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Abstract

A periodic waveguide is glide-symmetric (G-S) when it is invariant after a trans-
lation of half a period and a mirroring operation with respect to the propagation
plane. G-S metasurface waveguides meet some of the challenges of modern wireless
communication systems. Among other features, they offer wide-band behavior for
high data rates through reduced frequency dispersion. However, they are difficult
to model due to strong multi-modal coupling between the metasurfaces. In this
thesis, we develop new modeling tools to better understand the properties of G-S
parallel-plate waveguides (PPWs) and to accelerate their design. We use these tools
for the design of a reconfigurable phase-shifter in integrated glide symmetry (GS).

A mode-matching method derives the dispersion equation of corrugated and
holey PPWs. Solving this equation yields the Brillouin diagram of the waveguides,
in which the first dispersion curve is almost linear due to the low-dispersive behavior
of GS. We show that this behavior is due to the impact of the Floquet harmonics in
the dispersion equation. This allows us to prove the linearity of the G-S dispersion
curve by simplifying all the frequency dependencies in the dispersion equation. This
works as long as one or two modes are enough to describe the field variation at the
surface of the corrugations, which is the case for small and medium corrugations.
Additionally, it is shown that a G-S corrugated PPW with small gap has the same
dispersive behavior as a non-glide-symmetric (nGS) waveguide with half the period
and twice the gap.

In order to accelerate the parametric studies of G-S devices, a quasi-static ho-
mogenization method is developed for metasurface waveguides. The dispersion equa-
tion is simplified and solved in the quasi-static regime. A closed-form formula for
the effective refractive index of corrugated and holey PPWs is found. Given the low
dispersion of GS, this formula accurately describes the waveguide over a wide band.
Additionally, we combine it to an in-house two-dimensional finite-element method in
order to incorporate the modal information of arbitrary hole shapes. This formula
extends the realm of study for holey metasurface waveguides, opening the door to
unusual shapes and to fast structure optimization in terms of density or anisotropy.

The second opportunity offered by this quasi-static homogenization technique
is analytical insight into the differences between G-S and nGS waveguides. The
impact of the different structure parameters on the refractive index can be evaluated
analytically. It is shown that the ratio between the G-S and nGS refractive index can
be tuned with the dielectrics in the waveguide. Moreover, closed-form expressions
of the quasi-static fields are derived. By integrating the transverse fields across the
unit cell, an effective Bloch impedance is defined for PPWs with square and circular
holes. Combined with the closed-form index formula, we prove analytically that
this increases the effective Bloch impedance and the permeability of the effective
medium in the G-S waveguide.

Finally, the quasi-static index formula is used to design a reconfigurable contact-
less phase-shifter. This phase-shifter is based on changing the effective hole depth
of the holes in the metasurface waveguide. The quasi-static formula helps find the
structure that is most sensitive to the hole depth. These findings are transposed
to substrate-integrated holes, which allow full integration of the device in dielectric
layers and improve its performance. In order to enable contactless reconfiguration,
the holes are closed with high-impedance surfaces, that are moved to change the
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effective hole depth while preventing any leakage. Simulations show that a low-
loss 360° phase-shifter can be implemented in a ridge gap waveguide, making use
of electromagnetic bandgap technology. The design comprises a special transition,
developed to feed the phase-shifter with a rectangular waveguide, with an insertion
loss of 0.4 dB.
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Résumé

Quand un guide d’onde périodique est invariant après une translation d’une
demi-période et une réflexion, il forme une symétrie glissée (SG). Les guides à méta-
surfaces avec SG répondent à certaines des exigences contemporaines de systèmes de
communications sans fils, de part leur faible dispersion fréquentielle. Cependant, ils
sont difficiles à modéliser en raison du fort couplage multi-modal qui naît entre les
métasurfaces. Dans cette thèse, nous développons de nouveaux outils pour mieux
comprendre les propriétés de la SG et pour accélérer la conception de guides plans
avec SG. Nous appliquons ces outils pour concevoir un déphaseur reconfigurable
intégré avec SG.

Une méthode de raccordement multi-modal permet d’obtenir l’équation de dis-
persion de guides plans avec SG, pour des métasurfaces à corrugations et pour des
métasurfaces à trous. En résolvant cette équation, on trouve un premier mode dont
la courbe de dispersion est presque linéaire, en raison de la faible dispersion avec
SG lorsque les métasurfaces sont proches. Nous montrons que ce comportement est
dû à l’impact des harmoniques dans l’équation de dispersion. Cela nous permet de
prouver que la courbe de dispersion est linéaire uniquement avec SG. Ces simpli-
fications sont valides lorsque un ou deux modes suffisent à décrire la variation des
champs à la surface des corrugations, ce qui est le cas pour des corrugations fines
et moyennes. De plus, il est démontré que lorsque l’intervalle entre les métasurfaces
est petit, le guide à corrugations avec SG a le même comportement dispersif qu’un
guide sans SG qui aurait un intervalle double et une demi périodicité.

Une méthode d’homogénéisation quasi-statique est développée pour des guides à
métasurfaces. L’équation de dispersion est simplifiée et résolue dans le régime quasi-
statique. On aboutit à une formule analytique de l’indice de réfraction équivalent
pour des guides plans à SG, avec corrugations ou avec trous. Cette formule est
valide sur une large bande de fréquences, grâce à la faible dispersion fréquentielle.
Afin de l’étendre à des formes de trous arbitraires, nous développons une méthode
des éléments finis en deux dimensions, afin de pouvoir incorporer les informations
modales de ces trous dans la formule. Cette formule ouvre le champ des possibles
pour ces guides à métasurfaces creuses, rendant concevable l’optimisation rapide de
ces structures et l’exploration de nouvelles formes de trous.

Cette méthode d’homogénéisation quasi-statique rend également possible l’étude
analytique des différences entre guides avec ou sans SG, notamment afin d’observer
l’impact des différents paramètres de la structure sur l’indice de réfraction. Ainsi,
on démontre que l’on peut contrôler le rapport entre les indices avec ou sans SG
en changeant la densité des diélectriques dans le guide. De plus, nous dérivons des
expressions analytiques pour les champs quasi-statiques à partir de la formule de
l’indice. En intégrant ces champs entre les deux métasurfaces, on peut définir une
impédance équivalente de Bloch pour des guides avec trous carrés ou circulaires.
On arrive à montrer analytiquement que l’impédance de Bloch et la perméabilité
relative du matériau de propagation équivalent sont augmentées par la SG.

Enfin, la formule d’indice quasi-statique est utilisée pour concevoir un déphaseur
à reconfiguration sans contact, basée sur le changement de profondeur des trous. La
formule permet de trouver rapidement les trous qui offrent la meilleure sensibilité
à ce changement de profondeur. On peut transposer ces études à des métasurfaces
diélectriques dans lesquelles les trous sont recréés avec des vias métalliques, ce qui
facilite la fabrication du guide. Afin de permettre une reconfiguration sans contact,
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les trous sont fermés par des métasurfaces à haute impédance. En éloignant ces
métasurfaces, on change la profondeur des trous. Cette technologie permet de con-
cevoir un déphaseur de 360° avec faibles pertes. Le prototype inclut une transition
conçue pour connecter ce déphaseur à un guide rectangulaire, avec perte d’insertion
de 0.4 dB.
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Introduction

Modern wireless communications Recent years have seen a large development of
communicating devices in the framework of what is commonly called the internet of things
(IoT) [1], [2]. Ongoing deployment of the 5G mobile network has given rise to multiple
innovations, from autonomous vehicles [3], [4] and augmented reality [5] to enhanced
medical monitoring [6], and at a larger scale to connected cities [7] and smart industry
[8]. The ever-growing spatial industry is in need of communication tools as well, both
for deep-space exploration as for improved airborne and satellite links [9], [10]. These
networks deal with high data rates, at the scale of multigigabits per second [11]. Limited
space-time-frequency ressources force subsequent communication systems to be upgraded
to millimeter waves, where there are still available band candidates [12]. Consequently,
these systems must meet following requirements:

• operation at high frequencies where large bandwidths enable high-speed communi-
cation;

• high energy return to compensate the attenuation of high-frequency wave propa-
gation;

• low-cost manufacturing and conformability in order to meet the plurality of the
IoT market demand.

This is just the start: the commercialization of the 5G network is well underway, already
sparking research initiatives about 6G, with talk about terabits per second at millimeter
waves and beyond [13]–[16]. Therefore, it is urgent to develop millimeter wave communi-
cation devices that easily conform to the ever-growing diversity of connected applications.

Directive antenna systems Considering a wireless communication link, the Friis ra-
dio link formula [17, p. 673] indicates that the power received by an antenna decreases
with increasing operating frequency. In order to compensate this attenuation, the in-
volved antennas need to concentrate the power in the direction of the communication
link, by means of high gain and beamforming [18]. While beamforming arrays exist in
integrated waveguide technology, e.g. Butler matrices made of microstrip or coplanar
waveguides [19], they are expensive and bulky. An alternative to beamforming arrays
are lens antennas [20]. A radiating structure is associated to a lens that focuses the beam

vii
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in the desired direction. Moving the radiating structure along the lens shifts the beam
direction.

The wave propagation properties of the lenses are due to a controlled variation of
the refractive index within the lens. In order to obtain the desired index variation, the
lens is made of different dielectric layers, in an onion-like arrangement [21]–[23], or the
effective density of single medium is controlled through its porosity [24], [25]. But this
involves complex and expensive manufacturing. Moreover, propagation in dielectric me-
dia results in higher losses within the antenna. That is why the use of metamaterials
instead of dielectric materials is of great interest for the design of lens antennas.

Metamaterials Metamaterials are made of a periodic arrangement of geometric struc-
tures, called cells. The size of one cell is much smaller than the wavelength of the
harmonic fields propagating through the metamaterial. As such, a metamaterial can be
represented by an homogeneous medium with equivalent propagation characteristics, that
may not be achievable with available homogeneous media [26]. These equivalent propa-
gation characteristics are dependent on the geometrical features of the cells. Therefore,
by changing the geometry of the cells, the desired characteristics are obtained without
changing the propagation medium. The latter shall be low-loss, in the best case vacuum.
Consequently, metamaterials are a low-loss alternative for refractive index grading by
changing the geometric features of the cells. If the cell geometry is simple, e.g. a hole
drilled in a perfectly electrically conducting (PEC) plate, manufacturing can be low-cost.
If the arrangement of cells is kept in one plane, one speaks of metasurfaces. Metasur-
faces are more conformable than their three-dimensional (3-D) counterparts, they require
simpler design methods, and they are easier to manufacture [27]. As such, planar lens
antennas have been designed by grading the index, not by a change of dielectric, but by
replacing one face of the waveguide by a metasurface with varying impedance impedance
surface [28]–[31].

Although metasurfaces are a promising technology of modern wireless communica-
tion systems, they must satisfy one additional constraint: the propagation characteristics
must be stable over a large bandwidth. Indeed, despite simple control of the propaga-
tion characteristics with the cell geometry, this is usually valid at one observation fre-
quency. Like most homogeneous materials, metamaterials tend to be dispersive i.e., their
propagation characteristics change with frequency. If this happens within the frequency
bandwidth used for high-speed communication, the transmitted information becomes
distorted, or even partially or fully lost. Therefore, one seeks for metamaterials with low
dispersion.

Higher symmetries In recent years, low-dispersive behavior has been observed for
metasurface waveguides displaying special symmetries, called higher symmetries. The
idea is that the periodicity of the cells is broken from one cell to the next by introducing
an additional geometrical operation e.g., rotation (twist symmetry) or mirroring (glide



ix

symmetry). It is observed that periodic waveguides with such higher symmetries have
less dispersion than their non-symmetric counterparts [32], [33]. This lower dispersion
leads to an isotropic behavior over a wider frequency band for isotropic structures [34].
In contrast, anisotropic performances can be boosted by adding a higher symmetry [35].
Additionally, a higher effective refractive index is achievable [33], [36]. These features in
the passbands of higher-symmetric waveguides are combined to a shifting of the stopbands
that occur for periodic metasurfaces. The first stopbands disappear, while stopbands at
higher frequencies become larger [37]. These features make higher-symmetric waveguides
interesting candidates for low-loss microwave devices for energy-efficient, low-cost and
small-sized communication systems.

Early papers describe the impact of higher symmetries in waveguiding structures [38]–
[40], while recent works propose multi-modal models to characterize wave propagation
in the presence of higher symmetries [41]–[43]. Although these models fully describe the
higher-symmetric structures, they require an iterative solver in the last step of getting
the effective propagation characteristics as a function of frequency. In other words, there
are no analytical expressions for the effective propagation properties of higher-symmetric
structures. This prevents from further understanding why a simple shift or rotation in
the cell arrangement leads to such unusual features. Moreover, it complicates the design
of electromagnetic devices, given that a parametric study is involved each time special
propagation characteristics are needed [44].

New models are needed to give further insight about the particular features of higher
symmetries, and to accelerate the design of higher-symmetric devices. This thesis fo-
cuses on such models for glide-symmetric (G-S) metasurface waveguides. The first goal
is getting some understanding about the special propagation features enabled by glide
symmetry (GS). The second goal is the development of fast and reliable techniques to
characterize the effective properties of G-S waveguides, with as little numerical input as
possible.

Outline In chapter 1 of this thesis, higher-symmetric metasurfaces are presented. The
main uses of metasurfaces in microwave devices are overviewed. Higher symmetries are
explained, and the generalized Floquet theorem for GS is presented. The applications of
GS in recent years are listed. The limits of existing modeling methods for G-S waveguides
are reviewed.

One of these modeling methods is developed in chapter 2: the mode-matching method
(MMM), which has been generalized for G-S waveguides in [45]. Modal decompositions
of the fields, combined with the enforcement of boundary conditions, yield the dispersion
equation of the waveguide. The MMM is applied to a corrugated parallel-plate waveguide
(PPW), which yields a one-dimensional (1-D) periodicity. The case of two-dimensional
(2-D) periodicity is addressed too: a PPW pierced with an array of holes. Both G-S and
mirror-symmetric structures are considered.

Chapter 3 is an attempt to prove that GS reduces the dispersion of metasurface
waveguides. It relies on the accurate dispersion equation derived with the MMM, and
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shows that the corresponding dispersion curve can be linearized under certain restrictions.
This linearization highlights the impact of the different harmonic waves on the dispersive
behavior of the waveguide, depending on their field symmetry. The resulting effect of GS
on the form of the dispersion equation is studied for both corrugated and holey PPWs.

The second challenge, namely the development of a fast modeling technique, is covered
in chapter 4. Given the low dispersion of G-S waveguides, it is sufficient to solve the
dispersion equation at one particular frequency to characterize wave propagation over a
wide band. In the quasi-static regime, a closed-form formula for the effective refractive
index is found, both for corrugated and holey PPWs. It is fully analytic for canonical
hole shapes, and can be combined to a 2-D finite element method for arbitrary hole
shapes.

This quasi-static framework is further exploited in chapter 5. The closed-form for-
mula of the effective refractive index gives further analytical insight about the higher
refractive index achieved for some G-S waveguides. Moreover, a quasi-static character-
istic waveguide impedance is defined, which allows for the full extraction of the effective
constitutive parameters. As a consequence, G-S features such as their higher magnetic
density are demonstrated.

Finally, chapter 6 puts the quasi-static refractive index formula to use for the design
of a reconfigurable metasurface waveguide. High-impedance metasurfaces are used to
change the effective depth of the holes in a contactless mechanical reconfiguration. The
quasi-static formula is shown to be useful for the design of more complicated structures,
such as substrate-integrated hole (SIH) metasurfaces, which are more easily manufac-
turable. Such a reconfigurable unit cell can then be used for the implementation of
reconfigurable phase-shifter.

The conclusion of this thesis puts forward the advances made during the last three
years of research. Possible uses of the developed methods are summarized, as well as their
limitations. It also elaborates on potential research perspectives based on this work.

Appendices contain details about the techniques and mathematical derivations made
throughout this report, with one appendix corresponding to each chapter. A list of
figures follows the table of contents. A review of the mathematical conventions, acronym
definitions and literature references used throughout this report are found in the last
pages.
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Chapter 1

Glide-symmetric metasurface
waveguides for modern
communication systems

The topic of higher symmetries, and more specifically glide symmetry (GS), is bound
to the larger subject of metasurfaces. This chapter gives an overview of what higher
symmetric metasurfaces are, what they are being used for, and how they can be modeled.

First, metasurfaces are defined in section 1.1. A broad classification according to their
applications is proposed. In order to lay the background for metasurface waveguides, the
focus is put on metasurfaces used as a support for surface waves.

Then, the notion of higher symmetry is presented in section 1.2. The range of existing
higher symmetries is rapidly covered. The study of the glide-symmetric (G-S) operator
leads to a generalized version of the Floquet theorem. This theorem has direct conse-
quences on the field symmetries and the dispersive properties of waveguides displaying
these symmetries. These properties can be captured in the Brillouin diagram, which is
one of the main visualization tools used throughout this report.

If higher symmetries have been such a hot topic of research in the last decade, it is
because they offer a wide variety of enhanced propagation properties. Section 1.3 lists
these different properties, combined with concrete application examples in microwave
devices. Classical analysis methods of metasurfaces are shown to be limited when higher
symmetries are implemented. Therefore, new methods have been developed to accelerate
and improve the design of higher-symmetric structures. A more detailed review of existing
modeling techniques for higher-symmetric waveguides is found in appendix A.3.

1.1 Metasurfaces in microwave devices

Metamaterials are a periodic arrangement of sub-wavelength elements that modify the
electromagnetic field. The average phenomenon observable at a wavelength scale results
in propagation features that are not found in nature, such as negative refractive index [46]

1
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or double negative effective media [47]. Metamaterials such as split-ring resonator arrays,
built with non-magnetic materials, can create magnetic responses by concentrating the
field at critical locations [48]. Non-reciprocal media can be created for the design of
isolators or circulators without being confronted to the challenge of ferrite integration
[49]. For example, an external biasing field can be used to excite transistor-loaded ring
resonators, thus simulating an artificial ferrite material, including its Faraday rotation
features. Another application is the emulation of high refractive indexes without the use
of lossy dielectrics [50]. Due to the shift between different layers, the geometry can be
seen as higher-symmetric as defined in section 1.2. However, in the context of this thesis,
higher symmetries will be considered only for waveguides made of metasurfaces.

Metasurfaces are the two-dimensional equivalent of these metamaterials, printed or
embedded in a metallic or dielectric layer. The periodic arrangement is two-dimensional
(2-D), or even one-dimensional (1-D). This arrangement enables the control of the tan-
gential fields around the surface, and therefore offers full control of the total fields in the
space around. Due to their reduced thickness, metasurfaces yield lower absorption than
bulky metamaterials. They are conformable and can be easily integrated, ensuring a vast
range of applications [51]. That is why the research of metasurfaces has kept growing,
starting with periodic arrays of wires for reflectors and polarizers in the second half of
the 20th century, metallic patches or slots arranged periodically for plane wave filters
since the 2000s, and are now being extended towards reconfigurability [51].

In the following, some broad categories of metasurface applications are presented.
Although multiple classifications are possible, one can distinguish between metasurfaces
used for radiation and beam manipulation, in opposition to metasurfaces designed to
guide waves. As such, here we divide metasurfaces more according to their applications
than according to their nature. The goal is not to draw an extended review of metasurface
applications, but rather to give some insight about how metasurfaces can be used, and
to focus on surface-wave metasurfaces. More extensive reviews can be found in [52], [51],
[53] or [47].

1.1.1 Reflection, transmission, and radiation

Frequency-selective surfaces Frequency-selective surface (FSS) are a well-known ex-
ample of 2-D arrangements of periodic elements. A combination of resonant components,
coming in all sorts of shapes, filters or transmits the incident waves at particular fre-
quencies. Equivalent circuit models show that metallic patches offer capacitive responses
(low-pass), whereas slots offer inductive responses (high-pass). They can be arranged
in single-layer or multi-layer structures. Techniques such as fractal patterns have been
researched for multi-band uses and size reduction of these FSSs [53], as illustrated in
Fig. 1.1a. This diversity of designs have made FSSs good candidates for filters, polar-
izers, beam splitters, and semi-reflective mirrors. Antenna reflectors can be made more
efficient by using FSSs: two separate feeds at different frequencies use the FSS either in
reflection or in transmission to aim at the reflector with the same direction [58]. FSSs
are also used as filters to build narrow bandpass radomes [59].
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(a) Fractal frequency-selective surface [54]. (b) Top and bottom of a reflectionless bian-
isotropic Huygen’s metasurface [55].

(c) Top and bottom of a circular-polarizing
transmit-array with measurement setup [56].

(d) Endfire repeater reflect-array [57].

Figure 1.1: Examples of artificial periodic surfaces found in literature.

In FSSs, the periodic elements have dimensions of the order of the wavelength, which
creates strong resonances. It can thus be argued that FSSs are not metasurfaces in the
sense that they do not exhibit effective bulk behavior due to subwavelength elements
[26].

Huygen’s metasurfaces When illuminating a metasurface with a given source, the
incident wave excites subwavelength magnetic and/or electric dipoles on the metasur-
face, creating a determined current density distribution. Arbitrary current distributions
can be obtained with distributed metallic loops or strips, which create the required sur-
face reactance, as illustrated in Fig. 1.1b. Applying Huygen’s principle, the reflected or
transmitted wave can be shaped arbitrarily. That is why such applications are named
Huygen’s metasurfaces [60]. They can be used for reflectionless refraction at extreme
angles, bi-anisotropic responses, gain enhancement of antennas (similarly to a lens), or
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arbitrary radiation patterns. The metasurface is then described with an effective sur-
face impedance tensor, or with a dimensionless susceptibility tensor. Surface impedance
tensors relate the electric and magnetic tangential field components on the metasurface.
From this, an effective homogeneous media can be defined, which corresponds to the
reflected or transmitted wave when the metasurface is illuminated by a plane wave [47].

Transmit and reflect arrays The combination of several layers of metasurfaces offers
further degrees of freedom to tune the transmission properties. As an example, an
artificial dielectric layer of high density can be obtained with a 2-D array of metallic
patches, which is low-loss due to the absence of actual high-density dielectric materials.
When several layers are placed in front of an antenna, the resulting field concentration of
the transmitted wave improves its front-to-back ratio [61]. More generally, the behavior
of antennas can be tuned by so-called transmit-arrays. The idea is to link the unit cells
of two stacked metasurfaces with tunable phase-shifters, such that the phase distribution
at the aperture is completely controlled. By illuminating such a metasurface with the
antenna feed, one can shape the direction and the polarization of the radiation at will
in a very directive way [62]. Compact transmit-arrays have been presented for linear-to-
circular polarizers [56] (shown in Fig. 1.1c) and multi-beam radiation [63], [64]. Compared
to classical phased arrays, transmit-arrays offer compact wide-aperture solutions for the
purpose of portable localisation [65]. They also enable larger power-handling with lower
insertion losses in the phase-shifting network [18],with all-metallic layers avoiding the use
of dielectrics [66].

Conversely, a metasurface can change the radiation pattern of a feeder by using its
reflective properties. Reflect-arrays combine the advantages of phased arrays and reflec-
tors, by having a simple low-loss feed illuminate a metasurface with locally-controllable
reflection phase. For example, highly-directive dual-polarized reflection is achieved in
[67], or a linear-to-circular polarizer in [68]. The reflection can even be totally cancelled,
like in the repeater built in [57] (shown in Fig. 1.1d). It is made of a metallic metasurface
with uneven grooves, yielding endfire reflection for indoor signal transmission.

Designing such reflect-arrays presents important challenges, notably avoiding abrupt
geometrical changes between adjacent cells to reduce losses [69], [70]. In [71], a unit
cell is presented that comes back to its initial form after a 360° cycle, avoiding such
geometrical changes throughout the reflect-array, and also exhibiting a large operating
bandwidth. Moreover, several designs offering the same phase profile may be possible,
making it difficult to efficiently synthesize the “best” reflect-array design [72]. Updated
models that take into account the varying coupling between adjacent unit cells are needed,
especially in the case of reconfigurability [73]. Equivalent circuit models are an efficient
way to accelerate the design of particular cells [74]. Artificial neural networks can also
be used, but they require large training databases [75], [76].

Another interesting reflective metasurface design involves placing a high-impedance
surface (HIS) in the ground plane of an integrated antenna. The HIS simulates an
artificial magnetic conductor, that is a surface where the tangential magnetic component
vanishes. Replacing the perfectly electrically conducting (PEC) of the ground plane with
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perfectly magnetically conducting (PMC) enables to reduce the slab thickness by image
theory, and thus to increase the bandwidth of the antenna [47]. However, in practice the
HIS has its own additional thickness. More importantly, its elements are not resonant
over an infinite band, and so it behaves as a magnetic conductor in limited ranges of
frequency and incident angles. This illustrates how, on top of the challenge of creating
an arbitrary current density pattern, metasurfaces are subjected to a bandwidth problem
due to the resonant nature of its periodic elements [52, Chap. 3].

Bandwidth issues can be tackled by building active metasurfaces, which are not bound
by Foster’s reactance theorem – which states that reactance must increase with frequency
in passive media. A metasurface whose reactance decreases with frequency can be built
with active elements. Then, when coupled with the increasing reactance of a passive
element, it can reduce the radar scattering of this element over a large bandwidth, acting
as a cloak [77].

Radiating metasurfaces Instead of having the waves being transmitted in a single
refraction process, a partially-reflective metasurface can be used to confine the waves
in a resonant cavity. The waves propagate along the leaky metasurface in a multiple
reflection process with low attenuation, such that a large aperture is created from a small
non-directive feeding point, yielding high directive antennas. The resulting antenna is
called Fabry-Perot cavity antenna [47]. The thickness of the Fabry-Perot cavity can
be reduced by combining the partially-reflective metasurface with a HIS instead of the
metallic ground plane. High directivity with increased bandwidth is achievable when the
cavity is closed with several FSSs with different resonance frequencies [78]. The shape
of the radiated beam can be shaped by the spatial control of the metasurface leakage,
for example to obtain conical beams, Bessel beams, or a focused focal point. Given that
these antennas make use of leaky waves, they are often used for beam-steering by means
of frequency-scanning. However, beam-steering at a single frequency can also be achieved
with tunable partially-reflection surfaces (mechanically, electronically, or with variable
bias field).

Another type of metasurface-based radiators are holographic antennas. Here, the
feeding point is conceived to directly excite a surface-wave along the metasurface. The
surface impedance of this metasurface is then modulated. This creates an effective mag-
netic current distribution, which is optimized to generate an arbitrary radiation pattern
aperture field. For example, circularly polarized beams can be obtained with a spiral
modulation of the metasurface impedance. But linear polarizations are possible too,
dual-polarized antennas, or multiple beams at different frequencies [47]. However, such
antennas have a bandwidth problem, because the designed radiation properties occur
when the wavelength of the cylindrical surface wavefront matches the modulation period
of the surface impedance. Bandwidth can be increased with a non-uniform modulation
period, such that it fits different frequencies at different locations [79].
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1.1.2 Surface-wave metasurfaces

In the previous paragraphs, metasurfaces have been used with normal or oblique field in-
cidence for their particular transmission of reflection features. In the case of holographic
metasurfaces, surface waves were used, but with the aim of radiation. In this section,
metasurfaces are designed such that the waves are guided along the surface without radi-
ation. Special propagation features can be obtained, such as negative-index surfaces [46],
illusion of surface deformations [80], or perfect absorbers with zero reflection [81]. Meta-
surfaces make it even possible to confine surface waves along a single propagation path
[82]. The use of metasurfaces as surface waveguides notably offers the possibility of index-
grading for conformable microwave devices [83]. The use of transformation optics makes
it possible to combine surface deformations with isotropic low-profile index-grading, to
create effective index profiles not achievable in practice, such as index singularities [84].
With this technique, devices such as Eaton’s lens [84], Maxwell Fish-eye lens [85], or
cloaking domes [86] have been designed. Such designs can be applied to large low-profile
planar antennas deformed for reasons of aerodynamics or manufacturing.

Index-grading is the main motivation for the structures studied in this thesis. In
the following, fundamental notions of surface-wave metasurfaces related to this topic are
broadly presented.

Surface waves Surface waves have been a long-studied topic, independently of meta-
surfaces, given that a non-radiating wave propagating at the interface between different
media is useful for the transmission of electromagnetic (EM) energy and information.
For example, Zenneck and Sommerfeld-Goubau waves have been studied since the be-
ginning of the 20th century, as well as their relation to wave incidence with no reflection
(Brewster angle) [87]. The higher the reactance of the surface, the more confined the
transverse magnetic (TM) fields at the surface [87]. Adding corrugations is shown to be a
way to increase the reactance without the use of dielectric coating, and thus with reduced
losses. In [88], Brillouin illustrates this by creating such a boundary condition with thin
corrugations, motivated by the need of slow waves for linear electron accelerators. The
phenomena of guiding wave by means of metasurfaces are often described with concepts
inherited from optics or acoustics. Some of those main concepts are addressed next.

Spoof surface plasmon polaritons The use of metallic periodic metasurfaces in-
stead of dielectric interfaces to guide surface waves has been put in relation with the
optical theory of surface plasmon polaritons (SPPs). SPPs have been originally studied
at optical frequencies, enabling surface waves at a simple metal-air interface [89]. SPPs
are surface waves which interact with the free electrons of a conducting surface, usually
metal. The surface charges become resonant as they interact with the wave. This leads
to field concentration at the surface, and thus to the channelling of the wave. The SPP
wavenumber becomes larger than in free-space, hence an exponential decrease of the field
perpendicularly to the surface, as it lives outside the light cone. For this phenomenon to
occur, the interface must be between media of opposite permittivity [90].
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At the interface between air and smooth PEC, no surface waves are possible. Nonethe-
less, adding sub-wavelength periodic alterations can lead to the appearance of bound
states that are similar to SPPs. The propagation features of these states are controlled
by the periodic alterations, e.g., holes or corrugations. These alterations can be shown to
be equivalent to an effective dielectric layer, whose homogenized constitutive parameters
enable SPPs. That is why these emulations of SPPs are called spoof SPPs [91].

Hard and soft surfaces The concept of hard and soft surfaces comes from acoustics in
order to describe particular boundary conditions for waves propagating along a considered
surface. Implementing such boundary conditions with metasurfaces makes it possible to
extend these notions to electromagnetic theory [92]. Given a particular propagation
direction, one defines the transverse and the longitudinal tangential field components.
On the one hand, for a soft boundary condition, both transverse field components are
ideally zero. In terms of surface impedance, this is equivalent to a longitudinal impedance
Zl → ∞ – such that there are no longitudinal currents (i.e. no transverse magnetic
component Ht = 0) – and a transverse impedance Zt = 0 – such that Et = 0. On the
other hand, a surface is hard if the longitudinal field are null. This implies that the
longitudinal impedance Zl = 0 and the transverse impedance Zt →∞.

A corrugated surface with sub-wavelength corrugations and thin walls between the
corrugations can be used to create an anisotropic boundary condition, such that for
propagation along the corrugations, the surface is hard, whereas for propagation perpen-
dicular to the corrugations, the surface is soft. Hard surfaces favor straight transversal
field lines, and therefore transverse electric magnetic (TEM) modes, which can be useful
to design high-gain antennas [92].

All-metallic antennas While at low frequencies, dielectric metasurfaces using patches
and slots can be used to tune the effective propation features of waveguides and antennas,
the losses become prohibitive at higher frequencies. Therefore, all-metallic devices are
preferable [47]. As explained in the previous paragraphs, metasurfaces become central to
these designs, in order to benefit from the properties of spoof SPP at air/metal interfaces.
A good example of the application of such all-metallic metasurfaces are for lens antennas,
where the waves are reshaped into the desired beam by changes of the effective refractive
index [20], [93]. Lens antennas are “aperture antennas”, because they change the phase
distribution at the radiation aperture. Transformation optics can be used to compress
lenses without affecting the radiation pattern [22], [94]. Beyond the issue of losses,
metasurfaces are good alternative to dielectrics for planar lenses: one is not limited
to commercially available dielectrics, and no index discretization is necessary. But the
challenge is obtaining simultaneously a low dispersion and a high-enough refractive index.
Indeed, getting a high index typically requires being close to a high-impedance band,
where the dispersion of metasurfaces is high. These issues can be solved with higher
symmetries, as presented in section 1.2.
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(a) Reconfigurable surface wave absorber
made of transistor-connected mushrooms [95].

(b) Reconfigurable polarizer based on voltage-
biased cantilevers [96].

Figure 1.2: Examples of reconfigurable metasurfaces found in literature.

1.1.3 Towards reconfigurability

Before addressing the central topic of higher symmetries, a few words about reconfigura-
bility are essential. The reconfiguration of metasurfaces is a challenge, because of the
many sub-wavelength elements, hence complex control circuitry [52, Chap. 1]. Pin or var-
actor diodes control the capacitance between adjacent unit cells, or even within a unit cell,
e.g., to change the electric length of the resonant elements [97]. They can be controlled
either through control wires, or activated by the incident field, e.g., diodes or transistors
that change state depending on the incoming energy. An example of a transistor-based
metasurface is shown in Fig. 1.2a. However, circuit components face scaling and cost
constraints due to the high number of elements. Moreover, high-power handling is a
problem, due to the breakdown or non-linearity of the components [52, Chap. 6]. Alter-
nately, liquid crystal layers are promising, but they have a relatively slow switching time
[98]. Another possibility is to integrate thermally-responsive materials in metasurfaces,
such as superconductors or phase change materials (e.g. vanadium dioxide). It is also
possible to use photoconductive semiconductors, whose conductivity can be controlled
at optical speed by photo-excitation. Mechanical options include deformable cantilevers
[96] (illustrated in Fig. 1.2b), piezoelectric actuators [99] or microfluidic technology [100].

As an example, a reconfigurable transmit-array is presented in [101], with a 1-bit unit
cell enabling two phase states. The reconfiguration happens through a control bias that
steers two pin diodes. Although two phase states lead to discretization losses (due to
the lower directivity and aperture efficiency), the insertion loss is significantly reduced
and more stable throughout the different states, and the design and integration of the
transmit-array are less difficult. This unit cell is used in [102] for a monopulse radar, or
in [103] for a switchable circular polarizer with reconfigurable beam-steering.

1.2 Fundamental concepts of higher symmetries

In this section, the dispersive properties of periodic waveguides and metasurfaces are
extended to higher symmetries. Floquet’s theorem is used to express the fields at the
surface of a periodic structure as a sum of harmonics. When higher symmetries are
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introduced, they impact the symmetries of the Floquet harmonics propagating in the
structure, with consequences on the dispersive behavior of the waveguide. This is de-
scribed by a generalization of Floquet’s theorem.

The notion of higher symmetries encompass a wide range of structures with interesting
features, some of which are mentioned in this section. Nonetheless, our focus lies on GS,
which is the higher symmetry used in our studies.

1.2.1 Periodicity and Floquet condition

When a structure is spatially periodic, with period p, this periodicity has consequences on
the dispersive properties along the direction of periodicity, independently of the structure
geometry. A cartesian coordinate system is defined, i.e., every point is defined by r =
(x, y, z). The spatial translation operator Tp is defined such that

Tp {r} = r + pez , (1.1)

where ez is the unit vector in the z-direction. A structure is called periodic along the z-
direction if it is invariant under the translation (1.1). Its period is p > 0. The restriction
of the structure to a single period p is called a unit cell. From this translation operator
acting on spatial coordinates, another operator T p acting on the field can be defined as

T p {E(r)} = E (Tp {r}) = E (r + pez) . (1.2)

The Floquet boundary condition expresses the field in one cell of the structure as a
function of the field in the adjacent cell. Considering the electric field E at a point r,
Floquet’s boundary condition yields

T p {E(r)} = E(r)e−jkzp , (1.3)

where kz is the wavenumber in the z-direction.
Expression (1.3) can be interpreted as an eigenvalue problem, stating that the field

propagating in the periodic structure is an eigenvector of the translation operator T p,
with eigenvalue t = e−jkzp. Indeed,

[T p − t]E(r) = 0 . (1.4)

At a given frequency ω corresponding to a free-space wavenumber k, the set of possible
eigenvalues t(k) is called the spectrum of the translation operator T p [104]. For a given
eigenvalue t, there exist infinitely many possible wavenumbers kz, as adding multiples
of 2π does not change the value of the complex exponential function. A fundamental
wavenumber kz can be defined in an arbitrary interval e.g., kz ∈ [0, 2π/p[. Then, higher
harmonics can be defined as having wavenumbers k(s)

z = kz + s2π/p, with s an integer.
One can verify that for any integer s,

e−jk
(s)
z p = e

−j
(
kz+s 2π

p

)
p

= e−jkzp = t . (1.5)
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Figure 1.3: Periodicity and information available in the Brillouin diagram. The line of
light (dashed yellow) separates the slow and fast wave regions.

All kz and related harmonics k(s)
z which are solution of (1.3) form the wavenumber spec-

trum of the considered p-periodic structure. This spectrum is displayed in the Brillouin
diagram which is described in the following paragraph 1.2.2.

It is important to note that even though a specific kz may be such that e−jkzp = t,
with t an eigenvalue of the translation operator T p, it does not imply that it belongs
to the wavenumber spectrum of the structure. Indeed, for kz to be in the spectrum of
the structure, it must be a solution of (1.3). Not only does that mean that it must
be associated to a particular eigenvalue t, but it must also allow a non-zero eigenfield
E to exist within the considered structure i.e., a non-zero field satisfying the other
boundary conditions within a cell. Such a field may not exist for a specific structure
at a particular frequency. Consequently the Floquet condition implies that the smallest
possible periodicity of the wavenumber spectrum is 2π/p, but it is not necessarily the
periodicity of the spectrum, which can be larger in practice, due to specific boundary
conditions removing certain modes. To illustrate this, the example of multiple periodic
cells is detailed in appendix A.1.

1.2.2 Brillouin diagram

The Brillouin diagram, also called dispersion diagram, is an important display tool when
it comes to wave propagation in any structure, and particularly when it comes to peri-
odic waveguides. Many fundamental propagation features are easily highlighted in the
Brillouin diagram, as shown in Fig. 1.3. The latter is a chart of frequency as a function of
the propagation constant kz. For a given frequency, it gives the propagation constants of
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all the modes that can propagate in the structure at this given frequency. The horizontal
axis is usually normalized by the structure period p/π, so that one reads kzp/π – that is
the number of half-wavelengths per cell.

The Brillouin diagram is a practical tool when it comes to the representation of
propagation velocities. Indeed, the refractive index is defined by n = c0/vp = kz/k.
Therefore, each point in the dispersion diagram corresponds to a specific refractive index,
which can be found as the slope of a line between the origin of the diagram and the
considered point. Similarly, the group velocity is the derivative of the frequency with
respect to wavenumber kz. Therefore, the slope of the dispersion curve is proportional
to this phase velocity.

Moreover, the Brillouin diagram shows at which frequencies the structure can be
operated in a passband or in a stopband. When the real part of kz is zero of a multiple of
π/p, then the attenuation constant is different from zero, and so the wave is attenuated.

The result in (1.5) means that the Brillouin diagram associated to the p-periodic
structure has a minimum periodicity of 2 along the kzp/π axis.

1.2.3 Floquet harmonics and Floquet theorem

The field E in a periodic waveguide can be seen as a periodic standing wave E(sw) with
a phase-shift due to propagation. Therefore

E(sw)(r) = E(r)ejkzz , (1.6)

where the exponential term cancels the propagation term in E. One can note that E(sw)

is indeed p-periodic, given that

E(sw)(r + pez) = E(r + pez)e
jkz(z+p) = E(r)e−jkzpejkzzejkzp = E(sw)(r) , (1.7)

where (1.3) is inserted in (1.6). Because of its peridocity, E(sw) can be expressed as the
Fourier series

E(sw)(r) =

+∞∑

s=−∞
es(x, y)e

−js 2π
p
z
, (1.8)

where es is the transverse field vector associated to the s-th longitudinal harmonic of the
Fourier series.

Inserting (1.8) in (1.6) leads to an expression of the field E as a sum of so-called
Floquet harmonics, namely

E(r) = E(sw)(r)e−jkzz =

+∞∑

s=−∞
es(x, y)e

−js 2π
p
z
e−jkzz =

+∞∑

s=−∞
es(x, y)e−jk

(s)
z z , (1.9)

where k(s)
z = kz+s2π

p is the wave number of the s-th Floquet harmonic in the z-direction.
This proves Floquet’s theorem for periodic structures: the field in an infinite periodic
structure consists of an infinite sum of spatial harmonics.
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1.2.4 Higher symmetries

A periodic structure is said to be higher-symmetric when it is defined by more than
one symmetry operator. This means that on top of the translation operator defining
periodicity, there is another redundancy within the unit cell. Such redundancies have
consequences on the field symmetries and the dispersive behavior of the structure. Most
notably, higher symmetries are a solution to the narrow-band problem of metasurfaces,
inherent to their resonant nature [105]. In the following paragraphs, some examples of
such higher symmetries are described, with emphasis put on GS, which is the object of
this thesis.

Parity time-reverse duality symmetry (PTD) A structure is PTD-symmetric
when it is invariant after the composition of the parity operator, time-reversal, and
the duality operator. It can then be shown that the corresponding scattering matrix is
antisymmetric, which yields a “scattering anomaly”. This anomaly implies that there are
no back reflections along the propagation path, independently of the geometry of the
propagation path [106]. Therefore, PTD-symmetric structure are particularly interesting
when it comes to waveguiding along complicated paths or for matching of radiators. It
is notable that for a passive lossless structure to be PTD-symmetric, the time-reversal
constraint is not required anymore, and the structure needs simply be invariant for parity
and duality operations. For example, a confined wave can be guided in a parallel-plate
waveguide (PPW) exhibiting PTD symmetry along an arbitrarily complicated path, by
using PEC and PMC boundary conditions [107]. On the upper plate, the left side of the
path is PEC, whereas the right side is PMC. The opposite is true for the lower plate.
The guided wave is confined at the interface between the boundary conditions, and is
not reflected even at the sharpest bends. Effective absorbers can be designed applying
this concept within rectangular waveguides (RWs) [108]. In order to approach PMC
boundary conditions in practice, HIS metasurface such as mushrooms can be used [109].
Theoretically, when lossy material are used, there must be a balance between lossy and
gain elements, such that when inverting time and space, the system is invariant [52,
Chap. 8].

Glide symmetry GS is one of the simplest higher symmetries, because it is purely
geometrical. A G-S structure is invariant when shifting it by half a period in the prop-
agation direction, and then by mirroring it with respect to the propagation plane, as
illustrated in Fig. 1.4a. It is found in nature (fossils, worms, plants), in our footsteps,
in art [110]. It has been studied in the 1960s-70s in its 1-D form [38], [39], [104] – there
is only one direction of periodicity – but until the 21st century, research about GS stag-
nated. With the development of computers and growing research about metasurfaces,
interest in GS has resurfaced, mostly in its 2-D form. A waveguide is built with two
metasurfaces facing each other, and the upper metasurface is shifted by half a period in
both orthogonal propagation directions, creating GS in both directions, as illustrated in
Fig. 1.4c. Another 2-D version of GS is possible, called braided GS, which interleaves two
1-D GSs as shown in Fig. 1.4b. In [111], holes are drilled in the top and bottom faces of a
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Upper metasurface Lower metasurface Propagation

(a) 1-D GS. (b) Braided GS.

(c) 2-D GS.

7
(d) Hexagonal GS.

Figure 1.4: Top view of different types of G-S metasurface waveguides. The propagation
plane is in the page. The metasurface elements are pictured as circular holes, but they
can be any periodic variation of the geometry.

RW. Along the propagation direction, each row of holes forms 1-D GS. In the transverse
direction, each column of holes forms GS too, but with a different period, creating this
braided GS.

A cylindrical version of GS has been presented in [117] and called polar GS. Is not
much different from classical GS, except that it is applied in a waveguide with cylindrical
geometry, usually a coaxial cable. The mirroring operation is performed with respect
to a cylindrical surface that encompasses the inner conductor. The coaxial cable can
be loaded periodically with metallic rings, as illustrated in Fig. 1.6a taken from [117] or
with transverse corrugations [118].

A constraint of GS is the need for two metasurfaces, with risks of misalignment.
Therefore, another type of GS has recently been implemented, where the mirroring plane
is orthogonal to the propagation plane. For example in [112], a transmission line is
created by slotting a metallic plate. In order to close the stopband of this line, G-S
notches are made on both sides of the slot, as shown in Fig. 1.5a. The complementary
G-S structure shown in Fig. 1.5b is studied in [113]. This leads to a frequency-scanning
leaky-wave antenna with dual-beam radiation, where the leakage is accurately controlled
by the dimensions of the G-S dents. Moreover, GS prevents some of the stopbands that
would have limited the operating band of this antenna. In [114], a partially-dielectric-
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(a) Dented slot [112]. (b) Dented microstrip [113].

(c) Slotted filter with single row GS [114]. (d) Mushroom ground for microstrip filter [115].

(e) Slotted filter with double row GS [114]. (f) Defected ground for microstrip filter [116].

Figure 1.5: Examples of planar GS, illustrating the top view of a dielectric layer (in blue)
with G-S metallization (in gray).

filled PPW yields planar GS on the metallization between the air and dielectric layers,
by rotating elliptic slots as illustrated in Fig. 1.5c. If the ellipses are rotated further,
there is no more planar GS, but it can be reformed by adding a second row of these slots,
as shown in Fig. 1.5e. Planar GS can also be used for integrated filters, for example
by etching G-S patterns in the ground plane of a microstrip filter [116] (an example is
shown in Fig. 1.5f), or by modifying the via positions in a mushroom metasurface [115],
as illustrated in Fig. 1.5d. This improves the stopband of such filters.

Changing the alignment between the G-S metasurfaces can be used as an additional
degree of freedom to control the stopbands of waveguides and filters [111], [119], [120].
In the metasurface lens designed in [121], three different focal points can be reconfigured
by breaking the GS, such that the focal point moves between the different locations. But
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the breaking of GS is also achievable by changing the dimensions of the GS elements
[122].

In some systems exhibiting lower symmetries such as a mirror plane, it might be
unsuitable to implement GS. For example, for a coplanar waveguide, breaking the mirror
symmetry would change the radiative behavior of even and odd modes. The effects of
higher symmetries can be obtained nonetheless. In [123], each slot of the coplanar line is
dented in a G-S way, yielding two parallel dented slots like the one pictured in Fig. 1.5a.
The mirror symmetry is maintained by making the dents in the left slot the reflection of
the dents in the right slot with respect to the central axis of the waveguide. Therefore,
the overall waveguide is not G-S. However, when breaking the local GS of each slot by
lengthening only the external dents, it is possible to re-create the dispersive behavior of
a G-S transmission line. This example shows that a mirrored broken GS can effectively
behave as classical GS.

GS has since been studied in other fields, such as acoustics, in order to create low-
dispersive waveguides [124] or to create edge modes exploiting the bandgap features of
the symmetry [125]. Similarly in photonics, silicon-based waveguides implement GS to
close some bandgaps, or special crystal arrangements are formed to guide the light only
between the atomic rows displaying GS [126].

Section 1.3 is dedicated to the applications of GS in electromagnetics. The implica-
tions of GS regarding the dispersion diagram are detailed in paragraph 1.2.5.

Hexagonal glide symmetry The 2-D GS described above is based on a rectangular
lattice i.e., each metasurface is made of an array of unit cells. However, more complex
unit cell arrangements can be designed, with extended degrees of freedom. Recently,
a hexagonal GS has been presented [105]. Circular copper patches are printed on a
dielectric layer, forming a triangular lattice. Two such layers form a waveguide, and a
shift between them creates hexagonal GS. Indeed, when viewing the total unit cell from
above, the patches form a hexagon, where the corners are patches that are alternately in
the upper or in the lower layer, as illustrated in Fig. 1.4d. One layer is enough to support
a surface mode, but two G-S layers confine the fields more, yielding a denser effective
propagation medium. Moreover, edge modes can be controlled in this way depending on
how the G-S geometry is ended at the borders of the metasurfaces. This is visible in
Fig. 1.4d when considering the circles to be metallic patches: edge modes can propagate
at edges where the patches overlap only with one other patch, because then isolated
charges are necessary to restore the charge neutrality of these patches. This is not the
case on the edges with two patch overlaps.

Glide-time symmetry The different higher symmetries presented above can be com-
bined. For example, [127] presents a structure that is both PTD-symmetric (alternating
gain and loss elements) and G-S. The resulting transmission line displays additional de-
generacy points i.e., frequencies at which several propagating modes have the same phase
velocity.
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(a) Polar-glide symmetry [117]. After each
half-period translation, the load is mirrored
with respect to a cylindrical surface.

(b) 4-fold twist symmetry [128]. After each
half-period translation, the load is rotated
around the central axis.

Figure 1.6: Models of periodically-loaded coaxial lines with different higher symmetries.

Twist symmetry Twist symmetry has been described in [38], [104]. Like GS, it is a
purely geometrical symmetry, but it is adapted to cylindrical waveguides. The translation
operator is not associated to a mirroring operation, but to a rotation. Twist symmetry
can be N -fold, with N an integer. An N -fold twist-symmetric waveguide is invariant
after a translation of p/N , p being the total period, and a rotation of angle 2π/N around
the central waveguide axis.

[32] implements 4-fold twist symmetry in a coaxial line, where bolts are screwed
in the inner conductor to act as metallic pins that rotate around the inner conductor
with an angle of π/2. This closes the three first stopbands of the structure, making it
wideband. Similarly, [128] adds twist-symmetric elements in a coaxial cable, but on the
outer conductor, in the form of half-rings rotated by an angle of π/2. The 4-fold twist
symmetric structure of this article is shown in Fig. 1.6b. When cut along a longitudinal
plane, these rings look like corrugations in the outer conductor, offering many tuning
parameters. In [118], transverse slots are made in the inner conductor, such that a cross-
section of the inner conductor at the position of a slot pictures a half-circle. It is notable
that for simple elements such as pins or half-rings, a two-fold twist symmetry is equivalent
to classical GS, because rotating the element by 180° is equivalent to mirroring it with
respect to a plane that cuts the waveguide in half longitudinally. Twist symmetries can
also be implemented in cylindrical waveguides (no inner conductor), with asymmetrical
irises that are rotated along the propagation direction. Twist-symmetric perforated irises
prevent the propgation of the first transverse electric (TE) mode of a classical cylindrical
waveguide, increasing the operating band of the TM mode [129]. Irises in the shape of
split-ring resonators are used in [130] : a multi-layered lens is built of metallic plates
with split-ring resonator slots. Twist symmetry is implemented between the resonators
that are aligned across the layers. Changing the order of the twist symmetry from one
line of resonators to the other is an effective way of changing the phase delay, and so the
desired phase pattern is obtained at the lens aperture in order to create plane waves.

Similarly to GS, twist symmetry can be broken in many different ways in order
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to reconfigure the dispersive properties [131]: changing the angle of rotation between
adjacent elements, changing the geometry of these elements within a unit cell,... Twist
symmetry can also be combined with polar GS, yielding a higher symmetry with three
operators. The elements are translated by p/N , rotated by 2π/N , and every other
time they are mirrored with respect to the cylindrical plane between the conductors.
Such an example of a polar-twist-symmetric coaxial waveguide with metallic pins placed
alternately on the inner and outer conductors is examined in [32]. In such structures,
the symmetry can easily be broken by rotating the inner conductor with respect to the
outer conductor, which changes the angles between adjacent polar elements [118].

ThatN should be an integer is the condition for the structure to be periodic. However,
a generalization of this symmetry is possible, where the rotation angle is arbitrary, but
constant throughout the structure. In [132], a metamaterial of this kind is analyzed by
means of transfer matrices.

1.2.5 Generalized Floquet theorem for glide symmetry

Let us consider a G-S structure with period p. Each unit cell can be divided in two
subcells: from one subcell to the next one, there is not just a translation p/2, but also
a mirror-reflection with respect to the propagation plane. The G-S operator G considers
the field that is shifted by half a cell and mirrored with respect to the plane y = 0,
yielding

G {E(r)} = E(x,−y, z +
p

2
) . (1.10)

This means that composing two times the operator G corresponds to the translation
operator i.e.,

(G)2 = T p . (1.11)

Let us consider a non-degenerate non-zero eigenmode E of the G-S waveguide. Then,
according to the generalized Floquet theorem [104], E must be an eigenmode of both the
translation operator T p (with eigenvalue t) and the G-S operator G (with eigenvalue `).
This can be expressed as

∃ t ∈ C s.t. [T p − t]E(r) = 0 ⇐⇒ ∃ ` ∈ C s.t. [G − `]E(r) = 0 . (1.12)

A proof of this theorem can be found in appendix A.2.
According to the Floquet theorem (1.3), for a closed and lossless structure, the eigen-

value of the translation operator is t = e−jkzp. Given (1.11), this means that the two
possible eigenvalues of G are ` = ±e−jkz

p
2 , yielding

G {E(r)} = ±e−jkz
p
2E(r) . (1.13)

It can be shown that these two eigenvalues are equivalent. Inserting the harmonic
decomposition (1.9) in (1.13) yields

+∞∑

s=−∞
es(x,−y)e−jk

(s)
z (z+ p

2 ) = ±e−jkz
p
2

+∞∑

s=−∞
es(x, y)e−jk

(s)
z z , (1.14)
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which is equivalent, for each harmonic order s, to

(−1)ses(x,−y) = ±es(x, y) . (1.15)

This means that half of the harmonics are antisymmetric with respect to the propagation
plane, whereas the other half is symmetric. Changing the sign of the eigenvalue is
equivalent to re-ordering the harmonics differently. Therefore, it is sufficient to consider
the generalized Floquet theorem (1.13) with an arbitrary sign.

1.3 Properties and applications of glide-symmetric
metasurfaces

As presented in the previous section, GS is one of the higher symmetries that is simplest
to implement given its geometrical nature, but it also offers many degrees of freedom and
many variants. That is why it has been extensively explored in the last decade. In this
section, the features of GS are presented in relation to its concrete applications. More
extensive reviews of the uses of GS can be found in [133], [134] or [110].

1.3.1 Electromagnetic bandgap applications

1.3.1.1 Closing the first stopband

In a periodic structure, there is typically a stopband between the first and second modes,
at the right-end of the first Brillouin zone. This stopband phenomenon is well-known for
SPPs, and is quite intuitive in the case of corrugations [89, Box. 3]. When the wavelength
is equal to half-the-period of a metasurface – that is at the right-end of the Brillouin
diagram – two standing waves are possible at the surface of the corrugations. But these
waves resonate at different frequencies due to disparity of the charge distributions. The
mode with the largest distance between the charges and highest field distorsion contains
the most EM energy, and therefore corresponds to the highest frequency. Between these
two resonating frequencies, waves cannot propagate, yielding a stopband.

When it comes to G-S waveguides, the stopband between these two modes is closed.
In [135], the fields of the modes are shown for two corrugated lines of finite thickness
facing each other. Some of these field images are shown in Fig. 1.7. The corrugated lines
can be seen as two infinite combs between which the waves are guided. Each of these
combs supports spoof SPPs, which couple when the gap between the combs is small. Two
possible modes are possible: the anti-bonding combination and the bonding combinations
of the upper and lower spoof SPPs. When the upper and lower corrugations are aligned,
the bonding mode leads to a symmetric magnetic field distribution with respect to the
symmetry plane. On the other hand, the anti-bonding mode is antisymmetric. At the
right-end of the Brillouin zone, the anti-bonding mode has a nodal line in the symmetry
plane, and so its resonance frequency is higher than the bonding mode’s frequency. When
the upper comb is shifted in the propagation direction, the fields of the bonding mode
get more distorted, and so its resonance frequency increases. On the contrary, the field
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(a) Bonding mode [135]. (b) Antibonding mode [135].

Figure 1.7: Transverse magnetic field profile in the G-S dented transmission line presented
in [135], at the end of the first Brillouin zone. For each mode, the upper metasurface is
successively aligned with the lower metasurface, shifted by a fifth of the period, and G-S.

distorsion of the anti-bonding mode is decreased, and so is its resonance frequency. When
a shift of half a period is reached, both modes have exactly the same field distribution,
but opposite Poynting vectors (and group velocities), as illustrated in the third clip in
Figs. 1.7a and 1.7b. This means that a mode degeneracy is achieved at the right end
of the Brillouin zone. The stopband is closed with GS. Moreover, a stronger lateral
field confinement is obtained when GS is implemented. Increasing the thickness of the
comb further increases the negative-group-velocity of the second band, with a maximum
achieved for an infinite structure, i.e., a structure invariant along the corrugations.

Closing the stopband can also be explained by showing that the two space harmonics
that cross at the right-end of the Brillouin zone do not couple, and that this lack of
interaction means that they cross without influencing each other [136]. Removing this
stopband is an interesting way of controlling the bandwidth of filters and transmission
lines. In [137] a spoof SPP propagates within a groove made in a metal plate. The side
walls of the groove are modulated with periodic diaphragms. GS is added by alternating
diaphragms on either side of the groove. This closes the bandgap between the first two
modes, which are shown to have the same field distribution like in [135]. Therefore, the
bandwidth of the waveguide is increased. Similarly, closing the stopband between first
and second modes can be used to increase the passband of some filters. In the substrate-
integrated waveguide (SIW) filter designed in [138], split-ring resonators are etched in
the upper and lower metallization in a G-S layout, thus increasing the passband of the
filter.

Broken GS offers good control on the width of the passbands and stopbands of such
filters and waveguides. Loading a RW with periodic ridges makes it possible to create a
stopband for the first RW mode, at frequencies where the second RW mode still prop-
agates [120]. When shifting the ridges on one side of the waveguide, transforming the
structure towards GS, the stopband becomes narrower, thus controlling the monomodal
regime. A similar reconfigurable filter design is presented in [139].

Another example where closing the stopband is useful is for leaky-wave antennas
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(a) Mode converter in gap-waveguide technol-
ogy [110], [142].

(b) Waveguide flanges with G-S leakage repres-
sion [110], [143].

Figure 1.8: Prototypes of microwave devices designed at KTH Royal Institute of Tech-
nology, making use of the enlarged stopband of G-S holes.

(LWAs). [136] presents a LWA made of a planar corrugated Goubau line. In order
to have a high frequency-scanning rate, the group velocity of the leaky mode must be
high. This is true near the stopband, but the stopband also limits the operation band.
GS closes this stopband, while maintaining a high group velocity. In order to further
increase the radiation efficiency of the LWA, the Goubau line is periodically loaded with
G-S metallic patches.

1.3.1.2 Stretching the second stopband

A direct consequence of closing the first stopband with GS is the widening of the next
stopband, between the second and third modes. This is studied in [140] for a PPW unit
cell with G-S cylindrical holes. The impact of the different geometrical parameters on
the electromagnetic bandgap (EBG) is explored in [141]. In [34], holes of different shapes
are compared.

Gap waveguides This increased stopband between the second and third modes of G-
S waveguides is interesting for EBG waveguides and to avoid leakages. For example, in
order to reduce the manufacturing costs of a RW, it can be made of two separate metallic
plates. Grooves are made in each plate, such that the RW is re-created when assembling
the plates. However, the roughness of the plates and manufacturing imperfections can
create a small gap between the plates, causing energy leakage. Drilling G-S EBG holes
in the plates on both sides of the RW is a low-cost solution to prevent this leakage from
happening [144]. If the holes are placed in a G-S way, not only is the bandwidth of this
solution increased, but also the attenuation factor in the stopband is larger. It appear
that very few rows of holes are required to repress most of the energy leakage [37]. This
method is robust to bends in the waveguide, as shown in [37] for two 90° bends. By
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changing the width of the waveguides at such carefully designed bends, mode converters
can be easily manufactured [142], [145], with an example pictured in Fig. 1.8.

Multi-layered structures This method can be extended to multi-layered waveguides.
Instead of building a RW with two plates, [146] stacks multiple metallic layers to create a
high waveguide with thin metallic sheets. In order to avoid leakage between these multiple
sheets, G-S holes are drilled between all the layers. The stacked holey G-S unit cell yields
a huge stopband in all propagation directions (between 100 and 200GHz). The multi-
layer design allows for a simple transition design for a RW feed arriving perpendicularly.
This technology is robust to bends too, and can be extended to all kinds of microwave
devices, e.g., feeding networks for antenna arrays. In [147], a multi-layered antenna array
is designed and the different layers are manufactured by means of 3D printing based on
stereolithography combined with subsequent metal plating. The G-S EBG holes double
the efficiency of the waveguide compared to the case where nothing prevents the waves
from leaking in the gap between the layers.

Phase-shifters Building waveguides in two separate plates, assembled without leakage
thanks to G-S holes, is interesting for the design of phase-shifters. The 90° phase-shifter
in [145] is built as a RW with G-S holes. The phase-shift is achieved by inserting a
dielectric slab in the RW, which can be easily opened. The G-S holes also make it easy
to widen the waveguide aroung the position of the slab, in order to increase the bandwidth
of operation. A similar design is presented in [148], where two rows of holes are used to
repress all leakage. But G-S metasurfaces can also be used in the propagation region to
create a phase-shift, as illustrated in [36], where G-S holes are used to guide the waves,
and where G-S pins change the propagation constant to tune the phase-shift.

Filters This increase of the stopband between second and third modes is a powerful
tool for microwave filters. The filter designed in [149] not only uses G-S holes to avoid
leakage on the sides of a RW filter, but also in the propagation region of the waveguide
to increase the range of the filtered frequencies. [111] conceives a similar RW filter for
satellite applications. The longer the filter, the higher the total attenuation, which is
increased by GS. By breaking GS, additional control of the stopband width is obtained.
These features can also be applied to microstrip filters by means of planar GS. Instead
of drilling holes or vias, periodic slots can be etched in the ground plane below the strip,
creating a defected ground structure. Adding planar GS to this pattern enhances the
width and the rejection level of the filter stopband [116]. Note that the manufacturing
effort is the same, the pattern is just reversed every second time. Similarly, [115] and [150]
add planar GS to a mushroom EBG filter by moving the mushroom vias to the side of the
patches, and changing the side of the vias from one patch to the next. The mushroom
metasurface is placed below a microstrip line to implement the filtering properties. The
stopband is shown to be widened with GS by up to 80%.
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Waveguide flanges EBG structures are not only useful to guide waves, but also to
improve waveguide flanges. Despite screwing two flanges tight together, leakage can
happen if the two flanges are not perfectly planar. [143] adds a row of G-S holes in
a circle all around the RW, in the flanges, to avoid leakage, as illustrated in Fig. 1.8.
One row is enough for small gaps. There is no need for additional components, it is
enough to drill holes in existing flanges. The diameter of the holes is larger than the
accuracy needed with metallic pins that would achieve the same result, which alleviates
manufacturing constraints. If holes are deep enough, the stopband is not sensitive to the
drilling depth accuracy. Moreover, if the flange surfaces happen to be perfectly smooth,
then there is no gap at all, contrarily to an EBG design with pins. This design has been
patented in [151]. In [152], another interesting extension of GS is presented to reduce
the thickness of an EBG layer for contactless flanges, where a snake-like metasurface is
built from two compacted bed of nails.

