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ABSTRACT

Visual Simultaneous Localization and Mapping (SLAM) has been heavily studied in
the past couple decades. The reasons for this infatuation are the promising future tech-
nologies requiring camera pose estimation, such as augmented reality, self-driving vehicles
and robotics. The goal of SLAM is to estimate the pose of a sensor (in our case a camera)
moving in space while simultaneously building a map of the environment. The past few
years have seen the implementation of SLAM systems able to accurately estimate the
pose of a camera in small and large scenes with a precision of a few to a few tens of
centimeters. However those approaches represent the world using purely geometric and
appearance information. This kind of low level data is complex to use for other algorithms.
For example an augmented reality application that would try to overlay virtual content on
specific parts of the scene may need higher level data to be able to cluster the scene into
multiple objects. Thus there is a semantic gap between the internal SLAM representation
and the real world in which the system is evolving.

For the past decade deep learning has gained an increased popularity in computer
vision, allowing to solve complex problems such as image classification, object detection or
image segmentation. Those networks are today accurate and fast enough to be integrated
into a real time SLAM system, resulting in a semantic SLAM system. Such system is able
to build a higher level semantic map in which 3D points are associated with an object
class information, such as road, car, person, cat. Some approaches have been developed
to use this piece of information to improve the SLAM, yet the integration of semantic
information into SLAM remains relatively partial.

Our goal in this manuscript is to build a SLAM system that can harness both semantic
information and a priori knowledge about object classes to push forward the limits of
SLAM. To this end, our contributions are:

• We first propose a light neural network to estimate the pose of objects in the scene.
Objects can serve as high level landmarks for a SLAM system, improving camera
pose and adding information into the map. This network however has to be trained
for specific objects, which can limit its applicability in the SLAM system.

• Thus in our second work we propose a SLAM system that can create clusters
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of 3D points corresponding to generic objects in the scene. With some a priori
knowledge about object classes we can estimate their geometry in real time to
improve both the map and camera pose estimation. However this approach only
takes into account static objects, which limits the scenarios in which it can be used.

• To solve the problem of moving objects we propose a new SLAM implementation
able to robustly estimate camera pose in dynamic scenes and to estimate the trajec-
tories of all moving objects in the scene. A priori knowledge allows us to constrain
the movement of objects to be plausible with respect to the structure of the world.
We show in various experiments on public datasets that our approaches produce
competitive results with state-of-the-art.

• Finally we improve upon this last approach by injecting LiDAR data into our visual
SLAM system. Doing so we show that we can estimate object canonical poses and
track them with an improved accuracy while also recovering object shapes.

We think that those contributions are steps towards an accurate worldwide SLAM system
able to build a digital twin of our world, in which all objects are mapped and tracked.
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RÉSUMÉ

Les algorithmes de localisation et cartographie en simultané (Simultaneous Localiza-
tion And Mapping, SLAM) ont été étudiés en profondeur durant les deux dernières décen-
nies. Les raisons de cet engouement résident dans les technologies futures prometteuses
qui nécessitent une estimation de la pose de la caméra, telle que la réalité augmentée, les
véhicules autonomes et la robotique. Le but du SLAM est d’estimer la pose d’un cap-
teur (dans notre cas une caméra) se déplaçant dans l’espace tout en construisant une
cartographie de l’environnement. Depuis quelques années des implémentations de SLAM
permettent d’estimer précisément la pose de la caméra dans des scènes petites et grandes
avec une précision de quelques centimètres à quelques dizaines de centimètres. Cependant
ces approches représentent le monde en utilisant uniquement des information géométriques
et d’apparence. Ces informations bas niveau sont complexes à utiliser. Par exemple une
application de réalité augmenté pourrait avoir besoin d’afficher du contenu sur des parties
spécifiques de la scène. Cela nécessite d’avoir accès à une information haut niveau pour
partitionner la scène en différents objets qui la composent. Ainsi il y a un écart sémantique
entre la représentation interne du SLAM et le monde réel dans lequel le système évolue.

Au cours de la dernière décennie, l’apprentissage profond a gagné une popularité crois-
sante dans le domaine de la vision par ordinateur en permettant de résoudre des problèmes
complexes comme la classification d’images, la détection d’objets ou encore, la segmen-
tation d’images. Ces réseaux sont aujourd’hui suffisamment précis et rapides pour être
intégrés dans un système de SLAM, créant ainsi un SLAM sémantique. Un tel système est
capable de construire une cartographie sémantique haut niveau dans laquelle les points
3D possèdent une information de classe d’objet, comme route, voiture, peronne, chat.
Certaines approches ont été développées pour utiliser ces informations afin d’améliorer le
SLAM mais l’intégration de l’information sémantique dans le SLAM reste relativement
partielle.

Notre but dans ce manuscrit est de construire un système de SLAM qui peut exploiter
l’information sémantique ainsi qu’une connaissance a priori sur les objets pour repousser
les limites du SLAM. Dans ce but nous proposons plusieurs contributions:

• Tout d’abord un réseau de neurones léger pour estimer la pose d’objets dans la
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scène. Les objets peuvent servir de repères haut niveau pour un SLAM, améliorant
la pose de la caméra et ajoutant de l’information dans la cartographie. Le prin-
cipal inconvénient de ce réseau est qu’il nécessite d’être entraîné pour des objets
spécifiques, ce qui peut limiter les cas d’usages du SLAM.

• Ainsi dans notre seconde contribution nous proposons un SLAM capable de créer
des groupes de points 3D correspondant à des objets génériques dans la scène. En
utilisant une connaissance a priori sur la classe des objets nous pouvons estimer leur
géométrie pour améliorer la cartographie et la pose de la caméra. Cette approche
en revanche ne prend en compte que les objets statiques, ce qui limite les scénarios
dans lesquels on peut l’utiliser.

• Pour résoudre le problème de scènes dynamiques avec des objets mobiles nous pro-
posons un SLAM capable d’estimer la pose de la caméra ainsi que la trajectoire
de tous les objets dans la scène. Un a priori sur les objets nous permet de con-
traindre leurs mouvements afin qu’ils soient cohérents avec la structure du monde.
Nous démontrons dans diverses expériences sur plusieurs jeux de données que notre
approche produit des résultats compétitifs avec l’état de l’art.

Nous pensons que ces contributions sont des étapes vers un SLAM à très large échelle,
précis, capable de contruire un jumeau numérique de notre monde, dans lequel les objets
sont cartographiés et suivis.
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SYNTHÈSE EN FRANÇAIS

Optimisation du SLAM visuel par analyse
sémantique de l’environnement réel

Introduction

La navigation visuelle est une compétence inée chez de nombreux êtres vivants. Elle
leur permet de se localiser dans l’espace afin d’y naviguer et de l’explorer lorsqu’il est
inconnu. Cette capacité est tellement naturelle que nous avons parfois du mal à nous ren-
dre compte à quel point elle est puissante. Qu’il pleuve ou non, que l’environnement soit
encombré ou vide et qu’il soit changeant ou statique nous sommes capables de comprendre
où nous nous situons. Depuis plusieurs décennies il y a une demande croissante de la part
de l’industrie afin d’intégrer une telle capacité dans un algorithme. Elle est en effet es-
sentielle pour de nombreux domaines tels que les robots et véhicules autonomes ainsi que
la réalité augmentée. La plupart des systèmes autonomes requièrent en effet de connaître
leur position dans l’espace afin qu’ils puissent s’y déplacer. Il en va de même pour un sys-
tème de réalité augmentée qui a besoin de cette information pour supperposer du contenu
virtuel a une image réelle de manière consistente. Plusieurs capteurs différents peuvent
être utilisés, comme par exemple des centrales inertielles, LiDARs, GPS mais les caméras
sont particulièrement intéressantes. En effet elles peuvent être de petites tailles, avoir
une faible consommation, arrivent a représenter efficacement l’environment qui les en-
toure et sont déjà présentes dans de nombreux appareils tels que les téléphones portables.
Ainsi dans ce manuscrit nous nous concentrerons particulièrement sur les problématique
de localisation basée caméra. Les algorithmes de SLAM (Simultaneous Localization And
Mapping) permettent, à partir du flux vidéo d’une caméra se déplaçant dans l’espace,
d’estimer en temps réel la pose de cette dernière tout en créant une cartographie de
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l’espace qu’elle observe. Ils permettent donc de répondre à la problématique posée pour
la navigation autonome et la réalité augmentée. Cependant, pour certains systèmes, la
connaissance de la seule pose de la caméra n’est pas suffisante. Connaître la pose des
autres objets ou agents dans la scène peut également être nécessaire. C’est par exemple le
cas des véhicules autonomes qui ont besoin d’estimer la pose et la trajectoire des autres
véhicules et des piétons dans l’environnement afin de pouvoir y naviguer de façon sûre.
De même pour la réalité augmentée, certaines applications peuvent avoir besoin d’afficher
du contenu virtuel en interaction avec des objets et ainsi de connaître leur pose par rap-
port à la caméra. Ainsi, des algorithmes d’estimation de pose objet, capables de prédire
à partir d’une seule image la pose relative entre la caméra et un objet d’intérêt dans la
scène ont été développés. Ces algorithmes ont récemment profité des développements de
l’apprentissage profond pour gagner en précision. Ils peuvent être vus comme une ver-
sion mono image et duale du SLAM. En effet le SLAM cherche à prédire la pose de la
caméra relativement au monde alors que l’estimation de pose objet cherche a prédire la
pose de l’objet relativement au monde. Si l’objet est statique ces deux transformations
sont l’inverse l’une de l’autre à une transformation constante près. Les problématiques de
SLAM et d’estimation de pose objets sont donc profondément liées. Résoudre ces deux
problématiques en parallèle a donc un intérêt particulier.

Nos objectifs durant cette thèses étaient:
• D’implémenter un SLAM capable de créer une cartographie sémantique.
• De tirer avantage de l’information supplémentaire fournie par la sémantique afin

d’améliorer la pose de la caméra et la cartographie, particulièrement dans des
scénarios dynamiques.

• D’estimer la pose d’objets mobiles dans la scène.
• D’implémenter un système suffisamment générique pour être appliqué à des séquences

variées.
Pour répondre à ces objectifs nous avons développés plusieurs algorithmes que nous

présentons dans ce manuscrit et que nous résumons dans cette synthèse.

État de l’art

Un effort particulier a été apporté à la rédaction d’un état de l’art sur le SLAM
sémantique lors de cette thèse. Dans cette section nous en présentons un rapidé résumé.
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SLAM classique

Un des papiers de SLAM les plus cités est ORB-SLAM 2 [Mur-Artal and Tardós,
2017]. Dans cet algorithme, inspiré de [Klein and Murray, 2007; Mouragnon et al., 2006], la
localisation de la caméra et la cartographie s’effectuent en parallèle. Ceci permet de suivre
la caméra en temps réel sans avoir a re-cartographier des points à chaque instant. De plus
certaines images clés (appelées keyframes) sont sélectionnées parmi toutes les images. Ceci
permet de diminuer la quantité d’information à traiter par l’algorithme d’optimisation
d’ajustement de faisceaux (ou bundle adjustment). Cet algorithme étant coûteux, cela
permet tout de même grâce à la parallelisation de l’appliquer à un SLAM temps réel. ORB-
SLAM 2 est un SLAM indirect car il extrait des points caractéristiques (ou keypoints)
des images et optimise la pose de la caméra et la cartographie en minimisant l’erreur de
reprojection entre les points 3D et les points caractéristiques. D’autres algorithmes, tel
que LSD-SLAM [Engel et al., 2014], sont qualifiés de direct car ils minimisent directement
l’erreur photométrique, c’est à dire la différence de luminosité entre les pixels. Ce faisant
ils sont capables de fonctionner dans des scénarios où les points caractériques ne sont pas
disponibles (e.g. des zones non texturées ou des images floues).

Utilisation de la sémantique pour la création de cartes sémantiques

Plusieurs algorithmes se sont concentrés sur la création de cartographies sémantiques
qui puissent ensuite être utilisées pour améliorer le SLAM. Plusieurs stratégies sont possi-
bles, comme par exemple la segmentation d’une cartographie 3D en utilisant des réseaux
de neurones ou bien la segmentation d’image 2D qui doivent ensuite être fusionnées pour
créer une cartographie consistente. Nous nous sommes plus particulièrement intéressés à
la deuxième partie, plus cohérente avec les contraintes d’exécution temps réel du SLAM.
Un des premiers papiers publiés pour créer une cartographie sémantique utilisant des im-
ages segmentées par réseaux de neurones est [McCormac et al., 2017] qui utilise un SLAM
dense basé sur des images RGB-D. Dans ce papier un réseau de convolution estime la
probabilité que les pixels d’une image appartiennent à un ensemble de classe. Ces proba-
bilités sont ensuite fusionnées lorsqu’un point 3D possède plusieurs observations 2D. Plus
précisément la fusion se base sur l’inférence bayésienne à partir des densités de probabilité.
Cette fusion leur permet d’obtenir une carte plus consistente que chacune des segmenta-
tions 2D. Diverses approches ont également été proposées pour améliorer les résultats ou
les adapter à d’autres types de SLAM [X. Li and Belaroussi, 2016; C. Yu et al., 2018].
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Utilisation de la sémantique pour la relocalisation

Le problème de relocalisation consiste a estimer la pose de la caméra lorsque le suivi
de la caméra est perdu. Les algorithmes se basent généralement sur une cartographie
pré-existente ainsi qu’un ensemble d’images décrivant la scène. C’est un problème partic-
ulièrement complexe car il peut y avoir des changements visuels importants entre l’image
courante et les images capturées lors de création de la cartographie (e.g différences de lu-
minosité jour-nuit, de saison, etc.). Plusieurs approches ont proposé d’utiliser l’invariance
apportée par les réseaux de segmentation pour répondre à ce problème. On peut par
exemple citer [Toft et al., 2017] qui à partir d’une image et d’une carte sémantique opti-
mise une erreur de reprojection sémantique. Cette erreur est calculée comme la distance
2D entre la position d’un point reprojeté et la zone de même classe sémantique la plus
proche. Ainsi lorsqu’ un point est reprojeté dans la bonne classe sémantique, son erreur
est nulle. Les expérience montrent que cette approche est moins précise mais plus robuste
que l’état de l’art. [Larsson, Stenborg, Toft, et al., 2019] propose de l’améliorer en créant
une segmentation plus granulaire de l’image. [Arandjelović and Zisserman, 2014] se base
sur l’idée que deux keypoints appareillés doivent avoir la même classe sémantique pour
réduire le nombre de mauvais matchs et ainsi améliorer et accélérer le processus de relo-
calisation. D’autres algorithmes encore utilisent la sémantique pour se concentrer sur des
zones stables dans le temps, telles que les bâtiments ou la route.

Utilisation de la sémantique pour la gestion des objets dynamiques

Les objets dynamiques representent un réel problème pour le SLAM classique. En effet
ce dernier se base sur l’hypothèse du monde statique qui considère que le monde est un
unique objet rigide. Dès lors qu’un objet bouge dans la scène la précision de l’estimation
de la pose de la caméra peut être dégradée, de même que la qualité de la carte. Ceci
limite fortement les cas d’usage du SLAM dans des scénarios réels. Pour s’affranchir de
cette hypothèse certains systèmes utilisent la sémantique pour masquer les objets poten-
tiellement dynamiques. C’est par exemple le cas de [Bescos et al., 2018]. L’inconvénient
de ce genre d’approche est que certains objets potentiellement dynamiques peuvent être
en réalité statique (e;g. une voiture garée), les masquer entraîne une perte d’information
et éventuellement une dégradation de la qualité des estimations. Certaines approches
utilisent donc les parties a priori statiques de l’image pour fournir une première estima-
tion de la pose de la caméra. Cette dernière est ensuite utilisée pour détecter si les zones
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potentiellement dynamiques le sont ou non et les inclure dans le SLAM dans ce dernier
cas. On peut par exemple citer [Cui and Ma, 2019; C. Yu et al., 2018] qui estiment une
matrice fondamentale en utilisant les points statiques et vérifient la dynamicité des points
restants en calculant leur distance à la ligne épipolaire.
D’autre approches cherchent à utiliser les points correspondants aux objets potentielle-
ment dynamiques afin de les suivre et d’estimer leur trajectoire. C’est ce qui est fait par
[Bescos et al., 2021], qui applique également une optimisation d’ajustement de faisceaux
pour raffiner toutes les poses de caméras ainsi que la pose de tous les objets potentielle-
ment mobiles.

SLAM basé objets

Certains algorithmes proposent d’utiliser les objets dans la scène comme des ancres,
servant à améliorer la pose de la caméra et à obtenir une cartographie de plus haut
niveau. On peut distinguer trois catégories d’approches. Tout d’abord celles qui se basent
sur des détecteurs d’objets spécifiques et requièrent donc que des objets particuliers soient
présents dans la scène [Civera et al., 2011; Fioraio and Di Stefano, 2013; Salas-Moreno
et al., 2013]. Ces travaux estiment la pose d’objets qu’ils utilisent ensuite dans le SLAM
afin de contraindre la pose de la caméra. Un exemple de contrainte est la consistance de la
pose de l’objet sur l’ensemble des images. Deuxièmement, des papiers proposent d’utiliser
des détecteurs d’objets génériques, qui prédisent simplement une boite englobante au-
tour de chaque objet. L’objet est ensuite représenté avec géométrie siplifiée, comme une
quadrique [Gaudillière et al., 2019; Hosseinzadeh et al., 2018; Nicholson et al., 2018] ou
des boites 3D [S. Yang and Scherer, 2019a]. Enfin, une génération très récente d’approches
se base sur des détecteurs génériques mais utilise des réseaux de neurones pour reconstru-
ire chaque objet avec ses caractéristiques géométriques spécifiques. DSP-SLAM [J. Wang
et al., 2021] optimise le code latent d’un réseau de neurone afin que la forme qu’il génère
corresponde aux points 3D de l’objet dans le SLAM. Ceci leur permet d’une part d’obtenir
une représentation géométrique complète et proche de la réalité mais également d’estimer
la pose des objets, qui vient contraindre la pose de la caméra.

Contributions

Dans ce manuscrit nous proposons de dépasser les limites du SLAM classique, qui
repésente le monde en utilisant un unique nuage de point homogène. Pour cela nous
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représentons la scène en utilisant un graphe dont les noeuds correspondent aux objets de
la scène et les arêtes à des liaisons entre les objets. Les noeuds possèdent des propriétés
intrinsèques, telles que leur pose dans le monde, leur texture, leur géométrie, qui sont en
partie dépendantes de leur classe sémantique (par exemple la plupart des voitures ont des
géométries similaires). Les liaisons entre les noeuds peuvent être multiples et dépendent
de la classe des noeuds. Par exemple entre une voiture et la route il ya une contrainte de
type support : la voiture doit reposer sur la route. Partant de cette nouvelle représentation
pour le SLAM nous proposons les contributions suivantes:

• Un système d’estimation de pose objet basé sur de l’apprentissage profond, pou-
vant être intégré dans un SLAM basé objet. Cet algorithme, appelé L6DNet extrait
des patchs d’une image RGB-D qu’il classifie afin de ne conserver que les patchs
représentant l’objet d’intérêt. Chaque patch est ensuite utilisé par un réseau de
neurones afi de prédire un ensemble de points 3D à la surface de l’objet. Les points
3D sont ensuite aggrégés de manière robuste et associés à des points définis a pri-
ori pour calculer la pose relative de l’objet à la caméra. Notre approche hybride
obtient des résultats similaires à l’état de l’art en terme de précision de pose. En
revanche elle nécessite moins de ressources, tant en terme de capacité de calcul
que de quantité de données. Il est donc plus facile d’entraîner notre approche afin
de l’intégrer dans un SLAM. Elle nécessite cependant un entraînement sur des
objets spécifiques, ce qui peut limiter les cas d’usage du SLAM basé objet. Cet
algorithme a été présenté dans les papiers: "L6DNet: Light 6 DoF Network
for Robust and Precise Object Pose Estimation with Small Datasets par
Mathieu Gonzalez, Amine Kacete, Albert Murienne et Eric Marchand, publié dans
IEEE Robotics and Automation Letters (RA-L), 2020 ainsi que dans IEEE
International Conference on Robotics and Automation (ICRA), 2020. Il
est cité dans ce manuscrit: [Gonzalez, Kacete, et al., 2021].

• Pour dépasser la limite imposée par L6DNet nous proposons un SLAM plus gén-
rique, capable de créer une cartographie sémantique pouvant contenir des objets
non connus a priori. Pour cela nous utilisons un réseau de segmentation panop-
tique qui segmente les images 2D. Nous fusionnons ensuite dans le SLAM les images
segmentées pour obtenir une cartographie sémantique.Cette cartographie est en-
suite utilisée pour créer des groupes de points, appelés clusters, correspondant de
façon unique aux objets dans la scène. Ceci est un premier pas vers la représenta-
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tion du graphe de scène. De plus, nous mettons en place un a priori géométrique
sur la classe de certains objets. Cette information nous permet de contraindre la
carographie afin qu’elle soit cohérente avec l’information sémantique. Nous nous
intéressons en particulier aux classes qui peuvent être représentées grâce à des
plans. Avec cette approche nous montrons que nous pouvons créer une cartogra-
phie de haut niveau, contenant des structures et cohérente avec la scène. Nous
montrons également ques contraintes additionnelles nous permettent d’améliorer
la cartographie et l’estimation de pose de la caméra comparée aux autres systèmes
de SLAM. Cette approche, bien que générique ne permet pas de gérer les objets
dynamiques dans la scène, ce qui peut limiter ses cas d’usage. Cet algorithme a
été présenté dans le papier: "S3LAM: Strcutured SceneSLAM", par Mathieu
Gonzalez, Eric Marchand, Amine Kacete et Jérôme Royan, publié dans IEEE In-
ternational Conference on Intelligent Robots and Systems (IROS) 2022
ainsi que dans la conférence nationale Groupe de Recherche et d’Etudes de
Traitement du Signal et des Images (GRETSI) 2022 sous le nom S3LAM:
SLAM à Scène Structurée. Il est cité dans ce manuscrit comme : [Gonzalez
et al., 2022a].

• Afin de dépasser la limite de S3LAM concernant les scènes dynamiques, nous pro-
posons un nouveau SLAM, TwistSLAM capable d’estimer la pose de la caméra
dans des environnements dynamique et d’estimer la trajectoire de tous les objets
dynamiques dans la scène. Pour cela nous nous basons sur S3LAM et utilisons les
clusters a priori statiques (tels que la route, les bâtiments etc.) afin d’estimer la
pose de la caméra de façon robuste. Enuite, pour tous les objets potentiellement
dynamiques (tels que les voitures, les piétons, etc.) nous estimons leur l’évolution
de leur pose par rapport à la caméra en minisant l’erreur de reprojection de leurs
points 3D. De plus nous proposons d’utiliser les structures de la scène afin de con-
traindre le mouvement des objets. Nous appliquons des contraintes mécaniques à
la vitesse des objets, comme une moélisation des arêtes du graphe de scène. Par ex-
emple une voiture est en liaison plan avec la route elle ne possède donc que 3 degrés
de liberté. Nous utilisons donc un opéraeur de projection pour projeter la vitesse de
la voiture afin qu’elle soit cohérente par rapport au plan estimé de la route. Toutes
les poses caméras, les poses objets et les points 3D sont ensuites optimisés dans un
algorithme d’ajustement de faisceau. Nous montrons que notre approche permet
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d’améliorer à la fois l’estimation de pose de la caméra ainsi que l’estimation de pose
des objets comparé à l’état de l’art. Cette approche a été présentée dans le papier
: TwistSLAM: Constrained SLAM in Dynamic Environment, par Math-
ieu Gonzalez, Eric Marchand, Amine Kacete et Jérôme Royan, publié dans IEEE
Robotics and Automation Letters (RA-L), 2022 ainsi que dans IEEE In-
ternational Conference on Intelligent Robots and Systems (IROS) 2022.
Il est cité dans ce manuscrit comme : [Gonzalez et al., 2022b].

Conclusion

Dans ce manuscrit nous avons tout d’abord présenté les outils fondamentaux néces-
saires à la compréhension de nos travaux. Ensuite nous avons reconstitué le fonction-
nement d’un SLAM classique et présenté un état de l’art étendu sur l’usage de la sé-
mantique dans le SLAM. Puis nous avons proposé d’appliquer la structure connue du
graphe de scène au SLAM afin de créer une représentation plus haut niveau pour la car-
tographie, qui ne soit plus homogène mais constituée de différents objets possédant des
propriétés et reliés entre eux par des contraintes. Nous soutenons le fait que cette nouvelle
représentation haut niveau peut permettre des nouvelles applications en réalité augmentée
et navigation autonome. De plus nous avons développé plusieurs algorithmes permettant
d’intégrer une information sémantique dans un SLAM, implémentant en pratique cette
représentation. Nous avons montré sur plusieurs expériences que nos contributions per-
mettaient d’améliorer le SLAM à plusieurs niveaux et sur plusieurs jeux de données par
rapport à l’état de l’art ainsi que l’estimation de pose des objets, remplissant ainsi les
objectifs fixés.
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Notations
General rules
Lower case x Scalars, except for components of 3D points.
Bold lower case x Vectors, except for 3D points to differentiate them from 2D image points.
Bold upper case X Matrices and 3D points.

Mathematics
Rn Set of real numbers of dimension n
Mn×m Set of real matrices of dimension n × m
SE(3) Special Euclidean group of dimension 3.
se(3) Lie algebra associated with SE(3).
SO(3) Special Orthogonal group of dimension 3.
so(3) Lie algebra associated with SO(3).
In Identity matrix of dimension n
0n×m Null matrix of dimension n × m
S⊤ Transpose of S
S−1 Inverse of S
A+ Moore-Penrose pseudo-inverse
[u]× Skew matrix of u ∈ R3

[ξ]∨ Vee operator from R6 to se(3)
[ξ]∧ Wedge operator from se(3) to R6 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
det(A) Determinant of A
expso(.) Exponential map from so(3) to SO(3)
expse(.) or exp(.) Exponential map from se(3) to SE(3)
logSO(.) Logarithm map from SO(3) to so(3)
logSE(.) or log(.) Logarithm map from SE(3) to se(3)
⊗ Kronecker product of two matrices
||.||A Mahalanobis norm with matrix A
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Geometry
w, c, o Indices representing respectively the world, the camera and an object.
E3 Euclidean space of dimension 3.
Fw Coordinate frame of w.
wX̄ 3D point expressed in Fw in homogeneous coordinates.
wX 3D point expressed in the coordinate frame w.
wTo Pose matrix transforming a 3D point from Fo to Fw.
wRo = rot(wTo) Rotation matrix of wTo.
wto = trans(wTo) Translation vector of wTo.
wξo Twist of object o expressed in Fw.
ω Rotational component of a twist.
v Translational component of a twist.
wVo Adjoint map from Fo to Fw.
x 2D point in image space.
x̄ 2D point in homogeneous coordinates.
π Projection function from 3D space to image space in pixel coordinates.
K Intrinsic matrix of the camera.
C Camera center in R3.
f Focal length of the camera in metric units.
fx, fy Focal length of the camera in pixels.
cx, cy x and y coordinates of the camera principal point in pixels.
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INTRODUCTION

Context

Visual self localization is a natural capacity for most living beings, allowing them to
explore the unknown world as well as to navigate in a familiar environment. This capacity
is so natural for us that we may have trouble realizing how powerful it is. Whether it is
rainy or sunny, whether the environment is crowded or empty, whether none or many parts
of the environment have changed since we last saw it, we are still able to understand where
we are. For the past few decades there has been a growing demand from the industry to
embed an algorithm with such capacity. Indeed it is seen as one of the keystones of multiple
domains such as autonomous robots, self-driving vehicles and augmented reality. Multiple
sensors and modalities can be used, such as Inertial Measurement Units (IMUs), LiDARs,
GPS, each one with their pros and cons. However cameras hold a special place in the
kingdom of sensors since they are low cost, consume little energy, need little space, depict
well their environment and are already present in many devices such as smartphones. In
this thesis we will focus mostly on vision based approaches, however it seems natural that
the most promising solutions combine different modalities (e.g. an IMU and a camera)
to counteract their weaknesses. This is why in the final chapter we will integrate LiDAR
data into a stereo-based SLAM system to improve it.

Autonomous agents

The goal of an autonomous agent (robot or vehicle) is to navigate safely in its envi-
ronment without any human intervention to accomplish tasks, such as "Travelling from
Zaragoza to Bonn while passing by Rennes and Nancy" for a self-driving car. Those tasks
are currently highly trendy to facilitate our lives or decrease the number of casualties on
the roads that can be caused by drivers’ inattention. Hence most of cars manufacturers
such as Toyota with its self driving e-Palette shuttles at Tokyo’s Olympic games invest
funds to develop increasingly autonomous vehicles.

Some of those systems require an estimation of the agent location and a map of the
environment to understand how to move within it. They also require an estimation of the
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Figure 1 – Illustration of a self-driving car. The car needs to detect entities and agents
in the scene (road lanes, traffic signs, cars) to safely navigate. Image courtesy of Adobe

europarl.europa.eu.

pose of the agent relative to other agents in the scene (e.g. other cars or pedestrians) to
safely interact with them, as it is illustrated in figure 1.

Augmented Reality

The goal of Augmented Reality (AR) is to overlay virtual objects on images from
the real world. Doing so the users perceive those objects as part of the environment,
seamlessly providing them with additional information. An example of AR application is
for industrial manufacturing: the sight of an operator in a factory can be augmented with
instructions to follow, directly attached to the environment he is working on. This could
allow him to better follow a procedure without having to stop to read a guide. Doing
so, the distance between the operator and the task decreases, which facilitates the task,
accelerates it and reduces error rates.

Virtual objects can be attached to specific parts of the scene in which the operator
moves. To correctly project them on a device such as a smartphone or AR glasses, the
pose of the device relative to the scene must be estimated.

In some applications the AR content must be attached to objects that can move within
the scene. In those cases knowing the pose of the device relative to the scene is not enough,
the pose of the object relative to the device must also be known. An example of such an
AR application can be seen in figure 2.

4
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Figure 2 – Example of augmented reality application for the industry, where virtual
content is attached to an object. Image courtesy of ptc-solutions.de.

Object pose estimation and Simultaneous Localization
and Mapping

For both AR and autonomous navigation the 6 degrees of freedom (DoF) pose of some
objects must be estimated, along with the pose of the camera. On the one hand, 6-DoF
object pose estimation is solved using a single image of the object of interest. Various
solutions exist for example by rigidly attaching markers to the object or by using a data
driven algorithm to directly predict the pose of the object relative to the camera given
a single image. On the other hand, camera pose estimation can be obtained through
Simultaneous Localization And Mapping (SLAM). The goal of SLAM is to estimate the
pose of a camera moving in space, while simultaneously building a map of the environment.
This second goal is highly dependent on the first one and vice-versa. Indeed on the one
hand a map of the environment is required to accurately estimate the camera pose. On
the other hand a good estimation of the camera location is needed to build a precise map
of the environment. This explains why the SLAM is often qualified to be a chicken-and-
egg problem. The problem of camera pose estimation is also highly related to object pose
estimation. Indeed if an object is static in the scene, its pose with respect to the camera is
the inverse of the pose of the camera with respect to the scene (up to a multiplication by a
static transformation corresponding to the pose of the object in the scene). Camera pose
estimation and object pose estimation can thus be seen as dual problems of one an other,
that can also benefit from each other. This, added to the fact that many domains require
to solve both justifies the idea of building an object pose estimation system, nested in a

5
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SLAM algorithm.

Limits and challenges of SLAM

Visual SLAM has been studied for a couple decades and was sometimes considered to
be solved. This mainly depends on the environment in which the camera evolves and on
the expected accuracy and robustness. For example a robot evolving on a 2D plane in a
controlled environment can be precisely localized. The same can not be said however for
a self-driving car in a crowded pedestrian street under the rain at night. In [Cadena et al.,
2016] the authors list challenges that should be adressed to make SLAM reliable in most
scenarios. We list here some of them that can benefit from semantic information, which
is the knowledge of which types of objects are present in the scene.

Making relocalization more robust.
The relocalization is a very specific step in the SLAM pipeline, its goal is to estimate

the pose of the camera given a 3D map. However it is crucial to make the SLAM robust to
tracking losses. It is challenging as the map can be created and observed at very distant
moments. This impacts the relocalization as visual information depicting a scene at night
is drastically different when the image is taken during the day. Those changes are also
important from one season to another, making long term data association challenging.
Semantic information can help improve relocalization in those cases. Problems can also
arise when dealing with large viewpoint variations. In those cases, using objects as high
level landmarks to compensate low level keypoints that can be wrongly matched may be
beneficial.

Handling dynamic objects.
Changes in the scene may also come from dynamic objects. Indeed most SLAM systems

assume that the world is static. In the majority of cases this assumption is not valid which
can hurt camera pose estimation accuracy and corrupt the map, creating phantom 3D
points. We can easily understand this problem by imagining ourselves in a train station,
beside a stopped train that slowly accelerates. This can give the feeling that we are going
in the opposite direction as the visual features from the train are moving away.

The same problem arises in SLAM when we do not know which features belong to
static or dynamic objects. In the case where camera pose estimation is accurate, the
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SLAM system can triangulate multiple times the same 3D point belonging to the object
that moves in space, creating a trace of the object in the map. Some SLAM systems are
able to mask out dynamic objects, however doing so information that may be necessary
for some applications is lost. For example an AR application may need to track an object
in the scene to make virtual content seamlessly interract with it.

Creating meaningful maps.
Making the SLAM build a high level semantic map is also a challenging problem. In

classical SLAM systems the map can be dense or sparse but is always purely geometric
and stores some low level appearance information through features descriptors. This can
be problematic for some applications that need to use this map. For example in the
case of augmented reality, an application may need virtual content to be overlayed on a
specific part of the scene, such as a table in a kitchen. Hence the map needs additional
information, corresponding to the nature of objects in the scene. Building a map, with
semantic information associated to 3D points allows to reduce the gap between the SLAM
internal representation and the real world. But we can also build an even higher level
map, by estimating object poses to use them as landmarks, estimating their geometry,
their mass and other physical properties that can be necessary for robots to safely interact
with the world.

Contributions

This thesis focuses on the introduction of semantic information to improve camera
pose estimation. As we saw, classical SLAM systems assume that the world is a single
rigid body, represented with a single point cloud. Such a low level representation is far
from the reality. Hence, in our work we propose to consider that the map of a SLAM
system should be composed of sets of points, called clusters that uniquely correspond to
objects within the scene. Those clusters in the map can be seen as vertices of a graph.
They possess an internal set of properties that mainly depend on their semantic class.
The edges correspond to links or relationships between the clusters. Examples of internal
properties can be: the geometry of the object (e.g. all cars have similar geometries), its
pose, wether it is dynamic or static, its texture, its size (e.g. humans are on average 171
cm tall with a standard deviation of 6 cm), etc. The links between clusters can represent
constrains between the objects such as support constrains, relative pose constrains (e.g.
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World

Camera

Road

Car Car

Wall

Door

Figure 3 – Example of semantic scene graph: clusters corresponding to objects possess
an internal structure and edges that link them to one another.

two cars close to each other are likely to be oriented similarly), collision constrains, etc.
An example of scene graph can be seen in figure 3.

The main goal during this thesis was to implement a SLAM system with the capacity
to:

• Create a semantic map that contains information about objects in the scene, using
segmented stereo or monocular images.

• Take advantage of the additional semantic information to improve the accuracy
of camera pose estimation and mapping, particularly in challenging cases such as
dynamic scenes.

• Estimate the pose of objects moving in the scene.
• Be general enough to be used in any environment.

To answer those goals we developped several solutions. Our contributions can be sum-
marized as follows:

• In the light of our scene graph representation we first show how to compute the
relative pose between a camera and an object using a single image. This approach
can then directly be integrated in an object based SLAM. It is built around our
network, L6DNet, from our paper L6DNet: Light 6 DoF Network for Robust
and Precise Object Pose Estimation with Small Datasets. In this work we
show that a small network, trained with little data and time can outperform recent
large networks trained with much more resources. Our strategy is hybrid and patch
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based: patches are extracted from the image and classified by a first network to
keep only object patches. Then a second neural network predicts for each patch
a set of vectors between the patch 3D center and a set of a priori chosen 3D
points on the object surface. By adding the position of the patch 3D center to each
vector we obtain an estimation of the 3D position of points for each patch. This
produces clusters of points that we robustly aggregate to estimate their centroid
which are then associated to the a priori chosen points to estimate the object pose.
This patch and offset based approach allows us to rapidly train a small neural
network requiring little data and resources. The hybrid approach also facilitates its
convergence by removing the pecularities of rotations in the network. Our system
can infere objects poses in real-time on a single GPU, meaning that it could be
integrated in object based SLAM systems to improve camera pose estimation, using
objects as high level landmarks. However this approach requires to train a CNN
on specific objects which limits its applicability. We address this limit in our next
contribution: S3LAM.
This work was published in IEEE Robotics and Automation Letters (RA-L)
vol. 6 (2), pp. 2914-2921 and in the IEEE International Conference on
Robotics and Automation (ICRA) 2020. [Gonzalez, Kacete, et al., 2021].

• Thus, we go from single image to multiple images pose estimation by defining our
cluster based SLAM called S3LAM, from our paper S3LAM: Structured Scene
SLAM. In this work we create clusters of points in the map corresponding to
objects in the scene. This changes from the view of classical SLAM in which the
map is a single rigid body represented with a single point cloud. It allows us to
create a higher level semantic map in which objects possess intrinsic properties,
such as their geometry. To do so, we compute the panoptic segmentation of 2D
images. Semantic information and object ids are fused to create a semantic map
in which points are clustered, each cluster representing a single object. For some
a priori defined clusters we can then robustly fit a plane, thus obtaining higher
level information about the scene structure. By modifying the bundle adjustment
formulation we constrain object points to respect the estimated geometry of their
corresponding cluster. Doing so, we improve the accuracy of both the map and the
estimated camera poses. With this approach we push the limits of our previous
paper L6DNet by allowing our SLAM system to estimate the pose of generic pla-
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nar objects without the need of training a specific object detector. However this
approach is still limited in dynamic scenes as it unable to track moving objects.
We address this limit in the following chapter, TwistSLAM.
This work was published in the IEEE International Conference on Intelligent
Robots and Systems (IROS) 2022 and in the french conference Groupe de
Recherche et d’Etudes de Traitement du Signal et des Images (GRETSI)
2022 under the name S3LAM: SLAM à Scène Structurée. [Gonzalez, Marc-
hand, et al., 2021], [Gonzalez et al., 2022a].

