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Abstract

This thesis was sponsored by Tarkett in the context of CIFRE (Convention Individu-
elle de Formation par la Recherche) research project on the topic of elderly daily life
real-time monitoring and is supported by the Industrial Data Analytics & Machine
Learning Chair (IDAML) of ENS Paris-Saclay. Tarkett is a global flooring company that
developed a piezo-electric sensor encapsulated in the flooring and an embedded system
meant to be equipped in nursing home patient rooms. Their objective through this
industrial project is to build reliable machine learning models able to work in real-time
in the embedded system, based on piezo-electric signals, to provide useful information
for medical staff to monitor their patients health.

We first present Tarkett Floor in Motion Care (FIM Care) smartfloor technology and
characterize particularities of its piezo-electric signal and how it is processed into time
series that are used for A.I. elderly monitoring. Considering different measurement
technologies we describe how they affect the original physical signal, as well as different
data gathering environments in which several dataset have been recorded. To be able
to monitor elderly health state some important recurrent events like walk and some
anomalies like falls need to be recognized from floor sensor signals. A first step to
achieve this goal is to determine what type of activities and contextual information can
be detected from these signals using statistical learning. To this end, the way to process
signals into adequate data representation, according to these detection purpose, is also
a major challenge. We describe existing methods on activity monitoring in terms of
type of sensor, detection tasks, features and machine learning models. On our data we
use a wide feature set based on time series from various signal representations such as
Fourier transform, autocorrelation and spectrograms. Using predictive models based
on random forests on different experimental datasets we show Tarkett system ability to
achieve various monitoring tasks, as well as the relevance of each signal representation
and associated features regarding these detection tasks.

Nevertheless for these experimental studies to be deployed industrially in FIM Care
real installations, machine learning models need to fulfill two crucial requirements.
Firstly they have to be confronted with real environment data, meaning to be able to
adapt to real installations variability and to activity signal differences between people.
In this context we deal with the problem of adapting a predictive model initially trained
on experimental data to real data with different empirical distribution. This particular
situation in machine learning is known as transfer learning or domain adaptation. We
address it by confronting simulated events data to real data on the fall detection task that
presents the particularity of extreme class imbalance in real conditions. We investigate
the drawbacks of this class imbalance on existing transfer learning methods on decision
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trees and propose some adaptations to handle this problem. Our contribution is a
robust model-based transfer learning algorithm on random forests able to deal with
class imbalance and that can also be used to interpret relations between two different
domains.

Secondly, most of the prediction tasks for elderly monitoring have to work in real
time being embedded in an electronic device with limited computational capabilities.
Taking into account this kind of constraints while designing a predictive model belongs
to a branch of machine learning, known as cost sensitive or budget learning, that became
an increasingly active research topic in the past years. We translate embedded system
computational resource constraints into a budgeted prediction time framework compatible
with decision tree based models and propose an efficient and scalable genetic algorithm
considering both feature acquisition cost and evaluation cost allowing to pass from an
experimental random forest model to a new simplified one that fits in embedded system
resource limits. This algorithm takes advantage of the notion of equivalence between
classifiers, meaning models sharing the same decision function but with different
structures, to favor feature acquisition cost reduction by exploiting structural variety on
decision trees.





Résumé (en français)

Contexte et motivations

Avec les progrès technologiques et la fiabilité grandissante des applications d’apprentissage
statistique dans plusieurs domaines des sciences appliquées, les technologies basées
sur des nouveaux types de capteurs et/ou des nouvelles méthodes d’apprentissage
statistique se sont multipliées ces dernières années. Le projet FloorInMotion (FIM)
de Tarkett a été développé dans ce contexte. Tarkett est une entreprise française de
revêtement de sols présente dans des dizaines de pays dans le monde. Tarkett est
impliqué dans de nombreux sites de construction à grande échelle comme les bureaux,
les écoles ou les hôpitaux et propose un large panel de services industriels liés aux
revêtement de sols. Le projet FIM représente l’ambition de Tarkett d’utiliser leurs
compétences afin de contribuer au futur des applications industrielles liées aux sols
dits "intelligents". En effet les capteurs sols pourraient se révéler être une technologie
clef dans différents domaines tels que la sécurité, la gestion des foules, la localisation
en intérieur, les sols interactifs et le monitoring dans la santé.

Le premier et principal volet de ce ce projet de sol intelligent est sanitaire et consiste
à proposer des services de monitoring des personnes âgées aux EHPAD et maisons
de retraite. Le système proposé est basé sur un capteur sol qui s’installe dans les
chambres de ces institutions, sous le revêtement de sol, accompagné d’un boitier
électronique en local pour analyser le signal en temps réel. Cela suppose de pouvoir
fournir, à partir de modèles de détection appliqués sur les signaux du capteur sol,
des informations précieuses sur les activités des patients âgés, ainsi que de pouvoir
détecter les éventuelles anomalies et autres situations à risques telles que les chutes.
Une seconde partie de l’application proposée par Tarkett consiste en un logiciel multi-
plateformes pour permettre au personnel médical de suivre ces informations et d’être
alertés en cas de besoin. Même sans maladies particulières les personnes âgées ont
besoin d’un suivi humain important et sont souvent dépendantes sur plusieurs aspects
de leur vie quotidienne. De plus, comme le personnel médical n’a pas la capacité de
surveiller continuellement tous les patients, les chutes dont l’issue est fatale restent
une des principales causes de mortalité non-naturelle dans ce genre d’établissements.
C’est pourquoi une des grandes priorités dans le cadre de ce projet est la détection
des chutes. Néanmoins, à terme l’objectif final est également d’apporter une solution
technologique complète pour le monitoring des personnes âgées, regroupant plusieurs
axes importants tels que : la détection de chutes, d’activités "anormales", des intrusions
et sorties nocturnes, des changements d’habitudes et plus généralement la mesure des
différents risques pour la santé des patients.

Un des objectifs principaux de ce travail de thèse est d’étudier expérimentalement
le type d’informations qui peuvent être extraites des séries temporelles provenant du
capteur piezoelectrique Tarkett, de détecter celles qui sont utiles pour le monitoring
de la santé des personnes âgées et de proposer des outils d’apprentissage statistique
qui sont capables de fonctionner dans les environnements réels où les ressources
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computationnelles sont limitées.

Monitoring de l’activité quotidienne des personnes âgées

En France chaque année environ 10000 morts (20000 aux Etats-Unis [87]) et des milliers
de blessures très sévères de personnes âgées sont dues aux chutes et les conséquences
de celles-ci pourraient être largement limitées si ces accidents étaient détectés assez tôt
[231]. De surcroît, plusieurs études médicales montrent que le risque de chute peut
être anticipé par l’analyse des capacités motrices du patient, notamment au niveau de
la marche [37, 47, 84, 116, 208].

En environnement médical l’apprentissage statistique peut avoir une plus-value
à plusieurs niveaux [202], en fonction de la manière dont il aide les professionnels
de santé dans leur travail. Quelques une de ses applications sont utilisées dans les
opérations médicales comme les chirurgies, d’autres sont utiles pour aider à établir des
diagnostics [88], et certaines offrent des outils aux professionnels pour mieux surveiller
l’état de santé de leurs patients et pour les alerter en cas de risque pour la santé du
patient [28, 83]. Le suivi de la santé à travers le monitoring des activités quotidiennes
appartient à cette dernière catégorie d’applications. Il présente un avantage notable chez
les personnes fragiles telles que les personnes âgées et peut permettre l’analyse globale
des habitudes de vie pour détecter les changements anormaux ou les accidents. La
majorité de ces tâches sont evidemment à la portée des personnels de santé mais le but
de ce genre d’applications automatisées est surtout de leur faciliter la tâche de plusieurs
manières dans la gestion de leurs patients. Premièrement, ce genre d’applications
peuvent palier au manque de personnel dans certaines situations (typiquement le cas
pour la détection de chute). En outre, elles peuvent également servir à compléter les
informations auxquelles ont accès les médecins pour leur permettre de traîter plus
efficacement leurs patients.

D’une manière plus générale, l’apprentissage statistique pourrait aussi être utile
pour organiser plus efficacement les différents efforts de santé, en terme de ressources
humaines par exemple. En effet, plusieurs pays ont récemment expérimenté, au travers
de la crise du covid-19, que même si le volume du personnel de santé peut être considéré
comme suffisant dans des conditions normales, cela peut changer très rapidement en
situations extrêmes. Nous observons que malgré les connaissances très récentes sur cette
maladie, elle est déjà largement sujette à des recherches en apprentissage statistique,
que ce soit pour la détection ou le diagnostic détaillé [145]. Ainsi, les tâches de routine
du monitoring pour la santé qui sont à la portée de l’apprentissage statistique sont
précieuses pour le corps médical et peuvent représenter un gain dans la qualité des
soins. C’est la raison d’être du développement du système FIM Care de Tarkett pour
les établissements de santé.

Quelles informations extraire de l’activité humaine ?

Le monitoring de l’activité humaine est un sujet sensible étant donné qu’il est directe-
ment relié à la vie privée des personnes. En ce qui concerne le monitoring de l’activité
quotidienne des patients il est nécessaire d’une part d’extraire assez d’informations
utiles pour en avoir une application médicale et d’autre part que ces informations ne
portent pas atteinte à la vie privée des patients. Pour cette raison des capteurs trop
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intrusifs tels que les caméras ou les microphones sont difficilement viables pour le mon-
itoring de la vie quotidienne malgré la précision des informations qu’ils captent. Quant
aux capteurs qui se portent sur le corps, ils nécessitent que les patients les utilisent
correctement et systématiquement dans leur vie quotidienne, ce qui est difficilement
fiable pour les personnes âgées. Le choix de Tarkett pour les capteurs au sol apparaît
alors particulièrement adapté en terme de non-intrusivité, de fiabilité et de facilité
d’usage. Il est important de préciser que chaque type de capteur possède des propriétés
du signal particulières qui déterminent l’information qui peut en être extraite et, par
conséquent, le périmètre des applications qui peuvent l’exploiter. Par exemple, pour ce
qui est des capteurs au sol, le poids d’une personne est facilement mesurable avec un
capteur de pression statique mais beaucoup plus délicat avec un capteur de pression
dynamique. Il peut théoriquement être approximativement déductible avec une caméra,
moyennant une modélisation relativement fine, mais cela paraît difficilement réalisable
avec des microphones (bien que ce ne soit pas nécessairement impossible).

Malgré les avantages évoqués des capteurs au sol pour le monitoring de l’activité
quotidienne, les capteurs couvrant une large surface peuvent difficilement apporter au-
tant d’information que des caméras et ont une qualité du signal moindre comparés aux
capteurs portables. C’est pourquoi la problématique de l’obtention d’une représentation
des données utile et interprétable à partir de séries temporelles unidimensionnelles est
importante, tout comme la conception des features en fonction des tâches de monitoring
visées. Le dernier niveau d’information concernant les activités monitorées est lié aux
modèles d’apprentissage statistique qui sont entraînés à partir des données capteur et
ce choix des modèles conditionne autant leur efficacité que leur interprétabilité.

Adaptation à différents environnements et technologies

Que ce soit pour des applications médicales ou pour d’autres applications industrielles,
les modèles d’apprentissage statistiques sont souvent confrontés aux mêmes problèmes
pratiques. En général les bases de données utilisées pour entraîner statistiquement ces
modèles sont supposées refléter de manière assez proche la distribution des données
réelles, cependant c’est rarement le cas en pratique en raison des biais divers qui
dépendent du processus de récolte des données. Ce processus depend de différents
facteurs qui sont plus ou moins contrôlables en fonction de l’application mais une
situation fréquente et générale est de devoir manier plusieurs sources de données
provenant de différents environnements. Une autre source d’hétérogénéité des données
provient de la variabilité de la technologie elle-même. En effet en conditions réelles
les capteurs sont souvent soumis à des défauts, soit dans le conception technique soit
dans la manière dont ils sont utilisés. De plus, la plupart des applications industrielles
innovantes visent à mettre à jour leur technologie rapidement lorsqu’elles identifient
de possibles améliorations (par exemple en terme de qualité du signal, de ressources
computationnelles ou encore d’aspects économiques), ce qui peut également être source
d’hétérogénéité.

Exploiter des domaines de données différents bien qu’apparentés en tirant parti de
cette hétérogénéité est le principe du transfer learning [191, 260], et prendre en compte
les contraintes sur les ressources technologiques dans l’apprentissage statistique est
le principe du budgeted learning [93]. Ces deux thématiques de recherche sont d’une
importance capitale en ce qui concerne les applications industrielles à grande échelle et
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le système de monitoring des personnes âgées proposé par Tarkett est une illustration
typique de leur intérêt.

Organisation du manuscrit

• Chapitre 1 : Système de monitoring basé sur un capteur sol piezoelectrique

Ce premier chapitre compare le système FIM Care avec d’autres technologies
de monitoring de l’activité humaine et détaille ses spécificités en terme de tech-
nologie, de données et de conditions requises pour pouvoir être installé à grande
échelle dans les établissements de santé. L’installation complète du capteur dans
les chambres des patients est décrite et la physique du signal piezoelectrique est
détaillée, ainsi que le circuit électronique nécessaire pour amplifier ce signal et ses
conséquences. Ceci permet de mettre en évidence certaines propriétés du signal
afin de mieux cerner le type d’applications qui peuvent être visées par la tech-
nologie Tarkett. En effet d’autres applications utilisant le même capteur (le film
piezoelectrique Emfit) [132, 189, 197] sont présentées et nous expliquons en quoi le
système Tarkett FIM Care se distingue de ces applications et pourquoi il implique
de tout nouveaux challenges techniques. A la fin du chapitre sont présentés une
vue globale du système complet dans les différents environnements où il est
installé, le procédé de récolte des données et une description des différentes bases
de données disponibles pour l’apprentissage statistique.

• Chapitre 2 : Représentation des séries temporelles et modèles prédictifs d’arbres
de décision

Ce chapitre présente tout d’abord plusieurs représentations des séries temporelles,
comme l’autocorrelation et les spectrogrammes, pour concevoir un espace de
features efficace et flexible qui peut être employé pour différentes tâches de clas-
sification de l’activité humaine basées sur les signaux de pression au sol. Ces
représentations des séries temporelles et les features correspondants montrent
leur utilité sur plusieurs types de données, où des modèles fôrets aléatoires
présentent de bonnes performances de classification, notamment pour la détec-
tion de chute, la détection de mouvements au sol et la reconnaissance de la marche
des personnes âgées. Chaque modèle est entraîné à partir d’un jeu de données
labélisées représentant différents types d’évènements qui sont récoltés à partir de
trois installations expérimentales différentes. En fonction du type d’évènement à
détecter et du feedback sur ces modèles expérimentaux, chacun est associé à une
stratégie d’implémentation particulière, comme le lissage de la réponse instanta-
née des fôrets aléatoires pour réduire le taux de fausses alarmes, l’utilisation de
classifieurs en cascade pour augmenter l’interprétabilité et la performance dans
le cas de la classification multi-label, ou encore la déduction directe de certains
paramètres physiologiques comme la vitesse de marche à partir de features parti-
culiers. Les résultats présentés dans ce chapitre montrent que Tarkett FIM Care
est viable en tant que système complet de monitoring de l’activité quotidienne
des personnes âgées pour des applications médicales.

Cependant pour exporter la plupart de ces modèles expérimentaux de prédic-
tion en conditions réelles, ils doivent pouvoir tourner en temps réel dans un
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système embarqué. Ainsi dans le contexte de la prédiction en temps réel avec
des ressources limitées, un des principaux obstacles est la taille, la complexité
et la redondance de l’espace de features. Pour cette raison, ce chapitre étudie
également la pertinence des différentes représentations des séries temporelles
selon les différentes tâches de détection, ainsi que la question de la redondance
des features selon trois métriques : l’importance des features relative aux fôrets
aléatoires, les corrélations statistiques et le mRMR (minimum redundancy max-
imum relevance). Ce dernier critère suggère que s’il est possible de détecter
les corrélations entre les features même dans le cas non-labélisé, la pertinence
d’un sous-ensemble de features dépend intimement des tâches détection. Néan-
moins, toutes ces métriques ne prennent pas en compte la diversité des features
en terme de complexité computationnelle et c’est la raison pour laquelle cette
problématique spécifique est explorée en détails dans le chapitre 4.

• Chapitre 3 : Transfer learning : passage des situations expérimentales à l’environnement
opérationnel

La première implémentation réelle du modèle de détection de chute dans des
chambres de patient, détaillé dans [175], a été entraînée sur des données expéri-
mentales de chute décrites dans le chapitre précédent. Après un an de récolte
de données réelles à partir des feedbacks du modèle initial, un nouveau jeu de
données sur la détection de chute a été constitué et confronté dans ce chapitre
avec le premier jeu de données expérimental, pour souligner la problématique
de l’adaptation du modèle des données expérimentales vers les données réelles.
Sans surprise, cette comparaison montre que les distributions empiriques des
données diffèrent entre ces deux bases de données. Une des différences les plus
directement observables étant l’important déséquilibre de classes des données réelles.
En effet, en réalité les chutes restent très rares comparées aux autres évènements
de la vie quotidienne, contrairement à la base de données expérimentale où
les chutes et non-chutes sont représentées à peu près équitablement. Cette dis-
similarité des jeux de données souligne le besoin d’adapter le modèle initial de
détection de chute, qui sert de référence, sans le dégrader. Dans cette optique
nous examinons les possibilités de transfer learning agissant directement sur les
modèles et aboutissons à plusieurs adaptations de deux algorithmes de transfert
existants sur les arbres de décision pour la situation de déséquilibre de classes, en
particulier au travers des notions de risque de pruning et de déséquilibre homogène
des classes. En utilisant ces adaptations nous proposons un nouvel algorithme
de transfert général sur les fôrets aléatoires qui sélectionne la meilleure version
transférée pour chaque arbre sur des échantillons bootstrap. Cela résulte en une
fôret aux arbres complémentaires capable d’une part de gérer le déséquilibre de
classes mais aussi d’apporter de précieuses indications sur le type de relations
entre les deux jeux de données.

• Chapitre 4 : Budgeted learning : mise à l’échelle industrielle de modèles d’arbres
de décision pour les systèmes embarqués

Le dernier chapitre aborde le problème des modèles d’arbres de décision en situa-
tion de ressources limitées. Il se concentre sur les ressources computationnelles
des systèmes embarqués et sur la contrainte qu’elles impliquent sur le temps de
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prédiction des modèles. Ce problème est plus connu sous le nom de temps de
prédiction budgeté. En prenant en compte à la fois les coûts d’acquisition des features
et les coûts d’évaluation du modèle sur les ensembles d’arbres de décision, nous
formalisons de manière générale le temps de prédiction des modèles d’arbres de
décision et nous examinons le problème associé d’optimisation sous contraintes.
Plusieurs cas particuliers correspondants à des travaux existants découlent de
ces définitions. Pour quantifier précisément les coûts computationnels liés à
notre application, nous introduisons également la situation de coûts de calculs
partagés par des groupes de features, ce qui correspond dans notre cas au calcul
des représentations des séries temporelles. Après avoir mis en évidence que les
coûts d’acquisition des features sont intimement liés à la structure des arbres de
décision et l’ordre d’utilisation des features au sein de ces arbres, nous définissons
la notion d’équivalence entre les arbres de décision, faisant référence aux arbres
qui partagent la même fonction de décision mais pas la même structure. Cette
notion est alors exploitée dans un algorithme génétique de pruning aléatoire pour
résoudre efficacement le problème d’apprentissage budgété auquel nous sommes
confrontés, pour pouvoir obtenir finalement une fôret aléatoire qui respecte les
contraintes de ressources d’un système embarqué. Cet algorithme génétique est
très flexible dans la mesure où il est compatible avec n’importe quelle définition
des coûts, en particulier pour notre situation de coûts partagés, et peut théorique-
ment prendre en compte plusieurs contraintes à la fois. De plus, les expériences
faites sur les données synthétiques et les données de chutes suggèrent que la
notion d’équivalence entre les modèles de classification peut être exploitée de façon
pertinente pour ce genre de problèmes.
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Introduction

Context and motivations

Because of technological progresses and reliability of machine learning applications
in numerous applied science fields, technologies based on new sensors and/or new
machine learning methods exploded in the last recent years. The FloorInMotion (FIM)
project of Tarkett was developed in this context. Tarkett is a french flooring company
present in dozens of countries. Tarkett is involved in large scale construction sites such
as offices, schools or hospitals and proposes a large variety of floor related services.
The FIM project represents their ambition to use their skills to contribute to future large
areas smart floor applications. Indeed this kind of large scale floor sensors could be a
key technology for innovative applications in various fields such as security, people
flow management, indoor localization, interactive flooring or daily living monitoring in
the near future.

The first and main objective of this smart flooring project, namely FIM Care, is to
build an elderly monitoring solution dedicated to EHPAD and nursing home clients.
The proposed application consists in installing in every room directly under the flooring
a piezo-electric sensor with a local electronic hardware to analyze the recorded sensor
signal in real time. This implies to provide helpful information about elderly patient
activities based on predictive models applied on flooring signal and being able to detect
anomalies and risky situations such as falls. The second part of this application is a
remote multi-platforms software for the medical staff to be able to follow these A.I.
monitoring insights and be alerted instantly if needed. Even without particular disease,
elderly patients usually need important human resources to take care of them as they
are often dependent in their daily life activities. Moreover, as medical staff can not
watch carefully 24h/24 every patient, fatal falls for elderly people are still a major
non-natural death cause in nursing homes. So one of Tarkett’s priorities with FIM Care
is the fall detection. However the final purpose is also to bring a complete technological
solution for elderly monitoring, gathering several important functionalities like : fall
detection, abnormal activity detection, intrusion and night leaves detection, habit
changes detection, health risk assessment.

One of the main purposes of this work is firstly to study experimentally what
kind of information can be extracted from Tarkett piezo-electric smart-floor time series
that are helpful for elderly daily activities monitoring and to provide efficient tools to
make machine learning models work in real environments with limited computational
resources.

Monitoring daily life monitoring of elderly people

Concerning elderly people, in France around 10000 deaths each year (20000 in the U.S.
[87]) and a lot more severe injuries are due to falls and these consequences could be
importantly lowered if accidents were detected rapidly enough [231]. Moreover medical
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researches show that the fall risk can be anticipated by analyzing patient natural motion,
especially the gait [37, 47, 84, 116, 208].

In a medical environment machine learning can bring added value at several
levels [202], depending on how it helps medical professionals in their work. Some
applications are used in medical interventions like surgery, others are helpful in
establishing diagnosis [88] and some of them offer tools for medical professionals
to monitor patients health state and to alert them if any risk for a patient health is
detected [28, 83]. Daily life health monitoring belongs to this last category of application.
It may help to monitor the most fragile people like elderly, using routine activities
analysis to detect any abnormal change or accident. The majority of these tasks can be
done successfully by professionals but the purpose of these kinds of machine learning
applications is to help them to manage patient health in several ways. First it can
compensate for the potential lack of needed human resources in certain situations,
secondly, it can be used to bring important insights to experts making them treat their
patient faster and in a more adapted way.

In a general sense, machine learning may be useful for organizing more efficiently
professional healthcare human resources efforts. Indeed, a lot of countries recently
experimented with covid-19 that even if the amount of human resources seems suf-
ficient to monitor patients health in usual conditions, extreme situations show that
it can change rapidly at any moment. Despite the newness of the knowledge about
this disease, it is already subject to machine learning researches in terms of automated
detection [145]. Thus, routine monitoring tasks that can be in the scope of machine
learning are precious for medical staff and represent an important potential improve-
ment in healthcare monitoring. So that is what FIM Care system in elderly healthcare
institution is made for.

What information to collect from human activity ?

Human activity monitoring is a sensitive topic as it is directly linked with people
privacy. Concerning elderly daily life monitoring it is necessary to extract enough
useful information about people activity for healthcare application without any in-
formation that could directly break privacy. For this reason some intrusive sensors
like microphones or cameras are hardly viable although their ability to provide very
accurate information. Wearable sensors require patients to use them properly and
consistently in their daily life, which is not reliable enough for elderly. The choice
of Tarkett for a flooring pressure sensor seems particularly appropriate in terms of
non-intrusiveness, ease of use and reliability. It should be mentioned that each kind of
sensor has its own signal properties which determines information that can be extracted
from it and therefore the range of applications that can be built upon it. For example
a person’s weight is easily deductible with a static pressure sensor whereas it is a lot
harder with a dynamic pressure sensor. It could be approximately estimated used
cameras with a suited sophisticated model and this would appear very difficult using
only microphones (but not necessarily impossible).

Despite their advantages for daily life monitoring large floor sensors can hardly pro-
vide as much information as cameras and as much signal quality as wearables. Then the
topic of obtaining a good and interpretable data representation of 1-dimensional time
series becomes important and so is feature designing relatively to targeted monitoring
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tasks. The final layer of information extracted human activities comes from machine
learning models that are built using sensors data and their choice determines as much
monitoring tasks efficiency as comprehensibility in terms of response interpretation
and richness of feedbacks.

Adaptation to different environments and technologies

Whether it is for medical purpose or other industrial applications machine learning
models are often confronted with the same practical problems. Usually databases used
to statistically train them are supposed to reflect closely real data distribution, but it is
rarely the case in practice because of numerous biases relying on the data gathering
process. This process depends on various variables that are more or less controllable
depending on the application, but a frequently encountered situation is to deal with
several sources of data corresponding to different environments. Another cause of data
heterogeneity is the variability of the technology itself. Indeed in real conditions sensors
are often subject to some defaults either in their technological design or in the way they
are used by humans. Moreover most of innovative applications aim at updating their
technology as soon as possible if it can provide any form of enhancement (for example
in terms of signal quality, computational resources or even economic aspects) and this
can also be a source of data heterogeneity.

Dealing with data domains that are different although related by turning this
heterogeneity into an advantage is the purpose of transfer learning [191, 260] and
taking into account technological resource constraints in statistical learning is known
as budgeted learning [93]. Both of these research fields are particularly important while
considering large scale industrial applications of machine learning and Tarkett elderly
monitoring system is a typical illustration of their relevance.

Organization of the manuscript

• Chapter 1 : Piezoelectric smartfloor monitoring system

This first chapter of the manuscript compares Tarkett FIM Care system with other
kinds of human activity monitoring systems and precise its particularities and
tools to develop a reliable monitoring system in terms of technology, data and
requirements to be implemented in large scale in elderly health-care institutions.
Patient room flooring installation is described and we detail physics of the piezo-
electric signal coming from the sensor as well as the electronic circuit needed
to amplify it and its consequences on the signal. This allows to point out some
properties of the signal to better understand what type of applications can be
targeted based on Tarkett technology. In particular some alternative applications
of the same sensor (Emfit piezo-electric film)[132, 189, 197] are mentioned and we
explain why Tarkett FIM Care system very distinguishable from these applications
and the new technical challenges it implies. At the end of chapter, we present
an overview of the whole system from the different environments where this
smart-floor is installed, to the data gathering process and we describe various
databases available for machine learning use.

• Chapter 2 : Time series representation and decision tree predictive models
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This chapter proposes various time series representations like spectrograms and
autocorrelation for designing an efficient and flexible feature set that can be used
for various human activity classification tasks based on floor pressure signals.
These time series representations and the corresponding features show their
suitability on several experimental and real data, using random forest models
with good classification performance on fall detection, lying on-floor activity detection
and elderly walk recognition. Each model is associated with a labeled dataset
representing various kinds of events and recorded with 3 different experimental
installations. Based on the type of event to detect and the feedbacks of these
experimental models, each one has a specific implementation strategies, such
as smoothing random forest real-time outputs to reduce false alarm rate, using
cascade classifier to increase interpretability and performance with multi-label
classification or deducing from particular features some physical parameter
assessment like gait speed. Results presented in this chapter show that Tarkett
FIM Care is viable as a complete elderly daily life activity monitoring for health-
care purposes.

Nevertheless, to export most of these experimental predictive models into real
conditions, they must be run almost in real time in an embedded system. So the
computations needed to process features are also importantly limited. Therefore,
in this context of real time prediction with limited resources, the main obstacle
relies on size, complexity and redundancy of the feature set. Thus this chapter also
studies the relevance of each time series representation according to the different
detection tasks as well as feature redundancy problem through three main metrics
: random forests feature importance, statistical correlation and mRMR (minimum
redundancy maximum relevance). This suggests that if it is possible to detect
correlations between certain features even in unlabeled situations, the relevance
of feature subsets depends a lot on the detection tasks. However these metrics
ignore the variability in features computational complexity and that is the reason
why this specific problem is explored in details in Chapter 4.

• Chapter 3 : Transfer learning : from experimental setup to operational environ-
ment

The first fall detection model implementation in real patient rooms, detailed in
[175], has been trained on the experimental fall data described in the previous
chapter. After one year gathering real data based on feedbacks of this initial
model, a new fall detection dataset has been obtained and is confronted in this
chapter with the primary experimental dataset, in order to point out the problem
of model adaptation from experimental data to real ones. This comparison shows
non-surprisingly that empirical data distributions are different between these
two datasets. One of the most straightforward observable difference being the
hard class imbalance of real data. Indeed falls are very rare in proportion in reality
compared to the experimental dataset where fall and non-fall event are broadly
equally represented. This data dissimilarity motivates the need of adapting the
previous fall detection model that serves as a reference without degrading it. For
this purpose we examine model-based transfer learning possibilities and come
up with several adaptations of two existing transfer algorithms on decision trees
for class imbalance situation, especially by using notions of pruning risk and
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homogeneous class imbalance. Using these adaptations we propose a new general
transfer algorithm on random forest that selects a best transferred variant on
bootstrapped samples for each tree, resulting in a complementary random forest
able to handle class imbalance but also to bring valuable clues about the type of
relations between the two different data distributions.

• Chapter 4 : Budgeted learning : industrial scaling up of decision tree models for
embedded systems

The last chapter addresses the problem of resource constrained decision tree
based models. It focuses on computational resources of embedded systems and
how it constraints machine learning models prediction time. This problem is
also known as the budgeted prediction time problem. Taking into account both
feature acquisition cost and evaluation cost, we define a general formulation of the
prediction time cost of decision tree based models and we examine the associated
constrained optimization problem. Several particular cases corresponding to
existing works can be derived from this definition. To quantify precisely the
computational costs related to our application, we also introduce the possibility
of shared computation costs for groups of features that correspond in our case to
time series representations computation. After pointing out that decision trees
feature acquisition costs are tightly linked with their structure and the order of
feature usage we define the notion of equivalence between decision trees, referring
to trees that share the same decision function but not the same structure. Then
this notion is used in a genetic random pruning algorithm to solve efficiently the
budgeted learning problem we are facing to be able to get a random forest model
fitting embedded system resource constraints. This genetic algorithm is very
flexible as it is compatible with any computation cost definition, in particular our
shared computation situation, and can also theoretically handle several budgets
at the same time. Moreover through experiments made on synthetic data and fall
data we show that equivalence between classification models can be relevant to
exploit for this kind of problems.
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Notations

• ADC : Analog-digital converter

• AUC : Area under curve

• BudGenPrune : genetic pruning algo-
rithm for budgeted learning

• DB : Database

• DG : Divergence gain

• DT : Decision tree

• FPR/TPR : False positive rate / True
positive rate

• HAR : Human activity recognition

• IG : Information gain

• KL : Kullback-Leibler divergence

• JSD : Jensen-Shannon divergence

• MAB : Multi-armed bandit

• MI : Mutual information

• mRMR : Minimum redundancy maxi-
mum relevance

• OOB : Out-of-bag

• PRR : Pruning risk

• ROC : Receiver operating characteris-
tic curve (FPR/TPR curve)

• SER : Structure Expansion/Reduction
algorithm

• SERNP : SER "No Prune" algorithm
(variant with pruning restriction)

• STRF : Selective Transferred Random
Forest algorithm

• STRUT : Structure Transfer algorithm

• STRUTND : STRUT "No Div." algo-
rithm (variant without using DG)

• STRUTNP : STRUT "No Prune" algo-
rithm (variant with pruning restric-
tion)

• RF : random forest

• TS : time series
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1 Real time health monitoring

Miniaturization and decreasing costs of physical sensors, as well as the growth of IoT
use and progresses in signal processing and machine learning, extended the range of
applications and concerned fields using these technologies in recent years. It is even
observable for general public through smartphones and smartwatches that embed more
and more of these physical sensor-based applications such as sport or sleep monitoring.
Using only usual smartphone sensors (as gyroscope, accelerometer and magnetometer),
it is possible to perform walk detection and step counting with relatively simple
algorithms (threshold based on signal standard deviation and energy values) and quite
accurately (less than 3% of error) [33]. Moreover cameras are now very affordable and
progresses in computer vision allowed the raise of visual security and surveillance [140].
Nowadays a large variety of sensors and methods are developed for various human
activity monitoring applications. In the mean time of these technological advancements,
the proportion of elderly people in "western" societies is increasing implying daily life
dependency concerns. Furthermore, health diagnosis and interventions are more and
more relying on complex data analysis and machine learning. In addition, for countries
with already advanced healthcare systems like France, a new concern is preventive
medicine of fragile people.

In the following, existing monitoring systems are presented, organized by the kind
of sensors they use, advantages and drawbacks of these different types of sensor and a
detection task oriented overview of health monitoring systems.

1.1 Sensors

Automatic health monitoring is a wide topic involving several challenges as indoor
tracking, activity recognition, physical or physiological activity analysis and anomaly
detection. There exist numerous systems used for these purposes and one natural
way to categorize them is by the type of sensor they rely on. A detailed overview of
existing technologies, how they work in terms of physics and for which tasks they are
employed is proposed in [162]. All these monitoring systems can be divided into four
main groups : vision or acoustic based sensors, wearable sensors, ambient sensors and
hybrid systems.

Vision and sound based sensors

Cameras and microphones based systems are the closest to human perceptions. A lot of
daily life activities (cooking, bathing, walking, etc..) and anomalies (falls, unusual night
activity, etc..) can be easily recognized by vision or sound by a human. Vision based
systems provide a quite precise information about patients and their environment,
especially concerning spatial information. From more than a decade, there are efficient
existing methods for human or object recognition and tracking, for unique cameras
in small indoor areas as well as extended areas monitored by several cameras [140].
For example the application presented in [186] also shows that basic tracking can be
sufficient to detect some activities in an office-like environment. In the same way, some
daily life activities like making coffee, sleeping or taking a shower are guessable only
by measuring the time spent on some precise locations. Daily activity monitoring
systems described in [82] and [81] use several cameras with a tracking module in a
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living environment to segment these locations and duration sequences for extracting
daily activities, patient habits and even abnormalities regarding these habits.

There are numerous advantages of vision based monitoring systems : first the
literature richness on existing detection methods [140] and datasets [51] represents a
good starting point for designing a new vision based monitoring system; secondly this
kind of systems can provide an accurate spatial information, more particularly with
depth cameras [278], which allows patient tracking, object interaction detection and
simplifies fall detection [127, 281]. However vision based systems are not very robust
to variability and evolution of living environment where they are deployed. Indeed all
kinds of cameras are sensitive to the occlusion problem, which is only avoidable using
several cameras, and need a new calibration phase each time they are confronted to a
new living environment. But the main drawback of vision based monitoring systems is
unavoidable as it is their intrusiveness.

Another type of monitoring systems that is less sensitive to environment changes
and occlusion problems is the family of acoustic based sensors, while being still rela-
tively human interpretable. For instance, a bathroom activity monitoring system based
on a unique microphone is proposed in [53]. It is designed to provide a daily report
for caregivers with five different activities (showering, urination, flushing, washing
hands and sighing) and reaches a total accuracy of 87%. Acoustic based fall detection
have also been investigated in the case of a unique microphone [283] or using several
ones [154]. Microphones are usually cheaper than cameras, moreover they suffer less
from the occlusion problem and need less calibration effort. Nevertheless, using several
of them can be necessary to reach best performances, they are still quite sensible to
environment perturbations (noises, signal degradation due to obstacles) and they do
not solve the intrusiveness issue.

Wearable sensors

Wearable sensors are another highly employed kind of sensors for health monitoring.
As the majority of them does not record any image or sound, they might produce less
surveillance/intrusiveness feeling compared to vision or acoustic based sensors but
are also less convenient for patients if they have to wear these sensors permanently.
Wearable sensors are largely used by doctors for diagnosis purposes in limited time
situations, especially for medical consultations. For instance, [180] uses several kine-
matic and electromyographic wearable sensors for gait patterns classification. Authors
followed dozens of stroke recovering patients at different phases in order to extract rele-
vant variables to discriminate, through gait analysis, different clusters corresponding to
medical patient states. As they provide diversified and very precise information about
motions, wearable sensors are crucial to build bridges between medical knowledge and
automatic sensor monitoring and can allow highly efficient detection rates for precise
body motion recognition like gait analysis [180, 274] or fall detection [128, 152].

A review of recent monitoring systems based on wearable sensors is proposed in
[179]. It presents several monitoring technology architectures, distinguishes them based
on used methodologies and the monitored activities. It also gives general insights about
what kind of technical difficulties one may have to face while designing a wearable
monitoring device. Another recent survey provides a more detailed categorization of
existing works on wearable sensors monitoring in function of sensors type, the exact
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part of the body where they are carried and the precise activity they are able to detect
[61] .

