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1
Introduction

Contents
1.1 Goal and Contributions . . . . . . . . . . . . . . . . . . . . 1
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Security in Data Streams for Duplicate Detection . . . . . . 2
1.2.2 Applied Security on Blockchain . . . . . . . . . . . . . . . . 3
1.2.3 Security of a Cryptographic Protocol . . . . . . . . . . . . . 4
1.2.4 Other Publications . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Goal and Contributions
The first use of cryptography was for military purposes. The goal was simply to
provide confidentiality to messages exchanged on what would later be labelled as
insecure channels. Yet, over the last century, the need for confidentiality has often
been seen as insufficient, and cryptography itself as a valuable tool, but a tool
that required good properties of all the tools it interacted with. We often describe
cryptography as an armoured door, preventing attackers from invading your home.
However, while the armoured door itself is secure, it relies on hinges, doorframes
etc., which also need to be studied for the security of the home. Furthermore, once
the armoured door has been designed, it can be used in many different use cases, let
it be for a vault, a simple house, the mailbox... Each new use comes with a list of
requirements and properties that need to be studied. Hence, there is today a need to
clearly understand how secure each software used is, and how to use them securely.
As a matter of fact, software developers cannot spend days reading academic papers
to assess the security of the solution they are implementing. Rather, they need to
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Chapter 1 - Introduction

be able to quickly consult, ideally from the software reference, how secure the use
case is and how to correctly implement it.

This thesis modestly adds its contribution to the research effort in that domain:
improve on the comprehension of existing data structures, and propose new use cases
of cryptography with a special attention to provable security. The goal being set,
our main axes of research, that we present in this manuscript, are the following:

• Study existing data structures, their security properties, and, if applicable,
how they behave in an adversarial environment.

• Allow algorithms to be executed in the cloud (i.e. to be distributed), while
maintaining the privacy of the data exchanged. This includes quantifying the
data leaked to each participant to the protocol, as well as ensuring that an
external observer cannot gain significant information from the data exchanges.

1.2 Publications
We now present our contributions. While some of our publications are presented
in this manuscript, we also took the decision of not presenting all our results here,
both for the sake of brevity and of coherence.

1.2.1 Security in Data Streams for Duplicate Detection
The results obtained in this section are presented in Part I. Initially, the study of
duplicates was related to a new authenticated encryption method we were studying.
In this protocol, we identified an attack, which we thwarted with the use of nonces-
unique elements, generated by the sender. However, this defence mechanism implied
that the receiver had to keep track of the nonces, to avoid reuse. While a database is
an obvious solution, we looked instead for smaller structures, as our cryptographic
protocol was aimed at IoT devices, with little storage and computing power.

Even though in the end the authenticated encryption appeared non viable (no-
tably because of intrinsic properties of adversarial resistance of duplicate filters ex-
posed in this thesis), the work on duplicate filter is still of scientific interest.

• Quotient Hash Tables: Efficiently Detecting Duplicates in Streaming
Data
This contribution presents the Quotient Hash Table (QHT) a new data struc-
ture for duplicate detection in unbounded streams. QHTs stem from a cor-
rected analysis of streaming quotient filters (SQFs), resulting in a 33% reduc-
tion in memory usage for equal performance. With the same memory amount,
QHT reduce by up to 7.7 points of percentage the error rate (about 13% more
efficient) when compared to SQF. We also introduce an optimised version of
our new data structure dubbed Queued QHT with Duplicates (QQHTD).
We provide a new and thorough analysis of both algorithms, with results of
interest to other existing constructions, and we correct a slight mistake that

2



1.2 - Publications

was made in a previous version of this paper. We also introduce a novel (non
tight) lower bound on the error rate, thus helping to determine how close to
optimality a filter is. These theoretical results are confronted with detailed
benchmarks, and matched against the performance of other filters from the
literature, proving the efficiency of QHTs, both on an entire stream or on a
sliding window. Finally, we discuss the effect of adversarial inputs for hash-
based duplicate filters similar to QHT.
This work is joint with Rémi Géraud–Stewart and David Naccache. The ver-
sion presented in this thesis is an extended version of a work presented at the
34th ACM/SIGAPP Symposium On Applied Computing (SAC 2019), and
published as [GLPN19].

• Approaching Optimal Duplicate Detection in a Sliding Window
Iterating on the previous work, we focus on the duplicate detection problem
over a sliding window. In this work, we formalize the sliding window setting
introduced by [SZ08; Yoo10], and show that a perfect (zero error) solution can
be used up to a maximal window size wmax. Above this threshold we show
that some existing duplicate detection filters (designed for the non-windowed
setting) perform better that those targeting the windowed problem. Finally,
we introduce a “queuing construction” that improves on the performance of
some duplicate detection filters in the windowed setting.
We also analyse the security of our filters in an adversarial setting.
This work is joint with Rémi Géraud–Stewart and David Naccache. It has been
presented at the 26th International Computing and Combinatorics Conference
(COCOON 2020), and published as [GSLPN20].

1.2.2 Applied Security on Blockchain

• About Blockchain Interoperability
A blockchain is designed to be a self-sufficient decentralised ledger: a peer ver-
ifying the validity of past transactions only needs to download the blockchain
(the ledger) and nothing else. However, it might be of interest to make two dif-
ferent blockchains interoperable, i.e., to allow one to transmit information from
one blockchain to another blockchain. In this work, we give a formalisation
of this problem, and we prove that blockchain interoperability is impossible
according to a strong definition of a blockchain. Under a weaker definition of
blockchain, we demonstrate that two blockchains are interoperable is equiva-
lent to creating a ‘2-in-1’ blockchain containing both ledgers, thus limiting the
theoretical interest of making interoperable blockchains in the first place. We
also observe that all practical existing interoperable blockchain frameworks
work indeed by exchanging already created tokens between two blockchains
and not by offering the possibility to transfer tokens from one blockchain to
another one, which implies a modification of the balance of total created tokens

3



Chapter 1 - Introduction

on both blockchains. It confirms that having interoperability is only possible
by creating a ‘2-in-1’ blockchain containing both ledgers.
This work is joint with Pascal Lafourcade and has been published in Informa-
tion Processing Letters Volume 161, September 2020, as [LLP20].

1.2.3 Security of a Cryptographic Protocol
These contributions are a bit more theoretical, as they spawn from a new field of
research, aiming to distribute and securize existing machine learning protocols. This
line of work was a collaboration with the INSA Val de Loire.

• Secure Best Arm Identification in Multi-Armed Bandits
The stochastic multi-armed bandit is a classical decision making model, where
an agent repeatedly chooses an action (pull a bandit arm) and the environ-
ment responds with a stochastic outcome (reward) coming from an unknown
distribution associated with the chosen action.
A popular objective for the agent is that of identifying the arm with the max-
imum expected reward, also known as the best-arm identification problem.
We address the inherent privacy concerns that occur in a best-arm identifica-
tion problem when outsourcing the data and computations to a honest-but-
curious cloud.
Our main contribution is a distributed protocol that computes the best arm
while guaranteeing that (i) no cloud node can learn at the same time infor-
mation about the rewards and about the arms ranking, and (ii) by analyzing
the messages communicated between the different cloud nodes, no information
can be learned about the rewards or about the ranking. In other words, the
two properties ensure that the protocol has no security single point of failure.
We rely on the partially homomorphic property of the well-known Paillier’s
cryptosystem as a building block in our protocol.
We prove the correctness of our protocol and we present proof-of-concept ex-
periments suggesting its practical feasibility. This work is joint with Radu
Ciucanu, Pascal Lafourcade and Marta Soare. It has been presented at the
15th International Conference on Information Security Practice and Experi-
ence (ISPEC 2019) and published as [CLLP+19].

• Secure Outsourcing of Multi-Armed Bandits
We consider the problem of cumulative reward maximization in multi-armed
bandits. We address the security concerns that occur when data and com-
putations are outsourced to an honest-but-curious cloud i.e., that executes
tasks dutifully, but tries to gain as much information as possible. We are
motivated by situations where data used in bandit algorithms is sensitive and
has to be protected e.g., commercial or personal data. We rely on crypto-
graphic schemes and propose UCB-DS, a distributed secure protocol based on
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the UCB algorithm, which yields the same cumulative reward as UCB while
satisfying desirable security properties that we formally prove. In particular,
cloud nodes cannot learn the sum of rewards for more than an arm or the
cumulative reward. Moreover, by analysing messages exchanged among cloud
nodes, external observers cannot learn the cumulative reward or the sum of re-
wards produced by some arm. We show that the overhead due to cryptographic
primitives is linear in the size of the input.
Our implementation confirms the linear-time behaviour and the practical fea-
sibility of our protocol, on both synthetic and real-world data.
This work is joint with Radu Ciucanu, Pascal Lafourcade and Marta Soare.
It has been presented at the 19th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom 2020),
and published as [CLLP+20].

1.2.4 Other Publications

Other publications have been made throughout the last three years, on various topics
of security, sometimes theoretical, sometimes practical.

• Keyed Non-Parametric Hypothesis Tests
The recent popularity of machine learning calls for a deeper understanding of
AI security. Amongst the numerous AI threats published so far, poisoning
attacks currently attract considerable attention. In a poisoning attack the op-
ponent partially tampers the dataset used for learning to mislead the classifier
during the testing phase.
This work proposes a new protection strategy against poisoning attacks. The
technique relies on a new primitive called keyed non-parametric hypothesis
tests allowing to evaluate under adversarial conditions the training input’s
conformance with a previously learned distribution D. To do so we use a
secret key κ unknown to the opponent.
Keyed non-parametric hypothesis tests differs from classical tests in that the
secrecy of κ prevents the opponent from misleading the keyed test into con-
cluding that a (significantly) tampered dataset belongs to D.
This work is joint with Yao Cheng, Cheng-Kang Chu, Hsiao-Ying Lin and
David Naccache, and has been presented at the the 13th Network and System
Security (NSS 2019), and published as [CCL+19].

• PlasticCoin: an ERC20 Implementation on Hyperledger Fabric for
Circular Economy and Plastic Reuse
Cryptocurrencies have gained popularity in the last few years, thanks to the
democratization of Bitcoin. However, most of these currencies have a very
general purpose, namely of allowing people to pay their products with an
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electronic, decentralised currency. Moreover, the lack of trust of these open-
network blockchains comes at a significant economic cost. In this work, we
present PlasticCoin, a cryptocurrency empowering plastic reuse in a circular
economical model, that anyone can join, and that respects the ERC20 specifi-
cations on a consortium blockchain. We also explore the economical ecosystem
revolving around PlasticCoin, and also introduce a way to print tickets that
can temporarily hold the role of physical banknotes. Finally, we show that our
system is flexible, and it can be adapted to many other business purposes.
This work is joint with Mirko Koscina and Pierre Cluchet. It has been pre-
sented at the Workshop On Social Innovation And Web Intelligence, hosted by
the Web Intelligence conference (SIWEB@WI 2019), and has been published
as [KLC19].

• Get-your-ID: Decentralized Proof of Identity
In most systems without a centralised authority, users are free to create as
many accounts as they please, without any harmful effect on the system. How-
ever, in the case of e-voting, for instance, proof of identity is crucial, as sybil
identities can be used to breach the intended role of the system. We explore
the conditions under which a decentralised proof of identity system can ex-
ist. We also propose such a scheme, called Get-your-ID (GYID), and prove
its security. Our system allows a user to generate and revoke keys, via an
endorsement mechanism, and we prove that under some conditions which we
discuss, no user can have more than one active key. We then show how voting
protocols can be adapted on top of our system, thus ensuring that no user is
able to cast a valid vote more than once.
This work is joint with Pascal Lafourcade. It has been presented at the 12th In-
ternational Symposium on Foundations and Practices of Security (FPS 2019),
and has been published as [LL19].

• A silver bullet? A Comparison of Accountants and Developers Men-
tal Models in the Raise of Blockchain
This contribution is quite different from the others, as it is a preliminary re-
search on an interdisciplinary research between requirement engineering and
security. This exploratory work intends to drive preliminary insights on the
different mental models accountants and blockchain developers have on the im-
plementation of blockchain for accounting. Based on the question of whether
blockchain applications for accounting could be revolutionary, this work em-
ploys a ground theory methodology based on semi-structured interviews and
concept analysis to highlight the different approaches to transparency and
trust between the selected groups, the challenges of blockchain and the po-
tential effects of this technology in accounting. Although deeper studies are
needed, the conclusions highlight the socio-technical nature of accounting; the
relevance and changes of the concepts of trust and transparency when marry-
ing both disciplines; and the real relevance of this technology for the processes
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of auditing and accounting.
This work is joint with Rose Esmander, Pascal Lafourcade, Claudia Negri Rib-
alta. It has been presented at the 3rd Interdisciplinary Workshop on Privacy
and Trust (iPAT 2020), held in conjunction with the 15th International Confer-
ence on Availability, Reliability and Security (ARES 2020), and published as
[ELL+20]. An extended version of this work has been published in a selected
papers edition of ARES, as [NRLS+21].

• A Blockchain-based Marketplace Platform for Circular Economy
Over the recent years, there has been an intense research on blockchain and its
applications in real-life scenarios, both from academic and industrial research.
This work proposes an architecture for a blockchain-based marketplace plat-
form. We have implemented and tested our design, which allows user to do
simple marketplace transactions as well as more complicated features, such as
auctions à la eBay. We explore the functionalities and the implementation
details of our solution, while showing how we ensure respect with GDPR.
This work is joint with Mirko Koscina and Claudia Negri Ribalta, and has been
accepted at the 36th ACM/SIGAPP Symposium On Applied Computing (SAC
2021), and has been published as [KLNR21].
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2.1 Duplicate detection
In this section, we expose the formalism and the definitions related to duplicate
detection. Duplicate detection relates to the problem, when given a stream of ele-
ments, to detect for each new element whether it occurred previously in the stream
or not.
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2.1.1 Duplicate Detection Problem
Definition 2.1.1 (Duplicate detection problem). Let E = (e1, . . . , en, . . . ) be a
(possibly infinite) sequence of elements ei ∈ Γ where Γ is some alphabet of size |Γ|.

An element ei from E is a duplicate if ∃ej ∈ E, j < i such as ej = ei. Otherwise,
ei is unseen. Note that by definition e1 is always unseen.

The approximate duplicate detection problem is the question of finding with the
best probability, for each new element of the stream, whether it is a duplicate in a
stream E.

This problem is equivalent to a dynamic formulation of the approximate mem-
bership problem [DP08], which focuses on finding a duplicate in a fixed dataset. We
recall the following classical result:

Theorem 2.1.1. Assume that each ei is sampled uniformly at random from Γ. Then
perfect detection requires |Γ| memory bits.

Proof. A perfect duplicate algorithm must be able to store all finite substreams
of any stream E = (e1, . . . , en, . . . ), i.e., must be able to store any subset of Γ,
which we denote by P(Γ). Given that there are |P(Γ)| = 2|Γ| of them, according to
information theory any such filter requires at least log2(|P(Γ)|) = log2(2|Γ|) = |Γ|
bits of storage. �

Because of this result, perfect duplicate detection is often out of reach when |Γ|
is big — however probabilistic solutions are often sufficient for many applications.
Such algorithms make errors: false positives (claiming a duplicate where there isn’t)
and false negative (missing a duplicate). We mostly consider cases when the amount
of memory M is such that M ≪ |Γ|.

On a side note, it is clear that the input distribution plays a central role regarding
how efficiently the duplicate detection problem can be solved. For instance, some
deterministic streams may be expressed very compactly (such as the output of a
PRNG with known seed) making the duplicate detection problem relatively easy.
Information-theoretically, if the source has |Γ| bits of entropy then the situation is
equivalent to having an |Γ|-bits, uniformly distributed, input.

2.1.2 Filters
As the problem of duplicate detection has been set, we now need to define the
structures that will try to solve this problem.

Definition 2.1.2 (Duplicate Detection Filter (DDF)). Let Γ be an alphabet, let M
represent the set of states that can be represented using M bits of memory. A dupli-
cate detection filter F (or DDF) over the memory M is a tuple F = (S, Detect, Insert),
where:

• S ∈ M is the current state

• Detect : Γ×M→ {DUPLICATE, UNSEEN}

10



2.1 - Duplicate detection

• Insert : Γ×M→M

Here DUPLICATE corresponds to a guess, given the current filter state, that the
provided element is duplicate, and UNSEEN that it is unseen. Insert corresponds to
an update of the filter’s memory state after observing a new element.

In practice, Detect and Insert are often merged into a single algorithm Stream←
Insert ◦ Detect: when a new stream element arrives, we first detect whether it is a
duplicate or not, and then add it in our memory.

Definition 2.1.3 (False positive (resp. negative)). If, for an unseen (resp. dupli-
cate) element e, Detect(e) outputs DUPLICATE (resp. UNSEEN), e is called a false
positive (resp. negative).

Definition 2.1.4 (FPR, FNR). The false positive rate (FPR) of a stream E is
the frequency of false positive. The false negative rate is similarly defined as the
frequency of false negatives.

Furthermore, for a stream E, we define the value FPRn as the FPR of E over the
n first elements, and same for FNRn. Similarly, the asymptotic FPR (resp. FNR)
is defined as FPR∞ = lim

n→∞
FPRn (resp. FNR∞ = lim

n→∞
FNRn).

Note that, at several occasions, we will focus on the probability of false positive
(resp. false negative) after n insertions, noted FPn (resp. FNn), as these probabilities
are most of the time easier to derive. The derivation of, e.g., the FPR from the FP
probability is trivial: FPRm = 1

m

∑m
i=1 FPi.

An open research question is whether there exist filters whose FNR and FPR
can be kept low when M is bounded.

2.1.3 Duplicate Detection on a Sliding Window
As we will see, the DDP is often more interesting to study on a sliding window.

Let us consider a sliding window of size w ∈ N, a stream E = (e1, . . . , en, . . . )
from an alphabet Γ.

Definition 2.1.5 (Duplicate detection problem on a sliding window (wDDP)). The
element ei of E is said to be unseen in the sliding window, and we note ei /∈wE if
all w previous elements from E are different from ei. More formally, ∀i ≤ n, ei is
unseen if and only if ∀k ∈ {1, . . . , min(w, i − 1)}, ei−k ̸= ei. If this is not the case,
ei is said to be a duplicate within the sliding window, and we note ei ∈w E.

We similarly redefine the notion of false positives and negatives, as well as the
false positive rate and false negative rate, over a sliding window. The FPR (resp.
FNR) of a filter on a sliding window of size w is noted FPRw (resp. FNRw).

While the goal of this work is to work as much as possible with this definition
of false positives on a sliding window, we sometimes use the error rate following
Definition 2.1.3, as the related formulae are much easier to use for practical consid-
erations.
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2.1.4 Adversarial Resistance to Duplicate Detection
In this section, we consider a scenario in which an adversary tries to fool the fil-
ter. Namely, the adversary will try to trigger false positives and false negatives.
Motivations for doing so include fooling the system, for instance in the case of fraud-
ulent clicks transactions [MAEA05], a sophisticated DoS relying on cache misses
[FCA+00], and so on.

To create a realistic adversary model, we assume like in [CDPLB+17] that the
adversary does not have access to the filter’s internal memory. Nonetheless, after
every insertion she knows whether the inserted element was detected as a duplicate
or not. Thus, the attacker is able to carry an adaptive attack, by choosing the next
element to send to the filter as a function of all previous insertions. The adaptative
advantage allows the attacker to establish strategies that may perform better than
random, hence giving an advantage to the attacker in her endeavour, whatever this
endeavour might be.

We do not make assumption on the adversary memory: she is able to remember
all previous queries she made.

In this adversarial game, the attacker can send an arbitrary stream to the filter,
and is allowed to get the result of Stream for every element. Then, at her convenience,
the attacker goes into the second phase of the game, in which she has two possible
actions:

• Send an unseen element that will be a false positive with high probability (false
positive attack);

• Send a duplicate element that will be a false negative with high probability
(false negative attack).

Given these premises, we give a formal definition of an adversarial game, adapted
to our context.

Definition 2.1.6 (n-false positive/negative adversarial game). An adversary A feeds
data to a duplicate filter F , and for each inserted element, A knows whether F
answers DUPLICATE or UNSEEN, but has not access to F ’s internal state M. The
game has two distinct parts.

• In the first part, A can feed up to n elements to F and learns F ’s response
for each insertion. A can decide to switch to the second part before sending n
elements.

• In the second part, A sends a unique element e⋆.

A wins the n-false positive adversarial game (resp. n-false negative adversarial
game) if and only if e⋆ is a false positive (resp. a false negative).

Variants of these games over a sliding window of size w are immediate. Note
that other works (notably [NY15]) have also investigated the adversarial context
of some duplicate filters, in this case, of the Bloom Filter. However, they relied
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on a different definition of adversarial attacks, in which the attacker had access
to an oracle, emulating the filter’s state (which does not evolve), and then emits a
challenge e⋆. While their definition of an adversarial attack is more fit in the context
of a fixed Bloom Filter (the context [NY15] authors investigate), we argue that our
definition is more fit in a streaming context.
Definition 2.1.7 (Adversarial False Positive Resistance). We say that a duplicate
filter F is (p, n)-resistant to adversarial false positives if no polynomial-time prob-
abilistic (PPT) adversary A can win the n−false positive adversarial game with
probability greater than p.

Note that if F is (p, n)-resistant, then it is (p, m)-resistant for all m < n.
We define similarly the notion of being resistant to adversarial false negatives.

Finally, both definitions also make sense in a sliding window context.

2.2 Primer on Multi-Armed Bandits
The problem of best arm identification in multi-armed bandits [ABM10] has been
initially formulated in the domain of real numbers. We slightly revisit the initial
formulation of the problem in order to manipulate integers. The reason behind this
adaptation is that later on in our thesis, we rely on public key cryptography tools
to add security guarantees to a state-of-the-art best arm identification algorithm.

2.2.1 Problem exposure
Input. The input is twofold:

• Number of arms K. Each arm i ∈ {1, . . . , K} is associated to a reward
value x(i) and a reward function r that returns a random integer in an interval
[x(i) − ϵ, x(i) + ϵ] according to a uniform probability distribution. Whereas
each arm i is associated to its specific value x(i), the value of ϵ is common to
all arms. The intervals associated to different arms may be overlapping, which
makes the setting non-trivial. The best arm i∗ is arg max

i∈{1,...,K}
x(i).

• Budget N . The budget represents how many arm pulls (and implicit reward
observations) the user is allowed to do.

Note that for designing a budget-allocation strategy between the arms, only the
number of arms K and the budget N are known. There is no initial information
about the reward associated to each arm.

Output. The estimated best arm î∗
α that can be learned after making N arm

pulls (and subsequent reward observations) according to some allocation strategy α,
which defines how the budget is divided between the K arms. The challenge is to
design a budget-allocation strategy α that makes the best possible use of the budget.
In other words, when selecting the arms to be pulled according to α, the observed
rewards allow to acquire as much useful information as possible for identifying i∗.
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Performance Measure. We call simple regret RN the difference between the
value of the (true) best arm i∗ and the arm î∗

α estimated as being the best arm by
an allocation strategy α after N arm pulls. Thus, we compare the gap between the
value of the identification made by strategy α and that of an oracle strategy that
knows the values of the arms beforehand. Formally, the performance of strategy α
after using a budget N is RN (α) = x(i∗)− x(î∗

α).

Example. We have 3 arms with associated reward values in intervals [3, 23], [25,
45], and [40, 60]. This means that x(1)=13, x(2) = 35, x(3) = 50, and ϵ=10.
Assuming a budget of 3, the user may choose to spend one pull for each arm and
observe rewards of (for instance) 23, 44, and 41, respectively. Hence, the user could
wrongly think that arm 2 is the best, thus getting a regret of 50− 35 = 15.

Obviously, increasing the budget would increase the number of pulls that can
be done, hence it would increase the chances of correctly identifying the best arm.
This can be easily done in the presence of an infinite budget, but the challenge is to
identify the best arm using as few pulls as possible, or in other words, to maximize
the probability of correctly identifying the best arm while having a limited budget.

2.2.2 Successive Rejects (SR) [ABM10]

The algorithm takes as input the number of arms K and the budget N . Initially,
all K arms are candidates. SR divides the budget in K − 1 phases. At the end of
each phase, a decision is made. The phases’ lengths are fixed such that the available
budget is not exceeded and the probability of wrongly identifying the best arm is
minimized.

More precisely, at each phase j ∈ {1, . . . , K − 1}, each still candidate arm in Aj

is pulled nj times according to the fixed allocation (cf. Algorithm 1). At the end of
each phase, the algorithm rejects the arm with the lowest sum of observed rewards,
that is the arm estimated to be the worst. If there is a tie, SR randomly selects the
arm to reject among the worst arms. Then, at the next phase, the remaining arms
are again uniformly pulled according to the fixed allocation. Thus, the worst arm is
pulled n1 times, the second worst is pulled n2 + n1 times, and so on, with the best
and the second-best arm being pulled nK−1 + . . . + n1 times. The estimated best
arm is the unique arm remaining after phase K − 1.

We consider the sums of observed rewards per arm when deciding which arm to
reject instead of empirical means as in the original version [ABM10] as a simplifica-
tion. Indeed, each candidate arm is pulled the same number of times in each phase,
hence the ranking of the arms is identical regardless of whether we look at sums or
means.

Example. Let there be a multi-armed bandit with 4 arms and x(1) > x(2) >
x(3) > x(4), with budget N = 500 pulls. We have log(4) = 1

2 +
∑4

i=2
1
i = 19

12 and:

Phase 1: each arm 1, 2, 3, 4 is pulled n1=⌈12
19

500−4
4+1−1⌉=79 times
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Algorithm 1 SR algorithm (adapted from [ABM10])
1: A1 ← {1, . . . , K} ◃ Initialization
2: for all i ∈ A1 do
3: sum[i]← 0
4: log(K)← 1

2 +
∑K

i=2
1
i

5: n0 ← 0

6: for j from 1 to K − 1 do ◃ Successive rejects
7: nj ←

⌈
1

log(K)
N−K

K+1−j

⌉
−
∑j−1

l=0 nl

8: for all i ∈ Aj do
9: loop nj times

10: r ← random integer from [x(i)− ϵ, x(i) + ϵ]
11: sum[i]← sum[i] + r

12: Aj+1 ← Ai\ arg min
i∈Aj

sum[i]

13: return AK

Phase 2: each arm 1, 2, 3 is pulled n2=⌈12
19

500−4
4+1−2⌉–n1=26 times

Phase 3: each arm 1, 2 is pulled n3=⌈12
19

500−4
4+1−3⌉–(n1 + n2)=52 times.

In other words, arm 4 is pulled 79 times, arm 3 is pulled 79+26=105 times, each
arm 1, 2 is pulled 79+26+52=157 times, totalling 79 + 105 + 2× 157 = 498 pulls.

2.2.3 A Variation: Upper Confidence Bound (UCB)

Instead of identifying the best arm, one can be interested into exploring similar
questions. One of these questions is the maximisation of the cumulative reward,
in which the player will try and maximise their gains while playing on a limited
budget. Of course, the asymptotic result will be the same, as the playing whishing
to optimize their gains will choose the best arm, however when the rewards functions
are unkown the behaviour might be completely different.

UCB is a class of algorithms commonly used when facing the exploration-exploitation
dilemma. Each bandit arm is associated with a distribution whose mean is a priori
unknown to the learning agent. When pulling an arm, the learning agent observes
an independent reward drawn from the distribution of the chosen arm. The goal
of the agent is to maximize the sum of observed rewards. To guide the choice of
the learner, arm scores have been proposed [Agr95] to construct upper confidence
bounds (UCB) based on the empirical mean of arm-specific rewards and the number
of arm pulls. In the UCB class of algorithms, an important breakthrough was the
introduction of algorithms with a finite-time analysis [ACBF02]. Specifically, in
the UCB1 algorithm [ACBF02] that we present in Algorithm 2, the score Bi can
be interpreted as the largest statistically plausible mean value of arm i, given the
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Algorithm 2 UCB Algorithm [ACBF02]
Input: Budget N , number of arms K
Unknown environment: µ1, . . . , µK that are the expected values of K

Bernoulli distributions associated to the K arms i.e., ∀1 ≤ i ≤ K the probabil-
ity of 1 is µi and the probability of 0 is 1–µi. The learning agent has access only
to the output of a reward function pull(.), where pull(i) randomly returns 0 or 1
according to the associated Bernoulli distribution.

Output: Sum of observed rewards for all arms
1: function UCB(N , K)

◃ Initialization phase: pull each arm once and initialize variables
2: for 1 ≤ i ≤ K do
3: r ← pull(i) ◃ Random reward for arm i
4: si ← r ◃ Sum of observed rewards for arm i
5: ni ← 1 ◃ Number of times the arm i has been pulled
6: Bi ← si

ni
+
√

2 ln(K)
ni

◃ First term for exploitation and the second for
exploration

◃ Exploration-exploitation phase: pull one selected arm at each round t
7: for K + 1 ≤ t ≤ N do ◃ Only a budget of N −K is left
8: im ← arg max

1≤i≤K
(Bi) ◃ im is the arm with maximum B value

9: r ← pull(im) ◃ Pull arm im and update the corresponding variables
10: sim ← sim + r
11: nim ← nim + 1
12: for 1 ≤ i ≤ K do ◃ Update B values for all arms because t changes at

each iteration
13: Bi ← si

ni
+
√

2 ln(t)
ni

◃ Bi is an upper confidence bound on µi

return s1 + . . . + sK ◃ Return sum of observed rewards for all arms

observed rewards. After each observation, the scores for all arms are updated. As
shown in the pseudo-code in Algorithm 2, the UCB algorithm follows the principle of
optimism in the face of uncertainty and chooses to pull next the arm with the largest
updated Bi score. This principle suggests to follow what seems to be the best arm,
based on the optimistically constructed scores. The same principle is employed in
various sequential decision making problems (see [Mun14] for a survey). Note that
an arm i might have the largest score due to its empirical mean (the exploitation
term) and/or to the uncertainty one has about the true arm value (the exploration
term), directly dependent on how many rewards from arm i were observed.
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2.3 Cryptography

2.3.1 Asymmetric cryptography
Definition 2.3.1 (PKE). Let λ be a security parameter. A public-key encryption
(PKE) scheme is defined by (G, E ,D):

• G(1λ) returns a public/private key pair (pk, sk).

• E(pk, m) returns a ciphertext c.

• D(sk, c) returns with overwhelming probability the plaintext m, for c = E(pk, m).

Definition 2.3.2 (Paillier encryption scheme). We denote by Zn, the ring of integers
modulo n and by Z×

n the set of invertible elements of Zn.
The Paillier cryptosystem is a public key encryption scheme where:

• G(1λ) generates two prime numbers p and q according to λ, sets n = p · q and
Λ = lcm(p − 1, q − 1) (i.e., the least common multiple), generates the group
(Z∗

n2 , ·), randomly picks g ∈ Z∗
n2 such that M = (L(gΛ mod n2))−1 mod n

exists, with L(x) = (x − 1)/n. It sets sk = (Λ, M), pk = (n, g), and returns
(sk, pk).

• E(pk, m) randomly picks r ∈ Z∗
n, computes c = gm · rn mod n2, and outputs c.

• D(sk, c) computes m = L(cΛ mod n2) ·M mod n, and outputs m.

2.3.2 Partially Homomorphic Scheme
Paillier’s cryptosystem is a partial homomorphic encryption scheme. Let m1 and
m2 be two plaintexts in Zn. The product of the two associated ciphertexts with
the public key pk = (n, g), denoted c1 = E(pk, m1) = gm1 · rn

1 mod n2 and c2 =
E(pk, m2) = gm2 · rn

2 mod n2, is the encryption of the sum of m1 and m2, i.e.,
E(pk, m1) · E(pk, m2) = E(pk, m1 + m2 mod n). Indeed, we have:

E(pk, m1) · E(pk, m2) = c1 · c2 mod n2

= (gm1 · rn
1 ) · (gm2 · rn

2 ) mod n2

= (gm1+m2 · (r1 · r2)n) mod n2

= E(pk, m1 + m2) .

We also remark that: E(pk, m1) · E(pk, m2)−1 = E(pk, m1 −m2).

2.3.3 AES-CBC symmetric encryption
AES [NIS01] is a NIST standard for symmetric encryption that encrypts messages
of 128 bits. AES is used as a block cipher, for instance using CBC mode (Cipher
Block Chaining).
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Definition 2.3.3. AES-CBC The AES-CBC cryptosystem is a symmetric encryp-
tion scheme defined by a triple of polynomial-time algorithms (KeyGen, Enc, Dec) and
a security parameter λ such that:

• KeyGen(1λ) generates Key, a uniformly random symmetric key of 128, 192 or
256 bits, according to λ.

• Enc(Key, m, IV ) splits m in blocks of 128 bits m0, . . . , mn (padding bits may
be added if mn is smaller than 128 bits). Enc computes c0 = E(Key, m0 ⊕ IV ),
where E is the AES encryption [NIS01] and IV is a random 128-bits number.
By x⊕ y we denote the standard bit-wise xor operation between two bit strings
x and y. Then, Enc computes ci = E(Key, ci−1⊕mi) for 1 ≤ i ≤ n and returns
the tuple ((c0, . . . , cn), IV ).

• Dec(Key, c, IV ) splits c in blocks of 128 bits c0, . . . , cn and computes m0 =
D(Key, c0) ⊕ IV , where D is the AES decryption [NIS01]. Similarly, Dec
computes mi = D(Key, ci)⊕ ci−1 for 1 ≤ i ≤ n and returns m0, . . . , mn.

2.3.4 IND-CPA

We first recall the notion of negligible function in order to define the IND-CPA
security notion.