Leaky-wave antennas LWAs can also be implemented in this EBG G-S technology. A
leaky RW can be implemented with G-S holes, such that leakage is completely suppressed
on one side of the waveguide with only one row of holes [153]. On the other side, G-S
holes with different dimensions offer a precise control of the leakage, in order to create an
aperture illumination that reduces the side-lobes of the radiated beam [154]. In [155], it
is shown that GS offers a wider range of attenuation constants than non-glide-symmetric
(nGS) holes, and so the leakage rate can be tuned more efficiently.

1.3.2 Increased refractive index and low dispersion

Metamaterials The maximum refractive index of a given medium is bound to its
atomic polarizability and spatial arrangement. It can be increased by working near the
resonances of the atomic grid, but this increases the frequency dispersion of the medium,
given that the refractive index varies strongly around resonances. Therefore, increasing
the refractive index by keeping a low dispersion is a challenge of metamaterials and
metasurfaces. GS is a solution to this challenge. A giant-index metamaterial is designed
in [50]. Metallic patches in a multi-layered metamaterial are arranged such that the
layers are G-S with respect to each other, meaning that the patches are shifted from one
layer to the next. Then, a wave that propagates through the layers sees a giant refractive
index of the order of 103. The reason is that the field perturbation by the G-S path leads
to a decrease of the effective electric field and an increase of the effective displacement
field, that would not happen if the patches were aligned.

One-dimensional glide symmetry Not only is this density increase happening for
1-D GS too, but it is also combined with a reduction of the frequency dispersion. In a
mictrostrip antenna made of a dented strip, the stopband between the first and second
modes is closed when the dents are G-S on both sides of the strip [113]. Closing this
stopband appears to straighten the dispersion curve of the first mode, thus reducing
its frequency dispersion. The dispersion is even further reduced when adding a second



1.3. PROPERTIES AND APPLICATIONS OF GLIDE SYMMETRY 23

(a) Top view of the lens concept, with inset of the
index grading.

(b) Prototype lens built at KTH Royal
Institute of Technology [110], [157].

Figure 1.9: Concept and prototype of a planar Luneburg lens made of holey G-S meta-
surfaces [157]. The index grading is controlled by the hole radius.

dented strip on the other side of the substrate, shifted in the propagation direction in
order to create a second dimension of GS. Moreover, the fields are more confined around
the strips when GS is added, hinting towards a denser effective medium. Similar features
are observed in [119], for a transmission line made of printed double-sided parallel-strip
lines. Each line is corrugated on both sides. GS is introduced by shifting the upper line
in the propagation direction with respect to the lower line. This reduces the dispersion
of the first mode and closes the first stopband, enabling a large increase of the band
of operation of this transmission line. Moreover, the refractive index is increased. This
design is used is [156] for a wideband bandpass filter.

These features are exploited for the design of a phase-shifter [36]. Bed of nails are
added within a RW. Adding pins lowers the first mode of the RW, showing an increase of
propagation constant. This effect is stronger with GS. Moreover, the strong decrease of
the cut-off frequency makes it possible to scale the waveguide down for a given operation
band. This cut-off lowering is sensitive to the period of the unit cell, but only when
the pins are GS. This is because the coupling of adjacent pins is stronger in the G-
S configuration, and can thus be tuned by changing the distance between the pins.
GS increases the operating band of such microwave devices. A similar phase-shifter is
designed in [149], but the pins are replaced with two rows of circular holes.

Two-dimensional glide symmetry One of the first papers bringing to light the ben-
efits of GS for metasurface waveguides is [33]. The dispersion diagram of a PPW unit cell
with G-S metallic pins shows the increased refractive index and the reduced frequency
dispersion of this waveguide. The same is true for holey metasurfaces. By changing
the depth of the square holes, the refractive index can be varied from 1 to

√
2. This is

the maximum index needed to build a planar Luneburg lens, which transforms a non-
directive source into a plane wave, as outlined in Fig. 1.9a. Simulations show that such
a lens can be operated over an extremely large band (from 4 to 18GHz) due to the low
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dispersion offered by these G-S metasurfaces. If nGS metasurfaces were used, not only
would the bandwidth be smaller, but also the gap between the metasurfaces would need
to be smaller to reach the required maximum index. A similar design is presented in [158],
where an even larger gap is made possible by putting a dielectric layer between G-S bed
of nails metasurfaces. Transformation optics are used to convert the focal point of the
lens into a flattened line, fitting the feed profile. Dispersion is reduced by GS, yielding
a stable index from 4 to 16GHz. Other designs using dielectrics are possible, such as a
substrate where G-S circular metallic patches are printed on both sides of the slab[159].
Parametric studies show that this design is low-dispersive too, and that it offers an index
range large enough to build graded-index lenses. Designs with dielectric unit cells are
also possible [160]. However, fully-metallic lenses are preferable at higher frequencies
because of the increased dielectric losses. In order to relieve the constraint on the gap
between the metasurfaces, the refractive index of all-metallic G-S metasurfaces can be
increased by adding metallic pins inside the square holes [157]. The pins increase the
effective index, allowing for a larger gap between the metasurfaces, and therefore a larger
bandwidth of operation. A wideband low-loss Luneburg lens is manufactured, including
a staircase feed and a flare for impedance matching at the lens borders. A picture of the
finished prototype is shown in Fig. 1.9b. Similarly, [161] presents a Luneburg lens where
the GS holes are hexagonal and are also combined with a central pin. Nevertheless, man-
ufacturing all-metallic metasurfaces is costly. [162] presents a way to build a Luneburg
lens in fully-integrated substrate layers. These holes are called substrate-integrated holes
(SIHs), and are discussed in more details in section 6.1.

Other lens profiles can be realized with G-S metasurfaces. A Maxwell fish-eye lens
transforms one source point into another focal point at the opposite lens border. [163]
designs such a lens in a dielectric PPW, with G-S slots in the shape of Jerusalem crosses.
GS suppresses the first stopband, reduces the dispersion, and increases the refractive
index of the waveguide. Without GS, a denser or thiner substrate would be required for
such a lens. Likewise, a Gutman lens can be designed in a PPW with G-S pins [164].
A Gutman lens is a modified Luneburg lens, where the focal circle has a smaller radius,
making it possible to put the source closer to the center, thus reducing the overall lens
size. But this requires a higher refractive index, enabled by GS. It is to be noted that
the smaller focal circle implies that the different feed are more tightly packed. A similar
planar lens with G-S pins is created in [165] to improve the increase directivity of a Ku
horn antenna. Given that GS increases the refractive index, and thiner lens can be built.

Finally, 2-D G-S waveguides can also be combined with LWAs to reduce beam-
squinting. In [154], a prism made of a holey G-S PPW is placed at the radiation edge
of the LWA. The frequency dispersion of the prism is complementary to the frequency-
scanning behavior of the LWA, and so the radiation becomes stable over a wide band.
Compared to nGS holes of same size, a higher refractive index is achieved by G-S holes.
Therefore, for the same result, the size of the holes can be increased. In the resulting
prism, the total number of holes is reduced by three quarters, which is a big manufactur-
ing gain. On the contrary, for backward radiation, such a dispersive prism can be used
to increase the frequency beam-scanning. In this case, to suppress unwanted beams due
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to other harmonics in the operating band, G-S pins can be added in the LWA waveguide.
They offer more control over the dispersion of the harmonics, for better mode selection
and improved beam-scanning [166].

1.3.3 Isotropic and anisotropic behavior

A direct consequence of closing the first stopband and reducing the dispersion is that G-S
metasurface waveguides can be isotropic over a wider band. This is illustrated in [34],
for a holey G-S PPW where the holes have the shape of equilateral triangles. Equilateral
triangular holes yield isotropic behavior with or without GS, but the stopband between
the first and second modes limits this isotropy in the nGS configuration. [34] also show
that G-S triangular holes reach a maximum refractive index larger than with circular
holes, and almost as large as with square holes, but on a wider frequency band than
square holes. Still, circular holes are best in terms of dispersion and wideband isotropy.

Depending on the shape of the unit cell, metasurface waveguides may be anisotropic.
This means that the refractive index changes depending on the propagation direction.
For example, anisotropic behavior is observed for a G-S holey PPW with rectangular
holes [167]. In [35], a metallized PPW with etched holes is shown to display anisotropy
for elliptic holes or for meandered lines. A higher level of anisotropy is achieved with
GS. This means that for a given performance, smaller variations of the unit cell param-
eters are necessary, and so the operation band remains larger. Using elliptic holes and
transformation optics, a wideband Luneburg lens is compressed by 30%. A similar lens
compression is achieved in [168] with elliptical holes for a wideband Maxwell fish-eye lens
and in [162] with SIHs.

1.3.4 Effective magnetic response

In the metallized PPW with etched ellipses in [35], the effective constitutive parameters
of the unit cell have been extracted in order to retrieve the relative permittivity and
permeability of the waveguide. When the waveguide is excited with a PPW mode, it
appears that a higher effective permeability is achieved with GS. This is confirmed in
[44] for circular holes etched in the metallizations of a metallic slab. It is observed that
G-S holes yield a higher permeability than nGS holes. Moreover, when changing the
dielectric permittivity of the slab, the effective permeability remains constant, whereas
the effective permittivity changes, and much more so with G-S holes. Therefore, by
etching G-S holes in metallization of dielectric slab, one can tune its effective constitutive
parameters in order to match this substrate to another medium. Additionally, given the
higher permeability, the range of effective densities achievable with GS is higher than
without GS, and so a wider range of substrates can be matched. On top of that, the
bandwidth of these effective parameters is much larger with GS.

[44] illustrates these features by making a dielectric slab invisible when inserted in a
dielectric PPW, over a wide band. Following the same idea, reflections at the border of
a planar lenses can be avoided. In [44], wideband matching is obtained for a hyperbolic
dielectric lens, such that the antenna beam is directive without reflections.



26 CHAPTER 1. METASURFACES AND HIGHER SYMMETRIES

Finally, [168] studies the anisotropy of these effective constitutive parameters. Using
the scattering parameters of the unit cell, the effective constitutive parameters are ex-
tracted for GS elliptical holes. The effective permittivity appears to be isotropic, meaning
that the anisotropy of the G-S unit cell is mainly due to its strong magnetic response.

1.3.5 The challenge of modeling glide-symmetric metasurface
waveguides

The simulation of G-S metasurface waveguides is a challenge. The special features listed
in the previous paragraphs are the consequence of large geometrical disparities, interac-
tions between the metasurfaces, and multi-modal coupling between adjacent unit cells.
This makes existing simulation methods either very slow or inaccurate.

Commercial solvers are very slow when the distance between the metasurfaces is
small. They do not compute the imaginary part of the wavenumber for complex modes
[169]. Analytic models for metasurfaces such as homogenization [91], [170] fail to capture
the multi-modal coupling between adjacent elements in the G-S configuration [41]. The
derivation of equivalent circuits [171] becomes difficult for non-canonical metasurfaces,
especially when it comes to include the coupling due to the misalignment between the
metasurfaces [41].

In recent years, new modeling techniques have been developed with higher-symmetric
structures in mind. While the single-mode transfer matrix method [17] does not take into
account the multi-modal coupling between adjacent unit cells, a multi-modal extension
of this technique is derived in [43] for G-S waveguides. It is based on the computation of
the multi-modal transfer matrix of one unit cell in a commercial solver. combined with
the general Floquet theorem, the resulting eigenvalue problem is the dispersion equation
of the waveguide, which can be solved numerically. Most importantly, it includes higher
symmetries in the eigenvalue problem, making it possible to simulate only a fraction
of the unit cell in the commercial solver. It also yields the attenuation information of
the waveguide [172]. This method works for 2-D and three-dimensional (3-D) periodic
materials as well [169], and since its publication it has been used for the design of many
G-S devices [149], [173]–[175].

Another method well-suited to G-S waveguides is mode-matching [42], [167], [176],
[177]. Like the multi-modal transfer matrix method, it yields the dispersion equation
of the waveguide. While it is less flexible than the transfer matrix method, it has the
advantage of requiring no information computed with commercial solvers. This method
is presented in detail in chapter 2.

A more extensive review of the computation methods for metasurface waveguides can
be found in appendix A.3.



Chapter 2

Mode-matching method and
dispersion equation of
glide-symmetric waveguides

The mode-matching method (MMM) consists in enforcing boundary conditions at discon-
tinuities between different regions, where the fields are decomposed as sums of orthogonal
modes. It has been used for many decades for the study of metasurface waveguides, for
example in [88], where the dispersion diagram of a slotted waveguide is found by de-
composing the fields in orthogonal modes. As such, the MMM has become a textbook
fundamental [17, pp. 203-9] to study waveguide discontinuities. However, it is only re-
cently that the glide-symmetric (G-S) properties have been used with a specific MMM
formulation. In [176], the dispersion equations of G-S and non-glide-symmetric (nGS)
(that is, mirror-symmetric) corrugated parallel-plate waveguides (PPWs) are derived.
Only propagation perpendicular to the corrugations is considered, and so this method is
generalized in [42] for arbitrary propagation directions. Corrugated waveguides are in-
variant along the corrugations, and so these structures implement one-dimensional (1-D)
glide symmetry (GS). The MMM is applied to two-dimensional (2-D) GS in [167], which
analyzes metasurface waveguides pierced with rectangular holes. The generalization for
arbitrary hole shapes is found in [45], with specific application to circular holes.

Given that the MMM yields an accurate dispersion equation for a wide range of meta-
surface waveguides, it is chosen as this thesis’ starting point for the analysis of GS.

In this chapter, we develop the works presented in [176] and [45], for corrugated
and holey PPWs, respectively. A corrugated PPW yields the simplest form of 1-D GS.
In section 2.1, its dispersion equation is derived for both G-S and nGS designs. The
theoretical properties of the dispersion equation are validated, and it is solved to compare
the G-S and nGS Brillouin diagrams.

The case of 2-D GS is then considered with a holey PPW in section 2.2. The most
general case is considered, where the shape of the periodic cavities are simply required to
be invariant in the depth direction. For example, additional pins may be present at the
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Figure 2.1: Metallic corrugated PPWs. The structures are invariant in the x-direction.
The red arrow indicates the propagation direction.

center of the holes. In the following, holes and holey metasurfaces are used to designate
this very loose meaning of invariant cavities. As such, this chapter generalizes the MMM
presented in [45] slightly further, although it must be noted that in fact the equations
are barely changed by this generalization. At the end of section 2.2, the MMM is applied
to the examples of rectangular and circular holes.

In order to ease the reading of the mode-matching process, most of the mathematical
derivations are left out, with only the main steps remaining. However, more detailed
derivations can be found in appendix B.

2.1 Corrugated parallel-plate waveguide

2.1.1 Mirrored and glide-symmetric corrugated PPWs

The structure under study in this section is a periodic PPW with corrugations per-
pendicular to the propagation direction, shown in Fig. 2.1. Both perfectly electrically
conducting (PEC) plates are parallel to the xz-plane, and are separated by a gap g. The
corrugations are parallel to the x-direction, with a width a and a depth h. The origin



2.1. CORRUGATED PARALLEL-PLATE WAVEGUIDE 29

of the coordinate system is located in-between the two plates, such that the lower plate
is located at y = −g/2, and right above the beginning of a corrugation, such that there
is a corrugation in the lower plate between 0 < z < a. Modes propagating in the z-
direction are considered. Given that the corrugations are perpendicular to this direction
and spaced by a distance p, the waveguide is p-periodic along the z-axis and invariant
along the x-axis.

Here, the simple case of vacuum-filled waveguides. In practice, this enables low-loss
devices. Section 2.2 will take dielectric fillings into account for the study of holey PPWs,
in order to generalize the MMM.

Both the upper and lower PEC plates are corrugated. When the corrugation of the
upper plate are at the same z-coordinates than the corrugations of the lower plate, the
structure is symmetric with respect to the plane y = 0, at half-distance between the
corrugated planes. The resulting nGS structure is shown in Fig. 2.1a, and displays no
higher symmetries.

A higher symmetry is added for the structure presented in Fig. 2.1b. Shifting the
upper plate by p/2 (half the cell length) in the propagation direction introduces GS.

In the next paragraphs, the MMM is applied to such corrugated PPWs, as described
in [42].

2.1.2 Modal decomposition of the fields

Given that the structure is invariant along the x-direction, the structure can be studied
in the yz-plane. Moreover, due to the periodicity of the metasurface waveguide, it is
sufficient to consider the fields within one unit cell. Fields in subsequent cells are related
using the Floquet theorem presented in section 1.3.

Only transverse magnetic (TM) modes are considered in both the corrugations and
in the gap between the metasurfaces. It should be noted that the MMM can be applied
similarly to transverse electric (TE) modes. This would result in different eigensolutions
of the PPW, which are not of interest here.

Modes in the corrugations In the lower corrugations, the fields in the corrugations
are a sum of parallel-plate TM modes propagating in the y-direction [17, pp.104-108].
These modes satisfy the PEC boundary conditions at y = −g/2 − h and at z = 0, a,
yielding
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where each integer index m corresponds to one TM mode with coefficient cm and cutoff
wavenumber kz,m = mπ/a. The wavenumber in the corrugation depth direction is defined

by ky,m =
√
k2

0 − (kz,m)2, with k0 the free-space wavenumber. In the following, all
terms having the order m written as a subscript correspond to quantities related to the
corrugations (fields coefficients, wavenumbers,...)

Floquet harmonics between the corrugated surfaces The corrugated PPW is
p-periodic. Therefore, according to (1.9), the field that propagates in the waveguide can
be expressed as a sum of Floquet harmonics. These harmonics satisfy the wave equation
in the gap. Considering TM modes (H(gap)

z = 0) for propagation in a waveguide without
x-variation, the fields can be expressed as
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where each order s corresponds to one Floquet harmonic, with k
(s)
z = kz + s2π

p the
wavenumber in the z-direction. In the y-direction, the fields are confined between the

metasurfaces, with the vertical wavenumber k(s)
y =

√
k2

0 − (k
(s)
z )2. The fields can be

either symmetric or antisymmetric with respect to the propagation plane, with corre-
sponding coefficients X(s) and Y (s).

2.1.3 Mode-matching in the glide-symmetric PPW

We enforce additional boundary conditions on the corrugated plates. On the one hand,
the electric field tangential to PEC surfaces must vanish between the corrugations. On
the other hand, at the frontier between the gap region and the corrugated regions, the
x-component of the magnetic field and the z-component of the electric field must match.

A first set of equations is obtained by matching the electric fields on the lower cor-
rugation. The harmonic coefficients X(s) and Y (s), as well as all the corrugation mode
coefficients cm, are unknowns of this equation. Doing the same at the upper corruga-
tion surface yields a second set of equations. Thanks to the generalized Floquet theorem
(1.13), the field in the upper corrugation are known to be equal to the field in the lower
corrugation, with an additional phase-shift of kz p2 or kz p2 + π, i.e.,
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2)
∣∣
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g
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= ±e−jkz
p
2 Ez(z)|y=−g2

. (2.3)
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Consequently, an additional modal decomposition like (2.1) for the upper corrugation is
not necessary. The unknowns of the second set of equations are still the coefficients cm,
X(s) and Y (s), as shown in appendix B.1.

After the matching of the electric field components, each harmonic order s is associ-
ated to two equations involving these coefficients. Linearly combining these two equations
leads to independent expressions for X(s) and Y (s), derived in appendix B.1. For each
harmonic s,
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The choice of the sign depends on the sign in (2.3). As explained in section 1.2.5, it
reorders the Floquet harmonics, but results in the same dispersion diagram.

Finally, a third set of equations is obtained by matching the coefficients of the mag-
netic field (x-component) at the lower corrugation. The projection basis is the basis of
corrugation modes, as illustrated in appendix B.1. For each corrugation mode m′, this
leads to the equation
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Inserting expressions (2.4) and (2.5) into (2.6), the gap coefficients X(s) and Y (s) can
be totally removed, such that only one set of equations is left, involving the corrugation
coefficients cm. Appendix B.1 shows how this set of equations can be formalized as the
matrix equation

M · c′ = 0 , (2.7)

where the vector of unknown c′ is made of the normalized corrugation coefficients c′m =
sin (ky,mh)cm, and where the square matrix M has elements Mm′m of the form
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where it is reminded that ky,m =
√
k2

0 −
(
mπ
a

)2, k(s)
y =

√
k2

0 − k
(s)
z

2
, k(s)

z = kz + s2π
p , and

where one defines the term

f
(s)
m′m =





4 sin2
(
k

(s)
z

a
2

)
, if m′ and m are both even,

4 cos2
(
k

(s)
z

a
2

)
, if m′ and m are both odd,

j(−1)m
′
4 sin

(
k

(s)
z

a
2

)
cos
(
k

(s)
z

a
2

)
, if m′ +m is odd.

(2.9)

The tangent and cotangent functions in the square brackets of (2.8) result from the
symmetry of the harmonics as a function of their order s.

In a numerical framework, the infinite sums would need to be truncated, so that
the vector of unknows and the matrix are of finite size. In this case, the size of the
vector c′ corresponds to the number of TM modes retained in the corrugations for the
computation. This is physically justified, as shown in section 2.1.6.

2.1.4 Mode-matching in the mirror-symmetric PPW

The MMM can be applied in a similar way to the nGS corrugated PPW displayed in Fig.
2.1a. The structure is still p-periodic, but the nGS geometry is symmetric regarding the
plane y = 0, unlike the G-S structure. As a consequence, the field of the propagating
harmonics is either symmetric or antisymmetric regarding this plane. Both cases can be
studied separately by reducing the problem to the lower half of the structure [17, p. 42].

The upper half can be replaced by an infinite plane at y = 0. In order to derive an
antisymmetric longitudinal electric field, this infinite plane is PEC, whereas for a sym-
metric longitudinal electric field, the infinite plane is perfectly magnetically conducting
(PMC). For the PEC case, boundary conditions then imply that the electric field between
the corrugated plates is antisymmetric regarding the plane y = 0 i.e., Y (s) = 0 in (2.2).
For the PMC case, boundary conditions then imply that the electric field between the
corrugated plates is symmetric regarding the plane y = 0 i.e., X(s) = 0 in (2.2).

Mode-matching leads to two sets of equations involving the corrugation coefficients
cm and the gap coefficients (X(s) or Y (s), depending on whether the PMC or the PEC
case is considered).

Given that the PMC and the PEC cases are considered separately, these two sets of
equations are enough to isolate the normalized corrugation coefficients c′m = sin (ky,mh)cm
into a matrix equation similar to (2.7). In the PEC case, the square matrix M has co-
efficients
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whereas in the PMC case, the coefficients are
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2.1.5 Dispersion equations

In order to have non-trivial solutions, the determinant of the matrixM in (2.7) must be
equal to zero. This condition yields the dispersion equation relating the wavenumber kz
of the waves propagating with the free-space wavenumber k0,

|M |(k0, kz) = 0 , (2.12)

with the matrix coefficients (2.8) in the G-S case, and (2.10) or (2.11) in the nGS case.
We refer to M as the dispersion matrix.

Whether the G-S or the nGS waveguide is considered, previous derivations have lead
to two possible dispersion equations. In the nGS case, antisymmetric and symmetric
modes have been decoupled in (2.10) and (2.11). In the G-S case, depending on the
phase-shift used when applying the generalized Floquet theorem, two set of signs can
appear in (2.8). In practice, only one equation may be used in order to find the total
Brillouin diagram, because changing the sign is equivalent to reordering the Floquet
harmonics in the modal decomposition. In the following, we consider only the dispersion
equation where the minus sign is chosen is (2.3).

2.1.6 Numerical solution: truncation of higher modes and harmonics

2.1.6.1 Truncation of corrugation modes

The size of the dispersion matrix in (2.12) is dependent on the number of corrugation
modes. In order to solve the dispersion equation numerically, the infinite amount of
modes in the corrugations must be truncated to a finite number. Such a number exists,
as matrix coefficients for higher modes tend to be negligible compared to lower modes,
as can be seen easily in (2.12) when increasing the mode orders m′ and m.

When the width of the corrugations is very small compared to the wavelength, as is
usually the case for metasurfaces, the field variability on the corrugated plate is small.
Consequently, few modes are necessary to capture this variability. That is why it is
reasonable to truncate (2.12) to a finite number of corrugation modes. In chapter 3, to
simplify the dispersive study of the waveguide with thin corrugations, it is even acceptable
to keep only the transverse electric magnetic (TEM) mode.
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Figure 2.2: Colormap of the number of corrugations modes M required for the con-
vergence of the G-S dispersion curve for k < π/p, depending on the gap g and the
corrugation width a. 37 frequency points are computed for each curve, which is consid-
ered to converge when there is less than a 1% variation in kz for all observation points.
The cell width is p = 4 mm.

In Fig. 2.2, the number of modes for convergence of the Brillouin curve is estimated
for different geometrical parameters of the G-S structure. In order to do so, the dispersion
equation is solved for 37 points linearly placed between k = 0 and k = π/p, with a cell-
length p = 4 mm. 61 harmonics are considered, that is s ∈ [[−30, 30]], which is observed
to be enough to accurately describe the fields in the gap between the metasurfaces.
The number of modes M is increased until convergence of the curve. Convergence is
considered to be reached for a number of modesM when for all observation points, there
is less than 1% variation between the computed kz for M and M − 1.

The general observation is that the larger g, the fewer modes are necessary for conver-
gence. This is expectable, because the coupling between the metasurfaces decreases, and
so the field variations are less constrained at the surface of the corrugations. Moreover,
for small corrugation widths a, very few modes are necessary, which is coherent with
the fact that higher modes cannot propagate in thin corrugations. Medium corrugations
(around half-a-cell) require the most modes: if a = p/2, then the corrugation edges of
opposite metasurfaces are the closest, resulting in strong field concentrations. Finally,
when increasing the corrugation depth h, the number of modes must be increased as well.

2.1.6.2 Truncation of Floquet harmonics

Similarly, the propagation of the Floquet harmonics is also impacted if λ � p. This is
usually the case, given that for metasurfaces, the cell length shall be small compared to
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the wavelength. The transverse propagation constant of the s-th harmonic is

k(s)
y =

√
k2

0 − k
(s)
z

2
= k0

√√√√1−
(
k

(s)
z

k0

)2

= k0

√
1−

(
kz
k0

+ s
λ

p

)2

. (2.13)

For slow waves, i.e., kz/k0 > 1, and when λ� p, no harmonics have a real propagation
constant in the y-direction. Therefore, these modes are attenuated in the y-direction.
On the one hand, this means that the corresponding k(s)

z is real, meaning that the s-
th Floquet mode can propagate between the plates. On the other hand, the vertical
attenuation gets stronger with increasing order s, and so these modes are likely not to
“see” both plates simultaneously, meaning that they propagate as if only one corrugated
plate was present. These waves do not reflect the complex coupling mechanism that
yield the special dispersion behavior of the G-S structure for lower modes. Therefore,
a truncation of the number of Floquet harmonics to simplify the expression of (2.12) is
justified as well.

2.1.7 Validity of the mode-matching method for corrugated PPWs

In this section, the accuracy of the MMM is validated by comparing the computed
Brillouin diagrams with the results obtained in the commercial electromagnetic (EM)
eigenmode solver of CST. The nGS and the G-S structure displayed in Fig. 2.1 are
modeled in CST.

The MMM dispersion equations (2.8) and (2.10) are solved in Matlab using 61 har-
monics and 16 modes. In order to solve the dispersion equation, the root-finding algo-
rithm presented in [178] is used. It is based on a local approximation of the underlying
complex function by a Padé approximant of type II [179, p. 53]. If the initial guesses
do not lie too far away from the root, this algorithm yields exponential convergence.
Given the non-linearity of the dispersion equation, the initial guess fed to the algorithm
is influent. Given three initial guesses xn−2, xn−1 and xn at the n-th iteration of the
algorithm, the newest guess for the root of a function f is computed as

xn+1 =
x1

x3−x2
f(x1) + x2

x1−x3
f(x2) + x3

x2−x1
f(x3)

x3−x2
f(x1) + x1−x3

f(x2) + x2−x1
f(x3)

. (2.14)

This algorithm must be applied for each observation frequency. The initial guesses for
the newer frequency point can be taken close to the previous result. In doing so, one
increases the chances that the same mode is tracked from one frequency point to the
other, resulting in a continuous Brillouin curve.

The computed dispersion curves are plotted in Fig. 2.3. For all structures, the
cell length is p = 4 mm and the gap between the plates g = 0.1 mm. Each subfigure
corresponds to different corrugation widths a and depths h.

Fig. 2.3 shows that the MMM accurately renders the Brillouin diagram of these
structures. The comparison of the nGS with G-S dispersion curves confirms that GS
reduces the dispersion of the first mode, and closes the stopband between the first two
modes.
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(b) a = 1 mm and h = 0.5 mm.
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(c) a = 2 mm and h = 1.5 mm.
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(d) a = 3 mm and h = 1.5 mm.

Figure 2.3: Brillouin diagrams for the corrugated PPW, with corrugations of width a
and depth h. Both G-S and nGS curves are computed with CST or with the MMM. The
MMM is applied with 16 modes and 61 harmonics. All structures have p = 4 mm and
g = 0.1 mm.
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2.2 Holey parallel-plate waveguide

While the corrugated PPW is a 1-D G-S waveguide, in this section, a more general
example is studied: the holey PPW, which can bear 2-D GS. The focus is placed on
the G-S design, but the study of the counterpart nGS structure follows the same steps.
Notable changes in the nGS equation are given as side-notes.

2.2.1 Holey glide-symmetric PPW

The structure under study is a PPW, where both PEC plates are normal to the y-
direction and are separated by a gap g, filled with a medium 1 with relative permittivity
εr1 and permeability µr1. Each plate is pierced with an array of cylindrical holes of depth
h, filled with a medium 2 with constitutive parameters (εr2, µr2). The cross-section S of
these holes is invariant in the y-direction. These holes are repeated periodically in the x-
and z-directions, with the resulting unit cell having a length pz in the z-direction and px
in the x-direction. The upper plate is shifted in both directions by half a unit cell, such
that GS is introduced in both x- and z-directions. The origin of the cartesian coordinate
system is placed at mid-distance between the metasurfaces.

The cross-section S of the holes does not need to have a unique closed contour. It
can be completely arbitrary, for example allowing isolated pins to be present in the hole.
In the following, the word hole is used under this loose definition.

Fig. 2.4 illustrates a structure with potato-shaped holes enclosing a single metallic
pin. The red arrow in the perspective view indicates the wave propagation plane. In the
top view, one unit cell is framed, and the G-S shift between the upper and the lower
plates is highlighted. The angle between the propagation direction and the z-axis, in the
propagation plane, is called θ.

2.2.2 Modal decomposition of the fields

2.2.2.1 Modes in the holes

Each hole can be seen as a cylindrical waveguide of cross-section S parallel to the y-
direction. Fields in the holes can be decomposed as sums of waveguide modes: TM, TE,
and TEM modes. In the following, the mode type is identified with the superscript i =
e, h, t, respectively. For each mode, the longitudinal y-component of the field (subscript
y) is separated from the transverse field (subscript t), which is a 2-D vector in the zx-
plane. The electric transverse component of the m-th mode can be written as

Ei
t,m(x, y, z) = jei

t,m(z, x) sin
(
ki
y,m

[
y + h+ g

2

])
, (2.15)

where the longitudinal wavenumber ki
y,m =

√
k2

0εr2µr2 − ki
m

2 is related to the vacuum
free-space wavenumber k0 and the cut-off wavenumber ki

m of the mode. The two-
dimensional field ei

t,m is the m-th modal function that characterizes the mode at the
surface of the hole. It depends only on the cross-section of the hole, and is independent
of the frequency and the hole depth. The sine term in (2.15) is due to the reflection of
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(a) Perspective view. The red arrow indicates the propagation plane.
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Figure 2.4: Holey G-S PPW under study.

the waves at the bottom of the holes, resulting in a standing wave. The corresponding
magnetic transverse field is

H i
t,m(x, y, z) = −Y i

m

(
ŷ × ei

t,m(z, x)
)

cos
(
ki
y,m

[
y + h+ g

2

])
. (2.16)

The cut-off wavenumber ki
m must be defined for each mode. Note that for TEM modes,

kt
m = 0, and so kt

y,m = k0
√
εr2µr2 = k2. From cylindrical waveguide theory [17, pp.99-

101], the wave admittances are

Y e
m =

k0εr2

η0

√
k2

0εr2µr2 − ke
m

2
, Y h

m =

√
k2

0εr2µr2 − kh
m

2

η0k0µr2
and Y t

m =
1

η2
, (2.17)
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where η2 = η0

√
µ2/εr2, with η0 ' 377Ω the intrinsic vacuum impedance.

As such, the total transverse fields in the holes are weighted sums of these modes,

Ei
t(x, y, z) = j

∑

m

C i
me

i
t,m(z, x) sin

(
ki
y,m

[
y + h+ g

2

])
, (2.18)

and

H i
t(x, y, z) = −

∑

m

C i
mY

i
m

(
ŷ × ei

t,m(z, x)
)

cos
(
ki
y,m

[
y + h+ g

2

])
. (2.19)

Longitudinal field components From Maxwell’s equations, the longitudinal compo-
nent of each TM mode is found as

Ee
y,m =

η0

jk0εr2

[
∂He

x,m

∂z
−
∂He

z,m

∂x

]
=

j cos
(
ke
y,m

[
y + h+ g

2

])
√
k2

0εr2µr2 − ke
m

2

(
∂ee

z,m

∂z
+
∂ee

x,m

∂x

)
, (2.20)

with η0 the intrinsic vacuum impedance. Similarly, the longitudinal TE magnetic com-
ponent is

Hh
y,m =

1

jk0η0µr2

[
∂Eh

z,m

∂x
−
∂Eh

x,m

∂z

]
=

sin
(
kh
y,m

[
y + h+ g

2

])

k0η0µr2

[
∂eh

z,m

∂x
−
∂eh

x,m

∂z

]
. (2.21)

Obviously, TEM modes have no longitudinal field components.

2.2.2.2 Floquet harmonics between the holey metasurfaces

Due the periodicity of the structure, the fields between the metasurfaces are expressed
as a sum of Floquet harmonics. Each harmonic of orders (s, `), s ∈ Z and ` ∈ Z, has
components parallel to the propagation plane zx that can be expressed as

E
(s`)
t =

[
a(s`) sin

(
k(s`)
y y

)
+ b(s`) cos

(
k(s`)
y y

)]
e−jk

(`)
x x−jk

(s)
z z , (2.22a)

H
(s`)
t = Y (s`) ·

[
a(s`) cos

(
k(s`)
y y

)
− b(s`) sin

(
k(s`)
y y

)]
e−jk

(`)
x x−jk

(s)
z z , (2.22b)

with the vertical wavenumber k(s`)
y =

√
k2

0εr1µr1 − k(`)
x

2
− k(s)

z

2
, and the Floquet wavenum-

bers k(s)
z and k(`)

x being

k(s)
z = kz + s

2π

pz
and k(`)

x = kx + `
2π

px
. (2.23)

Given the Maxwell-Faraday equation, the admittance matrix in (2.22b) is equal to

Y (s`) =
j

k0η0µr1k
(s`)
y

[
−k(`)

x k
(s)
z k

(s)
z

2
− k2

0εr1µr1

k2
0εr1µr1 − k(`)

x

2
k

(`)
x k

(s)
z

]
, (2.24)

where the transverse two-dimensional basis is (z, x).
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As such, the total fields is the propagation plane between the metasurfaces are

Et =

+∞∑

s=−∞

+∞∑

`=−∞

[
a(s`) sin

(
k(s`)
y y

)
+ b(s`) cos

(
k(s`)
y y

)]
F (s`) , (2.25a)

Ht =
+∞∑

s=−∞

+∞∑

`=−∞
Y (s`)

[
a(s`) cos

(
k(s`)
y y

)
− b(s`) sin

(
k(s`)
y y

)]
F (s`) , (2.25b)

where F (s`) = e−jk
(`)
x x−jk

(s)
z z. In the following, the double sum

+∞∑
s=−∞

+∞∑
`=−∞

is written
∑
s,`

for conciseness.

Transverse field components From the Maxwell-Gauss equation, the transverse field
components of each harmonic are

E(s`)
y = j

F (s`)

k
(s`)
y

[
k

(s)
z

k
(`)
x

]T

·
[
b(s`) sin

(
k(s`)
y y

)
− a(s`) cos

(
k(s`)
y y

)]
, (2.26)

and

H(s`)
y =

F (s`)

k1η1

[
−k(`)

x

k
(s)
z

]T

·
[
a(s`) sin

(
k(s`)
y y

)
+ b(s`) cos

(
k(s`)
y y

)]
. (2.27)

2.2.3 Mode-matching in the GS holey PPW

2.2.3.1 Mode-matching: electric field continuity on the holes

First, the electric fields are projected onto the basis of Floquet harmonics, both in the
gap and in the holes, such that their coefficients can be equated at the surface of the
holes. The Floquet harmonics are already expressed in this basis. However, the change
of basis for the fields in the holes results in the series of terms called projected modal
functions (PMFs), defined for each modal function ei

t,m as

ẽ
i(s`)
t,m =

∫∫

S

ei
t,mF

(s`)dS . (2.28)

These PMFs can be seen as the 2-D Fourier transforms of the modal functions, evaluated
at the pair of Floquet wavenumbers (k

(s)
z , k

(`)
x ).

Matching the fields at the lower hole (y = −g/2) yields a first set of equations
with the unknown field coefficients C i

m, a(s`) and b(s`). According to the generalized
Floquet theorem (1.13), the fields at the surface of the upper hole have a phase-shift of
±e−jkx

px
2 e−jkz

pz
2 with respect to the fields at the lower hole, meaning that

E
(
x, g2 , z

)
= ±e−jkx

px
2 e−jkz

pz
2 E

(
x− px

2 ,−
g
2 , z −

pz
2

)
. (2.29)
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Therefore, at the upper hole (y = g/2), the projection of the hole modes onto the Floquet
harmonics yields a second set of equations, involving the same unknowns. Combining
these two equations yields the Floquet coefficients as functions of the hole mode coeffi-
cients,

a(s`) =
j

pxpz

−1± (−1)s+`

2 sin
(
k

(s`)
y

g
2

)
∑

m

C i
m sin

(
ki
y,mh

)
ẽ

i(s`)∗
t,m , (2.30a)

b(s`) =
j

pxpz

1± (−1)s+`

2 cos
(
k

(s`)
y

g
2

)
∑

m

C i
m sin

(
ki
y,mh

)
ẽ

i(s`)∗
t,m . (2.30b)

Note that these equations are vectorial, given that the PMFs have two components along
the z- and the x-direction.

NGS configuration If the holes of the upper and lower metasurfaces are aligned, then
the structure has mirror symmetry. Using image theory, half of the structure can be filled
with PEC. The magnetic fields are symmetric with respect to the middle propagation
plane, and the electric fields are antisymmetric. Therefore, for all (s, `), b(s`) = 0, and

a(s`) = − j

pxpz sin
(
k

(s`)
y

g
2

)
∑

m

C i
m sin

(
ki
y,mh

)
ẽ

i(s`)∗
t,m . (2.31)

2.2.3.2 Mode-matching: magnetic field continuity on the holes

The boundary conditions require the tangential magnetic fields to be continuous along
the boundary between the holes and the PPW gap. In order to enforce this condition,
the magnetic fields in the gap are projected onto the basis of vectorial hole modes. The
resulting modal coefficients can then be equated along the hole surface.

We introduce the squared norm of the real modal functions

I i
m =

∫∫

S

ei
t,m · ei

t,mdS . (2.32)

Because of the orthogonality of the modes in the holes, the projection of one mode onto
the other is always null, unless the mode is projected onto itself, yielding I i

m.
For a given mode of type i′ and order m′, the projection of the total tangential

magnetic field on the modal function ei′
t,m′ yields

−C i′
m′Y

i′
m′I

i′
m′ cos

(
ki′
y,m′h

)
=
∑

s,`

Y (s`)



a(s`) cos

(
k(s`)
y

g
2

)

+ b(s`) sin
(
k(s`)
y

g
2

)


 ·
(
ŷ × ẽi′(s`)

t,m′

)
. (2.33)
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2.2.3.3 Matrix equation of the holey glide-symmetric PPW

The expressions of Floquet coefficients (2.30) can be inserted in (2.33). We choose the
negative signs in (2.30). This yields an equation that only involves the hole mode coeffi-
cients, that is

−C i′
m′Y

i′
m′I

i′
m′ cos

(
ki′
y,m′h

)

= − j

pxpz

∑

m

C i
m sin

(
ki
y,mh

)∑

s,`

f (s`)Y (s`)ẽ
i(s`)∗
t,m ·

(
ŷ × ẽi′(s`)

t,m′

)
, (2.34)

where we call the vertical spectral function

f (s`) =





cot
(
k

(s`)
y

g
2

)
, if s+ ` is even,

− tan
(
k

(s`)
y

g
2

)
, if s+ ` is odd.

. (2.35)

To simplify the equations, we introduce the scaled mode coefficients ci
m = C i

m sin
(
ki
y,mh

)
.

Developing the admittance matrix Y (s`) finally yields the mode-matching equations, for
each mode of order m′,

−k0η0µr1pxpzc
i′
m′Y

i′
m′I

i′
m′ cot

(
ki′
y,m′h

)

=
∑

m

ci
m

∑

s,`

f (s`)

k
(s`)
y



k2

0εr1µr1

(
ẽ

i′(s`)
z,m′ ẽ

i(s`)∗
z,m + ẽ

i′(s`)
x,m′ ẽ

i(s`)∗
x,m

)

−
(
k(s)
z ẽ

i′(s`)
x,m′ − k(`)

x ẽ
i′(s`)
z,m′

)(
k(s)
z ẽi(s`)

x,m − k(`)
x ẽi(s`)

z,m

)∗


 . (2.36)

Equation (2.36) can be reformulated into a matrix equationM · c = 0, with c the vector
of unknown normalized mode coefficients ci

m, and where each row and each column of
the matrix M corresponds to hole modes of orders m′ and m and types i′ and i′. The
coefficients of this matrix are

M i′i
m′m = δi′iδm′mk0η0µr1pxpzY

i
mI

i
m cot

(
ki
y,mh

)

+
∑

s,`

f (s`)

k
(s`)
y



k2

0εr1µr1

(
ẽ

i′(s`)
z,m′ ẽ

i(s`)∗
z,m + ẽ

i′(s`)
x,m′ ẽ

i(s`)∗
x,m

)

−
(
k(s)
z ẽ

i′(s`)
x,m′ − k(`)

x ẽ
i′(s`)
z,m′

)(
k(s)
z ẽi(s`)

x,m − k(`)
x ẽi(s`)

z,m

)∗


 . (2.37)

The truncation of the number of hole modes and harmonics can be justified like for the
corrugated structure in section 2.1.6.

NGS configuration In the nGS case, the mode-matching equations are the same,
except for the vertical spectral function, which is a cotangent for all harmonics (not just
for even-order harmonics like in the G-S case).
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2.2.4 Dispersion equation

The dispersion matrix M can be subdivided according to the type of modes involved.
As such, the matrix equation can be rewritten as

[
M e/e M e/h

(
M e/h

)H
Mh/h

] [
ce

ch

]
= 0 , (2.38)

where the hole modes have been regrouped such that the first row/columns correspond
to TM modes (all terms with an ‘e’ superscript), whereas the last rows/columns corre-
spond to TE modes and TEM modes (all terms with an ‘h’ superscript). The choice of
regrouping TE and TEM modes is motivated in paragraph 2.2.4.1.

The coefficients of the resulting submatrices are

M
e/e
m′m = δm′mk

2
0

µr1εr2√
k2

0εr2µr2 − ke
m

2
pxpzI

e
m cot

(
h
√
k2

0εr2µr2 − ke
m

2

)

+
∑

s,`

f (s`)

k
(s`)
y



k2

0εr1µr1
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ẽ
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z,m′ ẽ
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z,m + ẽ

e(s`)
x,m′ ẽ
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x,m

)

−
(
k(s)
z ẽ

e(s`)
x,m′ − k(`)

x ẽ
e(s`)
z,m′

)(
k(s)
z ẽe(s`)

x,m − k(`)
x ẽe(s`)

z,m

)∗


 , (2.39)

given the wave impedance of TM modes, and

M
h/h
m′m = δm′m

µr1

√
k2

0εr2µr2 − kh
m

2

µr2
pxpzI

h
m cot

(
h

√
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0εr2µr2 − kh
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+
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x,m′ ẽ
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x,m

)

−
(
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z ẽ
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x ẽ
h(s`)
z,m′

)(
k(s)
z ẽh(s`)

x,m − k(`)
x ẽh(s`)

z,m

)∗


 , (2.40)

given the wave impedance of TE modes. For TEM modes, the definition (2.40) is still
valid, given that the wave impedance of TE modes is a generalization of the TEM
impedance for a non-zero cut-off wavenumber. Note that there are diagonal matrix terms
in Mh/h only when the orders m′ and m are equal, and both correspond to the same
mode type (TE or TEM). Finally, the non-diagonal submatrix M e/h has coefficients

M
e/h
m′m =

∑

s,`

f (s`)

k
(s`)
y
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0εr1µr1

(
ẽ
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z,m′ ẽ

h(s`)∗
z,m + ẽ

e(s`)
x,m′ ẽ

h(s`)∗
x,m

)

−
(
k(s)
z ẽ

e(s`)
x,m′ − k(`)

x ẽ
e(s`)
z,m′

)(
k(s)
z ẽh(s`)

x,m − k(`)
x ẽh(s`)

z,m

)∗


 , (2.41)

where there is no diagonal term because the matrixM e/h represents the TM interactions
with TE or TEM modes.

In order for (2.38) to yield a non-trivial solution, the determinant of the matrix must
be zero. This yields the dispersion equation of the structure,

∣∣∣∣∣
M e/e M e/h

(
M e/h

)H
Mh/h

∣∣∣∣∣ = 0 . (2.42)
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This dispersion equation can be solved numerically for any frequency f in order to obtain
the Brillouin diagram of the structure, as explained for the corrugated structure in section
2.1.7.

2.2.4.1 Reduced dispersion matrix coefficients

When TM modes are involved in (2.38), the matrix coefficients can be simplified, due
to the relation between the cartesian components of the transverse electric field. From
waveguide field theory [17, p. 100], the TM modal functions satisfy

[
ee
z,m(z, x)

ee
x,m(z, x)

]
=

1

ke
m

∇tey,m(z, x) , (2.43)

where ey,m is the longitudinal electric field of the TM modal function. The superscript ‘e’
is omitted, given that only TM modes have an electric y-component. The PMFs defined
in (2.28) are linked to the longitudinal field component with

[
ẽ

e(s`)
z,m

ẽ
e(s`)
x,m

]
=

∫∫

S

[
∇t

{
ey,m
ke
m

F (s`)

}
− ey,m

ke
m

∇t

{
F (s`)

}]
dS

=

∮

∂S

ey,m
ke
m

F (s`)nd`+ j

[
k

(s)
z

k
(`)
x

]∫∫

S

ey,m
ke
m

F (s`)dS

=
j

ke
m

[
k

(s)
z

k
(`)
x

]∫∫

S

ey,mF
(s`)dS . (2.44)

The first line comes from the gradient product rule. The second line is derived from
Green’s theorem [180, p. 431]. Indeed, appendix B.2 shows that

∫∫

S

∇tey,m(z, x)dzdx =

∫

∂S

ey,m(z, x)nd` , (2.45)

where ∂S is the hole contour and n is the exterior normal at each contour point. Finally,
the last line is obtained considering that the longitudinal electric field vanishes on the
hole contour.

From (2.44), it comes that

k(`)
x ẽe(s`)

z,m = k(s)
z ẽe(s`)

x,m , (2.46)

This is true for all TM modes, for arbitrary holes. Consequently, the matrix coefficients
(2.39) and (2.41), which involve TM modes, can be simplified as

M
e/e
m′m = δm′mk

2
0

µr1εr2√
k2

0εr2µr2 − ke
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pxpzI

e
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√
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z

2
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x

2
)
. (2.47)
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Figure 2.5: Holey G-S PPW with rectangular holes of size az × ax.

and

M
e/h
m′m = jk2

0εr1µr1

∑

s,`

f (s`)

k
(s`)
y

ẽ
(s`)
y,m′

ke
m′

(
k(s)
z ẽh(s`)

z,m + k(`)
x ẽh(s`)

x,m

)∗
, (2.48)

where the PMF for the longitudinal component is defined as

ẽ(s`)
y,m =

∫∫

S

ey,mF
(s`)dS . (2.49)

As such, the only information that is required for TM modes is the longitudinal compo-
nent ey,m. The squared norm (2.32) can be reformulated for each mode as

Ie
m =

∫∫

S

1

ke
m

2

[(
∂ey,m
∂z

)2

+

(
∂ey,m
∂x

)2
]

dS . (2.50)

No such simplification can be done for TE or TEM modes. Indeed, the TE longitu-
dinal magnetic field component does not vanish on the hole contour, which prevents the
simplifications done in (2.44) for TM modes. The same is true for the scalar potential of
the TEM modes.

2.2.5 Example: rectangular holes

The MMM presented in the previous paragraphs is applicable for any holey metasurfaces.
However, canonical hole shapes such as rectangles or circles have closed-form expressions
for their modal functions, and so the PMFs (2.28) can be found analytically.
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As an example, a GS PPW with empty rectangular holes is considered, as illustrated
in Fig. 2.5. For holes of size az × ax, each modal function is defined by two integer
orders q and m. TM modes with m > 0 and q > 0 have the longitudinal electric modal
function [17, p. 117]

ey,qm(z, x) = sin

(
mπ

az
z

)
sin

(
qπ

ax
x

)
, (2.51)

which is defined such that the corner of the hole is located at (z, x) = (0, 0). TE modes
have (q,m) 6= (0, 0), and the transverse modal functions are

[
eh
z,qm

eh
x,qm

]
=




qπ

axkqm
cos
(
mπ
az
z
)

sin
(
qπ
ax
x
)

− mπ

azkqm
sin
(
mπ
az
z
)

cos
(
qπ
ax
x
)


 , (2.52)

where kqm is the cut-off wavenumber of the mode.
The PMFs corresponding to these modes are computed in appendix B.3.1, yielding

(B.33) for TM modes, and (B.36) and (B.37) for TE modes, as well as their squared norms
(B.32) and (B.35). These terms are sufficient to fill out all the matrix coefficients in the
dispersion equation (2.42). This dispersion equation can then be solved numerically to
draw the Brillouin diagram of the structure under study.

This is done in Fig. 2.6 for different geometries of holey PPWs. G-S and nGS designs
are compared in each subfigure. All structures have square periodicities pz = px = 4 mm
and a gap between the metasurfaces g = 0.1 mm. The holes of size az × ax and depth h
are filled with vacuum, and are squares or rectangles depending on the subfigures.

Two modeling techniques are used in Fig. 2.6 to compute the Brillouin diagrams. The
reference curves are obtained with the eigenmode solver of CST. They are compared to
the curves obtained by means of the MMM, as described in the previous paragraphs. The
dispersion matrix is truncated to 150 TM and 150 TE modes. Each matrix coefficient
takes 1681 harmonics into account, which correspond to harmonic orders s and ` both
ranging from -20 to 20.

Both techniques appear to match, showing that the MMM is an accurate alternative
to commercial solvers, and that it can be taken as a basis for all subsequent studies of
holey metasurface waveguides.

2.2.6 Example: circular holes

A second canonical example is developed here, where circular holes of radius a are drilled
in the metasurfaces. For generality, these holes can be filled with a dielectric of arbitrary
permittivity εr, as illustrated in Fig. 2.7.

Circular hole modes involve Bessel functions of the first kind [17, pp. 124-126]. There-
fore, the derivations of the PMFs are more demanding than for rectangular holes. These
derivations are given in appendix B.3.2.

Each circular waveguide mode depends on two positive integer orders q and m, and
on a third index t = 1, 2. For t = 1, q > 0 and m > 0, whereas for t = 2, the only
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(d) h = 5 mm, az = ax = 3 mm.

Figure 2.6: Brillouin diagrams of PPWs with different rectangular holes of size az × ax
and depth h. G-S and nGS curves are computed with CST or with the MMM. The MMM
is applied with 150 TM modes, 150 TE modes, and 1681 harmonics. All structures have
pz = px = 4 mm and g = 0.1 mm.
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Figure 2.7: Holey G-S PPW with circular holes of radius a, filled with a dielectric of
relative permittivity εr.

restriction is m > 0. The longitudinal TM modal functions are

ey,qm1(ρ, φ) = sin (qφ) Jq (kqmρ) (2.53)
and ey,qm2(ρ, φ) = cos (qφ) Jq (kqmρ) , (2.54)

where t = 1 in the first case, and t = 2 in the second case. The cut-off wavenumber is
named kqm. For TE modes, the modal functions are

[
eh
ρ,qm1

eh
φ,qm1

]
=

[
− cos (qφ) q

k′qmρ
Jq
(
k′qmρ

)

sin (qφ) J ′q
(
k′qmρ

)
]
, (2.55)

and

[
eh
ρ,qm2

eh
φ,qm2

]
=

[
sin (qφ) q

k′qmρ
Jq
(
k′qmρ

)

cos (qφ) J ′q
(
k′qmρ

)
]
, (2.56)

with k′qm the cut-off wavenumber.
The PMFs corresponding to these modes are computed in appendix B.3.2, yielding

(B.53) for TM modes, (B.68) and (B.69) for TE modes, as well as their squared norms
(B.55) and (B.70). Fig. 2.8 illustrates the validity of the MMM applied to G-S PPWs
with circular holes. The holey metasurfaces have periodicities pz = px = 4 mm and
are separated by an air gap g = 0.1 mm. The holes of depth radius a = 1.5 mm have
variable depths h and are filled either by Rogers dielectric RO3003 (εr = 3) or RO3010
(εr = 11.2). The dispersion curves obtained with the eigensolver of CST are compared
with the MMM. For the latter, 150 TM and 150 TE modes are kept, as well as 1681
Floquet harmonics. All MMM curves match the CST results.
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(d) h = 3 mm, εr = 11.2.

Figure 2.8: Brillouin diagrams of G-S PPWs with circular holes, computed with CST
or with the MMM. The MMM is applied with 150 TM modes, 150 TE modes, and
1681 harmonics. The waves propagate along the z-axis i.e., θ = 0. All structures have
pz = px = 4 mm, g = 0.1 mm. The holes have a radius a = 1.5 mm, a depth h and are
filled with a relative permittivity εr.
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Chapter landmarks

The mode-matching procedures described in literature for G-S metasurface waveguides
have been rendered in details in this chapter, both for 1-D GS and 2-D GS. This is
motivated by the resulting dispersion equations, which act as a starting point for the
studies in this thesis. The modal functions used subsequently can thus be related to the
total fields propagating in the waveguide. Moreover, explicit details are given on the
practical implementation of the method, so that the algorithm can be used as a reference
when compared to the performances of the novel techniques presented thereafter.

For corrugated PPWs in section 2.1, numerical simulations are used to illustrate the
impact of the waveguide geometry onto the number of required modes for the MMM
to yield accurate results. This provides us with preliminary insight about the coupling
mechanisms between the metasurfaces.

For the holey metasurface waveguides studied in section 2.2, the MMM is generalized
to holes that can be excited with TEM modes, which has not been explicitly published
before. Most importantly, the proper separation of the different hole modes makes it
possible to simplify the coefficients of the dispersion matrix. For TM modes, the ma-
trix coefficients are expressed in terms of the longitudinal modal functions instead of
the transverse fields. This simplification is essential for the quasi-static homogenization
process in chapter 4.

Finally, it is notable that the dispersion diagrams in this chapter were obtained
quite faster by means of the MMM than with the eigensolver of CST. Given the various
parameters involved for each method, it is difficult to make precise quantitative compar-
isons. However, for practical accuracy of the effective wavenumber in holey metasurface
waveguides (within 1% of the true value), CST requires around one minute to find the
eigenvalue at a given frequency, whereas directly solving the dispersion equation requires
only several seconds. These rough estimates can serve as references to assess subsequent
techniques.



Chapter 3

Study of the low-dispersive behavior
of glide symmetry from the
mode-matching formulation

One of the most commented properties of glide symmetry (GS) is its ability to reduce
the dispersive behavior of the waveguide [32], [33], [157]. In chapter 2, the dispersion
diagrams of different glide-symmetric (G-S) waveguides are obtained by means of the
mode-matching method (MMM). The corrugated parallel-plate waveguide (PPW) exam-
ples presented in Fig. 2.3 illustrate the differences between G-S and non-glide-symmetric
(nGS) waveguides. GS closes the stopband between the first and second modes, at the
right-end of the Brillouin diagram i.e., at kz = π/pz. This reduces the dispersion in the
first Brillouin zone (kz < π/p). Thereby, the first dispersion curve of the G-S structure is
almost linear, whereas the first curve of the nGS structure bends towards the right of the
first Brillouin zone, where the group velocity vanishes. The same behavior is notable for
two-dimensional (2-D) GS, as shown for holey PPWs with rectangular holes in Fig. 2.6.
This seems to be particularly true when the effective density of the waveguide is high.
The aim of this chapter is the dispersive study of these G-S waveguides. A better physical
understanding of the difference between G-S and nGS waveguides is sought, as well as
elements of analytical proof for the reduction of dispersion.

The Brillouin diagrams for corrugated and holey PPWs are obtained by solving the
dispersion equations (2.12) and (2.42), respectively. At each frequency point f , the
dispersion equation is solved by means of iterative numerical solvers to obtain the cor-
responding effective propagation constants kz and kx. Given the strong non-linearity of
these dispersion equations in both G-S and nGS cases, it is a difficult task to show that
the G-S structure is low-dispersive compared to the nGS structure. Ideally, one would
like to show that the dispersion equation of the G-S structure can be written as a function
of the effective refractive index with no frequency dependency, while the nGS dispersion
equation cannot. Unfortunately, doing that in the general case is not achieved in this
work. Nevertheless, some particular cases give fruitful insights about the dispersion, and
different techniques are applied to extend our understanding of GS.

51
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Most of this chapter focuses on the corrugated PPW, presented in section 2.1. The
linearization of the G-S dispersion curves is highlighted in section 3.1, and is shown to
be particularly strong when the gap between the metasurfaces is small. This is explained
by analyzing the dispersion equation: decreasing the gap leads to the dismissal of all
harmonics with symmetric longitudinal electric fields in the G-S structure. This strongly
influences the coupling of the harmonics, and is the source of the dispersive disparities
between the two structures, as shown in section 3.2. Based on this, an equivalence be-
tween a given G-S waveguide and a scaled nGS structure is derived, yielding new physical
insight about the linearity of the G-S dispersion curves. Then, section 3.4 attempts to
prove the linearity of the G-S dispersion curve analytically. The dispersion equation of
the G-S structure is linearized and an analytical refractive index is derived, but only un-
der certain geometrical restrictions on the corrugations. Indeed, this derivation is valid
only for one or two modes in the corrugations, which is not enough to accurately describe
wave propagation for certain geometries, as shown in Fig. 2.2. Details to these compu-
tations are gathered in appendix C. Finally, the impact of the harmonics is generalized
to holey PPWs. Unfortunately, the complexity of 2-D GS makes it more difficult to get
simple dispersion studies for holey PPWs than for the corrugated PPW.

3.1 Low-dispersive behavior enabled by glide symmetry

GS leads to a reduction of lower dispersion of the first mode i.e., the dispersion curve is
not “bent” as it is in the nGS case. Visually, the G-S dispersion curve seems linearized
in the first Brillouin zone i.e., for kz < π/pz. In this paragraph, a way to quantify
this linearization is sought. The ratio of the group velocity at kz = π/p over the group
velocity at kz = 0 is not a good indicator of this linearization, because in the nGS case, it
is always zero (as the group velocity at kz = π/p is zero). Moreover, the dispersion curves
of both GS and nGS structures could be linear over most of the first Brillouin zone, and
then the nGS curve could bend only at the end, close to kz = π/p, in which case there is
low dispersion over most of the first Brillouin zone for both structures. One would want
to distinguish this case from the situation where the nGS curve bends progressively over
the whole Brillouin zone, whereas the G-S curve remains linear.

In order to compute a linearization indicator that captures these differences, a refer-
ence curve is needed. This reference is the zero-dispersive curve, which is tangential to
the true dispersion curve at f → 0, but which remains linear in the Brillouin diagram.
If there is low dispersion over the whole Brillouin zone, then the true dispersion curve
should be close to this tangential curve. The tangential reference curve and the abscissa
axis of the Brillouin diagram form a triangle, with area At. When the true dispersion
curve bends, the area under this curve is smaller than At, and is called Ad. The ratio
(Ad−Ad)/At is the area between the two curves, normalized by At. It is always smaller
than 1, and is a good indicator of the linearity of the dispersion curve. When it is equal
to 0, the dispersion curve is perfectly linear. The computation of this linearization index
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Figure 3.1: Illustration of the computation of the linearization index: the dispersion
curve demarcates the area Ad, whereas its tangent at kz = 0 demarcates the area At.
The larger the normalized difference (At−Ad)/At between the two, the more dispersive
is the propagation of the corresponding mode.

is illustrated in Fig. 3.1, where one can see the tangential curve corresponding to a
dispersion curve, and both areas.

This linearization index is computed as a function of geometry for corrugated PPWs.
Each plot in Fig. 3.2 corresponds to a different corrugation depth h, and maps the
linearization index in percent as function of the corrugation width a and the gap g
between the metasurfaces. All structures have a periodicity p = 4 mm. Fig. 3.2 highlights
how the nGS structure (all the right subfigures) is more dispersive than the GS structure
(all the left subplots): for equivalent dimensions, the linearization index of the nGS
structure is always much higher than for the GS structure. This confirms the interest of
GS for wide-band low-dispersive waveguides.

It is notable that this difference is particularly remarkable for a small gap g between
the metasurfaces, where the nGS structure tends to be particularly dispersive, while
the G-S curves remain quite linear. Moreover, one should also take into account the
fact that even for GS, the dispersion curve is not perfectly linear, especially for medium
corrugation widths (approx. a = p/2) and deeper corrugations. This will make it more
difficult to prove the dispersion reduction between GS and nGS structures. Indeed, it
will not be possible to prove that the G-S dispersion equation is frequency-independent,
because this is obviously not the case. Therefore, we will either focus on particular cases
where linear approximations can be made, or we will rely on other arguments to explain
the difference between G-S and nGS waveguides.
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Figure 3.2: Comparison of the dispersive behavior of nGS and G-S structures. The
linearization indicator is plotted as a percentage, depending on the gap g and the corru-
gation width a. The cell width is p = 4 mm, for different corrugation widths h.
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3.2 Impact of the harmonics in the parallel-plate
waveguide with small gap

In section 2.1, the MMM derives the dispersion equation (2.12) for corrugated PPWs.
This dispersion equation is solved when the determinant of the matrix M vanishes. In
the following, we refer to this matrix as the dispersion matrix. This matrix is defined by
(2.8) in the G-S case, and by (2.10) in the nGS case.

