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Introduction

In the development of physics, experiments and theories are intertwined such that experi-
mental results can remodel our understanding of physics phenomena and give birth to new
fields. The 2022 Nobel Prize in physics illustrates this point, by awarding Alain Aspect,
John F. Clauser and Anton Zeilinger for ground-breaking experiments establishing that
nonlocality and entanglement are realities. It was also recognised that such experiments
"pioneered " quantum information science. In quantum physics, experimental breakthroughs
have also stemmed from techniques enabling individual control of elementary systems and of
their interactions. Earlier Nobel Prizes acknowledged for such developments, when award-
ing Hans G. Dehmelt and Wolfgang Paul "for the development of the ion trap technique"
(1989) or Serge Haroche and David J. Wineland "for ground-breaking experimental methods
that enable measuring and manipulation of individual quantum system" (2012). The latter
recognised the breakthroughs of the team of Serge Haroche in the field of Cavity Quantum
ElectroDynamics (CQED). This field studies one of the simplest interactions one could think
of: that of a single atom with a single mode of the electromagnetic field.

In a sense, CQED was born with Purcell’s observation of the atoms’ spontaneous emission
enhancement when interacting with a resonator [11]. This result demonstrates that sponta-
neous emission is not a property of the atoms alone but a property of the coupling between
atoms and the modes of the electromagnetic field, the density of which a resonator modifies.
When decreasing the volume of the mode sustained by the resonator, the energy density of
the corresponding electromagnetic field increases, and so does the strength of its interaction
with an atom in the resonator. If the interaction strength is larger than the decay rates from
both the atom (spontaneous emission) and the resonator (photon scattering, leakage), new
physics phenomena are possible, beyond the Purcell effect. In this so-called "strong coupling
regime", a single quantum of energy can be coherently exchanged between the atom and the
resonator (or cavity) field many times before being lost through the previously mentioned
decay processes. Such exchange corresponds to Rabi oscillations at the level of a single
quantum. Their spectral counterpart is the normal mode splitting: because of the strong
coupling between the atom and the cavity, even if the cavity is tuned to resonance with the
atom, the resonances of the interacting system (atom plus cavity) are split apart, far from
the non-interacting resonances. Though this effect can be explained by classical physics [22],
it remains striking that the presence of a single atom can shift the cavity completely out of
resonance.

Experimentally, it has been quite a challenge to isolate from their environment both
the atom and the resonator, and reduce the complex possibilities of interactions to the sole
coherent exchange between the effective two-level systems. Pioneering CQED experiments
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6 INTRODUCTION

were performed with Rydberg atoms flying through high-finesse superconducting microwave
resonators [33–66]. It then developed in the field of optics, mainly with neutral atoms flying
through optical Fabry Perot cavities [77, 88], and later by placing inside a cavity a single ion
trapped in electric fields [99]. More recently the strong coupling regime was demonstrated for
artificially engineered quantum systems: superconducting qubits in the microwave domain
[1010] and quantum dots in the optical domain [1111, 1212].

By bringing answers to questions that previously could only be stated in terms of famous
thought experiments by the founders of quantum mechanics, CQED shows that striking
experimental results model our understanding of physics. The collapse and revival of Rabi
oscillations in the one-atom maser [66] illustrate the quantum statistical and discrete nature
of the cavity field. The famous collapse of the wavefunction was observed for the cavity
field [1313]. Interestingly in this case, it appeared as a progressive mechanism happening upon
repeating Quantum Non Demolition (QND) measurement of the number of photons of the
field. Reciprocally in optical CQED, the state of a single atomic qubit could be QND-
measured with no exchange of energy [1414]1. The progressive loss of coherence of a non-
classical superposed (Schrödinger cat) state of the cavity fields was observed with repeated
measurements [1515].

The achievements of CQED are not restricted to these fascinating fundamental aspects.
Cavities have been used to improve the collection efficiency of single photons emitted by a
single atom [1616] or a single ion [1717]. A single emitter strongly coupled to an optical cavity
has been proposed to be a node in a quantum network [1818, 1919], i.e. an infrastructure able
to initialise, process and propagate quantum information among its different nodes. In this
proposal, the single atom in the cavity serves as a "stationary qubit", and the photon is the
"flying qubit", as it is able to propagate in fibres quickly and with reasonably low loss.

For example, some experiments in the group of Gerhard Rempe follow this line. A single
atom strongly coupled to a cavity has been used to generate a single photon in a state entan-
gled to that of the atom [2020]. If the photon is sent through a fiber to another cavity where its
state is transferred to a second atom, the two atoms in distant cavities end up entangled [2121],
realising a minimalistic quantum network. Then, following the proposals of references [2222, 2323]
that rely on the full reflection of a single photon at the input of a cavity strongly coupled to
an atom, a controlled-NOT (CNOT) gate was operated between the cavity atom and a single
photon [2424]. Later a non-destructive Bell-state measurement of two atoms in distant cavi-
ties was demonstrated [2525]. It generates a maximally entangled state between the two nodes.

As compared to the first CQED demonstrations operating with hot atomic beams, these
experiments benefited from the higher degree of control of cold atoms [2626–2929], superbly
illustred by the cooling down of a single atom to the motional ground state of a dipole trap,
inside a strong coupling cavity [3030]. Some of these later strong coupling experiments worked
with more than a single atom. In the groups of Gerhard Rempe and Dieter Meschede, several
experiments have involved two individual atoms inserted in the cavity with a one-dimensional
optical lattice perpendicular to the cavity [3131, 3232]. It permitted the demonstration of two-

1These two similar results illustrate an interesting complementary of Rydberg-micro-wave and optical
CQED. In the first case, the Rydberg atom is the means to acquire information about the micro-wave cavity
field, and effort is done to generate non-classical states of this field. In the second case, the cavity mode is
probed optically to acquire information about the atoms, and effort is made to generate non-classical states
of atoms.
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atom entanglement [3232] and of an atom-atom CNOT gate [3333]. In the group of Tilman
Esslinger, the feedback of atoms on the cavity field - an essential feature of strong coupling -
is used to couple the cavity to the collective density excitation of a Bose Einstein condensate,
used as a mechanical oscillator [3434, 3535]. Later experiments involved another specificity of
CQED: the cavity photon-mediated interactions between atoms [3636, 3737]. Quantum Non
Demoltion measurement is a third essential feature of CQED. The back action it generates
can be used to squeeze the spin distribution of an atomic ensemble [3838, 3939], generating
probabilistically a spin-squeezed entangled state, of metrological interest [4040], from an initially
separable state. Combined with One-Axis Twisting [4141], QND measurement can produce
spin-squeezed states deterministically [4242, 4343]. Up to 20 dB of metrological gain was achieved
with this combination [4444]. Together with qubit rotations, QND has been used in our group
to generate entanglement among tens of atoms, probabilistically [4545], then deterministically,
in a quantum Zeno dynamics scheme [4646].

Similarly, the first half of this manuscript decribes experiments with an indiscernible en-
semble of cold atoms in a strong coupling cavity. In CQED with ensembles, the homogeneity
of atom-cavity interaction is a core issue. In our experimental setup, the trap is engineered for
maximal and homogeneous coupling. However, its lightshift induces a distribution of atomic
frequencies. The situation of a resonator coupled to N emitters with different frequencies
is quite common. It was shown theoretically that a coherent cavity-emitters interaction is
still possible if the collective coupling is sufficiently large [4747–4949]. This effect, called "cavity
protection", has been demonstrated in three solid-states experiments [5050–5252] with at least
millions of emitters. We report here cavity protection with only two hundred atoms, thanks
to our strong single-atom coupling [5353]. Taking advantage of the narrow resonances in the
cavity-protected regime we engineer frequency-modulated polaritons. We also exhibit the
increase in photonic weight of the dark states as the collective coupling decreases, observing
a transition from a polaritonic regime to a disordered regime, with no protection. Very
interesting parallel can be drawn with the recent similar study of this transition [5454]. The
tunability of both cold-atom setups allows to vary the amount of inhomogeneity, by tuning
the trap power. This is an asset for studying the cavity protection effect. While keeping
the trapping effect, we can also get rid of the inhomogeneity, for the experiments with an
homogeneous frequency, in the second half of the manuscript.

In this second part, we describe the design and first results of a setup that will allow
trapping and manipulating many individual atoms strongly coupled to a cavity. This is
quite demanding in the small mode volume of such a cavity, which is why most experiments
have involved one or two atoms, or an indiscernible atomic ensemble. Fortunately, it was
shown over the last decade that ensembles of many individually-resolved atoms can been
obtained with optical tweezers. The team of Philippe Grangier found that these tightly
focused optical dipole microtraps could be loaded with single atoms [5555, 5656]. Spatial light
modulators or acousto-optical deflectors (AOD) can generate arrays of up to hundreds of
tweezers in almost arbitrary and reconfigurable patterns [5757–6060]. As single atoms in tweezers
are obtained probabilistically, they are usually rearranged with extra moving tweezers so as
to form defect-free structures. Combined with Rydberg interactions, tweezers arrays have
proved to be an excellent platform for quantum simulation [6161] with hundreds of atoms
[6060, 6262], in a regime where classical computation becomes unfeasible.

Such tweezers arrays are excellent for scaling up the number of individual atoms in small
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cavities. Their combination with strong coupling is very promising, as it enables single atom
control, detection and addressability as well as the collective operations we have mentioned:
QND measurement of, entanglement generation among, or cavity-mediated infinite-range
interactions between the atoms. This combination has been only recently achieved in a few
experiments.

Two atoms in optical tweezers have been strongly coupled to the evanescent field of a
photonic crystal cavity [6363] and later entangled by QND probing of the cavity [6464]. Then, two
experiments have implemented a one-dimensional tweezer array in a strong-coupling Fabry
Perot cavity. In reference [6565] the precise positioning of a single tweezer atom has been used
as a microscopic superresolved probe of the standing waves sustained by the cavity. Then,
with a chain of two atoms perpendicular to the cavity, a minimalist "mid-circuit" measure-
ment was operated, by showing that the cavity measurement of one atom does not alter the
hyperfine coherence of the second atom [6666]. With a chain of tweezers along the cavity axis,
a variable (probabilistic) number of up to eight atoms has been strongly coupled to a cavity
[6767].

The experimental platform we have been building for a few years is part of this new
generation. It combines 1) a cavity engineered for strong and equal coupling of many single
atoms and 2) tweezers generated from two separate AODs to produce a reconfigurable array
of single atoms, and couple to the cavity an arbitrary subset of the array. Our resonator is a
fiber Fabry-Perot cavity, with a high finesse at both 780 nm and at 1559 ≈ 2 × 780 nm. The
first is the CQED probe, resonant with the D2 line of 87Rb. The latter is a trapping lattice,
commensurate with the probe standing wave, in such a way that atoms trapped in the lattice
are equally and strongly coupled to the cavity probe field. We use a high-numerical aperture
lens to generate optical tweezers in and out of the cavity mode. For atoms not interacting
with the cavity, we setup a one-dimensional static tweezer array far from the cavity: the
“qubit storage register”. A two-dimensional AOD is used to move one or multiple atoms
from the cavity to the "storage register" and reversely.

With this unique combination of two AODs and the strong coupling microcavity, our ex-
periment should allow to perform 1) quantum simulations of all-to-all coupled spin ensembles,
with single-spin resolved detection and controllable disorder, 2) "mid-circuit" measurements
of an arbitrary subset of our single atom array, of interest for quantum error correction,
and 3) to generate and use spatially distributed entanglement for multiparameter quantum
metrology.

Thesis outline

Chapter I introduces the general lines of our experimental platform. We present the basic
theoretical framework for CQED, as well as the entanglement generation and QND atomic
state measurement enabled in the single atom strong coupling regime. We then explain the
dual-AOD-cavity architecture of our setup, after reviewing the few other experiments where
several individual atoms have been strongly coupled to a resonator. Finally we present the
key qualitative elements of the theory of cavity protection, as well as previous experimental
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demonstrations of this effect.

Chapter II describes the main building blocks of our cold atom–CQED setup. We show
how the cavity has been designed to achieve strong and homogeneous coupling along its
entire length. We describe the different steps to prepare a polarised cold atomic ensemble in
the micro-cavity and we demonstrate its strong collective coupling.

Chapter III describes the cavity protection effect observed in our experiment, and how
we frequency-modulated cavity-atoms hybrid states in the protected regime. We first present
experimental characterisation of the atomic frequency distribution induced by the trap lat-
tice. Then, we measure polaritons much narrower than the distribution, a signature of cavity
protection. Finally, in the protected regime, thanks to the sensitivity of the atomic frequency
to the lattice trap, we engineer frequency-modulated polaritons.

In chapter IV we study the transition between the cavity-protected regime and the dis-
ordered regime, by decreasing the ratio between the collective coupling and the disorder
strength. We observe the corresponding decrease of the protection effect, which manifests
by an increasing coupling between the cavity and the "dark" states. We account for the
variation of the coupling to the cavity both in the experiments and in the simulations.

Chapter V is devoted to describing the setup required to generate multiple tweezers inside
the microcavity. The high numerical aperture lens under vacuum - previously aligned with
the micrometric cavity mode - focuses the tweezers from two AODs close to diffraction limit.
The AODs are fed with phase and amplitude-optimised multi-frequency radio-frequency sig-
nals to generate up to one hundred tweezers per AOD.

Chapter VI describes the characterisation of a single atom trapped in a single tweezer
and its strong coupling to the cavity. First, we test the ability of the cavity to detect a
single atom, in the intra-cavity lattice. This detection is indeed at the core of all subsequent
results with tweezers. A molasses aligned to the cavity mode allows achieving the collisional
blockade regime where at most one atom is loaded in the tweezer. We then characterise its
temperature and the trap frequencies, which provide an in-situ verification of the waist size of
the tweezer. To optimise the coupling of the single atom to the cavity, we add to the tweezer
trap the intra-cavity lattice trap, specially designed for maximising coupling. In this double
trap, we further optimise the coupling by mapping the cavity mode with the single trapped
atom, to find the optimal position for the tweezer. We demonstrate the strong coupling of
the atom to the cavity by measuring the transmission spectrum. Finally, using both AODs
and setting up our qubit storage register, we start operating up to nine tweezers, which we
load probabilistically with single atoms.

To conclude, we summarise the main results of the thesis and discuss the next steps and
perspectives of our new experimental platform.
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Chapter I

Cavity Quantum ElectroDynamics
with an array of tweezers single
atoms

I.1 CQED basics and capabilities
I.1.1 A single atom coupled to a single cavity mode
The Jaynes-Cummings Hamiltonian [6868] is paradigmatic in the field of CQED: it is suited to
describe the dipole interaction between a single atom modeled as a two-level system and the
electric field sustained by the cavity, under the rotating-wave approximation. Once added the
non-interacting Hamiltonian of the single-mode cavity and the atom, the full Hamiltonian
writes:

HJC = ℏg
(
σ+a+ σ−a†

)
+ ℏωaσ

+σ− + ℏωca
†a, (I.1)

where ωc is the frequency of the cavity mode closest to resonance with the atomic
frequency ωa, a and a† are the annihilation and creation operators for this cavity mode,
σ+ = |e⟩⟨g| and σ− = |g⟩⟨e| are the atomic two-level system raising and lowering operators,
with ground and excited states |g⟩ and |e⟩, and g is the coupling strength of the atom to a
single photon:

g = −d.E
ℏ

, (I.2)

where d is the dipole strength, and E is the single photon electric field of the cavity mode.
g depends on the position of the atom with respect to the cavity mode, and the maximal
value gmax is obtained at the position of the maximal single photon electric field:

gmax =
√

d2ωc

2ℏε0V
=

√
3λ2cγ

4πV , (I.3)

where γ is the atomic transition Half-Width at Half Maximum (HWHM) and V is the
cavity mode volume.

The Jaynes-Cummings Hamiltonian describes the coherent energy exchange between the
atom and the cavity mode. It couples the non-interacting eigenstates |e, n−1⟩ and |g, n⟩, with

11
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a coupling strength g
√
n, where n is the number of energy quanta. The Jaynes-Cummings

Hamiltonian can be diagonalized. Within a subspace of a given n, the eigenfrequencies are:

ω
(n)
± = nωc + 1

2
(
∆ac ±

√
∆2

ac + 4g2n
)
, (I.4)

where ∆ac = ωc − ωa is the atom-cavity detuning. Picture a. of figure I.1I.1 shows the
eigenfrequencies ω(n)

± (x axis) for variable ∆ac and n = 1,2,3. The atomic and cavity fre-
quencies are plotted as plain lines and cross at ∆ac = 0. The interaction lifts the degeneracy
of the non-interacting eigenstates |e, n− 1⟩ and |g, n⟩ and produces an avoided crossing close
to ∆ac = 0. When the cavity and the atom are exactly on resonance (∆ac = 0), the separa-
tion between the two is 2g

√
n. In the case of a single energy quantum, we get the so-called

vacuum-field Rabi splitting 2g [6969].

I.1.2 Opening the coupled system
The Jaynes-Cummings Hamiltonian corresponds to an isolated system. For a more complete
description we have to include atomic spontaneous emission, cavity losses and pumping from
a probe field, which make the atom-cavity system open. Thus we use a master equation
formalism, where the evolution of the system is described by:

dρ

dt
= 1
iℏ

[
H, ρ

]
+ Laρ+ Lcρ, (I.5)

where ρ is the density matrix, Lc and La are Linbald operators for cavity losses and
spontaneous emission respectively:

Laρ = γ(2σ−ρσ+ − ρσ+σ− − σ+σ−ρ) (I.6)

Lcρ = κ(2aρa† − ρa†a− a†aρ) , (I.7)
where we assume that the cavity induces a negligible change of the decay rate in free

space, which applies in our case, because the solid angle subtended by the cavity is small.
Replacing H by the Jaynes-Cummings Hamiltonian HJC in equation I.5I.5, the steady state

solution corresponds to |g, 0⟩, with no excitation. To recover excitation in the steady state,
we consider pumping the coupled system with a probe at frequency ωp, which is described
by the following semiclassical phenomenological Hamiltonian:

Hp = −iℏη(aeiωpt − a†e−iωpt), (I.8)
where η is the effective amplitude of the pumping field. Thus the total Hamiltonian

writes, in the probe-frequency rotating frame:

H = HJC +Hp = ℏg
(
σ+a+ σ−a†

)
− ℏg∆paσ

+σ− − ℏg∆pca
†a− iℏη(a− a†), (I.9)

where ∆pa = ωp − ωa and ∆pc = ωp − ωc.

In the experiments described later, we acquire information by pumping the cavity mode
with a probe, and collecting the light transmitted through the cavity. In the limit of weak
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excitation, the transmission in intensity can be computed analytically from solving the master
equation I.5I.5, in the restricted subspace spanned by states |g, 0⟩, |g, 1⟩ and |e, 0⟩. In [7070] this
approach is used to compute the population of the excited state pe and the average cavity
photon number ncav, from which we can deduce the transmission in intensity T :

pe = ⟨σ+σ−⟩ = η2g2

|g2 − (∆pa + iγ)(∆pc + iκ)|2 (I.10)

T = κncav = κ⟨a†a⟩ = κη2|∆pa + iγ|2

|g2 − (∆pa + iγ)(∆pc + iκ)|2 (I.11)

= η2/κ(
1 + 2C 1

1+∆2
pa/γ2

)2
+
(

∆pc

κ − 2C ∆pa/γ
1+∆2

pa/γ2

)2 , (I.12)

These formula assume the low-excitation limit, ncav ≪ 1, which in practice, requires the
probe intensity to be small enough. In these expressions, where we have introduced the
cooperativity C = g2/(2κγ), the figure of merit of CQED that compares the rate of coherent
energy exchange between the field and the atom, g, with the rates of the two lossy incoherent
processes, κ and γ. Strong coupling is the regime where the coupling g is high enough for
the atom and the cavity field to exchange the energy quantum several times before loosing
it through cavity decay or spontaneous emission. It is often defined by g > κ, γ or C ≥ 1,
a non-equivalent condition. Picture b. of figure I.1I.1 illustrates the transmission spectrum for
several values of the cooperativity.

In figure I.1I.1, picture a. shows a 2D plot of T , versus ωp − ωc and ∆ca = ωc − ωa,
together with the eigenfrequencies of the isolated system (equation I.4I.4). One can see that
the transmission peaks are, in good approximation, located at the position of the isolated
system eigenfrequencies (this approximation is valid in the strong coupling regime).

The transmission spectrum contains more information. For ∆ca = 0, the spectrum
obtained by scanning the probe frequency is shown in picture b: it exhibits two peaks with
equal amplitude, which reflects that the eigenstates are equal superposition of |g, 1⟩ and
|e, 0⟩. Picture a. shows that for ∆ca ̸= 0, the peak closest to the cavity frequency has a
higher transmission. As |∆ca| increases, the eigenstates converge towards the non-interacting
states |g, 1⟩ and |e, 0⟩ and the one converging towards |e, 0⟩ becomes "dark".

The width of the peaks exhibits a similar behavior. In our case, the linewidth of the
cavity is larger than that of the atom: κ/2π = 14.2 MHz and γ/2π = 3.0 MHz. For ∆ca = 0
both peaks have equal width (κ+ γ)/2. For ∆ca ̸= 0, the peak of the eigenstate with higher
probability of cavity excitation is larger than the other peak. For large |∆ca|, the widths of
the peaks converge towards κ or γ, depending on the non-interacting eigenstates it is closest
to.

Last but not least, while an avoided crossing occurs for all coupling values g from the
perspective of the isolated system eigenfrequencies, the open system analysis reveals a stricter
condition to distinguish the two corresponding peaks in the transmission spectrum T (∆pc).
For instance, for ∆ca = 0, g should be significantly larger than the width of the peaks
(κ + γ)/2 for the peaks to be well separated. Picture b. shows transmission spectra with
variable values for g, and thus variable values for the cooperativity. The red line corresponds
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Fig. I.1 Picture a: Cavity-atom transmission versus probe-to-cavity and cavity-to-
atom detunings, superposed with the eigenfrequencies ω(n)

± of the Jaynes-Cummings
Hamiltonian (equation I.4I.4) for n = 1,2,3 excitations. The straight lines corre-
spond to cavity and atomic frequencies. Picture b: Transmission spectrum of
the atom-cavity coupled system for different values of the coupling strength g,
and the corresponding cooperativity C. The cavity is on resonance with the
atom. Otherwise mentioned, all plots are done with the parameters of our cav-
ity: (gmax, κ, γ) = 2π × (75, 14.2, 3.0) MHz.

to the parameters of our cavity, presented in section II.2.1II.2.1. It exhibits a vacuum Rabi
splitting, and the cooperativity is C ≈ 65, deep in the strong coupling. The other curves
correspond to smaller values of g (κ and γ being fixed): the yellow (respectively green)
curve corresponds to coupling strength g = (κ + γ)/2 (respectively g = (κ + γ)/5), and
cooperativity C ≈ 1 (respectively C ≈ 0.1). In the limit g → 0, on retrieves the empty
cavity lorentzian transmission, which is the standard profile of the Fabry-Perot resonator.
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I.1.3 N atoms coupled to the cavity mode
In this section, we will generalise the discussion of sections I.1.1I.1.1 and I.1.2I.1.2 to the case of N
atoms, with the same frequency ωa and the same individual coupling strength g to the cavity
mode. As we will see, since all atoms are identically coupled to the field, it is appropriate to
describe the multi-atom-cavity system using Dicke states [7171]. First, we introduce the pseudo-
spin 1/2 operator of the atom k: J⃗k, such that Jz,k = σ+

k σ
−
k − 1/2. The total pseudo spin of

the N -atoms system is J⃗ = ∑N
k=1 J⃗k. We can then work with the basis |J, Jz⟩, eigenstates

of both J2 = J2
x + J2

y + J2
z and Jz = ∑N

k=1 Jz,k, where J ∈ [0, N/2] and Jz ∈ [−J, J ].
Since the N atoms are identically coupled to the cavity mode, it is particularly suited to
consider the symmetric subspace, defined by J = N/2, which is spanned by the Dicke states
|nN ⟩ = |J = N/2, Jz = −N/2 + n⟩, with n ∈ 0,1,2, ..., N . These states are invariant under
exchange of any two atoms, meaning that the excitation is delocalised symmetrically over
all atoms. As an example, the Dicke state corresponding to n = 1, also called the W state,
writes:

|W ⟩ = |1N ⟩ = |J = N/2, Jz = −N/2 + 1⟩ = 1√
N

N∑
k=1

|0⟩(1) ⊗ |0⟩(2) ⊗ ...⊗ |1⟩(k) ⊗ ...⊗ |0⟩(N)

(I.13)

Now we consider N atoms coupled to the cavity mode with equal coupling g and fre-
quency ωa. This system is described by the Tavis-Cummings Hamiltonian HT C [7272], which
generalises the Jaynes-Cummings Hamiltonian:

HT C = ℏg
(
J−a† + J+a

)
+ ℏωca

†a+ ℏωa(Jz +N/2), (I.14)

where J± = ∑N
k=1 σ

±
k adds/removes a single excitation in the atomic ensemble, symmet-

rically. If the initial quantum state is within the symmetric subspace, it will remain in this
subspace while evolving under the Hamiltonian HT C . In the particular case where at most
one excitation is present in the system, the evolution is restricted to the subspace spanned by
states |0N , 0c⟩, |0N , 1c⟩ and |1N , 0c⟩, which are tensor products of the cavity states |0c⟩, |1c⟩
and of the two first Dicke states |0N ⟩, |1N ⟩. Thus, similarly to the Jaynes-Cummings Hamil-
tonian, the Tavis-Cummings Hamiltonian can be diagonalised within this further restricted
space. The eigenfrequencies are similar to that of equation I.4I.4, except that g has to be
replaced by the collective coupling Ω = g

√
N . Simingly, the open-system derivation of the

transmission in intensity T in the low-excitation limit can be done with N atoms, substitut-
ing Ω for g in equation I.11I.11, or equally CN = N × C for C. In both cases, the ensemble of
N atoms behave as one "super-atom" with a coupling strength Ω enhanced by a factor

√
N ,

as compared to a single atom.

I.1.4 Quantum non-demolition measurement of atomic state
By strongly coupling a single atom to a cavity, it is possible to realise a quantum non-
demolition (QND) measurement of the internal state of the atom. Here we describe the
scheme to perform such QND measurement, which has been implemented in previous exper-
iments of our group [1414, 7373]. The measurement distinguishes between the two hyperfine levels
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of the ground state of 87Rb, denoted |0⟩ and |1⟩. They are separated by ωHF /2π ≈ 6.8 GHz.
We tune the cavity on resonance with the transition from |1⟩ to an optically excited state |e⟩.
The cavity linewidth being κ ≈ 14 MHz, the transition |0⟩ → |e⟩ can be neglected, and the
atom in state |0⟩ only induces a dispersive shift of the cavity resonance, which is negligible
compared to the cavity linewidth. We measure the transmission T in presence of the atom
for which we want to determine the hyperfine state, with a weak probe on resonance with
both the cavity and the atom (∆pc = ∆pa = 0). From equation I.11I.11, we can derive the
transmission values T1 and T0 for an atom in the strongly coupled |1⟩ and uncoupled |0⟩
states respectively. The ratio of these transmission values writes:

T1
T0

= 1
(1 + 2C)2 (I.15)

A single atom strongly coupled to the cavity reduces the transmission by a factor (1 +
2C)2, compared to the empty cavity, or an atom in the uncoupled state. The higher the
cooperativity, the lower the intensity ratio T1/T0 and the faster it is possible to collect enough
transmitted photons to differentiate |0⟩ and |1⟩, given the experimental uncertainties on T0
and T1, which ultimately are limited by the photon shot noise. This noise scales as the√
T0,1, where T0 (respectively T1) denotes the mean value of the Poisson random variable

describing the number of transmission photons collected for an empty cavity (respectively
a cavity with a single atom). From propagating the uncertainty, we can compute that the
noise of the ratio T1/T0 scales as:√

1
(1 + 2C)2

(
1 + 1

(1 + 2C)2

)
.

1
T0

(I.16)

This noise should be as small as possible to have a high fidelity in the single atom detection.
This requires a large cooperativity C and/or a large T0 value. T0 is proportional to both
the probe intensity and the probe duration. On the one hand, the probe intensity cannot be
made arbitrarily large since this would break the low excitation limit for which expressions
I.11I.11 and I.15I.15 are valid. On the other hand, the experimentalists benefit from having a probe
duration as small as possible for the detection to be fast. Therefore, it is beneficial to have
the largest cooperativity possible, to increase the signal-to-noise ratio of T1/T0.

Figure I.2I.2 shows how T1/T0 varies with g and C, given our values of κ and γ. In the
former CQED experiment of our group, the fiber microcavity was designed such as to reach
a very high single atom cooperativity C = 145. Thanks to this exceptional value, a fast
(100 µs) and high fidelity (> 99.9 %) QND measurement of the hyperfine state was demon-
strated in reference [7474].

The transmission measurement constitutes an ideal projective measurement of the atom
in the basis |0⟩, |1⟩. For N atoms identically coupled to the field, measuring transmission
projects in the basis |0N ⟩, |0N ⟩⊥, where |0N ⟩⊥ is the subspace orthogonal to Dicke state |0N ⟩.
It was shown in [1414] that this is a quantum non-demolition measurement, meaning that the
only backaction of the measurement on the atom is the reduction of coherence inherent to
quantum projection. This strongly contrasts with free-space fluorescence measurement of
the atomic internal state, where the spontaneous emission associated to the measurement
generates an extra backaction on the external degree of freedom of the atom, which forbids
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Fig. I.2 Left: Diagram with the levels of the D2 line of 87Rb (51/2 ↔ 5P3/2)
involved in the QND detection of the hyperfine state. The cavity and the probe are
tuned on resonance with the transition from hyperfine state F = 2 (denoted |1⟩) to
F ′ = 3. The state |0⟩, 6.8 GHz-apart (ωHF /2π) is uncoupled to the cavity. Right:
Ratio of transmission, T1/T0 for a variable coupling strength g (κ and γ are fixed),
and a probe on resonance with the atom and the cavity. The other parameters are
that of our cavity: (κ, γ)/2π = (14.2, 3.0) MHz. The lower T1/T0, the faster one
can differentiate the two hyperfines states |0⟩ and |1⟩.

from repeating indefinitely the measurement. For an atom in state |1⟩ in the cavity, the rate
of spontaneous emission is reduced by a factor 1/C, and thus strong coupling reduces signifi-
cantly the associated backaction. For an atom in state |0N ⟩, it is far from resonance with the
cavity and thus the spontaneous emission as well as its associated backaction are negligible.
In the previous CQED experiment of our group[1414], the non-demolition measurement of the
state of a single atom was set such that, in average, less than 0.2 photons are scattered.

I.1.5 Cavity-based entanglement generation

Such non-demolition projective measurement of the internal state of an atomic ensemble
has been central in the schemes implemented in our team to generate multi-atom entangled
states: the Dicke state |W ⟩ = |1N ⟩ was produced probabilistically by state-projection her-
alded by cavity transmission [4545] as well as with a quantum-Zeno dynamics scheme [4646]. In
both cases, the Husimi Q distribution, that fully characterises states within the symmetric
subspace, was measured with a combination of micro-wave pulses on the transition |0⟩ ↔ |1⟩
and transmission measurements. Such distribution allowed to certify the entanglement of
∼ 10 atoms among ∼ 40.

QND measurements of the population imbalance N1 − N0 in a ensemble of N qubits
(where the qubit levels are |0⟩ and |1⟩, as shown in figure I.2I.2) can also be used to generate
spin squeezed states. Starting with an uncorrelated "coherent" spin state, prepared on the
equator of the generalised Bloch sphere, a measurement of Jz (proportional to the population
imbalance) will exert a backaction that reduces (squeezes) the spin noise distribution along
the z axis. To implement a measurement sensitive to the population imbalance, the probe
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is tuned on the side of a resonance: either the cavity peak [7575] if the cavity is far from
resonance with both transitions |0⟩ → |e⟩ and |1⟩ → |e⟩, or one of the Rabi peaks [3838] if the
cavity is close to resonance with one of these transitions. Following the first (respectively the
second) option, experiment of reference [7575] (respectively [3939]) demonstrated spin squeezing
providing about 3 dB (respectively 10 dB) reduction of the uncertainty of the quantum phase
being measured, as compared to the standard quantum limit achieved with an uncorrelated
coherent spin state.

While this QND-measurement protocol generates a spin squeezed state probabilistically,
one can achieve unconditional generation of such a state with a cavity-feedback protocol
[4242] combining One-Axis Twisting [4141] and QND measurement. Such combination was im-
plemented in reference [4343]. A few years later, the same combined technique lead to an
impressive squeezing of 20 dB, in reference [4444].

I.2 Towards optical CQED with multiple strongly coupled atoms
In the previous section, we have introduced the basic theoretical framework for Cavity Quan-
tum ElectroDynamics (CQED) and presented its specific capabilities in the strong coupling
regime. Historically in the field of optical CQED, most experiments have worked either with
one or two individual atoms, or with indiscernible ensembles of atoms. In this section, we
present the architecture of our current CQED experiment, which aims at scaling up the
number of controllable individual atoms strongly coupled to the cavity (I.2.2I.2.2). Before that
we will present the few experiments that have already worked with several discernible single
neutral atoms and individual strong coupling to an optical resonator (I.2.1I.2.1).

I.2.1 Review of optical CQED with several strongly coupled atoms

I.2.1.1 Single atoms in a conveyor belt

We will start with the two oldest experiments, where one or two single atoms are trapped in
separate sites of a red-detuned optical lattice perpendicular to the cavity axis. This lattice
is also used to transfer single atoms from the magneto-optical trap to the cavity, according
to the single atom "conveyor belt" design proposed in reference [7676].

In a former experiment of the group of Dieter Meschede (described in [7777]), a cavity
with an impressively high finesse (see section I.2.1.3I.2.1.3 for a table with characteristics of the
experiments presented) is strongly coupled to one or two atom(s) trapped in the conveyor
belt. This allows to count how many among the two atoms are in the hyperfine state
strongly coupled to the cavity. Based on a Bayesian analysis of the cavity transmission [3131]
and feedback in the form of hyperfine pump and repump pulses, the two-atom system is
stabilised to the mixed state where only one atom is strongly coupled to the cavity [7878].

In the “Quantum Information Processing” experiment of the group of Gerhard Rempe,
a very high finesse cavity is strongly coupled to one or two atoms trapped in a conveyor
belt. With two atoms, the four two-qubit entangled Bell states have been probabilistically
prepared with cavity carving [3232]. Later, a photon-mediated CNOT gate was operated in
the Bell state basis [3333]. Both operations rely on the strong reflection of a cavity-resonant
single photon at the entrance of the cavity, when at least one atom is in the strongly coupled
qubit state.
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The results obtained on both setups over the years are truly impressive. However, the
conveyor belt optical lattice cannot be loaded from the MOT at predetermined antinodes
(which can be achieved by rearranging the atoms in the conveyor belt with another optical
lattice, as proposed in reference [7979]). This is a limitation for having single atoms at deter-
mined positions and thus determined coupling strengths. This strongly contrast with single
atoms in individual optical tweezers, which are a convenient means to obtaining single atoms
at determined positions.

I.2.1.2 Two atoms in individual tweezers

Here we present two experiments where up to two single atoms manipulated in tweezers are
strongly coupled to the cavity.

The earliest reported is the nanophotonic experiment of the group of Mikhail Lukin,
where atoms are coupled to the evanescent field of a photonic crystal cavity [8080]. They
are trapped close to the surface of the resonator, in the lattice formed by a tweezers retro-
reflected on this surface. Up to two atoms are strongly coupled to the resonator, thanks to
two tweezers, the position of which is tuned with separate galvanometer mirrors. In reference
[6363], the single atom strong coupling was demonstrated by measuring reflection spectra in
both the regimes where the cavity is resonant with and detuned from the atoms. This work
illustrates the ability to tune independently the position (and thus the coupling strength) and
the transition frequencies (through tweezers lightshift) of each atom. In reference [6464], the
authors demonstrate the preservation of the single-atom hyperfine coherence and two-atom
entanglement correlations upon displacing the tweezers atoms 1 µm away from the resonator.
With a resonator enabling strong coupling over a larger distance (currently limited to about
3 µm, changing the galvanometer mirrors for acousto-optics deflectors (AODs) seems the
natural next step of the setup, as AOD multi-tweezers operation has been pioneered in this
group. It would enable more precise positioning, faster transport of single atoms over longer
distances, allowing to combine the nanophotonic cavity with Rydberg operations, far from
the dielectric material.

The recent experiment of Dan Stamper Kurn [8181] implements of a chain of tweezer
single atoms within a more standard Fabry-Perot linear optical cavity. Similarly to the two
experiments resorting to a conveyor belt (section I.2.1.1I.2.1.1), the chain of atoms is perpendicular
to the cavity axis. The tweezers are generated with a 1D AOD, which should allow to obtain
deterministically a chain of single atoms, after rearranging the tweezers successfully loaded
with single atoms, as in reference [5858]. Though it was not implemented yet, such setup can
be operated with several atoms simultaneously in the cavity mode, with tunable coupling
strengths depending on the tweezers positions. Nevertheless, in both papers relative to this
experiment, the ease to steer the tweezers position has been used:

a) A single atom in a tweezers has been used as a probe to map the intra-cavity gaussian
standing waves (at 1560 and 781 nm), in reference [6565]. The distance to the cavity
axis (respectively along the cavity axis) is tuned with the tweezers (respectively a
galvanometer mirror). A fluorescence spectroscopy measurement allows to map the
light-shift induced by the intra-cavity field in a superresolved manner.

b) Two tweezer atoms are successively moved in and out of the cavity mode for individual
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hyperfine state measurement. It is shown in reference [6666] that the measurement of
one atom does not perturb the hyperfine state coherence of the second atom, in the
context of “mid-circuit” measurements.

