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It was a dreary December morning in Lyon, and it started to drizzle as if nature couldn’t
express enough. I was walking up Avenue Debourg, and followed the the scent of roasted
coffee beans to reach the ‘La Cantina’ café. “Bonjourno! my friend. Shall I make you
the best coffee in the world?” shouted Francesco, the friendly barista with a wide smile.
The smile felt contagious and they made me widen my dry lips; and return the gesture. As
Francesco started making ’café au lait’, I sat down looking at the orange and yellow hues,
of a Claude Monet painting, attached to the wall behind him. Francesco started scooping
crema into my coffee cup, detailing his patterns of love and laughter. The patterns gently
drifted to swaying trees, to boats that have survived many storms, and to eager faces - all
of which he craftfully painted on top of my coffee. They were all different patterns, but the
same coffee, subtly changing its expression.

Different epigenetic patterns, but the very same DNA, artfully changing gene expression.
With art, a nice coffee and a friend, I left with a smile to write this thesis; modelling
propagation of epigenetic marks . . .
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Abstract

A multitude of stable and heritable phenotypes arise from the same DNA sequence, owing to
epigenetic regulatory mechanisms relying on the molecular cooperativity of “reader-writer”
histone modifying enzymes. In this thesis, we focus on the fundamental mechanisms behind
epigenome regulation and memory encoded by post-translational modifications of histone
tails. Our aim is to develop general mechanistic frameworks of epigenomic regulation and
memory integrating key biochemical and physical processes in order to investigate how
such generic principles can be contextualized to specific biological systems.

After a review of the existing theoretical models (Chapter 1), we introduce a unified
modeling framework, the “Painter model”, describing the mechanistic interplay between
sequence-specific recruitment of chromatin regulators, chromatin-state-specific reader-writer
processes and long-range spreading mechanisms (Chapter 2). A systematic analysis of the
model building blocks highlights the crucial impact of tridimensional chromatin organiza-
tion and state-specific recruitment of enzymes on the stability of epigenomic domains and
on gene expression. In particular, we show that enhanced 3D compaction of the genome
and enzyme limitation facilitate the formation of ultra-stable, confined chromatin domains.
The model also captures how chromatin state dynamics impact the intrinsic transcriptional
properties of the region, slower kinetics leading to noisier expression. We apply our frame-
work to analyze experimental data, from the propagation of γH2AX around DNA breaks
in human cells to the maintenance of heterochromatin in fission yeast, illustrating how the
painter model can be used to extract quantitative information on epigenomic molecular
processes.

To go beyond the effective 3D description, we study explicit 3D polymer dynamics.
Specifically, to investigate the caveats of simulating genes or regions of interest which are
usually much smaller compared to the full length of a chromosome. Since the physics of
long, topologically-constrained polymers may significantly deviate from those of shorter
chains, we theoretically investigate the extent of the minimal genomic region that one should
explicitly consider around a given locus in order to effectively capture the correct dynamical
and structural properties of the domain of interest (Chapter 3). We show that this minimal
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size depends on the overall epigenomic context and on the entanglement properties of the
long polymer.

Finally, in Chapter 4, we present the ongoing work, integrating the painter model with
explicit 3D polymer dynamics. We introduce a theoretical framework coupling 3D polymer
dynamics and epigeneome regulation by diffusing HMEs, the “Living painter” model, that
exhibits intriguing properties on the coupling between 3D genome folding and epigenetic
spreading, reflecting the scope and extension of the thesis.
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Chapter 1

General introduction on 4D Epigenomics:
theoretical approaches

1.1 Biological context: Epigenetics and 3D genome organi-
sation

The ability of organisms to precisely regulate gene expression is central to their develop-
ment. Proper temporal and spatial expressions of genes in eukaryotes require activation of
transcription during the appropriate developmental stages. In response to environmental
and developmental cues, cells can adopt different gene expression patterns and differen-
tiate into a variety of cell types. Once established, this pattern is frequently maintained
over several cell divisions despite the fact that the initiating signal is no longer present or
significantly weakened. This capacity of translating transient external stimuli into diverse
and stable phenotypes without alteration of the genomic sequence is at the heart of the
“epigenetic” regulation of gene expression [1]. Epigenetic processes are involved in the
control of somatic inheritance and in the maintenance of cellular identity as well as in the
transgenerational inheritance of traits by transmission via the germline [2].

A major class of mechanisms driving such epigenetic “memory” relies on chromatin-
based processes regulating gene expression by the control of the local biochemical and
structural properties of chromatin leading to different chromatin states more or less per-
missive to transcription [3]. Such control is mediated in part by biochemical modifications
(Fig.1.1) of the DNA or of histone tails, the so-called epigenomic marks. The mecha-
nisms of establishment and heritability of these chromatin states, either active or repressive,
are governed by similar general rules involving the combined and self-reinforcing action
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Fig. 1.1 The so-called epigenomic marks: biochemical modifications of the DNA (eg,
methylation Me) or of histone tails (eg, methylation, acetylation Ac, phosphorylation P).
Illustration from france.promega.com.

of specific chromatin-binding proteins that add or remove epigenomic marks [4–6] (Fig.1.2).

De novo assembly first proceeds by a nucleation (“forcing”) stage via the targeting of
specific enzymes at dedicated regulatory sequences by either DNA binding proteins or the
RNAi-based pathways [4, 7–11]. Such nucleation elements are often composed by multiple
binding sites for different DNA binding proteins that associate to their cognate sequence
to stably recruit chromatin regulators. For example, in Drosophila, the Polycomb-based
epigenetic repression of developmental genes rely on the targeting of the histone modify-
ing enzymes (HMEs) PRC1 (monoubiquitination of H2AK118) and PRC2 (methylation
of H3K27) complexes at specific “silencers” regions, the so-called Polycomb Response
Elements, characterized by various combinations of binding sites for adaptor proteins (e.g.
Gaga, Zeste, Pho) [12, 13]. Similarly, gene activation relies on the recruitment by Trithorax-
group proteins (e.g. MLL2) of acetyltransferases (e.g. p300) and demethylases (e.g. UTX)
at gene promoters and enhancers [14, 15].

Once initiated, the state is able to spread to the neighboring sequences and to form a
stable chromatin domain [10] that can further propagate through replication and mitosis [16].
The ubiquitous ability of some chromatin regulators to be recruited by (e.g. Clr4) or
to have a boosted activity in presence of (e.g. PRC2) the chromatin state they catalyze
(“reading”capacity) and to spread this state to the neighboring sequences (“writing” capacity)
introduce an effective positive feedback which is believed to be a key ingredient of epigenetic
maintenance [10, 16, 17].
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Fig. 1.2 General rules of epigenome assembly and regulation: initiation by sequence-specific
factors and spreading and maintenance by reader/writer enzymes. Adapted from [18].

Such “reader-writer" principle of chromatin enzymes and its impact on epigenetic mem-
ory has been already investigated using simple mathematical models of chromatin state
regulation with a focus on the dynamics of histone marks mediated by HMEs [11, 19–30]
(see Sec. 1.2). In particular, in their seminal work, Dodd et al. [19] suggested that the
maintenance of stable, extended active or repressed chromatin domains over generations,
even in absence of nucleation signals, is made possible by the reader-writer property of
HMEs coupled to their capacity to spread (or write) a mark at long-range along the genome.
Indeed, such interplay leads to cooperativity and allows the effective formation of a large
reservoir of modified nucleosomes to serve as templates to ensure full recovery after ran-
dom perturbations such as transcription- [27, 29] or replication-mediated [23, 54] histone
turnover.

Actually, the long-range spreading property reflects the polymeric nature of the genome
that can bring in close spatial proximity two distant loci. Many experimental and theoretical
studies have highlighted the correlation between spatial chromosome organisation and
chromatin regulation [56, 55, 62–67] (see also Sec.1.3). Indeed, 3D chromatin domains,
like A/B compartments and topologically-associated domains (TADs) observed in Hi-C
experiments (Fig.1.3A) or chromocenters (Fig.1.3C), Polycomb foci and transcription
factories observed by microscopy, are strongly associated with epigenomics [63, 62, 64],
the formation of these 3D structures being often driven by architectural proteins (eg, HP1,
PRC1) that binds specifically to given epigenomic marks [56, 142, 246, 57]. For example,
in Drosophila, loci in the same TAD usually share the same epigenomic content and TADs
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Fig. 1.3 Epigenome folding. (A) Experimental Hi-C map of chromosome 7 of the human
cell line IMR90 [63]. On the right of the top panel: A/B compartments. On the right of the
bottom panel: TAD segmentation. Adapted from [72]. (B) Hi-C data of a 2Mbp-long region
of chromosome arm 3R [55] (Drosophila, late embryo). On the top: local epigenomic state
(see color legend) as obtained by Fillion et al [71] for the embryonic cell line Kc167. Adapted
from [204]. (C) Visualization in human cell line HEK293 of key components (histone mark:
H3K9me3, HME: methyltransferase Suv39H1, architectural protein: HP1, DNA: Hoechst)
of constitutive heterochromatin forming compact nuclear bodies (chromocenters). Adapted
from [57]. (D) Relation between compaction and H3K27me3 profiles in mouse embryonic
stem cells. (Left) Genes targeted by Polycomb complexes are classified into 3 categories
depending on the density of 3D contacts around the gene. (Right) Average H3K27me3
profiles around TSS for each categories. The more compact the gene is the more extended
the profile is. Adapted from [30].

sharing the same epigenomic state tend to significantly contact at long-range [55, 64]
(Fig.1.3B). Similarly, in mammals, loci having the same epigenetic marks tend to be more
often colocalized [63, 62]. Interestingly, genomic regions localized inside compact 3D
domains (i.e. domains with high numbers of self-contacts) exhibit epigenetic profiles that
are more spread than loci inside weakly compacted compartments (Fig.1.3D).

All this suggests that there exists a coupling between the 3D chromosome organization
and the epigenome regulation: genome folding may impact the long-range spreading of
an epigenomic mark and a given epigenomic mark may impact genome folding via the
recruitment of architectural proteins. This potential feedback loop between epigenomics and
3D genome strengthens the hypothesis that 3D genome folding is key to chromatin states
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assembly and maintenance. In the following, we review the various theoretical approaches
that have been developed to study such interplay between epigenomics and the 3D genome.

1.2 Theoretical Models of chromatin state spreading and
maintenance

The first theoretical works studying the dynamics of chromatin states and formalizing their
ability to carry epigenetic information (i.e. memory) were conducted by Sneppen’s and
Senguta’s groups in 2007 [19, 47]. Since this pioneering work, many other contributions
from these groups and other researchers have been proposed, either as complements, refine-
ments/improvements, or as new theoretical frameworks and applications to other systems
[11, 19, 20, 24, 21–23, 25–30]. This section will be devoted to a brief description of these
various models.

As we have already pointed out, by definition, “epigenetic memory” requires multi-
stability, i.e. the existence of stable alternative “phenotypes” that can be maintained across
cell divisions in the absence of any external stimulus. For gene expression, this means
different patterns of gene expression (“on”/”off”) that can be maintained across many cell
divisions. On the one hand, this can be achieved by autocatalytic transcriptional loops
of transcription factors (“cytoplasmic” epigenetics), like in the cell type switching in C.
albicans [45]. But, on the other hand, it has been clearly demonstrated that chromatin
states, and in particular histone modifications, are associated with transcriptional activity,
and that these modifications can be partially transmitted through replication, suggesting
that they may also contribute to epigenetic regulation (“chromatin” epigenetics). Dodd and
Sengupta’s theoretical works aim at demonstrating that chromatin modifications, as a proxy
for chromatin states, can indeed provide such stable memory. To this end, they proposed a
minimal theoretical framework based on biological evidence about the molecular processes
at work in the regulation of histone modifications. This is a very general framework that we
will essentially adopt in this manuscript for the “Painter model” in Chapter 2.

1.2.1 Silencing dynamics in S. pombe: the H3K9me2/3 system

In their seminal paper entitled “Theoretical Analysis of Epigenetic Cell Memory by Nu-
cleosome Modification”, Dodd et al. focused on the dynamics of histone modifications
associated with the “active” and “silenced”states in S. pombe. Silencing in S. pombe
is controlled by the combined action of H3/H4 deacetylases (Clr3,Sir2), H3K9me2/3
methyl-transferase (Clr4), nucleosome remodelling factor (Mit1) and the HP1 (Swi6,Chp2)
association with marked H3K9me2/3 nucleosomes, that promote the formation of a local
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Fig. 1.4 Basic ingredients of the 3-state model: The three relevant nucleosome types —
methylated (M, marked by a black diamond), unmodified (U), or acetylated (A, marked
by a gray circle)—can be interconverted by recruitment of histone-modifying enzymes by
nearby M or A nucleosomes (dotted lines) or by random “noisy” transitions. HMT indicates
histone methyltransferases; HAT indicates histone acetyltransferases; HDM indicates his-
tone demethylases; and HDAC indicates histone deacetylases. Note that within the DNA
region delimited by the boundary elements (black rectangles) any nucleosome can stimulate
the modification of any other (spreading in trans). Figure and legend from [19] (Figure 1).
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repressive heterochromatin state. These silencing factors/effectors are primarily targeted to
genome at specific sites via different pathways (RNAi, DNA binding proteins) from where
spreading to neighboring sequences has been proposed to occur. Such heterochromatin
is constitutively located at pericentromeric DNA repeats, sub-telomeric regions, and the
mating type (mat) locus. Let us note that H3K9me2/3-HP1 is actually a well conserved
chromatin-based silencing molecular system that is mostly targeted to repeated regions in
most organisms, being often associated to/complemented by DNA methylation in higher
organisms. The motivation and starting point of Dodd et al. analysis are based on the
observation that, in a mutant strain of S. Pombe (K∆ :: ura4+), mating type genes and a
reporter gene (ura4+) inserted in the Mating type locus in the place of a nucleation sequence
exhibit stochastic switching between very stable and heritable expression states : in the
WT strain, this 20 kbp locus is constitutively silenced (repressed) by the H3K9me2/3/HP1
heterochromatin state; however when replacing the main heterochromatin nucleation se-
quence (“silencers”) with the reporter genes, stochastic switching is observed. To account
for this apparent epigenetic “bistability”, for sake of simplicity, they introduce a minimal
three-state model at nucleosome resolution, chromatin being modelled here as an array of
fixed nucleosomes: an Acetylated state associated with the “active” state, a Methylated state
(H3K9me2/3) associated with the “repressed” heterochromatin state, and a third “unmodi-
fied” state (Fig. 1.4). The acetylated state may represent a single type of histone acetylation
(e.g. H3K9ac, H4K16ac) or a clustered state of various histone acetylations; similarly, the
“methylated” state may be considered as a clustered state of both me2/me3 methylations
on both histone tails. As the authors point out, the important point here is to consider two
antagonistic states: H3K9 methylations can only be deposited by HMT on a non-acetylated
nucleosome substrate and conversely methylation prevents any histone acetylation by HAT.
Molecularly, conversion between the M state to the A state is (at least) a two step process
that involve first deacetylation and then methylation; reversely, conversion of a M to a A
state occurs via a demethylation step followed by an acetylation step. This a priori, justifies
the introduction of an intermediate unmodified state. Again, the results obtained by Dodd et
al. can be generalized to any three state model with two antagonistic states (see also [22]
or [23])), whatever the precise and molecular definition of theses states.

Chromatin is modelled as an array of fixed nucleosomes, whose position along the
array defines the position along the genomic domain (coarse-grained description of the
genome at nucleosome resolution). For each nucleosome, the stochastic switching between
the different states is controlled by conversion rates (Fig. 1.4): the action of the HME
is implicitly taken into account by these conversion rates. To set these conversion rates,
they distinguish between “random” and “recruited” conversion: (1) random conversion
represents “noise” and accounts for the leaky activity of enzymes as well as histone turnover
(for A, M to U conversions); (2) “recruited” conversion represents “positive feedback” and
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Fig. 1.5 (A–D) The left panels show samples of the time development of the number of M
nucleosomes, M, over a range of feedback-to-noise ratios F = 0.4,1,1.4, or 2 (F = r in
the maintext). The total number of nucleosomes in the system is 60. Time is measured as
average attempted conversions per nucleosome. The right panels show the corresponding
probability distributions of M obtained from long simulations. (E) Relationship between
F and the average length of time for which the system remains continuously in one or
the other state. The high-M state is defined as M > A, and the high-A state as A > M.
Transition to the high-M state is scored when M > 1.5A and to the high-A state when
A > 1.5M. (F) Relationship between F and the average “gap” between the numbers of M
and A nucleosomes at any time point, G = Average(|M−A|/|M+A|). Figure and legend
from [19] (Figure 2).
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accounts for the ability of enzymes to be recruited to a modified nucleosome (through
specific association domains) and to promote the conversion of a second nucleosome to
that modified state: for example, an M-state nucleosome can promote the conversion of
another nucleosome’s state from A to U or from U to M. It is assumed that these rates
are the same along the network. The time evolution of the statistical properties of the
system, i.e. the probability of having a given distribution of states, is formally described
by a master equation [52] which is, in most cases, difficult to treat analytically but which
can be solved “numerically” using kinetic Monte Carlo approaches. Importantly, to really
investigate epigenetic memory (i.e. stability across cell division), they also account for the
replication process where, in a semi-conservative manner, each A and M state is replaced by
a U state with probability 1/2 (this leads to a 2-fold dilution of total M and A nucleosomes).
Using such a numerical scheme, from a set of stochastic trajectories (i.e. the dynamics
of stochastic states along the nucleosome array), Dodd et al. derived statistical properties
of the systems such as the statistical distribution of the fraction of nucleosomes in the M
and A states (M = NM/N,A = NA/N; as well as the statistical distribution of m = M−A)
as a function of time and as a function of the control parameters, namely the conversion
rates. In the simplest “symmetric” case, where all “random” conversion rates are equal (ko)
and all “recruited” conversion rates are also equal (ε), there remains one control parameter,
namely the ratio between the recruited and random rates r = ε/ko. In the stationary regime,
they show that the system undergoes a phase transition at a critical value rc, from a non-
coherent phase at a lower ratio r < rc, where “noise” dominates and the macrostates A
and M are unstable (Fig. 1.5 A) (the statistical distribution of m = M−A = (NM −NA)/N,
P(m) is centered on the zero value (Fig. 1.6(a)): on an average there is always the same
number of M and A nucleosomes) to a coherent phase of bistability where the positive
feedback dominates (Fig. 1.5 D), characterised by stable macrostates A and M for r > rc

(the statistical distribution of P(m) is now bimodal and peaks at the 2 coherent finite values
±m∗ (Fig. 1.6(a)): with m∗ > 0 (resp < 0) corresponding to a rather coherent M (resp A)
macrostate ). As pointed out by D. Jost in [22], this is a second-order phase transition
similar to that characterising the 1D Ising chain with ferromagnetic coupling (i.e. coupling
favouring the same spin orientation). Using a mean-field approach that essentially converts
the stochastic master equations into a set of deterministic kinetic equations, D. Jost has
indeed analytically derived the bifurcation diagram associated with this symmetric 3-state
dynamics and in particular the value rc = 3 of critical point. Using a Fokker-Planck approach,
he obtained an analytical approximation of P(m) that reproduces well the exact distributions
(obtained by kinetic MC approaches), confirming in particular the results by Dodd and
Sneppen. He also obtained an analytical expression for the stability of the macrostates (A
or M) in terms of the mean first passage time < τ > showing that this stability, beyond the
critical point rc, increases exponentially with the strength of positive feedback r and the size
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of the array (total number of nucleosomes) (Fig. 1.6(b,c)): the more nucleosomes are in the
system, the more stable are the macrostates (thanks to cooperativity).

Importantly, Dodd et al. show that, in such 3-states model, strong bistability definitively
requires an implicit or explicit cooperativity, where implicit cooperativity naturally emerges
from the two-step recruited conversion (M to A requires two recruited conversions) (Figure
3 of [19]). They also address the crucial role of conversion at “long-range” (or spreading
in trans) in the emergence of such bistability: indeed when only considering a Nearest-
Neighbor (NN) model (spreading in cis) bistability is lost. Actually following the analogy
with the 1D Ising chain in statistical physics, it has been demonstrated that for such
1D system, phase transition is only possible when considering long-range “interactions”
between spins, the longer the range the sharper the transition. The longest range is achieved
when obviously one considers that every nucleosome can be converted by recruitment of
HME at any other nucleosome (infinite range), which is the situation primarily considered in
[19, 22]. However, as we shall see below, considering a more realistic long-range spreading
that accounts for chromatin looping (i.e., accounts for the polymeric nature of the chromatin)
still maintains bistability and is a first step towards a better understanding of the coupling
between 3D organisation, chromatin-state dynamics and memory.

1.2.2 Silencing dynamics in S. Cerevisiae: the SIR system

Along the same line, in their first article “Epigenetic chromatin silencing: bistability and
front propagation” and subsequent related studies [46, 48, 21, 49], Sengupta’s group intro-
duced a theoretical model of silencing in yeast (S. cerevisiae). Such silencing is achieved by
the combined action of deacetylation and binding of Sir3 proteins (an architectural protein
that associates with nucleosome and that can oligomerize with adjacent sir3 proteins) and
occurs constitutively at all sub-telomeres, as well as at the two mating loci HML and
HMR [53]. Interestingly, deacetylation is performed by the Sir2 HDAC that coassociates
with Sir3 on chromatin (on nucleosome, via Sir4), introducing a putative positive feedback
in this silencing dynamics. Considering a minimal two-state model, the Acetylated (A,
eg H4K16ac) versus the Sir-bound (S) state, they analysed the dynamical properties of a
(fixed-positions) nucleosome array using a mean field treatment of the master equation.
This leads to a deterministic kinetic (chemical) equation describing the time evolution of
the average state “level” at each nucleosome position (ie, average acetylation level A and
average Sir occupation S), as a function of acetylation and Sir binding rates. By solving
the stationary solutions and analyzing their stabilities, they derived bifurcation diagrams
indicating transitions curves and points delineating mono-stable (silent, non-silent) and
bi-stable regions in the 2-parameter space. As in the case of the three-state model investi-
gated by D. Jost using similar mean field approach [22], this bifurcation diagrams present
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Fig. 1.6 3 states model (Fig. 1.4), symmetric regime. (a) Bifurcation diagram for m = I −A
(here I stands for Inactive and correspond to the M Dodds state) as a function of r = ε/k0.
Full (dashed) lines represent stable (unstable) fixed points of the dynamical system. Insets:
Probability distribution functions (p.d.f.) of m for n = 10 (black circles) or n = 100 (red
squares) computed from the Fokker-Planck approximation (dashed lines) or from stochastic
simulations (squares). (b),(c) Mean first passage time < τ > (in k−1

o units) to switch from
mA to mI as a function of ε [(b) for n = 100] or of n [(c) for ε/k0 = 5], computed from Eq.
(9) [22] (dashed lines) or from simulations (squares). Standard errors on the estimation of
< τ > are smaller than the symbol size. Figure and legend from [22] (Figure 1).
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Fig. 1.7 3 states model (Fig. 1.4), asymmetric regime. (a) Cusp catastrophe surface rep-
resenting the fixed points of the dynamical system as a function of εA/k0 and εI/k0. (b)
Stability diagram and boundaries between the mono- and bistable regions. (c)–(e) Bifurca-
tion diagrams for m as a function of εA/k0 for fixed values of εI/k0 [(c) = 1, (d) = 3, (e) =
5]. Figure and legend from [22] (Figure 2).

a “cusp catastrophe” surface (Fig. 1.7(a)) with bistability (Fig. 1.7(b,e)) and hysteresis
(Fig. 1.7(e)) , which is indeed a common feature of dynamical systems with asymmetries in
the control parameters values (here asymmetry between acetylation rate and Sir-binding rate
values). As for Dodd et al. [19] and Jost [22], their analysis highlights the role of positive
feedback and nonlinearity in generating bistability and, in a later study, inheritance [46]:
here, cooperativity comes from Sir-bound state dependent deacetylation and non linearity
is introduced ad hoc in the conversion rates (As shown in Dodd et al., a two state model
need explicit “non linearity”). In addition, in their first study and in subsequent article, they
pinpointed and investigated the possible effect of SIR titration on the silencing dynamics
and in particular on targeting and confining stable SIR silencing to finite size domains [21].
As we shall see in Chapter 2, in agreement with Sengupta’s work, such titration in silencing
factors is likely to be a major driving force in epigenetic inheritance of confined chromatin
state domains.

Theoretical modelling of SIR mediated Silencing in yeast has been also carried out by
Dodd’s and Sneppen’s group using similar approach as for S. Pombe (see above) [20, 31].
In [20], they carefully investigate the property of the (A,S) 2-states model (like in Sedighi’s
study [47]) by studying different conversion rules and including the effect of both nucleation
sites (silencers) and barriers. They show, in particular, that bistability is still achieved if one
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restrains long-range conversion only to Sir-mediated deacetylation (Acetylation remaining
NN). They show also that the formation and maintenance of 1D confined domains of Sir-
silencing (like the HMR and HML loci) can be obtained by the combination of (i) locally
acting “silencers” (introduced via NN A to S conversion at specific locations), (ii) weak
recruited conversion, (iii) presence of quite numerous (1/10 nucleosomes) barrier elements
or “anti-silencer” (introduced via NN S to A conversion) in the flanking regions and (iv)
global SIR titration (introduced via S state saturation) condition. In a more recent paper [31],
they consider a more complex dynamics (as Sengupta’s group in [49]) with additional states
such as H3K79me (an antisilencing mark that prevents Sir3 nucleosome association and thus
limits S state spreading in the model) and with SIR-SIR cooperativity between neighboring
nucleosomes that strenghtens positive feedback in the Sir dependent deacetylation process.

1.2.3 PcG mediated silencing dynamics in plant, drosophila and mouse

In continuity to these pioneering works on silencing dynamics in S. pombe and S. cerevisae,
the group of Martin Howard developed few years later a quantitative 3-state model of
chromatin-based gene repression in the context of vernalization in flowering plants [11, 33,
27], in close collaboration with the Caroline Dean experimental group. Vernalization, by
which plants perceive and retain a memory of winter that allows them to germinate or flower
in spring, is a classic epigenetic process. In Arabidopsis thaliana, it involves Polycomb-
based silencing of the floral repressor FLC during cold periods. FLC then generates
stable silencing when temperatures rise: the repression occurs via (is accompanied by) the
deposition of the H3K27me2/3 histone modification by the HMT complex PRC2 which
is part of the Polycomb Group (PcG) proteins [17, 35]. “PcG” mediated gene repression
is a very common and ancient mechanism of silencing in eukaryotes (unicellular and
multicellular animals and plants), often targeted at developmentally regulated genes [39, 40].
It is involved in many processes such as chromosome X inactivation in mammals, Hox
genes repression, stem cell plasticity. Interestingly, it has been shown in some species that
PRC2 can also be targeted to and silence transposable elements (repeated sequences), which
is generally constitutively performed by the H3K9me2/3 - mC heterochromatin system [38].

Using a similar three state model as in Dodd et al., with M representing H3K27me3, and
assuming a similar two-step conversion dynamics with recruited conversion (acting at "long-
range": infinite range model) and noise, they build a quantitative model by reproducing
H3K27me3 Chip data averaged along the FLC locus at different time along the cold-warm
period and for different durations of the cold exposure period. They show that the observed
H3K27me3 level can be accounted by considering, in addition to the M-state “recruited”
conversion process, a site specific nucleation process of the M-state. During the cold,
silencing is mostly nucleated and accumulated at this specific locus and then spreads toward
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the FLC gene after return to the warm thanks to the M-state recruited conversion. Their
results suggested that cells are in a bistable regime and that such localized nucleation drive
stochastic switching toward a global M-state over the entire locus. Subsequent detailed
experimental and theoretical works from the same group have further revealed a more
complex (fine grained) picture of this epigenetic switch, with actually different PRC2
co-associated cofactors in the nucleation (cold) vs spreading process (warm) [36, 32].

Following this work on vernalization, Howard’s group then developed a generic model
of gene silencing by PcG that incorporates the antagonistic effect of transcription in the
dynamics of silencing [27]. They considered a multi-state model (Fig. 1.8) with states repre-
senting different levels of methylation, from no methylation to trimethylated H3K27me3
states. The successive methylation steps result from random and long-range recruited
conversions (only from trimethylated state, the main substrate of the "reader-writer" PRC2)
whereas demethylation results from noise and local transcriptional activity (demethylation
and histone exchange). On the one hand transcription is activated by trans-acting factor
(Transcription factors) and on the other hand, transcription is repressed by the di- and
trimethylated states. They show that such dynamics can lead to bistability, with two alterna-
tive states, the repressed state (high me2/3) and the active state (low me2/3). Interestingly,
they further show that the slow dynamics of methylation enhance robustness to noise, in
particular by filtering the fast perturbation of trans acting factors activity. Note that such in-
terplay between transcription dynamics and chromatin state dynamics will be also discussed
in the painter model described in Chapter 2. Recently, the Howard group, in collaboration
with Margueron experimental team, applied such a framework to characterize epigenetic
memory in various mouse cell lines [29]. Experimentally, after a long inhibition of PRC2
enzymatic activity leading to the loss of H3K27me3 marks and the activation of many
PcG-target genes, they reintroduced PRC2 and monitored if an epigenetic memory of the
inhibition was present after the introduction of PRC2. They observed that, in some cell lines,
there exists a set of genes, initially repressed by the PcG machinery before the perturbation,
that remain active after the reintroduction of PRC2. Application of the Howard group model
to the data suggests that such a memory arises from the double-negative feedback between
Polycomb-mediated silencing and active transcription that is posited in the model (Fig. 1.8)
and that may lead to bistability. During the perturbation, some genes that were initially in the
repressed state of bistability, are now highly expressed. When the perturbation is removed,
they then fall/remain in the active state of bistability, driven by the inherent hysteresis of
bistable system (Figs.1.7). Interestingly, embryonic cell lines (mESC) which are usually
assumed to more ’dynamic’ and ’plastic’ does not exhibit such memory, consistent with
predictions of another recent model of PcG regulation in mESC [30].

