with analysts. Furthermore, in addition to the models, all
the code that enables a security analytics should be maintained and evolve with
the needs of the analysts. In most IT software design, this maintenance problem-
atic is handled by DevOps practices, which focuses on reducing the time between
requirements expression, solution implementation and deployment. However, secu-
rity analysts are neither developers nor data scientists, and therefore these prac-
tices should be adapted to suit there skills. We think additional studies are required
to design the right interfaces for analysts.

4.5.4 Refinements

Even though these results are promising, some limitations can be highlighted.
In fact, it still relies on parameters that needs to be defined by an expert. More
precisely, an inadequate choice of attributes for the data sources, i.e., missing im-
portant attributes or adding useless ones, can lead to unsatisfactory results. For
instance, with the current scoring system, a data source with more than 10 at-
tributes will rarely cause alerts because most of the attributes would seem normal
and dilute the score of anomalous attributes. Besides, the chosen time-window can
have an impact on the quality of the fusion step. Indeed, during testing, we realised
that a time-window below 120 seconds often fail can lead to a significant amount of
missed fusion opportunity between data sources that have different ways of setting
the timestamp (e.g., a network probe often emits an event at the end of a connec-
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tion, while an endpoint monitoring would do so at its beginning). Symmetrically,
we found that a time-window above 300 seconds would lead spurious correlations
between meta-events.

Moreover, facilitating the use of the methods by security analysts (using visual-
isation and improving the analytics design process), as well as testing the approach
with diverse datasets, will likely highlight more limitations. While we cannot pre-
dict what these limitations will be, some will likely need to be handled by data
scientists as well as security analysts. Therefore, we consider it important that any
implementation of the approach considers interaction with both data scientists and
security analysts.
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CONCLUSION

The purpose of this research is to lower the burden on security analysts by
allowing them to leverage data science methods to automate more of their in-
vestigation procedures. Indeed, many aspects of security alerts investigation re-
quire analysts to skim through large amount of data. Often, legitimate behaviours
repeatedly triggers false alarms, which can cause alert fatigue, as analysts are
overloaded to the point they mechanically focus only on superficial elements, and
potentially miss subtle variations that are the consequence of attackers behaviours.

To combat this phenomenon, we focus on anomaly detection, to highlight un-
usual behaviours, and clustering, to regroup similar alerts and avoid repeating the
same alerts again and again. Considering that attackers behaviours are likely to be
anomalous (i.e., different than the legitimate behaviours of the users), in addition
to alert fatigue reduction, we explore the application of these methods to novel
attack detection.

When designing our approach, we took into account the known attacks against
anomaly detection models. For mimicry attacks (i.e., making an attack look le-
gitimate), the risks of successful attack is lowered by the facts that the model is
specific to each system (i.e., attackers can only perform more difficult black box
attacks), and that multiple redundant sources of events can be analysed (i.e., an
attack would need to look normal from all perspectives). For the frog boiling at-
tack (i.e., poisoning of continuously trained anomaly detection models), the active
learning setup forces attackers to also bypass human vigilance.

Key contributions

Designing analytics for heterogeneous security events

Security analysts, who have the knowledge and experience to design security
analytics, often lack the data science expertise necessary to configure machine
learning-based approaches. Also, machine learning models are often viewed as
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black-boxes by security analysts, and consequently, they are reluctant in adopting
approaches that rely on machine learning. Therefore, to improve analysts’ under-
standing of the results, while benefiting from their expertise, the chosen approach
puts them at the centre of the analytics design process. This process is adapted
from one that is commonly used by threat hunters to design security analytics
that help look for adversaries Tactics, Techniques and Procedures (TTP) [27]. It
allows analysts to incorporate machine learning models for anomaly detection and
clustering within these analytics.

A key focus of the proposed approach is the abstraction and automation of
the configuration step of the machine learning models and the associated pre-
processing functions (which are required to ensure the model can process the data).
To that end, we rely on deep learning, namely neural network auto-encoders, to
minimize the human involvement in the feature transformation step (in deep neural
networks, the networks automatically adapt the transformation functions parame-
ters). The auto-encoder is used to provide an anomaly score to each processed event
and the attributes that compose it, as well as a vector (called latent representation)
that is used to cluster similar events. The network structure is automatically con-
structed using generic building blocks for the most common attribute types that
can be found in security events (i.e., categorical, numerical and string variables).