This platform should allow to couple several atoms to the cavity, while keeping others
uncoupled, and tune individual coupling strengths to a certain extent.

However, both experiments have limitations that prevent from scaling up the number of
simultanously strongly coupled atoms. In the Lukin experiment, the coupling varies very
significantly along the cavity axis, and is sufficiently high over a range of typically 3 µm. It
seems hard to fit a third tweezer within such a small range, and the coupling of all three
atoms would not be homogeneous. In the Stamper-Kurn experiment, similar difficulties come
from having the tweezer array perpendicular to the cavity. The maximal number of single
atoms that can be strongly coupled is limited by the waist size of the cavity mode, which
has been made small to reach strong coupling1.

I.2.1.3 Strong and homogeneous coupling of more than two single atoms

To strongly and homogeneously couple many atoms in a linear Fabry-Perot cavity, one solu-
tion is to have an array of single atoms along the cavity axis, trapped at the antinodes of the
probe standing wave. To our knowledge, the experiment of the group of Tiancai Zhang is the
first to have achieved this goal, a few months ago [6767]. A 1D AOD generates 11 tweezers in
which up to 8 atoms are loaded and equally and maximally coupled to cavity. The vacuum
Rabi splitting 2Ω is measured for all atom numbers up to N = 8, exhibiting the expected col-
lective enhancement of the coupling Ω = g

√
N . To help localising the thermal atom trapped

in a tweezers close to an antinode of the intracavity probe standing wave (852 nm), a blue
detuned intra-cavity lattice trap (820.9 nm) is added to the tweezers trap. As both standing
waves are not commensurate, their beating pattern leads the maximal-coupling lattice sites
to be separated by ≈ 11 µm. The 11 tweezers span a distance of ≈ 110 µm. The length of
the cavity (≈ 1.3 mm) is not the main limitation to producing more tweezers, and we would
guess that the field of view of the high numerical aperture lens would be the first to limit
the authors to achieving more tweezers, if not the range of tweezers positions accessible in
the focal plane of the objective, which depends on the exact optical layout between the AOD
and the high-NA lens.

To finish and supplement this review, the table below gives a few caracteristics of the
aforementioned CQED experiments. F , wcav, Cmax, L, Nmax stand respectively for the fi-
nesse, the cavity mode waist, the maximal cooperativity, the cavity length and the maximal
number of atoms involved in the experiments reported. ⊥ (respectively ∥) refers to chain of
atoms (eventually only two atoms) perpendicular (respectively parallel) to the cavity axis.
"Twz. arr." stands for tweezer array. The last line corresponds to our experiment. Our cavity
will be presented in chapter IIII. Our Nmax value corresponds to the preliminary results of
section VI.7VI.7. As we will see, Nmax = 20 is a very reasonable estimate of what we could

1For instance, if we require the coupling of all atoms to be ≥ 90 % of the on-axis maximal value, we find
that the tweezers should be at a distance ≤ 8 µm from the cavity axis, given the cavity waist wcav = 24 µm.
For a standard 2.5 − 3 µm distance between adjacent tweezers, at most 7 single atoms could be fitted.
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achieve, with the already available setup.

Group Cavity Atom
F wcav Cmax L Species Trap Nmax

µm µm
Meschede 106 23 30 − 80 159 133Cs Lattice (⊥) 2
Rempe 6 × 105 29 4.1 485 87Rb Lattice (⊥) 2
Lukin Info. unavailable 67 3 87Rb 2 tweez. (∥) 2
Stamper-Kurn 1.5 × 104 24 2.3 9400 87Rb Twz. arr. (⊥) 2
Zhang 5.7 × 104 46 1.9 1270 133Cs Twz. arr. (∥) 8-9
Long (our exp.) 3.6 × 104 5.7 75 145 87Rb Twz. arr. (∥) 4-5

I.2.2 Our way to strongly coupling many single atoms to an optical cavity
We will now present our current CQED experiment, which has been designed to achieve
strong and homogeneous coupling along the entire length of the cavity mode. For this pur-
pose, we use an intra-cavity lattice trap commensurate with the probe trap. More specifically,
we probe our 87Rb atoms on the D2 line at λ1 = 780 nm and we choose the lattice trap
wavelength λ2 to be twice that of the probe (λ2 ≈ 2λ1 = 1560 nm). The same wavelength
configuration has been used in other 87Rb CQED experiments [6565, 8282–8484] with macroscopic
cavities. However none have reached the regime with several individual atoms in separate
lattice sites. Together with engineering of the relative phase between the two lattices (ex-
plained in section II.2.1II.2.1), this commensurability (λ2 ≈ 2λ1) results in having each trapping
site centered on a probe antinode, where the coupling is maximal. Thus atoms trapped along
the entire length of the cavity are maximally and homogenously coupled to the probe field,
as illustrated on picture a. of figure I.3I.3. As compared to the non-commensurate standing-
wave combination of the Zhang experiment, our configuration allows to trap one atom every
2 probe antinodes, instead of 26 in reference [6767], a significant density improvement that
should allow to couple a hundred of single atoms to the cavity, for a fully loaded intra-cavity
lattice (which requires loading the lattice with a tweezer array in several steps). We combine
this cavity design with tweezer arrays generated by two acousto-optic deflectors systems:

1) A 1D AOD is used to generate a 1D tweezer array along the z axis, parallel to the
cavity axis, at a distance such that single atoms in this array do not couple to the
cavity fields (see pictures b,c and d of figure I.3I.3). This array is meant to store single
atom qubits, while operations are done with other qubits, inside the cavity. This is
why we call it the qubit "storage register".

2) A 2D AOD can generate 2D tweezer array in the x,z plane, inside the cavity mode
as well as far away (picture b.). It can be used to transfer one (picture c) or several
(picture d) qubits from the storage register to the cavity, and reciprocally.

This cavity-tweezers design allows for:

a) collective and symmetric multi-qubit operations, thanks to the commensurability of
the intra-cavity fields: QND state measurement (see section I.1.4I.1.4), cavity-mediated
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interactions and entanglement generation (see section I.1.5I.1.5). The resulting (possibly
entangled) states will be spatially distributed over the entire cavity length, which is a
major asset.

b) single atom resolution addressing and detection (either with single atom resolved flu-
orescence, or with the cavity).

The tweezers will allow to 1) selectively couple atoms to the cavity, 2) tune their posi-
tion and thus their coupling strength, and 3) control their qubit frequency through tweezers
lightshifts, so as to tune the atoms in and out of resonance with the cavity or with qubit-
rotation microwave pulses. We emphasize that with this dual-AOD setup we will be able
to perform cavity collective or single operations selectively on any subpart of the array of
qubits. Thus, non-symmetric multiparticle entangled states can be produced. Together with
the ability to generate spatially distributed and single-particle-addressable entangled states,
our platform opens new perspectives in the field of multiparameter quantum metrology and
quantum simulation (see section VII.2VII.2).

I.3 Cavity protected coherence for a collectively strong coupled
atomic ensemble

In the previous section, we have described the line along which our new experimental setup
has been designed. As few other CQED experiments of this new generation, it combines
the abilities of strong coupling CQED with the exquisite individual atom control of tweezer
arrays. On the path towards this objective, a first step has consisted in verifying the ability to
strongly couple an ensemble of atoms to the cavity mode, which has been done by measuring
the collective vacuum Rabi splitting of the ensemble. Such measurement, performed by
weakly probing the coupled system, accounts for the coherent exchange of a single energy
quantum between the atomic ensemble and the cavity field. Due to a large differential
lightshift, the intra-cavity lattice used to trap the atomic ensemble induces a very large
inhomogeneity in atomic frequency in the thermal ensemble, that exceeds by more than an
order of magnitude the spectral widths of the cavity and of a single atom. However, in spite
of this inhomogeneity, the atomic ensemble interacts coherently with the cavity field. In
the spectral domain, this results in polaritonic resonances much narrower than the width
of the distribution. This effect, theoretically predicted in [4747–4949], has been called "cavity
protection" in reference [4949], and we will use this denomination as well.

Cavity protection is the effect by which an ensemble of emitters inhomogeneous in fre-
quency can interact coherently with a cavity field, if its collective coupling to the cavity is
strong enough and under certain conditions on the shape of the frequency distribution. This
section is devoted to introducing cavity protection. First we treat the case of N emitters
with equal frequency (I.3.1I.3.1). Then we switch to the case of N emitters with an inhomo-
geneous frequency distribution I.3.2I.3.2, introducing the key concepts of the cavity protection
effect. Finally, we present the previous experimental demonstrations of the cavity protection
I.3.3I.3.3).
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a b

c

d

Fig. I.3 Schematics of our optical CQED setup (not at scale). Picture a: the
fiber-cavity sustains two commensurate intra-cavity lattices: the probe lattice at
780 nm and the trap lattice at ≈ 1560 nm. The intensity of both fields is plotted
in between the two fibers. Thanks to the commensurability, 87Rb atoms trapped
at antinodes of the red-detuned trap lattice (in green) are located at antinodes
of the probing field (in blue). Thus atoms trapped along the entire length of the
cavity are equally and maximally coupled to the probe. Picture b, c and d show
the abilities of our dual-AOD system (please notice the different reference frame).
A 1D AOD is used to generate a static tweezer array (light orange), far from the
cavity mode. In this "qubit storage register", atoms are stored and uncoupled to the
cavity. Meanwhile, the cavity can be used to perform operations on other qubits,
held in the tweezers generated from a separate 2D AOD (light red): for instance
single qubit state detection (picture c) or entanglement generation among several
chosen qubits (picture d). The 2D AOD or "qubit bus", allows to move one or
multiple atom qubit(s) from the storage register to the cavity and vice versa.

I.3.1 Frequency-homogeneous emitters

We start by describing the homogeneous case, where all atoms have the same frequency. For
a cavity mode resonant with the atomic line in the strong coupling regime, the spectrum
exhibits the well-known vacuum Rabi splitting (see figure I.1I.1) featuring two peaks 2g

√
N

apart in frequency, where N is the atom number, and their width is given by (κ+ γ)/2 [8585].
They correspond to the eigenstates of the coupled system with highest and lowest frequency,
the polaritons:

|P±⟩ = 1√
2

(|1, G⟩ ± |0,W ⟩) , (I.17)

where |1, G⟩ is the state with one photon in the cavity mode and all atoms in the ground
state and |0,W ⟩ is a state with no photon in the cavity mode and one excitation sym-
metrically shared between the atoms: |W ⟩ = 1/

√
N.
(∑N

k=1 σ
+
k

)
|G⟩, σ+

k being the raising
operator for atom k. The N − 1 remaining states are degenerate and do not couple to the
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cavity light field. This is reflected in the photonic weight (PW), which is defined by the over-
lap of the eigenstates of the coupled system |ψα⟩ with |1, G⟩ , PW = |⟨G,1|ψα⟩|2 [8686], and
is zero for all eigenstates except |P±⟩. Thus these N−1 eigenstates are called the dark states.

The case of N atoms with different coupling strengths gk does not change the previous
result, except that:

1) the splitting is now given by 2Ω, where Ω =
√∑N

k=1 g
2
k is the collective coupling

2) |W ⟩ is redefined as |W ⟩ =
(∑N

k=1
gk
Ω σ

+
k

)
|G⟩

I.3.2 Cavity protection with frequency-inhomogeneous emitters
Now we consider the case of an ensemble of N emitters with an inhomogeneous frequency
distribution, coupled to a cavity mode. Reference [4747] was the first to study the coherence
in such interacting system, reflected by the features of the Rabi splitting in the absorption
spectrum, corresponding to Rabi oscillations in the temporal domain. There are two main
conclusions to this work:

1) For a gaussian distribution of emitter frequency, the coherence is preserved and a
Rabi splitting is visible if the collective coupling Ω =

√∑k=N
k=0 g2

k (gk is the coupling
strength of emitter k) is large enough compared to the width ∆ of the frequency
distribution. For Ω ≫ ∆, the width of the Rabi peaks is (κ+ γ)/2, the same value as
for a frequency-homogeneous system. This means that the coherence of the frequency-
inhomogeneous system is the same as for an homogenous system, which is the essence
of cavity protection. Temporally, the system exhibits Rabi oscillations, that decays
with the same rate as in the homogeneous system.

2) When the collective coupling is strong enough for the system to exhibit a Rabi splitting,
the splitting is in good approximation 2Ω and does not depend on the type of frequency
broadening: it is the same for homogeneous or inhomogenous broadenings. This reflects
that, for an inhomogeneous distribution much larger than the cavity linewidth, not only
the emitters close to resonance with the cavity interact with the cavity mode. Instead,
all emitters collectively interact with the cavity.

Fifteen years later, references [4848, 4949] extended the formalism and exhibited a supple-
mentary requirement for the coherence of such coupled system to be preserved. In the case
of an unbounded continuous distribution of frequency, the corresponding density ρ(ω) should
decay asymptotically faster than 1/ω2. If this condition is satisfied, then the coherence is
preserved when the collective coupling is strong enough.

Figure 2 in reference [4949] shows the transmission of the coupled system, for a lorentzian,
a gaussian and a rectangular distribution of emitter frequency (left, middle and right plot
respectively). In all 3 cases, when the collective coupling Ω is large enough compared to the
width of the distribution ∆, the spectrum exhibits a Rabi splitting that, to first order in
∆/Ω, is equal to 2Ω and does not depend on the size ∆ of the distribution, nor on its shape.
However, the width of the transmission peaks, which reflects the coherence of the interaction,
depends on the particular shape of the frequency distribution. For a gaussian distribution,
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that decays faster than 1/ω2 (such that cavity protection may take place), the width of
the peaks decreases as Ω/∆ increases and converges towards (κ + γ)/2, the homogeneous-
case value. The inhomogeneous system is cavity-protected and behaves as an homogeneous
system when the collective coupling is sufficiently large. For a lorentzian distribution, which
decays exactly as 1/ω2, there is no cavity protection effect. In the coupling regime where
the Rabi splitting exists, the width of the peaks is constant and equal to ∆. So the coherent
interaction is always limited by the width of the distribution, unlike the gaussian case.

The square distribution illustrates the case of a bounded distribution. As ρ(ω) = 0 out-
side of the distribution support, a bounded distribution always exhibits cavity protection for
sufficiently strong coupling. Compared to the unbounded gaussian case, one small difference
is that the degree of coherence of the homogeneous case is reached for finite value of Ω,
rather than asymptotically. This is clearly visible on the picture c. (Figure 2 in reference
[4949]), where the width of the peaks is small very soon after the onset of Rabi splitting. This
contrasts with picture b. (gaussian distribution) where the peaks get thiner as the coupling
increases.

Figure 4 in reference [4949] illustrates the coherence achieved with these 3 distributions in
the temporal domain. It shows the probability, for a coupled system initially in the upper
polariton |P+⟩ (see section I.3.1I.3.1), that the system is in state |P+⟩ as a function of time. In the
frequency-homogeneous case, this probability would be constantly equal to 1, as |P+⟩ is an
eigenstate of the frequency-homogeneous hamiltonian. In the frequency-inhomogeneous case,
this is no longer exactly true: all eigenstates of the frequency-inhomogeneous hamiltonian
may have a small component of |P+⟩, and thus of cavity excitation |1, G⟩. Because of this
component, all eigenstates may couple to the cavity and thus the excitation may decay in
the subspace of the N − 1 remaining states. This contamination vanishes as Ω/∆ increase,
and, in the limit of Ω ≫ ∆, the upper and lower eigenstates of the frequency-inhomogeneous
hamiltonian converge towards the polaritons |P±⟩. As the N − 1 other eigenstates do not
couple to the cavity for infinite coupling, we will call them dark states in this manuscript.

For the gaussian distribution (middle plot), with a strong collective coupling Ω = 4∆
(blue solid line), the system exhibits cavity protection, and this probability remains close to
1. It means that Rabi oscillations are not limited by the inhomogeneous frequency distri-
bution, and that the coherence time is that of the homogeneous system. Conversely, with
a moderate collective coupling Ω = ∆ (red dashed line), this probability decreases, which
reflects the limited coherence in the cavity-unprotected regime and the corresponding decay
of the excitation in the dark states. For a lorentzian distribution (left plot), where cavity
protection never takes place, the excitation decays in such states, no matter the relative
strength of the collective coupling, Ω/∆.

I.3.3 Previous experimental demonstrations of cavity protection

After being theoretically predicted in references [4747–4949], cavity protection has been exper-
imentally demonstrated in several solid state experiments [5050–5252], prior to our work. We
briefly present these experiments in this section.

In reference [5050] nitrogen-vacancy centers are coupled to a superconducting waveguide
resonator, cooled down to 25 mK. It operates in the micro-wave regime, at a frequency of
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≈ 2.7 GHz, thus allowing for a temporal analysis of the dynamics of the coupled system.
From the response of this system to a weak and long microwave-pulse, both the collective
coupling Ω and total decay rate Γ are measured (Figure 2.b. in [5050]). Figure 3 in [5050]
displays Γ against Ω. The black squares, corresponding to the experimental values, are
plotted together with the results of several calculations. This graph shows that:

a) In the regime of low collective coupling, Γ increases as a function of Ω, which can be
understood as a Purcell effect induced by the increasing coupling of the cavity to the
ensemble of emitters.

b) For a sufficiently high collective coupling, Γ starts decreasing, due to the cavity pro-
tection effect. Indeed, the distribution of emitter frequency follows a q-Gaussian dis-
tribution (a combination of Gaussian and Lorentzian) that decays faster than 1/ω2,
and is thus eligible for cavity protection.

The green line shows the prediction for a fictitious Lorentzian distribution, where cavity
protection does not occur. In this case, Γ has a constant value dictated by the width of the
distribution, which contrasts with the experimental results. However, one can notice that
the minimal value experimentally achieved for Γ is rather high (Γ/2π = 3 MHz), compared
to the theoretical minimum achievable value Γ/2π = κ/2 ≈ 0.4 MHz, which would require a
stronger collective coupling Ω, as the calculations show.

In reference [5252] pentacene molecules are coupled at room temperature to a strontium
titanate dielectric resonator, operating in the micro-wave domain as well, at a frequency
of ≈ 1.5 GHz. A population inversion of the corresponding transition in the molecules is
obtained by photo-excitation at 592 nm. Figure 2.a in reference [5252] shows the micro-wave
response after a nanosecond light pulse, and Figure 2.c the corresponding spectrum. Simi-
larly to the previous experiment, Ω and Γ are extracted from such measurements and plotted
on picture e. The curve exhibits the same behavior as in [5050]. As it extends further in the
strong collective coupling regime, it allows to see the convergence of Γ towards half the width
of the cavity, κc/2 (the single molecule homogeneous linewidth contribution to Γ , γ/2, is
here negligible). This illustrates that the width of the inhomogeneous distribution (κs) does
not contribute to the polaritons, in the cavity-protected regime. Unfortunately here κc/
and κs have the same order of magnitude, so cavity-protection brings little improvement
compared to a cavity-unprotected Lorentzian distribution of same witdh (upper horizontal
line on picture e).

In reference [5151], an ensemble of rare-earth ions (neodymium) in a crystal is coupled
to a nanophotonic resonator, cooled down to 3.6 K. Unlike the two other experiments,
here the emitter-cavity interaction is in the optical domain, and is thus analysed through
cavity transmission spectra such as shown on Figure 2.e in reference [5151]. A slightly different
protocol is followed: rather than varying the collective coupling, the authors measure spectra
for variable cavity-emitter detuning (Figure 2.d in reference [5151]). From individual spectra, Γ
is extracted, and plotted against the detuning, in Figure 2.f of reference [5151]. For a cavity on
resonance with the ions, the width of the peak is that of the homogeneous system, (κ+γh)/2
(where γh denotes the homogeneous width of a single ion), 40,% lower the width expected
for a cavity-unprotected Lorentzian distribution, (κ+ γh)/2 +∆ (green line).
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Fig. I.4 Previous experimental demonstrations of the cavity protection effect in
both the temporal domain, with microwave resonators in references [5050] (pictures
a. and b.) and [5252] (pictures c, d and e) and in the spectral domain, with an
optical resonator in reference [5151]. In all 3 experiments (pictures b, e and g) it is
shown that when the collective coupling to the cavity is high enough, the width
of the polaritons is independent of the width of the inhomogeneous distribution of
emitter frequency, enabling coherent exchange of energy between the cavity and
the inhomogeneous ensemble.

I.3.4 Our specificities regarding cavity protection
Now that we have presented earlier experimental demonstrations of the cavity protection
effect, we would like to highlight the differences of our experimental setup regarding this
effect, to emphasize the interest of our study:

1) In our optical micro-cavity, the single atom cooperativity is orders of magnitude higher
than in the experiments reported hereinabove. Because of that, we will see later that
we observe cavity protection for as few as 200 emitters, orders of magnitude lower
than for the previous experiments (III.2III.2). Due to this number downscaling, our spec-
tra are sensitive to the discrete sampling of our inhomogeneous frequency distribution
(IV.1IV.1), which is not the case in the previous experiments. Thus, we do not describe
our coupled-system transmission spectra in terms of a continuous distribution, which
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contrasts with all the previous experiments. This fundamental discretness of our emit-
ter ensemble will lead us to propose new quantities to account for the emergence of
coherence (IV.2IV.2 and IV.3IV.3), as Ω/∆ increases.

2) The high degree of control of our cold-atom setup allows to tune very conveniently
the parameter Ω/∆, which determines the degree of coherence of the coupled system.
Ω, which scales as

√
N , can be tuned by varying the number of atoms N trapped in

the cavity. This contrasts with the complex procedures used in references [5050–5252] to
effectively couple a variable fraction of the fixed number of emitters in the solid state
devices. Another major difference of our setup is the ability to tune the width ∆ of the
frequency distribution, by simply varying the intensity of the intra-cavity trap lattice,
which induces the inhomogeneity (III.1.1III.1.1).

3) In our experiment, the width ∆ of the frequency distribution is about 10 times larger
than the homogeneous-polariton width (κ + γ)/2. Thus, compared to the Lorentzian
unprotected width (κ+γ+∆)/2), we should expect cavity-protected polaritonic width
roughly 10 times smaller. This theoretical maximal reduction is more favorable than
in references [5151, 5252], and similar to that of reference [5050]. It should be much easier for
our cold-atom setup to tune the collective coupling Ω so as to go further in the cavity
protected regime, compared to [5050].

Simultaneously to our investigation of cavity protection, another cold-atom experiment
reported a study of similar effects [5454], with a complementary perspective. The authors of [5454]
benefited similarly from the advantages mentioned above, inherent to cold-atom setups. As
we will show in chapter IVIV, both experiments bring new insight in the progressive emergence
of cavity protection, as the collective coupling becomes larger than the frequency disorder.

I.4 Conclusion
Cavity Quantum Electrodynamics is the field that studies the coherent interaction between
a mode of the electromagnetic field (isolated by means of a resonator) and one or multiple
atoms. In the strong coupling regime, this interaction is faster than the loss processes.
This has many powerful pratical applications, such as fast and high fidelity Quantum Non
Demolition measurement of the atomic state and generation of entangled states.

Tweezer arrays are convenient to obtain and manipulate individual atoms. Our experi-
ment is part of this new generation of CQED experiments where strong coupling capabilities
are combined with the high degree of single atom control of tweezer arrays.

In our experiment, the strong coupling microcavity has a trapping lattice commensurate
to the probing lattice, so that atoms trapped in the lattice are both strongly and homoge-
neously coupled to the probe field. We combine the cavity with two acousto-optic deflectors
so as to perform CQED operations on any subpart of a1D array of single qubits. Meanwhile
remaining qubits are held in a storage register, far from the cavity mode. This opens new
perspectives in generating non-symmetric entangled states, spatially-distributed and locally-
addressable/detectable entanglement for multiparameter quantum metrology and quantum
simulation in all-to-all coupled spin ensembles (more details will be given in the outlook,
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VII.2VII.2). In particular, we would like to simulate coherent energy transport in these spin en-
sembles, in presence of a controllable disorder. It is predicted that dark states play a role in
enhancing transport efficiency, which exhibits surprising features. Interestingly, dark states
are also at the core of the dynamics of cavity protection, which we study in the first part of
this manuscript, thanks to the controllable inhomogeneity of our atomic ensemble.
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Chapter II

A setup for cavity quantum
eletrodynamics with an array of
single atoms

This chapter describes the status of our experimental apparatus during the first half of
my PhD, with which we obtained the results presented in chapters IIIIII and IVIV. The core
of our setup is a high-finesse fiber-based Fabry Perot microcavity, micro-machined with a
technique developed in our team in the years 2005-2015. It enables strong coupling regime
at the single atom level, together with homogeneity of this coupling along the cavity axis.
Its design, fabrication and stabilisation are described in section II.2II.2. It operates with cold
87Rb atoms. The generation of the cold sample of atoms in a magneto-optical-trap and
its transport into the microcavity are discussed in section II.1II.1. Finally, in section II.3II.3 we
present the ajustment of the polarisations of the cavity fields, the preparation of the atomic
ensemble in a specific Zeeman sublevel and the measurement of the transmission spectrum
of the cavity-atoms coupled system, which prooves that we operate in the strong coupling
regime. Most of this setup has been built by previous PhD students: Sébastien Garcia,
Claire Lebouteiller, Francesco Ferri and Mohamed Baghdad. Thus more technical details
can be found in their thesis manuscripts [8787–9090].

II.1 Cooling and transporting a cloud of atoms into the micro-
cavity

II.1.1 Cooling laser system

The first step of our experiment cycle is the preparation of a sample of cold 87Rb atoms, using
a magneto-optical trap (MOT) on the D2 line (52S1/2 ↔ 52P3/2, see the level diagramm in
appendix ??). Starting with a 2D MOT, we produce a beam of cold atoms, with which we
load a 3D MOT.

Figure II.1II.1 shows a schematic of the laser system that we use for these operations. The
first laser is a 1560 nm external-cavity laser with a linewidth below 10 kHz. It is frequency
doubled in a periodically-poled lithium niobate (PPLN) crystal. The resulting 780 nm light
injects a slave laser diode. Part of the slave light is sent in a Rubidium cell, where we imple-

31
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Fig. II.1 Picture a: Schematic of the laser system used for cooling, repumping,
pumping and absorption imaging of the atoms. Picture b: level diagramm of the
D2 line of 87Rb, with the useful transitions. Figure adapted from Francesco Ferri
PhD thesis [8989].
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ment a modulation transfer spectroscopy scheme [9191, 9292]. The resulting error signal is used
as a feedback on the 1560 nm reference laser current. The 780 nm slave light, frequency-
stabilised close to the σ+ cycling transition (F = 2,mF = 2 ↔ F ′ = 3,m′

F = 3) is split and
used for 4 purposes: frequency-locking the cooling laser of the MOTs, injecting the repumper
slave laser, absorption imaging (along "Detection 1" path - see figure II.4II.4) and probing of
the cavity.

For the cooling light of the 2D and 3D MOTs we need intensities on the order of the sat-
uration intensity (Isat = 1.6 mW/cm2 for the σ+ cycling transition) with centimetric beams.
Thus we seed a 1W tapered amplifier (TA) with an external-cavity laser (at 780 nm). The
seeding laser is frequency-locked to the reference, by measuring the beatnote of the su-
perposition of both lasers. The beatnote is mixed with the output of a voltage-controlled
oscillator (VCO), such that the MOT cooling laser can be frequency-stabilised over a range
of ≈ 100 MHz, depending on the VCO frequency. Thus we can shift the laser from the MOT
to the molasses detuning (− Γ to −10 Γ typically), in a few ms.

For the repumper light (F = 1 → F ′ = 2) of the 2D and 3D MOTs, we use ≈ 10
times less power, so a laser diode alone is enough. We inject this slave laser with the 780 nm
reference laser, frequency-modulated by an electro-optic modulator (EOM R on figureII.1II.1) at
6.428 GHz. We tune the slave laser current and temperature to inject it on the +1 sideband,
which is close to the repumping transition. This particular way of generating the repumping
light allows quick tuning of its frequency over a range of 1.5 GHz. This choice was done to
repump atoms not only in the MOTs, but also in the intracavity lattice at 1559 nm. Indeed
this lattice induce significant differential lightshifts of the D2 transitions (typically several
hundreds of MHz - see section III.1.1III.1.1), which we wanted to compensate.

For the same reason, the intracavity cooling light was also designed to be frequency-
tunable over a similar range. We use a fraction of the repumper light to inject another slave
laser, after being frequency-modulated by EOM C (see figure II.1II.1) at 6.840 GHz. The -1
sideband sets the slave frequency close to the cooling transition. Apart from intracavity
cooling, this light is used for optical pumping to the Zeeman sublevel F = 2,mF = 2 and
(tunable) detection of the atoms with absorption imaging (detection beams 2 and 3, see
figure II.4II.4).

II.1.2 Vacuum chamber geometry

Using these lasers, we cool the 87Rb atoms with the combination of a 2D and a 3D MOT.
Our vacuum apparatus consists of two glass cells, one for each MOT:

1) The lower glass cell contains a dispenser that emits 87Rb atoms continuously. The
atoms are cooled in the horizontal plane by the 2D MOT. It consists of a single laser beam,
folded and reflected such as to provide the two horizontal contrapropagating beam couples
(see figure II.2II.2) and a magnetic field gradient of 15 G/cm. The cooling beam is elliptical
along the vertical axis, it has 70 mW power, ≈ 18 mW/cm2 intensity, and is detuned by
−2.5 Γ with respect to the cooling transition. Before elliptical beam shaping, a 5 mW of
this light is sent towards a 45◦ at the bottom of the glass cell, which reflects it upwards
towards the upper glass cell. This beam pushes the atoms from the 2D MOT to the upper
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glass cell, through a hole with a 1.5 mm diameter.
2) The upper glass cell (also called science chamber) contains the fiber cavity, in the

focal plane of a high numerical aperture lens. In this glass cell, we operate a 3D MOT, the
geometry of which is shown in figure II.3II.3. Its beams have a waist of 7 mm and an intensity of
2 mW/cm2. We use 3 pairs of coils in Helmoltz configuration to apply a compensating/bias
magnetic field and a pair coils in anti-Helmoltz configuration to apply a gradient of 15 G/cm
(along the z direction - see figure II.3II.3). Please note that our 3D MOT is not inside the
microcavity, because large beams required for an efficient loading of the MOT would not fit
in the cavity, which has a length of L = 145 µm. Thus the 3D MOT is located 12 mm below
the fiber-cavity, and the atoms are transported from the MOT to the cavity with a dipole
trap, as explained in section II.1.4II.1.4.

Fig. II.2 Optical layout for the 2D MOT and the push beam. The blue square
represents the lower glass-cell, where the 2D MOT atomic beam is produced. The
"push beam" pushes the atomic beam upwards, towards the upper glass-cell (science
chamber), where the 3D MOT is operated. Figure from Francesco Ferri PhD thesis
[8989].

II.1.3 Absorption imaging detection

To detect clouds of atoms, we have 3 paths for absorption imaging (see figure II.4II.4): "Detec-
tion 1" is at the height of the 3D MOT. It has a rather low magnification. "Detection 2"
and "Detection 3" are used for imaging inside the cavity mode, 12 mm above the 3D MOT.
Their magnification is higher, because the intracavity cloud is much smaller than the MOT.
We use absorption imaging a) to check the required beam/cloud superposition of consecutive
steps in our experimental sequence (which we describe in section II.1.4II.1.4) and b) to measure
temperature with the time-of-flight technique.
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Fig. II.3 Schematic of the science chamber. A Macor bridge holds the fiber-cavity
and the high NA lens. 3D MOT beams cross 12 mm below the cavity. Figure from
Francesco Ferri PhD thesis [8989].
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Fig. II.4 Detection beam paths. Figure from Francesco Ferri PhD thesis [8989].

II.1.4 Transport into the microcavity

To transport atoms from the position of the MOT to the fiber cavity, located 12 mm above,
we use a dipole trap at 1070 nm, far red-detuned from the D1 and D2 lines, to limit spon-
taneous emission. A collimated beam of this laser is diffracted by an acousto-optic deflector
(AOD) located at the object focal point of an achromat (see figure II.5II.5). Thus steering the
AOD driving RF frequency translates vertically the horizontal beam after the achromat. A
direct digital synthesizer drives the AOD [8989]. The transport beam has a waist of 50 µm.
Its power is 6 W at the position of the MOT, and decreased to 1 W when approaching the
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cavity, to limit the heating of the fiber cavity dielectric coatings (which happens though
the beam is precisely aligned with the cavity center). After observing that sloshing of the
trapped cloud along the beam axis limited the loading of the atoms in the intracavity trap
lattic, we added a vertical dipole beam, which we focus in the fiber cavity through the high
NA lens (see figure II.5II.5). This "guide beam" has a waist of w0 = 50 µm inside the cavity,
80 µm at the position of the MOT. It reduces the sloshing amplitude from 0.5 mm to a
few tens of micrometers, which is small compared to the longitudinal size of the atomic
cloud. Consequently both efficiency and reproducibility of the cavity trap lattice loading are
improved.

This system allows to transport 106 atoms over 12 mm in 100 ms with:
a) high precision of the final vertical position: standard deviation of 0.6 µm, much smaller

than the waist w0 = 8.2 µm of the intracavity trap lattice.
b) high efficiency: 95%.
c) low heating: 25 µK at the end of the transport, compared to 20 µK at the beginning

of the transport.
For more details, please refer to the corresponding published article [9393].

To finish with, here is the full sequence for the generation of a cloud of cold atoms and
its loading into the transport trap:

1. Optical beams and gradients for the 2D and 3D MOTs are switched on simulateneously.
After 2s of loading, 2 × 107 atoms are trapped in a ≈ 2 mm size 3D MOT, with a
temperature ≈ 120 µK.

2. The transport and guide beams are switched on. Simultaneously :

a. The detuning of the 3D MOT cooling beams is increased from −2.5 Γ to −7 Γ
b. The power of the MOT beams is reduced by ≈ 50%
c. The magnetic gradient is increased from 15 to 30 G/cm, for a compressed MOT

phase.

3. After 50 ms of compressed MOT, the gradient is switched off, the power of the cooling
beams is further reduced and their detuning increased (−11 Γ ) for an optical molasses
phase of ≈ 4 ms. The atoms are cooled down to 10 µK.

4. At the end of the molasses, cooling and repumping beams are switched off and there
is a waiting delay of 30 ms before the beginning of the transport, for the atoms to
thermalize in the crossed dipole trap. We end up with 106 atoms in trap depth 500 µK,
at a temperature of 20 µK.

II.2 Cavity design and stabilisation
II.2.1 Design for strong and homogeneous coupling of an array of single

atoms
Our experiment aims at reaching the strong coupling regime of CQED for every single atom
of a 1D array inside the cavity (reference to the motivationnal section of chapter 1). Single
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Fig. II.5 The atoms are transported from the MOT to the cavity (12 mm above)
using a dipole trap ("Transport beam" in Picture a) perpendicular to the cavity axis.
Pictures b and c show the cigar-shapped cloud of atoms (orange) trapped in the
transport beam (red). The green bubbles represent the intracavity trap lattice to
which the atoms are transferred, at the end of the transport (more detail in section
II.3.1II.3.1). Pictures e (respectively f) are absorption images showing the cloud of atoms
in the transport trap at the position of the MOT, with (respectively without) the
additionnal "Guide beam". The guide beam increases locally the number of atoms
and the confinement along the x axis, thus reducing the sloshing of the cloud along
this weak axis of the transport beam. Picture d is an absorption image taken along
the axis of the transport beam: it shows the cloud of atoms at the end of the
transport, inside the fiber cavity. Figures adapted from [9393].

atom strong coupling is achieved when the rate of energy coherent exchange between the
atom and the cavity field (coupling rate g) is larger than the rates of the loss processes:
spontenaeous emission for the atom (rate γ) and loss of the cavity photon (rate κ): g > κ, γ.
γ and κ are Half-Widths at Half Maximum (HWHM) of the atomic and cavity resonances
respectively.

A figure of merit for CQED, that we want to maximize, is the single atom cooperativity:

C = g2

2κγ (II.1)

It can be expressed in terms of cavity parameters:

C = 3λ2F

π3w2
0
, (II.2)

where λ is the wavelength, F the finesse of the cavity and w0 the waist of the cavity mode.
Thus strong coupling requires:

1) A small waist, which can be achieved by having simulatenously a small radius of cur-
vature R for the mirrors and a small cavity length L. However L needs to be large enough
to fit several tens of single atoms in the intracavity lattice. The lattice has a wavelength
of ≈ 1560 nm, so the trapping sites are separated by ≈ 0.78 µm. L ≈ 145 µm gives
≈ 180 lattice trapping sites, thus 90 single atoms considering a 50% loading probability
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of the collisionnal blockade mechanism (see section VI.2.2VI.2.2). L being fixed, R is chosen as
a compromise between having a high cooperativity (obtained with small R which implies
small w0) and a rather uniform cooperativity along the cavity axis (obtained with high R).
We chose R ≈ 300 µm, which provides a maximal cooperativity of C(z = 0) = 65, at the
center of the cavity, while the cooperativity close to the mirror is still high: C(z = L/2) = 50.

2) A high finesse, which Fiber Fabry-Perot microcavities are very good at reaching si-
multaneously with small radii of curvature. They are engineered in our group by micro-
machining the tip of an optical fiber with CO2 laser ablation [9494]. This technique allows
to produce surfaces with controlled ellipticity [8787, 8989, 9595–9797] and very low roughness, which
induces low scattering loss such that the micro-machined fiber tips are compatible with
high-finesse mirrors. For our cavity, spherical mirrors have been engineered during the PhD
of Sebastien Garcia [8787] so that the two eigenmodes of the cavity are degenerate. Thus the
cavity mode supports σ+ photons, which allow to probe the closed (and strongest) transition
F = 2,mF = 2 ↔ F ′ = 3,m′

F = 3 of the atoms in the cavity.