3.2.1 Dismissal of odd-order harmonics

According to (2.2), (2.4) and (2.5), even-order harmonics have an antisymmetric longi-
tudinal electric field, whereas odd-order harmonics are symmetric. Although in the G-S
structure, (3.1) indicates that both even and odd harmonics have an impact on wave
propagation, it can be shown that under certain conditions, only the harmonics with
antisymmetric fields are dominant. This means that all harmonics with odd orders s can
be dismissed.

It appears that for a small gap g between the metasurfaces, the even-order harmonics
are dominant. Indeed, according to (2.8), the dispersion matrix of the G-S corrugated
PPW has coefficients
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where the function f
(s)
m′m is defined in (2.9), and where the term s = 0 is isolated.

The wavenumber k(s)
y is imaginary, and so the trigonometric functions are rewritten as

hyperbolic functions of a real variable. The hyperbolic cotangent function is strictly
larger than the hyperbolic tangent. This is not enough to state that all the odd-order
harmonics can be dismissed, as both hyperbolic tangent and cotangent converge to one
for higher-order harmonics. However, if the cotangent is much smaller than the tangent
for all the harmonics to be retained, then odd-order harmonics can be neglected.

This depends on the number of harmonics that have an impact in the dispersion
equation (see the truncation of the harmonics in section 2.1.6). Let S > 0 be the highest
harmonic order to be considered. In the first Brillouin zone (that is for k0 < kz < π/p),
the higher-order harmonic wavenumbers are approximately frequency-independent,

k(s)
z = kz + s

2π

p
' s2π

p
, (3.2)
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where S ≥ s� 1. For the highest order S,
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If this ratio is large for the harmonic S, then this is the case for lower-order harmonic
too, thus proving that all odd-order harmonics are negligible. For that to be true, Sπgp
must be small enough. In this case, the hyperbolic tangent function can be linearized,
yielding the condition

(
Sπgp

)2
� 1 ⇐⇒ g � p

Sπ
. (3.4)

The best-case scenario is when the maximum harmonic order is S = 1. Taking a threshold
of 10 in the left condition of (3.4), with a cell-length p = 4 mm, the maximum gap is
g = 0.4 mm. In the reverse logic, for g = 0.1 mm and a threshold of 10, there should be
no relevant harmonics with orders higher than S = 5.

Unfortunately, the number of harmonics S needed to obtain accurate dispersion
curves can only be obtained by simulation, when the results converge. Nevertheless,
it should also be noted that in all cases, the low-order harmonics have a larger impact
on dispersion than high-order harmonics. Therefore, when g is already smaller than a
fraction of p/π, it is enough to say that the dispersion is mainly influenced by even-order
harmonics.

On the other hand, the nGS matrix coefficients are defined in (2.10): all the harmonic
terms are proportional to the cotangent, meaning that they all have an antisymmetric
longitudinal electric field, independently of the order parity. Therefore, the odd-order
harmonics cannot be dismissed from the dispersion equation, even for a small gap. As
such, (3.4) gives a good insight about how small g needs to be for the G-S waveguide
to behave differently from its nGS counterpart. In the next section, it is shown how
dismissing the odd-order harmonics impacts the dispersive behavior of the corrugated
waveguide.

3.2.2 Coupling of symmetric and antisymmetric harmonics

In the previous paragraphs, it is shown that the harmonics with symmetric field can
be dismissed in the G-S structure if the gap is small enough, whereas they are kept
in the nGS structure. Therefore, twice as many harmonics are considered in the nGS
structure as in the G-S structure. This leads to different harmonic couplings in both
structures. Here, the effect of neglecting the symmetric harmonics is observed by plotting
the corresponding terms in the dispersion equation. In order to do so, the simplified case
with one corrugation mode is considered, so that the dispersion equations become scalar
equations. This study does not prove the dispersive features of the structures, but it
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hints on how the coupling of adjacent harmonics leads to the “bending” of the dispersion
curve in the nGS case.

It is assumed that the gap g is small enough so that only antisymmetric harmonics
are relevant in the G-S structure. Moreover, it is assumed that only one mode propagates
in the corrugations. Let us consider M00, the dispersion matrix coefficient associated to
the corrugation mode of order 0. The dispersion equation with one mode is of the form
M00 = 0. According to (3.1) and (2.10), M00 has the form

M00 = γ0 + F
(0)
00 +

+∞∑

s=−∞
s even6=0

F
(s)
00 +

+∞∑

s=−∞
s odd

F
(s)
00 , (3.5)

where γ0 can be identified as the term preceded by the Krœnecker symbol, and where
for even-order G-S harmonics and all nGS harmonics,

F
(s)
00 =− a2

√
k

(s)
z

2
− k2

0

coth

(
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2

√
k

(s)
z

2
− k2

0

)
sinc2

(
k(s)
z

a
2

)
, (3.6)

with k
(s)
z = kz + s2π

p . For G-S odd-order harmonics, the cotangent is replaced by a

tangent. It is notable that these terms have a singularity at k(s)
z = ±k0 i.e., at kz =

s2π
p ∓ k0.
In Fig. 3.3, these harmonic terms are plotted for different frequencies over the interval

kz ∈ [0, 2π/p]. The five largest terms are kept (|s| ≤ 2), but actually only the harmonics
s = 0 and s = −1 are dominant in the first Brillouin zone. The dimensions of the
structure are chosen so that the field variability at the corrugation surface is negligible,
and so only one mode yields the true Brillouin diagram: p = 4 mm, a = 0.1 mm, g =
0.1 mm and h = 0.5 mm.

In Fig. 3.3, the left subfigures cover the G-S case, whereas the right subfigures cover
the nGS counterpart structure. The true propagation wavenumber kz is computed in
both cases and is indicated by a red solid vertical line. All the solid curves correspond
to harmonic terms with even orders. These terms represent antisymmetric harmonics
(even orders s), and they are involved in both G-S and nGS dispersion equations. On
the contrary, the dashed curves represent symmetric harmonics (odd orders s), and they
are involved only in the nGS dispersion equation.

The behavior of the harmonics with increasing frequency in Fig. 3.3 gives an insight
about how the presence of the symmetric harmonics influences the dispersive behavior
of the nGS structure compared to the G-S structure. The fundamental harmonic has a
singularity at k0, which results in a peak in Fig. 3.3 for the curve s = 0. Given that
the dispersion solution kz is larger than k0 (slow wave), it is located right to the peak.
Similarly, the harmonic s = −1 has a singularity at 2π/p − k0. At low frequencies, the
harmonic term s = 0 is dominant. Therefore, G-S and nGS solutions are close. But the
singularity of s = 0 increases linearly with the frequency, and so kz shifts to the right.
On the contrary, the singularity of s = −1 shifts to the left, making the harmonic term
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Figure 3.3: Dispersion terms F (s)
00 associated to the Floquet harmonic of order s in the

dispersion equation M00 = 0 for the corrugated PPW. The vertical axis corresponds to
the value of the harmonic term, and is expressed in dB (10 log10 |F |) as a function of
kz. Both G-S and nGS cases are compared a several observation frequencies. The true
solution kz of the dispersion equation is indicated with a red vertical line. The structure
parameters are: p = 4 mm, h = 0.5 mm, g = 0.1 mm and a = 0.1 mm.
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s = −1 larger at the true solution kz. As the solution get closer to the right end of the
first Brillouin zone, the harmonic terms s = 0 and s = −1 evolve to similar strengths,
breaking the linearity of the equation in the nGS case. This does not happen for the G-S
case, given that only antisymmetric harmonics (even order s) are present. Thereby, the
GS dispersion curve stays more linear, keeping the dispersion low.

3.3 Equivalence of glide-symmetric and non-glide
structures

In this section, we show that for a G-S corrugated PPW with a small gap, there exists a
theoretical nGS structure that has the same dispersive properties. This equivalent struc-
ture gives additional insight about the linearity and the stopbands of the G-S dispersion
curve.

The dispersion equation for the G-S structure is a mixture between even modes and
odd modes of the nGS structure. Indeed, considering the s-th Floquet term in (2.8) for
the eigenvalue `1, if s is even, then its behavior is like the s-th antisymmetric mode of
the nGS structure i.e., the cotangent term in (2.10). On the contrary, when s is odd,
then the Floquet harmonic behaves like the s-th symmetric mode of the nGS structure
i.e., the tangent term in (2.11).

According to paragraph 3.2.1, if the gap g is small enough (it must satisfy (3.4)), then
the symmetric harmonics of the G-S structure can be discarded. As such, the dispersion
matrices of the G-S and the nGS structure (equations (2.8) and (2.10), respectively)
are almost identical. The only difference is that the nGS structure has all harmonics,
whereas the G-S structure only has harmonics with even order s. Therefore, it can be
shown that the G-S corrugated PPW is equivalent to a scaled nGS structure in the first
Brillouin zone. The periodicity p̂ of this equivalent nGS structure must be half that of
the G-S structure i.e., p̂ = p/2. Then, all the nGS harmonics k̂(s)

z can be identified to
one of the even-order harmonics of the GS structure, given that

k̂(s)
z = kz + s2π

p̂ = kz + s4π
p = kz + (2s)2π

p = k(2s)
z . (3.7)

Moreover, the equivalent nGS structure has a double gap ĝ = 2g. The detailed proof of
the proportionality of the resulting dispersion matrices can be found in appendix C.2.
In the end, it comes that for any dispersion matrix coefficient,

M̂m′m =
1

2
Mm′m , (3.8)

where M̂ is the dispersion matrix of the equivalent nGS waveguide. The 1/2-factor can be
factored out of the matrix determinant, and so both structures have the same dispersion
equation. As such, the G-S and nGS structures sketched in Fig. 3.4 are equivalent in
terms of dispersive behavior.

This equivalence may seem intuitive for a small corrugation width a. Indeed, in the
G-S structure, every corrugation is faced with a perfectly electrically conducting (PEC)
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Figure 3.4: Equivalent G-S corrugated PPW (on the left) and nGS corrugated PPW
with period p/2 (on the right). This equivalence is true in the first Brillouin zone under
the conditions (3.4).

plate on the other side of the gap. If this PEC plate was infinite, it could be replaced
by a symmetric corrugation at twice the gap, because of image theory. The idea of
having a nGS equivalent structure with p/2 and 2g thus does not seem to come out of
nowhere. Nevertheless, this equivalence is intriguing for a > p/2. Indeed, in this case,
the equivalent nGS structure does not physically exist: the corrugation width a is larger
than the cell-length p̂ = p/2. The G-S PPW therefore embodies a non-physical nGS
structure.

This explains why G-S dispersion curves seem more linear (and thus less dispersive)
than nGS dispersion curves. The GS curve is the first half of a nGS curve, the more
linear part, before the curve starts “bending”. This equivalency also explains the vanishing
of the stopband between the first and second modes in the G-S Brillouin diagram. A
nGS structure of period p has a stopband at kz = π/p between the first and second
Brillouin modes. This means that a nGS structure of period p̂ = p/2 has a stopband at
kz = π/p̂ = 2π/p. This nGS structure is equivalent to the G-S structure of period p. As
such, the G-S structure has its first stopband at kz = 2π/p, and not at kz = π/p. Taking
into account the evenness and the 2π/p-periodicity of the Brillouin diagram for the G-S
structure, this stopband appears between the second and third Brillouin modes.

This is illustrated in Fig. 3.5: all curves with square markers correspond to the
dispersion curves of nGS structures, whereas all curves with triangle markers correspond
to G-S structures. The nGS structure with period p/2 has a first stopband at kz = 2π/p.
Given that this structure is equivalent to the G-S structure with period p, the same
dispersion curve (solid red) belongs to the spectrum of the latter (so it has both triangle
and square markers). The other eigenvalue of the G-S structure creates an additional
dispersion curve, which is symmetric regarding the kz = π/p axis. This additional curve
(dashed red with triangle markers) cuts the first one at kz = π/p, and so there is no
stopband there, contrarily to the nGS structure with period p.

It must be kept in mind that this equivalence is only proven here for the particular
case of the corrugated PPW with small gap. As shown in section 3.2.1, a small gap is
the condition for a notable difference between G-S and nGS waveguides. Nevertheless,
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Figure 3.5: Brillouin diagrams for the corrugated PPWs shown in Fig. 3.4. The G-
S waveguide (solid and dashed red curves) has dimensions p = 4 mm, h = 1.5 mm,
g = 0.2 mm and a = 1 mm. It is compared to a nGS structure with the same dimensions
(dashed blue curve), but also to its equivalent nGS structure (solid red curve), which has
half the periodicity and twice the gap.

it can not be taken as a justification for properties of GS in general. In future works, it
would be interesting to see if a generalization of this equivalence is possible, notably for
2-D GS.

3.4 Linearization of the glide-symmetric dispersion
equation for one or two modes

In this section the dispersion equation of the G-S corrugated parallel-plate waveguide
is linearized, under certain geometrical restrictions. Linearizing the dispersion equation
means that all frequency dependencies are simplified, resulting in a dispersion equation
that only depends on the effective refractive index n. This proves that for such structures,
there is no dispersion under the subwavelength condition.

3.4.1 Simplified G-S dispersion equation with small gap and small
corrugations

The dispersion of the G-S corrugated PPW is of the form |M | = 0, where the coefficients
of the dispersion matrix M are given by (3.1). These coefficients are simplified under
the following assumptions:

1. Subwavelength assumption: p ≤ λ0/2, with the free-space wavenumber λ0.
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2. Observation restricted to the first Brillouin zone: 0 ≤ k0 ≤ kz ≤ π
p .

The subwavelength assumption, as well as restricting the observation window, guaran-
tees that all longitudinal dimensions are small compared to the wavelength, and so the
harmonic fields can be considered to be constant over the range of a unit cell.

3. Shallow corrugations: h ≤ p
8 .

The restriction on the corrugation depth is necessary in order to approximate the field
variation between the bottom and the surface of the holes as linear.

4. Small gap: g ≤ p
4 .

The small gap enables to dismiss all harmonics with odd order, as explained in section
3.2.1. Given that in the nGS case, these harmonics are not negligible, the following
low-dispersive behavior cannot be proven without GS.

5. Thin corrugations: a < p.

The reason for the corrugation width restriction is two-fold. On the one hand, with thin
corrugations, the oscillatory nature of sinc2

(
k

(s)
z

a
2

)
in the harmonic terms (3.6) can be

removed: these terms are linearized for the fundamental harmonic and approximated by
constants for higher harmonics. This approximation is tightly bound to how small a is
compared to p, and to which point the trigonometric functions may be linearized. In the
first Brillouin zone, the biggest approximation happens at the right-end of the Brillouin
diagram, accepting that sin (π2

a
p ) ' π

2
a
p . The smaller a, the better this approximation.

On the other hand, small corrugations require fewer modes in the corrugations, as
illustrated in Fig. 2.2. This reduces the size of the dispersion matrix, and thus makes an
analytical linearization of the equation worth considering. Note that for wide corruga-
tions, few modes are needed too. However, the trigonometric linearizations are rougher.

The details of all subsequent simplifications of (3.1) can be found in appendix C.1.1.

3.4.2 Linearization for 1 corrugation mode

It is assumed that only one mode in the corrugations is enough to yield a good approxi-
mate of the dispersion curve, that is one transverse electric magnetic (TEM) mode. The
dispersion equation becomes scalar,

M00 = 0 , (3.9)

where M00 is made of a sum of terms, each of which corresponds to one harmonic,
according to (3.1). In the first Brillouin zone, if the gap and the corrugations are small,
M00 can be simplified according to appendix C.1.1. Moreover, appendix C.1.2 shows
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that if the gap g is small, then the fundamental-harmonic term is dominant. In the end,
the dispersion term M00 can be approximated by

M00 '
pa

hk2
0

− 2a2

gk2
0 [n2 − 1]

, (3.10)

with the effective refractive index n. After factoring out the frequency dependency, the
dispersion equation for 1 mode and 1 harmonic becomes

p

h
− 2a

g [n2 − 1]
= 0 . (3.11)

This equation depends only on n, which shows that the corresponding dispersion curve
is linear. The analytical solution of this equation is

n = ±
√

1 +
2ha

gp
. (3.12)

Although this solution is valid only under many geometrical restrictions, it has a simple
form, and provides direct understanding about the influence of the various structure
parameters on the refractive index. Notably, decreasing the gap further results in an
increase of the refractive index. This does not break the restrictions on the validity of
(3.12). Decreasing the period, or enlarging the corrugations increases n as well, however
this can only be done up to the limits set in 3.4.1.

3.4.3 Linearization for 2 corrugation modes

The problem is extended to 2 modes in the corrugations, in order to cover more structures.
Consequently, the dispersion matrix M becomes a 2× 2 matrix, and is made of matrix
coefficientsM00, M11, andM01 = −M10. For a small gap, thin and shallow corrugations,
and in the first Brillouin zone, these coefficients can be simplified according to appendix
C.1.3.

The simplified 2-modes dispersion equation is

1

k2
0

M̃00(n)M̃11 +
1

k2
0

M̃2
01(n) = 0 , (3.13)

where M̃00 is defined in (3.10). Factoring out the frequency, and inserting the terms
derived in appendix C.1.3, yields

{
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which can be simplified as
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(3.15)

This equation depends only on n, proving that the G-S structure has a low-dispersive
behavior in the first Brillouin zone and under the given structural assumptions. If it is
solved numerically, care must be given to the singularity in the denominator, dealt with
in appendix C.1.3. Additionally, an analytical solution can be extracted from (3.14),
namely

n = ±
√√√√√√√√

gp+ 2ha

gp+ 8
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coth
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−(π
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2
]2

, (3.16)

This analytical expression of the refractive index characterizes the waveguide over the
whole first Brillouin zone, and it can be applied to a wider range of waveguides than
(3.12), because two modes are considered in the corrugations.

Like for the 1-mode derivation in paragraph 3.4.2, the fundamental harmonic has a
dominant impact on propagation. As such, if all high-order harmonic terms are neglected
in the denominator, (3.16) can be further simplified as

n =

√
1 +

2ha

gp

/√
1 +

16

π3

a2

gp coth
(
πha
) . (3.17)

This last expression of the linearized refractive index lays out a corrective term compared
to the 1-mode formula (3.12). This corrective term contains the impact of the field
interactions between the fundamental harmonic and the second corrugation mode.

3.4.4 Validity of linearized dispersion models

Fig. 3.6 displays the Brillouin diagram of the G-S structure for various corrugation widths
a. The periodicity is p = 4 mm. The corrugation depth h = 0.5 mm and the gap
g = 0.1 mm are chosen so that they satisfy the geometrical restrictions 3.4.1.

The true dispersion curve obtained with CST is compared to the dispersion curve
computed with one or two modes. These dispersion curves are obtained by solving the
MMM dispersion equation with 50 harmonics. Moreover, the linearized dispersion curves
obtained with (3.12) (1 mode) and (3.16) (2 modes) are also plotted (dashed curves).

First, it is notable that at low frequencies, the linearized dispersion curves (dashed
line) are always tangent to the corresponding exact curves (solid line), whether for 1
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(b) a = 0.5 mm.
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(c) a = 0.75 mm.

Figure 3.6: (Cont. – caption after last subfigure).
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(d) a = 1 mm.
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Figure 3.6: (Cont. – caption after last subfigure).
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Figure 3.6: (Cont. – caption after last subfigure).
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(k) a = 3.5 mm.

Figure 3.6: Brillouin diagram for the G-S structure with p = 4 mm, h = 0.5 mm, g =
0.1 mm and varying corrugation width a. The dispersion curve obtained with CST is
compared with the 2-mode and 1-mode models. For both models, the true dispersion
curve is compared to its linearized version (3.12) or (3.16). 50 harmonics are considered
for each model.
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mode or for 2 modes, whatever the corrugation width. This is due to the fact that all
the approximations become asymptotically accurate when f → 0.

Secondly, Fig. 3.6 confirms that both linearizations (1 or 2 modes) are valid for small
corrugations (a ≤ 0.5 mm), given that the resulting dispersion curves fit the CST results.
However, with increasing corrugation width, the 1-mode model drifts away from the true
dispersion curve, and so does its linearization. On the other hand, the 2-mode model
quite fits the CST Brillouin diagram up to corrugations of medium width (a ≤ 1.5 mm).
Up to these medium corrugations, the 2-mode linearization can be taken as proof that
the corrugated G-S PPW is low-dispersive in the first Brillouin zone.

For wider corrugations, even the 2-mode model does not capture the exact dispersive
properties of the waveguide. This is expected, because Fig. 2.2 shows that for h = 0.5 mm,
these medium corrugation widths require more modes to accurately characterize wave
propagation.

Fig. 2.2 also shows that for larger corrugations, fewer modes are required. That
is why for large corrugations (a ≤ 3 mm and a ≤ 3.5 mm), the 2-mode linearization
approaches the CST curve again. However, it is to be noted that the non-linearized 2-
mode curves are less accurate at the right-end of the Brillouin diagram. This is because
larger corrugations lead to bigger approximations with increasing frequency, even if 2
modes are enough, as explained at the end of 3.4.1. The index formula (3.16) is thus
valid in the first half of the Brillouin diagram, but less so with increasing frequency.

3.5 Holey parallel-plate waveguides

The corrugated PPW is studied in the previous section, because its geometry makes it
easier to analyze the impact of GS on the dispersion diagram. However, it only covers
one-dimensional (1-D) GS. Ideally, these results about the dispersive behavior of GS
should be generalized to two dimensions. This section studies the holey PPW with 2-D
GS. Although linearization of the dispersion curves is not achieved, the impact of the
Floquet harmonics in the G-S and nGS cases is analyzed.

The dispersion equation of holey G-S PPWs is given in (2.42), with matrix coeffi-
cients (2.40), (2.47) and (2.48) depending on the type of the modes in the holes. Each
dispersion matrix coefficient is made of a sum of harmonic terms. All harmonic terms
are proportional to the vertical spectral function f (s`) = c(s`)/k

(s`)
y . The term c(s`) is

the only function that changes between G-S and nGS dispersion equations. It is either
equal to tan

(
k

(s`)
y

g
2

)
if s + ` is odd, or to cot

(
k

(s`)
y

g
2

)
if s + ` is even. It can be shown

that when the gap g is sufficiently small, terms with s+ ` even are dominant, making it
possible to dismiss all harmonic terms where s+ ` is odd.

It can be safely stated that k(s`)
y =

√
k2

0 − k
(s)
z

2
− k(`)

x

2
is complex, given that the

Floquet harmonics are guided within the PPW, meaning in particular that kz2+kx
2 > k2

0.
In the special case where kx = 0 (main propagation along the z-direction), then kz > k0.
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Consequently,
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2

)
= −j coth

(
g
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√
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z

2
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2
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0

)
,

and tan
(
k(s`)
y

g
2

)
= j tanh

(
g
2

√
k

(s)
z

2
+ k

(`)
x

2
− k2

0

)
, (3.18)

and so

c(s`) =





−coth

(
g
2

√
k

(s)
z

2
+ k

(`)
x

2
− k2

0

)
if s+ ` even,

−tanh

(
g
2

√
k

(s)
z

2
+ k

(`)
x

2
− k2

0

)
if s+ ` odd.

(3.19)

Let S = max[s, `] be the largest harmonic order for both s and `. Then, in the first
Brillouin zone,

g

2

√
k

(s)
z

2
+ k

(`)
x

2
− k2

0 ≤
g

2

√
k

(s)
z

2
+ k

(s)
x

2
≤ g

2

π

p

√
2 [2S + 1] , (3.20)

where p = max[px, pz]. When a positive number x ≤ 1/2, then coth(x) ' 1/x and
tanh(x) ' x with an error of less than 3%. Consequently,

if S ≤ 1

2

(
p

gπ
√

2
− 1

)
, then c(s`) '




−2
g

1

k
(s`)
y

if s+ ` even,

−g
2k

(s`)
y if s+ ` odd.

(3.21)

If the gap is small enough, simulations show this to be true, because S is not very large.
As an example, for p/g = 40, it can be shown that S = 2 is enough. The condition (3.21)
requires S ≤ 4, which is less restrictive.

Given that these simplifications are true when g
2k

(s`)
y ≤ 1

2 , this means that the cotan-
gent terms are at least 4 times as large as the tangent terms, in the worst case. Actually,
in the previous numerical example with p/g = 40 and S = 2, the cotangent terms are
at least 13 times as large as the tangent terms. Consequently, the harmonic terms with
even s + ` are dominant with respect to the harmonic terms with odd s + ` for g small
enough.

This is illustrated in Fig. 3.7 for a G-S PPW with square holes of size a = 3 mm,
depth h = 5 mm, and periodicity pz = px = 4 mm. The Brillouin curve computed with all
the harmonics is compared to the curve where only even-order harmonics are kept in the
dispersion equation. A parametric study of this difference is made as function of the gap
g. As expected, for small values of g, dismissing the odd-order harmonics has no impact
on the accuracy of the MMM, because all relevant harmonics satisfy (3.21). When the
gap increases, both odd- and even-order harmonics have an impact on dispersion, and so
a disparity is observed between the dispersion curves, starting at higher frequencies.
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Figure 3.7: Brillouin diagram of G-S PPWs with square holes and different gaps g be-
tween the metasurfaces. Depending on the gap, the impact of keeping the odd-order
harmonics (dashed curves) or dismissing them (solid curves) is observed. In both cases,
the MMM is applied with 150 transverse magnetic (TM) modes, 150 transverse electric
(TE) modes, and harmonics orders s and ` ranging from -20 to 20. All structures have
pz = px = 4 mm, h = 5 mm and az = ax = 3 mm. The waves propagate along the z-axis
i.e., θ = 0.

Chapter landmarks

The aim of this chapter was to gain further understanding about the reduced dispersion
of GS. Based on the dispersion equations obtained with the MMM, following findings are
made:

• Parametric studies show that the smaller the gap g between the metasurfaces, the
lower the dispersion of G-S waveguides compared to nGS waveguides.

• The reduced dispersion is due to the dominance of harmonics with antisymmetric
fields in the case of GS. A condition for this dominance is given in (3.4) for corru-
gated PPWs, and in (3.21) for holey PPWs. When these conditions are satisfied,
the symmetric harmonics can be dismissed.

• In Fig. 3.3, it is shown that the low dispersion can be explained with a linear shift
of a singularity in the fundamental harmonic with increasing frequency. In the nGS
case, this linearity is broken by the symmetric harmonics, which are not dismissible.
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• Under the geometrical restrictions listed in paragraph 3.4.1, the dispersion curve
of G-S corrugated PPWs can be linearized, proving the low dispersion. For thin
corrugations, a closed-form expression of the effective refractive index is found in
(3.12). For medium corrugations, this index is given by (3.16). These formulas
accurately describe the dispersive behavior of the waveguide over the first Brillouin
zone.

• Under the assumption of a small gap (3.21), a G-S corrugated PPW is shown to
yield the same dispersive behavior as a nGS waveguide with twice the gap and half
the period. This nGS equivalent is not physical for large corrugations.

We have not been able to linearize the dispersion curve of corrugated and holey
waveguides except in very particular cases. Other paths, involving a limited number
of harmonics, have been pursued, but required numerical computations to show the
linearity. In the 2-D case (holey PPW), mathematical relations between the G-S and
nGS have been found, but do not give physical insight about the dispersion. Therefore,
these results are not reported here. These difficulties are mostly due to the large number
of parameters that impact the frequency dispersion. GS reduces the dispersion compared
to its nGS counterpart, but the linearity of the first mode is not true in general. That is
why particular cases have been taken as examples in this chapter. The main result is the
impact of the harmonics with decreasing gap, which seems to be the physical difference
between G-S and nGS propagation in all structures.



Chapter 4

Quasi-static homogenization of
glide-symmetric parallel-plate
waveguides

When the dispersion equation (2.42) is solved as a function of frequency, it yields the Bril-
louin diagram of the glide-symmetric (G-S) parallel-plate waveguide (PPW). However,
this equation is non-linear, so finding its solution requires iterative numerical solvers.
Therefore, the parametric studies required for the design of a G-S microwave device can
become quite cumbersome.

In chapter 3, the dispersive study of G-S corrugated PPWs leads to closed-form
formulas for the effective refractive index of these waveguides. However, (3.12) and
(3.16) are derived only under certain geometrical restrictions, which enable to prove that
the dispersion curve is linear in the first Brillouin zone. Nevertheless, results in the
previous chapter have shown that glide symmetry (GS) reduces the dispersion of the
first Brillouin mode beyond these geometrical restrictions. This means that the effective
refractive index of the structure at a given frequency defines the propagation behavior
of the waveguide over a wide band. As such, there is no particular need to obtain the
complete Brillouin diagram of the structure. The almost-constant effective refractive
index of the first mode is enough. If this low dispersion is accepted as true (with or
without analytical proof), then it is sufficient to compute the effective refractive index
at one particular frequency point. A good choice for this particular point is the quasi-
static regime i.e., when frequency tends to zero. Indeed, we show here that it is possible
to get a closed-form formula for the equivalent refractive index for arbitrary waveguide
geometries when considering the structure at low frequencies.

Such a quasi-static homogenization implicitly relies on the principles of the multiple
scales method, which is based on the theory of small perturbations [181]. The idea is to
solve differential equations that describe phenomena operating at widely different scales.
In order to do that, it assumes that the phenomena are uncorrelated. The power series
of the perturbed signal become more complicated, but the resulting solution takes all the
different scales into account. In the present case, wave propagation between holey meta-

73



74 CHAPTER 4. QUASI-STATIC HOMOGENIZATION

surfaces combines two phenomena at different scales. On the one hand, the overall phase
variation due to wave propagation in a PPW: due to the subwavelength assumption,
these phase variations are slow compared to the metasurface’s unit cells. On the other
hand, the phase perturbations due to the metasurface geometry are fast, of the same
scale as the periodicity. The spectral decomposition of the field into Floquet harmonics
facilitates the separation of two types of field variations, particularly distinguishable at
low frequencies. Indeed, the wavelength of the fundamental harmonic stretches to infin-
ity in the quasi-static regime, as do the phase variation due to propagation, whereas the
wavenumbers of the high-order harmonics become integer fractions of the unit cell, thus
capturing the local phase disruptions. Therefore, in the quasi-static regime, the power
series that describe the harmonic fields can be reduced to their fundamental terms with-
out loss of accuracy, while the resulting simplified dispersion equation contains distinct
terms to describe the different scales of phase variation.

This method is applied in section 4.1 of this chapter to the corrugated PPW, and
in section 4.2 to the holey PPW. The quasi-static assumption as well as other relevant
simplifications are applied to the true dispersion equation of the G-S structure, obtained
with the mode-matching method (MMM) in chapter 2. The resulting matrix can be
transformed into a scalar equation. This equation yields a closed-form solution for the
effective refractive index of the waveguide.

This closed-form solution depends on the modal functions at the surface of the meta-
surface cavities (corrugations or holes). For canonical cavities such as corrugations or
rectangular holes, these modal functions are known analytically. Therefore, the resulting
refractive index has a purely analytical form, leading to very fast simulation and opti-
mization of the metasurface waveguides. This is developed in section 4.3 for canonical
holes. On the other hand, arbitrary hole shapes require the use of a numerical eigenmode
solver, such as the finite element method (FEM). Section 4.4 shows how the closed-form
formula can be associated to a two-dimensional (2-D) FEM to explore new hole shapes.

The wideband validity of these closed-form formulas is enabled by the low-dispersive
GS. But it is only truly accurate in the quasi-static regime, contrarily to the formulas
derived in chapter 3, which were derived as a consequence of the low-dispersive proof.
Section 4.5 attemps to incorporate some frequency dependencies into the quais-static
formulas to further improve the wideband accuracy of this technique.

4.1 Quasi-static formula for the effective refractive index
of a corrugated parallel-plate waveguide

In this section, the dispersion equation (2.12) obtained by means of the MMM is consid-
ered. The dispersion matrix coefficients (2.8) are simplified in the quasi-static regime, in
order to reformulate this equation and to solve it analytically.
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4.1.1 Low-frequency reformulation of the dispersion equation

Separation of fundamental vs. higher harmonics If k0 → 0, then the effective
fundamental wavenumber kz goes to zero as well. Therefore, in the quasi-static regime,
the wavenumbers of the Floquet harmonics are reduced to

k(s)
z = kz + s

2π

p
=

k0→0

{
nk0 if s = 0,
s2π
p else,

(4.1)

The wavenumber of the fundamental harmonic goes to zero linearly with frequency,
proportionally to the refractive index n. Therefore, the fundamental harmonic must be
considered separately from the higher harmonics, whose wavenumbers become frequency-
independent constants.

Given (2.8), we define a vertical spectral function, which characterizes the field dis-
tribution of the harmonics across the gap. It is defined as

f (s) =





k
(s)
z

2

k
(s)
y

cot
(
g
2k

(s)
y

)
if s is even,

−k
(s)
z

2

k
(s)
y

tan
(
g
2k

(s)
y

)
if s is odd,

=
k0→0

{
2n2

g(1−n2)
if s = 0,

f̄ (s) if s 6= 0,
(4.2)

with the quasi-static higher-harmonic vertical spectral function

f̄ (s) =




−s2π

p coth
(
g
2s

2π
p

)
if s is even,

−s2π
p tanh

(
g
2s

2π
p

)
if s is odd,

(4.3)

which is frequency-independent.

Separation of TEM vs. TM modes In the dispersion equation (2.12), the matrix
M can be subdivided according to the nature of the modes in the corrugations. When
m = 0, the mode is transverse electric magnetic (TEM), whereas when m ≥ 1, the modes
are transverse magnetic (TM). Consequently, the dispersion matrix can be rewritten as

M =

[
M00 mH

m M e

]
, (4.4)

where the first row and column of the matrix represent mode interactions with the TEM
mode, whereas the lower-right part of the matrix contains only TM modes. All these
coefficients are defined in the following. It must be noted that M00 and m have an
additional k0 factor compared to the matrix coefficients derived in (2.8). Indeed, the
dispersion equation (2.12) is invariant if the determinant of the matrix M is multiplied
by any scalar, and so the first row and the first column of M can be multiplied by k0

without changing the equation. This modification helps solving the dispersion equation
in the quasi-static regime.



76 CHAPTER 4. QUASI-STATIC HOMOGENIZATION

The coefficients that express the interactions between TM modes can be written as

M e
m′m = δm′mγm + f (0)e

(0)
m′ e

(0)∗
m +

+∞∑

s=−∞
s6=0

f (s)e
(s)
m′e

(s)∗
m . (4.5)

where the vertical spectral functions are defined in (4.2). The term γm represents the
field distribution of the mode m in the corrugations, and is easily identifiable in (2.8)
as it is preceded by the Krœnecker function. The terms e(s)

m are the projections of the
modes onto the Floquet harmonics on the corrugated surface. All these coefficients are
defined in appendix D.1.

The scalar coefficientM00 is purely TEM. Separating fundamental and higher-harmonic
terms, it can be written as

M00 = k2
0γ0 + f (0)k2

0

∣∣∣e(0)
0

∣∣∣
2

+
+∞∑

s=−∞
s 6=0

f (s)k2
0e

(s)
0 e

(s)∗
0 . (4.6)

The k2
0 factors are due to the multiplication of the first row and column of the dispersion

matrix with k0.
Finally, the coefficients of the vectorm are mixed coefficients, relating the TM modes

with the TEM mode. They are defined as

mm = k0f
(0)e(0)

m e
(0)∗
0 +

+∞∑

s=−∞
s6=0

f (s)k0e
(s)
m e

(s)∗
0 . (4.7)

The k0 factors are due to the multiplication of the first row of the dispersion matrix with
k0.

Quasi-static simplification of the TEM coefficient According to the quasi-static
simplifications made in appendix D.1, the simplification of (4.6) in the quasi-static regime
is

M00 =
k0→0

pa

h
+

2a2

g (1− n2)
+

+∞∑

s=−∞
s 6=0

f̄ (s)k2
0 ē

(s)
0 ē

(s)∗
0

=
k0→0

pa

h
+

2a2

g (1− n2)
, (4.8)

where the higher-harmonic terms disappear because of the k2
0 factor.

Quasi-static simplification of TM coefficients According to the quasi-static sim-
plifications made in appendix D.1, the simplification of (4.5) in the quasi-static regime
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is

M e
m′m =

k0→0
δm′mγ̄m +

2n2

g (1− n2)
ē

(0)
m′ ē

(0)∗
m +

+∞∑

s=−∞
s 6=0

f̄ (s)ē
(s)
m′ ē

(s)∗
m . (4.9)

where γ̄m, f̄ (s), ē(0)
m and ē(s)

m are frequency-independent.

Quasi-static simplification of mixed coefficients According to the quasi-static
simplifications made in appendix D.1, the simplification of (4.7) in the quasi-static regime
is

mm =
k0→0

− 2n

g (1− n2)
jaē(0)

m . (4.10)

where the higher-harmonic terms disappear because of the k0 factor.

4.1.2 Analytic low-frequency refractive index

According to (4.8), (4.9) and (4.10), the dispersion matrix (4.4) is simplified in the quasi-
static regime as

M =
k0→0

[
pa
h 0

0 Σ

]
+

2

g (1− n2)

[
ja

nē(0)

][
ja

nē(0)

]H

. (4.11)

All the fundamental-harmonic terms are isolated, because they are n-dependent, whereas
the diagonal and higher-harmonic coefficients of the TM modes are regrouped in the
matrix Σ, that is

Σm′m = δm′mγ̄m +
+∞∑

s=−∞
s 6=0

f̄ (s)ē
(s)
m′ ē

(s)∗
m . (4.12)

The vector ē(0) contains all the TM mode projections on the fundamental harmonic, that
is ē(0)

m with m > 0.
If Σ is assumed to be invertible (which is not proven here), then the determinant

of M in (4.11) can be reformulated as a scalar expression, making use of the so-called
determinant lemma [182, p. 416]. The latter states that the determinant of M can be
written as

|M | =
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Given that Σ is invertible, its determinant is non-zero. Consequently, the dispersion
equation (2.12) is equivalent to

1 +
2

g (1− n2)

[
ja

nē(0)

]H [pa
h 0

0 Σ

]−1 [
ja

nē(0)

]
= 0 . (4.14)

Equation (4.14) can be reformulated as the second-order polynomial equation

n2

(
g − 2

[
ē(0)

]T
Σ−1ē(0)

)
− g − 2

ah

p
= 0 . (4.15)

Note that the hermitian of ē(0) is replaced by the transpose operator, given that ē(0) is
real according to (D.7).

Equation (4.15) is solved for the closed-form expression of the refractive index

n =

√√√√ g + 2ahp

g − 2
[
ē(0)

]T
Σ−1ē(0)

. (4.16)

This formula is an accurate characterization of the effective medium in the quasi-static
regime of the corrugated PPW. As such it establishes a very fast modeling method of
these structures, without requiring full-wave commercial solvers such as CST. Note that
when only the fundamental corrugation mode is considered, there are no vectorial terms
in the denominator, yielding the linearized formula (3.12). However, the latter formula is
valid only under strict geometrical restrictions in the first Brillouin zone, whereas (4.16)
is accurate for any waveguides in the quasi-static regime.

Although the solution (4.16) is closed-form and fully analytical, it contains the inverse
of Σ. A numerical approach is still necessary in order to compute its inverse if a large
number of modes M is considered. In appendix D.2, different options are presented to
obtain more explicit expressions of the low-frequency equivalent index n, based on the
sparsity of Σ and on neglecting some of the reamining coefficients without affecting the
precision of the results.

4.1.3 Numerical study of the low-frequency effective refractive index

The closed-form refractive index formula (4.16) is derived in the quasi-static regime for
arbitrary sizes of corrugated PPWs. As such, it should match full-wave solvers for any
geometry, assuming that enough modes and harmonics are considered in the MMM.

This is confirmed by Fig. 4.1, where the low-frequency refractive index is plotted as
a function of the corrugation width a. The structure periodicity is p = 4 mm. Different
corrugation depths h and metasurface gaps g are considered. In all cases, 10 modes and
50 harmonics are taken into account for the analytical index (4.16) (dashed curve). It is
compared to the true index computed with CST (solid curve) at approximately 10MHz.

Given that n is almost constant in the first Brillouin zone, the index computed in
the quasi-static regime remains valid up to a certain frequency, depending on the desired
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Figure 4.1: Parametric study of the low-frequency effective refractive index n as a func-
tion of the corrugation width a. The cell length is p = 4 mm. 10 modes and 50 harmonics
are considered. The true refractive index computed with CST (solid) is compared to the
analytic model (4.16).
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Figure 4.2: Frequency validity of the quasi-static refractive index n computed with (4.16).
The error 10log10 |(nlow − nCST)/nCST| between the quasi-static index nlow and the true
index computed with CST is plotted as a function of frequency. The G-S corrugated
PPW has dimensions p = 4 mm, g = 0.1 mm and h = 2 mm. Different corrugations
width a are considered. In each case, the value of quasi-static index is indicated.

accuracy. This is illustrated in Fig. 4.2. The quasi-static index (4.16) is compared to the
true frequency-dependent index computed with CST at 10MHz for different structures.
For all considered G-S structures, the periodicity is p = 4 mm, the gap between the
metasurfaces is g = 0.1 mm, and the corrugation depth is h = 2 mm. Three different
corrugation widths a are simulated, so that the frequency validity can be examined for
different effective densities. The quasi-static index value is indicated in each case next
to the corresponding curves.

As expected, the error is negligible at low frequencies, proving again the validity of the
formula (4.16) in the quasi-static regime. Although the error increases with frequency,
the formula can be used to characterize the waveguide over a wide frequency range,
despite being derived in the quasi-static regime. The extend of this validity is correlated
to the effective refractive index. Indeed, the study of G-S waveguides has highlighted
the quasi-linearity of the propagating mode in the first Brillouin zone. However, the
higher the effective refractive index of the waveguide, the lower the frequency at which
the mode reaches the end of the first Brillouin zone. If the curve was perfectly linear,
the frequency at kz = π/p would be f = c0

2pnlow
, with c0 the speed of light in vacuum

and nlow the quasi-static refractive index. That explains why in Fig. 4.2, for a = 3 mm,
the frequency validity is larger than for a = 1 mm. In the first case, nlow = 1.13, and so
the right-end Brillouin frequency is approximately f = 33 GHz. In the second case, with
nlow = 1.54, this is reduced to f = 24 GHz. Additionally, denser effective media seem
to be more dispersive, meaning that the dispersion curve starts bending before reaching
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the end of the first Brillouin zone. This explains the large disparities in the frequency
validity in Fig. 4.2. Nevertheless, taking into account these limitations, the formula still
gives a good approximation of the effective index over a large portion of the first Brillouin
zone.

4.1.4 Quasi-static homogenization of non-glide PPWs

The effective refractive index at low frequencies can be computed for the non-glide-
symmetric (nGS) structure too. All simplifications made for the G-S structure in section
4.1.1 and appendix D.1 can be made for the nGS structure. The resulting dispersion
equation is almost exactly like (4.16), except that the coefficients of the matrix Σ in
(4.12) have the same terms for even- and odd-order harmonics. This means that in (4.3),
the vertical spectral function is proportional to a hyperbolic cotangent for all s.

The low-frequency effective refractive index n (4.16) is computed for both G-S and
nGS PPWs, and is plotted in Fig. 4.3 as a function of the corrugation width a. The
dimensions of the structure are p = 4 mm, h = 0.5 mm and g = 0.1 mm. 10 corrugation
modes and harmonics with orders up to |s| ≤ 25 are considered for all computations.
The index n computed with (4.16) is compared to the true index, computed with CST
at approximately f = 10 MHz.
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Figure 4.3: Comparison of the G-S and nGS low-frequency effective refractive index n, as
a function of the corrugation width a. 10 modes and 50 harmonics are considered. Other
structure parameters are p = 4 mm, h = 0.5 mm and g = 0.1 mm. The true refractive
index computed at 10 MHz with CST corresponds to the dashed curves, whereas the
analytic index computed with (4.16) is represented by solid curves.

For small corrugations, the G-S and the nGS PPW are asymptotically identical in
terms of density. However, as the corrugations get wider, Fig. 4.3 shows that the nGS
structure is denser, meaning that the phase velocity is smaller than in the G-S structure.
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Additionally, the refractive index profiles in Fig. 4.3 withstand the equivalency be-
tween G-S and nGS structures with double-periodicity derived in section 3.3. Indeed,
for 0 < a < p/2, the index curve of the G-S structure has the same form as the nGS
curve over the interval 0 < a < p. Given that the G-S structure is equivalent to a scaled
nGS structure with half cell-length, it makes sense that the refractive index has a similar
a-dependency.

4.2 Quasi-static formula for the effective refractive index
of holey parallel-plate waveguides

In this section, the quasi-static homogenization method previously derived for corrugated
PPWs is extended to 2-D GS, as published in [183] by the authors. The holey PPWs
studied in sections 2.2 and 3.5 are considered. The dispersion equation (2.42), with
matrix coefficients (2.40), (2.47) and (2.48), is simplified when k0 → 0. Similarly to
(4.16), the resulting closed-form formula for the effective refractive index depends only
on the structure geometry. Additionally, this formula is a function of the main angle of
propagation between the two metasurfaces.

4.2.1 Distinction between fundamental and higher harmonics

The wave propagating between the two holey metasurfaces is defined by its main prop-
agation constant kθ = kθûθ. Its direction in the zx-plane can be characterized by the
angle θ formed between the unitary propagation vector ûθ and the z-axis. Finding kθ
at a given frequency is equivalent to finding the effective refractive index nθ = kθ/k0.
As such, it is notable that the effective refractive index nθ is direction-dependent in the
general case, and so the holey metasurface waveguide may be anisotropic.

In the dispersion equation (2.42), the fundamental mode is not defined by kθ, but by
the wavenumbers kz and kx. These wavenumbers correspond to propagation in orthogo-
nal directions. As such, they are the cartesian components of the propagation vector kθ,
such that they are related by

kθ =
√
k2
z + k2

x = nθk0 . (4.17)

When k0 → 0, (4.17) implies that kθ → 0, kz → 0 and kx → 0. In the following,
writing the condition k0 → 0 is thus synonymous of all fundamental harmonics going to
zero as well. Therefore, in the quasi-static regime, the wavenumbers of all the Floquet
harmonics defined in (2.23) become

[
k

(s)
z

k
(`)
x

]
=

k0→0





[
kz

kx

]
=

[
k0nθ cos θ

k0nθ sin θ

]
for s = ` = 0,

[
s2π
pz
`2π
px

]
= Γ(s`) for (s, `) 6= (0, 0),

(4.18)
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where Γ(s`) can be understood as the quasi-static propagation vector of the harmonic
(s, `). As such, in the spectral domain, all Floquet harmonics are evaluated at the points
Γ(s`). Fundamental and higher-harmonic terms must be distinguished, given that in
the former case, the spectral point Γ(00) = (0, 0) is approached from a direction which
directly depends on θ, at a speed that depends on nθ. This is illustrated in the spectral
representation Fig. 4.4. That is why the occurrences of the fundamental harmonic are
not dismissed yet, as they might lead to nθ-dependencies.

This happens in the vertical spectral function defined in (2.35). Considering (4.18),
in the case of the fundamental harmonic, it can be shown that

f (00)

k
(00)
y

=
k0→0

2

gk2
0

(
εr1µr1 − n2

θ

) , (4.19)

whereas for higher harmonics

f (s`)

k
(s`)
y

=
k0→0

f̄ (s`) =

{
−tanh

(g
2Γ(s`)

)/
Γ(s`) if `+ s odd,

−coth
(g

2Γ(s`)
)/

Γ(s`) if `+ s even,
(4.20)

with the norm Γ(s`) =
∥∥Γ(s`)

∥∥ =
√

(`2π/px)2 + (s2π/pz)2.
This distinction between fundamental and higher harmonics is not necessary when it

comes to the projected modal functions (PMFs) defined in (2.28), which are all simplified
as

ē(s`)
m =

∫∫

S

emF̄
(s`)ds , (4.21)

where em may be any of the three electric field components, and F̄ (s`) = e
−j
`2π
px

x−j
s2π
pz

z.
For the fundamental harmonic, F̄ (00) = 1, and so ē(00)

m is the average of the electric field
component em over the hole area. As such, all ē(00)

m are real coefficients.
Overall, (4.21) shows that the quasi-static dispersive behavior of the waveguide is

related to the shape of the holes through the Fourier transform of their modal fields,
evaluated periodically, as visualized by the blue points in Fig. 4.4.

4.2.2 Simplification of the matrix coefficients

In the dispersion equation (2.42), the modes are ordered according to type, such thatM
can be subdivided in four submatrices. Different quasi-static simplifications are possible
for the different submatrices, according to the mode type.

For ease of notation, we define the refractive index of the gap medium n1 =
√
εr1µr1,

the refractive index of the hole medium n2 =
√
εr2µr2, and the corresponding free-space

wavenumber k1 = k0n1.
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Figure 4.4: Spectral domain of the Floquet harmonics. During the homogenization
process, the harmonics of orders (s, `) are evaluated at the blue points, which are the
periodic replicas of the Γ-point (kz, kx) = (0, 0). The latter is approached from the
propagation direction θ, as indicated by the red arrow.

Diagonal terms In (2.40) and (2.47), there is a term that exists only on the diagonal
of the submatrixMh/h andM e/e, respectively, because it is multiplied by the Krœnecker
symbol δm′m. InMh/h, the quasi-static approximation of this diagonal term depends on
whether a transverse electric (TE) or a TEM mode is considered.

The cut-off wavenumber kh
m of a TE mode is non-zero. Therefore, the frequency-

dependencies vanish next to it, yielding kh
y,m → jkh

m. As such, the quasi-static diagonal
term in (2.40) becomes

µr1k
h
m

µr2
pxpzI

h
mcoth

(
kh
mh
)
, (4.22)

where cot
(
jkh
mh
)

= −j coth
(
kh
mh
)
.

When the mode is TEM, then kh
m = 0, and so kh

y,m → k0n2. For k0 → 0, the cotangent
term is approximated by the inverse function, and so the frequency dependencies cancel
out. Therefore, for TEM modes, the diagonal term of Mh/h is

µr1

µr2

pxpz
h

Ih
m . (4.23)

For M e/e in (2.47), the diagonal term becomes

−k2
0

µr1εr2
ke
m

pxpzI
e
mcoth (ke

mh) , (4.24)

where the quasi-static simplifications are the same as in (4.22). The wave admittance of
TM modes (2.37) is used.
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Fundamental-harmonic terms In (2.40), (2.47) and (2.48), the matrix coefficients
contain a sum of terms, each of which corresponding to one Floquet harmonic. Due to
the distinction made in (4.18), the term that corresponds to the fundamental harmonic
is taken out of the sum and treated separately. The harmonic wavenumbers and the
vertical spectral function are simplified according to (4.18) and (4.19).

In (2.47) for M e/e, the fundamental-harmonic term becomes

k2
1

2n2
θ

g
(
n2

1 − n2
θ

)
ē

(00)
y,m′ ē

(00)
y,m

ke
m′k

e
m

, (4.25)

where the complex conjugate is removed because ē(00)
y,m is real, as defined in (4.21). In

(2.48) for M e/h,

jk1n1
2nθ

g
(
n2

1 − n2
θ

)
ē

(00)
y,m′

ke
m′

(
cos θēh(00)

z,m + sin θēh(00)
x,m

)
. (4.26)

Finally, for Mh/h in (2.40), the fundamental term is simplified as

2

g
(
n2

1 − n2
θ

)



n2

1

(
ē

h(00)
z,m′ ē

h(00)
z,m + ē

h(00)
x,m′ ē

h(00)
x,m

)

− n2
θ

(
cos θē

h(00)
x,m′ − sin θē

h(00)
z,m′

)(
cos θēh(00)

x,m − sin θēh(00)
z,m

)


 , (4.27)

which can be reformulated as
2

g

(
cos θē

h(00)
x,m′ − sin θē

h(00)
z,m′

)(
cos θēh(00)

x,m − sin θēh(00)
z,m

)

+
2n2

1

g
(
n2

1 − n2
θ

)
(

cos θē
h(00)
z,m′ + sin θē

h(00)
x,m′

)(
cos θēh(00)

z,m + sin θēh(00)
x,m

)
, (4.28)

to isolate all nθ dependencies. Note that there is no distinction needed between TE and
TEM modes for the harmonic terms in Mh/h.

Higher-harmonic terms The remaining terms in the sums of (2.40), (2.47), (2.48)
are simplified as well. The harmonic wavenumbers and the vertical spectral functions
are simplified according to (4.18) and (4.20). For Mh/h, this yields

−
∑

(s,`)6=(0,0)

f̄ (s`)
(
s2π
pz
ē

h(s`)
x,m′ − `2π

px
ē

h(s`)
z,m′

)(
s2π
pz
ēh(s`)
x,m − `2π

px
ēh(s`)
z,m

)∗
, (4.29)

where the terms proportional to k2
0 are negligible compared to the remaining terms at

low frequency. For M e/e, the higher-harmonic terms in (2.47) become

k2
1

∑

(s,`)6=(0,0)

f̄ (s`)
ē

(s`)
y,m′ ē

(s`)∗
y,m

ke
m′k

e
m

Γ(s`)2
. (4.30)

Finally, for the coefficients ofM e/h, the higher-harmonic terms are simplified similarly to
M e/e in (4.30). The resulting k2

0 dependency makes these coefficients negligible compared
to the fundamental-harmonic coefficient (4.26), which is proportional to k0. As such, the
low-frequency M e/h only contains the fundamental-harmonic coefficients.
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4.2.3 Total dispersion matrix

After the low-frequency simplifications detailed in the previous paragraphs, the dispersion
matrix can be written as

M =
k0→0



k2

1

(
Σe +

n2
θ

n2
1−n2

θ

2
gu

e[ue]H
)

jk1
nθn1

n2
1−n2

θ

2
gu

e
[
uh
]H

−jk1
nθn1

n2
1−n2

θ

2
gu

h[ue]H Σh +
n2

1

n2
1−n2

θ

2
gu

h
[
uh
]H


 . (4.31)

The matrix Σe contains the diagonal and higher-harmonic terms for the TM modes,
as defined in (4.24) and (4.30). The k2

1-dependency is factored out of these terms. As
such, its coefficients are

Σe
m′m = −δm′m

εr2
εr1ke

m

pxpzI
e
mcoth (ke

mh) +
∑

(s,`)6=(0,0)

f̄ (s`)
ē

(s`)
y,m′ ē

(s`)∗
y,m

ke
m′k

e
m

Γ(s`)2
. (4.32)

Similarly, Σh contains the diagonal and higher-harmonic terms of the remaining
modes, as well as the part of the fundamental term that does not depend on nθ. For the
TE modes, these terms are defined in (4.22), (4.28) and (4.29), yielding coefficients

Σh
m′m = δm′m

µr1k
h
m

µr2
pxpzI

h
mcoth

(
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mh
)

+
2
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(
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x,m − sin θēh(00)
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−
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)(
s2π
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)∗
, (4.33)

whereas for TEM modes, according to the diagonal term (4.23), the matrix coefficients
are

Σh
m′m = δm′m
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µr2

pxpz
h

Ih
m

+
2
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(
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, (4.34)

where only the diagonal term changes.
The remaining entries are the parts of the fundamental terms (4.25), (4.26) and (4.28)

that have an nθ-dependency. They are all proportional to 2/g, which is factored out.
For the fundamental term of M e/e, when additionnally factoring n2

θ/(n
2
1 − n2

θ) out, the
remaining elements can be written as the outer product of two vectors ueueH. According
to (4.25) , the vector ue has coefficients

ue
m =

ē
(00)
y,m

ke
m

. (4.35)
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Similarly, the nθ-dependent term of (4.28) is factored out, that is n2
1/(n

2
1 − n2

θ). The
remaining part can be written as the outer product of a vector uh with its hermitian,
with coefficients

uh
m = cos θēh(00)

z,m + sin θēh(00)
x,m . (4.36)

The coefficients ue
m and uh

m can be identified in the fundamental term (4.26) of the
submatrixM e/h. As such, the remaining terms are factored out, that is jk1nθn1/(n

2
1 − n2

θ).

4.2.4 Quasi-static homogenization

From the dispersion equation (2.42), the determinant of the dispersion matrix must be
null. Considering the quasi-static simplification (4.31), the determinant of the matrix
can be simplified by factoring out 1/(n2

1−n2
θ) from the total matrix. Moreover, k1nθ can

be factored out from the first row and the first column of the considered block-matrix.
Similarly, n1 can be factored out of the last row and the last column. This yields the
reduced dispersion equation

∣∣∣∣∣∣∣

n2
1−n2

θ

n2
θ

Σe + 2
gu

e[ue]H j2
gu

e
[
uh
]H

−j2
gu

h[ue]H
n2

1−n2
θ

n2
1

Σh + 2
gu

h
[
uh
]H

∣∣∣∣∣∣∣
= 0 . (4.37)

The determinant in (4.37) can be rewritten as the sum of a diagonal matrix that depends
on nθ, summed with the outer product of two vectors,
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0 1
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H
∣∣∣∣∣∣∣

= 0 . (4.38)

By using the determinant lemma [182, p. 416], (4.38) can be reformulated as the
scalar equation

n2
1 − n2

θ + n2
θ

2

g
[ue]H [Σe]−1 ue + n2

1

2

g

[
uh
]H [

Σh
]−1

uh = 0 , (4.39)

which is a second order polynomial equation in nθ. Therefore, it is solved for

nθ = n1

√√√√1 + 2
g [uh]

H [
Σh
]−1

uh

1− 2
g [ue]H [Σe]−1 ue

, (4.40)

which is the effective refractive index of the G-S holey PPW in the quasi-static state.
This homogenized index characterizes the waveguide over a wide frequency range, due
to the low dispersion of G-S structures. It depends only on the waveguide geometry and
materials. Specifically, the information about the shape of the holes is contained in the
quasi-static PMFs ē(s`)

m , which are the Fourier transforms of the hole modes evaluated
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at the quasi-static harmonic wavenumbers. As such, getting the eigenmodes of the hole
cross-section is the only prerequisite for (4.40) to be applicable.

This is illustrated in the following section by applying (4.40) to a series of examples.
The validity of this formula is illustrated for holey G-S PPWs with canonical hole shapes
in section 4.3, and for arbitrary hole shapes in section 4.4. Its limits in frequency are
examined at the end of the chapter.

4.3 Canonical hole shapes

In the previous section, a closed-form solution of the effective refractive index is found for
holey PPWs in the quasi-static regime. It depends only on the waveguide geometry. This
includes the cross-section of the holes: the information about their eigenmodes must be
incorporated in the formula. In the following, this procedure is applied to the example
of canonical holes, for which the analytic expressions of the eigenmodes are known. It
is shown that some of these eigenmodes do not impact the final refractive index, and so
they can be dismissed. This accelerates the resulting closed-form formula even further,
and so it can be used to perform fast parametric studies. It also opens the door to
waveguide optimization.

4.3.1 Dismissal of the modes without dispersive effect

In the closed-form index formula (4.40), the size of the matrices Σe and Σh depends
on the number of modes that are considered in the holes. When hundreds of TM and
TE modes are needed to achieve a given accuracy for the refractive index, filling these
matrices takes most of the algorithm’s execution time, because they contain several tens
of thousands of coefficients. Therefore, if the number of these modes can be reduced, the
execution time can brought down even further.

From the closed-form solution of the refractive index (4.40), it is possible to identify
some modes that have no influence on low-frequency propagation i.e., they do not change
the value of the refractive index if they are kept in the formula (4.40). The conditions
(D.17) and (D.18) derived in appendix D.3 are sufficient conditions for a mode to be
dispensable. Roughly speaking, this happens when the field average at the hole surface
of a mode is null. This is applied in appendix D.4.1.2 and D.4.2.2 for rectangular and
circular holes, respectively.

4.3.2 Modal functions for rectangular and circular holes

Rectangular holes Holes with rectangular cross-section of size az×ax are considered,
as shown in Fig. 2.5. This yields a holey G-S PPW with the unit cell shown in Fig. 4.5a.
Most of the hard work is already done in 2.2.5, that is deriving the Fourier transforms of
the eigenmodes. The last step is simply to evaluate these expressions in the quasi-static
regime. This is done in appendix D.4.1.

Added to the dimensions pz, px, h, and g of the holey PPW, equations (B.32), (B.35),
(D.22), (D.24) and (D.25) are enough to fill out all the coefficients of the matrices Σe
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(a) Rectangular holes of size az × ax. (b) Circular holes of radius a.

Figure 4.5: Holey G-S PPWs with canonical holes. The gap is filled with a dielectric
(εr1, µr1), and the holes are filled with a dielectric (εr2, µr2). The red arrow indicates the
wave propagation plane.

and Σh in (4.32) and (4.34), as well as the coefficients of the vectors ue and uh in (4.35)
and (4.36). As such, the refractive index formula (4.40) can be computed as function of
the waveguide and hole dimensions.

Moreover, appendix D.4.1.2 shows that the index formula (4.40) is still accurate if
one keeps only TM modes with both q and m are odd, and TE modes where q+m is odd.
This represents a reduction of the TM modes by half, and the TE modes by a quarter.

Circular holes For circular holes of radius a, the unit cell of the holey G-S PPW is
illustrated in Fig. 4.5b, yielding the total structure shown in Fig. 2.7. In 2.2.6, the Fourier
transforms of the circular eigenmodes are derived. The last step is simply to evaluate
these expressions in the quasi-static regime. This is done is appendix D.4.2.

Inserting the quasi-static terms (D.30), (D.31), (D.32), (D.33), (D.34), and (D.35)
into the matrix and vector coefficients (4.32), (4.34), (4.35) and (4.36) makes the formula
(4.40) fully analytic, and so the effective refractive index can be computed directly as
function of the geometry and the propagation direction.

Appendix D.4.2.2 shows that it is enough to keep only the TM modes with t = 2 and
q even, and the TE modes with q odd are kept.

4.3.3 Convergence and time gain

The closed-form formula (4.40) yields the effective refractive index of the holey PPW as
function of geometry and propagation direction. In this formula, the size of the different
matrices depends on the number of modes considered in each hole. Moreover, each matrix
coefficient (4.32) and (4.34) is dependent on the number of Floquet harmonics used in
the MMM. Higher-order harmonics and modes have a reduced impact on the effective
wave propagation, and can therefore be truncated, such that the dispersion matrix in
(2.42) has a finite size [43].
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However, this truncation depends on geometry and on the desired accuracy. In the
following, we study the convergence of the low-frequency refractive index for increasingly
many modes. This study is performed with two techniques in parallel. On the one side,
the low-frequency refractive index is computed with the closed-form formula (4.40). On
the other side, by solving the dispersion equation (2.42) at 1MHz. We refer to this as the
MMM approximation, for which around 20 iterations are performed to obtain an index
convergence of 10−5. In order to avoid overflow when solving the dispersion equation
(2.42), we consider the log-determinant of the dispersion matrix, and use a golden-section-
search [184] to iteratively determine when the log-determinant tends towards −∞. These
adjustments highlight the gain in implementation complexity enabled by the closed-form
formula (4.40), which requires no iterative tuning of any kind.

