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Abstract

With the increasing ubiquity of data-collecting devices, a great variety of phenomena
is monitored with finer and finer accuracy, which constantly expands the scope of Ma-
chine Learning applications. Dealing with such volume of data efficiently is however
challenging. Fortunately, as measurements get denser, they may become gradually
redundant. We can then greatly reduce the burden by finding a representation which
exploits properties of the generating process and/or is tailored for the application at
hand.

This thesis revolves around an aspect of this idea: functional data. Data indeed con-
sist of discrete measurements, but sometimes thinking of those as functional, we can
exploit prior knowledge on smoothness to obtain a better yet lower dimensional rep-
resentation. The focus is on nonlinear models for functional output regression (FOR),
relying on an extension of reproducing kernel Hilbert spaces for vector-valued func-
tions (vv-RKHS), which is the cornerstone of many nonlinear existing FOR methods.
We propose to challenge those in two aspects: their computational complexity with
respect to the number of measurements per function and their focusing solely on the
square loss.

To that end, we introduce the new framework of kernel projection learning (KPL)
combining vv-RKHSs and representation of signals in dictionaries. The loss remains
functional, however the model predicts only a finite number of representation coeffi-
cients. This approach retains the many advantages of vv-RKHSs yet greatly alleviates
the computational burden incurred by the functional outputs. We derive two estimat-
ors in closed-form using the square loss, one for fully observed output functions and
one for discretized ones. We show that both are consistent in terms of excess risk. We
demonstrate as well the possibility to use other differentiable and convex losses, to
combine this framework with large scale kernel methods and to automatically select
the dictionary using a structured penalty.

In another contribution, we propose to solve the regression problem in vv-RKHSs of
function-valued functions for the family of convoluted losses which we introduce.
These losses can either promote sparsity or robustness with a parameter controlling
the degree of locality of these properties. Thanks to their structure, they are partic-
ularly amenable to dual approaches which we investigate. We then introduce two
representations to overcome the challenges posed by the functional nature of the dual
variables and we propose corresponding algorithms to solve each dual problem.



Résumé

L’augmentation du nombre et de la sophistication des appareils collectant des données
permet de suivre l’évolution d’une multitude de phénomènes à des résolutions très
fines. Cela étend le champ des applications possibles de l’apprentissage statistique.
Un tel volume peut néanmoins devenir difficile à exploiter. Cependant quand leur
nombre augmente, les données peuvent devenir redondantes. On peut alors chercher
une représentation exploitant des propriétés du processus génératif.

Dans cette thèse, nous nous concentrons sur la représentation fonctionnelle. Bien sûr,
les données sont toujours des observations discrètes. Néanmoins, si nous pensons que
ces suites doivent être par exemple lisses ou de variations bornées, une telle représent-
ation peut être à la fois plus fidèle et de dimension plus faible. Nous nous concentrons
sur les modèles non-linéaires de régression à valeurs fonctionnelles (FOR) en utilis-
ant une extension des espaces de Hilbert à noyau reproduisant pour les fonctions à
valeurs vectorielles (vv-RKHS) qui constitue la clef de voûte de plusieurs méthodes
existantes. Notre objectif est d’en proposer de nouvelles plus performantes sur le plan
de la complexité calculatoire liée au caractère fonctionnel et/ou celui du choix de la
fonction de perte.

Nous introduisons l’apprentissage de projection kernelisé (KPL) qui combine les vv-
RKHSs et la représentation de signaux sur des dictionnaires. La perte demeure fonc-
tionnelle, néanmoins le modèle prédit seulement un nombre fini de coordonnées.
Nous bénéficions alors de la flexibilité de l’espace d’hypothèse tout en réduisant nette-
ment la complexité liée aux sorties fonctionnelles. Pour la perte quadratique, nous
introduisons deux estimateurs en forme close, l’un est adapté lorsque les fonctions de
sortie sont observées totalement, et l’autre l’est lorsqu’elles ne le sont que partielle-
ment. Nous montrons que chacun est consistant en termes d’excès de risque. Nous
proposons aussi d’utiliser d’autres fonctions de perte différentiables, de combiner KPL
avec les techniques de passage à l’échelle ou encore de sélectionner le dictionnaire via
une pénalité structurée.

Une autre partie est dédiée au problème de FOR dans des vv-RKHS de fonctions à
valeurs fonctionnelles en utilisant une famille de fonctions de pertes que nous in-
troduisons comme définies à partir d’une convolution infimale. Celles-ci peuvent en-
courager soit la parcimonie soit la robustesse, le degré de localité de ces propriétés
étant contrôlé via un paramètre dédié. Grâce à leur structure, ces pertes se prêtent
particulièrement bien à la résolution par dualité lagrangienne. Nous surmontons al-
ors les différents défis que pose la dimension infinie des variables duales en proposant
deux représentations pour résoudre chaque problème dual numériquement.



Notation

:= Equal by definition

N
∗ Strictly positive integers

⟦n⟧ Set of integers from 1 to n ({1, · · · ,n})

F (X ,Y ) Set of functions from a space X to a Hilbert space Y

L(H,K), L(H) Bounded linear operators between Hilbert spaces H and K,
shortened when H =K

∥ · ∥L(H,K) Operator norm for operators in L(H,K)

L2(H,K), L2(H) Hilbert-Schmidt linear operators between Hilbert spaces H
and K, shortened when H =K

X Input space

Y Output space, at least a Hilbert space

Θ Domain of definition of output functions

L2(Θ,µ,K), L2(Θ,µ) Hilbert space of µ-square-integrable functions from Θ to K,
shortened when K = R

C(Θ), Cs(Θ) Continuous, continuously s times differentiable functions
from Θ to R

φ Dictionary of vectors (φl)
d
l=1 ∈ Y

d . If those are functions on Θ,
also vector-valued function θ 7→ (φ1(θ),φ2(θ), · · · ,φd(θ))T ∈
R
d

φl(θ) For φl a function on Θ and θ ∈ Θm, vector φl(θ) =
(φl(θ1), · · · ,φl(θm))T ∈Rm

Φ Linear operator associated to φ as: a ∈Rd 7→
∑d
l=1 alφl ∈ Y

⟨·, ·⟩Y , ∥·∥Y Scalar product and norm in Hilbert space Y

A# Adjoint of operator A

IH Identity operator on space H

AT Transpose of matrix A

Ai , Al· i-th column of matrix A, l-th row of matrix A

[ai]ni=1 Matrix of Rd×n which i-th column is the vector ai ∈Rd

I Identity matrix, dimension inferred from context

⊗ Kronecker product of matrices, tensor product of Hilbert
spaces or their elements

vec(A) For A ∈ R
d×n, vector of R

dn formed by concatenating the
columns of A
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A(n) For an operator A : R
d → Y , operator A(n) : α ∈ R

d×n 7→
(Aαi)

n
i=1 ∈ Y

n.
kX : X ×X →R Input kernel on X , scalar-valued

kΘ : Θ ×Θ→R Kernel on Θ, scalar-valued

K : X ×X →L(Y ) Operator-valued kernel

HK Vector-valued RKHS associated to K

evx Evaluation map at point x

Trace Trace of operator or matrix

Im Range of operator or matrix

Ker Null space of operator or matrix

Rank Rank of operator or matrix

Dim Dimension of space

Sp Spectrum of operator or matrix

Span Linear space spanned by a set of vectors

∥ · ∥p p-norm for p ∈ [1,+∞]

∥ · ∥p,q Mixed norm: q-norm of the p-norms of the columns of a mat-
rix or of the functions from a vector of functions; e.g. α ∈ Yn,

∥α∥p,q =
∥∥∥∥(∥αi∥p)ni=1

∥∥∥∥
q

Bϵ Ball of radius ϵ for the ambient Hilbert norm

Bpϵ Ball of radius ϵ for the p-norm

dom(f ) Domain of a function f

Γ0(H) Proper, convex, lower-semicontinuous real-valued functions
on Hilbert space H

f ⋆ Fenchel-Legendre conjugate of function f

f □g Infimal convolution of functions f and g

χ{C} Indicator function of set C: 0 on C and +∞ elsewhere

proxf Proximal operator of function f

ProjC Orthogonal projection on a closed convex set C

| · |+ Positive part: |a|+ = max(a,0)

⌊ · ⌋ Floor integer part: ⌊a⌋ =m⇔m ≤ a < m+ 1, m ∈N



Abbreviation

RKHS Reproducing kernel Hilbert space

OVK Operator-valued kernel

vv-RKHS Vector-valued RKHS

fv-RKHS Function-valued RKHS

FOR Functional output regression

FDA Functional data analysis

RFF Random Fourier feature

KPL Kernel projection learning

KRR Kernel ridge regression

FKRR Functional kernel ridge regression

3BE Triple basis estimator

KAM Kernel additive model

MC Monte Carlo

APGD Accelerated proximal gradient descent
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Supervised machine learning describes the process of inferring statistically (i.e. from
observed examples) a procedure to predict a label from an explanatory variable. A
lot of attention has been dedicated to cases where the label consists of a single scalar-
valued variable either in regression (labels in a continuous space) or classification (la-
bels in a discrete set). However with the dramatic increase in both the volume and the
variety of collected data, the interest for procedures that can deal with more complic-
ated labels, such as high dimensional vectors or structured objects, has grown deeper.
While most algorithms can deal with higher dimensional explanatory variables, they
may require adjustments to deal with higher dimensional labels in a way that is effi-
cient, and produces predictions which benefit from the outputs’ structure or comply
with.

In this thesis, we focus on a particular type of high dimensional output data. Thanks
to the development of sensors, many phenomena can be monitored at higher and
higher resolutions. However, as a corollary, we end up with very high dimensional
vectors of measurements which may become redundant. If the underlying generating
process is known to exhibit certain properties, we should be able to exploit these to
reduce the complexity of the learning algorithms and produce predictions that com-
ply with those observed properties. For instance, if the data are measurements from
a spatio-temporal process that is expected to be smooth across space and/or through
time, we would ideally include this smoothness as prior knowledge in the learning
algorithm. Such data can typically arise in a wide variety of fields. In meteorology,
quantities (e.g. wind speed, temperature...) are observed at several weather stations
through time. At a given time, measurements should be alike for stations close to
each other, therefore we expect observations to be smooth through space. In the same
way, at a given station, measurements should not vary too quickly over time. This
results in a process that is smooth through time as well. The modeling idea stemming
from this example is general and relevant in many more fields, ranging from climate
science to biomedical imaging or epidemiology monitoring, internet of things, etc.
Given signals that we think should be smooth in some way, we can both reduce the
dimension and model these signals more accurately if we envision them as sampled



13

θ

v(
θ)

θ

w
(θ
)

Figure 1.1: A non-smooth vector (v) and a smooth one (w)

versions of an underlying unobserved function-valued process. The vectors displayed
in Figure 1.1 are compelling in that regard. On the left, v corresponds to i.i.d. draws
from a normal distribution whereas w consists of discrete measurements from a mix-
ture of 6 trigonometric functions. Therefore it is impossible to reduce the dimension
of the former whereas the latter can be represented perfectly in dimension 6 instead
of 60 if the right functional representation is used.

These real world scenarios have motivated the investigation of statistical procedures
that are capable of correctly representing functions and dealing with them. It is the
goal of functional data analysis (FDA, Ramsay and Silverman 1997). It has been applied
successfully to a great variety of fields (Ullah and Finch, 2013) through a rich array of
statistical procedures dealing with functional observations (Ramsay and Silverman,
1997; Wang et al., 2016).

Among the possible statistical problems, that of regression involving functional data
has been particularly studied. The seminal work of Ramsay and Dalzell (1991) in-
troduced the additive functional linear model already for different kinds of targets.
The functional regression problems are then categorized depending on which vari-
ables (explanatory ones and/or target) are functional (Ramsay and Silverman, 1997).
In this thesis, we focus on the cases where the target is function-valued, namely func-
tional output regression (FOR) problems. These problems can however be more chal-
lenging as the target takes its values in an infinite-dimensional space. The question of
which finite-dimensional representation can be used is of particular importance and
it has been central in the models proposed in the FOR literature. Several variations of
the functional linear models which smooth the functional variables using functional
bases have been proposed (Morris 2015 and references therein). Nonparametric mod-
els (Ferraty and Vieu, 2006) have also met a lot of success since they circumvent the
need for an explicit representation of the functions. To finish with, the richness of re-
producing kernel Hilbert spaces (RKHS) as functional spaces, as well as their possible
generalization to model function-valued functions, has made them the cornerstone of
many nonlinear FOR methods (Lian, 2007; Kadri et al., 2010; Oliva et al., 2015; Kadri
et al., 2016; Reimherr et al., 2018; Laforgue et al., 2020).

These latter methods are indeed attractive in many aspects. They can model efficiently
nonlinear relationships between the input variables and the output one. Moreover,
since the input variables appear through a kernel, they can lie in any space on which
a kernel can be defined; this allows for dealing with complex input data. For all
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these reasons, this thesis is centered around tackling the nonlinear FOR problem using
reproducing kernels and their operator-valued extensions.

In studying existing nonlinear FOR methods, we identified three main aspects in
which improvements could be sought. (i) The first challenge is computational com-
plexity, in particular that linked to the functional outputs (the complexity related to
the input observations is interesting yet not specific to FOR). The number of discret-
ization points m per output function is bound to be high and generally incurs a high
computational cost, typically cubic in m. In the best cases, the complexity related to it
and that linked to the number of samples n do not interact in a bad way (they do not
multiply one another), however they can do so in some cases. It is therefore desirable
for a FOR method to incur a lower computational cost with respect to m. (ii) The
second challenge is the flexibility in the choice of the functional loss function. Indeed,
functional data can be corrupted by outliers or we may want to increase efficiency by
enforcing sparsity in the model’s coefficients. Therefore, we want to be able to use
losses that are robust or can encourage sparsity even when the outputs are functional.
(iii) The third axis of improvement is the possibility to deal with missing data in the
observed output functions. In practice we usually only have access to discrete evalu-
ations. If these evaluations are given at the same locations for all the functions, most
methods can be used easily. However, when they vary from one sampled function to
another, many methods will require an additional imputation/smoothing step. Then,
we want our FOR method to traduce our prior of smoothness by predicting functions,
yet we would like it be able to deal directly with discrete observations.

The objective of this thesis is to propose new nonlinear FOR methods based mostly on
extensions of RKHSs to model vector-valued or function-valued functions, or improve
already existing ones along one or more of these three axes of improvement. This
thesis also includes a more applied contribution on using machine learning to predict
wind power production in the very short-term for wind farms. We chose however to
propose a coherent thesis on function-valued regression, as it is the subject of most of
our work and contributions, and we therefore include this applied contribution in a
separate part at the end.

This chapter is organized as follows: in Section 1.1, we introduce the general principle
of statistical learning and briefly frame the type of problems we will study in this
thesis. We then present our propositions to solve those problems and raise the related
research questions in Section 1.2. In Section 1.3 we give more details on the content of
the manuscript and show how the different chapters address the question we raised;
the associated publications are listed in Section 1.4.

1.1 Statistical Learning

1.1.1 Supervised learning

Let Z = (X,Y) be a random variable taking its values in a space Z = X × Y distrib-
uted according to an unknown probability distribution. For this to make sense, we
make the minimal assumption that X and Y are measurable spaces yet we keep their
associated sigma-algebra implicit to lighten notations. The random variable Y is the
label (e.g. a class in classification, a real value in scalar-valued regression, a function
in function-valued regression...) and X is the random variable of features from which
we want to predict the label, good features must then encompass information that are
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useful to predict it. The goal of supervised machine learning is then to statistically
infer from joint observations of Z a way to predict a good value in Y from an isolated
realization of X. To do so, we first need a tool to measure the discrepancy between
elements in Y which is the role of the loss function ℓ : Y ×Y −→ R. Ideally, we would
want to reach a function f among measurable functions that is optimal in the sense
that it minimizes the expected risk:

f ∗ ∈ argmin
fmeasurable

E(X,Y)

[
ℓ(f (X),Y)

]
.

However, in practice we do not have access to the true distribution, but rather to
independently identically distributed (i.i.d.) realizations (xi , yi)

n
i=1 from the random

variable Z. Consequently, in most cases we cannot attain a function that is as good as
f ∗. To find a good candidate from the available data, we then minimize an empirical
proxy to the expected risk, namely the empirical risk. Moreover, as optimizing over
all measurable functions is infeasible, a set of functions to optimize the empirical risk
over must be chosen. Let G : X → Y be this set of candidate functions, which is called
a hypothesis class. Moreover, when learning from a discrete sample, one must ensure
that the obtained function generalizes well to unknown data, in other words we say
it must not overfit the training data. To avoid overfitting, the regression function can
be encouraged to display certain regularity properties by adding a penalization term
to the optimization objective, we denote by Ω : G → R such a regularization function.
The following problem can then be solved:

f̂ ∈ argmin
f ∈G

1
n

n∑
i=1

ℓ(f (xi), yi) +Ω(f ).

A problem of this form is commonly called a regularized empirical risk minimization
problem.

Remark 1.1. When the hypothesis class is included in an inner product vector space, if we
denote by ∥ · ∥ the corresponding norm, a common choice for the regularization function is
Ω(f ) = λ∥f ∥2 where λ > 0 is a parameter controlling the intensity of the regularization
(Tikhonov and Arsenin, 1977).

Example 1.2 (Least square regression). As a well-known example, let us consider that Y
takes its values in R, this corresponds to the regression setting. The most commonly used
loss function for this task is the square loss. It penalizes the errors as the square of the
difference between the prediction and the actual label’s value.

f ∗ ∈ argmin
fmeasurable

E(X,Y)

[
(f (X)−Y)2

]
.

The above coincides with the very definition of the conditional expectation which is indeed
the theoretical optimal regression function in that case. It is then defined as f ∗ : x 7→
EY|X=x[Y]. This expression however still does not help us as the distribution of (X,Y) is
unknown. Therefore, we formulate the same type of regularized empirical risk minimization
problem using the available training data.



16 CHAPTER 1. MOTIVATION AND CONTRIBUTIONS

θ

Input functions (xi)ni= 1

θ

Output functions (yi)ni= 1

θ

Partial output functions ( ̃yi)ni= 1

Figure 1.2: Function to function regression with fully or partially observed outputs.

f̂ ∈ argmin
f ∈G

1
n

n∑
i=1

(f (xi)− yi)2 +Ω(f ).

with G ⊂ F (X ,R) an hypothesis class and Ω : G →R a regularization function.

1.1.2 Learning function-valued functions

Functional output regression

When the random variable Y takes its values in a subset of a Hilbert functional space,
one must recourse to a hypothesis class of function-valued functions, use a loss which
compare two functions and define an appropriate regularization term. Since the out-
put space is essentially infinite dimensional, estimators also cannot be computed ex-
actly.

Thus functional output regression (FOR) is challenging in itself. Admittedly, this func-
tional aspect can seem somewhat theoretical since ultimately we are given discrete
evaluations of the observed functions. Nevertheless in many applications, the sampling
frequencies of the output observations as well their expected smoothness can amply
justify modeling the problem as function-valued. This is for instance particularly the
case in biomedical signal processing, meteorology or industrial applications (Ullah
and Finch, 2013; Ramsay and Silverman, 2007).

A reasonable assumption is then that the random variable Y takes its values in a func-
tional Hilbert space Y . We can suppose further that the vectors in Y are functions
which domain is a set Θ ⊂ R

b for some integer b ≥ 1. For instance, a possible choice
is to take Y as L2(Θ), the space of square integrable functions on Θ. As an example
of a functional loss, the analogous to the classical square loss can be defined as the
square of the Y norm of the residuals. Then, we would ideally want to minimize the
following expected risk

f ∗ ∈ argmin
fmeasurable

= E(X,Y)

[
∥f (X)−Y∥2Y

]
.

where we search for f in the space of measurable functions from X to Y . In reality, as
before we must choose a hypothesis class G ⊂ F (X ,Y ) of functions taking their values
in the Hilbert spaceY , a regularization function on G and solve a regularized empirical
risk minimization problem. This is the approach taken in the seminal works of (Kadri
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et al., 2010, 2016) who use a generalization of RKHSs to model function-valued func-
tions (Pedrick, 1957) as a hypothesis class and regularize through the natural norm
on these spaces. However, other losses L : Y × Y can be defined on Hilbert spaces.
For instance, so as to make their estimator robust, Laforgue et al. (2020) study a pos-
sible extension of the Huber loss (Huber, 1964) for Hilbert-valued output data, using
vector-valued RKHSs as a hypothesis class and regularizing through their associated
norm.

FOR with discrete observations

We now focus on the case where the elements in the Hilbert space Y are functions
defined on a domain Θ and we have access to discrete evaluations of these functions.
Even when the sampling rate is not that high, considering the output as functional can
still be interesting if we want to include a strong prior on smoothness. For instance,
this can have a desirable regularizing effect if the observations from the output func-
tions are noisy. Moreover, this can also help us when data are missing. Indeed, if
we are given observations from a phenomena but the locations of observation vary
from one observation to the other, it is not possible anymore to solve the problem in a
vector-valued fashion. To illustrate the problem of FOR in this setting, we display in-
stances from a synthetic dataset in Figure 1.2. This a function-to-function regression
problem and in the bottom panel, we picture the output functions observed only at a
low number of randomly chosen locations. To formalize things, we can suppose that
instead of getting a sample of the form (xi , yi)

n
i=1, we are rather given one of the form

(xi , (θi , ỹi))
n
i=1. Here, θi = (θis)

mi
s=1 ∈Rmi corresponds to the vector of locations at which

we observe the i-th output function and ỹi := (ỹis)
mi
s=1 ∈ Rmi denotes the correspond-

ing observations of the function yi . In that case, a typical observational model is the
following:

ỹis = yi(θis) + ϵis,

where the terms (ϵis) correspond to noise added to the observations. From there,
one can solve one smoothing problem per output observation (n problems in total)
to represent each as a function. The obtained functions can then be processed using
function-valued learning. In practice, smoothing consists in choosing a set of basis
functions and finding a linear combination of those which best represent the function
at hand. If the basis is orthogonal, it can boil down to computing the scalar products
between the functions and the basis elements. Alternatively, if the basis is not ortho-
gonal and/or if we have few observations per function and/or if those observations
are very noisy, least square regression problems can be solved (Ramsay and Silver-
man, 2005). They give more possibilities to regularize. Yet another possible way to
proceed, is to pose a function-valued regularized empirical risk minimization prob-
lem but using directly the available discrete observations.

1.2 Research Questions

The goal of this thesis is to propose new ways to solve the nonlinear FOR problem
focusing on three key aspects. (i) We wish to reduce the computational complexity
incurred by the functional nature of the outputs.(ii) We also want to go beyond the
square loss using for instance robust or sparsity-inducing losses. (iii) Finally, we want
to be able to apply our functional method directly to discrete observations.
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Our first proposition was mostly motivated by points (i) and (iii). To reduce the
computational complexity with respect to the functional outputs, we exploit a finite-
dimensional representation. Yet we inject these representations directly in a function-
valued regularized empirical risk minimization problem. We then learn to predict the
expansion coefficients. In doing so we reduce the computational cost associated with
the functional nature of the outputs. Moreover, the output functions intervene in the
optimization problem only through their functional inner products with the atoms of
the dictionary which can be estimated directly from discrete observations. We must
then choose a dictionary of functions to represent the outputs and a vector-valued
hypothesis class for the function predicting the coefficients. For the latter, we use
vector-valued reproducing kernel Hilbert spaces (vv-RKHS) as they can model complex
nonlinear dynamics and are quite easy to optimize over. Sticking to the functional
square loss, the resulting problem in itself raises a series of questions of interest:

• What type of dictionaries of functions can be used to efficiently represent the
functional outputs ?

• How can this problem of learning a vector-valued function projected to a func-
tional space through a dictionary be solved efficiently ?

• Can we derive theoretical guarantees on the resulting estimators ?

However, other questions to extend this framework naturally arise:

• How can this framework be adapted to deal with other functional losses ?

• Can we make it scale well with respect to the characteristics of the input data as
well ?

• How can we make the selection of the dictionary atoms automatic in the context
of this problem ?

Our second contribution is more focused on point (ii). Regression in a function-valued
RKHS (fv-RKHS) is a key nonlinear FOR method which is very flexible as it allows to
shape the properties of the output functions through the choice of an output kernel. It
has been introduced and studied using the square loss (Lian, 2007; Kadri et al., 2010,
2016) as well as possible extensions of the Huber and ϵ-insensitive losses (Laforgue
et al., 2020). In the line of this last work, we propose to study this method using losses
from the larger family of convoluted ones, which we introduce. We investigate the
following questions:

• What type of sparsity and robustness of function-valued estimators can the loss
functions we propose promote ?

• How can we tackle the corresponding problems through dual approaches ?

• How to represent the functional dual variables to make the problem amenable
for numerical optimization ?
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1.3 Organization and contributions

The remainder of the manuscript is organized as follows. Part I is dedicated to back-
ground and related works. Part II regroups our contributions on the FOR problem.
Part III is a separate applied contribution on machine learning for wind energy.

Part I sets the stage by giving elements of background on which this thesis relies and
it presents in some details the main existing nonlinear FOR methods.

▶ Chapter 2 recalls definitions and results around scalar-valued kernel methods
and their vector-valued extensions. An emphasis is put on the rich properties of
RKHSs and vv-RKHSs and their use in machine learning. They can be tailored to
a precise application through the choice of kernel for the former and operator-
valued kernel for the latter. Through the representer theorem or dualization,
minimization of empirical risks over those spaces is very practical while their
mathematical properties make theoretical analysis of estimators in terms of ex-
cess risk possible. We then recall key concepts for convex optimization of pos-
sibly non-differentiable functions. A particular focus is put on the tools from
Lagrangian duality and proximal optimization we use later on.

▶ Chapter 3 focuses on how to exploit regularity to represent functions. After
presenting some smoothing techniques from functional data analysis, we recall
some key notions on conventional families such as Fourier bases, wavelets and
splines. Then we investigate the advantageous possibilities of RKHSs to rep-
resent functions: the kernel determines the smoothness of the functions they
contain, and they can be approximated using a finite dictionary. The last part is
dedicated to dictionaries learnt from the observed functions which can be par-
ticularly efficient when the regularity of the functions to represent vary within
their domain of definition.

▶ Chapter 4 presents the main approaches to solving the FOR problem nonlin-
early. Most leverage RKHS or vv-RKHS in some way. The functional kernel ridge
regression is an extension of the kernel ridge regression (KRR) using RKHSs of
function-valued functions. It is also possible to represent the input and output
functions on truncated orthonormal bases and regress the obtained output coef-
ficients on the input one. The triple basis estimator does this separately for each
output coefficient using approximate KRRs. More rooted in the functional data
analysis literature, the kernel additive model extends the classic additive linear
model by searching for the regression function in a RHKS.

Part II is dedicated to our contributions to solving the FOR problem. The chapters it
contains address the questions raised in Section 1.2.

▶ Chapter 5 introduces the framework of projection learning. It exploits the pos-
sibilities to represent functions using a dictionary, but does so directly within
a function-valued empirical risk minimization problem. We then focus on vv-
RKHSs as hypothesis class to predict the coefficients and call the resulting method
kernel projection learning (KPL). For the square loss we derive two ridge-type
estimators in closed-form, one for fully observed output functions and one for
partially observed ones. We exploit the separability of the operator-valued ker-
nel to compute both estimators efficiently, essentially in O(n3 + d3) time with n
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the number of samples and d the number of atoms in the dictionary. We demon-
strate as well how to use other losses for KPL and benchmark our different es-
timators against those presented in Chapter 4.

▶ Chapter 6 is dedicated to the theoretical study of the two KPL estimators with
the square loss. For each, a finite sample bound is derived on the excess risk.
The first estimator deals with fully observed functions and therefore the num-
ber of samples n is the main quantity of interest, while the second deals with
partially observed functions, consequently we also study the effect of the num-
ber of observations per function m. For both, consistency is derived from the
bound.

▶ Chapter 7 focuses on regression in function-valued RKHS (fv-RKHS). Extensions
of the squared ϵ-insensitive and Huber losses have been used in this context to
obtain sparse or robust estimators. However, for functional outputs, these prop-
erties can be defined in a richer way. We introduce the family of convoluted
losses encompassing a dedicated parameter p to control the degree of locality of
these properties. We exploit the structure of these losses and the properties of
fv-RKHSs to tackle the empirical risk minimization problem using Lagrangian
duality. The dual variables are nevertheless infinite dimensional. To overcome
this, we propose two representations in finite dimension which work for par-
ticular values of p and derive corresponding numerical algorithms. We show
experimentally that the resulting estimators are sparse or robust either locally
or globally.

▶ Chapter 8 corresponds to ongoing work. It extends the scope of KPL in sev-
eral ways. When the dictionary is too redundant, predicting coordinates in the
dictionary is inefficient and can lead to numerical instability. Therefore, we pro-
pose a simple effective-rank technique to overcome this issue. To alleviate the
cubic complexity of KPL with respect to the number of input observations, we
harness the possibilities offered by large scale kernel techniques. To that end,
we formulate the feature projection learning (FPL) problem, a linear version of
projection learning. For this problem with the square loss, we derive numeric-
ally efficient closed-form solutions. Finally, we propose to exploit a structured
regularization in order to automatically select the relevant atoms of the output
dictionary and propose an associated working set scheme to efficiently conduct
the optimization.

Part III is a separate applied contribution on predicting local wind speed and wind
power production using machine learning.

▶ Chapter 9 presents an applied contribution which is independent of the rest
of the thesis. It focuses on machine learning for predicting local wind speed
and wind power production in the very short term (almost immediate to four
hour forecasts). For those time ranges, using both past local observations and
predictions from a numerical weather model (NWP) can greatly improve per-
formances. In that context we study the problematic of variable selection using
both a linear and a nonlinear technique. Then using the selected variables, we
benchmark several models and show that simple ones can perform better than
more complex ones. In doing so, we show that most of the important nonlin-
ear and complex dynamics are predicted well enough by the NWP. Across the



1.4. PUBLICATIONS 21

chapter, we also compare the direct (predict directly wind power) and the indir-
ect (predict wind speed and pass the predictions through a power curve) ways
of predicting.

We finish by highlighting that all the nonlinear FOR algorithms studied or introduced
in this thesis are gathered in an open source Python library pyfunreg available on
Github.

1.4 Publications

These contributions have resulted in the following peer-reviewed publications and
preprints:

• D. Bouche, M. Clausel, F. Roueff and F. d’Alché-Buc. Nonlinear Functional Out-
put Regression: A Dictionary Approach. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 235–243, 2021.

• A. Lambert, D. Bouche, Z. Szabó, and F. d’Alché-Buc. Functional Output Re-
gression with Infimal Convolution: Exploring the Huber and ϵ-insensitive Losses
In International Conference on Machine Learning (ICML), pages 11844–1867, 2022.

• D. Bouche, R. Flamary, F. d’Alché-Buc, R. Plougonven, M. Clausel, J. Badosa
and P. Drobinski. Wind power predictions from nowcasts to 4-hour forecasts:
a learning approach with variable selection Technical report, 2022. (https://
arxiv.org/abs/2204.09362). (submitted)

https://github.com/BoucheDimitri/pyfunreg
https://arxiv.org/abs/2204.09362
https://arxiv.org/abs/2204.09362
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In this chapter, we introduce several mathematical tools that we rely on throughout
this manuscript. Section 2.1 focuses on reproducing kernel Hilbert spaces (RKHS)
highlighting some of their key properties which make them a very popular choice for
modeling functions. In particular, we show how these properties can be very advant-
ageous in machine learning and have made RKHSs a cornerstone of many algorithms.
Then in Section 2.2, we introduce an extension of these spaces to model vector-valued
functions. We show some of their applications in machine learning which are central
to this thesis and introduce related learning theory tools. Finally, in Section 2.3, we
present key tools for convex optimization in general Hilbert spaces with a particular
highlight on parametric duality and proximal operators.

2.1 Kernel Methods for scalar-valued outputs

Kernel methods hold a preponderant place in the landscape of machine learning
methods. They are an implicit way to apply linear models to projections of the data in
a RKHS. These spaces can be high-dimensional (possibly infinite-dimensional), which
allows for modeling complex nonlinear dynamics in the original space. On top of that,
RKHS combine this expressiveness with a sound mathematical construction and they
enjoy many interesting properties. This facilitates both optimization and theoretical
analysis of kernelized learning algorithms. Thus, without surprise they occupy an im-
portant place in statistical learning theory. We propose in this section to introduce the
essential definitions and concepts that are of use for the rest of this thesis, however
for more exhaustive accounts of many aspects of machine learning with kernels, we
refer the reader to Schölkopf and Smola (2002); Shawe-Taylor and Cristianini (2004);
Berlinet and Thomas-Agnan (2004); Steinwart and Christmann (2008).
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2.1.1 Scalar-valued kernels and RKHSs

In machine learning, a central problem is that of the minimization of a regularized
empirical risk. The choice of the hypothesis space, in which we search for a model, is
key. Its richness determines the types of relationship between the input variables and
the label that our model will be able to capture. However, in order to be able to de-
rive efficient algorithms, optimization over this space must be practical. Reproducing
kernel Hilbert spaces (RKHS, Aronszajn, 1950) are Hilbert spaces of functions which
display many favorable characteristics in these regards.

As a first definition, a RKHSs is simply a Hilbert space on which the evaluation func-
tional is continuous at all points of the input domain. This is indeed a highly desirable
property in problems where one wants to optimize over h an objective function which
involves discrete evaluations of the form (h(xi))

n
i=1. Regularized empirical risk min-

imization problems constitute good examples.

Definition 2.1. A Hilbert space H ⊂ F (X ,R) is a reproducing kernel Hilbert space if and
only if for any x ∈ X , the following evaluation mapping is continuous

evx :

H → R

h 7→ h(x)

 .
This definition is a bit theoretical, but thankfully the study of spaces verifying this
property led to a more practical equivalent definition in terms of reproducing kernels.

Definition 2.2. Let X be a set , a (scalar-valued) positive-definite reproducing kernel is a
function k : X ×X →R that is

1. symmetric: ∀(x1,x2) ∈ X 2, k(x1,x2) = k(x2,x1), and

2. positive definite: ∀(xi)
n
i=1 ∈ X

n, (αi)
n
i=1 ∈R

n,
∑n
i=1

∑n
j=1αiαjk(xi ,xj ) ≥ 0 .

Remark 2.3. In the remainder of this thesis, we use the term kernel to denote a scalar-valued
positive-definite kernel. However, we deal as well with operator-valued positive-definite
kernels further in the manuscript, in which case we always highlight the operator-valued
nature explicitly.

A very attractive aspect of kernels in machine learning is that they imply no assump-
tion on the nature of the set X , which can be of any kind as long as a kernel verifying
the axioms from Definition 2.2 can be defined. This assumption is not very restrict-
ive, and indeed kernels have been defined on a variety of very complex objects. To
give a few examples, kernels can be used to compare measures (Cuturi et al., 2005)
or possibly unaligned time series with different lengths (Cuturi et al., 2007). Another
very notable field of application is computational biology where they have been used
to compare several types of biological objects and sequences (see e.g. Schölkopf et al.
2004). Kernels have also been defined on graphs (see for instance the review of Kriege
et al. 2020) or on permutations (Jiao and Vert, 2016). This list is by no means exhaust-
ive but it can give an idea of the many scopes that kernels open regarding the spaces
(input or output) that can be considered in machine learning.

Example 2.4 (Gaussian kernel). As a simple and classic example of kernel, when the space
X is a Hilbert space, the Gaussian kernel is defined for a bandwidth parameter γ > 0 as:

∀(x1,x2) ∈ X 2, k(x1,x2) = e−γ∥x1−x2∥2X . (2.1)
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The next theorem gives a more explicit understanding of kernels as a scalar product
between embeddings of elements of X in a feature Hilbert space V . This constitutes
an alternate definition of a kernel. It originates from (Aronszajn, 1950).

Theorem 2.5. Let X be a set. A function k : X × X → R is a kernel if and only if there
exists a Hilbert space V and a mapping ψ : X → V such that

∀(x1,x2) ∈ X 2, k(x1,x2) = ⟨ψ(x1),ψ(x2)⟩V .

The next theorem states the fundamental link between RKHSs and kernels. More
precisely, a kernel defines a unique RKHS.

Theorem 2.6. Let X be a set and let k : X ×X → R be a kernel on X . Then there exists a
unique Hilbert space Hk ⊂ F (X ,R) such that

1. ∀x ∈ X , k(.,x) ∈ Hk , and

2. ∀(h,x) ∈ Hk ×X , h(x) = ⟨h,k(.,x)⟩Hk .

We then say that Hk is the RKHS of the kernel k.

The second property is generally referred to as the reproducing property. The equival-
ence between Definition 2.1 of a RKHS and the characterization through a kernel in
Theorem 2.6 can be easily seen. Indeed if one defines a RKHS through a kernel, the
use of the reproducing property combined with the Cauchy-Schwarz inequality leads
to the continuity of the evaluation functional. Conversely, if the evaluation function
is continuous, a kernel can be exhibited by using the Riesz representation theorem.

Remark 2.7. x 7→ k(·,x) is indeed a feature map in the sense of Theorem 2.5, the RKHS
Hk itself playing the role of feature space. This feature map is generally referred to as the
canonical feature map.

2.1.2 RKHSs to represent functions

Several works on functional output regression (FOR) presented in this thesis use scalar-
valued RKHSs to represent the output functions as well. For that reason, to avoid
confusions, in this part we manipulate kernels that are defined on Θ, which denotes
later the domain of definition of the output functions. Consequently, we make more
restricting assumptions on Θ than we do on X and we make more assumptions on the
kernel as well. However, first to motivate the use of RKHSs to represent functions, it
is crucial to highlight their approximation capacities. Universal kernels are then a key
notion.

Definition 2.8 (Universal kernels, Steinwart 2001). Let k : Θ ×Θ→ R be a kernel on a
compact metric space Θ, k is said to be universal if its RKHS Hk is dense (with respect to
the uniform norm) in the set C(Θ) of continuous functions from Θ to R.

We briefly develop on this definition to make it more explicit. To so, we define the
uniform norm for a function in Hk–or C(Θ)–as:

∥h∥∞ = sup
θ∈Θ
|h(θ)| .
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Then Hk is dense in C(Θ) means that for all g ∈ C(Θ) and for all ϵ > 0, there exists a
function h ∈ Hk such that ∥g − h∥∞ ≤ ϵ.

Remark 2.9. This property is actually stated for the more general case where Θ is a Haus-
dorff topological space in Micchelli et al. (2006), and a kernel is then universal if it verifies
Definition 2.8 on all compact subsets of Θ. Consequently, all the characterizations of uni-
versal kernels that they give remain true for the particular case of Θ compact.

Many well known kernels can be shown to be universal. For instance it is the case
of many shift-invariant kernels (see Definition 2.21) for which universality can be
deduced from characteristics of their spectral measures (see e.g. Steinwart 2001; Mic-
chelli et al. 2006; Sriperumbudur et al. 2011). As a concrete example, the well-known
Gaussian kernel defined in Equation (2.1) is universal.

A particularly interesting class of kernels is that of Mercer kernels. They give rise to
RKHSs which can be efficiently understood and approximated through the existence
of a spectral decomposition of the integral operator associated to the kernel.

Definition 2.10 (Mercer kernel). A kernel k on Θ is said to be a Mercer kernel if

1. Θ is a compact metric space and,

2. k : Θ ×Θ→R is continuous.

A key tool to understand the properties of the functional space associated to a Mercer
kernel is given by the following integral operator.

Definition 2.11 (Integral Operator). Let Θ be a compact metric space, let µ be a Borel
measure on Θ and let k : Θ ×Θ → R be a continuous kernel on Θ. The integral operator
associated to µ and k is defined as:

Tk,µ :

L
2(Θ,µ) → L2(Θ,µ)

y 7→
(
θ1 7→

∫
Θ
y(θ2)k(θ1,θ2)dµ(θ2)

) .
Remark 2.12. In order to lighten the notations, however, when it is possible we keep the
measure µ implicit and shorten Tk,µ to Tk . In the same way, we keep the measure implicit
and shorten L2(Θ,µ) to L2(Θ) when there is no ambiguity.

To approximate the functions in the RKHS, we can use the spectral decomposition
of this operator. Since k is continuous on Θ which is compact, for any y ∈ L2(Θ,µ),
Tky ∈ C(Θ) and Tk is compact (see e.g. Cucker and Smale 2001, Chapter III, Proposi-
tion 1). However, since C(Θ) ⊂ L2(Θ,µ), we can define the operator as taking its values
in L2(Θ,µ). Moreover the symmetry and positive definiteness of k respectively imply
that Tk is self-adjoint and that it is positive (see e.g. Cucker and Smale 2001, Chapter
III, Proposition 2). These properties enable us to apply the spectral theorem for self-
adjoint, positive and compact operators. It states that there exist an at most countable
family of functions (φl)l∈J forming an orthonormal system in L2(Θ,µ) and a corres-
ponding set of eigenvalues (λl)l∈J such that

∀y ∈ L2(Θ,µ), Tky =
∑
l∈J
λl⟨y,φl⟩L2(Θ,µ)φl . (2.2)
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Moreover, the eigenfunctions associated to nonzero eigenvalues are continuous since
Tk actually maps L2(Θ) to C(Θ) and by definition, if λl , 0, φl = 1

λl
Tk(φl). Also, by

positivity of the operator, the eigenvalues are positive and without loss of generality
we can suppose that they are ordered as λ1 ≥ λ2 ≥ · · · ≥ 0.

Such a spectral decomposition of Tk results in the following spectral representation of
the kernel which is the well-known Mercer theorem (see e.g. Cucker and Smale 2001,
Chapter III, Theorem 1).

Theorem 2.13 (Mercer). Let Θ be a compact domain, let µ be a Borel measure on Θ and
let k : Θ×Θ→R be a Mercer kernel. Let (λl ,φl)

+∞
l=1 be the eigenvalues/eigenfunctions pairs

of the operator Tk,µ. Then for all θ1,θ2 ∈Θ,

k(θ1,θ2) =
+∞∑
l=1

λlφl(θ1)φl(θ2), (2.3)

where the convergence is uniform on Θ2 (limit of the supremum over Θ2 goes to zero) and
absolute (for each θ1,θ2 ∈Θ, the absolute value goes to zero).

Nevertheless, it is not possible to exhibit the eigen decomposition of Tk,µ in closed-
form for general µ and k (Rasmussen and Williams, 2006, Section 4.3). It is however
possible in some particular cases, which is the object of the two following examples.

Example 2.14 (Gaussian kernel eigendecomposition with Gaussian measure). When
Θ = R, µ is a Gaussian measure, and k is the Gaussian kernel, it is possible to derive the
eigendecomposition in closed-form (Zhu et al. 1997b, Section 4, Rasmussen and Williams
2006, Section 4.3) based on Hermite polynomials. Let k(θ1,θ2) = exp(−γ(θ1 − θ2)2) be
a Gaussian kernel, and let µ be a Gaussian measure N (0,σ2). Then the eigenvalues and
eigenfunctions of Tk are given by

∀l ∈N, λl =

√
2a
A
Bl , φl(θ) = exp(−(c − a)θ2)Hl(

√
2cθ),

where Hl is the l-th order Hermite polynomial (see e.g. Gradshteyn and Ryzhik 1980, Sec-
tion 8.95) and we defined the quantities

1
a

= 4σ2, c =
√
a2 + 2aγ, A = a+γ + c, B =

γ

A
.

Example 2.15 (Laplace kernel eigendecomposition with Lebesgue measure). Another
example in which we can compute the eigenvalues and eigenfunctions in closed-form is
when Θ = [0,1], k is the Laplace kernel with bandwidth parameter γ = 1 and µ is the
Lebesgue measure– see Hawkins (1989, Section 4) and Kadri et al. (2016). Let k(θ1,θ2) =
exp(−|θ1 −θ2|), the eigenvalues and eigenfunctions of Tk are given by

∀l ∈N, λl =
2

1 + c2
l

, φl(θ) = cl cos(clθ) + sin(clθ),

where (cl)l∈N are solutions to the equation cot(c) = 1
2

(
c − 1

c

)
, cot denoting the cotangent

function.

However, in most cases, the eigenvalues and eigenfunctions must be approximated
numerically.
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Example 2.16 (Approximate eigendecomposition). Consider that we are given a set of
observations θ = (θs)

m
s=1 ∈ Θm which are drawn i.i.d. from the measure µ. We consider the

following eigensystem associated to an empirical approximation to the integral operator Tk :

∀θ ∈Θ, 1
m

m∑
s=1

k(θ,θs)φ(θs) = λφ(θ). (2.4)

If we evaluate Equation (2.4) for θ ∈ {θ1, · · · ,θm}, we get that (mλ,φ(θ)) must be an ei-
genvalue/eigenvector pair of the kernel matrix K ∈ Rm×m associated to the kernel k and the
observations (θs)

m
s=1, where we use the convention that φ(θ) = (φ(θl))

d
l=1 ∈R

m. It therefore
makes sense to perform an eigenvalue decomposition of K. Let then U ∈ Rm×m be the or-
thonormal matrix which columns (us)ms=1 are the eigenvectors of K and let (λ̂s)

m
s=1 ∈ Rm be

the corresponding eigenvalues. So as to obtain approximate eigenfunctions we can evaluate
at any θ ∈Θ, a classic trick (see e.g. Hoegaerts et al. 2005, Section 3.1) is to inject back the
discrete eigenvectors into Equation (2.4):

∀s ∈ ⟦m⟧, φ̂s : θ 7→ 1

λ̂s
k(θ)Tus. (2.5)

Nevertheless, in order to obtain an orthonormal family of eigenfunctions in L2(Θ) as well
as valid corresponding eigenvalues for the integral operator rather than the kernel matrix,
we must do the following scalings:

∀s ∈ ⟦m⟧, φ̃s :=
√
mφ̂s, λ̃s :=

1
m
λ̂s. (2.6)

The first comes from the fact that φ̂s(θ) = us which implies

∥φ̂s(θ)∥2L2(Θ) ≈
1
m
∥us∥2Rm =

1
m
.

Then, for the eigenfunctions to have approximately unit L2(Θ)-norm, we must multiply
them by

√
m for all s ∈ ⟦m⟧. Injecting Equation (2.6) into Equation (2.5), we approximate

the eigenfunctions for the integral operator as

∀s ∈ ⟦m⟧, φ̃s : θ 7→ 1
√
mλ̃s

k(θ)Tus. (2.7)

The pairs (λ̃s, φ̃s)
m
s=1 can then be used as approximated eigenvalue/eigenfunction pairs for

the integral operator Tk .

All the properties we have presented makes RKHSs particularly attractive to use as a
hypothesis class in regularized empirical risk minimization problems.

2.1.3 Learning in scalar-valued RKHSs

We place ourselves in the supervised learning setting where we have access to obser-
vations (xi , yi)

n
i=1 ∈ (X ×R)n corresponding to i.i.d. realizations from a set of random

variables (X,Y) whose distribution is unknown. To statistically infer function on X
producing predictions which are statistically coherent with (X,Y), a classic approach
is to formulate an empirical risk minimization problem. To that end, let ℓ : R2 → R

be any loss function. Consider a kernel k and its associated RKHS Hk which we use
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as our hypothesis space. However to avoid overfitting of the training data, and to be-
nefit from the representation properties of RKHSs, we add a regularization term. It
consists of the RKHS norm multiplied by an intensity parameter λ > 0. This yields the
problem:

min
h∈Hk

1
n

n∑
i=1

ℓ(h(xi), yi) +λ∥h∥2Hk . (2.8)

It has been widely studied for various continuous convex losses. For the square loss,
we obtain the kernel ridge regression estimator. Other founding examples are based
on non-differentiable losses. The hinge loss gives rise to the well-known support vec-
tor machine (Cortes and Vapnik, 1995, SVM) for classification while the ϵ insensitive
loss yields the support vector regression (Drucker et al., 1996, SVR).

However, the space Hk can be high-dimensional (possibly infinite-dimensional) so at
first sight Problem 2.8 is not straightforward to solve. However, a key advantage of
RKHSs is that they benefit from a representer theorem. It enables the reformulation of
the problem in finite dimension.

Theorem 2.17 (Representer theorem). Let X be a set, let k be a kernel on this set and let
Hk be its associated RKHS. Consider a set of points (xi)

n
i=1 ∈ X

n. Let V : Rn+1 → R be a
function which is strictly increasing with respect to its last argument. Then any solution ĥ
to the problem

min
h∈Hk

V
(
h(x1), · · · ,h(xn),∥h∥Hk

)
,

can be written in the form

ĥ =
n∑
i=1

k(.,xi)αi (2.9)

for some (αi)
n
i=1 ∈R

n.

This powerful theorem is a direct consequence of a simple orthogonality argument.

Proof Let S = Span
{
(k(.,xi))

n
i=1

}
. This is a finite dimensional subspace ofHk . As a con-

sequence, any h ∈ Hk can be written as h = ĥ+h⊥ with ĥ,h⊥ ∈ S ×S⊥. On the one hand,
the reproducing property combined with the orthogonality implies that for all i ∈ ⟦n⟧,
h(xi) = ĥ(xi). On the other hand, Pythagoras’ theorem implies that ∥h∥Hk ≥ ∥ĥ∥Hk . Con-
sequently, h⊥ necessarily make the objective V increase, therefore for any minimizer,
we should have h⊥ = 0 which concludes the proof.

Example 2.18 (Kernel ridge regression (KRR)). The square loss ℓ(ŷ, y) = 1
2 (ŷ − y)2 is

a common choice of loss function. Injecting the parametrization given by the representer
theorem in Equation (2.9) into Problem 2.8 and setting the gradient to zero, the optimal
coefficients α̂ ∈ Rn can be computed in closed-form. Let us denote by K ∈ Rn×n the kernel
matrix associated to the observations (xi)

n
i=1 and the kernel k, and by y ∈ R

n the vector
containing the targets (yi)

n
i=1. Then α̂ is given by

α̂ = (K +λnI)−1y. (2.10)
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2.1.4 Large scale learning in RKHS

We see by now that kernel methods are very attractive in many aspects. Nevertheless,
they do have a few shortcomings, the most notable one being their computational
complexity. Theorem 2.17 implies that the number of parameters of the model is the
number of available observations n. Moreover, it is necessary to compute the kernel
matrix K which incur a memory complexity ofO(n2). Regarding time complexity, if we
use the square loss, solving Equation (2.10) costsO(n3) time . Indeed iterative methods
can be used, but those two complexities are an overall good summary. Consequently,
when n is low and the dimension of the input data is high (if dimension is relevant),
kernel methods are a very good choice as the input dimension is only involved to
compute the kernel evaluations. However, when the number of samples is high, kernel
methods can no longer be applied in their traditional form. Two main approaches
exist to overcome this problem. The first is Nyström’s method (Williams and Seeger,
2001) and the second is to use random Fourier features (Rahimi and Recht, 2007).

Nyström method

Williams and Seeger (2001) propose to approximately solve the linear system asso-
ciated to the KRR problem from Equation (2.10) using a low rank approximation to
the kernel matrix based on a random subset of its columns. This approach can be
used for any kernel method. More precisely, consider a random subset of the input
observations (x̃i)

q
i=1 for q ≤ n. Let Knq ∈Rn×q be the matrix with entries k(xi , x̃j ) and let

Kqq ∈ Rq be the matrix with entries k(x̃t , x̃j ), i ∈ ⟦n⟧, j, t ∈ ⟦q⟧. The following low-rank
approximation is used

K ≈ KnqK
†
qqK

T
nq. (2.11)

This boils down to looking for a solution to Problem 2.8 using the parametrization
from the representer theorem in Equation (2.9) restricted to a random subset of obser-
vations. In other words we search in Span

{
(k(·, x̃i))

q
i=1

}
instead of Span

{
(k(·,xi))ni=1

}
.

Example 2.19. We have the following closed-form solution for the KRR with Nyström
approximation (see e.g. Rudi et al. 2015):

h̃ =
q∑
i=1

α̃ik(·, x̃i), with α̃ = (KT
nqKnq +λnKqq)

†KT
nqy ∈Rq. (2.12)

Drineas and Mahoney W. (2005) shows that the randomized approximation in Equa-
tion (2.11) gets very close with high probability and in expectation to the best rank q
approximation to K. Then, many developments and refinements have been proposed,
including the proposition and study of several sampling techniques (see e.g. Kumar
et al. 2012 and reference therein). In the context of statistical learning, Rudi et al.
(2015) show that KRR with Nyström approximation can achieve optimal learning
bounds for a suitable number of sampled observations. Combined with an efficient
preconditioning and a stochastic gradient solver (Rudi et al., 2017), Nyström method
leads to a very efficient implementation of KRR. While more recently, an implement-
ation optimized for GPUs for this approach allowed to use KRR on dataset encom-
passing billions of samples (Meanti et al., 2020).

Example 2.20 (Nyström features). It is possible to derive Nyström features. These can
be used to apply the Nyström method to any linear model regularized using the squared
Euclidean norm. Yang et al. (2012) highlight that then, this feature-based approach is
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equivalent to the original one. Let (λ̃l , ũl)rl=1 be the eigenvalues/eigenvectors couples of the
matrix Kqq, consider the associated matrices Λ̃ = diag((λ̃l)

r
l=1) ∈ R

r×r and Ũ = [ul]rl=1 ∈
R
q×r . The Nyström features are then the following

ψ̃(x) = Λ̃−
1
2 ŨT(k(x, x̃1), · · · , k(x, x̃q))

T ∈Rr .

Random Fourier features

Another popular possibility is to learn in an approximate RKHS using a random fea-
ture map as proposed in Rahimi and Recht (2007). Let us consider that k : X ×X →R

is a shift-invariant kernel. Such a kernel only depends on the difference between its
inputs. Therefore we must make the restriction that X is a vector space so that the
notion of difference is meaningful.

Definition 2.21 (Shift-invariant kernel). Let k : X × X → be a kernel on a vector space
X . We say that k is shift invariant if there exists a function k0 on X such that for all
(x1,x2) ∈ X 2, k(x1,x2) = k0(x1 − x2).

Remark 2.22. The positive definiteness of k therefore implies that k0 is a positive definite
function. Since k is real-valued, k0 must be as well, and therefore its positive definiteness
implies that it is symmetric, thus for all x ∈ X , k0(−x) = k0(x).

We now restrict the input space to X = R
c. Let k : Rc ×Rc→R be a continuous kernel

and suppose further that it is shift invariant with base function k0. To build a random
feature map, Rahimi and Recht (2007) rely on Bochner’s theorem (see for instance
Wendland 2004, Theorem 6.6).

Theorem 2.23 (Bochner). A continuous function k0 : Rc → R is positive definite if and
only if it is the Fourier transform of a finite nonnegative Borel measure ϱ on R

c.

k0(x) =
∫
R
c
eiω

Txdϱ(ω) =
∫
R
c
cos(ωTx)dϱ(ω).

The second equality is valid since k0 is real valued and ϱ is defined on R
c, therefore

we can ignore the imaginary part.

