
HAL Id: tel-03969050
https://theses.hal.science/tel-03969050

Submitted on 2 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning for information retrieval : studying
relevant signals for ad hoc search based on transformer

models
Lila Boualili

To cite this version:
Lila Boualili. Deep learning for information retrieval : studying relevant signals for ad hoc search
based on transformer models. Library and information sciences. Université Paul Sabatier - Toulouse
III, 2022. English. �NNT : 2022TOU30188�. �tel-03969050�

https://theses.hal.science/tel-03969050
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 23/11/2022 par :
Lila BOUALILI

Deep Learning for Information Retrieval: Studying relevant signals for
ad hoc search based on transformer models

JURY
Pr. Gabriella Pasi Université de Milan-Biccoca Rapporteure
Pr. Eric Gaussier Université de Grenoble Alpes Rapporteur
Pr. Lynda Tamine Université de Toulouse III Présidente du jury
Pr. Sylvain Lamprier Université d’Angers Examinateur
Pr. Mohand Boughanem Université de Toulouse III Directeur de thèse
Dr. José G.Moreno Université de Toulouse III Co-directeur de thèse
Dr. Andrew Yates Université d’Amsterdam Invité

École doctorale et spécialité :
MITT : Image, Information, Hypermédia

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de Thèse :
Mohand Boughanem et José G.Moreno

Rapporteurs :
Eric Gaussier et Gabriella Pasi

D E E P L E A R N I N G F O R I N F O R M AT I O N
R E T R I E VA L : S T U D Y I N G R E L E VA N T

S I G N A L S F O R A D H O C S E A R C H
B A S E D O N T R A N S F O R M E R M O D E L S

lila boualili

Manuscrit de thèse
Université Toulouse III – Paul Sabatier

Institut de Recherche en Informatique de Toulouse

Directeur de thèse : Mohand Boughanem
Co-directeur de thèse : José G.Moreno

Copyright © 2022 by Lila Boualili
Contact me for any comments and corrections: lila.boualili@irit.fr
Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS,
Université Toulouse III Paul Sabatier,
118 route de Narbonne,
F-31062 Toulouse CEDEX 9

Acknowledgement

It is with a lot of emotion that I finally reach the end of this thesis. A
unique experience indeed, with its joys and challenges but most importantly
a very rich experience which allowed me to make beautiful encounters both
professionally and personally. I would like to express my gratitude to them
here and thank them for everything they have done.

First and foremost, I would like to express my deepest appreciation to
my thesis supervisors: Mohand Boughanem, Professor at the University of
Toulouse III and José G.Moreno, Assistant Professor at the University of
Toulouse III, for the continuous support they gave me throughout the last
three years preparing for my Ph.D. Their guidance, advice, and requirement,
oh so invaluable, strongly contributed to the achievement of this thesis. I
am particularly grateful for the knowledge and experience they shared with
me and the pedagogy and rigor that are theirs. May they be assured of my
gratitude and my deep respect.

I am also deeply indebted to Andrew Yates, Assistant Professor at the
University of Amsterdam, for serving as a mentor during my internship at
the Max Planck Institute for Informatics of Saarbrücken. This experience
enabled me to pursue a new exciting research direction and gain precious
skills with my mentor’s support. I got to meet many young researchers from
different nationalities and learn alongside them. This wonderful experience
would not have been possible without Andrew.

I would like to thank the remaining members of the committee for giving
me the honor of evaluating my dissertation. I would like to express my
respect for them. My gratitude goes to Lynda Tamine, Professor at the Uni-
versity of Toulouse III, Eric Gaussier, Professor at the University of Grenoble
Alpes, Gabriella Pasi, Professor at the University of Milan-Bicocca, and Sylvain
Lamprier, Professor at the University of Angers.

I am thankful to the CIMI Labex for funding my doctoral research for
the past three years. My sincere thanks also go to Gilles Hubert, Assistant
Professor at the University of Toulouse III for having welcomed me in his
team during the preparation of my Ph.D., and for having spared no effort to
ensure a friendly work environment, favourable to innovation and surpassing
oneself. My gratitude also goes to Gerhard Weikum, Professor at Saarland
University for having welcomed me as an intern and having given me access
to the laboratory and research facilities, and all the resources I needed for
conducting my internship work. Finally, I want to thank all the people who

v

helped me throughout my stay in their laboratory, at IRIT or at MPI, and
allowed me to pursue my Ph.D. work in a favourable environment.

Special thanks to Lynda Said Lhadj, Assisstant professor at ESI, who sup-
ported me since my first year in engineering school at ESI, and mentored
me for my Master’s and Engineering degrees. I cannot thank you enough
for your kind words, your support and advice. I am particularly grateful to
you for introducing me to research in general and the domain of information
retrieval in particular, and for instilling in me the scientific rigor that is yours.
I would not have gotten into the Ph.D. journey if it were not for you.

During these years preparing for my Ph.D., I have built long-lasting friend-
ships with passionate and generous people. I particularly thank Nicolas
Bizzozzero and Raphael Sourty for our stimulating discussions, for the support
when I was at my worst, you would always find the right words to brighten
my mood. Thank you for all the precious time we had while working together
in the last three years at the 406 office, last floor at IRIT 1, or what is best
known as “hell” during summer. I would have never made it to the end of
this journey without you ;) I have met wonderful people who helped me out
through this thesis, a special shout out to: Paul, Rafik, Malik, Damien, Morgan,
Luis, Thiziri, Alexis, Maël, Antoine, Mira, Farane, Nishchal, Hina, Aya it was a
real pleasure to share this journey with you, thank you for all the fun times
we spend together.

I cannot forget to thank my best friend since high school, Lynda. Fate
may have scattered us around the world, but our friendship remains strong.
With your wisdom, your precious advice and your ability to listen, you
have contributed enormously to the success of this thesis and in many other
things...

Words cannot express my gratitude to Aghiles. You have supported me,
shared my joys, consoled my sorrows, and erased my doubts. You have
stayed by my side through thick and thin this past year. Even when I felt like
giving up, you were always there to help me get back on my feet and fight
until the very end. I could not have undertaken this journey without you.

Last but not least, I would like to thank my family, whom I love so deeply.
I thank my beloved big sister for being so supportive and my younger brother
for his caring. But my deepest gratitude goes to my parents, my twin pillars,
without whom I could not stand. You never gave me any idea that I could
not do whatever I put my mind to or be whomever I aspired to be. Thank
for filling our home with love and books. You have instilled in me the taste
for knowledge and brought me up to have a curious mind, thank you for
showing me the way... Words could never express my appreciation for all the
efforts and sacrifices you had to make so I could enjoy a better life. I hope
you are proud of what I have become and what I have achieved.

vi

Résumé

Au cours de la dernière décennie, les modèles supervisés d’apprentissage
profond ont apporté des améliorations substantielles à une multitude de
tâches de Traitement Automatique des Langues (TAL). Les réseaux de neu-
rones profonds ont été utilisés pour apprendre des représentations vectorielles
continues du texte, capables de modéliser la sémantique. Afin de tirer profit
de l’appariement sémantique, plusieurs modèles d’apprentissage profond
ont été proposés, souvent adaptés de ceux conçus pour les tâches de TAL
afin de répondre à différentes tâches de Recherche d’Information (RI) telles
que la recherche ad hoc. Cependant, les améliorations dans les tâches de RI
sont restées à la traîne par rapport à des tâches similaires en TAL, malgré les
efforts considérables de la communauté. Bien que plusieurs facteurs y aient
contribué, une raison importante de cet "échec" provient des caractéristiques
uniques de la tâche de recherche en RI, en particulier, lorsqu’on la compare
aux tâches relevant de l’appariement de textes en TAL. En effet, en RI, à
travers l’appariement document-requête on cherche à modéliser la pertinence
du document vis-à-vis d’une requête, c’est-à-dire l’adéquation du contenu du
document vis-à-vis du besoin formulé dans la requête. On ne cherche pas à
calculer la proximité sémantique entre les mots de la requête et du document.
Or, c’est précisément, ce que réalise la majorité des modèles neuronaux dans
les tâches de TAL, apprendre des représentations pour apparier deux textes,
identifier la sémantique d’un texte ou déduire des relations sémantiques
entre deux morceaux de texte, etc.

Récemment, les Modèles de Langue Pré-entraînés (MLPs) contextualisés,
dont BERT est l’exemple le plus célèbre, qui sont capables d’apprendre des
représentations de mots dans leurs contexte, ont obtenu des résultats de
pointe dans la recherche ad hoc avec de larges marges de performance. Bien
que les modèles de recherche basés sur les MLPs soient également adaptés
de tâches similaires d’appariement de phrases dans le domaine du TAL, avec
des modifications minimes, ils se sont étonnamment avérés très efficaces
par rapport aux tentatives précédentes. Ce succès sans précédent peut être
attribué à la grande quantité de pré-entrainement non supervisé sur des
objectifs de modélisation du langage, combiné avec la flexibilité du processus
de contextualisation dans les transformers. Mais aussi au fine-tuning sur de
larges quantités de données labellisées disponibles publiquement pour la
tâche d’ordonnancement de documents.

Dans cette thèse, nous nous intéressons à l’adaptation des MLPs à la
tâche spécifique de la recherche ad hoc. Nous explorons différentes pistes de

vii

recherche pour construire de meilleurs modèles de RI basés sur les MLPs : (1)
explorer l’impact de l’intégration de l’intuition traditionnelle d’appariement
exact sur l’efficacité des MLPs pour la recherche ad hoc ; (2) étudier le rôle du
processus de contextualisation dans les MLPs pour la recherche ad hoc afin
de mieux comprendre ce qui est important pour cette tâche, ce qui pourrait
motiver des reconceptions plus efficaces des transformers spécifiquement
pour la recherche ad hoc.

En ce qui concerne la première piste, nous proposons de considérer une
intuition traditionnelle qui est importante pour la recherche ad hoc, à savoir
l’appariement exact, qui a été utilisé en RI pendant des décennies jusqu’à
très récemment dans la conception de modèles neuronaux pré-BERT. Au
lieu de construire des modèles neuronaux plus grands ou d’améliorer leur
supervision, nous prenons une voie différente en intégrant des connaissances
du domaine de la RI. Nous proposons une stratégie de marquage simple mais
efficace qui met l’accent sur les terms qui sont en commun entre la requête
et le document, au niveau de l’entrée en introduisant stratégiquement des
marqueurs spéciaux. Cette approche tire parti de la flexibilité de l’architecture
des transformers dans les MLPs pour intégrer des intuitions supplémentaires
spécifiques aux tâches afin d’améliorer leur efficacité.

Dans la deuxième direction, nous explorons le processus de contextuali-
sation flexible dans les MLPs pour l’appariement semantic dans le contexte
de la recherche ad hoc. Puisque ce même processus de contextualisation
effectué par les transformers dans les MLPs est capable d’effectuer efficace-
ment différentes tâches en aval, nous étudions s’il peut être contraint à un
processus plus simple spécifiquement conçu pour la tâche de recherche. Pour
ce faire, nous proposons la distillation d’un MLP oracle dans des modules
plus simples et soigneusement conçus, basés sur des embeddings statiques
afin d’analyser le rôle du processus de contextualisation pour la tâche de
recherche. Alors que la piste de recherche précédente intègre plus de signaux
dans le processus de contextualisation des MLPs pour les adapter à la tâche
de recherche (augmenter l’efficacité), cette piste tente de limiter les signaux
dans le processus de contextualisation à ceux qui sont nécessaires pour la
recherche ad hoc (atteindre de meilleurs compromis efficacité/efficience).

Mots clés : Recherche d’Information, Apprentissage Profond, Recherche
Ad hoc, Traitement Automatique des Langues, Modèles de Langue Pré-
entraînés, BERT, Transformer, Appariement Exact, Appariement Sémantique

viii

Abstract

In the past decade, supervised deep learning models have yielded substan-
tial improvements to many Natural Language Processing (NLP) tasks. Deep
neural networks have been used to learn continuous vector representations
of text capable of modeling semantics. With a view to taking advantage
of semantic matching, several deep learning models were proposed, often
adapted from those designed for NLP tasks to meet different Information
Retrieval (IR) tasks such as ad hoc search. However, improvements in IR
tasks lagged behind those in similar NLP tasks, despite considerable efforts
from the community. Although there are various contributing factors, a
critical reason for this “failure” comes from the unique characteristics of the
ranking task in IR, particularly when compared to the tasks of text matching
in NLP. Indeed, in IR, through query-document matching, we try to model
the relevance of the document with respect to the query, i.e., the adequacy
of the document’s content with respect to the information need formulated
in the query. We do not try to calculate the semantic similarity between
words in the query and the document. However, this is precisely what most
neural models achieve in NLP tasks, learning representations to match two
texts, identifying the semantics of a text, or inferring semantic relationships
between two pieces of text, etc.

Recently, contextualized Pre-trained Language Models (PLMs), of which
BERT is the most famous instance, are capable of learning representations of
words in context and have achieved state-of-the-art results in ad hoc search
with substantial performance leaps. Although PLM-based ranking models
are also adapted from similar sentence-matching tasks in NLP with minimal
modifications, they have surprisingly proven to be highly effective as opposed
to previous attempts. This unprecedented success can be owed to the heavy
unsupervised pre-training on language modeling objectives combined with
the flexibility of the contextualization process in transformers. Additionally,
the availability of large amounts of labelled data for the ranking task enables
effective fine-tuning of PLMs.

In this thesis, we focus on adapting prominent PLMs to the specific task
of ad hoc ranking. We explore different research directions for building
better PLM-based ranking models: (1) exploring the impact of integrating the
traditional exact matching intuition on the ranking effectiveness of PLMs; (2)
investigating the role of the contextualization process in PLMs for ranking to
gain insight into what is important for ranking which could motivate more
efficient ranking-specific redesigns of transformers.

ix

Regarding the first direction, we propose considering a traditional intuition
that is important for ranking: exact matching, which has been used in IR for
decades until very recently in the design of pre-BERT neural models. Instead
of building larger neural models or improving their supervision, we take a
different path forward by integrating knowledge in the field of IR. We propose
a simple yet effective marking strategy that emphasizes exact term matches
between the query and the document at the input level by strategically
introducing special marker tokens. This approach takes advantage of the
flexibility of the transformer architecture in PLMs to integrate additional
task-specific intuitions in order to improve their effectiveness.

For the second direction, we dive into exploring the flexible contextual-
ization process in PLMs for soft matching in the context of ranking tasks.
Because this same contextualization process performed by transformers in
PLMs is able to perform different downstream tasks effectively, we invest-
igate if it can be constrained to a simpler process specifically designed for
the ranking task. To do so, we propose distillation from an oracle PLM into
simpler carefully-designed modules based on static embeddings and inform-
ation bottlenecks to analyze the role of the contextualization process for the
ranking task. While the previous research direction integrates more signals
into the contextualization process of PLMs to adapt them to the ranking task
(increase effectiveness), the later direction tries to constrain the signals in
the contextualization process to only what is necessary for ranking (achieve
better efficiency/effectiveness trade-offs).

Keywords: Information Retrieval, Deep Learning, Ad hoc Search, Natural
Language Processing, Contextualized Pre-trained Language Models, BERT,
Transformer Architectures, Exact Matching, Soft Matching

x

Publications

Parts of our contributions have already been published in the following
scientific publications:

International Conference Paper

Lila BOUALILI, Jose Moreno, and Mohand Boughanem. 2020. Marked-
BERT: Integrating Traditional IR Cues in Pre-Trained Language Models for
Passage Retrieval. In Proceedings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (Virtual Event, China)
(SIGIR’20). Association for Computational Linguistics, Online, 4758-4781.

International Journal Article

Lila BOUALILI, Jose Moreno, and Mohand Boughanem. 2022. High-
lighting exact matching via marking strategies for ad hoc document ranking
with pretrained contextualized language models. Information Retrieval Journal
(2022), 1-47.

xi

Table of Contents

Introduction
Context . 3

Research Issues and Contributions . 5

Thesis Organization . 8

I Background
1 Core concepts in information retrieval 15

1 Introduction . 15

2 Core Concepts . 16

2.1 Document . 16

2.2 Document Collection . 16

2.3 Information Need and Query . 16

2.4 Relevance . 17

3 Evaluation in IR . 18

3.1 The evaluation protocol . 18

3.2 Evaluation Metrics . 19

4 Conclusion . 22

2 A historical overview of IR models 23

1 Introduction . 23

2 Traditional IR . 24

3 The Rise of Learning To Rank . 27

4 The Emergence of Deep Learning . 28

4.1 Pre-BERT neural ranking models . 29

4.2 The introduction of BERT . 35

5 Conclusion . 36

II State Of The Art Overview
3 Overview of BERT 39

1 Introduction . 39

2 BERT architecture . 39

3 The Transformer architecture . 41

4 Pre-train then fine-tune . 43

4.1 Pre-training . 43

4.2 Fine-tuning . 45

5 Input representation . 46

6 BERT configurations . 47

7 BERTology . 48

xii

table of contents

8 Conclusion . 49

4 BERT in multi-stage reranking 51

1 Introduction . 51

2 Relevance Classification with monoBERT 52

2.1 MonoBERT architecture . 53

2.2 Understanding BERT behavior in ranking 54

2.3 Training BERT for ranking . 55

3 Full-length document ranking with BERT 58

3.1 Passage Score Aggregation . 58

3.2 Passage Representation Aggregation 61

3.3 Alternative Transformer architectures for long sequences 62

4 Multi-stage rerankers . 62

5 Towards more efficient transformer-based ranking 64

5.1 Knowledge Distillation . 64

5.2 Rethinking transformers for ranking 65

6 Generative Ranking Models . 66

6.1 Query Generation . 66

6.2 Relevance Generation . 67

7 Conclusion . 69

5 BERT for sparse retrieval 71

1 Introduction . 71

2 Query Expansion . 72

3 Document Expansion and Term Re-weighting 73

3.1 Query Prediction for Document Expansion 73

3.2 Term Re-weighting based on Contextualized Representations . . . 74

3.3 Combining Term Expansion with Term Re-weighting 77

4 Learning Sparse Expansions and Representations 78

4.1 Learning Sparse Expansions . 78

4.2 Learning Sparse Representations . 79

5 Conclusion . 79

6 BERT for dense retrieval 81

1 Introduction . 81

2 Dense Retrieval . 82

3 Nearest Neighbour Search . 83

4 Single-vector Bi-Encoders . 84

5 Multi-vector Bi-Encoders . 87

5.1 Multiple Query Representations . 88

5.2 Multiple Document Representations 89

5.3 Per-Token Representations and Late Interactions 89

6 Enhancing the Effectiveness of Bi-Encoders 93

6.1 Enhancing pre-training . 94

6.2 Enhancing fine-tuning . 94

7 Conclusion . 97

xiii

table of contents

III Contributions
7 Highlighting exact matches for ad hoc ranking with transformers 103

1 Introduction . 103

2 Motivation and Research Questions . 104

3 Highlighting Exact Matches for Pre-trained Contextualized Language Models105

3.1 Model architecture . 106

3.2 Exact Match Marking . 107

4 Methodology and Experimental setup . 109

4.1 Experimental Setup . 110

4.2 Baselines . 113

5 Results and Analysis . 115

5.1 Contribution of exact match marking 115

5.2 Contribution of the first-stage retriever scores to the end-to-end
effectiveness . 120

5.3 Multi-Phase Fine-Tuning . 123

5.4 Impact of exact match marking on ELECTRA 127

5.5 Comparison with state-of-the-art baselines 131

5.6 Investigating the Contextualized Representations of Marker Tokens 135

5.7 Marker Tokens for Query Expansion 139

6 Discussion and Conclusion . 142

8 Investigating contextualized representations for ad hoc ranking 145

1 Introduction . 145

2 Motivation and Research Questions . 146

3 Distilling the Oracle Contextualization Process 147

3.1 Aggregation Methods . 148

3.2 Life Cycle . 151

4 Methodology and Experimental Setup . 154

4.1 Experimental Setup . 154

4.2 Baseline and Evaluation Scenarios 157

5 Results and Analysis . 157

5.1 Intrinsic Aggregation . 158

5.2 Extrinsic Aggregation . 159

5.3 Intrinsic-extrinsic complementarity 160

5.4 Case Study . 161

5.5 Zero-shot generalizability to out-of-domain collections 163

6 Discussion and Conclusion . 163

Conclusion
Contributions Overview . 167

Perspectives and Future Work . 172

Appendices 175

a Additional results using exact match marking strategies 177

1 Additional results on passage reranking collections 177

xiv

table of contents

2 Additional results on full-length document reranking collections 179

2.1 In-domain evaluations . 179

2.2 Out-of-domain evaluations . 179

b Reproducibility 185

1 Reproducing the results of the exact match marking contribution 185

2 Reproducing the results of the simpler contextualization process contribution186

xv

List of Figures

Figure 2.1 nDCG@10 results, broken down by model type: “nnlm” use lan-
guage models such as BERT, performed best on both tasks, other
pre-BERT neural ranking models “nn”, and traditional non-neural
models “trad” had relatively lower performance in this track. [45] 29

Figure 2.2 Two classes of pre-BERT neural ranking models: (a) Representation-
based models learn vector representations of queries and docu-
ments that are compared using simple metrics, such as cosine
similarity to compute relevance scores, and (b) Interaction-based
models explicitly model term interactions in a similarity matrix
that is further processed to compute relevance scores 30

Figure 2.3 The two configurations of Word2Vec: (a) Skip-Gram and (b)
CBOW. The architecture is a neural network with a single hidden
layer whose size is much smaller than that of the input and output
layers. Both models use one-hot representations of terms in the
input and the output. The learnable parameters of the model
comprise the two weight matrices Win and Wout that correspond
to the embeddings the model learns for the input and the output
terms, respectively. The Skip-Gram model trains by minimizing
the error in predicting a context term ti+j given the central term
ti. The CBOW model, in contrast, predicts the central term ti
from a bag of its neighbouring terms; we consider a context win-
dow of size 5, including 2 terms before and after the central term
j ∈ {−2,−1,+1,+2} . 31

Figure 3.1 The general architecture of BERT. The input embeddings are the
sum of the token embeddings, the segmentation embeddings and
the position embeddings. Modified from a diagram by Jimmy Lin
(https://twitter.com/lintool/status/1285599163024125959). . 40

Figure 3.2 Architecture of the original transformer [236]. Diagram by [226]. 41

Figure 3.3 BERT’s Masked Language Modeling (MLM). Masks a percentage
of the input sequence tokens at random, and trains the model to
predict the masked tokens. In this example, the word “fashion” is
masked from the input sequence by replacing it with the special
token [MASK]. The last hidden vectors are fed through a feed
forward network (FFNN) and a softmax over the vocabulary.
The output vector contains the probability that the masked token
corresponds to the i-th token in the vocabulary. 44

xvi

https://twitter.com/lintool/status/1285599163024125959

list of figures

Figure 3.4 Illustrations of fine-tuning BERT on different NLP tasks. The
model inputs are not limited to sentences, an input is a textual seg-
ment that can be a question, a paragraph, etc. Diagrams by Jimmy
Lin (https://twitter.com/lintool/status/1285599163024125959) 45

Figure 3.5 BERT input representation. The input embeddings are the sum
of the token embeddings, the segmentation embeddings and the
position embeddings. 46

Figure 4.1 The retrieve-then-rerank architecture, which is the simplest in-
stance of multi-stage ranking architecture. The initial retriever
(also called first-stage retriever) retrieves a list of candidate docu-
ments for each query, typically with bag-of-words queries against
inverted indexes. These candidates are then reranked with a PLM
such as monoBERT. 51

Figure 4.2 The monoBERT architecture [173]. 52

Figure 4.3 Score aggregation vs. representation aggregation approaches [123] 59

Figure 4.4 The multi-stage reranking architecture with a first-stage (initial)
retriever followed by one or more reranking stages (K1 ≥ K2 ≥
... ≥ Kn). According to the number of rerankers (n): the retrieval
process can be defined as a Single-stage retrieval (n = 0), two-stage
reranking or retrieve-then-rerank (n = 1), or Multi-stage reranking
(n ≥ 2). 62

Figure 6.1 Two classes of bi-encoders for dense retrieval: (a) Single-vector
models encode queries and documents into single dense vectors
with a simple similarity function such as inner product, and (b)
multi-vector models encode queries and/or documents into a set
of vectors and use a richer similarity mechanism to capture relevance 85

Figure 6.2 The architecture of ColBERT [112] 90

Figure 7.1 The monoBERT architecture [173]. Copied from Figure 4.2 in
Section 4.2 . 106

Figure 7.2 The end ranking accuracy of the vanilla BERT and Sim-Pair BERT

models with BM25 scores interpolation on Robust04 and GOV2

collections. α = 0.0 indicates the reranking model effectiveness
only without BM25 scores, and α = 1.0 means that only BM25

scores are used . 123

Figure 7.3 The architecture of the novel representation variant relying on
marker token contextualized representations for relevance extraction.137

Figure 8.1 1⃝ SRM combines K = 3 token sub-embeddings using attention
(SSCA) weights to produce token representations. 2⃝ LCM uses
windowed attention (WCA) to integrate local context into the SRM
representations. 148

xvii

https://twitter.com/lintool/status/1285599163024125959

list of figures

Figure 8.2 The pre-training procedure of a module or combination of mod-
ules through distillation from the oracle PLM encoder using the
MSE loss in Eq.8.8. The weights of the module(s) are randomly
initialized and the oracle encoder weights are not updated. . . . 152

Figure 8.3 Comparison between (a) the ColBERT ranking model which relies
on the oracle PLM distilBERT for contextualization, and (b) our
aggregation-based ranking model which relies on our specifically
designed aggregation modules (SRM and LCM) for contextualiza-
tion. Both models rely on ColBERT’s late interaction mechanism
which is based on the MaxSim operator 153

xviii

List of Tables

Table 2.1 State-of-the-art results on the MS MARCO passage ranking lead-
erboard, in January 2019, showing the effectiveness of the newly
introduced BERT model compared to pre-BERT models. 35

Table 3.1 BERT configurations: The commonly used Base and Large config-
urations were introduced in the original BERT paper [58], while
the remaining configurations were proposed later by Turc et al.
[235] for exploring effectiveness/efficiency tradeoffs. 47

Table 7.1 Extracts from top ranked passages by Vanilla BERT for the query:
“causes of left ventricular hypertrophy” from MS MARCO [9] . . 104

Table 7.2 Example of the proposed marking strategies applied to the query
q: “causes of left ventricular hypertrophy”, and the document d:
“Left ventricular hypertrophy can occur when some factor ...” . . 108

Table 7.3 Benchmarks statistics. The MS MARCO document dataset has 43

judged topics in DL 2019 and 45 judged topics in DL 2020 110

Table 7.4 Example of Robust04 search topic: Topic 302 111

Table 7.5 Reranking effectiveness on the TREC DL 2019 and DL 2020 Docu-
ment ranking tasks. The best performance of our proposed models
is highlighted in bold, and baseline’s results are underlined when
overall best. Significant improvements over the vanilla baseline
with p < 0.05 are indicated with †. Change rates over the vanilla
baseline are reported for each metric (%) 116

Table 7.6 Reranking effectiveness in the zero-shot transfer setting of the
different models on Robust04 and GOV2 collections. The best
performance of our proposed models is highlighted in bold, and
baseline’s results are underlined when overall best. Significant
improvements over the vanilla baseline with p < 0.05 and p < 0.01
are indicated with † and ‡ respectively. For each measure, the
improvement rate over the vanilla baseline is given (%) 117

Table 7.7 Recall of BM25 on Robsut04 and GOV2 collections on both title
and description queries . 118

Table 7.8 Reranking effectiveness in the zero-shot transfer setting of the dif-
ferent models on Robust04 and GOV2 collections using the hybrid
pipeline. Best performance is highlighted in bold. Significant im-
provements over the vanilla baseline with p < 0.05 and p < 0.01
are indicated with † and ‡ respectively. For each measure, the
improvement rate over the vanilla baseline is given (%) 119

xix

list of tables

Table 7.9 Reranking effectiveness of the different models before and after
interpolating BM25 scores on Robust04 and GOV2 collections.
Best performance is highlighted in bold. For each measure, the
improvement rate over the reranking performance without BM25

scores interpolation is given (%) . 121

Table 7.10 Reranking effectiveness in the multi-phase vs. zero-shot transfer
setting for the Sim-Pair and vanilla models on Robust04 and GOV2

collections. Best performance is highlighted in bold. Significant
improvements over the vanilla baseline with p < 0.05 and p <

0.01 are indicated with † and ‡ respectively for the same setting.
Change rate over the vanilla baseline in the same setting are
reported for each metric (%) . 124

Table 7.11 Reranking effectiveness with exact match marking ablation at
different phases of the multi-phase fine-tuning setting of Sim-Pair
BERT on Robust04 and GOV2 collections. MS refers to the MS
MARCO fine-tuning phase and ID to the in-domain fine-tuning.
Best performance is highlighted in bold. Significant improvements
over the vanilla baseline with p < 0.05 and p < 0.01 are indicated
with † and ‡ respectively for the same setting. Change rates over
the vanilla baseline are reported for each metric (%) 126

Table 7.12 Reranking effectiveness on the TREC DL 2019 and DL 2020 Doc-
ument ranking tasks for Sim-Pair and vanilla models with both
BERT and ELECTRA cores. Best performance is highlighted in
bold. Significant improvements over the vanilla baseline with
p < 0.05 are indicated with †, for the same core. Change rates
over the vanilla baseline for the same core type are reported for
each metric (%) . 128

Table 7.13 Reranking effectiveness in the zero-shot transfer setting for the
Sim-Pair and vanilla models on Robust04 and GOV2 collections
using both BERT and ELECTRA cores. Best performance is high-
lighted in bold. Significant improvements over the vanilla baseline
with p < 0.05 and p < 0.01 are indicated with † and ‡ respectively
for the same core. Change rates over the vanilla baseline, for the
same core type, are reported for each metric (%) 129

Table 7.14 Reranking effectiveness in the multi-phase fine-tuning setting for
the Sim-Pair and vanilla models on Robust04 and GOV2 collec-
tions using both BERT and ELECTRA cores. Best performance
is highlighted in bold. Significant improvements over the vanilla
baseline with p < 0.05 and p < 0.01 are indicated with † and ‡
respectively for the same core. Significant inferiority with p < 0.05
is marked with ∗. Change rate over the vanilla baseline for the
same core type are reported for each metric (%) 130

xx

list of tables

Table 7.15 Reranking effectiveness of the Sim-Pair BERT with interpolating
BM25 scores vs. Birch (MS) baseline on both Robust04 and GOV2

collections. Results are obtained after reranking the top-100 doc-
uments returned by BM25 following the setting used for the
Birch(MS) baseline in Li et al. [122]. BM25 results are reported at
cutoff 100 . 131

Table 7.16 Reranking effectiveness of the Sim-Pair BERT with multi-phase fine-
tuning vs. BERT-MaxP (MS) baseline on both Robust04 and GOV2

collections. [MS] indicates that the run uses MS marking: exact
match marking is only used during fine-tuning on MS MARCO
and ablated in the in-domain fine-tuning phase 132

Table 7.17 Reranking effectiveness on Robust04 and GOV2 of our best runs
vs. the best baseline runs. The change rate (%) of our best run,
Sim-Pair ELECTRA, over each baseline is indicated for both metrics
if available. We use the multi-phase fine-tuning for our runs, the
same multi-phase fine-tuning is adapted in Parade and BERT-
maxP baselines. For a fair comparison with sparse and dense
retrieval models we add Sim-Pair runs in the zero-shot setting on
descriptions. Our best results are indicated in bold, and overall
best results among baselines are underlined 133

Table 7.18 Reranking effectiveness on TREC DL 2019 and 2020 Document
ranking tasks of our Sim-Pair models with both BERT and ELEC-
TRA cores vs. the best TREC runs and baselines. The change rate
(%) of our best run, over each baseline is indicated for both metrics
if available. DPR* and ANCE* results were copied from the ANCE
paper [251]. Our best results are indicated in bold, and overall
best results among baselines are underlined 134

Table 7.19 Reranking effectiveness of the Sim-Pair BERT with representation
variants on TREC DL 2019-2020 document ranking collections.
Best results are indicated in bold 138

Table 7.20 Reranking effectiveness of the Sim-Pair BERT with representation
variants on both Robust04 and GOV2 collections. We report results
using the hybrid runs at cutoff 1000. Best results are indicated in
bold . 139

Table 7.21 Reranking effectiveness with marker-token-based query expansion
on TREC DL 2019-2020 document ranking collections. Best results
are indicated in bold . 141

Table 7.22 Reranking effectiveness with marker-token-based query expan-
sion on both Robust04 and GOV2 collections. We report results
using the title and hybrid runs at cutoff 1000. QE indicates the
query expansion technique used. Best results are indicated in
bold. Significant improvements of the query expansion models
are indicated with † and ‡ for p < 0.05 and p < 0.01, respectively 141

xxi

list of tables

Table 8.1 SRM reranking effectiveness on the MS MARCO Dev set with
variable number of token sub-embeddings K. D is the embedding
size (768). Our module’s best results are in bold, and oracle results
are underlined when overall best. 158

Table 8.2 Ranking effectiveness of SRM with different aggregation mechan-
isms on all datasets. 159

Table 8.3 Ranking effectiveness of SRM-LCM with different context window
lengths(ws) on MS MARCO Dev and DL query sets. TREC-Best
reports the best DL submitted runs. Our module’s best results are
in bold, and oracle results are underlined when overall best. . . . 160

Table 8.4 Ranking effectiveness of LCM extrinsic refinement applied to SRM
variants, on MS MARCO Dev and DL sets. Our module’s best
results are in bold, and oracle results are underlined when overall
best. 161

Table 8.5 Sample query-passage token matches from the MS MARCO pas-
sage collection. 162

Table 8.6 Ranking effectiveness of SRM-LCM (K = 10 and ws = 1) on
TripClick and Robust04 test collections. Best results are indicated
in bold. 162

Table A.1 Reranking effectiveness on MS MARCO Dev, and TREC DL 2019

and DL 2020 Passage ranking tasks. Best performance is high-
lighted in bold. Change rate over the vanilla baseline are reported
for each collection (%). 178

Table A.2 Reranking effectiveness on the TREC DL 2019 and DL 2020 Doc-
ument ranking tasks. Best performance is highlighted in bold.
Significant improvements over the vanilla baseline with p < 0.05
are indicated with †, for the same core. Change rate over the
vanilla baseline for the same core type are reported for each metric
(%). 180

Table A.3 Reranking effectiveness in the zero-shot transfer setting of all our
models on Robust04 and GOV2 collections. Best results, for each
cutoff, are highlighted in bold. Significant improvements over the
Vanilla baseline with p < 0.05 and p < 0.01 are indicated with
† and ‡ respectively, for the same cutoff. For each measure, the
improvement rate over the Vanilla baseline is given (%). 181

Table A.4 Reranking effectiveness in the multi-phase fine-tuning setting of
the different models on Robust04 and GOV2 collections. Best
results are highlighted in bold. Significant improvements over the
Vanilla baseline with p < 0.05 and p < 0.01 are indicated with †
and ‡ respectively. For each measure, the improvement rate over
the Vanilla baseline is given (%). 182

xxii

list of tables

Table A.5 Reranking effectiveness in the zero-shot transfer setting of the
different models on Robust04 and GOV2 collections. Best results,
for each cutoff, are highlighted in bold. Significant improvements
over the Vanilla baseline with p < 0.05 and p < 0.01 are indicated
with † and ‡ respectively, for the same cutoff. For each measure,
the improvement rate over the Vanilla baseline is given (%). . . . 183

Table A.6 Reranking effectiveness in the multi-phase fine-tuning setting of
the different models on Robust04 and GOV2 collections. Best
results are highlighted in bold. Significant improvements over the
Vanilla baseline with p < 0.05 and p < 0.01 are indicated with †
and ‡ respectively. For each measure, the improvement rate over
the Vanilla baseline is given (%). 184

xxiii

Acronyms

ANN Approximate Nearest Neighbour

BERT Bidirectional Encoder Representations from Transformers

BM25 Best Match 25

BoW Bag of Words

CNN Convolutional Neural Networks

ColBERT Contextualized Late Interaction over BERT

DL Deep Learning

ELECTRA Efficiently Learning an Encoder that Classifies Token Replacements Accurately

FNN Feed-forward Neural Networks

IDF Inverse Document Frequency

IR Information Retrieval

IRS Information Retrieval System

LM Language Model

LSTM Long Short Term Memory

MLM Masked Language Modeling

MS MARCO MicroSoft MAchine Reading COmprehension

MSE Mean Squared Error

NLP Natural Language Processing

NSP Next Sentence Prediction

PLM Pre-trained Language Model

PRF Pseudo-Relevance Feedback

TF Term Frequency

TREC Text Retrieval Evaluation conference

xxiv

Introduction

General Introduction

Context

Information retrieval (IR) is the field of research that deals with the repres-
entation, storage, organization of information items in order to provide the
users with easy access to the information in which they are interested [7].

Salton [211], the godfather of IR, defines it as follows:

Information retrieval is a field concerned with the structure, analysis,
organization, storage, searching, and retrieval of information.

Practically, information retrieval is the science behind search engines (or
IR systems) that allows them to retrieve relevant results from large corpora
of documents (e.g., texts, images, etc.) which are most likely to satisfy the
information need expressed by a user in a query; also known as the ad hoc
ranking task. A key challenge in IR is, hence, to design formal approaches
capable of modeling the notion of relevance. Today, the literature gathers a
wide range of IR models, each formalizing relevance with different methods
and tools as advances have been made over the decades.

The first IR systems, developed in the late 1950s, focused on finding better
ways to index texts, and then use new algorithms to search these (mostly)
automatically built indexes [85]. These early systems were mainly intended
for searching electronic information sources available in bookstores and
academic institutions. By the 1990s, the democratization of the web and the
diversification of electronic media have given rise to an overabundance of
information, making them accessible to organizations as well as to individuals.
This is how IR systems became ubiquitous in different contexts such as digital
libraries, e-commerce applications, and web search engines, with over 8 billion
queries processed daily by the notorious Google search engine in 2022

1.
Although the exact details of popular commercial web search engines

remain elusive due to their proprietary nature, at their core, they still rely on
lexical keyword matching [184] to retrieve and rank results 2 [210].Keyword
search, which relies on exact lexical match, commonly based on bag-of-
word (BoW) queries, is also widely used by practitioners of IR who develop
and deploy search applications, and academics [173, 149, 51, 174]. Lexical
matching is limited, though, since terms in documents and queries are

1. https://earthweb.com/how-many-google-searches-per-day/

2. https://www.google.com/search/howsearchworks/how-search-works/

ranking-results/

3

https://earthweb.com/how-many-google-searches-per-day/
https://www.google.com/search/howsearchworks/how-search-works/ranking-results/
https://www.google.com/search/howsearchworks/how-search-works/ranking-results/

General Introduction

treated as meaningless graphic units. The retrieved documents do not always
address the topic of the user’s query because term matches are considered
independently from their context. However, a document that uses a query
term in a relevant context should be ranked above documents that use the
term incidentally or in a different sense.

Though Natural Language Processing (NLP) techniques such as word
sense disambiguation [215, 170] and semantic indexing [238, 15] have been
previously applied to search, their results were mitigated. Later, supervised
deep neural learning approaches have dominated the field of NLP [181], and
have been used to learn continuous representations of text units (we focus on
words and sub-words) which capture semantics through distributional model-
ling, namely embedding models [162, 189]. These distributed representations
enable soft or semantic matching, where query terms do not have to match
document terms exactly in order to contribute to relevance. Consequently,
neural models [95, 83, 250] became prominent in the IR community to allevi-
ate the vocabulary mismatch problem, that queries and relevant documents do
not necessarily use the same terms, e.g., covid vs. coronavirus, for the same
concept.

Recent improvements to term representations have allowed the modeling
of terms in a given textual context using pre-trained language models 3

(PLMs) such as ELMo [190] and BERT [58]. These PLMs offer a considerable
opportunity for neural IR as they allow models to take advantage of massive
amounts of unlabeled natural language to help model terms as they appear
in a given context. As opposed to previous neural IR models, known as
pre-BERT models, contextualized vector representations further address the
semantic mismatch problem, that the same term can refer to different concepts,
e.g., right hand vs. right answer.

Fine-tuned PLMs achieve state-of-the-art results in ad hoc ranking with
huge performance leaps [129], and they grew rapidly to dominate the IR
research landscape in a matter of a few years. PLMs are now the de facto
building blocks for neural ranking models, mainly applied as black boxes
with minimal modifications. This direct application allows IR researchers to
take advantage of innovations in NLP (that may not have been intended for
ranking) “for free” and fits nicely with the “more data, larger models” strategy
[129]. It is interesting to observe how the design of neural IR models evolved
from capturing multiple intuitions important for ranking through specialized
architectural components (e.g., convolutional and recurrent components) in
pre-BERT models to using PLMs where all these specialized components
are subsumed in the attention mechanisms of transformers. Thanks to the
fine-tuning recipe, the application of PLMs is straightforward. Consequently,
the same architecture based on homogeneous transformer layers is employed
regardless of the downstream task. There is hardly any distinction between

3. Also referred to as contextualized language models or transformer models.

4

Research Issues and Contributions

PLMs for semantic similarity in NLP and relevance matching in IR. The
contextualization process in PLMs can either lack important signals for the
ranking task or integrate superfluous signals unnecessary for ranking but
used for other downstream tasks. The work we present in this dissertation
is, therefore, interested in adapting PLMs to the ranking task by injecting
traditional intuitions important for ranking or investigating the contextualiz-
ation process in PLMs by constraining its flexibility to what the ranking task
requires only.

Research Issues and Contributions

This dissertation is articulated around the development of neural IR mod-
els in the BERT era where large-scale contextualized language models are
prevalent. More specifically, we focus on the adaptation of these flexible
transformer models for the ad hoc ranking task, and investigate the following
two main issues: (1) the impact of emphasizing the traditional exact match
intuition on transformer models for document ranking; (2) the impact of
constraining the contextualization process in transformer models to simpler
aggregation approaches on ranking effectiveness.

Emphasizing Exact Match cues in PLM-based ranking models

PLMs such as BERT and its subsequent variants (e.g., ELECTRA [40], T5

[197]) have achieved unprecedented success on various NLP tasks. The suc-
cess of these models is largely owed to the heavy pre-training on language
modeling objectives on the one hand and learning contextualized repres-
entations using the transformer architecture on the other. Thanks to the
fine-tuning strategy and the availability of large publicly-released training
datasets, applying a PLM to ad hoc ranking is straightforward. Nogueira and
Cho [173] proposed the first successful application of BERT to the ranking
task, known as monoBERT, kicking off the “BERT revolution” in IR [129].
The authors fine-tune the configuration proposed by Devlin et al. [58] in the
original BERT paper for sentence pair classification tasks, on the large public
MS MARCO dataset [9]. Though this configuration was not specifically
designed for capturing the different aspects of query-document relevance,
it outperformed, by large margins, pre-BERT neural models, which were
carefully designed to capture different signals important for ranking. This
gives rise to the following question: Should we forget about the insights and
intuitions accumulated throughout the development of IR models and focus instead
on scaling up transformer-based models and improving their supervision? This
might actually be a good way forward, as demonstrated by later work using
large-scale generic PLMs [174]. Nevertheless, this might not be the only path

5

General Introduction

forward. We believe that domain knowledge from decades of developing
ranking models can interact with PLMs. In fact, an important insight from
pre-BERT model designs is that a robust model should handle both semantic
and exact match signals properly [83, 250, 165]. Indeed, researchers emphas-
ized the difference between NLP models centered around semantic matching
and IR models focused on relevance matching, where exact and semantic
matches are complementary. However, recent designs relying on PLMs are
erasing the distinction between the two threads of research [129].

We believe that exact matching is still an essential signal for assessing the
relevance of a document to an information-seeking query aside from soft
semantic matching. In this dissertation, we examine if recent contextualized
LMs such as BERT or ELECTRA can benefit from explicit exact match cues to
better adapt to the document ranking task.

The approach we propose is an adaptation of the monoBERT model to the
document ranking task through the integration of the traditional exact match
intuition [21, 22]. We, therefore, explore marking strategies which emphasize
exact term matches between queries and documents using special marker
tokens introduced in the textual input of the model. This way, the overlapping
terms between the query and document (up to morphological changes, e.g.,
ride/riding/rider) are highlighted with special marker tokens to indicate
their importance, among other terms, for the ranking task. We explore
different marking strategies, including different types of marker tokens.

Our approach is based on augmenting the PLM input with special marker
tokens to promote exact term matches. Thus, the PLM learns how these
marker tokens interact with other tokens in the input sequence to build
meaningful contextual representations for these special tokens. We build
variations of the monoBERT model to investigate the contribution of the
contextual representations of the marker tokens to relevance scoring. Aside
from exact match cues, we further investigate the use of marker tokens to
learn implicit query expansion representations with PLMs.

We evaluate the contribution of exact match marking to the ranking per-
formance across different experimental scenarios on three standard TREC
benchmarks. We indeed conduct exhaustive experiments and demonstrate the
effectiveness of our exact match marking approach on in-domain collections
and show its zero-shot generalization ability to out-of-domain collections.
We further evaluate its effectiveness in scenarios incorporating techniques for
out-of-domain adaptation and conduct comparative evaluations with state-
of-the-art PLM-based ranking models. Our findings support that traditional
information retrieval cues such as exact matching are still valuable for large
pre-trained contextualized models such as BERT and ELECTRA.

6

Research Issues and Contributions

Distilling the Contextualization process in PLM-based ranking models into
simpler approaches

Contextualized representations produced by PLMs have significantly im-
proved the performance of neural ranking models in the past few years,
thanks to their ability to represent terms in their context. Recent develop-
ments in neural IR are moving towards representation-centered approaches
that focus on applying PLMs for learning representations of texts specific-
ally tailored for ranking [110, 251, 112, 75, 217]. These approaches adopt a
bi-encoder design [98] where the query and document are processed inde-
pendently. This design contrasts with cross-encoders, the standard BERT
design adopted in earlier applications such as monoBERT, that benefits from
all-to-all attention across tokens from both the query and the document.
Simple bi-encoder approaches encode each query and each document into a
single vector representation, and relevance is defined in terms of similarity
between the two vectors. Alternatively, ColBERT [112] proposes representing
each query and each document by the contextual representations of their
tokens (for more interpretability), and relevance is given by soft matching
all token vectors. The success of these approaches in which query-document
matching is modeled with simple vector similarities (e.g., dot product) demon-
strates that PLMs can encode information important to relevance estimation
in token representations. However, the contextualization process in these
models is opaque and complex and can integrate various information about
syntax and semantics [230] or how the sense of a term can vary across differ-
ent contexts [246]. It is yet unknown which of these signals are important for
the ranking task and which are expendable. We, therefore, wonder: Do we
need the full flexibility of the complex contextualization process of PLMs for ranking
or can we simplify it?

Findings from recent work on residual compression [217] for reducing the
memory footprint of the ColBERT index indicate the possibility of summariz-
ing the semantic space produced by the BERT encoder by a set of centroid
vectors along with minor refinements.

In this dissertation, we investigate the contextualization process in a PLM,
and examine whether a simpler contextualization process can perform as
well as a PLM on the ranking task.

We propose distilling the contextualization process in a PLM, considered
as an oracle, into simpler aggregation methods based on static embeddings.
More specifically, we devise two aggregation methods:

1. Intrinsic Aggregation. Distills the entire semantic space produced by
the oracle PLM, for each token, into a combination of a finite set of
static sub-embeddings. The static sub-embeddings of a token are meant
to capture coarse-grained information relative to this token, such as
its senses and general aspects, e.g., bank of river or bank in finance.

7

General Introduction

This simple aggregation aims to explore whether the contextualization
process can be effectively replaced with a combination of a smaller
number of static sub-embeddings.

2. Extrinsic Aggregation. Distilling the rich semantic space of tokens into
a small number of static sub-embeddings is unlikely to capture fine-
grained topic information tied to the same high-level aspect of a token
(e.g., “bank robberies” vs. ”deposit money in the bank” are related to
the financial aspect of “bank”). We, thus, investigate if such fine-grained
variations can be captured using information from the local context
(e.g., one token to the left/right).

We pre-train a combination of intrinsic and extrinsic aggregation mod-
ules to approximate, via distillation, the contextualized representations from
a ColBERT model, referred to as the oracle. The pre-trained models are
then fine-tuned on the ranking task in a supervised setting. We use these
models to study how well simplified intrinsic and extrinsic contextualiza-
tion approaches perform on standard evaluation benchmarks and whether
they are complementary. We further conduct a thorough ablation analysis
to demonstrate the importance of each architectural component composing
the modules and their parameters (e.g., the number of sub-embeddings per
token). The results of our experiments show that using our simplified con-
textualization approach matches and occasionally outperforms the ColBERT
oracle. This suggests that the full flexibility of a PLM is not required to create
representations suitable for ranking, which could motivate more efficient
architectures for ranking.

Thesis Organization

The remainder of this dissertation consists of three parts, a conclusion part,
and an appendix.

Part I: Background

This part presents the fundamentals of information retrieval and an over-
view of the major developments in IR models, in two chapters:

Chapter 1: Core concepts in information retrieval

The goal of this chapter is to present information retrieval and its funda-
mental concepts, and describe the evaluation protocol of IR models.

8

Thesis Organization

Chapter 2: A historical overview of IR models

This chapter presents the major developments in IR over the past three
quarters of a century up until the arrival of BERT. We start by presenting
early models which were based on exact matching, and the first attempts
to alleviate the subsequent vocabulary mismatch problem. Then we briefly
cover learning to rank methods based on machine learning approaches using
hand-crafted features. Finally, the different models developed in neural
IR, which learn continuous vector representations of text to overcome the
vocabulary mismatch problem, are reviewed up until the introduction of
contextualized language models to IR and the start of the so-called “BERT
revolution”.

Part II: State Of The Art Overview

This part of the dissertation is dedicated to the applications of contextu-
alized language models to the text ranking task. After presenting the BERT
model in chapter 3, we organize its applications to text ranking into three
chapters: Chapter 4 covers the applications of BERT and its subsequent
variants in multi-stage reranking approaches. Chapters 5 and 6 present the
applications of BERT for retrieval using sparse and dense representations,
respectively.

We mainly develop work in Chapter 4 and Chapter 6 since they motivate
our two contributions. Our first contribution follows the cross-encoder design
used in early works (Chapter 4). Our second contribution is motivated by the
recent developments covered in Chapter 6, which adopt a bi-encoder design.

Chapter 3: Overview of BERT

This chapter presents in detail the most common pre-trained language
model, BERT. We describe its transformer-based architecture and its different
configurations. We also overview works from the NLP field that attempt
to understand how BERT works, and present important findings about the
knowledge encoded in BERT weights.

Chapter 4: BERT in multi-stage reranking

This chapter covers the diverse models that integrate BERT or its variants
in the reranking stage(s) of a multi-stage reranking architecture. We present
in detail the first application of BERT as a reranker on top of bag-of-words
retrieval, namely monoBERT [173], which serves as the starting point for
many subsequent works. We cover different works which propose techniques
to overcome the length limitation of BERT. We further describe efforts toward

9

General Introduction

building more efficient reranking models. Finally, we discuss adaptations of
pre-trained sequence-to-sequence models to the ranking task.

Chapter 5: BERT for sparse retrieval

This chapter focuses on the applications of BERT for query and document
expansion and term-reweighing in order to mitigate the vocabulary mismatch
problem. Instead of directly using BERT for ranking, models in this chapter
employ the contextual language model to refine query or document sparse
representations to bring them into closer alignment. Existing lexical sparse
retrievers based on exact matching can then be used for retrieval using effi-
cient inverted indexes. We cover expansion models manipulating term-based
or textual representations of queries and documents from the corpus. We
also review methods involving non-textual representations, but rather learn
sparse expansion via BERT or even directly learning sparse representations.

Chapter 6: BERT for dense retrieval

Models covered in this chapter apply PLMs to learn dense representations
of texts suitable for retrieval. This approach to retrieval has the potential to
address the vocabulary mismatch problem by directly performing relevance
matching in the semantic space created by the PLM. We formally define
the so-called dense retrieval framework and its bi-encoder design, which
contrasts with the more effective but more expensive cross-encoder design,
which is thus limited to reranking (chapter 2). In the same way that sparse
retrieval requires inverted indexes, we present the infrastructure supporting
dense retrieval. We then present the different dense retrieval models proposed
in the literature, which can be categorized based on the output of the encoder
into single-vector systems, which encode each query/document into a single
vector, and multi-vector systems, which encode each query or document into
multiple vectors. Finally, we discuss attempts to enhance the effectiveness of
bi-encoders to close the gap to cross-encoders.

Part III: Contributions

This part details our contributions. It comprises two chapters: Chapter 7

presents our first contribution, which examines the impact of emphasizing
traditional exact match signals on ranking with PLMs. Chapter 8 presents
our second contribution, which investigates whether restraining the flexibility
of the contextualization process in a PLM can still perform as well as the
original PLM on the ranking task.

Parts of Chapter 7 are reproductions of my jointly authored publica-
tions [21, 22]. Given the fast pace of progress in neural IR, results in

10

Thesis Organization

each chapter are presented as they were at the time of original publication.
That is, new baselines were not added retroactively to studies.

Chapter 7: Highlighting exact matches for ad hoc ranking with transformer models

This chapter presents in detail the context and motivations of our first
proposition and the research questions we study. We describe the marking
strategies we propose for highlighting exact match signals and the architecture
of our model. We then move to the experimental validation of our approach,
where we show that explicit exact match signals introduced via marking are
beneficial when ranking with PLMs. We also demonstrate the effectiveness
of our approach across different scenarios on different standard benchmarks
and how they compare to state-of-the-art models.

Chapter 8: Investigating contextualized representations for ad hoc ranking

We present in this chapter the details of our second contribution, in which
we first recall the context and motivation behind our proposition. Then,
we describe our methodology, including the proposed modules for intrinsic
and extrinsic aggregations and the distillation process from the oracle PLM.
Next, we present the experimental setup and the evaluation scenarios we
use to validate our proposed approach empirically. We demonstrate that
contextualized representations produced by the flexible oracle PLM can be
approximated with a simpler approach without losing effectiveness on the
ranking task.

Conclusion

This part concludes this dissertation and presents future directions for our
work on the short and long terms.

Appendices

This dissertation includes two appendices. The first Appendix A extends
the results presented in our first contribution (chapter 7). The second Ap-
pendix B presents additional details about the reproducibility of our work.

11

Part I

Background

1
Core concepts in information

retrieval

1 Introduction

The need for information access assisted by computing machines emerged
in the mid-1940s as a response to the exponential growth of scientific pub-
lications in the wake of World War II. The term “Information Retrieval”,
abbreviated IR, was introduced shortly thereafter by Mooers [167]. It is the
field of study that is interested in developing search models and systems to
satisfy a user seeking information.

The core of IR is to provide relevant information to users in response
to their information needs. Usually, a search starts when a user issues a
query expressing a search intent. The goal of the IR system (IRS) is to first
identify material that satisfies the query from large collections of data, such
as Web pages, textual documents, images or any other type of document, and
then return an ordered list of these materials to the user, according to their
relevance degree. Thus, the fundamental problem is to estimate the relevance
score of documents in a collection with respect to the user’s query. Existing
works propose a wide range of models to evaluate query-document relevance
on the basis of different strategies, which we overview in Chapter 2.

With the development of IR, the community established standardized
evaluation procedures. The Cranfield paradigm is a system-oriented eval-
uation defined in the Cranfield project by Cleverdon [42]. It has come to
dominate the IR research landscape and is at the origin of numerous evalu-
ation campaigns such as TREC (Text Retrieval Evaluation conference) and
CLEF (Conference and Labs of the Evaluation Forum). Despite our focus on
the Cranfield paradigm, there are other user-oriented evaluation paradigms
which are necessary to accurately evaluate particular approaches: interactive
evaluations including humans in the evaluation process [111], A/B testing
[116] for evaluating online services with substantial numbers of users.

The objective of this chapter is to present the fundamental concepts of
information retrieval. It is organized as follows. We start by presenting core
concepts and definitions in section 1.2. Then, in section 1.3, we formally char-
acterize the evaluation of IR systems, i.e: evaluation metrics and evaluation
campaigns and reusable test collections.

15

core concepts in information retrieval

2 Core Concepts

Definitions in IR refer to core concepts that have yet to be defined, namely:
Document, document collection, information need and query and finally relevance.

2.1 Document

A document is a set of information that is accessible and stored on com-
puters. It constitutes the elementary information unit of a document collection
in IR. It can have different formats: a text, a fragment of a text, a sound, an
image or video. We are, however, only interested in textual documents. We
also distinguish different granularity of a document considering the integral
or a piece of the document (e.g., integral document vs. passage).

2.2 Document Collection

The definition of IR assumes the existence of a collection of documents or a
corpus C = {d1, ..., dn}. This corpus is usually large but finite, if we consider
a commercial search engine, the corpus is comprised of the countless billions
of pages crawled form the Web —rising efficiency concerns.