Most common used wearables for activity classification are inertial sensors like
accelerometers, gyroscopes and magnetometers. Indeed 3-axial accelerometers pro-
vides a precise information about the body motion because, as long as the sensor is
well-fixed on a body part, it is possible to deduce very accurately how this body part
is moving. Gyroscopes and magnetometers are mainly used as supporting sensors in
combination with accelerometers to correct inaccuracies of the latter, especially when
it is not constrained to a fixed position [222]. Nevertheless, existing works show that
some activity recognition is possible while using gyroscopes or even magnetometers
alone. For example, [29] presents an intuitive threshold-based fall detection algorithm
using bi-axial gyroscope features, [148] shows that gyroscopes for activity recognition
are replaceable, describing an approach for estimating angular velocity with magne-
tometers, and [7] uses a unique magnetometer for measuring walking and running
cadence. These kinds of inertial sensors are now findable in every smartphone which
makes it an usable device for human activity recognition [158].

Ambient sensors

Ambient sensors regroup all other sensors sensitive to the monitoring environment
without being as intrusive or uncomfortable as cameras, microphones or wearables. The
principle of ambient sensors is to cover the whole patient living area with sensors that
are not a direct issue for patient privacy. A very recent review of this kind of sensors
under the name of "device-free" systems for human activity recognition presents and
compares recent systems (the last ten years) on technology, application and algorithmic
aspects [123].

One particular approach to monitor a whole living area is by covering it with a
floor sensor. Existing works with these kinds of sensor show their efficiency in people
tracking [120], gait recognition [171, 218], fall detection [209] and even people identifi-
cation [230, 241], which makes the use of floor sensors a reliable and unobstrusive way
to monitor elderly people. Floor sensor based systems can be classified considering two
main criteria impacting methods that can be used and achievable applications. On one
hand, depending on the floor sensor technology, pressure forces are perceived either in
a static way or in a dynamic way. More precisely, floor sensors are either sensible to the
amount of pressure forces applied or to the variation of these forces. Usually capacitive
sensors (using surface electric field) use capacitance or impedance changes induced
by the floor deformation [12] or the human body itself [120] and are therefore able
to detect static pressure forces. Conversely, piezoelectric sensors made from electret
materials (usually charged polymers) [189], like the one used by Tarkett, work like a
"sponge" filled with electric charges which generates charge signals only at the moment
of floor pressure variation, like impacts, and are then more adapted to dynamic events
detection. On the other hand, another way to distinguish floor sensor based systems
is whether they rely more on floor spatial information or pressure force values. So
systems with high spatial resolution often use a matrix of pressure sensing units and
base their detection on shapes of contact surfaces on the ground [12, 171, 219], whereas
the others usually use one accurate signal to detect events [11, 218, 236].

Another kind of ambient sensor systems uses the electromagnetic field and its
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variation to perceive moving objects and people in the environment with numerous
physics approaches. This is the case for Wifi based systems, radars and other radio
frequency related sensors. As Wifi systems are already deployed for communication
in almost every human indoor environment and with their relative non-obstructive
property, they are good candidates for low-cost people motion related detection tasks.
For this reason numerous applications use Wifi signals for people motion monitoring
purposes. As it is explained in a recent survey on Wifi based smart home systems [129],
Wifi based people detection applications can be classified in four categories : people
identification, contextual information acquisition like tracking, gesture recognition and
health monitoring. These applications rely on two main indicators : the received signal
strength indicator (RSSI) and the channel state information indicator (CSI), which are
two measures impacted by the presence of obstacles between emitter and receiver
devices. With this approach, existing works show that it is possible to estimate the
speed of body parts motion [249] and then to perform gait recognition [250].

Wifi is a particular communication protocol used within a particular range of
radio frequencies but the same approach can be applied with other kinds of radio
signals. Indeed several existing works show the feasibility of human tracking by body
reflection of radio signals. Using these methods, [121] proposes precise gait features
assessment, like velocity and stride length, with a unique radio emitter hung to a
wall. Another common radio frequency technique for people motion detection is
the spectrogram-based approach with radar and the Doppler effect. The Doppler
effect is while a moving object induces frequency shifts on electromagnetic waves.
Considering human bodies, all the different articulated parts of the body that are
moving induce a small Doppler effect, known as micro-Doppler signatures. Thus
some existing works show that accurate motion recognition can be done, whether it
is applied for gait classification [232] or more extended activity recognition [86], by
studying time-frequency representations of these micro-Doppler signatures.

Binary output sensors and hybrid sensor systems

Binary output sensors can be made of plenty of different technologies but they all have
the same purpose : to indicate a state change from interactions between human and
objects in an actuator way. For example they can be used to detect doors opening
and closing, lights activation, shower and toilets activation, kitchen devices usage,
presence on bed or chairs, etc... They can represent a relatively simple way to achieve
daily life activity recognition [239, 243, 244] through object interactions and allow
also to recognize habits and then life behavioral changes and anomalies [213, 229].
Nevertheless, for deploying these kinds of system, the living environment, usually
composed by several rooms with these monitoring systems, has to be full of daily
life objects to interact with [170] and it is not always the case for every nursing home.
Indeed the richness of information obtained with binary sensor based systems and
then their efficiency in term of monitoring depends on the amount of used sensors and
the frequency of their usage. Finally unlike ambient monitoring systems, binary sensor
based systems often let a lot of undetectable areas, making them not sufficient for fall
detection, gait recognition or any motion related detection.

For this reason, a common approach is to combine binary sensors with another
kind of sensor like cameras, microphones or floor sensors [81, 82, 168, 169]. This idea
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of designing a monitoring system out of several complementary sensors is called hybrid
systems and allows to compensate lacks of one sensor or just to confirm detection
in some situations. For instance to achieve fall detection the system in [233] uses a
combination of passive infrared sensors, microphones and vibration sensors, whereas
the one presented in [236] uses infrared camera activation to confirm a first detection
done by a floor sensor.

Summary of each sensor particularities

The nature of information that is returned from all of these sensors is important to
determine which kind of application can be based on. Indeed it would be hardly
achievable to estimate physiological parameters like heart beat with just a distant
camera or to track accurately a patient with only one microphone. Thus being aware
of advantages and weaknesses of each sensor’s type can help to select a suitable
technology relatively to a given health monitoring application. So the different kinds of
sensor presented previously are organized in Table 1.1 according to several criteria that
are important to consider while designing any health monitoring system.

Sensor Signal type Interpr. Spatial info. Non-intrus. Non-interf.
Camera Image • • •• • • •• ◦ ◦ ◦◦ • ◦ ◦◦
Microphone Sound • • •◦ • ◦ ◦◦ ◦ ◦ ◦◦ • • ◦◦
Wearable Kin./physio. • • •◦ • • •◦ • ◦ ◦◦ • • ••
Radar/wifi EM field • ◦ ◦◦ • • ◦◦ • • •◦ • • ◦◦
Floor Pressure F. • • ◦◦ • • ◦◦ • • •• • • •◦
Binary Object interac. • • •• • • •◦ • • ◦◦ • • ••

Table 1.1: Comparison of health monitoring system sensors

The first criterion in this comparison is the non-intrusiveness of the monitoring
system. Indeed patient users to monitor tend to accept more certain devices than
others, especially elderly, for privacy or comfort reasons and it is a crucial aspect
for daily life monitoring. The second one is human interpretability of data which
is important to anticipate for many long-term monitoring applications that aim at
enhancing progressively their technology. It impacts the ease of labeling process, miss-
detection or other monitoring errors analysis and feedbacks, and simplifies collaboration
with medical experts.

Other criterion are directly linked to the targeted monitoring tasks. For example
physiological parameters monitoring is almost uniquely feasible with wearable sensors
and fall detection is hardly achievable with only binary sensors (see next Section). More
generally the signal type is important to consider for knowing which kind of signal
processing to implement and features to compute, as well as environmental interferences
like occlusions or signal distortions. This last environmental criterion and the spatial
information are directly ruling the type of monitoring tasks that are achievable and
which kind of algorithm is the most suited. For instance monitoring tasks requiring
people tracking can not be done with a very low spatial information as it is the case with
a unique microphone. Considering environmental interferences, they imply scalability
issues relatively to the context and require robust and adaptable algorithms or massive
data in various contexts for model training.
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1.2 Health monitoring detection tasks

Depending on the patients to monitor, their living environment and the kind of sensors
that are used, different detection tasks are achievable and targeted.

Physiological signals monitoring

Some monitoring systems focus directly on some physiological parameters coming
from the patients body micro-signals. These kinds of detection regroup, for instance,
respiratory and heart rates [28], blood pressure or sleep phase recognition. As they
relate to internal body mechanisms that often entail almost no body motion, they
usually require very sensitive sensors. These sensors are usually relatively close to the
body, like wearable ones, or fixed and restricted location sensors that are meant to be
almost in direct contact with the body, like bed mattress. For instance [157] proposes a
complete framework with non-wearable sensors to perform ballistocardiography (heart
beat forces and respiration), electrocardiography (heart beat rate) and photoplethys-
mography (blood oxygen and pressure). For that they use respectively a very sensible
air mattress, capacitive electrodes on chairs and toilets and a light pulse emitter on
chairs.

Physiological parameters monitoring is now studied for more than a decade by Emfit
company, which is the manufacturer of the piezoelectric sensor used by Tarkett, and
several works use this sensor in wearable and non-wearable devices for monitoring heart
activity and respiration. For example [207] uses it in belts for measuring respiratory
rate, the same sensor is embedded in a wheelchair [199] or usual chairs [131, 132] for
ballistocardiography, and it can also be used for detecting epilepsy during the sleep
[197].

Gait and posture analysis

Physiological parameters are not the only indicators that can give insights about patient
health state, studying dynamics of different body parts while moving is also relevant
for this task. Walking is one of the most repeated physical activity in everyday life and
it involves complex local motions and coordination of every part of the body. Since
several decades numerous works aim at characterizing elderly gait, extracting patterns
and physical indicators (walk speed and regularity, left/right legs balance, ground
reaction forces, etc...), and detecting disturbances and abnormalities [150, 185, 226].
These gait markers are known to be significant for assessing fall risks [37, 116] , for
characterizing particular elderly pathologies like Parkinson disease [76] and even for
detecting mood disorders [73].

Several recent surveys on gait analysis related researches describe existing used
technologies [245], clinical applications [181] and discriminant features [58]. As the
whole body motion is involved in gait analysis, the majority of existing methods use
either wearable sensors [70] or cameras [224] but it is also feasible with other kinds of
sensor. Indeed as previously evoked ambient sensors, like floor sensors [171, 241] or
radio frequency based sensors [121, 232] are also used for gait analysis, as long as they
can provide a precise enough spatial information.

Similarly, studying human posture in general during daily life activities can also
bring indicators about patient health state. Thus some recent works focus on posture
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recognition for elderly monitoring perspectives. For example some existing works
use image processing knowledge to extract 3d posture models from videos for elderly
monitoring [78, 284], but it is also possible to deal with this application using wearable
device [161, 246] or even a panel of RFID tags [271]. One direct advantage of these
approaches is that they also allow fall detection through the recognition of the "lying
on the ground" posture [78, 273].

Fall detection

Fall detection is one of the main goals of monitoring systems for elderly. Indeed for
older people falls are more likely to happen and to result in hospitalization or even
death, especially when falls are not detected rapidly. Moreover, fall causes and risk
factors are now well documented by medical community, as well as methods to prevent
falls depending on patients diagnosis [210]. That aspect makes automatic fall detection
and prevention a priority in the healthcare field and a very active research topic.
Several surveys present issues, trends and challenges in fall detection [84, 125, 261],
and compare different methods and approaches [192, 195, 223, 237].

There are two main ways to detect a fall : based on how the body is moving during
the fall itself or based on the body posture on the floor just after the fall. That is why
any sensor that can give body motion information or that has accurate enough spatial
information to extract the body posture is useful for fall detection. Then, vision-based
[281] and inertial wearable sensors [72] are commonly used for this task. However, even
if it is less human interpretable and it may require more processing, several methods
using other kinds of sensor are used for fall detection[154, 283].

Designing fall detection systems with real-time alarms is vital as "western" popu-
lations are getting older, falls are one of the major elderly unnatural death cause and
even specialized nursing homes can not provide staff for continuous surveillance for
every patient all the time. Progressing beyond triggering fall alarms would be to avoid
these dangerous elderly falls, for this reason fall detection researches are progressively
enlarging their scope into fall prevention [47, 208]. Nevertheless, because of the relative
rarity of the fall event and for privacy reasons, fall datasets are still not massively
publicly available [138].

Routine activity recognition, wellness assessment and anomaly detection

To prevent any elderly pathology or the fall risk, real-time detection alone is often
not enough. Long term evolution of physical indicators, like gait or posture, or more
generally changes in patient habits, represent indeed precious information for health
risks prevention.

Depending on the segmentation of patient activities and their living environment,
several sensors are used to extract patient routines from activity recognition. Whether
it is based on vision sensors [186], binary sensors [213, 243] or hybrid sensor systems
[82, 100], there are some similarities in the various approaches that aim at analyzing
human habits. The first common step consists in the recognition of several daily life
activities, either directly done by some binary sensors installed in various equipment
[48] (sink, fridge, bed, chairs, etc...) or by applying a classification algorithm from other
sensors [158]. Then the time spent on each activity is estimated to generate activity
sequences with their associated durations. These sequences are used to train short
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Figure 1.1: Taxonomy of daily life activities monitoring by detection tasks

or long term memory machine learning models that are sometimes represented as
oriented graphs like hidden markov models and their variants (semi markovian models,
hierarchical markovian models) [243] or more generally dynamic bayesian networks
[81].

Although these approaches may need several sensors and a lot of processing and
data, they are powerful for health monitoring in a daily life environment. Indeed,
once a reliable model for habits extraction is obtained, it is then feasible to detect
any abnormality by defining and measuring a deviation from these habit models
[39, 41, 187, 213]. Moreover extracted activity sequences are also interpretable for
medical experts which is an important advantage for health monitoring systems [42].

Detection tasks in Tarkett Floor in Motion Care application

Based on these main detection tasks for health monitoring, all the different monitoring
applications can be categorized as presented in Figure 1.1. Health monitoring systems
are designed either for controlling the internal functions of the body or more to observe
the external macroscopic activity of the person. The first group is physiological param-
eters monitoring and is mainly used temporarily for people with specific pathologies,
with wearable sensors or sensors installed inside objects that are in contact with the
body (for example beds or chairs). People macroscopic activity monitoring is more
adapted for daily life monitoring which can then be divided in two kinds of detection
tasks : short duration or long duration events. Gait and falls are by far the two short
duration events presenting the most interest for elderly monitoring. Long duration
events regroup a wide variety of daily life events (sleeping, bathing, cooking, etc...) and
the goal of detecting those is often to extract inhabitant habits, sometime attempting to
assess person’s well being. Considering anomaly detection these two event detection
groups are concerned because anomalies can be either short in time, like a balance loss,
or long like habit changes.

Tarkett elderly monitoring application, namely Floor In Motion Care (FIM Care), is
currently proposing three main monitoring tasks : fall detection, detection of the activa-
tion or not of living space areas (see Section 4.2) and entry/exit detection. Nevertheless,
as Tarkett has the tools for it, other topics that are presented later, like gait analysis and
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habits characterization are also studied in parallel for future improvements. Unlike
Emfit applications [131, 132, 207], Tarkett FIM Care system intends to monitor large
living areas and are not targeting physiological parameters but more large scale body
motion indicators. Next sections of this chapter are dedicated to present this system,
to describe physical aspects behind Tarkett’s sensing system, from pressure forces to
processed output signals, and explain why seeked detection tasks are different from
the ones proposed by Emfit company.

2 Tarkett piezoelectric smartfloor

2.1 Emfit sensor

Tarkett’s smart floor system relies on a very sensible piezoelectric sensor, initially
designed by the company Emfit to gather physiological features, like heart beats and
breath, for example while laying on a mattress [197] or a chair [132] containing it.
Among all different families (crystals, ceramics, etc..) of piezoelectric materials, a thin
and flexible polypropylen electret is used inside Emfit sensor. It is a polymer foam
where microscopic cavities are permanently polarized by applying a powerful electric
field [189].

To obtain the final sensor, this polymer foam goes directly between two electrical
conducing aluminium layers (one for the electrical ground and one for the signal
output). These are surrounded by two insulating PET layers to isolate the electrical part
of the sensor. Then, another aluminium and PET layer is added on the top to shield
the sensor from possible external electric and magnetic parasites. The final product
provided by the Emfit company is a sensor taking the form of 0.3 mm thin bands with
a width of 60 cm. The simplest way to cover any area with this sensor is to cut several
pieces of this 60 cm width band and to connect them in series to get one signal over the
whole area.

Figure 1.2: Structure and layers of Emfit piezo-electric sensor and microscopic view of
the internal PP moss [189].

Each micro cavity in the material is permanently charged during the manufacturing
process. While the piezoelectric film is compressed, these cavities thickness changes
inducing a local charge displacement that spreads over the material to the output
electrode. So that is how the piezoelectric effect is generated for this sensor, by creating
dynamic currents that are approximately proportional to the total sensor’s thickness
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variation. This means, as it is specified in [228], that this kind of sensor is not suited for
static but for dynamic measures and it is explained in details in the following Section.

2.2 A signal based pressure forces variation

As the purpose of this technology is to monitor elderly health state by analyzing mainly
their physical activities, it is necessary to understand how the sensor output signal is
linked to mechanical events that are occurring on top of it. Wearable motion sensors
as accelerometers and gyroscopes are helpful for detecting some disabilities in the
gait for example, and these kinds of motion information are correlated to pressure
forces that are applied on the floor. In order to explore the links between floor sensor’s
outputs and other mechanical information, a simplified model of this sensor’s physics
is presented in the following.

Piezoelectricity is defined by two complementary physical phenomenon : it consists
of a material that produces an electric signal while confronted to a mechanical stress
(direct effect) and that inversely changes its shape while confronted to an electric
field (inverse effect). Several physical variables are intervening in any piezoelectric
phenomenon : the mechanical stress T (in N.m−2) applied on the material, the electric
field E (in V.m−1), the relative deformation S (no unit) and the electric induction D (in
C.m−2). They are represented by tensors that interact in 4 main relations in the linear
approximation theory with tensor coefficients characterizing the electro-mechanical
properties of the material, the reader can find more details in [267]. As explained in
[217], the equation traducing the main contribution in the direct piezoelectric effect is
the relation between the mechanical stress T and the electric induction D is :

D = dT + ϵTE ≃ dT ,

D1
D2
D3

 ≃
 0 0 0 0 d15 0

0 0 0 d24 0 0
d31 d32 d33 0 0 0




T1
T2
T3
T4
T5
T6

 (1.1)

with ϵ and d two tensors respectively representing the electric permittivity and the
piezoelectric factor between charges displacement and pressure forces. As the sensor
is not supposed to be subjected to any external electric field, the first approximation
consists of neglecting this part in equation 1.1. The second approximation concerns the
matrix form equation linking a mechanical stress applied according to normal vectors
of an infinitesimal cubic volume element (that is why T has a dimension of 6) to the
displacement D of charges that can follow 3 axes. As the sensor is flat and inserted
in the flooring, the main part of mechanical stresses are vertical up-to-down forces,
simplifying the previous equation into :

D3 ≃ d33T3 (1.2)

This equation describes the approximate proportionality link between the surface
pressure forces applied on the sensor and the amount of charge coming in and out of it.
The d33 factor is then representing the sensitivity of the sensor. If the sensor is isolated
(disconnected from any circuit) these charges accumulate in one of the two surrounding



40 CHAPTER 1. PIEZOELECTRIC SMARTFLOOR MONITORING SYSTEM

aluminium plates (represented in Figure 1.2) creating a voltage difference between the
two electrodes, which makes the sensor behave as a capacitor Cp. In addition electrodes
can not stay charged forever and the voltage difference diminish progressively if no
change occurs in the mechanical stress. This internal charge dissipation phenomenon
can be modeled as a parallel resistor Rp, also called "leakage path". Then there are two
ways of modeling a piezoelectric sensor as part of an electric circuit [228], depending
on if it considered as a charge source or a voltage source:

Figure 1.3: Charge and voltage source models of the piezo-electric sensor.

The closest model to sensor’s signal generation is the charge source model, because
local charge displacement are directly produced by pressure forces, following equation
1.2. This electronic model is ruled by the linear differential equation 1.3 with qp the
amount of produced charge and Vc the voltage between sensor’s electrodes :

dqp(t)
dt

= ip(t) =
Vc(t)

Rp
+ Cp

dVc(t)
dt

. (1.3)

From equation 1.2, we can deduce that, with a variation of pressure forces ∆F,
the total charges displaced are equal to ∆q = d33∆F. Thus no mechanical stress
variation results in no current generation and then a voltage following the homogeneous
differential equation solution : V(H)

c (t) = V(H)
c (0)e−ωpt with ωp =

1
τp
= 1

RpCp
, and there

are several important implications on the generated signal.
Firstly, it means that this sensor is not suited for static measure application but for

dynamic ones. Indeed, an object or a person can be detected only while moving on
the sensor, regardless of its weight, volume or surface contact with the floor. This also
implies that weight assessment, which can be easily done with other kinds of floor
sensor, is not directly feasible with this one. Secondly, while no dynamic activity is
happening on the sensor a relaxation pattern depending on the time constant τp = RpCp
is observable, which is comparable to a capacitor discharge behavior. As explained in
Section 3.2, other time constant are also induced by the electronic signal conditioning
montage but even if the relaxation time is variable it happens necessarily. Oscilloscope
acquisitions obtained with a compression device show clearly this behavior in Figure
1.4. This relaxation phenomenon can be useful for some detection tasks as it is described
in Appendix B.
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3 Electronic signal acquisition and pre-processing

3.1 From micro-charge signal to time series

Signal amplification

In order to be able to process sensor’s signal, the charge signal output has to be
converted into a voltage signal. Moreover the signal coming directly from the sensor
is hardly measurable because of its very small amplitude. Indeed, [217] approximates
the sensor’s sensitivity to : d33 ≃ 234pC.N−1 and we can consider that normal event
applied forces are below 2000 Newton (for instance [71] observed ground reaction
forces during fall arrest going up to 1200N). This means that the charge signal coming
from the floor sensor has a range of 0.5µC, which requires to be amplified before any
usual signal processing operation.

There are two ways of amplifying this kind of signal, the voltage mode amplifier
and the charge mode amplifier [228]. In the literature, it is advised to consider the
voltage amplifier if it is directly connected to the sensor and the charge amplifier if there
are wires in between, and thus because of wires capacitance. This is the choice made
by Tarkett for signal amplification for its different versions of the signal conditioning
circuit. Another important aspect of amplifying the signal is that it needs an electric
supply. It implies that the output of the amplifier is not centered to zero and has a
constant voltage component known as the direct current (DC) value.The stability of
this constant voltage is crucial firstly to avoid signal’s centering problem but more
importantly because drifts of this value can result in overflows that destroy completely
signal’s shape. The main obstacle to this stability is the leakage resistance of the sensor
that can be worsened by sensor’s installation operations (see Section 3.4) and Tarkett
observed that only symmetric supply amplifier are robust to this issue, as illustrated
in Figure 1.4. Indeed there are two types of charge amplifier’s supply : the single
supply or the symmetric supply (in our case one entry of a 3.3V voltage or two entries
of respectively ±3.3V). This is one of the differences between the first and the second
version of Tarkett’s electronic box (see Section 3.3)

Figure 1.4: Difference between single (left) and symmetric (right) supply amplifier with
an artificial leakage resistance of 1MΩ.
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Analog/Digital conversion and digital signal processing

Once the sensor signal is amplified, it is an analog voltage signal that still requires
to be converted into a digital signal by an analog-digital converter (ADC) for being
processed by any computing unit. The choice of ADC parameters is a crucial part in
sensor’s signal processing because of two main aspects :

• Firstly, the ADC sampling frequency fs restricts the detectable event frequency
range to [0, fs/2], because of the Shannon’s law.

• Secondly, the ADC numeric resolution determines directly the precision of the
obtained digital signal.

The higher these two ADC features are and obviously the better is the sensor’s
signal quality. But they are costly and they also require associated CPU resources for
this signal quality to be fully exploited. Having in mind this compromise, Tarkett
decided to fix the ADC sampling frequency at fs = 100Hz and the numeric resolution
at 12 bits. It means that there are exactly 4096 possible values for the digital signal and
observable frequencies are limited to 50Hz.

3.2 Signal conditioning and spectral domain

A charge amplifier is used by Tarkett to convert small amounts of charge coming from
the sensor into a usable voltage. This amplifier works with an electric montage known
as "pseudo-integrator", composed by one capacitor and two resistors. C2 capacitor
is used to accumulate charge coming from the sensor, allowing the effect of voltage
"integrator". R1 resistor protects the amplifier from electrostatic discharge while R2
protects it from saturation. This montage is an active low-pass filter.

Figure 1.5: Piezoelectric sensor as a voltage source model with the charge amplifier
electronic montage.

In order to determine how sensor’s signal is affected by this electronic montage,
the voltage source model of Figure 1.3 is used, but as the Rp leakage resistance is
variable and depends additionally on manufacturing and installation imperfections (see
Section 3.4), it is supposed there infinite which is an ideal situation. Usual method for
describing the impact of the electronics on the signal is to compare a theoretic sensor’s
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voltage input Vi(ω), for a periodic signal of pulsation ω, with the corresponding
theoretic output voltage Vo(ω) after this electronic montage. The ratio H(ω) = Vo(ω)

Vi(ω)
is

known as the transfer function of the system and it gives informations about how the
signal is affected, in terms of amplitude and phase, from the sensor to the output of the
amplifier circuit.

H(ω) = −
jωR2Cp

1 + jω(R2C2 + R1Cp) + ω2(R2C2R1Cp)
(1.4)

Equation 1.4 corresponds to the transfer function of a second order band-pass filter
that can be written in the canonical form as :

H(ω) =
H0

1 + jQ( ω
ω0
− ω0

ω )
,

with H0 = −
R2Cp

R1Cp + R2C2
, Q =

√
R1CpR2C2

R1Cp + R2C2
,ω0 =

1√
R1CpR2C2

. (1.5)

Figure 1.6: Example of phase and Bode diagram of signal conditioning circuit’s transfer
function for a 20m2 sensor.
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H0 is the maximum gain value reached for resonance pulsation ω0. Q is the quality
factor representing the narrowness of the frequency band-width ∆ω = ωc2 − ωc1 of
the filter by ∆ω

ω0
= 1

Q , with ωc1 and ωc2 the cut-off pulsations defined by the relation :

|H(ωc)| = |H0|√
2

that has two solutions of the form : ωc =
ω0
2Q (
√

4Q2 + 1± 1).

As the leakage path resistance is neglected in this model the only variable value is
the capacitance of the sensor Cp. Indeed it depends on sensor’s area and its surface
capacitance density is estimated around 22pF.cm−2 [217]. For an usual room area of
20m2 this corresponds to a capacitance Cp ≃ 4.4µF. The rest of electronic components
are fixed at following values : R1 = 200Ω, R2 = 200kΩ and C2 = 320nF. These
parameters give a maximum gain of |H0| = 13.6 and cut-off frequencies [ fc1, fc2] =
[2.4Hz,186Hz], phase and Bode diagrams are presented in Figure 1.6.

The first remark is that main physiological parameters like heart and respiratory
rates are signals with spectra below this lower cut-off frequency of 2.4Hz. This means
that, even without considering any noise issue, with this area size and this electronic
montage, measuring physiological parameters of someone lying on the sensor is
hardly achievable. Secondly the upper cut-off frequency is highly sensible to sensor’s
capacitance and then to sensor’s area. To give an insight about this, the maximum
observable frequency of 50Hz allowed by the ADC is reached by the upper cut-off
frequency around a sensor’s area of 80m2 (implying Cp ≃ 17.6µF), meaning that it is
impossible to go over this size without degrading importantly the signal’s frequency
range.

3.3 Various electronic devices in experimental and real environments

As previously explained, the output of the Emfit piezoelectric sensor is hardly ex-
ploitable directly due to the very small amplitude of signals. Knowing the minimal
requirements in terms of signal conditioning for this sensor, each component of the
signal acquisition electronics has to be rigorously chosen, as well for their values as
their quality, depending on the intended use. For example in [132], authors decide to
add another low-pass filter circuit as they are only interested in low frequencies events
(heart and respiratory rates).

This means that different signal acquisition electronics leads to different shapes of
data. Main priorities while designing signal conditioning electronics can be drastically
different in experimental or real environments. For experimental purposes one would
want to get a signal shape as close as possible to the sensor’s output, in order to be
able to explore all the range of application that are theoretically achievable.

For that, an electronic device that captures the widest possible range of frequencies
is needed, as well as a scalable one regarding signal amplitude to be able to experiment
several sizes of sensor. Moreover, to be as close as possible to the analog sensor’s output
and to capture highest frequencies a high resolution ADC is also needed. Finally, as
experimental devices are designed for very restricted use and are not meant to be
chain produced, high quality electronic components inducing the least possible noise
are preferable. Here are presented several devices used by Tarkett from the first
experimental steps to their final product implemented in real environments.
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Experimental environment electronic devices

Most controlled low level sensor-based and electronic-based experiments on the system
are done using a oscilloscope. It needs external signal conditioning as sensor’s output
signal is too low but it allows to observe directly impacts of changing electronics
components on several electronic measures. It is mainly used on small sections of sensor
for sensitivity and basic response measurement with a precise pressure application
device of brand Inströn. Oscilloscope is usually employed to observe sensors that are
not even installed in the flooring and no database has been recorded with this device.

The second device used for experimental purposes is the DS1103 prototyping panel
of dSpace brand for analog signals. It also needs external signal conditioning as it is not
sensible enough to deal with very low amplitude currents such as those produced by the
sensor. It allows real time signal visualization through a software named ControlDesk
and signal recording and processing are done using Matlab and Simulink, which is
a graphical programming software. Advantages of this device are that it is simple to
test several external signal conditioning components to observe directly their influence
on signals, an internal ADC is programmable which allows observations with a wider
range of frequencies and the ability to test in real time the effect of digital processing
and various models with Matlab/Simulink. Two databases have been recorded using
this device in a nursing home installation described in Figure 1.8 with an electronic
card for signal conditioning that is comparable to the ebox v1 circuit.

The only measurement device that is sensible enough to observe sensor’s output
without any signal conditioning circuit is the Electrometer (model B2987A of Keysight
Technologies manufacturer). It is a costly professional device capable of measuring
directly very low charge signals between 1 f C and 2µC which is precisely the kind
of output coming from the sensor. The main advantage of this device is that it can
perform measurements that are very close to sensor’s response, independently to any
amplifying circuit. It also allows real time visualization and recording as well high
frequency measures (up to 20kHz). One database has been recorded using this device
in experimental conditions with simulated events, to study the feasibility of detecting
low amplitude moves of people lying on the floor.

Real environment electronic devices

Electronic devices used in real environment are largely produced, installed in every
room equipped by Tarkett monitoring system and their function is to process sensor’s
signal, to apply several real time detection algorithms and to store signals in order
to send them to servers if needed. Tarkett designed two different versions of these
processing units, namely ebox v1 and ebox v2.

• ebox v1 : This device possess 8 input channels to connect wires coming from
different sensor areas and every channel is linked to the following : an amplifying
circuit with a single 3.3V supply as described in 1.5 and an ADC with 12 bits
resolution and 100 Hz sampling frequency. Then the 8 digital inputs obtained
after these electronic stages are entering a computing unit with 256 kB ROM, 16
kB RAM and 40 MIPS.

• ebox v2 : The second electronic box version has been designed for several
purposes : to avoid some malfunctions, enhance signal quality and increase
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computing resources. For that, the single supply amplifier is replaced by a
symmetric supply amplifier (see 1.4), another amplifying circuit stage is added to
the first one to treat low amplitude signals on each of the 8 channels, what makes
16 signal inputs to the computing unit (8 amplified once and 8 amplified twice).
Finally the new design computing unit capabilities are : 256 MB for ROM, 256
MB for RAM and 600 MIPS.

These electronic boxes need to be connected to electric supply and internet network.
One hour signal records are stored automatically in their memory which is refreshed
every hour, and Tarkett can distantly launch the command to download these records.
Moreover, several useful informations are provided to medical staff through Tarkett’s
Web application (see Figure 1.9), like activity periods or entries/exits, are also stored
every hour and sent through internet.

Usage Device Signal Cond. Feq. ROM RAM CPU
Oscilloscope No >10kHz - - -

Unique dSpace No >10kHz - - -
Electrometer Yes >10kHz - - -

Industrially Ebox v1 Yes 100Hz 256 kB 16 kB 40 MIPS
Produced Ebox v2 Yes 100Hz 256 MB 256 MB 600 MIPS

Table 1.2: Electronic signal processing devices used by Tarkett.

Table 1.2 summarizes all electronic devices used by Tarkett for experimental and
real measurements. Oscilloscope, dSpace and Electrometer are unique devices whereas
ebox v1 and v2 are industrially produced. Most important differences between ebox
v1 and v2 are computing resources. ROM is the static memory space where models
and routine programs are saved, RAM is the dynamic memory space where temporary
computations are saved and the MIPS value means the amount of operations (in
millions) the CPU is able to execute in one second. These values represent practical
bounds relative to model size or prediction time and machine learning approaches to
take them into account is the topic of Chapter 4.

3.4 Sensitivity, variability and robustness of the sensor

Manufacturing variability

As mentioned in equation 1.2 the sensor’s sensitivity is measured by the d33 piezoelectric
parameter. The film sensor used by Tarkett in their smart flooring is provided by Emfit
company in the form of hundreds meters long rolls. From one sensor roll to another,
the mean sensitivity varies less than 5% but Tarkett observed that high variability
are possible at rolls extremities that can reach 40%. One possible explanation is the
transportation conditions (especially high pressure levels during extended period of
time) and this variability forces Tarkett to get rid of several meters in each roll for its
smart floor application. Nevertheless, in order to not waste too much sensor as it is
costly, Tarkett’s goal is to design monitoring algorithms that are still able to handle a
sensitivity variability of 20%.
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Installation variability

The inner sensitivity of the sensor is not the only aspect impacting signal’s amplitude.
As it is proportional to the mechanical stress exerted, it also depends on the rigidity
of the flooring material put on top of the sensor film, which can be different for each
nursing home. Moreover the signal amplitude is directly linked to physical parameters
relative to the sensed body like its weight or the type of worn shoes. So each room
installation possesses its own signal’s amplitude for a given event and it is then crucial
to be able to deal with a certain amount of amplitude variability.

Apart from sensor response amplitude, installation variability is observable in
other important aspects. Indeed Tarkett smart floor installation process is not yet
fully industrialized and two critical steps remain manually done : cutting sensor
bands and connecting them in series. Maintenance feedbacks showed that if these two
sensible operations were not executed properly some malfunctions, like signal drifts
or overflows, can occur due to short-circuits or high external leakage resistance and
not necessarily observable directly during installation tests (mainly because of micro-
particle residuals and humidity accumulation). Finally, depending on installations,
floor area size covered by sensors can vary, implying different sensor’s area capacitance
and then different signal behaviors as explained in Section 2.2

Signal noise

A last important aspect of signal’s quality that can also vary between equipped rooms
is the signal’s noise. Tarkett observed a ratio of 5 between noisiest rooms and least
noisy ones without any satisfactory explanation of these differences for now, but two
experimental tests show that this noise is essentially coming from electronics. Firstly
the Electrometer which is the most precise measurement instrument and the only one
that does not need any external electronic processing shows negligible noise compared
to electronic boxes (v1 or v2). Secondly noise acquisitions with electronic boxes show
no noticeable difference while they are disconnect to any kind of input, proving that
this noise is neither coming from the sensor itself or from any connector or wire.
Indeed there is no ideal electronic component and each one of them might induce some
electrical noise, especially the amplifier that needs a constant external electric supply
which is possibly noisy itself. For this reason even if it can be costly, each electronic
component of the signal conditioning circuit has to be chosen with great care in this
kind of application.

4 Tarkett’s monitoring system installations and datasets

In a few years Tarkett managed to install its floor based monitoring system in several
elderly care institutions, several countries and with hundreds of equipped rooms. From
the start of this project, Tarkett did not cease to innovate and improve progressively its
system based on client feedbacks and experimental studies. These changes occurred in
every level of the technology from the way to characterize, select and install the floor
sensor, to the method of processing the signal electronically, upgrading from ebox v1
to ebox v2, and to gather data through Tarkett system network architecture. Finally
algorithmic enhancements in the different levels of A.I. intervening in this monitoring
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application are also concerned. This implies working with various sources of data,
coming from different electronic processing devices (presented in the previous Section)
but also from different environments and contexts. This Section presents the main
databases used throughout this work with their characteristics and the conditions in
which they were obtained.

4.1 Experimental databases

In this work we will refer to different existing datasets as "real" or "experimental"
depending on whether they are composed by signals from real situations in elderly
healthcare environments or not.

Simulated falls : This database is composed by signals of simulated daily life events
(walking, sitting, moving objects, etc..) and simulated falls with different initial and
final positions. They were generated by 28 employee volunteers aged from 25 to 45
years old that followed a precise protocol for each acquisition and the mean signal
length is around 20 seconds. It has been done on a small reproduction of a basic Tarkett
room (See Figure 1.7) at Tarkett R&D center and using ebox v1. The 742 acquisitions of
this database are organised in two main labels are Fall (409 signals) and Non-fall (333
signals). That was the very first Tarkett’s database created in 2015 and the initial fall
detection model was trained with these data (see Section 2).