• Third, we show that semantic information can allow us to robustly estimate camera
pose in dynamic scenes. We tightly track both the camera and all the objects
moving in the environment in a single stereo SLAM system. First, we use the
static parts of the scene to robustly track the camera. Then, by minimizing the
reprojection error of 3D object points we track potentially moving objects. Finally
we tightly refine all objects and camera poses along with 3D point positions in a
single bundle adjustment. We use the map structure created in S3LAM to constrain
the movement of objects to be coherent with the rest of the scene. For example the
trajectory of moving cars is optimized with respect to the structure of the road.
To do so we define mechanical links between moving objects and the map. Each
mechanical link is associated to a projection operator which is applied on dynamic
object twists corresponding to the object velocity. The pose of the object is then
updated with the projected twist and is thus coherent with the structure of the
map. Doing so we can use dynamic object points as shared observations between
different camera poses which improves camera pose estimation. We also propose a
new bundle adjustment formulation to tightly refine all camera and object poses
and all 3D point positions. With this approach we solve the problem of dynamic
objects present in S3LAM. However we are still unable to estimate the canonical
pose of objects nor to recover the geometry of generic objects. We address this
limit in our final contribution.
This work is published in: TwistSLAM: Constrained SLAM in Dynamic En-
vironment accepted at IEEE RA-L vol. 7 (3) pp. 6846 - 6853 and in IROS
2022. It is cited in this manuscipt as [Gonzalez et al., 2022b]

• Our final contribution, that we denote TwistSLAM++ is an improvement over
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TwistSLAM. Our goal is to improve the accuracy of object pose estimation, while
estimating the canonical pose of each object. To do so we propose to inject LiDAR
scans into our dynamic vision SLAM system. We feed scans to a 3D object detector
that estimate a set of object 3D bounding boxes. We associate bounding boxes to
tracked cluster, allowing us to have access to the canonical pose of each object.
Furthermore we register consecutive LiDAR scans with an ICP algorithm to obtain
a new estimation of objects transformations. This estimation and the canonical
pose estimation from the object detector are fused with our stereo-based tracking
in a new bundle adjustment. Finally, using LiDAR object points and a deep neural
network we optimize a latent code that represents the shape of the object. Then
we constrain object map points to lie on the surface of the estimated geometry
in the BA, improving the map. We show on the Kitti dataset that this approach
improves the accuracy of object tracking.

• This work was submitted in a conference. It is cited in this manuscript as [Gonzalez
et al., 2022c].

Each of those contributions are also accompagnied by an explanatory video that shows
additional exemples. The link of each video is given at the beginning of each chapter.
Furthermore, a strong focus was put on the state of the art reported in this manuscript,
which is why it will be submitted as a journal paper.

Thesis outline

Chapter 1 introduces the fundamentals required to understand this thesis. We begin
by presenting the mathematics of 3D motions, used to transform points from world to
camera coordinates. Points in camera coordinates can then be projected in images using
projective geometry. Following we explain how 2D primitives can be extracted from images
and described. Then we introduce the fundamentals of mathematical optimization in non-
robust and robust cases. Chapter 1 ends with a wide presentation of semantic information,
from object detection to panoptic segmentation.

Chapter 2 shows how to build a SLAM pipeline. It begins with the bundle adjustment
and structure from motion. Then camera tracking and mapping are parallelized to obtain
a real time solution. Next we add the initialization step followed by the relocalization
and loop closure blocks to obtain a classical state of the art SLAM pipeline. Afterwards
we present some limits of classical SLAM and finally show how semantic information has
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been used in state of the art to overcome those limits. We first show how to build a
semantic map. Then we present how semantic information can be used to improve camera
relocalization. We study the use of semantic information for dynamic SLAM. Finally we
present object based SLAM systems that use objects as high level landmarks.

Chapter 3 presents our object pose estimation network L6DNet that can predict
the relative pose between the camera and an object in the scene using a single image. We
show in a series of experiments that our network produces state-of-the-art results while
requiring much less resources than other networks.

Chapter 4 introduces our cluster based SLAM S3LAM that builds a map of clusters
corresponding to objects in the scene. We show that semantic information can be used
to create a high level semantic map. We also show in experiments on public real world
datasets that this additional information can be used to obtain a more accurate map
which improves camera pose estimation compared to the state-of-the-art.

Chapter 5 details our dynamic SLAM system TwistSLAM that can robustly es-
timate the pose of the camera in dynamic scenes and track all moving objects. The
trajectory of dynamic objects is constrained using the map structure. This allows us to
improve camera pose estimation in dynamic scenes as well as object pose estimation.

Chapter 6 presents the improvement over chapter 5, with our SLAM system Twist-
SLAM++ that injects LiDAR scans into our stereo-based SLAM to improve the accuracy
of object tracking and estimate ther canonical pose.

Chapter 7 concludes the thesis by summarizing their contributions and gives per-
spectives on future directions to our research.
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FUNDAMENTALS
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1.1 Introduction

The goal of this chapter is to present fundamental notions that are required to under-
stand this dissertation. The section 1.2 introduces mathematical tools used to describe
the 3D transformations and velocities of rigid bodies. Following, section 1.3 describes the
mathematics of projective geometry, used to model the formation of a 2D image from a
3D scene. Section 1.4 presents the fundamentals of feature points and descriptors. Then,
section 1.5 introduces optimization tools that are classically used in computer vision.
Section 1.6 describes robust approaches applied in computer vision to make estimation
algorithms less sensitive to noise and errors. Finally, section 1.7 presents what is semantic
information as well as how it can be obtained using deep learning based approaches.

1.2 Mathematical foundations of 3D motion

As we are interested in estimating the pose and movement of objects or cameras in our
three-dimensional (3D) world we should first understand how to represent the position
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and orientation of objects. The goal of this section is to give the mathematical formalism
used to represent 3D transformations which are called euclidean transformations. For a
more in-depth description of 3D transformations, we refer the reader to textbooks such
as: [Blanco, 2010; Y. Ma et al., 2004].

1.2.1 Rigid body motion

The 3D euclidean space E3 is a vector space associated with a scalar product. It
contains points that we will represent using their 3D coordinates X = (X, Y, Z)⊤ ∈ R3.
We can write those coordinates as a function of time t, X(t), allowing the point to move in
space. A rigid body can be defined as a set of points which distances are constant through
time. To describe the movement of a 3D rigid body we can attach to it an oriented
frame Fa. Indeed as the object is rigid, all body points aX can be represented as a linear
combination of the frame vectors with fixed coefficients. Hence to describe the position of
each point it is sufficient to describe the location of the frame. This frame can be defined
with respect to another frame Fb. We can define the transformation between one frame
to another by first rotating its points using a rotation matrix bRa and then translating it
using a translation vector bta:

bX = bRa
aX + bta (1.1)

The notation with superscripts and subscripts allows us to easily know on which coordi-
nate frame the transformation is applied. The translation vector is a vector of R3. The
rotation matrix bRa is a member of the special orthogonal group SO(3) defined as:

SO(3) = {R ∈ M3×3 | R⊤R = I3, det(R) = 1} (1.2)

which corresponds to the set of rotations in three dimensions. Rotation matrices are
thus represented using 9 components but have only 3 degrees of freedom due to the
orthogonality and direct orientation constraints.

The transformation of a 3D point can be written in a linear way using homogeneous
coordinates:

bX̄ =
bX

1

 =


X

Y

Z

1

 =


λX

λY

λZ

λ

 λ ∈ R+ (1.3)
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In homogeneous coordinates, points are embedded in a higher dimensional space in which
colinear points are considered equivalent. This allows us to write the euclidean transfor-
mation (1.1) using a single homogeneous matrix:

bX̄ = bTa
aX̄ (1.4)

where the matrix bTa is called the pose matrix of Fa relative to Fb and can be written:

bTa =
 bRa

bta

01×3 1

 (1.5)

The group that contains all euclidean transformations, which correspond to the displace-
ment of rigid objects, is called the special euclidean group. It is denoted SE(3) and can
be defined as:

SE(3) = {T =
 R t

01×3 1

 | R ∈ SO(3), t ∈ R3} (1.6)

The product of two matrices of SE(3) is a transformation matrix. It allows us to decompose
a transformation between two coordinate frames Fa and Fc as the transformation from
Fa to Fb followed by the transformation from Fb to Fc:

cTa = cTb
bTa (1.7)

This can represent for example the transformation from an object coordinate frame to a
camera coordinate frame by using the world coordinate frame as a bridge between both.
A point in Fa can thus be written in Fc:

cX̄ = cTa
aX̄ = cTb

bTa
aX̄ (1.8)

The inverse of a transformation matrix is also a transformation matrix such that:

bTa
bTa

−1 = bTa
−1 bTa = I4 (1.9)

We will denote aTb = bTa
−1 as it represents the transformation from the second coordinate

frame to the first one. Using the fact that rotation matrices are orthonormal, the inverse
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Figure 1.1 – Example of 3D transformations between the coordinate frames Fa, Fb and
Fc.

of a transformation matrix can be simply computed as:

bTa
−1 =

bRa
⊤ −bRa

⊤ bta

0 1

 (1.10)

We illustrate those transformations between the object, the camera and the world coor-
dinate frames in figure 1.1.

1.2.2 Exponential and logarithm map for rotations

In the previous section we introduced rotation matrices to represent rotations in 3D
space. In this section we are going to present a minimal representation for the rotational
velocity of coordinate frames. We saw in the previous section that the following constraint
holds at all times:

bRc
bRc

⊤ = I3 (1.11)

By considering the rotation as a function of time bRc(t) and derivating the equation with
respect to time we obtain:

∂bRc(t)
∂t

bRc(t)⊤ + bRc(t)
∂bRc(t)⊤

∂t
= 03×3 (1.12)

This shows that the matrix ∂bRc(t)
∂t

bRc(t)⊤ is a skew-symmetric matrix and thus, using a
vector expressed in Fb, bω(t) ∈ R3 that represents the rotational velocity of Fc, that it
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can be written:

∂bRc(t)
∂t

bRc(t)⊤ =


0 −ωz(t) ωy(t)

ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

 = [bω(t)]× ∈ so(3) (1.13)

where so(3) is the set of all skew-symmetric matrices of size 3: so(3) = {A ∈ M3×3|A =
−A⊤} and [.]× is the skew-symmetric operator which transforms a 3D vector into a skew-
symmetric matrix. This equation is a differential equation that can be re-ordered as:

∂bRc(t)
∂t

= [bω(t)]×bRc(t) (1.14)

By considering that ω(t) is constant with respect to time t, this equation can be solved
as:

bRc(t) = expso(t[bω]×)bRc(0) (1.15)

Where the exponential of a matrix is given by its Taylor approximation:

expso([bω]×t) =
∞∑

n=0

(tb[ω]×)n

n! (1.16)

By re-arranging the terms in the Taylor formula we can obtain the Rodrigues’ formula:

expso([bω]×) = I3 + [bω]×
||bω||

sin(||bω||) + [bω]2×
||bω||2

(1 − cos(||bω||)) (1.17)

This function, called the exponential map, maps elements of the Lie algebra so(3) to
elements of its corresponding Lie group SO(3). As the representation in so(3) is minimal,
the Lie algebra can be represented as a hyper plane tangent to the manifold of the Lie
group SO(3) that is itself inside the set of 3 × 3 matrices M3×3. As illustrated in the
following equation, we can use an element in so(3) to move around a rotation matrix in
SO(3). This is often preferred to directly using a rotation matrix because the rotation
matrix has to respect orthogonality constraints. The exponential map of so(3) represents
the rotation between Fc and the coordinate frame Fc′ obtained by applying the rotational
velocity ω to Fc.

c′Rb = expso([bω]×)cRb = c′Rc
cRb (1.18)
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The inverse of the exponential map is the logarithm map from SO(3) to so(3) and can be
defined as:

logSO(c′Rc) = 1
2 sinc(θ)(c′Rc − c′Rc

⊤) (1.19)

where θ ∈ (0, π) can be computed using cos(θ) = 1
2(tr(c′Rc) − 1) and

sin(θ) = 1
2

√
(3 − tr(c′Rc))(1 + tr(c′Rc)). The log map yields a skew symmetric matrix

which can be transformed into a vector of R3 or which can directly be obtained using the
following formula:

ω = θ

2 sin(θ)(R32 − R23, R13 − R31, R21 − R12)⊤ (1.20)

where R = c′Rc. For a more in-depth explanation we refer the reader to [Blanco, 2010].

1.2.3 Exponential and logarithm map for poses

Similarly to rotations, we can define a Lie algebra for the space of 3D poses SE(3)
that we denote se(3):

se(3) =
[ξ]∨ =

[ω]× v
01×3 0

 | ω ∈ R3, v ∈ R3

 (1.21)

where ω represents the rotational velocity and v is the translational velocity of a coordi-
nate frame. The operator [.]∨ maps a vector, called a twist, ξ ∈ R6 to a matrix of se(3).
Its inverse is the operator [.]∧ such that [[ξ]∨]∧ = ξ. Hence, the twist ξ ∈ R6 is written:

ξ =
ω

v

 (1.22)

Similarly to SO(3) we can define a mapping from se(3) to SE(3) that transforms twists
into poses:

bTa′ = expse(bξ)bTa = bTa expse(aξ) = bTa
aTa′ (1.23)

where the twist bξ is expressed in the Fb coordinate frame while aξ is expressed in Fa.
The new coordinate frame Fa′ corresponds to the displacement of Fa with rotational and
translational velocity corresponding to the twist.

This equation transforms the pose bTa in the tangent hyperplane se(3) as illustrated
in figure 1.2. As we can see, the choice of the coordinate frame for the twist depends on
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𝑏𝐓𝑎
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𝛏

exp(𝛏)

SE(3) se(3)

ℳ4×4

Figure 1.2 – Illustration of the manifold SE(3) embedded in the space of 4 × 4 matrices
with its associated Lie algebra se(3).

the order of multiplication. Similarly to points, we can change the coordinate frame in
which twists are expressed. To do so it is possible to define an operator called the adjoint
map such that:

bξ = bVa
aξ (1.24)

This operator maps a twist expressed in Fa to a twist expressed in Fb and can be computed
using the relative pose between both coordinate frames using the following formula:

bVa =
 0 bRa

bRa [bta]× bRa

 (1.25)

The exponential map from se(3) to SE(3) is given by the following formula:

expse(ξ) =
expso(ω) Vv

0 1

 (1.26)

where V = I3 + 1−cos(θ)
θ2 [ω]× + θ−sin(θ)

θ3 [ω]2×, with θ = ||ω|| is the rotation angle induced by
ω. The logarithm map from SE(3) to se(3) can be computed as:

logSE(T) =
ω

v

 =
 θ

2 sin(θ)(R32 − R23, R13 − R31, R21 − R12)⊤

V−1t

 (1.27)
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where t is the translational part of T.
We can also define a pseudo-exponential map and a pseudo-logarithm map [Blanco,

2010] that are simpler to compute by ignoring the rotation impact on the translation. The
main advantage of those transformations is that translations and rotations are separated,
which leads to simpler derivatives. Those functions can be defined as:

expse(ξ) =
expso(ω) v

0 1

 (1.28)

logSE(T) =
 θ

2 sin(θ)(R32 − R23, R13 − R31, R21 − R12)⊤

t

 (1.29)

For those functions, as the translational part does not depend on the rotational part, their
Jacobians contain additional 0 entries in place of the derivative of the matrix V.
We saw in this section how to transform points from one coordinate frame to another, for
example from the object coordinate frame to the camera coordinate frame by using the
world coordinate frame as a bridge and how to compute the rotational and translational
velocities of coordinate frames. We will explain in the next section how to project those
3D points into 2D image points once they expressed in the camera coordinate frame.

1.3 Projective geometry

Most cameras are composed of an optical system that concentrates the light incoming
from the scene onto a photosensitive sensor that will measure and save it. The goal of
this section is to present projection models that simulate the way a camera works by
transforming 3D points into 2D points. We define two projection models: first for monoc-
ular cameras and then for stereo cameras. For a more in-depth description of projective
geometry, the reader can refer to textbooks such as: [Forsyth and Ponce, 2011; R. Hartley
and Zisserman, 2003; Y. Ma et al., 2004; Szeliski, 2010].

1.3.1 Monocular projection models

There are multiple ways to model a camera, depending among other things on the
type of camera used. The most simple one is called the pinhole projection model. This
model corresponds to a simplification of a camera for which the lens diameter is zero. For
this model, illustrated in figure 1.3, we need to define two entities: the camera center C
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𝑐𝐗

𝐂

𝐱

𝑥

𝑦

𝑧
(𝑐𝑥, 𝑐𝑦)

𝑓

Focal distance

Optical axis

Figure 1.3 – The pin-hole camera model.

and the image plane, located at a distance f of the center. f is the focal length of the
camera.

With this model every 3D point is mapped to the image plane by computing the
intersection between the plane and a ray connecting the 3D point and the camera center.
The projection function of a point cX = (X, Y, Z)⊤ can be computed analytically using
Thales theorem:

x =
x

y

 =
fX

Z
fX
Z

 (1.30)

Points are then sampled to pixels and expressed relatively to the image top left, the
projection function that we denote π(cX) thus becomes:

x =
x

y

 = π(cX) =
fxX

Z
+ cx

fyX
Z

+ cy

 (1.31)

where the parameters (cx, cy) are the coordinates of the camera principal point in pixels.
fx and fy can be computed as:

fx = f

lx
fy = f

ly
(1.32)

where (lx, ly) is the size of a pixel on the sensor. Those parameters are often stocked in
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the camera intrinsics matrix K defined as:

K =


fx 0 cx

0 fy cy

0 0 1

 (1.33)

Using this matrix, a projection matrix and homogeneous coordinates we can write:


x

y

1

 = KΠ


X

Y

Z

1

 (1.34)

where the projection matrix Π is defined by:

Π =


1 0 0 0
0 1 0 0
0 0 1 0

 (1.35)

The pin-hole projection model thus depends on 4 parameters. However there exist more
complex projection models that can take into account deformations in the image. Indeed
when using cameras with thick lenses straight lines in 3D space are curved in image space.
This is the case for example for fish eye cameras that have a large field of view. To take
this effect into account, one can either model the distortion to undistord the images or
use a more complex projection model, such as the unified model [Geyer and Daniilidis,
2000].

The projection function can be inverted to triangulate 3D points from 2D pixels if
their depth is known. This function is denoted:

cX = π−1(x, Z) =


X

Y

Z

 =


(x − cx) Z

fx

(y − cy) Z
fy

Z

 (1.36)

To summarize, a 3D point in the world coordinate frame can be projected in the image
space by first transforming it to the camera coordinate frame and by using the projection
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function to obtain its coordinates in pixels.

x̄ = KΠcTa
aX̄ (1.37)

We denote this full transformation without homogeneous coordinates as:

x = p(cTa, aX) (1.38)

1.3.2 Stereo projection models

This transformation corresponds to monocular cameras but can also be adapted to
stereo cameras. A stereo camera is composed of a pair of monocular cameras with coor-
dinate frames Fc1 and Fc2 with relative pose c1Tc2 . This setting allows to estimate the
depth of the scene by triangulating pixels matched in both frames. Stereo images can be
rectified by projecting them on a plane to make the epipolar lines horizontal. To do so, an
homography is computed for each camera, so that the pose between transformed cameras
c′

1 and c′
2 becomes:

c′
1Tc′

2
=


1 0 0 b

0 1 0 0
0 0 1 0
0 0 0 1

 (1.39)

where b is the baseline between the transformed cameras 1. This eases the matching process
as corresponding keypoints lie on the same horizontal line. In the case of a rectified stereo
camera with a baseline b the projection becomes:

xl

yl

xr

 =


fxX

Z
+ cx

fxX
Z

+ cx

fxX−fxb
Z

+ cx

 (1.40)

where xl, yl are the coordinates of the point in the left camera and xr is the horizontal
coordinate in the right camera. The vertical coordinate is not computed as it is equal to
yl thanks to rectification.

Similarly to the monocular case we denote the reprojection function π(cX). The func-

1. This model is the one used in ORB-SLAM2. It can always be applied to a stereo camera after
rectifying the images.
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tion can be inverted:

π(x) =


b xl−cx

xl−xr

bfx

fy

yl−cy

xl−xr

bfx
1

xl−xr

 (1.41)

We can also define a function that transforms point coordinates to camera coordinates
and then project them as we did in the monocular case. We also denote this function:

x = p(cTa, aX) (1.42)

In the following section we will present feature points, that are actual measures of the
position of 2D points in images.

1.4 Image primitives

In this section we present how to extract and describe 2D primitives in images that
correspond to points in 3D space.

1.4.1 Feature points

Pixels in an image can not be described using solely their own value. Indeed, as it
takes only integer values between 0 and 255, it is shared by many other pixels and is thus
not discriminative. Hence when analyzing a point in an image we will take into account a
small window around that point. Doing so we give a more specific signature to the pixel.

Different points in an image do not all bring the same amount of information. For
example multiple points on a white wall are very similar, same goes for points along a
line. On the contrary points on highly textured area are very specific. It can be shown that
to correctly localize a point, its local gradient should be strong in 2 different directions.
Those points are called corner points or keypoints and multiple algorithms have been
designed to extract them in an image. Among those algorithms are the Harris corner
detector [Harris, Stephens, et al., 1988] that computes the local curvature of the image,
SIFT [Lowe, 1999], SURF [Bay et al., 2006] that compute respectively a difference and a
laplacian of gaussians at multiple scales.

However those approaches are computationally expensive, which is why the FAST key-
point extractor [Rosten and Drummond, 2006] was developed. This algorithm is straight-
forward: for all pixels in the image verify if an arc around the pixel is significantly lighter
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1.4. Image primitives

Figure 1.4 – Example of FAST test on a pixel, image from [Rosten and Drummond,
2006]

or darker than the central pixel. If it is the case, the pixel corresponds to a keypoint. This
can create areas with a high density of points, which is why Non Maximum Suppression
(NMS) can be used to keep only the keypoints with the highest scores. An example of a
FAST test on a pixel is shown figure 1.4. ORB [Rublee et al., 2011] proposes to modify
FAST keypoints by computing their local orientation to make them invariant to rotations.
To make the keypoints scale invariant, they are also computed at different levels in an
image pyramid which contains down sampled versions of the original image.

1.4.2 Points descriptors

Once keypoints have been extracted from an image they should be associated with a
vector that describes its surrounding visual information and acts like a signature. Such
vector is called a descriptor and it would ideally be unique and invariant with respect to
changes such as viewpoint or illumination. Such strong properties are required so that two
descriptors depicting the same 3D point seen in different images are uniquely matched
together. In reality descriptors are not invariant and are prone to be falsely paired, which
is why they should be handled by robust approaches.

The most straightforward descriptor is a vectorized version of the image patch around
the keypoint. In that case the difference between two descriptors can be obtained using
the well known normalized cross-correlation. To create an invariant descriptor, SIFT pro-
posed to compute a histogram of gradients for each of the 16 areas around the keypoint.
Concatenating the histograms yields a vector of size 128 which represents the texture
around the keypoint. SIFT descriptors can then be matched using the classical euclidean
distance between vectors. The SURF descriptor is similar and proposes to compute for
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each area its response to the convolution with the Haar wavelet.
The BRIEF [Calonder et al., 2010] descriptor has been designed to be extracted and

matched rapidly. It is represented using a binary vector of size 256 obtained by comparing
pairs of pixels in the patch. Descriptors can then be compared using the Hamming distance
which can be computed efficiently. The BRIEF descriptor has been improved by [Rublee
et al., 2011] which proposes to compute the local orientation of the patch and build a
steered version of the BRIEF descriptor to make it rotational invariant.

More recently, with the rise of deep learning based methods [K. He et al., 2016;
Krizhevsky et al., 2012; Simonyan and Zisserman, 2014] some approaches try to train
Convolutional Neural Networks (CNN) that can estimate a set of keypoint locations with
associated descriptors. Their goal is to harness the invariance of networks when trained
with large amounts of data to build descriptors and keypoints that are consistent across
views. Superpoint [DeTone et al., 2018] proposes a self supervised approach that predicts
both keypoints locations and descriptors. To do so they train a network on a simple syn-
thetic dataset. Then, they use this network to predict keypoints locations for real warped
images that are then aggregated to obtain stable keypoint locations which are used to
refine the base network. Doing so they obtain obtain comparable results to SIFT [Lowe,
1999]. Such approaches can prove to be beneficial for computer vision problems such as
SLAM. For example [Tang et al., 2018; 2019] learn a binary descriptor to be consistent
across views. Other approaches for deep learnt detectors can be found in [J. Ma et al.,
2021].

1.5 Optimization

The goal of this subsection is to present optimization methods classically used in
computer vision. Optimization is a field of applied mathematics that seeks to find the
parameters that minimize a cost function. In computer vision we often need to estimate
parameters given measurements. One way to do so is by using a measurement model
that can generate idealized measurements given parameters. By comparing the generated
measurements and the true ones, in what is called a cost function, and minimizing this
function, we can estimate the parameters that yielded the observations. We will cover two
types of minimization techniques: linear and non linear least-squares. For a more in depth
coverage of optimization techniques we refer the reader to: [Nocedal and Wright, 1999].
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1.5.1 Linear least-squares minimization

Given a set of n measurements b ∈ Rn and a measurement model g, such as the
pin-hole camera model, the goal of least-squares minimization is to find the parameters
β ∈ Rm of g that minimize the following cost function:

E(β) = 1
2 ||g(β) − b||2 = 1

2

n∑
i=0

||g(β)i − bi||2 = 1
2

n∑
i=0

||ri(β)||2 (1.43)

where the ri are called the residuals. By optimizing this function we seek to find the
parameters of the function that yield the closest values from the measurements. When
the function g is linear with respect to the parameters we can write the cost function as:

E(β) = 1
2 ||Aβ − b||2 (1.44)

As this is a strictly convex function, the minimum can be found by canceling its gradient,
using the normal equations:

∇E(β) = 0 ⇔ A⊤(Aβ − b) = 0 (1.45)
⇔ A⊤Aβ = A⊤b (1.46)
⇔ β = (A⊤A)−1A⊤b (1.47)
⇔ β = A+b (1.48)

In practice the normal equations are not solved by inverting the matrix A⊤A as
it can be expensive to compute with a complexity of O(n3). Furthermore if A is ill
conditioned, making the inversion process highly sensitive to small errors. Hence the
normal equations are rather solved by computing a factorization of A such as the Cholesky,
QR decomposition or directly from A using the SVD.

1.5.2 Non linear least-squares minimization

When the function g is non linear, the optimization is more complex as it can not be
solved in a single operation. A way to solve it is iteratively by linearizing the cost function
at the current estimate, solving the normal equations to find a better local minimum and
using that local solution to repeat the operation until it converges.
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The first order Taylor expansion of g is:

g(β + δ) ≃ g(β) + Jδ (1.49)

where J is the Jacobian matrix of g defined by:

Ji,j = ∂g(β)i

∂βj

(1.50)

Using this approximation we can find the increment δ̂ which minimizes:

δ̂ = arg min
δ

1
2 ||g(β) + Jδ − b||2 (1.51)

This function is linear in δ, its minimum can thus be computed using linear least squares
results. We thus have:

δ̂ = −(J⊤J)−1J⊤r(β) (1.52)

where r(β) = g(β) − b corresponds to the residuals. The optimal increment is then used
to update the current estimate to obtain a new one: β′ = β + δ̂. Linearization is then
performed at the new estimate to find a new optimal increment. This process is repeated
until convergence. This algorithm is called the Gauss-Newton algorithm and it can be
summarized as follows:

Gauss-Newton algorithm
Starting with a good solution β(0), iterate:

1. Compute the Jacobian J and residuals at β(s)

2. Compute the optimal increment: δ̂ = −(J⊤J)−1J⊤r(β(s))

3. Update the current estimate β(s+1) = β(s) + δ̂

Iterations can be stopped when exceeding a threshold or when ||β(s+1) − β(s)|| ≤ ϵ

The Gauss-Newton algorithm can also be obtained by canceling the derivative of the
cost function using the iterative Newton approach. However this approach requires to
compute the Hessian of the cost function, which can be approximated by J⊤J by ignoring
second order derivatives.

We show in figure 1.5 an illustration of the Gauss-Newton algorithm: the function is
linearized around β(s) and a linear least squares system is solved. This amounts to fitting
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Figure 1.5 – Example of a Gauss-Newton iteration.

and minimizing a local parabola. As we can see this approximation works well when the
function is locally quadratic (in the red hatched area). However when the function is
locally linear (in the green hatched area) the convergence is very slow. A solution to this
problem would be to use gradient descend, which is a first order minimization approach.
Both the Gauss-Newton algorithm and gradient descent can thus be merged to obtain the
Levenberg-Marquardt algorithm by changing the computation of the increment:

δ̂ = −(J⊤J + λIn)−1J⊤r(β) (1.53)

where λ ≥ 0 is used to balance both algorithms. When λ = 0 it corresponds to the
classical Gauss-Newton step, while when λ −→ ∞ the left part of the update step can
be neglected which corresponds to a gradient descent step. There are several ways to set
the λ hyperparameter, the general idea is to decrease it when finding better solutions
and increase it otherwise. This modification of the Gauss-Newton algorithm can also be
related to the well known Tikhonov regularization. Its goal is to take the matrix J⊤J away
from the set of singular matrices, i.e. matrices with null eigen values, in order to improve
its conditioning.
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1.5.3 Non linear least-squares minimization on a manifold

A cost function can be defined and optimized on a manifold, other than Rn. For
example, when estimating the pose of a camera we optimize over SE(3). To do so we
can not directly solve the normal equations introduced in the previous part. Indeed, the
increment is not constrained and we would have no guarantee that the updated estimate
would lie on the manifold. A solution to bypass this problem is thus to optimize the
increment in the unconstrained space of the Lie algebra and then use the exponential
map to update the current estimate on the manifold:

Gauss-Newton algorithm on the Lie group SE(3)
Starting with a good solution β(0) ∈ SE(3), iterate:

1. Compute the Jacobian J and residuals at β(s)

2. Compute the optimal increment: δ̂ = −(J⊤J)−1J⊤r(β(s))

3. Update the current estimate β(s+1) = exp(δ̂)β(s)

Iterations can be stopped when exceeding a threshold or when ||β(s+1) − β(s)|| ≤ ϵ

This however requires a slight modification of the Jacobian:

Ji,j = ∂g(exp(δ)β)i

∂δj

∣∣∣∣∣
δ=0

(1.54)

More information about optimization on manifolds can be found in [C. Hertzberger,
2008; Grisetti et al., 2011]

1.6 Robust estimations

The data on which optimization algorithms are applied comes either directly from
measurements or from other algorithms that processed measurements. Among those mea-
surements there can be spurious information due to sensors malfunction or algorithmic
errors, such as wrong keypoints matches for example. Those measurements should be dealt
with by either discarding or down-weighting them. The goal of this section is to present
methods that can do so automatically. We will first present the RANSAC algorithm and
then robust M-estimators. For a more in depth coverage of robust estimation techniques
we refer the reader to: [Huber, 2011; Malis and Marchand, 2006].
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1.6.1 RANSAC

The goal of the algorithm RANSAC (RANdom SAmple Consensus) [Fischler and
Bolles, 1981] is to estimate the parameters of a model using data that contains gross
outliers. It is often used in computer vision to filter out wrong matches between feature
points. This algorithm works in an iterative fashion: first a minimal set of points is ran-
domly selected and used to fit the model then the model is used to verify which remaining
points are inliers or outliers. We then repeat this process to find the model with the
biggest set of inlier points, which is then used to fit the final model.

The main idea behind this algorithm is that the outliers come from a random noise and
should not be supported by any model. This algorithm has a hard threshold with respect
to the outliers, meaning that the outliers are not down weighted but rather completely
discarded. This approach can be computationally expensive as the number of iterations
required to fit the correct model can be large, depending on the model degrees of freedom
and the ratio of outliers.

RANSAC has known many improvements to make it more robust, increase its speed,
remove the need for a hard threshold, for example with GC-RANSAC, MAGSAC and
MAGSAC++ [Barath and Matas, 2018; Barath et al., 2019; 2020].

1.6.2 Robust M-estimators

An M-estimator corresponds to the parameter that is obtained when optimizing a cost
function. In the case of a least-square cost function the potential outliers that do not fit
well the model will have a high impact on the cost. Thus, even if they are few they may
bias the result of the optimization. To deal with this problem, a robust cost function can
be designed by down weighting the contribution of outliers. A well known example of such
cost functions is the Huber cost function:

ρ(x) =


1
2x2 if |x| ≤ c

c(|x| − c
2) else.

(1.55)

where c = 1.345σ̂ and σ̂ is a robust estimator of the standard deviation of the residuals
which is obtained using the Median Absolute Deviation (MAD):

σ̂ = 1.48MAD = 1.48median(|x − median(x)|) (1.56)

31



Chapter 1 – Fundamentals

x

ρ(x)

−c c

ρ(x) = x2

ρ(x) =
{

1
2x2 if|x| ≤ c
c(|x| − c

2) else.

Figure 1.6 – The Huber cost function (blue) compared to the quadratic cost function
(red)

As we can see in figure 1.6 the function is quadratic on a limited part of its domain and
linear everywhere else. This function can be applied to residuals such as in the following
equation:

E(β) = 1
2

n∑
i=0

ρ(||ri(β)||) (1.57)

In that case residuals larger than c, that are most likely outliers are treated linearly and
thus have a lesser impact on the cost function than if they were treated quadratically.
Contrary to RANSAC, this robust cost function does not remove outliers but rather
takes them into account with a lower weight. To take into account this function in the
optimization process, the update step in the normal equation must be modified with a
diagonal weight matrix D computed from ρ(||r(β)||):

δ̂ = −(DJ)+Dr(β) (1.58)

1.7 Semantic information

The term semantic comes from the ancient greek semanticos which designated some-
thing that carries meaning. In our case we call semantic information the knowledge of the
class or category of objects, such as laptop, road, car, table, etc.. Semantic information
in images was for some times a really challenging information to obtain. However with

32



1.7. Semantic information

(a) Object detection

(c) Instance segmantation

(b) Semantic segmentation

(b) Panoptic segmentation

Figure 1.7 – Examples of (a) object detection, (b) semantic segmentation, (c) instance
segmentation and (d) panoptic segmentation on an image from the KITTI dataset.

the rise of deep learning after AlexNet [Krizhevsky et al., 2012] performance in the Im-
ageNet [Russakovsky et al., 2015] dataset, deep Convolutional Neural Networks (CNNs)
have been successfully trained to answer the problem of semantic information estimation.

In this section we will introduce the fundamentals of deep learning followed by four
categories of subproblems which goal is to obtain semantic information: object detection,
instance segmentation, semantic segmentation and panoptic segmentation that are illus-
trated in figure 1.7. The goal here is not to do an in depth survey of deep learning based
semantic approaches but rather to give the reader an idea of what semantic information
is and how we can obtain it. In-depth surveys can be found in [Jiao et al., 2019; W. Liu
et al., 2019; Minaee et al., 2021; Zaidi et al., 2022]. It should be noted that we focus
here on segmentation applied on a single image, however the problem is modified when
considering videos input as there is a temporal continuity.
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1.7.1 Deep learning fundamentals

The idea behind deep learning, which was popularized by [Krizhevsky et al., 2012],
is to stack simple computational layers to approximate more complex functions. Each
layer contains a set of parameters that can be modified by the network to minimize a loss
function during an expensive training step. Once the training is done the network should
be able to generalize on new data samples.

Convolutional Neural Networks (CNN) are one of the most popular type of deep
networks. They are usually made of two parts: the convolutional layers and the fully
connected layers. Convolutional layers contain filters that are applied to images to extract
specific features. Those layers are stacked and each one extracts features from data that
was treated by the previous layer. Convolutional layers can be associated with pooling
layers which reduce the amount of data, making the approach more computationally
efficient.

Each fully connected layer is a matrix multiplication with the input data, followed by a
non linear function (generally the ReLU function). Those layers usually take as input the
features extracted by the convolutional layers and transform them to match the variable
that we seek to predict.

There has been a lot of work to find efficient neural architectures, that can be as
deep as possible without requiring too many parameters. Most popular ones include VGG
[Simonyan and Zisserman, 2014], Inception [Szegedy et al., 2015], ResNet [K. He et al.,
2016], ResNeXt [Xie et al., 2017] and EfficientNet [Tan and Le, 2019]. More recently
transformers architectures [Vaswani et al., 2017] have been adapted for image processing
[Dosovitskiy et al., 2020; Z. Liu et al., 2021], yielding impressive results for many vision
tasks. However a recent approach [Z. Liu et al., 2022] seems to obtain better results with
a well designed convolutional approach.

1.7.2 Object detection

The goal of object detection is, given an RGB image, to estimate the location and
class of all objects visible in the image. The location of the object is represented using a
bounding box, that is a 2D box that tightly encapsulates the object. Thus, networks that
solve object detection predict for a single image a set of 2D box coordinates with object
classes.

The first approach that solved object detection using deep learning was R-CNN [Gir-
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shick et al., 2015]. They proposed to detect regions of interest in images using selective
search, extract image features using a CNN from those regions and use an SVM and linear
regression trained on the features to estimate the class of the region and refine the region
location. This approach was accurate but slow and was quickly improved by Fast R-CNN
[Girshick, 2015] and Faster R-CNN [Ren et al., 2015] who built upon it. Fast R-CNN
speeds up inference time by extracting image features at once and then by pooling the
region of interest within the feature maps. Faster R-CNN goes beyond this approach by
using a region proposal network which also uses the extracted features maps to replace
selective search.

These approaches are called region proposal based techniques as they first need to
get regions of interest and then apply a classifier on the regions to get the object class.
[Redmon et al., 2016] proposes a new approach called YOLO by predicting at once all
the bounding boxes and classes using a single CNN. By reducing the number of steps in
the pipeline they obtain state of the art results in real-time. SSD [W. Liu et al., 2016]
goes further by predicting multiple boxes per object at different scales to have better
fitting boxes. However those approaches are limited by the large amount of negative or
background classes that pollute the loss function, compared to the few positive examples.
To solve this problem RetinaNet [Lin et al., 2017] modifies the loss function to give more
weight to hard positive examples. This allows them to predict a much higher number
of boxes without risking class imbalance. More recently DETR [Carion et al., 2020] use
transformers for object detection. They propose to simplify object detection by directly
predicting a single box per object instead of having multiple anchors or proposals that then
need to be filtered. To do so they extract features from images using a CNN. The features
are then handled by a transformer encoder and decoder to finally predict bounding boxes.