We have seen how the length and mirror radii of curvature of the cavity were chosen to
ensure high and rather homogeneous intensity of the probing field λ1 = 780 nm along the
cavity axis. More precisely, given the standing wave structure of this field, it is the maximal
intensity at its antinodes which is homogeneous along the cavity axis. The intra-cavity lattice
wavelength has also been chosen so as to achieve maximal and homogeneous coupling of the
trapped atoms to the probing standing wave. For this, its wavelength λ2 has to be a integer
multiple of λ1, so that each trapping site (corresponding to an antinode of the red-detuned
trapping lattice) is at a position of maximal intensity of the probing lattice (meaning an
antinode). We choose λ2 ≈ 2λ1. In fact, the optimal choice is not λ2 = 2λ1 because of the
Gouy effect. Taking this effect into account, the optimal value is λ2 = 1559.0 nm. Finally,
the exact overlapping of the two lattices requires a particular value for the relative phases
shift at reflection, which was provided to the compagny that fabricated the dieletric Bragg
reflectors on the end facet of the cavity fibers.

Once the cavity assembled, the overlapping of the two intracavity standing waves was
measured with sub-wavelength precision [8989]. A tapered optical fiber with an apex radius of
50 nm was inserted in the cavity as shown in the left picture of figure II.6II.6. We will call it
SNOM tip as this kind of fiber serves for "Scanning optical near-field microscopy" (SNOM).
The SNOM tip is used as a pointing probe that perturbs the intracavity field and reduces
the cavity transmission proportionally to the field intensity at the tip. The SNOM tip was
displaced along the cavity axis, and the transmission was measured for each position of the
tip. The results are shown in the right plot of figure II.6II.6: the antinodes of the two standing
waves overlapp as desired.

Finally, we will discuss the type of fibers used for our cavity. The input fiber is single-
mode photonic crystal fiber, which allows propagating a single mode over a large range of
wavelengths, including 780 nm and 1559 nm. Its larger mode allows a higher coupling from
the fiber to the cavity, compared to a regular single-mode fiber. The output fiber of the cav-
ity is a graded-index multi-mode fiber that allows collecting 100% of the light transmitted,
at both 780 nm and 1559 nm.
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Fig. II.6 Left: SNOM tip ("Probe") inserted in the fiber cavity induces trans-
mission loss proportionnal to the field intensity at the position of the tip. Right:
Measurement of the transmission as a function of the tip position along the z cavity
axis. A low transmission corresponds to an antinode of the corresponding standing
wave, meaning a high field intensity. One can see that the antinodes of the trap-
ping field (λ2, blue) corresponds to antinodes of the probing field (λ1, red) with a
residual distance (from fits) better than the precision of the measurement. Figures
from Francesco Ferri PhD thesis [8989].

To conclude about the design of the fiber cavity, here is a summary of its parameters:

Cavity parameters 780 nm 1559 nm
Fiber models Input: NKT LMA-10 (PCF). Output: IVG Cu50 (MMF)
Length L 145 µm
Radius of curvature R 309 µm 326 µm
Cavity mode waist w0 5.7 µm 8.2 µm
Free spectral range 1.03 THz
Half Width at Half Maximum 14.2 MHz 17.4 MHz
Finesse F 3.6 × 104 3.0 × 104

On resonance transmission 3.1% 2.1%
Coupling gmax/2π 75.0 MHz
Cooperativity Cmax 65

II.2.2 Cavity frequency-locking and lattice intensity stabilization

We have described the full design of the fiber-cavity used in our experimental setup. We
will discuss here the different locks relative to the cavity: 1) the essential lock of the cavity
length/frequency, 2) a lock of the intracavity lattice intensity, and 3) a subsidiary lock of to
compensate the effect of residual amplitude modulation on the cavity frequency.

We have seen in section II.2.1II.2.1 that because of the Gouy effect, the optimal wavelength
for the trapping lattice is 1559 nm. We use this laser to lock the frequency of the fiber cavity.
The full schematic of the cavity locking is shown in figure II.7II.7. As the 1560 nm reference
laser of our setup is locked to an atomic transition (see section II.1.1II.1.1), we lock the 1559 nm
laser to the reference laser through a transfer cavity [9898]: first the transfer cavity is locked
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to the 1560 nm laser. Then we lock the 1559 nm laser to the transfer cavity. Both locks rely
on the standard Pound-Drever Hall (PDH) method [9999, 100100].

The frequency-locked 1559 nm laser is amplified and modulated by two successive electro-
optic modulators (EOM): EOM1 can be tuned over 20 GHz and serves to tune the absolute
frequency of cavity while EOM2 provides a 1.47 GHz fixed modulation, for the PDH lock
of the fiber cavity. Finally, a fiber acousto-optic modulator AOM L is used to tune the
intensity of the 1559 nm intracavity lattice. On a parallel path, the probing 780 nm laser
goes through AOM P (which we use as a fast switch) and EOM P. A side-band of the EOM
modulation is used as a frequency-tunable probe for the fiber cavity. Probing and trapping
lasers are combined on a dichroic and injected in the fiber cavity.

At the other end of the cavity, transmitted light is collected and the 1559 nm and 780 nm
intensities are measured separately: the 1559 nm transmission is used to lock the trapping
intracavity intensity, using a commercial lockbox and feedback on the output power of AOM
L. The 780 nm transmission is sent either to a Single-Photon Counting Module (SPCM) (for
CQED experiments, for which the probe intensity is very low to remain in the low excitation
limit, see section I.1.2I.1.2) or to a standard photodiode (when used with higher probe intensities,
for calibration purposes).

Finally, residual amplitude modulation (RAM) occurs in EOMs 1 and 2. It induces
fluctuations of the offset of the fiber cavity frequency lock error signal, and thus fluctuations
of the frequency to which the cavity is locked. An extra lock was set to partially compensate
the RAM 1. It reduces the fiber cavity frequency fluctuations σ by a factor or ≈ 3, from
σ ≈ 0.16 × κ to σ ≈ 0.05 × κ, where κ is the HWHM at 1559 nm.

II.3 Preparing an ensemble of atoms in the microcavity
II.3.1 Loading the intracavity lattice
At the end of the transport, the atoms are adiabatically transferred from the crossed dipole
trap (transport trap + guide trap) to the intracavity lattice, as shown in figure II.8II.8. At the
end of the transfer, we get typically 2000-2500 atoms at a temperature of 50 µK, in a lattice
trap depth of 300 µK. This is the depth at which we perform the Zeeman state preparation
described in section II.3.3II.3.3. Afterwards, the trap depth can be increased up to 1500 µK,
depending on the measurements we want to perform.

Figure II.9II.9 shows a typical cloud of atoms trapped in the intracavity lattice, with N ≈
1500 atoms. The density distribution is well described by a gaussian with standard deviation
σ ≈ 30 µm.

II.3.2 Adjustment of the lattice polarisation
For alkali atoms, the dipole trapping potential Udipole of the ground state 2S1/2, for a red-
detuned dipole trap, is dominated by the contributions of the two first transitions: the D1
and D2 lines. Assuming the dipole trap detuning to these lines is much larger than there

1For a more detailed analysis of the sources and description of the lock, please refer to the manuscript of
Mohamed Baghdad [9090].
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Fig. II.7 Schematics for frequency locking in our setup. The fiber cavity is locked
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to a 87Rb transition, through the slave at 780 nm (as explained in section II.1.1II.1.1).
The relations between the different frequencies involved in this scheme are shown
below the optical layout. Figure adapted from Francesco Ferri PhD thesis [8989].

hyperfine splittings, Udipole takes the following expression, including the effect of the dipole
light polarisation [101101]:

Udipole(r⃗) = ℏΓ 2

24
I(r⃗)
Isat

(
1 − PgFmF

ωdip − ωD1
+ 2 + PgFmF

ωdip − ωD2

)
, (II.3)

where Γ is the decay rate of the excited state, I(r⃗) the local intensity of the dipole beam,
Isat the saturation intensity, ωdip − ωD1,2 the detuning of the dipole laser with respect to
the D1 and D2 lines, gF is the Landé factor and mF the Zeeman sublevel quantum number.
Finally P = 0 (respectively ±1) for a linear (respectively σ±) polarised dipole trap.

According to equation II.3II.3, any elliptic component of this polarisation lifts the degeneracy
of the Zeeman states and acts as a "fictitious magnetic field" [102102]. Thus, the polarisation
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Fig. II.8 The initial lattice trap depth is non-zero (15 µK) because the 1559 nm
light is used to lock the cavity frequency (as explained in section II.2.2II.2.2). This lower
limit of 15 µK is set by the transport: even though it is carrefully aligned at the
center of the cavity, the transport beam induces a thermal shock when it arrives in
the cavity. This shock is visible on the piezo voltages of the cavity. We need 15 µK
of locking light for the PDH error signal to be large enough so that the cavity
lock resists to this shock. There has been quite some work with the frequency
and intensity locks (ref to Francesco and Mohamed thesis) so that both work with
intracavity trap depths in the range [15 − 1500] µK. Figure from Francesco thesis.

of the 1559 nm intracavity trap was set to be linear inside the cavity. Since the PCF input
fiber does not maintain polarisation, the black box approach of [103103] was used to set the
polarisation of the light inside the cavity: when the polarisation of the light reflected from
the cavity is the same that for the incoming light, the polarisation inside the cavity should be
linear. However, this is true under the assumption that no there is no loss depending on the
polarisation of light. For a finer adjustment beyond this assumption, a quantitative measure-
ment of the fictitious magnetic field was performed with Zeeman micro-wave spectroscopy.
The input intracavity polarisation was tuned to cancel them [9090] (see figure II.10II.10).

II.3.3 Zeeman state preparation for optimal coupling to the cavity

Preparing the atoms in the Zeeman sublevel F = 2,mF = 2 is an important step before any
CQED experiment, since this level is involved in one of the closed transitions of the D2 line
(F = 2,mF = 2 ↔ F = 3,m′

F = 3), which allows to work with an effective two level system.
Moreover this transition has the strongest dipole moment of all transitions in the line (ref
to Steck), leading to the highest value for the coupling g.

The first step of the preparation is optical pumping [104104] to F = 2,mF = 2. For this we
use a beam perpendicular to the cavity axis , that has the same path as detection 2 (see figure
II.4II.4). It has a waist w0 ≈ 1.2 mm (such that its intensity is uniform across the 145 µm length
of the cavity) and polarisation σ+, thanks to a 3 G magnetic field along the beam axis. Its
intensity is 0.5 Isat and duration 0.5 ms. Atoms accumulate in the sublevel F = 2,mF = 2,
which is only dark sublevel with respect to the pumping light. Simulateneously we shine
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Fig. II.9 Absorption image of a cloud of atoms trapped in the intracavity 1559 nm
lattice, with a filling of about 140 lattice sites. Picture a. shows the fiber cavity
as well. Picture b: Zoom on the atomic cloud. The two plots show density profiles
integrated along the two axes, with gaussian fits. The image is an average of 10
shots, taken after a time-of-flight 100 µs, for which the expansion of the cloud is
negligible. The trap depth is 1 mK. Figure from Francesco Ferri PhD thesis [8989].

repumping light 2 to repump atoms that end in F = 1.
We estimate that 85% of the atoms are pumped in F = 2,mF = 2. To improve the

fraction of atoms in F = 2,mF = 2, we implement a purification scheme:

1) With a microwave adiabatic transfer in presence of a magnetic field of 3 G along the
cavity axis, we transfer more than 98% of the F = 2,mF = 2 atoms in F = 1,mF = 1.

2) We push out of the lattice trap the atoms remaining in F = 2,mF = −2,−1,0,1 with a
blast beam. It is on resonance with the cycling transition, with an intensity of several
Isat and a duration of 0.5 ms, chosen not too long such as to push the atoms away
without depumping them in F = 1

3) With a reversed microwave adiabatic passage we transfer the atoms back from F =
1,mF = 1 to F = 2,mF = 2.

The combination of the optical pumping and this purification results in 80% of the atoms
in F = 2,mF = 2 and no atom in the other F = 2 sublevels (up to measurement precision).

2More details about the beam geometry in section VI.2.1VI.2.1.
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Fig. II.10 Cancellation of the fictitious magnetic fields due to ellipticity of the
intracavity lattice trap. As we rotate the angle of the half-wave plate before the
fiber-cavity in-coupler, the intracavity lattice polarisation rotates as well and this
induces a linear shift of frequency of the micro-wave transition F = 1,mF = 0 →
F = 2,mF = 1 (blue data points), accordingly to equation II.3II.3. We also measure
the frequency of the micro-wave transition in absence of lattice light (orange data
points). Linear polarisation is achieved where both lines cross, at ≈ 109.5◦. The
75 kHz shift of the transition (even without lattice) is due to a 1 G magnetic field,
used to lift the degeneracy between Zeeman levels and to monitor only one micro-
wave transition. Figure adapted from Mohamed Baghdad PhD thesis [9090].

As we explain in section III.1.1III.1.1, the 1559 nm trapping lattice induces large differential
lightshifts as well as mixing of the F,mF sublevels of the excited manifold (52P3/2). This mix-
ing is such that together with optical pumping (F = 2 → F ′ = 2) or blast (F = 2 → F ′ = 3)
light, the lattice light can induce depumping from F = 2 to F = 1. This is especially prob-
lematic for the blast, where one wants to push the F = 2 atoms out, without depumping
them in F = 1, where we have a reservoir of atoms of interest in mF = 1. Thus we implement
the chopping of the trapping lattice [105105, 106106], the optical pumping and blast light, using a
pulse generator at 2.8 MHz. A delay generator is used to intertwine the optical pumping and
blast chopped pulses with the lattice pulses, with no temporal overlapping. The chopping
frequency is much higher than the trapping frequencies (for which the maximal values are
≈ 340 kHz along the cavity axis and ≈ 15 kHz perpendicularly to the cavity axis, for a trap
depth of 1500 µK) such that the atoms trapping and external motion are not affected.

Finally, the lifetime of the atoms was measured at the end of the preparation in Zee-
man level F = 2,mF = 2, for the our standard trap depth of U = 300 µK. The time
evolution of the number of atoms is well fitted by the sum of two exponential decays:
N(t) = N1e

−t/τ1 + N2e
−t/τ2 . First a fast decay occurs (τ1 ≈ 50 ms) due to atom colli-

sions. Then a slower decay occurs, with τ2 ≈ 900 ms.
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II.3.4 Transmission spectrum measurement

Now that we have seen how we can prepare an ensemble of atoms in the microcavity, in
the Zeeman sublevel F = 2,mF = 2, we will describe how we measure the transmission
spectrum of the atomic ensemble coupled to the cavity, and the calibrations required for this
measurement. While all the work done in the previous sections of this chapter was done by
my predecessors, I was in charge, at the beginning of my PhD, of the setup and the analyses
required to calibrate the frequency axis of the transmission spectrum. This is necessary to
determine precisely the collective coupling of the atomic ensemble, which was crucial for the
measurements and results presented in chapters IIIIII and IVIV.

Considering an ensemble of N = 1500 atoms, with a mean coupling rate geff = 60 MHz
(ref to the part where we explain thermal averaging), the Rabi splitting separation (ref to
chap. 1) is typically 2geff

√
N ≈ 4.5 GHz. Thus we measure Rabi splittings by probing the

cavity-atoms coupled system with a dedicated tunable laser diode, able to perform frequency
ramps of tens of GHz without mode jump.

We typically scan a range of 8 GHz in 8 ms, while collecting the probe light transmitted
through the cavity with the SPCM (see figure II.7II.7). A typical spectrum is shown in figure
II.11II.11. It is strongly discretised, because the probe power is low so as to stay in the low
excitation limit ncav ≪ 1 (reference to chap 1) where the system can be simulated more
easily. In all this manuscript, probing of atomic ensembles was done with a probe intensity
corresponding to ncav = 0.14, which is still high enough so as to be able to identify the Rabi
peaks.
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Fig. II.11 Transmission spectrum of the cavity, coupled to an ensemble of N ≈ 900
atoms in F = 2,mF = 2. The intra-cavity lattice trap depth is 310 µK, the
temperature is 50 µK and the cavity is tuned on resonance with the average
atomic frequency, lightshifted by the lattice trap (as explained in sections III.1.1III.1.1
and III.1.1III.1.1). The frequency is referenced to the bare atoms cycling transition
52S1/2, F = 2,mF = 2 ↔ 52P3/2, F

′ = 3,m′
F = 3. We observe a Rabi split-

ting, which is the signature of collective strong coupling. The separation between
the two peaks is 2Ω, where Ω = 2geff

√
N ≈ 2π × 1800 MHz, with geff = 60 MHz.

This corresponds to an effective cooperativity Ceff = g2
eff/(2κγ) ≈ 42.
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To calibrate the frequency axis of the spectrum at each measurement, we record simul-
taneously:

1) The transmission signal of a standard macroscopic cavity (see figure II.12II.12.b), that
provides a frequency ruler allowing us to compensate the slight non-linearity of the
frequency sweep. Indeed the sweep of the tunable laser relies on the motion of a piezo.
This piezo is driven by a triangular signal and exhibit a non-linear response, close to
the turning-points, such that a single sweep is better fitted by a 2nd polynomial (see
figure II.12II.12.c). The macroscopic cavity has a length of L ≈ 10 cm. The distance
between successive peaks is given by the Free Spectral Range, FSR = c

4L ≈ 750 MHz.

2) A saturated absorption signal of the probe laser that provides an absolute frequency
reference (see figure II.12II.12.a).

Both the FSR of the macroscopic cavity and the frequency uncertainty δf of this fre-
quency calibration procedure were measured using the transmission spectrum of an empty
cavity, with a 800 MHz frequency modulated probe, that provides another frequency ruler.
We estimate the 1-standard deviation uncertainty of the frequency of the probe laser to be
δf = ±8 MHz, much smaller than the Rabi splittings obtained with our cloud of atoms (in
the range [200 − 4000] MHz). Thus we can measure collective couplings (half of the Rabi
splitting) with a satisfying relative uncertainty in the range [0.4 − 8]%.

The polarisation of the probe has to be σ+ to get the highest coupling rate g to the
atom prepared in Zeeman state F = 2,mF = 2, and to cycle in the effective two level sys-
tem provided by the closed transition F = 2,mF = 2 ↔ F ′ = 3,mF = 3. Probing the
F = 2,mF = 2 atom with a σ− photon leads to a smaller Rabi separation. Thus, for an
elliptical probe polarisation, the spectrum exhibits two well separated Rabi doublets corre-
sponding to the σ+ and σ− components of the probe. The ellipticity of the probe was tuned
so as to eliminate the smaller Rabi doublet and the residual σ− contribution was estimated
to 2%.

II.4 Conclusion
In this chapter we have reviewed the fundamental bricks of our CQED-cold atom experiment.
Two vacuum chambers are used to operate a 2D and a 3D MOT to cool down 87Rb atoms.
A dipole trap translated by a acousto-optic-deflector is used to transport efficiently atoms
towards the cavity, with a sub-micrometer accuracy, compatible with the small waist of the
cavity mode. The microcavity is a fiber-based Fabry Perot resonator produced with a laser
micro-machining technique pioneered by our group. With this technique we achieve small
radii of curvature (thus small cavity mode waist) and smooth surfaces (thus high finesse), such
that the strong coupling regime is reached for a single atom, with a maximal cooperativity
of 65. The cavity sustains two standing waves: one at 780 nm, to probe the D2 line of 87Rb
and the second at 1559 nm, a far-off resonant trap lattice. The commensurability of the
two standing waves and precise engineering of their phase at reflection ensures that atoms
trapped in the lattice are strongly and homogeneously coupled to the probe field, over the
entire 145 µm length of the cavity. The birefringence of the cavity is minimized such as to
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Fig. II.12 Calibration of the frequency axis of a transmission spectrum. Initially
the x axis is time. Graph a: Saturated absorption spectroscopic measurement of
85Rb and 87Rb, providing an absolute frequency reference. We point two peaks of
the spectrum to double-check the result from the non-linearity characterisation (b
and c). Graph b: Transmission signal of the macroscopic cavity, that provides a
frequency ruler. Graph c: 2nd degree polynomial fit of the times at which the probe
scans the macroscopic cavity peaks, to evaluate the non-linearity in the frequency
sweep. Combined with the spectroscopic absolute frequency, it provides a time-to-
frequency conversion for the x axis of the transmission spectrum. The inset shows
a zoom at about −3 GHz from the center of the scan, to exhibit the error made
with a linear fit close to extremal points of the scan: ≈ 50 MHz. This error is
compensated by the calibration, and afterwards the remaining error is much lower:
δf = ±8 MHz.

probe the cavity with σ+ photons and drive a closed-transition of the D2 line. By probing the
vacuum Rabi splitting of an ensemble of polarised atoms and measuring the atom number
with absorption imaging, we verify that we operate deep in the single atom strong coupling
regime, with an effective cooperativity of 42.
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Fig. II.13 Calibration of the polarisation of the probe. All graphs are transmission
spectra averaged over ≈ 110 single shots. This averaging is necessary to resolve the
smaller Rabi splitting corresponding to the σ− component of the probe, which is not
resolved in single shots such as figure II.11II.11. Upper plots show full-scale transmission
spectra, whereas lower plots are zooms in the low-transmission region, to exhibit
the σ− Rabi splitting, which has a rather small amplitude in all graphs because
the probe is initially quite close to σ+. Graphs a and b correspond to the initial
setting, where the σ− contribution is ≈ 10%. Graphs c and d correspond to the final
setting, where this contribution has been reduced to ≈ 2%. The ratio between the
two Rabi splittings is ≈ 1.7 theoretically, which we measure indeed in our spectra.



Chapter III

Frequency modulation of
cavity-protected polaritons

Chapters IIIIII and IVIV were adapted from the article "Spectral Engineering of Cavity-Protected
Polaritons in an Atomic Ensemble with Controlled Disorder" [5353], co-authored by Mohamed
Baghdad, Pierre-Antoine Bourdel, Sylvain Schwartz, Francesco Ferri, Jakob Reichel and Ro-
main Long. Mohamed Baghdad, Pierre-Antoine Bourdel and Sylvain Schwartz contributed
equally to this work. The material related to this topic has also been presented in the
PhD manuscript of Mohamed Baghdad [9090], major exceptions being the theoretical model
for multi-frequency polariton (appendix ??) and the photonic weight simulation (section
IV.2IV.2), which sheds a new light on understanding the transition from the disordered cavity-
unprotected to the polaritonic cavity-protected regimes.

In this chapter we first characterise the inhomogeneity induced by our trapping lattice,
through simulation and measurements (section III.1III.1). Then we demonstrate the cavity pro-
tection effect (section III.2III.2) that preserves the coherence of an inhomogeneous ensemble of a
few hundreds of emitters. Finally, leveraging the narrow resonances of the protected regime,
we produce polaritons featuring a comb-like frequency spectrum by modulating the light-
shifted frequency of the atoms on a very fast time scale (section III.3III.3).

III.1 Characterising the inhomogeneous frequency distributions
We have introduced the key concepts of cavity protection and the previous experimental ob-
servations of this effect. In this section we discuss, measure and simulate the inhomogoneities
of our coupled system. In our cold atom experiment, two types of inhomogeneities are
present. Both are due to the finite atomic temperature which implies a thermal distribution
of atomic position in the intra-cavity lattice trap. This distribution converts to distributions
of the coupling strength to the cavity and the atomic transition frequency, because of the
significant lightshift induced by the intra-cavity lattice light. The distribution in coupling
strength has small consequences, mentioned in section I.3.1I.3.1. The distribution of atomic fre-
quency leads to more profound modifications, as we have seen when introducting the cavity
protection effect (I.3I.3).

In this section, we first detail the inhomogeneity induced by the intra-cavity lattice trap

49
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(III.1.1III.1.1). Then we present the experimental measurements (III.1.3III.1.3) and the simulations
(III.1.2III.1.2) of the coupling-weighted atomic frequency distributions, which encompasses both
types of inhomogeneities.

III.1.1 Effect of the 1559 nm light on the excited state manifold

Due to a nearby resonance (the 5P3/2 ↔ 4D transition at 1529 nm - see figure III.2III.2.b, the
trapping light induces a light-shift of the excited state of the D2 line which is ≃ 50 times
larger than the ground state light-shift [107107]. This enables a fast and accurate control of the
frequency of the |g⟩ ↔ |e⟩ transition. However, this also leads to broadening of the frequency
distribution of the probing transition, due to finite temperature of the trapped atoms and
level mixing of the 5P3/2 manifold induced by two-photon coupling [108108, 109109].

Following [108108, 109109], we describe the combined effects of light-shifts and level mixing
within the 5P3/2 manifold induced by the 1559 nm light by a Stark operator V̂ , whose matrix
elements in the |F,mF ⟩ basis are given by:

⟨F ′,m′
F |V̂ |F,mF ⟩ =

∑
|k⟩

⟨F ′,m′
F |d̂ · E|k⟩⟨k|d̂ · E|F,mF ⟩

−ℏ∆k
(III.1)

where ∆k is defined as:

1
∆k

= 1
(ωk − ω5P3/2) − ω

+ 1
(ωk − ω5P3/2) + ω

,

all relevant states |k⟩ being much farther in energy than the hyperfine splitting. In our
case, given the value of the reduced matrix element and the detuning from the 1559 nnm
light of each atomic line [108108], we expect most (> 99%) of the contribution in the sum of
equation (III.1III.1) to result from 4D5/2, 4D3/2, 6S1/2 and 5S1/2, so we keep only these lines in
the simulations.

To compute the matrix elements ⟨F ′,m′
F |d̂ · E|F,mF ⟩ for a given atomic line and quan-

tization axis ez, we express the electric field of the 1559 nm trapping light E = (Ex,Ey,Ez)
in the spherical basis:

E =
∑

q=−1,0,1
Eqeq , (III.2)

where the eq are unitary vectors and the Eq are the “pi” and “sigma” components of E
related to Ex,y,z by:

E0 = Ez and E±1 = (±Ex + iEy)/
√

2 .

The dipole matrix elements of d̂q = d̂ · eq are then computed using the Wigner-Eckart
theorem, and reduced matrix elements taken from reference [108108]. In our typical experimental
situation, the magnetic field is along the cavity axis z, and the polarization of the trapping
light is linear along the x direction, corresponding to E0/|E| = 0, E1/|E| = 1/

√
2 and

E−1/|E| = −1/
√

2.



III.1 CHARACTERISING THE FREQUENCY DISTRIBUTIONS 51

III.1.2 Simulation of frequency distributions
To simulate the inhomogeneous atomic frequency distribution induced by the intra-cavity
trapping 1559 nm light, we assume that the atoms are in thermal equilibrium at each site
of the optical lattice, described by an harmonic trap with radial frequencies ωx = ωy and
longitudinal frequency ωz. Typical values for these frequencies are ωx,y/2π = 14.5 kHz, and
ωz/2π = 330 kHz, for a trap depth of U0 = 1400µK,. For each atom of a given sample, we first
draw x, y and z from a normal distribution with standard deviation σx,y,z =

√
kBT/mω2

x,y,z.
Then we deduce the values of the coupling g(x,y,z) (based on the cavity parameters) and
of the intra-cavity lattice trap intensity Idip(x,y,z) (based on the maximum value at the
bottom of the trap, which is estimated from light-shift measurements - see appendix ?? and
corroborated by a direct transmission measurement). The intensity Idip(x,y,z) seen by each
atom is used to construct a 16 × 16 matrix representing the Stark operator in the |F,mF ⟩
basis of the 5P3/2 manifold, to which we subtract a constant energy term corresponding to
the ground state light-shift. The output of the procedure for N atoms is a collection of 16×N
eigenvalues ℏωk,j and eigenvectors |ψk,j⟩, where 1 ≤ j ≤ 16 and 1 ≤ k ≤ N . The cavity
is probed with σ+ polarised light which couples the ground state |5S1/2, F = 2,mF = 2⟩ of
atom number k (denoted |k : 2,2⟩) with state |5P3/2, F

′ = 3,mF = 3⟩ (denoted |k : 3,3⟩).
Thus the coupling gk,j of the eigenstate |ψk,j⟩ to the σ+ cavity field is gk,j = gk|⟨ψk,j |k : 3,3⟩|,
where gk depends on the position of the atom k in the 780 nm probe standing wave.

From that we can reconstruct the spectral distribution of the couplings to the σ+ cavity
mode:

ρ(ω) =
N∑

k=1

16∑
j=1

g2
k,jδ(ω − ωk,j), (III.3)

by drawing N = 100 000 random atomic positions and computing the associated (ωk,j ; gk,j).
We then sort the transition frequencies ωk,j in equal-width bins, weighted by their coupling
strength |gk,j |2. The calculated distributions are shown infigure III.1III.1 for various values of the
trap depth U0. The distributions are noticeably asymmetrical and have a bounded support:
the maximal (respectively minimal) atomic frequency corresponds to the minimal (respec-
tively maximal) trap lattice intensity, and corresponds to an atom at the node (respectively
the antinode) of the lattice. Thus, similarly to the simulation with a theoretical rectangular
distribution (discussed in section I.3.2I.3.2), we expect cavity protection to take place in our in-
homogeneous system, for sufficiently large collective coupling. The rectangular distribution,
though theorician-beloved, is a rather specific example for a bounded distribution, as it is
not continuous at its boundaries, and symmetric. Our experimental distributions are much
smoother close to their boundaries and asymmetric. This leads to specific features for the
dynamics of the coupled system, which we will present in section IV.4IV.4.

III.1.3 Measurement of the frequency distributions
The strong frequency broadening in our experiment results from the combination of finite
atomic temperature, light-shifts and level mixing effects described in the two previous sec-
tions. We characterize the subsequent frequency distribution experimentally by illuminating
the trapped atoms with a transverse beam, perpendicular to the cavity, and measuring the
relative atomic losses as a function of the beam frequency, for various trap depths. The
atom ensemble is prepared in the F = 2 hyperfine ground state. The transverse beam has an
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Fig. III.1 Simulated atomic frequency distribution ρ(ω) for different trap depths.
For each trap depth U0, the temperature T used in the simulation corresponds to
the typical experimental value based on time-of-flight measurements. When U0 in-
creases, the mean frequency of the distribution decreases linearly – as expected with
red-detuned off-resonant light – and the width ∆ω of the distribution increases. At
low trap depth U0 = 310 ± 10µK the distribution has mainly one lobe, correspond-
ing to the |F = 2⟩ → |F ′ = 3⟩ transition. For larger trap depths, two-photon
couplings at 1559nm mix the excited state hyperfine levels and two extra lobes ap-
pear in the distributions, at lower frequencies, corresponding roughly to transitions
|F = 2⟩ → |F ′ = 2⟩ and |F = 2⟩ → |F ′ = 1⟩. This illustrates the tunability of the
inhomogeneous distribution with the intensity of the trapping field.

intensity of I = 0.2 Isat and is switched on for 0.5 ms at a given frequency. Then the relative
loss is measured from the vacuum Rabi splitting of the cavity transmission spectrum, which
allows to obtain reliable atom number measurements down to low atom numbers.

The results are shown infigure III.2III.2.c (dots). Because the atoms are excited with uncon-
trolled phases and amplitudes by this transverse beam, we expect (and observe) negligible
coupling between the latter and the bright states of the coupled atom-cavity system even
though the resonance condition is fulfilled. This is necessary to measure losses over the en-
tire range of frequencies of the distribution, rather than only at the frequencies of the bright
states. The measured frequency distributions show the broadening (up to 1 GHz) and shift
due to the 1559 nm trapping light. The frequency ranges of the measured distributions are
similar to that of the corresponding distributions of couplings ρ(ω) (see Fig.III.1III.1). However,
the measured distributions are slightly different because the transverse beam does not couple
to the atoms in the same way than the σ+ cavity-mode probe for which ρ(ω) is computed.
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Fig. III.2 Experimental setup of the cold atom cavity interface with tunable inho-
mogeneous frequency distribution. (a) Sketch of the setup. Atoms are trapped in a
one-dimensional optical lattice (red) which is commensurate with the main cavity
mode (blue). The latter is on resonance with the |g⟩ ↔ |e⟩ atomic transition. (b)
Simplified level diagram illustrating the proximity of the 1559 nm trapping light
with the 5P3/2 ↔ 4D line. (c) Atomic frequency distribution measured by loss
spectroscopy of the trapped atoms for various trap depths (Green: no trap. Red:
U = 310µK. Blue: U = 1400µK). The horizontal axis corresponds to the fre-
quency of the transverse probe beam inducing the losses, referenced to the bare∣∣∣5S1/2,F = 2,mF = 2

〉
↔
∣∣∣5P3/2,F

′ = 3,mF ′ = 3
〉

transition. Circles: experimen-
tally measured losses (error bars correspond to 1σ spread of the data), normalized
to the maximum value of the F ′ = 2 peak of the free atoms. Histograms: result of
Monte Carlo simulations of the frequency distributions.

The transverse beam as a circular polarisation, and its propagation axis is perpendicular to
the quantization magnetic field, along the cavity axis. So its electric field has both ”sigma”
and ”pi” components, and all the Zeeman sublevels of the F = 2 hyperfine ground state may
play a role in the dynamics.

Thus we adapt the Monte Carlo simulation, and assume that the initial atomic population
is equally distributed between these sublevels. For each atom (labelled by the index k), we
use the previous procedure (section III.1.2III.1.2) to compute the 5 × 16 transition frequencies
ωk,j(mF ) between the 5 ground states |F = 2,mF ⟩ and the 16 excited states |ψk,j⟩. Each
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frequency ωk,j(mF ) is associated to a coupling strength ck,j(mF ), defined as:

ck,j(mF ) =

∣∣∣∣∣∣
〈
ψk,j

∣∣∣∣∣∣
1∑

q=−1
d̂qE

t
q

∣∣∣∣∣∣F = 2,mF

〉∣∣∣∣∣∣
2

, (III.4)

where Et
q are the components of the electric field of the probe beam Et, expressed in the

spherical basis and d̂q are the dipole matrix elements (see section III.1.1III.1.1). For the transverse
beam, we have Et

0/|Et| = 1/
√

2 and Et
±1/|Et| = ±1/2. The simulated frequency distributions

shown infigure III.2III.2.c (histograms) are then obtained by sorting the transition frequencies
ωk,j(mF ) in equal-width bins, weighted by their coupling strength ck,j(mF ). For a given
trap depth, we use an effective temperature T to match the positions of the simulated and
experimental curves. The effective temperatures are 2 to 3 times the initial experimental
temperatures. Interestingly, there is a relatively good qualitative agreement between the
simulated frequency distributions and the loss measurements on figure III.2III.2, even though
the latter involve several complex mecanisms that are not included in the simulations, such
as heating, population redistribution between the Zeeman sublevels of the F = 2 hyperfine
ground state and depumping into the F = 1 undetected hyperfine ground state. The higher
effective temperature could stem from these effects.

III.2 Cavity-protected polaritons in the strong collective coupling
regime

To investigate the coherence properties of this inhomogeneous system, we consider the trans-
mission spectrum of the cavity in the low excitation limit, in which we perform our experi-
ments.

III.2.1 Model for transmission spectrum in the low-excitation
The cavity is probed with a weak pulse of σ+ polarized light which couples the ground state
|k : 2,2⟩ of atom number k to |k : 3,3⟩, the |5P3/2,F

′ = 3,mF ′ = 3⟩ Zeeman sublevel of this
atom. The coherent evolution of the coupled atom-cavity system is described by a multilevel
version of the standard Tavis-Cummings Hamiltonian (with ℏ ≡ 1):

H = Hcav +Hat +Hint, (III.5)

where:

• Hcav = ωca
†a is the Hamiltonian of the cavity mode;

• Hat = ∑
k

∑
j ωk,jσ

+
k,jσ

−
k,j is the Hamiltonian of the multilevel atomic ensemble dressed

by the 1559 nm light; the operator σ+
k,j is by definition equal to |ψk,j⟩⟨k : 2,2| and

σ−
k,j =

(
σ+

k,j

)†
;

• Hint = ∑
k gk

(
σ−

k a
† + σ+

k a
)

describes the interaction between the atoms and the cavity
mode in the rotating wave approximation, where:
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gk = g(xk,yk,zk) is the coupling constant of the atom k, at the position (xk,yk,zk), and
σ+

k = |k : 3,3⟩⟨k : 2,2|. We can express Hint in the following form :

Hint =
∑

k

∑
j

(
gk,jσ

+
k,ja+ gk,jσ

−
k,ja

†
)

with gk,j = gk⟨ψk,j |k : 3,3⟩.

In the low excitation limit, where the average photon number inside the cavity is much
smaller than unity, the Hilbert space can be reduced to the subspace with one excitation:
{|1, G⟩, |0,W ⟩}. |1, G⟩ corresponds to the state with one photon in the cavity mode and all
atoms in the ground state |G⟩ = |1 : 2,2, . . . ,N : 2,2⟩. |0,W ⟩ is the state with zero photon
in the cavity mode and one atomic excitation |W ⟩ =

(∑N
k=1

gk
Ω σ

+
k

)
|G⟩. The (complex)

transmission of the cavity as a function of the probe frequency ω taking into account photon
losses κ and atomic decay γ then takes the following simple analytical form, that was derived
in [4949] using the input-output formalism:

t(ω) = −κ/(2i)

ωc − iκ/2 − ω −
∑
k,j

(gk,j)2

ωk,j − iγ/2 − ω

. (III.6)

III.2.2 Experimental observation of the cavity protection effect
To exhibit the cavity protection effect, we measure the cavity transmission spectrum with a
trap depth U0 = 1400 ± 30µK and a temperature T = 190 ± 20µK. For these parameters
the thermal-averaged single-atom coupling is g/2π = 60 MHz (see appendix ??), thus strong
coupling is reached at the level of each individual atom. Following the method presented in
section III.1.2III.1.2, we compute the spectral distribution of couplings ρ(ω) for these parameters.
The distribution is shown in figure III.3III.3. It has an asymmetrical shape and features a
bounded support 1750 MHz wide, which corresponds to the highest possible value of the
light-shift for this trap depth. The frequency ωc of the cavity mode is tuned to resonance
with the mean value of the frequency distribution. Following the procedure described in
(ref to section 2.3.3) we first prepare ≈ 800 atoms in the |F = 2,mF = 2⟩ Zeeman sublevel.
We then probe the cavity-atoms coupled system and measure the transmission spectrum, as
described in (ref section 2.3.4).