On floor activity : This database of 1332 events was recorded in 2017 by 28 vol-
unteers (same as the previous one). The motivation was to enhance the fall detection
task by training a classifier able to detect human activity while lying down on the
floor. Indeed falls with relatively soft impacts are the hardest ones to detect and elderly
are more likely to be lying on the ground in conscious state in these situations. 15
behaviors have been simulated, as presented in Table 2.1, trying to be representative
of activities that are normal and other that are or not, lying on the ground. These 15
labels are grouped into 3 main labels : Walking, On-Floor and Other (low amplitude
moves and silent events). These acquisitions were done with the Electrometer device in
order to get very precise measurements and to have scalable data to different signal
conditioning electronics, as explained in Section 3.2. The classification strategy on this
database is described in Section 2.

4.2 FIM Care room installation

Real datasets are composed by nursing home data obtained either from elderly patient
rooms or particular highly frequented common space sensor installation especially
dedicated for recording walk signals in a corridor and sit/stand signals in front of a
TV. This common space installation regroup indifferently events from elderly, medical
staff or visitors, are also equipped with cameras for labeling and are recorded through
dSpace device, whereas elderly patient room acquisitions are done with ebox v1 or
ebox v2 and without any camera or other sensor for labeling.

As illustrated in Figure 1.7 a typical Tarkett system room installation is composed
by three areas : the entry, the bathroom and the bedroom and an electronic box (v1 or
v2). As the two ebox versions have 8 input channels an ebox can deal with maximum 8
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Figure 1.7: Basic Tarkett room installation for elderly monitoring and fall detection.

areas, so Tarkett also equipped some wider elderly apartment with more areas but the
huge majority of nursing home rooms are only composed by these three areas. The
entry is a section of a 60 cm band whereas other areas are formed with several of these
sections connected in series by small electric connectors and linked to the ebox through
wires inserted in wall plinths. Sensors are fully covered by the flooring and electronic
boxes are usually placed in a cupboard in the room.

Figure 1.8: Tarkett corridor installation for walk analysis.

Another real condition installation in a nursing home is illustrated in Figure 1.8
mainly for gait analysis, it consists of a highly frequented corridor where elderly and
medical staff walk everyday and a common TV room equipped with chairs for elderly
people. Three cameras are located in these areas for labeling but it needs dSpace
device use and technical experts to record floor sensor data. Two databases using this
installation are presented in the following.

4.3 Real environment databases

Following databases are either obtained from real situations in the set-up presented
in Figure 1.8 with cameras or blindly from elderly patient rooms comparable to the
Figure 1.7 installation.

Real falls: This database of 2717 events was recorded between 2017 and 2018 in
real environments from several retirement homes equipped with Tarkett’s monitoring
system. The motivation was to create a fall database more realistic than the previous
simulated fall database, in order to confront these two datasets and to adapt detection
algorithms taking into account these differences. Every signal comes from extraction
done on one hour signals of real elderly people in their room recorded with ebox
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v1 and sent to Tarkett’s servers. To be more representative of what happens in real
conditions, this dataset is extremely imbalanced with 154 fall signals and others are
randomly extracted non-fall events. Falls are either real falls detected by the fall
detection algorithm implemented at the recording moment and confirmed by medical
staff, or real falls that were not detected by the algorithm and then extracted manually
after medical staff feedback. The procedure for non-fall extraction was to first select
one hour recorded signals that were confirmed to not contain any fall, and then to
extract sub-signals corresponding to activity moments.

Real walks : This database of 146 signals was recorded in 2017 in a retirement home
equipped with Tarkett’s monitoring system. A particular installation has been deployed
for this purpose, consisting in several bands of sensor disposed in an important traffic
corridor of the nursing home. Each band was linked with electronic wires to dSpace
device and passing through a signal conditioning circuit comparable to the one used in
ebox v1. Signals labeling has been done manually by experts using two cameras located
at the corridor’s extremities. This dataset gathers different kinds of walk of elderly
patients and medical staff members organized into 8 labels : medical staff walk, elderly
walk, multiple walks, manual wheelchair, pushed wheelchair, electric wheelchair, walk
with cart and other.

Medical diagnosis motion data : This database of 904 signals was recorded in
2017 by medical experts from a motion analysis perspective. It is divided in two main
parts : real environment signals with freely moving people and experimental conditions
signals with people asked to follow precise protocols. Every signal of these two
environment was recorded using the dSpace device and a signal conditioning circuit
comparable to the one used in ebox v1. Thus 644 walk acquisitions were done in
the same corridor and conditions as previously described real walks database, with a
multidimensional labeling : firstly whether it is a medical staff walk, a patient walk
or a visitor walk; secondly whether it is an equipment free walk, a walk with an
equipment (in this case with details on the equipment) or a multiple people walk;
thirdly, for patient walk, whether is helped by another person or not. Considering
experimental conditions scenarios, 110 sit-to-stand acquisitions (from a bed or a chair) and
150 wheelchair acquisitions were recorded with 10 Tarkett employees. The particularity
of the experimental part of the dataset is its rich contextual information about people
executing the moves (age, gender, approximate weight and height) and all the different
motion phases details.

Ebox v2 acquisitions : This database is only composed by raw signals of elderly
patient daily activities in their room. It is mainly used by Tarkett to compare signals
with ebox v1 in terms of amplitude, precision, quality and defaults. It is necessary
for future developments of the monitoring system but, as no further treatment have
been applied on raw signals, this database is not directly exploitable in our studies on
predictive models.



5. TECHNOLOGICAL CONSTRAINTS FOR INDUSTRIAL MONITORING
SYSTEMS 51

Events Device Env. N° labels Size Duration
Simulated falls Ebox v1 Exp. 2 742 20s
Real falls Ebox v1 Real 2 2717 20s
On-Floor Electrometer Exp. 15 (3 main) 1332 50s
Medical diagnosis dSpace Both (3,3,2) + 2 904 30s
Daily life Ebox v2 Exp. - - -
Real walks dSpace Real 8 146 10s

Table 1.3: Tarkett experimental and real databases for the elderly monitoring applica-
tion.

5 Technological constraints for industrial monitoring systems

This chapter developed a theoretical model explaining how mechanical stress forces
applied on Tarkett’s sensor are converted into digital signal values after amplification
by an electronic montage and an analog/digital converter, which enables simulations
from pressure force data and makes easier to understand and work with data used in
the rest of this thesis. It pointed out that several technological parameters can have a
direct impact on the signal’s nature and then on the ability to perform some detection
tasks. In particular Tarkett uses a sensor designed for dynamic events monitoring and
then is not suited for certain static application like direct weight measure [12, 43] or
immobile object detection [38, 78]. This sensor has also a relaxation behavior after
a mechanical stress, that is dependent on its area and its internal leakage resistance.
Because of the electronic design detectable event frequencies are between 2.4Hz and
50Hz excluding some applications like physiological parameters measurement. In
addition all the variety of measurement devices and databases has been described to
present the overall context of this work on Tarkett’s industrial monitoring system.

Figure 1.9: Tarkett monitoring Web application architecture.

5.1 Detection tasks

The goal of Tarkett is to provide a health monitoring system for elderly people able
to handle several detection tasks from piezoelectric flooring sensor signals. The main
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proposed detection tasks, given in Figure 1.9, are fall detection, entry/exit detection and
night activity detection. Falls are obviously the event with the most impact on elderly
health, with major injuries and even death risks, their detection is then the main priority.
The ultimate purpose regarding this application would be to be able to assess fall risks
in order to prevent them. Other tasks concern human activities without a lot of details,
like room’s entries and exits, or night activities. The main purpose being to distinguish
among them abnormalities like intrusions and highly repeated wake-ups or bathroom
accesses during the night.

Besides of what is proposed to the clients, other detection tasks are targeted.
Some are directly necessary for the system maintenance as technological malfunctions
detection ( abnormally high noise, signal drifts, sensor’s sensitivity issues). Others are
intermediate tasks that can be useful for previous detection tasks or data labeling, as
patient/staff differentiation, gait recognition or people counting. Finally Tarkett also seeks for
long-term detection tasks to enhance its monitoring system services, as patient habits
characterization and the ability to detect habit changes or anomalies, ultimately using
that for health risks assessment.

5.2 Data sources

As described in Section 4, designing machine learning models for all these detection
tasks entails dealing with data heterogeneity due to various data sources. There is firstly
the variability coming from the sensor and the measurement devices themselves. There
are some sensitivity variation between different samples of sensor and as explained in
Section 2.2 different size of sensor (for different room sizes) implies different relaxation
time constant. Signal processing also differ between experimental purposes devices
and ebox v1 or ebox v2. So available signal data are subject to heterogeneity due to
sensor and hardwares variability in terms of amplitude, but also frequency response
and noise or signal distortions.

The other kind of data heterogeneity comes from the type of environment and
context in which data are recorded. The most apparent context difference is between
experimental data, with simulated events executed by people that are told to following
a protocol, and real data. However even among real data there are some dissimilari-
ties. Indeed different elderly healthcare institutions or different departments of one
institution can regroup different kind of patient pathologies or diseases. Finally each
patient has its own physical particularities, like age, gender, height and weight, moving
equipment (cane, walker, wheelchair), that can impact the nature of signals.

5.3 Resource limitations

Every industrial application is subject to several kinds of resource limitations to work
properly, whether it is financial resources, computing resources or even human re-
sources. As previously explained the core of Tarkett’s monitoring application relies
on algorithms that are embedded in an electronic device installed in each room. This
means that detection tasks are constrained by a limited prediction time especially for
the ones supposed to trigger emergency alarms as fall detection. Moreover machine
learning models used for these detection tasks and the associated needed computations
are also subject to memory limitations. Depending on the version of electronic box
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computational resources are different (see Table 1.2) and possible embedded algorithms
differ. It is then crucial to take these limitations into account while designing machine
learning models for Tarkett’s monitoring application.

Data gathering capacities can not be unlimited either. Indeed it is possible to record
remotely data measured by an electronic box through internet network into Tarkett’s
servers. But firstly, for a given elderly healthcare institution the amount of rooms
sending signals at the same time is limited by the internet upload capacities of the
institution. Furthermore data storage is costly and it is not affordable to record data
from every equipped room, then Tarkett has to make the choice of which room’s data
to record and when. Finally, any recorded data arrives in the form of raw unlabeled
signals and data labeling, either it is done by Tarkett employees or medical institution’s
staff, is costly in term of human resources which are also limited.
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1 Human activity time series representation

1.1 Feature extraction on time series : overview

Sensor’s signal that Tarkett has to deal with is, as explained in previous Chapter, a
continuous analog charge signal approximately proportional to pressure force variation
applied on the floor. This signal is also electronically and digitally processed to obtain
an amplified and filtered time series version of this source analog signal. Contrary to
physically interpretable motion sensors as accelerometers or gyroscopes, these time
series do not reflect directly the body motion on the sensor and the extraction of
relevant features is necessary to perform complex detection tasks like fall detection or
gait analysis.

At first sight, in general these computed features depend on the kind of sensor and
its output which can be categorized according to data dimensionality. These sensor
data are usually either images for camera based systems or one dimensional time series
for other systems (see Table 1.1). All these different kind of data can be viewed as
time series of varying dimensions, with camera videos that are matrices series or 3
dimensional tensors in the case of depth cameras [278], and non vision based sensors
often deliver one dimensional time series on several channels. Considering binary
sensor systems, extracted features are often close to direct sensors outputs. For example,
in [239] the sequence of multiple binary sensors activation is directly used as features to
train a hidden markov chain model while [213] uses short patterns of sensors activation
to train a finite state automaton. These kind of systems can be viewed as boolean time
series with numerous channels.

The number of channels and how much their corresponding time series are redun-
dant is also important with regards to the richness and the reliability of the sensors
signals information, thus the feature set has to be adapted to the multiplicity and
redundancy of inputs. For example accelerometers often provide signals on 3 channels
corresponding to 3 independent axes, but used in combination with gyroscopes or mag-
netometer these channels are correlated, which is used for better reliability [148, 222].
Employing correlated channels of time series can also be used to avoid obstruction
issues for cameras for instance [81] or to deduce spatial information with microphones
[154].

Furthermore desired detection tasks and used models determine also importantly
the feature set, for example extracted features for intrusion detection might not be
the same as for fall detection, and the feature extraction effort for a simple threshold
based model might be higher than for a neural network, in which features would be
computed intrinsically through first layers. So depending on these aspects, human
activity monitoring applications often require their own particular set of features of
adapted nature, size and complexity.

Usually, while sensor’s output is not directly exploitable to extract relevant features
for desired detection tasks, then computing a different data representation of time
series is a common approach. Indeed to study frequency domain can be more relevant
while attempting to detect short duration highly dynamic events with good signal
resolution whereas autocorrelation computation or autoregressive models with wavelet
decomposition would be more suited for events with repeated patterns [6, 119, 250].

For our monitoring application, we decided to investigate the widest features group
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in experimental conditions in order to obtain an important variety with regards to
the data representation, and then to study separately the selection of a sub-group of
features, which is necessary to have a functional model in real conditions.

1.2 Time and frequency representations of the signal

Main monitoring tasks have to be executed in real time within an embedded system
and therefore detection tasks have to be based on a small real time signal window
of at most a few seconds. Then a signal representation is a function of this signal
portion, preferably reversible, such as it conserves the main part of the original signal
information, but providing emphasis on some time/frequency aspects.

The choice of a suited signal representation is an important step used to better point
out events targeted by the desired detection tasks. This step determines the further
feature extraction step and moreover increases the interpretability of the feature set.
In this section is presented the time/frequency representations of the signal used for
feature extraction.

1.2.1 Derivative and integral

Signal’s derivative and integral are two representations that serve respectively to point
out local or average behaviors of the signal, with the derivative that tends to sharpen
variations and integral that tends to smooth the signal. As explained in the next section,
all signal representations and features will be computed on a fixed length S sliding
window, so in this case these representations are discrete and finite approximations
defined for a signal vector (s0, ..., sS−1) as follows :

∀0≤ j < S, D[j] = sj+1 − sj, I[j] =
j

∑
k=0

sk .

Figure 2.1 illustrates different kind of event signals with their corresponding deriva-
tive and integral. In terms of physics the integral of the signal should be homogeneous
to the total applied force on the sensor but the relaxation phenomenon compensates
this integration and also permit the amplifier to not saturate. This phenomenon could
help to emphasize spikes of numerous people on the sensor or while a pressure is
brutally applied as in the case of a weight launch.

For these reasons, the derivative representation should intuitively be useful for
detection of rapid high amplitude variations events like brutal falls whereas the integral
quantifies the disproportion between positive and negative peaks. Thus relaxation
phenomenon can be pointed out by the integral as it is observable for weight launches
and moving or removing objects from the ground can lead to negative integral as it is
observable on the chair move event.

1.2.2 Autocorrelation

Autocorrelation is the correlation of the signal with a delayed version of itself, defined
as :
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Figure 2.1: Various event signals with their derivatives and integrals.
First column represent original filtered signals, second one is the derivative and the third one is the

integral. In row order these events correspond to a fall signal, a chair move signal, two different walk
signals and repeated weight launches.

∀0≤ j < S, R[j] =
1
σ2

s

S

∑
k=j

(sk − µ)(sk−j − µ) ,

with µ the mean and σ2
s the variance of the signal.

This representation can be used to spot events with repeating patterns, such as
walks, balancing on a chair or doing some physical exercise. Daily life events containing
repeating patterns are common and so are several staff activities like room cleaning.
Thus recognizing them can be useful to distinguish staff activities from patient activities.
A work on patient/staff recognition based on walks is presented in Section 2.4. Indeed,
the main event that can be efficiently characterized by autocorrelation is the walk and
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this representation can theoretically serve to quantify some gait features like walk speed
and regularity.

Figure 2.2: Example signals with their autocorrelation.
In row order these events correspond to two different walk signals, a chair move signal and repeated

weight launches. As shown autocorrelation seems well suited for walk recognition.

1.2.3 Fourier transform and spectrogram

Fourier transform and spectrogram are used to study the spectral domain of event
signals. They can be useful to characterize and discriminate highly dynamic events
with rapid variations like human or object falls, or continuous stresses on the floor by
objects like chair moves or wheelchairs. Indeed, as explained in Section 3.2, the lower
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cut-off frequency of the electronic signal conditioning system is around 2.4Hz which is
yet higher than a usual elderly walk.

These discrete Fourier transform and spectrogram are respectively defined as follows
:

S[ f ] =
S−1

∑
k=0

ske−
2πi
S f k, W[j, f ] =

S−1

∑
k=j

sks∗k−je
− 2πi

S f k .

Figure 2.3: Frequency representations of various event signals.
The middle column represents Wigner-Ville spectrograms and last columns is the fast Fourier transform.

In row order these events correspond to a fall, a walk signal, a chair move signal and repeated weight
launches. For both these time series representations, the signal energy location concentration appear to be

important to consider to perform event detection.

It can be pointed out that complex approximately repeated patterns can be clearly
observed on spectrograms although being harder to emphasize using only Fourier
transform. Moreover the energy concentration in areas of the spectrogram is an
important event indicator, chaotic events on the contrary have tendency to create a
dispersed energy fog in the spectrogram.

All these signal representations are computed essentially from the original signal
(contrary to parametric representation like autoregressive models) so they contain the
same information but expressed differently. Observations made on simple and intuitive
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behaviors of each of these allowed to design adapted feature sets, grouped by signal
representations and described in the next section.

1.3 Experimental feature set on human activity data

This section briefly describes the different types of features computed on each time
series representation. The whole detailed list of all features is presented in Appendix
A.

1.3.1 Features on signal, derivative and integral

The feature set computed on the signal, its derivative and its integral can be regrouped
in two kinds : statistical features that are only based on time series values (indepen-
dently to the time order) and temporal features that are strongly dependent to time
series order. The first group contains for example max/min values, mean, variance and
higher moments of the time series and the second group contains the peak number and
how much time a threshold is crossed for instance.

1.3.2 Features on autocorrelation

The feature set computed on the autocorrelation relies on local minimums and max-
imums and their position on the time delay axis. As the notion of local extremum
depends on the resolution of autocorrelation computation, a parameter is introduced
corresponding to the minimum time distance between two extremum.

The amount of such local extremum corresponds to a first feature. Then from the
list of local maximum the mean and standard deviation of their values are computed, as
well as the mean and standard deviation of distances between two successive maximum.
The same is done for the local minimum list.

Figure 2.4: An example of feature on autocorrelation : mean distance between two
successive local maximums.
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1.3.3 Features on Fourier transform and spectrograms

The feature set computed on the Fourier transform is designed to capture the energy
distribution with regards to different frequencies. The feature set computed on the
spectrogram follows the same idea as for the Fourier transform with the difference that
the time evolution of the spectral energy distribution is observable. For that purpose,
several gaussian window filters are applied to weight a specific area of the spectrogram.
To not introduce too much parameters in the feature design, these gaussian window
are centered in the barycenter of the spectrogram energy. The window with an angle of
θ = π

4 emphasizes low frequencies at the beginning of the event and higher ones for the
following time steps, and inversely for θ = 3 π

4 . θ = 0 focuses on one main frequency
and θ = π

2 on one time step which correspond to the coordinates of the barycenter.
Moreover, the spectral and temporal widths of the part of spectrogram higher than a
certain threshold in terms of energy also serve as features.

Figure 2.5: An example of feature on spectrogram : dimensions of the time/frequency
window above a certain level of energy.

2 Supervised learning for human activity recognition

As described in 5.1 Tarkett aims at performing with its smartfloor several detection
tasks that can be useful to monitor elderly patients health. For this purpose various
experimental databases have been created, firstly to verify which detection tasks were
conceivable with the technology and then to try to apply them in real conditions.
These databases are composed by signals according to the targeted application with
labels in a discrete space Y = {1, ...,K} (with K the number of labels). As explained in
previous section, from these signals are extracted features vectors of a space X ⊂Rp

(with p the number of features). Statistical predictive models are trained with m inputs
(xi,yi)1≤i≤m ∈ (X ×Y)m to "map" a predictor function ĥ from X to Y (a.k.a classifier if
Y is discrete and regressor if it is continuous), usually by minimizing the empirical error
relatively to a loss function l defined as :

R̂m(h) =
1
m

m

∑
i=1

l(h(xi),yi) (2.1)
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This approach is known as Supervised Learning ("supervised" because of the
knowledge of labels for the training) and is justified by PAC theory proving that, under
the assumption that (xi,yi) are drawn i.i.d from a probability distribution P over X ×Y ,
this empirical error tends asymptotically towards the theoretic expected error :

RP(h) = E(x,y)∼P (l(h(x),y) (2.2)

After providing a short overview of supervised methods used in human activity
monitoring, this section focuses on one particular supervised learning algorithm favored
by Tarkett, namely Random Forests. It explains this choice and presents various results
obtained with these models on different detection problems related to human activity
monitoring.

2.1 Supervised models for activity monitoring : overview

Sensors and applications oriented overviews of human monitoring are presented in
Section 1, as well as one about time series representation and features in Section 1.1. In
the following are described several supervised learning methods used in related works
about human activity monitoring.

Supervised learning models for human activity monitoring depend both on kind
of signals and the detection tasks. As illustrated in Figure 1.1 the activity recognition
task can be separated between short duration activities corresponding to a few seconds
and long duration ones that can last several hours. Data representation and features
extraction varies depending on this aspect and so is for predictive models. Moreover
some applications attempt to discriminate one event from all the rest, like fall detection,
whereas others aim at classifying multiple events or to achieve physical parameter
estimation, like gait speed and strive. What also matters while choosing an appropriate
model is the data nature and how much it is interpretable with regards to the prediction
task. For example physiological parameters monitoring applications often come with
body sensors providing signals close to the parameter to estimate, as described in
Section 1.2 of Chapter 1.

Motion features estimation for short duration activities : While signals quality and
accuracy are high enough to allow extraction of relevant physical features then predic-
tive models of low complexity can be sufficient to get good prediction performance
on short duration human activities. For instance fall detection can be achieved using
only threshold-based classifiers with some wearable sensor like gyroscopes [29] or
accelerometers [30].

Support vector machine (SVM) classifiers seems well suited for human activity
detection based on motion features, especially using radial basis functions (RBF),
because events are then characterized by the amplitude range of a few values describing
motion physics. For example SVM are used for fall detection in [80] with accelerometer
signals and in [273] for posture recognition with cameras. With accelerometers data,
SVM have also been used in combination with auto-regressive models parameter
estimation for activity recognition [118, 119]. Without wearable sensors, this kind
of classifier can also serve to detect precise human motion, like in [8] for gesture
recognition using cameras or for gait recognition using Wifi signals in [250].
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Figure 2.6: Example of the saturation effect on one channel of the electronic box.
This can be caused either by a sensor default in one of the areas, or an electronic problem at wire levels or

inside the electronic box.

In the case of Tarkett monitoring system threshold-based decision rules are used for
basic routine work of the system including malfunction detection, activity detection
(in the sense of non-silent signal) and entry/exit detection. Possible malfunctions are
essentially drifts of the signal mean or brutal signal jumps (see Figure 2.6) due to
technical reasons evoked in section 3.4 of Chapter 1. They are important to detect in
order to avoid false alarms and other detection drawbacks, to help to fasten maintenance
intervention and are easily detectable with a threshold on the mean signal value feature.
Activity detection in each area of the installation is triggered by a threshold test on
the mean energy of the signal fixed on a value supposed to be just a bit higher than
noise mean energy. Considering entry/exit detection, it is handled by an intuitive
handmade graph based model combining areas activation (especially the small entry
area as described in Figure 1.7) and expert knowledge about the health institution
schedule (like common lunch time), depending on hours these activations occur.

Time/frequency representations for short duration activities : While dealing with
short duration events to detect using good resolution signals, pattern recognition
methods can also be efficient to detect human activities. For that purpose existing
works propose to directly segment times series of multiple sensors into core patterns
through dictionary learning to help activity recognition [68, 159, 173]. When input
data are spectrogram-like representations of signals, neural networks can also achieve
pattern recognition in a similar manner than images classification [220, 270]. But more
generally deep learning for human activity recognition is also usable on a feature space
designed "by hand" with good performance [113, 161].

Despite these kind of models require an important computational investment, they
present some clear advantages like their scalability to complex data distributions, their
ease of implementation on raw data without much feature engineering and their ability
to generate new samples from training knowledge.
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Decision tree based models on time series : The random forest is an ensemble
classifier invented about two decades ago [35], composed by decision trees. The
decision functions of decision trees (from X to Y) can be expressed as :

dT(x) = ∑
l∈L

vl1[x∈l] , (2.3)

with x ∈ X an element of the feature space and vl ∈ Y the predicted classification or
regression value . The set L corresponds to an ensemble of leaves, which are subspaces
of X of the form :

⋂
1[τ1<xi<τ2].

So a decision tree (DT) provides a partition of the feature space X labeled by values
of Y and where borders of each partition subspace are orthogonal to feature variable
axis. A random forest (RF) modelM is then an ensemble of several DT (T1, ..., TS) and
its decision function is obtained by a majority vote between these DT for a classification
or a mean prediction in a regression situation, which might also be weighted :

• Classification random forest decision function : dM(x) = argmax
y∈Y

{
S
∑

i=1
wi1[dTi (x)=y]}

• Regression random forest decision function : dM(x) = 1
S

S
∑

i=1
widTi(x)

This formulation is common for any ensemble predictor [114], with S the number
of sub-predictors in the ensemble and wi , 1 if sub-predictors response is weighted. It
is interesting to note that by superposing several labeled partitions corresponding to
several DT of a RF, we obtain a new partition with borders that are still orthogonal to
feature variables axis. This suggests that a RF classifier could be expressed as a unique
decision tree (more details in Chapter 4).

Figure 2.7: Example of a 2-d decision tree and its corresponding partitioning.
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Random forest training algorithm: The training principle of random forests is also
generalized to other ensemble predictors by the procedure known as "bagging" (for
bootstrap-aggregating). Each DT of the RF is trained on a bootstrap version of the
training dataset to reduce correlation between trees by the following process, which is
known as CART algorithm. Given some bootstrap labeled samples, each tree is built
recursively from the root to the leaves by applying the same splitting procedure for
each node relatively to the part of samples reaching the node. While on a node n, this
procedure looks for a pair of feature variable and threshold (ϕn,τn) that splits the best
samples reaching this node, with the splitting efficiency based on an impurity measure.
Impurity measures, which can also be found under the name of entropy, are used to
quantify either uncertainty while dealing with a random variable or purity with regard
to labels while dealing with a set of samples. The author of [64] describes a general
entropy formula with a parameter β adjusting the concavity of the function and where
P = (p1, ..., pK) the probabilities for each label in case of a random variable and the label
proportions for a set of samples :

Hβ(P) =
2β−1

2β−1 − 1

(
1−

K

∑
i=1

pβ
i

)
. (2.4)

This work also shows that this entropy is the same as the Gini index for β = 2
and the Shannon entropy while β → 1, which are the two most common impurity
measures for building decision trees. In this work we used the classic Gini index
(usually preferred for computation simplicity) then defined as :

Gini(P) = 1−
K

∑
i=1

p2
i . (2.5)

At a given node n, CART algorithm chooses the split that maximizes the purity gain
relatively to this measure defined as :

G(ϕn,τn) = Gini(Pn)− αlGini(Pl)− αrGini(Pr), (2.6)

with Pn label proportions at the node n and Pl , Pr label proportions distributed on
the left and right sides of the node n after the split, weighted by αl ,αr, the part of
samples reaching left and right sides (αl = 1− αr).

It is also important to precise that for reducing further correlations between trees
of the RF and to fasten the training, only a randomly drawn subset of all features are
tested during the split selection, which is usually set to

√
p, with p the total amount of

features [35].

Advantages of random forests : Random forests present numerous advantages as a
supervised learning method but also with regards to industrial applications, which
make them still largely used for regression and classification problems, despite their
development occurred several decades ago. This model is very flexible as it has a
scalable complexity through the amount of DT it encompasses and their depth, and
it is then easily adaptable to the complexity of training data. Moreover, contrary to
SVM or K-NN models for example, random forests are not very sensitive to distances
between training samples in the feature space. Indeed as explained earlier, the impurity
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criteria used to build DT node splits is independent to distances between samples and
the split hyperplane, so this point makes this model very convenient while dealing
with high dimensional feature spaces. The node splitting procedure also provides an
inherent feature selection ensuring to ignore features that are useless for separating
training data. Concurrently to this feature selection is provided a feature importance
scoring, defined and exploited in Section 2.5, that allows better interpretation of the
model and the training data.

More generally random forests come with several interpretation capacities which
are highly valuable for industrial applications of machine learning. Added to this
feature importance provided by this model, it can also be pointed out that decision rules
of decision trees are by definition very interpretable compared to some "black-box"
models such as neural networks. Finally the random forest training algorithm also
allows to achieve generalization error estimation through "Out-of-Bag" scores (computed
on samples that are out of the bootstrap sample set). It also permits fine clustering
using data distribution in leaves partition [194]. Considering very practical real world
aspects of models implementation decision trees represent one of the easiest model to
implement without any statistical knowledge for developer teams and provide relatively
fast predictions.

For all these reasons and encouraged by preliminary works on machine learning
models comparison [172, 217] Tarkett decided to focus on random forests for the main
part of their machine learning applications. What is shown in the last two chapters of
this work is that decision trees can also be considered advantageous insofar as intuitive
model updates are achievable in the context of model-based transfer learning and budget
learning.

Random forests on TS for human activity monitoring : All these mentioned advan-
tages of decision trees and random forests make these models good candidates for
industrial applications of supervised learning, especially for supervised detection based
on time series as for Tarkett monitoring system. Numerous works treat the problem
of online learning of decision trees while confronted to real application time series.
For instance [79] introduces the notion of "Hoeffding trees" using Hoeffding bounds to
determine the amount of sample from which decision tree models need to be updated
on data streams. Another work on decision trees learning from data streams [212]
combines a variant of usual RF known as extremely randomized trees [99] and online bag-
ging [188] to develop a new method a online decision tree learning. Some works study
the question of using directly time sequences in node splits [74, 266], by modifying
unique value threshold tests with TS similarity measures whereas some others induce
temporality in tree models through, for example, the notion of "Markovian decision
trees" [130, 137].

Another research topic about decision tree based models on real application time
series concerns the adaptation of models while confronted with evolving data streams.
Several works treat this question [94, 102, 167] and authors in [155] considers, on top of
that, uncertainty on attributes. So the literature about decision tree based models on
time series is very rich and often deals with very practical but also crucial considerations
for industrial applications. Moreover the majority of previously mentioned works points
out special concerns about the computational efficiency of these models, a question
briefly evoked at the end of this chapter and more largely discussed in chapter 4.
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Considering special applications to human activity monitoring, random forest
models have been already proposed in the context of fall detection on Wifi signal
[252] and RFID tag signals [15] and several comparative studies of supervised learning
models include random forests, with interesting results for human activities recognition
and with various sensors [6, 23, 76, 222, 272, 281].

2.2 Random forests on time series : application to fall detection

The first major application for Tarkett monitoring system is fall detection. Here is
described the approach to build the initial fall detection algorithm based on a simulated
database presented in Section 4.1 of Chapter 1.

2.2.1 Data processing

The experimental environment for this fall detection database is described in Section
4.1 of Chapter 1. Even though the experimental installation used for this database is
composed by 3 areas (illustrated in Figure 1.7), each one was not plugged to the same
input in the electronic box, so to take into account all the 8 input channels they are
summed into one overall signal. After summing the different channels the signal is
centered by removing from it a sliding mean and the noise is filtered by a second order
butterworth low-pass filter. To pass from a signal database into a feature instances
database for the training phase, first a sliding window is applied to get fixed length
signal portions of size Ts (here Ts = 2.5s).

To avoid any signal location bias in training, signal extraction positions are drawn
randomly (completely randomly for non-falls and for fall signals between window
locations containing the fall). A data augmentation step is also applied in order to limit
over-fitting and to increase data diversity a bit by selecting Ns = 5 extraction locations
in each signal. Then all signal representations and corresponding feature sets described
in the previous section are computed on each extracted signal portion, resulting in
labeled feature instances database used for supervised learning.

2.2.2 Instantaneous fall detection

Every instance of the produced database corresponds to the whole feature set computed
on a fixed size portion of signal. Training process is realized on these instances whereas
the prediction is intended to be done on entire signal through a sliding window. A
random forest model is then trained on the dataset composed by these instances and
performance evaluation process is done by k-fold validation with k = 10. To avoid
any over-fitting bias due to data augmentation (implying that several instances come
from the same signal and can be very close) the k-fold separation is done on instances
batches corresponding to original signals. Thus two instances of the same signal can
not be in the training set and testing set at the same time.

2.2.3 Macro-decision detection with sliding window and prediction buffer

In practice in real conditions there is no random portion of signal drawn to compute
features, but rather a sliding window inducing feature computation each new time
step with a corresponding real time random forest prediction at the sampling rate
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Figure 2.8: ROC curves on fall detection simulated DB according to each signal
representation used to extract features.

fs = 100Hz. The time evolution of this random forest response can also be useful to
exploit. Indeed it is reasonable to at least assume that a fall duration is bounded in
time, it can neither be too short (under 0.2 s) or too long (over 5 s).

For this reason a macro-decision model, based on the smoothing of random forest
instantaneous predictions, have been developed. The final model decision dM(st) of the
random forest of size S, at time t on the signal value st, is based on the mean amount
of trees predicting a fall during B previous timesteps, compared with a threshold τd:

dM(st) = 1⇔ 1
B

1
S

t

∑
j=t−B

S

∑
i=1

dTi(xj) > τd, (2.7)

with xj the feature vector computed on the sliding window [sj−Ts : sj].
As illustrated in Figure 2.9 the macro-decision allows to reduce the volatility of

real-time random forest response, thus making the detection more reliable by avoiding
some very short false alarms.

2.3 On-floor motion detection

The previous fall DB contains falls simulated by employees following a protocol that
varies only in the fall direction : "Forward, Backward and Lateral". But one of the
biggest challenge for efficient fall detection is "soft" fall detection, meaning while the
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Figure 2.9: Effect of the macro-decision buffer on a real false alarm (B = 0.5s,τd = 0.8).
Real example of a false alarm with the instantaneous random forest model. On the left is represented the

original signal and on the right is represented the instantaneous random forest output (green), the
smoothed version (blue) and the detection threshold (red).

fall is not brutal and the patient struggles some time before reaching the ground. In
that case the patient is likely to be still conscious and moving on the ground. This is
the motivation of this new detection task with this dedicated experimental dataset.

Furthermore signals of this DB are acquired by the Electrometer device able to
measure very low charge signals and avoiding the use of an external amplifying circuit.
This DB has been built concurrently to the design of ebox v2 to investigate if further
applications of the floor sensor were achievable with better electronics, in particular
exploiting low amplitude signals. So this experimental DB has been developed for two
parallel research objectives : firstly to check if low activity signals were exploitable using
our sensor and with an adequate electronic signal acquisition. In this case this study
would be used to design a new electronic box able to deal with this kind of signals
(ebox v2). Secondly the other objective was to study the feasibility of detecting, among
these low activity signals, the ones corresponding to a person struggling on the floor,
what might serve to enhance fall detection in "soft" fall situations. In this experimental
context, this DB is annotated with numerous sub-labels that can be organized as follows
(all details on labels are given in Table 2.1) :

• Walks : normal walks and simulated elderly walks.

• On-floor motion : including simulated events corresponding to what may happen
after a fall if the faller remains conscious.

• Low amplitude signals corresponding to non-problematic activities : sitting on a
sofa or a chair while balancing or doing feet movements.

• Undetectable events : silence or laying on bed, supposed to generate no signal on
the sensor.

As data are obtained with a completely different device from ebox v1, their quality
is highly better but signals are hardly comparable to real installed system signals.

2.3.1 Electrometer signals nature

Data processing is different here from the previous DB in the way that the signal does
not need to be inverted (this step is due to the sign of the transfer function gain of the
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Label Description Number Macro-Label Number
0 Walking (normal) 112

Walk 164

4 Walking (old) 52

1 Sitting in sofa + feet movement 205

Move 417

2 Standing with balancing 212

3 Silence 79

Low-signal 175

14 Laying on bed 96

5 Complaining (back) 68

On-Floor 576

6 Complaining (side) 69

7 Complaining (front) 16

8 Crawling 62

9 Trying to lean (wall/bed/sofa) 45

10 Laying down (front) 1

11 Laying down (back) 99

12 Laying down (side) 85

13 Leaned to a sofa (floor) 131

Table 2.1: Description of the on-floor activity database obtained with the Electrometer.

external conditioning circuit, as expressed in Equation 1.5) and only one channel is
recorded for each signal event.

Figure 2.10: Comparison of the signal’s nature between different electronics.
First row shows a walk signal acquired by ebox v1 on the left and its integral on the right, whereas

second row shows a walk signal acquired by the Electrometer on the left and its derivative on the right.

As described in Equation 1.3, after signal conditioning circuit (for amplification
purpose), the output signal is homogeneous to a current signal which is the derivative
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of the original signal. This can be observed on Figure 2.10 representing walk signals
with the two different electronic devices. So this relation implies further links between
features and TS representations they belong to, while comparing the two databases.
This suggests that a feature space harmonization, based on the theoretic electronic
model knowledge, might be possible but it will not be discussed here.

