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Accurate state estimation is a fundamental problem for the navigation of Autonomous vehicles. This is particularly important when the vehicle is navigating through cluttered environments or it has to navigate in close proximity to its physical surroundings in order to perform localization, obstacle avoidance, environmental mapping etc. Although several algorithms were proposed in the past for this problem of state estimtation, they were usually applied to a single sensor or a specific sensor suite. To this end, researchers in the computer vision and control community came up with a visual-inertial framework (Camera + Imu) that exploit the combined properties of this sensor suite to produce precise local estimates (position, orientation, velocity etc). Taking inspiration from this, my thesis focuses on developing nonlinear observers for State Estimation by exploiting the classical Riccati design framework with a particular emphasis on visual-inertial sensor fusion. In the context of this thesis, we use a suite of low-cost sensors consisting of a monocular camera and an IMU. Throughout the thesis, the assumption on the planarity of the visual target has been considered.

In the present thesis, two research topics have been considered. Firstly, an extensive study for the existing techniques for homography estimation has been carried out after which a novel nonlinear observer on the SL(3) group has been proposed with application to optical flow estimation. The novelty lies in the linearization approach undertaken to linearize a nonlinear observer on SL(3), thus making it more simplistic and suitable for practical implementation. Then, another novel observer based on deterministic Ricatti observer has been proposed for the problem of partial attitude, linear velocity and depth estimation for planar targets. The proposed approach does not rely on the strong assumption that the IMU provides the measurements of the vehicle's linear acceleration in the body-fixed frame. Again experimental validations have been carried out to show the performance of the observer. An extension to this observer has been further proposed to filter the noisy optical flow estimates obtained from the extraction of continuous homography. Secondly, two novel observers for tackling the classical problem of homography decomposition have been proposed. The key contribution here lies in the design of two deterministic Riccati observers for addressing the homography decomposition problem instead of solving it on a frame-by-frame basis like traditional algebraic approaches. The performance and robustness of the observers have been validated over simulations and practical experiments. All the observers proposed above are part of the Homography-Lab library that has been evaluated at the TRL 7 (Technology Readiness Level) and is protected by the French APP (Agency for the Protection of Programs) which serves as the main brick for various applications like velocity, optical flow estimation and visual homography based stabilization.

Résumé

L'estimation précise de l'état du système est un problème fondamental pour la navigation des véhicules autonomes. Ceci est particulièrement important lorsque le véhicule navigue dans des environnements encombrés ou à proximité d'obstacles, afin d'effectuer la localisation, l'évitement d'obstacles, la cartographie de l'environnement, etc. Bien que plusieurs algorithmes aient été proposés dans le passé pour ce problème d'estimation d'état, ils impliquent généralement un seul capteur ou plusieurs du même type. Afin de pouvoir exploiter les propriétés de multiples capteurs dotés de caractéristiques différentes (tels que Camera, IMU, Lidar, etc.), les chercheurs de la communauté de vision et de contrôle ont mis au point des modèles mathématiques qui produisent des estimations locales précises (position, orientation, vitesse, etc.). En m'inspirant de cela, ma thèse se concentre sur le développement d'observateurs non-linéaires pour l'estimation d'état en exploitant les algorithmes classiques de type Riccati en mettant l'accent sur la fusion de capteurs visuels-inertiels. Dans le cadre de cette thèse, nous utilisons une suite de capteurs à faible coût composée d'une caméra monoculaire et d'une centrale inertielle. Dans le cadre de la vision monoculaire, nous faisons l'hypothèse que la cible est pratiquement plate. Bien que cette hypothèse soit restrictive, les solutions proposées sont pertinentes pour de nombreuses applications dans les domaines de la robotique aérienne, terrestre et sous-marine. Dans ce contexte, deux nouveaux observateurs non linéaires sont proposés, le premier pour l'estimation de l'homographie et le deuxième pour l'estimation de l'attitude partielle, de la vitesse linéaire et de la profondeur. Dans la deuxième partie de la thèse, deux nouveaux observateurs déterministes de Riccati sont proposés pour traiter le problème classique de décomposition d'homographie au lieu de le résoudre image par image comme les approches algébriques traditionnelles.

Tous ces travaux sont publiés dans des conférences internationales de haute niveau. Tous les observateurs proposés ci-dessus font partie de la bibliothèque HomographyLab dont je suis l'un des principaux contributeurs. Cette bibliothèque a été évaluée au niveau TRL 7 (Technology Readiness Level) et est protégée par l'APP (Agence pour la Protection des Programmes) qui sert de brique principale pour diverses applications telles que l'estimation de vitesse et de flux optique, et la stabilisation basée sur l'homographie visuelle. n-dimensional sphere embedded in R n+1 with radius equal to one π u projection onto the tangent space of the unit n-dimensional sphere at the point u ∈ S n ,π u I n+1 -uu Ω angular velocity vector V linear velocity vector SL [START_REF] Allibert | Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling[END_REF] the Special Linear group, the set of all real valued 3 × 3 matrices with unit determinant sl [START_REF] Allibert | Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling[END_REF] Lie-algebra of SL [START_REF] Allibert | Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling[END_REF], the set of matrices with trace equal to zero SO [START_REF] Allibert | Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling[END_REF] the Special Orthogonal group of the orthogonal 3 × 3 matrices with unit determinant R rotation matrix, R ∈ SO(3) g the gravity constant xiv Operators and functions (•) the transpose operator on a matrix or vector u × the skew-symmetric matrix associated with the cross product by vector u ∈ R 3 , i.e., u 
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Motivations and contributions

Navigation of Autonomous vehicles in an unknown or partially known and dynamically changing environment represents a great challenge. In case of aerial vehicles or underwater autonomous vehicles, the scientific issues are strongly linked to the fact that the vehicle may have to navigate in close proximity to the physical environment or the sea bead where often the GPS signals (in case of aerial vehicles) and remote acoustic positioning systems (in case of underwater vehicles) are sometimes unavailable or insufficiently precise for safe navigation. In this case, the robot must rely on exteroceptive sensors associated with inertial sensors and specific sensor-based guidance strategies.

The critical issue here is to retrieve the state of the vehicle relative to its environment via the use of sensors that do not measure this state directly. In case of underwater scenarios, two popular solutions for detecting the environment are on-board sonars and optical sensors. Although the range of a camera is significantly shorter than that of acoustic sensors and is highly dependent on the turbidity of the water, cameras offer other definite Chapter 1. Motivations, contributions and thesis structure advantages. For example, they are considerably less expensive than acoustic sensors, they provide rich information at a high rate, and they do not cause interference problems with other instruments. Similarly for aerial vehicles, combining a vision system along with an IMU has led to the development of integrated observers that exploit the optical flow measurements and IMU readings for attitude estimation. These solutions are particularly important in GPS denied environments or in applications such as hazard detection and surveillance, inspection of infrastructures etc. Safe and precise navigation remains very difficult and advanced vision-based navigation strategies are particularly relevant in this context even if they involve difficult problems to solve, both theoretical and experimental. Progress in this direction will undoubtedly have a significant impact on the development of applications related to the navigation of autonomous vehicles in a congested environment.

At the level of underwater vision, the problems are diverse. A large number of factors specific to the fact that the cameras are submerged disturb the processing conventionally carried out in terrestrial vision. We can mention the problem related to the lighting of the stage by artificial light sources. Image processing techniques are therefore necessary to compensate for light halo phenomena. The problem can be even more critical in the case of stereo vision. Indeed, the source of illumination often induces differences in illumination between the two images and therefore difficulties in matching the characteristic points between them. Underwater light attenuation models can be used to improve visibility in underwater scenes. On the other hand, the quality of image processing is very dependent on the quality of the water. Indeed, turbid water can make most algorithms completely inoperative (feature point extractions, target tracking, etc.).

It is therefore necessary to provide robust treatments for this type of disturbance. Likewise when the machine is close to the surface, the effects of light on the ripples on the surface introduce moving reflections on the submerged structures. The movement of these reflections is unrelated to the robot's movement and also disrupts movement estimates or feature point pairings. It is therefore necessary to provide robust treatments for this type of disturbance.

The work of this thesis proposal is specifically dedicated to the development of state estimation algorithms which can be used as a basis to develop control strategies for autonomous vehicles. These estimation algorithms merge measurements provided by a monocular camera and more conventional inertial sensors such as inertial unit, depth gauge, magnetometer, etc. Our preferred approach relies on nonlinear observers exploiting non-minimal representations that emphasize the invariance properties of the system. Throughout the entire work carried out in the thesis, the assumption on the planarity of the visual target has been maintained.

This PhD project has been carried out by keeping in mind a more global picture of 1.1. Motivations and contributions the I3S-OSCAR team that aims to develop generic observers by fusing the data from images and inertial sensors for attitude, velocity estimation etc. and whose applications will not only be restricted to aerial vehicles but can also be applied to any robotic vehicle equipped with these sensors. Keeping this global picture in mind, my PhD project focuses on the following two challenging research topics:

1. Homography Estimation and its Applications: In the field of Computer vision, Homography represents an invertible mapping between two views of the same planar surface. Essentially, this homography matrix encodes the camera pose, the distance between the camera and the scene, along with the normal direction to the scene. Although homography estimation is a relatively mature topic, it has been used in various computer vision and robotic applications where the scenarios involve man-made environments composed of (near) planar surfaces. In [START_REF] Scaramuzza | Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles[END_REF] the authors exploited the homography matrix to estimate the rigid-body pose of a robot equipped with a camera. One of the most successful visual servo control paradigms makes use of homographies [START_REF] Malis | 2 1/2 D visual servoing[END_REF]. Homography sequences have also been used for the navigation of robotic vehicles [START_REF] Plinval | Stabilization of a class of underactuated vehicles with uncertain position measurements and application to visual servoing[END_REF]. Navigation strategies based on homography are also well suited for applications where the camera is sufficiently far from the observed scene. This is particularly the case when ground images are taken from aerial vehicles [START_REF] Caballero | Homography based kalman filter for mosaic building. applications to uav position estimation[END_REF][START_REF] Ruiz | Mgraph: A multigraph homography method to generate incremental mosaics in real-time from uav swarms[END_REF][START_REF] Plinval | Stabilization of a class of underactuated vehicles with uncertain position measurements and application to visual servoing[END_REF]. Traditional algorithms for homography estimation rely on algebraic approaches by computing the homography on a frame to frame basis and thus, were not focused on improving the homography over time. This inspired the members of the I3S-OSCAR team to develop non-linear observers based on the underlying structure of the Special Linear group SL(3), by incorporating the velocity information across a sequence of images thereby improving the homography estimates over time [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF][START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF]. This approach however still requires computation of individual image homographies thus making it computationally expensive. In order to overcome this problem, a new observer was developed that directly uses point correspondences without requiring the prior reconstruction of the individual homographies. Inspired from these works, we developed a novel approach for homography observer design on the Special Linear group SL(3) as well. However, the novelty of this work lies in the linearization approach undertaken to linearize a nonlinear observer on SL [START_REF] Allibert | Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling[END_REF], and what makes this observer extremely effective is its simplicity thus making it suitable for real-time implementation.

Development of Observers based on Riccati design framework:

As discussed previously homography estimation can be used for a wide range of applications such as control of aerial vehicles, pose estimation etc. where the observed scene Chapter 1. Motivations, contributions and thesis structure is planar or nearly planar. In absence of an external localization system one of the main problems faced was to estimate the attitude of the robot relative to its environment. In order to overcome this problem, researchers started developing velocity-aided attitude observers by fusing IMU measurements along with linear velocity measurements. However, due to the lack of onboard linear velocity sensors for mini UAV's and the highly expensive DVL (Doppler velocity log) for AUV's researchers started looking into the vehicle's dynamic equations instead. In previous examples we saw that most of the applications involve physical interaction of the robot with the environment. This eventually led to the development of integrated observers that use a vision based system along with an imu, which exploit optical flow measurements and the imu readings to estimate the linear velocity, attitude and distance to the planar target. Traditional approaches make use of the Extended Kalman filters and show the practical convergence of the estimation errors experimentally. However, observability and convergence analyses are either missing or incomplete in these studies. An alternative technique is to use deterministic approaches like the Riccati observer design framework in [START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF]. My work on this topic has been inspired from the Riccati observer design framework mentioned previously in order to address the following two problems:

• Designing an observer to estimate the linear velocity, attitude and depth observing a planar target: The main objective of this work was to estimate these quantities without relying on the strong assumption of an IMU providing measurements of the vehicle's linear acceleration expressed in the bodyfixed frame [START_REF] Grabe | On-board velocity estimation and closed-loop control of a quadrotor uav based on optical flow[END_REF][START_REF] Grabe | Nonlinear ego-motion estimation from optical flow for online control of a quadrotor uav[END_REF]. In this work, we provide a detailed observability analysis that points out the camera's motion excitation conditions whose satisfaction grants stability of the observer and convergence of the estimation errors to zero. At the end, we also provide an extension to the observer design for the filtering of optical flow along with experimental results.

• Designing two observers for tackling the classical problem of Homography Decomposition: The main motivation behind this work was to find an alternative solution to the traditional algebraic approaches that solve the Homography Decompostion problem on a frame-by-frame basis thus providing noisy estimates. Also, traditional algebraic approches fail to obtain the correct solution when the camera translation is really small. In our work, we have proposed "persistance of excitation" conditions which cover such degenerate situations in which the tradional algebraic approches fail to obtain a correct solution.

Most of the theoretical contributions and experimental validation results reported in In addition, I am one of the principal contributors to the development of the Homog-raphyLab library that has been evaluated at the TRL 7 (Technology Readiness Level) and is protected by the French APP (Agency for the Protection of Programs).

Thesis structure

The present thesis is organized in two parts and partitioned in five chapters.

• Chapter 1 -Motivations, contributions and thesis structure. As dedicated in the title, this chapter first briefly presents the motivations and objectives of this thesis work. The main contributions are then provided. The thesis structure section briefly introduces the content of all chapters.

• Chapter 2 -Theoretical recalls on State Estimation. This chapter is devoted to recall some basic notions related to the topic of State Estimation. We start by talking about the classic state estimation filters for linear and nonlinear systems and discuss about their observability properties that essentially characterize the behaviour of such systems. Then, the Deterministic Riccati observer Design framework has been detailed which will be used as the main brick for the development of novel observers for state estimation during the remainder of the thesis.

• Chapter 3 -Introduction to Homography and Continuous Homography. This chapter recalls the preliminary details regarding homography and continuous homography, and then discusses about some relevant homography estimation algorithms. Then a novel linear approach for homography estimation on SL(3) has Chapter 1. Motivations, contributions and thesis structure been proposed with application to optical flow estimation. The problem formulation and basic ideas of observer design are first presented. Finally, the performance and robustness of the proposed observer are then verified by performing experiments using a Camera-IMU system.

• Chapter 4 -Riccati observers for state estimation exploiting optical flow and IMU measurements. This chapter revisits the problem of partial attitude, linear velocity and depth estimation of an IMU-Camera with respect to a planar target.

The considered solution relies on the measurement of the optical flow (extracted from the continuous homography) complemented with gyrometer and accelerometer measurements. The proposed deterministic observer is accompanied with an observability analysis that points out camera's motion excitation conditions whose satisfaction grants stability of the observer and convergence of the estimation errors to zero. The performance of the observer is illustrated by performing experiments on a test-bed IMU-Camera system. Finally we provide an extension to observer design for the filtering of optical flow measurements along with experimental results.

• Chapter 5 -Homography Decomposition. This chapter talks about the classical problem of Homography Decomposition and the state of the art approaches for Homography Decomposition. Then two novel nonlinear Riccati observers for the decomposition of the homography and its inverse have been proposed after which a rigorous observabilty and convergence analysis has been carried out. The large domain of convergence and good performance of the proposed observers have then been demonstrated through both simulation results and extensive experimental validations.

• Chapter 6 -Software Implementation Details. The software architecture design for the HomographyLab library has been detailed in this chapter. This chapter also provides an example of the overall software architecture that is used for the I3S-AUV platforms that consists of the vision brick as well as the control brick used for experimental validations. In the context of this thesis, I have worked only on the vision brick.
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Theoretical recalls on State Estimation

Introduction

In control theory, the state space representation of the physical system is a mathematical model which consists of a set of inputs, outputs and state variables that are related to each other by first order differential equations. The values of these state variables evolve over time in a way that depends on the inputs to which it is subjected. The output values of the physical system thus depends on the values of these state variables. The most general state space representation of a linear time-invariant system can be expressed by the following equation

ẋ(t) = A(t)x + B(t)u y(t) = C(t)x + Du(t) (2.1)
with x ∈ R n the system state vector, u ∈ R s the system input vector, and y ∈ R m the system output vector and

A ∈ R n×n , B ∈ R n×s , C ∈ R m×n , D ∈ R m×s denoting constant
matrices of the physical system with adequate dimensions. The matrix D is the feed forward matrix and is considered to be zero when the system model doesn't have a direct Chapter 2. Theoretical recalls on State Estimation feed through. This is the case in most of the systems and that's why we will neglect this term throughout the remainder of the chapter and use the following representation

ẋ(t) = A(t)x + B(t)u y(t) = C(t)x (2.2)
In case of non-linear systems the state space representation has the following generic

form ẋ(t) = f (x(t), u(t), t) y(t) = h(x(t), u(t), t) (2.3)
where t denotes the time, the system state x ∈ X ⊆ R n , the system input vector u ∈ U ⊆ R s , and the system output vector y ∈ Y ⊆ R m , f (x(t), u(t), t) and h(x(t), u(t), t) are vector functions with proper dimensions.

In general, all the state variables of the system cannot be completely measured. This is because of the fact that most of the times its practically not feasible due to space limitations or cost restrictions to mount all the necessary sensors that are needed to measure the states. And thus for the vast majority of the systems, it is often considered that the dimension of the state vector is greater than that of the output vector (m < n) meaning that at some time instance t, the state vector x(t) cannot be completely measured or deduced from the outputs. Thus in such a case, it is necessary to calculate or estimate the values of these state variables by using only the input/output relation and the outputs of the system at the starting time. This property of inferring the internal state of the system by knowledge of its outputs is referred to as Observability. The next section provides a detailed description of the observability of systems.

Observability of Systems

The concept of observability studies the possibility of estimating the state from the output. This was first introduced by Rudolph Kalman for the analysis of linear timeinvariant (LTI) systems [START_REF] Kalman | On the general theory of control systems[END_REF], and since then on the observability property has been extensively studied and extended for other classes such as linear time-varying (LTV) and nonlinear systems.