Based on the theoretical work of M. Howard’s group on PcG-based silencing presented
earlier, Leonie Ringrose has developed (in collaboration with M. Howard) a model of
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Fig. 1.8 (A) Schematic of alternative chromatin states. Active state characterized by presence
of Pol II, which can carry H3K27-demethylases (KDM), and drive nucleosome exchange.
Repressed state characterized by H3K27me3 (orange hexagons), which can positively
feedback to recruit PRC2. (B) Diagrammatic representation of feedbacks in mathematical
model. States me0 to me3 refer to methylation state of H3K27. Neutral marks me0/me1
indicated in yellow, repressive marks me2/me3 in orange. Black arrows represent state
transitions; colored arrows represent feedback interactions. For clarity, histone exchange
and H3K27me2-mediated recruitment of PRC2 are omitted. Figure and legend from [27]
(Figure 1).
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PcG-based silencing in the context of epigenetic gene silencing during fly (Drosophila
melanogaster) development. Early in embryogenesis, genes are activated or repressed by
targeting standard activators or repressors (DNA binding proteins that bind to the promoter
and activate or repress gene transcription). At some point, these activators/repressors
disappear but the expression state remains and is stably locked in this "initial" "on" or "off"
state. This epigenetic memory is controlled at the chromatin level by the PcG/Trx system,
where the PcG proteins direct silencing (see above) and the Trithorax (Trx) proteins, its
counterpart, direct activation. These silencing/activation complexes are first nucleated in
specific genomic domains called PRE/TRE along which they spread their chromatin state
(repressive/active), which is then maintained through cell division. Reinig et al. proposed
that state establishment at Polycomb/Tritorax response elements (PRE/TRE) (initiation
stage) is instructed by the promoter state (i.e., bound or unbound by a repressor/activator)
that drives the state to a given macrostate (initiation stage); after the disappearance of
the repressors, the state is maintained through recruited conversions (positive feedback)
(memory stage). To formalize this scenario, they use, for the PRE/TRE domain, a 3-state
model (A,U,M) with noisy and recruited conversions, in an infinite range propagation
mode. The dynamics of the state conversion is coupled to the state of the promoter which
dynamically switches between a free and a bound state (2-state model) (Fig. 1.9). In their
model, reversely, the global state of PRE/TRE is also conditioning the promoter states
dynamics. This lead to a full coupling between promoter and PRE/TRE states: the more
the active/repressed one, the more the active/repressed the other. Their model accurately
recapitulates published studies of PRE/TRE-mediated epigenetic memory of both repression
and activation; a key result is the crucial dependence of such bistability in cell cycle length,
in agreement with the theoretical work of Zerihun et al. [23] (see below).

1.2.4 Chromatin-based epigenetic memory: crucial impact of cell cycle
length

Since then, other approaches have been proposed to derive dynamical properties (macro-
state stability and memory) of such 2 or 3 states generic models [176, 43, 42, 22, 23]. In
Zerihun et al., authors investigated the role of cell cycle duration in the epigenetic dynamics
of a three state chromatin state dynamics. Considering a similar symmetric model as in [19]
and [56], ie with long-range recruited conversion (actually infinite range) (Fig. 1.10(a)), they
introduced a periodic replication process such as in Fig. 1.10(b) and derived the statistical
properties of the nucleosomal array (ie statistical distribution of m = I −A) as function of
(r,T ), with r = ε/ko (recruited conversion rate over noise) and T the cell cycle duration
(Fig. 1.11(a,b)). Note that in [22], all the derivation were done in a non replicating system,
i.e., at the limit of very large T where the epigenetic system relaxed to its stationary state.
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Fig. 1.9 A simple model for Polycomb/Trithorax regulation. (a) The promoter and PRE/TRE
are shown schematically. Left: each promoter site can be either free (F) or bound (B). Right:
each nucleosome in the PRE/TRE can be either silent (red, M), neutral (grey, U) or active
(green, A). See main text for details. (b) The model is implemented stochastically, with
probabilities for each of the transitions between F and B, and between A, U and M. For
the promoter, p1: probability of transcription factor binding at a single promoter binding
site. p2: probability of transcription factor unbinding at a single site. For the PRE/TRE,
p3 and p4 (red and green arrows) denote feedback reactions in which nucleosomes in each
of the M or A configurations convert other nucleosomes towards that configuration. The
parameter p5 (black arrows) gives the probability of conversions between A, U and M that
are independent of feedback. C: The promoter and PRE/TRE are coupled. (c) At each
iteration of the simulation, the promoter state is evaluated and used to adjust the PRE/TRE
parameters p3 and p4. Likewise the PRE/TRE state is evaluated and used to adjust the
promoter parameters p1 and p2. These adjusted p1, p2, p3 and p4 values are used in the
next iteration. Figure and legend from [54] (Figure 1).
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Fig. 1.10 3 state model and cell cycle length. (a) Three-states model for the local epigenetic
state of one nucleosome. Transition rates between states depend on the total density of
active and inactive marks (equations (1)–(4)). (b) Random distribution of the maternal
marks (*) among the sister chromatids during replication. Empty spaces are filled with
U-type nucleosomes. Figure and legend from [23] (Figure 1).

As shown by the phase diagram in Fig. 1.11(c), Zerihun et al. highlight the effect of having
a finite cell cycle which limits the ability of the system to maintain a macro-state of modified
nucleosomes: the critical recruited conversion rate εc value needed to have bistability is an
increasing function of cell cycle duration. In other words, for a given recruited conversion
rate, cell cycle duration can control the ability of the system to be in a bistable state, and
thus its ability to form a stable and heritable domain.

1.2.5 A first step toward 3D: 1D model with effective 3D

In all of the above mentioned models, in their preliminary version, the dynamics of the
local chromatin state does not depend on the 3D organization of chromatin. The models
are essentially 1D models embedded in zero-dimensional space, where conversion of the
cooperative state at a given nucleosome can occur only from the neighboring modified
nucleosome (NN model) or from the set of modified nucleosomes (infinite range model).
As shown by Dodd et al. [19], the NN speading model (or cis-spreading model) cannot
lead to a stable coherent macrostate, whereas the infinite range model leads to bistability
for conversion rates above a critical value [19, 47, 22]. In order to go beyond the rather
unrealistic zero-dimensional model [19], Dodd et al. proposed to introduce in this model a
long distance spreading term (trans spreading) that would account for chromatin looping.
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Fig. 1.11 Impact of cell cycle length on epigenetics. (a) and (b) Probability distribution
function (pdf) of the magnetization m = A− I for a population of asynchronous cells for
different values of recruitment and cell cycle length T . (a) k0T = 1 and r = ε/k0 = 1 (full
line), 4 (dashed line) and 6 (dotted and dashed line). (b) ε/k0 = 5 and k0T = 0.1 (full line),
1 (dashed line) and 20 (dotted and dashed line). (c) Phase diagram. Critical point εc as
a function of T , separating the bistable region (right hand) to the monostable region (left
hand). The dashed line corresponds to the long cell cycle limit rc = εc/k0 ≈ 3. Figure and
legend from [23] (Figure 2).

The objective was to highlight the role/necessity of long-range interactions in generating
bistability and to emphasize that this long-range interaction emerges naturally from the
generic property of the chromatin chain. To parameterize this long-range interaction, they
naturally introduce a spreading term modulated by the contact probability that accounts
for the colocalization of distant genomic sites, assuming a Gaussian chain at equilibrium.
This is a mean-field approximation that is valid when the polymer dynamics is much faster
than the state conversion dynamics (epigenetic dynamics), an approximation we will use in
Chapter 2 and discuss in Chapter 4. In fact, although it was not the original intention of the
authors, this study is a first theoretical demonstration that 3D chromatin organization can
indeed affect the 1D dynamics of epigenetic marks through the propagation in trans that
leads to a phase transition at a critical value from an "unmodified" macrostate (unmodified
on average) to a bistable macrostate. This is in fact a very well known feature of 1D systems
with cooperativity in statistical physics, as we have already pointed out before (e.g. the 1D
Ising chain): in such systems, the phase transition requires a long-range interaction which is
obviously ensured for the zero-dimensional system where the range is in fact “infinite”. If
we now consider the long-range interaction induced by loops, bistability still occurs but it
is less strong [19]: for a given nucleosome, the pool of nucleosomes that can potentially
participate in the recruited conversion remains the whole system but now the conversion rate
decreases with genomic distance, so that the efficiency of the recruited conversion decreases
with genomic separation (there are indeed fewer nucleosomes that can potentially participate
in the recruited conversion). In fact, theoretical developments in statistical physics have
shown that as long as the decrease in the long-range interaction is less than 1/dγ , with γ = 2,
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Fig. 1.12 (A) Three possible mechanisms for epigenomic-driven interactions via chromatin-
binding proteins (left and center) or via histone tails (right). (B) Example of an architectural
protein, HP1, and its various biochemical properties driving the formation of heterochro-
matin compartments.

the system still exhibits phase transition and bistability. Interestingly, the contact ability
of chromatin decreases as a power law, in agreement with standard polymer physics, with
exponents that are exactly in the range that ensures bistability: γ < 2. Note that for the Gaus-
sian chain approximation used by Dodd et al. [19], γ = 1.5< 2, value that leads to bistability.

A few other effective 3D descriptions are the 3D looping models of Erdel and Greene [25]
and the stochastic model by Ancona et al. [28]. 3D looping models with sequence-dependent
recruitment and long-range spreading mechanisms based on 3D contacts are by essence sim-
ilar to our simple painter and reader-writer modes (in chapter 2). In [25], authors discussed
the role of looping (3D contacts) and nearest neighbor spreading for epigenomic profiles,
as well as the reader-writer feedback in memory and proposed that non-homogeneous
state-specific recruitment may lead to stable confined domains.

1.3 Modeling of epigenome folding

As described in Sec.1.1 (Fig.1.3), many nuclear bodies, chromatin 3D compartments or
contact domains are correlated with the 1D epigenomic information along the genomic
sequence. Most of these observations indicate the possible colocalization (more contact
than expected) of genomic regions sharing the same epigenomic content and/or the possible
spatial segregation (less contact than expected) of regions sharing different epigenomic
states.

Actually, there exists a growing body of evidence showing that some chromatin-binding
architectural proteins or complexes, specific to some epigenomic marks, have the capacity
(i) to bind to several chromatin regions; and/or (ii) to oligomerize or self-interact; thus, puta-



1.3 Modeling of epigenome folding 21

tively driving the formation of direct or effective physical interactions (or loops) (Fig.1.12A)
between loci sharing the same chromatin state, possibly distant along the sequence. For
example, the euchromatin-associated factor BRD4, that contains a bromodomain capa-
ble of binding acetylated histones and important in the regulation of super-enhancers and
transcription [58], can in vitro and in vivo form liquid droplets [59]. Also, the constitu-
tive heterochromatin-associated factor HP1 contains (Fig.1.12B) a chromoshadow domain
(CSD) that allows the dimerization of HP1, a chromodomain (CD) that drives the binding to
histones with H3K9me2/3 modifications and unstructured N-term and hinge regions that
drive the in vitro formation of liquid condensates [142, 139, 57]. These three ingredients
allowing the in vivo establishment of chromocenters [142, 57]. Interestingly, HP1 and hete-
rochromatin are chemically excluded from BRD4 condensates [59]. There are also recent
experiments suggesting that histone tails themselves may directly promote interactions
between nucleosomes depending on the biochemical modifications [60, 61] (Fig.1.12A).

All this suggests the existence of physico-chemical mechanisms, driven or regulated
by the epigenome, that significantly participate into the 3D structuring of the genome, by
stabilizing or hindering short-range interactions between genomic loci.

To describe how such epigenomic-driven interactions may shape the 3D genome, several
mechanistic biophysical models have been developed along the years. They usually model
chromatin as a coarse-grain, bead-on-spring, polymer (Fig.1.13) where each monomer
represents a given portion of chromatin (typically between 1 to 50kbp, depending on the
model resolution). The dynamical and structural properties of the polymer are thus driven
(i) either by explicitly simulating molecules that can bind specifically to some monomers,
or by (ii) effective short-range direct interactions between monomers sharing the same
epigenomic content.

The first class of models (i), sometimes termed string-and-binders-switch (SBS)-like
models (Fig.1.13A), was mainly developed by Nicodemi and Marenduzzo groups [95–
98]. In this case, the polymeric chain (one chromosome or piece of chromosome) is
simulated with diffusing particles of several kinds that can bind to specific monomers whose
corresponding genomic regions are enriched in some epigenomic marks or TF binding
sites. In these frameworks, folding of the chain is driven by the capacity of the particles
to bind several monomers at the same time, but the possible self-interactions between
diffusing particles were not considered. However, very recent works start to integrate such
self-attractions [245, 99].
The second class of models (ii), sometimes termed copolymer-like models (Fig.1.13B), was
developed by my supervisors [56, 169, 90] followed by many other groups [100–104]. In
this case, monomers directly interact via pair-wise potentials whose strengths of interaction
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Fig. 1.13 (A) Scheme of the string and binders switch model. Adapted from [95]. (B)
Scheme of the block copolymer model. Adapted from [204]. (C) Prediction of the block
copolymer model as the strength of epigenomic-driven interactions is increased, from a
homogeneous behavior (left) to full micro-phase separation (right). (D) Best fit obtained by
copolymer model for Drosophila late embryo (left, adapted from [204]) or human cell line
GM12878 (right, adapted from [102]).

depend on the local epigenomic content of each monomer. In its simple form, each monomer
is defined by a single state, and only monomers of the same state can interact.

These two classes of models (and their variations) lead qualitatively to the same physical
behavior. Since, loci sharing the same epigenomic state are usually arranged in long
blocks (contiguous 10-100kbp-long regions characterized by a more or less homogeneous
content of epigenomic marks) along the genome, formation of TADs may emerge from the
full or partial collapse of each block [95, 203] and 3D compartments from a microphase
separation of the different chromatin states [56, 90, 103] (Fig.1.13C), characteristics of
block copolymers [105], where blocks of the same state colocalize forming more or less
extended 3D domains depending on the strength of interaction [90] and of the linear
arrangement of the 1D blocks [169]. This generic principle of microphase separation,
when contextualized to specific systems, taking as inputs the corresponding 1D epigenomic
landscape, generate predictions in very good agreement with Hi-C experiments (Fig.1.13D)
and explain quantitatively the 3D compartmentalization observed in many species from
Drosophila to mammals and plants. In many cases, it is found that the interaction strengths
that best fit the data are weak (fraction of kT), consistent with a plastic, stochastic and
dynamical chromatin organization [90, 106, 179].
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Fig. 1.14 Loop extrusion mechanism may compete with epigenomic-drive microphase
separation. (A) Scheme of Hi-C signatures when both mechanisms are present (top,TADs
and comparments) or with only microphase separation (bottom, only compartments). (B)
Sketch of the mechanistic models when both mechanisms are considered (top) or when only
epigenomic-driven interactions are accounted for (bottom). Adapted from [107].

As expected, epigenomic-driven interactions alone do not explain all the main features
of chromosome organization. Recently, to improve our quantitative understanding of
the nuclear chromosome organization, copolymer models were decorated with other key
mechanisms [108] like SMC-mediated loop extrusion [107] (see below), interactions with
the nuclear membrane [103, 109, 110] or with the nucleolus [111]. For example, Nuebler et
al [107], studied the interplay between epigenomic-driven (micro)phase separation and loop
extrusion. Indeed, in mammals, the formation of many TADs cannot be simply described
by the folding of an epigenomic block but can be nicely interpreted as resulting from an
active mechanism of loop extrusion [118, 241] (Fig.1.14) where cohesin rings are loaded
to chromatin, extrude chromatin loops bidirectionally [112, 113] until unbinding or being
stopped at oriented CTCF binding sites, enriched at TAD boundaries [63, 118]. Loop
extrusion was shown to interfere with microphase separation by destabilizing it, in good
agreement with experiments [114].

1.4 Modeling chromatin state dynamics in 3D

As we have seen epigenome driven interactions are central to the 3D organization of chro-
matin, 3D chromatin domains do strongly correlate with 1D epigenomic domains [63, 65].
Dynamical coupling of 1D epigenome and 3D organization had to be deciphered, for in-
stance to quantitatively understand the correlation of repressive (heterochromatin) domains
with chromatin compaction. These observations suggested a strong feedback between
epigenome regulation and 3D chromatin folding which led to polymer models integrating
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chromatin state transitions [66–70].

The first model of this class [67] invoked short-range interactions mediated by chromatin
states (like states attracting and unlike states repelling) and an Ising-like chromatin state
transition (mediated by the state of spatially close monomers). The model (Fig. 1.15i)
proceeds by binding of multivalent proteins to a specific histone modification, and then it
bridges the bound histone with histones in the same state, thereby 1D epigenome affecting
3D organization. The spreading process is directly linked to 3D configuration, as spread-
ing (or recoloring) of states is modelled by Ising-like interaction with spatially proximal
monomers. Polymer dynamics coupled to such local interactions enabled meta-stability of
two chromatin states at critical point and phase transitions between the chromatin states
away from the critical point (Fig. 1.15iv). Having different stochastic noise in epigenetic
dynamics with respect to the polymer dynamics have shown to harbor a parameter range
where several globular domains coexist qualitatively, reminiscent of TAD-like structures. In
the following work [82], they have highlighted the significance of ‘genomic bookmarking’,
bookmarking in the model refers to red(or blue) monomers which does not change state
accounting for external signal or ‘forcing’ (like a transcription factor that binds to the DNA
and recruits HMEs). They show that having a critical density of such bookmarks is essential
for epigneomic domain stability (Fig. 1.15ii) and predict the full distribution of Polycomb
marks in a Drosophila chromosome. Furthermore [238, 239], they have studied epigenetic
microphase separation by using a field theoretic approach, wherein the system is described
by two fields (i) density (local genomic density) and (ii) magnetization (local epigenomic
state abundance). The approach that has been followed is to derive the free energy for
a single chromosome with epigenetic and 3D dynamics from the partition function of a
magnetic polymer (a self-avoiding polymer with epigenetic recoloring as described earlier)
to study the equilibrium kinetics of the model. This leads to two possible equilibrium phases,
a swollen disordered (with heterogeneous epigenetic marks) and a compact ordered phase
(uniform epigenetic state) with a first order transition (a classification of phase transitions
where the first derivative of free energy with respect to a thermodynamic variable is discon-
tinuous, here the first derivative is magnetization which characterizes the overall epigenomic
state of the system) between them (Fig. 1.15iii). Here, competing epigenetic domains are a
natural consequence, but at equilibrium one dominant epigenetic domain takes over while a
realistic scenario would be coexistence of multiple stable epigenomic domains.

My supervisors, Daniel Jost and Cedric Vaillant formulated the “Living chromatin”
model in which epigenome driven interactions were modelled by a binding rate between
two spatially close monomers of the same state implying that the compaction of the polymer
at steady state would be determined by the ratio of binding and unbinding rates (kb/ku).
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Fig. 1.15 (i) A 3D polymer model with “recoloring” for the propagation of epigenetic
marks, (a)–(c) Multivalent binding proteins, or readers (shaded spheres), bind to specific
histone modifications and bridge between similarly marked segments (distinguished here
via their “color”). Histone-modifying enzymes, or writers (solid squares), are assumed here
to be chaperoned by the bridge proteins. (d) Representation of Heterochromatin binding
protein HP1 is known to recruit methyltransferase protein and the Polycomb Repressive
Complex (PRC2) is known to comprise the histone H3 Lys 27 (H3K27) methyltransferase
enzyme EZH while binding the same mark through the interaction with JARID2 Figure
and legend from [67], (Figure 1). (ii) A critical density of bookmarks is required for stable
domain formation, (A) Using the clustered pattern of bookmarks at different densities, we
quantify the deviation from a ‘perfect’ block-like epigenetic pattern, (B and C) Kymographs
representing the behaviour of the system at the points circled in red and grey in (A) Figure
and legend from [82] (Figure 4). (iii) Equilibrium phase diagram for single chromosomes,
The phase diagram is obtained by numerical minimization of free energy (red and blue
symbols refer respectively to the order parameter and density profiles). The insets report
snapshots from simulations Figure and legend from [239] (Figure 3). (iv) The two-state
model above the critical point evolves into an epigenetically coherent state via a symmetry-
breaking mechanism, Top row: Typical snapshots of 3D configurations adopted by the
polymers as a function of time, below and above the critical point, Middle row: Time
evolution of the total number of beads of a particular type, for four independent trajectories
(the dashed one corresponds to the trajectory from which the snapshots are taken). Bottom
row: Time evolution of the color of each polymer bead as a viewed as kymograph. Figure
and legend from [67] (Figure 2).
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This framework (Fig. 1.16) can be seen as the combination of block copolymer model of
chromatin [56] and the seminal epigenome regulation model of Dodd et al. [19] discussed
in sec. 1.2.1. Chromatin state transitions are steered by adjacent monomers in 3D, the
transition rate of a monomer to a specific state (for example M-state) being determined
by the number of spatially close monomers in M-state. Specifically, the model dissected
the role of spreading via cis (along the chain) and trans (3D contacts) (Fig. 1.17B) which
helps in understanding the feedback loop between 1D and 3D information. 1D epigenomic
information along the genome driving 3D genomic contacts (thereby the 3D chromatin
organization) while 3D organization driving epigenomic spreading via the trans spreading
mechanism. And evidently, it was shown that epigenomic domains cannot be maintained
without trans spreading stressing the significance of 3D organization on 1D epigenome
domain stability. Such 1D-3D coupling was also shown to be essential for the stability of
boundary between two antagonistic epigenomic domains. While the ‘Living chromatin’
framework captures the bi-stable chromatin state regime, like the epigenome recoloring
model (discussed above, Fig. 1.15) the spreading mechanism is fundamentally different.
Here, spreading in trans is not coupled to the copolymer dynamics, but only requires spatial
proximity of the monomers while in the model developed by Michieletto et al. [67] the
dynamics of epigenome and polymer are governed by the same Hamiltonian and spreading of
chromatin state requires chemical bond between nearest monomers in 3D, as a prerequisite.
This difference is reflected in the nature of the phase transition which is of second-order
in the living chromatin model. The self-association of monomers in the same epigenomic
state enables the formation of compartmentalized epigenomic domains. Living chromatin
model shows that the avoidance of cis-spreading (biologically, it can be due to the presence
of insulator proteins like CTCF) at the domain boundaries would significantly stabilize the
boundary as well as the domains (Fig. 1.17C).

A model for spreading of chromatin states based on transient DNA looping was proposed
by the group of Spakowitz [70] in which they describe looping(‘unlooping’) dynamics,
and employ it to describe loop mediated methylation. Such a mechanism as a prequisite
requires chromosomal DNA to be able to adopt dynamically looped configuration and
is likely to be applicable in the context of undifferentiated cells. Looped (or unlooped)
state (Fig. 1.18A) is determined by a parameter called loop radius, a distance between
two nucleosomes below which the state is looped (and above ‘unlooped’). Looping rate
is computed by determining the first passage time for looping (time taken to go from
‘unlooped’ to looped state) and assuming that looping kinetics are captured by Poisson
process. Once, two nucleosomes are in the looped configuration, methylation can spread at
a specified rate. Time evolution of the average methylation state is determined by a master
equation, invoking the concentration of HP1 architectural proteins. This model heavily
weighs on looping probability that determines effective spreading of methylation. Further,
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Fig. 1.16 The Living chromatin model. Each monomer can be in one of the three states: A, U
and I; the inter-conversion dynamics between these states results from random or recruited
(in cis or in trans) conversions. The chain is modeled by a semi-flexible self-avoiding
bead-spring model with specific short-range attractions between monomers of the same
epigenomic states (A or I). Figure and legend from [66].

they elaborate this framework by combining the effect of segregation (by starting from an
experimentally obtained methylation state) and compaction [157] on chromosomal organi-
zation including the effect of architectural protein HP1. In this model HP1 proteins can bind
and unbind to monomers in any state but preferentially binds to methylated monomers. The
above mentioned segregation and compaction is achieved by attributing an experimentally
derived energetic benefit for regions with higher HP1 concentration. Thus for a given HP1
concentration and a methylation profile, the model predicts which genomic regions compact
to form heterochromatin. Based on the previously discussed loop-mediated spreading,
methylation may spread from methylated/unmethylated monomers, the probability to be
methylated for every monomer can be written as a function of local HP1 concentration,
methylation and de-methylation rates. The feedback via HP1 proteins, wherein the proteins
compact methylated region and promotes further spreading of methylation in the region,
while in regions with less methylation would remain de-condensed directly links spreading
of methylation and compaction of chromatin. As a consequence, it was shown that an
optimal HP1 concentration is a prerequisite for robust maintenance of methylation profile
(which is correlated to the initial profile) over several generations (Fig. 1.18B). This is an
aspect that had not been probed by the previous models. In chapter 4, we discuss the effect
of concentration of architectural proteins on phase separation properties.
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Fig. 1.17 (A) Illustrating the cis-trans spreading model and epigenomic driven self-attraction.
The phase diagram as function of ratio of binding and unbinding rates (kb/ku), and spreading
rate which demarcates regions of bi-stability. Examples of time evolution of epigenomic
state and of radius of gyration are shown along with representative 3D configurations. (B)
Maintenance of two neighbouring epigenomic domains. Typical time-evolution of the
epigenome without 1D boundary (indicated as A2 within the panel) and with a remaining
1D boundary (indicated as B2 within the panel). Figure and legend from [66].
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Fig. 1.18 (A) The top schematic depicts an array of nucleosomes and the interactions among
methylation of H3K9, HP1α , and the methyltransferase SuVar3−9. The bottom schematic
represents the kinetic processes that are involved in the conferral and removal of a methyl
mark on a nucleosome via chromosomal looping and methyltransferase function. Each bead
represents a nucleosome that is either methylated (red) or unmethylated (blue). Figure and
legend from [70] (Figure 1). (B) Plot of the correlation coefficient (between the current
generation profile and the initial profile) versus free HP1 concentration for five generations
of reestablishment of the methylation sequence. Figure and legend from [157] (Figure 4).

Recently, the work by Thirumalai group [68] shows 3D looping in the slow epigenetic
spreading regime produces finite domains without boundary elements, employing a 3D
polymer on which epigenetic spreading is modelled. As in the Living chromatin framework,
cis-trans spreading of chromatin state is delineated and spatial proximity of nucleosomes of
same state determine the transition rate. When the process of spreading is fast compared to
polymer dynamics, it occurs independently of the chromatin configuration (Fig. 1.19i). The
model accounts for nucleation of HMEs by having a monomer whose epigenetic identity
is unchanged. They investigated the interplay between spreading dynamics and chromatin
motion, highlighting the role of nucleation in the maintenance of stable domains in a regime
of fast epigenetic spreading. Also, another work incorporating generic concepts of 1D-3D
coupling like self-association of monomers in the same chromatin state, 3D spreading
of chromatin states and limitation of HMEs studied chromatin structure reorganization
through cell cycle [69] (Fig. 1.19ii). Here, chromatin is modeled as a spherically confined
copolymer with monomers of two types, one of which represent heterochromatin regions
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and can self-attract. Here, spreading of epigenetic modification (marks) is modelled on
a fixed 3D template and at every cell cycle, the 3D reorganizes based on 1D epigenome.
Modifications spread to neighbors (in 3D space, within an interaction radius), at rate S, and
are lost everywhere uniformly at rate L. This work does not focus on the dynamic coupling
of 1D epigenome and 3D chromatin organization. This approach is based on considering
cell cycle to have two alternating phases (i) “interphase”, in which the polymer is fixed in a
single configuration while spread (and loss) of marks happen and (ii) “metaphase”, in which
the polymer is compacted into a condensed state and then refolds into a new configuration,
while marks are fixed (Fig. 1.19ii). This model also recapitulates the importance of enzyme
limitation and 3D compaction discussed in chapter 2 and chapter 4.

In chapter 4, we present progressively how to advance from the living chromatin-like
model to a much more finer description of the molecular processes by introducing the
“Living painter” framework, coupling epigenome regulation by diffusing HMEs and 3D
polymer dynamics.

1.5 Main objectives of the PhD thesis

As described in the previous sections, the reader-writer ability of HMEs coupled to long-
range spreading and possibly genome folding are likely to be key players in the regulation
of epigenetic marks. However, such interplay raises concerns about the maintenance of a
stable 1D compartmentalization of the genome [25]. Indeed, as observed in many species,
the states of chromatin along the genome are linearly organised into consecutive “domains”
of finite sizes, leading globally to a 1D compartmentalisation of the genome into active
and inactive domains with more or less well defined inter-domain boundaries [62, 71, 73].
Because of the requirement to regulate (activation or silencing) a given part of the genome
without affecting its surrounding flanks, chromatin states have thus to be specifically tar-
geted to and stably confined inside specific genomic domains. In standard mathematical
models [19, 22, 54], long-term epigenetic memory goes with great difficulties to limit the
expansion of the mark (see Sec. 1.2), questioning mechanistically how the 1D partitioning
of the genome is established and above all maintained.

Several hypotheses have been proposed to address this question. Spreading may be
slowed down by boundary elements [6, 20, 66, 27], usually termed “insulators”, that restrict
the local spreading of a mark along the genome. These insulators are often associated with
specific DNA-binding proteins (e.g. CTCF, BEAF, CP190) or actively transcribed genes
found at the boundaries between antagonistic chromatin states [76, 80, 74, 81, 75, 77–79].
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Fig. 1.19 (i) Visualization of single trajectories in the fast (A) and slow (B) spreading
regimes. In the former case, the spreading occurs fast and independently of chromatin
configuration, while in the latter case, the pattern of spreading may be determined by the
dynamic rearrangement of the chromatin. The kymographs show the epigenetic identity of
each nucleosome (marked/M/red, unmarked/U/yellow, nucleation site/green) for a single
trajectory, in both (A) and (B). Figure and legend from [68] (Figure 3). (ii) Chromatin in the
nucleus modeled as a spherically confined copolymer with monomers of two types, A (pale
yellow) and B (blue), representing a varying pattern of histone marks. Monomers of type
B, which represent regions bearing heterochromatic marks, self-attract. (b) Marks spread
to neighbors (in 3D space, within an interaction radius), at rate S, and are lost everywhere
uniformly at rate L. (c) The overall dynamics of our model consist of alternating phases of
polymer dynamics and mark dynamics, coarsely stylizing the cell cycle. Figure and legend
from [69] (Figure 1).
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Spreading may also be limited by the formation of spatial compartments [67, 66, 82, 70, 68]
as genome 3D compartmentalization is strongly correlated with 1D chromatin segmen-
tation [55, 62, 65], thus providing 3D insulation and restricting long-range effects (see
Sec.1.4).