2.3.2 Walk activity and low signals discrimination

The initial trained model on these data is a random forest classifier on three labels :
Walking, OnFloor and Other. As shown in Figure 2.11, this models seems to provide
drastically good classification for separating the walks from the rest of events, which
is a promising result for extended elderly activity monitoring, as explained in details
in the next application on walk recognition (see Section 2.4). On the contrary Figure
2.12 illustrates that distinguishing OnFloor movements from the rest seems far harder
to achieve on these data.

Figure 2.11: ROC curves of RF classifiers for Walk vs Non-walk events detection.

Figure 2.12: ROC curves of RF classifiers for OnFloor motion detection.
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Nevertheless these observations have to be put in perspective for the following
reasons : firstly as this DB is focused on low amplitude signal recognition it is biased
such as the Walk is almost separable uniquely by observing the mean raw amplitude.
Secondly as explained previously, the OnFloor event detection is intend to be used
in combination with fall detection, so it would not be triggered only by itself. Thus
even a small ROC area under curve score above 0.5 can be considered as promising for
investigating strategies to enhance fall detection results.

2.3.3 Cascade random forests classifier

Figure 2.13: Illustration of the cascade classifier for Walk and OnFloor events detection.

Figure 2.14: ROC curve of combined cascade classifier for OnFloor motion detection.

This model design is an illustration of the need of model interpretation : the
final classifier is decomposed into three separated classifiers on different class sets
to better understand how data are distributed and what are the situations provoking
classification issues. Indeed predictions analysis of the first trained model showed
that there was almost no confusion between the Walk class and the OnFloor class but
false alarms were mainly due to miss-classification related with the two low amplitude
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signals sub-classes. So we developed a cascade random forest model composed by 3
binary RF classifiers trained on different labeling : 1) Walk vs Non-walk, 2) Non-walk vs
OnFloor motion and other low amplitude signals and 3) OnFloor vs false alarms among
other low amplitude signals.

This combined model presents several advantages : it provides a refined multi-class
classification and is more interpretable than a direct multi-class unique random forest.
Moreover it presents better results with regards to the main interest label (OnFloor
motion) as shown in Table 2.2.

2.4 Real walks recognition

Numerous medical researches about elderly health mention that gait shape can reveal
important indicators about physical state degradation [115, 185], patient motion capac-
ities [37, 180], the falling risk [87, 116, 210] and even mood disorders [73]. Moreover
fall detection or these kind of dangerous anomaly alarms need to be triggered mainly
while the patient is alone. Thus recognizing whether a patient is isolated or not may be
a significant improvement to lower the false alarm rate for these applications. It may
also serve to detect patient room night intrusions in elderly institutions.

As described in Section 4.2 signals of this DB come from a walkway in an elderly
healthcare institution, composed by more than 10 consecutive small areas of sensor,
connected with the same signal conditioning electronic circuit than ebox v1. So the
difference in data processing for this DB is mainly the number and the size of areas,
each providing a signal, which allows to exploit spatial information along the pathway.

Patient walk recognition

This DB contains a double labeling focused on walk situation recognition, one label
indicates if the signal corresponds exclusively to elderly people on the walkway, to
medical staff people or if it is both. The other label indicates if it is a walk without any
equipment, if a cart or a wheelchair is used, or if it is a mix walk (often the case while
someone is pushing a wheelchair of someone else).

Figure 2.15: ROC curves of elderly walk recognition task on the corridor.
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Figure 2.16: One vs all mean AUC of ROC curves on the walk equipment recognition
task.

Gait features

In order to quantify gait frequency and stride speed we consider only one-person walks
on which are computed two values : the mean distance between local maximums of
autocorrelation and the inverse of mean time passed on each area of the walkway (that
are supposed to be of the same length) during the walk. These can be considered
intuitively as good approximations of step mean duration, which is the inverse of gait
frequency, and stride speed.

Such gait features are known to be important indicators for patient global health
state assessment and are even correlated to fall risk. A close view on these values over
the Real Walk database presented in Figure 2.17 confirms the interest of autocorrelation
representation for the walk event. It also shows that elderly people can be distinguished
from non-elderly ones, which can have interesting application for activity monitoring
in elderly healthcare institutions, especially for separating staff activity from patient
activity.

Figure 2.17: Gait features comparison between elderly and non-elderly people.
Left boxplot represents the mean distance between local maximums of autocorrelation, it is part of the

total feature set presented earlier. The right one represents the inverse of the mean time passed on each
area of the walkway while walking on it. It is proportional to the mean walking speed.

Practical limits in daily life monitoring

Beside the interesting properties of the mentioned gait features and the achievable
detection tasks presented on this DB, these observations remain yet experimental for
two main reasons. Firstly the data collecting context is different from patient room
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installations as distances between room extremities are a lot shorter which is not enough
to build stable gait indicators and sensor areas configuration does not allow to extract
any spatial information contrary to the walkway installation. Secondly, this DB labeling
was possible only through cameras installed in this public location with the agreement
of resident and workers but is much harder in personal resident rooms for obvious
confidentiality reasons. Then a major practical obstacle remains to confirm and extend
this experimental study into elderly room monitoring installations.

2.5 Conclusion

In previous sections is presented the ensemble of TS representations and features
extracted we built to obtain our datasets on three key health monitoring applications
: fall detection, on-floor motion detection and walk analysis. These datasets allowed
us to train several models based on random forests that show promising results on
these experimental data like around 90%,5% of TPR/FPR for fall detection, a combined
classifier able to detect motion of people on floor with more than 80% of ROC AUC
score and models that are able to distinguish efficiently elderly and non-elderly walks
as well as walk equipment use.

Each of these models are still considered experimental because of at least one major
difference with real conditions : the fall detection DB is composed by simulated falls
and non-elderly people, the on-floor motion DB is gathered by a particular electronic
acquisition device of high quality with different signal’s nature, the real walk DB is
obtained this time in a real healthcare institutions but in a long walkway with several
sensor areas whereas Tarkett’s monitoring system is installed in patient rooms with
poor spatial information, which excludes for now some of the gait analysis capabilities.

Performances on experimental conditions

DB Falls Falls(M) On-floor On-floor On-floor(C) Real Walk Real Walk
Label Fall Fall Walks On-floor Both Elderly Equipment
Raw 96.0 96.5 93.5 67.2 71.1 92.9 88.7
Derivative 97.1 97.3 98.5 71.1 72.0 94.5 92.9
Integral 97.3 97.5 99.1 71.0 65.4 94.1 92.7
FFT 97.2 97.0 99.9 77.0 71.3 94.6 92.1
Spectro. 97.6 97.8 99.9 77.3 69.5 94.6 91.6
Autocorr. 97.5 96.3 99.9 78.9 65.5 94.0 93.2
All 97.4 97.5 99.8 78.8 84.3 94.0 92.3

Table 2.2: Mean ROC AUC by feature group and classification task.
The second column refers to fall detection with macro-decision described in Section 2.2.3. On-floor(C)

refers to the 3-layers combined classifier described in Section 2.3.3. The last column is a mean AUC score
over several one versus all classifications based on walks labeled by equipment use.

So the results on these applications mainly serve to study what seems achiev-
able with the monitoring system, even if some of these application need technical
enhancement (for instance in electronics or installations) to be usable in real condi-
tions. Summarized results are presented in Table 2.2, they have also been assessed
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separately with random forests trained on each TS representation in order to observe
their relevance with regard to each application and labeling.

In the majority of detection tasks it seems that it is not necessarily better to use
features of all time series representations. On the contrary, using only features of the
original raw signal itself clearly shows lower performances. This suggests that a unique
well suited representation for each detection task should be sufficient. We can also
remark that some representations, like spectrograms or autocorrelation, regroup less
features than other ones and are however well performing from a prediction accuracy
perspective. Nevertheless even if the mean ROC AUC of models built on each group
of features are comparable, one may prefer one representation based on TPR/FPR
trade-offs reached by each ROC curve.

Importance of TS representations and features

The feature importance provided by the model for a given feature corresponds to
the cumulated impurity decrease in decision trees splits, weighted by the amount of
samples reaching these splits. Relatively to a decision tree T the feature importance of
a feature ϕ is :

Imp(ϕ) = ∑
n∈T

1[ϕn=ϕ]pn∆G(ϕn,τn) , (2.8)

with ∆G(ϕn,τn) the Gini gain at node n as defined earlier and pn the proportion of
samples reaching this node. Then the total feature importance relatively to the random
forest is obtained by averaging feature importance over all the trees of the RF.

Figure 2.18: Feature importance of the 40 best features on simulated falls DB by signal
representation.

As it is shown in Figure 2.18 main features chosen by the random forest model
for the fall detection task belong to the derivative representation of the signal but
some features from raw signal, Fourier transform and spectrogram are also impacting.
Another observation is that the standard deviation of this feature importance is non-
negligible, which suggests some uncertainty about this ranking beyond the 10 first
features. This can be explained by the inherent randomness in the feature selection
process of random forests.
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Figure 2.19: Feature importance on the OnFloor DB by signal representation and
depending on labeling.

On the left is represented the features importance relatively the Walk detection task and the OnFloor
detection task on the right.

Figure 2.20: Feature importance on the Real Walk DB by signal representation and
depending on the amount of features considered at each split.

Indeed Figure 2.20 shows that this high variance effect is a bit reduced while
considering all p features in each split selection instead of

√
p features. It is also

observable in Figure 2.19 that, depending on the chosen labeling, features and TS
representations ranking can vary a lot. This is also understandable in terms of mutual
information, another feature importance measure discussed in the next section.

Even though the derivative representation is over represented while observing
this feature importance ranking, the random forests have been also trained separately
with features of each signal representation to observe their discriminatory potential
regarding the fall detection task. Table 2.2 confirms that there is no real predominance
of derivative representation in any of the considered detection tasks. Surprisingly it
seems that it is possible to select indifferently any TS representation without big perfor-
mance degradation, from the moment it is not directly the raw signal. Nevertheless
by looking over all the detection tasks, TS representation encompassing frequency
information (Fourier transform and spectrograms) seem a bit more reliable regarding
mean performances.

3 Real constraints and interpretable sparse models

As explained the previous detection task results are experimental and ignore several
constraints that need to be taken into account in real conditions. Indeed we evoked
sensor installation constraints with a variable sensitivity and connectivity constraints,
making hard to use a lot of areas and to obtain exploitable spatial information. Other
obvious constraints concern data gathering and labeling on real environments. More-



3. REAL CONSTRAINTS AND INTERPRETABLE SPARSE MODELS 79

over constraints on electronics and signal quality are neither negligible (real installation
electronic suffers from noise and signal resolution is limited to 12 bits), which makes
for example the on-floor motion detection not directly applicable.

In addition the different TS representations come from the same information con-
tained in the original signal and most of the associated features are handmade. So
the whole feature set presents undoubtedly some inner correlations. For these reasons
our models need to be sparse in computed TS representations and features but also
regarding the amount of used decision trees.

3.1 Time series representation complexity

The usefulness of each signal representation regarding prediction accuracy, discussed in
previous section, is not the only criteria motivating its computation. Indeed firstly signal
representations interpretability is important to consider, especially for experimental
data exploration. Secondly the computational resources they require is also crucial to
take into account for the monitoring application to work in real conditions. Detection
tasks of Tarkett monitoring system have to be embedded in a small device with limited
cpu resources of 256kB ROM, 16kB RAM and 40 MIPS. Ideally the embedded system
must give a prediction on the current signal every 10 ms (same as sampling frequency),
but all these features can not be computed with the device resources in this short time.

Signal representation complexity mainly depends on the size N of signal’s window.
If a random signal portion of size N is drawn without any prior knowledge, derivative
and integral have linear computation complexity relatively to N, the fast Fourier
transform algorithm is known to have a Nlog(N) complexity, as well as autocorrelation
computation. As previously explained, Wigner-Ville spectrogram can be obtained by
computing N times fast Fourier transform on instantaneous autocorrelation at different
time location, which results in a complexity of N2log(N).

3.2 Feature set inner correlations and mRMR criteria

Although correlations between features are not very problematic in an experimental
context and might sometimes even help data analysis, it is an important concern when it
comes to algorithm embedding as it is a source of unnecessary additional computations.
There are mainly two causes of these correlations : those coming from the specific
data distribution or inherent correlation in formal definitions of features themselves
independently of data. Figure 2.21 represents correlation matrices estimated on each
of the three datasets presented earlier in this chapter (left side shows absolute values
of correlations and right side shows absolute values that are over 0.8). Even if these
three datasets represent different kind of data (OnFloor DB is even different in the
nature of signals it comes from), they show comparable blocks of highly correlated
features. So this suggests that the source of feature set inner correlations is unlikely to
be data distributions but rather feature definitions. It is understandable as both time
series representations and some features extracted from them are relatively redundant
versions of the same information.

In Section 2.5 the relevance of TS representations and features is studied for each
classification problem through the feature importance metric given by random forest
models. Additionally to high variance observed on those results for some classification
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Figure 2.21: Correlation matrices on three datasets with features grouped by signal
representation.

From top to the bottom : Simulated Falls, OnFloor and Real Walk databases.
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problems (see Figure 2.18), there are two main drawbacks of feature importance measure
: it is firstly model-dependent by definition and it also does not take into account
feature correlations.

One model independent measure to assess the discriminant relevance of a feature is
the mutual information, which itself comes from the notion of log-entropy (as it belongs
to the same function family as Gini index [64]). Given two random variables (X,Y)
following distribution P over (X ,Y), mutual information is defined as :

I(X,Y) = E

(
log(

P(X,Y)
P(X)p(Y)

)

)
. (2.9)

Mutual information between a feature variable and a label variable quantifies the
efficiency of a feature variable at discriminating the label variable whereas mutual
information of two feature variables is a measure of similarity/redundancy between
them. Therefore it is a common tool for feature selection procedures in general
[143, 147, 242], as well as for activity recognition applications [108, 159]. Based on this
notion, authors in [77, 193] define the minimum redundancy maximum relevance criterion
(mRMR), which is a measure that can be used to compare feature sets of same size both
in terms of discriminant power and non-redundancy expressed as :

VmRMR((x1, .., xK),y) =
K

∑
i=1

I(xi,y)−∑
i,j

I(xi, xj) , (2.10)

with x1, .., xK random variables corresponding to K feature variables and y the
class variable to classify. It also proposes a practical way to minimize the empirical
approximation of this value for a given K, which is available online1. Even though
the optimality and the stability of this feature ranking method can be questioned
[203], it provides a simple way to get feature subsets both relevant and non-redundant,
independently to the classification model.

3.3 Prediction similarities between random forest trees

While building a random forest each tree is trained using a randomly selected subset of
features (usually of the size

√
p with p features in total). This is meant, as bootstrapping

training samples, to obtain a form of diversity within the ensemble of decision trees, by
forcing them to use different features and be non-correlated. This notion of diversity
between base classifier ensemble models is a key principle to explain the efficiency
of majority vote [24]. Nevertheless while there are high correlation between features,
feature subsets decision tree training may be not sufficient to create this ensemble
diversity and we previously showed that our total feature set presents some correlations.

Indeed looking at detailed individual decision tree predictions we can observe that
some groups of decision trees provide the same predictions on almost all testing data.
Figure 2.23 represents these correlations between decision tree predictions computed
on all test data for a fall detection random forest of size 10 . This can be due to either
decision tree presenting close decision functions or to a lack of diversity in testing
data themselves. This decision tree predictions correlation can be considered as a way
to quantify "diversity", representing the inner classifier agreement inside the random

1http://www.home.penglab.com/proj/mRMR/

http://www.home.penglab.com/proj/mRMR/
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Figure 2.22: Mutual information between features and labels on three datasets (Simulated
Falls, OnFloor and Real Walk databases) and feature sets of size 10 selected by mRMR
criterion.
For computational reasons, we restricted the size of mRMR feature subset at 10. As explained in [193], the
complexity of the used heuristic is O(N.K) with K the number of features to select and N the number of

discrete values applied on data.

forest. But there are plenty of measures used to quantify this notion under several
names like "similarity, distance or ambiguity" between decision trees [146]. Moreover
relationships between prediction accuracy and diversity is still a vast topic and an open
question [24, 211].

Our observations may suggest that random forest size might be too much high but
also that our final random forest models could be compressed into a smaller ensemble
of decision trees. For example in order to avoid redundancy between decision trees
authors in [136] developed "orthogonal decision trees" using Fourier representation of
trees decision function and using orthogonality within the functional space. A recent
algorithm addresses the problem of random forest compression in an extreme case
by selecting a unique decision tree representative of the whole random forest [255].
So dealing with this prediction similarities between trees of the same random forest
to get more compact prediction models would be an interesting perspective for our
applications.
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Figure 2.23: Illustration of the similarities between individual decision tree predictions
of a size 10 random forest trained on simulated falls DB.
On the left the correlations between binary predictions of decision trees are computed on the whole data

set. Yellow squares represent two decision trees having more than 0.9 correlation between their
predictions. On the right is represented individual decision tree outputs over every instance of the sorted

DB (falls from 1 to 409 and non-falls from 410 to 742).

4 Conclusion

Experiments presented in this chapter are promising on three main categories of detec-
tion tasks that are important for elderly monitoring : fall detection, walk recognition
and on-floor movements detection. This advocates for the feasibility of a complete
monitoring system based on plural signal representations and our wide feature set
using decision tree based models. Moreover these experiments show that the relevance
of each signal representation and feature varies according to the detection task and that
additionally to random forest models, specific strategies can help to improve perfor-
mance and interpretation. In particular smoothing real-time random forest response
can be useful to reduce the false alarm rate of rare events and cascade classifiers are
more interpretable and can be more efficient in a multiple labels classification.

These results are nevertheless still obtained in experimental conditions and are not
directly exportable to real environments. Indeed they differ from real conditions in
several ways : the data source, the type of sensor installation and the technology used
to extract signals. This fall database is composed by simulated events by non-elderly
people, walk recognition database comes from a walk-way installation (not patient
rooms) with multiple sensors allowing to use spatial information (allowing to assess
gait speed for example) and on-floor database signals have not been extracted with the
same electronics as ebox v1 but the Electrometer instead, which a far more sensible and
precise device (see Section 3.3 of Chapter 1).

Next chapters aim at tackling two main obstacles related to real conditions. Chapter
3 addresses the question of integrating new real data that are highly imbalanced
into the previously trained experimental fall detection model using transfer learning
methods. Chapter 4 deals with computation costs aspects for the embedding of
real-time models. Indeed concerning mentioned feature redundancy or decision tree
prediction similarities, random forest models are able to deal with these issues from
a prediction accuracy perspective. Our experiments show that from a certain point,
increasing the size of the features set or the amount of trees does not enhance the
prediction accuracy [174] but it does not degrade it either, even with evoked forms of
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redundancy. However, from computational effectiveness point of view, these aspects
are crucial. Feature correlations and mRMR criterion, as well as prediction similarities,
have been guidelines used by embedded system engineers to design the first fall
detection embedded model. However computational costs can be taken into account in
model design in a more general and adapted way. It is known as the budgeted learning
framework and this is the topic of Chapter 4.
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1 Heterogeneous data generation

Previous chapter provides several examples of random forest classification models
trained on different kinds of events : falls, walks, on-floor motion and other daily life
events. These models on experimental database show the utility of Tarkett smart-floor
in achieving elderly daily life monitoring but a limit is remaining : the lack of labeled
real data. Indeed in order to label properly sensor signals cameras are used in parallel
with the smart-floor, thus the only real environment data presented in previous chapter
is the Real Walks database recorded in a nursing home pathway, which still differs from
elderly private rooms data as explained in 2.4.

Based on feedbacks of the first fall detection model and with the joint work of
medical staff a Real Falls database has been gathered without using any camera. After a
few months this model allowed to extract a lot of false alarm events, some detected
real falls and other undetected ones that were reported and then extracted and labeled
by Tarkett approximately based on medical reports and signal observation. So the
generation process of Simulated Falls and Real Falls databases differs on several aspects
: values of sensor sensitivity and sensor area sizes, people executing activities and
the events that are mainly represented, with an unavoidable change in the overall
proportion of each events. For instance falls represent more than half of simulated
events while they are representing less than 10% of events in the real one.

Thus with these new real data, questions arise about the need and usefulness of
updating the fall detection model. We are in a situation where on one hand a source
model, obtained with simulated data training, is largely implemented in elderly rooms
equipped with Tarkett system. On the other hand, a real events dataset is gathered
representing the target data on which we aim at obtaining the most accurate predictions.
From that we can wonder if the source model is good enough on target data or if it is
better to train a completely new model trained on these new data.

1.1 Fall databases comparison

Figure 3.1 compares mean ROC curves obtained with 5-folds cross-validation trained
and tested on each domain. First source model seems as good on source domain as it is
on target domain, which is comforting about representativeness of simulated events
recorded in the first database. Secondly target model assessed on target domain shows
the best performance which suggests that better prediction accuracy may be obtained
exploiting target data. However a major issue is that target model performs particularly
poorly on source data, because while considering a model update we expect a new
model to be at least able to classify efficiently events of the simulated database. This
might be due to a lack of variety in the real events database as it has been obtained by
automatic data gathering whereas simulated data follow a precise generation protocol
to be as diversified as possible.

Then we would like to enhance the previous model trained on simulated data by
updating it using new real data but without loosing accuracy on original simulated
data, as it is considered as our reference domain (because of precise labeling, contextual
informations and corresponding videos). This is a typical model-based transfer learning
situation where we aim at adapting a model already trained on a first domain using
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data coming from another domain. These notions relative to transfer learning are detailed
a bit later after basic databases comparison between simulated and real data.

Figure 3.1: Fall detection datasets comparison based on ROC performance on each
domain.

To ensure that transfer learning approach is suited for this situation it is necessary
to verify we are actually confronted with different domains. For these purpose these
two databases have been regrouped according to their label (falls and non-falls) for
figuring out if real data were separable from simulated data. A simple random forest
classifier of size 10 has been trained with our feature space for each event type (falls
and non-falls) using labels that correspond to the database samples belong to. Figure
3.2 shows ROC curves obtained with OOB samples estimation, where AUC are clearly
higher than 0.5 both for falls and non-falls, proving databases separability. Theoretic
relationship between AUC optimization and non-parametric multivariate two-sample
homogeneity testing problem is established in [55] and exploited using random forests
in a comparable manner in [16].

Thus these observations confirm that these two databases come from different
domains yet related, with possible enhancement of the source model using target data,
justifying to investigate further in transfer learning capabilities. In this chapter we
focus on transfer learning for fall detection application but as illustrated in Figure 3.3
several other use-cases could have been considered because a lot of different databases
are available for different detection tasks (see Chapter 2) with heterogeneous data
between them even though sharing some common events, each one gathered with a
particular technology on a specific environment. The methodology presented here to
compare databases and furthermore to perform transfer learning for fall detection can
be extended in the future to any other detection task
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Figure 3.2: Simulated/real fall detection databases comparison for fall and non-fall
events.

2 Overview of transfer learning

As mentioned in previous sections, the preliminary application of Tarkett which is also
the core of their monitoring system to enhance elderly people living condition is the fall
detection. For obvious reasons Tarkett could not wait to gather real fall data to develop
this system, that is why a first model, presented in 2.2, has been trained on a simulated
fall database and a simplified version of this model fitting embedded system resource
constraints has been implemented and largely deployed in real installation in 2016. The
first year the main real ground feedback was a high false alarm rate reported by medical
staff although some real falls remained undetected (not the majority). In parallel other
experimental studies have been conducted to improve the whole monitoring system (as
those presented in previous chapter) and real data gathering and labeling allowed to
build another fall database (described in section 4.3 of Chapter 1), this time composed
by real fall and non-fall events, available in 2018.

Based on these observations it seems that these two DB present an important
dissimilarity while still being related. Apparently re-train from scratch a new model
with the new DB seems better than applying the one trained on simulated fall DB on
real data, but we can wonder if the first DB and models are now useless from this point
or if there is a way to benefit from them as they are related. This is the kind of question
raised since the past few years by a growing field of interest under the general name of
Transfer Learning which regroup numerous research sub-fields such as sample selection,
covariate shift or domain adaptation. In other words, transfer learning aims at learning
task that benefits from knowledge of different domains, where these two core notions
can be defined as follows :

Definition 3.1 (Domain). A domain D is defined by two parts, a feature space denoted X and
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a marginal distribution P(X) over this feature space. We denote D = {X , P(X)}.

Definition 3.2 (Task). Given a domain D = {X , P(X)}, a task T is then also defined by
two parts, a label space denoted Y and a conditional distribution P(Y/X) relative to the
feature vector variable. The unknown Bayes classifier is defined on x ∈ X as fBayes(x) =
argmaxyP(Y = y/X = x) and supervised learning attempts to build predictor f̂ close to it

based on samples {xi,yi} ∈ X × Y .We denote T = {Y , P(Y/X)} or T =
{
Y , f̂

}
.

To illustrate it in our example, simulated fall and real fall databases represent data
coming from two domains on the same feature space X and the task to deal with is the
fall detection on the same binary label space Y = {0,1} (corresponding to {Non-fall,Fall}
). As it is observable that joint distribution P(X,Y) over (X ,Y) varies while considering
the two datasets it means that we are confronted to different yet related domains or
different tasks. Usually the knowledge transfer is specifically directed from one domain
to the other, then these are respectively referred as Source and Target domains.

Definition 3.3 (Transfer learning). Denoting a source domain DS = {X S, PS(XS)}, a
source task T S = {YS, PS(Y/X)}, a target domain DT = {X T, PT(XT)} and a target task
T T = {YT, PT(Y/X)}. Several domain differences are possible : DS ,DT (meaning X S , X T

or just PS(X) , PT(X)) or T S , T T (meaning YS , YT or just PS(Y/X) , PT(Y/X)).
Transfer learning then attempts to use the knowledge from DS, T S and DT to improve the task
T T.

Definition 3.4 (Source/Target expected and empirical error). Using back notations defined
in Section 2 of Chapter 2, transfer learning context implies that, for a given predictor h, Source
and Target expected error RPS(h) and RPT (h) differ, as well as for the empirical ones.

Recent works study links between RPS ,RPT and empirical Source/Target errors in
order to extend PAC-Bayesian theory to the transfer learning framework [96–98, 277].
Theoretical works on domain adaptation provided major answers to generic transfer
learning questions such as : the way to quantify relevantly the dissimilarity between
domains [166, 178], to insure the efficiency of knowledge transfer between domains
under particular assumptions [20, 21, 190], or on the contrary to point out that some
assumptions are not sufficient in certain situations [22]. Overviews of these theoretical
results can be found in [149, 206] recent works.

There are several ways to classify main transfer learning frameworks. [191] defines
frameworks based on the availability of labeled data in the source or target domain.
Hence, when labeled data is available in the target domain, it is referred to as inductive
transfer. Otherwise (i.e. when no labels are available in target), it is called transductive
transfer. Inductive transfer is usually more focused on differences between tasks whereas
transductive transfer is more about domain differences so it is also referred as domain
adaptation which sometimes considers few labeled target samples (instead of no label at
all). [257] use another categorization based on the equality (or not) between feature
spaces, namely homogeneous transfer learning when X S = X T,YS = YT and heterogeneous
transfer learning otherwise. Heterogeneous transfer situations are also widely present in
industrial applications with their own approaches [67] and could also be considered
for Tarkett monitoring system as it aims at dealing with various tasks trained with
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feature subsets that can differ, but it is out of this work’s scope as it was not one of the
emergency issues to solve.

These types of issues are very present in industrial application of machine learning
and several of them can be enumerated based on the Tarkett system example as
presented in Figure 3.3.

Figure 3.3: Possible use cases of transfer learning for Tarkett monitoring application.
In this work we focus on the heterogeneity coming from the data gathering context. In particular, the

transfer from simulated falls DB to real falls DB.

2.1 Transfer learning for human activity monitoring

Transfer learning field raised rapidly and concurrently to the increase of machine learn-
ing application using data from real environments. Indeed dealing with different but
related domains or/and tasks is usual in various application such as images or videos
classification [89, 103] or natural language processing [27, 49, 201]. Recently important
an amount of works on transfer learning applied to human activity recognition is also
noticeable. Comparably to the different domains and tasks for Tarkett monitoring
system represented in Figure 3.3, the HAR application field regroups a lot of predictive
tasks (as wide as the range of human activities to detect), plenty of different sensors
(wearable, cameras, microphones, Wifi, smart-floors, etc...) installed in various kinds of
environments. Sources of data dissimilarity are multiple, for instance [204] proposes
a transfer method based on domain matching with data coming from different smart
environments whereas [153] compares domain adaptation on radar spectrogram data
with a domain shift due to people ages and sensor locations.

Considering the particular case of wearable sensors for HAR [50] proposes a com-
parison of different unsupervised domain adaptation methods in various situations. As
some domain variation can be simulated by anticipation [225] presents a comparison of
artificial data augmentation methods versus domain adaptation for activity recognition.
[60] provides an extended survey on transfer learning for activity recognition but
several works have been proposed since then, especially in the context of heterogeneous
transfer [200, 214] and scalability with regards to data noise and sensor updates [9, 138].
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2.2 Transfer learning methods and algorithms

Previous categories of transfer learning correspond to the big picture of the transfer
learning problem contexts in terms of label information and equality or not of feature
and label spaces, they represent what kind of data is available in source and target
domains. Another finer categorization refers to the relations between source and target
distributions, in other words what kind of assumption is done on these distributions to
develop the transfer learning strategy.

Indeed if we consider homogeneous transfer learning where (X S,YS) = (X T,YT),
source and target difference relies on joint distribution PS(X,Y) , PT(X,Y) and the
nature of this difference can come from marginal or conditional distributions. While
PS(X) , PT(X) and PS(Y/X) = PT(Y/X) it is referred as covariate shift and inverting
the role of X and Y variables on this assumption is referred as target shift (while
PS(Y) , PT(Y) and PS(X/Y) = PT(X/Y)). On the contrary some works assume
PS(X) = PT(X) (resp. PS(Y) = PT(Y)) and PS(Y/X) , PT(Y/X) (resp. PS(X/Y) ,
PT(X/Y)), which are referred as conditional shift [206] or concept shift [277]. Another
assumption that can be reasonably done in several application is the sample bias selection
when source domain distribution is submitted to a latent sample selection binary
variable tending to exclude some data. The formulation of the joint distribution is then
PS(X,Y) = PS(q = 1/X,Y)PS(X,Y) (with q the selection variable). It can be noticed
that while q distribution depends only on X (resp. Y) this situation is equivalent to
covariate shift (resp. target shift).

Finally a last and more practical categorization, that can also be found in the
different evoked surveys, is more about possible approaches to handle transfer learning
problems. They are tightly linked to the kind of assumptions on the source/target
relation and are often regrouped in three main kinds of methods : instance-based,
feature-based or model-based (a.k.a "parameter-based") methods.

Instance-based domain adaptation
Instance-based techniques basically rely on samples weighting methods through

distributions estimation and are often linked with covariate shift assumption. Indeed it
is by pointing out for a given predictor h the Target expected error can be expressed as :

RPT (h) = E(x,y)∼PS

(
w(x)

PT(y/x)
PS(y/x)

l(h(x),y)
)

(3.1)

with w(x) = PT(x)
PS(x) , that [221] formulates the assumption of covariate shift under

which PS(Y/X) = PT(Y/X), meaning that expected target error can be simplified and
viewed as a weighted version of the expected error on the source domain. Thus under
this assumption plenty of instance weighting methods have been developed varying
in the way of estimating the distribution ratio w(x) [26, 105, 122, 227]. Intuitively the
idea behind these approaches is to favor source instances that are close to target ones
by high weights and decrease weights of source instances that are less similar to target.
From that point numerous variants have been designed, for example [63] proposes
an extension of the original AdaBoost algorithm [91] based on iterative estimations of
instance weights depending on base learners predictions. [62] proposes an innovative
instance weighting method independently to covariate shift assumption but dependent
of the considered classifier, based on mean discrepancy minimization.
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As previously precised instance based methods for covariate shift can also be
applied for sample bias selection while the bias depends only on X variable. Moreover,
by inverting symmetrically the role of variables X and Y in Equation 3.1, in target shift
situations if target labels are available (which is rarely the case in domain adaptation),
the same kind of approach can be used by estimating the other marginal distributions
ratio : w(y) = PT(y)

PS(y) .

Feature based domain adaptation :
Feature-based transfer methods are approaches that apply operations on source

or/and target feature spaces in order to find new feature representation where source
and target dataset are more similar. It often supposes that there is a subset of feature
shared between source and target domains or that there exists a mapping between
them. For example in the context of natural language processing [27] suggests to
first look for a latent space composed by the most frequent features (words in this
application) present in both domains and named pivot features. Then these binary
classifiers based on these pivots are trained to predict correlations between pivot
features and other ones, and outputs of these predictors are considered as new features.
This augmentation method based on shared features between source and target is
named structural correspondence and has been also used for cross-lingual adaptation
[201]. Another example is proposed in [66] perform feature augmentation where
authors put up a feature space of dimension three times bigger than the original where
the original vectors are stacked with 0-value vectors placed differently depending if the
instance comes from source or target.

Other methods use what is named feature alignment, consisting in extraction sub-
spaces from source and target using principal component analysis and projection of
these subspaces on an intermediate one [89]. This kind of approach has the advantage
to be applicable on heterogeneous feature spaces [9, 214] and to create a representation
relevant for both source and target data through the intermediate subspace ensuring
learning efficiency on both domains. In certain situations it can be reasonable to assume
that target domain corresponds to a specific kind of transformation of source domain.
For example [112] proposes translation and rotation based transformations to match
datasets of multiple domains (not only two for source and target), and [251] proposes to
match directly source and target distributions using kernel mean matching and linear
transformations.

More recently, some works extended this source/target data mapping principle
proposing a parallel to optimal transport theory. The main idea is to formulate domains
mapping as a label transport problem over feature spaces between source and target
distributions [90, 205] and to optimize it.

Model based transfer :
The last type of approach tackles the model trained on source to adapt it over

target data. This set of methods is also known as parameter-based or model-based transfer
learning. These methods usually make use both of target labeled data (inductive
transfer) and a model previously trained on source data. An example of parameter-
based algorithm is the adaptive-SVM [269] which uses target data to modify a SVM
model already trained on source data. For this purpose, authors add a regularization
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function to the previously trained decision function and minimize a trade-off between
proximity with the original model and the predictive error along target data. Generally
model-based transfer learning intends to keep source domain information through the
structure or the parameters of an already trained model while inducing in it target
domain information through transformations allowing it to fit better target data. From
this perspective it is comparable to some approaches that deal with data shift in a data
stream context. Indeed in this situation it is not affordable to build a completely new
model but the original one can be adapted, in particular for ensemble classifier where
base learners can be re-weighted [110], added or deleted [141] from the ensemble based
on new data.

One big advantage of these methods is that they require only target data, this is why
model-based transfer learning is particularly useful when source data is not available
and this may be the case with privacy issues or data storage limitations. Concerning fall
detection transfer learning from simulated data to real data, theoretic assumptions on
relation between domain distributions can hardly be done a priori as causes of domains
difference are likely to be multiple, complex and entangled. Moreover as presented
previously in Figure 3.3, Tarkett monitoring system entails several different domains
with several transfer learning situations. For these reasons evoked instance-based
methods are excluded for our purposes as they usually rely on strong assumptions
and are not very polyvalent to various transfer situations and unknown distribution
changes. As previously explained, all the detection tasks for activity monitoring are
implemented in a single embedded system for each patient. There is a first layer of
signal processing, then a second one for features computations and a third one for
random forest models. This last layer can be easily updated remotely to adapt the
models whereas signal processing and feature computation parts are shared by all the
detection models, are computationally optimized and hardly encoded in the system
entailing that any change on these part has to be done "by hands" on each electronic
hardwares. Thus using a feature-based transfer learning method is inconceivable in
practice considering the design of our system.

For these reasons this work focuses on model-based methods on decision trees,
that can be used with few labeled target data and without any need of source data,
scalable to different transfer situations and that can ideally give interpretation clues
about source/target data differences.

2.3 Transfer learning on decision tree based models

Several works on adaptation of decision tree based models to data shift in the context
of data streams have been previously evoked in section 2.1 of Chapter 2. Even if they
follow the same data shift adaptation principle, these decision tree based data stream
methods are not dedicated to the transfer learning of a model from a source to a target
domain as defined earlier but rather to keep up with continuous changes in data or
successive occasional shifts, hence deviating from the transfer learning hypothesis (the
target domain is not supposed to change and the target dataset is a fixed size batch of
data).

An example of a proper model based transfer algorithm on decision trees is pro-
posed in [151]. It considers the situation where target feature and label spaces can differ
and updates a previously trained tree (on source data) by expanding nodes with new
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features and re-affecting leaves label values while it is relevant, thus building a new
model adapted to target domain and task from the previous source induced model. In
the context of covariate shift, [235] proposes a random forest training algorithm using
both source and target data weighted by an iterative covariate loss estimation that is
comparable to the idea of transfer using instance weighting on an ensemble boosting
method [160]. [103] investigates the situation of transferring one classification task from
other related ones to increase overall performance and applies it on gesture recognition
with random forest. To achieve this goal a variant of classical RF induction is proposed
using two task-related notions : the mixed information gain for split nodes and the
label propagation for leaves.

So this chapter focuses on two model-based transfer procedures on random forests
detailed in the next section, with only a few labeled target data and a source model,
with the hypothesis of same feature and label spaces. Our transfer learning context is
then model-based inductive and homogeneous transfer on random forest classifiers.