With the proposed approach, analysts can design analytics that combine tra-
ditional rule-based detection and scripts with anomaly detection and clustering
models trained on historic monitoring data. A typical use case is to filter out false
positives and regroup similar alerts generated by a detection rule. This way, ana-
lysts know what the analytics should detect (i.e., events that trigger the rules), and
can rely on familiar detection capabilities (i.e., rules and scripts) to understand the
results, while potentially lowering the number of false positives (as the frequent
ones will be considered normal), and reducing the number of alerts (by clustering
similar ones). For novel attack detection, based on previous experiences and known
investigation procedures, analysts can configure models to analyse event sources
which can provide visibility on attackers’ activities (e.g., process execution, inter-
nal network communication to detect lateral movement, etc.). In this case, models
can be used by threat hunters to prioritise the investigation of the most suspicious
events.
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Adapt to concept-drift using active learning

In an IT system, user behaviour is bound to evolve. As such, new legitimate
activity can trigger alerts, and old activity can cease to manifest inside the moni-
toring data. In data science, this is called concept-drift, and is usually accounted
for by training model continuously. However, an adversary can take advantage of
continuous learning to poison models by progressively distilling seemingly benign
traces of their attack until the whole attack is considered normal by the model
(also called a frog-boiling attack). To prevent this, data that is reinserted inside
the models should be carefully chosen (i.e., only false positives). We exploit the
alert qualification that is already performed by analysts to select the data that
should be used to retrain the models.

In the case of novel attack detection, as the analytics are used to analyse
security events that are, for the vast majority (>99%), caused by normal user
activity, the number of false alarms can be high. While clustering can help reduce
the volume of information, for large scale systems, it might not be enough to
reach an acceptable number of alerts. To further reduce this number and provide
as much context as possible to accelerate the investigation process, we use event
fusion to aggregate all the events that are caused by the same actions into sets.
We propose a scalable algorithm for event fusion that the analysts can configure
by providing the pivot variables (i.e., attributes that are common from one source
of event to another) that they commonly use to navigate through security events
when investigating alerts. We also propose to dynamically adapt the structure of
the auto-encoder, based on the composition of the fused event set. This dynamic
auto-encoder is also able to detect based on their context (e.g., events that might
be independently normal, but should not come together).

Combined with clustering, this approach reduces the number of alerts by two
orders of magnitude. As all the security events that described the actions that
triggered the alert are presented to analysts (in addition to the score), they do
not need to navigate through security events to reconstruct the context, and thus,
the investigation time is reduced. This makes the approach suitable for an active
learning setup, where the alerts qualifications resulting from the investigation are
used as feedback for the model (i.e., false positives are incorporated inside the
model).
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Building realistic datasets

A major problem encountered by researchers when designing novel methods
for security monitoring is the lack of representative public datasets. In fact, due to
the sensitive nature of the information contained in monitoring data, practition-
ers are usually legally not allowed (both by contracts and regulations) to share
production data. For datasets that are generated in lab environments, their rep-
resentativeness is often limited by the quality of the activity that is generated. In
particular, legitimate user activity is the biggest cause of false positives in pro-
duction environments, but is usually limited in public datasets (e.g., only network
activity, visible agents that taint the logs, etc.).

To overcome this challenge, we propose an approach for automated user activ-
ity generation in lab environment. It relies on an agent that interfaces with the
machines through the mouse, keyboard and screen, and can therefore instrument
machines from the outside (and thus, does not taint the logs). The agent is de-
signed in multiple abstraction layers in order for operators to quickly design life
generation scenarios and adapt them for the specificities of their environment (e.g.,
different software versions, heterogeneous OSes, etc.). The agents are coordinated
using a scheduler that ensures agents performed the right action at the right time
on the instrumented machines (e.g., a user cannot answer an email before receiving
it).

We used this method to generate a datasets containing seven days of user
activity and three complete attack scenarios. This dataset has been used to assess
the methods we proposed in this thesis. It will be made available in order for
researcher to reproduce the results and experiment with their own methods.

Perspectives

At the end of this research, we identify four major axis that could be further
investigated. Specifically, the approach we propose consists in building blocks that
are required but not sufficient to create a security analytics platform. As such,
it lacks features that are necessary to security analysts (e.g., alert visualisation).
Also, it has only been tested on a single environment, and three attack scenarios.
While attacks targeting the models have been taken into account in the design,
further evaluation of robustness against these attacks and potentially novel attacks

164



is necessary. Finally, further testing could help identify performance issues, both
in computational and detection terms, which might require adaptations to the
models.

Interaction with the operator

This thesis describes methods to incorporate machine learning models inside
security analytics and maintain them, without requiring data science knowledge
from the analysts. However, designing analytics in itself requires specific interac-
tions with the human expert (i.e., a development environment), and therefore, the
design of the user interfaces can also have a large impact on the ease of use by
analysts.

In addition to that, we focused on producing the results, but we did not address
the investigation and exploitation of these results by the analysts. To this end,
research in data visualisation can be helpful. For instance, with the ability to
regroup events into sets describing actions, the abstraction level could be enough
to render graph-based visualisation efficient (i.e., number of node sufficiently low).