It assumes furthermore, that the corpus is provided to the IRS prior to the
arrival of queries. This implies that offline processing may be conducted on
the documents before relevance scoring. A corpus is thus considered mostly
static, i.e., additions, deletions and alterations to the documents happen at a
pace slower than the amount of preprocessing required by the system.

If documents in the same collection address different subjects, it is called a
generic collection. For example, a Wikipedia collection. On the other hand, if
all documents address a specific domain, it is called a domain collection. For
instance, a medical collection.

2.3 Information Need and Query

A query is a sequence of words, usually a set of key words or a longer
natural language sentence/question, chosen by the user in an attempt to ex-
press his/her information need. Ingwersen [100] identifies three fundamental
types of information needs in IR:

1. Verification needs, where users want to verify or locate items that are
known to them, e.g., search for a resource knowing its URL on the Web:
go on the IRIT web site whose URL is https://www.irit.fr.

2. Conscious topical needs, where users want to clarify, review or pursue
aspects of a known topic.

16

https://www.irit.fr

2 core concepts

3. Muddled topical needs, where users want to explore some new unknown
concepts. In this case, the information need is inherently variable and
incompletely or ill-defined.

It is important to note that queries are not synonyms with information
needs Taylor [228]. Queries are usually ill-formed or incomplete, they don’t
fully represent the information need that originally compelled the user to
seek information, Belkin [13] call this “anomalous state of knowledge”. Nev-
ertheless, we usually abuse the terminology and use “query” as a metonym
for the user’s “information need” since it is the only tangible signal provided
to the IRS in order to realized the ranking task. We only consider textual
queries in the context of this dissertation even though a query can have
different modalities: an image or a spoken query.

2.4 Relevance

Relevance is by far the most important concept in IR [100, 212]. It is the
notion connecting the query, expressing the “user’s information need”, to the
“goodness” of a document in the collection [129]. While seemingly intuitive,
relevance is difficult to precisely characterize.

Everybody knows what relevance is. It is a “ya’know” notion, concept,
idea —no need to explain whatsoever. –Saracevic [219]

Debates about the precise meaning of relevance date back to the development
of the first IR systems, since it underlies what such systems should return and
how to evaluate their effectiveness. We retain the definitions from Saracevic
[218] who tried to synthesise decades of investigation about the notion
of relevance in information science, and accumulated a list of definitions
presented here:

1. The correspondence between a document and a query;

2. The measure of the informativeness of the document to the query;

3. The degree of the relation between the document and the query;

4. The degree of surprise that a document provides, in relation to the
user’s need.

In practice, the relevance of a document is estimated by the degree of
similarity of the query with the document content returned by the IRS. The
goal of this latter is then to match two types of relevance:

1. System relevance, where the relevance estimation is solely based on
the intrinsic characteristics of the queries and the documents —Does
the content of the document match the information need?

2. User relevance, or subjective relevance it is the user-specific assessment
about the document contents returned by the IRS that involves complex
cognitive processes.

17

core concepts in information retrieval

We refer the readers to [129] for a more exhaustive definition of relevance in
the text ranking task.

3 Evaluation in IR

Evaluating the quality of an IRS is a key task in IR. A wide range of
criteria can be considered, such as the capacity of the system to return the
most relevant documents that satisfy the user’s query, the response time, the
storage footprint.

In the following, we present the standard community evaluation protocol
and the necessary ingredients required to evaluate an IRS.

3.1 The evaluation protocol

The evaluation protocol provides the environment and defines the experi-
mental scenario required to evaluate the quality of IR systems.

The Cranfield paradigm defined in Cleverdon [42] is a reference for eval-
uation in IR. The Text Retrieval Evaluation Conference (TREC), which has
been running for three decades, is the first evaluation campaign based on
this paradigm. It is organized every year by the U.S National Institute for
Standards and Technology (NIST), and provides a standardized evaluation
framework for a wide range of IR tasks such as ad hoc ranking, medical IR
or question-answering.

TREC provides all the ingredients necessary to evaluate IR systems in the
context of a given task, building what is known as the test collection, which is
comprised of the three following elements:

1. A corpus or a collection of documents;

2. A set of information needs called Topics. It consists of a particular
external representation of information needs. A typical ad hoc retrieval
topic comprises three fields:

— A title, which consists of few keywords that describe the informa-
tion need, akin to a user query posed to a search engine;

— A description, which is a longer well-formed natural language
description of the information need;

— A narrative, which is a paragraph that details the characteristics
of the sought information that are not described in the title or
description.

3. Relevance judgements, also called qrels consisting of a set of (q, d, r)
triples, where r is the relevance label provided by a human assessor
for the document d w.r.t query q. The relevance label r can either be a
binary label indicating if d is relevant or not w.r.t q, or a graded-scale

18

3 evaluation in ir

from not relevant to highly-relevant; For instance a three-point scale
(not relevant, relevant and highly-relevant). In both cases, they are the
result of a costly human annotation process. NIST assessors manually
evaluate the submissions of the participating teams in the campaign.
For large-scale corpora, however, relevance judgements are obtained
using pooling, where the assessors annotate only the top documents
(without repetition) returned by the participating systems [25]. It is
important to note that these relevance judgements represent the specific
assessment of what is relevant or not to the assessor (or annotator).
Relevance is not a “truth” (in a platonic sense) or an “inherent property”
of a piece of text (with respect to an information need) that the assessor
attempts to “unlock” [129]. Everyone can have a different notion of
relevance, and many factors (e.g., the time of day and day of week
that a label is given, fatigue, anchoring, exposure, left-side bias, task
switching) can affect the quality of the judgements [233]; see [84] for a
discussion of assessor agreement studied across many decades.

Thus, evaluating the effectiveness of an IRS for a target task consists
in evaluating the results returned for each topic of the test collection by
comparing the system relevance (scores) and the user relevance as estimated by
the assessor. The global performance is estimated on the whole set of test
topics based on evaluation metrics which we present in the next section.

3.2 Evaluation Metrics

Evaluation metrics are computed from relevance judgements to quantify
the effectiveness of an IRS. By having means to quantify the effectiveness of an
IRS, it becomes possible to compare different systems and make measurable
progress in improving IR models.

During evaluation, each IRS produces a ranked list of results for all
provided test topics, called a “run” or “submission” that is submitted for
evaluation, in a TREC campaign for example. The qrels and the submitted
run are then fed to an evaluation program (e.g., trec_eval) that automatically
computes the evaluation metrics per topic, and then each metric is aggregated
across all topics to obtain a global quality measure of the effectiveness of the
IRS.

Below, we describe the commonly used metrics that are used to evaluate IR
systems. Considering a ranked list R = {(di, si)}l

i=1 of length l of document-
score (di, si) pairs with respect to a specific topic (query), we define the
following metrics:

19

trec_eval

core concepts in information retrieval

3.2.1 Precision (P)

Measures the capacity of a system to reject all documents that are not
relevant w.r.t a query q or to only return the relevant documents. In other
words, precision indicates the capacity of a system to minimise noise. It is
given by the fraction of documents in the ranked list R that are relevant:

Precision(R, q) =
∑(di ,si)∈R rel(q, d)

|R| (1.1)

where rel(q, d) is the binary relevance judgement of the (q, d) pair. Graded
relevance judgements ought to be binarized with some relevance threshold be-
fore computing precision, e.g., in a three-grade scale, we can set rel(q, d) = 1
for both “relevant” and “highly-relevant” judgements.

Sometimes, precision is evaluated at a cutoff k, noted as Precision@k (P@k),
where only the top-k documents in the ranked list R are considered.

3.2.2 Recall (R)

Measures the capacity of a system to find all relevant documents w.r.t a
query q. It is a metric that evaluates the capacity of the system to minimise
silence. It is given by the fraction of relevant documents, in the entire corpus
C, for q that are retrieved in the ranked list R:

Recall(R, q) =
∑(di ,si)∈R rel(q, d)

∑d∈C rel(q, d)
(1.2)

where rel(q, d) is the binary relevance judgement of the (q, d) pair. Graded
relevance judgements are binarized in the same manner presented for preci-
sion.

Same as precision, recall is also evaluated at cutoff k, noted Recall@k (R@k).

Recall and Precision have the advantage of easy interpretation, however
they both share the same downsides: First, these metrics do not take into con-
sideration relevance grades, they cannot separate a “relevant” document from
a “highly relevant” one since relevance judgements are binarized. Second,
they do not take into account the rank positions, i.e, two systems S1, S2 each
ranking one relevant document only, where S1 ranks the document first and
S2 ranks it last, both systems will have the same precision/recall. Yet, relevant
documents appearing in the first rank positions are preferred by the user.

3.2.3 Reciprocal Rank (RR)

It is a measure based on the rank. It evaluates the number of documents to
consider before finding the first relevant document in R. It is defined as:

RR(R, q) =
1

ranki
(1.3)

20

3 evaluation in ir

where ranki is the smallest rank number of a relevant document, i.e, if a
relevant document appears at the first rank, RR(R, q) = 1, 1/2 if it appears
at rank 2, etc. If no relevant document appears in the top-k ranks, then the
query receives a score of 0.

RR has an intuitive interpretation, but it only considers the first relevant
result returned. While this may be an appropriate metric for tasks where the
user might be satisfied by with a single answer (e.g., question answering), it
is usually a poor choice for ad hoc retrieval where users desire more than
one relevant result (i.e, a ranked list of relevant documents).

3.2.4 Average Precision (AP)

Measures the average of precision scores at cutoffs corresponding to the
rank of each relevant document, thereby combining aspects of both precision
and recall. It is given by:

AP(R, q) =
∑(di ,si)∈R P@i(R, q).rel(q, d)

∑d∈C rel(q, d)
(1.4)

where rel(q, d) is binarized so that non-relevant documents do not contribute
to the average. Similarly to precision and recall, average precision is usually
evaluated at cutoff k, noted AP@k.

3.2.5 Normalized Discounted Cumulative Gain (nDCG)

Measures the quality of a ranked list of results. Unlike the metrics presen-
ted above, nDCG was specifically designed for graded relevance judgements.
We first define the Discounted Cumulative Gain (DCG):

DCG(R, q) = ∑
(di ,si)∈R

2rel(q,d) − 1
log2(i + 1)

(1.5)

The Gain of a ranked document depends on both its relevance grade (i.e.,
the higher the relevance of a document, the higher its gain), and the rank
at which this document appears (i.e., a highly relevant document appearing
lower in the list is penalized—discounted gain). At last, nDCG represents the
normalized DCG (range [0, 1]) by the ideal gain as follows:

nDCG(R, q) =
DCG(R, q)
IDCG(R, q)

(1.6)

where IDCG represents the gain of the best possible ranked list where all
relevant documents appear in the order of their relevance grade (i.e., the
documents with the highest relevance grade are ranked first, followed by the
next highest relevance grade, etc). nDCG is typically evaluated at cutoff k
(nDCG@k) usually 10 or 20.

21

core concepts in information retrieval

Up to this point, we presented the most common evaluation metrics used
in IR to estimate the quality of a ranked list of results w.r.t a single topic. For
a given test collection, the arithmetic mean across all test topics, is typically
used to characterize the global performance of the IRS.

4 Conclusion

In this chapter, we presented an overview of the vast Information Retrieval
(IR) domain and defined its fundamental concepts and the evaluation protocol
allowing measurable progress in the domain.

We have seen that the core of IR lies in providing an ordered list of relevant
documents that satisfy a query expressing the user’s information need from
large document corpora. Ranked textual document retrieval is a classic
problem in information retrieval, as in the main task of the Text Retrieval
Conference [241], and performed by commercial search engines such as
Google, Bing, Baidu, or Yandex. Information retrieval researchers call this
the ad hoc retrieval task. In order to complete this task, an IRS implements
a model which evaluates the relevance score of each document w.r.t the
query. Over the years, numerous models have been proposed and used in IR
systems.

We present in the next chapter an overview of these models and their
development through time. We will present a brief history of IR models
from the first IR statistical methods frequently based on Bag-of-Words (BoW)
representations, the rise of learning to rank approaches, the advent of deep
learning, and the introduction of dense semantic representations, to finally,
the arrival of BERT and transformer-based architectures for contextualized
representations.

22

2
A historical overview of IR models

1 Introduction

The goal of the ad hoc retrieval task is to generate a ranked list of textual
documents retrieved from a corpus in response to a user’s query. The
documents can be full-length documents or parts of a document (e.g., a
paragraph). These texts are ranked by their relevance with respect to the
query estimated by an IR model, also called the matching model, which
provides a theoretical framework and a formal interpretation of the notion of
relevance [202, 212].

Over the past three-quarters of a century, the IR community developed
a plethora of models for estimating query-document relevance based on
different strategies and following advances in related research areas. The
context of our thesis focuses on recent neural IR models based on transformers
[236], of which BERT [58] is the most popular instantiation. Except for a few
tasks, including automatic processing of natural language, these models have
revolutionized the fields of natural language processing, information retrieval,
and, more generally, human language technologies, including technologies
to process, analyze and manipulate human language data. However, in order
to better grasp how transformer-based models have revolutionized ad hoc
ranking, it is necessary to understand how IR models evolved to reach this
point in history. To do so, we provide a high-level overview of the major
developments in the information retrieval field in this chapter.

We first introduce a few traditional IR approaches in section 2.2. The
decades of insights from these IR models not only inform the design of
our new neural-based approaches, but these models also serve as important
baselines for comparison [164]. They also highlight the various desiderata
that we expect IR models to incorporate. Then, we present learning to rank
approaches based on human-crafted features in section 2.3 before introducing
deep neural networks to IR models in section 2.4. In the context of deep
learning approaches, we further distinguish “pre-BERT” models, which
came before the introduction of BERT, and “BERT-based” or, more generally,
transformer-based models.

A thorough review of IR approaches that came before the BERT revolution
is out of the scope of this thesis. We refer readers to the following books for
a detailed overview of traditional IR:

— Modern Information Retrieval, by Baeza-Yates and Ribeiro-Neto [7]

23

a historical overview of ir models

— Information retrieval: the early years, by Harman [85]

Similarly, for neural network fundamentals:

— Deep Learning with Python, by Chollet [38]

— Deep learning, by Goodfellow et al. [80]

Finally, we refer readers to these surveys on pre-BERT neural IR models:

— Neural Information Retrieval: At the End of the Early Years, by Onal
et al. [180]

— An Introduction to Neural Information Retrieval, by Mitra and Craswell
[164]

2 Traditional IR

Traditional (classical) query-document matching methods, also known as
“keyword search”, encompass a broad class of models that evaluate the relev-
ance between a query and a document based on exact term matching. Meaning
that only terms matching exactly between the query and the document are
considered for relevance scoring. Typically, stemming is performed before
matching to reduce inflected words to their stem (e.g., “hunting”, “hunts”,
and “hunter” are reduced to the stem “hunt”) and thus, ensuring that syn-
tactic variations of the same stem in the queries and the documents match
(“hunter” matches “hunting”).

Nearly all classical methods suppose query-term independence, that the
contribution of each query term to the relevance score is considered inde-
pendently 1. This is commonly achieved with Bag-of-Words representation,
where a query (document) is represented with a set of independent terms
{t1, ..., tn}. Hence, the relevance score of a document d w.r.t a query q is
given by the sum of the individual relevance scores of each exactly matching
query-document term t ∈ q ∩ d, or:

R(d, q) = ∑
t∈q∩d

f (t) (2.1)

where f is a term-weighting function that models the importance of a term —
also called “salience”— based on its associated statistics such as term frequency
(how many times a term occurs in a document), document frequency (how
many documents the term occurs in), and document length (the length of the
document the term occurs in). Considering f and these intrinsic statistical
factors, both queries and documents can be represented with BoW using
sparse vectors of the size of the corpus vocabulary VC , where each value
represents the weight of each term in the vocabulary < f (t1), ..., f (t|VC |) >.

1. We also find in the information retrieval literature works that attempt to capture
dependencies between query terms [158].

24

2 traditional ir

The relevance score can, then, be cast as the inner product between the query
and document vectors. This corresponds to the vector space model proposed
by Salton et al. [214] with the ubiquitous tf-idf (term frequency- inverse
document frequency) weighting function and cosine similarity for relevance
scoring.

The vector space model spurred a considerable body of work dedicated
to the exploration of different term-weighting schemes based on statistical
properties of the terms that are easy to compute [213]. Inverted indexes
(inverted files or lists) are nearly always employed to encode these properties:
term frequencies, term positions, document structure information, various
forms of document metadata (e.g., document length), etc; see [272] for an
overview. Enabling low latency keyword search. Therefore, classical methods
are valued for their efficiency and are still widely employed today, both in
academia and industry. The Okapi BM25 (Best Match 25) is the most widely
used and recognized classical model due to its performance [206, 46, 203].
BM25 is based on the theory of probabilities (the probabilistic IR framework)
and estimates the relevance of a document d w.r.t a query q as follows:

BM25(d, q) = ∑
t∈q

id f (t).
(k1 + 1).t f (t, d)

k1.((1 − b) + b. |d|
avgdl) + t f (t, d)

(2.2)

where t f (t, d) is the term frequency of t in the document d, i.e, the number of
occurrences of the term t in d. The model has two free parameters k1 and b:
k1 controls the term frequency t f , and b is used for the length normalization
performed in the denominator of the second component where |d| is the
document length, and avgdl is the average document length in the whole
collection. Finally, id f (t) is the inverse document frequency of the term t,
computed as:

id f (t) = log
|C| − d f (t) + 0.5

d f (t) + 0.5
(2.3)

with d f (t) being the number of documents that contain t and |C| is the total
number of documents in the corpus.

Beyond the original BM25 formulation by Robertson et al. [207], we find
numerous variants in the literature [234, 108] which may lead to differences
in effectiveness.

While classical methods can model term importance quite effectively based
on statistical factors, relying on exact matching becomes a limitation when
terms in queries and documents don’t match. It is known that authors often
use a large vocabulary when writing their documents, and inevitably they use
different terms to describe the same concept. Sometimes they use equivalent
terms (synonyms, acronyms), sometimes they use similar terms (generic
or specific), for example: “Coronavirus”, “SARS-CoV-2” and “COVID-19”.

25

a historical overview of ir models

As for the user queries, they are usually short or incomplete insofar as the
user has a vague idea of the information sought, especially on the web. For
example, a user searching for “movies similar to The Matrix”, here exact
matching is powerless since the expected information is a list of movie titles
that will, most certainly, not contain any of the query terms. This is known
as the “vocabulary mismatch problem” [70], a long-standing challenge in IR.
Three threads of research tackled this problem by: (1) expanding the queries
to better match the documents, (2) enriching the document representations
to better align with the query representations, or (3) moving away from exact
matches.

query expansion The first thread of research proposes to enrich query
representations with query expansion techniques [31]. In relevance feedback,
the original user query is augmented with significant terms derived from
documents judged relevant by the user and reinforces the importance (weight)
of these terms in the new representation of the query [23]. Formulations by
Rocchio [208] and Robertson and Jones [205] are the most popular relevance
feedback approaches. In pseudo-relevance feedback [47], also called blind
feedback, the user does not intervene, and query expansion is performed by
exploiting the top-k documents (assumed to be relevant) returned by the IRS
in response to the initial query. Query expansion can also be performed using
external resources, which can be a thesaurus, an ontology, etc. Voorhees
[239] uses lexical-semantic relations from WordNet[163] for query expansion.
Query expansion is still an active line of research, and we discuss in Chapter
5 recent works integrating pre-trained language models.

document expansion Similarly, enriching document representations
was investigated to bridge the lexical gap between queries and documents.
Pseudo-relevance feedback has been successfully employed in specific tasks
such as speech retrieval [223] and short-text retrieval [61]. We also find
document expansion models [11] based on WordNet concepts, similarly to
query expansion. However, this thread of research is less popular than query
expansion. Nevertheless, document expansion has recently regained interest
with transformers; we discuss this in Chapter 5.

beyond exact matching A different thread of research attempts to
alleviate the vocabulary mismatch problem by going past exact matching.
Berger and Lafferty [19] were among the first authors to exploit the statistical
translation model to solve the vocabulary mismatch problem. Their approach
learns translation probabilities between the terms of the query and the docu-
ment from a reference (train) corpus based on word co-occurrences. Other
approaches attempt to perform matching in some semantic space induced
from the data, for instance, based on Latent Semantic Analysis [56] or Latent

26

3 the rise of learning to rank

Dirichlet Allocation [245]. Despite the fact that these approaches have not
been widely adopted, there are clear connections between this line of research
and the recent dense retrieval movement that learn dense context-based
representations for ranking, which we cover in Chapter 6.

Traditional IR models have served as the workhorse of most modern
search systems over the past several decades. They are considered as a
mature technology that can be used as reliable infrastructure that can robustly
deliver high query throughput at low query latency on large corpora [129].
Nonetheless, these methods have limitations. On the one hand, the widely
used BoW representation considers the terms in documents and queries as
meaningless strings of characters. It is therefore opposed to the reality of
natural (human) language, which requires that terms be linked by semantic
relations. The position of the terms and the relationship with other terms in
the document are ignored. On the other hand, these models are based on
exact matching that considers documents with no query-term occurrences as
irrelevant. However, documents can be relevant without having any lexical
overlap with the query. For example, synonyms or acronyms can be used
instead of the query terms. Hence, soft or semantic matching enabled by
continuous representations in neural networks is needed to cope with the
limitations of exact matching by addressing a variety of linguistic phenomena,
including synonyms, paraphrases, term variations, and different expressions
of similar intents. However, soft matching and the deep learning movement
are still a phase away in the development of IR models.

3 The Rise of Learning To Rank

The next major development in IR models, beginning in the late 1980s [48],
is the application of supervised machine-learning models to learn ranking
functions. This category of models, referred to as “Learning To Rank”,
rely extensively on hand-crafted, manually-engineered features, Lin et al.
[129] classify these features into statistical properties of terms and intrinsic
properties of documents:

— Statistical properties of terms include the usual functions of term fre-
quencies, document frequencies, document lengths, etc, used in classical
methods. And even scores computed using these classical approaches,
such as BM25, are typical features in a learning-to-rank setup.

— Intrinsic properties of documents include a wide range of measures
such as the ratio of HTML tags, the editorial quality, spam scores,
hyperlinks in the web collections, and social signals (number of views,
number of followers, etc). User-behavior based features and click logs
are also valuable features for search systems.

27

a historical overview of ir models

At a high level, learning-to-rank methods can be divided [137, 124] into
three major approaches, based on their loss function: pointwise approaches,
pairwise approaches, and listwise approaches.

Pointwise approaches. Formulate the ranking problem as classification
or regression. The model is fed with a features vector corresponding to a
query-document pair and trained to approximate the relevance judgement
of the input pair. Consequently, a pointwise approach does not consider the
inter-dependency among the returned documents.

Pairwise approaches. The model receives a pair of feature vectors Xi and
Xj corresponding to a pair of documents (q, di) and (q, dj), and thus trained
to learn a preference, i.e, the property wherein di is more relevant than (preferred
over) dj. Consequently, a pairwise loss function measures the inconsistency
between the true preference and the model’s preference, and the objective is to
rank the documents according to their relevance grade. However, pairs of
documents related to the same query are processed independently.

Listwise approaches. Consider the entire set of documents related to a
query. The model is trained to approximate the relevance judgements of
each document w.r.t to the query. With a listwise approach, a ranking metric
such as normalized discounted cumulative gain (Section 3.2) can be directly
optimized.

Learning to rank achieved great success in many IR applications [26, 29,
60, 34, 224] and reached its zenith in the early 2010s, with the development of
models based on tree ensembles [27]. Nonetheless, learning-to-rank models’
effectiveness is closely related to the quality of the relevance features they use,
which are mostly hand-crafted. These features are time consuming since their
engineering involves expensive human efforts. Moreover, this process is often
data-specific and could require domain expertise. Despite the possibility of
automated feature selection [78], feature engineering is still an expensive step
in the design of learning-to-rank models.

In order to address this issue, it would be of great value if the ranking model
could automatically learn relevance features without human intervention.
The deep learning revolution that came right after enables, precisely, to learn
abstract representations from raw data.

4 The Emergence of Deep Learning

In the early 2010s, advances in neural network models using multiple
hidden layers sparked the deep learning revolution leading to dramatic

28

4 the emergence of deep learning

Figure 2.1 – nDCG@10 results, broken down by model type: “nnlm” use language
models such as BERT, performed best on both tasks, other pre-BERT
neural ranking models “nn”, and traditional non-neural models “trad”
had relatively lower performance in this track. [45]

progress in computer vision, speech recognition, and machine translation
tasks [119]. Inspired by this success, a new wave of IR models fueled by
deep neural networks emerged with the intention of achieving breakthrough
performance as in these other fields. The promise of deep learning was,
on the one hand, to obviate the need for expensive manually-engineered
features, which is a major drawback of learning to rank models. On the other
hand, accomplish soft matching by learning distributed representations to
overcome the limitations of exact matching.

Following the active growth in the area of deep learning, which is continu-
ously introducing new architectures and training regimes, research in the
neural IR field has been advancing at an increasing pace. After about half a
decade of model progression based on deep neural networks, a significant
leap in performance was finally brought by the introduction of BERT [58]
to IR in 2019 by Nogueira and Cho [173], marking the beginning of a new
era in the field. Indeed, the evaluation of the submissions to the TREC Deep
Learning Track 2019 [45] which was the first large-scale evaluation of ranking
models, revealed that BERT-based models achieved a significant jump in
performance compared to pre-BERT models, as shown in Figure 2.1.

We start by presenting an overview of pre-BERT ranking models in sec-
tion 4.1, to then discuss the start of the “BERT revolution” in section 4.2.

4.1 Pre-BERT neural ranking models

The computation of the relevance score of a document w.r.t a query, which
is the core problem in ad hoc retrieval, can be formalized as a text matching
problem. Following the notation in [83], the degree of matching is measured

29

a historical overview of ir models

(a) Representation-based (b) Interaction-based

Figure 2.2 – Two classes of pre-BERT neural ranking models: (a) Representation-
based models learn vector representations of queries and documents
that are compared using simple metrics, such as cosine similarity to
compute relevance scores, and (b) Interaction-based models explicitly
model term interactions in a similarity matrix that is further processed
to compute relevance scores

as the score produced by a scoring function F based on the representation Φ
of the query q and the document d:

match(q, d) = F(Φ(q), Φ(d)) (2.4)

where Φ is a function that maps each of the query and document to a
vector representation, and F is a scoring function based on interactions
between the two representations. This text matching problem is closely
related to the problem of semantic matching of two sentences in Natural
Language Processing (NLP), such as paraphrase identification. Models for
these tasks share many architectural similarities, and there has been cross-
fertilization between the NLP and IR communities in this regard. However,
relevance matching and semantic matching are not synonyms, and one major
difference is that inputs for computing semantic similarity are symmetric,
i.e., match(s1, s2) = match(s2, s1), whereas query/document inputs cannot be
swapped. Nevertheless, recent developments in learned dense representations
for ranking are bridging the two threads of work closer , as we will see in
Chapter 6.

Depending on the choice of the two functions F and Φ, pre-BERT neural
ranking approaches can be categorized into two main types: representation-
based and interaction-based models. The general model architecture for both
types are illustrated in Figure 2.2. The first category of models focuses
on independently learning good distributed (dense) vector representations
for queries and documents, which can be compared using a simple vector

30

4 the emergence of deep learning

(a) Skip-Gram

(b) Continous Bag Of Words (CBOW)

Figure 2.3 – The two configurations of Word2Vec: (a) Skip-Gram and (b) CBOW. The
architecture is a neural network with a single hidden layer whose size
is much smaller than that of the input and output layers. Both models
use one-hot representations of terms in the input and the output. The
learnable parameters of the model comprise the two weight matrices
Win and Wout that correspond to the embeddings the model learns for
the input and the output terms, respectively. The Skip-Gram model
trains by minimizing the error in predicting a context term ti+j given
the central term ti. The CBOW model, in contrast, predicts the central
term ti from a bag of its neighbouring terms; we consider a context
window of size 5, including 2 terms before and after the central term
j ∈ {−2,−1,+1,+2}

similarity function (e.g., cosine similarity) to compute the relevance scores.
In these models, Φ is a complex representation mapping function, whereas
F is a relatively simple matching function. In contrast, the second category
of models focuses on capturing term interactions using an interaction matrix
based on term-to-term similarities between the query and document terms.
This interaction matrix is then fed through a neural network to produce a
relevance score. Here, Φ is generally a simple representation function, while
F is a complex deep neural network.

Both types of neural ranking models consider only the embeddings of
query and document terms as input and importantly no additional hand-
crafted features are needed as opposed to learning-to-rank methods. For
term representation, distributed word embeddings have been widely adopted

31

a historical overview of ir models

in pre-BERT IR models. Words are represented using real-valued vectors to
capture fine-grained semantic and syntactic regularities in order to overcome
the limitations of BoW representations. Word2Vec [161, 162], is certainly the
most popular method for computing distributed word representations, where
each word embedding is learned from its neighbours within a fixed-size
window over the text, using a is a simple one hidden layer neural network.
Mikolov et al. [162] proposes two configurations of this model, namely CBOW
(Continuous Bag of Words) and Skip-Gram, as shown in Figure 2.3. Both
input and output terms are one-hot encoded, meaning that every word in the
vocabulary V is represented by a binary vector v⃗ ∈ {0, 1}|V| of vocabulary
size —each position corresponds to a word in the vocabulary— where only
one value —corresponding to the position of the word in the vocabulary— is
set to one while all other values are set to zero. The CBOW configuration is
trained to predict a term ti based on the terms in its symmetric context c. First,
input representations of the terms in the context c are aggregated (sum or
average) and then fed to the model. After training, the vector representation
of the central term ti is provided by the hidden layer h. On the other hand,
Skip-Gram is trained to predict the surrounding symmetric context from the
central term ti.

In addition to the local context window, GloVe [189] additionally uses a
word-to-word matrix to capture global word co-occurrences. GloVe leverages
statistical information about a text dataset by training the model only on the
nonzero elements of the co-occurrence matrix rather than on the entire sparse
matrix or on individual context windows of a large corpus. It combines the
global and the local contexts during training to learn word embeddings.

4.1.1 Representation-based models

This category of models (Figure 2.2a) adopt a Siamese-type of neural archi-
tecture to learn vector representations for queries and documents separately.
This separation in representation allows document representations to be
computed offline. The pioneering work of Huang et al. [95] proposes Deep
Structure Semantic Model (DSSM) for ad hoc web search. DSSM uses two
symmetric deep stacked MLPs —with shared parameters— to produce vector
representations from the character n-grams of each of the query and docu-
ment inputs. At search time, relevance scores are computed using cosine
similarity between query-document representations. Shen et al. [222] extends
the DSSM model by incorporating convolutional neural networks (CNNs)
to capture context. Rather than learning text representations as part of the
model, the Dual Embedding Space Model (DESM) [168] computes relevance
scores by aggregating cosine similarities across all query-document term rep-
resentations obtained with pre-trained Word2Vec embeddings [162]. In the

32

4 the emergence of deep learning

context of transformers, the representation-focused paradigm has regained
the attention of the IR community, as covered in Chapter 6.

4.1.2 Interaction-based models

In this type of models (Figure 2.2b), query-document term interactions
are explicitly captured in order to extract matching signals early in the
model [83]. The term-level similarities are typically represented within
an interaction matrix where the rows correspond to the query terms and
columns correspond to document terms. Each cell mi,j in the matrix contains,
then, the similarity between the embedding of the i-th query term and the
embedding of the j-th document term, usually computed in terms of cosine
similarity. Building on the interaction matrix, the general approach consists
in extracting relevance signals from the term similarities, which are then
combined and processed, often using pooling operations and/or stacked
feed-forward networks, to produce relevance scores.

Guo et al. [83] propose DRMM, which cast the similarity matrix inter-
actions into matching histograms. Similarly, KNRM [250] uses Gaussian
kernels to learn differentiable “softer” histograms that allow the embeddings
to be learned during training. Other models consider specific assumptions
about the input. We find, position-aware models such as MatchPyramid
[186, 185], PACRR [96], CO-PACRR [97], and ConvKNRM [54] which use
additional architectural components (e.g., CNNs, Max Pooling) to extract
hierarchical matching signals from the term-level interaction matrix. Instead
of a position-shared weighting scheme, ANMM [254] proposes a value-shared
weighting scheme for combining different matching signals, with an attention
gating function for learning question term importance. Other models propose
to improve the input embeddings using LSTM-based contextualization in
POSIT-DRMM [156], or by incorporating entity embeddings in EDRM [139].
In order to handle long documents, Fan et al. [65] propose a hierarchical
neural matching model (HiNT) which splits documents into passages and
uses two stacked components: a local matching layer that captures passage-
level matching patterns and a global decision layer that performs interactions
between the different passage-level signals to compute document-level relev-
ance features.

4.1.3 Hybrid models

Mitra et al. [165] combines the representation-based and interaction-based
paradigms in a new hybrid model DUET. The authors emphasize the import-
ance of exact lexical matching in deep neural models for IR, and argue that web
search requires both exact and soft (semantic) matching. The DUET model,
thus, comprises two parallel components: the local module for exact matching
that focuses on learning interaction signals between the query-document

33

a historical overview of ir models

inputs (interaction-based) and the distributed modules for semantic matching
based on the distributed representations of the inputs (representation-based).
The relevance score is obtained by aggregating the scores from the local and
distributed modules.

Nie et al. [172] show in their empirical study that the interaction-based
neural architectures generally lead to better results than the representation-
focused architectures in information retrieval tasks. The promising perform-
ance of interaction-based models is partly attributed to their capacity to learn
the local interaction patterns rather than learning global representations in
representation-based models. Though interaction-focused models can be
computationally expensive, as they require pairwise similarities between
embeddings of query and document tokens, they have the advantage of
learning the matching signals from the interaction of two inputs at the very
beginning stages.

Most of the models covered in this section, up to this point in history,
operate under the data regime where large corpora of documents or queries
are available but only limited (or even no) labelled data. However, neural
IR models with a significantly large number of parameters require large
amounts of training (labelled) data for supervision. Alternative training
schemes, e.g., using weak supervision [57] or adversarial learning [242, 43],
were developed in an attempt to address this challenge.

After nearly a decade of active research on the neural IR field throughout
the 2010s, Lin [126] suggests to pause in a moment of self-reflection with
respect to the hype surrounding neural ranking approaches: Under the data
regime, are neural IR models making concrete progress? In other words, can
neural IR models beat traditional IR models in the absence of vast quantities
of training data available from behavior logs that are only accessible to
researchers in the industry (with rare exceptions)?

In response to Lin’s skepticism, Yang et al. [256] conducts a rigorous
evaluation of several neural ranking models in comparison to a strong Bag-
of-Words search baseline with well-tuned RM3 query expansion on the
standard TREC Robust04 benchmark [240]. At least under the data regime,
the authors find that most neural ranking models were unable to outperform
the traditional baseline. They claim that at least some of the gains reported in
the literature are illusory due to comparisons to weak baselines. While many
of the papers cited above report significant improvements when trained on
large, proprietary datasets (many of which include behavioral signals), the
results are difficult to validate, and the benefits of the proposed methods are
not broadly accessible to the community [129]. However, BERT was about to
enter the research scene.

34

4 the emergence of deep learning

Table 2.1 – State-of-the-art results on the MS MARCO passage ranking leaderboard,
in January 2019, showing the effectiveness of the newly introduced BERT
model compared to pre-BERT models.

MS MARCO Passage

Development Test

Method MRR@10 MRR@10

BM25 (Microsoft Baseline) 0.167 0.165

KNRM [250] 0.218 0.198

Conv-KNRM [54] 0.290 0.271

IRNet [173] 0.278 0.281

BERTlarge 0.365 0.358

4.2 The introduction of BERT

The release of BERT [58] in October 2018 was an event described as marking
the beginning of a new era in NLP. BERT broke performance records on many
language-based tasks. The public availability of the model versions, that
were already pre-trained on massive datasets, enabled researchers to use this
powerhouse as a readily-available component in their solutions — saving time,
knowledge, and especially resources that would have been spent on training
a language-processing model from scratch, which are unattainable for small
research groups. This ready-to-use availability paved the way for BERT to
dominate the most popular NLP leaderboards (e.g., GLUE benchmark). In
January 2019, Nogueira and Cho [173] reports the first application of BERT
to IR. The authors combined the power of BERT with the availability of large
training data from the MS MARCO passage ranking collection [9] to break
records on the the MS MARCO passage ranking leaderboard 2. The task
consists in ranking passages (document extracts) from web pages in response
to user queries, in the form of natural language questions, sampled from
Bing search logs. Table 2.1 shows state-of-the-art (SOTA) performance on
the MS MARCO passage ranking leaderborad with pre-BERT models, by
January 4th, 2019, compared to Nogueira’s submission. IRNet, previous
pre-BERT SOTA on the MS MARCO leaderboard, submitted on January 2nd,
was outperformed, 5 days later only, by BERT with about 30% improvement.

This big leap in performance was a long-awaited breakthrough in the
neural IR field, kicking off what Lin et al. [129] call the “BERT revolution”
for document ranking. BERT was, indeed, met with instant enthusiasm
by the IR community, and research building on the insights of Nogueira
and Cho [173] grew rapidly to apply, extend, adapt and understand this

2. https://microsoft.github.io/msmarco/

35

https://microsoft.github.io/msmarco/

a historical overview of ir models

new model. Going back on the skepticism expressed in [126] one year
earlier, Lin [127] acknowledges that deep transformer models, heavily pre-
trained via language modeling tasks, have “significantly” and “substantially”
improved the effectiveness of document retrieval, even in the absence of vast
amounts of training data. Besides, the availability of MS MARCO to researchers
today —thanks to the generosity of Microsoft, since the creation of such
a dataset is well beyond the resources available to NIST, other TREC-like
campaign organizers, and academic research groups [127]— alleviates the
data availability issues for academic researchers, allowing model exploration
in a “high-resource data regime”; only available to researchers in the industry
until then.

The next part of this thesis is dedicated to the products of the so-called
“BERT revolution” for IR.

5 Conclusion

This chapter focused on the major developments in IR over the past three-
quarters of a century. We first presented early IR models based on exact
matching and the subsequent expansions that attempted to address the
limitations of exact matching. These classical methods are known and valued
for their efficiency and are still widely used in both academia and industry.
Then, we moved to the next family of IR methods based on supervised
machine-learning techniques. This family is known as Learning to Rank (LTR)
and relies heavily on manually-engineered features. The next significant
development in ad hoc ranking was the advent of Deep Learning, with
the promise of (1) obviating the need for laborious hand-crafted features
addressing the major issue of LTR approaches and (2) building continuous
vector representations enabling soft semantic matching in contrast to exact
matching. Finally, the arrival of BERT in 2018 achieved unprecedented success
in many NLP and IR tasks, starting the “BERT revolution”.

Four years later, BERT —which remains today the most popular instantiation–
and related models such as XLNet [258], RoBERTa [138], T5 [198], and many
more that have followed, still dominate the IR research landscape. In the next
part of this dissertation, we discuss the progress of BERT-based IR models.

36

Part II

State Of The Art Overview

3
Overview of BERT

1 Introduction

The Bidirectional Encoder Representations from Transformers (BERT) is
a product of Google research [58] released at the end of 2018 and by far the
most famous pre-trained language model.

Like nearly all scientific advances, BERT was not developed in a vacuum,
but built on top of several previous innovations that were bubbling in the NLP
community, including but not limited to the transformer architecture [236]
and the idea of self-supervised pre-training based on language modeling
objectives previously explored by ULMFiT (Universal Language Model Fine-
Tuning) [93] and ELMo (Embeddings from Language Models) [190]. Both
ideas were already combined in the OpenAI Transformer used in GPT (Gener-
ative Pre-trained Transformer) [196], and the additional idea of bidirectional
encoding resulted in BERT.

We present in this chapter a high level overview of BERT in Section 3.2
where we define the concept of contextual representation and the mechanisms
BERT leverages to attain it. We then present the original Transformer archi-
tecture, in Section 3.3 from which BERT borrows its core context encoding
component. We move, in Section 3.4, to the pre-train then fine-tune paradigm
used in BERT to first gain general language understanding from pre-training
on unlabelled data and then transferring it to down-stream tasks with fine-
tuning. Next, we detail the composition of BERT’s input, in Section 3.5, and
present an overview of the different pre-trained BERT configurations which
are publicly available in Section 3.6. Finally, we present some studies which
tried to understand BERT’s inner workings in Section 3.7.

2 BERT architecture

BERT (Bidirectional Encoder Representations from Transformers) is a deep
neural network for building contextualized representations. Its architecture
consists of a multi-layer bidirectional transformer encoder, as illustrated in
Figure 3.1. It takes as input a sequence of vector embeddings –representing a
sequence of tokens– denoted with:

[E[CLS], E1, E2, ..., E[SEP]] (3.1)

39

overview of bert

Figure 3.1 – The general architecture of BERT. The input embeddings are the sum of
the token embeddings, the segmentation embeddings and the position
embeddings. Modified from a diagram by Jimmy Lin (https://twitter.
com/lintool/status/1285599163024125959).

including two special tokens [CLS] and [SEP] added at the start and the
end of the input sequence, respectively. After going through the stacked
transformer-encoder layers, the model, finally, outputs a sequence of contex-
tual embeddings, denoted as:

[T[CLS], T1, T2, ..., T[SEP]] (3.2)

BERT followed the recent advances in NLP which carry with them a new
shift in token representation. Not long before, static word-embeddings were
a major force in how NLP and IR models deal with language. Methods like
Word2Vec [162] and GloVe [189] have been widely used in pre-BERT models
(section 4.1). Such word representations provide context-independent repres-
entations, i.e., a word is assigned the same embedding independently from
the context it appears in. Yet, if we consider the word “bank” appearing in
“a river bank” and “bank of America”, the first occurrence carries a different
meaning than the second. Consequently, they should have different embed-
dings. This idea of context-dependent representations was implemented in
ELMo [190] from which BERT draws many ideas: the goal of contextual
embeddings is to capture complex characteristics of language (e.g., syntax
and semantics) as well as how meaning varies across linguistic contexts (e.g.,
polysemy).

BERT implements these ideas by taking advantage of the powerful trans-
former architecture [236], as opposed to ELMo’s use of LSTMs (Long Short
Term Memory).

40

https://twitter.com/lintool/status/1285599163024125959
https://twitter.com/lintool/status/1285599163024125959

3 the transformer architecture

Figure 3.2 – Architecture of the original transformer [236]. Diagram by [226].

3 The Transformer architecture

The Transformer architecture was proposed by Vaswani et al. [236] as a
new sequence-to-sequence architecture, which transforms an input sequence
into another output sequence of tokens, based on attention mechanisms. Trans-
formers proved to be more effective than the popular LSTM architecture
on many tasks such as machine translation —by better handling long-term
dependencies— and grew to replace them over time.

Figure 3.2 illustrates the full transformer architecture with the encoder part
(left) and the decoder part (right) that can be stacked multiple times, which
is indicated by (N×) in the figure. We see that the modules consist mainly of
multi-head attention and feed forward layers. The input and output sequences
are first embedded into an n-dimensional space (token embeddings). As
opposed to recurrent networks (e.g., LSTMs) which can remember how
the sequence is fed into the model, the transformer architecture needs an
additional mechanism to map each token in the sequence to a position. This
is realized by adding positional encoding to the token embeddings.

On the encoder side, the input sequence token embeddings are fed through
a multi-head self-attention layer. For each token, self-attention look at all
positions in the input sequence for cues to better represent this token. Consid-
ering a single attention head h and X ∈ Rl×n the n-dimensional embeddings
corresponding to the l tokens in the input sequence (or output vectors from
the lower encoder layer), the embeddings are first projected via the three
layers of the attention head h: the Query layer WQ

h , the Key layer WK
h and the

Value layer WV
h to the query, key and value vectors. The query and key inputs

are used to compute the scaled dot-product attention scores which estimates

41

overview of bert

the “importance” of each token in the sequence to the current token. These
scores are then used to weight the value vectors to obtain the new token
representations as follows (see diagram 1⃝ in Figure 3.2):

Attentionh(X) = so f tmax

(
(X · WQ

h) · (X · WK
h)√

DK

)
· WV

h (3.3)

where DK refers to the dimension of the key vectors.
This is computed for each head h ∈ H, H being the total number of atten-

tion heads. The multi-head mechanism refines the self-attention layer in two
ways: (1) It expands the model’s ability to focus on different positions, and (2)
it gives the attention layer multiple “representation subspaces” since there is
a total of H sets of Query/Key/Value weight matrices (in the original Trans-
former formulation H = 8). Each of these sets is randomly initialized. Then,
after training, each set is used to project the input embeddings (or vectors
from lower encoders/decoders) into a different representation subspace. The
final output of the multi-head self-attention is obtained by concatenating the
outputs of all the heads and projecting the result through the output layer
WO (see diagram 2⃝ in Figure 3.2):

Y = concatH
h=1(Attentionh(X)) · WO (3.4)

The resulting representation is further processed with a feed forward network
along with residual connections and normalization layers. Finally, the output
of the last encoder of the stack is then transformed to a set of attention vectors
key Kencoder and value Vencoder. These are then transmitted to the decoder.

On the decoder side we have the masked multi-head self-attention, which is
equivalent to the encoder’s multi-head self-attention with causal masking:
the scaled dot-product scores are masked to prevent tokens at position i from
attending to future positions j > i as follows:

Attentionh(X) = so f tmax

(
(X · WQ

h) · (X · WK
h)√

DK
· Maskcausal

)
· WV

h (3.5)

where

(Maskcausal)i,j =

0 if j > i,

1 else
(3.6)

The encoder’s key and value vectors (Kencoder and Vencoder) are used in each
decoder layer at the multi-head cross-attention level, also known as encoder-
decoder attention, which helps the decoder focus on relevant positions in the
input sequence, altering the original self-attention mechanism as follows:

Attentionh(X) = so f tmax

(
(X · WQ

h) · (Kencoder)√
DK

)
· Vencoder (3.7)

42

4 pre-train then fine-tune

half a transformer is enough OpenAI GPT [196] is another in-
tellectual ancestry of BERT, while BERT uses only the “encoder half” of a
full transformer, GPT is a “decoder-only” transformer. GPT is pre-trained
to predict the next word in a sequence based on what it has already seen
(language modeling). Thus, the decoder is a natural choice for language
modeling since it’s built to mask future tokens —a valuable feature when
it’s generating a sequence word by word. In contrast, BERT uses a different
objective leading to an important distinction discussed bellow.

4 Pre-train then fine-tune

The conventional workflow for BERT consists of two stages: pre-training and
fine-tuning. Pre-training uses two self-supervised tasks: masked language
modeling (MLM) and next sentence prediction (NSP). In fine-tuning for
downstream tasks, one or more fully-connected layers are typically added on
top of the final encoder layer.

4.1 Pre-training

Besides using only half a transformer, both BERT and GPT present a
significant advance over the original transformer by using self-supervision in
pre-training, whereas Vaswani et al. [236] starts with a random initialization of
the transformer weights and then proceeds directly with supervised training
on labelled data.

The idea of pre-training from unlabelled data then fine-tune for a super-
vised downstream task has a long history [49, 93]. Lin et al. [129] traces back
the intellectual origins of pre-training even further to the computer vision
domain, dating back to the last decade in Erhan et al. [62]. The advantage
of these approaches is that few parameters need to be learned from scratch.
Moreover, pre-training based on self-supervision is, at least partly, behind
the improvements achieved by GPT and BERT on language processing tasks.
The advantages of self supervision are as follows [129]:

— Data provides the supervision for model pre-training without needing
any external labelling. In GPT for example, the next token in the
input sequence provides the supervision— “label”. The availability of
annotated training data is not longer a limitation, thus the amount of
data that can be used for training the model can be largely expanded.
Instead, computing resources and the amount of data available become
the bottleneck [109].

— Pre-training based on self-supervised objectives provides a good base
capable of reasonably handling language, that can be further fine-tuned
for supervised downstream tasks. This is the “pre-train then fine-

43

overview of bert

Figure 3.3 – BERT’s Masked Language Modeling (MLM). Masks a percentage of the
input sequence tokens at random, and trains the model to predict the
masked tokens. In this example, the word “fashion” is masked from the
input sequence by replacing it with the special token [MASK]. The last
hidden vectors are fed through a feed forward network (FFNN) and a
softmax over the vocabulary. The output vector contains the probability
that the masked token corresponds to the i-th token in the vocabulary.

tune” recipe that became universal today for working with pre-trained
language models such as BERT and GPT. The availability of open-source
checkpoints and the lightweight fine-tuning process, that requires much
less resources than training from scratch, contributed to the wide spread
of BERT.

4.1.1 Masked Language Modeling (MLM)

In contrast to left-to-right language modeling that has been used for pre-
training previous models [49, 93, 196], BERT introduces the “Masked Lan-
guage Model” (MLM) self-supervised objective that can use both left and
right contexts of a token. During pre-training, a percentage of the input
tokens are randomly masked (i.e., replaced with the special [MASK] token),
and the model is then optimized to predict those masked tokens using cross
entropy. This procedure is also known as the Cloze task in the literature [229].
As illustrated in Figure 3.3, the final hidden representations corresponding to
the masked tokens are fed into an output softmax over the vocabulary, as in
a standard LM.

However, masking creates a mismatch between pre-training and fine-tuning,
since the [MASK] token does not appear during fine-tuning. To mitigate this,
the authors of BERT propose to not replace masked tokens with the [MASK]
token. The training data generator chooses 15% of the token positions

44

4 pre-train then fine-tune

(a) Single-Sentence Classification tasks (b) Sentence-Pair Classification tasks

(c) Single-Sentence Token Labeling (d) Sentence-Pair Token Labeling

Figure 3.4 – Illustrations of fine-tuning BERT on different NLP tasks. The model
inputs are not limited to sentences, an input is a textual segment that
can be a question, a paragraph, etc. Diagrams by Jimmy Lin (https:
//twitter.com/lintool/status/1285599163024125959)

randomly for prediction, if the i-th token is chosen, it is replaced with: (1)
the [MASK] token 80% of the time , (2) a random token 10% of the time, and
(3) remains unchanged 10% of the time.

4.1.2 Next Sentence Prediction (NSP)

Considering that many downstream tasks, such as Question Answering
(QA) and Natural Language Inference (NLI), are based on understanding
the relationship between two sentences, BERT is also pre-trained on the Next
Sentence Prediction task. Pairs of sentences A and B are extracted from
a monolingual corpus, where B is, in 50% of the time, the actual sentence
following A, and 50% of the time it is a random sentence from the corpus.
Devlin et al. [58] argue that the NSP task is beneficial to both QA and NLI.
However, following work by Liu et al. [138] observed no drop in performance
in models that lacked such pre-training, thus questioning the necessity of
NSP.

4.2 Fine-tuning

Devlin et al. [58] proposed four task-specific models augmenting BERT
with a single additional output layer, that is learned from scratch during fine-

45

https://twitter.com/lintool/status/1285599163024125959
https://twitter.com/lintool/status/1285599163024125959

overview of bert

Figure 3.5 – BERT input representation. The input embeddings are the sum of
the token embeddings, the segmentation embeddings and the position
embeddings.

tuning. As illustrated in Figure 3.4, tasks (a) and (b) are sentence-level tasks
where the whole input is assigned a label, while (c) and (d) are token-level
tasks where labels are assigned to tokens. We use the term “sentence” to be
consistent with the terminology used in the original BERT paper, however
input sequences are not limited to “sentences”, and can be a question, a
paragraph, a passage from a document, etc.

— Single-sentence classification tasks, used for classification tasks over
single-segments of texts such as sentiment analysis from movie reviews.

— Sentence-pair classification tasks, for example, identifying if two sen-
tences are paraphrases, or semantically similar.

— Single-sentence token labeling, for example, named-entity tagging.

— Sentence-pair token labeling tasks, for example, question answering
where the task consists in labeling the begin and end positions of the
answer span in a candidate paragraph (the second sentence) given a
question (the first sentence).

A special classification token [CLS] is added to the start of the input,
and its final hidden state T[CLS] is typically used as input for the additional
output layer in classification tasks; T[CLS] is considered as an aggregate
representation of the entire input (single or pair of token-sequences). An
other special delimiter token [SEP] is appended to the end of the input. For
tasks involving more than one sequence input, [SEP] is additionally used to
separate non-consecutive token sequences.

5 Input representation

Now that we have defined the different tasks on which BERT can be applied,
we can define its input representation being the element-wise summation of
the following three components (see example in Figure 3.5):

— Token embeddings. Learned token representations for each token in
the sequence, fetched from a lookup table. BERT uses a WordPiece

46

6 bert configurations

Configuration Layers Hidden size Attention heads Parameters

Tiny 2 128 2 4 M

Mini 4 256 4 11M

Small 4 512 4 29M

Medium 8 512 8 42M

Base 12 768 12 110M

Large 24 1024 16 340M

Table 3.1 – BERT configurations: The commonly used Base and Large configurations
were introduced in the original BERT paper [58], while the remaining
configurations were proposed later by Turc et al. [235] for exploring
effectiveness/efficiency tradeoffs.

tokenizer [248] capable of modeling large corpora, comprising millions
of unique words (space separated), with a relatively small vocabulary
size of only 30, 000 tokens 1. Such reduced vocabulary is attainable by
splitting words into “subwords”, e.g., the word “snowing” in Figure 3.5
is split into “snow” and ”##ing”, where "##" indicate that the current
token is connected to the previous subword. It is however important to
note that the splitting process is usually unsupervised and the resulting
subwords are not necessarily linguistically meaningful. As opposed to
“playing”, words such as “thinking” or “working” are not split, while
“exhilaration” is split into (“ex”, “##hila”, “##ration”), which do not
correspond to morphemes.

— Segment embeddings. A learned embedding indicating whether a
token belongs to sentence A or sentence B in tasks involving two inputs.
This used in addition to the [SEP] token placed between the two input
sequences.

— Position embeddings. A learned embedding determining the position
of each token in a sequence, giving BERT a sense of linear order and
relative positions between tokens.

6 BERT configurations

In the original paper, Devlin et al. [58] proposed two standard BERT
configurations, namely: BERTLarge and BERTBase, with 24 and 12 transformer-
encoder layers, respectively. In a later work, Turc et al. [235] conducted
extensive experimentation to gain understanding of how knowledge distilla-
tion (discussed later in Section 5.1) and the pre-train then fine-tune process

1. Byte-Pair-Encoding (BPE) [220] is also a subword-based tokenizer worth mentioning
since it was used in GPT as well as RoBERTa [138] which proposes a more robust version of
BERT.

47

overview of bert

work in isolation, and how they can interact. This work unveiled the power of
pre-trained distillation, a general yet simple algorithm for building compact
models in three steps:

1. Pre-taining a compact model with the MLM objective, capturing lin-
guistic phenomena from a large corpus.

2. Knowledge-distillation from the soft labels produced by a large teacher
on unlabeled transfer data.

3. (Optional) Fine-tuning the compact model on labelled data to mitig-
ate eventual mismatches between the distribution of the transfer and
labeled sets.

Table 3.1 shows all model configurations which resulted from this study in
addition to the original Base and Large configurations, where a configuration
is characterized by its number of layers, the hidden dimension size and the
number of attention heads. In general, larger configurations tend to achieve
better effectiveness on downstream tasks, consequently these configurations
are useful for exploring effectiveness/efficiency trade-offs.

7 BERTology

The recent dominance of pre-trained contextualized representations has
served as the impetus for exciting and diverse interpretability research at-
tempting to unveil the knowledge encoded in BERT weights. Popular ap-
proaches include fill-in-the-gap probes of MLM, analysis of self-attention
weights, and probing classifiers with different BERT representations as inputs.
The neologism BERTology was specifically coined to describe this flurry of
interpretability research. We only report a small fraction of the findings in
the context of NLP hereafter, we refer the reader to Rogers et al. [209] for a
more complete overview.

A number of researchers focused on the syntactic knowledge of BERT.
Probing classifiers have been widely used to determine whether something
can be predicted from BERT’s internal representations. For example, Lin et al.
[132] showed that BERT representations are hierarchical showing resemb-
lance to syntactic tree structures. Tenney et al. [231] also showed that BERT
embeddings encode information about parts of speech, syntactic chunks and
roles. Others have investigated BERT’s behavior using fill-in-the-gap probes
of MLM. Since BERT was pre-trained with MLM objective, it is possible to
feed the masked token [MASK] to the model and ask it to predict the masked
term, as a way to probe what the model has learned. Ettinger [64] found
that BERT does not understand negation and is insensitive to malformed
input (e.g., shuffled word order or truncated sentences). Meaning that BERT’s
syntactic knowledge is either incomplete or it is not needed for solving its

48

8 conclusion

tasks. Glavaš and Vulić [79] shows that the latter is more likely since addi-
tional fine-tuning with supervised parsing does not make much difference
for downstream task performance. Aside from syntactic knowledge, studies
showed that BERT has some semantic knowledge about entity types, relations,
semantic roles, and proto-roles [231].

Other researchers have examined BERT’s attention heads and characterized
their behavior. Clark et al. [39] distinguish between attending to previ-
ous/next tokens, [CLS], [SEP], punctuation, and “attending broadly” over
the sequence. Kovaleva et al. [117] found that a limited set of attention
patterns are repeated across different heads, suggesting that the model is
over-parameterized. Indeed, manually disabling attention in certain heads
leads to effectiveness improvements in some NLP tasks [237].