3 Decision tree expansion, reduction and threshold updates
for transfer learning

A model-based approach for model-based transfer using a RF trained on a source
domain to a target domain based on the same feature space and predictive task has
been investigated recently by [216] in a general and distribution assumptions free
manner. Authors proposed two algorithms named STRUT and SER, that aim at
adapting each tree from the original random forest, to improve the performance with
respect to the target data. STRUT adapts the decision thresholds in order to cope with
shifts, while SER modifies the tree structure in order to create more fine-grained or
coarse-grained representations. In this section we describe the main operations these
algorithms rely on and illustrate which kind of relation between source and target data
they intend to cope with.

Framework and notations:
Given a source domain DS and a target domain DT, source data are supposed to

be unknown but we assume a source decision tree trained over data drawn fromDS is
accessible, as well as few labeled target samples ST assumed to i.i.d samples drawn
from DT. Given a node v in the source decision tree, ST

v denotes the subset of ST that
reaches v.

3.1 Structure Expansion/Reduction (SER)

SER is a recursive algorithm that applies two transformations relatively to target labeled
data, in two successive steps : Expansion and Reduction.

First the expansion step consists of expanding any leaf (terminal node) l into a
subtree if this node is not pure relatively to ST

l samples (meaning that there are at least
two labels reaching this leaf) . This subtree is computed by growing a new binary
decision tree using CART algorithm from ST

l samples.
Then the second transformation, the reduction aims at removing source tree unnec-

essary nodes, relatively to target samples, by pruning. It relies on the computation
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Figure 3.4: Illustration of SER operations on decision trees.

of the leaf error which, for any node v and it corresponding set ST
v , is defined as the

misclassification error at the current node:

Lea f Error(v,Sv) =
1
|ST

v |

|ST
v |

∑
k=1

1{y(k),yv} ,

with y(k) the label of the k-th sample of Sv and yv the majority class of node v. It cuts
any node that has a leaf error lower to the subtree error. The subtree error relative to a
subset Sv is the sum of all leaves errors weighted by proportion of Sv that reaches each
leaf. In other words it is the error of the tree whose root is the node v:

TreeError(v,Sv) = ∑
l∈L(v)

|Sl |
|Sv|

Lea f Error(l,Sl) ,

where L(v) is the set of leaves of the subtree that starts at node v.
Pruning : These errors are not explicitly given in the original paper but rather de-

scribed as the empirical errors of the subtree (whose root is v) and the leaf (considering
v as a leaf), hence the use of the classical misclassification error. Therefore, the tree error
is in fact always zero, and we consider this step to be a pruning step that conserves
the tree coherence for target data. Indeed, if a node v is not reached by target data,
then the leaf error of v is considered to be zero and the pruning condition is respected.
This is according to us the only case where pruning occurs, and it leads to the same
condition developed in STRUT algorithm (see next section), which is motivated by the
willing to obtain a tree that fits new data by removing unreachable parts of the tree.

The pseudo-code of SER is presented in Algorithm 3.
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Algorithm 3.1 SER

procedure SER(v,Sv)
% Expansion
if v is a leaf then

v← BuildTree(Sv)
return v

end if
% Recursive calls
SER(vr,Sv,r)
SER(vl ,Sv,l)
% Reduction
if LeafError(v,Sv) ≤ TreeError(v,Sv) then

v← Prune(v)
end if
return v

end procedure

3.2 STRUT divergence optimization

The Structure Transfer (STRUT) algorithm goes through the decision tree from the top
to the bottom applying the following procedure at each node v. If v is unreachable it is
pruned into a leaf, otherwise, there are two possible situations : either it is a leaf and
its output is then updated, or it is a regular node and the algorithm recomputes its
threshold according to the set ST

v that falls into it. Unlike a classical split procedure,
here the measure that is optimized is different and there is no choosing in the feature
(the algorithm updates the threshold while keeping the same variable).

Figure 3.5: Illustration of STRUT operations on decision trees.
The different colors stand for different features and ∆i updates to the node thresholds τi correspond to the

divergence gain optimization.

The threshold selection procedure is done as follows. Given a node v, QS
l and QS

r
denote respectively the class proportions of source data in left child node and right child
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node after the original split. QT
l (τ) and QT

r (τ) denote respectively the class proportions
of target data in left child node and right child node after the new split τ. As authors
aim at finding a new threshold while keeping similar label distributions between source
and target, they define a divergence gain (DG) that measures the similarity between the
original label distributions (QS

l , QS
r ) and the new ones (QT

l , QT
r ). DG is defined as:

DG(ST
v ,τ, QS

l , QS
r ) = 1−

|ST
v,l |
|ST

v |
JSD(QS

l , QT
l )−

|ST
v,r|
|ST

v |
JSD(QS

r , QT
r ) . (3.2)

ST
v,r and ST

v,l are the subsets of ST
v that falls respectively into the right and left child

node of v, and JSD is the Jensen-Shannon divergence, defined as:

JSD(P, Q) =
1
2
(KL(P, M) + KL(Q, M)) . (3.3)

The Jensen-Shannon divergence measures the dissimilarity between the two distri-
butions P and Q using the Kullback-Leibler divergence, denoted KL, and the mean
distribution M = 1

2 (P + Q). Hence, for a node v, DG measures the dissimilarity be-
tween previously learned source distribution and the newly set target distribution. We
note that in practice, QS

l , QS
r , QT

l and QT
r are vectors that contain the proportions of

each class at a given node. Hence we can write them QS
l =

(
QS

l,1 . . . QS
l,K

)
, K being the

number of classes.

The threshold selection procedure relies on an optimization problem that can be
summarized as follows: the goal is to maximize DG while insuring a local maximum
of the information gain (IG), defined here as the Gini gain. At node v, we denote
Φv = {ϕ1, . . . ,ϕN} the set of all ordered distinct feature values of instances of ST

v . Then,
Tv = {τ1, . . . ,τN−1} = { ϕ1+ϕ2

2 , . . . , ϕN−1+ϕN
2 } represents the set of all possible thresholds

considered by the threshold selection.

The selected τ denoted τm is then defined as:

τm = arg max
τ∈Tv

DG(ST
v ,τ, QS

l , QS
r ) s.t.

{
IG(τm−1) < IG(τm)
IG(τm) > IG(τm+1)

(3.4)

As pointed out by authors, between source and target, different labels can also swap
relatively to the node threshold. To take into account this possible event during the
threshold selection, the optimization problem has to be solved a second time swapping
left and right for QS and QT which gives another threshold τm. Finally, the threshold
selection procedure ends by taking the threshold maximizing DG between the two
optimal thresholds : τm and τm. The pseudo-code of STRUT is given in Algorithm 3.2.
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Algorithm 3.2 STRUT

procedure STRUT(v,Sv)
if |Sv| = 0 then

% Prune unreachable node
v← Prune(v)
return v

else if v is a leaf then
v← UpdateLeafValue(Sv)
return v

else
% Recompute threshold
v← ThresholdSelection(Sv, QS

l , QS
r )

STRUT(vr,Sv,r)
STRUT(vl ,Sv,l)

end if
end procedure

To sum up, SER seems to be well adapted when decision tree partitioning needs
to be refined (expansion step) or on the contrary to be more coarse (reduction step).
On the other hand, STRUT is especially designed for local axis drifts. Together, both
procedures are meant to capture the possible transformations a decision tree may need
to be transferred along target data. For this purpose original work [216] suggest to
apply SER and STRUT to all trees of a random forest and then to mix both kinds of
transferred trees in a new random forest.

To understand what SER/STRUT particularities imply several remarks can be done:

1. Both algorithms try to keep one aspect of source decision trees structure. SER
keeps all nodes unchanged until either a node is not reached by any target data
or it performs an extension at one original leaf. STRUT first keeps the feature
unchanged at any node attempts to stay close to local class proportion induced
by node split, through divergence gain threshold optimization.

2. SER and STRUT don’t use the same amount of information about source distri-
bution. Indeed at a given node v STRUT needs QS estimations of pS(Y/x ∈ Sv)
whereas SER does not, meaning that this information has to be embedded in
source model.

3. The possible decision function changes induced by the transfer seems wider with
SER. For example STRUT can not add new node so it is limited in terms of depth
and number of nodes. Moreover technically any new decision function can be
fitted by SER as extensions are sufficient to create any new decision rule.

3.3 SER/STRUT depending on the type of transformation

In order to figure out which kind of source/target transformations are best handled
by each of these two transfer algorithms we used a synthetic data generator to better
control some simple data shifts. It is a basic Gaussian clusters distribution generator
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and a Python implementation with its description is available online [4]. It will be used
in this chapter and the next one for experimental purposes.

Three simple data shifts scenarios between source and target data have been imple-
mented : a cluster mean drift situation, an addition of new clusters and a deletion of
clusters. Behaviors of SER and STRUT algorithms on a unique decision tree classifier
are presented in Figure 3.6. As expected STRUT outperforms SER, as well as source
and target models, on cluster drift situation whereas SER is better to handle cluster
addition and deletion. Nevertheless from these simple cases SER appears to be a bit
more flexible as, even in drift situation, its performance difference with STRUT is not
very significant.

Figure 3.6: ROC AUC of SER/STRUT on unique decision trees with synthetic data on
various conditions.

From top to the bottom : translation of clusters, new clusters addition and clusters deletion.

Of course in real application transformations between source and target are often
not as simple as these synthetic examples. Moreover for transfer learning on fall
detection application, we do not have any prior information about it except that one
DB is balanced and the other is very imbalanced. In the next section we investigates
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how class imbalance impacts transfer leaning, especially concerning SER/STRUT
algorithms used on our fall detection data.

4 Class imbalance and pruning risk

Considering simulated fall DB as generated from a source domain and real fall DB
from a target domain, as previously evoked the first observable difference even before
computing any feature is the respective class proportions. Indeed fall detection problem
is in real condition a highly imbalanced classification task and the source model has to
be transferred taking into account this target class imbalance. In this section we explain
why class imbalance increases classification task and transfer learning difficulty, as
well as what drawbacks might be expected while using SER/STRUT with imbalanced
target data on two core operations of these algorithms : pruning and divergence gain
optimization.

Class Src Targ Ser Strut
Maj class 10.9 6.3 13.8 4.8
Min class 10.7 5.0 7.0 2.2

Table 3.1: Mean number of leaves for each class with different algorithms tested on
synthetic data

4.1 Machine learning with class imbalance

Apart from fall detection numerous real ground classification applications are con-
fronted to the imbalance problem especially anomaly detection ones and, in general,
the imbalance can allude to two main situations [117]. First, class marginal distributions
may be unequal, i.e. one class is largely under-represented compared to others. This
may be due to a difficulty in the acquisition of a certain class in the data set (e.g. fraud
detection, or rare event in time series). Secondly, error costs may be different depending
on the class, this is the case when we aim at recognizing (or not) a class that has an
arbitrary high importance (e.g. for medical diagnosis). Label dependent error costs
occur very often in practice and several cost-sensitive adaptation techniques of machine
learning exist [85], but they rely on a error costs matrix to be defined, which requires
external knowledge about how critical is each type of error. Those two situations may
also happen at the same time, i.e. we may have a rare event in the training data set and
at the same time it may be crucial to detect it. Regardless the kind of imbalance situa-
tion this context is even harder to deal with in practice as it also implies performance
assessment measure issues [18].

Considering class imbalance between marginal distributions, main methods to
overcome this bias consist in sampling techniques. Most popular sampling methods use
training data to select them in a way the class imbalance does not appear to the learning
model. The most straightforward approaches are oversampling and undersampling
[117] consisting in artificial minority class weight augmentation by repetitions and
preponderant classes weight decrease ignoring some data, in order to compensate
initial class imbalance. For instance [144] uses a procedure named "one-sided selection"
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to under-sample majority class using random selection and nearest neighbors. The
principle is to select only the hardest samples to classify among all majority class
samples, but it is sensible to the random sample selection initialization and it does not
ensure balanced dataset after this procedure. Sampling methods can also utilize data
augmentation through generation of synthetic instances [52]. This kind of methods
have yet some limitations such as discarding potential useful data, high variance or
greater learning time.

So class imbalance is a machine learning problem on its own, but it can also
interact with transfer learning while class imbalance is part of domain dissimilarities
[10, 156], increasing learning difficulty. Indeed according to [258, 259], transfer learning
under imbalanced domain is a challenging task that may lead to negative transfer.
Authors define domain class imbalance, which differs from classical class imbalance in
the fact that there is a variation in class probability between source and target data. It
gathers situations where source might balanced and target imbalanced or reversely. As
presented earlier if conditional probability PX|Y is unchanged between domains it is a
particular case of target shift situation, which is already a challenging tasks when target
labels are supposed to be unknown [279], as it is often the case in domain adaptation.
In most practical cases and partly due to a training sample selection bias, one may
have access to a relatively balanced data set for training a model that will perform on
real data that is potentially imbalanced. Class imbalance also often comes along with
relative rarity of the minority class instances, which is common in a transfer context
where some target domain data may be hard to collect, as for fall detection.

This part focuses on the case where source data are balanced whereas target data
are not. Moreover to cope with our fall detection situation we assume that only a
few labeled target data are available, at least for the minority class. Indeed data
rarity is tightly linked to the imbalance problem, but it also adds new practical data
mining drawbacks [119, 256]. So here we study the impact of both class imbalance
and data rarity on the two previously presented transfer algorithms SER and STRUT,
particularly with regards to the risk of losing precious source domain information
about the minority class.

4.2 Transfer with homogeneous class imbalance

Considering class imbalance, we study the specific effect of class proportion changes
during transfer while source data are balanced whereas target data are highly imbal-
anced. This change could be due to sampling selection bias for example. Indeed in our
case simulated DB follows an arbitrary distribution of different events and protocols
hypothetically made to be representative of the majority of real events. On the contrary
the real DB is composed by real condition events partly randomly picked for non-falls
and a few falls acquired on the early version of the system and labeled manually and
approximately. So this sampling selection bias is obvious in our situation and is likely to
be at least one part of the explanation concerning class proportion change. It can be
defined with a binary random variable ζ representing sampling selection as follows :

pS(X,Y) = p(ζT = 1/X,Y)p(X,Y)

pT(X,Y) = p(ζS = 1/X,Y)p(X,Y)
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Here source and target distributions pS and pT come from the same underlying
probability p and their difference relies on different sampling strategies between source
and target.

Notations. D = (X ,Y , p) denotes a domain, with X and Y respectively its feature
and label spaces, and a probability distribution p over (X ,Y). In transfer learning, two
domains are considered: a source domain DS = (X S,YS, pS) and a target domain DT =
(X T,YT, pT). We consider in this paper X S = X T and YS = YT. Py

S =
∫

pS(x,y)dx
and Py

T =
∫

pT(x,y)dx respectively denote the source and target marginal distributions
over Y .

Definition 3.5 (Homogeneous class imbalance). Given a source domain DS = (X S,YS, pS)
and a target domain DT = (X T,YT, pT), homogeneous class imbalance occurs when:

• Source domain is balanced : ∀y1,y2 ∈ Y , PS
y1
≃ PS

y2

• Target domain is imbalanced : ∃y1,y2 ∈ Y , PS
y1
≪ PS

y2

• The imbalance change is homogeneous over the feature space:

∀x,y ∈ (X S ∩ X T,YS ∩ YT), pT(x/y) = pS(x/y) (3.5)

Firstly equation 3.5 equivalently means (using Bayes’ rule) :

pT(y/x) = w(y)
pS(y/x)

∑y′ w(y′)pS(y′/x)
(3.6)

with w(y) =
PT

y

PS
y

being the ratio between target and source label proportion for each

label y.
Moreover equation 3.6 is exactly the symmetric assumption of covariate shift with

regards to variables x,y. So it implies that, under this assumption and following the
same idea as in equation 3.1 but inverting x ans y variables, the target expected error can
be expressed as :

RPT (h) = E(x,y)∼PS (w(y)l(h(x),y)) (3.7)

for a given classifier h and loss function l.
In domain adaptation this assumption is commonly known as target shift. Neverthe-

less contrary to the usual domain adaptation scheme we have access to target labels,
meaning that w(y) quantities can be directly estimated on target data.

It should be precised that here, the term homogeneous is not related to homogeneous
transfer learning but rather means that the class proportion change is homogeneous
throughout the feature space since it depends only on w(y). It can be seen as the
"simplest" target class imbalance situation and will be used as a reference to study
what kind of impacts can be expected while performing transfer learning under class
imbalance. From this point of view any transfer algorithm has to be able to handle at
least homogeneous class imbalance to be considered suited for imbalanced target domains.
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4.3 Data rarity and the pruning risk

As previously explained both SER and STRUT algorithms use pruning to deal with
situations where some nodes are unreached by any target data. In this context we
formulate the pruning risk as the probability to lose a relevant minority class leaf
because of this pruning, i.e. the risk for a minority class leaf to be pruned even if it is
still representative for the target domain.

Definition 3.6. Let kmin denote the minority class and L a leaf of class kmin from a source
decision tree. The leaf L is still significant or relevant for the target domain if:

∀k , kmin, pT(y = kmin/x ∈ L) > pT(y = k/x ∈ L) (3.8)

Definition 3.7. Pruning risk Let nk be the amount of class k target data available and assume
that these data are drawn i.i.d from the same pT distribution. We define the pruning risk relative
to the minority class leaf L as the probability of L being unreached by any of the nk minority
class data, which is then :

PRRnkmin
(l) = pT(x < L/y = kmin)

nkmin (3.9)

In balanced conditions and out of data rarity situations, nkmin is large enough so
the probability tends to approach 0 and the pruning risk becomes negligible. However
when nkmin decreases, it leads to higher quantity of pruned leaves. Let us now consider
the case where the only transformation that occurs between source and target is an
homogeneous class imbalance. Under this assumption and simply using (3.5), (3.8) and
(3.9) can be reformulated as follows:

∀k , kmin,λkmin pS(y = kmin/x ∈ l) > λk pS(y = k/x ∈ l) (3.10)

PRRnkmin
(l) = pS(x < l/y = kmin)

nkmin (3.11)

Although this result relies on a theoretical assumption that is not necessarily verified
in practice, computing this value can give some insights about the impact of using
pruning algorithms such as SER and STRUT on minority leaves. Figure ?? shows
example of leaf loss risk computation using (3.11) under various conditions.

This means that while class imbalance entails minority class rarity for training the
transfer algorithm, pruning operation may result in discarding relevant source leaves,
even in the basic situation of homogeneous class imbalance. It is not negligible as both
SER and STRUT use pruning on regions that are unreached by target data. In section
5, we present our strategies to limit this pruning risk based on its estimation and on
structural consistency conservation.

4.4 Divergence gain optimization under class imbalance

The divergence gain (DG) defined for the STRUT procedure measures the similarity
between previous class distributions (QS

l , QS
r ) and the new ones (QT

l , QT
r ). As previously

said, STRUT algorithm recomputes thresholds from the top to the bottom of the tree
using DG (and IG). Hence at a given node, when the threshold is recomputed, the label
distributions according to source data (QS

l and QS
r ) change. However, as we consider
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(a) Balanced data with 400 instances (b) Balanced data with 200 instances

(c) Imbalanced data (5%) with 400

instances
(d) Imbalanced data (10%) with 200

instances

(e) Imbalanced data (5%) with 400

instances
(f) Imbalanced data (5% ratio) with 200

instances

Figure 3.7: Pruning risk for a decision tree under different target data conditions, with
two classes.
Blue ones are majority class leaves and orange ones correspond to minority class. With balanced target

data (a), the risk of losing minority leaves is similar to the risk of losing majority class leaves. By
decreasing the number of target data (b), the risk increases equally regardless of the leaf class. However
when dealing with imbalanced data (c), the leaf loss risk on minority leaves is significantly higher, and in
the same imbalance conditions while decreasing the number of target data (d), the risk is even worse.

that we do not have access to the source data during the transfer procedure, it means
that we cannot recompute QS

l and QS
r according to the new threshold.

As we go deeper into the tree while performing STRUT, QS
l and QS

r that correspond
to previous threshold values are more likely to mislead the algorithm, especially if
distributions were swapped (left and right) as described in Section 3.2. Indeed, at
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a given node v, computing QS
l and QS

r implies to know where the source data falls
according to all thresholds that lead to this node (i.e. the thresholds of all parents nodes
of node v).

Besides, trying to stay as close as possible to the source node classes distributions
implies the assumption that at each node, class distributions have not much evolved
between source and target. However in our case this is the opposite: we have to transfer
a source model built on balanced data with a target distribution that is imbalanced. To
show the influence of DG in the performances, a version of STRUT without using DG is
proposed and tested along with all other algorithms.

5 Model based transfer on random forest with adaptation to
class imbalance

These two issues, i.e. the pruning risk and the divergence gain optimization issue in
STRUT, lead us to adapt the initial SER and STRUT algorithms to target data class
imbalance. In this section we present several variants of these algorithms based on
homogeneous imbalance assumption and pruning avoidance strategy in order to limit
class imbalance drawbacks. Python implementation of SER/STRUT and the proposed
variants : SERNoPrune, SERNoPrune(λ), STRUTNoDiv, STRUT(λ) and STRUTNoPrune(λ)
are available online [1].

5.1 SER adaptation : class-dependent pruning

Firstly we developed a variant SERNoPrune (or SERNP) specifically for target class
imbalance situation which limits drastically minority class pruning. As previously
pointed out, the main issue concerning SER come from the pruning relevant minority
class leaves when there are too few target data of a class, leading to unfavorable
pruning. Actually, for a given source leaf L, during the transfer procedure, there are
three possible events relatively to target training data:

1. L is reached by target training data and keep the same majority class as source

2. L is reached by target training data and the majority class changes (i.e. it differs
from the source majority class)

3. L is not reached by any target training data

Case 1 is the most favorable event (i.e. the minority class leaf is conserved). In
practice, considering SER algorithm, the two other cases correspond to the two transfer
steps, i.e. expansion (case 2) and reduction (case 3). To impact on minority leaf loss events,
SERNP focuses only on the reduction step. While confronted to case 3 on a minority
class leaf, it assesses whether this leaf would be still significant under homogeneous
imbalance (using Equation 3.10) and if applicable then avoids the pruning of the source
leaf. However it keeps the expansion phase on them allowing finer partitioning from a
source minority class leaf.

This approach may seem harsh since it conserves leaves that were defined uniquely
with source data and not any target sample. However if we consider that doing transfer
with imbalanced data biases the model towards the majority class, this method aims to
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compensate this bias towards the minority class. Pseudo-code of SERNP is given by
Algorithm 3.3.

Algorithm 3.3 SERNoPrune

1: procedure SERNP(v,Sv)
2: % Expansion
3: if v is a leaf then
4: v← BuildTree(Sv)
5: return v
6: end if
7: % Recursive calls
8: SERNP(vr,Svr)
9: SERNP(vl ,Svl )

10: % Reduction
11: if LErr(v,Sv) ≤ STErr(v,Sv) then
12: if cm ∈ y(SS

v) then
13: % Don’t prune
14: else
15: v← Prune(v)
16: end if
17: end if
18: return v
19: end procedure

Notations: cm is the minority class

Although being drastic, SERNoPrune is really efficient to not lose too many minority
leaves during the transfer learning (see Table 3.2) and further results show its perfor-
mance on extreme class imbalance situations. Nevertheless this variant should be used
only in this type of specific situation while source minority class leaves are somehow
considered reliable even for target domain.

So in order to come up with a more general and flexible version of SERNP another
variant following the same pruning avoidance principle but where the confidence in
source minority class leaves can be adjusted through a threshold parameter compared
with the pruning risk. This algorithm, namely SERNoPrune(λ) (SERNP(λ)), computes
the pruning risk estimation PRR under homogeneous imbalance using Equation 3.11

and determines pruning avoidance situation if this estimated risk is higher than a
threshold CPRR. Thus SERNoPrune(λ) is equivalent to original SER algorithm while
CPRR ≃ 1 and is the same as SERNP while CPRR ≃ 0, providing a generalization of SER.
Pseudo-code of SERNP is given by Algorithm 3.4.

5.2 STRUT adaptation: divergence gain optimization with homogeneous
imbalance

As explained previously, class ratio changes are not directly compatible with the use
of the divergence DG in the STRUT algorithm. For this reason, a version in which
the optimization problem does not use DG is tested. In this configuration, it simply
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Algorithm 3.4 SERNoPrune(λ)

1: procedure SERNP(λ)(v,Sv,CPRR)
2: % Expansion
3: if v is a leaf then
4: v← BuildTree(Sv)
5: return v
6: end if
7: % Recursive calls
8: SERNP(λ)(vr,Svr)
9: SERNP(λ)(vl ,Svl )

10: % Reduction
11: if LErr(v,Sv) ≤ STErr(v,Sv) then
12: if cm ∈ y(SS

v) then
13: Tv← SubTree(v)
14: L←HomImbKminLeaf(Tv,λ)
15: if |L| > 0 and ∃l ∈ L : PruningRisk(nkmin ,λ) > CPRR then
16: % Don’t prune
17: else
18: v← Prune(v)
19: end if
20: end if
21: end if
22: return v
23: end procedure

Notations: cm is the minority class

consists of updating thresholds by recomputing the maximum Gini gain over target
data while keeping the same feature. It is referred to as STRUTNoDiv (or STRUTND).

Another concern is that our transfer methods need to be able to handle at the very
least the homogeneous class imbalance transformations. Equation (3.6) in a discrete
formulation becomes :

pT(y = k/x) = λk
pS(y = k/x)

∑
i

λi pS(y = i/x)
(3.12)

Our STRUT adaptation method, replaces QS
l and QS

r using Equation 3.12 in the
divergence optimization, thus considering that the homogeneous class imbalance
condition is satisfied. For each class k, QS

l,k and QS
r,k become:

QS
l,k
∗
=

λkQS
l,k

∑
i

λiQS
l

QS
r,k
∗
=

λkQS
r,k

∑
i

λiQS
r

(3.13)

We note that in this configuration, if we consider a transfer procedure in which classes
proportions are conserved between source and target, then for each class k we have
λk ≃ 1. This leads to QS

l,k
∗ ≃ QS

l,k which goes back to the original STRUT algorithm,
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Algorithm 3.5 STRUT(λ)

1: procedure STRUT(λ)(v,Sv)
2: if v = root then
3: nkmin = |{(x,y) ∈ Sv/y = kmin}|
4: % Compute λ
5: for each class k :
6: λk =

pk(ST)
pk(SS)

7: end if
8: if |Sv| = 0 then
9: v← Prune(v)

10: return v
11: end if
12: if v is a leaf then
13: v← ChangeLeafValue(Sv)
14: else
15: (QImb

vl
, QImb

vr
)← TargetShift(QS

vl
, QS

vr
)

16: v← ThSel(ϕv,Sv, Qvr
I , Qvr

I)
17: STRUT(λ)(vr,Svr)
18: STRUT(λ)(vl ,Svl )
19: end if
20: return v
21: end procedure

hence showing that it is a generalization of STRUT. This algorithm is named STRUT(λ)
and its pseudo-code is given by Algorithm 3.5.

5.3 STRUT pruning limitation and path consistency

The previous STRUT(λ) algorithm is meant to limit the impact of class marginal
probability changes on the DG optimization problem. Actually any important change
in class proportion between source and target domain can induce some drawbacks
on DG optimization and target shift assumption can help to compensate them. Class
imbalance in target is a particular case of this situation and homogeneous class imbalance
a particularization of target shift. But as explained previously another issue linked to
class imbalance is relative data rarity and the associated pruning risk.

STRUT(λ) has a local impact at each node on DG optimization but is not very
efficient to limit pruning although having a slight effect as shown in Table 3.2. Thus
here is presented another STRUT variant that actively counters pruning risk. As well as
for SERNP(λ) minority leaves with a high pruning risk can be tagged in order to avoid
their pruning but there is a major difference while delaing with STRUT algorithm.
Indeed, contrary to SER, STRUT uses two structural operations that can provoke nodes
path consistency issues : split threshold changes and sub-tree swaps. The original
STRUT algorithm does not suffer from this problem as each new node threshold is
recomputed using reaching data after having modified its previous path, and if a swap
creates unreached regions in the tree they are simply pruned. However preventing
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pruning by trying to keep some nodes unchanged can break this path consistency.
So being able to avoid pruning in some parts of a tree require to solve this tree

structure issue : how to modify a node threshold without any target data while this
node is not consistent anymore with the path leading to it due to previous threshold
updates. As no data are available to estimate any metric like Gini gain or DG in this
situation, because source data are assumed unavailable and STRUT prunes a node only
while no target data are reaching it, we can only consider a geometrical criteria.

Let’s consider an unreached node v splitting a feature ϕv with an initial source
threshold τS

v . In the initial source tree v is associated with a subspace of X with
a projection along ϕv axis of the form : 1) Xϕv =] −∞,τS

M], 2) Xϕv = [τS
m,+∞[ or 3)

XS
ϕv

= [τS
m,τS

M]. With τS
m,τS

M coming from previous splits on the path of v and these
thresholds may have been updated into new ones τT

m,τT
M by STRUT procedure changing

XS
ϕv

interval into a new one XT
ϕv

.
Then path consistency issue occurs while τS

v < XT
ϕv

and the geometrical criteria we
implemented to solve it relies on the closest bound distance conservation for infinite
size intervals and the relative threshold position conservation for finite intervals. In
other words τT

v is obtained according to the form of XS
ϕv

, following these rules :

1) τT
M − τT

v = τS
M − τS

v

2) τT
v − τT

m = τS
v − τS

m

3) τT
v −τT

m
τT

M−τT
m
= τS

v−τS
m

τS
M−τS

m

This allows to design a conditional pruning version of STRUT based on the pruning
risk estimation as for SERNoPrune(λ) but this time using these path consistency mod-
ifications, namely STRUTNoPrune(λ) (or STRUTNP(λ)). Moreover while avoiding in
this way to prune a node v, this consistency issue can concern several subnodes from
this node v, this threshold translation criteria is then applied recursively on all the
sub-tree starting from v. This operation is referred as Translate(Tv) in the following
pseudo-code 3.6 presentation of STRUTNoPrune(λ) algorithm.

5.4 Experiments

5.4.1 Synthetic data

In order to easily control data transformations between source and target, we generate
several data sets with three dimensional binary labeled clusters in a bounded space.
Moreover, each synthetic source or target data set consists of a mixture of several
weighted Gaussian clusters, each one corresponding to a single class. Source data
consists of Nsource = 200 samples, with balanced class distribution (i.e. 50% of each
class) and drawn out of Nclust = 15 equally weighted Gaussian clusters for each label.
The initial mean µ and variance σ2 parameters of these Gaussian distributions are
evenly randomly drawn between fixed bounds (µ ∈ [−50,50], σ2 ∈ [5,15]).

From a given source data set, we construct the associated target data by applying
homogeneous class imbalance (ratio going from 3% to 25%), combined with transforma-
tions of tree kinds: 1) Drifts: change in Gaussian clusters means, 2) Squeezes/Stretches:
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Algorithm 3.6 STRUTNoPrune(λ)

1: procedure STRUTNP(λ)(v,Sv,CPRR)
2: if v = root then
3: nkmin = |{(x,y) ∈ Sv/y = kmin}|
4: % Compute λ
5: for each class k :
6: λk =

pk(ST)
pk(SS)

7: end if
8: if |Sv| = 0 then
9: Tv← SubTree(v)

10: L←HomImbKminLeaf(Tv,λ)
11: if |L| > 0 and ∃l ∈ L : PruningRisk(nkmin ,λ) > CPRR then
12: v← Translate(Tv)
13: return v
14: else
15: v← Prune(v)
16: return v
17: end if
18: end if
19: if v is a leaf then
20: v← ChangeLeafValue(Sv)
21: else
22: (QImb

vl
, QImb

vr
)← TargetShift(QS

vl
, QS

vr
)

23: v← ThSel(ϕv,Sv, Qvr
I , Qvr

I)
24: STRUTNP(λ)(vr,Svr ,CPRR)
25: STRUTNP(λ)(vl ,Svl ,CPRR)
26: end if
27: return v
28: end procedure

change in Gaussian clusters variances, 3) Redrawing randomly some clusters parame-
ters. Then a new dataset of 200 samples is generated according to new parameters and
used for the training of transfer algorithms. One advantage of these synthetic Gaussian
controlled scenarios is that it is possible to generate as much data as needed for the
evaluation process, which ensures good performance measure precision. Thus scores
are assessed after generating 5000 new target data and each experiment is repeated 10
times. Versions using pruning risk estimation (SERNP(λ) and STRUTNP(λ)) to avoid
some minority class leaves pruning, the CPRR threshold is set to 0.5.

Class Src Targ SER SERNP SERNP(λ) STR STRND STR(λ) STRNP(λ)
Maj class 10.9 6.3 13.8 15.5 13.5 4.8 4.5 7.9 6.9
Min class 10.7 5.0 7.0 9.8 7.7 2.2 2.3 3.4 5.8

Table 3.2: Mean number of leaves of each class using SER/STRUT variants on synthetic
data.
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These experiments on synthetic and real data compare the original SER/STRUT algo-
rithms and their proposed adaptations SERNP, SERNP(λ), STRUT(λ) and STRUTNP(λ)
under class imbalance and rarity of the minority class in target data set. While dealing
with these two conditions, choosing a performance measure that does not penalize the
minority class, unlike accuracy for example, is a known issue [18]. As ROC curves
consider all the trade-offs between false positive rate and true positive rate, they are
commonly computed to extract performance assessment metrics in class imbalance
situations [117, 256]. For instance, [10, 238] use area under ROC curves as a reference
metric in the context of transfer learning with imbalanced conditions.

In all experiments, models trained only with source data or trained with only
target data are also tested. Indeed, when performing transfer learning, one should
make sure the transferred model outperforms the original one (trained on source data)
and the model trained with the few available target data. In results those models are
respectively referred to as Source and Target.

Transf. Src Targ SER SERNP SERNP(λ) STRF C
I (5%) 0.874± 0.04 0.822± 0.02 0.883± 0.02 0.940± 0.02 0.912± 0.02 0.930± 0.02 1

3I (10%) 0.861± 0.04 0.861± 0.02 0.910± 0.02 0.942± 0.02 0.928± 0.02 0.927± 0.02
µ (5%) 0.684± 0.06 0.817± 0.02 0.828± 0.02 0.900± 0.02 0.879± 0.02 0.849± 0.02

1
3

µ (10%) 0.635± 0.06 0.875± 0.02 0.924± 0.02 0.942± 0.02 0.927± 0.02 0.915± 0.02
σ (5%) 0.841± 0.04 0.791± 0.02 0.839± 0.01 0.894± 0.01 0.879± 0.01 0.881± 0.01
σ (10%) 0.840± 0.04 0.871± 0.02 0.896± 0.01 0.923± 0.01 0.918± 0.01 0.919± 0.01
µ,σ (5%) 0.658± 0.10 0.823± 0.02 0.859± 0.01 0.897± 0.01 0.883± 0.01 0.832± 0.02
µ,σ (10%) 0.650± 0.10 0.827± 0.02 0.869± 0.01 0.893± 0.01 0.877± 0.01 0.855± 0.02
I (5%) 0.676± 0.10 0.801± 0.01 0.859± 0.01 0.904± 0.01 0.881± 0.01 0.828± 0.02 2

3I (10%) 0.670± 0.10 0.846± 0.01 0.891± 0.01 0.934± 0.01 0.918± 0.01 0.892± 0.02
µ (5%) 0.535± 0.08 0.742± 0.02 0.761± 0.02 0.831± 0.02 0.821± 0.02 0.741± 0.02

1
3

µ (10%) 0.573± 0.08 0.835± 0.02 0.857± 0.02 0.882± 0.02 0.876± 0.02 0.862± 0.02
σ (5%) 0.741± 0.06 0.833± 0.02 0.853± 0.01 0.906± 0.01 0.887± 0.01 0.870± 0.02
σ (10%) 0.709± 0.06 0.878± 0.02 0.909± 0.01 0.924± 0.01 0.910± 0.01 0.899± 0.02
µ,σ (5%) 0.564± 0.12 0.752± 0.02 0.785± 0.01 0.845± 0.01 0.844± 0.02 0.766± 0.01
µ,σ (10%) 0.535± 0.12 0.867± 0.02 0.893± 0.01 0.913± 0.01 0.903± 0.02 0.875± 0.01

Table 3.3: ROC AUC of transfer algorithms on various experiments with synthetic data.
SER variants comparison.

Tables 3.3 and 3.4 represent transfer learning results on synthtic data in terms of
ROC AUC over several repetitions and is focused on two imbalance ratios (5% and
10%). Each row corresponds to a specific transformation with a percentage of minority
class. At each experiment either one third or two thirds of source clusters parameters
have been redrawn to create target data. The last column recalls this portion. Each
redrawing is combined with changes on mean (µ), variance (σ), or only class proportion
changes (I). The best result within the STRUT and SER family methods are highlighted,
unless differences with respect to the other variants are minor. Figure 3.8 gives the
mean performance scores over all experiments for different proportions of minority
class.