Nevertheless, recent experimental studies suggest that, in vivo, the reader-writer mech-
anism, along with long-range spreading and insulation might not be strong enough to
self-sustain by itself an epigenetic state and that a (compartmentalized) long-term memory
may still be dependent on genomic bookmarking by keeping a weak “forcing” activity at
regulatory sites [83–85, 10]. Such role of nucleation signals in the maintenance of a stable
chromatin state and its interplay with the 3D genome organization has only been partially
addressed theoretically [25, 28]. In this PhD thesis, I propose to develop general mechanis-
tic frameworks of epigenomic regulation and memory integrating nucleation, reader-writer
mechanisms, long-range spreading and genome folding, in order to systematically charac-
terize such a crosstalk and to investigate how such generic principles can be contextualized
to specific biological systems.

In Chapter 2, that gathers the main results of my PhD thesis, I introduce and fully
characterize an end to end, simple modeling framework, the “Painter model”, describing
the mechanistic interplay between sequence-specific recruitment of chromatin regulators,
chromatin-state-specific reader–writer processes and long-range spreading mechanisms, but
neglecting the feedback of the epigenome on the 3D genome organization. In Chapter 3,
towards an explicit integration of such a feedback and of the spatio-temporal dynamics of
the polymer chromatin, I address a methodological question about how to precisely model a
specific region of interest, capturing the correct biophysical properties, while minimizing
computational efforts. In Chapter 4, I develop the “Living painter” model, progressively
building from the painter model and explore the characteristics of the models that explicitly
couple genome folding and the painter model, illustrating some of their key features. This
chapter represents the scope and prospects of my thesis. And in the final part, I conclude
the thesis and discuss possible perspectives.



Chapter 2

Painters in chromatin: epigenome
regulation and memory

2.1 Introduction

As described in Chapter 1, epigenomic regulation is likely to depend on several key mech-
anisms including nucleation, reader-writer processes, long-range spreading and genome
folding. In this chapter, we present a quantitative framework for epigenome regulation and
systematically investigate the formation and memory of chromatin states. In particular,
our modular approach allows to carefully examine the role of sequence-specific nucleation
signals, and how they interplay with reader-writer mechanisms and 3D organisation. We
also study the effect of chromatin state fluctuations on transcription.

After a deep analysis of the generic properties of each contributions, we show that
such a framework allows to rationalize the maintenance of confined chromatin states and
to address the role of epigenome regulation in gene expression. Finally, we contextualize
our quantitative approach to several concrete experimental systems, from the formation
of γH2AX domains around double-stranded breaks and heterochromatin domains around
Transposable Elements (TE) insertion sites in mammals to the heterochromatin memory
in fission yeast. The very good agreement between our simple model predictions and
experimental data suggests that such multi-modal spreading model may provide a very
promising framework to further investigate the link between genomic and epigenomic
organisation during normal development, pathologies as well as during evolution.

This Chapter is largely inspired from the article that we published in Nucleic Acids
Research (Abdulla, Vaillant, Jost. Painters in chromatin: a unified quantitative framework
to systematically characterize epigenome regulation and memory. 2022. Nucleic Acids Res,
50: 9083-9104). We also discuss newer analysis presenting intriguing perspectives of the
framework.
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Fig. 2.1 “Painter” Model: (A) Each nucleosome can be in one of the two, unmodified “U”
or modified “M” states. The switching between the two states is controlled by transition
rates rUM,rMU . (B) Scheme of functionally distinct spreading mechanisms (coefficients of
the terms are shown as in Eq. 2.2). The painter region where HMEs (brown) are recruited in
a sequence-specific manner is framed in red. (C) Profile of ρs(i), showing sequence-specific
recruitment, ρs(i) = 1 depicting the nucleosomes framed in red in (B). Below an example
of the stochastic time evolution of the epigenomic state simulated for a 201 nucleosomes
region in the simple painter mode.

2.2 The “Painter model”

Chromatin is classically modeled by a unidimensional array of n nucleosomes. As a proxy
for the local chromatin state, we assume that each nucleosome can fluctuate stochastically
between a finite number of epigenetic states, each state corresponding to a specific combi-
nation of histone marks. To simplify, we consider a generic two-state model between an
unmodified/neutral state (U) and a modified, either active or inactive, state (M) (Fig. 2.1A).
The switching dynamics from M to U (respectively from U to M) is controlled by the
transition rate rMU (resp. rUM).

rMU integrates all the molecular processes that promote the removal of the histone
modifications. This includes histone turnover [86], enzymatic removal of marks by “erasers"
(such as histone deacetylases or demethylases) [87] and histone dilution between sister
chromatids at replication forks [88]. In our theoretical study, in the simplest form, we lump
all these processes into one constant rMU ≡ k0.

rUM accounts for the spreading of the state M by dedicated “writer" enzymes: histone
modifying enzymes (HMEs) are first recruited at some positions and then may “write" the
M state to any neighboring U nucleosomes (Fig. 2.1B).
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We assume HMEs can be mobilized to chromatin via two independent, additive,
sequence- or state-specific, pathways. The quantity of enzymes bound at position i, ρw(i), is
then given by ρw(i) = ρs(i)+∆δi,M with ρs(i) the sequence-specific contribution, δi,M = 1 if
i is in state M, = 0 otherwise, and 0 ≤ ∆ ≤ 1 is the “reader” recruitment strength accounting
for the capacity of some HMEs to co-associate with the same mark they catalyze [5]. For
clarity, we only consider logical distributions for ρs with ρs(i) = 1 at given sequence-specific
recruitment sites, called the “painter” regions.

Similarly, the activity kw(i) of a bound enzyme may be sequence- or state-specific:
kw(i) = ks(i)(1+ rδi,M) with ks(i) the normal enzymatic activity and r > 1 a boost factor
accounting for the enhancement of enzymatic activity occurring for some HMEs in the
presence of the same mark they catalyze [17]. For simplicity, we assume that ks(i)≡ k is
homogeneous.

We consider that a bound enzyme at position i may spread the state M not only at
nucleosome i (with an on-site (in cis) activity kw(i)) but also at longer-range (in trans)
to any other nucleosome j at a rate ktrans(i → j) = εkw(i)Pc(i, j), proportional to the
intrinsic enzyme activity kw(i), ε (0 ≤ ε ≤ 1) a multiplicative factor accounting for a
putative modulation of the writing efficiency on off-site nucleosomes and Pc(i, j) (≤ 1) the
probability that i ’communicate’ or ’contact’ with j to allow spreading.

Altogether, the propensity for a nucleosome i to switch from U to M is thus given by
the activities of locally bound HMEs and of HMEs bound to other nucleosomes that may
contact with i:

rUM(i) = kw(i)ρw(i)+∑
j ̸=i

εkw( j)Pc(i, j)ρw( j) (2.1)

= k

[
(ρs(i)+∆δi,M)(1+ rδi,M)+∑

j ̸=i
ε(1+ rδ j,M)(ρs( j)+∆δ j,M)Pc(i, j)

]

2.2.1 Shape of spreading probability Pc(i, j)

The capacity for a HME recruited at position i to spread a mark at long-range is encoded
into Pc(i, j). Pc may translate various physical mechanisms that allow i to ’communicate’
with j. The assumption is that this communication is faster than the polymer relaxation
dynamics (see Chapter 4 for detailed comparison).
A natural mechanism is to consider that Pc captures the frequency that i and j are in spatial
proximity such that a HME bound to i may catalyze a reaction in j (Fig. 2.17). In this case,
assuming that the 3D chromatin organization equilibrates locally faster than the epigenomic
landscape, Pc(i, j) can be approximated by the contact probability between i and j [70] as
observed in Hi-C experiments [92]. Indeed, for short genomic distances between i and j
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Fig. 2.2 Contact probability matrix for a compact domain (lower part) localized at positions
[-4:4] (inset shows a zoom around the compact domain) and looping contact (upper part)
between the painter region [-2:2] and nucleosomes at position [48:52].

(< 100kbp), theoretical and experimental studies suggest that, at this scale, 3D looping
rates are ∼ sec−1 to min−1 [89, 94, 90, 93, 179] while the chromatin modification rates
are often ∼ h−1 [91, 30]. In this chapter, for most of our theoretical results (except in
Fig. 2.24C,D and some cases in Fig. 2.17, see below), we consider a homogeneous 3D
contact probability Pc(i, j) = 1/|i− j|γ , with γ reflecting the average compaction level of
the chromatin fiber. Experimentally, γ has been shown to vary in the range [0.5− 1.5]
depending on cell cycle stage, organism and/or cell fate [95, 115, 116]. In particular, we use
the standard, intermediate value γ = 1. Note that the value of γ does not impact qualitatively
the main conclusions of our work but may quantitatively have significant effects on the
spreading process (Fig. 2.11) and thus must be carefully adjusted when considering specific
experimental systems. We also consider contact matrices (for Pc(i, j)) representative of
chromatin regions with (i) a central strongly-self-interacting domain of nine nucleosomes; or
(ii) long-range loops between the painter region (positions [−2 : 2]) and five nucleosomes at
positions [48 : 52] (Fig. 2.2). In both cases, Pc(i, j) was computed from polymer simulations
using the lattice kinetic Monte-Carlo model developed in [90] (see Sec. 2.2.7). Also, we
discuss three alternative mechanisms for Pc in the following sections:
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Fig. 2.3 Illustration of the loop extrusion model. Loop extruding factors (LEFs) can bind to
the chromatin (in red) at position i, i+1 with a fixed rate klb and unbind at a rate klu. The
two subunits of the LEFs move bidirectionally in opposite directions at velocity v leading
effective extrusion of chromatin loops.

Nearest neighbor

HMEs bound at position i may impact only nearest-neighbor (NN) nucleosomes, i.e.
Pc(i, j) = 1 if | j− i|= 1 and Pc(i, j) = 0 otherwise.

Diffusion-limited case

HMEs recruited at i, while unbinding and diffusing are more likely to rebind in the 3D
vicinity, leading to a concentration gradient around i. To estimate Pc(i, j) in the case where
the effective spreading from position i to a distal nucleosome j occur by the unbinding and
diffusing of the HME recruited in i, we follow a formalism consistent with Li et al. [143].
H. Berg [144] showed that the probability for a slowly-diffusing particle to hit an object
of size a initially at a distance R from the particle is Pd = a/R. Within our context, R
is thus the typical distance between i and j. R(i, j) is taken to be the root mean squared
distance between two loci of a simple self-avoiding polymer. R(i, j)∼ s0.5 with s = | j− i|
the genomic distance between i and j. This leads to Pd(i, j) ∝ 1/| j− i|0.5, that is why we
take the corresponding spreading probability to be Pc(i, j) = 1/| j− i|0.5.

Loop extrusion case

HMEs bound at i may spread a mark to a distal nucleosome j only if they are placed in
very closed proximity by a loop extruding factor (like cohesin or condensin) [117–120]
translocating along the chromatin (Fig.1.14). We develop a simple mathematical model
(Fig. 2.3) to estimate Pc in the case where spreading from a HME bound at i to a distal
nucleosome j is only possible if they are placed in very close proximity by a loop extruding
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factor (LEF like cohesin or condensin) translocating along the chromatin [117–120]. We
assume loop extruding factors are composed by two motor subunits [145] that bind to
chromatin on adjacent sites (i, i+ 1) with a fixed rate klb. Once bound, they translocate
bidirectionally away from one another at constant speed v. LEFs may also unbind from the
chromatin at a rate klu. For simplicity, we assume a low density of LEFs on chromatin and
thus neglect collisions between them. We also neglect the presence of barriers (like CTCF)
that may stop or slow down LEF subunit translocation [146]. From these hypotheses, the
dynamics of the probability to find a LEF between i and j (Pl(i, j)) simply follows

dPl(i, i+1)
dt

= klb − (2v+ klu)Pl(i, i+1) (2.2)

dPl(i, j)
dt

= v(Pl(i+1, j)+Pl(i, j−1))− (2v+ klu)Pl(i, j) (2.3)

At steady state, this leads to Pl(i, i+ 1) = klb/(2v+ klu), and in general, for j ̸= i+ 1,
Pl(i, j) = v(Pl(i+ 1, j)+Pl(i, j − 1))/(2v+ klu). Assuming an homogeneous system, ie
that Pl(i, j) only depend on the genomic distance s between i and j (Pl(i, j) ≡ Pl(s) with
s = | j− i|), we obtain the recurrence relation

Pl(s) =

(
2v

2v+ klu

)
Pl(s−1) (2.4)

with Pl(1) =
klb

2v+ klu
(2.5)

Therefore Pl(s) = β sα with β = 2v/(2v+klu) and α = klb/(2v), leading to Pl(s) = αe−s/s0

with s0 ≡−1/ logβ > 0 a typical genomic distance that characterize the processivity of the
LEF. For example, in the limit of fast extruding LEFs (2v ≪ klu), s0 ≈ (2v)/klu. That is
why we take the corresponding spreading probability to be Pc(i, j) = e−| j−i|/s0 .

2.2.2 Stochastic simulations

For a given set of parameters, the stochastic dynamics of the system is simulated using
the standard Gillespie algorithm [121] implemented in Python (can be downloaded at
https://github.com/physical-biology-of-chromatin/Painter-Model). In this chapter, we have
simulated the dynamics of n = 201 nucleosomes corresponding to ∼ 40kbp-long genomic
region. Starting from a random initial macro-state (i.e random choice between U or M
states for each nucleosome), the system relaxes to a steady state. Each simulation corre-
sponds to a “single cell" trajectory of the local epigenetic state (Fig. 2.1C). Unless specified
(Fig. 2.20, 2.24), characterization of the system was done at steady-state. In each condi-
tion, at least 500 different trajectories were simulated. Times are given in 1/k0 unit that
characterizes the typical turnover time of histone marks and is ∼ h [86, 30]
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In our simulations, we start from a random initial state and at every discrete time step,
1 of the N possible state-conversion (M to U or U to M) occurs based on the defined
probabilities of each state-conversion progressively driving the system to steady state.

2.2.3 Analytical solutions

In the case where state-specific terms are negligible (r = ∆ = 0, painter mode), the steady-
state probability P(Mi) of being in modified state M at any position i is simply given by
:

P(Mi) =
rUM(i)

rUM(i)+ rMU(i)
(2.6)

=
(k/k0)(ρs(i)+ ε ∑ j ̸=i ρs( j)∗Pc(i, j))

(k/k0)(ρs(i)+ ε ∑ j ̸=i ρs( j)∗Pc(i, j))+1
. (2.7)

In the case where only state-specific recruitment is not present (∆ = 0,r > 0)

P(Mi) =
(k/k0)(ρs(i)+ ε ∑ j ̸=i ρs( j)∗Pc(i, j)(1+ rδ j,M))

(k/k0)(ρs(i)+ ε ∑ j ̸=i ρs( j)∗Pc(i, j)(1+ rδ j,M))+1
(2.8)

where δ j,M = 1 if nucleosome j is in M-state, = 0 otherwise. Inside the painter region, Pp

(the average value of P(Mi) inside the painter region) can be computed by assuming that
δ j,M = Pp. Under this mean field approximation, Pp is given by analytically solving

Pp =
1+ ε ∑ j ̸=i Pc(i, j)(1+ rPp)

1+ ε ∑ j ̸=i Pc(i, j)(1+ rPp)+(k0/k)
. (2.9)

giving,

Pp =
−(1+ cε(1− r)+ k0/k)

2εrc
+√

(1+ cε(1− r)+ k0/k)2 +4εrc(1+ εc)
2εrc

.

(2.10)

where c = ∑ j∈painter ρs( j)∗Pc(i, j). For a painter region of size N = 5 nucleosomes, c =
12.83 if Pc(i, j) = 1/| j− i|. Outside the painter region, since ρs(i) = 0 (no sequence-specific
recruitment), P(M) follows Eq. 2.6 but by replacing ε by ε(1+ rPp) (triangles in Fig. 2.14).
This solution can be improved in the range of high fluctuations (Fig. 2.13B), if we first
compute P(Mi) ∀i ∈ painter from Eq. 2.8 by assuming that δ j,M = P(Mi) and by solving
the corresponding closed set of quadratic equations ∀i ∈ painter. Then, the average value
of these solutions P∗

p = 1/L∑i∈painter P(Mi) is introduced and the probability of M-state
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Fig. 2.4 Average size of 1D M-state domain as a function of genomic position. The green
curve represents painter-mode (r = ∆ = 0, explained in Sec. 2.3.2). Blue and black curves
illustrate the reader-writer mode (∆ > 0, explained in Sec. 2.3.4) showing formation of 1D
domains away from the painter region.

outside the painter region (circles in Fig. 2.14) is then given by replacing ε by ε(1+ rP∗
p) in

Eq. 2.7.

2.2.4 Observables

In this section, we introduce some pertinent physical measures/observables to analyze and
characterize different modes of spreading.

1D domains

A fundamental property of the system we want to study is the spreading of the state M
along the genomic region of interest. Therefore, as an observable, we will focus primarily
on the steady-state probability P(Mi) of being in the modified state M at any position i,
which can be calculated analytically (see sec.2.2.3) or numerically. P(Mi) generally can be
compared to the Chip(-seq) experimental profile and corresponds to an average measure of
M-state spreading, i.e. spreading at the “cell population” level. To go beyond this average
behavior and gain more insight into the process of spreading at “single cell” level, we also
extract the set of the 1D coherent M-state domains for each configuration, considering a
coherent domain as a region/nucleosomal array formed by consecutive M-state nucleosomes
(1D-connected M-state nucleosomes). For each nucleosome i, we then compute the size
of the 1D domain it belongs to and further derive the mean value over all configurations
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(Fig. 2.4) elucidating local 1D epigenomic domains around a painter region (region of
sequence-specific recruitment of HMEs).

3D Contact domains

Importantly, in our model, we consider spreading in cis (NN model) but also in trans (in
3D) by introducing the spreading probability Pc(i, j). We indeed aim at investigating the
influence of 3D organization on the local state dynamics and its interplay with the different
modes of spreading (painter-mode, boosted-painter, reader-writer). The local dynamics of
the state at each nucleosome i and in particular the M-state dynamics now relies on the
ability of every distant nucleosome j to spread the M-state mark (reader-writer mode) and
not only of the NN i− 1 and i+ 1. The more M-state nucleosomes, nucleosome i is “in
contact” (at a spreading distance) with, the more stable its M-state is. Hence, for every
1D state configuration, and for every nucleosome i being in the M-state, another pertinent
observable is the 3D connected M-state domain or 3D “contact” M-state domain it belongs
to. Formally, such domain is formed by all M-state nucleosomes in contact with nucleosome
i in 3D.

In our model, there is no explicit simulation of 3D organization such that we cannot,
for every configuration, extract a contact domain associated to every nucleosome i by
explicitly enumerating the M-state nucleosomes in the 3D neighborhood/in contact. Still,
we can generate effective contact domains that are consistent with the mean-field Pc which
indeed represents how frequent pairs of nucleosome are in “effective contact”. For that,
we randomly generated for every 1D state configuration an undirected graph (Mnet) for
the corresponding set of M-state nucleosomes (Fig. 2.5): for all pairs (i, j) of (M-state)
nucleosomes in this set, an edge between them is inserted in Mnet with a probability Pc(i, j).
Then, we infer the disconnected subgraphs of Mnet that would represent the different clusters
of connected M-state nucleosomes, i.e., the different effective contact domains associated
with the 1D state configuration. Finally, for each node/nucleosome i, we compute the size
of the “contact” domain it belongs to. This provides a measure of M-state contact domain at
the “single cell level”.

In the reader-writer mode, an M-state nucleosome may influence a U-state nucleosome
via Pc. Thus, to behave coherently, a genomic region may not necessarily need to have all
nucleosomes in the M-state, but rather that all M-states belong to the same graph and that
all U-states can be reached via Pc(i, j) and are connected to such network. To quantify this,
for each configuration, we consider the largest M-state subgraph Mnet∗ in Mnet . For each
U-state nucleosome i, random links with any M-state nucleosome j of Mnet∗ are generated
with probability Pc(i, j). i is added to Mnet∗ if it has been linked to at least two M-state
nodes of Mnet∗ (Fig. 2.5, Fig. 2.17C). The average size of such extended contact domain
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Fig. 2.5 (A) Two examples of the epigenomic state inside the region of interest (blue:
M-state; yellow: U-state). Simulations were performed with k/k0 = 1, ε = 0.6, Pc(i, j) =
1/|i− j|, and (i) ∆ = 0.2 and (ii) ∆ = 0.0. (B) For each example in (A), we plot one possible
realization of the contact graph (Mnet). In (i), all the M-state nodes are connected inside
one subgraph of size 59. In (ii), there are multiple disconnected M-state subgraphs, the
largest one being of size 10. (C) For the largest subgraph shown in (B), we plot one possible
realization of an extended domain Mnet∗ including U-state nucleosomes. The blue nodes
form the (modified) contact domain and the yellow nodes are unmodified nucleosomes in
close proximity in 3D to the nucleosomes in largest M-state network Mnet(∗). The extended
domain size (total number of nodes) is (i) 198 and (ii) 27 in the two different cases (it is
to be noted that the 3D extended domains illustrated in (i) and (ii) can be compared to 1D
domains discussed in Fig. 2.4 blue and green curves respectively, elucidating how significant
3D genome organization is in the process of M-state spreading).
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Fig. 2.6 Nucleosome state correlation in the compact domain (lower part) and looping
(upper part) cases in the reader-writer mode (parameters:k/k0 = 1, ε = 0.6) at the critical
value ∆c = 1.2 for contact domain and ∆ = 0.3 for the loop case.

can thus be considered analogous to a percolation parameter [122], indicative of the extent
of M-state spreading in the region.

The “reader-writer” mode coupled to spreading in trans, leads to a phase transition
from a weakly modified state (M ∼ 0) to a fully modified state (M ∼ 1) when increasing
recruitment strength ∆. To better capture how 3D drives this transition, it might be instructive
to consider the evolution of the average size of extended contact domain (as defined before)
as an observable (rather than M). This characterization actually relates to the well known
percolation theory1. In our system, network nodes are the the nucleosomes, links correspond
to the effective 3D connections between pairs of nucleosomes (obtained from Pc(i, j)) and
clusters are the contact domains.

Nucleosome state correlations

To compute the spatial (genomic) correlations between nucleosome states, we divide the
genomic region into 40 bins of 5 nucleosomes. In one configuration, these bins are thus
characterized by an M-state ranging from 0 to 5. Nucleosome state correlation matrix
shown in Fig. 2.6, 2.10, 2.13, 2.15C represents the Pearson correlation between the M-

1In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes
or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the
network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters.
Cit. Percolation theory-Wikipedia
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Fig. 2.7 Enzyme limitation. (A) Scheme of the enzyme limitation model. A modified
nucleosome (M) can be in one of the two states: HME-free and HME-bound (E). The
switching rate between these states is driven by the HME binding rate kb and the corre-
sponding unbinding rate ku. We assume that the propensity to switch to the unmodified
state U is similar in M or E states (rEU = rMU ). U-state is assumed to be HME-free. (B)
Probability P(E) to be in the E-state for a modified nucleosome (Eq.2.11) as a function
of the proportion of modified nucleosomes in the region NM/n, for Ntot

e −∑ j ρs( j) = 1000
(black), = 100 (red) and = 10 (blue) and kb/ku = 1 (full lines) and = 0.01 (dashed lines).

states computed for each pair of nucleosomes over all the configurations extracted from the
simulations.

2.2.5 Enzyme limitation model

In the model described previously, we assumed that the concentration of HME is large
enough to not have to consider the depletion of the pool of freely-diffusing HMEs (that
impacts the sequence- and state-specific recruitment strength) by bound HMEs. Here, we
consider a scenario where the number of enzymes is actually limited (Fig.2.7A).

In this model, the modified state can recruit HMEs explicitly and thus may switch
between an enzyme-free state M and an enzyme-bound state E, the transition rates being
dependent on the binding-unbinding kinetics of the enzyme kb,ku (Fig. 2.7A). Enzyme
bound state has the ability to propagate modifications to neighboring nucleosomes in 3D.
Assuming fast binding-unbinding enzyme kinetics, we can actually simplify the formalism
into a two - state system. Indeed, we can write kbNe(1−P(E)) = kuP(E) with P(E) the
probability for a modified state to be in the E state, Ne = (Ntot

e −∑ j ρs( j)−∑ j δ j,E) the
current number of unbound enzymes where Ntot

e is the total number of HMEs, ∑ j ρs( j)
is the number of sequence-specifically bound enzymes and ∑ j δ j,E the number of HMEs
bound to M-states. By approximating ∑ j δ j,E ≈

[
∑ j δ j,M/E

]
P(E) the following expression
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is obtained for P(E):

P(E) =

[
2NM/(Ntot

e −∑
j

ρs( j))

]−1[
1+

NM

Ntot
e −∑ j ρs( j)

+
ku

kb(Ntot
e −∑ j ρs( j))

−

((1+
NM

Ntot
e −∑ j ρs( j)

+
ku

kb(Ntot
e −∑ j ρs( j))

)2 − 4NM

Ntot
e −∑ j ρs( j)

)1/2
]

(2.11)

with NM = ∑ j δ j,M/E the current total number of modified (M and E) states nucleosome in
the region.

In the two-state formalism developed above, P(E) is then used to re-normalize the
state-dependent term in Eq. 2.2 to have accounted for enzyme limitation in the model. In
this case, the modified state represents a lump state consisting of the M-state and the enzyme
bound state E and such system is equivalent to our simple model (Eq. 2.2) but by replacing
the state-dependent parameter ∆ by P(E) the probability that a HME is bound to a modified
nucleosome. P(E) explicitly depends on Ntot

e , the total number of HMEs, kb and ku the
binding and unbinding rates (Fig.2.7B). In the limit of a non-limiting number of enzymes
(Ntot

e ≫ 1), P(E) is almost constant with P(E) ≈ kbNtot
e /(ku + kbNtot

e ) ≡ ∆. For unstable
enzymes (kb/ku ≪ 1), P(E) is less sensitive to fluctuations in NM. In the rest, to simplify,
we fix kb/ku = 1.

2.2.6 Transcription dynamics

Assimilating the modified state M to a silencing state, we assume that the instantaneous
transcription rate α of a gene localized inside the region of interest is negatively impacted by
the current proportion of M-state nucleosomes inside the promoter region. More precisely,
we use the cooperative switch model of transcription (Fig. 2.8), proposed by Zerihun et
al.[23].

α(M) = α0
tanh((M−M∗

)/d)− tanh((−1−M∗
)/d)

tanh((1−M∗
)/d)− tanh(−1−M∗

)/d)
+α1 (2.12)

where α0 +α1 is the maximal transcription rate, α1 is the minimal rate (leaky transcription).
M = (1/L)∑δi,M, the current proportion of modified state in a L nucleosome-wide promoter
region. M∗ is the critical value of modification above which the gene is repressed and d
defines the sharpness of the transition between activation and repression.

Gene expression dynamics is simulated along with the chromatin state dynamics
({rUM(i),rMU(i)}) within the same Gillespie simulations by considering, the transcrip-
tion of mRNA molecules at rate α (Eq. 2.12), their degradation at rate β , their translation
into proteins at rate Γ, the degradation of proteins at rate Ω and the maturation of proteins



46 Painters in chromatin: epigenome regulation and memory

Fig. 2.8 Cooperative switch model: Transcription rate as a function of M state proportion
(M = 1

L ∑δi,M, Eq.2.12) with M∗
= 0.15 (L= 5), α0 = 1 min−1, α1 = 0.2 min−1 for different

steepness d.

at rate µ [124]. In Fig. 2.25, we fix n = 5, L = 5, α0 = 1 min−1, α1 = 0.2α0, d = 0.05,
M∗

= 0.15, β = 0.1α0, Γ = α0, Ω = 0.3α0 and µ = 0.1α0.

2.2.7 Polymer simulations

To estimate Pc in the cases of a central, strongly-self-interacting domain of nine nucleosomes
and of a long-range loop between the painter region and a distal region, we perform
simulations of a simple, isolated self-avoiding polymer (composed by 201 beads of diameter
10 nm) using the lattice kinetic Monte-Carlo model developed in [90] (also detailed in
Chapter 3). To simulate the single 3D compact domain (Fig. 2.2 lower part), we use a
self-attraction of −1kT between the nine nucleosomes surrounding the painter region. The
same framework is used for the looping case (Fig. 2.2 upper part) with attractive interaction
(−1kT ) between monomers of the painter region (positions: [−2 : 2]) and monomers at
positions [48 : 52]. To obtain the Pc(i, j) matrix in each case, we simulate 128 independent
trajectories by first letting the system to equilibrate during 9∗107 Monte-Carlo time Step
(MCS) before taking measurements every 105 MCS. From the ensemble of configurations,
we thus estimate the contact probability Pc(i, j) between any pairs of monomers as the
probability that the relative distance between i and j is less than 40nm.
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Fig. 2.9 (Left,Center) Average experimental Chip-seq profiles around DNA double strand
breaks (DSB) of ATM kinase enzyme (left) and the average profile of H2A.X phosphory-
lation (center). The clear peaked ATM signal suggests that the enzyme is localized at the
break, while phosphorylation extends over Mbps. (Right) Example of Chip-seq profiles
around specific DSB in parallel with the 4C signal obtained from a point-of-view centered
around the DSB. Adapted from [120].

2.2.8 Analysis of experimental data

In Fig. 2.26A, the average experimental profile S(i) of H2A.X phosphorylation in human
cells around double strand breaks is extracted from Arnould et al. [120] (Fig.2.9). We fit the
experimental data by the chromatin state model in the painter mode (r = ∆ = 0) with one
painter (ATM kinase) at position 0 (see Fig. 2.9,left) for a ±1Mbp-region around the break by
using Eq. 2.7 and assuming that S(i) = AP(Mi)+B with A and B two constants. Parameter
inference is done by minimizing the L2-distance between predictions and experiments.

Similarly, in Fig. 2.26B, the average density of H3K9me3 modifications flanking a
transposable element in mESC cells is obtained from Robollo et al. [125]. Fit to experimental
data using Eq. 2.7 is performed for a 10kbp-region with a centered painter region of size 7
nucleosomes corresponding to 1kbp transposable element. Parameter inference is done by
minimizing the L2-distance between predictions and experiments.