While these studies offer some insight about the general knowledge en-
coded in BERT, we are more interested in how BERT behaves in ranking.
We will come back on studies attempting to understand how BERT models
relevance in the following chapter; see Section 3.7.

8 Conclusion

We presented in this chapter an overview of BERT, a sophisticated model
that brought together many crucial innovations to achieve unprecedented
performance on a broad range of NLP tasks. We briefly covered BERT’s relev-
ant intellectual ancestries, important concepts and architectural components
employed in BERT, and other pre-trained language models. We also discuss
key findings about BERT’s inner workings in the general context of NLP.

The remainder of this part is dedicated to the many applications, adapta-
tions, and attempts to go beyond BERT to build better IR models. Considering
the timely evolution of BERT applications to IR, Lin et al. [129] organize the
literature into three main bodies of work. Following this timely organization,
we start the next part of this dissertation with the straightforward applica-
tions of BERT and variants as rerankers in multi-stage reranking architectures
initiated by Nogueira and Cho [173]. Then, we move to the applications of
BERT for query and document expansion for improving first-stage sparse
retrieval. Finally, we present the applications of BERT for learning dense
representations suitable for text ranking (i.e., dense retrieval).

49

4
BERT in multi-stage reranking

1 Introduction

Deep transformer models pre-trained with language modeling objectives
(PLMs), exemplified by BERT [58], have proven to be highly effective in a
variety of classification tasks in NLP. Inspired by this success, Nogueira and
Cho [173] were the first to demonstrate the effectiveness of PLMs for ad hoc
ranking. The authors adopted the simplest and most straightforward formu-
lation of ranking, in which the ranking task is converted into a classification
problem. The proposed model, known as monoBERT, was deployed as a bin-
ary relevance classifier that estimates the probability each document belongs
to the “relevant” class. At inference time, these estimates are then used to
rank the documents for every user query. This is a direct implementation
of the Probability Ranking Principle, which states that documents should be
ranked in decreasing order of the estimated probability of relevance with
respect to the information need [204].

From the computational perspective, applying inference to every document
in a corpus for every single user query is impractical, considering both
the time and memory complexity of transformer models, but also the linear
growth of query latency w.r.t the corpus size. Despite the active exploration of
architectural alternatives (discussed in Chapter 6), most applications of BERT
for document ranking today focus on reranking a small list of candidates per
query. In a typical end-to-end system, these candidates are the result of an
efficient keyword search, usually with bag-of-words queries against inverted
indexes (see Section 2.2). This gives rise to the standard “retrieve-then-rerank”

Figure 4.1 – The retrieve-then-rerank architecture, which is the simplest instance of
multi-stage ranking architecture. The initial retriever (also called first-
stage retriever) retrieves a list of candidate documents for each query,
typically with bag-of-words queries against inverted indexes. These
candidates are then reranked with a PLM such as monoBERT.

51

bert in multi-stage reranking

Figure 4.2 – The monoBERT architecture [173].

approach, illustrated in Figure 4.1. The initial retriever, also called first-stage
retriever, returns a list of candidates for each query, typically scored using
a traditional exact-match based method such as BM25. This retrieve-then-
rerank approach is the simplest and most adopted instanciation of the more
general multi-stage reranking architecture, which can include more than one
reranker on top of the initial retriever (see Section 4.4).

We present in this chapter the first applications of BERT and its variants
as part of multi-stage reranking architectures. We present in Section 4.2 a
detailed description of the monoBERT model which is the starting point of
many other models and provides a solid baseline for subsequent BERT-based
IR models. The inability to handle long input sequences is inherent to BERT’s
design, posing a major limitation when it comes to full-length document
ranking collections (e.g., scientific papers and web pages). We discuss the
different approaches devised to overcome the length limitation of BERT for
long document ranking in Section 4.3. In Section 4.4, we present how these
approaches are deployed in multi-stage reranking architectures with more
than one reranker. Finally, we present some attempts to go beyond BERT to
explore more efficient ranking models (in Section 4.5), or different relevance
modeling alternatives using generative PLMs (in Section 4.6).

2 Relevance Classification with monoBERT

Nogueira and Cho [173] propose the first application of BERT for rank-
ing passages in the MS MARCO passage ranking task [9]. Their model,

52

2 relevance classification with monobert

monoBERT, follows the retrieve-then-rerank approach where BM25 is used
as the initial retriever.

Ranking is formulated as a relevance classification task where monoBERT
computes a score R(di, q) estimating how relevant the candidate document di
is to the query q. That is:

R(di, q) = P(Relevant = 1|di, q) (4.1)

2.1 MonoBERT architecture

The architecture of monoBERT is represented in Figure 4.2. Using the
same notation as Devlin et al. [58], the query q is fed as Segment A and the
candidate document di as Segment B. The special classification token [CLS]
is prepended to the input sequence, and the special delimiter token [SEP] is
placed at the beginning and end of the document segment to build the input
sequence S as follows:

S = [[CLS], q, [SEP], di, [SEP]] (4.2)

where q and di are represented with their tokens obtained after applying the
WordPiece tokenizer.

The sequence S is then passed through BERT which produces contextual-
ized vector representations for each token. The final contextual representation
T[CLS] of the standard classification token [CLS], that captures the interaction
between the query and the document, is then used as input to a single fully-
connected layer that estimates the probability that the document di is relevant
to the query q, as follows:

R(di, q) = P(Relevant = 1|di, q) ≜ so f tmax(T[CLS] · W + b)[1] (4.3)

where T[CLS] ∈ RD, D being the hidden dimension size from BERT, W ∈
RD×2 is the weight matrix of the fully-connected layer and b ∈ R2 its
bias term. so f tmax(.)[1] denotes the softmax output corresponding to the
“relevant” class (i.e., binary classification with two output probabilities for the
“non-relevant” and “relevant” classes).

The monoBERT model including the BERT core, which is pre-trained, and
the additional classifier layer, which is randomly initialized, is trained for
relevance classification using cross-entropy loss:

L = − ∑
j∈Jpos

log R(dj, q)− ∑
j∈Jneg

log (1 − R(dj, q)) (4.4)

where Jpos is the set of indexes of the relevant documents and Jneg is the set of
indexes of non-relevant documents. Since the loss function takes into account
only one candidate text at a time, this can be characterized as belonging to
the family of pointwise learning-to-rank methods; see Section 2.3.

53

bert in multi-stage reranking

2.2 Understanding BERT behavior in ranking

Despite their success, little is understood about why pre-trained language
models such as BERT are so effective for ranking. What new aspects of the
task do they solve that previous approaches do not? A large of body of
work was dedicated to help shed the light on the mechanisms, strengths and
weaknesses of BERT-based ranking models.

Padigela et al. [183] study a set of hypotheses and found that BERT retrieves
passages with more novel terms as opposed to BM25 which is biased towards
high query term frequencies. The authors also found that BERT fails at
capturing the context of long queries. Nonetheless, Dai and Callan [51]
demonstrate that unlike traditional models –which prefer short keyword
queries–, BERT can leverage stop words and punctuation thanks to its capacity
to model language structure. Qiao et al. [194] argue that BERT should be
understood as an “interaction-based sequence-to-sequence matching model”
that prefers semantic matches between paraphrase tokens. While Zhan et al.
[266] argue that the lower layers of BERT focus mainly on building semantic
representations meanwhile upper layers capture interaction signals to predict
relevance (i.e., typical design of representation-focused models).

Because analytic methods are impractical given the models’ large num-
ber of parameters, Rennings et al. [201] propose diagnostic datasets which
reformulate traditional ranking axioms (e.g., that documents with a higher
term frequency should receive a higher ranking score [66]) as empirical tests.
Rennings et al. [201] studied pre-BERT neural ranking architectures that
predate the rise of BERT, and focused on just four axioms. Câmara and
Hauff [28] extend this work to a distilled BERT model [216] and adds five
more previously-proposed ranking axioms [67]. However, the authors find
that these axioms are inadequate to explain the ranking effectiveness of their
model. In the same line of research, MacAvaney et al. [146] introduce novel
“textual manipulation tests” and “dataset transfer tests” in addition to the pre-
vious diagnostic tests. The authors gather these tests under a new framework
for analysing the behavior of neural IR models including pre-BERT mod-
els, monoBERT as well as subsequent PLM-based models such as monoT5

(described in Section 4.6). Their study show that monoBERT is better than
BM25 at estimating relevance when term frequency is constant, supporting
the finding from Câmara and Hauff [28] that monoBERT does not satisfy
the term frequency axioms. Using the newly introduced text manipulation
tests, MacAvaney et al. [146] find that shuffling the order of words within
a sentence or across sentences (altering the syntactic structure) has a large
negative impact on PLMs, while shuffling the order of sentences within a
document has a modest negative impact. The most surprising discovery in
this study, is that appending non-relevant sentences to the end of a document
tricks monoBERT into increasing the relevance score of the document, while

54

2 relevance classification with monobert

adding relevant terms – generated by docT5query (described in Chapter 5) –
decreases its score. Using the dataset transfer tests, where two versions of the
same documents are compared w.r.t a query, the authors find that monoBERT
scores informal text slightly higher than formal text, and fluent text slightly
higher than documents written by non-native speakers.

Despite all the efforts put into understanding how BERT works for ranking,
a lot is yet to uncover and explanations are far from complete. Previous
work indicates that BERT show evidence of combining elements from both
representation-based and interaction-based models. Empirical analysis from
text manipulations further show that BERT leverages soft semantic match, as
well as term position signals. However, PLMs can also exhibit unexpected be-
haviors when additional content is added to documents, or when documents
are expressed with different levels of fluency or formality. At the end, the
inner workings of pre-trained language models remain unclear and behavior
across different queries, corpora, and architectures is variable.

2.3 Training BERT for ranking

“Pre-train then fine-tune” is the de facto workflow for training BERT. It is
first pre-trained on “general domain” corpora such as Wikipedia using self-
supervision to gain general and transferable knowledge about the language.
The obtained checkpoint can then be fine-tuned on task-specific labeled
data drawn from the same distribution as the target task. Variations of this
general recipe can be explored to better adapt BERT to the ranking task at
the pre-training or fine-tuning levels.

2.3.1 Pre-training

While there may be some overlap between the pre-training and target
corpora, they may nevertheless differ in some properties like vocabulary
distribution, genre, and numerous other factors [129]. Aside from the cor-
pora, the core of IR is to model the notion of relevance [218], which is not
considered in BERT pre-training objectives (MLM and NSP). To address these
issues, researchers in the IR community have started exploring additional
pre-training on the target corpus and rethinking new pre-training objectives
tailored for the ranking task.

Nogueira et al. [176] investigate the benefit from additional pre-training on
the ranking corpus, named target cropus pre-training (TCP), in the context
of their multi-stage reranking architecture (described in Section 4.4). The
authors take the original pre-trained BERT checkpoint (on general domain
data), and further pre-train it on the MS MARCO passage corpus using the
same self-supervision objectives, i.e., Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP) (see Section 3.4). They found that TCP

55

bert in multi-stage reranking

brings modest improvements over the original general-domain pre-training,
nonetheless the gain does not require any labeled data, and thus TCP might
be worthwhile in certain scenarios.

Inspired by the query likelihood model (QL) [191], Ma et al. [142] propose
a novel pre-training task named Representative Words Prediction (ROP) spe-
cifically tailored for IR. QL assumes that the query is a piece of representative
text generated from the “ideal” document. Hence, ROP samples pairs of
term sets according to the multinomial unigram language model [262], and
then pre-trains BERT to predict the pairwise preference. The resulting model
named PROP has the same architecture as monoBERT, where the query seg-
ment is replaced by a term set representative of the document segment. Ma
et al. [142] show that ROP improves effectiveness over pre-training with MLM
when reranking BM25. In a later work, Ma et al. [143] propose leveraging
BERT to replace the classical unigram language model for the ROP task in
the B-PROP model. Inspired by the divergence-from-randomness idea [3],
they propose a contrastive method to leverage BERT’s [CLS]-token attention
to sample representative words. Experiments show that B-PROP performs
better than PROP on the downstream document ranking task. Furthering this
idea, Ma et al. [145] propose HARP that introduces hyperlinks and anchor
texts to replace the sampling method which outperforms PROP.

Recently, Chen et al. [32] incorporate IR axioms into model pre-training
using a new method named ARES. They generated training samples with a
number of existing IR axioms to guide the training of neural ranking models.
Compared to existing pre-training approaches, ARES is more intuitive and
explainable. Experimental results show the effectiveness of ARES especially
in low-resource settings, e.g., zero-shot and few-shot learning which we
discuss in the following section.

2.3.2 Fine-tuning

Fine-tuning a pre-trained language model requires access to labelled data
drawn from the same distribution as the target task. However, annotated
data is usually limited (costly) or even unavailable for the domain and/or
task at hand. To overcome this limitation, researchers explored the idea of
leveraging out-of-domain or out-of-task labelled data to benefit the related
target task where labelled data is limited. The model is first fine-tuned on
out-of-distribution labelled data before fine-tuning on in-distribution labelled
data. This strategy is known as “multi-phase” fine-tuning, where fine-tuning
spans multiple “phases”. Analogous to how pre-training on general-domain
data provide a model with general language modeling knowledge, multi-phase
fine-tuning attempts to provide the model with general knowledge about the
task from available (free of annotation cost) out-of-distribution labelled data.

56

2 relevance classification with monobert

In order to rank news articles, Akkalyoncu Yilmaz et al. [2] exploit an-
notated data from an out-of-domain Microblog collection and calls this
cross-domain relevance transfer. Dai and Callan [51] leverage log-data from a
search engine to fine-tune BERT, providing it with general search knowledge
before fine-tuning on TREC collections. Zhang et al. [269] coined “pre-fine-
tunning” when investigating the benefits of fine-tuning on the large MS
MARCO passage ranking collection before fine-tuning on limited collection-
specific labelled data. Pre-fine-tuning is now widely adopted and applied to
monoBERT as well as subsequent models [122, 22].

Despite the gains brought by pre-fine-tuning, sequentially learning from
multiple labelled datasests can cause the model to lose patterns acquired from
the previous dataset. This phenomenon, known as “catastrophic forgetting”,
has been studied by Zhang et al. [267] which revealed that BERT-based
ranking models seem to better retain effectiveness on the pre-fine-tuning
dataset despite further fine-tuning, compared to pre-BERT neural ranking
models.

Pushing the limits of training BERT on out-of-distribution data, researchers
investigate “zero-shot” transfer settings (the extreme instantiation of few-
shot learning) where a model is exclusively fine-tuned on out-of-distribution
annotated data and directly applied to the target task. Examples include
Birch [2] (in Section 4.3) and monoT5 [174] (in Section 4.6).

Instead of pre-fine-tuning on out-of-distribution labelled data, Zhang et al.
[267] propose a reinforcement weak supervision method with monoBERT,
called ReInfoSelect. ReInfoSelect trains a selector model to select some con-
structed anchor document pairs for training the monoBERT via reinforcement
learning. It takes the ranking performance (i.e., nDCG) as the reward. Ex-
periments show that the neural ranker trained by ReInfoSelect can match
the effectiveness of neural rankers trained on private commercial search logs.
Alternatively, MacAvaney et al. [148] explore whether monoBERT can benefit
from a training curriculum which provides a systematic approach for order-
ing training instances from simple to hard [17]. The authors assign a weight
for each training example through a difficulty heuristic based on BM25 scores.
Experimental results show that this weighted curriculum learning approach
can significantly improve the effectiveness of monoBERT. Compared to multi-
phase fine-tuning which generally spans multiple datasets, the fine-tuning
process in a curriculum follows a multi-step path which can be applied to a
single dataset.

In conclusion, researchers have investigated different extensions to the
standard “pre-train then fine-tune” workflow to train BERT for the ranking
task. These extensions leverage data from related domains and tasks in
both self-supervised (i.e., pre-training) and supervised (i.e., fine-tuning)
settings. While these extensions have been proven to improve BERT’s ranking

57

bert in multi-stage reranking

effectiveness, there are no clear guidelines to properly apply them (e.g.,
number of epochs, order of out-of-domain fine-tuning phases, etc.). Further
exploration is needed to fully understand how exactly these pre-training and
fine-tuning extensions work in order to achieve measurable and predictable
gains.

3 Full-length document ranking with BERT

Considering the quadratic time and memory complexity of the self-attention
mechanism in Transformers [236] (see Section 3.3), PLMs such as BERT were
pre-trained with a limited input length (i.e., 512 tokens). Past this limit,
position embeddings are not available. Henderson [86] point out the import-
ance of position embeddings and argue that BERT can be seen as a “bag of
vectors”, where cues about the linear structure of the language are exclusively
provided by these learned position embeddings. Thus, past the pre-trained
limit of 512 tokens, BERT has no sense of token order (position) and so the
input text will essentially be treated as a bag of tokens.

This length limitation restricts the application of BERT-based models such
as monoBERT to short paragraph-length documents like MS MARCO pas-
sages used in [173]. However, in traditional ad hoc retrieval, documents
can contain thousands of tokens (especially with WordPiece tokenization) in
standard TREC collections [240, 45, 44]. Besides, relevance judgements are
provided at the document level. In other words, if a document is labelled
“relevant” as a whole, it is unclear which part of it contains the “relevant
material”. Assuming the Scope Hypothesis [206]: a long document consists of
a number of unrelated short documents concatenated together. In this way,
the relevance matching could happen in any part of a relevant document.
Building on this assumption, a majority of applications are to segment the
long document text into smaller chunks that can be processed by BERT,
individually, and then do an aggregation over chunks to produce document-
level relevance scores. Based on the aggregation type, these methods can be
broadly categorized into two classes: (1) Passage Score Aggregation: aggreg-
ate the relevance score of the query and segmented passage; and (2) Passage
Representation Aggregation: aggregate the representations of segmented
passages to document representations first and then compute the relevance
between query and the aggregated document representation.

3.1 Passage Score Aggregation

Passage score aggregation is a post-processing method that aggregates
the relevance scores between the query (q) and the segmented passages
({p1, p2, ..., pn} of a document d) provided by the PLM as shown in Figure

58

3 full-length document ranking with bert

(a) Passage Score Aggregation

(b) Passage Representation Aggregation

Figure 4.3 – Score aggregation vs. representation aggregation approaches [123]

4.3a. Previous work explored various segmentation and score aggregation
methods. Akkalyoncu Yilmaz et al. [2] propose a segmentation method
as well as a training approach in Birch to overcome the length limitation of
monoBERT. On the one hand, Birch leverages out-of-domain tweet data (short
passages with relevance judgements) to fine-tune monoBERT for the ranking
task, then inference is directly performed on TREC newswire collections
without further in-domain fine-tuning. Birch is one of the first instanciations
of zero-shot cross-domain learning (see Section 2.3.2), since the model was not
trained on labelled data drawn from the target dataset. Experimental results
reveal that monoBERT has strong domain transfer capabilities for relevance
matching. On the other hand, Birch splits documents (i.e., news articles) into
their sentences during inference to feed them through monoBERT. Inference
is applied to each individual sentence in the document w.r.t the query, and
then the top-k scores are aggregated with the original document score sd
obtained by the first-stage retriever (i.e., BM25) to obtain the document score
s f , as follows:

s f ≜ α · sd + (1 − α) ·
k

∑
i=1

wi · si (4.5)

where si is the score of the i-th top scoring sentence according to monoBERT.
The parameters α and w1:k are tuned via cross-validation.

Results show that the top-scoring sentence is a good proxy for the relevance
of the entire document.

Dai and Callan [51] propose a different approach where documents are
split into overlapping passages using a fixed-size sliding window. Fine-tuning
is performed on the segmented passages drawn from the target-task (i.e.,
in-domain training data as opposed to Birch out-of-domain tweet data) in
a cross-validation setting. The relevance judgments of segmented passages

59

bert in multi-stage reranking

are consistent with the document, that is, if the document is relevant to a
query, all the segmented passages are also relevant to the query and vice
versa. However, according to the Scope Hypothesis, the document could be
partially relevant to a query, and thus not all passages are relevant to a query.
In other words, the training instances are expected to contain noise. During
inference, the relevance score of each passage is predicted independently
with monoBERT, and the document score is obtained by aggregating the
passage scores. The authors explore three aggregation methods:

1. BERT-firstP only uses the score of the first passage, i.e., s f = s1;

2. BERT-maxP uses the maximum score of the passages, i.e., s f = maxn
i=1 si;

3. BERT-sumP sums all the relevance scores of passages, i.e., s f = ∑n
i=1 si.

Experimental results indicate that BERT-maxP and BERT-sumP perform better
than BERT-firstP on traditional TREC ad hoc retrieval tasks since all passages
are taken into account. But these two methods require more computational
cost as all the query-passage pairs need to be trained and predicted while
BERT-firstP only considers the first passage of each document. BERT-maxP
remains the best performing aggregation method (i.e., it respects the Scope
Hypothesis by considering all passages, and taking the best scoring as proxy
for the whole document score) and is widely adopted and replicated in
subsequent work [122, 269, 22].

Besides the score aggregation exploration, Dai and Callan [51] propose the
first exploration of using different query representations with monoBERT.
Previous IR models, including Birch, only use one representation of the query,
namely “title” in TREC topics, which typically comprises a set of keywords,
akin to user queries posed to web search engines. However, TREC topics rep-
resent the information need with different external representations including
a “title”, a “description” and a “narrative” (see Section 1.3). Dai and Callan
[51] find that ranking documents using “description” queries is more effective
than using the standard “title” queries. While BoW IR models perform better
on short keyword queries, BERT is able to leverage the linguistically richer
description queries to improve ranking effectiveness. Further experiments
using only keywords (i.e., remove stop-words and punctuation) present in
descriptions and narratives show a degradation in the ranking performance
of BERT, as opposed to the BoW initial-retriever which is able to regain its lost
effectiveness. These results demonstrate the important role that non-content
words play in BERT contextualization.

Most applications of BERT for ranking use the standard contextualized
representation of the [CLS] token to predict the relevance scores and dis-
card the contextualized representations of remaining tokens. Alternatively,
MacAvaney et al. [149] explore the application of contextualized repres-
entations from BERT in neural ranking models as a replacement for static
embeddings. The proposed CEDR model leverages the contextualized em-

60

3 full-length document ranking with bert

beddings of BERT to build a similarity matrix (chunk by chunk), which is
then fed into an existing interaction-focused neural ranking model such as
DRMM [83] and KNRM [250]. The [CLS] representation is also incorporated
in CEDR to enhance the model’s signals. By combining BERT and pre-BERT
models, CEDR is significantly better than vanilla BERT.

3.2 Passage Representation Aggregation

Instead of only aggregating passage scores, another line of research pro-
poses to aggregate the representations of all passages in a long document so
that the relevance score is estimated by considering all the passages together.
PAssage Representation Aggregation for Document rEranking (PARADE)
[122] segments long documents into passages and performs representation
aggregation on the [CLS] representation of each query-passage pair, as illus-
trated in Figure 4.3b. The authors propose two types of passage aggregation
methods: (1) Using a mathematical operation such as the element-wise mean,
max and sum on the representation vectors; Or (2) using a deep neural
network including a multi-layer perceptron (MLP), convolutional neural
networks (CNN) and Transformer layers. By aggregating the passage rep-
resentations with more complicated architectures, PARADE Transformer can
significantly improve the performance over passage score aggregation meth-
ods like BERT-maxP and other passage representation aggregation methods
like PARADE max.

Similarly, Wu et al. [249] propose the Passage-level Cumulative Gain model
(PCGM), which represents query-passage pairs with BERT (i.e., the contex-
tualized representation of [CLS]), and then uses an LSTM to aggregate the
sequence of query-passage [CLS] vectors. PCGM is trained end-to-end to
predict the cumulative gain after each passage, that is, the amount of relevant
information a reader would encounter after having read a document up to
this passage. At inference time, the document-level gain (i.e., relevance score)
is given by the cumulative gain of its last passage (i.e., after reading the entire
document). This approach suggests the availability of passage-level gain
labels, in contrast to PARADE where the document label is used to label all
its passages as suggested by Dai and Callan [51].

In order to demonstrate the superiority of capturing fine-grained passage-
level relevance signals, the authors annotated a corpus of Chinese news
articles with passage-level cumulative gain. These human annotations reveal
that relevant documents are typically longer than other documents, and the
higher the document-level gain, the more passages need to be read to reach
this gain. In other words, the relevance of a document can be accurately
estimated by its most relevant passage, which is consistent with previous
work such as BERT-maxP. Nonetheless, distinguishing between different
relevance grades (e.g., relevant vs. highly-relevant) might require the model

61

bert in multi-stage reranking

Figure 4.4 – The multi-stage reranking architecture with a first-stage (initial) retriever
followed by one or more reranking stages (K1 ≥ K2 ≥ ... ≥ Kn). Accord-
ing to the number of rerankers (n): the retrieval process can be defined
as a Single-stage retrieval (n = 0), two-stage reranking or retrieve-then-
rerank (n = 1), or Multi-stage reranking (n ≥ 2).

to accumulate evidence from multiple passages, which suggests that BERT-
maxP might not be sufficient.

3.3 Alternative Transformer architectures for long sequences

In order to avoid processing long documents in chunks, researchers ex-
plore alternative transformer architectures specifically tailored for long input
sequences. The Reformer [114] restricts the standard all-to-all attention (see
Section 3.3) to the most similar tokens only, based on locality-sensitive hash-
ing. Beltagy et al. [14] design Longformer, which reduces the computational
cost of attention using sparse patterns through a sliding window to capture
local context, and global attention tokens that can be specified for a given task.
Jiang et al. [105] propose QDS-Transformer, an application of Longformer
to document ranking where the query tokens are global attention tokens
attending to all query and document tokens.

While these new transformer architectures reduce the computational com-
plexity, it is not clear whether these alternatives can match the ranking
effectiveness of aggregation-based approaches.

4 Multi-stage rerankers

Most applications of BERT to document ranking are deployed as rerankers
in a retrieve-then-rerank architecture. This is the simplest instanciation of
the general multi-stage reranking architecture depicted in Figure 4.4. In this
setup, the initial retrieval is followed by a number of n reranking stages,
where the output of each reranker feeds the input of the following stage. To
be more specific, each stage Si, i ∈ {1..n} receives a ranked list consisting of
Ki candidates from the previous stage and provides a ranked list comprising
Ki+1 candidates to the following stage, with Ki+1 ≤ Ki. The final ranked
list produced by the last stage Sn is the output of the multi-stage reranking
architecture.

62

4 multi-stage rerankers

Multi-stage reranking evolved in the mid-2000s as a means for deploying
systems exploiting expensive learning-to-rank (see Section2.3) models while
managing trade-offs between effectiveness and efficiency [5, 30, 41, 33, 136, 94].
Because more effective ranking methods leverage computationally expensive
designs, inference can be prohibitively slow since query latency increases
linearly with the number of candidates considered. In multi-stage archi-
tectures, however, early stages can exploit “cheaper” methods to discard
candidates that are easy to detect as non-relevant, so that later stages can
operate “expensive” models on fewer and fewer candidates. This setup can
thus provide systems with good trade-offs between the ranking quality (i.e.,
use of effective models) and retrieval latency (i.e., expensive models are only
used on few candidates).

In the context of PLMs, Nogueira et al. [177] propose the first multi-stage
reranking architecture as a solution for mitigating the quadratic complexity of
BERT-based ranking models. The authors propose duoBERT, a “pairwise” ex-
tension of monoBERT where the input sequence is comprised of a query and
two documents . DuoBERT is trained to estimate the relevance of a document
relative to another by leveraging signals from a document pair. However,
due to the length limitation of BERT, the whole sequence is truncated to 512
tokens and each document can have at most 223 tokens. In order to man-
age the effectiveness/efficiency trade-offs, the authors propose a multi-stage
ranking setup where monoBERT reranks the initial K1 candidate documents
retrieved by BM25, and then provides K2 candidates to duoBERT. The ranked
list returned by duoBERT is the output of the multi-stage architecture. By
introducing two rerankers in a pipeline, the effectiveness/efficiency tradeoff
space is greatly expanded, which could lead to a setting with both better
ranking quality and faster inference than what can be achieved in a single-
stage reranker. However, K1 and K2 need to be properly set, empirically, to
achieve the desired balance, as the pipeline is not end-to-end differentiable.

An obvious extension of the pairwise approach in duoBERT is the “listwise”
approach, in which the relevance of a document is determined jointly with
a list of other candidates. Given the large number of possible permutations
that can be considered, a multi-stage ranking architecture is a natural choice.
Zhang et al. [268] devise a “listwise” ranking model, in which all candidates
are fed to BERT simultaneously, such that self-attention can enable joint
inference to rank the document list. Due to the length limitation of BERT,
documents are truncated to fit the 512 token sequence. Though results are en-
couraging, feeding multiple documents into BERT remains a major challenge,
and the superiority of listwise approaches on their pairwise counterparts is
not clearly established.

63

bert in multi-stage reranking

5 Towards more efficient transformer-based ranking

BERT, and transformer-based PLMs in general, brought a huge perform-
ance boost to the state-of-the-art ranking models, however these performance
gains came with high computational costs. Hofstätter and Hanbury [89]
show that real-world applications of BERT are impractical or prohibitively
expensive considering its slow query latency, as opposed to its neural pre-
decessors (i.e., pre-BERT models). Combining this with Kovaleva et al. [117]
observation –that revealed a repetition of a limited set of attention patterns
across different heads– that BERT appears to be over-parameterized, the
question of trading some of BERT effectiveness for smaller and more efficient
models arose.

Two major lines of research attempt to answer this question: The first is
knowledge distillation from larger into smaller BERT models, and the second
is clean-slate redesigns of transformer models specifically for ranking.

5.1 Knowledge Distillation

Knowledge distillation is a general approach where a smaller model named
the student is trained to mimic the behavior of a larger model called the teacher
[87]. The practical motivation behind distillation is to compress the teacher’s
knowledge into a smaller and more efficient student while maintaining the
same effectiveness on a target task.

Tang et al. [225] explore knowledge distillation from BERT into simpler
RNN-based neural networks. The authors report a loss in effectiveness,
which is expected considering the simpler architecture of the student models.
Nonetheless, the inference is accelerated by an order of magnitude. On the
other hand, Jiao et al. [106] and Sanh et al. [216] both investigate distilling
the general trained BERT model into smaller versions of BERT (i.e., same
transformer-based architecture) with only six transformer layers, namely:
TinyBert and DistilBERT, respectively.

In the context of reranking, researchers explored how smaller and more
efficient variants of BERT can be effectively trained using distillation from a
larger trained BERT reranker [74, 122, 268, 35]. Notably, Gao et al. [74] study
the distillation procedure and its impact for ranking using TinyBERT. The
authors identify three distillation procedures:

1. Ranker Distill. A randomly initialized student model is trained to
mimic the behavior of the BERT teacher that has already been fine-
tuned for ranking;

2. LM Distill + Fine-tuning. Distill the pre-trained teacher (LM know-
ledge) into the student model then fine-tune, normally, the student for
ranking;

64

5 towards more efficient transformer-based ranking

3. LM Distill + Ranker Distill. Both LM and ranking-specific knowledge
are taught to the student model via distillation from the teacher (i.e.,
LM distillation followed by ranker distillation).

While Ranker distillation alone yield significant loss in effectiveness, the
remaining distillation procedures lead to student models comparable to the
teacher in effectiveness while being more efficient.

Li et al. [122] investigate knowledge distillation applied to their PARADE
model using smaller BERT variants distilled by Turc et al. [235]. The authors
explore on the one hand training directly PARADE models based on smaller
BERT variants, and on the other hand applying ranker distillation to train
student PARADE models based on smaller BERT variants from a teacher
PARADE model based on BERTBase. Experiments show that the student
models trained under the ranker distillation procedure are more effective
than smaller models trained directly.

Knowledge distillation has emerged as a promising approach to train smal-
ler variants of BERT with negligible losses in the ranking quality compared
to a larger BERT model. Evidence from previous investigations suggest that
distilling a teacher model that has already been fine-tuned on the ranking
task into a smaller pre-trained student model appears to be the best distillation
procedure. We will discuss more applications of knowledge distillation for
ranking in the context of dense retrieval in Chapter 6.

5.2 Rethinking transformers for ranking

Knowledge distillation has proven to be effective for managing effective-
ness/efficiency trade-offs with PLMs such as BERT. Nevertheless, using a
smaller model with the same architectural design might not be the only solu-
tion for building efficient ranking models. A second line of research explores
whether redesigning transformers, from scratch, specifically for ranking can
achieve better effectiveness/efficiency trade-offs.

Hofstätter et al. [92] propose Transformer Kernel (TK) that uses separate
transformer blocks to encode query and document terms which are then used
to compute a similarity matrix fed to KNRM [250]. In a later work, Hofstätter
et al. [91] propose TKL, a variant of TK with local self-attention for handling
long documents. In other words, attention with distant tokens (outside
the local attention range of 50 tokens) is not set to zero. Mitra et al. [166]
extend the TK design further by assuming query term independence and
replacing the transformer layers with novel and more efficient “conformer”
layers. Unlike BERT, these models were trained from scratch (i.e., without
pre-training on LM tasks) which might explain the effectiveness gap with
BERT.

65

bert in multi-stage reranking

It is unclear, for the time being, if clean-slate redesigns of transformers
such as TK/TKL/CK can benefit from the same self-supervised pre-training
that is the hallmark of PLMs such as BERT. This same pre-training that is
considered the main source of the big leaps in effectiveness witnessed on
both NLP and IR tasks. Lin et al. [129] support that whether pre-training
(i.e., the quality of contextualized representations) or the model architecture
(i.e., the relevance matching machinery) is more important is still an open
question and represents a research direction worth exploring.

6 Generative Ranking Models

According to the two schools of relevance modeling, that are, discrimin-
ative modeling or generative modeling, in the IR literature [191, 203], PLM
applications for reranking can be categorized into two classes:

1. Discriminative Ranking Models. In which the ranking task is con-
verted to a relevance classification task. This includes all PLM-based
models that we discussed so far in this chapter;

2. Generative Ranking Models. Which approximate the true relevance
distribution by modeling the generative process between queries and
documents.

It is no surprise that researchers explored the usage of PLMs in the gen-
erative ranking framework [179, 174]. Such applications are either based on
the (1) Query Generation process, which is inspired by the query likelihood
model [191], or the (2) Relevance Generation process, which generates a
specified relevance token given the query and the document.

6.1 Query Generation

The intuition behind query likelihood is to rank the documents based on
the probability that the query is generated by a model of the document. Query
generation is a direct implementation of query likelihood using generative
PLMs such as GPT [196] or BART [120] which are fine-tuned to generate a
query given a relevant document. At inference time, the relevance score of
a document di is the probability estimated by the model for generating the
query q:

R(di, q) = P(q|di) =
|q|

∏
j=1

P(qj|q<j, di) (4.6)

where qj is the j=th query token and q<j are all query tokens occurring before
qj. Note that, at inference time, the model also uses the “Teacher Forcing”
strategy like in the fine-tuning process. That is, for each step (i.e., token

66

6 generative ranking models

generation), the oracle query token (i.e., ground truth) is used as input for
generating the next, instead of model output from a prior time step.

L = ∑
(q,d− ,d+)∈C

max(0,− log P(q|d+) + log P(q|d−)) (4.7)

where d+ and d− are relevant and non-relevant documents for the query q,
respectively, and C is the set of training triples.

Experimental results show that query generative models are as effective as
simple discriminative ranking models for answer selection.

6.2 Relevance Generation

Relevance generation is focused on generating specified relevance tokens
(e.g., “relevant” vs. “non-relevant”) by feeding the concatenation of the
document and the query into a generative PLM, and the probabilities of these
relevance labels are treated as relevance scores. In essence, the relevance
generation is a classification task as the model is trained using pointwise
loss function on relevance tokens and ranks documents by the probability of
predicting the target relevance token (e.g., “relevant”).

Nogueira et al. [174] propose using the sequence-to-sequence (i.e., encoder-
decoder) T5 [197] model for modeling relevance generation. In T5, Raffel
et al. [197] introduce a novel idea where every task is cast as generating some
output text given some input text. For example, the translation task from
English to French can be modeled with the following text-to-text template:

translate English to French: [English input] (4.8)

where “translate English to French” is a literal string, which T5 was fine-
tuned to associate with the translation task from English to French. In other
words, the task to be performed is included as part of the input. Following
this formulation, Nogueira et al. [174] devise a text-to-text template for the
ranking task where the input is :

Query: [q] Document: [di] Relevant: (4.9)

and the model, named monoT5 (analogous to monoBERT), is fine-tuned to
generate the relevance tokens “true” for relevant documents and “false” for
non-relevant ones. The probability of the “true” token is used to represent
the document relevance score, which is normalized with the softmax function
over the logits of “true” and “false” tokens.

Experimental results indicate that monoT5 is overall more effective than
monoBERT, but also more data efficient to train as well. In other words,
monoT5 appears to excel at few-shot learning compared to monoBERT. Push-
ing the experiment further, Nogueira et al. [174] explore the zero-shot setting

67

bert in multi-stage reranking

with monoT5. Unsurprisingly, the effectiveness of monoT5 in increases with
the model size 1, and the T5-3B model outperforms supervised discriminative
models such as BERT-maxP in a zero-shot manner.

Compared to BERT, which has an encoder-only design, T5 is an encoder-
decoder design leveraging the full transformer architecture proposed by
Vaswani et al. [236]. Nogueira et al. [174] argue that the decoder part of the
model makes important contributions to relevance modeling. The authors
investigate the impact of the relevance tokens choice on monoT5 effective-
ness. They investigated swapping the relevance tokens so they mean their
opposite, using alternative tokens such as “yes/no” and even arbitrary token
combinations, e.g., “apple/orange”. When the model is fine-tuned on suf-
ficient training data, the choice of the tokens does not matter. However, in
a low-resource regime, the authors observe that the choice of the relevance
tokens is quite important, as it becomes more difficult for the model to learn
how to associate arbitrary tokens with the relevance labels. This suggests
that the model is leveraging the decoder part of the transformer to build the
relevance matching machinery. Nonetheless, how exactly so remains an open
question.

Mirroring monoBERT, a pairwise approach using T5, similar to duoBERT
(see Section4.4), is a possible extension of monoT5. This approach, named
duoT5 is proposed by Pradeep et al. [193] where the input template is
extended to include a pair of documents:

Query: [q] Document0: [di] Document1: [dj] Relevant: (4.10)

The model is fine-tuned to predict “true” if di is more relevant than dj w.r.t
the query q, and “false” otherwise.

Similarly to duoBERT, Pradeep et al. [193] deploy monoT5/duoT5 in a
multi-stage reranking architecture achieving top results in the TREC Deep
Learning passage ranking task [44].

The advent of PLMs spawned a resurgence of generative approaches for
document ranking. Nogueira et al. [174] and Nogueira dos Santos et al. [179]
works demonstrate the effectiveness of sequence-to-sequence transformer
models for ranking, and provide a fresh perspective on well-studied language
modeling approaches to IR that date back to the late 1990s.

Finally, it is interesting to note that a hybrid discriminative-generative
approach to ranking can be considered. Liu et al. [133] propose a multi-task
learning approach to jointly learn the discriminative and the generative relev-
ance modeling in a unified pre-trained model. The underlying assumption is

1. T5 has three configurations: T5-base with 220M parameters, T5-large with 770M para-
meters and T5-3B with 3B parameters.

68

7 conclusion

that joint discriminative and generative retrieval modeling leads to more gen-
eralized, and hence more effective retrieval models. The authors cross-train
a retrieval task and one or more complementary language generation tasks.
For the generative PLM (i.e, BART), they feed the document and the query
into the encoder and the decoder respectively. Then, the query is generated
in a sequence-to-sequence manner and the relevance score is calculated by
the last token of the entire sequence using a feed-forward layer. Since the
bidirectional attentions in the BERT discriminative PLM cannot fully adapt to
the sequence-to-sequence training strategy, they implement a mix of attention
mechanisms including bidirectional attention, unidirectional attention and
cross attention to support sequence-to-sequence tasks. Their experiments
show that jointly learning discriminative tasks and generative task leads to
significant improvement on the MS MARCO passage ranking task.

7 Conclusion

We reviewed in this chapter the applications of PLMs in the context of
reranking approaches. We first covered the basic relevance classification
approach of the monoBERT model and the subsequent extensions proposed
to address the model’s input length limitation. These extensions include
aggregation-based models such as Birch, BERT-maxP, CEDR and PARADE,
but also attempts to redesign the transformer architecture for long input
sequences. Aside from the modeling aspect, we also present extensions
to the conventional pre-train the fine-tune training workflow to improve
effectiveness on the ranking task. In addition to BERT applications for
reranking, we discuss the body of work investigating the behavior of these
applications.

Considering the high computational cost of transformer-based rerankers,
various approaches were investigated to build more efficient models. While
one line of research explores how to train smaller BERT models using know-
ledge distillation, another rethinks the transformer architecture for the rank-
ing task (i.e., TK, TKL, and CK).

Nogueira et al. [174] and Nogueira dos Santos et al. [179] take a different
direction and explore generative approaches for ranking and highlight the
potential of sequence-to-sequence PLMs for document ranking.

With all these diverse research directions, we have covered the various
applications of BERT in the reranking component. In the next chapters,
we review the applications of BERT for first-stage retrieval. We start with
applications for improving sparse retrieval by enriching and expanding the
representations of queries and documents in the following chapter. We move
afterward to direct applications of BERT for dense retrieval in Chapter 6.

69

5
BERT for sparse retrieval

1 Introduction

State-of-the-art search systems, use multi-stage reranking pipelines in
which an efficient first-stage retrieves an initial set of candidates from the
document corpus, and one or more reranking models improve and prune
the ranking. Typically the first-stage retriever is a bag-of-words (BoW) re-
trieval method that fetches information from an inverted index, and estimate
relevance based on exact matches between queries and documents. There-
fore, initial retrieval is impacted by the vocabulary mismatch problem [70],
introduced in Section 2.2 as a core problem in information retrieval (IR).
As a consequence, relevant documents with no overlap with the query, or
even missing a key term from the query (e.g., use of synonyms), will not be
retrieved during the initial retrieval. Hence, they will never be presented to
the downstream reranking stages.

On the other hand, ranking models based on neural networks, such as
PLMs, are able to accomplish soft or semantic matches by learning distributed
representations, and can thus alleviate the vocabulary mismatch problem.
However, as we have seen so far, these models are deployed in the reranking
stages, and therefore suffer from a strict upper bound imposed by any recall
errors in the first-stage retrieval – which still relies on exact matches.

A potential solution would be to use PLMs to learn dense representations
to address the vocabulary mismatch problem directly in the initial retrieval
stage. This is, however, the subject of the next chapter. In this chapter, we
focus on another line of research which proposes to enrich or learn query
and/or document sparse representations based on PLMs, in order to achieve
better alignment. Such techniques revisit older expansion ideas discussed
in Section 2.2, which have a rich history in IR, dating back many decades
[31]. We start by presenting query expansion techniques based on pseudo-
relevance feedback in Section 5.2. In Section 5.3, we move to document
expansion methods which propose to expand or re-weight document terms
to alleviate the vocabulary mismatch problem. Instead of focusing on the
textual content (i.e., terms), models covered in Section 5.4 manipulate query
and document representations produced by neural encoders to learn better
sparse representations.

71

bert for sparse retrieval

2 Query Expansion

The basic idea behind query expansion is to augment a query with ad-
ditional terms that are likely to appear in relevant documents, and hence
mitigating the vocabulary mismatch problem. For example, the query “Covid
symptoms” can be augmented with the term “coronavirus”. The augmented
query increases the likelihood of matching relevant documents from the
corpus which use terms not present in the original query.

Recently, researchers revisited query expansion for improving the ranking
effectiveness of BERT-based models. Padaki et al. [182] propose generating
better queries for BERT-based rerankers 1. The authors leverage Google’s
query reformulation suggestions for the topic titles (keywords) to obtain nat-
ural language question candidates. They only retain well-formed questions,
semantically similar to the original topic descriptions. While reranking using
these suggestions was not as effective as reranking using the original topic
descriptions, they still improved over reranking with titles.

Alternatively, Naseri et al. [169] investigate how BERT can be leveraged for
query expansion through pseudo-relevance feedback (PRF). PRF leverages
the top-k documents from an initial retrieval in response to the initial query,
which are assumed to be relevant, to derive significant terms to add to the
query (see Section 2.2). Naseri et al. [169] devise an unsupervised contextu-
alized query expansion model, namely CEQE, leveraging BERT to improve
the selection of expansion terms. CEQE combines contextual representations,
produced by monoBERT for the top-k initial candidates, with probabilistic
language models to select expansion terms. Results show that CEQE im-
proves substantially over expansion with static embeddings, demonstrating
the superiority of contextual embeddings. However, improvements over the
traditional RM3 expansion method are smaller and come at a much higher
computational cost, since it requires BERT inference over the top-k candidates
from the initial retrieval.

On the other hand, Zheng et al. [270] propose an intuitive approach that
leverages the strength of BERT to select relevant document chunks for query
expansion. The authors devise BERT-QE which extends the pre-BERT neural
pseudo-relevance feedback (NPRF) model proposed by Li et al. [121]. While
NPRF uses feedback documents directly for query expansion, BERT-QE re-
fines the expansion using only relevant chunks from the feedback documents.
To do this, the model exploits monoBERT to rerank the initial retrieved doc-
uments in three sequential phases. First, the top-kd documents returned by
monoBERT are used as PRF documents. Then, these PRF documents are
segmented into fixed-length chunks, and the relevance of each chunk is eval-
uated independently w.r.t the query to identify the top-kc feedback chunks.

1. Lin et al. [129] argue that this work can be better qualified as query reformulation than
query expansion.

72

3 document expansion and term re-weighting

Finally, the relevance of a document is computed as the interpolation of its
score w.r.t the original query, and its score w.r.t the feedback chunks. The
effectiveness of BERT-QE expansion has been proven empirically on standard
TREC document collections (i.e., Robust04 and GOV2).

3 Document Expansion and Term Re-weighting

Mirroring query expansion, document expansion augment the original
document text with additional terms that are representative of their content
and topic or query terms for which the document can be relevant. While
document expansion dates many decades, it did not encounter the same
success as query expansion. However, this thread of research has recently
regained interest.

3.1 Query Prediction for Document Expansion

Nogueira et al. [178] propose the first successful application of a transformer-
based sequence-to-sequence model for document expansion, namely doc2query.
This last was trained, from scratch (i.e., not pre-trained), on the MS MARCO
collection to generate the query given its relevant passage. At inference time,
doc2query is used to generate a list of queries for which the input document
could be relevant. The generated queries are then appended, sequentially,
to the end of the original document as expansion terms without any special
markup to distinguish them from the original content. Finally, the expanded
documents can be indexed as usual, and used directly in a first-stage retrieval
in a multi-stage reranking architecture without any further modification.

In a follow up work, Nogueira et al. [175] explore the use of the pre-trained
sequence-to-sequence model, T5 [197] as replacement for the transformer
model in doc2query (which was not pre-trained), and called the resulting
document expansion model docT5query.

Experimental results show that BM25 results improve significantly when
using the expanded document index, on the MS MARCO passage ranking
test collection. The results also demonstrate, clearly, the superiority of using
the pre-trained T5 model compared to the non pre-trained transformer. The
authors also show that the improvements from document expansion and
query expansion using PRF (with RM3) are additive.

Manual inspection of the generated expansion queries reveal that doc2query/
docT5query tend to copy some terms from the input document. In other
words, the models perform term re-weighting by increasing the importance
(e.g., term-frequency for BM25) of key terms. Nevertheless, the models also
produce novel expansion terms (i.e., synonyms or semantically related terms)
not present in the original document, which represent 31% of the generated

73

bert for sparse retrieval

terms. These new terms are learned from the training data to mitigate the gap
between queries and relevant documents that might not contain query terms.
That is, doc2query/docT5query are learning how to bridge the vocabulary
mismatch.

Lin et al. [129] investigate further the impact of the novel expansion terms
compared to copied terms from the original content on the MS MARCO
passage ranking test collection. Their results show that expanding with copied
terms alone yield bigger gains, suggesting that term re-weighting has more
impact than attempts to enrich the vocabulary with novel terms. Nonetheless,
combining both types of terms lead to a big jump in ranking effectiveness,
indicating that both types are complementary, and the gain from both is
greater than the sum of their individual contributions. This observation
suggests complex interactions between copied and novel expansion terms
that are yet to be uncovered. An additional interesting result show that
discarding the original document content and using only the expansion
terms yields surprisingly high effectiveness, only slightly worse than the full
combination of content and both expansion types. This suggests that the
original content can, to a large extent, be replaced by the predicted queries
for BoW search [129].

3.2 Term Re-weighting based on Contextualized Representations

Alternatively to adding term copies to the original document content to
achieve term re-weighting, Dai and Callan [53] propose to directly estimate
the weight of a term from its context to improve first-stage retrieval. They
devise the Deep Contextualized Term Weighting (DeepCT) model, that is, a
new term weighting model based on BERT’s contextualized representations to
replace the traditional frequency-based term weighting in first-stage retrieval,
e.g., BM25 (se Section 2.2). The motivation behind this new weighting
model, is that term frequency does not necessarily indicate whether a term is
important or central to the meaning of the text, especially when the frequency
distribution is flat, such as in sentences and short passages. In contrast, BERT
have been shown to capture the characteristics of a term’s semantics and
syntax, and more importantly, how they vary across linguistic contexts (see
Section 3.7), offering a “better” way to estimate term importance.

DeepCT formulates term weighting as a regression problem, where the con-
textualized representation Tt,d produced by BERT for a term t in a document
d is used to estimate the importance yt,d of the term t:

ŷt,d = W · Tt,d + b (5.1)

where W and b are the linear combination weights and bias.
In order to train DeepCT, the model requires proper target term weights

which should reflect whether a term is essential to the document or not. Dai

74

3 document expansion and term re-weighting

and Callan [53] propose query term recall as an estimation of the ground truth
document term importance, that is:

QTR(t, d) =
|Qd,t|
|Qd|

(5.2)

where Qd is the set of queries for which the document d is judged relevant,
and Qd,t is the subset of Qd that contains t.

Query term recall is based on the assumption that search queries can reflect
the key idea of a document. Terms that appear in relevant queries are more
important than other terms in the document.

The training is then conducted on MS MARCO query-passage pairs.
DeepCT takes the passage as input and outputs term weight estimates using
Eq.5.1. The model is trained end-to-end to minimize the mean square error
(MSE) loss to the target QTR weights:

L = ∑
d

∑
t
(ŷt,d − QTR(t, d)) (5.3)

At inference time, DeepCT is applied on all documents in the corpus to
produce term weights. Then, Dai and Callan [53] propose a simple trick to
integrate DeepCT weights directly in existing indexing algorithms without
any modification. They first rescale term weights from [0..1] to integers in
[0..100] so they can be interpreted as term frequencies. Then, they create
pseudo-documents in which terms are repeated according to their term
weight. For example, if the term “apple” is assigned a weight of 3, it is
repeated 3 times “apple apple apple” so its term-frequency is equal to its
DeepCT integer-weight. The new corpus of pseudo-documents are then
indexed as usual, and retrieval can be performed on this index using any
BoW query.

Experimental results on the MS MARCO passage ranking test collection
show improvements over doc2query. However, gains using the subsequent
docT5query (which appeared after DeepCT) are more important. Never-
theless, DeepCT is limited to term re-weighting whereas docT5query and
doc2query can further add novel expansion terms to bridge the vocabulary
mismatch gap. In this regard, DeepCT can actually achieve better gains than
docT5query when restricting its expansion to copied terms (i.e., re-weighting
only). This suggests that DeepCT weighting approach is more effective than
re-weighting terms based on duplicates in the query predictions.

While not as effective as docT5query, it is important to note that DeepCT
uses BERTBase with an encoder-only architecture while docT5query uses
T5-base with the full encoder-decoder architecture and twice the size of
BERTBase. Hence, processing entire corpora with DeepCT is much faster.
Furthermore, DeepCT uses only one pass to compute term weights whereas
docT5query requires n (i.e., 40 in the original paper) passes to generate all

75

bert for sparse retrieval

n query predictions to be added to the original document. This addition
of terms raises another efficiency issue where keyword search latency is
increased due to the increased length of the documents. In contrast, DeepCT
is more efficient [150].

Later, Dai and Callan [52] propose HDCT, an extension of DeepCT for
handling long documents. Similarly to previous BERT applications covered
in the previous chapter, HDCT splits long documents into passages using a
sliding window of about 300 terms. Each passage is independently processed
as in DeepCT following the regression model defined in Eq.5.1. The term
weights are then rescaled to term-frequency like integers t fBERT, and we
obtain a bag-of-words vector representation for each passage pi:

P-BoWHDCT(p) = [t fBERT(t1, p), ..., t fBERT(tm, p)] (5.4)

At the end, HDCT generates a sequence of bag-of-words passage vectors:

{P-BoWHDCT(p1), ..., P-BoWHDCT(pn)} (5.5)

The importance weight of each term t in a document d is finally determined
by:

D-BoWHDCT(d) =
n

∑
i=1

pwi × P-BoWHDCT(pi) (5.6)

where pwi is the weight associated to the passage pi. Dai and Callan [52]
explore two passage weighting schemes: summing across passages pwi = 1,
and weight decay over passage position in the document, i.e., pwi = 1/i. The
authors find that the decay scheme is slightly more effective for news articles,
however, the summing scheme appears to be more robust across news articles
and web pages.

At its core, HDCT uses a passage-level pre-token regression task to train
the parameters of BERT and the regression layer parameters (i.e., W and
b in Eq.5.1). However, it is impractical to manually label the importance
of every term in every passage of a document. Thus, Dai and Callan [52]
propose three strategies to automatically generate training labels using: (1) a
content-based approach using metadata for cases where only the documents
are available, (2) a relevance-based approach for cases where rich query-
document relevance assessments are available, and (3) a pseudo-relevance
based approach using existing retrieval systems (e.g., BM25) for cases where
search queries can be collected but the relevance labels or user activities are
not accessible.

Experimental results show that the content-based weak-supervision strategy
achieve significant and robust improvements over standard term-frequency
based retrieval models. Using PRF-based weak-supervision from in-domain
queries is more effective than using document metadata whereas PRF from

76

3 document expansion and term re-weighting

out-of-domain queries is worse. Finally, using search-specific labels (i.e.,
relevance-based) such as queries and clicks can improve HDCT by aligning it
with the user search intents.

3.3 Combining Term Expansion with Term Re-weighting

While DeepCT has proven to be effective, it has a number of drawbacks. In
fact, the context-based weighting in DeepCT only learns the term-frequency
component of term weights, but still relies on the remaining components
of the BM25 scoring function (see Section 2.2) via the generation of pseudo-
documents. Moreover, DeepCT only assigns weights to terms that appear in
the document, which limits retrieval to exact matches. In other words, it does
not address the vocabulary mismatch problem, as opposed to the expansion
in doc2query which, however, relies on unchanged BM25 scoring.

Mallia et al. [155] combine the strengths of doc2query and DeepCT, and
propose DeepImpact which brings together the two key ideas: expansion and
context-based term-weighting. DeepImpact first expands documents using
docT5query, and then uses a BERT-based weighting model to estimate the
importance of terms in the expanded documents (i.e., both existing and ex-
pansion terms). The term weights are produced by feeding the contextualized
representations of the expanded documents produced by BERT to a two-layer
MLP. Differently from the regression task in DeepCT, DeepImpact weighting
model is trained with a pairwise loss between relevant and non-relevant
documents with respect to a query. To be more specific, the model weights
are optimized to maximize the difference between the scores of the relevant
and non-relevant documents w.r.t the query.

The trained model is then used to predict the weights of each term in the
expanded documents. Instead of using the real-valued weights produced
by the weighting model, the authors propose to quantize these weights to
a range of [1, 2b − 1], where b is the number of bits used to store the weight
which is set to b = 8. These quantized term-weights (i.e., integer weights) are
then used to index the expanded documents. Lin and Ma [128] argue that
it would be more accurate to call these weights learned impact scores, since
at inference time, query–document scores are simply the sum of weights
of document terms that are found in the query. This draws an explicit
connection to a thread of research in IR dating back two decades which
exploits query evaluation optimization based on integer arithmetic [4], as
opposed to floating-point operations used in BM25.

Experimental results on the MS MARCO passage test ranking collec-
tion demonstrate the effectiveness of DeepImpact which is better than both
docT5query and DeepCT. The results also show that the ranking perform-
ance of DeepImpact gets closer to the effectiveness of BM25 + monoBERT
reranking pipeline which is impressive considering that it is more than an

77

bert for sparse retrieval

order of magnitude faster. Interestingly, even if DeepImpact is more effective
than docT5query, they both yield the same performance when combined with
monoBERT in a reranking pipeline, since both models have similar recall (i.e.,
Recall@1000).