While the precision chosen in this comparison is much higher than the one required
for applications, our aim is the rigorous validation of the accuracy of (4.40). Additionally,
a CST simulation at around 10MHz validates the convergence value of both methods.
Holey GS PPWs with three different holes cross-sections and depth h = 5 mm are consid-
ered in Fig. 4.6. The metasurfaces have a periodicity pz = px = 4 mm and are separated
by a gap g = 0.1 mm. No dielectrics are used in these examples. The waves propagate
in the direction θ = 0°.

In Fig. 4.6, the computed low-frequency refractive index is plotted as a function of the
maximum mode ordermmax. The maximum mode order applies to both q andm, for both
TM and TE modes. As such, the total number of considered modes is 2mmax(mmax + 1)
– given that there no TE00, TMq0 nor TM0m modes. As such, the highest abscissa point
in Fig. 4.6 i.e., mmax = 40, corresponds to 3280 modes in the square holes. Additionally,
each curve corresponds to a different number of Floquet harmonics, where orders s and
` range within ±5, ±20 or ±80. This latter case represents more than 25 000 Floquet
harmonics.

Time gain The computation time for the three structures studied in Fig. 4.6 is com-
pared between the closed-form formula (4.40) and the MMM approximation. The aver-
age time over the three considered structures is plotted in Fig. 4.7. A computer with a
Quad-Core Intel Core i5 @2.4GHz processor and with 8 GB of RAM is used, running
the algorithms on Matlab without any parallelization effort. The total execution time to
obtain the MMM curves up to mmax = 20 for each structure is around 4 hours, whereas
the closed-form formula requires only 106 seconds. The higher the number of modes, the
higher the disparity in time between the two methods. That is why the MMM approx-
imation was not computed for orders higher than mmax = 20. In this latter case, with
harmonics ±80, the closed-form formula is 250 times faster then the MMM method.

There are several reasons for this speed-up. First, the MMM approximation is iter-
ative, and must evaluate the matrix determinant several dozen times, depending on the
search interval and the desired accuracy. Second, the low-frequency method developed in
this paper enables the dismissal of many modes that have no impact on propagation, as
explained in section 4.3.1. As such, for 2mmax(mmax + 1) modes with the MMM approx-
imation, only 3

4(mmax +1)2 are kept for the closed-form formula. Finally, the matrices in
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Figure 4.6: Refractive index convergence as the number of modes increases. The struc-
tures under study are G-S PPWs with rectangular holes, with periodicities pz = px =
4 mm, a gap g = 0.1 mm filled with vacuum, and empty rectangular holes of depth
h = 5 mm. The propagation direction is parallel to the z-axis. The low-frequency re-
fractive index nlow is computed with the MMM approximation and with the quasi-static
closed-form formula (4.40). Each curve corresponds to a different number of Floquet
harmonics. A reference result is also computed with CST.
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Figure 4.7: Computation time of the quasi-static refractive index as a function of the
number of considered modes, comparing the quasi-static closed-form formula (4.40) (solid
curves) with the MMM approximation (dashed curves). Different number of Floquet
harmonics are used for each curve. The structure under study is the same as in Fig. 4.6,
that is holey PPWs with pz = px = 4 mm, g = 0.1 mm and h = 5 mm. The execution
times are averaged over the three different rectangular hole cross-sections.

(4.40) have a much simpler form than the original dispersion matrix, and can be formed
in more efficient ways. This is important, because most of the execution time comes from
assembling the hundreds or thousands of harmonic terms inside the matrices, compared
to which the time required to invert the matrices is negligible.

On top of the speed of execution, the implementation complexity is an other advan-
tage of the closed-form formula. No iterative root-finding algorithm is involved, and so
no parameters such as convergence limit or interval of search must be tuned. Addition-
ally, no matrix determinants are computed, and so there are no problems with machine
precision as with the direct MMM method.

No execution time information is given for the CST results. That is because a separate
study would be necessary, with parameters such as the mesh grid refinement. Moreover,
the CST licence at hand is run on a different computer, with higher computation capa-
bilities. Nevertheless, from experience, in order to obtain refractive indexes with similar
accuracy, the CST simulations last 20 to 100 times longer than the computation of the
quasi-static formula (4.40), despite the larger computation capabilities.

4.3.4 Parametric studies

The quasi-static closed-form refractive index formula (4.40) enables fast and wideband
characterization of holey G-S PPWs. In view of the considerable time gain illustrated in
Fig. 4.7, this formula speeds up the otherwise cumbersome parametric studies that are
required when designing metasurface microwave devices, such as lenses. In the following,
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such parametric studies are performed for the canonical hole shapes considered in Fig.
4.5. Not only do they serve as examples, but they also validate the flexibility of the
formula as a function of the structure’s dimensions. Leaning on the results of the pre-
vious paragraph, the chosen number of modes and harmonics is high enough to achieve
convergence of the effective refractive index.

4.3.4.1 Rectangular holes: parametric studies

The low-frequency refractive index is computed with the closed-form formula (4.40) for
G-S PPWs with rectangular holes. The quasi-static PMFs for rectangular holes have
been derived in (D.22), (D.24) and (D.25). Only the relevant modes are kept, according
to section 4.3.1.

For all parametric studies, the GS PPW has cells of size pz = px = 4 mm, and it
is not filled with any dielectrics. All results are compared to CST data, computed for
kθ = 0.4 m−1, which corresponds to a frequency of approximately 15MHz. In Fig. 4.8,
the propagation direction is θ = 0°, and the holes are squares of size az = ax = a. In
each subfigure, the low-frequency refractive index is plotted as a function of a different
geometrical parameter: the hole depth h in 4.8a, and the hole size a in 4.8b. The
parametric curves depend on the gap g.

Fig. 4.8a shows that beyond a certain depth, h does not impact the effective refractive
index of the holey waveguide. Indeed, the hole’s electrical size is tiny, therefore the
rectangular waveguide modes are attenuated in the holes. The bottom of the holes
barely interacts with the fields if it lies beyond a certain distance. This can be verified
by considering the low-frequency matrices Σe in (4.32) and Σh in (4.34), which are the
only h-dependent terms in the refractive index formula (4.40). Given km the smallest
cut-off wavenumber of the modes in the holes, the term coth

(
hki

m

)
tends towards 1 when

h increases. This behavior does not depend on the hole cross-section. The impact of
the hole size in Fig. 4.8b is more intricate, but a large range of refractive indexes can be
achieved by changing the size of the holes. For a Luneburg lens, indexes up to

√
2 are

needed, which can be achieved when g = 0.1 mm.
The closed-form formula (4.40) is a θ-dependent function. As such, it can be used

to study the isotropy of the holey GS PPW, by computing the low-frequency refractive
index as a function of the propagation direction. This is done in Fig. 4.10 for two
different structures: square holes of size a = 3 mm in Fig. 4.10a, and rectangular holes
with az = 3.5 mm and ax = 1.5 mm in Fig. 4.10b. The hole depth is fixed at h = 5 mm.
The same structure is studied in Fig. 4.9 with a gap g = 0.1 mm, where the isotropy is
observed as a function of the square hole size a. G-S and nGS designs are compared.

Interestingly, the GS PPW with square holes is isotropic. This might seem counter-
intuitive, given that the metasurface is made of a square lattice of holes. As such,
the periodicity in different directions is not the same. Nevertheless, Fig. 4.10a displays
a constant refractive index as function of the propagation angle. In chapter 5, it is
shown how the closed-form formula (4.40) can reveal the isotropy of certain structures
analytically. On the other hand, rectangular holes result in a θ-dependent refractive
index, as show in Fig. 4.10b, yielding an anisotropic waveguide. As such, the closed-form
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Figure 4.8: Parametric study of the low-frequency refractive index for G-S PPWs with
rectangular holes. The low-frequency refractive index nlow computed with the closed-form
formula (4.40) (solid curves) is compared to CST data (dashed curves). All structures
have pz = px = 4 mm, with propagation direction θ = 0°.

index formula (4.40) enables the fast design of isotropic and anisotropic waveguides, for
example for ultra-wideband compressed lenses as illustrated in [35].

4.3.4.2 Circular holes: parametric studies

Additional parametric studies are performed in Fig. 4.11 for holes with circular cross-
section of radius a, filled with a dielectric material of relative permittivity εr2. The
quasi-static PMFs for circular holes (D.30) to (D.35) are used in the closed-form formula
(4.40) to compute the effective refractive index of the different structures. According to
section 4.3.1, only the relevant modes are kept in (4.40). All results are compared to
CST data computed at approximately 15MHz.
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Figure 4.9: Parametric study of the low-frequency refractive index for PPWs with square
holes, computed with (4.40) as a function of the propagation direction θ and the hole
size a. The waveguides have pz = px = 4 mm, g = 0.1 mm, and h = 5 mm.
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Figure 4.10: Study of the low-frequency refractive index as a function of the propa-
gation direction θ, for GS PPWs with rectangular holes. The shared dimensions are
pz = px = 4 mm, h = 5 mm. The low-frequency refractive index nlow is computed with
two techniques: CST’s eigensolver and the closed-form formula (4.40).

In Fig. 4.11a the refractive index is plotted as a function of the hole depth h, and in
Fig. 4.11b it is plotted as a function of the hole radius a. Each curve corresponds to a
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Figure 4.11: Parametric study of the low-frequency refractive index for circular holes.
The low-frequency refractive index nlow computed with the closed-form formula (4.40)
is compared to CST data. The structure under study has dimensions pz = px = 4 mm,
g = 0.1 mm and a propagation direction θ = 0°.

different hole permittivity εr2. As it did for rectangular holes, the closed-form formula
matches CST data for all geometries, and for all hole fillings. In practice, circular holes
are easier to drill than rectangular holes. The closed-form formula can be used to rapidly
manufacture dense waveguides depending on the dielectric material that fills the holes.
In Fig. 4.12, the isotropic behavior of circular holes is illustrated as a function of the hole
radius, for both G-S and nGS designs.

4.3.5 Optimization of glide-symmetric holey parallel-plate waveguides

Considering a holey G-S PPWs, a closed-form formula for the effective refractive index
has been found. In the previous sections, it is illustrated how this formula accelerates
parametric studies, which consist in plotting the effective refractive index as a function
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Figure 4.12: Parametric study of the low-frequency refractive index for PPWs with
circular holes, computed with (4.40) as a function of the propagation direction θ and
the hole radius a. The waveguides are filled with vacuul and have pz = px = 4 mm,
g = 0.1 mm, and h = 5 mm.

one of the structure’s dimensions. However, more complex information might be required
when designing a metasurface microwave device. In the following, it is shown that the
speed and closed form of (4.40) opens the door to direct optimization of the unit cell
of holey G-S PPWs. Maximization of the refractive index and of the anisotropy are
achieved.

4.3.5.1 Square holes: maximum isotropic index

For square holes, the quasi-static PMFs are known analytically, as developed in section
D.4.1. All following structures have square unit cells of size p = 4 mm, hole depths
h = 5 mm, and have no dielectric fillings. The refractive index formula (4.40) is directly
inserted into the optimizer, where the hole size a is changed in order to maximize the
refractive index. The algorithm used is the Matlab function fmincon, using an interior-
point search method. It assumes convergence when the change rate is less than 1× 10−6.

In Fig. 4.13, the maximum refractive index is found for different gaps. Fig. 4.13b
shows a classical parametric study for g = 0.1 mm, where the refractive index is plotted
as a function of the hole size a. The maximum index can be obtained in this way,
nevertheless it is not very efficient in terms of number of evaluations of the formula
(4.40). On the other hand, Figs. 4.13c and 4.13d are the result of an optimizing process.
Fig. 4.13c plots the refractive index nmax as a function of g, where each g point is the
result of an optimization over a. Fig. 4.13d yields the corresponding hole size amax for
which nmax is found. The peak of Fig. 4.13b can be read directly in Figs. 4.13c and
4.13d. Interestingly, for smaller gaps, the maximum refractive index is not obtained for
holes of maximum area.
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Figure 4.13: Maximizing the effective refractive index nmax of a holey G-S PPW by
varying the square hole size a, for arbitrary gaps g. Other structure dimensions are:
p = 4 mm and h = 5 mm. There are no dielectrics in the structure.

Obtaining Fig. 4.13d can be quite helpful when designing a lens antenna. For a
given lens layout, the metasurface waveguide must be capable of yielding a maximum
refractive index, for example

√
2 for a Luneburg lens. At the same time, the thinner the

gap between the metasurfaces, the more difficult the manufacturing of the lens. Fig. 4.13d
gives the maximum gap that is acceptable while preserving the necessary index range.
For a Luneburg lens with square holey G-S metasurfaces, the maximum possible gap is
g = 0.16 mm. At the center of the lens, where the refractive index profile reaches its
peak, the corresponding hole size is approximately a = 3.1 mm.

4.3.5.2 Circular holes: maximum isotropic index

The maximization of the refractive index can be performed for circular holes too. The
refractive index formula (4.40) is applied using the quasi-static PMFs derived for circular
holes in section D.4.2. The holey G-S PPW has square unit cells of size p = 4 mm, holes
of depth h = 5 mm, and is not filled with any dielectrics.
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Figure 4.14: Maximizing effective refractive index nmax of a holey G-S PPW by varying
the circular hole radius a, for arbitrary gaps g. Other structure dimensions are: p = 4 mm
and h = 5 mm. There are no dielectrics in the structure.

Similarly to the example in Fig. 4.13, a classical parameter sweep of the hole radius
a is first performed in Fig. 4.14b, for a gap g = 0.1 mm. It leads to a maximum index
n = 1.32 for a = 1.65 mm. This value can be obtained more directly by inserting (4.40)
into an optimizer algorithm. In Fig. 4.14c, the maximum refractive index is found for
different gaps, where the varying parameter is the radius a of the circular holes. Fig. 4.14d
plots the corresponding hole radius amax for which nmax is found.

It is notable that circular holes do not reach effective densities as high as square holes.
For example, in order to design a Luneburg lens with circular holey metasurfaces, the
maximum gap is g = 0.07 mm, less than half the maximum gap enabled by square holes.

4.3.5.3 Rectangular holes: maximum anisotropic index

In the previous paragraphs, the maximum refractive index is maximized for both square
and circular holes, which yield isotropic behavior in the waveguide. However, if rect-
angular holes are used, the refractive index is different depending on the propagation
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direction, as illustrated in the parametric study in Fig. 4.10b. The refractive index has
extremas in the two directions aligned with the rectangle, that is for propagation angles
θ = 0° and θ = 90°. For some structures, maximizing the ratio between these extremas
might be of interest, for example when compressing lenses. A search on the rectangular
hole dimensions az and ax must be performed to maximize the refractive index ratio
n0/n90 between the two orthogonal directions.

For this optimization, performing a classical parameter sweep becomes quite cumber-
some, given the 2-D search space. The colormap in Fig. 4.15b illustrates such a search
for p = 4 mm, h = 5 mm, g = 0.1 mm and no dielectrics. Given that (4.40) yields a
closed-form expression for the refractive index, the ratio n0/n90 can be computed in a
closed form too. As such, it can be directly inserted in an optimizer algorithm, with two
degrees of freedom: az and ax. Because the search space is two-dimensional, and to avoid
non-convexity pitfalls, a global optimizing algorithm is used. The interior-point Matlab
function fmincon is initialized at 10 random points, which lead to parallel searchs. This
is handled automatically by Matlab’s createOptimProblem framework.

The ratio n0/n90 is maximized for different gaps between the metasurfaces, yielding
Fig. 4.15c. The corresponding hole dimensions are plotted in Fig. 4.15d. In order to
obtain these curves, where 20 different gaps are considered, the closed-form formula
(4.40) was called almost 13 000 times, for a total simulation time of approximately half-
an-hour. Even if CST needed only one minute per structure simulation, the optimization
of the anisotropy would have lasted 9 full days. Such optimization processes would be
unrealistic without the speed-up of the quasi-static homogenization presented in this
chapter.

4.4 Arbitrary hole shapes

4.4.1 Numerical extension with finite-element method

A closed-form formula for the effective refractive index of a G-S holey PPW has been
found, for arbitrary hole shapes, yielding an homogenization of these waveguides. In
order to apply this formula to a given structure, information about the hole modes is
required. For rectangular or circular holes, these modes are known analytically, and
so their norm, cut-off wavenumber and Fourier transform expressions can be embedded
directly into the homogenization code. Once the analytical expressions are known, the
quasi-static formula is very fast.

Nevertheless, computing all mode information analytically can be quite cumbersome,
and prone to errors. Moreover, this approach is limited to very basic hole shapes, like
rectangles and ellipses. That is why a numerical implementation of this homogeniza-
tion technique is interesting. We have developed an in-house 2-D FEM that yields the
eigenvalues and eigenmodes of the hole cross-section [185, chap. 9]. For TE and TM
modes, a generalized eigenvalue problem must be solved, yielding the cut-off frequencies
of the modes. The corresponding eigenmodes are the longitudinal fields of the modes
i.e., electric for TM modes and magnetic for TE modes. For TEM modes, the scalar
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Figure 4.15: Maximizing the anisotropic ratio n0/n90 of a holey G-S PPW by varying
the dimensions az × ax of the rectangular holes, for arbitrary gaps g. Other structure
dimensions are: p = 4 mm and h = 5 mm. There are no dielectrics in the structure.

potential is found in a similar way. The transverse field components and the mode norms
are obtained with numerical differentiation and integration, respectively.

The detailed FEM process is derived in appendix D.5, which yields the eigenmodes
of a given hole. Its particular use for the homogenization of holey PPWs is detailed in
the following paragraphs.

4.4.1.1 Numerical computation of the quasi-static coefficients

Field sampling and quasi-static projected modal functions The interior surface
of the hole cross-section is meshed in Matlab. The FEM matrices S and R are built for
the TM and TE modes, and the generalized eigenvalue problem (D.43) is solved using the
Matlab function eig. This function yields the set of the squared cut-off frequencies ke

m
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and kh
m. Each cut-off wavenumber is associated to a set of basis function weights {αi

m,i},
with i = e, h, which are the represent the eigenmodes of the problem. Additionnally, the
number of inner conductors is detected, and equation (D.54) is solved for each resulting
TEM mode. As such, by combining the obtained weights αi in the approximations
(D.37) and (D.52), the fields ey,m, hy,m and Φm can be computed at all points of the
hole cross-section.

The information needed in the quasi-static refractive index formula (4.40) is the
Fourier transforms of the eigenmodes, evaluated at periodic points (s2π

pz
, `2π
px

), as defined
in (4.21). From a judicious sampling of the FEM fields, these Fourier coefficients can be
obtained directly by applying a fast Fourier transform (FFT) algorithm. When applying
the FFT on N samples spaced by step t in the spatial domain (N odd), the resulting
N spectral points are spaced by steps 2π

(N−1)t , covering a spectral range ±π
t . Calling the

maximum required harmonic order smax, we can define the required sampling step t =
pz

2smax
, such that the highest spectral point is at smax

2π
pz
. In order for the spectral points

to fall at multiples of 2π
pz
, it implies field sampling must be so that Nz = 2smax + 1.The

same is true for the sampling in the x-direction, with the number of samples Nx and the
maximum harmonic order `max.

It must be noted that the FFT of the samples is not accurate for the highest harmonic
orders, close to ±smax or ±`max. The phase of the quasi-static PMFs is particularly
affected. This is understandable, because a finer field sampling is required to accurately
capture higher spatial frequencies. That is why in practice, smax and `max must be chosen
larger than the harmonic orders that will be used in the quasi-static formula (4.40).

Transverse TE and TM field components Directly sampling the field component
ey,m and applying the FFT, as described, yields the TM coefficients ē(s`)

y,m needed in the
index formula (4.40). For TE modes, the transverse components are the derivates of hy,m.
For TEM modes, (D.50) computes these field components from the scalar potential.

These derivatives must be computed numerically, using finite difference approxima-
tions. Special care must be given to points lying in the contour. Notably for TE modes,
there is a field discontinuity of hy,m at the hole contour, given that the magnetic field is
not zero on the perfectly electrically conducting (PEC) walls. As such, the numerical dif-
ferentiation must not incorporate the field points outside the hole, otherwise very large
derivative points are obtained. Moreover, in geometries such as circular hole shapes,
some points of the sampling grid may be isolated, that is they are neither preceded nor
followed by another sampling point. The field derivatives can not be computed at such
points, especially for TE modes.

Once the transverse field components are obtained, the FFT can be applied to yield
all the quasi-static coefficients ē(s`)

z,m and ē(s`)
x,m needed to compute the effective refractive

index.

Squared norm of the modes The cut-off wavenumbers and the quasi-static PMFs
of the modes are computed. The last missing element for (4.40) to be computed is
the squared norm (2.32) of each mode. From the sampled field component, this norm
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Figure 4.16: Quasi-static refractive index n as a function of the square hole size a.
Structure dimensions are: p = 4 mm, h = 5 mm and g = 0.1 mm. The curves are
computed with the closed-form formula (4.40), comparing the case where the modes are
obtained analytically or by means of the FEM-based modal study.

is computed using a numerical integration technique. Given the periodic sampling, we
choose to implement the Newton-Cotes integration rules [186, p.148]. Inside the holes,
the Newton-Cotes integration of fifth order (also known as Boole’s rule) is applied. When
getting close to the hole borders, rules of decreasing order are applied.

4.4.1.2 Validation of the quasi-static homogenization with finite element
method

In practice, the 2-D numerical study of the holes described in the previous paragraphs
enables to generalize the refractive index formula (4.40) to arbitrary hole shapes. Before
doing that, we consider canonical hole shapes in order to illustrate the effectiveness of the
code. The index computed with the analytical index derived in section 4.3 is compared
to the index obtained from the FEM modes.

In Fig. 4.16, a G-S holey PPW with square holes is considered. The structure has a
gap g = 0.1 mm, periodicities pz = px = 4 mm, and holes of depth h = 5 mm. The quasi-
static refractive index is plotted as function of the hole size a, filled with vacuum. In the
index formula (4.40), 150 TE and 150 TM modes are considered, as well as harmonics
with orders s and ` in the range ±20. In the numerical modal study, the field sampling is
done with different number of points, yielding different maximum harmonic ranges smax

and `max. The FEM meshing is fine enough not to influence these results. The same is
done in Fig. 4.17, for a G-S holey PPW with circular holes.
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Figure 4.17: Quasi-static refractive index n as a function of the circular hole radius
a. Structure dimensions are: p = 4 mm, h = 3 mm and g = 0.1 mm. The curves are
computed with the closed-form formula (4.40), comparing the case where the modes are
obtained analytically or by means of the FEM-based modal study.

For both square and circular holes, the numerically-computed index matches the an-
alytical results. This is provided that the number of samples is high enough i.e., that
smax and `max are large enough. It appears that smax and `max need to be at least four
times larger than the maximum harmonic order used in (4.40). Indeed, the FFT needs a
fine sampling rate in order to retrieve the phase of the PMFs. In Fig. 4.18, the particular
case of the first TM mode of a square hole with size a = 3 mm is considered, that is the
mode TM11. The TM field is sampled at different rates, such that different smax and `max

are obtained when applying the FFT. The resulting PMFs ē(s`)
y,FEM are compared to the

analytical PMFs ē(s`)
y,ana., computed according to the analytical expressions from section

4.3. The normalized error is computed in decibels as 10 log10

∣∣∣∣
ē
(s`)
y,FEM

max{ēy,FEM} −
ē
(s`)
y,ana.

max{ēy,ana.}

∣∣∣∣,
where the PMFs are normalized with respect to their maximum, which is the funda-
mental PMF ē

(00)
y . This error is plotted in the spectral region s = ±20 and ` = ±20,

which corresponds to the coefficients that are used in the index formula for the curves
in Fig. 4.16. Different sampling rates, corresponding to different smax and `max, are
considered.

The error study in Fig. 4.18 corroborates the results in Fig. 4.16, where smax and `max

are increased to at least 5 times the number of harmonics considered in the index formula
(4.40). This seems to limit the error to around 1% for all PMFs. Further reducing the
error requires a huge increase of the sampling, with only limited accuracy improvements
in the effective refractive index formula. In practice, a quick study of the convergence of
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Figure 4.18: Normalized error for the quasi-static PMFs, computed with the FEM for
the mode TM11 of a square hole with a = 3 mm. It is compared to the analytical PMFs.
Only the spectral domain (±202π
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) is shown. Each subfigure corresponds to a

different number of sampling points.
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Figure 4.19: Different cases of super-ellipses, with varying order N .

the results is the best way to choose smax and `max for a given hole cross-section.

4.4.2 Shape optimization

The shape of the holes has an important impact on the effective properties of the holey
G-S PPW. For example, in section 4.3.5, it appears that a higher refractive index can
be achieved with square holes than with circular holes. If the cross-section is described
by analytic curves, then the hole shape can be studied in a parametric way, same as the
other dimensions of the metasurface waveguide. This study is made accessible by the
index formula (4.40), leaning on the numerical modal study described in the previous
paragraphs.

As an example, in this paragraph the description of the hole shape is generalized, in
order to encompass both the square and the circle. A category of shapes that achieves
that is called the super-ellipse. A super-ellipse of order N and semi-axis az and ax is
defined by all the points satisfying the equation

∣∣∣∣
z

az

∣∣∣∣
N

+

∣∣∣∣
x

ax

∣∣∣∣
N

= 1 . (4.41)

Some particular super-ellipses are drawn in Fig. 4.19. When N = 1, the super-ellipse is a
rhombus. When N = 2, a circle is obtained, and when N →∞, it approaches a square.
When N � 1, the area of the resulting 4-branched star becomes asympotically small,
and so in all following studies are limited to N > 0.5.

The super-elliptic hole is implemented with the numerical modal study, in order to
compute the effective refractive index (4.40) as a function of the parameter N . In order
to do that, particular care must be given to the meshing process. Indeed, for N < 1 or
for very large N , the parametrization of the curve is not linear, meaning that the same
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Figure 4.20: Quasi-static refractive index (4.40) of holey G-S PPWs with super-elliptic
holes, as function of the super-ellipse order N . The structure dimensions are pz = px =
4 mm, g = 0.1 mm and h = 5 mm. The shape semi-axis is constant at az = ax = 2 mm
for the red curve. For the blue curve, a constant hole area of S = p2/3 is maintained.

variation in coordinates results in different lengths changes depending on the part of the
super-ellipse. Depending on the meshing algorithm, this may result in an irregular mesh.

In Fig. 4.20, the quasi-static refractive index computed with (4.40) is plotted as a
function of the super-elliptic parameter N , for a holey G-S PPW of periodicities pz =
px = 4 mm, gap g = 0.1 mm, and hole depth h = 5 mm. Two setups are observed. In the
first one, the semi-axis az = ax = 2 mm are kept constant when changing N . Although
this implies that the super-ellipse takes the maximum available area in the unit cell, it
also means that different orders N result in different hole areas. In this case, the square
hole with N → ∞ yields a much higher index than other configurations, given that it
has the largest area. The red curve could therefore be increasing as a function of N only
because the hole area increases, and not due to a change of shape. That is why another
setup is presented with the blue curve. There, the super-ellipse semi-axis are varied as
a function of N , so that the hole area remains constant, here at p2/3. In this case, it
seems that concave shapes such as stars yield higher refractive index than convex shapes.
Still, for both curves, square holes increase the effective refractive index of the waveguide
compared to circular holes.

More complicated shape parametrization could be explored. For example, the so-
called superformula is a further generalization of the super-ellipse, and it covers other
shapes such as triangles and stars.
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4.4.3 Exploration of imaginative shapes

The quasi-static homogenization is not limited to conventional hole shapes such as circles,
squares, or even super-ellipses. Any hole shape can be used. As such, the homogenization
technique coupled to the finite-element method opens the door to the exploration of more
imaginative shapes, whose study would be cumbersome with commercial solvers.

In this section, some examples of such shapes are presented. First, it is shown that
adding metallic pins in the hole increases the achievable effective refractive index. This
also illustrates the robustness of our algorithm for holes with TEM eigenmodes. Then, a
series of star-shaped holes is presented, which achieve high indexes too, but without the
use of inner pins.

4.4.3.1 Inner pins for TEM propagation

When the unit cell of the periodic PPW is made of holes, only TE and TM modes are
excited at the surface of the holes. Because of the subwavelength regime in which the
metasurface waveguide is used, the cutoff frequencies of these modes is much larger than
the operating frequency. As such, the waves are attenuated when entering the holes.
Therefore, increasing the hole depth has a limited impact on the refractive index of the
waveguide, because the modes do not reach the bottom of the holes.

It has been shown [187], [188] that an increased refractive index can be achieved by
adding pins in the holes. These pins act like inner conductors in a coaxial-like trans-
mission line. Consequently, not only TE and TM modes are excited in the holes, but
TEM modes too : one per inner conductor. Because these TEM modes have no cut-off
frequency, an improved hole depth dependency is gained for the refractive index.

This is illustrated for a square hole with one inner square pin. The cross-section of
the hole is shown in Fig. 4.21b, where the meshing used by the FEM is drawn. Here, the
square holes have a size of ah = 3.5 mm, and the pins have a size of ap = 0.5 mm. In
order to compute the eigenmodes with the FEM, this is the only information needed. It
results in one TEM mode, because of the two conductors involved. The scalar potential
of this TEM mode is shown in Fig. 4.21c. TE and TM modes are then obtained in the
order of increasing cut-off frequencies. The longitudinal field distributions for six modes
of each type are shown in Fig. 4.21.

The holes are repeated periodically with pz = px = 4 mm to create the two metasur-
faces, separated by a gap g = 0.1 mm. The variation of the effective refractive index as
a function of the hole depth h is plotted in Fig. 4.22. Not only does it illustrate that
the quasi-static homogenization+FEM method fits the CST results well. This particular
example also shows that the addition of a simple pin increases the maximum achievable
index compared to conventional holes. In Fig. 4.8b, the maximum index that can be
achieved with square holes is n = 1.55. Here, after a sufficient increase of h, the index
converges towards n = 1.75.

In terms of computational cost, a study such as Fig. 4.22 benefits hugely from the
quasi-static homogenization presented here. Indeed, not only is the numerical discretiza-
tion reduced to the 2-D hole cross-section, but the eigenproblem associated to the cross-
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(a) Unitcell in CST.

(b) FEM mesh. (c) TEM mode.

(d) 1st TE mode. (e) 2nd TE mode. (f) 1st TM mode. (g) 2nd TM mode.

(h) 3rd TE mode. (i) 4th TE mode. (j) 3rd TM mode. (k) 4th TM mode.

(l) 5th TE mode. (m) 6th TE mode. (n) 5th TM mode. (o) 6th TM mode.

Figure 4.21: Study of the eigensolutions of the square holes with an inner square pin. The
corresponding G-S holey PPW unit cell is shown in (a), as modeled in CST. The modes
are obtained by means of the custom 2-D FEM, whose meshing is shown in (b). Subfigure
(c) plots the scalar potential Φm of the only TEM mode. The remaining subfigures plot
the 6 first propagating modes of each type. For TE and TM modes, the longitudinal field
component is represented: hy,m and ey,m,respectively.
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Figure 4.22: Quasi-static refractive index of a holey G-S PPW with square pins centered
in the square holes, as a function of the hole depth h. The quasi-static formula (4.40),
coupled with the FEM, is compared to the CST results, computed at approximately
10MHz. The structure dimensions are pz = px = 4 mm, g = 0.1 mm, with square holes
of size ah = 3.5 mm and pins of size ap = 0.5 mm.

section needs only be solved once. Given that the varying parameter is the hole depth h,
each point of the curve in Fig. 4.22 uses the same hole cross-section. The field dependen-
cies with respect to all the other unit cell dimensions are analytically embedded in the
closed-from formula (4.40). As such, the FEM problem is solved once for the first index
point, and then the quasi-statc index formula can be applied for as many geometries as
required within a fraction of a second.

4.4.3.2 Large index with star-shaped holes

Adding pins in the holes is not the only option in order to increase the effective refractive
index. The 2-D FEM and the closed-form formula (4.40) open the door to the exploration
of an infinite variety of hole shapes. An example is shown in Fig. 4.23, which leads to quite
complicated unit cells, as shown in Fig. 4.23a. These star-shaped holes are characterized
by three numbers: the radius of the outer circle aout which circumvents the shape, the
radius of the inner circle ain, which connects all the inner branch points, and the number
N of branches. In the following, ain = 1 mm, and aout = 2 mm, such that the star takes
the maximum area inside a unit cell with pz = px = 4 mm. A selection of TE and
TM modes that result from the 2-D FEM are illustrated in Fig. 4.23, in the case where
N = 10.

The gap between the metasurfaces is g = 0.1 mm, and the hole depth is h = 5 mm. In
Fig. 4.24, the effect of an increase of the number of branches is observed on the effective
refractive index, by applying the homogenization formula (4.40) for different N .
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(a) Unitcell in CST.
(b) FEM mesh.

(c) 1st TE mode. (d) 2nd TE mode. (e) 1st TM mode. (f) 2nd TM mode.

(g) 3rd TE mode. (h) 4th TE mode. (i) 3rd TM mode. (j) 4th TM mode.

(k) 5th TE mode. (l) 6th TE mode. (m) 5th TM mode. (n) 6th TM mode.

Figure 4.23: Study of the eigensolutions of the star-shaped holes with 10 branches. The
corresponding G-S holey PPW unit cell is shown in (a), as modeled in CST. The modes
are obtained by means of the custom 2-D FEM, whose meshing is shown in (b). The
remaining subfigures plot the 6 first propagating modes of each type. For TE and TM
modes, the longitudinal field component is represented: hy,m and ey,m,respectively.
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Figure 4.24: Quasi-static refractive index of a holey G-S PPW with star-shaped holes,
as a function of the number of star branches N . The quasi-static formula (4.40), coupled
with the FEM, is compared to the CST results, computed at approximately 10MHz.
The structure dimensions are pz = px = 4 mm, g = 0.1 mm, h = 5 mm, ain = 1 mm and
aout = 2 mm.

The quasi-static index computed with (4.40) and the FEMmatches the index obtained
with CST. Here too, it appears that a high refractive index can be achieved with a large
number of branches. For example, with 20 branches, an index n = 1.74 is achieved,
which is similar to the maximum index convergence with a pin in Fig. 4.22.

While manufacturing metasurfaces with such complex hole shapes may be difficult,
these results show that concave hole shapes, with our without interior pins, can yield
interesting effective features.

4.5 Frequency validity

4.5.1 Dependency on the frequency dispersion and the effective
density

The frequency validity of the closed-form formula (4.40) is not inherent to its derivation,
but is a consequence of the low-dispersive behavior of holey G-S waveguides. These
structures have a dispersion curve which is close to linear in the first Brillouin zone.
Consequently, the frequency at which the first mode exits the Brillouin zone could be
taken as an upper bound of the validity of (4.40). Once nlow is computed, a rough
estimate of the frequency validity is thus given by

kz ≤
π

pz
⇐⇒ fmax ≤

c0

2pznlow
, (4.42)
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which corresponds to the frequency at the right-end of the first Brillouin zone. Still,
this limit presumes a quasi-linear dispersion curve in the first Brillouin zone. For some
structures, this limit is underestimated, because the dispersion is very low. In other
cases, the dispersion curve starts bending before it reaches the end of the first Brillouin
zone. In Fig. 4.25, several examples of holey PPWs are studied, both G-S and nGS
designs. The error between the quasi-static index (4.40) and the frequency-depend index
computed with CST is plotted as function of frequency. The quasi-static index nlow is
indicated next to the corresponding curve.

All structures have unit cells of size 4mm. Tolerating a relative error of less than 1%,
this index can be used up to 31GHz, 12GHz, 8GHz and 7GHz for the G-S structures
in (a), (b) (c) and (d), respectively. If an error or 10% is acceptable, this range rises
up to 58GHz, 34GHz, 25GHz and 13GHz. In all cases, this is larger than for the nGS
counterpart structure, which reaches a stopband at the end of the first Brillouin zone.
As expected with (4.42), the larger the effective refractive index, the smaller the valid
frequency range.

Fig. 4.25 also illustrates that when the effective density of the waveguide increases,
the frequency dispersion is higher, and therefore the accuracy of (4.40) at fmax is reduced.
If high accuracy is of importance for a given application, the validity of the closed-form
formula should be checked with numerical analyses in the band of operation, especially for
dense effective media, as (4.40) does not bear information about the frequency dispersion.

4.5.2 Improving the frequency validity

The quasi-static formula (4.40) is a zero-order approximation of the frequency-dependent
dispersion equation, and as such its frequency validity is bound to the low-dispersive be-
havior of the waveguide. This not a problem in practice, because the foremost advantage
of G-S waveguides is their low dispersion, and so they are used at frequencies where the
effective refractive index is almost constant. Still, in order to improve the accuracy of the
index formula, frequency dependencies must be retained in the derivation process. Keep-
ing first-order terms is not difficult in itself. The difficulty lies in keeping the dispersion
equation simple enough so that a closed-form solution nθ can be found.

In the following, we examine which frequency dependencies can be kept, without
preventing the simplification process described in section 4.2. Notably, all frequency
dependencies related to the harmonic wavenumbers kz ans kx cannot be considered,
because they involve the refractive index nθ. As such, it must be kept in mind that
the subsequent closed-form formula, although frequency-dependent, has no guarantee of
improving the results at higher frequencies. Indeed, while some frequency dependencies
are kept, others are dismissed because they would disrupt the simplification process.
The overall frequency balance of the dispersion equation may not be maintained, if the
frequency terms retained are not the dominant ones.

Frequency dependencies of the mode admittances The terms where the fre-
quency dependency is simplest to keep are the admittances of the hole modes, described
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(a) Rectangular holes: h = 5 mm, az = 3.5 mm, ax = 1.5 mm.
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(b) Rectangular holes: h = 5 mm, az = 1.5 mm, ax = 3.5 mm.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
−30

−20

−10
nlow = 1.548

nlow = 1.215

Frequency f in GHz

E
rr

or
e

in
dB

GS
nGSaz

ax kθ

(c) Square holes: h = 5 mm, az = ax = 3 mm.
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(d) Circular holes: h = 3 mm, a = 1.9 mm, εr = 11.2.

Figure 4.25: Error between the low-frequency refractive index nlow – computed with the
closed-form formula (4.40) – and the refractive index obtained with CST as a function
of frequency. The error is normalized and given in dB i.e., e = 10 log

∣∣∣n(f)−nlow

n(f)

∣∣∣. The
refractive indexes are computed for both G-S and nGS holey PPWs. All structures have
cells of size of pz = px = 4 mm, g = 0.1 mm, and a propagation direction θ = 0°.
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in (2.17). In the coefficients (2.40), (2.47) and (2.48) of the dispersion equation, these
admittances appear in the diagonal terms of the submatrices M e/e and Mh/h. In the
former case, keeping the frequency-dependent TM admittance yields the diagonal term

µr1εr2√
k2

0εr2µr2 − ke
m

2
pxpzI

e
m cot

(
h
√
k2

0εr2µr2 − ke
m

2

)
, (4.43)

instead of the quasi-static term (4.24). Similarly, keeping the frequency-dependent TE
admittance yields the diagonal term

µr1

√
k2

0εr2µr2 − kh
m

2

µr2
pxpzI

h
m cot

(
h

√
k2

0εr2µr2 − kh
m

2
)
, (4.44)

instead of the quasi-static term (4.22).

Frequency dependencies in the higher-harmonic terms When simplifying the
higher-harmonic terms of the matrix Mh/h from (2.40) to (4.29), the terms propor-
tional to k2

0 are dismissed in front of frequency-independent terms. These terms can be
kept without disrupting the closed-form formula simplifications. Therefore, the higher-
harmonic terms of Mh/h with (s, `) 6= (0, 0) become
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The higher-harmonic terms (2.39) in M e/e that are proportional to k2
0 do not need

to be considered, because they are cancelled out independently of frequency, as shown in
section 2.2.4.1, yielding (2.47).

Although a similar simplification was made in (2.48) for the higher-harmonic terms
of M e/h, these higher-harmonic terms were dismissed altogether in the quasi-static sim-
plification process, because they were proportional to k2

0. When keeping these terms, the
block-matrix reformulation of the dispersion equation in (4.37) has more than just the
fundamental-harmonic terms in the non-diagonal submatrices, yielding
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withX a matrix holding the simplified higher-harmonic terms ofM e/h, with coefficients
defined as
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This means that (4.38) becomes
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and so the matrix containing the Σ matrices is not block-diagonal anymore. Therefore,
computing its inverse is more complicated with the determinant lemma, as done in (4.39).
Assuming that j k0

nθ
X is small compared to the other matrix coefficients, which is true

at low frequencies, the first-order approximation of the inverse of a matrix with small
perturbations can be applied [189, p. 126], that is

[
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, (4.49)

whereA andB are invertible, and where in comparison δa has small coefficients. Making
use of (4.49) when applying the determinant lemma to (4.48) leads to the second-order
polynomial equation

n2
θ

[
1− 2

g
ueHΣe−1ue

]
+ nθk0n

2
1

4

g
Re
{
ueHΣe−1XΣh−1

uh
}

−n2
1

[
1 +

2

g
uhH

Σh−1
uh

]
= 0 , (4.50)

Introducing

∆ = k2
0n

4
1

4

g2
Re
{
ueHΣe−1XΣh−1

uh
}2

+n2
1

[
1− 2

g
ueHΣe−1ue

] [
1 +

2

g
uhH

Σh−1
uh

]
(4.51)

leads to the closed-form refractive index solution

nθ =
−k0n

2
1

2
gRe

{
ueHΣe−1XΣh−1

uh
}

+
√

∆

1− 2
gu

eHΣe−1ue
. (4.52)

One can easily verify that when k0 → 0, (4.52) becomes (4.40).

Numerical validity As stated earlier in this section, the validity of the closed-form
formula (4.52) is not guaranteed when incorporating all the frequency dependencies de-
scribed in the previous paragraphs. The wave admittances in the diagonal terms (4.43)
and (4.44) may help to capture the frequency-dispersion of the waveguide, but this effect
may be insufficient or excessive. This can only be assessed with examples.
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The Brillouin diagram of holey G-S PPWs is plotted in Fig. 4.26 and Fig. 4.27, for
square and circular holes, respectively. All structures have periodicities pz = px = 4 mm
and a gap g = 0.1 mm. The square holes have a size a = 3 mm and depth h = 5 mm,
whereas the circular holes have a radius a = 1.5 mm and h = 3 mm. Different dielectric
fillings are considered in the gap and the holes for each subfigure. In each case, the
dispersion curves are computed in three different ways. The reference curve is given by
solving the full MMM dispersion equation (2.42). This method has been shown to be
accurate in section 2.2, and has the advantage of yielding results much faster than CST.
The MMM curves are compared on the one hand to the quasi-static curve (4.40), which
is the line tangent to the MMM curve at k0 → 0, and on the other hand to the improved
formula (4.52), which is frequency-dependent. For all curves, 150 TM and 150 TE modes
are used, as well as harmonic orders s and ` in the range ±30.

Fig. 4.26 and Fig. 4.27 show that the added frequency dependencies (4.43) and (4.44),
in the generalized formula (4.52), seem to be indeed an enhancement of the frequency
range of the homogenization technique. In almost all cases, the enhanced curve better
fits the reference curve in most of the first Brillouin zone, thus estimating the effective
refractive index of the waveguide with better accuracy than with the purely quasi-static
approach. This is particularly true when the structures are filled with vacuum, in which
case the frequency validity is almost doubled.

However, these frequency enhancement are not enough to accurately describe the
first mode, especially for dielectric-filled waveguides. One case where the frequency
dependency seems to be too strong is for magnetic circular holes in Fig. 4.27d, where the
quasi-static homogenization better follows the linear dispersion curve.

Chapter landmarks

In this chapter, based on the dispersion equations obtained with the MMM in chapter 2,
new modeling techniques have been developed for G-S PPWs:

• A closed-form solution of the quasi-static refractive index is found in (4.16) for
corrugated PPW. It is accurate for both G-S and nGS designs. The frequency
validity of this formula is observed in Fig. 4.2.

• Similarly, a closed-form formula of the quasi-static refractive index is found for
holey G-S PPWs in (4.40). It is valid for arbitrary hole shapes and propagation
directions.

• For canonical hole shapes with analytical knowledge of the modal functions, (4.40)
can be accelerated by dismissing the modes that have no impact in the formula.
On top of making parametric studies much faster, this opens the door to heavy
optimization processes, for example to maximize the anisotropy of a rectangular
hole.

• The index formula (4.40) is extended to arbitrary hole shapes by combining it
to a 2-D FEM method. Unusual hole shapes can be explored, such as concave
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Figure 4.26: Brillouin diagrams of G-S PPWs with square holes, computed with the full
MMM, the quasi-static formula (4.40), and the frequency-improved formula (4.52). All
three methods use 150 TM modes, 150 TE modes, and 1681 harmonics. The structures
have pz = px = 4 mm, g = 0.1 mm, a hole size a = 3 mm, and a hole depth h = 5 mm.
The waves propagate along the z-axis i.e., θ = 0. Different gap and hole fillings are
considered. Unless stated otherwise, the permittivities and permeabilities are like in
vacuum.



4.5. FREQUENCY VALIDITY 119

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Re{kz} p
π (no unit)

Fr
eq

ue
nc

y
f

in
G

H
z

Full MMM Quasi-static Frequency-enhanced

(a) All vacuum.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Re{kz} p
π (no unit)

Fr
eq

ue
nc

y
f

in
G

H
z

(b) εr1 = 11.2.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Re{kz} p
π (no unit)

Fr
eq

ue
nc

y
f

in
G

H
z

(c) εr2 = 11.2.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Re{kz} p
π (no unit)

Fr
eq

ue
nc

y
f

in
G

H
z

(d) µr1 = 10.

Figure 4.27: Brillouin diagrams of G-S PPWs with circular holes, computed with the full
MMM, the quasi-static formula (4.40), and the frequency-improved formula (4.52). All
three methods use 150 TM modes, 150 TE modes, and 1681 harmonics. The structures
have pz = px = 4 mm, g = 0.1 mm, a hole radius a = 1.5 mm, and a hole depth
h = 3 mm. The waves propagate along the z-axis i.e., θ = 0. Different gap and hole
fillings are considered. Unless stated otherwise, the permittivities and permeabilities are
like in vacuum.
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holes or super-ellipses. These examples are not thought as applicable designs ready
for implementation, but as illustrations of how the quasi-static homogenization
method can efficiently highlight engaging propagation features through the fast
study of creative geometries.

• The frequency-validity of (4.40) can be slightly improved by keeping some frequency-
dependencies in the formula. Nevertheless, the benefits of these changes depend on
each particular structure.

The main result of this chapter is the formula (4.40) for the refractive index of holey
G-S PPWs. It is the first time that closed-form information is available for such G-S
structures. Not only does it make the design of G-S devices much easier, but it also
offers a unique opportunity to better understand the effects of the structure parameters
on wave propagation. This is pursued in the next chapter.



Chapter 5

Quasi-static analysis of the
properties of glide symmetry

In chapter 4, the dispersion equation obtained by means of the mode-matching method
(MMM) is simplified in the quasi-static regime. This simplification yields the closed-
form solution (4.40), which accurately describes the effective refractive index of holey
glide-symmetric (G-S) parallel-plate waveguides (PPWs). This formula is particularly
useful when it comes to the practical design of G-S waveguides, because it accelerates
the required parametric studies.

Having a closed-form expression of the refractive index also opens the door to a better
understanding of the structure’s behavior. The impact of the different parameters on the
refractive index can be studied analytically. For example, it can be used to prove that
there are no θ-dependencies for square or circular holes, proving the isotropy of these
waveguides.

Most examples in chapter 4 illustrate the application of this formula to G-S waveg-
uides, but it can be applied to non-glide-symmetric (nGS) structures too. Indeed, the
MMM in chapter 2.2 has shown that the derivation of the dispersion equation follows
the same steps for G-S and nGS waveguides, with only some particular terms changing.
The wide-band accuracy of (4.40) for nGS waveguides is reduced, but the differences be-
tween G-S and nGS waveguides can be studied with this formulation. Section 5.1 isolates
these differences in (4.40) in order to prove analytically if the effective refractive index is
increased by glide symmetry (GS), as often observed in literature [33], [163].

A similar goal is pursued in section 5.2, namely the study of the increase in effective
permeability observed with GS [35], [44]. Different methods to retrieve the constitutive
parameters of the waveguide are considered. It comes out that an equivalent Bloch
impedance can be defined analytically in the quasi-static regime with the help of (4.40)
and the MMM field expressions. As such, the effective medium of the waveguide is fully
characterized, and the constitutive parameters of G-S and nGS can be compared without
resorting to commercial solvers.

In terms of practical application, one of the strengths of the index formula (4.40) is
its generality, as it can be applied to any holey metasurface PPW. Unfortunately, the

121
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presence of products between large matrices prevents a simple visualization of the role
of geometrical and physical parameters. In the following sections, simplifications are
made, mostly based on heuristic findings for a particular hole shape and reduction of
the number of modes, simplifying the formula. The physical insight given with these
particular cases can be extended to other structures, with caution.

5.1 Effective refractive index

This section puts under scrutiny the observation that GS increases the effective refractive
index, as observed in literature [190] or in Fig. 4.25. The idea is to see if the differences
brought by GS in the closed-form index formula (4.40) indeed lead to an increase of the
refractive index. In order to do that, the formula is reduced to the main hole modes,
which are shown to be sufficient to describe the overall behavior of the waveguide. This
leads to a clear identification of the terms that differ with and without GS. Consequently,
the impact of parameters such as the dielectric densities are highlighted.

5.1.1 Dominant modes in the quasi-static regime

The mode-matching process theoretically involves an infinite number of harmonics in
the gap, and an infinite number of modes in the holes. However, hole modes with
increasing cut-off frequency are expected to have little impact on the mode-matching
procedure, especially in the quasi-static regime. This can be verified by finding the
nullspace of the quasi-static dispersion matrix (4.31) 1. This yields the coefficients of
the excited hole modes: for transverse magnetic (TM) modes, the mode coefficients2 are
ce
m = Ce

m sin
(
ke
y,mh

)
, and for TE modes ch

m
′
= Ch

m
′
sin
(
kh
y,mh

)
.

The magnitude of the coefficients ce
m and ch

m
′ can be plotted to observe which modes

are excited in a particular configuration at low frequency. This is done in Figs. 5.1a
and 5.1b for a holey PPW with dimensions p = 4 mm, g = 0.1 mm, h = 5 mm, and
square holes of size a = 3 mm. The structure is filled with vacuum. For each mode, the
magnitude of the mode is plotted in blue for the nGS configuration, and in red for the
G-S configuration. Only the 8 most-excited modes are plotted, and their magnitudes are
normalized with respect to the strongest mode. Examining the coefficients of the hole
modes, one TM mode and one TE mode are dominant, especially in the G-S case.

The same is done in Figs. 5.1c and 5.1d for circular holes of radius a = 1.7 mm filled
with a dielectric (εr2, µr2) = (3, 4), while the gap is filled with (εr1, µr1) = (2, 1.5). For
TE modes, there is a dominance of one mode too. On the other hand, for TM modes,
several modes have a comparable strength.

1The dispersion matrix needs to be modified in the quasi-static regime in order to find the coefficients
of the modes. This process is described in section 5.2.2.

2As will be derived in section 5.2.2, the prime notation in the transverse electric (TE) case corresponds
to a frequency-normalization in the field expressions, according to (5.21): in the quasi-static regime, the
TE electric field vanishes, whereas the TM magnetic field vanishes.
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Figure 5.1: Coefficients of the most excited hole modes in the quasi-static regime of
holey PPWs with canonical hole shapes: squares of size a = 3 mm and circles of radius
a = 1.7 mm. G-S and nGS cases are compared, with dimensions p = 4 mm, h = 5 mm
and gap g = 0.1 mm. For square holes, no dielectrics are used. Circular holes are filled
with a dielectric (εr2, µr2) = (3, 4), and in this case the gap is filled with a dielectric
(εr1, µr1) = (2, 1.5).



124 CHAPTER 5. QUASI-STATIC PROPERTIES

1 2 3
1

1.2

1.4

1.6

Hole size a in mm

R
ef

ra
ct

iv
e

in
de

x
n

eff
nGS, 2 modes
nGS, 1000 modes
GS, 2modes
GS, 1000 modes

(a) Square holes of size a, no dielectrics.
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(b) Circular holes of radius a filled with
(εr2, µr2) = (3, 4), and gap filled with
(εr1, µr1) = (2, 1.5).

Figure 5.2: Quasi-static effective refractive index of holey PPWs, as function of the hole
size. The case with only 2 hole modes is compared with the converge value of the quasi-
static framework. The structures have dimensions p = 4 mm, h = 5 mm, and g = 0.1 mm.
G-S and nGS configurations are compared.

In the following sections, our hypothesis is that the first TE and the first TM mode
are enough to describe the overall effective properties of G-S versus nGS designs. This is
confirmed by plotting the refractive index with the homogenized formula (4.40), keeping
only two hole modes, and comparing it with the true index value. This is done in
Figs. 5.2a and 5.2b for square and circular holes, respectively. The dimensions and
dielectrics are the same as for Fig. 5.1. Only the hole size is varied.

Although in most cases shown in Fig. 5.2, two modes in the holes are not enough
to precisely yield the effective propagation properties in the holey metasurface PPWs,
they seem enough to capture the overall behavior of these structures, most notably the
difference between GS and nGS designs. This is true even in the case of circular holes,
where the hypothesis of two dominant modes is arguably wrong with respect to TM
modes.

5.1.2 Does glide symmetry systematically increase the refractive
index?

In previous papers, GS has been presented as a way to increase the refractive index of
the waveguide. Is this always true? The impact of GS on the refractive index can be
studied analytically from the quasi-static formula (4.40). This formula involves matri-
ces and vectors whose size depends on the number of modes considered in the holes.
This complicates any analytic study. However, as seen in paragraph 5.1.1, keeping only
one TM and one TE mode yields acceptable results about the general behavior of the
refractive index.
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Analytical study of the 2-modes quasi-static index formula When keeping only
these two modes, the effective index formula becomes

n2modes = n1

√√√√1 + 2
g |uh|2 /Σh

1− 2
g |ue|2 /Σe

, (5.1)

with the TM-related terms

Σe = − εr2
εr1ke

pxpzI
ecoth (keh) +

∑

(s,`) 6=(0,0)

f̄ (s`)

∣∣∣ē(s`)
y

∣∣∣
2

ke2 Γ(s`)2
, (5.2)

and ue =
ē

(00)
y

ke
, (5.3)

and the TE-related terms

Σh =
µr1k

h

µr2
pxpzI

hcoth
(
khh

)
+

2

g

(
cos θēh(00)

x − sin θēh(00)
z

)2

−
∑

(s,`) 6=(0,0)

f̄ (s`)
∣∣∣ s2πpz ē

h(s`)
x − `2π

px
ēh(s`)
z

∣∣∣
2
, (5.4)

and uh = cos θēh(00)
z + sin θēh(00)

x . (5.5)

The projected modal functions are the same for G-S and nGS designs, because they
do not depend on the position of the holes, only on their shape. Therefore, ue and uh

are equal for both designs. It is the terms Σe and Σh that change, because they contain
f̄ (s`), defined in (4.20). It is reminded that the low-frequency vertical spectral functions
are defined for each harmonic (s, `), in the G-S case as

f̄ (s`) =

{
−tanh

(g
2Γ(s`)

)/
Γ(s`) if `+ s odd,

−coth
(g

2Γ(s`)
)/

Γ(s`) if `+ s even,
(5.6)

and in the nGS case as

f̄ (s`) = −coth
(g

2
Γ(s`)

)/
Γ(s`) . (5.7)

These vertical spectral functions are the only terms that change between the G-S and
nGS designs. For harmonics with ` + s odd, the magnitude of the G-S vertical spectral
function is smaller than the nGS function: hyperbolic tangent versus cotangent of the
same argument. With increasing harmonic orders, this difference decreases, as the tan-
gent and the cotangent both tend to 1. The smaller the gap g, the higher this difference
for more harmonics. Therefore, the comparison between G-S and nGS terms yields

∣∣Σi
GS

∣∣ <
∣∣Σi

nGS

∣∣ , with

{
Σe < 0 ,

Σh > 0 .
(5.8)
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Given that in (5.1) these terms are inverted, we then have the numerators
√

1 +
2

g
|uh|2 /Σh

GS >

√
1 +

2

g
|uh|2 /Σh

nGS , (5.9)

and the denominators
√

1− 2

g
|ue|2 /Σe

GS >

√
1− 2

g
|ue|2 /Σe

NS . (5.10)

(5.9) shows that TE modes have an increasing effect on the G-S index with respect to
the nGS index, whereas (5.10) shows that TM modes have a decreasing effect on the G-S
index with respect to the nGS index.

At this point, we cannot state whether the refractive index of a G-S structure is
higher than the index of its nGS counterpart. There is a balance between the effect of
the numerator – GS increases n – and the denominator – GS decreases n. However, by
looking closer at the terms 1/Σe and 1/Σh, it appears that the balance between these TE
and TM terms can be willingly controlled through the dielectric constitutive parameters.
Indeed, we can rewrite the refractive index (5.1) as

n2modes = n1

√√√√√√√√√

1 + 2
g

∣∣uh
∣∣2

µr1

µr2
Ch +Xh

GS/nGS

1 + 2
g

|ue|2
εr2
εr1
Ce +Xe

GS/nGS

. (5.11)

The terms C i and X i
GS/nGS can be identified from the two terms in the sums Σe and

Σh in (5.2) and (5.4). On the one hand, the real positive coefficients C i are the same
for G-S and nGS designs. On the other hand, the real positive coefficients X i

GS/nGS are
smaller in the G-S case than in the nGS case. If the ratio εr2/εr1 is very large, then εr2

εr1
Ce

become large in front of Xe
GS/nGS, and so the changes in Xe

GS/nGS (containing TM modes)
have less effect on the overall index. Similar mechanisms are at work in the numerator.
Overall,

1. if
εr2

εr1
↑, then nGS

nnGS
↑ (less impact of the denominator term Xe

GS/nGS),

2. if
εr2

εr1
↓, then nGS

nnGS
↓ (more impact of the denominator term Xe

GS/nGS),

3. if
µr1

µr2
↑, then nGS

nnGS
↓ (less impact of the numerator term Xh

GS/nGS),

4. if
µr1

µr2
↓, then nGS

nnGS
↑ (more impact of the numerator term Xh

GS/nGS).
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This can be summarized by saying that the denser the hole dielectric compared to the
gap dielectric, the larger the ratio between the G-S and the nGS refractive indexes.

Considering asymptotic cases of the dielectric constitutive paramerers shows that nGS

is not necessarily larger than nnGS. If εr2 → 0 or εr1 →∞, then nGS < nnGS.

Examples of the dielectric control over the index ratio To illustrate this control
over the difference between G-S and nGS, we compute the quasi-static effective refractive
index of G-S and nGS designs with (4.40), for a metasurface PPW with square holes and
dimensions p = 4 mm, h = 5 mm, g = 0.1 mm and a = 3 mm. Initially, holes and gap
are filled with vacuum. The indexes are computed with enough modes and harmonics
to achieve convergence. In Fig. 5.3a, the relative gap permittivity εr1 is increased to
increase the impact of Xe

GS/nGS. In Fig. 5.3b, the hole permittivity εr2 is increased
to reduce the impact of Xe

GS/nGS. In Fig. 5.3c, the gap permeability µr1 is increased to
reduce the impact of Xh

GS/nGS. Finally, in Fig. 5.3d, the hole permeability µr2 is increased
to increase the impact of Xh

GS/nGS.
In Fig. 5.3, only one dielectric constitutive parameter is changed at a time, to illustrate

the individual impact of each parameter. But their effects can be combined, to reach
very large or very small index ratios between G-S and nGS waveguides. In Fig. 5.4,
the same structure are used as in Fig. 5.3, but this time two parameters are increased
simultaneously (while the two others are kept at 1): εr1 and µr1 in Fig. 5.4a, and εr2 and
µr2 in Fig. 5.4b. For a very dense gap, the nGS design is effectively much denser than
the G-S design, whereas for very dense holes, it is the other way around.

These figures confirm the impact of the different dielectric parameters on the ratio
between G-S and nGS refractive indexes. When the gap dielectric gets denser, the ratio
decreases (Figs. 5.3a, 5.3c and 5.4a), with even some cases where nnGS < nGS. On the
other hand, when the hole dielectric gets denser, the ratio increases (Figs. 5.3b, 5.3d and
5.4b), with some cases where the G-S index is multiple times larger than the nGS index.
This can be interpreted in terms of path length of the wave propagation. When the
dielectric in the holes becomes denser, it concentrates the fields. In the nGS waveguide,
this does not change the overall path length, because the upper and lower holes are
symmetric with respect to the propagation plane. On the other hand, when the waves
propagate in a GS structure, they alternatively meet a hole in the upper metasurface
and a hole in the lower metasurface. As such, the overall field propagation path could
be described as a snake which penetrates further in the holes when the hole density in
increased. This creates a longer path length, which results in an apparent speed reduction
of the effective wave. Equivalently, the effective refractive index of the structure increases.

General effect of glide symmetry on the refractive index Does GS systematically
increase the refractive index? These studies show that the answer is no. Instead of an
increase of the refractive index, the effect of GS can be defined with respect to the
dielectrics in the structure. When the density of the dielectric of the holes and the gap
are very different, then it can be expected that the effective density of the waveguide lies
somewhere in-between the two, like a weighted average of these densities. GS tends to
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Figure 5.3: Quasi-static effective refractive index of holey PPWs, computed with (4.40),
depending on the gap and hole dielectrics. The structures have dimensions p = 4 mm,
h = 5 mm, g = 0.1 mm and square holes of size a = 3 mm. G-S and nGS configurations
are compared. The structures are initially empty (εr1 = εr2 = µr1 = µr2 = 1), with only
one dielectric parameter changing in each subfigure.
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Figure 5.4: Quasi-static effective refractive index of holey PPWs, computed with (4.40),
depending on the gap and hole dielectrics. The structures have dimensions p = 4 mm,
h = 5 mm, g = 0.1 mm and square holes of size a = 3 mm. G-S and nGS configurations
are compared.

give more weight to the hole dielectric than nGS. If the hole density is larger than the
gap density, then indeed GS increases the refractive index compared to nGS. But if the
hole density is smaller than the gap density, the nGS index will remain closer to the gap
density than GS, meaning that GS will bring the effective index lower – that is closer to
the hole density.

What about gap and holes having the same density? How is the influence of GS being
interpreted then, given that there is no density range in which GS and nGS would give
different weights? In this case, each metasurface can still be seen as a somehow denser
medium than the gap, because it is a mixture of dielectric and perfectly electrically con-
ducting (PEC) plates. The latter can be seen as an infinitely dense medium. Therefore,
GS will still pull the effective density closer to the metasurface effective density, which is
larger then the gap density. That is why in this case GS increases the refractive index.

5.1.3 Giant refractive index for asymptotically small gap

In section 3.1, it is highlighted that the differences between G-S and nGS waveguides
are particularly remarkable when the gap g between the metasurfaces is small compared
to the metasurface periodicity. When the metasurfaces are brought closer, their mutual
coupling gets stronger. As such, studying the quasi-static refractive index at the limit
when g → 0 is revealing of the differences between structures with or without GS.

