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Random integer partitions have been particularly useful in explaining the connections between diverse physical and combinatorial models exhibiting the same asymptotic phenomena. Famously, a partition under the Plancherel measure encodes the lengths of monotone subsequences of a uniform random permutation; its parts also correspond to positions of free fermions on a lattice, a connection that allows their statistics to be studied exactly. It has a deterministic limit shape and edge fluctuations with a universal critical exponent of 1/3, associated with out-of-equilibrium physics. This thesis presents two generalisations of the Plancherel measure with edge behaviour escaping its universality class. First, we introduce measures on partitions corresponding to natural models of free fermions, and show that they give rise to "multicritical" asymptotic edge fluctuations, with new critical exponents. These measures relate multicritical free fermions to random unitary matrices, explaining the appearance of the same asymptotic distributions for both. Second, we introduce a measure related to the enumeration of transposition factorisations on symmetric groups and certain discrete surfaces. We show that, in a regime where the corresponding surfaces are of high genus, it produces a novel twofold limit behaviour where the first part becomes very large. As a consequence, we find an asymptotic estimate for the unconnected Hurwitz numbers at high genus. The laws studied each have integrable structures. In the first case our analysis exploits integrability directly; in the second, we use an entropy method to study an asymptotic regime which is inaccessible by integrability approaches.

Résumé

Les partitions aléatoires d'entiers ont servi à expliquer les connexions entre modèles physiques et combinatoires très différentes. Une partition sous la célèbre mesure de Plancherel donne les longueurs des sous-suites monotones d'une permutation aléatoire uniforme ; ses parties correspondent aussi aux positions de fermions libres sur réseau, ce qui permet d'étudier leurs statistiques de manière exacte. Elle a une forme limite déterministe et des fluctuations de bord avec exposant critique universel 1/3, associé à la physique hors d'équilibre. Cette thèse porte sur deux généralisations de la mesure de Plancherel, dont le comportement de bord échappe l'universalité. On introduit en premier une famille de mesures correspondant aux fermions libres, et montre qu'elles entament des fluctuations de bord «multicritiques », avec d'autres exposants critiques. Ces mesures relient les fermions multicritiques aux matrices unitaires aléatoires, et expliquent l'apparition des mêmes distributions asymptotiques pour chaque modèle. Ensuite, on introduit une mesure liée à l'énumération des factorisations par transpositions sur les groupes symétriques et de certaines surfaces discrètes. On montre que, dans un régime où les surfaces concernées sont de grand genre, elle produit un comportement limite inédit où la première partie devient très grande. Par conséquent, on obtient une approximation asymptotique pour les nombres d'Hurwitz non connexes à grand genre. Les lois étudiées possèdent des structures intégrables. Dans le premier cas, on les exploite directement ; dans le deuxième, on étudie via une méthode d'entropie un régime asymptotique inaccessible par l'approche d'intégrabilité.
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Index of notation

Here we collect some notation conventions used throughout the text.

Partitions (and Young diagrams) are labelled with Greek letters from the middle of the alphabet (e.g. λ, µ, ν). Boxes in Young diagrams are denoted by squares . Random objects are denoted by bold letters (e.g. λ), fixed ones by light letters (e.g. λ).

(λ)

the length of a partition λ, i.e. the number of nonzero parts |λ| the size of λ, i.e. the sum of its parts λ 1 + λ 2 + . . . + λ (λ) or the size of a standard Young tableau of shape λ λ the conjugate partition of λ, with parts λ j = #{λ i |λ i ≥ j} λ/µ the skew partition, whose Young diagram is λ with the boxes of µ removed (defined if λ i ≥ µ i for all i) µ λ λ is obtained from µ by adding one box µ 1+ , λ 1- µ 1+ = (µ 1 + 1, µ 2 , . . . , µ (µ) ) is µ with a box added to the first row, λ 1-= (λ 1 -1, λ 2 , . . . , λ (λ) ) is λ with a box removed from the first row λ µ λ and µ are interlaced, i.e. λ 1 ≥ µ 1 ≥ λ 2 ≥ µ 2 ≥ . . . 

(n) = o(f (n)) as n → ∞, then f (n)/g(n) → 0 in that limit O(f (n)) "big O": if g(n) = O(f (n))
as n → ∞, there exist positive numbers G, n 0 such that g(n) ≤ Gf (n) for all n > n 0 Θ(f (n)) "big Θ": if g(n) = Θ(f (n)) as n → ∞, there exist positive numbers

G 1 , G 2 , n 0 such that G 1 f (n) ≤ g(n) ≤ G 2 f (n) for all n > n 0 o p (f (n)) "little o in probability": if g(n) = o p (f (n)) as n → ∞, then g(n)/f (n) p - → 0 in that limit O p (f (n)) "big O in probability": if g(n) = O p (f (n))
as n → ∞, then for all ε, there exist positive numbers G, n 0 such that P(g(n)/f (n) > G) < ε for all n > n 0

P n , P θ the Poissonised Plancherel measure P n = f 2 λ /n! on partitions of n, the Poissonised Plancherel measure P θ n all partitions with parameter θ P m θ an order m multicritical Schur measure on all partitions with parameter θ P a,m θ , P s,m θ the order m minimal asymmetric and symmetric multicritical Schur measures with parameter θ (where P θ = P a,1 θ = P s,1 θ ) P n, , P + n, the Plancherel-Hurwitz measure with exponent on partitions of n (where P n = P n,0 ) and its positive half 

P + n, (λ) = 2P n, (λ)1 C λ >0 c † k ,

Introduction

Combinatorics has a natural role in statistical physics. We might think, for instance, of computing the thermodynamic entropy of an isolated system at equilibrium, which amounts to counting its microscopic states, or consider finding the density of states of Bose and Fermi gases as solving two simple box and ball problems. Among the most notable achievements of combinatorial approaches to statistical physics are the simple computation of the partition function and critical point of the Ising ferromagnet in two dimensions by Kac and Ward in 1952 [KW52] and the six vertex model introduced by Pauling in 1935 [START_REF] Pauling | The structure and entropy of ice and of other crystals with some randomness of atomic arrangement[END_REF] to estimate the number of molecular configurations accounting for the residual entropy of ice, which was solved exactly by Lieb in 1967 [START_REF] Lieb | Residual Entropy of Square Ice[END_REF]. Beyond direct applications of enumeration, methods from analytic combinatorics provide important tools for finding the asymptotic behaviour of observables of thermodynamic systems.

Combinatorial approaches have predominantly been developed for models in one and two dimensions which, as in the cases of the Ising and six vertex model, yield exact solutions by algebraic methods. Such models, called integrable, have rich symmetries and are extremely rare. But although algebraic approaches can only be applied to systems with very particular microscopic interactions, the macroscopic behaviour of those systems at critical points is typically observed for many others. The behaviour of the Ising ferromagnet near its second order phase transition, as characterised by the critical exponents of intensive quantities, is also observed in physical magnets and in liquid vapour systems, where it has been experimentally observed [START_REF] Heller | Experimental investigations of critical phenomena[END_REF]. The universality of critical phenomena means that algebraic methods can be used to make precise predictions for the behaviour of complex systems at criticality, although universality itself is difficult to explain rigorously. For discrete models, we might hope to explain the asymptotic equivalence of statistics of models in the same universality class combinatorially by identifying bijections between those models.

This thesis follows broadly in the tradition of using combinatorial models with integrable structures to study universal physical phenomena. In particular, we introduce new probability laws for integer partitions (that is, weakly decreasing sequences of positive integers) as tools to study universality classes that are not yet well understood. Partitions are natural objects for approaches that are simultaneously combinatorial and algebraic. On the one hand, they play a key role in representation theory, as they index both the irreducible representations and conjugacy classes of the symmetric group. On the other, they encode data about the monotone subsequences of permutations thanks to the Robinson-Schensted correspondence. And, importantly, they are in direct correspondence with particle configurations in certain discrete physical models.

In this chapter we present an informal overview of the context and main results of this thesis, with particular emphasis on the physical models and phenomena motivating the combinatorial ones we study. 

I An out-of-equilibrium universality class, a case for random partitions

While universality has provided a rather complete description of critical phenomena in systems at equilibrium, in recent years the study of critical phenomena has been extended to the new frontier of out-of-equilibrium processes, with the discovery of the universality of the interface statistics of a diverse class of models. Let us consider two models of generic interface behaviour, in two very different contexts.

Universal growing interfaces

In 1986, Kardar, Parisi and Zhang [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF] proposed a stochastic differential equation to govern generic random growth in diffusive media. For a one-dimensional interface whose height (overlooking overhangs) is described by the single valued random function h(x, t) at time t, the famous Kardar-Parisi-Zhang (KPZ) equation reads

∂ t h = ν 2 ∂ 2 x h - λ 2 (∂ x h) 2 + √ Dξ(x, t) (0.1)
where ν, λ and D are positive constants and ξ(x, t) is Gaussian white noise, with mean zero. This describes the growth of the height function under simple assumptions: the growth is local, with quickly decorrelating noise, and the first Laplacian term accounts for the smoothing of the interface, with a surface tension of ν, while the second non-linear term ensures normal growth (see Figure 0.1) 1 . Since (0.1) does not satisfy a detailed balance equation, KPZ growth is a nonequilibrium process.

If we remove the non linear term, we recover the Edwards-Wilkinson (EW) random growth equation [START_REF] Edwards | The surface statistics of a granular aggregate[END_REF]; then, the growth of h(x, t) is independent for each x at long times. Under EW growth, the fluctuations of the height function about its mean have an exponent of 1/2, and are driven by the Gumbel distribution. For KPZ growth, however, by identifying the scaling regime in which the non-linear term remains positive and no terms blow up, the authors predicted that the fluctuations of the height function would have an exponent of 1/3, escaping the Gaussian universality (and this is indeed the most valid scaling regime: renormalisation group analysis of how the normal growth model varies under coarse-graining of time and space shows the non-linear term to be "relevant", so it remains positive in the continuum limit).

In 2010, Amir, Corwin and Quastel [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF] and, independently, Sasamoto and Spohn [START_REF] Sasamoto | The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class[END_REF] solved the KPZ equation exactly for the "narrow wedge" initial condition h(x, 0) = |x|/δ with δ 1, notably proving that, when ν = λ = D = 1 (the general case can be extracted by a change of variables) at a fixed position x space Hamiltonian is

H edge = - d 2 dx 2 + x, (0.3) 
whose square integrable eigenfunction is the classical Airy function and whose ground state propagator is the Airy kernel. As shown by Eisler [START_REF] Eisler | Universality in the full counting statistics of trapped fermions[END_REF], as N tends to infinity the the fluctuations in the counting statistics at the edge are driven by the TW-GUE distribution, just as for 2D random growth: the law of the rightmost fermion is

P x max -x edge κ < s = F GUE (s) := det(1 -A) L 2 [s,∞) , (0.4)
from precisely the ground state Airy kernel; dimensional analysis shows that κ scales with x 1/3 . This universality result even extends to some models of interacting fermions, as shown by Stéphan [START_REF] Stéphan | Free fermions at the edge of interacting systems[END_REF]. The non-interacting case was recently proven by rigorous semiclassical analysis by Deleporte and Lambert [START_REF] Deleporte | Universality for free fermions and the local Weyl law for semiclassical Schrödinger operators[END_REF]. Meanwhile, recent advances in cold atom technology (see e.g. [PHM + 15] and Figure 0.3) have lead to increased interest in low dimensional trapped fermion physics as the experimental realisation of such systems is now feasible.

Distributions and phase transitions from random matrix theory

The distribution F GUE was first discovered by Tracy and Widom [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] in another context deeply related to statistical physics: random matrices. They proved that the law of the largest eigenvalue ζ max of an N ×N random Hermitian matrix M in the Gaussian unitary ensemble (GUE) (i.e. sampled with probability density proportional to e -tr M2 /2 ) is asymptotically lim

N →∞ P ζ max -(2N ) 1/2
2 -1/2 N -1/6 < s = F GUE (s). (0.5)

The connection between the edge statistics for the GUE and for trapped fermions in 1D is clear in one special case. In the harmonic potential V (x) = x 2 (in dimensionless coordinates), the positions (and indeed momenta) of N fermions coincide exactly with the eigenvalues of an N × N GUE random matrix. This connection is lost, however, for more general potentials where the same edge behaviour appears. But the matrix model origins of F GUE do give some insight into characteristics of the models it is observed in, which we call the TW-GUE universality class. They notably led to the association of a phase transition to the universality class, as we have for equilibrium universality phenomena, by Majumdar and Schehr [START_REF] Majumdar | Top eigenvalue of a random matrix: large deviations and third order phase transition[END_REF]. From the tails of F GUE , these authors recognised the traces of a third order strong-to-weak coupling transition first found in a model of unitary matrices from gauge theory by Gross, Witten [START_REF] Gross | Possible third order phase transition in the large N lattice gauge theory[END_REF] and, independently, Wadia [START_REF] Wadia | N = ∞ phase transition in a class of exactly soluble model lattice gauge theories[END_REF].

In fact, this type of phase transition was identified as early as 1972 by May [START_REF] May | Will a large complex system be stable?[END_REF], who proposed approximating the time evolution of a vector p(t) of populations of N different species which have random pairwise interactions (as, for instance, predators or prey) by the linear equation

d dt p = -p + M p (0.6)
where M is a random real matrix. When N is large, the populations transition between stable and unstable phases as the largest eigenvalue of M crosses a certain threshold. TW-GUE fluctuations are observed for interfaces between stable (weakly interacting) and metastable (strongly interacting) phases. In the case of KPZ growth, there is a stable cluster below the interface height h and a metastable noisy one above it; for trapped fermions, the almost empty region to the right of x edge is stable while the region occupied by fermions is metastable. This coincides with an asymmetry in F GUE itself: the transition from metastable to stable is fast and the negative tail of F GUE decays rapidly, while the reverse transition is suppressed and the positive tail decays more gradually (the logarithm of dF GUE /ds scales with s3 as s → -∞ and with -s 3/2 as s → ∞ [START_REF] Majumdar | Top eigenvalue of a random matrix: large deviations and third order phase transition[END_REF]).

Exploring the TW-GUE class with random partitions With these elements of the TW-GUE universality class in mind, let us finally introduce our main protagonist, random partitions. In the time between the introduction of the KPZ equation and its exact solution, the long time limiting law (0.2) for the height function was predicted from a family of discrete stochastic models sharing the key properties of KPZ growth, called the KPZ universality class 2 -the proof of (0.2) is effectively the proof that the KPZ equation belongs to its universality class. Most notably, for some of these models every correlation can be computed exactly using algebraic methods, and their discovery has . . , 200 sampled uniformly, with one of its longest increasing subsequences (of length 25) highlighted. Right, a histogram of the lengths of the longest increasing subsequences of 10000 random permutations of 1, . . . , 4096 compared to the asymptotic probability density F GUE (s). The asymmetry of FGUE is visible from the displacement of its peak from its centre.

led to the growth of a new field, integrable probability (to which the lecture notes [START_REF] Borodin | Lectures on integrable probability[END_REF] by Borodin and Gorin are a thorough guide).

The simplest such model comes from the Ulam-Hammersley longest increasing subsequence problem [START_REF] Hammersley | Seedlings of research[END_REF]. Consider a uniform random permutation σ of the numbers 1, . . . , n, and the maximum length of a subsequence I ⊆ (1, . . . , n) such that for all pairs i < j ∈ I, σ[i] < σ[j], which we denote LLIS(σ). If we plot σ on a grid, LLIS(σ) can be interpreted as the maximum length of a path directed up and right through a uniform random medium (see Figure 0.4. This statistic can be studied by considering a probability law on partitions induced by the Robinson-Schensted algorithm, a powerful combinatorial tool which identifies each permutation in the symmetric group of order n (denoted S n ) bijectively with a pair of standard Young tableaux, each of which is an arrangement of boxes labelled 1 to n aligned on the left and on the bottom such that the labels increase along rows and columns. Under this bijection, both of the tableaux (P, Q) generated from a given σ ∈ S n have the same shape, where the the lengths of the rows, counting up from the bottom, are (λ 1 ≥ λ 2 ≥ . . . ≥ λ (σ) ). This sequence of row lengths is a partition λ, and since its "parts" λ i sum to n it is a partition of n (denoted λ n); removing the labels from the boxes of P or Q produces the Young diagram of λ. Most importantly, the first part λ 1 of λ is exactly equal to LLIS(σ).

The law of LLIS(σ) is thus equal to the law of λ 1 where λ is sampled with the Plancherel measure

P n (λ) = f 2 λ n! (0.7)
on partitions of n, where f λ is the number of standard Young tableaux of shape λ. The same measure also arises from "Fourier transforming" the uniform measure on S n to its irreducible representations, and it has particularly elegant properties. A famous result due independently to Vershik and Kerov [START_REF] Vershik | Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux[END_REF] and Logan and Shepp [START_REF] Logan | A variational problem for random Young tableaux[END_REF] is that as n tends to infinity, a random partition λ distributed by P n has a deterministic limit shape -more precisely, the piecewise linear function ψ λ;

√ n describing the upper edge of the tilted Young diagram in coordinates rescaled by 1/ √ n converges in probability to a fixed known smooth curve Ω (shown in Figure 0.5).

In a breakthrough that would ultimately relate the TW-GUE distribution to the KPZ class, Baik, Deift and Johansson [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF] proved that lim n→∞ P LLIS(σ) -2n 1/2 n 1/6 < s = lim n→∞ P n λ 1 -2n 1/2 n 1/6 < s = F GUE (s) (0.8)

Their proof exploits the exact solvability of the Poissonised Plancherel measure, the The corresponding fermion configuration is drawn below. The Vershik-Kerov-Logan-Shepp limit shape for the rescaled profile describing the upper edge of a Plancherel random partition is shown in yellow.

measure on all partitions

P θ (λ) = e -θ 2 ∞ n=0 θ 2n n! P n (λ)1 λ n = e -θ 2 θ 2|λ| f 2 λ |λ|! 2 (0.9)
where θ is a positive parameter, which we might think of as a Gibbs measure on a grand canonical ensemble of partitions. Under P θ , the size of a random partition is a Poisson random variable with mean θ 2 . The exact solution P θ uses a mapping to a model of free fermions on a one dimensional lattice, discovered by Johansson [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF] and by Borodin, Okounkov and Olshanski [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF].

Partitions are in one-to-one correspondence with what we will call fermion configurations at charge zero, which are infinite subsets of the Z + 1 2 lattice containing all of the negative integers less than some finite number and none of the positive half integers above some finite point; the configuration S(λ) corresponding to a partition λ can be read off the upper edge of its tilted Young diagram by including each half-integer where the slope of the profile is -1 and excluding each one where the slope is +1 (see Figure 0.5). P θ (λ) defines a determinantal point process (DPP) on these configurations: there is a known kernel K such that if λ is distributed by P θ , for any finite set of half integers k 1 , k 2 , . . . , k N we have

P θ ({k 1 , k 2 , . . . , k N } ⊂ S(λ)) = det 1≤i,j≤N K(k i , k j ).
(0.10) With this exact expression for every correlation function of finite observables, we consider this model to be integrable. Baik, Deift and Johansson also notably related F GUE to classical integrable differential equations, expressing the logarithm of its derivative as a Painlevé II transcendent by way of a Riemann-Hilbert problem.

The general formalism of DPPs was introduced by Macchi [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] to model the experimentally observable spatial distribution of fermions in optical beams. In fact, the DPP defined by P θ corresponds to a physically sensible model of free fermions on the Z+ 1 2 lattice, with a linear potential and nearest neighbour hopping dynamics weighted by the parameter θ. The linear potential could appear unnatural, since it can never saturate, but we can make sense of it by preparing an infinite number of fermions in a domain wall state with all negative sites occupied and all positive ones empty. Then, in the ground state, the fermion positions will have precisely the law of S(λ) (justifying the name we gave it). The limit θ → ∞, from which the n → ∞ limit of the P n is obtained through a de-Poissonisation procedure, is a continuum limit for the model. In this limit the right edge, corresponding to λ 1 , coincides with precisely the edge of a confining trap with the Introduction Hamiltonian (0.3). The appearance of the Gross-Witten-Wadia (GWW) matrix model phase transition can also be explained directly for the edge statistics of the Poissonised Plancherel measure: as proven by Johansson using purely algebraic identities [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF], the cumulative distribution λ 1 is exactly equal to the partition function of the unitary matrix model they considered (before the θ → ∞ limit).

The utility of random partitions in relating different elements of the TW-GUE class to one another goes further, as the Plancherel measure is also the fixed time distribution for a random growth process. Let σ (n) be a uniform random permutation in S n ; then, a uniform random permutation σ (n+1) in S n+1 can be sampled by inserting n+1 uniformly into σ (n) . For the corresponding pair of Young tableaux, the insertion corresponds to the addition of a box, and there is a coupling between the laws P n and P n+1 of their shapes.

Beyond the Plancherel measure and beyond the TW-GUE distribution Several natural variations of the Plancherel measure also correspond to models in the TW-GUE universality class. Considering a simple random growth process on a Young diagram in continuous time, where a box is added to each available corner with the same average rate. Then, the upper edge of the tilted Young diagram can be interpreted as the height function for the totally symmetric particle exclusion process (TASEP) prepared in the wedge initial condition; this is a reference model for discrete nonequilibrium dynamics. The longest increasing subsequence problem generalises to a problem of finding the longest directed path through different random medium [START_REF] Johansson | Shape fluctuations and random matrices[END_REF], which, via the more general Robinson-Schensted-Knuth (RSK) correspondence [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF], in turn corresponds to a model of random partitions [START_REF] Baik | Algebraic aspects of increasing subsequences[END_REF]. An interpretation of one such problem as polynuclear growth led to a strong conjecture for the long time asymptotic fluctuations of the KPZ equation by Prähofer and Spohn [START_REF] Prähofer | Scale invariance of the PNG droplet and the Airy process[END_REF].

One significant development in the application of random partitions to nonequilibrium systems has been the introduction of infinite parameter families of integrable measures. In the most famous case, Okounkov's Schur measures [START_REF] Okounkov | Infinite wedge and random partitions[END_REF] are defined as

P(λ) = 1 Z s λ (x 1 , x 2 , . . .)s λ (y 1 , y 2 , . . .) (0.11)
where Z is the normalisation and s λ (x 1 , x 2 , . . .) is the Schur function indexed by λ, which is a particularly interesting symmetric function of the complex valued parameters x 1 , x 2 , . . . (the choice of which is limited only by the requirement that P(λ) must be non-negative for all λ and that Z is well defined). By definition, these measures have a high level of symmetry, being invariant under exchange of their parameters. Due to a combinatorial interpretation of the Schur function, they encode for instance the directed path problems in inhomogeneous media mentioned above (which has a symmetry under exchange of inhomogeneity parameters; see [START_REF] Barraquand | Stationary measures for the log-gamma polymer and KPZ equation in half-space[END_REF] for an application of this); the Schur function is also a determinant of other symmetric functions. Schur measures are integrable, defining DPPs on the corresponding fermion configurations; they are also related to classical integrable equations, as the Schur measure partition function is a τ function of the infinite Kadomtsev-Petviashvili (KP) hierarchy. The Schur measure admits two important extensions. The Schur process introduced by Okounkov and Reshitikhin [START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF] is a measure on plane partitions, which are sequences of partitions satisfying some interlacing conditions (or 3D Young diagrams, called Wulff crystals in physics literature). It is a time dependant generalisation of the Schur measure, with growth model interpretations via the RSK algorithm, and in more combinatorial terms it is a generalisation of to two dimensions, encoding a wide range of tiling problems (see e.g. [BBC + 15]). The periodic Schur process introduced by Borodin [Bor07] is a measure on cylindric partitions, which are sequences of interlaced partitions with a periodic boundary condition, was shown by Betea and Bouttier [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF] to encode a positive temperature fermion model.

Recently, these extensions of random partitions have offered a promising path towards explaining a connection between interface statistics for KPZ growth and trapped fermions before their respective long time and zero temperature limits. At a finite time t, the fluctuations in the interface height h(x, t) evolving by the KPZ equation (0.1) from the narrow wedge initial condition have an exponent of 1/3 but are driven by the Fredholm determinant of a finite time Airy kernel, which is equivalent to the classical Airy kernel A in the limit t → ∞ [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF][START_REF] Sasamoto | The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class[END_REF]. The same Fredholm determinant was shown by Dean, Le Doussal, Majumdar and Schehr [START_REF] Dean | Finitetemperature free fermions and the Kardar-Parisi-Zhang equation at finite time[END_REF] to govern the fluctuations in the rightmost of N fermions in a confining trap in 1D at a positive temperature T , where N 1/3 /T plays the role of the time t. Thanks to a new bijection which relates edge statistics for periodic Schur processes and of q-Whittaker measures discovered by Imamura, Mucciconi and Sasamoto [START_REF] Imamura | Identity between restricted Cauchy sums for the q-Whittaker and skew Schur polynomials[END_REF], there is now a path towards identifying finite time statistics for asymmetric simple exclusion processes and discrete growth processes bijectively with positive temperature statistics for lattice fermion models [START_REF] Imamura | Solvable models in the KPZ class: approach through periodic and free boundary Schur measures[END_REF].

II Multicritical Schur measures and new microscopic edge fluctuations

Let us now give an overview of the first contribution of this thesis, which deals precisely with the edge fluctuations of random partitions. In collaboration with Dan Betea and Jérémie Bouttier [1], we introduced new probability laws for partitions which escape the TW-GUE universality class, both in terms of critical exponents for fluctuations and the asymptotic law itself. Our main result is that Result 0.1 (see Definition 2.1 and Theorem 2.2). For each positive integer m, we can tune sequences of real numbers γ 1 , γ 2 , . . . with finite support such that a random partition λ = (λ 1 , λ 2 , . . .) under the Hermitian Schur measure

P m θ = 1 Z s λ (x 1 , x 2 , . . .)s λ (x 1 , x2 , . . .) (0.12)
specialised in the Miwa times by

1 r i x r i = 1 r i xr i = θγ r , r ≥ 1 (0.13)
has asymptotic edge fluctuations which we characterise as "order m multicritical", with

lim θ→∞ P m θ λ 1 -bθ (dθ) 1 2m+1 < s = F 2m+1 (s) := det(1 -A 2m+1 ) [s,∞) (0.14)
for positive constants b, d depending on γ 1 , γ 2 , . . ., where A 2m+1 is the order m analogue of the Airy kernel (A 3 = A is the classical Airy kernel and F 3 = F GUE is the TW-GUE distribution).

Multicritical edge momenta of trapped fermions

This work was inspired by the discovery of the same asymptotic distribution for largest fermion momentum in particular models of trapped fermions in 1D by Le Doussal, Majumdar and Schehr [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF]. By considering fermions trapped in "flat potentials" V (x) = x 2m (m is again a positive integer) in momentum space, these authors escaped the universality of the position space edge with linearised potential; rather, in suitably rescaled dimensionless coordinates p = (p -p edge )/κ near the Fermi edge p 2 edge = E F , they found a new edge Hamiltonian generalising (0.3), H edge = (-1) m d 2m dp 2m + p. (0.15)

The higher-order Airy kernel A 2m+1 whose Fredholm determinant F 2m+1 (s) drives the multicritical edge fluctuations is the zero temperature ground state propagator of this Hamiltonian.

In [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], some indications about the nature of the universality class associated with these edge statistics are found by analysis of the distribution F 2m+1 (s). In particular, the authors derived a differential equation satisfied by the square root of d 2 log F 2m+1 (s)/ds 2 for each m, finding the order 2m equation of the Painlevé II hierarchy. Cafasso, Claeys and Girotti [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] later proved by a rigorous Riemann-Hilbert method that

F 2m+1 (s) = exp ˆ∞ s (x -s)q 2 m (x)dx (0.16)
where q m is a solution of the order 2m Painlevé II equation which is equivalent to the order 2m + 1 classical Airy function (the eigenfuction of (0.15) from which the order m Airy kernel A 2m+1 is built) at positive infinity. These authors found generalisations of the higher-order Airy kernel whose Fredholm determinants satisfy the same relation, which had not been considered in the context of trapped fermions [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]. The appearance of higher order Painlevé transcendents implied a link to certain unitary matrix models studied by Periwal and Shevitz [START_REF] Periwal | Exactly solvable unitary matrix models: multicritical potentials and correlations[END_REF][START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF], which generalise the GWW model. For × matrices, these models have a partition function of the form Z = ˆU( ) e u tr(V (U )+V (U * )) DU.

(0.17)

The Painlevé II hierarchy was found from these models by using orthogonal polynomials on the unit circle to tune a polynomial potential V (U ) such that, in the → ∞ limit with u finite, the square root of Z -1 Z +1 /Z 2 (which coincides with the the second derivative of the free energy) would satisfy an order 2m differential equation in u. For a random matrix U sampled with probability density e v tr(V (U )+V (U * )) /Z , this tuning means that in the limit → ∞ its eigenvalue density on the unit circle will vanish with an exponent of 2m, in analogy with Kazakov's multicritical Hermitian matrix model [START_REF] Kazakov | The Appearance of Matter Fields from Quantum Fluctuations of 2D Gravity[END_REF]. Le Doussal, Majumdar and Schehr called the novel edge behaviour they observed for fermion momenta "multicritical" after the name Periwal and Shevitz gave these unitary matrix models.

In order to develop the universality picture for the multicritical edge statistics and allow for combinatorial connections, we found discrete models with the same asymptotic edge distributions.

From Hermitian Schur measures to multicriticality

We constructed measures on partitions with order m multicritical edge statistics by tuning the parameters of polynomial Hermitian Schur measures. This corresponds to specialising not the direct parameters x 1 , x 2 , . . ., in which the Schur measure has an exchange symmetry, but rather the Miwa times t r = i x r i /r (t r = p r /r in terms of the power-sum symmetric functions p r ). We will allow only finitely many non-zero Miwa times, so there is an infinite number of nonzero terms in the underlying direct parameter specialisation. Importantly, these specialisations are not Schur positive (that is to say, under these specialisations s λ is negative for some partitions λ); hence, they cannot be extended to define time dependant processes. However, this atypical construction of a Schur measure corresponds to a natural model of lattice fermions, generalising the linear potential and nearest neighbour hopping dynamics of the Poissonised Plancherel measure to include longer finite range hopping dynamics, with the hopping term for a distance of r sites weighted by t r .

The multicritical measures P m θ for which we prove the asymptotic edge fluctuation theorem are very general. At order m, the coefficients γ r need only satisfy m -1 homogeneous linear equations in addition to some positivity conditions (see Definition 2.1). From this, we see immediately that we find the largest space of possible measures at m = 1, so TW-GUE edge behaviour is generic for Hermitian Schur measures. Each Miwa time grows linearly with the single parameter θ, so that the mean size of a random partition grows with θ 2 ; heuristically, tuning a Hermitian Schur measure to multicriticality corresponds to tuning its dynamic terms to coincide in the θ → ∞ continuum limit with the d 2m /dp 2m term of the momentum space edge Hamiltonian (0.15). The proof of Result 0.1 involves asymptotic analysis of the discrete Fredholm determinant giving the exact gap probability for the multicritical Schur measure. The higher-order Airy kernel A 2m+1 is recovered from the kernel of the discrete DPP in the limit as θ → ∞ by saddle point analysis involving a "multicritical point" where 2m saddle points coalesce -another way in which these edge statistics are multicritical.

Limit shapes Asymptotic analysis of DPP kernel associated with P m θ also allows us to prove that Result 0.2 (see Theorem 2.4). As θ → ∞, the rescaled profile ψ λ;θ (x) describing the upper edge of the P m θ -distributed partition λ in coordinates that scale with 1/θ converges in probability to a deterministic limit shape Ω(x) which depends on the specific choice of coefficients γ r but which has a universal vanishing exponent on its right edge, with

Ω (x) ∼ 1 -C(b -x) 1/2m (0.18)
when x is close to b, where C and b are constants depending on the precise set of parameters (and θb is the expectation value of λ 1 ).

This generalises the 1 2 exponent in the case of the m = 1 TW-GUE class, which coincides with the edge of the Wigner semi circle law. The existence of a limit shape is a generic property of Hermitian Schur measures in an asymptotic regime where each Miwa time grows linearly in θ.

In addition to the general criteria for multicriticality, we find a pair of one-parameter families of "minimal" multicritical Schur measures, for which we find explicit limit shapes. In the first case, P a,m θ are the unique set of multicritical measures where γ 1 = 1 and only γ 1 , γ 2 , . . . , γ m are nonzero (we have P a,1 = P θ ). Partitions sampled with some of these measures and the corresponding limit shapes are shown in Figure 0.6; for m > 1, the limit shapes are asymmetric under horizontal reflection of the tilted Young diagram, with the left edge vanishing with a 1 2 exponent (and TW-GUE fluctuations in the length (λ)). The second family of measures we find, P s,m θ , is constructed to have a symmetry under flipping the tilted Young diagram (and a second multicritical edge on the left for (λ)), with γ 1 = 1 and only the odd labelled coefficients γ 1 , γ 3 , . . . , γ 2m-1 non-zero.

Connection to random matrices For the multicritical Schur measures, the connection with the Periwal-Shevitz unitary matrix models can be explained exactly (just as the Poissonised Plancherel measure was related to the GWW model in [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF]). Using a series of algebraic identities notably employed by Gessel [START_REF] Gessel | Symmetric functions and P-recursiveness[END_REF], we show that Result 0.3 (see Theorem 3.1). Where λ is a random partition under P m θ , the cumulative distribution of its first part satisfies

e r rθ 2 γ 2 r • P m θ [λ 1 ≤ ] = ˆU( ) e θ tr r (-1) r-1 γr(U r +U * r ) DU
where DU is the Haar measure on the × unitary matrices. The unitary matrix model with potential V (U ) = θ r (-1) r-1 γ r (U r + U * r ) has order 2m vanishing in its eigenvalue density as θ, → ∞ such that θ/ is finite.

The equivalence between the cumulative distribution for λ 1 and the unitary matrix integral is exact for all θ, while the condition that the asymptotic edge fluctuations on the partition side are multicritical ensures that the unitary matrix model is asymptotically multicritical too. The sets of coefficients γ r defining the minimal measures P a,m θ are precisely the ones found by tuning the potential on the unitary matrix side in [START_REF] Periwal | Exactly solvable unitary matrix models: multicritical potentials and correlations[END_REF]. These matrix models exhibit a strong-to-weak type phase transition, generalising the one in the GWW model, with a scaling exponent of 2 + 1/m.

Beyond zero temperature multicritical edge statistics

By extending multicritical Schur measures to multicritical periodic Schur processes (measures on cylindric partitions), we can recover models with asymptotic edge fluctuations driven by Fredholm determinants of positive temperature higher-order Airy kernels found in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF]. These Fredholm determinants were related to Painlevé II equations by Krajenbrink [Kra20] and then rigorously expressed in terms of higher-order Painlevé transcendents by Bothner, Cafasso and Tarricone [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF]. These statistics have yet to be related to matrix models beyond the m = 1 TW-GUE case, where the GUE has as a positive temperature analogue the Moshe-Neuberger-Shapiro model [START_REF] Moshe | Generalized ensemble of random matrices[END_REF]. The multicritical periodic Schur process could eventually provide an algebraic means to find a positive temperature unitary matrix model.

From the Hermitian Schur measure construction, we can also find discrete models whose DPP kernel converges to the generalised higher-order Airy kernel introduced in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]. This construction also naturally includes measures with a split Fermi sea, whose asymptotic analysis presents interesting challenges and for which we find new edge distributions given by modified multicritical Fredholm determinants.

III A universality class from two-dimensional quantum gravity

Let us shift our attention to a universality class for rather different probabilistic models: random maps. Combinatorial maps are discrete surfaces, defined as gluings of polygons, or equivalently as embeddings of graphs in surfaces. As in the case of the TW-GUE universality class, the study of maps has in large part developed alongside random matrix theory (see e.g. [START_REF] Eynard | Counting Surfaces[END_REF]). Map data can generally be encoded by sets of permutations, making random partitions a natural (but thus far less exploited) approach to these objects too.

Combinatorial maps in physics

Maps arise in physics in two main contexts (which are highly related to one another). The first is as Feynman diagrams for toy models of quantum field theories with a large gauge symmetry group, namely the special unitary group SU (N ) where N is large. Following 't Hooft's identification of the large symmetry group limit with a planar limit for Feynman diagrams [tH74], Brézin, Itzykson, Parisi and Zuber [START_REF] Brézin | Planar diagrams[END_REF] proposed zero-dimensional theories whose field is an N × N matrix M and whose action has a global Lie group invariance, and studied them diagrammatically. They considered models with a partition function (obtained from the path integral by the formal identification of i/ with the inverse temperature β) of the form

Z N = ˆN×N exp [β tr V (M )] DM (0.19)
where V (M ) is a polynomial. Where the field is a Hermitian matrix and the symmetry group is SU (N ), the diagrams in question are ribbon graphs, whose edges are flat strips, with two sides of opposite orientation (each corresponding to a matrix entry M ij , with an exchange of indices corresponding to flipping the orientation; the coefficients of V (M ) weight vertices with the corresponding number of incident edges). The orientation of the flat strip edges fix a cyclic ordering around each vertex and identifies faces. These data define a discrete orientable surface, in precisely the way gluing together polygons does (these different ways of drawing the same object are shown Figure 0.7). Once the graph is connected, the genus g of that surface (the number of "handles" of a closed surface) is given by the famous relation for the Euler characteristic topological invariant

χ = #vertices -#edges + #faces = 2 -2g.
(0.20)

In the limit as N → ∞, as shown for very general field theories in [tH74], the dominant diagrams contributing to a path integral of the form (0.19) have g = 0, and can be drawn on a plane with no edges overlapping. The ribbon graphs generated this way had previously been introduced and called maps by Tutte, who enumerated various families in the planar case by a decomposition approach [START_REF] Tutte | A census of planar maps[END_REF]; asymptotic analysis of matrix integrals led to derivations of Tutte's formulas. Although the matrix integral approach is non-rigorous, typically involving divergent series, other enumerative formulas it has predicted were proven combinatorially by a series of bijections to trees and mobiles initiated by Schaeffer [START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF] and further developed by Bouttier, Di Francesco and Guitter [START_REF] Bouttier | Census of planar maps: From the one-matrix model solution to a combinatorial proof[END_REF]. Matrix integral generating functions also led to the development of topological recursion [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], which has since been applied to a wide range of geometric objects. The effectiveness of matrix models in map enumeration can be attributed to their integrability. The same algebraic structures that allow these models to be solved exactly have led to recurrence formulas for map enumeration via integrable hierarchies [START_REF] Goulden | The KP hierarchy, branched covers, and triangulations[END_REF][START_REF] Carrell | Simple recurrence formulas to count maps on orientable surfaces[END_REF], in some cases corresponding to map bijections [START_REF] Chapuy | A simple model of trees for unicellular maps[END_REF][START_REF] Louf | A new family of bijections for planar maps[END_REF].

The second appearance of maps in physics is as discretisations of space-time in 2D quantum gravity (or indeed discretisations of the worldsheet in string theory; we refer to the book [START_REF] Ambjørn | Quantum Geometry, a statistical field theory approach[END_REF] for a general overview). In 2D, gravity is topological, since by the Gauss-Bonnet theorem the scalar space-time curvature is equal to the Euler characteristic χ; where µ denotes the metric, R the Ricci scalar, Λ the cosmological constant and N Newton's constant, the Einstein-Hilbert action for a 2D space-time Σ with area A(Σ) and Euler characteristic χ(Σ) is just

S EH (Σ) = ˆΣ(Λ det µ + N R det µ)d 2 x = ΛA(Σ) + N χ(Σ). (0.21)
To quantise this action, the path integral is computed by integrating exp(iS EH (Σ)/ ) over surfaces Σ at fixed topology, and summing over topologies. The integration over all surfaces required here is not well defined, but by considering discrete ones in the form of maps, the path integral can be reframed as a well defined sum; identifying i/ with β recasts the quantum mechanical problem in terms of an ensemble of random maps.

Universality of planar maps

Asymptotic map enumeration results at fixed genus obtained by the approaches mentioned above or more classical generating function methods (e.g. in [START_REF] Bender | The asymptotic number of rooted maps on a surface[END_REF][START_REF] Bousquet-Mélou | Polynomial equations with one catalytic variable, algebraic series, and map enumeration[END_REF]) have universal exponents: regardless of the precise composition of the maps (whether they are, for instance, glueings of polygons of fixed degree, maps with alternately coloured vertices or faces, or maps of all degree), the number of maps of size (which can be the number of vertices or the number of faces) n with a labelled "root" vertex at genus g is, as n → ∞, #{maps of size n} ∼ Cγ n n 5/2(g-1) (0.22) where C, γ are model dependent constants (see e.g. [START_REF] Banderier | Random maps, coalescing saddles, singularity analysis, and airy phenomena[END_REF] for the g = 0 case and [BC86, Gao93, Cha09a] for g ≥ 1).

For planar maps, the universality extends to the asymptotic limiting objects themselves. Bijections to trees allow maps to be defined as metric spaces [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF]. Le Gall [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF] and Miermont [START_REF] Miermont | The brownian map is the scaling limit of uniform random plane quadrangulations[END_REF] independently proved that when the map size tends to infinity while the distance is rescaled to remain finite, there exists a unique universal scaling limit for the metric space of a uniform random planar p-angulation as its size tends to infinity, the Brownian sphere (see Figure 0.8. This limiting object can be considered as a canonical model of a continuous random surface, and has important consequences for the study of 2D quantum gravity, allowing for the rigorous discrete construction of conformal field theories predicted for 2D quantum gravity from string theory [START_REF] Polyakov | Quantum geometry of bosonic strings[END_REF] (see for instance [START_REF] David | Liouville quantum gravity on the riemann sphere[END_REF] for the physical models in question and [START_REF] Gwynne | Random surfaces and Liouville quantum gravity[END_REF] for a review on probabilistic advances). The growing family of models proven to converge to the Brownian sphere at genus zero make up the universality class of maps.

For maps with fixed positive genus, there is a similar, though less well explored, universality picture: analogous Brownian surfaces were found by Bettinelli [START_REF] Bettinelli | Scaling limits for random quadrangulations of positive genus[END_REF][START_REF] Bettinelli | The topology of scaling limits of positive genus random quadrangulations[END_REF] as scaling limits of particular quadrangulations, using the the Chapuy-Marcus-Schaeffer bijection [START_REF] Chapuy | A bijection for rooted maps on orientable surfaces[END_REF] to define a metric space.

The high genus frontier If instead of keeping the genus fixed, we consider an asymptotic regime where the genus g grows with the size n, established methods fail. In particular, the linear "high genus" regime where g ∼ qn for some constant q is an exciting new frontier. In terms of asymptotic enumeration, this regime requires the development of new tools; in terms of the geometry of large random maps (specifically their local limit; see Figure 0.9), a neighbourhood of a fixed radius around the root vertex of a map of size n looks the same for any fixed genus as n → ∞, as the root vertex do not "see" the handles, but if the genus grows with n the local limit will change dramatically. The high genus regime was pioneered in [START_REF] Angel | The local limit of unicellular maps in high genus[END_REF] and [START_REF] Ray | Large unicellular maps in high genus[END_REF] in the case of maps with only one face, which do not belong to the map universality class but to a class of generalised trees. A breakthrough in understanding this regime for maps was recently made by Budzinski and Louf [START_REF] Budzinski | Local limits of uniform triangulations in high genus[END_REF], who proved the Benjamini-Curien conjecture [START_REF] Curien | Planar stochastic hyperbolic triangulations[END_REF] on the local limits of uniform random triangulations in this regime. As a by-product, using a combination of probabilistic and combinatorial methods, they obtained the estimate #{triangulations of size n and genus g} = n 2g exp [C(q)n + o(n)] (0.23)

where C(q) is a known function. Subsequent work by the same authors identifying related local limits for a wider class of glueing of p-gons [START_REF] Budzinski | Local limits of bipartite maps with prescribed face degrees in high genus[END_REF] led them to conjecture that this estimate is universal up to the function C(q).

Random partitions and maps

Returning to our main objects of interest, random partitions, and to the TW-GUE universality class, map enumeration played a key role in proving a conjecture of Baik, Deift and Johansson. In [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF], the authors inferred from (0.8) that the equivalence in law between the maximum eigenvalue ξ 1 := ξ max of an n × n GUE random matrix and the first part λ 1 of a Plancherel random partition λ n as n → ∞ would extend to equivalence of the joint distributions of the m highest eigenvalues ξ 1 ≥ ξ 2 ≥ . . . ≥ ξ m and parts λ 1 ≥ λ 2 ≥ . . . ≥ λ m where m is fixed.

Okounkov [START_REF] Okounkov | Random matrices and random permutations[END_REF] proved this combinatorially, without exploiting the DPPs encoded by the GUE and by the Plancherel measure after Poissonisation (the DPP approach was later used in [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF] and [START_REF] Johansson | Discrete orthogonal polynomial ensembles and the Plancherel measure[END_REF]). Instead, his proof used the fact that the moments of traces of a GUE random matrix asymptotically count planar maps, then related these discretisations of the sphere to ramified coverings of the Riemann sphere which are in turn counted by moments of parts of a Plancherel random partition via the Jucys-Murphy elements.

Matrix model generating functions of maps have also been directly expressed in terms of characters of the symmetric group, which are expressed in terms of partition data, leading to closed expressions for numbers of not necessarily connected maps [START_REF] Francesco | A generating function for fatgraphs[END_REF]. The unitary matrix models of the form (0.3) which are exactly equivalent to gap probabilities for Schur random partitions resemble the Hermitian ones of the form (0.19), and in fact the multicritical matrix models were proposed as a form of map generating function in [START_REF] Periwal | Exactly solvable unitary matrix models: multicritical potentials and correlations[END_REF] (more precisely, writing a unitary matrix as the exponential of a Hermitian one, as series of map generating functions). This interpretation has not yet been formulated rigorously, and remains an interesting open question.

IV The Plancherel-Hurwitz measure and new macroscopic limit behaviour

Let us now present the second contribution of this thesis, where, in collaboration with Guillaume Chapuy and Baptiste Louf [2], we tested a new random partition approach to the asymptotic enumeration of maps at high genus. To do so we introduced a new generalisation of the Plancherel measure on partitions whose normalisation counts Each transposition gives the labels of two vertices which are connected by an edge, the order of the transpositions determines the cyclic ordering of the edges around vertices. Each face has exactly one corner which is an edge-label descent, indicated in grey.

certain natural not necessarily connected maps. In a regime where the negative Euler characteristic of the corresponding maps grows linearly with their size, this measure gave rise to a novel two part limit phenomenon for a random partition, with its first part becoming much larger than all of the others. 

Hurwitz numbers and maps

H n, := #{(τ 1 , τ 2 , . . . , τ ) ∈ (S n ) , τ 1 • τ 2 • • • τ = 1} = 1 n! λ n f 2 λ C λ (0.24)
where each τ i is a transposition, f λ is the number of standard Young tableaux of shape λ and C λ is the content-sum, which can be written simply as

C λ = i λ i (λ i -2i + 1)/2.
For each even , we can interpret H n, as the partition function normalising what we call the Plancherel-Hurwitz measure, with P n, (λ

) := f λ 2 C λ 2 /n!H n,
, which reduces to the classical Plancherel measure when = 0. The measure P n, is invariant under conjugation of the partition (that is, flipping the tilted Young diagram horizontally), and for > 0 it is natural to consider only its "positive half" P + n, (λ) := 2P n, (λ)1 C λ >0 , conditioned on the content-sum being positive (so the boxes are predominantly to the right in the tilted Young diagram).

From a high genus map perspective, the Hurwitz numbers are interesting because transposition factorisations of the identity are in one-to-one correspondence with unconnected pure Hurwitz maps (they also enumerate ramified coverings of the Riemann sphere [START_REF] Hurwitz | Ueber riemann'sche flächen mit gegebenen verzweigungspunkten[END_REF], an enumerative geometry perspective we will not develop). These maps are special cases of constellations [START_REF] Bousquet-Mélou | Enumeration of planar constellations[END_REF], and are strongly conjectured to be in the map universality class [START_REF] Duchi | Bijections for simple and double Hurwitz numbers[END_REF]; from a simple rule for drawing a transposition (see Figure 0.10) we see that H n, counts not necessarily connected maps with n vertices,

-2 √ n 2 √ n 2 log n Figure 0
.11 A partition sampled under the Plancherel-Hurwitz measure P n, at high genus. The twofold asymptotic behaviour is shown in yellow: the first part becomes very large and escapes the picture, while the rest of the partition has the limit shape of the Plancherel measure Pn. The profile of the partition is shown in red; without a DPP for P n, , our proof relies on functional optimisation of this curve.

edges and n faces. The Euler characteristic relation here reads

χ = 2n -= 2κ -2G (0.25)
where κ is the number of connected components in the map and G the sum of their genera. Then for a sequence of := (n) ∼ 2qn, if q > 1, the sum of genera G grows linearly with n and the connected components of the corresponding maps are of high genus (although this is not strictly the high genus regime studied for the genus may be divide unevenly across different connected components).

