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And I shall have some peace there, for peace comes dropping slow,
Dropping from the veils of the morning to where the cricket sings;
There midnight’s all a glimmer, and noon a purple glow,
And evening full of the linnet’s wings.

I will arise and go now, for always night and day
I hear lake water lapping with low sounds by the shore;
While I stand on the roadway, or on the pavements grey,
I hear it in the deep heart’s core.

Ð W. B. Yeats (1888)
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Summary

Climate change is a challenging and yet a humbling insight provided by
science. While the global warming train has left the station with a more than
1K rise in the global mean temperature, we need to ask ourselves the question
of what kind of future is up ahead, and what climate łsurprisesž we have in
store? This thesis is a contribution to better quantifying and understanding the
global response of extreme daily precipitation intensities to anthropogenic climate
change.

The words droughts and floods resonate across our disastrous history
and our uncertain collective future. Anticipating, mitigating and adapting to such
disasters remains a challenge to our shared humanity. In this thesis, I assess
future changes in meteorological dry and mostly wet extremes on regional and
global scales. The investigation is primarily based on global projections and more
idealised climate change experiments conducted in phase 6 of the Coupled Model
Intercomparison Project (CMIP6). The future changes described in the thesis are
mostly based on the highest emission scenarios (SSP5-8.5), which maximises the
signal-to-noise ratio, but presumably, provides an unfavourably bleak picture of
our future climate (although large model uncertainties can lead to a strong overlap
between projections derived from moderate to high-emissions scenarios). In the
lead of the 6th Assessment Report of IPCC, future changes in extremes are also
investigated at different global warming levels. The extremes considered include
the annual maximum daily precipitation intensities (RX1DAY) and meteorological
droughts described as consecutive dry days and their annual maximum numbers
(CDD).

Using some idealised atmosphere-only experiments with the CNRM-CM6-1
and a few other climate models which participated in a CMIP subproject, I first
distinguish the various timescales of the annual mean and daily precipitation
responses to an abrupt quadrupling of the atmospheric CO2 concentration, espe-
cially the fast response to CO2 increase from the slower response to the gradual
and uniform versus non-uniform components of the global ocean warming. The
response of the dry meteorological extremes is particularly complex and involves
multiple timescales and processes which can be highly model-dependent.

Even though most CMIP6 models qualitatively agree on the idealized re-
sponse of RX1DAY to a CO2 increase, I quantify the related uncertainties in a high-
emission scenario using a large subset of CMIP6 models and a large ensemble of
a single model. The study pays particular attention to both model uncertainties,

iii



Summary

and the irreducible uncertainties related to internal climate variability. The results
illustrate an upper bound of the inter-model spread and estimate a large spread.
However, there is a robust enhancement of extreme precipitation with more than
90% of models simulating an increase in the precipitation extremes. I also provide
a 5–95% confidence range for projected RX1DAY values at the end of the 21st cen-
tury and highlight the regions (only 17% of the globe surface) where the changes
may not be consistent with the widely used assumption of a Clausius–Clapeyron
(CC) rate of ≈7%/K when scaled by concomitant changes in global mean surface
temperature.

Finally, I investigate the changes in the seasonality of precipitation extremes,
focusing on Europe and the potential contribution of regional changes in atmo-
spheric circulation. My analysis documents a sharper seasonal cycle of extreme
precipitation and a shift in its seasonality. To better understand the mechanisms
that cause the change in seasonality, I analyse the possible role of different synop-
tic circulation types (CTs) in regulating the frequency of extremes across different
seasons. By using a simple decomposition technique, I further explore the role of
the projected changes in the CT frequencies to the previously assessed changes
in the RX1DAY seasonality and the associated inter-model spread.
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Résumé

Le changement climatique est un défi, mais aussi une leçon d’humilité que nous
offre la science. Alors que le train du réchauffement climatique a quitté la gare
avec une augmentation de plus de 1K de la température moyenne globale, nous
devons nous poser la question de savoir quel genre de futur nous attend, et
quelles sont les "surprises" climatiques qui nous sont réservées? Cette thèse est
une contribution à une meilleure quantification et compréhension de la réponse
globale des intensités extrêmes de précipitations quotidiennes au changement
climatique d’origine anthropique.

Les mots sécheresses et inondations résonnent à travers notre histoire
désastreuse et notre avenir collectif incertain. Anticiper, atténuer et s’adapter à
de tels désastres reste un défi pour notre humanité commune. Dans cette thèse,
j’évalue les changements futurs des extrêmes météorologiques secs et, surtout, hu-
mides à l’échelle régionale et globale. L’analyse est principalement basée sur des
projections globales et des expériences de changement climatique plus idéalisées
menées dans la phase 6 du Coupled Model Inter Comparison Project (CMIP6). Les
changements futurs décrits dans la thèse sont principalement basés sur les scénar-
ios d’émissions les plus élevés (SSP5-8.5), ce qui maximise le rapport signal/bruit,
mais fournit une image particulièrement sombre de notre climat futur (bien que
les incertitudes de modélisation puissent conduire à un fort chevauchement entre
les projections dérivées des scénarios d’émissions modéré à élevé). En suivant
l’exemple du 6ème rapport d’évaluation du GIEC, les changements futurs des ex-
trêmes sont également étudiés à différents niveaux de réchauffement global. Les
extrêmes considérés comprennent les intensités maximales annuelles de précipi-
tations quotidiennes (RX1DAY) et les sécheresses météorologiques décrites comme
des jours secs consécutifs (CDD) et leur nombre maximal annuel.

À l’aide de quelques expériences idéalisées en mode purement atmosphérique,
menées avec le modèle CNRM-CM6-1 et quelques autres modèles climatiques qui
ont participé à un sous-projet du CMIP, je distingue d’abord les différentes échelles
de temps des réponses de la moyenne annuelle et des précipitations quotidiennes
à un quadruplement abrupt de la concentration atmosphérique de CO2, en par-
ticulier la réponse rapide à l’augmentation de CO2 par rapport à la réponse plus
lente aux composantes graduelles et uniformes versus non uniformes du réchauf-
fement océanique global. La réponse des extrêmes météorologiques secs est par-
ticulièrement complexe et implique de multiples échelles de temps et processus
qui peuvent dépendre fortement du modèle.
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Résumé

Même si les modèles CMIP6 sont qualitativement d’accord sur la réponse
idéalisée de RX1DAY à une augmentation de CO2, je quantifie les incertitudes asso-
ciées dans un scénario de fortes émissions en utilisant un grand sous-ensemble de
modèles CMIP6 et un grand ensemble de réalisation d’un seul modèle. L’étude ac-
corde ainsi une attention particulière à la fois aux incertitudes de modélisation et
aux incertitudes irréductibles liées à la variabilité climatique interne. Les résultats
fournissent une limite supérieure de l’écart inter-modèle, incluant une contribution
de la variabilité interne du climat. Cependant, on constate une forte augmentation
des précipitations extrêmes, dans plus de 90% des modèles analysés. Je four-
nis également un intervalle de confiance de 5 à 95% pour les valeurs projetées
de RX1DAY à la fin du 21e siècle et je mets en évidence les régions (seulement
17% de la surface du globe) où les changements peuvent ne pas être cohérents
avec l’hypothèse largement utilisée d’un taux Clausius-Clapeyron (CC) de ≈7%/K
lorsqu’il est mis à l’échelle par les changements concomitants de la température
moyenne à la surface du globe.