In Fig. 5.5, the effective refractive index is computed with (4.40) for gaps getting
exponentially smaller. The considered holey PPW has periodicities pz = px = 4 mm,
with square holes of size a = 3 mm and depth h = 5 mm. No dielectrics are used. In
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(c) NGS waveguide.
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Figure 5.5: Quasi-static effective refractive index computed with (4.40) as function of
the gap g, for a holey PPW with p = 4 mm, and square holes of size a = 3 mm and depth
h = 5 mm. For each curve, the number mmax of TM and TE modes is indicated, and the
maximum harmonic order `max, such that s = ±`max and ` = ±`max.

Fig. 5.5a, the G-S refractive index is plotted in logarithmic scale, with linear details
in the inset 5.5b. The same is done in Figs. 5.5c and 5.5d for the nGS counterpart
structure. Each curve corresponds to an increased number of modes and harmonics to
ensure convergence of the results.

In Fig. 5.5a, it appears that the G-S refractive index does not converge when g → 0.
Moreover, the smaller the gap, the larger the number of modes required to get the correct
refractive index. This illustrates that the smaller the gap between the metasurfaces,
the stronger the coupling between the holes. To confirm that for the G-S structure,
the refractive index does not converge with decreasing gap, the extreme case g = 0 is
considered in Fig. 5.6. It appears that the refractive index can be made arbitrarily large
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Figure 5.6: Quasi-static refractive index (4.40) at g = 0, as function of the number of
modes considered in the holes. The structure under study is a holey G-S PPW with
p = 4 mm, and square holes of size a = 3 mm and depth h = 5 mm. The abscissa mmax

corresponds to both the number of TE and TM modes. Each curve corresponds to a
different number of harmonics (s, `) with s = ±`max and ` = ±`max.

depending on the number of modes that are used. This means that g → 0 leads to n→∞
and to mmax →∞ – mmax being the number of modes that captures the coupling.

Evidently, the giant refractive index observed for this G-S structure has no practical
implications. Not only would a waveguide with such a small gap yield huge losses, but
also the passband of the waveguide would be extremely small. However, this asymptotic
behavior can be put in parallel to the asymptotic behavior of the nGS structure in
Fig. 5.5c. Here, the refractive index converges rapidly. This convergence value is very
small compared to the values obtained with the G-S structure. It shows that the coupling
is very different in the two designs. Most importantly, because the G-S structure tends
to an infinite index when g → 0, it is understandable that already at practical gap sizes
its index becomes much larger than the nGS index.

The lack of convergence of a G-S structure’s refractive index – and therefore its
ability to reach large indexes at small gaps – depends on whether or not its holes are
overlapping. In the example of Fig. 5.5 the hole size is a = 3 mm, and so the holes have
an overlap of 1× 1 mm. In Fig. 5.7a, a holey G-S PPW with smaller holes a = 1.5 mm is
considered, so that that they do not overlap. The effective refractive index is computed
with (4.40) for exponentially decreasing gaps. As expected, the G-S structure has a
convergent refractive index when the gap goes to zero. This works up the to limiting
case of a = p/2, as illustrated in Fig. 5.7c. But if the hole size is increased just a bit
more, for example a = 2.1 mm in Fig. 5.7e, then the emerging overlap prevents the
convergence in the G-S structure. Here the overlapping is very small, and so the increase
of the refractive index is much more modest than in Fig. 5.5a, but it shows no signs of
convergence despite the already very large number of modes that are used.

In conclusion, the refractive index formula (4.40) opens an unprecedented window
onto the coupling mechanism between the metasurfaces. It was observed that the re-
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(e) Barely-overlapping holes: a = 2.1 mm.
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Figure 5.7: Quasi-static effective refractive index computed with (4.40) as function of
the gap g, for holey G-S PPWs with p = 4 mm, and square holes of size a and depth
h = 5 mm. For each curve, the number mmax of TM and TE modes is indicated, and the
maximum harmonic order `max, such that s = ±`max and ` = ±`max.
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fractive index difference between G-S and nGS waveguides is particularly high when the
holes are overlapping, because in this case the G-S index is unbounded when g → 0.
With previous simulation methods such as commercial solvers, driving the gap to such
small fractions of the unit cell length would be very challenging, and so to our knowledge,
this difference in terms of convergence was never highlighted before.

5.2 Effective constitutive material parameters

In the context of impedance-matching of a dielectric slab, it has been shown that G-S
waveguides yield a higher magnetic response than nGS waveguides [44]. The range of
matchable dielectrics is broadened thanks to the higher permeability enabled by GS. This
implies that for a given propagating mode, G-S waveguides can be modeled as an equiva-
lent dielectric material, with effective impedance and refractive index. In this section, we
describe how the effective constitutive parameters of the waveguide are computed. From
the consistency of results between different techniques, it is found that the effective
impedance can be computed directly from the quasi-static Bloch mode that propagates
between the metasurfaces. Using the quasi-static framework developed in chapter 4, this
effective Bloch impedance is computed without resorting to commercial solvers. Finally,
closed-form expressions of this Bloch impedance are obtained in simplified cases, which
leads to an analytic proof of GS’s increased permeability.

5.2.1 Impedance matching by means of holey metasurfaces

A transverse electric magnetic (TEM) mode propagates in a PPW filled with a dielectric
(εrL, µrL). At some point, a dielectric slab (εr1, µr1) is put in the way of the wave, such
that it penetrates and exits the slab with normal incidence, as shown in the side view
Fig. 5.8. In order to avoid refections at the dielectric interfaces, the PEC plates on both
sides of the dielectric slab are transformed into metasurfaces, by means of periodic holes
– which may be filled with a dielectric (εr2, µr2). When it comes to the incident TEM
mode, the resulting metasurface waveguide portion is to be modeled by an equivalent
effective dielectric PPW (εeff , µeff). If the equivalent effective impedance Zeff matches
the TEM impedance ZTEM, then reflections are avoided at the dielectric interfaces.

Retrieving the effective constitutive parameters of a waveguide from its S-parameters
is a well-known process [191]. The idea is to first retrieve the effective refractive index
and line impedance of the waveguide, from which the effective relative permittivity εeff

and relative permeability µeff are computed. However, the notion of line impedance
becomes a gray area when considering periodic structures. Indeed, the characteristic
impedance of a transmission line is uniquely defined only for TEM modes, and, more
importantly, it is directly related to the intrinsic impedance of the effective medium
only for TEM modes. It is the intrinsic impedance that is related to the propagation
medium parameters [17, p. 171]. As such, computing the line impedance to obtain
constitutive parameters is theoretically only justified for TEM transmission lines. In
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Figure 5.8: Impedance matching of a dielectric slab with holey metasurfaces. The gap is
made exagerratedly large to better visualize the propagating modes.

periodic structures, Bloch modes are not necessarily TEM, and therefore the notion of
line impedance and constitutive parameters is debatable.

Moreover, it is important to understand that the effective impedance Zeff does not
completely represent the metasurface waveguide. It is only a simplification of how it
appears to the TEM mode. Additional resonances in the metasurface waveguide may
create a non-zero input reactance. At the dielectric interface, the fields are disrupted
by the closest holes, resulting in a variation of the fields along the interface. This leads
to the excitation of other modes (TE, TM), which are are evanescent in the quasi-static
regime, and are therefore concentrated around the interface.

In the following, we will show that these effects can be neglected. For the aim of
our analysis, i.e., the matching of the PPW in Fig. 5.8, the concept of effective medium
is defined in order to accurately describes the reflective and transmissive properties of
the waveguide. The effective constitutive parameters are directly linked to the notion of
characteristic impedance, with no relation to the intrinsic impedance.

The following paragraphs present two numerical techniques to obtain the effective
impedance Zeff in CST. On the one hand, Zeff is computed by considering the reflection
coefficient of the structure drawn in Fig. 5.8. This is the reference impedance consid-
ered in this section, because the resulting impedance is representative of the practical
behavior of the waveguide, that is its ability to avoid reflections at dielectric interfaces.
On the other, Zeff is obtained by considering the transfer-matrix of one unit cell of the
metasurface waveguide. These two methods are then compared, leading to a discussion
about how to use the quasi-static modal fields to define a Bloch impedance.



5.2. EFFECTIVE CONSTITUTIVE MATERIAL PARAMETERS 135

ZL, βL, `L Zeff , βeff , `2 ZL, βL, `L ZL

ZAΓA ZBΓB ZCΓC

Figure 5.9: Transmission line model of the simulated CST waveguide.

5.2.1.1 Effective impedance: CST reflection set-up

The definition of an effective impedance must embody the reflective properties of the
metasurface waveguide. Here, the line impedance of the waveguide is directly derived
from its reflective properties, by simulating the structure seen in Fig. 5.8 in its entirety.
If the metasurface is built such that this reflective impedance matches the impedance of
the feeding dielectric PPW, then it is certain that the reflections are repressed. That is
why the impedance obtained by this reflection measure is used as the reference value for
all subsequent computation methods.

In CST, N successive unit cells of the holey metasurface waveguide are simulated.
Instead of putting the waveguide ports directly at the end cells, two PPWs of length `L
and relative permittivity εrL are added to feed both sides of the metasurface waveguide.
This is important, as it guarantees that the measured reflection coefficient corresponds to
the TEM mode of a simple PPW. Therefore, the total structure can be modeled as three
transmission lines put in series, as pictured in Fig. 5.9. The propagation constant in the
PPW is the TEM wavenumber βL = 2πf

c0

√
εrL, with c0 the speed of light in vacuum.

CST builds waveguide ports that perfectly match parallel-plate waveguides. This
ensures that no waves are reflected at the output port. Therefore, the output port
impedance is equivalent to a ZL load, ZL being the line impedance of the PPW. This
impedance is known analytically as ZL = η0√

εrL

g
p , where g is the gap between the meta-

surfaces as well as the PPW height, p is the cell periodicity as well as the width of the
simulated PPW portion, and η0 is the vacuum intrinsic impedance.

Given the absence of reflection at the output port, ZC = ZL. Then, using transmission
line theory [17, p. 59], this impedance is transformed by the metasurface waveguide into

ZB = Zeff
ZC + jZeff tan (βeff`2)

Zeff + jZC tan (βeff`2)
= Zeff

ZL + jZeff tan (βeff`2)

Zeff + jZL tan (βeff`2)
, (5.12)

where `2 = Np is the total length of the N unit cells.
At the input side, the reflection coefficient ΓA is the S-parameter S11 given by

CST at the input port. It can be propagated forwards along the input PPW, yield-
ing ΓB = S11ej2`LβL (this can be done directly in CST using the de-embeding function).
Given the relation

ZB = ZL
1 + ΓB
1− ΓB

= ZL
1 + S11ej2`LβL

1− S11ej2`LβL
(5.13)

between the reflection coefficient and the impedance at the input of the metasurface
waveguide, the latter can be computed from the S-parameters of CST.
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Figure 5.10: Line impedance of the holey PPW, computed with the reflection technique
(5.14) in CST. G-S (red) and nGS (blue) configurations are compared. The feeding PPWs
have `L = 15 mm. The metasurface dimensions are p = 4 mm, h = 3 mm, g = 0.1 mm,
εr1 = 10.7, and different square hole sizes. The number of cells between the feeding
PPWs is either N = 5 or N = 7.

Once ZB is known, (5.12) can be solved for Zeff . For this to be possible, βeff must be
computed from the transmission coefficient of the waveguide. Then, (5.12) is a second-
order polynomial equation in Zeff , solved for

Zeff =
− (Z1 − ZB)±

√
(Z1 − ZB)2 − 4 tan2 (βeff`2)ZBZ1

2j tan (βeff`2)
. (5.14)

The sign in (5.14) must be chosen so that the result is physical. Notably, when ZB tends
to Z1, then Zeff must tend to Z1 too.

Numerical validation This process is executed for holey metasurfaces with p = 4 mm,
h = 3 mm, and a gap g = 0.1 mm filled with a dielectric with εr1 = 10.7. The feeding
PPWs are filled with a dielectric with εrL = 2 and length `L = 15 mm. To verify the
coherence of the process, two different number of cells are compared: N = 5, and N = 7.
Fig. 5.10 plots the line impedance computed with (5.14). In the left subfigure, the
square holes of the metasurfaces have a size a = 3 mm, whereas in the right subfigure,
a = 3.5 mm. Both cases are simulated in G-S and nGS configurations.
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(a) Model of the unit cell.

(b) Electric field of the excited mode at the waveguide
port.

Figure 5.11: Capture of the CST-simulated unit cell of a holey G-S PPW with square
holes. The waveguide ports are represented by the red surfaces.

Fig. 5.10 shows that the low-frequency line impedance of the metasurface waveguide
is approximately the same for both numbers of cells N . The quasi-static value is not
quite convergent yet, and so in the following even more unit cells are used to ensure
the validity of this technique. But even though the present example in not completely
accurate, it captures the general behavior between different geometries and between the
G-S and nGS configurations. The impedance of the holey PPWs is much increased with
GS.

5.2.1.2 Effective impedance: CST unit cell simulation

One of the main disadvantages of the reflection technique is the execution time. Simu-
lating tens of unit cells with enough accuracy can become tedious. Therefore, one might
wonder whether computing the transfer-matrix of just one unit cell is enough to capture
the effective impedance of the periodic waveguide. In the general case of G-S waveg-
uides, this is not true, as explained in [43], because of the multimodal coupling between
adjacent unit cells. A special multi-modal transfer-matrix technique must be used, as
described in appendix A.3.3. However, we are interested in the quasi-static regime of
holey PPWs. We show here that by choosing the cutting plane wisely, the single-modal
transfer-matrix of a unit cell is sufficient to obtain a good approximation of the effective
impedance in the quasi-static regime.

We consider the unit cell of a holey metasurface waveguide. The first step is the
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retrieval of the S-parameters of this unit cell. One cell is modeled in the frequency solver
of CST, such that the lower hole is in the middle of the lower plate, and quarters of
the upper holes are dispatched at each corner of the unit cell, as pictured in the CST
capture Fig. 5.11a. Two waveguide ports are placed at each end of the waveguide (at
z = 0 and z = p), covering the total side of the unit cell with open boundary conditions.
The lateral boundary conditions are periodic (at x = ±p/2).

After running the simulation, the solver yields the frequency-dependent S-parameters
S21 and S11. These parameters are normalized with the line impedance of the waveg-
uide ports. This port impedance corresponds to the TEM mode of a waveguide that
would have the same cross-section as the unit cell at the waveguide port, but with no
variation in the propagation direction. The electric field of this port mode is captured
in Fig. 5.11b. However, for periodic structures, CST may struggle to compute the ref-
erence port impedance, because the periodic boundary conditions force CST to consider
a Bloch mode. Therefore, the port impedance must be computed directly from the
excitation fields.

Since the metasurfaces create a system of two metallic conductors, the first excited
mode at the port is ensured to be TEM. That is why the port impedance can be charac-
terized by integrating the fields between the two conductors in the plane of the waveg-
uide port. The resulting current and voltage are uniquely defined for a TEM mode [17,
p. 166-7]. From the CST simulation, the electric and magnetic fields at the input port
are collected. The equivalent voltage is defined as

Vport =

g/2∫

−g/2

Ey|z=0,x=0 dy , (5.15)

such that the vertical electric field component is integrated along across the gap sepa-
rating the metasurfaces. Given the chosen unit cell in Fig. 5.11a, it appears that the
linear path defined by z = 0 and x = 0 had no holes at its ends. Similarly, the equivalent
current is defined as

Iport =

p/2∫

−p/2

Hx|z=0,y=−g/2 dx , (5.16)

such that the integration path follows the surface of the lower metasurface. From these
equivalent values, a reference port impedance is defined as

Zport = Vport/Iport . (5.17)

This can be done in both G-S and nGS cases.
The retrieval of the normalized impedance zeff from the simulated S-parameters of

the unit cell is described in appendix E.1. Then, the de-normalized line impedance of
the waveguide is

Zeff = zeffZport . (5.18)
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This de-normalized line impedance is related to the relative constitutive parameters µeff

and εeff of an effective dielectric-filled PPW of height g [17, p. 104] with

Zeff = ηeff
g

p
= η0

√
µeff

εeff

g

p
. (5.19)

where ηeff would be the effective intrinsic impedance of the equivalent PPW, and where
η0 =

√
µ0/ε0 ' 376.7Ω is the vacuum impedance.

Once zeff is found, the effective refractive index can be computed as well, as explained
in appendix E.1. According to [191], correctly choosing the sign of zeff enforces Im {n} ≤
0, as required for passive structures. However, this procedure leads to different candidates
for neff , because of the branch points in the formula. In the following, the correct branch
point is chosen as the most likely, given our experience of holey metasurface waveguides.
For unknown structures, different numbers of unit cells should be simulated in order to
find the true index.

In the end, given that the effective refractive index is defined as neff =
√
µeffεeff , the

constitutive parameters are computed as

µeff = neffZeff
p

gη0
and εeff =

neff

Zeff

gη0

p
. (5.20)

Numerical validation A holey PPW is considered, with dimensions p = 4 mm, h =
3 mm, a gap g = 0.1 mm filled with a dielectric εr1 = 10.7, and square holes of size
a = 3 mm. G-S and nGS configurations are compared. The unit cell is simulated in
CST from 0 to 10GHz to extract the S-parameters and port fields. Fig. 5.12 shows
the simulation results for the S-parameters, the computed Bloch impedance (5.18), the
corresponding effective refractive index, and the resulting constitutive parameters (5.20).

The port impedance, computed according to (5.17) and used to de-normalize the line
impedance in Fig. 5.12c, has a value of 9.1Ω for the G-S structure, and 3.0Ω for the nGS
structure.

It is notable that this process is not numerically stable when S21 ' 1 and S11 ' 0.
This corresponds to frequencies where the first mode reaches the end of the Brillouin zone
– that is a stopband for the nGS structure and a mode degeneracy for the GS structure.
The formulas for the impedance and the refractive index become undefined in these cases.
Therefore, the unit cell transfer-matrix method can only be uses at frequencies yielding
stable parameters.

One might wonder whether simulating one single unit cell is enough to display the
effective propagation properties of the periodic waveguide. One way to verify this is to
simulate more than one cell, and check if the resulting S-parameters yield converging neff

and Zeff . In Fig. 5.13, the computed refractive index and the line impedance are plotted
for different numbers of G-S or nGS cells. Only the real parts are plotted, for clarity.

When considering the effective parameters in Fig. 5.13, the overall behavior of the
waveguide is captured by any number of simulated unit cells. However, not only is
simulating one single cell faster, but it also yields S-parameters that are better suited
for numerical processing. Indeed, the larger the number of cells, the more often S11 =
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Figure 5.12: Constitutive parameter retrieval for holey PPWs with square holes, from
the transfer-matrix of its unit cell obtained with CST. The dimensions are p = 4 mm,
with empty square holes of size a = 3 mm and depth h = 3 mm. The gap between the
metasurfaces g = 0.1 mm is filled with a dielectric εr1 = 10.7.
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Figure 5.13: Constitutive parameter retrieval of holey PPWs with square holes, from the
transfer-matrix of the unit cell obtained in CST. The curves show the convergence of the
effective refractive index and impedance when increasing the number of simulated unit
cells. The dimensions are p = 4 mm, h = 3 mm, g = 0.1 mm, and a = 3 mm. The gap is
filled with a dielectric εr1 = 10.7.
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Figure 5.14: Effective impedance of holey PPWs as function of the hole size. The
impedances are computed in CST, comparing the reflection method and the transfer-
matrix method. All structures have dimensions p = 4 mm, h = 5 mm, and g = 0.1 mm,
and the nGS design is compared to the G-S design.

0, leading to numerical instabilities that are particularly visible for the impedance in
Fig. 5.13a or Fig. 5.13c. Nevertheless, in the prospect of using the homogenized mode-
matching method, we are particularly interested in low-frequency results. There, the
numerical simulations are stable overall.

5.2.1.3 Consistency of reflection and transfer-matrix methods

When comparing the computed impedances in Fig. 5.10 and in Fig. 5.12, it appears
that similar effective impedances are computed with the reflection method and with
the transfer-matrix of one unit cell. In these figures, the holey PPW has a periodicity
p = 4 mm, square holes of depth h = 3 mm and size a = 3 mm, and a gap g = 0.1 mm
filled with a dielectric εr1 = 10.7. In the G-S case, both techniques yield Zeff ' 20Ω,
whereas in the nGS design, Zeff ' 7Ω. The comparison between both techniques can be
pushed further by varying the shape and the size of the holes.

In Fig. 5.14, the quasi-static impedance Zeff is computed in CST using the two meth-
ods described above: the reflection method of paragraph 5.2.1.1, and the transfer-matrix
(with one unit cell) of paragraph 5.2.1.2. For the reflection method, the reflection coef-
ficient is measured at 50MHz. The S-parameters and the port impedance required for
the transfer-matrix method are obtained at the same frequency. In Fig. 5.14a, Zeff is
plotted as a function of the size of the square holes. No dielectrics are used in the
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structure. On the other hand, the impedance in Fig. 5.14b corresponds to circular
holes filled with a dielectric (εr2, µr2) = (3, 4), whereas the gap is filled with a dielec-
tric (εr1, µr1) = (2, 1.5). Both G-S and nGS are handled, with all structures having
dimensions p = 4 mm, h = 5 mm, and g = 0.1 mm.

As hinted by the simulations in the previous sections, the results from the reflection
and transfer-matrix methods match quite well. The precision is not very stable, but
this was to be expected given how these methods are unsuited for the computation
of the effective refractive impedance in the quasi-static regime3. Still, both methods
characterize the overall behavior of these holey PPWs with canonical hole shapes in the
same way, notably the difference between G-S and nGS waveguides.

This is truly interesting, because it opens the door to the definition of a Bloch
impedance without the use of commercial solvers. First, it must be understood that
both methods are quite different in nature:

• On the one hand, the reflection method yields the impedance that is representative
of a PPWTEMmode exciting the Bloch mode of a holey PPW. This impedance also
contains the parasitic effects due to the transitions – that is the interaction between
the incident TEM mode and the evanescent modes at the transition discontinuity.
It gives a good estimation of the Bloch impedance if this discontinuity effect is
negligible.

• On the other hand, the transfer-matrix method computes the impedance seen by
the port mode loaded with the unit cells of the metasurface waveguide. It gives
a good estimation of the Bloch impedance if the Bloch mode is close to the port
mode, since higher-order port modes which could play a role are neglected.

The fact that the transfer-matrix impedance is similar to the reflection impedance
means that the first excited port mode is sufficient to describe the Bloch mode in the
plane chosen for the transfer-matrix method. More precisely, this mode has fields that
are proportional to the fields of the Bloch mode in the same plane. This first port mode
is TEM, as illustrated in Fig. 5.11b. Therefore, in this plane, the Bloch mode is TEM
too. And so, the fields of the Bloch modes can be integrated in this plane in order to
yield an effective Bloch impedance that should characterize the waveguide, same as the
reflection method and the transfer-matrix method.

If the fields are known analytically in the unit cell, then this integration may be
performed without use of a commercial solver, making the effective impedance of the
holey PPW much more accessible. This can be done in the quasi-static framework
derived in chapter 4.

3During simulations, CST issues several warnings about the lower limit of the solvers being reached,
and how this affects the precision of the results. This makes sense, given that the dimensions of the unit
cell are very small compared to the wavelength. Therefore, a small propagation error across the unit cell
has a large impact at a wavelength scale.
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5.2.2 Quasi-static fields

Having expressions for the fields in the holey PPW unit cell opens the door to the
computation of the Bloch impedance by integrating these fields. In this section, the
quasi-static electric and magnetic fields are derived from the MMM expressions of section
2.2. However, the MMM expressions need to be simplified with care in the quasi-static
regime in order to yield the correct fields.

5.2.2.1 Hole mode coefficients

Homogenizing the dispersion equation (2.42) in the quasi-static regime yields the closed-
form formula (4.40) for the effective refractive index. Once this is done, the matrix
equation of the MMM (2.38) must be solved to obtain the coefficients ce and ch of the
hole modes. These coefficients are the nullspace of the dispersion matrix.

In the quasi-static state, the dispersion matrix has the form (4.31). Therefore, we
cannot look for the nullspace of the matrix directly, because most of the matrix coefficients
vanish when k0 → 0. This means that the field coefficients must be re-defined, by
multiplying or dividing them by k0. This is also motivated by the fact that under their
current expressions (2.18), (2.19), (2.20) and (2.21), some of the field components go to
infinity when k0 → 0, which is unphysical.

When k0 → 0, the electric field components of TM modes in (2.18) and (2.20) become
constants with respect to frequency. The magnetic field in (2.19) and (2.21) vanishes. On
the other hand, for TE modes, the electric field is constant with respect to frequency, but
the magnetic field blows up if k0 → 0. That is why for TE modes, the mode coefficients
are replaced by

Ch
m = k0C

h
m
′
. (5.21)

If the coefficients Ch
m
′ are finite, then when k0 → 0, the TE electric field vanishes, and

the magnetic components are constants with respect to frequency4. It is reminded that
ci
m = C i

m sin
(
ki
y,mh

)
, hence in the following ci

m
′
= C i

m
′
sin
(
ki
y,mh

)
, with ch

m = k0c
h
m
′.

With the coefficients change (5.21), the dispersion equation (2.38) with the quasi-
static matrix (4.31) is equivalent to
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]
= 0 . (5.22)

In order to find the coefficients ce and ch′, the k0 factor of the latter can be re-distributed
in the second column of the matrix. This leads to a k2

0 factor in the first row, and a

4Changing the field coefficients at this point may seem tedious. It could have been done earlier in
the MMM process in chapter 4. However, the definitions in chapter 4 allow to keep the same formalism
for TE and TM modes during the MMM. Otherwise, the field expressions would be different for each
kind of mode, complicating all previous sections.
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k0 factor in the second row. All these factors can be removed without changing the
nullspace of the matrix. In the end, the equation to be solved is
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[
ce

ch′

]
= 0 , (5.23)

which is totally independent of the frequency, and so none of the coefficients in (5.23)
vanish when k0 → 0.

5.2.2.2 Gap harmonic coefficients

The harmonic fields in the gap depend on the hole mode coefficients, as expressed by
(2.30). However, TE and TM modes have a different impact depending on the symmetry
of the gap harmonics. This is developed in the following paragraphs, where we define the
coefficients

d̄e(s`) = −j
∑

m

ce
m

ke
m

ē(s`)∗
y,m and d̄h(s`) =

∑

m

ch
m
′
ē

h(s`)∗
t,m . (5.24)

In the following, the term d̄h(s`) represent the influence of the TE hole modes onto the
harmonic fields. On the other hand, d̄e(s`) holds the TM influence of the hole modes.

Fundamental harmonic For the fundamental harmonic, b(00) = 0 as defined in (2.30b),
but according to (2.30a),

a(00) =
−j

pxpz

1

sin
(
k

(00)
y

g
2

)
(∑

m

ce
mẽ
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For the magnetic field (2.25b), these coefficients are multiplied by the admittance
matrix (2.24). At low frequency and for (s, `) = (0, 0), the latter can be written as

Y (00) =
k0→0

j

η0µr1

√
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(
n2
θ
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cos θ
sin θ

] [
− sin θ

cos θ
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− n2
1

[
0 1
−1 0

])
. (5.26)

Therefore, both a(00) and Y (00) are frequency-independent constants at low frequency.
Therefore, from (2.25), (2.26) and (2.27), the low-frequency field components of the
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fundamental harmonic are
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since at low frequency sin
(
k

(00)
y y

)
→ 0, cos

(
k

(00)
y y

)
→ 1, and F (00) → 1. As such, both

TM and TE modes contribute to the field of the fundamental harmonic, because a(00)

defined in (5.25) contains both d̄h(s`) and d̄e(s`).

Even-order higher harmonics When s+ ` is even and (s, `) 6= (0, 0), b(s`) = 0, but
according to (2.30a),
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where it is reminded that Γ(s`) = [s2π/pz, `2π/px]T and Γ(s`) = ||Γ(s`)||. One could be
tempted to simplify the expression further: the TE term seems negligible with respect
to the TM term, due to a k0 factor. However, this is not true for some of the harmonic
field components. Indeed, for the magnetic field (2.25b), these coefficients are multiplied
by the admittance matrix (2.24). At low frequency, the latter can be written as

Y (s`) =
k0→0

1

k0η0µr1Γ(s`)

(
Γ(s`)

[
ŷ × Γ(s`)

]T
− k2

1

[
0 1
−1 0
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. (5.29)

This matrix is proportional to 1/k0. When it is multiplied to a(s`), the cancelling of some
TM terms and the division by k0 causes the TE terms of a(s`) to be necessary. Taking
this into account, from (2.25), (2.26) and (2.27), the low-frequency field components of
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the higher even-order harmonics are
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and so, in the quasi-static regime,
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Therefore, in the gap, the low-frequency electric field of the higher harmonics depends
only on the TM hole modes, whereas the magnetic field depends only on the TE hole
modes.

Note that when the structure is nGS, then these are the expressions for all the har-
monics, not just the even-order harmonics.

Odd-order harmonics When s+ ` is odd, a(s`) = 0, but
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Like for even-order harmonics, the dominance of TM or TE hole modes on the gap
fields cannot be decided yet. At low-frequency, the admittance matrix of odd-order
harmonics has the same form as in (5.29). Consequently, the fields of odd-order harmonics
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yielding, in the quasi-static regime,
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Similarly to even-order harmonics, the electric components are related to the TM hole
modes, whereas the magnetic components are related to the TE modes.

5.2.2.3 Numerical computation of the modal fields in the gap

After computing the effective refractive index with (4.40), and finding the mode coeffi-
cients by solving (5.23), the fields in the gap can be computed with (5.27), (5.31), and
(5.34). As an example, we simulate a holey PPW of periods pz = px = 4 mm and gap
g = 0.1 mm. The holes are squares of size a = 3 mm, and have a depth h = 5 mm.
The gap and the holes are filled with vacuum. Both G-S and nGS configurations are
considered. The waves propagate in the plane zx along the z-axis, which corresponds
to θ = 0°. Fig. 5.15 compares the fields computed with our quasi-static homogenization
framework (top subfigures (a) to (c)) with the fields simulated with CST’s eigenmode
solver at approximately 10MHz (bottom subfigures (d) to (f)). The magnitude of all
field components is plotted.

The fields computed with the quasi-static framework match the CST-simulated fields
for all components, up to a scaling factor. The differences come from the need of an
even finer mesh in CST, which leads to extended execution times. Even with the rough
mesh used in Fig. 5.15, computing the fields with CST is still slower than the quasi-static
analytic computation by several orders of magnitude.
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Figure 5.15: Fields of the G-S holey PPW, computed analytically in the quasi-static
regime as described in paragraph 5.2.2.2, or with CST at approx. 10MHz. The cutting
plane is y = 0 – that is in-between the two metasurfaces – and the waves propagate in
the z-direction. The structure has pz = px = 4 mm, g = 0.1 mm, a = 3 mm, h = 5 mm,
and is filled with vacuum.
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(a) View of the zx-plane. The propagation
direction is indicated by the red arrow.

integration Hx
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(b) View of the xy-plane, normal to the prop-
agation direction.

Figure 5.16: Holey G-S PPW with square holes, as considered for the definition of the
Bloch impedance. The propagation direction is the z-axis. The unit cell is framed in
blue. The fields are integrated in the xy-plane between the metasurfaces, as indicated by
the dashed red and blue paths – for magnetic and electric field integration, respectively.

5.2.3 Bloch impedance and impedance matching

In section 5.2.1.3, the CST-computated impedance is the same with the reflection method
or with the transfer-matrix method. This means that if the fields of the Bloch mode are
available, the effective impedance can be computed by integrating these fields. Indeed,
in the port plane of the transfer-matrix simulation, the Bloch mode should be quasi-
TEM. Therefore, the integration of the electric and magnetic fields in this plane does
not depend on the the integration path, defining a unique Bloch impedance. Note that
these observations are made only for canonical hole shapes, that is square and circular.

The quasi-static fields of holey PPWs have been derived analytically in section 5.2.2.
Therefore, for a given waveguide geometry, the effective refractive index is computed
with (4.40). This value can then be inserted in the quasi-static expression (5.27), (5.31),
(5.34), which yield the electric and magnetic fields in the gap between the metasurfaces.
Then, these fields can be integrated in the unit cell in order to yield effective Bloch
voltages and currents. The integration paths are shown in Fig. 5.16 for square holes.
The integration plane is the same as CST’s waveguide port in Fig. 5.11a. It is placed
such that it is normal to the propagation direction and between two holes of the lower
metasurface (or the upper metasurface). The magnetic field is integrated in this plane
across the total width of the unit cell. The electric field is integrated at the point where
there is no upper hole, along a path binding the two conductors without entering the
holes. According to this, the Bloch voltage and current are defined as

VB =

g
2∫

y=− g
2

Ey|z=z0
x=x0

dy , and IB =

px∫

x=0

Hx|z=z0
y=y0

dx , (5.35)
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where (z0, x0, y0) is a point in the integration plane in-between holes. Finally, the effective
Bloch impedance is computed as

ZB =
VB

IB
. (5.36)

To illustrate the validity of this procedure, the quasi-static fields in the unit cell of
different holey PPWs are plotted in Figs. 5.17, 5.18, 5.19 and 5.20, respectively for G-
S square holes, nGS square holes, G-S circular holes, and nGS circular holes. All the
structures in these examples have square periodicities pz = px = 4 mm, a gap g = 0.1 mm
and a hole depth h = 5 mm. PPWs with square holes do not use dielectrics, and the hole
size is a = 3 mm. On the other hand, the circular holes of radius a = 1.7 mm are filled
with a dielectric (εr2, µr2) = (3, 4), combined with a gap dielectric (εr1, µr1) = (2, 1.5).
For each waveguide, four field components are plotted. Subfigures (a) and (b) represent
the magnitude of the longitudinal field electric and magnetic components |Ez| and |Hz|.
These components are of interest, because they must be zero for the Bloch mode to be
quasi-TEM in the integration plane. Subfigures (c) and (d) represent the magnitude
of the transverse field components parallel to the integration paths. For the electric
field integration, the shortest path binding the two metasurfaces is aligned with the y-
axis, and the the field |Ey| is plotted in (c). Similarly, the straightest path crossing the
unit cell is the x-axis, and so in (d) the magnetic component of interest is |Hx|. For
better visualization, each field component is plotted in the plane y = 0 (in-between the
metasurfaces), as well as in the integration plane z = p/2.

For square and circular holes, Figs. 5.17 to 5.20 confirm that in the chosen plane,
there are no longitudinal field components, whether the structure is G-S or not. Thus,
the transverse fields can be integrated along the represented paths in order to yield the
Bloch voltage and current (5.35). In the next section, the resulting Bloch impedance
(5.36) is compared to the reference impedance computed in CST.

5.2.3.1 Comparison with the CST reflection method

In the following, a holey PPW is considered, with pz = px = 4 mm, g = 0.1 mm, and
holes of depth h = 5 mm. The quasi-static effective refractive index is computed with
(4.40), and then the Bloch impedance is computed with (5.36). With these two pieces
of information, the waveguide can be fully homogenized, retrieving effective constitutive
permittivities and permeabilities. In Figs. 5.21 and 5.22, the effective media parameters
are plotted as functions of the hole size a, for both G-S and nGS configurations. They are
compared to the value obtained from the reflection method described in section 5.2.1.1,
with CST simulations at 0.1GHz. In Fig. 5.21, the holes are square, and the structure is
filled with vacuum. In Fig. 5.22, the circular holes are filled with a dielectric (εr2, µr2) =
(3, 4), and the gap is filled with a dielectric (εr1, µr1) = (2, 1.5).

The results in Figs. 5.21 and 5.22 show good agreement between the quasi-static
Bloch impedance (5.36) and the reference impedance computed in CST, for square and
circular holes, and for G-S and nGS waveguides. One could even be tempted to trust the
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Figure 5.17: Fields in one unit cell of the G-S holey PPW with square holes, computed
analytically in the quasi-static regime as described in paragraph 5.2.2.2. The waves
propagate in the z-direction. The structure has pz = px = 4 mm, g = 0.1 mm, a = 3 mm,
h = 5 mm, and is filled with vacuum. The integration paths described in Fig. 5.16 are
indicated by the dashed lines. For each filed component, two cuts are shown in the unit
cell: a top view in the cutting plane y = 0, and a cross view in the cutting plane z = p/2.
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Figure 5.18: Fields in one unit cell of the nGS holey PPW with square holes, computed
analytically in the quasi-static regime as described in paragraph 5.2.2.2. The waves
propagate in the z-direction. The structure has pz = px = 4 mm, g = 0.1 mm, a = 3 mm,
h = 5 mm, and is filled with vacuum. The integration paths described in Fig. 5.16 are
indicated by the dashed lines. For each filed component, two cuts are shown in the unit
cell: a top view in the cutting plane y = 0, and a cross view in the cutting plane z = p/2.
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Figure 5.19: Fields in one unit cell of the G-S holey PPW with circular holes, computed
analytically in the quasi-static regime as described in paragraph 5.2.2.2. The waves
propagate in the z-direction. The structure has periodicities pz = px = 4 mm, a gap
g = 0.1 mm filled with (εr1, µr1) = (2, 1.5), and holes of radius a = 1.7 mm and depth
h = 5 mm, filled with (εr2, µr2) = (3, 4). The integration paths described in Fig. 5.16 are
indicated by the dashed lines. For each filed component, two cuts are shown in the unit
cell: a top view in the cutting plane y = 0, and a cross view in the cutting plane z = p/2.
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Figure 5.20: Fields in one unit cell of the nGS holey PPW with circular holes, computed
analytically in the quasi-static regime as described in paragraph 5.2.2.2. The waves
propagate in the z-direction. The structure has periodicities pz = px = 4 mm, a gap
g = 0.1 mm filled with (εr1, µr1) = (2, 1.5), and holes of radius a = 1.7 mm and depth
h = 5 mm, filled with (εr2, µr2) = (3, 4). The integration paths described in Fig. 5.16 are
indicated by the dashed lines. For each filed component, two cuts are shown in the unit
cell: a top view in the cutting plane is y = 0, and a cross view in the cutting plane is
z = p/2.
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Figure 5.21: Constitutive parameter retrieval for holey PPWs, as function of the square
hole size a. The parameters are computed in the quasi-static analytic framework with
(4.40) and (5.36), and compared with the CST reflection method.The structure is filled
with vacuum, with dimensions p = 4 mm, h = 5 mm, and g = 0.1 mm. G-S and nGS
configurations are compared.



5.2. EFFECTIVE CONSTITUTIVE MATERIAL PARAMETERS 157

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

20

40

60

80

Hole radius a in mm

Li
ne

im
pe

da
nc

e
Z

eff
in

Ω nGS, reflection
nGS, quasi-static
GS, reflection
GS, quasi-static

(a) Bloch impedance.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.5

1

1.5

Hole radius a in mm

R
el
at
iv
e
pe

rm
it
ti
vi
ty
ε e

ff

nGS, reflection
nGS, quasi-static
GS, reflection
GS, quasi-static

(b) Relative permittivity.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

10

20

30

Hole radius a in mm

R
el
at
iv
e
pe

rm
ea
bi
lit
y
µ

eff nGS, reflection
nGS, quasi-static
GS, reflection
GS, quasi-static

(c) Relative permeability.

Figure 5.22: Constitutive parameter retrieval for a holey PPW, as function of the circular
hole radius a. The parameters are computed in the quasi-static analytic framework
with (4.40) and (5.36), and compared with the CST reflection method. The structure
dimensions are p = 4 mm, h = 5 mm, and g = 0.1 mm. It uses gap and hole dielectrics
(εr1, µr1) = (2, 1.5) and (εr2, µr2) = (3, 4).G-S and nGS configurations are compared.
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analytic curves more than the CST results, because the latter have a somehow erratic
behavior, whereas the quasi-static curves seem much smoother.

A comment can be made when comparing square holes in Fig. 5.21 and circular holes
in Fig. 5.22. Retrieving the constitutive parameters of these holey PPWs offers further
insight about the differences between different hole shapes. In the case of square hole,
the relative permittivity is smaller than one, whereas for circular holes, except for very
large holes, the permittivity is between 1 and 2. The quasi-static impedance makes such
comparisons more more accessible.

It must be highlighted that the effective impedance is derived in the quasi-static
regime. As such, it is to be expected that at higher frequencies, the validity of Zeff

worsens. Nevertheless, the quasi-static characterization can likely be used up to higher
frequencies for G-S waveguides, given the low frequency dispersion.

5.2.3.2 Impedance matching with the Bloch impedance

In order to further validate the effective constitutive parameters obtained in our quasi-
static framework, we consider a PPW with a change of dielectric, as illustrated by the
CST models pictured in Fig. 5.23. The waves propagate in a dielectric medium (εrL, µrL)
(red in the CST model). In the middle of the structure, a dielectric slab (εr1, µr1) of length
Ls is inserted, creating an obstacle with normal wave incidence (blue in the CST model).
In order to avoid reflections, holes are drilled in the metal around the dielectric slab in
order to achieve impedance matching (green in the CST model). If the dimension of these
holes creates the right effective impedance Zeff , then the slab should be reflectionless for
the incident wave.

In practice, given the dielectrics, one would have to perform parametric studies to
find the unit cells that have the desired effective properties. Here, we are rather inter-
ested in validating the effective properties obtained in the quasi-static framework, and
so we have more of a reverse-engineering approach. For a given G-S holey PPW unit
cell, we compute the quasi-static effective properties from (4.40) and (5.36). Then, the
computed constitutive parameters are used for the dielectric of the feeding PPWs (in
red in Fig. 5.23). If the matching works, it indicates that our quasi-static framework
is indeed able to predict the effective parameters of our holey PPW in the context of
dielectric waveguides matching, and that (5.36) can be used for the subsequent para-
metric studies. For each example, two structures are compared. On the one hand, the
unmatched structure, where an air slab is placed in-between the two feeding slabs, cre-
ating reflections. On the other hand, the (theoretically) matched structure, where holey
metasurfaces are placed on both sides of the center dielectric slab. This is supposed to
suppress the reflections at low frequencies.

First, an example with nGS square holes is examined Fig. 5.24. According to Fig. 5.21,
square holes of size a = 3 mm yield an effective permittivity εeff = 0.52, and an effective
permeability µeff = 2.83. These are the constitutive parameters chosen for the feeding
dielectric PPW (εrL, µrL), of length Lf = 20 mm. It is followed by a slab of air of length
Ls = 40 mm (which corresponds to 10 metasurface unit cells). Finally, another feeding
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(a) No matching holes.

(b) Square holes.

(c) Circular holes.

Figure 5.23: CST models for the impedance matching simulations with holey G-S PPWs.
The waveguide ports are placed at the ends of the feeding PPWs (red dielectrics). The
structures are periodic in the x-direction (perpendicular to the propagation direction),
which is made possible by the hexahedral mesh of CST’s frequency solver.

dielectric of Lf = 20 mm is placed at the end of the waveguide. CST’s frequency solver
is used to compute the S-parameters of the structure between 0 and 20GHz.

The same configuration is used in Fig. 5.25 for the G-S vacuum filled structure from
Fig. 5.21, with holes of size a = 3 mm, yielding εeff = 0.28 and µeff = 8.55.

Finally, impedance matching is achieved with G-S circular holes in Fig. 5.26. The
setup is the same as in Figs. 5.24 and 5.25, except that the dielectrics are changed. The
center dielectric is (εr1, µr1) = (2, 1.5), and holes of radius a = 1.7 mm are drilled along
this center slab, forming a G-S PPW. The holes are filled with a dielectric (εr2, µr2) =
(3, 4). According to the quasi-static parametric study in Fig. 5.22, such a holey G-S
PPW yields effective constitutive parameters (εreff , µreff) = (0.52, 27.22). This values are
thus used for the feeding dielectric PPWs of length Ls = 40 mm.

From Figs. 5.24 to 5.26, it appears that the effective material properties defined in
the quasi-static framework are quite accurate. Without the metasurfaces, most of the
power is reflected at the dielectric interfaces, which was predictable. Adding the holey
metasurfaces enables good impedance matching between the different dielectric PPWs.
Although derived in the quasi-static regime, the effective properties of the metasurface
waveguides suppress more than 99% of the reflections up to 12GHz for the square holes,
and more than 90% up to almost 20GHz. The G-S design enables matching to even higher
frequencies, due to the low frequency-dispersion of G-S waveguides. In the example of the
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Figure 5.24: S-parameters of a dielectric PPW (εrL, µrL) = (0.52, 2.83) of height g =
0.1 mm, blocked by a vacuum slab of length Ls = 40 mm, in line with the simulation
model of Fig. 5.23. Results without impedance-matching are compared to the case where
square holes are drilled in the plates of the PPW along the slab, creating a nGS holey
PPW with dimensions p = 4 mm, h = 5 mm, and a = 3 mm.
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Figure 5.25: S-parameters of a dielectric PPW (εrL, µrL) = (0.28, 8.55) of height g =
0.1 mm, blocked by a vacuum slab of length Ls = 40 mm, in line with the simulation
model of Fig. 5.23. Results without impedance-matching are compared to the case where
square holes are drilled in the plates of the PPW along the slab, creating a G-S holey
PPW with dimensions p = 4 mm, h = 5 mm, and a = 3 mm.



5.2. EFFECTIVE CONSTITUTIVE MATERIAL PARAMETERS 161

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−40

−30

−20

−10

0

Frequency in GHz

S-
pa

ra
m

et
er

s
in

dB

S21 without holes
S11 without holes
S21 with holes
S11 with holes

Figure 5.26: S-parameters of a dielectric PPW (εrL, µrL) = (0.52, 27.22) of height g =
0.1 mm, blocked by a dielectric slab (εr1, µr1) = (2, 1.5) of length Ls = 40 mm, in line with
the simulation model of Fig. 5.23. Results without impedance-matching are compared
to the case where circular holes are drilled in the plates of the PPW along the slab and
filled with a dielectric (εr2, µr2) = (3, 4), creating a G-S holey PPW with dimensions
p = 4 mm, h = 5 mm, and a = 1.7 mm.

circular holes with dense dielectrics, the band of validity is smaller, as could be expected
for such dense structures (as explained section 4.5.1). Still, less than 10% of the incident
power is reflected up to 9GHz.

The effective constitutive parameters obtained in the quasi-static framework are good.
But are they the best? The structure with G-S empty square holes in Fig. 5.25 is
considered again. The permittivity εrL and the permeability µrL of the feeding dielectrics
are tuned around the effective values (εeff , µeff) = (0.28, 8.55), computed in the quasi-
static regime. In Fig. 5.27, the maximum value of S11 between 0 and 2GHz is considered
in the (εrL, µrL)-plane. This shows if the theoretically computed values yield the best
possible impedance matching.

Fig. 5.27 shows that there remains a small difference between the “best” effective pa-
rameters and the quasi-static parameters. In Fig. 5.25 slightly better impedance matching
would have been achieved by tuning the feeding dielectrics. This is understandable, given
that our quasi-static parameters describe an infinitely periodic holey PPW, whereas in
the mode-matching situation, the metasurface waveguide is finite (here, only 10 unit
cells). The field variation caused by the holes at the boundary between the two gap
dielectrics excites higher modes, which are reflected at the boundary, neglected in the
homogenized model. Yet, even for such a small structure, the holey metasurfaces sup-
press most of the reflections, and the quasi-static refractive index and Bloch impedance
are fast and accurate techniques to achieve that.
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Figure 5.27: Quasi-static reflection S11 as function of the feeding dielectric parameters
(εrL, µrL). The feeding waveguides of length Ls = 40 mm are on either side of the center
holey G-S PPW made of 10 unit cells, with empty square holes of size a = 3 mm and
depth h = 5 mm. The unit cell periodicity is p = 4 mm, and the gap between the metallic
plates is g = 0.1 mm. The effective constitutive parameters of the center holey structure
computed in the quasi-static regime are pointed out.

5.2.4 Effects of glide symmetry on the constitutive parameters

In Figs. 5.21 and 5.22, it appears clearly that GS increases the Bloch impedance. Com-
bining the Bloch impedance with the effective refractive index (4.40) also highlights the
higher magnetic density enabled by GS. In this section, the quasi-static framework is
used to analytically prove these features of GS.

Unfortunately, without simplifications, analytical demonstrations are not possible,
because the Bloch impedance computation relies on the nullspace of the dispersion matrix
M in (5.23). For accurate computations, a large number of modes must be considered in
the holes, leading to a large matrixM : the nullspace can only be computed numerically.

Nevertheless, relying on the findings in paragraph 5.1.1, the physical behavior of these
waveguides is captured when the number of modes is reduced to the two most excited
ones: one TM and one TE mode. Fig. 5.28 shows the impact of keeping only two modes
on the accuracy of the Bloch impedance. In Fig. 5.28a, empty G-S square holes of varying
sizes are considered, with p = 4 mm, h = 5 mm, and g = 0.1 mm. Waveguides with the
same dimensions are studied in Fig. 5.28b, with G-S circular holes of varying radius,
and dielectric fillings (εr1, µr1) = (2, 1.5) and (εr2, µr2) = (3, 4). These studies show that
although accuracy is lost when keeping only two modes, the overall qualitative differences
between G-S and nGS waveguides are contained in the two-modes Bloch impedance.

By keeping only one TE and one TM mode, the dispersion matrixM becomes a 2×2
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0.6 0.8 1 1.2 1.4 1.6 1.8

20

40

60

80

Hole radius a in mm
Im

pe
da

nc
e
Z

eff
in

Ω

nGS, 2 modes
nGS, convergence
GS, 2modes
GS, convergence

(b) Circular holes of radius a with (εr2, µr2) =
(3, 4), and gap with (εr1, µr1) = (2, 1.5).

Figure 5.28: Quasi-static effective Bloch impedance of holey PPWs, as function of the
hole size. The case with only 2 hole modes is compared with the converge value of
the quasi-static framework. The structures have dimensions p = 4 mm, h = 5 mm, and
g = 0.1 mm. G-S and nGS configurations are compared.

matrix, and the resulting 2-modes matrix equation is of the form

[
A B
B∗ D

] [
ce

ch′

]
= 0 , (5.37)

with, according to (5.23),

A = n2
1

(
Σe +

n2
θ

n2
1 − n2

θ

2

g
|ue|2

)
, (5.38)

B = jn1
nθn1

n2
1 − n2

θ

2

g
ue
[
uh
]∗
, (5.39)

and D = Σh +
n2

1

n2
1 − n2

θ

2

g

∣∣∣uh
∣∣∣
2
. (5.40)

Assuming that the nullspace of this matrix is not empty i.e., AD−|B|2 = 0, the solutions
of (5.37) are proportional to

[
ce

ch′

]
=

[
−B
A

]
=



−jn1
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1−n2
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2
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e
[
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(
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n2
θ
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θ

2
g |ue|2

)

 , (5.41)



164 CHAPTER 5. QUASI-STATIC PROPERTIES

with, according to (4.32), (4.35) and (4.36),

Σe = − εr2
εr1ke

pxpzI
ecoth (keh) +

∑

(s,`)6=(0,0)

f̄ (s`)

∣∣∣ē(s`)y

∣∣∣2
ke2 Γ(s`)2

, (5.42)

ue =
ē
(00)
y

ke , and uh = cos θēh(00)
z + sin θēh(00)

x . (5.43)

Note that in section 5.2.3, the impedances are computed for a propagation direction
aligned with the grid i.e., θ = 0. This is taken as an assumption in the following,
simplifying uh accordingly.

In section 5.2.2.2, the quasi-static fields are expressed as functions of the mode coeffi-
cients. Inserting the two-modes coefficients (5.41), the intermediary terms d̄i(s`) in (5.24)
become

d̄e(s`) = −j
ce

ke
ē(s`)∗
y = − nθn

2
1

n2
1 − n2

θ

2

gke2 ē
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y , (5.44)

and
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t = n2

1ē
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 , (5.45)

with ēe(s`)
y and ēh(s`)∗

t the projected modal functions (PMFs) of the TM and TE modes.
In the following, it is reminded that the differences between G-S and nGS waveguides

are located in the vertical spectral functions of the harmonics, defined in (4.20) as

f̄ (s`) =

{
−tanh

(g
2Γ(s`)

)/
Γ(s`) if G-S and `+ s odd,

−coth
(g

2Γ(s`)
)/

Γ(s`) if G-S and `+ s even, or if nGS.
(5.46)

Before computing the Bloch current and voltage, a preliminary term useful for the
following is studied, namely the sum nθd̄

e(00) + d̄
h(00)
z . From (5.44) and (5.45), the sum

can be simplified as
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 . (5.47)

According to the vertical spectral function definitions in (5.46), the terms in the sum are
negative, and the absolute value of the total sum is smaller in the G-S case. Therefore,

∣∣∣nθd̄e(00) + d̄h(00)
z

∣∣∣
GS

<
∣∣∣nθd̄e(00) + d̄h(00)

z

∣∣∣
nGS

. (5.48)
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5.2.4.1 Effective Bloch current

The Bloch current is defined in (5.35) as

IB =

px∫

x=0

Hxdx =

px∫

x=0

∑

(s,`)

H(s`)
x dx =

∑

(s,`)

I
(s`)
B , (5.49)

where the magnetic field is the sum of the components of all the Floquet harmonics
according to (2.25). In the following, these harmonics are considered according to their
parity.

Even-order harmonics For even-order harmonics except (s, `) = (0, 0), the transverse
magnetic field Hx is defined in (5.31) as

H
(s`)
t =

k0→0
− jF̄ (s`) cos

(
jΓ(s`)y

)

η0µr1pxpzΓ(s`) sin
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d̄h(s`) , (5.50)

and therefore
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. (5.51)

The only x-dependency is in the exponential term F̄ (s`) = e
−j
`2π
px

x−j
s2π
pz

z. Therefore,
when integrating the magnetic field across the unit cell, the integral term is reduced to

px∫

x=0

e
−j
`2π
px

x
dx = 0 if l 6= 0 . (5.52)

In the case where ` = 0, the magnetic field component in (5.51) is null anyway, because
of the `-proportionality. This means that in the effective Bloch current (5.49), all even-
order harmonics have no contribution, given that their integral across the unit cell is
zero.

Odd-order harmonics The transverse magnetic field component of odd-harmonics is
defined in (5.34) as

H(s`)
x =
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d̄h(s`)
z

]
. (5.53)

The only difference with the even-order case is that these fields are antisymmetric with
respect to y. The integral along x is zero too. This means that in the effective Bloch
current (5.49), all odd-order harmonics have no contribution.
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Fundamental harmonic Given the two previous paragraphs, the Bloch current is
defined only from the fundamental Floquet harmonic, which is constant in the integration
plane. Indeed, from (5.27),

H
(00)
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) . (5.54)

For θ = 0, this yields
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and so the fundamental-harmonic contribution to the Bloch current is

I
(00)
B = pxH

(00)
x =
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2n2
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η0µr1pzg
(
n2

1 − n2
θ
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(
nθd̄

e(00) + d̄h(00)
z

)
. (5.56)

In parentheses, we recognize the expression studied in (5.48), which is smaller in the G-S
case. However, this is not enough to state that the Bloch current is smaller in the G-S
case, because in (5.56) H(00)

x also depends on n2
1 − n2

θ. The magnitude of this term is
different between G-S and nGS configurations because of nθ, but it is not obvious here
in which case the magnitude is larger.

Nevertheless, the fundamental harmonic being the only contribution to the current
in (5.49),

IB =

px∫

x=0

H(00)
x dx = pxH

(00)
x = I

(00)
B , (5.57)

with I(00)
B defined in (5.56).

5.2.4.2 Effective Bloch voltage

Similarly, to the current, the Bloch voltage is defined in (5.35) as

VB =

g/2∫

y=−g/2

Eydy =

g/2∫

y=−g/2

∑

(s,`)

E(s`)
y dy =

∑

(s,`)

V
(s`)

B , (5.58)

where the integration path binds the two metasurfaces across the gap.
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Glide odd-order harmonics In the case of a G-S structure, according to (5.34),
harmonics with odd s+ ` have an electric field

E(s`)
y =

k0→0

jF̄ (s`)Γ(s`) sin
(
jΓ(s`)y

)

pxpz cos
(
jΓ(s`) g

2

) d̄e(s`) . (5.59)

Given this antisymmetric field distribution along the gap because of the sinus function,
the integral contribution of this field is null. Therefore, in the G-S case, none of the
odd-order harmonics impact the Bloch voltage.

Glide even-order or nGS harmonics For G-S harmonics with s + ` even and not
null, and for all higher harmonics of the nGS case, according to (5.31) the electric field
has the form

E(s`)
y =
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jF̄ (s`)Γ(s`) cos
(
jΓ(s`)y

)

pxpz sin
(
jΓ(s`) g

2

) d̄e(s`) . (5.60)

The only field variation along g is located in the cosine function. The integral comes
down to
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y=−g/2
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Therefore
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ē(00)
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Note that this voltage depends on the position (z0, x0) of the integration path in the
propagation plane, because of the term F̄ (s`). In the following, this position is chosen so
that the Bloch fields are in-between two holes, that is z0 = a/2 − p/2. Appendix E.2.1
proves that the fields are TEM in this plane. However, more in-depth studies should
consider how the effective impedance is impacted by the chosen position.

Fundamental harmonic According to (5.27), for θ = 0 the fundamental electric field
has the form

E(00)
y =

k0→0
− 2nθ

pxpzg
(
n2

1 − n2
θ

)
(
nθd̄

e(00) + d̄h(00)
z

)
. (5.63)

As such, it is constant along the integration path, and V (00)
B = gE

(00)
y . We recognize the

term studied in (5.48).
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5.2.4.3 Bloch impedance

With only the fundamental harmonic This case is not accurate, because one har-
monic is not enough to properly describe the field behavior in the waveguide. However,
its simplicity is noteworthy. From (5.56) and (5.63), the Bloch impedance (5.36) for the
fundamental harmonic is defined as
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. (5.64)

The Bloch impedance for one harmonic is proportional to the impedance of a parallel-
plate waveguide of gap g and width px. It is also proportional to the effective refractive
index nθ. If the latter is larger in the G-S case, then the Bloch impedance is larger as
well. Note that decreasing the gap density makes the impedance larger, and much more
so in the G-S case, because then the G-S index become larger than the nGS index (as
shown in section 5.1.2).

General case When all the harmonics are considered,
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In the G-S case, this yields
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h(00)∗
z ē
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whereas in the nGS case,
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(00)
y ē
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 . (5.67)

As shown in (5.48), the term in the denominator of the sum is smaller for GS. This
means that if we consider the Bloch impedances corresponding to each of the even-order
harmonics, the G-S impedance is larger. However, this does not yet mean that the overall
sum leads to a smaller G-S Bloch impedance. Indeed, in the nGS case, there are twice as
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Figure 5.29: Quasi-static fields in the impedance integration plane for a holey PPW
with square holes, computed as described in paragraph 5.2.2.2. The integration paths
are indicated in dashed red. G-S and nGS configurations are compared. The fields
are normalized such that the effective Bloch current is 1A in both configurations. The
structure is filled with vacuum and has dimensions p = 4 mm, h = 5 mm, g = 0.1 mm
and a = 3 mm.

many terms in the sum, due to all the odd-order harmonics. Appendix E.2.2 holds the
proofs that the odd-order harmonics have no impact in (5.67) for square holes. Under
this condition, these equations show that the 2-mode Bloch impedance can be written as

ZB = nθX , with XGS > XnGS , (5.68)

where the terms XGS and XnGS can be identified from (5.66) and (5.67). The impact
of GS on nθ depending on the dielectrics must be taken into account, as described in
paragraph 5.1.2. Since such waveguides are mostly used in a context where the refractive
index is increased by GS, (5.68) shows that

ZB,GS > ZB,nGS , (5.69)

as observed in Figs. 5.21a and 5.22a.
When visualizing the transverse fields in the integration plane, this impedance dif-

ference takes on a more physical meaning. Fig. 5.29 plots the magnetic field Hx and
the electric field Ey for both G-S and nGS configurations with square holes. The fields
are normalized such that the effective Bloch current is the same for both configurations.
It appears that in the nGS design, the electric field is almost constant across the unit
cell, whereas in the G-S design, it is concentrated in the center, between the two upper
holes where it reaches higher values. This increases the Bloch voltage, and the G-S Bloch
impedance is larger than the nGS impedance.



170 CHAPTER 5. QUASI-STATIC PROPERTIES

This has immediate consequences on the effective constitutive material parameters
of the waveguide. The relative permittivity of the waveguide is proportional to the ratio
between the refractive index and the impedance i.e., εeff = η0nθ/ZB. Considering (5.68),
this implies that

εeff =
η0

X
, with XGS > XnGS . (5.70)

Therefore, (5.70) shows that

εeff,GS < εeff,nGS , (5.71)

as observed in Figs. 5.21b and 5.22b. Similarly, the permeability is proportional to the
product of the refractive index and the impedance, that is µeff = nθZB/η0. Therefore,
according to (5.68),

µeff =
1

η0
n2
θX , with XGS > XnGS . (5.72)

Assuming that we consider a case where the refractive index is increased by GS, then

µeff,GS � µeff,nGS , (5.73)

as observed in Figs. 5.21c and 5.22c. Note that while (5.69) and (5.73) rely on the
assumption that the refractive index is increased by GS, the expression (5.71) is true
independently of nθ. This shows that GS reduces the permittivity of a waveguide even
in cases where the G-S refractive index is smaller.

In the end, the quasi-static framework developed in chapters 4 and 5 makes it possible
to prove some of the effective material properties of GS. Combined with the refractive
index formula (4.40), the Bloch impedance (5.36) gives access to the full characterization
of holey PPWs with canonical hole shapes. At the cost of some accuracy, these expres-
sions can be made fully analytical when keeping only the dominant modes, such that
the differences between G-S and nGS waveguides are visible in the formulas. This gives
elements of analytical proof for the observations made with G-S structures, most notably
the increase of the permeability.

Chapter landmarks

The closed-form formula (4.40) for the refractive index of holey PPWs accelerates the
design of metasurface waveguides. But it is also a powerful analysis tool for the properties
of G-S structures:

• The impact of the dielectrics in the waveguide is brought to light. The formula
(4.40) shows in which cases the G-S refractive index is larger than the nGS index,
but also that for some dielectrics this is not the case, contrarily to all the examples
shown in literature until now.
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• The coupling between upper and lower holes is observed when the gap becomes
asymptotically small. When G-S holes are overlapping, a much higher refractive
index can be obtained than in the nGS case.

• From (4.40), expressions for the quasi-static fields of the unit cell are derived. By
integrating the transverse and magnetic fields in a particular cutting plane, a Bloch
impedance is defined. In the case of square and circular holes, this Bloch impedance
accurately describes the behavior of the Bloch mode, without the use of commercial
solvers. It can be used to achieve impedance matching, or to compute the effective
material properties of the waveguide.

• When reducing the field expressions to two modes, the effective material expres-
sions are simplified such that the differences between G-S and nGS waveguides are
analytically highlighted. When the G-S refractive index is higher, then so are its
impedance and its permeability. The G-S permittivity is always smaller than the
nGS permittivity.