In Fig. 2.26C the distribution of fluorescence of the reporter gene as a function of
time and the corresponding fractions of “OFF” cells are extracted from Ragunathan et
al. [10] for different strains. Modeling of the system is performed using the chromatin
state+transcription model (see above) with k = 0.05, ε = 0.6, L = 5, α0 = 1, α1 = 0.2α0,
d = 0.05, M∗

= 0.1, β = 0.1α0 (in min−1) and the same parameters for protein dynamics
as above. A scaling is applied to convert the number of proteins p into a fluorescence level
F (F = p+C with C = 380). The fraction of OFF cells is defined by the fraction of cells
whose fluorescence is below 530 as defined experimentally [10]. The extracted experimental
fluorescence at 6 hours is not aligned with the fluorescence peak observed at other time
points. Fit to experimental data is performed by minimizing χ2 = ∑ti[(OFFpred(ti)−
OFFexp(ti))/OFFexp(ti)]2, where OFFpred(ti) is the predicted fraction of OFF cells at time
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ti and OFFexp(ti) the corresponding experimental observation, using a simple grid-search
algorithm to scan parameters (Fig. 2.28).

2.3 Results

2.3.1 A generic model of epigenomic regulation

To investigate in detail the main mechanisms driving epigenomic regulation, we have
developed a simple generic two-state model (Fig. 2.1A) where the local chromatin state can
fluctuate between an unmodified, neutral state U and a modified state M that may correspond
to an active (e.g. H3K4me3 or H3K27ac) or repressive (e.g. H3K27me3 or H3K9me2/3)
state. We model chromatin as a unidimensional string of nucleosomes, each nucleosome
being in state U or M. We consider a ∼40-kbp-long genomic domain (201 nucleosomes), a
size that typically encompasses epigenetically-regulated regions like transposable elements
[126], gene promoters and enhancers, the Mating type locus or subtelomeres in yeast [127].

The stochastic dynamics of the state is driven by histone-modifying enzymes (HMEs)
that deposit (“writers”, transition from U to M) or remove (“erasers”, from M to U) specific
histone modifications [5, 10, 16]. For example, PRC2 via its methyltransferase subunits
EZH1 or EZH2 catalyzes the methylation of H3K27 [2, 128]. Our model integrates the
key mechanisms acting on HME recruitment or activity, focusing on “writer" enzymes and
lumping all the processes participating in histone mark removal into one effective turnover
rate k0 (see 2.2). Briefly (Fig. 2.1B), we have delineated the chromatin association of HMEs
into sequence- and state-specific contributions: (a) writers, in association with DNA-binding
proteins, may localize around specific genomic location with probability ρs, or (b) HME
may be recruited to M-state nucleosomes with efficiency ∆. Recruited HMEs at position i
can then write the epigenetic mark on-site with a rate k (action in cis) but may also spread it
to a distal nucleosome j with a rate (εk)Pc(i, j) (action in trans) [15], where Pc(i, j) accounts
for the capacity of two nucleosomes to interact and may depend on the exact spreading
mechanism (see 2.2). In the following, we consider that bound HMEs may catalyze reaction
in their 3D neighborhood, as evidenced experimentally for several epigenetic systems
including H3K27 methylation [15, 135], H3K9 methylation [129], γH2AX phosphorylation
around DNA double strand breaks [130] and Pc(i, j) is thus defined as the average 3D contact
frequency between two genomic regions. HME enzymatic activity may be also boosted
by allostery by a factor r if bound to a M-state nucleosome [17, 128, 131]. State-specific
effects (recruitment and allosteric boost) are the so-called reader-writer mechanisms that are
thought to be crucial for the establishment and maintenance of many epigenomic states [16].
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In the following sections, we will systematically dissect the role of sequence-specific
recruitment, reader-writer processes and spreading probability (Pc(i, j)) in epigenetic regu-
lation using extensive simulations of our generic two-state model.

2.3.2 Spreading by sequence-dependent recruitment of enzymes: the
“painter" mode

We first investigate the contribution of a simple mode of spreading where enzymes bind
only to specific genomic locations and then may spread epigenetic marks in the 3D vicinity,
in absence of reader-writer mechanisms. In this case, HMEs can be considered as “painters"
that sit at specific places along the genome and “paint" the surrounding chromatin with a
given modification. As sequence-dependent recruitment of enzymes is essential for de novo
establishment of epigenetic domains [13, 132] and as many writers do not carry a “reader”
subunit (that may drive state-dependent effects), such mode of regulation, hereafter called
the “painter" mode, is likely to be a major way of epigenetic spreading.

To illustrate this model, we consider a simple case where painters are only recruited
to a single 1kbp-long locus located in the middle of the 40kbp-long region (yellow area
in Fig. 2.10A). In this situation, the probability P(M) to have a modified nucleosome at
a given position can be derived analytically (see Eq. 2.8) and only depends on the ratio
(k/k0) between the cis-spreading rate k and the turnover rate k0 and on the ratio ε between
the trans- and cis-activities (Fig. 2.10A,B). For all positions, we observe that P(M) is a
gradually increasing function of both parameters (Fig. 2.10B, Fig. 2.12). In the limit of very
low trans-efficiency (ε ≈ 0), modified states are essentially confined within the recruitment
region due to the remaining on-site writing activity. For larger ε values, P(M) is peaked at
the painter region and decays at large genomic distances. The stronger ε and k/k0, the wider
the peak in P(M) profiles and thus longer the range of spreading of the M-state (Fig. 2.10A).

Actually, the observed decay of P(M) outside the recruitment zone is translating the
decay of contact probability Pc with the painters bound to recruitment zone. More generally,
in the limit of low contact probability or low spreading efficiency ((k/k0)Pcε ≪ 1), P(M)

is directly proportional to the spreading probability Pc (see Eq. 2.8) which, in our case, is
taken to be ∝ 1/sγ with s, the genomic distance to the painter region and γ = 1 (Fig. 2.11).
This illustrates the direct relationship between the local 3D organization and the profiles of
epigenomic marks around recruitment sites [134].

In the painter mode, the local chromatin state only depends on the position of the bound
painters and does not feedback on the recruitment of HMEs or on their activity. This lack
of cooperativity leads to the absence of correlation between the nucleosome states at two
different positions along the region (Fig. 2.10C). To quantify the efficiency of the spreading
mechanism and its capacity at the single-cell level, to form more or less expanded, coherent
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Fig. 2.10 Sequence-specific recruitment - Painter mode : (A) Virtual Chip-seq profiles of
the M-state. Probability P(M) to be modified as a function of the position around the 5
nucleosomes-long region where HMEs are recruited (yellow region) for different spreading
efficiency ε and painter activity k/k0. (B) Average probability Pp(M) of the M-state within
the recruitment region as a function of ε and k/k0. (C) Spatial correlation matrix between
the nucleosome state at two positions (see 2.2.4) for ε = 0.6 and k/k0 = 1 (lower part) or
= 2 (upper part). (D) Average M-state contact domain size as a function of the nucleosome
position for different ε and k/k0 values.



2.3 Results 51

Fig. 2.11 Virtual Chip-seq profiles of the M-state as a function of the exponent γ in the
painter mode. We show how chromatin compaction affects the process of spreading of M-
state. A more compact chromatin region (lower γ-values) leads to more expanded profiles.

M-state domain, we estimate how nucleosomes in the M-state are effectively ’colocalized’
in space. For each configuration and each M-state nucleosome, we compute the number
of other M-state nucleosomes present in the same 3D contact domain (see Sec. 2.2.4).
Fig. 2.10D shows that, on average, M-state nucleosomes are isolated from each other and
only form part of small domains except around the painter region.

2.3.3 State-dependent enzymatic activity: the “boosted-painter” mode

In some systems such as Polycomb regulation (associated with the H3K27me3 modified
state), it has been observed that the activity of the writers can be “boosted” by the presence
of pre-existing modifications [17, 128, 131, 135, 136]. For example, the binding of the
Polycomb writer PRC2 to H3K27me3 marked nucleosomes, triggers a boost in methyltrans-
ferase activity of its subunit EZH2 by allostery, via its other subunit EED. In our theoretical
framework, this effect can be formalized by an increase in the writing rate of HMEs bound
to a modified nucleosome via a multiplicative factor r > 1. For example, for mammalian
PRC2, in vitro experiments suggested an allosteric boost of r ≲ 10 fold in presence of
H3K27me3 peptides [17, 136].

In Fig. 2.13, we characterize the impact of this boost on the simple painter mode
described above (stably bound writers at a specific 1kbp-long region), still neglecting
state-specific recruitment of HMEs (∆ = 0). As shown in Fig. 2.13A, a weak ε value that
essentially confines the M-state to the painter region in the simple painter mode (r = 0,
green line), can be compensated by a strong boost term (r = 20, black line) with a significant
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Fig. 2.12 Painter mode: the transition from low to high M-state as a function of the
spreading efficiency (ε) for different k/k0 and Pc(s) = 1/s. (A) Global average of P(M).
(B) Corresponding average value of P(M) within the painter region.

overall enhancement of P(M): the presence of modified nucleosomes in the painter region
due to the “on site”, cis-activity of painters (controlled by k/k0) boosts globally the cis- and
trans-spreading capacity of bound writers (via r) and favors further spreading inside and
outside the painter region.

To get a better understanding of this “boosted-painter” mode, we first focus on the painter
region by computing Pp(M), the average value of P(M) inside this region (Fig. 2.13B).
As expected, Pp(M) is an increasing function of k/k0 and r. However, contrary to the
simple painter mode (Fig. 2.12B), the transition from low to high M-state is a much sharper
sigmoid function. Such switch-like behavior suggests a phase transition [28] inside the
painter region that reflects the cooperative dynamics between writer-bound nucleosomes
due to the state-dependent boost. The sharpness and position of the transition depends
on k/k0 and ε . High values lead (i) to smoother transition as the simple painter mode is
significant enough to buffer the boost effect and (ii) to lower critical r-values as less boost is
required to get high enzymatic activity.

In this spreading mode, the chromatin states of nucleosomes localized outside the
painter region are now dynamically coupled to the ones inside, leading to positive spatial
correlations that are maximal for r-values around the critical boost (Fig. 2.13C). Such
coupling makes an exact analytical treatment of P(M) intractable. However, using a mean-
field approximation inside the painter region, we can derive an expression for Pp(M) (see
section 2.2.3, Fig. 2.14). Outside the painter region, P(M) is thus just as in the simple painter
mode but for a boosted trans-activity ε(1+ rPp(M)) (blue and black circles in Fig. 2.13A).
Hence, regarding the profile of epigenomic mark and of coherent 3D contact domain size
(Fig. 2.13D), the boosted painter mode is indistinguishable from a simple painter mode with
a greater “on site” and “off site” spreading rates (Blue dots, Fig. 2.13D). Only the presence
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Fig. 2.13 State-specific enzyme activity - boosted painter mode : (A) Virtual Chip-seq
profiles of the M-state. P(M) as a function of the position around the 5 nucleosomes-long
region where HMEs are recruited (yellow region) for different values of the boost factor r.
The scatter points are the analytical solution of the model. (B) Pp(M) within the recruitment
region as a function of r. (C) Spatial correlation matrix between the nucleosome state at
two positions for ε = 0.1, k/k0 = 0.5 and r = 20 (lower part) or = 100 (upper part). (D)
Average M-state contact domain size as a function of the nucleosome position with boost
r = 20 (full line). Dots correspond to a simple painter mode with an adjusted ε value to
reproduce the P(M) profile.
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Fig. 2.14 Comparison between the analytical solutions and simulations in the boosted-
painter mode. The different r values correspond to stable (r = 100) and highly fluctuating
(r = 20) situations in Fig. 2.13B. The triangles are analytical solutions obtained by using Pp

(from Eq. 2.10). The circles are obtained by using P∗
p to compute P(Mi) outside the painter

region which works better compared to the previous method.

of spatial correlations of nucleosome states with the recruitment region (Fig. 2.13C) might
be a clear signature of this mode of propagation.

2.3.4 State-specific recruitment of enzymes: the “reader-writer" mode

Some writer enzymes have been shown to be recruited in a state-dependent manner to
chromatin, having the ability to “read" (i.e. to be recruited at) a particular histone tail
modification and “write" the same on another nucleosome in the 3D vicinity [5, 10, 2, 3].
For example, the methyltransferase Clr4 (associated with heterochromatin formation and
H3K9me2/3 modifications in fission yeast) contains a chromodomain that may trigger
its recruitment by H3K9me2/3 [10]. In our framework, we introduce this “reader-writer”
mode by assuming that the probability of finding a HME bound at a M-state nucleosome is
enhanced by a factor ∆ (see Sec. 2.2). In the following part of this section, we focus on this
effect coupled to the simple painter mode neglecting possible state-specific boost (r = 0).

In that case, thanks to the long-range action of M-state bound writers, the state dynamics
of every nucleosome is coupled to the states of all the other nucleosomes which is well
illustrated in Fig. 2.15C by the global increase in spatial correlations. Such reader-writer
mode introduces a positive feedback in the global M-state dynamics which has been shown
to promote the formation and inheritance of extended, stable M state domains [19, 56].
As shown in Fig. 2.15A, when combined with the simple painter mode, state-specific



2.3 Results 55

Fig. 2.15 State-specific recruitment of enzyme - reader-writer mode: (A) Virtual Chip-seq
profiles of the M-state. P(M) as a function of the position around the 5 nucleosomes-
long region where HMEs are recruited (sequence specific) for different values of reader
recruitment strength ∆ (at the critical point ∆ = 0.2 and above = 0.4). (B) Average value
P(M) of P(M) inside the whole genomic region as a function of ε and ∆ (k/k0 = 1).
(C) Spatial correlation matrix between the nucleosome state at two positions for ε = 0.6,
k/k0 = 1 and ∆ = 0.2 (lower part) or = 0.4 (upper part). (D) Average M-state contact
domain size as a function of the nucleosome position for different ∆ values. Colors as in
(A).
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recruitment strongly modifies the spreading pattern by notably increasing M-state occurrence
away from painter region. In particular, we observe heavy tails for P(M) (black and blue
lines in Fig. 2.15A) that qualitatively differs from the typical 1/sγ contact decay observed
for the sole painter mode (red dotted curve in Fig. 2.15A). Such signature (heavy tails,
deviation from simple painter model) in experimental profiles of epigenomic marks may
thus be suggestive of a dominant reader-writer mechanism. In this regime, we also observe
that the reader-writer process facilitates the formation of expanded 3D M-state contact
domains away from the sequence-dependent recruitment region (fig. 2.15D) unlike the
simple and boosted painter modes.

To quantify the resulting global increase in P(M), we systematically compute P(M),
the average value of P(M) inside the whole genomic region (Fig. 2.15B). For a given
trans-spreading activity (ε), we observe a sharp transition when state-specific recruitment
efficiency (∆) augments: from a pure simple painter profile localized around the painter
region (P(M)≪ 0.5) to a globally modified state (P(M)≫ 0.5). As in the boosted-painter
mode, this also suggests a phase transition but here, it reflects the cooperative dynamics
between all nucleosomes of the region (see also next section). Around the critical ∆-value
(e.g. ∆c ≈ 0.2 for k/k0 = 1 and ε = 0.6), fluctuations in P(M) are maximal and lead to
high inter-nucleosome correlations (Fig. 2.15C), for instance when ∆ >> ∆c or ∆ << ∆c

inter-nucleosome correlation drops, see Fig. 2.16.

2.3.5 The spreading probability drives the percolation of the chromatin
landscape

A key element of the different writing modes investigated in the previous sections is the
capacity of recruited HMEs to spread an epigenetic signal [5, 10, 2, 3]. This property
depends on the spreading probability Pc(i, j) that captures the ability of two nucleosomes at
positions i, j to interact. In the previous sections, we assumed that Pc(i, j) = 1/| j− i|γ with
γ = 1, a generic scaling law accounting for a mechanism of spreading via 3D contacts as
already observed for some HMEs like Polycomb group proteins (H3K27 methylation) [15],
Clr4 methyltransferase (H3K9) [10], ATM kinase (γH2AX) [120] and characteristic of the
polymeric nature of chromatin [147]. In this section, we explore the role of the shape
of Pc(i, j) in epigenomic regulation. This shape may depend on the specific spreading
mechanism and on the experimental system or genomic region under study.

Here, we consider five alternative forms for Pc(i, j). (1) Two forms that still correspond
to a 3D contact spreading process but with contextualized, heterogeneous Pc(i, j) (Fig. 2.2):
one for a small 3D compact domain localized around the recruitment zone and another for
a region with a strong loop between the painter area and a locus 10kbp away, mimicking,
for example, a repressed MAT locus in yeasts and a promoter-enhancer loop in mam-
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Fig. 2.16 Correlation matrices between the nucleosome state at two positions along the
genomic region in the reader-writer mode, for ε = 0.6, k/k0 = 1 and ∆ = 0.1 (lower part)
and ∆ = 0.8 (upper part), Pc = 1/s. Reduced correlations are observed when ∆ is far from
the critical value (∆c ≈ 0.2 for such ε , k/k0 values)

mals, respectively. (2) A shape accounting for a spreading to only nearest-neighbor (NN)
nucleosomes that might be relevant in scenarios where an epigenomic state propagates uni-
dimensionally along the chromatin [143, 25, 170]. (3) A form compatible with an effective
contact spreading mechanism where HMEs recruited at a given position may diffuse in 3D
to nearby positions and thus impact the state of distal nucleosomes (Pc(i, j) = 1/| j− i|0.5).
(4) A scenario where two nucleosomes may influence each other only if they have been
placed in very close proximity (Pc(i, j) = e−| j−i|/s0) by loop extruding factors (eg, cohesin
or condensin) that are molecular motors translocating along the chromatin and implicated in
TAD formation in mammals [117–120] .

In the simple painter mode (Fig. 2.17, ∆ = 0), spreading from the central recruitment
zone is limited by the shape of Pc(i, j): long-range effective interactions like in the diffusion
scenario lead to more extended P(M) profiles compared to localized spreading as the NN
case. In the 3D loop case, the M-state is able to stably propagate distally thanks to enriched
3D contacts with the painter area of sequence-specific recruitment.

In the reader-writer mode (Fig. 2.17, ∆ > 0), as observed in the previous section, state-
specific recruitment allows a facilitated spreading and modifies the shape of P(M). For
a given reader-writer strength ∆, scenarios with longer-range Pc(i, j) are more impacted.
However, for all scenarios, it exists a critical ∆ value (∆c) above which the M-state spreads
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Fig. 2.17 Spreading Probability and P(M). Virtual Chip-seq profiles of the M-state. P(M) as
a function of the position around the 5 nucleosomes-long region where HMEs are recruited
(yellow) for different Pc(i, j) and for k/k0 = 1, ε = 0.6 with ∆ = 0 (painter mode, Blue) and
∆ > 0 (reader-writer mode, Red and Green). (1)Pc(i, j) corresponding to a compact domain
and loop (dotted lines). (2) Nearest neighbor spreading. (3) Diffusion limited spreading. (4)
Pc(i, j) driven by loop extrusion mechanism.
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Fig. 2.18 Spreading probability and percolation. (A) Average value (P(M)) of P(M) inside
the whole genomic region in the reader-writer mode as a function of ∆ (k/k0 = 1, ε = 0.6)
for different Pc(i, j). (B) Average size of the most extended generalized domain as a function
of ∆ for three situations described in (A).

over the whole region (Fig. 2.18A), more local Pc(i, j) shapes (eg, NN or compact domain
cases) exhibiting larger ∆c values. Such transition driven by the reader-writer capacity of
HMEs resembles actually to a generic percolation transition [28] where the system starts
to be fully connected (or percolated) [122]. In our context, it corresponds to a situation
where all the M-state nucleosomes form a unique expanded contact domain from which
all the remaining U-state nucleosomes can be reached via Pc(i, j) to allow spreading (see
section 2.2.4, Fig. 2.5). To quantify this, for each configuration, we look how the most
expanded M-state contact domain is connected to the unmodified regions. Fig. 2.18B shows
the evolution of the average size of such extended generalized contact domains (containing
U- and M-state nucleosomes) for three different scenarios. The global epigenomic state
becomes percolated when this size approaches 200, meaning that the extended domain
covers the whole genomic region (Fig. 2.19). Interestingly, a full overall M-state (P(M)∼ 1)
is not required to reach percolation, in particular for long-range spreading mechanism. For
example, in the Pc(i, j) = 1/| j− i| case, percolation transition occurs at ∆c ≈ 0.2 where
P(M)≈ 0.3 (Fig. 2.19).

2.3.6 The reader-writer mode may lead to epigenetic memory

Having characterized how the various writing modes establish typical epigenomic pro-
files from the painter region, we now investigate how these different modes impact the
“epigenetic memory” of these states. By definition, epigenetic memory stands for the abil-
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Fig. 2.19 Illustration of percolation of M-state. (A) For four different ∆ values when
Pc(s) = 1/s (brown curves in Fig. 2.18), most extended generalized domains observed in
different configurations (100 examples) are stacked together to show cell to cell variability
(all nucleosomes belonging to a domain are colored in blue). (B) Same as (A) but for loop
extrusion case, Pc(s) = e−s/s0 . (C) Same as (A) but for loop case (Fig. 2.2).

Fig. 2.20 Epigenetic memory: (A) Normalized time-evolution of P(M) after the unbinding
of sequence recruited painters at t = 0 for different values of ∆ and with k/k0 = 1,ε = 0.6.
Inset shows the non-normalized evolution. (B) Memory in the booster-painter mode. To
investigate epigenetic memory, we study the evolution of P(M) after the sequence dependent
HMEs unbind at t = 0. Even though boosted-painter mode has state-dependence within the
painter region, once the sequence-dependent HMEs unbind there is no more cooperativity
hence, the decay of P(M) is the same for different boost factor r values unlike in the
reader-writer mode where there is a strong dependency in the parameter ∆ (see (A)).
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ity of maintaining a given transcriptional or chromatin state in the absence of the initial,
sequence-dependent stimulus (e.g. transcription factors or HMEs).

For such purpose, focusing on a 3D spreading mechanism (Pc(i, j) = 1/| j − i|), we
follow the dynamics of the mean genomic M-state M ≡ 1/n∑δ (i,M), once the sequence-
specific recruited painters have been released (for examples of individual trajectories, see
Fig. 2.21A). We then consider the time evolution of the ensemble-average P(M) of M
(P(M) = ⟨M⟩) for different parameters (Fig. 2.20A). To be more general, we also track the
time evolution P(M)t of ⟨M⟩ in absence of recruitment but for arbitrary imposed initial state
with fixed P(M)t=0 (Fig. 2.21B).

In the simple painter mode (∆ = 0, green line in Fig. 2.20A and left panel in Fig. 2.21B),
the M-state relaxes very quickly to the U state whatever the initial state. Indeed, in absence
of recruited writers in the painter area, only transitions from M to U are possible and the
global state decays exponentially with a characteristic time 1/k0. Similar behaviors are
observed in the booster-painter mode (Fig. 2.20B).

In the reader-writer mode, for low ∆ values, the decay remains fast and exponential
(∆ = 0.1 in Fig. 2.20A, Fig. 2.21A) with a relaxation time that increases with ∆ (or-
ange dots in Fig. 2.21C,D). Above a critical value, state-dependent recruitment is strong
enough to stably maintain a M-state after HMEs unbind from the painter region (∆ = 0.3 in
Fig. 2.20A, Fig. 2.21A) and to keep the memory of an initial (even small) M-state enrich-
ment (Fig. 2.21B). The initial profile along the genome is lost and gives rise to an uniform
spreading of the M-state (Fig. 2.22). In this case, even though the M-state is maintained, it
is not correlated with the state at t = 0. In general, time correlation of M-state is quickly lost
which means the reader-writer mechanism would be able to maintain the level of repression
but not exactly the shape of the profile.

Interestingly, for ∆-values just below this critical point, the relaxation dynamics is better
described by a two time-scale exponential (Fig. 2.21D) kinetics (∆ = 0.2 in Fig. 2.20A,
Fig. 2.21): a fast initial decay following the trend of the low-∆ regime (blue dots in
Fig. 2.21C) and a slow decay at larger time (inset in Fig. 2.21C). In this regime, random
M →U conversions dominate but the state-dependent recruitment allows self-maintenance
of a coherent M-state for long time periods before reaching a global, absorbing U-state
(M = 0) from which the system cannot escape as also observed by [28]. Such maintenance
time-period is very stochastic (∆ = 0.2 in Fig. 2.20C) while, in the low and high ∆-regimes,
convergence to steady-state behaves quite uniformly.
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Fig. 2.21 (A) Examples of “single cell” time-evolution of the M state decay (∑δi,M/201
vs t) for different values of ∆. (B) P(M)t , the probability to be modified at a time t after
the unbinding of painters, as a function of the imposed initial state with fixed P(M)t=0,
for different values of ∆. (C) Fast (main) and slow (inset) relaxation times as a function
of ∆ obtained by fitting the curve in (A) by one or two time-scale exponential decay (see
(D)). The fast time scales as ≈ ∆4. (D) Decay of the average M-state value in the region
shown for different ∆ values in log-lin scale (i,iii) or log-log scale (ii,iv). Lines represent
simulation results, dots correspond to the fit. (i,ii) For ∆ << ∆c = 0.2, the decay is purely
exponential. (ii) (i) in log-log scale. (iii,iv) For ∆ ⩽ ∆c the decay can be fitted by two time
scale exponentials: a fast exponential decay at small time for t ≪ t∗ ( P(M) = D0e−t/τ0)
and a much slower exponential at large time for t ≫ t∗ (P(M) = D1e−t/τ1 with τ1 > τ0).
Exact fit values are shown in the plot.
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Fig. 2.22 Time evolution of P(M) after the unbinding of the sequence-dependent painters at
t = 0 (dotted black lines) for different values of ∆ with k/k0 = 1 and ε = 0.6 as shown in
Fig. 2.20A inset. Here ∀∆, the final state is a uniform state with no sequence-dependency.

2.3.7 Maintenance of a confined chromatin state requires chromatin
compaction and enzyme titration

In the previous section, we showed that epigenetic memory was possible for strong-enough
state-specific recruitment. However, in this regime of parameter, the spreading of the M-state
along the genome is not constrained [68], leading to unconfined memory [25] (Fig. 2.24A).
Of course, experimentally, epigenomic domains are confined to specific regions in the
genome and do not spread ubiquitously [10, 16]. In this section, we investigate what could
be the minimal changes to our model to support confined memory and the maintenance of a
localized M-state even in absence of sequence-specific recruitment.

Our simple epigenomic model assume implicitly that the number of HMEs is not limiting
in the system. Recent quantitative proteomics experiments however suggest that such
assumption might not be satisfied for some epigenomic marks like the Polycomb/H3K27me3
system during fly embryogenesis [137]. Therefore, a mechanism that could possibly
restrict the spreading of M-state might be enzyme limitation. In the model, under the
approximation of fast binding-unbinding enzyme kinetics at M-state nucleosomes, it is
possible to account for enzyme titration via an effective ∆ parameter that depends explicitly
on the total number of HMEs Ntot

e and on the current fraction of bound HMEs, high fractions
being associated with low effective state-dependent recruitment. Limiting the number of
HMEs thus reduces the spreading efficiency (Fig. 2.23A). For a constant kb/ku = 1, P(M)
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Fig. 2.23 Enzyme limitation. (A) Virtual Chip-seq profiles of the M-state (HME
bound+HME-free modified state) with sequence-dependent recruitment at the painter region
for different total number of HMEs Ntot

e with k/k0 = 2, ε = 0.9 and ku/kb = 1. Pc(s) = 1/s.
(B) The same profiles as in (A) but in absence of sequence-dependent recruitment, showing
the unconfined uniform spreading of the M-state for all Ntot values. Pc(s) = 1/s. (C)
Variation of P(M) as a function of Ntot

e in absence of sequence-dependent recruitment.
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Fig. 2.24 Confined epigenetic memory. (A) Evolution of P(M) in the enzyme non-limiting
regime Ntot = 45. The initial configuration is a domain of modified states around nucleosome
position 0 and there is no sequence-specific recruitment for t > 0. k/k0 = 2,ε = 0.9. (B)
As in (A) but with enzyme limitation, Ntot

e = 9, kb/ku = 1 (C) As in (A) but with 3D
compaction of the domain (Fig. 2.2 shows the corresponding contact probability matrix), in
large Ntot

e = 45 limit. (D) As in (A) but with enzyme limitation (Ntot
e = 9, kb/ku = 1) and

3D compaction. Modified state domain remains confined even under replicative dilution
(Tcyc = 55/k0, dashed black line).
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in a region is dependent on the total number of HMEs. In the presence of sequence-
dependent recruitment, enzyme limitation can confine the domains around the painter region
(Fig. 2.23A) while in the absence of sequence dependent recruitment, we have a uniform
steady state profile of M-state whose absolute value is dependent on Ntot

e (Fig. 2.23B,C).
However in ranges of parameters that support epigenetic memory, the long-range-spreading
activity of bound HMEs still lead to unconfined epigenomic domains (Fig. 2.24B).

As long-range spreading via the trans-activity of HMEs seems to promote unconfined
memory, another possible mechanism to restrict spreading might thus be to modulate the 3D
communication between loci [66]. Some epigenomic marks are associated with architectural
proteins that may indeed impact chromatin organization. For example, PRC1 and HP1
that can bind H3K27me3- and H3K9me2/3-marked chromatin respectively, are known to
promote chromatin compaction in vitro [138, 139] and in vivo [140–142]. To explore how
3D compaction of domains would influence epigenetic memory, we introduce a nucleosome-
nucleosome contact probability Pc(i, j) that is consistent with the formation of a compact
domain around the painter region (see 2.2) with Pc inside the domain being stronger than
outside. In the limit of high Ntot

e (Fig. 2.24C), such 3D organization clearly facilitates the
maintenance of a stable M-state inside the compacted region even in absence of sequence
dependent stimulus, but exhibits “flooding” of the M-state outside this region with time
due to the residual spreading between nearest-neighbor sites. However, when we couple
3D compaction and enzyme limitation, the initial domain remains very stable with limited
flooding even under strong perturbation like replication (Fig. 2.24D), suggesting that both
ingredients can lead to confined epigenetic memory.

2.3.8 Chromatin state dynamics regulates transcriptional noise

Histone modifications are likely to play a role in the regulation of genome accessibility
thereby impacting transcriptional activity of genes [3]. To understand how gene expression
may be affected by the dynamics of chromatin states, we consider a simple toy model
where the transcriptional state of a gene depends on the current mean M-state proportion
M = 1

L ∑δi,M over a 1kbp-wide (L = 5) region that would represent the gene promoter. We
consider in this section that the state M is a repressive state (e.g. constitutive heterochromatin
via H3K9me2/3) and that the transcription rate is inhibited by the presence of modified
nucleosomes at the promoter (M ≥ M∗) in a switch-like manner [23](see 2.2.6).