A high genus limit shape for Young diagrams Considering the corresponding random partitions, we found a deterministic limit behaviour associated with this kind of high genus regime, and proved that Result 0.4 (see Definition 4.1 and Theorem 4.2). Under the positive half of the Plancherel-Hurwitz measure P + n, whose partition function counts not necessarily transitive factorisations of the identity on S n by transpositions, in the regime given by = (n) ∼ 2qn for some q > 0, a random partition λ n with positive content-sum has the following limit behaviour as n → ∞:

(i) the first part λ 1 is equivalent to 2 / log n in probability;
(ii) the rest of the partition λ = (λ 2 , λ 3 , . . .) has a VKLS limit shape. Namely, the rescaled profile ψ λ;

√ n (x) converges in probability to the limit shape Ω of the Plancherel measure P n,0 in the supremum norm;

(iii) the second part λ 2 and the number of parts (λ) are both equivalent to 2 √ n in probability.

This phenomenon is illustrated in Figure 0.11. A random partition under the full measure P n, is a partition distributed by P + n, which is then conjugated with probability 1 2 (or, its tilted Young diagram is flipped horizontally with probability 1 2 ).

The "bulk" λ = (λ 2 , λ 3 , . . .) behaves exactly like a Plancherel random partition, and λ 1 is the only part growing faster than √ n; this twofold structure is quite novel. Our proof, using comparisons of entropies, also follows this twofold structure, with a second layer of refinement required for the precise bounds of 2 √ n on the λ 2 and (λ). The limit behaviour can be thought of as resulting the competing "forces" of the content-sum term C λ and Plancherel measure term f λ 2 : while the former is maximised by a very skewed Young diagram, there is a cost from the latter in deviating from the symmetric VKLS limit shape. Result 0.4 shows that a random partition balances these factors by obtaining a large content-sum only from the first part, and leaving the rest of the partition to maximise the Plancherel part only.

Connections to random walks and integrable hierarchies

The Plancherel-Hurwitz measure is a natural extension of the classical Plancherel one, and it previously appeared (without a name) in two seminal works.

The first, by Diaconis and Shahshahani [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF], considered a random walk on S n generated by choosing a transposition τ i uniformly times. They were interested regimes in which the walk is asymptotically well mixed, that is in finding := (n) such that the law of the random permutation σ ( ) 

= τ • τ -1 • • • τ 1 σ (0) ∈ S n is close to uniform as n → ∞.
They found a mixing threshold for , showing that if > (1+ε)n log n/2 for any ε > 0, the total variation distance from the law of σ ( ) to the uniform law tends to zero. This leads directly to an asymptotic estimate for H n, with above the mixing threshold. The Plancherel-Hurwitz measure appears in the formula for the total variation distance, and in fact the proof uses the trivial limiting behaviour of a partition under P n, with above the mixing threshold: then, λ almost surely has only one part or n parts. The limiting behaviour in Result 0.4 can be seen as combining this phenomenon with the Plancherel measure VKLS behaviour.

The second, by Okounkov [START_REF] Okounkov | Toda equations for Hurwitz numbers[END_REF], used the partition expression for the unconnected Hurwitz numbers H n, to show that their generating function encodes solutions of a hierarchy of integrable differential equations -namely, that it is a τ -function of the Toda lattice hierarchy, which is a generalisation of the KP hierarchy for which the Schur measure partition function is a τ -function. This uses precisely the same correspondence with fermion configurations that allowed the Poissonised Plancherel measure and Schur measures to be solved exactly and asymptotically using DPPs. The Plancherel-Hurwitz measure ostensibly also defines a DPP after Poissonisation, however in this case we do not have a generating function for the integral kernel even at fixed , and thus cannot use such an approach. The integrability of this measure at the level of classical hierarchies, however, has been used by Dubrovin, Yang and Zagier [START_REF] Dubrovin | Classical Hurwitz numbers and related combinatorics[END_REF] to find recurrence relations for the connected Hurwitz numbers h n, . These recurrence relations have not so far lead to asymptotics for h n, .

An estimate for H n, at high genus and the corresponding map model As a direct consequence of the limit shape behaviour, we obtain an asymptotic estimate for H n, in the same regime, up to a exponential terms.

Result 0.5 (see Theorem 4.3). Let H n, be the number of (not necessarily transitive) factorisations of the identity on S n by an even number

= (n) ∼ 2qn of transpositions. As n → ∞, H n, = log n 2 exp (-2 + log 2) + o(n) . (0.26)
This should not be directly compared to the Budzinski-Louf estimate (0.23) because there is a fundamental difference between our model and theirs, and most map models considered in the literature: the maps counted by H n, are not necessarily connected. Indeed, we show that a uniform random map in our model is almost surely unconnected, in particular that Result 0.6 (see Theorem 4.8). For all q > 1, a uniformly random Hurwitz map with n vertices and an even number = (n) ∼ 2qn of edges contains a connected component with at least c(q) edges, for some function c(q) > 0, and no connected component has more than O p (n/ log n) vertices.

Thus, the Plancherel-Hurwitz measure does not provide a direct approach to the high genus map regime that motivated it. Rather, we might look at the asymptotic estimate for H n, as giving a return probability for the Diaconis-Shahshahani random walk [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF] in a linear regime. Knowing the limit behaviour of partitions under this measure and the limit behaviour of corresponding uniform random transposition factorisations (which for now we only understand to a limited extent) is a promising step towards finding a bijective interpretation of Frobenius' theorem as stated in (0.24). A natural question in this context is to find an interpretation for the statistic λ 1 , which in the purely Plancherel case corresponds to LLIS(σ) where σ is a uniform random permutation. We can note that under the Plancherel-Hurwitz measure at high genus, λ 1 has a limiting value related to the Diaconis-Shahshahani mixing threshold, which is also related to upper bound on the number on vertices in a connected component of a uniform pure Hurwitz map.

V Organisation of the text

The main text is divided into four chapters.

Chapter 1 ("Integer partitions and integrability") gathers mathematical and physical preliminaries, starting with classical definitions pertaining to integer partitions. We review some aspects of the representation theory of the symmetric group and of symmetric functions, then discuss some important classical probability laws on partitions. Finally we discuss the integrability of Schur measures, reviewing determinantal point processes and relating them to physical fermion models.

Chapter 2 ("Multicritical Schur measures") is based on joint work with Dan Betea and Jérémie Bouttier [1], in which we construct multicritical Schur measures on partitions and study their asymptotic behaviour using steepest descent analysis of associated correlation kernels. This chapter includes a broad discussion of the connection between lattice fermion models and Schur measures in the Hermitian case, and a heuristic description of how they asymptotically coincide with trapped fermions on the edge. Three natural extensions of the multicritical measures are presented.

Chapter 3 ("Random matrices and random maps") presents connections between random partitions and random matrices. We discuss an exact correspondence between Schur measures and unitary matrix models, and present a new contribution from [1] relating multicritical Schur measures to multicritical unitary matrix models. We also review classical results relating the Gaussian unitary ensemble to the Plancherel measure and to free fermions. In connection with Hermitian matrix models we review definitions for combinatorial maps, and discuss how random maps relate to random partitions.

Chapter 4 ("The Plancherel-Hurwitz measure") is based on joint work with Guillaume Chapuy and Baptiste Louf [2], in which we introduce a deformation of the Plancherel measure and relate it to a model of not necessarily connected random maps. We study its limiting behaviour in an asymptotic regime related to high genus maps using various entropy optimisation and comparison methods, and study the connectedness of the corresponding random maps. We relate our results to random transposition walks on symmetric groups.

Finally we collect open questions and general conclusions in Chapter 5.

Chapter 1

Integer partitions and integrability

In this chapter we gather definitions and classical algebraic and combinatorial results relating to the main objects we study, integer partitions, and discuss natural probability measures on partitions that arise from those results. Of particular interest are measures which are integrable, meaning that every correlation function can be computed exactly. We review how certain measures define determinantal point processes, and how these relate to physical discrete fermion models. 

Chapter contents

Integer partitions and elements of algebra 1.Preliminary definitions

This section collects some basic definitions, first for ways of representing integer partitions (as diagrams, sets of half integers, and functions) then ways of filling their diagrams that provide useful combinatorial data.

Partitions and how to draw them Let us begin by formally defining the central objects of this thesis, integer partitions (and by dropping the word "integer" from their name).

Definition 1.1 (Partition).

A partition λ is a weakly decreasing finite sequence of positive integers called parts

λ = (λ 1 ≥ λ 2 ≥ . . . ≥ λ (λ) ) ⊂ Z >0 .
(1.1) It is extended to an arbitrarily long vector by employing the convention λ i := 0 for all i > (λ). The number of positive parts (λ) ≥ 0 is called the length of λ, and the sum of the parts, denoted |λ|, is called its size. Where |λ| := i λ i = n, λ is said to be a partition of n, and this is denoted λ n. The unique partition of 0 is the empty partition denoted ∅.

A partition is naturally encoded by a second partition of the same size:

Definition 1.2 (Conjugate partition). For each partition λ n, its conjugate λ is the unique partition of n with parts

λ j = #{i|λ i ≥ j}.
(1.2)

The conjugation operation λ → λ is an involution. Partitions are represented graphically by the diagrams composed of square boxes defined as follows (we refer to a partition and its diagram interchangeably, using the same symbol for both):

Definition 1.3 (Young diagram).
Where λ is a partition, the Young diagram λ is a stack of left aligned rows of boxes with λ i boxes in the ith row from the bottom.

There are λ j boxes in the jth column from the left, so the conjugation operation exchanges rows and columns at the level of Young diagrams. This is defined in the "French convention". To switch the Young diagram to the "English convention", which is perhaps the most standard, one flips it vertically. It will prove convenient to switch to a third "Russian" convention, where we consider the tilted Young diagram, which is the Young diagram rotated counter-clockwise by 45 • . The tilted Young diagram of λ is just that of λ flipped horizontally. See Figure 1.1.

Partitions as fermion configurations, and how to draw them

A partition can also be encoded by an infinite set of distinct half integers, as follows: Definition 1.4 (Fermion configuration of a partition). For each partition λ, its fermion configuration S(λ) is the set

S(λ) = λ i -i + 1 2 , i ∈ Z >0 ⊂ Z + 1 2 . (1.3)
A generic fermion configuration is a subset S of Z + 1 2 with all but finitely many negative half integers included and only finitely many positive elements, and corresponds to a Maya diagram (that is, a row of black and white nodes where far enough to the left every node is black and far enough to the right every node is white), where one places a 1.1 Integer partitions and elements of algebra 

(λ) = { 13 2 , 5 2 , -1 2 , -5 2 , -9 2 , -11 2 .
. .} and on the right with a coordinate system and the rescaled profile ψ λ;α (x).

black node on each point k ∈ S of a line labelled with Z + 1 2 and a white node on every other site. The charge Q 0 of such a set is the difference

Q 0 (S) = #{k ∈ S|k > 0} -#{k / ∈ S|k < 0}, k ∈ Z + 1 2 .
(1.4)

The fermion configuration S(λ) associated to a partition has charge zero: for an empty partition, S(∅) has charge zero trivially, and each other S(λ) be obtained from S(∅) by an operation replacing an element -i + 1 2 with λ i -i + 1 2 , which preserves Q 0 . More generally, a charge Q 0 fermion configuration can be assigned to λ by shifting each element of S(λ) to λ i -i + 1 2 + Q 0 . In terms of its fermion configuration, the size of a partition is |λ| = Q 1 (S(λ)) where

Q 1 (S) = k>0,k∈S k - k<0,k / ∈S k. (1.5)
The Maya diagram of S(λ) can be drawn from the tilted Young diagram of λ by adding axes centred at the bottom corner, with coordinates on the horizontal x-axis such that the corners of the boxes align with the integers. Consider the curve traced by upper edge of the tilted Young diagram extended to the curve |x| on either side, which we called the profile of λ. At each Z + 1 2 labelled point on the x-axis we place a black node if the profile has slope -1, a white node if it has slope +1. See Figure 1.2.

Partitions as real functions

The profile describe described above can itself be used to encode a partition; since it is a continuous function, this formulation is allows us to recast partition data in analytic terms. It is most convenient if the profile is defined more generally in coordinates that scale with some parameters, as follows: Definition 1.5 (Rescaled profile of a partition). For each partition λ and α > 0 which may depend on λ or other parameters, the rescaled profile ψ λ;α (x) of λ is the piecewise linear continuous function composed of elements with slope ±1 tracing the upper edge of the tilted diagram of λ in coordinates in which the centres of the boxes are 1/α apart, and extended to a function on all R by appending a line of slope +1 on the right and one of slope -1 on the left. To write formulas for ψ λ;α (x), we start from the expressions

v = φ λ;α (u) := 1 α λ αu +1 , u ∈ (0, ∞) and u = φ -1 λ;α (v) := 1 α λ αv +1 , v ∈ (0, ∞)
(1.6) for the edges of the Young diagram in continuous rescaled coordinates; then, with u and v defined by the union of these curves, the rescaled profile is given implicitly by the change of coordinates

ψ λ;α (x) = u + v, x = u -v. (1.7)
One such profile is illustrated in Figure 1.2. We can see that for all x and x

|ψ λ;α (x) -ψ λ;α (x )| ≤ |x -x |, (1.8)
or in other words that ψ λ;α is 1-Lipschitz, and that ψ λ;α (x) ≥ |x| everywhere. The size of the partition is

|λ| = α 2 2 ˆ(ψ λ;α (x) -|x|) dx;
(1.9) the most natural choices of α are then proportional to |λ|, or to E(|λ|) if we consider the profile of a random partition λ whose size is not fixed. The "unrescaled profile" where each box has area 2 is ψ λ;1 . The profile ψ λ;α can also be expressed in terms of the fermion configuration S(λ): restricting to integer values of αx, we have

ψ λ;α (x) = x + 2 α • #{k ∈ S|k > αx}, x ∈ 1 α Z.
(1.10)

Filled Young diagrams and related objects

For what follows, it is useful to define extensions of Young diagrams, which appear notably in combinatorics and representation theory.

Definition 1.6 (Young tableau). A Young tableau of shape λ is a filling of the boxes of the Young diagram λ with positive integers. It is said to be semi-standard (and abbreviated as SSYT ) if the entries are strictly increasing bottom to top along columns and weakly increasing left to right along rows, and standard (and abbreviated as SYT ) if they are also strictly increasing along rows and the numbers are 1, . . . , |λ|.

One of the most important quantities relating these objects is the number of SYT of a given shape, which can be computed in terms of another filling of the boxes of the same Young diagram: Theorem 1.7 (Hook length formula [START_REF] Frame | The hook graphs of the symmetric group[END_REF]). The number of SYT of shape λ n is

f λ = n! ∈λ η λ ( ) , η λ ( i,j ) = λ i -i + λ j -j + 1 (1.11)
where the product is taken over all boxes in the Young diagram λ and the hook length η λ ( ) is number of boxes in the hook from to the edges of the diagram (written explicitly for the the box i,j in the ith row and jth column).

This formula has been proven in several ways since its discovery by Frame, Robinson and Thrall [START_REF] Frame | The hook graphs of the symmetric group[END_REF]. We review one simple "probabilistic" proof. Sketch of Greene, Nijenhuis and Wilf's "hook walk" proof [START_REF] Greene | A probabilistic proof of a formula for the number of young tableaux of a given shape[END_REF]. Fix λ n, and let "µ λ" denote that µ n -1 is a Young diagram obtained from λ by the removal of one box. An SYT of shape λ differs from an SYT of some µ λ by the addition of one box filled with the number n to an outer corner; hence, the number f λ of SYT of shape λ satisfies Left, its boxes are filled to produce a SYT of shape (4, 2, 1); center, they are filled with their hook lengths, showing there are f (4,2,1) = 7!/(6 • 4 • 3 • 2) = 35 such tableaux; right, each box is filled with its content, and the content-sum is

f λ = µ λ f µ . (1.12) Now let g λ = n! ∈λ η λ ( ) . ( 1 
C (4,2,1) = -2 -1 + 0 + 0 + 1 + 2 + 3 = 3.
Now choose a box (0) from λ uniformly at random, and start a random "hook walk" from that box as follows: at step i, choose the new box (i) uniformly from other boxes in the hook from (i-1) to the edges. This walk will move outward toward the edge via shorter and shorter hooks, and terminates at a box end := a,b where (a, b) is the position of some corner box. Removing end from λ generates a random partition µ λ. By construction of all walks out to some a,b (see e.g. [Rom15, Section 1.9]), one can show that the law of µ is

P(µ = λ\ a,b ) = 1 n A⊆(1,...,a-1) B⊆(1,...,b-1) i∈A 1 η λ ( i,b ) -1 j∈B 1 η λ ( a,j ) -1 = 1 n a-1 i=1 η λ ( i,b ) η λ ( i,b ) -1 b-1 j=1 η λ ( a,j ) η λ ( a,j ) -1 = g λ\ a,b g λ . (1.14)
But since this law is well normalised µ λ g µ /g λ = 1, which is what is required.

A third filling of boxes appears in representation theoretic contexts:

Definition 1.8 (Contents, content-sum of a partition). The contents of a box i,j in the ith row and jth column of a Young diagram is

c( i,j ) = j -i. (1.15)
The content-sum of a partition λ is

C λ = ∈λ c( ) = (λ) i=1 λ i (λ i -2i + 1) 2 .
(1.16)

In the tilted Young diagram, the contents of a box is its horizontal position (in the "unrescaled" coordinates). In terms of its fermion configuration S(λ), the content-sum of λ is

C λ = Q 2 (S(λ)) where Q 2 (S) = k>0,k∈S k 2 2 - k<0,k / ∈S k 2 2 .
(1.17) The skew partition λ/∅ is equivalent to λ. Skew Young tableaux can similarly be standard or semi-standard. A skew Young diagram is not necessarily a connected array of boxes. If the array is connected and does not contain any 2 × 2 blocks, we call it a ribbon. If λ/µ has only one box in each column, λ and µ are interlaced; in terms of the partitions themselves, Definition 1.10 (Interlaced partitions). The partitions λ, µ are said to be interlaced if

λ 1 ≥ µ 1 ≥ λ 2 ≥ µ 2 ≥ . . . . (1.18)
This is denoted λ µ.

If λ µ, then if we draw the Maya diagram of S(λ) above that of S(µ) we can connect all of the black nodes with a zigzagging line passing from one line to the other without having to intersect itself. Consider a sequence of interlaced partitions from the empty set to some λ, ∅ ≺ λ (1) ≺ λ (2) . . . ≺ λ (m) = λ; if we fill each skew partition λ (i) /λ (i-1) with i then recombine them to the shape λ, we have a SSYT of shape λ filled with the numbers 1, . . . , m.

An asymptotic enumeration estimate

To conclude this section, let us note a useful bound on the number of partitions of n,

#{λ n} = exp O( √ n) . (1.19)
It follows for instance from Hardy and Ramanujan's precise asymptotic estimate [START_REF] Hardy | Asymptotic Formulaae in Combinatory Analysis[END_REF].

Symmetric groups and partitions

Partitions of n are fundamental to the study of the symmetric group of order n, which we denote S n . This section describes how three pieces of information about permutations are encoded by partitions: their conjugacy classes, the lengths of their monotone subsequences, and their irreducible representations. In the third instance we focus on how factorisations of the identity on S n are enumerated by way of combinatorial data of partitions.

Conjugacy classes of S n

Let G be a group and g one of its elements. The conjugacy class C ⊆ G containing g is the set of elements {hgh -1 |h ∈ G}. Where the group is S n , the conjugacy class of a permutation

σ = 1 2 ••• n σ[1] σ[2] ••• σ[n] ,
(1.20) here shown in two-line notation, includes all permutations obtained by relabelling numbers. If σ contains an m-cycle, that is to say there is a sequence

I = (i 1 , i 2 , . . . , i m ) such that σ[i 1 ] = i 2 , σ[i 2 ] = i 3 , . . . σ[i m ] = i 1
, then any element σ -1 of its conjugacy class will also contain an m-cycle: where

∈ ••• i 1 ••• im ••• ••• j 1 ••• jm ••• ∈ S n (1.21)
exchanges each entry of I with the corresponding one of a sequence J = (j 1 , j 2 , . . . , j m ), J provides the indices of the m-cycle in σ -1 . Since any permutation can be written as a product of disjoint cycles, is straightforward to prove that Proposition 1.11 (Conjugacy classes of symmetric groups). The conjugacy classes C λ of S n are indexed by partitions λ n, where a permutation σ ∈ C λ has cycles of length λ 1 , λ 2 , . . . , λ (λ) .

For example, the conjugacy class C (1 n ) (where (1 n ) denotes 1 repeated n times) contains only the identity; C (2,1 n-2 ) is composed of transpositions, which exchange two numbers and leave all others fixed, and of which there are n(n -1)/2; C (n) is composed of the (n -1)! long cycles which cannot be factorised into smaller disjoint cycles.

Monotone subsequences of σ ∈ S n If we consider a permutation σ ∈ S n as a word rather than a group element, we might overlook its symmetries and interest ourselves in its monotone subsequences rather than by its cycles. Let I = (i

1 < i 2 < . . . < i m ) be a subsequence of (1, 2, . . . , n); if σ[i 1 ] < σ[i 2 ] < . . . < σ[i m ], then I indexes an increasing subsequence of σ (or a decreasing one if σ[i 1 ] > σ[i 2 ] > . . . > σ[i m ]
). The length of the longest I indexing an increasing subsequence can be found by sorting the letters of σ with an algorithm resembling a game of solitaire (which may be very simple, we refer to e.g. [Rom15, Section 1.5] for one such example). A sophisticated recursive algorithm can achieve this without losing information about the original permutation; in particular, Theorem 1.12 (Robinson-Schensted correspondence [START_REF] De | On the representations of the symmetric group[END_REF][START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF]). There exists a bijection associating each permutation σ ∈ S n to a pair of standard Young tableaux (P, Q) with the same shape λ n.

This bijection finds the length of the longest increasing subsequences [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF], but also much finer information: Theorem 1.13 (Greene's theorem [START_REF] Greene | An extension of Schensted's theorem[END_REF]). If the shape of the standard Young tableaux associated to a given σ ∈ S n is λ n, then for each m from 1 to n the greatest sum of lengths of m disjoint increasing subsequences of σ is λ 1 + λ 2 + . . . + λ m . The greatest sum of lengths of m disjoint decreasing subsequences of σ is λ 1 + λ 2 + . . . + λ m . Sketch of proof of Theorems 1.12 and 1.13. The following algorithm generates a unique pair of SYT (P, Q) filled with the numbers 1, . . . , n from any permutation σ ∈ S n .

At step 1, create two tableaux of just one box: P (1) (the "insertion" tableau) consisting of a box filled with σ[1] and Q (1) (the "recording" tableau) consisting of a box filled with 1. Introduce an index a to keep track of the row into which the algorithm is inserting a number, and an index b to keep track of the number being inserted.

At step i for each i from 2 to n, set a := 1 and b := σ[i], then repeat the following protocol until P (i) is set: Complete the step by setting Q (i) to be Q (i-1) with a box filled with i appended to the ath row to finish step i. After step n, set P := P

(n) , Q := Q (n) .
At each step of this procedure, P (i) and Q (i) have the same shape λ (i) i and their entries are strictly increasing along rows and columns. At step n, each tableau is filled with 1, . . . , n and is an SYT of shape λ := λ (n) n. It is clear that the length λ (i) 1 of the first row of P (i) or Q (i) is equal to the length of the longest increasing subsequence of the word σ

[1]σ[2] . . . σ[i] while the length λ (i)
1 of the first column is the length of the longest decreasing subsequence; it can further be shown that since the algorithm is recursive the lengths of the next rows and columns encode the maximal sums of lengths of disjoint monotone subsequences.

Since the recording tableau Q records the order in which each entry of σ was inserted into the insertion tableau P , each step of the algorithm can be reversed to find the permutation σ. The reversal can be applied to any SYT (P, Q) with the same shape, so this algorithm defines the required bijection.

The Robinson-Schensted correspondence has other remarkable properties; for instance, the inverse permutation σ -1 maps to (Q, P ) (i.e. inversion corresponds to exchanging the insertion and recording tableaux). Theorem 1.12 provides a combinatorial proof of the identity 

λ n f λ 2 = |S n | = n!. ( 1 
a ij = #{ ∈ L| = i, w[ ] = j}. (1.24)
Hence, using precisely the algorithm of the Robinson-Schensted correspondence where at the ith step w[ i ] is inserted into P (i) and i is added to

Q (i) ,
Theorem 1.14 (Robinson-Schensted-Knuth correspondence [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF]). There exists a bijection associating each matrix A = (a ij ) 1≤i,j≤n with non-negative integer entries summing to m with a pair of SSYT (P, Q) of the same shape λ m filled with numbers 1, . . . , n.

The number of times j appears in P is i a ij and the number of times i appears in Q is j a ij .

For simplicity we will refer to the algorithm with the initials RSK of all three authors, even when it is applied to permutations. Greene's theorem 1.13 also generalises to monotone subsequences of two-line arrays: the length of the longest subsequence(s) I ⊆ L such that for all i , j ∈ I, if i < j then w[ i ] < w[ j ] is equal to the first part λ 1 of the shape λ of P and Q [START_REF] Greene | An extension of Schensted's theorem[END_REF].

Irreducible representations of S n

We now present elements of the representation theory of S n , starting with some basic terminology. Let G be a finite group. A finite representation V ρ of G is a finite-dimensional complex vector space equipped with a map π ρ from G to the general linear group of V ρ

π ρ : G → GL(V ρ ), g → π ρ (g); π ρ (g) : V ρ → V ρ (1.25)
which is a group homomorphism, meaning that

π ρ (g)π ρ (h) = π ρ (gh), for all g, h ∈ G. (1.26) If π ρ (g) = 1 for all g ∈ G, V ρ is called trivial. If V ρ cannot be decomposed as V ρ = V ρ ⊕ V ρ such that V ρ , V ρ are non-trivial representations, V ρ is called irreducible (and
there are no subspaces of V invariant under π ρ (G)). The character χ ρ of a representation V ρ is the function

χ ρ : G → C, χ ρ (g) := tr Vρ ρ(g) = χ ρ (hgh -1 ) for all h ∈ G (1.27)
where the final straightforward equality shows that we can write χ ρ (C) = χ ρ (g) where C is the conjugacy class g belongs to. The character of the identity is just χ ρ (1) = dim V ρ . One simple representation of any finite group G is the group algebra C[G], which is the algebra of formal sums α = α 1 g 1 + α 2 g 2 + . . . of elements of G and which inherits the multiplication of G;

we have π C[G] (g)α = gα for all α ∈ C[G]. C[G] can be decomposed by the algebra isomorphism C[G] ∼ = ρ irr. rep. End(V ρ ) (1.28)
where End(V ρ ) denotes the endomorphisms on V ρ and the index ρ in the direct sum runs over irreducible representations of G (and For S n , the identity (1.29) is, as already mentioned, also proven by the Robinson-Schensted correspondence. The bijective and representation theoretic approaches are quite independent; the action of an RSK insertion step on an endomorphism of an irreducible representation is not clear.

V

Characters and factorisations of the identity on S n

The characters χ λ (C µ ) on irreducible representations of S n can be computed using combinatorics of Young diagrams by the Murnaghan-Nakayama rule [START_REF] Murnaghan | The characters of the symmetric group[END_REF][START_REF] Nakayama | On some modular properties of irreducible representations of a symmetric group, I and II[END_REF]. The procedure amounts to identifying all sequences of partitions S(λ, µ) = λ (1) ⊇ λ (2) ⊇ . . . ⊇ λ( (µ)) ⊇ ∅ such that λ (1) := λ and each skew partition λ (i) /λ (i+1) has size µ i and is a ribbon. Then we have

χ λ (C µ ) = S(λ,µ) (-1) h(S(λ,µ))-(µ)
(1.31)

where h(S(λ, µ)) is the sum of the heights of the skew partitions λ (i) /λ (i+1) from S(λ, µ).

Since the characters can be explicitly computed, the following classical result provides a practical way of extracting data about S n : 

#{(σ 1 , σ 2 , . . . , σ ) ∈ C µ 1 × C µ 2 × • • • × C µ |σ 1 • σ 2 • • • σ = 1} = 1 n! λ n (dim V λ ) 2 |C µ 1 |χ λ (C µ 1 ) dim V λ |C µ 2 |χ λ (C µ 2 ) dim V λ • • • |C µ |χ λ (C µ ) dim V λ . (1.32) Proof. Consider the elements K µ = σ∈Cµ σ ∈ C[S n ], and the product K µ 1 •K µ 2 • • • K µ .
The trace of a permutation acting on

C[S n ] normalised by n! is just tr C[Sn] σ = 1 σ=1 , so we have tr C[Sn] K µ 1 • • • K µ = #{(σ 1 , . . . , σ ) ∈ C µ 1 × • • • × C µ |σ 1 • • • σ = 1}.
(1.33)

Now consider the action of the same product on an irreducible representation V λ . By linearity, π λ (K µ ) is well defined for each K µ , and since K µ is a central element, by Schur's lemma it acts as multiplication by some scalar κ λ (µ). So, we have

π λ (K µ 1 ) • π λ (K µ 2 ) • • • π λ (K µ )v = κ λ (µ 1 )κ λ (µ 2 ) • • • κ λ (µ )v for all v ∈ V λ . (1.34)
By the algebra isomorphism (1.28) and by (1.33), we have an equivalence of traces over either algebra

λ n tr End(V λ ) π λ (K µ 1 ) • π λ (K µ 2 ) • • • π λ (K µ ) = λ n (dim V λ ) 2 κ λ (µ 1 )κ λ (µ 2 ) • • • κ λ (µ ) = #{(σ 1 , σ 2 , . . . , σ ) ∈ C µ 1 × C µ 2 × • • • × C µ |σ 1 • σ 2 • • • σ = 1} (1.35)
using the fact that dim End(V ) = (dim V ) 2 . It remains only to calculate κ λ (µ); since the character χ λ (K µ ) is

χ λ (K µ ) = tr V λ π λ (K µ ) = κ λ (µ) dim V λ (1.36)
we can insert κ λ (µ) = χ λ (K µ )/ dim V λ to complete the proof.

Contents and factorisations of the identity on S n

The Murnaghan-Nakayama rule is, however, generally quite inefficient to use. Modern approaches to the representation theory of S n , as reviewed in [START_REF] Vershik | A new approach to the representation theory of the symmetric groups[END_REF], have made extensive use the powerful Jucys-Murphy elements [START_REF] Jucys | Symmetric polynomials and the center of the symmetric group ring[END_REF][START_REF] Murphy | A new construction of Young's seminormal representation of the symmetric group[END_REF] of C[S n ], which are the sums of transpositions

J i = (1, i) + (2, i) + . . . + (i -1, i) (1.37)
for each i from 1 to n. These elements are not in the centre of C[S n ], but they do commute with one another. We can also see that any symmetric polynomial f of the J i is in the centre, and in fact its action on an irreducible representation can be computed exactly in terms of the contents of the corresponding Young diagram:

Proposition 1.17 (Action of Jucys-Murphy elements on irreducible representations [START_REF] Jucys | Symmetric polynomials and the center of the symmetric group ring[END_REF][START_REF] Murphy | A new construction of Young's seminormal representation of the symmetric group[END_REF]). Let f be a symmetric polynomial and let V Λ be an irreducible representation of S n . Then, denoting the boxes of λ by 1 , . . . , n ,

π λ (f (J 1 , J 2 , . . . , J n ))v = f (c( 1 ), . . . , c( n ))v for all v ∈ V λ .
(1.38)

These elements notably allow us to prove a reformulation of Theorem 1.16, where we control the number of cycles of some factors rather than their precise conjugacy class2 . Theorem 1.18 (Frobenius' formula, controlling numbers of cycles). On S n , let P m = µ n, (µ)=m C µ denote the set of elements of with m cycles and let

N m 1 ,...,m µ,ν = #{( a , σ 1 , . . . , σ , b ) ∈ C µ × P m 1 × • • • × P m × C ν | a • σ 1 • • • σ • b = 1}.
(1.39)

The generating function for these numbers can be expressed in terms of the contents of Young diagrams λ n as

m 1 ,...,m N m 1 ,...,m µ,ν i=1 u m i i = 1 n! λ n |C µ |χ λ (C µ )|C ν |χ λ (C ν ) i=1 ∈λ (u i + c( )) (1.40)
where each u i is a formal variable.

Proof. We can write the left hand side of (1.40) (following the arguments in the proof of Theorem 1.16) as

m 1 ,...,m N m 1 ,...,m µ,ν i=1 u m i i = tr C[G] K µ • K µ • i=1 σ∈Sn u m(σ) i σ (1.41)
where m(σ) denotes the number of cycles of σ. (u + J i ).

(1.42)

Proof. This holds trivially for n = 1. For each n > 1, consider the following bijection between S n and S n-1 × {1, . . . , n}: consider each σ ∈ S n-1 as an element of S n where n is fixed; then, n is factored out of an element σ ∈ S n as σ = (i, n)•σ for some i from 1

to n and some σ ∈ S n-1 , where (n, n) := 1 Sn . If i is less than n, we have m(σ ) = m(σ), since n "joins" the cycle i is in. If σ = 1 Sn • σ, n is in a cycle on its own so we have m(σ ) = m(σ) + 1. Now considering generating functions of permutations by number of cycles, we have

P n (u) := σ ∈Sn u m(σ ) σ = (u + J n ) σ∈S n-1 u m(σ) σ = (u + J n )P n-1 (u) (1.43)
which proves the lemma by induction.

To complete the proof of Theorem 1.18 we write the action of K µ K ν i P n (u i ) on an irreducible representation V λ . Since P n (u) is a symmetric polynomial of the J i , by Proposition 1.17 it acts by scalar multiplication by ∈λ (u + c( )). Recalling the action of K µ , K µ on V λ , we find that tr End(V λ ) π λ (K µ K ν i P n (u i )) is precisely the right hand side of (1.40); by the algebra isomorphism (1.28) both sides are equivalent as required.

Transposition factorisations and Hurwitz numbers

To conclude this discussion, let us mention one case in which Theorem 1.18 allows us to compute numbers of factorisations of the form shown in Theorem 1.16 explicitly in terms of fillings of boxes of Young diagrams.

Definition 1.20 (Hurwitz number). The unconnected classical Hurwitz number H n, is the number of factorisations of the identity on S n by transpositions. The connected classical Hurwitz number h n, is the number of transitive factorisations of the identity on S n by transpositions (meaning the group generated by the transpositions in the factorisation is S n ). These numbers have been studied at least since the work of Hurwitz himself [START_REF] Hurwitz | Ueber riemann'sche flächen mit gegebenen verzweigungspunkten[END_REF], who found a geometric interpretation for them: they count degree n coverings of the Riemann sphere with labelled simple ramification points by an oriented surface (which is connected if the transposition factorisations are required to be transitive). Lando and Zvonkin's book [START_REF] Lando | Graphs on surfaces and their applications[END_REF] provides a thorough reference on this connection, and on how ramified coverings relate to maps. The maps interpretation is the most concrete and combinatorial one, and we will discuss it in chapters 3 and 4.

The conjugacy class C (2,1 n-2 ) ⊂ S n of transpositions is the only one with n -1 cycles; hence, by extracting the coefficient of i u n-1 i , Theorem 1.18 gives (recalling that dim V λ = f λ ) Corollary 1.21 (Frobenius' formula for transposition factorisations). The number of factorisations of the identity on S n by transpositions is

H n, := #{(τ 1 , . . . , τ ) ∈ (C (2,1 n-2 ) ) |τ 1 • • • τ = 1} = 1 n! λ n f λ 2 C λ .
(1.44)

The classical numbers Hurwitz yield several important generalisations; to mention just one, the double Hurwitz numbers (written here in the not necessarily connected case) are defined in [START_REF] Okounkov | Toda equations for Hurwitz numbers[END_REF] for all µ, ν n as

H n, (µ, ν) = #{( a , τ 1 , . . . , τ , b ) ∈ C µ × (C (2,1 n-2 ) ) × C ν | a • τ 1 • • • • τ • b = 1}; (1.45)
their enumeration by Theorem 1.18 is a rather simple generalisation of the one in Corollary 1.21. They enumerate a more general class of coverings of the Riemann sphere, with a ramifications of arbitrary type determined by µ and ν at 0 and ∞ and labelled simple ramification points elsewhere.

Symmetric functions and partitions

Another role played by partitions is as indices for bases of the algebra of symmetric functions. This section gives an overview of some of these bases and how they relate to one another, with particular emphasis on the Schur functions and their remarkable combinatorial and algebraic properties. We refer to [Sta99, Chapter 7] for details of everything mentioned in this section.

The algebra of symmetric functions Let x = {x 1 , x 2 , . . .} be a possibly infinite set of formal parameters. A symmetric function of x is a formal power series of bounded degree (and not, in fact, a function in general) which is invariant under any exchange of the parameters. A degree n homogeneous symmetric function f of x has the form

f (x) = α:α 1 +α 2 +...=n c α x α 1 1 x α 2 2 . . . (1.46)
where the sum is taken over all weak compositions of n, which are ordered sequences of non-negative integers α = (α 1 , α 2 , . . .) whose elements sum to n, and where c α are some coefficients such that c σ(α) = c α for all permutations σ(α) of the composition α. For simplicity we will always take the coefficients c α to be complex valued, so the set of these series is a complex vector space which we denote Sym n . The symmetric functions of all degree make up the graded algebra

Sym = n Sym n (since if f ∈ Sym n and g ∈ Sym m , f • g ∈ Sym n+m ). 3
Multiplicative bases for Sym Partitions enter the story as a more efficient means of decomposing symmetric functions than weak compositions. Let us construct natural bases for each Sym n , starting with multiplicative definitions where in each case the basis

element b λ is just the product b λ 1 • b λ 2 • • • b λ (λ)
of a generating family indexed by positive integers. In the first instance:

Definition 1.22 (Power-sum symmetric function, Miwa times). For each positive integer r, the power-sum symmetric function of the degree r of

x = {x 1 , x 2 , . . .} is p r (x) = i x r i . (1.47) For each partition λ n, p λ ∈ Sym n is p λ (x) = p λ 1 (x)p λ 2 (x) • • • p λ (λ) (x) = i 1 ,i 2 ,...,i (λ) x λ 1 i 1 x λ 2 i 2 . . . x λ (λ) i (λ) . (1.48)
For a set of parameters x, the corresponding Miwa times t = (t 1 , t 2 , . . .) are

t r = 1 r p r (x) = 1 r i x r i . (1.49)
Defining the Miwa times is superfluous in terms of the present discussion of bases, but having this notation is convenient to recast symmetric functions as formal power series of the power-sums rather than the "direct" parameters x (the new normalisation also proves useful). The name "Miwa times" refers to a connection to integrable systems, discussed in the second half of this chapter.

At this point we also introduce square bracket notation for a symmetric function f of x defined as a function of Miwa times:

f [t] = f [p 1 (x), 1 2 p 2 (x), . . .] := f (x). (1.50) If f [t] is defined explicitly, f (x)
is well defined as a composition of formal series (which is valid because there are no constant terms in the power-sums). We define two more families, this time giving their generation functions in both the direct and Miwa time parameters (their formal equivalence is straightforward).

Definition 1.23 (Elementary and complete homogeneous symmetric functions). The elementary symmetric functions of

x = {x 1 , x 2 , . . .} are e m (x) = i 1 <i 2 <...<im x i 1 x i 2 • • • x im , e λ (x) = e λ 1 (x)e λ 2 (x) • • • e λ (λ) (x) (1.51)
where we set e 0 := e ∅ = 1 and e m = 0 if m < 0, and are generated by

E(x; z) = m e m (x)z m = i (1 + x i z) (1.52) or E[t; z] = m e m [t]z m = exp[ r (-1) r+1 t r z r ]. The complete homogeneous symmetric functions of x are h m (x) = i 1 ≤i 2 ≤...≤im x i 1 x i 2 • • • x im , h λ (x) = h λ 1 (x)h λ 2 (x) • • • h λ (λ) (x) (1.53)
where we set h 0 := h ∅ = 1 and h m = 0 if m < 0, and are generated by

H(x; z) = m h m (x)z m = i (1 -x i z) -1 (1.54) or H[t; z] = m h m [t]z m = exp [ r t r z r ].
The elementary symmetric function e m (x) is 0 if x has less than m elements, while the complete homogeneous function h m contains in its sum every degree n monomial. We have h (n) = e (1 n ) , and these families are in some way "dual" to one another.

Let us mention that these families do fulfil the goal we set out with. Firstly, ). We start from a canonical basis for Sym n , the monomial symmetric functions {m λ |λ n} where each m λ is the sum over distinct indexings of the monomial

Proposition
x λ 1 i 1 x λ 2 i 2 . . . x λ (λ) i (λ) (such that i 1 = i 2 = . . .)
. This is precisely the way a symmetric function is decomposed in (1.46), and it is immediately clear that this is a basis; now, we just need to show that there is an invertible change of basis between {m λ |λ n} and the other families.

For {p λ |λ n}, we have

p λ = µ n R λµ m µ (1.55)
where R λ,µ accounts for additional monomial terms counted in the power-sums. To give an explicit example,

p (1 2 ) (x) = i,j x i x j whereas m (1 2 ) = i<j x i x j , so we have R (1 2 )(1 2 ) = 2 and R (1 2 )(2) = 1; then p (2) (x) = m (2) = i x 2 i so R (2)(1 2 ) = 0 and R (2)(2) = 1.
Each p λ contains m λ at least once, so R λλ ≥ 1 for all λ. Then we can see that R λµ = 0 if λ 1 > µ 1 , and one can show that R λµ = 0 if the first m parts satisfy λ 1 + . . . + λ m > µ 1 + . . . + µ m for any m. This condition defines a partial ordering on {λ n}, called dominance order. If we index the rows and columns of R by a total ordering that's compatible with dominance order, such as lexicographic order where partitions are ordered by their first part and then by their second part and so on, then R is a lower triangular matrix with a positive diagonal and it can be inverted, proving that {p λ |λ n} is a basis.

For {e λ |λ n}, we proceed similarly, now setting

e λ = µ n R λµ m µ .
(1.56)

We have e (n) = m (1 n ) , and it's straightforward to see that R λλ ≥ 1 for all λ n. Since the largest exponent of an x i in any term of e λ is (λ), we can see that R λµ = 0 if (λ) < µ 1 , and it is possible to further show that R λµ = 0 whenever the sum of the first m parts of λ and µ satisfy λ 1 + . . . + λ m < µ 1 + . . . + µ m for any m. Then if we index the columns by the partitions of n in, for example, lexicographic order and the rows with the conjugates of partitions in lexicographic order, R is an upper triangular matrix with positive diagonal, which is invertible as required.

The algebraic independence of {p r |r ∈ Z >0 }, and similarly {e r |r ∈ Z >0 }, follows directly from the grading of the algebra Sym = n Sym n ; since the products of these elements form bases for each Sym n , they generate the algebra.

Following this result we can state the duality between the elementary and complete homogeneous symmetric functions (and show that the latter form a basis in turn):

Proposition 1.25 (Classical involution). The multiplication-preserving linear map

ω : Sym → Sym, ω(e m ) := h m , ω(e λ ) := ω(e λ 1 )ω(e λ 2 ) • • • ω(e λ( (λ)) ) = h λ (1.57)
is an involution. The set {h λ |λ n} is a basis for Sym n , and {h m |m ∈ Z >0 } generates Sym.

Proof. The generating functions of e m (x) and h m (x) immediately satisfy E(x; -z)H(x; z) = 1, so cancelling all of the coefficients for z m , m ≥ 1, we have

n m=1 (-1) m e m h n-m = 0 for all n ≥ 1. (1.58)
Applying ω to this series and then relabelling indices, we have

n m=1 (-1) m h m ω(h n-m ) = 0 = (-1) n n m=1 (-1) m h m-n ω(h m ) for all n ≥ 1. (1.59)
These n linear equations fix ω(h m ) for the first n h m ; by (1.58) the solution is ω(h m ) = e m as required.

Since there is an invertible map between {h λ |λ n} and {e λ |λ n}, {h λ |λ n} is also a basis for Sym n . Since it is a multiplicative basis, the elements {h m |m ∈ Z >0 } generate Sym.

A determinantal basis Now we shift our attention to the main family that interests us, the Schur functions, which have a more subtle definition. In fact they have several definitions, and it will be most convenient to define them in terms of the complete homogenous functions using the Jacobi-Trudi identity, then work backwards to a more classical combinatorial definition. Definition 1.26 (Schur function, via the Jacobi-Trudi identity). The degree n Schur symmetric function indexed by λ n is

s λ = det 1≤i,j≤ (λ) h λ i -i+j (1.60)
where each h m is a complete homogenous symmetric function. For any λ ⊇ µ, the skew Schur function indexed by λ/µ is

s λ/µ = det 1≤i,j≤ (λ) h λ i -i-µ j +j .
(1.61)

The skew Schur function s λ/µ is defined even when λ µ; in that case, we have s λ/µ = 0. The most canonical definition of Schur functions is also determinantal, with s λ defined in terms of the direct parameters x = (x 1 , . . . , x m ) as the ratio

s λ (x) = a λ (x)/a ∅ (x) of the determinants a λ (x) = det 1≤i,j≤m x λ j +m-j i
. This is indeed equivalent to our definition, as shown in e.g. [Sta99, Section 7.15]. We will focus instead on a more combinatorial way to define these functions.

Theorem 1.27 (Combinatorial definition of Schur functions, see e.g. [Sta99]). The Schur function indexed by λ n can equivalently be defined in terms of the direct parameters

x = {x 1 , x 2 , . . .} as s λ (x) = SSYT T of λ x #{1∈T } 1 x #{2∈T } 2 • • • (1.62)
where the sum runs over SSYT of shape λ, and the skew Schur function s λ/µ can similarly be defined as a sum over skew SSYT.

This equivalence has a particularly elegant combinatorial proof exploiting the Linström-Gessel-Viennot theorem [START_REF] Lindström | On the vector representations of induced matroids[END_REF][START_REF] Gessel | Binomial determinants, paths, and hook length formulae[END_REF], which identifies determinants with sums over configurations of non-intersecting lattice paths. We present a different one using skew partitions.

Proof. We prove the equivalence for s λ/µ (s λ is the case µ = ∅), and for a set with a fixed number m of parameters (it is quite clear that this holds as m → ∞). Start from a skew Schur function of a single parameter x = x 1 ,

s λ/µ (x) = det 1≤i,j≤ (λ) (x) λ i -i-µ j +j 1 λ i -i-µ j +j≥0 .
(1.63)

If λ µ, we immediately see that this is the determinant of an upper triangular matrix, and the product of the diagonal gives s λ/µ (x) = x |λ/µ| . If, however, λ µ, there are two rows or columns proportional to one another. Hence, s λ/µ (x) = x |λ/µ| 1 λ µ .

To produce a skew function in m parameters, we use the following relation:

Lemma 1.28 (Branching for skew Schur functions). The skew Schur function in x = (x 1 , . . . , x m ) satisfies

s λ/µ (x) = ν s λ/ν (x 1 , . . . , x m-1 )s ν/µ (x m ).
(1.64)

Proof. Let x = (x 1 , . . . , x m-1 ) and let x = x m , and define the following two matrices: let A have (λ) rows and N columns where N > λ 1 is arbitrarily large and entries h λa-a-b (x ), and let B have (λ) columns and N rows and entries h a-µ b +b (x ). By Definition 1.26, the skew Schur function s λ/ν (x ) is the minor of A taken over the columns b = ν j -j and all rows a = i where i, j run from 1 to (λ). Similarly s ν/µ (x ) is the minor of B, taken over rows a = ν i -i and columns b = j where i, j run from 1 to (ν). Equivalently, s ν/µ (x ) can be rewritten as an (λ) × (λ) minor by allowing i, j run up to (λ); the additional rows have 1 in the diagonal and 0 everywhere to the left of it so the determinant is unchanged.