Definition 2.3.4. A function γ : N→ R is negligible in λ, and is noted negl(λ), if
∀c > 0, ∃λ0,∀λ > λ0, γ(λ) < λ−c.

We now define how a probabilistic polynomial-time (PPT) adversary A tries to
break the security of Π.

Definition 2.3.5 (IND-CPA game). Let Π= (KeyGen, Encrypt, Decrypt) be a
cryptographic scheme. The IND-CPA game, denoted by EXP(A), works as fol-
lows: the adversary A chooses two messages (m0, m1) and receives a challenge
c = Encrypt(LRb(m0, m1)) from the challenger who selects a bit b ∈ {0, 1} uniformly
at random, and where LRb(m0, m1) is equal to m0 if b=0, and m1 otherwise.

The adversary, knowing m0, m1 and c, is allowed to perform any number of
polynomial computations or encryptions of any messages, using the encryption oracle,
in order to output a guess b′ of the encrypted message in c chosen by the challenger.

Intuitively, Π is IND-CPA secure if there is no PPT adversary who can guess
b with a probability significantly better than 1

2 . By α = Pr[b′ ← EXP(A); b = b′],
we denote the probability that A correctly outputs her guessed bit b′ when the bit
chosen by the challenger in the experiment is b.

Definition 2.3.6 (IND-CPA security). Let Π be a PKE scheme. Let α = Pr[b′ ←
EXP(A); b = b′] be the probability of success of a PPT adversary in an an adversarial
game on Π.

Π is IND-CPA secure if α− 1
2 = negl(λ).

18
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Both cryptographic schemes mentioned earlier in this section are IND-CPA:

1. Paillier is IND-CPA under the decisional composite residuosity assumption [Pai99],

2. AES-CBC is IND-CPA under the assumption that AES is a pseudo-random
permutation [BDJ+97].
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Abstract

This chapter presents the Quotient Hash Table (QHT) a new data structure for
duplicate detection in unbounded streams. QHTs stem from a corrected analysis
of streaming quotient filters (SQFs), resulting in a 33% reduction in memory usage
for equal performance. With the same memory amount, QHT reduce by up to 7.7
points of percentage the error rate (about 13% more efficient) when compared to
SQF. We also introduce an optimised version of our new data structure dubbed
Queued QHT with Duplicates (QQHTD).

We provide a new and thorough analysis of both algorithms, with results of
interest to other existing constructions, and we correct a slight mistake that was
made in a previous version of this work.

We also introduce a novel (non tight) lower bound on the error rate, thus helping
to determine how close to optimality a filter is.

These theoretical results are confronted with detailed benchmarks, and matched
against the performance of other filters from the literature, proving the efficiency
of QHTs, both on an entire stream or on a sliding window.

Finally we discuss the effect of adversarial inputs for hash-based duplicate filters
similar to QHT.

This work is joint with Rémi Géraud–Stewart and David Naccache. This is an
extended version of a work presented at the 34th ACM/SIGAPP Symposium On
Applied Computing, SAC 2019, and published as [GLPN19].

3.1 Introduction and preliminaries
Amongst other possible attacks on a protocol, there exists a very simple one, called
‘replay attack’. In this scenario, an attacker intercepts a valid transaction on the
network, and then sends the exact same message, pretending to be a valid user [DS81].
Similarly, oracle attacks are models in which the attacker can deduce information
about a hidden information, by for instance repeatedly sending invalid data, until
the oracle accepts the input. Such attacks have been carried on SSL, IPSEC [Vau02],
and have even led to password interception over SSL/TLS channels [CHV+03].

One solution for blocking these attacks consists in the use of a nonce, a unique,
cryptographically random, number. The nonce guarantees the ‘freshness’ of the
message, as the receiver discards all messages using previous nonces. In this chapter,
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we discuss about how one can store nonces, and detect duplicates, especially when
available memory is low.

This problem has been studied in the literature as the approximate membership
problem [DP08], or the duplicate detection problem [EIV07], while the first paper on
the topic was written by Bloom [Blo70].

Note that the duplicate detection problem is not only useful in security, but
also in many other fields. For instance, the same problem arises naturally in many
applications: backup systems [FFH+15] or Web caches [FCA+00], search engine
databases or click counting in web advertisement [MAEA05], retrieval algorithms
[BRJ+14], data stream management systems [BDM04]. In each of these usecases,
duplicate detection can lead to increased performance (a cache able to detect if a
page is indeed cached), increased efficiency (a backup system will not backup twice
the same file, a web crawler won’t scan twice the same page), or increased security
(duplicate clicks can be interpreted as fraud).

In many cases, it is generally not possible to store the whole stream in memory,
therefore practical solutions to this problem must somehow trade off memory for
accuracy. The special case of finding one single duplicate in a given –fixed– dataset
has a known optimal solution [JST10; KNP+17], but to the best of our knowledge
no such results exists for detecting all (or most) duplicates in an unbounded stream.

3.2 Related Work

3.2.1 Hash-based Filters
Filters rely on hashing to efficiently answer the duplicate detection problem. These
filters are often a variation over the well-known Bloom filters, introduced in [Blo70].
A Bloom filter uses an array T of M bits (usually M being a power of 2), initially
all set to 0. k hash functions hi, over the range [0, M−1), are also needed. Insertion
of an element e is made by setting all T [hi(e)] to 1. Detection of an element f is
the logical AND of all cells T [hi(f)]: if the AND value is 0 (i.e., if at least one
bit T [hi(f)] is equal to 0), then emit UNSEEN, otherwise emit DUPLICATE. An
illustration is depicted in Figure 3.1.

It is easy to see that this approach has an FNR of 0. However, as the stream
grows, the FPR gets worse, and in the limit of an infinite stream the FPR is 1. Many
variants have been proposed in the literature to compensate for this effect [TRL12],
mostly by allowing deletion [CM03; CM05], but doing so increases the FNR.

Alternatively, other filters prefer to store fingerprints: this is the rationale behind
several recent constructions, such as [DNB13; FAK+14].

The data structures most interesting to our question are the following:

• Stable Bloom Filters (SBF) [DD06]

• Streaming Quotient Filter (SQF) [DNB13]

• Cuckoo Filter [FAK+14]
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0 1 0 0 1 1 0 0 0 0 0

xh1

h2 h3

yh1

h3
h2

Figure 3.1: Illustration of a Bloom filter with 10 cells and 3 hash functions. The
element x is added to the filter, so the 3 corresponding bits of index hi(x) (not
necessarily distinct) are set to 1. When querying for y, the filter returns UNSEEN
as one of the hashes hi(y) points to a null bit.

• Block Decaying Bloom Filter (b_DBF) [SZ08]

• A2 Filter [Yoo10]

Cuckoo filters [FAK+14] requires a minimal adaptation for unbounded streams:
in the original paper, failure is emitted after some number of relocations; we just
discard the failure. Theoretical analysis of this new structure is not addressed in
this chapter.

Structures from [CLJ+17; GWC+10] are not considered in this chapter, as they
require an unbounded amount of memory.

Note that, for analysis purposes, all these papers consider hash functions as
pseudo-random functions. We make the same assumption.

3.2.2 Streaming Quotient Filter

One construction which we must describe at length is the Streaming Quotient Filter
(SQFs) [DNB13]. Given an element e, a certain fingerprint1 s(e) is stored in an array,
at row h(e) and a certain column amongst k. This array constitutes the filter’s state.

The filter’s construction uses integers q, k, r, r′ < r and a hash function h :
{0, 1}∗ → {0, 1}q+r. The filter’s state is an array of 2q rows and k columns, each
holding a σ-bit element (with σ = r′ + ⌈log2(r + 1)⌉), or the special empty symbol
⊥. The filter’s state is initially ⊥ in every cell.

Then, [DNB13] describes Stream(e) as follows:

• Compute h(e). Its q most significant bits define hq(e), and the r least signifi-
cant bits define hr(e).

1[DNB13] refers to them as “signatures”, but we shun this term to avoid any claim of crypto-
graphic properties.
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• Let ω(hr(e)) be the Hamming weight of hr(e), and let hr′(e) be r′ bits deter-
ministically chosen from hr(e), e.g., the r′ least significant bits of hr(e). Let
s(e)← hr′(e)∥ω(hr(e)) where ∥ denotes concatenation.

• If s(e) is already stored in the row numbered hq(e), emit DUPLICATE.

• Otherwise, store s(e) in one empty cell of that row. If no empty cell exists
in the row, store s(e) in one random cell of the row, replacing any fingerprint
previously stored there. Emit UNSEEN.

For instance, let us take q = 5, r = 4, r′ = 2. Take some element e, assume
that h(e) = 101110100, we get hq(e) = 10111, hr(e) = 0100. Taking the r′ least
significant bits for hr′(e), we get hr′(e) = 00. We also have ω(hr(e)) = 001, so e’s
fingerprint is 00001 and will be stored in the row numbered 23 (as 23 = 0b10111).

0 1 0 0 1 1 0 0 0 0 0

xh1

h2 h3

yh1

h3
h2

Figure 3.2: Illustration of the SQF. For an unseen element e, its fingerprint s(en) =
hr′(en)∥ω(hr(en)) is inserted in the row T [hq(en)], in an empty cell. In this example,
hq(en) = 2q − 1. If there is no such empty cell in T [hq(en)], the fingerprint is stored
in a random cell of the row.

3.3 Contributions and Organisation

In this chapter, we introduce a new structure, the QHT (Quotient Hash Tables),
which stems from an improvement of an existing filter, the SQF [DNB13].

We first explore in Section 3.4 the limitations of the ‘naive’ duplicate detection
problem, and formulate some lower bounds on filter saturation in the case of an
infinite sliding window.

Then, we analyse the SQF design before correcting its errors, thus creating the
QHT, in Section 3.5, and provide a correction of SQF error rate. We also provide a
formal description of the QHT false positive and false negative rates in Section 3.6,
which match the predictions made by Theorem 3.4.1 from Section 3.4.1.

We then compare QHT to the literature. In Section 3.6.3, we show that for the
same efficiency, a QHT requires 33% less memory than an SQF in optimal settings.
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In Section 3.7 we introduce heuristic improvements to QHT, describing a structure
we call QQHTD.

Then, we run extensive benchmarks of QHT and other existing filters in Sec-
tion 3.8. We experimentally prove that QHTs perform faster than any other filter,
and in every situation, is either the best or the second best ranking filter.

Finally, in Section 3.9, we explore the behaviour of QHTs in an adversarial
setting.

3.4 Redefining the Problem of Duplicate Detection
While the problem defined in Section 2.1.1 is quite simple and intuitive, we show
with Theorem 3.4.1 that this ‘naive’ definition of duplicates is unfit for duplicate
filters. Instead, it is better to use a narrower definition, with the introduction of a
sliding window.

3.4.1 Filter Saturation
In order to prove the claim that filters saturate, we interest ourselves to the asymp-
totic error rates of a filter.

Theorem 3.4.1. Let FNR∞ and FPR∞ be the asymptotic false negative and false
positive rates of any filter (i.e., the FNR and FPR on a stream of size going to
infinity).

If |Γ| ≫ M , then FNR∞ + FPR∞ = 1, which characterises random filters (i.e.,
filters answering randomly to any query).

Proof. First note that random filters always verify the relation FNR + FPR = 1:
given that a random filter will return DUPLICATE with a probability of p, an unseen
element will be classified as DUPLICATE with probability p, and a duplicate will be
classified as UNSEEN with probability 1− p, hence the result.

Now, on infinite streams, filters are saturated with information. Given that a
filter can only store at most one element per bit (cf. Section 2.1.1), a filter of size
M can remember at most M distinct elements. However, after fM insertions (with
f ≫ 1), and assuming that |Γ| ≫ M , the filter remembers at most a proportion
1
f ≪ 1 of stream elements.

It can be seen that the error rate of a filter can be modelised as FPR + FNR =
ER = µ(η), where µ is a function µ : [0, 1]→ [0, 2], and η is the proportion (in terms
of bits of information) of the stream that the filter has in memory2. Moreover, we
have µ(0) = 1 as a filter knowing nothing about the stream cannot answer better
than random.

Hence, in our situation of a saturated filter, assuming the function µ is continuous
at 0, the filter knows at most 1

f of the stream, hence the asymptotic error rate will

be ER∞ = FPR∞ + FNR∞ = lim
f→∞

µ( 1
f

) = 1. �
2µ can go up to 2 as theoretically, a filter can be always wrong, hence with an error rate of 2.
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Interpretation. The interpretation of these results could suggest that streaming
filters are useless: they need more memory than a random filter, despite being
asymptotically equivalent. However, this is only true because of our hypotheses and
definitions: we define a false negative to be a duplicate element claimed as unseen by
the filter. However, after some amount of time, it is often acceptable that the element
may be considered as unseen again: for instance a nonce is theoretically unique, but
in practice after a reasonable amount of time nonce reuse is not a vulnerability. For
this reason, adapting false positive and false negative to sliding windows may be
relevant here. Moreover, we assumed that all elements of the stream had the same
probability of occurrence. In practice, this hypothesis is not always correct, and
as we will later see in Section 3.8 (page 48), filters operating on real data perform
significantly better than random filters, and resist better to saturation.

Note that, despite the limitations of the problem defined in Definition 2.1.1, it
is the most common definition used in duplicate detection related papers [DNB13;
DD06; Yoo10].

Finally, while Definition 2.1.1 does not offer a satisfying problem for real-life
applications, the asymptotic relation FPR∞ + FNR∞ = 1 offers a good opportunity
to verify the validity of the FPR and FNR formulae.

3.4.2 Lower Bound on Saturation
We see that all filters inevitably saturate before becoming as inefficient as a random
filter. Hence, it is natural to ask oneself what the optimal limit is, i.e., what the
slowest convergence to saturation is. We provide the following result, which we
found after the publication of our paper [GLPN19]:
Theorem 3.4.2. Let E = (e1, . . . , en) be a stream of elements uniformly selected
from an alphabet of size |Γ|. For any duplicate filter of size M , and any sliding
window size w, the error probability EPw

n (defined by EPw
n = FPw + FNw) is such

that

EPn ≥ 1−
1−

(
1− 1

|Γ|

)M

1−
(
1− 1

|Γ|

)min(n,w)

for any n > M .
Especially, for any filter of size M , the asymptotic error probability EPw

∞ is such

that EPw
∞ ≥ 1−

1−
(

1− 1
|Γ|

)M

1−
(

1− 1
|Γ|

)w ≈
|Γ|≫w>M

1− M
w .

Proof. Let’s first prove the theorem for w = ∞. In order to prove this result, note
that a perfect filter, as noted in Theorem 2.1.1, must use at least 1 bit to store
one element (and the bound is not tight for usual amounts of memory). Since the
filter has M bits of memory, we conclude that a perfect filter can store at most M
elements in memory. Assume that such a filter exists. Because the stream is random,
we can assume without loss of generality that the filter stores the M last elements
of the stream: any other strategy cannot yield a lower error rate, given the stream
is random.
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Let us derive the error rate of such a filter. If an element is already stored in
the filter, then the optimal filter will necessarily answer DUPLICATE. On the other
hand, if the element is not in memory, a perfect filter will answer DUPLICATE with
some frequency f , corresponding to probability p = 1

f .
An unseen element, by definition, will be unseen in the M last elements of the

stream, and hence will not be in the filter’s memory, the filter will return UNSEEN
with probability 1− p. For this reason, this optimal filter has a false positive prob-
ability of p.

On the other hand, a duplicate element en will be classified as UNSEEN if and
only if it was not seen in the last M elements of the stream, and the filter answers
UNSEEN. Let C be the event “There is a duplicate of en in the M previous elements
of the stream”, and let D be the event “There is at least one duplicate in the stream
(e1, . . . , en)”. Note that P [C ∩D] = P [C] as C ⊂ D.

We have that en will trigger a false negative with probability

Pn = (1− P [C|D])(1− p)

=
(

1− P [C ∩D]
P [D]

)
(1− p)

=
(

1− P [C]
P [D]

)
(1− p)

=
(

1− 1− P [C̄]
1− P [D̄]

)
(1− p)

Pn =

1−
1−

(
1− 1

|Γ|

)M

1−
(
1− 1

|Γ|

)n

 (1− p)

Hence, the error probability of the perfect filter is EPn = Pn + p, which can be

rewritten as EPn =
(

1−
1−
(

1− 1
|Γ|

)M

1−
(

1− 1
|Γ|

)n

)
(1− p) + p = 1−

1−
(

1− 1
|Γ|

)M

1−
(

1− 1
|Γ|

)n (1− p), which is

minimized when p = 0.
Given that, by definition, a perfect filter has the lowest error rate of any filter,

we get the desired result.
The adaptation of the proof for any w is immediate. �

Note, as highlighted in the proof, that this bound is not tight, and that better
bounds may exist. Also note that this bound only applies when the stream is random:
when patterns are found in the stream, information theory informs that data may
be stored more efficiently.

Finally, we observe, for |Γ| ≫M , that the lower bound on the asymptotic error
rate of a perfect filter on an infinite sliding window becomes ER∞ ' 1 − e

M
|Γ| ≈ 1,

which is another proof of Theorem 3.4.1.
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3.5 Revisiting SQF: Quotient Hash Table
SQF is introduced and analysed in [DNB13]. However, several crucial mistakes were
made in that analysis. We focus here on four of them that directly impact the claim
of SQF near-optimality.

1. A wrong probability of false positive derivation. The usual definition (see Def-
inition 2.1.3) is P [e is detected as duplicate | e is not a duplicate], but the au-
thors mistakenly computed a different value, namely P [e is detected as duplicate ∩
e is not a duplicate];

2. In their FP derivation, the authors neglected the terms of order > 1 in geo-
metric sums, which led to very large approximations, especially when the sum
is infinite;

3. Similarly, their asymptotic analysis of the FN fundamentally relies on the fact
that the last term of a geometric sum converges to zero, from which the authors
claim the whole sum is close to zero;

4. Cells in the filter’s state are not independent: in particular, in every row, non-
empty cells hold different values (by design). This affects the computation of
the error rates.

Correcting these errors (see Sections 3.6.1 and 3.6.2 below, pages 36 and 40
respectively), and using the same approximation than [DNB13] used3,

(2r
r

)
≈ 4r

√
πr
,

we derive a correct value of the SQF asymptotic FPR and FNR:

FPR∞ ≈
k

2r′√πr
FNR∞ ≈ 1− k

2r′√πr

that disagree with [DNB13] — most significantly, neither the FPR nor the FNR de-
crease to 0, contrarily to what was claimed. Interestingly, the suggested parameters
(r = 2, k = 4, r′ = r/2 = 1) indeed achieve an FNR of 0 as the authors claim — but
also an FPR of 1. With these values, only 4 distinct fingerprints exist, and they can
all be stored in the 4 cells there exist per row. When the filter is full, any duplicate
will be reported as such, hence a FNR of 0. But every new element will also be
reported as duplicate, hence a FPR of 1.

Further more, there is redundancy between the Hamming weight ω(hr(e)) of
hr(e) and the reduced remainder hr′(e). For instance, if hr′(e) contains at least one
bit set to 1, we know that ω(hr(e)) ̸= 0. Intuitively this means SQF is wasteful, and
we could expect to avoid collisions in the filter’s state by using a better adjusted
encoding: this intuition happens to be correct as we show below (see Section 3.6.3,
page 44).

3Even though not mentioned in [DNB13], the approximation (stemming from Catalan numbers)
is only asymptotically valid, but computations show that the approximation is satisfying even for
small values of r, such as the ones used in practical applications.
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3.5.1 Full-size Hashing, Memory Adjustments
Our first and main observation is that SQF’s fingerprint scheme (a hash and a
Hamming weight of part of the hash) can be fruitfully replaced by a single hash
function of the same size. Not only does this simplify the theoretical analysis, it also
provides a much more efficient use of the available space, as the Hamming weight
contains information already contained in the hash.

As a reminder, for an element e, an SQF computes a hash h(e) = hq(e)∥hr
e of

q +r bits, and from hr(e) retrieves r′ bits, thus forming hr′(e). Then the SQF stores
the fingerprint her′∥ω(hr(e)) with ω(hr(e)) be the Hamming weight of hr(e). Hence,
we see that both her′ and ω(hr(e)) contain bits of information about hr(e), which
leads to redundancy and lack of compactness in the information stored.

Hence, instead of storing her′∥ω(hr(e)), we suggest to simply store a hash h′
e of

the same size. As we will see later on, this improvement also significantly simplifies
the error rate analysis.

Our second improvement to SQF is to use more flexible hash functions, that
give much more flexibility in adjusting the total memory M of the filter. As said
previously, SQF uses tables of size 2q, where q is a fixed parameter. This parameter
lacks flexibility, as it requires that SQF’s memory is a multiple of 2q. If we allow
for a hash function with image on an arbitrary range [0, N ] for any N (and not
[0, 2q − 1]), we allow our structure to be more resilient to any amount of memory
we can have. While this improvement does not lead to a change in cases where the
available memory is optimally designed, it however allows for more flexibility for
users.

Combining these two effects, we obtain our new structure, which we call the
Quotient Hash Table (QHT). We give its pseudocode in Algorithm 3.

The QHT takes three arguments N, s, k. From this we create a table of N rows
with k cells each. Each cell has a capacity of s bits, i.e., there are S = 2s possible
fingerprints in our system. The storage of a new element is similar to the one in
SQF.

3.5.2 Empty Cells
SQF and QHT as described above make essential use of the “empty” cells in T . The
need for this feature is present for all fingerprint-based structures including Cuckoo
filters [FAK+14]. Other constructions, not relying on fingerprints, do not face this
issue, including SBF [DD06] and b_DBF [SZ08]: in these schemes, 0 always codes
for absence. However, a low-level implementation cannot rely on the availability of
such a special value. Our options are to initialise all cells to 0 and either:

1. treat 0 as a fingerprint;

2. if an element has a fingerprint of 0, reassign its fingerprint to 1;

3. while an element has a fingerprint 0, compute a new fingerprint based on some
deterministic scheme.
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Algorithm 3 QHT Setup and Stream
1: function Setup(M, s, k) ◃ M > sk and 0 < k ≤ 2s

2: Let N ← ⌊M/(k · s)⌋
3: Choose a hash function h over [0, N − 1]
4: Choose a hash function f over [0, 2s − 1]
5: Let T be a N × k array with s-bit cells, initialized to ⊥

1: function Stream(e)
2: for each cell bi in row T [h(e)] do
3: if bi = f(e) then
4: return DUPLICATE
5: Let b∅ be the first empty cell in row T [h(e)]
6: if b∅ does not exist then
7: b∅

$← T [h(e)]
8: Store f(e) in cell b∅
9: return UNSEEN

The first option is at a risk of a high false positive rate, even for small streams: when
a new element, whose fingerprint is 0, should be stored in an empty cell, it is instead
dismissed as a duplicate. More specifically, before the filter is completely filled, a
new element has probability at least 1

S to be false positive, where S is the number of
distinct possible fingerprints, which leads to a high number of false positive at the
beginning of any stream.

The second option is a bit faster than the third: the third option needs, on
average, S

S−1 = 1 + 1
S−1 hash computations for each insertion, whereas the second

option only needs 1. On the other hand, the third option has better statistical prop-
erties, making the analysis simpler. While not specified in their paper [FAK+14],
the second solution was chosen in the official Cuckoo filter implementation4. On the
opposite, we retain the slower, but easier to analyse option of re-fingerprinting.

3.5.3 Semi-sorting

The technique of semi-sorting was introduced in [FAK+14] to shave some extra
storage. The idea is as follows: treating empty cells as cells containing ”0” fingerprint,
for each row, sort the cells by their fingerprints, and then encode the result. Given
that, for s = 4 and k = 4, only 3,876 possible sorted states exist, and as such a
sorted state can be stored using only 12 bits, as opposed to the 16 bits required to
store four 4-bit fingerprints.

The same optimization can be used for QHT. In practice, [FAK+14] recommend
its use when using 4 cells of 4 bits each.

4https://github.com/efficient/cuckoofilter/blob/aac6569cf30f0dfcf39edec1799fc3f8d6f594da/
src/cuckoofilter.h
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3.5.4 Comparison with Hash Tables
As our structure QHT relies on hashes, the natural question is to know whether our
structure is more efficient than a hash table. The most notable difference is that we
do not store the element in its entirety, but rather its hash compaction, as described
in [WL93]. Moreover, it can be seen that a hash map is indeed a QHT, wherein
the number of rows is equal to 1. QHT being a superset of hash maps, we have
the guarantee that we cannot perform worse. Other implementations of hash tables,
such as Hashmaps in Java, are closer to our structure. However, we have a fixed
number of cells per row, which is not the case in an Hashmap.

In a nutshell, one can say that a QHT is a hash map of fixed size using hash
compaction techniques.

3.6 Error Rate Analysis

3.6.1 False Positive Rate
Consider a QHT with N rows, k cells per row, and s-bits fingerprints. For simplicity,
further assume that no cell is empty (which is true after some time), and that the
stream is sampled uniformly at random from Γ. We want to derive the probability
of triggering a false positive.

FPR Intuition. We first give an intuitive, and simple, estimation of the false pos-
itive rate. Even though not rigorous, and lacking interesting data about saturation
as we discuss later, it helps confirming that the results obtained in the next section
are indeed correct.

Let us consider an element e which has never been seen. e is assigned to row
hq(e), and we want to know the probability that its fingerprint f(e) is already
stored in one of the cells of the row, resulting in a false positive. In this section, we
assume that the stream being uniform, the fingerprints stored in the row hq(e) are
all equiprobable (with probability 1

S , where in our case S = 2s), so the probability
of finding s(e) in one row is simply k

S . Hence, we get an estimate that the FPR will
be approximately k

S .
Despite being simple and elegant, this approach does not give much hindsight

about how fast this limit is reached.

FPR Derivation. We now derive an exact value for the FPR of a QHT.

Theorem 3.6.1. For a QHT of N rows, k cells per row and S possible fingerprints
and assuming NS ≪ |Γ|, and for a sliding window of size w ≪ |Γ|, the FPR after
m insertions on a sliding window of size w is

FPRw
m = k

S

1−
(Nk − 1)

(
1−

(
1− 1

Nk

)m)
m
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Proof. We instead prove the following lemma, from which the proof of the theo-
rem becomes trivial (the theorem can be deduced from the lemma with a simple

arithmetic mean, given that FPRm = 1
m

m∑
i=1

FPi):

Lemma 3.6.1. For a QHT of N rows, k cells per row and S possible fingerprints
and assuming NS ≪ |Γ|, with a sliding window of size w, the probability FPm that
an unseen element inserted after m other elements triggers a false positive on a
sliding window of size w (with w ≪ |Γ|) is

FPw
m = k

S

(
1−

[
1− 1

Nk

]m)
An element e is a false positive if and only if e has not been encountered in the

current sliding window, but Detect(e) = DUPLICATE. This event can be triggered
by two possibilities:

• The presence, in the filter, of another element e′ with a hash and fingerprint
colliding with those of e. This is called a false duplicate.

• The presence, in the filter, of the same element e, but which was inserted more
than w epochs before.

These two elements are referred to as false collisioners: they create a collision
when there should not be one. If a false collisioner is still in the filter when e arrives,
we refer to the event as a hard collision.

Our first remark is that the only false collisioner that may create a hard collision
with e is the latest false collisioner inserted before e arrives: let us assume that e1,
e2 are false collisioners, and that e1 arrives before e2. When we insert e2 in the filter,
e1 is either still in the filter or has been evicted.

• If e1 has been evicted, then e1 will not hardly collide with e.

• If e1 is still in the filter, then e2 will be claimed as a duplicate and dismissed.

However, if we look at the table T storing all fingerprints, dismissing e2 is strictly
equivalent to replacing e1 by e2. Consequently, every false collisioner is erased by any
new false collisioner, and only the latest false collisioner can cause a hard collision.
As a result, we will only focus on the probability that the latest false collisioner
(before e arrives) causes a hard collision.

Probability of non-eviction of the latest false collisioner until e arrives.
Let us assume that the latest false collisioner appears at position i of the stream
E = {e1, e2, . . . , em, e}, in other words, ei is the latest false collisioner in the stream
before e.

Now, ei has to remain in the filter until e arrives, even though new elements are
added. Let us suppose that element ej , i < j ≤ m, evicts ei from the filter. For ei

to be evicted, the following conditions must be true:
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• h(ej) = h(ei)

• s(ej) is different from all the other fingerprints stored in the row T [h(ej)]
(knowing that one of the cells contains s(ei))

• s(ej) is inserted into the cell in which s(ei) is stored

Since we know that ei is the latest false collisioner, we cannot simultaneously have
h(ej) = h(ei) and s(ej) = s(ei). As such, the first two conditions are not independent.
Let Phs be the probability that these two conditions are satisfied. Given that ei is the
latest false collisioner, there are only NS−1 possibilities for the couple (h(ej), s(ej)).
Moreover, among these NS−1 states, only S−1 verify the first condition, and among
these S−1 states, only S−k verify the second condition. Finally, Phs = S−k

NS−1 . If we
assign the latest event to the probability Pselection, we immediately get Pselection = 1

k .
Finally, the probability P¬evict of ei not being evicted by ej is P¬evict = 1 −

PhsPselection and: P¬evict = 1− S−k
k(NS−1)

Now, ei has to avoid eviction by every element before e arrives, i.e., by all
elements ei+1, . . . , em, which happens with probability P (hc)i = (P¬evict)m−i.

At that point, we know the probability that a hard collision happens when the
latest false collisioner has been inserted at position i.

Probability of the last false collisioner to be at position j. The proba-
bility of any element e′ being a false collisioner depends on the position of e′ in the
stream. Let j be the position of e′ in the stream E = {e1, e2, . . . , em, e}: ej = e′ .

• If m − j ≥ w, then e′ is a false collisioner and can be either a false duplicate
(i.e., e′ ̸= e but h(e′) = h(e) and s(e′) = s(e)) or equal to e.

• If m− j < w, then e′ can only be a false duplicate.

In the former case, e′ is a false duplicate or equal to e. Let Pfc be the probability
of this to happen. We immediately get Pfc = 1

NS .
In the latter case, let Pfd be the probability of e′ to be a false duplicate. Since

we know e′ ̸= e, we have Pfd =
|Γ|
NS − 1
|Γ|

= 1
NS
− 1
|Γ|

(amongst |Γ| elements, there

are |Γ|
NS who have the same hash h and the same fingerprint s than e, including e,

hence the result).
Finally, the probability that ej is the latest false positive is equal to (1− Pfd)m−j Pfd

for j > m− w, and (1− Pfd)w (1− Pfc)m−w−j Pfc otherwise.

Summing up the probabilities. Thus, for m > w, the probability FPw
m that

a false positive happens on the sliding window of size w after m elements are inserted
is
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FPw
m =

m∑
j=1

(ej is the latest false collision × ej is not evicted until e arrives)

=
m−w∑
j=1

(1− Pfd)w (1− Pfc)m−w−j Pfc × P (hc)j +
m∑

j=m−w+1
(1− Pfd)m−j Pfd × P (hc)j

= (1− Pfd)w

(1− Pfc)w Pfc

m−w∑
j=1

(1− Pfc)m−j × P (hc)j + Pfd

m∑
j=m−w+1

(1− Pfd)m−j × P (hc)j

We have P (hc)j =
(
1− S−k

k(NS−1)

)m−j
, Pfd = 1

NS −
1

|Γ| and Pfc = 1
NS , so

FPw
m =

(
1 + NS

|Γ|(NS − 1)

)w 1
NS

(
1− 1

kN

)w 1−
(
1− 1

kN

)m−w

1−
(
1− 1

kN

)
+
( 1

NS
− 1
|Γ|

) 1−
[
1− 1

kN + 1
|Γ|

(
1− S−k

k(NS−1)

)]w
1

kN −
1

|Γ|

(
1− S−k

k(NS−1)

)
=
(

1 + NS

|Γ|(NS − 1)

)w k

S

(
1− 1

kN

)w
(

1−
(

1− 1
kN

)m−w
)

+
( 1

NS
− 1
|Γ|

) 1−
(
1− 1

kN

)w [
1 + 1

|Γ|(1−1/(kN))

(
1− S−k

k(NS−1)

)]w
1

kN −
1

|Γ|

(
1− S−k

k(NS−1)

)
Assuming |Γ| ≫ NS and |Γ| ≫ w, we have

FPw
m ≈

k

S

((
1− 1

kN

)w

−
(

1− 1
kN

)m)
+ 1

NS

1−
(
1− 1

kN

)w

1
kN

≈ k

S

[
1−

(
1− 1

kN

)m]
Note that this derivation is only valid for m > w. Otherwise, we obtain the same

result, but in a different way:

FPw
m≤w =

m∑
j=1

(1− Pfd)m−j Pfd × P (hc)j

=
( 1

NS
− 1
|Γ|

) 1−
(
1− 1

kN

)m [
1 + 1

|Γ|(1−1/(kN))

(
1− S−k

k(NS−1)

)]m
1

kN −
1

|Γ|

(
1− S−k

k(NS−1)

)
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Neglecting all the terms in 1
|Γ| ,

FPw
m≤w ≈

k

S

(
1−

(
1− 1

kN

)m)
Which concludes the proof. �

One observation is that the FPR converges to k
S . Furthermore, thanks to the

expression of FPm, we can see that the more rows there are (i.e., the bigger N is),
the slower the FPR reaches its asymptotic (saturated) value.

Finally and more importantly, the FPRw does not depend on w on a first ap-
proximation. This is due to the fact that QHT was mostly designed for the cases
where w is infinite, and as such w plays no role in the algorithm, and little difference
in probabilities when an element is or is not in the sliding window. As such, QHT
might be less efficient than other structures on streams with small sliding windows,
but still remains a competitive candidate (see Section 3.8.6 below, page 53).