Using Bochner’s theorem, for all (x1,x2) ∈ (Rc)2,

k(x1,x2) =
∫
R
c
cos(ωT(x1 − x2))dϱ(ω). (2.13)

Without loss of generality, we can choose the measure ϱ to be a probability measure.
Indeed, if ϱ does not integrate to 1, we notice that k0(0) = ϱ(Rc), so we can scale ϱ by

1
k0(0) . The integral in Equation (2.13) can be approximated by Monte Carlo, yielding a
fair approximation of the kernel (see Sriperumbudur and Szabó (2015) for an in depth
analysis). Let (ωr )

q
r=1 be i.i.d. draws from the probability measure ϱ, the approximate

kernel is given by

k̃(x1,x2) =
1
q

q∑
r=1

cos(ωT
r (x1 − x2)). (2.14)
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Then linearizing the cosines, we get the feature map:

ψ̃ : x 7→ 1
√
q

(cos(ωT
1x), · · · ,cos(ωT

q x),sin(ωT
1x), · · · ,sin(ωT

q x)). (2.15)

It can be used in any kernelizable linear model. The corresponding problem is then
solved without paying the high complexity in the number of samples n, but rather in
the number of random features q. Using this feature map amounts to learning in the
RKHS associated to the approximated kernel k̃.

The study of those random features maps has attracted a lot of attention. On the prac-
tical side, (Le et al., 2013) propose to reduce the complexity of computing and storing
feature maps, while improvements based on quasi Monte Carlo have been studied ex-
tensively in Avron et al. (2016). Zhang et al. (2019) introduce a way to reduce the
memory usage of learning with random Fourier features while retaining competitive
empirical performances. On the theoretical side, generalization properties of random
Fourier features have also been investigated thoroughly, first in the case of the square
loss (Rudi and Rosasco, 2017), while a broader and unified framework for theoretical
analysis has been introduced later (Li et al., 2021).

A broad class of nonlinear FOR methods as well as new methods introduced in this
thesis hinge on an extension of RKHSs to model functions taking their values in a
Hilbert space. We give an introduction to these spaces in the following section.

2.2 Kernel Methods for vector-valued outputs

To bring the many advantages of RKHSs for modeling scalar-valued functions to the
more general setting where the outputs of the functions lie in a Hilbert space, vector-
valued RKHSs (vv-RKHSs) have been introduced (Pedrick, 1957). The vectors may
be of finite or infinite dimension depending on the Hilbert space considered, there-
fore vv-RKHSs allow for modeling multi-output functions as well as function-valued
functions.

2.2.1 Operator-valued kernels and vector-valued RKHSs

Let Y be a separable real Hilbert space. To build the vector-valued extension, the
reproducing kernels are no longer real-valued. Now they take their values in the linear
space L(Y ) of bounded operators from Y to Y . We give an overview of the differences
between scalar-valued RKHSs and vv-RKHSs in Table 2.1. As in the scalar-valued
case, vv-RKHSs can be characterized by the continuity of the evaluation operator at
all points of the input space.

Definition 2.24. A Hilbert space H ⊂ F (X ,Y ) is a vector-valued reproducing kernel Hil-
bert space if and only if for any x ∈ X , the following evaluation mapping is continuous

evx :

H → Y
h 7→ h(x)

 .
However, a more usable characterization of vv-RKHSs is given through operator-valued
kernels (OVK).
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Table 2.1: Comparison between scalar (k) and operator-valued kernels (K).

scalar-valued kernel operator-valued kernel

kernel k : X ×X →R K : X ×X →L(Y )
symmetry k(x1,x2) = k(x2,x1) K(x1,x2) = K(x2,x1)#

positive-definiteness
∑n
i=1

∑n
j=1αiαjk(xi ,xj ) ≥ 0

∑n
i=1

∑n
j=1⟨yi ,K(xi ,xj )yj⟩Y ≥ 0

reproducing property h(x) = ⟨h,k(·,x)⟩Hk h(x) = K#
xh

feature map ψ : X → V Ψ : X →L(V ,Y )
linear parametrization h = ⟨ψ(·),v⟩V h = Ψ (·)v

Definition 2.25 (Operator-valued kernel). Let X be a set, an operator-valued kernel
(OVK) is a function K : X ×X →L(Y ) that is

1. symmetric: ∀(x1,x2) ∈ X 2, K(x1,x2) = K(x2,x1)#, and

2. positive definite: ∀(xi)
n
i=1 ∈ X

n, (yi)
n
i=1 ∈ Y

n,
∑n
i=1

∑n
j=1⟨yi ,K(xi ,xj )yj⟩Y ≥ 0.

Remark 2.26 (Meaning of vector-valued). In the present chapter, we use the term vector-
valued RKHS for a RKHS of functions with values in a Hilbert space, regardless of its
dimension of this space. However, further in this thesis, we will make a distinction between
vector-valued and function-valued RKHSs. We will use the former when Y is Rd for some
d ∈R and the latter when Y is a Hilbert space of functions.

The following theorem is analogous to Theorem 2.6, more precisely it states the unique-
ness of the vv-RKHS associated to an OVK and it characterizes it. However, to state it,
we first need to define the following linear operators. Let K be an OVK, then for any
x1 ∈ X , we define Kx1

∈ L(Y ,F (X ,Y )) as

Kx1
: y 7→ Kx1

y, with Kx1
y : x2 7→ K(x2,x1)y. (2.16)

Theorem 2.27. Let X be a set and let K : X ×X → L(Y ) be an operator-valued kernel on
X . Then there exists a unique Hilbert space HK ⊂ F (X ,Y ) such that

1. ∀(x,y) ∈ X ×Y Kxy ∈ HK, and

2. ∀(h,x) ∈ HK ×X , h(x) = K#
xh.

Remark 2.28. This corresponds to Proposition 2.3 in Carmeli et al. (2006). They deal
with Hilbert spaces over the field C whereas we indeed deal with Hilbert spaces over the
field R. However, as they highlight at the end of their proof, the additional requirements in
Definition 2.25 that for all (x1,x2) ∈ X 2, K(x1,x2) = K(x2,x1)# makes the theorem valid for
real Hilbert spaces as well.

Remark 2.29. The second item of Theorem 2.27 is the equivalent of the reproducing prop-
erty in the scalar-valued case.

Alternatively OVKs can be characterized by the existence of an operator-valued fea-
ture map in the following sense.

Theorem 2.30. Let X be a set. A function K : X ×X → R is an OVK if and only if there
exists a Hilbert space V and a mapping Ψ : X →L(V ,Y ) such that

∀(x1,x2) ∈ X 2, K(x1,x2) = Ψ (x1)Ψ (x2)#.
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Remark 2.31. Similarly to the scalar-valued case, a canonical feature map can be exhibited
from the OVK K. Indeed, consider Ψ : x 7→ K#

x ∈ L(HK,Y ), we do have that for all (x1,x2) ∈
X 2, K(x1,x2) = K#

x1
Kx2

= Ψ (x1)Ψ (x2)#. Here again, HK plays the role of feature space V .

Among OVKs, a very popular subclass is that of separable ones, for they are simple to
interpret and can drastically simplify computations in some cases.

Definition 2.32 (Separable OVK). We say that an OVK is separable if there exist a kernel
k : X ×X →R and a positive self-adjoint bounded operator B ∈ L(Y ) such that

∀(x1,x2) ∈ X 2, K(x1,x2) = k(x1,x2)B.

Example 2.33. As an example, if the output space is Rd , then if we consider a kernel k on
X and B ∈Rd×d a symmetric positive matrix, the following is a valid OVK:

∀(x1,x2) ∈ X 2, K(x1,x2) = k(x1,x2)B.

Since the output space is Rd , we represent an operator from L(Rd) as a matrix in R
d×d .

For function-valued learning it is common to use the product between an input kernel
and the integral operator associated with an output kernel.

Example 2.34. Suppose that Y = L2(Θ,µ) with Θ a compact metric space. Let kX be a
kernel defined on the input space X , let kΘ be a kernel defined on Θ and let µ be a Borel
measure on Θ. We then define the OVK

∀(x1,x2) ∈ X 2, K = kX (x1,x2)TkΘ , (2.17)

where TkΘ is the integral operator from Definition 2.11 associated to the kernel kΘ and the
measure µ. This is indeed a valid OVK.

This kernel has been used extensively for FOR using vv-RKHSs (Kadri et al., 2010,
2016; Laforgue et al., 2020). It forces the modeled functions to lie in HkΘ the RKHS
associated to the kernel kΘ . This is the object of the next remark.

Remark 2.35. The operator TkΘ maps surjectively Y = L2(Θ,µ) to HkΘ , the RKHS as-
sociated to the kernel kΘ . For FOR using vv-RKHSs, two points of views are somewhat
equivalent. On the one hand, we can consider that the outputs are lying in L2(Θ,µ) and use
the vv-RKHS associated to the kernel defined in Equation (2.17) as a hypothesis class. On
the other hand, we can also say the outputs should lie inHkΘ and then use the vv-RKHS as-
sociated to kX IHkΘ as a hypothesis class. These two approaches are almost equivalent in the
sense that HkX IHkΘ

and HkXTkΘ
are unitarily equivalent–see Carmeli et al. (2010, Example

6, Example 7) for details.

2.2.2 Learning in vv-RKHSs

We place ourselves in the supervised learning setting again, but this time (X,Y) is a
couple of random variables taking its values in X × Y . To formulate an empirical
risk minimization problem, we need to define a loss function which now acts on the
Hilbert space Y . Let L : Y × Y 7→ R be such a loss. We then consider the following
problem with HK a vv-RKHS associated to an OVK K : X ×X →L(Y ):
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min
h∈HK

1
n

n∑
i=1

L(h(xi), yi) +λ∥h∥2HK
. (2.18)

Such problems arise in various fields of application when prediction in a Hilbert space
is required. The simplest case is that of multi-output learning where Y = R

d . We can
predict separately the d output coordinates, however in order to leverage the rela-
tionship between the output coordinates, it may be better to tap into vector-valued
prediction (Micchelli and Pontil, 2005; Álvarez et al., 2012). FOR is the application
of particular interest for this thesis. The Hilbert space Y is then infinite-dimensional,
and we can no longer predict separately the multiple outputs. Vv-RKHSs have been
applied successfully to overcome this challenge (Lian, 2007; Kadri et al., 2010, 2016).
Another field where regression in vv-RKHSs have led to state of the art performances
is structured output regression. The output space Y then consists of a scalar-valued
RKHS containing embeddings of structured objects (Brouard et al., 2011; Kadri et al.,
2013; Brouard et al., 2016; Laforgue et al., 2020). This is a surrogate approach, there-
fore to obtain a prediction in the original structured space, a pre-image problem must
be solved.

As in the scalar case, a solution to Problem 2.18 can be parametrized by a set of vectors
(αi)

n
i=1 ∈ Y

n.

Theorem 2.36 (Micchelli and Pontil 2005, Theorem 4.2). Let V : Yn × R → R be a
function such that for any y ∈ Yn, the partial function t 7→ V (y, t) is strictly increasing.
Then any solution ĥ to the problem

min
h∈HK

V
(
(h(x1), · · · ,h(xn)),∥h∥HK

)
, (2.19)

can be written in the form

ĥ =
n∑
i=1

Kxiαi , (2.20)

for some (αi)
n
i=1 ∈ Y

n, where for x ∈ X , the operator Kx : Y → HK is defined as in Equa-
tion (2.16).

We give here an overview of the proof which is based on the minimal norm interpolant
principle.

Proof Suppose that a minimizer ĥ exists and set ŷ = (ŷi)
n
i=1 with for all i ∈ ⟦n⟧, ŷi =

ĥ(xi). Let h ∈ HK be any function such that for all xi , i ∈ ⟦n⟧, h(xi) = ŷi . By definition
of ĥ we have that

V
(
ŷ,∥ĥ∥2HK

)
≤ V

(
ŷ,∥h∥2HK

)
.

Therefore
∥ĥ∥HK

= min
{
∥h∥HK

: h(xi) = ŷi , i ∈ ⟦n⟧, h ∈ HK

}
. (2.21)

This corresponds to a minimal norm interpolant problem. Since ĥ ∈ HK, by definition
ŷ is in the range of the evaluation operator defined as h 7→ (h(xi))

n
i=1. Consequently,

Theorem 3.2 from Micchelli and Pontil (2005) guarantees that the solution ĥ to Prob-
lem 2.21 indeed has the form given in Equation (2.20).
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This theorem reduces the domain of optimization to a subspace of HK. However, we
still have to optimize over n vectors in Y , which remains highly problematic if Y is
infinite dimensional. How to alleviate this problem is a central problematic in this
thesis which we will tackle in different manners in Chapter 5 and Chapter 7.

For regularized empirical risk minimization problems (Problem 2.18), an attractive
possibility to obtain a parameterization similar to that given by the representer Equa-
tion (2.20) is to exploit parametric duality. For minimization in vv-RKHSs, we can get
a dual problem that is equivalent to the primal one which can be simpler to solve (es-
pecially if the loss is non-differentiable). This has been a cornerstone of many scalar-
valued kernel methods such as the SVM or the SVR. The approach can be generalized
to vv-RKHSs which is the object of the following theorem. To state it we define the
partial losses for i ∈ ⟦n⟧ as Li : y 7→ L(y,yi).

Theorem 2.37 (Dualization, Brouard et al. 2016). Suppose that L is proper, lower semi-
continuous and convex with respect to its first argument, then the solution ĥ of Prob-
lem 2.18 is unique and is given by

ĥ =
1

2nλ

n∑
i=1

Kxi α̂i , (2.22)

where (α̂i)
n
i=1 ∈ Y

n is the solution of the dual problem

inf
(αi )

n
i=1∈Yn

n∑
i=1

L⋆i (−αi) +
1

4nλ

n∑
i=1

n∑
j=1

⟨αiK(xi ,xj )αj⟩Y . (2.23)

Where for i ∈ ⟦n⟧, L⋆i denotes the Fenchel-Legendre transform of Li (Definition 2.43).
The representation in Equation (2.22) and that from the representer theorem are the
same up to a scalar scaling. However, solving Problem 2.23 remains an issue as the
dual variables are in Y .

Therefore, vv-RKHSs offer a very rich hypothesis class for learning problems with
targets in a Hilbert space. Nevertheless, specific work beyond the representer theorem
or the dualization needs to be performed to make the problem amenable for numerical
optimization. Indeed, this first layer of simplification is not enough, as Y is infinite
dimensional, optimizing over variables in Yn remains highly problematic. To tackle
that challenge, the assumption that the OVK is separable (Definition 2.32) is generally
key. In Laforgue et al. (2020), they consider a restricted subclass of kernels under
which the span of the output functions (yi)

n
i=1 is stable; i.e. for all (x1,x2) ∈ X and for

all y ∈ Span((yi)
n
i=1), K(x1,x2)y ∈ Span((yi)

n
i=1). Then under several assumptions on the

losses as well, a double-representer theorem is proved. It allows to reduce the number
of variables in Problem 2.23 to n2 real numbers.

Now that we have introduced the advantages and drawbacks of learning in vv-RKHSs,
we turn to learning theory. More precisely, we introduce a framework exploiting integ-
ral operators. It can be used to obtain theoretical guarantees for learning algorithms
in vv-RKHSs using the square loss.

2.2.3 Learning theory with integral operators in vv-RKHSs

On top of their many practical and modeling advantages, scalar-valued RKHSs enjoy
favorable properties (Cucker and Smale, 2001). This allowed to back many estimators
in RKHSs with strong theoretical guarantees–see e.g. Bousquet and Elisseeff (2002);
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Steinwart (2005); Bartlett et al. (2005). In the specific case of the square loss, consist-
ency properties of regularized estimators in RKHSs can be proven through a specific
technique. A sample-free closed-form solution involving the integral operator associ-
ated to the kernel (Definition 2.11) can be exhibited. Then, one can control the devi-
ation between this ideal solution and its empirical approximation (Smale and Zhou,
2007). This technique is of particular interest to us since it has been developed con-
comitantly for vv-RKHSs (Caponnetto and De Vito, 2007). It constitutes the base of
the theoretical results that we derive for approximate FOR later on (Chapter 6). We
give here an introduction to the main concepts and key results that make this tech-
nique work.

We consider the supervised learning setting with the output random variable Y taking
its values in the Hilbert space Y . Let z = (xi , yi)

n
i=1 = (x,y) ∈ (X ,Y )n be the sample and

let ρ be (X,Y)’s unknown probability measure.

We use the square loss on Y and recall the definition of the associated expected risk
of a regressor f ∈ F (X ,Y )

R(f ) := E(X,Y)∼ρ

[
∥Y− f (X)∥2Y

]
. (2.24)

The minimizer of this expected risk over the space of all measurable Y-valued func-
tions is the regression function:

fρ(x) =
∫
Y
ydρ(y|x).

Ideally, we want to find a regressor which expected risk is close to that of fρ. Never-
theless since we cannot optimize over the space of measurable functions, we look for
a regressor in a much smaller hypothesis class G ⊂ F (X ,Y ). Consequently, approach-
ing fρ may be too ambitious. We can however compare a regressor to the best one in
the hypothesis class. In other words, we look for f0 ∈ G such that R(f0) is as close as
possible to inff ∈GR(f ).

The use of a finite sample z instead of the true measure ρ is another unavoidable
source of error. The related quantity of interest is the empirical risk

R̂(f ,z) :=
1
n

n∑
i=1

∥yi − f (xi)∥2Y . (2.25)

Remark 2.38. To ensure that the expected risk–Equation (2.24)–makes sense, the integral∫
Y ∥y − f (x)∥2Ydρ(x,y) must be finite. To that end, we assume for now that ((x,y) 7→ f (x)) ∈
L2(Z,ρ,Y ) and ((x,y) 7→ y) ∈ L2(Z,ρ,Y )). We will make assumptions to ensure this is the
case later.

Note that we have introduced L2(Z,ρ,Y ) the space of functions from Z to Y which
are square integrable with respect to the measure ρ. This space is endowed with the
following scalar product

⟨ψ1,ψ2⟩ρ =
∫
Z
⟨ψ1(x,y),ψ2(x,y)⟩Y dρ(x,y),

and the associated norm ∥ · ∥ρ.
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Now, consider a general hypothesis class G ⊂ F (X ,Y ). We define the canonical inclu-
sion operator of G into the space L2(Z,ρ,Y ) as:

A : f ∈ G 7→ Af with Af : (x,y) 7→ f (x). (2.26)

Then the expected risk is trivially reformulated as

R(f ) = ∥Af −Y ∥2ρ, (2.27)

where we have defined the dummy function Y ∈ L2(Z,ρ,Y ) as Y : (x,y) 7→ y ∈ Y .

Let HK to a vv-RKHS associated to some OVK K. We now take G =HK. This assump-
tion becomes necessary now because we need the reproducing property to derive the
adjoint of A and then obtain a characterization of minimizers of the expected risk in
terms of A# and T = A#A. To make sure that these operators are properly defined
and bounded, and that the expected risk is always finite, we need to make further
assumptions on the OVK. The assumptions that (i) K is measurable in some sense and
that (ii) x 7→ Trace(K#

xKx) is bounded are for instance sufficient (see Hypothesis 1 in
Caponnetto and De Vito 2007).

Remark 2.39. In practice the assumption that Kx is trace-class for all x ∈ X is quite re-
strictive when Y is infinite-dimensional. For instance the very simple separable kernel
x1,x2 7→ k(x1,x2)IY with k some scalar-valued kernel does not qualify.

Under those assumptions on the OVK and on the measure, we have the following
expressions for the operators (Caponnetto and De Vito, 2007).

Lemma 2.40. For ψ ∈ L2(Z,ρ,Y ), the adjoint of A acts on ψ as

A#ψ =
∫
Z
Kxψ(x,y)dρ(x,y), (2.28)

with the integral converging in HK, A#A is the Hilbert-Schmidt operator on HK given by

T = A#A =
∫
Z

TxdρX(x), (2.29)

with the integral converging in L2(HK), the set of Hilbert-Schmidt operators from HK to
HK.

To address the concern that the expected risk must be finite (Remark 2.38) we make
the following simple assumption on the measure ρ∫

Z
∥y∥2Ydρ(x,y) < +∞.

Additionally, provided the OVK is bounded (either considering x 7→ Trace(K#
xKx), or

x 7→ ∥K(x,x)∥L(Y )), we have that∫
Z
∥h(x)∥2Ydρ(x,y) < +∞.
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Therefore the expected risk is finite.

We now assume that there exists hHK
∈ HK such that

hHK
= inf
h∈HK

R(h). (2.30)

Since the function h 7→ ∥Ah − Y ∥2ρ is convex and differentiable, any minimizer must
cancel the gradient which implies that

ThHK
= A#Y . (2.31)

The quantity that we ultimately want to control is the excess risk of a regressor h over
the hypothesis class HK:

E(h,HK) :=R(h)−R(hHK
).

The characterization of h ∈ HK in Equation (2.31) combined with a polar decomposi-
tion of A allows for reformulating this excess risk for any h ∈ HK as a distance in HK
taken through the operator T.

Lemma 2.41. For any h ∈ HK,

E(h,HK) = ∥
√

T(h− hHK
)∥HK

. (2.32)

Then, if we consider the Hilbert-valued KRR estimator solution to the empirical risk
minimization problem

min
h∈HK

1
n

n∑
i=1

∥h(xi)− yi∥2Y +λ∥h∥2HK
, (2.33)

it can be expressed using empirical estimates Ax and Tx of the operators A and T as

hλz = (Tx +λI)−1A#
xy. (2.34)

We can inject Equation (2.34) into Equation (2.32) and exploit the characterization
of hHK

in Equation (2.31). The resulting quantity can them be judiciously divided in
several terms–see e.g. Caponnetto and De Vito (2007) or Baldassarre et al. (2012) for
possible strategies. Then these terms can be bounded using several concentration in-
equalities in separable Hilbert spaces (Pinelis and Sakhanenko, 1986; Yurinsky, 1995)
combined with other non-probabilistic inequalities. A finite sample bounds on the
excess risk can then be obtained. The concentration inequalities are applied in two
Hilbert spaces: the vv-RKHS HK and the space L2(HK) of Hilbert-Schmidt operators
from HK to HK. Consequently, the separability of HK is crucial (it implies the separ-
ability of L2(HK)). To make sure we have it, either K can be supposed to be such that
HK is separable as in (Caponnetto and De Vito, 2007), or further hypotheses implying
the separability of HK can be made on the kernel and the input space. For instance
if X is separable and K is continuous, HK is separable. Then provided the successive
inequalities used are tight enough, the obtained bound can imply consistency of the
regularized ridge estimator from Equation (2.34) for a certain sequence of regulariza-
tion parameters (λn).

This proof technique works for the square loss as it exploits the kernel ridge estim-
ator’s closed-form. The next section is dedicated to basic tools for non-differentiable
convex optimization. They are useful in practice in this thesis to extend the scope of
possible losses for empirical risk minimization problems in vv-RKHSs through dual-
ization.
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2.3 Convex Optimization

As we have exemplified through supervised learning in RKHSs and vv-RKHSs, many
machine learning procedures boil down to the resolution of an optimization prob-
lem. The most crucial distinction is between convex and non-convex problems. In the
former case, any local minimum is also a global one, whereas in the latter case, many
local minima may exist and may or may not be global. Deep neural networks are a very
well known example of such non-convex problems. In this thesis, the focus on convex
losses and vv-RKHSs as hypothesis class ensures the problems we deal with are con-
vex. Convex problems have been the main focus of optimization theory, and we refer
the reader to Rockafellar (1970); Boyd et al. (2004); Bauschke and Combettes (2017)
for an overview. Thanks to a regularization term, our problems are even strongly
convex. This usually makes for faster convergence and additionally, if a minimizer
exists, it is unique. The challenges we face come from the space we optimize over:
an infinite-dimensional Hilbert space. To tackle the induced challenges, we rely on
the framework of (Bauschke and Combettes, 2017) adapted to optimization over Hil-
bert space of possibly non-differentiable functions. That latter possibility is useful in
Chapter 7 and Chapter 8 where we deal with non-differentiable objectives. We denote
by H the generic Hilbert space over which we wish to optimize our objective.

In this framework, a central class of functions is that of proper, convex and lower
semi-continuous ones.

Definition 2.42 (Proper, convex, lower semi-continuous functions). Let Γ0(H) denote
the set of functions f from H to ]−∞,+∞] that are

• proper: dom(f ) :=
{
u ∈ H : f (u) < +∞

}
, ∅,

• convex: for all u,v ∈ H, for all t ∈ [0,1], f (tu + (1− t)v) ≤ tf (u) + (1− t)f (v), and

• lower semi-continuous: for all u ∈ H, limu→vf (v) ≥ f (u) where lim denotes limit
inferior.

By construction of the Lagrange multipliers, the Fenchel-Legendre conjugate of a
function appears frequently when deriving the dual of an optimization problem. For
instance when dualizing the empirical risk minimization problem in vv-RKHSs, the
Fenchel-Legendre conjugate of the loss appear in Problem 2.23. We now define this
transformation properly.

Definition 2.43 (Fenchel-Legendre conjugate). The Fenchel-Legendre conjugate of a func-
tion f :H→ [+∞,−∞] is defined as

∀u ∈ H, f ⋆(u) := sup
v∈H
⟨u,v⟩H − f (v). (2.35)

This transform has several properties. We highlight the following two basic yet im-
portant ones: first the Fenchel-Legendre conjugate of a function is always convex and
second, it is involutive. This is the object of the following property.

Proposition 2.44. Let f ∈ Γ0(H), then

(f ⋆)⋆ = f .
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The Fenchel-Legendre transform of a norm ∥ · ∥ on H is of particular interest later on.
A key quantity to derive is its associated dual norm.

Definition 2.45 (Dual norm). Let ∥ · ∥ be a norm on the Hilbert space H. Its dual norm
∥ · ∥∗ is the norm on H defined for v ∈ H as

∥v∥∗ = sup
∥u∥≤1

⟨u,v⟩H.

Remark 2.46 (Notation). We draw the reader’s attention to the difference between the
Fenchel-Legendre transform of a function f which is denoted by f ⋆ and the dual norm of a
norm ∥ · ∥ which we denote by ∥ · ∥∗.

Example 2.47 (Fenchel-Legendre transform of ∥ · ∥). Let ∥ · ∥ be a norm on the Hilbert
space H and let ∥ · ∥∗ be its associated dual norm. Then the Fenchel-Legendre transform of
∥ · ∥ is given by

(∥ · ∥)⋆ = χ{B1
∥·∥∗ }
, (2.36)

where B1
∥·∥∗ denotes the ball of radius 1 associated to the dual norm ∥ · ∥∗ and χ{B1

∥·∥∗ }
(·) denotes

its indicator function equal to 0 on the ball and +∞ elsewhere. We refer to Boyd et al. (2004,
Example 3.26) for a proof (very simple). They do it forH = R

n but it remains valid forH a
Hilbert space.

Another important property of the Fenchel-Legendre transform for this thesis is how
it acts on the infimal convolution between two functions (Bauschke and Combettes,
2017).

Definition 2.48 (Infimal convolution). The infimal convolution of two functions f ,g :
H→]−∞,+∞] is defined as

f □g :

H → [−∞,+∞]
u 7→ infv∈H f (u − v) + g(v)

 .
Example 2.49 (Moreau envelope). This operator can be useful when optimizing non-
differentiable convex functions. Through the infimal convolution between a function and
a small amount of the function u 7→ ∥u∥2H, a smooth approximation can be obtained. The
corresponding approximation is called the Moreau envelope and is defined for a function f

and a smoothing parameter γ > 0 as γf := f □
(

1
2γ ∥ · ∥

2
H

)
. It is convex, its domain is the

whole space H and it is Fréchet differentiable (Bauschke and Combettes, 2017, Proposition
12.30), Fréchet differentiability being a stronger notion which implies Gâteau differentiab-
ility which we introduce later in Definition 2.55.

Proposition 2.50 (Bauschke and Combettes 2017, Proposition 13.24). Let f ,g : H →
]−∞,+∞] be two functions, then

(f □g)⋆ = f ⋆ + g⋆ . (2.37)

Another key tool in non-differentiable optimization is the proximal operator. It can
be seen as a proxy for a gradient descent step.

Definition 2.51 (Proximal Operator, Moreau 1965). The proximal operator is defined as

∀(f ,u) ∈ Γ0(H)×H, proxf (u) := argmin
v∈H

f (v) +
1
2
∥u − v∥2H. (2.38)
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The functions considered are restricted to Γ0(H) because this ensures that the proximal
operator is well-defined: the minimizer in Equation (2.38) exists and is unique.

Remark 2.52 (Interpretation). This operator plays a central role in many algorithms for
optimizing convex yet non-differentiable functions. It can be interpreted in several ways as
a modified gradient step (Parikh and Boyd, 2014, Section 3.3). A possible intuition comes
from the fact that

proxγf (u) = u −γ∇(γf )(u).

Therefore the proximal operator corresponds to a gradient descent step for minimizing the
Moreau envelope γf of f with step size γ , in other words, it can be seen as a gradient step
for a smooth approximation of f .

Another interesting property gives an explicit link between the proximal operator of
a function and that of its Fenchel-Legendre conjugate. This for instance particularly
helpful when employing algorithms involving the proximal operator in the dual.

Lemma 2.53 (Moreau decomposition, Moreau 1965). Let f ∈ Γ0(H) and γ > 0. Then

IH = proxγf (·) +γ prox 1
γ f

⋆ (·/γ),

where IH denotes the identity operator on H.

This decomposition can be used to compute the proximal operator associated to a
norm ∥ · ∥.

Example 2.54 (Proximal operator of a norm ∥·∥). For a norm ∥·∥ onH and γ > 0, directly
applying the Moreau decomposition combined with Example 2.47 and using the invariance
of the indicator function by multiplication with a strictly positive scalar, we get

IH = proxγ∥·∥+γ proxχ{B1
∥·∥∗ }

(·/γ).

Consequently,
proxγ∥·∥ = IH −γ proxχ{Bγ∥·∥∗ }

= IH −γ ProjBγ∥·∥∗
, (2.39)

where ProjBγ∥·∥∗
denotes the orthogonal projection on Bγ∥·∥∗ . Indeed

proxχ{Bγ∥·∥∗ }
(u) = argmin

v∈H
χ{Bγ∥·∥∗ }

+
1
2
∥u − v∥2H

= argmin
v∈H

χ{Bγ∥·∥∗ }
+ ∥u − v∥2H

= ProjBγ∥·∥∗
(u).

Proximal operator are usually used to solve optimization problems involving the sum
of a convex and differentiable function f , and a convex and non-differentiable one g.
Such a problems are called composite problems and take the form

inf
u∈H

f (u) + g(u). (2.40)

We now precise what is meant by differentiable since when in infinite-dimensional
vector spaces, several notions exist. Fréchet differentiability and Gâteau differentiab-
ility are two such notions, the former being stronger than the latter. We define next
Gâteau differentiability, as it is the one we use mostly.
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Algorithm 2.1 Proximal gradient descent for Problem 2.40
input : Stepsize γ > 0, number of iterations T
init : u(0)

for t = 1, . . . ,T do
u(t) = proxγg

(
u(t−1) −γ∇f (u(t−1))

)
return u(T )

Definition 2.55 (Gâteaux differentiability). Consider a function f : H→]−∞,+∞] that
is proper and u ∈ dom(f ). For a direction v ∈ H, the directional derivative of f is

f ′(u,v) = lim
α↓0

f (u +αv)− f (u)
α

,

provided that the limit exists. When f ′(u, ·) is linear in v and continuous, f is said to be
Gâteaux differentiable at point u and there exist a unique vector ∇f (u) ∈ H such that

∀v ∈ H, f ′(u,v) = ⟨∇f (u),v⟩H.

The proximal gradient algorithm presented in Algorithm 2.1 can be used to solve
Problem 2.40. Let us assume that f ,g ∈ Γ0(H), that additionally f is Gâteaux differen-
tiable with a 1/β-Lipschitz continuous gradient and that γ ∈]0,2β[. Then if Argmin(f +
g)–the set of minimizers of f +g–is not empty, the sequence (u(t))t∈N from Algorithm 2.1
converges weakly to a point in Argmin(f + g). Moreover, under uniform convexity as-
sumptions on f and g detailed in Bauschke and Combettes (2017, Corollary 28.9), this
convergence becomes strong.

We now introduce a more specific form of problems encompassing those we study in
Chapter 7. For this form of problems, we also introduce the main concepts of duality.
Let K be a Hilbert space, let f ∈ Γ0(H) be the function to optimize and let A ∈ L(H,K)
be a linear operator. We consider the problem:

inf
u∈H

f (u) subject to Au = b. (2.41)

This can be rewritten alternatively using an indicator function for the set of con-
straints χ{b}(Au) which equals 0 if Au − b = 0 and +∞ otherwise.

inf
u∈H

f (u) +χ{b}(Au)︸             ︷︷             ︸
:= P (u)

(2.42)

Example 2.56. In the context of regularized empirical risk minimization in Problem 2.18,
if the loss writes as L(h(x), y) = L0(h(x) − y), to dualize Problem 2.18 so as to obtain The-
orem 2.37, the additional variable w = (wi)

n
i=1 ∈ Y

n is introduced along with a linear con-
straint so that the objective remains the same. More precisely, in the notations of Prob-
lem 2.41:

• K = Yn and H = Yn ×HK. Then, we set u = (w,h) ∈ Yn ×HK,

• define the linear operator A : H → Yn as A : u 7→ (h(xi) − wi)ni=1 ∈ Y
n, take b =

(yi)
n
i=1 ∈ Y

n,
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• and we can reformulate the objective as f : u 7→ 1
n

∑n
i=1L0(wi) + λ

2 ∥h∥
2
HK

.

Definition 2.57 (Lagrangian). The Lagrangian associated to Problem 2.41 is the following
function

L :

H×K → ]−∞,+∞]
(u,α) 7→ f (u) + ⟨Au − b,α⟩K

 .
Minimizing the Lagrangian over the primal variables, we get the dual objective D(α).
The dual problem associated to Problem 2.41 is that of maximizing the dual objective:

sup
α∈K

inf
u∈H

L(u,α)︸       ︷︷       ︸
:=D(α)

. (2.43)

Let P ∗ andD∗ be the optimal values respectively for the primal and the dual problems.
Since f ∈ Γ0(H), by Definition 2.42, its domain (set of points where it is not infinite)
is non-empty. Consider then a point u0 ∈ dom(f ), by definition we have Au0 − b =
0, therefore, L(u0,α) = P (u0), taking the infimum over u0 ∈ dom(f ), we get that for
all α ∈ K, D(α) ≤ P ∗. Consequently, taking the supremum in α over K, we get the
following inequality known as weak duality.

D∗ ≤ P ∗. (2.44)

When we do have the equality D∗ = P ∗, we say that strong duality holds. For optim-
ization over infinite-dimensional space, a sufficient constraint qualification condition
to ensuring strong duality holds is stated in Gowda and Teboulle (1990, Theorem 2)
for Banach spaces. This condition stems from the refinement proposed in Robinson
(1976, Corollary 1) of the initial proposition given in Rockafellar (1974, Theorem 18).
To formulate this condition, we need to define the core of a set.

Definition 2.58 (Core). Let H be a Hilbert space and let C ⊂ K be a subset. The core of C
is defined as

core(C) :=
{
u ∈ C : ∀v ∈ H, ∃ϵ > 0 : ∀τ ∈ [−ϵ,ϵ], u + τv ∈ C

}
.

Our Problem 2.42 is a particular case of the more general problem for which this con-
dition is formulated in Gowda and Teboulle (1990). In our problem, the second func-
tion g in their objective is simply χ{b}(·), and the spaces H and K are Hilbert spaces.
Stating their Theorem 2 for our problem yields the following constraint qualification
condition.

Corollary 2.59. Let H and K be Hilbert spaces, if

0 ∈ core
(
{b} − Im(A)

)
,

then strong duality holds for Problem 2.42,

where we have defined

{b} − Im(A) := {w ∈ K, ∃u ∈ H : w = b −Au}.
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Example 2.60. Continuing Example 2.56, we see that for empirical risk minimization in
vv-RKHSs, the constraint qualification from Corollary 2.59 is trivially verified. Indeed,
for all v ∈ H, for any ϵ > 0, we can choose any h ∈ HK and for τ ∈ [−ϵ,ϵ] set w = τv +
(h(xi))

n
i=1 − b, so that setting u = (h,w), τv = b −Au. Therefore, τv ∈

(
{b} − Im(A)

)
which

implies 0 ∈ core
(
{b} − Im(A)

)
.

2.4 Conclusion

In this chapter, we introduced many concepts and tools on which we will rely in the
following chapters. The first focus was on kernel methods with a strong focus on ma-
chine learning applications. We provided details on RKHSs and their properties and
then we introduced vv-RKHSs, an extension of RKHSs to model vector-valued func-
tions. We use as these spaces extensively as a hypothesis class later on. We also gave a
brief overview of how integral operators can be used to obtain excess risk bounds for
vector-valued kernel ridge estimators. This scheme of proof is central in the deriva-
tion of excess risk bounds for some estimators we propose in this thesis. The second
focus was on convex optimization. More precisely, we provided some key concepts
to optimize objectives which are convex yet non-differentiable based on proximal al-
gorithms and duality. We encounter such problems in upcoming chapters and we rely
on these tools to transform these problems and propose algorithms to solve them.
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In this thesis, we are interested in the problem of predicting functions that lie in a
Hilbert space. It may be infinite-dimensional, yet the functions that we actually ob-
serve generally exhibit some type of regularity. Therefore, a natural idea is to suppose
that they actually lie in a lower dimensional subspace of the original Hilbert space.
Supposing we are able to find such relevant subspace, the benefits are twofold. The
cost of representation and prediction can be lowered significantly (compression) while
the relevance of the representation can be more adapted to the problem at hand and
help us filter out observational noise (regularization).

In this chapter, we forget the input side of the problem to focus only on the out-
puts (yi)

n
i=1. Let us consider the general supervised learning setting with output data

lying in a given Hilbert space Y and input data lying in a space X : we observe an
i.i.d. sample (xi , yi)

n
i=1 from a couple of random variables (X,Y) taking its values in

X × Y . Then the assumption that it is possible to approximate efficiently the output
vectors generated by this distribution boils down to the existence of a subspace Ỹ ⊂ Y
such that P[Y ∈ Ỹ ] is close to 1, or better, that Y ∈ Ỹ almost surely. Since we do not have
access to Y’s true distribution ρY, we must rely on the sample (yi)

n
i=1 we do have access

to. Therefore, it is logical to search for a low dimensional space Ỹ which approxim-
ates well the vectors in this sample. A possible way to do so is to look for a dictionary
φ := (φl)

d
l=1 ∈ Y

d such that the (yi)
n
i=1 can be represented with small error as a linear

combination of elements from φ, or equivalently consider Ỹ = Span
{
(φl)

d
l=1

}
.

In Section 3.1, we discuss functional data, their discrete form and the challenges re-
lated to them. We also expose some tools and procedures to represent discrete obser-
vations as functions. While in Section 3.2 we explore what types of functional spaces
can be used for such representation. We also investigate how the choice of such space
has a regularizing effect and can express our belief on the smoothness of the functions
to represent.
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3.1 Functional data and smoothing

This thesis focuses on functional data. Therefore, we set Y = L2(Θ), the separable
Hilbert space of square integrable functions on a compact set Θ ⊂ R

b with respect to
the Lebesgue measure for some b ≥ 1. However, we never observe actual functions
but rather noisy evaluations of these. To account for this, our observations have the
form (θi , ỹi)

n
i=1; where θi = (θis)

mi
s=1 are the locations at which we observe the function

yi . We consider they are generated by the observational model

ỹis = yi(θis) + ϵis, (3.1)

where the quantities
(
(ϵis)

mi
s=1

)n
i=1

correspond to noise components added to the obser-
vations. We suppose that all the noises are i.i.d. (both across samples and locations).
In this functional setting, we have two additional motivations beyond compression for
using an appropriate representation. When the location at which we observe the func-
tions vary, we can no longer use conventional discrete signal representation methods
and by choosing an appropriate functional representation, we express a prior that the
underlying functions must be smooth in some sense. This has a regularizing effect and
can help us to filter out the noise from the discrete evaluations. However, depending
on whether the discrete evaluations are sufficient to readily consider the problem as
functional or not, a typology must be made.

3.1.1 Dense and sparse functional data

Dense FDA (fully-observed functions). In FDA, the typical assumption is that we
are in the so-called dense FDA setting (Kokoszka and Reimherr, 2017). This means
that the number of observations per function is not an issue: it is supposed to be very
high and the evaluation locations are supposed to be scattered in the domain Θ so
that we have enough information to make inference on the functions throughout Θ.
Generally, in addition the dimension of Θ is very low—most frequently it is equal to
1 and Θ is an interval. Then an usual assumption is that the functions are sampled at
a high number of equispaced locations. The locations can also be supposed to consist
of a high number of i.i.d. samples from a uniform distribution on Θ.

Sparse FDA (sparsely-observed functions). As opposed to the dense setting, when
the number or the diversity of the evaluation locations available per function becomes
a problem to treat the problem as functional, we say that we are in the sparse FDA set-
ting (Kokoszka and Reimherr, 2017). For instance, the functions can be observed at
too few locations and/or these locations may only cover an incomplete part of the do-
main Θ. Therefore, the notion of sparsely observed functions encompasses several
difficulties in one. Consequently, quantifiable assumptions to describe further the
different aspects of the notion have been formulated to study the behavior of some
functional estimators. Examples include nonparametric estimation of mean and co-
variance functions (Li and Hsing, 2010; Zhang and Wang, 2016) or the estimation of
the mean function with splines (Cai and Yuan, 2011).

Partially-observed functions. In this thesis, we deal mostly with something between
the two. This means that we have discrete observations which may not be evaluated at
the same locations for all the functions. Yet they cover most of the domain of defini-
tion Θ and should be numerous enough to derive a functional representation without
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resorting to specific sparse FDA technique. To avoid creating confusion, we therefore
use the term partially-observed functions.

3.1.2 Smoothing of functional data

Even in the dense setting, observations are necessarily discrete, therefore any proced-
ure dealing with data in a functional way necessarily encompasses a representation
step. In FDA, this representation step is generally performed as preprocessing, and is
called smoothing (Ramsay and Silverman, 2005). An intermediate problem is solved
to represent the data in a functional way. To that end, a functional hypothesis space
W ⊂ L2(Θ) is chosen. It must reflect the properties the underlying functions are likely
to exhibit, and be of reasonable dimension (the lower, the better).

A specific regularized empirical risk minimization problem using the available eval-
uations can for instance be formulated. More precisely, for i in ⟦n⟧, the i-th function
is smoothed by solving:

min
wi∈W

mi∑
s=1

ℓ(wi(θis), ỹis) +Ω(wi). (3.2)

Smoothing on a dictionary of functions

In order to provide a description in low dimension, these functional spaces are gener-
ally chosen as the span of a given dictionary of functions φ = (φl)

d
l=1. In that case, the

smoothing problem amounts to finding a set of representation coefficients in R
d . Let

us introduce the linear operator:

Φ :

Rd → L2(Θ)
a 7→

∑d
l=1 alφl

 . (3.3)

The adjoint of this operator in L2(Θ) is given by

Φ# :

L2(Θ) → R
d

y 7→ (⟨y,φl⟩L2(Θ))
d
l=1

 . (3.4)

When considering a set of locations θi ∈ Rmi , the empirical approximation Φ̃i of the
operator Φ is the following

Φ̃i :

Rd → R
mi

a 7→
∑d
l=1 alφl(θi)

 , (3.5)

and its adjoint in the Euclidian space R
mi is given by

Φ̃#
i :

Rmi → R
d

ỹ 7→ (⟨ỹ,φl(θi)⟩Rmi )dl=1

 , (3.6)

where we have used the convention that φl(θi) = (φl(θis))
mi
s=1.
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A general smoothing problem for the i-th function then takes the form

min
ai∈Rd

1
mi

mi∑
s=1

ℓ(Φ̃iai , ỹi) +Ω(ai). (3.7)

Smoothing sparsely-observed functions. Fedicated smoothing approaches have been
developed for functions that are sparsely-observed. The most well-known ones as-
sume that the sparse evaluations (θi , ỹi)

n
i=1 correspond to several underlying curves

drawn from a common distribution ρY. Therefore that information can be exploited
to help fill the gaps in a sensible way. In practice, a smoothed covariance function
for the underlying functions (yi)

n
i=1 is estimated from the discrete evaluations. Then,

the eigenfunctions associated to this smooth estimated covariance are used as a basis
to represent smoothly the curves (Yao et al., 2005; Xiao et al., 2018); and they could
indeed be used as a dictionary in the smoothing problem Problem 3.7 as well. It is
also worth noting that this idea has been studied extensively in the context of the
functional additive linear model in Petrovich et al. (2018).

Smoothing with square loss and square norm penalty

As a particular instance of Problem 3.7, if we measure the discrepancy through the
square loss and add a penalization based on the 2-norm, we obtain the problem

min
ai∈Rd

1
mi
∥Φ̃iai − ỹi∥2Rmi +

λ
mi
∥Φ̃iai∥2Rmi . (3.8)

Differentiating the objective in the above with respect to ai , we get the linear system:

Φ̃#
i Φ̃iai =

1
1−λ

Φ̃#
i ỹi . (3.9)

Therefore, we see that if (φl)
d
l=1 forms an orthogonal system in L2(Θ) and if we have

sufficiently many evaluation locations mi that are scattered enough so that

1
mi

Φ̃#
i Φ̃i ≈ Φ#Φ = I, (3.10)

we can approximate the linear system in Equation (3.9) and get a simple expression
for a minimizer as

âi =
1

(1−λ)mi
Φ̃#
i ỹi =

1
(1−λ)mi

(
⟨ỹi ,φl(θi)⟩Rmi

)d
l=1
. (3.11)

This simple calculation shows that provided the evaluation locations θi ∈ Rmi allow
to correctly estimate the pairwise inner products between the functions (φl)

d
l=1, the

solution to Problem 3.8 can be approximated very efficiently. Indeed, the orthogonal
projection of a function w ∈ L2(Θ) onto Span

{
(φl)

d
l=1

}
is given by

∑d
l=1⟨w,φl⟩L2(Θ)φl .

Without surprises, Equation (3.11) with λ = 0 corresponds to this projection estimat-
ing the scalar products in L2(Θ).
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Smoothing with roughness penalties

As we will see in Section 3.2, a possible hypothesis to traduce our belief on the regu-
larity of the functions is that they have derivatives up to a given order s. To simplify
the exposition, we suppose that Θ is an interval in R. Then, without loss of generality,
we take Θ = [0,1]. For our purpose the derivative is taken in the weak sense.

Remark 3.1. The setting Θ = [0,1] is the typical setting in functional data analysis (FDA),
and one must keep in mind any function defined on an interval [a,b] can be rescaled to an
equivalent function defined on the interval [0,1].

Definition 3.2 (Weak derivative). Let w be a function in L1([0,1]), w is said to be weak
derivable if there exists a function v ∈ L1([0,1]) such that for all infinitely differentiable
functions ϕ on [0,1] such that ϕ(0) = ϕ(1) = 0,∫ 1

0
w(θ)ϕ′(θ)dθ = −

∫ 1

0
v(θ)ϕ(θ)dθ.

The function v is then said to be a weak derivative ofw, and in a slight abuse of notation, we
refer by w′ to any such weak derivative. For and integer s ≥ 1, higher order weak derivatives
w(s) are defined recursively.

Suppose that Θ = [0,1] and that w admits an order s weak derivative w(s) which is
square integrable: w(s) ∈ L2([0,1]); then a natural penalty to consider is (Green and
Silverman, 1993; Ramsay and Silverman, 2005):

Ω(w) = λ∥w(s)∥2L2([0,1]) = λ
∫ 1

0

(
w(s)(θ)

)2
dθ, λ > 0. (3.12)

Example 3.3 (Roughness penalty and splines). Such roughness penalties are closely
linked to spline smoothing. Consider Problem 3.2 with the square loss, the above penalty
with derivative of order s = 2 and W the space of functions w for which w(2) ∈ L2([0,1]).
Then the minimizer is a cubic spline with knots at the locations of observation of the func-
tions to smooth (see e.g. de Boor 2001).

Suppose that the functions in the dictionary φ all have weak derivatives up to order
s and let us denote by Φ (s) the projection operator (Equation (3.3)) associated to the
dictionary of derivatives (φ(s)

l )dl=1. The functions smoothed on this dictionary have the
form Φa and then the roughness penalty reads

Ω(Φa) = λaT(Φ (s))#Φ (s)a,

the matrix (Φ (s))#Φ (s) containing the pairwise inner products in L2([0,1]) between the
order s weak derivatives of the functions (φl)

d
l=1.

Roughness penalties are a way to express a regularity belief when smoothing. The
choice of the dictionary may however remain the most important one, in the sense
that as linear combinations of the functions in the dictionary, the smoothed functions
inherit its properties.
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3.2 Functional spaces, approximation and dictionaries

The object of this section is to introduce several functional spaces that can be used
as a hypothesis class for smoothing. We look at how they can be approximated using
a dictionary of functions and make links when possible with the smoothness of the
functions they contain.

Sobolev spaces

As hinted by roughness penalties, it is intuitive to link regularity to differentiability.
A function can be considered to be smooth if it possesses one or more derivatives, the
more it possesses, the smoother it is. Therefore if we think a function does possess
derivatives up to a certain order, this can help us to estimate it and to filter out noise.
In terms of functional spaces, the related notion is that of Sobolev spaces. We rely on
the notion of weak derivatives introduced in Definition 3.2 to define such space. To
simplify the exposition, we set Θ = [0,1].

Definition 3.4 (Sobolev space). Let s ∈N ≥ 1. The Sobolev space W s([0,1]) is the sub-
space of L2([0,1]) containing functions whose weak derivatives up to order s have a finite
L2([0,1]) norm.

We relate those spaces to the decay of the approximation error in orthogonal diction-
aries in Section 3.2.1 and show some links with RKHSs in Section 3.2.2.

Remark 3.5. The spaceW s([0,1]) endowed with an inner product of the form

⟨v,w⟩W s([0,1]) :=
s∑
r=1

ar⟨v(r),w(r)⟩L2([0,1])

with (ar )
s
r=1 ∈ (R+)s is a Hilbert space. All the corresponding norms being equivalent.

Remark 3.6. The fact that the weak derivative of order s is square integrable implies that
for all r < s, the order r derivative is actually continuous.

Remark 3.7. Sobolev spaces can indeed be defined for more general Θ. Considering Θ

to be an open subset of Rb, the existence of weak derivative up to order s is replaced by
the existence of all weak derivatives Dα according to the multi-indices α ∈ N

b such that
|α| :=

∑b
l=1αl = s. More precisely, for such multi-index α, Dα is defined as

∀θ = (θ1, · · · ,θq) ∈Θ, Dαw(θ) =
∂|α|

∂θα1
1 ∂θα2

2 · · ·∂θ
αq
q

w(θ). (3.13)

3.2.1 Usual dictionaries and approximation error

The choice of the dictionary is crucial in making sure our functional representation is
meaningful for the problem. If the dictionary is an orthonormal basis, the approxim-
ation error can be characterized explicitly in terms of the decay of the representation
coefficients. Consider such an orthonormal basis (φl)l∈N of L2([0,1]), the linear rep-
resentation of a function is defined as:
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Definition 3.8 (Linear approximation). The linear approximation of order d of a function
w ∈ L2(Θ) on the orthonormal basis (φl)l∈N is its orthogonal projection onto Span

{
(φl)

d
l=1

}
given by

w(d) =
d∑
l=1

⟨w,φl⟩L2(Θ)φl .

What this approximation leaves behind is therefore the projection on Span
{
(φl)

d
l=1

}⊥
.

w −w(d) =
+∞∑
l=d+1

⟨w,φl⟩L2(Θ)φl .

The approximation error is then

Eφ(w,d) := ∥w −w(d)∥2L2(Θ). (3.14)

The decay rate of this approximation error can be related to the decay rate of the
square of the scalar product between the function and the basis elements (see e.g. The-
orem 9.1 in Mallat 2008).

Theorem 3.9. Let s > 1
2 , the approximation error Eφ(w,d) of a function w in the basis

(φl)
+∞
l=1 decays faster than d−2s if w belongs to the space

W s
φ :=

w ∈ L2([0,1]) :
+∞∑
l=1

l2s⟨w,φl⟩2L2(Θ) < +∞

 . (3.15)

We give a detailed example for Fourier dictionaries for which he space W s
φ can be

shown to be a Sobolev space under some conditions. This can help us better under-
stand that the representation of a function in a truncated basis can traduce a belief on
the function’s smoothness.

Fourier dictionaries

For the Fourier basis, the differentiability of a function and the decay rate of its Fourier
coefficients can be linked explicitly. This helps us better characterize the approxima-
tion error that we make when we use a truncated Fourier basis. We state the results
for the coefficients in the Fourier basis in exponential form: ψ =

{
ψl : θ 7→ ei2πlθ

}
l∈Z

.
Since the functions we are interested in are real-valued, the coefficients are complex.
Let v be a complex-valued function which is square integrable on Θ. We consider the
canonical inner product

⟨w,v⟩L2([0,1]) =
∫ 1

0
w(θ)v̄(θ)dθ ∈C.

Remark 3.10. Let (φl)l∈Z be the Fourier basis in terms of real-valued functions (which is
indeed the one used in FDA):

∀l ∈ ⟦1,+∞⟧, φl : θ 7→
√

2cos(2πlθ), φ−l : θ 7→
√

2sin(2πlθ) and φ0 : θ 7→ 1.

There is the following equivalence:

w(d) =
d∑

l=−d
⟨w,φl⟩L2([0,1])φl =

d∑
l=−d
⟨w,ψl⟩L2([0,1])ψl
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The next theorem gives a characterization of Sobolev spaces in terms of decay of the
approximation error in the Fourier basis. To avoid boundaries issues the theorem is
stated for functions with support strictly included in [0,1] (see e.g. Theorem 9.2 in
Mallat 2008):

Theorem 3.11. Let w ∈ L2([0,1]) be a function with support strictly included in [0,1].
Then w ∈W s([0,1]) if and only if ∑

d=1

d2sEψ(w,d)

d
<∞. (3.16)

This implies that Eψ(w,d) = o(d−2s).

Therefore, for the Fourier basis, choosing to represent a function using a small number
of frequencies reflects a prior on weak derivability. In other words, the lowest the
number of frequencies we consider, the smoother we believe the function to be. This
can have a strong regularizing effect when smoothing discrete functions generated as
in Equation (3.1) since the higher frequencies can be left out as noise.