Observability of Linear Time Invariant Systems

The observability of a system ensures the reconstruction of the initial state from the knowledge of the inputs and outputs available on a time interval. A system is said to be observable if from the measurements of inputs and outputs we can reconstruct the initial state of the system. For a linear system described by (2.2), there are two fundamental 2.2. Observability of Systems notions that essentially characterize the behaviour of this system. These notions are Distinguishability and Observability. The standard concept of distinguishability can be explained by the following definition Definition 1. (Distinguishability): The two events (x 0 , t 0 ) and (w 0 , t 0 ) are said to be distinguishable [START_REF] Lou | The distinguishability of linear control systems[END_REF] on the interval [t 0 , t 0 + T ] if there exists u ∈ R s such that the corresponding outputs y(t, x 0 ) = y(t, w 0 ) over the time interval [t 0 , t 0 + T ].

Definition 2. (Observability): The system (2.2) is said to be observable [START_REF] Lou | The distinguishability of linear control systems[END_REF] at x 0 if x 0 is distinguishable from any x ∈ R n , and is fully observable if ∀x 0 ∈ R n , x 0 is distinguishable.

Since for linear systems the observability is independant of the input u, the matrix B does not intervene in the observability analysis and it is dependent only on the matrices A and C. Thus we can either say that the "the pair (A, C) is observable", or that the "system is observable".

Lemma 1. (Kalman's Rank Condition): For a LTI system if the observability matrix is defined by 

O :=        C CA . . . CA n-1        (2.4 
W (t) = ˆt 0 e -τ A C Ce -τ A dτ (2.5) is invertible.
Thus the state equation stated in (2.2) is said to be observable if for any unknown initial state x(0), there exists a finite t > 0 such that by having the knowledge of the input and the output y over the time interval [0, t] it is sufficient to determine uniquely the initial state x(0). Otherwise, the equation is said to be unobservable.

Observability of Linear Time Varying Systems

In this part we talk about the observability properties for another class of systems specifically the linear time varying systems. Consider a general Linear For instance, [START_REF] Chen | Linear system theory and design[END_REF] classifies the observability of a linear time-varying system according to the following definitions.

Definition 3. (Instantaneous observability) A system is instantaneously observable if, ∀t, the state x(t) can be computed from the inputs u(t), outputs y(t) and time derivatives u k (t), y k (t)

with k ≤ n + 1.
Lemma 2. Define the observation space of the LTV system at the time-instant t as the space generated by Define N 0 (t) = C, N k+1 = N k A + Ṅk , k = 1, ... and the set M K of matrix-valued functions M (.) of dimension (q × n)(q ≥ 1) composed of row vectors of N 0 (.), N 1 (.), ....

O(t) :=     N 0 (t) N 1 (t) . . .     (2.7) with N 0 (t) = C, N k+1 = N k A + Ṅk , k = 1, ....
By replacing the matrix C by M the following lemma has been proposed in [START_REF] Hamel | Position estimation from direction or range measurements[END_REF],

Lemma 3. (See [START_REF] Hamel | Position estimation from direction or range measurements[END_REF]) The existence of a matrix M ∈ M K satisfying the following property

W (t, t + δ) 1 δ ˆt+δ t Φ (t, τ )M (τ )M (τ )Φ(t, τ )dτ ≥ μI d (2.9)

Observer Design

implies the satisfaction of (2.6), and thus uniform observability of the corresponding LTV system.

We can also say that the pair A(t), C(t) is uniformly observable when the Lemma 2.9 is satisfied. Since the calculation of the Gramian requires the integration of the solutions of ẋ = A(t)x, checking the uniform observability of the LTV systems can be a difficult task. Hence in general, the uniform observability for LTV systems cannot be characterized by only rank conditions. The following lemma estabilishes [START_REF] Morin | Uniform observability of linear time-varying systems and application to robotics problems[END_REF] estabilishes a sufficient condition for uniform observability Lemma 4. If there exists a matrix M ∈ M K such that for some positive numbers δ, μ and ∀t ≥ 0 1 δ ˆt+

δ t det(M (τ )M (τ ))dτ ≥ μ (2.10)
The following lemma, taken from [START_REF] Hamel | Position estimation from direction or range measurements[END_REF], gives a sufficient condition for uniform observability in terms of the properties of the matrices A(t) and C(t) and their timederivatives:

Lemma 5. (See [START_REF] Hamel | Position estimation from direction or range measurements[END_REF]) If A is a constant matrix with real eigenvalues, and there exists 

M ∈ M K such that 1 δ ˆt+ δ t M (τ )M (τ )dτ ≥ μI d > 0 (2.

Observer Design

Observer Design for Linear System

Many methods have been proposed to estimate the state of a linear dynamical system.

Luenberger [START_REF] Luenberger | Observing the state of a linear system[END_REF] was one of the first ones to develop deterministic state observers for continuous linear systems. Since his works, a notable amount of research has been devoted

to the problem of observer design for linear systems. The main developments are detailed in [START_REF] Reilly | Observers for linear systems[END_REF], [START_REF] Aldeen | Reduced-order linear functional observers for linear systems[END_REF], [START_REF] Trinh | On the existence and design of functional observersforlinear systems[END_REF] and, in the recent books [START_REF] Korovin | State observers for linear systems with uncertainty[END_REF] and [START_REF] Trinh | Functional observers for dynamical systems[END_REF] and the references therein.

Kalman [START_REF] Kalman | On the general theory of control systems[END_REF] also formulated an observer by considering a deterministic or stochastic linear system. For the system stated in (2.6) the observer equations can be written as

ẋ(t) = A(t)x + B(t)u(t) + K(t)(y(t) -ŷ(t)) ŷ(t) = C(t)x (2.12)
where x(t) is the estimate of the state x(t) and K is the observer gain related to the error of the output reconstruction. Then the observer error e = x -x satisfies the equation ė = (A -KC)e (2.13)

The observer gain K can then be chosen appropriately so that the observer error e converges to zero when t → ∞. When the observer gain K is high, the linear Luenberger observer converges to the system states very quickly and vice-versa.

Kalman Filter

The Kalman fllter (KF) is one of the most widely used methods for estimation due to its simplicity, optimality and robustness. Since the Kalman filter is a recursive estimator it means that it takes into account the estimated state from the previous time step and the current measurement in order to compute the estimate of the current state. Typically a discrete version of the Kalman filter is divided into two phases: "Predict" and "Update".

In the Prediction phase, it uses the state estimate from the previous timestep to produce an estimate of the state at the current timestep while in the Update phase it uses the information from the current timestep to refine the state estimate at that instant. For the Kalman filter in case of stochastic systems, one of the important things is to compute the optimal gain K that minimizes the residual error and is given by the following expression

K = P C D(t) (2.14) 
where P(t) is the solution to the Continuous Riccati Equation (CRE)

Ṗ = AP + P A -P C D(t)CP + S(t) (2.15) 
where D and S are positive definite matrices that represent the covariance matrices of the state and measurement noises and are assumed to be Gaussian.

Observers for Nonlinear Systems

For the nonlinear system expressed in (2.3) the observer can be expressed in the generic form shown below:

ẋ = f (x, u) -K(x, u(t), t).(h(x, u(t)) -h(x, u(t))) ŷ = h(x, u) (2.16)
Thus the estimation error for the nonlinear system is given by

ė = f (x, u(t)) -f (x, u(t)) + K(x, u(t), t).(h(x, u(t)) -h(x, u(t)))
(2.17)

Observer Design

Since in this case f and h are nonlinear, the problem of finding a gain matrix K such that error converges asymptotically to zero cannot be solved like in the linear case. Thus one of the solutions in order to solve this problem is to linearize the system around an equilibrium point (x, ū, ȳ) characterized by f (x, ū) = 0 and ȳ = h(x, ū). Considering δ x = x -x, δ u = u -ū and δ y = y -ȳ, the linearized model is given by

δ ẋ(t) = Aδx(t) + Bδu(t) δy(t) = Cδx(t) (2.18) 
where A = ∂f ∂x (x, u), C = ∂h ∂x (x, u)

Extended Kalman Filter

The Extended Kalman filter is probably the most widely used estimator for nonlinear systems. The Extended Kalman filter applies the Kalman filter to nonlinear systems by simply linearising all the nonlinear models so that the traditional linear Kalman filter equations can be applied. Basically a matrix of partial derivatives i.e the Jacobian is computed at each time step and evaluated with the current predicted states. This procedure essentially linearizes the nonlinear function around the current estimate. Thus the idea of the EKF is to replace the state and output matrices A and C of the linear system by the Jacobian of the nonlinearities of the system. In this case as well, the gain matrix K is computed as

K = P C D Ṗ = AP + P A -P C DCP + S (2.

19)

with A = ∂f ∂x (x, u), C = ∂h ∂x (x, u). In case of the EKF, when the models are highly nonlinear, the first order linearization can introduce large errors that can lead to sub-optimal performance and sometimes divergence of the filter. To this end, Julien and Uhlman [START_REF] Julier | New extension of the kalman filter to nonlinear systems[END_REF] proposed the Unscented Kalman Filter (ULF) which uses a deterministic sampling approach. Thus, instead of linearizing which is the case in EKF, it specifies the Gaussian state distribution using a set of points, referred to as sigma points, and propagates them through the true nonlinear system. It is able to capture the posterion mean and coviarance accurately to the third order (Taylor series expansion) for any nonlinearity.

From all the works mentioned above it is clear that nonlinear observers have increasingly become alternative solutions to the classical filtering techniques such as Extended Kalman filters, Unscented Kalman filters, particle filters etc mainly because of their simplicity and large domain of stability and convergence. In the next section we talk about the Deterministic Riccati observer design framework that relies on the solutions to the Continuous Riccati Equation (CRE) and encompasses the EKF solutions.

Chapter 2. Theoretical recalls on State Estimation

Deterministic Riccati Observers

In this subsection we provide details about the deterministic Riccati observer framework developed in [START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF], which exploit first-order approximations of a class of nonlinear systems, and may formally be viewed as a generalisation of the so-called multiplicative extended Kalman filter (MEKF) [START_REF] Koch | Rela-106 tive multiplicative extended kalman filter for observable gps-denied navigation[END_REF], applies to a number of applications involving proprioceptive sensors and monocular vision. The observers proposed in Chapter 4 and Chapter 5 are based on this framework. We modify slightly the notations provided in [START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF], in order to be coherent with the rest of the work carried out in the thesis. The following nonlinear system (a particular case studied in [START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF]) is investigated: with P ∈ R (n 1 +n 2 )×(n 1 +n 2 ) a symmetric positive definite matrix solution to the following continuous Riccati equation (CRE):

ẋ = A(x, t)x + U + O(|x| 2 ) + O(|x||U |) y = C(x, t)x + O(|x| 2 ) (2.20) with state x = [x 1 , x 2 ] , x 1 ∈ B n 1 r (the closed ball in R n 1 of radius r), x 2 ∈ R n 2 , output y ∈ R m , C(x, t) ∈ R m×(n
Ṗ = AP + P A -P C D(t)CP + S(t) (2.23) 
with P (0) ∈ R (n 1 +n 2 )×(n 1 +n 2 ) a symmetric positive definite matrix, D(t) ∈ R m×m bounded continuous symmetric positive semi-definite, and S(t) ∈ R (n 1 +n 2 )×(n 1 +n 2 ) bounded continuous symmetric positive definite.

Then, from Theorem 3.1 and Corollary 3.2 in [START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF], x = 0 is locally exponentially stable (LES) when both matrices D(t) and S(t) are larger than some constant positive matrix and the pair (A (t), C (t)), with A (t) A(0, t), C (t) C(0, t), is uniformly observable.

3

Introduction to Homography and Continuous Homography

Introduction

In this chapter, we begin by unveiling the basic geometrical concepts that relates two views of the camera while observing a planar scene. This chapter serves to introduce the basic building blocks for the estimation of Homography. Then we talk about some existing feature-based approaches for homography estimation with a particular focus on nonlinear homography observers on SL(3) where a notable contribution has been made by the members of the I3S-OSCAR team [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF]. Finally, we propose a new observer that addresses the same problem as [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF] but follows a different approach by directly exploiting the basis of the Lie algebra of the group SL(3). The proposed observer is also ideal for the estimation of the so-called "continuous homography" and the optical flow by exploiting the homography estimated from every two consecutive images obtained from a combined Camera-IMU (Inertial Measurement Unit) system. Also, the proposed observer is extremely effective due to its simplicity thus making it ideal for real-time implementation.

Preliminary material for Homography Estimation

This chapter is divided into 3 sections. Section 3.2 gives a brief description of the notation and the math related to homography. In Section 3.3, various feature-based approaches (algebraic as well as geometric) for homography estimation have been discussed. In Section 3.4 a novel linear approach for observer design on SL(3) is proposed using point correspondences and the knowledge of the group velocity. In Section 3.6 the computation of the optical flow estimate extracted from continuous homography as well as experimental results supporting the proposed approach are presented.

Preliminary material for Homography Estimation

Perspective Projection

Visual information about the environment is obtained by projecting an observed scene onto the camera image surface. Typically two types of parameters are needed in order to reconstruct the 3D structure of a scene: intrinsic ("internal" parameters of the camera such as the principal point, the pixel aspect ratio, focal length etc.) and extrinsic (parameters that defined the location and orientation of the reference camera frame w.r.t a known world reference frame).

Let Å (resp. A) denote projective coordinates for the image plane of a camera Å (resp. A), and let { Å} (resp. {A}) denote its frame of reference. The position of the frame {A} with respect to { Å} expressed in { Å} is denoted by ξ ∈ R 3 . The orientation of the frame {A} with respect to { Å} is represented by a rotation matrix R ∈ SO(3) (see Fig. 3.1). The coordinates of a point in the reference frame ( P ∈ { Å}) are related to its coordinates in the current frame(P ∈ {A}) using the relation

P = RP + ξ (3.1)
In the commonly used approximation [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF], the intrinsic camera parameters define a 3X3

matrix K so that one can write

pim ∼ = K P , p im ∼ = KP (3.2)
where p im ∈ A denotes the image of the considered point when the camera is aligned are known meaning that the camera is calibrated one can write 1 :

p = K -1 pim |K -1 pim | , p = K -1 p im |K -1 p im | (3.3)

Homographies

In the field of Computer Vision, the so called homography is an invertible mapping that relates two camera views of the same planar scene by encoding in a single matrix the 1 Most statements in projective geometry involve equality up to a multiplicative constant denoted by ∼ = 19 3.2. Preliminary material for Homography Estimation camera pose, the distance between the camera and the scene, along with the normal direction to the scene(e.g., [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]). For thouroughly understanding this part, more details about the homography estimation are presented below by borrowing some material from [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF]. Let d (resp. d) and n (resp. n) denote the distance from the origin of { Å} (resp. {A})

to the observed planar scene and the coordinate normal vector pointing towards the scene expressed in { Å} (resp. {A}), respectively. One can easily verify that

η = R n d = d -η ξ (3.4)
Now by rearranging the terms in (3.1) one obtains

P = R ( P -ξ) (3.5)
Since the target points belong to the same observed planar scene

Π := {∀P ∈ R 3 : η P -d = 0} = {∀ P ∈ R 3 : η P -d = 0}
one derives from the planar constraint η P d = 1 and (3.5) that the projected point obeys the relation

P = R I 3 - ξη d P (3.6) 
Using (3.3) and (3.6), the projected point satisfies

p ∼ = R I 3 - ξη d p ∼ = Hp (3.7)
where the projective mapping

H : ∼ = R -R ξη d (3.8)
is defined as the Euclidean homography that maps Euclidean coordinates of the scene's points from { Å} to {A}. Using (3.4) one verifies that

H -1 ∼ = R + ξn d (3.9)
Depending on literature, either H given by (3.8) or H -1 given by (3.9) is referred to as Homography. Since a non-degenerate homography matrix H (i.e. det(H) = 0) is only defined up to a scale factor, it has 8 degrees of freedom while it has 9 entries.

An additional constraint is thus required. Several possibilities have been proposed in Chapter 3. Introduction to Homography and Continuous Homography literature. For instance, a simple constraint of fixing the third diagonal element of H equal to 1 (i.e. h 3,3 = 1) is proposed in [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. Another possibility consists in fixing the Frobenius norm of H equal to 1 [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. Finally, as any non-degenerate homography matrix is associated with a unique matrix H ∈ SL(3) by re-scaling H = det(H) -1 3 H such that det( H) = 1, without loss of generality it can be assumed that H is an element of SL [START_REF] Allibert | Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling[END_REF] as originally proposed in [START_REF] Benhimane | Homography-based 2d visual tracking and servoing[END_REF].

Recall that the scale factor γ such that H = γR I -ξη d is equal ( d/d) 1 3 and corresponds to the second singular value of H [START_REF] Hua | An invitation to 3-d vision: From images to geometric models[END_REF].

The so-called "image" homography matrix

H img ∈ SL(3) that maps pixel coordinates from A to C (i.e. p img ∼ = H img pimg ) then satisfies H img = KHK -1 .
Expression (3.7) provides the transformation by the homography H of point-feature correspondences between two image frames. Analogously, one can find the transformation by H of the correspondences of line features in [START_REF] Hua | Nonlinear observer design on sl(3) for homography estimation by exploiting point and line correspondences with application to image stabilization[END_REF] and conic features (i.e ellipses, hyperbolas) [START_REF] Hua | Explicit complementary observer design on special linear group sl(3) for homography estimation using conic correspondences[END_REF].

Homography plays a crucial role in various computer vision and robotics applications where the working environment consists of man made structures that are composed of nearly planar surfaces. In one of the works by [START_REF] Scaramuzza | Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles[END_REF], the rigid body pose of a robot equipped with a monocular camera was estimated by exploiting the homography matrix. Homography sequences have been also used for the navigation of robotic vehicles [START_REF] Plinval | Stabilization of a class of underactuated vehicles with uncertain position measurements and application to visual servoing[END_REF] and one of the most successful visual servo control paradigms [START_REF] Malis | 2 1/2 D visual servoing[END_REF] exploits the homography estimation. Apart from the applications mentioned above, homographybased methods can also be used for image stabilization, image mosaicing as well as control of autonomous underwater vehicles.

Homographies as elements of the Special Linear Group SL(3)

The special linear group SL(3) is defined as the set of all real valued 3 × 3 matrices with unit determinant

SL(3) := H ∈ R 3×3 | det(H) = 1
Since any homography matrix is associated with a unique matrix H ∈ SL(3) by re-scaling

H = det(H) -1 3 H such that det( H) = 1. Moreover the map w : SL(3) × P → P 2 (H, p) → w(H, p) ∼ = Hp |Hp|

Preliminary material for Homography Estimation

is a group action of SL(3) on the projective space P 2 since

w(H 1 , w(H 2 , p)) = w(H 1 , H 2 , p), w(I 3 , p) = p, p ∈ P 2
where H 1 , H 2 and H 1 H 2 ∈ SL(3) and I is the identity matrix, the unit element of SL(3).