Enfin, j’étudie les changements de la saisonnalité des précipitations ex-
trêmes, en me concentrant sur l’Europe et sur la contribution potentielle des
changements régionaux de la circulation atmosphérique. Mon analyse révèle un
cycle saisonnier plus marqué des précipitations extrêmes et un décalage de leur
saisonnalité. Pour mieux comprendre les mécanismes à l’origine de ce changement,
j’analyse le rôle possible des différents types de circulation synoptique (CT) dans
la modulation de la fréquence des extrêmes à travers les différentes saisons. En
utilisant une technique de décomposition simple, j’explore le rôle des change-
ments projetés dans les fréquences des CTs dans les changements de saisonnalité
de RX1DAY et la dispersion inter-modèle associée.
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Introduction

The atmosphere is everywhere. One could argue that it would be more conspic-
uous. Like the fish, unaware of the water they dwell in, we humans breathe and
walk through the atmosphere that is invisible to us. It is the sine qua non for
our existence, yet it’s a mystery to us. Without the extremes of wind and rain,
heat and cold, we would be negligible of the atmosphere’s existence. If we are to
understand why floods and droughts occur, we must begin with the atmosphere
and climate is the fundamental link between the two. Daily we are touched by
the vicissitudes of the weather from extreme heat or cold, heavy rain or drought.
Storms rage, rivers breach their banks, the skies remain clear for months as ani-
mals perish, and reservoirs run empty. Over years and seasons, one learns what
to expect from the weather. The cumulative effects of storms, wind, and heat
merge into a sense of climate over time. Climate, rather than a smooth contin-
uum of meteorologic possibilities, turns out to be the sum of several processes
functioning on different time scales, both regionally and globally.

As individuals and as a society, we are shaped by extreme weather events.
Droughts are caused by prolonged dryness spanning months or years, whereas a
single summer thunderstorm can cause catastrophic floods. Flooding can also be
caused by the rapid melting of heavy winter snow accumulations or soil saturation
caused by high seasonal rainfall. Extreme weather events are firmly ingrained in
the collective human experience. In 1931 the Huang Ho River in China claimed
3.7 million lives. During the second half of the 20th century, at least 150,000
lives were lost due to the drought in Africa’s Sahel Desert. In the present times,
we see unprecedented rains and severe flooding throughout Asia and Europe and
drought in parts of Africa and South America. In 2021, there were 432 catastrophic
incidents, which is much more than the average of 357 yearly catastrophic events
from 2001 to 2020. With 223 occurrences, floods dominated these events, up
from an average of 163 yearly flood occurrences between 2001 and 2020.

Hydrologists and climatologists have long recognized the relevance of re-
gional climate in flood prediction and drought understanding. With our expanding
awareness of a changing climate, it’s time to reconsider the thesis concepts of
flood and drought as global processes rather than isolated catastrophes. Floods
and droughts, traditionally thought to be acts of God, are now more understood
as connected events driven by the same forces that shape the oceans and the
entire atmosphere. At the same time, the impact of human intervention on the
planet’s baseline climate condition has become more certain. Anthropogenic cli-
mate change is one of humanity’s most serious threats, and it has been the subject
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Introduction

of regular assessment reports since the establishment of the Intergovernmental
Panel on Climate Change (IPCC) in 1988. The latest and sixth Assessment Report
(AR6) from the IPCC underlines that many significant climate-related changes have
unfolded worldwide since the publication of the previous Fifth Assessment Report
(AR5) in 2014.

Extreme weather events have always occurred and are a natural aspect of
climatic variability. However, because the background climate is changing, it is
reasonable to wonder about what to anticipate in the future and hence raises the
basic question of my PhD;

"How does the extremes (wet/dry) respond to
the changing climate states of our planet?"

To begin, Chapter 1 will provide a more extensive foundation to the thesis
by summarizing our present knowledge of observed and projected changes in
precipitation extremes and the essential mechanisms that underpin them. The
observed datasets, available global climate models, and statistical tools and rou-
tines used to infer extreme precipitation events’ return levels and periods will be
described, compared, and evaluated in Chapter 2.

As global temperatures rise, there is ample and robust evidence that the
global water cycle will intensify, with precipitation becoming more variable across
most land regions within seasons and year to year. Although the response of
precipitation extremes at the regional scale is perhaps more robust and better
understood than projected changes in annual or seasonal mean precipitation, there
is always an impending call to better understand the water cycle changes with a
better assessment of model uncertainty; which motivates the main objectives of
this thesis.

Chapter 3 distinguishes and compares the inter-model response of pre-
cipitation extremes (wet/dry) to the rise in CO2 emissions and increased global
surface temperatures as the fast and slow responses using different idealised cli-
mate change experiments. The total uncertainties in projecting the extreme pre-
cipitation by the state-of-the-art global climate models are quantified along with
the discussion about the contribution of internal variability to this uncertainty in
chapter 4. Chapter 5 assess and discusses the potential changes in the season-
ality of extreme precipitation events and the possible contribution of large-scale
atmospheric circulation anomalies therein. The final section of this thesis wraps
up the substance of my PhD and concludes, emphasizes all scientific points and
objectives from each chapter and eventually discussing the different avenues it
opened for future research.

2



If you wish to make an apple pie from scratch,
you must first invent the universe.

Ð Carl Sagan

1
Precipitation extremes in a changing

climate

Human influence on the average climate state of our planet, especially global
mean surface temperature, is a well-established fact. Anthropogenic emissions of
greenhouse gases (GHG) have already warmed the Earth’s surface by about 1.1◦CC
since preindustrial times, altered the global energy and water cycles, and led to
more frequent and severe wet and dry events which have undesirable effects on
the human life as well as to the ecosystems. This chapter provides a detailed
review of extreme precipitation, including its classic definitions, the key physical
mechanisms, the projected changes along with the impacts they might have on
both societies and the natural world.