Wavelets dictionaries

Apart from the Fourier basis, wavelets bases are probably the most well known bases
for L2(R). They stem from the idea of multi-resolution analysis of L2(R). A multi-
resolution–see e.g. Definition 7.1 in Mallat 2008–is a sequence of subspaces (Vj )j∈Z
in which each subspace corresponds to a given resolution level (Vj corresponds to
the resolution 2−j ). Therefore Vj contains all the subspaces (Vk)k>j corresponding to
coarser resolutions. The motivation behind orthogonal wavelet bases is to construct
an orthonormal basis ψ(j,n)∈Z2 of L2(R) such that for each resolution level 2−j , (ψj,n)n∈Z
describes the behavior of a signal only at that resolution. This was achieved in Meyer
(1985). Formally, since Vj ⊂ Vj−1, considering Wj to be the orthogonal complement of
Vj in Vj−1, (ψj,n)n∈Z2 is constructed to be an orthonormal basis of Wj . Depending on
which scaling function is chosen to form an orthogonal basis for the space V0, several
bases can be constructed; we do not detail the construction and refer the reader to
Meyer (1993, Section 3.2) or Mallat (2008, Section 7.1). Then, assuming a proper
mother wavelet ψ has been obtained, the dilated and translated familyψj,n : θ 7→ 1

√
2j
ψ

θ − 2jn
2j




(j,n)∈Z2

,

is an orthonormal basis of L2(R).

Families of wavelets. Many wavelets bases can be constructed with different prop-
erties. For instance, for any s, there exists a wavelet with compact support on R for
which all derivatives up to order s exist and can be constructed (Daubechies, 1996),
this gives rise to the well-known family of Daubechies wavelets. We display examples
of these in Figure 3.1. However, the corresponding wavelet functions do not have
an explicit expression. The Meyer wavelet is another well-known example which is
continuously differentiable an infinite number of times (Meyer, 1993) and has an ex-
plicit expression in the frequency domain. However it is not compactly supported.
For a detailed account of the properties and construction of many well-known wave-
lets family, we refer to Mehra (2018, Chapter 3). We highlight that different families
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Figure 3.1: Daubechies wavelets with different levels of smoothness

have different characteristics which are desirable, however there is a trade-off between
these characteristics. Consequently, each family is adapted to a given application. The
main properties are the following:

• Compact support: is the mother wavelet compactly supported ?

• Smoothness. There is a trade-off between smoothness and compact support, ba-
sically the smoother the wavelet, the larger its support.

• Symmetry. Is the mother wavelet symmetric ?

• Orthogonality. Orthogonality is exploited for faster representation of signals.
We only talked about orthogonal wavelets above, but in order to achieve other
properties, wavelets which are not orthogonal can be constructed. For instance,
biorthogonal wavelets offer the possibility of a symmetric mother wavelet which
cannot be achieved for orthogonal wavelets. Also, letting go of orthogonality
constraint can enable one to find a closed-form or simplify evaluation, for in-
stance Cohen et al. (1992) propose the family of biorthogonal spline wavelets
whose scaling and wavelet function are splines.

• Vanishing moments. A wavelet ψ has q vanishing moments if it is orthogonal to
any polynomial of degree q − 1. For approximating w ∈ L2(R), this implies that
in practice if w is regular and ψ has enough vanishing moments, the coefficients
at finer scales will become smaller faster (see e.g. Section 6.1.3 in Mallat 2008).

Orthogonal wavelets dictionaries on an interval. So far we have talked about the
real line, but indeed for our applications of representing functional data, we are
mostly interested in bases of L2([0,1]). Several constructions are possible. The simplest
ones consist in extending the function on the real line. The extension can be

• Periodic: function y is repeated, this introduces discontinuities if y(0) , y(1).

• Symmetric (folding): y is extended as to [−1,1] as y0(θ) = y(θ) for θ ∈ [0,1] and
y0(θ) = y(−θ) for θ ∈ [−1,0]. Then y0 is extended periodically to the real line.
The obtained signal is continuous.

Then such extended functions can be decomposed on a wavelet basis of L2(R). This
is equivalent respectively to decomposition of the original signal on so-called periodic
wavelets or folded wavelets (see e.g. Section 7.5 in Mallat 2008). However in both con-
structions, the boundary wavelets (wavelets which support goes beyond the bound-
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aries of [0,1]) lose their vanishing moments properties (they have respectively 0 van-
ishing moments for the periodic extension and 1 for the symmetric extension). This
results in high coefficients near the boundaries. The vanishing moments can however
be kept at the price of slightly more complex construction using boundary wavelets
(Meyer, 1991; Cohen et al., 1993).

Linear aproximation error for regular functions. In terms of approximation errors,
for s > 0, letW s([0,1]) be the Sobolev space of functions that are restrictions over [0,1]
of functions in the Sobolev space W s(R). Then if the wavelets have q vanishing mo-
ments, for 0 < s < q, belonging toW s([0,1]) is equivalent to having an error decreasing
with an exponent of least −2s with scale (see e.g. Theorem 9.5 in Mallat 2008); the
scale being the inverse of the resolution. As in the Fourier case, this highlights that
representing a function on a truncated wavelet basis can be seen as exploiting a belief
on regularity. The more regular we think the function is, the lower the number of
scales we consider.

Nonlinear approximation. We talked about linear approximation of very regular
signals in wavelets bases. However, generally wavelets start to shine when Fourier
representation fails: to represent signals that are not that regular and display local
features and singularities. Not surprisingly, to represent such functions with few coef-
ficients, the linear approximation scheme (see Definition 3.8) is not optimal. In that
case, selecting the d0 components from the basis which have the highest inner product
(in absolute value) with the function to represent is a better strategy–see e.g. Mallat
2008, Section 9.2).

Definition 3.12 (Nonlinear approximation). Let (φl)l∈N be an orthonormal basis of
L2([0,1]), the nonlinear approximation of w ∈ L2(Θ) of order (d,d0) ∈ (N∗)2, d0 ≤ d is
the following:

w(d,d0) =
∑
l∈Γ
⟨w,φl⟩L2(Θ)φl , (3.17)

where Γ := {l ∈ ⟦d⟧, |⟨w,φl⟩L2(Θ)| ≥ t} with t ∈R+ a threshold such that |Γ | = d0.

A case where the nonlinear approximation scheme can be shown to highly outperform
the linear approximation scheme is that of piecewise regular signals (see e.g. Theorem
9.12 in Mallat 2008). Such functions display a finite number of discontinuities and
are uniformly Lipschitz between these.

Example 3.13. If we want to find a common dictionary to represent several functions
(yi)

n
i=1 drawn i.i.d. from a probability distribution ρY on L2(Θ) that we believe should be

similar in some sense (for instance they may share the same singularity points, they may
have the same degree of smoothness...), the idea of nonlinear approximation can be used. We
can for instance compute all the scalar products (⟨yi ,φl⟩L2(Θ))

n,d
i,l=1 and select the d0 atoms

for which the quantities
(∑n

i=1 |⟨yi ,φl⟩L2(Θ)|
)d
l=1

are the highest.

In the next section we introduce some basics of spline smoothing, which also enjoy
nice properties. The degree of smoothness can be set explicitly and through the use of
a dictionary of B-splines, the actual representation of functions can be very efficient.
Approximation results similar to those we showed above exist, however we do not
expose them to remain concise.
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Figure 3.2: B-splines of order 2 and 4

Splines

A highly popular way of representing functional data is through the use of spline
functions. These are ubiquitous in the FDA literature (Silverman (1984, 1985); Ram-
say and Dalzell (1991) to cite only a few early FDA works). We stick here with the sim-
pler case where Θ = [0,1], even though splines in higher dimensions can be defined
(Wang, 2001). More precisely, a spline scheme is determined by a set (τt)

m
t=0 ∈Θm+1 of

knots (located at breakpoints, see Remark 3.14), and an order s ∈N. A spline is then a
function that is piecewise polynomial between the knots, the polynomials being of de-
gree s−1 and such that the spline is continuous, and if s > 2, such that the derivatives
up to order s − 2 are continuous as well.

Remark 3.14 (Coincident knots). The knots and breakpoints are not the exact same thing.
The latter are distinct, while several knots may be placed at the same breakpoint so as to
reduce the smoothness degree at that breakpoint. More precisely, if r knots are placed at the
same breakpoint and we are considering splines of order s, then the derivatives up to order
s − r − 1 are continuous at that breakpoint.

Therefore, to smooth a discretized and possibly noisy function (θi , ỹi)
n
i=1, it is natural

to try to find the spline function which fits best the data, for a given order and a set
of knots. Depending on these parameters and the data, a perfect interpolation (going
through all the observations) may exist or not. In any case, when the data are noisy,
exactly interpolating them is not desirable. A natural question is, in practice, can
spline fitting be done efficiently ? A possible answer which especially fits our needs
in this thesis comes from B-splines.

B-splines. The space of spline functions of order s with knots (τt)
m
t=0 ∈Θm+1 is a vec-

tor space. Several bases of this space can be found, however, the B-splines basis which
was first introduced in Schoenberg (1946), is the one that enjoys the best properties
and has been preferred in most applications (de Boor, 2001). One of its advantages is
that the basis functions verify a simple recursion formula which allows for evaluating
them very efficiently (de Boor, 1972; Cox, 1972). Another attractive property is that
a B-spline of order s is nonzero over at most s intervals, which are adjacent. In other
words, B-splines enjoy a compact support property.
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Definition 3.15. Let Θ = [0,1] and let (τt)
m
t=0 ∈ Θm+1 be a sequence of knots within that

interval. Up to a constant scaling factor, there is a unique spline Bt,s of order s satisfying

Bt,s(θ)

 , 0 if τt ≤ θ < τt+1,
= 0 otherwise.

Remark 3.16. The classic normalization is to choose the spline of order 0 as

Bt,0(θ)

 = 1 if τt ≤ θ < τt+1,
= 0 otherwise.

The B-splines of higher order verify the following recursion (de Boor, 1972; Cox,
1972):

Theorem 3.17. Let Θ = [0,1] and let (τt)
m
t=0 ∈Θm+1 be a sequence of distinct knots within

that interval. For s ≥ 1 and t ≤m− s, the B-splines verify the recursion

Bt,s(θ) =
θ − τt
τt+s − τt

Bt,s−1(θ) +
τt+s −θ
τt+s − τt

Bt+1,s−1(θ).

Remark 3.18. When there are coincident knots, the above formula cannot be used for all
knots (the recursion implies divisions by zero). We refer the reader to (de Boor, 1972) for
details on how to treat coincident knots.

B-splines of a given order can indeed be used as a dictionary to represent functions.
Through the choice of the order, we can set a desired level of smoothness and they
benefit from compact support which can be exploited to speed up computations.

Next we turn back to RKHS which we studied extensively in Section 2.1 from the
previous chapter. We focus however on the regularity of the functions they permit to
model and on how they can be approximated using a dictionary of functions.

3.2.2 Reproducing kernel Hilbert spaces (RKHS)

As we have seen in Section 2.1, RKHSs are functional spaces which enjoy many desir-
able properties for machine learning. In the light of the present chapter, we show that
they also constitute an attractive family of spaces to represent functions. Through the
choice of kernel, the corresponding RKHS is a space which contains more or less reg-
ular functions. We give first several elements and examples to highlight this. Then in
a second part, we study how the RKHSs can be approximated using finite dictionary
expansions, which make the representation of functions in these spaces less costly.

RKHS and smoothness

The choice of kernel indeed has an impact on the smoothness of the functions in the
RKHS. In fact the functions in the RKHS inherits the smoothness of the kernel in the
following sense (this is a corollary of Theorem 10.45 in Wendland 2004, see also Zhou
2008):

Theorem 3.19. Let Θ be an open subset of Rb. Let k be a kernel such that k ∈ C2s(Θ ×Θ)
(k is 2s times continuously differentiable), then Hk ⊂ Cs(Θ), in other words the RKHS of k
contains only s-times continuously differentiable functions.
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Figure 3.3: Random functions in RKHSs associated to the Matérn kernel for different
values of the smoothness parameter ν

A popular class of kernels the effect of the kernel on the smoothness of the functions
in the RKHS is that of Matérn kernels. We display examples in Figure 3.3 to show how
the parameter ν determines the smoothness of the functions contained in the RKHS.

Example 3.20 (Matérn Kernel). Let Θ ⊂ R
b. For constants ν > 0 and h > 0, the Matérn

kernel is given by

kν,h(θ1,θ2) =
21−ν

Γ (ν)

(√
2ν∥θ1 −θ2∥Rb

h

)ν
Bν

(√
2ν∥θ1 −θ2∥Rb

h

)
, (3.18)

where Γ is the gamma function and Bν is the modified Bessel function of the second kind of
order ν (see e.g. Abramowitz and Stegun 1965).

The parameter h corresponds to the scale parameter (in practice it determines how
fast the functions in the RKHS can variate) whereas the parameter ν determines the
degree of smoothness of the functions in the RKHS, the higher, the smoother. More
precisely, a link can be made with fractional Sobolev spaces. These extend the notion
of Sobolev spaces to non-integer orders s. Integer Sobolev spaces can be characterized
equivalently in terms of square integrability of their Fourier transform multiplied by
the function ξ 7→ (1 + |ξ |2)

s
2 , and for this characterization, s need not be an integer–see

e.g. Demengel and Demengel (2012, Section 4.2). We then have the following result
(Tuo and Jeff Wu, 2016, Corollary A.6)

Theorem 3.21. For ⌊ν + q/2⌋ > q/2, the RKHS generated by the Matérn kernel equals the
(fractional) Sobolev spaceWν+q/2(Θ) with equivalent norms.

Thus, purely in terms of functions belonging to the space, the RKHS of the Matérn
kernel and the above fractional Sobolev spaces are the same. However, if we endow
them with a norm, the resulting spaces may not be the same. For the Matérn kernel,
to the best of our knowledge, the Sobolev norm to which the RKHS norm corresponds
has not been exhibited. We will see below that for some examples, the correspondence
can be exhibited.

Remark 3.22. When ν = r + 1/2 for some r ∈N∗, the expression in Equation (3.18) can be
simplified to a product between an exponential function and a polynomial of degree r–see
Rasmussen and Williams (2006, Section 4.2, Equation 4.17). For the most common values,



3.2. FUNCTIONAL SPACES, APPROXIMATION AND DICTIONARIES 61

this yields

k1/2,h(θ1,θ2) = exp
(
− ∥θ1 −θ2∥Rb

h

)
,

k3/2,h(θ1,θ2) =
(
1 +

√
3∥θ1 −θ2∥Rb

h

)
exp

(
−
√

3∥θ1 −θ2∥Rb

h

)
,

k5/2,h(θ1,θ2) =
(
1 +

√
5∥θ1 −θ2∥Rb

h
+

5∥θ1 −θ2∥2
R
b

3h2

)
exp

(
−
√

3∥θ1 −θ2∥Rb

h

)
.

(3.19)

We see that for ν = 1/2 this corresponds to the Laplace (or exponential) kernel.

Remark 3.23. The Gaussian kernel, defined in Equation (2.1) from the previous chapter,
is another well-known example. It actually corresponds to the limit of the Matérn kernel
when ν→ +∞ (Stein, 1999) in the sense that for h > 0,

lim
ν→+∞

kν,h(θ1,θ2) = exp
(
−
∥θ1 −θ2∥2

R
b

2h2

)
θ1,θ2 ∈Θ ⊂R

b.

We highlight that in Equation (2.1), we defined it however with another parametrization
setting γ = 1

2h2 .

This kernel gives rise to a RKHS of continuously infinitely differentiable functions.
With a small stretch, this is a consequence of Theorem 3.19 since the Gaussian kernel
is in C∞(Θ ×Θ). Therefore a RKHS with Gaussian kernel is a good choice to represent
highly regular functions. Some Sobolev spaces endowed with a given scalar product
and the corresponding norm, can be shown to be RKHSs and their kernel can be ex-
hibited.

Example 3.24. Let Θ = R
b and consider W s(Rb) the Sobolev space of order s (see Re-

mark 3.7), then for all s > q
2 , the spaceW s(Rb) endowed with the scalar product

⟨v,w⟩W s(Rb) =
∑
|α|≤s
⟨Dαv,Dαw⟩L2(Rq), (3.20)

is a RKHS–see e.g. Novak et al. (2018)–which kernel can be expressed as an integral on R
b.

Remark 3.25. This integral can be computed when q = 1. For instance instance if s = 1,
the reproducing kernel of the Sobolev space is the exponential kernel:

k1(θ1,θ2) =
1
2

exp(−|θ1 −θ2|).

For s = 2 and q = 1, the associated kernel is

k2(θ1,θ2) =

√
3

3
exp

(
−
√

3|θ1 −θ2|
2

)
sin

(
|θ1 −θ2|

2
+
π
6

)
.

A general formula for all s can be found in Novak et al. (2018, Equation 3).

Another well-known example is the Sobolev space on [0,1] which contains functions
w such that w(0) = w(1) (Wahba, 1990, Section 2.1).



62 CHAPTER 3. FUNCTIONAL DATA AND REPRESENTATION OF FUNCTIONS

Example 3.26. For s ≥ 1, the Sobolev spaceW s([0,1]) of functions verifying the boundary
condition w(0) = w(1) endowed with the scalar product

⟨v,w⟩W s([0,1]) = ⟨v,w⟩L2([0,1]) + ⟨v(s),w(s)⟩L2([0,1]), (3.21)

is a RKHS with reproducing kernel

k(θ1,θ2) = 1 +
(−1)s−1

(2s)!
B2s(⌈θ1 −θ2⌉), (3.22)

where B2s denotes the Bernoulli polynomial of order 2s and ⌈·⌉ denotes the fractional part.

Dictionaries to approximate RKHSs

Once we have chosen our kernel k so that the RKHSHk is adapted to model the func-
tions of interest, several possibilities are available to actually represent them in Hk .
Indeed, Hk is a functional space, and therefore it is possibly infinite-dimensional.

To overcome this difficulty, one can rely on the representer theorem (see Theorem 2.17).
Indeed a smoothing problem of the form Problem 3.2 withW =Hk and Ω(h) = λ∥h∥2Hk
does benefit from it. Therefore, any minimizer has the form

ĥi =
mi∑
s=1

αisk(·,θis), αi ∈Rmi .

This eludes the issue of infinite dimension. However, since typically in dense FDA,
the number of locations per functions is high (conceptually, infinite), this may not be
the most efficient way. Indeed solving the problem has a time complexity of the order
O(m3

i ). Therefore, we introduce the following alternatives to approximate functions
in RKHSs using dictionaries.

Random Fourier features. We talked about random Fourier features (Rahimi and
Recht, 2007) in Section 2.1.4. Let d ∈ N

∗ be the number of random frequencies to
consider. Then, provided we know how to sample from ϱ, the spectral measure of k,
we can approximate functions in the RKHS as linear combinations of the (random)
functions:

∀l ∈ ⟦d⟧, φl : θ 7→ 1
√
d

cos(ωT
l θ), φd+l : θ 7→ 1

√
d

cos(ωT
l θ), (3.23)

where (ωl)
d
l=1 are drawn i.i.d. according to the spectral measure of the kernel ϱ. The

complexity of solving the smoothing problem in this dictionary is of the order O(d3).

Spectral approximation. Another possible way to approximate functions in a RKHS
is to express them as a linear combination of a finite number of eigenfunctions of the
integral operator associated to the kernel k (see Section 2.1.2). As highlighted in this
section, in general we cannot compute the eigenfunctions in closed form, however, we
can estimate those from a finite number of observations as illustrated in Equation (2.4)
and Equation (2.7). Then the functions in the RKHS can be approximated as a linear
combination of the d ∈N∗ estimated eigenfunctions associated to the d larger eigen-
values. To better understand why this scheme makes sense, let us consider the true
eigendecomposition of the integral operator Tk,µ (see Definition 2.11) associated to the
kernel k and to a Borel measure µ. We have the following equivalent characterization
of the RKHS Hk (see e.g. Theorem 4 in Section III of Cucker and Smale 2001):
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Theorem 3.27. Let k be a kernel and let µ be a Borel measure on Θ. Let (λl ,φl)
+∞
l=1 be the

eigenfunction and eigenvalues pairs of the integral operator Tk,µ associated with k and µ.
Suppose additionally that for all l ∈N∗, λl > 0. Then the space defined asw ∈ L2(Θ,µ), w =

+∞∑
l=1

alφl with

 al√
λl


l∈N

∈ ℓ2(N)

 , (3.24)

endowed for w =
∑+∞
l=1 alφl and v =

∑+∞
l=1 blφl with the scalar product

⟨w,v⟩ =
+∞∑
l=1

albl
λl

, (3.25)

and the RKHS Hk are one and the same.

Remark 3.28. The assumption of strict positivity of the eigenvalues is in fact not restrictive.
If some eigenvalues are zero, then we just have to replace L2(Θ,µ) with the span of the
eigenfunctions associated to strictly positive eigenvalues and everything remains correct.

Remark 3.29. One can also notice that this theorem holds true therefore regardless of the
choice of the Borel measure µ.

Remark 3.30. In general, there is no reason for the eigenfunctions to belong to the RKHS.
An approximation of a function in the RKHS with a finite number of eigenfunctions does
not in general belong to the RKHS either.

The characterization in Theorem 3.27 tells us that the quicker the decay of the eigen-
values, the easier it is to approximate the functions in the RKHS with a low number
of eigenfunctions. Since the eigenfunctions form an orthonormal system in L2(Θ,µ),
for w ∈ Hk we have for all l ∈ N

∗, al = ⟨w,φl⟩L2(Θ,µ). Consequently for w to belong
to the RKHS, the sequence (⟨w,φl⟩2L2(Θ,µ))l∈N∗ must decay significantly faster than the
eigenvalues.

Example 3.31. Examples of decay of eigenvalues for shift-invariant kernels (see Defini-
tion 2.21) on the real line with µ the Lebesgue measure include the following (see e.g. Wil-
liamson et al. 2001 or Section 12.4.6 in Schölkopf and Smola 2002):

• For the Laplace kernel (θ1,θ2) 7−→ exp(−|θ1 − θ2|), the eigenvalues of the integral
operator decay polynomially as (β2l−(α+1)) for some β ∈R and α > 0.

• For the Cauchy kernel (θ1,θ2) 7−→ 1
1+(θ1−θ2)2 the eigenvalues of the integral operator

decay exponentially (or equivalently, geometrically) as (β2 exp(−α(l − 1)) for some
α,β > 0.

• For the Gaussian kernel (θ1,θ2) 7−→ exp(−(θ1 −θ2)2) the eigenvalues of the integral
operator decay at a quadratic-exponential rate (β2 exp(−α(l − 1)2) for some α,β > 0.

Example 3.32. In higher dimension (Θ = R
b), considering sub-Gaussian measures for µ,

we have the following rates of decay (see e.g. Bach 2017):

• For the Gaussian kernel, the decay of eigenvalues is geometric
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• For the Matérn kernel leading to a Sobolev space of order s, the rate of decay of the
eigenvalues of the integral operator is of the form (l−2s/q).

Therefore, RKHSs constitute attractive spaces to represent functions. Through the
choice of kernel we can control the smoothness of the functions they contain and
they benefit from many practical properties to actually represent the functions. One
can either use the representer theorem or approximation schemes exploiting either
random Fourier features or a spectral decomposition.

Nevertheless, the various off-the-shelf dictionaries that we have presented so far may
not be adapted for more complex functions. Therefore, in the next section, we intro-
duce some possibilities to learn a dictionary from the observed functions.

3.2.3 Data dependent dictionaries

Functional principal component analysis (FPCA)

Principal component analysis is a key tool in multivariate analysis–see e.g. Jolliffe
(2002). It consists in decomposing a set of signals along orthogonal directions (vec-
tors) which explain most of their variations. It can be used to reduce the dimension of
a set of signals or to filter out the noise (the components which explain a low quantity
of the variations can be removed).

It is then a natural idea to extend it to represent functional data. In fact, in the literat-
ure of continuous stochastic processes, this idea has been widely studied and covered
under the name of Karhunen-Loève expansion (Karhunen, 1947; Loève, 1948). This
expansion can be naturally related to integral operators associated with kernels and
Mercer’s theorem that we approached under two different aspects in Section 2.1.2 and
in the previous section. Let Θ be a compact metric space, we consider the probab-
ility space endowed with the Borel algebra and a probability measure P. Consider
a zero mean stochastic process (W(θ))θ∈Θ defined over this space with a continuous
covariance function k(θ1,θ2) = Cov(W(θ1),W(θ2)).

By definition of a covariance function, k is a kernel and since it is continuous, it
is a Mercer kernel. Therefore there exists an orthonormal basis (φl)l∈N of L2(Θ) of
eigenfunctions of the integral operator associated to k and the Lebesgue measure–
Definition 2.11. Let (λl)l∈N be the associated eigenvalues. The stochastic process W
then admits the following representation

W(θ) =
+∞∑
l=1

Alφl(θ), θ ∈Θ, (3.26)

where the convergence is in L2(Θ) and uniform. The random variables (Al)l∈N have
zero mean and for all l, r ∈N, E[AlAr ] = δlrλl where δlr = 1 if l = r and 0 otherwise.
This is the Karhunen-Loève expansion.

However, in practice, we do not have access to the true covariance function k but to
sample paths from the stochastic process. The link with FDA is then easy to make.
If these sample paths are smooth, considering them as realizations from a function-
valued random variable is a somewhat equivalent approach. We therefore want to
estimate the eigenfunctions from the data. For a visual intuition, we refer to Fig-
ure 3.4. It displays the main functional principal components and the corresponding
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Figure 3.4: Observed synthetic functions and corresponding five most important ei-
genfunctions

observed functions which are instances from the synthetic dataset we introduce and
study in Chapter 7.

From a functional point of view, to ensure that the eigenfunctions display the desired
level of smoothness, several approaches are possible (Ramsay and Silverman, 2005;
Shang, 2014). The functions can be smoothed beforehand in a dictionary (Ramsay
and Dalzell, 1991), and then from these smoothed functions, we can estimate a smooth
covariance function. Then, using the same dictionary to represent the eigenfunctions,
a matrix eigensystem can be derived. We detail this procedure in Example 3.33. In
order to simplify the exposition, we introduce the following vector-valued function
associated to a dictionary of functions (φl)

d
l=1

φ :

Θ → R
d

θ 7→ (φ1(θ),φ2(θ), · · · ,φd(θ))T

 . (3.27)

Example 3.33 (FPCA with dictionary smoothing). Suppose then that the observed func-
tions have been smoothed using the dictionary (φl)

d
l=1, and let A ∈Rd×n be the matrix con-

taining the estimated representation coefficients. The covariance function can be estimated
as

k̂(θ1,θ2) =
1
n
φ(θ1)TAATφ(θ2).

We want to solve the integral equation associated to this estimated covariance∫
Θ

k̂(θ1,θ2)ξ(θ2)dθ2 = λξ(θ1), θ1 ∈Θ. (3.28)

Then using the same dictionary to represent the eigenfunction ξ(θ) = φ(θ)Tb with b ∈ Rd ,
and setting G = Φ#Φ ∈Rd×d , the eigenfunctions and eigenvalues pairs are found by solving
the matrix eigensystem

1
n

G
1
2 AATG

1
2 c = λc,

and then for each eigenvector, we take b = G−
1
2 c.



66 CHAPTER 3. FUNCTIONAL DATA AND REPRESENTATION OF FUNCTIONS

Remark 3.34. The possibility of the matrix G having eigenvalues equal or very close to zero
is indeed problematic. However this is not envisioned in FDA as φ is generally supposed to
be a linearly independent family.

Alternatively, if all the functions are observed at a numerous and common set of loca-
tions, a classic multivariate principal component analysis can be performed and then
the obtained (discrete) eigenvectors can be smoothed in a dictionary.

To ensure the eigenfunctions are very smooth, a popular approach to perform FPCA
in FDA is to additionally apply roughness penalties based on derivatives of the form
given in Equation (3.12) to the eigenfunctions. Such a procedure and its statistical
properties have been studied extensively in Pezzulli and Silverman (1993); Silverman
(1996).

Functional dictionary learning

When functions display complex dynamics and are not necessarily smooth or when
they are more or less smooth in different regions of their domain of definition, the
representations provided by traditional bases will require the use of a large number
of dictionary atoms to provide a decent representation. Therefore, general purpose
dictionaries will fail to compress the signals efficiently. Indeed FPCA can be used to
learn an orthonormal basis capturing the main directions of variations. However, the
orthogonality constraint can sometimes be counterproductive because of the rigidity
it imposes. We may still need to use many principal components (Mairal et al., 2009).

Another approach is to drop this constraint and allow representation vectors to be
redundant. Yet, we can encourage the representation to be efficient in the sense of
sparsity, meaning that only few representation vectors are used to represent the train-
ing signals. The corresponding problem is however NP-hard, and therefore, dictionary
learning (Elad and Aharon, 2006) was introduced along with efficient approximate al-
gorithms (Aharon et al., 2006; Lee et al., 2007). To expose the main concepts, we stick
with discrete signals for now and suppose that all signals are observed at the same
locations. For a sparsity level s ∈N, the dictionary learning problem reads

min
D∈Rm×d ,A∈Rn×d

1
n

n∑
i=1

∥Dai − ỹi∥2Rm

subject to ∥ai∥0 ≤ s i ∈ ⟦n⟧,
∥dl∥Rm = 1 l ∈ ⟦d⟧,

(3.29)

where the 0-norm ∥ ·∥0 corresponds to the number of non-zero coordinates of a vector.
The first set of constraints sets the level of sparsity of the representation coefficients
and the second one imposes normalization of the atoms. This problems is not solvable
in practice (because of the combinatorial nature of the 0-norm constraint). Practical
algorithms then rely on alternating between a sparse coding step and dictionary update
step.

Sparse coding. In the sparse coding step, the dictionary is fixed and we want to rep-
resent the observed signals sparsely on the dictionary. There are two main approaches.
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• Orthogonal matching pursuit (OMP) (Pati et al., 1993; Mallat and Zhang, 1993)
is a greedy strategy. In the context of dictionary learning, the support of the
sparse representation is increased one atom at a time. At each step, the observed
signals are represented through least squares on the selected atoms. However,
to avoid recomputing the whole solution each time an atom is added, efficient
strategies have been designed. The most popular one is to update a Cholesky
factorization sequentially–see Sturm and Christensen (2012) for a comparison
of many implementations.

• Basis pursuit is another possible strategy. It relaxes the ∥ · ∥0 norm constraint to
a ∥ · ∥1 norm constraint. Equivalently, a ∥ · ∥1 penalty is added. Then for each
observation, a least square problem with ∥ · ∥1 norm penalty is solved. These
problems are indeed equivalent to least absolute shrinkage and selection operator
(LASSO) problems (Tibshirani, 1996). Many efficient algorithms exist to solve
these, the most well-know one being the fast iterative shrinkage-thresholding
algorithm (FISTA) (Beck and Teboulle, 2009).

Dictionary update. To avoid the cost of optimizing over the full dictionary, block co-
ordinate descent is generally used, in other words, dictionary atoms are updated one
at a time. In practice, the most popular algorithm is K-SVD (Aharon et al., 2006), and
its approximate version AK-SVD (Rubinstein et al., 2008) is generally used. Dealing
with one atom at a time, K-SVD additionally optimizes the corresponding represent-
ation coefficients but does so keeping the sparsity structure fixed. This improves the
likelihood of finding better atoms at the next atom update step–see e.g. Dumitrescu
and Irofti (2018, Section 3.5).

Functional dictionary learning. Dictionary learning has been mostly studied for
discretized signals, however in this thesis we are interested in representing functional
data. It turns out that the same principle of using basis functions to represent the
variables in functional PCA demonstrated in Example 3.33 can be applied to diction-
ary learning as well. Rubinstein et al. (2010) propose the framework of doubly sparse
dictionary learning as well as an adaptation of the AK-SVD algorithm to solve it effi-
ciently. Essentially, the dictionary atoms themselves are sparse linear combinations of
functions from a base dictionary (ψl)

c
l=1 ∈ (L2(Θ))c. It has been introduced mostly as a

way to reduce the bad dependency of dictionary learning with respect to the dimen-
sion (number of sampling points). However, as the learnt atoms are represented on a
base dictionary of functions, they are themselves functions. More precisely, consider
the operator Ψ : Rc → L2(Θ) associated to this base dictionary, defined in the same
way as Φ in Equation (3.3) for the dictionary (φl)

d
l=1. We suppose here that the func-

tions (yi)
n
i=1 are observed fully. Given a sparsity level s ∈N for the representations in

φ and a sparsity level r ∈N for the representations in ψ , the doubly sparse dictionary
learning problem reads

min
B∈Rc×d ,A∈Rd×n

1
n

n∑
i=1

∥Ψ(n)Bai − yi∥2L2(Θ)

subject to ∥ai∥0 ≤ s i ∈ ⟦n⟧,
∥bl∥0 ≤ r l ∈ ⟦d⟧,
∥Ψ bl∥L2(Θ) = 1 l ∈ ⟦d⟧.

(3.30)
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Then, the learnt dictionary of functions (φl)
d
l=1 consists of the following atoms: for all

l ∈ ⟦d⟧, φl = Ψ bl .

The sparse K-SVD algorithm proposed in Rubinstein et al. (2010) for doubly sparse
dictionary learning on discrete signals can be extended to the functional case. In the
algorithm, the two quantities which involve the output functions are the computation
of a weighted sum of these functions and the computation of scalar products between
these functions and the atoms from the dictionary. Therefore, the following adapta-
tion to discrete functions are possible.

• If the functions are observed on a regular grid which is dense enough, the al-
gorithm can be run in its original form on the discretized functions. There is
no need for smoothing the atoms afterwards since they are themselves linear
combinations of functions from the dictionary (ψl)

c
l=1. It is possible to adapt the

algorithm to missing data if the base locations of sampling are shared by all the
functions yet for some functions, some locations are missing. However, this is
possible only as long as the available locations for each observed functions al-
low for a correct estimation of the scalar products between the atoms of the base
dictionary (ψl)

c
l=1 and the observed functions.

• Alternatively, the observed functions can be smoothed beforehand as in Ex-
ample 3.33 and the algorithm can be adapted to this case as well

Other algorithms have been proposed for the dictionary update stage of doubly sparse
dictionary learning (in the discrete case). Sulam et al. (2016) proposes a variation
of the normalized iterative hard thresholding algorithm (Blumensath and Davies,
2010), while other more recent algorithms benefit from some theoretical guarantees
and a clear computational complexity at the price of a more complex implementation
(Nguyen et al., 2019).

3.3 Conclusion

In this chapter, we introduced several procedures to represent functions from discrete
and possibly noisy observations. This is the general problem of smoothing which
require the choice of a functional hypothesis space to represent the functions in. We
particularly focused on which functional spaces could be used so as to exploit the
properties of the functions to represent. We emphasized that many of these spaces are
naturally the span of a given dictionary of functions or can be approximated through
the use of a given dictionary. This is a cornerstone of our approach to functional
output regression with projection learning introduced in Chapter 5.
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We now start to tackle the problem that is central to this thesis: that of nonlinear
functional output regression (FOR). In the previous chapter (Chapter 3), we focused
on some of the challenges that functional data represent. We showed how to use fi-
nite dimensional representation both to represent and smooth functions. In the next
chapters, we illustrate our contribution to this problem with respect to different as-
pects. Consequently, the present chapter is devoted to the presentation of the main
existing works on nonlinear FOR. We present the methods in a self-contained way and
try to highlight the advantages and drawbacks of each approach, especially in terms
of computational complexity.

4.1 Introduction

Let us first recall the motivation behind the FOR problem. In a large number of fields
such as biomedical signal processing, epidemiology monitoring, speech and acoustics,
climate science, etc., each data instance consists of a high number of measurements
of a common underlying phenomenon. Such high-dimensional data generally enjoys
strong smoothness across features. To exploit that structure, it can be interesting to
model the underlying functions rather than the vectors of discrete measurements we
observe, opening the door to functional data analysis (FDA, see e.g. Ramsay and Sil-
verman 2005 or Wang et al. 2016). In practice, as highlighted in Section 3.1.2, FDA
generally relies on the assumption that the sampling rate of the observations is high
enough to consider them as functions. Of special interest is the general problem of
FOR, in which the output variable is a function and the input variable can be of any
type, including a function.
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While functional linear models have received a great deal of attention–see the additive
linear model and its variations (Ramsay and Silverman, 2005; Morris, 2015, and refer-
ences therein)–, nonlinear ones have been less studied. Reimherr et al. (2018) extend
the function-to-function additive linear model by considering a trivariate regression
function in a reproducing kernel Hilbert space (RKHS). In non-parametric statistics,
Ferraty et al. (2011) introduce and study variations of the Nadaraya-Watson kernel
estimator for outputs in a Banach space. Oliva et al. (2015) rather project both input
and output functions on orthogonal bases and regress the obtained output coefficients
separately on the input ones using approximate kernel ridge regressions (KRR). Fi-
nally, extending kernel methods to functional data, Lian (2007); Kadri et al. (2010)
introduce a function-valued KRR using a function-valued RKHSs (fv-RKHS) as a hy-
pothesis class. To solve the problem in practice, they discretize the involved functions
to obtain an approximation of the different terms in the optimization problem. In that
context Kadri et al. (2016) proposes another solution. The closed-form involving an
infinite-dimensional linear operator, they rather invert a low-rank approximation of
the operator in question. We compare the different characteristics of these methods in
Table 4.1 and highlight in red some of their restrictions which we wish to overcome in
our contributions.

We develop in this chapter on all of the methods cited above to tackle function-valued
regression. More precisely, in Section 4.2, we study the functional kernel ridge re-
gression problem as well as existing techniques to solve it. Section 4.3 is dedicated
to function-to-function regression using orthogonal dictionaries. We then shift our
focus to the kernelized functional additive model in Section 4.4. Finally, we highlight
briefly how kernel regression can be adapted to functional outputs in Section 4.5.

To present the models properly, we first recall the setup. FOR is a supervised learning
problem with functional outputs. Given random variables X and Y taking respectively
their values in X and a functional separable Hilbert space Y , we want to infer a pre-
diction function on X coherent with the unknown joint distribution of (X,Y). We rely
on an i.i.d. sample (xi , yi)

n
i=1 to infer a statistical relationship. Depending on the meth-

ods, we will need to make further assumptions on X . For instance, when the method
is specific to function-to-function regression, X must be a functional space as well.
We may also precise a particular space Y , for instance we may assum that Y = L2(Θ),
the set of square integrable functions on a given compact set Θ ⊂ R

b. With this in
place, we start with the problem of functional kernel ridge regression.

4.2 Functional kernel ridge regression (FKRR)

The main concepts that are used here, namely operator-valued kernel (OVK) and their
associated fv-RKHSs are introduced in Section 2.2. Consequently, we do not redefine
these notions here.

Remark 4.1 (fv-RKHSs and vv-RKHSs). In Section 2.2 we introduced vv-RKHS con-
sidering general vectors in a Hilbert space. We did so to keep things unified. However,
now that we deal with the FOR problem, we start to distinguish function-valued RKHSs.
Consequently, by distinction, from now on we use the term vector-valued RKHS to denote
RKHSs of functions with finitely many outputs.
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Method
FKRR-MC (Lian, 2007; Kadri et al., 2010) Regression in fv-RKHS

FKRR-EIG (Kadri et al., 2016) Regression in fv-RKHS
3BE (Oliva et al., 2015) Triple basis estimator

KAM (Reimherr et al., 2018) Kernel additive model

Method Inputs Representation Fit complexity
FKRR-MC Any Discrete O(n3 +m3)
FKRR-EIG Any TkΘ eigenfunctions O(n3 +n2md)

3BE Functions Orthogonal basis O(q3 + q2d)
KAM Functions FPCA O(n2t2 + d2m2 +n3 + d3)

Table 4.1: Nonlinear FOR with square loss: existing methods’ characteristics. Time
complexity is given assuming separability assumptions on the kernels.

4.2.1 Regression in fv-RKHSs

Let then K(fun) ∈ L(Y ) be an OVK and let HK(fun) be its associated fv-RKHS. It can
be used as a hypothesis class for the problem of Hilbert-valued regression using the
square loss associated to the ∥·∥Y norm:

min
g∈H

K(fun)

1
n

n∑
i=1

∥yi − g(xi)∥2Y +λ∥g∥2H
K(fun)

. (4.1)

This problem benefits from the representer theorem (Micchelli and Pontil, 2005)–see
also Theorem 2.36–and therefore, any solution to Problem 4.1 has the form

g =
n∑
i=1

K(fun)
xi αi , (4.2)

with for all i ∈ ⟦n⟧, αi ∈ Y . Injecting this representation into Problem 4.1, we obtain:

min
(αi )

n
i=1∈Yn

1
n

n∑
i=1

∥∥∥∥yi − n∑
j=1

K(fun)(xi ,xj )αj
∥∥∥∥2

Y
+λ

n∑
i=1

n∑
j=1

〈
K(fun)(xi ,xj )αi ,αj

〉
Y
. (4.3)

Despite the representer theorem, this problem remains challenging since the coeffi-
cients (αi)

n
i=1 which are infinite-dimensional. Consequently, an approximation must

be used. The assumption that the OVK K(fun) is separable is then a cornerstone of
all the existing resolution strategies. Moreover, the output functions are generally
modeled using a scalar-valued RKHS. As highlighted in Remark 2.35, there are two
ways of achieving this. One can consider that the output functions lie in L2(Θ,µ) and
use the OVK

K(fun) = kX (x1,x2)TkΘ , (4.4)

with kX a kernel on X and TkΘ the integral operator associated to a kernel kΘ and a
Borel measure µ on Θ. We recall the action of this operator for y ∈ L2(Θ,µ) and θ1 ∈Θ,

(TkΘy)(θ1) =
∫
Θ

y(θ2)kΘ(θ1,θ2)dµ(θ2),
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Or, another possible approach is to consider we are dealing with a HkΘ -valued prob-
lem and use the OVK

K(fun) = kX (x1,x2)IHkΘ .

Remark 4.2. However, we the find the first option more relevant. Indeed, modeling the
output functions in a RKHS HkΘ is more of a choice of a hypothesis class and the output
functions generally do not belong to HkΘ .

Two main possibilities have been proposed to solve Problem 4.3

1. The problem can be discretized using a finite number of locations (θs)
m
s=1 ∈ Θm,

this is what is done in Lian (2007); Kadri et al. (2010). We detail this possibility
in Section 4.2.2.

2. A finite rank approximation of the integral operator TkΘ can be used to obtain
a finite dimensional parametrization of the representation coefficients, this is
the solution proposed in Kadri et al. (2016). This approach is the object of Sec-
tion 4.2.3.

4.2.2 Discretization approach

We now present the first approach using the OVK from Equation (4.4) and the loca-
tions (θs)

m
s=1. The representation coefficients (αi)

n
i=1 are replaced by their evaluations

at the points (θs)
m
s=1. We denote by (ai)ni=1 these discretized functions, where for all

i ∈ ⟦n⟧, ai ∈ Rm. Let A ∈ Rm×n be the matrix whose columns are the vectors (ai)ni=1.
Note that we deliberately choose to present the problem in matrix form, as we will use
the same approach in Chapter 7. Therefore, this subsection can serve as an introduc-
tion to the procedure.

Let KΘ ∈ R
m×m be the kernel matrix associated to the kernel kΘ and the locations

(θs)
m
s=1, the action of the integral operator can be approximated as

∀i ∈ ⟦n⟧, TkΘαi ≈
1
m

KΘai .

Let now KX ∈ Rn×n be the kernel matrix associated to a kernel on X and the observa-
tions (xi)

n
i=1. The regularization term can be approximated as

∥g∥2H
K(fun)
≈ 1
m2 Trace

(
ATKΘAKX

)
, (4.5)

the 1
m2 term arising from the successive discrete approximations of the integral oper-

ator and that of the scalar product in L2(Θ,µ).

Let Y ∈ Rm×n be the matrix whose i-th column corresponds to the evaluations of the
function yi at the locations (θs)

m
s=1, we can approximate the first term in the optimiza-

tion problem as
1
nm

∥∥∥∥Y− 1
m

KΘAKX
∥∥∥∥2

R
m×n
,

where the norm ∥ · ∥
R
m×n stands for the Frobenius norm.

Using those approximations, we get the following discrete version of Problem 4.3
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min
A∈Rn×m

∥Y−KΘAKX ∥2Rm×n +mnλTrace
(
ATKΘAKX

)
. (4.6)

Canceling the gradient with respect to the matrix A yields the matrix equation

K2
ΘAK2

X +λmnKΘAKX = KΘYKX .

Assuming that KX and KΘ are full rank, we can multiply left by K−1
Θ

and right by K−1
X ,

yielding

KΘAKX +λmnA = Y. (4.7)

This is a discrete time Sylvester equation, and efficient techniques exist to solve these
(Sima, 1996). More precisely, Equation (4.7) can be solved in O(n3 +m3 +n2m+nm2) ≍
O(n3 +m3) time. It is also possible to exploit the structure of the problem to com-
pute an eigendecomposition. More precisely, Equation (4.7) is equivalent to the linear
system (Dinuzzo et al., 2011)

(KX ⊗KΘ +mnλI)vec(A) = vec(Y). (4.8)

It can therefore be solved efficiently with time complexity of essentiallyO(n3+m3) per-
forming two eigendecompositions, one of KX and on of KΘ . An eigendecomposition
of KX ⊗ KΘ can then be deduced. Indeed, let (νi ,vi)ni=1 and (λs,us)ms=1 be the eigen-
value/eigenvector pairs respectively of KX and KΘ . Then the eigenvalue/eigenvector
pairs of KX ⊗KΘ are (νiλs,vi ⊗us)

n,m
i,s=1.

Time complexity. The overall time complexity of fitting FKRR with the discretization
approach is then dominated by O(n3 +m3).

4.2.3 Eigendecomposition approach

The other possible approach consists in deriving a closed-form for the functional rep-
resentation coefficients α ∈ Yn and ultimately represent these using a truncated basis
of eigenfunctions of the integral operator TkΘ . This yields a finite dimensional system
whose solution approximates that of the original infinite dimensional one.

To derive the closed-form for the functional coefficient, we must first introduce some
tools of algebra using operator matrices. The block operator matrix resulting from the
Kronecker product between KX and TkΘ : KX ⊗TkΘ ∈ Y

n×n is a linear operator in L(Yn)
represented as

KX ⊗TkΘ =


kX (x1,x1)TkΘ · · · kX (x1,xn)TkΘ

... · · ·
...

kX (xn,x1)TkΘ · · · kX (xn,xn)TkΘ

 .
Its action is given for α ∈ Yn by

(KX ⊗TkΘ )α =


∑n
j=1 kX (x1,xj )TkΘαj

...∑n
j=1 kX (xn,xj )TkΘαj

 ∈ Yn.



4.2. FUNCTIONAL KERNEL RIDGE REGRESSION (FKRR) 75

Using this representation, and letting α ∈ Yn be the functional coefficients for the
estimator in Equation (4.2), Problem 4.3 can be rewritten compactly as

1
n
∥y−KX ⊗TkΘα∥

2
Yn +λ⟨KX ⊗TkΘα,α⟩Yn . (4.9)

Setting the gradient with respect to α to zero yields a ridge-type closed-form

α̂ = (KX ⊗TkΘ +λnIYn)
−1y. (4.10)

To solve this infinite dimensional linear system, Kadri et al. (2016) compute a finite
rank approximation of (KX ⊗TkΘ +λnIYn)−1. More precisely, let (νi ,vi)ni=1 and (λl ,φl)l∈J
be the eigendecompositions respectively of KX and TkΘ . We draw the reader’s atten-
tion the fact that (φl)

d
l=1 are eigenfunctions and not eigenvectors. Nevertheless, to

ensure that the eigendecomposition of TkΘ is actually useful, we must further suppose
that kΘ is continuous. Then since Θ is compact, (λl ,φl)l∈J is at most countable and
forms an orthonormal system in L2(Θ,µ) (see Section 2.1.2).

We can leverage the Kronecker structure. Thanks to this, the eigendecomposition of
KX ⊗TkΘ is given by

(νiλl ,vi ⊗φl)
n,+∞
i=1,l=1.

Using the d eigenfunctions of TkΘ associated to its largest eigenvalues, the solution to
Equation (4.10) is approximated as

(KX ⊗TkΘ +λnIYn)
−1y ≈

n∑
i=1

d∑
l=1

1
νiλl +λ

⟨y,vi ⊗φl⟩Ynvi ⊗φl .

This can be developed as

(KX ⊗TkΘ +λnIYn)
−1y ≈

n∑
i=1

d∑
l=1

1
νiλl +λ

 n∑
j=1

vij⟨yj ,φl⟩Y

vi ⊗φl , (4.11)

where for i, j ∈ ⟦n⟧, vij denotes the j-th coordinate of the eigenvector vi . Consequently,

the scalar products (⟨yj ,φl⟩Y )n,di=1,l=1 can be computed (approximately) only once.

However, this requires the knowledge of the eigendecomposition of TkΘ in closed-form
which is restrictive as highlighted in Section 2.1.2, for that reason, in practice Kadri
et al. (2016) use a Laplace output kernel (see Example 2.15).

Time complexity. Since the eigendecomposition of TkΘ is supposed to be known in
closed-form, we only have to compute that of KX which has time complexity O(n3).
However, the computation of the approximate dual coefficients in Equation (4.11)
represent as well a significant overhead. Let us consider that m ∈ N locations in
Θ are used to discretize the functions. Then the computation of the eigenfunctions
(vi ⊗φl)

n,d
i,l=1 dominate the complexity of solving Equation (4.11). Indeed, the corres-

ponding time complexity is O(n2dm). Consequently, the overall time complexity to fit
the method is dominated by the terms O(n3 +n2dm).

Remark 4.3 (Adaptation for unknown eigendecomposition). If the eigendecomposition
of TkΘ is not known, this method of resolution can be adapted using an empirical eigen-
decomposition of the kernel–see Equation (2.5).
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4.3 Triple basis estimator (3BE)

Another proposition which is closer to kernel projection learning that we introduce in
Chapter 5 is that of Oliva et al. (2015). They propose to represent separately the input
and output functions on truncated orthonormal bases obtaining a set of input and
output decomposition coefficients. Therefore, this approach is dedicated to function-
to-function regression. Let us suppose that X = L2(Ξ) with Ξ ⊂ R

p a compact set for
some p ∈N. Let also (ψt)

c
t=1 and (φl)

d
l=1 be truncated orthonormal bases respectively

ofX andY . For all i ∈ ⟦n⟧, let A ∈Rn×c be the matrix which (i, t)-th entry is ⟨ψt ,xi⟩X for
i ∈ ⟦n⟧ and t ∈ ⟦c⟧. On the output functions’ side, for all l ∈ ⟦d⟧, let bl = (⟨φl , yi⟩Y )ni=1.

Consider as well that we have drawn q ∈N random Fourier features (RFF, Rahimi and
Recht 2007, see also Section 2.1.4 for details) associated to a shift invariant kernel k
on R

c (the space of coefficients of representation of the input functions on (ψt)
c
t=1).

Let Z ∈ R
n×2q be the matrix containing the evaluations of these RFFs for the input

coefficients (the rows of the matrix A). Then, each output coefficient is predicted
separately from the RFFs of the input coefficients. In other words, for all l ∈ ⟦d⟧, we
solve the problem

min
wl∈R2q

1
n
∥bl −Zwl∥2Rn +λ∥wl∥2R2q . (4.12)

The solution is given by
ŵl = (ZTZ +λI)−1ZTbl .

Time complexity (3BE). The matrix (ZTZ + λI), can be inverted only once to solve
Problem 4.12 for all l ∈ ⟦d⟧. But we must still compute the coefficients (ZTZ+λI)−1ZTbl
for all l ∈ ⟦d⟧, therefore the overall time complexity is O(q3 + q2d).

This idea can be extended to general FOR. Suppose X is no longer a functional space,
but rather any space on which a kernel kX can be defined. We can pose Problem 4.12
with the input data intervening through a kernel instead of through RFFs on repres-
entation coefficients for the input functions.

min
h∈HkX

1
n

n∑
i=1

∥bli − h(xi)∥2Y +λ∥h∥2HkX . (4.13)

This problem is a classic kernel ridge regression (KRR) problem with scalar outputs. It
benefits from a representer theorem (see Theorem 2.17), and the optimal representer
coefficients are given by

α = (KX +λI)−1bl .

Time complexity (1BE). Thanks to the particular form of the KRR solution, we can
compute only once the inverse (KX +λI)−1 to solve Problem 4.13 for all l ∈ ⟦d⟧. There-
fore, the complexity here is the same as for a classic KRR problem, except that the
matrix products (KX + λI)−1bl must be computed for l ∈ ⟦d⟧ resulting in an overall
time complexity dominated by O(n3 + dn2).

We refer to the obtained estimator as single basis estimator (1BE).

Remark 4.4 (Link with the kernel projection learning ridge estimator). In the next
chapter (Chapter 5), we propose an estimator which leverages vv-RKHSs and representation
on a dictionary of functions. We propose a closed-form for this estimator when the square
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loss is used. We highlight here that the 1BE estimator corresponds to a particular case of our
ridge estimator (Proposition 5.13) when the separable kernel kX I is used and the dictionary
(φl)

d
l=1 is orthonormal.

4.4 Kernel additive model

In this section, we deal only with function-to-function regression. The most well-
known model in functional data analysis is without doubts the additive linear model
(Ramsay and Silverman, 2005; Morris, 2015).

4.4.1 Additive linear model

For each θ ∈ Θ, it models the evaluation of the output function yi(θ) as an integral
of the corresponding input function xi over the input domain Ξ against a weighting
function b(·,θ) plus a constant term a(θ). Formally, the following empirical risk is
minimized over the functions a : Θ→R and b : Ξ×Θ→R:

1
n

n∑
i=1

∥∥∥∥yi − a−∫
Ξ

b(ξ, ·)xi(ξ)dξ
∥∥∥∥2

L2(Θ)
. (4.14)

The common way to proceed is to represent the functions to learn (a and b) using
truncated bases of L2(Ξ) and L2(Θ). Let then (ψt)

c
t=1 and (φl)

d
l=1 be dictionaries of

functions pertaining respectively to L2(Ξ) and L2(Θ). Using the convention that for all
(ξ,θ) ∈ Ξ×Θ

ψ(ξ) = (ψt(ξ))ct=1 ∈R
c and φ(θ) = (φl(θ))dl=1 ∈R

d .

Then we represent the functional regression coefficients as

a(θ) = aφ(θ), a ∈Rd ,
b(ξ,θ) = ψ(ξ)TBφ(θ), B ∈Rc×d ,

and use these expressions for a and b in Equation (4.14). Consequently, we minimize
the objective from Equation (4.14) with respect to the variables a ∈Rd and B ∈Rc×d .

Remark 4.5. Importantly, there is no explicit regularization penalty in the problem, how-
ever some regularization is achieved implicitly through the choice of the dictionaries and
their size (parameters c and d). We have highlighted in Chapter 3 how such truncation had
an explainable regularizing effect, especially when the used dictionaries encode a notion
of frequency. This is for instance the case for Fourier bases, wavelets bases or functional
principal components.

We have introduced this well-known model because it helps to understand the ker-
nelized version proposed by Reimherr et al. (2018).

4.4.2 Kernel additive model

Reimherr et al. (2018) revisit the additive model keeping the integral form, yet in-
troducing much more flexibility in the types of dependencies that can be modeled.
To that end they assume the function under the integral is in a RKHS. This function
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takes three inputs, the first is a location ξ ∈ Ξ of the input domain, the second is the
location θ ∈ Θ of the output domain, and the third is the input function evaluated
at ξ. They also add a regularization term using the RKHS norm, which on top of its
smoothing effects, allows for finite parameterization through a particular instance of
the representer theorem. The problem is the following

min
h∈H

k(add)

1
n

n∑
i=1

∥∥∥∥yi −∫
Ξ

h(ξ, ·,xi(ξ))dξ
∥∥∥∥2

L2(Θ)
+λ∥h∥2H

k(add)
, (4.15)

where λ > 0 is a regularization parameter, k(add) : (Ξ,Θ,R)2 → R is a scalar-valued
kernel and Hk(add) is its RKHS.