To only focus on the epigenetics-transcription relation, we consider a simple painter
mode (as in Fig. 2.10) with k/k0 = 2 and investigate the transcriptional properties of a
gene as a function of the proximity of its promoter to the painter region (Fig. 2.25). We
observe that the steady-state average number of mRNA per cell ⟨mRNA⟩ for this gene is
larger for more distant promoters (Fig. 2.25C), qualitatively mirroring the decrease in P(M)
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Fig. 2.25 Chromatin state dynamics and transcription: (A) P(M) profile for k/k0 = 2,ε = 0.6.
Black dotted line indicates the value of P(M) at the transcriptional switch (P(M) = M∗,
see Fig. 2.8). (B) Average mRNA count for the two different epigenomic dynamics as a
function of the distance of the gene from the painter region. (C) The coefficient of variation
of the mRNA count for the same parameters as in (C). The dashed line shows 1/

√
⟨mRNA⟩

with ⟨mRNA⟩ taken from panel (B).
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(Fig. 2.25A). Interestingly, for the same relative k/k0 value (and thus the same average
M-state profile, see Eq. 2.7, Fig. 2.25A), the average transcription level depends on the
absolute values of k and k0 that control the kinetics of M state dynamics, comparatively to
the transcription dynamics that is itself driven by the transcription and mRNA degradation
rates (see 2.2.6). We detect that slow epigenetic dynamics (red line in Fig. 2.25B) tend to
favor a slightly more repressed state compared to fast dynamics (blue line in Fig. 2.25B).

Such kinetic effect is more striking when considering the intrinsic stochastic fluctuations
of gene expression by estimating the coefficient of variation (CV) (Fig. 2.25C), defined as the
ratio between the standard deviation of the corresponding steady-state distribution of mRNA
number per cell and its average value, a high CV meaning a noisy, highly fluctuating gene.
For fast dynamics (blue line in Fig. 2.25D), relative fluctuations decrease with the distance
from the painter region. CV follows ∼ 1/

√
⟨mRNA⟩ (dashed blue line in Fig. 2.25C),

characteristic of the intrinsic transcriptional noise found in elementary gene expression
models [148]: lowly expressed gene being relatively more noisy. For slow dynamics (red
line in Fig. 2.25C), we instead observe a sharp increase up to a distance s∗ where fluctuations
become maximal, followed by a gradual decrease at larger distances; fluctuations remaining
always larger than in the fast dynamics case. Indeed, in our transcription rate model
(see 2.2.6), close to the transition point M∗, small variations of M result in large deviations
for the transcription rate. If the epigenetic dynamics is faster than mRNA production and
degradation rates, the transcription level cannot adjust to the rapid fluctuations of M(t)
that are filtered by the slow mRNA dynamics [149]. However, if the chromatin dynamics
is much slower, mRNA level adapts to the current, slowly fluctuating M-state. Hence
expression will stochastically switch between a repressed (M(t)> M∗) and expressed state
(M(t)< M∗) leading to large fluctuations of expression. The peak observed in CV in this
case thus translates the interplay between such ultra-sensitivity to epigenetic fluctuations
with the more standard dependence of the noise to ⟨mRNA⟩ (fast chromatin dynamics
case). Biologically, this strong propagation of epigenetic fluctations to the gene expression
level may be related to the well known variegation phenomenon where genes inserted
near heterochromatin domains may have variable transcriptional pattern, depending on the
distance of their insertion sites to the heterochromatin domains [150].

2.3.9 Applications to diverse biological contexts

We have studied systematically the behavior of our generic model of epigenomic regulation
and its consequences on epigenetic memory and transcription. In the following, we will
describe three applications of this framework to specific biological situations.
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Fig. 2.26 (A) Experimental phosphorylation profile (dots) around a DNA double strand
break [120] and the corresponding model prediction (i) S(i) = 0.58P(Mi)+0.11, (k/k0)ε =
1213 Pc(i, j) = 1/|i− j| (blue) (ii) S(i) = 0.85P(Mi), (k/k0)ε = 29.6, Pc(i, j) = 1/|i− j|0.5
(orange) (iii) S(i) = 0.9P(Mi)+ 0.2, (k/k0)ε = 1, Pc(i, j) = e−|i− j|/s0 , s0 = 1050 (green)
(B) Experimental H3K9me3 density (dots) flanking a transposable element in mouse ES
cells [125] and the corresponding model prediction S(i) = 10.75P(Mi)+0.1 (full line).

Phosphorylation of H2AX around double-stranded breaks

During our analysis of the simple painter mode (Fig. 2.10), we showed that there is a direct
relationship between the distribution of marks around the painter binding sites and the local
3D chromatin organization. This 3D↔1D relationship has been evidenced experimentally
in the context of DNA double-stranded breaks (DSB) in humans [120]. After a break had
occured, variant histones H2AX present in the chromatin are phosphorylated (the so-called
γH2AX mark) by the ATM kinase recruited at the DSB site. The correlative analysis of
the 4C and γH2AX Chip-seq signals around DSBs clearly reveal high similarities (Fig. 2.9,
right), suggesting that the spreading by painter mode is at work in that system. In Fig. 2.26A,
we extracted the average γH2AX profile observed around DSBs (red dots) from [120] that
extends over Mbps (Fig. 2.9, center). Using the analytical formula for a simple painter
model (Eq. 2.7) with a painter region localized at the DSB and Pc(s) ∼ 1/s the typical
average contact probability found in human cells [92], we were able to fit very well the
experimental data (blue line in Fig. 2.26A, L2-distance = 1.4 ∗ 10−4)(see 2.2.8). This
leads to one identifiable parameter (k/k0)ε = 1213. In the original article, Arnould et al.
suggested that the loop extrusion mechanism might be directly implicated in the spreading
mechanism [120]. To test this alternative hypothesis, we perform a similar inference using
the loop extrusion-like spreading probability (Pc(s) ∼ exp[−s/s0]) which leads to a less
precise fit even if the model has an additional parameter (processivity s0 ∼ 150−200kbp)
(green line in Fig. 2.26A, L2-distance= 5.1∗10−4). Note that the diffusion-like spreading
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mechanism (Pc(s)∼ 1/s0.5) is also inconsistent with the experimental data (orange line in
Fig. 2.26A, L2-distance= 9.0∗10−4). These results differ from a similar analysis performed
by Li et al. [143] neglecting turnover rate of the mark, suggesting that Tel1 (yeast homolog
of ATM) spreads phosphorylation around DSB via a loop extrusion-like mechanism. But
within our framework, the best prediction (minimum L2-distance) is given by the spreading-
by-3D-contact mechanism (Pc(i, j) = 1/| j− i|)).

Heterochromatin formation around retrotransposons

An entirely different system where the simple painter mode may also be operative is the
spreading of H3k9me2/3 modifications over few kbps around retrotransposons in mouse ES
cells by Setdb1 [125, 151], a lysine methyltransferase recruited by the KRAB–Zinc Finger
Protein KAP1 [152]. As in the previous example, we can fit the experimental Chip-seq
profiles (red dots in Fig. 2.26B) by a simple model with a painter zone corresponding to the
typical size range of a transposable element ∼ 1kbp [126] (blue line in Fig. 2.26B). In this
case, we found (k/k0)ε = 0.78. Note that, these predictions were done without invoking the
reader-writer mechanism which might be relevant in other heterochromatin contexts (see
below).

Compared to γH2AX, the spreading of H3K9me2/3 is much less efficient leading to
smaller domains (kbp- vs Mbp-wide). This may translate fundamental differences in the
spreading and turnover rates as histone methylation maintenance in mammalian cell lines
could be slow (∼ 10-20 hours) [91, 30] while establishment of γH2AX foci is much faster
(∼ 1-30 min) [153, 154].

Memory of heterochromatin in fission yeast

Finally, we apply our chromatin state dynamical model to quantitatively characterize the
stability of epigenetic memory for fission yeast heterochromatin. In Schizosaccharomyces
pombe, establishment of H3K9me2/3 domains is in part regulated by the balance between
the methyltransferase activity of Clr4, its state-dependent recruitment by H3K9me histones
and the demethylase-like action of Epe1 [10, 155]. In [10], a heterochromatin domain is
established via the sequence-specific recruitment of Clr4 at an ectopic locus containing a
fluorescent reporter gene, leading to the repression of the gene. Epigenetic memory of this
domain and involved mechanisms are then characterized by releasing sequence tethering
and by tracking the progressive re-activation of the gene as a function of time (full lines in
Fig. 2.29A). In particular, they considered four different strains: (i) TetR−Clr4− I,epe1+
with a mutated Clr4 (Clr4− I) with no reader-writer property and a normal demethylase-like
activity (epe1+), the model analogue being ∆ = 0,k0 = x; (ii) TetR−Clr4− I,epe1∆ same
as (i) but without demethylase-like activity (epe1∆) (model equivalent - ∆ = 0,k0 < x);
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Fig. 2.27 Scheme describing the experiment on engineered yeast to study heterochromatin
memory (Fig. 2.29A,B). Initially, the HMEs recruited at the target region establish re-
pression (repressed gene state; (blue) modified nucleosomes) and then subsequently, once
the HME unbinds, the gene expression is monitored over a period of 100 hours in the
four different mutants (see Fig. 2.29A,B). After the sequence-dependent painter unbinds,
all mutants gradually loose repression but at different rates (Fig. 2.29B) as the level of
methylated nucleosomes decreases. In some mutants where Clr4+ is present (red and
magenta, Fig. 2.29B), after removing the sequence-specific recruitment, the reader-writer
mechanism fights against this loss of repression by maintaining for some time a methylated
state modifications.

(iii) TetR−Clr4− I,Clr4+,epe1+ with wt-like Clr4 and Epe1 activities (∆ > 0,k0 = y);
and (iv) TetR−Clr4− I,Clr4+,epe1∆ as in (iii) but in epe1∆ background (∆ > 0,k0 < y).
They observed that memory of a repressed state was enhanced by the reader-writer module
of Clr4 and the absence of Epe1 (dots in Fig. 2.29B).

To rationalize these experiments with our quantitative framework, we simulate the
experimental memory assay like in Fig. 2.20 but for various values of ∆ and k0 and by
tracking the transcriptional activity of the region using the model described in Fig. 2.25.
More precisely, we follow the experimental protocol and monitor the time-evolution of the
distribution of fluorescence of the reporter gene within the cell population (Fig. 2.29A),
from which we can define the proportion of cells that are still repressed (“OFF”) by
heterochromatin (Fig. 2.29B). The predicted time-evolution of this proportion for each
scanned (∆, k0) value is then quantitatively compared to the experimental data obtained for
each of the four strains (Fig. 2.28). For strain (i), gene activation is fast (Fig. 2.27, black
dots in Fig. 2.29B) and data are compatible with a simple painter mode with high turnover
rate (k0 > 0.007 min−1, ∆ = 0) (Fig. 2.28A, and black line in Fig. 2.29B), consistent with
the presence of Epe1 and the absence of reader-writer recruitment which, we demonstrated
in Fig. 2.20, is essential for epigenetic memory. For strain (ii), the gene de-repression
is slower than in (i) (blue dots in Fig. 2.29B) but can still be well captured by a simple
painter mode (∆ = 0) (blue line in Fig. 2.29B) associated with decrease of k0 by at least
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Fig. 2.28 Phase diagram showing the χ2 value that quantifies the predictive power of
the model predictions relatively to the experimental data for each of the four mutants.
The region within the highlighted contour represents the region of the parameter space
with an acceptable fit (χ2 < 1). Star marks the best fitting parameters with respect to the
experimental constraints. These parameters are used in Fig. 2.29.
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Fig. 2.29 (A) Heterochromatin maintenance in fission yeast. (A) Distributions of fluores-
cence expressed from a reporter gene at specific time points after painter release at t = 0 for
different strains (experiments: dashed lines [10], model predictions: full lines). Brown and
green vertical lines mark the mean fluorescences in the OFF and ON states respectively. (B)
Experimentally-measured (dots) and predicted (full lines) time-evolution of the proportion
of OFF cells in the population for the various strains.

6 fold (Fig. 2.28B), consistent with absence of Epe1 in this strain and thus with less
turnover. In both backgrounds (iii)(epe1+) and (iv)(epe1∆), the reader-writer capacity of
Clr4 strongly enhances memory and slows down gene activation (red and purple dots in
Fig. 2.29B). This behavior can only be reproduced (red and purple lines in Fig. 2.29B) by
a reader-writer mode with ∆ = 0.004 (Fig. 2.28C,D). Interestingly, for strain (iv) where
memory is maximal, the model predicts that the biological system is in a parameter range
just below the critical regime of the reader-writer mode (like the blue line in Fig. 2.20A).
In this regime, the epigenetic state is long-lastly maintained until rapid removal of the
marks (∆ = 0.2 in Fig. 2.20C), leading to a stochastic switch in transcriptional activity
and bimodal distributions for protein levels (Fig. 2.29A, purple at t = 100h), as observed
experimentally [10].

Polycomb regulation in mESCs

In parallel to the development of the Painter model, a similar but much more detailed for-
malism to specifically address the regulation of Polycomb-target genes in mouse embryonic
stem cells was developed by Kapil Newar [30]. The formalism is briefly described below.

The Polycomb system via the methylation of the lysine 27 of histone H3 (H3K27) plays
central roles in the silencing of many lineage-specific genes during development. Recent
experimental evidence suggested that the recruitment of histone modifying enzymes like the
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Fig. 2.30 Model of Polycomb regulation in mESC. (A) Scheme of the mathematical model
describing the dynamics of the biochemical modifications of H3K27 thanks to the action
of several histone modifying enzymes. Recruited PRC2s has a boosted acitivity if bound
to trimethylated nucleosomes. (B) Experimental versus predicted Chip-Seq profiles of
H3K27 modifications around Polycomb-target genes. (C) Experimental versus predictions
cell-cycle dynamics of the modifications. Adapted from [30].
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Polycomb repressive complex 2 (PRC2) at specific sites and their spreading capacities from
these sites are key to the establishment and maintenance of a proper epigenomic landscape
around Polycomb-target genes. Here, to test whether such mechanisms, as a minimal set
of qualitative rules, are quantitatively compatible with data, we developed a mathematical
model that can predict the locus-specific distributions of H3K27 modifications (acetylation,
mono-, di- and trimethylation) knowing the distribution of HMEs like the methyltransferase
PRC2 or the demethylase UTX (Fig. 2.30A). Actually, the model is an extended version
of the "boosted-painter" mode where the trimethylation state locally boosts the activity of
sequence-recruited PRC2.

Within the biological context of mouse embryonic stem cells where lots of quantitative
data are available, our model showed very good agreement with experimental profiles of
H3K27 acetylation and methylation around Polycomb-target genes in wild-type and mutants
(Fig. 2.30B). In particular, we have demonstrated the key role of the reader-writer allosteric
module of PRC2 and of the competition between the binding of activating and repressing
enzymes in shaping the H3K27 landscape around transcriptional start sites. The predicted
dynamics of establishment and maintenance of the repressive trimethylated H3K27 state
suggest a slow accumulation, in perfect agreement with experiments (Fig. 2.30C).

2.4 Discussion and conclusion

In this work, we have developed a unified mathematical two-state model of epigenomic
regulation, integrating key mechanisms like reader-writer processes. Our simple framework
states that the establishment and maintenance of an epigenetic state results from the recruit-
ment and spreading activity of histone modifying enzymes (HMEs). Recruitment of HMEs
can be mediated by specific genomic sequences or by the local epigenomic state. Spreading
encompasses an on-site action of the HMEs and a long-range, trans activity modulated by
the local chromatin state.

In particular, we systematically studied three generic modes of regulation that reca-
pitulate most of the experimentally-known epigenetic systems: (i) a simple painter mode
(Fig. 2.10) in which HMEs are targeted to specific genomic regions and spread via their
trans-activity around these binding sites; this mode may be representative of the regulation
of small, local epigenomic domains like acetylation marks (e.g. H3K27ac or H3K9ac)
around promoters and enhancers; (ii) a boosted-painter mode (Fig. 2.13) in which recruited
HMEs have an enhanced activity if bound to specifically-modified regions; this mode may
account for the allosteric boost observed for PRC2 in presence of H3K27me3 [17]; (iii)
a reader-writer mode (Fig. 2.15) in which HMEs may also be recruited by specific epige-
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netic signals; this mode may capture the regulation of extended chromatin domains like
heterochromatic regions (e.g. H3K9me2/3).

In the simple and boosted-painter modes, we found that there is a direct, simple rela-
tionship between the binding profiles of HMEs, the chromatin organization and the profile
of epigenomic state (Eq. 2.7). Verification of this relation using experimental measure-
ments of these three information (e.g. bulk Chip-seq and Hi-C data) in wild-type-like
conditions may be a strong evidence for one of these two spreading modes [30]. A perfect
illustration of this is our application to γH2AX around DSBs in which the experimental
profile is well fitted by the model (Fig. 2.26A) suggesting a simple or boosted-painter mode
with a spreading-by-3D-contact scenario rather than a more complex cohesin-mediated
mechanism [120].

Distinguishing the boosted- from the simple-painter mode would then require additional
information like, for example to estimate the spatial correlations between chromatin state
that have very different signatures between the two modes (Fig. 2.10C vs 2.13C). However,
this information is currently very difficult to access experimentally as it would require
a single-cell assay to estimate covariations of chromatin states; but recent progresses in
single-cell Chip-seq experiments [160, 161] may open new venues.

In the booster-painter and reader-writer modes that both involve a “reader" capacity of
HME, we observed phase-transitions and critical behaviors via respectively the strengths
of boosting activity (r) and of state-dependent recruitment (∆) (Figs. 2.13B, 2.15B). These
behaviors are driven by the effective positive feedback loops and cooperative effects [19]
that emerge from the enhanced spreading efficiency of some HMEs (more activity or more
recruitment) if the histone modification they catalyze is already present locally. These effects
are more important in the reader-writer mode and lead to qualitatively different epigenomic
profiles, with extended domains around the binding peaks of HME (Fig. 2.15A), and distal
spatial correlations (Fig. 2.15C). In particular, we found that these profiles are very sensitive
to the underlying spreading capacity of HMEs [156], longer-range mechanisms facilitating
the percolation of the system into large contact domains at low state-dependent recruitment
(Fig. 2.17C) [28].

Eventually, these domains may be maintained in the absence of genomic bookmarking
(Fig. 2.20A) for strong enough state-dependent recruitment. However, our analysis of
heterochromatin memory in fission yeast (Fig. 2.26C,D) suggests that such self-sustainable
memory may not be occurring for H3K9me2/3 chromatin domains in wild-type conditions
and that (weak) nucleation, sequence-dependent signaling might still be needed for main-
taining a stable epigenetic landscape [66, 68]; even if a reduction in the effective histone
turnover rate (e.g. by a lower demethylase activity as in the epe1∆ mutants in [10] or by
longer cell-cycles [23, 54]) might trigger the system near to the critical point and may lead
to long-term memory [28], but potentially also to high sensitivity to external cues [56]. As
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shown by previous modeling works [25, 28], we also confirmed that purely local spreading
mechanisms (as the NN scenario) would require too strong feedback and state-dependent
recruitment to stabilize extended, coherent epigenomic domains during a long time period,
even if being able to maintain them over few cell cycles [158].

One theoretical issue however with standard reader-writer models with long-range
spreading is the difficulty to stabilize finite-size epigenomic domain without genomic book-
marking and to avoid unconfined spreading at long-time scale, as already pointed out by
Erdel and Greene [25] and Dodd and Sneppen [20]. While strong insulators or barriers
preventing local spreading [20, 66] and/or the formation of compact 3D domains [66] may
slowdown but do not prevent uncontrollable spreading, we have shown that the combination
of 3D compartmentalization with enzyme titration may lead to ultra-stable confined memory
of small domains even under strong perturbations like replication (Fig. 2.24D), as also
previously observed by Sandholtz et al. using an explicit polymer model of epigenetic
regulation with controlled HMEs concentrations [157]. This may be particularly relevant for
the Polycomb regulatory system as it involves HMEs (PRC2) in limited numbers, as mea-
sured recently during fly embryogenesis [137] and evidenced also in mammals [162], and is
associated with PRC1, a protein complex promoting the compaction of H3K27me3-tagged
regions [138, 55]. Similarly, maintenance of confined silenced domains in yeast may rely
on the combination of their spatial compartmentalisation via Sir3-mediated self-attraction
[163] and Sir4-driven tethering to the nuclear envelop [164]) and of the titration of the
Sir2 deacetylase [165, 166]. Note that, in our model, 3D compartmentalization was ac-
counted via an attractive interaction between M states, mimicking PRC1, HP1 or Sir3 modus
operandi. However, additional architectural mechanisms such as the spatial co-association
of boundary elements are likely to be at work: in mammals, the stability of Polycomb
domains may be reinforced by contacts between CTCF insulator sites [167] possibly via the
cohesin-SA2-mediated loop-extrusion process [168]; in yeasts, colocalization of TFIIIC-
binding boundary elements participate to chromatin domain integrity [75, 80]. Additionally,
the presence of antagonistic chromatin states domains may act as competitive barriers to
epigenomic spreading [6] but also may favor 3D compartmentalisation by strengthening
phase separation [169]. Actually, all kinds of processes that reinforce intra- vs inter- contact
domains is expected to promote confined memory by limiting long-range “contamination”:
in a condition of limited number of HMEs, increasing compartmentalization will further
increase their local concentration (by sequestration), leading to a stronger stability and
weaker pervasive long-range spreading (Fig. 2.24D), in agreement with recent experimental
observations in fission yeast suggesting that a “critical density” of H3K9me3 is required for
the stable inheritance of confined heterochromatin [159].

To go beyond the mere description of epigenomic regulation, we also proposed a simple
mathematical model describing the impact of chromatin state dynamics on gene expression
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[23]. Using this generic and modular framework, we quantified the role of epigenetic
fluctuations in transcriptional noise. It allowed us to investigate positional variegation
as well as epigenomic memory in terms of gene expression in addition to histone marks.
In particular, this makes possible to analyze and interpret the transcriptional outputs of
epigenetic-related experiments. For example, using this framework, we quantitatively
described heterochromatin assays by fitting gene reporter expression distribution versus
time and strains. Introducing a feedback of transcription on the epigenomic dynamics via
the recruitment of HMEs [27, 29] or changes in turnover rates [170] may allow a finer
description of the interplay between epigenomics and transcription.

In our work, we focused on a single painter site, but to go further the painter model
may provide a very interesting framework to specifically address the pivotal role of the
recruitment(painter) sites in globally shaping the epigenome. In particular, to investigate
how their sizes, strengths or genomic distributions influence epigenomic regulation [156].
Interestingly, within some epigenomic domains, some sequences can recruit HMEs while
being unable to nucleate chromatin states on their own [7]. These elements may actually act
as secondary recruitment sites after the initial nucleation events at the strong, autonomous
sites [171] and, in the presence of numerous weak sites, a stable domain can be formed
even in the absence of strong sites [172]. Based on our results, an appealing hypothesis
would be that, the numerous dispersed sites along the genomic domain might compensate
their “individual” weakness by maintaining “collectively and cooperatively” a high local
concentration of HMEs via long-range 3D “communication”.

For example, to briefly extend the analysis, we consider a region of 200 nucleo-
somes containing two sequence specific recruitment regions separated by 50 nucleosomes
(Fig. 2.31Top). To explore the contributions of the two recruitment regions, we con-
sider three combinations (inset Fig. 2.31A) (i) ρs1(i) = 1,ρs2(i) = 0 (blue, Fig. 2.31A) (ii)
ρs1(i) = 0,ρs2(i) = 1 (orange, Fig. 2.31A) (iii) ρs1(i) = 1,ρs2(i) = 1 (red, Fig.2.31A). In the
simple painter mode (Fig.2.31A), the distant painter regions behave almost independently
as P(M) outside the painter regions (red curve) is equivalent to the probability of being
modified by the each painter separately (green curve), and P(M) at the left of the left painter
is only weakly affected by the presence of the right painter. This is valid in the reader-writer
case as well (Fig. 2.31B). However, when one of the painter is weak (Fig. 2.31bottom,
(ρs)

right = 0.2), the weaker painter is slightly reinforced/buffered by the strong painter, both
in simple painter and the reader-writer mode.

A promising application of Eq. 2.7 in the simple/boosted-painter modes is that, it can be
employed to address the inverse problem of inferring the HME binding sites knowing the 3D
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Fig. 2.31 Virtual Chip-seq profiles of the M-state for a multiple painter region. (Top)
Probability P(M) to be modified as a function of the position in presence of only the left
painters (blue, Ps1 at position [-28,-23]), only the right painters (orange, Ps2 at position
[23,28]) and both painters (red, Ps1,s2). Legend shows the corresponding different ρs(i)
profiles. (A) Simple painter mode k/k0 = 1,ε = 0.6. (B) Reader-writer mode with ∆ = 0.3.
(Bottom) Multiple painters with different HME recruitment strength, with painters on the
left at position [-2,2] having a strength of recruitment (ρs)

le f t = 1 (strong) and on the right at
position [23,28] with a strength (ρs)

right = 0.2 (weak). In the presence of the strong painter,
the weak painter is slightly reinforced/buffered. (C) Simple painter mode k/k0 = 1,ε = 0.6.
(D) Reader-writer mode with ∆ = 0.2. Green line indicates the P(M) when the two painters
act independently 1− (1−P(M1/le f t))× (1−P(M2/right))
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Fig. 2.32 Inference of HME binding sites. (Top) Ideal synthetic data (contact probability
Pc on the left and position and strength of HME ρs on the right) used to compute a virtual
Chip-seq profile of the M-state (center) with k/k0 = 1,ε = 0.6. (Down) Noisy contact and
chipseq data generated from (Poissonian noise added to the data) the ideal profiles (top)
used to infer the position of HMEs (left) using the ridge technique for Γ = 0.1 (orange) or
Γ = 1 (purple), assuming that we know the correct k/k0 and ε values. Mis-estimation of
these parameters may lead to defect on the shape or height of the inferred peaks but not on
their positions.
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Fig. 2.33 Antagonistic marks. (A) Extended “Painter" model. (B) Virtual Chip-seq profiles
of the M-state and A-state. Probability P(M) to be in M-state and P(A) to be in A-state as a
function of the position. M-state painter localized at 5 nucleosome region around position
−25 and similar A-state painter localized around position 25. Dotted line indicates the
P(M) profile spreading in the absence of antagonistic A-state and exhibits more extended
spreading of M-state.

chromosome organization (e.g. via Hi-C) and the Chip-seq profile of epigenetic states. For
example, in the simple painter mode, Eq. 2.7 can be written in matrix form as Aρs =Y , where
Ai j = ε ∗Pc(i, j) for i ̸= j, Aii = 1 and Yi = P(M)i/((k/k0)(1−P(M)i)). A priori, this linear
equation can be solved easily to extract ρ∗

s = A−1Y , the HME profile. However, inverting
the possibly noisy matrices (experimental biases, lack of sampling/sequencing, etc.) can
dramatically amplify such noise. To limit the noise propagation, standard regularization
techniques may be used [133]. For instance, the ridge technique leads to ρ∗

s = (AT A+

ΛI)−1 ∗ (ATY ). For every positive value of regularization parameter Λ, we have a unique ρs

solution. In Fig. 2.32, we illustrate the concept on synthetic data where we calculate the
amount of HMEs along the sequence (bottom, right, ρ∗

s ) for a given noisy probability to be
modified (P(M)) and 3D organization (Pc(i, j)).

Similarly, related approaches still based on Eq. 2.7 can also be used to the estimate
chromatin folding properties from HME and histone mark Chip-seq profiles. Actually, this
latter strategy was recently used by Redolfi et al. [134], in the so-called Dam-C technique,
to extract 4C-like contact probability information based on the spreading of Dam-mediated
DNA methylation from a painter region.

One strong hypothesis that we made in order to focus on the painter and reader-writer
processes and their consequences on epigenetic memory, was to neglect the interplay
between several chromatin modifications [173, 174]. Indeed, the regulation of one silencing
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epigenomic mark may often result from the competition with antagonistic activation marks.
For example, in Fig. 2.33, we show the possibility of extending the painter model to a three
state system, where there are two competing modifications M and A (Fig. 2.33A). The rates
rUA and rAU have exactly the same form as rUM and rMU respectively (see Eq. 2.2). In
Fig. 2.33B, we simulate a system with a painter zone for M and another for A, separated by
50 nucleosomes. The competition with the other mark now leads to asymmetric profiles
around the painter region with limited propagation towards the antagonistic region. Indeed,
multiple chromatin modifications also create natural barriers beyond which one modification
dominates the other, preventing unconfined spreading.

The tug-of-war between active and inactive marks is driven by reader-writer processes
complemented with reader-eraser mechanisms that actively remove opposite marks [175,
173]. This may lead to bistability between active and inactive chromatin states and partici-
pate in reinforcing epigenetic memory [19, 176, 27]. As for writers, recruitment of eraser
enzymes may be sequence- or state-specific. For example, the UTX/JMJD3 demethylase is
recruited by Trithorax-group proteins at active developmental genes to remove the repressive
Polycomb H3K27me3 mark [14, 177]. In addition, the regulation of histone turnover may
also participate in the erasing mechanisms. Indeed, genomic regions tagged with inactive
modifications like H3K9me2/3 are know to display low histone turnover rate, while tran-
scribed regions tends to exhibit higher rates [86, 170, 178]. All this may be responsible of
complementary feedback loops in the epigenomic regulatory dynamics that finely tune the
different levels of epigenomic modifications. For example, transcription may mediate such
a loop not only by depending on the current epigenomic state, as we tentatively modeled in
Fig. 2.25, but also, in return, by impacting epigenomic stability via an increase in histone
turnover rate [27, 29].

In addition to the recruitment of opposite HMEs, spreading barriers may also arise from
other mechanisms. For example, in Fig. 2.34, we simulate a situation where a region have a
strong turnover rate (eg, due to highly active transcription), thus creating a simple 1D barrier.
In the simple painter mode, induction of such a barrier only affects the M-state within the
barrier since the process of M-state spreading is purely happening via 3D contacts Pc(i, j)
from the painter region. While in the case of reader-writer mode, the presence of 1D barrier
reduces modifications in and around the barrier, since the barrier prevents recruitment of
HMEs in the region.