These studies are concentrated on the canonical cases of square and circular holes,
which are the most commonly used shapes. The definition of the Bloch impedance is
based on heuristic observations. Future research should focus on understanding the limits
of this impedance’s validity, in order to generalize the results derived in this chapter.





Chapter 6

Substrate-integrated reconfigurable
glide-symmetric phase-shifter

In the previous chapters, holey glide-symmetric (G-S) parallel-plate waveguides (PPWs)
are analyzed and modeled in the quasi-static regime. The homogenization of wideband
metasurface waveguides not only increases the analytic understanding of glide symmetry
(GS), but it also opens the door to the accelerated design of microwave devices, such as
lenses. Depending on the expected features of these devices, more complex metasurfaces
may be needed. This is particularly true when reconfigurability is sought.

Reconfigurability has become an attractive feature for modern communication sys-
tems. Therefore, it is relevant to explore how holey PPWs may be designed to include
this feature. As an extension to the theoretical work lead during this thesis, this last
chapter proposes the design of a reconfigurable prototype. The complexity of the design
puts the developed quasi-static homogenization to the test, and illustrates how GS is an
asset for reconfigurability.

Previous reconfigurable devices have benefited from the stopband features of GS. A
reconfigurable filter is designed in [139] by breaking the GS, which re-opens the stopband
between the first and second modes. On the other hand, [192] exploits the giant stopband
that is created between the second and third modes by GS. Changing the gap between
the metasurfaces shifts this stopband, such that the operating frequency finds itself either
in a passband or in the stopband, creating a high-power-handling switch. In line with
the previous chapters, we are more interested in the propagation band of GS, which can
be described in the quasi-static regime using the developed framework. That is why we
naturally drifted towards the idea of a reconfigurable phaseshifter, with the refractive
index being controlled by changing the geometry of the metasurfaces. In the following
paragraphs, the inherent advantages of holey G-S PPWs for phase-shifters are presented,
as well as the existing possibilities to add reconfigurability to these structures.

Phase-shifters in gap-waveguide technology Phase-shifters are needed in many
microwave devices, such as phased arrays [193], power dividers [194], magic Ts [195] or
phase discriminators. As an alternative to lossy and unshielded microstrip delay-lines,

173
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many phase-shifter concepts in substrate-integrated waveguide (SIW) technology have
been developed: changing the width of the waveguide [196], adding inductive posts [197],
integrating ferrite materials [198], or creating density changes [199], [200].

However, at millimeter waves, dielectric losses limit the power handling of these
designs. Partially air-filled phase-shifters have been presented [201]. But hollow metallic
waveguides are the preferred alternative to drive the losses down [202]. Furthermore, gap-
waveguide technology avoids the need for contact between upper and lower waveguide
parts [203]. Therefore, it has been developed in many microwave applications due to its
high power handling abilities [204]. Having two independent metallic layers facilitates
the insertion of phase-shifting artefacts within the waveguide, such as ferrite slabs [205].
Additionally, the use of high-impedance surfaces like bed of nails to guide the waves
facilitates width variation to change the phase [206]. In [145], a 90°-phase-shifter in gap-
waveguide technology is presented, combining the use of a dielectric slab and an increase
of the waveguide width to change both the phase and the impedance.

Phase-shifters depending on the length or the width of the waveguide can be difficult
to implement in complex microwave devices such as beam-forming networks. Another
option to vary the phase is to use metasurfaces. A 90°-phaseshifter is implemented in a
square hollow waveguide using corrugated walls [207]. Split-ring resonators of optimized
sizes are used in [208] to obtain a set a phase-shifters of same length. In gap-waveguide
technology, bed of nails tailored to tune the effective refractive index can be added within
the waveguide [209]. The larger the refractive index variation enabled by the pins, the
shorter the phase-shifter for a required phase-shift. This motivates the use of GS. In the
case of phase-shifters, G-S electromagnetic bandgap (EBG) structures [37] can be used to
guide the waves in the gap waveguide more efficiently, but also to improve the effective
properties of the waveguide [190]. In [36], a phase-shifter using non-glide-symmetric
(nGS) bed of nails is compared with a phase-shifter where the nails on the upper plate
are shifted by half a unit cell in the propagation direction, creating GS. This considerably
increases the refractive index range, thus leading to a more compact phase-shifter. A
similar result can be obtain by replacing the pins with holes [149], which makes the design
easier to manufacture.

Reconfigurable phase-shifters Most of the previously cited phase-shifter designs of-
fer a fixed phase-shift at a given frequency, but some applications require a reconfigurable
phase. Reconfigurable phase-shifters using active components, such as an externally bi-
ased ferrite slab [210], or electrically controlled diodes [211]–[213], are power consuming
to remain in a given state. Liquid crystals as propagation media are easily electrically
reconfigurable, but yield high insertion losses [174], [214]. In [148], it is suggested that
the use of gap-waveguide technology makes it easy to replace the inserted slab to change
the phase. However, this implies discrete values of the phase, and demands opening the
waveguide. Alternatively in [215], a flexible metallic strip is controlled by an external
screw to change the inner waveguide width. The groove gap waveguide can also be slot-
ted, such that the phase-shift is externally controlled by moving a high-density dielectric
slab over the slots [216]. In [217], a gap waveguide with holey G-S metasurfaces is re-
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configured by changing the effective depth of the holes with screws. However, not only
does each screw need to be tuned separately, but there must be perfect contact between
the screws and the metallic metasurfaces. The resulting manufacturing accuracy would
be released if reconfiguration was achieved without contact between the mechanically
moving components. Recent designs exploit the interesting contactless property of gap
waveguides to change the waveguide dimensions without the leakage that would occur
between sliding components [218]. The upper metasurface can be shifted with respect to
the lower metasurface to dynamically change the length of the transmission lines, thus
changing the phase-shift [219]. Similarly, the width can also be changed by shifting the
laterally guiding pins closer [220].

In this chapter, we combine the advantages of contactless high-impedance surface
(HIS) and G-S metasurfaces to create a reconfigurable phase-shifter of fixed length and
width. Similarly to [217], the idea is to vary the propagation constant in a holey G-S
PPW by changing the effective depth of the holes.

This working principle needs a holey PPW that is sensitive to the hole depth. In
section 6.1, preliminary studies in the quasi-static regime improve this sensitivity not
only through GS, but also by choosing a substrate-integrated technology to integrate
the metasurfaces. Reproducing the holes directly in the substrate using metallic vias
improves the impact of the hole depth on the refractive index. The validity of the quasi-
static homogenization techniques developed in chapter 4 is studied for these substrate-
integrated hole (SIH) metasurface PPWs. The reconfigurable unit cell based on these
SIHs is then developed in section 6.2. In order to make the reconfigurability possible, HIS
metasurfaces are designed such that they offer a stopband at the operating frequencies.
Finally, the resulting reconfigurable contactless unit cell is incorporated in the design of
a phase-shifter. Section 6.3 presents several leads for the manufacturing of a prototype.
CST simulations are presented to validate all the steps of the design, while the device is
currently being manufactured and will be measured as soon as it is available.

6.1 Preliminary quasi-static studies for reconfiguration

6.1.1 Refractive index sensitivity to the hole depth

In order to design a reconfigurable holey PPW whose refractive index changes with the
hole depth, the unit cell must be designed such that it is as sensitive as possible to
the depth of the holes. At first, in order to design such a cell, we study the sensitivity
of different holey surfaces with respect to the hole depth when the hole is closed with
perfectly electrically conducting (PEC) plates, as seen in previous chapters. Later on,
we will replace the PEC with movable HISs.

The sensitivity of the unit cell to the hole depth is expected to be mostly related to the
hole itself – its shape, size, filling – and the dimensions of the basic unit cell such as the
gap between the metasurfaces. When opening the holes and loading them capacitively
with the HIS, the accurate value of the effective refractive index will probably change
compared to holes closed with PEC. However, the sensitivity to the hole depth should
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Figure 6.1: Sensitivity of the refractive index to the hole depth of holey G-S PPWs. All
waveguides have p = 4 mm and g = 0.1 mm. The holes of depth h are filled with different
permittivities εr2. Square and circular holes are compared.

be qualitatively preserved.
In order to accelerate these qualitative preliminary studies, the closed-form formula

(4.40) for the quasi-static refractive index makes it very easy to observe the sensitivity
to the hole depth for different unit cell designs. As described in the previous chapters,
the accuracy of this formula deteriorates with increasing frequency. However this is not
a problem here, given that the point of interest is not the exact value of the refractive
index, but its quantitative variation with the hole depth. The formula (4.40) is thus
well-suited for this kind of studies.

The holey G-S PPWs under study do not have a dielectric filling in the gap g between
the holey metasurfaces. Indeed, in order to build a loss-less reconfigurable waveguide,
it is preferable that most of the energy be located in air. Therefore, all the following
structures have the gap medium (εr1, µr1) = (1, 1). On the other hand, the holes may be
filled with a dielectric with permittivity εr2 in order to increase the available refractive
index range. This should not affect the losses much, as the waves mainly propagate in
the gap. Only non-magnetic substrates are considered, so µr1 = 1. In Fig. 6.1a, the
quasi-static refractive index is computed as function of the hole depth h. The unit cell
has a square periodicity p = 4 mm and a gap g = 0.1 mm. First, circular holes of radius
a = 1.5 mm are considered.

As observed previously with holey metallic metasurfaces, the refractive index sensi-
tivity to the hole depth is limited. Beyond a certain depth, the refractive index saturates
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at a maximum value. This is due to the fact the all the hole modes are excited below
their cut-off frequencies, and so the waves have a limited penetration in the holes. A
better penetration is achieved when increasing the density of the hole filling, as shown
in Fig. 6.1a for permittivities εr2 = 1, εr2 = 3 and εr2 = 11.2. A denser dielectric lowers
the cut-off frequencies of the excited modes, and so the sensitivity to the hole depth is
increased. Therefore, the convergence value of the refractive index is higher for a denser
dielectric.

Increasing the maximum achievable refractive index as function of the hole depth is
of foremost importance for the reconfigurable unit cell. Indeed, the higher the maximum
index value, the larger the available range of reconfigurable indexes. Moreover, Fig. 6.1a
shows that the refractive index is most sensitive when the hole depth is small, meaning
that most of the index reconfiguration is only possible when the holes are shallow. This
is an important limiting factor given that the unit cell can not be reconfigured starting
at h = 0: the hole depth is lower-bounded by the thickness of the metallic plates that
constitute the PPW. The hole depth can then only be increased by moving the HIS
further away of the central PPW. This is illustrated in Fig. 6.1b, which plots the index
variation when changing the depth from h = 0.5 mm to h = 2.5 mm. This variation is
much smaller than the maximum refractive index that can be achieved by increasing the
hole depth, given that the index variation is considered only starting at h = 0.5 mm,
which is assumed to be the thickness of the PEC plate here.

On top of increasing the hole density, another improvement of the depth sensitivity
can be achieved by changing the hole shape. Fig. 6.1a shows that square holes yield
larger refractive indexes than circular holes with the same area – here, a square size
a = 2.7 mm. Consequently, the possible index variation is larger as well, as illustrated in
Fig. 6.1b.

Therefore, these preliminary studies motivate the use of holey PPWs with square
holes filled with a dense dielectric, which yield a good sensitivity of the refractive index
to the hole depth. Moreover, the thinner the PEC plates of the PPW, the larger the
available index variation.

Unfortunately, holey metasurface with dense square holes are difficult to manufac-
ture. It is more expensive to mill square holes compared to the simply drilling circular
holes. But most importantly, filling each hole with the required dielectric substrate is
particularly challenging. That is why in the next paragraphs, an alternative is sought to
facilitate the manufacturing of the reconfigurable unit cell.

6.1.2 Improved sensitivity with substrate-integrated holes

The manufacturing of holey metasurface waveguides can be facilitated by using metallized
substrate layers instead of fully metallic plates. The resulting waveguides are made of so-
called SIHs, which were first introduced in [221]. The idea is to recreate the holes in the
dielectric substrate layer by etching the copper on top and bottom metallization away in
the desired hole shape, and then by adding metallic vias around the hole. The resulting
unit cells are pictured in Fig. 6.2 for circular and square holes, to recreate the PEC-
based holes shown above. In [221], the modes that propagate in the recreated holes are
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(a) Circular holes in PEC plates. (b) Square holes in PEC plates.

(c) Circular SIHs. (d) Square SIHs.

Figure 6.2: Holey G-S PPWs unit cells, as simulated in the eigenmode solver of CST.

observed. It appears that on top of the evanescent transverse electric (TE) and transverse
magnetic (TM) modes that slightly penetrate the PEC-based holes, additional modes are
able to propagate along the multi-conductor transmission lines created by the metallic
vias, which are not limited by their cut-off frequencies. Moreover, additional resonances
appear in in the dielectric cavities, leading to narrow stopbands with high rejection.
Such SIH metasurfaces are implemented in [222] to build a cost-effective Luneburg lens,
where two layers of SIHs form a GS low-loss waveguide. In order to design such a lens
and to validate it experimentally [162], [223], the required parametric studies show that
SIHs lead to an increased refractive index compared to PEC-based holes, but also to an
increased frequency dispersion. SIH waveguides are different from SIWs, where the wave
propagates within the substrate through the lateral guiding of the vias [224]. Here, most
of the electromagnetic energy is in the empty space between the holey metasurfaces, so
the overall structure is low-loss in spite of the dielectric layers. This technique is thus
suited for any millimeter-wave device, such as leaky-wave antennas (LWAs), where the
beam-correcting prism can be built with SIHs [155].

As such, replacing PEC-based holey metasurfaces with SIHs has several advantages:

• Ease of the manufacturing: PCB layers can be etched and metallic vias formed,
which is much simpler than milling metal. This also gives more flexibility for the
hole shape, because the latter simply depends on the position of the vias. As
an example, [173] builds a compressed Luneburg lens with elliptical SIHs. This
is not more complicated than manufacturing circular SIHs, whereas elliptical PEC



6.1. PRELIMINARY RECONFIGURATION STUDIES 179

5 10 15 20 25 30 35 40

1.4

1.6

1.8

2

2.2

Frequency in GHz

R
ef

ra
ct

iv
e

in
de

x
n

h = 0.5mm PEC
h = 1.5mm SIH
h = 2.5mm

Figure 6.3: Refractive index as a function of frequency, for different hole depths of G-
S PPWs with circular holes. PEC-based holes and SIHs designs are compared. The
structures have p = 4 mm, g = 0.1 mm, and hole of radius a = 1.5 mm with εr2 = 2.2.
For each SIH, 12 vias of radius r = 0.2 mm are used.

holes would have required upgraded manufacturing techniques compared to circular
holes.

• The use of dielectrics enables higher refractive indexes, thus making possible a larger
range of variation. Dielectric-filled holes is in the nature of SIHs, as the dielectric
in the holes is the same as the substrate layer. Previously, in order to achieve
sufficiently high indexes, a very small gap between the metasurfaces would have
been required. The increase of refractive index with SIHs releases this constraint,
which facilitating the assembling of prototypes.

• The increase of the possible refractive index range is not only due to the dielectric
filling, but also to the increased sensitivity to the hole depth with SIHs. Indeed,
the additional modes that propagate along the metallic vias increase the depth
beyond which the refractive index saturates. This is particularly useful in regard
to our application, given that it extends the portion of the index variation that is
available beyond the lower depth bound due to the plate thickness.

This last point is particularly visible in Fig. 6.3, where the refractive index of a holey
PPW with circular holes is plotted as a function of frequency. Two designs are compared:
PEC-based holes, and SIHs. In each case, the three index curves are plotted: for a hole
depth h = 0.5 mm, for h = 1.5 mm and for h = 2.5 mm. The structures have periodicities
p = 4 mm and a gap g = 0.1 mm between the metasurfaces. Whether PEC-based or
substrate-integrated, the holes have a radius a = 1.5 mm, and are filled with a dielectric
with εr2 = 2.2 (which is the permittivity of the substre layer used for the SIHs). For each
SIH, 12 vias of radius r = 0.2 mm give form to the hole.



180 CHAPTER 6. RECONFIGURABLE PHASE-SHIFTER

It appears that for PEC-base holes, the refractive index almost reaches its maximum
value at h = 1.5 mm, and that adding an extra millimeter in depth does not increase
the refractive index much more. On the other hand, for SIHs, rising the depth from
h = 0.5 mm to h = 1.5 mm already yields a larger index variation than for PEC holes,
and that pursuing up to h = 2.5 mm adds another considerable index change.

In Fig. 6.4, the comparison between PEC-based holes and SIHs is developed, with
focus on the achievable refractive index variation. The refractive index is plotted as func-
tion of the frequency, and each curve corresponds to the index variation when changing
the hole depth from h = 0.5 mm to h = 2.5 mm. All the considered structures have peri-
odicities p = 4 mm and a metasurface gap g = 0.1 mm. Square holes of size a = 2.5 mm
are compared to circular holes of radius a = 1.5 mm. PEC-based holes are compared to
SIHs, where hole shapes are created with 12 vias of radius r = 0.2 mm. Each subfigure
corresponds to a different dielectric filling: εr2 = 2.2, εr2 = 4 or εr2 = 10.2.

These studies confirm the qualitative studies executed with (4.40). Square holes yield
a larger hole sensitivity, and the denser the hole dielectric the better. Moreover, the use
of SIHs can even double the index variation compared to PEC-based holes.

Nevertheless, (6.4) also confirms that SIHs yield a larger frequency dispersion than
PEC holes. If a stable variation of the refraction index is sought over a given bandwidth,
then it requires a trade-off with the index variation.

Substrate-integrated holes with central pin In [187], [188], it is highlighted that
an increased refractive index can be achieved by adding a metallic pin inside the holes,
because then a transverse electric magnetic (TEM) mode can penetrate further in the
holes. This is confirmed in the numerical application of the quasi-static index formula in
section 4.4.3.1. Nevertheless, one of the downsides of this idea is its manufacturing cost,
because it demands milling the holes around the central pin.

With SIH technology, adding a central pin does not add any manufacturing complex-
ity to the design, because an additional metallic via is simply added in the middle of the
holes. Therefore, it is of interest to see if even more refractive index sensitivity to the
hole depth can be achieved with this central via.

In Fig. 6.5, the refractive index of G-S PPWs with square SIHs is plotted as a function
of frequency, for different hole depths h. The case with an additional central via, enabling
the propagation of a TEM mode, is compared to the case without this via. The central
via has a radius of 0.4mm. All waveguides have periodicities p = 4 mm, the gap between
the metasurfaces is g = 0.1 mm. The square SIHs have a size a = 2.5 mm. They are
made in a substrate εr2 = 2.2 with 12 vias of radius r = 0.2 mm.

Without the central via, the refractive index variation from h = 0.5 mm to h = 2.5 mm
is approximately 0.33 at low frequencies. When adding the central pin, it rises up to 0.45.
This confirms that a larger index variation can be obtained by enabling the propagation
of TEM modes in the holes. However, this design is not pursued in the rest of this
chapter. The reason is the increased frequency dispersion. SIHs are already responsible
for a rise of the dispersive behavior, limiting the bandwidth in which the refractive index
variation is stable. In Fig. 6.5 this phenomenon is accentuated by the central pin. The
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Figure 6.4: Refractive index variation of holey G-S PPWs when changing the hole depth
from h = 0.5 mm to h = 2.5 mm. All waveguides have p = 4 mm and g = 0.1 mm. Square
holes have a = 2.5 mm, whereas circular holes have a = 1.5 mm. SIHs have 12 vias of
radius r = 0.2 mm.
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(a) CST unit cell model. (b) View of the lower substrate.
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Figure 6.5: Refractive index as a function of frequency, for different hole depths of G-S
PPWs with square SIHs, with or without central via. The structures have p = 4 mm,
g = 0.1 mm, and SIHs of size a = 2.5 mm with εr2 = 2.2, and 12 vias of radius r = 0.2 mm.
The central pin has a radius of 0.4mm.

trade-off between dispersion and index variation favors the design without the central
pin, at the expense of some index range.

6.1.3 Necessity of glide symmetry for hole depth impact

In the previous paragraphs, all the considered structures are G-S, both for PEC-based
holes and SIHs. A first reason is that GS reduces the frequency dispersion compared to
its nGS counterpart structure. Given that the frequency dispersion has been observed
to be a potential issue, this is already a valid motivation for the use of GS.

But in Fig. 6.6, a more irrevocable argument in favor of GS is observed. The refractive
index variation as a function of frequency is plotted again, but this time comparing a
SIH G-S PPW with its nGS counterpart. The structures have periodicities p = 4 mm,
the gap between the metasurfaces is g = 0.1 mm, the square SIHs have a size a = 2.5 mm
and are made in a substrate εr2 = 10.2 with 12 vias of radius r = 0.2 mm. The hole
depth is changed from h = 0.5 mm to h = 2.5 mm.
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(a) G-S SIHs. (b) NGS SIHs.
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Figure 6.6: Refractive index variation of SIH PPWs when changing the hole depth from
h = 0.5 mm to h = 2.5 mm. The G-S design is compared to the nGS design. The
waveguides have p = 4 mm and g = 0.1 mm. The square SIHs have a = 2.5 mm, 12 vias
of radius r = 0.2 mm, and εr2 = 10.2.

It appears that the nGS design has almost no sensitivity to the hole depth: changing
the depth from h = 0.5 mm to h = 2.5 mm leads to a refractive index variation of 0.03 at
low frequencies, whereas the same depth change increases the G-S index by 0.42. This
difference makes the nGS design unsuitable for the considered reconfigurable unit cell.
Therefore, without GS, changing the hole depth in order to control the effective refractive
index of the waveguide would be much more challenging.

In light of manufacturing issues, the power of GS is even more appreciable, because
adding GS to a design does not increase the manufacturing complexity one bit. One
just needs to shift the upper metasurface by half a cell length with respect to the lower
metasurface. The only constraint is that one should be careful with the alignment of the
metasurfaces in order to maintain the p/2-shift.
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(a) CST model for impedance-matching with SIHs.
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Figure 6.7: Impedance matching of a dielectric PPW (εrL, µrL) = (0.52, 27.22) of height
g = 0.1 mm, blocked by 10 cells of a SIH G-S PPW. Each feeding dielectric is 15mm
long. The metasurface waveguide has p = 4 mm, and square SIHs of size a = 3.4 mm,
filling εr2 = 6.5 and depth h = 1 mm.

6.1.4 Extension of the Bloch impedance to substrate-integrated holes

Paragraph 6.1.2 shows that the quasi-static refractive index formula (4.40) can be used
to gain preliminary knowledge about structures that are more complex than holey meta-
surface PPWs, namely for SIHs metasurface waveguides. We investigate here whether
the other characterization tool developed for holey PPWs in the quasi-static regime can
be used for PPWs, that is the Bloch impedance computed analytically in section 5.2.
The purpose of this impedance is to avoid reflections at the transition between different
dielectric PPWs by adding holey metasurfaces on both sides of the new dielectric. In
section 5.2.3.2, in order to evaluate the validity of the computed impedance, the effec-
tive permittivity and permeability of the holey PPW is computed analytically in the
quasi-static regime. A portion of this metasurface waveguide is then placed between
two dielectric PPWs, tuned to match the corresponding effective constitutive parame-
ters. Observing that the reflections at the waveguide transitions are indeed suppressed
confirms that the computed effective parameters are indeed valid.
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The same procedure is applied for G-S PPW with SIHs. A waveguide with periodicity
p = 4 mm and gap g = 0.1 mm is considered. The gap is empty, and the metasurfaces
are made of square holes of size a = 3.4 mm and depth h = 1 mm, filled with a dielectric
εr2 = 6.5. The Bloch impedance and the effective refractive index are computed for
these dimensions, yielding εeff = 0.52 and µeff = 27.22. This would be an accurate
characterization of the waveguide for PEC-based holes. However, the simulation setup to
validate this characterization is applied to a SIH waveguide with the same dimensions. As
illustrated in Fig. 6.7a, 10 unit cells of the metasurface waveguide are placed in-between
two dielectric PPWs of length 15mm, with the computed constitutive parameters. The
S-parameters of the resulting structure are then plotted in Fig. 6.7b.

The matching with SIHs is surprisingly good, most of the reflections being avoided.
This means that the Bloch impedance computed for the metallic holey PPW is a good
approximation of the reflective behavior of the SIH waveguide. An explanation for this
could be that the SIHs do not impact the shape of the fields in the gap much, where the
fields are integrated to define the Bloch impedance.

It has been observed that SIHs increase the effective refractive index. If the Bloch
impedance is approximately constant with or without SIHs, it means that the effective
constitutive parameters of the PEC-based waveguide are both multiplied by the same
factor when implementing SIHs. Although we leave these findings open to deeper studies,
they are an additional illustration of how the quasi-static analysis of holey PPWs opens
the door to the simulation and understanding of waveguides that can be much more
complex than metallic metasurfaces.

6.2 Design of the reconfigurable unit cell

6.2.1 Reconfiguring the substrate-integrated hole depth with
high-impedance metasurfaces

In the G-S-waveguide studied in section 6.1, the depth h of the holes is fixed, whether
the holes are formed in a PEC or in a substrate layer. Indeed, the bottom of the holes
is closed by metal. In order to reconfigure this depth, one could insert metallic cylinders
in the holes, that would slide to change the depth, as is done in [217]. The advantage
of this technique is that the holes can be completely filled with the metallic cylinder,
offering a large range of depth variation. However, it requires perfect contact between
the cylinders and the holes to avoid leaks, which leads to manufacturing complications.

In this work, we aim at contactless reconfiguration of the hole depth. In order to do
so, the holes are completely going through the layer (metallic or dielectric), such that they
are opened to the outside of the holey G-S PPW. However, the waves should not escape
the waveguide through the holes. In order to prevent this leakage, HISs are placed on
both sides of the PPW, as illustrated in red in Fig. 6.8. These HIS are designed to yield
a stopband for surface waves at the operating frequency. Therefore, the waves that try to
escape the PPW through the holes are confined in the region between the holes and the
HIS, without being able to propagate outside of the PPW. This confinement can be seen
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Figure 6.8: Illustration of the contactless depth reconfiguration concept, for a holey G-S
PPW.

as a capacitive cavity that extends the hole, effectively lengthening its depth. Therefore,
when moving the HISs closer or further away from the central PPW, this effective depth
is changed, impacting the refractive index according to its depth sensitivity, as described
in section 6.1.

In order for this process to be effective, there are two distinct requirements:

• First, the reconfiguration of the HIS position must cause a variation of the effective
refractive index. For this to be true, the central holey PPW must be designed
such that it is sensitive to the hole depth. Moreover, the central layers must be
thin enough that the waves can see the movement of the HISs on the other side of
the holes. These aspect have been explored in section 6.1, where SIHs with square
holes stand out as a good candidate.

• Second, the HISs must prevent the propagation of surface waves within the complete
operation band. This means that its stopband must be large enough such that it
covers the operation band even when moving the HISs further away from the central
PPW.

In the following paragraphs, the HIS is designed independently of the central waveguide.

6.2.2 High-impedance metasurfaces

The HIS should be substrate-integrable to ease the final manufacturing. Therefore, high-
impedance mushroom metasurfaces are used, as presented in [225]. These metasurfaces
are made of a dielectric layer with a ground metallization on one side, whereas the
other side is covered with a periodic array of metallic patches. Each patch is linked to
the ground with a metallic via that goes through the dielectric. The unit cell of this
structure looks like a mushroom, as shown in Fig. 6.9.

Such a mushroom HIS is convenient in terms of manufacturing, because it does not
require more techniques than for the realization of the SIH layers of the central waveguide.
Mushrooms also appear to be particularly effective when it comes to the width of the
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Figure 6.9: CST capture of the HIS mushroom unit cell. The structure is periodic in z-
and x-directions, and closed with PEC boundaries at the top and bottom. The layer is
filled with vacuum, whereas the area below the mushroom is a dielectric.

achievable stopband, because of their particular resonances. Moreover, mushrooms offer
a large number of dimensional parameters, which can be tuned to obtain the desired
stopband. Parametric studies are undertaken next to observe how the stopband can be
adjusted.

6.2.2.1 Parametric study of an EBG mushroom metasurface

The EBG behavior of the mushroom metasurface is described in [225]. In this section,
similar designs are studied in CST from a parametric point of view, in order to understand
the impact of the dimensions of the structure on the bandgap. In the following, each cell
of the metasurface has a size pHIS×pHIS. The dielectric substrate of relative permittivity
aHIS has a thickness hHIS. It is grounded by a PEC boundary, and covered by a small
air layer of thickness gHIS, which is the parameter that varies in the final reconfigurable
structure. Contrarily to the structure in [225], the waveguide is closed on its top by
a PEC plate, creating a PPW partly filled with dielectric. The PEC mushrooms are
embedded in the dielectric layer, and are formed by a square patch at the surface of the
dielectric of size aHIS × aHIS. Its thickness is ideally assumed to be zero. The patch is
then shorted to the ground plane by a metallic via, placed in the middle of each patch,
with radius rHIS.

The impact of each of these parameters is considered in Figs. 6.10 to 6.15. In each
case, the Brillouin diagram of the unit cell is plotted for two or three modes, in order to
highlight the stopband after the first mode. The propagation direction is aligned with
the mushroom array. The structures are simulated in CST with the dimensions listed in
the caption of each figure.

Impact of the air layer Fig. 6.10 shows that a larger air layer leads to a smaller
bandgap. This is understandable, because the larger the layer, the smaller the impact
of the boundary conditions at a given frequency, and so the HIS filters less and less
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Figure 6.10: Brillouin diagram of the mushroom HIS, for different air layers gHIS, and
with pHIS = 2 mm, rHIS = 0.2 mm, aHIS = 1.85 mm, hHIS = 1.6 mm, and εHIS = 2.2.
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Figure 6.11: Brillouin diagram of the mushroom HIS, for different substrate thicknesses
hHIS, and with pHIS = 2 mm, gHIS = 0.15 mm, rHIS = 0.2 mm, aHIS = 1.85 mm, and
εHIS = 1.
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Figure 6.12: Brillouin diagram of the mushroom HIS, for different patch sizes aHIS, and
with pHIS = 2 mm, gHIS = 0.15 mm, rHIS = 0.2 mm, hHIS = 1.6 mm, and εHIS = 2.2.
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Figure 6.13: Brillouin diagram of the mushroom HIS, for different via radii rHIS, and
with pHIS = 2 mm, gHIS = 0.15 mm, aHIS = 1.85 mm, hHIS = 1.6 mm, and εHIS = 2.2.
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Figure 6.14: Brillouin diagram of the mushroom HIS, for different substrate permittivities
εHIS, and with pHIS = 2 mm, gHIS = 0.15 mm, rHIS = 0.2 mm, aHIS = 1.85 mm, and
hHIS = 1.6 mm.
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Figure 6.15: Brillouin diagram of the mushroom HIS, for different cell periodicities pHIS

and corresponding aHIS, and with gHIS = 0.05 mm, rHIS = 0.2 mm, εHIS = 4, and hHIS =
0.25 mm.
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frequencies with increasing layer. This reduction of the stopband happens both at the
lower and the upper frequency bounds.

Impact of the dielectric tickness When the dielectric layer gets thicker, the stop-
band shifts towards lower frequencies, as illustrated in Fig. 6.11. Indeed, increasing
the dielectric thickness lenghtens the metallic via, and therefore lowers the resonance of
the mushroom. If this parameter is controlled to tune the position of the stopband, it
must be kept in mind that the HIS layer is mechanically moved in order to reconfigure
the waveguide. Therefore, this layer should not be too thin, otherwise it could be not
sufficiently rigid, and this might impact the accuracy of the reconfiguration.

Impact of the patch size In Fig. 6.12, the size of the square patches has a similar
effect as the dielectric height, because increasing the patch size shifts the resonance
frequency of the mushroom down. Nevertheless, the patch size has a strong impact on
the lower bound of the stopband. In terms of relative bandwidth, a large patch achieves
a better stopband than a small patch. Therefore, it is advisable to maximize the patch
size for a given unit cell area.

Impact of the via radius The radius of the via might seem to be a parameter of
secondary importance. However, Fig. 6.12 shows that it has a strong impact on the
stopband as well. The thicker the via, the higher the stopband. Also, the relative
bandwidth of the stopband increases slightly with the radius. Therefore, it appears that
a large via is preferable.

Impact of the substrate permittivity The impact of the substrate permittivity in
Fig. 6.14 is similar to the effect of the via radius. The denser the dielectric, the lower
the stopband, but also the smaller its relative bandwidth. Ideally, the mushrooms would
be just PEC in air to maximize the stopband. However, in order to make the integrated
manufacturing possible, some kind of substrate must be chosen as a support for the
mushrooms.

Impact of the unit cell periodicity From Fig. 6.15, it appears that the period of
the unit cell remains the main lever to shift the stopband around a desired frequency.
In this figure, the size of the patches is changed along with the unit cell, such that it
covers most of the cell area. A period pHIS = 1 mm yields a stopband between 33GHz
and 68GHz, whereas a period of pHIS = 5 mm yields a stopband between 4.5GHz and
8GHz. The relative bandwidth is not strongly affected.

In order to satisfy the stopband requirements of a given application, the HIS mush-
room has many parameters that can be tuned. If possible, a dense substrate and large
vias should be used. The cell periodicity controls the overall location of the stopband.
Then, the size of the mushroom can be optimized such that they yield the best upper
and lower frequency bounds. The patch size has a strong control on the lower frequency
bound, whereas the substrate thickness has more control on the upper bound. Finally,
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(a) Shifted design. (b) Aligned design.
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(d) Aligned design.

Figure 6.16: Brillouin diagram of the HIS covered with a holey PEC plate. Shifted
and aligned designs are compared. The mushroom layer built in a substrate aHIS = 2.2
has dimensions pHIS = 2 mm, hHIS = 1.6 mm, aHIS = 1.85 mm, rHIS = 0.2 mm and
gHIS = 0.1 mm. The holey PEC layer has p = 4 mm, a = 2.5 mm, h = 0.25 mm and
εr2 = 11.2.

this optimization process should be fulfilled with the maximum air layer used in the final
application, because it is the worst case in terms of stopband.

6.2.2.2 Influence of the holey plate on the high-impedance metasurface

In the previous section, the mushroom metasurface is covered with a simple PEC plate.
However, in the final structure, the holey GS PPW that is layered above the mushrooms
does not offer an infinite PEC surface, but a holey PEC plate or SIHs. In order for the
dimensions of the HIS to be better adjusted, we simulated a waveguide as presented in
Fig. 6.16a: the mushroom metasurface is faced with a hole, like in the final structure.
The hole is closed with PEC. In the following, the mushroom period is half that of the
hole period, meaning that four mushrooms face each hole. These studies hint on how the
center waveguide influences the stopband of the HIS.

When looking at Fig. 6.16a, it appears that two designs are possible: the “shifted”



6.2. DESIGN OF THE RECONFIGURABLE UNIT CELL 193

version, where the center of the hole is aligned with the intersection of four adjacent
patches, and the “aligned” version, where the hole axis is aligned with the axis one of
the mushroom patches, as illustrated in Fig. 6.16b. The Brillouin diagrams of the modes
in the HIS corresponding to Figs. 6.16a and 6.16b are plotted in Figs. 6.16c and 6.16d,
respectively. The mushrooms have a period pHIS = 2 mm. There are embedded in a
dielectric substrate aHIS = 2.2 of thickness hHIS = 1.6 mm. The square patch size is
aHIS = 1.85 mm, and the metallic vias have a radius rHIS = 0.2 mm. The layer between
the HIS and the covering PEC is gHIS = 0.1 mm. The holey metallic metasurface has a
period p = 4 mm and square holes of size a = 2.5 mm and depth h = 0.25 mm, filled with
a dielectric of permittivity εr2 = 11.2.

Fig. 6.16 shows that the alignment of the mushrooms with the holes has an impact on
the stopband. If a large stopband is sought, then the shifted design is preferable – that is
when the center axis of the hole is aligned with the intersection between four mushrooms.
The aligned design reduces the upper bound of the stopband by several gigahertz.

It appears that the holes in the upper plate have an impact on the stopband of the
HIS. The influence of each parameter of these holes must be studied. This is done in
Fig. 6.17, where the stopband of structures similar to Fig. 6.16a is studied as a function
of the layer gHIS between the HIS and the central holey layer. This time, SIH layers are
used, with permittivity εr2 and thickness h. The square SIHs of size a are made of 12
vias of radius r = 0.3 mm, forming an array of periodicity p = 4 mm. The parameters
εr2, h and a are varied in Figs. 6.17a, 6.17b and 6.17c, respectively. For all structures, the
mushrooms are the same, with dimensions pHIS = 2 mm, hHIS = 0.5 mm, aHIS = 1.85 mm,
and rHIS = 0.25 mm.

Fig. 6.17 shows that when the layer gHIS is large, the stopband is independent of the
SIH parameters. According to these findings, the alignment of the layers described in
Fig. 6.16 is not restrictive either, because it loses its influence with large gHIS. Neverthe-
less, in the following, the shifted design is chosen by default.

6.2.3 Reconfigurable unit cell in the Ku band

In sections 6.1.2 and 6.2.2, both elements of the reconfigurable unit cell are studied:
the SIH central waveguide, and the mushroom HIS. These elements can be designed
separately in order to achieve the best results in a given stopband.

The stopband of the HIS must include the operation band of the application. While
sat-com and 5G applications of interest would require a prototype working in the Ka
frequency band, in this chapter we propose a preliminary design in the Ku band for a
proof of concept, in order to take advantage of fabrication tolerances that are less strict.

6.2.3.1 High-impedance metasurface in the Ku band

For the Ku band, the mushrooms can be tuned to yield the Brillouin diagram in Fig. 6.18a.
The periodicity is pHIS = 2 mm, the mushrooms are integrated in a dielectric layer of
permittivity εHIS = 3 and thickness hHIS = 1.52 mm. The square patches have a size
aHIS = 1.85 mm, and are grounded with vias of radius rHIS = 0.2 mm. Two layers between
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Figure 6.17: Stopband of the HIS covered with a square SIH, as function of the air layer
gHIS between the HIS and SIH substrates. Each SIH cell p = 4 mm covers four mushroom
cells pHIS = 2 mm. The mushrooms have aHIS = 2.2, hHIS = 0.5 mm, aHIS = 1.85 mm,
and rHIS = 0.25 mm.
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Figure 6.18: Brillouin diagram of the mushroom HIS, with pHIS = 2 mm, aHIS = 3,
hHIS = 1.52 mm, aHIS = 1.85 mm, and rHIS = 0.2 mm.
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the HIS and the upper metallic plate are considered: gHIS = 0.05 mm and gHIS = 1.5 mm.
Only the latter case truly matters, given that it yields the most restrictive stopband, that
is from 12 to 20GHz. This fits the Ku-band. Increasing the layer gHIS would close the
stopband further. Therefore gHIS = 1.5 mm is the most extreme reconfiguration that is
possible for this waveguide.

The layer gHIS is naturally filled with air, given that the HIS are moved closer or
further away from the central waveguide. Nonetheless, Fig. 6.18b computes the Brillouin
diagram for the same structure as in Fig. 6.18a, except that the layer is filled with a
dielectric of permittivity εrs = 3. The subscripts rs stands for reconfigurable separator.
The reason for this study will be elaborated in section 6.3. In short, in order to maintain
the layer gHIS at fixed values, separators made of dielectric material are used between
the layers. Therefore, the stopband of the HIS must be preserved even in the presence
of this dielectric layer placed in-between. Although the stopband slightly shifts to lower
frequencies, it still covers most of the Ku band.

Note that the Brillouin diagrams in Fig. 6.18 are more complete than in the previous
figures, because different propagation directions are considered at the surface of the HIS.
The direction Γ-X corresponds to propagation along the z-axis i.e., βx = 0. Γ-M is the
diagonal direction, with βx = βz. Finally, the variation along X-M closes the triangle
in the wavenumber domain, with βz = π/p and varying βx. Considering the dispersion
curves along this spectral path increases the chances that the stopband is valid for all
propagation directions.

6.2.3.2 Total unit cell in the Ku-band

The HIS presented in Fig. 6.18 is combined to a G-S SIH waveguide. The latter is tuned
to have its first mode in the Ku band and to yield a high sensitivity to the hole depth,
as explained in section 6.1. The resulting waveguide has a periodicity p = 4 mm and a
gap g = 0.25 mm where most of the energy propagates. The SIH layers have a thickness
h = 0.25 mm and a permittivity εr2 = 6.5. The square holes of size a = 3.4 mm are
created with 16 vias of radius r = 0.3 mm.

The operating band of this unit cell matches the Ku band. In the center frequency,
that is 15GHz, the variation of the refractive index when changing the layer gHIS from
0.05mm to 1.5mm is ∆n = 0.36.

From the images of the CST model in Fig. 6.19, it is notable that only one layer of
metallic vias is used between adjacent SIH. This is suggested in [222], [223], in order to
get larger hole sizes, but also to maintain the mechanical integrity of substrate layer.

The central gap g between the SIH layers is quite large compared to the examples stud-
ied in section 6.1, which reduces the available refractive index variation. Nevertheless,
keeping this gap not too small makes the assembling process less prone to inaccuracies.
This is compensated by using SIH dielectric layers with a thickness h = 0.25 mm, such
that an important index variation with the hole depth is available. Such thin dielectric
layers become rather flexible, and so the final benchmark must ensure that all layers are
flat.
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(a) CST unit cell model. (b) CST unit cell model. (c) CST unit cell model.
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(d) Brillouin diagram for gHIS = 0.05 mm.
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(e) Brillouin diagram for gHIS = 1.5 mm.

Figure 6.19: Contactless reconfigurable unit cell tuned for operation in the Ku band.
The central G-S SIH waveguide has p = 4 mm, g = 0.25 mm a = 3.4 mm, h = 0.25 mm,
εr2 = 6.5 and 16 vias r = 0.3 mm. The mushroom HIS has pHIS = 2 mm, aHIS = 3,
hHIS = 1.52 mm, aHIS = 1.85 mm, and rHIS = 0.2 mm.
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Figure 6.20: Reconfigurable phase-shifter in ridge gap waveguide (RGW) technology. The
waves propagate at the center of the structure, within a holey G-S PPW, as indicated by
the red array in the top view. Wave confinement is obtained with mushroom HIS. The
effective depth of the holes is changed by tuning the air gap between the middle (orange)
and external (red) layers.

6.3 Design of a reconfigurable phase-shifter

Here we use the unit cell designed in section 6.2 for the design of a reconfigurable phase-
shifter. The idea is simply to let the waves propagate through a given number of unit cells,
and to change the refractive index of the waveguide by moving the HISs on either side.
This changes the phase-shift throughout the waveguide. In the following, this prototype
is thus characterized as a phase-shifter, although it relates more to a reconfigurable
delay-line.

Fig. 6.20 illustrates the overall concept of the phase-shifter. In the top view Fig. 6.20a,
the waves propagate from one feeding port to the other, in the gap between the G-S
SIH layers (in orange). In order to confine the waves in the region where the SIHs are
located, HISs with mushrooms are placed on either side of the propagation region. These
mushrooms are integrated in the same substrate layer as the lower SIHs. As such, the
center waveguide can be seen as a ridge gap waveguide (RGW), where the refractive
index of the ridge is modified with G-S SIHs. For an effective refractive index n in the
propagation region, the phase-shift between the two ports at a frequency f is θ = n2πf

c0
L,

with L the waveguide length and c0 the speed of light in vacuum.

The cross view of the waveguide in Fig. 6.20b shows how the different layers of the
structure are arranged. The waves mainly propagate in the vacuum at the center of the
cross-section, between the SIH layers (in orange). On either side of these central layers,
the HIS layers (in red) are moved closer or further away from the central layers. This
changes the effective depth of the SIHs. The mushrooms embedded in these outer layers
prevent the waves from propagating between the SIH and HIS layers. The resulting
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change ∆n of the effective refractive index leads to the phase-shift

∆θ = ∆n
2πf

c0
L . (6.1)

Therefore, in order to achieve a phase-shift up to 2π at a frequency f , the phase-shifter
must have a minimum length L = λ0/∆n, with λ0 the free-space wavelength. The larger
the refractive index variation enabled by the reconfigurable unit cell, the more compact
the total phase-shifter.

A candidate for the reconfigurable SIH unit cell is already designed in section 6.2.
Additional designs are required for

• the RGW: suitable EBG mushrooms must be placed on either side of the central
ridge to guide the waves laterally;

• the impedance matching between the SIH waveguide and the feeding ports;

• the feeding ports: a transition towards classical waveguides must be made to enable
lab measurements of the phase-shift;

• the mounting structure for the overall prototype built in the lab, to assemble all
the layers and the feeds.

Each of these parts is addressed in the following paragraphs.

6.3.1 Holey ridge gap waveguide

One of the fundamental concepts of the current design is the lack of contact between
the different parts. This is true for the mechanically moving parts – the HIS layers –
but for the SIH layers too. Following the concept of gap waveguides [203], [226], the
guiding structure is closed laterally by using high-impedance metasurfaces, which act
as perfectly magnetically conducting (PMC) boundary conditions. Given that the gap
between the layers is smaller than a quarter wavelength, the waves cannot cross these
HIS. Consequently, a quasi-TEM mode propagates in the air gap between the ridge and
the metallization of the upper layer. As for the reconfigurable HIS layers studied in
section 6.2, integrated mushrooms are used to yield the desired stopband.

An illustration of the resulting RGW is drawn in Fig. 6.21, as well as pictures of the
model simulated in CST. The lower substrate layer contains the central ridge and the
lateral high-impedance mushrooms. The upper substrate layer is completely metallized,
and so the air gap is closed by a metal plate from above. Note that at this point, no
SIHs are considered.

Fig. 6.22 plots the dispersion diagram of the EBG mushrooms used to guide the
waves laterally. According to the unit cell designed in paragraph 6.2.3.2, the mushrooms
are integrated in a layer of permittivity εr2 = 6.5 and thickness h = 0.25 mm. The
gap between the SIH layers is g = 0.25 mm, which corresponds to the space between
the mushroom and the upper metal sheet. Therefore, the only parameters left to tune
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(a) CST structure: top view.
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(c) Schematic cross-section of the RGW.

Figure 6.21: Ridge gap waveguide used to confine the waves laterally and between the
two substrate layers.

the stopband are the metasurface periodicity plat and the patch size alat. A satisfying
stopband at Ku frequencies is obtained for plat = 2.4 mm and alat = 2.3 mm. The
mushroom vias have a radius rlat = 0.2 mm.

In Fig. 6.22, different relative permittivities εsep are considered for the medium above
the mushrooms. This is because in the final prototype, separators are needed to maintain
the gap between the different layers. The central gap between the SIH layers is partic-
ularly small (0.25mm), and so these separators must be brought as close as possible
to the central ridge where the waves propagate. These separators are shown in blue in
Fig. 6.21c. Therefore, the mushrooms must be designed such that they yield a stopband
with or without the presence of these dielectric separators. In the final design, the central
separators are manufactured with Rogers RO3003 or RO3006, depending on the available
substrates, and so εsep = 3 or εsep = 6.5, respectively. According to Fig. 6.22, in both
cases the resulting stopband confines the waves for frequencies in the Ku band.

The lateral confinement is confirmed by simulating a section of the RGW of length
12 mm. The central ridge has a width of 16.6 mm, which corresponds to four SIH unit



6.3. DESIGN OF A RECONFIGURABLE PHASE-SHIFTER 201

Γ X M Γ
0

5

10

15

20

25

Stopband: 9.3 - 17.1 GHz
Stopband: 11.6 - 17.1 GHz
Stopband: 13.9 - 17.2 GHz

βp/π (no unit)

Fr
eq

ue
nc

y
f

in
G

H
z

εc = 1 εc = 3 εc = 6.5

Figure 6.22: Dispersion diagram of the EBG mushroom unit cell, for different permit-
tivities εsep above the mushrooms. The mushrooms have dimensions plat = 2.4 mm,
alat = 2.3 mm, rlat = 0.2 mm, and are integrated in a dielectric layer with εr2 = 6.5 and
h = 0.25 mm. The gap is g = 0.25 mm.
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Figure 6.23: S-parameters of a RGW of length 12 mm. The ridge has a width 16.6 mm,
and εr2 = 6.5, h = 0.25 mm and g = 0.25 mm. Different numbers of mushrooms rows
guide the waves, with plat = 2.4 mm, alat = 2.3 mm and rlat = 0.2 mm. The last case
covers the mushrooms with εsep = 3.
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(a) 13GHz. (b) 15GHz. (c) 17GHz.

Figure 6.24: Magnitude of the electric field at the surface of the RGW simulated in CST,
with the same dimensions as in Fig. 6.23, at different frequencies.
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Figure 6.25: S-parameters of the same RGW as in Fig. 6.23, with 3 mushrooms rows, a
separator εsep = 6.5, and for different distances de between the vias and the edge of the
ridge. The inter-via distance is dv = 2.4 mm.

cells. The feeding port excites the fields above the ridge, as visible in the CST capture in
Fig. 6.21b. The mushrooms are as designed in Fig. 6.22. Different numbers of mushrooms
are simulated, in order to know how many rows are necessary to confine the waves. The
resulting S-parameters are plotted in Fig. 6.23. It appears that one row of mushrooms is
enough to confine most of the energy along the ridge. Two or three rows slightly improve
the transmission between the two ports. An additional case where the mushrooms are
completely covered with a separator of permittivity εsep = 3 is also considered, and shows
similar performances. The resulting fields are shown at different frequencies of the Ku
band in Fig. 6.24. The confinement of the waves is clearly visible.

The RGW simulated in Fig. 6.23 is designed such that the waves do not propagate
in the substrate layers. In order to achieve that, the dielectric area below the ridge must
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Figure 6.26: S-parameters of the same RGW as in Fig. 6.23, with 3 mushrooms rows,
a separator εsep = 6.5, and for different distances dv between two successive vias. The
distance between the vias and the ridge edge is de = 1 mm.

be closed off with metallic vias. The position and periodicity of the vias have a limited
but non-negligible impact on the performance of the RGW, and are characterized by the
distances de and dv, as illustrated in Fig. 6.21. In Fig. 6.25, the distance de between
the vias and the ridge edge is changed for the same RGW as in Fig. 6.23 – except
that a separator of permittivity εsep = 6.5 is used. It appears that the waves are well-
transmitted as long as the vias are close enough to the edge. Moreover, fewer reflections
are achieved when the vias are not too close to the edge. In the following, de = 1 mm.

In Fig. 6.26, the same structure is simulated with different distances dv between the
ridge vias. The only requirement is that the vias must no be too spaced out. When
dv ≤ 2 mm, good transmission is achieved. In the following, dv = 1.5 mm.

Finally, the metallic and dielectric losses are observed in Fig. 6.27. All PEC surfaces
are replaced with copper metallizations of thickness 17µm and σ = 5.8× 107 S ·m−1.
The Rogers RO3006 slabs are modeled in their lossy version, with loss tangent tan δ =
0.002. For a waveguide of length 12mm, that is 5 lateral mushrooms in length, dielectric
losses have a reduced impact on the transmission. Most of the losses happen in the metal
sheets. Yet, less than 0.1 dB are lost in transmission when all the losses are accounted
for, that is 0.16 dB per wavelength at 15GHz.

6.3.2 Variable phase-shift

Once the RGW is designed, G-S SIHs can be integrated in the lower and upper layer
to change the effective refractive index, and control it by moving the outer HIS layers.
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Figure 6.27: S-parameters of the same RGW as in Fig. 6.23, with 3 mushrooms rows,
a separator εsep = 6.5, vias with dv = 1.5 mm and de = 1 mm. Lossy substrates have
tan δ = 0.002, and lossy metals have σ = 5.8× 107 S ·m−1.

Upper hole nb. 1 2 3 4 5 6 7
Size (in mm) 0.5 0.85 1.2 1.65 2.15 2.65 3.15
Size (in mm) 0.25 0.65 1 1.4 1.9 2.4 2.9 3.4
Lower hole nb. 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

Table 6.1: Dimensions of an 8-cell tapering of the SIH sizes, for the impedance matching
of the reconfigurable waveguide. The alternating upper and lower hole dimensions reflect
the G-S configurations between the two SIH layers.

However, when a wave propagate along the RGW, it is reflected when it first meets
the SIHs, because the impedance of the SIH waveguide is not adapted to the feed of
the RGW. In order to solve this problem, the SIHs must be introduced with a gradual
increase of the refractive index. This means that the size of the SIHs has to be tapered
at the waveguide feeds.

This tapering must be robust enough that it matches the impedance for the most
extreme configuration, that is when the HIS layers are the furthest away from the central
layers. Then, the refractive index in the SIH waveguide is maximal, and so the hole size
tapering must be very smooth. Such a tapering is proposed in Tab. 6.1, where eight
cells are needed to change from the smallest to the largest hole size. Due to the G-S
configuration of the SIHs, this represents 15 different hole sizes. Naturally, the number
of metallic vias surrounding each SIH must be changed accordingly to the hole size.

In order to validate this tapering, one row of phase-shifter is simulated in CST, as
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(a) CST model: all substrate-integrated layers.

(b) CST model: mushrooms of the reconfigurable HIS layers.

(c) CST model: top view of the G-S SIH waveguide layers.

(d) CST model: bottom view of the G-S SIH waveguide layers.
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(e) Reflection coefficient S11 and phase of the transmission coefficient S21.

Figure 6.28: S-parameter of 10 chained unit cells as described in Fig. 6.19, with 8 tapered
cells with the dimensions in Tab. 6.1. The waveguide is reconfigured by changing the
gap gHIS for both outer HIS layers.



206 CHAPTER 6. RECONFIGURABLE PHASE-SHIFTER

13 14 15 16 17
−40

−35

−30

−25

−20

−15

Frequency in GHz

S
1
1

in
dB

Lossless Metalic losses Dielectric losses All losses

(a) S11.

13 14 15 16 17

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Frequency in GHz

S
2
1

in
dB

(b) S21.

Figure 6.29: S-parameter of 10 chained unit cells as described in Fig. 6.19, with 8 tapered
cells with the dimensions in Tab. 6.1. The reconfigurable air layer has gHIS = 0.05 mm.
Lossy RO3003 and RO3006 layers have tan δ = 0.001 and tan δ = 0.002, respectively,
and lossy metals have σ = 5.8× 107 S ·m−1.

shown in Figs. 6.28a to 6.28d. This structure can be seen as a chain of the unit cell of
Fig. 6.19, except that it contains only 10 cells with maximal SIH size. On each side, 8
additional unit cells are added, with the tapering described in Tab. 6.1. Laterally, periodic
boundary conditions are enforced. The reason why only one such row is simulated is the
size of the problem. In order to obtain accurate S-parameters in CST, the mesh of the
discretized model yields several millions of cells, depending on the air layer gHIS between
the SIH and HIS layers. If more rows are added laterally to recreate the hole ridge – not
to mention the laterally guiding mushrooms – the available computer memory saturates.
Therefore, this is the closest observation of the phase-shifting process that we can achieve
in simulation.

In Fig. 6.28, the space between the SIH and HIS layers is reconfigured up to gHIS =
1.5 mm, which is the maximum gap that maintains a stopband at Ku frequencies, ac-
cording to Fig. 6.18. Good impedance matching is achieved in the Ku band, with
S11 ≤ −20 dB for all configurations. Fig. 6.28e also shows the phase of the transmis-
sion coefficient S21. It appears that when moving the HIS layers away from the center
waveguide, the phase-shift between the two feeding ports can be changed over a range
∆θ = 2π. With this design, any phase-shift can thus be achieved by tuning the gap
appropriately.

Finally, the losses in the phase-shifting row of unit cells are observed in Fig. 6.29. In
order to perform such a simulation in CST, a tetrahedral mesh has to be used to allow
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Step 1 2 3 4 5 6
Height (in mm) 1.57 5.51 4.93 2.71 4.13 ∞
Width (in mm) 0.25 0.35 0.8 2.58 4.65 7.9

Table 6.2: Staircase dimensions for the rectangular transition of the feed.

metallic losses. However, this prevents the use of periodic lateral boundary conditions
in the frequency solver. Therefore, the structure shown in Figs. 6.28a is simulated with
PMC boundary conditions. The configuration with an air layer gHIS = 0.05 mm is chosen,
because the fields are more concentrated, maximizing the losses. The Rogers RO3003
layers (for the HIS) have a loss tangent tan δ = 0.001, while the Rogers RO3006 layers
(for the SIH) have a loss tangent tan δ = 0.002. All metallizations are made of copper
sheets of thickness 17µm, and σ = 5.8× 107 S ·m−1. In the Ku band, the total losses
correspond to an attenuation of approximately −0.2 dB per wavelength.

6.3.3 Feed

In the reconfigurable waveguide, the waves propagate between the two SIH layers, that
is in a gap of 0.25mm. In order to feed such a waveguide for in-lab measurements, a
proper waveguide transition must be designed. Given the manufacturing possibilities at
hand, we chose to make a transition from a rectangular waveguide (RW) adapted to the
Ku band. According to the Electronic Industries Alliance standard, a WR62 waveguide
is fitting, where a width wr = 15.8 mm and a height hr = 7.9 mm yield a recommended
operating band of 12.4 to 18GHz.

On the one hand, the width of the ridge in the RGW can be increased to the width
of the feeding waveguide. That is why in the simulation of section 6.3.1, the ridge has
wr = 16.6 mm, which is close to the RW width wr, and corresponds to an integer number
of SIH unit cells. On the other hand, the transition must go from a height hr = 7.9 mm
to a gap g = 0.25 mm. This is possible, without impedance mismatch, using a staircase
transition. However, placing this staircase transition in the alignment of the phase-
shifter would extend an already very long prototype1 – the design in Fig. 6.28 has 16
cells, yielding a total length of 84mm. That is why a transition with perpendicular feed
is designed, as illustrated in Fig. 6.30.

The rectangular staircase is milled inside a metal bulk. The dimensions of the different
steps are optimized and given in Tab. 6.2. This feed is placed on the upper SIH layer,
where a slot is made in the upper metallization to let the waves enter. In order to
guide the waves through this layer, a dielectric cavity is created with metallic vias. A
second slot is made in the inner metallization of the layer to let the waves enter into the
central propagation gap, above the ridge. At this point, the waves should continue in the
phase-shifter, in the direction of the exit feed. In order to avoid back-propagation, EBG

1Additionally, a horizontal feed would require design tricks to ensure the continuity between the
metallic bulk of the feed and the metallization of the SIH layer. A trick of that sort is achieved in [155],
where a half-wavelength groove is artificially created at the transition to produce a short-circuit between
the two guiding parts.
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(a) Schematic cross-section. (b) Model simulated in CST.

Figure 6.30: Perpendicular feed of the RGW with a transition from a standard RW.

mushrooms are placed at the end of the waveguide. The same mushrooms as for lateral
guiding in paragraph 6.3.1 are used.

On top of minimizing the overall length of the phase-shifter, this vertical feed design
offers a number of parameters to control the impedance matching. On top of the staircase
dimensions, the dielectric cavity can be tuned, that is its width wcav and its height hcav,
defined by the positions of the metallic vias. Moreover, the slot in the upper metallization
needs not be as large as the cavity itself. The width wslot and height hslot of the slot can
be reduced to create an iris at the transition between the metallic bulk and the SIH layer.
Finally, the horizontal position df of the feed can also be controlled. It corresponds to the
distance between the center of the dielectric cavity and the end of the ridge, as indicated
in Fig. 6.30a. Over this distance, the waves do back-propagate, but are reflected by the
mushrooms, creating and additional resonating space. In the following, good impedance
matching is obtained with a feed at df = 5.04 mm, and a cavity with wcav = 11.02 mm
and hcav = 0.43 mm. The slot in the upper metallization has the same width as the cavity
i.e., wslot = 11.02 mm, and the same height as the last staircase step i.e., hslot = 0.25 mm.

Fig. 6.31 shows the S-parameters of the resulting RW to RGW transition, simulated
in CST with the model in Fig. 6.30b. The ridge and the EBG mushrooms are those
designed in paragraph 6.3.1. Good impedance matching is obtained between 13.5GHz
and 16.5GHz, as well as good transmission performances. Fig. 6.31b illustrates the
impact of the losses in this feed. Cases without losses, with only dielectric losses, with
only metallic losses, and with all losses are compared. The dielectric losses are added
by replacing all substrates by lossy models of Rogers RO3006 substrates, which yield a
loss tangent tan δ = 0.002. All PEC surfaces are replaced by copper, with a conductivity
σ = 5.8× 107 S ·m−1. Most losses are due to the metal dissipation, not to the dielectric.
Indeed, not only do the waves mainly propagate in vacuum, but also the Rogers substrate
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Figure 6.31: S-parameters of the RW to RGW transition illustrated in Fig. 6.30, for dif-
ferent lossy cases. The dimensions of the staircase are in Tab. 6.2. The other feed dimen-
sions are df = 5.04 mm, wcav = wslot = 11.02 mm, hcav = 0.43 mm and hslot = 0.25 mm.
Lossy substrates have tan δ = 0.002, and lossy metals have σ = 5.8× 107 S ·m−1.

are notably low-loss. Given that a piece of RGW is attached to the feed, with the same
length as studied in Fig. 6.27, it can be accounted for approximately 0.1 dB of the losses.
Therefore, in the real case (all losses taken into account), each feed transition feed yields
a transmission of approximately −0.4 dB.

6.3.4 Prototyping

In the following paragraphs, the overall phase-shifter design is described. It includes all
the components studied in this chapter, as well as a system to assemble them together.
The CST designs presented here will be used to manufacture the final prototype for in-lab
measurements.

6.3.4.1 Sandwich structure

The reconfigurable phase-shifter is formed of several substrate layers, as illustrated in
Fig. 6.20b. Not only are some of these layers very thin, and thus quite flexible, but also
the gap between these layers must be very precise over the hole propagation plane. That
is why we chose to use dielectric separator layers, that are inserted between the SIH layers
and the HIS layers. The separators must come as close as possible to the propagation
region, in order to ensure the right gap there. In the central gap, the separator of
thickness g = 0.25 mm is manufactured in a sample of Rogers RO3006. It is cut in a
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frame-like shape, such that it completely encompasses the ridge, covering all the EBG
mushrooms on the side and at the ends of the ridge. The separators between the SIH
and the HIS layers must have a reconfigurable thickness gHIS. Therefore, several thin
separators are stacked up, to discretize gHIS in the range 0-1.5mm.

Moreover, in order to avoid bending of the layers, the phase-shifter must lay on a
plane surface that is not deformable. The different layers and separators must be pressed
onto this mounting surface. This can be done with nuts and bolts, going through all the
layers of this dielectric sandwich.

Finally, the mounting surface must ensure the alignment of the different elements.
This is particularly true for the SIH layers, which must be fixed such that GS is not
broken. Similarly, the metallic feed must be placed exactly at the level of the slot in the
upper metallization of top SIH layer. These alignments can be guaranteed by alignment
pins connected to the mounting structure.

The CST model of the assembled layers is showed in Figs. 6.32 and 6.33. It is to be
noted that the nuts and bolts are not pictured. All the dimensions related to the propa-
gation regions are summed up in Tab. 6.3. Dimensions purely related to manufacturing
choices, such as the size of the flanges, are not indicated here.

