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Abstract
Accurate state estimation is a fundamental problem for the navigation of Autonomous

vehicles. This is particularly important when the vehicle is navigating through cluttered

environments or it has to navigate in close proximity to its physical surroundings in or-

der to perform localization, obstacle avoidance, environmental mapping etc. Although

several algorithms were proposed in the past for this problem of state estimtation, they

were usually applied to a single sensor or a specific sensor suite. To this end, researchers

in the computer vision and control community came up with a visual-inertial framework

(Camera + Imu) that exploit the combined properties of this sensor suite to produce pre-

cise local estimates (position, orientation, velocity etc). Taking inspiration from this, my

thesis focuses on developing nonlinear observers for State Estimation by exploiting the

classical Riccati design framework with a particular emphasis on visual-inertial sensor

fusion. In the context of this thesis, we use a suite of low-cost sensors consisting of a

monocular camera and an IMU. Throughout the thesis, the assumption on the planarity

of the visual target has been considered.

In the present thesis, two research topics have been considered. Firstly, an extensive

study for the existing techniques for homography estimation has been carried out after

which a novel nonlinear observer on the SL(3) group has been proposed with application

to optical flow estimation. The novelty lies in the linearization approach undertaken to

linearize a nonlinear observer on SL(3), thus making it more simplistic and suitable for

practical implementation. Then, another novel observer based on deterministic Ricatti

observer has been proposed for the problem of partial attitude, linear velocity and depth

estimation for planar targets. The proposed approach does not rely on the strong as-

sumption that the IMU provides the measurements of the vehicle’s linear acceleration in

the body-fixed frame. Again experimental validations have been carried out to show the

performance of the observer. An extension to this observer has been further proposed to

filter the noisy optical flow estimates obtained from the extraction of continuous homog-

raphy. Secondly, two novel observers for tackling the classical problem of homography

decomposition have been proposed. The key contribution here lies in the design of two

deterministic Riccati observers for addressing the homography decomposition problem

instead of solving it on a frame-by-frame basis like traditional algebraic approaches. The

performance and robustness of the observers have been validated over simulations and

practical experiments. All the observers proposed above are part of the Homography-

Lab library that has been evaluated at the TRL 7 (Technology Readiness Level) and is

protected by the French APP (Agency for the Protection of Programs) which serves as

the main brick for various applications like velocity, optical flow estimation and visual

homography based stabilization.

Keywords: Autonomous vehicles, State Estimation, Homography and Homography De-

composition, Visual-Inertial Sensor Fusion, Nonlinear observers

http://sdb3.i3s.unice.fr/homographyLab/underwater-robotics/
http://sdb3.i3s.unice.fr/homographyLab/underwater-robotics/




Résumé

L’estimation précise de l’état du système est un problème fondamental pour la navi-

gation des véhicules autonomes. Ceci est particulièrement important lorsque le véhicule

navigue dans des environnements encombrés ou à proximité d’obstacles, afin d’effectuer

la localisation, l’évitement d’obstacles, la cartographie de l’environnement, etc. Bien que

plusieurs algorithmes aient été proposés dans le passé pour ce problème d’estimation

d’état, ils impliquent généralement un seul capteur ou plusieurs du même type. Afin

de pouvoir exploiter les propriétés de multiples capteurs dotés de caractéristiques dif-

férentes (tels que Camera, IMU, Lidar, etc.), les chercheurs de la communauté de vision

et de contrôle ont mis au point des modèles mathématiques qui produisent des estima-

tions locales précises (position, orientation, vitesse, etc.). En m’inspirant de cela, ma

thèse se concentre sur le développement d’observateurs non-linéaires pour l’estimation

d’état en exploitant les algorithmes classiques de type Riccati en mettant l’accent sur

la fusion de capteurs visuels-inertiels. Dans le cadre de cette thèse, nous utilisons une

suite de capteurs à faible coût composée d’une caméra monoculaire et d’une centrale

inertielle. Dans le cadre de la vision monoculaire, nous faisons l’hypothèse que la cible

est pratiquement plate. Bien que cette hypothèse soit restrictive, les solutions proposées

sont pertinentes pour de nombreuses applications dans les domaines de la robotique

aérienne, terrestre et sous-marine. Dans ce contexte, deux nouveaux observateurs non

linéaires sont proposés, le premier pour l’estimation de l’homographie et le deuxième

pour l’estimation de l’attitude partielle, de la vitesse linéaire et de la profondeur. Dans

la deuxième partie de la thèse, deux nouveaux observateurs déterministes de Riccati

sont proposés pour traiter le problème classique de décomposition d’homographie au

lieu de le résoudre image par image comme les approches algébriques traditionnelles.

Tous ces travaux sont publiés dans des conférences internationales de haute niveau. Tous

les observateurs proposés ci-dessus font partie de la bibliothèque HomographyLab dont

je suis l’un des principaux contributeurs. Cette bibliothèque a été évaluée au niveau

TRL 7 (Technology Readiness Level) et est protégée par l’APP (Agence pour la Protec-

tion des Programmes) qui sert de brique principale pour diverses applications telles que

l’estimation de vitesse et de flux optique, et la stabilisation basée sur l’homographie vi-

suelle.

Keywords: Véhicules autonomes, Estimation d’état, Homographie et Décomposition

d’homographie, Fusion de capteurs visuels-inertiels, Observateurs non linéaires
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unit determinant
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1
Motivations, contributions and

thesis structure

1.1 Motivations and contributions

Navigation of Autonomous vehicles in an unknown or partially known and dynamically

changing environment represents a great challenge. In case of aerial vehicles or un-

derwater autonomous vehicles, the scientific issues are strongly linked to the fact that

the vehicle may have to navigate in close proximity to the physical environment or the

sea bead where often the GPS signals (in case of aerial vehicles) and remote acoustic

positioning systems (in case of underwater vehicles) are sometimes unavailable or insuf-

ficiently precise for safe navigation. In this case, the robot must rely on exteroceptive

sensors associated with inertial sensors and specific sensor-based guidance strategies.

The critical issue here is to retrieve the state of the vehicle relative to its environment via

the use of sensors that do not measure this state directly. In case of underwater scenar-

ios, two popular solutions for detecting the environment are on-board sonars and optical

sensors. Although the range of a camera is significantly shorter than that of acoustic sen-

sors and is highly dependent on the turbidity of the water, cameras offer other definite

2



Chapter 1. Motivations, contributions and thesis structure

advantages. For example, they are considerably less expensive than acoustic sensors,

they provide rich information at a high rate, and they do not cause interference prob-

lems with other instruments. Similarly for aerial vehicles, combining a vision system

along with an IMU has led to the development of integrated observers that exploit the

optical flow measurements and IMU readings for attitude estimation. These solutions

are particularly important in GPS denied environments or in applications such as hazard

detection and surveillance, inspection of infrastructures etc. Safe and precise navigation

remains very difficult and advanced vision-based navigation strategies are particularly

relevant in this context even if they involve difficult problems to solve, both theoretical

and experimental. Progress in this direction will undoubtedly have a significant impact

on the development of applications related to the navigation of autonomous vehicles in

a congested environment.

At the level of underwater vision, the problems are diverse. A large number of factors

specific to the fact that the cameras are submerged disturb the processing convention-

ally carried out in terrestrial vision. We can mention the problem related to the lighting

of the stage by artificial light sources. Image processing techniques are therefore nec-

essary to compensate for light halo phenomena. The problem can be even more critical

in the case of stereo vision. Indeed, the source of illumination often induces differences

in illumination between the two images and therefore difficulties in matching the char-

acteristic points between them. Underwater light attenuation models can be used to

improve visibility in underwater scenes. On the other hand, the quality of image pro-

cessing is very dependent on the quality of the water. Indeed, turbid water can make

most algorithms completely inoperative (feature point extractions, target tracking, etc.).

It is therefore necessary to provide robust treatments for this type of disturbance. Like-

wise when the machine is close to the surface, the effects of light on the ripples on the

surface introduce moving reflections on the submerged structures. The movement of

these reflections is unrelated to the robot’s movement and also disrupts movement es-

timates or feature point pairings. It is therefore necessary to provide robust treatments

for this type of disturbance.

The work of this thesis proposal is specifically dedicated to the development of state

estimation algorithms which can be used as a basis to develop control strategies for au-

tonomous vehicles. These estimation algorithms merge measurements provided by a

monocular camera and more conventional inertial sensors such as inertial unit, depth

gauge, magnetometer, etc. Our preferred approach relies on nonlinear observers ex-

ploiting non-minimal representations that emphasize the invariance properties of the

system. Throughout the entire work carried out in the thesis, the assumption on the

planarity of the visual target has been maintained.

This PhD project has been carried out by keeping in mind a more global picture of
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the I3S-OSCAR team that aims to develop generic observers by fusing the data from im-

ages and inertial sensors for attitude, velocity estimation etc. and whose applications

will not only be restricted to aerial vehicles but can also be applied to any robotic vehi-

cle equipped with these sensors. Keeping this global picture in mind, my PhD project

focuses on the following two challenging research topics:

1. Homography Estimation and its Applications: In the field of Computer vision,

Homography represents an invertible mapping between two views of the same

planar surface. Essentially, this homography matrix encodes the camera pose, the

distance between the camera and the scene, along with the normal direction to

the scene. Although homography estimation is a relatively mature topic, it has

been used in various computer vision and robotic applications where the scenar-

ios involve man-made environments composed of (near) planar surfaces. In [71]

the authors exploited the homography matrix to estimate the rigid-body pose of

a robot equipped with a camera. One of the most successful visual servo control

paradigms makes use of homographies [52]. Homography sequences have also

been used for the navigation of robotic vehicles [64]. Navigation strategies based

on homography are also well suited for applications where the camera is suffi-

ciently far from the observed scene. This is particularly the case when ground

images are taken from aerial vehicles [13, 69, 64]. Traditional algorithms for ho-

mography estimation rely on algebraic approaches by computing the homogra-

phy on a frame to frame basis and thus, were not focused on improving the ho-

mography over time. This inspired the members of the I3S-OSCAR team to de-

velop non-linear observers based on the underlying structure of the Special Lin-

ear group SL(3), by incorporating the velocity information across a sequence of

images thereby improving the homography estimates over time [11, 49]. This ap-

proach however still requires computation of individual image homographies thus

making it computationally expensive. In order to overcome this problem, a new

observer was developed that directly uses point correspondences without requir-

ing the prior reconstruction of the individual homographies. Inspired from these

works, we developed a novel approach for homography observer design on the

Special Linear group SL(3) as well. However, the novelty of this work lies in the

linearization approach undertaken to linearize a nonlinear observer on SL(3), and

what makes this observer extremely effective is its simplicity thus making it suit-

able for real-time implementation.

2. Development of Observers based on Riccati design framework: As discussed

previously homography estimation can be used for a wide range of applications

such as control of aerial vehicles, pose estimation etc. where the observed scene
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is planar or nearly planar. In absence of an external localization system one of

the main problems faced was to estimate the attitude of the robot relative to its

environment. In order to overcome this problem, researchers started developing

velocity-aided attitude observers by fusing IMU measurements along with linear

velocity measurements. However, due to the lack of onboard linear velocity sen-

sors for mini UAV’s and the highly expensive DVL (Doppler velocity log) for AUV’s

researchers started looking into the vehicle’s dynamic equations instead. In previ-

ous examples we saw that most of the applications involve physical interaction of

the robot with the environment. This eventually led to the development of inte-

grated observers that use a vision based system along with an imu, which exploit

optical flow measurements and the imu readings to estimate the linear velocity,

attitude and distance to the planar target. Traditional approaches make use of the

Extended Kalman filters and show the practical convergence of the estimation er-

rors experimentally. However, observability and convergence analyses are either

missing or incomplete in these studies. An alternative technique is to use deter-

ministic approaches like the Riccati observer design framework in [24]. My work

on this topic has been inspired from the Riccati observer design framework men-

tioned previously in order to address the following two problems:

• Designing an observer to estimate the linear velocity, attitude and depth

observing a planar target: The main objective of this work was to estimate

these quantities without relying on the strong assumption of an IMU provid-

ing measurements of the vehicle’s linear acceleration expressed in the body-

fixed frame [18, 17]. In this work, we provide a detailed observability analysis

that points out the camera’s motion excitation conditions whose satisfaction

grants stability of the observer and convergence of the estimation errors to

zero. At the end, we also provide an extension to the observer design for the

filtering of optical flow along with experimental results.

• Designing two observers for tackling the classical problem of Homogra-

phy Decomposition: The main motivation behind this work was to find an

alternative solution to the traditional algebraic approaches that solve the Ho-

mography Decompostion problem on a frame-by-frame basis thus providing

noisy estimates. Also, traditional algebraic approches fail to obtain the cor-

rect solution when the camera translation is really small. In our work, we have

proposed "persistance of excitation" conditions which cover such degenerate

situations in which the tradional algebraic approches fail to obtain a correct

solution.

Most of the theoretical contributions and experimental validation results reported in
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this thesis were published in (or submitted to) the following research papers:

• Manerikar, N., Hua, M.-D. and Hamel, T. (2018). Homography Observer Design on
Special Linear Group SL(3) with Application to Optical Flow Estimation. In proceed-

ings of European Control Conference (ECC’18), pp. 1–5, Limassol ,Cyprus. [55]

• Hua, M.-D., Manerikar, N., Hamel, T., and Samson, C. (2018). Attitude, Linear Ve-
locity and Depth Estimation of a Camera Observing a Planar Target Using Continuous
Homography and Inertial Data.. In IEEE International Conference on Robotics and

Automation (ICRA’18), pp. 1429–1435, Brisbane, Australia. [30]

• Manerikar, N., Hua, M.-D., Hamel, T. and De. Marco, S. (2020). Riccati observer de-
sign for homography decomposition. In proceedings of European Control Conference

(ECC’18), pp. 1306–1311, Saint Petersburg, Russia. [54]

• Manerikar, N., Hua, M.-D., and Hamel, T. (2021). Deterministic Riccati observers
for homography decomposition. Preparing for Submission.

In addition, I am one of the principal contributors to the development of the Homog-

raphyLab library that has been evaluated at the TRL 7 (Technology Readiness Level) and

is protected by the French APP (Agency for the Protection of Programs).

1.2 Thesis structure

The present thesis is organized in two parts and partitioned in five chapters.

• Chapter 1 - Motivations, contributions and thesis structure. As dedicated in the

title, this chapter first briefly presents the motivations and objectives of this thesis

work. The main contributions are then provided. The thesis structure section

briefly introduces the content of all chapters.

• Chapter 2 - Theoretical recalls on State Estimation. This chapter is devoted to

recall some basic notions related to the topic of State Estimation. We start by talk-

ing about the classic state estimation filters for linear and nonlinear systems and

discuss about their observability properties that essentially characterize the be-

haviour of such systems. Then, the Deterministic Riccati observer Design frame-

work has been detailed which will be used as the main brick for the development

of novel observers for state estimation during the remainder of the thesis.

• Chapter 3 - Introduction to Homography and Continuous Homography. This

chapter recalls the preliminary details regarding homography and continuous ho-

mography, and then discusses about some relevant homography estimation algo-

rithms. Then a novel linear approach for homography estimation on SL(3) has
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been proposed with application to optical flow estimation. The problem formula-

tion and basic ideas of observer design are first presented. Finally, the performance

and robustness of the proposed observer are then verified by performing experi-

ments using a Camera-IMU system.

• Chapter 4 - Riccati observers for state estimation exploiting optical flow and

IMU measurements. This chapter revisits the problem of partial attitude, linear

velocity and depth estimation of an IMU-Camera with respect to a planar target.

The considered solution relies on the measurement of the optical flow (extracted

from the continuous homography) complemented with gyrometer and accelerom-

eter measurements. The proposed deterministic observer is accompanied with an

observability analysis that points out camera’s motion excitation conditions whose

satisfaction grants stability of the observer and convergence of the estimation er-

rors to zero. The performance of the observer is illustrated by performing ex-

periments on a test-bed IMU-Camera system. Finally we provide an extension to

observer design for the filtering of optical flow measurements along with experi-

mental results.

• Chapter 5 - Homography Decomposition. This chapter talks about the classical

problem of Homography Decomposition and the state of the art approaches for

Homography Decomposition. Then two novel nonlinear Riccati observers for the

decomposition of the homography and its inverse have been proposed after which

a rigorous observabilty and convergence analysis has been carried out. The large

domain of convergence and good performance of the proposed observers have then

been demonstrated through both simulation results and extensive experimental

validations.

• Chapter 6 - Software Implementation Details. The software architecture design

for the HomographyLab library has been detailed in this chapter. This chapter also

provides an example of the overall software architecture that is used for the I3S-

AUV platforms that consists of the vision brick as well as the control brick used for

experimental validations. In the context of this thesis, I have worked only on the

vision brick.
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2
Theoretical recalls on State

Estimation

2.1 Introduction

In control theory, the state space representation of the physical system is a mathematical

model which consists of a set of inputs, outputs and state variables that are related to

each other by first order differential equations. The values of these state variables evolve

over time in a way that depends on the inputs to which it is subjected. The output values

of the physical system thus depends on the values of these state variables. The most

general state space representation of a linear time-invariant system can be expressed by

the following equation {
ẋ(t) = A(t)x+B(t)u

y(t) = C(t)x+Du(t)
(2.1)

with x ∈ Rn the system state vector, u ∈ Rs the system input vector, and y ∈ Rm the

system output vector and A ∈ Rn×n, B ∈ Rn×s, C ∈ Rm×n, D ∈ Rm×s denoting constant

matrices of the physical system with adequate dimensions. The matrix D is the feed

forward matrix and is considered to be zero when the system model doesn’t have a direct
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feed through. This is the case in most of the systems and that’s why we will neglect this

term throughout the remainder of the chapter and use the following representation{
ẋ(t) = A(t)x+B(t)u

y(t) = C(t)x
(2.2)

In case of non-linear systems the state space representation has the following generic

form {
ẋ(t) = f(x(t), u(t), t)

y(t) = h(x(t), u(t), t)
(2.3)

where t denotes the time, the system state x ∈ X ⊆ Rn, the system input vector u ∈
U ⊆ Rs, and the system output vector y ∈ Y ⊆ Rm, f(x(t), u(t), t) and h(x(t), u(t), t) are

vector functions with proper dimensions.

In general, all the state variables of the system cannot be completely measured. This is

because of the fact that most of the times its practically not feasible due to space limita-

tions or cost restrictions to mount all the necessary sensors that are needed to measure

the states. And thus for the vast majority of the systems, it is often considered that the

dimension of the state vector is greater than that of the output vector (m < n) meaning

that at some time instance t, the state vector x(t) cannot be completely measured or de-

duced from the outputs. Thus in such a case, it is necessary to calculate or estimate the

values of these state variables by using only the input/output relation and the outputs of

the system at the starting time. This property of inferring the internal state of the system

by knowledge of its outputs is referred to as Observability. The next section provides a

detailed description of the observability of systems.

2.2 Observability of Systems

The concept of observability studies the possibility of estimating the state from the

output. This was first introduced by Rudolph Kalman for the analysis of linear time-

invariant (LTI) systems [39], and since then on the observability property has been ex-

tensively studied and extended for other classes such as linear time-varying (LTV) and

nonlinear systems.

2.2.1 Observability of Linear Time Invariant Systems

The observability of a system ensures the reconstruction of the initial state from the

knowledge of the inputs and outputs available on a time interval. A system is said to be

observable if from the measurements of inputs and outputs we can reconstruct the initial

state of the system. For a linear system described by (2.2), there are two fundamental
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notions that essentially characterize the behaviour of this system. These notions are

Distinguishability and Observability. The standard concept of distinguishability can be

explained by the following definition

Definition 1. (Distinguishability): The two events (x0, t0) and (w0, t0) are said to be distin-
guishable [45] on the interval [t0, t0 + T ] if there exists u ∈ Rs such that the corresponding
outputs y(t, x0) 6= y(t, w0) over the time interval [t0, t0 + T ].

Definition 2. (Observability): The system (2.2) is said to be observable [45] at x0 if x0 is
distinguishable from any x ∈ Rn, and is fully observable if ∀x0 ∈ Rn, x0 is distinguishable.