1.7.3 Semantic segmentation

The goal of semantic segmentation is to predict an object class for each pixel in the
image. This means that the prediction is dense as it is pixelwise. This also means that if
there are multiple objects with the same category in an image they will all be segmented
the same way. Fully Convolutional Networks [Long et al., 2015] is one of the first work that
segment images using deep learning. To do so they propose to remove the fully connected
layer in classification architectures to obtain a 2D heatmap per class. The heatmap is
then upsampled to match the original image resolution. To improve the sharpness of the
segmentation they fuse heatmaps obtained at different level in the network.
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Figure 1.8 – The U-Net [Ronneberger et al., 2015] architecture. Features are extracted
at multiple scales and fused to aggregate information at different levels. Image from

[Ronneberger et al., 2015].

U-Net [Ronneberger et al., 2015] proposes a symmetric architecture, shaped like a "U"
which extracts image features at different resolutions and fuse them all, improving the
base idea of [Long et al., 2015]. We show their architecture in figure 1.8.

DeepLab [L.-C. Chen, Papandreou, Kokkinos, et al., 2017] uses atrous convolutions
which correspond to large filters containing zeros at regular intervals. Those convolutions
allow them to keep an image of a reasonable resolution while having a larger receptive
field, and thus aggregating more context information. Those convolutions are applied
in parallel with multiple filter sizes in the atrous spatial pyramid pooling layer, which
aggregates information at different scales. This layer produces a heatmap which is then
upsampled and refined using a conditional random field, allowing to obtain more precise
object boundaries. This architecture has been improved in its following versions [L.-C.
Chen, Papandreou, Schroff, and Adam, 2017; L.-C. Chen et al., 2018]

1.7.4 Instance segmentation

Instance segmentation relates to both object detection and semantic segmentation.
Its goal is to segment all objects in the scene while assigning a unique id to each object.
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Figure 1.9 – Architecture of Mask-RCNN from [K. He et al., 2017]

Note however that instance segmentation only segments countable objects (called things)
contrary to semantic segmentation that also segment uncountable objects (called stuff ).
Note also that networks trained for instance segmentation also output object detection,
usually with a better precision than networks that tackle only object detection. The most
famous instance segmentation network is Mask R-CNN [K. He et al., 2017]. This system
is built upon Faster R-CNN [Ren et al., 2015] and proposes to segment an object in each
region found by the region proposal network. To do so they apply a fully convolutional
network on the feature maps aligned with the region of interest. This network predicts
masks on each detected bounding box. Its architecture is shown in figure 1.9.

This approach runs at less than 10 fps and is thus not real time. YOLACT [Bolya
et al., 2019] proposes an architecture for instance segmentation at more than 30 fps with
an accuracy close to state of the art. To do so they transform the 2 stages strategy
of Mask-RCNN by predicting for a single image a set of prototype masks and a set of
coefficients. The segmentation of the image is given by the linear combination of masks
with coefficients. This approach is then improved in YOLACT++ [Bolya et al., 2020].

1.7.5 Panoptic segmentation

Panoptic segmentation tries to solve both instance and semantic segmentation. Its
goal is to assign a class to each pixel in the image while separating different instances
of objects from a same class. The simplest way to solve this problem is to use both a
semantic segmentation network and an instance segmentation network and combine their
results [Kirillov et al., 2019a]. However this approach can produce overlapping masks and
can be improved by using a single network trained end-to-end for panoptic segmentation.
Panoptic Feature Pyramid Networks [Kirillov et al., 2019b] adopt this strategy by ex-
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Figure 1.10 – Architecture of Panoptic Feature Pyramid Networks by [Kirillov et al.,
2019b]

tracting feature maps at multiple scales. Those are then used in parallel by two branches,
the first one being Mask-RCNN [K. He et al., 2017] which yields instance segmentation.
The second branch yields semantic segmentation by fusing and up-sampling feature maps
at different scales. The architecture of their approach is visible figure 1.10. More recently
MaskFormer [B. Cheng et al., 2021] proposes to unify semantic and instance segmenta-
tion. To do so they predict a set of binary masks associated with labels indifferently for
both stuff and things. They show that this unified approach improves both panoptic and
semantic segmentation. They improved their network in its next iteration Mask2Former
[B. Cheng et al., 2022];

1.8 Conclusion

In this chapter we introduced the fundamental concepts on which we based our work.
The first section introduced euclidean transformations in 3D space, that are used to trans-
form points from one coordinate frame to another, as well as twists, that represent the
rotational and translational velocity of objects. We showed how twists could be used as
a minimal unconstrained representation and how to integrate them using the exponential
mapping. Then in section 2 we presented the measurement model used to represent a
camera, which allows us to project a 3D point in image space. In section 3 we presented
image primitives, and more particularly 2D keypoints, with their associated descriptors
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that are used to represent them in an unique way. Following, in section 4 we introduced
optimization techniques for linear and non linear least-squares that can be used in com-
puter vision to fit a parametric model to observations. Then in section 5 we presented
robust techniques that can be used to handle outliers. Finally in section 6 we showed the
different types of semantic information and how to obtain them using deep learning based
approaches.
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2.1 Introduction

The goal of this chapter is to present previous works related to ours. It is divided into
two parts. In the first one we introduce classical SLAM, beginning with its origins from
Structure from Motion (SfM) and the Bundle Adjustment (BA). Following we show how
it can be solved in real time by parallelizing tracking and mapping. We then incremen-
tally build a full SLAM pipeline around this core by adding the initialization step, the
relocalization and the loop closure. However we will not cover those last blocks in depth
as we focus on the tracking and mapping blocks in this manuscript.

In the second part we present how semantic information can be introduced into SLAM.
We begin with an introduction on the limits of classical SLAM systems, which justify the
use of semantic information. Then we show how to create a consistent semantic map
using multiple segmented images. Afterwards we present how semantic information can
be used to improve the problem of relocalization, particularly in challenging cases such as
long term relocalization or with important viewpoint variations. The penultimate section
shows how semantic information can be used to make SLAM more robust in dynamic
scenes, either by ignoring dynamic objects or by tracking them. Finally we present object
based SLAM systems which use objects detected in the scene as high level landmarks to
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improve camera pose estimation.

2.2 Classical SLAM

2.2.1 Introduction

SLAM is a fundamental problem in robotics and augmented reality. Its goal is to
estimate the pose of a sensor moving in a scene while simultaneously creating a map of the
environment. Multiple types of sensors can be used, such as Inertial Measurement Units
(IMU), LiDARs or event cameras. In our case we focus on visual SLAM that uses only
RGB cameras, either monocular or stereo. Cameras are very interesting, as they are low
cost and require little power and space. However they present an additional complexity,
being a projective sensor to understand the 3D world. To denote the pose of the camera
we will use pose matrices in SE(3) at discrete timestamps, that we denote ciTw for the ith

timestamp ti and which represents the transformation between the fixed world coordinate
frame Fw and the moving camera coordinate frame Fci

. The map will be represented
using a set of 3D points expressed in Fw with j indices {wXj} . Finally the 2D keypoint
corresponding to the observation of wXj by the ith camera is denoted ixj.

2.2.2 Structure from Motion and the Bundle Adjustment

Structure from Motion

Structure from Motion is a problem closely related to SLAM as its goal is, using a
set of unordered images taken from multiple points of view and at different moments, to
estimate the 3D geometry of the scene and the poses of the cameras [Dellaert et al., 2000;
Schonberger and Frahm, 2016]. The main two differences with SLAM are first, the lack of
continuity, as images are unordered and can be captured at different moments. Second is
the lack of computational constraints. Indeed, while SfM can be processed offline, SLAM
must run in real time. However the solution of both problems is based on the minimization
of the reprojection error.

Reprojection error

Keypoints extracted from images correspond to the 2D observation through the cam-
era of 3D points in the scene. If the camera pose and 3D point position is known and
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the camera model is perfect, then the points projected in the image should precisely
correspond to keypoints:

ixj = p(ciTw, wXj) (2.1)

However as the estimations are not perfect and the measurement process is in reality noisy
we write:

ixj − p(ciTw, wXj) = ei,j (2.2)

where ei,j ∈ R2 is the realization of a random variable that follows a given probability dis-
tribution, usually a 2-dimensional normal distribution with a mean of 0 and an unknown
variance. This variable is called the reprojection error. To solve the problems of SfM and
SLAM, the points positions and camera poses can be optimized so that their reprojection
is aligned with 2D observations. Such optimization can be done by the bundle adjustment.

The bundle adjustment

The keystone of all recent SfM pipelines is the bundle adjustment [Grisetti et al., 2010;
Triggs et al., 1999]. The goal of BA is to optimize the camera poses and the 3D map.
To do so it maximizes the likelihood of variables given measurements taken from images,
so that the variables best fit the measurements. Maximizing the likelihood of variables
is equivalent to minimizing the reprojection error of 3D points in images. Thus, the BA
minimizes the following cost function:

E({ciTw} , {wXj}) =
N−1∑
i=0

M−1∑
j=0

||ixj − p(ciTw, wXj)||2 (2.3)

=
N−1∑
i=0

M−1∑
j=0

||ei,j||2 = ||e||2 (2.4)

where ei,j is the reprojection error of point j in image i, e = (e0,0,
. . . , eN,M)⊤ is the vector

of residuals, N is the number of images, M is the number of 3D points, {ciTw} is the set
of all camera poses and {wXj} is the set of all points positions. We show in the figure 2.1
an example of scene with 3 cameras and 2 points. As we can see the points are not well
reprojected in the second image, the reprojection error (in cyan) is important. To decrease
this error we can either move the second camera or move the points. However moving the
points may require to also move the first and third camera to keep their reprojection
errors low. The goal of BA is to optimize all those elements at once as they are all tightly
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Figure 2.1 – Illustration of a scene with 3 cameras and 2 points. The reprojection errors
of the points in the second camera are shown in cyan.

linked.

The cost function (2.3) is often represented using a graph, in which a vertex represents
a variable to be optimized and an edge between vertices represents the associated error.
An example of a simple graph with 3 poses and 5 points can be seen in figure 2.2.

Note that the BA cost function is sometimes written:

E({ciTw} , {wXj}) =
N−1∑
i=0

M−1∑
j=0

||ixj − p(ciTw, wXj)||2Σ−1
i,j

(2.5)

where ||.||Σ is the Mahalanobis norm defined as:

||X||Σ =
√

X⊤ΣX (2.6)

This allows to weight each residual individually. The matrix Σi,j is often set to be an esti-
mate of the covariance of the corresponding residual, thus giving more weight to residuals
with low variance.
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Figure 2.2 – Example of graph representing a Bundle Adjustment cost function with 3
poses and 5 points.

Solving the Bundle Adjustment

The Bundle Adjustment can be solved using the Levenberg-Marquardt algorithm that
we introduced in the previous chapter. However we can see that the size of the correspond-
ing Jacobian is 2L × (6N + 3M) where L is the number of observed keypoints, which is at
most NM when all points are visible in all images. The size of the corresponding Hessian
is (6N + 3M) × (6N + 3M). Solving the normal equations can thus rapidly become un-
tractable when the number of points and poses grows large. To alleviate this problem we
can make use of the sparsity of the Jacobian. Indeed, the Jacobian contains the derivative
of the reprojection error with respect to poses and points. As each reprojection error is
impacted only by its own point and camera, its derivative with respect to all other points
and cameras is null. This explains the specific sparse structure of the Jacobian that we
can see in equation 2.7. Furthermore as points are often seen from a limited number of
images, they have no reprojection error in many images and thus a null derivative, which
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also adds zero entries in the matrix.

J =



∂e0,0
∂c0 Tw

∂e0,0
∂c1 Tw

. . . ∂e0,0
∂cN Tw

∂e0,0
∂wX0

∂e0,0
∂wX1

. . . ∂e0,0
∂wXM

∂e1,0
∂c0 Tw

∂e1,0
∂c1 Tw

. . . ∂e1,0
∂cN Tw

∂e1,0
∂wX0

∂e1,0
∂wX1

. . . ∂e1,0
∂wXM... ... ... ... ... ... ... ...

∂eN,M

∂c0 Tw

∂eN,M

∂c1 Tw
. . .

∂eN,M

∂cN Tw

∂eN,M

∂wX0

∂eN,M

∂wX1
. . .

∂eN,M

∂wXM

 (2.7)

=



∂e0,0
∂c0 Tw

0 . . . 0 ∂e0,0
∂wX0

0 . . . 0
0 ∂e1,0

∂c1 Tw
. . . 0 ∂e1,0

∂wX0
0 . . . 0

... ... ... ... ... ... ... ...
0 0 . . .

∂eN,M

∂cN Tw
0 0 . . .

∂eN,M

∂wXM

 (2.8)

The components of the Jacobian can be computed using the chain rule, first for derivatives
with respect to the point position:

∂ei,j

∂wXj

= ∂π(ixj)
∂ixj

∂(ciTw
wX̄j)

∂wXj

(2.9)

= 1
cZj

fx 0 −fx

cXj
cZj

0 fy −fy

cYj
cZj

 ciRw (2.10)

as the transformation ciTw
wX̄j can be written as ciRw

wXj + citw, which is linear in wXj.
And then for the derivatives with respect to the camera pose:

∂ei,j

∂ciTw

= ∂π(ixj)
∂ixj

∂(ciTw
wX̄j)

∂ciTw

(2.11)

= 1
cZj

fx 0 −fx

cXj
cZj

0 fy −fy

cYj
cZj

 (
I3 −[cXj]×

)
(2.12)
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as explained in the previous chapter, the derivative with respect to a 6 DoF pose is
computed on the Lie algebra se(3):

∂(expse(ξ)ciTw
wX̄j)

∂ξ

∣∣∣∣∣
ξ=0

= ∂(QwX̄j)
∂Q

∣∣∣∣∣
Q=expse(ξ)ci Tw=ci Tw

∂QciTw

∂Q

∣∣∣∣∣
Q=expse(ξ)=I4

expse(ξ)
ξ

∣∣∣∣∣
ξ=0

(2.13)

=
(

wX̄j
⊤ ⊗ I3

) (
ciTw

⊤ ⊗ I3

)


03×3 −[e1]×
03×3 −[e2]×
03×3 −[e3]×
I3 03×3

 (2.14)

where {e1, e2, e3} is the canonical base of R3 and ⊗ is the Kronecker product of two
matrices. This equation, after development is equal to (I3, −[cXj]×).

Those derivatives correspond to the monocular case. For the stereo case, the derivative
of the projection operator must be replaced by the following 3 × 3 matrix:

1
cZj

∂π(ixj)
∂ixj

=


fx 0 −fx

cXj
cZj

0 fy −fy

cYj
cZj

fx 0 −fx
(cXj−b)

cZj

 (2.15)

where b is the stereo baseline. More details about the derivative of the exponential map
and the derivatives of matrix products can be found in [Blanco, 2010].

As we can see the Jacobian is highly sparse. This is because points and poses only have
an impact on their own reprojection error and each 3D point is only seen by a limited
number of cameras. This creates a specific structure that corresponds to the adjacency
matrix of the associated graph. The Hessian, that is approximated as H = J⊤J inherits
from this specific structure. We show in figure 2.3 an example of Jacobian and Hessian.

The Hessian can be written using blocks:

H =
 HPP HPC

HPC
⊤ HCC

 (2.16)

where HCC is a block diagonal matrix which represents the second order derivatives of
camera poses, HPP is a block diagonal matrix which represents the second order deriva-
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Figure 2.3 – Left: example of Jacobian structure with 3 camera poses and 4 points.
Right: example of Hessian structure with 3 camera poses and 10 points.

tives of point positions and HPC represents the crossed derivatives of camera poses and
point positions. It should be noted that the matrix HPP is in practice much larger than
HCC as there are orders of magnitude more 3D points (≈ 104 to 105 for medium scale
scenes) than camera poses (≈ 102). Hence the Hessian is essentially block diagonal with
two dense blocks for crossed derivatives. To obtain the optimal increment we must solve
the normal equation:

J⊤Jδ = J⊤e (2.17)

By separating cameras and points, it can be written: HCC HPC

HPC
⊤ HPP

 δC

δP

 =
bC

bP

 (2.18)

where (δC, δP) is the incremental update in terms of cameras poses and point position
and b = J⊤e. Using the Schur complement of HPP that we denote H̄PP and introducing
a new variable b̄C we can write:

H̄PP = HCC − HPCHPP
−1HPC

⊤ b̄C = bC − HPCHPP
−1b⊤

P (2.19)
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This substitution allows to compute δC using a smaller system than the original one: H̄CC 0
HPP

−1HPC
⊤ I

 δC

δP

 =
 b̄C

HPP
−1bP

 (2.20)

This system can be obtained by left multiplying the equation 2.18 successively by the
following matrices: I 0

0 HPP
−1

 and
I −HPC

0 I

 (2.21)

Such system can be solved using Cholesky factorization for example which has a complex-
ity growing with the cube of the number of cameras. It is thus much faster than solving
the system that includes 3D points. Then, the point positions can be computed efficiently
using back substitution:

δP = HPP
−1bP − HPP

−1HPC
⊤δC (2.22)

More details regarding the bundle adjustment and how to solve it can be found in
[Engels et al., 2006; Triggs et al., 1999]. Repeating those steps allow us to obtain an
accurate estimate of point positions and camera poses. However the bundle adjustment
is not solved using only raw image data, a pre-processing step must be applied to extract
characteristic points.

Front-end and back-end

As we saw, keypoints must first be extracted from images before solving the BA.
Those steps are often referred to as the front end and the back end. The goal of the
front-end is to preprocess images by cleansing them, performing for example histogram
equalization to reduce over and under exposition [Pizer et al., 1987; 1990]. The front-end
then extracts keypoints from images which are matched with previously seen keypoints.
Finally the matched points are processed by the Bundle Adjustment that yields optimized
point positions and camera poses. The goal of the front-end is also to compute reasonably
good estimate to serve as initialization for the BA. Indeed, the cost function is non-convex
and the optimization step by step may get stuck on a local minima.
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Direct and indirect methods

It should be noted however that not all SLAM approaches use keypoints. Some ap-
proaches directly use image intensity information. They have the advantages of discarding
less information and of being able to work even with featureless images. To do so they
minimize the following cost function, called the photometric error:

E(ci+1Tw) =
∑

xj∈Ω
||Ii(xj) − Ii+1(p(ci+1Twπ(xj)−1))||2 (2.23)

where Ii is the ith image and Ω is a subset of image pixels. The goal of this equation is to
find the relative pose of consecutive cameras by aligning their images. However the main
disadvantage of this approach is that it relies on the assumption that the brightness of a
point is constant. This assumption is obviously false when considering reflective surfaces
or sudden illumination changes. In those cases indirect approaches have the upper hand as
extracted keypoints are supposed to be invariant towards those changes. One of the most
well known direct SLAM is LSD-SLAM [Engel et al., 2014] that used edge points to track
the camera and build the map. Furthermore tracking was performed by optimizing both
the pose and the scale factor of the scene, allowing the system to handle scale variation.
This approach however is not suitable for the bundle adjustment. Indeed as points are
semi-densely extracted, the map points are correlated and the corresponding Hessian
loses its sparsity. Trajectory optimization is thus done using pose graph optimization.
Some visual odometry systems such as SVO [Forster et al., 2014] and DSO [Engel et al.,
2017] also apply direct approaches to track the camera. In this manuscript we will focus
on indirect approaches.

Pipeline

At this point the "SLAM" pipeline, visible in figure 2.4 is straightforward: given a set
of images we extract and match keypoints in the frond end. Then we solve the Bundle
Adjustment which yields camera poses and 3D points positions. We show how to modify
this pipeline in the following section to obtain a real-time SLAM system.

2.2.3 From filters to keyframes

To create a SLAM system, the BA must be modified, indeed its computational com-
plexity is too high to allow real-time operations. In practice optimizing it can take from
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Figure 2.4 – Illustration of front and back end in a SLAM system.

0.1 second to tens of seconds for very large graphs. Two systems can thus be implemented:
filter based or keyframe based SLAM systems [Engels et al., 2006].

Filter based SLAM systems

MonoSLAM [Davison et al., 2007] is the first monocular SLAM system that solves the
bundle adjustment in real time. To do so they model the current camera pose and points
positions as a single high dimensional gaussian variable, called the map state. They use
an Extended Kalman Filter (EKF) to predict the map state using a constant velocity
model for the camera. Then they update the map state with measurements from the Shi
and Tomasi detector [J. Shi et al., 1994]. This kind of approach, called filter based, could
work in real-time but was limited to small scenes. Indeed at each time step the whole
map state and its covariance matrix must be computed. As the size of the covariance
matrix grows quadratically with the number of points, MonoSLAM is limited to use only
100 feature points which does not allow to cover a space larger than a desk. Furthermore
EKF approaches require the system to be approximately linear, which is not the case
when considering the projection function.

Parallel Tracking and Mapping

To solve the large scale issue of filter based SLAM systems, PTAM [Klein and Mur-
ray, 2007] proposes to split tracking and mapping. Although the camera pose should be
estimated in real-time and can change rapidly, the geometry of the scene is rather static
and mainly used to solve camera tracking for augmented reality. Hence they solve only
camera pose estimation on a thread, which is updated in real-time while on another sep-
arated thread they can triangulate new map points and optimize the camera trajectory
and map geometry at a much lower rate. This allows them to apply an expensive bundle
adjustment on a high number of points.
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Furthermore as tracking and mapping are separated, "Tracking is no longer proba-
bilistically slaved to the map-making procedure" [Klein and Murray, 2007] like it was for
MonoSLAM and robust approaches can be applied to minimize the impact of mapping
errors on the tracking thread.

Hence in the tracking thread of PTAM, the ith camera pose is obtained by minimizing
the reprojection error of fixed 3D map points:

E(ciTw) =
M−1∑
j=0

||ixj − p(ciTw, wXj)||2 (2.24)

As the camera moves smoothly in the scene, the previous camera pose ci−1Tw can be
used to initialize the pose estimation and for keypoints matching. Indeed by assuming
a constant velocity model, the previous pose can be updated and used to project map
points into the image. Keypoints can then be searched in areas centered around the
projected points. This allows to decrease both the number of descriptors comparison as
well as the probability of wrong matches. A similar approach was also initially proposed
by [Mouragnon et al., 2006].

Keyframes and triangulation

Frames captured by a camera with a frequency of 30 Hz contain redundant informa-
tion. In filter based SLAM systems they must nonetheless be all processed similarly. By
decoupling tracking and mapping, PTAM can select a representative sample of frames to
optimize them in the bundle adjustment instead of optimizing all frames. Those frames
are called keyframes and act as anchors for other frames. In PTAM keyframes are chosen
to cover space in the 3D scene: if a frame is far enough from the previous keyframe it is
chosen to become a new keyframe.

The triangulation of two matched keypoints in the ith and the kth images, ixj and kxj

can be performed by computing the intersection between the rays (Ci,
ixj) and (Ck, kxj),

where Ci and Ck are the cameras 3D centers. However due to noise, rays do not usually
intersect. Thus the point 3D position can be computed as the closest point to both rays
using the midpoint method [R. I. Hartley and Sturm, 1997]. Keyframes are used by the
mapping thread to create new map points which are triangulated using multiple views.

In opposition to filter based SLAM systems or SfM, this kind of approach is referred
to as keyframe based SLAM system.

ORB-SLAM [Mur-Artal et al., 2015] is a recent monocular SLAM system inspired from
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PTAM that also uses a multi-threaded architecture. ORB [Rublee et al., 2011] keypoints
are extracted and matched very efficiently by the front end. The keypoints are used
to estimate the current frame pose by matching them with the last frame or the nearest
keyframe and with the map. The current frame can then be converted into a new keyframe.
This happens when too few keypoints are tracked, meaning that we enter an area that
is not mapped and thus that we need a new keyframe to triangulate new map points.
Finally keyframes and map points are optimized within the bundle adjustment. ORB-
SLAM uses a covisibility graph to measure the visual proximity between keyframes. This
allows them to optimize only a small set of keyframes that share a high covisibility with
the current one, reducing the computational burden of the bundle adjustment. ORB-
SLAM was later improved with ORB-SLAM 2 [Mur-Artal and Tardós, 2017] that can use
stereo and RGB-D cameras to handle pure rotations and estimate a metric map.

A comparison of filter based SLAM that marginalizes the previous camera poses and
keyframes based SLAM that sparsify the camera trajectory was proposed by [Strasdat
et al., 2012]. They show that generally the accuracy of SLAM systems depends more on
the number of visible points than on the number of keyframes, as long as there are enough
keyframes to cover the trajectory. As the complexity of keyframe based SLAM systems
is linear in the number of points while the complexity of filter based SLAM is cubic in
the number of points, the choice to obtain the less computationally expensive system is
straightforward.

The two main threads of a basic SLAM system

We show in figure 2.5 an example of a simple keyframe based SLAM system. In the
tracking thread keypoints are extracted from images and used for camera pose estimation.
The current image can then be chosen to be a keyframe, which is handled by the mapping
thread. It creates new map points and performs the bundle adjustment to refine the poses
and point positions.

2.2.4 Initialization

In the previous sections we demonstrated how to estimate the pose of a new frame
using 3D map points and how to triangulate new 3D points knowing the poses of the
camera. Those approaches work well however a problem arises when neither the camera
pose nor the point position are known, which happens when the algorithm start. This is
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Figure 2.5 – Pipeline of a simple Keyframe based SLAM system.

often referred to as a "chicken and egg problem" as we need camera pose to triangulate new
points but also need points to estimate new poses. To solve this problem, an initialization
or bootstrap step is required. In the RGB-D and stereo cases the initialization step is
trivial as map points can directly be triangulated using a single view. In the monocular
case, ORB-SLAM systems [Mur-Artal and Tardós, 2017; Mur-Artal et al., 2015] solve the
problem by applying principles from 2-views geometry [R. Hartley and Zisserman, 2003;
Y. Ma et al., 2004]. Using matches between 2 images they estimate both a fundamental
matrix F and an homography H that link matches according to the following equations:

0xj
⊤ F 1xj = 0 or 0xj = H 1xj (2.25)

where 0xj
⊤ and 1xj

⊤ are corresponding keypoints in the first and second images. The
homography matrix links points in a planar scene or for pure rotations while the funda-
mental matrix works for the general case. The transformation that is supported by the
most inliers is then chosen and the relative pose between both cameras is extracted from
it. Knowing the relative pose allows the algorithm to triangulate the matches, which starts
the map. A BA is then applied to refine the map and the relative pose. The first camera
pose is often chosen to be the world coordinate frame for the whole map.
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2.2.5 Relocalization and loop closure

We present here the processes of relocalization and loop closure that are not necessary
for SLAM but are commonly used to make it more robust and precise. Our goal is not
to thoroughly present those algorithms and more details can be found in [Duong, 2019;
Lowry et al., 2015; Masone and Caputo, 2021] for relocalization.

Relocalization

Camera pose estimation in the tracking thread can fail to converge towards a good
solution. Multiple effects can cause a failure. For example rapid camera movements can
create motion blur, limiting the amount of keypoints that can be extracted from the im-
age. If the camera moves too fast it can also move to a yet unmapped region of the scene,
making tracking unfeasible. In those cases tracking is said to be lost as the current pose
relative to previous poses is unknown. To solve this problem SLAM systems need to be
able to estimate the current camera pose using only the map (comprising map points
and keyframe poses). This process is called the relocalization. In classical SLAM systems
it is solved by first finding a set of keyframes that are visually close from the current
frame (called the query). The hypothesis here is that visually close frames should also be
close in 3D space. This problem is solved using image retrieval techniques. For example in
ORB-SLAM2 [Mur-Artal and Tardós, 2017], images are represented using bag of visual
words [Gálvez-López and Tardos, 2012; Sivic and Zisserman, 2003]. A vocabulary made of
clustered descriptors is first created offline using a set of generic images. Then while the
SLAM system runs, keyframes are used to compute an histogram of visual words. Each
histogram corresponds to a vector that describes the image. The query frame can thus be
associated to visually close images by finding its nearest neighbors in the histogram space.
Given those close candidate keyframes, the best one is chosen by performing geometrical
checks. Keypoints are matched between the query and each of the candidate and a ge-
ometrical model (homography or fundamental matrix) is robustly fitted. The candidate
that is supported by the most points is chosen as the reference keyframe. It is then used
to associate 3D map points to keypoints and estimate the query pose by minimizing the
reprojection error. The system then returns to its classical state by tracking the camera.
Approaches based on local handcrafted descriptors are often limited by the lack of invari-
ance of descriptors. Thus they can fail when facing important luminosity and viewpoint
changes. Recently deep learning based approaches have been developed to be more robust.
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For example NetVLAD [Arandjelovic et al., 2016] inspired from VLAD [Jégou et al., 2010]
extracts D dimensional image features using a CNN. Features are then softly assigned to
one of K learned clusters. Finally the residuals between features and each cluster centroid
are averaged to obtain K, D dimensional descriptors that can bee seen as a K ×D VLAD
descriptor. Other approaches such as [X. Wang et al., 2022] directly use the output of a
CNN to build stable descriptors.

Loop closure

As we saw earlier, the SLAM pipeline mainly alternates between tracking and mapping.
The pose of the camera is estimated using the visible map and then used to triangulate
new map points. As the pose of the camera is not perfectly estimated, the position of 3D
points is noisy, which is then reflected on the future poses and points and so on. This
effect is called the drift as estimation noise accumulates and it is inherent to all odometry
systems. However this error can be estimated and minimized by revisiting a place that
was previously mapped. Such place is called a loop and the correction process is the loop
closure, often referred to as long-term data association. The first task of loop closure is to
detect a loop. To do so approaches similar to relocalization based on image retrieval can
be used, yielding loop hypothesis. Those hypothesis are then verified using geometric ap-
proaches to filter out false positives. Hypothesis verification is done by robustly computing
7 DoF similarity transformations from 3D-3D matches between the current frame and the
candidates. Similarly to relocalization, the transformation supported by the most inliers
is selected. It is then applied on the current frame pose and its neighbors to align it with
the loop and fuse the map points. This correction is followed by pose graph optimization
which moves each keyframe pose to distribute the error along the whole trajectory. Finally
in ORB-SLAM 2 a global bundle adjustment is performed with all the map points and
keyframes. Those steps are computationally expensive, taking up to several seconds to
finish, which is why a whole CPU thread is dedicated to it. Hence the SLAM system can
correct drift in the trajectory, as illustrated in the figure 2.6.

The complete SLAM pipeline

We show in the figure 2.7 a SLAM pipeline including initialization, relocalization and
loop closure, typical for state of the art systems such as [Mur-Artal and Tardós, 2017].
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Figure 2.6 – Trajectory from the KITTI dataset (seen from above) in a monocular
setting with scale drift (a) and stereo setting with no scale drift (b). Image from

ORB-SLAM 2 [Mur-Artal and Tardós, 2017]
.
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Figure 2.7 – Pipeline of a classical SLAM system with three threads for tracking,
mapping and loop closure.
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2.2.6 On the evaluation of SLAM systems

To compare the strengths and weaknesses of different SLAM systems it is primary to
compare the accuracy of their estimations. To do so public datasets with ground truth
must be used and evaluation metrics must be defined. In this manuscript we will mainly
use three datasets for SLAM:

• The TUM RGB-D dataset [J. Sturm et al., 2012] which contains a set of short
indoor sequences filmed with an RGB-D Kinect camera at 30 Hz. The sequences
depict a typical desk space and may contain moving people. Camera trajectory
ground truth is obtained using a motion capture system that estimates the 3D
position of reflective markers attached to the camera. This kind of system is highly
precise with a frame to frame relative error of 1mm and 0.5°.

• The Kitti odometry dataset [Geiger et al., 2012; 2013] which contains many out-
doors sequences of variable length (from hundreds of meters to kilometers). This
dataset was created using two stereo cameras (RGB and grayscale at 10 Hz) with
a large baseline (about 54 cm), mounted on a car. The sequences depict a variety
of urban scenes, from crowded pedestrian streets, to highways, or residential neigh-
borhoods. Camera trajectory groundtruth is obtained using a GPS and an Inertial
Measurement Unit (IMU) containing an accelerometer and a gyroscope. This kind
of system is less precise than the previous one with ground truth errors estimated
at 5 cm. This dataset also contains LiDAR scans.

• The Kitti tracking dataset which was created like the odometry dataset but also
contains the pose of various objects in the scene (cars, trucks, pedestrians, cyclists,
etc.). Those were obtained by manually annotating LiDAR scans.

As SLAM algorithms estimate both the trajectory and the geometry of the scene it
seems natural to evaluate both. However obtaining the ground truth for the geometry
of a scene is cumbersome, sometimes even impossible for large scale, outdoors scenes.
Furthermore in the context of augmented reality the precision of camera pose estimation is
more important than the precision of geometry. Finally as both estimations are correlated,
evaluating only the camera pose error is a good indicator of the map quality.

SLAM systems are mainly evaluated through 2 metrics [Kümmerle et al., 2009; J.
Sturm et al., 2012]: the Absolute Trajectory Error (ATE) and the Relative Pose Error
(RPE). Given a sequence of N estimated poses {c0Tw, . . . , cN−1Tw} and N ground truth
poses

{
c∗

0Tw, . . . , c∗
N−1Tw

}
. The ith absolute trajectory error between the ground truth and
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the estimated pose can be computed as:

ATEi = wTc∗
i

ciTw (2.26)

where the ground truth and estimated trajectories need to be aligned using the method
of Horn [Horn, 1987] or Umeyama [Umeyama, 1991]. Indeed they do not necessarily share
the same coordinate frame. [J. Sturm et al., 2012] proposes to evaluate the translational
part of this error:

ATEt
i = ||trans(ATEi)||2 (2.27)

It must then be aggregated over the whole trajectory, by computing for example its mean,
median or RMSE:

RMSE =

√√√√ 1
N

N−1∑
i=0

ATEt
i
2 (2.28)

The ATE measures the global consistency of the trajectories by computing the distances
between pairs of trajectories. However it is sensitive to the time where the error occurs
[Kümmerle et al., 2009]. An early error on the trajectory has a greater impact on the ATE
than a later one. On the other hand the RPE measures the local drift on a part of the
trajectory, defined using either spatial or temporal intervals.

RPEi = (wTc∗
i

wTc∗
i+∆

)−1 (wTci

wTci+∆) (2.29)

where ∆ here is the time interval. The RPE is often split into two parts:

RPEt
i = ||trans(RPEi)|| RPER

i = ||angle(rot(RPEi))|| (2.30)

where angle(R) denotes the rotation angle of R. As the RPE depends on the choice of the
interval, we can compute it for different ∆ and aggregate the results by computing their
mean. As for the APE, the results must then be aggregated over the whole trajectory,
using the RMSE, the mean or the median.
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A note on non-deterministic behaviors.
The most cited SLAM system, ORB-SLAM2 [Mur-Artal and Tardós, 2017] which
is used for many comparisons and even built upon to create new algorithms has a
non deterministic behavior. This means that running ORB-SLAM2 on the same se-
quence multiple times gives different results each time. This behavior is mainly due
to the fact that it is based on multiple unsynchronized threads. Thus, depending
on the CPU load some parts of the code may be executed after others or even not
at all. ORB-SLAM2 also uses random processes, such as RANSAC, which is partic-
ularly impactful during the initialization. However RANSAC can be deterministic
by setting the same seed of the random process.
To enable a fair comparison between different SLAM algorithms, the authors of
[Mur-Artal et al., 2015] propose to run each sequence several times and to report
the median over all runs. However we argue that for future works it may be more
appropriate to report the mean and the standard deviation over multiple runs to
be able to correctly compare different algorithms. Furthermore the stability of a
SLAM system is rather important to guarantee good performances. Finally, we ar-
gue the ground truth accuracy should also be taken into account when comparing
algorithms as gains below this threshold can not be deemed significant.

Additional information about the evaluation of SLAM systems can be found in [Z.
Zhang and Scaramuzza, 2018]. For all our experiments in this manuscript we will use
the well known evo library by Michael Grupp (https://github.com/MichaelGrupp/evo)
to compute all the metrics.

2.3 Semantic SLAM

2.3.1 Introduction

We introduced in the previous section a typical state of the art of SLAM systems, such
as ORB-SLAM2 [Mur-Artal and Tardós, 2017] that is able to accurately localize a camera
in small to large scenes, indoors and outdoors and to create a map of its environment.
However it is still limited in challenging cases that include:
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Figure 2.8 – Same place, different seasons from [Stenborg et al., 2018]
.

Robust relocalization and loop closure.

Image retrieval systems based on descriptors such as [Gálvez-López and Tardos, 2012]
are limited by their lack of invariance. Variability can come from different viewpoints,
if two trajectories are perpendicular or have opposite directions for example. It can also
come from different timestamps. Indeed two images taken during different seasons may be
visually very different and contain few matching descriptors as can be seen in the figure
2.8. Indeed, some objects can also visually change over time, such as cars or vegetation.
This makes the process of image retrieval harder.

Dynamic objects handling.

Most classical SLAM systems assume the scene to be rigid as the pose of the camera is
computed using all visible map points. Hence when an object moves in the environment,
the reprojection of its points will not be coherent with the rest of the scene. This can
corrupt camera pose estimation. Furthermore map points attached to a moving object
can be triangulated at different positions in space, creating a phantom of the object in
the map. This assumption is called the static scene assumption and severely limits the
scenarios in which a SLAM system can be used.
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Scale drift.

When using a monocular SLAM system the scale of the scene is unknown. Its estima-
tion can thus drift through time. Loop closure can be used to solve this problem with the
obvious limitation of requiring a loop, which may not happen regularly. An example of
scale drift can be seen in figure 2.6.

Furthermore the map built by a classical SLAM system only contains low level appear-
ance and geometrical information and lacks semantic meaning. This additional informa-
tion can be useful for some applications [Cadena et al., 2016]. For example mobile robots
should understand semantic concepts (such as a cup of coffee) in order to understand the
world, safely navigate within it (going to the kitchen without bumping into someone) and
interact with it (grabbing the cup of coffee). Augmented reality can as well make use of a
semantic map, to enable applications that can virtually interact with the scene to create
a more realistic experience, as shown in [Runz et al., 2018]. To summarize, in classical
SLAM systems there is a semantic gap between the representation of the world that is
rather low level and the real world in which the system evolves. Thus, new higher level
representations must be developed.

Moreover a semantic understanding of the world can make the SLAM more accurate
and more robust towards complex environments. It may even enable the SLAM in sce-
narios in which it can not currently work [Cadena et al., 2016].

In the following section we show how semantic information can be injected into SLAM
to answer the previously cited problems.