As the single-shot spectra are strongly discretised (see figure IV.2IV.2), we average such spec-
tra to obtain the experimental data shown infigure III.3III.3. Because experimental fluctuations
of N result into fluctuations of the collective coupling, we group and average the spectra
according to their collective coupling Ω to avoid excessive broadening due to averaging. We
use a 40 MHz bin centerered on Ω/2π = 1670 MHz, where the number of spectra in the bin
is maximal: ≈ 200.

Despite the broad atomic frequency distribution, the resulting averaged spectrum features
only two peaks corresponding to the polaritons. To first order in ∆ω/Ω with ∆ω the width of
the frequency distribution, they are split by twice the collective coupling Ω/2π ≃ 1670 MHz,
which corresponds to N ≈ 770 atoms trapped in the cavity mode. In this regime, we fully
benefit from the cavity protection effect: as the two polaritons lie far from the frequency
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Fig. III.3 Cavity protection effect. Blue dots represent the experimental on-
resonance transmission spectrum in the regime where the collective coupling is
much larger than the atomic frequency distribution. The two polariton modes
appear as two narrow transmission peaks, in good agreement with the numerical
simulation (red line). Green bars show the simulated atomic frequency distribution,
which is much broader than the transmission peaks.

distribution, they are decoupled from the dark states and the coherence of the system is
preserved. As a consequence, the transmission spectrum resembles that of a frequency-
homogeneous system (see section I.3I.3) in spite of the strong atomic frequency inhomogeneity.

To be more quantitative about the gain in coherence obtained with the cavity protection
effect, we fit independently the high and low frequency peaks of the averaged spectrum with
a Voigt profile to extract the half-width at half-maximum (HWHM) of the peaks. We obtain
a HWHM width (δω−/2π = 28 ± 2 MHz) of the low frequency peaks slightly larger than the
one of the high frequency peak (δω+/2π = 24±2 MHz), probably due to the presence of atom
losses during the measurement. Indeed atom losses lead the low frequency peak to move in the
same direction than the increasing frequency probe (thus the enlargment) and lead the high
frequency peak to move in the opposite direction than the probe (thus the narrowing). The
quoted uncertainty for δω± is the standard deviation of the different HWHM values obtained
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for averaged spectra from non-overlapping 40 MHz bins in the Ω/2π interval [1500 − 1700]
MHz, which is deep in the cavity-protected regime, where the width does not depend on
Ω. We note that the measured widths δω± are larger than in the homogeneous limit of
(κ+ γ)/2 ≃ 2π × 9 MHz, mainly because of the non negligible size of the collective coupling
bin: 40 MHz. Indeed, the convolution of a Lorentzian with HWHM 9 MHz with a square
function of size 40 MHz gives a peak of HWHM ≈ 22 MHz, close to the experimental values.
The residual difference is due to 1) the finite-size of the collective coupling sample within
the bin, which is not exactly uniformly distributed and 2) the uncertainty in determining
the collective coupling as the distance between the peaks in a single-shot spectrum, due to
its strong discretisation (see figure IV.2IV.2).

For the following, we will consider the average width δω/2π = δω++δω−
2 /2π = 26±2 MHz.

It is much lower than the HWHM width ∆ω/2π ≈ 150 ± 10 MHz of the frequency distri-
bution. The ratio ∆ω/2

δω can be used to define a figure of merit of the cavity protection.
It compares the measured polaritonic peak width δω and the width ∆ω/2 that would be
obtained for a Lorentzian frequency distribution inhibiting the protection effect [4747–4949] This
ratio is about 3 for our experiment, showing that the coherence of the polaritons is preserved1.

Finally, we simulate the average spectrum of figure III.3III.3 by computing many transmission
spectra with a trap depth U0 = 1400µK and a temperature T = 190µK. The intensity
transmission spectrum (relevant for a comparison with the experimental spectra) is computed
as |t(ω)|2, where t(ω) is the complex transmission, given in equation III.6III.6. We draw randomly
the number of atoms N , to account for experimental fluctuations. We average single spectra
(≈ 350) featuring a collective coupling within the bin 1670 ± 28 MHz. This corresponds
to the bin chosen for the experimental spectra, enlarged by ±8 MHz to account for the 1-
standard deviation uncertainty on frequencies of the spectrum (ref to section 2.3.4). As can
be seen on figure III.3III.3, the simulated spectra including atom number fluctuations are in
excellent agreement with the experimental data: the fitted width of the simulated spectra
are δω+/2π = 27 ± 2 MHz and δω−/2π = 28 ± 1 MHz, close to the experimental values.

III.3 Polariton frequency-modulation engineering
III.3.1 Frequency modulation of polaritons in the protected regime
The coherence of the polaritons being preserved by the cavity protection, we can then harness
the large sensitivity of the light-shifted atomic frequency to the trapping power to efficiently
modulate the polaritonic frequencies. Frequency modulation of polaritons has been first
demonstrated in reference [110110], though in a different parameter regime, as explained later.

The intracavity lattice power is modulated by coupling two different frequencies of the
lattice light into the cavity. To achieve this, we combine the RF signal at frequency νEOM1
to an extra RF signal at frequency νEOM3 and send the resulting signal to first EOM mod-
ulating the intracavity lattice light, EOM1 (see figure II.7II.7). Together with the modulation
at frequency νEOM2 produced by the second EOM (EOM2), we obtain 33 = 27 optical fre-
quency components, among which: the usual one, at frequency −νEOM1 + νEOM2, to which

1For curiosity, if we correct for the bin convolution effect, we find that, in the worse case corresponding to
δω−/2π = 28 MHz, this can be account for the convolution of a Lorentzian with HWHM 20 MHz with a bin
of width 40 MHz. For such reduced with the ratio is 3.75, only slightly higher than the non-corrected value.
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the cavity is locked, and an other one, at frequency −νEOM1 + νEOM3, that can be tuned to
be ωm-apart from the cavity frequency, if |νEOM2 − νEOM3| = ωm/2π.

As ωm/2π = 120 MHz is not too large compared to the cavity linewidth κ = 14.2 MHz,
both frequency components enter the cavity. The resulting beating at a frequency ωm/2π
leads to a temporal modulation of the lattice potential and thus of the average light-shifted
frequency of the atoms ωA(t) = ω0

A + βoωm cos(ωmt), where βo is the modulation index
and ω0

A the average atomic frequency without modulation. The modulation frequency
ωm/2π = 120 MHz is set to be larger than the width of the polaritons δω but smaller than
the collective coupling Ω ≈ 1600 MHz. The trap depth is 1400µK and the temperature is
190µK, similar to the data of figure III.3III.3. We record the transmission spectrum and average
about 200 spectra.

The results are presented in Fig. III.4III.4. Instead of the usual polariton doublet, the spec-
trum features two combs each consisting of several peaks. The frequency splitting between
the centers of the two combs is given by the collective coupling Ω/2π whereas the comb teeth
are separated by the modulation frequency ωm/2π. In contrast to the experiment of reference
[110110] where ωm ≫ Ω, the transmission spectrum does not result from the coupling between
the cavity field and a single-frequency atomic excitation given by one sideband of the mod-
ulated atomic transition. In our case, the photonic excitation couples to a multi-frequency
atomic excitation, yielding polaritons featuring multiple frequencies in their spectrum.
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Fig. III.4 Modulation of the polariton eigenfrequencies. Blue points: experimental
data with Ω/2π = 1630 ± 20 MHz, ωm/2π = 120 MHz, βo = 2.17 ± 0.04. Red line:
simulated spectrum obtained by numerically integrating the master equation.

For ωm ≪ Ω, we show in section ?? that the theoretical cavity spectrum is well approxi-
mated by:

S(ω) ∝
∑

n

J2
n (βo/2)

(ω − ω0 − nωm +Ω)2 + γ2
s

+ J2
n (βo/2)

(ω − ω0 − nωm −Ω)2 + γ2
s

, (III.7)
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where ω0 = ωc = ω0
A and γs = κ+γ

2 . The cavity spectrum features two combs of peaks
centered at ±Ω. The separation between two consecutive peaks is given by the modulation
frequency ωm. The amplitude of each peak is given by J2

n (βo/2) and so we define a modu-
lation index for the polaritons given by βp = βo/2. This linear relation is checked in section
III.3.2III.3.2. The spectrum of the polaritons can thus be directly controlled by tuning the modu-
lation index and/or the modulation frequency of the trapping light. This is possible thanks
to the large sensitivity of the excited state to the trapping power. An important remark is
that the width of each peak in the multi-frequency polaritons is similar to the ones obtained
in the non-modulated homogeneous case and is much narrower than the atomic frequency
distribution as we operate in the cavity-protected regime. We would like to emphasize that
we fully benefit from cavity protection here. Indeed, resolving the spectral modulation of
the polaritons requires δω < ωm. Also, the modulation frequency ωm/2π cannot be made
arbitrarily large compared to the cavity linewidth κ/2π = 14.2 MHz, as it requires coupling
two optical frequency, ωm-apart, in the cavity. Thus, for satisfying δω < ωm, we benefit from
having a cavity-protected small width δω, in particular much smaller than the width of the
frequency distribution.

Let us now discuss a few technical details about spectrum averaging and fitting. From
shot to shot, the number of atoms inside the cavity mode fluctuates. Thus, before averaging,
we use two techniques to compensate these fluctuations:

1) we select spectra with similar atom number N , by measuring the dispersive shift δωc

of the cavity frequency when the atoms are in the state |F = 1,mF = 1⟩, which is given by:

δωc =
−Ng2

|2,2⟩→|3,3⟩
2(ω|1,1⟩→|2,2⟩ − ωc)

(III.8)

For the experimental data of figure III.4III.4, we used a dispersive shift bin δωc/2π = −258±
5 MHz, corresponding to N = 1130 ± 25 or to collective coupling Ω/2π = 2020 ± 20 MHz.

2) within this ±25 atom bin, the remaining atom number fluctuations still widen the
transmission peaks. Thus, before averaging spectra, we frequency-shift each spectrum so
that the multipeaks centers of all spectra are aligned. Compared to a raw averaging, this
technique improves the accuracy of the relative amplitudes of the different peaks in the
average spectrum to which the value of βp is very sensitive.

In spite of these two techniques, residual fluctuations remain, and the frequency values
of our spectrum have an uncertainty of ±8 MHz (see section II.3.4II.3.4). Thus, the average
spectrum is best-fitted when replacing the Lorentzians in equation III.7III.7 by Voigt functions,
which are convolutions of the Lorentzian lineshape with gaussian fluctuations:∑

n

J2
n (βp) Voigt(ω − ω0 − nωm ±Ω, γs, σ) (III.9)

where Voigt((ω, γs, σ) = 1√
2πσ

ℜ(wofz(ω+iγs√
2σ

)) with wofz the Faddeeva function. This func-
tion provides a very good fit of the experimental data, except for the slight asymmetric shape
(relative variation of ±7 %) between the right and left part of each comb, clearly visible on
figure III.4III.4.
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This asymmetry stems from the coupling between the two polaritons induced by the
modulation. This coupling has been neglected in equation III.7III.7. To account for this cou-
pling and compute a better approximation of the spectrum, we numerically integrating the
master equation, using QutiP [111111], for an emitter-cavity system probed by a laser swept in
frequency at the same rate as in the experiment (1 GHz/ms), and with the same power. We
calculate the population of the state |1, G⟩ after binning the simulated results to match the
experimental spectral resolution of 2.5 MHz. By using the parameters given by the experi-
mental fit (equation III.9III.9), we obtain a very good agreement between the experimental data
and the master equation simulated spectra, even for the asymmetrical shape of the comb.

III.3.2 Modulation transfer
We now verify the expected linear transfer of the frequency modulation from the atoms to
the polaritons, which expresses as βp ∝ β0, that appears in equations III.9III.9 and III.7III.7. To
this purpose, we measure βp for different values of βo. We reduce the frequency range of
the probe laser scan by a factor of 4, zooming on the high frequency comb, to increase the
frequency resolution. For each value of β0, we measure and average ≈ 100 spectra, with the
techniques explained previously in section III.3.1III.3.1. We then fit the cavity spectrum with the
function of equation III.9III.9 to extract the value of βp.

Since βp is the result of a non-linear fit, we resort to a nonparametric bootstrap method
to determine its uncertainty. For each averaged spectrum (and thus each value of βp), we
generate 500 synthetic spectra Ak (1 ≤ k ≤ 500). Then, each synthetic spectrum Ak is fitted
with the formula III.9III.9, providing a fitted parameter βp,k. The errorbar for βp is defined as
the ±1 standard deviation of the set {βp,k ; 1 ≤ k ≤ 500}. To obtain the value of β0, we
measure the intensities of the different frequency components of the trapping light, using the
transmission spectrum of the frequency-scanned cavity. Starting from δωa(t) = ωA(t)−ω0

A =
β0ωmcos(ωmt), we get:

β0 = δωmax
a

ωm
= |ω0

A|
ωm

δωmax
a

|ω0
A|

= |ω0
A|

ωm

δImax
D

I0
D

(III.10)

where ω0
A/2π = −1320 MHz is the average atomic light-shift, ωm/2π = 130 MHz is

the modulation frequency (this value is slightly different than the 120 MHz of figure III.4III.4,
for technical reasons), and I0

D and δImax
D are, respectively, the constant and ωm frequency-

dependent components of the intensity of the trapping light. Uncertainties on β0 are propa-
gated from the experimental uncertainties of ω0

a, I0
D and δImax

D .
The results are shown in figure III.5III.5. The linear transfert is confirmed, and the fitted

slope is compatible, within its ±σ error bar, with the expected value 1/2.

III.4 Conclusion
The case of a single mode of the electromagnetic field coupled to N emitters with different
frequencies is a situation of interest for different physics communities. It has been well known
in solid state physics that achieving strong collective coupling of the emitter ensemble to
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Fig. III.5 Modulation transfer function. Blue points: experimental data of the
modulation index of the polaritons βp for different values of the modulation index
βo of the atomic frequency. Orange dashed line: linear fit of data points gives a
slope of 0.492 ± 0.009, compatible with the theoretical slope of 0.5.

the cavity could allow a coherent interaction between the field and emitters. As theoretical
studies of this "cavity protection" effect pointed out, the coherent interaction is possible only if
1) the collective coupling Ω is large enough compared to the width ∆ω of the inhomogeneities
and 2) the inhomogeneous frequency distribution decays faster than a Lorentzian one. Several
solid-states experiment have demonstrated cavity protection and exhibited the narrowing the
polaritons as Ω/∆ increases. In our experimental setup, the intra-cavity lattice at 1559 nm
induces a very significant differential lightshift, typically one to two orders of magnitude
larger than the widths of the cavity and the atom. Together with the thermal distribution
of atomic positions in the lattice, it leads to a wide but tunable distribution of atomic
frequencies, which we measure with the spectrum of losses induced by a beam transverse to
the cavity. As the distribution is bounded, it is eligible for cavity protection. Thanks to
our single emitter strong coupling, we observe a cavity protection effect with less than 800
atoms. The polaritons peaks are much narrower than the distribution, a signature that the
coherence is preserved by the strong collective coupling.

In this cavity-protected regime, we make use of the large sensitivity of the atomic fre-
quency to the intra-cavity lattice trap power. A temporal modulation of this power induces a
frequency modulation of the atomic transition, which transfers to a frequency modulation of
the polaritons. We develop a model for the frequency modulated hamiltonian, that accounts
very well for the experimental spectrum, including a small amplitude asymmetry between
the modulation side peaks, that stems from the coupling between the two polaritons. Finally,
we verify the linear transfer of the frequency modulation predicted by this model.
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Chapter IV

Transition from the polaritonic
regime to the disordered regime

In chapter IIIIII, we have demonstrated that cavity protection maintains the coherence of an
ensemble of hundreds of emitters, in spite of their inhomogeneity in frequency. Such number
is orders of magnitude lower than for previous solid-state demonstrations of cavity-protection
[5050–5252], because our setup achieves strong coupling at the single emitter level.

Another specificity of our controllable cold-atom experiment is the ability to tune easily
both the collective coupling Ω and the amount of frequency inhomogeneity ∆ω. As the
cavity protection effect depends precisely on the ratio Ω/∆ω we are able to observe directly
the growing coherence of the coupled system, as Ω/∆ω increases. In this chapter we experi-
mentally show the transition from a “polaritonic” regime (cavity-protected) where only two
polaritonic resonances are present despite an inhomogeneous frequency distribution that is
much larger than the polariton resonances, to a “disordered” regime (or cavity-unprotected)
where the amplitude of the polaritons decreases and many additional, randomly distributed
resonances appear. In addition, as our system operates in the strong coupling regime at the
single atom level, we are able to study this transition for a few tens of atoms only, highlight-
ing the contribution of a finite number of dark states.

I mentioned earlier that most of the material of chapters IIIIII and IVIV were the results of an
indubitable team work that lead the article [5353]. My more personal contributions consisted
in 1) developing the methods to calibrate the frequency axis of the transmission spectrum
(see section II.3.4II.3.4), which has been crucial for resolving spectrally the transition from the
disordered regime to the polaritonic regime and 2) based on the intuitions illustrated in
section IV.1IV.1, establishing the individual-spectrum analysis of the transition presented in
section IV.4IV.4.

This chapter is organised as follows: section IV.1IV.1 proposes a visual introduction to the
transition from the polaritonic to the disordered regime, based on simulated transmission
spectra. One can see the increasing number of resonances, corresponding to the increasing
coupling of the dark states to the cavity, which reduces the coherence of the coupled system.
Then we exhibit two quantities that account for the degree of coherence of the system. In
IV.2IV.2, we introduce the photonic weight of the dark states, that accounts for their coupling to
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the cavity, which determines the coherence of the coupled system. Such photonic weight can
be computed from numerical simulation of our few-emitter system. As we cannot directly
measure the photonic weight in our discretised experimental spectra, we propose a robust
experimental proxy for the photonic weight, based on the number of photon counts outside
the two narrow polariton peaks, in IV.3IV.3. Finally, with these simulation and experimental
tools, we exhibit the role of dark states across the transition, in IV.4IV.4, and compare our results
to that of the similar simulatenous study, reported in [5454].

As mentioned earlier, we go from the polaritonic regime to the disordered regime by
varying the ratio Ω/∆ω, where Ω = g

√
N is the collective coupling and ∆ω the width of the

inhomogeneous frequency distribution. Here, ∆ω is fixed (as we work at a given intra-cavity
trap depth U0) and we vary Ω. The thermal-averaged single atom coupling g being fixed
by the trap depth U0 (see appendix ??), we vary Ω through the number N of atoms loaded
in the intra-cavity lattice, which we tune by varying the number of atoms loaded in the
3D-MOT.

IV.1 Visual introduction to cavity protection in our discrete sys-
tem

Figure IV.1IV.1 illustrates the effect of decreasing the ratio Ω/∆ω with simulated transmission
spectra (equation III.6III.6). The trap depth is U0 = 1040 µK, the temperature is T = 140 µK,
the thermal-averaged coupling strength is g/2π ≈ 60 MHz and the cavity is tuned on reso-
nance with the average frequency ωa of the coupling-weighted distribution ρ(ω) (see appendix
??). We plot |t(ω)|2 for N = 150 (graph a.) and for N = 34 (graph b.), together with the
atomic frequency distribution ρ(ω) in the background. With N = 150, the spectrum exhibits
the usual Rabi doublet, with two clear peaks separated by 2Ω ≈ 2π×1460 MHz, correspond-
ing to the coherent excitation of the polariton modes: this is the polaritonic regime. With
N = 34, the spectrum exhibits many more peaks, corresponding to other eigenstates, be-
cause the collective coupling is sufficiently low for the protection effect to vanish: this is the
disordered regime. The separation between the two ensemble of peaks (at higher and lower
frequencies) is roughly 2Ω ≈ 2π × 700 MHz.

From observing other simulated spectra, we can see that these extra peaks appear only
when the frequencies ω±/2π = (ωc ± Ω)/2π (where one would expect the polaritons to be,
in the polaritonic regime) lie within the frequency range of the distribution: ≈ [−1650 :
−250] MHz. To make this observation quantitative, we compute the number of transmission
peaks Npeaks above a threshold, for each spectrum. Graph c. of figure IV.1IV.1 shows Npeaks

averaged over many spectra, for N ranging from 1 to 550: it shows the continuity between the
disordered and the polaritonic regimes. For N ≤ 25±5, Npeaks increases because the number
of eigenstates N + 1 increases and all can couple to the cavity: thus they appear as extra
peaks on the transmission spectrum. For larger N , collective coupling is strong enough
for cavity protection to take place: the coupling to the cavity of these other eigenstates
diminishes. Consequently, the amplitude of the corresponding spectral peaks diminishes and
they end below the threshold, leading to a reduction Npeaks. Finally, for N ≥ 130 ± 20,
Npeaks = 2 and only the two bright states couple to the cavity. This corresponds to Rabi
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Fig. IV.1 Illustration of the cavity protection effect with simulated transmission
spectra. Picture a (respectively b) shows a transmission spectrum with N = 150
(respectively N = 34) atoms, in the polaritonic (respectively disordered) regime.
To exhibit continuously the transition between the two regimes, we computed the
number of peaks Npeaks of each spectrum, defined as 1/10 of the maximal transmis-
sion of the spectrum. Graph c. shows the average value of Npeaks for atom number
N ranging from 1 to 550.

separation ≈ 2Ω/2π ≥ 1400 ± 100 MHz, which matches indeed roughly the size of the
bounded frequency distribution.

IV.2 Photonic weight distribution to monitor the cavity protec-
tion effect

The study of the previous section shows that a transition occurs between an disordered
regime and a polaritonic regime for atom numbers lower than 150. It is possible to see this
evolution within such a small atom number range because we operate in the strong coupling
regime at the single atom level. Such numbers of emitters are orders of magnitude below the
numbers of previous solid-state experimental demonstrations of cavity protection (∼ 1012

in ref [5050], ∼ 7 × 1014 in ref [5252], and ∼ 106 to 7 in ref [5151]). So unlike these experiments,
we cannot model our system with a continuous frequency distribution of emitters. We are
sensitive to the finite size of the Hilbert space and to the discreteness of the spectrum of
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the coupled emitters-cavity system. This leads to multipeak transmission spectra (see figure
IV.1IV.1) rather than inhomogenously broadened polaritons as in [5050–5252] and to the ability to
directly compute the eigenvalues and eigenvectors of the coupled system and extract their
properties, such as their photonic weight PW .

The photonic weight is interesting because the cavity protection effect can directly be
assessed by measuring the photonic weight distribution over the different eigenstates. For
a cavity-protected inhomogenous system, or equivalently for an homogeneous system, the
PW is distributed over the only two bright states. For an unprotected system the PW is
distributed over more than two eigenstates. This leads us to introduce the sum SP W of the
PW of all the eigenstates except the two largest ones, to quantify the spreading of the PW
and thus the coherence of the coupled system: SP W is zero for the homogeneous case and
tends to 1 when the PW is distributed over an infinite number of dark states.

Here is how we compute the PWs and SP W . In the low excitation limit, we restrict the
dynamics of the closed system to the one excitation manifold. For N two-level atoms, it is
spanned by the N + 1 basis states :

{|1, G⟩, |0, E1⟩, . . . , |0, Ek⟩, . . . , |0, EN ⟩} , (IV.1)

with |G⟩ = |g1 . . . gN ⟩ and |Ek⟩ = |g1 . . . ek . . . gN ⟩, where |gk⟩ (respectively |ek⟩) is the ground
(respectively excited) state of the atom k. Due to the 1559 nm trapping light, a given atom k
is excited to the subspace of the 5P3/2 manifold featuring 16 eigenvalues ωk,j and eigenstates
|ψk,j⟩. The single excitation manifold is then spanned by the 16 ×N + 1 basis states:

{|1, G⟩, |0, E1,1⟩, . . . , |0, Ek,j⟩ . . . |0, EN,16⟩} (IV.2)

where|G⟩ = |G1, . . . , Gk, . . . , GN ⟩, with |Gk⟩ = |gk,1 . . . gk,j . . . gk,16⟩ and
|Ek,j⟩ = |G1, . . . , gk,1 . . . ψk,j . . . gk,16, . . . , GN ⟩. In this basis, the Tavis-Cummings Hamil-

tonian for mutilevels atoms is given by an arrowhead matrix, from which we can numerically
extract the D = 16×N+1 eigenstates ΨC

i and eigenvalues εi (i = 1, . . . ,D) of the atoms - cav-
ity coupled system. We can then compute the photonic weight of the eigenstates ΨC

i defined
as the weight of the |1, G⟩ component: PWi = |⟨1,G|ΨC

i ⟩|2. Finally, SP W can be calculated as
the sum of all photonic weights except the two largest ones: SP W = 1 −PWmax1 −PWmax2.

IV.3 Measuring the dark state contribution in experimental spec-
tra

As we probe the spectrum in the low-excitation limit, the number of photons collected is
low and the measured spectrum is strongly discretised as shown in Fig.IV.2IV.2. This prevents
us from directly extracting the PW of eigenstates exhibiting a low transmission. So we
find an experimental proxy for this theoretical quantity, that also characterises the degree of
coherence of the system: we measure the fraction Fout of photon counts outside a frequency
range ∆f/2π, in which most of the counts of the polariton resonances lie in the polaritonic
regime:

1) We define the typical frequency width ∆f/2π of the polariton peak in the polaritonic
regime (for Ω/2π ≥ 1000 MHz) as twice the standard deviation σ of the photon-count
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weighted frequency distribution. In this regime, we measure ∆f/2π = 140 MHz and
≈ 90% of the counts are within ∆f .

2) We separate the spectrum into two halves at the cavity frequency ωc. For each half of
the spectrum (±) we compute:

a) ω±, the barycenter of the photon-count distribution
b) the couplings Ω± = |ω± − ωc| and Ω = (ω+ − ω−)/2
c) the total number of counts Ntot,±

d) the number of countsNout,± that are outside the intervals [Ω±−∆f/2;Ω±+∆f/2].

3) Finally, we compute the fractions of counts outside of these intervals, Fout,± (respec-
tively Fout), for the two halves of the spectrum (respectively the total spectrum).

All these steps are illustrated on figure IV.2IV.2. The definition of ω± does not rely on a fit and
allows computing Ω even for multi-peak spectra in the disordered regime. To each coupling
value we can associate an effective atom number N = (Ω/g)2 to compare experimental and
simulation results.
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Fig. IV.2 Single shot experimental spectrum. As we probe the coupled system
in the low excitation regime, we collect few photons in transmission and the spec-
trum is discretised (orange dots). For each spectrum, we compute the fraction Fout

of photons (identified with black triangles) that lies outside of a frequency win-
dow ∆f/2π (green colored area), centered on each peak distribution (red and blue
dashed lines).
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IV.4 Across the transition from the disordered to the polaritonic
regime

We have introduced two quantities (SP W for the simulation, Fout for the experiment) that
account for the degree of coherence and protection of the cavity-atoms coupled system.
To explore experimentally the transition from the disordered to the polaritonic regime, we
measure ∼ 2000 transmission spectra for an increasing number of atoms N (from ∼ 10 to
550). The trap depth is U0 = 1040 ± 30µK and the temperature is T = 140 ± 20µK.
The cavity frequency is set equal to the average frequency of the corresponding coupling
distribution ρ(ω) (red distribution in figure III.1III.1): ωc = −970 MHz (this choice is justified
in appendix ??).

For each experimental spectrum, we compute Ω and Fout following the procedure de-
scribed in IV.3IV.3. We get a cloud of points (Ω,Fout), which we average with 30 MHz-bins of Ω.
We compare the resulting Fout values with the simulation of SP W . For each value of the atom
number N from 1 to 550 we draw N random atomic positions, deduce the associated values of
frequencies and cavity couplings (ωk,j ,gk,j) and compute the PW of the different eigenstates
as described in section IV.2IV.2. For each value of N , we average SP W over 300 repetitions, and
compute the corresponding coupling Ω = g

√
N . Both Fout and SP W are plotted on Fig. IV.3IV.3.

As expected, we find that the shape of Fout data closely traces the calculated SP W . We
interpret the common behavior of Fout and SP W in terms of two competing effects. As
N increases, the dimension (N + 1) of the Hilbert space of the system rises, and so does
the number of states available to carry part of the photonic excitation outside ∆f . The
collective coupling Ω also increases (scaling as

√
N), and spreads the PW s to eigenstates

close in frequency of Ω as long as the system stays in the disordered regime Ω ≲ ∆ω. Then,
above a certain value of the collective coupling Ωt/(2π) ≃ 300 MHz corresponding to N ≃ 25
atoms, the cavity protection effect starts to reduce SP W and Fout, which then decreases to
an asymptotic value for higher Ω. In the large collective coupling limit, SP W and Fout are
low, because the photonic weight - and thus the photon counts - concentrate in the two
polaritonic states. Even though SP W and Fout account for the same features of the system,
we insist that they cannot be strictly compared. Indeed, the exact values of Fout depend on
the chosen value of ∆f . However, after checking that the overall shape of Fout data is robust
against such a choice (see Fig. IV.4IV.4), we can assert that SP W and Fout are qualitatively
similar. Their shape is close to that of Npeaks in figure IV.1IV.1 (section IV.1IV.1), because the
number of resonances also relates to the overall coupling of dark states to the cavity.

To underline the role of cavity protection contribution, we simulate SP W for a Lorentzian
distribution with the same average frequency and HWHM width as the experimental one.
In this case (see in Fig. IV.3IV.3), after the initial increase, SP W stays on a plateau as no cavity
protection occurs. In this case, the number of eigenstates coupled to the cavity mode does
not depend on Ω but only on the width of the frequency distribution.

Finally, it is interesting to consider Fout,± separately, because the atomic frequency dis-
tribution is asymetric. In the two plots of Fig. IV.5IV.5, we show both experimental values of
Fout,±, as well as the simulated fractions SP W,± of the total photonic weight held by the dark
states on the ± halves of the spectrum. All three curves agree qualitatively. We note that
photonic weight fraction SP W is sensitive to the fine details of the atomic frequency distribu-
tion. Indeed, on SP W,−, the two peaks at Ω/2π = 300 ± 10 MHz and Ω/2π = 510 ± 15 MHz
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Fig. IV.3 Transition from the disordered to the polaritonic regime. For a given
atomic frequency distribution, we increase the number of atoms and thus the
collective coupling. Blue squares: measured Fout. The vertical error bars are
± σ√

Np
, where σ is the standard deviation of the Np points gathered within bins of

Ω/2π = 30 MHz . Beyond a collective coupling Ωt/(2π) ≃ 300 MHz, corresponding
to Nt ≃ 25 atoms, the fraction of photon counts outside the two polariton peaks
rapidly drops. Fout is closely traced by the simulated photonic weight SP W (red
circles): confirming that the off-peak transmission corresponds to dark states whose
photonic weight drops as faster coupling wins over disorder-induced dephasing. For
comparison, the inset shows SP W in the case of a Lorentzian resonance frequency
distribution. Since no cavity protection occurs in this case, SP W remains high at
large collective coupling.

correspond to two lobes of the distribution (see the upper plot of Fig. IV.5IV.5).

As mentioned earlier, an interesting parallel can be made between our study of cavity
protection and a complentary study with many analogies, performed simulatenously, and
reported in [5454]. The setup is shown in Figure 1 of reference [5454]. In this CQED-cold-atom
experiment 6Li atoms interact with a near-concentric Fabry Perot cavity, in the strong cou-
pling regime (Cmax = g2/(2κγ) = 3.2). As in our experiment, atoms are trapped in an
optical lattice commensurate with the probe lattice (1342 = 2 × 671 nm) to ensure maxi-
mal and homogeneous coupling to the probe. Here, however, the distribution of frequency
is generated from an extra dedicated incommensurate lattice, shown in blue Figure 1 of
reference [5454]. Due to its incommensurability, it induces a quasi-random distribution of
lightshifted frequencies. As the resulting distribution is bounded, this system is eligible to
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Fig. IV.4 Robustness of Fout with respect to the size of the exclusion window
∆f . Here we show Fout for several values of ∆f/2π chosen to define the exclusion
window, together with the simulated photonic weight SP W , as in Fig. 3 of the main
text (red dots). The result is rather robust: when ∆f/2π decreases, the shape of
Fout remains the same, and is shifted upwards as expected.

cavity protection (see section I.3.2I.3.2).
The ratio between the width of the frequency distribution W and the collective coupling

Ω = g
√
N is varied by tuning W with the intensity of the lightshifting lattice. Upon

driving the cavity mode, the cavity and the atomic responses are measured and expressed as
photonic χp and atomic χa susceptibilities to the probe (see Figure 2.b of reference [5454]). χp

is proportional to the cavity transmission, which we measure as well. The authors extract
supplementary information from the atomic excitation, and show that χa can be measured
from the population of an auxiliary level, in which part of the atoms are depumped during
the probing. Both the spectra of χp and χa (see Figure 2.c,d,e,f and k of reference [5454])
exhibit two well separated polaritons for a small ratio W/Ω (polaritonic regime). In the
disordered regime, for higher W/Ω, the polaritons tend to disappear, and a broad structure
appears in between, corresponding to the dark/grey states.

The authors also derive the photonic weight (PW) from χp, for both the dark states and
the polaritons. The results are shown in picture d, where the filled (respectively empty)
markers are the PW of the polaritons (respectively dark states). When W/Ω increases, the
polariton PW decreases and the dark state PW rises, as observed in our experiment (see
figure IV.3IV.3). Several differencies should however be mentioned:

1) Both experiments cover complentary ranges of W/Ω: In [5454] W is tuned down to 0,
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while we explored W > 2Ω, corresponding to "polaritonic" frequencies 1 entering the
distribution.

2) In our experiment, the distribution is smooth at its edges (see figure IV.1IV.1), compared
to that of [5454]. Due to this shape difference, the PW held by the dark states - in
the disordered regime - is quite differently spectrally distributed. In [5454], dark states
"show up" between the two "polaritonic" peaks . In our experiment, conversely the
dark states show up close to the two "polaritonic" peaks rather than in the middle of
the spectrum, which is clear on figure IV.1IV.1.b. This highlights that the precise shape
of the distribution does matter, even for bounded distributions2 which always exhibit
cavity protection of sufficiently high Ω.

To finish with, we report here only the part of the study of [5454] done for a cavity close to
resonance with the atoms. The competition between interactions and disorder is also studied
in the dispersive far-detuned regime, realising an effective Lipkin-Meshkov-Glick magnetic
Hamiltonian. As the disorder increase, the authors observe a transition from a ferromagnetic
to a paramagnetic phase.

IV.5 Conclusion
Cavity protection can be understood has a gapping mechanism that decouples from the
cavity the dark N − 1 middle eigenstates of the system, such that only the upper and
lower frequency eigenstates are involved in the dynamics. In that sense, the system behaves
as a frequency-homogeneous system, provided that the collective coupling is large enough
compared to the width of the frequency distribution.

Cavity protection is a continuous effect: the coherence of the coupled system increases
as Ω/∆ω increases. The corresponding progressive narrowing of polaritonic resonances has
been measured in all previous solid-state studies. Here we take advantage of our considerably
smaller number of emitter to study the increasing coherence for a mesoscopic number of
tens to hundreds of emitters. Such small numbers allow to fully diagonalise the frequency
inhomogeneous Tavis Cummings Hamiltonian and compute the photonic weight distribution.
The fraction of photonic weight held by the dark states accounts for the degree of decoherence
of the system. In experimental spectra, the strong discretisation prevents from measuring
the photonic weight distribution and we find a robust experimental proxy that accounts for
the spreading of the spectral density far from the polaritonic resonances. Both simulated and
experimental quantities agree qualitatively and map the degree of coherence of the system
as the number of emitters increases: the coherence initially decreases due to spreading of the
photonic weight among the dark states. For atom number higher than 25, cavity protection
starts to act and limit this spreading, increasing the coherence. For atom numbers higher
than 200, the photonic weight is shared by only the two polaritons and the system is in the
fully protected, polaritonic regime.

1We use this term, abusively in the disordered regime, to refer to the frequencies ±Ω, where one would
have two polariton peaks in the polaritonic regime

2A fact that theoretical studies have not pointed out, as far as we know.
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Fig. IV.5 Sensitivity of the photonic weight distribution to local features of the
frequency distribution. Fout,± and SP W,± are shown for each ± half of the spectrum,
together with the atomic frequency distribution (in green). Since this distribution is
asymmetric, the curves are slightly different for the two halves. Most interestingly,
for the low frequency half (upper graph), SP W,− is sensitive to small details of the
frequency distribution, having a peak at the position of each of the peaks of the
distribution, at 300 MHz and 500 MHz (see inset) respectively.



Chapter V

Generation of multiple tweezers
inside the fiber microcavity

An optical tweezers with a small waist is a convenient tool to trap a single atom probabilis-
tically [5555], when combined with resonant light. Once the tweezers is loaded with several
atoms, shining resonant light on it induces light-assisted collisions, which expell pairs of
atoms from the trap [112112], with a rate ∝ 1/V ∝ 1/(w4

0) [113113], where V and w0 are the
trap volume and waist of the tweezers. In a small trap volume, which we typically obtain
by generating tweezers with waist close to diffraction limit: w0 ∼ λ, the "collisional block-
ade regime" [5656] can be achieved, where the two-body losses are much faster than one-body
losses, and atom pairs are lost until one or no atom is left in the trap. A single atom can
thus be obtained with a probability of typically 50 % with conventional red-detuned optical
molasses light. This probability can be increased up to ∼ 90 % with tailored light-assisted
collisions and blue detuned light, as shown in references [114114, 115115].