Since for linear systems the observability is independant of the input u, the matrix B

does not intervene in the observability analysis and it is dependent only on the matrices

A and C. Thus we can either say that the "the pair (A,C) is observable", or that the

"system is observable".

Lemma 1. (Kalman’s Rank Condition): For a LTI system if the observability matrix is defined
by

O :=


C

CA
...

CAn−1

 (2.4)

and the observability rank is defined by rank(O) = kO, then the pair (A,C) is fully observable
if and only if O is of full rank i.e., kO = n

Corollary 1. The system (2.2) is observable in time t if and only if the matrix

W (t) =

ˆ t

0
e−τA

>
C>Ce−τAdτ (2.5)

is invertible.

Thus the state equation stated in (2.2) is said to be observable if for any unknown

initial state x(0), there exists a finite t > 0 such that by having the knowledge of the

input and the output y over the time interval [0, t] it is sufficient to determine uniquely

the initial state x(0). Otherwise, the equation is said to be unobservable.

2.2.2 Observability of Linear Time Varying Systems

In this part we talk about the observability properties for another class of systems specif-

ically the linear time varying systems. Consider a general Linear Time Varying system
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(LTV) given by {
ẋ(t) = A(t)x+B(t)u

y(t) = C(t)x
(2.6)

There exist different types of observability properties for LTV systems, for e.g., instan-

taneous, or uniform observability. All these properties are detailed in [8], but have been

briefly mentioned below to recall them to facilitate the reader. Also for LTV systems, the

following assumption holds:

Assumption 1. The matrix-valued functions A, B, and C of the LTV system (2.6) are con-
tinuous and bounded on [0,+∞].

For instance, [8] classifies the observability of a linear time-varying system according

to the following definitions.

Definition 3. (Instantaneous observability) A system is instantaneously observable if, ∀t, the
state x(t) can be computed from the inputs u(t), outputs y(t) and time derivatives uk(t), yk(t)
with k ≤ n+ 1.

Lemma 2. Define the observation space of the LTV system at the time-instant t as the space
generated by

O(t) :=


N0(t)

N1(t)
...

 (2.7)

with N0(t) = C,Nk+1 = NkA+ Ṅk, k = 1, .... Then, system (2.6) is instantaneously observ-
able if rank(O) = n

Definition 4. (Uniform observability) System (2.6) is uniformly observable if there exist
δ, µ > 0 such that (s.t.) ∀t ≥ 0

W (t, t+ δ) ,
1

δ

ˆ t+δ

t
Φ>(t, τ)C>(τ)C(τ)Φ(t, τ)dτ ≥ µ̄Id (2.8)

with W (t, t + δ) is called the Observability Gramian of the system and Φ(t, τ) the transition
matrix associated with A(t) , i.e. such that d

dtΦ(t, τ) = A(t)Φ(t, τ) with Φ(t, t) = In.

Define N0(t) = C,Nk+1 = NkA + Ṅk, k = 1, ... and the set MK of matrix-valued

functions M(.) of dimension (q × n)(q ≥ 1) composed of row vectors of N0(.), N1(.), ....

By replacing the matrix C by M the following lemma has been proposed in [22],

Lemma 3. (See [22]) The existence of a matrix M ∈MK satisfying the following property

W (t, t+ δ) ,
1

δ

ˆ t+δ

t
Φ>(t, τ)M>(τ)M(τ)Φ(t, τ)dτ ≥ µ̄Id (2.9)
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implies the satisfaction of (2.6), and thus uniform observability of the corresponding LTV
system.

We can also say that the pair A(t), C(t) is uniformly observable when the Lemma 2.9

is satisfied. Since the calculation of the Gramian requires the integration of the solutions

of ẋ = A(t)x, checking the uniform observability of the LTV systems can be a difficult

task. Hence in general, the uniform observability for LTV systems cannot be charac-

terized by only rank conditions. The following lemma estabilishes [58] estabilishes a

sufficient condition for uniform observability

Lemma 4. If there exists a matrix M ∈ MK such that for some positive numbers δ̄, µ̄ and
∀t ≥ 0

1

δ̄

ˆ t+δ̄

t
det(M>(τ)M(τ))dτ ≥ µ̄ (2.10)

The following lemma, taken from [22], gives a sufficient condition for uniform ob-

servability in terms of the properties of the matrices A(t) and C(t) and their time-

derivatives:

Lemma 5. (See [22]) If A is a constant matrix with real eigenvalues, and there exists M ∈
MK such that

1

δ̄

ˆ t+δ̄

t
M>(τ)M(τ)dτ ≥ µ̄Id > 0 (2.11)

then the observability Gramian of System (2.6) satisfies condition (2.11)

Definition 4 and the Lemma 4 are exploited for proving the uniform observability of

the systems in Chapter 4 and Chapter 5, respectively.

2.3 Observer Design

2.3.1 Observer Design for Linear System

Many methods have been proposed to estimate the state of a linear dynamical system.

Luenberger [47] was one of the first ones to develop deterministic state observers for con-

tinuous linear systems. Since his works, a notable amount of research has been devoted

to the problem of observer design for linear systems. The main developments are de-

tailed in [63], [2], [74] and, in the recent books [43] and [75] and the references therein.

Kalman [39] also formulated an observer by considering a deterministic or stochastic

linear system. For the system stated in (2.6) the observer equations can be written as{
˙̂x(t) = A(t)x̂+B(t)u(t) +K(t)(y(t)− ŷ(t))

ŷ(t) = C(t)x̂
(2.12)
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where x̂(t) is the estimate of the state x(t) and K is the observer gain related to the error

of the output reconstruction. Then the observer error e = x− x̂ satisfies the equation

ė = (A−KC)e (2.13)

The observer gain K can then be chosen appropriately so that the observer error e con-

verges to zero when t → ∞. When the observer gain K is high, the linear Luenberger

observer converges to the system states very quickly and vice-versa.

2.3.1.1 Kalman Filter

The Kalman fllter (KF) is one of the most widely used methods for estimation due to its

simplicity, optimality and robustness. Since the Kalman filter is a recursive estimator it

means that it takes into account the estimated state from the previous time step and the

current measurement in order to compute the estimate of the current state. Typically a

discrete version of the Kalman filter is divided into two phases: "Predict" and "Update".

In the Prediction phase, it uses the state estimate from the previous timestep to produce

an estimate of the state at the current timestep while in the Update phase it uses the

information from the current timestep to refine the state estimate at that instant. For the

Kalman filter in case of stochastic systems, one of the important things is to compute the

optimal gain K that minimizes the residual error and is given by the following expression

K = PC>D(t) (2.14)

where P(t) is the solution to the Continuous Riccati Equation (CRE)

Ṗ = AP + PA> − PC>D(t)CP + S(t) (2.15)

where D and S are positive definite matrices that represent the covariance matrices of

the state and measurement noises and are assumed to be Gaussian.

2.3.2 Observers for Nonlinear Systems

For the nonlinear system expressed in (2.3) the observer can be expressed in the generic

form shown below:{
˙̂x = f(x̂, u)−K(x̂, u(t), t).(h(x, u(t))− h(x̂, u(t)))

ŷ = h(x̂, u)
(2.16)

Thus the estimation error for the nonlinear system is given by

ė = f(x, u(t))− f(x̂, u(t)) +K(x̂, u(t), t).(h(x, u(t))− h(x̂, u(t))) (2.17)
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Since in this case f and h are nonlinear, the problem of finding a gain matrix K such

that error converges asymptotically to zero cannot be solved like in the linear case. Thus

one of the solutions in order to solve this problem is to linearize the system around an

equilibrium point (x̄, ū, ȳ) characterized by f(x̄, ū) = 0 and ȳ = h(x̄, ū). Considering

δx = x− x̄, δu = u− ū and δy = y − ȳ, the linearized model is given by{
δẋ(t) = Aδx(t) +Bδu(t)

δy(t) = Cδx(t)
(2.18)

where A = ∂f
∂x (x̂, u), C = ∂h

∂x(x̂, u)

2.3.2.1 Extended Kalman Filter

The Extended Kalman filter is probably the most widely used estimator for nonlinear

systems. The Extended Kalman filter applies the Kalman filter to nonlinear systems by

simply linearising all the nonlinear models so that the traditional linear Kalman filter

equations can be applied. Basically a matrix of partial derivatives i.e the Jacobian is com-

puted at each time step and evaluated with the current predicted states. This procedure

essentially linearizes the nonlinear function around the current estimate. Thus the idea

of the EKF is to replace the state and output matrices A and C of the linear system by

the Jacobian of the nonlinearities of the system. In this case as well, the gain matrix K is

computed as
K = PC>D

Ṗ = AP + PA> − PC>DCP + S
(2.19)

with A = ∂f
∂x (x̂, u), C = ∂h

∂x(x̂, u).

In case of the EKF, when the models are highly nonlinear, the first order lineariza-

tion can introduce large errors that can lead to sub-optimal performance and sometimes

divergence of the filter. To this end, Julien and Uhlman [38] proposed the Unscented

Kalman Filter (ULF) which uses a deterministic sampling approach. Thus, instead of

linearizing which is the case in EKF, it specifies the Gaussian state distribution using a

set of points, referred to as sigma points, and propagates them through the true non-

linear system. It is able to capture the posterion mean and coviarance accurately to the

third order (Taylor series expansion) for any nonlinearity.

From all the works mentioned above it is clear that nonlinear observers have increas-

ingly become alternative solutions to the classical filtering techniques such as Extended

Kalman filters, Unscented Kalman filters, particle filters etc mainly because of their sim-

plicity and large domain of stability and convergence. In the next section we talk about

the Deterministic Riccati observer design framework that relies on the solutions to the

Continuous Riccati Equation (CRE) and encompasses the EKF solutions.
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2.3.2.2 Deterministic Riccati Observers
In this subsection we provide details about the deterministic Riccati observer frame-

work developed in [24], which exploit first-order approximations of a class of nonlinear

systems, and may formally be viewed as a generalisation of the so-called multiplicative

extended Kalman filter (MEKF) [42], applies to a number of applications involving pro-

prioceptive sensors and monocular vision. The observers proposed in Chapter 4 and

Chapter 5 are based on this framework. We modify slightly the notations provided in

[24], in order to be coherent with the rest of the work carried out in the thesis. The

following nonlinear system (a particular case studied in [24]) is investigated:{
ẋ = A(x, t)x+ U +O(|x|2) +O(|x||U |)

y = C(x, t)x+O(|x|2)
(2.20)

with state x = [x>1 , x
>
2 ]>, x1 ∈ Bn1

r (the closed ball in Rn1 of radius r), x2 ∈ Rn2 , output

y ∈ Rm, C(x, t) ∈ Rm×(n1+n2) a continuous matrix-valued function uniformly contin-

uous with respect to (w.r.t.) x and uniformly bounded w.r.t. t, and A(x, t) in the form

A(x, t) =

[
A1,1(t) 0n1×n2

A2,1(x, t) A2,2(x1, t)

]
(2.21)

withA1,1(t) andA2,2(x1, t) continuous matrix-valued functions uniformly bounded w.r.t.

t and uniformly continuous w.r.t. x, and A2,1(x, t) satisfying

A2,1(x, t) = Ā2,1(x1, t)x1 +O(|x1||x2|)

with Ā2,1(x1, t) a continuous matrix-valued function uniformly bounded w.r.t. t and

uniformly continuous w.r.t. x1.

Then, apply the input

U = −PC>Dy (2.22)

with P ∈ R(n1+n2)×(n1+n2) a symmetric positive definite matrix solution to the following

continuous Riccati equation (CRE):

Ṗ = AP + PA> − PC>D(t)CP + S(t) (2.23)

with P (0) ∈ R(n1+n2)×(n1+n2) a symmetric positive definite matrix,D(t) ∈ Rm×m bounded

continuous symmetric positive semi-definite, and S(t) ∈ R(n1+n2)×(n1+n2) bounded con-

tinuous symmetric positive definite.

Then, from Theorem 3.1 and Corollary 3.2 in [24], x = 0 is locally exponentially

stable (LES) when both matrices D(t) and S(t) are larger than some constant positive
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2.3. Observer Design

matrix and the pair (A?(t), C?(t)), with A?(t) , A(0, t), C?(t) , C(0, t), is uniformly

observable.
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3
Introduction to Homography and

Continuous Homography

3.1 Introduction

In this chapter, we begin by unveiling the basic geometrical concepts that relates two

views of the camera while observing a planar scene. This chapter serves to introduce

the basic building blocks for the estimation of Homography. Then we talk about some

existing feature-based approaches for homography estimation with a particular focus

on nonlinear homography observers on SL(3) where a notable contribution has been

made by the members of the I3S-OSCAR team [34]. Finally, we propose a new observer

that addresses the same problem as [21] but follows a different approach by directly ex-

ploiting the basis of the Lie algebra of the group SL(3). The proposed observer is also

ideal for the estimation of the so-called “continuous homography” and the optical flow

by exploiting the homography estimated from every two consecutive images obtained

from a combined Camera-IMU (Inertial Measurement Unit) system. Also, the proposed

observer is extremely effective due to its simplicity thus making it ideal for real-time

implementation.

17



3.2. Preliminary material for Homography Estimation

This chapter is divided into 3 sections. Section 3.2 gives a brief description of the

notation and the math related to homography. In Section 3.3, various feature-based

approaches (algebraic as well as geometric) for homography estimation have been dis-

cussed. In Section 3.4 a novel linear approach for observer design on SL(3) is proposed

using point correspondences and the knowledge of the group velocity. In Section 3.6 the

computation of the optical flow estimate extracted from continuous homography as well

as experimental results supporting the proposed approach are presented.

3.2 Preliminary material for Homography Estimation

3.2.1 Perspective Projection

Visual information about the environment is obtained by projecting an observed scene

onto the camera image surface. Typically two types of parameters are needed in order

to reconstruct the 3D structure of a scene: intrinsic ("internal" parameters of the camera

such as the principal point, the pixel aspect ratio, focal length etc.) and extrinsic (pa-

rameters that defined the location and orientation of the reference camera frame w.r.t a

known world reference frame).

Let Å (resp. A) denote projective coordinates for the image plane of a camera Å (resp.

A), and let {Å} (resp. {A}) denote its frame of reference. The position of the frame {A}
with respect to {Å} expressed in {Å} is denoted by ξ ∈ R3. The orientation of the frame

{A}with respect to {Å} is represented by a rotation matrixR ∈ SO(3) (see Fig. 3.1). The

coordinates of a point in the reference frame (P̊ ∈ {Å}) are related to its coordinates in

the current frame(P ∈ {A}) using the relation

P̊ = RP + ξ (3.1)

In the commonly used approximation [25], the intrinsic camera parameters define a 3X3

matrix K so that one can write

p̊im ∼= KP̊ , pim ∼= KP (3.2)

where pim ∈ A denotes the image of the considered point when the camera is aligned

with the frame {A} and p̊im ∈ Å denotes the image of the considered point when the

camera is aligned with the frame {Å}. Both these points have the form (u, v, 1)T using

the homogeneous coordinate representation. If the intrinsic parameters of the camera

18
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d̊

P̊i

Pi
d

−→η

{Å}

{A}
(R, ξ)

Figure 3.1: Euclidean homography relating the camera’s pose, the distance to the plane
and the plane’s normal vector by H = R+ 1

dξη
>.

are known meaning that the camera is calibrated one can write 1:

p̊ =
K−1p̊im

|K−1p̊im|
, p =

K−1pim

|K−1pim|
(3.3)

3.2.2 Homographies

In the field of Computer Vision, the so called homography is an invertible mapping that

relates two camera views of the same planar scene by encoding in a single matrix the

1Most statements in projective geometry involve equality up to a multiplicative constant denoted by ∼=
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3.2. Preliminary material for Homography Estimation

camera pose, the distance between the camera and the scene, along with the normal

direction to the scene(e.g., [25]). For thouroughly understanding this part, more details

about the homography estimation are presented below by borrowing some material from

[34]. Let d̊ (resp. d) and n̊ (resp. n) denote the distance from the origin of {Å} (resp. {A})
to the observed planar scene and the coordinate normal vector pointing towards the

scene expressed in {Å} (resp. {A}), respectively. One can easily verify that{
η = R>n̊

d = d̊− η̊>ξ
(3.4)

Now by rearranging the terms in (3.1) one obtains

P = R>(P̊ − ξ) (3.5)

Since the target points belong to the same observed planar scene

Π := {∀P ∈ R3 : η>P − d = 0} = {∀P̊ ∈ R3 : η̊>P̊ − d̊ = 0}

one derives from the planar constraint η̊>P̊

d̊
= 1 and (3.5) that the projected point obeys

the relation

P = R>
(
I3 −

ξη̊>

d̊

)
P̊ (3.6)

Using (3.3) and (3.6), the projected point satisfies

p ∼= R>
(
I3 −

ξη̊>

d̊

)
p̊ ∼= Hp̊ (3.7)

where the projective mapping

H :∼= R> −R> ξη̊
>

d̊
(3.8)

is defined as the Euclidean homography that maps Euclidean coordinates of the scene’s

points from {Å} to {A}. Using (3.4) one verifies that

H−1 ∼= R+
ξn>

d
(3.9)

Depending on literature, either H given by (3.8) or H−1 given by (3.9) is referred to

as Homography. Since a non-degenerate homography matrix H (i.e. det(H) 6= 0) is

only defined up to a scale factor, it has 8 degrees of freedom while it has 9 entries.

An additional constraint is thus required. Several possibilities have been proposed in
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Chapter 3. Introduction to Homography and Continuous Homography

literature. For instance, a simple constraint of fixing the third diagonal element of H

equal to 1 (i.e. h3,3 = 1) is proposed in [25]. Another possibility consists in fixing the

Frobenius norm of H equal to 1 [25]. Finally, as any non-degenerate homography matrix

is associated with a unique matrix H̄ ∈ SL(3) by re-scaling H̄ = det(H)−
1
3H such that

det(H̄) = 1, without loss of generality it can be assumed that H is an element of SL(3)

as originally proposed in [5].

Recall that the scale factor γ such that H = γR>
(
I − ξη̊>

d̊

)
is equal (d̊/d)

1
3 and cor-

responds to the second singular value of H [32].

The so-called “image” homography matrixHimg ∈ SL(3) that maps pixel coordinates

from A to C (i.e. pimg ∼= Himgp̊img) then satisfies Himg = KHK−1.

Expression (3.7) provides the transformation by the homography H of point-feature

correspondences between two image frames. Analogously, one can find the transforma-

tion by H of the correspondences of line features in [35] and conic features (i.e ellipses,

hyperbolas) [28].

Homography plays a crucial role in various computer vision and robotics applica-

tions where the working environment consists of man made structures that are com-

posed of nearly planar surfaces. In one of the works by [71], the rigid body pose of a

robot equipped with a monocular camera was estimated by exploiting the homography

matrix. Homography sequences have been also used for the navigation of robotic vehi-

cles [64] and one of the most successful visual servo control paradigms [52] exploits the

homography estimation. Apart from the applications mentioned above, homography-

based methods can also be used for image stabilization, image mosaicing as well as con-

trol of autonomous underwater vehicles.

3.2.3 Homographies as elements of the Special Linear Group SL(3)

The special linear group SL(3) is defined as the set of all real valued 3× 3 matrices with

unit determinant

SL(3) :=
{
H ∈ R3×3 | det(H) = 1

}
Since any homography matrix is associated with a unique matrix H̄ ∈ SL(3) by re-scaling

H̄ = det(H)−
1
3H

such that det(H̄) = 1. Moreover the map

w : SL(3)× P→ P2

(H, p) 7→ w(H, p) ∼=
Hp

|Hp|
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3.2. Preliminary material for Homography Estimation

is a group action of SL(3) on the projective space P2 since

w(H1, w(H2, p)) = w(H1, H2, p), w(I3, p) = p, p ∈ P2

where H1, H2 and H1H2 ∈ SL(3) and I is the identity matrix, the unit element of SL(3).

The geometrical meaning of the above property is that the 3D motion of the camera

between views A0 and A1, followed by the 3D motion between views A1 and A2 is the

same as the 3D motion between views A0 and A2. As a consequence, we can think of

homographies as described by elements of SL(3).