In most experiments, STRUT does negative transfer which gets worse when more
clusters are changed in the transformation. When regarding STRUTNoDiv mean score
over all experiments, we observe that it always gives poorer results than Target, thus
doing negative transfer. However when comparing it to STRUT, we observe that
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Transf. Src Targ STRUT STRUTND STRUT(λ) STRUTNP(λ) STRF C
I (5%) 0.874± 0.04 0.822± 0.02 0.751± 0.03 0.736± 0.04 0.776± 0.03 0.804± 0.03 0.930± 0.02 1

3I (10%) 0.861± 0.04 0.861± 0.02 0.800± 0.03 0.786± 0.04 0.835± 0.03 0.828± 0.03 0.927± 0.02
µ (5%) 0.684± 0.06 0.817± 0.02 0.732± 0.05 0.759± 0.04 0.800± 0.03 0.740± 0.03 0.849± 0.02

1
3

µ (10%) 0.635± 0.06 0.875± 0.02 0.765± 0.05 0.737± 0.04 0.857± 0.03 0.780± 0.03 0.915± 0.02
σ (5%) 0.841± 0.04 0.791± 0.02 0.694± 0.04 0.659± 0.04 0.750± 0.03 0.776± 0.03 0.881± 0.01
σ (10%) 0.840± 0.04 0.871± 0.02 0.745± 0.04 0.773± 0.04 0.814± 0.03 0.794± 0.03 0.919± 0.01
µ,σ (5%) 0.658± 0.10 0.823± 0.02 0.681± 0.04 0.667± 0.04 0.780± 0.03 0.734± 0.03 0.832± 0.02
µ,σ (10%) 0.650± 0.10 0.827± 0.02 0.725± 0.04 0.731± 0.04 0.804± 0.03 0.735± 0.03 0.855± 0.02
I (5%) 0.676± 0.10 0.801± 0.01 0.691± 0.02 0.661± 0.03 0.750± 0.02 0.709± 0.02 0.828± 0.02 2

3I (10%) 0.670± 0.10 0.846± 0.01 0.730± 0.02 0.724± 0.03 0.831± 0.02 0.734± 0.02 0.892± 0.02
µ (5%) 0.535± 0.08 0.742± 0.02 0.639± 0.05 0.643± 0.04 0.676± 0.05 0.642± 0.05 0.741± 0.02

2
3

µ (10%) 0.573± 0.08 0.835± 0.02 0.752± 0.05 0.759± 0.04 0.806± 0.05 0.704± 0.05 0.862± 0.02
σ (5%) 0.741± 0.06 0.833± 0.02 0.731± 0.03 0.747± 0.05 0.797± 0.03 0.763± 0.03 0.870± 0.02
σ (10%) 0.709± 0.06 0.878± 0.02 0.800± 0.03 0.810± 0.05 0.853± 0.03 0.791± 0.03 0.899± 0.02
µ,σ (5%) 0.564± 0.12 0.752± 0.02 0.662± 0.03 0.676± 0.04 0.692± 0.03 0.609± 0.03 0.766± 0.01
µ,σ (10%) 0.535± 0.12 0.867± 0.02 0.748± 0.03 0.731± 0.04 0.820± 0.03 0.728± 0.03 0.875± 0.01

Table 3.4: ROC AUC of transfer algorithms on various experiments with synthetic data.
STRUT variants comparison.

Figure 3.8: Mean ROC AUC of transfer methods on synthetic data depending on the
minority class ratio.

its scores are always better, letting us assume that using the divergence criteria in
the threshold update procedure worsen the transfer. We can observe that STRUT(λ)
scores stay relatively close to Target’s independently to minority ratios. Nevertheless,
experiments show that this algorithm still largely outperforms original STRUT and
STRUTNoDiv.

Theses results suggest that when facing class imbalance, rather than ignoring the
divergence criteria (STRUTNoDiv) which is not effective, taking into account the class
proportion change (with STRUT(λ)) is a better alternative. STRUTNoPrune(λ) transfer
efficiency is comparable to STRUT in most situations, except for extreme imbalance
(< 5%) where this variant represents a clear advantage.

Unlike STRUT, SER manages to do a valid transfer, i.e. it performs better than
source and target models. Up to around 10% of minority class ratio, SERNoPrune outper-
forms significantly the original SER algorithm and SERNoPrune(λ) transfer efficiency is
placed somewhere between the two, depending on the value of λ.
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5.4.2 Transfer from simulated to real falls

Our source model is a 10 trees random forest trained on simulated falls data as presented
in chapter 2. The real falls DB considered as our available target data is composed by
2465 event signals with 167 falls and 2298 non-fall events corresponding to random
real activity signals. Transfer learning algorithms experiments have been made with
ROC AUC as the performance metric and according to 2 main axis of observation :
the class imbalance ratio and the absolute amount of minority class data used in transfer
algorithms. Each transfer algorithm is applied on every tree of the source random forest
producing a new transferred random forest of the same size. Moreover for versions
that use pruning risk estimation (SERNP(λ) and STRUTNP(λ)) to avoid some minority
class leaves pruning, the CPRR threshold is set to 0.5.

Figure 3.9: Mean ROC AUC of transfer algorithms on fall detection data depending on
the minority class ratio and the amount of minority class data.

For each transfer experiment scores correspond to the mean ROC AUC of 10
repetitions of k-fold cross validation. To obtain a varying amount of minority class data
the number of folds varies from 3 to 10 while keeping the same imbalance ratio (∼ 7%),
making the number of training target falls between 15 and 55. In order to get a varying
class imbalance ratio while keeping the same amount of training falls non-fall events
had to be added partially in the training such as falls represent from 3% to 45%. In this
configuration the number of folds is 5 and the amount of training falls is around 30.

Results of these experiments are shown in Figure 3.9 in function of class imbalance
ratio and number of training falls, grouped by algorithms type (SER or STRUT) and
compared with source and target models. We first can observe that with the original
7% target class imbalance ratio and with a few falls event STRUTNoDiv version can
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outperform STRUT, showing the limits of original STRUT’s divergence gain optimiza-
tion in class imbalance situations. While varying the number of training falls target
model is better than every STRUT version from a certain point (around 30 falls) but
our STRUT(λ) and STRUTNoPrune(λ) variants provide some improvements compared
to original STRUT. Moreover with less than 30 falls STRUTNoPrune(λ) outperforms
quite distinctly all other models proving its efficiency to limit bad effects of pruning.

SER versions present in majority better scores than STRUT ones, achieving a valid
transfer with a performance noticeably higher than source and target models while
confronted with very few minority class data. Pruning limitation of SER variants for
imbalance slightly improve results and SERNoPrune(λ) performance curve seems a bit
above SERNoPrune one, suggesting that pruning risk quantification can be more relevant
than systematically avoid minority class pruning.

5.4.3 Public datasets

To confirm the validity of the variants we propose in the imbalance context three
publicly available data sets of different nature have also been tested. One of them is
composed by images and the two others are textual data.

Spam detection:
This data set contains 7500 text instances collected from messages and emails for

spam detection purposes and provided originally for the ECML/PKDD 2006 Discovery
Challenge. Two data sets are available online1 (namely "Task A" and "Task B") and we
used the one described as having important user specific characteristics to perform
transfer learning ("Task A"). This database originally includes some unlabeled data but
we extracted only labeled emails from three inboxes corresponding to three users (2500
instances for each user) referred as user "A","B" and "C".

For each experiment we consider one user as the source domain and another as the
target domain and we generated features through word embedding keeping the amount
of occurence of the 100 most frequent words. This situation is a generalization type
of transfer between two different sources of the same kind of data. To make a parallel
with our monitoring application it would be comparable to a transfer learning from a
detection model trained on one patient room into another patient room.

Amazon reviews:
This data set is also composed by text data with binary labels from Amazon products

reviews. Amazon provides millions of client online reviews on dozens of products and
sorted databases on these data are available online2. Four categories of products are
selected : music, video games, cell phones and home products and 5000 reviews (1250
for each kind of product) are extracted from this database for our experiments. These
data are originally labeled by a "review score" going from 1 to 5 that we divided into
two main labels : "positive" and "negative" reviews.

For each experiment we consider one product category as the source domain and
another category as the target domain and we generated features through word em-
bedding using the 500 most frequent words. This situation is a generalization type of

1www.ecmlpdd2006.org/challenge.html
2https://snap.stanford.edu/data/web-Amazon.html

www.ecmlpdd2006.org/challenge.html
https://snap.stanford.edu/data/web-Amazon.html
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transfer between two different groups of data sources. An analogy with our monitoring
application would be to attempt a transfer between two groups of patient, sorted for
example by sex, pathology, level of dependence or walking device.

Office-Caltech:
This data set contains images from amazon.com or office environment images taken

under different conditions (with a webcam or a higher quality camera). Features are
generated by SURF algorithm categorized in 800 dimensions available online3 and
images are partitioned in 10 classes corresponding to different objects. We use Amazon
and Caltech image sets as source and Webcam images as target. The Amazon and
Caltech sets contains respectively 958 and 1123 instances (about 100 examples per class)
and the Webcam set contains 295 instances with (about 30 examples per class). To
keep a simple binary label context we performed one versus all re-labeling for each
experiment.

This is comparable to our transfer learning situation on fall detection task as it is an
example of a source domain composed by data acquired in a controlled environment
(here images for sales purposes with good resolution and uniform background) and a
target domain composed by real environment data (here low quality images taken in
different conditions of exposition etc.)

Results :
Figures 3.10, 3.11 and 3.12 provides respectively ROC AUC scores over spam

detection data, Amazon reviews and Office-Caltech data for various class imbalance
values in the target data set. For each transfer experiment scores correspond to the
mean ROC AUC of 10 repetitions of k-fold cross validation on the target test set with
k set to 5. The source class ratio is initially set to 50% and the imbalance ratio varies
from 5% to 50% of minority class using downsampling, we set the imbalance ratio in
the target set going from 5% to 50% of minority class. Figure 3.10 represents transfer
experiment on spam detection task from user "A" to user "B", from user "B" to user "C"
and from user "A" to user "C". Figure 3.11 represents transfer experiment on reviews
classification task from digital music reviews to home equipment products reviews
and from digital music to smartphones. Figure 3.12 represents transfer experiment on
object recognition task from Amazon pictures to webcam ones and from Caltech to
webcam, using one versus all mean score assessment. For algorithms using pruning
risk estimation (SERNP(λ) and STRUTNP(λ)) the CPRR threshold is set to 0.5.

Concerning SER and its variants in most cases scores of these algorithms follow
target models scores in function of class imbalance ratio but with noticeable better
performance. It is not very surprising as the expansion phase is a sort of partial re-
training with target data at some particular nodes of the decision trees. It explains why
SER presents in general better results than STRUT with the possibility of increasing
depth of decision trees, contrary to STRUT, to cope with parts of target data distribution
that would be totally new compared to source distribution.

Moreover SER and its variants have performance curves that are relatively close
which suggests that the pruning applied by SER is not a big issue on these three
transfer applications. On Office-Caltech data it is even preferable to chose the original

3https://people.eecs.berkeley.edu/~jhoffman/domainadapt/

https://people.eecs.berkeley.edu/~jhoffman/domainadapt/
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Figure 3.10: Mean ROC AUC of transfer methods on spam detection DB depending on
the minority class ratio. First row : from user "A" to user "B". Second row : from user "B" to user "C".
Third row : from user "A" to user "C".

SER algorithms (Figure 3.12). On the other hand, on the spam detection task presented
in Figure 3.10, a slight improvement brought by SERNP and SERNP(λ) is observable
on low class imbalance ratios. Another interesting phenomenon on these data is that
in some cases SERNP(λ) is better than SERNP and the other in some other cases. As
SERNP corresponds to the extreme situation of CPRR = 0, it means that the calibration
of this pruning risk threshold parameter is important. Based on these observations we
can conclude that SER is suited for transfer in a large variety of context and data and
the effects of pruning avoidance variants with regards to class imbalance depends on
the data set.

Observations on STRUT and its variants are less ambiguous, even if they present
poorer performance than SER and than target models in most cases, the effect of the
two main variants STRUT(λ) and STRUTNP(λ) is clearly positive while confronted
with important class imbalance.

Additional results on public data are presented in Appendix C.
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Figure 3.11: Mean ROC AUC of transfer methods on Amazon reviews DB depending
on the minority class ratio.
First row : from music products to home products. Second row : from music products to phone products.

Figure 3.12: Mean ROC AUC of transfer methods on Office-Caltech object recognition
DB depending on the minority class ratio.

First row : from Amazon images to webcam images. Second row : from Caltech images to webcam.
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6 Meta-model and selection of transferred trees

In previous section we presented SER and STRUT model-based transfer algorithms on
decision trees and showed using synthetic and real datasets that their efficiency depends
on data and the transformation between source and target domains. We explained the
drawbacks of these algorithms while confronted to imbalanced target data, which is
unavoidable while dealing with fall detection, and designed some variants adapted
to class imbalance and reducing the pruning risk. Nevertheless, even if our variants
can be seen as generalization of original SER/STRUT algorithms, for any given set of
target samples and decision tree, there is probably a best version of these algorithms to
employ which is not known in advance. In their original work [216] authors suggest to
apply both algorithms on every decision tree of the source random forest and to mix
the resulting transferred trees in a new random forest two times bigger than the source
one, containing then one half of SER decision trees and one half of STRUT ones. They
also showed that this combination is useful to increase performance as SER trees are
non-correlated to STRUT trees.

So we propose an aggregation method able to adapt to different transfer situations,
taking into account all the various variants previously presented in a random forest of
the same size of the original one, following two main ideas.

1. For each tree of the original random forest is selected a bootstrap subset of target
data, keeping the primitive way of random forest to reduce correlation between
trees.

2. Each transfer algorithm variant is trained using bootstrap samples and assessed
using OOB samples and the best one is selected as the transferred version of the
corresponding original tree.

6.1 Adaptable transfer algorithm for random forest

STRF algorithm : Selective Transferred Random Forest (STRF) algorithm is a meta-
algorithm using several transfer sub-algorithms to deal with any transfer situation
on random forests and to give information about source/target domains relation,
its pseudo-code is presented in 3.7. Consider a source random forest, a labeled
target dataset ST and an ensemble of several transfer algorithms on decision trees A =
{A1, ..., Am}) designed to be efficient in different conditions. For example in our case we
have an algorithm designed to adapt to distribution enrichment or simplification (SER)
and another one designed to deal with local feature space geometric transformations
(STRUT), as well as variants of these for imbalance and data rarity situations.

The algorithm works as follows : for each source tree Ti in the initial random forest
a bootstrap subset Sb is drawn from ST and used to train every transfer algorithms of
A, while OOB samples are kept to assess score of each one applied to Ti and to select
the best transferred tree Ttr

i . We choose to use the ROC AUC score in this SelectBest
procedure but it can be replaced by any score measure. Finally the transferred random
forest corresponds to the aggregation of all selected transferred trees Ttr

i .
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Algorithm 3.7 STRF

procedure STRF(RF,ST,A = {A1, ..., Am})
for Ti ∈ RF do

Sb,OOBb← Bootstrap(ST)
for Ti ∈ RF do

for Ak ∈ A do
Ti← Ak(T,Sb)

end for
Ttr

i ← SelectBest({T1
i , ..., Tm

i },OOBb)
end for

end for
return RFtr← {Ttr

i }i
end procedure

Notations: Here the list of different transfer algorithms on decision trees tested
is SER,SERNoPrune,SERNoPrune(λ),STRUT,STRUT(λ),STRUTNoDiv,STRUTNoPrune(λ).
But other transfer algorithms can be used.

Figure 3.13: Comparison of STRF model with original SER/STRUT on synthetic (top)
and fall (bottom) data, depending on target minority class ratio and the amount of
minority data.

This algorithm keeps original bagging idea of random forests and at the same
time use transfer algorithms on decision trees in combination with OOB performance
estimation to choose SER/STRUT variants that are more suited to target data. This
principle can be implemented on random forest with any group of transfer algorithms
applicable to decision trees and should be the more efficient the less decision trees
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Figure 3.14: Comparison of STRF model with original SER/STRUT on spam detection
data, depending on target minority class ratio and the amount of minority data.
Transfer between inboxes of 3 user "A","B" and "C", respectively (A,B),(B,C) and (A,C) from left to right.

Figure 3.15: Comparison of STRF model with original SER/STRUT on Amazon
reviews data, depending on target minority class ratio and the amount of minority
data.

Transfer from music to home domain (left) and from music to phone (right).

Figure 3.16: Comparison of STRF model with original SER/STRUT on Office-caltech
data, depending on target minority class ratio and the amount of minority data.

Transfer from Amazon (left) or Caltech images to webcam images(right). Average on one-vs-all models
between 10 labels.

produced by the different transfer algorithms are correlated.
The main inconvenient of this STRF algorithm how heavy in terms of computations

it can be as this procedure tests several transfer algorithms on each decision tree.
Nevertheless this kind of transfer operation is meant to be done after new data gathering
that shows major changes in data distributions and is not needed in real-time. So
it is not a critical issue as long as the model complexity is comparable between the
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transferred random forest and the source one.

6.2 Interpretation of STRF selection

Previous section shows the performance of STRF algorithm both on synthetic and
real datasets. Most of the cases our aggregation transfer algorithm outperforms each
individual decision tree transfer algorithm while staying relatively close to the best
variant of SER/STRUT depending on data, in terms of ROC AUC scores.

So in addition to providing good transfer performance STRF shows its ability to
several kinds of source/target transformation, without any prior knowledge, by a
sub-model selection strategy. Moreover as this algorithm can be considered as a kind
of "vote" for the best transfer SER/STRUT variant on decision trees, it indicates in a
way which kind of transfer operations are preferable to choose depending on data,
which can be relevant information. For example we can assume that if STRF chooses
in majority STRUT variants it could mean that the relation between source and target
domains is made of local translations. On the contrary, if STRF votes mainly for SER
variants it may mean that there are some new data clusters in target domain, as SER
can perform tree extension whereas STRUT can not augment trees depth. Synthetic
experiments on unique decision trees show these kinds of tendencies as presented in
Figure 3.6.

Extending this data interpretation idea we can wonder whether this selective transfer
algorithm could detect situations at the borders of transfer learning like while target
domain comes from a completely new distribution or negative transfer cases. Indeed
the literature presents several prepared dataset where transfer is known to be possible
and useful but in reality one may be confronted to the problem of transfer utility
and necessity. To study these situations we used synthetic data to produce several
experimental situations in combination with adding source and target (RF trained from
scratch on target data only) random forests in the pool of models that can be selected
by the STRF algorithm.

Figure 3.17: Visualization of STRF selection on synthetic data (situations 1. and 2.).
On the left the situation where source and target distributions are the same. One the right the situation

where target clusters are completely redrawn.
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Figure 3.18: Visualization of STRF selection on synthetic data (situations 3. and 4.).
On the left the situation where one third of source clusters are redrawn to obtain target distribution. One

the right the situation where target clusters are translated versions of source clusters.

STRF interpretation on synthetic data : The first group of experiments concerns syn-
thetic data using the Gaussian cluster generator previously presented. Four situations
have been tested with 10 repetitions, each one initialized by a distribution of 15 clusters
for each label in dimension 3 and with a source random forest of size 10 trained on 100
instances coming from this distribution. Then the target domain is created these rules
for each of the 4 situations:

1. Target domain is exactly the same as source domain and target data are simply
re-drawn from the same source distribution. In this situation there is no need of
transfer and source model should remain the same.

2. Every cluster is randomly reset with new parameters, meaning target domain
corresponds to a completely new distribution with no relation with source domain.
In this situation transfer should be useless and the model needs a full new training
instead.

3. One third of all the clusters are reset with new parameters and the rest stays
unchanged, which is equivalent to deleting 5 clusters for each label and adding 5
new ones.

4. Each cluster’s mean is translated on one axis with a random value of maximum
one fifth of feature space bound.

Figure 3.17 corresponds to the 2 first situations (1. on the left and 2. on the right) and
as expected STRF chooses respectively source and target model in majority, showing
that the algorithm is able to indicate while no transfer is really needed while keeping a
consistent model close to the source one or the target one depending on the situation.
It can also be noted that among tested transfer algorithms, SER is the most selected
one in these kinds of situations. It can be explained by the important flexibility of SER
in terms of structure changes, as it is able to either keep decision trees unchanged or to
adapt to a full new training by extension and reduction operations.
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Figure 3.18 represents cluster addition/deletion situation and translations (3. on
the left and 4. on the right). As we can observe SER is mostly selected by STRF in
situation 3. whereas STRUT is preferably selected compared to SER in situation 4..
This confirms tendencies observed on unique decision trees in Figure 3.6 and shows
again how STRF can bring information about the nature of the differences between
source and target domains. Target decision tree being largely chosen in situation 4.
might be interpreted as the fact that this situation is not very challenging compared to
the cluster addition/deletion and a simple re-training may be sufficient.

STRF interpretation on fall data : As the transfer between simulated and real fall
data is concerned STRF algorithm seems to select a small majority of SER trees while
still using all of the variants of transfer algorithms, as well as source and target decision
trees. We can assume that some part of target data are comparable to source data,
showing source model utility, whereas others can be viewed as a completely new
component of the distribution. Overall it may suggest not surprisingly that target data
are richer in terms of events and need deeper decision trees.

Figure 3.19: Visualization of STRF selection on fall detection data.

7 Conclusion

This chapter aims at tackling the differences between simulated falls data and real
falls data using transfer learning to integrate real data into a random forest previously
trained on simulated data. Based on a seminal work about model-based transfer on
decision trees [216] two algorithms are tested, namely SER and STRUT, and we explain
how class imbalance and data rarity can severely impact transfer learning. Indeed in
practice we can collect almost as much real non-fall events as desired but real falls are
still rare events. We illustrate this issue on SER and STRUT using our fall detection
data and synthetic data and point out the two main mechanisms involved in these
consequences : the divergence gain optimization and the pruning.

To solve this problem, we studied several variants of these algorithms and propose
some generic adaptations. The key intuition of these adaptations consists in reducing
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the minority class pruning risk while modifying decision trees, since this risk appears
to have a significant impact over the original methods, decreasing performances and
even leading to negative transfer. Our approach consists in considering the simplest
class imbalance situation in target domain and formulate the homogeneous imbalance
assumption. Based on this assumption, the divergence gain optimization can be redefined
and the pruning risk can be estimated on each leaf of decision trees. The proposed
adaptations SERNP(λ) and STRUTNP(λ) can be viewed as generalizations of the
original algorithms as they depend on the parameter λ that quantifies class imbalance
amplitude. The more target class proportions are close to source ones, the more λk
values (with k the class index) are close to 1 and the more these adaptations are close
to original SER/STRUT.

7.1 Class imbalance, pruning risk and assumptions about domain changes

This chapter shows the relevance of estimating the pruning risk while performing
transfer learning on decision trees with methods involving pruning in target class
imbalance conditions, even if the homogeneous imbalance assumption is not satisfied in
practice. This estimation is done on each decision tree leaf individually however the
real risk is not to lose one leaf in particular but rather to lose "too much" minority
class leaves with regards to the distribution complexity of the minority class. Even
though the right amount of these minority class leaves in the model is hard to quantify
without any further assumption, a more general pruning risk could be defined as the
probability estimate of pruning a precise number of leaves out of a decision tree. This
kind of estimate might be hard to compute but the homogeneous imbalance assumption
is sufficient for it to be well defined. So this perspective could lead to interesting
development, such as the assessment of the mean expected amount of minority class
leaf lost by pruning, and therefore more general strategies while transferring decision
trees under class imbalance.

The homogeneous imbalance assumption shows how much modeling distribution
changes between source and target can be useful to come up with some helpful indica-
tors for undertaking adapted approaches. For example source/target transformations
leading to class imbalance could be seen as a composition of a fixed balance transfor-
mation with a homogeneous imbalance transformation (which is revertible). Assumptions
can also be done on source and target distributions themselves. For instance if data
are supposed to come from a mixture of Gaussian clusters (like generated synthetic
data presented earlier) then possible transformations between source and target can be
decomposed into cluster addition deletion, clusters re-weighting and changes of cluster
mean and covariance matrix parameters.

7.2 Selective transferred random forests (STRF) and heterogeneous transfer

In the context of STRF algorithm, there are two advantages in decomposing trans-
formations between source and target distributions into different families of possible
transformations according to particular assumptions about the shape of distributions. It
permits to design particularized and complementary decision tree based transfer proce-
dures associated with each family of transformations. Our intuition is that by including
these complementary procedures, STRF must be able to handle any combination of
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these transformations. This is the original idea behind SER and STRUT, with one
algorithm supposed to cope with cluster addition/deletion type of transformation and
the other assumed to cope with cluster squeezes/stretches and translations. Moreover,
as illustrated in section 6, STRF selection would serve as a complete description of the
transformation between source and target domains, which is highly valuable. Thus
a natural extension of STRF would be to add other transformation based algorithms
depending on some assumptions about distribution changes between source and target
domains.

Finally this work focuses homogeneous transfer learning (meaning (X S,YS) = (X T,YT))
and its extension to heterogeneous transfer would be another interesting perspective. For
that model-based transfer algorithms applied on decision trees need to be able to deal
with feature space (when X S , X T) changes and/or label space change (when YS , YT)
from source to target. While YS , YT, it concerns values of decision tree leaves and how
they are assigned. As both SER and STRUT algorithms relabel tree leaves according
to target labeled data, they could in theory still work in the context of different label
spaces. However if expansion and reduction operations in SER can easily be extended
in this context, it is not the case for the divergence gain optimization in STRUT that
strongly depends on labels distribution at each node.

Considering the feature spaces change context where X S , X T, the objective can be
either to add new features to the model or to remove some features (or both). Adding
new feature is possible with SER but only on the expansion phase whereas not feasible
in STRUT as it does not use any operation involving feature change. Removing features
from the model remains the most difficult situation with regards to heterogeneous transfer.
In the next chapter we define the notion of decision tree equivalence that could be helpful
for this purpose and we explain this perspective in section 5. Thus by redefining some
of the SER and STRUT operations and by integrating other ones to deal with label
space or feature space changes, designing a STRF algorithm that can work in the
heterogeneous transfer should be achievable.
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1 Introduction

1.1 Machine learning subject to resource constraints

The previous chapter described several predictive models meant for daily activity
monitoring of elderly, from feature set design to domain model transfer, without
considering any limit in the amount and complexity of computations. Nevertheless
these predictive models have to be implemented in an embedded system and to work
with high reactivity, at least for fall detection. Thus the computation time of these
models, as well as their size in the local memory of embedded system are constrained.
These kinds of constraints that are related to some practical resources (in this case
time and memory) are often referred to as "budgets" as they can not be exceeded and
methods taking them into account in model design belong to the budgeted learning field.

Although such resource constraints cannot be neglected for the final application,
keeping a non-limited in experimental context is still useful for assessing the most
empirical accuracy obtainable, understanding real conditions prediction errors and
for more detailed interpretation in general. In this chapter we study how to get a
"simplified" version of complex models, using budgeted learning, in order to cope with
embedded technology constraints, while keeping good predictive efficiency. Budgeted
learning is part of methods that do not have only the loss function expectation as the
objective function to optimize. It defines another objective function representing some
costs during the training or the prediction of the model with some bounds on these
costs that can not be exceeded (called budget).

Various budget learning situations
One major success of machine learning is its today applicability in a wide-range of

industrial systems in numerous fields like IoT, security, healthcare or finance. In this
context, the prediction model complexity is often adjusted through hyper-parameter
tuning in the learning process, without taking deeply into account the capacity of the
device intended to run the model. Indeed several variables, involving real resource
consumption necessary for building a model and/or making it work in a limited
device, are not directly included in classical machine learning, whereas these real world
applications need at least computational resources for training or computing their
outputs and it can become the main challenge of these applications. These resources are
often subject to practical constraints and taking them into account during the learning
and/or prediction phase is the purpose of budget learning. Moreover the rise of deep
learning illustrates well that machine learning models tend on one hand to be more
and more complex in term of size and inner computations, and on the other hand they
are increasingly applied for real time predictions in systems that are more and more
compact, autonomous and portable. Thus, budgeted learning is a vast and real concern
for modern ground applications of machine learning. At the same time, the complexity
of machine learning models is growing so as the scale of their application in real world,
and the hard-wares they are implemented in are more and more portable and small
[123], our application being a great example of this ambivalence [174]. Numerous recent
works involve this topics on various kinds of models and considering different resource
constraint frameworks. Some of them refer directly to industrial applications [163, 240],
whereas others focus more on the theoretical framework of budgeted optimization
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[95, 107].
In this context, considered resource constraints can be linked with data gathering,

features computation, model size, time or energy consumption. For instance some of
them embed models in robotic units which have access to too much observational inputs
to concurrently treat all of them [65, 163], implying data acquisition costs. Another
concerned application field is advanced real-time video processing with relatively
"heavy" models [135, 165] where constraints can be linked to the model size, feature
computations and prediction time. Concerning activity recognition [198] proposes a
method alternating several wearable sensor to optimize the trade-off between accuracy
and energy consumption.

So the nature of budgeted resources varies a lot depending on applications, and
besides, these resources can be critical either in the training or the prediction phase
[45, 93]. For example [44] investigates the question of costly acquisition of data attributes
under a budget enumerating three main frameworks : local budget constraint, global
budget constraint and prediction on a budget. The two first ones concern the training
phase with a budget corresponding to a maximum number of attributes that can be
acquired, either on each training instance [19] (local budget), or on overall training
data set [75, 134] (global budget). In the third one attribute acquisition is also costly
but in the prediction phase while the model is already trained [104]. In this budgeted
frameworks comparison context, [44] comes up with theoretical results suggesting that
predicting on a budget may be a harder task than training on a budget.

Budgeted active learning methods focus on budgets defined on training instances,
whereas other approaches consider budgeted computation time of prediction and even
both can be considered at the same time, for instance, this is the case for budgeted
reinforcement learning [59]. In our case, we assume that the training is done under un-
restricted conditions, with hypothetically unlimited resources. Conversely, as our model
is intended to be embedded in a small electronic device, the cpu-time consumption is
extremely constrained in the prediction phase occurring in real conditions.

1.2 Budget on the training phase

The problem of selecting a good subset of training data is known as active learning and
presents an increasing interest nowadays due to the multiplication of technological
means to gather data. While this data gathering is costly, whether costs are on raw
observations, some attributes or labels, then budget learning approaches can be consid-
ered. For example numerous real applications use several correlated sensors but aim at
restricting the amount of used one data dependently to be cost efficient [65, 163]. As
any optimal stopping problem is close to a budgeted optimization a common approach
to solve these kinds of sensors subset selection is to use variants or extensions of the
secretary problem [13]. [176] uses a comparable method in the context of federated
learning for the selection of IoT clients where communications between them are costly.

Concerning costly data gathering context, a particular case active learning under
a budget focuses on the cost of labeling. For example [107] designs a selective sub-
sampling strategy in the context of linear regression based on out-of-sample error
bounds of Laplacian regularized least squares, in order to find an optimal subset of
samples to label of budgeted size. In the context of online learning on data streams,
[280] proposes an algorithm for online learning framework with imbalanced data and
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asymmetric miss-classification costs, where the number of queries to obtain sample
labels is budgeted.

Another field where several bridges with budgeted learning has been proposed
is the multi-armed bandit problem (MAB), in the context of costly data exploration.
Indeed most of the time MAB real application implies some limits on the exploration
phase like time spent, number of trials, money or any kind of resource needed to
pull an arm, or even the amount of arms that can be simultaneously pulled in the
multi-player MAB framewok [31]. For example [101, 164] isolate a finite exploration
period to estimate the best strategy where each experiment has a particular cost and the
sum of them can not exceed a budget before accessing the exploitation phase. [74, 75]
studies the attributes global budget situation, developing the parallel between MAB
framework by assimilating each arm to a data attribute, which allows to use MAB ideas
and algorithms to solve this problem. A recent innovative work in the MAB context
introduces time costs in the reward itself to study optimal time allocation situations
[32].

1.3 Budget on the prediction phase

Another budgeted learning framework is while training dataset is already acquired
with a vast pool of usable features and costs are related to the model computations.
Real-time application that have to apply model computations within a certain time
are particularly concerned, which is then often referred to as budgeted prediction time
[184, 247] or test time [182].

One family of methods to control prediction time consists in sequential computation
models that adapt themselves to instances complexity or targeted prediction accuracy.
For example [133, 135] define data dependent policies to sequentially acquire features
based on their costs and the expected gain in accuracy they bring. In some cases features
are directly coming from particular sensors and this kind of sequential acquisition
approach results in concrete actions in the observational environment [234, 247]. By
considering a low-cost model prediction as an observation, this sequential acquisition
information principle can also be applied to sub-model evaluation while using ensemble
models as it is formalized in [95], leading to some cascade association of sub-models
[54, 262] or more generally in gating strategy [182] among these sub-models.

To sum up the task of building budgeted predictive models is a way of dealing
with a trade-off between prediction accuracy and models costs and as developed in
[95] and [133], sequential computations can be formulated as a set of actions leading to
some rewards representing this trade-off. Thus, whether it is formulated as an online
learning [163, 176, 280] or reinforcement learning problem [59, 133, 165, 198, 240], it may
also happen that some resources are costly both in training and prediction phase
and particularly when these phases are not distinctly separated and the model learns
continuously based on new observations.

1.4 Budgeted learning on decision trees

So the first point while having an overall look of this topic is that one major catego-
rization among budgeted learning situations, as presented by the authors in [45, 59], is
whether the resource costs appear in the training or the prediction phase of a machine
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learning model. Then considering budgeted prediction time learning, approaches based
on sequential computations are particularly common and convenient. From these
perspective decision tree based models appear to be particularly suited in this context
as their are inherently sequential cascade models through their structure and they allow
to extract sub-predictions quite simply.

Several recent works on budgeted learning with decision trees show the increas-
ing interest in finding new ways to deal with real-world resource constraints in the
context of models based on decision trees. Some methods incorporate directly budget
constraints in a tree building algorithm to learn from scratch a budget sensitive model
[54, 183] whereas others are designed to alter a pre-trained decision trees based model
to make it fit some budget constraints [184].

One common approach while dealing with prediction time costs on decision tree
based models is to include a penalization to these costs directly in the greedy building
operations of decision trees. This can be done by adapting boosting trees methods,
as the Greedy-Miser algorithm [262], that adds sequentially a new decision tree in a
step-wise regression way at each step of the algorithm. Each new decision tree is built
using modified version of CART with a budget sensible purity function which takes into
account both empirical error and feature usage with a regularization parameter. In [264],
authors present several boosting algorithms on decision trees for budget learning and
extends Greedy-Miser for unlabeled data situation, performing then semi-supervised
budgeted learning, and name their algorithm Gradient Regularized Budgeted Boosting
(GRBB). Another local approach is proposed in [183], for inducing budget sensitive
ensemble of decision trees, where the authors define a family of budget sensitive purity
functions (class of admissible impurity functions) that can be used to greedily construct
decision trees.
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Figure 4.1: Possible use cases of budgeted learning for Tarkett monitoring application.
This chapter focuses on the constrained prediction time situation, represented by the red rectangle.
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In [184], the same authors propose an alternative algorithm with a more global
optimization approach. The budget learning algorithm starts from random forest
of pre-trained decision trees and then prunes them under budget constraints. They
propose to solve a linear program corresponding to the best pruning combination on
decision trees of a random forest, relatively to a dataset and feature acquisition costs,
according to the trade-off between prediction accuracy and prediction computation
time.

2 Problem statement : budgeted prediction time on random
forests

2.1 Introduction on decision trees computation costs

In real-world machine learning application systems, main technological limitations in
terms of computational resources can be divided in three groups :

• non-volatile or permanent memory Bv(used to store information permanently
like model parameters);

• volatile memory Bnv(used to make all the intermediate computations needed by
the model);

• computing power vcomp which determines computation speed (measured as an
amount of basic operation the system can achieve within a time unit).

In a nutshell non-volatile memory restricts model size whereas volatile memory and
computing power limits the amount of data processing, feature computations, model
evaluation and then the prediction time. For technological reasons, nowadays most of
computing devices can afford as much non-volatile memory as needed for a machine
learning model, contrary to volatile memory and computing power that are usually
more valuable and critical industrial aspects. But in some cases where the parameter
space of the model can be huge [240] non-volatile memory limitation can still matter.

To sum up, while aiming at embedding a predictive model in a resource limited
computing device, denoting volatile memory Bv, non-volatile memory Bnv and com-
puting power vcomp, several characteristics of the model are budgeted. Model size has
to be lower than Bv, temporary computations have to take less memory than Bnv at
anytime and the prediction time is equal to the total amount of needed computations
multiplied by vcomp. As specified, for our application we only consider prediction time
budget which relies on two types of computations: those used to compute features
from the original data and the internal computations of the model itself assuming
needed features are already accessible. This distinction is quite general among machine
learning models and the associated costs to each of these computations are referred to
as feature acquisition cost and evaluation cost. Nevertheless the context of decision tree is
particularly convenient as every internal computation is the same simple operation (an
equality test between two values), meaning a constant cost for each node.

For our application we assume that we have enough permanent memory to store
our random forest models. On the other hand signal representations and features
computations need to be stored in the volatile memory and above all these computations
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Figure 4.2: Computation steps for monitoring detection tasks from sensor to prediction

have to be done in a limited time as we aim at achieving real time detections. For that,
the computing power is the critical parameter of the embedded system and it directly
implies a budget on the prediction time. More concretely, with a desired prediction
frequency fp (ideally 100Hz in our case), the whole model must be computed in less
than vcomp

fp
operations for every input or at least in mean. Figure 4.2 represents all the

different computation steps from the initial sensor input to the final model prediction.
The three main time consuming parts are framed in red and refer to the time spent
to compute signal representations like auto-correlation or spectrogram, the time to
compute features based on these representations and the time to evaluate the model
once all the needed features are computed.

Regardless of the type of model and application these computation time costs can
be sorted into two main costs: a feature acquisition cost C f a and a model evaluation cost
Cev. In general these costs can depend both on the modelM and a data input x such
that the total prediction time cost is defined by:

C(M, x) = C f a(M, x) + Cev(M, x). (4.1)

In the next sections we describe how to evaluate these two costs on decision trees
and random forests for our application and based on time consumption parameters
presented in Table 4.1.