The authors solve Problem 4.15 representing the functions in L2(Θ) on the orthonor-
mal family of empirical functional principal components associated to the output
functions (yi)

n
i=1. Using this representation they derive a specific representer theorem

to reduce the number of variables of the problem to n2. This bears similarity with the
idea of the double representer theorem formalized in Laforgue et al. (2020).

More precisely, the first key element is to reformulate the problem in terms of coordin-
ates on the orthonormal system formed by the empirical functional principal compon-
ents (φ)nl=1. This system can indeed be completed to constitute an orthonormal basis
of L2(Θ), let (φl)

+∞
l=1 be the resulting basis. Then the L2(Θ) distance between the func-

tions in the data-fitting term of Problem 4.15 equals the ℓ2(N) distance between their
respective scalar products with the elements of (φl)

+∞
l=1. In this new norm, using the

reproducing property of Hk(add) and the linearity of both the integral and the scalar
product, the data fitting term from Problem 4.15 can be rewritten as

1
n

n∑
i=1

∫
Θ

yi(θ)−
∫
Ξ

h(θ,ξ,xi(ξ))dξ

2

dθ

=
1
n

n∑
i=1

+∞∑
l=1

⟨yi ,φl⟩L2(Θ) −
〈
h,

∫
Ξ

∫
Θ

k
(add)
(θ,ξ,xi (ξ))φ(θ)ldθdξ

〉
H
k(add)

2

.

From this expression, we conclude that the solution to Problem 4.15 must belong to
the space

S :=


∫
Ξ

∫
Θ

k
(add)
(θ,ξ,xi (ξ))φl(θ)dθdξ, i ∈ ⟦n⟧, l ∈ ⟦d⟧

 . (4.16)

Indeed, any h ∈ Hk(add) can be written as h = hS + h⊥ where h ∈ S and h⊥ ∈ S⊥. Yet,
the scalar product between h and the generating vectors of S in Equation (4.16) shows
that h⊥ leaves the data-fitting term unchanged. Therefore, from Pythagoras’ theorem,
it strictly increases the regularization term. We conclude that any solution to Prob-
lem 4.15 belongs to S .

We can then write any such solution as

ĥ(θ,ξ,x) =
n∑
i=1

n∑
l=1

αid

∫
Θ

∫
Ξ

k(add)
(
(θ,ξ,x(ξ)), (θ′ ,ξ ′ ,xi(ξ

′))
)
φl(θ

′)dθ′dξ ′ ,



4.4. KERNEL ADDITIVE MODEL 79

where α = (αid)n,di,l=1 ∈ R
n×d are representation coefficients. We can take either d = n if

we wish to use all the principal components, or d < n if we wish to approximate the
problem using only these associated to the largest eigenvalues.

In order to rewrite Problem 4.15 compactly with α as variable, the following set of
quadri-indexed quantities is introduced. For i, j ∈ ⟦n⟧ and l, r ∈ ⟦d⟧, define

Ailjr =
∫
Ξ

∫
Θ

∫
Ξ

∫
Θ

k(add)
(
(θ,ξ,xj(ξ)), (θ′ ,ξ ′ ,xi(ξ

′))
)
φr(θ)φl(θ

′)dθdξdθ′dξ ′ . (4.17)

Then, Problem 4.15 can be rewritten as

n∑
i=1

d∑
l=1

⟨yi ,φl⟩L2(Θ) −
n,d∑
i,r=1

Ailjrαjr

2

+λ
n,d,n,d∑
i,l,j,r=1

αilAiljrαjr .

To put the above problem in a familiar ridge regression form, let us consider the mat-
rix A ∈ R

dn×dn obtained by collapsing the indices (i, l) and (j, r) together using the
entries from Equation (4.17). Let us also define by R ∈ R

d×n the matrix which i-th
column is (⟨yi ,φl⟩L2(Θ))

d
l=1. We can then rewrite the problem compactly as

min
α∈Rd×n

∥vec(R)−Avec(α)∥2
R
dn +λvec(α)T

Avec(α). (4.18)

Canceling the gradient with respect to vec(α), we obtain

vec(α̂) = (AT
A+λA)−1

Avec(R).

Supposing further that A is invertible, and observing that A is symmetric by the defin-
ition of its entries, we can simplify by A and obtain the more compact form

vec(α̂) = (A+λI)−1 vec(R). (4.19)

We now highlight a possibility to drastically improve computational complexity of
the estimator, which was not given in Reimherr et al. (2018). To that end, notice that
if the kernel is separable in the following sense:

k(add)
(
(θ,ξ,u), (θ′ ,ξ ′ ,u′)

)
= kΞ×R

(
(ξ,u), (ξ ′ ,u′)

)
kΘ(θ,θ′), (4.20)

the matrix A can be written as a Kronecker product between the following matrices.
First let us define the input kernel matrix as

KX :=

∫
Ξ

∫
Ξ

kΞ×R

(
(ξ,xj(ξ)), (ξ ′ ,xi(ξ

′))
)
dξdξ ′

n
i,j=1

∈Rn×n, (4.21)

and the output kernel matrix as

KΘ :=

∫
Θ

∫
Θ

kΘ(θ,θ′)φr(θ)φl(θ
′)dθdθ′

d
l,r=1

∈Rd×d . (4.22)
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REGRESSION

We then have that
A = KX ⊗KΘ . (4.23)

Time complexity. Consequently, we can solve Equation (4.19) essentially with time
complexity O(n3 +d3) using either a Sylvester solver or by performing an eigendecom-
position of KX and one of KΘ as we do to solve Equation (4.8). However, the real com-
putational challenge for this method is rather to compute the matrices KX and KΘ .
Each of their entries involve double integrals: if we discretize these double integrals
over t ∈ N input locations from Ξ and m ∈ N output locations from Θ, the cost of
computing these matrices are respectively O(n2t2) and O(d2m2). Generally, the num-
ber of locations t and m is relatively high (they correspond to discretization points to
represent functions). Consequently, these terms will completely dominate the com-
putations. This also implies that if the kernel k(add) is not separable in the sense of
Equation (4.20), computing the matrix A is out of reach numerically: it has time com-
plexity O(n2t2d2m2) which cannot be envisioned even for small values of the different
quantities.

4.5 Kernel estimator

Kernel smoothing is a classic method to interpolate a function. In the context of re-
gression in statistics it has been introduced simultaneously in Nadaraya (1964); Wat-
son (1964). Based on a kernel which traduces a notion of similarity on the input space
X , it predicts the value at a new point in X as a local average of the outcomes on the
training data weighted by the kernel. The average is then local in the sense that the
kernels used generally have maximum mass at zeros and start to vanish as the distance
between the points increases. Since the kernel enables flexibility in the inputs, using
kernel regression for functional inputs is quite natural (Ferraty and Vieu, 2002).

To deal with more complex outputs however, a Nadaraya-Watson kernel estimator has
been studied in Ferraty et al. (2011) in the general setting of Banach spaces. Consid-
ering a kernel function k0 : R 7−→R combined with a given semi-metric S on X , for all
x ∈ X , they use the following estimator:∑n

i=1 k0 ◦ S(x,xi)yi∑n
i=1 k0 ◦ S(x,xi)

. (4.24)

Time complexity. This method is very fast as fitting it boils down to memorizing the
training data, however it can lack precision.

4.6 Conclusion

In this chapter, we have described the main existing approaches to nonlinear FOR. We
gave details on the corresponding estimators and the numerical procedures to com-
pute them, highlighting their computational complexity. In the next chapter, we in-
troduce an approach to FOR combining vv-RKHSs and representation on a dictionary
of functions. In order to assess the efficiency of our proposition, we will benchmark it
on several problems against the FOR methods presented in this chapter.
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In this chapter, we introduce a general approach to Hilbert-valued regression which
exploits the representation of infinite-dimensional vectors in a finite dictionary. It
learns to predict representation coefficients in this dictionary, solving however the
original problem of Hilbert-valued regression. A key application of this method is
functional output regression (FOR). In that context, our method can exploit the rich
possibilities that exist to represent functions using dictionaries. We have highlighted
some of these possibilities in Chapter 3, where we have also related the dictionaries
to functional spaces and the properties of the functions they contain. To be able to
tackle a wide class of problems, we focus on nonlinear regression, to that end we use
a vector-valued reproducing kernel Hilbert space (vv-RKHS) as a hypothesis class to
predict the coefficients in the dictionary. They are particularly relevant in that context
as they can model complex nonlinear relationships yet remain efficient when we have
few observations, which is typically the case in FOR problems.

After a brief introduction to Hilbert-valued regression, we introduce the framework
of projection learning in Section 5.1. Then in Section 5.2 we study it extensively using
vector-valued reproducing kernel Hilbert spaces (vv-RKHS) as hypothesis class. We
propose estimators and computational strategies and apply the framework to FOR
with partially observed functions. Ultimately, Section 5.3 validates the proposed es-
timators numerically, drawing comparisons with other nonlinear FOR methods. We
highlight that this chapter corresponds to the contributions of
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• D. Bouche, M. Clausel, F. Roueff and F. d’Alché-Buc. Nonlinear Functional Out-
put Regression: A Dictionary Approach. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 235–243, 2021,

except for the theoretical analysis of the estimators which is deferred to the next
chapter.

5.1 Projection learning

In this section, we introduce how the classical empirical risk minimization paradigm
can be extended to the case of Hilbert-valued outputs in Section 5.1.1 and in this
context, we propose our general framework for Hilbert-valued regression using dic-
tionaries in Section 5.1.2.

5.1.1 Hilbert-valued regression

Let us assume that the output space Y is a separable Hilbert space and that X is a
measurable space. We want to infer a dependency between two random variables X
and Y taking their values respectively in X and Y . Suppose that Z := (X,Y) is distrib-
uted according to an unknown probability distribution ρ on Z := X × Y . Indeed we
have only access to an i.i.d. sample (xi , yi)

n
i=1 ∈ Z

n. From this sample, we want to fit a
statistical model which exploits the relationship between X and Y so that it can predict
an element of Y for any x ∈ X . However, since Y is a Hilbert space, the model must be
Hilbert-valued. Let then L : Y ×Y → R be a loss function measuring the discrepancy
between two elements in Y , and let G ⊂ F (X ,Y ) be a hypothesis class of Y-valued
functions. The choice of this set constitutes a first level of approximation and it can
have a regularizing effect. Ideally, we would want to minimize the expected risk over
it.

min
f ∈G
R(f ) := E(X,Y)∼ρ

[
L(Y, f (X))

]
. (5.1)

Example 5.1 (Square loss). The most natural loss is the square loss associated to the norm
∥·∥Y :

(y1, y2) 7→ ∥y1 − y2∥2Y . (5.2)

In the case where Y = L2(Θ) the space of square integrable functions defined on some com-
pact set Θ ⊂R

b, this loss corresponds to the following integral

(y1, y2) 7→ ∥y1 − y2∥2L2(Θ) =
∫
Θ

(y1(θ)− y2(θ))2dθ. (5.3)

However as we do not have access to the distribution ρ, we rather minimize an estim-
ator of this expected risk based on the finite sample we do have access to, leading to the
well known empirical risk minimization problem. A regularization term Ω : G →R is
generally added to further control the model’s complexity

min
f ∈G

1
n

n∑
i=1

L(yi , f (xi)) +Ω(f ). (5.4)
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5.1.2 Approximated Hilbert-valued regression

The fact that Y is infinite-dimensional is indeed challenging. However, if we have
reasons to think that with high probability, the random variable Y takes its values
in a subspace of Y whose dimension is relatively low, we can drastically reduce the
complexity of solving Problem 5.8. A possible way to exploit this assumption, is to
suppose that this subspace can be spanned by a dictionary of vectors φ := (φl)

d
l=1 ∈ Y

d .
We first recall the definition of the projection operator associated with this dictionary
which we introduced informally in Chapter 3.

Definition 5.2 (Projection operator). Let (φl)
d
l=1 ∈ Y

d be a family of vectors in Y , we
define their associated projection operator as

Φ :

Rd → Y
a 7→

∑d
l=1 alφl

 . (5.5)

The adjoint of this operator in Y is given by

Φ# :

Y → R
d

y 7→ (⟨y,φl⟩Y )dl=1

 , (5.6)

therefore Φ#Φ ∈ Rd×d is the matrix whose entries are the pairwise scalar products between
the elements of the dictionary. In other words, its (l, r)-th entry is ⟨φl ,φr⟩Y .

Remark 5.3. Φ is bounded. Indeed, its L(Rd ,Y )-norm is equal to the largest eigenvalue of
the Gram matrix associated to the dictionary Φ#Φ .

Then, supposing that we have chosen a dictionary of vectors which is adapted to the
problem at hand, we propose to consider a hypothesis class which incorporates this
approximation directly in Problem 5.1. More precisely, let H ⊂ F (X ,Rd) be a hypo-
thesis class of Rd-valued functions. We then propose to tackle the Y-valued problem

min
h∈H
R(Φ ◦ h). (5.7)

In terms of regularized empirical risk minimization, this yields

min
h∈H

1
n

n∑
i=1

L(yi ,Φh(xi)) +ΩH(h), (5.8)

where ΩH :H→R is a regularization function.

Remark 5.4 (Indirect regularization). In Problem 5.8, the regularization function works
on hwhich is not ultimately the function that we use for prediction. Therefore this regulariz-
ation is somewhat indirect in the sense that we could regularize with respect to the function
Φ ◦ h directly. For this chapter, as we use vector-valued RKHSs as function class for H,
regularizing through the RKHS norm of h enables us to have a representer theorem. How-
ever we will propose an approach in which we can regularize directly on Φ ◦h in Chapter 8
(Example 8.8).
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We highlight that this framework is quite general in the sense that we search a solution
in the hypothesis space G = {f : x 7−→ Φh(x), h ∈ H} and solve a Hilbert-valued problem
at the price of solving a multi-output one (Rd-valued) inH. The loss remains however
functional. Moreover, any regression model capable of handling multiple outputs
(e.g. neural networks, random forests, kernel methods...) is eligible. All this works of
course assuming we have a dictionary (φl)

d
l=1 which represents well the observations

distributed according to ρY. In practice, for functions, there are many possibilities to
find such representation, we refer the reader to Chapter 3 for more details. To choose
among these possibilities, we can look for a dictionary in which the observed vectors
(yi)

n
i=1 are represented with a low error.

Next, we focus on solving Problem 5.8 using vv-RKHSs as a hypothesis class H.

5.2 Kernel projection learning

We have introduced RKHSs in Section 2.1 as well as their extension to model vector-
valued functions in Section 2.2 and highlighted their advantageous properties which
made them popular in machine learning. We therefore propose to study the projection
learning problem using vv-RKHSs as a hypothesis class and show how those proper-
ties can be exploited in this case in Section 5.2.1. We focus mostly on the square loss
and propose an estimator in closed-form. We demonstrate as well how this estimator
can be computed efficiently if we additionally suppose that the operator-valued kernel
is separable in Section 5.2.2. Finally, based on this estimator, we propose an estimator
specific to functional output regression with missing observations in Section 5.2.3.

5.2.1 Vv-RKHSs and representer theorem

Let K : X × X 7−→ L(Rd) be an OVK and HK ⊂ F (X ,Rd) its associated vv-RKHS. We
recall that for all x1 ∈ X the operator Kx1

∈ L(Rd ,HK) is defined as

Kx1
: u 7→ Kx1

u, with Kx1
u : x2 7→ K(x2,x1)u ∈Rd . (5.9)

Then, we consider Problem 5.8 choosing H = HK as a vector-valued hypothesis class.
Setting the regularization as ΩHK

(h) := ∥h∥2HK
yields the following:

min
h∈HK

1
n

n∑
i=1

L(yi ,Φh(xi)) +λ∥h∥2HK
. (5.10)

To solve Problem 5.10, we highlight in Corollary 5.5 that it benefits from a representer
theorem. Therefore, it can then be restated as a problem with nd variables.

Corollary 5.5 (Representer theorem). For any solution hλz to Problem 5.10, there exists
α ∈ (Rd)n such that

hλz =
n∑
j=1

Kxjαj . (5.11)

Proof This is a direct application of the representer theorem stated in Theorem 2.36
setting for u ∈ (Rd)n, V (u, t) = 1

n

∑n
i=1L(yi ,Φui)) +λt2, which is indeed always strictly

increasing with respect to t regardless of u.



88 CHAPTER 5. KERNEL PROJECTION LEARNING

Proposition 5.6 (Existence and uniqueness of minimizer). Suppose that

1. for all y ∈ Y , L(y, .) ∈ Γ0(Y ) (see Definition 2.42), and

2. K is bounded: there exists κ ≥ 0 such that for all x ∈ X , ∥K(x,x)∥L(Rd ) ≤ κ.

Then a minimizer hλz of Problem 5.10 exists and it is unique.

Proof Let us first prove that all terms in the objective are in Γ0(HK). Since K is
bounded, for all x ∈ X , K#

x is bounded as a consequence of Lemma 6.2 (we intro-
duce this Lemma further down in the theoretical part because we use it extensively
there, therefore as it is not central, we do not re-expose it here). Φ is also bounded as
highlighted in Remark 5.3. Consequently by stability of the set Γ0(HK) with respect to
the composition with bounded linear operators (Bauschke and Combettes, 2017, Pro-
position 9.5), for all y ∈ Y and x ∈ X , h 7→ L(y,ΦK#

xh) is in Γ0(HK). Thus the objective
in Problem 5.10 is in Γ0(HK).

Now, remark that h 7→ λ∥h∥2HK
is supercoercive. Indeed

∥h∥2HK
∥h∥HK

= ∥h∥HK
which limit is

obviously +∞ when ∥h∥HK
→ +∞.

Consequently, from Bauschke and Combettes (2017, Corollary 11.16), the objective
in Problem 5.10 is coercive and therefore it has a minimizer over HK Moreover, since
h 7→ λ∥h∥2HK

is strictly convex, this minimizer is unique.

Remark 5.7 (Difference with composition of an OVK with the map Φ). It is possible to
combine an OVK with a linear map (Carmeli et al., 2010) to define a new OVK . Therefore,
the L(Y )-valued OVK defined as

KΦ : (x1,x2) 7→ ΦK(x1,x2)Φ#, (5.12)

is valid. Yet it is not the same thing to solve

min
g∈HKΦ

1
n

n∑
i=1

L(yi , g(xi)) +λ∥g∥2HKΦ
, (5.13)

and Problem 5.10. Indeed, the representer theorem applies, but it yields a solution of the
form

gλz =
n∑
j=1

ΦKxjΦ
#ξj ,

where for all j ∈ ⟦n⟧, ξj ∈ Y . To avoid optimizing over Y , a change of variable ζj = Φ#ξj
can be done, nevertheless, the search must be restricted to Im(Φ#) if we want to recover the
real solution to Problem 5.13. Yet, we have no way to numerically optimize over this space.
In any case, Problem 5.13 and Problem 5.10 are not equivalent.

Remark 5.8 (Low-rank function-valued learning in structured output prediction).
Another approach exists to perform function-valued regression in a low-dimensional sub-
space of a Hilbert space Y . Given a fitted estimator ĝ, Brogat-Motte et al. (2023) search
for the best subspace (of a given dimension d) to project this estimator. More precisely, they
seek the orthogonal projection P minimizing 1

n

∑n
i=1 ∥Pĝ − ĝ∥Y . In practice this amounts
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to projecting onto the span of the d eigenvectors of the empirical covariance operator of ĝ
associated to its d largest eigenvalues. This approach is different from ours as it is a post
hoc one. First a Y-valued estimator is fitted and second it is projected. Therefore this works
only if a theoretical closed-form is known for the estimator, consequently the authors focus
on the Y-valued kernel ridge regression for which they propose a very efficient procedure.
In KPL, we first choose an approximation dictionary that should represent well the outputs
and second we solve the problem.

5.2.2 Ridge estimator with outputs in a separable Hilbert space

We now derive a closed-form solution for Problem 5.10 leveraging the representation
given in Equation (5.11). To that end, let us endow the space Yn with the natural
scalar product defined for y,y′ ∈ Yn as

⟨y,y′⟩Yn =
n∑
i=1

⟨yi , y′i ⟩Y ,

so that it is a Hilbert space.

We now highlight some basic facts and introduce (or recall) some notations so as to
derive this closed-form smoothly. Let us first define the linear operator K associated
with the OVK K and the input observations (xi)

n
i=1.

K :

R
d×n →R

d×n

α 7→
[∑n

j=1K(xi ,xj )αj
]n
i=1

 , (5.14)

where we recall that
[∑n

j=1K(xi ,xj )αj
]n
i=1

is the matrix whose i-th column is
∑n
j=1K(xi ,xj )αj .

Remark 5.9. This operator is one of the possible counterparts of the kernel matrix for OVKs.
Another way to proceed is to use a kernel block matrix K which can be represented as

K(x1,x1) · · · K(x1,xn)
...

...
K(xn,x1) · · · K(xn,xn)

 ∈Rnd×nd , (5.15)

and which therefore acts on a large vector in R
dn consisting of the concatenation of the

columns of the input matrix. However, in our case, it is more practical to remain in the
space of matrices (Rd×n) because of the projection step occurring afterwards.

Remark 5.10. We recall that from Definition 2.25, for all i, j ∈ ⟦n⟧, we have K(xi ,xj ) =
K(xj ,xi)T. From there it is easy to see that K# = K with respect to the scalar product ⟨·, ·⟩

R
d×n .

Indeed for α,β ∈Rd×n

⟨β,Kα⟩
R
d×n =

n∑
i=1

n∑
j=1

⟨βi ,K(xi ,xj )αj⟩Rd

=
n∑
i=1

n∑
j=1

⟨K(xj ,xi)βi ,αj⟩Rd

= ⟨Kβ,α⟩
R
d×n .
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Moreover, K is positive as a consequence of the positive definiteness of K (Definition 2.25):
for α ∈Rd×n,

⟨α,Kα⟩
R
d×n =

n∑
i=1

n∑
j=1

⟨αi ,K(xi ,xj )αj⟩Rd ≥ 0.

Finally for β = (βi)
n
i=1 ∈ H

n with H a Hilbert space and an operator A ∈ L(H,K) where
K is some Hilbert space, we recall the notation of the factorized operator A(n)

A(n) :

Hn →Kn
β 7→ (Aβi)

n
i=1

 . (5.16)

Remark 5.11. In the following, we have H = R
d and K = Y . We set the convention that

in this case, we assimilate the space (Rd)n to the space of matrices Rd×n and therefore the
factorized operator A(n) applies A to the columns of the input matrix β.

Remark 5.12. It is also worth noting that the action of (A#A)(n) is actually the same as
that of the matrix (A#A). Indeed, by definition of the matrix product for α ∈Rd×n,

(A#A)α =
[
(A#A)αi

]n
i=1
.

However, for instance for notions such as the rank, there are differences between (A#A)
taken as an operator in L(Rd) and A#A as an operator in L(Rd×n). Consequently, we keep
the notation (A#A)(n) to avoid confusions.

Putting it all together, when considering the square loss, Problem 5.8 can be rewritten
as

min
α∈Rd×n

1
n
∥y−Φ(n)Kα∥2Yn +λ⟨α,Kα⟩

R
d×n . (5.17)

We are now ready to derive a closed-form solution for Problem 5.17.

Proposition 5.13 (Ridge estimator). The minimum in Problem 5.17 is achieved by
any α̂ ∈Rd×n verifying

(K(Φ#Φ)(n)K+nλK)α̂ = KΦ#
(n)y. (5.18)

Moreover if K is full rank then ((Φ#Φ)(n)K+nλI) is invertible and α̂ is such that

α̂ = ((Φ#Φ)(n)K+nλI)−1Φ#
(n)y. (5.19)

We define the ridge estimator as

hλz :=
n∑
j=1

Kxj α̂j . (5.20)

Proof Let V be the objective in Problem 5.17, since it is convex the minimizer α must
cancel the gradient (we recall that this minimizer exists and is unique, the square
loss is indeed proper, convex and continuous and therefore provided K is bounded,
Proposition 5.6 applies). The gradient is given by
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∇V (α) = −2
n
K

#(Φ(n))
#y +

2
n
K

#Φ#
(n)Φ(n)Kα+ 2λKα.

Using that (Φ(n))#Φ(n) = Φ#
(n)Φ(n) = (Φ#Φ)(n) and that K is self-adjoint, canceling the

gradient yields

(K(Φ#Φ)(n)K+nλK)α̂ = KΦ#
(n)y,

which corresponds to Equation (5.18).

Now let us assume that K is full-rank. We can then simplify by K−1 on the left to
obtain the equivalent system

((Φ#Φ)(n)K+nλI)α̂ = Φ#
(n)y.

Let us now show that (Φ#Φ)(n)K + nλI is invertible. We have that K is a strictly pos-
itive and self-adjoint operator on a finite dimensional space. Therefore K(Φ#Φ)(n)K is
a positive self-adjoint operator, which implies that K(Φ#Φ)(n)K+ nλK is strictly posit-
ive and self-adjoint and it is defined on a finite-dimensional space which implies its
invertibility.

To finish with, (Φ#Φ)(n)K+nλI = K−1(K(Φ#Φ)(n)K+nλK), therefore it is a composition
of invertible operators, and consequently, it is itself invertible.

Remark 5.14. Φ#Φ is the Gram matrix the dictionary, therefore if (φl)
d
l=1 is orthonormal,

Equation (5.19) simplifies to
α̂ = (K+nλI)−1Φ#

(n)y.

Remark 5.15. We highlight that the quantity Φ#
(n)y actually corresponds to the matrix of

pairwise scalar products between the observed functions and the elements of the dictionary.
Indeed,

Φ#
(n)y =

[
Φ#yi

]n
i=1
∈Rd×n,

where [Φ#yi]
n
i=1 is the matrix whose i-th column is Φ#yi . Additionally, we have from

Equation (5.6) that for i ∈ ⟦n⟧,

Φ#yi =
(
⟨yi ,φl⟩Y

)d
l=1
.

In practice, solving the linear system in Equation (5.18) has time complexity O(n3d3)
which is far too high, even to tackle learning problems of medium size. Among OVKs,
separable ones are a very popular subclass, for they are simple to interpret and can
drastically simplify computations in some cases. Let us then suppose that K is separ-
able (Definition 2.32), therefore there exists a positive symmetric matrix B ∈Rd×d and
a scalar-valued kernel kX : X ×X →R such that

∀x1,x2 ∈ X , K(x1,x2) = kX (x1,x2)B.

In that case Equation (5.19) is equivalent to the linear matrix equation
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(Φ#Φ)BαKX +nλα = Φ#
(n)y. (5.21)

Two classic resolution strategies can then be used

• Equation (5.21) is a discrete time Sylvester equation (Dinuzzo et al., 2011) for
which efficient solvers exist (Sima, 1996), more precisely, such equation can be
solved in O(n3 + d3 +n2d +nd2) ≍ O(n3 + d3) time.

• Or if we wish to test many values of λ, another strategy is to vectorize the equa-
tion. It then exhibits a Kronecker product structure which can be exploited to
compute an eigendecomposition of the matrix of interest. More precisely, we can
use the fact that vec((Φ#Φ)BαKX ) = KT

X⊗((Φ#Φ)B)vec(α) = KX⊗((Φ#Φ)B)vec(α).
Therefore, Equation (5.21) is equivalent to

(KX ⊗ ((Φ#Φ)B) +nλInd)vec(α) = vec(Φ#
(n)y). (5.22)

Then an eigendecomposition of KX ⊗ ((Φ#Φ)B) can be deduced from one of KX
and one of (Φ#Φ)B (Horn and Johnson, 1991, Theorem 4.2.12) in O(n3 + d3)
time. Indeed, let (νi ,vi)ni=1 and (ηl ,wl)

d
l=1 be the eigenvalue/eigenvector pairs

respectively of KX and (Φ#Φ)B. Then the eigenvalue/eigenvector pairs of KX ⊗
((Φ#Φ)B) are (νiηl ,vi ⊗wl)

n,d
i,l=1.

Once we have found the representer coefficients α̂ solving the system in Equation (5.22),
the predicted function at a new input point x ∈ X is given by

ΦBα̂kX (x), with kX (x) :=
(
kX (x,xi)

)n
i=1
. (5.23)

Remark 5.16 (Other losses). For other losses, even if the kernel is separable, it is no longer
possible to find a closed-form, however we can resort to iterative algorithms for optimiza-
tion. The problem does benefit from the representer theorem and, in the case of a separable
kernel, Problem 5.10 can be rewritten as

min
α∈Rd×n

1
n

n∑
i=1

Lyi
(
ΦBαkX (xi)

)
+λ⟨KX ,αTBα⟩

R
n×n .

We have exploited the separability of the kernel at least to avoid forming the block operator
matrix associated to K. It lies in R

dn×dn and therefore performing matrix products with
such big matrices would be prohibitive. The gradient with respect to the coefficients α is
given by

1
n

BG(α)KX +λBαKX , (5.24)

where G(α) is defined column-wise as

G(α) :=
[
Φ#∇Lyi (ΦBαkX (xi))

]n
i=1
∈Rd×n. (5.25)
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5.2.3 Functional case with partially-observed functions

In the particular case where Y = L2(Θ) for some Θ ⊂ R
b a compact subset, this cor-

responds to the functional data setting introduced in Section 3.1. We highlighted that
typically, the output functions (yi)

n
i=1 are not observed as functions but rather through

discrete and possibly noisy evaluations of those functions on the domain Θ.

Therefore, we suppose that we only observe each yi at a set of locations θi := (θis)
mi
s=1 ∈

Θmi . The learning problem depicted in Problem 5.17 has now to be solved using a
partially observed functional output sample:

z̃ := (xi , (θi , ỹi))
n
i=1, (5.26)

where for all i ∈ ⟦n⟧, θi ∈ Θmi , ỹi ∈ R
mi with mi ∈ N

∗ the number of observations
available for the i-th function, and for all s ∈ ⟦mi⟧, θis ∈Θ and ỹis ∈R.

Then if the observations from Equation (5.26) enable us to compute reasonably good

estimators of the pairwise scalar products
(
⟨yi ,φl⟩Y

)d,n
l=1,i=1

, we can plug-in these es-

timators into the closed-form solution Equation (5.19). Let ν̃ ∈Rd×n be a matrix stack-
ing estimators for these scalar products. For instance, an empirical mean can be used

ν̃li =
1
mi

mi∑
s=1

ỹisφl(θis). (5.27)

Remark 5.17. This problem of estimating scalar products naturally arises when using a
dictionary to represent functions while only partial observations are available. Notably, it
did appear in the problem of smoothing using a dictionary in Chapter 3.

So as to highlight the nature of the two approximations that we make in defining our
estimator, we recall the definition of the approximated projection operator for the set
of locations θi ∈Θmi (introduced in Chapter 3)

Φ̃i :

Rd → R
mi

a 7→
∑d
l=1 alφl(θi)

 , (5.28)

and that of its adjoint in the Euclidian space R
mi :

Φ̃#
i :

Rmi → R
d

ỹ 7→ (⟨ỹ,φl(θi)⟩Rmi )dl=1

 ,
where we have used the convention that φl(θi) =

(
φl(θis)

)mi

s=1
.

Next we define the plug-in ridge estimator using the empirical mean to estimate the
scalar products. To be valid, this estimator requires that enough observations are
available so that the two following approximations hold for all i ∈ ⟦n⟧,

1
mi

Φ̃#
i ỹi ≈ Φ#yi

1
mi

Φ̃#
i Φ̃i ≈ Φ#Φ .

(5.29)

When these are reasonable, we can use the following estimator.
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Definition 5.18 (Plug-in ridge estimator). Let ν̃ be the matrix whose entries are the
empirical mean estimates of the scalar products–Equation (5.27). Suppose that K is
full rank and let α̃ ∈Rn×d be such that

α̃ = ((Φ#Φ)(n)K+nλI)−1ν̃ . (5.30)

We then define the plug-in ridge estimator as

hλz̃ :=
n∑
j=1

Kxj α̃j . (5.31)

Exploiting the separability of the kernel as in Equation (5.22), the coefficients of the
plug-in ridge estimator are found solving

(KX ⊗ ((Φ#Φ)B) +nλI)vec(α) = vec(ν̃). (5.32)

As highlighted earlier, the time complexity of solving such a system can be reduced to
O(n3 + d3).

When those approximations do not hold, we can no longer exploit the separability. To
see this, let us formulate an analogous to Problem 5.10 with the square loss approxim-
ated using the available observations of the functions to approximate the square loss.
This problem reads

min
h∈HK

1
n

n∑
i=1

∥∥∥∥ ỹi√
mi
− Φ̃i√

mi
h(xi)

∥∥∥∥2

R
mi

+λ∥h∥2HK
. (5.33)

Let us define the approximation Φ̃ of Φ(n) using the discrete observations. It acts on
the columns of a matrix β ∈Rd×n in the following way

Φ̃ :


R
d×n → Πn

i=1R
mi

β 7→
(

Φ̃i√
mi
βi

)n
i=1

 , (5.34)

Problem 5.33 also benefits from a representer theorem in the same way as Prob-
lem 5.10, it is a direct Corollary of Theorem 2.36. We can therefore reformulate it
as

min
α∈Rd×n

1
n
∥ỹ− Φ̃Kα∥2

Πn
i=1R

mi +λ⟨α,Kα⟩
R
d×n .

Carrying the same steps as in the proof of Proposition 5.13, we obtain thatα is solution
to the linear system

((Φ̃
#
Φ̃)K+nλI)α = Φ̃

#ỹ. (5.35)
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We highlight that Φ̃
#ỹ is the matrix of scalar products estimated through the em-

pirical mean at the available locations (it is equal to ν̃). Note also that the operator
Φ̃

#
Φ̃ ∈ L(Rd×n) is given by

Φ̃
#
Φ̃ :


R
d×n → R

d×n

β 7→
[
Φ̃#
i Φ̃i
mi

βi

]n
i=1

 ,
Therefore, even when the kernel is separable, the linear system in Equation (5.35)
cannot be solved efficiently because we can no longer exploit the separability as we
do to solve Equation (5.22). This is because instead of using the matrix Φ#Φ for all

i ∈ ⟦n⟧, we use a different estimate Φ̃#
i Φ̃i
mi

for each i ∈ ⟦n⟧.

Remark 5.19 (Same locations). A possible case however where we can have very sparse
observations for the functions and still retain the computational efficiency is when we ob-
serve all the functions at the same locations. In that case the estimation of the Gram matrix
is common to all the output functions and we can exploit the separability.

Example 5.20 (Integral losses and gradient estimation). Following up on Remark 5.16,
we highlight that, when considering another loss than the square loss, it is possible to es-
timate the gradient in Equation (5.24) from partial observations as well. For instance con-
sidering an integral loss of the form

L : (y1, y2) 7→
∫
Θ

ℓ(y1(θ), y2(θ))dθ, (5.36)

where ℓ is a real-valued convex loss on R. Indeed, the gradient of such loss is given by

∇Lyi : y 7−→
(
θ 7−→ ℓ(yi(θ), y(θ))

)
.

Therefore for i ∈ ⟦n⟧, the i-th column of G(α) which is Φ#∇Lyi (ΦBαkX (xi)) can be estim-
ated, for instance through the empirical mean as

1
mi

mi∑
s=1

ℓ
(
yi(θis),φ(θis)

TBαkX (xi)
)
φ(θis), (5.37)

where we have used the convention that for θ ∈Θ, φ(θ) =
(
(φl(θ))dl=1

)T
∈Rd .

Note that, as opposed to the strategy to compute the plug-in ridge estimator in Equa-
tion (5.32), when L is not the square loss, we cannot exploit the separability as we must
optimize over all the rows of α jointly.

Now that we have introduced the kernel projection learning framework along with
some corresponding estimators, we propose to study those empirically, and compare
them to existing nonlinear FOR methods.



96 CHAPTER 5. KERNEL PROJECTION LEARNING

5.3 Numerical experiments

In this section, we study empirically our proposed estimators as well as the main ex-
isting nonlinear FOR methods presented in Chapter 4. In Section 5.3.1 we give some
details on the different estimators and we introduce the metrics used in the experi-
ments. Then we benchmark all the methods on three function-to-function problems.
In Section 5.3.2, using a synthetic dataset, we investigate how the estimators react to
several kinds of corruption of the output functions. In order to compare the perform-
ances of the estimators on real datasets, in Section 5.3.3 we study a problem linked
to medical imaging while in Section 5.3.4 is dedicated to comparisons on a synthetic
speech inversion dataset.

5.3.1 Preliminary elements

So far we have introduced the kernel projection learning framework, and we have
proposed several corresponding estimators. We recall what these are and give compu-
tation details. We also briefly recall the other nonlinear FOR methods against which
we benchmark our estimators.

Estimators

We proposed two estimators in closed-form for the square loss based on a ridge type
closed-form. The ridge estimator from Proposition 5.13 is the most general one, it
can deal with outputs in a separable Hilbert space. Nevertheless, in the experiments,
we rather use the plug-in ridge estimator introduced in Definition 5.18 as it works for
FOR with partially observed functions. We refer to it as ridge-plug-KPL in the follow-
ing sections. We have also shown how the separability of the OVK could be exploited
to reduce the fitting time complexity to O(n3 + d3). We therefore use separable OVKs
in the following and exploit this separability using a Sylvester equation solver.

We have also shown how gradient-based optimization could be implemented in the
same setting of FOR with partial observations in Example 5.20 when using integral
losses. In that case, we indeed can no longer benefit from the separability trick. As
an example of integral loss, we propose to study KPL with the integral logcosh loss for
ν > 0

L
(ν)
lch(y1, y2) =

1
ν

∫
Θ

log(cosh(ν(y1(θ)− y2(θ))dθ. (5.38)

The ground loss behaves similarly to the Huber loss (Huber, 1964), it is roughly quad-
ratic around 0 and roughly linear elsewhere, except that it is C∞(Θ2) which is advant-
ageous as we use second order method for optimization. The parameter ν gives us
control on its behavior around 0, as it grows bigger, ℓ(ν)

lch tends to the absolute loss.
We illustrate this loss defined on R and R

2 respectively in Figure 5.1 and Figure 5.2.
We refer to the estimator resulting from solving Problem 5.10 using this estimated
gradient from Example 5.20 and the integral logcosh loss from Equation (5.38) as
logcosh-KPL.

It is also of interest to compare the plug-in ridge estimator which works well when
the approximations in Equation (5.29) are reasonable, and the estimator which results
from posing the KPL problem directly using the available observations as in Prob-
lem 5.33. We refer to that last estimator with the abbreviation ridge-iter-KPL.
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Figure 5.1: Logcosh loss on R.
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Figure 5.2: Logcosh loss on R
2 (ν = 5).

For both logcosh-KPL and ridge-iter-KPL, we use L-BFGS-B (Zhu et al., 1997a) as
solver. We have found that its use of approximate second order information greatly
improved convergence speed.

Finally, we benchmark the estimators introduced above against the main existing non-
linear FOR methods presented in Chapter 4.

• Functional kernel ridge regression (FKRR) corresponds to the kernel ridge re-
gression using function-valued RKHSs (fv-RKHS) as hypothesis class (Lian, 2007;
Kadri et al., 2010, 2016). We present this method in more detail in Section 4.2.
For those experiments, we solve FKRR using the discretization approach presen-
ted in Section 4.2.2. We tested both approaches, (this one) and the eigendecom-
position one (see Section 4.2.3) and found that the former was overall faster,
because the latter require to compute Kronecker products large vectors (see the
time complexity paragraph in Section 4.2.3) which constitutes a speed bottleneck.
We use a Sylvester solver to solve the corresponding problem.

• Triple basis estimator (3BE) stands for the method which consists in projecting
the input and the output functions on orthogonal bases and using an approxim-
ate kernel ridge regression with random Fourier features (RFF) to regress separ-
ately each output coefficient on the input ones. This is the method proposed in
Oliva et al. (2015), we describe it in more detail in Section 4.3.

• Kernel additive model (KAM) corresponds to the kernelized version of the func-
tional linear additive model proposed in Reimherr et al. (2018). We give more
details in Section 4.4. We use a separable kernel in the sense of Equation (4.20)
so that the model is computationally tractable, and exploit the Kronecker struc-
ture we pointed out in Equation (4.23) (a possibility which we recall was not
highlighted by the authors).

• Kernel estimator (KE) corresponds to an extension of the Nadaraya-Watson es-
timator for functional output regression (Ferraty et al., 2011). We do not include
it in all benchmarks as its performances are overall quite far from those of the
other estimators.
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Figure 5.3: Examples from the synthetic dataset.

Metrics

We now introduce metrics we use to measure the performances of the estimators or
to quantify the level of corruption. Given observed functions (θi , ỹi)

n
i=1 and predicted

ones (ŷi)
n
i=1 ∈ L

2(Θ), we define the mean square error (MSE) as

MSE :=
1
n

n∑
i=1

mi∑
s=1

(ŷi(θis)− ỹis)2.

On the synthetic dataset, in one experiment, we add noise to the output functions. In
order to measure the level of corruption we use the signal to noise ratio (SNR); for a
noise level σ we define it as

SNR :=
1
σn

n∑
i=1

1
mi

mi∑
s=1

∣∣∣ỹis∣∣∣ .
5.3.2 Synthetic data

We propose to validate the efficiency of the KPL estimators on a function-to-function
synthetic dataset. More precisely, we look at how different kinds of contamination of
the output functions affect the estimators. We now describe the generation process.

Experimental setting

Generation process. We draw r ∈ N independent zero mean Gaussian processes
(GP) with Gaussian covariance functions. More precisely, for t ∈ ⟦r⟧ the GP Vt has

covariance (θ1,θ2) 7→ exp
(
− (θ2−θ1)2

b2
t

)
. We then keep these GPs fixed. In practice, we

take r = 4 and b1 = 0.1, b2 = 0.25, b3 = 0.1 and b4 = 0.25. To generate an input/output
pair, we draw r coefficients a ∈Rr i.i.d. according to a uniform distribution U

(
[−1,1]

)
.

Let B4 denote the cardinal cubic B-spline (de Boor, 2001); it is symmetric around ξ = 2
and of width 4. Let then B̄4 : ξ 7→ B4(4ξ + 2) (a centered version of B4 rescaled to have
width 1). We consider the input function x(ξ) :=

∑r
t=1 atB̄4(ξ − t) with ξ ∈ [0,5]. To
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Figure 5.4: Comparison of KPL estimators with other nonlinear FOR methods for
different types of corruption.

it we associate the output function y(θ) =
∑r
t=1 atVt(θ) with θ ∈ [0,1]. In practice, we

observe x and y on regular grids of size 200. For the experiments with missing data,
we remove sampling points from these grids. Finally we add Gaussian noise on the
input observations with standard deviation σx = 0.07 in all experiments. Examples
of data generated that way with a Gaussian noise of standard deviation σy = 0.1 are
shown in Figure 5.3.

Corruption modalities. We study the effect of four types of corruptions of the train-
ing data: local outliers, label noise, missing observations and local noise. In the first
case, observations from the output functions are replaced with random draws in their
range. To precise that notion, let a = mini∈⟦n⟧,s∈⟦mi⟧ ỹis and let b = maxi∈⟦n⟧,s∈⟦mi⟧ ỹis,
then we draw the local outliers uniformly in the interval [a,b]. In the second case,
some output functions are replaced with erroneous ones. More precisely, consider a
portion τ ∈ [0,1] of contaminated output functions. Then, we draw uniformly at ran-
dom ⌊τn⌋ indices from ⟦n⟧. Among that set of indices, we randomly swap the output
functions. In the third case we remove observations from the output functions uni-
formly at random. Finally, in the last one we add Gaussian noise to these observations.

Procedure and parameters. In this set of experiments, we compute the means over 10
runs with different train/test split. For all methods, we chose through cross-validation
the regularization parameter, the parameter(s) of the kernel and the dictionary if rel-
evant. For KPL estimators, we take K = kI with k a scalar-valued Gaussian kernel and
use a truncated Fourier basis. For 3BE, we use truncated Fourier bases as both input
and output dictionaries and a Gaussian kernel. For KAM, we use a separable product
of three Gaussian kernels (see Section 4.4.2 for more information on the particular
kernel used for this method). Finally for FKRR, we use a Gaussian kernel as input ker-
nel and Laplacian kernel as output kernel. To go further, note that we detail further
all the parameters considered as well as the experimental procedure in Appendix A.1.

Comments on the results

The evolution of the MSEs for several levels of corruption are displayed in Figure 5.4.
Looking at the two top panels, we observe that logcosh-KPL is robust to both types of
outliers. This is not surprising given that the logcosh loss mimics the absolute value
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loss for large deviations whereas all the other benchmarked methods are based on
the quadratic loss which is known to be sensitive to outliers. This robustness comes
however at the price of a higher computational complexity–see Example 5.20. Another
interesting point is that the ridge estimator stemming the problem posed using the
available observations(ridge-iter-KPL, solution to Problem 5.33) is significantly more
robust than the plug-in ridge estimator.

On the bottom left panel of Figure 5.4, we observe that FKRR is the most robust
method when observations are missing. When a reasonable number of observations is
missing, it actually improves its performances slightly, even though one must keep in
mind that the MSE is in logarithmic scale. Both KPL estimators obtained from solving
a problem readily posed with missing observations (ridge-iter-KPL, logcosh-KPL) are
also much more robust than the dictionary-based methods which use the true Gram
matrix of the dictionary (ridge-plug-KPL, 3BE). This is not surprising since as high-
lighted in Equation (5.29), for these methods to work, the empirical approximation of
the Gram matrix of the dictionary must be close to the true one. If the locations of
observation of the functions are two sparse, such assumption is not reasonable any-
more, and we do observe a radical degradation of the performance as more and more
observations are missing.

Finally, regarding local Gaussian noise added to the output functions, dictionary based
methods (ridge-plug-KPL, ridge-iter-KPL, logcosh-KPL and 3BE) are much more effi-
cient. This is probably due to the fact that the noise’s distribution is centered. In these
methods, the output functions appear through scalar products with elements of the
dictionary, thus the noise can be partially evened-out.

5.3.3 Diffusion tensor imaging dataset (DTI)

Dataset. We now consider the DTI dataset.1. It consists of 382 Fractional anisotropy
(FA) profiles inferred from DTI scans along two tracts–corpus callosum (CCA) and
right corticospinal (RCS). The scans were performed on 142 subjects; 100 multiple
sclerosis (MS) patients and 42 healthy controls. MS is an auto-immune disease which
causes the immune system to gradually destroy myelin (the substance which isolates
and protects the axons of nerve cells). It gradually results in brain lesions and severe
disability. FA profiles are frequently used as an indicator for demyelification which
causes a degradation of the diffusivity of the nerve tissues. The latter process is how-
ever not well understood and does not occur uniformly in all regions of the brain. We
thus propose here to use our method to try to predict FA profiles along the RCS tract
from FA profiles along the CCA tract. So as to remain in an i.i.d. framework, we con-
sider only the first scans of MS patients resulting in n = 100 pairs of functions. The
functions are observed on regular grids of sizes 93 and 54 respectively for the CCA
and RCS tracts. However, significant parts of the FA profiles along the RCS tract are
missing, we are thus dealing with sparsely sampled functions. Examples of instances
from this dataset are shown in Figure 5.5.

Experimental setting. The reported means and standard deviations are computed
over 20 runs with different train/test split. For all methods (except KE) we center the
output functions using the training examples and add back the corresponding mean
to the predictions. We perform linear smoothing if necessary–for FKRR and KAM.

1This dataset was collected at Johns Hopkins University and the Kennedy-Krieger Institute and is
freely available as a part of the Refund R package
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Figure 5.5: Examples from the DTI dataset.

Table 5.1: MSEs on the DTI dataset.

KE 0.231 ± 0.025
3BE 0.227 ± 0.017
KAM 0.222 ± 0.021
FKRR 0.215 ± 0.020

Ridge-KPL 0.211 ± 0.022
Logcosh-KPL 0.209 ± 0.020

We split the data as ntrain = 70 and ntest = 30. For the dictionary-based methods (KPL
and 3BE), we use wavelet dictionaries. More precisely, we consider several families
of Daubechies wavelets (Daubechies, 1996)–see also Section 3.2.1. For KPL, we take a
kernel of the form K = kXD with kX a Gaussian kernel and D a diagonal matrix with
diagonal decreasing with the corresponding wavelet scale. When using wavelets, we
extend the signal symmetrically to avoid boundary effects. For all methods we select
through cross-validation the regularization parameter, the dictionary when relevant
and the parameters of the output kernel for FKRR as well as all the parameters of the
product of Gaussian kernels used for KAM. To go further, note that we detail all the
parameters considered as well as the experimental procedure in Appendix A.2.

Comments on the results. The studied methods perform almost equally well, with a
slight advantage for KPL estimators. The combination of an efficient use of wavelets
(well suited to non-smooth data) with the scale-dependent regularization induced by
the kernel K = kD may explain this.

5.3.4 Synthetic speech inversion dataset

Experimental setting

Dataset. We consider a speech inversion problem: from an acoustic speech signal, we
estimate the underlying vocal tract (VT) configuration that produced it (Richmond,
2002). Such information can improve performance in speech recognition systems or in
speech synthesis. The dataset was introduced by Mitra et al. (2009); it is generated by a
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Figure 5.6: Examples from the speech dataset.

software synthesizing words from an articulatory model. It consists of a corpus of n =
413 pronounced words with 8 distinct VT functions: lip aperture (LA), lip protrusion
(LP), tongue tip constriction degree (TTCD), tongue tip constriction location (TTCL),
tongue body constriction degree (TBCD), tongue body constriction location (TBCL),
Velum (VEL) and Glottis (GLO). We give some examples from this dataset in Figure 5.6
displaying only two of the VT functions.

Procedure and parameters. To match words of varying lengths, we extend symmet-
rically both the input sounds and the VT functions matching the longest word. We
represent the sounds using 13 mel-frequency cepstral coefficients (MFCC), the input
data thus consist of vector-valued functions. We split the data as ntrain = 300 and
ntest = 113. We normalize the output functions so that they take their values in [−1,1].
To deal with the vector-valued functional inputs, we use an integral of Gaussian ker-
nels on the standardized MFCCs (KPL, FKRR, 1BE/KPL)–see Equation (5.39). For
KAM we take Laplace kernels for both input and output locations, and use a Gaussian
kernel defined on R

13 to compare the evaluations of the standardized MFCCs. More
precisely, the input data consist of matrices in R

m×13 (here the number of discretiza-
tion points is the same for the input and for the output functions, so we have t = m
discretization points for the MFCCs). These correspond to discrete observations from
R

13-valued functions. Let (x̃i)
n
i=1 be these observations of the discrete MFCCs, where

for all i ∈ ⟦n⟧, x̃i ∈Rm×13.

We now give the formula for the kernel that we use for ridge-DL-KPL, 1BE/ridge-
Four-KPL and FKRR. Its integral expression is:

(x1,x2) 7−→
∫

[0,1]
exp

−∥x2(ξ)− x1(ξ)∥2
R

13

σ2

dξ.
However, in practice, we approximate it using the discrete MFCCs.

(x̃1, x̃2) 7−→ 1
m

m∑
s=1

exp

−∥x̃2s − x̃1s∥2
R

13

σ2

 . (5.39)

For KAM, we use the kernel defined on
(
[0,1]× [0,1]×R13

)2
by:
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Figure 5.7: MSEs and CPU times on the speech dataset.

((θ1,ξ1,u1), (θ2,ξ2,u2)) 7−→ exp

−|ξ1 − ξ2|
σ1

exp

−|θ1 −θ2|
σ2

exp

−∥u1 −u2∥2
R

13

σ2
3

 .
(5.40)

Let us also give more details on the normalization of MFCCs.They are of different
magnitudes, therefore we want to avoid biasing the norms to be over-representative of
the larger ones. Thus before we apply the kernels described above, we standardize the
MFCCs using the training data. For the r-th MFCC, we set avg(r) := 1

ntrainm

∑ntrain
i=1

∑m
s=1 x̃

(r)
is

and std(r) :=
√

1
ntrainm−1

∑ntrain
i=1

∑m
s=1(x̃(r)

is − avg(r))2, and use as input data

( x
(r)
i

std(r)

)13

r=1

ntrain

i=1

.

The MSEs for the 8 VTs (left panel) as well as an analysis of the computation times
(right panel) are displayed in Figure 5.7. Pre-process entails all pre-processing oper-
ations (e. g. computing the kernel matrices, learning the dictionary, computing the
Gram matrix of φ), fit measures the fitting time per se (solving the relevant linear
system) and predict measures the prediction time on the test set (for all methods, it
entails computing new kernel matrices). ridge-DL-KPL is the KPL ridge estimator
with φ learnt by solving a discretized vanilla dictionary learning with sparsity indu-
cing penalty–see the second part of Section 3.2.3. 1BE/ridge-Four-KPL corresponds
to 1BE (or equivalently KPL with K = kI) with φ a Fourier family. To give an order of
idea, we use 30 atoms for the learnt dictionaries while the numbers of atoms selected
by cross-validation for the Fourier ones are around 100. We do not include KE in the
figure as it performed poorly on this dataset. To go further, note that we detail further
all the parameters considered as well as the experimental procedure in Appendix A.3.

Comments on the results

For 4 out of 8 VTs (LP, LA, TBCD, TTCL), the performances of the methods are com-
parable, with KAM being slightly more precise. On the remaining 4 VTs, ridge-DL-
KPL, 1BE/ridge-Four-KPL and FKRR beat KAM on one (VEL) and are beaten by KAM
on the 3 others (TBCL, GLO, TTCD). A possible explanation is that KAM predicts loc-
ally the functions while the other three methods have more of a global approach. De-
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pending on the properties of the functions and the nature of the dependency between
input and output functions, one or the other could be more favorable. However
KAM’s main weakness is its computational cost for pre-processing and prediction,
which makes it impractical to use on medium-sized datasets and impossible to use
on larger ones. The particularly time-consuming operation in question is the compu-
tation of the kernel matrices in Equation (4.21) and Equation (4.22) for each of their
entries involve double integrals. The three other methods display very close MSEs,
with 1BE/ridge-Four-KPL being a bit less precise than the two others. Ridge-DL-KPL
and FKRR perform equally well. However for the former the main computational
burden comes from a pre-processing operation (learning the dictionary), which is per-
formed only once per dataset (or once per fold in a cross-validation); whereas for the
latter it comes from fitting the method, which must be done many times so as to tune
its parameters. Moreover for Ridge-DL-KPL, once a number of atoms yielding a good
approximation has been found and the dictionary has been learnt, no further tun-
ing must be performed for the outputs, whereas for FKRR an output kernel must be
chosen.