For completeness, let us recall on the Lie algebra sl(3) of SL(3). It is defined by

sl(3) :=
{
U ∈ R3×3 | tr(U) = 0

}
Since the Lie algebra sl(3) is of dimension 8, it can be spanned by 8 generators so that

for any ∆ ∈ sl(3) there exists a unique vector δ ∈ R8 such that

∆ =
8∑
i=1

δiBi (3.10)

where the basis of sl(3) are chosen as follows:

B1 = e1e
>
2 , B2 = e2e

>
1 , B3 = e2e

>
3

B4 = e3e
>
2 , B5 = e3e

>
1 , B6 = e1e

>
3

B7 = e1e
>
1 −

1

3
I3, B8 = e2e

>
2 −

1

3
I3

with I3 the identity element of R3×3 and {e1, e2, e3} the canonical basis of R3.

3.2.4 Rigid-body and Homography Dynamics

Consider a camera attached to the moving frame {A}moving with kinematics{
Ṙ = RΩ×

ξ̇ = RV
(3.11)

viewing a stationary planar scene, where Ω and V are the angular and linear velocities

of {A} with respect to {Å} expressed in {A}, respectively. Then the kinematics of the

associated homography matrix H ∈ SL(3) are given by

Ḣ = HU (3.12)
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Chapter 3. Introduction to Homography and Continuous Homography

The group velocity U ∈ sl(3) induced by the camera motion, and such that the dynamics

of H are in the form (3.12), then satisfies [50, Lem. 5.3]

U = Ω× +
V η>

d
− η>V

3d
I3 (3.13)

The group velocity U given by 3.13 is often referred to as “Continuous Homography” in

the literature [48].

3.3 Existing feature-based homography estimation techniques

Classical algorithms for homography estimation taken from the computer vision com-

munity consist of computing the homography on a frame-by-frame basis by solving al-

gebraic constraints related to correspondences of image features (points, lines, conics,

contours, etc.) [25, 1, 37, 40, 9]. These algorithms only considered the homography as

an incidental variable and were not focused on improving (or filtering) the homography

over time. In recent years, advances have been made in homography estimation algo-

rithms by exploiting the temporal correlation of data across a video sequence rather than

computing algebraically individual raw homography for each image. Powerful method-

ologies for nonlinear observer design on Lie groups (e.g. [51]) have been instrumental

for the derivation of these algorithms.

A nonlinear observer was proposed in [50] based on the underlying structure of the

Special Linear group SL(3), which is isomorphic to the group of homographies [5]. Ve-

locity information was exploited to interpolate across a sequence of images and improve

the individual homography estimates. The observer, however, still requires individual

image homographies (previously computed using an algebraic technique) as the feed-

back information. Thus, it needed both a classical homography algorithm and a tempo-

ral filter algorithm, and only functions if each pair of images provides sufficient features

to algebraically compute a raw homography.

In order to overcome these drawbacks, the question of deriving an observer for a

sequence of image homographies, which takes image point-feature correspondences di-

rectly as input has been considered [21, 34]. The previous observer is extended by also

incorporating image line-feature correspondences (in addition to point-feature corre-

spondences) directly as input in the design of observer innovation [33]. In line with this

effort, conic-feature correspondences (i.e. non-degenerate second-order features such

as ellipses and hyperbolas) are considered for the construction of observer innovation

[28]. Without requiring any prior step for reconstruction of individual homographies for

feeding the observer innovation, these algorithms are suitable for real-time applications

using an embedded computer. In contrast with algebraic techniques, these observers are
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3.3. Existing feature-based homography estimation techniques

also well posed even when there is insufficient data for full reconstruction of a homogra-

phy. In such situations, these algorithms continue to operate by incorporating available

information and relying on propagation of prior estimates. Thereafter, a classical alge-

braic algorithm and a state-of-the-art nonlinear observer on SL(3) for homography esti-

mation that exploit the simplest feature correspondences – the point correspondences –

are recalled for the purpose of understanding.

3.3.1 A classical algebraic algorithm of homography estimation

Homography estimation is a topic well developed and discussed in classical computer

vision books [25, 65]. In this section, the so-called Direct Linear Transformation (DLT)

method which employs point correspondences for homography estimation is briefly re-

vised.

Given a set of four 2D to 2D point correspondences, pi ↔ p̊i, where p̊i (resp. p̊i) is the

re-normalized point of Pi (resp. P̊i), as shown in (3.3). Denote [ui, vi, wi]
> coordinates of

pi. Equation (3.7) implies that pi × (Hp̊i) = 0 which in turn yields 0 −wip̊>i vip̊
>
i

wip̊
>
i 0 −uip̊>i

−vip̊>i uip̊
>
i 0


 h1

h2

h3

 = 0 (3.14)

with hj (j = 1, 2, 3) the jth column of H . Equation (3.14) contains three equations,

however only two of them are linearly independent. By omitting, for instance, the third

equation, each point correspondence pi ↔ p̊i gives two equations in the entries of H as

[
0 −wip̊>i vip̊

>
i

wip̊
>
i 0 −uip̊>i

] h1

h2

h3

 = 0

These equations have the formLih = 0 whereLi is a 2×9 matrix and h = [h>1 h>2 h>3 ]>

the vector of 9 unknown entries of H . From a set of four point correspondences on

the observed plane, a set of 8 equations in form of Lh = 0 is obtained, where L is the

matrix of dimension 8 × 9 obtained by stacking the rows of Li contributed from each

correspondence. One observes that h = 0 is an obvious solution.

For a set of four consistent points (in the sense that all triplets of these four points are

linearly independent), L has rank 8, and thus with an additional constraint of the norm

|h| > 0, the obvious solution is avoided and h is defined up to scale. For simplification,

one can choose |h| = 1 which is equivalent to having the Frobenius norm of H equal to

1.
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Solving these algebraic equations on a frame-by-frame basis requires computation

power. It can only be carried out if the number of point correspondence is not less

than 4 and these point correspondences are consistent. Insufficient number of feature

correspondence leads to calculation corruption. The above-presented algorithm is the

basis of the cv :: findHomography function of OpenCV2.

3.3.2 Nonlinear homography observer on SL(3)

The homography defined by (3.7) in this work maps Euclidean coordinates of the scene’s

points from {Å} to {A}. In the reverse direction, H := H−1 mapping Euclidean coordi-

nates of the scene’s points from {A} to {Å} satisfies

p̊i ∼= Hpi (3.15)

The re-normalized point pi is thus given by

pi =
H−1p̊i
|H−1p̊i|

(3.16)

Now, the basic ideas of observer design proposed in [34], [36] for H on SL(3) based

on direct point correspondence are recalled. To expose the underlying ideas of observer

design, in this part we consider the simplified case where the group velocity U is known.

Assume that a set of n measurements pi = h(H, p̊i) ∈ P2, i = {1 . . . n} in form of (3.16)

in the camera frame {Å} is available, where p̊i ∈ P2 are constant and known.

Definition 5. (Consistency) Assume that a setMn of n ≥ 4 vector directions p?i ∈ P2, with
i = {1 . . . n} contains a subsetM4 ⊂ Mn of 4 constant vector directions such that all vector
triplets inM4 are linearly independent. In this caseMn is called consistent.

Let Ĥ ∈ SL(3) denote the estimate of H . Then the goal is to drive the error term

H̃ = ĤH−1 to the identity matrix I3. The output errors i.e the estimates ei of p̊i are

defined as follows,

ei =
Ĥpi

|Ĥpi|
=

H̃p̊i

|H̃p̊i|
(3.17)

The proposed observer takes the form

˙̂
H = ĤU + ∆Ĥ, Ĥ(0) ∈ SL(3) (3.18)

2
https://docs.opencv.org/3.4.1/d9/dab/tutorial-homography.html
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3.4. Novel approach for Homography Observer design on SL(3)

where ∆ ∈ sl(3) is the innovation term designed as

∆ =
n∑
i=1

πei p̊ie
>
i (3.19)

with πx :=(I3 − xx>), ∀x ∈ S2.

Differentiating ei from equation (3.17) we obtain

ėi = kPπei∆ei (3.20)

For the stability analysis the following Lyapunov function is considered:

L =
n∑
i=1

1

2
|ei − p̊i|2 (3.21)

Using the consistency of the setMn, one can ensure that L is locally a definite positive

function of H̃ . Differentiating L and substituting the value of ∆, it yields

L̇ = −kP

∥∥∥∥∥
n∑
i=1

eip̊
>
i πei

∥∥∥∥∥
2

(3.22)

From the above equation we can see that the derivative is negative semi-definite ensur-

ing that H̃ is locally bounded and the equilibrium H̃ = I3 is asymptotically stable [21,

Th. 3.2].

For the interested reader, the observer design with partial knowledge of the group ve-

locity has also been discussed in [21].

3.4 Novel approach for Homography Observer design on SL(3)

The equation of the proposed homography estimator taking into account system kine-

matics in (3.11) can be expressed as a kinematic filter system on SL(3) as

˙̂
H = ĤU + ∆Ĥ (3.23)

where the innovation term ∆ ∈ sl(3) has to be designed in order to drive the group

error H̃ := ĤH−1 to identity, based on the assumption that we have a collection of n

measurements pj =
H−1p̊j
|H−1p̊j | ∈ S

2 (j = 1, . . . , n), with p̊j ∈ S2 known and constant. Here

pj and p̊j represent calibrated image points normalized onto the unit sphere and can be
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computed as

pj =
K−1pimj
|K−1pimj |

, p̊j =
K−1p̊imj
|K−1p̊imj |

The output errors ej are defined as

ej :=
Ĥpj

|Ĥpj |
=

H̃p̊j

|H̃p̊j |
(3.24)

which thus can be viewed as the estimates of p̊j .

In order to design the innovation term ∆, we first develop linear approximations of

both the dynamics of H̃ and the system output errors ei. Taking the time derivative of

H̃ (= ĤH−1) and using first order approximation H̃ ≈ I one obtains

˙̃H = ∆H̃ =
8∑
i=1

δiBiH̃ ≈
8∑
i=1

δiBi (3.25)

where the linear representation δ ∈ R8 of ∆ via the relation (3.10) is used (∆ =
8∑
i=1

δiBi).

Let x ∈ R8 denote the linear representation of H̃ . One then deduces the following

approximation

H̃ = exp(
8∑
i=1

xiBi) ≈
(
I3 +

8∑
i=1

xiBi

)
(3.26)

Using (3.26) one obtains

˙̃H ≈
8∑
i=1

ẋiBi (3.27)

From (3.25) and (3.27) it is obvious that

ẋ ≈ δ (3.28)

Now we focus on the linearization of the output vectors. From (3.24) and (3.26) the

output errors ej can be expressed as

ej ≈
p̊j +

8∑
i=1

xiBip̊j

|p̊j +
8∑
i=1

xiBip̊j |

≈
(
p̊j +

8∑
i=1

xiBip̊j

)(
1− p̊>j

8∑
i=1

xiBip̊j

)
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Neglecting high order terms one gets

ej ≈ p̊j +
8∑
i=1

xiBip̊j −
8∑
i=1

xip̊j p̊
>
j Bi

⇒ ej − p̊j ≈
8∑
i=1

xiπp̊jBip̊j = Cjx

with πy := I3 − yy>, ∀y ∈ S2, the projection operator on the plane orthogonal to y and

Cj :=
[
πp̊jB1p̊j | · · · | πp̊jB8p̊j

]
∈ R3×8

Stacking all n measurements in a vector as follows

y :=


e1 − p̊1

...

en − p̊n

 ∈ R3n (3.29)

one obtains

y ≈ Cx (3.30)

with C :=


C1

...

Cn

 ∈ R3n×8.

From here, the innovation term δ (i.e. ∆) can be directly designed on the linear

approximation system (3.28) using the linear approximation (3.30) of the output vector

y. In fact, if the matrix C is of rank 8 (it is well known that the homography is observable

from the measurements of at least 4 linearly independent points [21]), then the design

of the innovation term δ is straightforward. An obvious solution is

δ = −kC>y

with k > 0, resulting in the following stable closed-loop system, in first order approxi-

mations,

ẋ = δ = −kC>Cx

Finally, ∆ ∈ sl(3) is computed from δ ∈ R8 using relation (3.10).

Proposition 1. Assume that the group velocity U ∈ sl(3) is known. Consider the following
nonlinear filter

˙̂
H = ĤU + ∆Ĥ (3.31)
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with

∆ =
8∑
i=1

δiBi, δ = −kC>y

with y given by (3.29). Then, if the set of measured directions p̊i is consistent, the equilibrium
H̃ = I3 of the error system is locally exponentially stable.

3.5 Proof of Proposition 1
We will introduce some notations and mathematical properties which are instrumental

for the proof of the main Proposition 1 in this chapter.

Let ∧ denote the mapping ∧ : R8 → sl(3) that maps the vector δ ∈ R8 to an element

of sl(3)

δ∧ :=
8∑
i=1

δiBi

The operator vec∨ : sl(3)→ R8 denotes the inverse of the (·)∧ operator, namely

vec∨(δ∧) = δ, ∀δ ∈ R8

For any A ∈ Rn×n, vect(A) ∈ Rn2
denotes the column vector obtained by the concatena-

tion of columns of the matrix A as follows

vect(A) = [a1,1, · · · , an,1, a1,2, · · · , an,2, · · · , a1,n, · · · , an,n]>.

The matrix representation of the composition of the linear maps (vect◦∧) : R8 → sl(3)→
R9 is denoted by the full columns rank matrix J∧K ∈ R9×8. We recall that the matrix

representation of the composition of the linear maps (vect ◦ ∧) is denoted by the full

columns rank matrix J∧K ∈ R9×8. Let Jvec∨K ∈ R8×9 denotes the matrix representation

of the inverse of the map (vect ◦ ∧), namely

vect(v∧) = (vect ◦ ∧)(v) = J∧Kv,
vect∨(v∧) = (vect ◦ ∧)−1(vect(v∧)) = Jvect∨Kvect(v∧),

for any v ∈ R8. The operator ⊗ denotes the usual Kroneker product.

Remark 1. The proof is inspired from Theoram 1 proved in [10].

Proof. By considering the Euclidean homography (3.12), with kinematics (3.11),

(3.13) along with the observer (3.23), the dynamics of the error system are given by

˙̃H = ∆H̃
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3.5. Proof of Proposition 1

To prove that the origin of the error system H̃ = I3 is locally exponentially stable,

it is sufficient to show that the origin of the linearized error system is exponentially

stable. Let us define x∧, with x ∈ R8 , the first order approximation of H̃ around the

equilibrium I3

H̃ ≈ (I3 + x∧) = I3 +
8∑
i=1

xiBi

A first-order approximation of the output errors ei given by (3.17), considering the

equation above, can be written as

ei − p̊i = πp̊ix∧p̊i

= vect(πp̊ix∧p̊i)

Using the property vect(AXB) = (B> ⊗A)vect(X), one obtains

ei − p̊i = (p̊>i ⊗ πp̊i)vect(x∧)

= (p̊>i ⊗ πp̊i)J∧K
(3.32)

Now in first order approximation one has

ẋ = −kC>Cx (3.33)

with Ci = (p̊>i ⊗ πp̊i) and C :=


C1

...

Cn

.

From (3.32), (3.33) and using the property (A⊗B)> = A> ⊗B> we obtain

ẋ = −kJ∧K>
n∑
i=1

(p̊>i ⊗ πp̊i)
>(p̊>i ⊗ πp̊i)J∧Kx

= −kJ∧K>
n∑
i=1

(p̊i ⊗ πp̊i)(p̊
>
i ⊗ πp̊i)J∧Kx

(3.34)

Using the property (A⊗B)(C ⊗D) = AC ⊗BD it yields,

ẋ = −kJ∧K>(p̊ip̊
>
i ⊗ πp̊iπp̊i)J∧Kx

= −kJ∧K>(p̊ip̊
>
i ⊗ πp̊i)J∧Kx

(3.35)
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Consider the Lyapunov function

L0 =
|x|2

2k
(3.36)

with L̇0 = −x>Px and the matrix P defined as follows

P := J∧K>
n∑
i=1

(p̊ip̊
>
i ⊗ πp̊i)J∧K (3.37)

Then as shown in Theoram 1 in [10] and due to the consistency of the measure-

ment set (see definition 5) it is proved that P is positive definite by contradiction.

Therefore we can conclude that the equilibrium H̃ = I3 of the error system is locally

exponentially stable which in turn concludes the proof.

3.6 Application to optical flow estimation

In this section we talk about the estimation of optical flow that can be obtained from

the decomposition of the continuous homography and provide some experimental re-

sults. Using a moving Camera-IMU (i.e. a combined system composed of a Camera and

an Inertial Measurement Unit) that observes a stationary planar scene, the previously

proposed algorithm in section 3.4 can be applied to estimate the homography matrix H

related to every two consecutive images. If the camera frequency is fast enough, then

the continuous homography U defined by (3.13) can b approximately computed via log-

arithm operator as

U ≈ 1

T
log(H)

with T the camera sample time. Since H is normally close to the identity matrix, log(H)

can then be approximated using Taylor expansions as follows:

log(H) = log(I3 −W ) ≈ l̃og(H) := −W − W 2

2
− W 3

3
− · · ·

with W := I3 −H . However, such an approximation no longer ensures that both l̃og(H)

and the resulting U will remain in sl(3). Hence a reprojection on sl(3) is needed

U ≈ 1

T

(
l̃og(H)− 1

3
tr(l̃og(H))I3

)

Denoting φ := V
d and φ⊥ := V >η

d = −ḋ
d , which respectively correspond to the so-

called translational optical flow and its projection along the normal vector η. Our objec-
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tive consists in obtaining the estimation of both φ and φ⊥ from the decomposition of the

already computed continuous homography U .

Using the fact that the angular velocity of the Camera-IMU is measured by the gy-

rometers, one deduces

Ū :=
V η>

d
= U − 1

2
γ2(U + U>)I3 − Ω×

with γ2(U + U>) the second largest eigenvalue of U + U> [48]. Taking into account the

fact that η ∈ S2 one deduces

Φ := φφ> = Ū Ū>

Defining β as the vector of the diagonal elements of Φ as follows

β =

Φ11

Φ22

Φ33


one verifies that

Ū>β = η(φ3
1 + φ3

2 + φ3
3)

From here, the estimate of φ is calculated as follows

φ̂ =

Ū
Ū>β

|Ū>β|
if |Ū>β| > εη

0 if |Ū>β| < εη

with εη > 0 being a small given threshold. Finally, the estimate of φ⊥ is straightforwardly

obtained by

φ⊥ = tr(Ū)

3.6.1 Experimental Results

3.6.1.1 Experimental Setup

A Visual-Inertial (VI) sensor [62] developed by the company Skybotix and the Autonomous

Systems Lab (ETH Zurich) has been used to perform experimental validation (see Fig.

3.2). This VI-sensor consists of two cameras and two IMU’s (composed of a 3-axis gyrom-

eter and a 3-axis accelerometer). However, in order to validate the proposed approach

only one camera and one IMU are sufficient. One of the main reasons for using the VI-

sensor is the possibility to obtain perfectly time-synchronized images and IMU measur-

ments (20Hz for camera and 200Hz for IMU). For validation purposes, the ground truth
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Figure 3.2: Experimental setup

Figure 3.3: Textured planar horizontal ground (target) used for experiment validations
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3.6. Application to optical flow estimation

is obtained by using the highly accurate Optitrack Motion Capture system available at

the I3S lab that provides the full pose of the Camera-IMU system at 120Hz.

The proposed algorithm has been implemented using C++ on an Intel Core i7 CPU

running at 3.40Ghz. A high speed ethernet cable is used to carry out the transmission

of data from the camera to the PC. The Linux based PC is in charge of carrying out two

principal software tasks:

• Acquisition of data (images as well as IMU data) by interfacing with the camera

hardware.

• Continuous homography estimation based on two consecutive images that is fur-

ther decomposed to obtain the estimation of φ(= V
d ) and φ⊥(= − ḋ

d) in real-time.

3.6.1.2 Experimental Results and Conclusions

The experiment reported below has been performed online with the VI-sensor camera

looking downward to observe a well textured planar horizontal ground (see Fig. 3.3).