Application to SQF One should be tempted to directly apply this result to an
SQF. However, as pointed out earlier, in an SQF fingerprints are correlated and
therefore not equiprobable. For instance, consider the SQF with the parameters
r = 3, r′ = 1. Only the hash hr

1 = 000 will lead to the fingerprint 000, whereas both
hashes hr

2 = 001 and hr
3 = 010 will lead to the fingerprint 001.

However, for an optimal SQF, fingerprints are equiprobable so the analysis above
holds for optimal SQFs. In the general case, the authors of [DNB13] have approx-
imated the probability of fingerprint collision in an SQF with 1

2r′√πr
. Replacing

1
S with this probability in our analysis, we get an approximate asymptotic FPR of

k
2r′ √πr

for SQFs, as announced in Section 3.5.

3.6.2 False Negative Rate
Theorem 3.6.2. For a QHT of N rows, k cells per row, and S different fingerprints,
assuming |Γ| ≫ N , then as the number of insertions goes to infinity, FNR∞ = 1− k

S
.

In the following proof, we also show that the false negative rate over a sliding
window FNRw is directly linked to the sliding window size, as it depends on a
summation of w terms. The exact derivation is however left for future work.

Proof. Assume that e is a duplicate, we denote by ei the latest element in the stream
such that ei = e. Following the same reasoning as for the FPR, ei will trigger a false
negative if and only if ei is removed from the filter before e arrives, and if any false
duplicate of e, inserted between the removal of ei and e, is deleted before e arrives.

Let us assume that ei is deleted at time j (this happens with probability P Del
i,j ) by

something else than a false duplicate. Using similar arguments than in the previous
section, we have P Del

i,j =
(
1− S−k

k(NS−1)

)j−i−1
S−k

k(NS−1) : the probability of the ith
element is deleted by the jth element is equal to the probability of non-deletion by
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j − i − 1 elements (
(
1− S−k

k(NS−1)

)j−i−1
) followed by the probability of deletion at

the next step ( S−k
k(NS−1))

The probability that all false duplicates, inserted after time j, are deleted before
e arrives is 1− FPn−j .

Let a = S−k
k(NS−1) , b = k

S and c = 1 − 1
Nk , and denote by FNi,m the probability,

in a stream E = (e1, . . . , em, e) where the latest duplicate of e is inserted at i, that
ei is deleted before e arrives and no false positive persists until e,

FNi,m =
m∑

j=i+1
P Del

i,j (1− FPm−j)

=
m∑

j=i+1
(1− a)j−i−1 a

(
1− b

(
1− cm−j

))

FNi,m = a (1− b)
m∑

j=i+1

[
(1− a)j−i−1

]
+ ab

m∑
j=i+1

[
(1− a)j−i−1 cm−j

]

Given that 1 − a ̸= c (because 1 − a − c = 1 − S−k
k(NS−1) − 1 + 1

Nk = Nk−1
Nk(NS−1) ̸= 0

unless N = k = 1 which would not be an interesting filter), we get:

FNi,m = (1− b)
(
1− (1− a)m−i

)
+ ab

(1− a)m−i − cm−i

1− a− c

The probability FNm of e to be a false negative is then
m∑

i=1
Pdup,i · FNi,m, where

Pdup,i is the probability that the latest duplicate already seen is ei. In a previous
version of this work, we wrongly stated that Pdup,i was equal to the value P ′

dup,i =(
|Γ|−1

|Γ|

)m−i 1
|Γ| : this would be true if there was no assumption on the stream, but

here we know for a fact that there is already a duplicate somewhere in the stream.
Hence, we must not derive P ′

dup,i = P [ei is the latest duplicate], but rather Pdup,i =
P [ei is the latest duplicate | there is at least one duplicate].

For simplicity, we note by D the event ‘there is at least one duplicate’. Observe
that D can also be written ∃k ≤ m, ek = e. We also remark that the event ‘ei is the
latest duplicate’ (of e) can be rewritten as (ei = e) ∩ (

⋂
j>i(ej ̸= e)). Hence,

Pdup,i = P

(ei = e) ∩

⋂
j>i

(ej ̸= e)

 |D
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By definition of a conditional probability,

Pdup,i =
P
[
(ei = e) ∩

(⋂
j>i(ej ̸= e)

)
∩D

]
P [D]

=
P
[(⋂

j>i(ej ̸= e)
)
∩ (ei = e) ∩ (∃k ≤ m, ek = e)

]
P [D]

=
P
[(⋂

j>i(ej ̸= e)
)
∩ (ei = e)

]
P [D]

Pdup,i =
P ′

dup,i

1− P
[
D
]

Where D is the event ‘There is no duplicate’ and has a probability P
[
D
]

=
(

|Γ|−1
|Γ|

)m
.

Hence, Pdup,i =
(

|Γ|−1
|Γ|

)m−i 1
|Γ|

1
1−
( |Γ|−1

|Γ|

)m .

We obtain the probability FNm that the (m + 1)th element e of the stream will
be a false negative:

FNm =
m∑

i=1
Pdup,i · FNi,m

FNm =
m∑

i=1

[( |Γ| − 1
|Γ|

)m−i 1
|Γ|

(
(1− b)

(
1− (1− a)m−i

)
+ ab

(1− a)m−i − cm−i

1− a− c

)]

For a stream of n elements, the false negative rate FNRn is defined as the average

error probability: FNRn = 1
n

n∑
m=1

FNm. For a stream of n elements on a sliding

window of size w, the false negative rate FNRw
n over the sliding window is defined

as the average over the last w elements: FNRw
n = 1

w

n∑
m=n−w+1

FNm.

Hence,

FNRn = 1
n

n∑
m=1

m∑
i=1

( |Γ| − 1
|Γ|

)m−i 1
|Γ|

1
1−

(
|Γ|−1

|Γ|

)m

[
(1− b)×

(
1− (1− a)m−i

)

+ab
(1− a)m−i − cm−i

1− a− c

]

Expanding and summing the geometric sums,
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FNRn = 1
n|Γ|

n∑
m=1

1
1−

(
|Γ|−1

|Γ|

)m

[
(1− b)

m∑
i=1

( |Γ| − 1
|Γ|

)m−i

−(1− b)
m∑

i=1

( |Γ| − 1
|Γ|

· (1− a)
)m−i

+ ab

1− a− c

m∑
i=1

( |Γ| − 1
|Γ|

(1− a)
)m−i

+ ab

1− a− c

m∑
i=1

( |Γ| − 1
|Γ|

c

)m−i
]

FNRn = 1
n

n∑
m=1

[
1− b− 1− b

1− (1− 1/|Γ|)m

1− ((1− 1/|Γ|)(1− a))m

|Γ| − (1− a)(|Γ| − 1)

+ 1
1− (1− 1/|Γ|)m

ab

1− a− c

1− ((1− 1/|Γ|)(1− a))m

|Γ| − (1− a)(|Γ| − 1)

− 1
1− (1− 1/|Γ|)m

ab

1− a− c

1− ((1− 1/|Γ|)c)m

|Γ| − c(|Γ| − 1)

]

We can see that the sum can be rewritten as FNRn = 1−b+
3∑

i=1
ki

1
n

n∑
m=1

1− αm
i

1− βm
i

,

where ki, αi, βi are various values. To the best of our knowledge, there is no simpler

form of the expression 1
n

n∑
m=1

1− αm

1− βm
. However, given that FNR∞ = lim

n→∞
FNRn,

and because in our case the terms α and β are < 1, we know that lim
m→∞

1− αm

1− βm
= 1,

Cesàro’s summation tells us that lim
n→∞

1
n

n∑
m=1

1− αm

1− βm
= 1 as well, so we get the final

result:

FNR∞ = 1− b− 1− b

|Γ| − (|Γ| − 1)(1− a)
+ ab

(1− a− c)(|Γ| − (|Γ| − 1)(1− a))

− ab

(1− a− c)(|Γ| − (|Γ| − 1)c)

Finally, assuming |Γ| ≫ Nk (or even |Γ| ≫ N), i.e., that there are more distinct
elements in the stream that what the filter is able to store, we get the limit rate of
1− b, which is FNR∞ ≈ 1− k

S . �

A not obvious consequence of the above expression for FNR is that when N
increases, which corresponds to using more memory, it is possible to achieve an
arbitrary small error false negative rate. The proof is straightforward but tedious,
as it requires the substitution of a, b, c by their full expression, before taking the limit.
However, a formal computing software such as Mathematica outputted without any
problem. Thus, the formal proof was omitted for the sake of simplicity. Another
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reason for omitting the proof is that the result implies that we have an infinitely
growing memory. However, since the beginning we assume memory to be a limited
ressource. Moreover, at some point in the infinite growth, one obtains a filter with
more bits of memory than the cardinality of stream elements, thus making void the
need of any QHT as one can instead use the optimal solution (see Theorem 2.1.1).

Note that FNR∞ + FPR∞ = 1, as was predicted by Theorem 3.4.2.
The value of FNR∞ also gives (using the same corrections as for the FPR in

Section 3.6.1) the FNR formula for the SQF.

3.6.3 Comparing QHT to SQF

Let us compare the memory required for a QHT to reach the same error rates than
an SQF.

Given that both FPR and FNR depend only on k, N and S, imposing the
equality on these parameters ensures that both filters have exactly the same FPR
and FNR.

Note that S is not a user-chosen parameter, but rather a consequence of other
parameters.

Theorem 3.6.3. For exactly the same FPR and FNR, a QHT requires exactly 33%
fewer memory than an SQF.

Proof. The proof is made through the following paragraphs.

Deriving S from filters parameters. For a QHT, S is derived from the number
of bits of the fingerprint s, with the straightforward relation5: S = 2s. For an SQF,
however, the relation is more complicated.

When r and r′ are fixed, for any element e, let hr(e) be decomposed as hr(e) =
hr′(e)∥f , where hr′(e) is the r′-bits word used in the fingerprint, h being the r − r′

remaining bits of hr(e). For ω(·) the Hamming weight function, we have s(e) =
hr′∥ω(hr(e)). Yet ω(hr(e)) = ω(hr′(e)) + ω(f). We know that ω(hr′(e)) is entirely
dependent on hr′(e), which is already used in the fingerprint. Thus, if we fix hr′(e),
there are only r − r′ + 1 possible values for ω(f) and thus for ω(hr(e)). Given that
hr′(e) can have 2r′ different values, we get that SSQF = 2r′ · (r − r′ + 1).

Comparing required memory. For QHTs, we have the relation
MQHT = NQHTkQHTs. For SQF, the formula is rather MSQF = NSQFkSQF(r′ +
⌈log2(r + 1)⌉) (because fingerprints occupy r′ + ⌈log2(r + 1)⌉ bits), with r and r′

being parameters in SQF’s settings.

5If we are on a system without the empty feature (see Section 3.5.2), then S = 2s − 1. For an
SQF, one can just assign the empty value to one of the unassigned fingerprints.
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Given that NQHT = NSQF and kQHT = kSQF, the ratio MQHT
MSQF

is:

MQHT
MSQF

=
NQHTkQHTs

NSQFkSQF(r′ + ⌈log2(r + 1)⌉)

= s

r′ + ⌈log2(r + 1)⌉

Given that s = ⌈log2(SQHT)⌉ = ⌈log2(SSQF)⌉ = ⌈log2(2r′ · (r − r′ + 1))⌉, we have

MQHT
MSQF

= ⌈log2(2r′(r − r′ + 1))⌉
r′ + ⌈log2(r + 1)⌉

= r′ + ⌈log2(r − r′ + 1)⌉
r′ + ⌈log2(r + 1)⌉

Using the recommended settings in [DNB13] (r = 2, r′ = 1) the ratio becomes
MQHT
MSQF

= 2
3 , which concludes the proof. �

This result proves that a QHT is always superior to its predecessor SQF, by
quite a high margin in terms of memory requirements.

3.6.4 Parameter Tuning
We now precise how to optimise our filter parameters. In the case where w =∞, we
are able to give a full proof, whereas in the general case, we rely on experimental
observations.

For w = ∞. As noted in Section 3.6.2, no matter the choice of the parameters
we have FNR∞ + FPR∞ = 1: any particular parameters choice will be a trade off
between good FPR and good FNR performance, at least asymptotically. However,
when the stream is small enough, one may choose parameters that will maximally
delay saturation.

Theorem 3.6.4. For a desired asymptotic FPR corresponding to some ratio k
S , the

configuration leading to the slowest convergence to saturation is the one with the
lowest S value.

Proof. We know that M = Nk log2(S), so plugging this into the FP formula gives

FPm = k

S

(
1−

[
1− 1

kN

]m)
= k

S

(
1−

[
1− log2(S)

M

]m)
Which means that, for fixed M and k

S (i.e., for a fixed memory amount and a
fixed asymptotic FPR), log2(S) must be as small as possible in order to keep the
FP low for as long as possible. Since the FP is as low as possible, the FPR (i.e., the
average of all previous FPs) is also as low as possible. �
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For instance, assume that we want an asymptotic FPR of 25%. The potential
values for the couple (k, S) are (1, 4), (2, 8), (4, 16) and so on (leading respectively
to s = 2, 3, 4). Because of the above relation, we know that setting k = 1, s = 2 will
yield the best saturation resistance for the FPR.

Note however that this result does not guarantee a slowest convergence of the
FNR. However, experiments show that it is the case indeed.

We compared several QHT of approximately 216 bits, with the same ratio k
S , but

each with a different value for S. We took streams of 100 000 elements (well under
saturation value for this amount of memory), from an alphabet of 220 elements. Each
element of the stream was uniformly randomly selected, leading to a stream with
about 4.6% of duplicate elements. We averaged the results on 10 runs.

We observe in Table 3.1 that filters with a small value of S do indeed perform
better than filters with a bigger value of S, which concludes the experiment.

S = 4 S = 8 S = 16 S = 32 S = 64
FPR (%) 22.57 23.25 23.53 23.62 23.50
FNR (%) 35.89 44.24 50.77 54.55 58.73

FPR + FNR 58.45 67.49 74.30 78.17 82.23

Table 3.1: Error rates of QHTs with the same asymptotic FPR. The QHT with both
better FPR and FNR is in bold.

For arbitrary w. In this case, we were not able to extract a mathematical formula
for optimizing the error rate. Instead, we benchmarked several QHTs of 1Mb, with
k = 1, and different values of S. We analyzed their efficiency, depending on the
sliding window size (ranging from 100 elements to 10M elements), on a stream
of 150M random elements of 226 bits each. Results are given in Table 3.2. We
indeed observe that, for big sliding windows, it is preferable to select a small value
of S, whereas for small to very small sliding windows, big values of S are more
efficient. However, in this kind of situation, where the sliding window is very small,
probabilistic structures might not be useful, as it is probably easier to store all
elements in memory. Hence, we conclude that, for all practical applications, one
must chose an S as small as possible. Note that S = 21 is discouraged, as this
only allows for 2 possible fingerprints per row. Given that one fingerprint is used to
implement the ‘empty’ feature (see Section 3.5.2), S = 22 is the minimum value one
can use in QHTs.

3.7 Further Improvements: QQHTD

3.7.1 Keeping Track of Duplicates
In Algorithm 3, we do not insert anything if the element is detected as a duplicate.
However, following [FAK+14]’s example, we can insert it anyway, resulting in a
structure we call QHT with Duplicates, or QHTD. We briefly discuss its properties.
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w
S 22 23 24 25 26 27 28 29 210

10 000 000 96.17 96.81 97.39 97.84 98.17 98.43 98.62 98.77 98.89
3 000 000 88.50 90.20 91.98 93.34 94.36 95.13 95.72 96.20 96.57
1 000 000 71.01 72.71 76.92 80.62 83.51 85.72 87.45 88.83 89.94
300 000 50.09 43.67 45.72 49.93 54.40 58.47 62.27 65.50 68.34
100 000 39.83 26.21 23.19 24.03 26.11 28.78 31.44 34.16 36.91
30 000 35.56 18.30 12.33 10.33 10.06 10.57 11.44 12.49 13.80
10 000 34.31 15.86 8.88 5.96 4.77 4.32 4.34 4.50 5.07
3 000 33.92 14.99 7.58 4.24 2.83 2.07 1.71 1.39 1.71
1 000 33.71 14.76 7.18 3.77 2.14 1.49 0.89 0.90 0.65
100 33.71 14.68 7.00 3.51 1.83 1.00 0.58 0.77 0.25

Table 3.2: Error rate (times 100) of QHTs of 1 Mb memory, k = 1 and various S
size, for different sliding windows, on an artificial stream. The minimum value for
each sliding window is in bold.

As we showed previously, the asymptotic FPR of a QHT is k
S , which was expected:

each row stores k distinct fingerprints, the probability that one of them matches
the fingerprint of a unique element is logically k

S . Similarly, in QHTD each row
stores k fingerprints, not necessarily distinct. The probability that at least one of
these fingerprints is the same than the one of an unseen element is FPR∞,QHTD =
1 −

(
1− 1

S

)k
. Given the results of Section 3.4.1, the asymptotic FNR∞,QHTD of

QHTD is
(
1− 1

S

)k
.

3.7.2 Queuing cells for a Better Sliding Window

One caveat of the QHT (and QHTD) is the fact that at any insertion, any element
of the row is equally likely to be evicted: if this allows an easy FPR and FNR
derivation, it makes it functioning a bit counter intuitive. As a matter of fact, one
would expect a filter to first forget about the oldest elements before forgetting about
the newest ones. Indeed, this behaviour matches the need of a filter operating on a
sliding window, without taking into account oldest elements.

The solution we provide for QHT is to order the cells of a given row in a FIFO
queue, which means that instead of selecting a random cell in the row for insertion,
one will append the fingerprint to the end of the queue, and pop the first element (so
that the size of the queue remains constant). Combined with QHTD improvement,
this yields Algorithm 4.

Note that classical queues (i.e., doubly chained lists) are not suited for our use,
as chains require extra storage bits for pointers. Thus, for our QQHTD we create
an array of k elements, in which we manually move every element at each “pop”.
When k is small (typically less than 5, which it usually is), the time overhead is not
significant.
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Algorithm 4 Queued Quotient Hash Table with Duplicates’ (QQHTD) Stream
1: for each element e ∈ E do
2: result ← UNSEEN
3: Quotient of e: h(e); Fingerprint of e: f(e).
4: for each cell bi in the queue T [h(e)] do
5: if (entry in bi) = f(e) then
6: result ← DUPLICATE
7: break
8: Pop the first element of the queue T [h(e)] and append f(e) at the end of

same queue
9: return result

Finally, note that a QQHTD with one cell par row is equivalent to its QHT coun-
terpart. However, with more cells per row, QQHTDs offer a noticeable improvement
over QHTs on real data streams (see Table 3.3).

3.8 Benchmarks

3.8.1 Comparison of QHT and QQHTD
In this section, we explore the difference between a QHT and a QQHTD with the
same parameters, on the same stream. Note that, for k = 1, QHT and QQHTD
are the same structure. We took filters of 65,536 bits each, on streams of 100,000
elements each. One stream issued from our ‘real’ dataset (10.32% of duplicates), the
other a random uniform stream on an alphabet of 220 elements (4.62% of duplicates).
The stream parameters were chosen so that the error rates would be between 20%
and 80%: a small error rate indicates that the filter is almost empty, and an high
error rate would indicate saturation. Results are given in Table 3.3.

We observe that QQHTD offer a small advantage on artifical data, but a signif-
icant advantage on real datasets. Thus, while the theoretical gain of the QQHTD
improvement seem hard to quantify, they are justified in practice, at least on some
streams.

Stream (dup. %) Filter k = 2
S = 8

k = 4
S = 16

k = 8
S = 32

k = 16
S = 64

Real (10.3 %) QHT 27.01 28.07 28.95 29.3
QQHTD 24.67 24.56 24.42 24.62

Artificial (4.62 %) QHT 67.39 74.48 79.32 82.10
QQHTD 67.91 74.41 79.19 82.26

Table 3.3: Error rate (times 100) of QHTs and QQHTDs with the same parameters
on different streams, depending on their parameters k and S. The best behaving
filter for each run is in bold.
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3.8.2 Comparison of QHT to Other Filters
We first compare QHT to other structures, in the most common setting used in
other papers (i.e., on an infinite sliding window).

We used filters of size ranging from 10 kb to 8 Mb. We used a real stream of
URLs visited by a crawling robot, extracted with [Tan11] from the April 2018 Com-
monCrawl’s dump [Nag18], which contained 150,000,000 elements. We also used 2
artificial streams of the same length, for which the elements where randomly gener-
ated from an alphabet of 224 and 227 elements respectively, leading to a duplicate
rate of about 88% and 38% respectively. The source code of the benchmark is avail-
able online 6, and a standalone library for immediate use has also been developped
7.

The filters, with their parameters chosen so their asymptotic FPR was as close
as possible to the arbitrary value of 25%, are:

• QHT, 1 cell per row, 3 bits per fingerprint. This specific QHT is equivalent
to a QQHT or a QQHTD with the same parameters, so we do not include the
latter in the benchmark.

• SQF from [DNB13], 1 cell per row, r = 2 and r′ = 1

• Cuckoo Filter from [FAK+14], cells containing 1 element of 3 bits each

• Stable Bloom Filter (SBF) from [DD06], 2 bits per cell, 2 hash functions,
targeted FPR of 0.028

• A2 Filter from [Yoo10], targeted FPR of 0.1 on the sliding window.

• Block-Decaying Bloom Filter (b_DBF) from [SZ08], sliding window of 6000
elements.

Results, averaged on 5 runs, are given in Table 3.4, and summarised in Table 3.5.
Note that, for better readability, the error rates have been multiplied by 100 in
the table. Further more, we recall that the error rate, being defined as ER =
FPR + FNR, is bounded by 0 below and 2 above, 1 being the error rate of a random
filter. A filter can have worse results than random; for instance a filter which is
always wrong has an error rate of 2.

As we can see in Table 3.5, QHT (or QQHTD) are extremely competitive and
resist very well to saturation; they also appear to be the most competitive on the
real stream. For instance, we observe that QHT can offer an error rate of up to
7.7 points lower than SQF, thus offering a 13% advantage, for the same amount of
memory.

Moreover, we observe that b_DBF are efficient, but reach very quickly their
saturation. A more detailed analysis of their FPR (see Table 3.4) shows that even

6https://bitbucket.org/team_qht/qht/src/master
7github.com/mariuslp/libqht
8Our benchmarks actually obtained an asymptotic FPR of around 28%, without us being able

to find bugs in our implementation.
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Stream (dup. %) Mem. (bits) SQF QHT Cuckoo SBF A2 bDBF

Real (10.3 %)

8e+06 51.25 43.78 66.48 54.08 58.94 45.22
1e+06 55.18 48.38 68.96 57.17 62.12 45.30
100,000 58.21 52.22 71.83 59.44 64.88 59.39
10,000 66.45 58.75 78.86 76.29 66.42 99.77

Art. (88.82 %)

8e+06 86.49 82.76 96.94 97.79 88.06 99.96
1e+06 98.27 97.80 99.60 99.74 98.49 99.96
100,000 99.78 99.79 99.96 99.98 99.84 99.96
10,000 99.97 99.97 100.02 99.99 100.00 99.98

Art. (39.79 %)

8e+06 96.51 95.37 99.21 99.40 96.86 99.99
1e+06 99.56 99.42 99.91 99.91 99.60 99.99
100,000 99.94 99.95 100.00 99.99 99.96 99.98
10,000 100.00 100.00 100.00 100.00 99.99 100.00

Table 3.5: Error rate (multiplied by 100) on real and artificial streams of 150,000,000
elements. For each stream, the most efficient result is in bold.

though their FPR is close to 0, they get an FNR close to 1. Moreover, as we see
in Section 3.8.3, they are significantly slower, which can be a bottleneck for critical
applications. Further more, not only are QHT/QQHTD the most efficient filter on
both real and artificial streams, they are also very easily tunable, and any asymptotic
FPR rate is very simply achievable. This is not the case of other filters, such as A2
or b_DBF, which require careful tuning.

3.8.3 Speed Comparison

We also benchmarked the speed of every filter on real-time detection, on a laptop
with Intel i7. We used the same filters as in the previous subsection, with a memory
of 1 Mb, on a stream of 150,000,000 elements. We averaged, on these filters, the
time needed for Insert ◦ Detect to execute for each element. Results are shown in
Table 3.6. We observe that safe for SQF, QHT is 6 times as fast as any other filter,
and 10 times as fast as b_DBF. Even SQF is 50% slower than QHT. Even with
additional features, QQHTD are also faster than SQF by a large magin, because
fingerprint derivation is more costly in the latter. As a conclusion, we observe that
QQHTD are most suited filters for high-speed analysis.

Filter SQF QHT QQHTD Cuckoo SBF A2 b_DBF
Time (µs) 0.423 0.288 0.330 2.464 1.578 1.280 2.565

Table 3.6: Amount of time (in µs) required for one iteration of Stream on each filter
with 1 Mb of memory (averaged on 10 000 000 insertions). The fastest solution is
in bold.
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Figure 3.3: Error rate (times 100) of filters of 1Mb, depending on the size of the
stream. Hatched area represents over-optimal (impossible) values, see Section 3.4.2.

3.8.4 Saturation Resistance

Another interesting point is the study of how long a filter resists to saturation on
a given stream. As we know from Section 3.4.1, a filter will necessarily reach a
saturation state in which it will not be more efficient than a random filter. Yet the
number of insertions before this saturation is highly dependent on the filter, and a
good filter will reach saturation as late as possible.

We ran a simulation of the same filters as previously, on data streams of respec-
tively 1 000, 10 000, 100 000, 1 000 000, 10 000 000, 50 000 000, 100 000 000 and
150 000 000 elements each. One stream was extracted from our real dataset (about
10% duplicates on 150 000 000 elements), the other one is an artificial streams, with
elements of 26 bits each (about 8% duplicates on 150 000 000 elements). The results
are plotted in Figure 3.3.

Even though A2 filters performs slightly better on small random streams, we see
that QHT are extremely competitive on real streams, as the error rate grows much
slower than for other filters. Similarly, b_DBF, at their peak performance, perform
as well as QHT on real streams (while being noticeably bad on artificial streams).
However, b_DBF parameter tuning is quite hard and unintuitive, and to the best
of our knowledge there is no easy way of finding the optimum for a given stream.
Furthermore, b_DBF are 10 times as slow than QHT (see Section 3.8.3), for the
same performance, in the best case.

On artificial filters, we observe that the conversion between unsaturated and
saturated states happen after around one million insertions. This is related with
the fact that the filters are 1 Mb big: according to information theory, a filter of 1
Mb cannot remember more than one million elements in the general case. Hence,
for any filter, there it is reasonable to assume that after one million insertions, the
performances are degrading as the filter starts forgetting about previous elements.
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From this reasoning, we conclude that while QHT can store about 1 element per bit,
some other filters, such as the SBF, cannot and thus have a limited efficiency.

3.8.5 Memory Impact
We also looked at the dual experiment, which is the impact of the filter memory on
its efficiency on a given data stream. We consider this experiment to be dual of the
previous one, as we saw there is a direct correlation between the memory size, the
stream size and the error rate. Hence, we expect to see curves with a similar aspect
as in the previous section. This prediction is validated by experience. Because we
wanted to observe the ‘saturation curve’, we slightly changed the parameters from
the previous benchmark:

• the filters are the same as in Section 3.8.2,

• we used streams of 10 000 000 elements only,

• the two streams consist of an extract of our real stream (6.88 % duplicates on
the first 10 000 000 elements), and an artificial stream of elements of 26 bits
(7.09% duplicates)

Note that, for practical purposes, b_DBF filters were only considered in the
memory range of 10kb to 30Mb: when there is too little memory, the filter cannot
operate. Where there is too much memory, the filter requires counters of more than
64 bits, which we did not implement in our benchmarks. The results are shown in
Figure 3.4.

As we can see, the saturation happens when filter has fewer than 10Mb in mem-
ory, which is also the number of elements of the random stream. However, on real
streams the saturation is much slower, and full saturation is not reached, even when
the filters are very small.

On can also observe that there seems to be an inverse relationship between stream
size and memory size. This observation is backed by the fact that we know that
after m insertions, the probability of a false positive is FPm = k

S

(
1−

[
1− 1

Nk

]m)
.

As seen in Section 3.6.4, we also have FPm = k
S

(
1−

[
1− log2(S)

M

]m)
, and because

log2(S)≪M in all practical cases, FPm ≈ k
S

(
1− e−m

log2(S)
M

)
. By consequence, the

probability of a false positive is related to the ratio m
M , a ratio between the size of

the stream m and the memory size M , hence the inverse relationship. Note however
that such a relationship might be much harder to derive from the false negative
probability (if it exists), but practical results allow us to think that the same inverse
relationship is also present.

3.8.6 Influence of the Sliding Window
We use the same filters as in Section 3.8.2, with the addition of another QHT (named
QHT8 in the legends), with k = 1 cell per row, and 8 bits per fingerprint, with 1
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Figure 3.4: Error rate (times 100) of filters depending on the filter size, on streams
of 10 000 000 elements. Hatched area represents over-optimal (impossible) values,
see Section 3.4.2.
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Mb memory, on two streams of 150 million elements: one stream with real data, one
stream with random elements from an alphabet of 226 elements.

We compare the filters error rate on different sizes of sliding windows 100, 1 000,
10 000, 100 000, 1 000 000, 10 000 000 and 100 000 000 elements.

Note that, even though included in this benchmark for the sake of completeness,
sliding windows of small size (say, < 10 000 or 100 000) should not be taken into
account for real-life implementation: if one really needs to find duplicates on such a
small sliding window, the best solution is simply to implement a queue: the resulting
structure remain time-competitive for small sizes, and offers an error rate of exactly
0.

Results are plotted in Figure 3.5. We observe that, even though b_DBF have a
slight advantage on real data for real-life sliding window sizes, there is no guarantee
that there will always perform as good, as their performance on the random dataset
is very low. On the other hand, QHTs are better than any other structure, safe
b_DBF, and are at least as competitive than b_DBF on a real case, and much
better in a random dataset.

Furthermore, even though of no practical uses, QHTs can be tuned to be ex-
tremely performant on small sliding windows as well, thus offering some resilience
to the user if they happen to use a probabilistic filter when it is not needed.

From this benchmark, we can make two observations. The first one is that,
for all filters, there appears to have an optimum sliding window size. The second
one is that b_DBF appears to be more performant than QHT in several instances.
However, it appears this happens just on a small memory window: if we do the same
benchmark with a different filter size, we obtain different results.

3.9 Adversarial Resistance
Now, despite the good performances of QQHTD on normal streams, one may not
always assume that the stream is “normal”: there may be an attacker trying to fool
the filter. For instance if the filter must detect duplicates in order to avoid an attack
(nonce requirements), then the question of adversarial resistance is primordial.

Theorem 3.9.1. No filter F can resist a false negative attack on an infinite sliding
window. More specifically, for any 0 < p < 1, there exists n ∈ N such that A wins
the n-false negative game for F , with probability greater than p.

Proof. We craft false negatives in Ω(M) steps (M being the filter’s memory size).
Let us remind that no structure can remember more than one element per memory
bit. For this reason, the structure can remember at most M different elements.
Consequently, if the attacker generates a stream of random unseen elements, then
on average each element will stay for M insertions in the filter’s memory. More
generally, after hM insertions (for some rational h ≥ 1), an element is forgotten
with probability at least Pforgot = 1 − (1 − 1

M )hM ≃ 1 − e−h. Thus an attacker
simply generates Ω(M) unique elements before sending the first element again. M
can even be estimated via saturation (see Section 3.4.1). Given that CPU time is
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cheaper than memory requirements, the attacker keeps her advantage over any filter
of any size. �

Theorem 3.9.2. Assuming finite sliding window size w, and assuming the existence
of one-way hash functions and permutations, QHT are (1−(1− S−k

NSk )w−1, w)-resistant
to false negative attacks.

Proof. Following [NY15] we replace all hash functions by one-way hash functions,
and apply a (secret) one-way permutation on incoming elements, then classically
store the results in the filter. Because of the permutation, the attacker gains no
advantage in adaptively choosing the elements, thus loosing her advantage of adap-
tively choosing the elements. Her only advantage left is to choose when the last
duplicate element of her challenge e⋆ has been inserted. It is obvious that the opti-
mal strategy for A is to send a stream e⋆, e2, . . . , ew in the phase 1, before activating
phase 2 on e⋆, with ei being all unique elements, different than e⋆. Of course, A can
switch to phase 2 as soon as she detects that she will be victorious.

In this context, A wins the game if and only if e⋆ is evicted by one of the w − 1
next elements. An element evicts e⋆ with probability 1

N
S−k

S
1
k , so A wins the game

with probability 1− (1− S−k
NSk )w−1, hence the result. �

Theorem 3.9.3. Assuming the existence of one-way functions, a QHT is ( k
S (1−(

1− 1
kN

)w)
, n)-false positive resistant for any n < w.

Proof. Similarly to the false negative proof, assuming the existence of one-way func-
tions, the adversary has no better strategy than randomly trying new elements. The
probability that a random unseen element (over the sliding window) triggers a false
positive is FPw

m, which is bounded above by k
S

(
1−

(
1− 1

kN

)w)
. �

3.10 Conclusion

This chapter introduces a new duplicate detection filter, QHT, and its variant
QQHTD. QHTs achieve a better utilization of the available space, and as such
are more efficient than existing filters. Especially, QHT is always performing better
than the filter it is inspired from, SQF. Moreover, QQHTD have more efficiency
for detecting duplicates in a real dataset. These results apply equally when we are
considering duplicates in a sliding window or in general.