4 Learning Sparse Expansions and Representations

The methods we reviewed so far involve augmenting the textual content
of queries of documents or re-weighting existing terms. In contrast to these
text-based approaches, other directions explore how to learn sparse represent-
ations from the dense vector outputs of PLMs. The first direction investigates
approaches to learning term weights in the whole vocabulary. These ap-
proaches can be categorized as learned sparse-expansions as we will see in
Section 4.1. Different from the above methods that improve sparse represent-
ations in explicit symbolic space (i.e., terms of the vocabulary), methods in
the second direction focus on learning sparse representations for queries and
documents in the latent term space (i.e., dimensions in the sparse vector have
no clear concepts).

4.1 Learning Sparse Expansions

Bai et al. [8] propose SparTerm which aims at improving the representation
capacity of BoW methods for semantic-level matching, while still keeping
its advantages. SparTerm directly learn sparse term representations in the
full vocabulary space. It first predicts the term importance distribution in
the vocabulary space based on contextual token representations produced by
BERT. Based on this, it re-weights existing and expand terms simultaneously,
as opposed to DeepImpact which leverages docT5query for expansion prior
to term weighting. Then, a gating controller is used to ensure the sparsity of
the final representation.

To be more specific, SparTerm predicts term importance in the WordPiece
vocabulary space V based on the logits of the Masked Language Model
(MLM) layer. The final sequence-level representation is then obtained by
summing importance predictors over all tokens conditioned with a binary
activation from the gating controller. The authors explore two sparsification
controllers: (1) Literal-only where only tokens appearing in the input se-
quence are activated, and (2) expansion-aware where the activation is learned
to include tokens that have the potential to bridge the vocabulary mismatch
gap.

Later, Formal et al. [69] propose SPALDE to improve SparTerm, by intro-
ducing a logarithmic activation to prevent some tokens from dominating
the representation, and a FLOPS regularization [187] loss for learning sparse

78

5 conclusion

representations. In a follow-up work, Formal et al. [68] further improve the
effectiveness of SPLADE in their “v2” model using a better pooling mech-
anism for generating sequence-level representations, on the one hand. On
the other hand, the authors apply the training improvements developed in
the context of dense retrieval 2, including knowledge distillation from a more
powerful cross-encoder teacher and sophisticated hard negative mining. We
present these techniques in detail in the following chapter in Section 6.2.

4.2 Learning Sparse Representations

In contrast to weighting terms in the symbolic space, sparse representation
learning methods focus on building sparse vectors for queries and documents,
where representations are expected to capture semantic meanings of each
input text. In this way, queries and documents are represented in the latent
space. This thread of research dates back only a few years ago to 2018 right
before the “BERT revolution”.

SNRM [260] is the pioneer to learn sparse representations for first-stage
retrieval. SNRM learns standalone sparse representations for each query
and document to capture semantic relationships between them, which shows
better retrieval effectiveness over traditional baselines. We refer the reader to
the original paper for more details.

Recently, Jang et al. [102] proposed UHD-BERT, which learns extremely
high dimensional representations with controllable sparsity based on PLMs.
More specifically, it uses a BERT encoder to generate dense token repres-
entations for both queries and documents, and maps them to sparse high-
dimensional representation using a Winner-Take-all (WTA) model [153]. WTA
is fundamentally a linear layer that only preserves top-k activation and sets
the others to zero. This means that the outputs’ sparsity can be controller
through the parameter k. Finally, UHD-BERT generates the sparse query/-
document representation by token-wise max pooling.

5 Conclusion

Query and document expansion techniques have been explored for many
decades in an attempt to mitigate the vocabulary mismatch problem in IR.
With the arrival of BERT, the community regained interest in expansion
techniques to investigate how the strength of pre-trained contextualized rep-
resentations can be leveraged to improve the first-stage retrieval effectiveness.

2. It is important to note that sparse retrieval approaches (such as SPLADE) were de-
veloped recently in parallel with dense retrieval models. Notably, these models share the same
bi-encoder core design, which we present in Chapter 6, for generating the dense contextualized
representations of input tokens.

79

bert for sparse retrieval

As opposed to pre-BERT expansion techniques, document expansion with
models such as doc2query, DeepCT, or DeepImpact, using contextualized
representations, has shown to be effective and easy to plug and use. These
models shift the computationally expensive inference with PLMs from query
time to indexing time. On the other hand, query expansion techniques such
as CEQE show modest gains in effectiveness (e.g., compared to traditional
RM3) and come with a high computational cost.

More recent sparse representation learning approaches such as SPLADE,
fueled by traditional inverted indexing techniques, have seen a growing
interest, inheriting from desirable IR priors such as explicit lexical matching.

The next chapter covers a research thread that moves beyond sparse rep-
resentations to learned dense representations for retrieval. Retrieval is for-
mulated as a representational learning problem where the task is to learn
(transformer-based) encoders that map queries and documents into (single
or multiple) dense vectors, and relevance is computed based on semantic
matches between these vectors. The main motivation behind dense retrieval is
to mitigate the vocabulary mismatch problem by directly capturing semantic
matches from continuous dense representations.

80

6
BERT for dense retrieval

1 Introduction

Classical bag-of-words (BoW) information retrieval (IR) models, such as
BM25, have served as the workhorse of most modern search systems over the
past several decades (see Section 2.2). These models rely on exact matches
between the query and document terms, and carry out search efficiently with
inverted indexes. Such indexes encode statistical term properties (e.g., term
frequencies, term positions, etc), however they do not capture their semantics.
Instead, queries and/or documents can be expanded, prior to retrieval, to
bridge the vocabulary mismatch gap.

Over the past few years, advances in representation learning [16] resulted
in a shift away from sparse signals, mostly limited to exact matches, towards
continuous dense representations that are able to capture semantic meanings
of input texts for better relevance evaluation. This shift instigated a new
wave of neural models which directly perform first-stage retrieval using
learned dense encodings of documents and queries. This is known as dense
retrieval, and it is the focus of this chapter. Dense retrieval has the potential
to overcome the vocabulary mismatch problem that is known to plague exact
matching-based systems, by preforming semantic matching. Moreover, it
explores alternative architectures which encode queries and documents, sep-
arately, into dense representations, and relevance is then computed as simple
vector similarities (e.g., inner product) between the query and document rep-
resentations. This design is called bi-encoder 1 as it involves two encoders, in
contrast with the cross-encoder design exemplified by monoBERT 2 where both
query and document are fed together through one encoder, which performs
all-to-all attention across tokens in the input [98]. We present this general
design in more detail in Section 6.2.

As opposed to cross-encoder models which require extensive computation
on each candidate document, dense retrieval models can be easily applied
for full-collection retrieval on large corpora thanks to efficient algorithms for
inner product search. We present an overview of these algorithms, which try
to solve the nearest neighbour search problem, in Section 6.3.

Once we have defined the basic formulation of dense retrieval and support-
ing infrastructure, we move to the presentation of its different approaches.

1. Also called dual encoder, twin/two-tower architecture, or Siamese architecture.
2. All models presented in Chapter 4 are cross-encoders.

81

bert for dense retrieval

We first present “single-vector” approaches in Section 6.4, which encode each
query and each document into a single dense vector, and relevance is modeled
as a simple similarity function such as dot product between both vectors.
Then, we present “multi-vector” approaches, which attempt to improve the
effectiveness of the basic single-vector design, in Section 6.5. Multi-vector
bi-encoders encode queries and/or documents at a finer-granularity into
multiple dense vectors, and relevance is estimated using more complex simil-
arity functions. Finally, we present in Section 6.6 an overview of techniques
devised for improving the effectiveness of dense retrieval models including
knowledge distillation from more expressive architectures, hard negative
mining, and improved training.

2 Dense Retrieval

A typical dense retrieval model consists of two encoders to learn dense
representations for queries and documents independently, denoted Φq and
Φd, respectively. Then, a similarity function F (e.g., dot product or cosine
similarity) is used to calculate the relevance scores based on the learned
representations. In this way, the relevance of a document di from a corpus C
w.r.t a given query q is formulated as follows:

R(di, q) = P(Relevant = 1|di, q) ≜ F(Φq(q), Φd(di)) (6.1)

Each encoder is trained to map the sequence of query or document tokens
into dense representation vectors (usually, of fixed width), such that the
similarity, computed with F, is maximized for documents relevant to a
query and minimized for non-relevant documents to a query. The dense
representations typically consist of hundreds of dimensions, each with a
non-zero value, in contrast to sparse representations where the number of
dimensions is higher (typically, equal to the vocabulary size), with most
dimensions being zero.

The similarity function F between the query and document dense rep-
resentations is usually symmetric, i.e., F(Φ(u), Φ(v)) = F(Φ(v), Φ(u)). Im-
portantly, F needs to be computationally efficient to allow fast inference at
query time. Consequently, the similarity function is typically defined in
terms of vector similarity such as inner product or cosine similarity between
the query and document representations. Even though, F can be defined
by a deep neural network such as transformer layers or even a monoBERT
model, this would make full-collection retrieval impractical, and hence bind
the bi-encoder to a reranking setting. Nevertheless, we count a few designs
in the literature which involve a deep-neural based similarity mechanism, as
we will see in Section 6.5.

Considering this formulation, dense retrieval approaches are architecturally
similar to pre-BERT representation-based models discussed in Section 4.1,

82

3 nearest neighbour search

except that more powerful transformer-based encoders are used to encode
query and document texts. For the similarity function inner product is still
widely used, however richer query-document interaction mechanisms are
also explored, as we will cover in Section 6.5. We have already discussed
the thin line between semantic similarity and query-document relevance task
in Section 4.1. Even though, these tasks are fundamentally different, e.g.,
relevance is not symmetric, queries are usually shorter than documents, etc,
still they are addressed in the same manner with learned dense represent-
ations [129] using the same formulation in Eq. 6.1. Nevertheless, the task
differences can manifest in the design choices. For instance, should we learn
distinct weights for Φq and Φd to reflect the differences between queries and
documents? Should we even use the same architecture for both encoders? As
we will see, different design choices are used in the literature.

As opposed to multi-stage reranking models presented in Chapter 4, dense
retrieval models, including both encoders and similarity function, can be
fine-tuned end-to-end on labelled data, as well as out-of-domain datasets and
used in zero-shot transfer settings (even though their out-of-domain general-
ization abilities are limited [232]). Moreover, the bi-encoder design encodes
documents independently from queries. This allows the precomputing and
storing of document representations prior to query time, hence pushing
the expensive transformer-based document inference into the preprocessing
stage. As a result, bi-encoders offer a more efficient alternative for using
PLMs. Although the query representation needs to be computed at query
time, only a single inference is required, and over a relatively short text
sequence. Additionally, the similarity function is designed to be fast, and
retrieval from a large (precomputed) collection of document representations
can be efficiently implemented based on nearest neighbour search algorithms,
as we will discuss in the following section.

3 Nearest Neighbour Search

Despite all the progress bought by dense representation learning, dense
retrieval is no different from statistical sparse retrieval (e.g., BM25) developed
many decades ago in terms of retrieval process. This last boils down to:
(1) building an efficient queryable index for each document in the corpus,
(2) retrieving a set of k candidates for a given query, and (3) computing a
relevance score for each candidate. This index-retrieve-then-rank blueprint
has withstood the test of time and has rarely been challenged [159]. The
only difference though, is the use of dense vector indexes based on nearest
neighbour search, in place of inverted indexes.

Considering a corpus C = {di} comprising a large number of documents,
the dense representations Φd(di) of all documents di ∈ C can be precomputed

83

bert for dense retrieval

and stored prior to query time. Inferring over the entire corpus is computa-
tionally expensive, but this inference is parallel and can be distributed on a
large cluster. When a query q arrives, its dense representation is generated
through Φq(q), and then the retrieval task is about finding the top-k most
similar document representations measured in terms of F (Eq. 6.1). This is
known as the nearest neighbour search problem [221, 1].

The simplest approach to the nearest neighbor search is brute-force search,
which scans all the candidates and computes similarity scores one by one.
However, the brute-force search becomes impractical for corpora beyond a
certain size. Thus, most research resorts to an approximate nearest neighbour
(ANN) search [6, 125], which trades off a slight loss in precision for multiple
orders of magnitude improvements in speed. Guo et al. [82] categorize
existing ANN search algorithms into four major types: tree-based [12, 18],
hashing-based [55, 99], quantization-based [77, 103], and proximity graph
approaches [115, 154]. The earliest solutions to ANN search were based on
locality-sensitive hashing [99], but currently, methods based on hierarchical
navigable small world (HNSW) graphs yield state-of-the-art performance
based on a popular benchmark 3. Graph-based methods build the index by
retaining the neighborhood information for each individual data point toward
other data points or a set of pivot points. Then, various greedy heuristics are
proposed to navigate the proximity graph for a given query point. A popular
open-source library for ANN is Faiss [107], which is widely adopted in the
models discussed in this chapter.

4 Single-vector Bi-Encoders

We present here the first class of dense retrieval approaches which represent
each query and document with a single fixed-size dense vector, and the
similarity function is defined as a simple operation such as inner product.
Given these two characteristics, the retrieval task can be cast as a nearest
neighbour search problem with computationally efficient ANN solutions,
as discussed in Section 6.3. The high-level architecture of single-vector bi-
encoders is illustrated in Figure 6.1a.

Reimers and Gurevych [199] propose “sentence-bert”, a direct instansiation
of this basic bi-encoder design for sentence similarity tasks. The authors
use the same PLM for both encoders – since the sentence similarity task is
symmetric – and explore three pooling strategies to produce a single vector
representation per sentence: (1) take the representation of the [CLS] token; (2)
mean pooling across all contextualized output representations; and (3) max
pooling across all contextualized output representations. At inference time,
the trained encoder is applied to both sentences, and the cosine similarity

3. http://ann-benchmarks.com/

84

http://ann-benchmarks.com/

4 single-vector bi-encoders

(a) Single-vector Bi-Encoder (b) Multi-vector Bi-Encoder

Figure 6.1 – Two classes of bi-encoders for dense retrieval: (a) Single-vector models
encode queries and documents into single dense vectors with a simple
similarity function such as inner product, and (b) multi-vector models
encode queries and/or documents into a set of vectors and use a richer
similarity mechanism to capture relevance

between the two resulting vectors gives the similarity score. This model
provides an overview of the basic bi-encoder design, and empirical results
indicate that it is less effective than its cross-encoder counterpart, however it
is much faster.

Based on sentence-bert design, a number of bi-encoders were specifically
developed for dense retrieval. We present hereafter the dense passage re-
triever (DPR) [110], the approximate nearest neighbour negative contrastive
estimation (ANCE) [251], and their variants. It is interesting to note that these
models come from the NLP community (DPR) and IR community (ANCE),
both communities came closer to tackle dense retrieval [129].

Karpukhin et al. [110] present DPR in the context of a “retriever-reader”
architecture for question-answering. In this architecture, DPR is used to
retrieve candidate passages from a corpus, which are then processed by a
reader to identify the exact answer span to a given question. To accomplish
the retrieval task, DPR is trained with separate encoders for the question
and the passages from the corpus, and use the contextualized representation
of the [CLS] token produced by BERT as the output representation. The
relevance between a question and a passage is then computed in terms of
inner product between their dense representations.

DPR is fine-tuned end-to-end to maximize the similarity between questions
and their relevant passages (i.e., containing the answer span to the question),
and at the same time minimize the similarity between questions and and
non-relevant passages. To achieve this, the authors train DPR with negative
mining, where n negative passages are sampled for each positive passage
w.r.t a question. In the experiments, negative passages are sampled from
three different sources: (1) random, selected randomly from the corpus; (2)
BM25, selected from the passages returned by BM25 that do not contain the

85

bert for dense retrieval

answer (also known as hard BM25 negatives); and (3) in-batch negatives,
selected from other training instances in the same batch together with a mix
of passages retrieved by BM25. The results of the experiments indicate clearly
that approach (3) is the most effective negative sampling method, that is
efficient as well since the negative passages are already in the training batch.
As a consequence, training can be improved using larger batch sizes. Qu et al.
[195] explored exactly this possibility in RocketQA, and find that a larger
batch size (i.e., 4096 pairs) benefits effectiveness and performs as well as a
monoBERTLarge deployed on top of BM25 retrieval.

A later study by Ma et al. [144] show that a dense-sparse hybrid (linear)
combination of DPR with BM25 yields interesting gains over dense retrieval
alone. Similarly, Gao et al. [76] propose CLEAR which uses a bi-encoder to
complement the lexical model (BM25). Unlike DPR, CLEAR uses the same
encoder for both queries and documents with an additional special token
inserted before the usual [CLS] token to distinguish queries ([QRY]) from
documents ([DOC]). The final vector representation of the query/document
is obtained via mean pooling the output representations, and inner product
is used as the similarity function. The final relevance score is given by the
linear combination of the lexical and dense retrieval scores. Experimental
results confirm that sparse-dense hybrid models yield significant gains over
dense retrieval alone.

Building on DPR results, Xiong et al. [251] hypothesize that non-relevant
documents ranked highly by an exact-match BoW model such as BM25

are likely to be different from non-relevant documents ranked highly by a
PLM-based bi-encoder. Thus, sampling hard negatives from BM25 results
might not be the best strategy. Consequently, the authors propose ANCE
to identify better negative samples that are highly ranked by the bi-encoder
being trained.

ANCE adopts the same design as DPR, and takes the [CLS] output rep-
resentation from RoBERTa [138] as the representation of the input query or
document. However, ANCE opts for the same model for both its encoders
(i.e., Φq = Φd) as opposed to DPR. During training (fine-tuning), hard negat-
ives are sampled via ANN search over an index built from the representations
generated by the encoder being trained. Instead of constantly updating the
index after each batch, which is computationally impractical, the ANN index
is instead rebuilt after each m batches. To avoid a cold start, the authors use
BM25 negatives to begin the training process.

ANCE is fine-tuned on positive query-document pairs from the MS MARCO
passage ranking collection, and negative sampled from the ANN index (built
from a checkpoint of the encoder dating back m batches) using a negative
likelihood loss function.

Experimental results on the MS MARCO passage ranking task demonstrate
that ANCE training scheme is more effective than DPR’s. The authors also

86

5 multi-vector bi-encoders

report results on the MS MARCO document ranking task from the 2019

TREC Deep Learning Track [45]. In order to handle long document, ANCE
is extended following the same splitting technique used in Dai and Callan
[51]: FirstP, which takes the first 512-token passage of the document, and
MaxP, which takes the best-scoring passage. Results show that MaxP is more
effective than FirstP which is consistent with cross-encoders [51].

Zhan et al. [264] propose an extension of the ANCE model, coined AD-
ORE, which additionally fine-tunes the query encoder. To be more specific,
ADORE first follows a similar training scheme as ANCE to fine-tune the
query/document encoder (shared weights). While the document encoder
weights are frozen after this training stage, the query encoder is further
fine-tuned to directly optimize IR metrics with dynamically sampled hard
negatives. The results demonstrate the effectiveness of this additional query
encoder fine-tuning.

DPR and ANCE provide a good overview of a key issue in the design
of bi-encoders for dense retrieval, that is selecting negative samples for
training. Empirical results from both approaches suggest that the basic single-
vector approach to dense retrieval is less effective than cross-encoders, but
generally more effective than lexical BM25 retrieval. Nevertheless, this loss in
effectiveness was to be expected with the ablation of cross-attention between
queries and documents. More importantly, bi-encoders have the advantage
of performing full-collection retrieval as opposed to multi-stage reranking
with cross-encoders. When it comes to the choice of same query/document
encoder or separate encoders, the best choice is still unclear and each model
adopts a different approach. Finally, empirical evidence indicate the potential
of dense-sparse hybrids compared to dense retrieval alone.

5 Multi-vector Bi-Encoders

The main motivation behind the bi-encoder design is to trade off the high
effectiveness of cross-encoders for efficiency gains that would enable full-
collection retrieval with learned dense representations. As we have seen in
the previous section, single-vector systems are the most basic instansiation of
the bi-encoder design. Owing to the use of simple similarity functions such
as inner product, the retrieval task is easily cast as a nearest neighbour search
problem, with efficient scalable off-the-shelf solutions (see Section 6.3). While
this can be much faster compared to reranking, single-vector bi-encoders are
still less effective than cross-encoder rerankers (except for RocketQA) which
benefit from cross-attention (i.e., interaction) between the query and the
document tokens across all transformer layers in the PLM. Thus, researchers

87

bert for dense retrieval

started to explore different effectiveness/efficiency trade-offs by relaxing the
constraints of the single-vector design.

MacAvaney et al. [147] investigate how to enhance the efficieny of docu-
ment reranking by precomputing the token representations of documents.
The proposed model, called PreTTR, is a hybrid model between the bi-encoder
and cross-encoder architecture. PreTTR is a modified monoBERT model, in
which lower layers are used for encoding the query and the document separ-
ately using masking to avoid query-document cross-attention, while the upper
layers are used as usual with all-to-all attention between query and document
tokens. Considering that monoBERT has L transformer layers and following
the bi-encoder terminology, the lower L − k layers represent the encoders
(Φq and Φd) separated via masking, and the upper k layers represent the
similarity function F. This means, that the document representations from
the L − k first layers can be precomputed and stored (offline part), while the
query needs to be encoded online. Then, the precomputed document and
online query contextual token representations are fed into the k last layers of
monoBERT to estimate the relevance score. The number k of interaction layers
is configurable to a trade-off between the model effectiveness and efficiency.

Similarly, Gao et al. [73] propose the MORES framework where queries
and documents are encoded separately with two encoders, but instead of
a simple similarity function, the authors devise transformers blocks with
one-way attention from query to document representations for relevance
estimation.

While these hybrid designs offer some gains in efficiency compared to
cross-encoders, their transformer-based similarity functions, however, restrain
them to the reranking setting, as existing ANN solutions do no support these
neural functions. In the remainder of this section, we focus on alternative bi-
encoder architectures relaxing the single-vector representation constraint by
representing queries and/or documents with multiple representation vectors
as illustrated in Figure 6.1b.

5.1 Multiple Query Representations

Humeau et al. [98] proposed Poly-encoders, an architecture with an addi-
tional learned attention mechanism to represent more global features for the
task of response selection. Poly-encoders use two separate models to encode
contexts and candidates. The candidate is encoded into a single vector, while
the input context, which usually includes more information than a candidate,
is represented with m vectors instead of just one. The m vectors are then
attended using the candidate vector to get the final score (one-way attention).
The value of m gives a trade-off between inference accuracy and speed.

It is important to note that different from general retrieval tasks where
retrieved texts (documents) are usually longer than input texts (queries), the

88

5 multi-vector bi-encoders

response selection task in the work of Humeau et al. [98] has longer input
texts than retrieved texts, and thus the multi-vector representation model is
actually employed for the “query encoder”.

5.2 Multiple Document Representations

Based on the same intuition, Luan et al. [141] raise the limited capacity
of single-vector representation to support retrieval of documents which are
often lengthy and have diverse aspects in them, while queries are usually
short and have focused topics. The authors propose Multi-Vector BERT (ME-
BERT), a bi-encoder model which encodes queries into single vectors and
document into multiple vectors. The query representation is defined as the
contextualized embedding of the special token [CLS], and the multi-vector
document representation as the contextualized vectors of the first m tokens
in the document. The value of m is always smaller than the total number
of tokens in the document. Finally, the relevance score is calculated as the
largest inner product yielded by each document vector with the unique query
vector.

ME-BERT was trained using a combination of BM25 negatives as well
as in-batch negatives, as in DPR. Experimental results show that the ME-
BERT model yields strong performance compared to its DE-BERT single-
vector case (with m = 1, meaning the [CLS] token is used for the document
representation), as well as DPR. However, it is as performant as ANCE (which
came after) which uses single-vector representations.

Additionally, Luan et al. [141] combine the dense retrieval results with
sparse BM25 retrieval using a linear combination of scores to build a more
effective dense-sparse hybrid model; similarly to [144].

5.3 Per-Token Representations and Late Interactions

In Khattab and Zaharia [112], the authors push the multi-vector idea to its
logical extreme and generate a dense vector for each token in both queries
and documents in their proposed ColBERT model. For relevance estimation,
the authors devise “late interactions” a rich yet scalable similarity function to
model fine-grained matching signals between the query-document token-level
dense vectors, as shown in Figure 6.2.

Formally, given a query q with n tokens q1:n and a document d comprising
m tokens d1:m, ColBERT first encodes them by feeding them through the
same BERT encoder (Φq = Φd = Φ), but distinguish input sequences that

89

bert for dense retrieval

Figure 6.2 – The architecture of ColBERT [112]

correspond to queries and documents by prepending a special token [Q] to
queries and another token [D] to documents, after the [CLS] token:

Φ(q1:n) = BERT([CLS][Q]q1...qn[MASK]...[MASK]) (6.2)

Φ(d1:m) = BERT([CLS][D]d1...dm) (6.3)

When encoding queries, if the query has fewer than a predefined number
of tokens, it is padded with BERT’s special [mask] tokens. This padded
sequence of input tokens is then passed to the BERT encoder as shown in Eq.
6.2. This padding is to be considered as query augmentation, a step that allows
BERT to produce query-based embeddings at the positions corresponding to
these masks. Query augmentation is intended to serve as a soft, differentiable
mechanism for learning to expand queries with new terms or to re-weigh
existing terms based on their importance for matching the query [112].

The relevance (similarity) score is then computed using the MaxSim opera-
tion, which identifies the closest-matching document token among Φ(d1:m) ∈
Rm×D for each query token in Φ(q1:n) ∈ Rn×D, D being the vector dimension:

R(d, q) ≜ F(Φ(q1:n), Φ(d1:m)) =
n

∑
i=1

m
max

j=1
Φ(qi) · Φ(dj) (6.4)

Since the MaxSim operation is not practical for full collection retrieval,
ColBERT adopts an efficient two-step process in order to perform top-k
ranking. The authors use the Faiss library [107], to build a dense index of
the token-level representations for each document in the corpus. Then at
query time, ANN search on this index is employed, in a first step, to fetch

90

5 multi-vector bi-encoders

the top k′ (e.g., k’ = k/2) most similar token representations for each query
token representation in Φ(q1:n). Then, each of the retrieved representations
is mapped to its document of origin, producing n × k′ document IDs, only
K ≤ n × k′ of which are unique. These K documents likely contain one or
more representations that are highly similar to the query embeddings. For the
second step, the retrieved candidates list is refined by exhaustively reranking
only those K documents according to the MaxSim operator in Eq. 6.4. In
the end, this two-step ranking process resembles the multi-stage reranking
architecture, where the nearest neighbour search on the dense-index search
replaces the usual first-stage retrieval on inverted indexes.

ColBERT has, however, the advantage of being differentiable end-to-end.
The whole model is fine-tuned using triples of ⟨q, d+, d−⟩ with query q,
positive document d+, and negative document d−, to produce a score for
each document individually and is optimized via pairwise softmax cross-
entropy loss over the computed scores of d+ and d− w.r.t q.

By decomposing relevance modeling into token-level computations, Col-
BERT offers an efficient alternative to cross-encoders with modest degradation
in effectiveness compared to monoBERT reranking. However, this added
expressivity comes at a cost: late interactions impose an order-of-magnitude
larger space footprint than single-vector models, as they must store billions
of token-level vectors for Web-scale collections.

Similarly to ColBERT, Gao et al. [75] devise a new model, named COIL,
but query-document interactions are restricted to exact matching tokens only.
With COIL, the main contribution is a new lexical matching scheme that uses
vector similarities between query-document overlapping token contextual-
ized representations to replace heuristic scoring used in classical methods.
To support full-collection retrieval, the authors devise new contextualized
inverted lists, in which representations are grouped by their surface tokens to
facilitate exact match search of query tokens. Experimental results show that
COIL performs on par with the richer all-to-all matching in ColBERT on the
MS MARCO passage ranking task, provided that the inner product between
the [CLS] representations of the query and document is added to the MaxSim
score from the exact matches. However, results on long document ranking
show that adding the [CLS] matching does not bring additional gains over
considering only the score from the exact matches.

UniCOIL [128] further simplifies the approach in COIL by learning a single
weight per term (i.e., the dimension of the dense vector is compressed to 1)
to build a sparse retrieval model, extending previous methods like DeepCT
and DeepImpact which we discuss in Chapter 5.

Recently, Santhanam et al. [217] address the challenge posed by the index
space-requirements of multi-vector models, and propose ColBERTv2 which
improves the quality of ColBERT while reducing its space footprint. The
authors make the observation that late interactions naturally produce a

91

bert for dense retrieval

lightweight semantic space and show that token representations produced by
ColBERT localize in a small number of regions corresponding to contextual
“senses” of a token. Hence, this semantic space can be summarized, with
high precision, by a set of cluster centroids along with minor refinements at
the dimension level. ColBERTv2 leverages this observation to greatly reduce
storage requirements and achieve state-of-the-art dense retrieval quality.

To be more specific, ColBERTv2 follows the same architecture as ColBERT,
but it is trained using a combination knowledge distillation and hard negative
mining to boost its quality (we discuss these techniques in the next Section
6.6). Moreover, ColBERTv2 uses a residual compression mechanism on top of
the encoder outputs to reduce the space footprint of late interaction. Given
a set of cluster centroids C1:N , ColBERTv2 maps each token representation
v (i.e., Φ(t)) to its closest centroid Ci, and adds a quantized vector r̃ that
approximates the residual r = v − Ci. At query time, the centroid index i,
and the residual r̃ are used to recover an approximate ṽ = Ci + r̃.

To support fast nearest neighbour search, ColBERTv2 precomputes all
document (i.e., passages) representations and oraganizes them as follows:

1. The set of centroid representations C1:N is obtained by applying k-means
clustering to the embeddings produced by invoking the BERT encoder
over only a sample of the entire corpus;

2. The token-level representations of all documents in the corpus are
produced using the BERT encoder and applying the centroid-based
compression described in the previous paragraph;

3. The representations are grouped by their corresponding centroid ID
to create inverted lists, similar to COIL. This allows fast query-token
nearest neighbour search.

At query time, the retrieval follows the same two-step process defined in
ColBERT, but this time the inverted lists are used to retrieve the candidate
documents. That is, for every token representation in the query, the nearest
centroids are found. Then, the inverted lists are used to identify the token
representations, in the corpus, that are closest to these centroids. From here,
the second step is used to refine the candidate documents containing these
“nearest” representations using the MaxSim operator.

The multi-vector extension of the basic single-vector bi-encoder design
explores different efficiency/effectiveness trade-offs. Notably, the late interac-
tion mechanism proposed in ColBERT via the MaxSim operator supports rich
token-level interactions while remaining compatible with efficient nearest
neighbour search solutions available in existing libraries. The result is a dense
retriever whose effectiveness is comparable to monoBERT reranking, but at
a fraction of the query latency. However, the expressivity of late interaction
imposes a large space footprint making retrieval impractical for large-scale

92

6 enhancing the effectiveness of bi-encoders

corpora. This challenge has been tackled in the recent ColBERTv2 using
residual compression. In general, the progress in dense retrieval has been
accompanied with a growing interest in vector compression methods to re-
duce the dense index space footprint. In the context of single-vector systems
for example, BPR [252] learns to directly hash embeddings to binary codes
using a differentiable tanh function. JPQ [263] and its extension, RepCONC
[265], use Product Quantization (PQ) [81, 104] to compress embeddings, and
jointly train the query encoder along with the centroids produced by PQ
via a ranking-oriented loss. The centroid-based encoding in ColBERTv2

can be viewed as an extension of PQ to multi-vector representations (i.e.,
compression via splitting single vectors vs. matrix representations – one per
token – into sub-vectors).

6 Enhancing the Effectiveness of Bi-Encoders

Bi-encoders allow for more efficient inference owing to the ability to pre-
compute document representations, which enables fast similarity search
using efficient nearest neighbour solutions, when presented with a candidate
query. However, the basic single-vector approach to dense retrieval while
being much faster, suffers losses in ranking quality. Menon et al. [157] ex-
plore the reasons behind this performance gap between bi-encoders (single
vector) and cross-encoders: Does the re-ranking performance gap reflect a
limitation in the inherent capacity of the bi-encoder’s factorized (separate)
representation, or in its training? The authors demonstrate that bi-encoders
suffer from over-fitting and exhibit, thus, a poor generalization ability rather
than capacity. This is consistent with the results obtained in the zero-shot
evaluations on the BEIR benchmark [232].

Several works explored means of improving bi-encoder effectiveness us-
ing more expressive similarity functions such as PreTTR, MORES or the
more efficient ColBERT late interaction presented in Section 6.5. However,
the richer interaction mechanisms with multi-vector approaches present im-
portant drawbacks: Inadequacy of existing nearest neighbour search with
transformer-based similarity functions (e.g., MORES and PreTTR), and the
large space footprint of multi-vector dense indexes even if the similarity
function is amenable to nearest neighbour search (e.g., ColBERT).

Considering these challenges, another body of work find it more fruitful
to focus instead on addressing the fragility of single-vector models by intro-
ducing new supervision paradigms for negative mining, better pre-training
for dense retrieval, and distillation from more expressive architectures. We
present these works by their intervention: in the pre-training stage in Section
6.1, or the fine-tuning stage in Section 6.2.

93

bert for dense retrieval

6.1 Enhancing pre-training

In Gao and Callan [71], the authors study the internal structure of PLMs
and find that models such as BERT directly out of pre-training have a non-
optimal attention structure. In particular, they were not trained to aggregate
sophisticated information into a single dense representation (i.e., [CLS] output
representation). To resolve this discrepancy, they propose to pre-train – on
the usual MLM objective – towards dense encoder with a novel Transformer
architecture, Condenser, where MLM prediction CONditions on DENSE
Representation.

Specifically, the transformer layers in a PLM (e.g., BERT) are divided
into Le early layers and Ll later layers, and an additional Condenser head
comprising Lh more layers is added on top. The design includes a short
circuit (skip-connection) from the output of the early layers directly to the
Condenser head, and only the final [CLS] representation from the later layers
is fed to the Condenser head. Since the later layers can refine the token
representations (i.e., produced by the early layers) but can only pass new
information through the [CLS] representation. The authors claim that the
late [CLS] representation is therefore required to aggregate newly generated
information in the later layers, and the Condenser head then condition on
[CLS] to make the MLM predictions. Meanwhile, skip connecting the early
layers, removes the burden of encoding local information and the syntactic
structure of input text, focusing [CLS] on the global meaning of the input
text. Layer numbers Le and Ll control this separation of information.

After pre-training, the Condenser head is discarded and the weights of
the early and late layers can be a drop-in weight replacement for a typical
LM like BERT. Experiments show that Condenser improves over standard
pre-trained BERT by large margins on various text retrieval and similarity
tasks.

In a follow-up work, Gao and Callan [72] propose coCondenser, which
adds a self-supervised target-corpus pre-training using a contrastive loss to
address the fragility of bi-encoders to training-data noise. The authors also
propose better negative mining through a two-round training: In the first
round, the retriever is trained with BM25 negatives. The first-round retriever
is then used to mine hard negatives to complement the negative pool. The
second round retriever trains with the negative pool generated in the first
round.

6.2 Enhancing fine-tuning

In order to improve the fine-tuning of bi-encoder retrievers which are often
very sensitive to the specifics of supervision, a line of work propose two

94

6 enhancing the effectiveness of bi-encoders

directions: distillation from more expressive architectures [88, 130], including
explicit denoising [195], and hard negative sampling [251, 131].

We have already discussed negative mining in DPR and ANCE in Section
6.4. In RocketQA [195], the authors design an optimized fine-tuning pipeline
that not only includes large batch training, but also a sophisticated denoised
negative sampling. They use a cross-encoder to remove the top-retrieved
documents that are likely to be mislabelled (i.e., false negatives), and use high-
confidence labelled examples from this cross-encoder for data augmentation.
While this is very effective, the entire pipeline is very heavy in computation.

Another interesting direction is knowledge distillation. We have already
presented distillation in Section 5.1 as a means for training smaller student
models with reduced inference costs while keeping the same effectiveness as
the teacher model. However, in this current thread of research, researchers
explore knowledge distillation as a means for distilling “more expressive”
cross-encoders into “less expressive” bi-encoders.

Hofstätter et al. [88] propose the first distillation method from cross-
encoders to bi-encoders through a three-step process:

1. A cross-encoder teacher is fine-tuned using standard (query, relevant
document, non-relevant document) triples (e.g., from the MS MARCO
passage ranking collection);

2. The fine-tuned teacher is used to score all the training triples to generate
new soft labels (i.e., this inference is done once and the labels are cached
for later use);

3. The bi-encoder student is fine-tuned with the soft teacher labels via
standard knowledge distillation techniques.

In their experiments, BERT Base is used to initialize the monoBERT teacher,
and the bi-encoder student is based on a DistilBERT encoder.

The authors devise a new distillation loss for step (3), called Margin Mean
Squared Error (MarginMSE) which optimizes the margin between the scores
of relevant and non-relevant documents w.r.t a query. Given a training triple
⟨q, d+, d−⟩, the soft labels from the teacher model for both relevant and non-
relevant documents d+ and d−, respectively, are used to optimize the student
model as follows:

L(q, d+, d−) = MSE(Ms(q, d+)− Ms(q, d−), Mt(q, d+)− Mt(q, d−)) (6.5)

where Ms(q, d) and Mt(q, d) are the scores of the document d w.r.t the query
q given by the student and teacher model, respectively. MSE is the standard
Mean Squared Error between the predicted scores S and the targets T, that is:

MSE(S, T) =
1
|S| · ∑

s∈S,t∈T
(s − t)2 (6.6)

95

bert for dense retrieval

Interestingly, this distillation process can easily be extended to ensembles
of teachers (e.g., mean average their scores to create the soft teacher labels) .

Experimental results on the MS MARCO passage ranking test collection
demonstrate the effectiveness of distilling from more powerful cross-encoder
architectures into less powerful bi-encoders. This is consistent with reranker
distillation results presented in Section5.1.

Instead of precomputing teacher scores, Lin et al. [130] compute the teacher
soft labels on the fly during knowledge distillation. Because of the high
inference costs of cross-encoders, the authors use the faster but sufficiently
effective ColBERT model as a teacher. The authors call this model TCT-
ColBERT, where TCT stands for Tightly Coupled Teacher. The student model
is optimized using a loss function comprised of two terms: The fist term is
defined as a the softmax cross-entropy loss over the original gold labels, and
the second term captures the KL-divergence between the distribution of the
teachers soft labels and the student scores. As opposed to Hofstätter et al.
[88] where the student is based on DistilBERT, TCT-ColBERT uses the larger
BERT Base for the student model (i.e., which is the same size as the encoder
model of the ColBERT teacher). In the experiments on the MS MARCO
passage collection, TCT-ColBERT yields on-paer performance with ANCE.
The authors also explore hybrid combinations with sparse retrieval results
from either BM25 or docT5query which bring gains over dense retrieval
alone.

In a follow-up work, Lin et al. [131] improve TCT-ColBERT in their “v2”
model. The authors leverage an initially trained TCT-ColBERT to sample
hard negatives for improving the effectiveness of the ColBERT teacher. This
ColBERT model is then distilled into a bi-encoder student model.

Later, Hofstätter et al. [90] argue that training batches commonly assembled
randomly are likely to contain many low information training examples. The
authors thus propose a principled approach to building training batches.
The training queries are first clustered using k-means based on an initial
bi-encoder representations. Then, instead of randomly selecting queries to
include in a batch, queries are sampled from the same topic cluster for the
same batch so that contrastive examples are more informative. This query
sampling method is called “Topic Aware Sampling” (TAS). Furtheremore, the
authors propose to organize the training samples from “easy” to “dfficult” as
defined by the margin from the teacher label. The authors call this “balanced”
sampling, combined with TAS this gives the full TAS-B technique.

Hofstätter et al. [90] experiment with an ensemble of teachers including
a cross-encoder and ColBERT, and the student model remains a DistilBERT-
based bi-encoder. Results indicate that the TAS-B batch construction improves
significantly over random batch construction, and gains are additive with the
sparse docT5query method. Beyond this experimental setting, the proposed

96

7 conclusion

TAS-B technique can be viewed as a general approach to constructing training
batches for various dense retrieval models.

Contemporaneously, Zeng et al. [261] propose a generic curriculum learning
based optimization framework called CL-DRD that controls the difficulty
level of training data produced by the cross-encoder teacher model. CL-CRD
is used to optimize the bi-encoder student by increasing the difficulty of the
training samples. To be more specific, for each training query, the top-200
documents returned by the student dense retrieval model are reranked by the
teacher model, and then divided into three groups: (1) the pseudo-relevant
group comprising the first K ranked documents, (2) the hard negative group
comprising the next K′ documents, and (3) the remaining K′′ documents
in the ranked list produced by the teacher model. Then for each training
interaction in the curriculum, a fixed number L = K + K′ + K′′ documents
are selected with increasing numbers of documents from the pseudo-relevant
group (i.e., increase K) after each iteration since this group represents the
most difficult instances.

The student model is optimized with a listwise loss function to enforce it
to learn preferences between documents sampled: Within the group (1) (high
difficulty), from the group (1) compared to group (2) and group (3), and
from the group (2) compared to group (3) (low difficulty). This means that,
when K is small, the number of difficult fine-grained preferences in the group
(1) is low, and since K increases after each iteration more difficult training
instances are considered. In their experiments, the authors experiment with
both the single-vector TAS-B model and the multi-vector ColBERTv2 model.
For both models, applying the CL-CRD framework yields significant gains in
performance.

In Section 6.5, we introduced ColBERTv2 and how it addresses the high
storage requirements of ColBERT, however it also uses knowledge distillation
with negative mining to improve its effectiveness. Starting from the original
ColBERT checkpoint [112], the authors index all documents in the training
corpus with ColBERTv2 compression. Then, for each training query, the top-k
documents are retrieved from the index and a cross-encoder is used to rerank
them. Finally, training triples are constructed form the top-k candidates by
selecting a highly-ranked document, and lower-ranked document w.r.t the
query. These training examples, along with in-batch negatives, are used to
distill the cross-encoder scores into the ColBERT student architecture using
KL-divergence loss.

7 Conclusion

Over the past few years, there has been a lot of progress in learning dense
representations for retrieval which we have covered in this chapter. Dense

97

bert for dense retrieval

retrieval approaches adopt a bi-encoder architecture, in which queries and
documents are encoded independently. We first presented the simplest dense
retrieval approaches which use a single-vector bi-encoder, that represents
queries and documents with single dense representations, and defines rel-
evance in terms of inner product between the two representations. Owing
to this simple formulation, efficiency is greatly improved, however single-
vector systems suffer from important losses in ranking quality compared to
cross-encoders.

Then, we review works which explored different efficiency/effectiveness
trade-offs, and proposed to relax the single-vector design. Notably, ColBERT
propose to represent queries and documents with their token-level dense
vectors, and propose the rich yet scalable late interaction mechansim which
is amenable to a two-step retrieval process with existing nearest neighbour
search solutions. But, as we have seen, decomposing relevance modeling
into token-level computations imposes an order-of-magnitude larger space
footprint than single-vector models. While compression techniques can be
used to address the space challenge, a lot of works prefer to focus instead on
addressing the fragility of single-vector models by improving their training.

If dense retrieval yields promising performance exceeding sparse retrieval,
dense-sparse hybrids appear to be more effective than either alone, suggest-
ing that they provide complementary relevance signals. Nevertheless, zero-shot
evaluations of various PLM-based models conducted in Thakur et al. [232] on
the BEIR benchmark, reveal that dense retrievers were overall less effective
than BM25. Dense retrieval models which are usually fine-tuned on MS
MARCO data (i.e., in a supervised manner) appear to suffer from poor gen-
eralization ability to out-of-distribution queries and documents. Addressing
this generalizability is an interesting area of research.

On the other hand, it is important to highlight the fact that most bi-encoder
models report results on passage retrieval tasks, and extensions to long
document collections in the BEIR benchmark truncate the document to its
first passage (e.g., the first 256-512 tokens). We have also seen the use of
the MaxP strategy from Dai and Callan [51] for evaluating ANCE on long
document retrieval tasks. However, there has not been as much investigation
in this direction as we have seen in Chapter 4 for reranking.

Finally, despite all of this progress, most IR models today follow, with a
different infrastructure stack indeed, the same index-retrieve-then-rank process.
Metzler et al. [160] stop to rethink this standard blueprint, and propose
a vision to build model-based IR systems by exploiting powerful PLMs.
Within this proposed framework, the index is embedded into the model itself
during the training process, and the retrieval and reranking components are
implemented with model inference. Recently, Tay et al. [227] implemented
this new IR paradigm based on the T5 model. The significant performance is
achieved by training the model with indexing (i.e., documents to docids) and

98

7 conclusion

retrieval (i.e., queries to docids) in a multi-task setup. Alternatively, Zhou et al.
[271] presented DynamicRetriever, which implements the model-based IR
paradigm using BERT. This new IR paradigm seems exciting, however these
works are only preliminary explorations and there are still many challenges
to be addressed.

99

Part III

Contributions

7
Highlighting exact matches for

ad hoc ranking with transformers

1 Introduction

The vocabulary mismatch problem is a major limitation of IR models based
on classical BoW representations whose modeling capabilities are restricted
to exact matching. We have shown in the state-of-the-art overview, in Chapter
2, that with the advent of deep learning, IR models evolved to integrate
continuous representations which mitigate the vocabulary mismatch problem
by enabling semantic-based matching.

Developments in neural models based on dense representations brought
the task of relevance matching in IR closer to the task of semantic matching in
NLP (for example, to detect if two sentences are paraphrases of each other).
Models for these tasks share many architectural similarities, and there has
been cross-fertilization between the two communities [129]. Nevertheless,
relevance matching cannot be reduced to only semantic similarity. Guo et al.
[83], Mitra et al. [165], Mitra and Craswell [164] emphasized the importance of
modeling lexical matches using deep neural networks for document ranking.
For queries containing rare terms such as “pekarovic land company”, it is
easier to estimate the relevance based on exact matches of the rare term
“pekarovic”. On the other hand, for a query like “What day is the winter
solstice?”, relevant documents are more likely to contain “21st december”
than the term “day”. Consequently, assessing the relevance of a document
w.r.t a query requires the model to both (1) check for strict, exact term
matches (e.g., key entities in the query) and (2) compute semantic similarity
generalizing across related concepts.

Pre-BERT models emphasize the difference between semantic and relevance
matching, such as DRMM [83] and KNRM [250], which integrate exact
match counting in their neural network via histograms and gaussian kernels,
respectively, or DUET [165], which identifies good patterns for lexical and
semantic matches jointly. In contrast, recent developments with contextual
pew-trained language models (PLMs) are now erasing the distinction between
the semantic similarity and document ranking threads of work. The same
generic model is used for both relevance and semantic matching tasks.

We propose a refined ranking approach emphasizing exact matching sig-
nals by introducing special marker tokens to promote the exact term overlap

103

highlighting exact matches for ad hoc ranking with transformers

Table 7.1 – Extracts from top ranked passages by Vanilla BERT for the query: “causes
of left ventricular hypertrophy” from MS MARCO [9]

ID Passage

47203 Causes of Right Ventricular Hypertrophy. There are four usual
causes of right ventricular hypertrophy...

5197133 The last common cause of right ventricular hypertrophy is the
ventricular septal defect...

7504775 The most common causes of right ventricle hypertrophy (RVH)
are diseases that damage the lung...

between the query and the document in the textual input. We believe that
exact matching signals are still important for effective relevance matching.
Therefore, the approach we propose incorporates the traditional exact match-
ing intuition into recent PLMs to precisely improve their effectiveness on the
document ranking task.

The remainder of this chapter is organized as follows. Section 7.2 presents
the motivation of our proposition and introduces the research questions
we study. Section 7.3 details the approach and the marking strategies we
investigate. In Section 7.4 we describe the experimental setup and then
discuss the evaluation results in Section 7.5. We end up with a conclusion.

2 Motivation and Research Questions

Pre-trained Language Models such as BERT [58], ELECTRA [40] and T5

[197], have become the core components for building highly effective ranking
models. Applying PLMs to document ranking is straightforward thanks to the
pre-train then fine-tune recipe. The same architecture based on homogeneous
transformer layers is employed regardless of the downstream task in contrast
to pre-BERT neural ranking models [83, 165, 250] which design specialized
neural architectural components to capture different aspects of relevance
between a query and a document. In their study of BERT behavior for
ranking, Qiao et al. [194] revealed that BERT prefers document terms similar
to the query in search since its pre-training on surrounding contexts favors
text sequence pairs that are closer in their semantic meaning. The authors
conclude that BERT can be considered as an interaction-based sequence-to-
sequence soft matching model that owes its effectiveness to the transformer’s
cross-match attention. While soft semantic matching is, undeniably, a valuable
signal for relevance that alleviates the vocabulary mismatch problem, a
ranking model needs proper handling of exact matching cues as well [83, 165,
140]. Let us take the following query from the MS MARCO collection [9]:

104

3 highlighting exact matches for pre-trained contextualized

language models

“Causes of left ventricular hypertrophy”, as an example. Table 7.1 reports
extracts from the top passages ranked by a vanilla monoBERT [173] reranker
on top of a BM25 retriever. We can see that all top ranked passages are related
to “right ventricular hypertrophy” due to the soft matching between “left”
and “right”. This example is a reminder of the importance of exact matching
for relevance ranking.

In this contribution, we suggest that recent BERT-based ranking models
can benefit from explicit exact matches highlight and study the following
research questions:

— How to emphasize exact matching signals in PLMs while conserving the
same architecture (i.e., benefit directly from pre-trained checkpoints)?

— What is the impact of explicit exact match signals on the effectiveness
of PLMs for document ranking?

3 Highlighting Exact Matches for Pre-trained Contextu-
alized Language Models

Enhancing pre-trained language models, exemplified by BERT, with the
exact matching intuition can be achieved by appending a specialized archi-
tectural component to the transformer architecture following designs from
pre-BERT models. However, BERT has proven to be effective for a wide range
of downstream tasks using the same homogeneous (but highly versatile)
transformer architecture. BERT is able to “figure out” how to model the
target task provided that it is fine-tuned with annotated data that capture
nuances of this task. Moreover, efficiency is one of BERT’s major limitations.
Considering its base configuration, BERT already comprises not less than a
110M parameters, adding more parameters specifically for capturing exact
match cues would increase the computational cost of the model. Additional
parameters might not even be necessary as evidence from the investigation
of self-attention patterns conducted by Kovaleva et al. [117] suggests that
BERT is over-parameterized. In other words, BERT has enough representation
capacity to additionally learn exact match patterns for instance.

Importantly, altering BERT’s architecture will cost us the immense “free”
benefits of the self-supervised pre-training provided by Google’s public BERT
checkpoint. More so, subsequent innovations improving BERT cannot be
directly integrated for “free” in the altered architecture.

Inspired by Baldini Soares et al. [10] work on relation extraction where
new special tokens are introduced to highlight the entities (key tokens), we
propose using marker tokens to emphasize exact matching terms in the textual
input before feeding it to a BERT ranker, hence keeping the same model
architecture and number of parameters. We hypothesize that these marker
tokens can help BERT focus on the terms that are considered important for

105

highlighting exact matches for ad hoc ranking with transformers

Figure 7.1 – The monoBERT architecture [173]. Copied from Figure 4.2 in Section 4.2

relevance estimation, and learn how to use the exact match hints. A part
from conserving BERT’s configuration, this approach mitigates the risk of
introducing a systematic bias towards exact matching and bringing back the
vocabulary mismatch problem.

In the remainder of this section, we first describe the general model archi-
tecture we adopt for ranking and then present in detail the marking strategies
we propose to explicitly highlight exact term matches. We consider the tradi-
tional formulation of exact matching where two terms t1 and t2 match exactly
if their stems are identical. We use the Porter algorithm for stemming and
stop words are not considered during marking.

3.1 Model architecture

We adopt the monoBERT configuration described by Nogueira and Cho
[173] whose architecture is shown in Figure 4.2 in Section 4.2 and repeated
here as Figure 7.1.

Given a query q and a candidate document d, the input sequence S to the
BERT core model is given by:

S = [[CLS], q, [SEP], d, [SEP]] (7.1)

where q and d are represented with their tokens obtained after applying the
WordPiece tokenizer.

The output representation of the standard [CLS] token generated by BERT
is then fed through a single fully-connected layer to estimate the relevance
score R(d, q) of the document d w.r.t to the query q.

The whole model including the pre-trained BERT core and the randomly
initialized relevance classification layer are optimized with a cross-entropy
loss; see Section 4.2 for more details. This target-task fine-tuning is the
only thing separating monoBERT from any other application of BERT to

106

3 highlighting exact matches for pre-trained contextualized

language models

a sentence-pair classification task (e.g., paraphrase detection). There is no
further consideration for the particular characteristics of the ranking task in
this base model.

3.2 Exact Match Marking

We propose different marking strategies which augment the input sequence
S defined in Equation 7.1 to highlight the exact matches between the query
and the document terms. A marking strategy is defined by two parameters:

1. Marker-Token type, we introduce two types of marker tokens, namely:
Simple Markers and Precise Markers.

2. Marking level, we investigate two levels for marking: Document Marking
and Pair Marking.

Table 7.2 illustrates all the four marking strategies that can be defined using
the two marker-token types at the two different marking levels.

3.2.1 Marker-Token Type

We propose two types of marker tokens to investigate whether distin-
guishing query terms is important or not to the final effectiveness of the
model.

simple markers . A simple unique marker (#) is used to highlight all
query terms without distinction. Considering a query q = {q1, . . . , qn}, whose
terms qr and qs, with 1 < r < s < n, occur in the document, i.e., have exact
matches, we obtain the new marked query segment q̃ by adding marker
tokens before and after the tokens as follows:

q̃ = {q1, . . . , #qr#, . . . , #qs#, . . . , qn} (7.2)

precise markers . Newly introduced pairs of opening and closing tokens
[ek] and [/ek], respectively, where k ∈ {1, ..., n} identifies query terms. This
type of markers was first proposed in our previous work [21] for passage
ranking. With these precise markers, each unique query-term qk is associated
with a unique pair of marker tokens [ek] and [/ek] which identifies it and
its occurrences in the document. If a term is repeated in the query, all
occurrences of this query term will be marked using the same identifier, i.e,
that of the first occurrence. Considering the query q described in the previous
paragraph with simple markers, it would now be marked as follows:

q̃ = {q1, . . . , [er]qr[/er], . . . , [es]qs[/es], . . . , qn} (7.3)

107

highlighting exact matches for ad hoc ranking with transformers

Ta
bl

e
7

.2
–

Ex
am

pl
e

of
th

e
pr

op
os

ed
m

ar
ki

ng
st

ra
te

gi
es

ap
pl

ie
d

to
th

e
qu

er
y

q:
“c

au
se

s
of

le
ft

ve
nt

ri
cu

la
r

hy
pe

rt
ro

ph
y”

,a
nd

th
e

do
cu

m
en

t
d:

“L
ef

t
ve

nt
ri

cu
la

r
hy

pe
rt

ro
ph

y
ca

n
oc

cu
r

w
he

n
so

m
e

fa
ct

or
...

”

M
ar

ke
r

Le
ve

l
St

ra
te

gy
M

ar
ke

d
In

pu
t

Se
qu

en
ce

Si
m

pl
e

D
oc

um
en

t
Si

m
-D

oc
q:

ca
us

es
of

le
ft

ve
nt

ri
cu

la
r

hy
pe

rt
ro

ph
y

d̃:
#L

ef
t#

#v
en

tr
ic

ul
ar

#
#h

yp
er

tr
op

hy
#

ca
n

oc
cu

r..
.

Pa
ir

Si
m

-P
ai

r
q̃:

ca
us

es
of

#l
ef

t#
#v

en
tr

ic
ul

ar
#

#h
yp

er
tr

op
hy

#

d̃:
#L

ef
t#

#v
en

tr
ic

ul
ar

#
#h

yp
er

tr
op

hy
#

ca
n

oc
cu

r..
.

Pr
ec

is
e

D
oc

um
en

t
Pr

e-
D

oc
q:

ca
us

es
of

le
ft

ve
nt

ri
cu

la
r

hy
pe

rt
ro

ph
y

d̃:
[e

2]
Le

ft
[/

e 2
]
[e

3]
ve

nt
ri

cu
la

r[
/

e 3
]
[e

4]
hy

pe
rt

ro
ph

y[
/

e 4
]

ca
n

oc
cu

r..
.

Pa
ir

Pr
e-

Pa
ir

q̃:
ca

us
es

of
[e

2]
le

ft
[/

e 2
]
[e

3]
ve

nt
ri

cu
la

r[
/

e 3
]
[e

4]
hy

pe
rt

ro
ph

y[
/

e 4
]

d̃:
[e

2]
Le

ft
[/

e 2
]
[e

3]
ve

nt
ri

cu
la

r[
/

e 3
]
[e

4]
hy

pe
rt

ro
ph

y[
/

e 4
]

ca
n

oc
cu

r..
.