A video showing this experiment is provided as a supplementary material and is also

available at:

https://goo.gl/i8zGj2

From Figs. 3.4 and 3.5, one can observe that the estimation of the translational opti-

cal flow φ and its perpendicular component φ⊥(optical flow divergence) obtained from

the decomposition of the estimated continuous homography are pretty accurate when

compared to the corresponding ground-truth data. The experimental results thus show

the performance and the robustness of the proposed approach in real time. However

we also notice the fact that the estimates of the optical flow and the optical flow diver-

gence are a bit noisy. Thus, in order to exploit these measurements e.g for control of

autonomous vehicles it is extremely important to either filter these values or another

possible solution could be to estimate the velocity directly.
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ḋ

d

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
GROUND TRUTH
MEASURED

Figure 3.5: φ⊥ = −ḋ
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4.1. Introduction

4
Riccati observers for state estimation

exploiting optical flow and IMU
measurements

4.1 Introduction

The recent proliferation of mini Unmanned Aerial Vehicles (UAVs), the emergence of

modern embedded computing, and the availability of low-cost MEMS sensor systems

have opened a vast range of new civil applications such as traffic congestion monitoring,

environmental sensing, infrastructure inspection, real estate photography, and hazard

detection and surveillance. In practice, most of these applications require the UAVs to

fly in close proximity to the physical environment with GPS signals that are sometimes

unavailable or unreliable. A number of research groups work actively on associated

technical issues. Significant advances have also been obtained in the last few years in

the domain of controlling aerial robotic vehicles. We may cite, for instance, quadrotor

landing on inclined surfaces [73], quadrotor manoeuvring with a cable-suspended pay-

load [72], inverted pendulum balancing and catching [7]. However, in these examples
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the local environment is not taken into account. The control algorithms rely on full state

measurements obtained from an external 3D localization system, which limits their ap-

plicability to a suitably equipped experimental flight area. Documented results for aerial

robotic vehicles in a GPS-denied environment using onboard exteroceptive sensors, such

as laser range finders or vision, involve far less aggressive manoeuvres [20, 70]. A central

issue is thus the estimation of the vehicle’s state relatively to its environment via the use

of sensors that do not measure this state directly. It is only in the last five years or so

that researchers have begun to tackle this issue by focusing primarily on the problem of

attitude estimation when the vehicle undergoes sustained accelerations. This led to the

development of velocity-aided attitude observers that fuse Inertial Measurement Unit

(IMU) readings with the linear velocity measurements [19, 26, 56, 66, 41, 6, 31]. The

lack of an onboard linear velocity sensor for mini UAVs led other researchers to exploit

the vehicle’s dynamics equations instead [44, 57, 3, 29]. Previously mentioned examples

exploit proprioceptive sensor modalities whereas typical tasks involve interaction of the

robotic vehicle with the environment. Combining a vision system with an IMU recently

led to the development of integrated observers that exploit optical flow measurements

and IMU readings to estimate the camera’s attitude, linear velocity, and its distance to a

planar target [76, 18, 17]. The standard approach consists in applying extended Kalman

filters and showing experimentally the practical convergence of the estimation errors

[76]. However, observability and convergence analyses are either missing or incomplete

in these studies. An alternative solution is to use deterministic observer design tech-

niques, alike those reported in [18, 17] except that the algorithms proposed in theses

references rely on the strong assumption of an IMU providing measurements of the ve-

hicle’s linear acceleration expressed in the body-fixed frame1.

In this chapter, the problem of attitude, linear velocity and depth estimation is revis-

ited by also adopting a deterministic observer point of view, but without relying on the

assumption used in [18, 17]. The proposed observer is adapted from the deterministic

Riccati observer design framework derived in [23]. In contrast with most existing works

on the same topic [76], the structural question of observability, on which the exponential

stability and convergence of the observer rely, is here addressed with the derivation of

an explicit (and simple) observability condition based on the persistence of excitation

granted by the camera-IMU linear velocity. Several practical algorithmic and imple-

mentation issues are also discussed. In the end we also propose an extension to observer

design for optical flow filtering.

1In fact, accelerometers only provide measurements of the so-called specific acceleration.
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4.2 System Equations and Measurements for Observer Design

The vehicle’s attitude satisfies the differential equation

Ṙ = RΩ× (4.1)

It is assumed that the vehicle is equipped with an IMU comprising a 3-axis gyrometer

that measures the angular velocity Ω ∈ R3 and a 3-axis accelerometer that measures

the so-called specific acceleration aB ∈ R3, expressed in {B}. Using the flat non-rotating

Earth assumption, one has [6]

V̇ = −Ω×V + aB + gR>e3 (4.2)

A 3-axis magnetometer is also assumed to be available to measure the normalized Earth’s

magnetic field vector expressed in {B}. Let mI ∈ S2 denote the known normalized

Earth’s magnetic field vector expressed in {I}. The vectors mI and e3 are usually as-

sumed to be non-collinear so that R can be estimated from the observation (measure-

ments) in the body-fixed frame of the gravity vector and of the Earth’s magnetic field

vector. The magnetometer thus measures mB = R>mI . The need for using the magne-

tometer is optional and is only required for yaw estimation.

We further assume that the vehicle is equipped with a monocular camera that ob-

serves a planar scene so that we can obtain an estimation of the continuous homogra-

phy from which we extract the optical flow (φ := V
d ) and the optical flow divergence

(φ⊥ := V >η
d = −ḋ

d ) which serve as measurements for the observer design. We further

define

s ,
1

d
(4.3)

From (4.3) one deduces

ṡ = − ḋ

d2
= φ⊥ s (4.4)

In summary, the observer design for R, V and s (i.e. d) will be based on Eqs. (4.1)–

(4.4) and the measured quantities
V

d
, φ, ω, aB and mB. We will also show thereafter that

the magnetometer measurements mB are not required if we only need to estimate the

gravity direction (i.e. R>e3) instead of the whole attitude R.
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4.3 Partial Attitude, Linear Velocity and Depth Estimation of a

Camera observing a planar target using continuous homography

and inertial data

4.3.1 Observer Derivation

Let R̂ ∈ SO(3), V̂ ∈ R3, ŝ ∈ R denote the estimates of R, V and s, respectively. In view

of the equations (4.1), (4.2) and (4.4), the following observer form is considered
˙̂
R = R̂Ω× − [σR]×R̂
˙̂
V = −Ω×V̂ + aB + gR̂>e3 − σv
˙̂s = φ⊥ ŝ− σs

(4.5)

where σR, σv ∈ R3, σs ∈ R are innovation terms to be designed thereafter. Defining the

observer error variables

R̃ , RR̂>, Ṽ , V − V̂ , s̃ , s− ŝ

then the objective of the observer consists in stablizing (R̃, Ṽ , s̃) around (e3, 0, 0) when

the estimation of the gravity direction is concerned instead of the whole attitude estima-

tion). One verifies from (4.1), (4.2), (4.5) that the error dynamics are given by
˙̃R = R̃[σR]×
˙̃V = −Ω×Ṽ + gR̂>(R̃> − I3)e3 + σv
˙̃s = φ⊥s̃+ σs

(4.6)

We will work out next first order approximations of the error system (4.6) complemented

with first order approximations of the measurement equations. The application to these

approximations of the Riccati observer design framework reported in [23] (see Section

II-D) will then provide us with the equations of the innovation terms of the proposed

observer.

For this application the following technical (but non-restrictive) assumption is made.

Assumption 2. V (t), V̇ (t), Ω(t) and φ are bounded in norm by some positive numbers Vmax,
V̇max, Ωmax and φmax, respectively. The distance d is lower- and upper-bounded by some
positive numbers dmin and dmax, respectively.

First order approximations of the attitude error equations are derived using a (local)

minimal parametrization of the rotation group SO(3). The parametrization here chosen

is the vector part q̃v of the Rodrigues unit quaternion q̃ = (q̃0, q̃v) associated with R̃.
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Rodrigues formula relating q̃ to R̃ is

R̃ = I3 + 2[q̃v]×(q̃0I3 + [q̃v]×)

From this relation, one deduces

R̃ = I3 + [λ̃]× +O(|λ̃|2),

with λ̃ ∈ B3
2 equal to twice the vector part of the quaternion associated with the attitude

error matrix R̃. Then, in view of the dynamics of R̃ in (4.6) one verifies (see also [23])

that the derivative of λ̃ is given by

˙̃
λ = σR +O(|λ̃||σR|)

As for the dynamics of Ṽ one obtains

˙̃V = −Ω×Ṽ + gR̂>[e3]×λ̃+ σv +O(|λ̃|2)

= −Ω×Ṽ + gR̂>e2λ̃1 − gR̂>e1λ̃2 + σv

with λ̃1, λ̃2 the first and second components of λ̃.

Concerning the measurement of V
d one has

V

d
− V̂ ŝ = (Ṽ + V̂ )(s̃+ ŝ)− V̂ ŝ

= (ŝI3)Ṽ + V̂ s̃+O(|Ṽ ||s̃|)

By setting the system output vector equal to

y =
V

d
− V̂ ŝ (4.7)

one obtains LTV first order approximations in the form (2.20) with

x =


λ̃1

λ̃2

s̃

Ṽ

 , x1 =

[
λ̃1

λ̃2

]
, x2 =

[
s̃

Ṽ

]
, u =


σR,1

σR,2

σs

σv



A =


0 0 0 01×3

0 0 0 01×3

0 0 φ⊥ 01×3

gR̂>e2 −gR̂>e1 03×1 −Ω×

 ∈ R6×6

C =
[
03×1 03×1 V̂ ŝI3

]
∈ R3×6

(4.8)
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with σR,1, σR,2 the first and second components of σR. The third component σR,3 is

considered to be zero. From there the proposed observer is given by (4.5) with σR,1, σR,2
and σv determined from the input u calculated according to (2.22) and (2.23).

4.3.2 Observability analysis

According to [23, Corollary 3.2], good conditioning of the solutions P (t) to the CREs

and exponential stability of the proposed observer rely on the uniform observability of

the pair (A?(t), C?(t)) obtained by setting x = 0 in the expressions of the matrices A and

C given by (4.8). One verifies that
A? =


0 0 0 01×3

0 0 0 01×3

0 0 φ⊥ 01×3

gR?>e2 −gR?>e1 03×1 −Ω×


C? =

[
03×1 03×1 V sI3

]
(4.9)

with s = 1
d , φ⊥ = −ḋ/d, and R? ∈ SO(3) satisfying

R?>e3 = R>e3, Ṙ
? = R?Ω×

Proposition 2. The transient matrix Φ(τ, t) associated with A?(t), for all τ ≥ t, is given by

Φ(τ, t) =


1 0 0 01×3

0 1 0 01×3

0 0
s(τ)

s(t)
01×3

g(τ − t)R?(τ)>e2 −g(τ − t)R?(τ)>e1 03×1 R?(τ)>R?(t)

 (4.10)

Proof: The transient matrix Φ(τ, t) is the solution to the following equation

dΦ(τ, t)

dτ
= A?(τ)Φ(τ, t), Φ(t, t) = I6 (4.11)

From the above relation and the expression of A?(τ), one easily verifies that Φ(τ, t) has

the form

Φ(τ, t) =


1 0 0 01×3

0 1 0 01×3

0 0 ϕ33(τ, t) 01×3

ϕ41(τ, t) ϕ42(τ, t) 03×1 R̄(τ, t)>

 (4.12)
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where R̄(τ, t), with τ ≥ t, is the solution to the equation

dR̄(τ, t)

dτ
= R̄(τ, t)Ω(τ)×, R̄(t, t) = I3

It remains to compute ϕ33(τ, t), ϕ41(τ, t), ϕ42(τ, t). From (4.11), (4.12), and the definition

of φ⊥ (i.e. φ⊥ = −ḋ/d) one gets

dϕ33(τ, t)

dτ
= −dd(τ)

dτ

1

d(τ)
ϕ33(τ, t)

⇒ dϕ33(τ, t)

ϕ33(τ, t)
= −dd(τ)

d(τ)

⇒ ϕ33(τ, t) =
d(t)

d(τ)
=
s(τ)

s(t)

(4.13)

From (4.11) and (4.12), one has

dϕ41(τ, t)

dτ
= −Ω(τ)×ϕ41(τ, t) + gR?(τ)>e2

Then, by change of variable ϕ̄41(τ, t) := R?(τ)ϕ41(τ, t) the above equation yields

dϕ̄41(τ, t)

dτ
= ge2

from which one deduces

ϕ41(τ, t) = R?(τ)>ϕ̄41(τ, t) = g(τ − t)R?(τ)>e2 (4.14)

Similarly, one gets

ϕ42(τ, t) = R?(τ)>ϕ̄41(τ, t) = −g(τ − t)R?(τ)>e1 (4.15)

Finally, using the fact that R̄(τ, t)> = R?(τ)>R?(t) along with relations (4.13), (4.14)

and (4.15), one deduces the explicit form (4.10) of the transient matrix Φ(τ, t) (End of

Proof).

The following technical (but non-restrictive) assumption is made.

Assumption 3. V (t), V̇ (t), Ω(t) and φ⊥ are bounded in norm by some positive numbers
Vmax, V̇max, Ωmax and φ⊥max, respectively. The distance d is lower- and upper-bounded by
some positive numbers dmin and dmax, respectively.

Proposition 3. Assume that Assumption 3 holds. Assume that one of the following “persis-
tent excitation” conditions is satisfied:
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(C.1) For all Rγ ∈ SO(3) of the form

Rγ =

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 (4.16)

there exist δ, ρ > 0 and t0 ≥ 0 such that

1

δ

ˆ t+δ

t
U(τ)>U(τ)dτ ≥ ρI6, ∀t ≥ t0 (4.17)

with
U(τ) := s(τ)

[
g(τ − t)e1 g(τ − t)e2 R>γ v(τ) I3

]
(4.18)

where v(τ) := R(τ)V (τ) the velocity vector expressed in the inertial frame.
(C.2) For all Rγ ∈ SO(3) of the form (4.16), there exists δ, ρ > 0 and t0 ≥ 0 such that

ˆ t+δ

t
W (τ)>W (τ)dτ − 1

δ

(ˆ t+δ

t
W (τ)dτ

)>(ˆ t+δ

t
W (τ)dτ

)
≥ ρI3, ∀t ≥ t0 (4.19)

with
W (τ) :=

[
g(τ − t)e1 g(τ − t)e2 R>γ v(τ)

]
(4.20)

Then, the pair (A?, C?) given by (4.9) is uniformly observable and the equilibrium (R̂>e3, V̂ , ŝ) =

(R>e3, V, s) of the proposed Riccati observer is locally exponentially stable.

Proof: From definition 4 in Chapter 2 the pair (A?, C?) is uniformly observable if ∃δ, µ >
0 and t0 ≥ 0 such that

1

δ

ˆ t+δ

t
Φ(τ)>C?>(τ)C?(τ)Φ(τ)dτ ≥ µI6, ∀t > t0 (4.21)

We now prove (4.21). In fact, it is verified that

U(τ) = s(τ)
[
W (τ) I3

]
Thus, one has

U(τ)>U(τ) ≤ 1

d2
min

[
W (τ)>W (τ) W (τ)>

W (τ) I3

]
Then, using the fact that W is bounded, it is straightforward to verify that condition

(C.2) implies condition (C.1). Therefore, we only need to prove (4.21) for the case where

the persistent excitation condition (C.1) is satisfied.
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One verifies that

C?(τ)Φ(τ) = s(τ)

[
g(τ − t)R?(τ)>e2 −g(τ − t)R?(τ)>e1

V (τ)

s(t)
R?(τ)>R?(t)

]
= s(τ)R(τ)>

[
g(τ − t)γ2 −g(τ − t)γ1

v(τ)

s(t)
R(t)

]
(4.22)

where v(τ) := R(τ)V (τ) the velocity vector expressed in the inertial frame. Also

γ1,2 := R(τ)R?(τ)>e1,2 = R(0)R?(0)>e1,2 (4.23)

are constant and, thus, do not depend on τ . Using the relationR?>e3 = R>e3 one verifies

that

e>3 γ1,2(τ) = e>3 R(τ)R?(τ)>e1,2 = 0

meaning that γ1,2 is spanned by {e1, e2}. Therefore, there exists a constant rotation ma-

trix Rγ of the form (4.16) such that

Rγγ2 = e1, Rγγ1 = −e2, Rγ ∈ SO(3) (4.24)

For all x = [x1, x2, x3, x
>
4 ]>, with x1,2,3 ∈ R, x4 ∈ R3, using (4.22) one deduces

C?(τ)Φ(τ)x = s(τ)R(τ)>Rγ

[
g(τ − t)e1 g(τ − t)e2

R>γ v(τ)

s(t)
R>γ R(t)

]
x

= s(τ)R(τ)>Rγ

[
g(τ − t)e1 g(τ − t)e2 R>γ v(τ) I3

]
x̄

= R(τ)>RγU(τ)x̄

with x̄ := [x1, x2,
x3

s(t)
, (R>γ R(t)x4)>]> (which ensures that |x̄| ≥ min(1, dmin)|x|) and U

defined by (4.18). One then obtains

x>Φ(τ)>C?>(τ)C?(τ)Φ(τ)x = x̄>U(τ)>R>γ R(τ)R(τ)>RγU(τ)x̄

= x̄>U(τ)>U(τ)x̄
(4.25)

From (4.25) and the persistent excitation condition C.1, one straightforwardly deduces

inequality (4.21), with µ = (min(1, dmin))2ρ, which concludes the proof (End of proof).

Now the persistent excitation condition give by Proposition (3) deserves some com-

ments.

• First, this condition is violated if the vehicle’s linear velocity is null for all time

(i.e. |V (t)| ≡ 0). In fact, in this situation it is impossible to recover the depth from
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monocular vision without any prior knowledge of the observed planar scene.

• If the vehicle does move “persistently” so that ∃δV , ρV > 0 such that

1

δV

ˆ t+δV

t
|V (τ)|dτ ≥ ρV , ∀t ≥ 0 (4.26)

and that Assumption 2 holds, then condition (3) is satisfied for almost all types of

motion, excepts some very particular cases. For instance, such is the case where the

vehicle moves, with constant linear velocity and constant attitude, in a straight-line

path parallel to the observed plane (i.e. V (t) and d(t) remain constant).

4.3.3 Yaw estimation

For completeness, the third component σR,3 of the innovation term σR is now indepen-

dently designed for yaw estimation.

Corollary 2. In addition to the innovations σR,1, σR,2 and σV specified previously, define

σR,3 = −kme>3 (R̂mB ×mI) (4.27)

where km ∈ R is either a positive number or km = (m2
1 + m2

2)DmPm, with Pm ∈ R solution
to the following CRE:

Ṗm = −(m2
1 +m2

2)2DmP
2
m + Sm, Pm(0) > 0

and Dm, Sm positive numbers. Then, the equilibrium (R̂, V̂ , ŝ) = (R, V, s) of the proposed
Riccati observer is locally exponentially stable.

Proof. As a result of Proposition 3, it suffices to prove the local exponential stability

of λ̃3 = 0 at the local zero-dynamics of λ̃3 by setting λ̃1 ≡ λ̃2 ≡ 0 and Ṽ ≡ 0. One

verifies that the zero-dynamics of λ̃3 are locally given by

˙̃
λ3 = σR,3

while the “conditioned” magnetometer measurement e>3 (R̂mB ×mI) in first order

approximations and with λ̃1 ≡ λ̃2 ≡ 0 is approximately given by

e>3 (R̂mB ×mI) = (m2
1 +m2

2)λ̃3

so that
˙̃
λ3 = −km(m2

1 +m2
2)λ̃3

From here the proof straightforwardly follows.
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4.4 Practical implementation aspects

4.4.1 Unit quaternion equivalence

Although the attitude estimate is designed on SO(3), it can be directly lifted to an equiv-

alent algorithm on the unit quaternion group (see, e.g., [36]). Let q̂ denote the unit

quaternion associated with R̂. Then, the proposed observer (5.11) can be rewritten as
˙̂q = 1

2(Γ1(Ω)− Γ2(σR))q̂
˙̂
V = −Ω×V̂ + aB + gR̂>e3 − σv
˙̂s = φ⊥ ŝ− σs

(4.28)

where the mappings Γ1,Γ2 : R3 → R4×4 are defined as

Γ1(x) =

[
0 −x>

x −[x]×

]
, Γ2(x) =

[
0 −x>

x [x]×

]
,∀x ∈ R3

and the term R̂ is calculated from q̂ using the Rodrigues formula.