The geometrical meaning of the above property is that the 3D motion of the camera between views A 0 and A 1 , followed by the 3D motion between views A 1 and A 2 is the same as the 3D motion between views A 0 and A 2 . As a consequence, we can think of homographies as described by elements of SL(3).

For completeness, let us recall on the Lie algebra sl(3) of SL(3). It is defined by

sl(3) := U ∈ R 3×3 | tr(U ) = 0
Since the Lie algebra sl( 3) is of dimension 8, it can be spanned by 8 generators so that for any ∆ ∈ sl(3) there exists a unique vector δ ∈ R 8 such that

∆ = 8 i=1 δ i B i (3.10)
where the basis of sl(3) are chosen as follows: 

B 1 = e 1 e

Rigid-body and Homography Dynamics

Consider a camera attached to the moving frame {A} moving with kinematics

Ṙ = RΩ × ξ = RV (3.11)
viewing a stationary planar scene, where Ω and V are the angular and linear velocities of {A} with respect to { Å} expressed in {A}, respectively. Then the kinematics of the associated homography matrix H ∈ SL(3) are given by Ḣ = HU (3.12)

The group velocity U ∈ sl(3) induced by the camera motion, and such that the dynamics of H are in the form (3.12), then satisfies [50, Lem. 5.3]

U = Ω × + V η d - η V 3d I 3 (3.13)
The group velocity U given by 3.13 is often referred to as "Continuous Homography" in the literature [START_REF] Ma | An invitation to 3-D vision: from images to geometric models[END_REF].

Existing feature-based homography estimation techniques

Classical algorithms for homography estimation taken from the computer vision community consist of computing the homography on a frame-by-frame basis by solving algebraic constraints related to correspondences of image features (points, lines, conics, contours, etc.) [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][START_REF] Agarwal | A survey of planar homography estimation techniques[END_REF][START_REF] Jawahar | Homography estimation from planar contours[END_REF][START_REF] Kaminski | Multiple view geometry of general algebraic curves[END_REF][START_REF] Conomis | Conics-based homography estimation from invariant points and polepolar relationships[END_REF]. These algorithms only considered the homography as an incidental variable and were not focused on improving (or filtering) the homography over time. In recent years, advances have been made in homography estimation algorithms by exploiting the temporal correlation of data across a video sequence rather than computing algebraically individual raw homography for each image. Powerful methodologies for nonlinear observer design on Lie groups (e.g. [START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF]) have been instrumental

for the derivation of these algorithms.

A nonlinear observer was proposed in [START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF] based on the underlying structure of the Special Linear group SL(3), which is isomorphic to the group of homographies [START_REF] Benhimane | Homography-based 2d visual tracking and servoing[END_REF]. Velocity information was exploited to interpolate across a sequence of images and improve the individual homography estimates. The observer, however, still requires individual image homographies (previously computed using an algebraic technique) as the feedback information. Thus, it needed both a classical homography algorithm and a temporal filter algorithm, and only functions if each pair of images provides sufficient features to algebraically compute a raw homography.

In order to overcome these drawbacks, the question of deriving an observer for a sequence of image homographies, which takes image point-feature correspondences directly as input has been considered [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF][START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF]. The previous observer is extended by also incorporating image line-feature correspondences (in addition to point-feature correspondences) directly as input in the design of observer innovation [START_REF] Hua | Point and line featurebased observer design on sl(3) for homography estimation and its application to image stabilization[END_REF]. In line with this effort, conic-feature correspondences (i.e. non-degenerate second-order features such as ellipses and hyperbolas) are considered for the construction of observer innovation [START_REF] Hua | Explicit complementary observer design on special linear group sl(3) for homography estimation using conic correspondences[END_REF]. Without requiring any prior step for reconstruction of individual homographies for feeding the observer innovation, these algorithms are suitable for real-time applications using an embedded computer. In contrast with algebraic techniques, these observers are 3.3. Existing feature-based homography estimation techniques also well posed even when there is insufficient data for full reconstruction of a homography. In such situations, these algorithms continue to operate by incorporating available information and relying on propagation of prior estimates. Thereafter, a classical algebraic algorithm and a state-of-the-art nonlinear observer on SL(3) for homography estimation that exploit the simplest feature correspondences -the point correspondencesare recalled for the purpose of understanding.

A classical algebraic algorithm of homography estimation

Homography estimation is a topic well developed and discussed in classical computer vision books [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][START_REF] Prince | Computer Vision: Models Learning and Inference[END_REF]. In this section, the so-called Direct Linear Transformation (DLT) method which employs point correspondences for homography estimation is briefly revised.

Given a set of four 2D to 2D point correspondences, p i ↔ pi , where pi (resp. pi ) is the re-normalized point of P i (resp. Pi ), as shown in (3.3). Denote

[u i , v i , w i ] coordinates of p i . Equation (3.7) implies that p i × (Hp i ) = 0 which in turn yields    0 -w i p i v i p i w i p i 0 -u i p i -v i p i u i p i 0       h 1 h 2 h 3    = 0 (3.14) 
with h j (j = 1, 2, 3) the j th column of H. Equation (3.14) contains three equations, however only two of them are linearly independent. By omitting, for instance, the third equation, each point correspondence p i ↔ pi gives two equations in the entries of H as

0 -w i p i v i p i w i p i 0 -u i p i    h 1 h 2 h 3    = 0
These equations have the form

L i h = 0 where L i is a 2×9 matrix and h = [h 1 h 2 h 3 ]
the vector of 9 unknown entries of H. From a set of four point correspondences on the observed plane, a set of 8 equations in form of Lh = 0 is obtained, where L is the matrix of dimension 8 × 9 obtained by stacking the rows of L i contributed from each correspondence. One observes that h = 0 is an obvious solution.

For a set of four consistent points (in the sense that all triplets of these four points are linearly independent), L has rank 8, and thus with an additional constraint of the norm |h| > 0, the obvious solution is avoided and h is defined up to scale. For simplification, one can choose |h| = 1 which is equivalent to having the Frobenius norm of H equal to 1.

Solving these algebraic equations on a frame-by-frame basis requires computation power. It can only be carried out if the number of point correspondence is not less than 4 and these point correspondences are consistent. Insufficient number of feature correspondence leads to calculation corruption. The above-presented algorithm is the basis of the cv :: findHomography function of OpenCV2 .

Nonlinear homography observer on SL(3)

The homography defined by (3.7) in this work maps Euclidean coordinates of the scene's points from { Å} to {A}. In the reverse direction, H := H -1 mapping Euclidean coordinates of the scene's points from {A} to { Å} satisfies

pi ∼ = Hp i (3.15)
The re-normalized point p i is thus given by

p i = H -1 pi |H -1 pi | (3.16)
Now, the basic ideas of observer design proposed in [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF], [START_REF] Hua | Observer design on the Special Euclidean group SE(3)[END_REF] for H on SL(3) based on direct point correspondence are recalled. To expose the underlying ideas of observer design, in this part we consider the simplified case where the group velocity U is known.

Assume that a set of n measurements p i = h(H, pi ) ∈ P 2 , i = {1 . . . n} in form of (3.16) in the camera frame { Å} is available, where pi ∈ P 2 are constant and known.

Definition 5. (Consistency) Assume that a set M n of n ≥ 4 vector directions p i ∈ P 2 , with i = {1 . . . n} contains a subset M 4 ⊂ M n of 4 constant vector directions such that all vector triplets in M 4 are linearly independent. In this case M n is called consistent.

Let Ĥ ∈ SL(3) denote the estimate of H. Then the goal is to drive the error term H = ĤH -1 to the identity matrix I 3 . The output errors i.e the estimates e i of pi are defined as follows,

e i = Ĥp i | Ĥp i | = Hp i | Hp i | (3.17)
The proposed observer takes the form

Ḣ = ĤU + ∆ Ĥ, Ĥ(0) ∈ SL(3) (3.18)
3.4. Novel approach for Homography Observer design on SL [START_REF] Allibert | Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling[END_REF] where ∆ ∈ sl(3) is the innovation term designed as

∆ = n i=1 π e i pi e i (3.19) with π x := (I 3 -xx ), ∀x ∈ S 2 .
Differentiating e i from equation (3.17) we obtain

ėi = k P π e i ∆e i (3.20)
For the stability analysis the following Lyapunov function is considered:

L = n i=1 1 2 |e i -pi | 2 (3.21)
Using the consistency of the set M n , one can ensure that L is locally a definite positive function of H. Differentiating L and substituting the value of ∆, it yields

L = -k P n i=1 e i p i π e i 2 (3.22) 
From the above equation we can see that the derivative is negative semi-definite ensuring that H is locally bounded and the equilibrium H = I 3 is asymptotically stable [21,

Th. 3.2].
For the interested reader, the observer design with partial knowledge of the group velocity has also been discussed in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF].

Novel approach for Homography Observer design on SL(3)

The equation of the proposed homography estimator taking into account system kinematics in (3.11) can be expressed as a kinematic filter system on SL(3) as

Ḣ = ĤU + ∆ Ĥ (3.23)
where the innovation term ∆ ∈ sl(3) has to be designed in order to drive the group error H := ĤH -1 to identity, based on the assumption that we have a collection of n

measurements p j = H -1 pj |H -1 pj | ∈ S 2 (j = 1, . . . , n),
with pj ∈ S 2 known and constant. Here p j and pj represent calibrated image points normalized onto the unit sphere and can be computed as

p j = K -1 p im j |K -1 p im j | , pj = K -1 pim j |K -1 pim j |
The output errors e j are defined as

e j := Ĥp j | Ĥp j | = Hp j | Hp j | (3.24)
which thus can be viewed as the estimates of pj .

In order to design the innovation term ∆, we first develop linear approximations of both the dynamics of H and the system output errors e i . Taking the time derivative of H (= ĤH -1 ) and using first order approximation H ≈ I one obtains

Ḣ = ∆ H = 8 i=1 δ i B i H ≈ 8 i=1 δ i B i (3.25)
where the linear representation

δ ∈ R 8 of ∆ via the relation (3.10) is used (∆ = 8 i=1 δ i B i ).
Let x ∈ R 8 denote the linear representation of H. One then deduces the following approximation x i B i pj

H = exp( 8 i=1 x i B i ) ≈ I 3 + 8 i=1 x i B i (3.
|p j + 8 i=1 x i B i pj | ≈ pj + 8 i=1 x i B i pj 1 -p j 8 i=1
x i B i pj 27 3.4. Novel approach for Homography Observer design on SL(3)

Neglecting high order terms one gets

e j ≈ pj + 8 i=1 x i B i pj - 8 i=1 x i pj p j B i ⇒ e j -pj ≈ 8 i=1 x i π pj B i pj = C j x
with π y := I 3 -yy , ∀y ∈ S 2 , the projection operator on the plane orthogonal to y and

C j := π pj B 1 pj | • • • | π pj B 8 pj ∈ R 3×8
Stacking all n measurements in a vector as follows

y :=     e 1 -p1 . . . e n -pn     ∈ R 3n (3.29) one obtains y ≈ Cx (3.30) with C :=     C 1 . . . C n     ∈ R 3n×8 .
From here, the innovation term δ (i.e. ∆) can be directly designed on the linear approximation system (3.28) using the linear approximation (3.30) of the output vector y. In fact, if the matrix C is of rank 8 (it is well known that the homography is observable from the measurements of at least 4 linearly independent points [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF]), then the design of the innovation term δ is straightforward. An obvious solution is δ = -kC y with k > 0, resulting in the following stable closed-loop system, in first order approximations, δ i B i , δ = -kC y with y given by (3.29). Then, if the set of measured directions pi is consistent, the equilibrium H = I 3 of the error system is locally exponentially stable.

ẋ = δ = -kC Cx Finally, ∆ ∈ sl(3) is computed from δ ∈ R 8 using

Proof of Proposition 1

We will introduce some notations and mathematical properties which are instrumental for the proof of the main Proposition 1 in this chapter.

Let ∧ denote the mapping ∧ : R 8 → sl(3) that maps the vector δ ∈ R 8 to an element of sl(3)

δ ∧ := 8 i=1 δ i B i
The operator vec ∨ : sl(3) → R 8 denotes the inverse of the (•) ∧ operator, namely

vec ∨ (δ ∧ ) = δ, ∀δ ∈ R 8
For any A ∈ R n×n , vect(A) ∈ R n 2 denotes the column vector obtained by the concatenation of columns of the matrix A as follows

vect(A) = [a 1,1 , • • • , a n,1 , a 1,2 , • • • , a n,2 , • • • , a 1,n , • • • , a n,n ] .
The matrix representation of the composition of the linear maps (vect•∧) : R 8 → sl(3) → R 9 is denoted by the full columns rank matrix ∧ ∈ R 9×8 . We recall that the matrix representation of the composition of the linear maps (vect • ∧) is denoted by the full columns rank matrix ∧ ∈ R 9×8 . Let vec ∨ ∈ R 8×9 denotes the matrix representation of the inverse of the map

(vect • ∧), namely vect(v ∧ ) = (vect • ∧)(v) = ∧ v, vect ∨ (v ∧ ) = (vect • ∧) -1 (vect(v ∧ )) = vect ∨ vect(v ∧ ),
for any v ∈ R 8 . The operator ⊗ denotes the usual Kroneker product.

Remark 1. The proof is inspired from Theoram 1 proved in [START_REF] Marco | Homography estimation of a moving planar scene from direct point correspondence[END_REF]. To prove that the origin of the error system H = I 3 is locally exponentially stable, it is sufficient to show that the origin of the linearized error system is exponentially stable. Let us define x ∧ , with x ∈ R 8 , the first order approximation of H around the equilibrium I 3

H ≈ (I 3 + x ∧ ) = I 3 + 8 i=1 x i B i
A first-order approximation of the output errors e i given by (3.17), considering the equation above, can be written as

e i -pi = π pi x ∧ pi = vect(π pi x ∧ pi )
Using the property vect(AXB) = (B ⊗ A)vect(X), one obtains

e i -pi = (p i ⊗ π pi )vect(x ∧ ) = (p i ⊗ π pi ) ∧ (3.32)
Now in first order approximation one has

ẋ = -kC Cx (3.33) with C i = (p i ⊗ π pi ) and C :=     C 1 . . . C n     .
From (3.32), (3.33) and using the property

(A ⊗ B) = A ⊗ B we obtain ẋ = -k ∧ n i=1 (p i ⊗ π pi ) (p i ⊗ π pi ) ∧ x = -k ∧ n i=1 (p i ⊗ π pi )(p i ⊗ π pi ) ∧ x (3.34)
Using the property 

(A ⊗ B)(C ⊗ D) = AC ⊗ BD it yields, ẋ = -k ∧ (p i p i ⊗ π pi π pi ) ∧ x = -k ∧ (p i p i ⊗ π pi ) ∧ x (3.
L 0 = |x| 2 2k (3.36)
with L0 = -x P x and the matrix P defined as follows

P := ∧ n i=1 (p i p i ⊗ π pi ) ∧ (3.37)
Then as shown in Theoram 1 in [START_REF] Marco | Homography estimation of a moving planar scene from direct point correspondence[END_REF] and due to the consistency of the measurement set (see definition 5) it is proved that P is positive definite by contradiction.

Therefore we can conclude that the equilibrium H = I 3 of the error system is locally exponentially stable which in turn concludes the proof.

Application to optical flow estimation

In this section we talk about the estimation of optical flow that can be obtained from the decomposition of the continuous homography and provide some experimental results. Using a moving Camera-IMU (i.e. a combined system composed of a Camera and an Inertial Measurement Unit) that observes a stationary planar scene, the previously proposed algorithm in section 3.4 can be applied to estimate the homography matrix H related to every two consecutive images. If the camera frequency is fast enough, then the continuous homography U defined by (3.13) can b approximately computed via logarithm operator as

U ≈ 1 T log(H)
with T the camera sample time. Since H is normally close to the identity matrix, log(H) can then be approximated using Taylor expansions as follows:

log(H) = log(I 3 -W ) ≈ log(H) := -W - W 2 2 - W 3 3 -• • •
with W := I 3 -H. However, such an approximation no longer ensures that both log(H)

and the resulting U will remain in sl(3). Hence a reprojection on sl(3) is needed

U ≈ 1 T log(H) - 1 3 tr( log(H))I 3 Denoting φ := V d and φ ⊥ := V η d = - ḋ d
, which respectively correspond to the socalled translational optical flow and its projection along the normal vector η. Our objec-3.6. Application to optical flow estimation tive consists in obtaining the estimation of both φ and φ ⊥ from the decomposition of the already computed continuous homography U .

Using the fact that the angular velocity of the Camera-IMU is measured by the gyrometers, one deduces

Ū := V η d = U - 1 2 γ 2 (U + U )I 3 -Ω ×
with γ 2 (U + U ) the second largest eigenvalue of U + U [START_REF] Ma | An invitation to 3-D vision: from images to geometric models[END_REF]. Taking into account the fact that η ∈ S 2 one deduces Φ := φφ = Ū Ū Defining β as the vector of the diagonal elements of Φ as follows

β =    Φ 11 Φ 22 Φ 33    one verifies that Ū β = η(φ 3 1 + φ 3 2 + φ 3 3 )
From here, the estimate of φ is calculated as follows

φ =      Ū Ū β | Ū β| if | Ū β| > η 0 if | Ū β| < η
with η > 0 being a small given threshold. Finally, the estimate of φ ⊥ is straightforwardly obtained by φ ⊥ = tr( Ū )

3.6.1 Experimental Results

Experimental Setup

A Visual-Inertial (VI) sensor [START_REF] Nikolic | A synchronized visual-inertial sensor system with fpga pre-processing for accurate real-time slam[END_REF] developed by the company Skybotix and the Autonomous Systems Lab (ETH Zurich) has been used to perform experimental validation (see Fig.

3.2)

. This VI-sensor consists of two cameras and two IMU's (composed of a 3-axis gyrometer and a 3-axis accelerometer). However, in order to validate the proposed approach only one camera and one IMU are sufficient. One of the main reasons for using the VIsensor is the possibility to obtain perfectly time-synchronized images and IMU measurments (20Hz for camera and 200Hz for IMU). For validation purposes, the ground truth 3.6. Application to optical flow estimation is obtained by using the highly accurate Optitrack Motion Capture system available at the I3S lab that provides the full pose of the Camera-IMU system at 120Hz.