In Fig. 6.33, the subfigures (c) to (k) show the top view of the phase-shifter when
adding the different layers from bottom to top, one after the other. In Fig. 6.33d, the first
dielectric layer put on the mount is the lower HIS layer. The mushrooms face upwards,
and so the metallic patches are visible. It must be kept in mind that the bottom (hidden)
face of this layer is fully metallized, grounding the mushrooms. The contrary can be said
for the upper SIH layer added in Fig. 6.33j, where the mushrooms face downwards,
showing us the fully metallized face of the layer in the top view.

The lower SIH layer in Fig. 6.33f shows how the tapered holes are etched into the
metallization of the ridge, surrounded by EBG mushrooms. However, the hidden bottom
side of this layer is fully metallic with only etched holes, because the mushrooms must
be grounded on the other side. As such, this bottom side looks like the top side of the
upper SIH layer, visible in Fig. 6.33h, except that the holes are shifted to create GS. The
upper SIH layer in Fig. 6.33h is identical when it comes to bottom and top faces.

As described, the central separator in Fig. 6.33g frames the ridge, which is why only
part of the lower SIH layer is visible. The EBG mushrooms are fully covered. The
separators between the lower HIS and SIH layers, added in Fig. 6.33e, run along the full
phase-shifter length. However, this is not the case for the separators between the upper
HIS and SIH layers, added in Fig. 6.33i. Indeed, the metallic feeds must be place directly
onto the upper SIH layer, and so the upper separators and the upper HIS layer must
be truncated around the feeds. This is clearer in the side view of the phase-shifter in
Fig. 6.33b.

Six alignement pins are added to the mount. Two pins per feed ensure the proper
alignement of the rectangular staircase with the feeding slots of the upper SIH layer.
The two remaining pins, placed diagonally through the structure, align all the dielectric
layers. In order to avoid over-constraining the structure, ideally all elements would be
held by two pins. This is not possible here, because the upper HIS layer and the feeds are
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(a)

(b)

Figure 6.32: Perspective views of the phase-shifter prototype modeled in CST.
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(a) Side view.

Metallic feed
Upper HIS layer
Upper separator
Upper SIH layer

Central separator
Lower SIH layer
Lower separator
Lower HIS layer
Metallic mount

(b) Side cut in the symmetry plane of the structure.

(c) Metallic mount
with alignment pins
and assembling holes.

Figure 6.33: Description of the different layers of the prototype (Cont. next page).
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(d) Lower HIS layer
(mushroom side).

(e) Lower separators
(reconfigurable thick-
ness).

(f) Lower SIH layer
with RGW and lateral
EBG mushrooms.

(g) Central separa-
tor (main propagation
layer).

Figure 6.33: (Cont. next page) Different layers of the prototype, from bottom to top.
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(h) Upper SIH layer
with integrated cavities
for feeds.

(i) Upper separators
(reconfigurable thick-
ness).

(j) Upper HIS layer
(ground plane side).

(k) Total structure with
metallic feeds.

Figure 6.33: Different layers of the prototype, from bottom to top.
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Name Description Value

a Maximum square SIH size (for tapering, see Tab. 6.1) 3.4mm
alat Square mushroom size for the lateral confinement of the

RGW
2.3mm

aHIS Square patch size of the HIS mushrooms 1.85mm
dv Distance between two ridge vias 1.5mm
de Distance between the ridge edge and its vias 1mm
df Position of the feed (center) with respect to the ridge end 5.04mm
g Central gap between the SIH layers 0.25mm
gHIS Gap between the SIH and HIS layers Reconfigurable
h SIH layer’s thickness 0.25mm
hcav Height of the dielectric cavity in the upper SIH layer 0.43mm
hf Height of the RW feed (for staircase dimensions, see

Tab. 6.2)
7.9mm

hHIS HIS layer’s thickness 1.52mm
hslot Height of the feeding slot in the upper SIH layer 0.25mm
p SIH period 4mm
plat Mushroom period for the lateral confinement of the RGW 2.4mm
pHIS HIS mushroom period 2mm
r Radius of the SIH vias 0.3mm
rlat Radius of the mushroom feet for the lateral confinement of

the RGW
0.2mm

rHIS Radius of the HIS mushroom feet 0.2mm
wcav Width of the dielectric cavity in upper SIH layer 11.02mm
wf Width of the RW feed 15.8mm
wslot Width of the feeding slot in the upper SIH layer 11.02mm
εHIS HIS layer’s relative permittivity 3
εr2 SIH layer’s relative permittivity 6.5
εsep Relative permittivity of the wedge between both SIH layers 6.5
εrs Relative permittivity of the reconfigurable wedges between

SIH and HIS layers
3

Table 6.3: Parameters of the reconfigurable waveguide design, with the values used in
the final prototype.
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(a) Overall view. (b) Rectangular waveguide input.

Figure 6.34: Pictures of the coaxial-to-rectangular transition used to feed the prototype.

not overlapping, hence the multiple pins. If contraint issues appear during assembly, it
is always possible to loosen up some constraints by enlarging the holes of certain layers.
All the holes assigned to pressing the layers with nuts and bults are large enough that
they do not add alignment constraints. As a precaution, more bolt holes are drilled than
may actually be needed in the end.

The metallic RW to RGW transitions are crowned by waveguide flanges. These
flanges are sized according to the available WR62 connectors photographed in Fig. 6.34.
These connectors are then linked to the network analyzer with coaxial cables. The
connectors are fixed to the feed flanges by means of bolts with hexagonal heads. When
these bolts are threaded head down through the flanges, the heads embed themselves into
the slot below the flanges. These slots are visible in Fig. 6.32b. This way, the heads can
not rotate in the slots, thus maintaining the bolt while screwing the nut at the other end.
The same slots are machined at the bottom of the metallic mount. Thereby, the bolts
that press the different layers together can be operated without need of lifting the phase-
shifter off the table. This little design trick facilitates the measurements, because the
different layers must be assembled multiple times to change the separators of thickness
gHIS that reconfigure the phase-shift.

Finally, the height of the RW to RGW transitions is quite arbitrary, but practical
considerations lead to a balance in height. On the one hand, it must not be too tall,
because of the lever it would apply to the substrate layers. This is particularly true given
the connectors that are fixed on top of the transitions, and which are quite heavy. It
is also for that reason that the RW to RGW transitions have additional flanges at the
level of the dielectric layers, with four assembling bolts, in order to prevent any tilt of
the total feed column. On the other hand, the RW to RGW must be tall enough that
the bolts can be threaded through the flange from below. Here, the total height of the
metallic transitions is approximately 3 cm.
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6.3.4.2 Materials and manufacturing

Dielectric substrates As mentioned before, the substrates chosen for the SIH and the
HIS layers are from the Rogers RO3000 laminate series, which offer low dielectric losses.
The substrate RO3006 with εr2 = 6.5 and thickness 0.25 mm is used for both the SIH
layers and the central gap separator. The substrate RO3003 with εHIS = 3 and thickness
1.52 mm is used for the HIS layers. Moreover, given the set of available thicknesses for
this substrate (0.13 mm, 0.25 mm, 0.5 mm, 0.75 mm and 1.52 mm), the RO3003 is also
used for the reconfigurable separators between the SIH and HIS layers.

The available substrates have a copper plating of thickness t = 17 µm. For the
behavior of the substrate-integrated waveguide to be as close as the ideal case (PEC
plates) as possible, the minimum requirement is for the skin depth of copper to be smaller
than t. In this way, the fields do not cross through the plates. At a given frequency f ,
the skin depth of a metallic plate of conductivity σ if given by [17, p. 19]

δs =

√
1

πfµ0σ
, (6.2)

with µ0 = 4π × 10−7 the vacuum permittivity. For copper, σ = 5.813× 107 S ·m−1 [17,
p. 719]. Therefore, at the lowest operating frequency, that is f = 13 GHz, the skin depth
of the copper plates is δs = 0.58 µm. This is much smaller than the plate thickness, and
so the available copper plating is suitable for the contemplated frequency range.

Substrate manufacturing and LPKF machines All the work on the dielectric
layers can be made in-lab, with the two LPKF machines at hand. On the one hand,
the LPKF ProtoLaser S4 can cut and drill the dielectric layers, as well as etch the
metallization sheet. According to the datasheet, the minimum radius of the laser beam
is 20 µm, with a position accuracy of ±10 µm. The minimum width of a metallic track is
75µm, and must be spaced by at least 25µm from the next track. On the other hand,
the LPKF Contac S4 plates the inner-side of the holes to create the metallic vias. The
minimum hole radius is 0.1mm, with a minimum hole diameter to plate thickness ratio
of 1 to 10. In the phase-shifter design, the minimum via radius is 0.2mm in a layer of
thickness 1.52mm. Therefore, these specifications have the necessary accuracy for the
phase-shifter design.

Metallic feeds and mount The staircase transition and the mounting plate must be
manufactured in low-loss metal blocks. The manufacturing must be particularly accurate.
In the case of the mount, the positions and radius of the metallic pins ensure the alignment
of the different layers and the feeds. The RW to RGW transitions are even more delicate,
because the last steps of the staircase have heights 0.25mm and 0.35mm, according to
Tab. 6.2. Errors for these dimensions would deteriorate the impedance matching of the
feed.

Manufacturing the feed in one metallic bulk is possible, and preferable in terms of
accuracy. Nevertheless, the manufacturing cost can be reduced if the feed is built in two
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pieces. This possibility is studied in appendix F, notably the question of the field leakage
between the different components.

Chapter landmarks

The homogenization techniques developed in the previous chapters are put to use for the
design of a contactless reconfigurable phase-shifter in gap-waveguide technology, leading
to the following studies:

• The quasi-static refractive index formula (4.40) is used to accelerate the preliminary
studies for the holey metasurfaces. It shows which dielectrics and holes offer the
best sensitivity to the hole depth for the reconfiguration. Notably, GS considerably
improves the achievable refractive index range as function of the hole depth.

• Although G-S PPWs with SIHs are not accurately characterized by (4.40), the
formula is a good qualitative indicator of their behavior. It also appears that
the homogenized quasi-static Bloch impedance is surprisingly accurate for SIH
metasurface waveguides.

• A fully-integrated prototype is designed to offer a 360° phase-shift. This designs
covers the RGW with lateral mushrooms to guide the waves, the tapering of the
holes for impedance matching and total phase-shift, and the perpendicular feed to
transition from a RW to the ridge.

All designs are validated with CST simulations. The total structure has not been
simulated because of the design complexity of the numerous metasurface elements, which
overcomes our computer ressources. Manufacturing of the prototype is ongoing, in order
to validate the design with experimental results.



Conclusion

In this thesis, the aim of our studies of glide-symmetric (G-S) parallel-plate waveguides
(PPWs) was two-fold. First, finding a modeling technique that would accelerate the
practical design of G-S microwave devices. Second, improving the analytical understand-
ing of these structures. In order to meet these goals, the starting point was the dispersion
equation obtained by means of mode-matching, which is the only fully-analytic method
available to accurately describe G-S waveguides. Some of the resulting new methods have
been applied to the design of a reconfigurable phase-shifter, that is particularly cheap to
produce due to the use of integrable metasurfaces.

First goal: fast modeling of glide-symmetric waveguides The first goal has
been met in the quasi-static regime, with the derivation of the closed-form formula for the
effective refractive index of holey PPWs. The refractive index of G-S waveguides is stable
over a wide frequency range, and so there is no need to obtain the full Brillouin diagram
when designing a G-S device. The quasi-static refractive index accurately characterizes
the waveguide over a wide band. It can be adapted to arbitrary hole shapes, even shapes
with inner conductors such as pins, by following simple steps:

1. Retrieve the modal information for a given hole shape (cut-off frequencies, norm,
and fields of the modes).

2. Compute the Fourier transforms of these modes, and evaluate them at periodic
points.

3. If analytical forms of the modes are known, dismiss the modes that have no impact
on the dispersive behavior of the waveguide.

4. Insert this information into the closed-form formula, which yields the refractive
index.

Contrarily to previous methods, no iterative solvers are needed in this process, which
makes the implementation of this algorithm straight-forward, without tuning of any
execution parameters. This also guarantees unprecedented speed to obtain the refractive
index information, with a reduction of the execution time by at least two orders of
magnitude compared to previous methods. In the context of parametric studies requiring
thousands of simulations, this makes a substantial difference. For canonical hole shapes
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such as rectangles or circles, the modal fields are known in closed form, and so the formula
is completely analytic. This resulting time gain makes it possible to use the formula in
optimization processes, in order to maximize the refractive index or the anisotropy of
the waveguide. For arbitrary hole shapes, steps 1 and 2 are covered by an in-house two-
dimensional finite element method at the surface of the holes and a fast Fourier transform.
These algorithms are still much faster than the three-dimensional discretization needed in
a commercial solver such as CST. Consequently, imaginative shapes such as super-ellipses
or stars can be explored with no extra effort. This formula is suited for both non-glide-
symmetric (nGS) and G-S waveguides, although its validity is larger in the latter case
due to the low dispersion of glide symmetry (GS). Still, the denser the structure, the
smaller the band of use of the formula, which is perfectly accurate only in the quasi-
static regime. Our trials to keep some frequency-dependencies in the closed-form index
formula to further improve the frequency validity have lead to interesting improvements.

In order to use holey G-S PPWs for impedance matching of different dielectric media,
the quasi-static homogenization has been extended to the notion of Bloch impedance.
From the closed-form refractive index formula, the quasi-static fields between the meta-
surfaces can be computed analytically. For square and circular holes, integrating these
transverse fields across the unit cell yields an accurate definition of the impedance of
the equivalent transmission line. This impedance is computed quickly without the use
of commercial solvers, and completes the fast characterization of holey PPWs.

Second goal: analytic study of the features of glide-symmetric waveguides
The quasi-static homogenization is also a powerful tool for the analysis of the features
of GS. First, it gives access to the effective behavior of structures which lie at the limit
of the physical, and that would be difficult to simulate in commercial solvers. We have
observed the convergence of the refractive index for asymptotically small gaps between
the metasurfaces. For holey G-S waveguides, a giant refractive index is achieved when
the holes are overlapping. Although such small gaps do not make sense in practice,
this behavior illustrates how the complexity of the coupling between overlapping holes
fundamentally impacts the effective density of the waveguide between G-S and nGS
designs. A consequence of this difference is already visible at practical gap sizes, where
the G-S index tends to be much larger than the nGS index.

The closed-form quasi-static formula also gives direct insight into the impact of the
structure parameters on the refractive index. In order to analyze this impact in more
depth, the formula is reduced to two modes in the holes. It is observed that two modes
are enough to capture the behavior of G-S and nGS waveguides with canonical holes.
In the simplified formula, the difference between these two structures can be clearly
isolated. The dielectric materials are shown to have a great influence on this difference.
By increasing the density (permittivity and/or permeability) of the hole medium, this
difference can be enhanced, yielding structures where the G-S is much larger than the nGS
index. But this analysis also highlights that this is not the case in general. Contrarily
to what is shown in literature, the nGS index can be made larger than the GS index by
increasing the dielectric density in the gap between the metasurfaces. Overall, it appears
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that GS drives the effective waveguide density in the direction of the hole density, whereas
nGS waveguides behave closer to the gap medium.

With two modes, the Bloch impedance formula can be simplified in a similar way. It
is proven analytically that G-S tends to reduce the permittivity of the effective medium
compared to its nGS counterpart. If the G-S refractive index is larger, then the Bloch
impedance is larger as well, and consequently the effective permeability is much larger.
This analytically proves observations that were made in recent publications. Nonetheless,
it must be kept in mind that these findings are based on the observation that two modes
are enough for the considered canonical waveguides. The limits of this observation remain
unexplored. Still, because rectangular and circular holes are the most commonly used
hole shapes, these findings explain most of the observations made in literature, and are
likely to relate to phenomena that are inherent to GS. Future analyses of the quasi-static
fields may give further interpretations to explain these features of GS.

In the end, the validity of the quasi-static homogenization technique is based on the
low-dispersive behavior of G-S waveguides. We have tried to better understand this re-
duced dispersion by analyzing the dispersion equation obtained with mode-matching. For
corrugated and holey PPWs, these studies have highlighted the impact of the harmonics
depending on their parities. When the waveguide is G-S and when the gap between the
metasurfaces decreases, half of the harmonics become negligible in the dispersion equa-
tion. The fundamental harmonic is dominant, and its wavenumber shifts linearly with
increasing frequency. For corrugated structures with small and medium corrugations,
the linearity of the dispersion curve in the first Brillouin zone is proven by simplifying
all the frequency dependencies in the dispersion equation. For wider corrugations, such
a linearization was not possible, because of the increasing number of modes required to
accurately describe the structure. Nevertheless, the dismissal of half the harmonics has
made it possible to show that a G-S corrugated waveguide has the same dispersive behav-
ior as a nGS waveguide with half the periodicity. This means that in the first Brillouin
zone, the G-S waveguide has a dispersion curve that corresponds to the low-dispersive
range of the nGS equivalent structure. It must be noted that this equivalent structure
is non-physical for wide corrugations, and that it requires twice as many corrugations to
behave like the GS structure under study.

Unfortunately, we have not been able to generalize these results to arbitrary G-S
PPWs. Proving the linearity of the dispersion curve in general is an unrealistic task,
because depending on the geometry the dispersion may not be negligible, even in the
first Brillouin zone, and so the dispersion curve is not linear. We are left with quanti-
tative methods, such as the presented equivalent corrugated structure, or with physical
interpretations, such as the mode degeneracy that occurs in the G-S waveguide when the
period is half the wavelength, closing the first stopband and reducing the “bending” of
the first mode.

Reconfigurable phase-shifter Although the homogenization technique developed in
this thesis applies to holey PPWs, the design of a reconfigurable integrated phase-shifter
illustrated the adaptability of this method. The preliminary studies made with the quasi-
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static index formula capture the qualitative behavior of more complex structures such
as substrate-integrated holes. This accelerates the design of a complex reconfigurable
unit cell, made of several layers of integrated metasurfaces. The manufacturing of this
phase-shifter is ongoing, and so unfortunately no experimental results are shown here.
Nevertheless, extended simulations show that in theory, a 360° phase-shifter can be built
with contactless reconfiguration. It should be kept in mind that the design presented
here is a proof of concept. Its length, bulky feed and operating band make it unsuitable
for practical applications. Future designs should be upgraded to the Ka band, and focus
on the miniaturization of the design. But whatever the operating frequency, as long
as the resulting design operates the first Bloch mode of the G-S waveguide, where the
dispersion is low, the quasi-static homogenization technique can be used to optimize the
holey metasurfaces in preliminary studies.

Future research perspectives One of the main strengths of the quasi-static refractive
index formula (4.40) is its compactness and generality. Therefore, it could be used to
analytically study the impact of the different structure parameters in more depth. For
example, what is the upper limit for the refractive index when decreasing the metasurface
period, or the gap between the metasurfaces? Can the metasurface holes be designed
in such a way that a singularity appears in the denominator of the formula, resulting in
giant-index waveguides? Ideally, (4.40) would be reversed to yield the geometry of the
waveguide for given propagation features: simplified versions of the formula may be used
to this purpose.

In this mindset, several studies about the isotropy of structures have been performed
but have not been reported here due to their incompleteness. Indeed, the quasi-static
refractive index formula is dependent on the propagation direction in the PPW. There-
fore, if the refractive index is isotropic, all the angle dependencies should cancel out in
the formula. This has been done for square holes and for circular holes, based on making
pairs of transverse electric modes with the same norm and orthogonal field averages.
Ideally, an in-depth study of the formula would lead to a set of sufficient, and maybe
even necessary, conditions for the isotropy of holey PPWs depending on the shape of the
holes. Attempts were made to do so, based on the derivations for square and circular
holes. However, these holes have inherent symmetry that guarantees the same propaga-
tion features in orthogonal directions. Other examples, such has triangular holes, would
give more insight in order to generalize the conditions for isotropy.

Although the use of the finite element method in order to obtain the eigenmodes of
arbitrary holes has proven to be quite fast, the process might be further optimized. Maybe
other techniques would retrieve the Fourier information of these modes more efficiently.
The accelerated study of imaginative shapes such as those in section 4.4 may lead to
better understanding of how the fields are disrupted by the metasurfaces. Examining
the charge distributions, notably at the edges of the holes, may explain why certain hole
shapes lead to denser effective waveguides.

In spite of the promising extensions of the index formula in section 4.5, they do
not guarantee a generalized high-frequency validity of the formula. Future research to
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keep first-order frequency dependencies may extend this homogenization method fur-
ther. However, it is difficult to retain more frequency-dependent terms and still obtain a
simplified dispersion equation that can be reformulated with the determinant lemma.

Although the impedance-retrieval technique in section 5.2.3 does not rely on com-
mercial solvers, it is motivated by heuristic observations. For square and circular holes,
the Bloch impedance works because of the field’s transverse electric magnetic (TEM)
nature in a particular integration plane between the holes. This has not been proven an-
alytically. In the future, it would be interesting to evaluate the limits of this technique:
under which conditions and in which plane is the Bloch mode TEM? How is the accuracy
impacted when moving away from this plane? Can this Bloch impedance be computed
for arbitrary hole sizes? What about different propagation directions, when the incident
wave is not normal to the metasurface interface?

A notable limitation of this thesis is the lack of losses in the analytical formulas. This
approach is motivated by the negligible losses in the metallic metasurface waveguides
used in practice. However, a generalization of the mode-matching process including
the metallic losses (for example by considering a lossy coating around each hole) would
clarify the limits of the lossless formula in terms of losses. Moreover, including the
losses would also put into perspective more theoretical results, such as the impact of the
dielectrics in the holes and in the gap as detailed in section 5.1. Asymptotical studies
such as decreasing the gap in section 5.1.3 would also benefit from accounting for the
losses, because it is in these cases that losses are most likely to change the fundamental
behavior of the waveguide.

While the focus of this thesis has been G-S waveguides, other symmetries might
benefit from such mode-matching simplifications in the quasi-static regime. Hexagonal
GS has been mentioned in chapter 1. Parity-time symmetries could be implemented by
adding alternating losses and gains at the bottom of the holes. Cylindrical geometries
making use of twist symmetry may be homogenized as well, and due to their extended
use in real-life applications, an equivalent to the formula 4.40 would be most useful.

Finally, the phase-shifter design presented here serves only as a proof-of-concept. Its
large electrical size is prohibitive for practical applications. Integration of this concept
in antenna arrays would be interesting. Therefore, and depending on the manufacturing
technologies available, other reconfigurable unit cells should be developed with wider
phase variations. Holes that support TEMmodes could be a possible idea to this effect. In
order to accelerate the design of such cells, further analytical homogenization models for
the reconfigurable unit cells could be developed. For example, the capacitive load created
by the high-impedance metasurfaces may be included in the homogenized refractive index
formula by using equivalent circuits. Here too, including the losses in the formula would
lead to preliminary designs closer to the final prototype.
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Appendix A

Details to the review of
glide-symmetric metasurfaces

A.1 Spectrum of multiple periodic cells

In order to illustrate the fact that the Floquet condition only gives a lower bound to the
periodicity of the wavenumber spectrum, the example of multiple periodic cells is taken,
which can be applied to any p-periodic structure.

It is worth noticing that if a structure is p-periodic, then it is also qp-periodic, with
q ∈ N. Therefore, there exist an eigenvalue s such that the Floquet condition is satisfied
for the qp-translation operator i.e.,

E(r + qpez) = T qp {E(r)} = sE(r) . (A.1)

After defining a fundamental wavenumber k′z such that e−jk′zqp = s, all higher harmonics
can be defined as k(n)′

z = k′z + n2π/(qp), with n an integer. The wavenumber spectrum
of the pq-periodic model seems to have a higher periodicity than the spectrum of the
p-periodic model, although both models represent the same structure.

Moreover, a translation of qp is equivalent to q chained translations of p i.e., T qp =
T q
p. Inserting this result in (1.4) yields

T q
p {E(r)} = tqE(r) . (A.2)

Comparing (A.2) with (A.1), one gets

tq = s ⇐⇒ e−jkzpq = e−jk′zqp , (A.3)

which means that the relationship between the fundamental wavenumber in both models
is

kz = k′z + n
2π

pq
= k(n)′

z . (A.4)
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Would all possible k(n)′
z be in the spectrum of the structure, then equation (A.4) would

imply that the wavenumber spectrum of the p-periodic model is 2π/(pq)-periodic too.
This would be in disagreement with (1.5), which states that the spectrum of the structure
has a periodicity bigger or equal to 2π/p. Both statements can only be compatible if
some modes k(n)′

z correspond to vanishing fields i.e., the corresponding eigenfield cannot
exist within the considered structure. As such, the corresponding k(n)′

z can be removed
from the spectrum of the structure, yielding a bigger periodicity, at least 2π/p according
to (1.5).

A.2 Proof of the generalized Floquet theorem

In this section, the generalized Floquet theorem is proven. For generality, it is applied to
twist symmetry. All the following derivations can be easily transposed to glide symmetry
(GS).

Let us consider a structure with N -fold twist symmetry and period p. Each unit cell
is made of N subcells of length p′ = p/N . Adjacent subcells are rotated by an angle
θ = 2π/N . After N subcells, the orientation of the subcell is back to the one of the first
subcell. Let us name the higher symmetries operator LN , yielding the field in the next
subcell with the corresponding rotation, namely

LN {E(r)} = E

(
r + p′, θ +

2π

N
, z

)
. (A.5)

In terms of operators, this means that composing N times the operator LN corresponds
to the translation operator i.e.,

(LN )N = T p . (A.6)

The generalized Floquet theorem [104] states that, for E a non-degenerate non-zero
eigenmode of the structure,

∃ t ∈ C s.t. [T p − t]E(r) = 0 ⇐⇒ ∃ ` ∈ C s.t. [LN − `]E(r) = 0 . (A.7)

The theorem can be demonstrated by considering the invariance of Maxwell’s equa-
tions under translation and rotation. Therefore, Maxwell’s equations are invariant under
the operator LN . Moreover, the geometry of the structure (meaning the boundary con-
ditions) are invariant under LN too. As a consequence, if E is an eigenmode of the
structure under translation T p with eigenvalue t, then the mode LN {E(r)} is an eigen-
mode of the structure too, with the same eigenvalue t. Therefore, one simultaneously
has

[T p − t]E(r) = 0 (A.8)
and [T p − t]LN {E(r)} = 0 . (A.9)
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The important assumption is that t is a non-degenerate eigenvalue, meaning that the
eigenspace associated to t is of rank one. As a consequence, (A.9) implies that there
exists ` ∈ C such that

LN {E(r)} = `E(r) . (A.10)

The converse is straight-forward. If (A.10) is true, then composing the higher-
symmetry operator n times implies that E is an eigenvector of T p with eigenvalue `n

i.e.,

T p {E(r)} = Ln
N {E(r)} = `nE(r) . (A.11)

A.3 Modeling of glide-symmetric metasurface waveguides

A.3.1 Full-wave solvers

Commercial solvers In order to find the dispersion diagram of a periodic structure,
one can distinguish between two types of methods: methods that compute the wavenum-
ber as a function of frequency, and methods that find the operating frequency as a func-
tion of the phase-shift across the unit cell [169]. The eigensolvers of commercial softwares
such as CST and HFSS belong to this second category. Periodic boundary conditions
on opposite sides expect to be related by an arbitrary phase-shift. For a given phase-
shift, the mode frequencies that fit all boundary conditions are the solutions. Therefore,
a parametric change of the phase-shift plots the Brillouin diagram. Such commercial
eigensolvers are designed for a wide range of applications and arbitrary geometries. This
comes at the cost of computation and memory ressources. A glide-symmetric (G-S)
waveguide with interesting features has a small distance between the metasurfaces, com-
pared to the unit cell period, which is in turn electrically small. As a consequence, the
meshing rate of the model discretization used in the commercial software is very high,
leading to lengthy simulations. For the design of a lens antenna, which requires hundreds
or thousands of different geometries, this makes the parametric studies of the unit cell
cumbersome.

Moreover, even for lossless materials, the wavenumber keff = βeff − jαeff of periodic
structures may be complex, notably in the stopbands, where the modes are attenuated
due to a non-zero α. Commercial solvers do not compute the imaginary part of the
wavenumber when not related to material losses. This information is important for
electromagnetic bandgap (EBG) structures, because it drives the number of EBG rows
needed to repress the leakage. Similarly, the leakage rate and the aperture field distribu-
tion of leaky-wave antennas (LWAs) is dependent on the imaginary part of keff [169].

Periodic method of moments By expressing an electromagnetic (EM) problem in
integral-equation formulation, it can be solved with the method of moments (MoM).
The MoM is well-suited for metasurfaces analysis, because these problem often involve
radiation. With the MoM, there is no need to define absorbing boundary conditions,
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thanks to the use of Green’s functions [185, p. 506]. For periodic structures, a periodic
Green’s function is defined. It incorporates the radiation of the shifted copies of the
considered source, in the form of infinite series [227]. As an example, [228] computes
the fields of a one-dimensional (1-D) microstrip line with thin periodic metallizations
of arbitrary shape, using periodic Green’s functions in a MoM applied to the mixed-
potential integral-equation formulation. All the propagating modes are found, whether
confined or leaky in space or in the substrate.

The challenges of periodic MoM lie in the singularity extractions of the Green’s func-
tion [229], [230], and the efficient computation of the infinite series due to periodicity.
In [231], several possible acceleration schemes for computing the series are compared.
Notably, Ewald’s transformation combines the spectral (sum of harmonics) and spatial
(periodic sources) representations of the periodic Green’s function in order to find a
balance between efficiency and accuracy. Extraction and analytic study of the slowly
convergent terms is another acceleration procedure [232]. Nonetheless, periodic MoM
is confronted to structures where the periodicity is broken due to the feed or the edges
of the system. Moreover, metasurfaces that do not lie on planar or cylindrical layers
are problematic, which is a growing issue with the conformability of metasurface appli-
cations. Then, one is limited by the computational ressources, because these arbitrary
systems need full-wave simulation of metasurfaces which are many wavelengths large [52,
Chap. 15].

Periodic time domain boundaries It is notable that other full-wave techniques have
been extended to periodic structures, such as time-domain methods. A finite-difference
time-domain method can be applied to metasurfaces when implementing time-domain
periodic boundary conditions [233]. This is challenging, because enforcing a phase-shift
– which per nature falls under the frequency domain – would require storing the history
of the field over many time steps. This can be circumvented by computing two time-
responses in parallel with orthogonal phase-shifts, to create complex phasors in time, for
which Floquet boundary conditions can be enforced. The advantage of these methods is
that they do not require complex root-finding procedures. Nonetheless, iterative manip-
ulation of large matrices is needed, requiring large computation and storage ressources,
which may lead to numerical instabilities [169].

A.3.2 Existing analytic methods

Metasurface homogenization Many studies of metasurfaces rely on homogenization
techniques. This means that the resonant details of the metasurface are represented
by averaged boundary conditions or propagation features, that represent the effective
interactions of the incident or surface waves with the surface. As a simple example, [91]
homogenizes a metasurface with periodic grooves by considering an incident plane wave
on the surface. The reflection coefficient is computed for all reflected modes. Under
the subwavelength assumption, all higher-order excited modes are confined, and so only
the fundamental mode is necessary for a distant observer. The poles of the reflection
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coefficient of this mode yield the effective wavenumber of the surface waves that can
propagate along the surface. Similarly, [170] homogenizes a bed of nails metasurface,
considering it as a truncated wire medium, in order to obtain closed-form expressions for
the reflection coefficient and the surface impedance.

The limits of this procedure are explored in [41], where the unimodal homogenization
of a corrugated metasurface is considered within a parallel-plate waveguide (PPW). In
this case, the “distant observer” assumption does not hold. If the upper metal plate is
too close to the corrugated plate, higher-order Floquet harmonics and more corrugation
modes must be considered to capture the vertical interactions between the plates and the
horizontal field variations at the surface of the corrugations. Moreover, this method does
not capture the singular features of GS. Indeed, if each metasurface is homogenized sepa-
rately, this model does not take into account the horizontal positions of the metasurfaces
with respect to each other – more specifically the half-period shift that characterizes GS.

A multimodal homogenization approach is possible, but it is equivalent to performing
the modal analysis presented in section A.3.4. Moreover, it is notable that some accurate
models have been found for particular geometries displaying GS, e.g., in [61], where the
effective transmission and reflection coefficients of multi-layered metamaterial are found.
Each layer is made metallic patches, and so an equivalent surface impedance is found
by means of MoM. Then, stacking such metasurfaces can be described as a transmission
line model for transverse electric (TE) or transverse magnetic (TM) plane waves. Most
importantly, coupling terms are added to account for the effect of the shift between the
layers. However, deriving such a model is cumbersome and is valid only for a particular
geometry.

Equivalent circuits Passive reciprocal two-ports can be represented by an equivalent
T-circuit. This representation is suitable for both penetrable and impenetrable meta-
surfaces, as it connects the average tangential electric and magnetic fields on both sides
of the metasurface [51]. When it comes to metasurface waveguides, periodic canonical
geometries can also be represented by discrete circuit elements, linked by transmission
lines. Equivalent circuits have first been used for simple discontinuities in hollow metal-
lic waveguides [171]. More recently, they have described the transmission and reflection
properties for layered arrays of patches and apertures, such as phase resonances or ex-
traordinary optical transmission [52, Chap. 13]. According to the authors, these circuits
are limited to metallizations with negligible thickness, and can be used only up to the
second resonance of the scatterers – which covers most uses of such metasurfaces.

When it comes to G-S waveguides, the geometry becomes the limiting factor for
many circuits. An equivalent circuit model for G-S corrugated PPWs has been evaluated
[41]. Each corrugation can be modeled as the equivalent circuit of a classical T-junction,
which is well-known [171], and then the waveguide is seen as a cascade of these circuits. A
simple dispersion analysis can be executed from the resulting transfer matrix. This works
very well for non-glide-symmetric (nGS) waveguides. For G-S structures, this method is
limited by the size of the corrugations. Indeed, when the corrugations are wider than
half a period, then the upper and lower corrugations overlap, and so the structure cannot
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be described as a series of T-junctions.
Overall, while equivalent circuits are very effective simulation tools once they are

at hand, they are cumbersome to find, especially for non-canonical geometries and for
two-dimensional (2-D) metasurfaces. Notably, it is difficult to include the coupling phe-
nomena between adjacent unit cells, especially in the case of GS, where this coupling is
central to the waveguide behavior [52, Chap. 12].

Single-mode transfer matrix Transfer matrices are a well-known tool for the analysis
of periodic microwave system [17, p. 382]. The system is seen as a cascade of two-ports,
each two-port corresponding to one unit cell. The method is based on the assumption
that the transfer matrix of the unit cell in the periodic system is equal to that of the
isolated two-port [169]. Then, by exciting the unit cell at its two ports, this transfer
matrix can be computed from equivalent circuits or from commercial solvers. If the
solver yields the S-parameters of the unit cell, the diagonal coefficients of the transfer
matrix can be computed as [17, p. 192]

A =
(1 + S11) (1− S22) + S12S21

2S21
, (A.12)

D =
(1 + S11) (1 + S22)− S12S21

2S21
. (A.13)

Given that the periodic structure is represented by a cascaded two-port transmission
line, effective voltages and currents can be defined between the unit cells. The transfer
matrix relates the voltage Vn+1 and current In+1 of the next cell with the voltage Vn
and current In of the previous cell. This relation can be combined to Floquet’s theorem
(1.3), which relates these voltages and currents too, yielding

[
Vn+1

In+1

]
=

[
A B
C D

] [
Vn
In

]
= e−jkeffp

[
Vn
In

]
, (A.14)

where p is the period of the unit cell, and keff = βeff − jαeff is the effective wavenumber
of the guided wave. Equation (A.14) shows that e−jkeffp is an eigenvalue of the transfer
matrix. Finding these eigenvalues is equivalent to solving the equation

(
A− e−jkeffp

)(
D − e−jkeffp

)
−BC = 0 , (A.15)

which, assuming that the network is reciprocal, i.e., AD −BC = 1 [17, p. 191], yields

1−Ae−jkeffp −De−jkeffp + e−j2keffp = 0 (A.16)

⇐⇒ cos (keffp) =
A+D

2
. (A.17)

In (A.17), the transfer matrix coefficients are frequency-dependent. Therefore (A.17)
can be solved as a function of frequency to yield the Brillouin diagram of the periodic
waveguide, which is evidently periodic. It should be noted that although (A.17) seems to
avoid a root-finding process, this is not exactly true, because a modal analysis is already
hidden in the computation of the transfer matrix coefficients A and D [169].
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The first disadvantage of the single-mode transfer matrix (SMTM) method is it can
only find the discrete spectrum of the uni cell, which is incomplete when considering
open structures with a continuous radiating spectrum [169]. Indeed, the modes excited
at the ports of a commercial solver have closed boundary conditions, which prevent the
excitation of the true unbounded modes to find the transfer matrix of the unit cell. A
workaround is to increase the size of the ports by including free-space above the periodic
structure, and to change the height of the port to check the invariance of the solutions.

Most importantly, this method does not convey the higher-order modal interactions
between adjacent unit cells, which are particularly relevant at a sub-wavelength scale
[169]. This is illustrated in [234] with the analysis of a metasurface waveguide made of
transverse metal ridges. The metasurface are close enough that the ridges are intertwined.
When these ridges are thin compared to the period, then the SMTM is accurate. In this
case, G-S and nGS designs have the same first two modes. On the contrary, if the period
is small, i.e., the ridges are close to each other, then G-S and nGS behave differently, but
the SMTM method does not capture this difference.

When the unit cell displays particular symmetries, it is possible to separate the unit
cell in two successive two-ports, whose transfer matrices reflect this symmetry [235]. This
has the advantage of reducing by half the computational load in the commercial solver
in order to obtain the transfer matrix. However, not only does it not solve the problem
of the coupling between adjacent unit cells, but it also loses the coupling information
between the two symmetric subcells.

In order to gain coupling information, several unit cells can be regrouped in one big
cell, called supercell [169]. This supercell is simulated in the commercial solver in order to
obtain the transfer matrix of this group. The effect of higher modes within the structure
are captured by this transfer matrix. The number of cells must be large enough to
minimize the boundary effects, that is the missing coupling information at the unit cells
at the ends of the supercell. As a consequence, this procedure makes the computational
load onerous for most applications. Moreover, the solution of the resulting dispersion
equation is not unique, because several cells lead to more possible unity roots, making
the true wavenumber ambiguous [235]. Finally, for radiating structures such as LWAs,
the waves may be attenuated at the end of the supercell, leading to strong numerical
inaccuracies in the transfer matrix evaluation.

A.3.3 Multi-modal transfer matrix method

Description of the method for periodic structures Multiports are often associ-
ated to the physical presence of different terminals. But it is also possible to associate
them to the different modes propagating through the same feed, even if these modes
are evanescent in the structure [169]. Therefore, in order to accurately describe the
multi-modal coupling between the adjacent cells of a periodic waveguide, a multi-modal
transfer matrix (MMTM) method has been developed [43]. For 1-D periodicity, a com-
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mercial solver yields the multi-modal scattering matrix of the unit cell, that is

S =

[
Sii Sio

Soi Soo

]
, (A.18)

where Sii contains the the reflective S-parameters between the input ports, Soo the
reflective S-parameters between the output ports, and the remaining matrices express
the transmission coefficients. From there, the coefficients of the MMTM are expressed
as

A =
1

2
[I + Sii] [Soi]

−1 [I − Soo] +
1

2
Sio , (A.19)

B =
1

2
[I + Sii] [Soi]

−1 [I + Soo]Zo −
1

2
SioZo , (A.20)

C =
1

2
[Z i]

−1 [I − Sii] [Soi]
−1 [I − Soo]− 1

2
[Z i]

−1 Sio , (A.21)

D =
1

2
[Z i]

−1 [I − Sii] [Soi]
−1 [I + Soo]Zo +

1

2
[Z i]

−1 SioZo , (A.22)

where the impedance matrices Z are square diagonal, with each diagonal coefficient
corresponding to the port impedance of one port. It can be shown that if Z i = Zo, then
the value of the impedances does not impact the dispersion equation. Note that the four
elements of the transfer matrix are square matrices too, relating the vectors of voltages
and currents corresponding to the multiple modes. Similarly to the SMTM in (A.14),
Floquet’s theorem then yields

[
A B
C D

] [
Vn
In

]
= e−jkeffp

[
Vn
In

]
. (A.23)

Consequently, the eigenvalues of the MMTM provide the dispersive features of the peri-
odic waveguide. Contrarily to the single-mode method, the higher-order modes excited
at the boundaries between adjacent unit cells are included, and so their impact on prop-
agation is used to find keff . A priori knowledge such as reciprocity can be integrated in
this equation to simplify (A.23) [169]. Finding the eigenvalues of the transfer matrix as a
function of frequency is facilitated by the absence of poles or branch points in the disper-
sion equation obtained with the MMTM, and also by the fast update of the dispersion
equation at a given frequency, given that the transfer matrix coefficients are fixed [236].
Moreover, the dispersion equation is a continuous function of frequency, therefore the
position of the roots moves continuously in the spectral domain when frequency changes.
Previous solutions can be used as initial guesses of iterative processes. It also implies
that modes cannot disappear with increasing frequency: they must transition to another
type of mode, that is real, complex or evanescent.

This procedure can be generalized to 2-D periodic structures, or even three-dimensional
(3-D) metamaterials, by considering additional ports for the orthogonal propagation di-
rections [169]. The method is unchanged. Note that without the multi-modal approach,
the transfer matrix method is limited to a 2×2 matrix per definition, which is not enough
to describe the interactions between more ports.
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Extension of the method to glide symmetry For the SMTM method, it is pos-
sible to subdivide symmetric unit cells in several cascaded two-ports in order to reduce
the computational load. However, the coupling within these subcells is lost. With the
MMTM, this problem is solved. In [43], the MMTM is adapted to G-S metasurface
waveguides. For 1-D GS, it is enough to model only half of the unit cell in the commer-
cial solver.

Indeed, GS can be incorporated in this method by considering the parity of the
modes with respect to the propagation plane. In the following, the parity of the modes is
related to both transverse electric and longitudinal magnetic fields of the modes, because
they are responsible for the effective voltages and currents, respectively. Therefore, if
the electric field across the gap is (anti)symmetric, then the voltage across the gap is
(anti)symmetric as well. Likewise, if the longitudinal magnetic field is (anti)symmetric,
the resulting transverse current is (anti)symmetric too. From the generalized Floquet
theorem (1.13), the field after half-a-period translation is mirrored with respect to the
propagation plane and has a phase-shift of keffp/2. On the one hand, for modes that
are symmetric with respect to the propagation plane, this means that a half-a-period
translation leaves the field invariant, except for the phase-shift, because the mirrored
field is equal to itself. On the other hand, for antisymmetric modes, a half-a-unit cell
translation leads to an inversion of the field. Therefore, considering the MMTM of half-
a-unit cell,

[
A1/2 B1/2

C1/2 D1/2

] [
Vn
In

]
= e−jkeff

p
2Q

[
Vn
In

]
(A.24)

where Q is a diagonal matrix with +1 for symmetric modes and −1 for antisymmetric
modes. Finding keff is thus equivalent to solving the generalized eigenvalue problem
(A.24).

For metasurfaces that display 2-D GS, a further reduction of the MMTM method is
possible. It is sufficient to simulate one quarter of the total unit cell, adding the same
sign matrix Q in the eigenproblem for the symmetries in the orthogonal direction [43].

Advantages of the method On top of capturing the coupling between adjacent cells,
or even subcells in the case of GS, one of the main benefits of the MMTM method is the
computation of both real and imaginary parts of the refractive index. Consequently, the
MMTM method also recovers complex modes, which are not found by the eigensolver
of commercial software [169]. This information about the attenuation constant of real
and complex modes is central to the design of EBG devices. For example in [172],
the attenuation constant is computed for all propagation directions, highlighting the
minimum isotropic attenuation that can be achieved in the stopband at a given frequency.

Beyond the information about the attenuation, the MMTM method offers a gain in
simulation time, especially for G-S structures, where only a fraction of the unit cell needs
to be studied in the commercial solver. Nevertheless, it is difficult to evaluate the time
gain, because the compared methods are inherently different: CST’s eigensolver performs
a sweep of the phase difference across the unit cell, whereas the obtaining the transfer
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matrix of a cell require a sweep over frequency. Still, for the same number of points in
the Brillouin diagram, experiments have shown a time gain of at least fivefold [43].

Th time gain also depends on the number of modes that are retained in the multi-
modal process. The number of modes depends on the desired accuracy and on the geom-
etry [169]. Large transverse variations in the unit cells are an indicator of more modes.
The number of required modes can also be hinted by the magnitude of the scattering
parameters simulated in CST. Typically, modes with S-parameters larger than −10 dB
are not dismissible [43]. Moreover, the position of the ports influences the convergence
as well, with ports better capturing the transverse span of the structure requiring fewer
modes. A practical rule is to place the ports in a plane where the ports are the largest,
in order to capture the projection of the Floquet modes onto the port modes as much
as possible. For example, for nGS holes, it is better to place the port in the middle of a
hole instead of in-between holes [236]. It has been observed that mirror-symmetric and
broken G-S structures need fewer modes than G-S structures to yield accurate results
[149]. From this observation, [43] defines the notion of reducibility of a G-S waveguide,
with the example of a PPW loaded with G-S transverse metallic ridges. A reducible
structure means that the shifted upper metallic ridges can be mirrored down to the lower
metasurface without impacting the propagation features of the waveguide. This is true
only if the ridges are thin compared to the periodicity. It is shown that irreducibility is
equivalent to needing more than one mode in the MMTM method. This is applicable to
2-D GS too. Bed of nails metasurfaces are considered, where the nails of upper and lower
surface may intertwine [43]. More than one mode are required when the pins become
large or tall compared to the period. In these cases, the G-S structure is not reducible
to a nGS waveguide.

Applications and flexibility As an application example, the MMTM method is used
in [149] for the analysis of G-S holes or bed of nails inside a rectangular waveguide (RW),
in order to study the rejection bands for filters built in this technology. In [173], the
method is applied to holey G-S PPWs made of substrate-integrated holes (SIHs), in order
to build an anisotropic waveguide for a compressed Luneburg lens. The computation
time is of the order of seconds in Matlab, whereas using a full eigenmode study in CST
requires several minutes for such complex unit cells (or hours, depending on the required
accuracy).

The MMTM method has since been extended to other structures, such as periodic liq-
uid crystal waveguides with anisotropic properties, complex wavenumbers, for unbounded
structures, reconfigurable phase-shifters or leaky-wave antennas [174]. It is also notable
that this method is applicable to other higher symmetries, such as twist symmetry, where
it is sufficient to obtain the transfer matrix of a sub-unitcell of length p/N for an N -fold
twist [237].

Finally, the MMTM method opens the door to in-depth studies of periodic structures,
such as effective constitutive parameter retrieval [175]. By computing the eigenvectors
associated to the MMTM, equivalent currents and voltages are defined. Therefore, the
impedance associated to the fundamental mode can be computed, and can be considered
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as the effective medium impedance if it is computed not too close to the right-end of the
first Brillouin zone. From there, the constitutive parameters of the effective propagation
medium can be computed.

A.3.4 Mode-matching method

While the MMTM method is an accurate and flexible simulation technique for periodic
metasurfaces, it is still dependent on commercial solvers to get the transfer matrix of
the unit cell. In recent year, the only other approach that has captured the multi-modal
coupling and has effectively yielded the dispersion equation of G-S waveguides has been
the mode-matching method (MMM).

The MMM has been bound to modal wave expansion of fields, and has found partic-
ular interest for periodic structures in the context of short wave tubes. The operating
wavelength of these devices becomes small with respect to the overall system size. There-
fore, classical circuit theory becomes unreliable because it cannot approximate the field
effects. Rigorous methods of computation are required to find field solutions that sat-
isfy the boundary conditions. Although closed-form field solutions are ideal, they are
not common for arbitrary geometries. As an alternative, infinite series of orthogonal
modes that converge rapidly are found to be an effective way to accurately describe all
the field effects. In [238], this method is applied to cavity resonators, by dividing the
cavities in geometries with sinusoidal field variations. The MMM enforces the field con-
tinuity between these regions, effectively identifying the Fourier series of the fields in the
different regions. The same method is extended to corrugated PPWs in [88] for thin
corrugations (with only one transverse electric magnetic (TEM) mode), and in [239] by
enforcing successively a short-circuit and an open-circuit in the symmetry plane of the
corrugations.

More recently, the MMM has been extended to PPWs with G-S corrugations in ho-
mogeneous media [42], [176]. The extension of the method to corrugations with arbitrary
dielectric filling is straight-forward. For optimal results, the ratio between the number
of required modes in the corrugations and the number of Floquet harmonics in the gap
between the metasurfaces should be approximately equal to the ratio between the cor-
rugation width and the unit cell period [167]. In [177], the MMM is applied to dielectric
G-S PPWs, where each metasurface is made of an an alternation between two different
dielectric slabs. The gap between the substrates may be a third dielectric. In order to
find the dispersion equation of this structure, a secondary mode-matching procedure is
implemented between the alternating dielectrics of the metasurfaces.

The overall steps of the MMM are the same for 2-D GS. In [45], the dispersion
equation of holey G-S PPWs is found for cylindrical holes of arbitrary cross-section, by
using the TM and TE modal decomposition in these holes. The dispersion equation is
then solved with a either a root-finding algorithm, or by finding the magnitude minimum
of system’s matrix determinant. The practical example of circular holes is developed,
which is most commonly used due to the facilitated manufacturing process. Nevertheless,
drilling holes often implies that the bottom of the holes is conically shaped, due to the
tip of the tool. The effective depth of such holes with conical ending can be computed
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by means of a preliminary mode-matching step [141]. In [167], the MMM for holey
G-S PPWs is further generalized, by filling the holes with an arbitrary dielectric. The
power of the method is illustrated by performing various parametric studies, notably by
computing the effective waveguide properties for different propagation directions. The
anisotropy for rectangular holes is observed in this way. The MMM proves to be much
faster than CST, because there is no need to discretize the entire unit cell: there are
only unknowns on the surface of one hole, namely the weights of the modes. Due to the
enforcement of G-S constraints, the modes of the upper hole are bound to the modes of
the lower hole.

The example of equilateral triangular holes is detailed in [34]. The modal functions
for such holes are known analytically, and so are their Fourier transforms. For elliptical
holes in [168], although the modes have analytical expressions, the projection integrals
are evaluated by means of Gauss quadrature. This illustrates one of the challenges of the
MMM: it is only applicable to geometries that can be divided in regions where modal
decompositions of the fields are known or can be performed numerically. Only canonical
geometries yield analytical modal functions, and even then, the related integrals may
need to be computed numerically.

Additionally, once the dispersion equation is found, a root-finding procedure is nec-
essary to find the effective wavenumber as a function of frequency. This step is not
straight-forward, because the dispersion equation obtained with the MMM has many
poles and branch singularities [169]. In the process of plotting the Brillouin diagram, a
priori known properties of the modes may accelerate this root-finding procedure, e.g., by
searching the next solution between the previous wavenumber and the line of light [168].

In spite of these difficulties, the MMM is the only method that gives the possibility
to get analytical information about the dispersive behavior of G-S waveguides, because
it does not rely on any numerical preliminary steps.



Appendix B

Details to the mode-matching
computations

B.1 Mode-matching for the glide-symmetric corrugated
parallel-plate waveguide

This section completes the mode-matching results of section 2.1.3 applied to the structure
displayed in Fig. 2.1b.

Mode-matching: electric field at the lower corrugation The tangential fields
between the different regions of the waveguide must be continuous. It means that the
electric field tangential to perfectly electrically conducting (PEC) surfaces must vanish,
namely at y = ±g/2 with a < z < p. At the frontier between the gap region and the
corrugated regions, the x-component of the magnetic field and the z-component of the
electric field must match, namely at y = −g/2 with 0 < z < a, and at y = +g/2 with
p/2 < z < p/2 + a.

Let us first consider the surface of the lower plate i.e., y = −g/2 and 0 < z < p. The
z-component of the electric field is given by (2.1) in the corrugations, and by (2.2) in
the gap region. Between the corrugations i.e., for a < z < p, the vanishing tangential
electric field yields

+∞∑
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[
X(s) sin
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−k(s)

y

g

2

)
+ Y (s) cos

(
k(s)
y

g
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)]
e−jk

(s)
z z = 0 , (B.1)

while at the surface of the corrugations i.e., for 0 < z < a, the continuity of the tangential
electric field yields
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In (B.2), the fields must match for any z. Both gap and corrugation fields are projected
onto the Floquet harmonic basis. In order to extract the coefficient associated to the
s′-th Floquet harmonic, with s′ any integer, the field expressions are multiplied by ejk

(s′)
z z

and integrated between 0 and p. The left-hand term of (B.2) yields
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and the right-hand term of (B.2) yields
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The integral in this last expression can be computed as
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therefore
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After projecting the fields onto the same harmonic basis, the harmonic coefficients in the
gap region and in the corrugations must be equal. Therefore, for any harmonic of order
s, equating (B.3) and (B.6) yields

−pX(s) sin
(
k(s)
y

g

2

)
+ pY (s) cos

(
k(s)
y

g

2

)
=

+∞∑

m=0

cm sin (ky,mh)jk(s)
z

1− (−1)mejk
(s)
z a

k
(s)
z

2
−
(
mπ
a

)2 .

(B.7)

Mode-matching: electric field at the upper corrugation The same procedure
can be applied on the upper corrugated plate. According to the generalized Floquet
theorem, the field at the surface of the upper corrugation is equal to the field in the lower
corrugation with a phase-shift of kz p2 or kz p2 +π. Combining this phase-shift with mode-
matching at the surface of the upper corrugation i.e., for y = g/2 and p/2 < z < p/2 +a,
yields
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Given (2.1), the tangential electric field in the upper corrugation is
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Projecting this field onto the basis of Floquet harmonics yields the coefficient associated
to the s′-th Floquet harmonic
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Similarly, the coefficient associated to the s′-th Floquet harmonic (2.2) is
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where the last line uses the fact that e−jk
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Expression of the Floquet harmonic coefficients Equations (B.7) and (B.12) form
the system
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2

)
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+∞∑
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mπ
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g
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(s)
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+∞∑
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(s)
z a

k
(s)
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2
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(
mπ
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(B.13)

From (B.13), the coefficients X(s) and Y (s) of the s-th Floquet harmonic in the gap are




X(s) = − 1∓ (−1)s

2 sin
(
k

(s)
y

g
2

)jk
(s)
z
p

+∞∑
m=0

cm sin (ky,mh)
1− (−1)mejk
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z a

k
(s)
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(
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Y (s) =
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(
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(s)
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g
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)jk
(s)
z
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+∞∑
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cm sin (ky,mh)
1− (−1)mejk

(s)
z a

k
(s)
z

2
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(
mπ
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. (B.14)

Depending on the sign used in the generalized Floquet theorem, (B.14) shows that the
electric z-component of each Floquet harmonics is either symmetric (cosine dependency
on y) or antisymmetric (sine dependency on y). Indeed, when X(s) is different from
zero, then Y (s) is zero, and vice versa. All harmonics with even order s have the same
symmetry, and so do all harmonics with odd order s.

Mode-matching: magnetic field at the lower corrugation Similarly to the elec-
tric field, the tangential magnetic field continuity must be ensured at y = −g/2 and
0 < z < a. From the magnetic field equations in (2.1) and (2.2), this results in the
equality

+∞∑

s=−∞

e−jk
(s)
z z

k
(s)
y

[
X(s) cos

(
k(s)
y

g

2

)
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(
k(s)
y

g

2
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=

+∞∑

m=0

cm
ky,m

cos
(
mπ
a z
)

cos (ky,mh) .

(B.15)

Instead of using the basis of Floquet harmonics, the magnetic field components are
projected onto the basis of corrugation modes. Consequently, the coefficient associated
to the m′-th mode in the gap region is

a∫

0

+∞∑

s=−∞

1

k
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y

[
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z
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(s)
z a

k
(s)
z

2
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m′π
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)2 . (B.16)
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Similarly, the coefficient associated to the m′-th mode in the corrugated region is
a∫

0

+∞∑

m=0

cm
1

ky,m
cos
(
mπ
a z
)

cos (ky,mh) cos
(
m′π
a z
)

dz

=
a

2min{1,m′} cm′
1

ky,m′
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(
ky,m′h

)
. (B.17)

Therefore, matching the mode coefficients from (B.16) and (B.17) yields

−
+∞∑
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. (B.18)

Matrix equation for corrugation coefficients The gap coefficients X(s) and Y (s)

can be totally removed from (B.18) by replacing them with their expressions in (B.14).
This yields

+∞∑

s=−∞
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(
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with
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(B.20)

Equation (B.19) can be rearranged as

+∞∑

m=0

(αm′m + δm′mγm) sin (ky,mh)cm = 0 , (B.21)

where δm′m is the Kroenecker symbol, and where
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and

γm =
pa

2min{1,m}
1

ky,m
cot(ky,mh) . (B.23)

Equation (B.21) must be verified for any positive mode order m′. The resulting set of
equations can be formalized as the matrix equation (2.7).

B.2 Gradient theorem for the simplification of the holey
parallel-plate waveguide dispersion equation

Green’s theorem Let S be a region in the zx-plane bounded by a simple closed and
piece-wise smooth contour ∂S. Let L(z, x) and M(z, x) be two functions of class C1 on
S. Green’s theorem states that [180, p. 431]

∫∫

S

(
∂M(z, x)

∂z
− ∂L(z, x)

∂x

)
dzdx =

∫

∂S

(L(z, x)dz +M(z, x)dx) . (B.24)

Two-dimensional divergence theorem At each point of the oriented curve ∂S, the
infinitesimal path element is called d`, with norm d` =

√
dz2 + dx2. It is orthogonal to

the exterior normal n. Therefore,

d` =

[
dz
dx

]
and nd` =

[
dx
−dz

]
. (B.25)

A vector field F (z, x) is considered on S, such that its cartesian components Fz(z, x) and
Fx(z, x) are of class C1. Assigning L = −Fx and M = Fz in Green’s theorem (B.24), on
the one hand

∫∫

S

(
∂Fz(z, x)

∂z
+
∂Fx(z, x)

∂x

)
dzdx =

∫∫

S

∇ · F (z, x)dzdx , (B.26)

and on the other hand
∫

∂S

(−Fx(z, x)dz + Fz(z, x)dx) =

∫

∂S

F (z, x) · nd` . (B.27)

Therefore, a 2D extension of the Gauss’ divergence theorem [180, p. 463] is obtained,

∫∫

S

∇ · Fdzdx =

∫

∂S

F · nd` . (B.28)
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Gradient theorem The 2D divergence theorem (B.28) is applied to a vector field
F (z, x). It can easily be extended to the gradient of a scalar field f(z, x). Introducing a
constant vector field a, (B.28) yields

a ·
∫∫

S

∇f(z, x)dzdx =

∫∫

S

∇ · {f(z, x)a} dzdx

=

∫

∂S

f(z, x)a · nd` = a ·
∫

∂S

f(z, x)nd` . (B.29)

Multiplying (B.29) by a/||a||2 from the left, one obtains the gradient theorem
∫∫

S

∇fdzdx =

∫

∂S

fnd` . (B.30)

B.3 Projected modal functions for canonical holes

B.3.1 Mode-matching for rectangular holes

Rectangular holes have the modal functions (2.51) for transverse magnetic (TM) modes
and (2.52) for transverse electric (TE) modes. These expressions are combinations of
trigonometric functions, and so the computation of their Fourier transforms is straight-
forward. For holes of size az × ax, each modal function is defined by two integer orders
q and m, with corresponding cut-off wavenumbers [17, p. 117]

kqm =

√(
mπ
az

)2
+
(
qπ
ax

)2
, (B.31)

which is valid for both TM and TE modes.

TM modes For the TM modes (2.51), m > 0 and q > 0. According to (2.50), the
square norm of the transverse field is

Ie
qm =

1

ke
qm

2

π2

4

[
m2ax

az
+ q2 az

ax

]
. (B.32)

According to (2.49), the longitudinal projected modal function (PMF) is

ẽ(s`)
y,qm =

qmπ2

azax
ζzm
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)
ζxq

(
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)
, (B.33)

where

ζzm(k) =
1− (−1)me−jkaz

(
mπ
az

)2
− k2

. (B.34)
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TE modes For the TE modes (2.52), (q,m) 6= (0, 0). According to (2.32), the square
norm of the transverse field is

Ih
qm =

1

k2
qm

π2

21+min(1,q,m)

(
ax
az
m2 +

az
ax
q2

)
. (B.35)

The PMF can be then computed as
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and

ẽh(s`)
x,qm = −j

k
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m2π2
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(
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)
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. (B.37)

B.3.2 Mode-matching for circular holes

The holes are cylinders of depth h and circular cross-section of radius a. There are only
TM and TE modes that propagate in such a cylindrical waveguide, which are character-
ized by two orders : the order q of the first-kind Bessel function that shapes the radial
profile of the fields, and the m-th non-trivial root of this function, which corresponds to
the radius where the Bessel function reaches the contour of the guide. For each order
pair (q,m), there are two orthogonal TM modal functions, as well as two orthogonal TE
modal functions. Therefore, a third order t = 1, 2 is introduced to distinguish between
to modal functions with the same orders (q,m).

In the following, polar coordinates (ρ, φ) are considered, such that z = ρ cosφ and
x = ρ sinφ. First, useful identities are listed, notably regarding Bessel functions. Then,
the PMFs of the TM modes are considered, and finally the same is done for the TE
modes.

B.3.2.1 Fourier transforms and useful identities

Bessel function identities A Bessel function of the first kind and order q has the
integral form

Jq (x) =
1

2π

π∫

−π

ej(qφ−x sinφ)dφ . (B.38)

It is related to its J ′q its derivative with [240]

J ′q (x) =
1

2
[Jq−1 (x)− Jq+1 (x)] , (B.39)

and
q

x
Jq (x) =

1

2
[Jq−1 (x) + Jq+1 (x)] . (B.40)
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From this, it can derived that

J ′q (x) =
q

x
Jq (x)− Jq+1 (x) , (B.41)

and

[
J ′q(x)

]2
+
[ q
x
Jq(x)

]2
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2
[Jq−1(x)]2 +

1

2
[Jq+1(x)]2 . (B.42)

A useful integral involving squared Bessel functions is

a∫

0

ρJ2
q−1 (kqmρ) dρ =

a2

2
J2
q−1 (kqma) . (B.43)

Moreover, in [241, p. 629], it is shown that

∫
xJn (αx) Jn (βx) dx =

x
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=
x

α2 − β2
[βJn (αx) Jn−1 (βx)− αJn−1 (αx) Jn (βx)] , (B.45)

which yields the particular case

a∫

0

ρJq (kqmρ) Jq (kθρ) dρ =
a

k2
θ − k2

qm

kqmJ
′
q (pqm) Jq (kθa) . (B.46)

Fourier transform The spectral cartesian coordinates (kz, kx) can be converted in
spectral polar coordinates (kθ, θ) such that kx = kθ sin θ and kz = kθ cos θ. For a field
component e, in spatial polar coordinates (ρ, φ), the Fourier transform expressed in
spectral polar coordinates can be computed as

ẽ(kθ, θ) =

∞∫

−∞

∞∫

−∞

e(z, x)e−jkxx−jkzzdxdz

=

∞∫

0

∫
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∞∫

0

∫

2π

e(ρ, φ)e−jkθρ cos(θ−φ)ρdφdρ . (B.47)
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Other useful integrals With n and integer, kθ a wavenumber, and ρ and θ real
constants, one has

∫

2π

ejnφe−jρkθ cos(θ−φ)dφ =

∫
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=
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2 )
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= ejnθ (−j)n 2πJn (ρkθ) , (B.48)

where the variable change φ′ = φ+ π
2 − θ is applied, and where the integral definition of

the Bessel function (B.38) is used. As such, it is noticeable that

∫
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2
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= 2π (−j)n cos (nθ) Jn (ρkθ) , (B.49)

and similarly,
∫

2π

sin (nφ) e−jρkθ cos(θ−φ)dφ = 2π (−j)n sin (nθ) Jn (ρkθ) . (B.50)

Undefined forms Using L’Hôpital’s rule, it can be shown that

lim
x→kqm

Jq (xa)

x2 − k2
qm

=
a2J ′q (pqm)

2pqm
, and lim

x→−kqm

Jq (xa)

x2 − k2
qm

=





a2J ′q(pqm)

2pqm
if q is even,

−a2J ′q(pqm)

2pqm
if q is odd.