4.4.2 Hybrid discrete-continuous version

In practice, the IMU measurements can be obtained at a very high frequency while the

continuous homography is often estimated at a much lower frequency. This fact should

be carefully taken into account in the implementation process. Inspired by existing

hybrid continuous-discrete Kalman or extended Kalman filters, we propose thereafter

a hybrid continuous-discrete version of the proposed observer, where for the sake of

simplicity the gain km involved in the expression (4.27) of the innovation component

σR,3 is a positive number.

Let {tk} denote the suite of time-instants that the continuous homography estimates

are obtained. Then, the prediction and correction steps of the proposed observer are

described below.

• Prediction step: At each step k, integrate during t ∈ [tk−1, tk] the following equations
˙̂q = 1

2(Γ1(Ω)− Γ2(σR,3e3))q̂
˙̂
V = −Ω×V̂ + aB + gR̂>e3

˙̂s = φ⊥ ŝ

Ṗ = AP + PA> + S

with q̂(tk−1) = q̂k−1|k−1, V̂ (tk−1) = V̂k−1|k−1, ŝ(tk−1) = ŝk−1|k−1, P (tk−1) = Pk−1|k−1 to

obtain
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q̂k|k−1 = q̂(tk)

V̂k|k−1 = V̂ (tk)

ŝk|k−1 = ŝ(tk)

Pk|k−1 = P (tk)

• Correction step: First, compute the innovation terms as

Kk = Pk|k−1C
>
k (CkPk|k−1C

>
k +D−1)−1

uk =


σRk,1

σRk,2

σsk

σvk

 = −Kkyk

with Ck =
[
03×1 03×1 V̂k|k−1 ŝk|k−1I3

]
, yk =

(
V
d

)
k
− V̂k|k−1ŝk|k−1. Then, update the

state estimates and the Riccati matrix as
q̂k|k = exp

(
−1

2Γ2(σRk,1e1 + σRk,2e2)
)
q̂k|k−1

V̂k|k = V̂k|k−1 − σV k
ŝk|k = ŝk|k−1 − σsk
Pk|k = (I6 −KkCk)Pk|k−1

with sinc(x) = sin(x)/x, ∀x ∈ R.

4.4.3 Practical solutions for the boundedness of P

As mentioned in Section 4.3.2 the Riccati matrix P is well conditioned provided that the

pair (A?, C?) given in (4.9) is uniformly observable (i.e. the persistent excitation con-

dition (3) is satisfied). However, when this uniform observability condition is violated

(as discussed in the end of Section 4.3.2) P may grow arbitrarily large or even explode.

Some “practical” solutions to that issue are proposed next. For instance, when the mea-

sured quantity V
d is not null, it is likely that condition (3) is satisfied. Therefore, when

the norm of V
d is smaller than some small threshold, one can simply inactivate the cor-

rection step and also the integration of P within the prediction step. Another solution

consists in saturating P after every correction step so that its Frobenius norm remains

always smaller than a given threshold. The latter should be chosen large enough so that

the saturation of P will not occur when the system is uniformly observable (i.e. suffi-

ciently excited).
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Figure 4.1: (Simulation) Estimated and ground-truth attitudes represented by roll,
pitch and yaw Euler angles (deg) versus time (s)

4.4.4 Simulation results

Simulations have been carried out using a dataset2 of a quadrotor UAV performing a

take-off followed by an aggressive circular flight so that its linear velocity and attitude

vary rapidly and in large proportions. The dataset contains time-stamped measurements

from the quadrotor’s IMU (180Hz) and “ground truth” poses (i.e. position and attitude)

provided by an external motion capture system (200Hz). This dataset is ideal to validate

the proposed observer for an extreme condition (i.e. aggressive flight) but without the

need for image processing and continuous homography estimation. Note that the latter

is not the focus of the present paper. As a matter of fact, the quantities such as V
d , φ⊥

and mB can be emulated from the ground-truth pose measurements. Whereas mB can

be easily computed from the ground-truth attitude measurements (i.e. mB = R>mI),

obtaining V
d and φ⊥ is more involved. For instance, using the position measurements a

high-gain observer is applied for the estimation of the linear velocity expressed in the

inertial frame that is then converted to the linear velocity expressed in the body-fixed

2Available at http://rpg.ifi.uzh.ch/software_datasets.html
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Figure 4.2: (Simulation) Estimated and ground-truth linear velocity components in
body-fixed frame (m/s) versus time (s)
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Figure 4.3: (Simulation) Estimated and ground-truth depth inverse (m−1) versus time
(s)

frame using the ground-truth attitude. Then, by considering the situation where the

UAV carries a downward-looking camera to observe a planar horizontal ground, it is
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Figure 4.4: (Simulation) The Frobenius norm |P | versus time (s)

not difficult to construct the “measurements” of V
d and φ⊥ (at 20Hz). For the reported

data-based simulations, the hybrid continuous-discrete version of the proposed Riccati

observer has been performed with D = I3, S = diag{0.01I2, 0.25, 0, 36I3} and P (0) =

diag{0.5I2, 1, 0.5I3}. The initial estimates are given by q̂(0) = [
√

2
2 ,
√

6
4 ,
√

2
4 , 0], V̂ (0) =

[2,−1.5,−0.5]>(m/s), ŝ(0) = 4(m−1), whereas the initial state values are R(0) ≈ I3,

V (0) ≈ 0(m/s), s(0) ≈ 5(m−1). Note that the attitude error corresponds to relatively

large Euler angle errors of 90(deg), 30(deg) and 30(deg) approximately in roll, pitch and

yaw.

The time evolutions of the estimated and ground-truth attitudes, represented by Eu-

ler angles, along with the estimated and ground-truth body-fixed linear velocities and

depths are shown in Figs. 4.1–4.3, respectively. During the first 6 seconds, the quadrotor

is motionless on the ground, leading to the violation of the persistent excitation condi-

tion (3). In contrast to the depth estimate d̂ (or equivalently ŝ) that does not converge to

the ground-truth value due to the lack of excitations, both the estimated attitude and lin-

ear velocity still converge exponentially near to the corresponding ground-truth values

during that time period despite the large initial estimated errors. This is an interesting

and desirable feature of the proposed observer although the convergence and observabil-

ity analysis for this particular “unobservable” case (i.e. |V | ≡ 0) remains open. It can be

observed from Fig. 4.4 that during that period the norm of the Riccati matrix P grows

almost linearly that in turn highlights the discussed preoccupation and its associated

solutions in Section 4.4.3.

After the second 6 when the UAV takes off and carries out the circular fight (i.e.

the persistent excitation condition (3) is guaranteed), all the estimated variables R̂, V̂ ,

ŝ converge almost perfectly to the corresponding ground-truth data (see Figs. 4.1–4.3)

and the norm of P remains bounded and varying around a constant number (≈ 0.9) (see

Fig. 4.4). In summary, we find that the performance of the proposed observer is quite
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satisfactory.

4.4.5 Experimental evaluation

4.4.5.1 Experimental setup

For experimental validations, we make use of a Visual-Inertial (VI) sensor developed by

the Autonomous Systems Lab (ETH Zurich) and the company Skybotix. Among the two

cameras and two IMUs of the VI-sensor, only one camera and one IMU (composed of a 3-

axis gyrometer and a 3-axis accelerometer) are used to validate the proposed algorithm.

The main reason for using the VI-sensor in this experimental setup is the possibility

of obtaining perfectly time-synchronized images and IMU readings (20Hz for the cam-

era and 200Hz for the IMU). On the other hand, the OptiTrack motion capture system

available at I3S is used to obtain the ground truth data for comparison purposes. This

highly accurate OptiTrack system provides the full pose of the Camera-IMU system at

120Hz. As a matter of fact, the quantities such as V
d and φ⊥ can be emulated from

the ground-truth pose measurements. For instance, using the position measurements a

high-gain observer is applied for the estimation of the linear velocity expressed in the

inertial frame that is then converted to the linear velocity expressed in the body-fixed

frame using the ground-truth attitude. Then, by considering the situation where the

UAV carries a downward-looking camera to observe a planar horizontal ground, it is not

difficult to construct the “measurements” of V
d and φ⊥ (at 20Hz).

The hybrid discrete-continuous version of the proposed observer has been imple-

mented in C++, combined with OpenCV for image processing, on an Intel Core i7-6400

CPU running at 3.40Ghz. The transmission of data from the camera to the PC is carried

out through a high speed ethernet cable. The PC has a Linux based operating system

and is responsible for two major software tasks:

• Interface with the camera hardware and acquisition of images and IMU data from

the VI-sensor.

• Estimation of the continuous homography based on two consecutive images which

is then decomposed to obtain the measurements of V
d and φ⊥ in real-time.

Due to real-time constraint for the continuous homography estimation, feature de-

tection and descriptor extraction in images are carried out using the FAST Feature De-

tector3 and ORB Descriptor Extractor algorithms already implemented in the OpenCV

library. Since the quality of the continuous homography estimation depends heavily

3Although FAST is less robust than other algorithms such as SIFT or SURF, it is much faster and more
suitable for real-time implementation.
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on the capability of rejecting outliers of point matchings, we have implemented an M-

estimator-like observer for the estimation of the homography between every two consec-

utive images, which is then used to compute the continuous homography via a logarithm

conversion. This M-estimator-like homography observer is a modified version of the ho-

mography observer proposed in [34] but is not presented here due to space limitation.

However, the reader can appreciate its performance and robustness via the following

video link:

https://youtu.be/x75RpjoJ9HM

Although the combined implementation of image processing and estimation algorithm

runs at about 50Hz, the continuous homography estimate is only obtained at every 50ms

(20Hz) due to the lower acquisition frequency of the VI-sensor camera.
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Figure 4.5: (Experiment) Optical flow components measured from images (blue curves)
and derived from ground truth pose (red curves) versus time (s)

The parameters involved in the proposed observer are chosen as follows: D = diag{8, 8, 24},
S = diag{0.022I2, 0.1

2, 0.22I3} and P (0) = 1.7I6. The initial estimates are given by

q̂(0) = [1, 0, 0, 0], V̂ (0) = [0, 0, 0](m/s), ŝ(0) = 4(m−1).

Figs. 4.5 and 4.6 show a good quality of the optical flow V
d as well as φ⊥(= − ḋ

d) ob-

tained from the decomposition of the continuous homography estimate when compared
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d measured from images (blue curve) and derived

from ground truth pose (red curve) versus time (s)

to the corresponding ground-truth data.
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Figure 4.7: (Experiment) Estimated and ground-truth attitudes represented by roll,
pitch and yaw Euler angles (deg) versus time (s)

4.4.5.2 Experimental results

The reported experiment has been performed online with the VI-sensor camera looking

downward to observe a well textured planar horizontal ground. A demo video is pro-

vided as a supplemental material and is also available at

https://youtu.be/R09oTjr4s40
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Figure 4.8: (Experiment) Estimated and ground-truth depth inverse (m−1) versus time
(s)
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Figure 4.9: (Experiment) Estimated and ground-truth linear velocity components in
body-fixed frame (m/s) versus time (s)

The time evolutions of the estimated and ground-truth attitudes, body-fixed linear ve-

locities and depths are depicted in Figs. 4.7–4.8. During the first 60 seconds, it can

be observed that the depth estimate as well as both the estimated gravity direction (i.e.
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roll and pitch Euler angles) and the estimated linear velocity converge near to the corre-

sponding ground-truth values since the condition of persistent excitation is preserved.

In contrast, during the period of 60 to 69 seconds when the camera is kept still thus

violating the condition of persistent excitation, it can be seen that the depth estimate

slightly drifts away from the ground-truth depth, whereas both the estimated gravity

direction and linear velocity always remain close to the corresponding ground-truth val-

ues. Once the condition of persistent excitation is revoked again by moving the camera

from 69 to 89 seconds, the depth estimate follows closely again the ground-truth value

along with the gravity direction and linear velocity estimates. From Fig. 4.7 it can also

be observed that the yaw angle estimate drifts away from the ground-truth value. This

is normal since it is simply an integration of the gyros (i.e. magnetometer measure-

ments are not used for yaw estimation correction in this experiment). In conclusion,

the reported experiment shows that whereas the (practical) convergence of the grav-

ity direction and linear velocity estimates is always achieved, the convergence of the

depth estimate is additionally obtained only when the condition of persistent excitation

is guaranteed.

4.5 Extension to observer design for optical flow filtering

The design of the observer follows exactly in the same manner like in the previous sec-

tion, the only difference here being that instead of estimating directly the linear velocity

we filter the optical flow extracted from the continuous homography. One obtains the

dynamics for φ = V
d as follows:

φ̇ = V̇
d −

V ḋ
d2

= sV̇ + φ⊥φ

where s = 1
d and φ⊥ = −ḋ

d . Now using the dynamics of V from (4.2) one obtains

φ̇ = −Ω×φ+ saB + gsR>e3 + φ⊥φ

= (−Ω× + φ⊥I3)φ+ saB + gsR>e3

(4.29)
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4.5.1 System Equations and Measurements

Thus from (4.29), (4.4) and (4.1) the rigid-body dynamics for the system and the mea-

surements for the observer are given below:
Ṙ = RΩ×

φ̇ = −(Ω× + φ⊥I3)φ+ saB + gsR>e3

ṡ = φ⊥ s

(4.30)

4.5.2 Observer derivation

Let R̂ ∈ SO(3), φ̂ ∈ R3, ŝ ∈ R denote the estimates of R, φ, s, respectively. The proposed

observer is given by 
˙̂
R = R̂Ω× − [σR]×R̂
˙̂
φ = −(Ω× + φ⊥I3)φ̂+ ŝaB + gŝR̂>e3 − σφ
˙̂s = φ⊥ ŝ− σs

(4.31)

where σR, σv ∈ R3, σs ∈ R are innovation terms to be designed thereafter. Defining the

observer errors
R̃ , RR̂>, φ̃ , φ− φ̂, s̃ , s− ŝ

then the observer’s objective can be stated as the exponential stability of (R̃, φ̃, s̃) =

(I3, 0, 0) (or of (R̃e3, φ̃, s̃) = (e3, 0, 0) when the estimation of the gravity direction is con-

cerned instead of the whole attitude estimation). From (4.30) and (4.31), one verifies

that the dynamics of (R̃, φ̃, s̃) satisfy
˙̃R = R̃[σR]×
˙̃
φ = −(Ω× + φ⊥I3)φ̃+ s̃(aB + gR̂>e3) + gŝR̂>(R̃> − I3)e3 + σφ
˙̃s = φ⊥s̃+ σs

(4.32)

We will work out next first order approximations of the error system (4.32) comple-

mented with first order approximations of the measurement equations. The first order

approximations of the attitude error equation is carried out exactly in the same manner

as for the previous observer and is given as

For the dynamics of φ̃ one obtains

˙̃
φ = −(Ω× + φ⊥I3)φ̃+ s̃(aB + gR̂>e3) + gŝR̂>[e3]×λ̃+ σφ +O(|λ̃|2)

= −(Ω× + φ⊥I3)φ̃+ s̃(aB + gR̂>e3) + gŝR̂>e2λ̃1 − gŝR̂>e1λ̃2 + σφ

with λ̃1, λ̃2 the first and second components of λ̃.

By setting the system output vector equal to
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y = φ− φ̂ (4.33)

one obtains LTV first order approximations in the form (2.20) with

x =


λ̃1

λ̃2

s̃

φ̃

 , x1 =

[
λ̃1

λ̃2

]
, x2 =

[
s̃

φ̃

]
, u =


σR,1

σR,2

σs

σφ



A =


0 0 0 01×3

0 0 0 01×3

0 0 φ⊥ 01×3

gŝR̂>e2 −gŝR̂>e1 aB + gR̂>e3 −Ω× + φ⊥I3

 ∈ R6×6

C =
[
03×1 03×1 03×1 I3

]
∈ R3×6

(4.34)

with σR,1, σR,2 the first and second components of σR. From there the proposed ob-

server is given by (5.11) with σR,1, σR,2 and σφ determined from the input u calculated

according to (2.22) and (2.23).

As for the innovation component σR,3, it can be independently designed for estimat-

ing the remaining degree of freedom of the attitude (i.e. yaw). For instance, without loss

of generality σR,3 is assumed to be bounded for all time.

Remark 2. The hybrid discrete-continuous version of this observer as well as the part of yaw
estimation proceeds in exactly the same manner as described in section 4.4.2 and subsection
4.3.3.

4.5.3 Observability analysis

The observability analysis proceeds in a similar fashion to the one shown in section 4.3.2.

The exponential stability of the proposed observer depends on the uniform observability

of the pair (A?(t), C?(t)) obtained by setting x = 0 in the expression of the matrices A

and C given by (4.34). Thus, one verifies that,
A? =


0 0 0 01×3

0 0 0 01×3

0 0 φ⊥ 01×3

gsR?>e2 −gsR?>e1 R>v̇ −Ω× + φ⊥I3


C? =

[
03×1 03×1 03×1 I3

]
(4.35)
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with s = 1
d , φ⊥ = −ḋ/d, and R? ∈ SO(3) satisfying

R?>e3 = R>e3, Ṙ
? = R?Ω×

Also the expression aB + gR>e3 which is the component A(4, 3) can be replaced by

aB + gR̂>e3 = V̇ + Ω×V

= R>v̇
(4.36)

which is thereby the component A?(4, 3) in (4.35).

Proposition 4. The transient matrix Φ(τ, t) associated with A?(t), for all τ ≥ t, is given by

Φ(τ, t) =


1 0 0 01×3

0 1 0 01×3

0 0
s(τ)

s(t)
01×3

gs(τ)(τ − t)R(τ)>Rγe1 gs(τ)(τ − t)R(τ)>Rγe2
s(τ)R(τ)>[v(τ)−v(t)]

s(t)
s(τ)R(τ)>R(t)

s(t)


(4.37)

where Rγ , γ1,2 are defined in (4.24) and (4.23) respectively.