5.4 Conclusion

We have introduced the framework of projection learning to solve regression prob-
lems with outputs in a separable Hilbert space. It exploits the representation power
of dictionaries directly in the empirical risk minimization problem and therefore cir-
cumvent the issues linked to infinite-dimensional outputs. We then focused on the
use of vv-RKHSs as a hypothesis class and introduced kernel projection learning, for
which we proposed several estimators. Among those, we derived two in closed-form.
A ridge estimator for Hilbert-valued regression, and the plug-in ridge estimator for
functional output regression with partially observed functions. We proposed efficient
computation strategies for these estimators. We showed as well that our proposed
estimators work well experimentally, in comparison with other nonlinear functional
output regression methods. However, we have not studied those estimators theoret-
ically. This is therefore the object of the next chapter, in which we provide an excess
risk analysis of the ridge and plug-in ridge estimators.
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In this chapter, we focus on a theoretical analysis of two estimators that we proposed
in the previous chapter. More precisely, we work on bounding their excess risk. This
quantity measures in terms of expected ("true") risk, how far away an estimator is
from the infimum in the chosen hypothesis class. In other words, it quantifies the
efficiency of an estimation procedure in terms of risk. It is then desirable to exhibit
the dependency of the excess risk bound with respect to quantities of interest such
as the number of samples or the number of observations per function in the case of
FOR. First, in Section 6.1 we study the ridge estimator introduced in Proposition 5.13
considering outputs lying in a separable Hilbert space Y . To improve overall clarity,
the corresponding proof is deferred to Section 6.2. Second, in Section 6.3 we study
the plug-in ridge estimator introduced in Definition 5.18 using the empirical mean
to estimate the scalar products in L2(Θ) with Θ a compact set. We make the assump-
tion that the functions are observed at locations drawn uniformly at random on Θ.
The proof of the bound being once again deferred to the dedicated Section 6.4. This
chapter corresponds to the theoretical contributions of

• D. Bouche, M. Clausel, F. Roueff and F. d’Alché-Buc. Nonlinear Functional Out-
put Regression: A Dictionary Approach. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 235–243, 2021,

which were not included in Chapter 5.
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6.1 Excess risk bound for the ridge estimator

In order to derive theoretical results, we need to make stronger assumptions on the
input spaceX than in previous chapters. Up to now it was any space on which a kernel
can be defined. Here we make the following assumption which also circumvent any
concerns regarding measurability.

Assumption 6.1. X is a separable metric space.

Other than that, the first assumption we make regards the kernel. More precisely,
we suppose that it is bounded and continuous. The assumption of boundedness is
used extensively in the proofs, especially in conjunction with the following lemma
(see e.g. Micchelli and Pontil 2005).

Lemma 6.2. Let HK be a vv-RKHS on R
d associated to a positive matrix-valued kernel K.

Then we have for all x ∈ X :

∥h(x)∥
R
d ≤ ∥h∥HK

∥K(x,x)∥1/2L(Rd ).

Additionally, since for all x ∈ X , h(x) = K#
xh, this implies that

∥Kx∥L(Rd ,HK) = ∥K#
x∥L(HK,Rd ) ≤ ∥K(x,x)∥1/2L(Rd ). (6.1)

Remark 6.3. The boundedness assumption is not very restrictive. Indeed, if we were con-
sidering the case of Hilbert-valued regression using OVK onY , it would be. However, thanks
to the projection on a dictionary, K is an OVK on R

d , which is therefore finite dimensional.

The continuity assumption is a way to transfer the separability of the input space X to
the vv-RKHSHK. It is crucial because the concentration inequalities in Hilbert spaces
that we use require separability.

Assumption 6.4. K is a vector-valued continuous kernel and there exists κ > 0 such
that for x ∈ X , ∥K(x,x)∥L(Rd ) ≤ κ.

Remark 6.5. We suppose that κ is independent from d. This is for instance the case if for
x ∈ X , K(x,x) is diagonal or block diagonal with bounded coefficients. More generally, we
can rely on the fact that κ is bounded by the maximal ∥ · ∥1-norm of the columns of K(x,x),
which can easily be imposed to be independent of d.

Next, we highlight useful bounds on the operator norm of the projection operator as
well as on that of its adjoint and that of its associated Gram matrix.

Lemma 6.6. Let φ := (φ1, ...,φd) ∈ Yd , and let Φ be its associated projection operator–see
Equation (5.5). Then

∥Φ∥L(Rd ,Y ) =
√
υ1, (6.2)

∥Φ#∥L(Y ,Rd ) =
√
υ1 and (6.3)

∥Φ#Φ∥L(Rd ) = υ1, (6.4)

where υ1 corresponds to the largest eigenvalue of the Gram matrix of the dictionary Φ#Φ .
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Proof

sup
a∈Rd

∥Φa∥2Y
∥a∥2

R
d

=
aTΦ#Φa

aTa
.

This is the Rayleigh quotient associated to Φ#Φ therefore it is maximized by the largest
eigenvalue of Φ#Φ which we call υ1. Consequently,

∥Φ∥L(Rd ,Y ) =
√
υ1.

Since the operator Φ is bounded, ∥Φ#∥L(Y ,Rd ) = ∥Φ∥L(Rd ,Y ) implying Equation (6.6). Fi-
nally a similar reasoning with the Rayleigh quotient of (Φ#Φ)2 leads to Equation (6.7).

We see that this bound is not very informative, and consequently, to better understand
it, we will need to make further assumptions on the dictionary. An interesting notion
is that of Riesz families (Casazza, 2000).

Definition 6.7 (Riesz family). φ ∈ Yd is a Riesz family of Y with constants (cφ,Cφ) if it
is linearly independent and for any u ∈Rd ,

cφ ∥u∥Rd ≤
∥∥∥∥ d∑
l=1

ulφl

∥∥∥∥Y ≤ Cφ ∥u∥Rd .

If in addition for all l ∈ ⟦d⟧, ∥φl∥Y = 1, it is a normed Riesz family.

Remark 6.8. Riesz families provide a natural generalization of orthonormal families as a
normed Riesz family with cφ = Cφ = 1 is orthonormal.

Remark 6.9 (Dependence of υ1 in d). Intuitively, the more redundant the dictionary,
the worse the dependency of υ1 in the number of atoms. Two extreme cases can help us
understand this.

1. If φ is an orthonormal family in Y , then Φ#Φ = I and therefore Cφ = 1.

2. If φ is a Riesz family, we have that υ1 ≤ C2
φ and therefore it is not dependent on d

either.

3. By opposition, if φ consists of d-times the same vector, supposing this vector’s norm
is equal to 1, Φ#Φ’s largest eigenvalue is d.

In the following, we make the proof assuming that the dictionary is a Riesz basis, but
one must keep in mind that all the results remain valid if we replace the corresponding
constant with the largest eigenvalue of the Gram matrix of the dictionary. However,
as highlighted above it may hide a dependency in d.

Assumption 6.10. The dictionary φ is a normed Riesz family in Y with upper con-
stant Cφ.

Then combining Lemma 6.6 with Definition 6.7 readily yields the following lemma.
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Lemma 6.11. Let φ = (φ1, ...,φd) ∈ Yd , and let Φ be its associated projection operator–see
Equation (5.5). Then

∥Φ∥L(Rd ,Y ) ≤ Cφ, (6.5)

∥Φ#∥L(Y ,Rd ) ≤ Cφ, and (6.6)

∥Φ#Φ∥L(Rd ) ≤ C2
φ, (6.7)

where Cφ corresponds to the largest eigenvalue of the Gram matrix of the dictionary Φ#Φ .

We also assume that the infimum of the expected risk over the hypothesis class is at-
tained. Such a hypothesis is used in many works on learning theory for kernel meth-
ods (Caponnetto and De Vito, 2007; Baldassarre et al., 2012; Li et al., 2021). It is
worth noting also that our hypothesis class consists of compositions of a function in
a vv-RKHS with the projection on a dictionary, therefore the choice of the dictionary
determines the possible models as well.

Assumption 6.12. There exists hHK
∈ HK such that R(Φ ◦ hHK

) = infh∈HK
R(Φ ◦ h).

This implies the existence of a ball of radius R > 0 in HK containing hHK
, as a con-

sequence
∥hHK

∥HK
≤ R. (6.8)

Finally, we suppose that the distribution ρ of the couple of random variables (X,Y)
generates almost surely elements of Y with finite norm.

Assumption 6.13. Let (X,Y) be distributed according to ρ. We suppose that there
exists L ≥ 0 such that almost surely

∥Y∥Y ≤ L.

Under those assumptions, the following finite sample excess risk bound for the ridge
estimator defined in Proposition 5.13 holds.

Proposition 6.14. Let 0 < η < 1, then taking λ = λ∗n(η/2) := 6κC2
φ

log(4/η)
√
d

√
n

, we have
that with probability at least 1− η,

R(Φ ◦ hλz )−R(Φ ◦ hHK
) ≤ 27

 B0√
d

+B1

√
d

 log
(

4/η
)

√
n

,

where we have defined the constants B0 := (L+
√
κCφR)2 and B1 := κC2

φR
2.

This bound implies the consistency of the ridge estimator in the number of samples n.

Sketch of proof. The scheme of proof is essentially the one we presented in Sec-
tion 2.2.3. It mostly bounds the difference between specific integral operators related
to the ridge regression and their empirical counterparts (Caponnetto and De Vito,
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2007). In practice, the proof will proceed as follows. The ridge estimator is reformu-
lated in terms of empirical operators and the excess risk R(Φ ◦ h) −R(Φ ◦ hHK

) as a
distance ∥

√
TΦ (h − hHK

)∥2HK
in the vv-RKHS HK for an operator TΦ ∈ L(HK). The ex-

pression of the ridge estimator is then injected into this distance. The technical part
of the proof consists in separating judiciously the resulting quantity in different terms
which involve distances between operators and their empirical approximations. These
terms can then be bounded with high probability using concentration inequalities in
separable Hilbert spaces.

6.2 Proof of the bound for the ridge estimator

This section is dedicated to proving Proposition 6.14. In Section 6.2.1 we introduce
operators of interest and reformulate the excess risk using these. We then formu-
late empirical approximations of these operators using the available data and derive
closed-form solution for the ridge estimators in terms of these empirical operators in
Section 6.2.2. Section 6.2.3 is dedicated to the introduction and proof of several con-
centration results and lemmas on which we rely. Section 6.2.4 puts all the elements
together to prove Proposition 6.14.

6.2.1 Integral operators and excess risk reformulation

Let us recall the expression of the expected and empirical risks for kernel projection
learning. For a function h ∈ HK, the expected risk of the function Φ ◦ h is

R(Φ ◦ h) =
∫
Y
∥y −Φh(x)∥2Ydρ(x,y). (6.9)

Since we do not have access to the generating measure ρ, but rather to a finite sample
z, we minimize the empirical risk as a proxy

R̂(Φ ◦ h,z) :=
1
n

n∑
i=1

∥yi −Φ ◦ h(xi)∥2Y . (6.10)

Remark 6.15. Indeed, for the definition of the expected risk–Equation (6.9)–to make sense,
the corresponding integral must be finite. It is the case here because ((x,y) 7→ Φh(x)) ∈
L2(Z,ρ,Y ) as a consequence of Assumption 6.4 and Equation (6.6); ((x,y) 7→ y) ∈ L2(Z,ρ,Y ))
as well as a consequence of Assumption 6.13.

We have used the notation L2(Z,ρ,Y ), we recall that it denotes the space of functions
from Z to Y which are square integrable with respect to the measure ρ, this space
being endowed with the scalar product

⟨ψ1,ψ2⟩ρ =
∫
Z
⟨ψ1(x,y),ψ2(x,y)⟩Y dρ(x,y),

and the associated norm ∥ · ∥ρ.

We now consider the following operator. It plays the same role as the canonical inclu-
sion operator defined in Equation (2.26), yet it encompasses additionally a mapping
through Φ . Essentially, we will follow the same process as in Section 2.2.3 using this
modified operator. More precisely, we define AΦ :HK −→ L2(Z,ρ,Y ) as
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AΦ : h 7→ AΦh with (AΦh) : (x,y) 7→ ΦK#
xh. (6.11)

Indeed, we can reformulate the expected risk in terms of AΦ for any h ∈ HK,

∥AΦh−Y ∥2ρ =
∫
Z
∥ΦK#

xh− y∥2L2(Θ) dρ(x,y)

=
∫
Z
∥Φh(x)− y∥2L2(Θ) dρ(x,y)

=R(Φ ◦ h).

(6.12)

From this operator, we define TΦ as

TΦ := A#
ΦAΦ . (6.13)

In order to reformulate the excess risk later, we derive the following necessary condi-
tion to be a minimizer of the expected risk involving the operators TΦ and AΦ .

Lemma 6.16. Assume that there exists hHK
∈ HK such that

hHK
= inf
h∈HK

R(Φ ◦ h).

Then, for all h ∈ HK,
⟨h,TΦhHK

−A#
ΦY ⟩HK

= 0; (6.14)

or equivalently:
TΦhHK

= A#
ΦY , (6.15)

with Y ∈ L2(Z,ρ,Y ) denoting the function Y : (x,y) 7−→ y.

Proof We use the formulation of the expected risk from Equation (6.12). The function
h 7−→R(Φ ◦ h) = ∥AΦh−Y ∥2ρ is convex. Its differential is given by

DR(Φ◦hHK
)(h) = 2⟨AΦh,AΦhHK

−Y ⟩ρ = 2⟨h,A#
ΦAΦhHK

−A#
ΦY ⟩HK

= 2⟨h,TΦhHK
−A#

ΦY ⟩HK
.

We then must have for all h ∈ HK,

⟨h,TΦhHK
−A#

ΦY ⟩HK
= 0.

Note that Assumption 6.12 corresponds to the main hypothesis for this lemma. We
can use the formulation of the expected risk from Equation (6.12) in combination with
the characterization of hHK

in this lemma from Equation (6.14). It implies that for any
h ∈ HK, we can reformulate the excess risk of h as a distance in HK between h and hHK

taken through the operator TΦ .
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Lemma 6.17. We have that for any h ∈ HK,

R(Φ ◦ h)−R(Φ ◦ hHK
) = ∥

√
TΦ (h− hHK

)∥2HK
. (6.16)

Proof

R(Φ ◦ h)−R(Φ ◦ hHK
) = ∥AΦh−Y ∥2ρ − ∥AΦhHK

−Y ∥2ρ
= ∥AΦ (h− hHK

)∥2ρ + 2⟨AΦ (h− hHK
),AΦhHK

−Y ⟩ρ
= ∥AΦ (h− hHK

)∥2ρ,

where we have used Equation (6.14). Since we have the following polar decomposition

AΦ = U
√

A#
Φ

AΦ = U
√

TΦ with U a partial isometry from the closure of Im(
√

TΦ ) onto
the closure of Im(AΦ ),

∥AΦ (h− hHK
)∥ρ = ∥U

√
TΦ (h− hHK

)∥ρ = ∥
√

TΦ (h− hHK
)∥HK

.

Such reformulation enables us to decompose the excess risk in terms that we can easily
control using concentration inequalities in Hilbert spaces.

6.2.2 Empirical approximations and closed form solutions

We now define empirical approximations of the operators AΦ and TΦ . Using these
approximations, we can derive a closed-form for the minimizer of the regularized
empirical risk. We utilize this closed-form to bound the excess risk in the subsequent
proof.

To define these approximations, we need to precise the integral expressions of A#
Φ

and TΦ . This is the object of the following lemma, which is almost a restatement of
Proposition 1 from Caponnetto and De Vito (2005). All the arguments in their proof
are readily verified in our case as well, consequently, we do not rewrite the proof here.

Let us define for all x ∈ X the operators Kx,Φ := KxΦ# and Tx,Φ := Kx,ΦK
#
x,Φ .

Lemma 6.18. For ψ ∈ L2(Z,ρ,Y ), the adjoint of AΦ applied to ψ is given by

A#
Φψ =

∫
Z
Kx,Φψ(x,y) dρ(x,y), (6.17)

with the integral converging in HK;

A#
Φ

AΦ is the Hilbert Schmidt operator on HK given by

A#
ΦAΦ = TΦ =

∫
X

Tx,Φ dρX(x), (6.18)

with the integral converging in L2(HK).

Empirical approximations of the operators AΦ and TΦ can then straightforwardly be
set as
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A#
x,Φw =

1
n

n∑
i=1

Kxi ,Φwi , w = (wi)
n
i=1 ∈ Y

n.

(Ax,Φh)i = K#
xi ,Φ

h = Φh(xi), h ∈ HK, ∀i ∈ ⟦n⟧.

Tx,Φ = A#
x,ΦAx,Φ =

1
n

n∑
i=1

Txi ,Φ .

Defining the regularized empirical risk of Φ ◦ h for any h ∈ HK as

R̂λ(Φ ◦ h,z) := R̂(Φ ◦ h,z) +λ∥h∥2HK

=
1
n

n∑
i=1

∥K#
xi ,Φ

h− yi∥2Y +λ∥h∥2HK
,

the following closed-form for its minimizer can be derived using the operators intro-
duced above.

Lemma 6.19. There exists a unique minimizer hλz of h ∈ HK 7−→ R̂λ(Φ◦h,z) which is given
by

hλz := (Tx,Φ +λI)−1A#
x,Φy. (6.19)

Proof Proposition 5.6 guarantees the existence of a minimizer. Since λ > 0, h 7−→
R̂λ(Φ ◦ h,z) is strictly convex, this minimizer is unique and is obtained by setting the
gradient to zero. The differential of the objective is given by

DR̂λ(Φ ◦ h0,z)(h1) =
2
n

n∑
i=1

⟨K#
xi ,Φ

h0 − yi ,K#
xi ,Φ

h1⟩Y + 2λ⟨h0,h1⟩HK

= 2
〈(1
n

n∑
i=1

Txi ,Φ +λ
)
h0 −

1
n

n∑
i=1

Kxi ,Φyi ,h1

〉
HK

= 2⟨(Tx,Φ +λI)h0 −A#
x,Φy,h1⟩HK

.

As a consequence, hλz is characterized by

(Tx,Φ +λI)hλz −A#
x,Φy = 0.

Since Tx,Φ is positive and λ > 0, (Tx,Φ +λI) is invertible and thus

hλz = (Tx,Φ +λI)−1A#
x,Φy.

We conclude therefore that hλz is the same object as the ridge estimator from Equa-
tion (5.19), only it is represented in terms of the operators introduced above. This is
needed to carry out an excess risk analysis.



114
CHAPTER 6. EXCESS RISK GUARANTEES FOR KERNEL PROJECTION

LEARNING

6.2.3 Concentration results

In this section, we derive concentration results we rely on to prove Proposition 6.14.
First, we provide a bound on the Hilbert-Schmidt norm of Tx,Φ which will be useful
to derive these results. Then, we introduce a Bernstein concentration inequality for
random variables in a separable Hilbert space as well as some other useful results.
Finally, we use these tools to derive the desired concentration lemma.

Bound on Hilbert-Schmidt norm of Tx,Φ

The closed-form in Lemma 6.19 brings out the key role of the operator Tx,Φ . Unsur-
prisingly, we will need concentration results on Tx,Φ in the final proof. An intermedi-
ate result to achieve this goal is to bound the Hilbert-Schmidt norm of Tx,Φ which is
the object of the next lemma.

For all x ∈ X , we recall the definition of the following operators

• Kx,Φ : Y −→HK is defined by Kx,Φ := KxΦ# with Kx as defined in Equation (5.9).

• Tx,Φ :HK −→HK is defined as Tx,Φ := Kx,ΦK
#
x,Φ .

Observe that Tx,Φ is of finite rank and positive. We can then deduce the following
bound on its Hilbert-Schmidt norm.

Lemma 6.20. Assume that there exists κ ≥ 0 such that for all x ∈ X ,

∥K(x,x)∥L(Rd ) ≤ κ, (6.20)

then for all x ∈ X ,

∥Tx,Φ∥L2(HK) ≤
√
dκC2

φ. (6.21)

Proof For all x ∈ X , Rank(Tx,Φ ) ≤ d. Let (el)
Rank(Tx,Φ )
l=1 be an orthonormal basis of

Im(Tx,Φ ). We complete it to (el)l∈N∗ an orthonormal basis of HK. Since Im(Tx,Φ ) is a
finite dimensional subspace of HK and Tx,Φ is self adjoint, we have that Im(Tx,Φ ) =
Ker(Tx,Φ )⊥. As a consequence, for all l > Rank(Tx,Φ ), Tx,Φel = 0, which implies

∥Tx,Φ∥2L2(HK) =
Rank(Tx,Φ )∑

l=1

⟨Tx,Φel ,Tx,Φel⟩HK
=

Rank(Tx,Φ )∑
l=1

⟨K#
xel ,Φ

#ΦK(x,x)Φ#ΦK#
xel⟩Rd .

Using Cauchy-Schwarz in the previous expression along with Equation (6.7), Equa-
tion (6.20) and Equation (6.1) we obtain

∥Tx,Φ∥2L2(HK) ≤ C
4
φκ

Rank(Tx,Φ )∑
l=1

∥K#
xel∥2Rd ≤ C4

φκ
2 Rank(Tx,Φ ) ≤ dC4

φκ
2,

which achieves the proof.
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Concentration tools

We now state a concentration inequality that we use to control the different terms in
our decomposition of the excess risk later on.

The following is a direct consequence of a Bernstein inequality for independent ran-
dom variables in a separable Hilbert space–see Proposition 3.3.1 in Yurinsky 1995 or
Theorem 3 in Pinelis and Sakhanenko 1986. It also corresponds to Proposition 2 in
Caponnetto and De Vito (2007, Proposition 2).

Lemma 6.21. Let ξ be a random variable taking its values in a real separable Hilbert space
K such that there exist H ≥ 0 and σ ≥ 0 such that

∥ξ∥K ≤
H
2

almost surely, and

E[∥ξ∥2K] ≤ σ2.

Let n ∈N and (ξ1, ...,ξn) be i.i.d. realizations of ξ. Let 0 < η < 1, then

P

[∥∥∥∥1
n

n∑
i=1

ξi −E[ξ]
∥∥∥∥K ≤ 2

(H
n

+
σ
√
n

)
log

2
η

]
≥ 1− η.

We will need in the final proof to deduce concentration properties of
√

Tx,Φ from con-
centration properties of Tx,Φ . To that end, the upcoming lemma is central. It cor-
responds to Theorem X.1.1 in Bhatia (1997) where it is stated for positive symmetric
matrices. However, their proof remains fully valid for positive bounded operators
defined on real separable Hilbert spaces.

Lemma 6.22. Let K be a real separable Hilbert space, let A,B ∈ L(K) be two positive oper-
ators. Then, we have

∥
√

A−
√

B∥L(K) ≤
√
∥A−B∥L(K).

Intermediate concentration results

We now use the different assumptions and intermediate results to derive intermediate
concentration results on different operators of interest which will be the cornerstone
of the proof of Proposition 6.14.

Lemma 6.23. Let 0 < η < 1, then with probability at least 1− η

∥A#
x,Φy−Tx,ΦhHK

∥HK
≤ δ1(n,η),

with δ1 defined as

δ1(n,η) := 6(
√
κCφL+κC2

φR)
log

(
2/η

)
√
n

. (6.22)

Proof Let us define the function ξ1 : Z −→ HK as ξ1 : (x,y) 7−→ Kx,Φ (y −ΦhHK
(x)) =

Kx,Φ (y −K#
x,ΦhHK

).

Observe that
1
n

n∑
i=1

ξ1(xi , yi) = A#
x,Φy−Tx,ΦhHK

,
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and using Equation (6.15), that

EX,Y∼ρ
[
ξ1(X,Y)

]
=

∫
Z
Kx,Φy dρ(x,y)−

∫
Z
Kx,ΦK

#
x,Φ dρ(x,y)

hHHK = A#
ΦY −TΦhHK

= 0.

The aim is now to apply the Bernstein inequality of Lemma 6.21 to the random vari-
able (RV) ξ1(X,Y). First, we have almost surely

∥ξ1(X,Y)∥HK
= ∥KX,Φ (Y−ΦhHK

(X))∥HK
≤ ∥KX,Φ∥L(L2(Θ),HK)∥Y−ΦhHK

(X))∥L2(Θ)

≤
√
κCφ(∥Y∥L2(Θ) + ∥K#

X,Φh∥L2(Θ))

≤
√
κCφ(L+

√
κCφR), (6.23)

where we have used the inequality ∥Kx,Φ∥L(L2(Θ),HK) = ∥K#
x,Φ∥L(L2(Θ),HK) ≤

√
κCφ. This is

an immediate consequence of Equation (6.5) and Equation (6.1), as well as Assump-
tion 6.13 and Assumption 6.12.

Equation (6.23) also implies

EX,Y∼ρ[∥ξ1(X,Y)∥2HK
] ≤ κCφ(L+

√
κCφR)2.

Hence we can apply Lemma 6.21, yielding that with probability at least 1− η,

∥A#
x,Φy−Tx,ΦhHK

∥HK
≤ (
√
κCφL+κC2

φR) log
(

2/η
)4
n

+
2
√
n


≤ 6(
√
κCφL+κC2

φR)
log

(
2/η

)
√
n

.

Lemma 6.24. Let 0 < η < 1, then with probability at least 1− η

∥Tx,Φ −TΦ∥L2(HK) ≤ δ2(n,d,η),

with δ2 defined as

δ2(n,d,η) := 6κC2
φ

log
(

2/η
)√
d

√
n

. (6.24)

Proof We introduce the function ξ2 : Z −→L2(HK) as ξ2 : x,y 7−→ Tx,Φ .

We have that

EX,Y∼ρ[ξ2(X,Y)] =
∫
X

Tx,Φ dρX(x) = TΦ .

And from Lemma 6.20, we have almost surely
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∥ξ2(X,Y)∥L2(HK) ≤ κC2
φ

√
d,

which implies as well

EX,Y∼ρ[∥ξ2(X,Y)∥2L2(HK)] ≤ κ
2C4

φd.

Since K is continuous and X is separable,HK is separable. As a consequence the space
L2(HK) is also separable, we can thus apply Lemma 6.21, yielding that with probabil-
ity at least 1− η,

∥Tx,Φ −TΦ∥L2(HK) ≤ κC2
φ

√
d log

(
4/η

)4
n

+
2
√
n


≤ 6κC2

φ

√
d

log
(

2/η
)

√
n

.

Lemma 6.25. Let 0 < η < 1, then with probability at least 1−η the two following inequal-
ities hold:

∥A#
x,Φy−Tx,ΦhHK

∥HK
≤ δ1(n,η/2)

∥Tx,Φ −TΦ∥L2(HK) ≤ δ2(n,d,η/2),

with δ1 and δ2 defined respectively in Equation (6.22) and Equation (6.24).

Proof This is a union bound using Lemma 6.23 and Lemma 6.24.

6.2.4 Final proof

We are now ready to prove Proposition 6.14. We follow the same proof strategy as
(Baldassarre et al., 2012). To that end, we first prove the following intermediate pro-
position of which Proposition 6.14 is a direct consequence.

Proposition 6.26. Let 0 < η < 1, provided λ is taken such that

λ ≥ 6κC2
φ

log
(

4/η
)√
d

√
n

= δ2(n,d,η/2), (6.25)

we have with probability at least 1− η that

R(Φ ◦ hλz )−R(Φ ◦ hHK
) ≤ 9

2


36(
√
κCφL+κC2

φR)2 log
(

4/η
)2

λn
+λR2

 . (6.26)
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Proof

We introduce hλ as
hλ := (Tx,Φ +λI)−1Tx,ΦhHK

. (6.27)

We consider the following decomposition of the risk using Equation (6.16),

R(Φ ◦ hλz )−R(Φ ◦ hHK
) = ∥

√
TΦ (hλz − hHK

)∥2HK

≤ 2∥
√

TΦ (hλz − hλ)∥2HK
+ 2∥

√
TΦ (hλ − hHK

)∥2HK
. (6.28)

We first bound the term ∥
√

TΦ (hλz − hλ)∥HK
. Using the expression of hλz from Lemma

6.19, we have that

√
TΦ (hλz − hλ) =

√
Tx,Φ (Tx,Φ +λI)−1(A#

x,Φy−Tx,ΦhHK
) (6.29)

+ (
√

TΦ −
√

Tx,Φ )(Tx,Φ +λI)−1(A#
x,Φy−Tx,ΦhHK

).

For all a ≥ 0,
√
a

a+λ ≤
1

2
√
λ

, since Tx,Φ is positive. Hence, by spectral theorem we obtain

∥
√

Tx,Φ (Tx,Φ +λI)−1∥L(HK) ≤ max
a∈Sp(Tx,Φ )

√
a

a+λ
≤max
a∈R+

√
a

a+λ
≤ 1

2
√
λ
, (6.30)

where Sp(Tx,Φ ) denotes the spectrum of Tx,Φ .

Similarly, since for all a ≥ 0, 1
a+λ ≤

1
λ , we have as well

∥(Tx,Φ +λI)−1∥L(HK) ≤
1
λ
.

Taking the norm in Equation (6.29), applying Minkowski’s inequality and using Lemma
6.22 as well as the last two displays yields

∥
√

TΦ (hλz − hλ)∥HK
≤ ∥A#

x,Φy−Tx,ΦhHK
∥HK

 1

2
√
λ

+

√
∥TΦ −Tx,Φ∥L(HK)

λ

 . (6.31)

Now dealing with the term on the right-hand side in Equation (6.28), using the defin-
ition of hλ in Equation (6.27):

√
TΦ (hHK

− hλ) =
√

TΦ (I− (Tx,Φ +λI)−1Tx,Φ )hHK

= (
√

TΦ −
√

Tx,Φ )(I− (Tx,Φ +λI)−1Tx,Φ )hHK
(6.32)

+
√

Tx,Φ (I− (Tx,Φ +λI)−1Tx,Φ )hHK
.

Since for all a ≥ 0,
√
a
(
1− a

a+λ

)
=
√
aλ

a+λ ≤
1
2

√
λ, using the same arguments as in Equa-

tion (6.30) yields

∥
√

Tx,Φ (I− (Tx,Φ +λI)−1Tx,Φ )∥L(HK) ≤
1
2

√
λ.
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Moreover, since for all a ≥ 0, 1− a
a+λ = λ

a+λ ≤ 1, similarly we obtain

∥I− (Tx,Φ +λI)−1Tx,Φ∥L(HK) ≤ 1.

Thus, taking the norm in Equation (6.32), using Minkowski’s inequality, Lemma 6.22
and Equation (6.8) yields

∥
√

TΦ (hHK
− hλ)∥HK

≤ R
√
∥TΦ −Tx,Φ∥L(HK)

+
R
2

√
λ. (6.33)

Combining Equation (6.31) and Equation (6.33) with Lemma 6.25, for 0 < η < 1, we
have with probability at least 1− η

∥
√

TΦ (hλz − hλ)∥HK
≤ δ1(n,η/2)

 1

2
√
λ

+

√
δ2(n,d,η/2)

λ


∥
√

TΦ (hHK
− hλ)∥HK

≤ R
√
δ2(n,d,η/2) +

R
2

√
λ.

Using the condition on λ given by Equation (6.25), still with probability at least 1− η
it holds that

∥
√

TΦ (hλz − hλ)∥HK
≤ 3

2
√
λ
δ1(n,η/2), (6.34)

∥
√

TΦ (hHK
− hλ)∥HK

≤ 3R
2

√
λ. (6.35)

Combining Equation (6.34) and Equation (6.35) into Equation (6.28) yields that with
probability at least 1− η,

R(Φ ◦ hλz )−R(Φ ◦ hHK
) ≤ 9

2

δ1(n,η/2)2

λ
+R2λ

 .

In Proposition 6.26, we have a compromise in λ in the two terms. Taking λ = O
(

1√
n

)
yields the best compromise. So as to satisfy the condition from Equation (6.25), we

take λ = 6κC2
φ

log(4/η)
√
d

√
n

, which after simplifications in the constants yields Proposi-
tion 6.14.

6.3 Excess risk bound for the plug-in ridge estimator

In this section, we focus on the functional output regression case. More precisely, we
set Y = L2(Θ) with Θ ⊂R

b some compact set.
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Remark 6.27. For fully-observed functions, the excess risk bound in Proposition 6.14 ap-
plies provided the proper assumptions are verified, since indeed the space L2(Θ) is a separ-
able Hilbert space.

Suppose now we are in the partially-observed setting: we observe the output functions
at random locations distributed on Θ according to a probability measure µ. More
precisely, let us suppose that for all i ∈ ⟦n⟧, we observe the function yi at the locations
θi ∈Θm resulting in the observations ỹi ∈Rm. The observed sample has the form

z̃ := (xi , (θi , ỹi))
n
i=1.

We introduce the notation ỹ := (ỹi)
n
i=1 and highlight that since there is no added noise,

we have for all i ∈ ⟦n⟧
ỹi = (yi(θis))

m
s=1.

To simplify the exposition, we suppose that we are given the same number of obser-
vations m per function. We also assume that Θ is a normalized domain such that∫

Θ

1dθ = 1. (6.36)

We treat here the simplest eventuality for the distribution of the locations to benefit
from classic Monte Carlo convergence results: we suppose that µ is a uniform distri-
bution over Θ.

Assumption 6.28. µ is a uniform probability measure over the compact domain Θ.

Moreover, to derive the bounds, we need to make sure that the functions involved
are uniformly bounded on the domain Θ (in the almost sure sense for the output
functions). We therefore make the following additional assumptions.

Assumption 6.29. There exists M(d) ≥ 0 such that for all θ ∈ Θ and for all l ∈ ⟦d⟧,
|φl(θ)| ≤M(d).

We also make the same type of assumption on the observed functions in the almost
sure sense.

Assumption 6.30. There exists L ≥ 0 such that for all θ ∈Θ, almost surely

|Y(θ)| ≤ L.

Remark 6.31. This assumption is a bit stronger than Assumption 6.13 which we made to
derive the excess risk bound for outputs in a separable Hilbert space in Proposition 6.14.

Remark 6.32. The dependence in d is specific to the family to which φ belongs; for wave-
lets we have M(d) = 2r(Θ,d)/2 maxθ∈Θ |ψ(θ)| with ψ the mother wavelet and r(Θ,d) ∈N the
number of dilatations included in φ, whereas for a Fourier dictionary we have M(d) = 1.

We then have the following excess risk bound for the plug-in ridge estimator from
Definition 5.18.
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Proposition 6.33. Let 0 < η < 1 and take λ = λ∗n(η/3) := 6κC2
φ

log(6/η)
√
d

√
n

, then with
probability at least 1− η, we have that

R(Φ ◦ hλz̃ )−R(Φ ◦ hHK
) ≤

B2(d)
√
n

m2 +
B3(d)
m3/2

+
9C(d)2

2
√
nm

+
B4(d)
√
n

 log(6/η),

with C(d) := LM(d)
Cφ

, B2(d) := 18
√
d
(
C(d) + R√

d

)2
, B3(d) := B2(d)− 18 R2

√
d

,

B4(d) := 81
2

(
B0√
d

+B1
√
d
)

and B0 and B1 are defined as Proposition 6.14.

We highlight that if m ≍
√
n, then this bounds yields consistency for the plug-in ridge

estimator.

Sketch of proof. We use the same strategy as for proving Proposition 6.14, except
that we define an additional empirical approximation of the operator AΦ linked to
the fact that the output functions are partially-observed. Then when separating the
excess risk in different terms, this results in a third term which we control with high
probability leveraging the concentration of the empirical operator using the partial
observations to the one using the full output functions.

6.4 Proof of the bound for the plug-in ridge estimator

In Section 6.4.1, we reformulate the plug-in ridge estimator in terms of empirical ap-
proximations of the operators AΦ and TΦ using the partially observed functions. Then
in Section 6.4.2 we introduce and prove a concentration result for the term involving
the partial observations in our division of the excess risk. Finally Section 6.4.3 put
these different elements together along with results from Section 6.2 to prove Propos-
ition 6.33.

6.4.1 Reformulation of the estimator in terms of operators

For i ∈ ⟦n⟧, we recall the definition of the approximated projection operator Φ̃i at
locations θi given at the beginning of the chapter in Equation (5.28).

Φ̃i :

Rd → R
mi

a 7→
∑d
l=1 alφl(θi)

 ,
Let us recall also that the solution when the output functions are fully observed reads
(Lemma 6.19):

hλz = (Tx,Φ +λI)−1A#
x,Φy,

with

A#
x,Φw =

1
n

n∑
i=1

KxiΦ
#wi for w ∈ L2(Θ)

n
.
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We now consider that for i ∈ ⟦n⟧, the i-th output function is partially observed at
locations (θi)

n
i=1 and define an estimator in this setting. To that end let us introduce

the following operator

A#
x,Φ̃

w̃ =
1
n

n∑
i=1

Kxi
Φ̃#
i

m
w̃i with w̃ ∈Rn×m,

The solution we consider using partially observed functions is then

hλz̃ := (Tx,Φ +λI)−1A#
x,Φ̃

ỹ.

It is another equivalent expression in terms of operators for the plug-in ridge estim-
ator from Definition 5.18.

6.4.2 Concentration results

In this section, we prove an intermediate concentration result which bounds with high
probability the deviation between the ridge estimator (fully-observed functions) and
the plug-in ridge estimator (partially-observed functions). Then, using a union bound
this result can be combined with the two intermediate probabilistic bounds already
derived in Lemma 6.23 and Lemma 6.24. We can then prove the excess risk bound for
the case of partially-observed functions presented in Proposition 6.33.

Lemma 6.34. Let 0 < η < 1, then with probability at least 1− η

∥A#
x,Φ̃

ỹ−A#
x,Φy∥HK

≤ δ3(n,m,d,η),

with δ3 defined as

δ3(n,m,d,η) :=

4(L
√
κ
√
dM(d) +

√
κCφR)

m
+

2L
√
κ
√
dM(d)

√
n
√
m

 log(2/η). (6.37)

Proof Let us define the function ξ3 : X × L2(Θ)×Θ −→HK as

ξ3 : (x,y,θ) 7−→ y(θ)Kxφ(θ)−KxΦ#y.

The proof relies on the fact that

1
n

n∑
i=1

1
m

m∑
s=1

ξ3(xi , yi ,θis) =
1
n

n∑
i=1

Kxi
Φ̃#
i

m
ỹi −KxiΦ

#yi

= A#
x,Φ̃

ỹ−A#
x,Φy.

We recall the definition of the vector-valued function associated to the dictionary
which we introduced in Chapter 3:

φ :

Θ → R
d

θ 7→ (φ1(θ),φ2(θ), · · · ,φd(θ))T

 .
Let (Xi ,Yi)

n
i=1 be n i.i.d. RVs distributed according to the distribution ρ. Let (ϑis)

n,m
i=1,s=1

be nm i.i.d. RVs distributed according to the distribution µ. For all i ∈ ⟦n⟧ and for all
s ∈ ⟦m⟧ we then define the RVs Wis as
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Wis : = ξ3(Xi ,Yi ,ϑis)

= Yi(ϑis)KXiφ(ϑis)−KXiΦ
#Yi

= Yi(ϑis)KXiφ(ϑis)−E[Yi(ϑ)KXiφ(ϑ)|Xi ,Yi], (6.38)

where the last line holds because µ is the uniform distribution and because we have
assumed that |Θ| =

∫
Θ

1dθ = 1 in Equation (6.36).

We denote by P[.|z] the probability conditional on the realization of the sample z, thus

P[.|z] = P[.|Xi = xi ,Yi = yi , i ∈ ⟦n⟧]

Then, Equation (6.38) implies that E[Wis|z] = 0.

We define as well for all s ∈ ⟦m⟧,

Ws :=
1
n

n∑
i=1

Wis.

We have almost surely that

∥Ws∥HK
≤ 1
n

n∑
i=1

∥Wis∥HK
≤ 1
n

n∑
i=1

((|Yi(ϑis)|)∥KXiφ(ϑis)∥HK
+ ∥KXiΦ

#Yi∥HK
)

≤ L
√
κ
√
dM(d) +

√
κCφR.

We have used Assumption 6.30 and Assumption 6.29 as well as Equation (6.6).

Since for all s ∈ ⟦m⟧, the RVs (Wis)
n
i=1 are independent conditionally on z:

E[∥Ws∥2HK
|z] =

1
n2

n∑
i=1

E[∥Wis∥2HK
|z]. (6.39)

Using the fact that E[Yi(ϑis)KXiφ(ϑis)|z] = KxiΦ
#yi , the identity

E[∥U−E[U]∥2HK
] = E[∥U∥2HK

]

gives us

E[∥Wis∥2HK
|z] = E[∥Yi(ϑis)KXiφ(ϑis)∥2HK

|z]. (6.40)

Then using Equation (6.40) into Equation (6.39) along with Assumption 6.30 and As-
sumption 6.29

E[∥Ws∥2HK
|z] ≤ 1

n
L2κdM(d)2.

We can apply Lemma 6.21 to obtain
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P


∥∥∥∥∥∥ 1
m

m∑
s=1

Ws

∥∥∥∥∥∥HK

≤
4(L

√
κ
√
dM(d) +

√
κCφR)

m
+

2L
√
κ
√
dM(d)

√
n
√
m

 log(2/η)

∣∣∣∣∣∣z
 ≥ 1− η.

Multiplying the above inequality by P[z] and integrating over z ∈ Zn, yields

P


∥∥∥∥∥A#

x,Φ̃
ỹ−A#

x,Φy
∥∥∥∥∥HK

≤
4(L

√
κ
√
dM(d) +

√
κCφR)

m
+

2L
√
κ
√
dM(d)

√
n
√
m

 log(2/η)

 ≥ 1− η.

Lemma 6.35. Let 0 < η < 1, then with probability at least 1−η the three following inequal-
ities hold:

∥A#
x,Φy−Tx,ΦhHK

∥HK
≤ δ1(n,η/3) (6.41)

∥Tx,Φ −TΦ∥L2(HK) ≤ δ2(n,d,η/3) (6.42)

∥A#
x,Φ̃

ỹ−A#
x,Φy∥HK

≤ δ3(n,m,d,η/3), (6.43)

with δ1, δ2 and δ3 respectively defined as in Equation (6.22), Equation (6.24) and Equa-
tion (6.37).

Proof This Lemma is an union bound using Lemma 6.23, Lemma 6.24 and Lemma 6.34.

6.4.3 Final proof

We are now ready to prove Proposition 6.33. To do so we prove the following inter-
mediate result of which the proposition of interest is a direct consequence.

Proposition 6.36. Let 0 < η < 1, provided λ is taken such that

λ ≥ 6κC2
φ

log
(

6/η
)√
d

√
n

= δ2(n,d,η/3), (6.44)

we have with probability at least 1− η that

R(Φ ◦ hλz̃ )−R(Φ ◦ hHK
) ≤ 27

4


A0(d)2

λm2 +
2A0(d)A1(d)
λ
√
nm3/2

+
A1(d)2

λnm
+
A2

2
λn

 log(6/η)2 +λR2

 ,
(6.45)

with

A0(d) := 4(L
√
κ
√
dM(d) +

√
κCφR)

A1(d) := 2L
√
κ
√
dM(d)

A2 := 6(
√
κCφL+κC2

φR).
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Proof Taking hλ as in Equation (6.27), we consider the following decomposition of
the risk using Equation (6.16)

R(Φ ◦ hλz̃ )−R(Φ ◦ hHK
) = ∥

√
TΦ (hλz̃ − hHK

)∥2HK

≤ 3∥
√
TΦ (hλz̃ − h

λ
z )∥2HK

+ 3∥
√
TΦ (hλz − hλ)∥2HK

+ 3∥
√
TΦ (hλ − hHK

)∥2HK
.

(6.46)

We focus on the term on the left as we have already controlled the two others in the
proof of Proposition 6.26. Using the same strategy as for proving Equation (6.31), we
get that

∥
√
TΦ (hλz̃ − h

λ
z )∥HK

≤ ∥A#
x,Φ̃

ỹ−A#
x,Φy∥HK

 1

2
√
λ

+

√
∥TΦ −Tx,Φ∥L(HK)

λ

. (6.47)

Combining Equation (6.31), Equation (6.33) and Equation (6.47) with Lemma 6.35,
for 0 < η < 1, the three following inequalities are verified with probability at least 1−η

∥
√
TΦ (hλz̃ − h

λ
z )∥HK

≤ δ3(n,m,d,η/3)

 1

2
√
λ

+

√
δ2(n,d,η/3)

λ


∥
√

TΦ (hλz − hλ)∥HK
≤ δ1(n,η/3)

 1

2
√
λ

+

√
δ2(n,d,η/3)

λ


∥
√

TΦ (hHK
− hλ)∥HK

≤ R
√
δ2(n,d,η/3) +

R
2

√
λ.

Using the condition on λ given by Equation (6.44), still with probability at least 1−η:

∥
√
TΦ (hλz̃ − h

λ
z )∥HK

≤ 3

2
√
λ
δ3(n,m,d,η/3) (6.48)

∥
√

TΦ (hλz − hλ)∥HK
≤ 3

2
√
λ
δ1(n,η/3) (6.49)

∥
√

TΦ (hHK
− hλ)∥HK

≤ 3R
2

√
λ. (6.50)

Combining Equation (6.48), Equation (6.49) and Equation (6.50) into Equation (6.46)
yields that with probability at least 1− η:

R(Φ ◦ hλz̃ )−R(Φ ◦ hHK
) ≤ 27

4

(δ3(n,m,d,η/3)2

λ
+
δ1(n,η/3)2

λ
+R2λ

)
.

In Proposition 6.36, we have a compromise in λ. Taking λ = O
(

1√
n

)
yields the best one.

So as to satisfy the condition on λ–Equation (6.44)–we take λ = 6κC2
φ

log(6/η)
√
d

√
n

. After
simplifications in the constants we get Proposition 6.33.
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6.5 Conclusion

In this chapter, we have derived finite sample excess risk bounds for two estimators
that we have proposed in Chapter 5: the ridge estimator for outputs in a separable
Hilbert space, and the plug-in ridge estimator for functional output regression with
partially observed output functions. These bounds give us an idea of the estimation
error that is made compared to the best estimator in the hypothesis class predicting
coordinates in a dictionary using a vv-RKHS. Therefore, the approximation aspects
induced by the use of a dictionary are not tackled and are interesting extensions to
consider for future work. Another interesting aspect is that we just proved the con-
sistency and did not work to obtain optimal rates. Nevertheless, the proof technique
should remain valid overall. For future work, we could then make further assump-
tions on the generating distribution as in Caponnetto and De Vito (2007) and work to
adapt the proof.
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In this chapter, we introduce another approach to functional output regression (FOR).
We have hinted in Chapter 5 that extending the scope of this problem to other losses
is indeed desirable, for instance in the presence of outliers, to which the square loss is
known to be very sensitive. In the scalar-valued case, the Huber loss (Huber, 1964) can
be used to perform robust regression. Another desirable property is sparsity, which
the ϵ-insensitive loss is well known to induce (Drucker et al., 1996). We propose ex-
tensions of those losses to measure discrepancy between functions as convoluted losses.
These are expressed as infimal convolution between the ∥·∥2Y and either a p-norm term
(Huber loss) or an indicator function of the p-norm ball (ϵ-insensitive loss). Through
the parameter p, robustness to different kind of outliers or different kind of sparsity
can be achieved. Focusing on function-valued reproducing kernel Hilbert spaces (fv-
RKHSs) as hypothesis class, we investigate dual optimization of the associated em-
pirical risk minimization problem. However, the resulting dual variables are infinite
dimensional. This raises the question of how to represent the dual variables efficiently,
yet in a way that is compatible with the terms appearing in the dual problem. This
chapter corresponds to the contribution of
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We solve the challenges gradually. In Section 7.1, we introduce the global frame-
work of FOR with fv-RKHSs and infimal convoluted losses. Then, we focus on this
problem with the Huber losses in Section 7.2 and propose accelerated proximal gradi-
ent descent algorithms based on finite dimensional representations of the dual vari-
ables. Section 7.3 builds on the representations and results from the previous section
to propose similar algorithms for the ϵ-insensitive losses. Finally, in Section 7.4, we
investigate numerically several properties of the proposed losses and estimators on
three function-to-function regression benchmarks, while Section 7.5 provides some
concluding remarks.

7.1 Functional output regression with infimal convoluted
losses

First, let us briefly recall the problem of Hilbert-valued regression with a special focus
on FOR.

7.1.1 FOR with function-valued RKHSs

Let X and Y be random variables with values respectively in X and Y = L2(Θ,µ); the
space of square integrable functions on a given compact set Θ ⊂ R

b with respect to
µ a Borel probability measure. We want to estimate a prediction function on X that
is statistically coherent with the unknown distribution ρ of Z = (X,Y). We therefore
rely on an i.i.d. sample (xi , yi)

n
i=1 for inference. We then choose a hypothesis class of

function-valued functions G ⊂ F (X ,L2(Θ,µ)), a loss function on Y and minimize the
associated empirical risk. It is sometimes regularized to avoid overfitting. We refer
to Section 5.1.1 for a more detailed presentation regarding statistical learning with
empirical risk minimization.

We now choose an fv-RKHSHK associated to an operator-valued kernel (OVK) K on Y
as a hypothesis class. Let L : Y → R be a loss function (we consider here losses taking
as input the difference between two elements). If we take L(·) = ∥ · ∥2Y , then we get
the FOR problem in fv-RKHS HK proposed and studied in Lian (2007); Kadri et al.
(2010, 2016), we refer also to Section 4.2. The associated empirical risk minimization
problem is

inf
h∈HK

1
n

n∑
i=1

L(yi − h(xi)) +
λ
2
∥h∥2HK

. (7.1)

We will readily make the assumption that the kernel is separable of the form

K = kXTkΘ ,

where TkΘ ∈ L(Y ) is the integral operator associated to a kernel kΘ on Θ and to the
measure µ. We recall briefly its action on y ∈ Y :

(TkΘy)(θ1) =
∫
Θ

y(θ2)kΘ(θ1,θ2)dµ(θ2),
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for any θ1 ∈ Θ. We refer the reader to Section 2.1.2 for more details on this operator.
Note also, that it forces the predicted output functions to lie in HkΘ the RKHS of kΘ .
We invite the reader to go back to Example 2.34 and Remark 2.35 for precisions.

Problem 7.1 indeed benefits from the representer theorem (see Micchelli and Pontil
2005 or Theorem 2.36). Therefore, for any solution ĥ to Problem 7.1, there exists
α̂ ∈ Yn such that

ĥ =
1
λn

n∑
i=1

kX (·,xi)TkΘ α̂i .

However, this exhibits the core issue when dealing with fv-RKHSs: the variables
α ∈ Yn are infinite-dimensional. Therefore another layer of representation must be
added to make the problem solvable. As highlighted in Section 4.2.3, when L is the
square loss, a closed-form exists for the optimal α̂, however it involves the inversion of
an infinite dimensional operator. One must rely on approximation. On the one hand
in Lian (2007); Kadri et al. (2010), the integral operator is discretized upstream which
leads to a closed-form involving the inverse of a m ×m matrix, m being the number
of discretization points. On the other hand, Kadri et al. (2016) relies on a finite rank
approximation of the integral operator using its eigendecomposition to obtain a com-
putable expression for the approximate coefficients. We also refer to Section 4.2 for
more details.

7.1.2 Convoluted losses

Our aim in this chapter is to tackle Problem 7.1 for a wider family of losses. More
precisely, we focus on two aspects: robustness to outliers and sparsity in the model’s
coefficients, which are two desirable properties a loss function can enforce.

Robust functional data analysis. The square loss leads to an estimate of the condi-
tional expectation of the functional outputs given the input data. This is known to
be very sensitive to outliers, which can stem for instance from malicious attacks or
defective sensors. Several works in FDA have focused on various ways of dealing with
functional outliers.To robustly estimate the mean of a set of functions, Cadre (2001)
studies the estimation of the median for data lying in a Banach space. For functional
linear regression, Zhu et al. (2011) propose a robust and fully Bayesian functional
mixed-model, while Maronna and Yohai (2013) rely on a bounded loss function. An-
other alternative is introduced in Kalogridis and Van Aelst (2019) who combine a pre-
processing robust functional principal component analysis with multivariate robust
linear regression. It is also worth noting that the Huber loss has been used for func-
tional inputs and scalar outputs for nonparametric estimation (Crambes et al., 2008),
linear regression in Shin and Lee (2016) with an emphasis on theoretical properties,
and in the wider context of M-estimation in Qingguo (2017); Boente et al. (2020). An-
other approach to robustness is to detect the outliers downstream, remove them from
the dataset and then perform inference. We do not proceed this way, yet it is worth
mentioning that non-supervised algorithms exist to detect functional anomalies. For
instance, Nagy et al. (2017) leverage functional data depths to detect shape anomalies
in functions, while Staerman et al. (2019) introduce an extension of the isolation forest
algorithm (Liu et al., 2008) for functional data.
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Local and global outliers. However, when dealing with functions, outliers can take
many forms (Hubert et al., 2015). Among those varieties, the focus of this chapter
is on the distinction between local and global outliers. Local ones can for instance
be caused by defective sensors introducing irrelevant and/or extreme measurements,
but only at a few locations. Local outliers can stem from registration issues which
shift some functions, causing these to make no sense in their entirety compared to
normal functions. Malicious attacks could also deliberately introduce outliers of any
type. A possible scenario we experiment with is the addition of a minus sign to some
functions to corrupt the model greatly. This would lead to global outliers displaying
the same functional characteristics as normal functions.

Functional sparsity. Sparsity in the coefficients of the model is another desirable
property, especially in the context of kernel methods. If only a relatively low number
of coefficients is used, prediction is more efficient. Nevertheless for functions, sparsity
could mean many things. As for robustness, the notion of locality is also interesting
to consider. On the one hand, among the functional coefficients, few could be used,
resulting in global sparsity. On the other hand, the functional coefficients could them-
selves be null at a high number of locations of the domain Θ yielding local sparsity.

Convoluted losses. To design losses which can enforce either robustness or sparsity
in these ways for functional outputs, we investigate infimal convolutions (Defini-
tion 2.48) between the square norm ∥·∥2Y and a regularizing term depending on the ∥·∥p
norm which will encourage the estimator to have the desired property. This enables us
to extend the Huber loss as well as the smooth ϵ-insensitive loss (Lee et al., 2005) with
the parameter p ∈ N giving us control over the local/global aspect of either robust-
ness or sparsity. Several works have paved the way for the study of these losses. In the
OVK literature, ϵ-insensitive losses for vector-valued regression have been introduced
by Sangnier et al. (2017) for finite-dimensional outputs. They exploit parametric du-
ality, which thanks to the form of the losses results in a tractable dual problem. From
there they propose an efficient solver leading to data sparse estimators. For infinite
dimensional outputs, Laforgue et al. (2020) explore a generalization of this approach
encompassing both the Huber and the ϵ-insensitive losses. Our approach extends the
families of losses that they propose through the use of specific p-norms in functional
spaces, p acting as hinted earlier as a locality parameter. We also propose a new nu-
merical approach to the problem which is more flexible. Notably, the choice of OVK in
Laforgue et al. (2020) is restricted to separable ones for which an eigendecomposition
of the integral operator associated to the output kernel is known in closed-form (see
Section 2.1.2).

Now, let us define formally what a convoluted loss is.

Definition 7.1 (Convoluted loss). A convoluted loss has the form

L =
1
2
∥·∥2Y□g, (7.2)

for g : Y →]−∞,+∞] some function.