We showed that, for an infinite stream with an infinite number of unseen elements,
the number of rows is less important than the fingerprint space, and the number of
cells per row. Moreover, we proved that all filters, having reached saturation, are
not more efficient than random filters, and as such, a benchmarking of stream filters
should only focus on the pre-saturation state, with small streams. We also gave a
lower bound on the optimal error rate, thus allowing one to determine how close a
structure is to optimality.
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However, this optimality bound is not tight. Furthermore, it is probable that
such an optimal structure will be extremely slow, and as such will require an effi-
ciency/time adjustment. Further work may include research in this area.

Finally, other future research can be directed in the analysis of the error rate of
QQHTDs, as well as a finer study of the parameter tuning in the sliding window
configuration.
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Abstract

Duplicate detection is the problem of identifying whether a given item has
previously appeared in a (possibly infinite) stream of data, when only a limited
amount of memory is available.

Building on the Bloom filter [Blo70], an early data structure amenable to du-
plicate detection, several generalizations and variants were proposed that reduce
error rates while maintaining constant memory.

Unfortunately the infinite stream setting is ill-posed, and error rates of duplicate
detection filters turn out to be heavily constrained: consequently they appear to
provide no advantage, asymptotically, over a biased coin toss [GLPN19].

Both as a better-behaved setting and as a construction technique, a windowed
variant of the duplicate detection problem was introduced in [SZ08; Yoo10] which
consists in finding duplicate entries amongst the last w e lements of the stream for
a fixed integer w.

In this chapter, we formalize the sliding window setting introduced by [SZ08;
Yoo10], and show that a perfect (zero error) solution can be used up to a maximal
window size wmax. Above this threshold we show that some existing duplicate de-
tection filters (designed for the non-windowed setting) perform better that those
targeting the windowed problem. Finally, we introduce a “queuing construction”
that improves on the performance of some duplicate detection filters in the win-
dowed setting.

We also analyse the security of our filters in an adversarial setting.
This work is joint with Rémi Géraud–Stewart and David Naccache. It has

been presented at the 26th International Computing and Combinatorics Conference
(COCOON 2020), and published as [GSLPN20].

4.1 Introduction
Throughout this chapter, we are interested in the wDDP, i.e., the problem of dupli-
cate detection over a sliding window w (see Definition 2.1.5).

Note that for w = ∞, the problem becomes finding whether an element is a
duplicate amongst all previous stream elements. For simplicity in the notation,
when we refer to ∞DDP we instead write DDP.

Instances of the wDDP abound in computer science, with applications to file
system indexation, database queries, network load balancing, network management
[DLOM02], in credit card fraud detection [CDPLB+17], phone calls data mining
[CFP+00], etc. A discussion about algorithms on large data streams can be found
in [GO03].

Perfect detection is however not always reachable and it might be more practical
to work on a further relaxation of the problem, allowing for errors. As such, the
problem then becomes to detect duplicates, with a minimal amount of errors. Given
that there are two types of error, a compromise between false positives and false
negatives must be done.
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Approximate duplicate detection has many real-life use cases, and can sometimes
play a critical role, for instance in cryptographic schemes where all security and
secrecy fall apart as soon as a random nonce is used twice, such as the ElGamal
[Gam84] or ECDSA signatures. Other uses include improvements over caches [KS08],
duplicate clicks [MAEA05] and others. Please note that approximate detection is
a different problem than detection of approximate duplicates [ME97], in which the
goal is to find elements similar but not necessarily equal to the target.

As said before, when the window size in wDDP grows infinitely large, it becomes
the following problem: find whether e⋆ ∈ En. Unfortunately any solution to this
problem will necessary encounter a phenomenon called “saturation” on large enough
data streams [GLPN19], and when it happens the algorithm performs no better than
at random.

This is problematic on two grounds: it makes the comparison of several al-
gorithms difficult (since they all asymptotically behave in that fashion), and the
unavoidable saturation ruins any particular design’s merits. As such, it is more
interesting to focus on wDDP rather than DDP.

4.2 Contributions and Related Work

4.2.1 Contributions

In this chapter, we start in Section 4.3 from a naïve solution for the wDDP to then
derive bounds for when it can be solved within M memory bits, up to a window
size wmax, in constant time. We then introduce, Section 4.3.2, a generalization of
the naïve solution, and study its error rate. We show that this construction, which
we call Short Hash Filter (SHF), can push the value wmax further while operating
in constant time — at the cost of some errors. We also provide a different tradeoff,
the Compact Short Hash Filter (CSHF), which uses fewer memory but operates in
linear time.

Unfortunately, for w > wmax the performance of SHF degrades very rapidly.
We thus briefly turn our attention in to existing data structures designed for

the “non-windowed” setting in Section 4.4, and observe how these structures behave
in the sliding window context. Based on our observations, we then introduce the
“queuing construction” in Section 4.5, a black box transformation of non-windowed
data structures into windowed ones, that improves their performance in the wDDP
setting. We give formal error rates of our construction.

We also run an exhaustive benchmark in Section 4.6. In this benchmark, we
compare the efficiency of our queueing construction compared to the naïve “non-
windowed” data structures. We show that depending on the context (especially the
sliding window size), SHF, queueing filters and existing “non-windowed” filters each
have their area of dominance.

Finally, we provide an analysis of our queueing construction’s resistance to ad-
versarial streams in Section 4.7.
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4.2.2 Related Work
The notion of sliding window was, as far as we know, first introduced in [MAEA05];
but several variations exist that are incomparable to one another (e.g., [SBA20]).
The wDDP formulation we rely on is notably used in [Yoo10; SZ08], which also
introduce algorithms for solving the wDDP approximately.

The notion of using subfilters, as in the queuing construction, can be found
in the A2 filter’s design [Yoo10] and a variation thereof can be found in [SBA20]
but in a different DDP formulation. The A2 is built from two Bloom filters, a
construction which we generalize and analyse generically in this chapter. Similarly,
the construction in [SBA20] only works with Bloom Filters.

A literature review collects the following DDF constructions: A2 filters [Yoo10],
Stable Bloom Filters (SBF) [DD06], Quotient Hash Tables (QHT) [GLPN19], Stream-
ing Quotient Filters (SQF) [DNB13], Block-decaying Bloom Filters (b_DBF) [SZ08],
and a slight variation of Cuckoo Filters [FAK+14] suggested by [GLPN19]. The
structure proposed in [MAEA05] is not designed for wDDP but a variant called
‘landmark‘ sliding window, which consists of a zero-resetting of the memory at some
user-defined epochs.

Remark. On the topic metrics used on benchmarking of such filters, there seems to
be no consensus in the literature. We measure the error rate ER = FPRw + FNRw,
as it allows a practical ranking of the solutions. An error rate of 0 means a perfect
filter, while a filter answering randomly has an error rate of 1. A filter being always
wrong has an error rate of 2. Note that the error rate metric is also equal to 1− J ,
where J is Youden’s J statistic [You50].

4.3 Approximate Solution and SHF

4.3.1 Optimal and Approximate Optimal wDDF
Before trying to find new solutions, it is important to first observe when the problem
can be solved optimally by simple constructions.

Theorem 4.3.1. For M ≥ w(log2(w)+2 log2(|Γ|)), the wDDP can be solved exactly
(with no errors) in constant time.

Proof. We explicitly construct a DDF that performs the detection. Storing all w
elements in the sliding window takes w log2(|Γ|) memory, using a FIFO queue Q;
however lookup has a worst-time complexity of O(w).

We therefore rely on an ancillary data structure for the sake of quickly answering
lookup questions. Namely we use a dictionary D whose keys are elements from Γ
and values are counters.

When an element e is inserted in the DDF, e is stored and D[e] is incremented
(if the key e did not exist in D, it is created first, and D[e] is set to 1). In order to
keep the number of stored elements to w, we discard the oldest element elast in Q.
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As we do so, we also decrement D[elast], and if D[elast] = 0 the key is deleted from
D. The whole insertion procedure is therefore performed in constant time.

Lookup of an element e⋆ is simply done by looking whether the key D[e⋆] exists,
which is done in constant time.

The queue size is w log2 |Γ|, the dictionary size is w(log2 |Γ| + log2 w) (as the
dictionary cannot have more than w keys at the same time, a dictionary key occupies
log2 |Γ| bits and a counter cannot go over w, thus being less than log2 w bits long).
Thus a requirement of w(log2(w) + 2 log2(|Γ|)) bits for this DDF to work.

Finally this filter does not make any mistake, as the dictionary D keeps an exact
account of how many times each element is present in the sliding window. �

However, this optimal filter requires that the size of Γ is known in advance. The
dependence on log2 |Γ| can be dropped, at the cost of allowing errors.

Theorem 4.3.2. Let w ∈ N. Let M ≃ 2w log2 w, then the wDDP can be solved with
almost no error using M memory bits.

More precisely, it is possible to create a filter of M bits with an FN of 0, an FP
of 1− (1− 1

w2 )w ∼ 1
w , and a time complexity of O(w).

Using M ≃ 5w log2 w bits of memory, a constant-time filter with the same error
rate can be constructed.

Note that we only consider the false positive probability after the filter has
inserted at least w elements, i.e., once the filter is full and has reached a stationary
regime.

Proof. Here again we explicitly construct the filters that attain the theorem’s bounds.
Let h be a hash function with codomain {0, 1}2 log2 w. The birthday theorem

[Wag02] states that for a hash function h over a bits, one must on average collect
2a/2 input-output pairs before obtaining a collision. Therefore 2(2 log2 w)/2 = w hash
values h(ei) can be computed before having a 50% probability of a collision (here, a
collision is when two distinct elements of the stream ei, ej with i ̸= j, ei ̸= ej have
the same hash, i.e., h(ei) = h(ej)). The 50% threshold we impose on h is arbitrary
but nonetheless practical.

Let F be the following DDF: the filter’s state consists in a queue of w hashes,
and for each new element e, Detect(e) returns DUPLICATE if h(e) is present in the
queue, UNSEEN otherwise. Insert(e) appends h(e) to the queue before popping the
queue.

There is no false negative, and a false positive only happens if the new element to
be inserted collides with at least one other element, which happens with probability
1 − (1 − 1

22 log2 w )w = 1 − (1 − 1
w2 )w, hence an FN of 0 and a FP of 1 − (1 − 1

w2 )w.
The queue stores w hashes, and as such requires w · 2 log2 w bits of memory.

Note that this solution has a time complexity of O(w). Using an additional
dictionary, as in the previous proof, but with keys of size 2 log2(w), we get a filter
with an error rate of about 1

w and constant time for insertion and lookup, using
w · 2 log2 w + w · (2 log2(w) + log2(w)) = 5w log2 w bits of memory. �
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When log2 |Γ| > 5 log2 w this DDF outperforms the naïve strategy1, both in
terms of time and memory, at the cost of a minimal error. When log2 |Γ| > 2 log2 w,
it outperforms the exact solution described sooner in terms of memory.

4.3.2 Short Hash Filter and Compact Short Hash Filter Algo-
rithms

4.3.2.1 Short Hash Filter (SHF)

The approximate filter we described uses hashes of size 2 log2(w) for a given sliding
window w. However, this hash size is arbitrary, and while the current hash size
guarantees a very low error rate, it can be changed. More importantly, in some
practical cases the maximal amount of available memory is fixed beforehand. Fixing
the memory is also more practical for benchmarking data structures, as it gives the
guarantee that all filters operate under the same conditions.

This gives us the Short Hash Filter (SHF), described in Algorithm 5. The im-
plementation relies on a double-ended queue or a ring buffer, which allows pushing
at beginning of a queue and popping at the end in constant time.

Algorithm 5 SHF Setup, Lookup and Insert
1: function Setup(M, w) ◃ M is the available memory, w the size of the sliding

window
2: h← hash function of codomain size ⌊M

2w −
1
2 log2 w⌋

3: Q← ∅ ◃ Q is a queue of elements of size h
4: D ← ∅ ◃ D is a dictionary h⇒ counter (of max value w)

1: function Insert(e)
2: Q.Push_Front(h(e))
3: D[h(e)]++
4: if Q.length() > w then
5: h′ ← Q.Pop_back()
6: D[h′]--
7: if D[h′] = 0 then
8: Erase key D[h′]

1: function Lookup(e)
2: if D[h(e)] > 0 then
3: return DUPLICATE
4: else
5: return UNSEEN

4.3.2.2 Compact Short Hash Filter (CSHF)

Removing the dictionary from the SHF construction yields a more memory-efficient,
but less time-efficient construction, which we dub “compact” short hash filter (CSHF).
The CSHF performs in linear time in w, and is a simple queue, the only point is that

1The naïve strategy consisting of storing the w elements of the sliding window, requiring
w log2 |Γ| bits of memory.
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instead of storing e, the filter stores h(e), where h is a hash function of codomain
size ⌊M

w ⌋.

4.3.2.3 Error probabilities

Let w > 0 be a window size and M > 0 the available memory.
We write FNw

SHF the probability of false negative of an SHF with these parame-
ters. We similarly define FPw

SHF, FNw
CSHF, FPw

CSHF.

Theorem 4.3.3. We have:

• FNw
SHF = 0 and FPw

SHF = 1−
(
1−
√

w2−M/w
)w

• FNw
CSHF = 0 and FPw

CSHF = 1−
(
1− 2−M/w

)w

Proof. This is an immediate adaptation of the proof from Theorem 4.3.2. An SHF
has fingerprints of size h = M

2w −
1
2 log2 w, while a CSHF has fingerprints of size

h′ = M
w . �

Remark: A CSHF of size M on a sliding window w has the same error rate than
an SHF of sliding window w of size 2M + w log2 w.

Saturation SHF has strictly increasing error probabilities, which reach a threshold
of 1/2 for some maximum window size wmax. Beyond this value, these filters saturate
extremely quickly: in other words, most SHF will either have an error rate of 0 or
1. The same can be said about the CSHF.

An illustration of this phenomenon can be seen in Figure 4.1, which shows the
error rates for SHF with M = 105, against a uniformly random stream of 18-bit
elements (|Γ| = 218). The benchmark used a finite stream of length 106.

The value wmax can be obtained by solving (numerically) for FPwmax = 1/2 for a
given M . Experiments (numerical resolution of FPmax = 1/2, for about 200 different
values of M , uniformly distributed on a log scale between 102 and 106) indicate an
approximately linear relationship between M and wmax: wCSHF

max = 0.0627M + 443
(r2 = 0.9981) and wSHF

max = 0.0233M + 186 (r2 = 0.9977).

4.4 Non-windowed DDFs in a wDDP Setting

4.4.1 Saturation Resistance of DDFs
We now evaluate the saturation rate for several DDFs, in the original DDP set-
ting (without sliding window). Parameters are chosen to yield equivalent memory
footprints and were taken from [GLPN19], namely:

• QHT [GLPN19], 1 bucket per row, 3 bits per fingerprint;

• SQF [DNB13], 1 bucket per row, r = 2 and r′ = 1;
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Figure 4.1: Error rates of SHFs and CSHFs for M = 105 bits, for varying window
sizes w.

• Cuckoo Filter [FAK+14], cells containing 1 element of 3 bits each;

• Stable Bloom Filter (SBF) [DD06], 2 bits per cell, 2 hash functions, targeted
FPR of 0.02.

The other filters from [GLPN19] were not considered in this benchmark, as they
were desgined to operate on a sliding window.

These filters are run against a stream of uniformly sampled elements from an
alphabet of 226 elements. This results in around 8% duplicates amongst the 150 000
000 elements in the longest stream used. Results are plotted in Figure 4.2. The
optimality bound has been extracted from [GLPN19].

The best results are given by the following filters, in order: QHT, SQF, Cuckoo
and SBF. We also observe that QHT and SQF have error rates relatively close to the
lower bound, hence suggesting that these filters are close to optimality, especially
since the lower bound is not tight.

4.4.2 Performance in wDDP
We now consider the performance of the filters just discussed in the windowed setting,
for which they were not designed. In particular, it is not possible to adjust their
parameters as a function of w.

Remarkably, some of these filters still outperform dedicated windowed filters for
some window sizes at least, as shown in Figure 4.3. In this benchmark, we used the
following filters:

• block decaying Bloom Filter2 (b_DBF) [SZ08], sliding window of size w

2Note that by design, a b_DBF of 105 bits cannot operate for w > 6000.
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Figure 4.2: Error rate (times 100) of DDFs of 1Mb as a function of stream length.
Hatched area represents over-optimal (impossible) values, see Section 3.4.2 (page 31).

• A2 filter [Yoo10], changing subfilter every w/2 insertions

• QHT [GLPN19], 1 bucket per row, 3 bits per fingerprint

Nevertheless, we will now discuss the queuing construction, which allow us to
build windowed filters from the DDP filters.

4.5 Queuing Filters

We now describe the queuing construction, which produces a sliding window DDF
from any DDF. We first give the description of the setup, before studying the theo-
retical error rates. A scheme describing our structure is detailed in Figure 4.4.

4.5.1 The Queuing Construction

Principle of operation. Let F be a DDF. Rather than allocating the whole
memory to F , we will create L copies of F , each using a fraction of the available
memory. Each of these subfilters has a limited timespan, and is allowed up to c
insertions. The subfilters are organised in a queue.

When inserting a new element in the queuing filter, it is inserted in the topmost
subfilter of the queue. After c insertions, a new empty filter is added to the queue,
and the oldest subfilter is popped and erased.

As such, we can consider that each subfilter operates on a sub-sliding window of
size c, which makes the overall construction a DDF operating over a sliding window
of size w = cL.
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Figure 4.3: Error rates for QHT, b_DBF, and A2. While A2 and b_DBF were
designed and adjusted to the wDDP, this is not the case of QHT. Still, QHT out-
performs these filters for some values of w.

Insertion and lookup. The filter returns DUPLICATE if and only if at least one
subfilter does. Insertion is a simple insertion in the topmost subfilter.

Queue update. After c insertions, the last filter of the queue is dropped, and a
new (empty) filter is appended in front of the queue.

Pseudocode. We give a brief pseudocode for the queuing filter’s functions Lookup
and Insert, as well as a Setup function for initialisation, in Algorithm 6. We intro-
duced for simplicity a constructor F .Setup that takes as input an integer M and
outputs an initialized empty filter F of size at most M . Here subfilters is a FIFO
that has a pop and push_first operations, which respectevely removes the last
element in the queue or inserts a new item in first position.

4.5.2 Error Rate Analysis

The queuing filter’s properties can be derived from the subfilters’. False positive
and false negative rates are of particular interest. In this section we consider a
queuing filter Q with L subfilters of type F and capacity c (which means that the
last subfilter is dropped after c insertions).

Remark. By definition, after c insertions the last subfilter is dropped. Information-
theoretically, this means that all the information related to the elements inserted in
that subfilter has been lost, and there are c such elements by design. Therefore, in
the steady-state regime, the queuing filter holds information about at least c(L− 1)
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Figure 4.4: Architecture of the queuing filter, which consists of L subfilters Fi, each
containing up to c elements. Once the newest subfilter has inserted c elements in
its structure, the oldest one expires. As such, the latter is dropped and a new one
is created and put under population at the beginning of the queue. In this example,
the sub-sliding window of F1 is (em−2, em−3, em−4).

elements (immediately after deleting the last subfilter) and at most cL elements
(immediately before this deletion).

Hence, if w < cL, the queuing filter can hold information about more than w
elements.

False Positive Probability

Theorem 4.5.1. Let FPw
Q,m be the false positive probabilityof Q after m > w inser-

tions, over a sliding window of size w = cL, we have

FPw
Q,m = 1− (1− FPF ,c)L−1 (1− FPF ,m mod c)

where FPF ,m is the false positive probability of a subfilter F after m insertions.

Proof. Let E = (e1, . . . , em, . . . ) be a stream and e⋆ /∈wE.
Therefore, e⋆ is a false positive if and only if at least one subquery Fi.Lookup(e⋆)

returns DUPLICATE. Conversely, e⋆ is not a false positive when all subqueries
Fi.Lookup(e⋆) return UNSEEN, i.e., when e⋆ is not a false positive for each sub-
filter.

Each subfilter has undergone c insertions, except for the first subfilter which has
only undergone m mod c, we immediately get Theorem 4.5.1. �
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Algorithm 6 Queuing Filter Setup, Lookup and Insert
1: function Setup(F , M, L, c) ◃ M is the available memory, F the subfilter

structure, L the number of subfilters and c the number of insertions per subfilter
2: subfilters ← ∅
3: counter ← 0
4: m← ⌊M/L⌋
5: for i from 0 to L− 1 do
6: subfilters.push_first(F .Setup(m))
7: store (subfilters, L, m, counter)

1: function Lookup(e)
2: for i from 0 to L− 1 do
3: if subfilters[i].Lookup(e) then
4: return DUPLICATE
5: return UNSEEN

1: function Insert(e)
2: subfilters[0].Insert(e)
3: counter++
4: if counter == c then
5: subfilters.pop()
6: subfilters.push_first(F .Setup(m))
7: c← 0

Remark. In the case w < cL, as mentioned previously, there is a non-zero proba-
bility that e⋆ is in the last subfilter’s memory, despite not belonging to the sliding
window.

Assuming a uniformly random input stream, and writing δ = cL−w, the proba-
bility that e⋆ has occurred in {em−cL, . . . em−w+1} is 1−

(
1− 1

|Γ|

)δ
. For large |Γ| (as

is expected to be the case in most applications), this probability is about δ
|Γ| ≪ 1.

Hence, we can neglect the probability that e⋆ is present in the filter, and we consider
the result of Theorem 4.5.1 to be a very good approximation even when w < cL.

False Negative Probability

Theorem 4.5.2. Let FNw
Q,m be the false negative probability of Q after m > w

insertions on a sliding window of size w = cL, we have

FNw
Q,m = uL−1

c um mod c

where we have introduced the short-hand notation uη = pη FNF ,η + (1− pη) (1− FPF ,η)
where FNF ,η (resp. FPF ,η) is the false negative probability (resp. false positive) of

the subfilter F after η insertions, and pη =
1−
(

1− 1
|Γ|

)η

1−
(

1− 1
|Γ|

)w ≈ η
w .

Proof. Let E = (e1, . . . , em, . . . ) be a stream, let w be a sliding window and let
e⋆ ∈w E.

Then e⋆ is a false negative if and only if all subfilters Fi answer Fi.Detect(e⋆) =
UNSEEN. There can be two cases:
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• e⋆ is present in Fi’s sub-sliding window;

• e⋆ is not present in Fi’s sub-sliding window.

In the first case, Fi.Detect(e⋆) returns UNSEEN if and only if e⋆ is a false negative
for Fi. This happens with probability FNF ,c by definition, except for F0, for which
the probability is FNF ,m mod c.

In the second case, Fi.Detect(e⋆) returns UNSEEN if and only if e⋆ is not a false
positive for Fi, which happens with probability 1− FPF ,c, execpt for F0, for which
the probability is 1− FPF ,m mod c.

Finally, each event is weighted by the probability pc that e⋆ is in Fi’s sub-sliding
window:

pc = Pr[e⋆ is in Fi sub-sliding window | e⋆ ∈w E]

= Pr[e⋆ is in Fi sub-sliding window ∩ e⋆ ∈w E]
Pr[e⋆ ∈w E]

= Pr[e⋆ is in Fi sub-sliding window]
Pr[e⋆ ∈w E]

= 1− Pr[e⋆ is not in Fi sub-sliding window ]
1− Pr[e⋆ /∈wE]

pc =
1−

(
1− 1

|Γ|

)c

1−
(
1− 1

|Γ|

)w

This concludes the proof. �

Remark. As previously, the effect of w < cL is negligible for all practical purposes
and Theorem 4.5.2 is considered a good approximation in that regime.

4.5.3 FNR and FPR

From the above expressions we can derive relatively compact explicit formulas for
the queuing filter’s FPR and FNR when m = cn for n a positive integer.

Theorem 4.5.3. Let FPRw
Q,m be the false positive rate of Q after m = cn > w

insertions on a sliding window of size w = cL, we have

FPRw
Q,cn = 1− (1− FPF ,c)L−1

c

c−1∑
ℓ=0

(1− FPF ,ℓ).

Proof. We start by recalling that FPw
Q,m = FPw

Q,m mod c, which we use two times in
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the proof.

FPRw
Q,cn = 1

cn

cn∑
k=1

FPw
Q,k

= 1
cn

n−1∑
j=0

c∑
ℓ=1

FPw
Q,jc+ℓ

= 1
c

c∑
ℓ=1

FPw
Q,ℓ

= 1
c

c−1∑
ℓ=0

FPw
Q,ℓ

= 1
c

c−1∑
ℓ=0

1− (1− FPF ,c)L−1(1− FPF ,ℓ)

FPRw
Q,cn = 1− 1

c
(1− FPF ,c)L−1

c−1∑
ℓ=0

(1− FPF ,ℓ)

�

Theorem 4.5.4. Let FNRw
Q,m be the false negative rate of Q after m = cn > w

insertions on a sliding window of size w = cL, we have

FNRw
Q,cn = uL−1

c

c

c−1∑
ℓ=0

uℓ

Proof. Similarly, let us first recall that FNw
Q,m = FNw

Q,m mod c.

FNRw
Q,cn = 1

cn

cn∑
k=1

FNw
Q,k

= 1
cn

n−1∑
j=0

c∑
ℓ=1

FNw
Q,jc+ℓ

= 1
c

c∑
ℓ=1

FNw
Q,ℓ

= 1
c

c−1∑
ℓ=0

FNw
Q,ℓ

= 1
c

c−1∑
ℓ=0

uL−1
c uℓ

FNRw
Q,cn = uL−1

c

c

c−1∑
ℓ=0

uℓ

�

72



4.5 - Queuing Filters

As for the probabilities, the expressions derived above for the FNR and FNR are
valid to first order in (w − cL)/|Γ|, i.e., they are good approximations even when
w ≈ cL.

4.5.4 Optimising Queuing Filters

Let us relax, temporarily, the a priori constraint that w = cL. The parameter L
determines how many subfilters appear in the queuing construction, and it might
be interesting to determine what its optimal value should be. Summing up the false
positive and false negative rates, we have a total error rate ERw

Q,cn = 1 − αβL−1 +

α′β′L−1, where β = 1 − FPF ,c, β′ = uc, α = 1
c

c−1∑
ℓ=0

1 − FPF ,ℓ and α′ = 1
c

c−1∑
ℓ=0

uℓ are

all parameters which depend on w, c and the choice of subfilter type F .
Because uη = pη FNF ,η + (1− pη) (1− FPF ,η), differentiating with respect to L,

knowing that w = Lc, and equating the derivative to 0, one can find the optimal
value for L by solving for x the following formula, which has been obtained via
Mathematica:

− αβ−1+x log(β) + (β + FNF ,c(−1 + x))−2+x x−x
[

− αβ + FNF ,c (−β(−2 + x) + FNF ,c(−1 + x))
+ (α + FNF ,c(−1 + x))×

(β + FNF ,c(−1 + x)) (log (β + FNF ,c(−1 + x))− log(x))
]

= 0

If numerically solving the equation for individual cases is feasible, it seems un-
likely that a closed-form formula exists. Hence, it is maybe more interesting to find
experimentally the optimal value, which we do a few pages below in Section 4.6.2.

4.5.5 Queuing Filters from Existing DDFs

Our queuing construction relies on a choice of subfilters. A first observation is that
we may assume that all subfilters can be instances of a single DDF design (rather
than a combination of different designs).

Indeed, a simple symmetry argument shows that a heterogenous selection of
subfilters is always worse than a homogeneous one: the crux is that all subfilters
play the same role in turn. Therefore we lose nothing by replacing atomically one
subfilter by a more efficient one. Applying this to each subfilter we end up with a
homogenous selection.

It remains to decide which subfilter construction to choose. The results of an
experimental comparison of different DDFs (details about the benchmark are given
in Section 4.4.1) are summarized in Figure 3.3. It appears that the most efficient
filter (in terms of saturation rate) is the QHT, from [GLPN19].
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Figure 4.5: Error rate (times 100) of queuing filters as a function of window size,
M = 105, L = 10, |Γ| = 218, on a stream of size 107.

4.6 Experiments and Benchmarks

This section provides details and additional information on the benchmarking exper-
iments run to validate the above analysis. All the related code is accessible online
on GitHub: https://github.com/mariuslp/qht_v2.

4.6.1 Benchmarking Queuing Filters

Applying the queuing construction to DDFs from the literature, we get new filters
which are compared in the wDDP setting.

In Section 4.5.5 we suggested the heuristic that the DDFs with the least satura-
tion rate in the DDP would yield the best (error-wise) queuing filter for the wDDP.
This heuristic is supported by results, summarized in Figure 4.5. For this bench-
mark we used the following parameters: uniform stream from an alphabet of size
|Γ| = 218, memory size M = 100, 000 bits, sliding window of size w = 10, 000, and
we measure the error rate (sum of FNRw and FPRw).

A surprising observation is that when Lw approaches the size of the stream, there
is a drop in the error. This is an artifact due to the finite size of our simulations;
the stream should be considered infinite, and this drop disappears as the simulation
is run for longer (see Section 4.6.4). This effect also alters the error rates for smaller
window sizes, albeit much less, and we expect that filter designers care primarily
about the small window regime. Nevertheless a complete understanding of this
effect would be of theoretical interest, and we leave the study of this phenomenon
for future work.
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Figure 4.6: Evolution of the error rate of a queueing QHT as a function of L, for
several window sizes, with M = 105, |Γ| = 218, on a stream of size 106.

4.6.2 The Number of Subfilters
The number of subfilters L is an important parameter in the queuing construction, as
it affects the filter’s error rate in a nontrivial way. An illustration of this dependence
is shown in Figure 4.6 which plots the error rate of a queueing QHT on an uniform
stream of alphabet size Γ = 216, with 105 elements in the stream, on various sliding
window sizes.

We observe that the optimal value for L does indeed depend on the desired sliding
window. However, other experiments on alphabets of other sizes yield very similar
results, hence validating the observation made in Section 4.5.4 that the optimal num-
ber of subfilters does not depends on the alphabet, at least in first approximation.

4.6.3 Filters vs Queued Filters
Using the same stream as previously, we can build queued filters (with an optimal
value L for each considered sliding window) and compare their performances to that
of non-modified filters. Results on the QHT and SQF are shown in Figure 4.7, results
for the Cuckoo and SBF are shown in Figure 4.8.

We observe that queueing filters do not necessarily behave better than their
’vanilla’ counterparts, especially on large sliding windows. This can be interpreted
by the fact that the DDPs were optimised for infinite sliding windows, and as such
operate better than their queueing equivalent on large sliding windows.

4.6.4 Effects of the Simulation’s Finiteness
Theoretical results about the queuing construction apply in principle to an infinite
stream. However, simulations are necessarily finite, and for very large windows
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Figure 4.7: Comparing performances of QHT and SQF filters, in ‘vanilla’ setting or
when placed in our queueing structure.

(that are approximately the same size as the whole stream) this causes interesting
artefacts in the error rates.

Note that these effects have very little impact on practical implementations of
queuing filters, since almost all use cases assume a window size much smaller than
the stream (or, equivalently, a very large stream). Nevertheless we illustrate the
effect of the finite simulation and the parameters affecting it, if only to motivate a
further analytical study of this phenomenon.

Figure 4.9 (page 78) measures the error rate as a function of w, for different
stream sizes N . The split between FPR and FNR is made in Figure 4.10, page 79.
A visible decrease in error rate can be found around w ≈ N . When looking in
more details (see Figure 4.10),the peak of false positive, and more importantly its
decrease to the asymptotic error rate of the QHT (here, 1

7 ≈ 14%) seems to be
related with the size of the alphabet, here 216, which was confirmed by further
experiments. However, these experiments showed that other parameters, such as
the filter memory size, also played a role, and we did not achieve to establish a clear
relation between the alphabet size, the memory size and the false positive rate. Such
a relation would be an interesting addition to this work, and would help understand
better how queueing filter error rates work. For high values of w, the plateau that
we can see comes from the fact that, for w > L · N , only one subfilter is used for
storing the whole stream. Hence, all values w > L · N are identical, and equal to
the error rate of an underlying filter, of size M/L, on a stream of size N .

As can be seen on this simulation, there is only disagreement around w ≈ N/L,
and increasing N results in a later and smaller peak.

It is also possible to run simulations for different alphabet sizes Γ, which shows
that the peak’s position increases with |Γ|, although the relationship is not obvious
to quantify.
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Figure 4.8: Comparing performances of the Cuckoo and SBF filters, in ‘vanilla’
setting or when placed in our queueing structure.

4.7 Adversarial Resistance of Queueing Filters
As DDFs have numerous security applications, we now discuss the queuing construc-
tion from an adversarial standpoint. We consider an adversarial game in which the
attacker wants to trigger false positives or false negatives over the sliding window.
One motivation for doing so is causing cache saturation or denial of service by forc-
ing cache misses, triggering false alarms or crafting fradulent transactions without
triggering fraud detection systems.

In this chapter, we have introduced two new constructions, the SHF and the
queueing construction. However, the security of SHF is trivial to analyse. By con-
struction, false negative attacks are impossible, and one can easily see that, assuming
the existence of collision-resistance hash functions, false positive attacks are impos-
sible as well. For this reason, in this section we only focus on the security of the
queueing construction.

Theorem 4.7.1 (Bound on false positive resistance). Let Q be a filter of L subfilters
Fi, with c insertions maximum per subfilter, let w be a sliding window.

If F is (p, c)-resistant to adversarial false positive attacks and cL ≤ w, then Q
is (1− (1− p)L, w)-resistant to adversarial false positive attacks on a sliding window
of size w.

If cL > w, the adversary has a success probability of at least 1− (1− p)L.

Proof. If cL ≤ w, then information-theoretically the subfilters only have information
on elements in the sliding window. The false positive probability for Q is 1 − (1 −
FPF ,c)L, which is strictly increasing with FPF ,c. Hence, the optimal solution is
reached by to maximising the false positive probability in each subfilter Fi. By
hypothesis the latter is bounded above by p after c insertions.
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Figure 4.9: Error rate for queueing QHTs (L = 10, M = 104, |Γ| = 216, varying w,
QHT of parameters k = 1, s = 3) with streams of size 105 to 108.