The proposed algorithm has been implemented using C++ on an Intel Core i7 CPU running at 3.40Ghz. A high speed ethernet cable is used to carry out the transmission of data from the camera to the PC. The Linux based PC is in charge of carrying out two principal software tasks:

• Acquisition of data (images as well as IMU data) by interfacing with the camera hardware.

• Continuous homography estimation based on two consecutive images that is further decomposed to obtain the estimation of φ(= V d ) and φ ⊥ (= -ḋ d ) in real-time.

Experimental Results and Conclusions

The experiment reported below has been performed online with the VI-sensor camera looking downward to observe a well textured planar horizontal ground (see Fig. 3.

3).

A video showing this experiment is provided as a supplementary material and is also and IMU readings to estimate the camera's attitude, linear velocity, and its distance to a planar target [START_REF] Weiss | 4DoF drift free navigation using inertial cues and optical flow[END_REF][START_REF] Grabe | On-board velocity estimation and closed-loop control of a quadrotor uav based on optical flow[END_REF][START_REF] Grabe | Nonlinear ego-motion estimation from optical flow for online control of a quadrotor uav[END_REF]. The standard approach consists in applying extended Kalman filters and showing experimentally the practical convergence of the estimation errors [START_REF] Weiss | 4DoF drift free navigation using inertial cues and optical flow[END_REF]. However, observability and convergence analyses are either missing or incomplete in these studies. An alternative solution is to use deterministic observer design techniques, alike those reported in [START_REF] Grabe | On-board velocity estimation and closed-loop control of a quadrotor uav based on optical flow[END_REF][START_REF] Grabe | Nonlinear ego-motion estimation from optical flow for online control of a quadrotor uav[END_REF] except that the algorithms proposed in theses references rely on the strong assumption of an IMU providing measurements of the vehicle's linear acceleration expressed in the body-fixed frame 1 .

In this chapter, the problem of attitude, linear velocity and depth estimation is revisited by also adopting a deterministic observer point of view, but without relying on the assumption used in [START_REF] Grabe | On-board velocity estimation and closed-loop control of a quadrotor uav based on optical flow[END_REF][START_REF] Grabe | Nonlinear ego-motion estimation from optical flow for online control of a quadrotor uav[END_REF]. The proposed observer is adapted from the deterministic Riccati observer design framework derived in [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF]. In contrast with most existing works on the same topic [START_REF] Weiss | 4DoF drift free navigation using inertial cues and optical flow[END_REF], the structural question of observability, on which the exponential stability and convergence of the observer rely, is here addressed with the derivation of an explicit (and simple) observability condition based on the persistence of excitation granted by the camera-IMU linear velocity. Several practical algorithmic and implementation issues are also discussed. In the end we also propose an extension to observer design for optical flow filtering.

System Equations and Measurements for Observer Design

System Equations and Measurements for Observer Design

The vehicle's attitude satisfies the differential equation

Ṙ = RΩ × (4.1)
It is assumed that the vehicle is equipped with an IMU comprising a 3-axis gyrometer that measures the angular velocity Ω ∈ R 3 and a 3-axis accelerometer that measures the so-called specific acceleration a B ∈ R 3 , expressed in {B}. Using the flat non-rotating

Earth assumption, one has [6]

V = -Ω × V + a B + gR e 3 (4.2) 
A 3-axis magnetometer is also assumed to be available to measure the normalized Earth's magnetic field vector expressed in {B}. Let m I ∈ S 2 denote the known normalized Earth's magnetic field vector expressed in {I}. The vectors m I and e 3 are usually assumed to be non-collinear so that R can be estimated from the observation (measurements) in the body-fixed frame of the gravity vector and of the Earth's magnetic field vector. The magnetometer thus measures m B = R m I . The need for using the magnetometer is optional and is only required for yaw estimation.

We further assume that the vehicle is equipped with a monocular camera that observes a planar scene so that we can obtain an estimation of the continuous homogra- 

       Ṙ = RΩ × -[σ R ] × R V = -Ω × V + a B + g R e 3 -σ v ṡ = φ ⊥ ŝ -σ s (4.5)
where σ R , σ v ∈ R 3 , σ s ∈ R are innovation terms to be designed thereafter. Defining the

observer error variables R R R , Ṽ V -V , s s - ŝ
then the objective of the observer consists in stablizing ( R, Ṽ , s) around (e 3 , 0, 0) when the estimation of the gravity direction is concerned instead of the whole attitude estimation). One verifies from (4.1), (4.2), (4.5) that the error dynamics are given by

       Ṙ = R[σ R ] × V = -Ω × Ṽ + g R ( R -I 3 )e 3 + σ v ṡ = φ ⊥ s + σ s (4.6)
We will work out next first order approximations of the error system (4.6) complemented with first order approximations of the measurement equations. The application to these approximations of the Riccati observer design framework reported in [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF] (see Section II-D) will then provide us with the equations of the innovation terms of the proposed observer.

For this application the following technical (but non-restrictive) assumption is made.

Assumption 2. V (t), V (t), Ω(t) and φ are bounded in norm by some positive numbers V max , Vmax , Ω max and φ max , respectively. The distance d is lower-and upper-bounded by some positive numbers d min and d max , respectively.

First order approximations of the attitude error equations are derived using a (local) minimal parametrization of the rotation group SO(3). The parametrization here chosen is the vector part qv of the Rodrigues unit quaternion q = (q 0 , qv ) associated with R.

4.3. Partial Attitude, Linear Velocity and Depth Estimation of a Camera observing a planar target using continuous homography and inertial data Rodrigues formula relating q to R is

R = I 3 + 2[q v ] × (q 0 I 3 + [q v ] × )
From this relation, one deduces

R = I 3 + [ λ] × + O(| λ| 2 ),
with λ ∈ B 3 2 equal to twice the vector part of the quaternion associated with the attitude error matrix R. Then, in view of the dynamics of R in (4.6) one verifies (see also [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF]) that the derivative of λ is given by

λ = σ R + O(| λ||σ R |)
As for the dynamics of Ṽ one obtains

V = -Ω × Ṽ + g R [e 3 ] × λ + σ v + O(| λ| 2 ) = -Ω × Ṽ + g R e 2 λ1 -g R e 1 λ2 + σ v
with λ1 , λ2 the first and second components of λ.

Concerning the measurement of

V d one has V d -V ŝ = ( Ṽ + V )(s + ŝ) -V ŝ = (ŝI 3 ) Ṽ + V s + O(| Ṽ ||s|)
By setting the system output vector equal to

y = V d -V ŝ (4.7)
one obtains LTV first order approximations in the form (2.20) with

                                       x =       λ1 λ2 s Ṽ       , x 1 = λ1 λ2 , x 2 = s Ṽ , u =       σ R,1 σ R,2 σ s σ v       A =       0 0 0 0 1×3 0 0 0 0 1×3 0 0 φ ⊥ 0 1×3 g R e 2 -g R e 1 0 3×1 -Ω ×       ∈ R 6×6 C = 0 3×1 0 3×1 V ŝI 3 ∈ R 3×6 (4.8) measurements with σ R,1 , σ R,2
the first and second components of σ R . The third component σ R,3 is considered to be zero. From there the proposed observer is given by (4.5) with σ R,1 , σ R,2

and σ v determined from the input u calculated according to (2.22) and (2.23).

Observability analysis

According to [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF]Corollary 3.2], good conditioning of the solutions P (t) to the CREs and exponential stability of the proposed observer rely on the uniform observability of the pair (A (t), C (t)) obtained by setting x = 0 in the expressions of the matrices A and C given by (4.8). One verifies that

                 A =       0 0 0 0 1×3 0 0 0 0 1×3 0 0 φ ⊥ 0 1×3 gR e 2 -gR e 1 0 3×1 -Ω ×       C = 0 3×1 0 3×1 V sI 3 (4.9) with s = 1 d , φ ⊥ = -ḋ/d, and R ∈ SO(3) satisfying R e 3 = R e 3 , Ṙ = R Ω × Proposition 2.
The transient matrix Φ(τ, t) associated with A (t), for all τ ≥ t, is given by

Φ(τ, t) =        1 0 0 0 1×3 0 1 0 0 1×3 0 0 s(τ ) s(t) 0 1×3 g(τ -t)R (τ ) e 2 -g(τ -t)R (τ ) e 1 0 3×1 R (τ ) R (t)        (4.

10)

Proof: The transient matrix Φ(τ, t) is the solution to the following equation

dΦ(τ, t) dτ = A (τ )Φ(τ, t), Φ(t, t) = I 6 (4.11)
From the above relation and the expression of A (τ ), one easily verifies that Φ(τ, t) has the form 

Φ(τ, t) =       1 0 0 0 1×3 0 1 0 0 1×3 0 0 ϕ 33 (τ, t) 0 1×3 ϕ 41 (τ, t) ϕ 42 (τ, t) 0 3×1 R(τ, t)       ( 
⇒ dϕ 33 (τ, t) ϕ 33 (τ, t) = - dd(τ ) d(τ ) ⇒ ϕ 33 (τ, t) = d(t) d(τ ) = s(τ ) s(t) (4.13) 
From (4.11) and (4.12), one has

dϕ 41 (τ, t) dτ = -Ω(τ ) × ϕ 41 (τ, t) + gR (τ ) e 2
Then, by change of variable φ41 (τ, t) := R (τ )ϕ 41 (τ, t) the above equation yields

d φ41 (τ, t) dτ = ge 2
from which one deduces

ϕ 41 (τ, t) = R (τ ) φ41 (τ, t) = g(τ -t)R (τ ) e 2 (4.14) 
Similarly, one gets

ϕ 42 (τ, t) = R (τ ) φ41 (τ, t) = -g(τ -t)R (τ ) e 1 (4.15) 
Finally, using the fact that R(τ, 

t) = R (τ ) R (t)
R γ =    cos γ -sin γ 0 sin γ cos γ 0 0 0 1    (4.16)
there exist δ, ρ > 0 and t 0 ≥ 0 such that

1 δ ˆt+δ t U (τ ) U (τ )dτ ≥ ρI 6 , ∀t ≥ t 0 (4.17)
with

U (τ ) := s(τ ) g(τ -t)e 1 g(τ -t)e 2 R γ v(τ ) I 3 (4.18)
where v(τ ) := R(τ )V (τ ) the velocity vector expressed in the inertial frame.

(C.2) For all R γ ∈ SO(3) of the form (4.16), there exists δ, ρ > 0 and t 0 ≥ 0 such that

ˆt+δ t W (τ ) W (τ )dτ - 1 δ ˆt+δ t W (τ )dτ ˆt+δ t W (τ )dτ ≥ ρI 3 , ∀t ≥ t 0 (4.19) with W (τ ) := g(τ -t)e 1 g(τ -t)e 2 R γ v(τ ) (4.20) 
Then, the pair (A , C ) given by (4.9) is uniformly observable and the equilibrium ( R e 3 , V , ŝ) =

(R e 3 , V, s) of the proposed Riccati observer is locally exponentially stable.

Proof: From definition 4 in Chapter 2 the pair (A , C ) is uniformly observable if ∃δ, µ > 0 and t 0 ≥ 0 such that

1 δ ˆt+δ t Φ(τ ) C (τ )C (τ )Φ(τ )dτ ≥ µI 6 , ∀t > t 0 (4.21)
We now prove (4.21). In fact, it is verified that

U (τ ) = s(τ ) W (τ ) I 3
Thus, one has

U (τ ) U (τ ) ≤ 1 d 2 min W (τ ) W (τ ) W (τ ) W (τ ) I 3
Then, using the fact that W is bounded, it is straightforward to verify that condition (C.2) implies condition (C.1). Therefore, we only need to prove (4.21) for the case where the persistent excitation condition (C.1) is satisfied.

4.3. Partial Attitude, Linear Velocity and Depth Estimation of a Camera observing a planar target using continuous homography and inertial data One verifies that

C (τ )Φ(τ ) = s(τ ) g(τ -t)R (τ ) e 2 -g(τ -t)R (τ ) e 1 V (τ ) s(t) R (τ ) R (t) = s(τ )R(τ ) g(τ -t)γ 2 -g(τ -t)γ 1 v(τ ) s(t) R(t) (4.22) 
where v(τ ) := R(τ )V (τ ) the velocity vector expressed in the inertial frame. Also 

γ 1,2 := R(τ )R (τ ) e 1,2 = R(0)R (0) e 1,2 (4.23 
R γ γ 2 = e 1 , R γ γ 1 = -e 2 , R γ ∈ SO(3) (4.24) 
For all x = [x 1 , x 2 , x 3 , x 4 ] , with x 1,2,3 ∈ R, x 4 ∈ R 3 , using (4.22) one deduces

C (τ )Φ(τ )x = s(τ )R(τ ) R γ g(τ -t)e 1 g(τ -t)e 2 R γ v(τ ) s(t) R γ R(t) x = s(τ )R(τ ) R γ g(τ -t)e 1 g(τ -t)e 2 R γ v(τ ) I 3 x = R(τ ) R γ U (τ )x with x := [x 1 , x 2 , x 3 s(t)
, (R γ R(t)x 4 ) ] (which ensures that |x| ≥ min(1, d min )|x|) and U defined by (4.18). One then obtains • First, this condition is violated if the vehicle's linear velocity is null for all time (i.e. |V (t)| ≡ 0). In fact, in this situation it is impossible to recover the depth from measurements monocular vision without any prior knowledge of the observed planar scene.

x Φ(τ ) C (τ )C (τ )Φ(τ )x = x U (τ ) R γ R(τ )R(τ ) R γ U (τ )x = x U (τ ) U (τ )x
• If the vehicle does move "persistently" so that ∃δ V , ρ V > 0 such that

1 δ V ˆt+δ V t |V (τ )|dτ ≥ ρ V , ∀t ≥ 0 (4.26)
and that Assumption 2 holds, then condition (3) is satisfied for almost all types of motion, excepts some very particular cases. For instance, such is the case where the vehicle moves, with constant linear velocity and constant attitude, in a straight-line path parallel to the observed plane (i.e. V (t) and d(t) remain constant).

Yaw estimation

For completeness, the third component σ R,3 of the innovation term σ R is now independently designed for yaw estimation.

Corollary 2. In addition to the innovations σ R,1 , σ R,2 and σ V specified previously, define

σ R,3 = -k m e 3 ( Rm B × m I ) (4.27) 
where k m ∈ R is either a positive number or k m = (m 2 1 + m 2 2 )D m P m , with P m ∈ R solution to the following CRE:

Ṗm = -(m 2 1 + m 2 2 ) 2 D m P 2 m + S m , P m (0) > 0
and D m , S m positive numbers. Then, the equilibrium ( R, V , ŝ) = (R, V, s) of the proposed Riccati observer is locally exponentially stable.

Proof. As a result of Proposition 3, it suffices to prove the local exponential stability of λ3 = 0 at the local zero-dynamics of λ3 by setting λ1 ≡ λ2 ≡ 0 and Ṽ ≡ 0. One verifies that the zero-dynamics of λ3 are locally given by λ3 = σ R,3

while the "conditioned" magnetometer measurement e 3 ( Rm B × m I ) in first order approximations and with λ1 ≡ λ2 ≡ 0 is approximately given by

e 3 ( Rm B × m I ) = (m 2 1 + m 2 2 ) λ3 so that λ3 = -k m (m 2 1 + m 2 2 ) λ3
From here the proof straightforwardly follows.

Practical implementation aspects

Practical implementation aspects 4.4.1 Unit quaternion equivalence

Although the attitude estimate is designed on SO(3), it can be directly lifted to an equivalent algorithm on the unit quaternion group (see, e.g., [START_REF] Hua | Observer design on the Special Euclidean group SE(3)[END_REF]). Let q denote the unit quaternion associated with R. Then, the proposed observer (5.11) can be rewritten as

     q = 1 2 (Γ 1 (Ω) -Γ 2 (σ R ))q V = -Ω × V + a B + g R e 3 -σ v ṡ = φ ⊥ ŝ -σ s (4.28)
where the mappings Γ 1 , Γ 2 : R 3 → R 4×4 are defined as

Γ 1 (x) = 0 -x x -[x] × , Γ 2 (x) = 0 -x x [x] × , ∀x ∈ R 3
and the term R is calculated from q using the Rodrigues formula.

Hybrid discrete-continuous version

In practice, the IMU measurements can be obtained at a very high frequency while the continuous homography is often estimated at a much lower frequency. This fact should be carefully taken into account in the implementation process. Inspired by existing hybrid continuous-discrete Kalman or extended Kalman filters, we propose thereafter a hybrid continuous-discrete version of the proposed observer, where for the sake of simplicity the gain k m involved in the expression (4.27) of the innovation component σ R,3 is a positive number.

Let {t k } denote the suite of time-instants that the continuous homography estimates are obtained. Then, the prediction and correction steps of the proposed observer are described below.

• Prediction step: 

At each step k, integrate during t ∈ [t k-1 , t k ] the following equations            q = 1 2 (Γ 1 (Ω) -Γ 2 (σ R,3 e 3 ))q V = -Ω × V + a B + g R e 3 ṡ = φ ⊥ ŝ Ṗ = AP + P A + S with q(t k-1 ) = qk-1|k-1 , V (t k-1 ) = Vk-1|k-1 , ŝ(t k-1 ) = ŝk-1|k-1 , P (t k-1 ) = P k-1|k-
           qk|k-1 = q(t k ) Vk|k-1 = V (t k ) ŝk|k-1 = ŝ(t k ) P k|k-1 = P (t k )
• Correction step: First, compute the innovation terms as

               K k = P k|k-1 C k (C k P k|k-1 C k + D -1 ) -1 u k =       σ Rk,1 σ Rk,2 σ sk σ vk       = -K k y k with C k = 0 3×1 0 3×1 Vk|k-1 ŝk|k-1 I 3 , y k = V d k -Vk|k-1 ŝk|k-1 .
Then, update the state estimates and the Riccati matrix as

           qk|k = exp -1 2 Γ 2 (σ Rk,1 e 1 + σ Rk,2 e 2 ) qk|k-1 Vk|k = Vk|k-1 -σ V k ŝk|k = ŝk|k-1 -σ sk P k|k = (I 6 -K k C k )P k|k-1
with sinc(x) = sin(x)/x, ∀x ∈ R.