Another simplification made in our work was to assume that the 3D chromatin organiza-
tion (that mediates the long-range spreading) was fast compared to epigenomic-associated
rates and was independent of the current chromatin state (see chapter 4). While the former
hypothesis may be satisfied for short genomic distances, for large, Mbp-wide, chromatin do-
mains like pericentromeric, H3K9me2/3-tagged regions in higher eucaryotes, the dynamics
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Fig. 2.34 1D barrier: Virtual Chip-seq profiles of the M-state. Dotted lines show P(M) with
a 1D barrier, a region of very high turnover rate (100k0) between position 25 and 55, and
the solid lines show P(M) without the barrier.

of contact may be slow [90, 179] leading to less efficient spreading [70, 66]. As discussed
above, heterochromatin domains (e.g. H3K9me3, H3K27me3) are often associated with
architectural proteins (e.g. HP1, PRC1) that may impact on their compaction. Therefore, it
introduces again a dynamical feedback loop between long-range epigenomic spreading and
3D chromatin organization: nucleation of a chromatin state drives its compaction that in turn
facilitate spreading and maintenance [64, 139]. Recently, we and other groups investigated
more carefully this coupling by developing a model that explicitly account for both 3D and
1D dynamics of chromatin [66, 67, 157, 68], highlighting the key role played by genome
folding on epigenomic regulation. Combining the formalism developed here with such more
detailed framework would allow to better characterize the structure-function relationship of
chromatin including the formation and maintenance of confined chromatin domain.

To conclude, the formalism developed here is generic and modular, as it provides a
simple description of epigenomic regulation in terms of HMEs recruitment and enzymatic
activity. It can be easily upgraded to include more chromatin modifications (Fig. 2.33)
and cross-talks and feedback loops and can thus be contextualized to a variety of specific
chromatin regulatory systems as in the PcG work I participated to [30] (Sec.2.3.9).

A very promising application of our painter model might be to explore how epigenomic
(and corresponding transcriptional) dynamics might influence genome evolutionary pro-
cesses. Of particular interest is the challenging question of the role of epigenome in the
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control of the integration and selection of transposable elements (TEs). TEs are mobile
genomic elements that can be inserted at new genomic positions or can modify their location
either via a “copy and paste" or in a “cut and paste" mechanism [126]. They comprise as
much as 40−60% of mammalian genomes. For active retrotransposons, a specific class of
TEs, host cells have developed defense strategies in order to limit their invasion and expan-
sion and to maintain genome integrity. Most of these elements are targeted by epigenomic
silencing mechanisms (e.g. H3K9me2/3) [180–182] that limit their expression and thus,
in fine, restrict their capacity of “parasitic" transposition [183]. This silencing is usually
achieved by site specific recruitment of HMEs such as Setdb1 and Su(var)3-9s that nucleate
and further spread the H3K9me2/3 marks [180, 184, 185] within TE elements and beyond
into the flanking region, as shown in Fig. 2.26B with the simple painter mode in mESC. Very
similar spreading patterns have also been observed around several other TE families in two
Drosophila species, D. melanogaster and D. simulans [186]. As expected and confirmed by
our theoretical approach that couples epigenomic and transcriptional dynamics (Fig. 2.25C),
such long-range spreading of repressive chromatin state from TE elements has been shown
to mediate long-range silencing of flanking genes [187]. This is actually reminiscent of
the well known phenomenon of position effect variegation (PEV) observed in various
organisms, where the incidental repositioning of a normally expressed/repressed genes,
by translocation or transposition, next to a hetero/euchromatin fuzzy domain boundary
induces its stochastic repression/expression depending on the genomic distance between
the insertion and the boundary [150, 188, 189]. On one hand, there is a generic selection
against TE transposition into euchromatin due to their deleterious effects for host cells that
might be not only related to potential genetic alterations but also to epigenomic alteration
via PEV. As shown in [186], the species-specific spreading ability of TEs is likely to be a
driving force of their counter-selection. On the other hand, TEs are main contributors of
genome evolution, by promoting genomic diversity and allowing regulatory innovations.
Co-opted TEs play a crucial regulatory role in various nuclear processes, in particular in
gene regulation during development [190, 191] as well as in 3D genome organisation [192].
TEs are constitutively silenced in most cell types and this silencing is required not only
to limit their transposition but also to maintain proper cell-type 3D organisation and gene
expression pattern. Hence, deregulation of TE has been associated to pathologies and is
a clear hallmark of cancer [193, 194]. Overall this clearly indicates the need to develop
a quantitative model based on the painter framework that would describe the epigenomic
control of TEs and how they affect in turn the epigenome dynamics of flanking genomic
regions. This will pave the way for a better understanding of the role of epigenome dynamics
in TE-based genome plasticity during evolution as well as in pathologies.
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Our model highlights the crucial impact of tridimensional chromatin organization on the
stability of epigenomic domains and on gene expression. To explore the interplay between
3D chromatin organization and 1D epigenomic information [66], it is thus pertinent to
explicitly model the chromatin polymer dynamics.





Chapter 3

Towards correctly simulating local
chromatin organization

3.1 Introduction

To explore different facets of 3D chromatin organization, here we utilize the well-established
idea of presenting genome folding as a polymer physics problem [195]. Polymer physics
models have provided a concrete framework to understand chromatin dynamics [196] and to
explore the physical mechanisms driving 3D genome organization [197, 95]. As suggested
in the conclusion of Chapter 2, a methodological continuity of the painter model work is now
to extend/refine our effective 3D model by explicitly taking into account the dynamics of 3D
chromatin organization. In particular, this would allow to build quantitative 1D/3D coupling
models to describe real systems, such as the dynamics of Polycomb repression at Hox
genes [198]. The development of such a model is an interesting short-term perspective of
the current work and would be explored in Chapter 4. However, investigating systematically
such a model would require efficient and proper simulation of the behavior of a region of
interest for long time period and for various parameter sets. In this chapter, we address such
methodological issue by studying how to optimally model the spatio-temporal dynamics of
chromatin domains.

Indeed, regions of biological interest for our chromatin state modelling, such as Hox
gene domains in Drosophila or Mating type loci in yeast, typically span only a small fraction
of the full chromosome length (dozens to hundreds of kbp). With recent experimental
advancements, such as Micro-C, now providing high resolution 3D data sets [199], it may
be now possible at the experimental level, to extract finely the coupling between 1D and 3D
for these regions, at (few) nucleosome resolution (200bp-1kbp) with good statistics. Hence,
it is important to investigate the conformational properties of such small specific regions by
building “fine-scale” 3D models of chromatin.
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When considering a region of interest, it is tempting to limit the simulations to a minimal
chromatin domain encapsulating the corresponding genomic segment. However, restricting
the system to the region of interest relies on the assumption that the spatial conformation
of this region is not affected by the rest of the chromosome(s) [90], i.e., the chromatin
inside the regions does not interact significantly with other chromatin fragments outside
the region. This means that such a strategy requires, as a prerequisite, to validate this 3D
“independence/isolation” hypothesis.

Knowing that polymer properties are sensitive to finite-size effects [200–202], a more
accurate choice would be to simulate the region with the entire chromosomes, which
would ensure to account for all the external interactions. But, over biologically-relevant
timescales, it is likely to constitute a computationally-intensive task, especially when
working at few nucleosome resolution. Here, we wish to address the question of how to
minimize this computational effort while precisely reproducing local chromatin mechanics
and conformational statistics.

From a physics perspective, getting such an accurate description of the system is
important when we estimate mechanical properties or physical parameters of specific
chromatin region from polymer simulations [203]. It is therefore of importance to address
the question of how these estimated quantities may depend on the total polymer length.
Thus, we seek to theoretically investigate what would be the extent of the minimal genomic
region that one should explicitly consider around a given locus in order to effectively capture
the correct dynamical and structural properties of the domain of interest.

Typically, there may exist two major contributions of the total polymer length simulated
around a region of interest: (i) a pure polymeric contribution: the subchain (corresponding to
the targeted region) is embedded inside a (often long) polymeric chain (the chromosome) that
may impact the dynamical and structural properties of the subchain ; (ii) an environmental
contribution: the subchain may have specific interactions with other regions along the
long polymeric chain (or other chromosomes) that may also impact its spatio-temporal
dynamics. The former contribution has been partially explored by my supervisors [204],
showing that there might be strong differences between an isolated domain embedded inside
a neutral long chain and the domain within its native, interaction context. However, the
latter contribution remains under-investigated.

In this chapter, we first explore the -polymeric- contribution by systematically varying
the length of the polymer L being simulated and quantifying the variations in structural and
dynamical properties of the genomic region of interest. We show that the variations may be
directly linked to excluded volume and entanglement properties of the long chromosome.
We can quantitatively predict the length L of the polymer to be simulated while studying a
particular gene/locus, to rightly capture the structure and dynamics of this region. Finally,
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Fig. 3.1 Scheme of a lattice polymer configuration (2D projection of a 3D fcc lattice):
Solid green line represents the polymer chain and dotted line, the lattice. Semicircular arcs
indicate doubly occupied lattice sites. Each lattice site is allowed to contain a maximum of
two beads if and only if they are consecutive to each other along the chain. Some of the
allowed and forbidden moves are shown in green and red respectively. Adapted from [90].

we combine our results on the polymeric contribution with the environmental one to derive
some thumb rules on how to choose the correct length to simulate.

3.2 Models and methods

3.2.1 Polymer lattice model

We model chromatin as a semi-flexible, self-avoiding polymer on a face centered cubic
lattice (fcc) using the lattice kinetic Monte-Carlo model developed in [90, 169]. The
polymer chain is composed of N beads (or monomers), each of size b and representing
n bp. Thus, the contour length of the simulated chromatin segment would be given by
Lc = Nb encompassing L = Nn bp. The polymer evolved on an fcc lattice of dimension
S×S×S containing 4S3 lattice sites (Fig. 3.1) that can be possibly occupied by monomers.
Each lattice site can be occupied by a maximum of two monomers if and only if they
are consecutive along the polymeric chain. Double occupancy of consecutive monomers
accounts for the effect of contour length fluctuations [212] and allows the chain to still
efficiently move in dense system. Two non-consecutive monomers cannot be at the same
lattice site owing to excluded volume interactions.
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Periodic boundary conditions are used to approximate polymer confinement and the
effect of other chains (concentration); occupancy being characterized by the chromatin
volumic fraction, given by φ = N/4S3. It is to be noted that the periodic boundary condition
does not confine the polymer to the finite volume of the simulation box instead the polymer
is free to extend over large distances.

The bending rigidity of the chain is accounted using standard Hamiltonian [217]:

Ebend = ∑
i

kint(1− cosθi) (3.1)

where θi is the angle between two successive bonds around monomer i (Fig. 3.1) and kint is
a measure of bending stiffness and is related to the chain Kuhn length lk by [90]

(13
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−24)x+13
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−12 = 0

(3.2)

kint =−2kT ln(x).

In the last part of the chapter, to account for epigenome-driven interactions, we introduce
self-attractions between monomers that share the same epigenomic state [56, 90]. This is
accounted via the Hamiltonian:

Eepi = ∑
<i, j>

Jp(ei)δei,e j (3.3)

where the sum runs over all the pairs (i, j) of monomers occupying nearest-neighbor lattice
sites, ei is the epigenomic state of monomer i, δei,e j = 1 if ei = e j (= 0 otherwise), Jp(e) (in
units of kT) is the strength of self-interaction between monomers of state e. For instance,
the blue monomers in Fig. 3.5A can be thought of as in same epigenetic state eM, interacting
with a strength Jp(eM)≡ J, while the yellow monomers are in epigenetic state eU , which
doesn’t interact (Jp(eU) = 0) with each other (analogous to the unmodified state U described
in chapter 2) .

In the following sections (except in sec. 3.3.5 and sec. 3.3.6 ), we will work at a fine-scale
model with n= 1kbp, b= 20nm and kint = 3.217kT which correspond to a chromatin fiber of
diameter b, linear compaction ≈ 50bp/nm and with a Kuhn length of lk = 100nm, consistent
with recent estimation in yeast [218, 219]. We maintain a chromatin volume fraction of
φ ≡ b3ρbp/(

√
2n)≈ 0.05, giving a bp-density of about ρbp = 0.009bp/nm3 [220].



3.2 Models and methods 91

Fig. 3.2 Snapshots extracted from a simulation of a 20,000 bead-long polymer. (A): initial
knot free configuration. (B) Relaxed state after 108 MCS.

3.2.2 Simulations

The fcc lattice has a valency of 12, i.e., each lattice site has 12 nearest-neighbors (NN).
The dynamics of the chain is simulated using local moves on the lattice allowing the
monomers to randomly hop between nearest-neighbor sites [213]. More precisely, one
trial move consists in randomly picking a monomer and in attempting to move it to one of
its randomly chosen nearest-neighbor, under the constraints that the chain connectivity is
maintained (two consecutive monomers along the chain occupy the same or NN sites) and
that the double-occupancy/self-avoidance rule (see above) is conserved (except some cases
in 3.3.4). The trial move from an old configuration o to a new one n is then accepted with a
probability accept(o → n) according to the Metropolis criterion on the total Hamiltonian
Etot ≡ Ebend +Eepi:

accept(o → n) = min(1,exp[−(Etot(n)−Etot(o))]) (3.4)

We define one Monte-Carlo step (MCS) as N trial monomer moves. Note that this lo-
cal kinetic Monte-Carlo scheme prevents chain crossing and thus conserves the current
topological constraints.

In each situation and trajectory, we initialize the system (Fig. 3.2A) by a knot free
configuration generated by the “hedgehog algorithm" [216]. Starting from a straight chain
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Fig. 3.3 The hedgehog algorithm to construct the initial configuration. Starting from a
rod-like chain (left) containing few monomers, the structure is iteratively built by randomly
choosing a link (green oval) and by inserting a new monomer at a site close to the two
already placed monomers of the link (right) such that the new configuration still verifies
lattice rules (excluded volume and connectivity). This step is repeated until the entire chain
is grown (Fig. 3.2A). Adapted from [221].

with a few monomers (Fig. 3.3, left), a link is randomly chosen and a monomer is inserted
at site close to the two monomers such that the new configuration satisfies excluded volume
and chain connectivity criterion (Fig. 3.3, right), the process is repeated until the entire chain
is grown [221]. The dynamics of the chain is then simulated during 108 MCS, recording
data every 105 MCS. For each parameter sets, we simulated at least 128 trajectories.

Note that the choice of knot-free initial configurations is motivated by the observations
that (1) chromosomes during interphase are likely to be weakly knotted and entangled [214,
215]; (2) due to the slow large-scale reorganization kinetics of such long, topologically-
constrained polymers (impossibility for two strands to cross each other), this initial state
ensures that the chromosomes generally remain in a weakly-entangled/crumpled regime
over the course of the simulations, as suggested by Rosa and Everaers [196].

Numerical simulations were performed using the custom made code developed in the Jost
group which can be downloaded at https://github.com/physical-biology-of-chromatin/LatticePoly.

3.2.3 Measured observables

For each data point, we compute several structural quantities like (1) the pairwise squared
distance between monomers i and j, R2(i, j) and (2) the radius of gyration of a subchain
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Fig. 3.4 An illustration of the displacement of a monomer and the quantity MSD. A monomer
i is at position A at time t, R⃗i(t) and at time t +∆t, it is at position B, R⃗i(t +∆t). The
displacement of the monomer i for the duration ∆t is R⃗i(t)− R⃗i(t +∆t), this displacement
squared and averaged over an ensemble of ∆t at different time ts would give the mean
squared displacement (MSD) of the monomer i for ∆t time duration.

[i0 : j0]:

Rg([i0 : j0]) =

[(
1

2( j0 − i0 +1)2

)
∑

i, j∈[i0: j0]
< R2(i, j)>

]1/2

(3.5)

which quantifies the overall size of the region of interest (Fig.3.5A).
To quantify the mobility of monomers, we compute the mean squared displacement of

each monomer i (Fig. 3.4)

MSDi(∆t) =< (Ri(t)−Ri(t +∆t))2 > (3.6)

where the average is performed over time t and trajectories. Ri(t) is the position of i in
3D at time t, and ∆t is a time-lag. The MSD typically corresponds to the squared distance
travelled by a monomer during the time lag ∆t. Similarly, we estimate the MSD for the
center of mass of a subchain [i0 : j0] by replacing Ri by Rcm =

[
1/( j0 − i0 +1)∑i∈[i0: j0]Ri

]
,

the position of the center of mass in the equation above. And also, the relative MSD between
two monomers i and j by using Ri −R j in the formula. This quantity relates to the relative
motion of one monomer versus another.
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3.2.4 Contextualizing the simulations to specific experimental systems

At the end of the Chapter, we employ the block copolymer framework to contextualize our
conclusions to investigate specific regions in drosophila and yeast. The resolution of the
model is turned to 800bp (i.e., 15nm) in order to stick to the experimental resolution of the
data, the bending modulus is thus set to 4.05kT to yield a Kuhn length of 100nm [218, 219].
We use a bp-density of ρbp = 0.009bp/nm3 for Drosophila and ρbp = 0.005bp/nm3 for
yeast [90].

We obtained the processed Hi-C maps from [222] and [223] at 800-bp resolution, for
drosophila and yeast, respectively. Experimental Hi-C data were then normalized as in [179]
to transform contact frequencies into contact probabilities in order to be comparable with
model predictions. Then, we select one region of interest for each species: for drosophila, we
consider a ∼ 307 kb region containing a topologically associating domain (TAD) [224, 225]
(from 17955 to 18262 kbp) in chromosome 3R (lower part, Fig. 3.21), and for yeast a
∼ 50 kb-long region (from 334274 to 378470 bp) in chromosome 12 containing the gene
REA1 (lower part, Fig. 3.18). From the experimental Hi-C maps, we identify the relevant
compartments in drosophila and domains in yeast using the "hic_data.find_compartments"
tool from the TADbit suite [227], using Principal Component Analysis (PCA) of the
observed over expected matrices. In the context of block copolymer model, in the yeast
case, we assign each monomer within the gene/TAD to the “blue” state — which may
self-interact via a nearest-neighbor attractive potential variable of depth J — and attribute
all the remaining monomers to the non-attractive “yellow” state (Jp = 0). In the Drosophila
case, each monomer along chromosome 3R corresponding to one compartment (Positive
value of the PCA), is assigned a blue, self-interacting state and the other monomers (negative
values) to yellow, neutral states. For each J, we simulate 48 replicates.

To compare model predictions to experiments, from the simulations, we compute for
each pairs of monomers the average contact probabilities. A parameter involved in this
analysis is the radius of capture Rc, ie the maximum 3D physical distance between two
monomers to be considered as being viewed as in contact in Hi-C experiments [221] (any
two monomers i and j are marked to be in contact if R(i, j) < Rc). This is an unknown
parameter like the strength of interaction, indeed experimentally it is likely that such quantity
may tightly depend on the Hi-C protocol [179]. The structural quantities like the mean
squared end-to-end distance (< R2

e >) and the Hi-C maps of the regions were computed by
averaging over the replicates and over the 107 MCS following a relaxation step of 107 MCS.

To fit the experimental Hi-C data, we thus systematically vary Rc from 15 to 150 nm
and the interaction strength J from 0 to −0.4kT . The best-fit parameter combination (J and
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Rc) is obtained by minimizing a χ2 score, defined as

χ
2 =

(
1

2Nt

)
∑

(i, j)∈t
[(HiCpred(i, j)−HiCexp(i, j)]2 (3.7)

where HiCpred(i, j) is the simulated contact frequency between monomers i and j and
HiCexp(i, j) the corresponding experimental data, t is the ensemble of pairs of monomers
on which the fit is based, Nt represents the size of t. In our case, t is limited to all pairs
of monomers with a genomic distance larger than 4kbp, as our coarse-grain model is not
expected to correctly capture local, fine-scale details below 4kbp. The corresponding
parameter values are verified to also maximize the Pearson correlation between the experi-
mental and simulated Hi-C matrix (Fig. 3.20, 3.17), thus evidencing the accuracy of our
optimization protocol.

3.3 Results

3.3.1 The system under study

To reiterate, in this chapter we ask a rather simple question: what would be the minimal
length of DNA to simulate around a specific region of interest to fully capture the correct
structural and dynamical properties of this region?

To address it, we consider a domain of interest d of size Ld embedded inside a larger
polymer of total size L (Fig. 3.5A). So our question may be reformulated as how L impacts
the behavior of the domain. To specifically understand the effects of changing length, for a
given domain size Ld , we simulate different systems with different L, keeping the volume
fraction φ constant to conserve chromatin density. For simplicity, we place the domain of
interest in the middle of the larger polymer but this position does not impact the results,
unless it is placed at the very end of the polymer (Fig. 3.5B).

In the rest, we vary L from Ld to 20Mbp, the typical size of a chromosome arm in
Drosophila [226]. We consider the simulations performed for Lre f = 20Mbp as the reference
one and basically ask whether the structural and dynamical reference properties of d are
conserved when L is decreased.

3.3.2 Total polymer length determines domain compaction for a con-
fined self-avoiding walk

As a first step, we study how L affects the structural characteristics of a region of interest d
of size Ld = 160kbp, much smaller than the length of our reference case (Lre f = 20Mbp) in
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Fig. 3.5 (A) An illustration of the polymer being simulated, individual monomers being
shown in yellow and the region of interest d is highlighted with monomers in blue (an
illustration of radius of gyration Rg of the region of interest is shown). (B) Evolution of R2

e of
the region of interest (domain) of length Ld = 292kbp in a polymer of length L = 5926kbp.
The relative position of the domain with respect to the polymer is varied, blue curve, when
the domain is in the middle of the polymer and orange, when the domain is shifted towards
the right but it is to be noted that the structural variable evolves is the same manner.

Fig. 3.6 (A) Time evolution of the squared end-to-end distance R2
e of a 160kbp domain for

different total polymer length L. (B) Same but for the squared radius of gyration R2
g.
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Fig. 3.7 (A) Deviation of R2
e of 160kbp domain from the reference value (at Lre f = 20 Mbp)

as a function of the total polymer length L. The error bars indicate the standard deviation of
R2

e . (B) Same as in (A) for R2
g.

a simple case of a homopolymer purely driven by self-avoidance, starting from a compact,
post-mitotic-like, knot-free configuration.

First, we follow the dynamics of decompaction of the initial configuration and of
convergence towards a (pseudo)stationary state for structural properties of domain d. In
particular, we measure the ensemble-averaged end-to-end squared distance (R2

e) of d (i.e.
R2(i, j) between the two boundaries of d) as a function of time (Fig. 3.6A). Such observable
corresponds to the slowest Rouse mode of a polymer chain [209] and thus well captures the
full convergence towards equilibrium. We also compute the time evolution of the squared
radius of gyration R2

g (Fig. 3.6B).
For small L (< 500kbp), we observe a rapid expansion of the domain and a fast conver-

gence (less than 107 MCS) towards an equilibrium state. For large L (> 2Mbp), there is still a
first rapid decompaction step but followed by a slower convergence (∼ 5.107 MCS) towards
a pseudo-stationary state with R2

e being almost constant but still very slowly and slightly
expanding at long time-scale (> 108 MCS). Between these two regimes (L = 1.078Mbp in
Fig. 3.6) the system converges to equilibrium but very slowly.

Interestingly, for L ≲ 1 Mbp all the curves converge towards approximately the same
value (R2

e ∼ 0.32 µm2, R2
g ∼ 0.05 µm2). While, for L ≳ 2Mbp, they converge towards a

more compact pseudo-steady-state characterized by smaller internal distances (R2
e ∼ 0.25

µm2, R2
g ∼ 0.04 µm2). This transition to a more compact state by increasing L is quantified

in Fig. 3.7, where the deviation from the reference value is indicated. We indeed observe a
significant deviation compared to the reference case at small L ≲ 1Mbp of about 20−30%
which drops to 5% for L ≳ 2Mbp.

To further illustrate the variation in structural features when L varies, we plot the 3D
distance squared R2(s) between two loci inside the domain as a function of the genomic
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Fig. 3.8 3D distance squared between monomers of the domain R2 as a function of genomic
distance s. Inset shows the zoom of the large genomic distances (s ≳ 50 kbp) in log-log
scale. Note that the curves for L = 5926kbp and L = 20000kbp overlap.

distance s between them (s = | j− i|) (Fig. 3.8) at equilibrium or pseudo-steady state. We
observe that the transition between the low and high L-regimes happens at all scales even if
it is significant only for large genomic distance (s ≳ 50 kbp).

Next, to generalize our observations, we then ask to what extent such L-transition
depends on the size of the domain of interest. In Fig. 3.9, we plot the L-transition of R2

e

for three different domain sizes Ld . Strikingly, we find that for all Ld values, there is a
transition and that it occurs almost at the same L (∼ 1− 2Mbp). The amplitude of the
transition however depends on Ld , larger domains exhibit larger amplitudes, consistent with
the previous observation that distances between larger genomic distances are more impacted
by L.

Before any theoretical interpretation (see below, Sec.3.3.4), we can already conclude
that, for a given Ld , there are indeed L values much smaller than the size of the entire
chromosome arm (the reference state) that may fully capture the correct structural properties
of the small region, at least in a simple homopolymer context. Hence, taking a value just
above the transition provides already an empirical way of choosing a “minimal” L, here 2
Mbp.
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Fig. 3.9 Deviation of R2
e from the reference value (at Lre f = 20Mbp) as a function of total

polymer length L as in Fig. 3.7A for different domain sizes.

3.3.3 Total polymer length affects domain mobility for a confined self-
avoiding walk

In this section, we study how L may impact the mobility of monomers inside the domain
d and more generally the dynamical properties of the region for Ld = 160kbp. For this,
we monitor the average mean squared displacement (MSD) of individual monomers of
the domain (g1(∆t), Fig. 3.10A), the MSD of the center of mass of the domain (g3(∆t),
Fig. 3.10B) and the MSD of the end-to-end vector of the domain (Fig. 3.11). Note that
whatever be the L value, these three quantities reach a steady-state very rapidly.

When the size of the full chain equals the size of the domain (L = Ld , blue curves
in Fig. 3.10), we observe the behavior of a simple Rouse polymer [209]. The center of
mass has a simple Brownian motion with g3(∆t)≈ D∆t. Individual monomers exhibits a
crossover between a sub-diffusive regime (g1(∆t) ∝ ∆t1/2) at small timescales and, at large
timescales, a diffusive one, following the center of mass of the whole polymer.

When L increases, for g3 (Fig. 3.10B), we observe that the motion of the center of mass
depends on L, larger L leading to smaller MSD for the same time-lag. Indeed, the global
motion of the domain is impacted by the rest of the chain, longer chains having slower
diffusion coefficients [209]. Interestingly, beyond the structural L-transition described above
(L ≳ 2Mbp), g3 does not significantly depend on L, at least at time-scales where the motion
of the center of mass of the full chain remains negligible (∆t ≲ 109 MCS). In this case, g3 of
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Fig. 3.10 Mean squared displacement (MSD) as a function of time-lag ∆t for: (A) Individual
monomer MSD inside the domain g1(∆t) and (B) the center of mass MSD of the domain
g3(∆t).

the domain is sub-diffusive (g3 ∝ ∆t0.7 for ∆t ≲ 2.106 MCS and g3 ∝ ∆t0.5 for ∆t ≳ 2.106

MCS ) as expected for a sub-chain embedded into a larger one [179]. For g1 (Fig. 3.10A),
we observe that at small timescales, the monomer mobility is Rousean (g1(∆t) ∝ ∆t0.5) and
does not depend on L. Only at larger timescales, L starts to impact g1 as crossover towards
the motion of the center of mass of the domain (g3) is occurring. Again, for L ≳ 2Mbp, g1

becomes relatively independent of L.

MSD of the end to end vector of the domain quantifies the relative mobility of the
monomers within the domain and may, biologically-speaking, characterize the motion
between regulatory elements like promoters and enhancers [233]. For all L values, such
MSD is composed by a sub-diffusive regime (MSD∝ ∆t0.5) at small time lags ∆t that crosses
over a plateau (MSD=2 < R2

e >) for larger time lags when configurations at time t and t+∆t
are fully decorrelated.

The monomers near the ends of a polymer have more degree of freedom (or are subject to
fewer constraints). Therefore, when L = Ld , as opposed to when L > Ld , maximum mobility
is reached (blue curve, Fig. 3.11) as expected. For L > Ld , the MSD is slowed down and it
takes much longer time to reach the plateau. Interestingly, we observe a similar behavior as
we observed for the equilibration time for R2

e (Fig.3.6A): for L ≲ 1−2Mbp, the decorrela-
tion time (time to reach the plateau) is an increasing function of L; for L ≳ 1−2Mbp, MSD
reaches a slightly rising false-flat, similar for every L. Intriguingly, for L values beyond the
structural L-transition where we see higher domain compaction (L ≳ 2Mbp), the relative
mobility of the ends of the domain is weakly but significantly increased (pink and brown
curves in Fig. 3.11), indicating that the variation in structural and dynamical properties of
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Fig. 3.11 Time evolution of MSD of end to end vector of the domain for different polymer
length L.

the domain may be coupled: slightly more compact organization leading to slightly faster
relative dynamics.

To conclude, the reference dynamical properties for a given Ld (i.e., those obtained for
L = Lre f ) may be fully captured by simulations of smaller polymer chains, providing that L
is beyond the L-transition (L ≳ 2 Mbp in our model) like for the structural properties.

3.3.4 Total polymer length modulates the topological regime for a
confined self-avoiding walk

In this section, we seek to theoretically interpret the influence of L on the compaction
and mobility of small embedded domains in the simple case of a confined self-avoiding
homopolymer.

In simple polymer models like Gaussian chains (Rouse model), Worm-like chains,
phantom chains or random walks where excluded volume is neglected, the (steady-state)
statistical properties of a subchain should not depend on the rest of the chain (i.e. of L).
In Fig.3.12, we indeed verify that, if we remove the excluded volume constraint in our
simulations, < R2

e > is independent of L. Moreover, we also observe that the internal
dynamics is also conserved (Fig. 3.13). This suggests that the L-transition is related to
excluded volume and topological constraints.
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Fig. 3.12 (A) Time evolution of a R2
e of 160kbp domain for different total polymer length L,

in absence of excluded volume interactions. (B) Deviation of R2
e of 160kbp domain from

the reference as a function of L in presence (blue) or absence (red) of steric hindrance.