On the other hand, if cL > w then the oldest filter holds information about
elements that are not in the sliding window anymore. Hence, a strategy for the
attacker trying to trigger a false positive on e⋆ could be to make it so these oldest
elements are all equal to e⋆. Let E be the optimal adversarial stream for triggering
a false positive on the sliding window w with the element e⋆, when cL ≤ w. The
adversary A can create a new stream E′ = e⋆|e⋆| . . . |E where e⋆ is prepended cL−w
times to E.

After w insertions, the last subfilter will answer DUPLICATE with probability at
least p, hence giving a lower bound on A′s success probability. If, for some reason,
the last subfilter answers DUPLICATE with probability less than p, then the same
reasoning as for when cL ≤ w still applies, hence we get the corresponding lower
bound (which is, in this case, an equality). �

Theorem 4.7.2 (Bounds on false negative resistance). Let Q be a filter of L sub-
filters of kind F , with c insertions maximum per subfilter, and let w be a sliding
window.

If F is (p, c)-resistant to adversarial false negative attacks, then A can win the
adversarial game on the sliding window w with probability at least pL.

Furthermore, for q the lower bound on the false positive probability FPF ,c for
a given stream, if w ≤ (L − 1)c then Q is (min(1 − q, p)L−1p, w)-resistant to false
negative attacks on the sliding window w. On the other hand if w > (L − 1)c then
Q is (max(1− q, p)L, w)-resistant to false negative attacks on the sliding window w.

Proof. Let us first prove that a PPT adversary A can win the game with probability
at least pL. For this, let us consider the adversarial game against the subfilter F :
after c insertions from an aversarial stream Ec, A choses a duplicate e⋆ which will be
a false negative with proability p. Hence, if A crafts, for the filter Q, the following
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Figure 4.10: False positive and false negative curves of the previous graph, see
Figure 4.9.
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adversarial stream E′ = Ec | Ec | · · · | Ec consisting of L concatenations of the
stream Ec, then e⋆ is a false negative for Q if and only if it is a false negative for all
subfilters Fi, hence a success probability for A of pL.

Now, Let us prove the case where w ≤ (L − 1)c. In this case, at any time,
Q remembers all elements from inside the sliding window. As we have seen in
the previous example, the success probability of A is strictly increasing with the
probability of each subfilter to answer UNSEEN. The probability of a subfilter to
answer UNSEEN is:

• FN′
F ,c if e⋆ is in the subfilter’s sub-sliding window;

• 1− FP′
F ,c if e⋆ is not in the subfilter’s sub-sliding window

where FN′ and FP′ are the probabilities of false negative and positives on the adver-
sarial stream (which may be different from a random uniform stream).

However, since e⋆ is a duplicate, it is in at least one subfilter’s sub-sliding window.
As such, the optimal strategy for A is to maximise the probability of all subfilters to
answer UNSEEN. Now, FN′

F ,c is bounded above by p and 1−FP′
F ,c is bounded above

by 1 − q, so the best strategy is where as many filters as possible answer UNSEEN
with probability max(p, 1− q), knowing that at least one filter must contain e⋆ and
as such its probability for returning UNSEEN is at most p, hence the result.

Now, let us consider the case when w > (L − 1)c. We have already introduce
the element e⋆ in the last w elements, and we want to insert it again. It is possible,
for the adversary, to create the following stream E = (e1, e2, . . . , ec−1, e⋆, ec+1, . . . ,
eLc, eLc+1), and to insert e⋆ afterwards.

When eLc+1 is inserted, all elements (e1, . . . , ec−1, e⋆) are dropped as the oldest
subfilter is popped. Hence, in this context e⋆ is not in any subfilter anymore, so by
adapting the previous analysis, A can get a false negative with probability at most
max(1− q, p)L. �

4.8 Conclusion
In this work, we have given bounds on the optimal solutions for the sliding win-
dow duplicate detection problem, and given solutions when optimality is reachable.
When memory is too small, or conversely when the sliding window is too big, we first
suggest the SHF, which experimentally is near-optimal in cases where optimality can
be reached, and behaves well when the sliding window is slightly bigger than wmax.
If the sliding window is significantly bigger than wmax, we introduce the queueing
construction, which takes an existing ∞DDF and adapts it for the sliding window
context. However, For even larger sliding windows, the queueing filter is actually
less performant than the ‘vanilla’ setting, as the∞DDF were optimised for large (or
rather infinite) sliding windows.

Thus, we have listed different strategies for solving the wDDP. However, there
is yet no guarantee of optimality, which we leave for future work.

80



Part II

Applied Security on Blockchain

81





5
About Blockchain Interoperability

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Blockchain Definition . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 Interoperability Definition . . . . . . . . . . . . . . . . . . . 88

5.3 General Impossibility of Interoperability . . . . . . . . . . 88
5.4 Interoperability with a Weaker Definition . . . . . . . . . 89
5.5 Equivalence of Interoperable Blockchains with a Single

Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

83



Chapter 5 - About Blockchain Interoperability

Abstract

A blockchain is designed to be a self-sufficient decentralised ledger: a peer veri-
fying the validity of past transactions only needs to download the blockchain (the
ledger) and nothing else. However, it might be of interest to make two differ-
ent blockchains interoperable, i.e., to allow one to transmit information from one
blockchain to another blockchain. In this chapter, we give a formalisation of this
problem, and we prove that blockchain interoperability is impossible according to
the classical definition of a blockchain. Under a weaker definition of blockchain,
we demonstrate that two blockchains are interoperable is equivalent to creating a
‘2-in-1’ blockchain containing both ledgers, thus limiting the theoretical interest
of making interoperable blockchains in the first place. We also observe that all
practical existing interoperable blockchain frameworks work indeed by exchanging
already created tokens between two blockchains and not by offering the possibility
to transfer tokens from one blockchain to another one, which implies a modification
of the balance of total created tokens on both blockchains. It confirms that having
interoperability is only possible by creating a ‘2-in-1’ blockchain containing both
ledgers.

This work is joint with Pascal Lafourcade and has been published in Information
Processing Letters Volume 161, September 2020, as [LLP20].

5.1 Introduction
Blockchain was first introduced in 2008 by Nakamoto in [Nak09]. In their paper,
the anonymous author(s) described the first decentralised ledger: a database in
which anyone can write, and that is not controlled by a single or a conglomerate
of identities. Since then, many other blockchains have been described: Ethereum
[But14], Ripple [SYB14] and many others. In May 2019, 248 active blockchains were
listed on [Cry19].

While many different blockchains exist, there is no direct way of reaching inter-
operability, at least without a trusted third party. Consider for instance a client
willing to convert their Bitcoins to Ether: they would need to consume the amount
of Bitcoins they wants to convert and to generate the equivalent amount of Ether.
While Bitcoin consumption may be reachable (by sending coins to a non-existing
address, such as the address 0), it is impossible to spontaneously generate Ether (or
any other kind of cryptocurrency). For now, the problem is solved with the help of
trusted brokers (also called escrows), even though other solutions are on their way
[JRB19; TS15].

The issue of interoperability is solved in some cases, like ”atomic exchanges”
and hash-locking [But16], in which game theory ensures that a broker only benefits
when following the protocol. However the question of trustless interoperability in
the general context remains open.

Contributions. We introduce a theoretical background to blockchain interoper-
ability, providing a formal definition of a blockchain and of interoperability. We
then prove that, by definition, interoperability between two public blockchains is
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impossible. However, we contend that there may be special conditions under which
two blockchains can be interoperable. This leads us to prove the equivalence be-
tween two interoperable public blockchains and a ledger emulating both blockchains
on two separate registries.

Related Work. The concept of sidechains (a sidechain is a blockchain attached to
another blockchain, with exchanges possible between the two blockchains) has been
explored in [BCD+14]. The authors describe a two-way peg in which a sidechain
is fed with an SPV proof, a short proof of the transaction allowing for lightweight
clients. The sidechain plays the role of a lightweight client, and can thus allow sub-
sequent operations following the SPV proof. However, this pegging system requires
a contest period, during which it is assumed that people will verify that the SPV
proof does not come from a fork. Hence, additional trust is required in this model.
In a paper from 2016 [But16], Buterin lists ways of reaching interoperability, and
focuses on trusted inter-chains exchanges, where one sends money on blockchain A
and receives some in blockchain B.

Similarly, the Interledger protocol [TS15] (ILP) allows one to automatize money
transfers while leveraging the risk of fraud, thanks to micro-transactions. Yet, ILP
is more about escrow synchronization than interoperability as we define it later on.
In an ILP transaction from blockchain A to blockchain B, one must find an escrow
having enough money on B (or several escrows having in total enough money), so
the transfer can occur. More generally, we consider that interoperability can for
instance allow money to ‘disappear’ from A and to ‘reappear’ on B, without the
need for trusted escrows.

Interoperability has been notably implemented in the blockchain network Kadena
[MQP18], in which transfers from one blockchain of the network to another is pos-
sible. The money is destroyed on one side and generated on the other. Kadena
also uses smart contracts for securing escrow transfer. However, there is no indica-
tion that Kadena can operate with chains outside of their specific network. So in
our terminology, we say that Kadena is a ”N-in-1 blockchain”, which is to say one
blockchain, with several ledgers.

To the best of our knowledge, no theoretical work on interoperability has been
done to date. Our work, rather than giving a practical implementation of an inter-
operable blockchain, gives a theoretical background to the topic, and explores the
conceptual meaning of having interoperable blockchains.

Outline. In the next section, we formally define a blockchain and interoperability.
In Section 5.3, we prove that it is impossible by design to have interoperability
between blockchains. In Section 5.4, we show that interoperability is possible with
a weaker definition of the blockchain. Before concluding, in Section 5.5, we prove
that interoperability is equivalent to having a blockchain with two ledgers.
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5.2 Preliminaries
Sets and tuples are noted in calligraphic font: A, algorithms in serif: Mine. When a
deterministic algorithm, say Algorithm, returns some value x from some input i, we
use the notation x← Algorithm(i). If Algorithm is randomised, we use the notation
x

$←− Algorithm(i). A list of elements e1, . . . , en (in this order) is represented by
[e1, . . . , en]. We denote concatenation of two lists a and b with a∥b. The set of
elements belonging to A but not to B is noted A\B (this set is also called the
difference of A and B.)

5.2.1 Blockchain Definition
Various definitions of blockchain have already been given [GKL15; AKG+18]. In
this work, we rather give a formalization of blockchains, which we believe is easier
to use for proving theoretical results such as the one in this chapter.

Intuitively, a blockchain is a chain of transactions. More precisely, each element
of the chain (each block) contains several transactions (or one or none), as well a
proof needed for consensus to take place. For instance in Bitcoin [Nak09] or similar
Proof of Work blockchains, the proof is a nonce (a random number such that the
hash of the block is below a threshold value); in a Proof-of-Stake such as the Casper
version for Ethereum [But14] the proof consists of the successive bets on what the
next block will be; in a Proof-of-Elapsed-Time as designed by Intel [IBM17], the
proof is instead a certificate obtained from the SGX (a trusted enclave). Note that
it exists blockchains not requiring proofs (for instance, one can argue that PBFT
consensus does not require proof), in which case we consider the proof is empty.

Definition 5.2.1 (Blockchain). Let T be a set of transactions and P be a set of
proofs. A blockchain is a tuple of elements B = (L,W, Emit, Mine), where:

• A ledger L is a list of transactions with their proofs defined by: L = [([t1,1, t1,2, . . . ],
p1), . . . , [([tn,1, tn,2, . . . ], pn)] with ti,j ∈ T and pi ∈ P.

• W is such that W ⊂ T , W is called the pool of waiting transactions.

• Emit is a deterministic algorithm taking one transaction t ∈ T andW as input,
and returning an updated pool Emit(t,W) = W ∪ t.

• Mine is an algorithm taking L,W and returning a new ledger L′, a new pool
W ′, where for any W ⊂ T , and for (L′,W ′) $←− Mine(L,W), we have that L′ is
of the form L∥[(transacs, p)], where transacs is a list containing all elements
from W\W ′, and p ∈ P a proof.

Furthermore, after a call to Emit or Mine, the ledger L and the waiting pool W
of B are updated with the values returned by said algorithms. In other words, Mine
and Emit are not pure functions [Mil14], as they have side effects on the blockchain.

At this point, transactions are appended (or not) to the blockchain after a call
to Mine. We hereby give a formal definition of what a valid transaction is.

86



5.2 - Preliminaries

Definition 5.2.2 (Valid Transaction). Let B = (L,W, Emit, Mine) be a blockchain,
and let t be a transaction (t ∈ W), t is a valid transaction for B (currently in state
L) if and only if there exists a block in the ledger returned by Mine containing t.

As we can see, the validity of a transaction depends on the state of the ledger; if
a transaction is valid at one point, it may not be valid forever, and reciprocally. For
instance, a transaction from user U to user V is valid only as long as U has enough
funds. Yet, after the emission and the insertion of the transaction in the blockchain,
U may issue other transactions, emptying their wallet. This is the classical issue of
double spending.

The same is true for smart contracts: here, they are seen as a special subset of
transactions, and they affect the state of the ledger. Because Mine has access to the
whole ledger, it can take into account the smart contract’s side effects.

Note that Mine is a randomized algorithm, and as such, there is no guarantee that
all users will agree on the same ledger. Because blockchain is a decentralised ledger,
state synchronisation must be ensured. For this, we introduce a synchronisation
algorithm, called Consensus.

Definition 5.2.3 (Decentralised Blockchain). A decentralised blockchain is a tuple
B′ = (L,W, Emit, Mine, Consensus) where:

• B = (L,W, Emit, Mine) is a blockchain,

• Consensus is a deterministic algorithm, taking as input B, a set S of tu-
ples (Li,Wi) such that ∀(Li,Wi) ∈ S, we have that (Li,Wi, Emit, Mine) is
a blockchain. Furthermore, for (L∗,W∗) ← Consensus(B,S), then (L∗,W∗) ∈
S ∪ (L,W). In other words, from a list of potential new blocks, Consensus
chooses (or accepts) one of them, or rejects them all (and returns (L,W)).

• After a call to Consensus, B′’s ledger and waiting pool components are replaced
with the values returned by said algorithms.

The idea of Consensus is that when a peer updates their local version of the
blockchain, they first receive possibly more than one new version (i.e., new blocks)
from peers. However only one of these new blocks will be accepted, and all the
network must agree on this block.

Definition 5.2.4 (Secure Blockchain). We say that a decentralised blockchain (L,W,
Emit, Mine, Consensus) is secure if it is computationally hard for a user to craft a new
ledger L′ and a new transaction pool W ′ such that for all S such that (L′,W ′) ∈ S,
we have both that Consensus(B,S) = (L′,W ′) and L is not a prefix of L′.

This definition makes a blockchain immune against history rewriting (and double
spending), as it is computationally hard to rewrite old blocks.
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5.2.2 Interoperability Definition
The concept of interoperability is to enable two blockchains to work together. A clas-
sic blockchain A accepts transactions because given the current state of A’s ledger,
the transaction does not violate A’s rules. Similarly, we say that a blockchain A that
is interoperable with blockchain B accepts transactions because, given the current
state of A and B’s ledgers, the transaction does not violate A’s rules. Further-
more, if the rules for said transaction only imply conditions on A’s ledger, then the
transaction does not require B to be valid, and as such does not make use of the
interoperability. So an interoperable transaction on A must be dependent on B’s
ledger: if B’s ledger is equal to some values, then the transaction is valid; otherwise
it is invalid.

We now give a formalization of this definition.

Definition 5.2.5 (Blockchain Interoperability). Let A = (LA,WA, EmitA, MineA,
ConsensusA) and B = (LB,WB, EmitB, MineB, ConsensusB) be two decentralised block-
chains. Let ΩA (resp. ΩB) be the set of all possible values for A’s ledger LA (resp.
LB). A is interoperable with B if there exists:

• a transaction t ∈ T ,

• a non-empty subset ωA ⊂ ΩA,

• a non-empty proper subset ωB  ΩB

such that there exists a block containing t that is accepted by ConsensusA if LA×LB ∈
ωA × ωB, and rejected otherwise.
A and B are interoperable if they are both interoperable with each other.

5.3 General Impossibility of Interoperability
Our first result is to show that it is impossible to have interoperability between two
blockchains in general.

Theorem 5.3.1. Under the Definitions 5.2.3 and 5.2.5, blockchain interoperability
is impossible.

Proof. Assume that an interoperable transaction t exists. Then there is a set ωB of
possible ledger values of B for which a block containing t is accepted by ConsensusA,
if LB ∈ ωB. Moreover, if LB ∈ ΩB\ωB, then ConsensusA will refuse any block
containing t.

However, ConsensusA only takes A, S as arguments, where S is a set of tuples
(Li,Wi) (see Definition 5.2.3). As a consequence, ConsensusA is independent from B,
and especially from LB. Then, if t is accepted by ConsensusA when LB ∈ ωB, then
t is also accepted by ConsensusA when LB ∈ ΩB\ωB; this implies that ΩB\ωB = ∅,
i.e., ωB = ΩB, which is a contradiction with the hypothesis of Definition 5.2.5,
namely that ωB is a proper subset of ΩB.

�
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This result is actually quite straightforward if we remember that a blockchain is,
by construction, made to be self-sufficient: no blockchain can rely on external data.
Especially, no blockchain can rely on another blockchain for asserting the validity
of a transaction. Hence, interoperability is a contradiction of one of the intrinsic
characteristics of blockchain.

The interpretation of the result is as follows: without additional assumptions,
interoperability between two blockchains is impossible. Therefore, to achieve in-
teroperability further assumptions need to be made. For instance, in the two-way
pegged blockchain mechanism, a dispute period is required for each interoperabilty
operation; as the blockchain cannot know by itself whether the proposed SPV proof
is the one of the latest block.

5.4 Interoperability with a Weaker Definition
Even though blockchain is not suited for interoperability stricto sensu, we can gen-
eralise our blockchain definition, in order to make a blockchain interoperable.

Hypothesis 1. We assume that for two blockchains A = (LA,WA, EmitA, MineA,
ConsensusA) and B, with A both MineA and ConsensusA have access to both A
and B: ConsensusA is of the form ConsensusA(A,B,S), and MineA is of the form
MineA(LA,LB,WA,WB).

We now use the notation ConsensusA(A,B, ·) to note the new consensus algo-
rithm. Hence, the ‘version’ of Consensus in the previous definition, is now noted
ConsensusA(A, ∅, ·). Similarly, the non-interoperable version of Mine is now noted
as MineA(LA, ∅,WA, ∅).

Definition 5.4.1 (Interoperable transaction). Under the assumption Hypothesis 1,
a transaction t on the blockchain A is said to be interoperable with B if t can be
accepted by ConsensusA(A,B, ·) but cannot be accepted by
ConsensusA(A, ∅, ·).

In this context, we have the following result.

Theorem 5.4.1. Under Hypothesis 1, it is possible to build interoperable blockchains.

Proof. Note that we already know that interoperable blockchains exist, such as
Kadena [MQP18] or other blockchains listed in [JRB19], but we give an example of
interoperable blockchain in our own theoretical framework.

Consider two decentralised blockchainsA = (LA,WA, EmitA, MineA, ConsensusA)
and B. On the blockchains we define accounts. An account ownership is defined by
the knowledge of a private key, and for simplicity the public key is assimilated to
the account itself. A transaction t ∈ TA (resp. TB) specifies the sender’s public key,
the receiver’s public key, an amount and a signature of the previous fields by the
sender’s private key. An account i on blockchain A (resp. B) is designed by iA (resp
iB).
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We build blockchain B so that it is interoperable with blockchain A in the fol-
lowing sense: a user can ‘create’ money on B if and only if at least the same amount
of money has been consumed on A, by sending it to a ‘bin’ account.

We first note that accounts owned by nobody exist. In our scheme, in most
cryptosystems the public key 0 (consisting of only zeroes) is not linked to any private
key. Thus, while the account 0A exists and money can be transferred on this account,
it cannot be claimed by anyone.

Let us construct B in order to fulfil the previous requirements. First, let us
define the interoperability transactions t∗(mB, pkB), which sends some amount of
money mB from 0B to the account pkB on B. t∗(mB, pkB) is only valid if there is
at least one transaction on LA sending m to the account 0A, with m > mB. 1

Then, let us construct MineB: a transaction t is valid for MineB(LB,LA,WB,WA)
if and only if t is valid for MineA(LA, ∅,WA, ∅), or if both statements are true:

• t is an interoperability transaction transferring some amount of money m from
0B to an account on B,

• LA contains a transaction sending at least m on the zero-address 0A.
Similarly, ConsensusB(B,A, ·) is conceived to accept new ledgers that would have

been accepted by ConsensusA(B, ∅, ·), as well as ledgers where the new blocks are
constituted solely of transactions that are accepted by ConsensusA(B, ∅, ·) and valid
interoperability transactions (valid in the meaning that at the time of their incorpo-
ration in the ledger, the sender has enough funds to emit the transaction).

With this construction, we immediately get that B is interoperable withA: a user
can transfer assets from A to B, which is shown by the fact that some transactions
(here denoted t∗) are only valid on B if the sender has enough funds on A.

�

5.5 Equivalence of Interoperable Blockchains with a Sin-
gle Blockchain

Even though interoperable blockchains can be tweaked into existence, we argue that
they are conceptually equivalent to a single blockchain. More precisely, we argue that
they are equivalent to one blockchain, composed of two ledgers. Such a blockchain
can be easily implemented: if the first bit of the transaction is 0, then apply the
transaction to the first ledger, and if 1 to the second.

We say that two blockchains are equivalent if any valid transaction on one
blockchain corresponds to one valid transaction on the other blockchain. This def-
inition implies that two equivalent blockchains will have very similar evolutions of
their ledgers. As Mine is not deterministic, we cannot ensure that the two ledgers
will be identical, but the definition we give is enough for practical uses.

1Note that for a real cryptocurrency more checks would be needed for any practical use, notably
because of the fact that in the current setting, anyone can withdraw m from 0B as many times as
they want. However, for the sake of simplicity, we only describe a simple, naive interoperability
operation here, so these checks are omitted.
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Definition 5.5.1 (Blockchain equivalence). Let there be two blockchains A = (LA,
WA, EmitA, MineA) and B = (LB,WB, EmitB, MineB) accepting transactions from TA

and TB, respectively. A and B are said to be equivalent if there exists a bijection φ :
TA → TB such that, if both ledgers are equivalent, then there is an equivalence of the
valid transactions. In mathematical terms, φ(LA) = LB ⇒ ∀tA ∈ TA, tA is a valid
transaction for A ⇔ φ(tA) is a valid transaction for B).

Note that φ(LA) is the generalization of φ to ledgers: if LA = [[t1,1, t1,2, . . . ] ,
. . . , [tn,1, tn,2, . . . ]], then φ(LA) = [[φ(t1,1), φ(t1,2), . . . ], . . . , [φ(tn,1),
φ(tn,2), . . . ]], in the case of a ledger without proofs. If the ledger has proofs (see
Definition 5.2.1), φ would need to work on a projection of the ledger: a projection
in which every poof is removed. This subtlety has been removed from the definition
for the sake of simplicity.

For instance, let us assume that two blockchains are equivalent, and two smart
contracts being the reciprocal image of each other. This means that whatever trans-
action triggers one smart contract, the effects on the state of the blockchain will be
equivalent to the effects on the state of the image blockchain: in both cases, the
acceptable elements after the transaction are the same (up to a bijection). This
definition does not guarantee that the smart contract will behave identically: for
instance, one could image a smart contract updating a useless write-only variable,
which by definition does not affect the set of future acceptable transactions as it is
write-only. However, it ensures that the behaviour of the blockchain is strictly the
same in both cases.

Theorem 5.5.1. A decentralised blockchain A interoperable with a blockchain B is
equivalent to a decentralised blockchain C containing both A and B’s ledgers.

Proof. Let A = (LA,WA, EmitA, MineA, ConsensusA) and B be two decentralised
blockchains, with A being interoperable with B. A being interoperable with B, we
have MineA of the form MineA(LA,LB, ·), and ConsensusA of the form ConsensusA(A,B, ·).

Let TA (resp. TB) be the set of transactions for A (resp. B). Note that TA

contains interoperability transactions. Let C be the tuple C = (LC ,WC , EmitC ,
MineC , ConsensusC).

We define the set of transactions for C, TC = (TA × ∅) ∪ (∅ × TB). Let cA (resp.
cB) be the canonical projector of TC on TA (resp. TB).

For (LA∥[(transacsA, pA)],W ′
A) = MineA(LA,LB, cA(WC)) and

(LB∥[(transacsB, pB)],W ′
B) = MineB(LB, cB(WC)), we define: MineC(LC ,WC) =

(LC∥ [(transacsA × ∅∥∅ × transacsB, pA × pB), (W ′
A × ∅) ∪ (∅ ×W ′

B)])
Simply put, MineC is a parallelisation of MineA and MineB: a block proposed by

MineC is a block comprised of the transactions accepted by MineA and MineB.
Similarly, ConsensusC is built as a parallelisation of ConsensusA and ConsensusB.

If ConsensusA(A,B, cA(SC)) = (L∗
A,W∗

A) and ConsensusB(B, cB(SB)) = (L∗
B,W∗

B),
then we define ConsensusC = (LA × ∅∥∅ × LB,WA × ∅ ∪ ∅ ×WB).

By construction, we see that C is a decentralised blockchain. Furthermore, by
construction each transaction accepted by MineC is either accepted by MineA or
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MineB and, conversely, each transaction accepted by MineA or MineB is accepted by
MineC , hence the equivalence of the blockchains.

�

In practice, Theorem 5.5.1 means that creating two interoperable blockchains is
equivalent to creating one blockchain, with a ledger divided into two separate reg-
istries: a ‘2-in-1‘ blockchain. So while creating interoperable blockchains (with a lax
definition of a blockchain) is possible, we argue that the conceptual interest of doing
so is limited. However, it may be interesting to create an interoperable blockchain
on top of an already existing blockchain. Doing so allows both blockchains to fully
operate, without the older blockchain being affected by anything. Nonetheless the
obvious restriction is that only one of the two blockchains will be interoperable with
the other, with all the limits implied by this fact.

5.6 Conclusion
In this chapter, we explored the possibility of making two blockchains interopera-
ble, and focused on interoperability on the consensus layer. We showed that, under
classical definitions, it is impossible to make a blockchain interact with anything
other than itself. If we relax the definition, we do get the possibility of interopera-
ble blockchains, but doing so is equivalent to creating a ‘2-in-1‘ blockchain, i.e., a
blockchain with two ledgers. However, note that this result does not say interoper-
ability is impossible, as we noted that solutions already exist for this problem. More
importantly, our results show that ‘one-way’ interoperability can be achieved with-
out losing information, which can be useful when one develops a new blockchain that
can read on top of another, independent, blockchain. Moreover, in the case of full
interoperability between two blockchains, the result could be interpreted as limited,
as it shows that the two blockchains can be simulated by one blockchain with two
ledgers. However, another way of exploring this result is to realize that a two-ledger
blockchains can be split into two blockchains without loss of information. This can
be useful in contexts where one ledger is highly resource consuming, while the other
is lighter and is run by more actors.

It should also be noted that interoperability can be achieved at other levels
than consensus, for instance using game theory on smart contracts and offchain
exchanges, or relying on data oracles. Formalizing interoperability on these layers
is left for future work.

Finally, we believe that the formalization we used in this chapter can be reused
for studying other properties of blockchain, thus leading to formal proofs of other
properties of blockchain.
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Abstract

The stochastic multi-armed bandit is a classical decision making model, where
an agent repeatedly chooses an action (pull a bandit arm) and the environment
responds with a stochastic outcome (reward) coming from an unknown distribution
associated with the chosen action. A popular objective for the agent is that of
identifying the arm with the maximum expected reward, also known as the best-
arm identification problem. We address the inherent privacy concerns that occur
in a best-arm identification problem when outsourcing the data and computations
to a honest-but-curious cloud.

Our main contribution is a distributed protocol that computes the best arm
while guaranteeing that (i) no cloud node can learn at the same time information
about the rewards and about the arms ranking, and (ii) by analyzing the messages
communicated between the different cloud nodes, no information can be learned
about the rewards or about the ranking. In other words, the two properties ensure
that the protocol has no security single point of failure. We rely on the partially
homomorphic property of the well-known Paillier’s cryptosystem as a building block
in our protocol. We prove the correctness of our protocol and we present proof-of-
concept experiments suggesting its practical feasibility.

This work is joint with Radu Ciucanu, Pascal Lafourcade and Marta Soare. It
has been presented at the 15th International Conference on Information Security
Practice and Experience (ISPEC 2019) and published as [CLLP+19].

6.1 Introduction
In a stochastic multi-armed bandit model, a learning agent sequentially needs to de-
cide which arm (option/action) to pull from K arms with unknown associated values
available in the learning environment. After each pull, the environment responds
with a feedback, in the form of a stochastic reward from an unknown distribution
associated with the arm chosen by the agent. This is a dynamic research topic
with a wide range of applications, including clinical trials for deciding on the best
treatment to give to a patient [Tho33], on-line advertisements and recommender
systems [LCL+10], or game playing [KS06; CM07; Mun14].

In this chapter, we focus on a popular objective in multi-armed bandits, that
of best arm identification: given a set of K arms and a limited budget of N pulls,
the goal of the agent is to design a budget-allocation strategy that maximizes the
probability of identifying the arm with the maximum expected reward. This problem
has been extensively studied in the machine learning community [ABM10; CLK+14;
EDMM06; GGL12; KCG16; SLM14], but to the best of our knowledge, there is
no previous work that considers this problem from a privacy-preserving viewpoint.
Next, we illustrate the problem via a motivating example.

6.1.1 Use Case Example

A classical real-world application of the best-arm identification problem is as follows.
Before launching a new product on the market, companies can create several versions
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User

Data Owner

Budget N

Best arm learned
for budget N

K arms

Figure 6.1: System architecture.

of the product that are put into a testing phase. By product, we refer here to any
type of object/service that might be offered by a company and that may contain (or
be obtained as a result of analyzing) private data. Each version of the product has
distinguishing characteristics and the company surveys potential customers about
the version they prefer. The company’s objective is that once the testing phase is
over, it can put on the market the version that is likely to yield the best sales. The
goal of the best-arm identification problem is to define algorithms that maximize the
probability of identifying the best arm (here, the best version among the K alter-
native versions), given a limited budget of N observations (here, customer surveys).
Therefore, best-arm identification algorithms are a good fit for the product testing
phase.

Now, imagine the scenario where a company collected over the years a large
quantity of customer surveys that it no longer needs for its purposes. This data may
actually be useful for other smaller companies that cannot afford doing their own
customer surveys, but nonetheless want to simulate the test of different versions of
their product. This brings us to the system architecture depicted in Figure 6.1. The
data owner is the company that owns a large quantity of customer surveys that it
wants to monetize. The user is the small company that wants to simulate the testing
of different versions of its product, without conducting its own customer survey. It
may actually be cheaper to pay a limited budget to reuse pieces of existing data,
rather than doing a new survey with real customers.

The interaction between the data owner and the user is done using some public
cloud, where initially the data owner outsources its data, then the users interact
directly with the cloud. More precisely, each user allocates some budget to the
cloud and reuses the available surveys for deciding which version of its own product
should be put on the market. The budget would refer here to the number of survey
answers the user wants the cloud to use before outputting the best option. As
a simplified example, assume that the available data consists of user preferences
about the characteristics of security devices they would buy for protecting their
homes. There are 1M surveys available and consulting a survey costs 0.1$. If a
small company wants to know which type of device people from their market are
more likely to buy, the precision of the answer it receives from the cloud depends
on the paid budget. If it pays 100$, it is more likely to get a clearer image about
the type of device that is the most likely to be purchased, than if it pays 5$. But in
both cases the obtained information is not 100% sure because only a sample of the
available data is consulted.

The aforementioned use case can be easily reformulated to other real-world sce-
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narios, such as health or medical data, cosmetics (e.g., trials for finding the best
anti-wrinkle cream), data concerning political preferences, education and employ-
ment records, to name a few.

As already mentioned, we consider a scenario where the multi-armed bandits (i.e.,
the data) as well as the best arm identification algorithm (i.e., the computation) are
outsourced to some public cloud. We assume that the cloud is honest-but-curious: it
executes tasks dutifully, and try to gain information on the ranking of the arms and
their associated values from the data they receive. We address the privacy concerns
that occur when outsourcing the data and computations.

Indeed, the externalized data can be communicated over an untrustworthy net-
work and processed on some untrustworthy machines, where malicious public cloud
users may learn private data that belongs only to the data owner. This is why we
require the data owner to encrypt all information about the arms before outsourcing
the data to the public cloud.

Moreover, each cloud user observes a result of the best arm identification algo-
rithm that is proportional to the budget that the user pays. It should be impossible
for a malicious cloud user to compose observations of several runs of the best arm
identification algorithm in order to learn the best arm with a higher confidence, and
then sell this information to some other user.

6.1.2 Summary of Contributions and Chapter Organization

In Section 2.2, we give background information on the problem of best-arm identifi-
cation in multi-armed bandits.