Practical solutions for the boundedness of P

As mentioned in Section 4.3.2 the Riccati matrix P is well conditioned provided that the pair (A , C ) given in (4.9) is uniformly observable (i.e. the persistent excitation condition (3) is satisfied). However, when this uniform observability condition is violated (as discussed in the end of Section 4.3.2) P may grow arbitrarily large or even explode. Some "practical" solutions to that issue are proposed next. For instance, when the measured quantity V d is not null, it is likely that condition (3) is satisfied. Therefore, when the norm of V d is smaller than some small threshold, one can simply inactivate the correction step and also the integration of P within the prediction step. Another solution consists in saturating P after every correction step so that its Frobenius norm remains always smaller than a given threshold. The latter should be chosen large enough so that the saturation of P will not occur when the system is uniformly observable (i.e. sufficiently excited). 

Simulation results

Simulations have been carried out using a dataset2 of a quadrotor UAV performing a take-off followed by an aggressive circular flight so that its linear velocity and attitude vary rapidly and in large proportions. The dataset contains time-stamped measurements from the quadrotor's IMU (180Hz) and "ground truth" poses (i.e. position and attitude)

provided by an external motion capture system (200Hz). This dataset is ideal to validate the proposed observer for an extreme condition (i.e. aggressive flight) but without the need for image processing and continuous homography estimation. Note that the latter is not the focus of the present paper. As a matter of fact, the quantities such as V d , φ ⊥ and m B can be emulated from the ground-truth pose measurements. Whereas m B can be easily computed from the ground-truth attitude measurements (i.e. m B = R m I ), obtaining V d and φ ⊥ is more involved. For instance, using the position measurements a high-gain observer is applied for the estimation of the linear velocity expressed in the inertial frame that is then converted to the linear velocity expressed in the body-fixed not difficult to construct the "measurements" of V d and φ ⊥ (at 20Hz). For the reported data-based simulations, the hybrid continuous-discrete version of the proposed Riccati observer has been performed with D = I 3 , S = diag{0.01I 2 , 0.25, 0, 36I 3 } and P (0) = diag{0.5I 2 , 1, 0.5I 3 }. The initial estimates are given by q(0) = [ and the norm of P remains bounded and varying around a constant number (≈ 0.9) (see Fig. 4.4). In summary, we find that the performance of the proposed observer is quite measurements satisfactory.

√ 2 2 , √ 6 4 , 

Experimental evaluation 4.4.5.1 Experimental setup

For experimental validations, we make use of a Visual-Inertial (VI) sensor developed by the Autonomous Systems Lab (ETH Zurich) and the company Skybotix. Among the two cameras and two IMUs of the VI-sensor, only one camera and one IMU (composed of a 3axis gyrometer and a 3-axis accelerometer) are used to validate the proposed algorithm.

The main reason for using the VI-sensor in this experimental setup is the possibility of obtaining perfectly time-synchronized images and IMU readings (20Hz for the camera and 200Hz for the IMU). On the other hand, the OptiTrack motion capture system available at I3S is used to obtain the ground truth data for comparison purposes. This highly accurate OptiTrack system provides the full pose of the Camera-IMU system at 120Hz. As a matter of fact, the quantities such as V d and φ ⊥ can be emulated from the ground-truth pose measurements. For instance, using the position measurements a high-gain observer is applied for the estimation of the linear velocity expressed in the inertial frame that is then converted to the linear velocity expressed in the body-fixed frame using the ground-truth attitude. Then, by considering the situation where the UAV carries a downward-looking camera to observe a planar horizontal ground, it is not difficult to construct the "measurements" of V d and φ ⊥ (at 20Hz). The hybrid discrete-continuous version of the proposed observer has been implemented in C++, combined with OpenCV for image processing, on an Intel Core i7-6400 CPU running at 3.40Ghz. The transmission of data from the camera to the PC is carried out through a high speed ethernet cable. The PC has a Linux based operating system and is responsible for two major software tasks:

• Interface with the camera hardware and acquisition of images and IMU data from the VI-sensor.

• Estimation of the continuous homography based on two consecutive images which is then decomposed to obtain the measurements of V d and φ ⊥ in real-time.

Due to real-time constraint for the continuous homography estimation, feature detection and descriptor extraction in images are carried out using the FAST Feature Detector 3 and ORB Descriptor Extractor algorithms already implemented in the OpenCV library. Since the quality of the continuous homography estimation depends heavily 4.4. Practical implementation aspects on the capability of rejecting outliers of point matchings, we have implemented an Mestimator-like observer for the estimation of the homography between every two consecutive images, which is then used to compute the continuous homography via a logarithm conversion. This M-estimator-like homography observer is a modified version of the homography observer proposed in [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF] but is not presented here due to space limitation.

However, the reader can appreciate its performance and robustness via the following video link: https://youtu.be/x75RpjoJ9HM

Although the combined implementation of image processing and estimation algorithm runs at about 50Hz, the continuous homography estimate is only obtained at every 50ms (20Hz) due to the lower acquisition frequency of the VI-sensor camera. The parameters involved in the proposed observer are chosen as follows: D = diag{8, 8, 24}, S = diag{0.02 2 I 2 , 0.1 2 , 0.2 2 I 3 } and P (0) = 1.7I 6 . The initial estimates are given by q(0) = [1, 0, 0, 0], V (0) = [0, 0, 0](m/s), ŝ(0) = 4(m -1 ). 

Experimental results

The reported experiment has been performed online with the VI-sensor camera looking downward to observe a well textured planar horizontal ground. A demo video is provided as a supplemental material and is also available at https://youtu.be/R09oTjr4s40 In contrast, during the period of 60 to 69 seconds when the camera is kept still thus violating the condition of persistent excitation, it can be seen that the depth estimate slightly drifts away from the ground-truth depth, whereas both the estimated gravity direction and linear velocity always remain close to the corresponding ground-truth values. Once the condition of persistent excitation is revoked again by moving the camera from 69 to 89 seconds, the depth estimate follows closely again the ground-truth value along with the gravity direction and linear velocity estimates. From Fig. 4.7 it can also be observed that the yaw angle estimate drifts away from the ground-truth value. This is normal since it is simply an integration of the gyros (i.e. magnetometer measurements are not used for yaw estimation correction in this experiment). In conclusion, the reported experiment shows that whereas the (practical) convergence of the gravity direction and linear velocity estimates is always achieved, the convergence of the depth estimate is additionally obtained only when the condition of persistent excitation is guaranteed.

Extension to observer design for optical flow filtering

The design of the observer follows exactly in the same manner like in the previous section, the only difference here being that instead of estimating directly the linear velocity we filter the optical flow extracted from the continuous homography. One obtains the dynamics for φ = V d as follows:

φ = V d -V ḋ d 2 = s V + φ ⊥ φ where s = 1 d and φ ⊥ = - ḋ d . Now using the dynamics of V from (4.2) one obtains φ = -Ω × φ + sa B + gsR e 3 + φ ⊥ φ = (-Ω × + φ ⊥ I 3 )φ + sa B + gsR e 3 (4.29)

System Equations and Measurements

Thus from (4.29), (4.4) and (4.1) the rigid-body dynamics for the system and the measurements for the observer are given below:

     Ṙ = RΩ × φ = -(Ω × + φ ⊥ I 3 )φ + sa B + gsR e 3 ṡ = φ ⊥ s (4.30)

Observer derivation

Let R ∈ SO(3), φ ∈ R 3 , ŝ ∈ R denote the estimates of R, φ, s, respectively. The proposed observer is given by

       Ṙ = RΩ × -[σ R ] × R φ = -(Ω × + φ ⊥ I 3 ) φ + ŝa B + gŝ R e 3 -σ φ ṡ = φ ⊥ ŝ -σ s (4.31)
where σ R , σ v ∈ R 3 , σ s ∈ R are innovation terms to be designed thereafter. Defining the

observer errors R R R , φ φ -φ, s s - ŝ
then the observer's objective can be stated as the exponential stability of ( R, φ, s) = (I 3 , 0, 0) (or of ( Re 3 , φ, s) = (e 3 , 0, 0) when the estimation of the gravity direction is concerned instead of the whole attitude estimation). From (4.30) and (4.31), one verifies that the dynamics of ( R, φ, s) satisfy

       Ṙ = R[σ R ] × φ = -(Ω × + φ ⊥ I 3 ) φ + s(a B + g R e 3 ) + gŝ R ( R -I 3 )e 3 + σ φ ṡ = φ ⊥ s + σ s (4.32)
We will work out next first order approximations of the error system (4.32) complemented with first order approximations of the measurement equations. The first order approximations of the attitude error equation is carried out exactly in the same manner as for the previous observer and is given as For the dynamics of φ one obtains

φ = -(Ω × + φ ⊥ I 3 ) φ + s(a B + g R e 3 ) + gŝ R [e 3 ] × λ + σ φ + O(| λ| 2 ) = -(Ω × + φ ⊥ I 3 ) φ + s(a B + g R e 3 ) + gŝ R e 2 λ1 -gŝ R e 1 λ2 + σ φ
with λ1 , λ2 the first and second components of λ.

By setting the system output vector equal to Chapter 4. Riccati observers for state estimation exploiting optical flow and IMU measurements

y = φ -φ (4.33)
one obtains LTV first order approximations in the form (2.20) with

                                       x =       λ1 λ2 s φ       , x 1 = λ1 λ2 , x 2 = s φ , u =       σ R,1 σ R,2 σ s σ φ       A =       0 0 0 0 1×3 0 0 0 0 1×3 0 0 φ ⊥ 0 1×3 gŝ R e 2 -gŝ R e 1 a B + g R e 3 -Ω × + φ ⊥ I 3       ∈ R 6×6 C = 0 3×1 0 3×1 0 3×1 I 3 ∈ R 3×6 (4.34)
with σ R,1 , σ R,2 the first and second components of σ R . From there the proposed observer is given by (5.11) with σ R,1 , σ R,2 and σ φ determined from the input u calculated according to (2.22) and (2.23).

As for the innovation component σ R,3 , it can be independently designed for estimating the remaining degree of freedom of the attitude (i.e. yaw). For instance, without loss of generality σ R,3 is assumed to be bounded for all time.

Remark 2. The hybrid discrete-continuous version of this observer as well as the part of yaw estimation proceeds in exactly the same manner as described in section 4.4.2 and subsection 4.3.3.

Observability analysis

The observability analysis proceeds in a similar fashion to the one shown in section 4.3.2.

The exponential stability of the proposed observer depends on the uniform observability of the pair (A (t), C (t)) obtained by setting x = 0 in the expression of the matrices A and C given by (4.34). Thus, one verifies that, 

                 A =       0 0 0 0 1×3 0 0 0 0 1×3 0 0 φ ⊥ 0 1×3 gsR e 2 -gsR e 1 R v -Ω × + φ ⊥ I 3       C = 0 3×1 0 3×1 0 3×1 I 3
a B + g R e 3 = V + Ω × V = R v (4.36)
which is thereby the component A (4, 3) in (4.35).

Proposition 4. The transient matrix Φ(τ, t) associated with A (t), for all τ ≥ t, is given by

Φ(τ, t) =        1 0 0 0 1×3 0 1 0 0 1×3 0 0 s(τ ) s(t) 0 1×3 gs(τ )(τ -t)R(τ ) R γ e 1 gs(τ )(τ -t)R(τ ) R γ e 2 s(τ )R(τ ) [v(τ )-v(t)] s(t) s(τ )R(τ ) R(t) s(t)        (4.37)
where R γ , γ 1,2 are defined in (4.24) and (4.23) respectively.

Proof: The transient matrix Φ(τ, t) is the solution to the following equation

dΦ(τ, t) dτ = A (τ )Φ(τ, t), Φ(t, t) = I 6 (4.38)
From the above relation and the expression of A (τ ), one easily verifies that Φ(τ, t) has the form

Φ(τ, t) =       1 0 0 0 1×3 0 1 0 0 1×3 0 0 ϕ 33 (τ, t) 0 1×3 ϕ 41 (τ, t) ϕ 42 (τ, t) ϕ 43 (τ, t) ϕ 44 (τ, t)       (4.39)
Now we need to compute 

ϕ 33 (τ, t) ∈ R, ϕ 41 (τ, t) ∈ R 3 , ϕ 42 (τ, t) ∈ R 3 , ϕ 43 (τ, t) ∈ R 3 , ϕ 44 (τ, t) ∈ R 3×3 .
dϕ 41 (τ, t) dτ = (-Ω(τ ) × + φ ⊥ (τ )I 3 )ϕ 41 (τ, t) + gs(τ )R (τ ) e 2 measurements
Then, by change of variable φ41 (τ, t) := R (τ )ϕ 41 (τ,t) s(τ )

the above equation yields

d φ41 (τ, t) dτ = -ṡ(τ )R (τ )ϕ 41 (τ ) s 2 (τ ) + R (τ )Ω(τ ) × ϕ 41 (τ )) s(τ ) + R (τ )(gs(τ )R e 2 + (-Ω(τ ) × + φ(τ ) ⊥ I 3 ))ϕ 41 (τ ) s(τ ) = -φ(τ ) ⊥ s(τ )R (τ )ϕ 41 (τ ) s(τ ) 2 + R (τ )Ω(τ ) × ϕ 41 (τ ) s(τ ) + ge 2 - R (τ )Ω(τ ) × ϕ 41 (τ ) s(τ ) + R (τ )φ(τ ) ⊥ I 3 ϕ 41 (τ s(τ ) = -φ(τ ) ⊥ φ41 (τ ) + ge 2 + φ(τ ) ⊥ φ41 (τ ) = ge 2 (4.40)
Thus we obtain φ41 (τ, t) = g(τ -t)e 2 (4.41)

from which one deduces

ϕ 41 (τ, t) = s(τ )R (τ ) φ41 (τ, t) = gs(τ )(τ -t)R(τ ) γ 2 = gs(τ )(τ -t)R(τ ) R γ e 1 (4.42)
with γ 2 defined in (4.23). Proceeding in a similar fashion, one has

dϕ 42 (τ, t) dτ = (-Ω(τ ) × + φ ⊥ (τ )I 3 )ϕ 42 (τ, t) -gs(τ )R (τ ) e 1
Then by change of variable φ42 (τ, t) := R (τ )ϕ 42 (τ,t)

s(τ )
the above equation yields

d φ42 (τ, t) dτ = -ge 1
after which one obtains the expression for φ42 (τ, t) as follows φ42 (τ, t) = -g(τ -t)e 1

Then from the above equation one deduces ϕ 42 (τ, t)

ϕ 42 (τ, t) = s(τ )R (τ ) φ42 (τ, t) = -gs(τ )(τ -t)R(τ ) γ 1 = gs(τ )(τ -t)R(τ ) R γ e 2 (4.43)
with γ 1 defined in (4.23). From (4.38) and (4.39), one has

dϕ 43 (τ, t) dτ = R(τ ) v(τ )ϕ 33 (τ ) + (-Ω(τ ) × + φ ⊥ (τ )I 3 )ϕ 43 (τ, t)

Extension to observer design for optical flow filtering

Then, by change of variable φ43 (τ, t) := R (τ )ϕ 43 (τ,t)

s(τ )
and from (4.13) the above equation yields

d φ43 (τ, t) dτ = R (τ )R(τ ) v(τ )s(τ ) s(τ )s(t) = R (τ )R(τ ) v(τ ) s(t) Since R (τ )R(τ ) = R (0)R(0) is constant, one obtains φ43 (τ, t) = R (τ )R(τ ) (v(τ ) -v(t)) s(t) (4.44)
from which one deduces

ϕ 43 (τ, t) = s(τ )R (τ ) φ43 (τ, t) = s(τ )R(τ ) [v(τ ) -v(t)] s(t) (4.45)
Now again from (4.38) and (4.39), one has

dϕ 44 (τ, t) dτ = (-Ω(τ ) × + φ ⊥ (τ )I 3 )ϕ 44 (τ, t)
Then, by change of variable φ44 (τ, t) = R (τ )ϕ 44 (τ,t)

s(τ )
the above equation yields

d φ44 (τ, t) dτ = -ṡ(τ )R (τ )ϕ 44 (τ ) s 2 (τ ) + R (τ )Ω(τ ) × ϕ 44 (τ )) s(τ ) + R (τ )(-Ω(τ ) × + φ(τ ) ⊥ I 3 )ϕ 44 (τ ) s(τ ) = -φ(τ ) ⊥ R (τ )ϕ 44 (τ ) s(τ ) + R (τ )Ω(τ ) × φ44 (τ ) s(τ ) - R (τ )Ω(τ ) × ϕ 44 (τ ) s(τ ) + R (τ )φ(τ ) ⊥ I 3 ϕ 44 (τ ) s(τ ) = -φ(τ ) ⊥ φ44 (τ ) + φ(τ ) ⊥ φ44 (τ ) = 0 (4.46)
Thus we obtain φ44 (τ, t) = s(τ )R (τ ) ϕ 44 (τ, t) (4.47)

From the above equation one deduces 

ϕ 44 (τ, t) = s(τ )R (τ ) φ44 (τ, t) = s(τ )R(τ ) R(
U (τ ) := s(τ ) g(τ -t)e 1 g(τ -t)e 2 R γ [v(τ ) -v(t)] I 3 (4.49) W (τ ) := g(τ -t)e 1 g(τ -t)e 2 R γ v(τ ) (4.50) 
The proof for proving the that the pair (A (t), C (t)) is uniformly observable proceeds in a similar manner again as shown in section 4.3.2. From the proof in section 4.3.2 we know that it is needed only to prove (4.21) for the case where the persistent excitation condition (C.1) is satisfied. Accordingly, one verifies that

C (τ )Φ(τ ) = s(τ )R(τ ) R γ g(τ -t)e 1 g(τ -t)e 2 R γ [v(τ ) -v(t)] s(t) R γ R(t) s(t) (4.51 
)

Thus for all x = [x 1 , x 2 , x 3 , x 4 ] , with x 1,2,3 ∈ R, x 4 ∈ R 3 , using (4.51) one deduces C (τ )Φ(τ )x = s(τ )R(τ ) R γ g(τ -t)e 1 g(τ -t)e 2 R γ [v(τ ) -v(t)] s(t) I 3 x = R(τ ) R γ U (τ )x with x := [x 1 , x 2 , x 3 s(t) , R γ R(t)x 4 s(t)
] (which ensures that |x| ≥ min(1, d min )|x|) and U (τ ) defined by (4.49). One then obtains 

x Φ(τ ) C (τ )C (τ )Φ(τ )x = x U (τ ) R γ R(τ )R(τ ) R γ U (τ )x = x U (τ ) U (τ )x

Experimental Results

As seen in the section 3.6.1 the optical flow estimates were quite noisy. This motivated us to the development of the nonlinear observer 4.31 that filters out these noisy estimates.