Computation Parameters Dimension Type of cost
Signal representations (gi)1≤i≤ng ng = 6 C f a
Features (cj)1≤j≤d d = 128 C f a
Node splits kev 1 Cev

Table 4.1: Computation time parameters involved in the total prediction time

2.2 Cost definitions : feature acquisition and evaluation cost

For any s ∈RN truncated discrete signal of size N a pool of d features (ϕ1, ...,ϕd) can
be computed on s, then the feature space sample corresponding to s is the vector
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(ϕ1(s), ...,ϕd(s)) and is denoted xs and later simply x to simplify the reading. Let’s
consider a machine learning model M (in our case a pre-trained decision tree or
random forest) and a dataset of n labeled samples (X,Y) =

(
(x(1),y(1)), ...(x(n),y(n))

)
with a feature space of dimension d. We assume first that each feature ϕj (with 1≤ j ≤ d)
has an individual feature acquisition cost cj (time to compute ϕj ) and an evaluation cost
kev representing the time needed to assess each internal node split, assuming it is the
same for every node.

Feature acquisition cost (C f a) : For a given decision tree T, any sample xs ∈ X is
associated with a precise path leading to a leaf, which is a sequence of nodes each
composed by a feature and a threshold on this feature. Then a feature usage vector
ΦT[x] ∈Nd can be defined indicating how many times each feature is used in this path.
We denote also the vector Φbin

T [xs] ∈ {0,1}d indicating for each feature whether it is
used or not in the path of xs in T.

Then the computation time spent to compute features needed in the path of xs
indicated by the ones of the vector Φbin

T [xs]. Then the feature acquisition cost is defined

as C f a(T, xs) =
d
∑

j=1
cjΦbin

T [xs]j.

While dealing with an ensemble of decision trees for a boosting model or a random
forest any feature needs to be computed only once for all the trees using it. So for a
random forest R f , the union of all the different paths of xs in the trees of the forest
can be considered, defining then in the same way vectors ΦR f and Φbin

R f that describe
the feature usage for the random forest prediction of xs. It means that for a given
featureϕj, Φbin

R f [xs]j = 1 if and only if there is at least one tree T of the random forest
where Φbin

T [xs]j = 1. Similarly the feature acquisition cost of the random forest is

C f a(R f , xs) =
d
∑

j=1
cjΦbin

R f [xs]j.

Evaluation cost (Cev) : For a decision tree T it corresponds to the computation time
spent to assess all the node on the path of xs in T, having already computed needed
features. Then by denoting LT(xs) the length of this path the evaluation cost is
proportional this length: Cev(T, xs) = kevLT(xs). According to the definition of the
feature usage vector, this length is equal to the L1-norm of ΦT[xs] such that: Cev(T, xs) =
kev∥ΦT[xs]∥1.

For a random forest R f this cost is proportional to the cumulative length of all
paths of xs in the different trees:

Cev(R f , xs) = kev∥ΦR f [xs]∥1 = kev∥ ∑
T∈R f

ΦT[xs]∥1 = kev ∑
T∈R f
∥ΦT[xs]∥1

Finally withM a decision tree or an ensemble of decision tree model, for a given
sample x, the total prediction time cost ofM is defined as :

C(M, x) = C f a(M, x) + Cev(M, x) =
d

∑
j=1

cjΦbin
M [x]j + kev∥ΦM[x]∥1. (4.2)
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It is interesting to note that the cost function C(M, x) depends on the structure of
M, through the feature usage vector ΦM[x], but not very on the associated decision
function. Indeed, contrary to the loss function that fully depends on leaves labels, the
prediction time cost function is independent from these labels. Moreover we can directly
observe from these definitions that the evaluation cost of a random forest is equal to the
sum of evaluation costs of all its trees, whereas the feature acquisition cost of a random
forest is always lower than the sum of feature acquisition costs of its trees, making C f a
sub-modular with regards to the set of considered decision trees.

Cev(RF, x) = kev ∑
T∈RF

∥ΦT[x]∥1 = ∑
T∈RF

Cev(T, x) (4.3)

C f a(RF, x) =
d

∑
j=1

cj1{ ∑
T∈RF

Φbin
T [x]j)>0} ≤ ∑

T∈RF
C f a(T, x) (4.4)

2.3 Specific cost definitions and signal representation costs

Several specific cases can be derived from this general definitions depending on
particularities of each practical resource constrained situation. These different situations
can be summarized into three main questions:

• Is the evaluation cost Cev negligible compared to the feature acquisition cost C f a?

• Do features need to be all computed before applying the model or can they be
computed "on-demand"?

• Is the budget defined on the "worst-case" scenario or on the mean expected
computation cost?

Negligible evaluation acquisition cost : Frequently feature costs are large and/or
model size is relatively low. In this case the computation cost is simplified as C(M, x) ≈
C f a(M, x). For example [183] considers this framework for random forests meaning that
depths or the amount of trees are assumed to not impact on computation time which
only depends on used features. This approximation about computation costs can also be
encountered on other types of model like in [59] with a budgeted reinforcement learning
model using a sequential feature acquisition random policy. Other simplification of the
evaluation cost are possible, for instance Greedy-Miser[263] considers this cost constant
for each tree (n other words the depth of trees is considered constant), meaning that
the total evaluation cost of the boosted tree ensemble model is directly proportional to
the number of trees.

Data dependence of feature computations : There are mainly two ways of managing
feature computations for decision trees: one is simpler to implement and the other is
more efficient computationally. The simplest way consists in computing every feature
present in the model first and then apply decision trees. Then the feature acquisition
cost is the same for every inputs: C f a(M, x) = C f a(M), this framework is considered
for example in Greedy-Miser and GRBB [263, 264]. On the contrary features can be
computed "on-demand" at each node of decision trees making the feature acquisition
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cost depending on inputs and paths they follow. In other words, this distinction results
in whether or not the computation cost C is considered data dependent. For instance
some budgeted boosting models like Speed-Boost[106] and CEBG[196] or budgeted
algorithms on random forests [183, 184] consider a data dependent cost definition.
More generally in budgeted learning, data dependent computation costs can also be
found with other kinds of decision tree inspired models[54, 262] or even completely
different models [182, 248].

Bounding mean cost or worst-case cost : Depending on real conditions of the predic-
tion problem model outputs can be of no use if the prediction time exceed the critical
budget constraint and in this case it is the "worst-case" cost max

x∈X
{C(M, x)} that is strictly

constrained, as considered in [263, 264]. In other situations the prediction time budget
is a softer constraint that can be exceeded exceptionally if respected in average. For
example most of the time in a real-time application with continuous predictions, what
really matters is the mean expected cost E[C(M, x)], as defined in [106, 184], in order
to not have too much delay with data input stream. Of course this distinction only
matters if C definition is data dependent, as if not the maximum cost and the mean
expected cost are equal.

Table 4.2 summarizes all these particularities in cost function definition and budgeted
problem formulation for decision tree based models but it is noticeable that all these
variations can also be encountered for other kinds of budgeted models and have to be
chosen depending on the application. For instance a recent work studies the budgeted
learning problem with heavy neural network architectures on data independent and
budgeted maximum cost framework, with budgets both on prediction time and memory
storage [240]. Moreover no further assumption on C definition is required by this
method except that it can be measured during training, implying that it is usable with
any definition of C.

With a particular concern for flexibility and scalability, our work on budgeted
learning firstly introduces in the next section an adapted C cost function definition
on random forests considering signal representation computations, and then proposes a
general genetic algorithm working with any definition of C and that can be extended
to several concurrent budget constraints.

Grouped features and shared computation costs

Previous feature acquisition cost definition considers that each feature has a fixed cost
independently to other features. Nevertheless some real implementations use more com-
plex and intricate feature computations. For instance a common situation is while some
groups of features are not directly computed from raw data but rather on previous data
processing computations, which are in general computed on every instance. It is exactly
our case as we consider groups of feature defined on several signal representations:
raw signal, derivative, integral, autocorrelation, Fourier transform and spectrogram.
Each of these signal representation corresponds to different computation cost and
including a feature in a model also implies to invest in computing its associated signal
representation. This kind of "feature groups" with shared preliminary computations is
frequent while features are computed in several steps from initial data or organized in
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successive layers. [196] takes into account a comparable framework in feature acquisition
cost definition with some features that need to be applied on all inputs at once and
evokes separable convolution filters as an example. In our case it is a bit different as
each proper feature needs its corresponding signal representation to be computed and
this sort of computation dependency is frequent in real applications. For instance it is
equivalent to consider several sensors having each their own acquisition cost for getting
their measurements on which some groups of features can then be applied.

Each of these groups corresponds to additional computation costs and including a
feature in a model also implies to invest in computing its associated signal representations
as illustrated in Figure 4.2. We formalize this situation by introducing new costs gk for
each feature group acquisition (with ng the number of groups and 1≤ k ≤ ng) and a
matrix G of size ng × d, where Gi,j indicates if feature f j belongs to the i-th group. In
this situation a feature group usage vector can be defined as ϕbin

g,M[x] = 1{G.ϕbin
M [x]>0}.

Then the total feature acquisition cost becomes:

C f a(M, x) =
ng

∑
k=1

gkϕbin
g,M[x]k +

d

∑
j=1

cjϕ
bin
M [x]j. (4.5)

2.4 Trade-off between the prediction error and the prediction time

The budgeted learning task can be formalized as a constrained minimization problem.
Indeed, it aims at minimizing a mean empirical loss relatively to a loss function l(as in
standard machine learning problems), but in a constrained space of models that have a
prediction time bounded by a budget B > 0.

More formally, let H be a hypothesis space of classifiers from Y to Y , in our case
a space of models based on decision tree classifiers (e.g. random forests). For each
model M∈ H corresponds a decision function hM(.) from X to Y and a computation
cost function C(M, .) from X to R+. Moreover, let ℓ be a loss function, (X,Y) a couple
of random variables following a distribution PXY over X ×Y .

Then, if it exists, the optimal solution to the budgeted prediction time problem is:

M∗ = argmin
M∈H

EXY[ℓ(hM(x),y)] subject to EXY[C(M, x)] ≤ B (4.6)

or subject to max
x∈X
{C(M, x)} ≤ B. (4.7)

Assuming n i.i.d samples (x(i),y(i)) are drawn from the distribution PXY,M∗ can
be approached the solution M̂ of the associated empirical constrained minimization
problem:

M̂ = argmin
M∈H

1
n

n

∑
i=1

ℓ(hM(x(i)),y(i)) subject to
1
n

n

∑
i=1

C(M, x(i)) ≤ B (4.8)

or subject to max
x∈X
{C(M, x)} ≤ B. (4.9)

With either a constraint on the mean computation time(equation 4.7) or on the
"worst-case" computation time (equation 4.7).

There are mainly three different families of methods to tackle this problem for
budgeted learning on decision tree ensembles :
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1. Local cost-sensitive optimization methods building decision trees by considering
at each node an optimal trade-off between loss and cost function values.

2. Variants of usual gradient boosting approach on decision trees but replacing the
loss function by a budget sensitive objective function.

3. Global cost-sensitive optimization methods by modifying pre-trained decision
trees with regards to budget constraints.

Algorithm Max/Mean F.A. cost Ev. cost Data dep Family
Feature budgeted RF [183] Max yes no yes 1
Speedboost [106] Mean yes yes yes 2
Greedy miser [263] Max yes yes no 2
CEGB [196] Mean yes yes yes 2
GRBB [264] Max yes yes no 2
Pruning on a budget [184] Mean yes yes yes 3

Table 4.2: Categorization of budgeted learning algorithms on decision trees

Each family of methods uses a form of trade-off between prediction accuracy and
computation cost that intervenes at different levels during the training. The first
category consists in building directly from scratch a budget aware model conserving
the idea of greedy induction but altering the impurity function to include computation
costs. For instance [183] keeps the bagging concept of random forests to train budget
sensitive decision trees, using the ratio between feature cost and impurity gain to select
every node split during tree induction. Authors define a family of admissible impurity
functions and show theoretical guarantees of this method regarding the maximum
features acquisition cost of induced trees.

The second family concerns gradient boosting strategies for decision tree ensemble
induction. The main idea is to extend functional gradient descent used in boosting by
replacing the usual loss function by a new objective function that takes into account com-
putation cost. Thus [263] defines a lagrangian formulation of the trade-off between the
loss function l and a relaxed version of the prediction time cost function C to extend gra-
dient boosting strategy, known as Greedy-Miser. This idea has been exploited recently
by [196] that applies the same approach with a slightly different definition of C and
[264] that extends Greedy-Miser to the semi-supervised framework. SpeedBoost[106]
is a comparable boosting algorithm defining the accuracy/computation cost trade-off
as a ratio between accuracy gain and computation time spent. Moreover it proposes a
cascade optimization of sub-classifiers to allow anytime prediction for flexible budgets.

Comparably to cascade arrangement of sub-classifiers for budgeted learning pur-
pose [54, 106], the remaining family of method concerns global budget sensitive ap-
proaches (by opposition to local methods) on a pre-trained ensemble of decision trees.
For example [184] proposes to solve the optimal pruning problem of a pre-trained
random forest to fit a given budget. This category presents the advantage of providing
a budgeted model that relies on a reference model with better accuracy that can be
used in non-budgeted context. In an industrial context this can be highly desirable
for maintenance, feed-backs and future improvements, this is why we chose this spe-
cific strategy. Nevertheless to be really efficient in terms of budgeted learning, these
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approaches often need the reference model to be structurally suited for the global
budgeted optimization. That is why for example authors in [184] advice to apply
their budgeted pruning algorithm on a random forest previously trained by the local
budgeted learning algorithm presented in Nan et al. [183]. To overcome this drawback
we develop in the next sections a global budgeted learning algorithm on random forest
based on genetic programming that uses the notion of equivalent decision trees to be
efficient regardless of the initial structure of the reference random forest.

For our application we are mainly focused on the mean prediction time cost of our
model but depending on the situation other kind of constraints on the cost function
C can be added to this framework. Indeed it might be sometime interesting to study
both budgeted maximum and mean costs concurrently or, as evoked earlier, budgets
on temporary computations storage (RAM) or on the total model size (ROM). As
an example in [240] authors only assume that cost is measurable during training
and experiment their method for budgeted computation cost as well as for memory
consumption cost for models based on combination of several neural networks.

Another remark concerns the distinction we choose to make between a modelM
and its decision function hM, which is motivated by the observation that in this context
of budgeted prediction time two different models can have the same decision function
with different costs as explained in details in section 3. A common way to address this
constrained optimization 4.7 is to minimize the trade-off prediction error and prediction
time by introducing and calibrating a parameter α > 0:

M̂ = argmin
M∈H

n

∑
i=1

(
ℓ(hM(x(i)),y(i)) + αC(M, x(i))

)
. (4.10)

This optimization problem is then precised for each situation depending on C cost
function definition as detailed in previous section.

In our particular case we consider both feature acquisition cost and evaluation cost,
as well as the possibility to take into account signal representation computation costs
explained in section 2.3. Moreover we aim at performing real-time predictions following
the signal frequency of 100Hz. As presented in chapter 2 these predictions are then
smoothed to provide the final detection task. So what matters the most is the mean
prediction time the random forest model takes to treat one observation and it is not
critical if the model spends more time on some observations as long as the induced delay
is caught up on other observations. Nevertheless focusing on the mean prediction time
requires a precise estimation of sample distribution over the feature space. Four distinct
budgeted optimization frameworks are considered in this work for our embedded fall
detection application, depending on whether the feature acquisition cost is considered
data-dependent and if it takes into account signal representation computation costs.
Then the general formulation of the budgeted prediction time learning problem can be
rewritten in our situation :

M̂ = argmin
M∈H

n

∑
i=1

(
ℓ(hM(x(i)),y(i)) + α

(
ng

∑
k=1

gkϕbin
g,M[x]k +

d

∑
j=1

cjΦbin
M [x(i)]j + kev∥ΦM[x(i)]∥1

))
.

(4.11)

Thus the four different scenarios come from this 4.11 equation, where ignoring
signal representation costs is the same as considering gk = 0 for every k and considering
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data-independent feature acquisition means that Φbin
M [x(i)] = Φbin

M is a constant vector
of size d.

3 Equivalent decision trees for budget learning

Figure 4.3: Illustration of 2 equivalent decision trees.
These 2 trees are structurally different, but by denoting white and blue colors as labels 0 and 1, they both
share the same decision function h such as h(x) = 0 if x1 < τ1 and x2 < τ2 or if x1 > τ3 and x2 > τ4 (and

then h(x) = 1 elsewhere).

Previous section shows that the prediction time of a decision tree T on a sample x
depends on its structure through the feature usage vector ΦT[x]. Especially if feature
computations are done "on-demand" along the path of x in T, the order of feature usage
on this path impacts the prediction time. Thus in this section we suggest to distinguish
between a decision tree structure and its associated decision function. Using the notion
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of equivalence between decision trees, we show that two decision trees can share the
same decision function while having different prediction time costs and propose to
exploit this notion for a budgeted learning purpose.

As decision trees performance considers most of the time only classification accuracy
assessed through a loss function that only depends on the decision function, the possibility
of using equivalent decision trees is often ignored because it is irrelevant regarding the
loss function. Nevertheless in transfer or budget learning a large variety of structural
algorithms are applied on previously trained decision trees, meaning that the same
algorithm might result in different outputs whether it is applied on a tree or on one
of its equivalent trees. Moreover budgeted learning is particularly concerned by this
notion of equivalence as it considers not only a loss function but also a cost function that
highly depends on trees structure.

3.1 Equivalence definition

Before considering any associated classifier or regressor model, a decision tree is
composed by an underlying rooted tree structure defined as an oriented graph. This
structure can even be expressed independently to feature and label spaces X and Y ,
and can play a major role in costs definition for budgeted learning.

Definition 4.1. Set of binary trees
Consider BT the directed graphs set of non-empty and full binary tree (meaning that each

node has either 0 or 2 children). For a given binary tree GT ∈ BT let’s denote L(GT) the set of
terminal vertexes (with 0 children) and call it the set of GT’s leaves.

Definition 4.2. Given a label space Y and a feature space X of dimension d and a binary tree
graph GT = (VT, ET), a decision tree can then be defined as :

T : VT → {1, ...,d},X ∪ Y

v 7→
{

(iv,τv) ∈ {1, ...,d},X if v ∈ I(GT)
y ∈ Y if v ∈ L(GT)

For any leave vl ∈ L(GT) there exists a unique sequence of nodes (v0, ..,vp) from the root
v0 to the direct predecessor vp of vl . Then vl is associated with a subspace Xl ⊂ X of the form

Xl =
p⋂

i=0
Vi with Vi = {x ∈ X/xvi < τvi} or Vi = {x ∈ X/xvi > τvi}.

We will consider only consistent decision trees, meaning that Xl leaf subspaces are non-
empty and forms a partition of X . Then the decision function of T can be defined on each
element of this partition as : hT(Xl) = T(vl).

Definition 4.3. Decision tree equivalence
Let’s denote T the set of decision trees from X to Y as defined on 4.2 and for any given

decision tree T its decision function is denoted as hT. Two decision trees T1, T2 ∈ T are
equivalent if and only if their decision functions are equal on all the feature space X .

T1 ∼ T2⇐⇒ hT1 = hT2 ⇐⇒ ∀x ∈ X , hT1(x) = hT2(x)

In other words labeled partitions induced by leaves of T1 and T2 are equivalent.

∀(vl1,vl2) ∈ L(GT1)×L(GT2), Xl1 ∩ Xl2 , ∅ =⇒ T1(l1) = T2(l2) (4.12)
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Remark 4.1. The equivalence characterization in Equation 4.12 is used in a recursive procedure
presented in Section 3.3 to randomly generate equivalent decision trees.

3.2 Related works

Since decision tree induction with CART algorithm was introduced for machine learning
in 1984 [36], several computer science works have been done on the relations between
decision trees and boolean algebra [57, 177]. Indeed decision functions associated with
these models are tightly linked to boolean functions. To figure it out one can view a
tree path leading to a leaf as a product of boolean variables corresponding to node
split tests and the union of several paths as a boolean addition of these products. It is
from that perspective that numerous computer science works investigated expression,
simplification, optimization and properties of decision rules defined by decision trees
[5, 40, 56, 111].

So in the same way that equivalence between boolean decision lists can be estab-
lished, equivalence between decision trees has already been studied from this boolean
algebra point of view [109, 275]. In particular once equivalence between decision trees
is formulated, the question of optimality with regards to the complexity of the decision
function expression arises, which is comparable to the boolean expression factorization
problem. It has been proved that "optimal" decision tree (in terms of tree size) search
is NP-complete [124, 276]. Nevertheless the exploration of heuristics for optimizing
or simplifying decision tree rules, whether it deals with strict equivalence or not, is
still a vast topic of research [5]. For example to avoid NP-completeness difficulty [56]
investigates the sub-problem of equivalent tree search within the range of reduced trees,
using the property that if an equivalence is found for a sub-tree then equivalence can
be deduced for the total tree.

All these different works about decision tree rules are not particularly recent and
take into account neither any statistical distribution nor any feature cost, but optimizing
the structural complexity of decision trees can yet be seen as a particular case of
budgeted learning as these models size might be evaluation costs on their own as defined
earlier. Then the notion of "optimal" tree search intervening in these previous works
could be generalized with extended tree costs definition developed in previous section,
and could also incorporate data distribution information. In general for regression or
classification problems, if statistical distributions are considered for scoring tree-based
models, reducing tree structural complexity helps to avoid over-fitting [34, 139, 215] or
may at least increase the interpretability (comprehensibility) of models [254]. So there
are plenty of reasons motivating that in real-world applications studying the variability
of possible tree structures for a given decision function, like through the notion of
equivalence, can bring some improvements to machine learning applications, especially
with regards to budgeted learning considerations.

3.3 Randomized equivalent decision trees generation

Being able to exploit the notion of equivalence between decision trees for budgeted
learning requires first a way to generate equivalent decision trees. For that we designed
a recursive randomized tree induction algorithm based on equivalence characterization
described by equation 4.12, presented in pseudo-code in 4.1, using exactly the same
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Algorithm 4.1 Randomized equivalent tree

procedure RandEqRec(T, Teq, path)
if path = null then

Teq← NewTree()
end if
ϕ,τ← CohSplits(T, path)
C = hT(path)
if |C| > 1 then

// π : splits random drawing policy
ϕk,τk← ChooseNewSplit(ϕ,τ,π)
Teq← NewNode(ϕk,τk,π)
pathl , pathr← Childs(Teq, path)
Teq← RandEqRec(T, Teq, pathl)
Teq← RandEqRec(T, Teq, pathr)

else
C = {ci}
Teq← NewLea f (ci, Teq, path)

end if
return Teq

end procedure

splits as the original decision tree but in a different order. The idea behind that is
to produce structural variety by equivalent tree generation in order to allow more
possibilities in terms of computation cost reduction,while still keeping the initial
decision function.

The principle is to compare during the induction any new path with the leaves of
the original tree having intersection with this path. If only one class is represented by
these leaves a new leaf of this class can be created on the newly generated tree ensuring
the equality of the decision function on this leaf. On the contrary, if several classes
are represented in the intersection between a path and original tree leaves, then the
algorithm continue to add splits to this path.

Splits selection during the induction of the randomized equivalent tree relies on
two functions referred as CohSplits and ChooseNewSplit. CohSplits assesses among all
splits of the original tree which are consistent with the current path, meaning whether
a split is out of the subspace of X associated with the current path or not. Then
ChooseNewSplit selects, randomly with a policy π one split to add to the current path
from the previously verified consistent splits. To keep the algorithm simple and the
splits order fully random we choose for π a uniform policy over all the consistent split
candidates but a wide variety of policies can be used. For instance one might prefer
a policy linked to the feature importance to increase the probability to get smaller
equivalent trees or to take directly into account in this policy feature acquisition costs.

As the set of all splits of the original tree is finite and the induction process considers
every consistent split for each new node, it ensures that any induced path will have
at a certain point a unique class intersection relatively to the original decision tree,
entailing that this algorithm will end up necessarily with an equivalent decision tree.
Nevertheless it is important to note that the heaviest a decision tree is in terms of
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Figure 4.4: Illustration of a tree T1 (on the top) and a taller equivalent tree T2 (on the
bottom) built using the randomized equivalent tree procedure.

number of distinct splits, the more the splits order in the generated equivalent tree can
be "non-optimal" (in term of size) resulting in extremely deep equivalent trees. For that
reason we would advice to use this algorithm only on relatively shallow trees to not
struggle with computational issues, particularly if policy π is uniform.
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Figure 4.5: Illustration of the recursive randomized equivalent tree generation of T2
using the same splits as T1.

Each node of T2 is chosen randomly from the list of the remaining coherent splits. Once a path of T2
intersects with a unique label in the partitioning induced by T1, a leaf of this label is created and the

recursive procedure stops.

4 Genetic inspired budget learning using equivalent decision
trees

4.1 Genetic algorithms for decision tree optimization

Among global optimization for budget learning in decision trees, genetic algorithms
are widely used as non-greedy alternatives to deal with large combinatorial and
multi-objective optimizations [17]. They are already largely used in feature subset
selection [142, 265], which is very linked to budget learning. For instance, genetic
algorithms are introduced to explore the extremely high-dimensional discrete space
of all possible feature subsets and retrain successively decision tree models over the
selected subset until achieving a fitness or maximum iteration criterion in [14] and
[268]. While exploring decision tree models space through genetic algorithms, some
inherent drawbacks of local an greedy induction can be avoided [17] as well as keeping
the ability of decision tree models to extract compact and relevant set of decision rules
[46, 92]. Moreover, as shown in [282] tree structure is well-suited for defining intuitive
cross-over and mutation operators and is compatible with string encoding which allows



146 CHAPTER 4. BUDGETED LEARNING

to use standard genetic programming methods. Most of existing genetic algorithms on
decision trees use a standard cross-over consisting in the swapping sub-trees between
two decision tree individuals [126]. In this work, as described in Section 4.2, individuals
are random forests and the cross-over is based on swapping full decision trees between
two random forests. Considering mutation, existing works on genetic algorithm for
decision trees propose different mutation operations, depending on the optimization
problem they consider, and the correspondent explored space of models.

All of these budget learning methods on decision tree based models aim at mini-
mizing a prediction error while keeping in a limited range of prediction time cost, but
they mainly differ on the exact cost function they consider and the way this function is
included during the optimization.

4.2 Genetic pruning algorithm for budget learning

This section presents the genetic representation of random forests and the genetic
operations used in the algorithm we propose for solving the budgeted prediction time
problem. This genetic algorithm deals a population of random forest individuals and
their ranking is based on their fitness value Vf it, assessed using labeled training samples
(x(i),y(i)) and defined on a random forest modelM as :

Vf it(M) =
1
n

n

∑
i=1

(
ℓ(hM(x(i)),y(i)) + αC(M, x(i))

)
. (4.13)

This comes from the budgeted minimization problem (defined in Section 2.4) over
the trade-off between mean prediction error and the mean prediction time cost of a random
forest tuned by the parameter α > 0:

M̂ = argmin
M∈H

n

∑
i=1

(
ℓ(hM(x(i)),y(i)) + αC(M, x(i))

)
. (4.14)

The genetic algorithm starts with an already trained random forest and handles
this minimization by applying genetic operators depending on this ranking. Random
pruning mutation operator ensures to get a lower computation cost but with the risk
to increase prediction error, while reproduction operator is applied among the best
random forest individuals to mix their genetic information to create new individuals
and help reaching better fitness values.

The role of equivalence between decision trees in this optimization is explained and
so why it is used the population initialization of the genetic algorithm. As possible
splits on which are built random forest individuals is a finite set, the space of random
forests explored by our algorithm is also finite, but drastically large. Moreover, optimal
equivalent decision trees considering model’s size are proved to be NP-hard to find
[124, 282] and the considered budgeted learning problem is an extension of this optimal
tree search by replacing model size by a more complex computation cost function C an
dealing with random forests. Thus genetic algorithms are a common way of dealing
with such multi-objective optimization problem [17, 69].

Genetic representation of random forests



4. GENETIC INSPIRED BUDGET LEARNING USING EQUIVALENT DECISION
TREES 147

Environment Observations (x(i),y(i))
Individuals Random forests
Gene Decision trees
Genome Trees structure (splits)
Gene regulation Leaves class values updates
Phenotype Decision function
Mutation Genome reduction (pruning)
Reproduction Tree exchanges between RF

Table 4.3: Analogy between genetic biology and random forest classifiers in our
budgeted learning genetic algorithm

Figure 4.6: Genetic representation of random forests
A random forest genome is a sequence of genes that each represents a decision tree. Then each gene can
be encoded into a sequence of splits (feature and threshold) and leaves of the corresponding decision tree.

A common approach for genetic algorithms consists in encoding individuals infor-
mation into strings that represent individual genomes, then applying general genetic
operator defined on strings and finally decoding resulting modified genomes into the
original type of individuals.

In this perspective, the genetic representation of random forests we propose is
represented in Figure 4.6 and considers each decision tree as a separate gene with
two parts which correspond to the ordered sequences of internal nodes and leaves
values. Internal nodes are split sequences (feature/threshold couples) and are the
part of the genome subject to mutations. These splits are fixed by the initial pre-
trained random forest and the genetic algorithm re-orders them in different decision
tree structures with randomized equivalent tree procedure. On the other hand, leaf
values are label sequences and are updated following the training data of the budgeted
learning algorithm, their values being regulated by the environment. For practical
implementation simplicity and because decision trees already have suitable structure
for genetic operations [17, 126], we do not use this string encoding in this work but it is
feasible, as long as cross-over is restricted to certain locations and genome reduction
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mutation still keeps strings structure that can be reversely decoded into decision trees.
After the population initialization, each new generation is obtained using the

following successive genetic operations : the cross-over reproduction, to increase
population diversity and fasten convergence towards a best individual; the pruning
based mutation, to explore random forests with lower prediction time costs; and
population reduction, to keep a reasonable population size and to increase the mean
overall fitness of the whole population. Then a selection and guided mutations are
employed to optimize the fitness value representing the quality measure of random
forest individuals.

Initialization with randomized equivalent trees
Equivalent decision trees are classifiers that differ in their structure although they

share the same decision function, Figures 4.3 and 4.4 show examples of equivalent
decision trees. In section 2, we explained that the prediction time cost of a random
forest is tightly linked to the structure of the trees, as for a given sample x, the cost
depends on its paths on the random forest trees. This means that two equivalent
decision trees can have different prediction time costs.

Consequently, any budgeted prediction time algorithm applied on a random forest
might lead to other solutions while considering an equivalent random forest composed
by equivalent decision trees. Our motivation is that exploring the space of equivalent
trees from an initial random forest can allow to find other solutions to the budgeted
prediction time problem defined in equation 4.11. To illustrate it, we initialize our
genetic algorithm with the randomized equivalent trees procedure (pseudo-code 4.1)
to give structural variety to the initial population of random forest individuals. This
procedure builds, for each tree of the pre-trained random forest, a randomized equiva-
lent tree using the same splits but drawing them randomly in a top-down manner until
getting one-class leaves according to the initial tree.

Genome cross-over between random forests

Figure 4.7: Cross-over reproduction between two random forest genomes
Reproducing two random forest parents by exchanging part of their decision trees to create new random

forest children is the same as exchanging part of their genes. Then it is comparable to a classic string
cross-over operation over random forest genomes, but where random cross-over points are restricted to

genes junction points.

The cross-over operation is the usual method of genetic reproduction while using
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string encoding. This operation corresponds to the exchange of sub-parts of the parental
genomes after at a random location known as the cross-over point. For instance, one
common way of doing a cross-over between decision trees is by exchanging sub-trees
after having selected cross-over nodes in the two parents.

In this work, the cross-over operation aims to exchange a group of decision trees
between two random forest parents. Accordingly to the previously presented random
forests genetic representation, it is in other words a restricted locations cross-over that
can happen only at genes start/end points, as illustrated in Figure 4.7. Then, over
the genetic algorithm iterations, each gene of the random forest individuals has a
corresponding ancestor gene corresponding to an initial decision tree or one of its
equivalents. Indeed, when dealing with numerical an not quantitative feature like
our case, exchanging sub-trees that correspond to non-overlapping regions of the
feature space can end up creating unreachable leaves, if it is made completely randomly.
Secondly, we want to keep track of the initial random forest model through genetic
operations in order to be able, for data analysis purposes, to read the final model as a
simplified version of the initial one.

Mutations using random pruning
The second main genetic operation is the mutation and corresponds to the random

pruning of random forests individuals. Regarding the prediction time of a random
forest, pruning operation ensures a reduction of this cost. According to cost definition
in Section 2.4, the prediction time reduction obtained by pruning a decision tree at a
given node depends on how much feature usage this pruning avoids and is weighted
by the proportion of training samples reaching this node. So each time a random forest
individual is selected for mutation a pruning occurs randomly in each of its decision
tree, creating a new leaf of the dominant label among training data. To ensure the
mutation process to be progressive over iterations, pruning nodes are drawn using an
exponential policy relatively to their depth in order to encourage small pruning in terms
of deleted sub-trees. As we consider a decision tree as a gene in our representation,
this random pruning mutation is a genome reduction mechanism occurring on each
gene. Before mutation, concerned individuals are replicated in order to avoid loosing
them in the situation where mutation would degrade their fitness value.

Selection and guided mutation
Selection is the way to choose, at every iteration, which individual of the population

is targeted by each genetic operation, based on this fitness function ranking. It is
inspired by natural selection in biology and relies on the belief that reproducing best
individuals while mutating or eliminating the worst ones is likely to result in a best
population fitness value improvement over iterations.

In this work, the trade-off function defines the fitness of the individuals. Depending
on their fitness, organisms undergo a selection step, inspired on the natural selection
phenomenon. This operation chooses the individuals with the best fitness (here, lowest
Vf it(M)) to reproduce, and it eliminates the worst individuals (highest Vf it(M)).

In practice, we used a deterministic selection scheme that picks the βr ratio of best
individuals for reproduction, and the βd ratio of worst individuals for elimination.
Hence, parameters βr and βd, correspond to reproduction and death rates respectively.
Moreover, we decided to guide the application of pruning mutation operations, using
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an exponential policy which is also a function of the fitness value. Then, worst random
forest individuals are more likely to be pruned by mutation but creating mutants from
best ones is still possible although less likely. This choice is based on the intuition that
best individuals should be modified less often in order to preserve them for exploitation,
while worst individuals should be modified more often, for exploration purposes.

Algorithm 4.2 Genetic pruning algorithm "BudGenPrune"

procedure BudGenPrune(R f
(0), X,Y, N0, iM)

pop0 = RandEqTree(R f
(0), N0)

for i = 0 :: iM do
rep← Select(popi, βr, X,Y)
popi← Rep(popi,rep,τr)
mut← Select(popi, βm, X,Y)
popi← Mut(popi,mut)
del← Select(popi, βd, X,Y)
popi+1← Eliminate(popi,del)
R̂ f ← Minimize f itness(R f , X,Y,λ)
on popi+1

end for
return R̂ f
// Best individual of popiM according
to the fitness function.

end procedure

4.3 Experimental setup

This section describes data and costs used to experiment our genetic budgeted learning
pruning algorithm, its parameter tuning and the methodology applied to compare and
assess the results. Three data sets are used in these experiments : one from synthetic
data generation, the simulated falls data set and the real falls data set. Several definitions
of the computation cost function, detailed in section 2, are tested depending on:

• whether the model evaluation cost is neglected

• whether the feature acquisition cost is considered data dependent

• whether feature groups costs (corresponding to signal representation computa-
tions) are included

4.3.1 Data

Synthetic data used in experiments are generated from binary labeled gaussian clusters
with the synthetic generator presented in the previous chapter for transfer learning on
synthetic data. The gaussian distributions are composed by 10 clusters of each label
with mean µ and variance σ2 parameters drawn randomly between bounded values
(respectively µ ∈ [−50,50] and σ2 ∈ [5,15]). Samples are generated with d = 20 features
with 5 to 10 of them that are randomly chosen to be white noise and the rest being
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informative. As there is no real feature acquisition cost for synthetic data we choose to
set their values with their estimated feature importance relatively to the original random
forest to emphasize the trade-off aspect between their discriminant efficiency and their
costs. Usually the time spent kev to compute one node split is significantly lower to any
feature cost, but for synthetic data no comparison between these two types of costs can
be done as they have to be arbitrarily set. So for these synthetic data we consider only
feature acquisition cost and not evaluation cost, meaning that only used features and their
order matter and not the model size.

Tarkett fall detection data are also used in the following experiments and come both
from simulated and real falls and compose two different databases presented in section
4 of the first chapter. As the first implementation of the fall detection model is known to
fit embedded system prediction time budget it is used as a comparison reference. The
initial random forest classifier is trained similarly to the reference model using one part
of simulated data and then two main scenarios are presented : for data independent
cost functions (when prediction time is considered to be the same for every observation)
another part of simulated data is used to train the budgeted learning genetic algorithm
whereas for data dependent cost functions we used real data to train the algorithm.
This is motivated by the fact that the mean prediction time we try to estimate should be
more representative to real conditions using real falls database (for instance fall events
proportion is closer to reality) and it is also a way to test the behavior of the algorithm
while confronted with a prediction time cost assessment domain that differs from the
initial training domain. Every signal representation and feature described in Chapter 2

is used in these experiments and their costs have been measured empirically in mean
by repeating the specific corresponding computations.