In Section 6.2, we first present the considered security model, then the needed
security tools, and finally the distributed security protocol, that is the main contri-
bution of the chapter. We rely on the partial homomorphic property of Paillier’s
cryptosystem [Pai99] as a building block in our protocol. The difficulty of our set-
ting comes from the fact that we need additions, multiplications, and comparisons
to solve the best arm identification problem, whereas a partially homomorphic cryp-
tosystem such as Paillier’s provides only homomorphic additions. Therefore, in our
protocol we distribute the computation among several participants and insure that
each of them can only learn the specific information needed for performing their
task, and no any other information. Thus, we show that our distributed protocol
has no single point of failure, in the honest-but-curious cloud model. The overhead
due to the security primitives of our protocol depends only on the number of arms
K and not on the budget N . This is a desirable property because in practice the
budget N (i.e., the number of arm pulls that we are allowed to do) is often much
larger than the number of arms K among which we can choose.

We prove the security of our protocol in Section 6.3, and we present proof-of-
concept experiments suggesting its feasibility in Section 7.4.5. We discuss related
work in Section 6.5, and conclusions and future work in Section 6.6.
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6.2 Secure Protocol

6.2.1 Security Model
We assume that the reward functions associated to the arms as well as the best
arm identification algorithm are outsourced to some cloud. We assume that the
cloud is honest-but-curious i.e., it executes tasks dutifully, but tries to extract as
much information as possible from the data that it sees. The user indicates to the
cloud her budget and receives the best arm that the cloud can compute using the
user’s budget. The user does not have to do any computation, except for eventually
decrypting î∗ if she receives this information encrypted from the cloud. We expect
the following security properties:

1. No cloud node can learn at the same time information about the rewards and
about the ranking of the arms.

2. By analyzing the messages communicated between the different cloud nodes,
no information can be learned about the rewards or about the ranking.

The two aforementioned properties essentially ensure that the desired protocol
has no security single point of failure. In particular, the first property says that
(i) there may be some cloud node that knows the ranking of the arms (hence also
the best arm), but it is not allowed to know which rewards are associated to these
arms, and (ii) there may also be some cloud node that knows some rewards, but
it is not allowed to know which arms are associated to these rewards. If all cloud
nodes collude, the cloud can learn the rewards associated to the arms1. We do not
consider collusions in our model.

6.2.2 Security Background
We use Pailler’s public key encryption scheme [Pai99]. We first recall the definition
of public-key encryption. Pailler’s encryption scheme is IND-CPA secure. We recall
the definition of IND-CPA before presenting the scheme itself that has an additive
homomorphic property that we use in our protocol.

6.2.3 Secure Algorithm
We revisit the successive rejects (SR) algorithm, presented in Section 2.2.2, page 14,
in order to satisfy the properties outlined in Section 6.2.1. We consider K arms. We
note JnK the set of the n first integers: JnK = {1, . . . , n}. Recall that SR has K–1
phases and at each phase j, it uses a budget of nj to pull each of the still candidate
arms. At the end of each phase, SR rejects the worst arm, based on all pulls observed
since the beginning.

1In case of collusions, if several users spent successive budgets to learn the best arm among the
same set of arms, the cloud could compose the observed rewards. Hence the cloud could compute
the best arm using as budget the total budget of the users and leak this information to some
malicious user.
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U BAI RPj

Comp

Data Owner
(1) N

(5) E(pkU, î∗)

(2*)
nj , E(pkRPj

, σj), σj

(
list of E(pkComp, sum(i))

)

σj(list E(pkComp, sum′(i)))
(3*)

(3*) σj(list of E(pkComp, sum′(i)))(4*) arg min(sum′(i))

(0)
list of E(pkComp, x(i)), E(pkRPj

, ϵ)

Figure 6.2: Workflow of the secure algorithm. We use numbers to indicate the order
of the steps. The steps annotated with * are repeated for each phase j ∈ {1, K − 1}.
For the communications BAI→ RPj , RPj → BAI, and RPj → Comp, the list concerns
all the arms that are still candidates i.e., the set Aj .

In the sequel, each time we refer to some (pk, sk), and associated encryption/decryption
functions, we assume they are done using Paillier’s cryptosystem [Pai99]. In partic-
ular, we rely on the homomorphic addition property of Paillier’s cryptosystem i.e.,
E(pk, x + y) = E(pk, x) · E(pk, y).

In our security protocol, we assume K + 3 participants:

• DO is the Data Owner, who is not in the cloud. DO sends the encrypted arm
values E(pkComp, xi) and E(pkRPj

, ϵ) for i ∈ JKK and j ∈ JK − 1K.
• U is the User, a participant that is not in the cloud. The user generates

(pkU, skU) and shares pkU and the budget N with the cloud. The cloud nodes
compute î∗ and at the end BAI sends E(pkU, î∗) to the user, who is able to
decrypt it using her secret key skU.

• BAI (Best-Arm Identification) is the node responsible for executing the K − 1
phases of the SR algorithm. BAI generates K − 1 uniformly selected permuta-
tions σj of JK + 1 − jK (as there are K + 1 − j candidate arms at round j).
Each σj is shared with the node RPj , but not with Comp. At each phase, BAI
knows which arm is the worst and should be rejected, and after the last phase
it knows which arm is the best. However, BAI does not know which rewards
are associated to the arms because the rewards are encrypted with pkComp.

• Comp is the node responsible of choosing the worst one among the sums of
rewards associated to the candidate arms. Comp generates (pkComp, skComp)
and shares pkComp with all other cloud nodes and DO.

• RP1, . . . , RPK−1 are K − 1 nodes, each of them knowing the value ϵ that is
needed to generate a reward for each arm. Each node RPj generates (pkRPj

, skRPj
)

and shares pkRPj
with BAI and DO.
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The algorithm, which is summarized in Algorithm 7, consists of:

• Initialization done by BAI is:

– Based on the total budget N , compute n1, . . . , nK−1 that is the number of
times each of the candidate arms should be pulled at phase 1, . . . , K − 1,
respectively.

– Uniformly select a permutation σ1 of JKK and send E(pkRP1 , σ1) to RP1.
A new permutation σj on JK + 1− jK is randomly selected at each round,
and sent to RPj .

– For each arm i, compute sum[σ1(i)] = E(pkComp, 0).

During the K − 1 phases of the algorithm, these encrypted sums are updated
by the nodes RPj .

• K−1 phases where nodes BAI, RPj , and Comp interact as shown in Figure 6.2.
We add the following specifications:

– Each RPj updates the encrypted sums using the homomorphic addition
property of the Paillier’s cryptosystem: for a round j and a candidate arm
i with sum sum[σj(i)], we get the updated sum sum′[σj(i)] by homomor-

phically adding
(
E(pkComp, x(σj(i)))

)nj ×
nj∏
l=1
E(pkComp, kl) to sum[σj(i)],

where kl is uniformly selected in [−ϵ, ϵ] by RPj .
– When Comp computes the index of the worst arm, if two or more arms

have the same worst sum of rewards, then Comp selects uniformly at
random one of these arms as the worst one. This ensures that the index
of the worst arm has a uniform distribution.

We summarize in Table 6.1 what each cloud node knows and does not know,
in order to satisfy the desired security properties. We formally prove the security
properties in Section 6.3. Next, we briefly outline why we need so many nodes:

• Assuming that all RPj nodes are a single one, this node would know all rewards
since the beginning of the algorithm hence it would learn the ranking of the
arms.

• Assuming that Comp and RPj are the same, then it would leak which arm is
associated to which sum, hence the best arm could be leaked.

• Assuming that Comp and BAI are the same, then BAI would learn the plain
rewards in addition to the ranking that it already knows.

• Assuming that BAI and RPj are the same, then it would leak to BAI the sum
of rewards associated to each arm.
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Node BAI Comp RPj

Does
know

• ranking of
arms (includ-
ing best arm)

• sums of rewards

• arms still candidate at phase
j
• arms already rejected before
phase j
• sums of rewards added at
phase j

Does
not
know

• sums of
rewards of any
arm (Theo-
rem 6.3.1)

• mapping between
sums of rewards and
the arms that pro-
duced them (Theo-
rem 6.3.3)
• ranking of arms
(including best arm)
(Theorem 6.3.2)

• ranking of arms (includ-
ing best arm) (Theorems 6.3.4
and 6.3.5)
• sums of rewards from phases
1, . . . , j − 1, j + 1, . . . , K − 1
(Theorem 6.3.6)

Table 6.1: What each cloud node knows and does not know.

6.2.4 Complexity
We give here a brief description of the complexity, in terms of the number of calls
to E and D (the costliest operations).

• At Step 0, DO computes ∀i ∈ JKK, E(pkComp, x(i)). It also encrypts ϵ for each
RPj , thus having O(K) complexity.

• At Step 2, BAI computes a new encrypted permutation, that can be encoded
as [E(pkRPj

, σj(1)), . . . , E(pkRPj
, σj(K +1− j)], thus having O(K− j) = O(K)

complexity.

• At Step 3, RPj computes the added rewards. Given the algorithm in Sec-
tion 6.2.3, this step has O(K) complexity.

• At Step 4, Comp decrypts all partial sums, with a complexity of O(K), before
sending the argmin to BAI.

Steps 2, 3, 4 are repeated K − 1 times. The total complexity of these three steps is
then O(K2), and the total complexity of the algorithm is O(K2).

Note that the complexity of the algorithm is independent from the total budget
N , which is a great advantage as typical budgets for these kinds of problems are
often elevated and usually much larger than the number of arms. More precisely,
the complexity related to N is hidden by the complexity of the encryptions.

6.3 Security Proofs
In this section, we prove that our secure algorithm presented in Section Section 6.2.3
satisfies the two desirable security properties outlined in Section 6.2.1: we prove
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the first property from Section 6.3.2 to Section 6.3.4, and the second property in
Section 6.3.5.

6.3.1 Notations and Security Hypothesis

For a node A, we note dataA the data to which A has access and Apb(d) the answer of
a Probabilistic Polynomial-Time (PPT) adversary A having knowledge of d, trying
to solve the problem pb. We recall that, in our notation conventions, JKK denotes
the set of positive integers lower than or equal to K: JKK = {1, . . . , K}.

Lemma 6.3.1. For a list l = [l1, . . . , ln], a permutation σ and the permuted list
σ(l) = [lσ(1), . . . , lσ(n)], a PPT adversary A(lσ) cannot invert one element with
probability better than random. More specifically,

P
[
Aσ−1(σ(l)) ∈ {i, σ−1(i)}i∈JKK] = 1

K

where A returns a tuple (i, g(i)) and g(i) is A’s guess for the preimage of i.

Proof. This is immediate, as all preimages are equally likely if σ is uniformly selected.
�

Lemma 6.3.2. Let A be a PPT adversary. Consider the adversarial game in which
A choses three messages m0, m1, z and sends them to the challenger C. C choses a
random bit b, and returns a tuple (c0, c1, s) where c0 = E(pk, m0), c1 = E(pk, m1),
and s = E(pk, mb + z) = cb · E(pk, z). A must then guess the value of b.

If E(pk, ·) is IND-CPA secure, then A does not have any advantage in this
adversarial game: ∣∣∣∣P [A(c0, c1, s) = b]− 1

2

∣∣∣∣ < negl(λ)

Proof. Assume there is a PPT adversary A able to win the game with significant
advantage x+negl(λ): then A can guess b with probability 1

2 + x
2 +negl(λ). We then

prove that an PPT adversary B can break the IND-CPA property of Paillier. We
can assume that when A is given c0, c′

0, s as input (where c′
0 is another encryption

of m0), then the advantage of A is negligible: this gives us a lower bound of the
advantage of A in a more general adversarial game.

Let us consider an IND-CPA game and an adversary B, in which B choses m0, m1
and sends them to the challenger. The challenger randomly selects the bit b and
sends back cb = E(pk, mb). Then, B selects a message z and computes E(pk, z),
before computing s = E(pk, mb) · E(pk, z). B also computes c′

0 = E(pk, m0). Then,
B calls A(c′

0, cb, s), retrieves (in polynomial time) from A the guessed value b∗, and
returns b∗.

If b = 0, then B has actually called A(c′
0, c0, s), which guesses the correct b∗ with

probability 1
2 + negl(λ). On the other hand, if b = 1, then B has actually called

A(c′
0, c1, s), which gives the correct b∗ with probability 1

2 + x
2 + negl(λ).
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b being randomly chosen, B correctly guesses b with probability 1
2 ·

1
2 + 1

2 ·
(

1
2 + x

2

)
+

negl(λ) = 1
2 + x

4 +negl(λ), thus yielding to B an advantage of x
4 +negl(λ) in the IND-

CPA game, in polynomial time. This is a contradiction with the fact that Paillier is
IND-CPA secure. �

6.3.2 Security Proofs for BAI
Lemma 6.3.3. From the data obtained at round j, a honest-but-curious BAI does
not know the sum of the rewards of any arm. More precisely, for R the set of possible
rewards, ∣∣∣∣P [Areward(dataBAIj ) ∈ {i, reward(i)}i∈JK+1−jK]− 1

|R|

∣∣∣∣ < negl(λ)

where Areward(dataBAIj ) returns a tuple (i, greward(i))), with greward(i) being A’s
guess of the sum of rewards of i.

Proof. At round j, BAI has access to the permuted list of the encrypted partial sums,
as well as to the permutation σj and the index iminj of the lowest-ranking element
from round j. From the first two arguments, BAI can access to the (unpermuted)
list of the encrypted partial sums of the arms rewards sej =

[
E(pkComp, sumα1), . . . ,

E(pkComp, sumαK+1−j )
]
, where the αi are the arms still present in the algorithm at

step j. So we can equivalently say that dataj
BAI = [sej , iminj ].

Assume that there exists a PPT adversary A able to break the above inequal-
ity, with advantage x + negl(λ): given [se, iminj ] as input, A returns some tuple
(i, greward) where greward is the guessed reward of the arm αi. The guess is correct
with probability 1

|R| +x+negl(λ). Also note that, on average, i = 1 with probability
1

K+1−j .
Let us consider a classical IND-CPA game as previously defined. B first simulates

an execution of blind bandits, with arm rewards of its own choice. From this, B gets
a list of simulated sums ˆsum1, . . . , ˆsumK+1−j and the lowest ranking arm îminj .
B selects a random value ˆsum0 different from all sums, sends the tuple (E(pkComp,

ˆsum0), E(pkComp, ˆsum1)) to the challenger, and receives E(pkComp, ˆsumb).
Then, B calls

A(
[
E(pkComp, ˆsumb), E(pkComp, ˆsum2), . . . , E(pkComp, ˆsumK + 1− j)

]
, îminj ) which re-

turns (i, greward). If i = 1 and greward = ˆsum1 then B returns 1. Otherwise B returns
a random guess.
B is correct in the following cases:

• i = 1, b = 1 and A guesses correctly. This event happens with probability
1

K+1−j
1
2

(
1

|R| + x
)
.

• i = 1, b = 1, A does not return ˆsum1 and B makes a correct random guess.
This happens with probability 1

K+1−j
1
2

(
1− 1

|R| − x
)

1
2 .
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• i = 1, b = 0, A does not return ˆsum1, and B makes a correct random guess.
This happens with probability 1

K+1−j
1
2

(
1− 1

|R|

)
1
2 .

• i ̸= 1 and B makes a correct random guess. This happens with probability(
1− 1

K+1−j

)
1
2 .

Summing it up, B makes a correct guess with probability 1
K+1−j

1
2

(
1

|R| + x
)

+
1

K+1−j
1
2

(
1− 1

|R| − x
)

1
2 + 1

K+1−j
1
2

(
1− 1

|R|

)
1
2 +
(
1− 1

K+1−j

)
1
2 , i.e. with probability

1
2 + 1

4(K+1−j)x , which yields an advantage of 1
4(K+1−j)x + negl(λ) to B. Hence, B

has a non-negligible advantage in the IND-CPA game, which is a contradiction with
the fact that Paillier’s cryptosystem is IND-CPA secure. �

Theorem 6.3.1. From the data obtained up to round j, a honest-but-curious BAI
does not know the sum of the rewards of any arm. More precisely, for R the set of
possible rewards,∣∣∣∣P [Areward(dataBAI≤j ) ∈ {i, reward(i)}i∈JKK]− 1

|R|

∣∣∣∣ < negl(λ)

where the data dataBAI≤j is the data obtained by BAI during the first j rounds and
reward(i) is the reward of the i-th arm.

Proof. We notice that dataBAI≤j is equal to [dataBAI1 , . . . , dataBAIj ] = [[se1, imin1 ],
. . . , [sej , iminj ]]. We know that each ciphertext from sej+1 results from the homo-
morphic addition of one ciphertext from sej and one other unknown ciphertext2.
Given Lemma 6.3.2, the set [sej , sej+1] is indistinguishable from the set [sej , se′

j+1]
where se′

j+1 is a list of ciphertexts, unrelated to the ones in sej . Hence, dataBAI≤j is
indistinguishable from the list [se1, se′

2, . . . , se′
j , imin1 , . . . , iminj ], where se′

i is a list
of ciphertexts unrelated to se′

j or se1.
Assume that there exists a PPT adversary A able to break the above inequality,

with an advantage of x + negl(λ). The data available to A basically consists of
j iterations, of various sizes, of the problem addressed in Lemma 6.3.3. Then, if
A can solve our current adversarial game with non negligible advantage, A can
immediately solve the problem in Lemma 6.3.3 with non negligible advantage (from
one set of ciphertexts, A will generate other sets, and immediately places itself in
the current problem). Because a non negligible advantage to the above problem
breaks IND-CPA security, we conclude to a contradiction. �

6.3.3 Security Proofs for Comp
Lemma 6.3.4. Let j ∈ JK − 1K. From the data received at the round j, a honest-
but-curious Comp cannot infer the ranking of any arm. More specifically,

P
[
Arank(dataCompj ) ∈ {i, ranking(i)}i∈JK+1−jK] = 1

K + 1− j
2Namely, the ciphertext of the rewards of the arm i at round j.
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Proof. We have dataComp = seσj = [E(pkComp, sumσj(α1)), . . . , E(pkComp, sumσj(αK+1−j))],
which can be decrypted by Comp to sσj = [sumσj(α1), . . . , sumσj(αK+1−j)] where the
αi are the arms still present at round j. From this list of scores, Comp can infer the
ranking of the permuted arms, i.e., compute the ranking any Aσj(i) in polynomial
time.

Assume there exists a PPT adversary Arank capable of breaking the above equal-
ity. If A is able to predict the ranking of the arm i with advantage better than
random, then A knows the ranking of Ai, namely ranking(Ai). Knowing the rank-
ing of all Aσj(i), with probability better than random, A is then able to compute
σ−1

j (i) with advantage better than random by identifying which Aσj(i) matches Ai.
Hence a contradiction with Lemma 6.3.1. �

Theorem 6.3.2. Let j ∈ JK − 1K. From the data received until the round j, A
honest-but-curious Comp cannot infer the ranking of any arm. More specifically,

P
[
Arank(dataComp≤j ) ∈ {i, ranking(i)}i∈JKK] = 1

K + 1− j

Proof. The proof is based on the proof of Lemma 6.3.4, with additional arguments
similar to the ones of the proof of Theorem 6.3.1: because of Lemma 6.3.2, we can
assume that we have j independent sets of unrelated permuted data. If an adversary
A can break the above equality with non-negligible advantage in PPT, then we can
construct an adversary who breaks the equality of Lemma 6.3.4 with non-negligible
advantage, in PPT, which breaks Lemma 6.3.1, so we get a contradiction. �

Lemma 6.3.5. Let j ∈ JK − 1K. From the data received at round j, a honest-but-
curious Comp does not know the correspondence between sums of rewards and arms.
More specifically,

P
[
Arwd(dataCompj ) ∈ {i, reward(i)}i∈JK+1−jK] = 1

K + 1− j

Proof. Assume that Comp is able, from sσj , to infer the sum of rewards of the arm
Ak with probability better than 1

K+1−j . Because Comp knows the sum of rewards of
the permuted arms Aσj(αi) for all i ∈ JK + 1− jK, then by matching these rewards
with the sum of the rewards of Ai, Comp is able to compute σj(i) with a probability
better than random. Hence, Comp breaks Lemma 6.3.1. �

Theorem 6.3.3. Let j ∈ JK − 1K. From the data received until round j, a honest-
but-curious Comp does not know the correspondence between sums of rewards and
arms. More specifically,

P
[
Arwd(dataComp≤j ) ∈ {i, reward(i)}i∈JKK] = 1

K

Proof. Similar to the proof of Theorem 6.3.2. �
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6.3.4 Security Proofs for the RPj

Theorem 6.3.4. A honest-but-curious RPj does not know the ranking of the K−j+1
best ranking arms, for j ∈ JK−1K. More specifically, ∀j ∈ JK−1K, ∀i ∈ JK + 1− jK,
and rankingj(i) is the ranking of the i-th arm at round j,∣∣∣∣P [Arank(dataRPj

) ∈ {i, rankingj(i)}i∈JK+1−jK]− 1
K + 1− j

∣∣∣∣ < negl(λ)

Proof. We have dataRPj
= [seσj , E(pkRPj

, σj), nj ], where seσj = σj([E(pkCompsumα1),
. . . , E(pkComp, sumαK−j )]), the permuted list of encrypted sums of rewards. RPj can
further ‘un-permute’ seσj to se = [E(pkComp, sumα1), . . . , E(pkComp, sumαK−j )], the
list of encrypted sums of rewards. Note that nj does not carry any information
about the partial sum, as one can simulate any se with the same nj , so does not
carry significant information to our problem.

Assume that RPj can guess the ranking of one element with advantage x+negl(λ):
there exist a PPT oracle A taking as input se, and outputs (i, v̂(i)), with i ∈ JK+1−
jK. Furthermore, we have v̂(i) = rankingj(i) with probability 1

K+1−j + x + negl(λ).
Note that, on average, i = 1 with probability 1

K+1−j .
Let us consider an IND-CPA game, in which the strategy of B is the same as the

one in the proof of Lemma 6.3.3 (i.e., simulate a blind bandit execution, and call
A with the relevant data). Then, following the same reasoning we get that B wins the
IND-CPA game with probability 1

K+1−j
1
2

(
1

K+1−j + x
)
+ 1

K+1−j
1
2

(
1− 1

K+1−j − x
)

1
2+

1
K+1−j

1
2

(
1− 1

K+1−j

)
1
2 +

(
1− 1

K+1−j

)
1
2 = 1

2 + 1
4(K+1−j)x, hence B has an advan-

tage of 1
4(K+1−j)x + negl(λ), which is a contradiction with the IND-CPA property

of Paillier’s.
�

Theorem 6.3.5. A honest-but-curious RPj does not know the ranking of the j − 1
lowest ranking arms. More specifically, ∀j ∈ {3, . . . , K − 1}, ∀i ∈ Jj − 1K, and
ranking(i) the ranking of the i-th arm,∣∣∣∣P [Arank(dataRPj

) ∈ {i, ranking(i)}i∈JK+1−jK]− 1
j − 1

∣∣∣∣ < negl(λ)

Proof. This is straightforward as RPj does not receive any information about the
sums of the j lowest ranking arms. Furthermore, we must impose j ≥ 3 because it
is clear that RP1 and RP2 know the ranking of the lowest ranking arm. �

Theorem 6.3.6. A honest-but-curious RPj does not know the sums of rewards at
step j. More precisely, for R the set of possible rewards, ∀i ∈ JK + 1− jK,∣∣∣∣P [Areward(dataRPj

) ∈ {i, rewardj(i)}i∈JK+1−jK]− 1
|R|

∣∣∣∣ < negl(λ)

Proof. Assume that a PPT adversary A breaks the above inequality: there exists a
PPT oracle A(c1, . . . , cK), that returns the tuple (i, mi) where mi is the cleartext
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of ci with advantage x + negl(λ). Then we prove that the adversary breaks the
IND-CPA property of Paillier’s cryptosystem. Note that, on average, i = 1 with
probability 1

K , and that a decryption is correct with probability 1
|R| + x + negl(λ).

If we consider an IND-CPA game where the strategy of B is the same as in the
proof of Lemma 6.3.3 (i.e., simulate a blind bandit execution so they can call A), we
get that B has an advantage of 1

4K x in the IND-CPA game, which is a contradiction
with Paillier being IND-CPA secure. �

6.3.5 Security Proof for an External Observer
Theorem 6.3.7. An external observer, having access to the set M of all the messages
exchanged during the protocol, cannot infer anything about the sum of rewards of
any arm. More specifically, any such observer is bound by the inequality mentioned
in Theorem 6.3.1, with dataBAI≤j being replaced by M .

Proof. Assume that there exists an adversary A able to break the above inequality,
given M , in PPT. We then prove that an adversary B is able to break IND-CPA
security of Paillier’s scheme in PPT.

Let us consider a classical IND-CPA challenge, in which B choses two rewards
r0, r1 and sends them to the challenge. The challenger returns E(pkComp, rb), where b
is a uniformly random bit. Then, B simulates a secure multi-armed bandit protocol,
with 2 arms, so that at the end of round 1, one of the arms has for encrypted sum of
rewards the value E(pkComp, rb), the other being random. This is possible because in
this simulation, B can set herself the rewards xi of each arm, as well as the budget
for round 1. Furthermore, knowing the cleartext of every encrypted value at any
time, B can simulate the full protocol by herself (especially, she can simulate Comp
execution). This simulation yields a set of messages M .

Now, calling A(M), B will retrieve in PPT, with some non-negligible advantage,
some information about the sums of rewards of one of the arms. With probability 1

2 ,
this information will be about the arms of rb, thus giving, in PPT, a non-negligible
advantage in the IND-CPA game, as B is able to find the value of b with some
advantage. This is a contradiction with the fact that Paillier is IND-CPA secure. �

Theorem 6.3.8. An external observer, having access to the set M of all the messages
exchanged during the protocol, cannot infer anything about the ranking of any arm:∣∣∣∣P [Arwd(M) ∈ {i, ranking(i)}i∈JKK]− 1

K

∣∣∣∣ < negl(λ)

Proof. It is obvious that such an observer can deduce the permuted list of rankings
by listening to data exchanged at step 4. However, from the data of one round, it is
impossible to know more: the data from one round is an encrypted permuted sum of
rewards S, the lowest permuted index i, and the same sum, with the lowest element
removed S′ (steps 3,4,2). This is equivalent of having knowledge of S and i only. If
an adversary A breaks the inequality with S and i, then we can break IND-CPA.

Let B be the IND-CPA adversary, picking K + 1 messages such that m0 < m′
i <

m1, and a permutation σ. Sending m0 and m1, they receive cb = E(pk, mb), and
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also compute c′
i = E(pk, m′

i). Then, if A(σ([cb, c′
2, . . . , c′

k]), σ(0)) = 0, B returns 0,
else 1. If A has a non-negligible advantage x, we prove similarly to the other proofs
that B has a advantage of x

2 in the IND-CPA game, which is a contradiction.
Now, because of Lemma 6.3.2, having access to all messages does not change

anything. This is because each new round is indistinguishable from a simulation
run by B, so an advantage in the ”all-rounds” game would yield an advantage in the
”one-round” game. �

6.4 Experiments

6.4.1 Setup
We report on a proof-of-concept experimental study of our proposed protocol. We
implemented and compared:

• SR: the successive rejects algorithm, adapted from [ABM10]. We give the
pseudocode of SR in Algorithm 1.

• SR-secured: our proposed protocol, which adds security guarantees to SR. We
describe SR-secured in Section 6.2.3 and we outline its workflow in Figure 6.2.

We implemented the algorithms in Python 3. Our code is available on a public git
repository3. For SR-secured, we used phe4, an open-source Python 3 library for
partially homomorphic encryption using the Paillier’s cryptosystem.

We summarize the results in Figure 6.3 and we discuss them next. We carried
out these experiments on a laptop with Intel Core i5 3.10GHz and 8GB of RAM.
We used 2048 bits keys. The results are averaged over 100 runs.

6.4.2 Run time comparison SR vs SR-secured
In each half of Figure 6.3a, we have 12 points, corresponding to the pairwise combi-
nations between 4 budget values N (100000, 200000, 300000, 400000) and 3 values
for the number of arms K (5, 10, 15). We split the figure in two plots with different
Y axis because the observed times are in the order of tens of milliseconds for SR
and tens of seconds for SR-secured.

For SR, we observe that the time varies more on N and less on K, which makes
sense because the operations depending on N (i.e., picking random numbers in the
rewards generation) are more expensive than the operations depending on K (i.e.,
additions and multiplications).

On the other hand, for SR-secured, the slight run time increase depending on
N is barely visible (hence the curves look rather constant) because of the three-
orders-of-magnitude overhead that is a natural consequence of the high number of
encryptions and decryptions performed by SR-secured.

3https://gitlab-sds.insa-cvl.fr/vciucanu/secure-bai-in-mab-public-code
4https://python-paillier.readthedocs.io/en/develop/
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As explained in Section 6.2.3, each participant and encryption/decryption from
SR-secured is useful for the protocol in order to guarantee the desired security prop-
erties. We stress that the time of SR-secured barely grows when increasing the
budget N , which confirms the essential property that we outlined in the complexity
discussion: the number of cryptographic primitives does not depend on N . Hence,
we were easily able to run SR-secured for large budgets as we show in the figure.

We conclude from this experiment that SR-secured retains the scalability of
SR while adding an overhead (depending on K and not on N) due to the security
primitives. Obviously, both algorithms compute exactly the same result i.e., the best
arm. Moreover, before running this time comparison study, we carefully checked that
all intermediate sums and arm rankings are identical for SR and SR-secured, despite
the encryptions and decryptions that the latter algorithm performs.

6.4.3 Zoom on SR-secured

In Figure 6.3b we highlight how the total time taken by SR-secured is split among
the participants. We obtained this figure for N=400000 and K=5, hence there are 4
phases, thus 4 participants RP1, RP2, RP3, RP4 in addition to Comp, BAI, the data
owner DO, and the user U.

First, notice that the shares of U and DO of the total time are relatively small,
which is a desired property. Indeed, we require the DO only to encrypt her knowledge
of the arms before outsourcing such encrypted data to the cloud (step 0 in Figure 6.2).
This could be actually done only once at the beginning and then all runs of the best-
arm identification algorithm can be done using the same encrypted data, regardless
of the user that pays for such a run.

Moreover, we require U to not do any computation effort other than decrypting
the result of the best-arm identification algorithm that the cloud returns to her (step
5 in Figure 6.2).

Among the cloud participants, we observe that BAI takes the lion’s share of the
total running time. This is expected because the role of BAI is similar to a controller
that interacts with all other cloud participants.

In what concerns Comp and the RPj , their shares are quite similar. We observed
the same behaviour regardless of the chosen N and K on which we zoom.

6.5 Related work
To the best of our knowledge, our work is the first that relies on public-key encryption
in order to add privacy guarantees to best-arm identification algorithms for multi-
armed bandits.

There is a recent line of research on multi-armed bandits using differential pri-
vacy techniques [Dwo06; DR14], which are based on adding an amount of noise to
the data to ensure that the removal or addition of a single data item does not affect
the outcome of any data analysis. These works have either focused on strategies to
obtain: (i) privacy-preserving input guarantees i.e., make the observed rewards un-
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intelligible to an outside user [GUK18], or (ii) privacy-preserving output guarantees
i.e., protect the chosen actions and their associated rewards from revealing private
information [MT15; TD16].

There are some fundamental differences between this line of work based on dif-
ferential privacy and our work based on public-key encryption. First, the considered
multi-armed bandit problems are different. Indeed, we focus on identifying the best
arm, which is equivalent to minimizing the simple regret, that is the difference be-
tween the values associated to the arm that is actually the best and the best arm
identified by the algorithm. On the other hand, the aforementioned works consider
the cumulative regret minimization that roughly consists of minimizing the difference
between the rewards observed after pulling N times the best arm and the rewards
observed during the N pulls done by the algorithm.

A second difference is as follows. On the one hand, our secured algorithm based
on public-key encryption is guaranteed to return exactly the same result as the
(non-secured) SR algorithm [ABM10] on which we rely as a building block in our
protocol. On the other hand, the result of a differentially-private algorithm contains
by definition some noise, hence it is different from the result of the algorithm without
privacy guarantees.

Third, by construction, the performance measure (the regret) of our secure algo-
rithm remains the same as for the non-secured version, since both versions use the
same arm-pulling strategies (that is, the performed encryptions/decryptions have no
influence on the choice of arms to be pulled). The price we pay for making the algo-
rithm secure comes only in the form of additional time needed for the encryptions
and decryptions. In contrast, in the differential privacy approach, noise is intro-
duced in the inputs/outputs in order to guarantee that the algorithms are differen-
tially private and this has a direct impact on the arm-selection strategies. Therefore,
the performance of the differential private versions of the algorithms suffers an in-
creased regret with respect to their non-secured versions by an additive [TD16] or a
multiplicative factor [GUK18; MT15].

6.6 Conclusions and Future Work
We studied the problem of best-arm identification in multi-armed bandits and we
addressed the inherent privacy concerns that occur when outsourcing the data and
computations to a public cloud. Our main contribution is a distributed protocol
that computes the best arm while guaranteeing that (i) no cloud node can learn at
the same time information about the rewards and about the ranking of the arms
and (ii) by analyzing the messages communicated between the different cloud nodes,
no information can be learned about the rewards or about the ranking. To do so,
we relied on the partially homomorphic property of Paillier’s cryptosystem. The
overhead due to the security primitives of our protocol depends only on the number
of arms K and not on the budget N . Our experiments confirmed this property.