1.1 The definition of extremes

According to the AR6, an extreme weather event is defined as "an event that
is rare at a specific location and time of year," while an extreme climate event
is defined as "a pattern of extreme weather that persists for a period of time,
such as a season" (cf. Glossary, IPCC 2022). Rare can be defined in a variety of
ways, depending on the context. Some studies classify an event as an extreme if
it is unprecedented, whereas others classify events that happen numerous times
a year as moderate extreme events (Seneviratne et al., 2021). Under human-
induced climate change, the rarity of a fixed-magnitude event changes, making
events that are unprecedented so far rather probable under present conditions,
but unique in the observational record Ð and thus often considered as łsurprisesž.
Precipitation extremes can be computed in a variety of ways. These are usually
calculated using relative (e.g., 90th percentile) or absolute (e.g., 1mm/day for a dry
day) thresholds over which conditions are considered extreme.

3



1.1. The definition of extremes

Changes in extremes can be studied from two angles: changes in frequency
for a certain magnitude of extremes, or changes in magnitude for a specific return
period (frequency). Extreme probability changes are proportional to the rarity
of the extreme event under consideration, with a bigger change in likelihood
associated with a rarer event (e.g., Kharin et al. 2018). Changes in the magnitude
reflected by the return levels of extreme events, on the other hand, may not be as
sensitive to the event’s rarity. While the answers to the two different questions
are related, their relevance to different audiences may differ. Conclusions on the
role of GHG forcing in changes in magnitude vs frequency of extremes may also
vary (Otto et al., 2012). Correspondingly, the sensitivity of changes in extremes to
rising global warming is determined by the definition of the extremes in question.
Changes in the magnitude of precipitation extremes have been found to scale with
changes in global mean surface temperature, although changes in frequency are
non-linear and can be exponential at increasing global warming levels (Fischer and
Knutti, 2015; Kharin et al., 2018). When similar damage occurs once a predefined
threshold is exceeded, it’s more vital to inquire about frequency changes. However,
if exceeding this predetermined threshold becomes a common occurrence in the
future, the change in probability may become saturated.

Hydrological extremes and related phenomena occur on a variety of spatial
and temporal scales. Convective storms can have spatial scales as small as a
few kilometres and temporal scales as short as a few hours. A drought, on
the other hand, can last for years and affect vast areas. The complexity of the
processes involved varies depending on the type of extreme event, affecting our
ability to detect, attribute, and project changes in weather and climate extremes.
The extremes of precipitation studied in the literature are frequently based on
extremes derived from daily values. Longer time scale studies, or studies of
sub-daily extremes, are scarcer, which limits the assessment for such events.
However, some research suggests that the effects of GHG emissions on heavy
precipitation events may be highly localized, making detection and attribution
highly dependent on spatial scale (Angélil et al., 2018).

The joint CCl/WCRP-Clivar/JCOMM Expert Team on Climate Change Detec-
tion and Indices (ETCCDI, https://www.clivar.org/organization/etccdi/etccdi.php)
has created a core set of descriptive indices of extremes to acquire a uniform
viewpoint on observed changes in weather and climate extremes. There are a
total of 27 indices that have been designated as core indexes. They are calculated
using daily temperature or precipitation data. Some are based on fixed thresh-
olds that are relevant to specific applications (e.g., 0◦CC, 1mm/day, 10mm/day). In
these circumstances, all stations have the same criteria. Other indices are based
on location-specific thresholds. Thresholds are often defined as a percentile of
the relevant data series in these circumstances. We can use this set of indices to
describe certain aspects of extremes, such as frequency, amplitude, and persis-
tence. We have summarized the most important precipitation indices in Table 2.2
in section 2.2. The annual maximum daily precipitation intensity (RX1DAY) will be
the primary emphasis of this thesis, but additional indices will be employed as
well, particularly in Chapters 3 and 4.

These station-based indices are frequently interpolated into regular grids
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1. Precipitation extremes in a changing climate

for comparison with model outputs, such as model evaluation and detection-
attribution. In order to create such gridded datasets, two alternative methodolo-
gies were applied, each involving two separate orders of operation. In some cases,
like the HadEX3 dataset (Dunn et al., 2020), extreme indices are estimated first
using time series directly obtained from stations, then gridded over the space.
The gridded data products are point estimates of the indices averaged over the
spatial scale of the grid box because the indices are computed at the station level.
In other instances, daily values of station observations are gridded first (e.g., RE-
GEN dataset; Contractor et al. 2020), and then the interpolated values are then
used to compute indices. Extremes generated from data gridded this way repre-
sent extremes of spatial scales ranging from the size of the grid box to a point,
depending on the station density. The gridded values are closer to the extremes
of the area means in places with high station density (e.g., North America and Eu-
rope), and are thus more appropriate for comparisons with extremes calculated
from climate model output, which is often considered to represent areal means.
The gridded values are closer to point estimates of extremes in regions with low
station density (e.g., Africa).

Some studies have used extreme indices generated from various reanal-
ysis data sets, although reanalysis extreme statistics have not been rigorously
compared to observations. For extreme precipitation changes, there was gener-
ally minimal agreement across several reanalysis datasets, however temporal and
spatial correlations against observations were nonetheless significant. There is
often less agreement for extreme precipitation between different reanalysis prod-
ucts in regions with sparse observations (e.g., Africa and parts of South America),
indicating a consequence of the lack of an observational constraint in these re-
gions (Donat et al., 2014, 2016a). Recent reanalyses, such as ERA5 (Hersbach et al.,
2020), appear to be a step up from past products. Caution is however needed
when reanalysis data products are used to provide additional information about
past changes in these extremes in regions where observations are generally lack-
ing.

For the sake of comparison across numerous observed datasets, reanaly-
ses, and global climate models, we compute ETCCDI indices from gridded daily
precipitation products interpolated (cf section 2.4) onto a common (usually 1◦ by
1◦) horizontal grid. As a result, we necessarily underestimate the maximum pre-
cipitation intensities that can be observed at the local scale, but we ensure a
consistent approach across models with different horizontal resolutions and, to a
lesser extent, between models and observations, due to the limited number of in
situ measurements in some regions.