In this section we use the same data set as used in section 3.6.1, the only difference being the observer for homography estimation is the one taken from [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF] and not the one proposed in [START_REF] Manerikar | Homography observer design on special linear group SL(3) with application to optical flow estimation[END_REF]. Using the position measurements obtained from the Optitrack system a high-gain observer is applied for the estimation of the optical flow. The figure 4.10

Extension to observer design for optical flow filtering

shows the comparison between the optical flow obtained from the mocap optitrack system (in red), the raw optical flow estimates extracted from continuous homography (in green) and the filtered values of these estimates (in blue) from the proposed observer.

The ground truth shown by the red curve is slightly noisy as well due to high gain observers used for its estimation. It can be seen that as soon as there is a relatively large displacement of the camera the estimates are quite good but are noisy thereby demonstrating the need of a filter. The effect of the filtering can be clearly seen in the Figure 4.11 when there is minimal amount of displacement, thus making the optical flow estimates suitable for exploitation in control strategies. It can also be noticed that the filter does not introduce any significant delay in the system. The experimental results thus show the effectiveness of the proposed observer. Homography Decomposition

Introduction

The notion of homography and various techniques used for homography estimation have been already detailed in Chapter 3. We briefly recall some of the applications mentioned in Chapter 3 which will serve as motivation for the work presented in this chapter. Homography has been instrumental in various computer vision and robotic applications where the scene involves (near) planar surfaces as in the case of man-made environments or in the case of an unmanned aerial vehicle flying sufficiently far from the observed ground. Homography has been used to perform image stabilization [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF] and image mosaicing [START_REF] Caballero | Homography based kalman filter for mosaic building. applications to uav position estimation[END_REF][START_REF] Ruiz | Mgraph: A multigraph homography method to generate incremental mosaics in real-time from uav swarms[END_REF]. Homography has also been exploited for the estimation of the relative pose (up to a scale factor) of a robotic vehicle equipped with a camera [START_REF] Wang | Visual odometry based on locally planar ground assumption[END_REF][START_REF] Saurer | Homography based egomotion estimation witha common direction[END_REF][START_REF] Mufti | Super resolution of speed signs in video sequences[END_REF][START_REF] Scaramuzza | Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles[END_REF].

Homography has been widely used as visual feedback in robot control [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF][START_REF] Nguyen | A homography-based dynamic control approach applied to station keeping of autonomous underwater vehicles without linear velocity measurement[END_REF][START_REF] Malis | 2 1/2 D visual servoing[END_REF][START_REF] Benhimane | Homography-based 2d visual tracking and servoing[END_REF] and one of the most successful visual servo control paradigms is the 2 1 2 D approach [START_REF] Malis | 2 1/2 D visual servoing[END_REF] that relies on the extraction of the camera displacement (i.e. orientation and translation up to a scale factor) and the scene's normal vector from the Euclidean homography. Such a process of extraction is referred to as Euclidean homography decomposition or Euclidean reconstruction from homography.

Classical approaches for homography decomposition such as Faugeras SVD-based [START_REF] Faugeras | Motion and structure from motion in a piecewise planar environment[END_REF], Zhang SVD-based [START_REF] Zhang | 3D reconstruction based on homography mapping[END_REF] algorithms use singular value decomposition to obtain numerical solutions. Malis and Vargas [START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF] lately solved the homography decomposition problem with an analytical approach, making it more suitable for real-time robot control applications. However, to our knowledge all existing homography decomposition methods belong to the "algebraic category" that only focuses on solving the homography decomposition problem on a frame-by-frame basis, but not on filtering measurement noise. The precision of the decomposition elements is thus highly prone to noise, especially when the camera's translation is small [START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF]. The problem even becomes de-generate when the latter vanishes. Robotic vehicle applications, however, provide temporal sequences of images together with inertial measurements from, e.g., an embedded Inertial Measurement Unit (IMU). It, thus, seems natural to exploit the temporal correlation rather than to solve the homography decomposition problem for each pair of image frames.

In the current chapter, a novel direction for solving the homography decomposition by exploiting the system dynamics is explored. The proposed solutions are developed in the form of nonlinear observers derived from the recent deterministic Riccati observer design framework proposed in [START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF]. We believe that the resulting estimated quantities would be less noisy since the noise can be filtered through a natural low-pass response of the observer. Moreover, the challenging theoretical issue related to the uniform observability, under which local exponential stability is granted, has been carefully addressed.

The proposed "persistence of excitation" conditions even cover the degenerate situation for which all existing algebraic algorithms fail to provide the correct solution. Finally, simulation and experimental results demonstrate a good performance and a large attraction domain of the proposed observers.

The chapter is organized as follows. Section 5.2.1 talks about the classical problem of homography decomposition, existing approaches for the decomposition of homography and details the system dynamics and measurements used for the observer design. In Sections 5.3 and 5.4, we propose two nonlinear Riccatti observers for the decomposition of the homography and its inverse, respectively. Simulation results are provided in Section 5.5. Experimental results have been presented to show the performance and robustness of the proposed observers in Section 5.6.

Problem Statement

Homography decomposition problem

The so-called Euclidean homography that maps Euclidean coordinates of the scene's points from {A} to { Å} is given by (see Fig. 5.1)

H = R + 1 d ξη (5.1)
Assume that the camera is well calibrated, then the Euclidean homography can be directly computed from the so-called projective homography or image homography estimated from the image point correspondences (see Chapter 3 for details). Using the relations in (3.4), one verifies that the inverse of H is given by

G := H -1 = R - 1 d R ξη (5.2) 
The well-known problem of Euclidean homography decomposition consists in decomposing the matrix H into the separate elements (R, ξ/d, η). There exist few algorithms for this homography decomposition problem such as Faugeras SVD-based [START_REF] Faugeras | Motion and structure from motion in a piecewise planar environment[END_REF], Zhang SVD-based [START_REF] Zhang | 3D reconstruction based on homography mapping[END_REF], Malis-Vargas analytical [START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF] decomposition algorithms and have been Chapter 5. Homography Decomposition detailed in the next subsection. These algorithms, when applied to the homography inverse G, would yield the separate elements (R , -R ξ/ d, η) from which one can obtain (R, ξ/ d, η).

Brief overview of the existing approaches for Homography Decomposition

Faugeras and Lustman [START_REF] Faugeras | Motion and structure from motion in a piecewise planar environment[END_REF] were the first to solve the problem of homography decomposition. They proved that the problem of homography decomposition gives up to eight different solutions except in some special cases (for e.g when there is a pure roation).

The proof provided by Faugeras and Lustman to compute the set of solutions is constructive and exhaustively considers all the cases, thus providing a practical method to realize the solutions whenever possible. This method uses the singular value decomposition H = U ΣV by considering the diagonal matrix as an homography matrix. This problem can be solved analytically, and then after obtaining the values for U and V we can compute the final decomposition elements (R, ξ/d, η). As already stated, out of the eight mathematical solutions obtained only two of them are physically possible. These two solutions are obtained by taking into consideration several constraints (for e.g all the viewed scene points should be in front of the camera).

A similar approach to obtain the homography decomposition was proposed by Zhang and Hanson [START_REF] Zhang | 3D reconstruction based on homography mapping[END_REF]. In this method as well the solutions are obtained numerically, again from SVD decomposition of the homography matrix H H = V ΣV . This method however gives a slightly easier way to handle the special cases as compared to Faugeras and Lustman [START_REF] Faugeras | Motion and structure from motion in a piecewise planar environment[END_REF] and is also claimed to be computationally cheaper. From the two methods mentioned above it is clear that they don't provide an analytical expression of the decomposition elements in terms of the Homography matrix H.

A more recent method which was proposed by Malis and Vargas [START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF] was able to provide analytical expressions for the decomposition elements (R, ξ/d, η), in terms of the components of the Homography matrix H. Again with this method proposed by

Malis we obtain four solutions. The procedure for obtaining these four solutions has been detailed in [START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF]. After obtaining these 4 solutions, they are reduced to only 2 by verifying the positive depth constraint (i.e. third component of the normal vector should be positive). From the remaining two solutions, it is difficult to predict the correct solution. However since for our experiments, the planar target is almost perpendicular to the camera then if we have a good estimate of the normal vector, it should be approximately equal to e 3 . Hence we choose the estimated normal vector closest to η e 3 as the valid solution.

The main drawback of all classical (algebraic) homography decomposition approaches

Problem Statement

is that they only try to solve the homography decomposition problem on a frame-byframe basis and, thus, do not provide any filtering effect on the resulting variables. The precision of the decomposition elements (particularly of the normal vector estimate) is highly prone to noise, especially when the camera's translation is small [START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF]. The problem even becomes degenerate when the latter vanishes (i.e. ξ = 0), since in such a case any unit vector η ∈ S 2 can be a solution. In this paper, a novel approach for solving the homography decomposition problem (i.e. decomposing either H or G) is explored by exploiting the differential equations guiding the decomposed elements via the design of deterministic nonlinear observers.

Define

ζ := R ξ d , ζ := ξ d (5.3) 
One verifies that the expressions (5.1) and (5.2) of H and G, respectively, can be rewritten as

H = R(I 3 + ζη ) (5.4) 
G = R (I 3 -ζη ) (5.5) 
The objective of observer design then consists in providing the estimation of (R,

) using H (resp. G) as measurement quantity. Depending on the considered application, it is preferable to decompose H or G.

System equations and measurements for observer design

The rigid body kinematics of (R, ξ) are given by

Ṙ = RΩ × ξ = RV (5.6) 
with V ∈ R 3 and Ω ∈ R 3 denoting the vectors of coordinates of the camera's linear and angular velocities expressed in {A}.

Since the scene is stationary the normal vector η ∈ S 2 expressed in the reference

frame { Å} is constant. Since η = R η one thus deduces η = -Ω × η (5.7) 
Using (3.4), (5.3) and (5.6), one verifies that the dynamics of ζ and ζ are given by

ζ = -Ω × ζ + V d - ḋ d ζ = (-Ω × + φ ⊥ I 3 )ζ + φ (5.8) ζ = RV d = d d Rφ = (1 -η ζ)Rφ (5.9) 
where φ := V d and φ ⊥ := -ḋ d = V η d are the so-called translational optical flow and optical flow divergence, respectively. Both the translational optical flow and the optical flow divergence are assumed to be measured (see, e.g., section 3.6 in Chapter 3). Assume also that the angular velocity Ω is measured using an embedded 3-axis gyrometer.

Remark 3. Note that observer design for the case where the linear velocity measurement is available (using a Doppler velocity sensor or a GPS) can be addressed differently, but it is out of scope of the present paper. Using optical flow and optical flow divergence as measurement in turn makes our solution more appealing in practice because of its simplicity of sensor requirement, bearing in mind that a Doppler velocity sensor is very expensive while a GPS does not work in indoor or GPS-denied environments. On the contrary, the quality of optical flow and optical flow divergence measurements depends much on the texture of the scene along with its planarity approximation -the assumption used to extract these quantities from images.

Observer design for decomposing the homography matrix

Observer derivation

Inspired by [START_REF] Hua | Riccati observer design for pose, linear velocity and gravity direction estimation using landmark position and IMU measurements[END_REF], we avoid using minimal parametrization techniques such as spherical coordinates to parametrize the normal unit vector η -an element of S 2 . Instead, an

auxiliary rotation matrix Q ∈ SO(3) is introduced such that η = Q e 3
The underlying idea is to over-parameterize an element of S 2 (dimension 2) by an element of SO(3) (dimension 3). The advantage of such type of parameterization is that it reduces the complexities of the error system in first-order approximations that arise due to minimal parameterization techniques for elements on S 2 (see [START_REF] Hua | Riccati observer design for pose, linear velocity and gravity direction estimation using landmark position and IMU measurements[END_REF] for more thorough discussions).

In view of the dynamics (5.7) of η, one deduces a possibility of the dynamics of Q as

Q = QΩ × (5.10) Let Q ∈ SO(3), R ∈ SO(3), ζ ∈ R 3 denote the estimates of Q, R, ζ
, respectively. The estimated normal vector is then given by

η := Q e 3
In view of the first equation of (5.6), (5.8) and (5.10), the following general form of observer is proposed

         Q = QΩ × -σ Q× Q Ṙ = RΩ × -Rσ R× ζ = (-Ω × + φ ⊥ I 3 ) ζ + φ -σ ζ (5.11)
with initial conditions Q(0), R(0) ∈ SO(3), ζ(0) ∈ R 3 and with innovation terms σ Q , σ R , σ ζ ∈ R 3 to be designed thereafter.

The following error variables are defined:

Q := Q Q , R := R R, ζ := ζ -ζ (5.12)
Then the objective of observer design consists in stabilizing ( Qe 3 , R, ζ) about (e 3 , I 3 , 0).

From (5.6), (5.11) and (5.12), one verifies that the error system is

         Q = Qσ Q× Ṙ = RΩ × -Ω × R + σ R× R ζ = (-Ω × + φ ⊥ I 3 ) ζ + σ ζ (5.13) 
For analysis purposes let us assume that ζ, Ω and φ remain uniformly bounded for all time, which is a completely reasonable assumption in practice.

The following step involves developing first-order approximations of the error system (5.13) and of the measurement equation (5.4). From the Rodrigues' formula, one deduces the following first-order approximations of Q and R

Q = I 3 + λ Q× + O(|λ Q| 2 ) R = I 3 + λ R× + O(|λ R| 2 ) (5.14)
with λ Q, λ R ∈ B 3 2 equal to twice the vector part of the quaternion associated with the attitude error matrix Q and R, respectively.

One then deduces from the first two equations of (5.13) and (5.14) that in first-order

approximations λ Q = σ Q + O(|λ Q||σ Q |) (5.15) 
and

λ R× = λ R× Ω × -Ω × λ R× + σ R× + O(|λ R| 2 ) + O(|λ R||σ R |) = (λ R × Ω) × + σ R× + O(|λ R| 2 ) + O(|λ R||σ R |) which yields λ R = -Ω × λ R + σ R + O(|λ R| 2 ) + O(|λ R||σ R |) (5.16)
As for the measurement equation (5.4), this homography expression can be developed in first-order approximations as follows

R H -I 3 = ζη = ζ(Q e 3 ) ⇒ R R H -I 3 = ( ζ + ζ)( Q Q e 3 ) ⇒ (I 3 -λ R× ) R H -I 3 = ( ζ + ζ)( Q (I 3 -λ Q× )e 3 ) + O(|λ Q| 2 ) + O(|λ R| 2 ) ⇒( R H -I 3 )-λ R× ( R H) = ζ( Q e 3 ) + ζ( Q e 3 ) + ζ( Q e 3× λ Q) +O(|λ Q| 2 ) + O(|λ R| 2 ) + O(| ζ||λ Q|) ⇒ ( R H -I 3 ) -ζ( Q e 3 ) = λ R× ( R H)+ ζ( Q e 3 ) -λ Q,2 ζ( Q e 1 ) +λ Q,1 ζ( Q e 2 ) +O(|λ Q| 2 ) + O(|λ R| 2 ) + O(| ζ||λ Q|)
Note that the last equality only involves the first two components of λ Q (i.e. λ Q,1 and λ Q,2 ) and can be equivalently written as

y :=    ( R H -I 3 )( Q e 3 ) - ζ ( R H -I 3 )( Q e 2 ) ( R H -I 3 )( Q e 1 )    =    -( R H)( Q e 3 ) × λ R + ζ -( R H)( Q e 2 ) × λ R + λ Q,1 ζ -( R H)( Q e 1 ) × λ R -λ Q,2 ζ   +O(|λ Q| 2 )+O(|λ R| 2 ) + O(| ζ||λ Q|)
(5.17)

From (5.15), (5.16), the third equation of (5.13), and (5.17), one obtains in first-order 5.3. Observer design for decomposing the homography matrix approximations the system in compact form (2.20) with output y defined in (5.17) and

                                                 x :=       λ Q,1 λ Q,2 λ R ζ       , U :=       σ Q,1 σ Q,2 σ R σ ζ       A(t) :=       0 0 0 1×3 0 1×3 0 0 0 1×3 0 1×3 0 3×1 0 3×1 -Ω × 0 3 0 3×1 0 3×1 0 3 -Ω × + φ ⊥ I 3       C(x, t) :=    0 3×1 0 3×1 -( R H)( Q e 3 ) × I 3 ζ 0 3×1 -( R H)( Q e 2 ) × 0 3 0 3×1 -ζ -( R H)( Q e 1 ) × 0 3    (5.18)
The fact that are chosen larger than some constant positive matrix.

x = [x 1 , x 2 ] with x 1 := [λ Q,1 , λ Q,2 , λ R] ∈ B 5
Remark 4. Interestingly and as also discussed in [START_REF] Hua | Riccati observer design for pose, linear velocity and gravity direction estimation using landmark position and IMU measurements[END_REF], although we have used a 3-dimensional variable Q ∈ SO(3) to over-parametrize a 2-dimensional variable η ∈ S 2 , the resulting firstorder approximated system only involves a minimum number of components of λ Q so that the dimension of X is equal to the dimension of the state (η, R, ξ). Moreover, only the first two components of the innovation term σ Q (i.e. σ Q,1 and σ Q,2 ) are involved in the Riccati observer design process. Its last component (i.e. σ Q,3 ) can thus be set equal to zero for the sake of simplicity. Of course, the above reasoning together with the associated local stability and convergence properties is only valid in the first order approximation.

Observability and stability analysis

According to [START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF] the equilibrium x = 0 is locally exponentially stable, provided that the pair (A (t), C (t)) with A (t) = A(t) and C (t) := C(0, t) is uniformly observable.