Proof: The transient matrix Φ(τ, t) is the solution to the following equation

dΦ(τ, t)

dτ
= A?(τ)Φ(τ, t), Φ(t, t) = I6 (4.38)

From the above relation and the expression of A?(τ), one easily verifies that Φ(τ, t) has

the form

Φ(τ, t) =


1 0 0 01×3

0 1 0 01×3

0 0 ϕ33(τ, t) 01×3

ϕ41(τ, t) ϕ42(τ, t) ϕ43(τ, t) ϕ44(τ, t)

 (4.39)

Now we need to compute ϕ33(τ, t) ∈ R, ϕ41(τ, t) ∈ R3, ϕ42(τ, t) ∈ R3, ϕ43(τ, t) ∈ R3,

ϕ44(τ, t) ∈ R3×3. The expression of ϕ33(τ, t) is exactly the same as shown in (4.13). From

(4.38) and (4.39), one has

dϕ41(τ, t)

dτ
= (−Ω(τ)× + φ⊥(τ)I3)ϕ41(τ, t) + gs(τ)R?(τ)>e2
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Then, by change of variable ϕ̄41(τ, t) := R?(τ)ϕ41(τ,t)
s(τ) the above equation yields

dϕ̄41(τ, t)

dτ
=
−ṡ(τ)R?(τ)ϕ41(τ)

s2(τ)
+
R?(τ)Ω(τ)×ϕ41(τ))

s(τ)
+
R?(τ)(gs(τ)R?e2 + (−Ω(τ)× + φ(τ)⊥I3))ϕ41(τ)

s(τ)

=
−φ(τ)⊥s(τ)R?(τ)ϕ41(τ)

s(τ)2
+
R?(τ)Ω(τ)×ϕ41(τ)

s(τ)
+ ge2 −

R?(τ)Ω(τ)×ϕ41(τ)

s(τ)
+
R?(τ)φ(τ)⊥I3ϕ41(τ)

s(τ)

= −φ(τ)⊥ϕ̄41(τ) + ge2 + φ(τ)⊥ϕ̄41(τ)

= ge2

(4.40)

Thus we obtain

ϕ̄41(τ, t) = g(τ − t)e2 (4.41)

from which one deduces

ϕ41(τ, t) = s(τ)R?(τ)>ϕ̄41(τ, t)

= gs(τ)(τ − t)R(τ)>γ2

= gs(τ)(τ − t)R(τ)>Rγe1

(4.42)

with γ2 defined in (4.23). Proceeding in a similar fashion, one has

dϕ42(τ, t)

dτ
= (−Ω(τ)× + φ⊥(τ)I3)ϕ42(τ, t)− gs(τ)R?(τ)>e1

Then by change of variable ϕ̄42(τ, t) := R?(τ)ϕ42(τ,t)
s(τ) the above equation yields

dϕ̄42(τ, t)

dτ
= −ge1

after which one obtains the expression for ϕ̄42(τ, t) as follows

ϕ̄42(τ, t) = −g(τ − t)e1

Then from the above equation one deduces ϕ42(τ, t)

ϕ42(τ, t) = s(τ)R?(τ)>ϕ̄42(τ, t)

= −gs(τ)(τ − t)R(τ)>γ1

= gs(τ)(τ − t)R(τ)>Rγe2

(4.43)

with γ1 defined in (4.23). From (4.38) and (4.39), one has

dϕ43(τ, t)

dτ
= R(τ)>v̇(τ)ϕ33(τ) + (−Ω(τ)× + φ⊥(τ)I3)ϕ43(τ, t)
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Then, by change of variable ϕ̄43(τ, t) := R?(τ)ϕ43(τ,t)
s(τ) and from (4.13) the above equation

yields

dϕ̄43(τ, t)

dτ
=
R?(τ)R(τ)>v̇(τ)s(τ)

s(τ)s(t)

=
R?(τ)R(τ)>v̇(τ)

s(t)

Since R?(τ)R(τ)> = R?(0)R(0)> is constant, one obtains

ϕ̄43(τ, t) =
R?(τ)R(τ)>(v(τ)− v(t))

s(t)
(4.44)

from which one deduces

ϕ43(τ, t) = s(τ)R?(τ)>ϕ̄43(τ, t)

=
s(τ)R(τ)>[v(τ)− v(t)]

s(t)

(4.45)

Now again from (4.38) and (4.39), one has

dϕ44(τ, t)

dτ
= (−Ω(τ)× + φ⊥(τ)I3)ϕ44(τ, t)

Then, by change of variable ϕ̄44(τ, t) = R?(τ)ϕ44(τ,t)
s(τ) the above equation yields

dϕ̄44(τ, t)

dτ
=
−ṡ(τ)R?(τ)ϕ44(τ)

s2(τ)
+
R?(τ)Ω(τ)×ϕ44(τ))

s(τ)
+
R?(τ)(−Ω(τ)× + φ(τ)⊥I3)ϕ44(τ)

s(τ)

=
−φ(τ)⊥R

?(τ)ϕ44(τ)

s(τ)
+
R?(τ)Ω(τ)×ϕ̄44(τ)

s(τ)
− R?(τ)Ω(τ)×ϕ44(τ)

s(τ)
+
R?(τ)φ(τ)⊥I3ϕ44(τ)

s(τ)

= −φ(τ)⊥ϕ̄44(τ) + φ(τ)⊥ϕ̄44(τ)

= 0

(4.46)

Thus we obtain

ϕ̄44(τ, t) = s(τ)R?(τ)>ϕ44(τ, t) (4.47)

From the above equation one deduces

ϕ44(τ, t) = s(τ)R?(τ)>ϕ̄44(τ, t)

=
s(τ)R(τ)>R(t)

s(t)

(4.48)
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Finally, with the relations (4.13), (4.42), (4.43), (4.45) and (4.48) one deduces the

explicit form (4.37) of the transient matrix Φ(τ, t) (End of Proof).

Proposition 5. The persistent excitation conditions C.1 and C.2 defined in Proposition (3) in
section 4.3.2 are the same, however with the matrices U(τ) and W (τ) defined as follows:

U(τ) := s(τ)
[
g(τ − t)e1 g(τ − t)e2 R>γ [v(τ)− v(t)] I3

]
(4.49)

W (τ) :=
[
g(τ − t)e1 g(τ − t)e2 R>γ v(τ)

]
(4.50)

The proof for proving the that the pair (A?(t), C?(t)) is uniformly observable proceeds in a
similar manner again as shown in section 4.3.2. From the proof in section 4.3.2 we know that
it is needed only to prove (4.21) for the case where the persistent excitation condition (C.1) is
satisfied. Accordingly, one verifies that

C?(τ)Φ(τ) = s(τ)R(τ)>Rγ

[
g(τ − t)e1 g(τ − t)e2

R>γ [v(τ)− v(t)]

s(t)

R>γ R(t)

s(t)

]
(4.51)

Thus for all x = [x1, x2, x3, x
>
4 ]>, with x1,2,3 ∈ R, x4 ∈ R3, using (4.51) one deduces

C?(τ)Φ(τ)x = s(τ)R(τ)>Rγ

[
g(τ − t)e1 g(τ − t)e2

R>γ [v(τ)− v(t)]

s(t)
I3

]
x̄

= R(τ)>RγU(τ)x̄

with x̄ := [x1, x2,
x3

s(t)
,
R>γ R(t)x4

s(t)
]> (which ensures that |x̄| ≥ min(1, dmin)|x|) and U(τ)

defined by (4.49). One then obtains

x>Φ(τ)>C?>(τ)C?(τ)Φ(τ)x = x̄>U(τ)>R>γ R(τ)R(τ)>RγU(τ)x̄

= x̄>U(τ)>U(τ)x̄
(4.52)

From (4.52) and the persistent excitation condition C.1, one straightforwardly deduces in-
equality (4.21), with µ = (min(1, dmin))2ρ, which concludes the proof (End of proof).

4.5.4 Experimental Results

As seen in the section 3.6.1 the optical flow estimates were quite noisy. This motivated us

to the development of the nonlinear observer 4.31 that filters out these noisy estimates.

In this section we use the same data set as used in section 3.6.1, the only difference be-

ing the observer for homography estimation is the one taken from [34] and not the one

proposed in [55]. Using the position measurements obtained from the Optitrack system

a high-gain observer is applied for the estimation of the optical flow. The figure 4.10
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shows the comparison between the optical flow obtained from the mocap optitrack sys-

tem (in red), the raw optical flow estimates extracted from continuous homography (in

green) and the filtered values of these estimates (in blue) from the proposed observer.

The ground truth shown by the red curve is slightly noisy as well due to high gain ob-

servers used for its estimation. It can be seen that as soon as there is a relatively large

displacement of the camera the estimates are quite good but are noisy thereby demon-

strating the need of a filter. The effect of the filtering can be clearly seen in the Figure

4.11 when there is minimal amount of displacement, thus making the optical flow esti-

mates suitable for exploitation in control strategies. It can also be noticed that the filter

does not introduce any significant delay in the system. The experimental results thus

show the effectiveness of the proposed observer.
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Figure 4.10: Optical flow components estimated from images (green curves), filtered
optical flow components from the proposed observer (blue curves) and derived from
ground truth pose (red curves) versus time (s)
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Figure 4.11: Zoom of the optical flow components from time t = 15s to t = 25s
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5
Homography Decomposition

5.1 Introduction

The notion of homography and various techniques used for homography estimation have

been already detailed in Chapter 3. We briefly recall some of the applications mentioned

in Chapter 3 which will serve as motivation for the work presented in this chapter. Ho-

mography has been instrumental in various computer vision and robotic applications

where the scene involves (near) planar surfaces as in the case of man-made environments

or in the case of an unmanned aerial vehicle flying sufficiently far from the observed

ground. Homography has been used to perform image stabilization [34] and image mo-

saicing [13, 69]. Homography has also been exploited for the estimation of the relative

pose (up to a scale factor) of a robotic vehicle equipped with a camera [14, 15, 59, 71].

Homography has been widely used as visual feedback in robot control [12, 60, 52, 5] and

one of the most successful visual servo control paradigms is the 21
2D approach [52] that

relies on the extraction of the camera displacement (i.e. orientation and translation up

to a scale factor) and the scene’s normal vector from the Euclidean homography. Such

a process of extraction is referred to as Euclidean homography decomposition or Euclidean
reconstruction from homography.

Classical approaches for homography decomposition such as Faugeras SVD-based

[16], Zhang SVD-based [77] algorithms use singular value decomposition to obtain nu-

merical solutions. Malis and Vargas [53] lately solved the homography decomposition

problem with an analytical approach, making it more suitable for real-time robot con-

trol applications. However, to our knowledge all existing homography decomposition

methods belong to the “algebraic category” that only focuses on solving the homogra-

phy decomposition problem on a frame-by-frame basis, but not on filtering measure-

ment noise. The precision of the decomposition elements is thus highly prone to noise,

especially when the camera’s translation is small [53]. The problem even becomes de-
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generate when the latter vanishes. Robotic vehicle applications, however, provide tem-

poral sequences of images together with inertial measurements from, e.g., an embedded

Inertial Measurement Unit (IMU). It, thus, seems natural to exploit the temporal correla-

tion rather than to solve the homography decomposition problem for each pair of image

frames.

In the current chapter, a novel direction for solving the homography decomposition

by exploiting the system dynamics is explored. The proposed solutions are developed in

the form of nonlinear observers derived from the recent deterministic Riccati observer

design framework proposed in [24]. We believe that the resulting estimated quantities

would be less noisy since the noise can be filtered through a natural low-pass response of

the observer. Moreover, the challenging theoretical issue related to the uniform observ-

ability, under which local exponential stability is granted, has been carefully addressed.

The proposed “persistence of excitation” conditions even cover the degenerate situation

for which all existing algebraic algorithms fail to provide the correct solution. Finally,

simulation and experimental results demonstrate a good performance and a large attrac-

tion domain of the proposed observers.

The chapter is organized as follows. Section 5.2.1 talks about the classical problem of

homography decomposition, existing approaches for the decomposition of homography

and details the system dynamics and measurements used for the observer design. In Sec-

tions 5.3 and 5.4, we propose two nonlinear Riccatti observers for the decomposition of

the homography and its inverse, respectively. Simulation results are provided in Section

5.5. Experimental results have been presented to show the performance and robustness

of the proposed observers in Section 5.6.

5.2 Problem Statement

5.2.1 Homography decomposition problem

The so-called Euclidean homography that maps Euclidean coordinates of the scene’s points

from {A} to {Å} is given by (see Fig. 5.1)

H = R+
1

d
ξη> (5.1)

Assume that the camera is well calibrated, then the Euclidean homography can be di-

rectly computed from the so-called projective homography or image homography estimated

from the image point correspondences (see Chapter 3 for details).
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d̊

d

−→η

{Å}

{A}
(R, ξ)

Figure 5.1: Euclidean homography relating the camera’s pose, the distance to the plane
and the plane’s normal vector by H = R+ 1

dξη
>.

Using the relations in (3.4), one verifies that the inverse of H is given by

G := H−1 = R> − 1

d̊
R>ξη̊> (5.2)

The well-known problem of Euclidean homography decomposition consists in decom-

posing the matrix H into the separate elements (R, ξ/d, η). There exist few algorithms

for this homography decomposition problem such as Faugeras SVD-based [16], Zhang

SVD-based [77], Malis-Vargas analytical [53] decomposition algorithms and have been
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detailed in the next subsection. These algorithms, when applied to the homography in-

verse G, would yield the separate elements (R>,−R>ξ/d̊, η̊) from which one can obtain

(R, ξ/d̊, η̊).

5.2.2 Brief overview of the existing approaches for Homography Decomposi-
tion

Faugeras and Lustman [16] were the first to solve the problem of homography decom-

position. They proved that the problem of homography decomposition gives up to eight

different solutions except in some special cases (for e.g when there is a pure roation).

The proof provided by Faugeras and Lustman to compute the set of solutions is con-

structive and exhaustively considers all the cases, thus providing a practical method to

realize the solutions whenever possible. This method uses the singular value decompo-

sition H = UΣV > by considering the diagonal matrix as an homography matrix. This

problem can be solved analytically, and then after obtaining the values for U and V we

can compute the final decomposition elements (R, ξ/d, η). As already stated, out of the

eight mathematical solutions obtained only two of them are physically possible. These

two solutions are obtained by taking into consideration several constraints (for e.g all

the viewed scene points should be in front of the camera).

A similar approach to obtain the homography decomposition was proposed by Zhang

and Hanson [77]. In this method as well the solutions are obtained numerically, again

from SVD decomposition of the homography matrix H>H = V ΣV >. This method how-

ever gives a slightly easier way to handle the special cases as compared to Faugeras and

Lustman [16] and is also claimed to be computationally cheaper. From the two meth-

ods mentioned above it is clear that they don’t provide an analytical expression of the

decomposition elements in terms of the Homography matrix H .

A more recent method which was proposed by Malis and Vargas [53] was able to

provide analytical expressions for the decomposition elements (R, ξ/d, η), in terms of

the components of the Homography matrix H . Again with this method proposed by

Malis we obtain four solutions. The procedure for obtaining these four solutions has

been detailed in [53]. After obtaining these 4 solutions, they are reduced to only 2 by

verifying the positive depth constraint (i.e. third component of the normal vector should

be positive). From the remaining two solutions, it is difficult to predict the correct so-

lution. However since for our experiments, the planar target is almost perpendicular to

the camera then if we have a good estimate of the normal vector, it should be approxi-

mately equal to e3. Hence we choose the estimated normal vector closest to η̊ u e3 as the

valid solution.

The main drawback of all classical (algebraic) homography decomposition approaches
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is that they only try to solve the homography decomposition problem on a frame-by-

frame basis and, thus, do not provide any filtering effect on the resulting variables. The

precision of the decomposition elements (particularly of the normal vector estimate) is

highly prone to noise, especially when the camera’s translation is small [53]. The prob-

lem even becomes degenerate when the latter vanishes (i.e. ξ = 0), since in such a case

any unit vector η ∈ S2 can be a solution. In this paper, a novel approach for solving the

homography decomposition problem (i.e. decomposing either H or G) is explored by

exploiting the differential equations guiding the decomposed elements via the design of

deterministic nonlinear observers.

Define

ζ :=
R>ξ

d
, ζ̊ :=

ξ

d̊
(5.3)

One verifies that the expressions (5.1) and (5.2) ofH andG, respectively, can be rewritten

as

H = R(I3 + ζη>) (5.4)

G = R>(I3 − ζ̊ η̊>) (5.5)

The objective of observer design then consists in providing the estimation of (R, ζ, η)

(resp. (R, ζ̊, η̊)) using H (resp. G) as measurement quantity. Depending on the consid-

ered application, it is preferable to decompose H or G.

5.2.3 System equations and measurements for observer design

The rigid body kinematics of (R, ξ) are given by{
Ṙ = RΩ×

ξ̇ = RV
(5.6)

with V ∈ R3 and Ω ∈ R3 denoting the vectors of coordinates of the camera’s linear and

angular velocities expressed in {A}.
Since the scene is stationary the normal vector η̊ ∈ S2 expressed in the reference

frame {Å} is constant. Since η = R>η̊ one thus deduces

η̇ = −Ω×η (5.7)

Using (3.4), (5.3) and (5.6), one verifies that the dynamics of ζ and ζ̊ are given by

ζ̇ = −Ω×ζ +
V

d
− ḋ

d
ζ = (−Ω× + φ⊥I3)ζ + φ (5.8)

68



Chapter 5. Homography Decomposition

˙̊
ζ =

RV

d̊
=
d

d̊
Rφ = (1− η̊>ζ̊)Rφ (5.9)

where φ := V
d and φ⊥ := − ḋ

d = V >η
d are the so-called translational optical flow and

optical flow divergence, respectively. Both the translational optical flow and the optical

flow divergence are assumed to be measured (see, e.g., section 3.6 in Chapter 3). Assume

also that the angular velocity Ω is measured using an embedded 3-axis gyrometer.

Remark 3. Note that observer design for the case where the linear velocity measurement is
available (using a Doppler velocity sensor or a GPS) can be addressed differently, but it is out
of scope of the present paper. Using optical flow and optical flow divergence as measurement in
turn makes our solution more appealing in practice because of its simplicity of sensor require-
ment, bearing in mind that a Doppler velocity sensor is very expensive while a GPS does not
work in indoor or GPS-denied environments. On the contrary, the quality of optical flow and
optical flow divergence measurements depends much on the texture of the scene along with its
planarity approximation –the assumption used to extract these quantities from images.

5.3 Observer design for decomposing the homography matrix

5.3.1 Observer derivation

Inspired by [27], we avoid using minimal parametrization techniques such as spherical
coordinates to parametrize the normal unit vector η – an element of S2. Instead, an

auxiliary rotation matrix Q ∈ SO(3) is introduced such that

η = Q>e3

The underlying idea is to over-parameterize an element of S2 (dimension 2) by an ele-

ment of SO(3) (dimension 3). The advantage of such type of parameterization is that it

reduces the complexities of the error system in first-order approximations that arise due

to minimal parameterization techniques for elements on S2 (see [27] for more thorough

discussions).

In view of the dynamics (5.7) of η, one deduces a possibility of the dynamics of Q as

Q̇ = QΩ× (5.10)

Let Q̂ ∈ SO(3), R̂ ∈ SO(3), ζ̂ ∈ R3 denote the estimates of Q,R, ζ, respectively. The

estimated normal vector is then given by

η̂ := Q̂>e3
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In view of the first equation of (5.6), (5.8) and (5.10), the following general form of

observer is proposed 
˙̂
Q = Q̂Ω× − σQ×Q̂
˙̂
R = R̂Ω× − R̂σR×
˙̂
ζ = (−Ω× + φ⊥I3)ζ̂ + φ− σζ

(5.11)

with initial conditions Q̂(0), R̂(0) ∈ SO(3), ζ̂(0) ∈ R3 and with innovation terms σQ, σR, σζ ∈
R3 to be designed thereafter.

The following error variables are defined:

Q̃ := QQ̂>, R̃ := R̂>R, ζ̃ := ζ − ζ̂ (5.12)

Then the objective of observer design consists in stabilizing (Q̃e3, R̃, ζ̃) about (e3, I3, 0).

From (5.6), (5.11) and (5.12), one verifies that the error system is
˙̃Q = Q̃σQ×

˙̃R = R̃Ω× − Ω×R̃+ σR×R̃

˙̃
ζ = (−Ω× + φ⊥I3)ζ̃ + σζ

(5.13)

For analysis purposes let us assume that ζ, Ω and φ remain uniformly bounded for

all time, which is a completely reasonable assumption in practice.

The following step involves developing first-order approximations of the error sys-

tem (5.13) and of the measurement equation (5.4). From the Rodrigues’ formula, one

deduces the following first-order approximations of Q̃ and R̃

Q̃ = I3 + λQ̃× +O(|λQ̃|
2)

R̃ = I3 + λR̃× +O(|λR̃|
2)

(5.14)

with λQ̃, λR̃ ∈ B
3
2 equal to twice the vector part of the quaternion associated with the

attitude error matrix Q̃ and R̃, respectively.