2.3.2 Semantic Mapping

The goal of semantic mapping is to build a map in which the semantic class of entities
is known. There are mainly two ways to do semantic mapping depending on the dimension
of the input data that is considered. Indeed a semantic map can be created using 2D seg-
mented images of a scene [Hermans et al., 2014; Kundu et al., 2014; X. Li and Belaroussi,
2016; McCormac et al., 2017; Pham, Hua, et al., 2019; Runz et al., 2018; Stückler and
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Behnke, 2014; Xiang and Fox, 2017; C. Yu et al., 2018; C. Zhao et al., 2017]. Another
approach to obtain a semantic map consists in directly applying a 3D semantic segmen-
tation algorithm to the map (represented by a point cloud, a mesh or voxels for example)
[Dai and Nießner, 2018; Dai et al., 2017; Landrieu and Simonovsky, 2018; Y. Li, Bu, et al.,
2018; Pham, Nguyen, et al., 2019; Qi, Su, et al., 2017; Qi, Yi, et al., 2017; Tatarchenko
et al., 2018; W. Wu et al., 2019]. However those approaches require a denser point cloud
than what is produced by sparse SLAM systems such as ORB-SLAM 2. Moreover the
segmentation can be computed only once the point cloud is large enough, which goes
against the online nature of a SLAM system. For those reasons we will focus on the first
type of approaches. It should be noted that some SLAM systems use 3D LiDAR scans as
input data. For those approaches CNNs have been developed to segment the point clouds
[Aygun et al., 2021; Bogoslavskyi and Stachniss, 2016; Milioto et al., 2019; 2020]. We do
not cover those approaches in this chapter as we focus on vision based SLAM.

The simplest way to create a semantic map is to fuse 2D segmented keyframes obtained
using a CNN like [K. He et al., 2017; Kirillov et al., 2019a; Redmon et al., 2016] or more
recently [Hong et al., 2021; Y. Li et al., 2021] to obtain the probability distribution of
3D points. Surveys about image semantic segmentation can be found in [Garcia-Garcia
et al., 2018; Guo et al., 2018; Siam et al., 2017; Thoma, 2016; B. Zhao et al., 2017; H. Zhu
et al., 2016]. We focus here on CNN based approaches, however other older approaches,
often based on random forests or conditional random fields such as [Hermans et al., 2014;
Sengupta et al., 2013; Stückler and Behnke, 2014; Valentin et al., 2013; Vineet et al., 2015]
also exist and have proven to be reliable in the past.

SemanticFusion [McCormac et al., 2017] is one of the most cited SLAM that can create
a consistent semantic map in real time using CNNs. Their work is based on ElasticFu-
sion [Whelan et al., 2015] which creates a dense map from RGB-D images and yields
the camera pose in real time. They use a CNN to segment RGB-D frames, producing a
probability map for each pixel. The probabilities are then fused over time using a recur-
sive Bayesian update to obtain the probability distribution of each surfel in the map. A
Conditional Random Field (CRF) optimization is then done to refine the segmentation,
using depth and appearance information. SemanticFusion shows that fusing information
in a SLAM system improves the segmentation accuracy. The improvement brought by the
CRF is negligible while the optimization is computationally expensive. They also show
that segmenting every frame brings little accuracy while adding computational burden.
An example of a dense RGB and semantic map obtained by [McCormac et al., 2017] is

63



Chapter 2 – State of the Art of Classical and Semantic SLAM

Figure 2.9 – Example of 3D semantic map from [McCormac et al., 2017]

visible figure 2.9. [X. Li and Belaroussi, 2016; C. Yu et al., 2018] are very similar to [Mc-
Cormac et al., 2017] but [X. Li and Belaroussi, 2016] is built upon a semi-dense SLAM
system [Engel et al., 2014] and [C. Yu et al., 2018] uses an octree as map representation.

Recently the framework Kimera [Rosinol et al., 2020] proposed a new open source
SLAM system that can build a dense semantic map using the approach of [McCormac
et al., 2017].

[Pham, Hua, et al., 2019] has a similar approach, namely, a 2D segmentation using a
CNN followed by CRF optimization on the reconstructed semantic map. However they
propose a super-voxel cluster approach to create clusters of voxels and apply the CRF on
the super voxels, making it lightweight. Furthermore they tackle the problem of instance
segmentation, by predicting each object id with the CRF. The higher order constraints
of the CRF allow them to improve results over [McCormac et al., 2017].

Those approaches often rely on CRF optimization to refine the segmentation using
geometrical information. To avoid this additional post processing step, [C. Zhao et al.,
2017] proposes to integrate the CRF constraints in an end to end trainable network to
improve genericity and computation time.

[Sünderhauf et al., 2017] uses a 2D object detection network (SSD [W. Liu et al.,
2016]) to detect objects in RGB images. The depth image is then over-segmented in an
unsupervised manner based on the geometry of objects. Finally segments are associated to
detected objects and to obtain semantic segments with a low computational cost. Mask-
Fusion [Runz et al., 2018] uses Mask-RCNN [K. He et al., 2017] to segment objects in RGB
frames. The associated depth map is used to refine the segmentation. To do so geometric
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Figure 2.10 – Pipeline of [Xiang and Fox, 2017], features are extracted from RGB and
depth images and used with current hidden state for segmentation and hidden state

update.

segmentation is performed in real-time on the GPU, grouping close and concave parts of
the depth map. This segmentation is then fused with the semantic segmentation, refining
object boundaries.

Most of the approaches described above use a simple method to fuse individual seg-
mentations from single frames in a coherent manner (usually by averaging or bayesian
fusion). DA-RNN [Xiang and Fox, 2017] proposes a new way to fuse CNN outputs that
are highly correlated as cameras navigate smoothly in the scene. They present a new type
of recurrent neural networks, called data associated recurrent neural networks (DA-RNN)
that are composed of data associated recurrent units. They use a fully convolutional neu-
ral network (FCN [Long et al., 2015]) that extracts features from an image and upsample
them to generate a per-pixel classification. They introduce a layer made of recurrent units
(one per pixel) before the classification step to take into account information from the
previous time steps at the corresponding pixel. Doing so they show that they can coher-
ently segment a video stream and obtain significantly better results than the state of the
art. Their pipeline can be found in figure 2.10.
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2.3.3 Semantic data for relocalization

Classical keypoints descriptors like ORB [Rublee et al., 2011] or SIFT [Lowe, 1999]
are not highly invariant towards changes in illumination. Thus we can not use such key-
points to find matches between images taken some time apart. Moreover the static scene
assumption may not be true for long term relocalization, for example cars in the scene can
move which may result in incorrect data association and wrong pose estimation. Semantic
data has been widely used for long term relocalization due to the invariance brought by
segmentation networks either using classical keypoint extractors with semantic informa-
tion [Castaldo et al., 2015; Larsson, Stenborg, Toft, et al., 2019; Lianos et al., 2018; Liao
et al., 2020; W.-C. Ma et al., 2019; T. Shi et al., 2019; Singh and Košecká, 2016; Stenborg
et al., 2018; Toft et al., 2017; 2018; X. Yu et al., 2018] or using deep learning [Garg et al.,
2017; 2018; Mousavian et al., 2015; Naseer et al., 2017; Radwan et al., 2018; Schönberger
et al., 2018; Seymour et al., 2019; Taira et al., 2018; Valada et al., 2018; Voodarla et al.,
2021] with datasets such as [Larsson, Stenborg, Hammarstrand, et al., 2019; Toft et al.,
2020]. We focus here on the use of semantic information for relocalization, however a more
complete state of the art can be found in [Duong, 2019; Masone and Caputo, 2021]. [Toft
et al., 2017] is one of the first work to use only semantic segmentation for relocalization.
They propose to create a semantic map of points and lines and to relocalize the camera
by optimizing a semantic reprojection function. This function consists in measuring the
2D distance between a reprojected map point and the closest semantic zone with the
same class. A pose is thus considered optimal if all map points are reprojected into their
corresponding semantic class. The experiments show that this approach is less accurate
than classical keypoints in simple cases with only luminosity changes, however it is more
robust in challenging cases with large seasonal changes. [Lianos et al., 2018] works in a
similar way but used this approach to improve camera tracking instead of relocalization.
Semantic keypoints are used to obtain medium term matches that are visually too dif-
ferent to be found by classical descriptors. Camera pose is then optimized using both
classical keypoints and semantic keypoints, which reduces the drift. Their experiments
show an improvement of the keyframe pose accuracy and a reduction of the scale drift.
[Toft et al., 2018] approach is similar. For each point a set of pose hypothesis is created by
swiping over possible poses. For each pose a semantic consistency score is computed by
counting the number of points that reproject in their corresponding area. The best score
of each point is then used to weight a PnP RANSAC which allows to robustly recover the
pose. The pipeline of [Toft et al., 2018] is visible in figure 2.11.
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Figure 2.11 – Relocalization pipeline from [Toft et al., 2018].

[Stenborg et al., 2018] proposes a filter based approach for long term relocalization,
with high seasonal changes where classical descriptors such as SIFT [Lowe, 1999] fail.
Similarly to other approaches they reproject 3D semantic points in segmented images to
obtain a score. This score is then used to weight particles in a particle filter and recover
the pose.

We can easily see that those works do not really make use of the semantic informa-
tion but rather of the invariance brought by segmentation networks. [Larsson, Stenborg,
Toft, et al., 2019] shows that those networks can be trained in an unsupervised manner
to increase the number of classes without semantic meaning. This makes the network
more discriminant and the relocalization based on the reprojection of semantic keypoints
more precise. [Arandjelović and Zisserman, 2014] and [Kobyshev et al., 2014] are similar
works that use semantic information to make local keypoints more discriminant and more
robust towards changes in viewpoint. Keypoints are matched only if their local seman-
tic information matches. This can as well accelerate the matching of keypoints as less
comparisons need to be made. Additionally [Kobyshev et al., 2014] proposes to predict
correct matches using a random forest approach on semantic features, which removes key-
points from unreliable objects such as cars or pedestrians and can further accelerate the
matching process. [Castaldo et al., 2015] proposes to solve the problem of aerial-ground
localization using an RGB image and a geographic information system (GIS). To do so
they present a Semantic Segment Layout that encodes both semantic information and
its spatial layout. However those kind of approaches are rather specific and out of the
scope of this paper. Some approaches are tailored to specific applications such as vehicle
localization [Y. Hou et al., 2017; Liao et al., 2020; W.-C. Ma et al., 2019; Voodarla et al.,
2021] which allows them to reduce the size of the map. For example [W.-C. Ma et al.,
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Figure 2.12 – Illustration of the pipeline of [Gawel et al., 2018]

2019] uses lanes and traffic signs, combined with other sensors (such as IMU and GPS)
to predict the 3 DoF pose of a car using an histogram filter. [W.-C. Ma et al., 2017]
proposes an original approach by using the sun direction and specific semantic cues for
vehicles (such as intersections or road type) to localize a car. To estimate the sun direc-
tion they use a specific CNN on a single image, which is then used in a bayesian filter
to estimate the pose. Semantic information can as well be used to detect discriminant
structures within the scene. [Mousavian et al., 2015] uses a semantic segmentation net-
work to detect buildings and creates a Bag Of Visual Words [Gálvez-López and Tardos,
2012] using only man-made structures. This avoids using less discriminative structures
such as trees, which furthermore change on the long term. X-View [Gawel et al., 2018]
proposes to use semantic information to disambiguate global localization that can suffer
from appearance changes and perceptual aliasing. To do so, they build a graph using
semantic information. Vertices correspond to the 3D location and class of objects in the
scenes while edges encode the 3D distance between pairs of objects. This allows them to
obtain a high level representation of scene parts. Matching graphs for relocalization can
then be done by computing a descriptor for each vertex corresponding to a set of random
walks from this vertex. This approach allows them to efficiently represent the scene given
any view point. Their pipeline can be seen in figure 2.12. As we can see in the pipeline the
built graph is an efficient high level representation of the visited scene. On the other hand,
inspired by the work of [Kendall et al., 2015] some approaches use CNNs to estimate the
pose of a camera within a scene. [Radwan et al., 2018; Valada et al., 2018] propose a new
CNN architecture to solve at once the problems of localization, odometry and semantic
segmentation. Their pipeline, visible in figure 2.13 is composed of three parts. In the first
one a couple of residual networks extract features from consecutive images to estimate
their relative pose. In the second one only the current image is used to estimate its global
pose. In the last one the networks segments the current image. The networks are trained
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Figure 2.13 – Illustration of the pipeline of [Radwan et al., 2018]

together in a multitask fashion to exploit inter task dependencies. Furthermore [Radwan
et al., 2018] encourages the reusing of features by fusing intermediate feature maps from
the previous frame into the current frame feature maps. [P. Wang et al., 2018] render
a semantic image by splatting points from a previously captured semantic map using a
LiDAR. Then a CNN processes both the rendered semantic image and the RGB image
from the camera to predict its pose which is smoothed by an LSTM network. The system
re-renders the semantic image using the refined pose and an auto-encoder refines the seg-
mentation. Their pipeline can be seen in figure 2.14. Finally some approaches tackle the
problem of image retrieval as in [Arandjelovic et al., 2016; Jégou et al., 2010]. Their goal
is to find the visually closest images in a database given a query image based on the as-
sumption that visually close images should represent close points of view. The best image
is then selected using local descriptors which discards geometrically incoherent solutions.
A survey of such approaches for long term relocalization can be found in [Zaffar et al.,
2019]. [Schönberger et al., 2018] uses a 3D CNN to encode a semantic map of voxels into a
single vector in an embedded space that is then used for image retrieval. Their approach
consists in training a Variational Encoder Decoder to complete semantic maps from in-
complete semantic information. The network is composed of two parts: first the encoder
takes as input the 3D voxel map and generates a latent vector encoding the observation,
then the decoder recreates a completed version of the input map using the latent vector.
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Figure 2.14 – Illustration of the pipeline of [P. Wang et al., 2018]

Once the encoder is trained it can generate latent vectors for local maps and a simple
nearest neighbor approach is used to recover the maps closest from the query.

LoST [Garg et al., 2018] proposes a new type of image descriptor tailored for opposite
viewpoints relocalization. First, images are segmented using a CNN and the obtained fea-
tures are used to create a local semantic tensor, inspired from [Jégou et al., 2010] which
represents the image. Given a query, a set of closest images are found using their local
semantic tensor. Semantic keypoints, corresponding to the highest activation of each fea-
ture map are then extracted in the query and retrieved images and used to select the best
match.[Garg et al., 2019] is extension of LoST. The same authors [Garg et al., 2017] use
place categorization to improve place recognition. Place categorization is a classification
problem which consists in predicting a descriptive class (such as kitchen or forest) given
an image. Place categorization predictions from a CNN are merged from different times
using a hidden Markov model to obtain a temporally coherent prediction. This predic-
tion is used by looking for matches that exhibit the same estimated categories. [Seymour
et al., 2019] fuses semantic and appearance features in a CNN. To do so they use 1x1
convolutions to project features in the same space and add them, thus merging high and
mid level representation which brings robustness towards visual changes. The features
maps are then spatially pooled to obtain a single descriptive vector. Furthermore they
propose to use semantic and appearance information to focus on stable parts of the im-
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age. This is done by predicting attention maps which correspond to weight maps that
are then multiplied with the features maps, allowing to increase the importance of some
parts of the image in the finale vector. VLASE [X. Yu et al., 2018] proposes to mod-
ify VLAD [Jégou et al., 2010] with semantic features. Semantic edges, corresponding to
pixels associated with class probabilities are extracted from the image and used to build
a VLAD descriptor. The closest descriptors using the cosine distance are then retrieved
with the corresponding images. [Singh and Košecká, 2016] computes a semantic label de-
scriptor to represent an image. To do so the image is segmented and divided with a grid.
In each cell the semantic histogram is computed and their concatenation yields a vector
that characterizes the spatial layout of semantic information. This vector can be used for
image retrieval, associated to a Bag Of Words approach [Gálvez-López and Tardos, 2012].

Luminosity is not the only thing that changes overtime, some objects move as well,
for example cars or pedestrians. Thus keypoints extracted from those objects can not be
used for relocalization as they may create wrong matches leading to a deterioration of
the pose estimation. We present here some research papers that focus exclusively on the
filtering of dynamic objects for relocalization, other dynamic SLAM systems are presented
in the following section. Similarly to [Mousavian et al., 2015], [Naseer et al., 2017] uses a
CNN to segment buildings from RGB images in order to focus on the most static parts of
the image as can be seen figure 2.15. The features extracted by the CNN on stable parts
of the image are then combined with features from the whole image to create an image
descriptor. As the emphasis is put on stable parts of the image this descriptor is more
robust towards changes in the image. [Taira et al., 2019] is based on InLoc [Taira et al.,
2018] for indoor visual localization. In this work they use semantic information to mask
out highly dynamic objects such as people.

2.3.4 Semantic data for dynamic SLAM

Classical SLAM systems are built on the hypothesis that the world is mainly static.
Some small objects that move are treated as outliers by robust cost functions. However as
soon as the moving keypoints are not negligible the map gets corrupted and the camera
pose estimation deteriorates. Some systems propose to use semantic information to help
detecting dynamic objects within the scene [Ballester et al., 2021; Bescos et al., 2018; X.
Chen et al., 2019; Fan et al., 2020; Hachiuma et al., 2020; Han and Xi, 2020; Henein et al.,
2020; Huang et al., 2019; 2020; Kaneko et al., 2018; P. Li, Qin, et al., 2018; Y. Liu and
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Figure 2.15 – Example of images (top) and stable segmentation (bottom) from [Naseer
et al., 2017]

Miura, 2021; Luiten et al., 2020; J. Peng et al., 2019; Schorghuber et al., 2019; Vincent
et al., 2020; Wong et al., 2021; Xiao et al., 2019; H. Xu et al., 2019; S. Yang and Scherer,
2019a; C. Yu et al., 2018; J. Zhang et al., 2020; T. Zhang and Nakamura, 2018]. There are
two ways to deal with moving objects: on the one hand moving objects can be detected
and filtered out of the image, to use only keypoints extracted from static parts of the
image, thus coming back to the classical SLAM formulation [Ballester et al., 2021; Bescos
et al., 2018; X. Chen et al., 2019; Fan et al., 2020; Han and Xi, 2020; Kaneko et al., 2018;
Y. Liu and Miura, 2021; Luiten et al., 2020; Schorghuber et al., 2019; Vincent et al., 2020;
H. Xu et al., 2019; C. Yu et al., 2018; T. Zhang and Nakamura, 2018]. On the other hand
moving objects can be tracked and integrated within the SLAM system, which is more
complex than simple camera tracking but allows the user to obtain information about
moving objects, which can be interesting for autonomous vehicles for example [Bescos
et al., 2021; Hachiuma et al., 2020; Henein et al., 2020; Huang et al., 2019; 2020; P. Li,
Qin, et al., 2018; Wong et al., 2021; S. Yang and Scherer, 2019a; J. Zhang et al., 2020].
There are many ways to segment the image and detect dynamic parts within it, we focus
here on the works that explicitly use semantic information, although some dynamic SLAM
systems give very good results without such information [Huang et al., 2019; S. Li and
Lee, 2017; Scona et al., 2018; Y. Sun et al., 2017].

Dynamic objects filtering

DS-SLAM [C. Yu et al., 2018] uses semantic information to mask out people in the
images as they are likely to be dynamic. Furthermore they perform a moving consistency
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Figure 2.16 – Illustration of the pipeline of the dynamic SLAM [C. Yu et al., 2018]. As
we can see keypoints on dynamic people are removed after the geometric check.

check based on epipolar geometry on the keypoints in each segmented area , which allows
them to deduce which objects are moving. More precisely the main idea is to compute
the 2D distance in image space between each point and its corresponding epipolar line,
that is computed with a fundamental matrix estimated in a RANSAC scheme. If the
distance is more than some threshold the point is flagged as an outlier. If the number of
outliers in a given segmented region is higher than a threshold the region is flagged as
dynamic and all points within it are discarded. While this approach works it does not
use semantic information but rather the segmentation of the image, moreover it assumes
that a fundamental matrix can be accurately estimated and thus that the scene is mostly
static. The pipeline of [C. Yu et al., 2018] is visible in figure 2.16. SOF-SLAM [Cui and Ma,
2019] has a similar approach: each frame is segmented and dynamic or potentially dynamic
objects are masked out to robustly estimate the fundamental matrix between the previous
and current frame. Then the distance between each potentially dynamic keypoint and its
corresponding epipolar line is computed to determine whether it is static or dynamic. The
approach of [Han and Xi, 2020] is similar, except that points in a priori dynamic objects
are removed and an homography matrix is then computed using remaining points which
are discarded if their optical flow is larger than a threshold. [Fan et al., 2020] proposes a
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comparable approach but an additional cleaning step using depth information is applied to
refine object masks. [Bescos et al., 2018] proposes to use an object segmentation network
to detect and segment objects in frames. Objects are classified into two categories: static
or a priori dynamic (e.g. cars, pedestrians). All a priori dynamic objects are then removed
from the image which is used in a SLAM framework. This can lead to a deterioration of
the pose estimation as a priori dynamic objects can as well be static (e.g. a parked car). To
detect non-segmented objects they can as well check the depth consistency. However this
approach does not work for far or small objects. In their experiments [Bescos et al., 2018]
show that their approach improves camera pose estimation in highly dynamic scenes.
However in static scenes removing keypoints can hurt the pose accuracy. To counter that,
SLAMANTIC [Schorghuber et al., 2019] proposes to compute a confidence value for each
map point depending on both the semantic class and the number of correct observations.
During tracking high confidence points are used to obtain a first pose estimation, then
using this estimation the reprojection error of less confident map points is computed to
validate or invalidate them. Finally the pose is refined using all static and valid points.
The approach of [Brasch et al., 2018] is similar as semantic information is used as a prior
for points staticity and the observation of a point during time can make a point static
or dynamic. DOT [Ballester et al., 2021] detects truly dynamic objects. Their system
segments potentially dynamic objects, the static parts being used for camera tracking.
Then for each segmented object the reprojection error is computed densely. If the median
of this error is higher than a given threshold then the object has moved and will not be
used in the SLAM system. PoseFusion [T. Zhang and Nakamura, 2018] detects humans in
scenes to remove them as they are mostly dynamic. To do so they use a human estimation
network to get a set of human joints that are used to segment the 3D point cloud given
by the RGB-D camera. These parts are then removed from the point cloud, the reminders
are used in a classical dense SLAM system, Elastic Fusion [Whelan et al., 2015]. RDS-
SLAM [Y. Liu and Miura, 2021] proposes a real time semantic SLAM masking out a priori
dynamic objects but loses tracking accuracy.

Dynamic Objects tracking

Instead of simply ignoring dynamic objects some SLAM systems [Bârsan et al., 2018;
Bescos et al., 2021; Hachiuma et al., 2020; Henein et al., 2020; Huang et al., 2019; 2020;
Runz et al., 2018; Rünz and Agapito, 2017; B. Xu et al., 2019; S. Yang and Scherer,
2019a; J. Zhang et al., 2020] propose to track them, estimating their 6 DoF pose which
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Figure 2.17 – Example of semantic maps produced by [Runz et al., 2018]. As we can see
objects are successfully segmented and tracked in RGB-D images.

can be refined in the BA. These approaches are interesting because first, they estimate
the pose of objects which can be useful for some applications such as autonomous driving.
Second, they can as well improve camera pose estimation by adding constraints about
the displacement of objects in the Bundle Adjustment. MaskFusion [Runz et al., 2018]
tracks the camera as well as segmented objects in RGB-D frames by minimizing both a
photometric and an ICP error. Depth is used to improve the semantic segmentation of
Mask-RCNN [K. He et al., 2017]. Furthermore their approach allows to reconstruct the
3D objects. However their evaluation of SLAM only shows the impact of masking out
people in the scene, similarly to [Bescos et al., 2018], and does not show the impact of
tracking on the camera pose estimation. An example of map produced by MaskFusion is
visible in figure 2.17.

MaskFusion is the continuity of CoFusion [Rünz and Agapito, 2017] which is very
similar but can as well segment objects based on their motion using a CRF optimiza-
tion. Pixels with similar motion and appearance are clustered together. MID-Fusion [B.
Xu et al., 2019] relates to both those approaches as it is a dense object-level SLAM but
uses a volumetric representation based on an octree to optimize space usage. The camera
tracking is done by combining an ICP and photometric error. However the object pose
estimation is parametrized in the object frame which improves the ICP convergence. Fur-
thermore they combine motion segmentation as in [Rünz and Agapito, 2017] and semantic
segmentation as in [Runz et al., 2018]. Their approach shows better tracking and recon-
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struction results than previous approaches. EM-Fusion [Strecke and Stuckler, 2019] is a
follow up work of [Rünz and Agapito, 2017] and [Runz et al., 2018]. In this paper they
propose to track objects in a dense SLAM but use an Expectation-Maximization (EM)
framework to estimate data association. Objects are segmented in the image using Mask-
RCNN [K. He et al., 2017] and the probabilistic data association is computed using the
Signed Distance Function (SDF) between the corresponding point and the object. Each
object (including the background) is then tracked in a weighted minimization problem
where the weight is the data association probability. This soft framework allows to better
track objects moving in the scene. DetectFusion [Hachiuma et al., 2020] proposes a dense
SLAM with object tracking as [Runz et al., 2018] but uses an object detector followed by
geometrical segmentation and motion based segmentation to reach real-time capacities.
DynaSLAM II [Bescos et al., 2021] is an extension of [Bescos et al., 2018] which main limit
was that all a priori dynamic objects were masked out, even if they were static at the time.
In their work they propose to track the camera using a priori static parts of the image as
well as to track segmented objects. They tightly integrate the estimations by optimizing
all keyframes poses, object poses, static map points and objects points in a Bundle Ad-
justment. CubeSLAM [S. Yang and Scherer, 2019a] uses an object detection network to
estimate 2D bounding boxes and object classes in RGB images. For each detected object
they estimate a set of 3D bounding boxes that tightly project into the 2D boxes. The
edges of the 3D boxes and edges extracted from the RGB images are then compared to
chose the best 3D bounding box. The estimations are then tightly integrated in a classical
SLAM with a Bundle Adjustment. The BA enforces 3D bounding boxes consistency over
frames, consistency with the 2D bounding boxes observations and with the object map
points. If an object is moving its points are dynamically re-projected using the estimated
object pose and a motion model ensures that the objects movement is smooth. [P. Li, Qin,
et al., 2018] is similar to CubeSLAM but is limited to cars and uses a simpler approach
for 3D bounding box estimation. However they do not tightly integrate the object and
camera poses in a Bundle Adjustment, poses are refined separately. ClusterVO [Huang
et al., 2020] follows the work of ClusterSLAM [Huang et al., 2019] to track general objects
without imposing priors and using only an object detection network [Redmon et al., 2016].
At each frame the detection network outputs a set of bounding boxes that are associated
with existing objects in the map. Then new object points are triangulated and associated
to existing objects through a CRF optimization based on their 2D and 3D location. Fi-
nally the object poses, object points, world points and camera poses are tightly optimized
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Figure 2.18 – Illustration of the pipeline of [Huang et al., 2020]. First is the data
association step based on the speed of clusters, followed by the creation of new points

associated to clusters as well as new clusters. At the end a BA is performed.

in a bundle adjustment, similarly to [Bescos et al., 2021] with a white noise acceleration
prior. The pipeline of [Huang et al., 2020] is visible figure 2.18.

VDO-SLAM [J. Zhang et al., 2020] also tracks dynamic objects using RGB-D images
and instance segmentation. They argue that as objects usually occupy only a small portion
of the image not many keypoints can be extracted using sparse approaches. To answer
this problem they estimate optical flow for each object and use it to extract and match a
large number of points within each object mask as can be seen in figure 2.19.

2.3.5 Semantic data for object based SLAM

The idea of object based SLAM systems is to use objects in the scene as landmarks,
instead of geometric primitive like points for example. This allows the SLAM to create
a higher level, more meaningful map than a purely geometric map, getting closer to a
human perception of space. Object based SLAM systems can be divided in three parts:
first are systems that use a priori known objects in the scene [Civera et al., 2011; Fioraio
and Di Stefano, 2013; Himri et al., 2018; Ramadasan et al., 2015; Salas-Moreno et al.,
2013; Zeng et al., 2018]. These approaches however require specific objects to be present
in the scene as well as sepcific object detectors. Second are object based systems that use
generic object detectors such as [W. Liu et al., 2016; Redmon et al., 2016] and generic
object representations such as cubes, spheres or quadrics [Frey et al., 2019; D. Frost et al.,
2018; Hosseinzadeh et al., 2018; 2019; J. Li et al., 2019; McCormac et al., 2018; Nicholson
et al., 2018; Ok et al., 2019; Sünderhauf and Milford, 2017; S. Yang and Scherer, 2019a]
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Figure 2.19 – Example of object tracking from VDO-SLAM [J. Zhang et al., 2020]. As
we can see many points are extracted from segmented objects thanks to the optical flow.

or that seek to solve specific problems such as scale estimation [D. Frost et al., 2018; D. P.
Frost et al., 2016; Knorr and Kurz, 2016; Sucar and Hayet, 2017; 2018] or probabilistic
data association for objects [Atanasov et al., 2014; Bowman et al., 2017; K. Doherty et al.,
2019; K. J. Doherty et al., 2020; Y. Wu et al., 2020; T. Zhang and Nakamura, 2018].

Using known models

[Civera et al., 2011] is one of the first monocular SLAM that uses a set of known objects
in an EKF SLAM system. First a database of objects is built using a Structure From Mo-
tion (SFM [Schonberger and Frahm, 2016]) approach. When an object is recognized in the
scene (with SURF matching [Bay et al., 2006]) its pose is estimated and 3D objects points
are computed in the world frame and injected in the EKF state. This approach allows
them to build a map containing dense 3D object models which enables robot interactions.
Similarly [Fioraio and Di Stefano, 2013] detect objects with matching keypoints but use a
more modern Bundle Adjustment based SLAM in which objects points reprojection error
is minimized. Their approach can work with both 2D (as sets of images) and 3D object
models. [Salas-Moreno et al., 2013] use a pre-trained object detection module to estimate
the 6 DoF pose of objects visible in RGB-D images. Each detected object is then rendered
using its 3D model. The camera pose can then be estimated with an ICP minimization
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Figure 2.20 – Illustration of SLAM++ [Salas-Moreno et al., 2013]

of the rendered models and the measured depth map using both depth and normals. The
system then refines all the objects and cameras poses in a pose graph. Their approach
enables seamless augmented reality applications with interaction of the virtual content
with the real scene. [Himri et al., 2018] builds a SLAM system in the specific scenarios
of UAV (Underwater Autonomous Vehicles). Their approach is similar to [Civera et al.,
2011] as they detect specific objects using a data base and estimate their pose with an
ICP optimization. The estimated poses are then integrated in an EKF SLAM to obtain
camera pose and speed estimations.

Using generic object detectors

The main drawback of object based SLAM that use known models is that they need
a specific object detector [Rad and Lepetit, 2017; Xiang et al., 2018] as well as objects to
be present in the scene, which limits their applicability. This is the reason why this kind
of approaches is rather rare. Specific object detectors can be replaced by generic ones,
that do not estimate the pose of objects but rather their 2D location as well as 2D spatial
extent under the form of a 2D bounding box. The idea is then to estimate a 3D landmark
from multiple 2D bounding boxes seen from different view points. [Nicholson et al., 2018]
proposes to generate quadrics from objects 2D detections. Their idea is to optimize the
quadric parameters, camera pose and points 3D position such that the projection of the
quadric tightly fit each 2D bounding box. While this does not clearly improve the state of
the art results the generated map contains additional valuable information. Examples of
quadrics can be seen in figure 2.22. [Sünderhauf and Milford, 2017] has a similar approach.
[Hosseinzadeh et al., 2018] has a similar approach but proposes the incremental optimiza-
tion of closed quadrics, that have a peculiar form. Furthermore they detect planes in the
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Figure 2.21 – Example of maps with quadrics and planes from [Hosseinzadeh et al., 2018]

scene and impose constraints between quadrics, planes, points and cameras to improve
mapping and pose estimation. Example of maps with quadrics and planes can be seen in
figure 2.21.

[Hosseinzadeh et al., 2019] is an improvement of [Hosseinzadeh et al., 2018]. In this
paper they propose to use only monocular cameras for plane estimation, use a real-time
object detector [Redmon et al., 2016] for faster inference and use a CNN to estimate point
clouds for detected objects which is used to impose a shape prior on the quadrics. Some
approaches [Gaudillière et al., 2019; 2020; Zins et al., 2022] propose to model objects as
quadrics to improve relocalization, particularly in challenging cases with repetitive patters
or large viewpoint variations. [Gaudillière et al., 2019] proposes a closed form solution to
compute the translation of a camera using only a set of detected objects and quadrics
in the map. [Zins et al., 2022] proposes to estimate the parameters of quadrics using a
learning based approach which improves the accuracy of camera pose estimation.

CubeSLAM [S. Yang and Scherer, 2019a] proposes to use 3D bounding boxes. From
a single RGB image and a set of 2D object detections an algorithm generates one 3D
bounding box per object such as the projection of the 3D box tightly fits in the 2D
box. The Bundle Adjustment minimizes as well this reprojection error to combine all the
single 3D boxes estimations. This approach allows [S. Yang and Scherer, 2019a] to create a
more meaningful semantic map, reduce the scale drift in the monocular case, handle pure
rotations as well as dynamic objects (see section 2.3.4). [S. Yang and Scherer, 2019b] is an
extension of their work using planes. [Tschopp et al., 2021] proposes to use superquadrics
to represent objects with more complete shapes than simple quadrics. [Ok et al., 2019]

80



2.3. Semantic SLAM

Figure 2.22 – Example of object quadrics build by [Nicholson et al., 2018]

Figure 2.23 – Example of reconstructed objects built by [McCormac et al., 2018].

uses as well ellipsoids to represent detected objects, however they also use texture and
semantic information to better fit the quadrics. They use texture information to estimate
a plane in the object that constrains the quadric along one dimension. Furthermore the
shape of each object is constrained by its semantic class.

Fusion++ [McCormac et al., 2018] is different from other generic objects SLAM sys-
tems as it does not use a single model for all objects. Indeed each object segmented by
Mask-RCNN [K. He et al., 2017] is densely reconstructed in an object level map using a
TSDF [Izadi et al., 2011] adapted to the object size. The camera is tracked by minimizing
the ICP error between the map and the observed depth image. Finally the pose graph
containing objects and camera poses is optimized, yielding refined pose estimations. The
objects are accurately reconstructed however the camera pose accuracy is not as good as
[Mur-Artal and Tardós, 2017; Whelan et al., 2015]. Example of reconstructed objects and
pose graph can be seen in figure 2.23.

Some works [Bowman et al., 2017; K. Doherty et al., 2019; K. J. Doherty et al., 2020;
Y. Wu et al., 2020; T. Zhang and Nakamura, 2018] specifically tackle the problem of data
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association for detected objects. Indeed object detectors allow to use objects as high level
landmarks, however they may exist multiple objects of the same class in the scene, thus
associating a landmark to a detected object becomes a crucial problem. However this
problem is complex as data association is discrete while pose estimation is continuous.
[Atanasov et al., 2014] is the first to take into account semantic information with data
association. They propose to use random finite sets to represent the detected objects,
which allows them to model a random number of objects, missed detections and false
alarms. However computing the likelihood of a random finite set is expensive, thus they
show as well that it can be approximated by computing the permanent of a specific matrix.
This allows them to incorporate semantic data association in a particle filter. [Bowman et
al., 2017] proposes to solve the problem of estimating poses, objects and point positions
with the most probable data association using an expectation maximization approach.
They show that as object landmarks are sparse and distinguishable, loop closure detection
can be improved.

One of the main downside of monocular SLAM systems is that they can not access
the scale of the scene which makes them subject to the well known scale drift problem.
Furthermore as the scale is unknown, meaningful augmented reality applications are not
possible without the user intervention. Some works [D. Frost et al., 2018; D. P. Frost
et al., 2016; Knorr and Kurz, 2016; Sucar and Hayet, 2017; 2018] propose to use objects
in the scene to estimate the scale factor. [D. Frost et al., 2018; D. P. Frost et al., 2016]
represents objects as sphere, i.e. a 3D position in space and a radius corresponding to the
object spatial extent. By minimizing the reprojection of spheres in 2D bounding boxes and
assuming that the spatial extent of objects is known and fixed they ensure that the scale
factor does not drift. [Sucar and Hayet, 2018] formulates the problem of scale estimation
as a bayesian estimation using object bounding boxes and a priori sizes. To do so they
model both the evolution of the scale factor and the likelihood of detections given the
scale factor, the map and the object size. This approach effectively reduces scale drift
however it is based on the assumption that objects are oriented vertically and that the
detected surface is parallel to the vertical direction, which limits the applicability. [Knorr
and Kurz, 2016] uses human face detection to estimate the absolute scale of the scene.

Using a neural network as a generic object representation

Some very recent work propose to use neural networks to represent objects, which
is often designated as reconstruction with shape priors. NodeSLAM [Sucar et al., 2020]
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proposes to train a Variational Auto-Encoder (VAE) to compress object geometries into
a latent code using a 3D CNN. The latent code is then used to generate the object
geometry as a set of voxels. Using a single RGB-D image, NodeSLAM optimizes the
pose and latent code corresponding to detected objects, so that their estimated geometry
fits the depth image. This reconstruction pipeline is integrated into a SLAM system.
The camera is tracked by forcing object poses to be consistent across frames, similarly
to what is done in classical object SLAM systems. However contrary to classical SLAM
system this approach can work with all objects from a category instead of requiring a
specific object pose estimation algorithm. DSP-SLAM [J. Wang et al., 2021] goes further
than NodeSLAM by integrating the reconstruction pipeline into a classical sparse SLAM
system. It uses DeepSDF [Do et al., 2018] as an implicit representation of objects. The
latent code representing objects is optimized to fit 3D points coming either from the SLAM
map or from a LidAR scanner. Then the code is fixed and used to estimate the pose of
objects at each frame, allowing the SLAM to use objects as high level landmarks. We can
also cite FroDO [Runz et al., 2020], which inspired DSP-SLAM. They use a sequence of
RGB images to estimate a latent code representing objects. Latent codes are then fused
and refined together with the object pose, using additional photometric, geometric and
silhouette constraints. This allows them to accurately reconstruct objects, however they
do not use objects as a higher level constrain to improve the pose estimation accuracy.
Furthermore, contrary to classical SLAM systems their approach is not sequential and
not real-time.

All those approaches have the interesting property of yielding in real time complete
watertight meshes that closely correspond to reality.

2.4 Conclusion

In this chapter we first introduced a classical keyframe based SLAM system. Beginning
with its roots from SfM and filters we introduced the problem of bundle adjustment and
how to solve it. Then we built a modern SLAM system around the BA by first adding a
front-end that pre-processes the images. We showed that decoupling tracking and mapping
in two separate threads could enable a real time SLAM system that solved the BA on
using a subset of keyframes. We added the blocks of initialization, relocalization and loop
closure, that are not part of the core of a SLAM system but are nonetheless essential
to build an accurate large-scale SLAM system. Next we introduced the metrics that are
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commonly used to evaluate the quality of trajectories produced by a SLAM system. Finally
we presented some limits of classical SLAMs, particularly the lack of high level semantic
information in the map.