The sum over ν on the right hand side of (1.64) is just a sum over (λ) × (λ) minors of A and B. The Cauchy-Binet identity (see e.g. [Ait56, Chapter IV]) then gives

ν s λ/ν (x )s ν/µ (x ) = L⊂{1,...,N } |L|= (λ) det A| L det B| L = det AB (1.65)
where A| L denotes the submatrix of A found by restricting to the set of labels L. So the right hand side is

det 1≤i,j≤ (λ) N a=1 h λ i -i-a (x )h a-µ j +j (x ) = det 1≤i,j≤ (λ) b h λ i -i-µ j +j-b (x 1 , . . . , x m-1 )(x m ) b (1.66) which is exactly s λ/µ (x).
Applying the branching relation (1.64), from s λ/µ (x 1 ) we construct s λ/µ (x 1 , x 2 ) and so on up to s λ/µ (x = x 1 , . . . , x m ). At each step only a sum over interlaced partitions contributes, and we have a sum over interlaced sequences

s λ/µ (x) = µ≺λ (1) ≺...≺λ (m-1) ≺λ x |λ (1) /µ| 1 x |λ (2) /λ (1) | 2 • • • x |λ/λ (m-1) | m .
(1.67)

Each sequence of interlaced partitions in the sum corresponds to a skew SSYT of shape λ/µ filled with numbers from 1, . . . , m, so this completes the proof.

Directly following this expression for s λ , we can prove two key results. Firstly, Corollary 1.29 (Schur basis). The set {s λ |λ n} is a basis of Sym n .

Proof. We proceed as in Proposition 1.24, by showing that the matrix R λµ where

s λ = µ n R λµ m µ (1.68)
give a change of basis from the Schur functions to the monomials. From the combinatorial expression from Theorem 1.27, we see that R λλ = 1 by considering the weights from a SSYT where in each row every box is filled with the same number. The exponent of x 1 in s λ is at most λ 1 and the sum of the exponents of the first x 1 , . . . , x m is at most

λ 1 + . . . + λ m , so R λµ = 0 if λ 1 + . . . + λ m < µ 1 + . . . + µ m for any m.
So R indexed by partitions in lexicographic order is a lower triangular matrix with positive diagonal, and is invertible as required.

In fact, the Schur functions form an orthonormal basis with respect to a scalar product under which the m λ and h λ are dual bases, with m λ , h µ = 1 λ=µ ; they can also be defined as the result of Gram-Schmidt orthogonalisation. The second identity we can prove from the combinatorial definition is the following: Corollary 1.30 (Cauchy identity for Schur functions). Let x, x be two sets of direct parameters and t, t two sequences of Miwa times. We have

λ n s λ (x)s λ (x ) = i,j (1 -x i x j ) -1 and λ n s λ [t]s λ [t ] = exp r rt r t r .
(1.69)

Proof. Both versions of the identity are equivalent by composition of formal power series, we prove only the direct parameter version.

The right hand side can be expanded as i,j

(1

-x i x j ) -1 = i,j a ij ≥0 (x i x j ) a ij . (1.70)
The sum is taken over matrices A with non-negative integer entries a ij . Consider the term in this expansion

N α,β x α 1 1 x α 2 2 • • • x β 1 1 x β 2 2 • • • . (1.71)
The coefficient N α,β counts the number of matrices A whose ith row sums to α i and whose jth column sums to β j . But by Theorem 1.14 non-negative integer matrices A are in bijection with pairs of SSYT (P, Q) with he same shape λ, where the sum of the ith row of A is the number of times i appears in Q, and the sum of the jth row is the number of times j appears in P . So, (1.70) is just

λ SSYT (P,Q) of λ x #{1∈Q} 1 x #{2∈Q} 2 • • • x #{1∈P } 1 x #{2∈P } 2 • • • (1.72)
which, by Theorem 1.27, is precisely λ s λ (x)s λ (x ) as required.

The classical involution again

We can find yet another definition for the Schur functions from the duality of the elementary and complete homogeneous bases.

Theorem 1.31 (Dual Jacobi-Trudi identity, see e.g. [Mac95, Section I.2]). The classical involution ω : e m ↔ h m acts on the Schur functions by conjugating the index, as ω(s λ ) = s λ . The Schur function can equivalently be defined by the dual Jacobi-Trudi identity

s λ = det 1≤i,j≤λ 1 e λ i -i+j , (1.73)
and the skew Schur function similarly by s λ/µ = det i,j e λ i -i-µ i +j .

Proof. Let N = λ 1 + (λ). Consider the lower triangular matrices E = ((-1) a-b e a-b ) 0≤a,b≤N and H = (h a-b ) 0≤a,b≤N . We have det H = det E = 1, and by (1.58), E is the inverse of H. To prove that ω(s λ/µ ) = s λ /µ , we consider the minor of H taken over rows a = λ i -i + (λ) and columns b = µ j -j + (λ) for 1 ≤ i, j ≤ (λ), which we denote det H λ,µ . Let H be the matrix obtained from H by permuting the rows a to the top and the columns b to the left (and otherwise maintaining their order); the determinant of H is then (-1) |λ|-|µ| and its inverse is the matrix Ẽ obtained by moving the rows b to the top and the columns a to the left. The minor det H λ,µ is the determinant of the upper left block of H, so Jacobi's determinant identity (see e.g. [Ait56, Chapter IV]) states that det

H λ,µ = det H • det E (λ,µ) (1.74)
where det E (λ,µ) is the determinant of the lower right block of Ẽ in the same decomposition, i.e. the minor of E taken over all rows except b and all columns except a. But we can show that these remaining rows are indexed by b = (λ) + 1 -µ j + j for 1 ≤ i, j ≤ λ 1 and the remaining columns by a = (λ) + 1 -λ i + i, for 1 ≤ i, j ≤ (λ). Hence, we have det 1≤i,j≤ (λ)

h λ i -µ j -i+j = (-1) |λ|-|µ| det 1≤i,j≤λ 1 (-1) λ i -µ j -i+j e λ i -µ j -i+j (1.75)
and the signs cancel to give the dual Jacobi-Trudi identity (1.73). So, applying ω to both sides we find

ω(s λ ) = det 1≤i,j≤λ 1 h λ i -µ j -i+j = s λ (1.76)
which is what we wanted to show.

The involution can be directly applied to the parameters themselves; considering the generating functions of the e m and the h m , we can write ω(E(x; z)) = H(x; z) as

ω x i (1 + x i z) = i (1 -x i z) -1 (1.77)
where the notation ω x indicates that the involution is acting on the family of parameters x. Then, we can act on the Cauchy identity (1.69) and apply Theorem 1.31 to find a new one

λ s λ (x)s λ (x ) = ω x i,j (1 -x i x j ) -1 = i,j
(1 + x i x j ).

(1.78)

Like the original Cauchy identity, this can be proven bijectively, using a dual version of the RSK correspondence which associates matrices with entries 0, 1 with pairs of SSYT.

Considering ω(E[t; z]) = H[t; z] at the level of the Miwa times, we find the action of ω on the one remaining basis: Proposition 1.32 (Involution of power-sums). The classical involution ω : e m ↔ h m acts on the Miwa times (and power-sums) by alternating the sign, with ω(t r ) = (-1) r+1 t r (and ω(p r ) = (-1) r+1 p r ).

Characters of symmetric groups again

The Schur functions also bring us back to the representation theory of S n , for instance by way of the following identity, which we present without proof:

Proposition 1.33 (Schur function in the Miwa times). The Schur function indexed by λ n in the Miwa times

t = (t 1 , t 2 , . . .) is s λ [t] = 1 n! µ n |C µ |χ λ (C µ )µ 1 µ 2 • • • µ (µ) t µ 1 t µ 2 • • • t µ (µ) . (1.79)
Of course, in terms of the power-sum basis this says that the coefficients of the change of basis to the Schur functions are

1 n! |C λ |χ µ (C λ ).
Specialisations In all of our discussions so far, the symmetric functions have been formal power series. But we will mostly be interested in extracting numbers from them (and using them to write such concrete things as probabilities); to this end, we use algebra homomorphisms

ϕ : Sym → C, f → ϕ(f ) (1.80)
called specialisations. The action of any given ϕ may written by assigning values in C to an algebraically independent family generating Sym. This could be the direct parameters x, or indeed the elements {p r |r ∈ Z >0 }, or {e m |m ∈ Z >0 } or {h m |m ∈ Z >0 }. Note that the existence of ϕ(f ) for given ϕ, f needs to be justified, in terms of the convergence of complex series; for specialisations with finite support, this is generally straightforward.

Let us mention two important specialisations. For a real valued parameter q an a positive integer n, the principal specialisation of a symmetric function of x = {x 1 , x 2 , . . .} is defined in the direct parameters as ps q,n (f ) = f (1, q, q 2 , . . . , q n-1 , 0, 0, . . .).

(1.81)

The elements of the bases we discussed are all well defined in the limit n → ∞ if q ∈ [0, 1), and ps 1,n is well defined at fixed n. For a real parameter θ, the exponential specialisation is defined as the limit

ex θ (f ) = lim n→∞ f θ n , . . . , θ n n times , 0, 0, . . . (1.82) or equivalently as ex θ (f ) = f [θ, 0, 0, . . .]. (1.83)
The elements of all the the bases we consider are very simple under the exponential specialisation, with

ex θ (h λ ) = ex θ (e λ ) = θ |λ| λ 1 !λ 2 ! • • • , ex θ (s λ ) = f λ θ |λ| |λ|! (1.84)
where the specialisation of the Schur function is found by evaluating of the character of C (1 |λ| ) = {1} in (1.79). We will denote specialised symmetric functions directly as functions of the parameters assigned by the specialisation.

Measures and processes on partitions

In this section, we review classical probability laws on partitions which are motivated directly by the algebraic and combinatorial results reviewed in Sections 1.1.2 and 1.1.3: in the first instance, the Plancherel measure and its Poissonisation, then the infinite parameter family of Schur measures. We then discuss how Schur measures generalise to processes in discrete time, or measures on sequences of interlaced partitions.

The Plancherel measure

Consider the identity (1.22) for the size of symmetric group. Dividing both sides by n!, we can recognise a probability law on partitions:

Definition 1.34 (Plancherel measure). The Plancherel measure on partitions λ n is

P n (λ) = 1 n! f λ 2 .
(1.85)

Measures and processes on partitions

Just as (1.22) can be proven either combinatorially by the RSK bijection or by identities from finite group representation theory applied to S n , the Plancherel measure is motivated two different contexts. At this point let us establish the convention that random objects are denoted by bold letters (we use it throughout the text).

Fourier transform on a finite group The name of this measure comes from the representation theory side. Letting G be a finite group and G ∧ = {V ρ } be (the equivalence classes of) its irreducible representations, the generic Plancherel measure on G ∧ can be read from (1.29) as

P G;Plancherel (V ρ ) = (dim V ρ ) 2 |G| . (1.86)
The name of this measure comes from an analogy with classical analysis: the generalised Fourier transform from the functions {f :

G → C} to the endomorphisms { f (ρ) : V ρ → V ρ |V ρ ∈ G ∧ } is defined by f (ρ) = g∈G f (g)π ρ (g), (1.87)
which is the usual discrete Fourier transform if G is a cyclic group Z n (in that case, for each irreducible representation we can put V ρ = C as each π ρ (g) is an nth roots of unity, and f is a function from Z n to C just as f is). For the usual (discrete or continuous) Fourier transform, Plancherel proved [PL10] that if f is a square integrable function, then its Fourier transform f is a square integrable function with the same L 2 -norm; in other words, the discrete Fourier transform is an isometry from L 2 (Z n ) to itself. For the generalised Fourier transform on a finite group, we have the Plancherel formula

g∈G |f (g)| 2 = 1 |G| ρ dim V ρ tr Vρ ( f (ρ) f * (ρ)) (1.88)
where the left hand side defines the integral of |f | 2 on G with respect to the counting measure and the right hand side defines the integral of f f * on G ∧ with respect to the Plancherel measure; it means that the finite group Fourier transform is an isometry from the space L 2 (G) with respect to the counting measure on G to L 2 (G ∧ ) with respect to the Plancherel measure on G ∧ .

The longest increasing subsequence problem The Plancherel measure for S n has been subject to a great level of interest due to its combinatorial interpretation. Consider the following question, popularised by Hammersley [START_REF] Hammersley | Seedlings of research[END_REF] who credited Ulam [START_REF] Ulam | Monte carlo calculations in problems of mathematical physics[END_REF] with posing it previously: if σ ∈ S n is a uniform random permutation of 1, . . . , n, then, what is the law of the length of the longest increasing subsequences LLIS(σ) as n → ∞? The RSK correspondence (detailed at Theorem 1.12 above) and Greene's theorem 1.13 translate this into a random partition problem: if we let λ be a random partition of n under the Plancherel measure P n , then λ 1 is equivalent in law to LLIS(σ). This formulation is powerful, as P n behaves particularly well as n tends to infinity. We review two profound asymptotic results for this measure.

Limit shape of a Plancherel random partition

The first, proven by Vershik and Kerov [START_REF] Vershik | Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux[END_REF] and independently by Logan and Shepp [START_REF] Logan | A variational problem for random Young tableaux[END_REF], is that P n gives rise to a deterministic limit shape for large Young diagrams; to be precise (where " p -→" denotes convergence in probability), Theorem 1.35 (Limit shape of the Plancherel measure [START_REF] Vershik | Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux[END_REF][START_REF] Logan | A variational problem for random Young tableaux[END_REF]). Let λ n be a random partition under the Plancherel measure P n . Then, as n → ∞, (i) the rescaled profile4 ψ λ, √ n (x) of λ has a deterministic limit shape, with

sup x |ψ λ, √ n (x) -Ω(x)| p - → 0,
where

Ω(x) = 2 π arcsin x 2 + √ 4 -x 2 , |x| ≤ 2, |x|, |x| > 2.
(1.89)

(ii) the first part λ 1 and the length (λ) are both equivalent to 2 √ n in probability, with

λ 1 √ n p - → 2, (λ) √ n p - → 2.
(1.90)

We call Ω the "VKLS curve", after the authors' initials. This curve is found and part (i) of the theorem is proven by variational analysis of the Plancherel measure as a functional of the rescaled profile, starting from the fact that Proposition 1.36 (Asymptotic expression for the Plancherel measure). As n → ∞,

P n (λ) = exp -n(1 + 2I hook (ψ λ; √ n )) + O( √ n log n) (1.91)
uniformly for all λ n, where I hook (ψ λ;

√ n ) = O(1) is a functional expressed in terms of φ λ, √ n , φ -1 λ;
√ n defined at (1.6) as

I hook (ψ λ; √ n ) = ˆ∞ 0 ˆφλ; √ n (u) 0 log(φ λ; √ n (u) -u + φ -1 λ; √ n (v) -v)dvdu. (1.92)
This is shown by applying the hook length formula (Theorem 1.7) to write

P n (λ) = exp log n! -2 ∈λ log η λ ( ) (1.93) = exp -n -2 i,j: i,j ∈λ log λ i -i + λ j -j + 1 √ n + O(log n) (1.94)
where the second equality comes from the Stirling approximation log n! = n log n -n + O(log n). Then, the difference between the final summation and its integral approximation nI hook (ψ λ; 

I hook (ψ λ; √ n ) = log √ 2-1 2 ¨log |x-y|h (x)h (y)dxdy-2 ˆh (x)(x log |x|-x)dx. (1.95)
I hook is then be minimised; we refer to [Rom15, Sections 1.13-1.17] for a clear presentation of this analysis (we will present an alternative proof of Theorem 1.35 by Borodin, Okounkov and Olshanski [BOO00] as a special case in Section 2.3.2). The main result is that the unique function Ω minimising I hook (Ω) under the constraint ´(Ω(x)-|x|)dx = 2 is the VKLS curve given in (1.89), and that I hook (Ω) = -1/2. Hence, for any λ n that is "far" from the partition whose shape is described by Ω, P n (λ) tends to zero exponentially fast as n → ∞.

Although the support of Ω(x) -|x| is [-2, 2] as expected, part (i) of Theorem 1.35 is insufficient to prove part (ii) since the supremum norm is insensitive to a finite number of parts at the start of λ or λ ; one must additionally bound the expectation values of λ 1 and (λ) above. One simple way to do so is using the Plancherel growth process, which was explicitly introduced by Kerov [START_REF] Kerov | A differential model for the growth of young diagrams[END_REF].

Proof of Theorem 1.35 (ii) (see e.g. [Rom15, Section 1.19]). Consider the following random growth process on partitions. For each n > 1, let each σ (n) ∈ S n be a random permutation sampled from σ (n-1) by choosing m uniformly at random from 1, . . . , n and setting

σ (n) [i] =        σ (n-1) [i] i < n, σ (n-1) [i] < m σ (n-1) [i] + 1, i < n, σ (n-1) [i] ≥ m m, i = n.
(1.96)

Starting from the trivial permutation σ (1) = (1) ∈ S 1 , this generates a uniform random permutation of 1, . . . , n at the nth step. From this, define a sequence of random partitions λ (n) n as the shape of the pair of SYT associated to σ (n) by the RSK correspondence, so that the probability that λ

(n) = λ is P n (λ)1 λ n .
Fix λ n and consider the transition probability P(λ

(n) = λ|λ (n-1) = µ); this is P(λ (n) = λ ∩ λ (n-1) = µ) P(λ (n-1) = µ) = f λ f µ /n! f µ 2 /(n -1)! 1 µ λ = f λ nf µ 1 µ λ (1.97)
where the numerator is the fraction of permutations in S n such that the RSK algorithm outputs tableaux of shape µ at the penultimate step and tableaux of shape λ at the last step where µ λ; the only constraint is that in the recording tableau Q, the label n goes on the box λ/µ, so there are f µ recording tableaux and f λ insertion tableaux to count. Now, consider the expectation of λ (n) -λ (n-1) . For any µ n -1 we let µ 1+ denote the partition (µ 1 + 1, µ 2 , . . . , µ (λ) ) n; then, this is just the probability of the event

E n,1+ = {λ (n) = λ (n-1)1+ }, which is P(E n,1+ ) = µ n-1 P n-1 (µ)P(λ (n) = µ 1+ |λ (n-1) = µ) = µ n-1 f µ 2 (n + 1)! f µ 1+ nf µ . (1.98)
Since this is an average of f µ 1+ /nf µ it can be bounded above by the Cauchy-Schwarz inequality, to find

P(E n,1+ ) ≤ µ n-1 f µ 2 (n + 1)! f µ 1+ 2 n 2 f µ 2 1/2 = 1 √ n µ n-1 f µ 1+ 2 n! 1/2 ≤ 1 √ n (1.99)
where the final inequality comes from the fact that the partitions {µ 1+ |µ n -1} are a subset of the partitions {λ n}. Then, the expectation of the first part of any λ n under P n is bounded as

E(λ 1 ) = n m=2 P(E m,1+ ) ≤ n m=2 1 √ m ≤ 2 √ n (1.100)
Noting that precisely the same arguments can be applied to the conjugate partition λ , we equally have E( (λ)) ≤ 2 √ n. Now, from part (i) of Theorem 1.35, since Ω(x)-|x| > 0 for |x| < 2, we have that for all ε > 0,

lim n→∞ P n (λ 1 / √ n ≤ 2 -ε) = lim n→∞ P n ( (λ)/ √ n ≤ 2 -ε) = 0 (1.101)
and each of λ 1 / √ n and (λ)/ √ n converge in probability to 2 as required.

Of course, by Greene's theorem 1.13, Theorem 1.35 is immediately applicable to the Ulam-Hammersley problem: part (ii) states that if σ ∈ S n is a uniform random permutation then as n → ∞, we have LLIS(σ)/ √ n p -→ 2, and similarly for the the length of the longest decreasing subsequences of σ, denoted LLDS(σ), we have LLDS(σ)/

√ n p -→ 2. In terms of representation theory, the limit shape result was applied by Vershik and Kerov to compute asymptotic characters of symmetric groups [START_REF] Vershik | Asymptotic theory of characters of the symmetric group[END_REF]. For more general measures on partitions induced by decomposition of tensor representations of S n , deterministic limit shapes in coordinates scaling with 1/ √ n were shown by Biane [START_REF] Biane | Representations of symmetric groups and free probability[END_REF][START_REF] Biane | Approximate factorization and concentration for characters of symmetric groups[END_REF] to arise wherever characters asymptotically factorise over these representations.

Asymptotic edge fluctuations

The second result we present for large Plancherel random partitions is at the much finer scale of n 1/6 , around the limiting value 2 √ n of λ 1 or (λ). Baik, Deift and Johansson [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF] found the exact distribution asymptotically driving the fluctuations in each of these statistics: Theorem 1.37 (Asymptotic edge fluctuations of the Plancherel measure [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF]). Let λ n be a random partition under the Plancherel measure P n . Then, the asymptotic cumulative distribution for its first part λ 1 is

lim n→∞ P n λ 1 -2 √ n n 1/6 > s = F GUE (s) := det(1 -A) L 2 ([s,∞) (1.102)
where F GUE (s) is the Fredholm determinant

det(1 -A) L 2 ([s,∞)) = ∞ n=0 (-1) n n! ˆ∞ s • • • ˆ∞ s det 1≤i,j≤n A(x i , x j )dx 1 • • • dx n (1.103)
of the Airy integral kernel

A(x, y) = ˆ∞ 0 Ai(x + v) Ai(y + v)dv = Ai(x) Ai (y) -Ai (x) Ai(y) x -y , (1.104) Ai(x) = 1 2πi ˆ1+iR exp ζ 3 3 -xζ dζ.
(1.105)

In the second expression for A, the case x = y should be taken as a limit using L'Hôpital's rule. Although we write it only for λ 1 , this result equally applies to (λ), or indeed LLIS(σ) and LLDS(σ) for uniform random σ ∈ S n . The limiting "TW-GUE distribution" F GUE defined at (1.103) was discovered by Tracy and Widom [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF], who proved it governs the asymptotic fluctuations of the largest eigenvalue of a random matrix in the Gaussian unitary ensemble (GUE); we will revisit this connection in Section 3.2.1 and treat the asymptotic fluctuations of the Plancherel measure independently until then. We finally present a proof of the Baik-Deift-Johansson (BDJ) theorem 1.37 in Section 2.3.2 as a special case of the more general Theorem 2.2, using methods from "integrability" reviewed in Section 1.3.3. The key step in applying these methods, first used in [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF] and [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF] is to define a new measure: Definition 1.38 (Poissonised Plancherel measure). The Poissonised Plancherel measure with real parameter θ on all partitions λ is the law

P θ (λ) = e -θ 2 ∞ n=1 θ 2n n! P n (λ)1 λ n = e -θ 2 θ 2|λ| f λ 2 |λ|! 2 . (1.106)
The expectation value of the size of a partition λ under P θ is θ 2 , and Theorems 1.35 and 1.37 can be rewritten for P θ with θ playing the role of √ n. The Poissonisation procedure used is well established in statistical physics: to pass from a canonical ensemble, in which an isolated system composed of a fixed number of particles is in thermodynamic equilibrium, to a grand canonical ensemble in which the same system can exchange particles with a reservoir and is at both thermodynamic and "chemical" equilibrium, one promotes the particle number for the system to a Poisson random variable of parameter e -µ ch where µ ch is the chemical potential. We revisit this in Section 1.3.2. It also relates the Plancherel measure to symmetric functions: we recognise from (1.84) that

P θ (λ) = e -θ 2 ex θ (s λ ) 2 = e -θ 2 s λ [θ] 2 .
(1.107)

Schur measures

An important infinite parameter family of measures on partitions was introduced by Okounkov [START_REF] Okounkov | Infinite wedge and random partitions[END_REF], by considering more general specialisations of Schur functions to the complex numbers. Natural measures of this kind arise both from specialisations in which the direct parameters are assigned complex values and, as in the case of the Poissonised Plancherel measure, ones in which the Miwa times are assigned complex values; we give explicit definitions from either perspective.

Definition 1.39 (Schur measure). Let x = {x 1 , x 2 , . . .} and x = {x 1 , x 2 , . . .} be two sets of complex valued parameters, and let t = (t 1 , t 2 , . . .) and t = (t 1 , t 2 , . . .) be two sequences of complex valued parameters. Then, (i) if for all partitions λ, s λ (x)s λ (x ) ≥ 0 and the partition function Z := i,j (1x i x j ) -1 is finite, the Schur measure specialised to x, x is the probability law on all partitions

P(λ) = s λ (x)s λ (x ) i,j (1 -x i x j ) (1.108) (ii) if for all partitions λ, s λ [t]s λ [t ] ≥ 0 and Z := exp[ r rt r t r ]
is finite, the Schur measure specialised to t, t in the Miwa times is

P(λ) = s λ [t]s λ [t ]e -r rtrt r . (1.109)
The partition functions Z (that is, the normalisation factors for the weights s λ (x)s λ (x ) or s λ [t]s λ [t ]) are computed from the Cauchy identity (1.69). Schur measures are natural generalisations of the Poissonised Plancherel measure, and importantly they are all integrable in the same way.

The size of a partition λ under a Schur measure is random, and its expectation can be found directly from the definition. By homogeneity of the Schur function, for a parameter q we have

s λ [qt 1 , q 2 t 2 , q 3 t 3 , . . .] = q |λ| s λ [t 1 , t 2 , t 3 , . . .]
(1.110) and hence by (1.69),

E(|λ|) = d dq e -r rtrt r λ s λ [qt 1 , q 2 t 2 , q 3 t 3 , . . .]s λ [t ] q=1 = d dq e r rq r trt r e -r rtrt r q=1 = r≥1 r 2 t r t r .
(1.111)

An inhomogeneous longest increasing subsequence problem Let us motivate this family of measures by returning to the Ulam-Hammersley problem, and considering generalisations of it. First, consider a uniform random permutation σ ∈ S n as a sequence of random points in Z >0 2 with coordinates (i, σ[i]) 1≤i≤n . Then, in terms of "up/right paths" P of points (i k , j k ) where k = 1, . . . , 2n -1 such that (i 0 , j 0 ) = (1, 1), (i 2n-1 , j 2n-1 ) = (n, n) and at each step (i k+1 -i k , j k+1 -j k ) is equal to either (1, 0) or (0, 1), the main statistic of interest is

LLIS(σ) = L n,n := max P :(1,1)→(n,n) (i,j)∈P a(i, j), a(i, j) = 1 j=σ[i] .
(1.112)

Following this reformulation as a last passage percolation model, it is natural to consider the analogous statistic L n,n for more general random weights a(i, j); such a model was proposed by Johansson in [START_REF] Johansson | Shape fluctuations and random matrices[END_REF], and generalised and recast in algebraic terms by Baik and Rains [START_REF] Baik | Symmetrized random permutations[END_REF][START_REF] Baik | Algebraic aspects of increasing subsequences[END_REF] (and studied by implicitly using Schur measures before their introduction). To model directed paths through an inhomogeneous random medium, fix two sequences of numbers 0 < x i , y i < 1 for i from 1 to n and let each weight be an independent geometrically distributed random non-negative integer, with

P(a(i, j) = m) = x m i y m j 1 -x i y j .
(1.113)

The n × n matrix with entries a(i, j) can be written as a two-line array (or generalised permutation) w of 1, . . . , n, and we can see that, as in the permutation case,

L n,n = max P :(1,1)→(n,n) (i,j)∈P a(i, j) = LLIS(w). (1.114)
Now, under the RSK correspondence (Theorem 1.14), LLIS(w) is the first part λ 1 of the shape λ of the SSYT corresponding to w. Hence, following the arguments of Corollary 1.30 the law of L n,n is

P(L n,n ) = λ:λ 1 =Ln,n P,Q SSYT of λ n i,j=1 (1 -x i y j )x #i∈P i y #j∈Q j = n i,j=1 (1 -x i y j ) λ:λ 1 =Ln,n s λ (x 1 , . . . , x n )s λ (y 1 , . . . , y n ) (1.115)
and we recognise the Schur measure in the final sum. The length L n,n is equivalent to the height function h(x, t) at the centre x = 0 in a discrete polynuclear growth model with wedge initial condition h(x, 0) = |x| (see e.g. [START_REF] Johansson | Discrete polynuclear growth and determinantal processes[END_REF]), and last passage percolation with geometric weights plays an important role in establishing the TW-GUE universality class associated with the fluctuation exponents and asymptotic distribution of the BDJ theorem 1.37. For the homogeneous case x i = y i = q for all i of last passage percolation with i.i.d. geometric random weights presented in [START_REF] Johansson | Shape fluctuations and random matrices[END_REF], Johansson proved5 that as n → ∞, the expectation of L n,n scales with n while its fluctuations scale with n 1/3 and are driven by the TW-GUE distribution, in direct analogy with the BDJ theorem 1.37.

Plane and cylindric partitions, processes and periodic processes

As discussed in part I of the introduction, the TW-GUE universality class notably includes several time-dependant models of out-of-equilibrium physical systems, such as KPZ stochastic growth and asymmetric exclusion processes with particular initial conditions. The integrable algebraic approach to this class of Schur measures was extended to a discrete time dependent setting by Okounkov and Reshetikhin [OR03, OR07], who defined measures on (skew) plane partitions, which are represented by three-dimensional (skew) Young diagrams where stacks of cubes are aligned in a corner (or a series of corners) and correspond to sequences of interlaced partitions ∅ ≺ λ (1) . . . λ (n-1) ∅; these measures are defined by way of transition weights between interlaced partitions, which have also been applied to sequences with more general boundary conditions. One notable generalisation by Borodin [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF] went beyond the usual hypothesis of a timedependent process to have periodic boundary conditions, defining measures on cylindric partitions introduced in [START_REF] Gessel | Cylindric partitions[END_REF]. This family may be informally defined as follows6 : Definition 1.40 (Schur process). Given a suitable sequence of N pairs of sets of complex parameters x i+ , x i-and a non-negative parameter u, the Schur process of rank N is a measure on sequences of 2N + 1 partitions Λ = (µ

(0) ⊆ λ (1) ⊇ µ (1) ⊆ λ (2) ⊇ . . . ⊆ λ (N ) ⊇ µ (N ) = µ (0)
) defined as the product of transition weights

P(Λ) = 1 Z u |µ (0) | N i=1 s λ (i) /µ (i-1) (x i+ )s λ (i) /µ (i) (x i-) (1.116)
and where Z is the partition function normalising the measure. Fixing u = 0, we have (for sequences with non-zero probability) µ (0) = µ (N ) = ∅, and the rank 1 Schur process at u = 0 is the usual Schur measure. Fixing x i-= 0 for i = 1, . . . , M , x i+ = 0 for i = M + 1, . . . , N we have µ (i) = λ (i) , i ≤ M and µ (i-1) = λ (i) , i > M ; if moreover each remaining set x i+ , x i-contains just one non-zero parameter, the sequences of partitions are interlaced, with Λ = (∅ ≺ λ (1) ≺ . . . ≺ λ (M ) . . . λ (N -1) ∅) corresponding to a plane partition, which was the original case considered in [START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF]. Allowing for order of the pairs x +i , x -i to be changed, each Λ is a skew plane partition, as considered in [START_REF] Okounkov | Random skew plane partitions and the Pearcey process[END_REF]. For u > 0, Λ is a cylindric partition and P(Λ) is the periodic Schur process introduced in [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF].

The simplest periodic Schur process is the rank 1 cylindric Plancherel measure, where both x 1+ and x 1-correspond to exponential specialisations,

P u,θ (µ, λ) = 1 Z u |µ| s λ/µ [θ] 2 , Z = exp[ θ 2 1-u ] i≥1 (1 -u i )
.

(1.117)

The same processes appeared implicitly in prior works of Johansson [START_REF] Johansson | Discrete polynuclear growth and determinantal processes[END_REF][START_REF] Johansson | The arctic circle boundary and the Airy process[END_REF], where in the second case they were applied to domino tilings of the Aztec diamond. The connection between Schur processes (including ones with different boundary conditions) and tiling problems, specifically configurations of dimers on a certain family of graphs, was made explicit and shown to be very general in [BBC + 15] and [START_REF] Bouttier | From aztec diamonds to pyramids: Steep tilings[END_REF].

Specialisations and Schur positivity

It is important to emphasise that the Schur process is only well defined for certain x i+ , x i-and parameters u. In the case of the periodic Schur process, the parameter u must be less than 1 for the measure to be normalisable. For P(Λ) to represent a sensible stochastic process, each weight T (λ, µ) should define a probability for all λ, µ after normalisation, which is ensured if each x i+ , x i-defines a Schur positive (or more accurately Schur non-negative) specialisation, meaning that s λ (x i+ ), s λ (x i-) ≥ 0 for all λ. This in turn ensures that all skew Schur functions are non-negative under the corresponding specialisation; by Definition 1.26, this corresponds to a non-negativity condition for the minors of a lower triangular matrix, and was classified in [START_REF] Aissen | On the generating functions of totally positive sequences[END_REF] and [START_REF] Thoma | Die unzerlegbaren, positiv-definiten klassenfunktionen der abzählbar unendlichen, symmetrischen gruppe[END_REF]:

Proposition 1.41 (Schur positivity condition [AESW51, Tho64]). A set of complex param- eters x = {x 1 , x 2 , . .

.} defines a Schur positive specialisation if and only if there exist parameters

α i , β i , γ ≥ 0 such that H(x; z) = m=0 h m (x)z m = e γz i 1 + β i z 1 -α i z .
(1.118)

A periodic generalisation of the BDJ theorem Analysis of Schur processes has lead to a wide range of asymptotic results, such as limit surfaces for random plane partitions [START_REF] Cohn | The shape of a typical boxed plane partition[END_REF][START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF] or convergence to the Pearcey process on convex corners of skew plane partitions [START_REF] Okounkov | Random skew plane partitions and the Pearcey process[END_REF]. Let us highlight one such result, which leads to an extension of the TW-GUE universality class. In [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF], Betea and Bouttier studied the edge behaviour of the larger partition in a random sequence Λ under P u,θ in the θ → ∞ limit, which, as the case of the Poissonised Plancherel measure P θ , is a large partition limit. By simultaneously considering a u → 1 limit, the smaller partition µ is also large, and they proved the following result:

Theorem 1.42 (Asymptotic edge fluctuations of the cylindric Plancherel measure [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF]).

Let Λ = (µ ⊆ λ ⊇ µ) be a random cylindric partition under P u,θ . Then, in a critical scaling regime where θ(1 -u) 2 → α 3 > 0 as θ → ∞ and u → 1, we have

lim θ→∞,u→1 P m u,θ λ 1 -bΘ (dΘ) 1 3 < s = F α GUE (s) := det(1 -A α ) L 2 ([s,∞)) (1.119)
where

Θ := θ 1 -u , Θ ∼ θ α 3 2
where F α GUE is the Fredholm determinant of the α-Airy integral kernel composed of classical Airy functions,

A α (x, y) = ˆ∞ -∞ e αv 1 + e αv Ai(x + v) Ai(y + v)dv.
(1.120)

The distribution F α GUE was previously found by Johansson [START_REF] Johansson | From Gumbel to Tracy-Widom[END_REF] and shown by Dean, Le Doussal, Majumdar and Schehr [START_REF] Dean | Finitetemperature free fermions and the Kardar-Parisi-Zhang equation at finite time[END_REF][START_REF] Le Doussal | Periodic Airy process and equilibrium dynamics of edge fermions in a trap[END_REF] to govern edge fluctuations in free fermion models at positive temperature. The factor of e αv /(1 + e αv ) in the kernel coincides with the Fermi density of states, with α acting as the "limiting inverse temperature" -we see that in the limit α → ∞, this factor becomes 1 v>0 and A α → A, recovering the "zero temperature" classical Airy kernel. Moreover, after some more subtle scaling arguments, in the α → 0 high temperature limit one recovers the Gumbel distribution G(s) = e e -s associated with cumulative probabilities from independent events, and edge fluctuations of models in the Edwards-Wilkinson universality class.

The asymptotic regime in Theorem 1.42 parametrises a crossover in edge behaviour between two universality classes. Betea and Bouttier's proof exploits a correspondence between these models and discrete space fermions at positive temperature (partially presented in Section 1.3.3).

The same distribution F α GUE also governs the finite time asymptotic fluctuations in the height of an interface growing randomly under the KPZ equation with the narrow wedge initial condition [START_REF] Sasamoto | The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class[END_REF][START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF]. The periodic Schur process does not have a direct interpretation as a time dependant process that could explain the origin of F α GUE in this context combinatorially. However, by using bijective connections to another class of processes defined in terms of q-Whittaker functions, Imamura, Mucciconi and Sasamoto recently presented a periodic Schur process approach to models in the KPZ class [START_REF] Imamura | Identity between restricted Cauchy sums for the q-Whittaker and skew Schur polynomials[END_REF][START_REF] Imamura | Solvable models in the KPZ class: approach through periodic and free boundary Schur measures[END_REF].

Integrable measures and free fermions

As previously mentioned, the Schur measures and processes introduced in the last section have the rare and very useful distinction of being integrable, and this section explains what that means. The notion of integrability comes from physics, in the first instance from classical mechanics, where a system is integrable if its equations of motion can be solved exactly. A probability law can be integrable in the sense that a quantum mechanical model can be, where every correlation function can be computed exactly by an algebraic algorithm. Schur measures are determinantal point processes, meaning that this algorithm is particularly simple; in physical terms, they correspond to models of free fermions. We will first describe the family of integrable laws that Schur measures belong to, then review the physical models which inspired this categorisation, before finally showing how correlation functions of Schur measures can be computed exactly using fermionic calculus.

Determinantal point processes

The class of integrable probability laws we consider was defined by Macchi [Mac75]: Definition 1.43 (Determinantal point process). Let χ be a configuration of random points in a metric space R equipped with a reference measure µ ref such that for any compact subspace B ⊂ R, #{χ ∩ B} < ∞, and suppose that χ admits an n-point correlation function ρ n (also called joint intensity) with respect to µ ref such that for any finite set {k 1 , . . . , k n } ⊂ R and any symmetric function f ,

E {k 1 ,...,kn}⊆χ f (k 1 , . . . , k n ) = ˆR f (k 1 , . . . , k n )ρ n (k 1 , . . . , k n )dµ ref (k 1 ) • • • dµ ref (k n ).
(1.121)

The random configuration χ is a determinantal point process7 (DPP) if there exists a kernel K : R × R → C of which every correlation function of χ is a minor,

ρ n (k 1 , . . . , k n ) = det 1≤i,j≤n K(k i , k j ).
(1.122)

The n-point correlation function has a particularly natural definition if R is discrete and µ ref is the counting measure; in this case,

ρ n (k 1 , . . . , k n ) = P({k 1 , . . . , k n } ⊆ χ).
(1.123)

If R is continuous, we have

ρ n (k 1 , . . . , k n ) = lim ε→0 1 i µ ref (B ε (k i )) P(χ ∩ B ε (k i ) = ∅ for all i = 1, . . . , n) (1.124)
where B ε (k i ) denotes a ball of radius ε around k i . DPPs are reviewed in detail in [AGZ09, Section 4.2], and we refer also to [START_REF] Hardy | Determinantal point processes[END_REF] for a concise and enjoyable introduction. They notably include eigenvalues in a number of random matrix models, such as the Ginibre ensemble of matrices whose entries are i.i.d. complex numbers of mean 0 and variance 1 and the Gaussian unitary ensemble which we revisit in Section 3.2.1. Note that they also include completely uncorrelated processes, for which

ρ n (k 1 , . . . , k n ) = ρ 1 (k 1 )ρ 1 (k 2 ) • • • ρ 1 (k n ); (1.125) in this case the kernel is diagonal, with K(k, ) = 0 if k = .
In this text we will only be concerned with DPPs where R is R or Z + 1 2 (the shift of 1 2 is arbitrary but will prove convenient), for which µ ref is respectively the Lebesgue measure and the counting measure.

Kernels and integral operators

The kernel K associated with a DPP must be locally trace-class, with

tr B K = ˆB K(k, k)dµ ref (k) < ∞ (1.126)
for any compact B ⊂ R. From this point let us write the integration with respect to µ ref implicitly, with dk := dµ ref (k). One important sufficient condition for a locally trace-class operator to be a valid DPP kernel was stated by Soshnikov [Sos00]:

Theorem 1.44 (Condition for a Hermitian determinantal point process kernel [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF][START_REF] Soshnikov | Determinantal random point fields[END_REF]). Let K be a locally trace-class Hermitian kernel on R, with K(k, ) = K( , k).

Then, K defines a DPP if and only if the eigenvalues of the integral operator

K ´|B : L 2 (B) → L 2 (B) K ´(f )| B = ˆB K(k, )f ( )d (1.127) all lie in [0, 1] for B ⊆ R.
It is worth noting, however, that a DPP kernel is not necessarily Hermitian. Most natural DPPs are defined in terms of projection kernels, where (K

´)2 = K ´and ˆK(k i , )K( , k j )d = K(k i , k j ).
(1.128)

The linear statistics of a DPP χ have simple formulas, with

E k∈χ f (k) = ˆR K(k, k)f (k)dk Var k∈χ f (k) = ˆR f 2 (k)K(k, k)dk -¨R K(k, )K( , k)f (k)f ( )dkd (1.129) and in particular, E(#{χ ∩ B}) = ´B K(k, k)dk = tr B K for any compact B ⊂ R.

Gap probabilities and Fredholm determinants

If χ ⊂ R is a DPP, we can write particularly simple expressions for its gap probabilities, that is the probability that there are no elements of χ in a given region B ⊂ R. By the inclusion-exclusion principle, we have

P({χ ∩ B} = ∅) = 1 -ˆB ρ 1 (k)dk + 1 2 ¨B ρ 2 (k 1 , k 2 )dk 1 dk 2 - 1 3! ˚B ρ 3 (k 1 , k 2 , k 3 )dk 1 dk 2 dk 3 + . . . (1.130)
where the factor of n! on the n-point correlation function corrects the over counting by relabellings of elements of χ. In terms of the DPP kernel, this is

P({χ ∩ B} = ∅) = ∞ n=0 (-1) n n! ¨• • • ˆB det 1≤i,j≤n K(k i , k j )dk 1 dk 2 • • • dk n . (1.131)
On the right hand side, we can recognise an expression for the determinant of the identity perturbed by an N × N matrix A as a sum of minors

det(1 + xA) = L⊆{1,...,N } x |L| det(A) L (1.132)
in the limit N → ∞. In this sense, (1.131) defines a generalisation of this determinant for the integral operator K ´on L 2 (B). This is called a Fredholm determinant, and denoted det(1 -K ´)L 2 (B) . For simplicity, from now on we will denote the integral operator associated to a kernel with the same symbol.

The BDJ theorem again The distribution F GUE driving the fluctuations in a random partition λ under P n as n → ∞ in the BDJ theorem 1.37 is one such Fredholm determinant. An extension of this theorem due to Okounkov [START_REF] Okounkov | Random matrices and random permutations[END_REF], reproven more directly by Borodin, Okounkov, Olshanski and Johansson [BOO00, Joh01], explains its origin: it states that for any finite m, as n → ∞, the sequence (λ i -2 √ n)n -1/6 for i from 1 to m converges in law to the Airy ensemble, which is the DPP whose kernel is the Airy kernel given in (1.104).

Physical fermion models

Macchi originally introduced DPPs in order to model the spatial distribution of fermions in optical beams [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF]. The definition of the n-point correlation function is motivated by experimental observations: one can in principle place any finite number n of detectors to measure different points in the space at once, but an infinite number measurements could not be performed at once. DPPs themselves arise directly from the quantum mechanics of free (that is to say, non-interacting except through the Pauli exclusion principle) fermions, which we review in this section.

Quantum mechanics in a nutshell

In the formalism of quantum mechanics, any observable O of a system (for example, the position x or momentum p of a particle) is a random variable, whose law is determined by the state Φ that the system is in. If the system exists in a space R (parametrising e.g. the positions or momenta of particles), its state Φ lives in a Hilbert space H ⊂ L 2 (R) of square integrable 8 complex functions with norm one, with ´R |Φ(x)| 2 dx = 1. Then, the expectation of an observable O is

E(O) = ˆR Φ * (x) ÔΦ(x)dx.
(1.133)

where Ô : L 2 (R) → L 2 (R) is the corresponding operator.

While one can use either position or momentum space to represent a system, an important element of the fundamental quantum formalism is that both cannot be use at once, as the corresponding operators x, p do not commute with one another; rather we have [x, p] = xppx = i .

(1.134)

In dimensionless coordinates, we set the reduced Planck constant to 1. Then, the momentum operator acts as p = -id/dx on position space with corresponding coordinate x and the position operator acts as x = id/dp on momentum space with coordinate p.

The state Φ itself is an eigenfunction of the system's Hamiltonian, which is a Hermitian operator H : L 2 (R) → L 2 (R), with (real valued) eigenvalue equal to the state's energy. We will only consider models with no time dependence.

Bosons and fermions in first quantisation

To construct a system in the first quantisation formalism, we consider only the particles themselves to have random positions and momenta; they are assumed to be in a deterministic environment, experiencing a fixed potential. We refer to [DDMS19, Section 3] for a clear example of this set-up.

Consider a system of N indistinguishable particles in one dimension, which do not interact with one another; in position space, its Hamiltonian has the form

H = N i=1 - ∂ 2 ∂x 2 i + V (x i ) (1.135)
for some potential V in dimensionless coordinates, where we set the convention that the mass equals 1 2 (so that the kinetic energy of the ith particle is just p 2 i ). The single particle states ϕ i (x) are then given by eigenfunctions of d/dx + V (x) with L 2 norm 1 (let us assume the potential V (x) is well chosen so these eigenfunctions exist).

The collective state Φ is determined by the nature of the particles, which come in two flavours: a system of bosons is symmetric under exchange of particles so their state function Φ is too, whereas a system of fermions is antisymmetric under particle exchange. In the latter case (with the additional condition that the fermions are spinless), by the Pauli exclusion principle each state can only be occupied by one particle. In the ground state, which is occupied at zero temperature, only the N lowest energy states are filled and the collective state is a Slater determinant of single particle state functions

Φ 0 (x 1 , . . . , x N ) = 1 √ N ! det 1≤i,j≤N ϕ i (x j ). (1.136)
Considering the n-point correlation function ρ n (k 1 , . . . , k n ) on this system, giving the probability that the positions x 1 , . . . , x n of n particles coincide with k 1 , . . . , k n , we have 

ρ n (k 1 , . . . , k n ) = N ! (N -n)! ˆ• • • ˆ|Φ 0 (k 1 , . . . , k n , x n+1 , . . . , x N )| 2 dx n+1 • • • dx N . (1.
Φ β -1 (x 1 , . . . , x N ) = 1 N !Z β i 1 <...<i N e -β 2 ( i 1 +...+ i N ) det 1≤k,j≤N ϕ i k (x j ), (1.139)
where Z β is a normalisation factor. Unlike in the zero temperature case, here we can only write ρ N as a determinant, and cannot integrate over the remaining degrees of freedom to write a determinant for the n-point correlation function ρ n (k 1 , . . . , k n ). However, we restore this integration property by moving the grand canonical ensemble, which, at chemical potential µ ch , contains a random number of particles N with law P(N ) = e µ ch N /N !e e µ ch . In this ensemble at inverse temperature β, the fermion positions form the DPP with Hermitian projection kernel

K β (k, ) = ∞ i=1 1 e β( i -µ ch ) + 1 ϕ * i (k)ϕ i ( ).
(1.140)

The fixed particle number N of a canonical ensemble is related to the chemical potential µ ch of the analogous grand canonical ensemble are related by

N = tr K β = ∞ i=1 1 e β( i -µ ch ) + 1 . (1.141)
At N → ∞, the canonical ensemble is equivalent to the grand canonical ensemble -this is a universal principle of statistical mechanics, see e.g. [START_REF] Lewis | The equivalence of ensembles for lattice systems: Some examples and a counterexample[END_REF].

Airy fermions at the edge of confining traps

The Airy ensemble found in the large n limit of the Plancherel measure P n arises naturally, and universally, for free fermions in one dimension at zero temperature. Consider the case mentioned in part I of the introduction (see Figure 0.2) where the space is continuous, the potential V confines the fermions to some region with a "soft edge"; if the Fermi energy, which is the highest energy of an occupied state, is E F , then the edge of that region is x edge such that E F = V (x edge ), and in the soft edge case the derivative of the potential is 0 < V (x edge ) < ∞ at the edge (the "hard edge" case where dV /dx diverges at x edge has different limiting edge behaviour, see [START_REF] Dean | Noninteracting fermions in a trap and random matrix theory[END_REF]). Then, as shown by Eisler [START_REF] Eisler | Universality in the full counting statistics of trapped fermions[END_REF] and proven rigorously by Deleporte and Lambert [START_REF] Deleporte | Universality for free fermions and the local Weyl law for semiclassical Schrödinger operators[END_REF], the positions of fermions rescaled near the edge to xi = (x i -x edge )/κ are a DPP whose kernel, of the form (1.138), is built up from square integrable eigenfunctions of the effective edge Hamiltonian

H edge = - d 2 dx 2 + κ 3 V (x edge )x = κ 2 H + O(κ 2 (x -x edge ) 2 ).
(1.142)

The critical scaling regime, in which H edge has non-trivial square integrable eigenfunctions, is κ ∼ c • V (x edge ) -1/3 for some constant; for simplicity we set κ := V (x edge ) -1/3 and replace x with x.