4.3.2 Classification models and budgeted learning algorithm

Experiments are done using random forests of 10 binary classification decision trees,
with a maximum depth set to 7 (allowing up to 27 = 128 leaves for each tree). Each
dataset is equally separated into 3 subsets : the initial training set to train the original
random forest model using CART algorithm, a training set for the genetic pruning
algorithm to assess the fitness value of every model at each iteration and a last subset to
test the value of the final budgeted random forest model selected by the algorithm.

Every random forest assessed by the genetic pruning algorithm uses uniquely
splits that are already present in the initially trained one, like the budgeted pruning
algorithm presented in [184]. Nevertheless our method allows different order of these
splits in decision tree paths, while using randomized equivalent trees generation for
initialization. This makes the space of random forest candidates a lot wider than in
the compared work[184] optimal pruning framework and this is the reason why in
our work we prefer a genetic programming approach rather than a combinatorial
optimization.

One particularity of our genetic algorithm is that it works the same way indepen-
dently to the cost function definition. This allows to test it on our fall data 4 different
ways of defining the C cost function depending on whether it considers the same model
cost for every sample or not and whether feature groups framework is considered
(in our case these groups are signal representations). Details about these different
definitions are explained in Section 2.3.



152 CHAPTER 4. BUDGETED LEARNING

To observe whether using equivalent decision trees can be relevant or not for our
budgeted learning purpose, each experiment is done on two separate population
starting from the same initial random forest. The first population is obtained with
equivalent trees, as described in section 4.2, whereas the second one is obtained by
exact duplication of the initial random forest. For each experiment, datasets are split
into three subsets : the initial random forest training set, the training set used by genetic
algorithm and a test set to assess final best random forest individual after all iterations.
The main performance measure considered is the trade-off between mean accuracy and
mean prediction time cost represented by the fitness function.

Each experiment is repeated 10 times and the best random forest individual is
tracked over iterations of the genetic algorithm. Population size at the start of the
genetic algorithm is 40 random forests obtained from the initially pre-trained model
(either by randomized equivalent trees procedure or duplication). At each iteration,
new individuals are added to the population through mutation and reproduction
whereas the less valuable ones according to the fitness function are removed. Mutation
rate and reproduction rate are respectively set to βm = 0.7 and βr = 0.15. Birth rate
and mortality rate are set to τr = 3 and βd = 0.5. Thus, the population size variation
from a generation to the next one is given by the factor : (1 + βm)(1 + βr ∗ τr)(1− βd)
which is around 1.23 in our experiments, meaning the population is slowly growing
over iterations. All the considered feature costs are normalized such as the sum of all
possible costs is equal to 1 and the accuracy/prediction time trade-off parameter is set
to α = 1. Python implementation of algorithms 4.1 and 4.2 are available online [2, 3].

4.4 Results

This section presents the results obtained with the previously mentioned experiments,
and our interpretations. Figures 4.8 and 4.9 illustrate the algorithm’s behavior on the
best random forest individual during iterations on datasets used for the budgeted
training whereas Table 4.4 shows final best individual results assessed on the test
datasets (to simplify the display of these results, we refer to the prediction time cost as
”Budget”).

Obviously, due to the feature space high dimension, for experiments on fall detection
data all the features are not present in the initial random forest, which explains that
the prediction time cost starts from a value lower than 1 contrary to synthetic data
experiments. Figures 4.8 and 4.9 illustrate that, using parameter values given in
previous section, the genetic algorithm seems to converge on all our experiments
after a few iterations towards a best random forest individual regarding the fitness
function value. This shows firstly that using pruning mutation in combination with
tree exchanges based cross-over is a valid method to optimize the trade-off between
accuracy and prediction time cost of a random forest. As we can observe both on
synthetic data and fall detection data, the fitness value decrease is very linked to the
prediction time cost reduction (between 5% and 10% for the synthetic data and between
40% and 70% for fall detection data), which is the main purpose of the algorithm.
Depending on the inherent complexity of data distribution with regards decision trees
partitioning and the value of α, this prediction time reduction can lead to a variable
loss in accuracy (as represented in Figure 4.8), but fall detection models almost keep
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Figure 4.8: Error, fitness value, budget and depth of the best RF over BudGenPrune
algorithm iterations and the impact of equivalent decision trees initialization on syn-
thetic data.

the same prediction accuracy while the prediction time is importantly reduced (as
represented in Figure 4.9).

Data independent
No group costs Group costs

With Eq. Without Eq. With Eq. Without Eq.
Fitness value 0.14± 0.03 0.18± 0.05 0.29± 0.07 0.37± 0.07
Budget 0.091± 0.02 0.13± 0.03 0.22± 0.05 0.30± 0.03
Error 0.068± 0.01 0.073± 0.01 0.075± 0.01 0.084± 0.01
Depth 2.8± 0.3 2.3± 0.2 2.5± 0.4 2.1± 0.1
N° nodes 46 34 54 36
N° features 16 12 29 21

Table 4.4: Budget-wise comparison of different random forest models for fall detection
embedding considering a data-independent prediction time.

Another aspect of these results is the impact of using equivalent decision trees.
Indeed figures show that the genetic algorithm seems to reach better values of fitness
function and prediction time with the population evolved from randomized equivalent
trees initialization. This phenomenon is as pronounced on fall detection data as on
synthetic data, and this difference in prediction time reduction using equivalent trees is
especially interesting insofar as it does not necessarily reflect an accuracy difference
as shown in Figures 4.9 (c) and 4.9 (d) . Overall, all these figures reveal that using
equivalent trees with this genetic algorithm improves the budget learning task on our
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data but it tends to take more iterations to converge. Also the mean error and prediction
time variance of the best random forest individual over several repetitions appears
to be a bit higher using equivalent trees. These observations are consistent with the
intuition that space of possible prediction time/accuracy couples of reachable solutions
is highly wider with equivalent trees use because of the structural variety it induces. It
is moreover confirmed by the fact that using equivalent trees, the algorithm can in some
cases reach better fitness value and lower prediction time although converging towards
deeper trees compared to not using equivalent trees (Figures 4.10 (a),(b),(c)).

Furthermore it is interesting to remark the impact of the different definition of
prediction time cost function. In data dependent situation prediction time costs are
weighted by the amount of samples reaching each node, which allows to obtained
deeper trees on the budgeted random forest, as shown in Figures 4.10. Taking into
account feature group costs in C definition provokes an interesting "drops" behavior of
the total budget and fitness value at some point during iterations (Figures 4.9(b),(d) and
4.10(b),(d)). This corresponds to a complete signal representation cost being amputated
after pruning every feature of this group and this is only observable using equivalent
trees as it needs features reordering making possible for all features of one group to be
placed at the bottom of trees.

Data dependent
No group costs Group costs

With Eq. Without Eq. With Eq. Without Eq.
Fitness value 0.16± 0.04 0.20± 0.03 0.32± 0.06 0.36± 0.03
Budget 0.052± 0.01 0.081± 0.04 0.26± 0.08 0.31± 0.02
Error 0.12± 0.05 0.14± 0.03 0.089± 0.01 0.072± 0.03
Depth 2.2± 0.2 2.5± 0.5 2.7± 0.4 3.2± 0.8
N° nodes 40 36 36 46
N° features 21 18 20 23

Table 4.5: Budget-wise comparison of different random forest models for fall detection
embedding considering a data-dependent prediction time.

Finally a surprising phenomenon is noticeable on fall detection data experiments
with data dependent prediction time cost definitions (Figures 4.9 (c) and 4.9 (d)).
Indeed, as previously explained the initial random forest is trained on the simulated
fall database whereas real fall database is used to assess error and prediction time
cost during BudGenPrune algorithm iterations. On these experiments we can observe
that not only the mean prediction time is decreasing but also the mean error at the
same time. This means that pruning mutations also serves to increase prediction
accuracy from the source model on target data, which could be considered as a form
of transfer learning. More importantly it shows that using equivalent trees could also
have utility before applying model-based transfer algorithms like SER and STRUT, that
are dependent to the structure of decision trees they are applied on.

Concerning our embedded fall detection application, this genetic pruning algorithm
allows a non-negligible reduction of the prediction time without randomized equivalent
trees and even more while using them. From the 128 initial features, final best random
forest individuals keep in mean around 20 to 40 features representing in most cases
less than 15 % of all features costs, and are also a lot lighter in terms of depth and
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number of nodes. To compare Table 4.4 presents results obtained in these experiments
in terms of accuracy and several prediction time aspects in front of the first version
of random forest implemented in 2017 in our embedded systems for fall detection
[174]. The proposed genetic pruning approach with equivalent trees directly considers
the mean prediction time budgeted by a given device to simultaneously reduce the
feature acquisition cost (through features reordering and feature usage lowering) and the
evaluation cost (through depth decrease).
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(a) Data independent prediction time without feature group costs

(b) Data independent prediction time with feature group costs

(c) Data dependent prediction time without feature group costs

(d) Data dependent prediction time with feature group costs

Figure 4.9: Mean error and prediction time of the best RF over BudGenPrune algorithm
iterations and the impact of equivalent decision trees initialization on fall detection
data.
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(a) Data independent prediction time without feature group costs

(b) Data independent prediction time with feature group costs

(c) Data dependent prediction time without feature group costs

(d) Data dependent prediction time with feature group costs

Figure 4.10: Mean fitness value and tree depth of the best RF over BudGenPrune
algorithm iterations and the impact of equivalent decision trees initialization on fall
detection data.
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5 Conclusion and perspectives

The field of budgeted learning is presented in this chapter as well as why it is relevant
for practical applications. In particular machine learning applications that relies on
real-time prediction and/or embedded systems are especially concerned with resource
constraints that can be included in the learning process. Thus Tarkett elderly monitoring
application is a typical example of the need of budgeted learning and this work focuses
on constrained prediction time of random forests, experimented on the fall detection
task. For this purpose we formalize a general definition of computation costs on
decision tree based models and precise it in our specific context. In order to solve the
budgeted prediction time problem we propose an innovative genetic algorithm based
on random pruning and equivalent decision trees that shows its efficiency in reducing
importantly the random forests prediction time while keeping the prediction accuracy
almost at the same level.

5.1 Computation costs

This chapter opens the path to a first kind of perspectives concerning the variety
of computation costs. As previously mentioned working on an embedded system
implies several constraints related to its volatile memory (RAM), non-volatile memory
(ROM) and computing power. As for our application critical resource constraints were
neither ROM or RAM related, our work is focused on the model prediction time which
mainly depends on the computing power. Nevertheless nowadays the size of machine
learning models can be so massive that their impact on non-volatile memory is no
longer negligible [240]. Moreover if the ROM part allocated to store a model is easily
deducible from its size, the RAM consumption is more complex to formalize. Indeed it
varies in time according to the order of computations and involves every temporary
computation, which can represent an important part of the RAM (e.g. spectrograms).
Thus one extension of this work would be to integrate all these kinds of computational
constraints into a united budgeted learning framework for embedded systems.

Concerning temporary computations we show through our example of signal
representation computation costs that several features can share some part of their
computations, making their costs inter-dependent. Even if this only one simple degree
of dependency integrating these additional feature group costs impacts importantly the
total prediction time cost and therefore the whole budgeted learning optimization.
In practice links between feature computations can be of various forms and far more
intricate. Then by considering these links, a graph of dependency between all the
computations can be built and optimizing computations accordingly for a fixed set of
features becomes an interesting problem in itself. Moreover another level of dependency
can involved by including possible recursive computations while features are computed
in real-time over time series.

Finally as mentioned in this chapter introduction resource constraints and budgeted
learning strategies does not concern only final models and prediction phase. For
Tarkett monitoring application, although data gathering and storage capabilities are
important, they are still limited in terms of the total volume and the amount of data
that can be collected at the same time and they imply financial costs. Moreover labeling
new data is still a sensitive task and remained manual throughout this project. Thus
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developing active strategies of data selection and labeling, with regards to these server
side computational limits could be a major long-term improvement. Such problems are
at the cross-point between online learning, active learning and budgeted learning fields
[104, 176, 280] and concern numerous real applications [163, 253].

5.2 Equivalence of classification models

Another key point this chapter treats is that some performance measures, like prediction
time cost, do not depend only on the decision function of a classification model but also
its internal structure. We illustrate it by distinguishing a classification modelM and its
decision function hM and by developing the notion of equivalence between classification
models. This distinction is rarely done in classic machine learning for the following
reason. As long as metrics used to assess classification models depends uniquely on
the decision function, like usual loss functions, the notion of equivalence has no direct
impact. Nevertheless, even with these kinds of metrics, this notion can be impacting
from the moment some structural modifications are applied on a pre-existing model.

Let’s assume an already trained classification model M, an equivalent model
Meq and n training data S =

(
(x(1),y(1)), ..., (x(n),y(n))

)
are available. Denote R a

performance measure, like the mean prediction error, that depends only on decision
function. ThenM andMeq have of course the same performance R(hM) =R(hMeq).

Now suppose a deterministic algorithm A is applied onM using data set S, pro-
ducing a new model AS(M). If A depends on the structure of the model M, like
SER,STRUT or any pruning algorithm for example, then it can result in different mod-
els AS(M) ,AS(Meq) of different decision function hAS(M) , hAS(Meq), and therefore
may entail this interesting situation :

∃Meq ∼M :R(hAS(M)) ,R(hAS(Meq))

In those cases, questioning the impact of the equivalence class of a model M on
the algorithm A could be useful to consider. While dealing with such kind of machine
learning problem, this idea of "structural dependency" can have an influence through
two main aspects.

A first degree of "structural dependency" relies on the measure R and whether it
depends on the structure of the model M or only on the decision function hM. For
instance measures that take into account the complexity of the model, which is typical
in budgeted learning, are structure dependent. That is why there is an advantage of
using equivalent decision trees for our budgeted prediction time problem. Moreover
a second degree of dependency corresponds to the algorithm A itself. Indeed if
replacing a modelM by an equivalent oneMeq has no impact on the output classifier
decision function after applying the algorithm A, then it can be qualified as "structure
independent" and therefore can be defined directly on decision functions.

Definition 4.4. Structural dependency
Using notations previously defined if ∀(M,Meq) ∈ H,∀S ∈ (X ×Y)n,

Meq ∼M =⇒ hAS(M) = hAS(Meq) (4.15)

Then algorithm A is structure independent and its action can be defined directly on decision
functions : hAS(M) =AS(hM)
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For instance algorithms achieving label permutation or uniform translation along
an axis are directly defined on the decision function and are structure independent. On
the contrary, in order to show that an algorithm is not structure independent, pointing
out an example of two equivalent models such that equation 4.15 is not satisfied is
sufficient.

However definition 4.4 is not enough to differentiate between two structure depen-
dent algorithms and does not permit to characterize the amplitude of possible changes
while applying an algorithm A on equivalent classification models. Thus finding a
good way to quantify this structural dependency, maybe with regards to the measure
R, would be an interesting perspective that could lead to various relevant uses of
the equivalence notion. To this end it is conceivable to slightly different definition of
structural dependency and a less strict versions of the equivalence definition between
classification models.

Taking advantage of equivalent models can be possible from the moment a structure
dependent algorithm is applied on a pre-trained model. One direct use we can think
of concerns heterogeneous transfer learning, while some features that are present
in the source domain are not available on target domain. As it is possible to force
some features to be at the extremities while generating equivalent decision trees, these
features are more easy to remove from the model by pruning before applying an usual
transfer algorithm like SER or STRUT.

Furthermore equivalence in terms of decision function between classification models
is not specific to decision trees and can be defined in the same way on other families of
classifiers like neural networks. For example authors in [25] present a method to create
a neural network, namely neural forest, that is equivalent to a given random forest in
order to initialize more efficiently the architecture of the model before a training phase.
Finally even without considering the performance of classification models, equivalence
could be used to help interpretation. For instance for any random forest classifier, there
exist strictly equivalent decision trees (and then an optimal one regarding the size), that
might be precious for interpretation purposes. Although this perspective is particularly
attractive for practical applications, as explained in Section 3, efficient heuristics to
approach optimality are hard to find.

5.3 Genetic algorithm for budgeted learning

The genetic algorithm on random forests developed in this chapter shows its efficiency
regarding the budgeted prediction time problem but numerous areas of improvement
are still remaining considering all the various aspects it involves. The first one concerns
random policies used by the algorithm that act at three main levels : the reproduction
when choosing from parent random forests the trees that will constitute children,
the mutation where pruned nodes are drawn depending on their depth following
an exponential policy, and during the randomized equivalent tree procedure which
for each new node selects randomly a split with an uniform policy from the list of
consistent splits. These policies do not integrate any computation cost information
so intuitively it could be more efficient to take into account feature costs during the
randomized equivalent tree generation or the total prediction time cost gain while
drawing nodes to prune. Nevertheless these kinds of strategies can be risky because
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even if it can speed up and facilitate the convergence toward a solution it also reduces
the amplitude of exploration of potential solutions.

Moreover, concerning genetic operations, we use the randomized pruning as the
only type of mutation, and equivalent trees are only intervening in the algorithm
initialization. Other kinds of mutations can help to reduce the prediction time cost like
replacing some features by others or removing one tree from the forest for example.
Indeed this algorithm while converging usually reduces the mean depth of the initial
random forest but the total number of decision trees stays unchanged. So removing
one tree would be a form of bigger mutation than pruning. Also while decision trees
are not very deep, creating a new tree equivalent to a small part of the random forest
(the complexity of equivalent generation procedure depends on the total amount of
considered splits) is conceivable as another way of reducing random forest size and
could serve as a new form of reproduction or mutation.

Concerning the different versions of the budgeted prediction time problem, although
the presentation of the different definitions of random forests prediction time and the
budgeted problem provided in Section 2 is not exhaustive, it shows the wide variety
of situations. As our algorithm is very flexible it can easily be extended in order to
deal with several constraints at the same time by adapting the fitness function. For
instance it could handle budgets both on the mean prediction time and worst case
prediction time as well as a simultaneous constraint on the total model size in memory.
Finally a budgeted learning framework that has not been taken into account in our
experiments concerns early stopping models that represent an interesting perspective
for the budgeted prediction time problem on random forests. It seems to be at the same
time particularly adapted to decision trees and a less restrictive alternative compared
to more hardly constrained models.





Conclusion and perspectives

This thesis relates to an elderly activity monitoring project of Tarkett, namely FIM Care,
based on a piezo-electric flooring sensor and using supervised decision tree based
models in an embedded system. It provides several contributions in different topics
related to the industrial application of machine learning models that arise from real
implementation problems encountered throughout the development of this project. As
a starting point we present the state of literature concerning human activity monitoring
system in terms of sensors, monitoring tasks, feature extraction and type of model
used in these applications. According to these aspects, we describe Tarkett technology
specificity and compare it with these existing human activity monitoring systems. Using
data obtained in various experimental environments and specific predictive models
based on random forests, we explore the feasibility of several monitoring classification
tasks such as walk recognition, lying on-floor detection and fall detection, the latter having
been implemented in real conditions in 2017. Concurrently we provide some insights
about time series representation, feature extraction and their redundancy as well as
their relevance relatively to each detection tasks.

Using first implementations of the fall detection algorithm on real environments
during more than one year, data have been gathered into a new database composed by
real falls and non-fall events. Motivated by the observation of dissimilarities between
experimental and real datasets, we explore the problem of model-based transfer learning.
As falls occur far more rarely than other events and are more complex to collect, we
focus our work on the impact of class imbalance and relative data rarity in target domain
while attempting to transfer random forests trained on a source domain where classes
are equally represented. Based on the pruning risk notion, we propose adaptations
of two seminal transfer algorithms on decision trees to address this class imbalance
problem. We illustrate the benefits of our variants on several kinds of imbalanced data
and combine them into a general selective transfer algorithm on random forest (STRF)
able to cope with various domain shift situations. Our results suggest furthermore
that the selection process of this algorithm could help to characterize the need and the
nature of the transfer.

Finally for the concrete FIM Care monitoring application any of the embedded
predictive model has to be constrained in term of the computational resources it
requires. This issue is presented as a budgeted learning problem where the prediction
time of a random forest model is constrained. This prediction time is modeled, in
accordance with the literature, by the sum of two costs : the feature acquisition cost
and the evaluation cost. We propose to tackle the constrained prediction time problem
with a genetic algorithm using random pruning mutations and taking advantage of
equivalent decision trees that capitalize on feature reordering inside trees structure to
enhance feature acquisition cost reduction. Our approach manages to successfully reduce
the prediction time of our tested random forest models in exchange for very few
loss in prediction accuracy. Another key aspect of this method is that the obtained
budgeted model is still a pruned version of an equivalent random forest of the initial
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model. This is quite valuable for our monitoring application, as we can keep an original
unconstrained random forest offline for detailed interpretation, while a constrained
version is embedded for efficient real-time online predictions.

Numerous perspectives come out of our contributions on several aspects of this
work. Firstly our results on fall detection illustrate that smoothing random forest
instantaneous predictions helps to reduce the false alarm rate, which suggests that the
series of decision tree outputs might contain temporal information that could be further
exploited. Indeed in the presented predictive models temporal information is encap-
sulated in some of the features but considering instantaneous responses of decision
trees as different states of a Markovian model could be an interesting continuation that
might lead to some improvement in classification accuracy. Apart from classification
performance enhancement our approaches on transfer learning and budgeted learning
can also be extended to other application contexts. Indeed we worked on transfer algo-
rithms that are focused on homogeneous transfer, dealing with the same tasks and feature
space from source domain to target domain. So one part of our future work will be to
adapt these algorithms to heterogeneous transfer situations, where different but related
tasks like lying on-floor detection and fall detection could be transferred from one to the
other. Considering budgeted learning, we introduced the notion of inter-dependency
between feature computations through the simple case of shared acquisition costs of
grouped features corresponding to signal representation computations. This idea can be
push further with more complex relations between features computations as it is often
the case in practice while dealing with a large pool of features computed from the same
original signal. Finally the structural exploration offered by the notion of equivalence
of classifiers can be defined on other kinds of model relying on graph structures (like
neural networks) and might be interesting for other purposes than budgeted learning.
One direct use case would be for example to obtain a more interpretable model by
translating efficiently a classification random forest into an equivalent decision tree
classifier.







A
Features definition

In the following we consider s = (s1, ..., sN) a discrete signal portion of size N, a =
(a1, ..., aN) the corresponding autocorrelation vector, ( f1, ..., f N

2
) the coefficients of its fast

Fourier transform (and f = (| f1|, ..., | f N
2
|) the vector of their modules) and the matrix W

of size (N, N
2 ) of the modules of Wigner-Ville spectrogram coefficients.

We indicate by b+peak(si) = 1 if si is a positive "peak" of s and b−peak(si) = 1 if it is a
negative "peak" such that :

b+peak(si) = 1{si > v/si − si−1 > ∆, si − si+1 > ∆},
b−peak(si) = 1{si < −v/si − si−1 < −∆, si − si+1 < −∆},

with v and ∆ positive parameters. In the same way we denote the according values
of these peaks :

v+peak(s) = {si, si > v/si − si−1 > ∆, si − si+1 > ∆},
v−peak(s) = {1 < i < N − 1/si < −v, si − si−1 < −∆, si − si+1 < −∆},

and their corresponding indexes :

i+peak(s) = {si, si > v/si − si−1 > ∆, si − si+1 > ∆},
i−peak(s) = {1 < i < N − 1/si < −v, si − si−1 < −∆, si − si+1 < −∆}.

Then vectors of gaps between these peaks are :

∆+
peak(s) = i+peak(s)[2 :: n+

peak(s)]− i+peak(s)[1 :: n+
peak(s)− 1],

∆−peak(s) = i−peak(s)[2 :: n−peak(s)]− i−peak(s)[1 :: n−peak(s)− 1].

Finally the vector of durations of signal parts where its absolute value is below a
threshold v is denoted :

∆t(s) = {j− i / 0 < i < j < N + 1,∀k ∈ [i, j], |sk| < v, |si| > v, |sj| > v}.

im and iM : indexes of max. and min. of s. (tmax, fmax) : indexes of max. of W module and (tbary, fbary)
are coordinates of barycenter of W module.
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Feature name Parameter Definition Signal representations
Maximum max{s1, ..., sN}

Raw signal, Derivative, Integral

Minimum min{s1, ..., sN}
Median Median of {s1, ..., sN}
Absolute median Median of {|s1|, ..., |sN |}

Mean µ = 1
N

N
∑

i=1
si

Absolute mean 1
N

N
∑

i=1
|si|

Standard deviation σ =

√
1
N

N
∑

i=1
(si − µ)2

k-th moment k Mk(s) = 1
N

N
∑

i=1

(si−µ)k

σk

Energy 1
N

N
∑

i=1
s2

i

Log-energy 1
N

N
∑

i=1
log(1 + s2

i )

Shannon energy 1
N

N
∑

i=1
s2

i log(1 + s2
i )

Delta min-max max−min

Nb-sup-threshold v
N
∑

i=1
1{si > v}

Peak count v,∆ n+
peak(s) =

N−1
∑

i=2
b+peak(si)

Neg-peak count v,∆ n−peak(s) =
N−1
∑

i=2
b−peak(si)

Delta-before-max siM − siM−1
Delta-after-max siM − siM+1
Delta-before-min sim − sim−1
Delta-after-min sim − sim+1

Inf-threshold-ratio v 1
N

N
∑

i=1
1{si < v}

Inf-threshold-duration v µ(∆t(s))
Percentile α perc(s,α)
Inter-percentile α1,α2 perc(s,α2)− perc(s,α1)
Log-mean-peak log(1 + µ+

peak(s))
Log-mean-neg-peak log(1 + µ−peak(s))
Log-mean-peaks-diff Log-mean-peak - Log-mean-neg-peak

Table A.1: Features extracted from raw signal, derivative and integral.
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Feature name Parameter Definition Signal representations

Peak count n+
peak(a)

Autocorrelation

Neg-peak count n−peak(a)
Mean peak value µ+

peak(a) = µ(v+peak(a))
Mean neg-peak value µ−peak(a) = µ(v−peak(a))
Std peak value σ+

peak(a) = σ(v+peak(a))
Std neg-peak value σ−peak(a) = σ(v−peak(a))
Mean peak gap µ(∆+

peak(a))
Mean neg-peak gap µ(∆−peak(a))
Std peak gap σ(∆+

peak(a))
Std neg-peak gap σ(∆−peak(a))

Table A.2: Features extracted from autocorrelation.

Feature name Parameter Definition Signal representations
Spectral energy max. max{| f1|, ..., | f N

2
}

F.F.T

Freq. max. fmax = argmax{| f1|, ..., | f N
2
}

Spectral energy median med{| f1|, ..., | f N
2
}

Spectral energy mean µ(f)
Spectral energy std σ(f)
Momentum k Mk(f)

Nb-sup-threshold v
N
∑

i=1
1{| fi| > v}

Inf-threshold-ratio v 1
N

N
∑

i=1
1{| fi| < v}

Inf-threshold-duration v ∆t(f)
Percentile α perc(f,α)
Inter-percentile α1,α2 perc(f,α2)− perc(f,α1)

Log-mean-peak log(1 +
N
∑

i=1
| fi|1{| fi| > v})

Spectral energy max. max{|Wi,j|}

Spectrogram

Freq. max. fmax
Freq. bary. fbary
Spectral energy median Median of {|Wi,j|}
Spectral energy mean Mean of {|Wi,j|}
Spectral energy std Std of {|Wi,j|}

Total energy 2
N2

N
∑

i=1

N/2
∑

j=1
|Wi,j|2

Total log-energy 2
N2

N
∑

i=1

N/2
∑

j=1
log(1 + |Wi,j|2)

Temp. width window-sup-thresh v
See 1.3.3 for detailsFreq. width window-sup-thresh v

Gauss-window filtered energy (a,b,θ)

Table A.3: Features extracted from F.F.T and spectrograms.





B
Sensor relaxation

As described in Section 2 of Chapter 3, the piezo-electric sensor used by Tarkett works
as a pool of free electrons that are displaced in function of the sensor deformation. So
it can be compared to a capacitor and Section 3 explains through the transfer function
notion how sensor’s capacitance and the signal processing circuit can affect the signal
on frequency aspects.

This also means that the sensor converges to an equilibrium state while sensor
deformations stop, in the same way as the charge or discharge of a capacitor. This
appendix shows a brief illustration that this sensor relaxation phenomenon follows
the same patterns as a capacitor discharge with a very stable, precise and measurable
parameter. Then this phenomenon is easily detectable and can give some valuable
information in some situations.

In the Walk DB studied in Section 2.4 of Chapter 2, signals are recorded from a cor-
ridor with successive areas of sensor which makes relaxation phenomenon particularly
observable.

Figure B.1: Illustration of sensor relaxation on several areas of a corridor during a walk.

As illustrated in Figure B.1, while a moving object leaves the sensor area, a regular
pattern is observable which corresponds to the sensor returning at its equilibrium state
in terms of charges. This pattern is comparable to a capacitor charge/discharge of the
form Ke−θt and is always the same. By measuring this θ parameter this behaviour is
easily detectable.

Figures B.2 and B.3 shows various signals with a correlation value computed
between a sliding window on the signal and the specific relaxation pattern. As this
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phenomenon can be detected with a relatively simple approach, it could give some
useful informations about daily life activities. For instance it happens while a person
goes into the shower or on the bed if it is heavy enough (in this case floor’s deformation
is almost the same with or without a person on it). Moreover, estimating time spent in
shower or on bed is interesting for elderly monitoring. So sensor’s relaxation is a good
example of simple and useful insight from physics.

Figure B.2: Illustration of sensor relaxation on several areas of a corridor during a walk.

Figure B.3: Illustration of sensor relaxation on several areas of a corridor during a walk.

;



C
Additional results on transfer learning

In Chapter 3 and Section 5.4, we present our experiments and results on Tarkett fall
detection data and public data, to evaluate several variants of SER and STRUT model-
based transfer algorithms on decision trees. Here are presented additional results on
synthetic and public data for the interested reader.

1 Synthetic data

As described in the corresponding section, synthetic experiments are done using
Gaussian cluster distributions. In addition to class imbalance ratio, three kinds of
parameters are involved to get a distribution shift between source and target domains.
Clusters mean and variance are modified and some of them are completely re-drawn.
Here are partial results according to the proportion of clusters that are re-drawn.

Figure C.1: Mean ROC AUC of transfer methods on synthetic data depending on the
minority class ratio. First row : no cluster re-drawing. Second row : re-drawing one third of clusters.
Third row : re-drawing two thirds of clusters.
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Figure C.2: Mean ROC AUC of transfer methods on synthetic data depending on the
amount of target minority class data. First row : no cluster re-drawing. Second row : re-drawing
one third of clusters. Third row : re-drawing two thirds of clusters.

2 Public data

Amazon reviews DB is composed by several domains corresponding to the type of
products. Concerning the spam DB, data of 3 users are used as domains. In this
appendix we present further results on transfer experiments on these databases than
the ones exposed in Chapter 3.

Additional results on Amazon review DB concern experiments between other
couples of domains and those on Spam DB concern the same couples of domains but
with other directions of transfer (inverting source and target domains). Source and target
domains are still used as references to give an idea of the necessity and the difficulty of
each transfer learning task.

These results reinforce the statement that each SER/STRUT specific variant effi-
ciency depends importantly on data and on the relations between source and target
domains. Moreover they confirm the relevance of our STRF algorithm and its adapt-
ability to various situations.



Figure C.3: Mean ROC AUC of transfer methods on Amazon reviews DB depending
on the minority class ratio.
First row : from home products to game products. Second row : from music products to game products.

Figure C.4: Mean ROC AUC of transfer methods on Amazon reviews DB depending
on the minority class ratio.
First row : from phone products to game products. Second row : from phone products to home products.
Third row : from phone products to music products.
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Figure C.5: Mean ROC AUC of transfer methods on Spam DB depending on the
minority class ratio.
First row : from user "B" to user "A". Second row : from user "C" to user "A". Third row : from user "C" to
user "B".
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Titre : Monitoring de personnes âgées basé sur des modèles d’arbres de décision
en conditions de variation de domaines et de ressources computationnelles limitées.

Mots Clefs : Monitoring de personnes âgées, forêts aléatoires, apprentissage par
transfert, systèmes embarqués, contraintes computationnelles.

Résumé : Cette thèse porte sur le monitoring de personnes âgées en maisons de
retraite et EHPAD, à partir d’un capteur sol piezo-électrique relié à un système
embarqué. Après avoir présenté les particularités du signal piezo-électrique ainsi
que sa conversion en séries temporelles, nous expliquons comment les différentes
technologies de mesures affectent le signal original et présentons les différents
environnements de collecte de données. Pour notre application un vaste ensemble
de features est employé, basé sur plusieurs représentations du signal comme la
transformée de Fourier, l’auto-corrélation et les spectrogrammes. Plusieurs études
expérimentales sur les forêts aléatoires sont réalisées et montrent la faisabilité de
plusieurs tâches de détection ainsi que la pertinence des différentes représentation
du signal et features associées.
Cependant pour être déployés de manière industrielle ces modèles doivent respecter
deux contraintes majeures. Premièrement ils doivent être confrontés aux données
réelles et s’adapter à la variabilité des installations et des patients. Dans cette
optique des méthodes d’apprentissage par transfert sont étudiées pour l’intégration
de nouvelles données obtenues en conditions réelles dans un modèle préalablement
entraîné sur des données simulées en environnement contrôlé. Nous étudions donc
les effets néfastes liés au déséquilibre de classes sur l’apprentissage par transfert et
proposons, pour palier à ce problème, des adaptations de méthodes existantes sur
les arbres de décision. A partir de ces adaptations nous développons un algorithme
robuste de transfert sur les forêts aléatoires utile à la fois pour gérer le déséquilibre
de classes et pour interpréter les relations entre les différents domaines de données.
En outre ces modèles doivent tourner en temps réel dans un système embarqué
aux capacités computationnelles réduites. Prendre en compte ce genre de con-
traintes lors de la conception d’un modèle de prédiction correspond au domaine de
recherche appelé "budgeted learning", qui est particulièrement actif ces dernières
années. Nous définissons formellement le temps de prédiction pour les arbres
de décision et forêts aléatoires prenant en compte à la fois le coût d’acquisition
des features et le coût d’évaluation du modèle. Nous proposons un algorithme
génétique pour résoudre le problème de la contrainte du temps de prédiction
qui permet de passer d’un modèle déjà entraîné sans contraintes à un modèle
simplifié qui respecte cette contrainte de temps de calcul. Cet algorithme tire parti
d’un pruning aléatoire et de la notion d’équivalence entre les arbres de décision,
c’est-à-dire lorsque deux modèles représentent la même fonction de décision mais
diffèrent par leur structure, dans le but de favoriser la réduction du temps de
prédiction en exploitant la variété structurelle des arbres de décision.
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Title : Elderly monitoring using decision trees under domain shifts and computa-
tional resource constraints.

Keys words : Elderly monitoring, random forests, embedded systems, transfer
learning, budgeted learning.

Abstract : Tarkett is a global flooring company that developed a piezo-electric
sensor encapsulated in the flooring and an embedded system meant to be equipped
in nursing home patient rooms. The objective through this industrial project is to
build reliable machine learning models able to work in real-time in the embedded
system, based on piezo-electric signals, to provide useful information for medical
staff to monitor their patients health.
Considering different measurement technologies we describe how they affect the
original physical signal, as well as different data gathering environments in which
several dataset have been recorded. To be able to monitor elderly health state
some important recurrent events like walk and some anomalies like falls need to
be recognized from floor sensor signals. To this end, the way to process signals
into adequate data representation, according to these detection purpose, is also a
major challenge. We use a wide feature set based on time series from various signal
representations such as Fourier transform, autocorrelation and spectrograms. Using
predictive models based on random forests on different experimental datasets we
show Tarkett system ability to achieve various monitoring tasks, as well as the
relevance of each signal representation and associated features regarding these
detection tasks.
Nevertheless for these experimental studies to be deployed industrially in FIM Care
real installations, machine learning models need to fulfill two crucial requirements.
Firstly they have to be confronted with real environment data, meaning to be
able to adapt to real installations variability and to activity signal differences
between people. In this context we deal with the problem of adapting a predictive
model initially trained on experimental data to real data with different empirical
distribution. This particular situation in machine learning is known as transfer
learning or domain adaptation. We address it by confronting simulated events data
to real data on the fall detection task that presents the particularity of extreme class
imbalance in real conditions. We investigate the drawbacks of this class imbalance on
existing transfer learning methods on decision trees and propose some adaptations
to handle this problem. Our contribution is a robust model-based transfer learning
algorithm on random forests able to deal with class imbalance and that can also be
used to interpret relations between two different domains.
Secondly, most of the prediction tasks for elderly monitoring have to work in real
time being embedded in an electronic device with limited computational capa-
bilities. Taking into account this kind of constraints while designing a predictive
model belongs to a branch of machine learning, known as cost sensitive or budget
learning, that became an increasingly active research topic in the past years. We
translate embedded system computational resource constraints into a budgeted
prediction time framework compatible with decision tree based models and propose
an efficient and scalable genetic algorithm considering both feature acquisition cost
and evaluation cost allowing to pass from an experimental random forest model to a
new simplified one that fits in embedded system resource limits. This algorithm
takes advantage of the notion of equivalence between classifiers, meaning models
sharing the same decision function but with different structures, to favor feature
acquisition cost reduction by exploiting structural variety on decision trees.
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