Looking ahead to the future work, there are many directions for further inves-
tigation. For example, we plan to investigate whether we can leverage an addition-
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homomorphic cryptosystem other than Paillier’s, which may be more efficient in
practice and could help us reduce the run time gap between the secured and the
non-secured algorithms that we observed in our proof-of-concept experimental study.
Additionally, we plan to add privacy guarantees to other multi-armed bandit settings
e.g., cumulative regret minimization [ACBF02] or best-arm identification in linear
bandits [SLM14], where the rewards of the arms depend linearly on some unknown
parameter.
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Algorithm 7 Secure SR algorithms
1: function Setup_BAI(N) ◃ Step 1 ◃ j tracks the round number, sum contains

the sum of rewards of each competing arm. Both are stored in BAI state.
2: for j from 1 to K-1 do

3: nj ←
⌈

1
log(K)

N −K

K + 1− j

⌉
−

j−1∑
l=0

nl

4: for all i ∈ JKK do
5: sum[i]← E(pkComp, 0)
6: j ← 1

7: function Start_Round_BAI ◃ Step 2∗

8: σj ← random permutation of JK − j + 1K
9: save σj in BAI state

10: return σj(sum), E(pkRPj
, σj), nj

11: function Round_RPj(σj(sum), E(pkRPj
, σj), nj) ◃ Step 3∗

12: Decrypt E(pkRPj
, σj), retrieve σj and un-permute σj(sum) to get sum

13: for each arm in sum do
14: Homomorphically add to sum[arm] the rewards from nj pulls of the arm
15: return σj(sum)

16: function Round_Comp(σj(sum)) ◃ Step 4∗

17: Decrypt each element of σj(sum)
18: xmin ← the index of a lowest element of the decrypted list, randomly chosen

amongst all lowest elements
19: return xmin

20: function End_Round_BAI(σj(sum), xmin) ◃ After Step 4∗, before next
round

21: umin ← σ−1
j (xmin)

22: Remove arm umin from the list of participants, and from sum to reflect so
23: j + +

24: function Result ◃ Step 5
25: Get the only remaining competing arm î∗ from sum in BAI state
26: return E(pkU, î∗)
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Abstract

We consider the problem of cumulative reward maximization in multi-armed
bandits. We address the security concerns that occur when data and computations
are outsourced to an honest-but-curious cloud i.e., that executes tasks dutifully,
but tries to gain as much information as possible. We are motivated by situations
where data used in bandit algorithms is sensitive and has to be protected e.g., com-
mercial or personal data. We rely on cryptographic schemes and propose UCB-DS,
a distributed secure protocol based on the UCB algorithm, which yields the same
cumulative reward as UCB while satisfying desirable security properties that we
formally prove. In particular, cloud nodes cannot learn the sum of rewards for
more than an arm or the cumulative reward. Moreover, by analyzing messages
exchanged among cloud nodes, external observers cannot learn the cumulative re-
ward or the sum of rewards produced by some arm. We show that the overhead
due to cryptographic primitives is linear in the size of the input.

Our implementation confirms the linear-time behavior and the practical feasi-
bility of our protocol, on both synthetic and real-world data.

This work is joint with Radu Ciucanu, Pascal Lafourcade and Marta Soare. It
has been accepted presented at the 19th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom 2020), and
published as [CLLP+20].

7.1 Introduction

7.1.1 Stochastic Multi-armed Bandit Game

The stochastic multi-armed bandit game is a sequential learning framework where
a learning agent aims at maximizing its cumulative reward while successively inter-
acting with an uncertain environment. At each time step, the agent chooses an
action (a bandit arm) from among a fixed set of actions with unknown associated
values. The environment responds with a stochastic feedback (reward) drawn from
the distribution associated with the chosen action. The learning agent uses the re-
ceived feedback to update its estimate of the values for the chosen action and to
decide which action to choose next. The agent has to continuously face the so-called
exploration-exploitation dilemma: it can decide to explore actions with more uncer-
tain associated values, or to exploit the information already acquired by selecting the
action with the seemingly largest associated value. Cumulative reward maximiza-
tion has been already extensively studied for several multi-armed bandit settings
(see [BC12] for a survey). In this chapter, we address the security concerns that oc-
cur when outsourcing the cumulative reward maximization data and computations
to the cloud.

Our scenario is inspired by the machine learning as a service cloud computing
model, for which security is known as a major concern [BMM+18]. As a motivating
example, assume:
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• A data owner i.e., a company that wants to monetize some collected data
that can be input for bandit algorithms. For instance, the data owner may
be a large company (e.g., Netflix) that collected a large quantity of customer
preferences on TV series.

• A user i.e., a company that wants to spend some budget to obtain the output
of a bandit algorithm run on data owner’s data. For instance, the user may be
a smaller company that considers acquiring streaming rights for a package of
TV series and wants to estimate, given the user’s budget, what is the maximal
reward that the package of TV series could generate.

The cumulative reward captures such an income for a package of series (out-
sourced arms) because it sums up the customer preferences (rewards) produced by
each series in the package. This scenario allows the data owner to monetize some
data that it collected and that the user wants to reuse. However, the data owner
keeps ownership of the data, hence users are incited to spend a larger budget to
obtain a more accurate estimate of the cumulative reward. We assume that the
interaction between the data owner and the user is done using the cloud (as shown
in Figure 7.1), where both data and computations are outsourced.

User
Data Owner

Cumulative reward
learned for budget N

Budget N
K arms

Figure 7.1: Outsourcing data and computations.

Thus, by relying on a standard cloud provider, the data owner does not have
to build its own infrastructure. The data owner does the data outsourcing, and
the user interacts directly with the cloud, by sending the budget and receiving the
cumulative reward that can be learned for that budget. Such outsourced data may
be sensitive (for instance, economical, personal or medical data) and we address the
security concerns that occur when outsourcing data and computations. In other
words, we want the outsourced learning algorithm to be run while protecting data
against unauthorized access.

The problem that we address is how to allow the user to obtain precisely the
same cumulative reward as with a standard algorithm, Upper Confidence Bound
(UCB) [ACBF02; BC12], within a reasonable computation time and while preserv-
ing the data privacy. Indeed, the outsourced data can be communicated over an
untrustworthy network and processed on some untrustworthy machines, where mali-
cious cloud users may learn sensitive data that belongs only to the data owner. The
privacy-preserving cumulative reward maximization is a hard problem. In [GUK18;
MT15; TD16] the authors use differential privacy [Dwo06] to solve it. However,
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Differential privacy Cryptography
Cumulative reward
maximization a.k.a.
cumulative regret

minimization

Gajane et al. [GUK18]
Mishra, Thakurta [MT15]
Tossou, Dimitrakakis [TD16]

This work

Best arm identification
a.k.a. simple regret

minimization

Not yet studied to the best of
our knowledge

Ciucanu et al.
[CLLP+19]

Table 7.1: Summary of related work and positioning of our contribution.

in these approaches, the reward returned to the user is not the exact reward that
can be learned for the user’s budget (this happens because noise is injected in the
input/output). It is unavoidable in any privacy-preserving approach that uses dif-
ferential privacy.

We take a complementary look by relying on cryptography instead of differential
privacy. To the best of our knowledge, our approach is original and its goal is to
have an exact reward. The security for obtaining an exact reward has a price, since
the computation time may increase because of cryptographic primitives that are
time-consuming in practice. More precisely, we require that the data owner (which
can be seen as an oracle knowing the reward functions associated with each arm)
encrypts her data before outsourcing it to the cloud.

Then, the cumulative reward maximization algorithm is run directly in the en-
crypted domain, and by using the right primitives, the (encrypted) output should be
exactly the same as for standard UCB, at the price of an increased computation time.
From a theoretical point of view, the problem could be straightforwardly solved by
using a fully homomorphic encryption scheme [Gen09], which allows to compute any
function directly in the encrypted domain. However, it remains an open question
how to make such a scheme work fast and be accurate in practice.

Indeed, the state-of-the-art fully homomorphic systems either yield only approx-
imate results when they work with real numbers as those that we need in the UCB
algorithm (this is the case for Microsoft SEAL [Sea] using CKKS scheme [CKK+17]
for real numbers) or do not support real numbers at all (this is the case for IBM
HElib [HS14]). Hence, it is not currently possible to program an algorithm such as
UCB in a fully homomorphic system and obtain exactly the same result as in the
standard, non-encrypted UCB.

Consequently, our challenge is to rely on simpler cryptographic schemes and
design a distributed protocol with several cloud node participants such that each of
them can only learn the specific data needed for performing its task and nothing else
e.g., if a participant does in clear computations on real numbers, these computations
concern data of only one arm, and no other participant has access to this piece of
data.

Our distributed algorithm returns exactly the same cumulative reward as UCB,
while satisfying desirable security properties such as: only the user can see the
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cumulative reward, which cannot be learned by any cloud node participant nor by
an external observer. We precisely characterize our security model and security
guarantees later on in the chapter.

To achieve our goals, we rely on indistinguishable under chosen-plaintext at-
tack (IND-CPA) cryptographic schemes: symmetric encryption AES-CBC [NIS01;
BDJ+97] and asymmetric partially homomorphic Paillier’s scheme [Pai99]. We for-
mally prove the security of our protocol and we precisely characterize the number
of needed cryptographic operations.

7.1.2 Related work
We summarize related work in Table 7.1, where each line corresponds to a standard
problem in stochastic multi-armed bandits. The most popular problem is cumulative
reward maximization [BC12], where the agent uses its limited budget to maximize
the sum of observed rewards.

To fulfil this goal, the agent decides which arm to pull next based on previously
observed rewards: the agent can either choose to exploit the information acquired
thus far and keep selecting the arm with the seemingly largest reward, or to ex-
plore by pulling one of the most uncertain arms. UCB is a standard algorithm for
cumulative reward maximization [ACBF02; BC12].

From the privacy-preserving point of view, there is a recent line of research on en-
hancing algorithms such as UCB with differential privacy. These works have either
focused on strategies to obtain: (i) privacy-preserving input guarantees i.e., mak-
ing the observed rewards unintelligible to an outside user [GUK18], or (ii) privacy-
preserving output guarantees i.e., protecting the chosen actions and their associated
rewards from revealing private information [MT15; TD16]. Differential privacy al-
gorithms have been also proposed for different bandit models than the standard
stochastic one that we consider in this chapter e.g., for contextual bandits [SS18].

There are some fundamental differences between this line of work based on dif-
ferential privacy [GUK18; MT15; TD16] (top left box in Table 7.1) and our work
based on cryptography (top right box in Table 7.1), which to the best of our knowl-
edge is a novel approach in the community. On the positive side, the running time
overhead of differentially-private algorithms is negligible, but on the other side the
returned cumulative reward is different from the output of standard UCB. Indeed, to
obtain differentially-private guarantees for a bandit algorithm, noise is added to the
input or the output of the algorithm. Thus, the cumulative reward obtained using
a differentially-private algorithm is different from that obtained by the algorithm
without privacy guarantees. This is reflected in the regret analysis of the algorithms
(where the regret is given by the difference in the cumulative reward obtained by a
learning agent and the best cumulative reward possible obtained by always playing
the best arm): the regret of differentially-private bandit algorithms have as overhead
an additive [TD16] or a multiplicative factor [GUK18; MT15] with respect to the
regret of their non-private version. In contrast, our cryptography-based algorithm
is guaranteed to return exactly the same cumulative reward as the standard UCB.

The second line in Table 7.1 corresponds to a different bandit problem that is
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best arm identification [ABM10], equivalent to minimizing the simple regret, that is
the difference between the values associated with the arm that is actually the best
and the best arm identified by the algorithm. To the best of our knowledge, this
problem has not yet been studied from a differential-privacy point of view. From the
cryptography point of view, there already exists a distributed algorithm [CLLP+19]
that enhances the Successive rejects algorithm [ABM10] for best arm identification
with security guarantees that are similar to the ones from this chapter. However,
the standard algorithms that are secured (Successive rejects [ABM10] in [CLLP+19]
and UCB [ACBF02] in this chapter) solve different problems and the corresponding
distributed protocols cannot be reduced to one another.

7.1.3 Summary of contributions and Chapter organization
In Section 7.2, we introduce some basic notions: standard UCB algorithm and some
cryptographic tools. Then, Section 7.3 is the core of our contribution:

• We propose UCB-DS, a secure and distributed protocol for cumulative reward
maximization that guarantees the same cumulative reward as standard UCB.

• We show that UCB-DS satisfies desirable security properties that we precisely
characterize, and prove.

• We analyze the theoretical complexity of UCB-DS, by quantifying the number
of needed cryptographic primitives: O(NK) AES-CBC encryptions/decryptions,
K Paillier encryptions, and one Paillier decryption.

• We run a proof-of-concept empirical evaluation that confirms the theoretical
complexity, and shows the scalability and practical feasibility of our protocols,
on synthetic and real-world data.

• We propose the UCB-DS2 refinement, with stronger security guarantees at the
price of K more AES-CBC keys and O(NK) more AES-CBC encryptions/de-
cryptions, and the same number of Paillier encryptions/decryptions as UCB-DS.

Finally, we conclude our chapter and outline directions for future work in Sec-
tion 7.5.

The aforementioned evaluation suggests that it is practical to deploy our pro-
tocol on a real cloud and with real users, where parallelism between nodes could
be leveraged to improve the system’s throughput if multiple users are concurrently
submitting budgets. We leave such an extended cloud system empirical evaluation
as future work.

7.2 Preliminaries
We first recall the UCB algorithm [ACBF02]. Then, we present two cryptographic
schemes that we use to build our protocols: Paillier asymmetric encryption scheme
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and AES-CBC symmetric encryption scheme. We also recall the notion of IND-CPA
security, held by both aforementioned schemes and useful for our security proofs.

7.2.1 Upper Confidence Bound (UCB)

We already defined the UCB algorithm in Section 2.2.3, page 15. We quickly give
here a small reminder, that the UCB aims at maximising the cumulative reward sum,
while the exact reward given by each machine is unknown and the budget limited.
An algorithm has been proposed by [ACBF02] which identifies, at each turn, an
upper bound of the estimation of reward of each arm. Given this parameter, named
Bi for each arm i, one can select the next arm in order to maximize the expected
total reward.

7.2.2 Paillier and AES cryptosystems

We have already introduced and defined Paillier and AES-CBC cryptosystems in
Section 2.3, that the reader may confer to if needed, page 17.

We simply mention in this section by pointing out that all theoretical security
properties of our protocols also hold if we choose any other IND-CPA symmetric
scheme instead of AES-CBC, and any other additive homomorphic IND-CPA asym-
metric scheme instead of Paillier. Our choice to rely on the aforementioned schemes
is due to practical reasons. AES-CBC is very efficient in practice and implemented
in standard libraries for modern programming languages. Paillier is also supported
by a number of libraries that can be used in practice. In our protocol, we rely on
Paillier whenever we need its additive homomorphic property, and on AES-CBC in
all other situations when we need to symmetrically encrypt data.

7.3 UCB-DS: A Distributed and Secure Protocol Based
on UCB Algorithm

We first define the security model and the desired security properties (Section 7.3.1).
Then, we propose our secure protocol UCB-DS (Section 7.3.2), and we analyze its
correctness, security, and complexity (Section 7.4). We introduce a refinement of
UCB-DS in Section 7.4.4.

7.3.1 Security Model

As outlined in the Introduction and in Figure 7.1, we assume that the data (i.e.,
the reward functions associated to K bandit arms) and the computations (i.e., the
cumulative reward maximization algorithm) are outsourced to an honest-but-curious
cloud. This means that the cloud executes tasks dutifully, but tries to extract as
much information as possible from the data that it sees. Our model follows the
classical formulation in [Ode09] (Chapter 7.5, where honest-but-curious is denoted
semi-honest), in particular:
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1. each cloud node is trusted: it correctly does the required computations, it does
not sniff the network and it does not collude with other nodes,

2. an external observer has access to all messages exchanged over the network.

The user indicates to the cloud her budget N and receives the cumulative reward
R that the cloud computes using the K arms outsourced by the data owner and
the user’s budget N . The user does not have to do any computation, except for
decrypting R when the user receives this information encrypted from the cloud. We
expect the following security properties:

1. No cloud node can learn the cumulative reward.

2. The user cannot learn information about the rewards produced by each arm
or which arm has been pulled at some round.

3. By analyzing the messages exchanged between different cloud nodes, an exter-
nal observer cannot learn the cumulative reward, the sum of rewards produced
by some arm, or which arm has been pulled at some round.

We next give a brief intuition for each property. Property 1 implies that only the user
can see in clear the cumulative reward for which she spends a budget. Property 2
ensures that the user can see only the information for which she pays, and nothing
else. Otherwise, depending on the difficulty of the bandit problem, the user could
estimate the arm values based on the contribution of each arm to the cumulative
reward, which would leak information that should be known only by the data owner.
Property 3 states that if some curious cloud admin analyzes all messages exchanged
over the network, then she should have no clue on any input, output, or intermediate
data that is used by the cumulative reward maximization algorithm.

Next, we design a distributed protocol that satisfies the aforementioned prop-
erties. Intuitively, we achieve these properties by exchanging only encrypted mes-
sages, and moreover, by distributing the computations among several cloud node
participants, each of them having access only to the specific data that it needs for
performing its task and nothing else. The challenge is to efficiently distribute tasks
among as few cloud participants as possible, while minimizing the time needed for
cryptographic primitives.

7.3.2 Overview of UCB-DS
In Figure 7.2, we present an overview of UCB-DS. There are K+1 cloud participants:
K arm nodes Ri and a node AS (Arm Selector) that is the controller of the protocol.

We assume that the data owner and all cloud participants share the same sym-
metric AES-CBC key, which is used for the encryption function Enc in Figure 7.2.
We also assume that the user U generates a key pair (pk, sk) using the Paillier cryp-
tosystem, and this pk is used for the encryption function EU in Figure 7.2. In the
sequel, by JxK we denote the set {1, . . . , x}, and by y||z we denote the concatenation
of y and z.
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In a nutshell, UCB-DS works as follows:

• Figure 7.2a (steps 0 and 1). For i ∈ JKK, the data owner outsources to arm
node Ri the reward function (encrypted with Enc) associated to arm i. The
user sends to the cloud her budget N .

• Figure 7.2b (steps 2, 3, and 4). This is the core of the protocol, being done
during 1+N−K iterations: once for the initialization phase of UCB and N−K
times for the exploration-exploitation phase of UCB cf. Algorithm 2. For each
iteration, all arm nodes interact to decide which arm should be pulled next and
communicate this information to AS. The arm nodes communicate in a random
order, which changes at each iteration. All messages exchanged between nodes
are encrypted with Enc. Although each arm node stores information about its
rewards, it never reveals this information to other nodes.

• Figure 7.2c (steps 5 and 6). After spending the user’s budget, each arm node
sends to AS the sum of rewards that it produced, encrypted with EU. Due to
the additive homomorphic property of Paillier cryptosystem, AS is able to sum
up the K partial rewards to compute the cumulative reward EU(R) directly in
the encrypted domain. Only the user can decrypt this information.

We next detail each step and present pseudocode only when the step is not trivial.

Algorithm 8 Pseudocode of AS during steps 2, 3, and 4 cf. Figure 7.2b
1: im ← 0
2: for j ∈ JN −K + 1K do
3: σ ← random permutation of JKK
4: for i ∈ JKK do ◃ bi is a bit indicating whether arm i should be pulled or not
5: if im = 0 or im = i then
6: bi ← 1
7: else
8: bi ← 0
9: if σ(i) ̸= K then ◃ nexti indicates the next arm node in the ring, or 0

if i is the last cf. σ
10: nexti ← σ−1(σ(i) + 1)
11: else
12: nexti ← 0
13: Send Enc(bi||firsti||nexti) to arm node Ri

14: Receive ciphertext from arm node Rσ−1(K) ◃ ciphertext is Enc(im)
15: im ← Dec(ciphertext)

Step 0. We recall (cf. Algorithm 2) that the data owner knows µ1, . . . , µK defining
K Bernoulli distributions associated to the K arms. The data owner sends to each
arm node Ri the encrypted value Enc(µi), for i ∈ JKK. Since the data owner and the
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User AS
R1
. . . . . .

RK

Data Owner(0) Enc(µ1)

(0) Enc(µK)

(1) N

(a) Steps 0 and 1 are done only once at the beginning.

AS

Rσ−1(1)

Rσ−1(2)

. . .

Rσ−1(K)

. . .

(2) Enc(bσ−1(1)||1||σ−1(2))

(2) Enc(bσ−1(2)||0||σ−1(3))

(2) Enc(bσ−1(K)||0||0)

(3.1) Enc(Bm||im)

(3.2) Enc(Bm||im)

(3.K–1) Enc(Bm||im)
(4) Enc(im)

(b) Steps 2, 3, and 4 are done 1 + N − K times.

User AS

R1

. . .. . .

RK

(5) EU(s1)

(5) EU(sK)

(6) EU(R)

(c) Steps 5 and 6 are done only once at the end.

Figure 7.2: Overview of UCB-DS. The dashed rectangle is the cloud.
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Algorithm 9 Pseudocode of Ri, for i ∈ JKK, during steps 2, 3, and 4 cf. Figure 7.2b
1: Receive ciphertext1 from AS ◃ ciphertext1 is Enc(bi||firsti||nexti)
2: (bi, firsti, nexti)← Dec(ciphertext1)
3: t← t + 1
4: if bi = 1 then ◃ Pull arm i and update its variables
5: r ← pull(i)
6: si ← si + r
7: ni ← ni = 1
8: Bi ← si

ni
+
√

2 ln(t)
ni

◃ Always update Bi because t changes
9: if firsti = 0 then

10: Receive ciphertext2 from preceding arm node in ring ◃ ciphertext2 is
Enc(Bm||im)

11: (Bm, im) = Dec(ciphertext2)
12: if firsti = 1 or Bm < Bi then
13: im ← i
14: Bm ← Bi

15: if nexti ̸= 0 then
16: Send Enc(Bm||im) to Rnexti

17: else
18: Send Enc(im) to AS

cloud nodes have shared the key used for Enc, then each arm node Ri can decrypt
and obtain µi. Moreover, each node Ri initializes to 0 the following two variables
that it later on updates during the protocol: si (i.e., sum of rewards for arm i) and
ni (i.e., number of times the arm i has been pulled). Additionally, each arm node
Ri initializes a variable t = K − 1, which is later on updated and needed for the
computation of Bi.

Step 1. This step is trivial: the user sends her budget N to AS, which receives N .
Steps 2, 3, and 4 are the most technical pieces of our protocol. We present the

pseudocode of these steps in Algorithms 8 and 9 and we explain them next.

Step 2. This step corresponds to everything except the last two lines in Algo-
rithm 8 and has 1 + N −K iterations. At each iteration, AS sends three pieces of
information to the Ri nodes. The first one is a bit bi indicating whether the arm i
should be pulled or not. At the first iteration (that corresponds to the initialization
phase of UCB cf. Algorithm 2), AS sends bi = 1 to each arm, and at the next N −K
iterations (that correspond to the exploration-exploitation phase of UCB cf. Algo-
rithm 2), AS sends bi = 1 only to a chosen arm im and sends bi = 0 to all other
arms. Moreover, at each iteration, AS generates a permutation σ : JKK→JKK (i.e.,
a function for which every element occurs exactly once as an image value), based on
which AS computes two more components that it sends to Ri: firsti that indicates
whether the arm node is the first of the ring hence it should initialize Bm and im,
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and nexti that indicates to which node the updated Bm and im should be sent during
Step 3. The arm node that receives 0 on the next component is the last one of the
ring and sends im to AS, which thus knows which arm should be pulled next. All
three components that AS sends to Ri are thus useful for the ring computation of im

in Step 3. The permutation changes at each AS iteration because it is important to
have a random order during the ring communication. Without a random order, it
may happen that the last arm is much better than all others and it is almost always
pulled, hence it has a very good estimate of the cumulative reward.

Step 3. This step corresponds to everything except the last two lines in Algo-
rithm 9. Note that the variable t stores how many arm pulls have been done in total
since the beginning of the protocol. As discussed for Step 0, each arm initialized
t = K − 1, hence t = K after the first iteration of AS, which allows to compute the
first Bi values at the end of the initialization phase. Then, during the next N −K
iterations of AS, the variable t is incremented, which allows to compute Bi values
during the exploration-exploitation phase. To decide which arm has the highest Bi

and should be pulled at the next iteration, the arm nodes Ri do a distributed ring
computation, where the first arm node according to permutation σ (i.e., the only
arm node that received firsti=1) initializes max value Bm and argmax im. At each
ring iteration (Steps 3.1, . . ., 3.K-1, cf. Figure 7.2b), the current arm node sends
updated Bm and im to the next arm node cf. σ. Even though Bm and im do not
change, it is important to re-encrypt Enc(Bm||im) before sending it to the next node
to prevent an external observer from knowing when there is a change in the max
and argmax (and hence learn information about which arms are pulled more often).
Finally, once the ring computation reaches the last arm node relative to σ (i.e., the
only one that received nexti = 0), we go to Step 4.

Step 4. This step corresponds to the last two lines in Algorithm 9 (the last arm
node in the ring sends Enc(im) to AS), followed by the last two lines in Algorithm 8
(AS receives and decrypts the index of the arm to be pulled at the next iteration).

Step 5. Once the budget is entirely spent and no more arm has to be pulled, each
bandit arm Ri (for i ∈ JKK) encrypts with EU the sum of its rewards si and sends
the result EU(si) to AS.

Step 6. The node AS takes the K ciphertexts EU(si) received at Step 5, and

computes EU(R)=EU

(
K∑

i=1
si

)
=

K∏
i=1

(EU(si)). This identity follows from the additive

homomorphic property of Paillier cryptosystem, cf. Section 7.2. Then, AS sends
EU(R) to the user, who is able to decrypt using her sk and hence the user obtains R.
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7.4 Analysis of UCB-DS

Next, we analyze the correctness (Section 7.4.1), the security properties (Section 7.4.2),
and the complexity (Section 7.4.3) of UCB-DS.

7.4.1 Correctness
We point out that UCB-DS outputs exactly the same cumulative reward as UCB.
The computations done in Algorithms 8 and 9 to maximize the reward are the
same as the one done in Algorithm 2. Indeed, if we take UCB-DS and remove all
encryptions/decryptions (both symmetric and asymmetric), and all messages are
communicated in clear between participants, then we obtain a protocol that we call
UCB-D, which outputs exactly the same result as UCB-DS. This happens because
of the consistency property of the chosen cryptographic schemes i.e., if we encrypt
a message M using Enc (or EU, respectively) to obtain a ciphertext C, then if we
decrypt C using Dec (or DU, respectively), then we obtain exactly M .

Next, to reduce UCB-D to UCB, we simply remove all distributions of tasks
among participants and rewrite UCB-D as a sequential algorithm to obtain exactly
UCB. In particular, the random permutation σ (that is generated at each round
to decide in which order to iterate over arms) reduces to the randomness in the
argmax function used in standard UCB (cf. Algorithm 2) when, if several arms have
maximal Bi-value, then the argmax should be randomly picked among those arms.

7.4.2 Security
In Table 7.2, we summarize what each participant in UCB-DS knows/does not know,
while referencing the relevant theorems. The main properties of our protocol are:

1. No cloud node can learn the cumulative reward and additionally:

• Only AS and the pulled arm know which arm is pulled at each round.
Arms that are not pulled can guess the pulled arm with average proba-
bility 1

2 + 1
2K .

• Only arm node Ri knows the sum of rewards for arm i.

2. Only U knows the cumulative reward, and she knows nothing else.

3. An external observer cannot learn the cumulative reward, the sum of rewards
for some arm, or which arm has been pulled at some round.

These properties subsume the list of desirable security properties listed in Sec-
tion 7.3.1. Before formally stating the theorems, we point out some assumptions.
First, we recall (cf. Section 7.3.1) that the participants are honest-but-curious and
do not collude. We discuss the impact of collusions at the end of this section. Second,
during the ring computation (cf. Step 3 in Section 7.3.2), each arm learns an interme-
diate max value Bm, together with intermediate arm argmax im; we assume that the
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Participant Knows Does not know

AS • Arm pulled at each round
• Sum of rewards for some
arm and cumulative reward
(Theorem 7.4.1)

Ri

• Sum of rewards for arm i
• Arm pulled at each round, with
average probability 1

2 + 1
2K (The-

orem 7.4.2)

• Sum of rewards of other
arm j ̸= i and cumulative re-
ward (Theorem 7.4.3)

U • Cumulative reward

• Arm pulled at each round
(Theorem 7.4.4)
• Sum of rewards for some
arm (Theorem 7.4.5)

External
observer • Nothing

• Arm pulled at each round
(Theorem 7.4.6)
• Sum of rewards for some
arm and cumulative reward
(Theorem 7.4.7)

Table 7.2: What each participant of UCB-DS knows and does not know.

knowledge on intermediate Bm and im by each arm does not leak significant infor-
mation on the sum of rewards. We show in Section 7.4.4 our refinement UCB-DS2,
which hides im during the ring computation to relax the second hypothesis.

Before discussing the security properties for each participant, we introduce some
notations needed for the theorem statements:

• ni,t = the number of times arm i has been pulled until round t.

• si,t = the sum of rewards obtained by arm i until round t.

• datat
A = the data to which participant A has access until round t, where A can

be a participant from Figure 7.2 or the external observer (ext). If t is omitted,
this denotes the data to which A has access at the end of the protocol.

• Apb(.)(d) = the answer of a Probabilistic Polynomial-Time (PPT) adversary
A that knows d and tries to solve the problem pb. Depending on the problem,
pb can also take some input.

• By negligible in λ, we denote that our security theorems are always asymptotic
i.e., they describe the behavior when the security parameter λ of the crypto-
graphic schemes becomes infinitely large. More precisely, a function f : N→ R
is negligible in λ if for any c ∈ N, and for any λ large enough, f(λ) < λ−c.

We next provide theorems that state each non-trivial property from Table 7.2.
We first state an useful lemma, which intuitively says that guessing the cumulative
reward with probability better than random is equivalent to guessing the sum of
rewards of some arm with probability better than random.
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Lemma 7.4.1. Let A be a PPT adversary trying to find the cumulative reward R,
and let B be a PPT adversary trying to find the sum of rewards of some arm. Let
d be some data, cr(.) be the problem of guessing the cumulative reward, and sum(.)
be the problem of guessing the sum of rewards of some arm. We have the following
statement:
Acr(.)(d) has a non-negligible advantage ⇔ Bsum(.)(d) has a non-negligible advan-

tage.

Proof. ⇐ Assume that B can guess the sum of rewards of some arm with probability
better than random. Then, A can call B, and hence get the sum of rewards of one
arm with probability better than random. From this sum, A can guess a lower bound
on the cumulative reward, hence eliminating some possibilities, and thus guessing
the cumulative reward with probability better than random.
⇒ If A can guess the cumulative reward with probability better than random,

then B can use this cumulative reward as an upper bound on the sum of rewards
of some arm, thus having a probability better than random of guessing the sum of
rewards of some arm. �

Security of AS. By construction of UCB-DS, AS knows the arm pulled at each
round. We state that AS cannot learn the sum of rewards produced by some arm.

Theorem 7.4.1. For an arm i ∈ JKK and a round t ∈ JN − K + 1K, an honest-
but-curious AS cannot learn si,t, given datat

AS, with a probability better than random.
More precisely, for all PPT adversaries A,∣∣∣Pr

[
(i, ŝi,t)← Asum(t)(datat

AS); ŝi,t = si,t

]
− pS(ni,t, si,t)

∣∣∣
is negligible in λ, where Asum(t)(datat

AS) returns (i, ŝi,t) in which ŝi,t is A’s guess on
si,t for the arm i (chosen by A), and pS(ni,t, si,t) is the probability of obtaining a
sum of rewards si,t from ni,t pulls of arm i until round t.

Proof. Before Step 5 of UCB-DS, AS has access at each round to the indices of the
pulled arms. Thus, AS knows ni,t i.e., the number of times the arm i has been
pulled until round t. The set of all possible sums of rewards for arm i until round t
is {0, 1, . . . , ni,t}. We denote by pS(ni,t, si,t) the probability of obtaining the sum of
rewards si,t from ni,t pulls of arm i until round t. Next, we show that the advantage
of AS based of datat

AS is pS(ni,t, si,t) plus an amount negligible in λ.
Since AS has no knowledge on µi, the property stated in the theorem is respected

at each round before Step 5, i.e., for all t < N −K + 1.
We next prove the property for the last round i.e., t = N −K + 1. At the end

of UCB-DS, at Step 5, AS receives the values EU(s1,t), . . . , EU(sK,t). We prove that
retrieving any information about any si,t from these ciphertexts breaks the IND-
CPA property of Paillier’s cryptosystem [Pai99]. At this point of UCB-DS, datat

AS
consists of EU(s1,t), . . . , EU(sK,t) and the list of arms that have been pulled at each
round. Assume there exists a PPT adversary A able, from datat

AS to find si,t for
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some i with non negligible advantage x:∣∣∣Pr
[
(i, ŝi,t)← Asum(t)(datat

AS); ŝi,t = si,t

]
− pS(ni,t, si,t)

∣∣∣ = x + negl(λ).

In the worst case, each i ∈ JKK has an equal probability of being chosen by A. We
also assume that if datat

AS does not correspond to the data collected by AS during
a run of UCB-DS (for instance, if one piece of datat

AS has been replaced by another
unrelated message), then A does not give any advantage. If such an adversary A
exists, then we show how to construct an adversary B able to break the IND-CPA
property of Paillier.

Let us build an IND-CPA game, in which B chooses two values m0, m1, and sends
them to the challenger. The challenger randomly selects b ∈ {0, 1} and answers with
EU(mb). B wins the IND-CPA game if B guesses b with a non-negligible advantage.

To do so, B first creates a simulation of an UCB-DS execution i.e., B creates
nodes U′, AS′, R′

i, and DO′, with Bernoulli distributions defined by µ′
i of its choice.

Then, B runs an execution of UCB-DS on these nodes. Because B controls all the
nodes, it knows the sums of rewards s′

1,t, . . . , s′
K,t, as well as a list L of arms pulled

at each round.
As input for the IND-CPA game, B chooses m1 = s′

1,t and another value m0,
different from all s′

i,t, sends both values to the challenger, and receives EU(mb). Then,
B computes EU(s′

i,t) for each i, and calls Asum(t)([EU(mb), EU(s′
2,t), . . . , EU(s′

K,t), L]).
The strategy of B is as follows: if A returns (1, m1), then B answers 1. Otherwise,

B answers randomly. We next derive the probability of a correct answer by B.