Problem 7.1 does enjoy a representer theorem, however we will rely here rather on the
framework of dualization (see Theorem 2.37) which additionally yields an equivalent
dual problem. In our case, this problem is easier to solve properly thanks to a property
of infimal convolution under the Fenchel-Legendre transform (see Proposition 2.50).
More precisely, we have that
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L⋆ =
1
2
∥ · ∥2Y + g⋆ . (7.3)

7.1.3 Learning with convoluted losses

From there, we can dualize Problem 7.1, this is a consequence of Theorem 2.37 which
was introduced and proved in Brouard et al. (2016).

Lemma 7.2. Let L = 1
2∥ · ∥

2
Y□g be a convoluted loss function for some g : Y →] −∞,+∞].

The solution to Problem 7.1 is given by

ĥ =
1
λn

n∑
i=1

kX (·,xi)TkΘ α̂i , (7.4)

with α̂ ∈ Yn being the solution to the dual problem

inf
α∈Y

n∑
i=1

(1
2
∥αi∥2Y − ⟨αi , yi⟩Y + g⋆(αi)

)
+

1
2λn

n∑
i=1

n∑
j=1

kX (xi ,xj )⟨αi ,TkΘαj⟩Y . (7.5)

Remark 7.3. Indeed, in our case, for all i ∈ ⟦n⟧, Lyi from Theorem 2.37 is

Lyi : y 7→ L(yi − y).

And since we have that for any function f : Y →R(
y 7→ f (yi − y)

)⋆
=

(
y 7→ ⟨y,yi⟩Y + f ⋆(−y)

)
,

using Equation (7.3), we do find the objective in Problem 7.5.

Problem 7.5 (dual) is more manageable than Problem 7.1 (primal). The search space
is reduced from HK to Yn with an explicit primal-dual link given by Equation (7.4).
It remains challenging though in several aspects. It is a composite problem, mean-
ing that the objective consists of the sum of a quadratic part (differentiable) and a
non-differentiable term, here g⋆ . Many algorithms have been proposed to solve these
efficiently, the main family being that of proximal algorithms (Parikh and Boyd, 2014).
They are applicable if we can compute the proximity operator of g⋆ fast enough (most
of the time it implies that it should be known in closed-form). For a brief introduc-
tion, we refer the reader to Section 2.3. This first difficulty will restrict the p-norms
we can consider. Another set of challenges comes from the functional dual variables
(αi)

n
i=1 ∈ Y

n. We must approximate these in finite dimension so as to solve the prob-
lem. A key issue being that the proximal operator of g⋆ may not be computable using
the finite dimensional representation.

Now with the general framework in place, the next section focuses on robust func-
tional regression with the Huber loss.

7.2 Robust FOR: learning with the functional Huber loss

We now introduce the generalized Huber loss on Y . The definition relies on functional
p-norms, which we extend so that they can be equal to +∞. Indeed, Y = L2(Θ,µ),
therefore, for p > 2, in general we cannot state that for y ∈ Y , ∥y∥p is finite.
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Figure 7.1: Huber losses on R and R
2.

∀y ∈ Y , ∥y∥p

 =

∫Θ y(θ)pdµ(θ)


1
p

if y ∈ Lp(Θ,µ),

= +∞ otherwise.

(7.6)

Remark 7.4. The possibility of the p-norm taking infinite values is not an issue since we
rely on a framework of convex optimization which allows for this; we just need to ensure
that the function is proper (i.e. not infinite over the whole set to optimize over). For more
precision we refer the reader to Section 2.3 and especially to Definition 2.42.

Our definition also relies on the classic notion of conjugate exponent which we recall.

Definition 7.5 (Conjugate exponent). Let p ∈ [1,+∞], the conjugate exponent of p is the
exponent q such that

1
p

+
1
q

= 1,
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with the convention that 1
+∞ = 0.

We can then define the Huber loss on Y .

Definition 7.6 (Y-Huber loss). Let κ > 0, p ∈ [1,+∞] and let q be the conjugate exponent
of p. We define the Huber loss with parameters (κ,p) as

H
p
κ :=

1
2
∥·∥2Y□κ∥ · ∥p. (7.7)

We display this loss for Y = R in Figure 7.1a and for Y = R
2 with p = 2 in Figure 7.1b

and p = 1 in Figure 7.1c. Similar figures for other values of p can be seen in Ap-
pendix B.7.

Remark 7.7. Setting Y = R, for any p, Hp
κ reduces to the Huber loss on the real line.

The following result gives a more explicit expression of Hp
κ , which can help us under-

stand its effect.

Proposition 7.8. Let κ > 0, p ∈ [1,+∞], and q the conjugate exponent of p. Then for all
y ∈ Y ,

H
p
κ (y) =

1
2
∥ProjBqκ(y)∥2Y +κ∥y −ProjBqκ(y)∥p.

Remark 7.9. For general p, the value of Hp
κ (y) can not be computed straightforwardly due

to the complexity of the projection on Bqκ. Note also that for p = 2, one gets back the loss
investigated by Laforgue et al. (2020).

The upcoming proposition is central to formulate the dual Problem 7.5 using the loss
H
p
κ . Indeed, the latter corresponds to the convoluted loss in Equation (7.2) setting

g = ∥ · ∥p, and therefore to formulate the dual problem, we must be able to compute
∥ · ∥⋆p. For finite dimensional Y , it is well known that ∥ · ∥⋆p = χ{Bq1} with q the conjugate
exponent of p–see e.g. (Bauschke and Combettes, 2017). However, to the best of our
knowledge, it has never been proved for infinite dimensional Y .

Proposition 7.10. Let p ∈ [1,+∞] and let q be its conjugate exponent. Then the Fenchel-
Legendre conjugate of ∥ · ∥p is given by

∥ · ∥⋆p = χ{Bq1},

where χ{Bq1} denotes the indicator function of the ball of radius 1 in Y taken with respect to
the q-norm.

The proofs for those two results (Proposition 7.8 and Proposition 7.10) are a bit tech-
nical, therefore we defer those respectively to Appendix B.2 and Appendix B.1.

Since we deal rather with balls of radius κ, we highlight the following direct implica-
tion of Proposition 7.10.

Corollary 7.11. Let κ > 0, let p ∈ [1,+∞] and let q be its conjugate exponent. Then the
Fenchel-Legendre conjugate of κ∥ · ∥p is given by

(κ∥·∥p)⋆ = χ{Bqκ}. (7.8)
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Table 7.1: Fenchel-Legendre properties, for any f ,g : Y → [−∞,+∞] and p,q ∈ [1,+∞]
such that 1

p + 1
q = 1.

Function Fenchel-Legendre conjugate
1
2∥·∥

2
Y

1
2∥·∥

2
Y

∥·∥p χ{Bq1}

ϵf ϵf ⋆( ·ϵ ) for all ϵ > 0

f (· − y) f ⋆ + ⟨·, y⟩Y for all y ∈ Y

f □g f ⋆ + g⋆

Proof Using the third line of Table 7.1 (see e.g. Bauschke and Combettes 2017, Pro-
position 13.23 (i)), we have that

(κ∥·∥p)⋆ = κ∥·∥⋆p(·/κ).

Then applying Proposition 7.10, removing the κ scaling (the indicator function either
equals 0 or +∞ and therefore is unchanged by multiplication by a strictly positive
scalar) and using the fact that χ{Bqκ} = χ{Bq1}(·/κ) conclude the proof.

We can now state the dual problem when the Huber loss is used.

Proposition 7.12 (Dual Huber). Let κ > 0, p ∈ [1,+∞] and let q be the conjugate
exponent to p. The dual of Problem 7.5 when using the Huber loss Hp

κ reads

inf
α∈Yn

n∑
i=1

(1
2
∥αi∥2Y − ⟨αi , yi⟩Y

)
+

1
2λn

n∑
i=1

n∑
j=1

kX (xi ,xj )⟨αi ,TkΘαj⟩Y

subject to ∥αi∥q ≤ κ, i ∈ ⟦n⟧.

(7.9)

Proof This is a direct combination of Lemma 7.2 and Corollary 7.11.

Influence of κ and p. In the dual problem, the use of Hp
κ imposes inequality con-

straints on the functional q-norm of the dual variables. We can understand why this
brings robustness as in the prediction formula–Equation (7.4)–, each dual variable is
associated with an observation. Therefore bounding in some sense the influence of
each on the final estimator should bring robustness. In this case, it is bounded in the
sense of the q-norm of the dual variables.

The parameter κ controls the strictness of the constraint, the lower, the stricter. Con-
sequently, as κ grows bigger, the constraints eventually becomes irrelevant and we
recover the solution to the classical function-valued ridge regression problem.

The parameter p controls the norm used to define the constraints, q being p’s conjug-
ate exponent. To get an intuition of how this may affect the estimator, the following
example takes a closer look at the case p = 1 (q = +∞).
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Example 7.13 (Robustness to local outliers). Let us take a look at Equation (7.4), which
we recall here:

ĥ =
1
λn

n∑
i=1

kX (·,xi)TkΘ α̂i .

In the extreme case of p = 1, we have q = +∞, meaning that the dual variables cannot be
greater than κ in absolute value for all θ ∈ Θ. For x ∈ X , the prediction at the location
θ ∈Θ is given by:

ĥ(x)(θ) =
1
λn

n∑
i=1

kX (·,xi)
∫
Θ

kΘ(θ,θ1)α̂i(θ1)d(θ1).

Even though the dual variables act through the integral operator TkΘ , if the kernel is trans-
lation invariant the associated base kernel reaches its maximum at 0 (e.g. Laplace or Gaus-
sian kernel). Consequently, for the i-th observation, the value of αi(θ) will have the greater
impact on the prediction ĥ(x)(θ). It will also have an effect on the locations neighboring θ.

Hence, in the presence of local outliers, it is desirable to threshold the contribution of each
observation at each location. The constraint on the ∞-norm of the dual variables does just
that. If the threshold concerns the 2-norm however, the global contribution of an obser-
vation is targeted through its associated dual variable. Consequently, the latter should be
much less efficient for local outliers. We validate this intuition with an empirical study of
the sensitivity of the loss Hp

κ in Section 7.4.2.

We now wish to tackle Problem 7.9 numerically. We see that in a proximal gradient
algorithm, the projection on the ball Bqκ will be performed n times per step. This de
facto reduces the values of p that we can consider. Indeed, the projection could be
computed iteratively for any q but given the number of times it will be performed,
this is unrealistic. The next proposition highlights that for q = 2 and q = +∞ we are
able to compute the projection on Bqκ in closed-form. Therefore the associated values
of p for which Problem 7.9 is tractable are p = 2 and p = 1.

Proposition 7.14 (Projection on Bqκ). Let κ > 0. The projection on Bqκ is tractable for q = 2
and q = +∞ and can be expressed for all (α,θ) ∈ Y ×Θ as

ProjB2
κ
(α) = min

1,
κ
∥α∥Y

α, (7.10)(
ProjB∞κ (α)

)
(θ) = sign(α(θ))min(κ, |α(θ)|). (7.11)

Proof

• Equation (7.10) is well known for Y a Hilbert space. The problem of projection
is

argmin
y∈B2

κ

∥α − y∥2Y .

We can write y as y = να + w with w ⊥ α which implies that if y ∈ B2
κ, να ∈

B2
κ. Because w ⊥ α, we can therefore always reduce the objective by setting
w = 0. Consequently, we must choose y collinear to α. The problem is then one
dimensional: find ν ≥ 0 such that να ∈ B2

κ. Then basic computations lead to

ν = min

1, κ
∥α∥Y

.
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• Let us first highlight that for α ∈ Y , the function
(
θ 7→ sign(α(θ))min(κ, |α(θ)|)

)
is measurable and it is in Y . Formally, we can prove Equation (7.11) using the
Moreau decomposition (Lemma 2.53):

proxχ{B∞κ }
(α) + proxχ⋆{B∞κ }

(α) = α (7.12)

And indeed by definition of the proximal operator:

proxχ{B∞κ }
(α) = argmin

y∈Y

1
2
∥α − y∥2Y +χ{B∞κ }(y)

= argmin
y∈Y

∥α − y∥2Y +χ{B∞κ }(y)

= ProjB∞κ (α).

(7.13)

And applying the Fenchel-Legengre transform to Equation (7.8),

κ∥·∥1 = χ⋆{B∞κ }. (7.14)

We get that
proxχ⋆{B∞κ }

(α) = proxκ∥·∥1(α) (7.15)

Then combining Equation (7.13) with Equation (7.12) and injecting Equation (7.15)
into the resulting equation, we get

ProjB∞κ (α) = α −proxκ∥·∥1(α).

It is well known that proxκ∥·∥1 is the pointwise application of the soft-thresholding
operator, therefore for all θ ∈Θ

ProjB∞κ (α)(θ) = α(θ)−
∣∣∣|α(θ)| −κ

∣∣∣
+

sign(α(θ)

= sign(α(θ))min(κ, |α(θ)|).

For p = q = 2, the projection simply consists of a rescaling by a scalar involving the ∥·∥Y
norm of the dual variable. The case p = 1 (q = +∞) is more challenging as it involves
a pointwise projection. Therefore, for a representation to be valid, it must allow us to
perform this projection, and consequently it should give us pointwise control over the
dual variables.

In order to solve Problem 7.9, we propose to use two different representations. In
Section 7.2.1, we advocate representing the dual variables by linear splines and ap-
proximating the action of TkΘ by Monte-Carlo (MC) sampling. An alternative ap-
proach (elaborated in Section 7.2.2) relies on a finite-rank approximation of TkΘ using
its eigendecomposition. It is applicable only for p = 2 but it performs dimensionality
reduction.

7.2.1 Linear splines approach

We now describe the linear splines approach. It gives full control over the dual vari-
ables (including pointwisely) and therefore allows for solving approximately Prob-
lem 7.9 for p = 1 and p = 2.
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Table 7.2: Correspondence between the quantities involved in Problem 7.5 depending
on the representation.

Linear splines Eigenvectors of TkΘ∑n
i=1

1
2∥αi∥

2
Y

1
2m Trace

(
ATA

)
Trace

(
1
2ATA

)
∑n
i=1⟨αi , yi⟩Y

1
m Trace

(
ATY

)
Trace

(
ATR

)
∑n
i=1

∑n
j=1 kX (xi ,xj )

〈
αi ,TkΘαj

〉
Y

1
m2 Trace

(
ATKΘAKX

)
Trace

(
ATΛ̃AKX

)

A linear spline is a piecewise linear curve. It can be encoded by a set of ordered
locations or anchor points (θs)

m
s=1 ∈ Θm, and by a vector of size m corresponding to

the evaluation of the spline at these points. In practice, we often take the locations of
sampling of the functions (yi)

n
i=1 ∈ Y

n. We now consider those anchors fixed. The n
dual variables can be represented using the matrix of their evaluations at (θs)

m
s=1. Let

A := [ai]ni=1 = (αi(θs))
m,m
s,i=1 ∈R

m×n, with ai being the i-th column of A.

Then, the action of the integral operator can be approximated by Monte Carlo (MC)
as

TkΘα ≈
1
m

m∑
s=1

kΘ(·,θs)α(θs). (7.16)

Injecting this in Equation (7.4), we explore estimators of the form

h(x)(θ) =
1

λnm

n∑
i=1

kX (x,xi)
m∑
s=1

asikΘ(θ,θs). (7.17)

Remark 7.15 (Linear splines or discretization?). In practice, setting the problem in terms
of linear splines rather than simple MC averages as in Section 4.2.2 is interesting if the
locations at which we observe the output functions vary. Linear splines then allow for eval-
uating the functions at a common (drawn or chosen) set of locations. In the case we study,
all the functions are evaluated at the same places, thus the two approaches are equivalent.

Using the spline representation in Problem 7.9, we do the following approximations,
which are equivalent to those presented for the functional kernel ridge regression in
Section 4.2.2.

• Squared norm of the dual variables: an MC average using the locations (θs)
m
s=1

yields:

1
2

n∑
i=1

∥αi∥2Y ≈
1

2m
Trace(ATA).

• Scalar products with the output functions: Let Y ∈Rm×n = (yi(θs))
m,n
s,i=1 regroup

the observations of the output functions at the locations (θs)
m
s=1, then

n∑
i=1

⟨αi , yi⟩Y ≈
1
m

Trace(ATY).
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• Regularization term: let KX ∈ Rn×n and KΘ ∈ Rm×m be the kernel matrices re-
spectively associated to the kernels kX with input data (xi)

n
i=1 and kΘ with input

data (θs)
m
s=1. Then,

∥h∥2HK
≈ 1
λnm2 Trace(ATKΘAKX ).

This term involves two successive approximations at the locations (θs)
m
s=1, the

first for the integral operator–Equation (7.16)–and the second for the functional
inner products.

• Constraints: we can also approximate the integral defining ∥α∥q–Equation (7.6)–
through a MC average. For all i ∈ ⟦n⟧, we use

∥αi∥q ≈
1

m
1
q

∥ai∥q,

where the q-norm for a finite dimensional vector a ∈Rm is given by

∥a∥q :=

 m∑
s=1

a
q
s


1
q

.

We can write more compactly the set of constraints from Problem 7.9 using the
composite (q,∞)-norm on the columns of the matrix A:

∥A∥q,∞ ≤m
1
qκ.

Gathering the different terms (summarized in Table 7.2) yields the following relaxa-
tion of Problem 7.9:

inf
A∈Rm×n

Trace
(

1
2

ATA−ATY +
1

2λnm
ATKΘAKX

)
subject to ∥A∥q,∞ ≤m

1
qκ.

(7.18)

Remark 7.16. The decomposable assumption on the kernel K plays a role in the regulariz-
ation. It has the effect of disentangling the action of both Gram matrices KX and KΘ .

We propose to tackle Problem 7.18 using accelerated proximal gradient descent (APGD).
The proximal step amounts to a projection of the coefficients on the q-ball of radius
m1/qκ. The technique is summarized in Algorithm 7.1.

The gradient stepsize γ can be computed to ensure convergence: one must set γ < 2
C

where C is the Lipschitz constant associated to the gradient of the objective function;
here C ≤ 1 + 1

λn∥KX ∥op∥KΘ∥op. The initialization can either be the null matrix A(0) =
0
R
m×n or the solution of the unconstrained optimization problem obtained in closed-

form with time complexity O(n3 +m3)–see Section 4.2.2. Moreover, since the objective
function in Problem 7.18 is the sum of two functions, one convex and differentiable
with Lipschitz continuous gradient (the quadratic form) and one convex and lower
semi-continuous (the indicator function of the constraint set), the optimal worst case

complexity is O
(

1
T 2

)
(Beck and Teboulle, 2009). In practice the time complexity per

iteration in Algorithm 7.1 is dominated by the computation of the matrix KΘVKX
which is O(n2m+m2n).
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Algorithm 7.1 APGD with linear splines
input : Gram matrices KX ,KΘ , data matrix Y, regularization parameter λ, loss para-

meters (κ,p) or (ϵ,p), gradient step γ
init : A(0),A(−1) = 0 ∈Rm×n
for epoch t from 0 to T − 1 do

// gradient step

V = A(t) + t−2
t+1

(
A(t) −A(t−1)

)
U = V−γ

(
V + 1

λnmKΘVKX −Y
)

// projection step

if p = 2 then
for column i ∈ ⟦n⟧ do

a(t+1)
i = min

(√
mκ
∥ui∥2

,1
)

ui // if H2
κ

a(t+1)
i =

∣∣∣∣∣1− γϵ√
m∥ui∥2

∣∣∣∣∣
+

ui // if ℓ2
ϵ

else
for column i ∈ ⟦n⟧ do

for row s ∈ ⟦m⟧ do

a
(t+1)
is = sign(uis)min

(
κ,

∣∣∣uis∣∣∣) // if H1
κ

a
(t+1)
is = sign(uis)

∣∣∣∣|uis| − γϵm ∣∣∣∣
+
// if ℓ∞ϵ

7.2.2 Eigendecomposition approach

In this section, we propose an alternative dual representation based on an approx-
imate eigendecomposition of TkΘ . The precedent solution incurs a computational cost
which is dependent on the number of anchorsm, and thus we seek a more compressed
representation. However there is a trade-off between flexibility and efficiency: it will
work only for p = 2. Indeed, if we represent the dual variables in a dictionary of func-
tions, we can approximate all the terms in Problem 7.9, but not the constraints; when
p = 1 (q = +∞), we cannot project onto the ball B∞κ having access only to representa-
tion coefficients in the dictionary.

Let us now focus on the case p = 2. Any dictionary of function could be used, yet
an orthonormal family makes for simpler computations. It allows for straightforward
approximation of all terms except the one involving TkΘ . To circumvent this problem,
it is natural to select directions well-suited to TkΘ . Therefore we use the d eigenfunc-
tions of TkΘ associated to its largest eigenvalues.

Since computing the eigendecomposition of TkΘ in closed-form is most of the times
not possible (see Section 2.1.2), we perform an approximate eigendecomposition as
in Example 2.16. We recall here briefly the elements for completeness. Suppose that
we use the locations (θs)

m
s=1. Let then U ∈ R

m×m be the orthonormal matrix which
columns (us)ms=1 are the eigenvectors of KΘ and let (λ̂s)

m
s=1 ∈ Rm be the corresponding

eigenvalues. We use the approximate eigenvalue/eigenvector pairs (λ̃s, φ̃s)
m
s=1 with

∀s ∈ ⟦m⟧, φ̃s : θ 7→ 1
√
mλ̃s

kX (θ)Tus,

λ̃s =
1
m
λ̂s.

(7.19)
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Using the first d of these eigenfunctions for some d < m, we compress the representa-
tion. We store the largest d eigenvalues defined in Equation (7.19) in a diagonal matrix
Λ̃ ∈Rd×d .

The problem is now parameterized by a matrix A = [ai]ni=1 ∈ R
d×n with each column

ai ∈ R
d encoding the coefficients of the dual variable αi on the (φl)

d
l=1 orthogonal

family. Using the true eigenfunctions (φl)
d
l=1, the action of the integral operator can

be simplified before discretization, and the estimator then reads

h(x)(θ) =
1
λn

n∑
i=1

d∑
l=1

aliλlkX (x,xi)φl(θ). (7.20)

We then inject the estimated eigenfunctions and eigenvalues, yielding the estimator

h(x)(θ) =
1
λn

n∑
i=1

d∑
l=1

aliλ̃lkX (x,xi)φ̃l(θ). (7.21)

We store in R ∈Rd×n the scalar products between the observed data and the eigenbasis:
its (l, i)-th entry is ⟨yi ,φl⟩Y . In practice, we approximate those scalar products by a MC
average:

⟨yi ,φl⟩Y ≈
1
m
⟨φ̃s(θ), ỹi⟩Rm . (7.22)

More precisely, we use the following approximations for the different terms:

• Squared norm of the dual variables: since the eigenfunctions are orthonormal,∥∥∥∥∑d
l=1 aliφl

∥∥∥∥2

Y
≈ ∥ai∥22, therefore

1
2

n∑
i=1

∥αi∥2Y ≈ Trace
(1
2

ATA
)
.

• Scalar products with the output functions:

⟨αi , yi⟩Y ≈
d∑
l=1

ali⟨φl , yi⟩Y = aT
i ri .

Consequently, we use the approximation

n∑
i=1

⟨αi , yi⟩Y ≈ Trace
(
ATR

)
.

• Regularization term: we have that

⟨αi ,αj⟩Y ≈
〈 d∑
l=1

aliφl ,TkΘ

d∑
r=1

arjφr
〉
Y
.

Since (φl)
d
l=1 is an orthonormal family of eigenfunctions of TkΘ :

〈 d∑
l=1

aliφl ,TkΘ

d∑
r=1

arjφr
〉
Y

= aT
i Λaj ,
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Algorithm 7.2 APGD with eigenbasis representation

input : Gram matrix KX , matrix of estimated eigenvalues Λ̃, data scalar product mat-
rix R, regularization parameter λ, loss parameters (κ,2) or (ϵ,2), gradient step
γ

init : A(0),A(−1) = 0 ∈Rd×n
for epoch t from 0 to T − 1 do

// gradient step

V = A(t) + t−2
t+1

(
A(t) −A(t−1)

)
U = V−γ

(
V + 1

λnΛ̃VKX −R
)

// proximal step

for column i ∈ ⟦n⟧ do

a(t+1)
i = min

(
κ
∥ui∥2

,1
)

ui // if H2
κ

a(t+1)
i =

∣∣∣∣∣1− γϵ
∥ui∥2

∣∣∣∣∣
+

ui // if ℓ2
ϵ

return A(T )

therefore,
n∑
i=1

n∑
j=1

kX (xi ,xj )
〈
αi ,TkΘαj

〉
Y
≈ Trace

(
ATΛ̃AKX

)
.

• Contraints: Since ∥αi∥2Y ≈ ∥ai∥
2
2, we can approximate the constraints, and write

them compactly using the (2,∞)-matrix norm as

∥A∥2,∞ ≤ κ.

The correspondence between the different terms are summarized in Table 7.2. The
optimization then reduces to

inf
A∈Rd×n

Trace
(

1
2

ATA−ATR +
1

2λn
ATΛ̃AKX

)
subject to ∥A∥2,∞ ≤ κ. (7.23)

Again, one can use APGD to solve this task, we give the corresponding procedure in
Algorithm 7.2.

7.3 Sparse FOR: learning with the functional ϵ-insensitive
loss

We now investigate losses arising from infimal convolution of 1/2∥·∥2Y with the indic-
ator function of a ball associated to the ∥·∥p norm. This results in losses which are
insensitive to smaller discrepancy in the sense of that norm. An interesting property
is that they promote sparsity on the dual coefficients in different ways depending on
the value of p. This section is dedicated to the FOR problem using these losses. It will
however be much shorter than the previous one on Huber losses since many of the
introduced elements are common.
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Figure 7.2: Huber losses on R and R
2.

Definition 7.17 (ϵ-insensitive loss). Let ϵ > 0 and p ∈ [1,+∞]. We define the ϵ-insensitive
version of the square loss with parameters (ϵ,p) as

ℓ
p
ϵ :=

1
2
∥ · ∥2Y□χ{Bpϵ }.

We display this loss for Y = R in Figure 7.2a and for Y = R
2 with p = 2 in Figure 7.2b

and p = +∞ in Figure 7.2c. Similar figures for other values of p can be seen in Ap-
pendix B.7.

When Y = R, it reduces to the classical ϵ-insensitive square loss regardless of p. We
highlight as well that setting ϵ = 0 recovers the square loss. The following proposition
(counterpart of Proposition 7.8) sheds light on the effect of the infimal convolution on
the square loss.

Proposition 7.18. Let ϵ > 0 and p ∈ [1,+∞]. Then for all y ∈ Y ,

ℓ
p
ϵ (y) =

1
2
∥y −ProjBpϵ (y)∥2Y . (7.24)
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As it is not central in the exposition, we defer the proof of this proposition to Ap-
pendix B.3.

Remark 7.19. Proposition 7.18 means that ℓpϵ (y) = 0 when ∥y∥p ≤ ϵ, which is the desired
effect: small residuals are ignored.

Nevertheless, for general p, ℓpϵ (y) is not straightforward to compute due to the projec-
tion ProjBpϵ (y). Yet through a dual approach, Problem 7.1 can still be tackled compu-
tationally.

Proposition 7.20 (Dual ϵ-insensitive). Let ϵ ≥ 0,p ∈ [1,+∞], and let q be the con-
jugate exponent of p ( 1

p + 1
q = 1). The dual of Problem 7.1 reads

inf
(αi )

n
i=1∈Yn

n∑
i=1

[
1
2
∥αi∥2Y − ⟨αi , yi⟩Y + ϵ∥αi∥q

]
+

1
2λn

n∑
i=1

n∑
j=1

kX (xi ,xj )
〈
αi ,TkΘαj

〉
Y
.

(7.25)

Proof This is a direct combination of Lemma 7.2, Corollary 7.11 (replacing κ with ϵ),
and the involutive property of the Fenchel-Legendre transform (Proposition 2.44).

Influence of ϵ and p. Compared to the square loss, ℓpϵ induces an additional term
ϵ
∑n
i=1 ∥αi∥q in the dual. This can be seen as a mixed norm on Yn. For α ∈ Y , set

∥α∥q,1 =
n∑
i=1

∥αi∥q, (7.26)

then the additional regularization induced by the loss is indeed the 1-norm of the
vector of q-norms of the dual variables. Such norms are known to induce structured
sparsity to the solution (Bach et al., 2012).

Example 7.21 (Cases p = +∞ and p = 2). On the one hand, for p = +∞ (q = 1), the penalty
reduces to the 1-norm on Yn of α, and therefore, the sparsity has no structure, which leaves
maximum flexibility to obtain local sparsity. On the other hand, for p = 2 (q = 2), the norm
is the (2,1)-norm which results in global sparsity: whole functions are set to zero.

The challenges involving the representation of the dual variables, and the computab-
ility of the different terms composing Problem 7.25 are similar to those evoked in Sec-
tion 7.2. We have however traded the constraints on the q-norms of the dual variables
against an additional non-smooth term. We also address this convex non-smooth op-
timization problem through the APGD algorithm, and the proximal step now involves
proxγϵ∥·∥q for a suitable gradient stepsize γ > 0.

Proposition 7.22 (Proximal q-norm). Let ϵ > 0. The proximal operator of ϵ∥·∥q is com-
putable for q = 1 and q = 2, and given for all (α,θ) ∈ Y ×Θ by(

proxϵ∥·∥1(α)
)
(θ) = sign(α(θ))

∣∣∣∣∣∣∣α(θ)
∣∣∣− ϵ∣∣∣∣

+
(7.27)

proxϵ∥·∥2(α) = α

∣∣∣∣∣∣∣1− ϵ
∥α∥Y

∣∣∣∣∣∣∣
+

. (7.28)
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Proof Using the Moreau decomposition (Lemma 2.53), we have that

proxχ{Bpϵ }
(α) + proxχ⋆

{Bpϵ }
(α) = α.

Then using Corollary 7.11 and the involutive property of the Fenchel-Legendre trans-
form (Proposition 2.44), we have that

proxϵ∥·∥q (α) = α −proxχ{Bpϵ }
(α)

= α −ProjBpϵ (α).
(7.29)

We know from Proposition 7.14 that such projection is tractable for p = 2 (q = 2) and
p = +∞ (q = 1), and we have their expression, which combined with Equation (7.29)
gives the claimed results.

7.3.1 Linear splines approach

Similarly to what was presented in Section 7.2, we use linear splines to represent the
dual variables in order to have pointwise control over them to be able to compute the
proximal operators. Keeping the notations, the optimization boils down to

inf
A∈Rn×m

Trace
(

1
2

ATA−ATY +
1

2λnm
ATKΘAKX

)
+
ϵ

m
1
q

n∑
i=1

∥ai∥q. (7.30)

We use APGD to solve it with steps detailed in Algorithm 7.1. When q = 1, the prox-
imal operator is the soft-thresholding operator, akin to promote sparsity in the dual
coefficients, which is an equivalent aspect of Example 7.21.

7.3.2 Eigendecomposition approach

As in Section 7.2.2, we can also represent the dual variables in a truncated basis of
eigenfunctions of TkΘ when p = 2. Then, using the same notation as in Equation (7.23),
we get

inf
A∈Rn×d

Trace
(

1
2

ATA−ATR +
1

2λn
ATΛ̃AKX

)
+ ϵ

n∑
i=1

∥ai∥2. (7.31)

APGD is applied to tackle this problem in Algorithm 7.2. Notice that the proximal
operator in this case is the block soft-thresholding operator, known to promote struc-
tured column-wise sparsity, which is another way of looking at Example 7.21.

7.4 Numerical experiments

In this section, we study empirically the proposed Huber and ϵ-insensitive losses as
well as the corresponding proposed algorithms. The experiments are centered around
two key directions:
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1. The first goal is to understand the accuracy/sparsity trade-off of the ϵ-insensitive
loss as a function of the regularization λ and insensitivity parameter ϵ. As we
have seen in the dual Problem 7.25, the loss ℓpϵ induces an additional regulariza-
tion term ϵ∥α∥q,1 = ϵ

∑n
i=1 ∥αi∥q which promotes sparsity on top of the regulariz-

ation in the fv-RKHS norm λ∥h∥2HK
. Therefore, in order to obtain a fair amount of

sparsity, we must decrease λ and increase ϵ. Nevertheless, the two terms having
different effects on the solution, it is crucial to understand if there is a trade-off
between accuracy and sparsity.

2. Our second aim is to quantify the robustness of the Huber losses to different
forms of outliers, focusing on global versus local ones. Indeed, as highlighted
in Section 7.2, the choice of the parameter p should determine the degree of
locality of the outliers that the Huber loss can filter out. Unfortunately, we have
also seen that Problem 7.9 is tractable only for two values: p = 1 and p = 2.
For p = 1, we have given an explanation for the robustness to local outliers in
Example 7.13. We propose to study first the robustness of the loss itself for
various p ∈ [1,2] in Section 7.4.2. Then we study the proposed estimators for
p = 1 and p = 2. To gain further insight into the different types of robustness,
we designed 3 types of functional outliers with distinct characteristics which we
use to test the estimators.

We investigate three benchmarks: a synthetic dataset based on Gaussian processes,
followed by two real-world ones, one arising in the context of neuroimaging and the
other in speech analysis. We investigate both questions on the synthetic data, and
provide further insights for the first and the second question on the neuroimaging
and the speech dataset, respectively.

Next, we detail how we generate the different outliers as well as the synthetic dataset.

7.4.1 Preliminaries

Corruption

We now introduce the three outlier types used in our experiments. Local outliers affect
the functions only on small portions of Θ whereas global ones contaminate them in
their entirety. To corrupt the functions (yi)i∈⟦n⟧, we first draw a set I ⊂ {1, . . . ,n} of
size ⌊τn⌋ corresponding to the indices to contaminate; with τ ∈ [0,1] the proportion of
contaminated functions. Then, we perform different kinds of corruption:

• Type 1: Denote by |I | the cardinal of the ordered set I and for j ∈ ⟦|I |⟧ denote
by Ij the j-th element of I . Let ω be the permutation defined for j ∈ ⟦|I |⟧ as
ω(Ij ) = Ij+1 if j < |I | and ω(I|I |) = I1, then for i ∈ I , the data point (xi , yi) is re-
placed by (xi ,−yω(i)).

• Type 2: Given covariance parameters σσσ ∈ Rr and an intensity parameter ζ > 0,
we draw a Gaussian process gc ∼ GP (0, kσc ) for c ∈ ⟦r⟧ where kσc is the Gaus-
sian covariance function with standard deviation σc. Then, for i ∈ I , we replace

(xi , yi) with
(
xi ,

∑
c∈⟦r⟧ aicgc

)
where the coefficients (aic)

n,r
i,c=1 are drawn i.i.d. from

a uniform distribution U ([−0.5ζ,0.5ζ]).
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Figure 7.3: Examples from the toy dataset and corresponding type 2 outliers.

• Type 3: For each i ∈ I , a randomly chosen fraction ξ ∈ [0,1] of the discrete
observations for yi is replaced by random draws from a uniform distribution
U ([−bmax,bmax]), where bmax := max

i,s
|yi(θis)|.

The corruptions of Type 1 and 2 are global whereas that of Type 3 is local. In terms of
characteristics, for Type 1, the outliers have similar functional properties as the non-
outliers, whereas with Type 2, the outliers become completely different, as illustrated
in the bottom panel of Figure 7.3. Finally, when selecting parameters through cross-
validation on corrupted datasets, we replace the mean with the median to mitigate the
effect of outliers on the selection.

Generation of the toy data

Given covariance parameters (σσσ in,σσσout) ∈Rr ×Rr for c ∈ ⟦r⟧ we draw and fix Gaussian
processes g in

c ∼ GP (0, kσ in
c

) and gout
c ∼ GP (0, kσout

c
) where kσ denotes the Gaussian kernel

of standard deviation σ . We then generate n samples as

(xi , yi)
n
i=1 =

 ∑
c∈⟦r⟧

uicg
in
c ,

∑
c∈⟦r⟧

uicg
out
c


i∈⟦n⟧

,

where the coefficients (uic)
n,r
i,c=1 are drawn i.i.d. according to a uniform distribution

U ([−0.5,0.5]). In the experiments, we take r = 4 and set σσσ in = σσσout = (0.05,0.1,0.5,0.7).
We show input and output functions drawn in this manner in the first and second row
of Figure 7.3. In the bottom row we display outliers of Type 2 with σσσ = (0.01,0.05,1,4)
and intensity ζ = 2. For the contaminated indices i ∈ I we add the corresponding
outlier to the function yi .

Optimization, evaluation and algorithms

We give here some details on optimization and introduce some evaluation metrics.
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Figure 7.4: Sensitivity of Hp
κ to outliers for various p ∈ [1,2]

Let
(
(yi(θis))s∈⟦mi⟧

)
i∈⟦n⟧

be the set of observed discretized functions and let(
(ŷi(θis))s∈⟦mi⟧

)
i∈⟦n⟧

be an estimated set of discretized functions, where (θis)s∈⟦mi⟧ de-

notes the observation locations for yi . We use the mean squared error defined as

MSE :=
1
n

n∑
i=1

m∑
s=1

(yi(θis)− ŷi(θis))2.

When mi =m for all i, we normalize it by m and define NMSE:= 1
m MSE.

For the estimators related to the losses H1
κ and ℓ∞ϵ we solve the problem based on the

representation with linear splines (see Section 7.2.1 and Section 7.3.1 respectively);
this is the only possible approach. However for the lossesH2

κ and ℓ2
ϵ we exploit the rep-

resentation using a truncated basis of approximate eigenfunctions (see Section 7.3.1
and Section 7.3.2 respectively), in doing so we reduce the computational cost. Con-
cerning optimization, we deploy the APGD method (Beck and Teboulle, 2009) with
backtracking line search, and adaptive restart (O’Donoghue and Candès, 2015). The
initialization in APGD is carried out with the closed-form solution available for the
square loss using a Sylvester solver.

However, before evaluating the estimators, we first investigate general robustness
properties of the Huber loss.

7.4.2 Influence of p for Hp
κ

In this section we study empirically how the choice of p affects the sensitivity of the
Huber loss Hp

κ to different kinds of outliers.

We recall that solving Problem 7.18 involves the computation of n projections on a
q-ball at each APGD iteration. For p < {1,2}, such projection must be computed in an
iterative fashion and running APGD with these inner iterations is too time consuming.
However to compute the lossHp

κ using Proposition 7.8 only one projection is necessary
per loss computation. We exploit this to study empirically the sensitivity of the Huber
losses Hp

κ to global and local outliers for different values of p.

The impact of the outliers on the solution of a regularized empirical risk minimization
problem is partly determined by their contribution to the data-fitting term compared
to that of the normal observations. In order to investigate this aspect, we next study
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and define a quantity which we call robustness ratio.

Robustness ratio. Let (ei)
n
i=1 ∈ Y

n be a set of functional residuals and let (ẽi)
n
i=1 be

the same functional residuals but contaminated with outliers. In practice, we have to
choose a probability distribution to draw the (ei)

n
i=1 from, and an outlier distribution

to corrupt those. For the residuals, we use the synthetic data generation process, and
for the outliers, we consider type 2 for global outliers and type 3 for local ones. We
then define the robustness ratio as

Robustness Ratio := inf
κ≥0

1
n

n∑
i=1

H
p
κ (ẽi)

H
p
κ (ei)

.

The best value is 1: the loss is not affected at all by the outliers, but it is indeed
unachievable. In practice, we restrain to p ∈ [1,2], and for each value, we reduce the
search for κ to empirical quantiles of the q-norms of the uncorrupted functions (ei)

n
i=1,

with q being p’s conjugate exponent. It makes sense to do so since κ corresponds to a q-
norm threshold which should separate suspected outliers from observations deemed
normal (see Proposition 7.8). In practice, for each level of corruption and each p, we
compute the robustness ratio for κ equal to the {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 }-
th empirical quantiles and select the value which minimizes the ratio. This indeed
corresponds to an ideal setting: in practice we never have access to the uncorrupted
data and we can never optimize κ in this way. Thus this analysis reflects a general
robustness property of the loss in an optimal setting.

Empirical study of the influence of p. In accordance with one’s expectation, when
the data is contaminated with global outliers (left panel of Figure 7.4), it is better
to choose p = 2 whereas when the contamination is local (right panel of Figure 7.4),
p = 1 is almost the best choice; even though it seems that choosing p slightly larger
could be a tad better. Nevertheless this analysis has its limits; indeed we do not take
into account the interplay between the data-fitting term and the regularization term
which takes place during optimization. This could explain why the losses H1

κ and
H2
κ perform equally well for global outliers later in this section, whereas based only

on the robustness ratio analysis (left panel of Figure 7.4) we would have said other-
wise. However, the findings in presence of local outliers (right panel of Figure 7.4) are
coherent with what we observe later for the losses H1

κ and H2
κ .

Now that we have investigated the robustness as a general property of the Huber loss,
we study the behavior of our proposed estimators associated with the Huber loss for
p = 1 and p = 2, and to the ϵ-insensitive loss for p = 2 and p = +∞.

7.4.3 Robustness and sparsity on synthetic data

The impact of the different losses are investigated in detail on the function-to-function
synthetic dataset we introduced in Section 7.4.1. The kernels kX and kΘ are chosen to
be Gaussian and the experiments are averaged over 20 draws with training and testing
samples of size 100. We give further details of the tuning procedure in Appendix B.4.

Sparsity-accuracy trade-off for the ϵ-insensitive loss

To study the interaction between λ and ϵ and the resulting sparsity-accuracy trade-
offs, we add i.i.d. Gaussian noise with standard deviation 0.5 to the observations of the
output functions. The resulting NMSE values are summarized in Figure 7.5. For both
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Figure 7.5: Interaction between regularization λ and insensitivity ϵ for the loss ℓ2
ϵ (1st

row) and ℓ∞ϵ (2nd row).

the ℓ2
ϵ and the ℓ∞ϵ loss, one can reduce λ and increase ϵ so as to obtain a fair amount

of sparsity while making a small compromise in terms of accuracy. We highlight that
the type of sparsity is not the same for the loss ℓ2

ϵ and for the loss ℓ∞ϵ . In the former
case, we use a truncated basis of eigenfunctions to represent the dual variables, and
therefore we have much less coefficients than in the latter case where each dual vari-
able has the same length as the observed functions. Then, in the case of p = 2, we have
a lesser sparsity percentage, but it is row-wise and the number of overall coefficients
(nd) is much lower than for p = +∞ (nm coefficients).

Robustness with Huber loss

We now investigate the robustness of the Huber loss to different types of outliers while
selecting both λ and κ through robust cross-validation. The resulting NMSE values
are summarized in Figure 7.6. As it can be seen in the first row, the losses H1

κ and
H2
κ are significantly more robust to global outliers than the square loss, both when

their intensity ζ and the proportion τ of contaminated samples increase. When the
contamination is local, the second row of the figure shows the closer one gets to the
whole sample being contaminated (τ = 1), the less robust H2

κ becomes. On the other
hand, looking at the bottom right panel, we see that H1

κ is remarkably robust (when
the whole sample is contaminated τ = 1). One can interpret this phenomenon by
noticing that the loss H2

κ can be less sensitive to big discrepancies between functions
in the ∥.∥Y norm sense, but if all samples are contaminated locally a little, the outliers
are meddled in the norm and so H2

κ becomes inefficient.

Interaction between λ and κ parameter for the Huber loss

To highlight the interaction between the regularization parameter λ and the para-
meter κ of the Huber loss, we plot the NMSE values for various values of λ and κ
using the toy dataset corrupted with Type 2 (global) and Type 3 (local) outliers. The
results are displayed in Figure 7.7b and confirm that by making κ and λ vary, when
the data are corrupted, we can always find a configuration that is significantly more
robust than the square loss. In accordance with one’s expectation, when dealing with
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Figure 7.7: NMSE as a function of λ and Huber losses’ κ with two types of outliers.

local outliers (Figure 7.7a), the loss H1
κ is much more efficient than the loss H2

κ . How-
ever, when the outliers are global (Figure 7.7a), the two losses perform equally well.

7.4.4 Experiments on the DTI dataset

In our next experiment we considered the DTI benchmark1. We have already used this
dataset in Section 5.3.3, we refer to this section for a detailed description. As a brief
reminder, the dataset contains a collection of fractional anisotropy profiles deduced
from diffusion tensor imaging scans, and we take the first scans of the n = 100 multiple
sclerosis patients. The profiles are given along two tracts, the corpus callosum and the
right corticospinal. The goal is to predict the latter function from the former, which
can be framed as a function-to-function regression problem. When some functions
admit missing observations, we fill in the gaps by linear interpolation, and later use

1This dataset was collected at the Johns Hopkins University and the Kennedy-Krieger Institute.
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Table 7.3: MSEs and sparsity on the DTI dataset

λ Metric 1/2∥·∥2Y H2
κ H1

κ ℓ2
ϵ ℓ∞ϵ

10
−5

MSE (10
−1
) 2.5±0.19 2.21±0.31 2.21±0.31 2.41±0.26 2.5±0.23

Sparsity - - - 27.4±17.2% 85.9±10.7%

10
−3

MSE (10
−1
) 2.18±0.27 2.23±0.32 2.21±0.32 2.2±0.29 2.18±0.28

Sparsity - - - 3.4±6.9% 12.7±10.5%

Table 7.4: MSEs on speech data

VT 1/2∥·∥2Y H2
κ H1

κ ℓ2
ϵ ℓ∞ϵ

LP 6.58±0.62 6.59±0.62 6.59±0.64 6.58±0.62 6.58±0.62
LA 4.65±0.55 4.65±0.55 4.66±0.55 4.64±0.55 4.64±0.55
TBCL 4.26±0.46 4.26±0.46 4.27±0.46 4.26±0.46 4.26±0.46
TBCD 4.67±0.37 4.68±0.38 4.7±0.38 4.67±0.38 4.67±0.38
VEL 2.94±0.5 2.94±0.5 2.95±0.5 2.94±0.5 2.94±0.5
GLO 7.25±0.65 7.26±0.65 7.25±0.64 7.25±0.65 7.25±0.65
TTCL 3.76±0.21 3.76±0.21 3.74±0.2 3.73±0.21 3.73±0.21
TTCD 5.93±0.34 5.94±0.34 5.93±0.35 5.92±0.34 5.92±0.34

Table 7.5: MSEs on contaminated speech data

VT
Type 1 Outliers (τ = 0.1) Type 3 outliers (τ = 0.1, ξ = 0.1)

1/2∥·∥2Y H2
κ H1

κ 1/2∥·∥2Y H2
κ H1

κ

LP 9.4±0.75 9.4±0.66 9.19±0.79 7.53±0.58 7.62±0.59 7.0± 0.59
LA 5.72±0.76 5.63±0.71 5.52±0.69 5.06±0.6 5.11±0.6 5.09±0.55
TBCL 6.71±0.96 6.14±0.97 5.98±0.93 5.06±0.51 5.16±0.48 4.72± 0.54
TBCD 5.8±0.41 5.86±0.44 5.83±0.44 5.18±0.4 5.26±0.41 5.08± 0.4
VEL 4.37±0.56 3.76±0.62 3.76±0.59 3.52±0.57 3.54±0.58 3.41± 0.57
GLO 9.61±0.87 9.51±0.86 9.53±0.84 7.94±0.61 8.02±0.61 7.76± 0.61
TTCL 15.06±2.22 9.51±0.63 9.48±0.6 5.89±0.43 5.91±0.45 6.62±0.66
TTCD 8.15±0.48 7.96±0.49 8.02±0.51 6.63±0.44 6.74±0.42 6.36± 0.39

the MSE as a metric. We use a Gaussian kernel for kX , a Laplacian one for kΘ and
average over 10 runs with ntrain = 70 and ntest = 30. Note that we give further details
on the procedure and parameters used in Appendix B.5.

The results are coherent with those obtained on the synthetic data: a compromise
can be made between the two parameters λ and ϵ to get increased sparsity, as can be
observed in Table 7.3. Moreover, we highlight that even for optimal regularization
with respect to the square loss λ = 10−3 (in the sense that it results in the best in the
best average score on the test set), one gets a fair amount of sparsity while getting the
same score with ℓ∞ϵ and a very small difference with ℓ2

ϵ .

7.4.5 Speech data

In this section, we focus on a speech inversion problem (Mitra et al., 2009). We have
already studied this problem with the same dataset in Section 5.3.4, we refer the
reader to this section for more details. To describe the problem briefly, our goal is
to predict a vocal tract (VT) configuration that likely produced a speech signal (Rich-
mond, 2002). This benchmark encompasses n = 413 synthetically pronounced words
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to which 8 VT functions are associated: LA, LP, TTCD, TTCL, TBCD, TBCL, VEL,
GLO. We predict the VT functions separately in eight subproblems.

Since the words are of varying length, we use the MSE as metric and extend sym-
metrically the signals to match the longest word for in training. We encode the in-
put sounds through 13 mel-frequency cepstral coefficients (MFCC) and normalize the
VT functions’ values to the range [-1, 1]. We average over 10 train-test splits taking
ntrain = 250 and ntest = 163. Finally we take an integral Gaussian kernel on the stand-
ardized MFCCs (see Equation (5.39) for details) as kX and a Laplace kernel as kΘ . Note
that we give further details on the procedure and parameters used in Appendix B.6.

We first compare all the losses on untainted data in Table 7.4. Then to evaluate the
robustness of the Huber losses, we ran experiments on contaminated data with two
configurations. In the first case, we add Type 1 (global) outliers with τ = 0.1 and in
the second one, we add Type 3 (local) outliers with τ = 0.1 and ξ = 0.1. The results are
displayed in Table 7.5. In the contaminated setting, one gets results similar to ones
obtained on the synthetic dataset. The loss H1

κ works especially well for local outliers
whereas the loss H2

κ is robust only to global outliers.

7.5 Conclusion

We proposed extensions of the Huber and ϵ-insensitive losses for functional data.
Compared to existing formulation, we framed these as infimal convolution between
the square loss and the functional p-norm or the indicator function of a p-norm ball
respectively. The parameter p introduces the possibility to enforce several type of
robustness or sparsity, local or global. We then used function-valued RKHS as hy-
pothesis class, and tackled the corresponding empirical risk minimization problem
through dualization. To overcome the challenges stemming from both the dual terms
associated to the losses and the functional nature of the dual variables, we proposed
appropriate representations. Then we solved the resulting approximate problems us-
ing accelerated proximal gradient descent for the values of p allowing for computation
of the proximity operators in closed-form.
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This short chapter is dedicated to our ongoing work to improve the projection learn-
ing framework and especially kernel projection learning. We covered those subjects
in Chapter 5. However, studying our estimators led us to raise several questions. The
first one is particularly relevant when using redundant dictionaries. As we have seen,
the Gram matrix Φ#Φ of the dictionary plays a central role in the computation of the
estimators, however the more redundant the dictionary is, the more rank-deficient
Φ#Φ becomes. This degrades the conditioning of the problem and means we are pre-
dicting too much representation coefficients. We address this issue in Section 8.1. So
far we have focused solely on reducing the complexity linked to the functional out-
puts, however as a kernel method, the computational time complexity of KPL is cubic
with respect to the number of observations. To address this issue, we propose in Sec-
tion 8.2 a linear version of projection learning amenable to the use of input features so
that random Fourier features or Nyström features can be used. Finally, this linear ver-
sion allows for an explicit control on the coefficients of the model associated to each
atom of the dictionary. We propose to exploit this to automatically select the relevant
atoms using a regularization in the (1,2)-norm in Section 8.3.

8.1 Effective rank approach

We recall briefly the problem of kernel projection learning but refer back to Sec-
tion 5.1.1 for a more detailed presentation. After that we motivate and introduce a
modified estimation procedure.
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8.1.1 Motivation

Given a space X , a separable functional Hilbert space Y , let X and Y be random vari-
ables taking their values respectively in X and Y . From any observation of X, we want
to associate a relevant value in Y in accordance with the joint distribution of (X,Y). As
we have access to a finite i.i.d. sample (xi , yi)

n
i=1, we rely on statistical inference. To

do so we minimize a regularized empirical risk over a hypothesis class G ⊂ F (X ,Y )
of possible models. To quantify the discrepancies in Y , a loss L : Y → R is used. The
main challenge is that Y is potentially infinite dimensional. A possible way to cir-
cumvent this is to use a model representing the functions in Y using a dictionary of
functions φ = (φl)

d
l=1 ∈ Y

d . To that end, we recall the definition (Definition 5.2) of
the projection operator associated to the dictionary Φ : a ∈ Rd 7→

∑d
l=1 alφl ∈ Y . We

then use an intermediary hypothesis class H ⊂ F (X ,Rd) to predict coefficients on the
dictionary through this operator. We studied in details in Section 5.2 the specific case
where H =HK is the vector-valued reproducing kernel Hilbert space (vv-RKHS) asso-
ciated to an operator-valued kernel (OVK) K : X ×X →L(Rd), and the vv-RKHS norm
is used as regularization. The following problem results:

min
h∈HK

1
n

n∑
i=1

L(yi −Φh(xi)) +λ∥h∥2HK
. (8.1)

We have highlighted in Corollary 5.5 that Problem 8.1 benefits from a finite paramet-
rization through a representer theorem. More precisely, any solution hλz to Problem 8.1
has the form

hλz =
n∑
j=1

Kxjαj , (8.2)

for some α ∈Rd×n.

For the square loss, injecting this representation into Problem 8.1 leads to

min
α∈Rd×n

1
n
∥y−Φ(n)Kα∥2Yn +λ⟨α,Kα⟩

R
d×n . (8.3)

where the operator K associated to the input observations is defined from the OVK K
as in Equation (5.14). We showed in Proposition 5.13 that provided K is invertible, the
optimal representer coefficients can be computed in closed-form as

α̂ = ((Φ#Φ)(n)K+nλI)−1Φ#
(n)y. (8.4)

However, since Rank
(
(Φ#Φ)(n)

)
= nRank(Φ#Φ), we have that

Rank
(
(Φ#Φ)(n)K

)
≤min

(
nRank(Φ#Φ),Rank(K)

)
.

This implies that if the operator Φ#Φ is not full rank, neither is the operator (Φ#Φ)(n)K.
However, since Rank(Φ#Φ) = Dim(Span(φ)), when the dictionary is redundant, Φ#Φ is
indeed rank-deficient. This degrades the conditioning of the problem, even though the
regularization in Problem 8.3 partially addresses the issue by ensuring (Φ#Φ)(n)K+nλI
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is invertible. Moreover, if the dictionary is too redundant, predicting d coefficients
(one per atom in φ) is too much compared to the actual dimension of Span(φ). These
facts led us to consider a modified estimation procedure.

8.1.2 Effective-rank KPL

A natural idea is to perform an eigendecomposition of Φ#Φ and parameterize our
vector-valued model using the eigenvectors associated to significant eigenvalues (non-
zero or above a small threshold). This idea is a classic one. It has been investigated
early to address the issues posed by highly correlated predictors in linear regression
Massy (1965). It also has been applied to reduce the dimension of the outputs in the
multivariate linear model (Izenman, 1975; Reinsel and Velu, 1998).