Considering the classical Airy functions Ai(x + v) defined at (1.105) for a real number v, we find (for instance by differentiating under the integral) that they are real square integrable eigenfunctions of H edge , with

H edge Ai(x + v) = - d 2 dx 2 + x Ai(x + v) = -v Ai(x + v); (1.143)
so, H edge has a continuous unbounded spectrum, and by taking any v > -E F we find an infinite number of states Ai(x + v) which can be occupied in the ground state. Since the ground state cannot saturate, this model is in general not physically sensible; if, however, the number of particles N tends to infinity, we can have a physically meaningful collective ground state where E F = 0 and all of the negative energy single particle states are filled (a "Dirac sea" in quantum field theory terms). Then, the kernel of the DPP on the edge is precisely the Airy kernel A defined at (1.104). Further considering a grand canonical ensemble of fermions in the same edge regime, as shown by Dean, Le Doussal, Majumdar and Schehr [START_REF] Dean | Finitetemperature free fermions and the Kardar-Parisi-Zhang equation at finite time[END_REF], in a regime where β = αv/µ ch the formula (1.140) gives precisely the kernel A α defined at (1.120); in terms of the particle number in the corresponding canonical ensemble given by (1.141), the crossover regime is β = αN -1/3 as N → ∞.

Bosons and fermions in second quantisation

In the second quantisation formalism, the particles are subject to quantised potentials. Here, rather than considering one Hilbert space for the whole position or momentum space R, we have a different Hilbert H x space for each point x ∈ R. A collective state then belongs to the tensor product of these spaces, which is the Fock space F; we denote a state as a vector |Φ , which has a conjugate transpose Φ| defining an inner product Ψ|Φ ∈ C on F; the L 2 (R) norm of a physical state is Φ|Φ = 1, and an observable O has expectation E(O) = Φ| Ô|Φ .

Let us take R to be an ordered one dimensional space (in practice we will always consider R or Z + 1 2 ) and consider non-interacting fermions on it. By the Pauli exclusion principle, each Hilbert space H x has only two possible states: filled or empty. For a set of points B ⊂ R, let |B denote the state with a particle in H x for each x ∈ B and ever other H x empty; let us further insist that there exists a maximum element of B, so that there are finitely many elements of B in any subset of R bounded below. These states form a basis of F, which we can take to be orthonormal with respect to the inner product, with B|B = 1 B=B . We refer to [Sté21, Appendix A] for a concise and concrete example of this construction.

Starting from a given |B , another element of this basis be generated using the fermionic creation and annihilation operators c † x , c x , which act as

c † x |B = (-1) #{B>x} |B ∪ {x} if x / ∈ B 0 if x ∈ B c x |B = 0 if x / ∈ B (-1) #{B>x} |B \ {x} if x ∈ B. (1.144)
It is clear that c † x and c x are adjoint to one another with respect to the inner product (for example, if

|B = c † x |B , then B | = B|c x ). Moreover, from the orthonormality condition, c † x , c x satisfy the canonical anticommutation relations c † x c y + c y c † x = 1 x=y , c x c y + c y c x = c † x c † y + c † y c † x = 0. (1.145)
From them, we construct two other useful operators. Firstly, indicator functions

c † x c x |B = 1 x∈B |B , c x c † x |B = 1 x / ∈B |B (1.146)
and secondly the "level" r bosonic creation operator a † r

a † r := a -r := x∈R c † x c x-r , r = 0. (1.147)
Its adjoint is a r , which is bosonic annihilation operator at level r, and from the fermionic anticommutation relations, we can show they satisfy [a r , a s ] = a r a s -a s a r = r1 r=-s .

(1.148)

These operators are so-called because they play a role analogous to the one of c † x , c x for fermions: if instead we considered a bosonic Fock space, it is made up of Hilbert spaces each of which can contain any non-negative integer number of particles; an operator a † r adding a particle to the space H r satisfies the commutation relations (1.148).

In this formalism, both the kinetic and potential energy terms of the Hamiltonian act on F through combinations of creation and annihilation operators c † x , c x ; it is in this sense that the potential is also quantised. We will revisit this kind of quantum mechanical model in Section 2.2.2. In the following section, we present an example using elements of second quantised fermions to construct a DPP, without reference to a physical Hamiltonian.

Integrability of Schur measures

Let us finally return to random partitions, and prove the following result: Theorem 1.45 (Determinantal point process from the Schur measure [START_REF] Okounkov | Infinite wedge and random partitions[END_REF]). Fix two sequences t = (t 1 , t 2 , . . .) and t = (t 1 , t 2 , . . .) such that P(λ) := e -r rtrt r s λ [t]s λ [t ] is a Schur measure, and let λ be a random partition that measure. Then, for each finite set {k 1 , . . . , k n } ⊂ Z + 1 2 , the n-point correlation function of the fermion configuration S(λ)

is ρ n (k 1 , . . . , k n ) = P({k 1 , . . . , k n } ⊂ S(λ)) = det 1≤i,j≤n K(k i , k j ) (1.149)
where

K(k, ) = ∞ i=0 J k+i+1/2 (t, t )J +i+1/2 (t, t ) (1.150)
where J n (t, t ) is the multivariate Bessel function

J n (t, t ) = 1 2πi ˛exp r t r z r - r t r z -r dz z n+1 . (1.151)
The kernel K is generated by

k, ∈Z+ 1 2 z k w -K(k, ) = exp r t r z r -r t r z -r exp r t r w r -r t r w -r √ zw z -w , |w| < |z|. (1.152)
In order to prove this, we consider a Fock space F over the half integers generated by an orthonormal basis {|S } indexed by the "fermion configurations" S ⊂ Z+ 1 2 introduced in Section 1.1.1, with S|S = 1 S=S . As their name suggests, these configurations are naturally described in these terms. Once we define the normal ordering : • :,

: c † k c k := c † k c k , k > 0 c k c † k , k < 0, (1.153)
we can note that key data for a fermion configuration S are eigenvalues of normal ordered operators, with

Q 0 (S)|S = k∈Z+ 1 2 : c † k c k : |S , Q 1 (S)|S = k∈Z+ 1 2 k : c † k c k : |S Q 2 (S)|S = k∈Z+ 1 2 k 2 2 : c † k c k : |S . (1.154)
Each of these eigenvalues is finite for any S, and we recall that for a partition λ, its fermion configuration satisfies

Q 0 (S(λ)) = 0, Q 1 (S(λ)) = |λ|, Q 2 (S(λ)) = C λ .
The bosonic creation operator a † r have natural interpretations in terms of partitions; for each µ n, we have

a † r |S(µ) = λ n+r: λ/µ is a ribbon |S(λ) (1.155) and in particular a † 1 |S(µ) = µ λ |S(λ) .
Proof of Theorem 1.45. We construct the DPP on Z + 1 2 as described by defining vectors |Φ , |Φ in the Fock space F over Z + 1 2 such that9 

ρ n (k 1 , . . . , k n ) := Φ|c † k 1 c k 1 • • • c † kn c kn |Φ = det 1≤i,j≤n K(k i , k j ), (1.156) 
then show that if a random configuration S is a DPP with this kernel, it is equivalent in law to the fermion configuration of a random partition λ under the Schur measure.

To start, we let the "domain wall" |S(∅) be the vacuum state and define the vertex operators

Γ ± (t) = exp r≥1 t r a ±r (1.157)
in terms of the positive integer indexed bosonic creation and annihilation operators a ±r . Then we set

|Φ = Z -1/2 Γ -(t)|S(∅) and |Φ = Z -1/2 Γ -(t )|S(∅)
where Z is a normalisation factor, such that ρ 0 (∅) = 1; for now let us assume that these vectors define a probability law, as this will be confirmed at the end of the proof. The adjoint of Γ -(t) is Γ + (t), so the n-point correlation is

ρ n (k 1 , . . . , k n ) = 1 Z S(∅)|Γ + (t)c † k 1 c k 1 • • • c † kn c kn Γ -(t )|S(∅) (1.158)
From the anticommutation relations (1.145), we find

[a r , c † k ] = c † k+r , [a r , c k ] = -c k+r , (1.159)
and for the vertex operators, in terms of the generating functions

c † (z) := k z k c † k and c(w) := w -c (1.160) we have Γ ± (t)c † (z) = e r trz ±r c † (z)Γ ± (t), Γ ± (t)c(w) = e -r trz ±r c(w)Γ ± (t).
(1.161)

By application of the Baker-Campbell-Hausdorff formula e A e B = e B e A e [A,B] where

[A, [A, B]] = [B, [A, B]] = 0, we have Γ + (t)Γ -(t ) = e r rtrt r Γ -(t )Γ + (t).
(1.162)

Noting that Γ + |S(∅) = |S(∅) , we then compute ρ 0 (∅) to find Z = e r rtrt r . Then, since we similarly have Γ -1 + |S(∅) = |S(∅) , the correlation function (1.158) can then be written

ρ n (k 1 , . . . , k n ) = S(∅)|c † k 1 ck 1 • • • c † kn ckn |S(∅) (1.163) c † k = Γ + (t)Γ -(t ) -1 c † k Γ -(t )Γ + (t) -1 , ck = Γ + (t)Γ -(t ) -1 c k Γ -(t )Γ + (t) -1 .
In this form, ρ n can be expressed as a determinant using a classical identity, which follows directly from the anticommutation relations (1.161). Let

• = S(∅)| • |S(∅)
denote the expectation on the vacuum state; then, Lemma 1.46 (Wick's lemma [START_REF] Wick | The evaluation of the collision matrix[END_REF]). For any sequence of half integers

(k 1 , k 2 , . . . , k 2n ) we have c † k 1 c k 2 c † k 3 c k 4 • • • c † k 2n-1 c k 2n = det 1≤i,j≤n c † k 2i-1 c k 2j . (1.164)
Each c † k is a linear combination of operators c † , and similarly ck is a linear combination of c s, so by linearity Lemma 1.46 gives 

ρ n (k 1 , . . . , k n ) = det 1≤i,j≤n c † k i ck j . ( 1 
z k w -K(k, ) = Γ + (t)Γ -(t ) -1 c † (z)c(w)Γ -(t )Γ + (t) -1
= e r trz r -trz -r c † (z)c(w) e r t r w -r -r trw r .

(1.166) First, we evaluate the final vacuum state expectation, which is just a geometric series; requiring that |w| < |z| we have 

k, ∈Z+ 1 2 z k w c † k c = k, ∈Z+ 1 2 z k w 1 k= ,k<0 = √ zw z -w , ( 1 
z k w -K(k, ) = k, z k w - m∈Z z m J m (t, t ) n∈Z w -n J n (t, t )1 k= ,k<0 = ∞ i=0 m,n∈Z z m-i-1 2 J m (t, t )w i-n+ 1 2 J n (t, t ) = k, z k w - ∞ i=0 J k+i+ 1 2 (t, t )J +i+ 1 2 (t, t ).
(1.168)

This recovers (1.150) as required.

To conclude the proof, let us find an explicit expression for the law of a random configuration under this DPP, in terms of the corresponding partition. We compute this by inserting the projection operation |S S| on F, to write

P(S) = Φ|S S|Φ (1.169)
and evaluate each inner product, letting S := S(λ). For the first inner product,

Φ|S(λ) = e -1 2 r rtrt r Γ + (t)c † λ 1 -1 2 c -1 2 c † λ 2 -3 2 c -3 2 . . . c † λ (λ)-(λ)+ 1 2 c -(λ)+ 1 2 . (1.170)
By (1.161), and recalling that e r trz r is the generating function of the complete homogeneous symmetric functions as given in (1.54), we have

Γ + (t)c † k = ∞ m=0 h m [t]c † k-m Γ + (t) =: c † k Γ + (t), Γ + (t)c k = ∞ m=0 h m [t]c k+m Γ + (t) =: ck Γ + (t).
(1.171)

Then by Wick's lemma 1.46, we have

Φ|S(λ) = e -1 2 r rtrt r c † λ 1 -1 2 c-1 2 . . . c † λ (λ)-(λ)+ 1 2 c-(λ)+ 1 2 = e -1 2 r rtrt r det 1≤i,j≤ (λ) c † λ i -i+ 1 2 c-j+ 1 2 . (1.172)
Evaluating the final vacuum expectation value, we find c † 

λ i -i+ 1 2 c-j+ 1 2 = m,n h m [t]h n [t]1 λ i -i-m=n-j = n h λ i -i+j-n [t]h n [t] = h λ i -
J θ (k, ) = 1 (2πi) 2 ‹ e θ(z-1/z) e θ(w-1/w) dzdw z k+1 w 1-(z -w) = ∞ i=0 J k+i+ 1 2 (2θ)J +i+ 1 2 (2θ) (1.176)
where J n (2θ) is the classical Bessel function

J n (2θ) := J n ((θ, 0, . . .), (θ, 0, . . .)) = 1 2πi ˛eθ(z-1/z) dz z n+1 .
(1.177)

Integrable measures and free fermions

In this case, the equivalence of laws

P θ (λ) = e -θ 2 S(∅)|e θa 1 |S(λ) S(λ)|e θa -1 |S(∅) (1.178)
has an immediate combinatorial interpretation. Consider the action of a -1 n at the level of partitions: we have

a -1 n |S(∅) = ∅ (1) λ (2) ... λ (n) |S(λ (n) ) = λ n f λ |S(λ) (1.179)
where we use the fact that a sequence of n partitions where each is obtained by adding one box to the last corresponds to a SYT. It follows that the vertex operator Γ -(θ, 0, 0, . . .) acts on the vacuum by generating states |S(λ) weighted with factors of θ |λ| /|λ|!.

Both the VKLS theorem 1.35 and the BDJ theorem 1.37 can be proven by analysis of the Bessel kernel J θ (k, ) as θ → ∞, in regimes where k, ∼ uθ and k, ∼ 2θ + sθ 1/3 respectively (see Section 2.3), then by "de-Poissonisation" [START_REF] Johansson | Discrete orthogonal polynomial ensembles and the Plancherel measure[END_REF] (see also [Rom15, Lemma 2.31]); in spirit this is a proof the asymptotic equivalence of the canonical and grand canonical ensembles of partitions under the Plancherel measure.

The θ → ∞ limit of P θ is physically meaningful too. From a first quantisation perspective, the Bessel kernel J θ is Hermitian and has the form (1.138); this corresponds to a system of an infinite number of particles with positions on Z + 1 2 with single particle wavefunctions given by classical Bessel functions, with φ i (k) = J k+i+ 1 2 (2θ). We can see (for instance by differentiating (1.177) under the integral) that these wavefunctions satisfy (putting = i + 1 2 )

-J k+ +1 (2θ) -J k+ -1 (2θ) + θ J +k (2θ) = - k θ J +k (2θ).
(1.180) So, J i+k+ 1 2 (2θ) are eigenfunctions of a discrete difference operator which we can interpret as a Hamiltonian H θ , with an unbounded negative linear spectrum. In a regime where k ∼ 2θ +xθ 1/3 , the θ → ∞ limit is a continuum limit in which we can informally consider the rescaled Hamiltonian to converge to a differential operator, with θ -1/3 H θ → H edge .

Chapter 2

Multicritical Schur measures

This chapter presents joint work with Dan Betea and Jérémie Bouttier, adapted from [1]. We construct new "multicritical" probability laws on partitions, tuned to be outside the TW-GUE universality class, with edge fluctuations characterised by critical exponents differing from the generic 1/3. The asymptotic distribution of the first part of a random partition under these measures is a Fredholm determinant previously encountered by Le Doussal, Majumdar and Schehr [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] in momentum space models of trapped fermions in one dimension, and is a higher-order analogue of the TW-GUE distribution. The multicritical laws are defined as Schur measures, of a form that arises naturally from physical lattice fermion models, and our analysis directly exploits their integrability.

We also consider extensions of these measures: to multicritical measures on cylindric partitions, which, in a suitable asymptotic regime, have edge statistics interpolating between higher-order TW-GUE and Gumbel distributions, previously observed for positive temperature fermions in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF]; to measures with asymptotic edge fluctuations driven by more general Fredholm determinant solutions of Painlevé II equations found by Cafasso, Claeys and Girotti [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]; and to measures corresponding to fermion models with split momentum spectra, whose limiting law is not yet fully understood but for which we conjecture new asymptotic edge statistics. 

Chapter contents

New edge fluctuations for random partitions

In this section we introduce the measures on partitions we consider, and characterise their asymptotic edge behaviour. First, we define them by way of a set of criteria for a rather general class of measures, then we give explicit expressions for two one-parameter families of "minimal" measures. In the latter case we also state limit curves for the rescaled profiles of large random partitions.

The TW-GUE class and how to escape it Our motivation comes from the universal appearance of TW-GUE fluctuations for interfaces in random matrices [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF], random growth [SS10, ACQ11], free and interacting fermion models [Eis13, Sté19, DL21], domino tilings [START_REF] Johansson | The arctic circle boundary and the Airy process[END_REF] and directed paths though random media [START_REF] Johansson | Shape fluctuations and random matrices[END_REF], to name but a few. This asymptotic behaviour is exemplified by Baik, Deift and Johansson's [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF] famous result for random partitions under the Plancherel, stated in the last chapter as Theorem 1.37, where we see the characteristic 1/3 exponent for the scale of the fluctuations relative to the edge distance, and the characteristic distribution F GUE . Random partitions provide a convenient means of investigating the TW-GUE universality class, as several models in the class can be reformulated in their terms -we can cite, for instance, the connection between geometric last passage percolation and Schur measures discussed in Section 1.2.2, the discrete random growth process associated with the Plancherel measure from the proof of Theorem 1.35 (ii), and the asymptotic equivalence of the edges in the Poissonised Plancherel measure and in trapped fermion models discussed in Section 1.3.3, as well as the equivalence of Schur processes and certain tiling models proven in [BBC + 15]. We were interested in the question of how a model of random partitions can escape this universality class. Alternative asymptotic edge behaviour has previously been found for elements of random sequences of partitions: as discussed in Section 1.2.3, distributions interpolating between the TW-GUE and Gumbel distributions were found for cylindric partitions [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF], and internal edges of random skew plane partitions were found to converge to the Pearcey Process [START_REF] Okounkov | Random skew plane partitions and the Pearcey process[END_REF]. To directly construct measures on single partitions with new edge behaviour, we took inspiration from the work of Le Doussal, Majumdar and Schehr [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], who studied free fermions in continuous one dimensional space confined to a fixed region of position space by "flat trap" potentials V (x) = x 2m . While the fluctuations of the maximal fermion position in such a model are universal (see Section 1.3.2), these authors showed the maximal fermion momentum to be asymptotically distributed by a novel distribution. The distributions they found, indexed by a positive integer m, are Fredholm determinants, and encode solutions of equations in the Painlevé II hierarchy, generalising the connection between the TW-GUE distribution and the Painlevé II equation; this was rigorously proven in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]. We find measures on partitions in the corresponding universality classes using a correspondence between certain Schur measures and systems of free fermions in one dimension, whose edges asymptotically coincide with the momentum space edges in flat traps.

A further motivation was a seemingly coincidental connection with partition functions of so-called "multicritical" unitary matrix models previously considered by Periwal and Shevitz [START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF][START_REF] Periwal | Exactly solvable unitary matrix models: multicritical potentials and correlations[END_REF] observed in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF]. In a large matrix limit, derivatives of these partition functions satisfy the same Painlevé II hierarchy equations as the higherorder TW-GUE distributions. In fact, these partition functions are exactly equal to certain cumulative distributions under our measures. We will discuss this connection in detail in Section 3.1.1 of the next chapter. For now, following [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], we borrow the term multicritical to refer to this new edge behaviour. Independent work by Kimura and Zahabi [START_REF] Kimura | Universal edge scaling in random partitions[END_REF] arguing that the multicritical edge phenomena is found for Schur measures appeared on the arXiv shortly after the extended abstract for [1] did. The authors considered the semiclassical analysis of the multivariate Bessel functions related to Schur measure, and presented results that are consistent with ours. Our approach is somewhat more concrete, we use direct asymptotic analysis of gap probabilities and find explicit measures with multicritical edge behaviour.

Classification and properties of multicritical measures

We consider the following family of measures, each parametrised by a single positive number: Recalling (1.111), if λ is a random partition under P m θ , |λ| has expectation θ 2 r r 2 γ r 2 . The parameter θ thus defines a typical length scale for the parts λ i , λ i .

The m = 1 simply critical measures are the most generic, since they do not need to satisfy any "multicriticality conditions" (2.2), and they notably include the Poissonised Plancherel measure P θ . The space of order m+1 measures is one dimension smaller than that of order m. Of the three conditions (2.1), the first establishes a convenient sign convention (immediately giving b > 0) and the second sets the order m along with (2.2), while the third is more subtle. It ensures that there are no cuts in the Fourier transform of the kernel, which is a necessary assumption for the asymptotic analysis, and also ensures that d > 0. Physically, this corresponds to having no gap in the quantum number configuration of a system. The situation where there is a gap was studied in an integrable boson model in [START_REF] Fokkema | Split fermi seas in onedimensional bose fluids[END_REF], and called a split Fermi sea. Limit shapes for free fermion models with split fermi seas were considered in [START_REF] Bocini | Non-probabilistic fermionic limit shapes[END_REF]. In Section 2.4.3, we consider the situation where this condition is lifted.

The multicritical Schur measures are Hermitian, meaning the two sequences of Miwa times are complex conjugate to one another (for simplicity we consider only real valued Miwa times, but our arguments may be generalised). Along with the condition that the Miwa times have finite support (so the measure may be called polynomial), this is sufficient for a Schur measure to be well defined. However, for m > 1, the multicritical measures do not satisfy the Schur positivity condition of Proposition 1.41, so they do not extend to define Schur processes with discrete time evolution. A law corresponding to a m = 2 multicritical measure was found from a system of lattice fermions evolving in imaginary time considered by Bocini and Stéphan [START_REF] Bocini | Non-probabilistic fermionic limit shapes[END_REF], but this used a construction described as "non-probabilistic" by the authors, with negative Boltzmann weights at certain times.

Definition 2.1 amounts to tuning polynomial Hermitian Schur measures to have the following edge behaviour: 

lim θ→∞ P m θ λ 1 -bθ (dθ) 1 2m+1 ≤ s = F 2m+1 (s) := det(1 -A 2m+1 ) L 2 ([s,∞)) (2.4)
where A 2m+1 is the higher-order Airy kernel defined in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] 1 

A 2m+1 (x, y) = ˆ∞ 0 Ai 2m+1 (x + v) Ai 2m+1 (y + v)dv = 2m-1 i=0 (-1) m+i+1 Ai (i) 2m+1 (x) Ai (2m-1-i) 2m+1 (y) x -y , (2.5) Ai 2m+1 (x) = 1 2πi ˆ1+iR exp (-1) m-1 ζ 2m+1 2m + 1 -xζ dζ.
(2.6)

In the second expression in (2.5), we use the notation f (n) (x) := d n f /dx n , and the x = y case is recovered by a limit using L'Hôpital's rule i.e. evaluating the derivative of the numerator at x = y. Note that the higher-order Airy functions Ai 2m+1 decay to zero at positive infinity, and that A has finite trace on any L 2 ([t, ∞)) where t is finite. In the simply critical case m = 1, we have Ai 3 = Ai and F 3 = F GUE . Then, Theorem 2.2 is the Poissonised version of the BDJ theorem 1.37 generalised to a large class of measures (note that the constants b, d are not universal). For m > 1, the theorem defines higher-order analogues of the TW-GUE distribution associated with critical exponents 1/(2m + 1).

These distributions were related to classical integrable equations, first in [LDMS18, Appendix G], then by rigorous Riemann-Hilbert analysis in [CCG19]: Theorem 2.3 (Painlevé II hierarchy and higher-order TW-GUE distributions [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]). The distribution

F 2m+1 (s) = det(1-A 2m+1 ) L 2 ([s,∞))
encodes a Fredholm determinant solution of the order 2m equation of the Painlevé II hierarchy; in particular, this equation has a solution q m with boundary behaviour

q m ((-1) m s) = O e -Cs 2m+1 2m as s → +∞, q m ((-1) m s) ∼ m! 2 (2m)! |s| 1 2m as s → -∞ (2.7)
for some constant C > 0, which satisfies

F 2m+1 (s) = exp - ˆ∞ s (x -s)q 2 m ((-1) m+1 x) dx .
(2.8)

The m = 1 case is just the Painlevé transcendent expression for F GUE given by Tracy and Widom [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF]. In [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF], the authors showed that Fredholm determinants of more general higher-order Airy kernels satisfy the same relations, see Addendum 2.17.

A trace of multicriticality is also visible at the "macroscopic" scale of the parts of a random partition. A second critical exponent, characterising the vanishing at the right edge of the Young diagram of a large random partition (in terms of its rescaled profile, see Definition 1.5) generalises from the value of 1/2 characteristic of the TW-GUE class (and Wigner's semi-circle law for random matrices):

Theorem 2.4 (Limit shapes of multicritical measures). The rescaled profile ψ λ,θ of a random partition λ under an order m multicritical measure P m θ = e -θ 2 r rγr 2 s λ [θγ] 2 has a deterministic limit curve: as θ → ∞,

sup x |ψ λ,θ (x) -Ω(x)| p - → 0 (2.9)
where Ω is the function

Ω(x) = x + 2 b -2 π ´x -b χ(v)dv , x ∈ [-b, b] |x| , x > b and x < - b (2.10) where χ(x) ∈ [0, π] is a solution of 2 r rγ r cos rχ(x) = x , x ∈ [-b, b].
(2.11)

The right edge of the Young diagram vanishes with exponent 1/2m, with

Ω (x) ∼ 1 - 2 π b -x d 1 2m
as x → b.

(2.12)

In (2.10) we have a general formula to find the limit shape, but that shape is dependant on the precise coefficients γ; only the vanishing exponent of 1/2m is universal for order m multicritical measures.

Although we only state our main theorems for the right edge at λ 1 , analogous results for the second interface at (λ) can be extracted directly, because Proposition 2.5 (Conjugate partition under a multicritical measure). If λ is a random partition under P m θ = e -θ 2 r rγr 2 s λ [θγ] 2 , then the law of its conjugate λ is

P m θ (λ ) = e -θ 2 r rγ 2 r s λ [θγ] 2 , γr = (-1) r-1 γ r . (2.13)
This follows directly from Theorem 1.31 and Proposition 1.32, since, in terms of the classical involution ω,

s λ [θγ] = ω(s λ [θγ]) = s λ [ω(θγ)] = s λ [θγ].
(2.14)
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x Figure 2.1 Limit curves of the minimal multicritical measures P a,m for m from 1 to 5, and the limiting density profiles of the corresponding free fermion models. See also Figure 0.6 for Young diagrams and fermion configurations of partitions sampled under these measures.

One parameter families of multicritical measures

To give concrete examples of multicritical measures, let us introduce two families of multicritical measures, with a unique measure for each order m. First, we fix the sequence γ by allowing only the first m coefficients γ r to be non-zero, and fixing γ 1 = 1 in each case (so, in particular, we have the Poissonised Plancherel measure P θ for m = 1). We find the following definition: 

= m + 1 m , b = 4 m 2m m -1 - m + 1 m , d = 2m m -1 . (2.16)
From Theorem 2.4, we have explicit limit shapes for these measures:

Corollary 2.7 (Limit shapes of minimal multicritical measures). The rescaled profile ψ λ,θ of a random partition under P a,m θ converges in probability to

Ω a,m (x) =    x + 2 b -2 π ´x -b arccos 1 -1 2 2m m-1 1 m (b -v 1 m dv, x ∈ [-b, b] |x|,
x > b and x < -b.

(2.17)

These limit shapes are shown for the first few m in Figure 2.1; for m = 1, the curve is the VKLS limit curve given explicitly in (1.89). By Proposition 2.5 and Definition 2.1, if λ is distributed by P a,m θ then, for all m, λ is distributed by a simply critical measure (the fluctuations in (λ) are asymptotically driven by the TW-GUE distribution; the critical exponents are 1/3 for the fluctuations and 1/2 for the vanishing). Proposition 2.5 motivates a definition for another one-parameter family of measures which are manifestly invariant under conjugation of the partition, where we fix γ by letting only the first m odd-indexed coefficients γ r be non-zero, and again fixing γ 1 = 1 (so again we have P θ for m = 1). Definition 2.8 (Symmetric minimal multicritical measures). The order m symmetric minimal multicritical measure is P s,m θ (λ

) = P s,m θ (λ ) = e -θ 2 r rγr 2 s λ [θγ] 2 where γ 2r-1 =    (-1) r+1 (2r-1) 2 2m-1 m-r / 2m-1 m-1 , r = 1, 2, . . . , m 0 r > m (2.18)
and γ 2r = 0 for each positive integer r. Its edge and fluctuation coefficients are

b = b = 2 4m-1 (m!) 4 m((2m)!) 2 , d = (2m -2)!! (2m -1)!! .
(2.19)

The symmetric limit shape for this measure can again be found from Theorem 2.4, and are shown for the first few m in Figure 2.2 (note that here again we have the VKLS curve at m = 1): Corollary 2.9 (Limit shapes of symmetric minimal multicritical measures). The rescaled profile ψ λ,θ of a random partition under P s,m θ converges in probability to

Ω s,m (x) = x + 2b -2 π ´x -b χ(v)dv , x ∈ [-b, b] |x| , |x| > b (2.20)
where χ(x) satisfies ˆχ(x)

0 sin 2m-1 φdφ = (-1) m+1 2 2m-1 2m -1 m x, x ∈ [-b, b].
(2.21)

Plan of the chapter

The following Section 2.2 explains the connection with free fermions: first, we discuss the models of fermions on a line originally considered by Le Doussal, Majumdar and Schehr in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], then we discuss models of fermions on a 1D lattice which correspond to Hermitian Schur measures, and finally present heuristic arguments for the equivalence of the edges in either case in a continuum limit in a critical scaling regime. In Section 2.3, we prove Theorems 2.2 and 2.4, by analysing the DPPs associated with the multicritical Schur measures (in several respects we follow the approach of [BOO00]), and justify the expressions for the minimal and symmetric minimal measures introduced in this section.

The final section discusses extensions of the multicritical measures which exhibit more general edge behaviour. Section 2.4.1 introduces multicritical measures on pairs of partitions (or simple cylindric partitions) using the periodic Schur processes of Borodin [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF] with same specialisations of Miwa times. We generalise a theorem of Betea and Bouttier [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF] to the multicritical case, or equivalently generalise Theorem 2.2 to "positive temperature". Section 2.4.2 introduces generalised multicritical measures, whose asymptotic edge distributions encode more general Fredholm determinant solutions of Painlevé II hierarchy equations found in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]. Section 2.4.3 presents work in progress, where we consider Hermitian Schur measures with "split Fermi seas". We find new edge statistics for these models using a somewhat different approach. 

Fermions on lines and lattices, Hermitian Schur measures

Multicritical fermions on the real line

Flat trap potentials In [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], the authors considered the following model in the first quantisation formalism: N non-interacting fermions with positions x 1 , . . . , x N and momenta p 1 , . . . , p N on R are subject to a flat trap Hamiltonian (written in dimensionless coordinates position space coordinates where = 1 and each particle mass is 1)

H = N i=1 - 1 2 
d 2 dx 2 i + x 2m i . (2.22)
for integer m ≥ 1; in the m = 1 this is an N particle quantum harmonic oscillator (and not considered flat). Since the potential confines the particles to a region around the origin, there is some Fermi energy E F so there is an edge position x edge = E F 1/2m , and the arguments of Section 1.3.2 can be applied to show that as N → ∞, the fluctuations in the position x max of the rightmost fermion around x edge are driven by the TW-GUE distribution.

Switch to momentum space If instead we consider the consider the model in momentum space, the flat trap Hamiltonian is

H = N i=1 (-1) m d 2m dp 2m i + 1 2 p 2 i .
(

2.23)

There is an edge in momentum space too, with p edge = 2E F 1/2 ; considering the single particle Hamiltonian near the edge in coordinates p = (p -p edge )/κ, in a critical scaling regime κ = p -1/(2m+1) edge we recover the edge Hamiltonian

H edge = (-1) m d 2m dp 2m + p = p -2m 2m+1 edge H + O p -2m 2m+1 edge (p -p edge ) 2 .
(2.24)

The square integrable eigenfunctions of this operator are given by the higher-order Airy functions defined at (2.6), as we have

H edge Ai 2m+1 (x + v) = (-1) m d 2m dx 2m + x Ai 2m+1 (x + v) = -v Ai 2m+1 (x + v). (2.25)
As in the position space case discussed in Section 1.3.2, we have an unbounded linear spectrum. In [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], the authors found the following asymptotic edge fluctuation result (written in our conventions 2 ): In a system of N fermions under the position space flat trap Hamiltonian (2.23), in the limit as N → ∞, the law of the maximum momentum p max is

P p max -p edge p -1 2m+1 edge < s = F 2m+1 (s) := det(1 -A 2m+1 ) L 2 ([s,∞)) .
(2.26)

From lattice fermions to Hermitian Schur measures

Now let us introduce models of non-interacting fermion models on a 1D lattice, indexed (for later convenience) by the half integers Z + 1 2 , which we will consider in the second quantisation formalism. As we did in Section 1.3.3, we define a Fock space F with a basis indexed by subsets S ⊂ Z + 1 2 , where |S denotes the state with a particle on each site indexed k ∈ S, and use c † k , c k acting as fermionic creation and annihilation operators by (1.144) and satisfying the anticommutation relations (1.145).

A linear potential

We start by placing the fermions a linear potential. Such a system is not generally physical, since a state cannot saturate; however, given an infinite number of particles, we can prepare them in the domain wall state |S(∅) , the second quantised Hamiltonian

H 0 := k k : c † k c k : . (2.27)
is physical, and has the domain wall state |S(∅) as a ground state. Each |S is an eigenstate with energy Q 1 (S).The normal ordering : • : is the same one defined at (1.153), but at this point for the sake of physical intuition let us redefine it equivalently as the general operation with respect to the domain wall state

: Ô := Ô -S(∅)| Ô|S(∅) .
(2.28)

We now modify the model by adding translation invariant kinetic hopping terms, shifting particles by -r sites; the bosonic operators a r , a † r := a -r defined at (1.147) do

2 The coordinates used in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] have dimensions, with single particle Hamiltonian of the form H = (-1) m 2m g d 2m dp 2m + 1 2M p 2 ; the coefficient κ is denoted pN in their conventions and equal to ( M g p edge ) 1/(2m+1) (to recover [LDMS18, Equations 2 and 5] exactly, replace m with n, M with m and p edge with pe). exactly that. In particular, we choose a sequence of complex parameters t = (t 1 , t 2 , . . .) with finite support and introduce the unitary operator U := e r≥1 (tra -r -trar) .

(2.29)

Then we define the modified Hamiltonian

H t = UH 0 U -1 .
(2.30)

Using the commutation relations (1.148) and the additional relation

[H 0 , a -r ] = ra -r (2.31)
which follows from (1.145), we find that the new Hamiltonian can be explicitly written

H t = H 0 - r≥1 r( tr a r + t r a -r ) + r≥1 r 2 |t r | 2 .
(2.32)

In other words, H t consists of a linear combination of the linear potential H 0 and of finite-range hopping operators (and a scalar term ensuring that the spectra of H t and H 0 are equal). By (2.30), the ground state of H is given by U|∅ = e -r≥1 r|tr| 2 /2 e r≥1 tra -r |∅ .

(2.33)

Here, we obtain the right-hand side by performing a normal ordering of the operators a r and a -r (i.e. moving creation operators to the right by application of the Baker-Campbell-Hausdorff formula (1.162)), noting that a r |∅ = 0 for r ≥ 1.

Trapped particles again

It is instructive to reinterpret this discussion in the language of quantum mechanical harmonic oscillators. In terms of the bosonic operators a r , with the new addition of the charge operator

a 0 := k : c † k c k :, a 0 |S = Q 0 (S)|S , (2.34)
the fermionic linear potential becomes

H 0 = r≥1 a -r a r + a 2 0 /2. (2.35)
We recognise that H 0 corresponds to a collection of single particle harmonic oscillators: considering the N = 1, m = 1 case of the first quantised Hamiltonian (2.23) in position space, Dirac's famous "ladder operator" approach defines

a ± = x ± 1 √ 2 d dx , (2.36)
which satisfy the bosonic commutation relation (1.148) with a + := a 1 , a -:= a -1 , to write

H = - 1 2 d 2 dx 2 + x 2 = a -a + + 1 √ 2 .
(2.37)

Up to the scalars, we identify each a -r a r with a quantum harmonic oscillator at a level r. Then, from (2.36), the unitary operator U corresponds to a translation in position space, momentum space, or a combination thereof. This creates the linear terms in the shifted Hamiltonian H t . Finally, the translated ground state U|S(∅) is nothing but a coherent state. These eigenstates in the quantum harmonic oscillator are particularly important in different areas of physics, both from a purely theoretical perspective (see e.g. [START_REF] Ali | Coherent states and their generalizations: A mathematical overview[END_REF]) and for their applications in experimental quantum optics (see e.g. [START_REF] Grenier | Electron quantum optics in quantum Hall edge channels[END_REF]).

Back to random partitions At this point we can relate our discussion to Schur measures, and specifically the setup of Section 1.3.3. In the terms used there, the coherent ground state U|S(∅) is just |Φ = Z -1/2 Γ -(t)|S(∅) where t = t and |Φ = |Φ ; by (1.174), it also decomposes over partition indexed states as

U|S(∅) = e -r≥1 r|tr| 2 /2 λ s λ [t]|S(λ) .
(2.38) So, we recognise the Schur measure, and that the fermion positions k 1 , k 2 , . . . form precisely the DPP described in Theorem 1.45 for t = t. In physical terms, the kernel K(k, ) is just the ground state propagator

c † k c g.s. := ∅|U † c † k c U|∅ = K(k, );
(2.39) the gap probability P(k max < k) for the rightmost fermion is found from the "full counting statistics" function Υ

(α, k) = exp(α k c † k c k ) g.s.
in the α → -∞ limit; we refer to e.g. [Sté19, Section 1] for a more physical presentation.

By Theorem 1.45, the ground state propagator can be written in terms of the multivariate Bessel functions defined at (1.151). The same expression can equally found from the Hamiltonian H t by noting that (again following discrete versions of arguments in [Sté19, Section 1]) if we define the linear combination of fermionic creation operators c † = k J k+ (t)c † k in terms of J n (t) := J n (t, t) for each half integer , we use a difference operator eigenvalue relation for the Bessel functions to show

[H t , c † ] = k - r≥1 (t r J k+ +r (t) + tr J k+ -r (t)) + kJ k+ (t) c † k = k -J k+ (t)c † k = -c † . (2.40)
So, acting on the ground state, c † generates an eigenstate of H t with energy -. From the orthogonality of these states, at E F = 0 (i.e. where the ground state contains only negative energy eigenstates) we have c † k c g.s. = 1 k= >0 .

(2.41)

For instance by considering the inner product c † k c , we see that c † k = J k+ (t)c † , and using this and (2.41) to evaluate the propagator we find precisely the expression

c † k c g.s. = ∞ i=0 J k+i+ 1 2 (t)J k+i+ 1 2 (t) = K(k, ).
(2.42)

Heuristic approach to the continuum limit

Now let us consider the fermion model corresponding to a multicritical Schur measures

P(λ) = e -θ 2 r rγ 2 r s λ [θγ] 2 ,

and consider the Hamiltonian

H θγ = r≥1 a -r a r -θrγ r (a r + a -r ) + θ 2 γ 2 r r 2 + a 2 0 /2 = k k : c † k c k : - r≥1 θrγ r c † k c k+r + c † k c k-r (2.43)
as θ grows large (here we will only use the second fermionic expression, and note that all of the terms can equivalently be written in normal order).

The bulk First, let us consider this limit at a macroscopic scale of θ, and more precisely a regime where k := xθ for a finite number x. In this regime we are interested in the limiting density profile in the ground state, (x) = lim θ→∞ c † xθ c xθ g.s. ;

(2.44) so that in the new continuum coordinates, the probability to find a particle in [x, x + dx] is (x)dx. One approach to this, used in [ADSV16, Section 1] and [START_REF] Bocini | Non-probabilistic fermionic limit shapes[END_REF], involves a Fourier transform for the fermionic creation operator, with ĉ † (ξ) = k e ikξ c † k ; then, under the assumptions of a "local density approximation" (see e.g. [START_REF] Stéphan | Free fermions at the edge of interacting systems[END_REF]) where δ, δ are at a scale much smaller than the system size but much bigger than the typical gap between particles, the propagator at that scale only "sees" the potential as a fixed Fermi energy, which only limits the Fourier frequencies to ξ ∈ [-χ, χ] for some χ, so we have

c † xθ+δ c xθ+δ g.s. = ˆχ -χ 1 2π e iξ(δ-δ ) dξ = sin χ(δ -δ ) π(δ -δ ) ,
(2.45) and in the limit as δ → δ , we find (x) = χ/π. Returning to the Hamiltonian, under the above assumptions for positions xθ+δ we can remove the sum and look just at a local Hamiltonian H x at xθ rescaled by 1/θ. In terms of the Fourier transform, the Hamiltonian is diagonal, with H x = ´χ -χ (ξ)c † (ξ)c(ξ), and for H x we have

xc † xθ c xθ - r≥1 rγ r c † xθ c xθ+r + c † xθ c xθ-r = ˆχ -χ x - r≥1 2rγ r cos rξ c † (ξ)c(ξ)dξ (2.46)
Evaluating this on the ground state, the boundary terms in the large θ limit give

x -r≥1 2rγ r cos rχ = 0.

(2.47)

For a given sequence of coefficients γ, (2.47) gives an explicit formula for that limiting density, which already appeared in the statement of Theorem 2.4. We will revisit this more explicitly and in terms of the corresponding limit for random partitions in Sections 2.3.2 and 2.4.3. One immediate consequence is that (2.47) only has solutions for 2 The edge Now let us consider the fluctuations around k = bθ in a microscopic critical scaling regime, at the level of the Hamiltonian. In particular, we identify k := bθ + x(dθ) 1/(2m+1) where x is a finite number as a critical regime, as we recover a physical limiting Hamiltonian there (b, d are the coefficients given in Definition 2.1) . Then, writing c † x := c † k , we can treat the kinetic hopping terms in this regime just by Taylor expanding, with

c k+r = c † x+r(dθ) -1/(2m+1) = ∞ n=0 r n (dθ) -n 2m+1 d n dx n c † x .
(2.49)

In the expanded Hamiltonian, all of the odd derivatives cancel each other out, and by the multicriticality conditions (2.2) the first m -1 even ones do too; hence, recalling the expressions for b, d, we find

H θγ = (dθ) 1 2m+1 ˆR : c † x x + (-1) m d 2m dx 2m c(x) : dx + O(θ -2m+2 2m+1 ), (2.50)
As θ → ∞, we have (dθ) -1 2m+1 H θγ → Ĥedge where Ĥedge is a second quantised version of the Hamiltonian recovered at the momentum space edge of a flat trap in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] (the Z + 1 2 indexed positions in the lattice model asymptotically coincide with momenta in continuum model). This heuristic is a meaningful one: one would expect as a consequence that the multivariate Bessel function wavefunctions of the lattice model coincide with the higher-order Airy functions of the flat trap edge potential in this asymptotic regime, and that the kernels (or ground state propagators) would be asymptotically equivalent in turn, which we now show to be true directly.

Proofs: Asymptotic analysis of multicritical Schur measures

The higher-order Bessel kernel in various asymptotic regimes

Theorems 2.2 and 2.4 are proven starting from the immediate consequence of applying Okounkov's DPP formulation of the Schur measure stated in Theorem 1.45 to our multicritical ones.

Proposition 2.10 (Kernel of a multicritical measure). Let λ be a random partition under an order m multicritical measure P m θ (λ) = e -θ 2 r rγr 2 s λ [θγ] 2 . Then, its fermion configuration S(λ) ⊂ Z + 1 2 is a DPP with kernel

J m θ (k, ) = 1 (2πi) 2 ‹ exp[θ r γ r (z r -z -r )] exp[θ r γ r (w r -w -r )] 1 z -w dzdw z k+ 1 2 w -+ 1 2 (2.51)
where the integral in w is taken clockwise along a contour c -enclosing the origin and the integral in z is taken counter-clockwise over a contour c + enclosing c -.

We call J m θ (k, ) the higher-order Bessel kernel, and note that it can equally be written as an infinite sum of multivariate Bessel functions i J k+i+ 1 2 (θγ)J +i+ 1 2 (θγ). The w and z contours are chosen to encircle poles at ∞ and 0 respectively, and to satisfy the condition |w| < |z| for the generating function of a kernel in Theorem 1.45. The statistics whose large θ limits we are interested in are found from it directly: on the one hand, the distribution of λ is equal to a gap probability on S(λ),

P(λ 1 < k + 1 2 ) = det(1 -J m θ ) 2 ([k,∞)) .
(2.52)

On the other hand, recalling (1.10), we can see that the one point function

P(k ∈ S(λ)) = ρ 1 (k) = J m θ (k, k) (2.53)
gives the expectation of the rescaled profile of λ at integer points, with

E ψ λ,θ (x) = x + 2 θ ∞ k=xθ+ 1 2 J m θ (k, k), x ∈ 1 θ Z.
(2.54) So, our main task is to find the large θ limit of the kernel in different regimes.

Action notation Let us introduce some useful ways to rewrite the kernel for a given sequence of parameters γ. First, the potential (which is always a polynomial in the cases we consider) is

V (z) = r≥1 γ r z r , (2.55)
then the action is defined as

S(z; x) = r≥1 γ r z r - r≥1 γ r z -r -x log z = V (z) -V (z -1 ) -x log z.
(2.56)

We will be interested in the large θ behaviour of J m θ (k, ) at points k = xθ+k , = xθ+ where x is finite and k , are sublinear in θ. Then, we have

J m θ (k, ) = 1 (2πi) 2 ‹ e θ[S(z;x)-S(w;x)] dzdw z k + 1 2 w -+ 1 2 (z -w)
.

(2.57)

The large θ limit is dominated by the saddle points of S(z; x), where its derivative vanishes, as detailed in [FS09, Chapter VIII] (we call S(z; x) an action by analogy: if we interpret J m θ as a Feynman path integral it takes the place of an action and the large θ limit would correspond to a classical limit and the saddle point calculation recovers the least action principle). Proof. From (2.15), the action associated with the specialisation of P a,m θ at b satisfies

Multicritical actions and minimal measures

d d log z S(z; b) = (-1) m+1 2m m -1 -1 (z 1/2 -z -1/2 ) 2m
(2.60) so we see immediately that it satisfies (2.58). Similarly, from (2.18), the action associated with P s,m θ satisfies

d 2 d log z 2 S(z; b) = (-1) m+1 2m -1 m -1 -1 (z -z -1 ) 2m-1
(2.61) so it satisfies (2.58).

A recipe for the saddle point analysis Our approach to the asymptotics of J m θ (k, ) adapts a procedure of Okounkov and coauthors, detailed in the lecture notes [START_REF] Okounkov | Symmetric functions and random partitions[END_REF].

We start by choosing contours c + : |z| = 1 + δ and c -: |w| = 1 -δ for a small δ > 0 for the integral (2.51). If V (z) has degree D, S(z; x) has 2D saddle points for each x; from the symmetries of the kernel, if z * is a saddle point, so are z * and 1/z * ; each integral is approximated by the contribution near a saddle point which is a maximum of Re(S(z; x)) on the contour.

First let us consider how the analysis of the one point function ρ 1 (k) works at a "macroscopic" scale k = xθ , with reference to the heuristics for the limiting density (x) := lim θ→∞ ρ 1 (xθ) we described in Section 2.2.3, and look at the locations of the saddle points, that is the solutions of

d d log z S(z; x) = 0 = r≥1 rγ r (z r -z -r ) -x.
(2.62)

There are three regions of the line:

(i) The empty region: For x > b, S n (z, x) has no saddle points on the unit circle. We find that (x) = 0 by deforming c + outwards and c -inwards, and seeing that the double integral on these contours decays exponentially as θ → ∞.

(ii) The bulk: Forb < x < b, there are exactly two saddle points on the unit circle, z * ± = e ±iχ where r rγ r cos rχ = x and 0 < χ < π (it is condition (2.1) that ensures there are no more than two). Then, we can deform both c + and c -through both points z * ± , by pulling c -outwards over c + over the arc of the unit circle from -χ to χ; the only contribution in the θ → ∞ limit is from integrating the pole at z = 0 along that arc, which gives = χ/π.

(iii)

The frozen region: For x < -b, S n (z, x) again has no saddle points on the unit circle. In this case, we can deform c + inwards and c -outwards so that the double integral decays exponentially. In doing so, the contours are exchanged completely, and integrating the z = w pole over the unit circle shows that (x) = 1. This is a very direct generalisation of the asymptotic analysis of the Poissonised Plancherel measure in [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF]. On the interfaces between these regions, however, the generalisation is more subtle.