Fig. 3.13 Time evolution of MSD of end to end vector of the domain (normalized by the
plateau value) for different polymer length L, without excluded volume interactions.
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Indeed, long confined polymers like chromosomes [205] whose sub-segments generally
cannot cross one another (like a macroscopic string) are subject to topological constraints
which may considerably affect the polymer conformation and dynamics [206]. The impor-
tance of such constraints depends on the ratio between the contour length of the polymer
Lc = Nb and the so called entanglement length, Le [228]. Le could be related with the
tube diameter in the reptation model [209] or to the crossover time between a Rouse-like
motion and a reptation-like motion [228]. It depends on the Kuhn length, lk character-
izing the rigidity of the chain and on the volumic density ρbp (in bp/nm3) and could be
phenomenologically estimated via the relation [210]:

Le ≈ lk

(
19

ρkl3
k

)2

(3.8)

with ρk = (ρbp/n)(b/lk), the volumic density in Kuhn segments. The same description
can be thought of by defining an overlap parameter, Ω(Nbp) =

ρbp
Nbp

< R2(Nbp)>
3/2 [211],

where R2(Nbp) is the squared 3D distance corresponding to a genomic distance of Nbp.
The length (in bp) at which Ω reaches the characteristic threshold of 19 determines the
entanglement length (in bp). With the model parameters investigated above (lk = 100nm and
ρbp = 0.009bp/nm3), we have Le = 10.9µm ≡ 556 kbp. If L ≫ Le, topological constraints
are strong and the large-scale dynamics of the polymer might be very slow, meaning that
the characteristic timescales of equilibration (or of decorrelation) of the lower Rouse modes
of the chain (ie corresponding to large-scale variables, like the end-to-end vector) could be
very large, and that the polymer keeps memory of the initial topological state of the chain
(eg, presence or not of knots, large-scale organization) for a very long time [211, 90], way
larger that the total simulation time (that corresponds approximately to ∼ 1 hour of real
time in our case).

In our simulations, as we increase L, the system transitions from a regime of weak
topological constraints (L/Le ≲ 1) to a regime of strong constraints (L/Le ≫ 1). We thus
wonder if the variation in domain structure and dynamics observed above (Sec. 3.3.2 and
3.3.3) is actually driven by such transition in topological regimes.

To do so, we perform simulations and analyze the properties of the end-to-end vector of
the domain d (Ld = 160kbp) for polymer models with different entanglement lengths Le.
In addition to the default one (Le = 556kbp) studied above, we explore 3 other situations
with lower Le by varying the dimensions of the simulation box, ie modifying the monomer
volumic density and thus Le (Eq.3.8). For each situation, we also reach a (pseudo)-steady-
state (Fig. 3.14A) that allows us to precisely define R2

e . In Fig. 3.14B, we observe that
the L-transition is also present for the other Le values. Importantly, the amplitude of the
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Fig. 3.14 (A) The reference end-to-end distance squared as a function of time for different
entanglement length Le. (B) R2

e of 160 kbp domain as a function of total polymer length L
for different Le values. (C) The pseudo-steady-state value (R2

e)re f as a function of Le. (D) R2
e

normalized by (Le/L0)
0.2 as a function of α , where α = L/(L0(Le/L0)

0.2), for polymers of
different entanglement length Le. α ≳ 1000 delimits the region where structural properties
are stable irrespective of L.
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transition is larger for lower Le and the critical value of L where the system shifts from
less to more compact is smaller for lower Le values. We also observe that, not only the
end-to-end distance, but all internal distances are affected by Le (Fig. 3.15). The differences
seen at large genomic distances between L = Ld and L = Lre f are stronger for smaller
Le but also the two curves starts to deviate from each other at shorter genomic distances,
meaning that topological effects become more prominent at smaller genomic scale (red
curve, s ≲ 8kbp) for smaller Le. All this confirms that the L-transition is driven by a change
of topological regime for the whole chain, and that large domains (or genomic distance)
compared to the entanglement length (Ld/Le,s/Le ≳ 1) would be impacted more.

To quantify this, in Fig. 3.14C, the pseudo-steady-state value (R2
e)re f of R2

e in the refer-
ence case (L= 20Mbp) is plotted as a function of entanglement length Le, and empirically we
obtain a scaling law for the end-to-end distance squared after the transition (R2

e)re f ∝ L0.2
e .

As expected, strong topological constraints lead to more compact domains. We define
α = L/(L0(Le/L0)

0.2), a dimensionless quantity to estimate the extent of topological con-
straints in the system with L0 = 1kbp, an arbitrary default value. Phenomenologically, we
find that α ≳ 1000 corresponds to the values of L for which the structure of the domain
is not affected anymore by increasing L (Fig. 3.14D). In other words, more practically, a
polymer of length L > Lα ≡ 1000∗ (L0(Le/L0)

0.2), would preserve the structural properties
of the domain, like being simulated within the whole (reference) chromosome.

Altogether, our observations suggest that the L-transition is related to excluded volume
and topological constraints. In the regime where topological constraints are relevant (α ≳

1000 or L ≳ Lα ), the subchain maintains its topological state during the whole simulation,
i.e., a knot-free topology in our case. The system is thus at a quasi-equilibrium but for
a fixed topology. In the knot-free case, this limits the structural fluctuations of the sub-
chain and leads to more compact structures, as typically observed for crumpled or ’fractal’
polymers [147, 206, 211] that are often associated with compact, space-filling curves [92].

3.3.5 Total polymer length impacts the coil-to-globule transition

The modeling of genome organization and in particular of the 3D compartmentalization
of the epigenome (chromatin states, e.g. euchromatin vs heterochromatin) has led to the
introduction of copolymer models of chromatin. Beyond the excluded volume constraint,
these models [56, 66, 90, 64, 203] include chromatin-state dependent self-attraction (J)
between loci sharing the same epigenomic content (see Models and Methods). J effectively
accounts for different physico-chemical mechanisms such as charge modulated nucleosome-
nucleosome interaction [231], self-associating proteins bridging [138, 142, 139] or solvent
quality [232]. As a general (universal) behaviour, a homopolymer with self-attraction J
between all its monomers experiments a coil-globule transition when increasing J, from an
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Fig. 3.15 Average squared 3D distance R2(s) between monomers of the domain (Ld =
160kbp) as a function of genomic distance s. Solid lines correspond to L = Ld and dotted
lines, L = Lre f = 20000kbp. Inset shows a zoom at large genomic distances (s ≳ 50
kbp) in log-log scale. The four colors indicate four different entanglement lengths with
L∗

e = 556kbp.

Fig. 3.16 R2
e for a 160 kb region as a function of interaction strength |J| for different total

polymer lengths L.
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expanded coil-like conformation for |J|< |Jc| to a compact globule-like conformation for
|J|> |Jc| [229, 230], where Jc is the transition point (called the "theta" point). In this case,
the collapse transition depends on the (finite) size of the chain [201, 202] with, for example,
sharper transitions (susceptibility) for larger sizes.

Here, in continuity with previous sections, we propose to study how the embedding of a
self-interaction domain inside a larger neutral chain of size L influences its conformational
properties.

Generic considerations in long, reference polymers

Here, we thus employ the copolymer model to study how the total polymer length would
affect the coil-globule transition of a particular region of interest, taking as reference the
situation for Lre f = 20Mbp. To simplify, we consider a region of size Ld = 160 kb of a
particular epigenomic state embedded into a neutral chain of size L. For all L, as we vary
the strength of self-attraction J, the subchain gradually collapses (Fig. 3.16) with R2

e of the
region following a standard coil-globule transition, starting from an initial expanded state
(higher R2

e) to a more compact (lower R2
e). Beyond the theta-collapse, in the globular state,

R2
e is independent of L. However, for |J|< 0.2kT , during the collapse, R2

e becomes more
sensitive to L. Consistent with our observations in the pure self-avoiding case that larger
L lead to more compact subdomains (Fig. 3.7A), larger L would be more collapsed for a
given J value. Interestingly, the coil-globule transition curves are almost similar for all
L ≳ Lα ≈ 2Mbp that corresponds to the critical L value of the L-transition observed in the
pure self-avoiding system.

To conclude, we find that when the sub-chain is collapsed, the effect of L is not signifi-
cant, while in a coil or partially collapsed state, simulations for small L values deviate from
the reference one unless α is larger than 1000 to ensure that the correct topological regime
is established.

Specific considerations in short, reference chromosome

In this subsection, we contextualize our analysis to a specific contact domain in yeast (region
334274−378470 bp of chromosome 12, Ld = 45.6kbp) embedded into a "small", neutral
reference chromosome of size Lre f = 1.1Mbp, to illustrate the role of Lre f .

We simulate two scenarios: (i) one with L = Ld and (ii) one with L = Lre f the size of
chromosome 12. For each scenario, we systematically vary J and predict in each case the
Hi-C map (for various radius of contact Rc). For both scenarios, the best fitting radius of
capture is Rc = 60nm. Interestingly, the best fitting strength of interaction is the same when
L = Ld (J(i) = −0.25 kT) and L = 1.1 Mb (J(ii) = −0.25 kT) (Fig. 3.17) which suggests
that the total polymer length doesn’t drastically affect the 3D organization of the domain
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Fig. 3.17 Phase diagram (Rc and J) quantifying the predictive power of the simulation
relative to experimental Hi-C data using two different metrics: (i) Pearson correlation (left)
and (ii) χ2 as a function of two parameters (right). (A) For L = Ld = 46.5kbp, the best
fitting parameters (minimum χ2) being Rc = 60nm, J = −0.25 kT ;(B) For L = 1.1Mbp,
the best fitting parameters (minimum χ2) being Rc = 60nm, J =−0.25 kT.
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Fig. 3.18 Simulated (upper part) and experimental (lower part) Hi-C of a yeast domain for
simulation with (A) L = Ld = 46.5kbp and J =−0.25kT (corresponding to Fig.3.17A); with
(B) L = 1.1 Mbp and J =−0.25kT (Fig. 3.17B). The monomers within the gene (interacting
M-state) and outside (non-interacting U-state) are shown at the top (PCA analysis). Pearson
correlation value:= 0.92 for L = 1.1Mbp and L = Ld = 46.5kbp

in yeast. In Fig. 3.18, the predicted Hi-C maps of the region in both scenarios are shown,
exhibiting both high correlations (0.92) with the experimental map.

Relation to Le

The total length of the polymer L plays a crucial role in the structure and dynamics of the
domain, in particular in the case of systems where strong topological constraints Lre f /Le >>

1 are present in the reference case, like the genomes of drosophila [90] and higher eukaryotes.
Within our phenomenological analysis, it means that topological constraints may be needed
to be accounted for when α(Lre f )> 1000, in particular when the region is not fully collapsed
or globular (see Fig.3.16) as often observed in biological context [90].

In the generic consideration above with a long reference chromosome, α(Lre f )≫ 1000,
and we expect that the minimal length of polymer to simulate to preserve the structural
reference properties (as in the full chromosome), is L ≳ Lα ≈ 2−4 Mbp.

In the specific yeast case with small reference chromosome (Le = 2.2 Mbp, Lα ≈ 5Mbp),
α(Lre f ) = 236 ≪ 1000, so we expect topological constraints not to be too relevant and thus
that L has only a limited impact.
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Fig. 3.19 Evolution of normalized (Rg)
2 as a function of the strength J of self-attraction for

(i) a 330kbp-long domain (blue squares) isolated from other domain of the same epigenomic
state along the sequence; (ii) a 290kbp-long domain (black squares) surrounded along
the genome by many other domains of the same state. Data were normalized by the
corresponding values in the neutral case (J = 0). These simulations correspond to a block
copolymer model of chromosome arm 3R in Drosophila accounting for self-interactions
between loci sharing the same epigenomic state [90]. Circles represent situations when the
interactions were only between the monomers of the domain of interest (no interaction with
the other loci of the same epigenomic state dispersed along the genome). Adapted from
[204].

3.3.6 Total polymer length and epigenomic context drive genome fold-
ing

In the analysis presented above, we have not accounted for the environmental contribution,
like, for example, for putative epigenomic interactions between the domain of interest
and the rest of the genome which might potentially affect the local structure of the region.
We have considered regions which are completely isolated to focus on how topological
constraints impact the 3D organization of the region. But it is evident that the overall epige-
nomic context and associated interactions would be pertinent to fully describe the structure
and dynamics of the domain. For example, in the book chapter published in 2019 [204], my
supervisors partially explored this question by investigating how the radius of gyration of a
∼ 300 kbp-long domain may depend on the strength J of self-attraction if the domain was
isolated inside a long, neutral polymer (a situation very close to our analysis in Sec.3.3.5 in
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the reference case) or if the domain was simulated as being part of a larger block copolymer
thus potentially interacting with other domains of the same epigenomic state along the
chromosome (Fig. 3.19). They observed that if the domain was already isolated (i.e., far
from other regions of the same state along the genome), only considering the self-interacting
domain inside a neutral chain, does not impact the structure of the domain strongly (blue
lines in Fig. 3.19). However, for a domain that is close to other regions of the same state
(black lines in Fig. 3.19), accounting for the context have a strong impact, simulations of a
fully isolated domain leading to more compaction than contextualized simulations.

To go beyond this, and try to couple my analysis of the total polymer length L with
the environmental epigenomic context, we simulate a domain of interest corresponding to
the region 17955−18262 kbp in chromosome 3R of Drosophila (Ld = 307 kbp), which is
denoted as a ‘black’ epigenomic domain (silent chromatin) by the classification done in [71].
In its native context, this domain is embedded into a polymer of size Lre f = 32.1Mbp and
the domain can interact with all the other black domains along the chromosome.
We simulate three scenarios: (i) L = Ld; (ii) L = 6.2 Mbp, a length (≈ 2∗Lα ) that should
capture the polymeric, reference case based on our theoretical analysis; and (iii) L = Lre f

Mbp. For each case, we vary J and compute Hi-C maps for different radius of capture Rc

(Sec.3.2.4), and estimate the parameters that best reproduces the experimental HiC of the
region in the each scenario (Fig. 3.20). In contrast to our previous analysis, we now are
considering a domain that is in a dense interacting environment, potentially having lot of
interactions with domains of the same epigenomic state along the chain.

For the three cases, the best fitting radius of capture is Rc = 60nm. Interestingly, we find
two different optimal J values (J =−0.17kT for scenario i and =−0.135kT for scenario
ii and iii), confirming that simulating L = Ld and L = 32.1Mbp is quantitatively different
also for a highly interacting domain embedded inside a long chromosome with interacting
domains. It has to be noted that in all the cases, the best fitting parameters predict the Hi-C
map with good accuracy (Fig. 3.21).

We note that changing the total polymer length significantly alters the 3D organization
of the region of interest (about 25 percent change in the interaction strength J).Interestingly,
we find that the length predicted by our analysis on topological constraints is sufficient
(Fig. 3.20B, Fig. 3.21) to accurately account for the right epigenomic and topological
regime.
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Fig. 3.20 Phase diagram (Rc and J) quantifying the predictive power of the simulation
relative to experimental Hi-C data using two different metrics: (i) Pearson correlation (left)
and (ii) χ2 as a function of two parameters (right). (A) For L = Ld = 307kbp, the best fitting
parameters (minimum of χ2) being Rc = 60nm, J =−0.17 kT ; (B) For L ≈ 2∗Lα = 6.2
Mbp the best fitting parameters (minimum of χ2) being Rc = 60nm, J =−0.135 kT ; (C)
for L = Lre f = 32.1 Mbp, the best fitting parameters (minimum χ2) being Rc = 60nm,
J =−0.135 kT. These values are in agreement with maximum Pearson correlation.
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Fig. 3.21 Simulated (upper part) and experimental (lower part) Hi-Cs of a drosophila
domain for simulations with (Left) L = Ld = 307kbp and J = −0.17kT (optimal case in
Fig.3.20A). (Middle) L = 6.2 Mbp and J =−0.135kT ( Fig. 3.20B). (Right) L = 32.1Mbp
and J = −0.135kT ( Fig. 3.20C). The monomers within the TAD and outside are shown
at the top (PCA analysis). It is to be noted that the 3D organization of the domain is
very similar in the case of L = 6.2Mbp and L = 32.1Mbp. Pearson correlation values
obtained for these parameters are 0.86, 0.87 and 0.87 respectively. The monomers of the
interacting epigenomic state (M) and the non-interacting U-state are shown at the bottom
(PCA analysis). (B) Shows the distribution of black domains along chromosome 3R, the
domain we have considered is highlighted in yellow. Data from [71].

3.4 Discussion and conclusion

In this chapter, we have illustrated the role of total polymer length on the structural and dy-
namical properties of a specific region of interest. Our analysis using a simple self-avoiding
homopolymer gives quantitative predictions on the minimal length of DNA to be simulated
around a specific region of interest to fully capture the correct polymeric properties of the
region.

We have systematically studied how increasing the total polymer length L would affect
the structural properties (R2

e ,R
2
g,R

2(s)) of a region within. In particular, we have quantified
how expanded or open the region (Fig. 3.7, 3.8) would be in comparison with a reference
case corresponding to a long chromosome (L = 20 Mb). It has to be noted that for long
polymers (L = 20 Mb), the time evolution of R2

e of the domain indicates the presence of a
very slowly expanding (pseudo)steady-state, while when the total polymer length is shorter,
the structure equilibrates much faster (Fig. 3.6). In addition to the structure, the length of
DNA around the region also affects the dynamics of the region, shown by the difference in
mobility (Fig. 3.7) when the total polymer length is varied. We have observed that without
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excluded volume interactions, the structure and dynamics of the domain is not affected by
the total polymer length (Fig. 3.12, 3.13), suggesting that steric interactions are responsible
for the different behaviors observed when varying L. Furthermore, we quantified the extent
of the corresponding topological constraints by a single parameter (α) that depends on the
entanglement length. This parameter helps in estimating the minimal length Lα of DNA
to be simulated to capture the correct - pure- polymeric properties. These results would
significantly help in extracting accurate physical measures of different domain using simple
polymer models [203].

We used a simple copolymer framework to understand how the total polymer length may
affect the folding properties of the domain of interest. Beyond the Θ collapse, we showed
that the globule-state is unaffected by the total polymer length (Fig. 3.16). However, before
the collapse (a biologically-relevant regime [90, 95, 56]), we found that L may impact
the folding and should be chosen carefully like in the pure self-avoiding case. Finally,
we have contextualized the model to experimental data, in drosophila [222] (with strong
topological constraints) and yeast [223] (weakly constraint). In drosophila, L may alters
the 3D organization of the region (Fig. 3.20) while in yeast, it doesn’t play a crucial role
(Fig. 3.17). This conclusion is further compounded by the fact that the interacting domains
(which mostly corresponds to genes [199]) in yeast are very small (< 10kbp) and thus
topogical effects have less impact on the organization (Fig. 3.9).

Overall, our results suggest that the pure polymeric - self-avoidance related - contribu-
tion, and thus the proper spatio-temporal dynamics of a domain may be well accounted by:
(i) L ≳ Lα for a long reference chromosomes (Lre f ≫ Lα ) and a coil or partially-collapsed
state for the domain of interest ; (ii) L ≈ Ld for a globule-state for the domain or a very short
domain (Ld ≪ Le) or a short reference chromosome (Lre f ≪ Lα ).

As stated in the Introduction of this Chapter, there may be two main contributions of
the total polymer length: the polymeric effect that we mostly focus on in this chapter and
the epigenomic context. In the last part of our results, we explored how accounting for the
epigenomic environment may impact the 3D organization of the region of interest. Previous
works and our preliminary analysis suggest that (1) accounting for the context (compared
to a situation where a domain is embedded inside a neutral polymer) is crucial as it may
impact the predicted structural (and dynamical, not shown) properties (Fig.3.19); (2) if L is
large enough to capture the polymeric behavior, it should be also large enough to contain
enough ’context’ to capture the correct behavior. A more systematic analysis of the context
by studying more L values or different epigenomic environments would help rationalizing
the importance of the context contribution versus the polymeric one. In addition to the
epigenomic context, similarly, it is also likely that association with nuclear lamina [235] or
other nuclear bodies might also potentially bring in additional geometric constraints that
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may contribute to the behavior of a domain of interest and that may depend on the size L of
the simulated polymer.

One key result of this work is the requirement of maintaining the system in the correct
topological regime to ensure that polymeric properties are conserved. However, this result
is based on the physical hypothesis of the model that the polymer strands cannot cross
each other (or at least only rarely), thus maintaining the system in the same - knot-free -
topological state during the simulations of long polymers [196]. Experiments have estimated
that indeed chromosomes are mostly knot-free or only weakly knotted [214, 215] during G1.
However, it is not clear if, in vivo, such a state actually emerges from the decompaction of a
knot-free, mitotic-like initial configuration that would remain knot-free thanks to rare strand
crossing events. There is actually evidence that the activity of the topoisomerase II, a protein
that may catalyze strand crossing, may be important in the higher-order organization of the
genome [236, 237]. The knot-free state will then rather emerges from the combination of
topo II activity and of active loop extruding factors [240] like cohesins or condensins which
are thought to play crucial role in TAD formation [118]. It thus would be very interesting to
introduce both ingredients (some chain crossing in a loop extrusion polymer model [119])
to investigate how our conclusions are modified.

The lattice polymer model enables us to model explicit 3D chromatin dynamics. Now,
we have (1) practical rules to model biological systems at an optimal size to minimize the
computational burden while capturing the correct polymeric behavior and (2) a quantitative
framework (lattice polymer) to explore, how to integrate the Painter model (Chapter 2) with
an accurate 3D polymer dynamics in order to study the coupling between 3D chromatin
organization and epigenome regulation (Chapter 4). For instance, to model the Daschung
(dac) locus (Ld ∼ 80 kb in chromosome 2L [198]) which is a small isolated Polycomb
domain, our analysis would suggest that polymer simulations with a total polymer length
L > 2−3Mb (orange curve, Fig. 3.9) would correctly capture the structural and dynamical
properties of the region.





Chapter 4

Towards a quantitative model coupling
epigenome regulation and 3D polymer
dynamics

4.1 Introduction

As described in Chapter 1, there is an explicit coupling between epigenome regulation
and 3D genome organization: epigenomic information may spread in 3D via the action
of HMEs (like Clr4 or PRC2) and epigenomic landscape may impact genome folding via
the recruitment of architectural proteins (like HP1 or PRC1). These two mechanisms may
lead to a positive feedback loop where the epigenomic-driven compaction of the genome
organization facilitates the spreading in 3D which leads to higher compaction and so on.
Therefore, one interesting perspective of my work would be to upgrade the painter model
(detailed in Chapter 2) to account for the spatio-temporal dynamics of the chromosome and
how it impacts the spreading and maintenance of an epigenomic signal, more realistically.

This feedback was already investigated by my supervisors via the “Living chromatin”
model [66] (described in Chapter 1) that couples an explicit description of the 3D polymer
dynamics with a 3-state model with antagonistic marks for the epigenome (as in Fig.2.33).
However, such model was very simplified and generic. For example, it does not integrate
the complete description of epigenomic regulation that we have developed in Chapter 2 in
terms of recruitment (sequence- or state-dependent), spreading and allostery. It also does not
explicitly account for the role of HMEs and architectural proteins, while the concentration,
distribution, kinetics and binding properties of HMEs and architectural proteins may play
an important role in regulating the epigenome and organizing the 3D genome and while
quantitative estimations of these properties start to be available [137, 248, 249, 246, 139,
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245]. It is therefore of high interest to continue the characterization of this feedback using
more advanced models based on the results of my PhD thesis.

In this prospective chapter, I will introduce how to develop models of increasing com-
plexity by integrating step-by-step the ingredients described above, towards a quantitative
“Living painter” model that explicitly integrate the 3D chromosome and histone modifying
enzyme (HME) dynamics, which can be used to systematically dissect generic or specific
biological problems in the future. In particular, we will focus on precisely describing the
step-wise increments of our mathematical framework and on illustrating some of their
features, notably how the feedback loop may impact the epigenomic landscape. This chap-
ter also recapitulates one of the key findings of the painter model and the living painter
model rightly marks the significance of limited enzyme regime in the formation of confined
chromatin state domains. Note that this chapter is exploratory and does not aim to provide
a systematic investigation of the ingredients of the model, but introduces several concepts
that will build the ground for short-term perspectives of my work (see Sec. 5).

4.2 Modelling epigenome regulation in 3D

In this section, we describe different models of increasing complexity, translating the simple
painter model (detailed in Chapter 2) into the “Living painter” model in order to explicitly
investigate the coupling between epigenome regulation and 3D chromosome organization.

4.2.1 Coupling the painter model with 3D polymer dynamics

First, we propose a simple Living Chromatin-like model (Fig. 4.1) that combines the Painter
model for epigenome regulation (see Chapter 2) and the lattice polymer model for 3D poly-
mer dynamics (see Chapter 3) to explicitly study the coupling between the two processes,
as proposed in the “Living Chromatin” framework [66]. In the original painter model, 3D
chromosome organization was effectively accounted for via the spreading probability term
Pc(i, j) between two genomic positions i and j. Here, we introduce the polymer dynamics
explicitly.

We consider a polymer composed by N monomers each consisting of n bp and or size
b (same notation as in Chapter 3). Following the framework developed in chapter 2, an
epigenomic state is associated to each monomer. This state can dynamically fluctuate
between two flavors: modified M and unmodified U . The spatio-temporal dynamics of the
polymer follows the same principles as described in Chapter 3 (Sec. 3.2): self-avoiding and
semi-flexible copolymer chain evolving on a FCC lattice, only monomers currently in the
M-state are assumed to be able to self-attract with a strength of interaction J (Eq. 3.3).
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Fig. 4.1 An illustration of Living chromatin-like model, coupling the painter model (Chapter
2, Fig 2.1) and 3D polymer dynamics. (A) Nucleosomes/monomers can fluctuate between a
modified M and unmodified U states driven by the transition rates r3D

UM,r3D
MU . (B) Polymer

structure and dynamics are driven by short-range self attractive potentials of strength J
between M monomers. U monomers are assumed to be neutral. Arrows indicate implicit
spreading of M-state.

The epigenomic state dynamics of monomer i is driven by two transition rates r3D
UM(i)

and r3D
MU(i) (similar to Eq. 2.2):

r3D
UM(i) = k

[
(ρs(i)+∆δi,M)(1+ rδi,M)+ ∑

j∈ν(i)
ε(1+ rδ j,M)(ρs( j)+∆δ j,M)

]
(4.1)

r3D
MU(i) = k0

Here, the notations are similar to the painter model in Chapter 2 (Sec. 2.2). Briefly, k is the
intrinsic activity of HMEs; r, the state-dependent boosted activity; ∆, the state-dependent
recruitment of HMEs; ε , a factor that accounts for putative modulation of HMEs activity
on trans-spreading; ρs(i), the sequence-dependent recruitment of HMEs; k0, the lumped
turnover rate. Note that, for the spreading term in r3D

UM (right part), the sum runs over ν(i),
the current ensemble of monomers j that occupy nearest neighbors positions on the lattice
to that of monomer i, accounting explicitly for the current 3D neighborhood.

Overall, this model is very similar to the original Living Chromatin model but contextu-
alized to the painter model of Chapter 2. It does not explicitly account for HMEs for the
epigenomic spreading or architectural proteins for the spatial organization, i.e., implicitly
assuming that they are not limiting factors and that their intrinsic dynamics (diffusion,
binding/unbinding rates) is fast and can be neglected.
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Fig. 4.2 Self-interacting proteins (brown, PRC1 in Fig. 4.8) driving chromatin folding.
Here, the painter model coupled with the 3D polymer dynamics (as in the previous section)
establishes the epigenetic landscape of the region (eq.4.1). However, the interaction between
M-state is driven by self-attracting proteins (Jprotein−protein) which can interact with the
M-state (Jprotein−M) as well.

4.2.2 Lattice-gas model for architectural proteins

Here, we modify the framework described in the previous section by explicitly accounting
for the architectural proteins that mediates the epigenomic-driven interactions between
M-state monomers.

While the transition rates to switch between M and U states are assumed to be the same
as in Eq. 4.1, we introduce diffusible molecules, that correspond to the architectural proteins
associated with the M state (like HP1 for H3K9me2/3 marks or PRC1 for H3K27me3 [141]).
These proteins can self-interact and can also specifically interact with M state monomers.
Following the framework developed by Maxime Tortora in the Jost group [245], we model
them as a lattice gas evolving on the same FCC lattice as the polymer (Fig. 4.2). More
precisely, we consider Nprotein molecules that diffuse on the lattice. One lattice site can be
simultaneously occupied by both the chromatin polymer chain and at most one molecule.
The dynamics of the proteins is driven by two contributions: (1) short-range, contact
interactions between molecules; (2) short-range contact interactions with M-state monomers.
The first contribution is quantified by the Hamiltonian:

Eprotein−protein =−
Jprotein−protein

2 ∑
i∈P

∑
l∈V (i)

σl (4.2)

where Jprotein−protein is the strength of self-attraction between proteins, the double sum runs
over the ensemble P of proteins and the ensemble V (i) of 12 lattice sites nearest-neighbor
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Fig. 4.3 A schematic representing the “Living Painter” model. Diffusing HMEs (painters)
driving chromatin state spreading. In this formalism, painters spread modified state
when they are spatially close to unmodified state. The painters/HMEs are capable of
self-interacting (Jprotein−protein) accounting for the architectural proteins, interacting with M-
state (JHME−M, accounting for state dependent recruitment of HMEs) and also the sequence
(JHME−seq) for sequence recruitment of HMEs.

of that occupied by protein i, and σl = 1 if a protein is on lattice site l (= 0, otherwise). The
second contribution follows the Hamiltonian

Eprotein−M =−Jprotein−M ∑
i∈P

∑
l∈V (i)

π
M
l (4.3)

where Jprotein−M is the strength of interaction between proteins and monomers, and the
occupancy number πM

l quantifies the number of M monomers present at a given lattice site l.

Overall, this model is based on the same epigenome dynamics as the previous, living-
chromatin-like one, but relies on a finer description of epigenomic-driven interactions by
explicitly accounting for the presence of architectural proteins associated with the M-state.