108

4 methodology and experimental setup

3.2.2 Marking Level

In order to better understand whether it is relevant to mark both the
query and the document segments or the document segment only in S, we
investigate two marking levels: Document and Pair marking. In the former,
the occurrences of query terms in the document are marked in the document
segment while in the later, the exact matching terms are marked in both the
document and query segments as shown in Table 7.2.

document marking . It only augments the document segment d with
marker tokens indicating the start and the end of each query-term occurrences
in the document. Considering a query q = {q1, . . . , qn} and a document
d = {d1, . . . , dm}, if {di, dj} are occurrences of the query term qr, and dl is the
only occurrence of qs in d with 1 < r < s < n, and 1 < i < j < l < m, then
the augmented query and document sequences q̃ and d̃, respectively, are as
follows when using the simple markers:

q̃ = {q1, . . . , qr, . . . , qs, . . . , qn}
d̃ = {d1, . . . , #di#, . . . , #dj#, . . . , #dl#, . . . , dm}

and as follows when using the precise markers:

q̃ = {q1, . . . , qr, . . . , qs, . . . , qn}
d̃ = {d1, . . . , [er]di[/er], . . . , [er]dj[/er], . . . , [es]dl [/es], . . . , dm}

pair marking . It augments both the query and document sequences
with marker tokens indicating the start and the end of each exact term
matches between the query and the document. In our experiments, a query
term with no occurrences in the document is not marked. Considering the
same example as in the Document marking level, the augmented query and
document sequences q̃ and d̃, respectively, are as follows when using the
simple markers:

q̃ = {q1, . . . , #qr#, . . . , #qs#, . . . , qn}
d̃ = {d1, . . . , #di#, . . . , #dj#, . . . , #dl#, . . . , dm}

and as follows when using the precise markers:

q̃ = {q1, . . . , [er]qr[/er], . . . , [es]qs[/es], . . . , qn}
d̃ = {d1, . . . , [er]di[/er], . . . , [er]dj[/er], . . . , [es]dl [/es], . . . , dm}

4 Methodology and Experimental setup

This section describes the experimental setup used for studying the ef-
fectiveness of our approach for ad hoc ranking. Our objectives through this
experimental evaluation are as follows:

109

highlighting exact matches for ad hoc ranking with transformers

Table 7.3 – Benchmarks statistics. The MS MARCO document dataset has 43 judged
topics in DL 2019 and 45 judged topics in DL 2020

Benchmark # Judged Topics # Documents # Words per Document

Robust04 249 0.5M 0.470K

GOV2 149 25M 0.835K

MS MARCO Document 43/45 3.2M 1.123K

1. Evaluate the effectiveness of our proposed exact match marking strategies
with a BERT core on in-domain data, as well as robustness to out-of-
domain data in a zero-shot setting;

2. Study how to improve the domain-transfer capabilities of our approach
using score interpolation with a BoW sparse model;

3. Investigate the contribution of additional fine-tuning on limited target-
domain data in a multi-phase fine-tuning setting, and how our exact
match marking contributes in each phase;

4. Study the impact of exact match marking using the more effective
ELECTRA core model;

5. Investigate the contextualized representations of the marker tokens and
how they can be leveraged for relevance prediction;

6. Explore the use of marker tokens for implicit query expansion.

4.1 Experimental Setup

4.1.1 Test Collections

In order to achieve the aforementioned objectives, we use the following
standard TREC ad hoc benchmarks involving full-length documents:

— Deep Learning Document Ranking (2019-2020) [45, 44]

— Robust04
1

— GOV2
2

These test collections are standard in the IR literature, and are widely used
for evaluating BERT reranking models [2, 51, 122], facilitating, hence, com-
parisons with state-of-the-art reranking models. Table 7.3 resumes statistics
of these test collections.

Though we chose to evaluate our approach on traditional full-length docu-
ment collections – which are common for evaluating BERT-based reranking
models – we discuss results on MS MARCO passage collection and TREC DL
passage ranking collections in Appendix A.1.

1. https://trec.nist.gov/data/robust/04.guidelines.html

2. http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

110

https://trec.nist.gov/data/robust/04.guidelines.html
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

4 methodology and experimental setup

Table 7.4 – Example of Robust04 search topic: Topic 302

Title Poliomyelitis and Post-Polio

Description Is the disease of Poliomyelitis (polio) under control in the
world?

Narrative Relevant documents should contain data or outbreaks of
the polio disease (large or small scale), medical protection
against the disease, reports on what has been labeled as
"post-polio" problems. Of interest would be location of the
cases, how severe, as well as what is being done in the "post-
polio" area.

trec deep learning document ranking A benchmark for web
search issued from the TREC Deep Learning (DL) 2019-2020 tracks [45, 44].
The dataset contains more than 3M documents composed of three fields: title,
URL and body. Dense NIST judgments are provided for 43 and 45 topics for
DL 2019 and 2020, respectively.

robust04 A news wire collection comprising 500K documents (TREC
Disks 4 and 5) and 249 judged topics. Each topic is composed of three
fields: The “title” is a short keyword query, the “description” is a longer
well-formed natural language sentence that describes the information need
and the “narrative” is a paragraph that provides guidance for relevance
assessment. Table 7.4 provides an example of a TREC Robust04 topic.

gov2 A Web collection crawled from government Websites in early 2004

comprising 25M documents and only 149 topics in the same format as
Robust04 topics with title, description and narrative. Documents in the
GOV2 corpus are on average much longer than those in the Robust04 corpus;
see Table 7.3.

4.1.2 Fine-tuning

We use the base version (12 layers, 768 hidden size, 12 attention heads,
and a total of 110M parameters) of BERT due to hardware limitations. We
fine-tune both a vanilla monoBERT baseline and our augmented models, with
the different marking strategies, on the large publicly released MS MARCO
passage dataset [9]. We use a batch-size of 128 query-document pairs, and
the maximum sequence length supported by BERT 512 (128 sequences ×
512 tokens = 65,536 tokens/batch) for 100k iterations (batches) on a free
Google Colab TPU 3. We use Adam optimizer [113] with an initial learning

3. https://colab.research.google.com

111

https://colab.research.google.com

highlighting exact matches for ad hoc ranking with transformers

rate of 3e − 6 with linear decay, and warmup over the first 1, 000 iterations.
The drop out rate is set to 0.1 for all our experiments.

We use the open source implementation of BERT by Hugging Face trans-
formers [247]. It is important to note that fine-tuning an augmented model
with a marking strategy does not add a computational cost compared to
the vanilla monoBERT baseline, since marking is performed during prepro-
cessing.

4.1.3 Inference

We use a retrieve-than-rerank pipeline comprised of a BoW retriever followed
by our monoBERT rerankers. We use the BM25 implementation from off-the-
shelf Anserini open-source IR toolkit [255] to retrieve an initial candidate list
of top-1000 documents per query. These candidates are then reranked by our
monoBERT models to produce the final document rankings. We additionally
consider RM3 query expansion to improve the initial retrieval in scenarios
where it has substantial impact –we specify in Section 7.5, the first-stage
retriever used for each experimental scenario.

The maximum 512-token limitation of the BERT model prevents from
directly applying our models to long documents, as discussed in Section
4.3. Following the strategy proposed by Dai and Callan [51], we split each
document into overlapping passages that can be handled individually by
BERT. For Robust04 and GOV2, passages are generated using a sliding
window of 150 words and a stride of 75 words. As a trade-off between latency
and effectiveness, we only consider a maximum of 30 passages per document.
The first and last passages are always picked while the remaining 28 are
randomly chosen. Inference is conducted over each passage individually
using the reranking model, and the best scoring passage is taken as a proxy
for the Document-level relevance (i.e., maxP [51]).

For the queries we consider both the topic titles, that are preferred by
most pre-BERT models including BM25, and the descriptions that are more
similar to MS MARCO’s natural language questions used for fine-tuning our
monoBERT models.

For TREC DL Document ranking evaluation, we follow the splitting strategy
used in Yan et al. [253], and split each document into overlapping passages
with the same maximum length of 384 and a stride of 192. If available, the
document title is additionally prepended to the beginning of every passage.
Finally, we use the best scoring passage as proxy for the whole document
relevance.

4.1.4 Evaluation Metrics

We compare the proposed approach to the baselines by adopting the
TREC protocol. For this purpose, we use the official metrics used in the

112

4 methodology and experimental setup

context of the TREC DL document ranking tasks, namely: nDCG@10 and
MAP@100. And report nDCG@20 and P@20 for Robust04 and GOV2 to
allow straightforward comparisons with previously reported results in the
literature.

All performance measures are obtained by evaluating the document rank-
ings (retrieval runs) using the official trec_eval 4 tool from TREC. It is the
tool used by the TREC community to evaluate the performance of track
submissions.

We also conduct statistical significance tests, t-tests also called Student t-tests.
Significant improvements are indicated with the symbol † with p < 0.05, and
the symbol ‡ for p < 0.01.

4.2 Baselines

We compare our approach against diverse baselines including: Traditional
non-neural approaches also known as lexical retrieval methods, BERT-based
sparse retrieval approaches, dense retrieval models (bi-encoders), and strong
reranking models (cross-encoders).

4.2.1 Lexical Retrieval baselines

— BM25, we use the Anserini [255] implementation with default para-
meters. For description queries, we set k1 = 0.9 for Robust04 and
k1 = 2.0 for GOV2 and b = 0.6 for both datasets. This unsupervised
model serves both as a baseline and as the first stage retriever in all our
experiments.

— BM25+RM3, a query expansion model based on RM3 [118] considered
as a strong non-neural baseline. We use the Anserini [255] implement-
ation with the default parameters. For description queries, we use 20
expansion terms following [122].

4.2.2 Sparse Retrieval baselines

— DeepCT [53], we report the authors results on Robust04 and GOV2

obtained using the BOW+DeepCT-Query model [50], and use their pub-
lished re-weighted MS MARCO documents 5 produces by the HDCT
model [52] in combination with Anserini’s BM25 with default paramet-
ers for TREC DL 2019 and 2020 evaluations.

— DocT5Query [175], following the original paper setup, we generate 40
expansion queries per document and use Anserini’s BM25 with default

4. http://trec.nist.gov/trec_eval/

5. http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-Zhuyun-Dai/

rankings/

113

http ://trec.nist.gov/trec_eval/
http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-Zhuyun-Dai/rankings/
http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-Zhuyun-Dai/rankings/

highlighting exact matches for ad hoc ranking with transformers

parameters. Due to the large size of the GOV2 collection (see Table
7.3) and the high computational cost of DocT5query we do not report
results on this collection.

4.2.3 Dense Retrieval baselines

— DPR [110], we use DPR as a retriever with the open source implementa-
tion from the transformers library [247] and the publicly released DPR
checkpoints for Query 6 and Context 7 encoders.

— ANCE [251], we use ANCE as a retriever and use the Sentence Trans-
formers library [199] with the publicly released checkpoint 8.

— ColBERT [112], we use ColBERT as a dense retriever using the authors
released code: after encoding the whole collection, we use the top-
1000 documents retrieved using ANN with faiss [107] and rerank them
using ColBERT late-interaction mechanism. Considering the size of the
GOV2 collection (25M documents), and the important space footprint
of ColBERT indexes 9, we could not produce results on GOV2.

4.2.4 Reranking baselines

We use the following reranking baselines on the Robust04 and GOV2

benchmarks, as previous work report results on these standard IR collections.
For comparisons on the TREC DL document ranking tasks, we instead report
the best TREC run results from each track.

— Vanilla baseline, the vanilla monoBERT model is our main baseline
since it represents the core model we augment with explicit exact match
cues in our proposed models. The vanilla baseline as well as our models
share the same configuration and evaluation setup making it suitable
for evaluating the impact of exact match marking.

— Birch (MS) and Birch (MS-MB) [2], the notation in parentheses indicate
the fine-tuning dataset(s): Ms for MS MARCO and MS-MB refers to the
model fine-tuned first on MS MARCO and then further fine-tuned on
Microblog (MB) data. Since the original paper does not report results
on GOV2, we use the results reported by Li et al. [122], in which BM25

is used instead of BM25+RM3 as the first-stage retriever.

6. https://huggingface.co/sentence-transformers/facebook-dpr-question_

encoder-multiset-base

7. https://huggingface.co/sentence-transformers/facebook-dpr-ctx_

encoder-multiset-base

8. https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp

9. With less than 4M documents, the size of the MS MARCO Document index was already
as big as 200GB.

114

https://huggingface.co/sentence-transformers/facebook-dpr-question_encoder-multiset-base
https://huggingface.co/sentence-transformers/facebook-dpr-question_encoder-multiset-base
https://huggingface.co/sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
https://huggingface.co/sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp

5 results and analysis

— BERT-MaxP (MS) [51], we report the results obtained with the re-
implementation by Li et al. [122] where the results are improved using
a BERT model fine-tuned on MS MARCO rather than Bing search log.

— Parade [122], we report results obtained using both BERT and ELECTRA
cores from the paper.

— Parade-v2 [123], we report the results from the latest version of the
PARADE paper, where the model training was enhanced and uses only
the ELECTRA core. This variant uses BM25+RM3 as the first-stage
retriever and the reranking threshold is increased from the previous
100 to 1000, leading to much better performance.

— monoT5 [174], with 3B parameters detains the state-of-the-art across
many ad hoc benchmarks like Robust04. We report the original results
from the paper.

5 Results and Analysis

We present, in the following, the results of the experimental evaluation of
our exact match marking proposition. First, we investigate the effectiveness of
our proposed exact match marking strategies with a BERT core on in-domain
data, i.e., on the TREC DL document ranking 2019-2020 benchmarks, and
the robustness to out-of-domain collections, i.e., Robust04 and GOV2. Then,
we study how to improve the domain-transfer capabilities of our models by
first using score interpolation with a BoW model, and second, by additional
fine-tuning on limited target-domain data in a multi-phase fine-tuning setting,
and isolate the exact match marking contributions in each phase. Finally,
we verify the contribution of our exact match marking on the more effective
ELECTRA model, and compare our best configurations to the state-of-the-art
baselines presented previously.

5.1 Contribution of exact match marking

We evaluate, in this section, the contribution of our proposed exact match
marking strategies by comparison to the vanilla baseline to answer our first
research question:

RQ1. Is exact match marking beneficial for reranking with BERT?
We consider results on in-domain data with the MS MARCO Document

dataset used in TREC DL document ranking tracks, as well as out-of-distribution
data, namely: Robust04 and GOV2 in a zero-shot transfer setting.

115

highlighting exact matches for ad hoc ranking with transformers

Table 7.5 – Reranking effectiveness on the TREC DL 2019 and DL 2020 Document
ranking tasks. The best performance of our proposed models is high-
lighted in bold, and baseline’s results are underlined when overall best.
Significant improvements over the vanilla baseline with p < 0.05 are
indicated with †. Change rates over the vanilla baseline are reported for
each metric (%)

TREC DL Doc DL 2019 DL 2020

Model nDCG@10 MAP@100 nDCG@10 MAP@100

BM25 0.5176 − 0.2434 − 0.5286 − 0.3793 −
BM25+RM3 0.5169 − 0.2772 − 0.5248 − 0.4006 −
Vanilla BERT 0.6726 − 0.3006 − 0.6340 − 0.4523 −
Sim-Doc BERT 0.6858 ▲2.0% 0.3038 ▲1.1% 0.6340 ▲0.0% 0.4414 ▽2.4%

Sim-Pair BERT 0.6798 ▲1.1% 0.3057 ▲1.7% 0.6495 ▲2.4% 0.4505 ▽0.4%

Pre-Doc BERT 0.6777 ▲0.8% 0.3061 ▲1.8% 0.6368 ▲0.4% 0.4513 ▽0.2%

Pre-Pair BERT 0.7025† ▲4.4% 0.3018 ▲1.8% 0.6498 ▲2.5% 0.4497 ▽0.6%

5.1.1 In-domain effectiveness

We re-rank the initial list of candidate documents retrieved by BM25 with
RM3 query expansion, using all our models and the vanilla baseline. We
report the performance on the TREC DL 2019 and 2020 test sets 10 in Table
7.5, in terms of the official task evaluation metrics: nDCG@10 and MAP@100.

Comparison with baselines. Compared to BM25 and the first-stage re-
triever (BM25+RM3), all BERT-based models perform significantly better.

Adding exact match marking regardless of the marking strategy, leads
to better or at least the same performance as the vanilla baseline. The Pre-
Pair BERT model achieves the overall best performance on DL 2019 test topics
(+4.4% gain in nDCG@10), and on DL 2020 (+2.5% gain in nDCG@10) along
with Sim-Pair BERT (+2.4% gain in nDCG@10).

Impact of the marker type and marking level on the performance. On
TREC DL 2019, using the pair marking strategy brings substantial gains
in performance when used in combination with the precise marker type:
Pre-Pair BERT achieves +3.7% relative gain over the Pre-Doc BERT model in
terms of nDCG@10. While it leads to a drop in performance when combined
with the simple marker, Sim-Pair BERT has a relative loss of −0.9% compared
to Sim-Doc BERT in terms of nDCG@10. Interestingly, on TREC DL 2020 using
the pair marking level has the same impact regardless of the marker type.

Marking both the query and document segments seems to be more bene-
ficial considering results on both test collections. Using the precise marker
type brings further gains in performance on DL 2019.

10. Equivalent results on the passage ranking collections are reported in Appendix A.1

116

5 results and analysis

Table 7.6 – Reranking effectiveness in the zero-shot transfer setting of the different
models on Robust04 and GOV2 collections. The best performance of
our proposed models is highlighted in bold, and baseline’s results are
underlined when overall best. Significant improvements over the vanilla
baseline with p < 0.05 and p < 0.01 are indicated with † and ‡ respect-
ively. For each measure, the improvement rate over the vanilla baseline is
given (%)

Robust04 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 − 0.3631 − 0.4058 − 0.3345 −
BM25+RM3 0.4407 − 0.3821 − 0.4255 − 0.3661 −
Vanilla BERT 0.4652 − 0.4046 − 0.4510 − 0.3851 −
Sim-Doc BERT 0.4447 ▽4.4% 0.3831∗ ▽5.3% 0.4166 ▽7.6% 0.3510 ▽8.9%

Sim-Pair BERT 0.4773 ▲2.6% 0.4155 ▲2.7% 0.4931‡ ▲9.3% 0.4169‡ ▲8.3%

Pre-Doc BERT 0.4767 ▲2.5% 0.4084 ▲0.9% 0.4789‡ ▲6.2% 0.4026‡ ▲4.5%

Pre-Pair BERT 0.4654 ▲0.0% 0.4024 ▽0.5% 0.4795‡ ▲6.3% 0.4034‡ ▲4.8%

GOV2 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 − 0.5362 − 0.4264 − 0.4705 −
BM25+RM3 0.4851 − 0.5634 − 0.4212 − 0.4966 −
Vanilla BERT 0.4533 − 0.5272 − 0.4696 − 0.5248 −
Sim-Doc BERT 0.4588 ▲1.2% 0.5349 ▲1.5% 0.4686 ▽0.2% 0.5262 ▲0.3%

Sim-Pair BERT 0.4468 ▽1.4% 0.5134 ▽2.6% 0.4687 ▽0.2% 0.5326 ▲1.5%

Pre-Doc BERT 0.4485 ▽1.1% 0.5121 ▽2.9% 0.4768 ▲1.5% 0.5315 ▲1.3%

Pre-Pair BERT 0.4515 ▽0.4% 0.5238 ▽0.6% 0.4752 ▲1.2% 0.5285 ▲0.7%

5.1.2 Out-of-domain effectiveness

In this evaluation, we investigate the generalizability of our approach to
out-of-domain collections. We use the fine-tuned models on MS MARCO
passages for evaluation on Robust04 and Gov2 test collections. We do not train
the models on these test collections, we use all their queries and relevance
judgements as a held-out test set. Thus, this evaluation is an instance of a
zero-shot transfer setting.

Table 7.6 shows the reranking effectiveness of our different models and
baselines on the top-1000 candidate documents retrieved by BM25 from
Robust04 and GOV2 collections using both the title and description fields of
their TREC topics. We report results using the commonly used nDCG@20

and P@20 metrics to enable direct comparisons with previous work on these
collections.

Comparison with baselines. All BERT-based models achieve substan-
tially better performance on both collections compared to the traditional
non-neural baselines, at the only exception of GOV2 titles. We observe a

117

highlighting exact matches for ad hoc ranking with transformers

Table 7.7 – Recall of BM25 on Robsut04 and GOV2 collections on both title and
description queries

Collection Title Description

Robust04 0.6989 0.6519

GOV2 0.7106 0.6024

discrepancy in the impact of the exact match marking on GOV2 compared
to Robust04. While all our models, except Sim-Doc BERT, significantly out-
perform the vanilla baseline on Robust04 descriptions or at least achieve
similar performance on titles, our models have no significant impact on
GOV2. Nevertheless, in no case a marking-based model leads to a signific-
ant degradation of performance on GOV2. The disparity in the behavior
of the models on the two benchmarks is probably due to the nature of the
documents involved. While Robust04 comprises well-written news articles,
GOV2 documents are web pages that include navigation bars, advertisements,
tables and discontinuous text. The zero-shot domain transfer –from the MS
MARCO fine-tuned models to Robust04 articles– seems to be more attainable
than to GOV2 web pages even though MS MARCO passages were extracted
from the web. We hypothesise that further fine-tuning on domain-specific
data may be required to learn better domain-specific text representations. We
investigate this in-domain adaptation in section 5.3.

Impact of the marker type and marking level on the performance. On
Robust04, marking both the query and the document –models based on pair
marking– has more impact on the simple marker than the precise marker. Sim-
Pair BERT achieves a relative gain of +18%, and +7.3% in terms of nDCG@20

over Sim-Doc BERT on description and title queries, respectively. At the same
time, the pair marking level has a lower impact on models using the precise
markers (Pre-Doc BERT and Pre-Pair BERT) especially on descriptions. On the
other hand, results on the GOV2 collection are quite mitigated.

Marking both the query and the document segments with a simple marker
(#) appears to be the best setting, Sim-Pair BERT has the best ranking accuracy
among the four tested strategies, with clear margins on the Robust04 collec-
tion especially on descriptions. We, thus, choose to continue our analysis
using the Sim-Pair BERT strategy, nevertheless, the full results using all the
marking strategies can be found in Appendix 2.2.

Title vs. description queries. Since we are in a reranking configuration,
it is important to note that the first stage retriever BM25, as most pre-BERT
ranking models, prefers short keyword queries to longer natural language
descriptions [51, 174]. Table 7.7 shows the recall at rank 1, 000 of BM25 for
both title and description queries, where we notice a substantial difference in
recall, affecting hence the quality of the candidate documents presented to

118

5 results and analysis

Table 7.8 – Reranking effectiveness in the zero-shot transfer setting of the different
models on Robust04 and GOV2 collections using the hybrid pipeline.
Best performance is highlighted in bold. Significant improvements over
the vanilla baseline with p < 0.05 and p < 0.01 are indicated with † and
‡ respectively. For each measure, the improvement rate over the vanilla
baseline is given (%)

Robust04 GOV2

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 − 0.3631 − 0.4774 − 0.5362 −
BM25+RM3 0.4407 − 0.3821 − 0.4851 − 0.5634 −
Vanilla BERT 0.4845 − 0.4147 − 0.4937 − 0.5611 −
Sim-Pair BERT 0.5239‡ ▲8.1% 0.4446‡ ▲7.2% 0.4991 ▲1.1% 0.5695 ▲1.5%

the reranking models. However, despite this disadvantageous initial retrieval,
the reranking models manage to reduce the gap between title and description
runs. The improvement rate over BM25 is much higher for description
queries compared to title queries on both collections especially on GOV2

where vanilla BERT has a change rate of −5% nDCG@20 over BM25, while
it achieves over +10% gain in nDCG@20 on descriptions. This means that
BERT is able to take advantage of richer natural language descriptions of the
information need as opposed to the BoW retriever. This finding appears to
be robust as previous works such as Dai and Callan [51] confirm the higher
effectiveness of description queries over title queries as well. Further adding
exact match marking in Sim-Pair BERT does not change this preference, as it
improves the search accuracy of the description runs more effectively than the
title runs. As a matter of fact, the overall performance reported for our model
using descriptions clearly surpasses that obtained using titles by +4.1% on
average, despite the lower recall in the initial retrieval.

Impact of the initial stage retriever. Considering that the first stage
retriever, BM25, has higher recall on title queries, and that the BERT-based
reranking models prefer description queries, we propose a hybrid reranking
pipeline where BM25 uses title queries in the initial retrieval, while reranking
models use the richer description queries. This hybrid pipeline allow us
to obtain a higher recall in the initial retrieval which means more relevant
documents in the candidates pool. At the same time, description queries in
the reranking stage allow the BERT-based models to fulfill their potential.

In practice, this pipeline remains realistic as natural language queries can
be generated from standard keyword queries [182]. This hybrid approach is
also adopted in the recent state-of-the-art reranking model monoT5 [174].

Table 7.8 shows the results obtained using the hybrid reranking pipeline on
both test collections. Unsurprisingly, better candidate documents for rerank-
ing with descriptions yields overall best ranking effectiveness. The vanilla

119

highlighting exact matches for ad hoc ranking with transformers

BERT model achieves an improvement rate of +14% over BM25 on Robust04

and +3.4% on GOV2 in terms of nDCG@20 (we recall that BM25 results are
obtained using titles). Adding exact match marking in the hybrid reranking
pipeline outperforms the vanilla baseline on both collections; significantly on
Robust04 with a gain of over +8% in terms of nDCG@20.

5.1.3 In-domain vs. out-of-domain effectiveness.

Results on both in-domain and out-of-domain benchmarks clearly indicate
that exact match marking, aside from the Sim-Doc marking strategy which
underperforms the vanilla baseline on Robust04, is more beneficial than using
a vanilla baseline. Using Sim-Pair (especially for out-of-domain experiments)
or Pre-Pair (especially for in-domain experiments) marking strategies seems
to be working best.

In the next two sections, we focus on out-of-domain effectiveness and
study common techniques used in the literature to enhance the effectiveness
of BERT-based models, and how our models behave in combination with
these techniques. Therefore, the MS MARCO document ranking benchmark
is not suitable and thus we only report results on Robust04 and GOV2

collections.

5.2 Contribution of the first-stage retriever scores to the end-to-end effect-
iveness

Our experimental design is based on a two-stage reranking architecture
where our BERT-based models rerank the documents retrieved by a BoW
model. However, the scores from the retriever are never considered in the
final ranking of the documents. Inspired by the score interpolation method
employed in Birch [2], we consider a simple linear combination of retriever’s
document-level scores with the passage-level evidence from the reranker, to
study our second research question:

RQ2. Do exact match scores from the first-stage retriever contribute to the end
effectiveness and how exact match marking affects this contribution?

Akkalyoncu Yilmaz et al. [2] defines the final relevance score of a document
as the combination of its document-level term-matching score from the BoW
retriever, and evidence contributions from the top sentences in the documents
as determined by monoBERT, as discussed in Section 3.1. More formally, to
determine document relevance s f , inference is applied over each individual
sentence si in a candidate document d, and then the top n sentence scores

120

5 results and analysis

Table 7.9 – Reranking effectiveness of the different models before and after interpol-
ating BM25 scores on Robust04 and GOV2 collections. Best performance
is highlighted in bold. For each measure, the improvement rate over the
reranking performance without BM25 scores interpolation is given (%)

Robust04 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 − 0.3631 − 0.4058 − 0.3345 − 0.4240 − 0.3631 −
Vanilla BERT 0.4652 − 0.4046 − 0.4510 − 0.3851 − 0.4845 − 0.4147 −

+ BM25 0.4932 ▲6.0% 0.4255 ▲5.2% 0.4856 ▲7.7% 0.4062 ▲5.5% 0.5266 ▲8.7% 0.4488 ▲8.2%

Sim-Pair BERT 0.4773 − 0.4155 − 0.4931 − 0.4169 − 0.5239 − 0.4446 −
+ BM25 0.4947 ▲3.6% 0.4265 ▲2.6% 0.5098 ▲3.4% 0.4279 ▲2.6% 0.5497 ▲4.9% 0.4707 ▲5.9%

GOV2 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 − 0.5362 − 0.4264 − 0.4705 − 0.4774 − 0.5362 −
Vanilla BERT 0.4533 − 0.5272 − 0.4696 − 0.5248 − 0.4937 − 0.5611 −

+ BM25 0.5320 ▲17.% 0.5987 ▲13. 0.5166 ▲10.% 0.5742 ▲9.4% 0.5722 ▲16.% 0.6383 ▲14%

Sim-Pair BERT 0.4468 − 0.5134 − 0.4687 − 0.5326 − 0.4991 − 0.5695 −
+ BM25 0.5327 ▲19.% 0.6000 ▲17% 0.5235 ▲12.% 0.5893 ▲11.% 0.5778 ▲16.% 0.6497 ▲14.%

are combined with the original document score sd given by the first-stage
retriever as follows:

s f ≜ α · sd + (1 − α).
n

∑
i=1

wi · si (7.4)

where si is the i-th top scoring sentence according to monoBERT. The para-
meters α and wi’s are tuned via cross-validation.

For our evaluation, we apply linear interpolation to the results obtained
in the zero-shot transfer setting with the best-scoring passage (n = 1). In
other words, we use the score combination defined in Equation 7.4 on the
document scores obtained by the BM25 retriever at cutoff 1, 000 and their
corresponding scores estimated with the best-scoring passage method by the
reranking models.

Table 7.9 first shows the results of the traditional BM25 retriever alone,
then the second and third sections are each dedicated to a reranker: vanilla
and Sim-Pair BERT models. For both rerankers, we remind the results of
the model alone obtained in the zero-shot transfer setting and then present
the end-to-end effectiveness after interpolating BM25 scores (+BM25), and
indicate the change rate (%) over the reranker-only effectiveness.

Impact of interpolating BM25 scores. Interpolating BM25 scores (Best
Match) that are solely based on surface-level features such as TF and IDF
leads to significant gains in performance in both collections with both rerank-
ing models. This indicates that BM25 document-level scores provide an
additional relevance signal that the BERT-based models alone could not ef-
fectively capture. Notably, the improvement rate resulting from interpolating
BM25 scores is more substantial on the GOV2 collection (+15% nDCG@20 in
average) compared to Robust04 (+5.7% nDCG@20 in average). The fact that

121

highlighting exact matches for ad hoc ranking with transformers

the BERT models outperform BM25 by a large margin on Robust04, while
this margin is much smaller on the GOV2 can explain why BM25 scores
have more incidence on the end-to-end effectiveness on GOV2 compared to
Robust04.

Impact of exact match marking. Combining BM25 scores with the scores
produced by both the Vanilla and Sim-Pair BERT models always leads to sub-
stantial gains in the end ranking effectiveness. On the Robust04 collections,
Sim-Pair BERT outperforms significantly Vanilla BERT. However, the combin-
ation with BM25 scores has more impact on the vanilla model with about
about +7.5% gain in nDCG@20 over the previous Vanilla BERT reranker-only
effectiveness, compared to only +4% gain with Sim-Pair BERT+BM25 over Sim-
Pair BERT. As a result, BM25 scores help more with the vanilla baseline and
shrinks the previous large effectiveness gap Vanilla BERT and Sim-Pair BERT.
Nevertheless, Sim-Pair BERT+BM25 still outperforms the vanilla BERT+BM25

variant on the description and hybrid runs. This suggests that Sim-Pair BERT,
by virtue of using exact match marking, requires less intervention from the
retriever’s scores, which are based on exact match signals.

On the other hand, Sim-Pair BERT and Vanilla BERT perform similarly on
the GOV2 collection. The contribution from BM25 scores is also about the
same with both models, and Sim-Pair BERT+BM25 and Vanilla BERT+BM25

have comparable effectiveness.
Contribution of BM25 scores. The contribution of BM25 scores is con-

trolled by the parameter α in Equation 7.4, which we tuned via 5-fold in-
collection cross validation. In all scenarios, the weight put on α is non-
negligible, in other words, the contribution of BM25 signals remain important,
this observation was also reported for the Birch model [129]. However, we no-
tice that the weight of α is less important when combining with the Sim-Pair
BERT model that uses exact match marking. For Robust04 descriptions, the
vanilla BERT+BM25 baseline puts a weight of α ∈ {0.3, 0.4} on BM25 scores,
when Sim-Pair BERT+BM25 only consider a contribution of α = 0.2 from
BM25, while achieving substantially better performance. This indicates that
the vanilla model relies more on BM25 to complete its relevance estimation unlike
the marking-based model that is able to effectively capture more relevance signals,
possibly similar to BM25, and thus needing less contribution from BM25 scores.

Figure 7.2 visualizes the end ranking accuracy measured by nDCG@20

for α ∈ [0, 1] on both Robust04 and GOV2 collections. On Robust04, we can
clearly see that Sim-Pair BERT+BM25 reaches the most effective combination
with smaller contributions from BM25 scores (smaller α), while the vanilla
baseline requires more intervention from BM25 and still cannot reach the
performance of Sim-Pair BERT+BM25, especially on descriptions. It is only
logical that the most performing model, that outperforms BM25 by a large
margin, requires less contribution from this later. Nevertheless, if we take the
example of the GOV2 descriptions, despite the similar starting performance

122

5 results and analysis

(a) Robust04 titles (b) Robust04 descrip. (c) Robust04 hybrid

(d) GOV2 titles (e) GOV2 descrip. (f) GOV2 hybrid

Figure 7.2 – The end ranking accuracy of the vanilla BERT and Sim-Pair BERT models
with BM25 scores interpolation on Robust04 and GOV2 collections.
α = 0.0 indicates the reranking model effectiveness only without BM25

scores, and α = 1.0 means that only BM25 scores are used

at α = 0.0 of vanilla and Sim-Pair BERT models, the gap between their
performance starts getting wider at only α = 0.1 to reach its peak at α = 0.2.

Combining the document scores obtained in the first-stage retriever with
passage-level evidence from BERT-based reranking models to determine the
final relevance score of a document yields substantial gains in performance.
Relevance scores based on traditional IR axioms complete the relevance sig-
nals captured by contextual pre-trained LMs such as BERT. Moreover, using
our simple, yet effective, marking strategy to highlight the exact matching
signals in the query-document pairs enhance BERT’s own ability to estimate
relevance and thus, requires less contribution from BM25 to achieve the best
performance.

5.3 Multi-Phase Fine-Tuning

For both Robust04 and GOV2 benchmarks, we only relied on labeled
data from the large MS MARCO passage collections to fine-tune our BERT
models. This fine-tuning aims at providing the model with general notions

123

highlighting exact matches for ad hoc ranking with transformers

Table 7.10 – Reranking effectiveness in the multi-phase vs. zero-shot transfer setting
for the Sim-Pair and vanilla models on Robust04 and GOV2 collections.
Best performance is highlighted in bold. Significant improvements over
the vanilla baseline with p < 0.05 and p < 0.01 are indicated with † and
‡ respectively for the same setting. Change rate over the vanilla baseline
in the same setting are reported for each metric (%)

Robust04 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 − 0.3631 − 0.4058 − 0.3345 − 0.4240 − 0.3631 −
BM25+RM3 0.4407 − 0.3821 − 0.4255 − 0.3661 − 0.4407 − 0.3821 −
Zero-shot transfer

Vanilla BERT 0.4764 − 0.4096 − 0.4611 − 0.3867 − 0.4989 − 0.4245 −
Sim-Pair BERT 0.4763 ▽0.0% 0.4129 ▲0.8% 0.4923‡ ▲6.8% 0.4084‡ ▲5.6% 0.5273‡ ▲5.7% 0.4434‡ ▲4.5%

Multi-phase

Vanilla BERT 0.4995 − 0.4275 − 0.5368 − 0.4492 − 0.5546 − 0.4715 −
Sim-Pair BERT 0.5058 ▲1.3% 0.4371 ▲2.2% 0.5479† ▲2.1% 0.4574† ▲1.8% 0.5701‡ ▲2.8% 0.4815‡ ▲2.1%

GOV2 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 − 0.5362 − 0.4264 − 0.4705 − 0.4774 − 0.5362 −
BM25+RM3 0.4851 − 0.5634 − 0.4212 − 0.4966 − 0.4851 − 0.5634 −
Zero-shot transfer

Vanilla BERT 0.5098 − 0.5916 − 0.4928 − 0.5560 − 0.5510 − 0.6312 −
Sim-Pair BERT 0.5181 ▲1.6% 0.5990 ▲1.3% 0.4904 ▽0.5% 0.5597 ▲0.7% 0.5531 ▲0.4% 0.6346 ▲0.5%

Multi-phase

Vanilla BERT 0.5476 − 0.6302 − 0.5175 − 0.5772 − 0.5909 − 0.6604 −
Sim-Pair BERT 0.5743‡ ▲4.9% 0.6540‡ ▲3.8% 0.5406‡ ▲4.5% 0.6084‡ ▲5.4% 0.5998 ▲1.5% 0.6758 ▲2.3%

of relevance matching. However, transferring these relevance patterns to
the target corpus may, in some cases, be ineffective as we have seen with
GOV2 results presented in Section 5.1.2. To overcome this domain-transfer
limitation, we use additional fine-tuning on labelled data drawn from the
same distribution as the target task. In other words, we use a multi-phase
fine-tuning process (Section 2.3.2).

Once the models are fine-tuned on the MS MARCO passage dataset fol-
lowing the training setting described in section 4.1.2, we further fine-tune
them on the target task using 5-fold cross validation for both Robust04 and
GOV2 collections. We use the folds defined by Yang et al. [256] for Robust04

and the 5-folds configuration adopted by Li et al. [122] for GOV2.
Following prior work by Dai and Callan [51], we consider the top-1000

documents retrieved by BM25 for queries in the training folds for extracting
in-domain training instances. Each document is segmented into passages
using a sliding window of 150 words with a stride of 75 words similarly to
the inference setting described in Section 4.1.3. These passages are further
sub-sampled to avoid catastrophic forgetting. Aside from the first passage,
passages in a document are randomly preserved with a probability of 0.1.
Since passage-level judgements are not available, passages from a relevant
document according to the ground-truth (TREC relevance judgements) are
considered to be relevant, while passages issued from the other remaining
documents are treated as non relevant. We use a cross entropy loss and fine-

124

5 results and analysis

tune the models for a single epoch with a batch size of 32 training instances
comprising a query-passage pair. We use the Adam optimizer with a learning
rate of 1e − 5 with warm up over the first 10% of the total training steps.

For queries in the left-out test fold, we set the rerank threshold to 100
as a trade-off between latency and effectiveness, and otherwise follow the
same inference setting presented in Section 4.1.3. We report the average
performance across all test folds measured in terms of P@20 and nDCG@20.
In this setting, our vanilla baseline corresponds to a BERT-MaxP model [51]
initialized from a fine-tuned monoBERT on MS MARCO passages, instead of
Google’s BERT pre-trained checkpoint without any prior fine-tuning on the
text ranking task.

Table 7.10 reports the reranking effectiveness obtained using the multi-
phase fine-tuning setting compared to the zero-shot transfer setting for both
Robust04 and GOV2 collections. For a fair comparison, we report the results
obtained for reranking the top-100 documents retrieved by BM25 for the
zero-shot setting, instead of the previously reported results with a rerank
threshold of 1000.

Impact of multi-stage fine-tuning. Thanks to the additional in-domain
fine-tuning on the target collection, the performance on both collections
improves regardless of the topic field. We notice in this setting that Sim-Pair
BERT is able to achieve significant gains over the vanilla baseline on the GOV2

collection on title and description queries, confirming our hypothesis that
the zero-shot domain transfer from MS MARCO was not sufficient for this
collection.

On the Robust04 collection, the impact of exact match marking follows the
same tendency as in the zero-shot setting. That is, Sim-Pair BERT achieves sub-
stantial gains on both description and hybrid runs, and achieves comparable
effectiveness with the vanilla baseline on the title run. However, these gains
are less pronounced compared to the zero-shot setting. A possible reason
might be that the BERT-based reranker, owing to the additional target-task
fine-tuning, has gained more specialized “understanding” of the ranking task
on the Robust04 collection, and thus the exact match signals have less impact.
This is similar to the in-domain evaluation results on TREC DL document
ranking 2019-2020 tasks in Section 5.1.1.

Title vs. Description queries. In the multi-phase fine-tuning setting,
the BERT rerankers are able to achieve better performance on Robust04

descriptions compared to the titles with +7.5% and +8.3% gains in nDCG@20

for the vanilla and Sim-Pair models respectively, despite the lower retrieval
effectiveness of BM25 on descriptions compared to titles. On the other
hand, the gap in BM25 effectiveness between descriptions and titles is more
important on the GOV2 collection. Even though the BERT-based rerankers
reduce this gap to −5.5% and −5.9% for the vanilla and Sim-Pair models,
respectively, it is not enough to reverse the tendency. The end effectiveness

125

highlighting exact matches for ad hoc ranking with transformers

Table 7.11 – Reranking effectiveness with exact match marking ablation at different
phases of the multi-phase fine-tuning setting of Sim-Pair BERT on Ro-
bust04 and GOV2 collections. MS refers to the MS MARCO fine-tuning
phase and ID to the in-domain fine-tuning. Best performance is high-
lighted in bold. Significant improvements over the vanilla baseline with
p < 0.05 and p < 0.01 are indicated with † and ‡ respectively for the
same setting. Change rates over the vanilla baseline are reported for
each metric (%)

Robust04 Marking Title run Description run Hybrid run

Run MS ID nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

Vanilla BERT - - 0.4995 − 0.4275 − 0.5368 − 0.4492 − 0.5546 − 0.4715 −
Sim-Pair BERT ✓ ✓ 0.5058 ▲1.3% 0.4371 ▲2.2% 0.5479† ▲2.1% 0.4574† ▲1.8% 0.5701‡ ▲2.8% 0.4815‡ ▲2.1%

A ✓ - 0.4978 ▽0.3% 0.4281 ▲0.1% 0.5521‡ ▲2.9% 0.4592† ▲2.2% 0.5678‡ ▲2.4% 0.4811† ▲2.0%

B - ✓ 0.4896∗ ▽2.0% 0.4239 ▽0.8% 0.5344 ▽0.4% 0.4504 ▲0.3% 0.5500 ▽0.8% 0.4665 ▽1.0%

GOV2 Marking Title run Description run Hybrid run

Run MS ID nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

Vanilla BERT - - 0.5476 − 0.6302 − 0.5175 − 0.5772 − 0.5909 − 0.6604 −
Sim-Pair BERT ✓ ✓ 0.5743‡ ▲4.9% 0.6540‡ ▲3.8% 0.5406‡ ▲4.5% 0.6084‡ ▲5.4% 0.5998 ▲1.5% 0.6758 ▲2.3%

A ✓ - 0.5665† ▲3.5% 0.6430 ▲2.0% 0.5509‡ ▲6.5% 0.6161‡ ▲6.7% 0.6027 ▲2.0% 0.6728 ▲1.9%

B - ✓ 0.5503 ▲0.5% 0.6312 ▲0.2% 0.5218 ▲0.8% 0.5785 ▲0.2% 0.5761 ▽2.5% 0.6517 ▽1.3%

on this collection is, thus, higher on titles than descriptions as observed in
previous state-of-the-art models such as BERT-MaxP [51] or Parade [122] (see
results in section 5.5). Still, the hybrid pipeline outperforms both title and
description runs on both collections. The reranking accuracy achieved by
the hybrid runs are, to our knowledge, the highest reported results using
a BERT-based model on both collections, at the time this dissertation was
written.

Phase-wise marking. Previous results of the Sim-Pair BERT model presented
in Table 7.10 in the multi-phase setting are obtained by applying the Sim-Pair
exact match marking strategy through out the two fine-tuning phases. While
the first phase fine-tuning focuses on learning general notions of relevance
from a large passage collection, the goal of adding in-domain fine-tuning is
to learn directly from labelled data with the same distribution as the target
task. It is important to determine on which of the two phases, the marking
strategy is more beneficial and at which phase it can be omitted. To this
aim, we conduct an ablation study on the Sim-Pair BERT model. Table 7.11

shows the results of the marking-strategy ablation on Robust04 and GOV2

collections using the different topic fields. With these results, we can now
discuss the following research question:

RQ3. At which phase the exact match marking is the most beneficial in a multi-
phase fine-tuning setting?

MS marking (labelled run A in Table 7.11), uses exact match marking in the
MS MARCO (MS) fine-tuning phase only, and then uses the original data
without further marking for the in-domain (ID) fine-tuning phase. We can
see from Table 7.11, that using the marking strategy in the first general
fine-tuning phase is sufficient to outperform the vanilla baseline or at least

126

5 results and analysis

perform similarly for Robust04 titles. In other words, initializing monoBERT
with the pre-fine-tuned weights on marked MS MARCO passage training
instances is preferable to the model weights optimized on the original non-
marked training instances. MS marking only in run A, can even even lead to
improved effectiveness on the description runs for both collections, as well as
a slight improvement on the GOV2 hybrid run.

ID marking (labelled run B in Table 7.11), uses the marking strategy to aug-
ment the inputs during fine-tuning phase on the in-domain data only. This
means that monoBERT is pre-fine-tuned (in the first phase) on the original
non-marked MS MARCO passage training instances. The results of this
exact match marking ablation during the first-phase fine-tuning either has
no substantial impact on the model’s performance or leads to a degradation
in performance. This behavior is predictable, since there is not enough in-
domain data for BERT to learn useful representations of the marker tokens,
and their contribution to the relevance prediction.

Using a marking strategy during the first general-purpose fine-tuning
phase (MS marking) on the MS MARCO passage collection has already
enough capacity to outperform the vanilla baseline without requiring ad-
ditional marking during the in-domain fine-tuning phase. At the end, the
fine-tuned model using the Sim-Pair marking strategy on the MS MARCO
passage collection is able to use the relevance matching patterns learned us-
ing out-of-domain data, with explicit marking, for later phases even without
the guidance of the explicit markers. Nevertheless, additional marking in the
in-domain fine-tuning phase used in the classical Sim-Pair BERT approach is
beneficial for title queries where it brings and additional gain of +1.6% and
+1.4%, in terms of nDCG@20, over the MS marking only (run A) on Robust04

and GOV2, respectively.

5.4 Impact of exact match marking on ELECTRA

While BERT is the most famous and largely adopted pre-trained language
model, additional variants such as RoBERTa [138] or ELECTRA [40] were
proposed in order to improve the model from different aspects. Recent state-
of-the-art results reported on Robust04 and GOV2 collections were achieved
using the ELECTRA model that appears to outperform BERT. ELECTRA
[40] replaces the Masked Language Modeling (MLM) with a novel more
sample-efficient pre-training task called replaced token detection. In this
task, the model learns to distinguish real input tokens from plausible but
synthetically generated replacements by a small “generator” model. This
approach uses two components: the generator, a small two-layer BERT model
that predicts masked tokens and the ELECTRA discriminator model that
both require training. However, the new objective allows the model to learn

127

highlighting exact matches for ad hoc ranking with transformers

Table 7.12 – Reranking effectiveness on the TREC DL 2019 and DL 2020 Document
ranking tasks for Sim-Pair and vanilla models with both BERT and
ELECTRA cores. Best performance is highlighted in bold. Significant
improvements over the vanilla baseline with p < 0.05 are indicated with
†, for the same core. Change rates over the vanilla baseline for the same
core type are reported for each metric (%)

TREC DL Doc DL 19 DL 20

Model nDCG@10 MAP nDCG@10 MAP

BM25 0.5176 − 0.2434 − 0.5286 − 0.3793 −
BM25+RM3 0.5169 − 0.2772 − 0.5248 − 0.4006 −
Vanilla BERT 0.6726 − 0.3006 − 0.6340 − 0.4523 −
Sim-Pair BERT 0.6798 ▲1.1% 0.3057 ▲1.7% 0.6495 ▲2.4% 0.4505 ▽0.4%

Vanilla ELECTRA 0.6738 − 0.2976 − 0.6236 − 0.4297 −
Sim-Pair ELECTRA 0.6816 ▲1.2% 0.3062 ▲2.9% 0.6331 ▲1.5% 0.4543† ▲5.7%

from all input positions rather than only 15% of the positions in the MLM
task.

In order to be confident in our approach, we investigate if exact match
marking is beneficial for a BERT variant pre-trained on a more robust task,
and study:

RQ4. Is exact match marking beneficial for alternative transformer-based models
such as ELECTRA?

For our experiments, we use the base version of the ELECTRA model as
the core of our model architecture illustrated in Figure 7.1 in Section 7.3, as
a replacement of the BERT model. We use the same fully-connected layer
for relevance classification R(d, q) quantifying how relevant the candidate
document d is to the query q. We also use the same fine-tuning hyper
parameters used with BERT.

5.4.1 In-domain effectiveness

Using the same setting used for the BERT-based models, we report the
results obtained on TREC DL 2019-2020 document ranking test collections
in Table 7.12. For clarity, we only show results with the Sim-Pair marking
strategy, full results with all the strategies can be found in Appendix 2.1.

Interestingly, using the ELECTRA core in place of BERT in the vanilla
baseline does not lead to increased performance and we even observe a
degradation in performance on TREC DL 2020. With exact match marking,
Sim-Pair models using both BERT and ELECTRA cores, leads to similar
gains over the vanilla baselines. While the gain in average precision is more
pronounced with ELECTRA on both DL 2019 and 2020, the effectiveness in
terms of nDCG@10 is more interesting with the BERT core on the DL 2020

test collection.

128

5 results and analysis

Table 7.13 – Reranking effectiveness in the zero-shot transfer setting for the Sim-
Pair and vanilla models on Robust04 and GOV2 collections using both
BERT and ELECTRA cores. Best performance is highlighted in bold.
Significant improvements over the vanilla baseline with p < 0.05 and
p < 0.01 are indicated with † and ‡ respectively for the same core.
Change rates over the vanilla baseline, for the same core type, are
reported for each metric (%)

Robust04 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 − 0.3631 − 0.4058 − 0.3345 − 0.4240 − 0.3631 −
BM25+RM3 0.4407 − 0.3821 − 0.4255 − 0.3661 − 0.4407 − 0.3821 −
Vanilla BERT 0.4652 − 0.4046 − 0.4510 − 0.3851 − 0.4845 − 0.4147 −
Sim-Pair BERT 0.4773 ▲2.6% 0.4155 ▲2.7% 0.4931‡ ▲9.3% 0.4169‡ ▲8.3% 0.5239‡ ▲8.1% 0.4446‡ ▲7.2%

Vanilla ELECTRA 0.4416 − 0.3833 − 0.4482 − 0.3831 − 0.4782 − 0.4141 −
Sim-Pair ELECTRA 0.4717‡ ▲6.8% 0.4124 ▲7.6% 0.4597 ▲2.6% 0.3886 ▲1.4% 0.5043‡ ▲5.5% 0.4263 ▲2.9%

GOV2 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 − 0.5362 − 0.4264 − 0.4705 − 0.4774 − 0.5362 −
BM25+RM3 0.4851 − 0.5634 − 0.4212 − 0.4966 − 0.4851 − 0.5634 −
Vanilla BERT 0.4533 − 0.5272 − 0.4696 − 0.5248 − 0.4937 − 0.5611 −
Sim-Pair BERT 0.4468 ▽1.4% 0.5134 ▽2.6% 0.4687 ▽0.2% 0.5326 ▲1.5% 0.4991 ▲1.1% 0.5695 ▲1.5%

Vanilla ELECTRA 0.4668 − 0.5332 − 0.4986 − 0.5601 − 0.5147 − 0.5765 −
Sim-Pair ELECTRA 0.4881‡ ▲4.6% 0.5577‡ ▲4.6% 0.5030 ▲0.9% 0.5634 ▲0.6% 0.5249 ▲2.0% 0.5923 ▲2.7%

5.4.2 Zero-shot transfer setting

We use the fine-tuned models on exclusively out-of-domain data, i.e MS
MARCO passage dataset, and apply inference on the window-passages
obtained by splitting each document using the same passage length of 150
words and a 75 words stride used in the BERT experiments. Table 7.13 shows
the results obtained at cutoff 1, 000 on both Robust04 and GOV2 collections.
We recall the results of the Vanilla and Sim-Pair models with the BERT core
for comparison.

Exact Match Marking on ELECTRA. Results indicate clearly that adding
exact match marking is also beneficial for the ELECTRA variant. Similarly
to its BERT counterpart, Sim-Pair ELECTRA is more effective on Robust04

with an average improvement rate of +5% nDCG@20 compared to only half,
+2.5%, on GOV2. Interestingly, exact match marking has more notable impact
on titles rather than descriptions, even though the vanilla ELECTRA baseline
prefers description queries. Thanks to exact match marking, Sim-Pair ELECTRA

achieves significant gains over the BM25 + RM3 baseline on Robust04 titles
and performs comparably on GOV2 titles.

ELECTRA vs. BERT core. The Sim-PairELECTRA variant achieves better
performance than its BERT counterpart regardless of the topic field on the
GOV2 collection. In contrast, using the BERT core is more effective on
Robust04 on both titles, descriptions and the hybrid pipeline. The same
tendency can be observed for the vanilla baseline with smaller margins.

129

highlighting exact matches for ad hoc ranking with transformers

Table 7.14 – Reranking effectiveness in the multi-phase fine-tuning setting for the
Sim-Pair and vanilla models on Robust04 and GOV2 collections using
both BERT and ELECTRA cores. Best performance is highlighted in
bold. Significant improvements over the vanilla baseline with p < 0.05
and p < 0.01 are indicated with † and ‡ respectively for the same core.
Significant inferiority with p < 0.05 is marked with ∗. Change rate over
the vanilla baseline for the same core type are reported for each metric
(%)

Robust04 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 − 0.3631 − 0.4058 − 0.3345 − 0.4240 − 0.3631 −
BM25+RM3 0.4407 − 0.3821 − 0.4255 − 0.3661 − 0.4407 − 0.3821 −
Vanilla BERT 0.4995 − 0.4275 − 0.5368 − 0.4492 − 0.5546 − 0.4715 −
Sim-Pair BERT 0.5058 ▲1.3% 0.4371 ▲2.2% 0.5479† ▲2.1% 0.4574† ▲1.8% 0.5701‡ ▲2.8% 0.4815‡ ▲2.1%

Vanilla ELECTRA 0.5375 − 0.4560 − 0.5676 − 0.4663 − 0.5901 − 0.4902 −
Sim-Pair ELECTRA 0.5380 ▲0.1% 0.4564 ▲0.1% 0.5686 ▲0.2% 0.4705 ▲0.9% 0.5927 ▲0.4% 0.4942 ▲0.8%

GOV2 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 − 0.5362 − 0.4264 − 0.4705 − 0.4774 − 0.5362 −
BM25+RM3 0.4851 − 0.5634 − 0.4212 − 0.4966 − 0.4851 − 0.5634 −
Vanilla BERT 0.5476 − 0.6302 − 0.5175 − 0.5772 − 0.5909 − 0.6604 −
Sim-Pair BERT 0.5743‡ ▲4.9% 0.6540‡ ▲3.8% 0.5406‡ ▲4.5% 0.6084‡ ▲5.4% 0.5998 ▲1.5% 0.6758 ▲2.3%

Vanilla ELECTRA 0.5784 − 0.6621 − 0.5629 − 0.6279 − 0.6149 − 0.6862 −
Sim-Pair ELECTRA 0.5868 ▲1.5% 0.6661 ▲0.6% 0.5552 ▽1.4% 0.6225 ▽0.9% 0.6133 ▽0.3% 0.6926 ▲0.9%

5.4.3 Multi-phase fine-tuning

Table 7.14 shows the results obtained using the multi-phase fine-tuning on
both MS MARCO passage dataset and in-domain labeled data, described in
section 5.3 for BERT. Interestingly, the ELECTRA-based models benefit more
from the additional in-domain fine-tuning to outperform the BERT-based
models on both collections regardless of the topic field. With this increased
performance, adding exact match marking has less impact on ELECTRA
compared to BERT. This suggests that the ELECTRA variants in this setting
have already enough representations capabilities tailored for the target tasks,
that explicit exact matching hints are no longer required.

Exact match marking is indeed beneficial for the ELECTRA model in a
zero-shot transfer setting where no labelled data is available in the target
domain, which is the most common scenario. Sim-Pair ELECTRA is able
to achieve significant gains on titles, where Sim-Pair BERT is less effective.
However, for description and hybrid runs that use descriptions for reranking,
exact match marking appears to have more substantial impact when using
a BERT core. On TREC DL 2019 and 2020 document ranking benchmarks,
both vanilla and Sim-Pair models perform similarly with both BERT and
ELECTRA cores. The only advantage of the ELECTRA core is increased
average precision with Sim-Pair. Finally, we can say that, in most cases, the

130

5 results and analysis

Table 7.15 – Reranking effectiveness of the Sim-Pair BERT with interpolating BM25

scores vs. Birch (MS) baseline on both Robust04 and GOV2 collections.
Results are obtained after reranking the top-100 documents returned by
BM25 following the setting used for the Birch(MS) baseline in Li et al.
[122]. BM25 results are reported at cutoff 100

Robust04 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4407 - 0.3821 - 0.4041 - 0.3468 -

Birch (MS) 0.4227 - 0.3616 - 0.4053 - 0.3341 -

Sim-Pair BERT + BM25 0.4839 +14.5% 0.4159 +15.0% 0.4969 +22.6% 0.4098 +22.7%

GOV2 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 - 0.5362 - 0.4264 - 0.4705 -

Birch (MS) 0.4722 - 0.5352 - 0.4260 - 0.4701 -

Sim-Pair BERT + BM25 0.5432 +15.0% 0.6117 +14.3% 0.5068 +19.0% 0.5651 +20.2%

ELECTRA-based versions of our models are more effective compared to their
BERT counterparts.