At the right edge x = b where the density vanishes, 2m of the saddle points coalesce at z * = 1, and it is this phenomenon that gives rise to new critical exponents for edge fluctuations. Approximating the kernel on a pair of points near bθ by the contribution to the double contour integral of this order 2m saddle point, we find non-trivial correlations if the points are displaced from bθ at a new critical scale of (dθ) 1/(2m+1) , generalising the θ 1/3 critical edge scaling of the Poissonised Plancherel measure (and giving a rather direct meaning to the term "multicritical"). On the left edge x = -b, 2 m saddle points coalesce at z = -1 where m is the order of multicriticality of the conjugate measure by Proposition 2.5.

Limit shapes

To prove Theorem 2.4, we start with a very general limit shape result: Lemma 2.12 (Convergence to a limit shape for a Hermitian Schur measure). Let λ be a random partition under any Hermitian Schur measure with a single positive parameter θ, such that P γ θ (λ) = e -θ 2 r r|γ| 2 s λ [θγ]s λ [θγ] for some non-zero sequence of complex coefficients γ. Then, if there exists a curve Ω such that Ω(x) -|x| has finite support and for all x E(ψ λ,θ (x)) → Ω(x) as θ → ∞, we also have

sup x |ψ λ,θ (x) -Ω(x)| p - → 0.
(2.63)

Proof. Let us denote the kernel of the DPP formed by S(λ) by K θ , and put

N (n) = #{k ∈ S(λ)|k > n}).
(2.64)

The expectation and variance of N (n) have simple expressions in terms of K θ , with

E(N (n)) = tr (n,∞) K θ , Var(N (n)) = tr (n,∞) (K θ -K 2 θ ).
(2.65)

Since K θ is Hermitian, tr (n,∞) K 2 θ ≥ 0 and hence Var(N (n)) ≤ E(N (n)).
(2.66)

Now, considering a regime where n = xθ, we set Ñ (xθ) = N (xθ)/θ, so

Var(N (xθ)) = θ -2 Var(N (xθ)) ≤ θ -1 E( Ñ (xθ)).
(2.67)

Suppose that there exists a fixed function Ω such that we have a limit and ψ λ,θ (x) converges in probability to its expectation for each x.

Ω(x) = lim θ→∞ E(ψ λ,θ (x)) = x + 2 lim θ→∞ E( Ñ (xθ)) (2.
We then have the convergence of the supremum norm as a consequence of the fact that ψ λ,θ is 1-Lipschitz. Let I ⊂ R be a bounded interval; then, for each ε > 0, where I is the set I ∩ εZ, we have

P sup x∈I |ψ λ,θ (x) -Ω(x)| > ε ≤ P sup x∈I |ψ λ,θ (x) -Ω(x)| > ε 2 .
(2.70)

On right hand side, the supremum is over a finite set, so the convergence to zero at each x implies the convergence of the supremum to zero, in turn implying that the supremum norm over all I converges to zero in probability, and in particular we have convergence over the support of Ω(x) -|x|. To extend to all R, we reapply the 1-Lipschitz property: let a > 0 be finite and let [-a, a] included the support of Ω(x) -|x|, then

sup x∈(a,∞) |ψ λ,θ (x) -Ω(x)| = sup x∈(a,∞) |ψ λ,θ (x) -|x|| ≤ ψ λ,θ (a) -a (2.71)
and the final term converges to zero in probability, completing the proof.

With that, we need only find the limiting expectation of the rescaled profile under a multicritical measure. First, we show that Lemma 2.13 (Limiting bulk kernel and fermion density of a multicritical measure). For finite integers s, t, as θ → ∞ we have

J m θ ( xθ + s -1 2 , xθ + t -1 2 ) →        1 s=t , x < - b sin χ(x)(s-t) π(s-t) , x ∈ [-b, b] 0, x > b (2.72)
where χ(x) is the unique non-negative solution of r 2rγ r cos rχ(x) = x, uniformly for x in compact subsets of R and s, t in compacts of Z. If λ is a random partition under

P m θ (λ) = e -θ 2 r rγ 2 r s λ [θγ] 2 , as θ → ∞ P( xθ -1 2 ∈ S(λ)) = ρ 1 ( xθ -1 2 ) → (x) =        1, x < - b χ(x) π , x ∈ [-b, b] 0, x > b.
(2.73)

We include the more general statement for the limiting kernel because it is the universal aspect of the asymptotic bulk behaviour: while the limiting density profile is model dependant (we might consider this a "scaling limit"), the discrete sine kernel on the right of (2.72) for points a finite distance apart in the bulk (a "local limit" to some extent) is universal, and even more universal than the asymptotic edge behaviour of Theorem 2.2 since it does not depend on the order of multicriticality m. An analogous continuous sine kernel appears as a local limit in random matrix theory (see Section 3.2), and this can be seen as the trace of universality for free fermions in the bulk of systems.

Proof. The expression for the limiting density follows directly from the s → t = 0 limit of the limiting kernel, so we only need to find

J m θ ( xθ + s -1 2 , xθ + t -1 2 ) = 1 (2πi) 2 ‹ c + ,c - e θ[S(z;x)-S(w;x)] dwdz z s w t (z -w) (2.74)
as θ → ∞ in each of the three "regions" corresponding to ranges for x previously mentioned. Starting from contours c + for z passing just outside the unit circle and c -for w passing just inside it, we deform them to some

c ± : R ± e iφ , φ ∈ [-π, π] (2.75)
where each R ± := R ± (φ) may depend on the angle φ but is everywhere close to 1. We will look at for R ± sufficiently small (note that the contours do not need to pass through saddle points to find the required decay). In deforming c ± to c ± the contours do not cross one another, so there is no z = w pole to consider; hence for all finite s, t (and indeed for all s, t = o(θ)) we have exponential decay of the kernel which in turn implies dominated convergence, so that

Re[S(z; x) -S(w; x)]

z=R + e iφ + w=R -e iφ - = (R + -1)D(φ + ; x) -(R --1)D(φ -; x) + O (R + -1) 2 + (R --1) 2 (2.
lim θ→∞ J m θ (xθ + s, xθ + t) = 1 (2πi) 2 lim θ→∞ ‹ c + ,c - e θ[S(z,x)-S(w,x)] dwdz z s+ 1 2 w t+ 1 2 (z -w) = 0.
(2.80)

Similarly, (x) = 0 for all x > b.

(ii) The bulk For x ∈ (-b, b), there is an angle χ ∈ (0, π) such that

D(χ; x) = 2 r rγ r cos rχ -x = 0, (2.81)
and z * ± = e ±iχ are saddle points S(z; x). By the final condition of (2.1), χ solving (2.81) is unique; from the same condition, we have

D(φ; x) > 0, |φ| < χ < 0, |φ| > χ.
(2.82)

Hence, c ± are proper saddle point contours on which Re[S(z; x)-S(w; x)] ≤ 0 is maximal and equal to 0 at z = w = e ±iχ if we set, respectively,

R + = R + (φ) < 1, |φ| < χ > 1, |φ| > χ ; R -= R -(φ) > 1, |φ| < χ < 1, |φ| > χ (2.83)
sufficiently close to 1. Deforming each of c ± to c ± involves pulling them across one another either side of unit circle along the arc c 2χ : z = e iφ , φ ∈ [-χ, χ]. From the exchange, the integral in z picks up a residue of 1 from the z -w pole for all w = e iφ along c 2χ , and we have

J m θ (xθ + s, xθ + t) = 1 2πi ˆc2χ dw w s-t+1 + 1 (2πi) 2 ‹ c + ,c - e θ(S(z;x)-S(w;x)) dwdz z s+ 1 2 w t+ 1 2 (z -w) (2.84)
As this is a saddle point approximation we can easily estimate the rate of decay: for all finite s, t, the integral on

c ± is O(θ -1/2 ), since a change of variables to z = z * ± + iθ -1/2 ζ and w = z * ± +iθ -1/2 ω shows that, in terms of f (ζ, ω) = (ζ 2 -ω 2 )S (z * + ; x)/2 this integral is equal to θ -1 2 (2π) 2 ¨θ 1 2 π -θ 1 2 π e Ref (ζ,ω) sin(Imf (ζ, ω)) (z * + ) s+1 (z * -) t+1 dζdω ζ -ω + O(e -θ ).
(2.85) This is sufficient to see that only the integral on c 2χ contributes to the limit, to give (iii) The frozen region For x < -b, we have D(φ; x) > 0 for all φ. Hence, from (2.76), by setting R + < 1 and R -> 1 sufficiently close to 1 for all φ, we have Re[S(z; x) -S(w; x)] < 0 for z on c + , w on c -. Now deforming c ± to c ± involves passing them across one another along the whole unit circle c 1 : |z| = 1. We have

lim θ→∞ J m θ (xθ + s, xθ + t) = 1 2π ˆχ -χ e -iφ(s-t) dφ = sin χ(s -t) π(s -t) (2.
J m θ (xθ + s, xθ + t) = 1 2πi ˛c1 dw w s-t+1 + 1 (2πi) 2 ‹ c + ,c - e θ(S(z;x)-S(w;x)) dwdz z s+ 1 2 w t+ 1 2 (z -w)
.

(2.87)

The integral on c ± decays to zero exponentially fast as θ → ∞, and the residue on c 1 gives lim

θ→∞ J m θ (xθ + s, xθ + t) = 1 s=t . (2.88) It follows that (x) = 1 for x < -b.
Putting the three regions together, the proof is complete.

With these ingredients we can finally prove the limit shape theorem.

Proof of Theorem 2.4. By Lemma 2.12, it is sufficient to find the limit of the expectation for E(ψ λ,θ ) to have convergence in probability; by (2.54) this is

Ω(x) := lim θ→∞ E(ψ λ,θ (x)) = x + 2 ˆ∞ x (x )dx (2.89)
in terms of the limiting fermion density given in the previous Lemma 2.13. Since Ω(b) = b and Ω(-b) = b, we can write this as the finite integral

Ω(x) = x + 2 b + 2 π ´x -b χ(v)dv, x ∈ [-b, b] |x| , x > b and x < - b (2.90)
as required. Now consider the vanishing of (x) as x → b. Noting that χ(b) = 0, we develop χ(β -ε) around zero when ε > 0 is small. Expanding (2.81) for χ small and applying the multicriticality condition (2.2) we find

b -dχ 2m + O(χ 2m+2 ) = b -ε . (2.91) So χ(b -ε) ∼ (ε/d) 1/2m
as ε → 0, and as x → b we have

χ(x) ∼ b -x d 1 2m
.

(2.92)

Then, from (2.90), we recover the edge vanishing behaviour (2.12) as required.

Asymptotic edge fluctuations

We turn our attention proving Theorem 2.2. Starting again with the limiting kernel, now in the critical scaling regime near the right edge, we show that Lemma 2.14 (Convergence to the higher-order Airy kernel on the edge). As θ → ∞, we have

(dθ) 1 2m+1 J m θ ( bθ + x(dθ) 1 2m+1 -1 2 , bθ + y(dθ) 1 2m+1 -1 2 ) (2.93) → A 2m+1 (x, y) = 1 (2πi) 2 ˆiR-1 ˆiR+1 exp (-1) m+1 ζ 2m+1 2m+1 -xζ exp[(-1) m+1 ω 2n+1 2n+1 -yω] dζdω ζ -ω
uniformly for x, y in compact subsets of R.

Here we justify the critical scaling regime directly by the proof, but we refer to Section 2.4.2 for an informal derivation of a similar scaling regime.

Proof. In terms of the action, the kernel in the edge regime is

J m θ bθ + x(dθ) 1 2m+1 -1 2 , bθ + y(dθ) 1 2m+1 -1 2 (2.94) = 1 (2πi) 2 ‹ c + ,c - exp[θS(z; b) -x(dθ) 1 2m+1 log z] exp[θS(w; b) -y(dθ) 1 2m+1 log w] [1 + o(1)] dwdz z -w
where the error term accounts for difference between the continuous coordinates and their integer parts. The action S(z; b) has an order 2m saddle point at z = 1. Let us take the integral over contours which only approach this point as θ tends to infinity 3 , with

c + : |z| = exp (dθ) -1 2m+1 , c -: |w| = exp -(dθ) -1 2m+1 .
(2.95)

Note that these contours do not cross, so we do not encounter the z = w pole. As before, let us parametrise c + by φ ∈ [-π, π]. Then we have

Re S e (dθ) -1 2m+1 e iφ ; b = 2

r rγ r (cos rφ -1)(dθ) -1 2m+1 + O θ -3 2m+1 , (2.96)
which is maximal at φ = 0; since the real part of the action is also minimal on c * -where it intersects the positive real axis, the z = 1 saddle point indeed dominates the integral on these contours. At large θ the integral is dominated by the contribution from a region around this point. Let us show that the contribution from the rest of the contour decays to zero.

On the tails Noting that by the condition (2.1), (2.96) has a unique maximum equal to 0 at φ = 0 and that the leading order term in φ is of order 2m, there is a C > 1 such that 2 r rγ r (cos rφ -1) ≤ -

φ 2m C for all φ ∈ [-π, π] (2.97)
Then we fix a number ε ∈ (0,

1 (2m+1)(2m+2) )
, and define the central region interval I and complementary tails interval I t as

I = -π (dθ) -1 2m+1 +ε , π (dθ) -1 2m+1 +ε , I t = [-π, π] \ I.
(2.98) By (2.96), we see that for any points on the tails z = e (dθ) -1 2m+1 e iφt , w = e (dθ) -1 2m+1 e iφ t with φ t , φ t ∈ I t , we have a uniform bound on the integrand of the kernel, with (2.99) So, the limit is dominated by the contribution from the central region I.

3 In this choice of contour our approach differs from the one presented in [START_REF] Okounkov | Symmetric functions and random partitions[END_REF] even at m = 1; rather, we use the convention of [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF]. The contours in [START_REF] Okounkov | Symmetric functions and random partitions[END_REF] pass through 1 and leave at an angle of π/3, which gives an integral expression for the Airy kernel which converges faster than ours. It is possible to pick analogous contours for m > 1 at angles of mπ/(2m + 1), and to recover the higher-order Airy function of [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]. Our choice has the same contours in the limit for each m, recovers the integral expression of [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] and moreover can be directly be applied to cylindric partition analogues.

In the central region Let us reparametrise the contours c ± restricted to the central region I c by the change of variables

z = exp ζ(dθ) -1 2m+1 , w = exp ω(dθ) -1 2m+1 , ζ ∈ i[-π(dθ) ε , π(dθ) ε ] + 1, (2.100) ω ∈ i[-π(dθ) ε , π(dθ) ε ] -1.
Then, recalling the multicriticality conditions (2.58) and the expressions (2.59) for b, d, the action is uniformly approximated on I by

S(e ζ(dθ) -1 2m+1 ; b) = ∞ n=0 1 n!(dθ) n 2m+1 d n dz n S(z; b)| z=1 ζ n = S(1, b) + (-1) m+1 θ ζ 2m+1 2m + 1 + O θ (2m+3)ε-2m+3 2m+1 (2.101)
and we note that O θ (2m+3)ε-2m+3 2m+1

= o(1). The integrand of J m θ has an exponentially decaying upper bound, as uniformly on c + and c -we have exp[θS(z; b) -x(dθ)

1 2m+1 log z] exp[θS(w; b) -y(dθ) 1 2m+1 log w] ≤ C 1 exp -C 2 (dθ) 1 2m+1 (x + y) (2.102)
for constants C 1 , C 2 , so by dominated convergence the limit of its integral converges to the integral of its limit. Since x log z = xζ(dθ) 1/(2m+1) , y log w = yω(dθ) 1/(2m+1) and z -w = (dθ

) -1/(2m+1) (ζ -ω) + O(θ -2/(2m+1)
) and considering the bound on the tails contribution, we have a uniform approximation of the kernel

J m θ bθ + x(dθ) 1 2m+1 -1 2 , bθ + y(dθ) 1 2m+1 -1 2 (2.103) = (dθ) -1 2m+1 1 (2πi) 2 ˆiI θ -1 ˆiI θ +1 exp (-1) m+1 ζ 2m+1 2m+1 -xζ exp[(-1) m+1 ω 2n+1 2n+1 -yω] [1 + o(1)] dζdω ζ -ω
where I θ is the interval [-π(dθ) ε , π(dθ) ε ], and the o(1) collects the error terms from the discretisation, the Taylor expansion of S, and the estimation of z -w. As θ → ∞, we have I θ → R, and the convergence (2.93) follows immediately, as required.

With this, we can finally prove our main result.

Proof of Theorem 2.2. By Proposition 2.10, if λ is a random partition under P m θ the probability of that there is no element of S(λ) greater than some half-integer s := bθ + s(dθ) 1/(2m+1) -1 2 is the discrete Fredholm determinant

F m θ ( s ) = det(1 -J m θ ) l 2 ( s+Z≥0) = P m θ (λ 1 < bθ + s(dθ) 1/(2m+1) ) = ∞ n=0 (-1) n n! ˆ∞ s • • • ˆ∞ s det 1≤i,j≤n J m θ (k i , k j )dk 1 • • • dk n (2.104)
where the integrals is taken with respect to a reference measure which is zero everywhere but Z + 1 2 . We want to show that it converges to the continuous Fredholm determinant det(1 -A 2m+1 ) L 2 ([s,∞) of the kernel given in (2.93) as θ → ∞.

First, using a change of variables k x i := bθ + x i (dθ) 1/(2m+1) -1 2 , we can write the discrete determinant on L 2 ([s, ∞)) as

F m θ ( s ) = ∞ n=0 (-1) n n! ˆ∞ s • • • ˆ∞ s det 1≤i,j≤n (dθ) 
1 2m+1 J m θ (k x i , k x j ) dx 1 • • • dx n . (2.105)
By Lemma 2.14, we have the convergence of (dθ) 1 2m+1 J m θ to A 2m+1 . Then, the convergence of the Fredholm determinant follows from an application of Hadamard's bound of the determinant by a product of column sums; then, we only need to show that the traces of (dθ) 1 2m+1 J m θ converge to the traces of A 2m+1 . But we can apply the same exponential decay bound (2.102) once again to bound (dθ) 1 2m+1 J m θ itself on any interval that is bounded below, and by dominated convergence on such an interval we have the convergence of the discrete Fredholm determinant F m θ ( s ) to the continuous one

F 2m+1 (s) = det(1 -A 2m+1 ) L 2 ([s,∞)) .
It remains to show that the expression (2.93) for A 2m+1 in the statement of Lemma 2.14 is indeed equivalent to our original definition (2.6) from Theorem 2.2. First, we insert 1/(ζ -ω) = ´∞ 0 e v(ζ-ω) dv into (2.93) to write

A 2m+1 (x, y) = ˆ∞ 0 Ai 2m+1 (x + v) Ai 2m+1 (y + v)dv.
(2.106)

From this, to retrieve the second "Christoffel-Darboux type" expression following [LDMS18, Appendix D], we apply the eigenfunction relation (2.25) to write

(x -y)A 2m+1 (x, y) = ˆ∞ 0 [(x + v) -(y + v)] Ai 2m+1 (x + v) Ai 2m+1 (y + v)dv (2.107) = (-1) m+1 ˆ∞ 0 (Ai (2m) 2m+1 (x + v) Ai 2m+1 (y + v) -Ai 2m+1 (x + v) Ai (2m) 2m+1 (y + v))dv.
Then we note that the integrand can be written

Ai (2m) 2m+1 (x + v) Ai 2m+1 (y + v) -Ai 2m+1 (x + v) Ai (2m) 2m+1 (y + v) = ∂ ∂v 2m-1 i=0 (-1) i Ai (i) 2m+1 (x + v) Ai (2m-1-i) 2m+1
(y + v).

(2.108)

Inserting this back into the integral, only the v = 0 boundary term contributes, recovering (2.5) to complete the proof.

Extensions: Generalised multicritical edge fluctuations

This section presents three extensions of the multicritical measure with asymptotic edge distributions that generalise the higher-order TW-GUE ones F 2m+1 (s).

Multicritical random cylindric partitions

First let us extend the multicritical measures to analogous Schur processes on cylindric partitions. In [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], the authors found a direct generalisation of the higher-order TW-GUE distribution asymptotically governing the maximal momentum in a grand canonical ensemble of fermions in a 1D flat trap potential (this follows the arguments for the passage to the grand canonical ensemble in free fermion models outlined in Section 1.3.2). To construct a discrete model with the same asymptotic edge behaviour, we avail of the correspondence between periodic Schur processes and positive temperature fermions found by Betea and Bouttier [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF]; in particular, the authors proved that in the simplest case of an extension of the Poissonised Plancherel measure to cylindric partition of period one gives rise to fluctuations driven by Johansson's positive temperature extension of the TW-GUE distribution [START_REF] Johansson | From Gumbel to Tracy-Widom[END_REF] in a suitable asymptotic regime (see Theorem 1.42).

We similarly extend the multicritical measures to rank 1 periodic Schur processes, as follows:

Definition 2.15 (Cylindric multicricritical measure). Let γ = (γ 1 , γ 2 , . . .) be a sequence of real numbers defining an order m multicritical measure by the conditions of Definition 2.1 with right edge and fluctuation coefficients b, d. Then, the measure cylindric partitions Λ = (µ ⊆ λ ⊇ µ) of period one defined by the periodic Schur process

P m u,θ (µ, λ) = 1 Z u |µ| s λ/µ [θγ] 2 , Z = exp[ θ 2 1-u r r 2 γ 2 r ] i≥1 (1 -u i ) (2.109)
is an order m cylindric multicritical measure.

It is worth emphasising that for m > 1 the specialisation of the Miwa times to θγ is not Schur positive. In the case of a rank 1 the measure is nonetheless well-defined for a conjugate pair of sets of Miwa times, but since there are negative transition probabilities we cannot readily extend further to a non-periodic process or to a higher rank one. From the partition function Z, we see that

E(|λ|) = θ 2 (1 -u) 2 r r 2 γ 2 r -u d du log(u; u) ∞ (2.110)
so as θ/(1-u) asymptotically defines a natural length scale for the parts λ i , λ i as θ → ∞, u → 1 (and only in the limit, unlike θ in the case of the usual multicritical measure).

For the cylindric multicritical measures, we have the following positive temperature extension of Theorem 2.2 (or multicritical generalisation of Theorem 1.42): 

P m u,θ λ 1 -bΘ (dΘ) 1 2m+1 < s = F α 2m+1 (s) := det(1 -A α 2m+1 ) L 2 ([s,∞)) (2.111)
where

Θ := θ 1 -u , Θ ∼ θ α 2m+1 2m d -1 2m
where F α 2m+1 is the Fredholm determinant of the higher-order α-Airy integral kernel

A α 2m+1 (x, y) = ˆ∞ -∞ e αv 1 + e αv Ai 2m+1 (x + v) Ai 2m+1 (y + v)dv.
(2.112)

Here again, α plays the role of a limiting inverse temperature, and in the limit α → ∞ we have F α 2m+1 → F 2m+1 . We note that critical exponents are unchanged by the passage to finite temperature in this regime once we replace the large parameter θ with Θ, which also tends to infinity.

The Fredholm determinants F α 2m+1 have been related to an integro-differential generalisation of the Painlevé II hierarchy by Krajenbrink [Kra20] generalising an approach of Amir, Corwin and Quastel [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF] from the m = 1 case and by Bothner, Cafasso and Tarricone [BCT21] using a rigorous Riemann-Hilbert approach.

A DPP in the grand canonical ensemble As periodic Schur processes, cylindric Schur measures are in general not determinantal, as first observed by Borodin [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF]. Specifically, neither of the configurations S(λ) or S(µ) forms a determinantal point process. While correlation functions for these are in principle explicit, they are complicated multicontour integrals making their scaling analysis very difficult. This can be remedied, however, via a procedure called shift-mixing [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF] or passage to the grand canonical ensemble [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF]; the shifted fermion configuration

S c (λ) = {λ i -i + c + 1 2 , i ∈ Z ≥1 } (2.113) such that Q 0 (S c (λ)) = c and Q 1 (S c (λ)) = |λ| + c 2 /2 does form a DPP,
where c is a suitably chosen random integer. Following [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF], let us now give some intuition for how c is chosen, starting from a simple case.

For two parameters t, u, we associate to each fermion configuration S a Boltzmann weight of t Q 0 (S) u Q 1 (S) ; in physical terms where Q 1 is an energy, u is identified e -β where β is the (dimensionless) inverse temperature, and t is identified with e µ ch where µ ch is a chemical potential and the charge Q 0 plays the role of a particle number. Summing the weights of configurations S c (λ) over all pairs (λ, c), we have

λ u |λ| c∈Z t c u c 2 /2 = 1 (u; u) ∞ ϑ 3 (t; u) = ∞ i=0 (1 + tu i+ 1 2 )(1 + t -1 u i+ 1 2 ) =: Z t,u (2.114)
where ϑ 3 (t; u) := c∈Z t c u c 2 /2 is one of the Jacobi theta functions in multiplicative notation, the q-Pochhammer symbol is (z; q) n := ∞ i=0 (1 -zq i ) n for n ∈ Z ∪ {∞}, and the final equality is the Jacobi triple product identity. For t > 0 and u ∈ [0, 1), we have a well defined measure on partition-charge pairs P(λ, c) = t c u |λ|+c 2 /2 /Z.

From this construction, some natural statistics are independently distributed. If (λ, c) is a random pair under this measure, for each k ∈ Z + 1 2 we have an independent distribution

P(k ∈ S c (λ)) = tu k 1 + tu k (2.115)
which corresponds precisely to the Fermi density of states factor. The random charge c has the discrete Gaussian distribution

P(c) = t c u c 2 /2 ϑ 3 (t; u) . (2.116)
Note that if we condition on c being zero, the distributions (2.115) are no longer independent; this corresponds to the fact (discussed in Section 1.3.2) that a canonical ensemble of free fermions is not determinantal while a grand canonical ensemble is (meaning that in a canonical ensemble the fermions are not really free).

Coupling a periodic Schur process to these Boltzmann weights corresponds to passing to the grand canonical ensemble, and making it determinantal. Writing a general result only for the case at hand, with c distributed by (2.116) and λ the larger of a pair (µ ⊆ λ) distributed by P m u,θ , the randomly shifted random configuration S c (λ) forms a DPP; to be precise, for any k 1 , . . . , k n ∈ Z + 1 2 we have

ρ n (k 1 , . . . , k n ) = P({k 1 , . . . , k n } ∈ S c (λ)) = det 1≤i,j≤n J m u,t,θ (k i , k j ) (2.117)
where the kernel is

J m u,t,θ (k, ) = i∈Z tu i 1 + tu i J k+i+ 1 2 (Θγ)J +i+ 1 2 (Θγ) (2.118) = 1 (2πi) 2 ‹ c + ,c - exp[ΘS(z, k/Θ)] exp[ΘS(w, /Θ)] • κ(z, w)dwdz wz , c ± : |z| = u ∓1/4 , κ(z, w) = i∈Z+ 1 2 tu i 1 + tu i z w i = w z • (u; u) 2 ∞ ϑ u (w/z) • ϑ 3 (tz/w; u) ϑ 3 (t; u) .
(2.119) using the notation ϑ u (x) := (x; u) ∞ (u/x; u) ∞ and reusing the action notation for the order m multicritical measure defined at (2.56). The equivalence between the two forms of κ is a special case of Ramanujan's 1 Ψ 1 summation [START_REF] Gasper | of Encyclopedia of Mathematics and its Applications[END_REF], and the choice of contours with |w| < |z| ensures the sum converges. Note the similarity with the integral expression for the zero temperature kernel (1.150). The proof of this in [BB19] adapts Okounkov's fermionic approach (see Theorem 1.45) to a case each expectation with respect to the domain wall vacuum state is replaced with one with respect to a state independent random densities given by (2.115). Then, κ(z, w) given in (2.119) is the generating function c † (z)c(w) u,t = k, z k w -c † k c u,t of propagators on that state.

The crossover regime

The asymptotic regime of Theorem 2.16 is the one in which the "thermal" fluctuations coming from the factor of u |µ| match the order of magnitude of the "quantum" fluctuations coming from the skew Schur functions, so that α parametrises a crossover between regimes where either kind of fluctuation dominate. Heuristically, from the identification u = e -β , the thermal fluctuations are of order of the temperature β -1 , so comparing with scale of the fluctuations in the zero temperature case (i.e. the multicritical Schur measure) we look for a regime in which

β -1 ∼ Θ 1 2m+1 .
(2.120)

Fixing a specific regime

u := exp -α(dΘ) -1 2m+1 , θ := αd -1 2m+1 Θ 2m 2m+1
(2.121) by this reasoning, it is straightforward to see that it is asymptotically equivalent to the crossover regime in the statement.

Proof of Theorem 2.16. Our proof follows that of [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF], with some adaptations that correspond precisely to the arguments of Section 2.3.3 of this text. It consists of three steps.

(i) Passage to the grand canonical ensemble

We choose a real parameter t > 0 and we pass to the grand canonical ensemble chemical potential µ ch = -log t. Let us consider random partition-charge pairs (λ, c) with joint distribution

P m u,t,θ (λ, c) = 1 Z µ u |µ|+ c 2 2 t c s λ/µ [θγ] 2 (2.122)
where Z is a normalisation factor. We will look for the asymptotic law of the largest element of the randomly shifted random configuration S c (λ); since this forms a DPP, with kernel given in (2.118), we study the distribution

P(λ 1 + c < s ) = det(1 -J m u,t,θ ) l 2 ( s+Z≥0) (2.123)
for s := bΘ + (dΘ)

1 2m+1
-1 2 in the asymptotic regime of the theorem, where θ → ∞, u → 1 with θ(1 -u) 2m → α 2m+1 (and Θ := θ/(1 -u)).

(ii) Asymptotic analysis Let us start from the integrand of J m u,t,θ (k, ) in a regime where k = bΘ + x(dΘ) 1/(2m+1) -1 2 and = bΘ + y(dΘ) 1/(2m+1) -1 2 , which is (suppressing floor functions) exp ΘS(z; b) -x(dΘ)

1 2m+1 log z exp ΘS(w; b) -y(dΘ) 1 2m+1 log w • κ(z, w). (2.124)
Since Θ → ∞ in our asymptotic regime, we can directly use Θ as a large parameter, and then for everything except for the function κ(z, w), the steepest descent analysis follows precisely the arguments of Section 2.3.3 (with just a change from θ to Θ). At z = w = 1 there is an order 2m saddle point, and we use the same change of variables

z = exp ζ(dΘ) -1 2m+1 , w = exp ω(dΘ) -1 2m+1 .
(2.125)

The arguments for the tails bound generalise. The contour c + of the integral in z is circle on which

|z| = u -1/4 = exp[Re(ζ)(dΘ) -1/(2m+1) ],
(2.126) and as u → 1 this is satisfied if and Re(ζ) ∼ (dΘ) 1/(2m+1) /4(1 -u) ∼ α/4, so the central region is asymptotically parametrised by ζ ∈ iR + α/4 and ω = iR -α/4. At the same time, κ has a reasonable asymptotic behaviour in the above regime and on the contours c ± . First, when z, w are around around 1, observing that z = u -ζ/α , w = u -ω/α , we have and on the contours

κ(z, w) = i∈Z+ 1 2 (z/w) i 1 + (tu i ) -1 ∼ α(dΘ) -1 2m+1 • π sin π(ζ-ω) α as Θ → ∞. (2.
c ± 4 as Θ → ∞, u → 1, κ(z, w) ∼ π r cosh πIm(ζ-ω) α = π r sin π(ζ-ω) α (2.129)
The prefactor (dΘ) -1 2m+1 will be cancelled by part of the Jacobian for the change of variables (z, w) → (ζ, ω). From the same Poisson summation formula, we see that outside of the central region around z = w = 1, κ decays exponentially fast to 0, see [BB19, Lemma 5.5].

Putting everything together and noting that the same exponential decay bounds imply dominated convergence, as Θ → ∞ and u → 1 we have (dΘ)

1 2m+1 J m u,t,θ bΘ + x(dΘ) 1/(2m+1) -1 2 , bΘ + y(dΘ) 1/(2m+1) -1 2 → 1 (2πi) 2 ˆiR+ α 4 ˆiR-α 4 exp (-1) m+1 ζ 2m+1 2m+1 -xζ exp (-1) m+1 ω 2m+1 2m+1 -yω • π α sin π(ζ-ω) α dωdζ.
(2.130)

Using the identity π

α sin π(ζ-ω) α = ˆ∞ -∞ e (α+ω-ζ)v dv 1 + e αv (2.131)
then noting that the shifts of α/4 away from the imaginary axis in the contours for ζ and ω can be changed to 1 (or another positive number) by a change of variables, we see that the limiting kernel is equal to A α 2m+1 (x, y). The same exponential decay arguments for the integrand apply again to the integral, so the traces of J m u,t,θ also converges uniformly to the traces of A α 2m+1 on any set that is bounded below. Since the Hadamard bound argument equally applies here, we have convergence of the Fredholm determinants too, with lim θ→∞,u→1

P λ 1 + c -bΘ (dΘ) 1 2m+1 < s = det(1 -A α 2m+1 ) L 2 ([s,∞)) .
(2.132) when the extra "chemical potential" parameter is set to t = 1, from its law (2.116), we have that c/Θ 1/(2m+1) converges to 0 in probability-see Lemma 2.1 in [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF]. The case for t = 1 can be recovered through a deterministic shift in our formulas.

(

Generalised higher-order Airy kernel

In this section we extend the multicritical measures to have more general asymptotic edge distributions of a kind shown by Cafasso, Claeys and Girotti [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] to encode Fredholm determinant solutions of the Painlevé II hierarchy; using a Riemann-Hilbert method, the authors showed F 2m+1 not to be the unique Fredholm determinant solution to the order 2m equation, but rather found an element of an m -1 parameter family. To be precise, the previously stated result generalises as follows:5 

Addendum 2.17 to Theorem 2.3 (Generalised Fredholm determinant solutions of the Painlevé II hierarchy [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]). Fix a sequence of m -1 real constants τ = (τ 1 , . . . , τ m-1 ), then set

p τ ;2m+1 (x) = x 2m+1 2m + 1 + m-1 i=1 τ i 2i + 1 x 2i+1 (2.133)
and define the generalised higher-order Airy kernel

A τ ;2m+1 (x, y) = 1 (2πi) 2 ˆiR+1 ˆiR-1 exp[(-1) m+1 p τ ;2m+1 (ζ) -xζ] exp[(-1) m+1 p τ ;2m+1 (ω) -yω] dζdω ζ -ω . (2.134)
Then, the Fredholm determinant

F τ ;2m+1 (s) = det(1 -A τ ;2m+1 ) L 2 ([s,∞)) (2.135)
satisfies the relation (2.8) and boundary behaviour (2.7) stated for F 2m+1 (s) = F 0;2m+1 (s) in Theorem 2.3.

Generalised trapped fermion models

As far as we know, the generalised higher-order Airy kernels A τ ;2m+1 have not been studied in the context of edge statistics for trapped fermions. Naively considering the constituent generalised higher order Airy functions

Ai τ ;2m+1 (x) = 1 2πi ˆiR+1 exp[(-1) m+1 p τ ;2m+1 (ζ) -xζ]dζ, (2.136)
we see that they satisfy eigenfunction relations generalising (2.25) to

(-1) m+1 d 2m dx 2m + m-1 i=1 τ i d 2i dx 2i Ai τ ;2m+1 (x) = -x Ai τ ;2m+1 (x),
(2.137) so it would appear that the momentum space approach of [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] as outlined in Section 2.2.1 would generalise to recover these edge potentials to trapping potentials of the form V (x) = x 2m + i (-1) i τ i x 2i . We focus on a discrete construction, which coincides with the momentum space edge of such a model in a suitable continuum limit.

Our main task is to identify the correct limit.

Generalised discrete models

Our construction of multicritical measures on partitions (and the corresponding lattice fermion models) generalises with just some modification of scaling considerations. We again construct each measure with a single real parameter θ, but no longer require each Miwa time in the Schur function specialisation to grow linearly with θ; once we consider combinations of Miwa times growing at different speeds, we can tune the speeds so that the integrand of the limiting edge kernel has a given odd polynomial in the exponential, from the same saddle point analysis of Section 2.3.3. To be specific, we combine the coefficients γ r already used to define multicritical measures, to define generalised ones as follows (where we emphasise that the sequence of constants γ is replaced with a θ-dependant functions γ τ (θ)/θ). Definition 2.18 (Generalised multicritical measure). Fix a sequence of m -1 real constants τ = (τ 1 , . . . , τ m-1 ), and choose m sequences of real coefficients γ (1) , . . . , γ (m) where γ (i) satisfies the conditions for an order i multicritical measure and has right edge and fluctuation coefficients b i , d i . Then, for a positive parameter θ, define the sequence γ τ (θ) of Miwa times, with elements indexed r ≥ 1

γ τ (θ) r = θγ (m) r + m-1 i=1 θ 2i+1 2m+1 (-1) m-i τ i d i γ (i) r (2.138)
we define an order m generalised multicritical measure

P τ ;m θ (λ) = 1 Z s λ [γ τ (θ)] 2 , Z = e r rγ τ (θ) 2 r (2.139)
along with its edge position function

B(θ) = b m θ + m-1 i=1 b i (-1) m-i τ i d i θ 2i+1 2m+1 . (2.140)
This generalisation is defined so that we have the edge behaviour we would expect in analogy to Theorem 2.2. Namely, Theorem 2.19 (Edge fluctuations in generalised multicritical measures). If λ is a random partition under the generalised multicritical measure P τ ;m , then

lim θ→∞ P τ ;m θ λ 1 -B(θ) (d m θ) 1 2m+1 ≤ s = det(1 -A τ ;2m+1 ) L 2 (s,∞) =: F τ ;2m+1 (s) (2.

141)

where A τ ;2m+1 is the kernel (2.134) defined in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF].

It is worth highlighting that the expected edge position B(Θ) now has quite a nontrivial expansion: it has deterministic terms of orders θ, θ 2n-1 2n+1 , . . . , θ 3 2n+1 , and only at order θ 1 2n+1 do we encounter the fluctuations. The expected size is also more subtle: since we have E(|λ|) = r≥1 r 2 γ(θ) 2 r , only the leading order term now scales with θ 2 .

Tuning speeds and coefficients

The proof of Theorem 2.19 involves no new arguments than the ones of Section 2.3.3, so we find it more instructive to present an informal derivation of Definition 2.18. To do so, let us define additional notation, putting

S (i) (z; x) = r≥1 γ (i) r z r -z -r -x log z = V (i) (z) -V (i) (z -1 ) -x log z (2.142)
for the action and potential associated with the coefficients γ (i) . Since each γ (i) defines an order i multicritical measure with right edge and fluctuation coefficients b i , d i , we have, by (2.58) and (2.59), the following expansion of S (i) around z = 1:

S (i) (z; b i ) = (-1) i+1 d i 2i + 1 (z -1) 2i+1 + O((z -1) 2i+3 ). (2.143)
Let us form a generalized potential, which now scales with θ,

V(z) = m i=1 f i (θ)V (i) (z); (2.144)
we fix f m (θ) = 1 for convenience. Our goal is now to find suitable f i (θ) so as to obtain the scaling regime of Theorem 2.19 and the limiting edge kernel A τ ;2m+1 . We will just look at the integrand in the double contour integral representation in a region near the multicritical saddle point. The discrete kernel we start with is

J τ ;m θ (k, ) = 1 (2πi) 2 ‹ c + ,c - exp[θ(V(z) -V(z -1 ))] exp[θ(V(w) -V(w -1 ))] dzdw z k+ 1 2 w -+ 1 2 (z -w) (2.145)
for k, ∈ Z + 1 2 , with c + for the integration in z passing just outside the unit circle and c -for w passing just inside. Now we set

S(z; x) = V(z) -V(z -1 ) -x log z; b(θ) := m i=1 f i (θ)b i .
(2.146)

Then, if we rewrite the coordinates relative to k = b(θ) + k , = b(θ) + the kernel may be written

J τ ;m θ (k, ) = 1 (2πi) 2 ‹ c + ,c - exp[θ(S(z; b(θ)) -S(w; b(θ)))] dzdw z k +1/2 w -+1/2 (z -w) .
(2.147)

Since we have

S(z; b(θ)) = m i=1 f i (θ)S (i) (z; b i ), (2.148)
near the order 2i saddle point for each S (i) , we let ε be a small positive number that tends to zero as θ tends to infinity and consider a change of variables

z = 1 + ζε, w = 1 + ωε, k = x ε , = y ε (2.149)
(this simple setup is sufficient for our purposes; we will parametrise the contours explicitly once we have suitable ε and f i (θ)). Expanding in small ε and using (2.143), the leading order approximation of the integrand is

1 ε(ζ -ω) exp m i=1 θf i (θ) (-1) i+1 d i 2i + 1 ε 2i+1 (ζ 2i+1 -ω 2i+1 ) -xζ + yω + O(θε 2m+3 ) .
(2.150) It now becomes clear that in the generalised multicritical action, each f i (θ) should scale as ε -2i-1 /θ. More precisely, to use our convention that f m (θ) = 1, we identify = (d m θ) -1/(2m+1) (which indeed tends to 0) to be the appropriate scale; taking an action with

f i (θ) := (-1) m-i τ i d i θ 2i-2m 2m+1 , i = 1, . . . , m -1, (2.151)
the leading order term coincides precisely with the integrand of A τ,2m+1 . At the level of the parametrised specialisations for the corresponding Schur measures, this gives corresponds precisely to Miwa times γ τ (θ) r corresponding the generalised multicritical measure P τ ;m θ . The function b(θ) determining the edge scaling becomes B(θ) defined in (2.140).

The edge asymptotics

With f i (θ), ε now determined, let us briefly discuss the remaining analysis needed to prove Theorem 2.19. From noting that the Jacobian for the change of variables from z, w to ζ, ω contributes a factor of ε 2 , we see that (d m θ) 1/(2m+1) J τ ;m θ is the relevant rescaled kernel.

Comparing to the analysis of Section 2.3.3, note that the tails bound and the exponential decay apply immediately to this case. The same contours can be reused along with the same dominated convergence arguments, to show firstly the uniform convergence

(d m θ) 1 2m+1 J τ ;m θ ( B(θ) + x(d m θ) 1 2m+1 -1 2 , B(θ) + y(d m θ) 1 2m+1 -1 2 ) → A τ ;2m+1 (x, y) (2.152)
as θ → ∞, and in turn the convergence of traces and finally of Fredholm determinants uniformly on sets bounded below, with

lim θ→∞ P λ 1 -B(θ) (d m θ) 1 2m+1 < s = lim θ→∞ det(1 -J τ ;m θ ) l 2 (Z ≥0 + B(θ)+s(dmθ) 1 2m+1 -1 2 ) = det(1 -A τ ;2m+1 ) L 2 ([s,∞))
(2.153) as required.

Finally, let us note that the extensions presented in this section and in the previous one are completely compatible; we can directly construct analogous "generalised multicritical cylindric measures" using the Miwa time specialisations of Definition 2.18. The distributions F α 2m+1 then generalise to Fredholm determinants of positive temperature kernels composed of the functions Ai τ ;2m+1 .

More general Hermitian Schur measures and Fermi seas

To conclude this chapter, we mention perspectives and work in progress motivated by Definition 2.1 of the multicritical measures itself, and the assumptions it relies on. The multicritical measures are well defined in part because we require the sequences γ to have finite support, and this makes the steepest descent analysis presented of Section 2.3 much simpler since there are only isolated saddle points. A second assumption that was essential to this analysis was the final condition non-negativity of (2.1), which ensures there are at most two (complex conjugate) saddle points on the unit circle. We note, however, that at the level of the measures themselves it is quite natural to lift either of these conditions. In the first instance, if we consider Schur measures defined by specialising the direct parameters to some finite set, the corresponding sequences Miwa times have infinite support. In the second instance, considering the lattice fermion models of Section 2.2, if we tune the parameters for the kinetic hopping terms just beyond the point of multicriticality we violate the non-negativity condition; lifting this condition is important for the universality picture for these models. Let us briefly consider the implications of lifting each of the conditions, with particular focus on the second "single Fermi sea" condition, in which case we discuss non-rigorously how new asymptotic edge statistics arise.

Non-polynomial Hermitian Schur measures from multicriticality

The most immediately relevant cases of non-polynomial Hermitian Schur measures are the minimal and symmetric minimal multicritical measures P a,m θ , P s,m θ where we let the order of multicriticality m tend to infinity, or allow m to be non-integer. The explicit coefficients given in Definitions 2.6 and 2.8 yield analytic continuations, and the resulting measures are well defined. Although the Fredholm determinants F 2m+1 are difficult to study directly as m → ∞, the limit curves of P a,m θ , P s,m θ can be readily expressed in that limit (it is not yet clear however if the θ → ∞ and m → ∞ limits commute).

Referring back to fermions in flat traps as studied in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], the m → ∞ limit is quite physical, corresponding to a model of free fermions in a square well with infinite walls. Interestingly, such a model escapes the position space Airy ensemble universality for free fermions [START_REF] Lacroix-A-Chez-Toine | Statistics of fermions in a d-dimensional box near a hard wall[END_REF]. The non-integer m case, on the other hand, has no trapped fermion analogue as the corresponding potential V (x) = x 2m is non-confining. We note, however, that although the lattice fermions corresponding to Schur measures can asymptotically coincide trapped fermion models on the edge, they do not "see" the potential, since they already have an unbounded spectrum and Dirac sea ground state. In this picture, the non-integer m case is equally physical. Moreover, this extension is directly analogous to work of Ambjørn, Budd and Makeenko [START_REF] Ambjørn | Generalized multicritical onematrix models[END_REF] which extended Kazakov's multicritical Hermitian matrix models [START_REF] Kazakov | The Appearance of Matter Fields from Quantum Fluctuations of 2D Gravity[END_REF] to non-integer orders of multicriticality. The main challenge in the asymptotic analysis at these new values of m comes from the fact the Miwa times now how infinite support, and the action has a cut on the real axis which prevents us from using the same contours that have served us in the last three sections.

The single Fermi sea condition Turning to the final non-negativity condition of (2.1), we can find a physical interpretation for it by referring back to the local density approximation bulk heuristics for the lattice fermion models, as outlined in Section 2.2.3. From the perspective of the Fourier transformed creation operators, the angle χ := π (x) solving (2.47) sets an interval for the Fourier frequencies in the ground stateor momenta-near x in the bulk (at a scale much smaller than the system size). If the solutions are ±χ, then the momentum support is [-χ, χ]. Consider, however, the case if there are more than two solutions; for example if ±χ 1 and ±χ 2 are solutions with χ 1 > χ 2 > 0, then the momentum support is two disjoint intervals [-χ 1 , -χ 2 ] and [χ 2 , χ 1 ], and we describe the model as having a split Fermi sea or call ground state as being a Moses state in the terminology of [START_REF] Fokkema | Split fermi seas in onedimensional bose fluids[END_REF]. Requiring the derivative of (2.47) to be non-positive anywhere to the right of the origin is a necessary and sufficient condition to have connected momentum support at each x; clearly this condition also ensures that for all x, S(z; x) has only one pair of complex conjugate saddle points on |z| = 1.

A simple measure with a split Fermi sea In the simplest (and only simply critical) case with a split Fermi sea, we consider P(λ) = e -θ 2 r rγ 2 r s λ [θγ] 2 where only γ 1 , γ 2 are nonzero. Explicit limiting densities (x) were found for any such measure with a split Fermi sea in [BS21, Equation 45]6 , in the context of lattice fermion models at a points where they coincide exactly with our ones. Let us pick one specific measure, with γ 1 = 1, γ 2 = -1/4, and look at the unit circle saddle points of the action S(z; x) of its kernel K θ , that is z * ± = e ±iχ where 2 cos χ -cos 2χ = x.

(2.154)

We identify the following regions and points in terms of the position x:

(i) The frozen region: For x < -3, there are no solutions to (2.154); we have the same frozen region discussed in Section 2.3.2.

(ii) The left edge: At x = -3 we have the usual second order saddle point associated with TW-GUE asymptotic edge statistics at z = -1.

(iii)

The single Fermi sea bulk: For -3 < x < 1, there is one positive solution (this is situation we previously considered in the bulk).

(iv) The internal edge: At x = 1, there are first order saddle points at e ±iπ/2 and a second order saddle point at χ = 0. Approaching this point from the right, the derivative of the density diverges, so it resembles a left edge from that side.

(v)

The split Fermi sea bulk: For 1 < x < 3/2, there are two distinct positive solutions χ 1 > χ 2 of (2.154), and four first order saddle points on the unit circle.

(vi) The right edge: At x = 3/2, there are two double saddle points at χ = ±π/3.

(vii)

The empty region: For x > 3/2, again there are no solutions to (2.154), and we have an empty region.