1.2 Observed changes and their attribution

According to the fifth IPCC Assessment Report (AR5, Stocker et al. 2014, further
supported by the sixth Assessment Report (AR6, Masson-Delmotte et al. 2021b),
there is evidence from observations that precipitation and related extremes have
changed since the mid-twentieth century, that some of these changes are the re-
sult of a human influence, that some of these changes are anticipated to persist into
the future, and that other changes are projected to emerge from natural climate
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variability under enhanced global warming. The same sources of weather and
climate observations are used in studies of past and future changes in weather
and climate extremes and in the mean state of the climate, including in-situ obser-
vations (e.g., Dunn et al. 2020), remotely sensed data (e.g., Kanemaru et al. 2017),
and derived data products such as reanalyses (e.g., Hersbach et al. 2020). Station-
based indices have the same limitations as mean climate indices in terms of data
quality, availability, and homogeneity. Despite the employment of a cutting-edge
weather forecasting technology, atmospheric reanalyses include significant inho-
mogeneities due to the constant evolution of the global observation system and
the potential for a shift in the water cycle due to the assimilation of fresh satellite
data. Although the density of surface in-situ measurements has evolved across
the twentieth century and does not severely limit the global water cycle (i.e., no
assimilation of humidity), twentieth-century reanalyses products only assimilate
surface observations and are less hindered by such inhomogeneities.

In this context, despite significant progress in precipitation extremes anal-
ysis over recent years, major disparities remain, particularly in terms of data
quality and availability, our ability to regularly monitor these events, and our
ability to apply the sophisticated statistical methods necessary to detect and at-
tribute changes in precipitation extremes. When establishing the magnitude of the
human contribution to observable changes, observational uncertainty and a poor
signal-to-noise ratio can still pose major challenges (Hegerl et al., 2015). Observed
changes in several studies are much larger than those simulated by climate models
(Dai, 2006; Raäisaänen, 2007; Tapiador et al., 2017). However, these results were
not typically resistant to data uncertainty, which could be due in part to the low
density of in-situ observations in some areas. The uncertainty arises because the
satellite record is short in comparison to decadal climate variability and is affected
by calibration uncertainty, as well as because the available in situ record has many
gaps, especially in the tropics and subtropics, and is sparse on sub-daily time
scales. As a result, while observations can constrain future temperature changes,
future precipitation projections cannot yet be constrained.

Long-term monitoring and calibration of satellite datasets rely on in-situ
stations. In situ precipitation records over land date back centuries locally and to
the early to mid-twentieth century on a global scale. The most recent versions
of available datasets differ in their input data, completeness of records, period of
record, and gridding procedures, which may result in differences in global and
regional estimates due to spatial clustering and the small spatial scales of precip-
itation. Only since the 1950s has there been a degree of consistency in decadal
variations between the various products, with primarily positive precipitation
anomalies occurring during the 1950s, 1970s, and after the mid-1990s (AR6 WG1
Chapter 2, Gulev et al. 2021). However, in recent decades, there has been an
alarming decline in available in situ data, which must be addressed to fully ex-
ploit the longest timeseries and the improving signal-to-noise ratio (Hegerl et al.,
2015) since the end of the global dimming decades (decades between 1950-1980
marked by a widespread decrease in the surface solar radiation Wild 2009). In-
ternal climate variability, especially on interannual to multidecadal time scales,
has a significant impact on precipitation and delays the detection and emergence
of changes driven by human activities.
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1. Precipitation extremes in a changing climate

The number of stations employed, their homogeneity, the method of anal-
ysis, quality control measures, and the treatment of changing data coverage over
time all affect the gridded products of in-situ precipitation change (Roca et al.,
2019). Observations in key regions are still sparse, notably in the tropics, where
the monitoring system is insufficient to capture projected water cycle changes
(Figure 1.1). Data scarcity for the Asian monsoon is mainly due to practical and
administrative challenges with data sharing. It is critical to developing an inter-
national capability to monitor all aspects of observed changes. Satellite remote
sensing data have also been utilized to provide information on precipitation ex-
tremes because various products provide precipitation data at sub-daily reso-
lution (e.g., TRMM; Maggioni et al. 2016). Satellites, on the other hand, do not
directly observe the fundamental atmospheric state variables, and polar-orbiting
satellites do not observe any one location at all times. As a result, their utility as
a replacement for frequent (daily) ground-based observations is restricted. Fur-
thermore, the timeseries are often not long enough to analyze observed trends
and detect potential changes caused by human intervention. Nonetheless, in re-
cent years, several initiatives have been made to track precipitation changes more
frequently and globally (Dunn et al. 2020; https://www.climdex.org/).

Using an interpolated network of in-situ data, a new global land-based
daily precipitation dataset (REGEN, Contractor et al. 2020) covering the period
1950-2016 has been developed. Multiple in-situ data archives have been merged,
including two of the largest, the Global Historical Climatology Network - Daily
(GHCN-Daily) and the Global Precipitation Climatology Centre (GPCC). When com-
pared to existing datasets, this has resulted in a tremendous increase in station
density. The quality-controlled data were interpolated to produce area-averaged
estimates of daily precipitation for global land areas with a horizontal resolution
of 1◦ by 1◦. A related dataset based on a network of long-term stations that inter-
polates stations with a record length of at least 40 years was also produced for
those interested in a dataset with lower station network variability, more suitable
for detection and attribution studies.

In comparison to other similar regional and global gridded datasets, RE-
GEN is now the longest running dataset of daily precipitation based on gauge-only
records with global land coverage, making it suitable for any global analysis of
changes and variability in several aspects of daily precipitation distributions, in-
cluding extremes and measures of hydrological intensity (Contractor et al., 2020).
Monthly datasets or gridded ETCCDI indices were the only datasets that allowed
global climatological scale assessments of precipitation till now. Monthly datasets,
on the other hand, have a tendency to average out the extremes, rendering them
less effective when it comes to high-impact phenomena like heavy rainfall on
shorter durations. This is why the REGEN dataset has frequently been acknowl-
edged as the most appropriate observational reference in the current study’s
continuation (e.g., Alexander et al. 2019; Wehner et al. 2020; Thackeray et al.
2022).

Since the mid-twentieth century, statistical analysis of accessible observa-
tional records has revealed substantial changes over land (Figure 1.2). For example,
both in humid and dry regions of the world, the average annual maximum precip-
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Figure 1.1: Distribution of stations colour coded by source. "GPCC" refers to stations hosted
by Deutsche Wetterdienst, "GHCN" refers to stations hosted by the National Centers for
Environmental Information (NCEI), and "Merged" refers to stations that have been identified
as identical in two or more archives resulting in a merger of the timeseries and finally
"Other" refers to the Russian and Argentinian stations that were added in REGEN. Source:
Contractor et al. (2020)

itation amount in a day (RX1DAY) has increased dramatically (Dunn et al., 2020).
Over the globe continent as a whole, as well as North America, Europe, and Asia,
as well as monsoon regions where data coverage is relatively good, the percent-
age of observing stations with statistically significant increases in RX1DAY is more
than predicted by chance, but the percentage of stations with statistically signifi-
cant drops is smaller than expected by chance. The addition of observational data
from the previous decade reveals a more substantial increase in RX1DAY across
the global land region.