4.2.3 “Living Painter”; spreading of epigenetic marks by diffusing
HMEs

In both the previous models, the spreading action of HMEs was implicit: it is actually M
state monomers that propagate their state to nearest-neighbor lattice sites, and HMEs were
not directly modeled. Here, we develop a model that now explicitly account for the kinetics
and action of HMEs within the nucleus (Fig. 4.3), thus providing better insights into the
process of epigenomic spreading and maintenance.
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To simplify, we consider that HMEs and architectural proteins are part of the same
complex (like the Polycomb complex that may group PRC1 and PRC2) and we model the
kinetics of such complex as a lattice gas of diffusing particles (as in the previous model).
In addition to (i) Eprotein−protein (Eq.4.2) that accounts for complex-complex interaction
mediated by architectural proteins; and (ii) Eprotein−M (Eq.4.3) that accounts for the state-
dependent recruitment (reader-writer mode) of the complex at M-state monomers; the lattice
gas dynamics is also driven by (iii) an Hamiltonian accounting for the sequence-dependent
recruitment of HMEs:

EHME−seq =−JHME−seq ∑
i∈P

∑
l∈V (i)

π
ρs
l (4.4)

where π
ρs
l quantifies the number of sequence specific loci at a given lattice site l. This would

correspond to the painter region (ρs) in the effective 3D model described in Chapter 2.
Regarding the epigenomic dynamics, since we explicitly describe HMEs, the transition

from U to M of a monomer i would now be constrained by the presence of the diffusing
particles around it. More precisely:

rHME
UM (i) = k ∑

l∈V (i)
σl(1+ rδ

NN
l,M ) (4.5)

rHME
MU (i) = k0

where δ NN
l,M = 1, if lattice site l is nearest neighbor of the lattice site occupied by a M-state

monomer. Note that the differential binding of the complex to the sequence and chromatin
state is modulated by the strength of interaction JHME−seq and Jprotein−M, which would
impact the residence time of HMEs on the chromatin. But, the spreading dynamics of
the enzymes is assumed to be similar irrespective of whether they are freely-diffusing,
sequence-bound or state-bound (ε = 1).

Overall, this model couples an explicit description of architectural proteins (driving
genome folding) with a finer depiction of HME (driving the spreading). It can be viewed as
a generalization (including the feedback with the 3D organization) of the enzyme-limitation
model developed in Chapter 2 (Sec.2.2.5, 2.3.7).

4.3 Preliminary analysis of the models

In this section, we illustrate the behavior of above mentioned models using simple examples.
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4.3.1 Simulations

Simulations of the three models are performed using a Kinetic Monte-Carlo scheme. We
consider a polymer of size N = 2032 with n = 1kbp and b = 20nm (lk = 100nm), corre-
sponding to a L ≈ 2 Mbp region (L ≈ Lα to conserve polymeric properties while minimizing
the computation burden). The size of the lattice S = 21 is imposed such that the volumic
fraction is fixed to Φ = 0.055 and periodic boundary conditions are used. Note that, since
the spatial resolution of our chromatin fiber model is n = 1 kbp (∼ 5 nucleosomes), M and
U states actually represent a coarse-grained, binary description of the local epigenomic
state.

As in Chapter 3 (Sec.3.2.2), the polymer dynamics follows the same Monte-Carlo
scheme with local trial moves driven by: Etot = Ebend +Eepi for the first model, Etot =

Ebend +Eprotein−M for the second and Etot = Ebend +Eprotein−M +EHME−seq for the third
one.

For the second and third models, the Nprotein proteins or complexes are initially uni-
formly distributed on the lattice in random arrangement and evolve through a standard
lattice-gas scheme. In each trial move, a protein is selected at random and displaced
to a random neighbouring site with an acceptance criterion (Metropolis, Eq.3.4) associ-
ated with the Hamiltonian Eprot = Eprotein−protein +Eprotein−M for the second model and
Eprot = Eprotein−protein +Eprotein−M +EHME−seq for the third one.

The dynamics of the epigenomic state is driven by the two rates rUM and rMU . Within
the kinetic Monte-Carlo framework, an ”epigenomic” trial move consists in randomly
choosing one monomer i, and then in trying to change its epigenomic state with a probability
p = rUM(i)dt if its current state is U or p = rMU(i)dt if it is M. dt (≪ 1/k,1/k0) represents
the infinitesimal duration of one Monte-Carlo time step (MCS).

In the first model, one MCS is then composed by N polymer trial moves and N epige-
nomic trial moves. In the second and third models, one MCS is in addition completed
by Ntrial protein trial moves. Ntrial can be adjusted to account precisely for the diffusion
constant of the diffusing proteins, in comparison to the diffusion of the polymer beads.
The time mapping between simulation time (MCS) and real time can be done by impos-
ing that the MSD of polymer loci g1(δ t) ≈ 0.15µm2 for a real time of ∼ 100 seconds
as typically observed experimentally [89, 221, 250]. In our case (Fig.3.10A), it leads
to 1 MCS= δ t ≈ 80µsec. To simplify, we fix Ntrial = Nprotein. This leads to a diffusion
constant of proteins ∼ b2/δ t ≈ 3µm2/sec, a reasonable range of diffusion constants for
freely diffusing particles in the nucleus [251].

For a given set of parameters, we first let the system relax for 105 MCS in the absence
of any interaction and spreading mechanism, and then monitor the evolution of the polymer
conformation and spreading of chromatin state during 106 MCS. In each condition, at
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Fig. 4.4 Virtual Chip-seq profiles of the M-state. Probability to be modified P(M) for a toy
model (one painter area of 5 monomers in the middle of the chain, kint = 0) computed using
the simple Painter model (orange, Chapter 2) and the living-chromatin like model (blue) for
different values of k with k/k0 = 1 (J = 0, r = 0, ∆ = 1 and ε = 1): kδ t = 0.1 (left), = 0.01
(center) and = 0.001 (right). To make predictions in the simple painter model, we use the
contact matrix P(i, j) computed from the simulations of a homopolymer.

least 60 different trajectories were simulated. Numerical simulations were performed
using the custom made code developed in the Jost group which can be downloaded at
https://github.com/physical-biology-of-chromatin/LatticePoly/tree/Painter.

4.3.2 Living-chromatin-like model

Polymer dynamics vs epigenomic dynamics

As described in Sec. 4.2, the first model (living-chromatin-like model with implicit HMEs
and architectural proteins) is a generalization of the painter model described in Chapter 2
where we account explicitly for the polymer dynamics. Actually, the painter model corre-
spond to a limiting case where the epigenomic state does not impact the 3D chromosome
organization (J = 0), where the polymer dynamics is fast compared to the epigenomic
kinetics (kδ t ≪ 1), such that the spreading communication between two monomers can be
approximated by P(i, j) the probability of contact between them. In Fig. 4.4 (right), we
indeed verify that, in this limit, both models predict the same profiles.

Interestingly, when epigenetic rates are faster (left and middle in Fig.4.4), spreading is
less efficient and P(M) is lower. Indeed, in these cases, communication between monomers
is less efficient leading to an effective reduction of ε , the factor that accounts for putative
modulation of off-site spreading. This indicates that the ratio of timescales between epige-
netic fluctuations and polymer dynamics play a crucial role in determining the steady-state
profile of modifications, i.e, the spread of histone modifications, and has to be adjusted
carefully according to the system under consideration. In our case, as k ∼ k0 ∼ min−1−h−1,
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Fig. 4.5 (A) Experimental Chip-seq profiles of PH (PRC1 component) and H3K27me3
around the Dac-locus. Recruitment sites of PRC complexes are called PREs. (B) The
Hi-C map of the same region showing the contact between the two PREs. On the left, the
H3K27me3 profile (scaled to the Hi-C map) is also shown. Adapted from [198].

we would remain in the fast polymer dynamics regime in particular for monomers close to
the painter zone where the dynamics of contact with it remains fast compared to 1/k.

Role of the feedback loop

In the following sections, to contextualize our framework, we consider that the M-state is
H3K27me3, that the architectural proteins correspond to PRC1 and that the HMEs are PRC2,
both complexes being central in the regulation of Polycomb target genes [15]. We consider
the spreading of H3K27me3 around two painter zones separated by 80 kbp, hence mimick-
ing the situation around the Dacshung locus in Drosophila, a small Polycomb-repressed
region important during fly embryogenesis [252, 253]. The two painter areas corresponds
to PRE elements that are specific motifs targeted by PRC1/PRC2 complexes [198] which
creates a 100 kbp domain marked by H3K27me3 (Fig. 4.5).

Using the Living-Chromatin-like model, we first simulate the systems for different value
of the reader-writer state-recruitment term ∆ in absence of the feedback of the epigenomic
on genome folding (J = 0). In this case, very similar to the reader-writer mode of the
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Fig. 4.6 Living-Chromatin-like model. (A) Virtual Chip-seq profiles of the M-state around
the dac-like region (950−1050 kbp) when there is no feedback on 3D J = 0. The painter
model parameters are k = k0 = 0.001, ε = 1 and ∆ values are indicated in the legend. (B)
Same as (A) but when the feedback is introduced (J = 0.2). (C) The contact probability
matrix (virtual Hi-C) around the dac-like region when there is no feedback (lower, ∆ = 1)
and the normalized observed/expected contact probability for the case when J = 0.2, ∆ = 1.
The long-range contacts are amplified by factor of 35 (between the painter regions). (D)
Snapshot of a chromatin configuration for ∆ = 1 and J = 0.2. Modified chromatin states are
shown in blue and unmodified in yellow.
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Fig. 4.7 Phase diagram of the lattice gas model in absence of chromatin as a function of the
PRC1 density and self-attraction strength. Spontaneous phase separation occurs above the
spinodal line (black line). The binodal line (red line) shows the concentration in the dilute
phase. The yellow line denotes the concentration (ρcrit

PRC1 ≈ 14µM and the corresponding
JPRC1−PRC1 = 0.9 kT) above which phase separation is observed in vitro.

painter model (Chapter 2), increasing ∆ leads to significant increase in the probability of
M-state, even further away from the painter region. Above a critical ∆, the chromatin
state modifications spread in an unconfined manner (∆ = 1.0, blue curve in Fig. 4.6A).
Next, we introduce the 3D feedback on chromatin state spreading by having self-interacting
modified state (J > 0). To illustrate this, we choose J = 0.2kT , a value that may push an
homogeneously modified system in or close to a globule state (Fig. 3.16). For the two
investigated cases (∆ = 0.1 and ∆ = 1, Fig. 4.6B), we observe an overall increase in P(M)

coupled to a higher compaction of the chain (Fig. 4.6C,D). For example, for ∆ = 1, we
observe P(M) = 0.84 (for J = 0, P(M) = 0.57) which drives the domain to a highly compact
state, long-range contacts being almost 35 times enhanced. All this suggests, consistently
with the previous analyses of living-chromatin-like models [66–68], that the 3D feedback
loop greatly enhances the capacity of spreading by creating a compact environment where
3D contacts are more numerous.

It is to be noted that the compact 3D organization does not constrain the spread of
modified state and leads, as observed in the reader-writer mode of the painter model, to
unconfined memory.
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Fig. 4.8 Snapshots from simulations showing the typical time-evolution of the system,
starting from a well mixed single phase (left) towards the coexistence of two phases (right):
one dense liquid phase (reddish) and dilute liquid phase (blue). The self-attraction strength
of PRC1 proteins is set to 0.9kT and the PRC1 concentration to ρPRC1 ≈ 14µM.

4.3.3 Accounting explicitly for architectural proteins

In this section, we investigate the behavior of the second model introduced in Sec.4.2 where
the architectural proteins are now explicitly accounted for (Sec.4.2.2). We are using the
same dac-like system with two painter areas introduced before.

Liquid-liquid phase separation of self-interacting proteins

First, we investigate the behavior of the architectural proteins (PRC1) alone in absence of
the polymer chromatin by varying the concentration of PCR1 (ρPRC1) and the strength of
self-attraction between PRC1 (Jprotein−protein), in order to characterize the phase separation
process of PRC1. The concentration of proteins ρPRC1 is given in molar concentration
by ρPRC1 = (NPRC1/N)(1/NAνsite), where NA is Avogadro number and νsite = b3/

√
2, the

effective volume of each lattice site. We use the lattice-gas model to calibrate the phase
separation regime for PRC1 proteins, similarly to the work of Tortora et al. [245] for HP1
proteins. Initially, the system starts from a well mixed configuration (Fig. 4.8A), and, for a
given ρPRC1, the formation of droplets is observed above a critical self-attraction strength (the
spinodal concentration, black line Fig. 4.7). The simulated behavior is fully consistent with
standard single-component liquid-liquid phase separation. For example, Fig. 4.8 shows the
time progression of the process, starting from a well mixed initial states that spontaneously
phase separates, leading, at steady state, to a stable dense liquid phase (reddish) and a dilute
liquid/gas phase (blue). In vitro studies on PRC1 phase separation [246] suggest a critical
concentration ρcrit

PRC1 ≈ 14µM above which phase separation occurs at physiological salt
concentration. Based on the phase diagram (Fig. 4.7), we thus infer that the minimum



4.3 Preliminary analysis of the models 129

self-attraction strength required to observe droplet formation at this concentration is ≈ 0.9kT.
In the next, we fixed Jprotein−protein to this value.

Coupling with polymer and epigenomic dynamics

Now, we introduce the 3D chromatin and epigenetic dynamics. To perform a preliminary
investigation, we fix the heterotypic interaction strength between M-state monomer and
PRC1 (Jprotein−M) to half the self-attraction strength (Jprotein−M ≈ Jprotein−protein/2) and the
concentration of PRC1 to ρPRC1 ≈ 14µM. For a weak reader-writer recruitment (∆ = 0.1),
we find that these interaction parameters, give rise to a very similar 1D M-state profile as
seen in living chromatin-like model (Fig. 4.9A). However, interestingly, the 3D organization
of the region is quite different (Fig. 4.9C) driven by the self-attracting proteins binding to
the two PRE regions (Fig. 4.9B) and the formation of a phase-separated droplet (Fig. 4.9D)
of PRC1 that specifically bridges the two PRE regions.
When ∆ = 1 (strong reader-writer), both models lead to the same P(M) profiles (Fig. 4.10A)
and very similar 3D organization (Fig. 4.10C) as the number of architectural protein
simulated is not limiting and still allows to create a droplet large-enough to encompass the
entire dac-region and almost all the surrounding polymer (Fig. 4.10D). Note that, like in the
living-like chromatin state, we do not observe confined memory in this example.

4.3.4 “Living Painter” model: spreading by diffusing HMEs

In this section, we explore the spreading of M-state predicted by the “Living Painter”
description (Sec. 4.2.3) where the diffusion and binding of HME/architectural proteins are
explicitly modeled.

In the absence of phase separation

First, we investigate the situation where diffusing molecules do not self-interact (Jprotein−protein=0).
Note that, even in this case, such molecules may impact the 3D polymer organization as they
can bind to multiple monomers via the heterotypic interactions JHME−seq and Jprotein−M.

Given the complexity of the parameter space (ρHME , JHME−seq, Jprotein−M, etc.), we
make some assumptions to help with the preliminary exploration of the model. We fix
|JHME−seq|= 2kT > |JHME−M| to account for the strong binding of PRC2 at PREs (Fig. 4.5)
and ρHME = 7µM. In the absence of reader-writer term (JHME−M = 0), M-states and
HMEs localize around the two PREs (Fig. 4.11A,B) and P(M) is slightly enhanced around
the painter regions when r = 10 (boosted painter). In the presence of the reader-writer
term (JHME−M = 1kT ), we capture the standard behavior with extended heavy tails and
unconfined spreading. In the case of boosted and simple painter-mode, the small but non-
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Fig. 4.9 Living-Chromatin model with explicit architectural proteins: low ∆ value. (A)
Virtual Chip-seq profiles of the M-state in the dac-like region (950− 1050 kbp) in the
living chromatin-like without (green, copolymer model J = 0.2) and with self-interacting
protein (orange, Jprotein−protein = 0.9, Jprotein−M = 0.5, ρPRC1 ≈ 14µM). The painter model
parameters are k/k0 = 1 with kδ t = 0.001, ε = 1 and ∆ = 0.1.(B) Virtual Chip-seq of PRC1
bound to the chromatin as a function of genomic position (same parameters as in panel
A). (C) The contact probability matrix (virtual Hi-C) for the two cases shown in (A). (D)
Snapshot of system configuration corresponding to the self-interacting protein model with
same parameters as in (A). Modified chromatin states are shown in blue (not visible since
the region is within the droplet) and unmodified in yellow.
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Fig. 4.10 Living-Chromatin model with explicit architectural proteins: high ∆ value. (A)
Virtual Chip-seq profiles of the M-state in the dac-like region (950−1050 kbp) in the living
chromatin-like with self-interacting protein (orange, Jprotein−protein = 0.9, Jprotein−M = 0.5,
ρPRC1 ≈ 14µM) for k/k0 = 1 with kδ t = 0.001, ε = 1, ∆ = 0.1 (solid) and ∆ = 1 (Dashed).
For ∆ = 1, comparison with LC-like copolymer model (blue, J = 0.2). (B) Virtual Chip-seq
of PRC1 bound to the chromatin as a function of genomic position. (C) Virtual Hi-C (top)
With explicit architectural proteins, (bottom) living chromatin-like model (D) Snapshot of
system configuration corresponding to ∆ = 1 with explicit architectural proteins as in (A).
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Fig. 4.11 Living Painter model: different modes of spreading in absence of self-attraction.
(A) Virtual Chip-seq profiles of the M-state around the dac-like region (950−1050 kbp)
for different spreading modes (i) painter-mode (blue) (ii) boosted-painter (yellow) and
(iii) reader-writer mode (red). (B) Average number of chromatin bound HMEs in each
case. Parameters used are k/k0 = 1 with kδ t = 0.001, JHME−seq = 2kT, ρHME = 7 µM,
Jprotein−protein = 0.

zero modifications (P(M)≈ 0.1) further away from the painter region is probably due to
the random encounter of diffusing HMEs with the distant sites, like the background level
which may be seen in experimental Chip-seq profiles (Fig. 4.5). Indeed, the profile of bound
HMEs, shown in Fig. 4.11B, exhibits a non-zero value away from the painter areas even in
the absence of state-specific recruitment.

Enzyme limitation

As we have shown in Chapter 2 (Sec. 2.3.7), the key ingredients that might lead to confined
chromatin state memory are enzyme limitation and 3D compaction of the domains. Here,
still assuming Jprotein−protein = 0, we systematically reduce the concentration of HMEs,
and observe a coherent transition from unconfined spreading of M-state to a regime where
M-states are confined around the Dac-locus (Fig. 4.12A) but with a shape of P(M) profile
very different from the simple painter model. The Chip-seq of HMEs also follow the trend,
as the number of enzymes become limited, HMEs preferentially bind at the PRE region
compared to the rest of the locus, and the number of HME bound at the PRE is even higher
than when HMEs are present in excess (Fig. 4.12B).
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Fig. 4.12 Living Painter model: effects of enzyme limitation in absence of self-attraction. (A)
Virtual Chip-seq profiles of the M-state in the dac-like region (950−1050 kbp) for different
HME concentrations ρHME . (B) Corresponding amount of HMEs bound to chromatin
for each case. Parameters used are k/k0 = 1 with kδ t = 0.001, r = 10, JHME−seq = 2kT,
JHME−M = 1kT, Jprotein−protein = 0.

Nucleation v/s phase separation

An interesting aspect of the “Living painter” model would be to address epigenetic mem-
ory in all its mechanistic detail. In this section, we investigate a parameter regime
where the model would favour the formation of large phase separated droplet (excess of
HME/architectural proteins ρHME = 21µM) but with the possibility of having a (meta)stable
small multi-droplet system where diffusing HMEs/proteins are stably bound to chromatin
and form multiple foci.

The parameter driving this property is the ratio of heterotypic interaction (diffusing
particle and chromatin) to homotypic interaction (self-attraction of diffusing particles). In a
regime where the heterotypic interaction is much less than the homotypic interaction, we
are likely to see a single phase separated droplet (Fig. 4.13). In the other extreme, having
strong heterotypic interactions would favour nucleation of these particles on the chromatin
(as opposed to self-association) leading to the formation of several smaller droplet-like
structures along the chain at different positions where some M-states have been nucleated.
Average Chip-seq profiles of modifications or proteins might not be informative about these
processes (Fig. 4.13A,B) since the nucleation of droplets being stochastic (either from
the painter areas or randomly by diffusing HMEs), their positions vary from trajectory to
trajectory. This holds true for Hi-C of the region as well (Fig. 4.13C). Rather, single-cell
experimental information would be quite different between the two cases.

Advances in super-resolution microscopy has increased the resolution of nuclear imaging
and thus can be used to investigate in detail the mechanistic scenario of Polycomb foci
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Fig. 4.13 Living painter model: Nucleation vs Self-association in the phase-separated regime.
(A) Virtual Chip-seq profiles of the M-state in the dac-like region (950−1050 kbp) for two
different HME-chromatin interaction strength at high HME concentration ρHME = 21µM.
(Blue line) Homotypic interaction > heterotypic interaction: JHME−seq = JHME−M = 0.5 kT.
(Yellow line) Homotypic interaction < heterotypic interaction: JHME−seq = 2kT, JHME−M =
1 kT. In both the cases homotypic interaction is set to 0.9 kT. (B) Average number of HMEs
bound to chromatin for both the case in (A). (C) Virtual Hi-C map: (top) JHME−seq =
JHME−M = 0.5 kT, (bottom) JHME−seq = 2kT, JHME−M = 1 kT. (D) Average number of
liquid drops formed as a function of time. (E) A representative snapshot of configuration
for JHME−seq = JHME−M = 0.5 kT. (F) A representative snapshot of configuration for
JHME−seq = 2kT, JHME−M = 1 kT.
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formation. For example, we monitor the number of droplets formed as a function of time, a
quantity that may be available experimentally: a scenario leading to a large phase-separated
droplet would exhibit an asymptote converging rapidly to 1 (Blue in Fig. 4.13D) contrary
to a multi-droplet scenario leading to a high number of meta stable droplets (Yellow in
Fig. 4.13D). Note that, as shown in [245], the dynamics of droplets fusion become very
slow in a heterotypic system (proteins in interaction with a polymer) as it is coupled to the
polymer dynamics (which is slow) and therefore may explain why the multi-droplet system
is (meta)stable over a very long time period.

4.4 Discussion and conclusion

In this chapter, we have discussed the development of the “Living painter” model and
presented the ingredients of the model, showing the progressive transition from the original
painter model to a more complex framework accounting explicitly for HMEs and architec-
tural proteins. The chapter doesn’t present a complete analysis of the models discussed,
rather it reflects the scope and extension of this thesis. Nevertheless, our preliminary analysis
of the model leads to several interesting observations.

In the first part, we recapitulate the properties of living chromatin-like models by inte-
grating the painter model discussed in chapter 2 with the 3D polymer dynamics detailed in
chapter 3. It is to be noted that in chapter 2, the description is at a finer scale (nucleosomal),
but here the resolution is at 1kbp hence the chromatin states are also an effective coarse
grained representation. We show how having compact 3D domains enhance the spreading
of chromatin state and how 3D compaction alone might not lead to confined chromatin
state domains. In the regime of excess enzymes, it leads to unconfined spreading of M-state
(Fig. 4.6). We have discussed the phase separation properties of diffusing proteins and
contextualized it to PRC1 (Fig. 4.7) using in vitro experimental data [246]. Accounting
explicitly for architectural proteins further improves the virtual Hi-C, better capturing the
3D organization of the dac-locus (the experimentally observed contact between the two
PREs is better captured, Fig. 4.9C).

As a next step, we integrate within the lattice-gas model, the explicit modelling of HMEs
to develop the living painter model. Our preliminary analysis of the model, characterizes the
process of spreading of chromatin state (Fig. 4.11), showing how the process of spreading
can be dissected into sequence-dependent and chromatin state-dependent processes like in
the painter model. We explicitly show how limited enzyme regime would lead to confined
chromatin state spreading in the case of a small compact region (red line in Fig. 4.12). The
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Fig. 4.14 Preliminary results from the Giacomo Cavalli lab (courtesy of Thierry Cheutin,
unpublished results). (A) Hox genes nano-compartments assembly driven by Ph/Pc Scaf-
folding Proteins. 3D Assembly of Polycomb-repressed genes might rely on the clustering of
PREs (red) by Ph binding/bridging. (B) Followed by the clustering of H3K27me3 chromatin
(cyan) by Pc binding/bridging. (C) Images of Ph. (D) Images of Pc. (E) Images of PREs
sites. Comparing the nuclear distribution of these elements at conventional (confocal) and
high resolution (STED) microscopy.

precise conditions (i.e., what exactly is the contribution of 3D) and the critical point at which
spreading would start to ‘flood’ (unconfined spreading) are yet to be quantitatively identified.

Finally, we discuss the impact of phase separation of diffusing HMEs and the two con-
trasting regimes of the model: (i) where the system favors the formation of a single phase
separated droplet of HMEs around a particular chromatin region (heterotypic interactions are
much less than homotypic interactions) and (ii) where the system stably maintains a multi-
droplet system having favored nucleation of HMEs on chromatin (homotypic interactions are
much less than heterotypic interactions). For example, the recent experimental results of our
collaborator Thierry Cheutin in Cavalli’s lab, using super-resolution microscopy (Fig. 4.14),
suggest that Ph/Pc, two components of PRC1 in drosophila, establish loops between the
multiple nucleation sites (PREs) of one Hox complex by creating nuclear nanoclusters. This
motivates further characterization of the nucleation mediated multi-droplets system. How-
ever in that specific biological situation, the mechanism driving such multi-droplets phase
might be different from the one we investigated in Fig. 4.13. Experimental investigation
on both, PRE recruitment strength and Ph/Pc hetero- and homoptypic interactions, would
probably help us to provide a better understanding of the precise mechanism at work in
these hox genes domains.
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Moreover, it would be quite interesting to study percolation transitions (the measure
we have used in chapter 2 (see Sec. 2.2.4) in the living painter framework, since actual
configurations can be utilized to understand the transition. Specifically, 3D contact domains
might be an observable informative about the two distinct regimes of nucleation driven
droplet-like structures and phase separation driven single droplet formation (Fig. 4.13). In
this chapter, we have only done a preliminary analysis which opens a lot of new avenues
to explore. The model currently does not distinguish between architectural proteins and
histone modifying enzymes, decoupling HMEs and structural proteins (bridgers) is one such
aspect to be explored.





Chapter 5

Conclusion and Perspectives

In this thesis, we have developed a generic (applicable to diverse biological contexts) math-
ematical framework for epigenome regulation and maintenance, and the progression of
the thesis is working towards a precise description of the molecular mechanisms involved
in chromatin state spreading and maintenance. In Chapter 1, we revisit the notion of epi-
genetics, particularly chromatin-based epigenetic regulation of gene expression and the
significance of 3D genome organization. We have provided a comprehensive overview of
the biological context and theoretical approaches to model chromatin state spreading and
maintenance broadly classifying them as 1D models, effective 3D and models with 1D-3D
coupling ("Living Chromatin" models). This classification also represents the chronological
development of the field.

The main part of the thesis (Chapter 2) focuses on introducing and characterizing an
effective 3D model of epigenome regulation, the "Painter" model. We started by translating
biological evidences and observations into "building blocks" of a mathematical descrip-
tion; sequence-specific chromatin state spreading, allosteric boost in spreading and the
reader-writer mechanism, coupled with long-range spreading in 3D forms the basis of
painter model. A systematic dissection of these processes provide novel insights, even
suggesting some prospective experimental direction, like measurements of nucleosome state
correlation (Sec. 2.2.4) might prove useful in understanding the mechanism driving the
spread of chromatin state. We have addressed the impact of local 3D genome organization
on chromatin state spreading by incorporating different molecular mechanisms that mediate
inter-nucleosome contacts in 3D like simple nearest-neighbour contact, diffusion and loop
extrusion, showing unequivocally that percolation of chromatin state is crucially dependent
on the 3D feedback. Studying different molecular mechanisms (varying 3D contacts) has
led to identifying enzyme limitation and 3D compaction as key ingredients for a confined,
stable chromatin state in the absence of sequence-dependent recruitment. Our work also
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investigates the impact of chromatin state dynamics on transcription, slow chromatin state
dynamics leading to noisier gene expression. This analysis allows us to accurately interpret
the experiments performed by Ragunathan et al. [10] and to make quantitative predictions
of the kinetics of heterochromatin decay in fission yeast.

We have developed an end-to-end (from chromatin state to gene expression) modular
framework, which can be easily extended to include finer details as shown in Sec. 2.4. The
modular nature of the framework (being able to integrate different nucleosome-nucleosome
contacts and spreading mechanisms) can be exploited to make locus dependent spreading
of chromatin states. A simple mathematical framework, the painter model accurately pre-
dicts chromatin state spreading in a diverse biological contexts from yeast to human cells
(Sec. 2.3.9).

The pertinence of 3D genome organization in gene regulation has been established by
previous works (discussed in Chapter 1) but little is known about the 1D-3D coupling. To
explore the dynamic coupling between epigenome regulation and 3D genome organization,
we went beyond the effective 3D description and studied explicit 3D polymer dynamics. In
Chapter 3, we refined the 3D simulation method by attempting to accurately describe the
structure and dynamics of biologically relevant regions of interest (genes, TADs) which are
often very small compared to the size of the chromosome. Evidently shown by analysis of
experimental (and theoretical) data, not maintaining the system in correct topological regime
would lead to significant variations in physical measurements of the region of interest. A
quantitative investigation of what length of the chromosome should be simulated in-order to
correctly account for the epigenomic context (epigenomic interaction of the domain with
the environment) and topological regime of the region (like when the domain is in the full
chromosome) led to a length prediction dependent on the extent of topological constraints,
generally much less than the full chromosome length. We hope our analysis would facilitate
the design of computationally efficient and physically accurate polymer simulations in the
future.

To further develop the painter model, incorporating finer description to investigate exper-
imental systems like Polycomb repression in Drosophila, we integrated the painter model
with explicit 3D polymer dynamics. In Chapter 4, we have shown how the painter model
can be scaled up to have 3D polymer dynamics and also to have diffusing painters (histone
modifying enzymes) regulating epigenome dynamics, the so-called "Living Painter" model.
We have discussed the progressive development of the Living Painter model in the chapter.
Our preliminary analysis recapitulates the findings of painter model, that 3D compaction
alone might not confine chromatin state spreading. The Living Painter framework provides a
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more accurate description to investigate the aspect of enzyme limitation and its contribution
to confined chromatin states. We show that a limited number of diffusing painters do
facilitate confined chromatin state domains.

I would prefer to present Chapter 4 as a reflection of my current research interests. A
glimpse into the possibilities that can be explored by the Living painter model is provided
by the analysis contrasting the two regimes, one favoring nucleation of HMEs creating local
multi-droplet system while the other favoring phase separation of such proteins. A complete
phase diagram and analysis of percolation transitions is a necessary step in the characteriza-
tion of the model. This promises a framework to understand fine-scale epigenomic memory,
clustering of Polycomb repressive regions and a quantitative mechanistic understanding of
gene regulation coupling epigenomics and 3D chromatin organization. For example, in a
near future, I plan to apply such a framework in order to characterize the spatio-temporal
dynamics of Polycomb regulation during fly embryogenesis in collaboration with Thierry
Cheutin from Cavalli’s lab.
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