We propose to use this approach to increase the efficiency of projection learning when
the dictionary is redundant. Let (wl ,υl)

d
l=1 be an eigendecomposition of the positive

and symmetric matrix Φ#Φ . Let W ∈ Rd×d be the orthogonal matrix which columns
are the eigenvectors (wl)

d
l=1 and let Υ be the diagonal matrix containing the eigenval-

ues in decreasing order, we have that

Φ#Φ = WΥ WT.

Let τ > 0 be a small threshold at which we wish to truncate the eigenvalues and let
r ∈N∗ be the number of eigenvalues greater than τ . We then consider the eigenvectors
W̆ ∈ R

d×r associated to those eigenvalues and the diagonal matrix containing them
Ῠ ∈Rr×r . We propose to study the problem

min
h̆∈HK̆

1
n

n∑
i=1

L(yi −ΦW̆h̆(xi)) +λ∥h̆∥2HK̆
, (8.5)

where now we consider an OVK K̆ : X ×X →L(Rr ) andHK̆ its associated vv-RKHS; L :
Y → R being a functional loss. In the very same fashion as Problem 8.1, Problem 8.5
benefits from a representer theorem (see Theorem 2.36). Consequently, any solution
to this problem h̆λ has the form

h̆λ =
n∑
j=1

K̆xjαj , (8.6)

for some α ∈Rr×n.

Dimensionality reduction for ∥ · ∥Y -composed losses

We have motivated this new problem when the square loss is used through two as-
pects: reduction of the dimension and improvement of the conditioning of the matrix
to invert. However, even for other losses the former aspect can remain relevant. How-
ever, we need however to first formalize a specific form of loss.

Definition 8.1 (∥ · ∥Y -composed loss). We say that a loss function L : Y → R is a ∥ · ∥Y -
composed loss if it can be written as

∀y ∈ Y , L(y) = ℓ
(
∥y∥Y

)
, (8.7)

with ℓ : R→R a loss on the real line.
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Example 8.2 (Huber and ϵ-insensitive losses). Examples of such losses include the Huber
loss H2

κ and the ϵ-insensitive loss ℓ2
ϵ that we studied in Chapter 7. Indeed, we have

H2
κ = hκ

(
∥ · ∥Y

)
and ℓ2

ϵ = lϵ
(
∥ · ∥Y

)
,

where hκ and lϵ are respectively the Huber loss of parameter κ and the quadratic epsilon
loss with parameter ϵ on the real line.

The following lemma justifies posing Problem 8.5 in order to reduce the dimension
when L is ∥ · ∥Y -composed.

Lemma 8.3. Consider an eigendecomposition of the Gram matrix of the dictionary in
an orthonormal basis Φ#Φ = WΥ WT. Suppose the eigenvalues are sorted in decreasing
order. Let W̆ ∈ Rd×r be the matrix which columns are the eigenvectors associated to
non-zero eigenvalues. Let us denote for any vector a ∈ Rd , ă := (al)

r
l=1 ∈ R

r . Then for
any a ∈Rd and any y ∈ Y ,

∥ΦWa− y∥Y = ∥ΦW̆ă− y∥Y . (8.8)

Proof Let Im(Φ) be the range of the operator Φ (it corresponds to the span of the
dictionary), since Φ is of rank at most d, Im(Φ) is a finite dimensional subspace of
Y . Consequently, any vector can be decomposed as y = y0 + y⊥ with y0 ∈ Im(Φ) and
y⊥ ∈ (Im(Φ))⊥. Then, by definition, there exists a0 ∈ R

d such that y0 = Φa0. Using
Pythagoras’ theorem, we have that

∥ΦWa− y∥2Y = ∥ΦWa−Φa0 − y⊥∥2Y
= ∥ΦWa−Φa0∥2Y + ∥y⊥∥2Y .

(8.9)

Developing the norm in the first term of the right hand side of the previous equation,
we get that

∥ΦWa−Φa0∥2Y = aTWTΦ#ΦWa− 2aT
0Φ

#ΦWa + ∥Φa0∥2Y
= aTΥ a− 2aT0 WΥ a + ∥Φa0∥2Y .

(8.10)

Let Ῠ ∈ Rr be the diagonal matrix containing the nonzero eigenvalues of Φ#Φ . Then
since Υ a = (υ1a1, · · · ,υrar ,0, ...,0)T, we have that

aTΥ a− 2aT
0 WΥ a = ăTῨ ă− 2aT

0 W̆Ῠ ă.

Consequently, injecting this into Equation (8.10) yields

∥ΦWa−Φa0∥2Y = ∥ΦW̆ă−Φa0∥2Y . (8.11)

Then, combining Equation (8.11) with Equation (8.9) concludes the proof.

As a consequence of Lemma 8.3, if L is ∥·∥Y -composed (Definition 8.1), we can predict
only r coordinates corresponding to the eigenvectors associated to strictly positive
eigenvalues of Φ#Φ . This hints as well that in order to reduce the dimension of the
problem, it can make sense to consider only eigenvectors associated to eigenvalues
which are greater than a threshold τ > 0.
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Dimensionality reduction and improved conditioning for the square loss

Now let us focus on the square loss. The corresponding problem is the following

min
α∈Rr×n

1
n
∥y− (ΦW̆)(n)K̆α∥2Yn +λ⟨α, K̆α⟩

R
r×n , (8.12)

where K̆ ∈ L(Rr×n) corresponds to the the following operator associated to the OVK K̆
and the input observations

K̆ :

R
r×n →R

r×n

α 7→
[∑n

j=1 K̆(xi ,xj )αj
]n
i=1

 . (8.13)

All the derivations for the KPL ridge estimator performed in Section 5.2.2 are still
relevant if we replace Φ by the linear operator ΦW̆ resulting in the following effective-
rank estimator for KPL.

Corollary 8.4 (Effective-rank ridge estimator). The minimum in Problem 8.12 is
achieved by any α̂ ∈Rr×n verifying(

K̆Ῠ(n)K̆+nλK̆
)
α̂ = K̆(W̆TΦ#)(n)y. (8.14)

Moreover if K̆ is full rank then
(
Ῠ(n)K̆+ nλI

)
is invertible and α̂ is unique and defined

as
α̂ =

(
Ῠ(n)K̆+nλI

)−1
(W̆TΦ#)(n)y. (8.15)

We define the effective-rank ridge estimator as

h̆λ :=
n∑
j=1

K̆xj α̂j . (8.16)

Proof This is derived exactly as Proposition 5.13, noticing that

W̆TΦ#ΦW̆ = Ῠ .

Provided the OVK is separable as K̆ = kX B̆, we can rewrite the above system as a
discrete time Sylvester equation in Equation (5.22):

Ῠ B̆αKX +nλα = (W̆TΦ#)(n)y, (8.17)

and solve it in the same fashion using either a Sylvester solver or an eigendecompos-
ition exploiting the Kronecker structure in O(n3 + r3) time. Even though the r largest
eigenvalues and their associated eigenvectors must be computed beforehand, it can be
done much faster than computing the whole eigendecomposition if r is significantly
smaller than d (Golub and Van Loan, 2013).
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Example 8.5 (Case B̆ = I). In practice, we will generally take B̆ = I, in which case the rows
(α̂l·)

r
l=1 of α̂ can be computed separately for l ∈ ⟦r⟧ as

α̂l· =
1
υl

(
KX +n

λ
υl

I
)−1(

(W̆TΦ#)(n)y
)
l·
.

Therefore, only computing an eigendecomposition of KX is sufficient and then the inverses(KX +n λυl I
)−1

r
l=1

can be computed easily without adding significant terms to the compu-

tational complexity. This option is especially attractive to perform cross-validation on the
regularization parameter λ.

Remark 8.6 (Further rank-reduction). We considered the eigenvectors of Φ#Φ associated
to strictly positive eigenvalues. However, in practice we can filter out small eigenvalues as
well, for instance by defining a threshold, so as to further smooth the problem.

8.2 Feature projection learning (FPL)

The key motivation behind projection learning is to circumvent the numerical issues
created by the infinite-dimensional outputs. By predicting coefficients in an adap-
ted dictionary, the numerical complexity linked to the outputs is greatly diminished.
We now focus on reducing the complexity with respect to the number of observations
n. As we have seen in Section 2.1, kernel methods are well-known for their capa-
city to model complex nonlinear dynamics within a sound mathematical framework.
Nevertheless they suffer from a bad dependency (essentially cubic) in n. Several pos-
sibilities exist to circumvent this. We presented the two main ones in Section 2.1.4,
and both boil down to using appropriate features in a linear model, either random
Fourier or Nyström ones—see respectively Equation (2.15) and Example 2.20. Con-
sequently, we propose to develop a linear version of projection learning, and indeed
other non-kernel related features can be used as well.

Let us consider that we are given a set of input features (xi)ni=1 ∈ (Rq)n of dimension
q ∈N∗ stacked in a matrix X ∈Rq×n which are computed from the input observations.
We then wish to study the linear projection learning problem with coefficients C ∈
R
q×d :

min
C∈Rd×q

1
n

n∑
i=1

L(yi −Φ(CTxi)) +Ω(C), (8.18)

where Ω : Rq×d →R is a regularization function and L : Y →R is a loss on Y .

We propose first to derive an estimator in closed-form for the square loss with square
norm regularization, the corresponding optimization problem is

min
C∈Rq×d

1
n
∥Φ(n)(C

TX)− y∥2Yn +λ∥C∥2
R
q×d , (8.19)

with λ > 0 controlling the intensity of the regularization. This is a convex problem,
therefore we cancel the gradient with respect to C which is given by



160
CHAPTER 8. KERNEL PROJECTION LEARNING: EXTENSIONS AND

IMPROVEMENTS

G =
((
Φ#

(n)Φ(n)

)
(CTX)−Φ#

(n)y
)
XT +λCT.

As we have seen in the proof of Proposition 5.13, Φ#
(n)Φ(n) = (Φ#Φ)(n) which action is

the same as that of Φ#Φ . Therefore we obtain the following matrix equation

(Φ#Φ)CTXXT +λnCT = RXT, (8.20)

where R ∈ Rd×n is defined as in Remark 5.15: it contains the pairwise scalar product
between the output observations and the elements of the dictionary.

Remark 8.7. Unsurprisingly Equation (8.20) is very similar to its kernelized counterpart
Equation (5.21) with XXT playing the role of the intput kernel matrix KX and the right side
of the equation being RXT instead of R. Those changes are however key since XXT ∈ Rq×q
which enable us to avoid the O(n3) time cost and pay a O(q3) cost instead.

Equation (8.20) is a discrete time Sylvester equation. We propose however a solution
based on an eigendecomposition similar to what we used in Example 8.5. Let us recall
that (wl ,υl)

d
l=1 is an eigendecomposition of the matrix Φ#Φ , with W = [wl]

d
l=1 ∈ R

d×d

and Υ is the diagonal matrix containing the eigenvalues in decreasing order. We make
the change of variable CT = WA with A ∈ Rd×q, then multiplying Equation (8.20) left
by WT, we obtain

Υ AXXT +λnA = WTRXT.

8.2.1 Efficient resolution in closed-form

We then notice that the above system is separable and can be solved separately for the
different rows of A. Denoting by al· its l-th row and setting B = WTRXT with rows
(bl·)dl=1, the above system is equivalent to

υ1a1·
...

υdad·

XXT +


λna1·
...

λnad·

 =


b1·
...

bd·

 .
We can then drop the rows associated to null eigenvalues of Φ#Φ as they yield equa-
tions which are not informative; this is another way to motivate the effective-rank
approach that we introduced in Section 8.1. Therefore keeping only the r strictly pos-
itive eigenvalues, we have the system


a1·(XXT + λn

υ1
I)

...
ar·(XXT + λn

υr
I)

 =


b1·
υ1
...

br·
υr

 .
To solve this system, it suffices to invert the matrices

{
XXT + λn

υr
I
}r
l=1

. Since they vary

only by a scalar factor on the added identity matrix, this can be done in O(q3) time
by computing an eigendecomposition of XXT. Let Ă be the matrix regrouping the
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obtained rows corresponding to nonzero eigenvalues, we can then recover CT as W̆Ă.
We refer to this approach as efficient-rank FPL.

Example 8.8 (Regularization in Trace(CTΦ#ΦC)). Problem 8.19 can however be regular-
ized taking into account the projection operator Φ using the Hilbert-Schmidt norm of the
operator ΦC : Rq 7→ Y given by Trace(CTΦ#ΦC).

min
C∈Rq×d

1
n
∥Φ(n)(C

TX)− y∥2Yn +λTrace(CTΦ#ΦC), (8.21)

In that case, canceling the gradient as in Equation (8.20) we obtain

(Φ#Φ)CTXXT +λnΦ#ΦCT = RXT, (8.22)

which using the same change of variable CT = WA yields the equivalent equation

Υ AXXT +λnΥ A = WTRXT.

Therefore, we can drop in A the rows corresponding to zero eigenvalues and obtain the
solution

Ă = Ῠ −1W̆TRXT(XXT +λnI)−1,

and recover CT as W̆Ă.

Remark 8.9 (Other losses). Problem 8.23 can be solved using any convex optimization
iterative algorithm. If the loss L is a ∥ · ∥Y -composed loss as defined in Definition 8.1 and
the regularization function is λ∥ · ∥2

R
q×q , exploiting Lemma 8.3, the same effective-rank trick

can be used, and therefore we can solve

min
C̆∈Rr×q

1
n

n∑
i=1

ℓ(∥yi −Φ(W̆C̆Txi)∥Y ) + ∥C̆∥2
R
r×q . (8.23)

Remark 8.10 (FPL and Huber losses from Chapter 7). Provided the dictionary is prop-
erly chosen, the effective-rank trick should not be too necessary. Then, FPL can be used
also with losses which are not ∥ · ∥Y -composed. In comparison with the dual approaches
proposed in Chapter 7, FPL can be very advantageous. For instance, for the H1

κ Huber loss,
in Section 7.2.1 we optimize over α ∈Rn×m, whereas in the FPL problem, we optimize over
C ∈ Rq×d which is much more manageable. All the more so since FPL displays exactly the
same robustness properties empirically as shown in Section 8.4.4.

8.3 Dictionary selection

The effective-rank strategy is one possible way to deal with a redundant dictionary
in projection learning. Another natural related question is, from a dictionary, can we
extract automatically the atoms which are most relevant for the problem ? The linear
version Problem 8.23 gives us direct access to the coefficients associated with each
atom. Indeed, if the whole l-th column of the matrix C is null, the corresponding l-th
atom φl will not intervene in the prediction function x ∈ Rq 7→ Φ(CTx). This idea is
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interesting in itself, but it also enables us to reduce the dimension while using losses
which are not of the ∥ · ∥Y -composed form (Definition 8.1).

8.3.1 Accelerated proximal gradient

This suggests the use of a structuring penalty to encourage atom selection. The idea
of grouped variable selection has been proposed for the LASSO giving rise to the
group LASSO (Cotter et al., 2005; Yuan and Lin, 2006) for which efficient algorithms
exists–see for instance Fornasier and Rauhut (2008); Roth and Fischer (2008) and the
thorough review of Rakotomamonjy (2011). A natural choice to enforce column-wise
sparsity is then to penalize our objective by the composite (1,2)-norm on the columns
of the coefficients C ∈Rq×d (see e.g. Bach et al. 2012)

∥C∥1,2 =
d∑
l=1

∥cl∥Rq .

We then study the problem

min
C∈Rd×q

1
n

n∑
i=1

Lyi (Φ(CTxi)) +λ∥C∥1,2, (8.24)

where for y ∈ Y , Lyi (y) = L(y − yi). The penalty is convex and continuous, yet it is not
differentiable, so we must use specific optimization strategies. We turn to accelerated
proximal gradient descent (APGD) algorithms as in Chapter 7. The ∥ · ∥1,2 is separable
in the columns of the matrix, therefore its proximal operator boils down to applying
the proximal operator of the ∥ · ∥

R
q norm separately to the columns of the matrix. The

resulting operator is the well known block soft thresholding operator:

proxγ∥·∥1,2(C) =


∣∣∣∣∣∣1− γ

∥cl∥Rq

∣∣∣∣∣∣
+

cl


d

l=1

.

However, if the dictionary is very redundant, we expect many atoms to be useless.
Consequently, using APGD on its own may not be efficient. To exploit the expected
sparsity, we recourse to working sets methods (see e.g. Nocedal and Wright 2006). At
each step, optimization is performed on a reduced set of variables (the working set)
and then we check if the corresponding partial solution is globally optimal. If it is not,
new variables are added to the working set according to an heuristic to be determined,
and so on until a global optimum is reached. In doing so, we avoid optimizing over
the full set of variables. Examples of application in machine learning include multiple
kernel learning (Bach, 2008), structured variable selection (Obizinski et al., 2010; Jen-
atton et al., 2011), sparse coding (Lee et al., 2007) or more recently sparse coding with
nonconvex regularizers (Rakotomamonjy et al., 2022).

We propose to tackle Problem 8.24 in this way, however, we still need an inner solver,
and for that we do use an APGD algorithm. Suppose that the loss is differentiable with
gradient ∇Lyi : Y →Y , then the gradient of the differentiable term in Problem 8.24 is

1
n

XG(C)T with G(C) :=
[
Φ#∇Lyi (Φ(CTxi))

]n
i=1
. (8.25)
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Algorithm 8.1 APGD for linear projection learning with dictionary selection

input : Features matrix X, Projection operator Φ , Initial coefficients C(0), regulariza-
tion parameter λ, differentiable loss L, gradient step γ

init : C(−1) = C(0)

for epoch t from 0 to T − 1 do
// gradient step

A = C(t) + t−2
t+1

(
C(t) −C(t−1)

)
G(A) =

[
Φ#∇Lyi (Φ(ATxi))

]n
i=1

B = A−γ
(

1
nXG(A)T

)
// proximal step

for column l ∈ ⟦d⟧ do

c(t+1)
l =

∣∣∣∣∣1− γλ
∥bl∥Rq

∣∣∣∣∣
+

bl

return C(T )

Remark 8.11 (Partial observations). We present the algorithms using directly the vectors
in Y . However, provided enough observations are available, the quantities of interest can be
estimated.

Remark 8.12 (Integral loss and gradient estimation). If L is an integral loss with ground
loss ℓ as in Example 5.20, for partially observed functions (θi , ỹi)ni=1 G(C) can be estimated
as

1
mi

mi∑
s=1

ℓ
(
yi(θis)−φ(θis)

TCTxi
)
φ(θis). (8.26)

8.3.2 Working set algorithm

The APGD algorithm to solve Problem 8.24 is given in Algorithm 8.1. To use it within
a working set framework, it must be run only on the relevant indices from the working
set J . In practice we retain only the columns of C in J and use the projection operator
for the dictionary containing the atoms which index is in J .

Our problem has the general form

min
C∈Rq×d

f (C) +λ∥C∥, (8.27)

where f is a differentiable and convex function and ∥ · ∥ is a norm on R
q×d .

To set up a working set algorithm however, we need a rule to check the global optim-
ality of a solution computed on the working set. If global optimality is not reached, we
also need a rule to choose the variables to add to the working set. We follow Bach et al.
(2012, Chapter 6) and approximately monitor the duality gap at the current iterate C
by checking whether

∥∇f (C)∥∗ ≤ λ, (8.28)

where ∥ · ∥∗ is the dual norm of ∥ · ∥ (see Definition 2.45). In our case, ∥ · ∥ = ∥ · ∥1,2 and
its dual norm is ∥ · ∥∞,2, therefore Equation (8.28) boils down to

max
l∈⟦d⟧
∥(∇f (C))l∥Rq ≤ λ. (8.29)
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Algorithm 8.2 Working set algorithm to solve Problem 8.24
input : Features matrix X, regularization parameter λ, differentiable loss L, gradient

step γ

init : Initial working set J = {l0}, random or l0 = argmaxl∈⟦d⟧
1
n

∑n
i=1 |⟨yi ,φl⟩Y |.

J (−1) = J , r = ∅
Initialize CJ (−1)

stop = False
while not stop do

C(0)
J =

[
CJ (−1) ,0{r}

]
or for square loss, closed-form solution to Equation (8.20) restric-

ted to J
CJ = Algorithm 8.1(X,ΦJ ,C

(0)
J ,λ,L,γ)

C =
[
CJ ,0Jc

]
if ∥∇f (C)∥∞,2 > λ then
r = argmaxl∈Jc ∥(∇f (C))l∥Rq

J (−1) = J
J = J ∪ {r}

else
stop = True

return C

Consequently, to increase the working set, it makes sense to add the atom with index l0
for which ∥(∇f (C))l0∥Rq is maximal. We detail the whole procedure in Algorithm 8.2.
To simplify the presentation we do the following slight abuses of notation. For J ⊂ ⟦d⟧
and C ∈Rq×d :

• CJ ∈ R
q×|J | denotes the matrix C restricted to its columns with index is J , and

similarly CJc denotes the same but for indices in the set complementary to J in
⟦d⟧.

•
[
CJ ,CJc

]
denotes the matrix which for j ∈ J , has the corresponding column of CJ

and for j ∈ Jc, the corresponding one in Jc.

Remark 8.13 (Practical notes for the square loss). In Algorithm 8.2, we found that when
using the square loss, instead of using the previous iterate as a warm starting point for
Algorithm 8.1, it was much faster to use the closed-form solution–Equation (8.20)–to the
problem with square loss and λ2∥ · ∥2

R
q×d regularization with small λ2. In our experiments,

this resulted in a much lower number of inner iterations per atom addition, for significant
λ∥ · ∥1,2 regularization, less than ten iterations were sufficient.

8.4 Numerical experiments

In this section, we study in practice some of the proposed improvements. In all exper-
iments the feature-based approach (Problem 8.23) is used, the features being Nyström
ones (see Example 2.20).
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Figure 8.1: Effective rank FPL on synthetic data

8.4.1 Effective rank

In this section, we study in details the behavior of the effective-rank FPL estimator
introduced in Section 8.2.1. We want to show it can be advantageous in term of com-
promise between accuracy and computational time.

Experimental setting. To that end we use the synthetic dataset based on Gaussian
processes (GP) that we introduced in Section 7.4.1. As a brief reminder the output
functions are random linear combinations of a set of four GPs drawn with the fol-
lowing standard deviations σσσout = (0.05,0.1,0.5,0.7). To measure the efficiency of our
estimators as the number of atoms in φ (and its redundancy) increases, we use a dic-
tionary of GP drawn with standard deviations σσσbig = (0.001, 0.005, 0.01, 0.025, 0.05,
0.075, 0.1, 0.5, 0.7). These include the standard deviations from σσσout, consequently
as the number of drawn GPs increases, the resulting dictionary should work well for
the problem. However, we also included some very low values. The corresponding
realizations vary much too fast and therefore inflate the dictionary unnecessarily with
noise atoms. Then, we solve the problem increasing the number of drawn processes:
we draw l per standard deviation for l in { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35,
40, 45, 50, 60, 70, 80, 90, 100 }.

Optimization and tuning. On the one hand, for FPL we use the whole dictionary
and solve Equation (8.20) with a Sylvester solver. On the other hand, for effective-
rank FPL we employ the resolution strategy presented in Section 8.2.1 retaining only
the eigenvalues/eigenvectors pairs of Φ#Φ associated to eigenvalues above a given
threshold. We set it in the experiments to 5× 10−5 × d with d the number of atoms in
the dictionary. We make it depend on d as the dimension structurally increases the
magnitude of the largest eigenvalues. Finally, we select the regularization parameter λ
through cross-validation for values in a geometric space with 50 values ranging from
10−8 to 10−2. We repeat the whole experiment 10 times with different seeds for the
different sources of randomness (draws of the GPs in the dictionary, generation of the
dataset, draws of the Nyström features).
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Figure 8.2: FPL with Nyström features on speech data

Results. We report in Figure 8.1 the average values as well as their standard deviation
(light color bands above the curves). The performance of effective-rank FPL and FPL
are very similar in terms of NMSE, and they could probably be the same if we worked
a bit more on the selection of the threshold. As expected, when the number of atoms
(and the redundancy of the dictionary) increases, the computational time for fitting
FPL increases drastically faster than that for fitting effective-rank FPL (the CPU time
is in log). Admittedly, to fit the latter we do need to compute eigenvalues/eigenvectors
pairs of Φ#Φ , however the CPU time for doing so increases much slower than that to
fit FPL. Moreover we only need to do this once per set of experiment, which is a great
advantage for instance to tune other parameters.

8.4.2 Large scale

Experimental setting. We now check the efficiency of FPL using Nyström features on
the speech dataset that we introduced in Section 5.3.4. We display the results for all
eight vocal tracts increasing the number of Nyström features in Figure 8.2. We use the
same learnt dictionary as in Section 5.3.4 fixing the number of atoms at 30. We select
the regularization parameter through cross-validation considering λ in a geometric
space of size 20 ranging from 10−10 to 10−5. We display the mean values and standard
deviation computed over 10 runs of the experiments with different seeds.

Results. As expected, using Nyström features we can reach a satisfying score not
using all of the training observations (using about 2/3). We then get quite close to the
score reached using the maximum number of Nyström features–equivalent to run-
ning KPL. We however note that for some vocal tracts (TTCL, TBCD and GLO), the
convergence is a bit slower than what we are used to for a Nyström approximation.
This can be explained by the nature of the data: observations corresponds to words
and we do not have that many to start with. Therefore using only a reduced number
of observations may make the problem challenging for certain vocal tracts.
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Figure 8.3: Dictionary selection using Algorithm 8.2 on synthetic data

8.4.3 Dictionary selection

We now wish to demonstrate how the ∥ · ∥1,2 promotes selection of atoms from the
dictionary. To that end we use the same setting as in Section 8.4.1: we work on the
synthetic data and draw an highly redundant dictionary using 40 GPs per standard
deviation in σσσbig. This results in a dictionary of size 360. We use the working set
Algorithm 8.2 to solve Problem 8.24 with the square loss and we report the means
and standard deviations over 10 runs of the experiments in Figure 8.3. It shows how
the intensity of the mixed-norm regularization promotes the selection of the more
relevant atoms for the problem. Indeed, we see that as λ increases, less and less atoms
are used but the estimator remains accurate: the size of the dictionary can get down
to 50 atoms without really degrading the NMSE.

8.4.4 FPL with robust losses

Experimental setting. As a complement we show how FPL can be combined with any
differentiable loss. We consider the issue of robustness and use the Huber losses H2

κ
and H1

κ introduced in Section 7.2. They are both differentiable once. We use the exact
same experimental setting as in Section 7.4.3: on the synthetic data, we add global or
local outliers and we make several of their parameters vary. These parameters are the
proportion τ ∈ [0,1] of the training data being contaminated, the magnitude ζ of the
global outliers and the proportion ξ ∈ [0,1] of contaminated observations per function
for the local outliers. For more details on the outliers, we refer to Section 7.4.1. We
use a generic output dictionary: a Fourier basis including 40 frequencies. For optim-
ization, we solve Problem 8.23 using an accelerated gradient descent combined with
backtracking line search.

Tuning. We select through robust cross-validation the regularization parameter λ
and the parameter κ of the losses. For the former, we consider values in a geometric
grid of size 7 ranging from 10−7 to 10−5. For the latter, we consider the same values as
in Section 7.4.3 which are detailed in Appendix B.4.
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Figure 8.4: FPL with Huber losses and square loss

Results. We display in Figure 8.4 the median of the NMSEs obtained over 10 runs of
the experiments as well as their median absolute deviation (MAD) which corresponds
to the average absolute deviation to the median. We use these metrics because dealing
with outliers, the results are naturally more scattered, and those quantities are clearer
to read. As expected FPL can be made robust both to local and global outliers using
those losses. The comments are the same as in Section 7.4.3: when the outliers are
global, FPL with both Huber losses H2

κ and H1
κ is much more robust than FPL with

the square loss. However, for local outliers, if all the observations are corrupted as in
the bottom right panel (τ = 1), the loss H2

κ is no more robust than the square one. It is
because it filters the outliers in terms of their ∥ · ∥Y norm. We also see this effect as τ
increases with fixed ξ in the bottom left panel.

As highlighted in Remark 8.10, using the dual approach proposed in Section 7.2.1
we must optimize over coefficients α ∈ Rn×m whereas here we optimize over C ∈ Rq×d
which is much more manageable.

8.5 Conclusion

In this chapter we addressed several questions around the KPL framework. To deal
with dictionaries which are too redundant, we proposed first to exploit an eigen-
decomposition of the Gram matrix of the dictionary. We formulated a KPL problem
in which we predict coordinates in the set of the most relevant eigenvectors. Doing so,
we reduce both the dimension and the computational burden without making com-
promises on accuracy. Then, to improve the computational complexity further, we
combined KPL with large scale kernel techniques. To that end, we formulated a linear
projection learning problem and derived efficient ways of solving it, notably in closed-
form when the square loss is used. We demonstrated empirically the efficiency of this
estimator using Nyström features. For the same feature-based model, so as to achieve
automatic selection of the relevant atoms, we regularized through the (1, 2)-mixed
norm which encourages column-wise sparsity. In turn, this implies sparsity on the
dictionary. We tackled this problem using an APGD algorithm and proposed to use
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it within a working set framework to exploit the expected sparsity. To finish with, we
highlight that the feature-based projection learning framework can be used with any
differentiable loss, a possibility we demonstrate experimentally by combining it with
functional Huber losses. This constitutes a very scalable functional output regression
method: it uses features, so its complexity with respect to the number of inputs is
limited while its complexity incurred by the functional outputs is limited through the
use of a dictionary.



Conclusion and Perspectives

Method Representation
FKRR-MC (Lian, 2007; Kadri et al., 2010) Discrete

FKRR-EIG (Kadri et al., 2016) TkΘ eigenfunctions
3BE (Oliva et al., 2015) Orthogonal basis

KAM (Reimherr et al., 2018) FPCA
FKR-HUB (Laforgue et al., 2020) TkΘ eigenfunctions

KPL (Chapter 5) Any dictionary
FKR-CONV-SP (Chapter 7) Linear splines

FKR-CONV-EIG (Chapter 7) TkΘ eigenfunctions
FPL (Chapter 8) Any dictionary

Method Inputs loss Fit complexity
FKRR-MC Any 1/2∥ · ∥2Y O(n3 +m3)
FKRR-EIG Any 1/2∥ · ∥2Y O(n3 +n2md)

3BE Functions 1/2∥ · ∥2Y O(q3 + q2d)
KAM Functions 1/2∥ · ∥2Y O(n2t2 + d2m2 +n3 + d3)

FKR-HUB Any H2
κ Strongly convex problem (Rd×n)

KPL Any 1/2∥ · ∥2Y O(d3 +n3)
FKR-CONV-SP Any H1

κ , H2
κ , ℓ∞ϵ , ℓ2

ϵ Strongly convex problem (Rm×n)
FKR-CONV-EIG Any H2

κ , ℓ2
ϵ Strongly convex problem (Rd×n)

FPL Any 1/2∥ · ∥2Y Truncated SVD of Φ#Φ + O(q3)
FPL Any Differentiable Strongly convex problem (Rd×q)

Table: main characteristics of the FOR methods proposed in this thesis compared to
these of existing ones.

In this thesis, we proposed new tools to solve functional output regression (FOR)
problems nonlinearly. FOR is particularly challenging because the outputs lie in a
functional Hilbert space which is generally infinite-dimensional. Therefore, a relev-
ant approximation in finite dimension must be found. Usually, either the functional
problem is solved in closed-form and then the solution is approximated, or the func-
tions are smoothed upstream and then used to solve the problem. In terms of losses,
the functional square loss is mainly used even though it can be sensitive to outliers.

Our main contribution is the framework of projection learning. It taps into the many
possibilities offered to represent functions using dictionaries. However, it does so dir-
ectly in the functional empirical risk minimization problem so that the representation
is factored in producing relevant predictions. This technique can drastically reduce
the computational complexity associated with the number of observations per output
function.
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We studied in detail kernel projection learning (KPL) where a vector-valued reprodu-
cing kernel Hilbert space (vv-RKHS) is taken as a hypothesis class for the representa-
tion coefficients. When the functional square loss is used, we derived two estimators
in closed-form, one deals with fully-observed functions while the other is computed
directly from the available discrete observations. We backed these estimators theor-
etically with excess risk bounds showing their consistency. On the practical side, we
proposed an efficient procedure to compute these estimators for separable operator-
valued kernels. To reduce the time complexity linked to the number of samples, we
proposed feature projection learning, a linear version of projection learning that can be
combined with large scale kernel features such as random Fourier features or Nys-
tröm features. The resulting further reduction in the time complexity makes it more
manageable to use other functional losses. Finally, we introduced an efficient-rank
estimator to deal with redundant dictionaries as well as an algorithm exploiting a
structured-norm penalization to automatically select relevant atoms from the diction-
ary.

However, several possibilities around projection learning are still to be investigated.
We have shown how to select a set of atoms from the dictionary common to all ob-
servations. Nevertheless, it would be interesting to select a set of atoms specific to
each observation, or in other words to reach input-dependent sparsity. Theoretically,
the excess risk bounds we derived could be improved to obtain better rates under
more restrictive assumptions. We also analyzed the estimation procedure but not the
approximation aspects linked to the use of a dictionary to represent the output func-
tions. In terms of hypothesis classes, we studied in depth projection learning with
vv-RKHSs. The idea could be extended to other classes of models. For instance, it
would be simple to add a last dictionary layer to a neural network. Or projection
learning could be combined with regression trees, since provided the square loss is
used, the resulting splitting criterion can be computed in closed-form. From there,
we could construct random-forests for Hilbert-valued regression. We also limited our
scope to FOR problems, however projection learning can work for prediction in any
separable Hilbert space. It could for instance be used to solve structured output pre-
diction problems when the outputs are represented in a RKHS.

As a second contribution, we extended the possible losses for FOR focusing on re-
gression in function-valued RKHSs. We introduced a family defined through infimal
convolution to generalize the Huber and ϵ-insensitive losses for functions. These ex-
ploit the properties of functional p-norms to encourage robustness or sparsity with
the parameter p determining the degree of locality of the property. The resulting em-
pirical risk minimization problems are especially amenable to the use of Lagrange
duality. We then proposed two possible finite-dimensional representations for the
dual variables and solved the problem for certain values of the locality parameter p.
We thus obtained estimators which are sparse or robust either in a local or global way.

Further investigations could focus on extending the possible values of p for which the
problem is solvable in practice. We enforced sparsity or robustness both in a fully
local and global way but did not find a reasonable solution to reach something in
between. The bottleneck resides in the impossibility to project fast enough on the
q-norm unit ball for q < {2,+∞}. Therefore finding an efficient algorithm to perform
such a projection could make this problem solvable. Lastly, it would be interesting to
investigate other types of losses for functional outputs. For instance, an analogous to
quantile regression for functions would be of special interest.
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The present chapter is dedicated to an applied contribution. More precisely, it studies
several aspects of the prediction of wind speed and wind power in the very short-
term using machine learning. By very short-term, we mean that the predictions range
from nowcasts (almost immediate forecasts) to four hour forecasts. The initial mo-
tivation was to work on the theme of renewable energies and apply our methods for
functional output regression. Consequently, we started working on a collaboration
around a dataset regrouping several measurements from the sensors in the turbines
of a company’s (Zéphyr ENR) wind-farms at a high temporal resolution. The initial
aim was to predict whole functions corresponding to predictions over a time interval.
Nevertheless, for this particular applications, considering the problem as functional
did not yield improvements over correctly tuned well-known machine learning meth-
ods. Consequently, we decided to leverage the work that was already done on using
machine learning to predict wind speed and wind power in the short-term, and invest-
igate several aspects that appeared of interest. We submitted this work to a specialized
journal. Therefore, to maintain the coherence of the thesis, we add this contribution
as an independent part, and we expose it as we submitted it and without making links
to the rest of the thesis. It corresponds to the contributions of
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• D. Bouche, R. Flamary, F. d’Alché-Buc, R. Plougonven, M. Clausel, J. Badosa
and P. Drobinski. Wind power predictions from nowcasts to 4-hour forecasts:
a learning approach with variable selection Technical report, 2022. (https://
arxiv.org/abs/2204.09362). (submitted)

9.1 Introduction

The fast development of renewable energies is a necessity to mitigate climate changes
(Masson-Delmotte et al., 2021). Wind energy has developed rapidly over the past
three decades, with an average annual growth rate of 23.6% between 1990 and 2016
(IEA, 2018), and is now considered as a mature technology. The share of renewable
energies in global electricity generation reached 29% in 2020, and is expected to keep
growing fast in coming years (IEA, 2021) which raises a number of challenges, stem-
ming from the variability and spatial distribution of the resource. Then, in order to
facilitate the dynamic management of electricity networks, forecasts of wind energy
require continual improvement. Short timescales, from a few minutes to a few hours,
are of particular importance for operations.

To produce forecasts, one can rely on several distinct sources of information. On
timescales of half a day to about a week, deterministic weather forecasts provide a
representation on a grid of the atmospheric state, including wind speed near the sur-
face. The skill of such numerical weather forecasts (NWP) models has continually
increased over the past decades (Bauer et al., 2015), while their spatial resolution has
also grown finer (down to few km). However, to predict at a given geographical loc-
ation for time horizons shorter than a day, the use NWP models is impeded by two
main difficulties being (i) the errors in the modeled wind and (ii) the relatively in-
frequent initiation of forecasts. The former result from both limited resolution and
the impossibility to model local processes. For instance, for wind speed at an alti-
tude of 100m is strongly affected by local small-scale features and turbulent motions,
both of which remain beyond the spatial resolution that is achievable for NWP mod-
els. Regarding the second point, operational centers typically launch forecasts twice
or four times per day, however the computation of the forecast itself as well as the
preparation of its initial state require time and computational resources–see e.g. Kal-
nay (2003). As a result, many methodologies for forecasting short-term wind speed
or wind power use only past local observations and focus on statistical methods–see
e.g. the reviews from Tascikaraoglu and Uzunoglu (2014); Okumus and Dinler (2016);
Liu et al. (2019) and references therein. Nevertheless, we know that NWP models can
provide valuable information for the evolution of the atmosphere on larger scales–i.e.
on the formation or passage of a low-pressure system and on the associated fronts.

It is therefore a natural idea to use both sources of information to train machine learn-
ing (ML) models: local deficiencies in NWP models can partly be overcome by down-
scaling; i.e. better estimating local variables from the knowledge from a model’s out-
puts and past observations. Such efforts have been carried out for decades in met-
eorology and climatology, under different names. In a pioneering early study, Glahn
and Lowry (1972) applied multilinear regressions trained on past observations to cor-
rect NWP errors. More recently, model output statistics has become common practice
in operational weather forecast centers–see e.g. Wilson and Vallée (2002); Baars and
Mass (2005). In recent years, ML methods have enhanced the performance of these
post-processing steps–see e.g. Zamo et al. (2016); Goutham et al. (2021)).

https://arxiv.org/abs/2204.09362
https://arxiv.org/abs/2204.09362
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Specifically for wind speed or wind power forecasting, several hybrid models combin-
ing successfully NWP outputs with local observations have been proposed. In terms
of time horizons, the focus is mostly on forecasts beyond 1 hour with low resolution
(generally one prediction per hour)–see e.g. Hoolohan et al. (2018, Table 1) and ref-
erences therein. While for the shorter term, most existing hybrid methods rely on
complex and deep architectures–see e.g. Han et al. (2022, Table 1) and references
therein. Moreover, for all these methods only a very low number of local and NWP
variables are used (most of the times, only the past observed wind speeds and the ones
predicted by the NWP model).

In this paper, we study hybrid prediction of both wind speed and wind power. Our
contributions are five-fold.

• We study the problem for time horizons ranging from 10 minutes to 4 hours at a
high resolution (every 10 minutes). This allows us to study with precision when
and how the transition from one source of information (past local observations)
to the other (NWP forecasts) occurs. This setting has been introduced in Dupré
et al. (2020) yet we extend it and use it to address the following new problems.

• We include many different outputs from a NWP model as they could provide
broader information on the overall predicted dynamics to the ML model. We
also include several local variables. We then focus on variable selection and
study the evolution of the importance of the selected variables through time.
This allows us to better understand the nature of the studied statistical relation-
ship and to extract a usable set of relevant variables.

• We study five distinct wind farms which enables us to expose many similarities
but also some site specificities and increases the statistical significance of our
results.

• We investigate which type of ML methods are the most suited for hybrid predic-
tion of wind speed and wind power.

• Many existing contribution focus either on wind power or wind speed predic-
tion but not on the relation between them, whereas at all steps of the paper, we
compare the direct (predict wind power) and indirect (wind speed predictions
passed through a power curve) approaches.

In terms of methodology, we have two key focuses.

• We want this study to be usable by practitioners. To that end we concentrate
on a reduced choice of well-known and efficient ML methods which scale well
with the number of samples, and moreover provide all the needed elements for
a straightforward implementation. We also put a particular emphasis on how
we select our models.

• We want to ensure our results are statistically significant. To that end, we em-
ploy a thorough evaluation process. We study several sites over several periods
of time (the number of samples is quite high per site) and for each location, we
average the results over several data splits.



9.2. DATA AND CONTEXT 177

Figure 9.1: Cartography of the studied farms, BM (A), BO (B), MP (C), RE (D), VE (E)

In Section 9.2, we introduce the data set from Zéphyr ENR and detail our processing
of the data. Section 9.3 is dedicated to the presentation of our methodology as well
as to the introduction of the statistical learning tools. Then in Section 9.4 investig-
ates variable selection. Finally in Section 9.5, exploiting all the previous results, we
compare different well-known ML models as well as direct and indirect prediction for
wind power.

Notation We introduce the following notation: for two integers n0,n1 ∈N∗, the set of
strictly positive integers, we denote by ⟦n0⟧ the set {1, ...,n0} and by ⟦n0,n1⟧ the set
{n0, ...,n1}.

9.2 Data and context

In this Section, we introduce the dataset that we use (Section 9.2.1) as well as the
pre-processing steps that we apply to it and the general evaluation methodology (Sec-
tion 9.2.2).

9.2.1 Zéphyr ENR’s dataset

Our first source of information consists of measurements made by sensors in the wind
turbines (we call these in situ variables) whereas the second one consists of forecasts
from the European Centre for Medium-Range Weather Forecasts (ECMWF). We study
five wind farms in the northern half of France: Parc de Bonneval (BO), Moulin de
Pierre (MP), Parc de Beaumont (BM), Parc de la Renardière (RE), and Parc de la Vèn-
erie (VE). These wind farms are operated by the private company Zéphyr ENR and are
described in details in (Dupré et al., 2020). We display their location on a map in Fig-
ure 9.1. Some are geographically close by–we can form the pairs (BO, MP) and (BM,
RE)–while VE is isolated. Note that we left another available farm out of the study
because it displayed signs of sensors deficiencies. On the one hand, the geograph-
ical topology of the surroundings for (BO, MP) and (BM, RE) are quite similar, they
correspond to open fields with very few elevation variations. On the other hand, VE
is surrounded by wooded countryside with slightly more elevation variations, which
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Variable type Altitude or pressure level Variable Unit
Surface 10m/100m Zonal wind speed ms−1

Meridional wind speed ms−1

2m Temperature K
Dew point temperature K

Surface Skin temperature K
Mean sea level pressure Pa
Surface pressure Pa
Surface latent heat flux Jm−2

Surface sensible heat flux Jm−2

Boundary layer dissipation Jm−2

Boundary layer height m
Altitude 1000/925/850/700/500 Zonal wind speed ms−1

Meridional wind speed ms−1

Geopotential height m2s−2

Divergence s−1

Vorticity s−1

Temperature K
Computed 10m/100m Norm of wind speed ms−1

10m to 925 hPa Wind shear ms−1

Temperature gradient K

Table 9.1: ECMWF variables

Availability Variable Unit
All Wind speed ms −1

All Power output kW
All Wind direction Degree
BO and BM Temperature Celsius degree

Table 9.2: In situ variables

Variable (source) Abbreviation
Wind speed (in situ) WS
Power output (in situ) PW
Norm of wind speed at 100m (ECMWF) F10
Norm of wind speed at 100m (ECMWF) F100
Wind shear between 10m and 925 hPa (ECMWF) DF
Boundary layer dissipation (ECMWF) bld
Boundary layer height (ECMWF) blh
Surface latent heat flux (ECMWF) slhf

Table 9.3: Abbreviations for the variables used in the paper

may explain the differences that we observe between this farm and the others in Sec-
tion 9.4 and Section 9.5.

For BO and VE we have three years of data (from 2015 to 2017) which amounts to a
total of n = 157680 observations for BO. However, for VE we do not use the year 2016
because it encompasses sensor deficiencies, so we use n = 105120 observations. For
BM and RE we have access to two years of data (from 2017 to 2018 for BM and from
2015 to 2016 for RE) which results in a total of n = 105120 observations, and finally
for MP we have only one year (2017), which gives us of total of n = 52560 observations.

Several variables are available, we summarize the in situ ones in Table 9.2–note the
temperature is available only for BO and BM. In order to encode the circular nature
of the in situ wind direction we encode it using two trigonometric variables.
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The ECMWF provides global forecasts issued by their NWP models. We followed
Dupré et al. (2020): we extracted the day ahead forecast twice a day (at 0000UTC and
1200UTC) and included the same 47 variables as they do. These variables are either
selected or computed so as to describe as well as possible the boundary layer, the
wind parameters and the temperature in the lower troposphere. Table 9.1 presents
the ECMWF variables we use. They can be either surface variables, altitude ones, or
computed from other ECMWF variables. The spatial resolution of ECMWF forecasts
is about 16 km (0.125 ◦ in latitude and longitude) and their temporal resolution is 1h,
then to match that of the in situ variables (10 min), we linearly interpolate the ECMWF
forecasts. To finish with we sum up the abbreviations for the variables mostly used in
the paper in Table 9.3.

9.2.2 Preprocessing and evaluation methodology

In order to increase the statistical significance of our results, we average the outcomes
of the experiments over different data splits. A split consists of 3 subsets from the
dataset, a train subset (of size ntrain), a validation one (size nval) and a test one (of size
ntest). In order to avoid overfitting, given a ML method and a set of possible parameter
values, we first train the resulting models on the train set. Then we choose the model
yielding the best score on the validation set. To finish with, we re-train this model on
the concatenation of the train and validation set and report its score on the test set. So
as to preserve time coherence, we build our splits in a rolling fashion. For instance for
the first split we take the period ⟦ntrain⟧ for training, the period ⟦ntrain +1,ntrain +nval⟧
for validation and we test the models on the period ⟦ntrain +nval +1,ntrain +nval +ntest⟧.
Then for the second split, the train period is ⟦ntrain +nval +ntest +1,2ntrain +nval +ntest⟧,
the validation one is ⟦2ntrain + nval + ntest + 1,2ntrain + 2nval + ntest⟧ and so on. For the
sizes of the windows, we set ntrain = 10000, nval = 10000 and ntest = 10000 (however,
the last split generally contains around 5000 ≤ ntest ≤ 10000 observations). Since the
length of available data vary from farm to farm, we do not have the same number of
splits for all the farms.

We pre-process the data in the following way. As the number of wind turbines per
farm is quite low (6 for BM, 6 for BO, 3 for HC, 6 for MP, 6 for RE and 4 for VE) , we
average the in situ data over the turbines for each farm. In all our experiments, we
standardize both the input and the output variables (subtract the mean and divide by
the standard deviation) using the training data. We do so both for in situ variables and
ECMWF ones. Such operation is crucial for instance to avoid favoring some variables
which are structurally bigger over others when using regularized ML models.

9.3 Methodology and machine learning tools

In this Section, we introduce our general methodology as well as the ML tools that we
use for variable selection and forecasting.

9.3.1 Methodology

Dataset building. Let m ∈ N be the prediction length (the number of future wind
speed or wind power values we want to forecast). For the ECMWF variables, we in-
clude the corresponding forecasts. However, in practice we found that including a
bit more than that improved performances. To that end, we denote respectively by
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Figure 9.2: Summary of the time windows used for each source of data for wind speed
prediction

r0 ∈ N the number of past ECMWF predictions that we include, and by r1 ∈ N the
number of ECMWF predictions that we consider after m. For the in situ variables, we
include a length l ∈ N of past observations. These different time windows are illus-
trated in Figure 9.2 for a reduced set of variables. For the all the variables and time
windows, we concatenate the relevant observations xt (these within the orange zones
in Figure 9.2). From these, we want to produce a prediction for yt+1:m ∈ R

m (the m
observations within the green zone in Figure 9.2). In practice, we use the following
parameters which work well experimentally:

• we predict up to 4 hours, with a time sampling rate of 10 min, it means that
m = 4×60

10 = 24,

• for the in situ variables, we consider 3h of past observations, thus l = 3×60
10 = 18,

• for the ECMWF variables we additionally use the predictions between 1.5h be-
fore and 1.5h after the time horizon of interest so r0 = r1 = 1.5×60

10 .

ML models. We stick to ML models which are well-known and can scale well to a
higher volume of data. Good results were obtained for one location (BO) from the
studied dataset in Dupré et al. (2020) using linear regression with greedy forward
stepwise variable selection (Hastie et al., 2001). Nevertheless, since we are interested
in the importance of variables, we study also an alternative which select variables
directly in the least square problem. The LASSO (Tibshirani, 1996) exploits the L1
penalty to induce sparsity in the regression coefficients, thus shrinking to zero the
ones which are associated to the less relevant variables. Such methods can however
be limited in that they can learn only linear dependencies between the input and out-
put variables. Consequently, we study a nonlinear alternative: kernel ridge regression
(KRR)–see for instance (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini,
2004). Finally, in order to include most families of ML models, we consider two other
nonlinear methods: a tree-based boosting algorithm (Friedman, 2001)–we use XG-
Boost Chen and Guestrin (2016)–as well as a feed-forward neural network (NN). In
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Section 9.3.2 we give more mathematical details on the general ML problem as well
as on the methods that perform the best in the experimental section.

Variable selection. We have many in situ and ECMWF variables available (see Table 9.1
and Table 9.2). So as to improve the computational efficiency and and understand
better what the models do, it is preferable to use only the most important variables.
Ideally, we want to find a subset which is sufficient for a model to predict a statistically
relevant target value from the input variables. In that sense a variable selection tool is
necessarily model specific. Linear techniques will focus only on linear dependencies,
whereas nonlinear ones will incorporate a much wider range of dependencies. Then
we propose to use and interpret the results of one variable selection for each type. For
the linear one we study the LASSO. For the nonlinear one, we use backward elimina-
tion using the Hilbert Schmidt Independence Criterion (Song et al., 2012). As opposed
to the LASSO, it performs variable selection as an independent first step. The selected
variables can then be used downstream to train any model. Then, for the nonlinear
models (KRR, XG-Boost, feed-forward NN), we use the variables selected through this
method. We give more detailed insights into the different techniques in Section 9.3.3.

9.3.2 Details on machine learning models

The input observations are the concatenation of the different variables on the time
windows described in the previous section. We denote by X = R

q the resulting input
space, for some q ∈N. Our training data then consist of ((xt ,yt+1:m))nt=1 ∈ (X ×Rm)n for
some n ∈N, where we recall that yt+1:m = (yt+1+m0

)mm0=1. Given a prediction function
from a ML model class fw : X → Y parameterized by a vector w ∈ W , we want to
minimize the average error on the training data:

min
w∈W

1
n

n∑
t=1

∥fw(xt)− yt+1:m∥22 +λΩ(w). (9.1)

However, depending on the model, a penalty function Ω :W −→ R can be added in
order to prevent overfitting or promote variable selection; its intensity is controlled
by a parameter λ > 0.

In practice, instead of predicting all time horizons in one go as in Problem 9.1, we
rather use separate models for each horizon in ⟦t+1, t+1+m⟧. That way we can tailor
the different parameters for each horizon, which we found improved performances.
Then in what follows, we consider a generic time horizon m and predict yt+1+m.

Ordinary least squares (OLS). In forward stepwise variable selection (Hastie et al.,
2001), at each step an OLS regression is solved for which the optimization problem
reads:

min
w∈W ,b∈R

1
n

n∑
t=1

(wTxt + b − yt+1+m)2 (9.2)

A well-known and simple closed form exist, which we use in practice.

LASSO. The optimization problem for the LASSO is the following:
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min
w∈W ,b∈R

1
n

n∑
t=1

(wTxt + b − yt+1+m)2 +λ∥w∥1,

where ∥w∥1 is the sum of the absolute values of the coefficients w. Many efficient
algorithms exist to solve this convex yet non differentiable problem–see for instance
Beck and Teboulle (2009). In practice we use the scikit-learn (Pedregosa et al., 2011)
implementation with coordinate descent solver.

Kernel ridge regression (KRR). In KRR, we consider a class of models defined by a
positive definite reproducing kernel k : X × X −→ R which results in a unique asso-
ciated reproducing kernel Hilbert space (RKHS). A most typical choice for k is the
Gaussian kernel:

kγ (x,x′) := exp
(
−γ(∥x− x′∥22

)
.

We then seek our modeling function in this RKHS which we denote Hk , each h ∈ Hk
being a function from X to R. For many kernels, this space constitutes a very rich class
of modeling functions which can model nonlinear dependencies. The optimization
problem reads:

min
h∈Hk

1
n

n∑
t=1

(h(xt)− yt+1+m)2 +λ∥h∥2Hk (9.3)

where ∥ · ∥2Hk is the RKHS norm on Hk , which measure in a sense the smoothness of
functions in Hk . Thanks to the Representer theorem, any solution to Problem 9.3 can
be parameterized by a vector ααα ∈Rn:

hααα :=
n∑
j=1

αjk(xj , ·),

which makes optimization in the RKHS amenable. For KRR the optimal coefficients
α̂αα can be found in close form:

α̂αα := (K +nλI)−1y(m),

with y(m) := (yt+1+m)nt=1, I ∈ Rn×n the identity matrix and K ∈ Rn×n with entries Ktj =
k(xt ,xj ).

In practice, to handle the large volume of training data, we use an approximated ver-
sion of KRR. Nyström approximation (Williams and Seeger, 2001; Drineas and Ma-
honey W., 2005) exploits a random subset of points from the training data. Concretely,
we sample randomly and uniformly without replacement p ∈N indices {i1, ..., ip} among
the integers in ⟦n⟧, and replace hα̂αα–see e.g. (Rudi et al., 2015)–with:

h̃α̃αα :=
p∑
j=1

α̃jk(xij , ·),
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where α̃αα ∈Rp is given by the following close form:

α̃αα := (KT
npKnp +λnKpp)†KT

npy(m). (9.4)

Where A† denotes the Moore-Penrose pseudo-inverse of a matrix A, and Knp ∈ Rn×p
is defined by the entries (Knp)tj := k(xt ,xij ) and Kpp ∈ R

p×p by the entries (Kpp)bj =
k(xib ,xij ).

9.3.3 Details on variable selection

OLS with forward stepwise selection (OLS f-stepwise). When performing linear re-
gression, variable selection can be performed in a greedy manner. First an intercept
is fit to the data and then at each step we solve OLS problems–Problem 9.2–adding in
turns each one of the remaining variables. We then keep the one which best improve
the model according to some criterion. In Dupré et al. (2020), the Bayesian informa-
tion criterion is used. However, in our experiments we rather used the improvement
of the score on half of the validation set, as it led to better experimental performances.