In the REGEN gridded daily precipitation data set, light, moderate, and
heavy daily precipitation have all strengthened (Contractor et al., 2020). In most
land regions, daily mean precipitation intensities have increased since the mid-
twentieth century. Between 1961 and 2018, the likelihood of precipitation topping
50 millimetres per day increased (Benestad et al., 2019). The global yearly fraction
of precipitation from days in the top 5% (R95pTOT) has also increased greatly
(Dunn et al., 2020). The magnitude of RX1DAY increased at a rate consistent
with Clausius-Clapeyron (CC) scaling with respect to global mean temperature
during the twentieth-century (Fischer and Knutti, 2016; Sun et al., 2021b). There
is less research on past changes in extreme precipitation lasting more than a day,
while there are a few that look at long-term trends in annual maximum five-day
precipitation (RX5DAY). Long-term variations in RX5DAY are similar to those in
RX1DAY on global and continental scales in many respects (Sun et al., 2021b).

In recent years, new or improved statistical approaches have been devel-
oped to attribute changes in weather extremes, such as heavy precipitation events
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1. Precipitation extremes in a changing climate

Figure 1.2: Summary of Mann–Kendall trend analyses for the period 1950–2018 for 7293
stations. (a),(d) Maps of locations of stations with trends for RX1DAY and RX5DAY, respec-
tively. Light blue open dots indicate non-significant increasing trends and light red open
dots mark non-significant decreasing trends. Dark blue and red filled dots indicate sta-
tistically significant trends as determined by a two-sided test conducted at the 5% level.
Source: Sun et al. (2021b)

or droughts. With a growing amount of literature (Yiou et al., 2017; Cheng et al.,
2018; Du et al., 2019), the attribution of extreme singular events has emerged as
a burgeoning topic of climate research. Statements like "anthropogenic climate
change made this event type twice as likely" or "anthropogenic climate change
made this event 25% more intense" are produced by a commonly used approach,
often referred to as the "risk-based approach" in the literature and referred to
here as the "probability-based approach." This is done by estimating probability
distributions of the index defining the event in today’s environment as well as a
counterfactual climate (e.g., preindustrial), and comparing intensities for a given
occurrence probability or probabilities for a given magnitude (Pall et al., 2011).

The process to answer the question of how has climate change affected the
probability of extreme event occurrences, including the interpretation of these
changes owing to anthropogenic climate change in other characteristics, such
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as the intensity of the event is referred to as extreme event attribution (van
Oldenborgh et al., 2021). While there are multiple methods, a key component
in any event attribution study is the level of conditioning on the state of the
climate system. The combined effect of overall warming and changes in large-scale
atmospheric circulation is frequently considered in the least conditional approach,
which generally employs fully coupled climate models (Sun et al., 2014). Other,
more conditional approaches involve prescribing specific aspects of the climate
system. These range from prescribing the pattern of surface ocean change at
the time of the event (e.g., Hoerling et al. 2013, 2014) to prescribing large-scale
atmospheric circulation and using weather forecasting models or similar methods
(e.g., Pall et al. 2017). These "storylines" (Shepherd, 2016) are highly conditional
methodologies that can be beneficial when applied to extreme occurrences that
are too rare for a more systematic statistical study, or when the local atmospheric
conditions are central to the impact. However, the prescribed conditions may limit
the assessment of the human influence on an event, as the fixed aspects of the
analysis may also have been affected by climate change.

As a result, the outcome of event attribution is determined by the framing,
which includes the event’s definition (Cattiaux and Ribes, 2018) and spatial scale
(Angélil et al., 2014). It’s also susceptible to errors in both observations and
models. Extreme events defined by atmospheric dynamics (e.g., tropical cyclones,
atmospheric rivers) that may put current-generation models to the test limit the
applicability of the probability-based approach to event attribution. Early event
attribution studies were criticized for lacking model review, which led to scrutiny
of this developing area (Trenberth et al., 2015). In the event attribution literature,
however, evidence of a human influence on precipitation extremes has grown.
Extreme rainfall occurrences in the UK (Schaller et al., 2016; Vautard et al., 2016;
Otto et al., 2018), for example, have prompted more research than others, and
equivalent research in other regions may be absent due to a lack of observational
data and/or reliable climate models (Otto et al., 2020).

Figure 1.3 summarizes the AR6 WG1 evaluation of documented changes in
heavy daily or 5-day precipitation occurrences (mainly based on RX1DAY and
RX5DAY indices) and agricultural and ecological drought (primarily based on soil
moisture observations and simulations) from the mid-20th century. It further
supports the hypothesis that human influence, specifically greenhouse gas emis-
sions, is the primary driver of the observed global scale intensification of heavy
precipitation in all land regions with a long enough record, including North Amer-
ica, Europe, and Asia. It also shows that human activity has led to reduced
water availability throughout the dry season across a large portion of the land,
particularly in the northern mid-latitudes (Seneviratne et al., 2021). The spatial
aggregation may sometimes obscure the detection of observed changes at a finer
scale, such as the increase in RX1DAY over Southeast France (Ribes et al., 2019),
which belongs to the Mediterranean AR6 region where other studies found no
significant changes over Spain and Italy, implying that the AR6 regions are not
necessarily homogeneous in terms of observed changes in precipitation extremes.
Many AR6 regions (in grey) continue to lack sufficient evidence to allow for a ro-
bust assessment of observed changes. Furthermore, the lack of observed trends
does not necessarily imply that regional precipitation, including extremes, has not
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Figure 1.3: Synthesis of assessed observed changes and human influence for (panel b) heavy
rainfall and (panel c) agricultural and ecological drought, for the IPCC AR6 regions, dis-
played as hexagons of identical size. The colours in each panel represent the four outcomes
of the assessment of the observed changes: red/green for an observed increase with at least
medium confidence; blue/yellow for a decrease with at least medium confidence; white for
no significant change for the region as a whole; and grey when the evidence in this region
is insufficient due to lack of data and/or literature preventing the assessment of the region
as a whole. All assessments have been made for each AR6 region as a whole and for the
timeframe from 1950 to the present. A more local assessment made on shorter time scales
might differ from what is shown in the figure. The confidence level for the human influence
on these changes is based on trend detection and attribution and event attribution liter-
ature, and it is indicated by the number of dots: three dots for high confidence; two dots
for medium confidence; and one dot for low confidence. Horizontal bars indicate when an
assessment is not possible due to insufficient evidence for the specific region. For heavy pre-
cipitation, the evidence is mostly drawn from changes in RX1DAY and RX5DAY precipitation
indices. Agricultural and ecological droughts are assessed based on observed and simu-
lated changes in total column soil moisture, complemented by evidence of changes in surface
soil moisture, water balance (precipitation minus evapotranspiration) and metrics-driven
by precipitation and atmospheric evaporative demand. Source: AR6 WG1 SPM, Masson-
Delmotte et al. 2021a