5.5 Comparison with state-of-the-art baselines

In this section we try to situate our approach with regard to what has
already been proposed for document ranking. In a first part, we try to conduct
comparative evaluations with models presenting a similar experimental setup
for a fair comparison. Then in a second part, we compare our best runs to a
wide variety of SOTA approaches with different configurations.

5.5.1 Comparison in the same experimental design

In order to fairly compare a novel approach with previously proposed
ones, it is important to conduct the evaluation in the same experimental
conditions. Here, we try to reproduce as much of the original settings used
to produce the results of the Birch and BERT-maxP baselines, respectively.
These approaches being the most similar to our ranking configuration as
cross-encoders using a monoBERT core.

Birch (MS). This baseline is fine-tuned exclusively on MS MARCO pas-
sages, therefore we use our Sim-Pair BERT + BM25 model equally fine-tuned
on MS MARCO passages and augmented with BM25 scores interpolation
following the same Equation 7.4 used in Birch [2]. All Robust04 and GOV2

topics and relevance judgements are used as a held-out test set.
Table 7.15 shows the results of our Sim-Pair BERT + BM25 model compared

to the Birch (MS) baseline. Following the setting used by Li et al. [122] for the

131

highlighting exact matches for ad hoc ranking with transformers

Table 7.16 – Reranking effectiveness of the Sim-Pair BERT with multi-phase fine-
tuning vs. BERT-MaxP (MS) baseline on both Robust04 and GOV2

collections. [MS] indicates that the run uses MS marking: exact match
marking is only used during fine-tuning on MS MARCO and ablated in
the in-domain fine-tuning phase

Robust04 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 - 0.3631 - 0.4058 - 0.3345 -

BERT-MaxP (MS) 0.4931 - 0.4277 - 0.5453 - 0.4522 -

Sim-Pair BERT 0.5058 +2.6% 0.4371 +2.2% 0.5479 +0.5% 0.4574 +1.1%

Sim-Pair BERT [MS] 0.4978 +1.0% 0.4281 +0.1% 0.5521 +1.2% 0.4592 +1.5%

GOV2 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 - 0.5362 - 0.4264 - 0.4705 -

BERT-MaxP (MS) 0.5600 - 0.6352 - 0.5506 - 0.6087 -

Sim-Pair BERT 0.5743 +2.6% 0.6540 +3.0% 0.5406 −1.8% 0.6084 −0.0%

Sim-Pair BERT [MS] 0.5665 +1.2% 0.6430 +1.2% 0.5509 +0.1% 0.6161 +1.2%

Birch (MS) baseline, we report results using cutoff 100 in the BM25 first-stage
retrieval. The results clearly indicate that our model outperforms Birch (MS).

BERT-MaxP (MS). The configuration of this baseline is the same we used in
the multi-phase fine-tuning setting. We compare the results of Sim-Pair BERT

fine-tuned first on MS MARCO and then further fine-tuned on the target task
obtained with a 5-fold cross validation with BERT-MaxP (MS) in Table 7.16.
We report the results when using the exact match marking during fine-tuning
on MS MARCO passages only [MS], and the results with the full marking
on both MS MARCO and in-domain data, i.e., Sim-Pair BERT. Our approach
outperforms clearly the BERT-maxP baseline on titles, and performs slightly
better on descriptions. It is important to notice that the BERT-MaxP results
reported by Li et al. [122] are better than our vanilla BERT baseline in the
multi-phase fine-tuning setting, especially on GOV2. This slight difference
can be exaplined by our adoption of the traditional pointwise loss function
(monoBERT [173]) in contrast to the authors use of a pairwise loss function.

5.5.2 Comparison with different experimental designs

Each approach has the optimal experimental conditions that lead to the
best ranking accuracy possible, and these optimal conditions are hardly the
same for the different models we want to compare. Independently of the
experimental framework employed to obtain the results, or the nature of the
approach, Table 7.17 compares our best runs with both BERT and ELECTRA
cores obtained in the multi-phase fine-tuning setting, with the best baseline

132

5 results and analysis

Table 7.17 – Reranking effectiveness on Robust04 and GOV2 of our best runs vs. the
best baseline runs. The change rate (%) of our best run, Sim-Pair ELECTRA,
over each baseline is indicated for both metrics if available. We use the
multi-phase fine-tuning for our runs, the same multi-phase fine-tuning
is adapted in Parade and BERT-maxP baselines. For a fair comparison
with sparse and dense retrieval models we add Sim-Pair runs in the
zero-shot setting on descriptions. Our best results are indicated in bold,
and overall best results among baselines are underlined

Runs Robust04 GOV2

nDCG@20 P@20 Field nDCG@20 P@20 Field

Lexical Retrieval

[01] BM25 0.4240 +40.% 0.3631 +36.% Title 0.4774 +28.% 0.5362 +29.% Title

[02] BM25+RM3 0.4407 +34.% 0.3821 +29.% Title 0.4851 +26.% 0.5634 +23.% Title

Sparse Retrieval

[03] BOW+DeepCT-Query 0.4450 +33.% - - Desc 0.4300 +43.% - - Desc

[04] BM25+DocT5Query 0.4076 +45.% 0.3361 +47.% Title - - - - -

Dense Retrieval

[05] DPR 0.1832 +223% 0.1508 +228% Title 0.1618 +279% 0.1644 +321% Desc

[06] ANCE 0.3517 +69.% 0.2767 +79.% Desc 0.3604 +70.% 0.3738 +85.% Desc

[07] ColBERT 0.3919 +51.% 0.3275 +51.% Title - - - - -

Zero-shot Setting

[08] Sim-Pair BERT 0.4931 +20.% 0.4169 +19.% Desc 0.4687 +31.% 0.5326 +30.% Desc

[09] Sim-Pair ELECTRA 0.4597 +29.% 0.3886 +27.% Desc 0.5030 +22.% 0.5634 +23.% Desc

Reranking

[10] Birch (MS-MB) 0.5137 +15.% 0.4404 +12.% Title 0.5608 +9.4% 0.6409 +8.1% Title

[11] BERT-MaxP (MS) 0.5453 +8.7% 0.4522 +9.3% Desc 0.5600 +9.5% 0.6356 +9.0% Title

[12] Parade 0.5605 +5.7% 0.4661 +6.0% Desc 0.5750 +6.7% 0.6530 +6.1% Title

[13] Parade ELECTRA 0.5713 +3.7% 0.4717 +4.8% Desc 0.5851 +4.8% 0.6678 +3.7% Title

[14] Parade-v2-Transformer 0.6127 −3.3% 0.5255 −6.0% Desc 0.6093 +0.7% 0.6651 +4.0% Title

[15] monoT5-base 0.5298 +12.% - - Hybrid - - - - -

[16] monoT5-large 0.5345 +11.% - - Hybrid - - - - -

[17] monoT5-3B 0.6091 −2.7% - - Hybrid - - - - -

Our Runs

[18] Sim-Pair BERT 0.5701 - 0.4815 - Hybrid 0.5998 - 0.6758 - Hybrid

[19] Sim-Pair ELECTRA 0.5927 - 0.4942 - Hybrid 0.6133 - 0.6926 - Hybrid

runs. While Table 7.18 compares our best in-domain runs to both TREC best
runs from the TREC DL 2019 and 2020 tracks and the SOTA baselines.

Robust04 and GOV2 collections. Unsurprisingly, the reranking models
achieve the best results and largely outperform all other baselines. For a fair
comparison with the sparse and dense retrieval methods (runs [03-07]) which
do not use target-domain fine-tuning, we add our runs in the zero-shot setting
on descriptions (runs [08-09]). Nevertheless, our rerankers still outperform
the dense retrievers.

Results obtained using the best Sim-Pair BERT, run [18] in Table 7.17, out-
perform all the BERT-based models that represent the state of the art and
achieves better performance than monoT5 for both base and large versions on
robust04. The Sim-Pair ELECTRA variant (run [19]) achieves comparable per-
formance with the monoT5-3B model while using only 3.6% of its parameters.

133

highlighting exact matches for ad hoc ranking with transformers

Table 7.18 – Reranking effectiveness on TREC DL 2019 and 2020 Document ranking
tasks of our Sim-Pair models with both BERT and ELECTRA cores vs.
the best TREC runs and baselines. The change rate (%) of our best
run, over each baseline is indicated for both metrics if available. DPR*

and ANCE* results were copied from the ANCE paper [251]. Our best
results are indicated in bold, and overall best results among baselines
are underlined

Runs DL 2019 DL 2020

nDCG@10 MAP@100 nDCG@10 MAP@100

Lexical Retrieval

[01] BM25 0.5176 +31.% 0.2434 +26.% 0.5286 +23.% 0.3793 +19.%

[02] BM25+RM3 0.5170 +32.% 0.2774 +10.% 0.5225 +24.% 0.4014 +12.%

Sparse Retrieval

[03] BM25+HDCT 0.4523 +50.% 0.2067 +13.% 0.4506 +44.% 0.3022 +49.%

[04] BM25+DocT5Query 0.5968 +14.% 0.2700 +13.% 0.5885 +10.% 0.4230 +6.5%

Dense Retrieval

[05] DPR*
0.5570 +22.% - - - - - -

[06] ANCE*
0.6150 +10.% - - - - - -

[07] ColBERT 0.5756 +18.% 0.1914 +60.% 0.5481 +18.% 0.2963 +52.%

Reranking-TREC

[08] ucas_runid1 0.6437 +5.7% 0.2642 +16.% - - - -

[09] idst_bert_r1 0.7189 −5.4% 0.2915 +5.0% - - - -

[10] Parade-v2-Tranformer 0.6500 +4.6% 0.2740 +12.% 0.6010 +8.1% 0.4030 +12.%

[11] Parade-v2-Max 0.6790 % 0.2870 % 0.6130 % 0.4200 %

[12] d_d2q_duo - - - - 0.6934 −6.3% 0.5422 −17.%

[13] ICIP_run1 - - - - 0.6623 −1.9% 0.4333 +4.0%

Our Runs

[14] Sim-Pair BERT 0.6798 - 0.3057 - 0.6495 - 0.4505 -

[15] Sim-Pair ELECTRA 0.6801 - 0.3061 - 0.6331 - 0.4543 -

The monoT5 baseline is by far the strongest baseline, it is important to note
that it uses a zero-shot transfer setting without the need for in-domain fine-
tuning as opposed to BERT-MaxP, Parade and our best runs [18-19], however,
its large size make it unpractical compared to a BERTBase or ELECTRA Base.
For the Parade baselines, our best runs outperform the Parade, and Parade
ELECTRA model on both Robust04 and GOV2 collections by a varying margin
from +3% to more than +4%. However, the Parade-v2-Transformer with its
improved training and reranking threshold of 1000 outperforms our models,
but also all other baselines including monoT5-3B.

TREC DL Document Ranking task. Similarly to the Robust04 and GOV2

results, the best TREC runs which are cross-encoding rerankers outperform
all other baselines. For TREC DL 2019, we include the best idst_bert_r1

run [253] which uses StructBERT [243], a BERT model which better models
sentence relationships thanks to an improved Next Sentence Prediction task,
and ucas_runid1 [37] which uses BERT-MaxP [51]. We also include Parade-v2

134

5 results and analysis

results [123]. Interestingly, our runs outperform Parade-v2-Transformer by
large margins in the in-domain scenario. Our best runs also outperform
Parade-v2-Max on TREC DL 2020, and perform similarly on DL 2019.

Our best runs further outperform ucas_runid1 but cannot outperform idst
_bert_r1 –StructBERT core– in terms of nDCG@10. In TREC DL 2020, the
best run d_d2q_duo [192] is a large multi-stage ranking model including a
BM25 retriever, DocT5Query document expansion and two cascading T5-3B
rerankers, making hard to outperform. The ICIP_run1 [36], uses a BERT-
Large model at its core with a refined fine-tuning process including passage
filtering and better negative sampling which explains its higher performance.
Nevertheless, our runs are still competitive and outperform Parade-v2 which
has the same model size as our models. Interestingly, the performance on
TREC DL 2020 are lower in terms on nDCG@10 compared to TREC DL 2019

for the same model as observed for both our runs and the Parade-v2 run.

5.6 Investigating the Contextualized Representations of Marker Tokens

We have proposed marking strategies to emphasize exact match signals
by introducing marker tokens in the input of a PLM encoder. However, the
output representations produced by the encoder for these spacial marker
tokens are not explicitly put to use for relevance scoring. Instead, the contex-
tualized representation of the standard [CLS] token is taken as an aggregate
representation of the entire input sequence, including the marker tokens.
This representation is then fed through the classification layer for relevance
prediction following the standard monoBERT architecture.

In this section, we are interested in the contextualized representations
produced by the BERT encoder for the marker tokens, and how they can
contribute to relevance prediction. We propose alternatives to the standard
[CLS] token representation, and explicitly make use of the contextualized
representations of the marker tokens to extract a fixed-size representation of
the query-document input sequence for relevance classification, and answer:

RQ5. Can the contextualized representations of the marker tokens be effectively
and explicitly leveraged for relevance prediction?

5.6.1 Query-Document Sequence Representation

In addition to the standard [CLS] representation pooling, we introduce new
variations for representing the query-document input sequence which rely on
pooling the last hidden representations of the transformer model, which we
define as T = [T[CLS], U1, ...Un, T[SEP], V1, ..., Vm, T[SEP]], where U1:n and V1:m

are the last hidden representations, i.e., the contextualized representations,
of the query tokens q1:n and document tokens d1:m, respectively. The output

135

highlighting exact matches for ad hoc ranking with transformers

representation obtained for input sequence is denoted ho ∈ RH, where H is
the size of the representation vector.

[cls] pooling The contextualized representation of the [CLS] token T[CLS]
is commonly used as a fixed-size representation of the entire input sequence
ho = T[CLS] as recommended by Devlin et al. [58], and adopted in monoBERT
[173]. We used this standard representation in all our previous experiments.

marker token pooling The contextualized representations of the
marker tokens (i.e., the simple marker “#” used in Sim-Pair) are pooled
from the output of the BERT encoder to produce a fixed-size representation
of the input sequence based on exact match signals.

More formally, given the contextualized representations produced by the
BERT encoder for the input sequence, that is:

T = [T[CLS], U1, ...Un, T[SEP], V1, ..., Vm, T[SEP]] (7.5)

we first pool the marker token representations from the query segment U1:n

to produce a query representation hq, and extract similarly a document
representation hd from the marker tokens in the document segment V1:m.
Then, we concatenate the query and document representations to get a single
input representation:

ho = hq ⊕ hd (7.6)

where ho ∈ RH, and H = D + D with D being the hidden size of the BERT
encoder.

We define three methods for extracting a segment representation (i.e., hq

and hd) from its marker token representations:

1. Avg. The segment representation is obtained by a mean average pooling
over the representations of its marker tokens;

2. Max. The segment representation is obtained by a max pooling over
the representations of its marker tokens. This pooling only keeps the
strongest signals from the marker token representations;

3. First. The segment is represented by the contextualized representation
of its first occurring marker token. The intuition behind this pooling
is that a user can judge the relevance of a document at the first exact
matching term;

These new pooling methods can require more operations to build the
output representations ho compared to standard [CLS] pooling.

5.6.2 Relevance Classification

Figure 7.3 illustrates the full architecture of the novel representation variant
introduced above. In all variants, the output representation of the query-

136

5 results and analysis

Figure 7.3 – The architecture of the novel representation variant relying on marker
token contextualized representations for relevance extraction.

document sequence ho from the BERT model is fed into a dense layer with a
linear activation 11, and obtain h′o. Then, for the binary relevance classification
task, we use single classification layer W ∈ R2×H. Since the marker token
pooling methods produce an output vector ho with double the number of
dimensions (H = D + D) compared to the [CLS] pooling method (H = D),
the new model variants require more parameters in the relevance classifier;
Nonetheless, these additional parameters are negligible, considering the large
number of BERT parameters.

During fine-tuning, the classification loss is the standard cross-entropy of
the softmax of ho · W with respect to the true relevance label as in the original
monoBERT model.

5.6.3 Experimental setup

We focus on the Sim-Pair BERT model and modify its output representation
to the variants defined previously. For a fair comparison, we follow the
same experimental design described in Section 4.1 for fine-tuning, and for
evaluating the new representation variants on both the in-domain and out-
of-domain collections. For out-of-domain generalizability, we only report
results in the zero-shot setting as it is the most common setting in real-world

11. It is important to note that BERT integrates a pre-trained pooler for the [CLS] token
representation that uses a dense layer with the tanh activation function. We follow exactly the
same process with the pooled representations of the query and document segments hq and hd,
respectively.

137

highlighting exact matches for ad hoc ranking with transformers

Table 7.19 – Reranking effectiveness of the Sim-Pair BERT with representation variants
on TREC DL 2019-2020 document ranking collections. Best results are
indicated in bold

DL 2019 DL 2020

Model Output Rep. nDCG@10 MAP@100 nDCG@10 MAP@100

BM25 + RM3 - 0.5169 0.2772 0.5248 0.4006

Vanilla BERT CLS pooling 0.6726 0.3006 0.6340 0.4523

Sim-Pair BERT CLS pooling 0.6798 0.3057 0.6495 0.4505

Sim-Pair BERT

Avg pooling 0.6529 0.2732 0.6274 0.4244

Max pooling 0.6684 0.2876 0.6441 0.4327

First pooling 0.6895 0.2849 0.6321 0.4372

applications. Moreover, we only use the hybrid runs as they give the best
retrieve-then-rerank setting.

5.6.4 Results and Discussion

Table 7.19 reports the results of the different representation variants of
the Sim-Pair BERT model on the TREC DL 2019 and 2020 document ranking
collections. Interestingly, restricting the relevance classification decision to the
information encoded in the marker token representations leads, on average,
to on par reranking performance with using the standard [CLS] pooling
in terms of nDCG@10. In other words, the exact matching signals from
the marker tokens have enough representation capacity to model relevance
and achieve a reranking performance close to the vanilla baseline on both
collections.

Extracting the strongest signals from the marker token representations in
a segment with the max pooling method outperforms the simple average
pooling method. On the TREC DL 2020 collection, the first pooling method
leads to a reranking performance on par with the vanilla baseline, but slightly
worse than the max pooling method. On the TREC DL 2019 collection,
however, using only the representation of the first marker token in a segment
is enough to outperform the performance of the standard [CLS] representation
pooling used in both the Vanilla and Sim-Pair models. The information
encoded in the marker token representations produced by the BERT encoder
show promising potential, and other pooling methods can be build around
them for relevance classification.

The results of the zero-shot transfer to the out-of-domain collections,
namely: Robust04 and GOV2, with the representation variants are shown
in Table 7.20. Similarly to the in-domain results, relying exclusively on the
representations of the marker tokens for relevance decisions is able to achieve

138

5 results and analysis

Table 7.20 – Reranking effectiveness of the Sim-Pair BERT with representation variants
on both Robust04 and GOV2 collections. We report results using the
hybrid runs at cutoff 1000. Best results are indicated in bold

Robust04 GOV2

Model Output Representation nDCG@20 P@20 nDCG@20 P@20

BM25 - 0.4240 0.3631 0.4774 0.5362

Vanilla BERT CLS pooling 0.4845 0.4147 0.4937 0.5611

Sim-Pair BERT CLS pooling 0.5239 0.4446 0.4991 0.5695

Sim-Pair BERT

Avg pooling 0.4805 0.4012 0.4908 0.5497

Max pooling 0.4860 0.4133 0.4993 0.5644

First pooling 0.4832 0.4082 0.4983 0.5574

on par performance with the vanilla baseline. Notably, using the max pooling
method on the GOV2 collection achieves on par results with the [CLS] pool-
ing method with the Sim-Pair model. However, none of the newly introduced
pooling methods is able to match the performance of the Sim-Pair model
with [CLS] pooling. At the end, using the exact match signals encoded in the
contextualized representations of the marker tokens is powerful enough to
match the performance of the vanilla baseline which relies on [CLS] pooling
(i.e., all tokens). Nevertheless, it does not seem to be able to outperform
the standard [CLS] pooling with Sim-Pair BERT on Robust04, in which the
aggregate representation combines the signals from all tokens in the sequence
including the marker tokens to achieve significantly better performance than
both the vanilla baseline and all remaining pooling methods.

Experiments with pooling representations of marker tokens show the
potential of such special tokens for encoding important relevance signals,
which can replace the standard [CLS] representation in a Vanilla model (i.e.,
without exact match marking). Nevertheless, using [CLS] pooling over our
Sim-Pair BERT model to build a more complete aggregate representation com-
bining interactions between existing tokens and introduced marker tokens
achieves more important gains in performance notably on Robust04.

5.7 Marker Tokens for Query Expansion

We have seen that the contextualized representations of marker tokens
produced by the BERT encoder carry valuable information for relevance
classification. These marker tokens are strategically placed around query-
document overlapping terms to bring focus on them as they are considered to
be important in traditional IR. A natural extension of this idea, is to explore
the use of marker tokens for other purposes such as query expansion.

139

highlighting exact matches for ad hoc ranking with transformers

We propose padding the query segment with marker tokens whose re-
sponsibility is not to highlight existing query terms but rather allow BERT to
encode new query embeddings to expand the existing query-term embed-
dings, and study the following research question:

RQ6. Can marker tokens be used for implicit and differentiable query expansion?
Given a query q and a candidate document d, we first tokenize them into

their WordPiece tokens q1:n and d1:m, respectively. Then, we pad the query
tokens with a fixed number N of marker tokens “#” within the maximum
query length range. Finally, we concatenate the two sequences of tokens
separated with the special [SEP] token, we also close the entire sequence
with a [SEP] token and prepend the token [CLS] to the resulting sequence as
follows:

S = [[CLS], q1, ...qn, #, ...#, [SEP], d1, ...dm, [SEP]] (7.7)

This query expansion is intended to serve as a differentiable mechanism
for learning to expand queries with new token representations or re-weigh
existing tokens based on their importance for the relevance matching. This
approach was used by ColBERT [112] to expand the query representations in
a bi-encoder architecture using the [MASK] token.

5.7.1 Experimental Setup

We apply the marker-token-based query expansion technique introduced
above on both the Vanilla BERT baseline and the Sim-Pair BERT model with the
standard [CLS] pooling representation. In the vanilla baseline, the marker
token “#” is exclusively used for query expansion, while it has has a double
role in Sim-Pair: highlight the exact term matches, and expand the query.

We keep the same fine-tuning and evaluation settings described in Section
4.1, and fix the number N of expansion tokens to 8 for all collections. We
report results on in-domain TREC DL collections, and zero-shot generalizab-
ility to out-of-domain collections on Robust04 and GOV2. We use the title
queries for the initial retrieval for better recall and then investigate the effect
of the implicit query expansion technique on both titles and descriptions in
the rerankers. That is, we use the title and hybrid runs which share the same
initial candidates (retrieved with BM25 using titles) and then use titles and
descriptions, respectively for reranking with the BERT-based models.

5.7.2 Results and Discussion

Table 7.21 reports the results of our query expansion approach applied on
the Vanilla and Sim-Pair models with the BERT core on TREC DL document
ranking collections. The results show that padding the TREC DL queries with
marker tokens does not bring any gains in ranking performance. The marker-
token-based query expansion leads to slight losses in effectiveness on the

140

5 results and analysis

Table 7.21 – Reranking effectiveness with marker-token-based query expansion on
TREC DL 2019-2020 document ranking collections. Best results are
indicated in bold

DL 2019 DL 2020

Model Query Expansion nDCG@10 MAP@100 nDCG@10 MAP@100

BM25 + RM3 RM3 0.5169 0.2772 0.5248 0.4006

Vanilla BERT

- 0.6726 0.3006 0.6340 0.4523

Marker Tokens 0.6665 0.2977 0.6206 0.4442

[MASK] Tokens 0.6588 0.2962 0.6254 0.4414

Sim-Pair BERT

- 0.6798 0.3057 0.6495 0.4505

Marker Tokens 0.6568 0.2913 0.5991 0.4275

[MASK] Tokens 0.6859 0.3022 0.6578 0.4542

Table 7.22 – Reranking effectiveness with marker-token-based query expansion on
both Robust04 and GOV2 collections. We report results using the title
and hybrid runs at cutoff 1000. QE indicates the query expansion tech-
nique used. Best results are indicated in bold. Significant improvements
of the query expansion models are indicated with † and ‡ for p < 0.05
and p < 0.01, respectively

Robust04 GOV2

Title runs Hybrid runs Title runs Hybrid runs

Model QE nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 - 0.4240 0.3631 0.4240 0.3631 0.4774 0.5362 0.4774 0.5362

Vanilla BERT

- 0.4652 0.4046 0.4845 0.4147 0.4533 0.5272 0.4937 0.5611

Marker 0.4820† 0.4183†
0.5104

‡
0.4321

‡
0.4638 0.5376 0.5091† 0.5701

[MASK] 0.4647 0.4032 0.4939 0.4213 0.4528 0.5238 0.4942 0.5614

Sim-Pair BERT

- 0.4773 0.4155 0.5239 0.4446 0.4468 0.5134 0.4991 0.5695

Marker 0.4539 0.3938 0.4524 0.3837 0.4634 0.5319 0.4823 0.5463

[MASK] 0.4747 0.4153 0.5176 0.4386 0.4594 0.5332 0.5054 0.5685

vanilla baseline, meanwhile the losses are more prominent with the Sim-Pair
model, where the marker tokens endorse two different roles simultaneously.
This double role of exact match marking and query expansion assumed by the
same marker token appears to be confusing for the BERT encoder to figure
out. Therefore, we propose using a different token for query expansion for
comparison. We chose the [MASK] token, which was used for the purpose
of query expansion in ColBERT. In contrast to the marker token “#”, the
[MASK] token was pre-trained to generate the representation of the masked
token form its context via the Masked Language Modeling objective in BERT.
Thus, this token is more fitted to the query expansion task.

Using the [MASK] token instead of the marker token does not make the
query expansion more effective with Vanilla BERT. However, it leads to better
results with Sim-Pair BERT and even achieves substantial gains in performance.

141

highlighting exact matches for ad hoc ranking with transformers

The results of the zero-shot transfer to Robust04 and GOV2 are shown in
Table Table 7.22. Similarly to in-domain results, using the marker token for
query expansion with the vanilla baseline leads to improvements, while using
it with Sim-Pair leads to mitigated results. On Robust04, exact match marking
provides substantial improvements in performance, but additionally using
marker tokens for query expansion leads to degradation in performance. On
GOV2, however, exact match marking brings slight gains in performance
on description queries while it leads to degradation on title queries. Con-
sequently, using the marker token for query expansion brings gains on titles,
while degrading performance on descriptions. Interestingly, the results reveal
larger gains on descriptions (i.e., hybrid runs) compared to titles (i.e., title
runs). This suggest that richer query contexts inform better implicit query
expansion.

Similarly to in-domain, replacing the marker token with the [MASK]
token for query expansion does not achieve better results on the vanilla
baseline. Meanwhile, it is a better fit with the Sim-Pair model on Robust04

and GOV2 descriptions (i.e., where exact match marking outperforms the
vanilla baseline). Nevertheless, using marker tokens for emphasizing exact
match signals without query expansion brings more substantial gains on
Robust04.

Implicit query expansion with marker tokens yields interesting gains
in zero-shot reranking performance on out-of-distribution test data with
no impact on the model’s efficiency (i.e., the expansion tokens are simply
appended to the query after tokenization). Notably, richer query contexts
provided by long natural descriptions inform the BERT encoder to build
better contextualized expansion representations in place of the marker tokens.
The results of this investigation suggest that marker tokens can be introduced
in the input of PLMs for various purposes including: exact match marking
and implicit query expansion. Nonetheless, assigning a single role to the
marker tokens appears to be crucial for the encoder.

6 Discussion and Conclusion

We have shown throughout this chapter the empirical validation of the IR
approach that we have proposed to harness the exact matching signals from
the query-document pairs to enhance document ranking with pre-trained
language models. To do so, we have defined an experimental protocol which
allowed us to answer the our research questions as follows:

We have shown that using marking strategies to explicitly emphasize exact
matching signals can enhance the performance of pre-trained language mod-
els, in the context of reranking, on the ad hoc document ranking task. The

142

6 discussion and conclusion

experimental results on in-domain and out-of-domain benchmarks showed
that combining a simple marker soft marker with a pair marking strategy
(Sim-Pair) is the most simple yet effective marking strategy. Notably, high-
lighting exact term matches in the input sequence improves, significantly, the
zero-shot generalizability of the monoBERT model to the out-of-distribution
Robust04 data. Moreover, experiments confirm the ability of BERT to lever-
age the rich long natural language descriptions of the Robust04 and GOV2

collections. And since we follow a retrieve-then-rerank architecture where
the retriever is a BoW model that prefers short keyword queries, we propose
a hybrid pipeline where short keyword queries are used during the initial
retrieval, and then replaced by descriptions in the reranking stage which
leads to substantial gains in performance.

We investigated the contribution of the lexical scores from the first-stage
retriever to the end effectiveness of the entire reranking architecture. We
found that exact term matching scores from the traditional BoW model, BM25,
are still beneficial for BERT-based document reranking for out-of-domain
collections. More importantly, using exact match marking does not appear to
require as much contribution from BM25’s exact matching scores to achieve
better performance compared to the vanilla model. This suggests that our
exact match marking strategy does, indeed, capture exact match signals.

In a multi-phase fine-tuning setting, we showed that adding in-domain
fine-tuning on top of the first general-purpose fine-tuning phase on out-of-
domain data leads to better ranking performance. We further demonstrated
through an ablation study, that using exact match marking in the general-
purpose fine-tuning phase on large out-of-domain data is enough to achieve
substantial leaps in performance especially on descriptions.

We would argue that our exact match marking induces focus on exact
match signals leading to better performance than a vanilla model (in 24
comparisons, with 9 being significant), or at least to comparable performance
(only in 4 comparisons, with no significant loss). Importantly, our extensive
experiments did not show a single case where Sim-Pair performs significantly
worse, thus it offers a more interesting alternative to the vanilla monoBERT.
On the efficiency side, our approach inherits the efficiency issues of the
cross-encoder architecture. However, we do not add more complexity to the
model, making our approach a better substitute for a vanilla cross-encoder
with the exact same architecture and number of parameters (110M). More so,
marking is not needed for in-domain fine-tuning once the general-purpose
fine-tuning phase is completed.

Overall, our exact match emphasizing approach based on marking strategies
showed better performance over the vanilla baseline. It also produce compet-
itive effectiveness compared to state-of-the-art models. Additionally, further
investigation of the contextualized representations produced by BERT for
our introduced marker tokens show promising potential, as the information

143

highlighting exact matches for ad hoc ranking with transformers

encoded in these special tokens has enough representation capacity to inform
relevance classification decisions.

Finally, the proposed marking strategies are not limited to exact match
emphasizing only. Marker tokens can be further applied for other purposes
such as implicit query expansion which yields substantial gains in ranking
performance in the zero-shot transfer setting to standard ad hoc retrieval
collections exemplified by Robust04.

144

8
Investigating contextualized

representations for ad hoc ranking

1 Introduction

Contextualized representations from pre-trained language models (PLMs),
such as BERT [58], have become the default representations in neural in-
formation retrieval (IR), achieving state-of-the-art in text ranking with large
performance leaps [129].

A category of neural IR models aims at learning contextualized represent-
ations suitable for ranking as part of the emerging research area on dense
retrieval covered in Chapter 6. Many of these dense retrievers are single-vector
systems, in which a PLM encodes each query and each document into a single
vector, and relevance is given by a simple measure of similarity between the
two vectors. Alternatively, ColBERT [112] introduces a new late interaction
mechanism, where queries and documents are encoded into their token rep-
resentations, and relevance is computed based on all-to-all soft matching
between query and document token vectors. From the success of these mod-
els, which rely on simple soft matching of dense vectors to predict relevance,
it is clear that PLMs effectively encode useful information for ranking in the
output contextualized representations (i.e., the dense vectors). However, little
is understood about what is precisely in these contextualized representations
that largely surpasses the capabilities of static embedding methods [189, 162].
This lack of clarity raises the question of whether the full flexibility of PLMs’
contextualization is required to achieve high-ranking performance.

The contextualization process in a transformer-based PLM starts with
a static token embedding (augmented with a position embedding) that is
gradually modified through multi-headed self-attention mechanisms to create
a contextualized representation (see Section 3.3). This process could integrate
various information such as syntax and semantics [230], how meanings vary
across linguistic contexts (e.g., polysemy) [246], and the topic of a context.
While it is still unclear what types of information play a role in state-of-the-art
ranking models, prior work has provided some hints. The COIL model [75] is
highly effective even while constraining soft matching to only the overlapping
tokens between the query and the document (i.e., only soft matches between
identical tokens are considered). The success of COIL suggests that the
contextualized representations of the same token can further encode fine-

145

investigating contextualized representations for ad hoc ranking

grained topic or sense information necessary for relevance estimation (i.e.,
distinguish between relevant and non-relevant occurrences of the same token).
On the other hand, ColBERTv2 [217] qualifies the semantic space resulting
from ColBERT as “lightweight”, finding that it can be summarized, with
high precision, by a set of static cluster centroids produced by k-means
clustering. Given the contextualized representation of a token, it is first
mapped to a cluster, where it is approximated by the embedding of the cluster
centroid. Minor refinements are then added at the dimension level to better
approximate the original contextualized representation (see Section 5.3). The
effectiveness of ColBERTv2’s compression technique implies that ColBERT
contextualized representations can be distilled into static embeddings (i.e.,
cluster centroids) along with minor refinements.

Building on these insights, we investigate how well simplified approaches
can approximate a PLM’s contextualization process. This investigation aims
to gain insight into the contextualization process of PLMs in the context of
ranking. The results of our study can motivate more efficient architectures
specifically designed for ranking by considering only what is necessary for
the task.

Given a contextualized representation of a token produced by an “oracle”
PLM, we devise aggregation methods to approximate this representation
by combining a finite set of K learned static embeddings for this token,
referred to as sub-embeddings. More specifically, we consider two types of
aggregations: (1) Intrinsic aggregation (Section 3.1.1), which combines the sub-
embeddings of the target token, and (2) extrinsic aggregation (Section 3.1.2),
which combines the intrinsic representations of tokens in the local-context of
the target token. Intuitively, intrinsic aggregation can model signals closely
tied to a token like its senses or general topics commonly co-occurring with
it (e.g., “bank” in finance), whereas extrinsic aggregation is better suited for
incorporating fine-grained information like sub-topics (e.g., “bank” in the
context of mortgage rates) from neighboring tokens.

The remainder of this chapter is organized as follows. Section 8.2 presents
the motivation of our proposition and introduces the research questions we
study. In Section 8.3, we present the aggregation methods we propose and
their implementation as modules, followed by the detailed life cycle of these
modules. Section 8.4 describes the experimental setup and Section 8.5 reports
the evaluation results. We end this chapter with a conclusion.

2 Motivation and Research Questions

Transformer-based PLMs produce contextualized representations as a func-
tion of the entire context in which the term appears. The success of these
contextualized models on a wide range of downstream tasks suggests that

146

3 distilling the oracle contextualization process

contextualized representations capture highly transferable properties of lan-
guage [135]. In an attempt to analyze these representations, several studies
propose distilling them into static embeddings. Ethayarajh [63] show that
BERT produces more context-specific representations in the upper layers
in the same way upper layers of LSTMs produce more task-specific rep-
resentations [135]. The authors then propose a method for distilling static
embeddings by simply taking the first principal component of the contextual-
ized representations of a token. Similarly, Bommasani et al. [20] introduce a
simple and fully general method for distilling contextualized representations
to static lookup-table embeddings outperforming standard static embeddings
(e.g., GloVe [189]), by aggregation over different contexts. Alternatively, Wang
et al. [244] uses BERT representations to train static embeddings following
the Skip-Gram framework, enhancing performance on lexical semantic tasks.

These approaches distill the rich contextualized representations of all
term occurrences into a single static embedding. However, this means that
polysemous occurrences of a token will share the same embedding leading
to the semantic mismatch problem [75] that the same term can refer to different
concepts, e.g., bank of river vs. bank in finance. Thus, we ask the question
of how to automatically decompose the PLM-produced semantic space of a
token into its “senses”? Or, more generally, its aspects.

Contemporaneously, ColBERTv2 [217] studies the semantic space of Col-
BERT and finds that token representations produced by ColBERT localize in a
small number of regions corresponding to the contextual “senses” of a token.
Hence, this semantic space can be summarized, with high precision, by a set
of static embeddings (i.e., cluster centroids) along with minor refinements
at the dimension level to better approximate the token’s contextualized rep-
resentation. Despite the success of this clustering-based technique, it is not
end-to-end differentiable.

In this contribution, we are interested in studying how well simpler ap-
proaches can approximate the contextualization process of transformer-based
PLMs for ranking, by answering the following research questions:

— How to automatically learn static token sub-embeddings which decom-
pose the semantic space of the token?

— How to aggregate these token sub-embeddings to approximate the
oracle contextualized representation?

3 Distilling the Oracle Contextualization Process

Our proposed approach examines the possibility of constraining the contex-
tualization process in PLMs, while maintaining their high ranking-effectiveness.
Our goal is to better understand the role of contextualization for the ranking
task, rather than to propose a new efficient approach for ranking. We view

147

investigating contextualized representations for ad hoc ranking

Figure 8.1 – 1⃝ SRM combines K = 3 token sub-embeddings using attention (SSCA)
weights to produce token representations. 2⃝ LCM uses windowed
attention (WCA) to integrate local context into the SRM representations.

this analogously to work probing PLMs [209]. While probes are classifiers
that typically can perform some classification task, the point of the probe is
to gain insight into the PLM rather than to propose a new way to perform
the classification task. This a primary study which, we hope can motivate
more efficient designs of contextualized ranking models.

In order to study the complex contextualization process in PLMs, we use
distillation into simpler modules based on intrinsic and extrinsic aggregation
methods. This simpler modules are designed to generate contextualized
representations approximating those obtained by the studied PLM, referred
to as the oracle, using bottlenecked contextual information from the oracle as
guidance.

More formally, given an input sequence T = t1:n of n tokens, we use the
oracle PLM to produce contextualized representations c1:n for each token
ti ∈ T. These oracle representations will serve as guidance for our modules.
We present the same input sequence T to our module, or the first module
in a combination of modules to produce contextualized representations for
each token ti ∈ T. As illustrated in Figure 8.1, each module integrates
an information bottleneck to access the oracle representations c1:n to help
decide the aggregation weights of the token’s sub-embeddings in module 1⃝
(intrinsic aggregation), or the local context token representations in module
2⃝ (extrinsic aggregation). We detail the implementation of each of these

modules in the following. Then we present the full life cycle of the resulting
models including pre-training, fine-tuning and inference.

3.1 Aggregation Methods

We first design the static representation module to investigate the performance
of intrinsic aggregation combining a small number of K static token sub-

148

3 distilling the oracle contextualization process

embeddings to represent different occurrences of the same token. This
intrinsic approach to token representation can capture different signals closely
tied to a token, such as its senses or commonly co-occurring topics. We
capture these signals and automatically learn static sub-embeddings during
pretraining (Section 3.2.2) through distillation from the oracle.

Intrinsic aggregation of token sub-embeddings builds on the observation
that a BERT encoder produces a lightweight semantic space, in which vectors
corresponding to different aspects or contextual “senses” of a token gather
in the same region [217]. It summarizes the entire semantic space of a
token using combinations of a small number K of static sub-embeddings
representing high-level contextual senses of the token, e.g., left as the past
form of the verb to leave vs. left as in left/right directions vs. political left.
While K = 1 is equivalent to learning classic static token embeddings (i.e., one
per token), the approach can become as flexible as a PLM’s contextualization
process with a large enough value of K where each sub-embedding can
correspond to one contextualized representation of the token (though it
would be difficult to train and expensive to store).

On the other hand, we design the local context module to investigate the
impact of extrinsic refinements of token representations produced by the
static representation module when considering a small context window.
Considering the summarization realized during the intrinsic aggregation,
fine-grained topic information (e.g., “bank robberies” vs. ”deposit money in
the bank”) tied to the same general topic of a token (interacting with a bank in
the financial sense) have low chances of being encoded in the token’s intrinsic
representation. Hence, we investigate if missing fine-grained variation of a
token representation can be captured using a reduced context window (e.g.,
one token to the left/right).

3.1.1 Static Representation Module (SRM)

The Static Representation Module uses a lightweight architecture which
models a token representation as a combination of its sub-embeddings as
illustrated in Figure 8.1 as module 1⃝.

The SRM learns a static lookup-table containing sub-embeddings for each
token in the oracle’s vocabularly V, reducing its contextual space into a set of
K static sub-embeddings per token (i.e., K × V sub-embeddings). To generate
a token representation, the token’s sub-embeddings are combined into a
single representation with a weighted average, where weights are computed
based on the bottlenecked contextual information from the oracle.

Submbeddings Lookup Table (SLT). SRM builds a set of K static sub-
embeddings representing the different “contextual senses” of a term. Consider-
ing an input sequence T = t1:n of n tokens, we lookup the K sub-embeddings

149

investigating contextualized representations for ad hoc ranking

s1:K
i ∈ RK×D (D being the dimension of the sub-emebddings) in SLT for each

token ti ∈ T.
Single Score Cross Attention (SSCA). Constitutes a controlled information

bottleneck allowing contextual information of tokens from the oracle to
select more indicative sub-embeddings automatically. Formally, we use
the scaled dot-product attention weights by using the token contextualized
representation ci from the oracle for the query vector and each token sub-
embedding sk

i for the key vectors as follows:

(ah)
k
i = so f tmax

(
(ci.W

Query
h)(sk

i .WKey
h)√

DKey

)
︸ ︷︷ ︸

ATTh(ci ,sk
i)

(8.1)

where WQuery
h and WKey

h represent the query and key layers of the attention
head h, respectively, and DKey is the dimension of the key vector.

We max pool over the heads to output a single attention weight per token
sub-embedding:

ak
i = max

h∈H
(ah)

k
i , k ∈ {1..K} (8.2)

Finally, the token sub-embeddings are combined using the corresponding
attention weights to produce the output representation:

SRM(ti) =
K

∑
k=1

ak
i · sk

i (8.3)

3.1.2 Local Context Module (LCM)

To complement the SRM’s intrinsic sub-embedding aggregation, the Local
Context Module performs extrinsic aggregation by using nearby tokens for
refining the SRM’s representations through a bottlenecked Windowed Cross-
Attention (WCA).

Formally, given a token ti ∈ T, and its SRM output embedding ei, WCA
applies cross-attention on the context window of size ws around ti. The
contextualized representation ci of the the center token ti is used for the
query while the embeddings ei−ws:i+ws of the context tokens are used for the
key and value.

(zh)i = ATTh(ci, ej) · (ej · WValue
h) (8.4)

with j ∈ {i − ws : i + ws}, and WValue
h being the value layer of the attention

head h.
The center token’s refined representation is obtained by concatenating the

results from all attention heads and projecting through the output layer:

WCA(ei) = concatH
h=1(zh)i · WOutput (8.5)

150

3 distilling the oracle contextualization process

Finally, we formulate the output of LCM as a gating function, and find
it effective to split the input token embedding into two independent parts
(e1

i , e2
i) ∈ RD/2 along the channel dimension D:

LCM(ei) = (e1
i ⊕ WCA(e2

i)) · WGate (8.6)

where ⊕ denotes concatenation, and WGate ∈ RD×D is a feed-forward layer.
The LCM’s architecture is illustrated in module 2⃝ in Figure 8.1.

At the end, the LCM resembles a transformer with a reduced local context
instead of the full context. Nevertheless, our module is different from a
normal transformer architecture, LCM implementation was inspired by Liu
et al. [134] work exploring representation-independent gated MLPs as an
alternative for the attention (representation-dependent). g-MLP focuses only
on position when computing token-to-token importance, however we find
this alternative less effective in pilot studies.

3.2 Life Cycle

In this section we describe our oracle model followed by a description of
how our modules are pre-trained and then fine-tuned for ranking.

3.2.1 Oracle Model

ColBERT’s [112] state-of-the-art relevance scoring is performed by soft
matching all query and document token’s contextualized representations.
Comparing its effectiveness with that of methods using static embeddings,
it is clear that the contextualization process is incorporating signals that are
highly effective for this task. Additionally, using token-to-token vector simil-
arities offers a simple and interpretable scoring method, and an effective way
for evaluating the quality of token-level vector representations for relevance
matching.

As we have previously seen in Section 5.3, given a query q with n tokens
and a document d comprising m tokens, ColBERT produces first contextual-
ized representations Φ(q1:n) and Φ(d1:m) of the query and document tokens,
respectively, using a BERT encoder. The relevance (similarity) score between
the query and document is then computed using the MaxSim operation,
which identifies the closest-matching document token for each query token:

R(d, q) ≜
n

∑
i=1

m
max

j=1
Φ(qi) · Φ(dj) (8.7)

The original ColBERT model uses query expansion by appending [MASK]
tokens to the end of the query, however because it is non-trivial to explain
reliably what each [MASK] token stands for, we chose not to include this
query expansion in our investigations.

151

investigating contextualized representations for ad hoc ranking

Figure 8.2 – The pre-training procedure of a module or combination of modules
through distillation from the oracle PLM encoder using the MSE loss in
Eq.8.8. The weights of the module(s) are randomly initialized and the
oracle encoder weights are not updated.

For our oracle PLM, we use the trained encoder in a ColBERT variant
in which the encoder is a distilBERT model [216]. This variant matches
the original ColBERT’s effectiveness while reducing its size (i.e., distilBERT
with only 6 transformer layers compared to BERT with 12 layers) thanks to
distillation from a teacher ensemble coupled with the MarginMSE loss [88];
see Section 6.2.

In our approach, the oracle plays two roles. First, the oracle serves as the
teacher model for distillation into our modules in the pre-training phase.
Second, the contextualized token representations produced by the oracle are
used as guidance for the aggregation mechanisms at the level of the bottleneck
components in both SRM and LCM (i.e., in the attention mechanisms). This
can be viewed as a preprocessing step where the contextualized embeddings
are replaced with the attention weights from the SRM and LCM. For example,
the SRM’s output can be computed using only each token ID and its K
attention weights. The LCM’s output can be computed similarly.

3.2.2 Pre-training

We pre-train our SRM and LCM modules from scratch using distillation
from the oracle contextualized representations. To do so, we use single text
sequences as input, and randomly sample N tokens from each sequence
to use for pre-training. All parameters in the SRM and LCM modules are
randomly initialized at the beginning of the training. We optimize these
module parameters to minimize the Mean Squared Error (MSE) loss between

152

3 distilling the oracle contextualization process

(a) Oracle based ranking model (b) SRM-LCM based ranking model

Figure 8.3 – Comparison between (a) the ColBERT ranking model which relies on the
oracle PLM distilBERT for contextualization, and (b) our aggregation-
based ranking model which relies on our specifically designed aggrega-
tion modules (SRM and LCM) for contextualization. Both models rely
on ColBERT’s late interaction mechanism which is based on the MaxSim
operator

their output token representations Ss (i.e., student model output) and the
equivalent oracle contextualized representations St produced by the oracle
encoder (i.e., the teacher model) as shown in Figure 8.2:

LpreTrain = MSE(Ss, St) (8.8)

3.2.3 Fine-tuning and Ranking

During pre-training, our models are only trained on single sequences to
distill the contextualized representations of ColBERT’s encoder. The purpose
of this general-purpose pre-training is to build a generalizable static lookup
sub-embeddings table that can be easily transferred to the downstream task.
Therefore, we freeze the sub-embedding lookup table (SLT) after pre-training,
and fine-tune the rest of the modules’ parameters for the ranking task.

In order to deploy our modules for text ranking, we use ColBERT’s Max-
Sim operator to compute relevance scores using the output representations
produced by SRM or LCM. Using this similarity mechanism, we fine-tune our
modules, analogously to how the oracle was fine-tuned for fair comparisons,
with triples containing a query, a relevant passage, and a less relevant pas-
sage ⟨q, d+, d−⟩. We also use distillation from a teacher ensemble Mt using

153

investigating contextualized representations for ad hoc ranking

the MarginMSE loss [88], which attempts to mimic the teacher’s pairwise
differences in passage scores:

Lrank = MSE(Ms(q, d+)− Ms(q, d−), Mt(q, d+)− Mt(q, d−)) (8.9)

where Mt provides the teacher relevance score for both passages w.r.t query
for our student model Ms.

After this fine-tuning, we have our aggregation-based ranking model which
follows a ColBERT architecture in which the BERT encoder is replaced by our
modules SRM and LCM as shown in Figure 8.3.

4 Methodology and Experimental Setup

We describe in this section the experimental setup we use for validating
our simplified contextualization approach. In order to investigate how well
simplified intrinsic and extrinsic aggregations perform, we proceed with an
incremental validation of the modules presented above (see Section 3.1). Our
objectives through this evaluation are as follows:

1. Investigate how well intrinsic aggregation of static token sub-embeddings
can model the oracle contextualized representations;

2. Study the contribution of extrinsic information from the local context
to the token representation;

3. Explore the complementarity of intrinsic and extrinsic aggregation
approaches;

4. Study the zero-shot generalizability to out-of-domain collections.

4.1 Experimental Setup

4.1.1 Test Collections

We consider the following standard passage ranking benchmarks to achieve
the above experimental objectives:

— MS MARCO passage ranking development collection [9];

— TREC Deep Learning passage ranking tracks from 2019 and 2020 [45,
44];

— DL-HARD passage benchmark [151].

These test collections are standard in the dense retrieval literature [110, 112,
69]. In addition to these common test collections based on the MS MARCO
passage corpus which we use for fine-tuning, we further evaluate our mod-
ules in a zero-shot transfer setting on the following out-of-distribution data
collections:

154

4 methodology and experimental setup

— TripClick [200];

— TREC Robust04
1.

ms marco This collection consists of about 500k training queries and
6, 980 development queries, which are both sparsely judged. The evaluation
set is private, so we follow common practice and report results on the devel-
opment queries (MS MARCO Dev). The performance of models is measured
using the Mean Reciprocal Rank, MRR@10, metric. We use Anserini’s [255]
implementation of BM25 with default parameters to retrieve the top-1000
candidate passages for reranking.

trec deep learning passage ranking We consider the densely-
judged query sets of 43 and 54 queries from the TREC Deep Learning (DL)
passage reranking tracks of 2019 (DL’19) [45] and 2020 (DL’20) [44]. Unlike
MS MARCO Dev, there are more passages annotated per query, and the
relevance judgements are graded (instead of binary judgements), allowing to
use the more informative nDCG@10 metric. We rerank the official organizers
BM25 runs.

dl-hard We include experiments on the DL-Hard passage benchmark,
focusing on 50 challenging and complex queries partially from DL’19 and ’20,
by reranking the authors’ BM25 run baseline.

tripclick A collection of click log data from the health search engine
Trip Database. It contains 1.5M passages, and 3, 525 test queries distributed
into three query sets with 1, 175 queries each, namely Head, Torso, and Tail
queries, grouped by their frequency.

We rerank the top 200 candidate passages retrieved by the BM25 imple-
mentation in Anserini [255] with default parameters.

robust04 A newswire collection comprising 500K long documents (TREC
Disks 4 and 5) and 249 judged topics. We use the standard “title” keyword
queries.

Since the documents are longer than the length limit of ColBERT, they are
split into passages using a sliding window of 250 tokens, and only consider
the up to the first 8 passages per document. The maximum passage sequence
length is set to 256, and the maximum query sequence length is set to 50. A
document relevance score is given by its best scoring passage.

We use BM25 with RM3 query expansion [256] as first-stage retriever as
implemented in Anserini with the default parameters.

1. https://trec.nist.gov/data/robust/04.guidelines.html

155

https://trec.nist.gov/data/robust/04.guidelines.html

investigating contextualized representations for ad hoc ranking

4.1.2 Pre-training

We use more than 20M passages extracted from the TREC-CAR collection
[59] to pre-train our models following the procedure described in Section
3.2.2. This collection is drawn from Wikipedia pages offering a diversity of
contents ideal for learning generalizable static sub-embeddings. In addition to
quantity and diversity, Wikipedia was one of the corpora used for pre-training
BERT.

We use the ADAM optimizer [113] with a learning rate of 2e − 3. We train
for 10 epochs with a batch size of 4, 096 passages of maximum 128 tokens,
and considering N = 50 randomly sampled tokens per passage. We utilize
the full 768 dimensions of the oracle encoder for a fair comparison.

4.1.3 Fine-tuning

For ranking, we fine-tune the models with a learning rate of 2e − 5 on the
MS MARCO train set for 30 epochs with a batch size of 32 triples comprising
a query, a relevant passage, and a less relevant passage. We use the Margin-
MSE loss as described in Section 3.2.

4.1.4 Inference

Given a query and a list of passage candidates, our task is to rerank the
passages according to their relevance to the query using the late-interaction
mechanism. We consider reranking as a fair setting where the candidate
documents are the same for all models. While we could directly use ANN
(see Section 6.3) with our modules, similarly to ColBERT, or devise an op-
timization that takes advantages of our modules (i.e., with the SRM, each
representation is simply a weighted sum of K static sub-embeddings), we fo-
cus on this reranking setting in order to simplify experimentation by avoiding
the costly step of creating ANN indexes.

4.1.5 Evaluation Metrics

We evaluate our modular approach by adopting the TREC protocol. For
this purpose, we use the official metric used in the context of the in-domain
collections, that is MRR@10 for MS MARCO Dev and nDCG@10 for TREC DL
passage ranking and DL-HARD collections. For the out-of-domain evaluation,
we report nDCG@20 and P@20 for Robust04, and MRR@10 and nDCG@10

for TripClick to allow straightforward comparisons with previously reported
results in the literature.

All performance measures are obtained by evaluating the document rank-
ings (retrieval runs) using the official trec_eval 2 tool from TREC. It is the

2. http://trec.nist.gov/trec_eval/

156

http ://trec.nist.gov/trec_eval/

5 results and analysis

tool used by the TREC community to evaluate the performance of track
submissions.

4.2 Baseline and Evaluation Scenarios

We consider a ColBERT architecture based model as our oracle for distilla-
tion into the intrinsic and extrinsic aggregation modules. We use the ColBERT
checkpoint made publicly available by Hofstätter et al. [88] on Hugginface
hub 3. This ColBERT model represents the baseline for our investigation of
the contextualized process for soft matching in the context of text ranking.

To investigate the impact of each factor introduced in our modules, we
distill the contextualization process in ColBERT’s encoder into different
variants of our SRM and LCM modules. We detail these variants in the
following.

SRM-Avg This variant of SRM replaces the attention mechanism SSCA
with a simple average pooling of the token sub-embeddings. This variant
creates a single embedding per token.

SRM-Top1 Considering that each sub-embedding captures a distinct aspect
(i.e., sense, topic, etc) of the token, we represent a token with its closest aspect
embedding instead of a mixture of its different aspect embeddings. This
variant of SRM represents a token by its most indicative aspect, i.e., the sub-
embedding with the highest attention weight is used to represent the token.
To do so, SRM-Top1 is trained from scratch using Gumbel Softmax [152, 101]
instead of Softmax in SCCA (Eq.8.1), to approximate argmax gradients in the
backward pass. For training stability, we find it more effective to initialize the
token sub-embeddings from the centroids produced by K-means on a sample
of contextualized representations.

SRM-LCM This represents the model resulting from the combination of the
SRM and LCM modules, where the output of the intrinsic aggregation from
SRM is fed through LCM for local context refinement. We also experiment
with the SRM-Top1 variant which gives the SRM-Top1-LCM combination.

5 Results and Analysis

We incrementally evaluate our modules beginning with in-domain eval-
uations to investigate the intrinsic aggregation approach implemented in
SRM; followed by the investigation of the impact of the extrinsic refinement
considering local context information implemented in LCM; and then study
their complementarity; finally we explore the zero-shot generalizability to
out-of-domain collections.

3. https://huggingface.co/sebastian-hofstaetter/colbert-distilbert-margin_

mse-T2-msmarco

157

https://huggingface.co/sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco
https://huggingface.co/sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco

investigating contextualized representations for ad hoc ranking

Table 8.1 – SRM reranking effectiveness on the MS MARCO Dev set with variable
number of token sub-embeddings K. D is the embedding size (768). Our
module’s best results are in bold, and oracle results are underlined when
overall best.

K # SLT parameters (×106) MRR@10

BM25 - - 0.184

ColBERT - - 0.342

SRM

1 0.03 ∗ D 0.218

5 0.15 ∗ D 0.317

10 0.30 ∗ D 0.330

15 0.46 ∗ D 0.332

5.1 Intrinsic Aggregation

First, we investigate to what extent the contextual (semantic) space of
ColBERT can be distilled into a finite set of static token sub-embeddings. We
examine the reranking effectiveness of SRM which, given a token, determines
automatically its most indicative sub-embeddings, and combines them to
produce the output representation. To better understand the source of SRM
effectiveness, we examine details in its encoding process to study:

RQ1. How well can contextualized representations be modeled as an intrinsic
aggregation of static token sub-embeddings?