As detailed in [BS21, Section 3.3], the limit shape computation proceeds similarly to the one in Section 2.3.2. To compute the large θ limit of K(xθ + s, xθ + t) for finite s, t at x in the split Fermi sea bulk, the contours c + , c -should now be exchanged for the arcs of the unit circle c +χ 1 ,χ 2 : e iφ , φ ∈ [χ 2 , χ 1 ] and c -χ 1 ,χ 2 : e iφ , φ ∈ [-χ 1 , χ 2 ]. In the limit, the limiting discrete sine kernel then generalises to

K(s, t) = sin χ 1 (s -t) π(s -t) - sin χ 2 (s -t) π(s -t) (2.155)
with limiting density (x) = (χ 1 -χ 2 )/π. Beyond the limit shape itself, the fluctuations at the "internal edge" may be interesting to study, since we have first and second order saddle points on the same contour integral.

Looking at the right edge, we can consider the natural gap probability P(λ 1 < 3 2 θ + sθ 1/3 ) in the θ → ∞ limit starting from the limit of K θ (k, ) in a regime where k = 3 2 θ + xθ 1/3 -1 2 and = 3 2 θ + yθ 1/3 -1 2 . Then, using the same approach as before where the contours now pass over two double saddle points at e ±iπ/3 , we find that the leading order term in

θ 1/3 K θ (k, ) as θ → ∞ is K(k, ) = cos π 3 (k -) 1 (2πi) 2 ˆiR-1 ˆiR+1 exp ζ 3 3 -xζ exp[ ω 3 3 -yω] dζdω ζ -ω (2.156)
Due to the oscillating prefactor, we do not recover a limiting edge kernel. However, we may approximate the edge gap probability by the discrete Fredholm determinant det(1 -K) on l 2 (Z ≥0 + 3 2 θ + xθ 1/3 -1 2 ). Now, within the Fredholm determinant, the sums over elements of Z ≥0 + 3 2 θ + sθ 1/3 -1 2 integrate out the products of cosines in the minors of K; by this reasoning, we expect the limiting distribution to be

lim θ→∞ P λ 1 -3 2 θ θ 1 3 < s = ∞ n=0 (-1) n n! ˆ∞ s • • • ˆ∞ s det 1≤i,j≤n Ã(x i , x j )dx 1 • • • dx n , (2.157) =: F (s), Ã(x, y) = A(x, y), x = y 1 2 A(x, y), x = y.
It would be interesting (and important) to put our arguments on a rigorous footing. We note that this approach recovers the same distribution for the edge statistics obtained from double saddle points at the edge of any two-interval Fermi sea once those saddle points are at an angle that is a rational multiple of π. The generalisation to a twointerval Fermi sea with a pair of order 2m saddle points on the edge is quite direct, the generalisation to a Fermi sea with more cuts is somewhat more complicated. Since the integral operator of à on L 2 (R) is discontinuous, it is not clear if we can write the above formula directly as a Fredholm determinant, but we note that the kernel is Hermitian and ostensibly meets the criteria of the Macchi-Soshnikov theorem 1.44. To make sense of the distribution (2.157), we can look at its logarithm

log F (s) = ∞ n=1 1 n ˆ∞ s • • • ˆ∞ s Ã(x 1 , x 2 ) Ã(x 2 , x 3 ) • • • Ã(x n-1 , x n )dx 1 • • • dx n (2.158)
which can be directly compared to a well-defined Fredholm determinant, since the diagonal terms contribute only to the n = 1 term of the sum. Hence,

log F (s) = - ˆ∞ s 1 2 A(x, x)dx + log det(1 -1 2 A) L 2 ([s,∞) , (2.159)
and we further expect that

lim θ→∞ P λ 1 -3 2 θ θ 1 3 < s = e -1 2 ´∞ s A(x,x)dx det(1 -1 2 A) L 2 ([s,∞) .
(2.160)

Chapter 3

Random matrices and random maps

In this chapter we discuss new and established connections between random partitions and their continuous analogue, random matrices. The first section, adapted from [1], presents an exact equivalence of edge distributions under the multicritical Schur measures introduced in Chapter 2 and partition functions of certain models of random unitary matrices, explaining the asymptotic appearance of the same Painlevé II hierarchy equations for edge distributions in momentum space trapped fermion models in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] and for free energies of matrix models previously studied and called multicritical by Periwal and Shevitz [START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF]. We give an informal overview of the notion of multicriticality considered in that work, and show that the models corresponding to our Schur measures are also multicritical. The second section discusses models of random Hermitian matrices, in particular the Gaussian unitary matrix ensemble (GUE), whose asymptotic edge distribution coincides with that of the Plancherel measure by the earlier work of Tracy and Widom [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF]. We discuss the asymptotic behaviour of these models by relating them to free fermions and to the combinatorics of discretised surfaces called maps, which we briefly discuss in their own right. Random matrices and random maps each comprise important models of universality. 

Chapter contents

Unitary matrix models and edge distributions of Schur measures

We consider once again the Schur measures, and in particular the multicritical ones of Definition 2.1. The discussion of this section will be somewhat analogous to that of Section 2.2.2: there we presented fermion models corresponding to Schur measures and discussed multicriticality in the fermion picture, and here we present random matrix models corresponding to Schur measure and discuss multicriticality for the corresponding matrices. It is worth making two distinctions. Firstly, whereas the asymptotic analysis of statistics on the fermion and the Schur function sides were identical (boiling down to exactly the same DPP kernel), the direct asymptotic analysis of corresponding matrix models is rather different, and in some cases complimentary. Secondly, whereas in Section 2.2.2 we found multicritical analogues both for the nearest-neighbour hopping lattice fermion model corresponding exactly to the Poissonised Plancherel measure and for the harmonic potential continuum model asymptotically coinciding with it on the edge, we only have a partial multicritical generalisation of the matrix model picture associated with the Plancherel measure.

Matrix models correspondences for multicritical measures

Random matrices and Plancherel random partitions In the Plancherel case, there are two main matrix model correspondences. The first, in order of discovery, is exact.

In [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF], Johansson used an identity of Rains [START_REF] Rains | Increasing subsequences and the classical groups[END_REF] to equate the cumulative edge distribution P θ (λ 1 < ) of a random partition λ under the Poissonised Plancherel measure P θ with a certain integral over × unitary matrices which had previously appeared as the partition function (or normalisation) of a random matrix model introduced by Gross and Witten [GW80] and, independently, Wadia [START_REF] Wadia | N = ∞ phase transition in a class of exactly soluble model lattice gauge theories[END_REF] as a simple lattice field theory with a degree unitary gauge symmetry group U( ). This correspondence led to an alternative proof of the fact that, θ → ∞, λ 1 /θ converges in probability to 2 (which, after application of a de-Poissonisation Lemma also proven in [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF], is part of Vershik, Kerov, Logan and Shepp's [VK77, LS77] early limit shape theorem 1.35 for the Plancherel measure); in the corresponding U( ) Gross-Witten-Wadia (GWW) model, the 2θ threshold for corresponds to a strong-to-weak coupling phase transition, where there is a discontinuity in the third derivative of the free energy.

The second correspondence is due to Baik, Deift and Johansson [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF], who famously proved that as θ → ∞ the same edge distribution P θ (λ 1 < ) in a regime where ∼ 2θ + sθ 1/3 (or, after de-Poissonisation, P n (λ 1 < ) where ∼ 2 √ n + sn 1/6 as n → ∞) is equivalent to an analogous asymptotic distribution for the maximal eigenvalue ζ max of an N × N GUE random matrix, namely to P(ζ max < ) with ∼ √ 2N + s2 -1/2 N -1/6 as N → ∞. This is the BDJ theorem 1.37 in terms of Tracy and Widom's [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] seminal results on level spacing at the edge of the GUE, where the limiting Fredholm determinant distribution F GUE first appeared. For a proof on the Poissonised Plancherel measure side, see Section 2.3.3 and restrict to the case m = 1 and to γ = (1, 0, 0, . . .). A strong version of this asymptotic correspondence is that the first finite number of parts of a Plancherel random partition of n converge in probability to the largest eigenvalues in the GUE as n → ∞; this was proven using a connection with fermions in [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF] and [START_REF] Johansson | Discrete orthogonal polynomial ensembles and the Plancherel measure[END_REF], having previously been proven by Okounkov using an interpretation of GUE expectations as generating functions of discrete surfaces called maps. We will discuss these connections in Section 3.2 and Section 3.2.3 respectively.

The asymptotic edge correspondence with the GUE has a positive temperature analogue. As shown in [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF], the edge fluctuations of the larger element of a two partition sequence under the cylindric Plancherel measure are asymptotically driven by the positive temperature analogue F α GUE of the TW-GUE distribution (see Theorem 2.16, and Section 2.4.1 for elements of proof in a more general case). The same distribution governs the edge fluctuations in the Moshe-Neuberger-Shapiro model [START_REF] Moshe | Generalized ensemble of random matrices[END_REF] random Hermitian matrix model.

For the remainder of this section we discuss the correspondence which we can generalise to the multicritical measures.

Extension to multicritical measures

The exact unitary matrix integral expression for the edge distribution generalises directly to our multicritical Schur measures, defining multicritical analogues for the corresponding unitary matrix models, as follows:

Theorem 3.1 (Multicritical unitary matrix models from Schur measures). Let λ be a random partition under a multicritical measure P m θ (λ) = e -θ 2 r rγr 2 s λ [θγ] 2 and let be a positive integer. Then

P m θ (λ 1 ≤ ) = e -r rθ 2 γ 2 r ˆU( ) e θ tr r (-1) r-1 γr(U r +U * r ) DU =: e -r rθ 2 γ 2 r Z (3.1)
where the integral is taken over the × unitary matrices with respect to the Haar measure DU . The probability measure

P(U )DU = 1 Z e θ tr r (-1) r-1 γr(U r +U * r ) DU (3.2)
on unitary matrices defines an order m multicritical matrix model, such that in a limit where θ, → ∞ with ∼ bθ where b is the right edge coefficient of P m θ , the limiting eigenvalue density has vanishing with an exponent of 2m.

At m = 1 and γ = (1, 0, 0, . . .), (3.1) is precisely the equality used in [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF], and the linear potential V (z) = z defines the GWW model [START_REF] Gross | Possible third order phase transition in the large N lattice gauge theory[END_REF][START_REF] Wadia | N = ∞ phase transition in a class of exactly soluble model lattice gauge theories[END_REF]. To make sense of the integral in (3.1) and the Haar measure DU , we use the Weyl integration formula (see e.g. [Mec19, Chapter 1] for a thorough discussion, or [AGZ09, Section 4.1.1] for concise examples): noting that the integrand is invariant under conjugation of the matrix U and using the fact that it is unitary, we can perform a change of variables to the eigenvalues u 1 , . . . , u of U , each of which lies on the unit circle, and find (for a given function f )

ˆU( ) e f (tr U ) DU = 1 (2πi) ! ˛c1 • • • ˛c1 i=1 e f (u i ) i<j |u i -u j | 2 du 1 u 1 • • • du u (3.3)
where c 1 : |u| = 1 denotes the unit circle. This is equivalently the expectation of e f (tr U ) in the circular unitary ensemble (CUE), and the joint probability density of the eigenvalues can be read from this expression. One factor coming from the Jacobian is the square of the Vandermonde determinant i<j

(u i -u j ) = det 1≤i,j≤ (u j ) i-1 =: ∆, (3.4) 
others account for the volume of U( ). In terms of the "potentials" V (z) = r γ r z r introduced in Section 2.3.1, we recover right hand side of (3.1) by inserting

f (z) = -θ[V (-z) + V (-z)]. (3.5)
Here again we have an analogous expression to (3.1) for the distribution of the length (λ), by Proposition 2.5.

The original multicritical unitary matrix models

If we insert the coefficients γ for the minimal multicritical measure P a,m θ as in Definition 2.6 into the Schur measure, then the corresponding unitary matrix model by Theorem 3.1 are precisely the ones previously studied by Periwal and Shevitz [START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF][START_REF] Periwal | Exactly solvable unitary matrix models: multicritical potentials and correlations[END_REF]; the same coefficients (differing by an overall factor of m/(m + 1)) are found in [PS90a, Page 737] (the authors did not consider a "symmetric" potential with only odd terms, such as the ones given in Definition 2.8). In these references, the authors used orthogonal polynomials on the unit circle to compute the partition function Z of a U( ) unitary matrix model with probability density of the form of (3.2) in a regime where := xθ and as θ → ∞. The multicritical potentials were found starting from a potential of the form of (3.5), by tuning a minimum number of nonzero finite coefficients γ r such that the a particular function whose square is the second derivative of the free energy F(x) := lim →∞ -2 log Z in that limit would satisfy an equation in x which has 2m degenerate solutions at some positive coupling x = b (which turns out to be precisely the right edge coefficient of Definition 2.1).

For each of these minimal multicritical potentials, the authors studied the same second derivative in a critical scaling regime := bθ + sθ 1/(2m+1) . They found that, if F (b + sθ -2m/(2m+1) ) → q 2 (s) as θ → ∞, q(s) would satisfy the mth equation of the Painlevé II hierarchy. The seemingly coincidental appearance of the same integrable hierarchy in these models and in their momentum space flat trap fermion models (described in Section 2.2.1) was noted by Le Doussal, Majumdar and Schehr in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF]. In light of above correspondence, the origin of that coincidence is explained: by Theorem 2.2, the distribution P(λ 1 < ) converges in the critical scaling regime to the higher-order TW-GUE distribution F 2m+1 (s). Then by Theorem 3.1, the partition function Z converges to the same distribution too, up to a prefactor that does not depend on s, and the second derivative of the free energy can be identified with q 2 (s) of Theorem 2.3, which is a rigorous result from [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] showing that q(s) satisfies the same Painlevé II equation. In this sense, Theorems 3.1, 2.2 and 2.3 together give a rigorous proof of the orthogonal polynomial calculation of Periwal and Shevitz in [START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF]. Equally, the unitary matrix model picture gives a new heuristic derivation of the Painlevé II equations for the higherorder TW-GUE distribution.

The eigenvalue density In [START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF], the authors also found the explicit limiting eigenvalue density (α) at e -iα on the unit circle, with α ∈ [-π, π] (satisfying ´ (α)dα = 1), for any potential of degree up to 4. This generalises a calculation detailed in [START_REF] Gross | Possible third order phase transition in the large N lattice gauge theory[END_REF], and when the potential is multicritical and the coupling tuned to the critical value of θ = /b, the salient feature is that the density goes to zero at π with a vanishing exponent of 2m; to be precise, in terms of the fluctuation coefficient of Definition 2.1, one can show that

(α) ∼ 1 2π d b (π -α) 2m , α → π. (3.6)
In this respect, Periwal and Shevitz's multicritical matrix models are natural unitary analogues of Kazakov's earlier multicritical Hermitian matrix models [START_REF] Kazakov | The Appearance of Matter Fields from Quantum Fluctuations of 2D Gravity[END_REF], which exhibit similar behaviour at the edge of the eigenvalue support on the real line. Recalling the vanishing exponents of the limit shapes and limiting fermion densities associated with the multicritical measures as stated in Theorem 2.4, this is a kind of dual behaviour.

The phase transition

In terms of the coupling θ = θ(x) := /x (we opt in this case to let the matrix size be a large parameter and let the coupling θ scale accordingly), the point x = b corresponds to a phase transition for the partition function Z as tends to infinity; given Theorem 3.1 and by the multicritical limit shape theorem 2.4, we can see

immediately that as → ∞ e -θ 2 r rγr 2 Z → 0, x < b 1, x > b .
(3.7)

In the γ = (1, 0, 0, . . .), m = 1 case, by studying the GWW unitary matrix model directly, the free energy was shown to behave in this regime as follows [GW80, Wad80]1 (in this case, b = 2):

F(x) := lim →∞ 1 2 log Z = 2 x -3 4 + 1 2 log x 2 , x ∈ (0, 2] 1 x 2 , x > 2, (3.8) 
and this was the asymptotic result used to find the edge of the limit shape under the Plancherel measure in [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF] (where there is also a self-contained proof of the identity above). At x = 2, the third derivative F (x) is discontinuous; this associates the generic edge with a third-order phase transition. In [START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF], this limit behaviour also gave a new proof of a deviation bound for the first part of a Plancherel random partition of Deuschel and Zeitouni [START_REF] Deuschel | On increasing subsequences of I.I.D. samples[END_REF] (the same bound will be useful to us in the next chapter; see Proposition 4.20). The association of this phase transition with TW-GUE universal edge behaviour has broad ramifications. In [START_REF] Majumdar | Top eigenvalue of a random matrix: large deviations and third order phase transition[END_REF], Majumdar and Schehr related it to behaviour of the maximal eigenvalue in the GUE and in more general Gaussian ensembles, by studying large deviations and associating each tail with a side of the x = 2 coupling threshold of the GWW model. There, the break in the eigenvalue support at the critical coupling was related to the application of a "hard wall" to the GUE, in which the real eigenvalues are constrained to lie below a certain point. The authors make a particularly intuitive link with an early model of a complex system considered by [START_REF] May | Will a large complex system be stable?[END_REF], in which a random matrix determined couplings in the linear evolution of a vector of populations. There, there is a stability threshold for the population vector in terms of the maximum eigenvalue of the random coupling matrix, above which the system is stable and weakly interacting, below which the system is strongly interacting and unstable. For a simply critical Schur measure and the corresponding fermion model, we recognise the same kind of stable, weakly interacting phase in the "empty region" x > b the edge of the limit shape, and identify the "bulk" at x < b with the strongly interacting phase.

Le Doussal, Majumdar and Schehr suggested that the multicritical analogue of this phase transition would have a new scaling exponent of 2+1/m [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF]. This question was recently considered by Kimura and Zahabi [START_REF] Kimura | Unitary matrix models and random partitions: Universality and multi-criticality[END_REF], who found that, starting from the asymptotics of the higher-order TW-GUE distribution found in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] (stated here in Theorem 2.3) for the partition function Z corresponding to an order m multicritical Schur measure P m θ , one can make a general approximation of F(x) with

1 2 log Z = F c + Cd -1 m (x -b) 2m+1 m + O(e -c ), x ∈ (0, b) F c + O( -2 ),
x > b, as → ∞ (3.9)

where F c , c and C are constants; see [KZ21a, Section 5.3] for details and explicit formulas.

Here again we find a discontinuity only in the third derivative F (x) at x = b, but the scaling exponent associated with this third-order phase transition generalises from 3 to 2 + 1/m (in the terminology of [PS90a, LDMS18, KZ21a], the order of such a phase transition is 2 + 1/m). Interestingly, the authors noted that, by the above estimate, as the order of multicriticality m tends to infinity, the phase transition should become a second order one; some related asymptotics of the higher-order TW-GUE distribution are given in [KZ21a, Section 5.3.2]. As mentioned in Section 2.4.3, it would be particularly interesting to study this regime rigorously, starting from analysis of a minimal multicritical Schur measure in this limit.

An equivalence of Toeplitz and Fredholm determinants

Let us turn to proving the main part of Theorem 3.1, the unitary matrix integral expression for the edge distribution under a multicritical Schur measure. In fact, this is a special case of an identity holding for any Schur measure, aspects of which have been used in various works such as [START_REF] Borodin | A Fredholm determinant formula for Toeplitz determinants[END_REF] and [START_REF] Baik | Algebraic aspects of increasing subsequences[END_REF] -the multicritical case and the particularities of Periwal and Shevitz's approach will be discussed in the next section.

In the form we find to be the clearest, it states that Theorem 3.2 (Unitary matrix integral edge distribution of any Schur measure). If λ is a random partition under a Schur measure

P(λ) = e -r rtrt r s λ [t]s λ [t ]
for some sequences of Miwa times t, t , then for all positive integers e r rtrt r P(λ 1 ≤ ) = det 1≤i,j≤

f j-i = ˆU( ) e tr r (-1) r-1 (trU r +t r U * r ) DU (3.10)
where the symbol of the central Toeplitz determinant is

n∈Z f n z n = exp r≥1 (-1) r-1 (t r z r + t r z -r ) . (3.11)
From the DPP formulation of Schur measures, and specifically Theorem 1.45, the distribution on the left is the discrete Fredholm determinant

P(λ 1 ≤ ) = det(1 -K) l 2 ( +Z >0 ) (3.12)
where K is the integral operator of the kernel in (1.150). In [START_REF] Borodin | A Fredholm determinant formula for Toeplitz determinants[END_REF], Borodin and Okounkov used the first equality, which comes from Gessel's theorem from [START_REF] Gessel | Symmetric functions and P-recursiveness[END_REF], to prove a general Fredholm determinant formula for any determinant of a Toeplitz matrix, that is a matrix whose entries A i,j = A i+n,j+n are the same along each diagonal. The reference [BO00] includes further analytic formulations, which equally apply here. The symbol (3.11) of the Toeplitz matrix is a Fourier transform of its elements. The second equality arises in the context of Fourier analysis, and is called Heine's identity (see e.g. [START_REF] Forrester | Log-gases and random matrices[END_REF]). Slightly generalising Proposition 2.5, we can see that this implies that Corollary 3.3 (Equivalent conjugate partition formulation of Theorem 3.2). If λ is a random partition under a Schur measure P(λ) = e -r rtrt r s λ [t]s λ [t ] for suitable sequences of Miwa times t, t , then for all positive integers e r rtrt r P( (λ) ≤ ) = det 1≤i,j≤

g j-i = ˆU( ) e tr r (trU r +t r U * r ) DU (3.13)
where the symbol of the central Toeplitz determinant is

n∈Z g n z n = exp r≥1 (t r z r + t r z -r ) . (3.14)
We note in passing that as → ∞, the first equality in both versions of the theorem recovers a form of the strong Szegö theorem [START_REF] Simon | Orthogonal polynomials on the unit circle[END_REF]:

lim →∞ det 1≤i,j≤ f j-i = lim →∞ det 1≤i,j≤ g j-i = exp r≥1 rt r t r .
(3.15)

Proof of Theorem 3.2 . The conjugate formulation in Corollary 3.3 is slightly neater, so we prove it first.

The first equality of Corollary 3.3 may be written

λ: (λ)≤ s λ [t]s λ [t ] = det 1≤i,j≤ g j-i , (3.16) 
which, with g n as defined in (3.14), was proven by Gessel in [START_REF] Gessel | Symmetric functions and P-recursiveness[END_REF]. It follows from Definition 1.26 of the Schur measure by the Jacobi-Trudi formula, which gives

λ: (λ)≤ s λ [t]s λ [t ] = λ det 1≤i,j≤ h λ i -i+j [t] det 1≤i,j≤ h λ i -i+j [t ] (3.17)
where h i [t] denotes the complete homogeneous symmetric functions specialised in the Miwa times to t as in Definition 1.23, with generating function

i h i [t]z i = e r trz r =: H[t; z] (3.18)
and h i = 0 for all i < 0. The expression (3.17) is a sum of products of × minors of the non-square Toeplitz matrices

H = (H a,b ) 1≤a≤ 1≤b<∞ , H a,b = h b-a [t] H = (H a,b ) 1≤a≤∞ 1≤b< , H a,b = h a-b [t ]. (3.19)
The Cauchy-Binet identity (see e.g. [Ait56, Chapter IV] or [START_REF] Forrester | Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882-1883[END_REF]) gives, for any matrices A, B such that AB has dimensions × ,

L⊂{1,2,...} |L|= det A| L det B| L = det AB (3.20)
where A| L denotes the × submatrix of A including the rows indexed by L; noting that

H • H is × , this gives λ: (λ)≤ s λ [t]s λ [t ] = L⊂(1,2,3,...) |L|= det H| L det H | L = det H • H (3.21)
and the entries of the final matrix product are

(H • H ) a,b = i h i-a [t]h i-b [t ] = i h i-a+b [t]h i [t ], 1 ≤ a, b ≤ (3.22)
(the sum over i can run over all integers thanks to the convention h i = 0 for i < 0). Thus H • H is a Toeplitz matrix, and its symbol is (below we use

z a = z k+a z -k ) n z n i h i+n [t]h i [t ] = n i z i+n h i+n [t]z -i h i [t ] = H[t; z]H[t ; 1/z] = exp r≥1 (t r z r + t r z -r ) . (3.23)
This is precisely the Toeplitz determinant symbol generating the entries g n in the statement, so this proves the first equality.

To prove the second equality, or Heine's identity, we use the Cauchy-Binet identity in its continuous form; this is called the Andreïef identity, see e.g. [START_REF] Forrester | Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882-1883[END_REF]. For some space R equipped with a measure µ r and integrable functions Φ i , Ψ i on R for 1 ≤ i ≤ , this identity gives

ˆR• • • ˆR[det Φ i (z j )] • [det Ψ i (z j )]dµ r (z 1 ) • • • dµ r (z ) = ! det[ ˆR Φ i (z)Ψ j (z)dµ r (z)] (3.24)
where each determinant is over indices 1 ≤ i, j ≤ . We apply this to the unitary matrix integral on the right hand side, first writing it as an -fold contour integral on the unit circle

1 (2πi) ! ˛c1 • • • ˛c1 i=1 e r≥1 (tru r i +t r u -r i ) i<j |u i -u j | 2 du 1 u 1 • • • du u (3.25)
and then as an -fold integral over determinants: for the squared Vandermonde determinant, we have i<j

(u i -u j )(ū i -ūj ) = i<j (u i -u j )(u -1 i -u -1 j ) = det 1≤i,j≤ u i-1 j • det 1≤i,j≤ u 1-i j (3.26)
since |u i | = 1, then split i e r≥1 (trz r +t r z -r ) across each determinant to see that this integral is equal to the left hand side of the Andreïef identity expression (3.24) where we insert

R = c 1 , dµ r (u) = du 2πiu , Φ i (u) = u 1-i e r≥1 tru r , Ψ i (u) = u i-1 e r≥1 tru -r . ( 3.27) 
Then, the right hand side of the identity is det 1≤i,j≤ ˛c1 e r≥1 (tru r +t r u -r ) du u i-j+1 (3.28)

where the integral extracts precisely the Toeplitz matrix entry g i-j . This gives the second equality and completes the proof.

To prove the original equalities of Theorem 3.2 directly, we can proceed analogously from the dual Jacobi-Trudi formula Theorem 1.31. We have

e r rtrt r P(λ 1 ≤ ) = λ :λ 1 ≤ det 1≤i,j≤ e λ i -i+j [t] det 1≤i,j≤ e λ i -i+j [t ] (3.29)
where e i [t] are the elementary symmetric functions (see Definition 1.23), generated by

i e i [t]z i = e r (-1) r+1 trz r =: E[t; z]. (3.30)
Repeating the arguments above, we find

e r rtrt r P(λ 1 ≤ ) = det 1≤a,b≤ i e i-a+b [t]e i [t ] (3.31)
and the symbol of the Toeplitz determinant is

n z n i e i+n [t]e i [t ] = E[t; z]E[t ; 1/z] = e r (-1) r+1 (trz r +t r z -r ) (3.32)
which is the symbol in the statement; so, we have a determinant of f i-j , proving the first equality. This is the dual version of Gessel's theorem. Now once again we can start from the rightmost unitary matrix integral, and write it in the form of the left hand side of the Andreïef identity (3.24) with the same insertions (3.27), except for

Φ i (u) = u 1-i e r≥1 (-1) r+1 tru r , Ψ i (u) = u i-1 e r≥1 (-1) r+1 tru -r ; (3.33)
then, the right hand side of the identity gives us the determinant of a contour integral which extracts the coefficient f i-j from the generating function E[t; z]E[t ; 1/z], proving the second equality.

Of course, the same equalities can be derived from Corollary 3.3 by applying the classical involution ω : s λ ↔ s λ of Theorem 1.31 and then, by Proposition 1.32, applying it to the Miwa times, where ω(t r ) = (-1) r+1 t r and ω(t r ) = (-1) r+1 t r .

Extensions and the question of positive temperature With Theorem 3.2 proven, let us note that it can be applied to generalise our original Theorem 3.1, for instance to the generalised multicritical Schur measures of Section 2.4.2, whose asymptotic edge distributions were related to the Painlevé II hierarchy in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] (we note that the more subtle scaling regimes could be related to the "genus expansions" considered in [START_REF] Periwal | Exactly solvable unitary matrix models: multicritical potentials and correlations[END_REF]).

One interesting possible extension would be to periodic Schur measures (see Sections 1.2.3 and 2.4.1). In simplest rank 1 cases presented here, we would need a generalisation of Gessel's theorem to sums of weighted minors of fixed size of bi-infinite matrices. Since we can "pass to the grand canonical ensemble", and recover a measure with a Fredholm determinant edge distribution, we can hope that the same procedure finds a Toeplitz determinant distribution.

The large matrix limit and multicriticality

Let us now discuss how the unitary matrix models defined by the measure (3.2) are multicritical, first outlining the different approach to tuning a potential to multicriticality used in [START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF] which happens to coincide with our tuning of Miwa time coefficients in a Schur measure, then showing that our definition is sufficient to have a multicritical vanish exponent in the eigenvalue density to complete the proof of our main result (we present a rather short analysis).

The free energy with orthogonal polynomials

The approach used in [START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF] is to write the partition function Z for the × matrix model in terms of a family polynomials

{P i (z) = z i + i-1
j=1 a i,j z j } for i from 0 to on the unit circle which are orthogonal with respect to a measure µ r induced by the eigenvalue density, with

˛c1 P i (z)P j (z -1 )dµ r (z) := 1 2πi ˛c1 P i (z)P j (z -1 )e -θ[V (-z)+V (-z -1 )] dz z = T i 1 i=j (3.34)
(here, we let V (z) = r γ r z r denote an arbitrary potential, with γ r not yet fixed). Then, the Vandermonde determinant ∆ may be written ∆ = det 1≤i,j≤ P i (u j ) so that we have

Z = 1 (2πi) ! ˛c1 • • • ˛c1 |∆| 2 i=1 e -θ(V (-u i )+V (-u -1 i )) du i u i = i=1 T i . (3.35)
Writing a recurrence relation for the polynomials

P i+1 (z) = zP i (z) + R i z i P i z -1 , ( 3.36) 
the normalisation gives (by some standard manipulations of orthogonal polynomials with respect to a measure which is invariant under inversion, see e.g. [START_REF] Simon | Orthogonal polynomials on the unit circle[END_REF]) that T i+1 /T i = 1 -R i 2 , and so

Z = i=1 T i T i-1 -i = i=1 1 -R i-1 2 -i . (3.37)
This coefficient is related to the free energy F(x) = lim →∞ -2 log Z in the regime θ := /x as → ∞ by the heuristic

1 -R 2 = Z +1 Z -1 Z 2 → 1 -F (x). (3.38)
Hence, R in the limit → ∞ is a heuristic approximation of the root of the second derivative of the free energy.

The tuning to order m multicriticality involves finding a potential V for which R(x) := R xθ satisfies an equation with 2m degenerate solutions as θ → ∞ at some x. The main tool used is the following relation, found from d/dz ¸c1 P +1 (z)P (z -1 )dµ r = 0:

( + 1) R 2 1 -R 2 = x ˛c1 V (-z) - 1 z 2 V (-z -1 ) P +1 (z)P (z -1 )dµ r = x ˛c1 1 z r≥1 r(-1) r γ r (z r -z -r )P +1 (z)P (z -1 )dµ r . ( 3.39) 
The right hand side can also be expressed as a combination of coefficients R +i where, if the potential V has degree D, i ranges from -D to D. Making a continuity assumption, these coefficients are all approximated by R(x) in the limit, and we recover a polynomial in R(x) of degree 2D, with coefficients determined by the potential coefficients γ r .

In [PS90a, Section 2], a general procedure to tune γ r and x to have an order 2m degeneracy is described; with the constraint that D = m, the authors find a general expression for the final contour integral above, and by some non-trivial calculations find precisely the coefficients of the minimal multicritical measure and critical coupling x = b given at Definition 2.6. It is natural to expect the general multicriticality conditions of Definition 2.1 to be a simple solution to this problem as well, it would be interesting to show this. It is from the same equation (3.39) above that, after setting the potential to be multicritical and setting q(s) := R at := bθ + sθ 1 2m+1 in a large θ limit, that one can recover an order 2m ordinary differential equation (using an assumption of smoothness) for q(s) -as mentioned above, the resulting equation is the mth element of the Painlevé II hierarchy [START_REF] Periwal | Exactly solvable unitary matrix models: multicritical potentials and correlations[END_REF].

The limiting eigenvalue density A natural statistic to study in the large matrix and large coupling limit is the limiting density of eigenvalues. For unitary matrices, this is a function on the unit circle c 1 ; letting ξ = {ξ 1 , . . . , ξ } with -π ≤ ξ j ≤ π denote the set of arguments of the eigenvalues e iξ j of a random unitary matrix U , the eigenvalue density ∈ [0, 1] is such that in the limit as → ∞,

P(ξ ∩ [β 0 , β 1 ]) = ˆβ1 β 0 (α)dα, β 0 , β 1 ∈ [-π, π] (3.40) 
(and hence ´π -π (α)dα = 1). For a measure of the form (3.2) (where for simplicity we put remove the minus signs from the arguments of the potential), in a regime with coupling θ := /x, this function is computed by a standard steepest descent analysis, following [START_REF] Brézin | Planar diagrams[END_REF] and generalising the approach in [START_REF] Gross | Possible third order phase transition in the large N lattice gauge theory[END_REF].First, we write the measure induced on the eigenvalue arguments as

exp   x j=1 V (e iα j ) + V (e -iα j ) + j =k log sin α j -α k 2   dα 1 • • • dα (3.41)
(note that, thanks to the inversion invariance, the sum of potentials can be written as a polynomial of cosines; in physical terms, this optimisation problem corresponds to finding the equilibrium distribution of a "Coulomb gas" on c 1 ). Putting the eigenvalue arguments in non-decreasing order α 1 ≤ α 2 ≤ . . . and defining rescaled functions α(u) := α u , the → ∞ corresponds to an optimisation problem for a functional appearing exponentiated in the integrand:

1 x ˆ1 0 [V (e iα(u) ) + V (e -iα(u) )]du + 1 0 1 0 log sin α(u) -α(v) 2 du dv (3.42)
where ffl denotes the Cauchy principal part. Now if the non-decreasing function α is the equilibrium limiting eigenvalue distribution, it is related to the limiting density by (α) = du/dα, and we can write the optimising condition above as

i x e iα V (e iα ) -e -iα V (e -iα ) = 1 0 cot α -α(v) 2 dv = βc -βc (β) cot α -β 2 dβ (3.43)
where the support [-β c , β c ] of is also to be determined.

With this toolbox, we can finally claim that the unitary matrix models of Theorem 3.1 are multicritical.

Proof of Theorem 3.1. Applying Theorem 3.2 to P m θ by inserting t = t = θγ, where γ are the coefficients of a multicritical measure with right edge and fluctuation coefficients b, d, we have the first exact identity (3.1) of the theorem. Now let us show that the measure on unitary matrices (3.2) gives rise to multicritical vanishing in the limiting eigenvalue density.

From the formula (3.43) above for the limiting density in a regime θ := /x as → ∞ for some x, we make a shift of variables α → α -π to account for the change in sign in the potentials, and then we have

βc -βc (β) cot α -β 2 dβ = - i x e i(α-π) V (e i(α-π) ) -e -i(α-π) V (e -i(α-π) ) = - 1 x r≥1 2rγ r sin r(α -π) (3.44)
and the support of is [-β c , β c ]. We will approach the critical point from one side only2 , and let x be sufficiently large that is supported on [-π, π]. Then, with the additional requirement (π) = (π), we follow the steps of [ Not that this is indeed well normalised on [-π, π], and that, using the final condition of (2.1) in the definition of the multicritical potential coefficients, there is a unique minimum at α = π we have ∈ (0, 1] for all x > b. At x → b, we have the appearance of a single cut as (π) → 0; developing in α -π close to zero, we employ the multicriticality conditions (2.2) and the definitions of b, d once again to find that

(α) ∼ 1 2π d b (α -π) 2m , α → π. (3.47)
We recognise the multicritical vanishing exponent of 2m, and classify the unitary matrix model as multicritical to complete the proof.

In light of the discussion in Section 2.4.3 of the asymptotic analysis of Hermitian Schur measures with a "split Fermi sea", let us remark that lifting the final condition of (2.1) presents an analytic challenge on the unitary matrix model side too, since multiple cuts can now appear in the density support.

Hermitian matrix models, fermions and combinatorial maps

In this section we consider models of random Hermitian matrices, in particular the GUE, which is the ensemble of N × N Hermitian matrices distributed by the probability measure

P(M )DM = 1 Z GUE e -1 2 tr M 2 DM (3.48)
where DM denotes the Lebesgue measure on Hermitian matrices H(N ), explicitly

DM = N i=1 dM ii i<j dM ij d Mij , (3.49)
and Z GUE = (2π) N 2 /2 is a normalisation factor from integration over H(N ) (which we will not consider further). This ensemble also had a natural definition in terms of the entries of a random element M (or as a particular type of Wigner random matrices): its diagonal entries M ii are i.i.d. real normal random variables of mean zero and variance 1, its off diagonal entries M i,j =i are i.i.d. complex normals with mean zero and variance 1/2. We refer to [AGZ09, Chapter 3] and to [Meh67, Chapters 3 and 4] as general references.

In studying the edge fluctuations of random partitions, this probably the most natural matrix model correspondence to consider, as the universal TW-GUE distribution can be defined, following [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] in which it was first observed, in terms of the maximal eigenvalue ζ max of a GUE random N × N matrix as

F GUE (s) := lim N →∞ P ζ max - √ 2N 2 -1/2 N -1/6 < s .
(3.50)

The higher-order analogues F 2m+1 of F GUE found in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] (here defined in Theorem 2.2) have, for now, no analogous definition. Without a multicritical analogue for this correspondence, in this section we shall only discuss classical results and some perspectives.

At this point let us be somewhat more precise about the correspondence of the edges of the GUE and the Plancherel measure. As conjectured by Baik, Deift and Johansson [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF] and proven by Okounkov [START_REF] Okounkov | Random matrices and random permutations[END_REF], the equivalence of the asymptotic edge distributions may be improved as follows:

Theorem 3.4 (Convergence to GUE eigenvalues under the Plancherel measure [START_REF] Okounkov | Random matrices and random permutations[END_REF]). Let λ = (λ 1 , λ 2 , . . .) n be a random partition under the Plancherel measure P n , and let (ζ 1 ≥ ζ 2 ≥ ζ 3 ≥ . . . be the eigenvalues of an n × n random matrix in the GUE (indexed in non-increasing order), and let

λi := n 1/3 λ i 2n 1/2 -1 , ζi = n 2/3 ζ i 2 1/2 n 1/2 -1 (3.51)
for each i. Then, in the limit as n → ∞, the joint distributions of λ1 , λ2 , . . . , λr and ζ1 , ζ2 , . . . , ζr are identical for any fixed positive integer r.

In other words, both λ1 , λ2 , . . . , λr and ζ1 , ζ2 , . . . , ζr converge in distribution to the same limiting ensemble; this limiting ensemble is the Airy ensemble, that is the DPP on the real line whose kernel is the Airy kernel. The convergence to this ensemble under the Poissonised Plancherel measure is discussed in Section 1.3.3, and implicitly proven as a special case in Section 2.3.3. A goal of this section is to justify the fact that the greatest eigenvalues in the GUE converge to the same ensemble. We opt for a heuristic presentation, via the physical models discussed in the last section and in Sections 1.3.2 and 2.2.2.

From the Gaussian unitary ensemble to free fermions

The convergence of the GUE eigenvalues to the Airy ensemble is, as in the Poissonised Plancherel measure case, the convergence of a discrete space DPP to a continuous space one. Just as in the case of Hermitian Schur measures, the DPP formed by the GUE eigenvalues at finite N is naturally related to physical fermions. In particular: the joint probability density function (PDF) of the eigenvalues in an N × N GUE matrix is equivalent to the joint PDF of the positions of N fermions in the ground state in a harmonic potential on the real line.

Orthogonal polynomials again One way to show this is to apply an orthogonal polynomial approach similar to the one discussed in Section 3.1.3 above. Using the measure's U(N ) invariance to diagonalise the integration variable M (which leads to a factor from the Haar measure of U(N ), see [START_REF] Meckes | The random matrix theory of the classical compact groups[END_REF] or [AGZ09, Section 4.1.1]), we write a joint eigenvalue distribution induced by (3.48)

P(ζ 1 , . . . , ζ N )dζ 1 • • • dζ N = 1 Z e.v. i<j (ζ i -ζ j ) 2 e -1 2 i ζ 2 i dζ 1 • • • dζ N , (3.52)
where Z e.v. is a normalisation factor differing from Z GUE by the ratio of the volumes of U(N ) and U(1) N . Recognising that we have a square of a Vandermonde determinant

∆ = i<j (ζ i -ζ j ) = det ζ i-1 j
again, we can immediately write the joint PDF as the L 2 norm of a determinant of a function, having the form of a joint PDF found from a quantum mechanical model in the ground state (see Section 1.3.2), as

|Φ 0 (ζ 1 , . . . , ζ N )| 2 dζ 1 • • • dζ N , Φ 0 (ζ 1 , . . . , ζ N ) = det 1≤i,j≤N 1 ! √ T i P i (ζ j )e -1 4 ζ 2 i (3.53)
for some family of polynomials {P i (x) = x i + i-1 j=1 a i,j x j } and normalisations T i , for i from 0 to N . Now, in order for the Slater determinant above to correspond to a quantum mechanical state, the "single particle wavefunctions" ϕ i (x) := P i (x j )e -1 4 x 2 i / √ T i must be orthonormal; hence, we need a set of orthogonal polynomials on the real line such that ˆ∞ -∞ P i (x)P j (x)dµ r (x) := ˆ∞ -∞ P i (x)P j (x)e -1 2 x 2 dx = T i 1 i=j .

(3.54)

From this orthogonality condition, we can look at ´xP i (x)P j (x)dµ r (x) to find (again applying some standard procedures; see e.g. [START_REF] Simon | Equilibrium measures and capacities in spectral theory[END_REF]) and, noting that it is zero if |i-j| > 1, see that we have a recursion of the form

xP j (x) = P j+1 (x) + R j P j (x) + T j T j-1 P i-1 (x). (3.55)
Now, by differentiating ´Pi (x)P i (x)dµ r (x) and then ´xP i (x)P i (x)dµ r (x) = 0 we find R j = 0 and T j = j!, and

P j+1 (x) = xP j (x) -jP j-1 (x), P j (x) = jP j-1 (x); (3.56)
putting the second equality into the first, this is precisely the recurrence relation of the Hermite polynomials He j (x) = (-1) j e 1 2 x 2 d j dx j e -1 2 x 2 .

(3.57)

The single particle eigenfunctions

ϕ j (x) = 1 √ j! He j (x)e -1 4 x 2 (3.58)
arise in quantum mechanics, as the single particle eigenfunctions defining coherent states of the harmonic oscillator; recalling the trapped fermions discussion of Section 2.2.1, these are eigenfunctions of -d 2 /dx 2 + x 2 . By the first quantisation approach to DPPs discussed in Section 1.3.2, we recover the classical result that Proposition 3.5 (DPP from the GUE, see e.g. [START_REF] Mehta | Random Matrices and the Statistical Theory of Energy Levels[END_REF]). The eigenvalues of an N × N GUE random matrix form a DPP on the real line with kernel

K N (x, y) = ∞ j=1 1 j! He j (x)He j (y)e -1 4 (x 2 +y 2 ) (3.59)
where He j (x) denotes the Hermite polynomial given at (3.57).

We have an exact correspondence between the GUE and a trapped fermion model (which we have already shown to have the asymptotic edge behaviour characteristic of the GUE).

Local and global limiting behaviour Following Proposition 3.5, the large matrix limit of the GUE can be studied finely. In analogy with the previous discussion of the bulk behaviour of Hermitian Schur measures in Section 2.3.2, the GUE eigenvalue ensemble has both a "local limit", which is the limit of the kernel K N of points a finite distance apart as N → ∞, and a "scaling limit", which is the limiting density of eigenvalues. In the first case, as N → ∞ we have

K N (u √ N + x, u √ N + y) → sin π(x -y) π(x -y) , ( 3.60) 
and this was used in the work of Dyson, Mehta and Wigner (see [START_REF] Mehta | Random Matrices and the Statistical Theory of Energy Levels[END_REF] for a very clear overview) to study the spacing of eigenvalues in the GUE. This sine kernel is an immediate continuum analogue of the limiting discrete sine kernel of the bulk of a Hermitian Schur measure (see Lemma 2.13); in a model of trapped fermions, one can find the same ground state propagator from a local density approximation (see [START_REF] Stéphan | Free fermions at the edge of interacting systems[END_REF], or Section 2.2.3 for a discrete analogue).

In terms of a rescaled coordinate w := u √ N , in the N → ∞ limit the density of eigenvalues is given by Wigner's semi-circle law, with

(u) = 1 π √ 2 -u 2 , |u| ≤ √ 2 0, |u| ≥ √ 2.
(3.61)

Comparing with the VKLS limit shape of the Plancherel measure (see Theorem 1.35), the fact their edges lie in the same universality class is indicated by the same vanishing exponent of 1/2 appearing in either case. At that u = √ 2 edge, we of course have, as

N → ∞, 1 2 1/2 N 1/6 K N √ 2N + x 2 1/2 N 1/6 , √ 2N + y 2 1/2 N 1/6 → A(x, y) (3.62)
where A denotes the classical Airy kernel.

Beyond the Gaussian unitary ensemble and beyond free fermions

Universality of Hermitian matrix models Universality in random matrix theory is a particularly rich and well understood subject, with the rare distinction that there exist some rigorous proofs of universality itself for matrices (see for instance Tao and Vu's work on the universality of certain GUE statistics for a wide class of Hermitian and real symmetric random matrices [START_REF] Tao | Random matrices: Universality of local eigenvalue statistics[END_REF]). We will not explore this subject in any of the depth it deserves, but just make some brief comparisons with the universality picture for free fermions and for partitions that we have considered until now. Firstly, let us note that the universality of trapped fermions has a direct analogue for Hermitian matrix models: in the terminology of [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF], the convergence to the Airy and sine kernels holds when the -1 2 tr M 2 term in the exponential is replaced with any "not finely tuned" polynomial potential tr V (M ). This gives a direct analogy to the notion of "generic" confining potentials or generic Hermitian Schur measure specialisations previously discussed. We must make the caveat, however, that there is no general correspondence between confining potentials for fermions on the real line and Hermitian matrix model potentials; the GUE/harmonic potential one is a rare benchmark.

Universality of Gaussian matrix ensembles

The GUE serves as an important benchmark for another family of matrix models: different matrix or eigenvalue ensembles with Gaussian measures. There are two natural analogues to the GUE, where the Hermitian matrices are replaced with real symmetric and Hermitian quaternionic matrices; the unitary symmetry group is replaced with an orthogonal one and a symplectic one respectively, and these ensembles are thus called the GOE and the GSE. In the corresponding measures on eigenvalues, the square of the Vandermonde determinant is replaced by a single Vandermonde determinant in the GOE and a fourth power of the same in the GSE; looking only at the eigenvalues, one can treat the exponent of the Vandermonde determinant, by convention denoted β, as a parameter and let it be real valued. In the general family of "Gaussian β ensembles" (GβE) of points on the real line, the GUE is unique in that it defines a DPP, and importantly it has some universal properties. An interesting distinction between the kind of universality seen in this family and in the others we have discussed is that the GUE, GOE and GSE all share a universal limiting eigenvalue density given by the Wigner semi-circle law (3.61), but have asymptotic edge distributions differing from F GUE (we saw the opposite for each order of multicritical Schur measures). In terms of a random partition analogue of this picture, we can refer to the universality connection between a discrete analogue of the GβE and certain nondeterminantal deformations of the Plancherel measure called Jack-Plancherel measures found by Guionnet and Huang [START_REF] Guionnet | Rigidity and edge universality of discrete β-ensembles[END_REF].

The question of a multicritical extension Returning to the universality picture for Hermitian matrix models with generic potentials, it is natural to ask what asymptotic behaviour can we find for a finely tuned potential? And, in particular, can we find the same kind of multicriticality we had for free fermions, unitary matrix models, and Schur measures? For now, the established finely tuned potentials appear not to exhibit the precise multicritical edge behaviour we considered. From an analytic perspective, different multicritical asymptotics which are also related to the Painlevé II hierarchy have been observed for random Hermitian matrices, for example by Claeys, Its and Krasovsky [START_REF] Claeys | Higher-order analogues of the Tracy-Widom distribution and the Painlevé II hierarchy[END_REF] who tuned even-degree potentials. We do not know if this could be related to our multicritical models. Another candidate is of course Kazakov's original multicritical Hermitian matrix models [START_REF] Kazakov | The Appearance of Matter Fields from Quantum Fluctuations of 2D Gravity[END_REF]; it would be interesting to study their edge behaviour in depth, but we note that the vanishing exponents in these models generalise in a different way from ours, implying we should not expect them to belong to the same universality class.