One then deduces from the first two equations of (5.13) and (5.14) that in first-order

approximations

λ̇Q̃ = σQ +O(|λQ̃||σQ|) (5.15)

and

λ̇R̃× = λR̃×Ω× − Ω×λR̃× + σR× +O(|λR̃|
2) +O(|λR̃||σR|)

= (λR̃ × Ω)× + σR× +O(|λR̃|
2) +O(|λR̃||σR|)
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which yields

λ̇R̃ = −Ω×λR̃ + σR +O(|λR̃|
2) +O(|λR̃||σR|) (5.16)

As for the measurement equation (5.4), this homography expression can be devel-

oped in first-order approximations as follows

R>H − I3 = ζη> = ζ(Q>e3)>

⇒ R̃>R̂>H − I3 = (ζ̃ + ζ̂)(Q̂>Q̃>e3)>

⇒ (I3−λR̃×)R̂>H−I3

= (ζ̃ + ζ̂)(Q̂>(I3 − λQ̃×)e3)> +O(|λQ̃|
2) +O(|λR̃|

2)

⇒(R̂>H−I3)−λR̃×(R̂>H)

= ζ̂(Q̂>e3)> + ζ̃(Q̂>e3)> + ζ̂(Q̂>e3×λQ̃)>

+O(|λQ̃|
2) +O(|λR̃|

2) +O(|ζ̃||λQ̃|)

⇒ (R̂>H−I3)− ζ̂(Q̂>e3)>

= λR̃×(R̂>H)+ζ̃(Q̂>e3)>−λQ̃,2ζ̂(Q̂>e1)>+λQ̃,1ζ̂(Q̂>e2)>

+O(|λQ̃|
2) +O(|λR̃|

2) +O(|ζ̃||λQ̃|)

Note that the last equality only involves the first two components of λQ̃ (i.e. λQ̃,1 and

λQ̃,2) and can be equivalently written as

y :=

(R̂>H − I3)(Q̂>e3)− ζ̂
(R̂>H − I3)(Q̂>e2)

(R̂>H − I3)(Q̂>e1)



=

−
(
(R̂>H)(Q̂>e3)

)
×λR̃ + ζ̃

−
(
(R̂>H)(Q̂>e2)

)
×λR̃ + λQ̃,1ζ̂

−
(
(R̂>H)(Q̂>e1)

)
×λR̃ − λQ̃,2ζ̂


+O(|λQ̃|

2)+O(|λR̃|
2) +O(|ζ̃||λQ̃|)

(5.17)

From (5.15), (5.16), the third equation of (5.13), and (5.17), one obtains in first-order
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approximations the system in compact form (2.20) with output y defined in (5.17) and

x :=


λQ̃,1
λQ̃,2
λR̃
ζ̃

 , U :=


σQ,1

σQ,2

σR

σζ



A(t) :=


0 0 01×3 01×3

0 0 01×3 01×3

03×1 03×1 −Ω× 03

03×1 03×1 03 −Ω× + φ⊥I3



C(x, t) :=

03×1 03×1 −
(
(R̂>H)(Q̂>e3)

)
× I3

ζ̂ 03×1 −
(
(R̂>H)(Q̂>e2)

)
× 03

03×1 −ζ̂ −
(
(R̂>H)(Q̂>e1)

)
× 03



(5.18)

The fact that x = [x>1 , x
>
2 ]> with x1 := [λQ̃,1, λQ̃,2, λ

>
R̃

]> ∈ B5
2
√

2
(the closed ball in R5 of

radius equal to 2
√

2), x2 := ζ̃ ∈ R3, together with the particular form of the matrix A

as (2.21), allows one to obtain the expression of the innovation terms from the input U

calculated according to (2.22) and (2.23) where the matricesD and S (involved in (2.23))

are chosen larger than some constant positive matrix.

Remark 4. Interestingly and as also discussed in [27], although we have used a 3-dimensional
variable Q ∈ SO(3) to over-parametrize a 2-dimensional variable η ∈ S2, the resulting first-
order approximated system only involves a minimum number of components of λQ̃ so that
the dimension of X is equal to the dimension of the state (η,R, ξ̄). Moreover, only the first
two components of the innovation term σQ (i.e. σQ,1 and σQ,2) are involved in the Riccati
observer design process. Its last component (i.e. σQ,3) can thus be set equal to zero for the sake
of simplicity. Of course, the above reasoning together with the associated local stability and
convergence properties is only valid in the first order approximation.

5.3.2 Observability and stability analysis

According to [24] the equilibrium x = 0 is locally exponentially stable, provided that

the pair (A?(t), C?(t)) with A?(t) = A(t) and C?(t) := C(0, t) is uniformly observable.

72



Chapter 5. Homography Decomposition

By setting x = 0 in the expression of C(x, t) in (5.18) one obtains

C? =

03×1 03×1 −
(
(I3 + ζη>)(Q?>e3)

)
× I3

ζ 03×1 −
(
(I3 + ζη>)(Q?>e2)

)
× 03

03×1 −ζ −
(
(I3 + ζη>)(Q?>e1)

)
× 03



=

03×1 03×1 −
(
η + ζ

)
× I3

ζ 03×1 −
(
Q?>e2

)
× 03

03×1 −ζ −
(
Q?>e1

)
× 03


(5.19)

with Q? ∈ SO(3) satisfying Q?>e3 = η and Q̇? = Q?Ω×.

For later use, let q?i ∈ S2, i = 1, 2, 3, denote the i-th row of Q? (i.e. q?i = Q?>ei).

Proposition 6. Assume that there exists a positive number ν such that ∀t > 0

1

δ

ˆ t+δ

t
|ζ(τ)× η(τ)|dτ ≥ ν (5.20)

Then, the pair (A∗, C∗) is uniformly observable. Consequently, the equilibrium (Q̃e3, R̃, ζ̃) =

(e3, I3, 0) of the error system is locally exponentially stable.

Proof. According to Lemma 3 in chapter 2 by choosing M = C?, then the pair

(A∗, C∗) is uniformly observable if ∃δ, µ > 0 such that

1

δ

ˆ t+δ

t
det
(
C?>(τ)C?(τ)

)
dτ ≥ µ, ∀t > 0 (5.21)

We show thereafter that condition (5.20) is sufficient to guarantee (5.21).One verifies

that

C?>C? = |ζ|2
[

I2
1
|ζ|2B

1
|ζ|2B

> 1
|ζ|2G

]

with B ∈ R2×6 and G ∈ R6×6 defined by

B :=

[
−ζ>q?2× 01×3

ζ>q?1× 01×3

]

G :=

[
−
(
η+ζ

)2
×−q

?2
1×−q?22×

(
η + ζ

)
×

−
(
η+ζ

)
× I3

]
Thus, one deduces
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det
(
C?>C?

)
= |ζ|4det

(
G− 1

|ζ|2
B>B

)

= |ζ|4det

−(η+ζ
)2
×−q

?
1×π ζ

|ζ|
q?1×−q?2×π ζ

|ζ|
q?2×

(
η + ζ

)
×

−
(
η + ζ

)
× I3


= |ζ|4det

(
−q?1×π ζ

|ζ|
q?1× − q?2×π ζ

|ζ|
q?2×

)
= |ζ|4det

(
Q?>

(
−e1×πQ?ζ

|ζ|
e1× − e2×πQ?ζ

|ζ|
e2×

)
Q?
)

= |ζ|4det
(
−e1×πη?ζ e1× − e2×πη?ζ e2×

)
= |ζ|4det

(
e3e
>
3 + η?ζη

?>
ζ + (η?ζ × e3)(η?ζ × e3)>

)
= |ζ|4|η?ζ × e3|4

= |ζ × η|4

with η?ζ := Q?ζ
|ζ| . From the Cauchy-Schwarz integral inequality, one deduces (using

(5.20))

ˆ t+δ

t
|ζ(τ)× η(τ)|4dτ ≥ 1

δ

(ˆ t+δ

t
|ζ(τ)× η(τ)|2dτ

)2

≥ 1

δ3

(ˆ t+δ

t
|ζ(τ)× η(τ)|dτ

)4

≥ δν4

One finally deduces (5.21) with µ = ν4. The remainder of the proof then directly

follows by application of Theorem 3.1 and Corollary 3.2 in [24].

Remark 5. The sufficient uniform observability condition (5.20) excludes the degenerate case
where the camera’s translation w.r.t. the reference frame is identically equal to zero (i.e. ξ(t) ≡
0,∀t ≥ 0). It also excludes the restrictive case where the camera translation motion is always
parallel to the normal vector to the plane, i.e. ξ(t)× η̊(t) ≡ 0, ∀t ≥ 0, which can however still
be uniformly observable. The non-trivial observability analysis for such situations (requiring
another formulation of M that involves C?A? + Ċ?) is left to the interested reader.

Remark 6. Since ζ = R>ζ̊ and η = R>η̊, condition (5.20) can be equivalently rewritten as

1

δ

ˆ t+δ

t
|ζ̊(τ)× η̊(τ)|dτ ≥ ν
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5.4 Observer design for decomposing the inverse homography

matrix

5.4.1 Observer derivation

Similarly to the previous section, we introduce an auxiliary matrix Q̊ ∈ SO(3) to over-

parametrize η̊ ∈ S2 such that η̊ = Q̊>e3. Since d
dt η̊ = 0, one deduces

˙̊
Q = 03×3 (5.22)

Let ˆ̊
Q ∈ SO(3), R̂ ∈ SO(3), ˆ̊

ζ ∈ R3 denote the estimates of Q̊, R, ζ̊, respectively. The

estimated normal vector is obtained as η̂ =
ˆ̊
Q>e3. In view of the first equation of (5.6),

(5.9) and (5.22), the following observer form is considered
˙̂
Q̊ = −σQ̊×

ˆ̊
Q

˙̂
R = R̂Ω× − σR×R̂
˙̂
ζ̊ = (1− e>3

ˆ̊
Q

ˆ̊
ζ)R̂φ− σζ̊

(5.23)

with ˆ̊
Q(0), R̂(0) ∈ SO(3),

ˆ̊
ζ(0) ∈ R3 and with innovation terms σQ̊, σR, σζ̊ ∈ R3 to be

designed thereafter.

Define the error variables as

˜̊
Q := Q̊

ˆ̊
Q>, R̄ := RR̂>,

˜̊
ζ := ζ̊ − ˆ̊

ζ (5.24)

Then the objective of observer design consists in stabilizing (
˜̊
Qe3, R̄,

˜̊
ζ) about (e3, I3, 0).

One verifies from (5.6), (5.23) and (5.24) that the error dynamics are given by
˙̃
Q̊ =

˜̊
QσQ̊×

˙̃R = R̃σR×

˙̃
ζ = (1− e>3 Q̊ζ̊)Rφ− (1− e>3

ˆ̊
Q

ˆ̊
ζ)R̂φ+ σζ̊

(5.25)

We now develop first-order approximations of the error system (5.25) and of the mea-

surement equation (5.5). The first-order approximations of ˜̊
Q and R̄ are given by

˜̊
Q = I3 + λ ˜̊

Q×
+O(|λ ˜̊

Q
|2)

R̄ = I3 + λR̄× +O(|λR̄|2)
(5.26)
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with λ ˜̊
Q
, λR̄ ∈ B3

2. One then deduces from (5.25) and (5.26) that in first-order approxi-

mations

λ̇ ˜̊
Q

= σQ̊ +O(|λ ˜̊
Q
||σQ̊|) (5.27)

λ̇R̄ = σR +O(|λR̄||σR|) (5.28)

First-order approximations of the third equation of (5.25) yield

˙̃
ζ =

(
e>3

ˆ̊
Q

ˆ̊
ζ
)
R̂φ−

(
e>3

˜̊
Q

ˆ̊
Q(

ˆ̊
ζ +

˜̊
ζ)
)
R̄R̂φ+ (I3 − R̄)R̂φ+ σζ̊

=
(
e>3

ˆ̊
Q

ˆ̊
ζ
)
R̂φ−

(
e>3 (I3 + λ ˜̊

Q×
)

ˆ̊
Q(

ˆ̊
ζ +

˜̊
ζ)
)

(I3 + λR̄×)R̂φ

− λR̄×R̂φ+ σζ̊ +O(|λ ˜̊
Q
|2) +O(|λR̄|2)

= −
(
R̂φ(e>2

ˆ̊
Q

ˆ̊
ζ)
)
λ ˜̊
Q,1

+
(
R̂φ(e>1

ˆ̊
Q

ˆ̊
ζ)
)
λ ˜̊
Q,2

+
(

1 + e>3
ˆ̊
Q

ˆ̊
ζ
)

(R̂φ)×λR̄ −
(
R̂φe>3

ˆ̊
Q
)

˜̊
ζ + σζ̊

+O(|λ ˜̊
Q
|2) +O(|λR̄|2) +O(|λ ˜̊

Q
||λR̄|)

+O(|λ ˜̊
Q
|| ˜̊ζ|) +O(|λR̄||

˜̊
ζ|)

(5.29)

As for the measurement equation (5.5), one deduces

I3 −RG = ζ̊ η̊> = ζ̊(Q̊>e3)>

⇒ I3 − R̄R̂G = (
˜̊
ζ +

ˆ̊
ζ)(

ˆ̊
Q>

˜̊
Q>e3)>

⇒ I3 − (I3 + λR̄×)R̂G

= (
˜̊
ζ +

ˆ̊
ζ)(

ˆ̊
Q>(I3 − λ ˜̊

Q×
)e3)> +O(|λ ˜̊

Q
|2) +O(|λR̄|2)

⇒(I3 − R̂G)− λR̄×R̂G
=

ˆ̊
ζ(

ˆ̊
Q>e3)> +

˜̊
ζ(

ˆ̊
Q>e3)> +

ˆ̊
ζ(

ˆ̊
Q>e3×λ ˜̊

Q
)>

+O(|λ ˜̊
Q
|2) +O(|λR̄|2) +O(| ˜̊ζ||λ ˜̊

Q
|)

⇒ (I3 − R̂G)− ˆ̊
ζ(

ˆ̊
Q>e3)>

= λR̄×R̂G+
˜̊
ζ(

ˆ̊
Q>e3)>+λ ˜̊

Q,1

ˆ̊
ζ(

ˆ̊
Q>e2)>−λ ˜̊

Q,2

ˆ̊
ζ(

ˆ̊
Q>e1)>

+O(|λ ˜̊
Q
|2) +O(|λR̄|2) +O(| ˜̊ζ||λ ˜̊

Q
|)
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which can be rewritten as

y :=


(I3 − R̂G)(

ˆ̊
Q>e3)− ˆ̊

ζ

(I3 − R̂G)(
ˆ̊
Q>e2)

(I3 − R̂G)(
ˆ̊
Q>e1)



=


−
(
(R̂G)(

ˆ̊
Q>e3)

)
×λR̄ +

˜̊
ζ

−
(
(R̂G)(

ˆ̊
Q>e2)

)
×λR̄ + λ ˜̊

Q,1

ˆ̊
ζ

−
(
(R̂G)(

ˆ̊
Q>e1)

)
×λR̄ − λ ˜̊

Q,2

ˆ̊
ζ


+O(|λ ˜̊

Q
|2) +O(|λR̄|2) +O(| ˜̊ζ||λ ˜̊

Q
|)

(5.30)

From (5.27), (5.28), (5.29), and (5.30), one obtains in first-order approximations the

system in compact form (2.20) with output y defined in (5.30) and

x :=


λ ˜̊
Q,1

λ ˜̊
Q,2

λR̄
˜̊
ζ

 , U :=


σQ̊,1
σQ̊,2
σR

σζ̊


A(x, t) :=

0 0 01×3 01×3

0 0 01×3 01×3

03×1 03×1 03 03

−R̂φ(e>2
ˆ̊
Q

ˆ̊
ζ) R̂φ(e>1

ˆ̊
Q

ˆ̊
ζ) (1+e>3

ˆ̊
Q

ˆ̊
ζ)(R̂φ)× −R̂φe>3

ˆ̊
Q



C(x, t) :=


03×1 03×1 −

(
(R̂G)(

ˆ̊
Q>e3)

)
× I3

ˆ̊
ζ 03×1 −

(
(R̂G)(

ˆ̊
Q>e2)

)
× 03

03×1 − ˆ̊
ζ −

(
(R̂G)(

ˆ̊
Q>e1)

)
× 03



(5.31)

From there, one deduces the expression of the innovation terms from the input U calcu-

lated according to (2.22) and (2.23).
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5.4.2 Observability and stability analysis

Similarly to (5.19), by setting x = 0 in the expression of C(x, t) in (5.31) one obtains

C? =

03×1 03×1 −
(
(I3 − ζ̊ η̊>)(Q̊?>e3)

)
× I3

ζ̊ 03×1 −
(
(I3 − ζ̊ η̊>)(Q̊?>e2)

)
× 03

03×1 −ζ̊ −
(
(I3 − ζ̊ η̊>)(Q̊?>e1)

)
× 03



=

03×1 03×1 −
(
η̊ − ζ̊

)
× I3

ζ̊ 03×1 −
(
Q̊?>e2

)
× 03

03×1 −ζ̊ −
(
Q̊?>e1

)
× 03


(5.32)

with Q̊? ∈ SO(3) constant and satisfying Q̊?>e3 = η̊.

One observes that the expression of C? in (5.32) is very similar to the one in (5.19).

Therefore, the following proposition can be directly stated where its proof proceeds

identically to the one of Proposition 6 and is thus left to the interested reader.

Proposition 7. Assume that there exists a positive number ν such that ∀t > 0 inequality
(5.20) holds. Then, the pair (A∗, C∗) is uniformly observable. Consequently, the equilibrium
(

˜̊
Qe3, R̄,

˜̊
ζ) = (e3, I3, 0) of the error system is locally exponentially stable.

5.5 Simulation results
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Figure 5.2: Scenario 1 (Method 1) – Estimated and real attitudes represented by roll,
pitch and yaw Euler angles (deg) and the attitude estimate error versus time (s) (LEFT)
and their zooms (RIGHT).

In this section the robustness and performance of the proposed observers are demon-

strated through simulation by considering two scenarios. For the sake of simplicity, the
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Figure 5.3: Scenario 1 (Method 1) – – Estimated and real scaled position and norm of
the scaled position error versus time (s) (LEFT) and their zooms (RIGHT).
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Figure 5.4: Scenario 1 (Method 1) – Estimation error of the normal vector estimate
represented by 1− η̂>η.

observers proposed in Sections 5.3 and 5.4 are referred to as Method 1 and Method

2, respectively. For the simulations, we consider that a monocular camera is attached

to an aerial drone performing some specific trajectories and observing a planar target.

In the first scenario, the drone realizes an aggressive periodical trajectory and noise

is introduced to the measurements used in the proposed observer, namely H , φ, φ⊥
and Ω. While in the second scenario, we consider the case where the camera trajec-

tory passes through the reference position (i.e. the camera translation vanishes) again

with the introduction of noise in the measurements. With Matlab Simulink, we try
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Figure 5.5: Scenario 1 (Method 2) – Estimated and real attitudes represented by roll,
pitch and yaw Euler angles (deg) and the attitude estimate error versus time (s) (LEFT)
and their zooms (RIGHT).
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Figure 5.6: Scenario 1 (Method 2) – – Estimated and real scaled position and norm of
the scaled position error versus time (s) (LEFT) and their zooms (RIGHT).

to simulate the image noise by introducing white Gaussian noise of the level of about

10 percent of the real values on each individual component of the homography ma-

trix H . We also introduce white Gaussian noise of variance of 1(deg/s), 0.1 and 0.1

on the measurements of Ω, φ and φ⊥, respectively. In both simulated scenarios, the

matrices S and D−1 involved in the CRE (2.23) are interpreted as covariance matrices

of the additive noise on the system state and output respectively, and the observer is

tuned in a similar way like Kalman-Bucy filters. Thus, the following parameters are
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Figure 5.7: Scenario 1 (Method 2) – Estimation error of the normal vector estimate
represented by 1− η̂>η.

chosen: P (0) = 50I9, D = 100I9, S = diag(0.1I2; 0.1I3; 0.1I3). The following initial

estimation errors for Method 1 (resp. Method 2) are considered for both scenarios1:

ζ̃(0) =
˜̊
ζ(0) = [10,−5, 5]>, quatR̃(0) = [0.0436, 0.2586, 0.965, 0]> (corresponding to errors

in roll, pitch and yaw Euler angles of 178.7(deg), −4.8(deg), −150(deg), respectively),

quatQ̂(0) = quat ˆ̊
Q

(0) = [0.9239, 0.3827, 0, 0]> (corresponding to an angle error of 45(deg)

between η(0) and η̂(0) (resp. between η̊ and ˆ̊η(0))), where the scene is chosen such that

η̊ = e3 and d̊ = 5(m).

Scenario 1: For this particular case the drone is commanded to perform a complex peri-

odical trajectory in the inertial frame given by

ξ = [10cos(t/
√

10)− 4, 10sin(t/
√

10)− 4, 2sin(0.3πt/2)− 4]>

The time evolutions of the estimated and real attitudes (represented by Euler angles),

the attitude error estimate (represented by trace(I3−R̃) for Method 1 and by trace(I3−R̄)

for Method 2) as well as the scaled position error estimate and the estimation error of

the normal vector to the planar scene (represented by 1 − η̂>η for Method 1 and by

1 − ˆ̊η>η̊ for Method 2) are shown in Figs. 5.2–5.7 for both the methods, respectively.

From these figures, it can be clearly seen that all the estimated variables converge to the

real ones after a short transition period of a few milliseconds despite the large initial

estimation errors. The above results also show that the proposed observers are robust

to noisy measurements as the latter marginally affects the overall performance of the

proposed observers.