Diversify assessment use cases

At the end of this research, we assessed the performance of our approach on
a single dataset containing three different multi-step attacks. While we focused
on building a relatively realistic dataset, it cannot cover all the cases from all the
possible IT systems. With the life generation capabilities, it becomes possible to
dynamically create datasets. By taking feedback from security analysts, we could
simulate the corner cases and pain points they identified to generate these datasets.
Once sufficient testing on varied lab environments have been performed, the ap-
proach could be tested directly by security analysts, on production environments.

Evaluate robustness against targeted attacks

While we took into account both mimicry and frog-boiling attacks when design-
ing our approach, we did not evaluate its robustness against any implementation
of these attacks. Implementing these attacks in a lab environment under realistic
constraints (e.g., attackers cannot modify the events in the SOC, they do not con-

165



trol the tools that generate security events, etc.) is not trivial, and would require
dedicate research.

We evaluated our approach with an initial training performed on a dataset
with only legitimate activity. In theory, having traces of attacks inside the training
data would only prevent detection of these attacks. Evaluating and reducing the
impact of tainted training data could also be investigated (e.g., exploring the initial
training data to ensure it is clean).

Also, we did not explore novel attack vectors that could be exploited to evade
the presented methods. For example, an attacker could try to saturate the compu-
tational resources to increase the time to analyse their activity, overload analysts
with multiple very anomalous attacks while performing a more stealthy one, etc.

Refine approach performances

In this research, we did not optimize the approach for computational efficiency.
However, deep learning comes with computational requirements that can be non-
negligible, and it requires a sizeable amount of data, especially at training time.
Further evaluation is required to determine whether or not this would cause a
problem in an operational context. Also, approaches to lower the cost of the initial
training of the models could be investigated (e.g., Transfer Learning [110], sharing
initial training costs through Federated Learning [67], etc.).

All the previous axes could also lead to the identification of unforeseen limita-
tions that might require modification of the approach.
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Titre : Science de la donnée en appui des opérations de cybersécurité

Mot clés : Supervision de sécurité, Détection d’attaques nouvelles, IA expliquable

Résumé : Pour se prémunir des organisations
cyber-criminelles et des APTs, les opérateurs
de systèmes d’information doivent définir et
mettre en oeuvre des politiques de sécurité
strictes. Cependant, il est impossible de définir
et maintenir des politiques qui bloquent toutes
les attaques sans impacter les fonctionnalités
du système. Par conséquent, pour réagir au
plus vite aux attaques, la supervision des sys-
tèmes et la réponse aux incidents de sécurité
sont souvent confiées aux Security Operation
Centres (SOC) et aux Computer Emergency
Response Teams (CERT). Lors de la super-
vision de systèmes d’information, des com-
portements légitimes entraînent régulièrement
des fausses alertes. Ceci entraîne une fa-
tigue liée aux alertes, les analystes étant sur-
chargés d’informations au point où ils ne sont

plus attentifs aux variations causées par des
comportements adverses. Cette thèse décrit
des méthodes s’adressant aux analystes ne
possédant pas de connaissances en science
de la donnée. Elles leur permettent de créer
et adapter des analytiques de sécurité qui
reposent sur des méthodes d’apprentissage
machine afin d’automatiser une plus grande
part de leurs procédures d’investigation. Cette
thèse se concentre sur la détection d’anoma-
lies pour relever des comportements inhabi-
tuels, ainsi que sur le regroupement d’alertes
par similarité. En particulier, l’application de
ces méthodes à la détection d’attaques incon-
nues est explorée. Nous décrivons également
une méthode permettant de générer de l’acti-
vité utilisateur dans le but de créer des jeux de
données d’évaluation réalistes.

Title: Data science in support of cybersecurity operations

Keywords: Security monitoring, Novel attack detection, Explainable AI

Abstract: To defend against sophisticated
cyber-criminal organizations and APTs, IT
system operators should define and enforce
strict security policies. However, defining and
maintining perfect security policies that block
all attacks and do not impact usability of the
system is impossible. Therefore, security mon-
itoring and incident response are often en-
trusted to Security Operation Centres (SOC)
and Computer Emergency Response Teams
(CERT). When monitoring an IT system, le-
gitimate behaviours repeatedly triggers false
alarms. This causes alert fatigue, as ana-
lysts are overloaded to the point they can
miss subtle variations that are the conse-

quence of adversary behaviours. This thesis
describes methods to allow security analysts,
with no expertise in data science, to create
and adapt security analytics that leverage ma-
chine learning models to automate more of
their investigation procedures. This thesis fo-
cuses on anomaly detection to highlight un-
usual behaviours and clustering to regroup
similar alerts and avoid repeating the same
alerts again and again. We specifically explore
the application of these methods to novel at-
tack detection. To assess our approach, we
also describe a method to automatically gen-
erate user activity to create realistic datasets.
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