Several methods where introduced to generate and control multiple tweezers simulate-
nously. The two most powerful approaches are based on Spatial Light Modulators (SLM)
and Acousto-Optic Deflectors (AOD). A SLM is a device able to imprint a phase mask to
light passing through. Light can be tailored to almost arbitrary structure at a later position
of interest along the optical path. And AOD is a acousto-optic crystal fed with a radiofre-
quency (RF) signal, turned to a soundwave in the crystal by a piezo. A laser beam passing
through the crystal will be diffracted by the refractive index modulation induced by the
sound wave, with an angle depending linearly on the frequency of the RF signal.

In the cold atoms community, SLM have been used to generate trapping potentials with
arbitrary shapes (such as a flat potential) and the advantageous possibility to reconfigure
the potential during the experiment [116116–118118]. The team of Antoine Browaeys at Institut
d’Optique was the first to use a SLM to generate arrays of tweezers traps for individual atoms
with an almost arbitrary geometry, first in 2D [119119] and later in 3D [5959]. In references [5757, 5959],
the SLM-generated static tweezer array is combined with a single moving tweezers controlled
by a 2D AOD and a tunable lens (to tune the tweezers focus along the 3rd dimension) to
rearrange single atoms within the SLM array of tweezers and generate almost 100 %-filling
fraction in the aimed tweezer array, starting from a stochastically 50 %-filled larger array.
At about the same time, the group of Mikhail Lukin at Harvard University developped a

73
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method to rearrange ≈ 50 single atoms in an 1D array of tweezers generated by an 1D
AOD [5858]. A 1D AOD can generate multiple tweezers when driven by a multi-frequency RF
signal. Destructive interferences prevent from generating such arrays, except if the relative
phases and amplitudes of the frequency components are carefully optimised, as shown for the
first time in reference [5858]. Later, the Lukin group implemented a 2D tweezers architecture,
similarly based on a SLM and a 2D AOD [6060].

Without these rearrangement techniques, the probability to stochastically fully load an
array of N tweezers with N single atoms is pN , where p is the single tweezers loading prob-
ability, roughly equal to 50 % when the light-assisted collisions are produced by a standard
red-detuned molasses. This exponential decay makes experiments with large N impractica-
ble. Thanks to the rearrangement of single atoms in the arrays, both group pioneered the
deterministic generation of almost perfectly filled single atoms arrays in 1D, 2D and 3D,
opening the way to scalling up N . This was crucial for implementing quantum simulations
with a few hundreds of Rydberg atoms (256 is [6060], 196 in [6262]), entering the regime where
classical computation is intractable.

For our CQED experiment, we decided to implement tweezers in and close to our fiber
cavity with AODs, since they are rather convenient to use and enable fast reconfiguration of
tweezers arrays. As compared to the previously mentioned experiments, we need to align and
focus the tweezers very precisely at the position of the micrometric cavity mode, which has
been a major challenge. Already when mounting the aspherical lens producing the tweezers
in the vacuum cell, the lens has been positioned with a lateral precision of a few tens of
micrometers, as described in [8989].

In this chapter, section V.1V.1 describes the laser system and the optical layout that we
have setup to generate tweezers in the microcavity, section V.2V.2 presents how we generate
multi-frequency RF signals, with optimised phases, for multi-tweezers operation of the AODs
and section V.3V.3 presents the results achieved with this tweezers setup.

V.1 Optical system
In this section, we will first present the optical performances of the high numerical aperture
lens that we have set on top of our microcavity (V.1.1V.1.1). Then we will describe our laser
source (V.1.2V.1.2), the full optical layout (V.1.3V.1.3) and the alignement method we used (V.1.4V.1.4)
for focusing multiple tweezers inside the microcavity.

V.1.1 A high numerical aperture lens
We have set a high-resolution microscope to produce optical tweezers with submicron waists
inside the fiber cavity, and furthermore address and image individually the intra-cavity
trapping sites. The objective of this microscope is a single commercial molded aspherical
lens (LightPath Technologies, Inc 352240), with numerical aperture NA = 0.5, focal length
f = 8 mm and a working distance of 5.7 mm.

This objective, which has been characterized in [120120] was chosen because:
1. it is diffraction limited for both 87Rb D2 line fluorescence imaging (780 nm) and our

tweezers beam (808 nm) wavelengths.
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2. for the imaging its resolution is small enough to resolve neighoor intra-cavity trapping
sites, over a field of view corresponding to several tens of sites.

3. its working distance is large enough to be compatible with the mounting of the fiber
cavity.

It has been rigidly mounted above the fiber cavity, inside the vacuum chamber [8989]. A
SNOM tip II.2II.2 was used as a point-like source (1) to caracterize its optical performances at
780nm and (2) to align the lens with the cavity mode (see figure V.1V.1):

1. The point spread function of the microscope was measured to check the diffraction-limit
operation of the lens in our setup. Over a range of 60 µm perpendicularly to the optical
axis its Full Width at Half Maximum (FWHM) is 0.80 ± 0.02 µm (see figure V.2V.2). It
corresponds to a Strehl ratio S > 0.95, which confirms the diffraction limited operation
(conventionnally defined by S > 0.8). The FWHM is close to the lattice parameter
a = 780 nm and should allow to resolve individually 75 trapping sites without any extra
analysis. Indeed, our ratio FWHM/a ≈ 1.02 is quite comparable to that of the first
quantum gas microscope [121121] (FWHM/a ≈ 0.94). Using a deconvolution algorithm,
we could resolve the 180 sites corresponding to the length of the cavity, L = 145 µm.
Indeed, figure V.2V.2 shows that over a range of 160 µm, FWHM < 1.0 µm ⇒ FWHM/a
≈ 1.3 , a ratio similar that of the second pioneering quantum gas microscope experiment
[122122], where deconvolution has been implemented.

2. The FWHM increases as the SNOM tip is moved away from the optical axis. This was
used to find the optical axis of the lens with a ±10 µm uncertainty, and thus to set
the transverse position of the lens with respect to the cavity. The same technique was
used to optimise the distance between the lens and the cavity.

The mounting of the aspherical lens on top of the cavity, its alignement and the charac-
terisation of its optical performances were all done by Francesco Ferri and are presented in
more details in his thesis manuscript [8989].

V.1.2 Tweezers beam generation
We have seen that the high NA lens that we have set in the vacuum chamber can serve as
an objective for a high-resolution microscope. In the reverse propagation direction, it can
also be used to generate sub-micrometer waist tweezers. The tweezers light is generated with
a 808 nm single mode laser diode (Scheaumann M9-808-0150) mounted with a diffraction
grating in a Littrow configuration. We send about 20 mW to seed a tapered amplifier
(Toptica Eagleyard EYP-TPA-0808-02000-4006-CMT04-0000) that can deliver up to 1.4 W.

Each tweezers is a red detuned far-off resonant trap (FORT). The potential expression
is given by equation II.3II.3, with P = 0 as the tweezers’ polarisation is linear.

Then, the power of a gaussian beam of waist w0 and peak intensity Imax is P =
πw2

0Imax/2: with w0 = 0.9 µm (see section V.3V.3), we need P ≈ 0.85 mW to achieve a
trap depth U0 = Udipole(⃗0) = 1 mK. Choosing our tweezers wavelength (808 nm) quite close
to the D1 (795 nm) and D2 (780 nm) lines allows to work with more than 100 tweezers
(1 mK deep) with a reasonable power (more details in section V.3V.3).
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Fig. V.1 a) Test setup used to align the objective aspherical lens with respect to
the cavity mode, using a SNOM tip. b) SNOM tip used as a point-like source. The
diffraction pattern is visible at the tip, which has a 100 nm aperture. Figure from
[8989].

With such wavelength, one can be concerned about scattering of photons from the dipole
trap, which induces heating: in the limit of a low saturation I ≪ Isat, the scattering rate
Γsc is:

Γsc = I(r⃗)Γ 3

8Isat

( 1
3(ωdip − ωD1)2 + 2

3(ωdip − ωD2)2

)
(V.1)

The average photon scattering heating power is Pheat = 2Erec
Γsc
2π , where Erec = ℏ2k2

2m is
the recoil energy.

Thus the typical time tesc for the atom to escape from the dipole trap is:

tesc = U0
2ErecΓsc/(2π) (V.2)

For a trap depth of U0 = 1 mK, tesc ≈ 150 s, which is much larger than the time-scales
of our experiments (tens to hundreds of ms). Also it means that trap photon scattering is
not the main loss mechanism.

V.1.3 Acousto-optic deflector setup
The high NA lens can be used, together with acousto-optic deflectors, to generate multiple
tweezers, well suited to produce 1D and 2D arrays of single atoms. For this purpose, the
optical setup fulfils the following conditions:

1. The AOD is conjugated with the aspherical lens. Thus beams diffracted with different
angles at the output of the AOD cross at the position of the aspherical lens.
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Fig. V.2 a) Left: PSF measurement on the optical axis. Red data points cor-
respond to a 1D cut, which is fitted with an Airy profile (blue line), provinding
FWHM = 0.80 ± 0.02µm. Insets correspond to measured and ideal 2D PSF. Right:
FWHM of the PSF VS z distance to the optical axis. Figure from [8989]

2. At the position of the aspherical lens, the tweezers beam waist is 4.5 mm, larger than
the radius of the lens (4 mm), so as to be diffraction-limited by the lens and achieve the
smallest possible waist. Such waist is larger than the AOD crystals. Thus we use collimated
beams with a smaller waist w = 1.7 mm. After the crystals, we enlarge them to the desired
size with a telescope of magnification M = 2.5.

3. The lens was designed for laser diode collimation and can be operated at the diffraction
limit with a collimated outgoing beam only with a glass slab between its focal point (laser
diode) and the lens. When used without such slab, it was shown in [120120] that diffraction limit
operation can be retrieved by using a slightly diverging beam going out of the aspherical
lens, when the lens is used for imaging. We use it with reverse propagation, to focus a
tweezers, so we need a slightly converging beam impinging on the lens to achieve diffraction-
limited waist size for our tweezers. From a ray optics simulation of our layout using software
OSLO, from Lambda Research Corporation, we compute that required gaussian beam angle
is: θ = atan( λ

πω0
) = 0.4◦. This can be achieved by adding a positive lens (which we will

call "convergence lens" from now on) at a point conjugated to the AOD Because of the non-
negligeable size of the AOD casing, we have to use a M=1 telescope image of the AOD,
where we put the convergence lens.

A specificity of our setting as compared to "free" space tweezers experiments is the re-
quirement for the tweezers focus to be at the center of the cavity mode. As the tweezers
propagation axis is perpendicular to the cavity axis, the precision of the tweezers focus po-
sitionning needs to be better than the cavity mode waist 5.7 µm. For this, we use a lens
(Optotune ELC-10-30-TC) with a tunable focal distance, in the range [50 − 120] mm, to
tune the tweezers focus position over 70 micrometers, after the aspherical lens.

Figure V.4V.4 shows the full optical setup. The fibers 1 and 2 are outcoupled with two
different lenses to get beams of waist 1.7 mm and 0.7 mm respectively. The large beam (red
on figure V.4V.4) gives sub-micron tweezers, whereas the thin beam (light orange on figure
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Fig. V.3 Simplified optical layout. The M = 1 telescope consists of two f =
200 mm achromats (New Focus PAC32AR.16). The M = 2.5 is made of one similar
f = 200 mm achromat, and a f = 500 mm achromat (New Focus PAC091AR.14).

V.4V.4) gives tweezers with larger waist (≈ 5.5 µm), with an extra f = 500 mm lens, located
500 mm before the AODs, that imprints a small convergence to have a smaller waist on the
high NA lens. These larger tweezers can trap thousands of atoms, and have been used to
check the alignement (see section V.3.4V.3.4) and to perform preliminary measurements with
the cavity (see section VI.4.1VI.4.1). Large and thin beams are combined with polarising beam
splitter P1 and carefully superposed over the entire optical path.

Together with the half-wave plates at the fiber outputs, P1 splits the power between
paths going through 1D and 2D AODs. Before each AOD, another half-wave plate allows to
turn polarisation so as to tune the AOD diffraction efficiency. The beams going out of both
AODs are recombined at P2, after passing the first lens of the M=1 telescope. They then
propagate with orthogonal polarisations, which prevents interferences between tweezers from
different AODs, when they are superposed inside the cavity. For example, this is required
for transferring atom(s) between 1D AOD tweezers and 2D AOD tweezers.

After the second lens, the beams is sent to the top breadboard located above the vacuum
science chamber, using several 45◦ mirrors and an intermediate horizontal breadboard (see
figure V.5V.5 for a 3D representation of the setup). The tunable lens is set in one of the parts
of the setup that have a vertical optical axis. This is recommanded by the manufacturer to
limit the effect of gravity on the deformable polymer of which the lens is made, and thus
prevents wavefront distorsion. The beam passes through the M=2.5 telescope and arrives in
the region of combination.

Using the two identical dichroic mirrors D1 and D2 (Thorlabs DMSP805L), we combine
and separate 3 different beams (see the table in figure V.4V.4 for transmission values):

1) The 808 nm tweezers beam. Most of its power is reflected on dichroic mirror D1
towards the vacuum science chamber below, where it converges in the fiber cavity. A few
percent of its power (represented in lighter colors on figure V.4V.4) is transmitted through D1,
passes through a high NA lens identical to the one in the vacuum chamber. The subsequent
tweezers are imaged on a CMOS camera (C1), with a M = 50 microscope made of a com-
mercial objective (Mitutoyo Plan Apo x50) and a lower NA achromat. The field of view
(130 x 110 µm) is almost as long as the cavity and the pixel size is 0.1 µm. This "parallel"
tweezers imaging setup is used 1) to check that we achieve diffraction limit, thus validating
most of the optical setup (which it has in common with the in-vacuum aspherical lens) and
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Fig. V.4 Schematic of the full optical setup from optical fiber to vacuum science
chamber. Levels 1, 2 and 3 are shown in the 3D CAD scheme of the setup (figure
V.5V.5)

2) to measure and control the relative position of tweezers from both AODs. This setup
is required because the geometry of our apparatus prevents us from collecting and imaging
tweezers light going through the cavity.

2) The 785 nm guide beam (see section II.1.4II.1.4) is collimated at the fiber outcoupler, en-
larged with a M = 2.5 telescope and purified in polarisation with P3. An extra 500 mm lens
imprints a slight convergence on the beam such that the beam diameter is smaller on the
aspherical lens, resulting in a waist of 50 µm inside the cavity, where it converges.
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Fig. V.5 3D CAD design of the tweezer optical setup.

3) The 780 nm fluorescence photons emitted by the atoms and collected with the high
NA lens. As explained in section V.1.1V.1.1, this lens can indeed serve as the objective of a
microscope to perform fluorescence imaging of the atoms. Figure V.6V.6 shows the current
microscope setup. The objective is associated with a few lower NA achromats to image the
atoms on a low-noise sCMOS sensor (Andor Zyla 4.2 PLUS).

The overall magnification is M = 11. With this moderate value, each camera pixel
corresponds to 0.6 µm in the intra-cavity plane. This value is well suited for tweezers single
atoms imaging: we can set the distance between tweezers to a few micrometers, image each
tweezers on few pixels (from 1 to 2x2 = 4 in our case, depending on atom temperature) to
achieve a good signal-to-noise ratio and reduce fluorescence imaging duration. Until now,
the imaging setup described here was not used for fluorescence detection but served as a
means of aligning the tweezers beams with the cavity, which we will describe in the next
section.

V.1.4 Alignement of the setup
The alignement of the AOD setup aims at:

o achieving good conjugation of the AOD with the aspherical lens, 2 meters away.

o overlapping beams going through 1D and 2D AODs.

o overlapping large and thin beams.

o aligning all tweezers beams with respect to the fiber cavity.



V.1 OPTICAL SYSTEM 81

f = 250mm f = 100mm

500 910 1060 1105 Position (mm)0

High NA-
aspherical lens
(objective)

f = 50 mm

M = 0.5

sCMOS
sensor

-8

Intra-cavity
plane 

to image

Fig. V.6 a) Schematic of the intra-cavity microscope. The first f = 250 mm achro-
mat produces an intermediate image of the atoms, which is then conjugated to the
camera sensor with a M=0.5 telescope. The separation between the 250 and 100mm
lenses (410mm) is more than the sum of their focal distances (350mm) to ensure
that the beam conjugated to the sensor is slightly diverging out of the high NA
lens, allowing for diffraction-limited resolution (as explained in section V.1.3V.1.3). The
overall magnification is 11.

o setting the axes of diffraction of the AODs to match the axis of the cavity so that the
array of tweezers is homogeneously coupled to the cavity.

Unlike the 1D AOD, the 2D AOD has two mirrors before the 1D/2D recombining cube
P2 and after the first 200 mm lens. Thus it is easier to align the 2D AOD with respect to the
1D AOD using these mirrors, since it does not spoil the alignement through the first 200 mm
lens. Similarly, the thin beam can be aligned with respect to the large beam since it has four
extra mirrors before combining cube P1. Thus the large beam going through the 1D AOD
will serve as a reference beam, with respect to which we align all other beams. Therefore its
alignement with the fiber cavity is the critical step of the setup alignement. Since we cannot
collect the tweezers light after it goes through the cavity, we use another method and repeat
the two following steps until the procedure converges:

* we use the mirror closest to the cavity to align the beam with respect to the cavity
mode, using the diffusion pattern of tweezers light on the fibers, observed with camera
C2 (see figure V.7V.7).

¤ Perpendicularly to the cavity axis: we voluntary shift an array of tweezers onto
one of the fibers and tweak the mirror to center the tweezer array with respect to
the long edges of the fibers (figure V.7V.7: a and b)

¤ Along the cavity axis: with an array of tweezers long enough we see part of the
extremal tweezers light diffused on the cavity fibers. We tweak the mirror so as
to equilibrate the amount of diffused light on both fibers. (figure V.7V.7:c)

* we use the second closest mirror (excluding the dichroic) to center the tweezers beam
with respect to the aspherical lens. The beam is slightly larger than the lens aperture,
so we equilibrate the ring of diffused light around the lens.
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a

b

c

d

e

f

Fig. V.7 Diffusion of tweezers beam(s) on the cavity fibers, which we use for
alignement. An array of 9 tweezers extending over 130 µm (slighlty less than the
cavity length) is generated with the large (a,b,c) / small (d, e) beam. With the
last mirror of the setup, it can be translated left/right to cover one of the fibers
(a/b) so as to check its centering with respect to the fiber, perpendicularly to the
cavity axis. Then we translate it back to the center of the cavity and equilibrate the
residual power diffused on the two fibers (c). We can also correct the misalignement
of the array with respect to the fiber axis. Picture d: before / e: after (slight) angle
correction. Picture f: Full field of view of the camera. These pictures were taken
with a different camera (FLIR BFLY-PGE-23S6M-C) that we used before. Its
pixel size is very similar but its field of view is slightly smaller: 1020x640 µm VS
1200x1200 µm currently (Andor Zyla 4.2 PLUS)

V.2 Acousto-optic deflector radiofrequency signals
To control both the positions and the trap depths of multiple tweezers, we feed the AODs
with a multi-frequency Radio Frequency (RF) waveform:

S =
N∑

k=1
Ak cos(ωkt+ ϕk) (V.3)

At the output of the AOD, each frequency component ωk gives rise to a beam diffracted with
a specific angle, depending linearly on ωk, which converts to a tweezers at specific position
in focal plane of the high NA lens. The trap depth of the tweezers is proportional to its
peak intensity, thus to A2

k. We generate multi-frequency RF waveforms with an arbitrary
waveform generator (AWG): Spectrum Instrumentation M4i6622-x8. It synthesizes directly
the waveform(s) for 1D AOD (respectively 2D AOD) in the frequency range 80 ± 25 MHz
(respectively 100 ± 20 MHz), with sampling rate 600 MHz. We currently use the AWG in



V.2 AOD RADIOFREQUENCY SIGNALS 83

the standard mode: waveforms are fully loaded in the card at once and then played at each
experimental cycle, triggered by our sequencer. In this mode the maximal duration of the
waveforms is set by the 4096 MBytes memory: with 2 bytes per sample, 4096 MBytes =
2048 MSamples. Then, with 4 channels and a 600 MHz sampling rate, the waveforms
maximal duration is ≈ 0.85 s. It has been enough for all the experiments described in this
manuscript. For longer experimental sequences, the card can be streamed continuously at
high rates, thanks to its PCI Express interface. In that case, the card memory is no longer
a limit.

At the output of the AWG, we get rid of the aliased frequency components by filtering
signal outside of the frequency ranges 50 − 100 MHz (respectively 50 − 150 MHz) for the 1D
AOD (respectively the 2D AOD). The filtered RF signals are then amplified up to 2 W of
power and sent to the AODs. Power limitors prevent damaging the amplifiers with too high
input powers.

As observed in [5858], imperfections in the RF circuit and the AOD lead the optical output
of the AOD to be non-linear with respect to the RF signal S(t). To the lowest order of
nonlinearity, new frequency components are generated at sum (ωk +ωj) and difference (ωk −
ωj) frequencies. These components are far from the original frequencies ωk. However, the
next order of nonlinearity gives rise to frequencies such as 2ωk − ωj , close to the originals
(or sometimes equal to the originals, when S is a frequency comb to generate a tweezer
array with regular spacing). They can then interfere with the initial frequency component
ωk. Such interferences change the relative intensities of the tweezers in the array, leading to
inhomogeneity of the trap depths.

It is possible to reduce these undesirable interferences by tuning the phases ϕk. We follow
the solution proposed in [5858], except that we start with phases drawn randomly within [0; 2π],
rather than all equal to 0. Then we compute the sum of all lowest order frequency difference
terms:

J(t) =
∑
i,l

cos(ωit+ ϕi − ωlt− ϕl) (V.4)

Finally we optimize each phase ϕk separately to minimize
√∑

t J(t)2 and reduce these in-
terferences.

Let us now consider an array of 40 tweezers with a distance of 3 µm between the tweezers
(we will justify this choice in section V.3.1V.3.1). We generate this array with a waveform with
frequency separation δω/2π ≈ 600 kHz between the 40 tones ωk. The amplitudes are equal:
Ak = 1 and the phases are either 0 (a) or random (b) or optimised (c). Pictures a, b
and c of figure V.8V.8 correspond to these three choices of phases. For each picture, the top
graph shows the multi-frequency waveform S(t), in purple, and the bottom graph shows
J2(t), which we want to minimize, in green. Between the two graphs, we display the power
ratio ⟨S(t)2⟩t/S

2
peak, where ⟨S(t)2⟩t is the time-averaged power, and S2

peak = max[S2] is the
maximal instantaneous power. This ratio reflects the power contrasts of the waveform and
has a maximal value of 50 %, for a single frequency waveform.

a) With phases equal to 0, S(t) has a period 2π/δω and exhibits strong variations of
power: the instantaenous power ∝ S2(t) shoots up when all the frequency tones are
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in phase. Thus the power ratio is low: 1.2 %. J2(t) has the same periodicity and a
similarly strong power contrasts.

b) With random phases, the power contrasts are significantly reduced for both S(t) and
J2(t), because there are no such constructive interferences as with phases equal to zero.
Thus the power ratio is improved by a factor ≈ 6.5.

c) After optimising the phases, the power contrasts are further reduced and the power
ratio improves by a factor of ≈ 2.7.

By tuning the phases, power contrasts are signicantly reduced, which improves the AOD
diffraction efficiency, and thus of the total power available for tweezers inside the cavity.
Indeed, the Spectrum card rescales the waveform S so that the maximal instantaneous RF
voltage Speak = max |S| matches a user-defined limit Slim, which can be set according to
the RF amplifier specifications. So for a fixed value of Slim the average RF power ⟨S(t)2⟩t

scales as 1/S2
peak. Consequently, optimising the phases reduces Speak and thus increases the

average RF power and the AOD diffraction efficiency.
With the same 40-frequency RF signal, we measure the diffraction efficiency for the 3

configurations. The total power diffracted increases by a factor of ≈ 10 (from 2.5 % to 25 %)
when going from phases equal to 0 to random phases, and further by a factor of ≈ 2 (from
25 % to 50 %) when going from random to optimised phases. The total improvement from
the naive setting (phases equal to 0) to optimised phases is 20. These numbers match ap-
proximately the power factors computed from the purely numerical wavefunctions : 6.5, 2.7
and 17.6, which confirms experimentally that fine tuning the relative phases is crucial to
achieve the power required to generate a reasonable number of tweezers, as we will see in
section V.3.3V.3.3.

V.3 Results
Now that we have described both the optical and RF setups with which we generate multiple
tweezers, we will discuss their performances, in terms of:

o waist size (V.3.1V.3.1).

o waist and trap depth homogeneity when generating multiple tweezers (V.3.2V.3.2).

o the maximal number of tweezers that we can produce (V.3.3V.3.3).

We will finally describe the extra capabilities offered the larger waist tweezers (V.3.4V.3.4)

V.3.1 Tweezers waist
For the 2D AOD1, in the high NA lens focal plane, the working optical field for the results
shown in this manuscript is a rectangle of size l × d, where:

1All the results of the section V.3V.3 are for the 2D AOD. The 1D AOD gives very close results, with slighlty
smaller waists, probably due to better conjugation of the aspherical lens to the sole crystal of the 1D AOD,
as compared to the two crystals of the 2D AOD.
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Fig. V.8 Effect of phases ϕk on the waveform of a RF frequency comb S(t), and
on J(t)2. J(t) has a period of 2π/δω in the 3 cases. With phases equal to zero
(a.) J(t)2 exhibits strong peaks (please notice that the y axis values should be
multiplied by 106) at times where the tones of S(t) are in phase. With random
phases (b.), these peak values are strongly reduced. After phase optimisation (c.),
the strongest peaks are further reduced to a level where they are similar to other
peaks in the signal. The great changes in J2(t) illustrate how much phase tuning
can affect the non-linearities and subsequent interferences, within the simple model
used here.

* l = 120 µm is the length along the cavity axis. It is chosen smaller than the length
of the cavity (L = 145 µm), with security margin to keep the tweezers away from the
dielectric coatings of the fiber mirrors. It allows to fit an array of 40 tweezers with
distance of 3 µm between tweezers.

* d = 20 µm is the distance between the cavity axis and the tweezers storage register
axis. At such distance, the coupling g to the 780 nm probing field is reduced by a
factor exp[−(d/w0)2] < 10−5. Thus the interaction between an atom in the register
and the cavity is completely negligible.
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With the parallel imaging setup (camera C1 on figure V.4V.4), we measure the radial
intensity profiles of optical tweezers, focused in this plane, at all corners and at the center
of the working optical field.

First, we notice that all profiles are quite spherical. Figure V.9V.9 shows the most spherical
(left picture) and the most elliptical (right picture) tweezers. To be more quantitative, we
fit each profile with a 2D elliptical gaussian function, of the form a(x−x0)2 + 2b(x−x0)(y−
y0) + c(y − y0)2, and get the waist sizes along the ellipse eigenaxes: wa and wb. The most
circular tweezers has wa/wb = 1.01, whereas the most elliptical has wa/wb = 1.24. This
residual ellipticity is due to optical aberrations and astigmatism of the gaussian beam.

Then, the waist values are quite uniform over the working field. For each image, we
compute w0 = wa+wb

2 . Its mean value over all images is 0.81 µm and the standard deviation
is 0.04 µm (5 % relative fluctuations). As we will see in section VI.3.1VI.3.1, 0.85 µm is an upper
bound for the value of w0 inside the fiber cavity, compatible with the values measured with
the parallel imaging setup, and presented in this section. The corresponding Full Width at
Half Maximum is FWHM =

√
2 ln(2)w0 ≈ 1.00 µm. This is 1.25 larger than the FWHM

of the point spread function, 0.80 µm (quoted in section V.1.1V.1.1) because of the residual op-
tical aberrations (our setup being much more complex than the one used to caracterise the
point spread function of the high NA lens, shown in figure V.1V.1) and because of the gaussian
intensity profile, which enlarges the focused beam spot as compared to a uniform intensity
profile. A similar enlargement of 1.1 was observed in [120120], using the same lens. Our waists
values are comparable to that obtained in experimental setups with similar wavelengths and
objective NA [5858, 120120]: they are satisfactorily close to the diffraction limit and small enough
for collisionnal blockade.

V.3.2 Trap depth equalising

We consider here an array of 40 tweezers with separation of 3 µm between adjacent tweezers,
covering a distance l = 120 µm. We start with the multi-frequency RF signal S with
phases optimised with the purely numerical procedure explained in section V.3.2V.3.2, and equal
amplitudes Ak. Figure V.10V.10, picture a. shows an image of the resulting tweezer array in
the focusing plane. We fit each spot with a 2D gaussian profile to get the peak intensity
Ik and the waist w0,k of each tweezers (Picture b). Graph c. shows the peak intensity Ik

(normalised to the maximal value) and the waist w0,k of the 40 tweezers. The waists are
rather homogenoeous, within the range 0.75 − 0.9 µm. The peak intensity Ik varies of up to
40 %, with a clear position dependence, which may result from a combination of frequency-
dependent AOD diffraction efficiency, tweezers-dependent transmission through the setup,
and most probably non-linear effects and interferences as mentioned in section , which are
probably not be fully compensated by the phase optimisation, which relies on a simple model.

And indeed, Ik variations are mainly unrelated to waist w0,k variations. The Ik dis-
tribution has a relative standard deviation σI = 11 %. Since Ik ∝ 1/(w2

0,k), we compute
Pk = Ik × w2

0,k, which is proportionnal to the tweezers power. The relative standard de-
viation of power, σP = 9 %, is non-zero and almost as large as σI . Thus, most of the
inhomogeneity in intensity is not due to the waist inhomogeneity, but rather to power inho-
mogeneity because of the mechanisms we have just mentioned.
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Fig. V.9 2D Intensity profiles of optical tweezers at their focus, together with
1D cuts along the x and y camera axes. Both tweezers are generated by the 2D
AOD, at two different corners of the working optical field. They are fitted with
2D (contour lines on the image) and 1D gaussian functions. The 2D fit contains
information ellipticity, contrary to the 1D cut fits: for instance, for the bottom
tweezers: wa/wb = 1.24 whereas wx/wy = 1.03. The small ellipticity is due to
residual optical aberrations. The top tweezers shows a more spherical tweezer:
wa/wb = 1.01.

Since the tweezers trap depth U0 is propotional to the peak intensity Ik, it is necessary
to equalise the peak intensities so as to work with equal trap depths, which result in equal
lightshifts, and thus homogeneous optical manipulation (cooling, pumping, ...) for the all
tweezers in the array. Therefore we tune the RF amplitudes Ak to compensate the peak
intensity Ik inhomogeneities. The procedure is repeated until σI saturates, which requires
generally less than 10 repetitions. Figure V.11V.11 shows Ik distribution before and after the
tuning. The intensity inhomogeneity σI is reduced from 11 % to 2 %.

V.3.3 Power budget

Let us compute the maximum number of tweezers than we can work with. We start with
1 W of power after the T.A., of which half is available at the inputs of the AODs. Indeed,
we loose 50% of the power in fiber coupling. Indeed, the mode at the output of the T.A. is
highly elliptical and we correct part of it with several cylindral lenses. The resulting mode
at the input of the fiber is not perfectly gaussian. We split this power equally between the 2
AODs. Then, in the multi-frequency regime the diffraction efficiency is ≈ 50%. Finally, the
transmission from the AOD outputs to the glass cell is 70%. Thus we have 1000×0.53×0.7 ≈
90 mW available in the science chamber, for each AOD. This is enough to get more than 100
tweezers with a trap depth of 1 mK. We have seen that with 3 µm separation we can fit 40
tweezers inside the cavity so the power is not a limitation.
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Fig. V.10 Analysis of array of 40 tweezers, separated by 3 µm. The distribution
of maximal intensities Ik is shown as blue squares, for equal amplitudes Ak. One
can see that most of the intensity inhomogeneity among the tweezers is related
to inhomogeneity of the tweezers power rather than the waist (see main text for
details).

V.3.4 Large tweezers images for alignement and preliminary tests
As we mentioned in section V.1.3V.1.3, the thin beam of the AOD setup gives tweezers with a
larger waist w0 ≈ 5.5 µm, that trap typically 1000 atoms with 1 mK depth. Such number
of atoms can easily be detected with absorption imaging. Thus these tweezers provide a
convenient way of testing the alignement of the tweezers with the cavity, the 3D steering
of the tweezers position and the generation of multiple tweezers simultaneously (see figure
V.12V.12 for more details).

V.4 Conclusion
Our CQED setup has been designed with a high numerical aperture lens aligned with the
micrometric cavity mode. It allows to focus sub-micrometer tweezers (w0 ≈ 0.85 µm),
close to the diffraction limit, inside the cavity. Our tweezers are generated from a diode laser
feeding a tapered amplifier, at 808 nm. The optical layout combines paths of two beams with
different sizes (for submicron tweezers and larger 5.5 µm tweezers, used for calibration and
preliminary tests) and two AOD systems (1D and 2D). All 4 beams are carefully aligned with
the cavity mode. Multifrequency RF signals with optimised relative phases and amplitudes
are generated by a AWG. They feed both AODs to generate multiple reconfigurable tweezers
arrays in 1D and 2D. We are able to produce, simultaneously with both 1D and 2D AODs,
up to 100 tweezers, with a conventional trap depth of 1 mK. This allows experiments with
tens of single atoms inside and close to our strong coupling cavity.
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Fig. V.11 Effect of amplitude optimisation on the homogeneity of the tweezers
maximal intensity in an array of 40 tweezers separated by 3 µm. The tweezers peak
intensity relative fluctuations are reduced from 11 % to 2 %.
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Fig. V.12 Absorption imaging of clouds of atoms trapped in large tweezers. For
a trap depth of 1 mK, we have 500 to 1500 atoms in each tweezers, depending on
the position of the tweezers with respect to the cloud of atoms from which it is
loaded. Absorption imaging allows to image such numbers of atoms. We use these
images to 1) correct for misalignement of the tweezers propagation with respect to
the cavity axis: in picture a, the tweezers is slightly tilted counter-clock wise. This
is corrected on picture b. 2) tune of the tweezers position (e.g. along the cavity
axis on pictures c and d). 3) test the generation of multiple tweezers (e,f,g and h).
More details about multi-tweezers generation in section V.2V.2



Chapter VI

Strongly coupling a tweezer single
atom and the microcavity

In this chapter, we first demonstrate the ability of our cavity to efficiently detect single
atoms (VI.1VI.1), thanks to strong coupling. We then show how we reach the so-called "collisional
blockade" regime, where a single atom is loaded in a single tweezer, produced by the 2D AOD
(section VI.2VI.2). Then we characterise this single atom in the tweezer by measuring the trap
frequency and the temperature (VI.3VI.3). An important requirement for our CQED platform
is to maximise the coupling of the atom to the cavity. We present several methods for this
optimisation (VI.4VI.4). We demonstrate the strong coupling of a single atom to the cavity,
with a vacuum Rabi splitting measurement (VI.5VI.5). Finally, we demonstrate the collisional
blockade in an array of a few tweezers (VI.7VI.7), which is the first step towards manipulating
multiple single atoms within our dual-AOD cavity platform.

VI.1 A single atom hyperfine state detector
We saw in section I.1.4I.1.4 that probing the cavity and measuring the transmission constitute
a fast and quantum non-demolition measurement of the atomic hyperfine state. Together
with reliable pumping in the hyperfine state coupled to the cavity, this ability turns to a
measurement of the presence of an atom, which is used in this thesis to detect if there is
an atom in the tweezer. In this first section, we verify the single atom hyperfine-detection
ability of our micro-cavity for a single atom in the intra-cavity lattice trap, as a preliminary
for single atom detection in the tweezer.

VI.1.1 Micro-wave single atom extraction
In this section we describe how the cavity is used as a single atom hyperfine state detector.
We test this ability with a method used in earlier experiments in our group [7373, 7474]. It
starts with the preparation, in the cavity trap lattice, of a small ensemble of Na atoms in the
Zeeman sublevel F = 1,mF = 1, and no atom in F = 2, using the tools presented in section
II.3.3II.3.3. The cavity is resonant with the transition F = 2 → F ′ = 3. We then apply a series
of Ntrials micro-waves pulses resonant with the transition F = 1,mF = 1 → F = 2,mF = 2,
with a probability p for each atom to be transferred to F = 2,mF = 2. After each micro-
wave pulse, we measure the cavity transmission with a probe beam on resonance with both

91
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the cavity and the F = 2,mF = 2 → F ′ = 3,m′
F = 3 transition. A low value of transmission

corresponds to having an atom in F = 2, a high value means no atom in F = 2 (all atoms
in F = 1, or no atom at all - which can happen because the initial number of atom in F = 1
is random and has a small average value). This scheme benefits from the fact that atoms in
F = 1 have a negligible effect on the cavity transmission. For instance, if we model Na by a
Poisson distribution of average Na = 1.5 (which is the value corresponding to the experimen-
tal results of section VI.1.2VI.1.2), the probability of having Na ≥ 6 or more is below 1 %. Then,
for 5 atoms, the dispersive effect is 1 MHz typically, which, for a cavity resonance of HWHM
κ = 14.2 MHz at 780 nm, leads to 0.5 % decrease in transmission, which is in the noise of our
transmission measurement. The intracavity lattice trap is chopped (see II.3.3II.3.3) during the
entire series of micro-wave and probe pulses, to avoid the lighshift and level-mixing induced
by the intra-cavity lattice (this effects are detailed in section III.1.1III.1.1).