1The quat(·) notation is used for the unit quaternions of the associated rotation matrix.
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Figure 5.8: Scenario 2 (Method 1) – Estimated and real attitudes represented by roll,
pitch and yaw Euler angles (deg) and the attitude estimate error versus time (s) (LEFT)
and their zooms (RIGHT).
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Figure 5.9: Scenario 2 (Method 1) – – Estimated and real scaled position and norm of
the scaled position error versus time (s) (LEFT) and their zooms (RIGHT).

Scenario 2: In this case the drone performs a rectilinear sinusoidal trajectory that passes

through the reference position (i.e. the camera translation vanishes) with added noise

on the measurements of H , φ, φ⊥, and Ω as in the previous simulation. The reference

trajectory in the inertial frame is given by ξ = [5sin(πt/3), 0, 0]>(m). It is worth noting

that in such a degenerate case (i.e. when the camera translation vanishes) all traditional

algebraic approaches fail to obtain a correct estimate of the normal vector (there exists in

fact an infinity of solutions) whereas our approach still works since the uniform observ-
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Figure 5.10: Scenario 2 (Method 1) – Estimation error of the normal vector estimate
represented by 1− η̂>η.
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Figure 5.11: Scenario 2 (Method 2) – Estimated and real attitudes represented by roll,
pitch and yaw Euler angles (deg) and the attitude estimate error versus time (s) (LEFT)
and their zooms (RIGHT).

ability conditions (5.20) for Method 1 and (6) for Method 2 are always satisfied. From

Figs. 5.8–5.13 it can be clearly seen that for this degenerate case and even with the addi-

tion of noise to the system measurements, the proposed observers are robust enough to

provide a convincing performance in terms of convergence rate, smooth transient phase,

and filtering of measurement noise.
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Figure 5.12: Scenario 2 (Method 2) —- Estimated and real scaled position and norm
of the scaled position error versus time (s) (LEFT) and their zooms (RIGHT).
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Figure 5.13: Scenario 2 (Method 2) – Estimation error of the normal vector estimate
represented by 1− η̂>η.

5.6 Experimental validations

In this section, experimental results are reported showing the comparative performance

of the proposed observer (i.e. Method 2) w.r.t. the algebraic algorithm proposed by Malis

and Vargas [53] that we call Method 3. The two methods used for comparison purposes

have two principal parts:

• the vision part providing the homography estimate;

• and the homography decomposition part applied to the inverse of the homography
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estimate.

Since our main interest consists in performing a comparative analysis between the two

homography decomposition algorithms, the vision part are common for both of them.

Remark 7. For experiments we use a hybrid continuous-discrete version of the proposed ob-
server which is similar to the one in Chapter 4 in section 4.4.

5.6.1 Experimental setup

The experimental setup makes use of a Camera-IMU system consisting of a Basler Ace

Pylon camera and a MPU-9250 IMU (see Fig. 5.14). The camera provides images at a

frequency of 25 frames per second with a resolution of 1280× 1040 pixels, and the IMU

output data rate is 100 Hz. Data transmission from the camera as well as the IMU to the

PC is carried out using a USB 3.0 cable. The highly accurate OptiTrack motion capture

system is also used to obtain ground-truth data (i.e position and attitude at a frequency

of 200 Hz) for comparison purposes. All data are time synchronized using ROS.

The homography matrix is acquired by using the HomographyLab2 library devel-

oped by our team based on the homography observer proposed in [34]. The Homogra-

phyLab library has been implemented in C++ combined with OpenCV for image pro-

cessing (i.e., FAST Feature Detector and ORB Descriptor Extractor functions for feature

detection and descriptor extraction in images). Real-time and robustness (w.r.t. fast

camera motions, occlusions, image blurs, sudden changes in light intensity, etc.) are the

main advantages of HomographyLab and the implemented algorithm with respect to the

state-of-the-art codes and algorithms (see [34] for more details).

The proposed observer for the decomposition of the homography inverse (i.e. Method

2) has been implemented in C++ on an Intel Core i7-6400 CPU running at 3.4 GHz, and

the entire implementation that includes the image processing as well as the estimation

part runs online at a frequency of 25 Hz. For the sake of simplicity, the measurement

of optical flow divergence and translational optical flow were not used for the proposed

observer in the reported experiment, but this fact only had a negligible effect on the

observer’s performance as attested by the experiment reported hereafter.

The decomposition solution of Method 3 are obtained using the existing OpenCv’s

cv::decomposeHomographyMat function that, however, gives 4 possible solutions. We

then reduce these set of solutions to only 2 by verifying the positive depth constraint

(i.e. third component of the normal vector should be positive). From the remaining two

solutions, the one with the estimated normal vector closest to η̊ u e3 is chosen. This

choice is made based on the way the experiments are performed by keeping the planar

2
http://sdb3.i3s.unice.fr/homographyLab/
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IMU

CAMERA

PLANAR
TARGET

OPTITRACK
MARKER

Figure 5.14: Experimental setup consisting of a Camera-IMU system looking at a tex-
tured planar target and OptiTrack markers for ground-truth data.

target almost perpendicular to the camera. This implies that if we have a good estimate

of the normal vector it should be approximately equal to e3

5.6.2 Experimental results

The reported experiment has been performed in real time with the Camera-IMU system

pointing downwards and observing a well-textured horizontal planar target (with the

normal vector η̊ approximately equal to e3), and by moving this system along various

directions and orientations. The gains involved in the proposed observer were chosen as

follows P (0) = 2I8, D = 100I8, S = diag(0.0052I2, 0.0252I3, I3). The following video link

https://youtu.be/SlD2JDe4cZI

showing this experiment is provided as a supplementary material.

The plots in Figs. 5.15 and 5.16 (and their zooms in Figs. 5.18 and 5.19) and in Fig.

5.17 show the comparison of the attitude estimates (represented by the Euler angles), the

scaled position estimates, and the normal vector estimates using Method 2 and Method

3 and the corresponding ground-truth variables.

It can be observed from these figures that although the algebraic algorithm (i.e.

Method 3) provides rather good estimation of the attitude and the scaled position in
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Figure 5.15: Attitudes estimated by Method 2 (Red) and by Method 3 (Green), and
corresponding ground-truth attitude (Blue) versus time.

comparison with ground-truth data when the camera’s translation is large enough, it

tends to give erroneous estimation when the latter evolves near to zero (i.e. the degen-

erate case). Indeed, the zoomed plots from the time 115s to 130s shown in Fig. 5.18 and
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Figure 5.16: Scaled position estimated by Method 2 (Red) and by Method 3 (Green),
and corresponding ground-truth attitude (Blue) versus time.

from the time 195s to 220s shown in Fig. 5.19 clearly highlight such poor behaviour.

This can be explained by the fact that the choice of the correct solution amongst the 4
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Figure 5.17: Normal vector estimated by Method 2 (Red) and by Method 3 (Green).

possible algebraic ones relies heavily on the precision of the normal vector estimate. The

latter obtained from algebraic approaches is, however, very sensitive to noise and can

be wrongly estimated when camera motion evolves near to the degenerate situation (see
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Figure 5.18: Zoom of the estimated attitude, scaled position estimates and the normal
vector from time t = 110s to t = 140s.
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Figure 5.19: Zoom of the estimated attitude, scaled position estimates and the normal
vector from time t = 195s to t = 225s.

the green dashed curves in Fig. 5.17 and in the corresponding zoomed plots in Figs. 5.18

and 5.19).

In contrast, the normal vector estimate of the proposed observer (i.e. Method 2) is

much less noisy than the one obtained from the algebraic algorithm (i.e. Method 3) and
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may be seen as the filtered signal of the latter, thus showing the filtering interest of

our approach w.r.t. traditional algebraic algorithms. One observes that non-negligible

but bounded error of the normal vector estimate has occured during the time periods

[10s, 30s], [120s, 130s] and [195s, 115s] when the camera’s translation is very small but

its yaw motion is significant. We believe that this bounded error is rather more related to

the imperfection of the camera calibration and to the sensitivity of the estimated homog-

raphy (and its decomposed normal vector solution) w.r.t. image noise and low resolution

when the camera’s translation is not large enough, than a fast drift due to measurement

noise (the proof is that from the time 90s to 100s when the camera’s pose nearly super-

pose to the reference one, the normal vector estimate always remains near to e3). More-

over, whenever the camera’s translation is large enough, the decomposed normal vector

estimate becomes quite precise. Most importantly, the attitude and scaled position esti-

mated by our algorithm always evolve closely to the corresponding ground-truths, even

in the degenerate situation.

The reported experimental results have thus illustrated the convincing performance

and robustness of the proposed approach, showing its advantage with respect to the

state-of-the-art algebraic approach.
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6
Implementation Details of the

HomographyLab Software Library

HomographyLab (Lab is an abbreviation of LABoratory) is a library for Homography

Estimation written in C++ combined with OpenCV (both CPU and GPU implementa-

tions are available). This library has been evaluated at the TRL 7 (Technology Readiness

Level) and is protected by the French APP (Agency for the Protection of Programs).

This library implements the homography observers proposed in the papers [34, 35].

Real-time and robustness (with respect to fast camera motions, occlusions, image blurs,

sudden changes in light intensity, poor image quality, etc.) are the two principle distin-

guished features of HomographyLab and the implemented algorithm with respect to the

state-of-the-art codes and algorithms. The library has been designed with various sub

modules written in separate C++ classes like feature extraction and detection, feature

matching, nonlinear homography observer, observers for homography decomposition.

Therefore, the user can also use these individual libraries to write their own custom

code and thus save significant time and resources. It has also been sucessfully imple-

mented in various robotic and computer vision applications such as image stabilization,

station-keeping of an AUV, and linear velocity estimation.
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6.1 Software Implementation Details
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Figure 6.1: Flowchart of the Homography Estimation Algorithm

The proposed algorithm has been implemented using C++ with OpenCV library.

Figure 6.1 shows the schema of the algorithm which can be summarized as follows. The

process is initialized by detecting the features and the descriptors from the reference

image. As soon as a new image arrives, it is transformed with a perspective transfor-

mation(warped using the OpenCV’s warpPerspective function) based on the predicted

homography estimate obtained from the gyro measurements. The algorithm detects the

key-points from this current warped image and then extracts the features descriptor.

The descriptors of the current image are matched with the descriptors of the reference

image. We use the brute-force matching algorithm since it is more adept to transla-

tional motion than rotational motion, and most of the rotational motion has already

been compensated for by forward integrating the angular velocity during the prediction

step. The outliers are removed using the M-estimator like observer proposed in [34]

which greatly enhances the precision as well as the robustness of the homography esti-

mate. After performing the feature detection and matching, the homography estimate

is then updated(correction step of the observer) by iterating the observer equations 300
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times per video frame. The steps of feature detection and matching which are essen-

tial parts for the algorithm are computationally quite expensive. In the literature, there

exists several feature detectors such as speeded-up robust features(SURF)[4], features

from accelerated segment test (FAST)[67], scale invariant feature transform (SIFT)[46],

oriented FAST and rotated BRIEF (ORB)[68] and descriptors such as ORB, SIFT and

SURF. We decided to use the combination FAST-ORB for the simple reason that they are

very time-efficient and thus more suited for real-time implementation. HomographyLab

software library has a CPU as well as a GPU version. The library was tested across several

hardware platforms some of which are shown in the Figure 6.2 to compare the perfor-

mances. The main goal behind creating the GPU version of the library was not only to

improve the computational performance but also to fully exploit the nvidia cards shown

in the figure 6.2 that can be easily mounted on aerial vehicles or AUV’s (autonomous

underwater vehicles) for onboard computations. In the next subsection, I will briefly

introduce the software architecture in one of the UAV platforms developed by members

of the I3S-OSCAR team to show how exactly the vision module is used in the overall

architecture.

(a) (b) (c)

Figure 6.2: (a) Nvidia Jetson TX1 (b) Nvidia Jetson Xavier AGX (c) Nvidia Jetson Xavier
NX

6.2 I3S-AUV SOFTWARE ARCHITECTURE
The platforms showed in the figure 6.3 have been completely developed in the labora-

tory for experimental validations of the vision as well as the control algorithms. With

the HomographyLab software library we perform homography based stabilization and

positioning of our vehicles for both forward looking and downward looking configura-

tions as can be seen in the videos

https://www.i3s.unice.fr/oscar/node/11
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(a) (b)

Figure 6.3: (a) Platform 1 (b) Platform 2

6.2.1 Software architecture in ROS

Currently we are using ROS drivers for the camera and the IMU. The pressure sensor is

connected to the Pixhawk over I2C connection and it is operated using a driver running

in the Pixhawk. The drivers for the camera and the Pixhawk are currently running on

the companion computer (Jetson Xavier NX in our case) in order to obtain the images,

IMU data as well as the pressure data. Apart from these drivers, there are two main

programs running on the Xavier NX:

• ROS node for estimating the homography and for performing homography de-

composition: This is the node highlighted in red in the figure 6.4. The input to

this node are the images and the IMU data (either coming from the IMU attached

to the camera or the IMU of the pixhawk). The synchronization of the images and

the IMU reading is done via ROS. Internally this node calls the functions from the

HomographyLab library. The output of this node are two matrices: Inverse of the

Euclidean Homography G and the transpose of the rotation matrix estimate R̂>.

One important thing to note here is that the HomographyLab library is written

purely in C++.

• ROS node for control: This node runs the control algorithms whose inputs are

the two matrices (i.e. Inverse of the Euclidean Homography and the tranpose of

the rotation matrix), the IMU data and the pressure data in order to generate the

control forces and torques that are further sent to the Pixhawk. Apart from this we

also send the control status (manual mode, emergency stop, etc.) to the Pixhawk.
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This control status input is read through the joystick. The joystick is connected

to the ground station on which we have a ROS driver running. The inputs of the

joystick are read in this node and then sent to the Pixhawk.

  

Pixhawk

Camera

Joystick

Pressure
Sensor

Motors
AUV

ESCs

Ros Node for 
Homography

and
Homography

Decomposition

Ros Node for 
Control

Ground
Station

This node uses the 
functions in the 

HomographyLAB
Library written purely in 

C++

Ros Driver

Ros Driver

Images

PWM 
commands

Ros Driver

Imu Data (Gyros)

ROS
 

Forces,Torques,
Control Status      (H

euc
)-1, RT

Figure 6.4: Software architecture using ROS as middleware

The communication between the two nodes is carried out using Publisher/Subscriber

service which is an inbuilt functionality in ROS.

Pixhawk: The Pixhawk is also used for the control allocation. The control forces

and torques that are obtained from the ROS node for control are converted into pwm

commands and then sent to the ESCs.

6.2.2 Ros Nodes used in our Architecture
Note that all nodes are in oval while topics are in rectangular. From the figure 6.5 you

can see that we have five principal nodes:

• /pylon_camera_node: Camera node for receiving the images.

• /homdecompobserver: Node for computing the Euclidean homography inverse and

the transpose of the Rotation matrix which is sent as an input to the Control node

• /joy_node: Node for getting the inputs from the joystick used for manual control

• /control_in_ros_node: Control node used for generating the control forces and the

control torques
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• /mavros: Pixhawk node for getting the imu data, receiving the data from the pres-

sure sensor and then finally converting the control forces and torques into pwm

commands which are sent to the motors.
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6.2.3 Transfer of Data between Ros Nodes using Topics

In order to transfer data between different nodes we use the Publisher and Subscriber

service in ROS. Normally the data is published on "Topics" and then you can read this

data from other Ros nodes. From the figure 6.5 you can see that the input to the node

/homdecompobserver are the images published on the topic /pylon_camera_node/image_rect

and the data coming from the Pixhawk IMU published on the topic /mavros_imu/data_raw.

The output of this node is the inverse of the Euclidean Homography matrix that is pub-

lished on the topic /homography and the transpose of the Rotation matrix published

on the topic /RT. On the other hand the /control_in_ros_node subscribes to the top-

ics /RT, /homography,/joy_node and also /mavros_imu/data_raw in order to receive

the data and then publishes the control forces and the control torques on the topics

/i3s_auv_custom_1_topx4_nh and /i3s_auv_custom_2_topx4_nh. Of course in the fig-

ure you can see other ros topics as well but the most important ones are mentioned in

the explanation above.
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Conclusion

This thesis addresses many aspects which are particularly related to the state esti-

mation and navigation of autonomous vehicles. They range from visual-inertial

sensor fusion, homography estimation and decomposition, design of nonlinear

observers based on Lie groups for the estimation of attitude, linear velocity etc. that can

be further used for safe and precise navigation for a wide range of autonomous vehicles.

Context and contributions of the thesis:

The contributions reported in the first part of the thesis constitute a continuation of

prior work of the I3S-OSCAR team [31] on the topic of nonlinear observer design for

homography estimation with application to image stabilization, image mosaicing etc.

Furthermore, we use Visual-Inertial sensor fusion for the development of integrated

nonlinear observers based on the Riccati observer design framework [24] that exploit

optical flow estimates and IMU readings to estimate the camera’s attitude, linear velocity,

and its distance to a planar target. A key thing to note here is the use of a suite of

low-cost sensors consisting of a monocular camera and a MEMS imu. In the context

of monocular vision, the assumption on the planarity of the visual target is considered

here, resulting in the meaningful involvement of the homography in the observer design.

Despite such a restrictive assumption, the proposed solutions are still relevant for a

number of applications in the fields of aerial, ground as well as underwater robotics.

Two nonlinear observers have been proposed in this part, the first one for the estimation

of homography and the second one for the estimation of partial attitude, linear velocity

and depth estimation and the results constitute the subject of the following publications

or submissions [55], [30].

The work presented in Part 3 presents a novel approach for tackling the classical

problem of Homography Decomposition. The novelty of this contribution lies in the
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design of two deterministic Riccati observers for addressing the homography decompo-

sition problem instead of solving it on a frame-by-frame basis like traditional algebraic

approaches. The large domain of convergence and good performance of the proposed

observers have been demonstrated through both simulation results and extensive exper-

imental validations.

The work presented in Part 4 talks about the software implementation details of the

HomographyLab library which is partially an accumulation of the observers presented

in the previous parts. This library has served as a key basis in particular for the devel-

opment of homography based visual servoing control for fully/under actuated AUV’s

[61]. The development of the HomographyLab library and of the I3S-AUV platform has

been a defining factor for successfully demonstrating the developed theories and con-

cepts as an appealing success factor to the public, the specialized robotics community

and industrial companies.

Perspectives:

The work, already done in the thesis, on the design of nonlinear Riccati observers for

state estimation has allowed us to get a really good and thorough understanding of this

powerful framework that can be used for a wide range of applications. This constitutes

the first step for us to address in the near future other challenging applications such as

autonomous landing of aerial vehicles and obstacle avoidance amongst many others.

One of the solutions to deal with this problem is to exploit the filtered optical flow

estimates proposed in Chapter 3. Also the observer proposed to estimate the linear

velocity, partial attitude and depth could be thought of as a low cost sensor to provide

these measurements. It can be utilized in a wide range of applications in which linear

velocity measurements are not available and a reliable estimate of the linear velocity and

the pose is need for control purposes. This is the case of low cost small-scale vehicles

that operates in GPS denied environment for which the cost of body velocity sensors

such as sensors based on Dopplereffect or ad-hoc inertial velocity sensor systems are

usually prohibitive. This would also be particularly useful in the field of underwater

robotics where the sensors used to measure the linear velocity (Doppler Velocity Log)

cost thousands of euros and are relatively bulky. Thus, one of the future works would be

to perform experimental validations to have an idea of the effectiveness of the proposed

approach using the platforms available in the I3S laboratory.

One of the other problems we would like to address is to take into account the ac-

celerometer bias in the observer design. Thus, we would like to design a novel observer

based on the Ricatti design framework for the estimation of linear velocity and pose of

a rigid-body along with accelerometer bias correction. We believe that this would cer-

tainly improve the quality of the estimates. Lastly with regards to homography and ho-
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mography decomposition, we would like to combine directly the point correspondences

obtained from images for the estimation of the variables of relative pose and normal vec-

tor instead of passing through the entire estimation process. This is a really interesting

research direction and will be explored in the new thesis starting shortly in the I3S team.
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