Impact of the number of token sub-embeddings. We first ask: what is the
optimal number of sub-embeddings required for an accurate representation
of a token’s semantic space? To address this question, we distill ColBERT’s
encoding process into multiple copies of SRM with a variable number K of
sub-embeddings per token, ranging from using a single static embedding per
token, up to K = 15 sub-embeddings. We report the ranking performance on
the MS MARCO Dev collection and the resulting number of parameters in
the SLT for each K in Table 8.1.

As the results show, using token intrinsic aggregation of static sub-embeddings,
SRM can retain up to 97% of the oracle’s performance. Compared to the
initial bag-of-words BM25 retriever, even using a single static embedding
(K = 1) to represent all token occurrences is more effective. Using increasing
numbers of sub-embeddings leads to better performance up to K = 10, where
the performance of SRM stabilizes. SRM with K = 15 brings no significant
gains over K = 10 while requiring 50% more parameters, hence we use
K = 10 for the rest of our experiments.

Sub-embeddings Aggregation Mechanism. Subsequently, we ask if our
SSCA mechanism is better than other simpler alternatives. For this investiga-

158

5 results and analysis

Table 8.2 – Ranking effectiveness of SRM with different aggregation mechanisms on
all datasets.

Dev DL’19 DL’20 DL-Hard

MRR@10 nDCG@10 nDCG@10 nDCG@10

[1] BM25 0.184 0.506 0.480 0.304

[2] ColBERT 0.342 0.713 0.699 0.394

[3] SRM 0.330 0.707 0.682 0.382

[4] SRM-Avg 0.192 0.446 0.446 0.238

[5] SRM-Top1 0.280 0.605 0.574 0.302

[6] SRM-K1 0.218 0.500 0.517 0.270

tion, we report ranking performance using K = 10 on both the MS MARCO
Dev set and the DL query sets in Table 8.2, which shows our main SRM
configuration with SSCA in run [3].

We evaluate the SRM-Avg variant with simple average pooling of the token
sub-embeddings. As the results show in run [4], assigning the same weight to
all sub-embeddings achieves low performance and confirms the importance
of SSCA, which assigns non-uniform weights to sub-embeddings.

For the SRM-Top1 variant, the results in run [5] suggest that representing
a token with its most-indicative static sub-embedding can achieve better
ranking performance than using a single static embedding for all token
occurrences, as shown in run [6]. Nevertheless, considering a small number
of only K = 10 sub-embeddings cannot possibly model all the fine-grained
aspects of a token accurately, and further refining is required to match the
oracle’s performance.

5.2 Extrinsic Aggregation

While SRM focuses on intrinsic token representations, LCM extends token
representations to include information from nearby tokens to study:

RQ2. How can a token representation be refined using extrinsic information from
its local context?

Table 8.3 reports the results of refining SRM representations with LCM
using different context window lengths. Interestingly, by considering only
the direct neighbours of a token (ws = 1) in LCM, the refined representations
already match ColBERT’s effectiveness on MS MARCO Dev. Considering
that we use the same WordPiece tokenizer as in ColBERT, we can hypothesize
that with ws = 1 the LCM is possibly aggregating full-word representations
from its sub-tokens (i.e., word pieces). Further enlarging the context window
leads to comparable performance with the oracle.

159

investigating contextualized representations for ad hoc ranking

Table 8.3 – Ranking effectiveness of SRM-LCM with different context window
lengths(ws) on MS MARCO Dev and DL query sets. TREC-Best re-
ports the best DL submitted runs. Our module’s best results are in bold,
and oracle results are underlined when overall best.

ws
Dev DL’19 DL’20 DL-Hard

MRR@10 nDCG@10 nDCG@10 nDCG@10

BM25 - 0.184 0.506 0.480 0.304

TREC-Best (no ensembles) all - 0.731 0.746 0.408

ColBERT all 0.342 0.713 0.699 0.394

SRM 0 0.330 0.707 0.682 0.382

SRM-LCM

1 0.343 0.721 0.721 0.369

2 0.341 0.723 0.717 0.406

3 0.341 0.715 0.713 0.407

4 0.342 0.719 0.723 0.387

5 0.342 0.728 0.727 0.409

all 0.337 0.717 0.707 0.382

On TREC DL’19 and DL’20, we notice consistent improvements over the
oracle effectiveness with slight variations due to the window size. When we
focus on the challenging queries in DL-Hard, SRM (with ws = 0) achieves
better ranking performance than SRM-LCM with ws = 1. Nevertheless, in-
creasing the local context window is beneficial for these complex queries, and
outperforms the oracle. With a local context window of only ws = 3, SRM-
LCM performs as well as the TREC-Best run. Nonetheless, using a global
context window encompassing all sequence tokens 4 hurts the performance,
suggesting that local context is more informative.

LCM is a simpler implementation of a transformer using a very restrained
local context in a single attention layer. Nevertheless, it performs well when
combined with the SRM. This is interesting as it shows that SRM combined
with minimal contextualization is sufficient to match the oracle.

5.3 Intrinsic-extrinsic complementarity

The results from Table 8.3 indicate that the combination of intrinsic and
extrinsic approaches in SRM-LCM reaches the oracle ranking performance
despite its simplified contextualization process. To better understand the
sources of this effectiveness, we examine the importance of the intrinsic vs.
extrinsic aggregation to answer:

4. Special tokens are masked, i.e., [CLS] and [SEP].

160

5 results and analysis

Table 8.4 – Ranking effectiveness of LCM extrinsic refinement applied to SRM vari-
ants, on MS MARCO Dev and DL sets. Our module’s best results are in
bold, and oracle results are underlined when overall best.

Dev DL’19 DL’20 DL-Hard

MRR@10 nDCG@10 nDCG@10 nDCG@10

[1] BM25 0.184 0.506 0.480 0.304

[2] ColBERT 0.342 0.713 0.699 0.394

[3a] SRM 0.330 0.707 0.682 0.382

[3b] SRM-LCM 0.343 0.721 0.721 0.369

[4a] SRM-K1 0.218 0.500 0.517 0.270

[4b] SRM-K1-LCM 0.336 0.705 0.710 0.383

[5a] SRM-Top1 0.280 0.605 0.574 0.302

[5b] SRM-Top1-LCM 0.324 0.698 0.669 0.377

RQ3. Are the intrinsic and extrinsic approaches (SRM and LCM, respectively)
complementary?

For this study, we report the ranking performance on both Dev and DL
query sets in Table 8.4, which shows the main SRM-LCM model using ws = 1,
run [3b], with MRR@10 of 34.3%.

To begin with, we ask if the intrinsic sub-embeddings aggregation can be
replaced with LCM extrinsic aggregation. Model [4b] tackles this question
by using a single static embedding per token (K = 1) with a window size
of ws = 1. As the results show, extrinsic refinement provides large gains
compared to SRM-K1 in run [4a], and performs as well as SRM in [3a] with
K = 10. This suggests that sub-embedding combination alone is comparable
to contextualizing a static embedding with a reduced attention window.
Interestingly, these models [3a] and [4b] achieve better performance on DL-
HARD queries compared to the full SRM-LCM [3b].

Next, we examine if LCM applied to SRM-Top1 can provide better results
considering that SRM-Top1 [5a] performs better than SRM-K1 [4a]. Surpris-
ingly, LCM refinement provides more important gains when applied on
SRM-K1 outputs compared to SRM-Top1 outputs as shown in lines ([4b]
vs. [5b]). This is probably due to the instability of the Gumbel Softmax
approximation in SRM-Top1-LCM.

5.4 Case Study

Table 8.5 shows how our intrinsic and extrinsic approaches see token
similarity across different contexts compared to the oracle. We report results

161

investigating contextualized representations for ad hoc ranking

Table 8.5 – Sample query-passage token matches from the MS MARCO passage
collection.

Query Module(s) Top matching sampled tokens

pain in right arm
ColBERT right (14.8) left (11.0) west (8.5) upper (8.3) straight (8.3)

SRM right (10.7) left (7.4) rights (6.6) north (6.1) west (5.6)

SRM-LCM right (12.8) left (9.4) west (7.4) straight (7.2) wrong (7.2)

right to own arms
ColBERT right (14.1) rights (11.7) freedom (8.7) power (8.5) free (8.5)

SRM right (9.8) rights (8.6) free (5.5) liberty (5.5) freedom (5.5)

SRM-LCM right (11.4) rights (10.2) freedom (7.9) liberty (7.6) freedoms (7.5)

operating system ColBERT system (15.2) systems (13.5) pc (10.5) computer (10.4) server (10.1)

SRM system (10.7) systems (9.4) computer (6.9) software (6.7) unix (6.7)

SRM-LCM system (12.4) systems (12.1) unix (9.2) linux (9.0) software (9.0)

nervous system ColBERT system (15.2) systems (13.4) nervous (9.4) brain (9.3) tract (9.2)

SRM system (9.6) systems (8.7) computer (6.4) unix (6.2) linux (6.1)

SRM-LCM system (13.5) systems (11.5) nervous (9.0) peripheral (9.0) central (8.7)

Table 8.6 – Ranking effectiveness of SRM-LCM (K = 10 and ws = 1) on TripClick
and Robust04 test collections. Best results are indicated in bold.

TripClick Head TripClick Torso TripClick Tail Robust04

MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 P@20 nDCG@20

Initial retriever 0.301 0.149 0.305 0.224 0.263 0.285 0.397 0.451

ColBERT 0.480 0.164 0.395 0.233 0.326 0.271 0.397 0.458

SRM-LCM 0.510 0.169 0.400 0.240 0.329 0.283 0.379 0.441

using SRM with K = 10 and SRM-LCM with ws = 1. Term definitions are
taken from the Cambridge English Dictionary. Representations are sampled.

The first query searches for “right” in the sense of direction 5. The SRM
is able to soft match the tokens related to direction like “left” or “north”,
but it also matches “rights” that is another sense of the same token. Adding
local context information (LCM) increases the similarity to tokens like “right”
or “west” and removes the strong matching to “rights”. The modules share
4/5 tokens with the oracle with the same ranking. The second query uses
“right” in the sense of legal 6. Both SRM and the combination of SRM with
LCM are able to distinguish the correct sense of the term and stay close
to the oracle. On the other hand, the queries related to “systems” show
the importance of context to determine the right topical meaning induced
by the surrounding context of non-polysemous terms. SRM matches both
“operating system” and “nervous system” to computer related systems; this
bias could be induced by the training data containing a significant number
of occurrences of “system” in computer-oriented contexts. Adding the LCM
makes a drastic improvement by matching words related to nerves (medical
topic), demonstrating the utility of the local context.

5. Right (Direction): on or towards the side of your body that is to the east when you are
facing north.

6. Right (Legal): a moral or legal entitlement to have or do something.

162

6 discussion and conclusion

5.5 Zero-shot generalizability to out-of-domain collections

We report in Table 8.6 the zero-shot performance of the SRM-LCM com-
bination, with K = 10 and ws = 1, compared to the oracle and the initial
first-stage retriever to study:

RQ4. How well can the SRM-LCM module combination generalize to out-of-
domain collections in a zero-shot setting?

First, we examine the generalizability to the medical collection on the three
TripClick query sets. The results clearly show that the simple module com-
bination exhibit same, and even better, zero-shot performance as the oracle
across the three different query sets. Notably, SRM-LCM outperforms sub-
stantially the oracle on head queries in terms of MRR@10, and outperforms
the oracle on torso and tail queries in terms of nDCG@10. This suggests
that simpler contextualization processes can generalize as well as a PLM
full-flexible contextualization.

Second, we study the performance on Robust04 newswire collection. In-
terestingly, the zero-shot performance of the oracle is on-par with the initial
BM25 with RM3 expansion retriever, indicating the low zero-shot transfer
capabilities of the ColBERT oracle. Our SRM-LCM combination also performs
poorly in this configuration. The nature of the Robust04 short key-word quer-
ies could be challenging for models trained with MS MARCO question-like
queries. On the other hand, as opposed to the MS MARCO and TripClick
corpora, Robust04 documents are long and the best scoring passage is taken
as proxy for the document-level relevance score.

At the end, our simpler contextualization process cannot only yield com-
parable or slightly better performance on in-domain MS MARCO passage
ranking benchmarks, but can also exhibit on-par zero-shot performance
with ColBERT’s contextualization. Nevertheless, our proposed aggregations
show lower zero-shot performance on Robust04 long document ranking
benchmark.

6 Discussion and Conclusion

Contextualized representations have been widely adopted for their soft
matching effectiveness in the context of ranking, especially in the emerging
dense retrieval area in which models are representation-focused. However,
prior work suggests that they can be replaced, to some extent, by static
embeddings.

In this chapter, we investigated how well the complex contextualization
process in PLMs can be distilled to simplified aggregation methods based
on static embeddings, in the context of ranking. We propose an intrinsic

163

investigating contextualized representations for ad hoc ranking

aggregation module combining a small number of static sub-embeddings
which capture different aspects closely tied to a token such as its senses
or commonly recurrent topics. Empirical results indicate that distilling the
entire oracle-produced semantic space of a token into a finite set of static
token sub-embeddings with the intrinsic aggregation can retain up to 97% of
the oracle ranking performance on the MS MARCO Dev set.

To better model the oracle semantic space, we further propose refining
the intrinsic aggregation module with additional information from local
context. The extrinsic aggregation module can capture the fine-grained
topic information from surrounding tokens which have low chances of being
modeled by the token sub-embeddings. Experiments show that the intrinsic
and extrinsic aggregations are complementary and can perform as well as
the oracle, and even outperform it on Trec Deep Learning densely-judged
queries.

Empirical evaluations on out-of-domain collections demonstrate that the
combination of intrinsic and extrinsic aggregations can additionally exhibit
interesting zero-shot generalization abilities notably to the TripClick medical
test collection.

Overall, our results suggest that text ranking does not necessarily require
the complexity of a PLM contextualization process. Though we do not
propose a more efficient alternative for transformer models, this study is
a preliminary investigation of the contextualization process in PLMs for
ranking. Our observations can motivate custom transformer designs for the
ranking task, which can leverage static embeddings or local window attention
mechanisms. Finally, distillation from PLMs can help pre-train these custom
ranking models for representation learning instead of directly training them
from scratch for ranking (e.g., the TK model discussed in Section 5.2 rethinks
transformers for ranking but loses the benefits of pre-training).

164

Conclusion

Conclusion and Future Work

Contributions Overview

In this dissertation, we focused on the core task of information retrieval
(IR), ad hoc ranking. We were particularly interested in neural IR approaches,
which rely on deep neural networks to perform ad hoc search effectively.

The work covered in this dissertation came during a paradigm shift in
ad hoc search. Specifically, the advent of contextualized language models,
of which BERT [58] is the best-known example, has shown promising po-
tential for building much more effective neural ranking models while also
introducing new challenges. Work in this dissertation provided explorations
in various directions for adapting these powerful models, stemming from the
closely related NLP field, to the ad hoc ranking task.

The big leap in ranking effectiveness achieved by the simple application
of BERT was unprecedented and led to immediate excitement in the IR
community. Besides, the pre-train then fine-tune recipe, and the availability
of large-scale collections facilitated the rapid widespread of BERT, which
has soon come to dominate the research landscape. The state-of-the-art
overview part of this dissertation is hence focused on this family of neural
approaches. We presented an overview of BERT, which is the most adopted
instance of transformer models. We describe its architecture and present the
different innovations it integrated. Three chapters were devoted to covering
the different methods proposed in the literature these past four years to apply
BERT and its subsequent variants to ranking:

1. BERT in multi-stage reranking, Chapter 4 focuses on the early and
most straightforward applications of BERT for reranking in multi-stage
architectures;

2. BERT for sparse retrieval, Chapter 5 covers applications of BERT for
query and document expansion to mitigate the vocabulary mismatch
problem in sparse retrieval while benefiting from the efficiency of
inverted indexes;

3. BERT for dense retrieval, Chapter 6 presents models which directly
learn dense representations through BERT for retrieval, which allows
soft semantic matching to address the vocabulary mismatch problem.

Our contributions in the context of neural IR examined different leads
for adapting contextualized pre-trained language models (PLMs) to the
specific task of ad hoc ranking. Considering the unique characteristics of the

167

Contributions Overview

ranking task and the domain knowledge acquired throughout the decades
of progress in IR, we believe that this knowledge can interact with PLMs
to build better ranking models. But what do we mean by better ranking
models? Are we seeking more effectiveness without special considerations
regarding efficiency? Or alternatively, are we trying to balance effectiveness
and efficiency for more practical models?

The two directions are promising, and we provide, in this dissertation,
leads forward in both directions: In our early work, we focused on adapting
PLMs by integrating an important traditional IR cue, exact matches, to im-
prove effectiveness. Instead of rethinking the design of BERT for this purpose,
we instead use the flexibility of its transformer architecture to our advant-
age. We propose manipulating the input template (i.e., the organization of
the query document text) to the model and benefit from the special tokens
convention to introduce marker tokens to convey explicit exact match signals.
BERT’s flexibility makes it possible to learn how to exploit this explicit signal
through fine-tuning. Moreover, this approach is easily transferable to the
subsequent variants of BERT, such as ELECTRA [40] and takes advantage of
their improved pre-training. In later work, we were instead interested in the
possibility of restraining the flexibility of transformer models to potentially
achieve better effectiveness/efficiency trade-offs. We proposed using distil-
lation and static embeddings in combination with information bottlenecks
and carefully-designed modules to analyze the role of the contextualization
process for the ranking task. This is analogous to work probing PLMs [209],
where the point of the probe is to gain insight into the studied PLM. The
finality of our study is to provide insights about contextualization in the
context of ranking, which could motivate more efficient models tailored
specifically for ranking by stripping away unnecessary signals.

The context of our works and their contributions can be summarized as
follows:

1. In the months following the introduction of BERT, a plethora of work
reported successful applications to text ranking [149, 2, 257, 51], as
well as a wide variety of other tasks by simply fine-tuning the same
homogeneous transformer architecture on the target task. Typically, the
ad hoc ranking task is formalized as a matching problem between two
texts in most proposed BERT-based models and treated as equivalent
to many NLP tasks such as paraphrase identification, sharing even the
same architecture. However, the ranking task is mainly about relevance
matching while most NLP matching tasks concern semantic matching, and
there are some fundamental differences between these two matching
tasks [83]. Notably, pre-BERT studies [83, 165] argue that successful
relevance matching requires proper handling of both exact and semantic
matching signals. Building on this insight and seeing how BERT (and
its variants) excels at semantic matching [194], we hypothesize that

168

6 discussion and conclusion

incorporating traditional exact matching cues with BERT’s inherent
semantic matching can be favorable. We, thus, investigate the following
question: What is the impact of emphasizing exact match signals in PLMs for
document ranking?
The proposed approach aims to adapt the flexible BERT model to the
task of document ranking by integrating the exact match intuition used
in traditional IR models. Our approach relies on marking strategies
that strategically introduce special marker tokens in the textual input
of a PLM model to emphasize the overlapping terms between the
query and document [21, 22]. We propose different marking strategies
using different choices of marker tokens (i.e., reusing existing tokens
in the vocabulary vs. introducing novel tokens) and marking levels
(i.e., marking the document text only vs. marking both the query and
document texts). Because this approach was developed in the context
of reranking applications of BERT (Chapter 4), we adopt the cross-
encoder architecture where the query and document are fed together
through BERT. We follow the widely adopted monoBERT configuration
[173] at the time and use the output of the [CLS] token for relevance
classification. In other words, we rely on the flexibility of BERT’s
transformer architecture to learn how to use the exact match hints
conveyed by the marker tokens for relevance matching, as it does for
other special markers such as [CLS] or [SEP]. This method follows
BERT’s convention of using special tokens. Moreover, it avoids any
superfluous parameters [117] added by new architectural components
or modifications to the transformer, which would cost the benefits from
Google’s pre-training.
This contribution was thoroughly evaluated across different exper-
imental scenarios, including in-domain and out-of-domain test col-
lections. The results showed the effectiveness of our approach and
demonstrated the importance of exact matching for relevance matching.
On the standard TREC Robust04 and GOV2 ad hoc benchmarks, the
impact of exact match marking is more prominent for long natural
descriptions compared to short keyword queries as opposed to tradi-
tional retrieval models. This disparity inspired a hybrid pipeline, in
which each stage is presented with its preferred query formulation,
thus maximizing the end effectiveness of the multi-stage model. On
the other hand, the gains were more substantial when the model was
confronted with out-of-distribution data (i.e., not seen or different from
the training data) compared to in-domain data. This suggests that when
BERT is adequately fine-tuned for the target domain, its semantic space
is representative enough to capture strong relevance matching signals.
Nonetheless, when in-domain data is unavailable (i.e., zero-shot setting)
or in fewer quantities (i.e., multi-phase fine-tuning), exact matching

169

Contributions Overview

cues can complement the semantic matching signals and enable better
ranking effectiveness.
Aside from exact matching, we have also investigated another use
case for marker tokens, query expansion. The experimental results
confirmed the flexibility of our marker tokens since they can be used
for implicitly learning query expansion representations.

2. Later developments moved away from the effective but expensive cross-
encoder design towards a more efficient design named bi-encoders [98].
While both query and document are fed together to cross-encoders in
a template input, the query and the document are encoded separately
in bi-encoders. This independent encoding allows offline computation
of document representations. The success of these representation-
focused models (covered in Chapter 6) suggests that contextualized
representations produced by BERT can encode signals important for
relevance matching. Nevertheless, the transformer-based contextualiza-
tion process in BERT is complex and opaque. Studies have shown that
it integrates diverse information [209] and can learn highly transfer-
able properties of language [135], making it a highly versatile encoder.
Though the contextualization process in BERT is highly effective for
ranking, seeing how it is flexible and versatile, we cannot but wonder:
Do we need the flexibility of the complex contextualization process of PLMs
for document ranking or can we simplify it?
In order to answer this question, we propose distilling the contextu-
alization process used in a ColBERT [112] model trained for ranking,
which we refer to as the oracle, into simpler contextualization methods.
This approach aims to investigate whether representations generated
by a simpler contextualization process can perform as well as the oracle
representations on the ranking task. In our study, we consider two
assumptions about the semantic space of each token: (1) building on
Santhanam et al. [217] observation that representations corresponding
to different “contextual senses” of a token cluster closely in the semantic
space produced by ColBERT, we consider that aspects closely tied to
the token such as its polysemous senses can be captured in a finite
set of static sub-embeddings; (2) summarizing the semantic space of a
token by a small number of static sub-embeddings is unlikely to capture
fine-grained variations in the meaning of the token which are due to
context. To handle these two aspects, we proceed as follows:

a) We proposed an intrinsic aggregation approach that models token
representations as a combination of a finite number K of static
sub-embeddings capturing the coarse-grained aspects of the token.
For instance, bank in finance vs. river bank.
We implement this aggregation in an independent static repres-
entation module (SRM). For a given token, SRM produces its

170

6 discussion and conclusion

representation using a weighted sum of its static sub-embeddings.
Each sub-embedding is weighted according to its significance to
the context, which is determined by an attention mechanism using
the token contextualized representation –produced by the oracle–
accessed via an information bottleneck.

b) We proposed an extrinsic aggregation approach that refines a token
representation using information from its local context to capture
fine-grained variations due to context in the token’s represent-
ation—for instance, robbing a bank vs. depositing money at a
bank.
Following a modular architecture that allows us to analyze the
impact of each module in isolation, this aggregation is also imple-
mented in a separate module: the local context module (LCM).
Given the initial token representation produced by SRM, the LCM
refines it by integrating the representation of surrounding tokens
using attention. The importance of each token in the local con-
text is determined by the token’s contextualized representation
–produced by the oracle– accessed through an information bottle-
neck.

Using distillation from the oracle to these modules in combination with
information bottlenecks, we are enforcing more structure on the oracle’s
contextualization process (i.e., constraining its flexibility) by modeling
it as two steps: a combination of static sub-embeddings (SRM), and
contextualization using a small local window (LCM). All in order to
gain insight into the role of token-context sub-embeddings and local
context.
The experimental results confirmed our initial assumptions stated above.
Experimental results show that dense representations produced by our
module combination (SRM-LCM) with only K = 10 sub-embeddings
and a local window of ws = 1, can perform on par with BERT’s rep-
resentations when ranking with ColBERT’s late interaction mechanism.
Indeed, we have shown through concrete examples the importance of
LCM for modeling fine-grained variations, due to context, which SRM
cannot capture.
This evaluation confirms our hypothesis that the flexibility of BERT’s
contextualization process is not necessary for the ranking task. In
other words, specialized ranking architectures can be designed by strip-
ping away unnecessary elements in BERT’s contextualization process
(e.g., attending to global context), thereby possibly achieving better
effectiveness/efficiency trade-offs.

171

Contributions Overview

Perspectives and Future Work

While many works have proposed exploiting PLMs for neural IR, and
the field has seen incredible progress in a short period of time, we are
far from seeing the end of this line of research. We believe there are still
many challenges to be addressed and exciting directions to explore. Our
contribution, as well as the various experiments conducted, open many
perspectives.

In the short term, our perspectives address the following aspects:

— Our work on domain knowledge integration through marking strategies
(Chapter 7) offers many promising leads for future work. First, our
current approach assumes all query terms to be of equal importance
when, in reality, they hardly have the same importance, especially
in long descriptions. It would be interesting to integrate query term
importance during marking. However, the challenge is defining the
importance of a term. One possible estimator could be the traditional
inverse document frequency of each term. Different marker tokens
can then be used to distinguish different levels of term importance.
Alternatively, the representations produced by BERT for the marker
tokens can be weighted by query term importance before proceeding
with relevance estimation.

— In our current work, we use marker tokens to convey exact matching
signals. However, other techniques can be explored for explicitly em-
phasizing exact matches for PLMs. An interesting idea to explore is
adding a term matching embedding to the actual input embedding. For
instance, BERT’s input embedding includes the token embeddings, a
positional embedding to inform BERT of token positions and sequen-
cing, and a segment embedding to indicate whether the token is in the
first or second segment (see Section 3.5). Similarly, we can define an
additional term matching embedding to add to the input embeddings
of the tokens that match exactly between the query and document to
emphasize them.

— Our current contribution focuses on reranking with cross-encoder ar-
chitectures. Nevertheless, the current research landscape focuses on
efficient bi-encoder designs for learning dense representations. A ma-
jor reflection element in this perspective is adapting our exact match
marking strategy for dense retrieval with bi-encoders. Because marking
needs to be performed online upon the reception of the query, the
document representations cannot be precomputed. In order to obviate
the need for online marking, an idea to consider is to use knowledge
distillation from our current (expensive) cross-encoder models (i.e.,
Sim-Pair BERT and Sim-Pair ELECTRA) for improving the supervision of

172

6 discussion and conclusion

bi-encoder models (see Section 6.2). On the other hand, our ablation
study shows that exact match marking can be restricted to the general-
phase fine-tuning, and still bring gains after in-domain fine-tuning
without marking (see Section 5.3). These ideas can both help address
the poor generalization capabilities of bi-encoders [232].

— In our second work (Chapter 8) investigating contextualization in trans-
formers for ranking, we focused on the ColBERT [112] architecture
as it is more interpretable (i.e., uses token-level representations and
simple MaxSim operations). Nonetheless, this architecture can use any
PLM for encoding, and we only focus on the distilbert [216] encoder
for its reduced size (only 6 layers of transformers). Thus, we could
investigate different PLMs as oracles, such as BERT [58], ELECTRA [40].
Furthermore, we can study the impact of different training regimes
on the quality of the distilled static sub-embeddings. For instance, the
original ColBERT model [112] with a BERT encoder was fine-tuned
from MS MARCO labelled data, while the ColBERT model used in
our experiments was fine-tuned using distillation from an ensemble of
teachers [88].

— In the same contribution, our results on the out-of-distribution data-
set Robust04 indicate poor zero-shot generalizability of our simple
aggregation-based representation method. Further analysis on other
out-of-domain full-length test collections is required to determine the
reasons behind such results.

In the long term, we want to investigate the following aspects:

— For our work on exact match signals integration, we proposed using
special marker tokens to emphasize exact matching terms. Furthermore,
we present a study where these same tokens endorse a different role:
query expansion. The results of this investigation demonstrate the
potential of marker tokens for assuming other roles. Thus, an inter-
esting research path would study marker tokens for conveying other
signals such as synonymy, concepts, or topics from knowledge bases.
Highlighting such important signals, especially topics and concepts
that are independent of the query, can be integrated into more efficient
bi-encoder designs to improve their retrieval quality.

— In the context of our first contribution, we have empirically shown
that exact match marking is effective on standard ad hoc benchmarks.
Nevertheless, in terms of explainability, additional analysis is required
to understand how the marker tokens convey the exact match signals
to BERT and how they are integrated into the relevance prediction
process. We already presented a primary exploration of the contribution
of the contextualized representations of marker tokens for relevance
estimation in Section 5.6. Nevertheless, further exploration can provide

173

Contributions Overview

insight into how they intervene in the contextualization process and
how to exploit them for relevance matching properly. Understanding
the contribution of marker tokens in general or in the specific context
of exact matching can open exciting paths forward to building effective
and practical ranking models. Combined with the insights from our
second contribution, we can carefully design a new efficient ranking
architecture based on static sub-embeddings, contextualization through
reduced local windows, and exact match integration. We could rethink
the design of transformers toward more interpretable and efficient
ranking architectures, and expand previous work such as TK [92], TKL
[91], or CK [166] covered in Section 5.2. Notably, the importance of local
context for characterizing a term encourages local attention schemes
[91, 14], and hierarchical models based on transformers [171]. Moreover,
distillation can be leveraged to transfer the “free” general language
understanding of PLMs, which was acquired through self-supervision
on large amounts of data, into the clean-slate redesigns of transformers
for ranking.

174

Appendices

175

Appendix A

Additional results using exact

match marking strategies

We present in this appendix additional experimental results to complement
the evaluation results discussed in Chapter 7 in the context of our first
contribution involving exact match marking.

First, we discuss the results of our approach on test collections based on
the MS MARCO passage corpus [9] in Section A.1. Then in Section A.2, we
report additional results on the full-length document collections to show
the behaviour of all the marking strategies we proposed (see Section 7.3)
on in-domain collections (i.e., TREC DL Document ranking 2019-2020) and
out-of-domain collections (i.e., Robust04 and GOV2).

1 Additional results on passage reranking collections

Early work with BERT focused on the reranking task in retrieve-then-rerank
architectures. We have seen in Chapter 4 that many works focused on full-
length document collections such as TREC Robust04 [2, 51, 122]. Combined
with the fact that our approach integrates a traditional IR cue that was used
with these standard collections over the years, we chose to evaluate our
approach on full-length document collections.

Nevertheless, our monoBERT-based models were fine-tuned using the
training set of the MS MARCO passage collection, it is only natural to
evaluate their performance on test collections involving the passage corpus
from this same collection. We report the results of marking models compared
to the vanilla baseline on the following test collections:

— MS MARCO Dev. This collection consists of 6, 980 development quer-
ies, which are sparsely judged. The performance of the models is
measured using the Mean Reciprocal Rank, MRR@10, metric.

— TREC Deep Learning passage ranking. We consider the densely-
judged query sets of 43 and 54 queries from the TREC Deep Learning
(DL) passage reranking tracks of 2019 (DL’19) [45] and 2020 (DL’20)
[44]. Unlike MS MARCO Dev, there are more passages annotated per
query, and the relevance judgements are graded (instead of binary
judgements), allowing to use the more informative nDCG@10 metric.

For both collections, we use Anserini’s [255] implementation of BM25 with
default parameters to retrieve the top-1000 candidate passages for reranking.

177

Appendix A: Additional results using exact match marking strategies

Table A.1 – Reranking effectiveness on MS MARCO Dev, and TREC DL 2019 and
DL 2020 Passage ranking tasks. Best performance is highlighted in bold.
Change rate over the vanilla baseline are reported for each collection (%).

Dev DL’19 DL’20

Model MRR@10 nDCG@10 nDCG@10

BM25 0.1840 - 0.5058 - 0.4796 -

Vanilla BERT 0.3634 - 0.7009 - 0.7017 -

Sim-Doc BERT 0.3548 −2.4% 0.7131 +1.7% 0.6985 −0.5%

Sim-Pair BERT 0.3606 −0.8% 0.7035 +0.4% 0.7082 +0.9%

Pre-Doc BERT 0.3262 −10.% 0.7104 +1.4% 0.7020 +0.0%

Pre-Pair BERT 0.3154 −13.% 0.7169 +2.3% 0.7095 +1.1%

Table A.1 shows the evaluation results on the three passage-level collec-
tions 1. Adding exact match highlights on the MS MARCO Dev queries
degrades the performance of the vanilla model especially when using the
precise marker type (i.e., Pre-Doc and Pre-Pair). Interestingly, the behavior
of our models is constant across the TREC DL 2019 and 2020 ranking collec-
tions on both passages and long documents (refer to Table A.2 for results on
TREC DL document collections). The exact match marking on these densely
judged queries performs on par with the vanilla baseline. It further leads to a
slight improvement in ranking effectiveness when using the Pre-Pair marking
strategy as opposed to MS MARCO Dev.

This disparity in the impact of the exact match marking on the MS MARCO
Dev and TREC DL queries can be due to the fact that Dev queries are sparsely
judged with generally a single relevant passage per query. This is not a
common scenario in ad hoc ranking for which the exact match cue was
intended. In contrast, TREC DL queries are densely judged with different
relevance degrees and more than one relevant passage per query. The TREC
DL test collections are, hence, more close to the ad hoc ranking task.

Additionally, our models were fine-tuned on the MS MARCO training
set which uses the same passage corpus as the test collections. That is, our
models had enough training on the target task and domain, i.e., the same
data distribution, especially on the MS MARCO Dev collection. Therefore,
the models are capable of modeling the passage ranking task well enough
that adding explicit exact match does not contribute more relevance signals
that were not already captured by monoBERT 2. Our results support previous
evidence from experiments conducted by Lin et al. [129], which indicated that

1. The Pre-Pair BERT model has the same architecture with our previously proposed
MarkedBERT [21]. However, their fine-tuning setups are different, and thus their results differ.

2. In contrast, MarkedBERT was trained under a low data regime. As a result, exact match
marking with the pre-pair strategy was beneficial and lead to gains in performance.

178

2 additional results on full-length document reranking

collections

exact match signals do not appear to provide additional value to monoBERT
on the MS MARCO passage ranking task; at least when using a simple linear
combination of BM25 and monoBERT scores [129], or marking strategies in
our case 3.

2 Additional results on full-length document reranking
collections

In this section, we report all our marking strategies’ results on both in-
domain and out-of-domain document collections. We follow the same experi-
mental setup described in Section 7.4. We first present in-domain evaluation
results on TREC DL 2019 and 2020 document ranking collections using both
a BERT and ELECTRA cores in Section 2.1. Then we move to the out-of-
domain evaluation in Section 2.2 in both the zero-shot transfer setting and
the multi-phase fine-tuning setting.

2.1 In-domain evaluations

Table A.2 reports the results of all our models with both BERT and ELEC-
TRA cores on the TREC DL 2019 and 2020 Document ranking tasks.

2.2 Out-of-domain evaluations

In this section we report the experimental results on the Robust04 and
GOV2 collections. For readability, we present the results obtained with a
BERT core in Section 2.2.1, and with an ELECTRA core in Section 2.2.2.

2.2.1 Results using the BERT core

zero-shot transfer setting Table A.3 shows the full results obtained
using all the proposed strategies on Robust04 and GOV2 collections at cutoff
100 and 1, 000. We report results using the title, description and hybrid runs.
The results at cutoff 1, 000 complement the reported results in Tables 7.6 and
7.8. For the 100-cutoff results, they complement the results of Table 7.10 for
the zero-shot transfer section. We report the results at cutoff 100 for direct
comparison with the multi-phase fine-tuning setting where we only rerank
the top-100 documents retrieved by BM25 as a trade-off between effectiveness
and efficiency.

3. Nonetheless, exact match integration through marking will prove effective when applied
on out-of-distribution data. Moreover, existing work proved that BM25 retrieval scores are
helpful in boosting end-to-end effectiveness on out-of-domain collections [2, 149]

179

Appendix A: Additional results using exact match marking strategies

Table A.2 – Reranking effectiveness on the TREC DL 2019 and DL 2020 Document
ranking tasks. Best performance is highlighted in bold. Significant
improvements over the vanilla baseline with p < 0.05 are indicated with
†, for the same core. Change rate over the vanilla baseline for the same
core type are reported for each metric (%).

TREC DL Doc DL 19 DL 20

Model nDCG@10 MAP nDCG@10

BM25 0.5176 - 0.2434 - 0.5286 - 0.3793 -

BM25+RM3 0.5169 - 0.2772 - 0.5248 - 0.4006 -

Vanilla BERT 0.6726 - 0.3006 - 0.6340 - 0.4523 -

Sim-Doc BERT 0.6858 +2.0% 0.3038 +1.1% 0.6340 +0.0% 0.4414 −2.4%

Sim-Pair BERT 0.6798 +1.1% 0.3057 +1.7% 0.6495 +2.4% 0.4505 −0.4%

Pre-Doc BERT 0.6777 +0.8% 0.3061 +1.8% 0.6368 +0.4% 0.4513 −0.2%

Pre-Pair BERT 0.7025† +4.4% 0.3018 +1.8% 0.6498 +2.5% 0.4497 −0.6%

TREC DL Doc DL 19 DL 20

Model nDCG@10 MAP nDCG@10

BM25 0.5176 - 0.2434 - 0.5286 - 0.3793 -

BM25+RM3 0.5169 - 0.2772 - 0.5248 - 0.4006 -

Vanilla ELECTRA 0.6738 - 0.2976 - 0.6236 - 0.4297 -

Sim-Doc ELECTRA 0.6889 +2.2% 0.3082 +3.6% 0.6369 +2.1% 0.4482
† +4.3%

Sim-Pair ELECTRA 0.6816 +1.2% 0.3062 +2.9% 0.6331 +1.5% 0.4543
† +5.7%

Pre-Doc ELECTRA 0.6801 +0.9% 0.3061 +2.9% 0.6453 +3.5% 0.4582† +6.6%

Pre-Pair ELECTRA 0.6763 +0.4% 0.2886 −3.0% 0.6234 −0.0% 0.4306 +0.2%

180

2 additional results on full-length document reranking

collections

Table A.3 – Reranking effectiveness in the zero-shot transfer setting of all our models
on Robust04 and GOV2 collections. Best results, for each cutoff, are
highlighted in bold. Significant improvements over the Vanilla baseline
with p < 0.05 and p < 0.01 are indicated with † and ‡ respectively, for
the same cutoff. For each measure, the improvement rate over the Vanilla
baseline is given (%).

Robust04 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 - 0.3631 - 0.4058 - 0.3345 - 0.4240 - 0.3631 -

BM25+RM3 0.4407 - 0.3821 - 0.4255 - 0.3661 - 0.4407 - 0.3821 -

Top-100

Vanilla BERT 0.4764 - 0.4096 - 0.4611 - 0.3867 - 0.4989 - 0.4245 -

Sim-Doc BERT 0.4678 −1.8% 0.4042 −1.3% 0.4616 +0.1% 0.3865 −0.1% 0.4912 −1.5% 0.4129 −2.7%

Sim-Pair BERT 0.4763 −0.0% 0.4129 +0.8% 0.4923‡ +6.8% 0.4084‡ +5.6% 0.5273‡ +5.7% 0.4434‡ +4.5%

Pre-Doc BERT 0.4781 +0.4% 0.4078 −0.4% 0.4867
‡ +5.6% 0.4016

‡ +3.9% 0.5205
‡ +4.3% 0.4294

‡ +1.2%

Pre-Pair BERT 0.4700 −1.3% 0.4064 −0.8% 0.4812
‡ +4.4% 0.3974

‡ +2.8% 0.5132
‡ +2.9% 0.4410

‡ +3.9%

Top-1000

Vanilla BERT 0.4652 - 0.4046 - 0.4510 - 0.3851 - 0.4845 - 0.4147 -

Sim-Doc BERT 0.4447 −4.4% 0.3831 −5.3% 0.4166 −7.6% 0.3510 −8.9% 0.4476 −7.6% 0.3817 −7.9%

Sim-Pair BERT 0.4773 +2.6% 0.4155 +2.7% 0.4931‡ +9.3% 0.4169‡ +8.3% 0.5239‡ +8.1% 0.4446‡ +7.2%

Pre-Doc BERT 0.4767 +2.5% 0.4084 +0.9% 0.4789
‡ +6.2% 0.4026

‡ +4.5% 0.5035
‡ +3.9% 0.4235 +2.1%

Pre-Pair BERT 0.4654 +0.0% 0.4024 −0.5% 0.4795
‡ +6.3% 0.4034

‡ +4.8% 0.5086
‡ +5.0% 0.4319

‡ +4.1%

GOV2 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 - 0.5362 - 0.4264 - 0.4705 - 0.4774 - 0.5362 -

BM25+RM3 0.4851 - 0.5634 - 0.4212 - 0.4966 - 0.4851 - 0.5634 -

Top-100

Vanilla BERT 0.5098 - 0.5916 - 0.4928 - 0.556 - 0.5510 - 0.6312 -

Sim-Doc BERT 0.5146 +0.9% 0.5936 +0.3% 0.4884 −0.9% 0.5557 −0.1% 0.5497 −0.2% 0.6359 +0.7%

Sim-Pair BERT 0.5181 +1.6% 0.5990 +1.3% 0.4904 −0.5% 0.5597 +0.7% 0.5531 +0.4% 0.6346 +0.5%

Pre-Doc BERT 0.5100 −0.0% 0.5903 −0.2% 0.4952 +0.5% 0.5601 +0.7% 0.5568 +1.1% 0.6322 +0.2%

Pre-Pair BERT 0.5168 +1.4% 0.5936 +0.3% 0.4920 −0.2% 0.5584 +0.4% 0.5559 +0.9% 0.6332 +0.3%

Top-1000

Vanilla BERT 0.4533 - 0.5272 - 0.4696 - 0.5248 - 0.4937 - 0.5611 -

Sim-Doc BERT 0.4588 +1.2% 0.5349 +1.5% 0.4686 −0.2% 0.5262 +0.3% 0.4943 +0.1% 0.5607 −0.1%

Sim-Pair BERT 0.4468 −1.4% 0.5134 −2.6% 0.4687 −0.2% 0.5326 +1.5% 0.4991 +1.1% 0.5695 +1.5%

Pre-Doc BERT 0.4485 −1.1% 0.5121 −2.9% 0.4768 +1.5% 0.5315 +1.3% 0.5013 +1.5% 0.5668 +1.0%

Pre-Pair BERT 0.4515 −0.4% 0.5238 −0.6% 0.4752 +1.2% 0.5285 +0.7% 0.4979 +0.9% 0.5594 −0.3%

181

Appendix A: Additional results using exact match marking strategies

Table A.4 – Reranking effectiveness in the multi-phase fine-tuning setting of the
different models on Robust04 and GOV2 collections. Best results are
highlighted in bold. Significant improvements over the Vanilla baseline
with p < 0.05 and p < 0.01 are indicated with † and ‡ respectively. For
each measure, the improvement rate over the Vanilla baseline is given
(%).

Robust04 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 - 0.3631 - 0.4058 - 0.3345 - 0.4240 - 0.3631 -

BM25+RM3 0.4407 - 0.3821 - 0.4255 - 0.3661 - 0.4407 - 0.3821 -

Vanilla BERT 0.4995 - 0.4275 - 0.5368 - 0.4492 - 0.5546 - 0.4715 -

Sim-Doc BERT 0.4976 −0.4% 0.4273 −0.0% 0.5378 +0.2% 0.4470 −0.5% 0.5632 +1.6% 0.4783 +1.4%

Sim-Pair BERT 0.5058 +1.3% 0.4371 +2.2% 0.5479
† +2.1% 0.4574

† +1.8% 0.5701‡ +2.8% 0.4815‡ +2.1%

Pre-Doc BERT 0.5039 +0.9% 0.4331 +1.3% 0.5462 +1.8% 0.4568 +1.7% 0.5607 +1.1% 0.4757 +0.9%

Pre-Pair BERT 0.5021 +0.5% 0.4333 +1.4% 0.5532‡ +3.1% 0.4631‡ +3.1% 0.5699‡ +2.8% 0.4821‡ +2.2%

GOV2 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 - 0.5362 - 0.4264 - 0.4705 - 0.4774 - 0.5362 -

BM25+RM3 0.4851 - 0.5634 - 0.4212 - 0.4966 - 0.4851 - 0.5634 -

Vanilla BERT 0.5476 - 0.6302 - 0.5175 - 0.5772 - 0.5909 - 0.6604 -

Sim-Doc BERT 0.5413 −1.2% 0.6248 −0.9% 0.5151 −0.5% 0.5799 +0.5% 0.5754 −2.6% 0.6513 −1.4%

Sim-Pair BERT 0.5743‡ +4.9% 0.6540‡ +3.8% 0.5406
‡ +4.5% 0.6084‡ +5.4% 0.5998 +1.5% 0.6758 +2.3%

Pre-Doc BERT 0.5635
† +2.9% 0.6470

† +2.7% 0.5432‡ +5.0% 0.6074‡ +5.2% 0.6002 +1.6% 0.6715 +1.7%

Pre-Pair BERT 0.5705
‡ +4.2% 0.6513

‡ +3.3% 0.5387
‡ +4.1% 0.6034

‡ +4.5% 0.5966 +1.0% 0.6708 +1.6%

multi-phase fine-tuning setting Table A.4 shows the results ob-
tained using the multi-phase fine-tuning setting described in section 5.3 for
all our models using all proposed marking strategies. These results expand
Table 7.10.

2.2.2 Results using the ELECTRA core

zero-shot transfer setting Table A.5 resumes the results of applying
all proposed marking strategies on the ELECTRA core model for Robust04

and GOV2 collections. This table complements the results presented in
Table 7.13. We add the results at the reranking cutoff 100 in order to give
an idea about the zero-shot setting results without in-domain fine-tuning
directly comparable with the multi-phase fine-tuning setting that uses the
same reranking threshold of 100 in Table A.6.

multi-phase fine-tuning setting Table A.6 results complements the
results presented in Table 7.14 obtained in the multi-phase fine-tuning setting
using all exact match marking strategies proposed in this paper.

182

2 additional results on full-length document reranking

collections

Table A.5 – Reranking effectiveness in the zero-shot transfer setting of the differ-
ent models on Robust04 and GOV2 collections. Best results, for each
cutoff, are highlighted in bold. Significant improvements over the Vanilla
baseline with p < 0.05 and p < 0.01 are indicated with † and ‡ respect-
ively, for the same cutoff. For each measure, the improvement rate over
the Vanilla baseline is given (%).

Robust04 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 - 0.3631 - 0.4058 - 0.3345 - 0.4240 - 0.3631 -

BM25+RM3 0.4407 - 0.3821 - 0.4255 - 0.3661 - 0.4407 - 0.3821 -

Top-100

Vanilla ELECTRA 0.4712 - 0.4108 - 0.4721 - 0.3988 - 0.5103 - 0.4323 -

Sim-Doc ELECTRA 0.4680 −0.7% 0.4054 −1.3% 0.4804† +1.8% 0.4040 +1.3% 0.5231
‡ +2.5% 0.4422† +2.3%

Sim-Pair ELECTRA 0.4820† +2.3% 0.4181 +1.8% 0.4749 +0.6% 0.3964 −0.6% 0.5235† +2.6% 0.4418
† +2.2%

Pre-Doc ELECTRA 0.4663 −1.0% 0.4080 −0.7% 0.4789 +1.4% 0.4016 +0.7% 0.5182 +1.5% 0.4378 +1.3%

Pre-Pair ELECTRA 0.4668 −0.9% 0.4064 −1.1% 0.4740 +0.4% 0.4002 +0.4% 0.5169 +1.3% 0.4416 +2.2%

Top-1000

Vanilla ELECTRA 0.4416 - 0.3833 - 0.4482 - 0.3831 - 0.4782 - 0.4141 -

Sim-Doc ELECTRA 0.4479 +1.4% 0.3878 +1.2% 0.4640
† +3.5% 0.3948† +3.1% 0.4970

‡ +3.9% 0.4247 +2.6%

Sim-Pair ELECTRA 0.4717‡ +6.8% 0.4124‡ +7.6% 0.4597 +2.6% 0.3886 +1.4% 0.5043‡ +5.5% 0.4263 +2.9%

Pre-Doc ELECTRA 0.4500 +1.9% 0.3912 +2.1% 0.4662† +4.0% 0.3948† +3.1% 0.4996
‡ +4.5% 0.4251 +2.7%

Pre-Pair ELECTRA 0.4511 +2.2% 0.3934 +2.6% 0.4537 +1.2% 0.3878 +1.2% 0.4936
† +3.2% 0.4245 +2.5%

GOV2 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 - 0.5362 - 0.4264 - 0.4705 - 0.4774 - 0.5362 -

BM25+RM3 0.4851 - 0.5634 - 0.4212 - 0.4966 - 0.4851 - 0.5634 -

Top-100

Vanilla ELECTRA 0.5278 - 0.6094 - 0.5153 - 0.5785 - 0.5803 - 0.6617 -

Sim-Doc ELECTRA 0.5342 +1.2% 0.6188 +1.5% 0.5120 −0.6% 0.5795 +0.2% 0.5761 −0.7% 0.6527 −1.4%

Sim-Pair ELECTRA 0.5387 +2.1% 0.6171 +1.3% 0.5207 +1.0% 0.5859 +1.3% 0.5801 −0.0% 0.6587 −0.5%

Pre-Doc ELECTRA 0.5350 +1.4% 0.6148 +0.9% 0.5086 −1.3% 0.5711 −1.3% 0.5779 −0.4% 0.6557 −0.9%

Pre-Pair ELECTRA 0.5306 +0.5% 0.6131 +0.6% 0.5108 −0.9% 0.5775 −0.2% 0.5760 −0.7% 0.6557 −0.9%

Top-1000

Vanilla ELECTRA 0.4668 - 0.5332 - 0.4986 - 0.5601 - 0.5147 - 0.5765 -

Sim-Doc ELECTRA 0.4796 +2.7% 0.5530
† +3.7% 0.4958 −0.6% 0.5544 −1.0% 0.5198 +1.0% 0.5930 +2.9%

Sim-Pair ELECTRA 0.4881† +4.6% 0.5577‡ +4.6% 0.5030 +0.9% 0.5634 +0.6% 0.5249 +2.0% 0.5923 +2.7%

Pre-Doc ELECTRA 0.4845
† +3.8% 0.5530

‡ +3.7% 0.4981 −0.1% 0.5560 −0.7% 0.5212 +1.3% 0.5883 +2.0%

Pre-Pair ELECTRA 0.4820 +3.3% 0.5513
† +3.4% 0.4828 −3.2% 0.5419 −3.2% 0.5075 −1.4% 0.5711 −0.9%

183

Appendix A: Additional results using exact match marking strategies

Table A.6 – Reranking effectiveness in the multi-phase fine-tuning setting of the
different models on Robust04 and GOV2 collections. Best results are
highlighted in bold. Significant improvements over the Vanilla baseline
with p < 0.05 and p < 0.01 are indicated with † and ‡ respectively. For
each measure, the improvement rate over the Vanilla baseline is given
(%).

Robust04 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 - 0.3631 - 0.4058 - 0.3345 - 0.4240 - 0.3631 -

BM25+RM3 0.4407 - 0.3821 - 0.4255 - 0.3661 - 0.4407 - 0.3821 -

Vanilla ELECTRA 0.5375 - 0.4560 - 0.5676 - 0.4663 - 0.5901 - 0.4902 -

Sim-Doc ELECTRA 0.5367 −0.1% 0.4560 +0.0% 0.5662 −0.2% 0.4683 +0.4% 0.5893 −0.1% 0.4912 +0.2%

Sim-Pair ELECTRA 0.5380 +0.1% 0.4564 +0.1% 0.5686 +0.2% 0.4705 +0.9% 0.5927 +0.4% 0.4942 +0.8%

Pre-Doc ELECTRA 0.5338 −0.7% 0.4590 +0.7% 0.5705 +0.5% 0.4697 +0.7% 0.5889 −0.2% 0.4926 +0.5%

Pre-Pair ELECTRA 0.5390 +0.3% 0.4566 +0.1% 0.5677 +0.0% 0.4699 +0.8% 0.5930 +0.5% 0.4970 +1.4%

GOV2 Title run Description run Hybrid run

Model nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 - 0.5362 - 0.4264 - 0.4705 - 0.4774 - 0.5362 -

BM25+RM3 0.4851 - 0.5634 - 0.4212 - 0.4966 - 0.4851 - 0.5634 -

Vanilla ELECTRA 0.5784 - 0.6621 - 0.5629 - 0.6279 - 0.6149 - 0.6862 -

Sim-Doc ELECTRA 0.5891 +1.8% 0.6685 +1.0% 0.5044 −10.4% 0.5758 −8.3% 0.6120 −0.5% 0.6926 +0.9%

Sim-Pair ELECTRA 0.5868 +1.5% 0.6661 +0.6% 0.5552 −1.4% 0.6225 −0.9% 0.6133 −0.3% 0.6926 +0.9%

Pre-Doc ELECTRA 0.5841 +1.0% 0.6634 +0.2% 0.5524 −1.9% 0.6188 −1.4% 0.6130 −0.3% 0.6852 −0.1%

Pre-Pair ELECTRA 0.5920† +2.4% 0.6718 +1.5% 0.5486 −2.5% 0.6134 −2.3% 0.6207 +0.9% 0.6956 +1.4%

184

Appendix B

Reproducibility

Reproducibility or replicability of experimental results are primary con-
cerns in all fields of research [24]. Information retrieval (IR) is notably a field
deeply rooted in empirical experiments and has always strived for reprodu-
cibility by relying on standard evaluation protocols based on the Cranfield
paradigm [42]. To this end, the IR community has developed standard exper-
imental benchamrks and large-scale evaluation initiatives across the decades
such as the TREC campaigns (see chapter 1).

In order to ensure the repeatability of the experimental results presented in
our contributions, we chose commonly recognized benchmarks for evaluation.
More specifically, we report results on the most commonly used benchmarks
in the literature for the task at the time of the publication. That is, standard
long document collections such as Robust04 and TREC DL document ranking
collections for reranking with cross-encoders. On the other hand, the focus
on test collections based on the MS MARCO passage corpus with bi-encoders.
Additionally, we share details about our experimental environment including
complete model architectures, training parameters, and inference process.

Considering the importance of reproducibility and its complexity especially
in the context of neural models, we present in this appendix further details
on how to reproduce our results.

1 Reproducing the results of the exact match marking
contribution

We discuss our first contribution in Chapter 7, in which we examine the
impact of explicit exact match hints on pre-trained language models. We
describe our model configuration and marking strategies in Section 7.3. We
further provide the detailed experimental setup used for producing our
results and baseline results in Section 7.4.

We conduct our experiments with the base configuration of both BERT 1

and ELECTRA 2 models publicly available on Hugginface hub. We fine-tune
these models for ranking using the monoBERT architecture for relevance
classification on the MS MARCO training set. We provide the fine-tuning
setting used in Section 4.1.

We conduct all our experiments on a single free Colab TPU. Our main code
dependencies are Huggingface Transformers [247] and Anserini [255]. Our

1. https://huggingface.co/bert-base-uncased

2. https://huggingface.co/google/electra-base-discriminator

185

https://huggingface.co/bert-base-uncased
https://huggingface.co/google/electra-base-discriminator

Appendix B: Reproducibility

code and reproduction scripts are publicly available 3, including the Colba
notebooks for training and inference.

Our fine-tuned models can be directly used via the Transformers library
and can be found on the Hugginface model hub 4.

2 Reproducing the results of the simpler contextualiza-
tion process contribution

In Chapter 8, we present our second contribution which investigates the
contextualization process in pre-trained language models for soft matching in
the context of ranking, and whether it can be replaced by a simpler process.

We detail our proposition and its implementation in Section 3.1, followed
by its life cycle including pre-training, fine-tuning and inference in Section
3.2. For reproducibility purposes, we also provide the exact experimental
settings used at each stage of the approach life cycle in Section 8.4.

In our experiments presented in Section 8.5, we rely on a ColBERT-based
model fine-tuned on MS MARCO train triples with distillation from an
ensemble of teachers. This model uses a distilbert [216] encoder with 66M
parameters, and was made publicly available by Hofstätter et al. [88] on
Hugginface hub 5.

We pre-train, fine-tune and evaluate our proposed constrained contex-
tualization approach on publicly available datasets, we provide detailed
descriptions of each dataset in Section 8.4. We report the official metrics
recommended for each collection test and use trec_eval 6 for computing the
metrics.

During pre-training, we randomly sample N = 50 tokens per passage uni-
formly. This hyper-parameter is set empirically in pilot experiments where
we evaluated different sample sizes among 25, 50 and using all sequence
tokens. We found that N = 50 gives the best ranking performance on MS
MARCO Dev in terms of MRR@10 (official metric). We also experimented
with a frequency-aware sampling strategy during pilot experiments, how-
ever this strategy was less effective then random sampling from a uniform
distribution.