Now we will discuss how we choose the values of p, Na and Ntrials. Let us first assume
that there are Na atoms in F = 1,mF = 1 and that F = 2 is empty. We then apply a single
microwave pulse. Let N2 be the number of atoms in F = 2 after the micro-wave pulse. Since
transfers of different atoms from the F = 1 reservoir are independent, N2 follows a binomial
distribution of parameter p and Na:

P (N2 = k) =
(
Na

k

)
pk(1 − p)Na−k (VI.1)

Thus the probabilities to transfer 1 and 2 atoms to F = 2 (for a given Na) are:

P (N2 = 1) = Nap(1 − p)Na−1, assuming Na ≥ 1 (VI.2)

and
P (N2 = 2) = Na(Na − 1)

2 p2(1 − p)Na−2, assuming Na ≥ 2 (VI.3)

Since we want to setup the detection for single atoms, we need the probability to transfer
2 atoms to be much smaller than the probability to transfer 1 atom:

P (N2 = 2)
P (N2 = 1) = Na − 1

2
p

1 − p
≪ 1 (VI.4)

As p → p
1−p is an increasing bijection from [0; 1[ to [0; +∞[, we can reach arbitrary

small ratio P (N2=2)
P (N2=1) for small p. However p should be high enough to have a non negligible

average number of successful micro-waves transfers (out of Ntrials). Thus we set Na ≈ 1.5
and p = 2.9 % so that P (N2 = 1) can be approximated by Nap. Once averaged over many
realisations of the Poisson random variable Na, P (N2 = 1) ≈ Na × p = 4.3 %.

With these values, given the detection of one (several) atom(s), the probabilities, with a
Poisson-randomised Na, that a single micro-wave pulse transfers one, two, three atom(s) in
F = 2 are:

P (N2 = 1|N2 ≥ 1) = P (N2 = 1)
1 − P (N2 = 0) ≈ 98.6 % (VI.5)

P (N2 = 2|N2 ≥ 1) = P (N2 = 2)
1 − P (N2 = 0) ≈ 1.3 % (VI.6)
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P (N2 = 3|N2 ≥ 1) = P (N2 = 3)
1 − P (N2 = 0) ≈ 0.015 % (VI.7)

The probabilities to transfer more atoms are even smaller (scalling as pN2). So we can
neglect the rare cases where more than one atom is transferred by a single micro-wave pulse.

Finally, if we denote Ntot the total number of atoms transferred to F = 2,mF = 2 after
Ntrials micro-wave pulses, then Ntrials is chosen such that, on average one atom is transferred:
Ntot ≈ 1. We compute numerically the probability distribution of Ntot. Indeed, in case of
a successful transfer to F = 2, the number of atoms in the reservoir Na decreases. Thus
the success probability of later micro-wave transfers decrease and the distribution of P (Ntot)
is not binomial. From simulating 106 experiments with Ntrials = 40, we find the following
probabilities: P (0) = 35.5 %, P (1) = 36.9 %, P (2) = 19.1 %, P (3) = 6.6 %, P (4) = 1.7 %,
and all other probabilities lower than 1 %. The average is Ntot = 1.04, significantly lower
than the average of the binomial distribution where we would neglect reservoir depletion:
Ntot,binom = p×Na ×Ntrials = 1.74.

VI.1.2 Atom transmission extinction
We perform the sequence described in the previous sections and measure the transmission
value of each probe pulse following a micro-wave attempt. The duration of the probe pulse
is 300 µs and the intracavity average photon number is ncav = 2.0 × 10−2. The sequence is
repeated about 1000 times. The results are shown in figure VI.1VI.1.

Picture a. shows the histogram of the transmission measurement following the 1st micro-
wave attempt. With this histogram we can compute the transmission ratio and the proba-
bility to have an atom in F = 2. For this, we fit the two peaks with Poisson distributions
and find averages of T0 = 40.0 and T1 = 1.06 counts for the empty cavity and the single
atom respectively. The ratio in transmission, also called single atom extinction ratio, is
T1
T0

= (2.7 ± 0.4) × 10−2. The expression for this ratio, in the low excitation limit, is given
by equation I.15I.15:

T1
T0

= 1(
1 + g2

κγ

)2 = 1(
1 + 2C)2

(VI.8)

For an atom with the maximal coupling value gmax/2π = 75 MHz we expect a much lower
transmission ratio: T1

T0
(gmax) = 5.5×10−5. Here we obtain a higher extinction because of the

thermal distribution of coupling strength values for the atom trapped in the lattice. In fact,
the thermal-averaged extinction T1

T0
is predominantly determined by low coupling values of

the distribution (for more detail about this point, please refer to section VI.4.2.4VI.4.2.4).
To differentiate the atom from the cavity, we define a threshold value of the transmission

as the mean of the upper 10−3 quantile of the atomic distribution, denoted qatom, and the
lower 10−3 quantile of the cavity distribution1, denoted qcav. Transmission measurements
below the threshold correspond to having an atom in F = 2. The corresponding probability
is pat = 3.7 %, comparable to the rough initial prediction of 4.3 %.

1We abusively name "cavity" distribution the higher transmission values that can correspond to an empty
cavity, or to a cavity with F = 1 atom(s)
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Fig. VI.1 Pictures a. shows the histogram of the transmitted intensity after the 1st

microwave attempt. The 10−3 extreme quantiles of the fitted Poisson distribution
(doted lines) are computed. The threshold to discriminate an atom in F = 2 from
all other cases (empty cavity or cavity with F = 1 atom(s)) is defined as the mean of
the two quantiles and displayed as a black solid line. Picture b. is the histogramm
of the Ntrials = 40 transmission measurements. Picture c: from the distribution in
the number of micro-wave pulses required to transfer one atom to F = 2, one can
fit equation VI.11VI.11, and extract the mean number of atoms Na initially in F = 1.

Picture b of figure VI.1VI.1 shows the histogram corresponding to all Ntrials transmission
measurements: this larger statistical set gives a smoother histogram. The probability to
detect an atom in F = 2 is larger than in the 1st attempt histogram (picture a.) because an
atom can be detected in several successive measurements after being transferred to F = 2.
Also, during the sequence, it is possible to have several atoms in F = 2, which induces a
stronger coupling to the cavity than with a single atom, and thus reduces the transmission
ratio: Tdistri/T0 = (1.3 ± 0.1) × 10−2 (compared to T1/T0 = (2.7 ± 0.4) × 10−2 for the 1st

attempt histogram). Indeed, starting with equation VI.8VI.8, for a strong coupling such that
2C ≫ 1, the transmission with N atoms in F = 2 is proportional to 1/(NC)2, where C is
the single atom cooperativity. Thus for a statistical distribution of N , with a probability
distribution p(N), the mean transmission is:

Tdistri ∝
Nmax∑
N=1

p(N)
(NC)2 (VI.9)

Thus the ratio of this transmission and the transmission of a single F = 2 atom T1 ∝ 1/C2

is:
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Tdistri

T1
=
∑Nmax

N=1
p(N)

(NC)2

1/C2 =
Nmax∑
N=1

p(N)
N2 (VI.10)

Using the probabilities p(N) from the simulation described in section VI.1.1VI.1.1, we find
Tdistri/T1 = 0.47. This is compatible with the the ratio of transmission ratios extracted from
the histogram: (Tdistri/T0,overall)/(T1/T0,first) = 0.48 ± 0.08, which confirms our estimation
of statistics of F = 2 atoms. Please note that the empty cavity transmission T0 is slightly
different for the overall measurement and for the first probe pulse: T0,first ≈ 40 (picture a.)
and T0,overall ≈ 34 (picture b). This could be due to a cavity lock imperfection in presence
of the chopping of the locking light during the entire series of probe pulses, which could
induce a systematic drift of the cavity frequency during the series, and thus a reduction of
the intra-cavity power and of the transmission. Since both T1 and T0 are proportional to
the intra-cavity power, we compensate this drift by computing and comparing to the simula-
tion the power-independent quantity (Tdistri/T0,overall)/(T1/T0,first) instead of the Tdistri/T1.

Picture c of figure VI.1VI.1 shows the histogram of the number of microwaves pulses required
to transfer an atom to F = 2. Assuming that the reservoir of atoms in F = 1,mF = 1 follows
a Poisson law with an average value Na, the probability of detecting an atom in F = 2 after
k micro-wave attempts is:

Ppromote(k) = (1 − pNa,t)k−1 × pNa,t (VI.11)

where:
Na,t = Na

1 − e−Na
(VI.12)

The histogram is fitted with Ppromote(k) (red line on Picture c). From the fit we get
Na = 1.46. Thus the probability to promote an atom, at each trial, is p × Na = 4.2 %,
compatible with previous estimations.

VI.1.3 Hyperfine-state lifetime
Once an atom is transferred to F = 2, it can be detected in several consecutive measurements.
We observe experimentally that after a few couples of micro-wave / probe pulses, the atom
leaves F = 2. Since the heating of the atom out of the trap with such small probe intensity
is slow, we assume that the atom is not lost, but rather that it is back in cavity-uncoupled
F = 1 state. This can be due to two mechanisms:

1) A micro-wave pulse transfers the atom back from F = 2 to F = 1.

2) The slight σ− component of the probe photon (estimated to 2 % - see section II.3.4II.3.4)
can couple off resonantly F = 2,mF = 2 to F ′ = 2,mF ′ = 1, from which the atom can
spontaneously decay to F = 1.

Picture d of figure VI.2VI.2 shows the histogram of the number of successive detections in
F = 2, converted in the corresponding probe duration. We fit the histogram with an expo-
nential decay, t → e(t−t0)/τ , from which we extract the lifetime τ ≈ 0.94 ms in F = 2.
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We compare this lifetime to a simulation in which we model the experiment with reservoirs
of atom(s) in F = 1,mF = 1 and F = 2,mF = 2 and a series of microwave pulses that have
a small transfer probability p = 2.9 % per atom. The hyperfine state transfers induced by
the probe are neglected so as the exhibit the F = 2/F = 1 population dynamics related
to the sole microwave pulses. The results are shown in picture e of figure VI.2VI.2, which is a
histogram of the number of consecutives probe measurements where at least one atom is in
F = 2. The histogram is fitted with a similar exponential decay, from which we extract a
lifetime of τsim ≈ 14.7 micro-wave pulses (the simulation has no time unit), corresponding to
τMW = δtprobeτsim ≈ 4.4 ms in the experiment. As τMW /τ ≈ 4.7, the experimental lifetime
is predominantly defined by the probe-induced transfers and in the following we can neglect
the lifetime-limiting effect of microwave pulses, transferring the atom back from F = 2 to
F = 1. This is rather expected as the success probability of each microwave transfer is quite
low.
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Fig. VI.2 Picture d shows the distribution of the number of successive measure-
ments of an atom in F = 2 ("transmission falls" as the transmission is low for this
hyperfine state). It is converted to the duration the atom sees probe light before
being depumped to F = 1. An exponential fit provides the lifetime of the single
atom in presence of probe light. Picture e: Simulation. After being transfered to
F = 2, an atom may be transfered back to F = 1 by a later microwave pulse. We
make sure that the lifetime related to this process is much longer than probe-related
lifetime fitted in picture d, and can thuse be neglected. Picture f: For variable probe
intensity, we observe that the lifetime in F = 2 varies as 1/intensity.

Within this approximation, we expect the probe hyperfine state transfer rate to be pro-
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portional to the intracavity intensity ncav, and thus the F = 2 lifetime τ to be inversely
porportional to ncav. To test this assumption, we vary ncav geometrically over the range
[2.4 × 10−3 − 7.2 × 10−2]. To keep the average number of transmitted photons collected con-
stant, we vary the duration of the probe pulse δtprobe as 1/ncav, over the range [75−2400] µs.
For each value of ncav, we repeat the sequence 1000 to 1500 times. Picture f shows the F = 2
lifetime τ versus ncav, where we observe a very nice fit τ = A

ncav
.

To conclude section VI.1VI.1, we have demonstrated here that the cavity allows an efficient
detection of the hyperfine state of a single atom in the intra-cavity lattice trap. As our qubit
states are encoded in the these hyperfine states, this realises a qubit state detector. Together
with the ability to prepare the atom in the strongly-coupled qubit state, the cavity can also
be used to detect the presence of a single atom. Most of the following sections in this chapter
involve single atom(s) in one (multiple) tweezer(s) and we will use the cavity transmission
as a single atom detector.

VI.2 Trapping a single atom in a tweezer
VI.2.1 Intra-cavity molasses
To induce light-assisted collisions, we use beams in an optical molasses configuration to avoid
heating atoms while expelling pairs of atoms from the tweezer. Our molasses consists of 3
pairs of contra-propagating beams with opposite circular polarisation. They are red-detuned
by −30 MHz ≈ −5 Γ with respect to the cycling transition F = 2,mF = 2 ↔ F ′ = 3,mF ′ =
3, and they have an intensity of typically 4 Isat per beam. Apart from cooling light, each
beam contains also ≈ 1.5 Isat of repumper light (F = 1 → F ′ = 2).

The geometrical configuration of the molasses beams is shown in figure VI.3VI.3. Initially, we
tried using molasses beams focused at the position of the cavity, with small waist w0 so as to
limit the clipping of the beams by the cavity (as shown in picture c. of figure VI.3VI.3). We used
beams with waist w0 ≈ 80 µm in the vertical xy plane, and a smaller waist of w0 ≈ 40 µm in
the horizontal xz plane, where the beams are not perpendicular to the cavity axis, and given
that we want to avoid coupling molasses photons in the cavity mode. Alignement of such
small beams is difficult and we could not achieve the collisional blockade. Thus we changed
the vertical beams to collimated beams of larger waist w0 ≈ 1.5 mm, and kept the smaller
w0 ≈ 40 µm horizontal beams to avoid coupling photons inside the cavity mode.

Alignement of our molasses beams required simultaneously superposing the optical axes
of contrapropagating beams and intersecting all beams at the position of the 145 µm-long
micro-cavity, a supplementary constraint as compared to "free-space" tweezers experiments.
We check that the beams intersect at the position of the cavity with images of the light
scattered on the cavity fibers, such as pictures c and d of figure VI.3VI.3. Ultimately, the
alignement was verified by looking at the effect of the molasses beams on the atoms trapped
in a single optical tweezer, and reaching the collisional blockade regime, as explained in
section VI.2.2VI.2.2. Apart from the cooling and repumping light, the molasses requires having
a magnetic field close to 0 inside the fiber cavity. To achieve this, we apply a biais field,
which we calibrate using ground-state micro-wave spectroscopy. From fitting the width of
the spectrum with compensated fields, we estimate the total residual magnetic field to be on
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Fig. VI.3 Picture a (respectively b) represents the geometry of the intra-cavity
molasses beams that we use to obtain single atoms inside the fiber cavity, in the
horizontal (respectively vertical) plane. The 3 axes of the pairs of beams 1/2,
4/6 and the cavity are perpendicular. The pair of beams 3/5 intersect with the
cavity with a small angle (the axis perpendicular to the cavity is unavailable, being
occupied by the transport dipole beam, described in section II.1.4II.1.4). Pictures c and
d are an image of the the fiber cavity - detection 4 / with camera C2 (see figure
V.4V.4 - where one can see the scattering pattern of beam #4. Picture c corresponds
to the old configuration (w0 = 80 µm) that led to minimal clipping of the molasses
light on the fiber tips but much more critical alignement of beam pairs than with
the new configuration (w0 = 1.5 mm), shown in picture d.

the order of 10 mG.

VI.2.2 Reaching the collisional blockade regime

In this section, we describe the loading of atoms in a single tweezer, and how we reach the
collisional blockade regime, where there is at most one atom in the tweezer. Contrary to
many tweezers experiments, we cannot load our tweezers from the MOT, because we cannot
operate our MOT in the L = 145 µm long cavity. Instead we load the tweezers from the
optical dipole trap used to transport the atoms to the micro-cavity (section II.1.4II.1.4). This
is similar to the experiment described in [6565, 8181], where the cavity is however much longer
(L = 9.4 mm) and where a MOT could probably be operated, as this is the case for the
other single-atom strong coupling tweezers-cavity experiment described in [6767] (L ≈ 1.3 mm).

The sequence is the following :

1. At the end of the transport, atoms are transferred (in 25 ms) from the crossed dipole
trap (see section II.3.1II.3.1) to a single tweezer, located at a distance d = 18 µm from the
cavity axis, where the coupling to the cavity is negligible. The depth of the crossed
dipole trap decreases from 80 to 0 µK while the depth of the tweezer increases from 0
to Utweezer. In the early results shown in this paragraph, Utweezer = 2.5 mK. All the
later measurements shown in this manuscript were done at Utweezer = 800 µK.

2. Molasses beams (cooling and repumper) are switched on for a duration δtmol.
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3. Starting from B⃗ ≈ 0⃗ required for the molasses phase, a 3 G magnetic field along the
cavity axis is switched on linearly in 2 ms. It stabilises during an extra 2 ms duration.
It should be noted that the strong focusing of the tweezer light generates a fictitious
magnetic field (see for instance reference [123123]). Its direction is x, defined as the cross-
product of the tweezer light propagation axis y and the tweezer polarisation axis z (for
a reminder of axis definition, please refer to figure VI.14VI.14). The 3 G quantisation field is
along z (so that the probe photons are σ+ polarised) and it mitigates the perpendicular
effective magnetic field.

4. The cavity is probed (see section VI.1VI.1) to check that there is no spurious atom left.
Most of the times, there are none, because atoms not trapped in the tweezer are blasted
by the molasses. We use this safety measurement to post-select and remove the rare
cases where a spurious atom is left.

5. The tweezer is moved to the cavity in 1 ms.

6. The cavity is probed a second time to check if there is an atom in the tweezer.

Each probing of the cavity is preceeded by a 150 µs repumper pulse to make sure that atoms
are in F = 2 and can be detected by the cavity, which is tuned, together with the probe laser,
on resonance with the tweezer-ligthshifted transition F = 2,mF = 2 → F ′ = 3,mF ′ = 3. We
repeat this sequence about 100 times and compute the probability Pat of detecting atom(s)
inside the tweezer as a function of δtmol.

The results are shown in figure VI.4VI.4. The measurement shown in graph a. was done
with a single vertical pair of molasses beams, with a −30 MHz detuning (with respect to the
bare atom transition): Pat decreases continously as δtmol increases. The cooling effect of the
beam pair allows to keep the atoms inside the tweezer for much longer than with a single
beam, which blasts the atoms away in a few ms. For instance, with a simple model where the
temperature of the atom increases at a constant rate RscTrec (Rsc being the photon scattering
rate, and Trec the recoil temperature) we can compute that the typical time τesc for the atom
to escape the tweezer trap: τesc = U/(RscTrec). For I/Isat = 4 and a −5 Γ ≈ −30 MHz
detuning, τesc ≈ 3 ms (respectively ≈ 9 ms) for U = 800 µK (respectively U = 2.5 mK).
In spite of this cooling effect, Pat decreases monotonically because the cooling occurs only
along one axis and so the atom can be heated out of the trap along the two other axes.

A radically different result is obtained when applying all 3 pairs simultaneously. As shown
with the green circles dataset of graph b., after an initial decrease of Pat for δtmol ≤ 10 ms,
Pat remains equal to ≈ 50 % for δtmol = [10 − 250] ms, which gives a first indication that
we obtain a single atom in our tweezer with a 50 % probability in 10 ms, and that it stays
trapped in the tweezer when applying a molasses for a longer duration (which contrasts with
the single-pair results of graph a.). The shape of δtmol → Pat(δtmol) and the Pat = 50 %
plateau are compatible with the collisional blockade mechanism. This contrasts with the
other curve of picture b. (brown squares), where a 30 MHz blue detuning is used for the
molasses beams, and for which we observe the blasting of all atoms out of the tweezer, in
less than 1 ms.

We then measure Pat(δtmol) for variable detuning of the molasses beams: δ/2π in the
range [−30, 50] MHz, with respect to the bare atom frequency, which converts to δLS/2π =
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Fig. VI.4 Effect of applying a molasses of variable duration δtmol on one tweezer
loaded with several atoms, for a single beam pair (graph a., left) and for all 3
pairs (graph b., right). Graph a: As mentioned in the previous section, this kind
of measurement is used for ultimately checking the alignement of molasses beams:
before the last step of alignement, the atomic losses is faster with the pair 4/6
(blue squares) than for pair 1/2 (red squares). This imbalance disappears after
realignement (circle data points). All datapoints where taken with a −30 MHz
detuning. Graph b: With all 6 beams, the response is different. After 10 ms of
molasse, Pat is "locked" to ≈ 50 % (green circles), which suggests a single atom is
obtained with a probability 1/2. A blue detuned molasses (brown squares) expells
the atom from the tweezer in less than 1 ms.

[−82,−2] MHz with respect to the tweezer-lightshifted transition frequency at the bottom
of the trap (the tweezer induces a blue lightshift on the transition): LSmin ≈ 52 MHz for a
trap depth of Utweezer = 2.5 mK (δLS/2π = δ/2π − LSmin). The results are shown in figure
VI.5VI.5. For δLS/2π ≤ −60 MHz, Pat decays to 50 %, which signals the collisional blockade (see
figure VI.5VI.5.a). For δLS/2π ≥ −30 MHz, Pat decays to 0 in a few milliseconds, because the
molasses is close to resonance and thus the atoms are quickly blasted (see figure VI.5VI.5.c). For
intermediate values of the δLS/2π, Pat exhibits two decays, with an intermediate plateau at
50 %, which suggests that after the initial decay, collisional blockade is achieved temporarly,
and that later the single atom is blasted out of the tweezer (see figure VI.5VI.5.b). For all curves,
we fit the decay with an empirical hyperbolic tangent function (Atanh[−α(t− t0)]+B), from
which we extract a decay rate α. For the intermediate detunings we fit only the first decay
where we expect the two-body losses to occur.

Figure VI.5VI.5.d shows the decay rate α against δLS/2π. We observe that α increases as the
light comes to resonance with the lightshifted atoms. The maximal decay rate is achieved
for a slightly red-detuning δLS/2π ≈ −10 MHz, which could be due the thermal averaging
of the lightshift experienced by the trapped atoms. Very similar results were obtained in
reference [124124], with a very similar tweezer (w0 = 1.0 µm;λ = 850 nm;Utweezer = 2.5 mK),
loaded with a few 87Rb atoms, though we cannot compare quantitatively our decay rate α
extracted from an empirical fit with their two-body losses rate β extracted from a Monte
Carlo simulation of the data, and that has a different unit.

To conclude, we have seen in section VI.2VI.2 that when using our a red-detuning molasses,
finely aligned with the micro-cavity, we observe a plateau at Pat ≈ 50 % that indicates a
single atom is loaded probabilistically in the tweezer, thanks to collisional blockade. The
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Fig. VI.5 Effect of the detuning δLS/2π of the molasses. δLS/2π is the detuning
with respect to the blue lightshift at the bottom of the Utweezer = 2.5 mK trap:
+52 MHz. Graphs a, b and c correspond to a large, intermediate red-detunings
and ≈ 0 detuning. The (initial) decay of each curve is fitted with the empirical
function A × tanh[−α(t − t0)] + B, from which we extract the loss rate α. Graph
d. shows α agains the δLS/2π, that exhibits a clear maximum when the molasses
is on resonance with the lightshifted atoms.

vacuum Rabi splitting measured in VI.5VI.5 will confirm that indeed at most one atom is loaded
in the tweezer.

VI.3 Single tweezer atom characterisation
We present in this section the characterisation of the single atom in the tweezer trap, by
measuring the trap frequencies in section VI.3.1VI.3.1 (that also provides an in-situ estimation of
the waist) and the atom temperature, in section VI.3.2VI.3.2.

VI.3.1 Parametric measurement of the trap frequencies and waist verification

Since the temperature measurement discussed in section VI.3.2VI.3.2 requires knowing the trap
frequencies f⊥ (radial) and f∥ (longitudinal), we start the characterisation of the single atom
in the tweezer by measuring f⊥ and f∥ thanks to parametric heating modulation of the trap
depth. We modulate the trap depth at frequency fmod: when the fmod is twice one of trap
frequencies, a parametric excitation heats the atom out of the trap [125125, 126126].

The tweezer trap depth is U = 800 µK. The duration of the molasses is 15 ms, in order
to be on the "collisional blockade plateau" Pat ≈ 50 %. The experimental sequence starts as
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the one described in section VI.2.2VI.2.2. It continues with:

7. Decrease of the trap depth from U = 800 µK to a lower value Ulow, in 5 ms.

8. Modulation of the trap depth with a 30 % relative amplitude (peak to peak), for 100 ms.

9. Increase of the trap depth back to U = 800 µK.

10. The cavity is probed a third time to check if the atom is still trapped in the tweezer.

Both cavity probe measurements with the tweezer (steps 6 and 10) are done at 800 µK, so
that the probing does not depends on Ulow. Measurement 6 is used to post-select cases where
an atom is successfully loaded in the tweezer. Upon these cases, measurement 10 serves to
compute the survival probability S for a given modulation frequency fmod.

Figure VI.6VI.6 shows S against the modulation frequency fmod, for a trap depth Ulow =
540 µK. One can see 3 peaks at 27 ± 2 kHz, 89 ± 5 kHz and 166 ± 2 kHz. We interpret the
lowest and highest frequency peaks as the resonances corresponding to the axial (fmod = 2f∥)
and radial (fmod = 2f⊥) trap frequencies. Indeed, as we will see in the following paragraph,
the f⊥ measured value is quantitativaly compatible with our expected values for tweezer
power and waist.

Moreover, with this interpretation, we can compute zR = w0/
√

2 × f⊥/f∥ ≈ 3.74, which
is higher than the gaussian beam value deduced from the waist: zR,gauss = πw2

0/λ = 2.8 µm,
because we work close to the diffraction limit. Our ratio zR/zR,gauss = 1.34 is very close
to that of experiments working with similar tweezers : in [127127] zR/zR,gauss = 1.14 with
w0 = 1.01 µm and λ = 850 nm, and in [128128], zR/zR,gauss = 1.32 with w0 = 0.9 µm and
λ = 810 nm. Because of this non-gaussian behavior, there is no easy analytical connection
between f∥ = 1

2πzR

√
2U0
m and w0. Thus we restricted our analysis to f⊥ → w0. For the in-

termediate peak, its frequency is not exactly half of the higher frequency peak (fmod = f⊥),
where a parametric resonance can also happen [129129, 130130]. It could be related to anisotropy
or anharmonicity of the tweezer trap, as the temperature is not negligible compared to the
trap depth: T/U ≈ 1/8 (see section VI.3.2VI.3.2).

From the measurement of the trapping frequencies, we can determine the waist w0 of the
tweezer inside the cavity. This is important in our setup, as we cannot collect and image the
tweezer beam after it passes the science chamber. We have seen in section V.3.1V.3.1 that the
parallel imaging device garantees that our optical setup is suited for generating waists close
to diffraction limit. It validates the wavefront quality of the beam up to dichroic mirror D1
(see figure V.4V.4), where the beam separates between the path towards the fiber-cavity and
the path towards the parallel imaging device. From the measurement of f⊥, we will now see
that we can put an upper bound on the waist size inside the cavity, which is compatible with
the waist size measured with images from the parallel device.

For this, let us express f⊥ as a function of w0. Starting with:

f⊥ = 1
2πw0

√
4U0
m

, (VI.13)
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Fig. VI.6 Parametric excitation spectrum in a tweezer of trap depth Ulow =
540 µK

where m is the mass of the atom. U0, given by equation II.3II.3, reduces to the following
expression as the tweezer trap is linearly polarised:

U0 = Udipole(⃗0) = ℏΓ 2

24
I (⃗0)
Isat

(
1

ωdip − ωD1
+ 2
ωdip − ωD2

)
, (VI.14)

with I (⃗0) = 2P/(πw2
0), where P is the power of the tweezer beam. Combining equations

VI.13VI.13 and VI.14VI.14:

f⊥ = 1
2πw2

0

√√√√P ℏΓ 2

3π

(
1

ωdip − ωD1
+ 2
ωdip − ωD2

)
(VI.15)

We see that we need to know the tweezer power P inside the vacuum cell. We cannot
measure the power P after the cell, because we do not have optical access to the transmitted
light. So we measure the power only before the aspherical lens and estimate the fraction
transmitted 1 − e−2a2/w2 ≈ 0.9 [131131], given the clipping of the beam (waist w = 4.5 mm) by
the aspherical lens (radius a = 10 mm). Neglecting the non-ideal transmission through the
dioptres, we obtain an upper bound to the intra-cavity tweezer power P , which provides,
together with measurement of f⊥, an a upper bound for the tweezer waist w0 ∝ 4√P/f⊥.

Then, for several values of P , from 120 to 390 µW (corresponding to Ulow ranging from
150 to 490 µK, with the later-estimated waist w0 = 0.85 µm), we measure the parametric
excitation spectrum and extract f⊥. The results are shown in figure VI.7VI.7, together with
analytical expectations P → f⊥(P |w0), for w0 = 0.75, 0.80 and 0.85 µm. The experimental
values lie between f⊥(P |w0 = 0.85 µm) and f⊥(P |w0 = 0.80 µm), proving that 0.85 µm is
an upper bound to the tweezer waist. This result is in very good agreement with the average
waist measured with the parallel imaging device: 0.81 µm (see section V.3.1V.3.1).



104 CHAPTER VI. STRONG COUPLING OF A TWEEZER ATOM TO THE CAVITY

Fig. VI.7 Estimation of the tweezer waist from the measured radial trap frequen-
cies.

VI.3.2 Release-recapture measurement of the temperature
Now that we have measured the trap frequencies, we can determine the temperature (more
precisely, the statistical average energy of the atom, which we conveniently express as a
temperature) of the single atom trapped in a single tweezer using a release-recapture mea-
surement [132132]. The sequence is similar as the one of section VI.3.1VI.3.1, except that the tweezer
trap depth remains constant and equal to 800 µK and that the parametric excitation is
replaced by a release-recapture of the tweezer atom:

7. The atom is released by switching off suddenly the tweezer.

8. After a duration of τrelease, the tweezer is suddenly switched back to its initial trap
depth.

9. After a delay of 5 ms, the cavity is probed for a third time, to check if the atom is still
trapped in the tweezer.

We measure the survival probability S for various τrelease. Following the method pro-
posed in [132132], we compare the experimental results with a Monte Carlo classical simulation
of the free flight of the atom for a duration τrelease, where the atom is considered recaptured
if its kinetic energy is lower than the value of the trapping potential at the atom position,
at the end of its free flight. The simulation is repeated for multiple values of the tempera-
ture and a least square calculation defines the best fit temperature. Figure VI.8VI.8 shows the
experimental data together with the best fit simulation results, which yields T = 102±5 µK.

The ratio T/U dictats the size σx,y,z of the gaussian thermal probability distribution of
atomic position in the tweezer. As we will see in section VI.4VI.4 one main concern of our CQED



VI.4 OPTIMISATION OF THE COUPLING TO THE CAVITY 105

0 10 20 30 40 50
Release duration [µs]

0

20

40

60

80

100

Su
rv

iv
al

 p
ro

ba
bi

lit
y 

[%
]

Simulation:
T =102 ± 5µK
Experiment

Fig. VI.8 Release-recapture measurement of the temperature of a single atom in a
tweezer together with the best fitting Monte Carlo simulation. For a short release
τ = 2 µs, the experimental survival probabilty is ≈ 90 %, because of losses and
imperfect measurement. Thus we rescale the experimental results to by a factor
1/0.9 to match the simulations that do not include these imperfections. We find a
best fit temperature of T = 102 ± 5 µK for a trap depth of U = 800 µK.

experiment is to optimise the coupling of the (thermal) single atom to the cavity mode. This
requires a) aligning the tweezer with one antinode of the intra-cavity probe standing wave
and b) having σx,y,z sufficiently small so that the thermally distributed atom "explores" a
region where the coupling is high enough. In section VI.4VI.4 we present different techniques for
the alignement, to achieve a). We will also see that adding the intra-cavity lattice trap to
the tweezer trap addresses a) and b) simultaneously, by pinning the bottom of the total trap
potential close to a probe antinode, thus achieving a), and reducing the most critical size σz

by more than a factor of 2, thus achieving b).

VI.4 Optimisation of the coupling to the cavity

As compared to free space tweezers experiments, an additional constraint of our setup is the
precise positionning of the tweezers with respect to the cavity mode, which is necessary to
achieve the strong coupling required for fast atomic hyperfine state detection (see section
I.1.4I.1.4) or entanglement of an array of single atoms (see section I.1.5I.1.5). In this section, we
present various methods to map the cavity mode with an ensemble of atoms or a single
atom, from which one can choose the position of best coupling. We can map the square of
the cavity coupling g2 because it appears in several measurable quantities2:

2Indeed, the collective coupling Ω (section VI.4.1VI.4.1) and the single atom on resonance transmission ratio
T0/T1 (equation VI.27VI.27) are functions of the effective coupling g2

eff , which relates to g2 as expressed in equation
VI.17VI.17.
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g(x,y,z)2 ∝ w2
cav

1 + ( z
zR,cav

)2 exp
( −2(x2 + y2)
w2

cav[1 + ( z
zR,cav

)2]
)

× cos(2πz/λ1)2, (VI.16)

where x,y,z is the position of the atom with respect to a probe standing wave antinode at
the center of the cavity, z is the cavity axis and y the vertical axis, along which the tweezer
beam propagates (see figure VI.14VI.14).

The first term accounts for the gaussian structure, which is characterised by the waist
size wcav = 5.7 µm and the Rayleigh length zR,cav = πw2

cav/λ = 126 µm. In this entire
chapter, the (single to few) tweezers are produced close to z = 0, where we can approximate
1+(z/zR,cav)2 ≈ 1. As a first step, the simplified term w2

cav exp
(

−2(x2+y2)
w2

cav

)
can be optimised

with respect to x and y using the large tweezer (w0 ≈ 5.5 µm). Indeed, they can trap
hundreds of atoms, for which the collective coupling can be measured at each repetition of
the experiment (see section II.3.4II.3.4) and thus conveniently mapped and optimised. This will be
discussed in section VI.4.1VI.4.1. As a second step w2

cav exp
(

−2(x2+y2)
w2

cav

)
can also be optimised using

the single atom in the small tweezer (w0 = 0.85 µm), by implementing a single-frequency
measurement of the transmission ratio T0/T1, as explained in section VI.4.3VI.4.3.

The second term, cos(2πz/λ1)2, accounts for the standing wave structure of the probing
mode, with a periodicity λ1/2 = 395 nm. It varies on a scale ≈ 15 times smaller than the
first term. Thus a single atom in a small tweezer is the most suited, as it is a ≈ 7 times
smaller probe than an ensemble of atoms in a large tweezer. Indeed, combining equations
VI.19VI.19 and VI.13VI.13, we obtain that the typical size of the position probability distribution of
atom along axes x and z is σx,z = w0/2

√
kBT/U0. Thus, for an equivalent T/U0 ratio,

σz ∝ w0 is roughly 7 times smaller for the small tweezer than for the large tweezer.
Ultimately, the coupling can be improved by using the intra-cavity lattice trap, which

has been specially engineered for this purpose (see section II.2.1II.2.1). In section VI.4.2VI.4.2 we show
how adding the lattice trap to the tweezer trap further improves the localisation of the single
atom and thus its coupling.

VI.4.1 Collective coupling cavity mode mapping
With an ensemble of atoms trapped in the large tweezer, the collective coupling Ω can be
measured at each repetition of the experiment. Let us now derive its expression as a function
of the tweezer position xt, yt, zt with respect to the cavity mode center (see figure VI.14VI.14 for
a reminder of the tweezer and cavity geometry and the definition of the axes).

Ω2(xt, yt, zt) = Ngeff (xt, yt, zt)2, where N is the number of atoms in the tweezer, and
geff the effective coupling, defined by :

geff (xt, yt, zt)2 =
∫

x

∫
y

∫
z
g(x,y,z)2P (x− xt,y − yt,z − zt) dx dy dz, (VI.17)

with P the position probability distribution of the atomic ensemble. Assuming the atomic
ensemble in the tweezer is at thermal equilibrium with temperature T :

P (x− xt,y − yt,z − zt) ∝ exp
(−(x− xt)2

2σ2
x

−(y − yt)2

2σ2
y

−(z − zt)2

2σ2
z

)
, (VI.18)
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with

σx,y,z = 1
ωx,y,z

√
kBT

m
, (VI.19)

where ωx,y,z are the trapping frequencies of the tweezer (ωx,z = 2π×f⊥ and ωy = 2π×f∥).
With the assumptions mentioned earlier, g(x,y,z)2 simplifies to:

g(x,y,z)2 ∝ exp
(−2(x2 + y2)

w2
cav

)
× cos(2πz/λ1)2 (VI.20)

Thus

geff (xt, yt, zt)2 ∝
∫

x
exp(−(x− xt)2

2σ2
x

) exp(−2x2

w2
cav

) dx×
∫

y
exp(−(y − yt)2

2σ2
y

) exp(−2y2

w2
cav

) dy

×
∫

z
exp(−(z − zt)2

2σ2
z

) cos(2πz/λ1)2 dz (VI.21)

In this section we focus on scanning along x or y. So zt and yt (or xt) are fixed, and
we can integrate over z and y (or x), which gives a constant that we drop, as we derive a
proportionality law. The remaining x (or y) integral is the convolution of two gaussians,
which is an gaussian itself:

Ω2(xt) ∝ exp
( −x2

t

2(σ2
x + σ2

cav)
)

or Ω2(yt) ∝ exp
( −y2

t

2(σ2
y + σ2

cav)
)
, (VI.22)

where σcav = wcav/2. One can see that the gaussian Ω2(xt) (respectively Ω2(yt)) is cen-
tered at xt = 0 (respectively yt = 0), which corresponds to the desired optimal setting of a
tweezer centered with respect to the probe antinode.

The experimental sequence is similar to that described in section VI.2.2VI.2.2, except that:

o The tweezers are produced inside the cavity rather than 18 µm away from its axis.

o To increase the number of atoms coupled to the cavity mode, 3 tweezers are generated,
with a separation of 8 µm along the cavity axis z.

o The collective coupling is measured at each shot, with a frequency scan of the Rabi
doublet (see section II.3.4II.3.4).