In the following part we studied how semantic information can be used in SLAM
systems. First we presented papers that aim at building a semantic map using segmented
images. Then we showed how semantic information can be used for relocalization, when
classical approaches fail. While some papers truly use semantic information to represent
the scene with higher semantic entities or to distinguish static objects others only use
semantic information for the invariance brought by neural networks.

Then we studied how semantic information can be used to enable SLAM in dynamic
cases as it is an indicator of objects dynamicity. A first approach consists in using only
static classes for SLAM, however this approach can reduce the SLAM accuracy. Thus
systems have been developed to detect if a priori dynamic objects are truly moving. Some
SLAM systems have gone even further by proposing to use camera pose estimation to
track moving objects in the scene.

Finally we presented papers that use objects in the scene as high level landmarks.
Those approaches create entities that are closer to the human representation of the world
which could enable applications in augmented reality or robotics. Those systems usually
have to chose between generic and specific representations, however recent deep learning
based approaches tend to close this gap.
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L6DNET: LIGHT 6 DOF NETWORK FOR

ROBUST AND PRECISE OBJECT POSE

ESTIMATION WITH SMALL DATASETS
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In this chapter we present our object pose estimation algorithm, L6DNet. This kind
of algorithms are necessary for object based SLAM systems that use specific objects
in the scene as anchors. Doing so they can improve the accuracy of camera tracking
and mapping while also creating a higher level map, enabling applications (e.g. A.R.
applied on objects). However recent algorithms based on deep learning often require large
amount of data, computational power and training time, which prohibits their use in real
life scenarios. To solve this problem we propose a new algorithm, able to reach state-
of-the-art performances while requiring little resources. To do so, we propose a hybrid,
data driven strategy in two steps. First, two CNNs use patches extracted from objects
to predict a set of points on the object surface. Second, predicted points are put in
correspondence with a priori known points to compute the object 6 DoF pose. We show
on a well known dataset that our approach yields results on par with state-of-the-art. A
video explaining the approach and showing examples of object pose estimation can be
fount at https://youtu.be/uuwjlyRxWtc.
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3.1 Introduction

The goal of object pose estimation is to predict the rotation and position of an object
relative to a known coordinate frame (usually the camera coordinate frame). This com-
puter vision problem has many applications such as augmented reality or robotics. In the
former case, it allows a realistic insertion of virtual objects in an image as described in
[Marchand et al., 2016] and shown in Fig. 3.1. In the latter it can be used as an input for
a robotic arm to grasp and manipulate the object such as in [C. Wang et al., 2019]. Let
us recall that object pose estimation can also be used as an input to integrate semantic
information into a SLAM system and improve both camera pose estimation and mapping
[Civera et al., 2011; Fioraio and Di Stefano, 2013; Salas-Moreno et al., 2013]. Indeed if
an object is present in a scene then its pose relative to the camera can be used as an
additional constraint in the tracking and bundle adjustment cost function. Furthermore if
the 3D model of the object is known, it can be used to constrain the map points, so that
they lie on the 3D model. Finally, we can also make use of the additional pose information,
for example by attaching virtual content to the object, enabling A.R. applications.

Although heavily studied, this problem is still relevant as it is unresolved due to its
complexity. Indeed some scenes can be highly challenging due to the presence of cluttering,
occlusions, changes in illumination, viewpoint, and textureless objects. Nowadays color
and depth (RGB-D) sensors are smaller and cheaper than ever, making them relevant for
object pose estimation. Indeed, compared to color-only (RGB) sensors, the depth channel
provides relevant information for estimating the pose of textureless objects in dimly lit
environments.

Classical object pose estimation approaches are either based on local descriptors fol-
lowed by 2D-3D correspondences [Marchand et al., 2016], or on template matching [Hin-
terstoisser et al., 2012; Kehl et al., 2016; Tejani et al., 2014]. However the challenging cases
listed above limit their performance. To address these limitations most recent methods
solve the problem of object pose estimation with a data driven strategy using for example
Convolutional Neural Networks (CNNs) [Y. He et al., 2020; Y. Li, Wang, et al., 2018;
Z. Li et al., 2019; K. Park et al., 2019; S. Peng et al., 2019; Rad and Lepetit, 2017; Tekin
et al., 2018; 2019; C. Wang et al., 2019; Xiang et al., 2018]. These approaches work in a
holistic way, considering a whole RGB or RGB-D image as an input and making a single
estimation of the pose. While some methods are hybrid, using a learning-based approach
followed by a geometrical solver [Y. He et al., 2020; Z. Li et al., 2019; K. Park et al., 2019;
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a dcb

Figure 3.1 – To estimate the pose of an object we propose to use a single RGB-D image
(a) to predict the position of a set of sparse 3D keypoints (shown as spheres in b) in the
camera coordinate system, which are then registered in 3D with corresponding points in
the world coordinate system (shown as cubes in b) to retrieve the pose (c) that can be

used to insert a virtual object (d) in the scene as an AR application

S. Peng et al., 2019; Rad and Lepetit, 2017; Tekin et al., 2018], others use an end-to-end
CNN to predict the pose [Y. Li, Wang, et al., 2018; C. Wang et al., 2019; Xiang et al.,
2018].

Some older methods however have proven to be reliable using patch voting approaches
coupled to a learning algorithm [Fanelli et al., 2011; Kacete et al., 2016; Kehl et al., 2016;
Riegler et al., 2013; Tejani et al., 2014]. Those strategies predict a set of pose hypothesis
from local patches using data driven functions and, from this set of hypothesis, retrieve a
pose.

We argue that we can leverage the robustness brought by local approaches with a
two stages strategy, predicting the pose in an intermediate Euclidean 3D space and re-
trieving it with a geometrical solver. The intermediate representation makes it natural to
apply a voting strategy to the set of pose hypothesis. Our hybrid strategy allows us to
correctly supervise our CNN training, not being dependent on the choice of pose repre-
sentation, not requiring a custom loss function to compute the pose error and not having
to predict rotation and translation separately. Moreover, like [Tekin et al., 2019] we argue
that predicting keypoints in 3D and solving a 3D-3D correspondence problem yields to
more accurate results rather than predicting in 2D and solving a 2D-3D correspondence
problem.

In this chapter we tackle the problem of pose estimation considering a single RGB-D
image as input. We design a robust and accurate algorithm to predict the pose of a generic
rigid object in a scene. Our contributions are :

• We propose an hybrid pipeline in two parts: a data driven block that predicts a set
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of 3D points in the camera coordinate system and a geometrical block. The latter
retrieves the pose given the estimated points and a priori chosen keypoints in the
world coordinate system, minimizing a registration error.

• We propose to use two CNNs in cascade in the former part. First we predict the
2D location of the object in the image, classifying local patches extracted from the
image with a CNN. Then we use a regression CNN to predict a set of possible 3D
positions of points in the camera coordinate system. The position hypothesis are
then robustly aggregated to obtain a single estimation of the 3D location of the
points.

• We demonstrate performance improvements in terms of accuracy over state-of-the-
art methods of RGB-D pose estimation on the standard LineMod [Hinterstoisser
et al., 2012] dataset and study the impact of some parameters of our method. We
also validate our approach within a visual servoing experiment.

3.2 Related Work

In this section we focus on object pose estimation algorithms. For a state-of-the-art of
object based SLAM systems that make use of object pose estimation we refer the reader
to the chapter 2 of this manuscript. We will limit ourselves to learning based methods
as the literature on object pose estimation is vast. We can separate those methods into
two main categories: patch-based methods and holistic methods. The latter can be as well
separated into two categories: direct and indirect strategies.

Patch-Based Methods. Patch-based methods output multiple pose hypothesis for a
single image [Fanelli et al., 2011; Gall et al., 2011; Kehl et al., 2016; Riegler et al., 2013;
Tejani et al., 2014]. The predictions, called votes, which are obtained from local patches
in the image are then aggregated to get a single estimation, which is more robust than
each vote taken independently. Hough based methods is such a type of voting scheme.
Hough Random Forests (HRFs) have been introduced by [Gall et al., 2011] to estimate the
Hough transform with a learning based approach for object detection, tracking in 2D and
actions recognition. The concept of HRFs has also been applied to object pose estimation
by [Fanelli et al., 2011] to predict the translation and rotation of human heads. In that
case, both the nose 3D position and Euler angles are regressed. Those methods rely on
binary tests to describe the split hypothesis used in random forests. [Tejani et al., 2014]
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proposes to use a split function based on a template patch descriptor. It also proposes
to train a random forest using only object patches. As HRFs are based on handcrafted
split functions, their performance is limited by image variations. To overcome this, Hough
Convolutional Neural Networks (HCNNs) have been introduced by [Riegler et al., 2013]
as an alternative to HRFs. A CNN was designed by [Riegler et al., 2013] to regress at
once the probability of a patch belonging to the foreground as well as the object pose. In
all cases a non parametric clustering algorithm is then used on object patches to robustly
retrieve the pose.

Direct Holistic Methods. Recently, most studies [Do et al., 2018; Kehl et al., 2017;
Y. Li, Wang, et al., 2018; C. Wang et al., 2019; Xiang et al., 2018] take a whole image
as an input and try to leverage the capabilities of CNNs by directly estimating the pose.
PoseCNN [Xiang et al., 2018] proposes an end-to-end CNN to perform 3 related tasks: se-
mantic labeling, translation prediction from the object estimated 2D center and depth and
rotation inference. To correctly supervise the network training, [Xiang et al., 2018] uses a
specific loss called PoseLoss, defining the error as an average euclidean distance between
rotated point clouds. SSD6D, [Kehl et al., 2017], uses a CNN to predict the object class
with its bounding box, as well as to classify discretized viewpoints and in-plane rotations
to create a set of pose hypothesis. Thus, the network loss is a parametric combination of
multiple losses. DenseFusion, [C. Wang et al., 2019], combines color and depth channels
in a deep network to fuse them, creating a set of features which are then used by a CNN
to predict the pose. It can be further rapidly refined by a network in an iterative manner.
In some recent works [Do et al., 2018; Mahendran et al., 2017; Sundermeyer et al., 2018]
the choice of representation for rotations has been studied as it shows to have an impact
on the accuracy of the pose estimation [Mahendran et al., 2017].

Indirect Holistic Methods. On the other side some methods [Grabner et al., 2018;
Y. He et al., 2020; Z. Li et al., 2019; Pavlakos et al., 2017; S. Peng et al., 2019; Rad and
Lepetit, 2017; Tekin et al., 2018; J. Wu et al., 2016] are inspired by classical pose estima-
tion from 2D-3D correspondence. However CNNs are used to address the limits imposed
by handcrafted features. To do so the 2D location of the projection of prior chosen 3D
keypoints is predicted in the image. The pose is then retrieved using a 2D-3D geometrical
solver e.g. a Perspective-n-Points (PnP) algorithm. For example BB8, [Rad and Lepetit,
2017] coarsely segments the object and apply a deep convolutional network to the local
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window around the object to predict the 2D location of the projection of the 8 corners
of the object bounding box. This estimation is followed by a PnP that recovers the pose.
[Tekin et al., 2018] proposes a single-shot CNN that classifies the object, predicts a con-
fidence term as well as the 2D location of the projection of 9 keypoints in the bounding
box. PVNet[S. Peng et al., 2019] proposes to apply an offset based approach to predict the
2D location of a set of keypoints on the object surface. To do so, they segment the object
in the image and predict a vector field on the segmented object, the spatial probability
distribution of each keypoint is then retrieved and used in an uncertainty driven PnP
to estimate the pose. H+O [Tekin et al., 2019] estimates at once hand-object poses as
well as objects and actions classes from RGB images. A CNN predicts the 3D position of
21 points of the object bounding box and the object pose can be retrieved from 3D-3D
correspondences. PVN3D [Y. He et al., 2020] uses 6 different networks to estimate the
pose: 3 (including [C. Wang et al., 2019]) are used to extract and fuse features from a
single RGB-D image and 3 are used to predict a set of 3D keypoints and the objects
segmentation.

3.3 Proposed Approach: our Hybrid, Patch-Based
Strategy

Our goal is to achieve a robust and accurate 6-DoF pose estimation of a 3D object,
i.e. to estimate the transformation cTw ∈ SE(3) of an object of interest, provided with a
coordinate system called world coordinate system Fw, in the camera coordinate system
Fc. We represent the transformation cTw between Fc and Fw as

cTw =
R t

0 1

 (3.1)

where R ∈ SO(3) is a 3D rotation matrix and t ∈ R3 is a 3D translation vector. For
simplicity, in this chapter we denote T the transformation cTw.

The pipeline of the proposed strategy can be seen Fig. 3.2: we adopt a patch voting
based approach inspired from [Gall et al., 2011; Riegler et al., 2013], using multiple local
information to predict a sparsified version of the object geometry in Fc. First, we design
and train a classification CNN to predict the class of patches extracted from the input
image either as object or background. This allows us to roughly localize the object in
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Figure 3.2 – Overview of our pipeline solution: first (a), patches are extracted from an
RGB-D image and classified as object or background. Next (b), for each object patch, a
regression CNN predicts a set of vectors estimating the position of specific 3D keypoints

in Fc. Those votes are then aggregated in a non parametric way to obtain a robust
estimation of the points in Fc. (c) by minimizing the registration error between

corresponding estimated keypoints in Fc and reference keypoints in Fw we retrieve the
6D pose. The pipeline is illustrated here with patches of size 48 × 48.

2D. Then, we design and train a regression network to predict for each extracted object
patch the 3D position in Fc of a set of prior chosen keypoints, selected in Fw. Finally,
by minimizing the 3D-3D registration error between corresponding estimated keypoints
in Fc and reference keypoints in Fw we retrieve the 6D pose. Hence our method belongs
to both the indirect and patch-based set of methods, contrary to most recent methods
[Y. He et al., 2020; S. Peng et al., 2019] that are indirect and holistic.

3.3.1 2D Localization

In this section we show how we take in account the visibility of the object in each
patch. Indeed not all patches contain relevant information about the object pose. Unlike
in [Riegler et al., 2013] who uses a single network for both classification and pose esti-
mation, we first use a classification network to decide whether or not a patch contains
a representation of the object. We argue that classifying the patches, keeping only rele-
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vant ones before transmitting them to the regression network allows the CNN to fit using
only relevant information about the object pose. Moreover we do not need a sophisticated
parametric loss function whose parameters have to be optimized to supervise the training.

Model. Our model is inspired by a light VGG-like architecture and can be seen in the first
block of Fig. 3.2. It is composed of a set of convolutional layers to extract features from
the images and max-pooling layers to introduce scale invariance followed by 2 dense layers
to classify the extracted features. For the last layer, we use a sigmoid activation function,
for each other layer we use the classical ReLu activation function. To help reduce overfit-
ting dropout is also used on the first fully connected layer as it contains the most weights.

Data. To train our classification network in a supervised manner, we need labeled data.
We capture a set of images representing the object of interest from multiple points of
view. The classification neural network is trained using a set of patches {Pi = (Ii, bi)}
where Ii is the RGB image of the patch of size [h × w], i.e. Ii ∈ R[h×w]×3 and bi ∈ [0, 1]
represents whether or not the object is visible in the image Ii. We obtain it by producing
a binary mask of the object created by a 2D projection of the object 3D model using
its ground truth pose. To increase the robustness of our algorithm across changes in illu-
mination we proceed to do data augmentation by randomly modifying patches brightness.

Training. We denote the classification function fθc optimized over θc which represents
our CNN weights. The classification parameters are optimized by minimizing over the
training data set:

θ∗
c = arg min

θc

Lc(b, b̂). (3.2)

where b̂ = fθc(I) and Lc is the classical weighted binary cross entropy.

Inference. Given an unseen image, we extract K patches from the image in a sliding
window fashion, with K depending on the window stride d (in our experiment K can vary
from to a few hundreds to a few thousands with d going from 4 to 48 pixels) and get a
set of patches P = {Pi, i ∈ [1, K]}. Each patch is then fed to the classification network
fθ∗

c
whose output is

{
b̂i = p(bi|Ii) = fθ∗

c
(Ii), i ∈ [1, K]

}
where p denotes the probability.

We show in Fig. 3.3 some heat maps obtained using the probability estimated for each
patch. We can see that the patches extracted from the object have a high probability of
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being classified as object while the patches extracted from the background have a low
probability. As we can see the probability maps are very similar to 2D segmentation.
However our method gives coarser results and needs less data than classical segmentation
methods. Moreover our strategy is flexible as we can tune the patch extraction stride to
balance inference time and segmentation precision.

𝑓𝜃𝑐∗
𝑓𝜃𝑐∗𝑓𝜃𝑐∗

Figure 3.3 – Examples of probability maps for the cat, driller and can from the LineMod
dataset

3.3.2 3D Points Prediction

We now show how we predict the position of a set of 3D keypoints in Fc, using the
object patches classified in the previous step. We use a regression network to predict
the 3D location of a set of M points in Fc. First, using a point selection algorithm like
the farthest point sampling algorithm we create a set of M 3D keypoints, denoted S =
{Xj ∈ R3, j ∈ [1, M ]}, chosen in the object model in Fw. For a given pose T of the object
in Fc we express the points in S in Fc, and denote the set ST := {Yj := TXj, j ∈ [1, M ]}.
Our goal is to estimate the location of the points in ST i.e. to estimate the location of the
keypoints of S in Fc. We argue that it is easier for the neural network to predict points in a
euclidean space than to predict a pose over SE(3). Indeed even if a geodesic distance exists
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over SE(3) using the twist parametrization, optimization over this distance is complex [B.
Hou et al., 2018]. Like [Z. Li et al., 2019] we argue that rotations and translations should
be treated differently or at least that adaptation is required to learn to regress coherently
in SE(3). In a way with our change of variables we suppress the direct impact of the
peculiarities of rotation space as every variable stays in R3. Furthermore we argue that
establishing 2D-3D correspondences is more ambiguous than 3D-3D correspondences for
object pose estimation. Indeed the PnP algorithm aims at minimizing the 2D projection
errors of keypoints. However, there may be small reprojection errors between keypoints
that are large in 3D. Comparisons between 2D-3D and 3D-3D correspondences can be
found in [Y. He et al., 2020].

Model. The architecture of the regression network can be seen in the second block of
Fig. 3.2. We use an architecture that is very close to the classification network because we
showed that we could reliably extract information from the patches with it. However we
change the fully connected part, adding one layer and using more weights for each layer
to give the regression CNN more flexibility.
Data. We extract only object patches P ′

i from the image. A regression neural network
is trained using a set of patches P ′ = {P ′

i = (I′
i, δi)} where I′

i is the RGB-D image of
the patch, i.e., I′

i ∈ R[h×w]×4 and δi ∈ R3×M is a set of M 3D vectors, called offsets and
defined in Equation 3.3:

δi = {δ1,i, δ2,i, ..., δM,i}

= {Y1 − Ci, Y2 − Ci, ..., YM − Ci}
(3.3)

with Yj ∈ STi
∀j ∈ [1, M ], Ti is the pose of the object visible in the ith patch and

Ci ∈ R3 is defined by :

Ci =


ui−cx

fx
Zi

vi−cy

fy
Zi

Zi

 (3.4)

with fx, fy, cx, cy the camera intrinsics, (ui, vi) the 2D position of the center of the ith

patch and Zi the value of the patch depth at location (ui, vi). Equation 3.4 corresponds to
the 3D back projection of the 2D center of the ith patch, using a pinhole model. Thus, δi is
a set of M vectors, each one going from the 3D center of the patch and one of the M points
in STi

. An example of offsets is visible in Fig. 3.4: for 3 patches extracted in the image,
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Figure 3.4 – Example of 3 patches extracted from an RGB-D image with the estimated
offsets for each patch in red and the corresponding points represented by colored

spheres, the center of each patch is shown by a black sphere

we show M = 9 offsets. The use of offsets is very interesting for object pose estimation
for two reasons. First, offsets bring invariance translation that is necessary due to the fact
that we consider local patches. Indeed, 2 patches extracted from 2 different images with
different poses may be very resembling. If displacement vectors are not used, the difference
in terms of pose can thus only be seen as noise by the network. On the contrary, if offsets
are employed the variable to regress is more correlated to patches aspect. Second, let’s
consider the space of all possibles object translation denoted Ωt, if we do not use offsets
then this space is at most R3. However when considering displacement vectors, the set
of all possible offsets has an upper bound of D where D is the largest diameter of the
object, thus Ωt ⊆ Ωδ = B(0, D) where B(0, D) is the ball of center 0 and radius D and
necessarily we have Ωδ ⊂ R3. The manifold in which predictions exist is reduced when
using offsets, making the learning procedure easier for a data driven algorithm.

Training. We denote the regression function gθr where θr is the vector of weights of
the network. The regression parameters are optimized by minimizing over the training
data set:

θ∗
r = arg min

θr

Lr(δ, δ̂) (3.5)

where δ̂ = gθr(I) and Lr is the mean absolute error:

Lr(δ, δ̂) = 1
3M

||δ − δ̂||1 (3.6)

where ||.||1 is the usual L1 norm, thus Lr represents the averaged L1 distance between
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the estimated and ground truth points. The L1 norm is preferred to the L2 norm because
it is less sensitive to outliers, that are robustly handled by the Gaussian kernel of the
mean-shift algorithm (see below) during the voting step.

Inference and Voting. Given the patches extracted in Sec. 3.3.1 and their associated
estimated probability, we discard the patches which probability is lower than a threshold
τ . Thus we get a set: Pτ =

{
Ii|b̂i > τ, i ∈ [1, K]

}
that can be written: Pτ = {Ii, i ∈ [1, N ]}

where N is the number of object patches that can go from a few tens to a few hundreds. For
the ith patch Ii fed to the regression network we get M predicted 3D offsets gθ∗

r
(Ii) denoted

δ̂i =
{
δ̂j,i, j ∈ [1, M ]

}
. We can then get an estimation of the 3D location of the transformed

points by adding the position Ci of the 3D center of the patch obtained from 3.4. This
way we get a set of M estimated points positions

{
Ŷj,i, j ∈ [1, M ]

}
in Fc. When we take

in account all the N patches we get N × M points: V̂ :=
{
Ŷj,i, i ∈ [1, N ], j ∈ [1, M ]

}
that

can be viewed as M clusters of N points or votes in the Fc. We denote the jth cluster
of points V̂j :=

{
Ŷj,i, i ∈ [1, N ]

}
. The votes must then be aggregated to get a robust

estimate of the 3D position of each point in the Fc. We denote the aggregation function
h : R3×N 7−→ R3. It is necessary to aggregate the N 3D votes in a robust manner to limit
the impact of possible outliers, hence h is chosen to be a non-parametric estimator of the
maxima of density. In our case we use a mean-shift estimator [Y. Cheng, 1995; Comaniciu
and Meer, 2002] which iteratively estimates the local weighted mean in 3.7:

m(X) =
∑

i k(Xi − X)Xi∑
i k(Xi − X) (3.7)

where k is a kernel function such as a Gaussian kernel: kσ(X − Y) = exp(− ||X−Y||2
2σ2 )

which gives less weight to outliers. The parameter σ was not optimized here but it can
simply be chosen to optimize a pose error metric on a validation set. Thus we can define
the set ŜT :=

{
Ỹj := h(V̂j), ∀j ∈ [1, M ]

}
which corresponds to the aggregated centroid of

each cluster in Fc. We show Fig. 3.5 such examples of votes.

3.3.3 3D-3D Correspondence Alignment

In this section we show how to retrieve the pose using the estimated 3D keypoints in Fc

that we obtained in the previous step and their corresponding reference keypoints in Fw.
Once the centroids have been voted we align the estimated points and their corresponding
reference to get a pose estimation from the estimated location of the points. To do so we

96



3.4. Experiments

 𝑉2

 𝑉3

 𝑉4

 𝑉5
 𝑉6

 𝑉7

 𝑉8
ℎ

 𝒀𝟐 𝒀𝟒

 𝒀𝟔

 𝒀𝟕

 𝒀𝟖
𝑔𝜃𝑟∗

Figure 3.5 – Example of predicted 3D points. From left to right: the cropped input
image, the cluster of 3D votes V̂jwhere each color corresponds to votes for a single point,

the aggregated points Ỹj obtained by mean-shift (best seen in color). The aggregated
point of cluster Ṽ3 is hidden behind the driller point cloud.

seek to find the transformation T∗ ∈ SE(3) that minimizes:

T∗ = arg min
T

M∑
j=1

||TXj − Ỹj||22 (3.8)

where T can also be represented with a minimal representation q ∈ se(3) where se(3) is
the Lie algebra associated to SE(3), Xj ∈ S, Ỹj ∈ ŜT and ||.||2 is the euclidean norm of
R3. That is finding the pose that best fits the points estimated by the aggregation of votes
in Fc. This problem is called the Orthogonal Procrustes Problem and can be solved using
SVD decomposition as shown in [Arun et al., 1987] or an Iteratively Reweighted Least
Square algorithm [Fitzgibbon, 2003; Malis and Marchand, 2006] to discard outliers and
obtain a robust estimation. To further refine the pose we can apply an Iterative Closest
Point (ICP) algorithm [Besl and McKay, 1992]. This consists in solving 3.8, using the 3D
model points and the points measured by the RGB-D camera projected in 3D using 3.4.

3.4 Experiments

We now present the results we obtained on the LineMod [Hinterstoisser et al., 2012]
dataset. This section is divided in four parts: first we present the technical details of
our implementation, then we evaluate our method in terms of classification accuracy,
3D points regression accuracy and we measure the object pose accuracy using a standard
metric and compare it to state-of-the-art results. Finally we compute the average inference
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time for a given object and study the impact of some hyper-parameters such as the level
of patch density on both pose accuracy and inference time. Last but not least, a visual
servoing task based on the proposed method is also considered.

3.4.1 Implementation Details

Training. To build our training data we extract patches in a sliding window fashion.
We train the classification network for 100 epochs and the regression network for 500
epochs. We use a learning rate of 10−4 with the Adam optimizer. A dropout of 50% is
used for the classification CNN and dropout of 20% and 10% is used on the two first
fully connected layers of the regression CNN. We implement the neural networks using
the tensorflow [Martıén Abadi et al., 2015] framework.

Keypoints Selection. Inspired by [S. Peng et al., 2019], we select the keypoints us-
ing the farthest point sampling algorithm which allows us to get a good coverage of the
object. In our experiments we chose to use M = 9 points.

Inference. Our algorithm is implemented in Python. During the inference we extract
patches with a stride d of 4 pixels. We chose to set the threshold τ at 0.98.The votes are ag-
gregated using the mean-shift algorithm and a gaussian kernel with variance σ2 = 402mm.
We use open3d ICP, on the sub map defined by the estimated bounding box. For testing
we use a Nvidia RTX2070 and an Intel Xeon @3.7 GHz. The patch size is chosen to be
h × w = 64 × 64 unless precised otherwise.

3.4.2 Datasets

The LineMod dataset consists of about 15 000 RGB-D images of 13 objects with
multiple recorded poses in a variable and cluttered environment. It is widely used by the
pose estimation community. We use the same method as [S. Peng et al., 2019; Rad and
Lepetit, 2017; C. Wang et al., 2019] to select training and testing images. The dataset
being small (about 100 images for training, yielding tens of thousands of patches), it is
very challenging for CNN based approaches as highlighted in [Xiang et al., 2018]. This
makes some methods like [S. Peng et al., 2019; Xiang et al., 2018] need synthetic data. Very
large datasets such as the YCB-Video dataset [Xiang et al., 2018] may not be available
for some objects as their creation is expensive in time as well as complex. Using data
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Table 3.1 – True positive rate (TPR) and true negative rate (TNR) (in %) for each
object using our classification network

ape ben. cam can cat drill. duck
TPR 98.2 89.8 92.8 91.0 97.5 95.1 91.3
TNR 99.9 99.5 99.6 99.7 99.7 99.7 99.9

hole. iron lamp eggbox glue phone MEAN
TPR 97.1 94.9 88.4 94.2 90.7 89.6 93.1
TNR 99.7 99.5 99.5 99.8 99.8 99.5 99.7

augmentation on the brightness we manage to get state of the art results without needing
additional synthetic data, contrary to [Y. He et al., 2020; S. Peng et al., 2019] that need,
in their present state, to use 20 000 new synthetic images per object.

3.4.3 Classification Accuracy

In this subsection, we measure the performance of the classification network. Having a
bad classification accuracy could lead to multiple patches being misclassified. A high false
positive rate would create noise in the Hough space and complexify the task of finding the
maximum density. On the contrary, a high false negative rate would reduce the number
of patches used for regression and thus the number of votes, leading to a less robust
estimation. We can see in table 3.1 that for every object we get a high true negative rate
above 99.5 % meaning we do not pollute the vote space. The true positive rate is more
variable but stays above about 90%, so not too many patches are discarded.

3.4.4 3D Points Regression Accuracy

In this subsection, we study the accuracy of the regression network. For each object we
measure the average euclidean distance between the estimated position of each keypoint
after it has been aggregated and its ground truth position

We can see in table 3.2 that the euclidean distance between predicted and ground
truth points is on average of 11.8 mm.
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Table 3.2 – Average euclidean distance and standard deviation (in mm) between ground
truth and predicted 3D points for each object

ape ben. cam can cat drill. duck
Avg. (mm) 7.2 12 16.9 11.7 9.4 12.8 10.1
Std. (mm) 4.5 7 65.6 6.7 5.5 8.3 6.3

hole. iron lamp egg. glue phone MEAN
Avg. (mm) 10.2 10.6 12.4 14 14.6 11.1 11.8
Std. (mm) 19.6 36.9 42.6 8.8 14.4 22.9 19.2

Input image
(cropped)

Ground truth 
and estimation

Ground truth and 
refined estimation

Estimated pose Ground truth

Figure 3.6 – Some qualitative examples of pose estimation results on LineMod. The pose
estimation is represented as the blue bounding box and the ground truth pose as the

green bounding box

3.4.5 Object Pose Accuracy

Metric. We use the standard 6 DoF metric developed in [Hinterstoisser et al., 2012],
the average distance of model points (ADD-S). A pose is considered correct if the value
of the ADD-S is less than 10% of the object diameter D. We report the results in table
3.3. As we can see we obtain on average very close results to [Y. He et al., 2020] while
using about 200 times less data which shows the superiority of our method in the small
data regime. For some objects we even obtain better results than [Y. He et al., 2020].

3.4.6 Inference Time

Inference time is greatly dependent on the choice of the density with which patches
are extracted. The lower the stride is, the more patches have to be extracted and fed
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Table 3.3 – Percentage of correctly predicted poses using the ADD-S metric on the
LineMod dataset compared to state-of-the-art methods. Eggbox and glue are considered

as symmetric objects.

Input RGB RGB-D
Method [S. Peng et al., 2019] [C. Wang et al., 2019] w. ref. [Y. He et al., 2020] Ours Ours + ICP
ape 43.6 92.0 97.3 91.2 97.3
ben. 99.9 93.0 99.7 100.0 100.0
cam 86.9 94.0 99.6 95.2 98.4
can 95.5 86.0 99.5 98.1 99.5
cat 79.3 93.0 99.8 98.4 99.7
drill. 96.4 97.0 99.3 98.8 99.8
duck 52.6 87.0 98.2 82.2 98.0
hole. 81.9 92.0 99.8 93.7 98.8
iron 98.9 97.0 100.0 99.1 99.9
lamp 99.3 95.0 99.9 98.6 99.1
egg. (sym.) 99.2 99.8 99.7 99.3 99.3
glue (sym.) 95.7 100.0 99.8 99.2 99.0
phone 92.4 93.0 99.5 98.3 99.6

MEAN 86.3 94.3 99.4 96.3 99.1

Table 3.4 – Inference times (in ms) and pose accuracy (ADD-S %) for the driller, using
tiny YOLOv3 and different strides (pixels).

Stride Bbox estimation Patch extract. Classification Regression. Voting 3D-3D solving Total ADD-S
4 8.8 83.4 187.1 69.1 176.5 0.3 525.2 98.7
8 9 20.8 51.2 23 46.4 0.2 150.6 98
12 8.7 3 11 9 11.1 0.3 43.1 96.3
16 8.9 1,9 8,6 7.6 7.7 0.3 35 95.3
20 8.6 1.2 7.6 6.4 5.4 0,3 29.5 94.3
24 9 1 7.4 5.5 4.6 0.3 27.8 90.4

to the networks and the longer the inference will be. However we expect the accuracy
to be growing with the number of patches extracted. This balance allows our method
to be suitable to a wide range of methods. The flexibility it brings lets the user tune
the extraction stride to better meet the application needs. To decrease inference time we
retrained a light 2D detection algorithm (namely tiny YOLOv3 [Redmon and Farhadi,
2018] with a darknet backbone) on the driller. As the training set is very small the
estimated bounding box is coarse but sufficiently precise to reduce inference time which
is reported in table 3.4. As we can see, using a stride of 12 to 16 we can reach real time
inference while losing little accuracy. To speed up the voting step we chose to use only 3
clusters that are selected to minimize their respective variance. We also report inference
times and accuracy for different strides in Fig. 3.7.
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Figure 3.7 – Inference time (in ms) and accuracy for the driller for varying strides (in
pixels)

Table 3.5 – Total inference time (in ms) for each patch size (in pixels) using tiny
YOLOv3 and a stride of 4 pixels

Patch size (pixels) 32 48 64 80
Total inference time (ms) 391.6 413 525.2 634.9

3.4.7 Ablation studies.

Influence of patch size. In this section we study the influence of different patch
sizes for 4 LineMod objects on the pose estimation accuracy. Patch size is an important
parameter and depends on the object size and texture. For example textureless objects
may be better represented using larger patches that can capture some of the object shape.
The influence on inference time can be seen for the driller in table 3.5, as expected inference
time grows with patch size as more convolutions are needed. The pose estimation accuracy
can be seen in figure 3.8 and shows that pose accuracy grows with patch size, up to 64×64
and then goes down for most objects.

Importance of depth for the regression network. In this section we study the
influence of depth for the offset prediction. A regression CNN is trained using only the
RGB channels as input. We compute the object pose accuracy using the ADD-S metric
on 6 different objects and report the results in table 3.6. As we can see we obtain slightly
better results with this method for some objects. This shows that locally an RGB patch
can be more discriminant than a depth patch, this can be explained by the fact that depth
patches show little details and variation compared to color. However this depends on the
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Figure 3.8 – ADD-S (%) for different patch size (in pixels) and objects.

Table 3.6 – Comparison of ADD-S using RGB only and RGB-D.

Objects RGB ADD-S (%) RGB-D ADD-S (%)
ape 91.9 91.2
cam 94.4 95.2
can 99.1 98.1
drill 99.8 98.8
lamp 98.5 98.6
phone 97.6 98.3

MEAN 96.9 96.7

object. For example many patches extracted on the object “can” or “lamp” just have a
slightly curved depth. The depth patches extracted from the driller show very little details
compared to the RGB, contrary to the cam that shows little texture on the RGB while
being textured for the depth.

Importance of voting. In this section we validate the voting approach. For two
small objects we use only one 80 × 80 patch to regress 3D points that are directly used
to estimate the 3D transform. Doing so we obtain an ADD-S of 44.2% for the ape and
51.7% for the duck, compared to 78.2% and 85.2% which clearly shows the benefits of
using multiple patches.
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3.4.8 Visual Servoing Experiment

To illustrate that ou approach is well suited for robotics application, We also propose
to validate our approach within a visual servoing experiment [Chaumette and Hutchinson,
2006]. Such experiment required that the pose estimation algorithm is not only precise but
fast and stable over time. We consider a positioning task with respect to an object. The aim
of a positioning task is to reach a desired pose of the camera r∗, starting from an arbitrary
initial pose. We proposed to consider a position-based VS (PBVS) scheme [Chaumette
and Hutchinson, 2006] for which the relative pose (position and orientation) between
the current and desired camera position has to be estimated. This relative pose will be
estimated using the approach presented in this paper.

The PBVS task is achieved by iteratively applying a velocity to the camera in order
to minimize ∆T which is defined such that ∆T = T∗T−1 (where both T∗ and T are
computed using L6DNet at the desired and current position). The control law is then
given by (see [Chaumette and Hutchinson, 2006] for details):

v = −λL+∆r (3.9)

where λ a positive scalar and L+ is the pseudo inverse of the interaction matrix L that links
the variation of the pose to the camera velocity v. The error is defined by ∆r = (t, θu),
where t describes the translation part of the homogeneous matrix ∆T related to the
transformation from the current Fc to the desired frame Fc∗ , while its rotation part R is
expressed under the form θu, where u represents the unit rotation-axis vector and θ the
rotation angle around this axis.

Once the displacement ∆r to be achieved is computed using our approach, it is im-
mediate to compute the camera velocity using a classical PBVS control law [Chaumette
and Hutchinson, 2006; Wilson et al., 1996]:

v = −λ

 R t
θu

 (3.10)

In such approaches, the quality of the positioning task and camera trajectory is then
dependent on the quality of the estimation of the relative pose.

Experiments have been carried out on a 6 DoF gantry robot, with an Intel D435
mounted on the end-effector. Fig. 3.9 illustrates the behavior of the considered VS control
law. The displacement to be achieved is ∆r = (−400mm, −140mm, −240mm, 6.22o, 36.80o,
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Figure 3.9 – Visual servoing experiment: (a) initial view (the 3D model of the target is

superimposed in the image according to the estimated pose) (b) final image (c) error ∆r
in (meter and radian) (d) camera velocities (in meter/s and radian/s) (e) camera

position over time.

38.36o). The transformation between the initial and desired poses (and particularly the
rotation around the y and z axes and translation along the x and z axis) is very large and
makes this experiment very challenging. The final error is ∆r = (1.2mm, −1.6mm, −0.4mm,

− 0.09o, −0.18o, 0.07o). Note that the evolution of the errors and of the velocities are very
smooth and that the camera trajectory is close to the expected straight line (despite a
coarse eye-to-hand calibration) which demonstrated both the accuracy and efficiency of
the proposed approach on long image sequences.