All our experiments were conducted using a NVIDIA Quadro RTX 8000

GPU, AMD EPYC 7502P CPU, and 256 GB RAM. The training and inference
settings are described in Section 8.4.

3. https://github.com/BOUALILILila/ExactMatchMarking

4. https://huggingface.co/LilaBoualili/

5. https://huggingface.co/sebastian-hofstaetter/colbert-distilbert-margin_

mse-T2-msmarco

6. https://github.com/usnistgov/trec_eval

186

https://github.com/BOUALILILila/ExactMatchMarking
https://huggingface.co/LilaBoualili/
https://huggingface.co/sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco
https://huggingface.co/sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco
https://github.com/usnistgov/trec_eval

2 reproducing the results of the simpler contextualization

process contribution

Our main training and inference dependencies are PyTorch [188], Hug-
gingFace Transformers [247], and Capreolus [259]. We make our code, model
checkpoints and reproduction scripts publicly available 7.

7. https://github.com/BOUALILILila

187

https://github.com/BOUALILILila

Bibliography

[1] Mohammad Reza Abbasifard, Bijan Ghahremani, and Hassan Naderi.
2014. Article: A Survey on Nearest Neighbor Search Methods. Inter-
national Journal of Computer Applications 95, 25 (June 2014), 39–52. Full
text available.

[2] Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy
Lin. 2019. Cross-Domain Modeling of Sentence-Level Evidence for
Document Retrieval. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Association
for Computational Linguistics, Hong Kong, China, 3490–3496.

[3] Gianni Amati and Cornelis Joost Van Rijsbergen. 2002. Probabilistic
Models of Information Retrieval Based on Measuring the Divergence
from Randomness. ACM Trans. Inf. Syst. 20, 4 (oct 2002), 357–389.

[4] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. 2001. Vector-Space
Ranking with Effective Early Termination. In Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (New Orleans, Louisiana, USA) (SIGIR ’01).
Association for Computing Machinery, New York, NY, USA, 35–42.

[5] Nima Asadi and Jimmy Lin. 2013. Effectiveness/Efficiency Tradeoffs
for Candidate Generation in Multi-Stage Retrieval Architectures. In
Proceedings of the 36th International ACM SIGIR Conference on Research
and Development in Information Retrieval (Dublin, Ireland) (SIGIR ’13).
Association for Computing Machinery, New York, NY, USA, 997–1000.

[6] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020.
ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest
Neighbor Algorithms. Inf. Syst. 87, C (jan 2020), 13.

[7] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern informa-
tion retrieval. Vol. 463. ACM press New York.

[8] Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang,
Jun Xu, Zhaowei Wang, Fangshan Wang, and Qun Liu. 2020. SparTerm:
Learning term-based sparse representation for fast text retrieval. arXiv
preprint arXiv:2010.00768 (2020).

189

bibliography

[9] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao,
Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra,
Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. Ms marco: A human generated machine reading
comprehension dataset. arXiv preprint arXiv:1611.09268v3 (2018).

[10] Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwi-
atkowski. 2019. Matching the Blanks: Distributional Similarity for
Relation Learning. In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics. Association for Computational
Linguistics, Florence, Italy, 2895–2905.

[11] Mustapha Baziz, Mohand Boughanem, and Nathalie Aussenac-Gilles.
2005. Conceptual Indexing Based on Document Content Representation.
In Context: Nature, Impact, and Role, Fabio Crestani and Ian Ruthven
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 171–186.

[12] Jeffrey S Beis and David G Lowe. 1997. Shape indexing using ap-
proximate nearest-neighbour search in high-dimensional spaces. In
Proceedings of IEEE computer society conference on computer vision and
pattern recognition. IEEE, 1000–1006.

[13] Nicholas J Belkin. 1980. Anomalous states of knowledge as a basis for
information retrieval. Canadian journal of information science 5, 1 (1980),
133–143.

[14] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer:
The long-document transformer. arXiv preprint arXiv:2004.05150 (2020).

[15] Michael Bendersky and W. Bruce Croft. 2012. Modeling Higher-Order
Term Dependencies in Information Retrieval Using Query Hypergraphs.
In Proceedings of the 35th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (Portland, Oregon, USA)
(SIGIR ’12). Association for Computing Machinery, New York, NY, USA,
941–950.

[16] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Represent-
ation learning: A review and new perspectives. IEEE transactions on
pattern analysis and machine intelligence 35, 8 (2013), 1798–1828.

[17] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
2009. Curriculum Learning. In Proceedings of the 26th Annual International
Conference on Machine Learning (Montreal, Quebec, Canada) (ICML ’09).
Association for Computing Machinery, New York, NY, USA, 41–48.

[18] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used
for Associative Searching. Commun. ACM 18, 9 (sep 1975), 509–517.

190

bibliography

[19] Adam Berger and John Lafferty. 1999. Information Retrieval as Stat-
istical Translation. In Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(Berkeley, California, USA) (SIGIR ’99). Association for Computing
Machinery, New York, NY, USA, 222–229.

[20] Rishi Bommasani, Kelly Davis, and Claire Cardie. 2020. Interpreting
Pretrained Contextualized Representations via Reductions to Static
Embeddings. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics,
Online, 4758–4781.

[21] Lila Boualili, Jose G. Moreno, and Mohand Boughanem. 2020. Marked-
BERT: Integrating Traditional IR Cues in Pre-Trained Language Models
for Passage Retrieval. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (Virtual
Event, China) (SIGIR ’20). Association for Computing Machinery, New
York, NY, USA, 1977–1980.

[22] Lila Boualili, Jose G Moreno, and Mohand Boughanem. 2022. High-
lighting exact matching via marking strategies for ad hoc document
ranking with pretrained contextualized language models. Information
Retrieval Journal (2022), 1–47.

[23] Mohand Boughanem, Claude Chrisment, and Chantal Soulé-Dupuy.
1999. Query modification based on relevance back-propagation in an
ad hoc environment. Information processing & management 35, 2 (1999),
121–139.

[24] Timo Breuer, Nicola Ferro, Norbert Fuhr, Maria Maistro, Tetsuya Sakai,
Philipp Schaer, and Ian Soboroff. 2020. How to Measure the Reprodu-
cibility of System-Oriented IR Experiments. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (Virtual Event, China) (SIGIR ’20). Association for
Computing Machinery, New York, NY, USA, 349–358.

[25] Chris Buckley and Ellen M. Voorhees. 2004. Retrieval Evaluation with
Incomplete Information. In Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval (Sheffield, United Kingdom) (SIGIR ’04). Association for Com-
puting Machinery, New York, NY, USA, 25–32.

[26] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. 2005. Learning to Rank Using Gradient
Descent. In Proceedings of the 22nd International Conference on Machine

191

bibliography

Learning (Bonn, Germany) (ICML ’05). Association for Computing Ma-
chinery, New York, NY, USA, 89–96.

[27] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart:
An overview. Technical Report 23-581. 81 pages.

[28] Arthur Câmara and Claudia Hauff. 2020. Diagnosing BERT with
Retrieval Heuristics. In Advances in Information Retrieval, Joemon M. Jose,
Emine Yilmaz, João Magalhães, Pablo Castells, Nicola Ferro, Mário J.
Silva, and Flávio Martins (Eds.). Springer International Publishing,
Cham, 605–618.

[29] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007.
Learning to Rank: From Pairwise Approach to Listwise Approach. In
Proceedings of the 24th International Conference on Machine Learning (Cor-
valis, Oregon, USA) (ICML ’07). Association for Computing Machinery,
New York, NY, USA, 129–136.

[30] Gabriele Capannini, Claudio Lucchese, Franco Maria Nardini, Salvatore
Orlando, Raffaele Perego, and Nicola Tonellotto. 2016. Quality versus
Efficiency in Document Scoring with Learning-to-Rank Models. Inf.
Process. Manage. 52, 6 (nov 2016), 1161–1177.

[31] Claudio Carpineto and Giovanni Romano. 2012. A Survey of Automatic
Query Expansion in Information Retrieval. ACM Comput. Surv. 44, 1,
Article 1 (jan 2012), 50 pages.

[32] Jia Chen, Yiqun Liu, Yan Fang, Jiaxin Mao, Hui Fang, Shenghao Yang,
Xiaohui Xie, Min Zhang, and Shaoping Ma. 2022. Axiomatically Regu-
larized Pre-Training for Ad Hoc Search. In Proceedings of the 45th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (Madrid, Spain) (SIGIR ’22). Association for Computing Ma-
chinery, New York, NY, USA, 1524–1534.

[33] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J. Shane Culpepper.
2017. Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval. In
Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17).
Association for Computing Machinery, New York, NY, USA, 445–454.

[34] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. 2009.
Ranking measures and loss functions in learning to rank. Advances in
Neural Information Processing Systems 22 (2009).

[35] Xuanang Chen, Ben He, Kai Hui, Le Sun, and Yingfei Sun. 2021. Simpli-
fied tinybert: Knowledge distillation for document retrieval. In European
Conference on Information Retrieval. Springer, 241–248.

192

bibliography

[36] Xuanang Chen, Ben He, Le Sun, and Yingfei Sun. 2020. ICIP at TREC-
2020 Deep Learning Track. In Proceedings of the Twenty-Ninth Text RE-
trieval Conference, TREC 2020, Virtual Event [Gaithersburg, Maryland,
USA], November 16-20, 2020 (NIST Special Publication), Ellen M. Voorhees
and Angela Ellis (Eds.), Vol. 1266. National Institute of Standards and
Technology (NIST).

[37] Xuanang Chen, Canjia Li, Ben He, and Yingfei Sun. 2019. UCAS at
TREC-2019 Deep Learning Track. In Proceedings of the Twenty-Eighth Text
REtrieval Conference, TREC 2019, Gaithersburg, Maryland, USA, November
13-15, 2019 (NIST Special Publication), Ellen M. Voorhees and Angela
Ellis (Eds.), Vol. 1250. National Institute of Standards and Technology
(NIST).

[38] Francois Chollet. 2021. Deep learning with Python. Simon and Schuster.

[39] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D.
Manning. 2019. What Does BERT Look at? An Analysis of BERT’s At-
tention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. Association for Computational
Linguistics, Florence, Italy, 276–286.

[40] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D.
Manning. 2020. ELECTRA: Pre-training Text Encoders as Discriminat-
ors Rather Than Generators. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[41] Charles LA Clarke, J Shane Culpepper, and Alistair Moffat. 2016. As-
sessing efficiency–effectiveness tradeoffs in multi-stage retrieval sys-
tems without using relevance judgments. Information Retrieval Journal
19, 4 (2016), 351–377.

[42] Cyril Cleverdon. 1970. Evaluation tests of information retrieval systems.
Journal of Documentation (1970).

[43] Daniel Cohen, Bhaskar Mitra, Katja Hofmann, and W. Bruce Croft.
2018. Cross Domain Regularization for Neural Ranking Models Using
Adversarial Learning. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval (Ann Arbor, MI, USA)
(SIGIR ’18). Association for Computing Machinery, New York, NY, USA,
1025–1028.

[44] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021.
Overview of the TREC 2020 deep learning track. arXiv:2102.07662
(2021).

193

bibliography

[45] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and
Ellen M. Voorhees. 2020. Overview of the TREC 2019 deep learning
track. arXiv:2003.07820 (2020).

[46] Fabio Crestani, Mounia Lalmas, Cornelis J Van Rijsbergen, and Iain
Campbell. 1998. “Is this document relevant?. . . probably” a survey of
probabilistic models in information retrieval. ACM Computing Surveys
(CSUR) 30, 4 (1998), 528–552.

[47] W Bruce Croft and David J Harper. 1979. Using probabilistic mod-
els of document retrieval without relevance information. Journal of
documentation (1979).

[48] Sally Jo Cunningham, James Littin, and Ian H Witten. 1997. Applica-
tions of machine learning in information retrieval. (1997).

[49] Andrew M. Dai and Quoc V. Le. 2015. Semi-Supervised Sequence
Learning. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’15).
MIT Press, Cambridge, MA, USA, 3079–3087.

[50] Zhuyun Dai and Jamie Callan. 2019. Context-aware sentence/passage
term importance estimation for first stage retrieval. arXiv preprint
arXiv:1910.10687 (2019).

[51] Zhuyun Dai and Jamie Callan. 2019. Deeper Text Understanding for IR
with Contextual Neural Language Modeling. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (Paris, France) (SIGIR’19). Association for Computing
Machinery, New York, NY, USA, 985–988.

[52] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Document Term
Weighting for Ad-Hoc Search. In Proceedings of The Web Conference 2020.
Association for Computing Machinery, New York, NY, USA, 1897–1907.

[53] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Term Weighting
For First Stage Passage Retrieval. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Re-
trieval. Association for Computing Machinery, New York, NY, USA,
1533–1536.

[54] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018.
Convolutional Neural Networks for Soft-Matching N-Grams in Ad-Hoc
Search. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining (Marina Del Rey, CA, USA) (WSDM ’18).
Association for Computing Machinery, New York, NY, USA, 126–134.

194

bibliography

[55] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni.
2004. Locality-Sensitive Hashing Scheme Based on p-Stable Distribu-
tions. In Proceedings of the Twentieth Annual Symposium on Computational
Geometry (Brooklyn, New York, USA) (SCG ’04). Association for Com-
puting Machinery, New York, NY, USA, 253–262.

[56] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Land-
auer, and Richard Harshman. 1990. Indexing by latent semantic analysis.
Journal of the American society for information science 41, 6 (1990), 391–407.

[57] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and
W. Bruce Croft. 2017. Neural Ranking Models with Weak Supervision.
In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR
’17). Association for Computing Machinery, New York, NY, USA, 65–74.

[58] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Association for
Computational Linguistics, Minneapolis, Minnesota, 4171–4186.

[59] Laura Dietz, Manisha Verma, Filip Radlinski, and Nick Craswell. 2017.
TREC Complex Answer Retrieval Overview. In TREC.

[60] Kevin Duh and Katrin Kirchhoff. 2008. Learning to Rank with Partially-
Labeled Data. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (Singa-
pore, Singapore) (SIGIR ’08). Association for Computing Machinery,
New York, NY, USA, 251–258.

[61] Miles Efron, Peter Organisciak, and Katrina Fenlon. 2012. Improving
Retrieval of Short Texts through Document Expansion. In Proceedings of
the 35th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Portland, Oregon, USA) (SIGIR ’12). Association
for Computing Machinery, New York, NY, USA, 911–920.

[62] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Ben-
gio, and Pascal Vincent. 2009. The Difficulty of Training Deep Architec-
tures and the Effect of Unsupervised Pre-Training. In Proceedings of the
Twelth International Conference on Artificial Intelligence and Statistics (Pro-
ceedings of Machine Learning Research), David van Dyk and Max Welling
(Eds.), Vol. 5. PMLR, Hilton Clearwater Beach Resort, Clearwater Beach,
Florida USA, 153–160.

195

bibliography

[63] Kawin Ethayarajh. 2019. How Contextual are Contextualized Word
Representations? Comparing the Geometry of BERT, ELMo, and GPT-2
Embeddings. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association for Com-
putational Linguistics, Hong Kong, China, 55–65.

[64] Allyson Ettinger. 2020. What BERT is not: Lessons from a new suite
of psycholinguistic diagnostics for language models. Transactions of the
Association for Computational Linguistics 8 (2020), 34–48.

[65] Yixing Fan, Jiafeng Guo, Yanyan Lan, Jun Xu, Chengxiang Zhai, and
Xueqi Cheng. 2018. Modeling Diverse Relevance Patterns in Ad-Hoc
Retrieval. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval (Ann Arbor, MI, USA) (SIGIR ’18).
Association for Computing Machinery, New York, NY, USA, 375–384.

[66] Hui Fang, Tao Tao, and ChengXiang Zhai. 2004. A Formal Study
of Information Retrieval Heuristics. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (Sheffield, United Kingdom) (SIGIR ’04). Association
for Computing Machinery, New York, NY, USA, 49–56.

[67] Hui Fang, Tao Tao, and Chengxiang Zhai. 2011. Diagnostic Evaluation
of Information Retrieval Models. ACM Trans. Inf. Syst. 29, 2, Article 7

(apr 2011), 42 pages.

[68] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. SPLADE v2: Sparse lexical and expansion model for
information retrieval. arXiv preprint arXiv:2109.10086 (2021).

[69] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021.
SPLADE: Sparse Lexical and Expansion Model for First Stage Rank-
ing. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval (Virtual Event, Canada)
(SIGIR ’21). Association for Computing Machinery, New York, NY, USA,
2288–2292.

[70] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T.
Dumais. 1987. The vocabulary problem in human-system communica-
tion. Commun. ACM 30, 11 (1987), 964–971.

[71] Luyu Gao and Jamie Callan. 2021. Condenser: a Pre-training Architec-
ture for Dense Retrieval. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 981–993.

196

bibliography

[72] Luyu Gao and Jamie Callan. 2022. Unsupervised Corpus Aware Lan-
guage Model Pre-training for Dense Passage Retrieval. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics,
Dublin, Ireland, 2843–2853.

[73] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Modularized
Transfomer-based Ranking Framework. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Online, 4180–4190.

[74] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Understanding BERT
Rankers Under Distillation. In Proceedings of the 2020 ACM SIGIR on
International Conference on Theory of Information Retrieval (Virtual Event,
Norway) (ICTIR ’20). Association for Computing Machinery, New York,
NY, USA, 149–152.

[75] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact
Lexical Match in Information Retrieval with Contextualized Inverted
List. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Online, 3030–3042.

[76] Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Benjamin Van Durme,
and Jamie Callan. 2021. Complement Lexical Retrieval Model with Se-
mantic Residual Embeddings. In Advances in Information Retrieval - 43rd
European Conference on IR Research, ECIR 2021, Virtual Event, March 28 -
April 1, 2021, Proceedings, Part I (Lecture Notes in Computer Science), Djo-
erd Hiemstra, Marie-Francine Moens, Josiane Mothe, Raffaele Perego,
Martin Potthast, and Fabrizio Sebastiani (Eds.), Vol. 12656. Springer,
146–160.

[77] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized
product quantization. IEEE transactions on pattern analysis and machine
intelligence 36, 4 (2013), 744–755.

[78] Xiubo Geng, Tie-Yan Liu, Tao Qin, and Hang Li. 2007. Feature Selec-
tion for Ranking. In Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(Amsterdam, The Netherlands) (SIGIR ’07). Association for Computing
Machinery, New York, NY, USA, 407–414.

[79] Goran Glavaš and Ivan Vulić. 2020. Is supervised syntactic parsing
beneficial for language understanding? an empirical investigation.
arXiv preprint arXiv:2008.06788 (2020).

197

bibliography

[80] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep
learning. MIT press.

[81] Robert Gray. 1984. Vector quantization. IEEE Assp Magazine 1, 2 (1984),
4–29.

[82] Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing Zhang, and
Xueqi Cheng. 2022. Semantic Models for the First-Stage Retrieval: A
Comprehensive Review. ACM Trans. Inf. Syst. 40, 4, Article 66 (mar
2022), 42 pages.

[83] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. 2016. A
Deep Relevance Matching Model for Ad-Hoc Retrieval. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge
Management (Indianapolis, Indiana, USA) (CIKM ’16). Association for
Computing Machinery, New York, NY, USA, 55–64.

[84] Donna Harman. 2011. Information retrieval evaluation. Synthesis
Lectures on Information Concepts, Retrieval, and Services 3, 2 (2011), 1–119.

[85] Donna Harman. 2019. Information retrieval: the early years. Foundations
and Trends in Information Retrieval 13, 5 (2019), 425–577.

[86] James Henderson. 2020. The Unstoppable Rise of Computational Lin-
guistics in Deep Learning. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Association for Computational
Linguistics, Online, 6294–6306.

[87] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the
knowledge in a neural network. arXiv preprint arXiv:1503.02531 2, 7

(2015).

[88] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Ser-
tkan, and Allan Hanbury. 2020. Improving efficient neural ranking
models with cross-architecture knowledge distillation. arXiv preprint
arXiv:2010.02666 (2020).

[89] Sebastian Hofstätter and Allan Hanbury. 2019. Let’s measure run time!
Extending the IR replicability infrastructure to include performance
aspects. In Proceedings of the Open-Source IR Replicability Challenge co-
located with 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, OSIRRC@SIGIR 2019, Paris, France,
July 25, 2019 (CEUR Workshop Proceedings), Ryan Clancy, Nicola Ferro,
Claudia Hauff, Jimmy Lin, Tetsuya Sakai, and Ze Zhong Wu (Eds.),
Vol. 2409. CEUR-WS.org, 12–16.

198

bibliography

[90] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin,
and Allan Hanbury. 2021. Efficiently Teaching an Effective Dense
Retriever with Balanced Topic Aware Sampling. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Virtual Event, Canada) (SIGIR ’21). Association
for Computing Machinery, New York, NY, USA, 113–122.

[91] Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell,
and Allan Hanbury. 2020. Local Self-Attention over Long Text for
Efficient Document Retrieval. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Re-
trieval (Virtual Event, China) (SIGIR ’20). Association for Computing
Machinery, New York, NY, USA, 2021–2024.

[92] Sebastian Hofstätter, Markus Zlabinger, and Allan Hanbury. 2020. Inter-
pretable & Time-Budget-Constrained Contextualization for Re-Ranking.
In ECAI 2020 - 24th European Conference on Artificial Intelligence, 29
August-8 September 2020, Santiago de Compostela, Spain, August 29 -
September 8, 2020 - Including 10th Conference on Prestigious Applications
of Artificial Intelligence (PAIS 2020) (Frontiers in Artificial Intelligence and
Applications), Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina,
Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang (Eds.),
Vol. 325. IOS Press, 513–520.

[93] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model
Fine-tuning for Text Classification. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics, Melbourne, Australia,
328–339.

[94] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang,
Philip Pronin, Janani Padmanabhan, Giuseppe Ottaviano, and Linjun
Yang. 2020. Embedding-based retrieval in facebook search. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2553–2561.

[95] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and
Larry Heck. 2013. Learning Deep Structured Semantic Models for
Web Search Using Clickthrough Data. In Proceedings of the 22nd ACM
International Conference on Information & Knowledge Management (San
Francisco, California, USA) (CIKM ’13). Association for Computing
Machinery, New York, NY, USA, 2333–2338.

[96] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. 2017.
PACRR: A Position-Aware Neural IR Model for Relevance Matching.
In Proceedings of the 2017 Conference on Empirical Methods in Natural

199

bibliography

Language Processing. Association for Computational Linguistics, Copen-
hagen, Denmark, 1049–1058.

[97] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. 2018.
Co-PACRR: A Context-Aware Neural IR Model for Ad-Hoc Retrieval.
In Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining (Marina Del Rey, CA, USA) (WSDM ’18). Association
for Computing Machinery, New York, NY, USA, 279–287.

[98] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason We-
ston. 2019. Poly-encoders: Transformer architectures and pre-training
strategies for fast and accurate multi-sentence scoring. arXiv preprint
arXiv:1905.01969 (2019).

[99] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neigh-
bors: Towards Removing the Curse of Dimensionality. In Proceedings
of the Thirtieth Annual ACM Symposium on Theory of Computing (Dallas,
Texas, USA) (STOC ’98). Association for Computing Machinery, New
York, NY, USA, 604–613.

[100] Peter Ingwersen. 1992. Information retrieval interaction. Vol. 246. Taylor
Graham London.

[101] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameter-
ization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[102] Kyoung-Rok Jang, Junmo Kang, Giwon Hong, Sung-Hyon Myaeng,
Joohee Park, Taewon Yoon, and Heecheol Seo. 2021. Ultra-High Di-
mensional Sparse Representations with Binarization for Efficient Text
Retrieval. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics,
Online and Punta Cana, Dominican Republic, 1016–1029.

[103] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product
quantization for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence 33, 1 (2010), 117–128.

[104] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product
quantization for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence 33, 1 (2010), 117–128.

[105] Jyun-Yu Jiang, Chenyan Xiong, Chia-Jung Lee, and Wei Wang. 2020.
Long Document Ranking with Query-Directed Sparse Transformer. In
Findings of the Association for Computational Linguistics: EMNLP 2020.
Association for Computational Linguistics, Online, 4594–4605.

200

bibliography

[106] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li,
Fang Wang, and Qun Liu. 2020. TinyBERT: Distilling BERT for Natural
Language Understanding. In Findings of the Association for Computational
Linguistics: EMNLP 2020. Association for Computational Linguistics,
Online, 4163–4174.

[107] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale
similarity search with GPUs. arXiv:1702.08734 (2017).

[108] Chris Kamphuis, Arjen P. de Vries, Leonid Boytsov, and Jimmy Lin.
2020. Which BM25 Do You Mean? A Large-Scale Reproducibility Study
of Scoring Variants. In Advances in Information Retrieval - 42nd European
Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020,
Proceedings, Part II (Lecture Notes in Computer Science), Joemon M. Jose,
Emine Yilmaz, João Magalhães, Pablo Castells, Nicola Ferro, Mário J.
Silva, and Flávio Martins (Eds.), Vol. 12036. Springer, 28–34.

[109] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. 2020. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361 (2020).

[110] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage
Retrieval for Open-Domain Question Answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Online, 6769–
6781.

[111] Diane Kelly. 2009. Methods for evaluating interactive information retrieval
systems with users. Now Publishers Inc.

[112] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effect-
ive Passage Search via Contextualized Late Interaction over BERT. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (Virtual Event, China) (SIGIR ’20).
Association for Computing Machinery, New York, NY, USA, 39–48.

[113] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for
Stochastic Optimization. In 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[114] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer:
The Efficient Transformer. In International Conference on Learning Repres-
entations.

201

bibliography

[115] Jon M Kleinberg. 2000. Navigation in a small world. Nature 406, 6798

(2000), 845–845.

[116] Ron Kohavi, Randal M. Henne, and Dan Sommerfield. 2007. Practical
Guide to Controlled Experiments on the Web: Listen to Your Customers
Not to the Hippo. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Jose, California,
USA) (KDD ’07). Association for Computing Machinery, New York, NY,
USA, 959–967.

[117] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky.
2019. Revealing the Dark Secrets of BERT. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, Hong Kong, China,
4365–4374.

[118] Victor Lavrenko and W. Bruce Croft. 2001. Relevance Based Language
Models. In Proceedings of the 24th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (New Orleans,
Louisiana, USA) (SIGIR ’01). Association for Computing Machinery,
New York, NY, USA, 120–127.

[119] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning.
nature 521, 7553 (2015), 436–444.

[120] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad,
Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke
Zettlemoyer. 2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Comprehension.
In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational Linguistics, Online,
7871–7880.

[121] Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, Andrew Yates,
Le Sun, and Jungang Xu. 2018. NPRF: A Neural Pseudo Relevance
Feedback Framework for Ad-hoc Information Retrieval. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Brussels, Belgium, 4482–
4491.

[122] Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun.
2020. PARADE: Passage Representation Aggregation for Document
Reranking. arXiv:2008.09093 (2020).

202

bibliography

[123] Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun.
2021. Parade: Passage representation aggregation for document rerank-
ing. arXiv preprint arXiv:2008.09093v2 (2021).

[124] Hang Li. 2014. Learning to rank for information retrieval and natural
language processing. Synthesis lectures on human language technologies 7,
3 (2014), 1–121.

[125] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang,
and Xuemin Lin. 2019. Approximate nearest neighbor search on high
dimensional data—experiments, analyses, and improvement. IEEE
Transactions on Knowledge and Data Engineering 32, 8 (2019), 1475–1488.

[126] Jimmy Lin. 2019. The Neural Hype and Comparisons Against Weak
Baselines. SIGIR Forum 52, 2 (jan 2019), 40–51.

[127] Jimmy Lin. 2021. The Neural Hype, Justified! A Recantation. SIGIR
Forum 53, 2 (mar 2021), 88–93.

[128] Jimmy Lin and Xueguang Ma. 2021. A few brief notes on deepimpact,
coil, and a conceptual framework for information retrieval techniques.
arXiv preprint arXiv:2106.14807 (2021).

[129] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained
transformers for text ranking: Bert and beyond. Synthesis Lectures on
Human Language Technologies 14, 4 (2021), 1–325.

[130] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling
dense representations for ranking using tightly-coupled teachers. arXiv
preprint arXiv:2010.11386 (2020).

[131] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-Batch
Negatives for Knowledge Distillation with Tightly-Coupled Teachers
for Dense Retrieval. In Proceedings of the 6th Workshop on Representa-
tion Learning for NLP (RepL4NLP-2021). Association for Computational
Linguistics, Online, 163–173.

[132] Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019. Open Sesame:
Getting inside BERT’s Linguistic Knowledge. In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP. Association for Computational Linguistics, Florence, Italy,
241–253.

[133] Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper.
2021. Generalizing Discriminative Retrieval Models Using Generative
Tasks. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia)
(WWW ’21). Association for Computing Machinery, New York, NY,
USA, 3745–3756.

203

bibliography

[134] Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. 2021. Pay attention
to mlps. Advances in Neural Information Processing Systems 34 (2021),
9204–9215.

[135] Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and
Noah A. Smith. 2019. Linguistic Knowledge and Transferability of Con-
textual Representations. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Association for
Computational Linguistics, Minneapolis, Minnesota, 1073–1094.

[136] Shichen Liu, Fei Xiao, Wenwu Ou, and Luo Si. 2017. Cascade Ranking
for Operational E-Commerce Search. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(Halifax, NS, Canada) (KDD ’17). Association for Computing Machinery,
New York, NY, USA, 1557–1565.

[137] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Founda-
tions and Trends in Information Retrieval 3, 3 (mar 2009), 225–331.

[138] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. 2019. Roberta: A robustly optimized bert pretraining approach.
arXiv:1907.11692 (2019).

[139] Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. 2018.
Entity-Duet Neural Ranking: Understanding the Role of Knowledge
Graph Semantics in Neural Information Retrieval. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics,
Melbourne, Australia, 2395–2405.

[140] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins.
2020. Sparse, Dense, and Attentional Representations for Text Retrieval.
arXiv:2005.00181 (2020).

[141] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins.
2021. Sparse, dense, and attentional representations for text retrieval.
Transactions of the Association for Computational Linguistics 9 (2021), 329–
345.

[142] Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Xiang Ji, and Xueqi
Cheng. 2021. PROP: Pre-Training with Representative Words Prediction
for Ad-Hoc Retrieval. In Proceedings of the 14th ACM International Confer-
ence on Web Search and Data Mining (Virtual Event, Israel) (WSDM ’21).
Association for Computing Machinery, New York, NY, USA, 283–291.

204

bibliography

[143] Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Yingyan Li, and
Xueqi Cheng. 2021. B-PROP: Bootstrapped Pre-Training with Repres-
entative Words Prediction for Ad-Hoc Retrieval. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Virtual Event, Canada) (SIGIR ’21). Association
for Computing Machinery, New York, NY, USA, 1513–1522.

[144] Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy Lin. 2021. A replic-
ation study of dense passage retriever. arXiv preprint arXiv:2104.05740
(2021).

[145] Zhengyi Ma, Zhicheng Dou, Wei Xu, Xinyu Zhang, Hao Jiang, Zhao
Cao, and Ji-Rong Wen. 2021. Pre-Training for Ad-Hoc Retrieval: Hyperlink
is Also You Need. Association for Computing Machinery, New York, NY,
USA, 1212–1221.

[146] Sean MacAvaney, Sergey Feldman, Nazli Goharian, Doug Downey, and
Arman Cohan. 2020. ABNIRML: Analyzing the Behavior of Neural IR
Models.

[147] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Ton-
ellotto, Nazli Goharian, and Ophir Frieder. 2020. Efficient Document
Re-Ranking for Transformers by Precomputing Term Representations.
In Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval (Virtual Event, China) (SIGIR
’20). Association for Computing Machinery, New York, NY, USA, 49–58.

[148] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonel-
lotto, Nazli Goharian, and Ophir Frieder. 2020. Training Curricula for
Open Domain Answer Re-Ranking. Association for Computing Machinery,
New York, NY, USA, 529–538.

[149] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian.
2019. CEDR: Contextualized Embeddings for Document Ranking. In
Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval (Paris, France) (SIGIR’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 1101–1104.

[150] Joel Mackenzie, Zhuyun Dai, Luke Gallagher, and Jamie Callan. 2020.
Efficiency Implications of Term Weighting for Passage Retrieval. Association
for Computing Machinery, New York, NY, USA, 1821–1824.

[151] Iain Mackie, Jeffrey Dalton, and Andrew Yates. 2021. How Deep is
Your Learning: The DL-HARD Annotated Deep Learning Dataset. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Virtual Event, Canada) (SIGIR ’21).
Association for Computing Machinery, New York, NY, USA, 2335–2341.

205

bibliography

[152] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete
distribution: A continuous relaxation of discrete random variables.
arXiv preprint arXiv:1611.00712 (2016).

[153] Alireza Makhzani and Brendan J Frey. 2015. Winner-Take-All Autoen-
coders. In Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28.
Curran Associates, Inc.

[154] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust
approximate nearest neighbor search using hierarchical navigable small
world graphs. IEEE transactions on pattern analysis and machine intelligence
42, 4 (2018), 824–836.

[155] Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto.
2021. Learning Passage Impacts for Inverted Indexes. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Virtual Event, Canada) (SIGIR ’21). Association
for Computing Machinery, New York, NY, USA, 1723–1727.

[156] Ryan T. McDonald, George Brokos, and Ion Androutsopoulos. 2018.
Deep Relevance Ranking using Enhanced Document-Query Interac-
tions. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018,
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.).
Association for Computational Linguistics, 1849–1860.

[157] Aditya Menon, Sadeep Jayasumana, Ankit Singh Rawat, Seungyeon
Kim, Sashank Reddi, and Sanjiv Kumar. 2022. In defense of dual-
encoders for neural ranking. In International Conference on Machine
Learning. PMLR, 15376–15400.

[158] Donald Metzler and W. Bruce Croft. 2005. A Markov Random Field
Model for Term Dependencies. In Proceedings of the 28th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (Salvador, Brazil) (SIGIR ’05). Association for Computing Ma-
chinery, New York, NY, USA, 472–479.

[159] Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork. 2021. Rethinking
Search: Making Domain Experts out of Dilettantes. SIGIR Forum 55, 1,
Article 13 (jul 2021), 27 pages.

[160] Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork. 2021. Rethinking
Search: Making Domain Experts out of Dilettantes. SIGIR Forum 55, 1,
Article 13 (jul 2021), 27 pages.

206

bibliography

[161] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Ef-
ficient Estimation of Word Representations in Vector Space. In 1st
International Conference on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.).

[162] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Distributed Representations of Words and Phrases and
Their Compositionality. (2013), 3111–3119.

[163] George A. Miller. 1995. WordNet: A Lexical Database for English.
Commun. ACM 38, 11 (nov 1995), 39–41.

[164] Bhaskar Mitra and Nick Craswell. 2018. An Introduction to Neural
Information Retrieval. Foundations and Trends in Information Retrieval 13,
1 (dec 2018), 1–126.

[165] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning
to Match Using Local and Distributed Representations of Text for
Web Search. In Proceedings of the 26th International Conference on World
Wide Web (Perth, Australia) (WWW ’17). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 1291–1299.

[166] Bhaskar Mitra, Sebastian Hofstatter, Hamed Zamani, and Nick Craswell.
2020. Conformer-kernel with query term independence for document
retrieval. arXiv preprint arXiv:2007.10434 (2020).

[167] Calvin N Mooers. 1948. Application of random codes to the gathering of
statistical information. Ph.D. Dissertation. Massachusetts Institute of
Technology.

[168] Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. 2016.
Improving Document Ranking with Dual Word Embeddings. In Pro-
ceedings of the 25th International Conference Companion on World Wide
Web (Montréal, Québec, Canada) (WWW ’16 Companion). International
World Wide Web Conferences Steering Committee, Republic and Can-
ton of Geneva, CHE, 83–84.

[169] Shahrzad Naseri, Jeffrey Dalton, Andrew Yates, and James Allan. 2021.
CEQE: Contextualized Embeddings for Query Expansion. In Advances
in Information Retrieval: 43rd European Conference on IR Research, ECIR
2021, Virtual Event, March 28 – April 1, 2021, Proceedings, Part I. Springer-
Verlag, Berlin, Heidelberg, 467–482.

[170] Roberto Navigli. 2009. Word Sense Disambiguation: A Survey. ACM
Comput. Surv. 41, 2, Article 10 (feb 2009), 69 pages.

207

bibliography

[171] Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Lukasz Kaiser,
Yuhuai Wu, Christian Szegedy, and Henryk Michalewski. 2022. Hier-
archical Transformers Are More Efficient Language Models. In Findings
of the Association for Computational Linguistics: NAACL 2022. Association
for Computational Linguistics, Seattle, United States, 1559–1571.

[172] Yifan Nie, Yanling Li, and Jian-Yun Nie. 2018. Empirical Study of
Multi-Level Convolution Models for IR Based on Representations and
Interactions. In Proceedings of the 2018 ACM SIGIR International Con-
ference on Theory of Information Retrieval (Tianjin, China) (ICTIR ’18).
Association for Computing Machinery, New York, NY, USA, 59–66.

[173] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking
with BERT. arXiv:1901.04085, (2019).

[174] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020.
Document Ranking with a Pretrained Sequence-to-Sequence Model. In
Findings of the Association for Computational Linguistics: EMNLP 2020.
Association for Computational Linguistics, Online, 708–718.

[175] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From doc2query
to docTTTTTquery. Online preprint 6 (2019).

[176] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin.
2019. Multi-stage document ranking with BERT. arXiv preprint
arXiv:1910.14424 (2019).

[177] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin.
2019. Multi-stage document ranking with BERT. arXiv preprint
arXiv:1910.14424 (2019).

[178] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho.
2019. Document expansion by query prediction. arXiv preprint
arXiv:1904.08375 (2019).

[179] Cicero Nogueira dos Santos, Xiaofei Ma, Ramesh Nallapati, Zhiheng
Huang, and Bing Xiang. 2020. Beyond [CLS] through Ranking by
Generation. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 1722–1727.

[180] Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde,
Md Mustafizur Rahman, Pinar Karagoz, Alex Braylan, Brandon Dang,
Heng-Lu Chang, Henna Kim, Quinten Mcnamara, Aaron Angert, Ed-
ward Banner, Vivek Khetan, Tyler Mcdonnell, An Thanh Nguyen, Dan
Xu, Byron C. Wallace, Maarten Rijke, and Matthew Lease. 2018. Neural

208

bibliography

Information Retrieval: At the End of the Early Years. Information
Retrieval Journal 21, 2–3 (June 2018), 111–182.

[181] Daniel W Otter, Julian R Medina, and Jugal K Kalita. 2020. A survey
of the usages of deep learning for natural language processing. IEEE
transactions on neural networks and learning systems 32, 2 (2020), 604–624.

[182] Ramith Padaki, Zhuyun Dai, and Jamie Callan. 2020. Rethinking Query
Expansion for BERT Reranking. In Advances in Information Retrieval:
42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal,
April 14–17, 2020, Proceedings, Part II (Lisbon, Portugal). Springer-Verlag,
Berlin, Heidelberg, 297–304.

[183] Harshith Padigela, Hamed Zamani, and W. Bruce Croft. 2019. Invest-
igating the Successes and Failures of BERT for Passage Re-Ranking.
arxiv:1905.01758 (2019).

[184] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
1999. The PageRank citation ranking: Bringing order to the web. Technical
Report. Stanford InfoLab.

[185] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng.
2016. A Study of MatchPyramid Models on Ad-hoc Retrieval.
arXiv:1606.04648 (2016).

[186] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and
Xueqi Cheng. 2016. Text Matching as Image Recognition. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence (Phoenix,
Arizona) (AAAI’16). AAAI Press, 2793–2799.

[187] Biswajit Paria, Chih-Kuan Yeh, Ian EH Yen, Ning Xu, Pradeep Raviku-
mar, and Barnabás Póczos. 2020. Minimizing flops to learn efficient
sparse representations. arXiv preprint arXiv:2004.05665 (2020).

[188] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Ben-
oit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyT-
orch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, Inc., 8024–8035.

[189] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014.
GloVe: Global Vectors for Word Representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing

209

bibliography

(EMNLP). Association for Computational Linguistics, Doha, Qatar,
1532–1543.

[190] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Chris-
topher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextu-
alized Word Representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). Association for
Computational Linguistics, New Orleans, Louisiana, 2227–2237.

[191] Jay M. Ponte and W. Bruce Croft. 1998. A Language Modeling Approach
to Information Retrieval. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval (Melbourne, Australia) (SIGIR ’98). Association for Computing
Machinery, New York, NY, USA, 275–281.

[192] Ronak Pradeep, Xueguang Ma, Xinyu Zhang, Hang Cui, Ruizhou Xu,
Rodrigo Nogueira, and Jimmy Lin. 2020. H2oloo at TREC 2020: When
All You Got Is a Hammer... Deep Learning, Health Misinformation,
and Precision Medicine. In Text Retrieval Conference (TREC).

[193] Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The Expando-
Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-
to-Sequence Models. arXiv:2101.05667 (2021).

[194] Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019.
Understanding the Behaviors of BERT in Ranking. arXiv:1904.07531
(2019).

[195] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin
Zhao, Daxiang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA:
An Optimized Training Approach to Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguist-
ics, Online, 5835–5847.

[196] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
2018. Improving language understanding by generative pre-training.
Technical report, OpenAI (2018).

[197] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020.
Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research 21, 140 (2020), 1–67.

210

bibliography

[198] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research 21, 140 (2020), 1–67.

[199] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing. Associ-
ation for Computational Linguistics.

[200] Navid Rekabsaz, Oleg Lesota, Markus Schedl, Jon Brassey, and Carsten
Eickhoff. 2021. TripClick: The Log Files of a Large Health Web Search
Engine. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval (Virtual Event, Canada)
(SIGIR ’21). Association for Computing Machinery, New York, NY, USA,
2507–2513.

[201] Daniël Rennings, Felipe Moraes, and Claudia Hauff. 2019. An axiomatic
approach to diagnosing neural IR models. In European Conference on
Information Retrieval. Springer, 489–503.

[202] C. J. Van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworth-
Heinemann, USA.

[203] Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance
framework: BM25 and beyond. Now Publishers Inc.

[204] Stephen E Robertson. 1977. The probability ranking principle in IR.
Journal of documentation (1977).

[205] Stephen E Robertson and K Sparck Jones. 1976. Relevance weighting of
search terms. Journal of the American Society for Information science 27, 3

(1976), 129–146.

[206] S. E. Robertson and S. Walker. 1994. Some Simple Effective Approx-
imations to the 2-Poisson Model for Probabilistic Weighted Retrieval.
In Proceedings of the 17th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (Dublin, Ireland)
(SIGIR ’94). Springer-Verlag, Berlin, Heidelberg, 232–241.

[207] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-
Beaulieu, and Mike Gatford. 1994. Okapi at TREC-3. In Proceedings of
The Third Text REtrieval Conference, TREC 1994, Gaithersburg, Maryland,
USA, November 2-4, 1994 (NIST Special Publication), Donna K. Harman
(Ed.), Vol. 500-225. National Institute of Standards and Technology
(NIST), 109–126.

211

bibliography

[208] Joseph Rocchio. 1971. Relevance Feedback in Information Retrieval. Prentice
Hall, Englewood, Cliffs, New Jersey, 313–323.

[209] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A Primer in
BERTology: What We Know About How BERT Works. Transactions of
the Association for Computational Linguistics 8 (2020), 842–866.

[210] Corby Rosset, Damien Jose, Gargi Ghosh, Bhaskar Mitra, and Saurabh
Tiwary. 2018. Optimizing Query Evaluations Using Reinforcement
Learning for Web Search. In The 41st International ACM SIGIR Conference
on Research and Development in Information Retrieval (Ann Arbor, MI,
USA) (SIGIR ’18). Association for Computing Machinery, New York,
NY, USA, 1193–1196.

[211] Gerard. Salton. 1968. Automatic Information Organization and Retrieval.
McGraw Hill Text.

[212] Gerard Salton. 1989. Automatic Text Processing : The Transformation,
Analysis, and Retrieval of Information by Computer. Reading: Addison-
Wesley 169 (1989).

[213] Gerard Salton and Christopher Buckley. 1988. Term-Weighting Ap-
proaches in Automatic Text Retrieval. Inf. Process. Manage. 24, 5 (aug
1988), 513–523.

[214] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A Vector
Space Model for Automatic Indexing. Commun. ACM 18, 11 (nov 1975),
613–620.

[215] Mark Sanderson. 1994. Word sense disambiguation and information
retrieval. In SIGIR’94. Springer, 142–151.

[216] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv preprint arXiv:1910.01108 (2019).

[217] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts,
and Matei Zaharia. 2021. Colbertv2: Effective and efficient retrieval via
lightweight late interaction. arXiv preprint arXiv:2112.01488 (2021).

[218] Tefko Saracevic. 1970. On the concept of relevance in information science.
Case Western Reserve University.

[219] Tefko Saracevic. 2016. The Notion of Relevance in Information Science:
Everybody knows what relevance is. But, what is it really? Synthesis
lectures on information concepts, retrieval, and services 8, 3 (2016), i–109.

212

bibliography

[220] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural
Machine Translation of Rare Words with Subword Units. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics,
Berlin, Germany, 1715–1725.

[221] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. 2008. Nearest-
neighbor methods in learning and vision. IEEE Trans. Neural Networks
19, 2 (2008), 377.

[222] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mes-
nil. 2014. A Latent Semantic Model with Convolutional-Pooling Struc-
ture for Information Retrieval. In Proceedings of the 23rd ACM Interna-
tional Conference on Conference on Information and Knowledge Management
(Shanghai, China) (CIKM ’14). Association for Computing Machinery,
New York, NY, USA, 101–110.

[223] Amit Singhal and Fernando Pereira. 1999. Document Expansion for
Speech Retrieval. In Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(Berkeley, California, USA) (SIGIR ’99). Association for Computing
Machinery, New York, NY, USA, 34–41.

[224] Martin Szummer and Emine Yilmaz. 2011. Semi-Supervised Learning
to Rank with Preference Regularization. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management (Glas-
gow, Scotland, UK) (CIKM ’11). Association for Computing Machinery,
New York, NY, USA, 269–278.

[225] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and
Jimmy Lin. 2019. Distilling task-specific knowledge from bert into
simple neural networks. arXiv preprint arXiv:1903.12136 (2019).

[226] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2020. Effi-
cient transformers: A survey. arXiv preprint arXiv:2009.06732 (2020).

[227] Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh
Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, Wil-
liam W. Cohen, and Donald Metzler. 2022. Transformer memory as a
differentiable search index. arXiv preprint arXiv:2202.06991 (2022).

[228] Robert S Taylor. 1962. The process of asking questions. American
documentation 13, 4 (1962), 391–396.

[229] Wilson L Taylor. 1953. “Cloze procedure”: A new tool for measuring
readability. Journalism quarterly 30, 4 (1953), 415–433.

213

bibliography

[230] Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT Rediscovers the
Classical NLP Pipeline. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Association for Computational
Linguistics, Florence, Italy, 4593–4601.

[231] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak,
R Thomas McCoy, Najoung Kim, Benjamin Van Durme, Sam Bowman,
Dipanjan Das, and Ellie Pavlick. 2019. What do you learn from context?
Probing for sentence structure in contextualized word representations.
In International Conference on Learning Representations.

[232] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava,
and Iryna Gurevych. 2021. BEIR: A Heterogeneous Benchmark for
Zero-shot Evaluation of Information Retrieval Models. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Bench-
marks Track (Round 2).

[233] Paul Thomas, Gabriella Kazai, Ryen White, and Nick Craswell. 2022.
The Crowd is Made of People: Observations from Large-Scale Crowd
Labelling. In ACM SIGIR Conference on Human Information Interaction
and Retrieval (Regensburg, Germany) (CHIIR ’22). Association for Com-
puting Machinery, New York, NY, USA, 25–35.

[234] Andrew Trotman, Antti Puurula, and Blake Burgess. 2014. Improve-
ments to BM25 and Language Models Examined. In Proceedings of the
2014 Australasian Document Computing Symposium (Melbourne, VIC,
Australia) (ADCS ’14). Association for Computing Machinery, New
York, NY, USA, 58–65.

[235] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
Well-read students learn better: On the importance of pre-training
compact models. arXiv:1908.08962 (2019).

[236] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Advances in neural information processing
systems. 5998–6008.

[237] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov.
2019. Analyzing Multi-Head Self-Attention: Specialized Heads Do the
Heavy Lifting, the Rest Can Be Pruned. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, 5797–5808.

[238] Ellen M. Voorhees. 1993. Using WordNet to Disambiguate Word Senses
for Text Retrieval. In Proceedings of the 16th Annual International ACM

214

bibliography

SIGIR Conference on Research and Development in Information Retrieval
(Pittsburgh, Pennsylvania, USA) (SIGIR ’93). Association for Computing
Machinery, New York, NY, USA, 171–180.

[239] Ellen M. Voorhees. 1994. Query Expansion Using Lexical-Semantic
Relations. In Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (Dublin,
Ireland) (SIGIR ’94). Springer-Verlag, Berlin, Heidelberg, 61–69.

[240] Ellen M. Voorhees. 2004. Overview of the TREC 2004 Robust Track. In
Proceedings of the Thirteenth Text REtrieval Conference, TREC 2004, Gaith-
ersburg, Maryland, USA, November 16-19, 2004 (NIST Special Publication),
Ellen M. Voorhees and Lori P. Buckland (Eds.), Vol. 500-261. National
Institute of Standards and Technology (NIST).

[241] Ellen M Voorhees and Donna K Harman. 2005. TREC: Experiment and
evaluation in information retrieval. MIT press.

[242] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou
Wang, Peng Zhang, and Dell Zhang. 2017. IRGAN: A Minimax Game
for Unifying Generative and Discriminative Information Retrieval Mod-
els. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval (Shinjuku, Tokyo, Ja-
pan) (SIGIR ’17). Association for Computing Machinery, New York, NY,
USA, 515–524.

[243] Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, Zuyi Bao, Liwei
Peng, and Luo Si. 2020. StructBERT: Incorporating Language Structures
into Pre-training for Deep Language Understanding. In International
Conference on Learning Representations.

[244] Yile Wang, Leyang Cui, and Yue Zhang. 2019. How Can BERT Help
Lexical Semantics Tasks? arXiv preprint arXiv:1911.02929 (2019).

[245] Xing Wei and W. Bruce Croft. 2006. LDA-Based Document Models for
Ad-Hoc Retrieval. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(Seattle, Washington, USA) (SIGIR ’06). Association for Computing
Machinery, New York, NY, USA, 178–185.

[246] Gregor Wiedemann, Steffen Remus, Avi Chawla, and Chris Biemann.
2019. Does BERT make any sense? Interpretable word sense disambig-
uation with contextualized embeddings. arXiv preprint arXiv:1909.10430
(2019).

[247] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan

215

bibliography

Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-Art Natural Language Processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Association for Computational Linguistics, On-
line, 38–45.

[248] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s neural
machine translation system: Bridging the gap between human and
machine translation. arXiv:1609.08144 (2016).

[249] Zhijing Wu, Jiaxin Mao, Yiqun Liu, Jingtao Zhan, Yukun Zheng, Min
Zhang, and Shaoping Ma. 2020. Leveraging Passage-Level Cumulative
Gain for Document Ranking. Association for Computing Machinery, New
York, NY, USA, 2421–2431.

[250] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell
Power. 2017. End-to-End Neural Ad-Hoc Ranking with Kernel Pooling.
In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR
’17). Association for Computing Machinery, New York, NY, USA, 55–64.

[251] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N.
Bennett, Junaid Ahmed, and Arnold Overwijk. 2021. Approximate
Nearest Neighbor Negative Contrastive Learning for Dense Text Re-
trieval. In 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

[252] Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient
Passage Retrieval with Hashing for Open-domain Question Answering.
In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers). Association for Computa-
tional Linguistics, Online, 979–986.

[253] Ming Yan, Chenliang Li, Jiangnan Xia, and Wei Wang. 2019. IDST
at TREC 2019 Deep Learning Track: Deep Cascade Ranking with
Generation-based Document Expansion and Pre-trained Language
Modeling. In TREC.

216

bibliography

[254] Liu Yang, Qingyao Ai, Jiafeng Guo, and W. Bruce Croft. 2016. aNMM:
Ranking Short Answer Texts with Attention-Based Neural Matching
Model. In Proceedings of the 25th ACM International Conference on In-
formation and Knowledge Management, CIKM 2016, Indianapolis, IN, USA,
October 24-28, 2016, Snehasis Mukhopadhyay, ChengXiang Zhai, Elisa
Bertino, Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang Zhou,
Yi Chang, Yunyao Li, and Parikshit Sondhi (Eds.). ACM, 287–296.

[255] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the
use of Lucene for information retrieval research. In Proceedings of the
40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1253–1256.

[256] Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. 2019. Critically
Examining the "Neural Hype": Weak Baselines and the Additivity of
Effectiveness Gains from Neural Ranking Models. In Proceedings of
the 42nd International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (Paris, France) (SIGIR’19). Association for
Computing Machinery, New York, NY, USA, 1129–1132.

[257] Wei Yang, Haotian Zhang, and Jimmy Lin. 2019. Simple Applications
of BERT for Ad Hoc Document Retrieval. arXiv:1903.10972 (2019).

[258] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan
Salakhutdinov, and Quoc V. Le. 2019. XLNet: Generalized Autoregressive
Pretraining for Language Understanding. Curran Associates Inc., Red
Hook, NY, USA.

[259] Andrew Yates, Siddhant Arora, Xinyu Zhang, Wei Yang, Kevin Martin
Jose, and Jimmy Lin. 2020. Capreolus: A Toolkit for End-to-End Neural Ad
Hoc Retrieval. Association for Computing Machinery, New York, NY,
USA, 861–864.

[260] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-
Miller, and Jaap Kamps. 2018. From Neural Re-Ranking to Neural
Ranking: Learning a Sparse Representation for Inverted Indexing.
In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management (Torino, Italy) (CIKM ’18). Association for
Computing Machinery, New York, NY, USA, 497–506.

[261] Hansi Zeng, Hamed Zamani, and Vishwa Vinay. 2022. Curriculum
Learning for Dense Retrieval Distillation. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (Madrid, Spain) (SIGIR ’22). Association for Computing
Machinery, New York, NY, USA, 1979–1983.

217

bibliography

[262] ChengXiang Zhai. 2008. Statistical Language Models for Information
Retrieval A Critical Review. Foundations and Trends in Information Re-
trieval 2, 3 (mar 2008), 137–213.

[263] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and
Shaoping Ma. 2021. Jointly Optimizing Query Encoder and Product Quant-
ization to Improve Retrieval Performance. Association for Computing
Machinery, New York, NY, USA, 2487–2496.

[264] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and
Shaoping Ma. 2021. Optimizing Dense Retrieval Model Training with
Hard Negatives. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (Virtual
Event, Canada) (SIGIR ’21). Association for Computing Machinery,
New York, NY, USA, 1503–1512.

[265] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and
Shaoping Ma. 2022. Learning Discrete Representations via Constrained
Clustering for Effective and Efficient Dense Retrieval. In Proceedings of
the Fifteenth ACM International Conference on Web Search and Data Mining
(Virtual Event, AZ, USA) (WSDM ’22). Association for Computing
Machinery, New York, NY, USA, 1328–1336.

[266] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma.
2020. An Analysis of BERT in Document Ranking. Association for Com-
puting Machinery, New York, NY, USA, 1941–1944.

[267] Kaitao Zhang, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2020.
Selective Weak Supervision for Neural Information Retrieval. Association
for Computing Machinery, 474–485.

[268] Wangshu Zhang, Junhong Liu, Zujie Wen, Yafang Wang, and Gerard
de Melo. 2020. Query Distillation: BERT-based Distillation for En-
semble Ranking. In Proceedings of the 28th International Conference on
Computational Linguistics: Industry Track. International Committee on
Computational Linguistics, Online, 33–43.

[269] Xinyu Zhang, Andrew Yates, and Jimmy Lin. 2021. Comparing Score
Aggregation Approaches for Document Retrieval with Pretrained Trans-
formers. In Advances in Information Retrieval: 43rd European Conference
on IR Research, ECIR 2021, Virtual Event, March 28 – April 1, 2021, Pro-
ceedings, Part II. Springer-Verlag, Berlin, Heidelberg, 150–163.

[270] Zhi Zheng, Kai Hui, Ben He, Xianpei Han, Le Sun, and Andrew
Yates. 2020. BERT-QE: Contextualized Query Expansion for Document
Re-ranking. In Findings of the Association for Computational Linguistics:

218

bibliography

EMNLP 2020. Association for Computational Linguistics, Online, 4718–
4728.

[271] Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, and Ji-Rong Wen. 2022.
DynamicRetriever: A Pre-training Model-based IR System with Neither
Sparse nor Dense Index. arXiv preprint arXiv:2203.00537 (2022).

[272] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search
engines. ACM computing surveys (CSUR) 38, 2 (2006), 6–es.

219