already been influenced by human GHG emissions. As previously mentioned, an
opposite response to anthropogenic aerosols and their dominant cooling effect at
both global and regional scales may have compensated for such an alteration in
the water cycle (Salzmann, 2016). Aerosols can also have an impact on precip-
itation extremes due to their microphysical effects, which are largely unknown
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(Heikenfeld et al., 2019).

1.3 Key mechanisms

Beyond detection and attribution, analyses of observed changes are more reliable
if they are consistent with the expected changes, given our current understanding
of the main physical mechanisms responsible for global or regional water cycle
responses. Globally, changes in precipitation extremes are expected as a direct
result of global warming and the resulting increase in atmospheric water-holding
capacity (Trenberth, 2011; Roderick et al., 2019; Algarra et al., 2020; Allan et al.,
2020). On a global scale, column-integrated water vapour content rises roughly
in accordance with the CC relationship, at a rate of about 7% for every degree
Celsius of global-mean surface warming. Because extreme precipitation events
are not often moisture-limited, local to global variations in annual maximum one-
day precipitation (RX1DAY) has continuously increased with temperature at roughly
7% per 1◦CC, both in observations (Westra et al., 2013; Fischer and Knutti, 2016;
Ribes et al., 2019; Sun et al., 2021b) and future climate projections (Kharin et al.,
2013; Wehner et al., 2020).

Multiple processes, however, are at work at regional scales, and the extreme
precipitation response may deviate from this CC rate for a variety of reasons (Allan
et al., 2020). Atmospheric large-scale circulation patterns are important drivers
of the regional climate (IPCC AR6 WG1 Chapter 10, Doblas-Reyes et al. 2021). As
a result, they’re also relevant to extremes’ magnitude, frequency, and duration.
The extent and strength of the Hadley circulation, for example, have an impact
on locations where tropical and extra-tropical cyclones develop, with substantial
implications for extreme precipitation and drought characteristics. Global climate
models reveal that the dynamic contribution to expected changes in precipita-
tion can be significant and that it can significantly alter the pace of change of
extreme precipitation, with vast subtropical regions showing robust decreases
and other areas (e.g., equatorial Pacific) showing robust amplification (Figure 1.4).
These dynamic contributions can increase or mitigate the relatively uniform ther-
modynamical response at the regional level, but they are highly model-dependent
(Shepherd, 2014; Trenberth et al., 2015; Pfahl et al., 2017). The residual between
the positive thermodynamic change owing to increased specific humidity and the
decreased convective mass flux due to the weakening of the circulation causes the
mean precipitation increase in the tropics. Model disagreement on shifts in con-
vective zones dominates the uncertainty, but the drivers differ across land and
ocean. Changes in large-scale circulation can also dominate the seasonal mean
precipitation response over land in the mid-latitudes (Chadwick et al., 2014; Kent
et al., 2015; Chadwick, 2016).

Dynamic contributions can also arise as a result of changes in tempera-
ture distribution vertically and horizontally, affecting the frequency and intensity
of synoptic phenomena such as atmospheric rivers, low-level jets, concomitant
moisture convergence, tropical cyclones, and extratropical storms (Figure 1.5). Ex-
treme precipitation can also be amplified by mesoscale dynamic responses and
feedbacks within storms, which are caused by the extra latent heat released by
thermodynamic moisture increases (Molnar et al., 2015; Lenderink et al., 2017; Nie
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Figure 1.4: a) Multi-model mean fractional changes in thermodynamic scaling of RX1DAY in
which the vertical velocity is kept constant (it is replaced with its mean value over the period
1950–2100). b) Difference between changes in full scaling and changes in thermodynamic
scaling (full minus thermodynamic). Stippling indicates that at least 80% of the CMIP5
models agree on the sign of signal. Source: Pfahl et al. (2017)

et al., 2018). Because these dynamic impacts are strongly coupled to convective
processes, their effective representation in global climate models may necessitate
revised parameterizations for both shallow and deep convection (Rio et al., 2019;
Douville et al., 2021) and/or the increased use of convective-permitting regional
climate models (e.g., Prein et al. 2015; Pichelli et al. 2021). Precipitation formation
and the microphysical effects of both natural and anthropogenic aerosols are also
empirically parameterized, and they may be responsible for the varying responses
of precipitation extremes across global and regional climate models.

External forcing has caused recent alterations in large-scale atmospheric
circulation, which are less robust and generally less well understood than ther-
modynamical changes (Shepherd, 2014). Nonetheless, the AR6 WG1 Chapter 8 has
assessed several robust signals (Douville et al., 2021). Since the 1970s, storm
paths and associated precipitation in the Southern Hemisphere have shifted pole-
wards, particularly in the austral summer and autumn. The inter-hemispheric
temperature response to the time-evolving radiative influence of anthropogenic
aerosols and the continued warming influence of GHGs has been linked to re-
cent alterations in the tropical rain belt. Sulphate aerosol cooling in the Northern
Hemisphere caused a southern shift in the tropical rain belt, contributing to the
Sahel drought from the 1970s to the 1980s. On the other hand, reported changes
in regional monsoon precipitation, particularly in South Asia, East Asia, and West
Africa, have been limited for much of the twentieth century, due to increases in
GHG-induced warming being counteracted by decreases due to anthropogenic
aerosol-induced cooling.