3.5 Conclusions

In this paper, we introduced a novel approach to estimate 6-DoF object pose in a
RGB-D image. Our method leverages the strengths of patch voting based strategies and
hybrid learning-geometrical methods, using patches extracted from the image to predict
a set of sparse 3D keypoints representing the object geometry in Fc. Those points are
then put in correspondence and aligned with reference keypoints to retrieve the pose. We
showed that our strategy is more robust and accurate than state-of-the-art and efficient
to control a camera mounted on a robot end-effector in real-time. As we can train our
networks very rapidly it is possible to integrate our pipeline in an object based SLAM
system to improve camera pose estimation and obtain a higher level map. However our
approach still requires specific objects to be present in the scene, which can limit the
applicability of the object based SLAM system. To go beyond this limit, we propose new,
more generic algorithms, that we present in the following chapters.
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This chapter was previously accepted as a paper:

Mathieu Gonzalez, Amine Kacete, Albert Murienne and Eric Marchand, "L6DNet:
Light 6 DoF Network for Robust and Precise Object Pose Estimation with Small
Datasets", in: IEEE Robotics and Automation Letters (RA-L), vol. 6 (2), pp.
2914-2921, 2020. It was also presented presented in the: IEEE International
Conference on Robotics and Automation (ICRA), 2020
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S3LAM: STRUCTURED SCENE SLAM
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In this chapter we propose to go beyond the work of L6DNet, that was limited to
specific objects, by developing a SLAM system that can create a map of generic objects.
Our SLAM system creates clusters of 3D points in the map, each cluster uniquely corre-
sponding to an object in the scene. To do so we propose to use a panoptic segmentation
network to segment 2D keyframes which are then processed to obtain a consistent 3D
map. Then we associate this semantic information with an a priori knowledge of objects
geometry to improve the quality of the map and obtain higher level entities in the map.
We specifically focus here on objects that can be represented using planes that we es-
timate to constrain 3D map points. Finally we show in experiments on public datasets
that our approach allows us to obtain a high level semantic map. We also show that the
geometrical constraints can improve the map and camera poses estimation accuracy on
planar scenes. A video explaining the approach and showing examples of semantic map
building and plane fitting can be found at https://youtu.be/JFZaLCXtOiw.

4.1 Introduction

In the previous chapter we have presented our object pose estimation network L6DNet,
that can be integrated into a SLAM system to use objects as high level landmarks in the
map [Civera et al., 2011; Fioraio and Di Stefano, 2013; Gálvez-López et al., 2016; Salas-
Moreno et al., 2013]. However the main limit of this approach is that it requires the
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network to be trained on specific objects with a given 3D model. Hence it cannot be ap-
plied on many objects (e.g. trees, cars, pedestrians). This hinders one of our goal, which is
the development of a generic SLAM system that can work in any environment. Further-
more a SLAM system that uses objects as high level landmarks cannot be considered as
fully semantic as the major part of the environment often does not correspond to object
instances (e.g. the road, buildings, vegetation, etc.) With the rise of CNNs, methods for
object detection [Redmon et al., 2016] and segmentation [K. He et al., 2017; Kirillov et al.,
2019a] are now available for practical use applications. Those approaches are particularly
interesting to solve our problem as they are trained on object categories instead of specific
objects. Two families of SLAM systems can be described, depending on the type of se-
mantic information used. On the one hand several approaches fuse multiple segmentations
to obtain consistent semantic maps [McCormac et al., 2017; Tateno et al., 2017].

On the other hand some works propose to represent objects in a generic way using
for example quadrics [Hosseinzadeh et al., 2019; Nicholson et al., 2018] or 3D bounding
boxes [S. Yang and Scherer, 2019a] and use a generic object detector. Planes can be seen
as specific objects that are numerous in many environments and can be also integrated
into SLAM [Arndt et al., 2020; Hosseinzadeh et al., 2019; Kaess, 2015; S. Yang et al.,
2016].

In this chapter we present a monocular SLAM system, called S3LAM for Structured
Scene SLAM, based on the state-of-the-art ORB-SLAM2 [Mur-Artal and Tardós, 2017]
that can segment generic objects in the scene using a panoptic segmentation CNN, namely
detectron2 [Y. Wu et al., 2019]. We propose to create a new scene representation in which
objects are seen as clusters of triangulated 3D points with semantic information. This
allows us to create a semantic map with unique object instances and structures. Using
this map of clusters we make use of prior information about object classes to constrain
the map, which improves camera localization, and provides a higher level semantic map
as shown in figure 4.1. Our work is a first step towards the creation of the scene graph
presented in the introduction of this thesis.

In summary, contributions presented in this chapter are:
• A SLAM framework that can detect object instances in the scene to create clusters

of 3D points corresponding to such objects.
• A monocular SLAM system that can infer structures from clusters and constrain

the map given such estimations.
• An evaluation of our approach on sequences from several public datasets which
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a

books

keyboard

table

dc

b

Figure 4.1 – (a) frame from the sequence fr1_desk. Comparison of (b) a map built by
ORB-SLAM2, (c) a map of clusters where each cluster centroid is represented with a big

sphere (books are in green, table in orange, keyboard in purple, other objects are not
used) and (d) a map of clusters with estimated planes.
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demonstrates the benefits of our method in terms of camera pose precision.
The rest of the chqpter is described as follows. First we describe related work on

classical and semantic SLAM. Then we describe our approach to create a structured map
and make use of those structures. Finally, we demonstrate the benefits of our approach
on several sequences from a public dataset.

4.2 Related work: Semantic SLAM

In this section we first propose a rapid reminder of the state of the art of semantic
SLAM and object based SLAM and we introduce some plane-based SLAM systems.

Semantic information can be calculated using CNNs and then injected into a SLAM
map [McCormac et al., 2017; Sünderhauf et al., 2017; Tateno et al., 2017]. SemanticFu-
sion [McCormac et al., 2017] is a dense SLAM which computes a pixelwise probability
distribution for each frame and fuse the results for each surfel using a bayesian approach,
which gives a semantic dense map. The semantic map can then be used to improve the
SLAM.

Object based SLAM systems consist in detecting objects in the scene and inserting
them in the map to add constraints between frames, thus adding temporal consistency
[Fioraio and Di Stefano, 2013; Gálvez-López et al., 2016; Hosseinzadeh et al., 2019; Nichol-
son et al., 2018; Salas-Moreno et al., 2013; S. Yang and Scherer, 2019a]. This can bring
robustness to the SLAM and accuracy by having access to the objects scale. Those sys-
tems can be divided into two main categories. The first one consist of object based SLAM
systems that use specific objects [Civera et al., 2011; Fioraio and Di Stefano, 2013; Gálvez-
López et al., 2016; Salas-Moreno et al., 2013]. SLAM++ [Salas-Moreno et al., 2013] pro-
poses to estimate the 6 DoF pose of objects in the scene from RGB-D images. Each
estimated object is rendered using its mesh and the pose of the camera is estimated by
minimizing the ICP error with the live depth frame. SLAM++ builds a graph of keyframes
and objects as a map and optimizes the pose graph. On the other hand some works pro-
pose to model objects using quadrics [Hosseinzadeh et al., 2019; Nicholson et al., 2018] or
3D bounding boxes [S. Yang and Scherer, 2019a]. QuadricSLAM [Nicholson et al., 2018]
uses quadrics for localization and mapping. The main idea is to generate quadrics from
2D bounding boxes predicted by an object detection network. The quadrics parameters
and keyframe poses are then refined in a BA so that the 2D projection of quadrics tightly
fits the 2D bounding boxes.
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Planar SLAM systems consist in detecting planar structures in the scene and using
them as high level landmarks [Arndt et al., 2020; Concha and Civera, 2015; Concha
et al., 2014; Hosseinzadeh et al., 2019; Hsiao et al., 2017; Kaess, 2015; S. Yang and
Scherer, 2019b; S. Yang et al., 2016]. The goal is threefold: first, planes are usually large
structures and can thus constrain different parts of a scene without visual overlap. Second,
some man-made planar structures do not contain valuable information for keypoint based
SLAM, for example white walls, hence using planes as landmarks can enable tracking and
mapping in those challenging cases. Finally detecting planes in the scene allows to get
a better understanding of its physical structure which can enable interaction, contrary
to a simple sparse point cloud. [Kaess, 2015] proposes to use only planes as landmarks.
Planes are extracted from RGB-D images and injected in a graph based SLAM using
a minimal representation which allows them to be optimized with keyframes trajectory.
[Hosseinzadeh et al., 2019] uses planes to constrain the SLAM map. Planes are estimated
from 3 different neural networks that estimate depth, normals and plane segmentation.
From these redundant estimations planes are inserted in the map. The point-plane distance
is then minimized within the BA. [Arndt et al., 2020] proposes a monocular SLAM using
planes to constrain the structure of the scene. Planes are estimated using a RANSAC
on the whole map, thus they need to be large enough and the framerate need to be low
enough for the RANSAC to find the panes. In-plane points are then projected onto the
estimated planes and both 2D plane points as well as plane parameters are optimized to
minimize the reprojection error.

4.3 S3LAM: A cluster based SLAM

In S3LAM the map is represented as a set of point clouds, grouped according to the
object instance they belong. Our goal is to use prior knowledge about these objects to
enrich the SLAM, improve camera pose estimation as well as to obtain a better repre-
sentation of the structure of the scene. Our goal is to estimate the pose of a monocular
camera moving in 3D space, represented at time i by the 6 DoF transformation between
world frame Fw and camera frame Fci

with the homogeneous matrix that defines the
transformation denoted ciTw ∈ SE(3). The pipeline of our approach can be seen in figure
4.2. We segment each keyframe using a panoptic segmentation network. In the mapping
thread we update the class distribution of map points using the output of the panoptic
segmentation network. Segmented map points allow us to create semantic clusters that
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Figure 4.2 – Illustration of our pipeline integrated in [Mur-Artal and Tardós, 2017]. (a)
A CNN segments the keyframes, (b) the output of the CNN allows us to compute the
probability distribution of map points, (c) we create clusters of points based on their
semantic class and fit planes for planar classes, (d) we apply our BA constrained by

planes.

uniquely correspond to object instances. For some clusters of classes corresponding to
planar objects a plane is fitted using the 3D points and a merging step avoids the creation
of duplicated clusters. A bundle adjustment with a planar constraint is then applied to
refine camera pose estimation and map points position. Compared to state of the art our
approach relates to object based methods that represent objects as quadrics [Hossein-
zadeh et al., 2018; 2019; Nicholson et al., 2018] that are very generic and approaches that
estimate planes to represent the map [Arndt et al., 2020; Hosseinzadeh et al., 2018; 2019].
However contrary to approaches that use quadrics, ours yields a representation that is
closer to reality, which can further improve camera pose estimation accuracy. And con-
trary to approaches that use planes, ours does not need depth information, nor specific
CNN to estimate planes, nor very large planes and can work in real time.
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4.3. S3LAM: A cluster based SLAM

4.3.1 Clusters Creation.

In this section we show how we manage to cluster points, according to the object
instance they belong using semantic information.

Panoptic segmentation: Unlike most recent works [Hosseinzadeh et al., 2019; S. Yang
and Scherer, 2019a] we do not consider object bounding boxes as input but rather the
panoptic segmentation of the image. Panoptic segmentation is a combination of seman-
tic segmentation where each pixel is classified in a given class and instance segmentation
where multiple objects of the same class are segmented separately. While panoptic segmen-
tation is harder and takes longer to obtain it allows us to naturally know which keypoints
belong to detected objects. Indeed while bounding boxes give the coarse location and size
of an object in the image they do not separate the object from the background within
the box. Hence a refinement process is required [Huang et al., 2020]. Moreover contrary
to object detection CNN, panoptic segmentation networks, like semantic segmentation
networks, are not limited to objects and can segment whole areas in the image, such as
floor, which correspond to the global structure of the scene. However contrary to seman-
tic segmentation networks, panoptic segmentation separates multiple instances of a single
class, allowing to treat each object separately.

The downside of the additional information brought by panoptic segmentation is its
complexity, while object detectors can easily process tens of images per second [Redmon et
al., 2016], most recent panoptic segmentation networks run only at 10 to 20 fps. However
we do not need to segment images at frame rate. As shown in [McCormac et al., 2017],
segmenting frames with a low frequency leads to a small drop in mapping segmentation
accuracy while allowing the SLAM to run in real time. Moreover panoptic segmentation
is an active field of research and real time networks can be expected in the near future.

To represent the panoptic segmentation network we define a function gθ(Ii) → Pi, Li

which, given an RGB image at time i, Ii and θ, the network parameters, yields a probability
map Pi ∈ [0, 1]W ×H×C 1. Thus for each pixel x = (u, v) in the image we can obtain a
probability distribution (Pi(u, v, 1), ..., Pi(u, v, C)) where Pi(u, v, c) corresponds to the
probability that this pixel belongs to class c. The second output of the network is the
instance map Li ∈ NW ×H in which each object is segmented and given a unique id.

1. W and H represent the width and height of an RGB image, C is the total number of semantic
classes.
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One problem of panoptic segmentation however is that the instance map is not tem-
porally consistent, meaning that we can not simply rely on the object ids to create the
map. To solve this problem we propose a 2 stages strategy: at the level of the segmenta-
tion network and in the SLAM. First, for each detected instance in Li we compute the
Intersection Over Union (IOU) with all instances of the same class in Li−1 and Li−2 and
take its maximum to track the id. We consider an instance to be well tracked if the IOU
is above a threshold τi−1 = 0.6 for Li−1 and τi−2 = 0.4 for Li−2. A similar approach can
also be applied by propagating the 2D id using optical flow, which requires more com-
putations. Using our strategy, clusters are well defined. However when a cluster that has
left the camera field of view reappears in the image, the segmentation network creates a
new instance, which leads to the creation of a new cluster. To avoid creating infinitely
many clusters and propagate the cluster id we define a merging function to fuse clusters
together when the distance between their centroid is lower than a threshold τmerge and
more than 80% of clusters points descriptors match. This approach can also be robustified
by reprojecting cluster points in 2D and assigning them the id of the segment in which
they fall. The combination of those approaches in 2D and 3D allows us to create a sparse
consistent map.

Clusters creation: Following the 2D segmentation, we define a function f({Pi}, {ix}) →
p3D where {Pi} is a set of probability maps at different times, {ix} is a set of keypoints
corresponding to one 3D point wX and p3D = (p1, ..., pC) is its probability distribution.
This function is the fusion of multiple observations and can be written using Bayes rule,
which was inspired by [McCormac et al., 2017] that we adapt to work with our sparse
monocular approach as it is mostly used by dense SLAM systems using RGB-D inputs.

pc = P(c|{Pi}) = 1
Z
P(c|{Pi−1})Pi(u, v, c) (4.1)

where c is the class label of wX and Z is a normalization factor. Hence f allows us to
obtain a semantic map M = {(wX, p3D, c∗, l)j}, where each point wX has a probability
distribution p3D, an id l extracted from the instance map Li as well as a semantic class
c∗ = argmax

c
p3D. This fusion allows the map to be temporally consistent, even if the

panoptic segmentation is noisy.

Using this semantic map we can define a clustering function h(M) → O where O is a
partition of M in K clusters O = {Ok,k∈[1,K]}. This function groups points according to

114



4.3. S3LAM: A cluster based SLAM

their semantic class and instance. Each cluster can be defined as Ok = {{wX}, ck} where
{wX} is the position of a set of points belonging to the cluster and ck is the cluster class.

4.3.2 Map Optimization from structure estimation.

Structure estimation: Most man-made objects can be approximated with a more or
less complex geometrical model, from a simple plane or box to the exact 3D model of the
object. The advantage of approximating objects is twofold. First, we can add constraints to
the optimization process to improve pose estimation. Second, we obtain a more physically
accurate representation of the world by understanding the structures within it, contrary
to recent methods that use quadrics to represent objects, which only roughly represent
the spatial extent of objects but not their shape [Hosseinzadeh et al., 2019; Nicholson
et al., 2018]. In our work as an example we propose to model some objects using planes.
Not only do we model large surfaces such as tables, walls or floor but we also model small
objects like keyboards and books. While this hypothesis is more restrictive than using
quadrics we argue that it stays highly generic as we estimated that about 25% of classes
from the COCO dataset can be represented with planes. Planes are represented using the
classical 4D vector π = (a, b, c, d)⊤ with ||π||2 = 1 [Kaess, 2015] and planar points X̄ in
homogeneous coordinates satisfy the following equation:

π⊤X̄ = 0. (4.2)

Contrary to most planar SLAM systems we do not need to use multiple specific CNNs
[Hosseinzadeh et al., 2019] or depth [Kaess, 2015] to estimate plane parameters, which
limits the applicability of those systems. Instead for each a priori planar cluster, we fit
a plane using the triangulated 3D points of this cluster in the world coordinates system.
This is done using an SVD inside a RANSAC loop to make the estimation more robust to
wrong classification and triangulation similarly to [Arndt et al., 2020]. However contrary
to [Arndt et al., 2020] we are not limited to simple scenes with few very large planes.
Indeed as we create semantic clusters we are able to fit planes even for small specific
objects and thus we can apply our approach in a wider variety of scenes. Moreover the
fitting procedure is made easier by the clustering and be done in real-time compared to
the 5 fps limitation in [Arndt et al., 2020].

To avoid creating wrong planes that would corrupt the map, a plane is accepted if it is
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supported by enough inliers, which depends on the cluster class. For example, keyboards
require at least 50 points to be inliers.

Map optimization: One way to add a structure constraint is to use a lagrangian multi-
plier [Nocedal and Wright, 2006], however this adds parameters that need to be estimated,
thus we chose to include the constraint as a regularizer as can be seen in equation (4.3).

ciTw
∗, wX∗ = arg min

ci Tw,wXj

∑
i,j

ρ(||ixj − p(ciTw,w Xj)||Σi,j
)

+
∑

k

∑
j∈Ok

ρ(||π⊤
k

wX̄j||σ)
(4.3)

where ||πw
k X̄j|| is the 3D distance between the 3D point wXj (in homogeneous coordinates)

and the plane πk which corresponds to the cluster Ok, σ corresponds to its uncertainty,
and ρ is a robust cost function (in our case the Huber loss).

Contrary to [Arndt et al., 2020] we do not project 3D points in their plane as some
clusters may not be perfectly planar. However the strength of the constraint can be tuned
by changing the value of σ. Moreover contrary to [Arndt et al., 2020] we do not optimize
the planes, treating them as landmark but only use them as constraints on the map
structure.

We optimize this equation using the framework g2o [Kümmerle et al., 2011]. We build
a classical BA graph. Then we add an unary constraint to each point belonging to a
planar cluster. We consider those points to be outliers if their error is greater than the
95th percentile of a one-dimensional Chi-squared distribution. To account for points that
would be outside of the local BA when a plane is fitted we chose to apply a global planar
bundle adjustment after plane fitting. Furthermore to account for segmentation noise, we
remove from the cluster points that are too far from the plane.

To optimize equation (4.3) we need to compute its Jacobian. It is composed of the
derivatives of the reprojection error with respect to camera poses and 3D points, which is
the same as in classical BA [Dellaert, 2014] and of the derivatives of the point-plane error
with respect to points position. This derivative can be simply computed as:

∂π⊤
k

wX̄j

∂wX̄j

= π⊤
k (4.4)
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4.4 Experiments

In this section we first present the implementation details of our approach, then we
show on sequences from the TUM and the KITTI dataset [Geiger et al., 2012; J. Sturm
et al., 2012] the validity of our method.

4.4.1 Implementation details

S3LAM runs at 20 fps and is based on the state of the art ORB-SLAM2 [Mur-Artal
and Tardós, 2017]. We do not take into account the time needed for the inference of the
segmentation network as it depends on the choice of the model and on the GPU used.
However we note that from detectron [Y. Wu et al., 2019] model zoo, the inference time of
panoptic segmentation networks varies from 53 to 98 ms with their setup, making it close
to real time. The optimization is done using the optimization framework g2o [Kümmerle
et al., 2011]. All the experiments are performed on a desktop computer with an Intel
Xeon @3.7GHz with 16 Gb of RAM and an Nvidia RTX2070. The value of the point-
plane uncertainty σ is set constant to 100, which balances both errors as the value of the
point-plane distance is around 10−2 m while the reprojection error is around one pixel.
Datasets. Our approach is evaluated on sequences from the TUM RGB-D dataset [J.
Sturm et al., 2012] which provides a set of RGB frames associated to their groundtruth
pose. We also show that our approach can work in larger scale and in outdoors scenes by
evaluating it on sequences from the KITTI raw dataset [Geiger et al., 2012]. This dataset
contains sequences obtained using a camera mounted on a car in a wide variety of scenes.
We evaluate on 4 sequences in which the road can be segmented and is planar and in
which few objects are moving.
Metrics. To account for the inherent stochasticity of ORB-SLAM2 we run each sequence
10 times and report the median of the RMSE of absolute trajectory error (ATE, defined
in [J. Sturm et al., 2012]) in the tables below. As our experiments are performed in a
monocular setting, we scale and align the estimated trajectories with the ground truth as
in [Mur-Artal et al., 2015].

4.4.2 Impact of the planes constraints on pose error

In this section we study the impact of adding planar constraints to the classical BA
formulation, using only planes robustly estimated from the 3D semantic map. We report
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the results of our experiments in table 4.1. We compare our approach to: the base system
of S3LAM, ORB-SLAM2 [Mur-Artal and Tardós, 2017] and both the monocular and
RGB-D approaches of Hosseinzadeh et al. [Hosseinzadeh et al., 2018; 2019] that report
the greatest number of experiments and use both quadrics and planes. We also compare
against the plane based approach of [Arndt et al., 2020] that report experiments on a few
strongly planar sequences from the TUM dataset, as their code is not available we were
not able to run experiments on new sequences.

As we can see, planar constraints improve camera localization in most cases over
ORB-SLAM 2.

The most important improvement is obtained on almost perfectly planar scenes like
fr1_floor and fr3_nostr_text_near which allow to easily fit planes. As we could expect
using large planes gives better ATE improvements, the line fr3_nostr_text_near (merged
books) in table 4.1 shows our approach using a single plane for all book clusters, thus
treating them as a single large cluster. An interesting way to improve our approach would
thus to add plane-plane constraints to increase the spatial extent of small planes. The
sequences fr3_nostr_text_near and fr3_nostr_text_near (merged books) are run with
the loop closure deactivated to better show the impact of our approach. The activation of
loop closure is shown in the row fr3_nostr_text_near (loop). The sequences fr2_xyz and
fr2_desk are the most challenging for our approach as the main planes corresponding to
the table and the floor are not well segmented and cluttered, yielding to a noisy estimation.
Compared to the CNN based approach of [Hosseinzadeh et al., 2019] we can see that we
obtain better results for planar scenes, however in scenes in which planes are not well
segmented, using quadrics brings a more important improvement, which can be related
to the fact that object detection is less noisy than panoptic segmentation. Compared to
the approach of [Arndt et al., 2020] we obtain similar results, with almost equal means,
however we argue that our approach is more generic as we are not limited to mostly planar
scenes and we can run it in near real time. We argue that those results and the reported
means, show that our approach is generic as it improves camera pose estimation in a
wide variety of scenes with a preference for planar scenes, while other approaches focus
either on scenes containing objects or on perfectly planar scenes. To further demonstrate
that our approach is generic we show in table 4.2 the evaluation of our approach in a
large scale scene, on the KITTI raw dataset, using the class road as a plane. As we can
see our approach works in large outdoors scenes and we improve camera pose estimation
compared to ORB-SLAM2 [Mur-Artal and Tardós, 2017].
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Table 4.1 – Comparison of the ATE (mm) of our our approach against state of the art
on the TUM dataset. (H1) denotes [Hosseinzadeh et al., 2018], (M) [Mur-Artal and

Tardós, 2017], (H2) [Hosseinzadeh et al., 2019], (A) [Arndt et al., 2020]
.

Sequence (H1) (RGB-D) (M) (H2) (RGB) w. planes (H2)(RGB) w. quadrics (A) Ours
fr1_xyz 9.6 9.2 10.3 10.0 - 8.8
fr1_floor 13.8 18.1 16.9 - - 14.7
fr1_desk 15.3 13.9 12.9 12.6 - 13.2
fr2_xyz 3.3 2.4 2.2 2.2 - 2.4
fr2_desk 12.0 8.0 7.3 7.1 - 7.8

fr3_nost_text_near - 20.3 - - - 15.3
fr3_nost_text_near (merged books) - 20.3 - - - 13.5

fr3_nost_text_near (loop) 10.9 14.5 - - 11.4 10.9
fr3_str_text_near - 14.0 - - 10.6 11.2
fr3_str_text_far - 10.6 - - 8.8 9.2

fr1 mean 12.9 13.9 13.4 - - 12.2
fr2 mean 7.7 5.2 4.8 4.7 - 5.1
fr3 mean - 13.0 - - 10.3 10.4

Table 4.2 – Comparison of the ATE (cm) of our approach against ORB-SLAM2 on the
Kitti raw dataset.

sequence ORB-SLAM 2 [Mur-Artal and Tardós, 2017] —– Ours —–
0926-0011 17.7 15.5
0926-0013 18.0 7.5
0926-0014 76.2 64.5
0926-0056 49.8 49.3

mean 40.4 34.2

119



Chapter 4 – S3LAM

Table 4.3 – Maximum, minimum and average values of angles between plane normals.
The closer to 0 the better.

Sequence max. angle min. angle med. angle
fr1_desk 3.6° 2.4° 2.9°

fr3_nost_text_near 1.4° 0.8° 0.8°
fr3_nost_text_near (merged) 0.0° 0.0° 0.0°

To further show that the estimated map structure is coherent, we compute the angle
between pairs of normals that are supposed to be parallel at the end of a sequence (like
pairs of books or books on a table for example). The minimum, maximum and median
angles between normals are shown in table 4.3. As we can see the estimated normals are
pairwise coherent. Moreover the larger the planes are, the more points are extracted and
the better the estimation is as visible in the last two lines of the table.

4.4.3 Qualitative analysis of S3LAM

We show in figure 4.3 some qualitative examples of maps obtained using our clustering
approach compared to maps obtained using ORB-SLAM2 [Mur-Artal and Tardós, 2017].
The goal of this figure is to show that the clusters and planes are well defined, to better see
the effect of planes on the map quality we refer the reader to figure 4.4. To construct these
maps we used the following classes: table, keyboard, book. As we can see every object
present in the scene has been uniquely clustered, leading to a more comprehensible and
higher level map. We also show for each planar cluster the estimated planes, corresponding
to the objects table, keyboard and book. Our approach yields a more physically accurate
representation of the world, which can be easily used for augmented reality or robotics
applications. In figure 4.4 we show a comparison of the map obtained with ORB-SLAM2
and the map obtained using our planar BA. As we can see at the bottom, the lower part
of the map corresponding to the floor (visible in orange in the bottom part of the map)
is much more planar and coherent using our approach.

4.5 Conclusion

In this chapter we presented our new monocular semantic SLAM system called S3LAM.
Our method uses the 2D panoptic segmentation of a sequence of RGB images to create
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book
floor

book

keyboard
table

no label

Figure 4.3 – Examples of maps created by our approach for 2 sequences from [J. Sturm
et al., 2012]. From left to right: RGB input image from the sequence, S3LAM map,
frame with planes normals projected in red, in plane vectors are shown in blue and

green. Keypoints are as well shown with a color corresponding to their class.

clusters of 3D points according to their class and instance. This clustering allows us to
robustly estimate the structure of some clusters and modify the Bundle Adjustment for-
mulation with structural constraints. We show on sequences from several public datasets
that our approach leads to an improvement of camera pose estimation. Our system is
more generic than approaches based on specific object detectors as it works at the level
of object categories. The main limit of our approach is that it relies on the static scene
assumption. Moving objects are likely to decrease the accuracy of camera pose estimation
and to corrupt the map. Furthermore moving objects can not be tracked, contrary to
object pose estimation algorithms. We solve this problem by further developing our scene
graph representation in the following chapter.
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(a)

(c)

(b)

(a)

(c)

(b)

Figure 4.4 – Examples of map created by ORB-SLAM2 [Mur-Artal and Tardós, 2017]
(top) and our approach (bottom) for the sequence fr1_floor. (a) Map top view, (b) Map
3/4 view, (c) Map side view. As we can see on the side view the floor is more planar with
our approach. Black points that are outside of the plane are points that have not been

segmented as "floor" and thus do not undergo the planar constraint.
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This chapter was published in:

• Mathieu Gonzalez, Eric Marchand, Amine Kacete and Jérome Royan,
"S3LAM: Structured Scene SLAM", in: IEEE International Conference on
Intelligent Robots and Systems (IROS), 2022

• Mathieu Gonzalez, Eric Marchand, Amine Kacete and Jérome Royan,
"S3LAM: SLAM à Scène Structurée", in: Groupe de Recherche et d’Etudes
de Traitement du Signal et des Images (GRETSI), 2022
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In this chapter we propose to go beyond S3LAM by developing a SLAM system that
can deal with dynamic objects. Moving objects are present in most scenes of our life.
However let us recall that they can be very problematic for classical SLAM algorithms that
assume the scene to be rigid. This assumption limits the applicability of those algorithms
as they are unable to accurately estimate the camera pose and world structure in many
scenarios. Some SLAM systems have been proposed to detect and mask out dynamic
objects, making the static scene assumption valid. However this information can allow the
system to track objects within the scene, while tracking the camera, which can be crucial
for some applications. In this chapter we present TwistSLAM a semantic, dynamic, stereo
SLAM system that can track dynamic objects in the scene. Based on S3LAM, developed
in chapter 4, our algorithm creates clusters of points according to their semantic class.
It uses the static parts of the environment to robustly localize the camera and tracks
the remaining objects. We propose a new formulation for the tracking and the bundle
adjustment to take into account the characteristics of mechanical joints between clusters
to constrain and improve their pose estimation. We evaluate our approach on several
sequences from a public dataset and show that we improve camera and object tracking
compared to state of the art.
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A video explaining the approach and showing object tracking examples can be found
at https://youtu.be/2uxEQGjiuXQ.

5.1 Introduction

Several algorithms such as [Engel et al., 2014; Mur-Artal and Tardós, 2017] have
been very successful in the past few years to solve the problem of SLAM, however they
often rely on the static scene assumption. Let us recall that this hypothesis assumes
that the world is a single rigid body and thus that no object can move within it. This
assumption, which is false in most real world scenes limits the scenarios in which a SLAM
algorithm can be used. Classical SLAM systems such as [Mur-Artal and Tardós, 2017]
try to alleviate this assumption using robust estimators, allowing them to flag moving
parts as outliers. However as soon as the number of moving points is too important,
the estimated camera pose accuracy decreases. This makes this approach unsuitable for
some scenes (e.g. crowded or urban scenes). Some systems [Bescos et al., 2018; C. Yu
et al., 2018] have been proposed to detect and mask out dynamic objects in images, thus
making the static scene assumption valid. However some recent approaches [Bescos et al.,
2021; Huang et al., 2020; Runz et al., 2018; J. Zhang et al., 2020] argue that moving
objects represent valuable information that can be necessary for some applications. Most
recent approaches trying to solve both SLAM and object tracking have used semantics
as an additional source of information. Semantic knowledge can indeed be beneficial to
SLAM [Cadena et al., 2016; Rosinol et al., 2020] as it contains information about the class
dynamicity which is higher level information than simple 3D points.

In this chapter we present a stereo SLAM system called TwistSLAM as we estimate
objects twists to track them and consider that objects are linked to each others through
mechanical joints, similarly to joints linking different parts of a robot. An illustration of
our algorithm is visible figure 5.1: the camera pose is estimated simultaneously with all
moving objects in the scene and the map structure (here the plane of the road) constrains
the movement of objects. Our approach is based on ORB-SLAM2 [Mur-Artal and Tardós,
2017] and S3LAM [Gonzalez, Marchand, et al., 2021]. In our work we use semantic infor-
mation to build a map of clusters corresponding to objects in the scene. The clustering
of the scene allows us to estimate the pose of the camera using static clusters only such
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(a)

(b)

(c)

Figure 5.1 – Our approach allows us to track objects in the scene such as cars. Here we
can see: (a) the frame with semantic points and tracked clusters (orange cars) with their

estimated speed. (b) a map top view with tracked clusters (orange cars), clusters
trajectories (black spheres and lines), clusters twists (blue and purple lines), road points

and plane (in green) and camera trajectory (green and blue frustums). (c) Map side
view. The rotation part of the twists (blue lines) is perpendicular to the road plane, the
translation part (purple lines) is parallel to the plane. Only points from the classes car

and road are shown and the rotation part of twists has been magnified for visualization.

as road or house. The other clusters that can be dynamic are tracked and their pose is
updated in the map through the estimation of twists that represent their velocity. Most
SLAM systems that can track dynamic objects directly estimate their pose through the
minimization of a reprojection error function [Bescos et al., 2021; Huang et al., 2020] or
with 3D points registration [Runz et al., 2018]. Doing so the estimated pose of an object
has 6 degrees of freedom. It is obvious that this does not correspond to reality, for example
a car has only 3 degrees of freedom, 2 translations in the road plane and 1 rotation around
its normal, hence its pose should be constrained. Our goal is thus to remove degrees of
freedom corresponding to physically unfeasible movements. To do so we chose to repre-
sent those constraints as mechanical joints which makes our approach highly generic. A
mechanical joint between clusters constrains the estimated twist of a dynamic cluster by
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blocking some of its degrees of freedom thus reducing the effect of noise on the estimation.
Once an object twist has been estimated it can be used to update the object pose which
enables object tracking. Mechanical joints have already been used in the past [J. Sturm
et al., 2010; 2011], [Comport et al., 2007] for object tracking. However to the best of our
knowledge our approach is the first to introduce them in a dynamic SLAM system.

The object poses can then be tightly refined with camera poses and 3D points within
a bundle adjustment that also applies mechanical joints constraints.

Our contributions presented in this chapter are:

• A semantic SLAM system that can robustly estimate the pose of a camera in static
as well as dynamic scenes.

• A stereo SLAM framework that can track multiple moving objects in the scene.
• A new formulation for both the tracking and bundle adjustment that takes into

account the characteristics of mechanical joints between objects in the scene.
• An evaluation of our approach on several sequences from a public dataset which

demonstrates the benefits of our method in terms of object poses and velocities
and camera pose estimation accuracy.

The rest of the chapter is described as follows. First we rapidly recall related work on
dynamic classical and semantic SLAM. We also rapidly recall the mathematical concepts
that will be used in this chapter. Following, we describe our approach to build a semantic
map of clusters, estimate the pose of a camera in a dynamic scene, track moving clusters
within the scene while using joint constraints to improve object tracking and refine all es-
timations with a bundle adjustment. Finally we demonstrate the benefits of our approach
on multiple sequences from a public dataset.

5.2 Related work: Semantic dynamic SLAM

In this section we rapidly recall a few dynamic dynamic SLAM systems already pre-
sented in chapter 2 and present additional work.

To tackle the problem of dynamic objects, some methods propose to roughly estimate
the pose of the camera and robustly find outliers in the scene or in the image. Outliers
are then removed or downweighted and the camera pose is refined. For example [S. Li
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and Lee, 2017] proposes a direct approach based on the alignment of depth edges using
an ICP scheme. For each point they robustly estimate a staticity confidence score which
downweights dynamic objects and an intensity assisted ICP robustly refines the pose
using those weights. [Y. Sun et al., 2017] segments dynamic objects in 2D with a 3 stages
strategy. First dynamic objects are roughly detected by computing the difference between
the current frame and its warped predecessor. This difference is then enhanced and cleaned
with a particle filter. Finally the depth image is quantized and clusters which show a high
concentration of particles are masked out.

DynaSLAM [Bescos et al., 2018] uses semantic information to segment a priori moving
objects which are not used for tracking and mapping. The segmentation is refined using
the depth. This approach improves camera localization in dynamic scenes but deteriorates
it when a priori moving objects are in reality static such as parked cars. MaskFusion [Runz
et al., 2018] is one of the first semantic dynamic SLAM that can track objects. Inspired
from [Rünz and Agapito, 2017] it makes use of 2D masks inferred by Mask-RCNN [K.
He et al., 2017] to detect objects in the scene and tracks them using both photometric
and geometric information from an RGB-D camera. DynaSLAM II [Bescos et al., 2021]
uses semantic information to detect objects. Object 3D points are represented in the
object reference frame and used to estimate the object pose at all time by minimizing
their reprojection error. ClusterVO [Huang et al., 2020] is similar to [Bescos et al., 2021],
but they consider object detection (i.e. 2D bounding boxes) as input that is much faster
to infer than dense masks. They also apply a cleaning procedure to improve dynamic
keypoints matching and make sure that 2D points do not come from the background of
the bounding box. VDO-SLAM [J. Zhang et al., 2020] proposes to use optical flow to
track features extracted more densely than other systems, which allows them to obtain
a more precise object pose estimation. Furthermore the optical flow and the object and
camera motions are tightly refined.

5.3 Notations

In this section we recall formulas and notations defined in chapter 1. The pose of the ith

frame, of a rigid body o associated with the coordinate frame Fo in the world coordinate
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frame Fw can be represented by the homogeneous matrix

wToi
=

wRoi
wtoi

0 1

 ∈ SE(3) (5.1)

Let us recall that this matrix maps points in the object frame oX to points in the world
frame wX according to the following equation: wX = wTo

oX. The velocity of a moving
object can be represented using a twist ξ defined as

ξ =
(
vx vy vz ωx ωy ωz

)⊤
=

(
v ω

)⊤
∈ R6 (5.2)

where the first 3 components v = (vx, vy, vz)⊤ ∈ R3 denote the translational velocity and
the other components ω = (ωx, ωy, ωz)⊤ ∈ R3 represent the rotational velocity. We denote
wξoi

the twist corresponding to the velocity of the object o at frame i expressed in the
world coordinate frame. Similarly, oiξoi

is the velocity of the object o at frame i expressed
in its own coordinate frame. The exponential map can be used to recover the pose of the
object o moving according to the twist wξoi

from its initial pose at frame i wToi
to its

next pose at frame i + 1 wToi+1 using the following formula:

wToi+1 = exp(wξoi
δti)wToi

= wToi
exp(oiξoi

δti) (5.3)

The adjoint map wVoi
∈ R6×6 links twists in different frame coordinates according to:

wξoi
= wVoi

oiξoi
(5.4)

it can be computed using the relative pose wToi
between Foi

and Fw:

wVoi
=

wRoi
[wtoi

]× wRoi

0 wRoi

 (5.5)

For simplicity we will consider in the remainder of this chapter that δt = 1 without loss
of generality.
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5.4 TwistSLAM: Constrained SLAM in Dynamic En-
vironment

In this section we present our approach. Let us recall that our general idea is to
represent the world as a graph of semantic clusters, which is similar to a scene graph,
presented in the introduction of this manuscript and which can be seen in figure 5.2. The
vertices of the graph correspond to objects in the scene and the edges to physical links
that exist between objects. Our goal is to estimate the pose of the camera and the pose
of every moving object while using mechanical joints between objects to improve those
estimations. For example both clusters car in our graph are linked to the road with a
planar constraint that allows only 3 degrees of freedom: a rotation around the normal of
the plane and 2 translations within the plane. Such simple representations allow us to be
highly generic as, for a given semantic class, we only need to define its static parent and
the type of mechanical joint.