The vertical (respectively horizontal) position yt (respectively xt) is scanned by the tunable
lens (see figure V.4V.4) (respectively the RF frequency of the corresponding axis of the 2D AOD
(see section V.2V.2). For each value of xt or yt, approximately 10 spectra are measured, and we
extract the value of their vacuum Rabi splitting 2Ω. The average Rabi splitting is shown in
figure VI.9VI.9. A gaussian function fits nicely both Ω2(xt) and Ω2(yt) scans and allows to point
the tweezers position of optimal coupling to the cavity, along xt and yt respectively, with a
precision of δx ≈ ±0.5 µm and δy ≈ ±5 µm. Given the 5.7 µm waist size of the cavity mode,
the xt optimisation is quite good, while the yt optimisation is not very precise. This is due
to the fact that the typical size of the atomic thermal ditribution in the large tweezer is set
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by w0 ≈ 5.5 µm along x, comparable to the waist of the cavity mode wcav = 5.7 µm, while
the typical size along the y axis is set by zR ≈ 120 µm, much larger than wcav = 5.7 µm.

If we extract a temperature from the σx,y-contribution to the widths of the fitted gaussian
functions (equation VI.22VI.22), we obtain temperatures of ≈ 100 µK from the vertical y map and
≈ 240 µK from the horizontal x map. While the first value is reasonable, the second seems
a bit high. This is partly due to the sensitivity of the temperature estimated with respect to
the fitted width, because the latter is close to the cavity width, in the case of x. The mea-
surements shown here should be mostly considered as a preliminary mapping of the cavity
mode, which will be refined later directly with a single atom probe in a smaller-waist tweezer.
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Fig. VI.9 Mapping the relative position of (large) tweezers with respect to the
cavity mode, along the x (picture a.) and y (picture b.) axes. From each spectrum,
we extract the vacuum Rabi splitting 2Ω, which we convert to an effective number
of atom N = (Ω/geff )2, where geff = 30 MHz is a rough estimation of the effective
coupling, defined as half the typical thermally averaged coupling: gth = 60 MHz
(see section ??), to account for the spread of atoms over several nodes and antinodes
of the probing field (along the z axis), which reduces the coupling by a factor 2
in average. The error bars correspond to ±1 standard deviation. Figure VI.14VI.14
displays a schematics of the tweezer/cavity geometry and a reminder of the axes.

VI.4.2 A hybrid trap with the intra-cavity lattice

VI.4.2.1 Coupling enhancement induced by the lattice

Here we show that the coupling to the 780 nm probing field of a single atom in a small tweezer
can be improved by adding to the tweezer trap the intra-cavity lattice at 1559 nm, which is
designed to trap atoms close to probe intensity maxima (see section II.2.1II.2.1). Interestingly, in
experiment of the group of Zhang (introduced in section I.2.1.3I.2.1.3), an intracavity lattice trap
is also used to help localising single atoms trapped in tweezers, especially along the cavity
axis[6767]. However, there are two major differences: 1) the lattice is blue detuned, and thus
repelling, while ours is an attractive red-detuned lattice and 2) its non commensurability
is such that only one every 26 lattice sites coincides with a probe antinode, instead of one
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Ula�ice = 30µK Ula�ice = 310µK Ula�ice = 700 µK

Fig. VI.10 Effect of the the intra-cavity lattice (with variable trap depth Ulattice)
on the coupling of a single tweezer atom. For each histogram, the threshold (pink
line) is set so as to lie in the gap between the atomic lower transmission peak and
the empty cavity upper transmission peak. Then, the average value of the single
atom (respectively empty cavity) transmission T1 (respectively T0) is computed,
and plotted as an orange (respectively blue) dashed line. Error on the average
is a 68 % confidence interval s/

√
N , where s is the usual unbiased estimator for

standard deviation. The value of T0/T1 is given above each historam. From left to
right, Ulattice increases and thus the coupling increases, which squeezes the atomic
transmission distribution towards 0. Consequently T0/T1 increases.

every two sites in our experiment. To demonstrate experimentally this improvement, we
prefer not to measure the coupling of a single atom in a single frequency scan (as we do with
atomic ensembles), because such scan would involve too many cycles that would depump the
atom to F = 1 (as described in section VI.1.3VI.1.3), especially when scanning the Rabi peaks,
where the intracavity probe power is maximal. And in fact as we will see in section VI.5VI.5,
measuring the coupling of a single atom from its vacuum Rabi splitting requires measuring
the transmission for each frequency of the spectrum separately. So here we implement a much
lighter measurement, where we evaluate the coupling g from measuring the transmission of
the tweezer single atom (T1) and of the empty cavity (T0), with a probe on resonance with
both the atom and the cavity (see equation I.15I.15):√

T0
T1

= 1 + g2

κγ
, (VI.23)

The experimental sequence follows steps 1 to 5 described in VI.2.2VI.2.2. After step 5., a single
atom in state F = 2 is loaded with a 50 % probability in a single tweezer, with trap depth
Utweezer = 800 µK, inside the cavity. Afterwards:

6. The trap depth of the intra-cavity lattice is increased from 15 µK to Ulattice, in 5 ms.
The initial trap depth is non zero because the fiber cavity lock relies on the 1559 nm
light (see caption of figure II.8II.8). However, such small trap depth does barely affects
the atoms, since their temperature is about 100 µK (see section VI.3.2VI.3.2)

7. The cavity is probed and the transmission is measured to detect if there is an atom.
Similarly to the single atom detection in the trap lattice alone (section VI.1.1VI.1.1), the
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lattice and the probe light are chopped at 2.8 MHz, with opposite phases to avoid
their temporal overlap. So the atomic frequency is neither lightshifted nor broadened
by the 1559 nm light (see section III.1.1III.1.1) during the probing.

The measurement is repeated and the histogram of the transmission values is shown in figure
VI.10VI.10, for Ulattice = 30, 310 and 700 µK. The transmission ratio T0/T1 increases very clearly
when Ulattice increases, as a consequence of the increasing coupling g to the probe field.
The exact determination of g from the averaged transmission ratio T0/T1 requires knowing
the thermal distribution of coupling values (as explained in section VI.4.2.4VI.4.2.4) as well as the
relative position of the small tweezer with respect to the intra-cavity lattice, which will be
discussed in sections VI.4.3VI.4.3 and VI.6VI.6. This was not the case for the dataset in figure VI.10VI.10,
which is a preliminary demonstration of the coupling enhancement brought by adding the
lattice trap to the tweezer trap. Further measurements exhibiting this enhancement, with
more quantitative models, will be discussed in sections VI.4.3VI.4.3 and VI.6.1VI.6.1.

VI.4.2.2 Potential profile of the hybrid trap

Figure VI.11VI.11 shows the trapping potentials of the tweezer, the lattice, and the sum of the
two, which we will call the "hybrid" trap. The tweezer trap depth is Utweezer = 800 µK and
the lattice trap depth Ulattice is set to 30, 310 and 700 µK (picture a, b and c respectively),
corresponding to the parameters of the measurements shown in figure VI.10VI.10. The tweezer
center is displaced by (δx, δy, δz) = (2.0,−3.0, 0.2) µm with respect to the center the clos-
est antinode of the lattice. The precise value of this offset will be justified in section VI.5VI.5.
For each value of Ulattice, we search for the position (xmin, ymin, zmin) of minimal depth of
the hybrid trap and display the calculated values is the suptitle of each picture. As Ulattice

increases, the main effect is the strong decrease of zmin towards 0, meaning that the center
of the hybrid trap gets closer to the center of the lattice antinode (located at z = 0), which
is also an antinode of the probe lattice, where the coupling g is maximal. This is due to
the much stronger confinement along z of the lattice, as compared to the tweezer. Indeed,
for Ulattice = 700 µK, the value which we use systematically in the following sections, the
trap frequency along z is ωl,z = 234 kHz for the lattice, larger than that of the tweezer:
ωt,z = 104 kHz. Thus the lattice predominantly determines where the minimum zmin of the
hybrid trap is located, along the z axis. This effect has a great benefit since the localisation
of the single atom is the most critical along the z cavity axis, as the probing lattice varies
on the scale of ∼ 100 nm along z, compared to ∼ 1 µm along x and y. Along the x, axis
conversely, the tweezer determines entirely the localisation of the hybrid trap minimum, as
its trap frequency dominates: ωt,x = 104 kHz ≫ ωl,x = 10 kHz. Finally, along the y axis,
the tweezer has a similar effect than the lattice (ωt,y = 17 kHz ∼ ωl,y = 10 kHz).

Adding the intra-cavity lattice trap to the tweezer trap makes an essential difference
for the localisation of the single atom, in terms of both the center and of the spread of
the position probability distribution of the single atom. The additional trap is crucial to
reach the strong coupling for the single atom (discussed in section VI.5VI.5), and provides a
very beneficial robustness of this strong coupling with respect to imperfect centering of the
tweezer relatively to the probe lattice, which is illustrated in section VI.5.4VI.5.4.
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Fig. VI.11 Lattice, tweezer and hybrid ("sum") trap potentials, for Ulattice =
30,310 and 700 µK (picture a,b and c respectively), corresponding to the mea-
surements of figure VI.10VI.10. Utweezer is fixed to 800 µK. For each picture,
the left, middle and right plots correspond to x → U(x,y = ymin, z = zmin),
y → U(x = xmin,y, z = zmin) and z → U(x = xmin,y = ymin, z) respectively.

VI.4.2.3 Temperature in the hybrid trap

To determine the temperature in the hybrid trap, we perform a release-recapture measure-
ment (see section VI.3.2VI.3.2), with a Monte Carlo simulation adapted to the hybrid trap. For
the simulation, we need an harmonic approximation of the hybrid trap potential, from which
we draw the atomic initial position and velocity, according to the corresponding gaussian
distribution. We define (xmin, ymin, zmin) as the center of this gaussian distribution, and
its standard deviations σx,y,z (see equation VI.19VI.19) are computed from the trap frequencies
defined from the second derivatives of the hybrid trap potential Usum, at the position of the
minimum:

ωx,y,z =
√

1/m∂2Usum

∂x,y,z2 (xmin, ymin, zmin), (VI.24)
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The atom is release from the hybrid trap. If we use the hybrid trap for the recapture,
as the lattice trap extends over L = 145 µm, the atom cannot escape along z and thus the
measurement is insensitive to the atomic z velocity. To recover this sensitivity, the atom
is released from the hybrid trap and recaptured by the tweezer only, and the Monte Carlo
simulation is adapted consequently.

The experimental results and best fit simulation are shown in figure VI.12VI.12. They lead
to a temperature of T = 92 ± 6 µK, very close to the value obtained in the tweezer alone
T = 102 ± 5 µK (section VI.3.2VI.3.2). This result is surprising: we expect the temperature in the
hybrid trap to be higher than the temperature in the tweezer, since the added lattice increases
the confinement of the atom, especially along the cavity axis z. Maybe this intriguing result
comes from our adapted scheme where the atom is recaptured by tweezer trap alone. This
point would require further investigation.
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Fig. VI.12 Release-recapture measurement of the temperature of a single atom
in the hybrid trap. The trap depths are Utweezer = 800 µK, Ulattice = 700 µK.
In the simulation, the relative position of the tweezer with respect to the center
of the closest antinode of the lattice is (δx, δy, δz) = (2.0,−3.0, 0.2) µm, which
corresponds to the simulations of (and will be justified in) section VI.5VI.5.

VI.4.2.4 Single atom extinction in the hybrid trap

We present here a histogram of transmission in the hybrid trap (Ulattice = 700 µK and
Utweezer = 800 µK), for a probe on resonance with the atom and the cavity, with more
statistics (1700 measurements) than required for the analyses presented in the previous
sections (200 to 300 measurements), so as to compute precisely the single atom transmission
exctinction

First, we compare this histogram to that obtained from micro-wave extraction of a single
atom in the sole intra-cavity lattice (figure VI.2VI.2). For the two histograms, the probe dura-
tion and intensity are similar: 250 µs and ncav = 3.0 × 10−2 for the tweezer, 300 µs and
ncav = 2.0 × 10−2 for the micro-wave extraction, leading to T0 ≈ 51 and ≈ 40 respectively.
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In the micro-wave extraction scheme, the probability to detect an atom is Pat = 4.2 % and is
limited by the requirement to have a negligible probability to transfer two atoms to F = 2.
In the tweezer, collisional blockade prevents from having two atoms in F = 2. Thus obtain-
ing a single atom is much more efficient: here we achieve Pat = 58 %.
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Fig. VI.13 Transmission histogram of a single tweezer with a single atom (Patom =
58 %) and higher statistics, to compute with higher resolution transmission values
T1 and T0 of the single atom and empty cavity respectively. The threshold discrim-
inating a single atom from the empty cavity is defined as the mean of the 10−3

lower quantile qcav of the Poisson fit of the empty cavity distribution, and of the
10−3 upper quantile qatom of the Poisson fit of the atomic distribution.

Then, in the tweezer histogram, we fit both the low transmission atomic peak and the
high transmission cavity peak with Poisson distributions. We obtain : T1 = 0.64 ± 0.01 and
T0 = 51.1 ± 0.3, from which we can compute the single atom transmission extinction ratio
T1/T0 = (1.23 ± 0.03) × 10−2. The expression for this ratio, is given by equation I.15I.15:

T1
T0

= 1(
1 + g2

κγ

)2 = 1(
1 + 2C)2

(VI.25)

For an atom with coupling gmax/2π = 75 MHz and geff/2π = 49 MHz (this value is justified
by a later simulation in section VI.5.3VI.5.3), the transmission ratios are T1

T0
(gmax) = 5.5 × 10−5

and T1
T0

(geff ) = 3.1×10−4 respectively. The ratio for the histogram shown here is two orders
of magnitude lower than T1

T0
(geff ) because of several effects:

1) The main effect is the thermal distribution of coupling strength g (computed later
in section VI.5.3VI.5.3) and the strong non-linearity of g → T1

T0
(g). In the experiment, we

measure the transmission ratio averaged over many realisations of this distribution.
Such average is predominantly determined the by low coupling tail of the coupling
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distribution (see figure VI.17VI.17), because T1/T0 scales as 1/g4 (equation VI.25VI.25). Thus
the thermal average will be much higher than the single-valued ratio computed from
the thermal averaged coupling g2, which is the effective coupling g2

eff by definition
(equation VI.17VI.17): (T1

T0

)
= 1(

1 + g2

κγ

)2 ≫ 1
1 + g2

κγ

= 1

1 + g2
eff

κγ

(VI.26)

2) The second effect is a residual detuning between the cavity and the average lightshifted
atomic frequency, explained in VI.5.3VI.5.3, that leads to a ratio twice higher.

3) Finally, the thermal distribution of the tweezer-lightshifted atomic frequencies (com-
puted later in section VI.5.3VI.5.3) leads to further increasing the ratio by ≈ 20 %.

The transmission ratio T1/T0 determines the performances of a tweezer occupation mea-
surement, or the measurement of the hyperfine state of a tweezer single atom. Indeed, T1/T0
determines how well one can differentiate the two outputs of the measurement, and, given
the photon shot-noise, how many transmitted photons one needs to collect to achieve this
differentiation, given the user-defined acceptable error ϵ. Ultimately T1/T0 determines how
fast one can measure for a given error ϵ.

We now discuss perspectives for improvement of T1/T0, based on a model for the thermal
distributions of both the coupling and the lightshifted-atomic frequencies, which will be
presented in section VI.4.3VI.4.3. In the near furture, we could easily reduce the single atom
extinction ratio T1/T0 by a factor of ≈ 10 (from 1.2 × 10−2 to 1.3 × 10−3) by:

1) optimising the centering of the tweezer with respect to the cavity mode, which results
in an optimal coupling. This point will be discussed in the following sections, and a
particularly precise method for this centering will be implemented in section VI.6VI.6.

2) tuning the cavity exactly on resonance with the thermal-averaged atomic frequency.

In the mid term, further reduction could be obtained by achieving a lower atomic temper-
ature. For instance, by optimising our molasses phase, we could reach T = 30 µK, similarly
to [128128], where such temperature was obtained in a very similar tweezer (λtweezer = 809 nm,
w0 ≈ 0.9 µm, Utweezer = 900 µK) with conventional polarisation gradient cooling. With such
temperature, T1/T0 drops to 7.1 × 10−5, close to the minimal achievable value 5.5 × 10−5.
Reaching such a low temperature in our hybrid trap is probably a challenge. With a slightly
higher temperature T = 50 µK, we would already improve the T1/T0 by an extra factor 10:
1.4 × 10−4.

VI.4.3 Single atom cavity mode mapping
The collective coupling mapping described in section VI.4.1VI.4.1 permits to center the large
tweezer with respect to the cavity mode, along the x and y axes, and provides a rough
centering for the small tweezer. The z mapping cannot be done with the large tweezer,
because the cloud of atoms extends over several periods of the cavity probe lattice. Here we
refine the mapping with a single atom in a small tweezer, along all 3 axes. The intra-cavity
lattice is on (we will use the hybrid trap from now on). To map the coupling to the cavity
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mode, we vary the position xt, yt, zt of the small tweezer, and measure the ratio T0/T1. A
first naive idea consists in extending equation VI.23VI.23 to:√

T0
T1

= 1 + geff (xt,yt,zt)2

κγ
, (VI.27)

where geff is the convolution between the g(x,y,z)2 and the P position probability distri-
bution of the atom (equation VI.17VI.17), which depends on the position of the tweezer xt, yt, zt.
Then, as xt → geff (xt)2 and yt → geff (yt)2 have an expression similar to that of Ω2 in
equation VI.22VI.22 we would deduce from equation VI.27VI.27 that we would need to fit

√
T0/T1 with

a gaussian function. Experimentally, we compute
√
T0/T1, where T0 (respectively T1) is the

average transmission of the empty cavity (respectively single atom) peak in the histogram,
expressed in units of number of photons detected3.

The x and y maps of
√
T0/T1 are shown in figure VI.14VI.14. They are indeed well fitted by

gaussian functions (the fits are not shown in the graph, which we explain in the following).
However, the temperature deduced from the fitted σx,y are completely incompatible with the
release-recapture estimation of the temperature, and much higher than the trap depth. This
stems from 3 effects:

1) From equation VI.17VI.17, g2
eff = g2 where the average is done upon sampling the P thermal

distribution. Thus, the thermal-averaged version of equation VI.23VI.23 is:
√
T0/T1 =

1 + g2/(κγ) = 1 + g2
eff/(κγ). Ideally one would need to compute

√
T0/T1 from our

measurements. Unfortunately, there are many (integer) T1 = 0 measurements, for
which

√
T0/T1 cannot be computed. Thus experimentally we cannot estimated

√
T0/T1

and we rather compute
√
T0/T1, for which the gaussian expression does not strictly

hold.

2) Equation VI.23VI.23 assumes both cavity and probe are on resonance with the atomic
frequency. Thus it has to be corrected in the case of a thermal distribution of atomic
frequencies.

3) When changing the position of the tweezer during the map, the hybrid trap center and
trap frequencies vary, and so does the thermal distributions of coupling strength and
tweezer lightshifted frequency.

So instead of a gaussian fit, we use a Monte Carlo simulation of the transmission that
takes into account the thermal distribution of positions of the atom in the hybrid trap,
which converts to a distribution of coupling strengths g to the cavity, and to a distribution
of tweezer-lightshifted atomic frequencies ωa. It also includes how the hybrid trap is modified
as a function of the tweezer position. For a probe on resonance with the cavity, tuned close to
resonance with the average atomic frequency ωa (which we justify in section ??), we compute
the transmission ratio T0,sim/T1,sim from equation I.11I.11:

3Please note that in most parts of the manuscript, T0 and T1 are simply denoted T0 and T1, for simplicity.
However, here, the difference does matter because of the non-linearity of the expressions, as explained in the
next paragraph.
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Fig. VI.14 Mapping of the cavity mode based on measurement of the on-resonance
transmission for a single atom in a single tweezer, displaced along x, y and z. The
experimental data is compared to a Monte Carlo simulation that accounts for the
thermal distributions of coupling strength and atomic frequency, as well as the
tweezer off-centering. For each measurement, the off-centering (δx, δy, δz) of the
tweezer along the two axes complementary to that being scanned is plotted above
the graph. The difference in δx between the y/xtweezer and the ztweezer scans is due
to a correction of the x-tweezer position between the x-map and the z-map.

T0,sim

T1,sim
=
(

1 + g2

κγ

1
1 + (ωc−ωa

γ )2

)2

+
(
g2

κγ

ωc − ωa

γ(1 + (ωc−ωa
γ )2)

)2

(VI.28)

In the simulation, we vary the position of the tweezer xt, yt, zt accross the range of values
explored in the measurement. For each position, we average the transmission ratio T0,sim

T1,sim

over Nreal = 100,000 realisations of the thermal distribution. At each realisation, we draw
the atomic position x,y,z in the thermal gaussian distribution with standard deviation given
by equation VI.19VI.19, where the hybrid trap frequencies and the center of the harmonic approx-
imating potential are calculated as in section VI.4.2VI.4.2. From the positions x,y,z, we compute
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the coupling to the cavity mode g(x,y,z) using equation VI.16VI.16, and the transition frequency
ωa(x,y,z), taking into account both the x,y,z-dependent lightshift induced by the π-polarised
tweezer light and the Zeeman effect from the 3G quantisation magnetic field. Typical distri-
butions of the couplings and the atomic frequencies are shown in figure VI.17VI.17.

Finally, from equation VI.28VI.28, we compute for the transmission ratio T0,sim/T1,sim(gk =
g(x,y,z), ωk = ωa(x,y,z)), which we average over the Nreal realisations:√√√√√(T0,sim

T1,sim

)
=

√√√√√ 1
Nreal

k=Nreal∑
k=0

(
1 + g2

κγ

1
1 + (ωc−ωa

γ )2

)2

+
(
g2

κγ

ωc − ωa

γ(1 + (ωc−ωa
γ )2)

)2

(VI.29)

In the simulation T0,sim is not subjected to shot noise: it is a constant that depends
on the probe power, fixed during the measurements. So

√
T0,sim/T1,sim =

√
T0,sim/T1,sim.

From the experiment we measure
√
T0/T1. T0 is subjected to shot noise and its average

verifies T0 = T0,sim. Therefore experimental
√
T0/T1 and simulated

√
T0,sim/T1,sim can be

compared. Both are plotted on figure VI.14VI.14.

We search manually for good fitting parameters:

1) δx, δy, δz for the off-centering of the tweezer along the 2 axes not being mapped. Since
all 3 measurements were done in a row, we take into account the correction brought
to the off-centering from previous mappings. With this correction we find a set of
off-centering values compatible with the experimental data.

2) the temperature T . Indeed, we observe that using the temperature T = 92 µK from
the release-recapture measurement (figure VI.12VI.12) does not fit the data very well. For
instance it gives simulated bell curves xt, yt →

√
T0/T1(xt, yt) thiner than the experi-

mental curve. Higher temperatures ranging from 110 to 160 µK enlarge the simulated
curve and are required to fit correctly the data (see the suptitles in figure VI.14VI.14). This
could be due to underestimation of the temperature by the release-recapture measure-
ment in the hybrid trap, which lead to a surprisingly low temperature (see section
VI.4.2.3VI.4.2.3).

In spite of this effect, both the measurement and the simulation allow to point the cavity
mode center with a precision of ±2 µm for x and ±3 µm for y. For y, the single atom
map contrasts with the collective map: here the width σmap,y of a gaussian fit of the data
is ≈ 8 times smaller (σmap,y = 3.8 and 33 µm for the single atom and the collective maps
respectively). Along the x axis, the width of the single atom map (σmap,x = 3.1 µm) is only
slightly smaller to that of the collective map (σmap,x = 3.3 µm), because both widths are
mainly determined by the size of the cavity mode σcav = wcav/2 ≈ 2.8 µm in the quadratic
sum σ2

map,x/y = σ2
x/y +σ2

cav which appears in both the naive gaussian expression of the single
atom map and in the similar expression for the collective map (equation VI.22VI.22).

For the z map, the SNR is significantly lower than for x and y. For instance, we can
estimate the signal as the ratio between the maximal and minimal values of

√
T0/T1: it is
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about 1.5 for z and rather 2.5 for x and y. This limited signal is due to the intra-cavity
lattice, which attracts the atom to a probe antinode and ensures a good coupling g no matter
the position of the tweezer ztweezer. This prevents

√
T0/T1 from decreasing as much as in x

and y maps. This is very good news for the robustness of strong coupling of our single atom
with respect to imperfection in tweezer positionning along z, as we will see in multiple ways
in the following sections. However, because of that the z map shown here can only be used
for approximate estimations of:

1) the (local) maximum of
√
T0/T1, at the z position of optimal coupling. It can only be

pointed with a precision of ±0.15 µm.

2) the 780 nm periodicity, which corresponds to the distance between two neighboor
intra-cavity lattice trapping sites.

We will see in VI.5VI.5 a last mapping method which has a much better SNR, and will allow
for a more precise determination of the optimal coupling z position.

VI.5 Vacuum Rabi splitting of a tweezer single atom
In this section, we present the measurement of the vacuum Rabi splitting of a single atom
trapped in a tweezer, which proves that strong coupling to the cavity is achieved at the single
atom level and confirms that only one atom is loaded in our trap.

VI.5.1 Experimental methods for transmission spectrum measurement
We will now present the measurement of the transmission spectrum of the cavity, strongly
coupled to a single atom in a tweezer. The cavity is close to resonance with the transition
F = 2,mF = 2 → F ′ = 3,mF ′ = 3, including the tweezer lighshift and the Zeeman shift from
the B = 3 G quantification field. The experimental sequence is similar to that of section
VI.4.2VI.4.2, for steps 1 to 6 (with trap depths Utweezer = 800 µK and Ulattice = 700 µK). Then,
the tweezer and cavity are probed twice and we measure the corresponding transmitted in-
tensity Tα,β. First (Tα) we probe at a variable detuning δ = ωp − ωc, for which we want to
measure the average transmission of a single atom T1(δ) and of the cavity T0(δ). Then (Tβ)
we probe on resonance (δ = 0), which is the optimal detuning to determine if there is an
atom in the tweezer. Before each measurement, a 150 µs repumper pulse ensures that the
atom is in the strongly coupled F = 2 level. The duration of the probe pulse is 750 µs and
its intensity corresponds to ncav = 7.9 × 10−3 average intra-cavity photons.

For each value of the detuning δ, we repeat the sequence ≈ 200 times and measure Tα(δ)
and Tβ at each repetition. We then plot the transmission histograms of a single atom and
of the empty cavity, by post-selecting outcomes Tα depending on the values of Tβ: if Tβ

is low (respectively high) it means there is an atom (respectively no atom) in the tweezer.
This postselection is illustrated on figure VI.15VI.15. It is necessary for most values of δ, for
which the distributions of transmission of the single atom and the empty cavity overlap (as
in figure VI.15VI.15), forbiding from differentiating the single atom from the empty cavity with
the transmission measurement at δ . Once the post-selection is done, for both histograms we
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compute the mean transmission (which we simply denote T1(δ) and T0(δ) from now on) and
the corresponding error bar. Please note that we perform the measurement of interest Tα(δ)
before the cavity/atom discriminating measurement Tβ(0), so that the atom has not yet
been affected by the probe (for example by heating) when subjected to the most important
measurement Tα.

0 10 20 30 40 50 60
Photon counts

0.00

0.02

0.04

0.06

0.08

0.10

Pr
o
b
a
b
ili

ty
 d

e
n
si

ty

Tempty = 36.89 ± 0.45

Threshold = 20

0 5 10 15 20 25 30
Photon counts

0.0

0.1

0.2

0.3

0.4
Pr

o
b
a
b
ili

ty
 d

e
n
si

ty
T1 = 9.45 ± 0.49
T0 = 2.46 ± 0.16

0 10 20 30 40 50 60
Photon counts

0.0

0.1

0.2

0.3

0.4

Pr
o
b
a
b
ili

ty
 d

e
n
si

ty

Threshold = 20

Fig. VI.15 Measurement of the transmission of the single atom (and the empty
cavity), for the detuning δ/2π = 70 MHz. Since the single atom is loaded with
a probability of 50 %, we post-select the transmission measurements Tα at the
detuning of interest δ based on another measurement at δ = 0 (measurements
Tβ). The left plot corresponds to the Tβ(δ = 0) measurement, with which we
post-select the results from the other measurement, Tα(δ), shown in the mid-
dle plot. The blue/empty tweezer histogram gathers Tα measurements for which
Tβ(δ = 0) > Tthreshold. The yellow/single atom histogram corresponds to Tα mea-
surements for which Tβ(δ = 0) < Tthreshold. The average value of these histograms
are plotted as dashed lines and displayed in the legend. The errors on the averages
are the standard 68 % (±σ) confidence intervals: = ±σ/

√
Nsample. Please notice

that for this value of the detuning (δ/2π = 70 MHz), T1 > T0 as we are close to the
high frequency peak of the single atom vacuum Rabi splitting (see figure VI.16VI.16).
The right gray histogram corresponds to the cavity measurement performed on res-
onance (δ = 0), before moving the tweezer inside the cavity. It allows to check that
the cavity is initially empty, which is the case, as there is only a high transmission
peak.

VI.5.2 Experimental spectrum
The resulting spectrum is shown in figure VI.16VI.16. The empty cavity transmission is fitted with
a lorentzian, from which we extract a Half Width at Half Maximum (HWHM) of 16 MHz.
This is close to the width measured in a single-shot frequency scan (κ/2π = 14.2 MHz) of the
empty cavity. The slight enlargement is probably due to fluctuations of the cavity frequency
during entire measurement, which lasts a few hours.

The single atom transmission exhibits a beautiful normal mode splitting. As a prelim-
inary analysis, we can quite well fit the data by the empirical sum of two lorentzians (not
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Fig. VI.16 Transmission spectrum of a single atom (yellow points) in the hy-
brid trap, exhibiting a clear vacuum Rabi splitting 2g corresponding to a coupling
g/2π ∼ 50 MHz. The atomic transmission is fitted with a Monte Carlo calculation
that accounts for inhomogeneity of the atomic transition frequency and the cou-
pling strength that stems from the thermal distribution of position in the hybrid
trap, and tweezer lighshift and coupling to the cavity, both of which are position-
dependent. The calculation incorporates the offcentering (δx, δy; δz) of the tweezer
with respect to the intra-cavity lattice. The empty cavity transmission (blue points)
is quite well fitted by a lorentzian.

shown in the graph), to determine the distance between the peaks 2glorentz, from which we
deduce an effective single-atom coupling strength glorentz/2π = 53 ± 1 MHz, and a HWHM
of 16 ± 1 MHz. One can see that Rabi splitting is slightly offcentered with respect to the
empty cavity: the center of the doublet is at ωp − ωc ≈ 6 MHz. This is due to a slight
detuning between the cavity and the mean atomic frequency, which is explained further in
section VI.5.3VI.5.3. Such small detuning has a completely negligible effect on the estimation of
the collective coupling from the Rabi separation.

The rather high value observed for geff indicates that the atom is polarised in F =
2,mF = 2. Indeed, the coupling strenghs for other σ+-driven transitions within in F = 2 →
F ′ = 3 are lower by a factor ranging from

√
2/3 ≈ 0.82 to

√
2/30 ≈ 0.26. In absence of any

optical pumping in our experimental sequence, this result indicates that the σ+ probe pulse
polarises the atom, as observed in [6666, 133133].

The corresponding single-atom effective cooperativity is Clorentz = g2
lorentz/(2κγ) ≈ 33.

We will see in section VI.5.3VI.5.3 that because of several effects, the lorentzian fits overestimates
slightly the coupling, and that the actual effective coupling and cooperativity are geff/2π =
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49 MHz and Ceff ≈ 28, which is very satisfying. Indeed this value is close to the record
cooperativity obtained with a single atom in a tweezer and an optical resonator, which to our
knowledge is Ceff ≈ 36, obtained in the nanophotonic experiment of the group of Lukin [6363].
If we compare our results to that of Fabry-Perot cavity experiments, our tweezer single-atom
cooperativity is much higher than the one achieved recently in experiments with tweezers
in linear cavities with millimetric lengths: Ceff ≈ 1.15 in [6666] (Dan Stamper Kurn) and
Ceff ≈ 1.1 in [6767] (Zhang). Here we fully benefit from the particularly small mode volume
and waist possible with laser-machined fiber micro-cavities. For a presentation of the 3
experiments quoted here, please refer to section I.2.1.2I.2.1.2.

As in references [6666, 6767], to achieve the best possible effective coupling, the tweezer needs
to be centered with respect to an antinode of the probe standing-wave. In the data of
figure VI.16VI.16, the effective coupling geff/2π = 49 MHz is smaller than the maximal value
gmax/2π = 75 MHz mainly because of such residual off-centering and slightly because of
the thermal distribution of positions of the atom in the tweezer which converts to a distri-
bution of coupling values, which quadratically average to geff (see equation VI.17VI.17). Such
thermal distribution also induces a distribution of tweezer-lightshifted atomic frequencies,
which leads, together with the distribution of couplings, the HWHM = 16 ± 1 MHz to be
higher than the theoretical value of (κ+ γ)/2 × 1/2π = 8.6 MHz.

VI.5.3 Simulation

All the effects discussed in the previous section can be included in a Monte Carlo simulation
of the transmission spectrum, that accounts for the statistical distribution of transition
frequencies and coupling strenghts for a thermal ensemble in the hybrid trap, including the
off-centering of the tweezer, caracterised by its position δx, δy and δz with respect to the
center of the closest probe antinode. This simulation is very similar to the one of section
VI.4.3VI.4.3, except that here the probe frequency is varied. We use the transmission expression
of equation I.11I.11, which we normalize to 1 for the on-resonance empty cavity (ωp = ωc and
g = 0):

Tnorm(ωp) = 1(
1 + g2

κγ
1

1+( ωp−ωa
γ

)2

)2

+
(

ωp−ωc

κ − g2

κγ
ωp−ωa

γ(1+( ωp−ωa
γ

)2)

)2 (VI.30)

For each probe-to-cavity detuning δ = ωp − ωc, we average the transmission Tnorm(ωp)
over Nreal = 10,000 realisations of the thermal distribution, the temperature being fixed to
the value measured earlier, T = 92 µK (section VI.4.2.3VI.4.2.3). At each realisation we draw the
atomic position x,y,z, in the thermal gaussian distribution from which we deduce the coupling
g(x,y,z) and the atomic transition frequency ωa(x,y,z) (for more detail, see VI.4.3VI.4.3). The dis-
tributions obtained for the coupling and the atomic frequency are shown in figure VI.17VI.17. The
frequency distribution (on the right) is asymmetric: the probability is higher that the atom is
close to the center of the tweezer trap, and thus to have a frequency shift close to the maximal
value 21 MHz. The low-frequency tail corresponds to the atom being away from the center
of the trap. Ideally, the cavity should be tuned on resonance with mean atomic frequency
(see section ??), which is ωa/2π = 17.1 MHz. On the day of the acquisition, the lightshift
was slightly underestimated and so the cavity was tuned to ≈ 11.5 MHz. From that, the
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Rabi doublet is expected to be centered at (ωa +ωc)/2 × 1/2π ≈ 14.3 MHz. We observe that
the doublet is rather centered at 17.7 MHz (which corresponds to (ωp − ωc)/2π = 5.6 MHz
on the frequency axis of figure VI.16VI.16). Such 3.4 MHz difference is reasonably low given the
cavity frequency fluctuations (σ ≈ 3 MHz). The coupling distribution exhibits a similar
asymmetrical shape, which can be understood similarly from the hybrid trap confinement
close to the probe antinode.
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Fig. VI.17 Distributions of coupling values g and atomic frequencies for Utweezer =
800 µK, Ulattice = 700 µK, T = 92 µK, and tweezer off-centering (δx, δy, δz) =
(2.0, − 3.0,0.2) µm (fitting parameters for the spectrum). The atomic frequencies
are referenced to the bare-atom frequency of the transition F = 2,mF = 2 → F ′ =
3,mF ′ = 3. The differential lightshift induced by the π-polarised tweezer beam
on the transition F = 2,mF = 2 → F ′ = 3,mF ′ = 3 is positive and its maximal
value at the bottom of the trap is ≈ +16.8 MHz. We also take into account the
≈ +4.2 MHz constant differential shift of the Zeeman effect.

Finally we compute the transmission for this atom: Tnorm(ωp, gk = g(x,y,z), ωk =
ωa(x,y,z)). The curve plotted on figure VI.16VI.16 is the average transmission : Tnorm(ωp) =
1/Nreal

∑k=Nreal
k=0 Tnorm(ωp, gk, ωk). We search manually for good fitting parameters δx, δy, δz,

which affect the effective coupling geff and thus the separation between the peaks. Indeed,
on the day of the data acquisition, the tweezer centering was unfortunately not at the limit
of sensitivity of the transmission ratio mappings decribed in section VI.4.3VI.4.3. We estimate
that off-centering of up to δx = ±2 µm, δy = ±5 µm and δz = ±0.25 µm are possible. We
find that δx = (2.0 ± 0.3) µm, δy = (−3.0 ± 0.5) µm, δz = (0.2 ± 0.1) µm fit nicely the data.
Since the temperature estimation of the release-recapture measurement made in the hybrid
trap (figure VI.12VI.12) depends as well on the tweezer off-centering, we repeat the simulations
of both release-recapture and transmission spectrum several times until finding the values
for T, δx, δy, δz that fit both experimental curves. From their final fitted values, we compute

from the simulation the effective coupling geff =
√∑Nreal

k=1 g2
k

Nreal
. We obtain geff/2π ≈ 49 MHz

and the corresponding cooperativity Ceff ≈ 28.
We insist that this spectrum fitting is rather qualitative. For example, shifts in δx and

δy can lead to the same variation of the effective coupling (though with different sensitivity,
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because the tweezer is more confining along x than along y). However, such simulations are
interesting as they provide an estimation for the typical tweezer off-centering more precise
than the mappings discussed in section VI.4.3VI.4.3, which rely on a single-frequency transmission
measurement, as well as the margin for improvement of the effective coupling. Indeed, for a
perfectly centered tweezer (δx = δy = δz = 0), we estimate from a simulation that the effec-
tive coupling for Ulattice = 700 µK, Utweezer = 800 µK and T = 92 µK is geff/2π ≈ 72 MHz,
corresponding to cooperativity Ceff ≈ 60, much better than the previous value. To improve
this alignement further and reach the highest coupling possible for these atom and trap pa-
rameters, we will introduce, in section VI.6VI.6, a new method that relies on the preliminary
measurement of the single atom vacuum Rabi splitting.