Climate variability can be also sensitive to climate change in a wide range
of timescales. The AR6 WG1 Chapter 8 emphasizes that water cycle variability
and extremes are expected to increase faster than average changes in most re-
gions of the world and across all emission scenarios (Douville et al., 2021). During
the summer/warm season, interannual variability of precipitation over land is ex-
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Figure 1.5: Physical processes which control atmospheric moisture transport and the as-
sociated precipitation extremes under global warming. Storm processes: the implications
of climate change impacts on precipitation extremes suggest to use the non-stationary hy-
droclimatic frequency analyses for civil engineering design and risk management of water-
related natural hazards, in which the variability of precipitation and its correlation to
other climate variables should be considered. Moisture transport processes: back trajec-
tory analyses could identify the atmospheric moisture sources and transport pathways that
are conducive to particular extreme precipitation events. The analyses of thermodynamic
and dynamic conditions are needed to investigate the physical mechanisms of the formation
and evolution of atmospheric transport. Weather systems: atmospheric moisture transport
patterns are resulting from large-scale circulation patterns that are highly associated with
weather systems for occurrences of extreme precipitation events. Source: Liu et al. (2020).

pected to increase faster than changes in seasonal mean precipitation amount in
the tropics and extratropics of both hemispheres. Rainfall variability related to
the El Nino–Southern Oscillation, in particular, is very likely to be amplified by
the end of the twenty-first century. This could have implications for projected
changes in ENSO-related extreme events, such as widespread droughts. Over
many land regions, sub-seasonal precipitation variability is projected to increase,
with fewer wet days but increased daily mean precipitation intensity. Additionally,
heavy precipitation events linked with tropical and extratropical cyclones, includ-
ing atmospheric rivers, are expected to intensify (e.g., Catto et al. 2019; Kodama
et al. 2019; Liu et al. 2019. In the observed changes in the primary modes of
variability, it is difficult to distinguish the effects of global warming from internal
multi-decadal variability (e.g., Austral Oscillation, North Atlantic Oscillation).
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Regional forcings, such as deforestation, urbanization, and, mostly aerosols,
can modulate changes in extremes at the regional scale (Kawecki et al., 2016; Lin
et al., 2018; Souri et al., 2020). Aerosol forcing affects circulation patterns and
tropical cyclone activity through changing patterns of sea surface temperatures
(SSTs) (Takahashi et al., 2017). Aerosol forcing has a strong regional footprint and
can influence precipitation extremes as well (Lin et al., 2018; Zhao et al., 2019).
Enhanced aerosol loadings resulted in regional cooling due to reduced global solar
radiation ("global dimming") from the 1950s to the 1980s, followed by a period
of "global brightening" due to reduced aerosol loadings (AR6 WG1 Chapters 3 and
8, Eyring et al. 2021; Douville et al. 2021). Decreases in atmospheric aerosols
result in greater warming and consequently an increase in extreme precipitation
in 21st-century scenarios (Samset et al., 2018; Sillmann et al., 2019). Ambiguity
in future aerosol emission projections leads to even more uncertainty in heavy
precipitation projections (Lin et al., 2016).

Extremes can also be significantly influenced by regional feedback pro-
cesses (Seneviratne et al., 2021). Droughts can be exacerbated by soil moisture-
atmosphere feedbacks in particular (Zhou et al., 2019). There have also been
reports of the possible influence of land surface conditions on circulation pat-
terns (Koster et al., 2016; Sato and Nakamura, 2019). Furthermore, there exist
feedbacks between soil moisture content and precipitation occurrence, which are
often characterized by negative spatial and positive local feedbacks (Taylor et al.,
2012; Guillod et al., 2015). These feedbacks appear to be crucial for expected
changes in heavy precipitation, according to climate model projections (Senevi-
ratne et al., 2013). However, there is evidence that climate models may not
always capture the proper sign of soil moisture-precipitation feedbacks (Taylor
et al., 2012; Moon et al., 2019), which could contribute to significant inter-model
variability in climate projections. Droughts are driven by thermodynamic and
dynamic processes. Droughts are influenced by thermodynamic processes that
increase atmospheric evaporative demand (Vicente-Serrano et al., 2020) through
changes in air temperature, radiation, wind speed, and relative humidity. Droughts
are more affected by changes in the occurrence, length, and intensity of meteoro-
logical anomalies, which are related to precipitation and the amount of sunlight,
due to their longer timescale than heavy precipitation events. While atmospheric
evaporative demand increases with warming, regional changes in aridity are af-
fected by increasing land-ocean warming contrast, vegetation feedbacks and re-
sponses to rising CO2 concentrations and dynamic shifts in the location of the
wet and dry parts of the atmospheric circulation in response to climate change
as well as internal variability (Allan et al., 2020).

1.4 Projected changes and their uncertainties

The AR6 recently examined the global climate response to five hypothetical sce-
narios that begin in 2015 and cover the range of possible future developments
of anthropogenic climate change drivers found in the literature (Figure 1.6). They
include scenarios with high and very high GHG emissions (SSP3-7.0 and SSP5-
8.5), as well as scenarios with intermediate GHG emissions (SSP2-4.5) and CO2
emissions remaining around current levels until the middle of the century, as well
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as scenarios with very low and low GHG emissions and CO2 emissions declining
to net-zero around or after 2050, followed by varying levels of net negative CO2
emissions (SSP1-1.9 and SSP1-2.6).

Figure 1.6: Future annual emissions of CO2 across five illustrative CMIP6 scenarios. Emis-
sions vary between scenarios depending on socio-economic assumptions, levels of climate
change mitigation and, for aerosols and non-methane ozone precursors, air pollution con-
trols. Alternative assumptions may result in similar emissions and climate responses, but
the socio-economic assumptions and the feasibility or likelihood of individual scenarios are
not part of the assessment. Source: IPCC AR6 WG1 SPM, Masson-Delmotte et al. (2021a)

Whatever the emissions scenario, there is a high likelihood that average
annual precipitation over land will increase as a result of global warming, but
with different regional patterns: a large relative increase in the high latitudes and
the core of the ITCZ, but a significant relative decrease in the subtropics and
over Amazonia, for example. Projected precipitation changes are also seasonally
dependent, as shown in Figure 1.7 for the intermediate emissions scenario. We see
substantial seasonal contrasts and regional differences over land as well as over
the ocean. Increased precipitation is expected across the tropical oceans, northern
Africa, the Arabian Peninsula, India, southeastern Asia, and the Polar Areas in the
future, whereas decreased precipitation is projected primarily over the subtropical
regions, including northern Africa and southern Europe. Precipitation patterns in
the tropics differ widely, with wetter wet seasons over South Asia, the central
Sahel, and eastern Africa, but less precipitation across Amazonia and coastal West
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Africa. These large-scale responses are linked to increased moisture transports
in a warmer climate, which are driven by greater warming over land relative to
the ocean, atmospheric circulation responses, and land surface feedbacks.