The pipeline of our approach is presented in figure 5.3. Using semantic information we
create clusters of points corresponding to objects in the scene. We then use static semantic
clusters (e.g. road, floor, house) to robustly track the camera, even in dynamic scenes.
Then, we match keypoints corresponding to dynamic objects (e.g., car, bike,...) to either
track them or triangulate new 3D points using stereo information. All poses estimations
from the camera and the objects are then refined with static and dynamic 3D points with
a bundle adjustment process.

The main novelty of our approach comes from the fact that we optimize the velocities
of the dynamic objects rather than their pose and constrain the velocities according to
mechanical joints between objects. This approach is highly generic as we only need to
define a handful of joints (that correspond to normalized joints in mechanics) and a list
of semantic classes pairs for each joint (e.g. the wall-door joint corresponds to a revolute
joint, the car-road joint corresponds to a planar joint). As we will show latter, it allows
us to remove displacements along directions that are not physically possible (e.g. a car
translating vertically) and thus that correspond to optimization errors. This allows us to
obtain a more precise estimation of the dynamic object poses.
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Figure 5.2 – Example of semantic graph: dynamic clusters are linked to static parent
clusters with mechanical joints such as planar or revolute.
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Figure 5.3 – The pipeline of our approach: static keypoints are extracted from a stereo
image (a) and used for camera tracking (d), dynamic keypoints are extracted from

bounding boxes within the stereo images (b) and matched using optical flow (c) with
the previous frame to track dynamic objects (e). The keyframe is then segmented (f) to
create new semantic map points and clusters. Finally the object and camera poses are

jointly refined with the dynamic and static map points in a BA (g).
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5.4.1 Creating Clusters from panoptic segmentation

Most recent semantic dynamic SLAM systems use either an object detection or an
instance segmentation algorithm. Working in the continuity of S3LAM [Gonzalez, Marc-
hand, et al., 2021] we chose to estimate the panoptic segmentation (obtained using de-
tectron 2 [Y. Wu et al., 2019]). This allows us to know the semantic class of each pixel
in the image and to give a unique id to each object in the image. Similarly to [Gonzalez,
Marchand, et al., 2021] we fuse multiple 2D observations of a single 3D point to obtain
its class and id. Doing so we obtain a semantic map, which allows us to create a set of K

clusters O = {Ok, k ∈ [1, K]}. A cluster is a set of 3D points corresponding to a single
object in the scene. Points are grouped according to their class and instance id. The set of
clusters can be expressed as the set of a priori static clusters S (such as road, building, ...)
and the set of a priori dynamic clusters D (such as car, bike, human, bus, ...). As static
clusters are fixed, we represent their 3D points {wX} in the world frame. In contrast,
each dynamic cluster contains a set of 3D points {oX} expressed in the object coordinate
frame, a set of poses {oTw} and a set of twists {wξo} representing the cluster trajectory
and velocity through time. For simplicity in the remainder of this chapter we will omit
the object index k as its use is straightforward.

5.4.2 Clusters geometry

Our goal is to constrain the velocity of moving clusters according to mechanical joints.
To do so we need to estimate the pose of those joints. We propose to do this using
the estimated geometry of some clusters. We chose to consider only planar clusters, which
allows our approach to be highly generic as planes are common in man-made environment.
For clusters corresponding to a priori chosen classes (such as the road or the facade of a
building) we estimate a 3D plane π = (a, b, c, d)⊤ with ||π||2 = 1, using only its 3D points
{wX}. The plane follows the following equation: π⊤wX̄ = 0 and can be estimated using
an SVD. To make it robust to outliers (due to segmentation or triangulation errors) we
use a RANSAC scheme.

5.4.3 Dynamic SLAM

As we do not know which dynamic objects in the scene are really moving we chose to
estimate the camera pose using only static objects. Using points from static clusters we
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minimize the following cost function

E(ciTw) =
∑
j∈S

ρ(||ixj − p(ciTw,w Xj)||Σ−1
i,j

) (5.6)

where ixj is the 2D keypoint corresponding to the observation of wXj in the ith frame, p

is the pinhole camera projection function, ρ is a robust cost function (in our case Huber)
[Malis and Marchand, 2006] and Σi,j is the covariance matrix of the reprojection error.
Doing so the estimated camera pose does not take into account potentially moving objects,
hence it is robust in dynamic scenes. However the estimation can be deteriorated in scenes
that contain many potentially moving objects that are in reality static, like for example
parked cars. To solve this problem, we chose to estimate the pose of all moving objects
and integrate them in the bundle adjustment, so that the velocity of static objects is close
to 0 and their points act as static points.

5.4.4 Dynamic data association and keypoints

Dynamic data association is a challenging problem for two reasons: first the combi-
nation of the camera and the object movements can produce large displacements in the
image space thus needing a large radius search for keypoints matching. Second a large
movement can cause an important visual variation of the object in the image (e.g. due
to luminosity changes on the object or to viewpoint changes) which makes the matching
process more difficult. To overcome those challenges we propose to use the optical flow
estimation produced by a CNN (namely RAFT [Teed and Deng, 2020]) to have a good
estimate of the keypoints location and reduce the search radius, thus reducing both search
time and the probability of false matches.

One problem of object tracking compared to classical SLAM is that dynamic objects
usually occupy a small part of the image, meaning that if keypoints are extracted in an
uniform way from the image they may be too few to obtain a precise estimation [Bescos
et al., 2021; J. Zhang et al., 2020]. To solve this problem we force the keypoint extraction
process to keep more keypoints from areas defined by dynamic objects bounding boxes.
The keypoints are then used either to create new 3D points with stereo triangulation,
which are added to existing clusters or used to create new clusters, or to track the existing
cluster as shown in the following section.
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5.4.5 Mechanical joints as inter-cluster constraints

Using matches found by the data association process we seek to estimate the pose of
dynamic objects in the scene. Our assumption in this work is that many moving clusters
can be represented as being linked to a static parent cluster with a specific mechanical
joint. There exist 12 normalized joints (ISO 3952) that can be associated with the degrees
of freedom they have. For example the planar joint has 3 degrees of freedom: 2 translations
in the plane and 1 rotation around its normal, this joint can represent the displacement of
a car relative to its static parent, the road. Another example is the revolute joint which has
a single degree of freedom corresponding to the rotation around a single axis. In this case
the static parent cluster is the wall, the moving cluster is the door and its only possible
movements are rotations around the axis of the joint (corresponding to the hinge).

To easily model all types of joints, similarly to [Comport et al., 2007], we propose to
decompose the space of twist as the sum of two orthogonal spaces:

R6 = Fl + F⊤
l (5.7)

where F (which stands for freedom) is the space of twists allowed by the mechanical joint
l with coordinate frame Fl. In the case of a planar joint with axis z, Fl is defined as:

Fl = Span(


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1


⊤

) (5.8)

where Span is the linear span [Axler, 2014]. In general we note:

Fl = Span(Al) (5.9)

where Al is a basis of Fl. To make the displacement of an object physically accurate, its
twists have to lie within the Fl space. To do so we project the twist from its original space
to Fl. This is straightforward as R6 is Euclidean, the operation projector is a 6 × 6 matrix
defined as:

Πl = Al(A⊤
l Al)−1A⊤

l (5.10)
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In the example of a planar joint, it is easy to compute that:

Πl =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


(5.11)

in that case, a general twist can be projected such that:

Πl ξ =
(
vx vy 0 0 0 ωz

)⊤
(5.12)

Let us give another example, in the case of a revolute joint of axis z, the Al matrix can
be written as:

Al =
(
0 0 0 0 0 1

)⊤
(5.13)

We can thus compute the projection operator for that case:

Πl =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


(5.14)

This projection operator applied to a twist yields the following projected twist:

Πl ξ =
(
0 0 0 0 0 ωz

)⊤
(5.15)

which only remaining speed corresponds to a rotation around the z axis, the hinge of the
revolute joint. We show in figure 5.4 examples of planar and revolute joints.

As we can see from both examples, the only remaining degrees of freedom of the
projected twist are coherent with the joint. Using this new constraint, we can modify the
reprojection equation:

ixj = p(ciTw exp (Πl
wξoi

)wToi−1 ,o Xj) (5.16)
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Figure 5.4 – Example of twist projections for a planar joint for a car (left) and a revolute
joint for a door (right). Note how the translation part of the twist is completely canceled

for the rotational joint, thus superimposing the orthogonal projection and the twist.

However this equation is only true if the twist is expressed in the joint coordinate frame,
yet according to (5.3), it is naturally expressed either in the world or in the object frame.
To change the coordinate frame of a twist we can use the adjoint map defined in (5.5).
Hence the reprojection equation of the jth point in frame i becomes:

ixj = p(ciTw exp (wVl Πl
lVw

wξoi
)ci−1Tw,o Xj) (5.17)

where the first pose c0Tw is initialized with the identity for the rotation and the centroid
of 3D points for the translation. In the remainder of this chapter we will note Π =
wVl Πl

lVw for simplicity. This equation takes a 3D point in the object frame, transforms
it in the world frame using the previous object pose and multiplies it by the exponential of
the current twist to get its current position. The twist is expressed in the joint coordinate
frame, with the adjoint map, projected using Πl to keep only the relevant components and
expressed again in the world frame with the inverse adjoint map. Doing this we obtain
a 3D point in the world frame for frame i with a transformation that perfectly respects
the mechanical joint. We then apply the camera pose to obtain the point in the camera
coordinate frame, which allows us to project it in the image.

Using the reprojection function we can estimate the twist corresponding to the transfor-
mation of a set of object points between frame i − 1 and i by minimizing the following
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error:

E(wξoi
) =

∑
j

ρ(||ixj − p(ciTw exp (Πwξoi
)wToi−1 ,o Xj)||Σ−1

i,j
) =

∑
j

ρ(||ej(wξoi
)||Σ−1

i,j
)

(5.18)
where ρ is the Huber robust estimator [Malis and Marchand, 2006] and Σi,j is the co-
variance matrix of the reprojection error. In [Mur-Artal and Tardós, 2017] the covariance
matrix depends on the scale at which the keypoints are observed. In our case we chose to
estimate it using the mean absolute deviation (MAD) [Malis and Marchand, 2006] that
is a robust estimator of the standard deviation of the reprojection error. We perform the
optimization using the Levenberg-Marquardt algorithm on matches found between the
current and the previous frame. Then we refine this twist with an approach similar to
[Mur-Artal and Tardós, 2017] by projecting map points, transformed with the estimated
twist, in the current frame to search for additional matches and obtain a more accurate
estimation. The object pose in frame i is then updated as wToi

= exp(Πwξoi
)wToi−1 . This

tracking procedure is repeated for all objects, however they could be done in parallel as
the estimations are independent.

5.4.6 Dynamic Bundle Adjustment

The goal of classical bundle adjustment is to refine the camera trajectory and 3D
points position estimation. The dynamic bundle adjustment has multiple goals. First, the
refinement of the dynamic objects trajectory and their 3D points position, jointly with
the camera trajectory and 3D static points position. Second, it allows to link the object
and the camera trajectory, indeed if the bundle adjustment did not take into account
dynamic objects, only the camera pose would have an impact on the object pose, which
would not improve it. By taking into account dynamic points whose position is estimated
over time we can use them to refine the camera pose, similarly to static points but with
less accuracy since object pose estimation is noisier. Finally, it allows us to apply a soft
constrain on twists within a temporal window. Doing so we obtain smoother trajectories
and velocities that are more physically plausible.

Our bundle adjustment cost function can be written as follows:

E({wξ̃o,
cTw, wX, oX}) =

∑
i,j

ei,j
stat +

∑
i,j

ei,j
dyna +

∑
i

ei
const (5.19)
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where ei,j
stat is the classical static reprojection error:

ei,j
stat = ρ(||ixj − p(ciTw,w Xj)||Σ−1

i,j
) (5.20)

ei,j
dyna is a dynamic reprojection error:

ei,j
dyna = ρ(||ixj − p(ciTw exp(Πwξ̃oi

)wToi
, oX)||Σ−1

i,j
) (5.21)

where Σ−1
i,j is estimated using the MAD as in equation (5.17). Note that the twist optimized

here is not the same as the one defined earlier as it is applied on the current object pose
and not on the previous pose. It should thus be seen as a twist that refines the current
pose rather than a twist linking consecutive poses, which is why we denote it with a tilde.
ei

const is a constant velocity model that penalizes twists variations by linking 3 consecutive
poses:

ei
const = ρ(||Πwξoi+1 − Πwξoi

||W) (5.22)

where W is a diagonal weight matrix used to balance the errors, wξoi+1 is the twist linking
the poses exp(Πwξ̃oi

)wToi
and exp(Πwξ̃oi+1)wToi+1 and wξoi

is the twist linking the poses
exp(Πwξ̃oi−1)wToi−1 and exp(Πwξ̃oi

)wToi
. Those twists are computed using the logmap

from SE(3) to se(3) defined in [Blanco, 2010] and can be written for wξoi+1 as:

wξoi+1 = log(exp((Πwξ̃oi+1)wToi+1)(exp(Πwξ̃oi
)wToi

)−1) (5.23)

and for wξoi
as:

wξoi
= log(exp((Πwξ̃oi

)wToi
)(exp(Πwξ̃oi−1)wToi−1)−1) (5.24)

This equation moves each pose while respecting the mechanical joints constraints. Op-
timizing it can be cumbersome however the Schur trick can be applied as its Hessian is
sparse [Bescos et al., 2021]. These equations are classically optimized on a set of local
keyframes that share visual information, but in our case, inspired by [Huang et al., 2020]
we chose to have 2 sets of keyframes: temporal and spatial. All frames are converted to
temporal keyframes to improve the tracking of fast moving objects and be able to track an
object as soon as it enters the field of view of the camera. Keyframes stay in the temporal
set for a fixed duration (in our case 5 seconds) they are then culled more severely than
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in ORB-SLAM2. We chose to optimize camera poses on the set of temporal and local
keyframes, while object poses are only optimized on the set of temporal keyframes and
fixed in all other keyframes. Doing so, we apply our constant motion model only on the
temporal window, allowing clusters to accelerate or decelerate.

Note: It seems interesting here to underline an unsuccessful approach we experi-
mented. We first designed our object reprojection cost function to be:

ei,j = ρ(||ixj − p(ciTw

i∏
l=1

exp(Πwξol
)wTo0 , oX)||Σ−1

i,j
) (5.25)

which makes sense as the ith object pose can be obtained by applying the product
of the previous twists in the exponential map to the first pose. However this has the
effect of linking object twists and poses. Indeed the ith object pose depends on all
the previous twists, thus its derivative with respect to all previous twists is non null.
This creates dense triangular blocks in the Jacobian and Hessian. The triangular
shape is due to the fact that each twist depends only on the previous ones and
not on the following ones. We give in figure 5.5 an example of Hessian containing
object and camera poses for a single object. We can see it contains four blocks. The
upper left diagonal block corresponds to the second order derivatives with respect
to camera poses. The lower right dense block corresponds to the derivatives with
respect to object poses and is the result of the product of two triangular blocks.
The other blocks are the crossed derivatives with respect to cameras and object
poses. The problem with those dense blocks is that they considerably increase the
time necessary to solve the normal equations as the matrix is not block diagonal
anymore. For example, the BA using this Hessian with 19 camera poses and 18
object poses takes tens of seconds to solve. It prevents us to apply this approach in
real-time SLAM scenarios. On the other hand, in the approach that we proposed
each object pose depends only on itself and on the camera pose, making the Hessian
sparser.

5.4.7 Computing the cost functions Jacobians

To optimize the cost functions (5.18) and (5.19) with a Levenberg-Marquardt optimizer
we need to compute their Jacobian. They can be either estimated using the finite difference
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Figure 5.5 – Example of semi-dense Hessian with 19 camera poses and 18 object poses.
The blocks are delimited by red lines. Non zero entries are yellow and dark blue.
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method or computed analytically. To obtain the best convergence possible we chose the
second option. First we compute the Jacobian of the cost function used for object tracking
E(wξoi

). Using the chain rule and getting inspiration from [Blanco, 2010] it can be shown
that:

∂ej(wξoi
)

∂wξoi

= ∂π(cXj)
∂cXj

(cX⊤
j ⊗ I3)(I4 ⊗ ciRw)(wToi−1

⊤ ⊗ I3)
∂ exp(ξ)

∂ξ
Π (5.26)

where ⊗ is the Kronecker product, IN is an identity matrix of size N , ciRw is the rotation
matrix of ciTw and ∂ exp(ξ)

∂ξ
is:

∂ exp(ξ)
∂ξ

=


03×3 −[e1]×
03×3 −[e2]×
03×3 −[e3]×
I3 03×3

 (5.27)

where {e1, e2, e3} is the canonical base of R3.

Proof. The reprojection error can be seen as a composition of functions:

ej(wξoi
) = ixj − p(ciTw exp (Πwξoi

)wToi−1 ,o Xj) (5.28)
= ixj − π(f1(f2(f3(exp(Πwξoi

))))) (5.29)

where f1(T) = T oX̄j corresponds to the application of a transformation to the 3D point
oXj, f2(T) = ciTw T is the left multiplication by the transformation ciTw and f3(T) =
T wToi−1 is the right multiplication by wToi−1 . We compute the derivative of this error
with respect to the twist using the chain rule:

∂ej(wξoi
)

∂wξoi

∣∣∣∣∣
wξoi =0

= −∂π(X)
∂X

∣∣∣∣∣
X=Y

∂f1(T)
∂T

∣∣∣∣∣
T=A

∂f2(T)
∂T

∣∣∣∣∣
T=B

∂f3(T)
∂T

∣∣∣∣∣
T=C

∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=Πwξoi

Π (5.30)

where Y is the non homogeneous form of ciTw exp (Πwξoi
)wToi−1

oX̄j,
A = ciTw exp (Πwξoi

)wToi−1 , B = exp (Πwξoi
)wToi−1 and C = exp(Πwξoi

).
As detailed in [Blanco, 2010] the derivatives of left and right multiplication as well as

pose-point composition for poses TA and TB are:

∂TATB

∂TA
= TB

⊤ ⊗ I3 (5.31)
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∂TATB

∂TB
= I4 ⊗ RA (5.32)

∂TAX
∂TA

= X̄⊤ ⊗ I3 (5.33)

Thus equation (5.30) can be re-written:

∂ej(wξoi
)

∂wξoi

∣∣∣∣∣
wξoi =0

= −∂π(X)
∂X

∣∣∣∣∣
X=Y

(Ȳ⊤ ⊗ I3)(I4 ⊗ ciRw)(wToi−1
⊤ ⊗ I3)

∂ exp(ξ)
∂ξ

Π (5.34)

thus yielding the Jacobian of the reprojection error. ■

Then we compute the Jacobian of edyna in equation (5.19), which is very similar to
the previous Jacobian. The derivatives of the function with respect to camera poses and
points are the same as for classical bundle adjustment [Dellaert, 2014]. For the object
poses we can compute:

(Jedyna
)i,j =

∂ei,j
dyna

∂wξ̃oi

=∂π(ciXj)
∂ciXj

(ciX̄⊤
j ⊗ I3)(I4 ⊗ ciRw)(wToi

⊤ ⊗ I3)
∂ exp(ξ)

∂ξ
Π

(5.35)

Proof. The reprojection errors for tracking and for the BA are very similar, we can write:

ei,j = ixj − p(ciTw exp (Πwξ̃oi
)wToi

,o Xj) (5.36)
= ixj − π(f1(f2(f3(exp(Πwξ̃oi

))))) (5.37)

where f1(T) = T oX̄j corresponds to the application of a transformation to the 3D point
oXj, f2(T) = ciTw T is the left multiplication by the transformation ciTw and f3(T) =
T wToi

is the right multiplication by wToi
.

Using the previously computed derivative it follows immediately that

∂edyna

∂wξ̃oi

∣∣∣∣∣
w ξ̃oi =0

= ∂π(ciXj)
∂ciXj

(ciX̄⊤
j ⊗ I3)(I4 ⊗ ciRw)(wToi

⊤ ⊗ I3)
∂ exp(ξ)

∂ξ
Π (5.38)

where ciX̄j = ciTw exp(Πwξ̃oi
)wToi

oX̄j which yields the Jacobian for the reprojection
error of the BA.
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■

Finally we compute the Jacobian of the constant velocity constraint with respect to
each of the 3 twists involved in the constraint:

(Jeconst)i =
(

∂ei
const

∂w ξ̃oi−1

∂ei
const

∂w ξ̃oi

∂ei
const

∂w ξ̃oi+1

)
(5.39)

The derivative with respect to wξ̃oi−1 can be written:

∂ei
const

∂wξ̃oi−1

= Π
∂ log(T)

∂T
(I4 ⊗ R)∂ exp(ξ)

∂ξ
Π (5.40)

with T = exp((Πwξ̃oi
)wToi

)(exp(Πwξ̃oi−1)wToi−1)−1, R is the rotation matrix of
exp((Πwξ̃oi

)wToi
)(wToi−1)−1 and the derivative of the logmap is given by [Blanco, 2010].

The derivative with respect to wξ̃oi
can be written:

∂econst

∂wξ̃oi

= −∂ log(TA)
∂TA

(TB
⊤ ⊗ I3)

∂ exp(ξ)
∂ξ

Π − Π
∂ log(TC)

∂TC
(I4 ⊗ R)∂ exp(ξ)

∂ξ
Π (5.41)

with TA = exp((Πwξ̃oi
)wToi

)(exp(Πwξ̃oi−1)wToi−1)−1,
TC = exp((Πwξ̃oi+1)wToi+1)(exp(Πwξ̃oi

)wToi
)−1, TB = wToi

(exp((Πwξ̃oi−1)wToi−1)−1 and
R is the rotation matrix of exp((Πwξ̃oi+1)wToi+1)oiTw

The derivative with respect to wξ̃oi+1 can be written:

∂econst

∂wξ̃oi+1

= Π
∂ log(T)

∂T
(TB

⊤ ⊗ I3)
∂ exp(ξ)

∂ξ
Π (5.42)

with T = exp((Πwξ̃oi+1)wToi+1)(exp(Πwξ̃oi
)wToi

)−1, TB = wToi+1(exp((Πwξ̃oi
)wToi

)−1

Proof. First we show how to compute the derivative with respect to wξ̃oi−1 . Only the right
part of econst that depends on wξoi

also depends on wξ̃oi−1 . The derivative of the left part
is thus 0. We write the right part as:

Πwξoi
= Π log(exp(Πwξ̃oi

)wToi
(exp(Πwξ̃oi−1)wToi−1)−1) (5.43)

= Π log(exp(Πwξ̃oi
)wToi

(oi−1Tw exp(−Πwξ̃oi−1))) (5.44)
= Π log(f1(f2(wξ̃oi−1))) (5.45)
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where f1(T) = exp(Πwξ̃oi
)wToi

oi−1TwT is the left multiplication by the pose
exp(Πwξ̃oi

)wToi
oi−1Tw and f2(wξ̃oi−1) = exp(−Πwξ̃oi−1). Using the chain rule it follows

that:

∂Πwξoi

∂wξ̃oi−1

∣∣∣∣∣
w ξ̃oi−1 =0

= Π
∂ log(T)

∂T

∣∣∣∣∣
T=A

∂f1(T)
∂T

∣∣∣∣∣
T=B

∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=−Πw ξ̃oi−1 =0

(−Π) (5.46)

where A = exp(Πwξ̃oi
)wToi

(exp(Πwξ̃oi−1)wToi−1)−1 and B = exp(−Πwξ̃oi−1). Using the
derivative of right multiplication transformation, we can write:

∂Πwξoi

∂wξ̃oi−1

∣∣∣∣∣
w ξ̃oi−1 =0

= Π
∂ log(T)

∂T

∣∣∣∣∣
T=A

(I4 ⊗ R)∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=−Πw ξ̃oi−1 =0

(−Π) (5.47)

where R is the rotation part of exp(Πwξ̃oi
)wToi

oi−1Tw. We thus have:

∂econst

∂wξ̃oi−1

∣∣∣∣∣
w ξ̃oi−1 =0

= ∂Πwξoi+1

∂wξ̃oi−1

− ∂Πwξoi

∂wξ̃oi−1

∣∣∣∣∣
w ξ̃oi−1 =0

(5.48)

= 0 − Π
∂ log(T)

∂T

∣∣∣∣∣
T=A

(I4 ⊗ R)∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=−Πw ξ̃oi−1 =0

(−Π) (5.49)

= Π
∂ log(T)

∂T

∣∣∣∣∣
T=A

(I4 ⊗ R)∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=−Πw ξ̃oi−1 =0

Π (5.50)

The details for the computation of the derivative of the log map and exponential map can
be found in [Blanco, 2010] p. 54 and p. 58.

We then show how to compute the derivative with respect to wξ̃oi+1 . Only the left part of
econst that depends on wξoi+1 also depends on wξ̃oi+1 . The derivative of the right part is
thus 0. We write the left part as:

Πwξoi+1 = Π log(exp(Πwξ̃oi+1)wToi+1(exp(Πwξ̃oi
)wToi

)−1) (5.51)
= Π log(exp(Πwξ̃oi+1)wToi+1(oiTw exp(−Πwξ̃oi

))) (5.52)
= Π log(f1(f2(wξ̃oi+1))) (5.53)

where f1(T) = TwToi+1(oiTw exp(−Πwξ̃oi
)) is the right multiplication by

wToi+1(oiTw exp(−Πwξ̃oi
)) and f2(wξ̃oi+1) = exp(Πwξ̃oi+1). Again, using the chain rule we
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can write:

∂Πwξoi+1

∂wξ̃oi+1

∣∣∣∣∣
w ξ̃oi+1 =0

= Π
∂ log(T)

∂T

∣∣∣∣∣
T=A

(TB
⊤ ⊗ I3)

∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=Πw ξ̃oi+1 =0

Π (5.54)

where A = exp(Πwξ̃oi+1)wToi+1(exp(Πwξ̃oi
)wToi

)−1 and TB = wToi+1(oiTw exp(−Πwξ̃oi
)).

It follows that:

∂econst

∂wξ̃oi+1

∣∣∣∣∣
w ξ̃oi+1 =0

= ∂Πwξoi+1

∂wξ̃oi+1

− ∂Πwξoi

∂wξ̃oi

∣∣∣∣∣
ξ=0

(5.55)

= Π
∂ log(T)

∂T

∣∣∣∣∣
T=A

(TB
⊤ ⊗ I3)

∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=Πw ξ̃oi+1 =0

Π + 0 (5.56)

Finally we compute the derivative with respect to wξ̃oi
. Contrary to the other derivatives

both right and left parts of econst depend on wξ̃oi
. We first write the left part:

Πwξoi+1 = Π log(exp(Πwξ̃oi+1)wToi+1(exp(Πwξ̃oi
)wToi

)−1) (5.57)
= Π log(exp(Πwξ̃oi+1)wToi+1(oiTw exp(−Πwξ̃oi

))) (5.58)
= Π log(f1(f2(wξ̃oi

))) (5.59)

where f1(T) = exp(Πwξ̃oi+1)wToi+1
oiTwT is the left multiplication by

exp(Πwξ̃oi+1)wToi+1
oiTw and f2(wξ̃oi

) = exp(−Πwξ̃oi
). As we can see this equation is

very similar to equation (5.45), the only difference being the index i. Thus we deduce the
derivative:

∂Πwξoi+1

∂wξ̃oi

∣∣∣∣∣
w ξ̃oi =0

= Π
∂ log(T)

∂T

∣∣∣∣∣
T=C

(I4 ⊗ R)∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=−Πw ξ̃oi =0

(−Π) (5.60)

where C = exp(Πwξ̃oi+1)wToi+1(exp(Πwξ̃oi
)wToi

)−1 and R is the rotation part of
exp(Πwξ̃oi+1)wToi+1

oiTw. The right part of the derivative can be written:

Πwξoi
= Π log(exp(Πwξ̃oi

)wToi
(exp(Πwξ̃oi−1)wToi−1)−1) (5.61)

= Π log(exp(Πwξ̃oi
)wToi

(oi−1Tw exp(−Πwξ̃oi−1))) (5.62)
= Π log(f1(f2(wξ̃oi

))) (5.63)

where f1(T) = TwToi
(oi−1Tw exp(−Πwξ̃oi−1)) is the right multiplication by
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wToi
(oi−1Tw exp(−Πwξ̃oi−1)) and f2(wξ̃oi

) = exp(Πwξ̃oi
). This equation is similar to equa-

tion (5.53), the difference being again on the index i. We can thus write:

∂Πwξoi

∂wξ̃oi

∣∣∣∣∣
w ξ̃oi =0

= Π
∂ log(T)

∂T

∣∣∣∣∣
T=A

(TB
⊤ ⊗ I3)

∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=Πw ξ̃oi =0

Π (5.64)

where A = exp(Πwξ̃oi
)wToi

(exp(Πwξ̃oi−1)wToi−1)−1 and
TB = wToi

(oi−1Tw exp(−Πwξ̃oi−1)). Finally:

∂econst

∂wξ̃oi

∣∣∣∣∣
w ξ̃oi =0

= ∂Πwξoi+1

∂wξ̃oi

− ∂Πwξoi

∂wξ̃oi

∣∣∣∣∣
w ξ̃oi =0

(5.65)

= Π
∂ log(T)

∂T

∣∣∣∣∣
T=C

(I4 ⊗ R)∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=−Πw ξ̃oi =0

(−Π)

− Π
∂ log(T)

∂T

∣∣∣∣∣
T=A

(TB
⊤ ⊗ I3)

∂ exp(ξ)
∂ξ

∣∣∣∣∣
ξ=Πw ξ̃oi =0

Π (5.66)

which concludes the computation of the Jacobian. ■

All the Jacobians computed here have been verified numerically using finite differences.

5.5 Experiments

In this section we present the experiments we conducted to test our approach. Our
goal is to evaluate both the accuracy of the camera pose estimation and the accuracy of
the object pose estimation.

5.5.1 Experiments details

Datasets. We evaluate our approach on the KITTI [Geiger et al., 2012] tracking
dataset that we presented in chapter 2. This dataset is particularly interesting for our
approach as it contains the ground truth for both the camera pose and for some objects
poses such as vehicles. Furthermore the sequences present an important variability, includ-
ing simple short sequences with only a few objects to long crowded scenes with vehicles
and pedestrians.
Metrics. The metrics for the evaluation of SLAM systems are usually the absolute trans-
lation error (ATE) [J. Sturm et al., 2012] and the relative pose error (RPE) [Z. Zhang
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and Scaramuzza, 2018] that we presented in chapter 2. For each sequence we report the
translation and rotation parts of the RPE, as it is done by both VDO-SLAM and Dy-
naSLAM2. The object pose estimation accuracy can be evaluated using 2 different types
of metrics: on the one hand the ATE and RPE that measure the quality of the objects
trajectories and on the other hand the MOTP that evaluates the per-frame accuracy of
objects 3D bounding boxes estimations and that we compute similarly to [Bescos et al.,
2021] using kitti evaluation tools. As we do not estimate object boxes we use the ground
truth box at the first pose of each object and propagate it using our camera and object
pose estimations. The confidence needed to compute the MOTP is given by the normal-
ized number of keypoints used for tracking the object at each timestamp. We evaluate
the true positive rate (TP) and the MOTP using the projected 3D bounding box (2D),
in bird view (BV) and in 3D.
Computation times. As all frames are transformed into keyframes that need to be
segmented we make our approach run at 1 to 2 fps on an Nvidia RTX2070. The BA
converges rather rapidly even with the additional temporal keyframes and object poses,
with a convergence time of 0.3 to 0.5 seconds.

5.5.2 Camera pose estimation

In this subsection we evaluate the accuracy of our camera pose estimation. Similarly
to [Bescos et al., 2021] we only show here sequences in which the camera is moving.
As we can see in table 5.1 our approach improves camera pose estimation on several
sequences. As objects are often either small, only visible for a short time or static, [Mur-
Artal and Tardós, 2017] performs well, but as we track clusters using many points, with
a good precision, especially for clusters that do not move, we are able to reduce the drift.
[J. Zhang et al., 2020] also gives good results but requires depth information while our
approach gives similar or better results than RGB based approaches. The most important
improvement of our approach is in terms of object tracking accuracy as we can see in
table 5.2.

5.5.3 Object pose estimation.

In this subsection we evaluate the accuracy of our object pose estimation. We compare
our results to [Bescos et al., 2021] that is the only approach that reports all metrics for
separated objects, allowing a better evaluation of the object pose estimation accuracy.
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The reported sequences where chosen by [Bescos et al., 2021] to maximize the tracking
duration and the objects size in images. As we can see we improve object tracking accuracy,
particularly for static objects such as the car 35 from sequence 11. The most important
improvements usually come from the rotational part of the RPE, which is understandable
as we only have 1 degree of freedom for the rotation of cars. While object tracking accuracy
is very good it is not as good as ego motion estimation. As [Bescos et al., 2021] we argue
that this is because we extract less keypoints from objects than from the rest of the scene.
Furthermore the amount of high quality keypoints is more limited in objects than in the
static scene, meaning that we can not extract more points without getting points that are
not well localized in 2D or that are prone to be wrongly matched. We also observe that the
most challenging cases happen when an object starts and stays far from the camera (e.g.
seq. 05 and 10) because object tracking uses 3D points triangulated from stereo matches
that are imprecise when points are far from the camera. We argue that the bruteforce
keypoint matching of [Bescos et al., 2021] help them when few frame to frame matches
can be found, which can happen when the object is far from the camera. Furthermore we
have not implemented a way to relocalize an object that has been lost for multiple frames.
Thus on some sequences (e.g. car 0 of seq. 11 and car 12 of seq. 20) in which the objects
are alternatively far and close from the camera, we are only able to track them on a small
portion of their trajectory. However, we can see that we are generally able to accurately
track objects for most of their trajectory. During our experiments we saw that we were
able to track pedestrians, despite the fact that they are not rigid. We believe that our
approach works because pedestrians only undergo small deformations around arms and
legs. However as they are usually small in the image we can only track them when they
are close enough to the camera.

We also show some qualitative results for the mapping, the camera and object pose
estimation. The results are visible in figures 5.6, 5.7, 5.8. We are able to track multiple
objects on all sequences. The estimated speed is very close from the ground truth with a
maximum difference of about 3 km/h which occurs when the object is far from the camera
or when it is created. Looking at the bounding boxes we can see that they coincide and
thus that the poses are well estimated for near and far objects. As we can see in the middle
figure we can accurately track non rigid objects such as the cyclist, as long as most of
their surface is rigid. We also show on figure 5.8 an example of both a tracked static car
and a car that slows down and speeds up. As we can see the estimated speed is close to
the 0 for the static car, making the dynamic keypoints act like static ones. We can also
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Chapter 5 – TwistSLAM

see the noise of the ground truth with the speed of the static car that goes up to 2 km/h.

5.6 Conclusion

In this chapter we proposed a new stereo semantic dynamic SLAM system called
TwistSLAM, able to estimate both the pose of the camera as well as to track all dynamic
objects in the scene. Using mechanical joints between clusters we can constrain objects
movements to physically possible movements, which allows us to improve both camera
and objects pose estimation compared to the state of the art. However our work shows
some limits: the accuracy of object tracking is often lower than camera tracking. Its ro-
bustness is also too weak for real life applications yet as we are barely able to track cars
further than 25 meters away from the camera. Furthermore, contrary to our first algo-
rithm, L6DNet we do not have access to a dense 3D model of the object, but rather to
a sparse pointcloud that gets polluted when object tracking drifts. Finally, as we do not
use an object pose estimation algorithm we are unable to estimate canonical object poses.
We propose to solve those problems in the last chapter of this manuscript.

This chapter was published in:

Mathieu Gonzalez, Eric Marchand, Amine Kacete and Jérôme Royan, "Twist-
SLAM: Constrained SLAM in Dynamic Environment", in: IEEE Robotics and
Automation Letters (RA-L), 2022. It was also published in: IEEE International
Conference on Intelligent Robots and Systems (IROS), 2022
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Figure 5.6 – Qualitative example of cluster tracking on sequence 3 from the KITTI
tracking dataset. (Top) Frame with tracked clusters and their speed. (Middle left)

Comparison of estimated (red) and ground truth (blue) speed (in km/h). (Middle right)
Map with tracked clusters and camera poses, seen from above. (Bottom) Visualization of
estimated poses (red) and ground truth (green) represented by their 3D bounding boxes.
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Figure 5.7 – Qualitative example of cluster tracking on sequence 0 from the KITTI
tracking dataset. (Top) Frame with tracked clusters and their speed. (Middle left)

Comparison of estimated (red) and ground truth (blue) speed (in km/h). (Middle right)
Map with tracked clusters and camera poses, seen from above. (Bottom) Visualization of
estimated poses (red) and ground truth (green) represented by their 3D bounding boxes.
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Figure 5.8 – Qualitative example of cluster tracking on sequence 11 from the KITTI
tracking dataset. (Top) Frame with tracked clusters and their speed. (Middle left)

Comparison of estimated (red) and ground truth (blue) speed (in km/h). (Middle right)
Map with tracked clusters and camera poses, seen from above. (Bottom) Visualization of
estimated poses (red) and ground truth (green) represented by their 3D bounding boxes.
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In this chapter we propose to push the limits present in TwistSLAM, with a new approach
that we call TwistSLAM++ [Gonzalez et al., 2022c]. More precisely we seek to improve the
accuracy of object tracking, generalize the approach of S3LAM on non planar objects and
estimate the canonical pose of objects, as in L6DNet. To do so we propose to use another
source of information: LiDAR scans, that we process in different ways and inject into
TwistSLAM. First we use the 3D object detector 3DSSD [Z. Yang et al., 2020] to estimate
the oriented 3D bounding boxes of cars in LiDAR scans. We associate the boxes to tracked
clusters, allowing us to have access to the canonical pose of objects. We use estimated
bounding boxes to associate LiDAR points to clusters and feed them to an ICP algorithm
to obtain a new estimate of object poses. This estimate is then used to further constrain
the BA, together with the pose estimation. Finally we fit a signed distance function
(SDF) on object scans. In the BA we constrain object map points to lie on the surface of
the SDF, improving the map. We show that those additional constraints improve object
tracking accuracy. A video explaining the approach and showing examples of dynamic
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object tracking and reconstruction can be found at https://youtu.be/xipseb0LMeU.