LASSO. Provided the regularization intensity λ is well chosen, the L1 penalty of the
LASSO shrinks the coefficients associated the variables which are less important to-
wards zero. Then the model uses mostly the relevant variables and the magnitude of
the coefficients can be looked at to deduce what these variables are. This is the type of
analysis that we perform in Section 9.4.1.

Hilbert-Schmidt independence criterion (HSIC). The HSIC (Gretton et al., 2005) is
an independence measure. Similarly to the KRR, it makes use of RKHSs to embed
implicitly a set of observations into a high-dimensional space and consider a notion
of independence in this space which allows for detection of nonlinear dependencies.
More precisely, let us consider a positive-definite kernel k : X 2 −→ R for the input
observations and a one g : (Rm)2 −→ R for the output observations. For this variable
selection technique, we consider all time horizons in ⟦t + 1, t + 1 +m⟧ together as the
kernelized framework allows for this. In practice, we estimate HSIC from the data as
(Gretton et al., 2008):

ĤSIC :=
1
n2 Trace(HKHG),

whereH ∈Rn×n is the centering matrixH := 1
n (I−111111T) with 111 ∈Rn a vector full of ones

and I ∈ Rn×n the identity matrix. The matrices K ∈ Rn×n and G ∈ Rn×n are the kernel
matrices:

(K)tj := k(xt ,xj ),

(G)tj := g(yt+1:m,yj+1:m).

HSIC takes its values between 0 and 1, a value of 0 meaning independence and a value
of 1 means full dependence.
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However, to be able to compute the estimator for the large number of data points, we
recourse to Nyström approximation as well (Zhang et al., 2018). We then sample ran-
domly and uniformly without replacement p ∈N indices {i1, ..., ip} from the integers in
⟦n⟧ for the input observations and p′ ∈N ones {i′1, ..., i

′
p′ } for the output observations.

We then define the Nyström features maps (Yang et al., 2012) (centered in the feature
space using H):

Φ̂ :=HKnpK
− 1

2
pp ,

Ψ̂ :=HGnp′G
− 1

2
p′p′ ,

where the matrices Knp and Kpp are defined as for Equation (9.4) and the matricesGnp′
and Gp′p′ are defined similarly for the kernel g however based on the set of indices
{i′1, ..., i

′
p′ }. The Nyström HSIC estimator is then (Zhang et al., 2018):

H̃SIC := ∥1
n
Φ̂TΨ̂ ∥2F ,

where for a matrix A, the Frobenius norm is defined as ∥A∥2F := Trace(ATA).

Backward selection with HSIC (BAHSIC). To perform variable selection, we start
with all the available variables and then at each round, we compute the HSICs between
the input variables and the target variable removing one input variable at a time. A
given percentage of the input variables for which these HSICs are the highest are re-
moved. We keep iterating in this way to rank the variables. Then, the ones removed
the latest are the most important ones. The detailed algorithm corresponds to Al-
gorithm 1 in Song et al. (2012). A forward version exists as well, however, the authors
advocate the use of backward selection to avoid missing important variables. Finally
as a side note, in practice we use as Gaussian kernels setting bandwidth following the
recommendations from Song et al. (2012).

9.4 Importance of variables and their evolution through time

In this section, we study variable selection using the LASSO in Section 9.4.1 and BAH-
SIC in Section 9.4.2 to determine which variables are the most important and how
their importance evolves through time.

9.4.1 Linear variable selection with LASSO

LASSO scores. We now describe the computations carried out to extract a subset of
relevant variables suitable for interpretation from fitted LASSO models. In practice
for each data split, we validated the regularization parameter λ on the validation set
and obtained estimated LASSO coefficients. Now to reduce the number of variables
we must rank them according to an importance metric based on these coefficients; we
do so for each time horizon separately. So as to to avoid assigning more weight to mod-
els for which λ was selected small, for each farm and each data split we normalize the
coefficients by the absolute value of the biggest one. As opposed to the grouped vari-
able selection performed in Section 9.4.2, the observations through time for a given
variable can be separated by the LASSO shrinking (a variable can be selected for in-
stance at time t0 but not at t1). Consequently, we sum the normalized coefficients
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Figure 9.3: Linear variable selection with the LASSO (Wind speed as target)
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Figure 9.4: Linear variable selection with the LASSO (Wind power as target)

corresponding to different time instants for the same variable and in doing so, we ob-
tain a single quantity per variable. Then we average these quantities over the data
splits and call the resulting quantities LASSO scores. To sum up, at this point we have
for each prediction horizon and each farm a set of such scores for each variable. Then,
to select variables, we average these LASSO scores over farms. Finally, based on these
average scores, for each prediction horizon, we keep the top 6 variables.

Interpretation. For these selected variables, we plot the evolution through time of
the LASSO scores in Figure 9.3 for wind speed and in Figure 9.4 for wind power. We
make the following key observations:

• At all locations, two variables are much more important than the rest. The in situ
observed wind speeds (WS) and the ECMWF predicted wind speed at altitude
100m (F100) stand out for wind speed prediction. For wind power prediction,
the in situ power production (PW) along with F100 are of particular importance.
We can relate these results to the good performances of the LASSO for wind
speed prediction in Section 9.5. Then if we look at the relative magnitudes of
the coefficients, we can deduce that only using a linear combination of past local
wind speeds (WS) and predicted wind speeds (F100), we can get an already good
description of the future local wind speed.
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• The location VE can be singled out from the others. Indeed the predicted wind
speed at altitude 10m (F10) appears, and the forecasted wind speeds (F100 and
F10) take longer to take over the in situ variables, especially when predicting
wind power. This may be explained by a lesser representativity of the ECMWF
forecasts for this location which may be linked to the elevation variations in the
surroundings of the farm that we mentioned in Section 9.2.1.

As a concluding note, the dynamics of the local wind speed seem to be very well
approximated by a simple linear model combining very few in situ variables and
ECMWF ones. For predicting directly wind power however, we see in Section 9.5
the results are a bit less convincing, possibly due to the nonlinear aspect of the power
curve.

9.4.2 Nonlinear variable selection with HSIC
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Figure 9.5: Nonlinear variable selection using HSIC (Wind speed as variable)
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Figure 9.6: Nonlinear variable selection using HSIC (Wind power as target)

HSIC-score. For each farm and each split of the data we run BASHSIC on the train-
ing set until we have 5 variables left. Then for each variable we estimate the HSIC
with that variable removed and normalize this value using the maximum HSIC value
among these quantities. The normalized HSIC score appearing in the figures corres-
ponds to 1 minus this score averaged over the training sets; the higher it is, the more
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important the variable is. We display the results in Figure 9.5 for wind speed and in
Figure 9.6 for wind power.

Global interpretation. We make the following key observations:

• As expected, the in situ variables are most relevant for the shortest time horizon
and the ECMWF variables take progressively the lead for longer horizons. How-
ever, compared to linear feature selection, ECMWF variables take the lead faster
here–between 10-50 minutes as opposed to 70-100 minutes for linear selection.
The retained variables are mostly the same as the one selected by the LASSO
(WS or WS and PW depending on the target) and F100. However, F10 and DF
are now more systemically retained with a significant importance.

• As for the LASSO selection, probably due to the lesser accuracy of ECMWF fore-
casts for this location, we can single out VE where the importance of the in situ
variable(s) decreases much less fast than at the other farms.

Presence of DF and F10. In comparison with linear selection, we have two more
variables of interest (DF and F10). F10 describes the wind speed at lower levels and
DF the wind shear near the surface. They thus bring useful information about the
wind and its vertical shear, and likely help to correct deficiencies of the NWP model’s
description of wind at 100m. The fact that they appear here and not in the linear
framework indicates a nonlinear relation, which is not surprising as the shear relates
to the level of turbulence in the boundary layer. Additionally, the above results bring
a fairly sharp answer to another question underlying this study. As the calculation of
near-surface winds in NWP models involves parameterizations, they are not the most
reliable output of NWP models. Consequently, one could expect that, informed about
other aspects of the boundary layer and local wind realizations, a nonlinear method
could capture better the relationship between the boundary layer and the near-surface
winds. This is not the case: BAHSIC clearly select rather the wind variables as the
best source of information. Over variable terrain (VE), wind speed at different heights
(F10) are more used, suggesting that the NWP model indeed fails to accurately de-
scribe the wind shear. And yet variables describing the boundary layer (e.g. strati-
fication) still remain unused or marginal. Over flat terrain, the wind speed at 100m
height (F100) is the major source of information, which is positive and encouraging
regarding the accuracy of NWP models.

9.5 Wind speed and wind power forecasting

In this Section we compare several ML models for predicting both wind speed and
wind power, exploiting the variable selection techniques from the previous section.
We include the two main baselines, namely persistence which predicts the last in situ
observation and ECMWF which uses the F100 forecasts from the ECMWF. Note that
the details of the parameters considered for tuning the models is available in Ap-
pendix C.
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Figure 9.7: Average NRMSE at all time horizons for the three methods performing
best overall according to Table 9.4 as well as for Persistence and ECMWF (wind speed
as target)
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Figure 9.8: Average NRMSE at all time horizons for the three methods performing
best overall according to Table 9.5 as well as for Persistence and ECMWF (wind power
as target)

9.5.1 Experimental setup

Metrics. We evaluate our results using the normalized root mean squared error (NRMSE)
as in Dupré et al. (2020). Let (zt)

n
t=1 denote the realizations of a (scalar-valued) target

variable. We define its global mean as z̄ = 1
n

∑n
t=1 zt. Given a set of predicted values

(̂zt)
n
t=1, it is defined as:

NRMSE :=

√
1
n

∑n
t=1(̂zt − zt)2

z̄
.

However, in order to compare the methods over the full time span, we need to in-
troduce a new metric. If we were to simply average NRMSEs over time, then the
resulting average would not make much sense because of the difference of magnitude
between the errors at the different time horizons. Therefore, we propose to compare
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Method (average rank) BM BO MP RE VE
LASSO (1.8) 1.12 0.13 0.16 0.14 0.16

Nyström KRR (2.0) 1.05 0.36 0.06 0.19 0.21
OLS f-stepwise (2.8) 1.1 0.16 0.47 0.18 0.34

Feedforward NN (3.4) 1.08 0.46 0.37 0.45 0.66
XG Boost (5.0) 1.81 1.25 1.63 0.74 0.97
ECMWF (6.4) 7.81 3.63 3.75 6.66 11.37

Persistence (6.6) 5.59 6.71 7.02 6.7 4.5

Table 9.4: Average NRMSE degradation w.r.t. best predictor for wind speed prediction
(×10−2)

the NRMSE at each time horizon to a specific anchor reflecting what is achievable: the
NRMSE of the best predictor for this time horizon. Let F be a given set of predictors–
for instance when predicting wind speed we have F := {Nyström KRR, LASSO, OLS f-
stepwise, XG-Boost, Feedforward NN, Persistence, ECMWF}. Given a predictor f ∈ F ,
a prediction horizon m0 ∈ ⟦m⟧ and a data split s (among a total of S ∈N data splits),

let NRMSE(f )
s,m0 denote the NRMSE of predictor f for the prediction horizon m0 on the

data split s. We then define the average NRMSE degradation of a predictor f0 (with
respect to the best predictor):

1
mS

S∑
s=1

m∑
m0=1

(
NRMSE(f0)

s,m0 −min
f ∈F

NRMSE(f )
s,m0

)
. (9.5)

The best possible value is zero as it means that over all splits and over all horizons,
the predictor was the best one.

Direct/indirect prediction. When we predict wind power, we consider two prediction
techniques. Either we predict directly the wind power (direct approach) or we pre-
dict the wind speed which we transform using an estimated power curve in the same
fashion as in (Dupré et al., 2020) (indirect approach). A theoretical power curve could
be used as well, however, in this work we estimate it from the training WS and PW
observations using median of nearest neighbors interpolation using 250 neighbors.

Model selection. We follow the methodology introduced in Section 9.3.1 and refer
the reader to Section 9.3.2 for details on the ML methods. In practice, for each data
split, the key parameters of the different methods are chosen using the validation set
(the regularization parameters λ, the Gaussian kernel’s γ for KRR, the number of vari-
ables for OLS f-stepwise, the architecture for the feedforward NN etc.). We provide
the details of the considered parameters in the supplementary material.

9.5.2 Comparisons over the 10 minutes - 4 hours range

Overall efficiency of ML models. From a general perspective, our experiments show
that combining a NWP model’s outputs with local observations is very beneficial for
predicting both wind speed and wind power at all the time horizons considered. To
that end, Figure 9.7 displays the evolution of the NRSME for the two baselines (per-
sistence and ECMWF) as well as for the three ML methods which performed best for
wind speed prediction in Table 9.4 while Figure 9.8 displays the same for wind power
prediction; the displayed ML methods being the top three ones from Table 9.5. For
three farms (VE and to a lesser extend, BM and RE), even after four hours the improve-
ment over ECMWF is still quite large. For BO and MP it becomes less important, yet
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Type Method (average rank) BM BO MP RE VE
Direct Nyström KRR (2.4) 4.01 1.2 0.63 0.46 0.7

Indirect Nyström KRR (3.0) 3.54 1.19 0.55 2.97 1.2
Indirect LASSO (3.4) 4.04 0.8 1.08 2.72 0.87
Direct Feedforward NN (4.0) 3.56 1.71 2.29 1.08 1.67

Indirect OLS f-stepwise (4.4) 3.7 0.87 1.53 3.42 1.61
Direct XG Boost (direct) (5.2) 4.62 2.39 1.5 1.8 1.8
Direct OLS f-stepwise (6.6) 4.15 3.01 3.56 2.42 3.0
Direct LASSO (direct) (7.0) 4.91 3.15 3.46 2.54 2.46
Direct Persistence (9.4) 12.08 15.48 14.91 14.25 9.88

Indirect ECMWF (10.2) 18.93 8.66 8.02 19.74 28.53
Indirect Persistence (10.4) 13.21 15.89 15.22 16.39 10.86

Table 9.5: Average NRMSE degradation w.r.t. best predictor for wind power predic-
tion (×10−2)

still present. The improvement can be quite dramatic for very short horizons (first
100 minutes or so), and a bit less important for longer time horizons. This is probably
linked to the representativity of the NWP model’s outputs which depends on the loc-
ation.

Quantitative comparison. We now use the NRMSE degradation w.r.t. the best predictor–
Equation (9.5)–to compare the methods. The results are displayed in Table 9.4 (WS as
target) and in Table 9.5 (PW as target). On the one hand, for wind speed prediction,
the LASSO is the best ranked method. Relating this to the results from Section 9.4.1,
it shows that the dynamics of the wind speed can be very well described by a linear
combination of few ECMWF and local variables (essentially past local wind speeds
and forecasted wind speeds). It suggests that the important nonlinear dynamics are
overall well captured in the ECMWF variables. On the other hand, it seems better to
predict directly wind power and do so using the Nyström KRR. This is not surprising,
as the power curve is a nonlinear function and so we expected the linear methods to
struggle in direct prediction. Moreover, in direct prediction, we implicitly include
the power curve into the learning problem. This is advantageous since for instance a
model trained to predict wind speed first will be very eager to forecast well high val-
ues (failing to do so would incur a high error term). However to predict wind power,
producing accurate forecasts for higher wind speeds is less critical, since in the power
curve, the actual wind power as a function of the wind speed is thresholded.

We note that the feedforward NN does not beat indirect prediction with the LASSO.
This suggests that the higher expressiveness of NNs beyond the ability to infer the
nonlinearity of the power curve is not needed. The difference of performance with
direct Nyström KRR is imputable to the optimization error and variability implied
by non-convexity of NNs whereas for Nyström KRR the optimization error is close to
non-existent thanks to the closed-form solution. XG-Boost also does not perform well,
this can be explained by the use of time series as features: these are very correlated
and high dimensional which can make tree-based models unstable (Gregorutti et al.,
2017). Doing some more work on feature pre-processing should improve the results.
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Horizon Method (average rank) BM BO MP RE VE
10 min Nyström KRR (1.8) 8.0 7.25 8.15 7.08 6.44

LASSO (2.0) 7.91 7.25 8.15 7.12 6.43
OLS f-stepwise (2.2) 7.92 7.25 8.14 7.09 6.44

Persistence (4.4) 8.11 7.55 8.43 7.39 6.56
Feedforward NN (4.8) 8.26 7.55 8.33 7.37 6.8

XG Boost (5.8) 8.72 8.26 9.57 7.61 6.77
ECMWF (7.0) 25.61 20.78 22.06 22.57 26.3

1 hour Nyström KRR (1.6) 17.01 16.03 17.11 14.94 13.48
LASSO (1.8) 16.94 16.04 17.13 14.95 13.4

OLS f-stepwise (2.6) 16.92 16.06 17.3 15.02 13.52
Feedforward NN (4.0) 17.27 16.27 17.32 15.17 13.72

XG Boost (5.0) 17.69 17.19 18.77 15.66 14.16
Persistence (6.0) 18.68 18.81 20.09 17.73 15.0

ECMWF (7.0) 25.61 20.78 22.06 22.58 26.3

Table 9.6: Average NRMSE for 10 minutes and 1 hour ahead wind speed
prediction (×10−2)

Horizon Type Method (average rank) BM BO MP RE VE
10 min Direct Nyström KRR(1.4) 19.36 18.16 18.94 18.49 15.7

Direct OLS f-stepwise (2.0) 19.04 18.2 18.96 18.53 15.8
Direct LASSO (2.6) 19.06 18.22 19.01 18.56 15.78
Direct Persistence (4.4) 19.44 18.92 19.63 19.13 16.09
Direct Feedforward NN (4.6) 19.73 18.81 19.56 19.3 16.3
Direct XG Boost (6.0) 19.9 19.41 19.77 19.38 16.59

Indirect LASSO (7.6) 20.73 19.48 19.91 26.84 18.34
Indirect Nyström KRR (8.0) 20.86 19.51 19.87 26.8 18.36
Indirect OLS f-stepwise (8.4) 20.73 19.48 19.89 26.87 18.39
Indirect Persistence (10.0) 21.67 20.41 20.77 27.32 18.8
Indirect ECMWF (11.0) 60.15 49.09 48.34 60.91 61.66

1 hour Indirect Nyström KRR (2.8) 40.02 39.04 38.74 41.53 31.15
Direct Nyström KRR (3.0) 41.26 39.36 38.85 38.59 30.46

Indirect LASSO (3.4) 40.11 39.07 39.1 41.72 30.8
Indirect OLS f-stepwise (4.6) 39.97 39.16 39.37 42.2 31.36
Direct Feedforward NN (4.8) 40.51 39.64 39.58 39.44 31.16
Direct LASSO (5.2) 40.39 39.93 40.06 39.83 31.07
Direct OLS f-stepwise (5.6) 40.37 39.82 40.26 39.67 31.53
Direct XG Boost (6.6) 41.89 40.43 39.22 39.99 31.81
Direct Persistence (9.0) 43.58 45.52 45.44 44.84 33.88

Indirect Persistence (10.0) 44.68 46.01 45.99 47.36 35.08
Indirect ECMWF (11.0) 60.15 49.1 48.34 60.91 61.67

Table 9.7: Average NRMSE for 10 minutes and 1 hour ahead wind power prediction
(×10−2)

9.5.3 Zoom on 10 minutes and 1 hour ahead forecasting

We now propose to zoom in on on two time horizons of particular interest: 10 minutes
and 1 hour ahead. We display the raw NRSMEs in Section 9.5.3 for WS and in Table 9.7
for PW.

For 10 minutes ahead prediction, persistence is unsurprisingly very efficient even
though small yet significant improvements are already obtained by exploiting also
ECMWF information with ML. For both the prediction of WS and PW, all three meth-
ods which beat persistence reach similar scores. For WS, these are the same as those
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performing best overall in Table 9.4: Nyström KRR, LASSO and OLS f-stepwise. How-
ever, for PW, these are Nyström KRR (direct), OLS f-stepwise (direct), LASSO (direct).
The first is the leading method in Table 9.4, but the other two are not. We explained
their poor performance by the nonlinearity of the power curve which they cannot
capture. Nevertheless for the very short-term, this is not an issue. This confirms our
findings from Section 9.4: for 10 minutes ahead prediction, the last observed wind
power is the most crucial information.

For 1 hour ahead prediction, the rankings of ML methods for both wind speed (Sec-
tion 9.5.3) and wind power (Table 9.7) almost perfectly match the rankings of methods
on the whole time span (Table 9.4 for WS and Table 9.5 for PW).

Overall, this analysis confirms that for both the very short term and the longer term
Nyström KRR is a safe choice for wind speed and wind power prediction. For the
latter the direct approach with this method should be preferred.

9.5.4 Computational times

Task Method Fit time (s) Predict time (s)
Selection Nyström BAHSIC 74.61 (73.38, 89.00) -

Selection & regression LASSO 1.39 (0.01, 5.03) 0.039 (0.036, 0.044)
Selection & regression OLS f-stepwise 3.58 (2.92, 4.30) 0.037 (0.037, 0.043)

Regression Nyström KRR 0.451 (0.414, 0.563) 0.332 (0.300, 0.433)
Regression XgBoost 0.450 (0.405, 0.548) 0.058 (0.053, 0.070)
Regression Feedforward NN 75.84 (72.70, 77.27) 0.029 (0.028, 0.031)

Table 9.8: Median (10 % quantile, 90 % quantile) of fit and predict computational
times on laptop for direct wind power prediction on BO farm.

We now address the practical concern of computational times. To that end, we meas-
ure the time on a laptop to fit the different procedures and to produce the corres-
ponding forecasts. We do so only for one wind farm (BO). We draw randomly 50 pairs
containing a split from the dataset (see Section 9.2.2) and a parameter configuration
among the ones we used. Then we time the procedures using these pairs. We display
the median as well as the 10% and 90% quantiles of the obtained computational times
in Table 9.8. To put these computational times into perspective, on the one hand the
regression models have extra parameters to tune, and therefore many configurations
must be tested. On the other hand Nyström BAHSIC seems expensive but no such
tuning must be performed (it eliminates the variables gradually, therefore the rank-
ing can be used to include more or less features afterwards).

9.6 Conclusion

We showed through experiments on several wind farms that we can improve very
significantly short-term local forecasts of both wind speed and wind power by com-
bining statistically a NWP model’s outputs with local observations. To better under-
stand how, we studied in details the evolution of the variables’ importance using two
metrics, a linear one based on LASSO coefficients and a nonlinear one using HSIC.
Our global conclusion is that NWP wind variables are a very relevant source of in-
formation to complement local observations, even for the very short-term. To forecast
wind speed, a parsimonious linear combination of NWP and local variables (with the
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LASSO) yielded the best result. While to forecast wind power, direct prediction (no
power curve involved) with a nonlinear method (Nyström KRR) using a few variables
(selected with BAHSIC) is preferable. Beyond the ability to capture the nonlinearity of
the power curve, it seems unnecessary to use more complex models which hints that
NWP model’s outputs describe sufficiently the other nonlinear dynamics involved.
For future work, assessing the variability of the predictions, for instance by predict-
ing conditional quantiles (Koenker and Hallock, 2001) which would inform us on the
expected distribution of the predictions. This could help mitigate the intermittent
effects of wind power production further.
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A Appendices for Chapter 5

Let us first explicitly give the product of Gaussian kernels that we used as kernel for
KAM:

k(add) : ((θ,ξ,u), (θ′ ,ξ ′ ,u′)) 7−→ exp

−(ξ − ξ ′)2

σ2
1

exp

−(θ −θ′)2

σ2
2

exp

−(u −u′)2

σ2
3

 . (6)

We recall also briefly the definition of a Laplace kernel that use

(θ,θ′) 7→ exp

−∥θ −θ′∥1σ

 . (7)

A.1 Additional experimental details: synthetic dataset

We compute the means over 10 runs with different train/test split for all experiments.
For all the methods, λ is taken in a geometric grid of size 20 ranging from 10−9 to
10−4. Moreover, we consider the following specific parameters.

• KPL. We take a truncated Fourier dictionary including 15 frequencies and use
the separable kernel K(x,x′) := k(x,x′)I with k a scalar-valued Gaussian kernel
with standard deviation σk = 20 and I ∈ Rd×d the identity matrix. When using
the logcosh loss, the parameter ν is set to ν = 25 for the in two experiments
related to outliers (so as to approach the absolute loss) and to ν = 10 for the two
other experiments.

• 3BE. We use k a Gaussian kernel with standard deviation σk = 3. We use trun-
cated Fourier bases as dictionaries, we include 10 and 15 frequencies respect-
ively for the input dictionary and the output one.

• KAM. We use the kernel defined in Equation (6) taking σ1 = 0.2, σ2 = 0.1 and
σ3 = 2.5 and use J = 20 functional principal components.

• FKRR. We take a Gaussian kernel as input kernel with standard deviation para-
meter set as σkin = 20. We use a Laplace kernel as output kernel—Equation (7)—,
setting its parameter to σkout = 0.5.

A.2 Additional experimental details: DTI dataset

The reported means and standard deviations are computer over 20 runs with different
train/test split. For all methods (except KE) we center the output functions using the
training examples and add back the corresponding mean to the predictions; and we
consider values of λ in a geometric grid of size 25 ranging from 10−6 to 10−2.

• KE. We use a Gaussian kernel with standard deviation in a regular grid ranging
from 0.05 to 2 with 200 points.

• KPL. For the dictionary, we consider several families of Daubechies wavelets
(Daubechies, 1996) with 2 or 3 vanishing moments and 4 or 5 dilatation levels.
We use a separable kernel of the form K(x,x′) = k(x,x′)D with k a Gaussian ker-
nel with fixed standard deviation parameter σk = 0.9. The matrix D is a diagonal
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matrix of weights decreasing geometrically with the scale of the wavelet at the
rate 1

b (meaning for instance that at the j-th scale, the corresponding coefficients
in the matrix are set to 1

bj
). b is chosen in a grid ranging from 1 to 2 with gran-

ularity 0.1. When using the logcosh loss, we consider values of the parameter ν
in {0.25,0.5,0.75,1,1.5,2,3,4,5,10}.

• 3BE. We test the same dictionaries of wavelets as for KPL for both the input and
the output functions. We use 200 RFFs for the approximated KRRs; and consider
standard deviation for the corresponding approximated Gaussian kernel in the
grid {7.5,10,12.5,15,17.5,20}.

• KAM. We use a product of Gaussian kernels defined in Equation (6) fixing σ1 =
σ2 = σ3 = 0.1. We consider including d = 20 and d = 30 principal components
for the approximation.

• FKRR. We take a Gaussian kernel as input kernel with standard deviation para-
meter set as σkin = 0.9. We use a Laplace kernel as output kernel—Equation (7)—
choosing its parameter in σkout ∈ {0.5,0.75,1,1.25,1.5,1.75,2,3,4,5,7.5,10}.

A.3 Additional experimental details: speech data

MSE

The reported means and standard deviations are computed over 10 runs with different
train/test split. For all methods, we consider values of λ in a geometric grid ranging
from 10−12 to 10−5 of size 30 and try both centering and not centering the output
functions. For ridge-DL-KPL, 1BE/ridge-Four-KPL and FKRR, we use the kernel from
Equation (5.39) as input kernel taking σ ∈ {3,4,5,7.5,10}.

• ridge-DL-KPL. The dictionary φ is learnt by solving Problem 3.29 using Pedre-
gosa et al. (2011)’s implementation and using a number of atoms fixed at 30.

• 1BE/ridge-Four-KPL. We use a truncated Fourier basis as dictionary with in-
cluded number of frequencies in the grid {20,30,40,50}.

• FKRR. We use a Laplace kernel as output kernel—Equation (7). We consider the
following values for its parameter: σkout ∈ {0.005,0.01,0.05,0.1,0.125,0.15}.

• KAM. We use the kernel defined above in Equation (5.40) for which we consider
the following parameters values σ1 ∈ {0.01,0.05,0.1,0.5}, σ2 ∈ { 0.0005, 0.001,
0.005, 0.01 } and σ3 ∈ { 0.05, 0.1, 0.5, 1, 5}. We consider also J ∈ {30,40,50}
functional PCAs.

Fitting times

Infrastructure and measurements details. So as to get better control over execution,
we perform those experiments on a laptop rather than on the computing cluster used
for the other experiments. This laptop is equipped with a 8th Generation Intel Core
i7-8665U processor and 16 Gb of RAM. In Python, using the multiprocessing package,
we execute the tasks in parallel, each on exactly one core of the CPU. We measure the
corresponding CPU time using the process_time() function from the time package.
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Parameters. Computation times necessarily depend on the choice of parameters. This
dependence can be explicit for parameters determining the complexity of the prob-
lems (for instance the size of a dictionary or the size of an approximation grid). For
such parameters, we use fixed values for each method which correspond either to the
fixed values used or to those elected by cross-validation in the MSEs experiments; we
detail those values below. Other parameters can influence the computational times
through the conditioning of the problem. To account for this, we consider several val-
ues which we give below as well and report the corresponding means and standard
deviations in the figure.

The computation times are averaged over 10 runs of the experiments with different
shuffling of the dataset and over the VTs. For all methods, we consider values of
λ in a geometric grid ranging from 10−12 to 10−5 of size 30 and center the output
functions. For ridge-DL-KPL, 1BE/ridge-Four-KPL and FKRR, we use the kernel from
Equation (5.39) as input kernel taking σ = 3.

• ridge-DL-KPL. The dictionary φ is learnt by solving Problem 3.29 using the
scikit-learn implementation (Pedregosa et al., 2011)’s implementation and us-
ing a number of atoms fixed at 30.

• 1BE/ridge-Four-KPL. We use a truncated Fourier basis as dictionary with 50
included frequencies, thus the size of the dictionary is d = 99 (cosinuses and
sinuses are included plus a constant function).

• FKRR. We use a Laplace kernel as output kernel—Equation (7). We consider the
following values for its parameter: σkout ∈ {0.05,0.1}.

• KAM. We use the kernel defined in Equation (5.40) for which we use the follow-
ing parameters values: σ1 = 0.1, σ2 = 0.05 and σ3 = 1. We take J = 40 functional
PCAs.

B Appendices for Chapter 7

B.1 Proof of Proposition 7.10

Before going through the proof, let us recall Hölder’s inequality.

Lemma .1 (Hölder’s inequality). Let p,q ∈ [1,+∞] be conjugate exponents, in other words
1
p + 1

q = 1. Let Θ be a measurable space enriched with probability measure µ. Then for any
y,w : Θ→R measurable functions one has∫

Θ

∣∣∣y(θ)w(θ)
∣∣∣dµ(θ) ≤ ∥y∥p∥w∥q.

Moreover, if p ∈]1,+∞[, y ∈ Lp(Θ,µ) and w ∈ Lq(Θ,µ), then equality is attained if and only
if

∣∣∣f ∣∣∣p and
∣∣∣g∣∣∣p are linearly dependent in L1(Θ,µ).

We now introduce a lemma useful to the proof of Proposition 7.10.

Lemma .2. Let p,q ∈]1,+∞[ be conjugate exponents and f ∈ Y such that 1 < ∥y∥q < +∞.
Then there exist v ∈ Y and C > 0 such that

⟨y,v⟩Y − ∥v∥p ≥ C.

Moreover, one can choose h such that whenever y(θ) = 0, v(θ) = 0 also holds.
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Proof Let p,q ∈]1,+∞[ be conjugate exponents and y ∈ Y such that 1 < ∥y∥q < +∞.
We know that Hölder’s inequality becomes an equality if and only if

∣∣∣y∣∣∣q and |w|p are
linearly dependent in L1(Θ,µ). To that end, let w : Θ→R be defined as

w(θ) = sign(y(θ))
∣∣∣y(θ)

∣∣∣ qp where θ ∈Θ. (8)

It is to be noted that w does not necessarily belong to Y , yet it belongs to Lp(Θ,µ). By
construction, we have ∫

Θ

y(θ)w(θ)dµ(θ) = ∥y∥q∥w∥p. (9)

We consider a sequence (wn)n∈N ∈ YN such thatwn(θ) = sign(w(θ))min(
∣∣∣w(θ)

∣∣∣ ,n) with
(n,θ) ∈N×Θ. As

∣∣∣wn(θ)
∣∣∣ ≤ n for all (n,θ) ∈N×Θ and µ is a probability measure, the

functions wn belong to Y . Since (i) wn(θ)
n→∞−−−−−→ w(θ) for all θ ∈ Θ and (ii)

∣∣∣wn(θ)
∣∣∣ ≤∣∣∣w(θ)

∣∣∣ for any n ∈N holds µ-almost everywhere, the dominated convergence theorem

in Lp(Θ,µ) ensures that ∥w −wn∥p
n→∞−−−−−→ 0. Consequently, it holds that for all n ∈N,∣∣∣∣∣∣∣

∫
Θ

y(θ)w(θ)dµ(θ)−
∫
Θ

y(θ)wn(θ)dµ(θ)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
Θ

y(θ)[w(θ)−wn(θ)]dµ(θ)

∣∣∣∣∣∣∣
(a)
≤

∫
Θ

∣∣∣y(θ)
∣∣∣ ∣∣∣w(θ)−wn(θ)

∣∣∣dµ(θ)

(b)
≤ ∥y∥q∥w −wn∥p.

In (a) we used that the absolute value of the integral can be upper bounded by the
integral of the absolute value, in (b) the Hölder’s inequality was invoked. Thus by

∥g −wn∥p
n→∞−−−−−→ 0 and ∥y∥q < +∞, this means that ⟨y,wn⟩Y

n→∞−−−−−→
∫
Θ
y(θ)w(θ)dµ(θ)

(9)
=

∥y∥q∥w∥p, and for all ϵ > 0, there exist N ∈ N such that for all n ≥ N , ⟨y,wn⟩Y >
(∥y∥q − ϵ)∥w∥p. In particular for ϵ =

∥y∥q−1
2 > 0, we have ⟨y,wN ⟩Y >

1+∥y∥q
2 ∥w∥p. Then,

⟨y,wN ⟩Y − ∥wN ∥p
(c)
≥ ⟨y,wN ⟩Y − ∥w∥p

(d)
≥

1 + ∥y∥q
2

∥w∥p − ∥w∥p ≥
∥y∥q − 1

2
∥w∥p︸          ︷︷          ︸

>0

.

In (c) we used that ∥wN ∥p ≤ ∥w∥p, (d) is implied by ⟨y,wN ⟩Y >
1+∥y∥q

2 ∥w∥p. Taking

h = wN and C =
∥y∥q−1

2 ∥w∥p yields the announced result, by noticing that (8) shows
that y(θ) = 0 also implies h(θ) = wN (θ) = w(θ) = 0.

We are now ready to prove Proposition 7.10, which we recall for completeness:

Proposition (Proposition 7.10). Let κ > 0, p ∈ [1,+∞], and q the conjugate exponent of
p. Then for all y ∈ Y ,

H
p
κ (y) =

1
2
∥ProjBqκ (y)∥2Y +κ∥y −ProjBqκ (y)∥p.

Proof The proof is structured as follows. We first consider the case of p = 1, fol-
lowed by p ∈]1,+∞], and p = +∞. The reasoning in all cases rely heavily on Hölder’s
inequality. Throughout the proof it is assumed that y ∈ Y .
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Case p = 1: The reasoning goes as follows: we show that ∥y∥∞ ≤ 1 implies ∥·∥⋆1(y) = 0,
and ∥y∥∞ > 1 gives ∥·∥⋆1(y) = +∞, which allows one to conclude that ∥·∥⋆1 = χ{B∞1 }.

• When ∥y∥∞ ≤ 1: Exploiting Hölder’s inequality, it holds that

⟨y,w⟩Y ≤ ∥y∥∞∥w∥1 for all w ∈ Y .

Since ∥y∥∞ ≤ 1, this implies that

⟨y,w⟩Y − ∥w∥1 ≤ 0 for all w ∈ Y .

The supremum being attained for w = 0, we conclude that ∥·∥⋆1(y) = 0.

• When ∥y∥∞ > 1: Let A =
{
θ ∈Θ :

∣∣∣y(θ)
∣∣∣ > 1+∥y∥∞

2

}
. By the definition of the es-

sential supremum, µ(A) > 0. We define w : Θ → R to be the function: w(θ) =
sign(y(θ)) if θ ∈ A and 0 otherwise. Since w is bounded, w ∈ Y . Denoting by
t > 0 a running parameter, it holds that

⟨y, tw⟩Y − ∥tw∥1
(a)
= ⟨y, tw⟩Y − tµ(A) = t

∫
Θ

y(θ)w(θ)dµ(θ)− tµ(A)

(a)
= t

∫
A

∣∣∣y(θ)
∣∣∣dµ(θ)− tµ(A)

(b)
≥ tµ(A)

1 + ∥y∥∞
2

− tµ(A) = t µ(A)
∥y∥∞ − 1

2︸          ︷︷          ︸
>0

t→∞−−−−→ +∞.

In (a) we used the definition of g, (b) is implied by the fact that
∣∣∣y(θ)

∣∣∣ > 1+∥y∥∞
2

for all θ ∈ A. Thus ∥·∥⋆1(f ) = +∞, which concludes the proof.

Case p ∈]1,+∞[: The reasoning proceeds as follows: we show that (i) ∥y∥q ≤ 1 implies
∥·∥⋆p(y) = 0, (ii) 1 < ∥y∥q < +∞ gives ∥·∥⋆p(y) = +∞, and (iii) ∥y∥q = +∞ results in ∥·∥⋆p(y) =
+∞. This allows us to conclude that ∥·∥⋆p = χ{Bq1}.

• When ∥y∥q ≤ 1: By Hölder’s inequality, it holds that

⟨y,w⟩Y ≤ ∥y∥q∥w∥p for all w ∈ Y .

Exploiting ∥y∥q ≤ 1, we get that

⟨y,w⟩Y − ∥w∥p ≤ 0 for all w ∈ Y .

The supremum being reached for w = 0; we conclude that ∥·∥⋆p(y) = 0.

• When 1 < ∥y∥q < +∞: According to Lemma .2, there exist w ∈ Y and C > 0 such
that

⟨y,w⟩Y − ∥w∥p ≥ C.

Denoting by t > 0 a running parameter, one arrives at

⟨y, tw⟩Y − ∥tw∥p ≥ tC
t→∞−−−−→ +∞.

This shows that ∥·∥⋆p(y) = +∞.
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• When ∥y∥q = +∞: We consider the sequence of functions (yn)n∈N defined as
yn(θ) = y(θ) if

∣∣∣y(θ)
∣∣∣ ≤ n and fn(θ) = 0 otherwise, where (n,θ) ∈ N ×Θ. Each

yn is bounded, thus belongs to Lq(Θ,µ), and the monotone convergence theorem

applied to the functions
∣∣∣yn∣∣∣q states that ∥yn∥q

n→∞−−−−−→ ∥y∥q = +∞. Thus, there
exists N ∈N such that ∥yn∥q > 1. We can then apply Lemma .2 to get w ∈ Y and
C > 0 such that

⟨yN ,w⟩Y − ∥w∥p ≥ C.

According to Lemma .2, w(θ) = 0 whenever yN (θ) = 0, which ensures that

⟨y,w⟩Y = ⟨yN ,w⟩Y .

Taking a running parameter t > 0, this means that

⟨yN , tw⟩Y − ∥tw∥p = ⟨y, tw⟩Y − ∥tw∥p ≥ tC
t→∞−−−−→ +∞,

which shows that ∥·∥⋆q (y) = +∞.

Case p = +∞: The reasoning goes as follows: we show that ∥y∥1 ≤ 1 implies ∥·∥⋆∞(y) =
0, and that ∥y∥1 > 1 gives ∥·∥⋆∞(y) = +∞, which allows one to conclude that ∥·∥⋆∞ = χ{B1

1 }.

• When ∥y∥1 ≤ 1: By applying Hölder’s inequality we get that ⟨y,w⟩Y ≤ ∥y∥1∥w∥∞
for all w ∈ Y . Using the condition that ∥y∥1 ≤ 1, this means that ⟨y,w⟩Y −∥w∥∞ ≤
0 for all w ∈ Y . Since the supremum is reached for w = 0, we get that ∥·∥⋆∞(y) = 0.

• When ∥y∥1 > 1: Let w : θ 7→ sign(y(θ)). Since w is bounded by 1, it belongs to
Y , and ⟨y,w⟩Y = ∥y∥1. Running a free parameter t > 0, this means that ⟨y, tw⟩Y −
t∥g∥∞ = t (∥y∥1 − 1)︸     ︷︷     ︸

>0

t→∞−−−−→ +∞ which implies that ∥·∥⋆∞(y) = +∞.

B.2 Proof of Proposition 7.8

Proposition (Proposition 7.8). Let κ > 0, p ∈ [1,+∞], and q the conjugate exponent of p
(i.e., 1

p + 1
q = 1). Then for all y ∈ Y ,

H
p
κ (f ) =


1
2∥y∥

2
Y if ∥y∥q ≤ κ

1
2∥ProjBqκ (y)∥2Y +κ∥y −ProjBqκ (y)∥p otherwise.

.

Proof Let us introduce the notation R(w) = 1
2∥y −w∥

2
Y + κ∥w∥p where y ∈ Y , w ∈ Y .

Then

H
p
κ (y)

(a)
= inf
w∈Y

R(w)
(b)
= R(proxκ∥·∥p (y))

(c)
=

1
2
∥ProjBqκ (f )∥2Y +κ∥y −ProjBqκ (y)∥p, (10)
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where (a) follows from the definition of the infimal convolution, (b) is implied by that
of the proximal operator using that κ∥·∥p ∈ Γ0(Y ). (c) is a consequence of the Moreau
decomposition (Lemma 2.53) as

proxκ∥·∥p (y) = y −prox(
κ∥·∥p

)⋆ (y)
(d)
= y −proxχ{Bqκ }

(y)
(e)
= y −ProjBqκ(y), (11)

where in (d) and (e) we used that(
κ∥·∥p

)⋆ (f )
= χ{Bqκ} with

1
p

+
1
q

= 1, (12)

proxχ{Bqκ }
(g)
= ProjBqκ . (13)

(f) follows from the facts listed in the 3rd and the 2nd line of Table 7.1:(
κ∥·∥p

)⋆
= κ

(
∥·∥p

)⋆
(·/κ) = κχ{Bq1}(·/κ) = χ{Bqκ}.

(g) is implied by χ{Bqκ} = χ{Bq1}(·/κ), the precomposition rule of proximal operators

(proxy(α·) = 1
α proxα2f (α·) holding for any α > 0—see (2.2) in Parikh and Boyd (2014))—

, and proxχ{Bq1 }
= ProjBq1 :

proxχ{Bqκ }
= proxχ{Bq1 }(·/κ) = κprox 1

κ2 χ{Bq1 }
(·/κ)

= κproxχ{Bq1 }
(·/κ) = κProjBq1 (·/κ) = ProjBqκ .

Finally we note that y = ProjBqκ(y) is equivalent to y ∈ Bqκ which by definition means
that ∥y∥q ≤ κ. Therefore in that case, Equation (10) indeed simplifies to 1

2∥f ∥
2
Y .

B.3 Proof of Proposition 7.18

Proposition (Proposition 7.18). Let ϵ > 0 and p ∈ [1,+∞]. Then for all y ∈ Y ,

ℓ
p
ϵ (y) =

1
2
∥y −ProjBpϵ (y)∥2Y .

Proof Let R(g) = 1
2∥y −w∥

2
Y +χ{Bpϵ }(w) where y ∈ Y and w ∈ Y . Then

ℓ
p
ϵ (f )

(a)
= inf
w∈Y

R(w)
(b)
= R

(
proxχ{Bpϵ }

(y)
)

(c)
= R

(
ProjBpϵ (y)

)
(d)
=

1
2
∥y −ProjBpϵ (y)∥2Y ,

where (a) follows from the definition of the infimal convolution, (b) is implied by that
of the proximal operator and by χ{Bpϵ } ∈ Γ0(Y ), (c) is the consequence of proxχ{Bpϵ }

(y) =

ProjBpϵ (y) implied by Equation (7.13), in (d) the definition of R was applied.
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B.4 Additional experimental details: synthetic data

We provide here the full details of the parameters used for the experiments on the toy
dataset. For all experiments, we fix the parameter ρin of the input Gaussian kernel

kX : (x1,x2) 7−→ exp
(
−ρ∥x0 − x1∥2X

)
to ρin = 0.01 and that of the output Gaussian kernel

to ρout = 100. Indeed, since we are only given discrete observations for the input
functions as well, we use the available observations to approximate the norms in the
above kernels. For the experiments on robustness which results are displayed in Fig. ??
of the main paper, we select via cross-validation the regularization parameter λ and
the κ parameters of the Huber loss, considering values in a geometric grid of size 10
ranging from 10−6 to 10−3 for λ and values in a geometric grid of size 25 ranging from
10−3 to 10−1 for κ.

B.5 Additional experimental details: DTI data

In this section we provide details regarding the experiments on the DTI dataset. For
this dataset, we use a Gaussian kernel as input kernel and a Laplace kernel as output
kernel, for the first we fix its parameter to ρin = 1.25, and for the second, defined as
kΘ : (θ1,θ2) 7−→ exp(−ρout∥x0 − x1∥X ), we fix its parameter to ρout = 10. We consider
two values of λ, the first one (λ = 10−5) is chosen too small for the square loss to
highlight the additional sparsity-inducing regularization possibilities offered by the ϵ-
insensitive loss through the parameter ϵ, while the second one (λ = 10−3) corresponds
to a near-optimal value for the square loss. We do cross-validate the parameters of the
losses. For the loss ℓ2

ϵ we consider values of ϵ in a geometric grid of size 50 ranging
from 10−3 to 10−1, while for the loss ℓ∞ϵ , we search in a geometric grid of the same
size, however ranging from 10−3 to 10−0.5. For the Huber losses H1

κ and H2
κ , we search

for κ using a geometric grid of size 50 ranging this time from 10−4 to 10−1.

B.6 Additional experimental details: speech data

For all the experiments (with or without corruption), we select the parameter of the
input kernel ρin, the regularization parameter and the parameters of the losses us-
ing cross-validation. We fix the parameter of the Laplace output kernel to ρout = 10.
However, to reduce the computational burden, we perform the selection of the para-
meter ρin only for the square loss, and then take the corresponding values for the other
losses. For this parameter values in a geometric grid of size 15 ranging from 10−2 to
10−0.5 are considered. For λ, the search space is a geometric grid of size 10 ranging
from 10−10 to 10−6. Finally, for the ϵ-insensitive loss, values of ϵ in a geometric grid of
size 80 ranging from 10−5 to 10−1 are considered, while for the Huber losses we search
for κ in a geometric grid of size 100 ranging from 10−7 to 1.

B.7 Additional losses illustrations

In this section, we plot several of the proposed losses when they are defined on R
2 for

several values of p.

In Figure B.10 we highlight the influence of p on the shape of the ϵ-insensitive loss ℓpϵ
defined on R

2. We set ϵ = 1 and consider values of p ∈ {1.01,1.5,2,3,5,+∞}. We display
ℓ1.01
ϵ in Figure B.10a, ℓ1.5

ϵ in Figure B.10b, ℓ2
ϵ in Figure B.10c, ℓ3

ϵ in Figure B.10d, ℓ5
ϵ in

Figure B.10e and ℓ∞ϵ in Figure B.10f.



204 Appendix

−4
−2

0
2

4

−4 −3 −2 −1 0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

(a) H2
κ (κ = 0.8)

−4
−2

0
2

4

−4 −3 −2 −1 0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

(b) H1.5
κ (κ = 0.8)

−4
−2

0
2

4

−4 −3 −2 −1 0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

(c) H1.25
κ (κ = 0.8)

−4
−2

0
2

4

−4 −3 −2 −1 0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

(d) H1
κ (κ = 0.8)

Figure B.9: Examples of the proposed Huber losses defined on R
2 for different values

of p.

Finally, in Figure B.9 we underline the influence that the parameter p has on our
proposed Huber losses when it is defined on R

2; we take κ = 0.8 and we display H2
κ in

Figure B.9a, H1.5
κ in Figure B.9b, H1.25

κ in Figure B.9c and H1
κ in Figure B.9d.

C Appendices for Chapter 9

This short appendix is dedicated to the full description of the parameters that we use
in the experiments.

C.1 Importance of variables and their evolution through time

LASSO

The main parameter of the LASSO is the regularization intensity λ. For each data
split, we select it based on the NRMSE achieved on the validation set. We consider
values in a geometric grid of size 30 ranging from 10−5 to 1.
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Figure B.10: Examples of the proposed ϵ-insensitive losses defined on R
2 for different

values of p.



206 Appendix

BAHSIC

We use a Gaussian kernel for both for the input kernel and the output one:

kγ (z,z′) := exp
(
−γ(∥z− z′∥22

)
.

We follow Song et al. (2012) in the choice of the parameter γ . We standardized both
our input and output data so we can apply their heuristic: set this parameter to 1

2d
where d is the dimension of the inputs of the kernel. Then for the input kernel we
have d = q and for the output one d =m.

For the Nyström approximation, we use fewer points than for the KRR since as high-
lighted in Zhang et al. (2018), for detection of dependency, a fewer number of anchor
points are generally sufficient. We then use 100 points for both the input and output
approximation.

C.2 Wind speed and wind power forecasting

As a first general note, since we standardized all the variables, we consider the same
parameter ranges for prediction of wind speed and wind power.

LASSO The fitted models used for interpretation in the variable selection section are
the same that we use here (so the considered parameters are the same).

OLS f-stagewise We selected on the validation set the number of included variables.
We consider the following number of variables: {5,6,7,8,9,10,11,12,13,14,15,20}.
Nyström KRR We select both the input Gaussian kernel’s γ parameter and the regu-
larization parameter λ. We consider the following values:

• γ in a geometric space of length 30 ranging from 10−6 to 10−3.

• λ in a geometric space of length 30 ranging from 10−4 to 5.

For the Nyström approximation, we use 300 sampled points.

Xg-Boost For Xg-Boost, we validate the trees’ maximum depth considering values in
{3,4,5,6} as well as the minimum loss reduction parameter for values in a geometric
space of size 50 ranging from 10−7 to 50.

Feedforward NN We consider a NN with 3 hidden layers and validate the number of
neurons per layer choosing among the possible values {(35,20,5), (50,25,10), (50,35,20), (75,50,25)}.
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Résumé : L’augmentation du nombre et de la sophis-
tication des appareils collectant des données permet de
suivre l’évolution d’une multitude de phénomènes à des
résolutions très fines. Cela étend le champ des applications
possibles de l’apprentissage statistique. Un tel volume peut
néanmoins devenir difficile à exploiter. Cependant quand
leur nombre augmente, les données peuvent devenir re-
dondantes. On peut alors chercher une représentation ex-
ploitant des propriétés du processus génératif.
Dans cette thèse, nous nous concentrons sur la
représentation fonctionnelle. Bien sûr, les données sont
toujours des observations discrètes. Néanmoins, si nous
pensons que ces suites doivent être par exemple lisses ou
de variations bornées, une telle représentation peut être à
la fois plus fidèle et de dimension plus faible. Nous nous
concentrons sur les modèles non-linéaires de régression à
valeurs fonctionnelles (FOR) en utilisant une extension des
espaces de Hilbert à noyau reproduisant pour les fonctions
à valeurs vectorielles (vv-RKHS) qui constitue la clef de
voûte de plusieurs méthodes existantes. Notre objectif est
d’en proposer de nouvelles plus performantes sur le plan
de la complexité calculatoire liée au caractère fonctionnel
et/ou celui du choix de la fonction de perte.
Nous introduisons l’apprentissage de projection kernelisé
(KPL) qui combine les vv-RKHSs et la représentation de

signaux sur des dictionnaires. La perte demeure fonction-
nelle, néanmoins le modèle prédit seulement un nombre
fini de coordonnées. Nous bénéficions alors de la flexibi-
lité de l’espace d’hypothèse tout en réduisant nettement
la complexité liée aux sorties fonctionnelles. Pour la perte
quadratique, nous introduisons deux estimateurs en forme
close, l’un est adapté lorsque les fonctions de sortie sont ob-
servées totalement, et l’autre l’est lorsqu’elles ne le sont que
partiellement. Nous montrons que chacun est consistant en
termes d’excès de risque. Nous proposons aussi d’utiliser
d’autres fonctions de perte différentiables, de combiner KPL
avec les techniques de passage à l’échelle ou encore de
sélectionner le dictionnaire via une pénalité structurée.
Une autre partie est dédiée au problème de FOR dans des
vv-RKHS de fonctions à valeurs fonctionnelles en utilisant
une famille de fonctions de pertes que nous introduisons
comme définies à partir d’une convolution infimale. Celles-
ci peuvent encourager soit la parcimonie soit la robustesse,
le degré de localité de ces propriétés étant contrôlé via
un paramètre dédié. Grâce à leur structure, ces pertes se
prêtent particulièrement bien à la résolution par dualité la-
grangienne. Nous surmontons alors les différents défis que
pose la dimension infinie des variables duales en proposant
deux représentations pour résoudre chaque problème dual
numériquement.

Title : Function-valued regression with kernels: Improving speed, flexibility and robustness
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Abstract : With the increasing ubiquity of data-collecting
devices, a great variety of phenomena is monitored with fi-
ner and finer accuracy, which constantly expands the scope
of Machine Learning applications. Dealing with such volume
of data efficiently is however challenging. Fortunately, as
measurements get denser, they may become gradually re-
dundant. We can then greatly reduce the burden by finding
a representation which exploits properties of the generating
process and/or is tailored for the application at hand.
This thesis revolves around an aspect of this idea: functio-
nal data. Data indeed consist of discrete measurements, but
sometimes thinking of these as functional, we can exploit
prior knowledge on smoothness to obtain a better yet lower
dimensional representation. The focus is on nonlinear mo-
dels for functional output regression (FOR), relying on an
extension of reproducing kernel Hilbert spaces for vector-
valued functions (vv-RKHS), which is the cornerstone of
many nonlinear existing FOR methods. We propose to chal-
lenge those in two aspects: their computational complexity
with respect to the number of measurements per function
and their focusing solely on the square loss.
To that end, we introduce the new framework of kernel pro-
jection learning (KPL) combining vv-RKHSs and represen-

tation of signals in dictionaries. The loss remains functional,
however the model predicts only a finite number of repre-
sentation coefficients. This approach retains the many ad-
vantages of vv-RKHSs yet greatly alleviates the computa-
tional burden incurred by the functional outputs. We derive
two estimators in closed-form using the square loss, one
for fully observed output functions and one for discretized
ones. We show that both are consistent in terms of excess
risk. We demonstrate as well the possibility to use other dif-
ferentiable and convex losses, to combine this framework
with large scale kernel methods and to automatically select
the dictionary using a structured penalty.
In another contribution, we propose to solve the regres-
sion problem in vv-RKHSs of function-valued functions for
the family of convoluted losses which we introduce. These
losses can either promote sparsity or robustness with a pa-
rameter controlling the degree of locality of these properties.
Thanks to their structure, they are particularly amenable to
dual approaches which we investigate. We then introduce
two representations to overcome the challenges posed by
the functional nature of the dual variables and we propose
corresponding algorithms to solve each dual problem.
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