• If i ̸= 1 (probability 1 − 1
K ), then B answers randomly and is correct with

probability 1
2 . Hence this branch offers a probability of success of (1− 1

K )1
2 .

• If i = 1 (probability 1
K ), let us consider the value of b.

– If b = 0 (probability 1
2), then we have two cases:

∗ If the output of A is (1, m1) (probability pS(n1,t, s1,t)), then B an-
swers 1 and it is wrong, hence the probability of success is 0.

∗ Otherwise (probability 1− pS(n1,t, s1,t)), B answers randomly and is
correct with probability 1

2 . The probability of success of this branch
is 1

K
1
2(1− pS(n1,t, s1,t))1

2 .

– If b = 1 (probability 1
2), then we have two cases:

∗ If the output of A is (1, m1) (probability pS(n1,t, s1,t) + x + negl(λ)),
then B correctly answers 1. The probability of success of this branch
is 1

K
1
2(pS(n1,t, s1,t) + x + negl(λ)).

∗ Otherwise (probability 1−pS(n1,t, s1,t)−x−negl(λ)), B answers ran-
domly and is correct with probability 1

2 . The probability of success
of this branch is 1

K
1
2(1− pS(n1,t, s1,t)− x− negl(λ))1

2 .
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By aggregating the aforementioned cases, the probability α of success of B is:

α =
(

1− 1
K

) 1
2

+ 1
K

1
2

(1− pS(n1,t, s1,t))
1
2

+ 1
K

1
2

(pS(n1,t, s1,t) + x + negl(λ))

+ 1
K

1
2

(1− pS(n1,t, s1,t)− x− negl(λ)) 1
2

=1
2
− 1

2K
+ 1

4K
− pS(n1,t, s1,t)

4K
+ pS(n1,t, s1,t)

2K
+ x

2K
+ 1

4K
− pS(n1,t, s1,t)

4K

− x

4K
+ negl(λ)

=1
2

+ x

4K
+ negl(λ)

Hence, B has an advantage of x
4K in the IND-CPA game, which is non negligible.

This is a contradiction with the fact that Paillier is IND-CPA secure. Consequently,
there does not exist any PPT adversary A that violates the property stated in the
theorem. �

As a corollary, by Lemma 7.4.1 and Theorem 7.4.1, we infer that AS cannot learn
the cumulative reward with probability better than random.

Security of Ri. By construction of UCB-DS, each arm node Ri knows its sum of
rewards. Moreover, due to the properties of the ring computation, Ri knows with
average probability 1

2 + 1
2K the arm to be pulled at the next round (Theorem 7.4.2),

but it cannot learn the sum of rewards of any other arm (Theorem 7.4.3).

Theorem 7.4.2. At the end of round t ∈ JN − KK and before the start of round
t + 1, given datat

Ri
, the average probability that an honest-but-curious Ri guesses the

arm to be pulled at round t + 1 is 1
2 + 1

2K .

Proof. After round t, an arm i can either guess randomly (with a success probability
of 1

K ), or use the data to which it has access: the partial max Bm, the partial argmax
index im, and the next arm in the ring communication. The knowledge of the next
arm is useless, as it does not bring any information about any B value. Similarly,
the knowledge of Bm does not leak more information than im. Hence, the only
useful piece is im. Based on this only useful piece of data and on the assumption
cf. Section 7.4.2 that any information derived from partial argmax data from the
previous rounds is negligible, we infer that the best policy for the arm is to bet that
arm im is the arm to be pulled at the next round. Let us consider an arm at position
σ−1(i), where σ is the ring permutation used at the round t. Its guess is correct if
and only if the next arm to be selected, say j, has position σ−1(j) ≤ σ−1(i). Hence,
the arm at position σ−1(i) has a success probability of σ−1(i)

K . On average, an arm
has a success probability of

1
K

K∑
i=1

σ−1(i)
K

= 1
K2

K(K + 1)
2

= K + 1
2K

= 1
2

+ 1
2K

which concludes the proof. �
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Encryptions Decryptions

AES-CBC

K (step 0)
(N −K + 1)K (step 2)
(N −K + 1)(K − 1) (step 3)
(N −K + 1) (step 4)

K (step 0)
(N −K + 1)K (step 2)
(N −K + 1)(K − 1) (step 3)
(N −K + 1) (step 4)

Paillier K (step 5) 1 (step 6)

Table 7.3: Number of cryptographic operations used in UCB-DS.

Theorem 7.4.3. For an arm i ∈ JKK and a round t ∈ JN −K + 1K, an honest-but-
curious Ri cannot learn sj,t for some other arm j ̸= i, given datat

Ri
, with a probability

better than random. More precisely, for all PPT adversaries A,∣∣∣Pr
[
(j, ŝj,t)← Asum(t)(datat

Ri
); ŝj,t = sj,t

]
− pR(ni,t, t, sj,t)

∣∣∣
is negligible in λ, where Asum(t)(datat

Ri
) returns a tuple (j, ŝj,t) in which j ̸= i is

chosen by A and ŝj,t is A’s guess of the sum of rewards for arm j, and pR(ni,t, t, sj,t)
is the probability of arm j to have sum of rewards sj,t at round t seen that arm i has
been pulled ni,t times.

Proof. If an arm i has been pulled ni,t times until round t, then another arm j
has been pulled at most t− ni,t times. Hence, a baseline probability of Ri to guess
the sum of rewards of any other arm j is the pR(ni,t, t, sj,t) defined in the theorem
statement. The arm node Ri cannot possibly guess the sum of rewards for arm j
with a better probability because it does not see any useful information that it can
leverage. In particular, the only information that Ri receives about the rewards of
any other arm is the partial max value Bm (derived from the sum of arm im using
the number of pulls of im, to which Ri does not have access) received during Step 3.
As mentioned in Section 7.4.2, we assume that the information that one arm can
derive from one such random B value does not provide any advantage. �

As a corollary, by Lemma 7.4.1 and Theorem 7.4.3, we infer that Ri cannot learn
the cumulative reward with probability better than random.

Security of U. The user knows the cumulative reward that she can decrypt after
Step 6. Moreover, the user cannot learn the arms selected at some round (Theo-
rem 7.4.4) or the sum of rewards for some arm (Theorem 7.4.5).

Theorem 7.4.4. For each round t ∈ {2, . . . , N −K + 1}, the user U cannot guess
which arm is pulled at round t with probability better than random.

Proof. The user does not receive any message until the end of UCB-DS (Step 6).
By construction of UCB-DS, all arms are pulled at the first round, then from round
2 and until the end of UCB-DS i.e., round N −K + 1, there is a single arm pulled
at each round. In particular, the user does not receive any information on which
arm is pulled at some round, hence her best strategy is to answer randomly, with a
probability of success of 1

K . �
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Theorem 7.4.5. For an arm i ∈ JKK, the user U cannot guess the sum si of rewards
for the arm i with probability better that random.

Proof. Similarly to the previous proof, we observe that the user U does not receive
any message until the end of UCB-DS (Step 6). In particular, U does not get any
information about which arm is selected at some round. Because all arm probability
distributions are equiprobable to U, it is also true that all partitions of the cumulative
reward R are equiprobable to U, thus U has no advantage in guessing the partition of
rewards. Hence, the the probability of U guessing a correct partition of the rewards
is equal to 1

p(R) , where p(R) is the number of partitions of R. This observation also
proves that U cannot guess the individual sum of rewards of some arm i. If it was
the case, then U would know that some of the partitions are more likely e.g., if U
can guess the sum of rewards si of the arm i, then all partitions not having si as the
value for arm i would be discarded, which is a contradiction. �

External observer. An external observer sees all messages exchanged between
nodes, from which we show that she cannot learn which arm is pulled at some round
(Theorem 7.4.6) or the sum of rewards for some arm (Theorem 7.4.7).

Theorem 7.4.6. For each round t ∈ {2, . . . , N − K + 1}, an honest-but-curious
external observer cannot learn which arm is pulled at round t, given datat

ext, with
probability better than random. More precisely, for all PPT adversaries A,∣∣∣∣Pr[Apa(t)(datat

ext) = it
m]− 1

K

∣∣∣∣ is negligible in λ,

where Apa(t)(datat
ext) returns the guess of A on which arm is pulled at round t, and

it
m is the true arm pulled at round t.

Proof. By construction of UCB-DS, all arms are pulled at the first round, then from
round 2 and until the end of UCB-DS i.e., round N −K + 1, there is a single arm
pulled at each round. We next show that if there exists a PPT adversary with a non
negligible advantage in guessing the arm pulled at some round 2 ≤ t ≤ N −K + 1,
then this would break the IND-CPA property of AES-CBC.

An external observer (denoted ext in the sequel) sees all encrypted messages that
are exchanged among UCB-DS participants. We denote by datat

ext this collection
of data after round t. We assume, toward a contradiction, that there exists a PPT
adversary A able from dataext to find the arm it

m pulled at some round t with a non
negligible advantage x:∣∣∣∣Pr[Apa(t)(datat

ext) = it
m]− 1

K

∣∣∣∣ = x + negl(λ).

We also assume that if datat
ext does not correspond to an actual collection of en-

crypted messages that ext sees, then the advantage for such an input is negligible.
We next show that by using the adversary A, we can construct an adversary B

able to break the IND-CPA property of AES-CBC. To do so, B creates a simulation
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of an UCB-DS execution, similarly to the proof of Theorem 7.4.1. Even though the
messages of such a simulation are encrypted, B knows the keys hence the state of
each arm. In particular, B knows in plain text the message sent by AS to the arm
pulled at round t. This message is of the form m1 = (1||firsti,t||nexti,t), with 1
being the Boolean value saying the arm has to be pulled.

As input for the IND-CPA game, B sends the aforementioned m1 and another
message m0 = (0||firsti,t||nexti,t) that it generates based on m1. Then, B receives
back Enc(mb), where b is a random bit selected uniformly by the challenger. Next,
B calls Apa(t)(data′

ext), where data′
ext is the collection of encrypted messages from

the B’s simulation, except that it replaces Enc(m1) by Enc(mb). The strategy of B
is: if A returns the correct it

m, then B returns 1, otherwise answer randomly.

• If b = 0 (probability 1
2), then A does not receive a correct simulation because

no arm is pulled at round t. According to our assumption, A does not give
any advantage.

– If A returns the correct it
m (probability 1

K ), then B answers 1 and is
wrong.

– Otherwise (probability 1 − 1
K ), then B answers randomly and is correct

with probability 1
2 . This branch yields a probability of success of 1

2(1 −
1
K )1

2 .

• If b = 1 (probability 1
2), then the advantage given by A can be leveraged by

B.

– If A returns the correct it
m (probability 1

K +x+negl(λ)), then B correctly
answers 1. The probability of success of this branch is 1

2( 1
K +x+negl(λ)).

– Otherwise (probability 1− 1
K − x− negl(λ)), B answers randomly and is

correct with probability 1
2 . This branch yields a probability of success of

1
2(1− 1

K − x− negl(λ))1
2 .

By aggregating the aforementioned cases, the probability α of success of B is:

α = 1
2

(1− 1
K

)1
2

+ 1
2

( 1
K

+ x + negl(λ)) + 1
2

(1− 1
K
− x− negl(λ))1

2
= 1

4
− 1

4K
+ 1

2K
+ x

2
+ 1

4
− 1

4K
− x

4
+ negl(λ)

= 1
2

+ x

4
+ negl(λ)

Hence, B has an advantage of x
4 in the IND-CPA game, which is non negligible. This

contradicts the fact that AES-CBC is IND-CPA secure. Hence, we conclude that
there does not exist any PPT adversary A that violates the property stated in the
theorem. �

Before proving the next theorem, we add a new hypothesis.
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Hypothesis 2. We assume that the messages exchanged by the nodes during the
protocol are uniformly random among possible messages, or at least that, with over-
whelming confidence, they are not related to the secret keys of the encryption schemes.

This hypothesis is required, because specific messages such as key-dependant
messages [BRS03] can alter the security of the protocol. For instance, it is known
that IND-CPA does not imply circular security [CL01] (which states that, for a
collection of encryption algorithms Ei or secret key ski, it is impossible to distinguish
the encryptions Ei(ski+1) from encryptions of 0. Especially, [CGH12] shows that
there exists IND-CPA schemes in which circular encryption leads to a complete
breakup (key recovery) of both schemes.

However, if we assume that messages are random, then key-related messages
become a negligible event, and as such, all the related weaknesses vanish.

Theorem 7.4.7. For an arm i ∈ JKK and a round t ∈ JN −K + 1K, an honest-but-
curious external observer cannot learn si,t, given datat

ext, with a probability better
than random. More precisely, for all PPT adversaries A,∣∣∣Pr

[
(i, ŝi,t)← Asum(t)(datat

ext); ŝi,t = si,t

]
− pQ(t, si,t)

∣∣∣
is negligible in λ, where Asum(t)(datat

ext) returns (i, ŝi,t) in which ŝi,t is A’s guess on
si,t for the arm i (chosen by A), and pQ(t, si,t) is the probability of obtaining a sum
of rewards si,t from at most t pulls of arm i until round t.

Proof. The external observer collects datat
ext , which consists of several encrypted

messages, some of them being encrypted with Enc (AES-CBC) and some other
being encrypted with EU (Paillier). We prove that these messages do not provide an
advantage bigger than the advantage of an adversary in a classical IND-CPA game
on Enc or EU. For simplicity, we assume that the datat

ext only contains two encrypted
messages, Enc(m) and EU(n). The proof can naturally be adapted if datat

ext consists
of more than two messages.

The goal of the adversary is to extract at least a bit of information from either
m or n, with probability better than random. The entropy of this system is minimal
when m = n. Hence, when m = n, the adversary has the highest probability of
guessing at least a bit from either m or n (which are the same in this case). As a
consequence, in the general case, the advantage of an adversary having to guess a
bit about m or n, knowing Enc(m) or EU(n) is bounded above by the advantage of
an adversary having to guess a bit about m, knowing Enc(m) and EU(m).

Let us prove that the advantage of a PPT adversary in this latter case (having
to guess a bit about m from Enc(m) and EU(m)) is negligible.

We assume, toward a contradiction, that there exists a PPT adversary A able to
win the game where, given Enc(m) and EU(m), A recovers a bit of information about
m with a non-negligible advantage x: given Enc(m) and EU(m), the probability that
A outputs a correct guess about a bit of m is equal to 1

2 + x + negl(λ).
We use this adversary to create another adversary B able to break the IND-

CPA property of the encryption schemes Enc (or EU, respectively). As usually in
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the IND-CPA game, B chooses two messages m0 and m1, and sends them to the
challenger. Then, B receives the challenge Enc(mb) (or EU(mb), respectively), and
calls A(Enc(mb), EU(m0)) (or A(Enc(m0), EU(mb)), respectively). If A returns a
correct guess about m0, then B returns 0. Otherwise, it returns 1.

• If b = 0 (happens with probability 1
2), then A has a non negligible advantage

in guessing a bit about m.

– A outputs a correct guess about one bit of m0 with probability 1
2 + x +

negl(λ). In this case, B is correct. This branch happens with probability
1
2(1

2 + x + negl(λ)).
– If A does not answer correctly (happens with probability 1

2−x−negl(λ)),
then B is correct with probability 1

2 . This branch happens with probabil-
ity 1

2(1
2 − x− negl(λ))1

2 .

• If b = 1 (happens with probability 1
2), then A has no advantage.

– If A returns a correct guess about one bit of m0 (happens with probability
1
2), then B is wrong.

– If not (happens with probability 1
2), then B returns a random guess and is

correct with probability 1
2 . This branch of events happen with probability

1
23 .

By aggregating these cases, the probability α of success of B is:

α = 1
2

(1
2

+ x + negl(λ)) + 1
2

(1
2
− x− negl(λ))1

2
+ 1

8
= 1

4
+ 1

2
x + 1

8
− 1

4
x + 1

8
+ negl(λ)

= 1
2

+ 1
4

x + negl(λ)

Hence, B has a non-negligible advantage of 1
4x in the IND-CPA game against Enc (or

EU, respectively), which is a contradiction with its IND-CPA property. Guessing a bit
about the encrypted message is equivalent to guessing the reward with a probability
better than random (i.e., better than pQ(t, si,t) cf. our theorem statement), which
concludes our proof.

�

As a corollary, by Lemma 7.4.1 and Theorem 7.4.7, we infer that the external
observer cannot learn the cumulative reward with probability better than random.

Impact of collusions. As pointed out earlier, an hypothesis behind our security
theorems is that cloud nodes do not collude. By collusion we mean that cloud nodes
put together all their data. If at least 2 of the Ri nodes collude, they could learn
their respective algorithm inputs (i.e., bandit arm values that only the data owner
is supposed to know at the same time) and outputs (i.e., cloud nodes could sum
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up the partial sums of rewards known by each node), hence UCB-DS would not
satisfy the desirable security properties. In addition to following a standard security
model (cf. discussion in Section 7.3.1), we believe that the no-collusion hypothesis
is necessary if we want a secure cumulative reward maximization algorithm that
produces exactly the same output as standard UCB, which manipulates real numbers
i.e., Bi needs average, ln, and sqrt. Indeed, as already mentioned in the introduction,
it is not currently possible in practice to use fully-homomorphic encryption on real
numbers without result approximation. Hence, to minimize data leakage, our choice
is to do computations on real numbers in clear, and to distribute reward functions
and Bi-value computations among K cloud nodes (one per arm), each of them having
access in clear only to data pertaining to its arm.

7.4.3 Complexity
We detail in Table 7.3 the number of cryptographic operations used in each step of
UCB-DS. By summing up, we obtain O(NK) AES-CBC encryptions/decryptions,
K Paillier encryptions, and one Paillier decryption. Hence, we have a number of
AES-CBC operations linear in N , whereas the number of Paillier operations does
not depend on N . These are desirable complexity properties. In particular, the
number of Paillier operations (which are quite slow to evaluate in practice) depends
only on K that is typically much smaller than N in bandit scenarios.

Our implementation follows the aforementioned theoretical analysis and confirms
the linear time behaviour and the scalability of UCB-DS. We include details on our
proof-of-concept experimental study, following synthetic [GUK18; TD16] and real-
world scenarios [KSS13; GRG+01; HK15].

7.4.4 Refinement: UCB-DS2

We propose next the UCB-DS2 refinement, which adds slightly stronger security
guarantees to UCB-DS, for few more cryptographic operations. A property of
UCB-DS, stated in Theorem 7.4.2, is that an arm node Ri knows with average
probability of 1

2 + 1
2K what arm is pulled at the next round. This happens because

during the ring computation, every arm sees in clear the partial argmax im. We
propose the UCB-DS2 refinement of UCB-DS, which removes the aforementioned
leakage and hence allows relaxing the second hypothesis from Section 7.4.2.

The idea of UCB-DS2 is that, in addition to UCB-DS, we also encrypt the
partial argmax im during the ring computation. This modification is not trivial
as we need to introduce new keys, as detailed next. More precisely, we recall that
UCB-DS assumes an AES-CBC key that is shared between the data owner and all
cloud participants and that is used for the functions Enc/Dec used until now in the
chapter. For UCB-DS2, if we want that an arm node Ri cannot decrypt the partial
argmax im received from the previous arm node in the ring, we need to encrypt im

with some other key. This is why in UCB-DS2 we introduce K new AES-CBC keys,
each of them shared between AS and a single Ri arm node. Each such key defines
functions Enci/Deci.
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Algorithm 10 Modifications to the pseudocode of UCB-DS, cf. Algorithms 8 and 9,
to obtain UCB-DS2.
For AS, take everything but the last 2 lines as in Algorithm 8, then take this
pseudocode:

14: Receive ciphertext from arm node Rσ−1(K) ◃ ciphertext is now Enc(Encim(im))

15: ciphertext2 ← Dec(ciphertext)
16: for i ∈ JKK do
17: if Deci(ciphertext2) = i then ◃ ciphertext2 decrypts as a correct arm index
18: im ← i
19: Break

For Ri (with i ∈ JKK), take the first 8 lines as in Algorithm 9, then take the
following pseudocode.

9: if firsti = 0 then
10: Receive ciphertext2 from preceding arm node in ring ◃ ciphertext2 is now

Enc(Bm||Encim(im))
11: (Bm, Encim(im)) = Dec(ciphertext2)
12: if nexti ̸= 0 then
13: Send Enc(Bm||Encim(im)) to Rnexti

14: else
15: Send Enc(Encim(im)) to AS

We show in Algorithm 10 the modifications to Step 3 and 4 of UCB-DS ()cf. Algo-
rithms 8 and 9) that allow to obtain UCB-DS2. In the worst case, these modifications
cost (N−K+1)(K−1) encryptions at Step 3 and (N−K+1)K decryptions at Step 4,
which does not change the overall asymptotic behavior outlined in Section 7.4.3.

All theorems from Section 7.4.2 also hold for UCB-DS2, except Theorem 7.4.2
that is replaced by the next theorem, which formally states the stronger security
guarantees of UCB-DS2.

Theorem 7.4.8. In UCB-DS2, at the end of round t ∈ JN − KK and before the
start of round t + 1, given datat

Ri
, an honest-but-curious arm node Ri cannot learn

the arm to be pulled at round t + 1 with probability better than random.

Proof. At each round t, the arm node Ri receives Enc(Bm||Encim(im)) and decrypts
into Bm||Encim(im). By hypothesis, Bm does not leak any information about the
next arm to be pulled. The only way for Ri to guess the next arm with probability
better than random is to use some information contained in Encim(im). However,
since Encim is IND-CPA, it is impossible to learn any information on im with non
negligible advantage. Hence, the strategy of Ri to guess the arm pulled at round
t + 1 is not better than random. �
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7.4.5 Experiments
We next present a proof-of-concept experimental study devoted to showing that
the overhead due to cryptographic primitives is reasonable, hence our protocols are
feasible in practice. More precisely, we show the scalability of our protocols with
respect to both parameters N and K through an experimental study using synthetic
and real data. We compare:

• UCB = Standard UCB algorithm [ACBF02; BC12], outlined in Algorithm 2.

• UCB-D = UCB with distribution of tasks among participants in the spirit of
UCB-DS cf. Section 7.3.2, but with all messages exchanged in clear among
participants (that is, UCB-D does not use any cryptographic primitive). The
only overhead compared to UCB comes from the distribution of tasks.

• UCB-DS = Distributed Secure UCB cf. Section 7.3.2.

• UCB-DS2 = The refinement of UCB-DS cf. Section 7.4.4.

We implemented the algorithms in Python 3. For AES-CBC we used the Py-
Cryptodome library1 and keys of 256 bits. For additive homomorphic encryption
using the Paillier’s cryptosystem, we used the phe library2 in the default configura-
tion with keys of 2048 bits. We carried out our experiments on a laptop with CPU
Intel Core i7 of 2.80GHz and 16GB of RAM, running Ubuntu. Each result that we
report is averaged over 100 runs. In each run, we executed all four algorithms using
the same random seeds, needed for drawing the arm rewards and for generating the
permutation used to iterate in a random order over the arms when choosing the
argmax arm to be pulled at the next round.

For reproducibility reasons, we make available on a public GitHub repository3

our source code, together with the data that we used, the generated results from
which we obtained our plots, and scripts that allow to install the needed libraries
and reproduce our plots.

Before discussing our experimental results, we would like to stress that, as ex-
pected, in each experiment, all four algorithms output exactly the same cumulative
reward. The property that our secure algorithms return exactly the same cumulative
reward as standard UCB is in contrast with differentially-private multi-armed ban-
dit algorithms [GUK18; MT15; TD16], where the returned cumulative rewards are
different from that of standard UCB. Consequently, a shallow empirical comparison
between these works and ours boils down to comparing apples and oranges: (i) on
the one hand, the running time of differentially-private bandit algorithms is roughly
the same as for standard UCB and is never reported in their experiments, whereas
(ii) on the other hand, for our algorithms the cumulative reward is always the same
as for standard UCB and consequently there is no point for us in doing any plot on
the cumulative reward. Nevertheless, we carefully analyzed all experimental settings

1https://pycryptodome.readthedocs.io/en/latest/src/cipher/classic.html
2https://python-paillier.readthedocs.io/en/develop/
3https://github.com/radu1/secure-ucb
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(a) Scenario 1 [GUK18]: K = 10, µ1 = 0.9, µ2 = . . . = µ10 = 0.8.
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(b) Scenario 2 [GUK18; TD16]: K = 2, µ1 = 0.9, µ2 = 0.6.
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(c) Scenario 3 [GUK18] K = 2 µ1 = 0.9, µ2 = 0.8
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(d) Scenario 4 [GUK18] K = 10: µ1 = 0.9, µ2 =µ3 =µ4 =0.8, µ5 =µ6 =µ7 =0.7, µ8 = µ9 =µ10 = 0.6.

Figure 7.3: Scalability with respect to N . In the zoom, we do not show DO (its
share is close to 0).
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(e) Scenario 5 [GUK18] K = 10: µ1 = 0.9, µ2 = . . . = µ10 = 0.6.
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(f) Scenario 6 [TD16] K = 10: µ1 = 0.55, µ2 = 0.2, µ3 = . . . = µ10 = 0.1.

Figure 7.3: (cont.) Scalability with respect to N . In the zoom, we do not show DO
(its share is close to 0).

(N , K, µ) used in the related work, that we adapt for our scalability experiments,
as we detail next.

Scalability with respect to N . In this experiment, we fix K and µ, and we vary
N . To fix K and µ, we rely on six scenarios from the related work, as detailed in
Figure 7.3, where we show the comparison of the four algorithms for these scenarios.
We vary N from 102 to 105 that is also the maximum budget considered in [GUK18;
TD16]. The running times for UCB and UCB-D are very close, and up to two orders
of magnitude smaller than the times of UCB-DS and UCB-DS2, which are also very
close. All algorithms have a similar linear time behavior. The overhead between the
secure and non-secure algorithms comes naturally from the cryptographic primitives.
Moreover, the two lines corresponding to the secure algorithms are not parallel
with the other two lines because, cf. Section 7.4.3, the overhead due to Paillier
encryptions depends only on K (that is fixed in the figure) and not on N (that
varies in the figure), hence the Paillier overhead is more visible for small N . The
running times of UCB-DS/UCB-DS2 for the largest considered budget N = 105 is
of ∼100 seconds, which remains practical. In Figure 7.3, we also zoom on the time
taken by each participant of UCB-DS for N = 105. We observe that AS takes the
lion’s share, which is expected because at each round AS sends encrypted messages
to all Ri participants, whereas each Ri sends an encrypted message only to one
other participant. As expected, all Ri take roughly the same time. Moreover, the
shares taken by the data owner and the user are the smallest among all participants,
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Figure 7.4: Scalability with respect to K for fixed N = 105. In the zoom (labels not
shown because they would be colliding): the AS takes the lion’s share, R1≤i≤20 take
the 20 equal shares, U is barely visible, and DO is not shown since its share is close
to 0.
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Figure 7.5: Running times on three real world data scenarios from [KSS13].

which is a desirable property because we require them to do as few computations as
possible, whereas the bulk of the computation is outsourced to the cloud.

Scalability with respect to K. In this experiment, we fix N = 105, and we vary
K ∈ [5, 10, 15, 20] and implicitly µ with µ1 = 0.9 and all other µ2≤i≤K = 0.8. We
present results in Figure 7.4, where we observe, as in the previous experiment, a sim-
ilar linear time behavior and a similar zoom on the time taken by each participant.

Real-world data. In addition to the two aforementioned scalability experiments
on synthetic data, we think it is important to also stress test our algorithms on
some real-world data. For this experiment, we use the same data and experimental
setup as [KSS13]. More precisely, we use data from Jester4[GRG+01], a collection of
ratings ranging from -10 (very not funny) to 10 (very funny), given by 25K users on
100 jokes. Exactly as [KSS13], we pre-process this dataset by assigning the lowest
score to the unrated jokes, and then we extract two bandit scenarios:

• Jester-small: K = 10, corresponding to the 10 most rated jokes, where µi =
(# of ratings ≥ threshold 3.5 for joke i) / (# of users).

• Jester-large: K = 100, corresponding to all 100 jokes, where µi is computed
similarly as for Jester-small, except that the threshold here is set to 7.

4http://eigentaste.berkeley.edu/dataset/
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Moreover, we use data from MovieLens5[HK15], more precisely the “MovieLens 100K
Dataset” that contains ratings ranging from 1 (bad) to 5 (very good) given by 1K
users on a set movies, from which, exactly as [KSS13], we look only at the first 100
movies and derive the following bandit scenario:

• MovieLens: K = 100, corresponding to the first 100 movies, where µi = (# of
ratings ≥ threshold 4 for movie i) / (# of users).

We ran each of the three aforementioned scenarios with budget N = 105, which
is the largest budget considered in [KSS13]. We show results in Figure 7.5, which
essentially confirms the behavior observed in the synthetic experiments i.e., there
are roughly two orders of magnitude between non-secure and secure algorithms. In
the largest considered scenarios (Jester-large and MovieLens, both with K = 100),
where standard UCB takes around twenty seconds, both UCB-DS and UCB-DS2
take around one thousand seconds, that we believe acceptable as waiting time for
the user before getting the cumulative reward result for which she pays.

7.5 Conclusions and Future Work
We tackled the problem of cumulative reward maximization in multi-armed bandits
in a setting where data and computations are outsourced to some honest-but-curious
cloud. We proposed UCB-DS, a distributed and secure protocol based on UCB,
which yields exactly the same cumulative reward as UCB while enjoying desirable
security properties that we precisely characterize. In particular, no cloud node or
external observer can learn the cumulative reward, which can be seen only by the
user who pays a budget. We rely on distribution of tasks and on cryptographic
schemes to achieve the security properties of UCB-DS, and we characterize the
overhead of cryptography from both theoretical and empirical points of view. Our
experiments show the scalability and practical feasibility of UCB-DS, and of its
refinement UCB-DS2.

As future work, we plan to extend our scenario such that multiple users can
concurrently submit budgets to the cloud and receive in return corresponding learned
cumulative rewards. Such a scenario would imply heavier computations. We believe
that the different tasks of our secure distributed algorithms could be pipelined among
cloud nodes in order to increase the system’s throughput. We also plan to develop
protocols for adding security guarantees to other types of bandit algorithms (such
as contextual and linear bandits), and more in general, for other learning settings.

5https://grouplens.org/datasets/movielens/
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Conclusion

The aim of this thesis was to fill in some gaps between theoretical cryptography and
everyday software, by proposing new applications of existing cryptographic primi-
tives with guarantees on the security properties, so that the user can confidently
know what they are doing and how secure the framework they are using actually
is. In this context, we have taken a look on a special topic of computing, namely
duplicate detection, and started by improving the current state, and comparing our
solution to an optimal bound we derived. After that, we compared our solutions
to the state of the art, and showed a net improvement of our solution. After that,
we drove into a general study of the security of each filter, in the context where an
adversary only has access to the filter’s output (and not its internal state). These
results help understanding how filters may behave in adversarial context, and if they
are efficient enough for the use case (for instance, some applications require very low
false positive when others require very low false negative, when both low error rates
usually cannot be obtained). As such, we have opened a new field of study on the
optimization of such filters in adversarial settings.

Then, we took a look into blockchain and tried to formalize one of its proper-
ties, namely interoperability. We acknowledge that blockchain interoperability was
already reached before the writing of our paper, thus our work only focuses on the
formal definition of what interoperability is, and how it can be studied on blockchain.
For this, we created a formal framework for studying blockchain, which might be
reused for other purposes.

Finally, we proposed new exchange protocols for decentralizing machine learning
algorithms. In this chapter, the idea was to decentralise machine learning algorithms,
which might have an elevated computing cost for the user, who might prefer to
delegate this computation to a cloud. However, naive implementations would leak
data to the cloud nodes, hence our use of cryptographic primitives for securing data
exchanges. Furthermore, we quantified the amount of information each node learns,
thus formally guaranteeing the security of our schemes.
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MOTS CLÉS

sécurité de l'information, modélisation, protocoles d'échange, optimisation, cryptographie appliquée

RÉSUMÉ

Dans cette thèse, nous nous intéresserons à deux thématiques majeures : la sécurité des données dans des protocoles
d'échange cryptographiques, ainsi que l'analyse et la sécurisation des structures de données. Pour cela, nous appliquons
des analyses formelles, reposant autant sur des outils cryptographiques existants que des modélisations ad-hoc pour le
problème envisagé. En premier lieu, nous étudierons la sécurité de détecteurs de doublons, ainsi qu'une optimisation de
l'utilisation de l'espace de stockage disponible. Ensuite, nous nous tournerons sur un cas pratique de modélisation, pro-
posant un nouveau modèle formel pour la blockchain. Enfin, nous nous pencherons sur la problématique d'externalisation
de protocoles de bandit manchot. Nous verrons comment externaliser les calculs, tout en prouvant que les nœuds du
réseau apprennent aussi peu d'information que possible.

ABSTRACT

In this thesis, we are interested in two major themes: data security in exchange protocols, and the analysis and securing
of data structures. To do so, we apply formal analyses, based on existing cryptographic tools as well as ad-hoc modelling
for the problem under consideration. Firstly, we will study the security of duplicate detectors, as well as an optimisation
of the use of available storage space. Then, we will turn to a practical modelling case, proposing a new formal model
for blockchain. Finally, we will study the problem of outsourcing bandit learning protocols. We will see how to outsource
calculations, while proving that the network learns as little as possible.

KEYWORDS

information security, modelisation, exchange protocols, optimisation, applied cryptography
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