(B.51)

B.3.2.2 Transverse magnetic modes

For holes of radius a, the longitudinal electric field for t = 1 has the form [17, p. 128]

ey,qm1(ρ, φ) = sin (qφ) Jq (kqmρ) , (B.52)

with polar coordinates (ρ, φ) and the cut-off frequency kqm = pqm/a, pqm being the m-
th zero of the Bessel function. This definition is valid within the hole surface S, with
ey,qm1 = 0 outside the hole.
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PMF The longitudinal PMF (2.49) can be seen as the Fourier transform of the modal
function. Given (B.50) and (B.46), the Fourier transform (B.47) of (B.52) is
a∫

0

∫

2π

ey,qm1(ρ, φ)e−jkθρ cos(θ−φ)ρdφdρ =

a∫

0

Jq (kqmρ) ρ
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= kqm
2πa

jq
J ′q (pqm) Jq (kθa)

k2
θ − k2

qm

sin (qθ) . (B.53)

The corresponding PMF is this Fourier transform evaluated at the Floquet wavenumber
k

(s)
z and k(`)

x . For t = 2, the derivation follows the same steps, yielding a cosine function
in (B.53).

Square norm Using the gradient in polar coordinates,
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, (B.54)

the squared norm of the transverse fields is
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(
J2
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=
πa2

2
J ′2q (pqm) , (B.55)

where q > 0, given the definition of TM modes for circular holes with t = 1, and where
the identities (B.42) and (B.43) are used in the derivation. The same result is obtained
for t = 2.

B.3.2.3 Transverse electric modes

The TE modes that are eigenmodes of the circular waveguide have a longitudinal mag-
netic component. The latter has an azimuthal dependency that is either a sine or a
cosine, resulting in two generate modes for each pair of orders (q,m).
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For TE modes with an azimuthal sine dependency (t = 1), the transverse electric
modal functions in polar coordinates are

eh
ρ,qm1 = − cos (qφ)

q

k′qmρ
Jq
(
k′qmρ

)
, (B.56)

and eh
φ,qm1 = sin (qφ) J ′q

(
k′qmρ

)
, (B.57)

with the cut-off wavenumver k′qm = p′qm/a, p′qm being the m-th zero of the derivative
of the first-kind Bessel function of order q. Then the vector components in cartesian
coordinates are

eh
z,qm1 = − cosφ cos (qφ)

q

k′qmρ
Jq
(
k′qmρ

)
− sinφ sin (qφ) J ′q

(
k′qmρ

)
, (B.58)

and eh
x,qm1 = − sinφ cos (qφ)

q

k′qmρ
Jq
(
k′qmρ

)
+ cosφ sin (qφ) J ′q

(
k′qmρ

)
. (B.59)

PMF Using Bessel identities (B.39) and (B.40), it comes that
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z,qm1 = − cosφ cos (qφ)
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2
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, (B.60)

eh
x,qm1 = − sinφ cos (qφ)

1
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(
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]
, (B.61)

and so

eh
z,qm1 = −1

2
cos ([q − 1]φ) Jq−1

(
k′qmρ
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− 1

2
cos ([q + 1]φ) Jq+1
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)
, (B.62)

and eh
x,qm1 =

1

2
sin ([q − 1]φ) Jq−1

(
k′qmρ

)
− 1

2
sin ([q + 1]φ))Jq+1

(
k′qmρ

)
. (B.63)

With integrals (B.49) and (B.50), the Fourier transform (B.47) of the z-component
is

ẽh
z,qm1 = −

a∫

0

∫

2π

1

2
cos ([q − 1]φ) Jq−1

(
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(B.64)

−
a∫

0

∫
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1
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e−jkθρ cos(θ−φ)ρdφdρ
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(B.65)

−π (−j)q+1 cos ([q + 1]θ)

a∫

0

ρJq+1

(
k′qmρ

)
Jq+1 (kθρ) dρ . (B.66)
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Similarly, the Fourier transform of the x-component is

ẽh
x,qm1 = π (−j)q−1 sin ([q − 1]θ)
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)
Jq+1 (kθρ) dρ . (B.67)

The integrals are solved with (B.45). Using (B.41), evaluating the Fourier transforms
at the polar coordinates k(s`)

θ and θ(s`) yields the PMFs
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(
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(
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and
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, (B.69)

It is notable that when k
(s`)
θ = ±k′qm, (B.68) and (B.69) become undefined. This sin-

gularity can be solved by using the relations (B.51) derived with L’Hôpital’s rule, and
reformulating the PMFs with (B.40) and (B.39).

The same derivation steps can be used to find the PMFs for t = 2, where only signs
and trigonometric functions differ.
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Square norm According to (2.32), and with q > 0, the square norm of the TE mode
is
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where identities (B.42), (B.43) and (B.41) are used. The same result is found for t = 2,
even if q = 0.



Appendix C

Details to the dispersion study
computations

C.1 Linearization of the glide-symmetric dispersion
equation for one or two modes

C.1.1 Simplification of the dispersion matrix for small gap and small
corrugations

The dispersion of the glide-symmetric (G-S) corrugated parallel-plate waveguide (PPW)
is of the form |M | = 0, where the coefficients of the dispersion matrix M are given by

Mm′m = δm′m
pa
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√
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(C.2)

These coefficients are simplified under the following assumptions:
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1. Subwavelength assumption: p ≤ λ0/2.

2. Observation restricted to the first Brillouin zone: 0 ≤ k0 ≤ kz ≤ π
p .

3. Shallow corrugations: h ≤ p
8 .

4. Small gap: g ≤ p
4 .

5. Thin corrugations: a < p.

From assumption 4, it comes that
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2

√
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2
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8
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. (C.3)

However, assumption 1 is quite lax compared to the assumption (3.4), which is already
enforced for all symmetric harmonics to be negligible.

From assumptions 2 and 3, it comes that

hk0 ≤ h
π

p
≤ π

8
, hence cot (hk0) ' 1

hk0
. (C.4)

From assumptions 2 and 5, it comes that
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Additionally, for |s| ≥ 2
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)
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. (C.6)

The reason why this is true is not because sπa/p might be much larger than kza/2 for
large |s|, but because the variations of kza/2 are small compared to π, such that the sine
function is approximated locally by a constant. Similarly,
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Moreover, for m ≥ 1,
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More generally, for s ≥ 2
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(
m
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where one implicitly assumes that 4s + 1 � (2s)2. This is acceptable only for |s| ≥ 2.
The subsequent simplifications could not be made for all higher harmonics if the odd
harmonics were not neglected, particularly the harmonics of order s = ±1. Given that
for the non-glide-symmetric (nGS) case, these two harmonics are not negligible, the
following low-dispersive behavior cannot be applied without glide symmetry (GS).
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C.1.2 One mode: dismissal of all higher-harmonic terms

For m′ = m = 0,
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It can be shown that the sum of higher-harmonic terms is negligible with respect to the
harmonic term of order s = 0. Indeed, one the one hand
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while on the other hand
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where the rough approximate coth(sπg/p) ' p/(sπg) is used given that g � p. In the
worst case (g = p/4), the error is about a factor of 2/3. Consequently, the ratio between
the fundamental-harmonic term and the harmonic term for any |s| ≥ 2 is

(
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Given that the latter ratio is much larger than one for any |s| ≥ 2, the fundamental
harmonic is dominant, and all higher-harmonic terms can be discarded. Therefore,
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C.1.3 Two modes: simplification of the dispersion matrix coefficients

All following simplifications are made under the assumptions of section C.1.1.
The coefficient M00 is simplified in the previous appendix section.
For m′ = 0 and m = 1,
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where M̃01 is a function of n. The higher-harmonic terms are not discarded from an
approximation: they cancel out with the harmonic term of opposite order.

For m′ = m = 1,
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where M̃11 is a constant which depends neither on kz nor on k0.

Treatment of the singularity in the simplified 2-mode dispersion equation
When solving the simplified dispersion equation (3.16) numerically, particular attention
must be paid to the special case where a = p/(2|s|), with s an even integer e.g., a =
p/4. In this case, the higher-harmonic term of order s is undetermined, given that both
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cos2 (sπap ) = 0 and
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it can be shown that

lim
x→± p
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16π2
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This result must be included in the numerical solver, so that there is no undetermined
form when a = p/(2|s|).

C.2 Equivalence of glide-symmetric and non-glide
corrugated parallel-plate waveguide for small gap

If the gap g satisfies the assumption (3.4), the G-S corrugated PPW is equivalent to
a scaled nGS structure in the first Brillouin zone, with double gap ĝ = 2g and half
cell-length p̂ = p/2.

In the following all values with a hat notation belong to the equivalent nGS structure,
while all values without a hat belong the G-S structure. This also applies to harmonic
wavenumbers e.g.,
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In the first Brillouin zone i.e., for k0 ≤ kz ≤ π
p , it can be shown that the assumption
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ĝ

2

√
k2

0 − k
(s)
z

2
)

= −j coth

(
ĝ
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Indeed, for s ≥ 2,
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The hyperbolic cotangent function is equal to the inverse function up to a few percents
as long as its argument is smaller than 1/2. Approximation (C.20) is thus valid if the
argument of the cotangent function is smaller than 1/2 for its largest harmonic order S.
Given (C.21), this yields the condition
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For any Q > 1, (3.4) is more restrictive than (C.22). Therefore, if the gap g fulfills (3.4)
i.e., if the symmetric harmonics can be discarded, then (C.20) is valid.

Under these assumptions, the G-S dispersion matrix coefficients (2.8) can be approx-
imated by
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while the nGS dispersion matrix coefficients (2.10) can be approximated by
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Considering that

k(2s)
z = kz + 2s2π

p = kz + s 2π
p/2 = kz + s2π

p̂ = k̂(s)
z , (C.25)

it comes out that for any m′ and m,

M̂m′m =
1

2
Mm′m . (C.26)

Given that the dispersion equation is solved when the determinant of M is zero, the
1/2 factor does not change the solution space. As a consequence, at low-frequencies and
under the assumption (3.4), the G-S structure with cell-length p and gap g is equivalent
to the nGS structure with cell-length p/2 and gap 2g.



Appendix D

Details to the quasi-static
homogenization computations

D.1 Quasi-static dispersion equation for the corrugated
parallel-plate waveguide

In this section, the coefficients (2.8) of the dispersion matrix M for the glide-symmetric
(G-S) corrugated parallel-plate waveguide (PPW) are simplified in the quasi-static regime.

In (4.4), the dispersion matrix is subdivided according to the nature of the modes,
that is transverse electric magnetic (TEM) or transverse magnetic (TM). The first row
and the first column of the matrix are then multiplied by k0, which does not change the
dispersion equation. Finally, the matrix coefficients are subdivided in terms with different
physical meaning. In the following, these terms are simplified when k0 → 0. This implies
that kz → 0, and so the higher-harmonic wavenumbers are simplified according to (4.1).

Diagonal terms The diagonal terms γm are defined as

γm =

{
pa cot(k0h)

k0
if m = 0,

pa
2

cot(ky,mh)
ky,m

else.
(D.1)

In the quasi-static regime, this yields

γm =
k0→0

γ̄m =





pa
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0h
if m = 0,

−pa2

2

coth(mπ
a
h)

mπ else.
(D.2)

Higher-harmonic projections The projection of a corrugation mode m onto the
Floquet harmonic s at the corrugation surface yields the term e

(s)
m . For higher harmonics,
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that is s 6= 0, this projection is defined as
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(D.3)

In the quasi-static regime, all wavenumbers become frequency-independent constants,
and thus so does e(s)

m , which becomes
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(D.4)

Fundamental-harmonic projection The fundamental-harmonic term is isolated. Sim-
ilarly to higher harmonics, the projection of a mode m onto the fundamental harmonic
yields

e(0)
m =
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a )
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(D.5)

In the quasi-static regime, one must distinguish TEM and TM modes, that is m = 0
and m > 0, respectively. For m = 0,

e
(0)
0 =

k0→0
ē

(0)
0 =

ja

kz
, (D.6)

whereas for m > 0,

e(0)
m =

k0→0
ē(0)
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− jkza3

(mπ)2 =
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0 if m even,

− 2a2

(mπ)2 if m odd.
(D.7)

Therefore, for m > 0, ē(0)
m can be considered to be frequency-independent.

D.2 Analytic approximations of the refractive index for
the corrugated parallel-plate waveguide

The closed-form formula (4.16) for the quasi-static refractive index of a corrugated PPW
is a function of the inverse of the matrix Σ, which must be computed numerically.

First of all, it is notable that Σ is a symmetric checkerboard matrix, meaning that
Σm′m = 0 if m′ + m is odd. Indeed, according to (4.12), the coefficients Σm′m with
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m′+m odd contain only the higher-harmonic projections. Given (D.4), these projections
are antisymmetric with respect to the harmonic order s. Therefore, when summing these
projections from s = −∞ to +∞ (not s = 0), all the terms cancel out.

The inversion of a checkerboard matrix is a checkerboard matrix too, and there is
not a simple closed-form expression for this inverse. In the following paragraphs, several
simplifications of this matrix are explored to obtained a more explicit expression of n,
where the inverse has a closed-form expression too.

D.2.1 Reduction to a diagonal matrix

The matrix Σ is defined in (4.12). A first approach is to keep only the diagonal terms of
Σ. All non-diagonal coefficients are set to zero. The resulting matrix is invertible, and
its inverse is diagonal as well, yielding

[
ē(0)

]T
Σ−1ē(0) =

M∑

m=1
m odd

4a4

m4π4


γ̄m +

+∞∑

s=−∞
s 6=0

f̄ (s)ē
(s)
m′ ē

(s)∗
m




−1

, (D.8)

where the values of γ̄m, f̄ (s), and ē(s)
m are given in (D.2), (4.3), and (D.4), respectively.

Note that only the odd mode orders m are summed, because for even orders, the quasi-
static modal projections (D.7) are null.

This expression can be inserted in (4.16) to avoid the use of numerical matrix inversion
algorithms.

D.2.2 Reduction to an arrowhead matrix

Simulations show that for most corrugation widths a, it is enough to reduce the matrix Σ
to an arrowhead matrix, keeping only the coefficients on the diagonal, the first row, and
the first column. The remaining coefficients draw an arrow, hence the name arrowhead.

The inverse of an arrowhead matrix is a checkerboard matrix [242]: (Σ)−1
m′m = 0

when m′ + m is odd. All remaining matrix coefficients are derived in the following
paragraph D.2.2.1, where the analytic expressions for the inverse coefficients are given
by (D.13), (D.14), (D.15) and (D.16). If the arrowhead matrix is also a checkerboard
matrix, then additionnally, (Σ)−1

m′m = 0 when m′ 6= m are both even.
After inserting these inverse coefficients of Σ in (4.16), the overall formula has a

complicated form. Nevertheless, it allows for an explicit expression of the equivalent
refractive index in (4.16). It is noticeable that, when the non-diagonal terms of Σ are
neglected, the same inverse coefficients as in section D.2.1 are obtained.

D.2.2.1 Inverse of a symmetric arrowhead matrix

In D.2.2, the matrix Σ must be inverted to compute the low-frequency equivalent refrac-
tive index. It has a size M ×M , it is sparse and symmetric. Moreover, it is reduced to
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an arrowhead matrix. An arrowhead matrix B has the general form

B =




B11 B12 B13 B14 B15 B16 B17 . . . B1M

B12 B22 0 0 0 0 0 . . . 0
B13 0 B33 0 0 0 0 . . . 0
B14 0 0 B44 0 0 0 . . . 0
B15 0 0 0 B55 0 0 . . . 0
B16 0 0 0 0 B66 0 . . . 0
B17 0 0 0 0 0 B77 . . . 0
...

...
...

...
...

...
...

. . .
...

B1M 0 0 0 0 0 0 . . . BMM




. (D.9)

This matrix can be divided in several blocks,

B =

[
B11 bT

b D

]
, (D.10)

whereB11 is the 1×1 block made of the eponymmatrix coefficient,D is a (M−1)×(M−1)
block covering all remaining diagonal coefficients Bmm, with m > 1, and bT is a column
vector of size (M −1). According to the matrix block inversion formula [189, p. 123], the
arrowhead matrix can be inverted as

B−1 =




1
ρ −1

ρb
TD−1

−1
ρD
−1b D−1 + 1

ρD
−1
(
bbT

)
D−1


 , (D.11)

where

ρ = B11 − bTD−1b . (D.12)

Equation (D.11) illustrates that an arrowhead matrix is invertible if and only if ρ 6= 0.
This is equivalent to what is done in [243], where equation (3) is equivalent to (D.11)
when applying a suitable symmetrical permutation.

The inverse arrowhead matrix coefficients can be found by expanding (D.11). For
any m > 1, the diagonal coefficients of the inverted matrix B−1 are equal to

(
B−1

)
mm

=
1

Bmm
+

B2
1m

B11B2
mm −B2

mm

M∑
s=2

B2
1s

Bss

. (D.13)

For m = 1, the diagonal coefficient is equal to

(
B−1

)
11

=
1

B11 −
M∑
s=2

B2
1s

Bss

. (D.14)
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For any non-diagonal coefficient (B−1)1m, with m ≥ 2,

(
B−1

)
1m

= − B1m

B11Bmm −Bmm
M∑
s=2

B2
1s

Bss

. (D.15)

Finally, all non-diagonal coefficients (B−1)qm, with q ≥ 3 and m ≥ 3, m 6= q, are equal
to

(
B−1

)
qm

=
B1qB1m[

B11BmmBqq −BmmBqq
M∑
s=2

B2
1s

Bss

] . (D.16)

It appears that in general, the inverse of an arrowhead matrix is a full matrix..

D.2.3 Numerical comparison of the derived low-frequency index
formulas

In this subsection, the low-frequency effective refractive index (4.16) is compared to the
simplifications made in paragraphs D.2.1 and D.2.2, namely the diagonal and arrowhead
reductions of the matrix Σ, respectively. Although these simplifications make it less
cumbersome to compute the refractive index, a decrease of the precision is to be expected
for these solutions, given that several coefficients of Σ are being discarded.

Fig. D.1 displays the computed low-frequency refractive index as a function of the
corrugation width a. In all cases, 10 modes and 50 harmonics are taken into account,
while the remaining structure parameters are p = 4 mm, h = 0.5 mm and g = 0.1 mm.

Fig. D.1 illustrates how the diagonal simplification yields a good approximation of
the index only for a corrugation width smaller than a quarter-cell. Nevertheless, only few
additional coefficients are necessary to fall back on the right curve, since the arrowhead
approximation yields a quite accurate index for all corrugation widths.

D.3 Reducing the number of modes for canonical holes

In the following derivation, i = e,h is used to designate TM and transverse electric (TE)
modes without distinction.

According to the closed-form index formula (4.40), a mode of type i and order m has
no impact if and only if none of its projected modal functions (PMFs) yield a non-zero
contribution in the product uiHΣi−1

ui. For a given mode m, if

ui
m = 0 , (D.17)

then for any order m′, the inverse matrix coefficient (Σi)−1
m′m disappears from (4.40).

However, this is not enough to completely dismiss the corresponding mth mode. Indeed,
other coefficients of

(
Σi
)−1 may be dependent on the mth mode, due to the inverse
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Figure D.1: Low-frequency effective refractive index n as a function of the corrugation
width a. 10 modes and 50 harmonics are considered. Other structure parameters are
p = 4 mm, h = 0.5 mm and g = 0.1 mm. The true low-frequency refractive index
is compared to the simplified analytical models derived in the previous sections: the
simplified version with only diagonal coefficients from section D.2.1, and the arrowhead
simplification from section D.2.2.

operation. Nevertheless, (D.17) can be completed by another condition to be made
sufficient for the dismissal of the mode.

Let m0 be a mode that satisfies (D.17), making it a candidate for dismissal. LetM1

be the set of orders m1 for all the modes that have not been dismissed. In order for m0

to have no impact in the inverse matrix
(
Σi
)−1, all the coefficients of the matrix Σi must

be zero on the mth
0 row and columns if they correspond to modes that are kept i.e., to

modes that belong toM1. This can be expressed mathematically by the condition

∀m1 ∈M1, Σi
m0m1

= Σi
m1m0

= 0 . (D.18)

If a mode m0 satisfies both conditions (D.17) and (D.18), then it is dispensable. This is
proven more rigorously in the following.

In opposition to M1, let M0 be the set of orders m0 for all the modes that have
been dismissed. Given that (2.42) requires the determinant of the dispersion matrix to
be null, the modes can be put in an arbitrary order, meaning that the lines and columns
of Σi can be permuted at will. As such, Σi can be rearranged such that its first rows
and columns correspond to orders in M0, whereas the remaining rows and columns
correspond to orders inM1. Given the second condition (D.18), the rearranged matrix
is a block diagonal matrix. Therefore, its inverse is made of the inverse of its blocks [189,
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p. 123], namely

(
Σi
)−1

=

[
Σi

0 0

0 Σi
1

]−1

=

[(
Σi

0

)−1
0

0
(
Σi

1

)−1

]
, (D.19)

where Σi
0 and Σi

1 are the blocks of Σi that relate only to mode orders in M0 and
M1, respectively. Similarly, ui is divided in two subvectors ui

0 and ui
1. Given the first

condition (D.17), ui
0 is the null vector. Therefore, the product of ui with Σi yields

[
ui
]H [

Σi
]−1

ui =

[
0
ui

1

]H
[(

Σi
0

)−1
0

0
(
Σi

1

)−1

] [
0
ui

1

]
=
[
ui

1

]H [
Σi

1

]−1
ui

1 . (D.20)

As such, the refractive index does not depend on the modes with orders inM0.
In order to distinguishM0 fromM1, a good starting point is to check the condition

(D.17). Indeed, according to (4.35) for TM modes and (4.36) for TE modes, ui
m = 0 for

all propagation directions if and only if the corresponding PMFs are zero. That is,

(D.17) is true for a mode m ⇐⇒
{
ē

(00)
y,m = 0 for a TM mode,
ē

h(00)
z,m = ē

h(00)
x,m = 0 for a TE mode.

(D.21)

This gives a good initial point to sort modes between M0 and M1. Then, condition
(D.18) can be checked. However, if it appears that (D.18) is not satisfied for a mode
previously sorted in M0, then it is not enough to transfer it into M1 and continue
checking condition (D.18) for the remaining orders m0. As soon as M1 is changed by
adding a new mode, all the modes ofM0 must be reexamined.

D.4 Homogenization for rectangular and circular holes

D.4.1 Homogenization for rectangular holes

D.4.1.1 Modal functions and quasi-static projections

TM modes For TM modes of orders m > 0 and q > 0, the longitudinal electrical TM
components are defined in (2.51). The corresponding Fourier transforms (B.33) yield the
quasi-static PMFs, for any (s, `),

ē(s`)
y,qm =

qmπ2

azax
ζz (m, s) ζx (q, `) , (D.22)

where

ζz(m, s) =





∓j a2
z

2πm if m
az

= ± s2
pz
,

1−(−1)me
−js2πazpz(

mπ
az

)2
−
(
s 2π
pz

)2 else.
(D.23)

When implementing these PMFs numerically, indexing the different cases of (D.23) is
important in order to avoid undetermined cases, which are likely to happen when many
harmonic and mode orders are considered. The cut-off frequencies kqm are defined in
(B.31), and the squared norms of the modes in (B.32)
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TE modes For TE modes with orders (q,m) 6= (0, 0), the transverse field components
(2.52) have squared norms (B.35) and PMFs (B.36) and (B.37). Therefore, in the quasi-
static regime, the coefficients for the refractive index formula are

ēh(s`)
z,qm =





πqaz
ax

ζx (q, `) if m = s = 0,

j sq22π3

pza2
xkqm

ζz (m, s) ζx (q, `) else,
(D.24)

and

ēh(s`)
x,qm =





−πmax
az

ζz (m, s) if q = ` = 0,

−j `m
22π3

pxa2
zkqm

ζz (m, s) ζx (q, `) else,
(D.25)

where the functions ζ are the same as in (D.23).

D.4.1.2 Dismissible modes

Appendix D.3 explains how some modes of canonical hole shapes can be dismissed be-
cause they do not impact the dispersive behavior of the waveguide.

TM modes Equation (D.22) indicates that ue
qm = 0 for all TM modes where either q

or m is even. Indeed, for s = 0 and m even, according to (D.23), ζz(m, 0) = 0. The same
is true for q. Therefore,

ē(00)
y,qm = 0 for all q even or m even . (D.26)

To prove condition (D.18), let m0 be an even order, and m1 be an odd order. Then,
according to the definition of the rectangular PMFs (D.22), the term ē

(s`)
y,m0 ē

(s`)∗
y,m1 in the

matrix coefficients (4.32) contains the product

ζz (m0, s) ζz (m1, s)
∗ =

(
1− (−1)m0e

−js2πaz
pz

)(
1− (−1)m1e

−js2πaz
pz

)∗

= 2j sin

(
s2π

az
pz

)
. (D.27)

This term is antisymmetric with respect to s. The matrix coefficient (4.32) is made of a
sum over all harmonic orders s 6= 0. Therefore, for opposite orders s, the terms in the
sum cancel out, such that Σe

m0m1
= 0. The same can be shown Σe

m1m0
, as well as for the

orders q.
Consequently, all TM modes with q or m even belong to M0, as they satisfy both

conditions (D.17) and (D.18). They can be dismissed when computing the low-frequency
refractive index.
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TE modes For TE modes, considering (D.24) and (D.25), one must be more careful,
because some of the modes where uh

qm = 0 still have an impact on the inverse matrix[
Σh
]−1 i.e., they do not satisfy the second condition (D.18). Similarly to TM modes,

when q is even or m is even, then ζz(m, 0) = 0 or ζz(q, 0) = 0. Moreover, in most cases,
ē

h(00)
z,m and ēh(00)

z,m are proportional to s and `, respectively, and so they are null when s = 0
or ` = 0. In the end, (D.24) and (D.25) show that

ēh(00)
z,m = ēh(00)

x,m = 0 for all (q,m),
except when one order is null and the other is odd. (D.28)

However, restrictingM1 to the pairs (q,m) where one index is null and the other odd is
not correct, because not all corresponding coefficients of the matrix Σe in (4.34) satisfy
the second condition (D.18). In (4.34), the problem does not come from the term that
involves the fundamental PMFs, which is null if the first condition (D.17) is satisfied. It
is the sum over the higher-harmonic PMFs that yields
(
s2π
pz
ē

h(s`)
x,m′ − `2π

px
ē

h(s`)
z,m′

)(
s2π
pz
ēh(s`)
x,m − `2π

px
ēh(s`)
z,m

)∗

=
(
s2π
pz

)2
ē

h(s`)
x,m′ ē

h(s`)∗
x,m +

(
`2π
px

)2
ē

h(s`)
z,m′ ē

h(s`)∗
z,m − s2π

pz
`2π
px

(
ē

h(s`)
x,m′ ē

h(s`)∗
z,m + ē

h(s`)
z,m′ ē

h(s`)∗
x,m

)
(D.29)

In order for these terms to cancel out when summing over all higher harmonics, each
term must be antisymmetric with respect to s and/or `. This is true when m′ and m
have different parities, or when q′ and q have different parities. Therefore, the only way
to ensure the second condition (D.18) is to dismiss only the TE modes where q + m is
even i.e., when q and m are both even or both odd. Then, (q1,m1) ∈ M1 implies that
q1 and m1 have different parities, and (q0,m0) ∈ M0 implies that q and m have the
same parity , thus ensuring that Σh

q1m1,q0m0
= 0, because either (q1, q0) or (m1,m0) form

a pair of orders with different parities, and so (D.29) is antisymmetric with either s or
`. All the modes in the resultingM0 satisfy the first condition (D.17). They represent
approximately one quarter of the TE modes.

D.4.2 Homogenization for circular holes

D.4.2.1 Modal functions and quasi-static projections

TM modes For TM modes, the quasi-static simplifications of the PMFs defined in
(B.53) are, for q > 0 and m > 0,

ē
(s`)
y,qm1 =

2πpqm
jq

J ′q (pqm) Jq
(
Γ(s`)a

)

Γ(s`)2 −
(pqm

a

)2 sin
(
qθ̄(s`)

)
, (D.30)

and, for m > 0,

ē
(s`)
y,qm2 =

2πpqm
jq

J ′q (pqm) Jq
(
Γ(s`)a

)

Γ(s`)2 −
(pqm

a

)2 cos
(
qθ̄(s`)

)
. (D.31)
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with θ̄(s`) = atan
[
`pz
spx

]
. Note that this term is never undetermined, even for s = 0. For

s = ` = 0, θ̄(00) = 0. It is reminded that pqm is the m-th root of the Bessel function of

first kind and order q, and Γ(s`) =
√

(s2π/pz)
2 + (`2π/px)2. The corresponding squared

modal norms are given in (B.55).

TE modes For TE modes with cosine radial component in (2.55) i.e., for t = 1 and
m > 0 and q > 0, the quasi-static projected modal functions are derived from (B.68) as

ē
h(s`)
z,qm1 =

π (−j)q−1 a
(
p′qm
a

)2
− Γ(s`)2




− cos
(

[q − 1]θ̄(s`)
)


p′qm
a
Jq
(
p′qm

)
Jq−1

(
Γ(s`)a

)

− Γ(s`)Jq−1

(
p′qm

)
Jq

(
Γ(s`)a

)




+ cos
(

[q + 1]θ̄(s`)
)



Γ(s`)Jq+1

(
p′qm

)
Jq

(
Γ(s`)a

)

−
p′qm
a
Jq
(
p′qm

)
Jq+1

(
Γ(s`)a

)







, (D.32)

and from (B.69) as

ē
h(s`)
x,qm1 =

π (−j)q−1 a
(
p′qm
a

)2
− Γ(s`)2




sin
(

[q − 1]θ̄(s`)
)


p′qm
a
Jq
(
p′qm

)
Jq−1

(
Γ(s`)a

)

− Γ(s`)Jq−1

(
p′qm

)
Jq

(
Γ(s`)a

)




+ sin
(

[q + 1]θ̄(s`)
)



Γ(s`)Jq+1

(
p′qm

)
Jq

(
Γ(s`)a

)

−
p′qm
a
Jq
(
p′qm

)
Jq+1

(
Γ(s`)a

)







. (D.33)

Similarly, for the TE modes with sine radial component defined in (2.56) i.e., for t = 2
and m > 0, the quasi-static projected modal functions are

ē
h(s`)
z,qm2 =

π (−j)q−1 a
(
p′qm
a

)2
− Γ(s`)2




sin
(

[q − 1]θ̄(s`)
)


p′qm
a
Jq
(
p′qm

)
Jq−1

(
Γ(s`)a

)

− Γ(s`)Jq−1

(
p′qm

)
Jq

(
Γ(s`)a

)




− sin
(

[q + 1]θ̄(s`)
)



Γ(s`)Jq+1

(
p′qm

)
Jq

(
Γ(s`)a

)

−
p′qm
a
Jq
(
p′qm

)
Jq+1

(
Γ(s`)a

)







, (D.34)

and

ē
h(s`)
x,qm2 =

π (−j)q−1 a
(
p′qm
a

)2
− Γ(s`)2




cos
(

[q − 1]θ̄(s`)
)


p′qm
a
Jq
(
p′qm

)
Jq−1

(
Γ(s`)a

)

− Γ(s`)Jq−1

(
p′qm

)
Jq

(
Γ(s`)a

)




+ cos
(

[q + 1]θ̄(s`)
)



Γ(s`)Jq+1

(
p′qm

)
Jq

(
Γ(s`)a

)

−
p′qm
a
Jq
(
p′qm

)
Jq+1

(
Γ(s`)a

)







, (D.35)
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where p′qm is the m-th root of the derivative of the q-th Bessel function of first kind. The
corresponding squared modal norms are given in (B.70).

D.4.2.2 Dismissible modes

The same procedure for dispensable modes can be followed as for rectangular holes.
According to (D.30) and (D.31), ue

qmt 6= 0 only for q = 0 and t = 2. However, not all the
TM modes where t = 1 or q > 0 satisfy the second condition (D.18). After considering
the complete matrix Σe in (4.32), all TM modes with t = 1 are dispensable, as well as
the TM modes with q odd. Therefore, only TM modes with t = 2 and q even are kept
in the index formula, which represent a quarter of all the initial TM modes.

Similarly, according (D.32) to (D.35), uh
qmt = 0 when q 6= 1. But not all these modes

belong to M0: condition (D.18) is only fully satisfied for TE modes where q is even.
Therefore, all TE modes with q odd are kept, which represent half of the initial TE
modes.

D.5 Finite element method for cylindrical waveguide

Helmholtz’s equation A cylindrical waveguide of longitudinal axis y has an arbitrary
invariant cross-section S in the zx-plane. Such a cylindrical structure can guide both
TM and TE modes. TEM modes may also propagate if one or more inner conductors
are present, and they will be treated separately below. TM modes have an electric
longitudinal field component Ey(z, x, y) = ey(z, x)e−jβy, with β the propagation constant
of the mode. TE modes have a magnetic longitudinal field component Hy(z, x, y) =
hy(z, x)e−jkyy. In both cases, we solve Helmholtz’s equation for the longitudinal field
component fy, which represents the modal functions ey or hy for TM and TE modes,
respectively. Helmholtz’s equation yields [17, p. 16]

∇t · ∇tfy + k2
cfy = 0 , (D.36)

where ∇t is the transverse nabla operator [∂/∂z, ∂/∂x], and kc is the cut-off wavenumber
of the mode. The propagation constant is related to kc with ky =

√
k2 − k2

c , where k is
the free-space wavenumber for the medium that fills the waveguide.

Each function fy that satisfies (D.36), as well as the boundary conditions, represents
a mode within the waveguide. On the one hand, the eigenvalues of TE modes are the
eigensolutions of a Neumann differential problem. On the one hand, the eigenvalues of
TM modes are the eigensolutions of a Dirichlet problem. In order to find these solutions
numerically, (D.36) is discretized in a two-dimensional finite element method (FEM)
process.

Basis functions In order to handle a problem of finite dimension, the number of
degrees of freedom given to the solution is reduced. First, the cross-section S is discretized
with a mesh of triangles, resulting in N distinct triangle vertices. The resulting mesh
must capture the details of the cross-section geometry. We do this directly in Matlab,
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with the partial derivative equation toolbox function generateMesh, which creates a
triangular mesh with possible mesh refinement at the contour details. In the following,
each triangle is called a mesh element, and is characterized by a unique number e ∈ [[1, E]],
with E the total number of triangles in the mesh. Its area is called A(e)

Then, fy is approximated by a function f̃y, which is decomposed as a sum of N basis
functions Λi(z, x), namely

fy ' f̃y =
N∑

i=1

αiΛi , (D.37)

where αi is the unknown weight of each basis function. For each vertex nb.i, there is an
associated basis function Λi, defined as a pyramidal function which is only non-zero on
the triangles that touch the considered vertex. For each triangle e, the portion of the
basis function Λi confined to e is defined as

Λ
(e)
i (x, y) =

{
ζ

(e)
i (x, y) =

A(e)
i (x,y)

A(e) if the point (x, y) lies in the element e,
0 else.

(D.38)

The area A(e)
i (x, y) corresponds to the triangle formed by the point (x, y) and the side

of e that is opposite to the vertex i.

Testing procedure Helmholtz’s equation is tested N times in the cross-section using
Galerkin’s method. As such, the test functions are the same as the basis functions.
Testing (D.36) with a test function Λj yields

∫∫

S

Λj∇t · ∇tfyds+ k2
c

∫∫

S

Λjfyds = 0 , (D.39)

According to the product rule and Gauss’s theorem (B.28),
∫∫

S

Λj∇t · ∇tfyds =

∫∫

S

∇t · (Λj∇tfy) ds−
∫∫

S

∇tΛj · ∇tfyds

=

∫

δS

Λj∇tfy · nd`−
∫∫

S

∇tΛj · ∇tfyds , (D.40)

where δS is the contour of the cross-section S, and n is the exterior normal at each point
of the contour. Combining (D.39) and (D.40), this yields

∫∫

S

∇tΛj · ∇tfyds−
∫

δS

Λj∇tfy · nd` = k2
c

∫∫

S

Λjfyds , (D.41)

which, inserting the basis function decomposition (D.37), can be approximated by

N∑

i=1

αi



∫∫

S

∇tΛj · ∇tΛids−
∫

δS

Λj∇tΛi · nd`


 = k2

c

N∑

i=1

αi

∫∫

S

ΛjΛids . (D.42)
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Given that (D.42) is true for all j ∈ [[1, N ]], it can be rewritten as the matrix equation

Rα = k2
cSα , . (D.43)

with α the vector of unknown vertex coefficients αm, and the two N×N square matrices
R and S, whose coefficients are identified as

Rji =

∫∫

S

∇tΛj · ∇tΛids−
∫

δS

Λj∇tΛi · nd` , (D.44)

and

Sji =

∫∫

S

ΛjΛids . (D.45)

Computation of the matrix coefficients The different elements in the matrices
(D.44) and (D.45) can be expressed analytically for the pyramidal test and basis functions
Λi. All integrals in the matrix coefficients Rji and Sji can be decomposed as

∫∫

S

g(Λj ,Λi)ds =

E∑

e=1

∫∫

A(e)

g(Λ
(e)
j ,Λ

(e)
i )ds (D.46)

with g representing either the product, the dot product of the gradients, or the product
of Λi with the gradient of Λj . It is noticeable that

∫∫
S g(ΛiΛj)ds 6= 0 only if i and j

belong to a same triangle. Therefore, the easiest way to fill these matrices is to proceed
with a loop on the mesh triangle e. For each element, three different pyramidal functions
Λi interact, one per triangle vertex. As such, in the element e, there are 9 different
integral contributions from the functions Λ

(e)
i and Λ

(e)
j , which must then be assigned to

the corresponding matrix coefficients, according to the vertex pair (i, j).
It can be shown that for the matrix S, the contributions of a triangle e are expressed

as

∫∫

A(e)

Λ
(e)
j Λ

(e)
i ds = 2A(e)

1∫

0

1−ζj∫

0

ζiζjdζidζj =

{
A(e)/6 if i = j,
A(e)/12 if i 6= j.

(D.47)

Similarly, for the matrix R, the contributions of a triangle e for the gradient product is

∫∫

A(e)

∇tΛ
(e)
j · ∇tΛ

(e)
i ds = 2A(e)

1∫

0

1−ζj∫

0

ŷ × `i
2A(e)

ŷ × `j
2A(e)

ζidζj =
`i · `j
4A(e)

, (D.48)

with ŷ the direction normal to the hole surface, and `i the vector that corresponds to
the side of the triangle e opposite to its vertex i, with the direction associated to each
side consistant within the triangle.

The contour integral in (D.44) is not computed, because it vanishes for both TM and
TE modes, as explained in the following paragraphs.
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TM modes For TM modes [185, p. 446], fy is the electric longitudinal component
ey. This function is zero on the contours of the holes, where the perfectly electrically
conducting (PEC) walls make the tangential electric field go to zero. Therefore, the
differential Helmholtz equation (D.36) is associated to Dirichlet boundary conditions.
As a consequence, the approximated discretized function (D.37) has αi = 0 when i is a
vertex located on the hole contour. Therefore, in (D.44), the contour integral vanishes.
The generalized eigenvalue problem (D.43) can therefore be solved for matrix coefficients
Sji and Rji containing only the integrals (D.47) and (D.48), respectively. Moreover, there
is no need to find the field values on the hole contour. Therefore, the matrix R and S
can be truncated to the test and basis function of orders i and j which correspond to
triangle vertices that lie strictly within the triangle. To put it differently, the number
of degrees of freedom in this TM FEM problem is equal to the number of inner triangle
vertices,where αi 6= 0.

TE modes For TE modes [185, p. 447], the coefficients of the matrices R and S in
the generalized eigenvalue problem (D.43) are the same as for TM modes. Indeed, the
contour integral in (D.44) vanishes as well, but not for the same reason. For TE modes,
we are solving for the magnetic longitudinal field component, which is not necessarily
zero on the hole contour. The boundary conditions are of the Neumann type, that is

∇thy · n = 0 (D.49)

on the hole contour, with n the normal vector to each point of the contour. When hy
is approximated with the basis functions Λi, this term appears in (D.44), making the
integral disappear. However, the overall problem is not the same as for TM modes,
because the number of degrees of freedom is larger i.e., the number of unknown weights
αi. The size of the matrices R and S is N × N , because all the triangle vertices are
considered, including the vertices lying on the hole contour.

TEM modes The quasi-static homogenization technique in section 4.2 accepts TEM
modes. A TEM field is possible in the holes when inner conductors are present, that
is closed contours that do not cross the outer hole envelope. For Q inner conductors,
this TEM field can be decomposed as a sum of Q orthogonal TEM modes, one for
each inner conductor. These modes have neither electric nor magnetic longitudinal field
components. Nevertheless, the transverse electric field of each mode of order q ∈ [[1, Q]]
can be expressed as the gradient of a scalar potentiel Φq [17, pp. 98-99], that is

eq(z, x) = −∇tΦq(z, x) , (D.50)

which satisfies the Laplace equation

∇t · ∇tΦq = 0 . (D.51)

Comparing (D.51) to the Helmholtz equation (D.36) confirms that these TEM modes
have no cut-off frequency i.e., kc = 0.
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For each mode q corresponding to the q-th conductor, the scalar potential is approx-
imated by pyramidal basis functions

Φq ' Φ̃q =
∑

i

αiΛi +
∑

n

Λn , (D.52)

where the orders i represent all the vertices that do not lie on any contour, whereas n
represents all the vertices that lie on the contour of the q-th conductor. Indeed, the scalar
potential Φq is zero on all contours, except on the q-th conductor, where the potential
can be taken as one without loss of generality.

The Laplace equation (D.51) can be tested similarly to (D.39), except that only test
functions associated to inner nodes are considered. Gauss’s theorem (D.40) is applied as
well, and the contour integral vanishes on the contour, because the test functions of the
inner nodes are all null on the contours. After inserting the basis decomposition (D.52),
each test function j yields

∑

i

αi

∫∫

S

∇tΛj · ∇tΛids = −
∑

n

∫∫

S

∇tΛj · ∇tΛnds . (D.53)

where both i and j represent inner vertices, whereas the orders n represent vertices of
the q-th contour. This corresponds to matrix equation

Rα = b . (D.54)

The matrix R is like in (D.43), with vertices that are on none of the contours. Each
coefficient of the vector b correspond to one of these inner vertices, but it contains a sum
over the vertices of the q-th conductor contour. Equation (D.54) can be solved for the
field coefficients α by a simple matrix inversion.





Appendix E

Details to the analysis of the
quasi-static properties of
glide-symmetric waveguides

E.1 Constitutive parameter retrieval from the
S-parameters

In this appendix, the goal is to validate the constitutive parameter retrieval from the
S-parameters of a waveguide, as described in [191]. In order to do so, we consider the
simple case of a dielectric parallel-plate waveguide (PPW) of length L, height h and
width w. The effective relative permeability µr and permittivity εr are known in the
reference simulation, but the S-parameter study does not make use of this information
and should retrieve the same values.

The waveguide is modeled in the frequency solver of CST Microwave Studio. Two
waveguide ports are placed at each end of the waveguide, fitting the waveguide dimensions
(h,w). After running the simulation, at each frequency f , three values are obtained : the
port impedance Zp, and the S-parameters S21 and S11. According to [191], this is enough
to retrieve the effective relative permeability µr and permittivity εr.

Retrieval of impedance and effective refractive index From [191, eq. 2a], the
normalized impedance is computed as

z = ±
√

(1 + S11)2 − S2
21

(1− S11)2 − S2
21

, (E.1)

where the sign is conditioned by Re {z} ≥ 0.
Once z is found, the effective phaseshift between the two ports is [191, eq. 6]

e−jnk0L =
S21

1− S11
z−1
z+1

, (E.2)
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Table E.1: Values of Re {n} obtained by applying (E.3) to different values of m.

m -3 -2 -1 0 1 2 3

L = 5 mm -14.69 -9.70 -4.70 0.30 5.29 10.29 15.29

L = 3 mm -28.02 -19.69 -11.36 -3.03 5.29 13.62 21.94

where k0 = 2πf
√
ε0µ0 is the free-space wavenumber, with vacuum permittivity ε0 and

permeability µ0. Note that for a matched waveguide, S11 = 0, therefore z = 1, and
e−jnk0L = S21. 1

As an example, a dielectric slab of length L = 5 mm is simulated in CST with µr = 7
and εr = 4, hence n = 5.29. At f = 12 GHz, we measure S11 = 0 and S21 = 0.931−j0.364.
Computing the phaseshift shows that e−jnk0L = S21, with a minus sign. Here, there is
no need to consider S11 and S21 as functions of frequency, because of the non-dispersive
nature of the ideal dielectric PPW.

The effective refractive index is computed as

n =
1

k0L

(
−Im

{
e−jnk0L

}
+ 2πm+ jRe

{
e−jnk0L

})
, (E.3)

where m ∈ Z defines the branch point for the real part of n. In order for the correct m
to be chosen, the simulations must be run for two different lengths L [244]. The correct
value of m yields the same refractive index n that is a candidate for both lengths. Using
the same example as before, the different values of Re {n} depending on m are listed
in Table E.1, for lengths L = 5 mm, and for L = 3 mm. It appears that the common
refractive index Re {n} = 5.29 is obtained for m = 1.

When using (E.2) in (E.3), the refractive index n is obtained from the previously
computed impedance z. According to [191], correctly choosing the sign of z enforces
Im {n} ≤ 0, as required by passive structures.

Retrieval of permittivity and permeability For a homogeneous slab of height h
and width w, the constitutive parameters are related to the impedance and the effective
refractive index as

µr = n

(
z
Zpw

η0h

)
and εr = n

/(
z
Zpw

η0h

)
, (E.4)

with the waveguide port impedance Zp, and where η0 =
√
µ0/ε0 is the vacuum impedance.

After a CST simulation, all parameters needed in (E.4) are available. The port impedance
Zp is given as a function of frequency. Effective index n and impedance z are computed
from the S-parameters as described in the previous paragraph. For a homogeneous di-
electric slab, w and h are well-defined, and the waveguide port has the same dimensions.

1Contrarily to [191], the phaseshift due to propagation is defined with a minus sign in (E.2). The
S-parameters yielded by CST follow the same convention, and so this minus sign must be kept if CST
data is to be used as input.
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E.2 Study of the Bloch impedance for square holes

Chapter 5 derives an analytical method to compute the Bloch impedance of a holey
metasurface waveguide. In this appendix, some of the underlying conditions for the
validity of this Bloch impedance are derived in the case of square holes.

E.2.1 TEM fields in the integration plane for square holes

For square holes, the Bloch impedance (5.36) is computed in the plane between two
adjacent holes, that is z0 = a/2− p/2. Indeed, the fields are observed to be transverse
electric magnetic (TEM) there. In this appendix, this is proven analytically for square
holes, that is az = ax and pz = px.

Electric field According to the quasi-static field expressions (5.31), and for square
unit cells, the quasi-static longitudinal electric field for s+ ` even is

E(s`)
z = − jF̄ (s`) sin

(
jΓ(s`)y

)

p2 sin
(
jΓ(s`) g

2

)
(
s2π

p

)
d̄e(s`) . (E.5)

In appendix D.4.1.2, the quasi-static study of waveguides with square holes shows that
only a limited number of transverse magnetic (TM) modes are excited in the holes (both
mode orders must be odd). For these modes, the quasi-static Fourier transforms (FTs)
satisfy

ēe(−s,`)
y,m = e

j s2πa
p ēe(s,`)

y,m . (E.6)

Therefore, according to (5.24)

d̄e(−s,`) = e
−j s2πa

p d̄e(s,`) . (E.7)

When inserting (E.7) in (E.5) and evaluating F̄ (s`) in the plane z0 = a/2− p/2, it comes
that for any position (x, y),

E(−s,`)
z = −E(s,`)

z . (E.8)

Therefore, when summing all harmonics, electric field components with opposite s cancel
out in the considered integration plane. The same applies to harmonics with s + ` odd
defined in (5.34). For s = 0, (E.5) is obviously zero. For the fundamental harmonic, the
longitudinal electric field component in (5.27) vanishes in the quasi-static regime.

Magnetic field The proof is similar to that of the electric field. From appendix D.4.1.2,
it can be shown that the only excited transverse electric (TE) modes (with mode orders
m even and q odd) have quasi-static FTs that satisfy

ēh(−s,`)
x,m = −e

j s2πa
p ēh(s,`)

x,m and ēh(−s,`)
z,m = e

j s2πa
p ēh(s,`)

z,m . (E.9)
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From (5.24), this leads to

d̄h(s,`)
x = −e

j s2πa
p d̄h(−s,`)

x and d̄h(s,`)
z = e

j s2πa
p d̄h(−s,`)

z . (E.10)

And so, in the plane z = a/2− p/2, the magnetic field components H(s`)
z in (5.31) and

(5.34) cancel out for opposite orders s. When s = 0, the harmonic is null. And for
the fundamental harmonic, developing the z-component of (5.27) shows that H(00)

z is
proportional to d̄h(00)

x . This term is null, because for all the excited modes (that is q odd
as derived in appendix D.4.1.2), ēh(00)

x,m = 0.

E.2.2 Bloch voltage impact of odd-order harmonics

In chapter 5, the Bloch impedance (5.36) is simplified with two dominant hole modes in
section 5.2.4. This yields the closed-form analytic expressions for the impedance (5.66)
and (5.67), which can be studied to prove the effective material properties of glide-
symmetric (G-S) waveguides. Nevertheless, these proofs are based on the dismissal of
the odd-order harmonics in (5.67) for the non-glide-symmetric (nGS) structure, which
could not be shown in the general case. But given that the notion of impedance is only
defined for canonical hole shapes, this feature needs only be demonstrated in these cases.
In this section, the example of square holes is considered, where numerical simulation have
shown that the odd-order harmonics have no contribution to the nGS Bloch impedance.

For square holes, the term d̄
e(s`)
y is defined in (5.24) as

d̄e(s`) = −j
∑

q>0

∑

m>0

ce
qm

ke
qm

ēe(s`)∗
y,qm , (E.11)

where each TM mode propagating in a square hole is defined by a pair of positive integers
(q,m). The corresponding modal FTs can be found in appendix B.3.1. It can be shown
that

ēe(s`)
y,qm = ēe(`s)

y,mq . (E.12)

Because of that, the kernel of the dispersion matrix in (5.23) is invariant when swaping
the TM modes of orders (q,m) and (m, q). This means that ce

qm = ce
mq, which is not

surprising when looking at the symmetry of the electric field in Fig. 5.15b. Therefore,
given (E.11) and (E.12),

d̄e(`s) = d̄e(s`) . (E.13)

The Bloch voltage contribution V (s`)
B of higher-order harmonics is defined in (5.62).

The term F̄ (s`) is evaluated at the point (z0, x0) = (a/2− p/2, a/2), because that is the
path where the electric component Ey is integrated. Hence

V
(s`)

B = (−1)s
2

p2
e
−jπ

a
p (s+`)

d̄e(s`) . (E.14)
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When exchanging s and `, and given (E.13), it comes that

V
(`s)

B = (−1)`
2

p2
e
−jπ

a
p (s+`)

d̄e(s`) . (E.15)

For even-order harmonics, it means that V (`s)
B = V

(s`)
B , because s and ` have the same

parity. However, in the nGS case for odd-order harmonics, s and ` have different parities,
leading to different signs in (E.14) and (E.15). This proves that odd-order harmonic
contributions cancel out in the nGS Bloch voltage, that is

V
(`s)

B = −V (s`)
B . (E.16)





Appendix F

Design considerations for the feed of
the phase-shifter

Section 6.3.3 describes a rectangular waveguide (RW) to ridge gap waveguide (RGW)
transition based on a staircase. Manufacturing this transition in one metallic piece is
difficult, because of the very thin steps of the staircase. In spite of this, being able to get
the transition in one bulk is important for the prototype performance:

• There is no leakage between the different pieces that recreate the total transition.

• There is no risk of misalignment between these pieces, which would create additional
leakage at the waveguide flanges.

• The last step of the staircase has a height of 0.25mm. The variable space between
the pieces would increase the height of this step, leading to further impedance
mismatch of the feed.

While the fabrication of the feed in one single metallic piece is possible, in the following
the scenario of a two-piece feed is considered as a alternative solution. More specifically,
some leads are given on how the leakage could be reduced between the pieces giving
shape to the overall feed.

The simplest way of manufacturing the feed in two pieces would be to hollow out the
staircase in one metal plate, and to close it with another plate. Nevertheless, there might
be a small gap between these plates, resulting in leakage at the border of the waveguide.
In order to suppress this leakage, glide-symmetric (G-S) holes are placed on both plates
to create an electromagnetic bandgap (EBG) waveguide [140]. The gap between the
pieces is assumed to be at most 50µm thick. In Fig. F.1 a holey G-S unit cell is designed
to yield a stopband in the Ku band with such a gap between the metallic plates. The
circular holes have a period 12 mm, a radius 5.5 mm and a depth 7 mm. This structure
can be used to prevent leakage between 10 and 19GHz in all propagation directions.

Naturally, the unit cell simulated in Fig. F.1 assumes periodic boundary conditions,
and so it is not sure if one row of holes will prevent leakage efficiently. In Fig. F.2, a
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Figure F.1: Brillouin diagram of the EBG unit cell with G-S holes in metallic plates.
The gap between the plates is 50 µm. The holes have a period 12 mm, a radius 5.5 mm
and a depth 7 mm.

WR62 RW of length 60 mm is simulated in CST. It is built in two pieces, separated by a
leakage gap of 50 µm. Fig. F.2b shows how the fields leak when no additional measures
are taken, resulting in poor transmission performances in Fig. F.2f. In Fig. F.3c, one
row of the G-S holes (as described in Fig. F.1) are added on either side of the waveguide.
It appears that one row of holes is enough to prevent lateral leakage. Nevertheless, the
corresponding S-parameters are not satisfactory, because the space between the holes and
the waveguide create additional resonances which deteriorate the impedance matching of
the waveguide, as seen in Fig. F.2e. This phenomenon is first described in [146], where
a multi-layer transmission line is designed with G-S EBG holes between the layers. In
order to avoid these resonances, it is suggested to add thin corrugations between the
waveguide and the holes, to prevent the propagation of waves there. A similar design
is developed in [149], for a filter and a phase-shifter in gap-waveguide technology with
G-S holes, or in [215] for a reconfigurable phase-shifter. Indeed, in Fig. F.2 it appears
that holes with corrugations not only prevent lateral leakage, but they also restore the
impedance matching of the waveguide.

The same concept is applied to the phase-shifter feed in Fig. F.3. One side of the
metallic bulk contains the staircase, the corrugations, and one row of holes on each
waveguide side. This side is closed by the second metallic plate, in which only the G-
S holes are drilled. In order to maximize the performance, the corrugation sized are
optimized, yielding a width 1.22 mm, a depth 1.38 mm and a length 4.05 mm. It appears
that holes with corrugations considerably improve the performance of the feed compared
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(a) Both pieces of the waveguide, with holes and corrugations.

(b) Magnitude of the elec-
tric field in the leakage plane,
without holes.

(c) Magnitude of the electric
field in the leakage plane, with
holes.

(d) Magnitude of the electric
field in the leakage plane, with
holes and corrugations.
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(f) Resulting S21.

Figure F.2: Study of the leakage in a RW made of two pieces with cross-section of
7.9× 15.8 mm and length of 60 mm. The leakage gap is of 50 µm. The G-S holes have a
period 12 mm, a radius 5.5 mm and a depth 7 mm. The corrugations are 1 × 1 × 4 mm
big.
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(a) Feed model in CST, with holes and corrugations.

(b) Magnitude of the elec-
tric field in the leakage plane,
without holes.

(c) Magnitude of the electric
field in the leakage plane, with
holes.

(d) Magnitude of the electric
field in the leakage plane, with
holes and corrugations.
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Figure F.3: Study of the lateral leakage for the same feed as in Fig. 6.3.3, except for a
50µm gap between the two pieces of the staircase. Rows of G-S holes are added with
period 12 mm, radius 5.5 mm and depth 7 mm. The corrugations have a width 1.22 mm,
a depth 1.38 mm and a length 4.05 mm.
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Figure F.4: S-parameters of the same feed as in Fig. F.3, with holes and corrugations to
prevent leakage. Two scenarios are compared: the gap between the feed pieces is 50 µm,
or there is no gap at all.

to the other cases (no holes or no corrugations), in terms of both impedance matching
and transmission coefficient.

Nevertheless, the transmission is not as good as without leakage in Fig. 6.31, where
S21 = −0.3 dB. The reason is visible in Fig. F.3d: it appears that in spite of the EBG
holes, the presence of the metallized substrate-integrated hole (SIH) layer creates a tunnel
at the lower end of the feed, through which the waves escape. Moreover, another issue
comes from the unpredictability of the leakage gap. Fig. F.4 compares the S-parameter
of the structure with and without leakage gap, when the holes and corrugations are
present. It shows that the corrugations and the holes deteriorate the initial performance
of the feed in terms of impedance matching, even when there is no gap and no leakage.
Therefore, although this design is still our best option at hand against leakage at the
staircase transition, it would definitely be best to manufacture this feed in one piece.

Nonetheless, even if the feed is manufactured in one piece, there might still be leakage
at the waveguide flanges. For example, EBG mushrooms could be embedded in the upper
SIH layer, facing towards the feed on both sides of the feeding slot. Unfortunately, simu-
lations to suppress this leakage were unsatisfactory, because of the strong dependency on
the leakage gap for the impedance matching of the feed. Therefore, no further alterations
are made to the design for now, with the hope that assembling the feeds firmly together
will reduce this leakage enough during measurements.





Notations, conventions and
acronyms

Mathematical notations

In this report, following mathematical symbols and conventions are found:

• j is the imaginary number such that
√
−1 = j. The complex conjugate of a number

z is written z∗. Its absolute value is defined as |z| = zz∗.

• The Kronecker symbol is defined as δij , and is equal to 1 for i = j and zero
otherwise.

• Bessel functions of the first kind and order q are written Jq, with first-order deriva-
tive J ′q and second-order derivative J ′′q .

• For simplicity, the notation of infinite sums is reduced to
∑
s,`

, which is equivalent

to the double sum
∞∑

s=−∞

∞∑
`=−∞

.

• Vectors are represented by bold letters. Unless specified, column vectors are meant.
The m-th coefficient of a vector a is written am.

• Matrices are also bold, but are always uppercase and underlined, e.g., M . The
determinant of the matrix is |M |. The transpose matrix is written MT, while its
hermitian is writtenMH. The coefficients of the matrix are writtenMqm, with two
integer subscripts q and m, meaning that this coefficient lies at the intersection of
the q-th row and the m-th column of the matrix.

• Matrix and dot products are represented by the center point ·. The vector cross-
product is written ×.

• The nabla operator ∇ can be found in its two-dimensional form. It is then writ-
ten ∇t, with t standing for transverse, given that it is applied to the transverse
components of the considered field.
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Physical notations

Writing choices for physical values are clarified as they are introduced. However, a few
underlying and recurring notations are notable:

• The subscript zero is used to designate vacuum-related values, e.g., the vacuum
permittivity ε0 or speed of light in vacuum c0.

• In waveguides, a non-italic superscript is used to distinguish different mode types:
e for transverse magnetic (TM) modes, h for transverse electric (TE) modes, and
t for transverse electric magnetic (TEM) modes. Moreover, the subscript indicates
the field component, e.g., x, y, or z in a cartesian coordinate system, or t for the
transverse field component.

• The letter k is used for wavenumbers. In particular, in holey parallel-plate waveg-
uides (PPWs), the wavenumbers of the modes in the holes are written differently
from the wavenumbers of the Floquet harmonics in the gap between the meta-
surfaces. In the holes, the modes have orders which are described by the integer
variables m (and/or q, depending on the number of orders necessary), and are in-
dicated as a subscript. For example, ke

m is the wavenumber of the m-th TM mode
in the holes. On the other hand, for Floquet harmonics, integer orders s (and/or `
in the two-dimensional case) are written in parenthesis as a superscript, e.g., k(s`)

z

designates the wavenumber of the Floquet harmonic of orders s and ` along the
z-axis. When primed variables are used, such as s′ or m′, it is only to extend the
available range of integer variables.

• In the mode-matching method used in chapters 2 to 5, the projections of the
hole modes onto the Floquet harmonics is used, called projected modal functions
(PMFs). A modal function of order m is written ei

z,m, where i is the mode type,
and the field direction is indicated by the first subscript (here z as an example).
Then, its PMF onto the Floquet harmonic of orders (s, `) is written ẽi(s`)

z,m , where
the tilde indicates the spectral domain. In chapter 4, the homogenization process
involves quasi-static PMFs, which are then written with a bar instead of a tilde,
e.g., ēi(s`)

z,m .

• The underlying time-convention used for time-harmonic fields of angular frequency
ω is ejωt.

Acronyms

1-D one-dimensional

2-D two-dimensional

3-D three-dimensional
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EBG electromagnetic bandgap

EM electromagnetic

FEM finite element method

FFT fast Fourier transform

FSS frequency-selective surface

FT Fourier transform

G-S glide-symmetric

GS glide symmetry

HIS high-impedance surface

IoT internet of things

LWA leaky-wave antenna

MMM mode-matching method

MMTM multi-modal transfer matrix

MoM method of moments

nGS non-glide-symmetric

PEC perfectly electrically conducting

PMC perfectly magnetically conducting

PMF projected modal function

PPW parallel-plate waveguide

RGW ridge gap waveguide

RW rectangular waveguide

SG symétrie glissée

SIH substrate-integrated hole

SIW substrate-integrated waveguide

SMTM single-mode transfer matrix

SPP surface plasmon polariton

TE transverse electric
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TEM transverse electric magnetic

TM transverse magnetic
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