VI.5.4 Robustness of the strong coupling with respect to tweezer position

Finally, for the tweezer off-centering (δx, δy, δz) determined from fitting the vacuum Rabi
splitting, we run several simulations of the transmission spectrum with a varying lattice trap
depth, and a temperature T = 92 µK. The results are shown in figure VI.18VI.18. When the trap
depth increases between Ulattice = 15 µK (the minimal value for locking the cavity - see cap-
tion of figure II.8II.8) and 700 µK (the value commonly used), geff/2π increases approximately
from 35 MHz to 49 MHz, and Ceff increases from 14 to 28. As a result, the separation
between the two polaritonic peaks increases. Meanwhile, the on-resonance transmission ra-
tio T1/T0 decreases from 0.12 to 0.02, a 6-fold improvement. This illustrates the robustness
enabled by the intra-cavity lattice, in terms of coupling strength, with respect to imperfect
centering of the tweezer.
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Fig. VI.18 Simulation of the transmission spectrum for Ulattice =
15, 310, 500, 700 µK (pictures a,b,c and d respectively). Utweezer and T are
fixed to 800 and 92 µK respectively, for a tweezer not perfectly centered with
respect to the closest probe antinode (δx, δy, δz) = (2.0,−3.0, 0.2) µm. On can see
that the intra cavity lattice brings a significant improvement in terms of separation
between the peaks and on-resonance transmission, which result from a stronger
effective coupling.
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VI.6 Precision-enhanced cavity mode mapping on the slope of
the polariton

In section VI.4.3VI.4.3, we have demonstrated the cavity mode mapping with a single atom in a
tweezer, by measuring the on-resonance transmission (ωp = ωc = ωa). We have seen that
the mapping along the cavity axis z has a poor SNR. Here we present another mapping
technique, with improved SNR, which relies on a preliminary measurement of the vacuum
Rabi splitting such as performed in section VI.5VI.5. It consists in measuring the single atom
transmission on the slope of one of the polaritons, which is quite sensitive to the position of
the polariton along the frequency axis, and thus to the effective coupling geff .

VI.6.1 Experimental results
Here the measurement is done on the positive slope of the high frequency polariton. The
results are shown in figure VI.19VI.19, and they exhibit a periodic pattern. The distance between
the two successive points of minimal transmission is 735 nm. From a previous calibration,
we estimate the relative uncertainty in the distance between two tweezer positions to be 4 %
and we get (735±30) nm. The uncertainty due to sampling along ztweezers is actually higher.
If we apply ±∆z/2 uncertainties to the minima positions (where ∆z is the distance between
data points), we obtain (735 ± 60) nm, which includes the expected value of 780 nm. In the
future, we would benefit from repeating the measurement with a smaller ∆z.

However, it should be noticed that the SNR is much better than in the map performed
with on-resonance transmission (bottom graph of figure VI.14VI.14). To interpret the shape of
the results, let’s first restrict the analysis to the range ztweezer = [400, 700] nm. Starting at
the initial position of the tweezer, zi ≈ 550 nm, when ztweezer increases, the transmission
increases, meaning that the positive polariton is shifting towards lower frequencies, and thus
that geff decreases. For ztweezer < zi, the transmission decreases, which means, conversely,
that geff increases. With this interpretation, prior to any fit, we can determine the position
of optimal coupling as z0 = (370 ± 45) nm, with a 3-fold enhanced precision as compared to
the previous measurement (±150 nm, see section VI.4.3VI.4.3).

VI.6.2 Fitting model
To fit the experimental results, we first model the single-atom transmission in the region of
the positive frequency polariton by a lorentzian function, which is a good approximation:

T (ωp) = A

1 + (ωp−ω+
W )2

, (VI.31)

where ω+ is the frequency of the polariton and W the experimental HWHM of the
corresponding transmission peak. In this model, when the ztrap position of the atom is
varied, glorentz changes and so does the frequency of the polariton:

ω+(ztrap) = glorentz(ztrap) = gamp

∣∣∣ cos
{

2π/λ1 × (ztrap − z0)
}∣∣∣ , (VI.32)

with z0 the position of the probe antinode, where the coupling is maximal. The probe
frequency ωp is fixed and set on the positive slope of the initial polariton, at a distance of
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Fig. VI.19 Map of the cavity mode along the z axis, for a probe on the side of
the polariton. This method has a SNR much better than previous measurement
with a probe on resonance (figure VI.14VI.14). Thus, the determination of the point
of optimal coupling is about 3 times more precise. Please note that the 0 of the
ztweezers axis is arbitrary. We estimate that it corresponds to the cavity center with
a large uncertainty of ±10 µm.

W from its central frequency. Thus, we rewrite the transmission as a function of ztrap:

T (ztweezer) = A

1 +
(
ωp − gamp

∣∣∣ cos
{

2π/λ1 × (ztrap[ztweezer] − z0)
}∣∣∣)2

/W 2
, (VI.33)

Then we consider two different trapping configurations:
1) the atom is in the hybrid trap (Utweezer = 800 µK, Ulattice = 700 µK), which corre-

sponds to the experimental conditions for the data shown here

2) the atom is in the tweezer only. Though there is no measurement for this situation, we
simulate it to highlight the effect of the lattice.

In the first case ztrap[ztweezer] = zhybrid[ztweezer], where the position zhybrid of the hybrid
trap is defined as the position of the minimal value of the sum of the tweezer and the lattice
potentials (similarly to what is done in section VI.4.2VI.4.2). In the second case ztrap[ztweezer] =
ztweezer. To simplify the analysis, we drop the variables x and y, and any residual off-
centering of the tweezer along x and y will be accounted for as a reduction of the maximal
coupling gamp (in equation VI.33VI.33).

VI.6.3 Simulation results
Graph c of figure VI.20VI.20 shows that ztweezer → zhybrid is almost a step function (blue solid
line). Each change of step corresponds to a jump of the minimal potential point from a trap
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Fig. VI.20 Simulation of the transmission on the slope of the polariton. For more
details please refer to the main text.

lattice site to its neighbor, 780 nm away. The jump corresponds to the tweezer passing by the
the critical point equally distant to the two closest lattice antinodes. Between each jumps,
ztweezer → zhybrid has a small slope, such that zhybrid varies by only ≈ ±50 nm around the
lattice antinode, while ztweezer (gray dashed-dot line) varies by 780 nm ! This illustrate how
strongly the intra-cavity lattice pins the atom along the z axis, which provides a coupling
to the cavity very robust to imperfect centering of the tweezer with respect to the probe
antinode.

This robustness is illustrated with graph b, where we compare the coupling glorentz(ztweezer) =
gamp| cos[ 2π/λ1×(ztrap−z0) ] | with the lattice (blue full line, ztrap[ztweezer] = zhybrid[ztweezer])
and without (grey dashed-dotted line, ztrap[ztweezer] = ztweezer ). Without the lattice, glorentz

varies from gamp to 0 with the periodicity of probe lattice 780/2 = 395 nm4 With the lattice,

4The value of 0 might be surprising. For an atom with a thermal distribution of coupling g, the average
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because the atom is pined close to a trap antinode, which is also a probe antinode, the
coupling remains high (glorentz(ztweezer) ≥ 0.9 gamp) and varies with the periodicity of the
trap lattice 1559/2 ≈ 780 nm due to the jumps that we have mentioned.

Graph a. shows the single atom transmission on the slope of the polariton. The blue
line corresponds to a fit of the data with equation VI.33VI.33, where ztrap is replaced the "step"
function zhybrid(ztweezer). A and W are fixed from the preliminary fit of the positive polariton
in the full transmission spectrum, and only the best achievable coupling gamp and the optimal
position z0 are free parameters. The best fit values are gamp/2π = 67 ± 2 MHz and z0 =
370 ± 20 nm. gamp is higher than the glorentz/2π ≈ 53 MHz value obtained in section VI.5.2VI.5.2
which indicates that the tweezer was not perfectly centered for the vacuum Rabi splitting,
as the simulation of the transmission spectrum (see section VI.5.3VI.5.3) implies. By performing a
full transmission spectrum measurement immediately after such z mapping of the coupling,
and setting the tweezer position to the optimal value z0 = 370 nm, we expect a vacuum Rabi
splitting corresponding to an effective cooperativity of Ceff = 455, closer to the highest
possible value for the temperature and trap parameters considered here: Ceff = 60 (see
section VI.5.3VI.5.3). The remaining gap to Ceff = 60 could be closed by optimising as well the
x,y position of the tweezer with the enhanced precision of such a polariton-slope transmission
measurement.

The fit shown in graph a. is not perfect: its amplitude is smaller than that of the
experimental data points, which suggests that we slightly overestimate the atom localisation
induced by the lattice trap. There are several possible causes for that, which relate to
imperfections of the lorentzian empirical model used here:

1) the cosine expression for the coupling (equation VI.32VI.32) is that of a 0 K-point-like atom.
Indeed, with a thermal distribution of coupling, the g average value, which position
of the polariton, cannot go down to 0. In our model here, only W (larger than the
theoretical (κ+ γ)/2 - see section VI.5.2VI.5.2) accounts for the thermal inhomogeneities in
coupling and lightshifted atomic frequency.

2) the model of this section accounts for the change of position of the hybrid trap when
ztweezer varies but not for the change of the hybrid trap z frequency (equation VI.24VI.24),
which is reduced by up to 10 % when the tweezer is equidistant to two trapping sites.

3) the model assumes the width W of the lorentzian is constant, meaning that we neglect
the variations of thermal distribution of couplings and of lightshifts when ztweezer varies.

A finer analysis of the results could be performed by implementing a Monte Carlo simu-
lation of the average transmission including these effects, similarly to what is done in section
VI.5.3VI.5.3.

Finally, we comment the fictitious single atom transmission in absence of the lattice (grey
dashed-dotted line in graph a), obtained from equation VI.33VI.33, with ztrap[ztweezer] = ztweezer.
The large variations of geff visible on graph b. result in much larger variations of T (ωp)

coupling of the distribution cannot be 0 except for T = 0 K. However, here, the expression of the coupling is
that of a point-like atom, and only W accounts for the thermal distribution, as discussed below.

5To compute this cooperativity, we convert the lorentzian-approximation glorentz into a effective coupling
geff with the same ratio as observed in sections VI.5.3VI.5.3 and VI.5.3VI.5.3: geff = 49/53 × gamp ≈ 2π × 62 MHz
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than with the hybrid trap. T (ωp) has a periodicity of 780/2 = 390 nm, equal to that of
the probe lattice. The local maxima corresponds to the probe being on resonance with the
polariton. There are two sets of local minima:

a) the upper minima correspond to antinodes of the probe, where the coupling is maximal
and the probe is slightly red-detuned with respect to the (positive) polariton.

b) the lower minima correspond to nodes of the probe, where the coupling is minimal
and thus the probe is signigicantly blue-detuned with respect to the polariton. The
minimal transmission is not 0 since the lorentzian peak is not sufficiently far from the
probe.

Such fictitious graph corresponds to a tweezer point-like atom, which experimentally would
require a vanishing temperature. We plot it to emphasize the robustness brought by the
hybrid trap, which is visible in transmission as well.

VI.7 Towards multiple strongly coupled tweezer single atoms
In the previous sections, we have showed that we are able to load a single atom in a single
tweezer (generated by the 2D AOD). We characterise its temperature and trap frequency,
demonstrate its strong coupling to the cavity and present several method to map the cavity
mode and improve the coupling strength.

The next step towards the objective described in section I.2.2I.2.2 is to generate multiple
single atoms in multiple tweezers, which implies generating multiple tweezers, setting up the
tweezers storage register outside of the cavity with the 1D AOD, transferring atoms from
the storage register to the cavity for single tweezer detection.

VI.7.1 Preliminary alignements and angle measurements
We start by describing the few preliminary alignement and distance/angle measurements
required to operate multiples tweezers with both AODs. First we align the 1D AOD beam,
such as to generate an array at a distance of d ≈ 18 µm from the cavity axis, where the
coupling has a negligble value 20000 smaller than on the cavity axis. For this we use the
cavity mode mappings described in sections VI.4VI.4 as a means to measure the relative position
between the 2D AOD (with which all the tweezer measurements presented earlier were done)
and the cavity mode. With this information, we generate an array of tweezers with the 2D
AOD, at the aimed distance d of the cavity axis. Then we align the 1D AOD beam so as to
superpose to the 2D AOD tweezer array the same array of tweezers, generated with the 1D
AOD, using the parallel imaging device.

For an array of tweezers parallel to the cavity, one needs to know the angle between the
array axis and the cavity axis, which is not required for the single-tweezer operation of earlier
sections. In the horizontal plane (x,z) we measure this angle for the 2D AOD: θxz = 1.7±0.4◦

(see figure VI.21VI.21). This is very satisfying given that this tweezer array was aligned with the
axis of the cavity optical fibers by eye, using images of tweezers light scattered on the fibers,
such as pictures c. and d. on figure VI.3VI.3.

For a chain tweezers covering a significant part of the cavity length ∆z = 120 µm, this
angle converts to a shift of ∆x = 3.5 µm, meaning that, if the cavity axis intersects the 2D
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AOD array at the middle of the array, the extremal tweezer will be shifted by ±∆x/2 =
±1.7 µm from the cavity axis. Due to this shift, the coupling strength g of extremal single
atoms will be reduced by a factor exp[−(∆x/(2wcav)2] ≈ 0.91. Given the 60 µm z−distance
to the cavity center, the coupling strength also reduced by a factor 1/

√
1 + [∆z/(2zR)]2 ≈

0.90 (this is independent of alignement). Assuming the central tweezer has been aligned with
the cavity mode along all 3 axes, using the most precise method described in section VI.6VI.6,
we expect its effective coupling to be geff/2π = 62 MHz (see section VI.6.3VI.6.3). Thus, the
effective coupling of the extremal tweezers would be 18 % lower: geff/2π = 51 MHz, very
close to the value from the vacuum Rabi splitting reported in section VI.5.2VI.5.2. So the coupling
of the entire array of tweezers should be sufficiently high for most operations. For operations
requiring a more homogeneous coupling strength within the array, one could further reduce
the angle θxz, with the help of the goniometeres on which both AOD are mounted.

Using the parallel imaging device the angle between the 1D AOD and 2D AOD tweezers
arrays was estimated to be ≈ 0.15 ± 0.20◦, which converts, in the worst case, to a shift
of ±0.35 µm perpendicularly to the array, for the most extremal tweezers. This is not
compltelty negligible as compared to the tweezers waist w0 = 0.85 µm. However, we believe
that it is still possible to transfer a single atom from one to the other AOD. In the short-
term this should be sufficient. In the mid-term, such shift might induce some heating for a
quick transfer of the atom between AODs. To avoid this, one would need to further align
the 1D AOD storage register array of tweezers with respect to the 2D AOD array, using the
goniometers mentioned above.

The results presented in the following were taken with tweezer array extending over at
most 42 µm along the cavity axis. Thus the residual angle effects discussed here are not an
issue.

VI.7.2 Demonstration of collisional blockade for up to 9 tweezers

We generate, with both the 1D and the 2D AODs, arrays of Ntweezers = 5 or 9 tweezers
with a separation of 3 × 1559 = 4677 nm between neighbor tweezers, so that all tweezers are
centered on trapping sites of the intra-cavity lattice, where the probe intensity is maximal.
Phases and amplitudes of the AOD multi-frequency RF signals are optimised, as described
in sections V.2V.2 and V.3.2V.3.2 respectively.

The 2D AOD tweezer array is loaded from the transport trap (see section VI.2.2VI.2.2). After
applying a molasses of duration δtmol and setting the B = 3G quantification magnetic field
along the cavity axis, the single atoms in the 2D AOD tweezer array are transferred in 3 ms
to the 1D AOD tweezer array, overlapped to the 2D AOD array. The trap depth of each
tweezer in both array is Ulow = 0.8 mK, our standard value for the results of this manuscript.
The 1D AOD array is our static atomic storage register.

Then, for each tweezer of the storage register:

1) the (probabilistic) atom is transferred to a single moving tweezer, generated by the 2D
AOD. The storage register corresponding tweezer is kept on at Ulow, and so we use a
10 times deeper moving tweezer (with trap depth Uhigh = 8.0 mK) to grab the atom.

2) the moving tweezer is displaced to the cavity in 0.6 ms
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Fig. VI.21 Single atom protractor ! The goal of the measurement is to evalutate
the residual angle θxz between the cavity axis and the almost parallel axis of the
2D AOD tweezer array, in the horizontal (xz) plane. For several position z of the
tweezers, we map the cavity mode along the x axis (see section VI.4.3VI.4.3) and point
x center of the cavity mode. Both positions are defined in the reference of the 2D
AOD axes. From a linear fit of the data we extract the slope, which is the angle
θxz = 1.7 ± 0.4◦.

3) after a repumper pulse to ensure the atom would be in F = 2, we probe the moving
tweezer on resonance to detect if there is a atom. The probing is done at a reduced trap
depth, Ulow, for which we have calibrated the detection and for which we expect much
narrower thermal distributions of tweezers-lightshift than at Uhigh. After probing, the
trap depth is increased back to Uhigh. Indeed, the intra-cavity lattice trap is constantly
on at a trap depth Ulattice = 700 µK, rather than turned off and on and at each tweezer
motion and probing respectively. This improves the frequency stability of the cavity,
which is locked with the lattice light. Consequently, the moving tweezer has a trap
depth Uhigh much higher than the lattice so that no is left in the lattice. Trap depth
increase and decrease between Ulow and Uhigh are done in 0.2 ms, and the probe
duration is 0.5 ms.

4) the moving tweezer is displaced to its initial position in the atomic storage register,
and its trap depth is lowered to 0 to leave the atom in the storage register.

Picture a. of figure VI.22VI.22 shows the probability Pat to detect atom(s) in the tweezers
for various molasses duration δtmol. Pat is averaged over all tweezers of the array. Similarly
to the single-tweezer results (picture a in figure VI.4VI.4), one can see the decay of Pat for
δtmol ≤ 10 ms due to two-body light-assisted losses, and, for δtmol ≥ 15 ms, the collisional
blockade "plateau" at Pat ≈ 55 % (respectively 45 %) for Ntweezers = 5 (respectively 9).
Pictures b (respectively c) shows the probability to detect a single atom for each of the
Ntweezers = 5 (respectively 9) tweezers, on the collisional blockade "plateau", after a molasses
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of δtmol = 15 ms . One can see that the probability is rather homogeneous among the different
tweezers.
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Fig. VI.22 Picture a: Collisional blockade plateau for an array of 5 and 9 tweezers.
The probability to detect an atom Pat is computed from averaging the results of all
tweezers. Picture b. and c. show Pat for each tweezer separately, after a molasses
of 15 ms. One can see that the probability is rather the same for all tweezers.

VI.8 Conclusion
Our high cooperativity microcavity allows for a fast detection of the hyperfine state of an
atom. After checking this ability with a single atom in the intra-cavity lattice, we have used
this detection to measure the presence of single atom in a single tweezer. This measurement
has been the basis of most of the results presented in this chapter. A standard red-detuned
molasses is aligned on the cavity mode. Upon applying this light on the tweezers loaded
with several atoms, the collisional blockade regime is reached, where a single atom is loaded
probabilistically (Pat ≈ 50 %) in each single tweezer.

As a first step, most of the work presented here has been performed with a single atom
in a single tweezer, generated by the 2D AOD. In this configuration, we measure the atom
temperature and the trap frequencies, which provide an in-situ verification of our tweezer
waist. To achieve the optimal centering of our tweezer with an antinode of the intra-cavity
probe standing-wave, and thus the best coupling possible to the cavity, we test various
methods for mapping the effective coupling of the trapped atom(s). A first rough centering
is based on measurements of the collective coupling with atomic ensembles in large tweezers.
Going back to a single atom in a single tweezer, we then demonstrate that the effective
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coupling is significantly improved if we add to the tweezer trap the intra-cavity lattice trap,
which has been specially engineered to attract the atom to a probe antinode. This "hybrid"
trap is very robust to imperfect centering of the tweezer with respect to the probe, for which it
largely compensates. Nevertheless, the hybrid trap being on, we further optimise the coupling
by mapping the cavity mode in all 3 directions with a single small tweezer, measuring the
single atom transmission exctinction. An important step is then the demonstration of strong
coupling of such tweezer single atom to the cavity, which we perform by measuring the single
atom - single photon transmission spectrum. It exhibits a vacuum Rabi splitting with an
effective cooperativity Ceff ≈ 30. This is close to the record achieved for a tweezer single
atom and a optical resonator. Once the Rabi splitting is measured, we use the transmission
on the side of a polariton peak as a means to map the coupling when moving the tweezer
along the cavity axis. This method is much more sensitive than the previous one. By
mapping the cavity mode along all 3 axes with this new method, we expect to reach effective
cooperativities in the range 50 − 60, close to the maximal value, Cmax = 65.

Finally, we start operating multiple tweezers simultaneously with our dual-AOD archi-
tecture. The 1D AOD tweezer array is positionned 18 µm away from the cavity axis, where
it forms our 1D AOD qubit storage register. In the horizontal plane, we measure the residual
angles between a) the 1D and 2D AOD axes and b) the 2D AOD and the cavity axes. These
angles are sufficiently small to operate a chain of 40 tweezers covering almost all the cavity
length, where all trapped atoms would experience a strong and rather homogeneous cou-
pling. We then demonstrate the (probabilistic) single atom loading of up to 9 tweezers. This
constistutes the first steps towards manipulating individually tens of single atoms strongly
coupled to the cavity.



Chapter VII

Conclusion

VII.1 Summary of the results

This manuscript describes the work done on a platform that aims at combining strong
coupling Cavity Quantum ElectroDynamics (CQED) with tweezer array.

The strong interaction of a single atom and the cavity field can be used to a) perform
quantum non demolition and fast detection of the atomic qubit state and b) generate en-
tangled states such as quantum-metrology relevant squeezed states or the symmetric W
states and c) to mediate infinite-range interactions between atoms through the cavity mode.
Single atom tweezer array, that can be conviniently generated by AODs, allow for fast re-
configuration of the tweezers positions. We implement a dual-AOD architecture, where the
one-dimensional AOD is used to generating an array for storage of single atoms uncoupled
to the cavity mode (the "qubit storage register"), and the two-dimensional AOD (the qubit
"bus") is used to transfer one or multiple atoms from and to the cavity, for the cavity-
operations we have mentioned. This combination should allow collective and single-atom
resolved detection and addressing.

In our experiment, cold 87Rb atoms are transported from a 3D-MOT to our fiber-cavity
with a transport trap that achieves the submicrometric precision required to operate with
cavity modes waists of a few micrometers. Our microcavity is a high finesse fiber Fabry Perot
resonator engineered in our group, designed to achieve strong and homogeneous single-atom
coupling over the entire length (L = 145 µm) of the cavity. It sustains two standing waves:
one at 780 nm, to probe the D2 line of 87Rb and the second at 1559 nm, a far-off resonant
trap lattice, commensurate with the probe. Thus atoms trapped in all the lattice sites are
maximally and equally coupled to the probe. With atomic ensembles loaded in this trap, we
observe a collective strong coupling to the cavity.

The lattice light at 1559 nm induces a strong differential lightshift. Combined with the
finite temperature of the atoms, this generates a significant distribution of atomic transition
frequencies. In spite of this inhomogeneity, we measure polaritonic resonances much narrower
than the frequency distribution. This signals coherent interaction of our atomic ensemble
with the cavity mode, an effect called cavity protection, that requires the collective coupling
Ω to be large compared to the width of the frequency distribution, ∆ω. As the coupling
of each atom is so strong, this condition is fulfilled for as few as two hundred atoms, a

133
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number much lower than in previous solid-state demonstrations of this cavity protection
effect. Thanks to the high degree of control of our cold-atom setup, we vary the ratio Ω/∆ω
and observe the evolution of coherence when the system transits from a cavity-unprotected
regime to a cavity-protected regime. We exhibit the role of the dark states in this transition,
both in simulations and in experiments: in the unprotected regime they hold a significant
fraction of the total photonic weight, such that the probability for the single excitation to
decay in the dark states manifold is high.

In the cavity-protected regime, we apply a temporal modulation of the intracavity lattice
power. This induces an efficient and tunable frequency modulation of the atomic transition,
which transfers to a frequency modulation of the polaritons. We develop a model that
accounts very well for our measurement of the corresponding frequency-modulated Rabi
splitting. Finally we verify the linear transfer of the frequency modulation predicted in this
model.

The lattice light induces a strong and tunable distribution of frequency which allows to
study cavity protection with fully controlled parameters, as in the other cold-atom recent
study of similar mechanisms, in reference [5454]. When we do not want these inhomogeneities,
we can simply chop the lattice (at a rate much higher than all trapping frequencies) alter-
natively with the resonant light we apply on the atoms: optical pumping, cavity probing or
blasting light. This is done especially for all the cavity probe measurements with tweezers,
in the second part of the thesis.

Indeed, we use the high numerical aperture lens aligned with our microcavity mode to
focus sub-micrometer tweezers inside the cavity. The optical layout combines two sizes of
beams (for submicron and for larger tweezers), and the two AOD systems (one-dimensional
and two-dimensional). The corresponding four beams are carefully aligned with the cavity
mode. Multifrequency RF signals with optimised relative phases and amplitudes feed both
AODs. We are able to generate simultaneously up to one hundred tweezers per AOD, in
reconfigurable arrays.

As a preliminary to detecting a single atom in a single tweezer, we check the ability of
our high-cooperativity microcavity to detect efficiently the qubit state of a single atom, in
the intracavity lattice. We then reach the collisional blockade regime, in which we obtain
probabilistically a single atom in the tweezer. The single atom is characterised with tem-
perature and trap frequencies measurements. The later provide an in-situ verification of the
tweezer waist, compatible with a previous estimate. Significant effort is made to optimise
the coupling of the single atom in the tweezer to the cavity mode and benefit from the full
potential of our CQED setup. By adding the trapping potential of the intracavity lattice
to the tweezer potential, we obtain a "hybrid" trap that very efficiently confines the atom
close to a probe antinode, where the coupling is maximal. The hybrid trap provides cou-
pling robust to imperfect centering of the tweezer. Still, the coupling can be optimised by
minimising the single atom transmission as a function of the position of the tweezer.

We demonstrate strong coupling of the single atom in the hybrid trap, with an effective
cooperativity of Ceff ≈ 30, similar to the best values obtained with a single atom in a tweezer
and an optical resonator. We find a method to more precisely center the tweezer along the
cavity axis, by measuring the transmission on the slope of the polariton peak, which is very
sensitive to changes of the coupling.

We finally turn to operating multiple tweezers with both AODs. We setup our one-
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dimensional AOD qubit storage register far from the cavity mode and demonstrate the
(probabilistic) single atom loading of up to nine tweezers. This constitutes the first step
towards manipulating individually tens of single atoms strongly coupled to the cavity.

VII.2 Outlook
VII.2.1 Strong coupling of a deterministic number of qubits
Our experiment has just entered the phase where we operate multiple single atoms in mul-
tiple tweezers. In the near term, we would like to strongly couple a determined number of
atoms Na in the cavity. This involves loading Nt > Na tweezers with single atoms, determin-
ing the atom-occupation in the chain of tweezers with individual tweezer cavity detection,
rearranging the qubit storage register in a defect free array (as in reference [5858]) and finally
coupling in the cavity Na single atoms. We could then measure the Rabi splitting of this
determined number of atoms. This has been achieved recently in reference [6767]. However, a
major difference in our proposed scheme is that Na would be predetermined, thus requiring
no such Na-post-selection as in the work of [6767].

VII.2.2 Fast and high-fidelity mid-circuit measurement
Then, we intend to demonstrate arbitrary "mid-circuit" measurements, for which our dual-
AOD-cavity platform is well suited. "Mid-circuit" refers to a measurement of a subsystem
that does not affect other parts of the system. It is crucial to many applications such
as quantum error correction [134134, 135135] or measurement-based quantum computing [136136].
An ideal "mid-circuit" measurement needs to be 1) sufficiently local so as not perturb the
unmeasured parts, 2) high-fidelity, and 3) much shorter than the decoherence time of the
system. These requirements are not well satisfied by fluorescence detection of single atom
arrays in tweezers or optical lattices. Indeed, because of the rather small collection solid
angle, fluorescence involves many scattered photons and thus is quite long (typically 10 and
100 ms for tweezers and lattices respectively). Also, scattered photons can be destructive
when absorbed by nearby atoms. Conversely, a strong coupling cavity with a tweezer array
is very well suited for mid-circuit measurements. Indeed:

1) Strong coupling cavities allow for high fidelity and fast state measurement. For in-
stance, infidelity below 10−3 for 100 µs has been achieved by measuring both reflection
and transmission of the cavity probe light [7373]. Simultaneously, another experiment
reached ≈ 5×10−2 in 85 µs, with cavity-enhanced fluorescence detection [137137]. Similar
performances with the same detection scheme were obtained recently in the tweezers-
cavity experiment of Dan Stamper-Kurn [6666], precisely in the context of mid-circuit
measurement.

2) A tweezer array allows for coupling one or several atoms to the cavity while keeping
others out of the mode, and thus unaffected. In [6666], with their one-dimensional tweezer
array perpendicular to the cavity axis, a minimal mid-circuit measurement is performed
with two atoms: it is shown that the measurement of the first atom does not perturb
the hyperfine qubit coherence of the second atom. With our dual-AOD architecture,
we intend to extend this mid-circuit measurement to simultaneous detection of an
arbitrary subset of our single atom array.
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3) Finally, in a tweezers-cavity setup, the cavity limits strongly the effect of the measure-
ment on the unmeasured qubits. In cavity-enhanced fluorescence, the cavity reduces the
number of scattered photons required for the measurement (only one hundred photons
in [6666]). When probing the cavity mode as we do, the number of scattered photons can
be much lower, thanks to the coupling strength of fiber cavities: an earlier experiment
in our group achieved around one photon scattered for an infidelity 10−2 [1414].

VII.2.3 Quantum simulation of an all-to-all coupling disordered spin chain
In the field of material science, the inhomogeneity in frequency that we have discussed
(chapters IIIIII and IVIV) is very common and can be a limitation. For instance, in organic
semiconductors, the mobility of charge carriers is reduced by such inhomogeneities, which
limits their technological applications. However, strong coupling to a resonator can be very
beneficial, as in our case with cavity-protected coherence (see IIIIII). Indeed, it has been ex-
perimentally demonstrated that coupling such devices to a cavity can significantly enhance
their conductivity through hybridisation of electronic transitions [138138]. This leads to de-
localised polaritons which enhance the charge transport. Later, a theoretical work showed
that exciton-transport could also be enhanced by similar phenomena [139139].

We have seen in chapter IVIV that, in presence of disorder, the "dark" states may couple to
the cavity. It was shown theoretically that these dark states are distributed on a few emitters
[140140], which can be arbitrarily distant. Due to this "semi-localisation" (and the corresponding
semi-delocalisation), the coherent energy transport is more efficient with the dark states than
with the polaritons. In another theoretical work [141141], it was shown that, when increasing the
ratio ∆ω/Ω (where ∆ω is the disorder strength and Ω the collective coupling), at first the
transport efficiency decreases exponentially (which is reminiscent of Anderson localisation ’s
physics [142142]). However, surprisingly, for stronger disorder, the transport efficiency increases
with ∆ω/Ω ("disorder-enhanced transport" regime). For even stronger disorder, there exists
a range of ∆ω/Ω where transport efficiency is flat ("disorder-independent transport" regime).

With our experimental setup, we could simulate such transport properties. We would
prepare a chain of single atoms in the cavity with a tunable disorder strength, insert an
excitation on a chosen atom, switch on and off the infinite-range atom interactions, with
two-photon Raman transitions assisted by the cavity, and finally measure the (distribution
in) final position of this excitation. It would be very exciting to demonstrate experimentally
the different regimes of transport efficiency predicted in [141141], and, following the study of
chapter IVIV, to contribute to deepen experimental understanding of the role of dark states in
the dynamics of the disordered coupled system.

VII.2.4 Quantum metrology with spatially distributed entanglement
In the context of quantum metrology, a system with quantum correlations is used to perform
measurements with a precision surpassing the limits of classical physics. Spin-squeezed
states [4141] are the most common type of entangled states used to that purpose. In an
interferometric measurement with spin ensembles, using squeezed states rather than the
uncorrelated "coherent spin states" improves the sensitivity in detecting the relative phase
between the two arms, and thus reduces the uncertainty of the quantity inferred from this
phase [4040].
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Such entanglement-enhancement has mainly been applied to measuring a single quantity,
and correspondingly a single phase. Multiparameter quantum metrology [143143–146146] extends
these methods to the simultaneous measurement of several quantities, or a combination of
several quantities. For instance, a non-local entangled state involving distant "subsystems"
at points A and B could be used to measure the difference in an external field Ξ (for instance
the magnetic field) at A and B (i.e. estimating the gradient Ξ(A) − Ξ(B)) with a higher
quantum enhancement than if entanglement is produced locally and separately at A and
B [147147]. We intend to apply such schemes, with our ability to 1) generate squeezing from
cavity-feedback [4242], 2) measure "subsystems" separately with the cavity, and 3) perform
local rotations by selectively tuning a "subsystem" to resonance with a micro-wave field,
thanks to controllable tweezers-lightshift.

With these tools, our setup is very well suited for such measurements where locally-
addressable nonlocal entanglement enhances the sensitivity, which can apply to measuring
gradients and certainly other interesting quantities that depend on more than two param-
eters. More generally, our experiment could implement schemes where spatially distributed
entanglement is a ressource, may it be for quantum metrology or for other purposes.

VII.2.5 Conclusion
Our platform is part of this new generation of CQED experiments where the capabilities of
strong coupling are combined with the exquisite degree of control of tweezer single atoms
[6363–6767]. Our experiment opens the way to interesting quantum simulations of all-to-all cou-
pled spin ensembles, with single-atom resolution and the availability of controlled disorder.
Moreover, thanks to the ability of our dual-AOD architecture to couple to the cavity any sub-
set of the single atom array, we intend to demonstrate arbitrary mid-circuit measurements
and to use spatially distributed entanglement for quantum metrology and beyond.
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Sujet : Ensembles atomiques en microcavité: de la protection par la
cavité au contrôle d’atomes uniques.

Résumé : Générer et manipuler des états quantiques intriqués multiparticules est un des défis
excitants de la physique expérimentale moderne. À cette fin, nous avons construit une plateforme
où des atomes froids sont fortement couplés à une microcavité optique fibrée, sous un microscope
de gaz quantique. Piégés dans un réseau à 1560nm, les atomes ont un couplage fort et homogène
à la sonde à 780nm. Celui-ci permet leur interaction cohérente avec la cavité, malgré la forte
hétérogénéité en fréquence induite par le piège. C’est la première observation d’un effet de protection
par la cavité avec moins de 200 émetteurs. Nous mesurons le couplage croissant des états noirs
à la cavité à mesure que le désordre l’emporte sur l’interaction collective. Dans le régime protégé
nous démontrons la modulation en fréquence des polaritons, via la fréquence atomique. Ensuite,
nous mettons en place des pinces optiques dans la microcavité, pour générer et manipuler plusieurs
atomes uniques. La cavité permet la détection rapide et non destructive d’un atome unique dans
une pince. Par une mesure du doublet de Rabi, nous démontrons son couplage fort à la cavité, avec
une coopérativité effective de 30. Pour finir, nous obtenons des atomes uniques dans une chaine de
9 pinces. Ce travail conduira à la manipulation de plusieurs atomes individuels, fortement couplés à
la cavité, avec des applications en métrologie quantique multiparamètre, mettant à profit des états
intriqués spatialement étendus et localement mesurables, et la simulation quantique d’une chaine
de spins adressables, avec des interactions de portée infinie via la cavité.

Mots clés : Intrication multiparticules, Électrodynamique quantique en cavité, Atomes uniques,
Pinces optiques, Métrologie quantique, Simulation quantique

Subject : Atomic ensembles in a microcavity: from cavity protection to
single atom control

Abstract: Generating and manipulating multiparticle quantum entangled states is an exciting chal-
lenge of modern physics. Along this line, we have built a platform where cold rubidium atoms are
strongly coupled to a fiber-based microcavity, under a quantum gas microscope. The atoms are
trapped in a lattice at 1560 nm, which allows strong and homogeneous coupling to the commen-
surate probe lattice at 780 nm. First, we observe a coherent interaction between the cavity and
the atoms, in the strong coupling regime, in spite of a large frequency inhomogeneity induced by
the trap. It is the first report of such cavity protection effect with less than 200 emitters. We
measure the growing coupling of the dark states to the cavity as the disorder takes over the col-
lective coupling. In the protected regime we engineer frequency-modulated polaritons through a
modulation of the atomic frequency. Then, we setup optical tweezers in the microcavity to obtain
and manipulate several single atoms. The cavity enables fast and non demolition detection of a
single atom in a tweezer. We measure the vacuum Rabi splitting of this atom, demonstrating its
strong coupling with an effective cooperativity of 30. Finally, we obtain single atoms in a chain of
9 tweezers. This work opens to way to manipulating many individual atoms strongly coupled to
the cavity, with applications in multiparameter quantum metrology, using spatially distributed and
locally measurable entanglement as a resource, and quantum simulation of a chain of addressable
spins with cavity-mediated infinite range interactions.

Keywords : Multiparticle entanglement, Cavity quantum electrodynamics, Single atoms, Optical
tweezers, Quantum metrology, Quantum simulation
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