By setting x = 0 in the expression of C(x, t) in (5.18) one obtains

C =    0 3×1 0 3×1 -(I 3 + ζη )(Q e 3 ) × I 3 ζ 0 3×1 -(I 3 + ζη )(Q e 2 ) × 0 3 0 3×1 -ζ -(I 3 + ζη )(Q e 1 ) × 0 3    =    0 3×1 0 3×1 -η + ζ × I 3 ζ 0 3×1 -Q e 2 × 0 3 0 3×1 -ζ -Q e 1 × 0 3    (5.19) with Q ∈ SO(3) satisfying Q e 3 = η and Q = Q Ω × .
For later use, let q i ∈ S 2 , i = 1, 2, 3, denote the i-th row of Q (i.e. q i = Q e i ). We show thereafter that condition (5.20) is sufficient to guarantee (5.21).One verifies that

C C = |ζ| 2 I 2 1 |ζ| 2 B 1 |ζ| 2 B 1 |ζ| 2 G with B ∈ R 2×6 and G ∈ R 6×6 defined by B := -ζ q 2× 0 1×3 ζ q 1× 0 1×3 G := -η+ζ 2 × -q 2 1× -q 2 2× η + ζ × -η+ζ × I 3
Thus, one deduces 5.3. Observer design for decomposing the homography matrix 

det C C = |ζ| 4 det G - 1 |ζ| 2 B B = |ζ| 4 det   -η+ζ 2 × -q 1× π ζ |ζ| q 1× -q 2× π ζ |ζ| q 2× η + ζ × -η + ζ × I 3   = |ζ| 4 det -q 1× π ζ |ζ| q 1× -q 2× π ζ |ζ| q 2× = |ζ| 4 det Q -e 1×
Q = σ Q + O(|λ Q||σ Q|) (5.27) λ R = σ R + O(|λ R||σ R |) (5.28)
First-order approximations of the third equation of (5.25) yield

ζ = e 3 Qζ Rφ -e 3 Q Q( ζ + ζ) R Rφ + (I 3 -R) Rφ + σ ζ = e 3 Qζ Rφ -e 3 (I 3 + λ Q× ) Q( ζ + ζ) (I 3 + λ R× ) Rφ -λ R× Rφ + σ ζ + O(|λ Q| 2 ) + O(|λ R| 2 ) = -Rφ(e 2 Qζ ) λ Q,1 + Rφ(e 1 Qζ ) λ Q,2 + 1 + e 3 Qζ ( Rφ) × λ R -Rφe 3 Q ζ + σ ζ + O(|λ Q| 2 ) + O(|λ R| 2 ) + O(|λ Q||λ R|) + O(|λ Q|| ζ|) + O(|λ R|| ζ|) (5.29)
As for the measurement equation (5.5), one deduces

I 3 -RG = ζη = ζ( Q e 3 ) ⇒ I 3 -R RG = ( ζ + ζ)( Q Q e 3 ) ⇒ I 3 -(I 3 + λ R× ) RG = ( ζ + ζ)( Q (I 3 -λ Q× )e 3 ) + O(|λ Q| 2 ) + O(|λ R| 2 ) ⇒(I 3 -RG) -λ R× RG = ζ( Q e 3 ) + ζ( Q e 3 ) + ζ( Q e 3× λ Q) +O(|λ Q| 2 ) + O(|λ R| 2 ) + O(| ζ||λ Q|) ⇒ (I 3 -RG) -ζ( Q e 3 ) = λ R× RG+ ζ( Q e 3 ) +λ Q,1 ζ( Q e 2 ) -λ Q,2 ζ( Q e 1 ) +O(|λ Q| 2 ) + O(|λ R| 2 ) + O(| ζ||λ Q|)
which can be rewritten as

y :=     (I 3 -RG)( Q e 3 ) - ζ (I 3 -RG)( Q e 2 ) (I 3 -RG)( Q e 1 )     =      -( RG)( Q e 3 ) × λ R + ζ -( RG)( Q e 2 ) × λ R + λ Q,1 ζ -( RG)( Q e 1 ) × λ R -λ Q,2 ζ     + O(|λ Q| 2 ) + O(|λ R| 2 ) + O(| ζ||λ Q|)
(5.30)

From (5.27), (5.28), (5.29), and (5.30), one obtains in first-order approximations the system in compact form (2.20) with output y defined in (5.30) and

                                                           x :=        λ Q,1 λ Q,2 λ R ζ        , U :=       σ Q,1 σ Q,2 σ R σ ζ       A(x, t) :=       0 0 0 1×3 0 1×3 0 0 0 1×3 0 1×3 0 3×1 0 3×1 0 3 0 3 -Rφ(e 2 Qζ ) Rφ(e 1 Qζ ) (1+e 3 Qζ )( Rφ) × -Rφe 3 Q      C(x, t) :=     0 3×1 0 3×1 -( RG)( Q e 3 ) × I 3 ζ 0 3×1 -( RG)( Q e 2 ) × 0 3 0 3×1 -ζ -( RG)( Q e 1 ) × 0 3     (5.31)
From there, one deduces the expression of the innovation terms from the input U calculated according to (2.22) and (2.23).

Observability and stability analysis

Similarly to (5.19), by setting x = 0 in the expression of C(x, t) in (5.31) one obtains

C =    0 3×1 0 3×1 -(I 3 -ζη )( Q e 3 ) × I 3 ζ 0 3×1 -(I 3 -ζη )( Q e 2 ) × 0 3 0 3×1 -ζ -(I 3 -ζη )( Q e 1 ) × 0 3    =    0 3×1 0 3×1 -η -ζ × I 3 ζ 0 3×1 -Q e 2 × 0 3 0 3×1 -ζ -Q e 1 × 0 3    (5.32)
with Q ∈ SO(3) constant and satisfying Q e 3 = η.

One observes that the expression of C in (5.32) is very similar to the one in (5.19).

Therefore, the following proposition can be directly stated where its proof proceeds identically to the one of Proposition 6 and is thus left to the interested reader.

Proposition 7. Assume that there exists a positive number ν such that ∀t > 0 inequality

(5.20) holds. Then, the pair (A * , C * ) is uniformly observable. Consequently, the equilibrium ( Qe 3 , R, ζ) = (e 3 , I 3 , 0) of the error system is locally exponentially stable. In this section the robustness and performance of the proposed observers are demonstrated through simulation by considering two scenarios. For the sake of simplicity, the observers proposed in Sections 5.3 and 5.4 are referred to as Method 1 and Method 2, respectively. For the simulations, we consider that a monocular camera is attached to an aerial drone performing some specific trajectories and observing a planar target.

Simulation results

In the first scenario, the drone realizes an aggressive periodical trajectory and noise is introduced to the measurements used in the proposed observer, namely H, φ, φ ⊥ and Ω. While in the second scenario, we consider the case where the camera trajectory passes through the reference position (i.e. the camera translation vanishes) again with the introduction of noise in the measurements. With Matlab Simulink, we try to simulate the image noise by introducing white Gaussian noise of the level of about 10 percent of the real values on each individual component of the homography matrix H. We also introduce white Gaussian noise of variance of 1(deg/s), 0.1 and 0.1 on the measurements of Ω, φ and φ ⊥ , respectively. In both simulated scenarios, the matrices S and D -1 involved in the CRE (2.23) are interpreted as covariance matrices of the additive noise on the system state and output respectively, and the observer is tuned in a similar way like Kalman-Bucy filters. Thus, the following parameters are From these figures, it can be clearly seen that all the estimated variables converge to the real ones after a short transition period of a few milliseconds despite the large initial estimation errors. The above results also show that the proposed observers are robust to noisy measurements as the latter marginally affects the overall performance of the proposed observers. 1 The quat (•) notation is used for the unit quaternions of the associated rotation matrix. Scenario 2: In this case the drone performs a rectilinear sinusoidal trajectory that passes through the reference position (i.e. the camera translation vanishes) with added noise on the measurements of H, φ, φ ⊥ , and Ω as in the previous simulation. The reference trajectory in the inertial frame is given by ξ = [5sin(πt/3), 0, 0] (m). It is worth noting that in such a degenerate case (i.e. when the camera translation vanishes) all traditional algebraic approaches fail to obtain a correct estimate of the normal vector (there exists in fact an infinity of solutions) whereas our approach still works since the uniform observ- ability conditions (5.20) for Method 1 and (6) for Method 2 are always satisfied. From Figs. 5.8-5.13 it can be clearly seen that for this degenerate case and even with the addition of noise to the system measurements, the proposed observers are robust enough to provide a convincing performance in terms of convergence rate, smooth transient phase, and filtering of measurement noise. 

Experimental validations

In this section, experimental results are reported showing the comparative performance of the proposed observer (i.e. Method 2) w.r.t. the algebraic algorithm proposed by Malis and Vargas [START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF] that we call Method 3. The two methods used for comparison purposes have two principal parts:

• the vision part providing the homography estimate;

• and the homography decomposition part applied to the inverse of the homography estimate.

Since our main interest consists in performing a comparative analysis between the two homography decomposition algorithms, the vision part are common for both of them. Remark 7. For experiments we use a hybrid continuous-discrete version of the proposed observer which is similar to the one in Chapter 4 in section 4.4.

Experimental setup

The experimental setup makes use of a Camera-IMU system consisting of a Basler Ace Pylon camera and a MPU-9250 IMU (see Fig. 5.14). The camera provides images at a frequency of 25 frames per second with a resolution of 1280 × 1040 pixels, and the IMU output data rate is 100 Hz. Data transmission from the camera as well as the IMU to the PC is carried out using a USB 3.0 cable. The highly accurate OptiTrack motion capture system is also used to obtain ground-truth data (i.e position and attitude at a frequency of 200 Hz) for comparison purposes. All data are time synchronized using ROS.

The homography matrix is acquired by using the HomographyLab2 library developed by our team based on the homography observer proposed in [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF]. The Homogra-phyLab library has been implemented in C++ combined with OpenCV for image processing (i.e., FAST Feature Detector and ORB Descriptor Extractor functions for feature detection and descriptor extraction in images). Real-time and robustness (w.r.t. fast camera motions, occlusions, image blurs, sudden changes in light intensity, etc.) are the main advantages of HomographyLab and the implemented algorithm with respect to the state-of-the-art codes and algorithms (see [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF] for more details).

The proposed observer for the decomposition of the homography inverse (i.e. Method 2) has been implemented in C++ on an Intel Core i7-6400 CPU running at 3.4 GHz, and the entire implementation that includes the image processing as well as the estimation part runs online at a frequency of 25 Hz. For the sake of simplicity, the measurement of optical flow divergence and translational optical flow were not used for the proposed observer in the reported experiment, but this fact only had a negligible effect on the observer's performance as attested by the experiment reported hereafter.

The decomposition solution of Method 3 are obtained using the existing OpenCv's cv::decomposeHomographyMat function that, however, gives 4 possible solutions. We then reduce these set of solutions to only 2 by verifying the positive depth constraint target almost perpendicular to the camera. This implies that if we have a good estimate of the normal vector it should be approximately equal to e 3

Experimental results

The reported experiment has been performed in real time with the Camera-IMU system pointing downwards and observing a well-textured horizontal planar target (with the normal vector η approximately equal to e 3 ), and by moving this system along various It can be observed from these figures that although the algebraic algorithm (i.e.

Method 3) provides rather good estimation of the attitude and the scaled position in comparison with ground-truth data when the camera's translation is large enough, it tends to give erroneous estimation when the latter evolves near to zero (i.e. the degenerate case). Indeed, the zoomed plots from the time 115s to 130s shown in Fig. possible algebraic ones relies heavily on the precision of the normal vector estimate. The latter obtained from algebraic approaches is, however, very sensitive to noise and can be wrongly estimated when camera motion evolves near to the degenerate situation (see the green dashed curves in Fig. 5.17 and in the corresponding zoomed plots in Figs. 5.18 and 5.19).

In contrast, the normal vector estimate of the proposed observer (i.e. Method 2) is much less noisy than the one obtained from the algebraic algorithm (i.e. Method 3) and 6

Implementation Details of the HomographyLab Software Library HomographyLab (Lab is an abbreviation of LABoratory) is a library for Homography Estimation written in C++ combined with OpenCV (both CPU and GPU implementations are available). This library has been evaluated at the TRL 7 (Technology Readiness Level) and is protected by the French APP (Agency for the Protection of Programs). This library implements the homography observers proposed in the papers [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF][START_REF] Hua | Nonlinear observer design on sl(3) for homography estimation by exploiting point and line correspondences with application to image stabilization[END_REF]. The proposed algorithm has been implemented using C++ with OpenCV library. The descriptors of the current image are matched with the descriptors of the reference image. We use the brute-force matching algorithm since it is more adept to translational motion than rotational motion, and most of the rotational motion has already been compensated for by forward integrating the angular velocity during the prediction step. The outliers are removed using the M-estimator like observer proposed in [START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF] which greatly enhances the precision as well as the robustness of the homography estimate. After performing the feature detection and matching, the homography estimate is then updated(correction step of the observer) by iterating the observer equations 300
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times per video frame. The steps of feature detection and matching which are essential parts for the algorithm are computationally quite expensive. In the literature, there exists several feature detectors such as speeded-up robust features(SURF) [START_REF] Bay | Speeded-up robust features (surf)[END_REF], features from accelerated segment test (FAST) [START_REF] Rosten | Fusing points and lines for high performance tracking[END_REF], scale invariant feature transform (SIFT) [START_REF] Lowedavid | Distinctive image features from scale-invariant keypoints[END_REF], oriented FAST and rotated BRIEF (ORB) [START_REF] Rublee | Orb: an efficient alternative to sift or surf[END_REF] and descriptors such as ORB, SIFT and One important thing to note here is that the HomographyLab library is written purely in C++.

• ROS node for control: This node runs the control algorithms whose inputs are the two matrices (i.e. Inverse of the Euclidean Homography and the tranpose of the rotation matrix), the IMU data and the pressure data in order to generate the control forces and torques that are further sent to the Pixhawk. Apart from this we also send the control status (manual mode, emergency stop, etc.) to the Pixhawk.

Conclusion

T his thesis addresses many aspects which are particularly related to the state estimation and navigation of autonomous vehicles. They range from visual-inertial sensor fusion, homography estimation and decomposition, design of nonlinear observers based on Lie groups for the estimation of attitude, linear velocity etc. that can be further used for safe and precise navigation for a wide range of autonomous vehicles.

Context and contributions of the thesis:

The contributions reported in the first part of the thesis constitute a continuation of prior work of the I3S-OSCAR team [START_REF] Hua | Stability analysis of velocity-aided attitude observers for accelerated vehicles[END_REF] on the topic of nonlinear observer design for homography estimation with application to image stabilization, image mosaicing etc.

Furthermore, we use Visual-Inertial sensor fusion for the development of integrated nonlinear observers based on the Riccati observer design framework [START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF] that exploit optical flow estimates and IMU readings to estimate the camera's attitude, linear velocity, and its distance to a planar target. A key thing to note here is the use of a suite of low-cost sensors consisting of a monocular camera and a MEMS imu. In the context of monocular vision, the assumption on the planarity of the visual target is considered here, resulting in the meaningful involvement of the homography in the observer design.

Despite such a restrictive assumption, the proposed solutions are still relevant for a number of applications in the fields of aerial, ground as well as underwater robotics.

Two nonlinear observers have been proposed in this part, the first one for the estimation of homography and the second one for the estimation of partial attitude, linear velocity and depth estimation and the results constitute the subject of the following publications or submissions [START_REF] Manerikar | Homography observer design on special linear group SL(3) with application to optical flow estimation[END_REF], [START_REF] Hua | Attitude, linear velocity and depth estimation of a camera observing a planar target using continuous homography and inertial data[END_REF]. in the previous parts. This library has served as a key basis in particular for the development of homography based visual servoing control for fully/under actuated AUV's [START_REF] Nguyen | A homography-based dynamic control approach applied to station keeping of autonomous underwater vehicles without linear velocity measurements[END_REF]. The development of the HomographyLab library and of the I3S-AUV platform has been a defining factor for successfully demonstrating the developed theories and concepts as an appealing success factor to the public, the specialized robotics community and industrial companies.

Perspectives:

The work, already done in the thesis, on the design of nonlinear Riccati observers for state estimation has allowed us to get a really good and thorough understanding of this powerful framework that can be used for a wide range of applications. This constitutes the first step for us to address in the near future other challenging applications such as autonomous landing of aerial vehicles and obstacle avoidance amongst many others.

One of the solutions to deal with this problem is to exploit the filtered optical flow estimates proposed in Chapter 3. Also the observer proposed to estimate the linear velocity, partial attitude and depth could be thought of as a low cost sensor to provide these measurements. It can be utilized in a wide range of applications in which linear velocity measurements are not available and a reliable estimate of the linear velocity and the pose is need for control purposes. This is the case of low cost small-scale vehicles that operates in GPS denied environment for which the cost of body velocity sensors such as sensors based on Dopplereffect or ad-hoc inertial velocity sensor systems are usually prohibitive. This would also be particularly useful in the field of underwater robotics where the sensors used to measure the linear velocity (Doppler Velocity Log) cost thousands of euros and are relatively bulky. Thus, one of the future works would be to perform experimental validations to have an idea of the effectiveness of the proposed approach using the platforms available in the I3S laboratory.