The multicritical unitary matrix models may present a path to finding related Hermitian ones-we might note naively that if H is Hermitian then exp(iH) and (i -H)(i + H) are both unitary, one can pass from one picture too another, but the observables we are comparing on either side (partition functions and edge distributions) are not easily related.

A connection with Laguerre unitary ensembles Let us discuss a connection between another Hermitian matrix model and the Plancherel measure, which is less well understood but which does relate to our previous discussion of unitary matrix models. Consider the Laguerre unitary ensemble (LUE) of N × N matrices for given real θ > 0 and integer > 0, with measure

P N (M )DM = 1 Z LUE e -tr M (det M ) DM. (3.63)
The induced measure on ordered sets of eigenvalues

x 1 < x 2 < • • • < x N is P N (x 1 , . . . , x N )dx 1 • • • dx N = 1 Z e.v. 1≤i<j≤N (x i -x j ) 2 1≤i≤N e -x i x i dx 1 • • • dx N (3.64)
(in either case, Z LUE and Z e.v. are normalisations). The eigenvalues in this model form a DPP with kernel given by Laguerre polynomials-see e.g. [START_REF] Forrester | Log-gases and random matrices[END_REF]. If we look at the lowest eigenvalue x 1 at the "hard edge" at 0 and rescale the eigenvalues to x = x i /N and take N → ∞, we obtain the continuous Bessel ensemble DPP of Tracy and Widom [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF]. Moreover, it can be proven (see e.g. [START_REF] Borodin | Increasing subsequences and the hardto-soft edge transition in matrix ensembles[END_REF] and references therein) that the gap probability for the interval (0, 4θ 2 ) in the continuous Bessel ensemble equals a similar gap probability in the discrete Bessel ensemble. In terms of a unitary matrix integral, we have [BF03, Equation (2.8)]:

lim

N →∞ P N x 1 N > 4θ 2 = e -θ 2 ˆU( ) e θ tr(U +U * ) DU (3.65)
As we showed for the right hand side in Theorem 3.2, both quantities above are Fredholm determinants so we have

det(1 -J ) L 2 (0,4θ 2 ) = det(1 -J θ ) l 2 ( + 1 2 +Z ≥0 ) (3.66)
where J is the continuous Bessel function of [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF], defined as

J (x, y) = ˆ1 0 J (2 √ ux)J (2 √ uy)du (3.67)
and J θ is the usual discrete Bessel kernel defined at (1.176). It is possible that the equality (3.65) is not a mere coincidence and so might have a multicritical extension, and hence define a "multicritical Laguerre ensemble" (although we do not know what a natural definition of multicriticality for such a model would be).

From Hermitian matrix models to combinatorics of maps

To conclude our discussion on random Hermitian matrices, we outline a further connection between them and discrete geometric objects called maps. Although we will take somewhat of a detour to introduce them, using a perturbative matrix integral calculations, we will ultimately be interested in maps as purely combinatorial objects.

In Chapter 4 we present an approach to studying random maps using random partitions.

A diagrammatic approach to Hermitian matrix integrals Let us consider once again random N × N Hermitian matrices in the GUE, and look at correlations of random matrix entries M ij . Denoting an expectation with respect to the Gaussian measure with • , for a two-point correlation we find, by the symmetries of the model,

M ij M k := 1 Z GUE ˆH(N) e -1 2 tr M 2 M ij M k DM = 1 i= 1 j=k . (3.68)
From the symmetry, it is clear that the correlation of an odd number of matrix entries will be exactly zero. Then, the correlation of any even number 2n of matrix entries can be reduced to two-point correlations. This is an application of rule we have already seen applied to free fermion ground state propagators, Wick's theorem (see Lemma 1.46). For a 2n-point correlation under any Gaussian measure, we have that

M i 1 j 1 M i 2 j 2 • • • M i 2n-1 j 2n-1 M i 2n j 2n = disjoint pairs i (a i ,b i )=(1,...,2n) M ia 1 ja 1 M i b 2 j b 2 • • • M ia 2n-1 ja 2n-1 M i b 2n j b 2n (3.69)
Following an approach to random matrix models initiated in [START_REF] Brézin | Planar diagrams[END_REF], we apply a diagrammatic method from quantum field theory to this simple situation; see e.g. [START_REF] Bouttier | Enumeration of maps[END_REF] for a clear overview. We draw a "Feynman diagram" for each GUE expectation, where for each two-point correlation M ij M k , or propagator, we draw an edge connecting two vertices, each labelled with the indices of the entries; so the edge connects a vertex labelled (i, j) and another labelled (k, ). If we consider how the propagator changes upon exchanging indices (in particular, that M ij M k is different but M ji M k is the same), one can see that an effective way to draw the vertices and edge is to draw two parallel "half-edges", one connecting i to and the other connecting j to k, and to give them opposite orientations -namely, we draw one arrow in the i to direction on that half-edge and another arrow in the k to j direction on the corresponding half-edge (note that this is a particularity about Hermitian matrices; if the matrices were real symmetric, we would have no need for this orientation).

With these ribbon-like edges associated to the propagators, consider the insertion of a trace tr

M d = i 1 ,...i d M i 1 i 2 M i 2 i 3 . . . M i d i 1 (3.70)
into a correlation, for some positive integer d. Diagrammatically, we can associate this with a vertex on which d edges are incident, or where d half-edges with ordered labels meet without crossing one another (a vertex of degree d). If we take some correlation

C d 1 ,...,dn = tr M d 1 • tr M d 2 • • • tr M dn (3.71)
we will have a series of "ribbon diagrams", each containing n vertices of degree d 1 , . . . , d n . The diagrams will include all consistent ways of connecting the half-edges consistently so that there are no twists in any edge; meanwhile, the number C d 1 ,...,dn itself simply counts the number of these ribbon diagrams (with over-counting due to symmetries; we will overlook this for this discussion). So, fixing some set of formal variable w 1 , w 2 , . . ., we can see that a GUE expectation

e n vn tr M n = 1 Z GUE ˆH(N) e -1 2 tr M 2 + n vn tr M n DM (3.72)
generates all numbers of ribbon diagrams, with C d 1 ,...,dn weighted by

v d 1 • • • v dn .

Ribbon graphs and maps

The ribbon diagrams constructed this way are the main objects that interest us. Considering just an individual ribbon diagram, we can see that the ribbon edges add an extra orientation to a normal graph. If we look at each closed half edge, we can see that they cut of regions of space. The objects in question, more generally called maps, may be defined as follows:

Definition 3.6 (Combinatorial map, its graph and genus). A graph is a set of vertices V and a set of edges E, along with a set of incidence relations which associate a vertex to each end of each edge. If it is impossible to separate V into two disjoint sets V 1 , V 2 such that no element of V 1 shares an edge with an element of V 2 , the graph is called connected. A map is a graph equipped with a cyclic ordering of the edges around each vertex, such that there exists a set of faces F where each edge is incident on two faces and two consecutive edges around one vertex are incident on the same face.

A map is called connected if its graph is connected. The genus g of a connected map is related to its vertices, edges and faces V, E, F by the Euler characteristic relation

χ := #V -#E + #F = 2 -2g (3.73)
and χ is the Euler characteristic.

One could equally define or describe maps in other ways. On one hand, fixing the cyclic ordering of vertices corresponds to deciding how to draw a graph; a map may be defined as a graph drawn on a surface, with the constraint that the edges cannot overlap. If a connected map is represented as a graph on a closed surface of minimal genus (or number of "handles"), the genus of the surface is the genus g computed by the Euler characteristic relation (3.73). A map could equally be considered as sets of faces and edges with incidence relations and cyclic ordering, or in other words as a gluing of polygons. Starting from a closed surface, a map can be seen as a discretisation. Let us also note that is particularly natural to encode the data of a map with permutations.

Map ensembles and universality

Maps have been a subject of intense interest in combinatorics, since Tutte's seminal work on the planar (g = 0) case [START_REF] Tutte | A census of planar maps[END_REF]. The enumeration of ensembles of maps constructed under different constraints (on vertex and face degrees, for instance, or with rules for alternately colouring vertices or faces) is a rich subject, and related to the main theme of this thesis in an important way: for various ensembles of maps of fixed genus, in the limit as the map size tends to infinity, we have universal exponents in the asymptotic enumeration of 5 2 (g -1) (see e.g. [START_REF] Chapuy | Asymptotic enumeration of constellations and related families of maps on orientable surfaces[END_REF]). Uniform random elements of map ensembles also exhibit universality, as geometric objects: as first show by Le Gall and Miermont [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF][START_REF] Miermont | The brownian map is the scaling limit of uniform random plane quadrangulations[END_REF], when considered as metric spaces, an important class of random planar maps converge in a strong sense to a single scaling limit (the Brownian sphere).

Genus expansions from matrix models

Returning to the matrix model picture, the planar maps are particularly important there too. From the formal series (3.72) we can write a generating function for connected maps as

F N (v 1 , v 2 , . . .) = 1 N 2 log 1 Z GUE ˆH(N) e -1 2 tr M 2 + n vn tr M n DM (3.74) 
(i.e. a free energy associated with a partition function which is a matrix model generating function). Noting that each vertex corresponds to a trace in the matrix integral and a factor of N v n if the vertex has degree n, and that each face contributes another trace (by closing a half edge loop in a ribbon diagram), while each edge contributes a factor of 1/N , we see that F N is an expansion in N weighted by χ -2; in other words a genus expansion, with

F N (v 1 , v 2 , . . .) = ∞ g=0 N -2g F (g) (v 1 , v 2 , . . .) (3.75)
where F (g) is the generating function of maps with genus g. The large matrix limit therefore corresponds to a planar limit in these diagrams, as first considered by 't Hooft [tH74], in which g = 0 diagrams dominate. We should note that approach involves divergent series, and so is not in itself rigorous. However, it has lead to important asymptotic estimates for planar maps that have since been proven bijectively (see for instance [START_REF] Bouttier | Census of planar maps: From the one-matrix model solution to a combinatorial proof[END_REF]), as well as to the development of powerful tools such as the topological recursion [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].

Random maps and asymptotic edge behaviour of random partitions

Let us turn our attention back to the asymptotic edge correspondence of the GUE and the Plancherel measure, and to Theorem 3.4. In the seminal paper [START_REF] Okounkov | Random matrices and random permutations[END_REF], Okounkov proved this theorem before the DPP arising from the Poissonised Plancherel measure was known, using a remarkable combinatorial approach. His proof related GUE eigenvalues to map enumeration by the correspondence sketch above, then exploited a connection between maps and ramified coverings of the sphere and finally related the enumeration of ramified coverings to parts of a Plancherel random partition by way of the Jucys-Murphy elements.

Chapter 4

The Plancherel-Hurwitz measure This chapter presents joint work with Guillaume Chapuy and Baptiste Louf, and is adapted from [2]. We consider random partitions under a deformation of the Plancherel measure which appears naturally in the context of Hurwitz numbers: its normalisation counts transposition factorisations of the identity on symmetric groups, which have topological interpretations, the most combinatorial one being certain maps. We prove that in an asymptotic regime where the number of factors in the corresponding factorisations grows linearly with the order of the group and the maps are of high genus, a random partition exhibits a new twofold limit phenomenon. The first part becomes very large, while the rest of the partition has the VKLS limit shape of the Plancherel measure. As a consequence, we obtain asymptotic estimates for unconnected Hurwitz numbers in this regime, which we use to study corresponding uniform random maps. This is also an estimate for a return probability of a random transposition walk on a symmetric group.

Morally, we follow an inverse approach to that of Chapters 2 and 3. Whereas the measures previously discussed were physically motivated but studied using their intrinsic algebraic structures, here our measure is explicitly motivated by an algebraic identity but we do not (for now) have an algebraic method to study it. Instead, our proofs employ a variety of estimates to optimise entropies of the measure. 

Chapter contents

New twofold limit behaviour for random partitions

In this section we introduce the probability law on partitions that we study, called the Plancherel-Hurwitz measure, and state our main result for its limiting behaviour in a linear regime. We discuss two notable contexts in which the same measure previously appeared (indirectly and without a name): firstly, work by Okounkov [START_REF] Okounkov | Toda equations for Hurwitz numbers[END_REF] relating a Poissonised version to the Toda integrable hierarchy, and secondly work by Diaconis and Shahshahani [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF] on random walks on symmetric groups.

Laws on partitions from laws on sequences of permutations The measure we introduce originates from a connection between partitions and elements of symmetric groups.

Famously, the classical Plancherel measure

P n (λ) = f λ 2 n! (4.1)
on partitions λ n (discussed in Section 1.2.1) arises from the uniform law on the order n symmetric group S n by one such connection: it is the law of the shape of the Young tableaux associated bijectively to a uniform random permutation by the RSK algorithm [START_REF] De | On the representations of the symmetric group[END_REF][START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] (see Theorem 1.12). This law has been subject to intense interest since, by Greene's theorem 1.13 [START_REF] Greene | An extension of Schensted's theorem[END_REF], the parts of a Plancherel random partition give the lengths of the monotone subsequences of a uniform random permutation. Moreover, the Plancherel measure has elegant asymptotic properties -we highlight once again the VKLS limit shape theorem 1.35 [START_REF] Vershik | Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux[END_REF][START_REF] Logan | A variational problem for random Young tableaux[END_REF] and the BDJ edge fluctuation theorem 1.37 [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF] (thanks to the RSK correspondence, the asymptotic behaviour of the first part has important ramifications since it corresponds to the length of the longest increasing subsequence of a uniform random permutation; we refer again to Romik's book [START_REF] Romik | The Surprising Mathematics of Longest Increasing Subsequences[END_REF] for a wonderful introduction).

From another perspective, the Plancherel measure arises from the application of purely representation theoretic identity (1.22) to the symmetric group, which equates the size of S n to the sum of the squares of the dimensions of its irreducible representations. Dividing both sides by n!, we recognise the normalisation of P n . Beyond S n itself, the sizes of other sets of sequences of permutations can be expressed as sums over irreducible representations of S n , i.e. over partitions of n. One powerful classical result Frobenius' formula stated in Theorem 1.16 expresses the number of factorisation of the identity on S n by permutations of given cycle type as a sum of the products of their normalised characters on irreducible representations. This way we can find many measures on partitions of n, each corresponding to a uniform law on sequences of elements of S n with certain constraints. As the correspondence is not bijective, however, the statistics on the partition side cannot be readily interpreted on the factorisation side.

Transposition factorisations and partitions

We consider a measure arising naturally from a simple application of Frobenius' formula. It is motivated by the study of Hurwitz numbers and branched coverings of the sphere, which are realized combinatorially by transposition factorisations or equivalently by certain discrete surface called Hurwitz maps; we define the measure from the transposition factorisation side, but later focus on the Hurwitz map side, which we discuss in Section 4.2. The Hurwitz maps perspective notably motivates the asymptotic regime in which we study these measures, which is related to "high genus" surfaces. At the level of random partitions, this is a regime in which the limit behaviour generalises the VKLS one in a rather novel way, see Figure 4.1.

For a non-negative integer , we let H n, be the unconnected Hurwitz number of Definition 1.20, counting factorisations of the identity on S n into transpositions:

H n, = #{(τ 1 , τ 2 , . . . , τ ) ∈ (S n ) , τ 1 • τ 2 • • • τ = 1, each τ i is a transposition}. (4.2)
As mentioned in Section 1.1.2, by a classical correspondence between transposition factorisations and branched coverings of the sphere going back to Hurwitz himself ( [START_REF] Hurwitz | Ueber riemann'sche flächen mit gegebenen verzweigungspunkten[END_REF], see also e.g. [START_REF] Lando | Graphs on surfaces and their applications[END_REF]), the number H n, enumerates degree n coverings of the Riemann sphere with numbered, simple, ramification points, by an oriented surface (connected or not). Recalling Corollary 1.21 of Theorem 1.18, Frobenius' formula together with the combinatorial representation theory of S n provides an explicit expression for this number, with

H n, = 1 n! λ n f λ 2 C λ (4.3)
where C λ denotes the sum of contents of the partition λ (in the notation of (1.16) in Definition 1.8; we recall that this is straightforward data from Young diagram of λ, as is the number of SYT f λ , see Theorem 1.7). This vastly generalises the identity (1.22) giving the normalisation of the Plancherel measure, which corresponds to = 0. If is odd, this formula gives H n, = 0 just as it should, since we have C λ = -C λ and each contribution is cancelled out. The right hand side of (4.3) naturally gives rise to the following measure on partitions, which is our main object of study: Definition 4.1 (Plancherel-Hurwitz measure). For n ∈ Z >0 , ∈ 2Z ≥0 , the Plancherel-Hurwitz measure is the probability measure on partitions of n defined by

P n, (λ) := 1 n!H n, f λ 2 C λ . (4.4)
For > 0, the positive half of the Plancherel-Hurwitz measure is the probability measure on partitions of n with positive content sum

P + n, (λ) := P n, (λ|C λ > 0) = 2 • 1 C λ >0 • P n, (λ). ( 4 

.5)

A partition distributed under P n, for > 0 can be thought of as a partition distributed under P + n, whose Young diagram is reflected about a vertical axis with probability 1 2 . When = 0 the measure P n, is nothing but the Plancherel measure. Our main result deals instead with the case where grows linearly with n (which we could call the highgenus regime after the discussion of Section 4.2 below). We have the following limit behaviour for a large random partition (in terms of the 1/ √ n rescaled profile ψ λ, √ n of the partition, see Definition 1.5): Theorem 4.2 (Limit behaviour of the Plancherel-Hurwitz measure at high genus). Fix q > 0 and let λ n be a random partition under the Plancherel-Hurwitz measure P + n, in the regime given by = (n) ∼ 2qn. Then, as n → ∞:

(i) the first part λ 1 is equivalent to 2 log n in probability, with

λ 1 log n 2 p - → 1; (4.6) -2 √ n 2 √ n 2 log n Figure 4.1
The tilted Young diagram of a random partition of n = 2500 under the Plancherel-Hurwitz measure P n, in the high genus regime = 2 1.5n (sampled via a Metropolis-Hastings algorithm). The twofold asymptotic behaviour is shown in yellow: the first part λ1 is asymptotic to 2 log(n) and escapes the picture, while the rest of the partition scales in √ n with a VKLS limit shape. The profile of the partition is in red, while the VKLS limit shape is the yellow curve, scaled up by a factor √ ñ, ñ = n -2 / log n. See Theorem 4.2.

(ii) the rest of the partition λ = (λ 2 , λ 3 , . . .) has a VKLS limit shape. Namely,

sup x |ψ λ, √ n (x) -Ω(x)| p - → 0,
where Ω(x) = The two-scale phenomenon We could include λ 1 in the partition λ of (4.7), since the supremum norm in this statement is insensitive to a small number of large parts. However, from part (iii) of the theorem, λ 1 is the only part not scaling as √ n so we find this formulation more natural. This limiting curve is graphed, along with the Young diagram of a finite sized partition sampled under a Plancherel-Hurwitz measure, in Figure 4.1.

Heuristically, we might think of this theorem as resulting from the two competing "forces" driving a random partition λ under P + n, . On the one hand, due to the Plancherel factor f λ 2 , the classical VKLS theorem shows that there is a cost for the partition to deviate from the VKLS shape. On the other hand, the partition may prefer to deviate strongly from the VKLS shape if it gains a sufficiently high content-sum so that the factor C λ compensates the Plancherel loss.

Our result shows that a random partition balances these forces by obtaining a large content-sum exclusively from the first part λ 1 , and then leaving the rest of the partition to maximize only the Plancherel entropy. The different length scales determining the limit behaviour are a rather unique feature of this measure and its "high genus" regime; established generalisations of the Plancherel measure such as the Schur measures and Schur processes discussed previously do not exhibit such behaviour in typical asymptotic regimes [START_REF] Okounkov | Infinite wedge and random partitions[END_REF][START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF].

The corresponding transposition factorisations As a consequence of our analysis of the limit behaviour of the Plancherel-Hurwitz measure, we obtain the following estimate for the unconnected Hurwitz numbers in the same asymptotic regime: Theorem 4.3 (Asymptotic estimate for unconnected Hurwitz numbers at high genus). Let H n, be the unconnected Hurwitz number counting (not necessarily transitive) factorisations of the identity on S n by an even number = (n) ∼ 2qn of transpositions. Then, as n → ∞,

H n, = log n 2 exp (-2 + log 2) + o(n) , (4.9)
uniformly for /n in any compact subset of (0, ∞).

This, along with an element of the proof of the limit shape theorem, will allow us to bound the order of the group generated by the largest transitive subsequence of a uniform random transposition factorisation in Section 4.2.2 below. We first interpret the transposition factorisations as maps, making the problem more combinatorial and topological.

Connections: Plancherel-Hurwitz measures in different guises

Let us briefly mention some previous works in which objects related to the Plancherel-Hurwitz measure have appeared.

A generalisation of the Plancherel-Hurwitz measure and integrability In [Oko01],

Okounkov presented a fermionic approach to the generating functions of unconnected Hurwitz numbers. The case considered was the somewhat more general one of double Hurwitz numbers Hur n, (µ, ν) defined at (1.45), which count transposition factorisations of permutations with a given cycle structure. It is instructive to consider these more general numbers to compare to the Schur measures considered in Sections 1.2.2 and 1.2.2 and Chapter 2.

By the content-sum version of Frobenius' formula, Theorem 1.18, for the unconnected double Hurwitz numbers1 we have 

H n, (µ, ν) = 1 n! λ n f λ 2 C λ |C µ |χ λ (C µ )|C ν |χ λ (C ν ). ( 4 
u n n! v ! µ 1 t 1 • • • µ (µ) t (µ) ν 1 t 1 • • • ν (ν) t (ν) H n, (µ, ν) = λ u |λ| e vC λ s λ [t]s λ [t ] (4.11)
where the final sum is over all partitions. We recognise a generalisation of Schur measure normalisation (and note that the factor of u |λ| is superfluous since it can be removed by rescaling); we equally recognise that if we apply exponential specialisations t = t = (θ, 0, 0 . . .) this is just a double Poissonisation of the Plancherel-Hurwitz measure normalisation. Just as for the normalisation of the Schur measure, we can write this as an expectation on a fermionic Fock space over Z + 1 2 ; recalling the notation and arguments of Section 1.3.3 and the eigenvalue relations (1.154), we have

λ u |λ| e vC λ s λ [t]s λ [t ] = S(∅)|Γ + (t)u Q 1 e vQ 2 |S(∅) (4.12)
where

Q 1 := k∈Z+ 1 2 k : c † k c k :, Q 2 := k∈Z+ 1 2 k 2 2 : c † k c k : .
The most important consequence of this fermionic formulation is that, as proven in [START_REF] Okounkov | Toda equations for Hurwitz numbers[END_REF], the above generating function is a τ -function of the Toda lattice hierarchy. From the hierarchy of equations satisfied by the logarithm of this generating function, Dubrovin, Yang and Zagier [START_REF] Dubrovin | Classical Hurwitz numbers and related combinatorics[END_REF] later found recurrence relations for the connected Hurwitz numbers. From the perspective of a corresponding measure on partitions, we would expect the corresponding random fermion configurations to form a DPP. Computing the kernel for this process is challenging, and presents an interesting open question. However, in the linear regime we consider, we cannot expect to find a DPP approach that would allow us to find asymptotics.

Transposition random walks In [DS81], Diaconis and Shahshahani considered a problem directly related to ours. The authors studied a walk on S n by uniform random transpositions, and considered how fast the number of steps should grow with n for the walk to be asymptotically "mixed". They famously showed that Theorem 4.4 (Mixing threshold for the transposition random walk [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF]).

If σ * = τ 1 • τ 2 • • • τ ∈ S n
is a product of uniform random transpositions on S n and P * denotes the law of σ * , then, in a regime where

≥ 1 + ε 2 n log n (4.13)
for any ε > 0, the total variation distance from P * to the uniform measure on S n tends to zero exponentially fast as n tends to infinity.

The terms of this argument can immediately be related to the unconnected Hurwitz numbers: we have, for all n, , P * (1) = n 2 -H n, . In fact, the Plancherel-Hurwitz measure itself already appears (with no name) in [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF], from a Fourier transformation of the uniform measure on transpositions to the irreducible representations of S n ; the proof essentially consists in showing that the Plancherel-Hurwitz measure is dominated by the trivial partition (n) in the superlinear regime (4.13) (indeed, since its content-sum is just C (n) = n 2 , it is straightforward to see that if H n, is well approximated by P n, ((n))

the corresponding P * is close to uniform). At this point it is worth commenting on a parallel with map enumeration: there, the regime in which the genus is unconstrained, or superlinear, is often much easier to deal with than the linear case.

In the random transposition walk context, our asymptotic estimate (4.9) can also be interpreted as an estimate on the return probability of the random walk after linearly many steps -much before the cut-off time, at a time when the Plancherel-Hurwitz measure still has a more subtle behaviour than the trivial partition. 

(n) ∼ 2qn steps is n 2 - H n, = exp -2 (log log n -log q -2 log 2 + 1) + o(n) . (4.14)
On the other hand, let us point out a coincidence which may imply a connection between the Diaconis-Shahshahani threshold (4.13) to the limit behaviour of the first part of a random partition in Theorem 2.2: if we write the limiting value of λ 1 as given in Theorem 4.2 put L := 2 / log , it is related to ∼ 2qn by

= 1 2 L log L + o(L) (4.15)
and L is such that may be approximated by the mixing threshold for a transposition random walk on S L . This is directly analogous to the limit behaviour of λ 1 when ∼ 1 2 n log n, at the mixing threshold.

A connection to asymptotic factorisations Finally, we note that measures on partitions that would appear to be related to a Poissonised version of the Plancherel-Hurwitz measure in a different asymptotic regime have been studied by Biane in the context of the asymptotic factorisation of characters of S n [START_REF] Biane | Approximate factorization and concentration for characters of symmetric groups[END_REF]. The limit-shape phenomena observed in this reference are qualitatively different from ours, and possible connections are left to future work.

Plan of the chapter

In Section 4.2, we present a map model corresponding to the Plancherel-Hurwitz measure and discuss how our results relate to high genus map enumeration. We mention some open questions motivated by this perspective. Using the asymptotic for the unconnected Hurwitz numbers at high genus, we prove a bound on the number of vertices in the largest component of a uniform random element of the corresponding map ensemble. The remaining two sections are dedicated to proofs of the two main theorems stated above; just as the limit behaviour we find has two distinct scaling regimes, the proof of Theorem 4.2 divides naturally into "macroscopic" and "microscopic" parts, where there are respectively large and small costs associated with deviating from the typical behaviour. In Section 4.3, we focus on estimating the order of the first part λ 1 , thus proving part (i) of Theorem 4.2 and by extension part (ii) of the same theorem, along with Theorem 4.3. In Section 4.4, we will study the finer details of the limit shape and control the second part λ 2 and the number of parts (λ) to prove Theorem 4.2, part (iii).
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The associated map model

We now turn to discussing our original motivation for studying the Plancherel-Hurwitz measure: asymptotic map enumeration in a high genus regime. As mentioned in Section 3.2.3, maps are rich objects, and since the pioneering works of Tutte on planar maps (e.g. [START_REF] Tutte | A census of planar maps[END_REF]) their enumeration has proven to be particularly interesting, borrowing tools from physics, algebra and geometry and revealing their connections within combinatorics. These tools include the matrix integral generating functions outlined in Section 3.2.3[BIPZ78, LZ04], the topological recursion [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], recurrence formulas based on integrable hierarchies [GJ08, CC15], classical generating functions (e.g. [START_REF] Bender | The asymptotic number of rooted maps on a surface[END_REF][START_REF] Bousquet-Mélou | Polynomial equations with one catalytic variable, algebraic series, and map enumeration[END_REF]) and bijective combinatorics (e.g. [START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF]). Such exact methods have led to the asymptotic enumeration of many types of maps on the plane or on surfaces of fixed genus g, which notably exhibit a universal counting exponent of 5 2 (g -1) (e.g. [START_REF] Chapuy | Asymptotic enumeration of constellations and related families of maps on orientable surfaces[END_REF]).

These methods do not, however, extend to maps whose genus grows quickly (in particular, linearly) with the number of polygons. This "high genus" regime, whose study was pioneered in [START_REF] Angel | The local limit of unicellular maps in high genus[END_REF][START_REF] Ray | Large unicellular maps in high genus[END_REF] in the case of one-face maps, is one of the most recent and exciting frontiers in the field, due the inefficiency of existing generatingfunction or bijective methods, requiring the development of new tools.

A major breakthrough in this field was recently made by Budzinski and Louf [START_REF] Budzinski | Local limits of uniform triangulations in high genus[END_REF], who, as a byproduct of their work on the Benjamini-Curien conjecture [START_REF] Curien | Planar stochastic hyperbolic triangulations[END_REF], found the following estimate by a combination of algebraic, combinatorial, and probabilistic methods: Theorem 4.6 (Asymptotic estimate for the number of triangulations at high genus [START_REF] Budzinski | Local limits of uniform triangulations in high genus[END_REF]). Let T n,g be the number of connected triangulations with n faces on a surface of genus g. Then in a high genus regime where g

= g(n) ∼ qn, as n → ∞ T n,g = n 2g exp[c(q)n + o(n)] (4.16)
uniformly in q, where c(q) > 0 is a known continuous function.

Subsequent work by the same authors conjectured the universality of this estimate for a large class of maps [START_REF] Budzinski | Local limits of bipartite maps with prescribed face degrees in high genus[END_REF]. 

Transposition factorisations and Hurwitz maps

We will be interested in a different model of maps: Definition 4.7 (Hurwitz map). A Hurwitz map with n vertices and edges is a map on a not necessarily connected compact oriented surface, with vertices labelled from 1 to n and edges labelled from 1 to , where the labels of edges increase cyclically around each vertex counterclockwise. In such a map each vertex is incident to precisely one corner which is an edge-label descent. If moreover each face of the map contains precisely one such corner, the Hurwitz map is called pure. We denote the set of pure Hurwitz maps with n vertices and edges H n, .

It is classical, and easy to see, that Hurwitz maps of parameters n and are in bijection with sequences of transpositions (τ 1 , . . . , τ ) in S n , while pure Hurwitz maps are in bijection with sequences whose product is equal to the identity. The bijection consists of identifying transpositions with edges of the map, and their index with the edge-label, as illustrated in Figure 4.2. This construction is a special case and an adaptation of the classical construction of "constellations", see [BMS00, Cha09a, DPS14]; the adaptation is illustrated in Figure 4.3.

Interpreting transposition factorisations in terms of enumerative geometry, pure Hurwitz maps are therefore in bijection with simply ramified, n-sheeted, branched covers of the sphere by an orientable surface, with numbered simple ramification points, and trivial ramification above ∞, which is the model considered in [START_REF] Hurwitz | Ueber riemann'sche flächen mit gegebenen verzweigungspunkten[END_REF][START_REF] Okounkov | Toda equations for Hurwitz numbers[END_REF][START_REF] Dubrovin | Classical Hurwitz numbers and related combinatorics[END_REF]. Pure Hurwitz maps have also been studied from the combinatorial and probabilistic viewpoint, and they are known [START_REF] Duchi | Bijections for simple and double Hurwitz numbers[END_REF], in the planar and fixed-genus cases, to belong to the same universality class as other natural models of maps such as triangulations, quadrangulations, etc. (the convergence to Brownian surfaces is only conjectured, but other properties of the universality class such as counting exponents or the existence of bijections are known).

It is important to make the distinction that the maps we consider are not necessarily connected, which is a significant difference from most models in the literature. A pure Hurwitz map of parameters n and necessarily has n faces, and its Euler characteristic χ, its number of components κ, and its generalised genus G (the sum of the genera, or number of handles, of each connected component) are related by Euler's formula:

χ = #vertices -#edges + #faces = 2n -= 2κ -2G.
(4.17)

For this reason we call regimes where 2n "high genus" regimes. We must insist however that our linear Euler characteristic regime is not the same as a linear genus regime of the kind considered by Budzinski and Louf.

By the above correspondence, we have |H n, | = H n, and we can read (4.9) as an asymptotic enumeration estimate for pure Hurwitz maps in the linear Euler characteristic regime. It is tempting to see this theorem as as strong (for our model) as the Budzinski-Louf estimate (4.16), but unfortunately this is not quite the case. The major difference is that our maps are not necessarily connected. Indeed, we will show that even when q ≥ 1 and there are sufficiently many edges to connect all the vertices we are predominantly counting unconnected maps, in particular that Theorem 4.8 (Clustering of edges in a large unconnected Hurwitz map at high genus). For all q > 1, a uniformly random Hurwitz map h n, ∈ H n, with n vertices and an even number = (n) ∼ 2qn of edges contains a connected component with at least γ(q) edges with high probability, where γ(q) := 2 2q-1 -1. However, in such a map, the number of vertices in the largest connected component is O p (n/ log n).

By "with high probability" we mean with probability tending to one as n tends to infinity, and we abbreviate this as w.h.p.; O p denotes a big O in probability.

Superlinearity of the genus at linear Euler characteristic

The fact that the "giant" edge-component has a sublinear number of vertices implies that its genus, viewed as a function of its number of vertices, is superlinear. This seems to rule out the possibility of deducing asymptotics for the connected linear genus regime from our results, at least not without new ideas. We can, however, once again note a coincidence, with the limit behaviour of the first part of a corresponding random partition and with the Diaconis-Shahshahani mixing threshold: the best upper bound we can find for the number of vertices in a connected component is proportional to the limiting value of the first part, and so also satisfies (4. [START_REF]PHM +[END_REF].

Open questions about other regimes

The most immediate question following these results is whether we can use the Plancherel-Hurwitz measure approach to study connected maps in detail, at superlinear genus or eventually at linear genus. The formulation of the measure opens the possibility of combining our approach with the technology of integrable hierarchies, which have been so fruitful but have so far not directly led to precise asymptotic estimates nor limit theorems for connected random maps or Hurwitz numbers at high genus. In any case, obtaining the analogue the Budzinski-Louf [START_REF] Budzinski | Local limits of uniform triangulations in high genus[END_REF] estimates for connected pure Hurwitz maps (that is, an exponential estimate up to the linear order, of the kind in (4.16)) is an important question in the direction of completing the universality picture.

Another natural extension of the present work, which we expect to be an important step in understanding the corresponding connected maps, would be to study other regimes for , especially for sublinear values of (in the proofs that follow, it will be clear that adapting to superlinear genus simplifies some things while adapting to sublinear genus presents interesting challenges). It is natural to expect that when varying the parameter from = 0 to = Θ(n), we should be able to make an asymptotic statement interpolating between our main result and the VKLS theorem, with a larger and larger first part λ 1 . Heuristic calculations suggest a possible phase transition around = Θ( √ n), which might be the threshold after which the contribution to the contentsum is overwhelmingly made by the first part. We leave these questions to further work.

Uniform random unconnected Hurwitz maps at high genus

In this section we present a proof of Theorem 4.8. We require the estimate on H n, of Theorem 4.3, which is proven in Section 4.3.3, along with the following bound: Lemma 4.9 (Minimum number of isolated vertices). There are n -O p (n/ log n) isolated vertices in a uniform random element h n, ∈ H n, . This is proven in Section 4.4.1, as a byproduct of proof of the limit behaviour theorem. Throughout the following, h n, denotes a uniform random element of H n, .

Proof of Theorem 4.8. Lemma 4.9 immediately implies that all connected components of h n, have O p (n/ log n) vertices.

Let γ(q) := 2 2q-1 -1, and let γ < γ(q). For the second part of the proof, we will show that there exists w.h.p. a component of h n, with at least (γ(q)) -o(1)) edges. To do so, we show that the number of maps with no connected component with more than γ edges is o(H n, ), starting by estimating the number of these maps satisfy some extra constraints.

Let h ∈ H n, be a map with n/3 isolated vertices and no connected component with more than n/3 vertices, or more than γ edges. Then one can partition the connected components of h into two pure Hurwitz maps h 1 and h 2 that both have less than (1+γ) /2 edges and more than n/3 vertices. Hence, if we let H ≤γ n, be the number of such maps, we have the following inequality:

H ≤γ n, ≤ n 1 +n 2 =n n 1 ,n 2 ≥n/3 1 + 2 =n 1 , 2 ≤ 1+γ 2 n n 1 1 H n 1 , 1 H n 2 , 2 (4.18) 
(the binomials arise because we consider labelled objects). We rewrite the asymptotic estimation of Theorem 4.3 in a convenient way, as

H n, n! ! = exp( log -n log n -(1 -log 2) + n + 2 log log n + o(n)), (4.19)
where the little o is uniform for /n in any compact subset of (0, ∞). This holds as long as and n tend to infinity linearly in one another. Now, take numbers (n 1 , n 2 , 1 , 2 ) as above. We can apply the asymptotic estimation (4.19) without restriction because (for i = 1, 2)

i n i ∈ 3(1 -γ) 4 n , 3(1 + γ) 2 n (4.20)
and hence i , n i → ∞ linearly in each other. Therefore we obtain, since in this case log log n i = log log n + o(1) also holds,

n n 1 1 H n 1 , 1 H n 2 , 2 H n, ≤ exp [ 1 log 1 + 2 log 2 -log + o(n)] exp [n 1 log n 1 + n 2 log n 2 -n log n] . (4.21) Since i ≤ 1+γ 2 , we have ( 1 log 1 + 2 log 2 -log ) ≤ log 1 + γ 2 . (4.22)
On the other hand, we always have

n 1 log n 1 + n 2 log n 2 -n log n ≥ -n log 2, (4.23) hence, uniformly, n n 1 1 H n 1 , 1 H n 2 , 2 H n, ≤ exp n log 2 + log 1 + γ 2 + o(n) , (4.24)
which is exponentially small in n. Plugging this into (4.18) one obtains H ≤γ n, = o (H n, ). Let E <γ denote the event that all components of h n, have less than γ edges, and let E n/3 denote the event that there are n/3 isolated vertices in h n, . Then,

P(E <γ ) = P(E <γ ∩ E n/3 ) + o(1) = H ≤γ n, H n, + o(1) = o(1), (4.25)
where in the first equality we used Lemma 4.9. This shows that w.h.p., a uniform map of H n, has a component with more than (γ(q) -o(1)) edges, which is what we needed to show.

Proofs: Macroscopic features

In this section we will prove parts (i) and (ii) of Theorem 4.2, which describe the first part and the general shape of a random partition under the measure P + n, where ∼ 2qn. As we will see, to establish these "macroscopic" characteristics we will show that the cost to the measure associated with deviating from the typical behaviour is exponential (this will no longer be true in Section 4.4). We will also prove Theorem 4.3, the approximate asymptotics for H n, at high genus, using the macroscopic limit shape and the intermediate results used to prove it.

Notation and a truncation threshold For any set Λ of partitions of n we write

Z n (Λ) := 1 n! λ∈Λ f 2 λ (C λ ) . (4.26)
Note that the partition function of our model is

H n, = Z n ({λ n}) = 1 n! λ n f 2 λ (C λ ) .
We also fix ε := 1 100 , and we split any partition λ n into λ = λ + λ -, (4.27)

where λ + denotes the parts of λ that are greater than n 1-ε and λ -the parts that are less than n 1-ε , see Figure 4.4. The value of ε is somewhat arbitrary at this stage, and will not affect our final results. With this threshold in mind we establish some convenient sets. For M ∈ [n 1-ε , n] and given µ n -M we let

Λ(µ, M ) := {λ||λ + | = M, λ -= µ}. (4.28) Then for m ∈ [0, M ] we set Λ(µ, M, m) := {λ ∈ Λ(µ, M )|λ 1 = M -m}. (4.29)
We also introduce the notation λ 0 = M µ, such that Λ(µ, M, 0) = {λ 0 }.

In addition, we introduce the following set of partitions (which depends implicitly on the integers n and ):

Λ * := λ n λ + = (λ 1 ) and λ 1 ∈ 0.4 log n , 6 log n . (4.30)
Finally, we establish the following convention: throughout Sections 4.3 and 4.4, all little os and big Os are uniform for /n in any compact subset of (0, ∞) (in addition to uniformity in other quantities, which is stated as appropriate).

Deterministic estimates and lower bound on H n,

We start with some convenient lower bounds. Firstly, three simple ones for the Lemma 4.10 (Useful bounds). Let λ n with λ + = (λ 1 , . . . , λ p ), then

(i) 1 n! f 2 λ ≤ n! p i=1 (λ i !) 2 (n -|λ + |)!) 2 f 2 λ -≤ n! p i=1 (λ i !) 2 (n -|λ + |)! ≤ n |λ + | p i=1 (λ i !) 2 , (ii) C λ ≤ λ 1 n 2 , (iii) C λ = C λ + -p|λ -| + C λ -= p i=1 λ i (λ i -2i + 1) 2 -p|λ -| + C λ -.
Proof. (i). One can fill a Young diagram of shape λ n with distinct numbers from 1 to n by picking λ 1 numbers then filling the first row with them in increasing order, then doing the same for the second row with λ 2 numbers and so on until the pth row. There are at most n λ 1 ,λ 2 ,...,λp ways to do so, and once this is done there are at most f λ -ways to fill the remaining rows. Moreover, from the Plancherel measure normalisation (1.22) we have

f 2 λ -≤ |λ -|! = (n -|λ + |)!. Therefore we obtain 1 n! f 2 λ ≤ n! p i=1 (λ i !) 2 (n -|λ + |)!) 2 f 2 λ -≤ n! p i=1 (λ i !) 2 (n -|λ + |)! . (4.31)
The last inequality of the claim is straightforward.

(ii). From Definition 1.8 of C λ , we have

C λ = (λ) i=1 λ i (λ i -2i + 1) 2 (4.32) ≤ (λ) i=1 λ i • λ i 2 ≤ λ 1 2 (λ) i=1 λ i = λ 1 n 2 . (4.33) (iii) 
. Splitting (4.32) into contributions from the first p rows and the subsequent ones, we see that the former just contribute C λ + to C λ , while for the latter the content of each box is the content of a box of λ -shifted by -p (the number of parts in λ + ). This gives the result.

Lemma 4.11 (Bounding the normalisation from below). We have

H n, ≥ log n 2 exp -(2 -log 2) + O( √ n log 2 n) . (4.34)
Proof. Let L := 2 log n , and let µ be a partition of n-L maximizing f µ among partitions with µ 1 ≤ 3 √ n and (µ) ≤ 3 √ n. We let λ * = L µ. Using Lemma 4.10 (iii), and noting that C µ ≥ -3 2 n 3/2 (by Lemma 4.10 (ii)), we have

C λ * = L(L + 1) 2 -|µ| + C µ ≥ 1 + O log 2 n √ n L 2 2 . (4.35)
On the other hand, consider the sum By the VKLS theorem, we know that this sum is dominated by partitions such that ν 1 ≤ 3 √ n. Since the number of terms is bounded by (1.19), we deduce that

ν n-L f 2 ν = (n -L)!. (4.36) M n 1-ε M -m n 1-ε n ε λ -= µ λ -= µ n 1-ε n 1-ε |ν + | = m L λ -= µ M -m |λ + | = M n 1-ε ν -
f 2 µ ≥ (n -L)!e O( √ n) , and in fact f 2 µ = (n -L)!e O( √ n) . Then, since f 2 λ * ≥ f 2 µ , we have Z n ({λ * }) ≥ (n -L)!e O( √ n) n! C λ * ≥ n -L e O( √ n) L 2 2 1 + O log 2 n √ n ≥ exp 2 (log -log log n) -(2 -log 2) + O( √ n log 2 n) . (4.37)
This finishes the proof since H n, = Z n ({λ n}) ≥ Z n ({λ * }).

First bound on the first and second parts

We now proceed with a succession of lemmas that gradually give better control on the partition λ + .

Lemma 4.12 (Controlling big parts). Let λ be a random partition of n under the assumptions of Theorem 4.2. Then |λ + | ∈ 0.4 log n , 6 log n w.h.p.

Proof. Given λ n, set R λ := |λ + | log n . In this proof, all little os are independent of R λ . For all λ n, by the last inequality in Lemma 4.10(i),

1 n! f 2 λ ≤ exp[|λ + | log n -2 p i=1 λ i log(λ i ) + 2|λ + |] ≤ exp[|λ + | log n -2 p i=1 (1 -ε)λ i log(n) + 2|λ + |] ≤ exp[-(1 -2ε)R λ + 2R λ / log n]. (4.38)
On the other hand, by Lemma 4.10(ii)-(iii), if C λ ≥ 0, then

C λ ≤ exp log p i=1 λ 2 i 2 + C λ - ≤ exp log |λ + | 2 + n 2-ε 2 ≤ exp 2 (log -log log n) + log R 2 λ + n 2-ε log 2 n 2 -log 2 . (4.39)
Combining (4.38) and (4.39), and using (4.34), we obtain Lemma 4.13 (Uniqueness of the big part). Let λ be a random partition of n under the assumptions of Theorem 4.2. Then λ + = (λ 1 ), and equivalently λ 2 ≤ n 1-ε , w.h.p.

Z n ({λ}) H n, ≤ exp 2 -(1 -2ε)R λ + 2R λ log n + log R 2 λ + o(1) + o(n) . ( 4 
The proof of Lemma 4.13 requires a comparison of the contribution of partitions with a single "big part" with the contribution of those with more than one (indeed, because we have neither exact formulas nor precise estimates on the normalisations, we can only rely on "comparison" of probabilities at this stage). We will perform this comparison among partitions having the same "small parts" (called µ), using the sets Λ(µ, M, m) defined at (4.29) with |λ + | = M and λ 1 = M -m. We will need the following two claims, whose proof is postponed to after that of the lemma. Proof of Claim 4.15. To prove this claim we define a "redistribution" operation that enables us to compare the contribution of partitions with one big part to others. Let T be an SYT of shape λ 0 , and consider the following operation.

1. Create n ε empty rows between the first row of T and the rest, where in the last inequality we used the bound m! ≥ (m/e) m , along with the facts that log M ≤ log n and log m ≥ (1 -ε) log n.

Asymptotic estimate for H n, and macroscopic behaviour of λ

Lemmas 4.12 and 4.13 imply that λ ∈ Λ * w.h.p. (using the notation introduced at (4.30)) and hence H n, = (1 + o(1))Z n (Λ * ), (4.48) and it follows from the proofs that the little o is uniform for /n in any compact subset of (0, ∞) From this result, we obtain Theorem 4.3 and parts (i) and (ii) of Theorem 4.2.

Proof of Theorem 4.3. Take λ ∈ Λ * . We have, by Lemma 4.10 (ii)-(iii)

C λ ≤ λ 2 1 2 + n 2-ε 2 = (1 + o(1)) λ 2 1
2 where the o(1) is uniform over all λ ∈ Λ * , and more generally, from now on, all little os and big Os will be uniform over all λ ∈ Λ * when applicable.

On the other hand, by Lemma 4.10(i) we have for all λ ∈ Λ * , uniformly (where the second inequality comes from the unique maximum at R λ = 2). We recognise the Plancherel measure estimate from Proposition 1.36. Since λ ∈ Λ * w.h.p., this implies, as in the classical Plancherel case (see [Rom15, Section 1.17]), the almost sure convergence in supremum norm to the VKLS limit shape (4.7).

1 n! f 2 λ ≤ n λ 1 (λ 1 !) 2 , hence
Note that since the function x → Ω(x) -|x| has support [-2, 2], the convergence of the profile directly implies the "lower bound" in Theorem 4. Just as in the classical Plancherel case, the upper bound is more delicate and is the subject of the next section.

First bound on the number of parts

To conclude this section, we use Theorem 4.2 (i) to prove a further macroscopic feature of the limit behaviour, which completes the rough bounding box one side of which is determined by Lemma 4.13.

Lemma 4.16 (Bounding the length above). Let λ be a random partition of n under the assumptions of Theorem 4.2. Then (λ) ≤ n 1-ε w.h.p.

Proof. Take λ ∈ Λ * , we first use arguments similar to Lemma 4.12 to control the number of boxes in the big parts of the conjugate partition λ . Let us write λ = L ν (as in the proof of Lemma 4.13, the little os and big Os are uniform in L and ν) so the conjugate of the small parts λ -is ν = (λ 2 , λ 3 , . . . , λ (λ) ) = ν + ν - (4.56)

where ν + and ν -denote respectively the parts of ν that are greater and less than n 1-ε , and (ν) ≤ n 1-ε (see Figure 4.4). Suppose that the big parts have size m = m(λ) = |ν + | (note that if m > 0 then m ≥ n 1-ε ). By the hook length formula Theorem 1.7 and Lemma 4.10 (i), we have and after considering enumeration of partitions again we find that the probability that m(λ) > 0 is o(1), so (λ) ≤ n 1-ε w.h.p. as required.