6.1 Introduction

In the previous chapter we have shown that we could accurately estimate camera pose
in dynamic scenarios while estimating the trajectory of moving objects. However existing
approaches are based solely on RGB information and are less precise than camera pose
estimation due to the lower number of extracted points. This limit can even lead to
failures in some cases (e.g. when the dynamic object is far from the camera or too small).
Furthermore, those approaches suffer from tracking drift that can not be corrected by loop
closure. Finally they do not have access to the canonical pose of the object but rather
to its relative pose with respect to its initial pose. To solve those problems we propose
to update our previous work TwistSLAM [Gonzalez et al., 2022b] by integrating a 3D
object detector based on LiDAR information. This detector is used to predict the pose
and size of 3D bounding boxes corresponding to potentially moving objects in the scene.
We associate detections to tracked clusters to have access to their canonical pose, i.e.
their pose with respect to an a priori known object coordinate frame. Furthermore, we
use consecutive poses to constrain the displacement of objects, thus reducing the drift.
The obtained bounding boxes are then used to associate 3D LiDAR points to tracked
clusters which serves two purposes. First they allow us to improve object tracking by
feeding successive scans to a generalized ICP algorithm. The computed pose is then used
as a constraint in the bundle adjustment. Second, inspired by the work of DSP-SLAM
[J. Wang et al., 2021], we use scans to fit a deep-learnt signed distance function (SDF)
[J. J. Park et al., 2019] that represents the object geometry. However contrary to DSP-
SLAM we do not use the SDF to estimate the object pose as we already have a good
estimate of it, but we rather use it to constrain the 3D map points of clusters to lie on the
estimated mesh, similarly to our previous work [Gonzalez, Marchand, et al., 2021] which
was restricted to planes. We show in figure 6.1 an example of object pose estimation,
tracking and reconstruction on cars from the Kitti tracking dataset.
To summarize, our contributions in this chapter are:

• A semantic SLAM system that can robustly estimate the pose of a camera in
dynamic scenes.

• A SLAM framework that can track multiple moving objects and estimate their
canonical pose.
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• A SLAM system able to fuse 3D object pose estimation, object tracking and 3D
registration results from LiDAR scans to reduce tracking drift.

• A SLAM framework that uses the 3D reconstruction of object from LiDAR data
to constrain the geometry of map points.

We evaluate our approach on sequences from the KITTI tracking datasets. We compare
our results with state of the art dynamic SLAM systems DynaSLAM 2 [Bescos et al., 2021]
and TwistSLAM [Gonzalez et al., 2022b].

In this chapter we present and recall some related approaches, particularly the ones
that use LiDAR scans for odometry and mapping. Following, we rapidly recall the work
we presented in previous chapter and show how we inject LiDAR scans into our pipeline
using a 3D object detector, a generalized ICP algorithm and a signed distance function.
Finally we evaluate our approach on sequences from the Kitti dataset and perform an
ablation study ton the different constraints of our SLAM.

6.2 Related work

In this section we recall some semantic dynamic SLAM systems presented in the
previous chapter that tackle the problem of dynamic objects by tracking them [Bescos
et al., 2021; Huang et al., 2020] or use them as high level landmarks [Salas-Moreno et
al., 2013; S. Yang and Scherer, 2019a]. We also present SLAM systems that make use of
LiDAR information and fuse multiple modalities to improve the accuracy and robustness
of camera tracking.

DynaSLAM II [Bescos et al., 2021] uses semantic information to detect objects. Object
3D points are represented in the object reference frame and used to estimate the object
pose at all time by minimizing their reprojection error.

Some approaches propose to detect objects in the scene to use them as high level
landmarks. While some of them [Civera et al., 2011; Salas-Moreno et al., 2013] require
a specific object pose estimation algorithm [Rad and Lepetit, 2017] which limits their
applicability in real world scenarios, others are based on generic object detectors. Those
approaches use quadrics [Gaudillière et al., 2019; Nicholson et al., 2018] or 3D bounding
boxes [S. Yang and Scherer, 2019a] to represent objects. More recently, some approaches
have represented the geometry of objects more accurately using learning based approaches.
NodeSLAM [Sucar et al., 2020] optimizes detected object poses and shape, represented by
an autoencoder. Object poses are then used in the SLAM system to estimate the camera
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(a)

(b)
(c)

(d)

Figure 6.1 – In our SLAM system we track object (here cars) moving in the scene. We
show here (a) a frame with tracked cars, their speed and reprojected bounding boxes.

(b) the bounding box and clustered LiDAR points (red) for the closest car. (c) the
reconstruction of the car, using the approach of DSP-SLAM [J. Wang et al., 2021]. (d)
the map seen from above, with LiDAR points (black), road LiDAR points (green) and

tracked cars.
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pose. DSP-SLAM [J. Wang et al., 2021] optimizes the latent code of a deep learning based
SDF [J. J. Park et al., 2019] and uses it to estimate object poses and to reconstruct the
object shape. Object poses are then used to constrain camera pose estimation in the BA.

Finally, some approaches [Behley and Stachniss, 2018; C. Park et al., 2018] have been
using LiDAR scans instead of images as an input for SLAM: [Behley and Stachniss, 2018]
is a full SLAM system based only on LiDAR data, which represents the map using a
set of surfels. 3D LiDAR points are transformed to the image plane using a spherical
projection, yielding a so-called vertex map. This map is used, together with the normal
map to estimate the updated current pose using point to plane registration after finding
associations in the image plane. The current scan is then fused with the map to update
it. Finally loop closure is performed. Virtual views are generated with the surfel map
to compute the alignment with the current scan. After a verification step, pose graph
optimization is performed and used to update the surfel map. Some approaches [X. Chen
et al., 2019; 2021; Jeong et al., 2018; L. Sun et al., 2018] have also injected semantic
information into LiDAR based SLAM systems, to improve pose estimation, for example
by masking our moving objects. SuMa++ [X. Chen et al., 2019] improves on [Behley and
Stachniss, 2018] by integrating a CNN to segment LiDAR scans [Milioto et al., 2019].
This allows them to obtain a higher level map. Furthermore semantic information is used
to detect and remove surfels belonging to dynamic objects. It also used to guide the ICP
by weighting associated points.

6.3 TwistSLAM++

Following the idea of the algorithms TwistSLAM [Gonzalez et al., 2022b] and S3LAM
[Gonzalez, Marchand, et al., 2021] we use a panoptic neural network [Y. Wu et al., 2019] to
create a map of clusters corresponding to objects in the scene. Using points extracted from
static clusters we track the camera. Then, we use the points from remaining potentially
dynamic clusters to track the objects. As we estimate the geometry of some objects (e.g. a
plane for the road) we are able to constrain the velocity of tracked clusters with mechanical
links. To improve this approach we chose to use LiDAR scans in several ways as we can
see in the pipeline, figure 6.2. First we feed them to a 3D object detection network that
estimates the pose and size of objects in the scene. Second we use successive LiDAR scans
corresponding to objects and register them to compute their relative pose. We inject both
detected and registered poses as constraints in the BA, the first one being free from any
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Figure 6.2 – The pipeline of our approach: (a) keypoints are extracted from stereo
images and used for camera tracking and (b) object tracking. (c) LiDAR scans are fed

toa 3D object detector, allowing us to obtain (d) the 3D bounding box of objects in the
scene and to cluster LiDAR points, which are then used in an ICP algorithm. (e) selected

keyframes are segmented to create clusters that are augmented with clustered LiDAR
points. (f) Object LiDAR points are then used to fit a per object sdf that constrains the
geometry of clusters. (g) The trajectory and geometry of clusters is refined in the BA.

drift and the second one more accurate. Third, we follow the work of [J. Wang et al.,
2021] and use DeepSDF [J. J. Park et al., 2019] to fit an SDF to objects using LiDAR
points. The SDF is then used in the BA to constrain the SLAM map points to lie on the
object surface.

6.3.1 A recall of TwistSLAM

In the previous chapter we introduced TwistSLAM. Our algorithm uses the panoptic
segmentation of keyframes to create a map containing clusters of 3D points that uniquely
correspond to objects in the scene. We use a priori static clusters (e.g. the road, the
buildings) to robustly track the camera. Other potentially dynamic clusters are tracked
by minimizing their reprojection error. We use the structure of the scene, represented
with planes to constrain the movement of objects by projecting twists, that should follow
mechanical linkages. Doing so we obtain physically plausible displacements. Finally we
optimize all object and camera poses, as well as all map points in a single BA with a
constant velocity constraint on objects.
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6.3.2 Injecting LiDAR scans in TwistSLAM

To improve the accuracy of object tracking we propose to use LiDAR scans, taken at
each timestamp and processed in multiple ways. We first process the scans by using a
3D object detection network (namely 3DSSD [Z. Yang et al., 2020]). For each scan this
network yields a set of estimated 3D bounding boxes, with their corresponding 6 DoF
pose and size, denoted respectively for the estimations at the ith frame: ciTd

oi
where d

stands for detection and si = (li, wi, hi)⊤, where l, w and h denote the length, width and
height of the bounding box. We associate clusters created in our SLAM system to object
detections by minimizing their 3D distance. A detection is valid if its distance to the
cluster centroid is lower than 2 meters. We then use consecutive detections to compute
the relative twist wξd

oi
linking two poses:

wξd
oi

= log(ci+1Td
oi+1

(ciTd
oi

)−1) (6.1)

The estimation of this twist has the advantage of being free from any drift. It can thus
be used to limit the drift accumulated during tracking, similarly to the action of a loop
closing step for camera tracking. The drawback however is that it is more noisy than
keypoints based tracking. Indeed, the detector was trained to detect 3D objects rather to
accurately estimate their pose. We show in section 6.3.4 how to inject it in the BA.

One of the main drawback of TwistSLAM [Gonzalez et al., 2022b] was the lack of
canonical pose for objects. Indeed, when an object is first created, its pose is initialized
with an identity matrix for the rotation, and the centroid of the cluster for the translation.
Thus, this pose does not relate to the pose of objects in their canonical coordinate frame.
Using 3D object detection we can estimate the initial object pose. This initial pose is then
updated using object tracking. We also fuse the estimated dimensions of the detection
using the median of each dimension for robustness. Both the pose and the dimensions
allow us to estimate a 3D bounding box for clusters. Using the bounding box we can
associate 3D LiDAR points to clusters. We thus obtain at each timestamp a precise 3D
scan of each object in the scene. We use the generalized ICP algorithm [Segal et al., 2009]
to compute the transformation between consecutive timestamps, that we denote oi+1Tr

oi

where r stands for registration.

This transformation can be decomposed as:

oi+1Tr
oi

=oi+1 Tr
w (oiTr

w)−1 (6.2)
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which allows us to compute the corresponding twist in the world coordinate frame:

wξr
oi

= log(oi+1Tr
oi

) (6.3)

This twist as the advantage of being accurate compared to keypoint based twists, partic-
ularly when keypoints are difficult to extract (e.g. on small, far or textureless objects).
We show in section 6.3.4 how to inject it in the global BA.

Finally, note that we also associate LiDAR points to some clusters (e.g. the road) as
they can improve the estimation of their geometry. To do so we project LiDAR points in
the image and measure the probability that they belong to the class road in the segmented
image. They are then associated to the cluster if this probability is higher than a threshold.

6.3.3 Estimating clusters geometry

The geometry of objects is an important property that we can inject in the SLAM
to improve the accuracy of 3D mapping. To estimate it, we use clustered LiDAR points,
that are precise and apply the method developed in DSP-SLAM [J. Wang et al., 2021].
DSP-SLAM uses DeepSDF [J. J. Park et al., 2019] to represent the geometry of an object
using an SDF generated from its latent code vector:

G(oTw
wX̄, z) = s (6.4)

where s is the SDF value computed at the 3D points position oX̄ = oTw
wX̄ and z ∈ R64

is the latent code representing the object shape. An example of a SDF from [J. J. Park
et al., 2019] is visible figure 6.3.

They optimize the latent code, object pose and scale so that the generated geometry
tightly fits the object LiDAR points. Doing so they can reconstruct a realistic watertight
mesh and use the object poses as constraints in the BA. As we already have a good
estimate of the objects poses we propose to apply this algorithm on LiDAR points not to
refine the pose but rather to refine the SLAM 3D points. We use clustered LiDAR scans
to fit the latent code z exactly as in DSP-SLAM. However contrary to DSP-SLAM we
keep the object pose and scale fixed, their values being set using our own estimate of the
object pose and length. Then, we seek to constrain 3D map points so that they lie on the
object estimated surface. As we have an estimate of the SDF value and of its derivative
with respect to the latent code and 3D points position we can apply a gradient descent
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Figure 6.3 – Illustration of the SDF on the Stanford Bunny. (a) Points outside of the
mesh have positive SDF values, points inside the mesh have negative SDF values. The
surface is represented by the level set SDF = 0. (b) 2D cross section of the SDF for the
Stanford Bunny. (c) Rendered surface from the 0 level set of DeepSDF. Image courtesy

of DeepSDF [J. J. Park et al., 2019]

algorithm to project points on the surface, which can be written at the kth step:

oX(k+1) = oX(k) − α(k) ∂G(oX(k), z)
∂oX(k) (6.5)

where α(k) is the step size, the point initial value is oX(0) = oX and the derivative of G is
obtained through back propagation. This process is repeated for 5 to 10 steps to obtain
projected points that we denote oX̃. Projected points will then be used as anchors in the
bundle adjustment to constrain 3D points to be coherent with the estimated geometry.
The use of LiDAR data is particularly interesting to constrain map points as LiDAR
points are usually more precise than points triangulated from stereo images. We show in
figure 6.4 and example of rendered mesh, LiDAR points and projected points.
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Rendered level set SDF=0

LiDAR points

Projected map points

(a)

(b)

(e)

(d)

(c)

Figure 6.4 – Rendered SDF surface seen from the (a) top and (b) side. 3D LidAR points
(red) and projected points (blue) seen from the (c) top and (d) side. (e) RGB image of

the reconstructed cars.

6.3.4 Dynamic Bundle Adjustment

In this section we use the BA to constrain object trajectories to be coherent with
twists estimated by the registration and detection steps. We also constrain object map
points to be coherent with the estimated SDF of each object.

Our bundle adjustment cost function can be written as follows:

E({wξ̃o,
cTw, wX, oX}) =

∑
i,j

ei,j
stat +

∑
i,j

ei,j
dyna +

∑
i

ei
const +

∑
i

ei
det +

∑
i

ei
reg +

∑
j

ej
geo (6.6)

where ei,j
stat is the classical static reprojection error:

ei,j
stat = ρ(||ixj − p(ciTw,w Xj)||Σ−1

i,j
)

ei,j
dyna is the dynamic reprojection error:

ei,j
dyna = ρ(||ixj − p(ciTw exp(Πwξ̃oi

)oiTw, oX)||Σ−1
i,j

)

where Σ−1
i,j is estimated using the MAD.

ei
const is the constant velocity model that penalizes twists variations by linking 3 con-

secutive poses:
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ei
const = ρ(||Πwξoi

− Πwξoi
||W) (6.7)

where W is a diagonal weight matrix used to balance the errors, wξoi+1 is the twist linking
the poses exp(Πoi ξ̃w)wToi

and exp(Πwξ̃oi+1)wToi+1 and wξoi
is the twist linking the poses

exp(Πwξ̃oi−1)wToi−1 and exp(Πwξ̃oi
)wToi

.

The error ei
det penalizes the difference with twists estimated from the object detection

network:
ei

det = ρ(||Πwξd
oi

− Πwξoi
||Wdet

)

where Wdet is a diagonal weight matrix and wξoi
= log(exp(Πwξ̃oi

)wToi
oi−1Tw exp(−Πwξ̃oi−1))

is the twist linking two consecutive poses.

Similarly, the error ei
reg penalizes the difference with twists estimated by registering con-

secutive point clouds:
ei

reg = ρ(||Πwξr
oi

− Πwξoi
||Wreg)

where Wreg is a diagonal weight matrix.

Finally, the residual ei
geo constrains points to lie on the estimated geometry surface by

penalizing the difference between the position of 3D points and of their projected coun-
terpart:

ej
geo = ρ(||oX̃j − oXj||W) (6.8)

Note that we could also directly use the DeepSDF function G(oX, z) to compute the value
of the residual and to obtain the Jacobian via back propagation.

6.3.5 Computing the Jacobians

The Jacobians of the registration and detection errors are the same as the only changes
between both do not depend on the optimized twists.

Jreg =
(

∂ei
reg

∂w ξ̃oi−1

∂ei
reg

∂w ξ̃oi

)
(6.9)
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The derivative with respect to wξ̃oi−1 can be written:

∂ei
reg

∂wξ̃oi−1

= Π
∂ log(T)

∂T
(I4 ⊗ R)∂ exp(ξ)

∂ξ
Π (6.10)

with T = exp((Πwξ̃oi
)wToi

)(exp(Πwξ̃oi−1)wToi−1)−1, R is the rotation matrix of
exp((Πwξ̃oi

)wToi
)(wToi−1)−1. The derivative with respect to wξ̃oi

can be written:

∂ei
reg

∂wξ̃oi

= −Π
∂ log(T)

∂T
(TB

⊤ ⊗ I3)
∂ exp(ξ)

∂ξ
Π (6.11)

with T = exp((Πwξ̃oi
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)(exp(Πwξ̃oi−1)wToi−1)−1 and TB = wToi
oi−1Tw exp(−Πwξ̃oi−1).

Proof. First we show how to compute the derivative with respect to wξoi−1 . We can write:
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where A = exp(Πwξ̃oi
)wToi

(exp(Πwξ̃oi−1)wToi−1)−1 and B = exp(−Πwξ̃oi−1) Using the
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where R is the rotation part of exp(Πwξ̃oi
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We then show how to compute the derivative with respect to wξ̃oi
. We can write:
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where A = exp(Πwξ̃oi
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where TB = wToi
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As the residual egeo is linear in oX its derivative with respect to oX is immediate:

∂ej
geo

∂oXj

= −I3 (6.26)

6.4 Experiments

In this section we present the experiments we conducted to test our approach. We
evaluate both the accuracy of the camera pose estimation and of the object pose estima-
tion.

6.4.1 Experiments details

Similarly to the previous chapter we evaluate our system on the KITTI [Geiger et al.,
2012] tracking dataset using the ATE, RPE and MOTP [J. Sturm et al., 2012; Z. Zhang
and Scaramuzza, 2018]. Object detection is performed using the implementation of 3DSSD
[Z. Yang et al., 2020] in the framework mmdetection3d [Contributors, 2020]. The ICP is
performed using the implementation of open3d in C++ [Zhou et al., 2018].

6.4.2 Camera pose estimation

In this subsection we evaluate the accuracy of our camera pose estimation. We report
the results in table 6.1. As we obtain almost exactly the same results as TwistSLAM we
only show here the results on some sequences. This is not surprising as the sequences only
exhibit a mild amount of dynamicity, that is well dealt even by non dynamic approaches
[Mur-Artal and Tardós, 2017]. Furthermore in this approach we rather focused on the
accuracy of object tracking, that we improve compared to state of the art, as shown in
the following paragraph.

6.4.3 Object pose estimation.

In this paragraph we evaluate the accuracy of object pose estimation. We report the
results in table 6.2 and table 6.3. As we can see we often obtain better results in terms
of object tracking accuracy for the ATE and RPE compared to [Bescos et al., 2021]
and [Gonzalez et al., 2022b]. The TP and MOTP metrics on the other hand vary. On
most sequences they show very similar scores to TwistSLAM, which can be expected
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Table 6.2 – Object pose estimation comparison on the Kitti tracking dataset. ATE is in
m, RPEt in m/m, RPER in °/m

DynaSLAM 2 [Bescos et al., 2021] TwistSLAM TwistSLAM++
seq / obj. id / class ATE RPEt RPER ATE RPEt RPER ATE RPEt RPER

03 / 1 / car 0.69 0.34 1.84 0.31 0.10 0.28 0.23 0.11 0.19
05 / 31 / car 0.51 0.26 13.5 0.58 0.35 0.19 0.09 0.07 0.28
10 / 0 / car 0.95 0.40 2.84 0.77 0.21 1.98 0.05 0.10 0.96
11 / 0 / car 1.05 0.43 12.51 0.17 0.23 0.23 0.15 0.28 0.21
11 / 35 car 1.25 0.89 16.64 0.10 0.03 0.11 0.11 0.02 0.09
18 / 2 / car 1.10 0.30 9.27 0.21 0.27 0.66 0.29 0.09 0.32
18 / 3 / car 1.13 0.55 20.05 0.15 0.21 0.56 0.13 0.10 0.37
19 / 63 / car 0.86 1.45 48.80 0.28 2.17 1.08 0.34 0.21 0.31
19 / 72 / car 0.99 1.12 3.36 0.16 0.05 0.34 0.09 0.03 0.37
20 / 0 / car 0.56 0.45 1.30 0.17 0.20 0.72 0.30 0.21 0.35
20 / 12 / car 1.18 0.40 6.19 0.24 0.20 1.54 0.80 0.54 0.64
20 / 122 / car 0.87 0.72 5.75 0.17 0.02 0.07 0.16 0.02 0.06

mean 0.93 0.61 11.83 0.26 0.32 0.68 0.23 0.15 0.35

as the MOTP metrics only require an overlap of 0.25 for a detection to be positive,
thus an improvement of a few centimeters on the pose does not translate to new positive
detections. A way to do so would be to decrease the number of points required for tracking
to track objects for longer periods. This however is out of scope of our work as we focus
on improving tracking accuracy. On some sequences however we obtain lower 3D and
birdview MOTP for a similar 2D MOTP. Those differences are mainly due to wrong
pose estimates that happen when the cluster is first created far from the camera. Those
differences can also be explained by the fact that TwistSLAM uses the groundtruth initial
bounding box of objects, which is noise-free while we use a 3D object detector. Finally on
some sequences (such as 11/35 and 20/0) the additional LiDAR information allows us to
improve tracking stability and thus to track on longer trajectories, increasing the MOTP
without increasing the ATE or RPE.

6.4.4 Ablation study

We propose in table 6.4 an ablation study comparing the impact of each constraint on
the accuracy of object pose estimation. As we can see we obtain the best results when all
constraints are activated. However the improvement brought by each constraint varies. On
the one hand the SDF has a low impact on the accuracy and the improvements brought
by the 3D detector and the ICP are mild. However we argue that this can be caused by
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Table 6.4 – Ablation study of different constraints.
Seq. 3 obj. 0 All constraint No detection constraint No joint constraint No ICP No sdf constraint No soft trajectory constraint No constraint

ATE 0.43 0.47 0.52 0.45 0.49 0.46 0.48
RPEt 0.05 0.06 0.15 0.06 0.06 0.11 0.07
RPER 0.17 0.17 0.63 0.17 0.19 0.70 0.40

Seq. 3 obj. 1 All constraints No detection constraint No joint constraint No ICP No sdf constraint No soft trajectory constraint No constraint
ATE 0.26 0.33 0.31 0.34 0.30 0.32 0.39
RPEt 0.06 0.06 0.11 0.15 0.06 0.14 0.11
RPER 0.26 0.23 0.44 0.21 0.21 0.56 0.57
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Figure 6.5 – Comparison of tracking speed evolution with (a) and without (b) soft
constraints on twists. Please note that the scale of the y axis changes from one graph to

the other.

the lack of accuracy of the ground truth, which we discuss below. Furthermore the object
detection network yields noisy estimates as it was not trained to predict precise object
pose estimations. As we track most objects on short durations the accumulated drift is
not high enough to see the benefits of the constraints from the 3D detector. On the other
hand the joint constraints and soft trajectory constraints improves the accuracy of object
pose estimation by a large margin. We show in figure 6.5 a comparison of the evolution of
speed with and without soft constraints to illustrate their importance to obtain physically
plausible results.
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Noisy ground truth
Cleaned ground truth

Figure 6.6 – Illustration of groundtruth pose noise

A note on the accuracy of the ground truth: As the ground truth for object
poses was obtained by manual annotations using mechanical turk we expect its
accuracy to be limited. Hence we chose to evaluate it. To do so we chose a static car
in sequence 11 and repeated the first groundtruth pose for all its trajectory, thus
obtaining a more coherent ground truth. We then computed the APE and RPE: the
RMSE of the APE was 0.27 m, the median of the translational RPE 0.03 m/f and
the median of the rotational RPE 0.08°/f. We show in figure 6.6 a comparison of the
noisy and cleaned ground truth trajectories decomposed on three axis. As we can
see the static car moves by about 0.5 m in each direction. This limits the evaluation
we are able to do, thus the results should be analyzed cautiously. We argue that
for future research it may be necessary to improve the accuracy of this dataset.
The Oxford multimotion dataset [Judd and Gammell, 2019] is an interesting recent
dataset that contains accurate ground truth for camera and object poses thanks to
a vicon motion capture system. However it also shows some limitations, such as a
limited variability in terms of scenes and available objects.
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6.5 Qualitative results

In addition to the first figure, we also show here qualitative results. Figures 6.7 and
6.8 show examples of tracked and reconstructed cars on sequences 11 and 0 of the kitti
tracking dataset. As we can see most cars have been well detected, their pose correctly
estimated and their shape recovered, even when the cars are partially occluded.

(a)

(c)

(b)

Figure 6.7 – (a) Frame with detected objects, bounding boxes and speed.(b) Map with
tracked objects, seen from above. (c) Mesh of reconstructed cars with bounding boxes,

LiDAR points (red) and projected points on the mesh (blue).

We also show in figure 6.9 an example of ICP alignment on a car scan. As we can see
the two consecutive point clouds in red and blue are correctly aligned. A comparison of
pointclouds before and after alignment for this car is visible in figure 6.10. As wee can see
the scans are more tightly aligned after the ICP alignment, particularly on the side of the
car.

We show in figure 6.4 an example of reconstruction and projected points. As we can
see the projected points lie on the object surface. However we can also see that the mesh
of the object does not perfectly fit the LiDAR scan, improving the fitting step may lead
to better performances. Furthermore we note that the object mesh is not supported by
the road plane. Adding a support constraint could prove to be useful.
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Figure 6.8 – (top) Frame with detected objects, bounding boxes and speed.(bottom)
Map with tracked objects, seen from above, with bounding boxes, LiDAR points (red)

and projected points on the mesh (blue). Note that the rightmost car (in white) tracking
has been lost due to camera motion, however we still show its mesh in the map.
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(a)

(d)

(c)

(b)

Figure 6.9 – Aligned LiDAR pointclouds (red and blue) seen from (a) 3/4, (b) top, (c)
side and (d) corresponding car seen in the RGB frame.
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Figure 6.10 – (left) Consecutive scans aligned using RGB based tracking. (right) Scans
aligned using the generalized ICP algorithm.

6.6 Conclusion

In this chapter we proposed an improvement over our previous work, that we call
TwistSLAM++. Our approach integrates 3D LiDAR scans into a dynamic SLAM system
to improve object tracking accuracy and obtain an estimation of object poses in their
canonical coordinate frame. To do so we use a 3D object detector that estimates aligned
3D bounding boxes corresponding to objects in the scene. Following, we associate detec-
tions to tracked clusters to obtain their canonical pose and cluster LiDAR scans. We use
consecutive LiDAR scans to estimate their relative pose and constrain their trajectory
in the BA. Finally, we fit a 3D SDF for each object using LiDAR points and use it to
constrain map points to lie on the object surface. We show that this approach allows us
to improve object tracking while estimating their canonical pose. However we also show
that the groundtruth pose of objects is noisy, which limits our evaluations.
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Chapter 7

CONCLUSION AND PERSPECTIVES

7.1 Conclusion

In this manuscript we have investigated the introduction of semantic information into
SLAM systems. SLAM is a fundamental problem that is the keystone of many popu-
lar fields such as augmented reality, robotics and self-driving vehicles. Many works have
pushed the boundaries of SLAM accuracy and scale and it is possible today to precisely
track a camera in many scenarios. However it is still limited by one of its main assumption,
which is that the world is a single rigid body made of low-level 3D points. This assumption
can prevent the SLAM from yielding precise estimations in some scenarios (e.g. dynamic
scenes). It can also limit its use cases, due to the semantic gap between the map and
the environment in which the system evolves. To close this gap we propose to represent
the map as a scene graph. In our graph, objects correspond to vertices and have different
properties depending on their class. They are also linked to each other by edges that also
depend on semantic classes. Using this higher-level, more realistic representation, we show
that we can further push the boundaries of SLAM.

In summary, in this manuscript we first presented the fundamentals required to un-
derstand our work: how 3D points can be expressed in the camera coordinate frame to
be projected in images, associated with 2D keypoints and robustly optimized with cam-
era poses. We also gave a short introduction to semantic information in the age of deep
learning. Second we developed the pipeline of a SLAM system starting with the bundle
adjustment. Then we summarized the state-of-the-art of semantic SLAM according to
the way they use semantic information. Afterwards we developed our vision to go from
a low level geometrical, homogeneous, rigid map to a scene graph made of objects with
properties and relationships. To do so we first developed an object pose estimation sys-
tem L6DNet. This deep learning based algorithm can estimate the relative pose between
the camera and an object in the scene, which can serve as a high level landmark for a
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classical SLAM system. We predict 3D offsets from local patches to estimate the 3D po-
sition of points that are used to recover the object pose. This strategy allows us to train
a light network using little resources while reaching state-of-the-art performances. The
main limit of this network is that it needs to be trained for specific objects. Even if the
training is short this can be problematic for some applications. Hence we chose to tackle
more generic objects by building S3LAM. Our SLAM system can create a map of clus-
ters that correspond to objects in the scene. For some a priori chosen objects we estimate
their geometry using planes. This allows us to obtain a high level semantic map and to
improve camera pose estimation by constraining cluster points to lay on planes. However
this approach cannot deal with dynamic objects in the scene. To solve this problem we
use our structured map and show with TwistSLAM that we can accurately estimate
camera pose in dynamic scenes while tracking all moving objects at the same time. We
use mechanical links to constrain their movement, which improve their pose estimation.
To further improve our work we propose TwistSLAM++ by injecting LiDAR scans into
TwistSLAM. We use a 3D object detection network to estimate object canonical poses
and estimate relative object transformations with an ICP algorithm. We inject both those
estimations in the BA to improve object tracking. Furthermore, using a deep learnt SDF
we estimate the shape of objects that we use to constrain object 3D points in the BA. We
showed that this approach further improved object tracking accuracy.

7.2 Limitations and perspectives

In this manuscript we successfully developed a SLAM system with the ability to track
objects within the scene, improving at the same time camera pose estimation in dynamic
environments. While efficient, our approach still shows some limitations that could be
fixed on the short-term:

• Far and small object tracking. While experimenting on our system TwistSLAM
we have seen that tracking far objects was not giving accurate results. We argue
that this is due to the nature of our feature based approach. When objects are far
or small they do not exhibit large highly textured areas and thus only few key-
points can be extracted and used for tracking. To solve this problem we propose
to use instead a direct approach, minimizing the photometric error on pixels. An
interesting approach is DOT [Ballester et al., 2021] that compares camera and ob-
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ject relative poses to decide whether objects are dynamic or static. However this
approach does not refine object trajectories in the bundle adjustment and does not
focus on estimating object trajectories but rather on masking moving objects.

• Continuous trajectory tracking. In TwistSLAM we estimate the twist and
pose of objects at each timestamp. However those estimates are samples of a con-
tinuous and differentiable function. Thus, it may be interesting to rather estimate
a continuous function [Cioffi et al., 2022; Tirado and Civera, 2022]. We argue it
could improve object tracking by removing the need of a regularizer to obtain a
smooth trajectory. Indeed, instead of estimating a twist at each timestamp we could
decompose its evolution on a well chosen basis of functions to reduce its number
of degrees of freedom and give it properties such as continuity and differentiability.

• Non-rigid object tracking. In addition to being able to differentiate static and
dynamic objects, semantic information can differentiate rigid and non-rigid objects.
Furthermore semantic information may allow to estimate mechanical properties for
different classes of objects and improve non rigid tracking. For example for a de-
forming sports ball or a deforming pillow.

• Human tracking. We have shown that our approach can accurately track pedes-
trians. However it works only because pedestrians are partly rigid. This does not
work when humans are going under more sophisticated motions or are too small
in the image. However being able to accurately track humans is an important
task. Indeed they are often present in many scenes and should be detected for
security reasons. An interesting strategy would be to integrate a human pose es-
timation network into a SLAM system to constrain the deformation of humans
3D points and improve both SLAM and human pose estimation. The very recent
work BodySLAM [Henning et al., 2022] is a first interesting step towards that goal.

• Texture generation. Some recent work [Siddiqui et al., 2022] shows that a net-
work can be trained to generate textures and apply them on 3D models. This
approach could be used to generate texture of reconstructed objects and add a
photometric consistency error to track objects.
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We now introduce some long-term perspectives that could improve the accuracy of seman-
tic SLAM in dynamic environments. The past couple years have witnessed the rise of two
major new approaches in computer vision: RAFT: Recurrent All Pairs Field Transforms
for Optical Flow [Teed and Deng, 2020] and NeRF: Neural Radiance Fields [Mildenhall
et al., 2020]. Both those papers have gained an important popularity to solve two different
problems. The first one extracts features from images using a CNN. Those features are
then used to build correlation volumes corresponding to the inner products of features.
A recurrent neural network then uses the volumes to iteratively build the outputs of the
system which correspond the optical flow of images.

The second one, NeRF uses a Multi Layer Perceptron to predict, for each 3D point
in a scene, the color and volume density of this point. By estimating those values on a
line and integrating them along it they can predict pixels values which allows them to
synthesize new images of the scene from unseen viewpoints.

While very different both those approaches have been modified to produce new SLAM
systems: Droid-SLAM [Teed and Deng, 2021a] and iMap [Sucar et al., 2021]. Droid-SLAM
uses the correlation volumes of features to iteratively estimate camera poses and depth
images using an RNN. This approach works outstandingly well, it is precise and robust,
even in challenging environments. However as the correlation volumes are built for all pairs
of images in the covisibility graph they are very large and require a large amount of mem-
ory and computational resources for both training and inference. The second one, iMap
uses a fully connected network as the only map representation, to optimize the required
space. A NeRF is trained with keyframes and used to generate images corresponding to
new frames. By minimizing the photometric error between generated images and captured
frames the camera pose is estimated. This allows them to build in real-time and without
training a dense and complete map of the environment. However this approach happens
to be less precise than classical approaches such as ORB-SLAM 2 [Mur-Artal and Tardós,
2017]. We believe that both those approaches are promising for future research. Thus we
propose the following research directions, in line with our work:

• Modifying DroidSLAM to enable camera pose estimation in dynamic scenes and
object tracking. Indeed, as DroidSLAM is not suited for dynamic scene, the accu-
racy of camera pose estimation can suffer from moving objects. Furthermore it is
not able to estimate the trajectory of moving objects. RAFT3D [Teed and Deng,
2021b] is a first interesting step towards this direction, able to estimate twists
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fields from consecutive images. This approach opens many possibilities as it does
not yet track objects over multiple frames and is not able to take into account se-
mantic information to improve tracking. Furthermore it is particularly interesting
for object tracking as points are extracted densely and processed with a CNN it
may suffer less from small, far objects, from the problem of keypoints matching on
moving objects or from the problem of being unable to extract enough keypoints
for accurate tracking.

• Using deformable NerF approaches to represent the map in a SLAM system. Some
recent approaches (e.g. NeRFies [K. Park, Sinha, Barron, et al., 2021], HyperNeRF
[K. Park, Sinha, Hedman, et al., 2021]) can represent deformable scenes, some
papers can also represent articulated objects [Tseng et al., 2022]. Thus they may
be used as a changing map representation for SLAM systems based on implicit
representation such as iMap. NiceSLAM [Z. Zhu et al., 2022] is a first step towards
that direction but they chose to detect and ignore dynamic objects than to represent
and track them.

• Using semantic information to improve the convergence of DroidSLAM and iMap.
As we have shown in this manuscript, semantic information is valuable to improve
the accuracy of mapping and tracking. A possibility could be for example to use
semantic information to guide the depth estimated by the network to be coherent
with geometric properties of objects. We can cite iLabel [Zhi et al., 2021] as a first
step towards that direction that allows a NeRF based SLAM to segment a scene
without any training. However this algorithm does not introduce prior information
in the rendering process that could improve camera pose estimation.
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Titre : Optimisation du SLAM visuel par analyse sémantique de l’environnement réel.

Mot clés : SLAM, sémantique, cartographie, localisation

Résumé : Le but du SLAM (Simultaneous Lo-
calization And Mapping) est d’estimer la tra-
jectoire d’une caméra en mouvement tout en
cartograhiant l’espace. Les algorithmes clas-
siques construisent généralement une carto-
graphie purement géométrique et homogène,
ainsi il y a un écart sémantique entre la repré-
sentation interne du SLAM et le monde réel
dans lequel le système évolue. Notre but dans
ce manuscript est de construire un système
de SLAM pouvant exploiter l’information sé-
mantique pour repousser les limites du SLAM.
Dans ce but nous proposons un réseau de
neurones léger pour estimer la pose d’objets
dans la scène. Les objets peuvent servir de
repères haut niveau pour un SLAM, amélio-
rant la pose de la caméra et ajoutant de l’infor-

mation dans la cartographie. Puis nous propo-
sons un SLAM capable de créer des groupes
de points 3D correspondant à des objets gén-
riques dans la scène. En utilisant une connais-
sance a priori sur la classe des objets nous
pouvons estimer leur géométrie pour amélio-
rer la cartographie et la pose de la caméra.
Enfin, nous proposons un SLAM capable d’es-
timer la pose de la caméra dans des scène
dynamiques tout en estimant la trajectoire de
tous les objets dans la scène. Un a priori sur
les objets nous permet de contraindre leur
mouvement afin qu’il soit cohérent avec la
structure du monde. Nous proposons égale-
ment d’améliorer le suivi des objets en injec-
tant des données LiDAR dans notre SLAM.

Title: Visual SLAM optimization by semantic analysis of the environment.

Keywords: SLAM, semantic, mapping, localization

Abstract: The goal of SLAM (Simultaneous
Localization and Mapping) is to estimate the
trajectory of a moving camera while building
a map of its environment. Classical algorithm
usually build a purely geometrical and homo-
geneous map, thus there is a semantic gap
between the internal representation and the
real world in which the system is evolving. Our
goal in this manuscript is to build a SLAM sys-
tem that can harness semantic information to
push forward the limits of SLAM. To this end,
we first propose a light neural network to esti-
mate the pose of objects in the scene. Objects
can serve as high level landmarks for a SLAM
system, improving camera pose and adding
information into the map. This network how-

ever has to be trained for specific objects. We
then propose a SLAM system that can create
clusters of 3D points corresponding to generic
objects in the scene. With some a priori knowl-
edge about object classes we can estimate
their geometry in real time to improve both
the map and camera pose estimation. Finally
we propose new SLAM able to robustly esti-
mate camera pose in dynamic scenes and to
estimate the trajectories of all moving objects
in the scene. A priori knowledge allows us to
constrain the movement of objects to be plau-
sible with respect to the structure of the world.
We also propose to improve object tracking by
injecting LiDAR data into our SLAM system.
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