One of the other problems we would like to address is to take into account the accelerometer bias in the observer design. Thus, we would like to design a novel observer based on the Ricatti design framework for the estimation of linear velocity and pose of a rigid-body along with accelerometer bias correction. We believe that this would certainly improve the quality of the estimates. Lastly with regards to homography and ho-
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 11 then the observability Gramian of System (2.6) satisfies condition (2.11) Definition 4 and the Lemma 4 are exploited for proving the uniform observability of the systems in Chapter 4 and Chapter 5, respectively.
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 31 Figure 3.1: Euclidean homography relating the camera's pose, the distance to the plane and the plane's normal vector by H = R + 1 d ξη .
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 221334251637338333 the identity element of R 3×3 and {e 1 , e 2 , e 3 } the canonical basis of R 3 .
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 295 By considering the Euclidean homography (3.12), with kinematics (3.11), (3.13) along with the observer (3.23), the dynamics of the error system are given by Ḣ = ∆ H Proof of Proposition 1
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 353 Introduction to Homography and Continuous HomographyConsider the Lyapunov function
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 3233 Figure 3.2: Experimental setup
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 3435 Figure 3.4: Optical flow components estimated from images (blue curves) and derived from ground truth pose (red curves) versus time (s)

2 =

 2 phy from which we extract the optical flow (φ := V d ) and the optical flow divergence (φ ⊥ := V η d = - ḋ d ) which serve as measurements for the observer design. We further define s φ ⊥ s (4.4) In summary, the observer design for R, V and s (i.e. d) will be based on Eqs. (4.1)-(4.4) and the measured quantities V d , φ, ω, a B and m B . We will also show thereafter that the magnetometer measurements m B are not required if we only need to estimate the gravity direction (i.e. R e 3 ) instead of the whole attitude R. Chapter 4. Riccati observers for state estimation exploiting optical flow and IMU measurements 4.3 Partial Attitude, Linear Velocity and Depth Estimation of a Camera observing a planar target using continuous homography and inertial data 4.3.1 Observer Derivation Let R ∈ SO(3), V ∈ R 3 , ŝ ∈ R denote the estimates of R, V and s, respectively. In view of the equations (4.1), (4.2) and (4.4), the following observer form is considered

  ) are constant and, thus, do not depend on τ . Using the relation R e 3 = R e 3 one verifies that e 3 γ 1,2 (τ ) = e 3 R(τ )R (τ ) e 1,2 = 0 meaning that γ 1,2 is spanned by {e 1 , e 2 }. Therefore, there exists a constant rotation matrix R γ of the form (4.16) such that

(4. 25 )From ( 4 . 25 )

 25425 and the persistent excitation condition C.1, one straightforwardly deduces inequality (4.21), with µ = (min(1, d min )) 2 ρ, which concludes the proof (End of proof). Now the persistent excitation condition give by Proposition (3) deserves some comments.
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 41 Figure 4.1: (Simulation) Estimated and ground-truth attitudes represented by roll, pitch and yaw Euler angles (deg) versus time (s)

Chapter 4 .Figure 4 . 2 :

 442 Figure 4.2: (Simulation) Estimated and ground-truth linear velocity components in body-fixed frame (m/s) versus time (s)

Figure 4 . 3 :Figure 4 . 4 :

 4344 Figure 4.3: (Simulation) Estimated and ground-truth depth inverse (m -1 ) versus time (s)
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 2 , 0], V (0) = [2, -1.5, -0.5] (m/s), ŝ(0) = 4(m -1 ), whereas the initial state values are R(0) ≈ I 3 , V (0) ≈ 0(m/s), s(0) ≈ 5(m -1 ). Note that the attitude error corresponds to relatively large Euler angle errors of 90(deg), 30(deg) and 30(deg) approximately in roll, pitch and yaw. The time evolutions of the estimated and ground-truth attitudes, represented by Euler angles, along with the estimated and ground-truth body-fixed linear velocities and depths are shown in Figs. 4.1-4.3, respectively. During the first 6 seconds, the quadrotor is motionless on the ground, leading to the violation of the persistent excitation condition (3). In contrast to the depth estimate d (or equivalently ŝ) that does not converge to the ground-truth value due to the lack of excitations, both the estimated attitude and linear velocity still converge exponentially near to the corresponding ground-truth values during that time period despite the large initial estimated errors. This is an interesting and desirable feature of the proposed observer although the convergence and observability analysis for this particular "unobservable" case (i.e. |V | ≡ 0) remains open. It can be observed from Fig. 4.4 that during that period the norm of the Riccati matrix P grows almost linearly that in turn highlights the discussed preoccupation and its associated solutions in Section 4.4.3.After the second 6 when the UAV takes off and carries out the circular fight (i.e. the persistent excitation condition (3) is guaranteed), all the estimated variables R, V , ŝ converge almost perfectly to the corresponding ground-truth data (see 
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 45 Figure 4.5: (Experiment) Optical flow components measured from images (blue curves) and derived from ground truth pose (red curves) versus time (s)

Figs. 4 .Figure 4 . 6 :

 446 Figs. 4.5 and 4.6 show a good quality of the optical flow V d as well as φ ⊥ (= -ḋ d ) obtained from the decomposition of the continuous homography estimate when compared
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 47 Figure 4.7: (Experiment) Estimated and ground-truth attitudes represented by roll, pitch and yaw Euler angles (deg) versus time (s)
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 4849 Figure 4.8: (Experiment) Estimated and ground-truth depth inverse (m -1 ) versus time (s)

5 .

 5 Extension to observer design for optical flow filtering with s = 1 d , φ ⊥ = -ḋ/d, and R ∈ SO(3) satisfying R e 3 = R e 3 , Ṙ = R Ω × Also the expression a B + gR e 3 which is the component A(4, 3) can be replaced by

(4. 52 )From ( 4 . 52 )

 52452 and the persistent excitation condition C.1, one straightforwardly deduces inequality (4.21), with µ = (min(1, d min )) 2 ρ, which concludes the proof (End of proof).

Figure 4 . 10 :

 410 Figure 4.10: Optical flow components estimated from images (green curves), filtered optical flow components from the proposed observer (blue curves) and derived from ground truth pose (red curves) versus time (s)

Figure 4 . 11 :

 411 Figure 4.11: Zoom of the optical flow components from time t = 15s to t = 25s

Figure 5 . 1 :

 51 Figure 5.1: Euclidean homography relating the camera's pose, the distance to the plane and the plane's normal vector by H = R + 1 d ξη .

2 √ 2 (

 22 the closed ball in R 5 of radius equal to 2 √ 2), x 2 := ζ ∈ R 3 , together with the particular form of the matrix A as (2.21), allows one to obtain the expression of the innovation terms from the input U calculated according to (2.22) and (2.23) where the matrices D and S (involved in (2.23))

Proposition 6 .

 6 Assume that there exists a positive number ν such that ∀t > 0 1 δ ˆt+δ t |ζ(τ ) × η(τ )|dτ ≥ ν (5.20) Then, the pair (A * , C * ) is uniformly observable. Consequently, the equilibrium ( Qe 3 , R, ζ) = (e 3 , I 3 , 0) of the error system is locally exponentially stable. Proof. According to Lemma 3 in chapter 2 by choosing M = C , then the pair (A * , C * ) is uniformly observable if ∃δ, µ > 0 such that 1 δ ˆt+δ t det C (τ )C (τ ) dτ ≥ µ, ∀t > 0 (5.21)

4 = 4 ≥ δν 4 Remark 5 .Remark 6 . 5 . 4 .

 4445654 πQ ζ |ζ| e 1× -e 2× πQ ζ |ζ| e 2× Q = |ζ| 4 det -e 1× π η ζ e 1× -e 2× π η ζ e 2× = |ζ| 4 det e 3 e 3 + η ζη ζ + (η ζ × e 3 )(η ζ × e 3 ) = |ζ| 4 |η ζ × e 3 | |ζ × η| 4 with η ζ := Q ζ |ζ| .From the Cauchy-Schwarz integral inequality, one deduces (using (5.20))ˆt+δ t |ζ(τ ) × η(τ )| 4 dτ ≥ 1 δ ˆt+δ t |ζ(τ ) × η(τ )| 2 dτOne finally deduces (5.21) with µ = ν 4 . The remainder of the proof then directly follows by application of Theorem 3.1 and Corollary 3.2 in[START_REF] Hamel | Riccati observers for the nonstationary PnP problem[END_REF]. The sufficient uniform observability condition (5.20) excludes the degenerate case where the camera's translation w.r.t. the reference frame is identically equal to zero (i.e. ξ(t) ≡ 0, ∀t ≥ 0). It also excludes the restrictive case where the camera translation motion is always parallel to the normal vector to the plane, i.e. ξ(t) × η(t) ≡ 0, ∀t ≥ 0, which can however still be uniformly observable. The non-trivial observability analysis for such situations (requiringanother formulation of M that involves C A + Ċ ) isleft to the interested reader. Since ζ = R ζ and η = R η, condition (5.20) can be equivalently rewritten as 1 δ ˆt+δ t | ζ(τ ) × η(τ )|dτ ≥ ν Observer design for decomposing the inverse homography matrix with λ Q, λ R ∈ B 3 2 . One then deduces from (5.25) and (5.26) that in first-order approximations λ

Figure 5 . 2 :

 52 Figure 5.2: Scenario 1 (Method 1) -Estimated and real attitudes represented by roll, pitch and yaw Euler angles (deg) and the attitude estimate error versus time (s) (LEFT) and their zooms (RIGHT).

Figure 5 . 3 :

 53 Figure 5.3: Scenario 1 (Method 1) --Estimated and real scaled position and norm of the scaled position error versus time (s) (LEFT) and their zooms (RIGHT).

Figure 5 . 4 :

 54 Figure 5.4: Scenario 1 (Method 1) -Estimation error of the normal vector estimate represented by 1 -η η.

Figure 5 . 5 :

 55 Figure 5.5: Scenario 1 (Method 2) -Estimated and real attitudes represented by roll, pitch and yaw Euler angles (deg) and the attitude estimate error versus time (s) (LEFT) and their zooms (RIGHT).

Figure 5 . 6 :

 56 Figure 5.6: Scenario 1 (Method 2) --Estimated and real scaled position and norm of the scaled position error versus time (s) (LEFT) and their zooms (RIGHT).

Figure 5 . 7 :

 57 Figure 5.7: Scenario 1 (Method 2) -Estimation error of the normal vector estimate represented by 1 -η η. chosen: P (0) = 50I 9 , D = 100I 9 , S = diag(0.1I 2 ; 0.1I 3 ; 0.1I 3 ). The following initial estimation errors for Method 1 (resp. Method 2) are considered for both scenarios 1 : ζ(0) = ζ(0) = [10, -5, 5] , quat R(0) = [0.0436, 0.2586, 0.965, 0] (corresponding to errors in roll, pitch and yaw Euler angles of 178.7(deg), -4.8(deg), -150(deg), respectively), quat Q(0) = quat Q(0) = [0.9239, 0.3827, 0, 0] (corresponding to an angle error of 45(deg) between η(0) and η(0) (resp. between η and η(0))), where the scene is chosen such that η = e 3 and d = 5(m).

Scenario 1 :

 1 For this particular case the drone is commanded to perform a complex periodical trajectory in the inertial frame given by ξ = [10cos(t/ √ 10) -4, 10sin(t/ √ 10) -4, 2sin(0.3πt/2) -4] The time evolutions of the estimated and real attitudes (represented by Euler angles), the attitude error estimate (represented by trace(I 3 -R) for Method 1 and by trace(I 3 -R) for Method 2) as well as the scaled position error estimate and the estimation error of the normal vector to the planar scene (represented by 1 -η η for Method 1 and by 1 -η η for Method 2) are shown in Figs. 5.2-5.7 for both the methods, respectively.
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 58 Figure 5.8: Scenario 2 (Method 1) -Estimated and real attitudes represented by roll, pitch and yaw Euler angles (deg) and the attitude estimate error versus time (s) (LEFT) and their zooms (RIGHT).

Figure 5 . 9 :

 59 Figure 5.9: Scenario 2 (Method 1) --Estimated and real scaled position and norm of the scaled position error versus time (s) (LEFT) and their zooms (RIGHT).

Figure 5 . 10 :

 510 Figure 5.10: Scenario 2 (Method 1) -Estimation error of the normal vector estimate represented by 1 -η η.

Figure 5 . 11 :

 511 Figure 5.11: Scenario 2 (Method 2) -Estimated and real attitudes represented by roll, pitch and yaw Euler angles (deg) and the attitude estimate error versus time (s) (LEFT) and their zooms (RIGHT).

Figure 5 . 12 :

 512 Figure 5.12: Scenario 2 (Method 2) --Estimated and real scaled position and norm of the scaled position error versus time (s) (LEFT) and their zooms (RIGHT).
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 513 Figure 5.13: Scenario 2 (Method 2) -Estimation error of the normal vector estimate represented by 1 -η η.

Figure 5 . 14 :

 514 Figure 5.14: Experimental setup consisting of a Camera-IMU system looking at a textured planar target and OptiTrack markers for ground-truth data.

  directions and orientations. The gains involved in the proposed observer were chosen as follows P (0) = 2I 8 , D = 100I 8 , S = diag(0.005 2 I 2 , 0.025 2 I 3 , I 3 ). The following video link https://youtu.be/SlD2JDe4cZI showing this experiment is provided as a supplementary material.The plots in Figs. 5.15 and 5.16 (and their zooms in Figs.5.18 and 5.19) and in Fig.5.17 show the comparison of the attitude estimates (represented by the Euler angles), the scaled position estimates, and the normal vector estimates using Method 2 and Method 3 and the corresponding ground-truth variables.

Figure 5 . 15 :

 515 Figure 5.15: Attitudes estimated by Method 2 (Red) and by Method 3 (Green), and corresponding ground-truth attitude (Blue) versus time.

Figure 5 . 16 :

 516 Figure 5.16: Scaled position estimated by Method 2 (Red) and by Method 3 (Green), and corresponding ground-truth attitude (Blue) versus time.

from the time 195s to 220s shown in Fig. 5 .

 5 [START_REF] Grip | A nonlinear observer for integration of GNSS and IMU measurements with gyro bias estimation[END_REF] clearly highlight such poor behaviour. This can be explained by the fact that the choice of the correct solution amongst the 4
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 517 Figure 5.17: Normal vector estimated by Method 2 (Red) and by Method 3 (Green).
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 518519 Figure 5.18: Zoom of the estimated attitude, scaled position estimates and the normal vector from time t = 110s to t = 140s.

Figure 6 . 1 :

 61 Figure 6.1: Flowchart of the Homography Estimation Algorithm

Figure 6 .

 6 Figure 6.1 shows the schema of the algorithm which can be summarized as follows. The process is initialized by detecting the features and the descriptors from the reference image. As soon as a new image arrives, it is transformed with a perspective transformation(warped using the OpenCV's warpPerspective function) based on the predicted homography estimate obtained from the gyro measurements. The algorithm detects the key-points from this current warped image and then extracts the features descriptor.

Figure 6 . 2 :

 62 Figure 6.2: (a) Nvidia Jetson TX1 (b) Nvidia Jetson Xavier AGX (c) Nvidia Jetson Xavier NX 6.2 I3S-AUV SOFTWARE ARCHITECTURE The platforms showed in the figure 6.3 have been completely developed in the laboratory for experimental validations of the vision as well as the control algorithms. With the HomographyLab software library we perform homography based stabilization and positioning of our vehicles for both forward looking and downward looking configurations as can be seen in the videos https://www.i3s.unice.fr/oscar/node/11

  The work presented in Part 3 presents a novel approach for tackling the classical problem of Homography Decomposition. The novelty of this contribution lies in the design of two deterministic Riccati observers for addressing the homography decomposition problem instead of solving it on a frame-by-frame basis like traditional algebraic approaches. The large domain of convergence and good performance of the proposed observers have been demonstrated through both simulation results and extensive experimental validations.The work presented in Part 4 talks about the software implementation details of the HomographyLab library which is partially an accumulation of the observers presented
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  1 +n 2 ) a continuous matrix-valued function uniformly contin-

	uous with respect to (w.r.t.) x and uniformly bounded w.r.t. t, and A(x, t) in the form
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	nonlinear filter	
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  4.12) 4.3. Partial Attitude, Linear Velocity and Depth Estimation of a Camera observing a planar target using continuous homography and inertial data where R(τ, t), with τ ≥ t, is the solution to the equation d R(τ, t) dτ = R(τ, t)Ω(τ ) × , R(t, t) = I 3 It remains to compute ϕ 33 (τ, t), ϕ 41 (τ, t), ϕ 42 (τ, t). From (4.11), (4.12), and the definition of φ ⊥ (i.e. φ ⊥ = -ḋ/d) one gets

	dϕ 33 (τ, t) dτ	= -	dd(τ ) dτ	1 d(τ )	ϕ 33 (τ, t)

  Assumption 3. V (t), V (t), Ω(t) and φ ⊥ are bounded in norm by some positive numbers V max , Vmax , Ω max and φ ⊥max , respectively. The distance d is lower-and upper-bounded by some positive numbers d min and d max , respectively. Chapter 4. Riccati observers for state estimation exploiting optical flow and IMU measurements (C.1) For all R γ ∈ SO(3) of the form

	Proposition 3. Assume that Assumption 3 holds. Assume that one of the following "persis-
	tent excitation" conditions is satisfied:

along with relations (4.13), (4.14) and (4.15), one deduces the explicit form (4.10) of the transient matrix Φ(τ, t) (End of Proof).

The following technical (but non-restrictive) assumption is made.

  The expression of ϕ 33 (τ, t) is exactly the same as shown in (4.13).

	From
	(4.38) and (4.39), one has

  Riccati observers for state estimation exploiting optical flow and IMU measurements Finally, with the relations (4.13), (4.42), (4.43), (4.45) and (4.48) one deduces the explicit form (4.37) of the transient matrix Φ(τ, t) (End of Proof).

	Chapter 4. Proposition 5. The persistent excitation conditions C.1 and C.2 defined in Proposition (3) in
	section 4.3.2 are the same, however with the matrices U (τ ) and W (τ ) defined as follows:	
	t)	(4.48)
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https://docs.opencv.org/3.4.1/d9/dab/tutorial-homography.html

In fact, accelerometers only provide measurements of the so-called specific acceleration.

Available at http://rpg.ifi.uzh.ch/software_datasets.html

Although FAST is less robust than other algorithms such as SIFT or SURF, it is much faster and more suitable for real-time implementation.

http://sdb3.i3s.unice.fr/homographyLab/
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mography decomposition, we would like to combine directly the point correspondences obtained from images for the estimation of the variables of relative pose and normal vector instead of passing through the entire estimation process. This is a really interesting research direction and will be explored in the new thesis starting shortly in the I3S team.

(5.9) and (5.22), the following observer form is considered

Define the error variables as

Then the objective of observer design consists in stabilizing ( Qe 3 , R, ζ) about (e 3 , I 3 , 0).

One verifies from (5.6), (5.23) and (5.24) that the error dynamics are given by

We now develop first-order approximations of the error system (5.25) and of the measurement equation (5.5). The first-order approximations of Q and R are given by

Chapter 5. Homography Decomposition may be seen as the filtered signal of the latter, thus showing the filtering interest of our approach w.r.t. traditional algebraic algorithms. One observes that non-negligible but bounded error of the normal vector estimate has occured during the time periods [10s, 30s], [120s, 130s] and [195s, 115s] when the camera's translation is very small but its yaw motion is significant. We believe that this bounded error is rather more related to the imperfection of the camera calibration and to the sensitivity of the estimated homography (and its decomposed normal vector solution) w.r.t. image noise and low resolution when the camera's translation is not large enough, than a fast drift due to measurement noise (the proof is that from the time 90s to 100s when the camera's pose nearly superpose to the reference one, the normal vector estimate always remains near to e 3 ). Moreover, whenever the camera's translation is large enough, the decomposed normal vector estimate becomes quite precise. Most importantly, the attitude and scaled position estimated by our algorithm always evolve closely to the corresponding ground-truths, even in the degenerate situation.

The reported experimental results have thus illustrated the convincing performance and robustness of the proposed approach, showing its advantage with respect to the state-of-the-art algebraic approach.

I3S-AUV SOFTWARE ARCHITECTURE

This control status input is read through the joystick. The joystick is connected to the ground station on which we have a ROS driver running. The inputs of the joystick are read in this node and then sent to the Pixhawk. The communication between the two nodes is carried out using Publisher/Subscriber service which is an inbuilt functionality in ROS.

Pixhawk:

The Pixhawk is also used for the control allocation. The control forces and torques that are obtained from the ROS node for control are converted into pwm commands and then sent to the ESCs.

Ros Nodes used in our Architecture

Note that all nodes are in oval while topics are in rectangular. From the figure 6.5 you can see that we have five principal nodes:

• /pylon_camera_node: Camera node for receiving the images.