1 n! f λ 2 = n! (n -L)! 2 f ν 2 1 ∈λ 1 η λ ( ) 2 ≤ 1 (n -L)! f ν 2 n -L exp O n log n , ( 4 

Proofs: Microscopic features

In this section we consider the smaller scale of the limit shape and prove Theorem 4.2 part (iii) by bounding the size of λ 2 and (λ) above. As previously mentioned, the VKLS limit shape result in supremum norm does not imply such a bound, and even in the Plancherel case extra arguments are needed to obtain the sharp bound (2 + o p (1)) √ n on λ 1 . In the case of the classical Plancherel measure and the VKLS limit shape theorem 1.35, a good way to do this is to use Kerov's Plancherel growth process [START_REF] Kerov | A differential model for the growth of young diagrams[END_REF] described in Section 1.2.1, which provides one with a coupling between the measures at sizes n and n -1, through which the evolution of λ 1 is tractable inductively.

In our context, we do not have such a coupling, however we will be able to compare the behaviour of random partitions in sizes n and n -1 by calculations which in some sense provide an approximation of a corresponding growth process. We will directly use one result from the Plancherel growth process approach, which just follows from the fact that it is a well defined probability law: Proposition 4.17 (Plancherel growth process normalisation [START_REF] Kerov | A differential model for the growth of young diagrams[END_REF]). Let µ n -1 and let µ ν denote that ν n is obtained from µ by adding one box. We have

ν:µ ν f ν = nf µ .
(4.66)

From now on we will work with a given value of λ 1 = L with L ∈ 0.4 log n , 6 log n , and in the notation of Theorem 4.2, we let λ = λ \ λ 1 . We introduce notation for the normalisation with a fixed first part, putting Our proof relies on comparisons between partitions of n and partitions of n -1.

Lemma 4.19. Uniformly for L ∈ 0.4 log n , 6 log n , we have

1 -O(1/ log n) ≤ Z n-1 [L] Z n [L] ≤ 1 + O(log 2 n/n ε ). (4.68)
Proof. We first bound Z n-1 [L]/Z n [L] above. For partitions of n -1 whose first part is equal to L, the normalisation of the conditioned measure is

Z n-1 [L] = 1 (n -1)! µ n-1 µ 1 =L f µ 2 C µ = 1 n! µ n-1 µ 1 =L f µ C µ λ:µ λ f λ , (4.69)
where the final equality comes from the normalisation of the Plancherel growth process, as given in Proposition 4.17. This can equally be expressed as a sum over partitions of n with first part equal to L, as

Z n-1 [L] = 1 n! λ n λ 1 =L f λ µ:µ λ µ 1 =L f µ C µ + 1 n! µ n-1 µ 1 =L f µ 1+ f µ C µ (4.70)
where µ 1+ denotes the partition µ 1+ = (µ 1 + 1, µ 2 , µ 3 , . . .).

Considering the first term, we note that by Lemma 4.13 and Lemma 4.16, the contribution to Z n-1 [L] from any partition with more than one big part will be exponentially suppressed. Then, for µ λ, µ 1 = λ 1 = L and µ 2 ≤ n 1-ε , the modulus of the content of the additional box will be at most n 1-ε , and

C µ = (C λ + O(n 1-ε )) = C λ (1 + O(log 2 n/n ε )).
(4.71)

Then we have

Z n-1 [L] ≤ 1 n! λ n λ 1 =L f λ C λ (1 + O(log n 2 /n ε )) µ:µ λ f µ + 1 n! µ n-1 µ 1 =L f µ 1+ f µ C µ (4.72)
where we over-count only by adding the partition (L -1, λ 2 , λ 3 , . . .) in the sum over {µ : µ λ}. Then, using the identity µ:µ λ f µ = f λ from recursively counting SYT, we have

Z n-1 [L] ≤ Z n [L](1 + O(log 2 n/n ε )) + 1 n! µ n-1 µ 1 =L f µ 1+ f µ C µ .
(4.73)

The second term on the right is finally estimated using the hook-length formula Theorem 1.7. For µ n -1, µ 1 = L and µ 2 ≤ n 1-ε we have

f µ 1+ = nf µ exp µ 2 j=1 log L + µ j -j L + µ j -j + 1 + L j=µ 2 +1 log L -j + 1 L -j + 2 = nf µ O log n n (4.74)
so the second term is just Z n-1 [L]O(log n/n), which is absorbed into the left hand side of (4.73), proving the upper bound in (4.68).

The ratio is similarly bounded below by writing Z n [L] as a sum over partitions of n -1, to find

Z n [L] ≤ 1 (n -1)! µ n-1 µ 1 =L f µ 2 C µ (1 -O(log 2 n/n ε )) + 1 n! λ n λ 1 =L f λ 1-f λ C λ (4.75)
where λ 1-denotes the partition (λ 1 -1, λ 2 , λ 3 , . . .). Then we have and since the contribution from any partitions without λ 1 ∈ 0.4 log n , 6 log n will be exponentially suppressed, we deduce from (4.78) that this expectation is equal to n-O(n/ log n), which implies the result from the fact that the number of isolated vertices is at most n and from the Markov inequality.

f λ 1-= 1 n f λ exp λ 2 j=1 log L + λ j -j L + λ j -j -1 + L-1 j=λ 2 +1 log L -j + 1 L -j = 1 n f λ O n log n (4.
We are now ready to prove Proposition 4.18.

Proof of Proposition 4.18. Under the Plancherel-Hurwitz measure conditioned on the first part being λ 1 = L (with L ∈ 0.4 log n , 6 log n ), the distribution of the second part is

P(λ 2 = k|λ 1 = L) = 1 n!Z n [L] µ n-L-k µ 1 ≤k f 2 L k µ C L k µ .
(4.79)

Comparing SYT of shape L k µ n with ones of shape L µ n -k, obtained by removing the second part, we have a rough upper bound of

f L k µ ≤ n k f L µ (4.80)
by over-counting the ways the boxes of the second part could be labelled. The contentsum of each of these partitions are related by

C L k µ = C L µ -|µ| + k(k -3) 2 = C L µ (1 + o(1)) (4.81)
as long as k ≤ n 1-ε . By Lemma 4.13 we may consider only partitions with λ 2 ≤ n 1-ε , we thus get

P(λ 2 = k|λ 1 = L) ≤ 1 n!Z n [L] µ n-L-k n k 2 f 2 L µ C L µ (1 + o(1)) = n k 2 (n -k)! n! Z n-k [L] Z n [L]
(1 + o(1)). √ n works exactly the same way, except that, instead of removing the second part, one removes one box from each part except the first one (see Figure 4.5), which explicitly means comparing partitions L (k µ) and L µ to find, by Lemma 4.16,

P( (λ) = k + 1|λ 1 = L) = 1 n!Z n [L] µ n-L-k µ 1 ≤k f 2 L (k µ) C L (k µ) ≤ 1 n!Z n [L] µ n-L-k n k 2 f 2 L µ C L µ (1 + o(1)) (4.85)
leading to the upper bound by precisely the same steps as for the second part.

Deviation bounds for the Plancherel measure

In order to refine our last estimate, we need some deviation bounds for quantities under the classical Plancherel measure. For the deviation of λ 1 from 2 √ n, precise bounds can luckily be found in the literature; we state one of them here2 : Proposition 4.20 (Deviation bound for the first part of a Plancherel random partition [START_REF] Deuschel | On increasing subsequences of I.I.D. samples[END_REF], Equation (1.5)). Let λ n be a random partition under the Plancherel measure P n . Then, for all ε > 0, there exists K > 0 such that

P n (λ 1 ≥ (2 + ε) √ n) ≤ exp[-(1 + o(1))K √ n]. (4.86)
With this, we can prove a deviation bound for the content-sum of under the Plancherel measure. To the best of our knowledge, such a bound is new, and we think it might be of independent interest. However, we do not think this bound is optimal, nor that conditions on λ 1 and (λ) are necessary -finding the best upper bound on these deviation probabilities seems an interesting problem that we leave open. which is what we wanted to show.

Q(h -h 0 ) ≥ ˆε 0 v| h * (v)
Chapter 5

Perspectives

The main contributions presented in this thesis were new probability laws on integer partitions which exhibit interesting limiting behaviour in certain asymptotic regimes.

In each case, the measures we introduced are generalisations of the Plancherel measure, which is very well understood. Its rich asymptotic behaviour -most notably, its TW-GUE edge fluctuations and its deterministic limit shape-have broad ramifications, relating different physical, probabilistic and combinatorial models. Thanks in particular to the integrability of its Poissonisation, the Plancherel measure is an excellent benchmark model for universal phenomena, and profound connections have been established between this measure and models of random matrices, maps, permutations, and fermions, to name but a few. For the multicritical Schur measures and Plancherel-Hurwitz measures we introduced, we have demonstrated novel asymptotic behaviour, making them interesting candidate models to study new universality classes. Each of these measures is directly related to certain other models. For the multicritical Schur measures, we have exact and asymptotic correspondences with fermions on a 1D lattice and line respectively, and an exact correspondence with certain unitary matrix models. For the Plancherel-Hurwitz measure, we have a corresponding model of random maps, or random sequences of elements of symmetric groups. We hope to extend this picture.

In the broadest terms, the main question raised by this work is: can we find analogues of everything we know about the Plancherel measure for multicritical Schur measures and the Plancherel-Hurwitz measure? Here we present some axes along which we hope to explore that question.

The first parts of a random partition In both of the models we considered, the atypical asymptotic behaviour was characterised by the behaviour of the first part of a random partition (or its length, depending on how we choose our conventions). In the case of the multicritical measures, the first part exhibits new fluctuations, distinguished by smaller critical exponents than the universal 1/3, and asymptotic distributions which are higher-order analogues of the TW-GUE distribution. Under the Plancherel-Hurwitz measure in a linear asymptotic regime, the first part scales much faster than all of the other parts.

Under the Plancherel measure the first part is an important statistic: by the RSK bijection, it is equivalent in law to the length of the longest increasing subsequence of a uniform random permutation. One important question is to interpret this statistic for each of the cases we considered. Since the Plancherel-Hurwitz measure corresponds to a model of transposition factorisations on symmetric groups, one would expect it could be interpreted in terms of those factorisations. This fits into another natural question, which is to Question 5.1. Find a bijection relating pairs of Young tableaux with n boxes to some sequences of permutations of n elements which proves Frobenius' formula for the unconnected Hurwitz numbers.

There may be some hints for this problem in the limit behaviour we found in the linear regime, where the limiting value of the first part is proportional to an upper bound for the order of the group generated by the longest transitive subsequence of a corresponding random transposition factorisation. This limiting value also coincides the asymptotic mixing threshold for the transposition random walk.

The multicritical Schur measures, on the other hand, have no immediate combinatorial interpretation, as they are constructed in such a way that the RSK bijection does not define a corresponding model (this is due to the non-positivity of the Miwa time specialisations we use). A more natural way to interpret the first part is then to generalise the connection between parts of a Plancherel random partition and eigenvalues in the GUE, and namely to Question 5.2. Find a Hermitian matrix model whose largest eigenvalues converge to the higher order Airy ensemble asymptotically found on the edge under a multicritical Schur measure.

The exact correspondence we have between multicritical Schur measures and unitary matrix models presents one approach to this question.

Connections with random maps

In terms of the connection between the Plancherel measure and the GUE, let us also remark that Okounkov's first celebrated proof of the asymptotic equivalence of elements from either model exploited a correspondences between the Plancherel measure and coverings of the Riemann sphere, those coverings and maps, and map generating functions and the GUE. In that sense, another interesting question is to Question 5.3. Relate Schur measures specialised in the Miwa times (other than the Poissonized Plancherel measure) to generating functions of maps.

Let us remark that it's particularly natural to ask this question for Schur measures specialised in the Miwa times, since it is in terms of the Miwa times that we have more general formulas relating the enumeration of branched coverings to Schur functions; this would appear to be the most natural combinatorial interpretation for Schur measures specialised this way.

For the Plancherel-Hurwitz measure, there is an explicit connection to a family of maps. However, for now we have only studied unconnected maps in this context; using the connection between the Toda lattice hierarchy and Hurwitz numbers, an interesting application of this correspondence would be to Question 5.4. Study connected Hurwitz maps using integrable generating functions related to the Plancherel-Hurwitz measure.

Questions from integrability Another interesting direction for the measures we introduced would be to further explore connections with integrability. In the case of the Plancherel-Hurwitz measure, the apparent connection with a determinantal point process (as well as with integrable hierarchies) presents the possibility to find an interesting new physical (or quasi-physical) model. In particular, it would be interesting to Question 5.5. Interpret a Poissonised Plancherel-Hurwitz measures as models of fermions.

The particular asymptotic behaviour of the Plancherel-Hurwitz measure is quite different from limiting phenomena we have seen for free fermion models, so this represents an interesting new direction.

In the case of the multicritical Schur measures, where we used the fermionic integrability of the measures themselves to find asymptotic distributions which are related to solutions of integrable hierarchies, one interesting direction would be to Question 5.6. Understand the classical integrable hierarchies solved by asymptotic edge distributions of multicritical Schur measures at the level of specializations.

In other words, we could interpret our tuning of Miwa times to multicriticality as specialising solutions of the KP hierarchy to Painlevé II solutions. While this is an ambitious project, from the multicritical Schur measures we have explicit specialisations which may make this problem tractable.

A natural extension to both measures

To conclude, let us propose a new family of measures which are natural extensions of both the cases considered here, arising naturally from the generating function of double Hurwitz numbers: Definition 5.7 (Schur-Hurwitz measure). The Schur-Hurwitz measures on all integer partitions λ are, suitable sequences t, t of complex numbers and real parameter β,

P(λ) = 1 Z s λ [t]s λ [t ]e βC λ .
where C λ is the sum of contents of the partition λ and Z is a normalisation factor.

Due to the correspondence with double Hurwitz numbers, it would be most natural to study these measures in terms of Miwa time specialisations; in that sense, we can look for generalisations of multicritical behaviour in the presence of a content-sum term. At the level of integrability, since expectations of these measures are τ -functions of a more general integrable hierarchy, we can hope to find more diverse asymptotic statistics. It would be particularly interesting to study these measures using fermionic methods, which are unlikely to apply to a linear asymptotic regime such as the one we studied in the case of the Plancherel-Hurwitz measure. However, even in simpler asymptotic regimes, we believe this kind of deformation of a Schur measure could lead to interesting behaviour.
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  any empty set, and the empty partition ∅ 0 f λ the number of standard Young tableaux of shape λ η λ ( ) the length of the hook from to the edges of the Young diagram λ c( ), C λ the contents of in a Young diagram, the content-sum ∈λ c( ) of λ ψ λ;α the rescaled profile describing the upper edge of the tilted Young diagram of λ in coordinates where the centres of the boxes are 1/α apart

  c k the fermionic creation and annihilation operators on site k a † r , a r the bosonic creation operator a † r = a -r := k : c † k c k-r : at level r, and the corresponding annihilation operator a r F GUE (s) the Tracy-Widom GUE distribution F 2m+1 (s) the order m analogue of the Tracy-Widom GUE distribution (the classical distribution is F GUE (s) = F 3 (s)) A the zero temperature Airy integral kernel A 2m+1 the order m analogue of the zero temperature Airy kernel (the classical kernel is A = A 3 )The following abbreviations are also used throughout: -Logan-Shepp w.h.p. with high probability, i.e. with probability tending to 1

Figure 0

 0 Figure 0.1 A sketch of 2D growth by deposition as modelled by the KPZ equation. The non-linear term in (0.1) is a correction to the average deposition speed to account for the growth being normal to the surface, as illustrated: if the interface at position x grows normally by d between t and t + ∆t, the corresponding change in the height function is ∆h(x, t) = d -1 2 d(∂xh(x, t)) 2 + O(d 3 ).

Figure 0

 0 Figure 0.2 A sketch of fermions trapped in an arbitrary potential V (x) in 1D. For fermions near the edge at the Fermi energy EF , the effective potential is linear.

Figure 0 . 3

 03 Figure 0.3 Experimental investigations of models the TW-GUE universality class. Top left, cancer cell colonies growing by cell division in a Petri dish, where the KPZ exponents were observed [HPG + 12]. Top right, observation of FGUE in liquid crystal growth with a single nucleation point corresponding to a narrow wedge initial condition, where the log scale plot shows strong agreement with FGUE for the very rare events in the tails [TS10] (reproduced with modification). Bottom left, an experiment with cold Lithium atoms [PHM + 15], offering a promising way to study trapped fermions and their edge statistics. Bottom right, observation of FGUE in a coupled laser experiment, where the power output was modelled by random matrices [FPN + 12] (reproduced with modification).

Figure 0 . 4

 04 Figure 0.4 Left, a permutation of 1, . . . , 200 sampled uniformly, with one of its longest increasing subsequences (of length 25) highlighted. Right, a histogram of the lengths of the longest increasing subsequences of 10000 random permutations of 1, . . . , 4096 compared to the asymptotic probability density F GUE (s). The asymmetry of FGUE is visible from the displacement of its peak from its centre.

Figure 0 . 5

 05 Figure 0.5 The shape of the Young tableaux associated to the uniformly sampled permutation of 1, . . . , 200 plotted in Figure 0.4 by the Robinson-Schensted algorithm (drawn in the Russian convention).The corresponding fermion configuration is drawn below. The Vershik-Kerov-Logan-Shepp limit shape for the rescaled profile describing the upper edge of a Plancherel random partition is shown in yellow.

Figure 0 . 6

 06 Figure 0.6 The tilted Young diagrams of partitions sampled under the minimal asymmetric multicritical measures P a,m θ at orders m = 2, 3, 4, along with their limit shapes. Their right edges vanish more quickly than those of TW-GUE class random partitions.

Figure 0 . 7

 07 Figure 0.7 Left, two distinct maps from the same graph (note the difference in the ordering of edges around the rightmost vertex). The minimal surfaces they can be drawn on, of genus 0 and 1 respectively, are shown in yellow. Centre, the corresponding ribbon graph Feynman diagrams, both of which contribute to an integral over tr M • tr M 4 • tr M 3 . Right, the corresponding gluing of polygons (showing the maps have 3 and 1 faces respectively).

Figure 0 . 8

 08 Figure 0.8 Approximations of the Brownian sphere and the Brownian triple torus (genus 3) by uniformly sampled large maps, produced by Jérémie Bettinelli. The algorithm used, introduced in [Cha09b], has been programmed up to genus 4.

Figure 0 . 9

 09 Figure 0.9 Left, a simulation of the neighbourhood of a vertex of a uniform infinite planar triangulation produced by Igor Kortchemski. Right, a simulation of a planar stochastic hyberbolic triangulation embedded in the hyperbolic plane, produced by Nicolas Curien. This is the local limit of uniform triangulations at high genus [BL21].

Figure 0 . 10

 010 Figure 0.10 The pure Hurwitz map with Euler characteristic χ = 2 corresponding to the transposition factorisation of the identity on S9 shown (it is unconnected as the factorisation is not transitive).Each transposition gives the labels of two vertices which are connected by an edge, the order of the transpositions determines the cyclic ordering of the edges around vertices. Each face has exactly one corner which is an edge-label descent, indicated in grey.

Figure 1 . 1

 11 Figure 1.1 From left to right: the Young diagram of the partition λ = (7, 4, 2, 1) 14 in our (French) convention; the Young diagram of λ in the English convention; the tilted (Russian) Young diagram of λ; the tilted Young diagram of the conjugate partition λ = (4, 3, 2, 2, 1, 1, 1).

Figure 1 . 2

 12 Figure 1.2 The tilted Young diagram of the partition λ = (7, 4, 2, 1) 14 again, shown on the left with the Maya diagram of the corresponding fermion configuration S(λ) = { 13 2 , 5 2 , -1 2 , -5 2 , -9 2 , -11 2 .. .} and on the right with a coordinate system and the rescaled profile ψ λ;α (x).

Figure 1 . 3

 13 Figure 1.3The tilted Young diagram of the partition (4, 2, 1) 7. Left, its boxes are filled to produce a SYT of shape (4, 2, 1); center, they are filled with their hook lengths, showing there are f (4,2,1) = 7!/(6 • 4 • 3 • 2) = 35 such tableaux; right, each box is filled with its content, and the content-sum is C (4,2,1) = -2 -1 + 0 + 0 + 1 + 2 + 3 = 3.

√n

  ) defined at (1.92) can be shown to be O( √ n log n). Following Proposition 1.36, application of the change of coordinates (1.7) re-expresses I hook as a series of integrals in terms of the single continuous and 1-Lipshitz function ψ λ; √ n . In terms of the "height function" h(x) := ψ λ; √ n (x) -|x|, we have

  .165) It remains to show that K(k, ) := c † k c is the kernel given in the statement. Using the generating functions c † (z), c(z) and the relations (1.161), we have k,

Definition 2. 1 (

 1 Multicritical measures). For each positive integer m, an order m multicritical measure with parameter θ is a Schur measure P m θ := e -θ 2 r rγr 2 s λ [θγ] 2 with both sets of Miwa times specialised to θγ := (θγ 1 , θγ 2 , . . .) where γ = (γ 1 , γ 2 , . . .) is a sequence of real numbers with finite support satisfying r≥1 rγ r > 0, r≥1 r 2m+1 γ r = 0, r≥1 r 2 γ r sin rφ ≥ 0 for all φ ∈ [0, π] (2.1) and, if m > 1, r≥1 r 2p+1 γ r = 0 , p = 1, 2, . . . , m -1. (2.2) If m = 1 the measure is called simply critical. The positive constants b := 2 r≥1 rγ r , b := 2 r≥1 (-1) r+1 rγ r , d := 2(-1) m+1 (2m)! r≥1 r 2m+1 γ r (2.3) are respectively the right edge, left edge and fluctuation coefficients associated with the measure.

Theorem 2. 2 (

 2 Asymptotic edge fluctuations of multicritical measures). Let λ be a random partition distributed by an order m multicritical measure P m θ (λ) = e -θ 2 r rγ 2 r s λ [θγ] 2 , with edge position and fluctuation coefficients b, d. Then the asymptotic cumulative distribution of its first part is

Definition 2. 6 (

 6 Minimal multicritical measures). The order m minimal multicritical measure is P a,m θ (λ) = e -θ 2 r rγr 2 s λ [θγ] 2 where γ r = (-1) r+1 r 2m m+r / 2m m-1 , r = 1, 2, . . . , m 0, r > m. (2.15) Its edge and fluctuation coefficients are b

Figure 2 . 2

 22 Figure 2.2 Limit curves of the symmetric minimal multicritical measures P s,m for m from 1 to 5, and the limiting density profiles of the corresponding free fermion models.

r≥1(

  -1) r rγ r ≤ x ≤ 2 r≥1 rγ r (2.48) or concisely for x ∈ [-b, b]; by (2.1) it has solutions everywhere in that interval, and we have a left edge at k = -bθ where the density tends to 1 and a right edge at k = bθ where the density vanishes.

  It is useful to write the multicriticality conditions (2.2) in terms of the action, where they are just d 2p-1 dz 2p-1 S(z; b)| z=1 = 0, p = 2, . . . , m. (2.58) The edge and fluctuation coefficients given in (2.3) are just solutions to d dz S(z; b) z=1 = 0, d dz S(z; b)| z=-1 = 0, d 2m+1 dz 2m+1 S(z; b) z=1 = (-1) m+1 (2m)!d. (2.59) Making a brief digression, with this expression it is easy to show that Proposition 2.11 (Multicriticality of the minimal measures). The measures P a,m θ and P s,m θ are order m multicritical.

  68) (we recall the expression (1.10) for the profile). Then, lim θ→∞ Var(ψ λ,θ (x)) ≤ lim θ→∞ θ -1 2E( Ñ (xθ)) = 0 (2.69)

r

  rγ r (e irφ -e -irφ ) -x.(2.77)From the conditions of Definition 2.1, for all φ ∈ [-π, π] we haveb -x ≤ D(φ; x) ≤ b -x. (2.78) (i) The empty region For x > b, we have D(φ; x) < 0for all φ ∈ [-π, π]. Setting R + > 1 and R -< 1 for all φ in c ± as defined in (2.75) we have, for z ∈ c + and w ∈ c -, Re[S(z; x) -S(w; x)] < 0 (2.79)

  86) It follows that (x) = χ/π where χ := χ(x) is the non negative solution of (2.81) for x ∈ [ b, b].

  e θ(S(z;b)-S(w;b)) = O e -(θ) 2mε /C .

Theorem 2 .

 2 16 (Asymptotic edge fluctuations of cylindric multicritical measures). Let Λ = (µ ⊆ λ ⊇ µ) be a random cylindric partition under a cylindric multicritical measure P m u,θ with right edge and fluctuation coefficients b, d. Then, in a critical scaling regime where θ(1 -u) 2m → α 2m+1 d > 0 as θ → ∞ and u → ∞, we have lim θ→∞,u→1

  127) This follows by the same argument as that leading to [BB19, Equation (5.32)]: putting u = e -r and z/w = e r/2+iφ for φ ∈ [-π, π], by the Poisson summation formula we have κ(z, w) =

Corollary 4. 5 (

 5 Equivalent random walk formulation of Theorem 4.3). The probability that the transposition random walk on S n returns to the origin after =

Figure 4 . 2

 42 Figure 4.2 Three pure Hurwitz maps, each with 4 vertices, 6 edges and Euler characteristic χ = 2, and the corresponding factorisations of the identity on S4 by 6 transpositions. Left, the map is connected and has genus 0; center, the map has two connected components, of genus 1 and 0; right, has three components, of genus 2, 0 and 0. Edge label descents are shown in grey. See Figure 0.10 for an additional example.

Figure 4 . 3

 43 Figure 4.3 Hurwitz maps of genus 0 and 1 respectively, shown with the corresponding constellations. An -constellation is a generalisation of a map in which each "edge" is incident on vertices with different labels in cyclic order; Hurwitz maps correspond to -constellations with n edges constrained to have only one vertex label descent on each face. One identifies vertices with edges and edges with vertices.

Figure 4 . 4

 44 Figure 4.4 Left, a partition λ n in Λ(µ, M, m), with λ + and λ -indicated. Center, a SYT of shape λ 0 ∈ Λ(µ, M, 0) (the filling of the boxes is not shown) is transformed to a SYT of some shape λ ∈ Λ(µ, M, m) or to something else by the surjective operation used to prove Claim 4.15. Right, a partition λ = L ν with |ν + | = m, used to prove Lemma 4.16.

  .40) Now, the function r → 2 -(1 -2ε)r + log(r 2 ) has a unique maximum on R >0 and goes to -∞ on both ends, so it is less than -1/100 outside of a closed interval I, and in fact one can take I = [0.4, 6]. Hence for n large enough and λ n with R λ ∈ [0.4, 6], P + n, (λ) ≤ exp(-/100 + o(n)), which entails the result since there are e O( √ n) partitions of n.

Claim 4. 14 .

 14 For all λ ∈ Λ(µ, M, m), we haveC λ ≤ C λ 0 -(m -1) M 2 . Claim 4.15. If m > 0 then, λ∈Λ(µ,M,m) f λ ≤ f λ 0 exp[m(2ε log n + 1)].Proof of Lemma 4.13. By Lemma 4.12, we know that, w.h.p., |λ+ | ∈ [0.4 log n , 6 log n ].We can thus assume this event for the rest of this proof.We now condition on |λ + | = M and λ -= µ, with given M ∈ [0.4 log n , 6 log n ] and µ n -M . In the rest of the proof, the little os are uniform in M and µ satisfying these conditions. Combining Claims 4.14 and 4.15 for m > 0, one obtainsZ n (Λ(µ, M, m)) Z n ({λ 0 }) ≤ exp log 1 -(m -1)M 2C λ 0 + 2m(2ε log n + 1) . (4.41) But we know by Lemma 4.10 (ii)-(iii) that C λ 0 ≤ M 2 2 + n 2-ε 2 = M 2 2 + (1 + o(1)) M 2 2 and M ≤ 6 log n . Hence Z n (Λ(µ, M, m)) Z n ({λ 0 }) ≤ exp (1 + o(1)) log 1 -m -1 M + 2m(2ε log n + 1) ≤ exp (1 + o(1)) log 1 -(m -1) log n 6 + 2m(2ε log n + 1) ≤ exp -(1 + o(1)) (m -1) log n 6 + 2m(2ε log n + 1) ≤ exp (1 + o(1))m log n(4εinequality holds for n large enough. Summing this over all m > 0 (recall that in this case we have m ≥ n 1-ε ), we havem>0 Z n (Λ(µ, M, m)) = o(Z n ({λ 0 })) (4.43)which is enough to conclude that λ + = (λ 1 ) w.h.p.Proof of Claim 4.14 . By Lemma 4.10 (iii), for any λ ∈ Λ(µ, M ) we have a simple upper boundC λ ≤ C λ + -(n -M ) + C µ , (4.44)since λ + contains at least one part. For λ 0 the same lemma gives the equalityC λ 0 = M 2 (M + 1) -(n -M ) + C µ . (4.45)When λ ∈ Λ(µ, M, m), by Lemma 4.10 (ii) we have C λ + ≤ M (M -m)/2, and inserting this into (4.44) we haveC λ ≤ M 2 (M -m) -(n -M ) + C µ = C λ 0 -

2.

  choose m numbers in the first row of T ( M m choices), 3. for each of these numbers, choose one of the newly created rows, and move it there (n ε choices each time), 4. sort each row and delete the empty rows.The output is either a SYT of some λ ∈ Λ(µ, M, m), or something else. It is easily checked that this procedure can output any SYT of shape λ, for any λ ∈ Λ(µ, M, m) (indeed, for any λ, λ + must have at most n n 1-ε = n ε parts). Hence we haveλ∈Λ(µ,M,m) f λ ≤ M m n εm f λ 0 ≤ M m m! n εm f λ 0 ≤ f λ 0 exp[m(2ε log n + 1)] (4.47)

Z 2 12

 2 n ({λ}) ≤ exp [2 log(λ 1 ) -log 2 -λ 1 log n + o(n)] . (4.49) Substituting λ 1 = R λ log n ∼ R λ 2qnlog n into the inequality above, we obtainZ n ({λ}) ≤ log n 2 exp [(2 log R λ -log 2 -R λ ) + o(n)] . (4.50)Now, since the function on the positive reals x → 2 log x -x has a unique maximum at x = 2, we haveZ n ({λ}) ≤ log n 2 exp (-2 + log 2) + o(n) , (4.51)and since there aree O( √ n) partitions of n, Z n (Λ * ) ≤ max λ∈Λ * Z n ({λ})e O( √n) . Together with the lower bound of Lemma 4.11 and (4.48) this proves thatH n, = log n 2 exp (-2 + log 2) + o(n) , (4.52)as required.Proof of Theorem 4.2, part (i). The upper bound (4.50) in the previous proof along with Lemma 4.11 implies that for λ ∈ Λ * (uniformly),P + n, (λ) ≤ exp [ (2 log R λ -2 log 2 + 2 -R λ ) + o(n)] . (4.53)Any non-negligible deviation of R λ from the unique maximiser of this upper bound thus entails an exponentially decreasing probability, which is enough to conclude that, under the Plancherel-Hurwitz measure at high genus, R λ p -→ 2, which is what we wanted.Proof of Theorem 4.2, part (ii). We refine the previous upper bound onP + n, (λ) for λ = λ 1 λ ∈ Λ * by writing 1 n! f 2 λ ≤ n! λ 1 ! 2 (n-λ 1 )! 2 f λby Lemma 4.10 part (i), along with C λ = (1 + o(1)) λ as above, uniformly for λ ∈ Λ * . Recall that R λ = λ 1 log n . By Lemma 4.11 and the Plancherel entropy estimate of Proposition 1.36 for 1 (n-λ 1 )! f 2 λ , we have P + n, (λ) ≤ exp (2 log R λ -2 log 2 + 2 -R λ ) -n(1 + 2I hook (ψ λ, √ n )) + o(n) ≤ exp -n(1 + I hook (ψ λ, √ n )) + o(n) (4.54)

  2 (iii): min(λ 2 , (λ)) ≥ (2 -o p (1)) √ n.(4.55)

  .57) then by Lemma 4.10 (i) again (and (4.38))1 (n -L)! f 2 ν ≤ exp[-(1 -2ε)m log(n -L) + 2m]. (4.58) Since C λ ≤ L 2 2 (1 + n 2-ε), using (4.34) to bound H n, below we haveZ n ({λ}) λ ∈ Λ * m(λ) ≥ n √ log n = o(H n, ). (4.60) Now, take λ ∈ Λ * with m(λ) < n √ log n . Write λ = L ν as above, fix ν -:= µ , |ν + | = m and fix M = L + m.In analogy with the proof of Lemma 4.13, for given M and m, we consider the set Λ(µ, M, m) of all such partitions, and compare Z n ( Λ(µ, M, m)) to Z n ({λ 0 }), where λ 0 = M µ = L µ as before, such that Λ(µ, M, 0) = {λ 0 }. It follows immediately from this definition that Claim 4.15 also applies to Λ(µ, M, m), that is to sayλ∈ Λ(µ,M,m) f λ ≤ f λ 0 exp[m(2ε log n + 1)].(4.61)Then, by Lemma 4.10 (iii) and (4.45), we getC λ = C λ 0 -m(2M -m -1) 2 + (ν + )(n -M ) -C ν + . (4.62)It is clear that (ν + ) ≤ m/n 1-ε , and if ν + is non-empty, C ν + has a straightforward lower bound ofC ν + ≥ (ν (ν) -2 (ν) + 1)n 2 ≥ n 1-ε 2 -m n 1-ε + 1 n ≥ -mn ε , (4.63) and, since m = o(M ) and M ∈ 0.4 log n , 6 log n , C λ ≤ C λ 0 -mM (1 + o(1)). (4.64) As C λ 0 ≤ (1 + o(1)) M 2 2 , repeating precisely the arguments of Lemma 4.13 we have Z n ( Λ(µ, M, m)) Z n ({λ 0 }) ≤ exp log 1 -m log n 2 (1 + o(1)) + 2m(2ε log n + 1)

Z

  n [L] := Z n ({λ n|λ 1 = L}). Under the hypotheses of Theorem 4.2, the second part satisfies λ 2 ≤ (e + o p (1)) √ n, and similarly the length satisfies (λ) ≤ (e + o p (1)) √ n.

  76) and finally Zn-1 [L]/Z n [L] ≥ 1 -O(1/ log n), which concludes the proof.

Figure 4 . 5

 45 Figure 4.5 Left, partitions L k µ n and L µ n -k, as used in the proof of Proposition 4.18 to bound the second part λ2. Right, partitions L (k µ) n and L µ n -k with a box removed from each as used to bound the length (λ).

  (4.82) Now, by Lemma 4.19, it follows thatP(λ 2 = k|λ 1 = L) ≤ n! k! 2 (n -k)! e o(k) ≤ n k (k/e) 2k e o(k) , (4.83)where the little o is uniform for L ∈ 0.4 log n , 6 log n . Hence∀ε > 0, P(λ 2 = (1 + ε)e √ n|λ 1 = L) = (1 + ε) -2k+o(k) , (4.84) with the same uniformity. From Theorem 4.2, part (i), this implies that λ 2 ≤ e(1 + o p (1)) √ n as n → ∞. The proof that (λ) ≤ e(1+o p (1))

Theorem 4 .

 4 21 (Deviation bound for the sum of contents under the Plancherel measure). Let λ n be a random partition under the Plancherel measure P n . Then, for all t (log n/ √ n) 1/6 and constants c ≥ 2, there exists a constant B such thatP n C λ ≥ n 3/2 t and max(λ 1 , (λ 1 )) ≤ c √ n ≤ exp[-(B + o(1))nt 6 ]. (4.87)Proof. Let us recall the discussion of the Plancherel entropy estimate of Section 1.2.1, and once again define the height function of the rescaled profile of a given partition λ as h(x) := ψ λ, √ n (x) -|x|, its distance above the lines y = |x|. We associate the usual Fourier transform ĥ to h:h(u) = ˆ∞ -∞ e -ixu h(x)dx. (4.88)We can calculate the content sum of λ n easily from h: estimate I hook is written as a functional of h at (1.95). Letting h 0 denote the height function of the VKLS limit curve Ω, we cite an additional expression given at [Rom15, equation 1.19]:f 2 λ n! = exp[-2n(I hook (h) -I hook (h 0 )) + O( √ n log n)]. (4.90)For our proof, we will only need the following inequality ([Rom15, Equations (1.35) and (1.38)]):I hook (h) -I hook (h 0 ) ≥ 1 2 Q(h -h 0 ) := 1 8 ˆ∞ -∞ |x|| h(x) -h 0 (x)| 2 dx. (4.91) Let h * := h -h 0 , where h is the height function for λ satisfying max(λ 1 , (λ)) ≤ c √ n. Then h λ is supported on [-c, c],and thus so is h * (because h 0 is supported on [-2, 2]). We have| h * (u) -h * (0)| = ˆ∞ -∞ (e ixu -1)xh * (x)dx ≤ ˆc -c x 2 |u||h * (x)|dx ≤ |u| ˆc -c c 2 (h λ (x) + h 0 (x))dx = 2c 2 |u|,where in the second line we use the inequality |e it -1] ≤ |t|, in the third line we use the fact that h 0 ≥ 0 and h ≥ 0, and in the last line we used the fact that ´c -c h(x)dx = ´c -c h 0 (x) = 1. Now, for all v > 0, we have| h * (v) -v h * (0)| ≤ ˆv 0 | h * (u) -h * (0)|du ≤ ˆv 0 2c 2 udu = Cv 2 (4.92)for some constant C > 0. Therefore by the triangular inequality, we have| h * (v)| ≥ v| h * (0)| -Cv 2 . (4.93) Taking ε = | h * (0)| 2C and noticing that for all v ∈ [0, ε] one has v| h * (0)|-Cv 2 ≥ v| h * (0

  bound the normalisation factor Z n [L] below. Let Λ L = {µ n -L|C µ ≥ 0 and µ 1 , (µ) ≤ 3 √ n}. Take λ = L µ with µ ∈ Λ L .In the rest of the proof, uniformity will also be over µ ∈ Λ L . Then, by Lemma 4.10-(iii), the hook-length formula,f λ = n! (n -L)! 1 (L -µ 1 )! 1 µ 1 i=1 (µ i + L -i) f µ . (4.102) exp(O(log n)). (4.104) By Theorem 1.35 (together with the fact that P n (C λ ≥ 0) ≥ 1/2)), we have µ∈Λ L (log n)), (4.106) and therefore, using (4.101), Z n [L] ≥ Z n ({λ = L µ|µ ∈ Λ L }) ≥

  100) and (4.107) proves (4.97). The uniformity condition is easily checked.We can now prove the last part of Theorem 4.2.Proof of Theorem 4.2, part (iii). We set L ∈ 0.4 log n , 6 log n , m = n -L and ε > 0, and introduce the setsZ m = {µ m|µ 1 , (µ) ≤ 3 √ m} (4.108)and, respectively,X ≤t m = {µ ∈ Z m |C µ ≤ m 3/2 t}, X ≥t m = {µ ∈ Z m |C µ ≥ m 3/2 t} (4.109)and finallyY ε m = {µ ∈ Z m | max(µ 1 , (µ)) ≥ (2 + ε) √ m}. (4.110)In accordance with (4.97), we will show that for any constant C, uniformly in C and L, where K is the constant of Proposition 4.20. Let us fix t = 1/ log 3 n.
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Generalisation to skew partitions and related sequences Let
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	Definition 1.9
	us introduce the follow-
	ing notion of a "difference" of partitions, which corresponding generalisations of Young
	diagrams and Young tableaux:

  At positive temperature, or at finite inverse temperature β (which we treat as dimensionless, setting the Boltzmann constant to 1), fermions are not constrained to occupy the lowest energy states available. Rather, if a state ϕ i has energy i (that is, if (d 2 /dx 2 + V (x))ϕ i = i ϕ i ) it is weighted with a Boltzmann factor of e -β i (see e.g. [DDMS19, Section 5]). Then, the collective state of a "canonical ensemble" of N fermions is a weighted sum of Slater determinants

		1.3 Integrable measures and free fermions
	positions form a DPP with kernel		
	N		
	K(k, ) =	ϕ * i (k)ϕ i ( ).	(1.138)
	i=1		
	K(k, ) is manifestly Hermitian, and it meets exactly the conditions of the Macchi-
	Soshnikov theorem 1.44. Moreover, it is a projection kernel.	
	Positive temperature fermions in first quantisation	

137)

We can compute |Φ 0 (k 1 , . . . , k n , x n+1 , . . . , x N )| 2 by recalling that det A t det B = det AB and that each single particle state function ϕ i has L 2 norm 1, to find that the random
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  • p ν , we can write a generating function for them in terms of the Schur functions as

	n,
	µ,ν n

.10) Now, by Proposition 1.33, the characters χ λ can be expressed in terms of Schur functions s λ specialised in the Miwa times; weighting each double Hurwitz numbers H n, (µ, ν) by the powersums p µ

  This result immediately implies Lemma 4.9 used in Section 4.2.2:Proof of Lemma 4.9. The expected number of isolated vertices in H n, is easily shown

	to be	nZ n-1 Z n	.	(4.77)
	Since, uniformly for L ∈ 0.4 log n , 6 log n ,			
	Z n-1 [L] Z n [L]	≥ 1 -O(1/ log n)	(4.78)

  | 2 dv (0)| 6 (4.94) for some constant C > 0. Now, if C λ ≥ n 3/2 t it means, by (4.89), that h * (0) = h (0) ≥ √ 2t, which by (4.94) implies Q(h -h 0 ) ≥ 8C t 6 , (4.95) which by (4.90) and (4.91) implies the result. Thanks to the previous results we can now focus (for n large enough) on partitions λ = L λ such that λ 2 , (λ) ≤ 2e √ n, which by Lemma 4.10 (i) implies C λ ≤ en 3/2 . ((λ 2 , λ 3 , . . .) = λ|λ 1 = L) ≤ exp O uniformly for L ∈ 0.4 log n , 6 log n and all λ n -L satisfying C λ ≤ en 3/2 . Take any λ satisfying the conditions above. It is easily shown from the hooklength formula that

	≥ λ ˆε 0 n, C λ log 2 n Proposition 4.22. We have P + n C λ log 2 n n f λ ≤ n L f λ v v| h 4.4.3 Final bounding box for and also C λ ≤ L(L -1) 2 + C λ.	+ log n + log 2 n	(f λ) 2 (n -L)! (f λ) 2 (n -L)! . .	(4.96) (4.97) (4.98)

* (0)| -Cv 2 2 dv ≥ | h * (0)| 2 4 ˆε 0 v 3 dv ≥ C | h *

Proposition 4.23. We have

P + n, ((λ 2 , λ 3 , . . .) ≤ λ|λ 1 = L) ≤ exp O uniformly for L ∈ 0.4 log n , 6

log n and all λ n -L satisfying C λ ≤ en 3/2 .

Proof.

  To establish this inequality we will split the sum into two sums, overY ε m ∩ X ≤t m and Y ε m ∩ X ≥t m . For all µ ∈ Y ε m ∩ X ≤t m , we have C µ log 2 n/n = o(On the other hand, for all µ ∈ Y ε m ∩ X ≥t m , we have both C µ = O(n 3/2 ) and, by Theorem 4.21 (very roughly), f µ 2 /m! ≤ exp(-n 0.9 ). Since |Y ε m ∩ X ≥t m | = e O( Proposition 4.18, we have λ ∈ Z m w.h.p., hence we can combine (4.111) with (4.97) to establish that for all ε > 0 there is K > 0 such that ; since λ 1 is in this interval w.h.p., one we can remove the conditioning and get P + n, (max(λ 2 , (λ)) ≥ (2 + ε)

									√	n) as
	well, we have							
	µ∈Y ε m ∩X ≥t m	exp C	C µ log 2 n n	2 m! f µ	≤ exp[-(1 + o(1))n 0.9 ].	(4.113)
	Putting (4.112) and (4.113) together establishes (4.111).
	Now, by P + n, (max(λ 2 , (λ)) ≥ (2 + ε)	√	n|λ 1 = L) ≤ exp[-(1 + o(1))K	√	n]	(4.114)
	uniformly for L ∈ 0.4 log n , 6 log n √	n) ≤ exp[-(1 + o(1))K	√	n].	(4.115)
	Together with (4.55), this directly implies that
			λ 2 √ n	p -→ 2 and	(λ) √ n	p -→ 2	(4.116)
									√	n)
	uniformly in µ hence by Proposition 4.20, we have
	µ∈Y ε m ∩X ≤t m	exp C	C µ log 2 n n	f µ m! 2	≤ exp[-(1 + o(1))K	√	n].	(4.112)

We will use the term "TW-GUE class" rather than the more established "KPZ class" to refer to any models with fluctuations driven by FGUE with an exponent of 1/3 in order to include models with no time dependence (the KPZ class is more strictly defined in terms of the

: 2 : 1 scaling and the KPZ fixed point conjecture).

If b is greater than all of the entries on the ath row of P (i-1) , set P (i) to P (i-1) with a box filled with b appended to the ath row. Otherwise:

Let change be the leftmost box on the ath row of P (i-1) whose filling c is greater than a.

Refill change with b, reset b := c and increase a by 1.

We write this only for Sn for simplicity, but it holds analogously for any finite group.

The formula we write with the cycle structure of two of the factors fixed is a special case that will be useful to us; a similar formula can be written with any number of factors of given cycle structure.

More generally, the coefficients cα in (1.46) can be taken to belong to a commutative ring R, for instance Z which is the convention used in[START_REF] Macdonald | Symmetric Functions and Hall Polynomials[END_REF] and many other references. In this case Sym n is an R-module. Our discussion of bases of Sym n only applies to the case where Sym n is a vector space, i.e. the coefficients cα are in a field.

Some references, notably[START_REF] Romik | The Surprising Mathematics of Longest Increasing Subsequences[END_REF] which we cite regularly, define the rescaled profile as what we denote ψ λ, √ 2n , so that each box has area 1/ √ n.

The proof in[START_REF] Johansson | Shape fluctuations and random matrices[END_REF] includes more general up/right paths ending on (m, n) where m ∼ c • n for some constant c.

This definition is not given in full generality; see e.g.[START_REF] Borodin | Lectures on integrable probability[END_REF] for a concise review including other cases.

The term "process" here does not connote time dependence, rather it borrows the terminology of spatial point processes for locally finite configurations of random points.

As in the previous section, R may be discrete; each integral is to be taken with respect to a suitable reference measure. Elsewhere we write l 2 (R) rather than L 2 (R) if R is discrete.

This is a more general construction than the quantum mechanical one, which would require |Φ = |Φ .

Our integration convention differs from [LDMS18, Equation 5] which defines the same function. In their expression the integration is taken over a line to the left of the origin for even m, and is recovered from ours by the change of integration variable ζ → -ζ.

Let us note that in this instance, we cannot readily switch to contours angled at mπ/2m + 1, due to the poles of κ on the real line.

This statement is still not as general as the one in[START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF], which includes distributions det(1 -ρAτ;2m+1) for ρ ∈ (0, 1] associated with "thinned" DPPs where elements of the configurations are removed independently at random; we will not consider any such processes.

In the conventions of[START_REF] Bocini | Non-probabilistic fermionic limit shapes[END_REF], our γ1 is equal to 1/2 and our γ2 is α/2. The authors only give formulas for α ≥ 0 but note that negative α limit shapes can be obtained via Proposition 2.5; this tells us that if the the limiting density at α is , the limiting density at -α is -(x) = 1 -(-x).

This explicit expression appears in[START_REF] Johansson | The longest increasing subsequence in a random permutation and a unitary random matrix model[END_REF] Lemma 

2.1], rather than[START_REF] Gross | Possible third order phase transition in the large N lattice gauge theory[END_REF] or[START_REF] Wadia | N = ∞ phase transition in a class of exactly soluble model lattice gauge theories[END_REF] directly; the coefficient x in F(x) in our conventions corresponds to 2/γ in Johansson's f (γ). To compare notations with[START_REF] Gross | Possible third order phase transition in the large N lattice gauge theory[END_REF], our x corresponds to their λ and our θ corresponds to 1/g 2 .

The approach from the subcritical x < b side is much more subtle but is still feasible; we refer to the final equations of[START_REF] Periwal | Unitary-matrix models as exactly solvable string theories[END_REF] for an explicit formula for the density and its support below criticality in any degree 4 potential.

For simplicity, we have different conventions to[START_REF] Okounkov | Toda equations for Hurwitz numbers[END_REF], where only the connected numbers are referred to directly; in the notation of that reference, H n, (µ, ν) is n!Covn(Cµ, Cν , (C (2) ) ).

The result in[START_REF] Deuschel | On increasing subsequences of I.I.D. samples[END_REF] is actually more precise, but this is sufficient for our purposes.
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