Figure 1.7: Projected long-term relative changes in seasonal mean precipitation. Global
maps of projected relative changes (%) in the seasonal mean of precipitation averaged
across 29 CMIP6 models in the SSP2-4.5 scenario. All changes are estimated for 2081-2100
relative to the 1995-2014 base period. Uncertainty is represented using the simple approach.
No overlay indicates regions with a high model agreement, where more than 80% of models
agree on the sign of change; diagonal lines indicate regions with a low model agreement,
where <80% of models agree on the sign of change. Source: IPCC AR6 WG1 Chapter 8,
Douville et al. (2021)

Over many land regions, sub-seasonal precipitation variability is expected
to increase, with fewer wet days but increased daily mean precipitation inten-
sity (Figure 1.8). The figure shows the dry days per year as well as the daily
precipitation intensity for the different scenarios in CMIP6. We see that as we
go from low to high-emission scenarios, the number of dry days, as well as
the precipitation intensity, is significantly changing. The frequency of dry days
is decreasing over northern Africa, the Arabian Peninsula, India, Southeast Asia,
and the Polar Regions, while it is increasing across Amazonia, Central America,
South Africa, the west coast of Africa, Australia, the Mediterranean, and central
Europe. However, we also see a widespread increase in the daily mean precipi-
tation intensity (Figure 1.8 b, d and f) as we go up the scenarios. An increase in
the number of dry days is projected in several regions of the globe, which can
dominate the precipitation change. It is clear that independent of the scenario, in
the long term, we can expect more dry days but more intense single events of
precipitation. Such changes in the precipitation regimes, as well as the general
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1.4. Projected changes and their uncertainties

increase in the frequency and intensity of precipitation extremes, contribute to
an overall increase in precipitation variability.

Figure 1.8: Projected long-term relative changes in daily precipitation statistics. Global
maps of projected seasonal mean relative changes (%) in the number of dry days (days
with less than 1 mm of rain) and daily precipitation intensity (in mm/day, estimated as the
mean daily precipitation amount on wet days Ð i.e., days with intensity above 1 mm/ day)
averaged across CMIP6 models in the SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f)
scenario respectively. Uncertainty is represented using the simple approach: no overlay
indicates regions with a high model agreement, where ≥80% of models agree on the sign
of change; diagonal lines indicate regions with a low model agreement, where <80% of
models agree on the sign of change. Source: IPCC AR6 WG1 Chapter 8, Douville et al. (2021).

There is however a large inter-model spread in the regional precipita-
tion projections (Hawkins and Sutton, 2011; Rowell, 2012; Oueslati et al., 2016;
Huang et al., 2018; Lehner et al., 2020), with only a few exceptions such as the
robust drying of the Mediterranean (Zappa et al., 2015; Cook et al., 2018; Tang
et al., 2018). In the South American and Australian monsoons, for example, there
is little confidence in projected precipitation changes, and even the sign of the
response is uncertain (Douville et al., 2021). In the extra-tropics, there is a signif-
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1. Precipitation extremes in a changing climate

icant likelihood that precipitation associated with storms and atmospheric rivers
would increase in the future in most regions, resulting in more intense precip-
itation extremes, but the regional pattern and magnitude of projected changes
are extremely model-dependent. On the one hand, a persistent poleward shift of
storm tracks in the Southern Hemisphere and North Pacific is projected with a
moderate confidence and should result in similar shifts in seasonal and extreme
precipitation. On the other hand, despite major advances in their present-day
climatology, the behaviour of the North Atlantic extratropical jet remains highly
varied across CMIP6 models (Oudar et al., 2020). Some models however project
a significant decrease in the cyclone occurrences over the Mediterranean, as well
as a strong increase in extreme cyclone-related precipitation. The latter is mainly
due to thermodynamics as it follows the Clausius–Clapeyron relation. Yet, the
relation between temperature and extreme cyclone-related precipitation is not
always controlled by the Clausius–Clapeyron relationship, thereby suggesting that
dynamical processes can play an important role in generating extreme cyclone-
related precipitation (Raible et al., 2018).

Figure 1.9: Projected changes in annual maximum daily precipitation at (a) 1.5◦C, (b) 2◦C,
and (c) 4◦C of global warming compared to the 1850–1900 baseline. Results are based on
simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model
ensemble under the Shared Socio-economic Pathway (SSP), SSP1-1.9, SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5 scenarios. The numbers on the top right indicate the number of
simulations included. Uncertainty is represented using the simple approach: no overlay
indicates regions with high model agreement, where ≥80% of models agree on the sign of
change; diagonal lines indicate regions with low model agreement, where <80% of models
agree on the sign of change. Source: IPCC AR6 WG1 Chapter 11, Seneviratne et al. (2021).

The rate of increase in RX1DAY with global warming was found to be in-
dependent of the forcing scenario for precipitation extremes (Pendergrass et al.,
2015). This conclusion is backed up by the AR6 WG1 Chapter 11 assessment
(Seneviratne et al., 2021). As a result, irrespective of the emissions scenario, pro-
jected changes in the intensity of extreme precipitation events have been shown
for different global warming levels (GWLs) comparative to the 1851-1900 prein-
dustrial baseline period (Figure 1.9). Different GWLs have fairly similar spatial
patterns of projected changes. Except in a few regions, such as southern Eu-
rope surrounding the Mediterranean Basin during particular seasons, extreme
precipitation almost always increases throughout geographical areas, with larger
increases at higher global warming levels. The very likely ranges of the multi-
model ensemble changes over all land grid boxes in the 50-year return values
for RX1DAY and RX5DAY between 1.5◦C and 1◦C warming levels are greater than
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1.4. Projected changes and their uncertainties

zero for all continents except Europe, with a likely range greater than zero across
Europe (Li et al., 2020). Extreme precipitation decreases are largely confined
to subtropical ocean areas and are highly correlated with mean precipitation de-
creases because of storm track shifts. In some model realizations, these subtropical
declines can spread to surrounding land areas.

Figure 1.10: Projected changes in the intensity and frequency of extreme precipitation and
droughts for global warming levels of 1◦C, 1.5◦C, 2◦C, and 4◦C, relative to their respective
1851–1900 reference period (1850–1900 for drought). Extreme precipitation events are de-
fined as the daily precipitation amount that was exceeded on average once in a decade
during the 1851–1900 reference period. Drought events are defined as the annual average
of total column soil moisture that was below its 10th percentile during the 1850–1900 base
period. For extreme precipitation, results are shown for the global land. For drought, results
are shown for the AR6 regions in which there is at least medium confidence in a projected
increase in agriculture and ecological drought at the 2◦C warming level compared to the
1850–1900 base period. The dots and bars show the medians and their respective very
likely range based on the multi-model ensemble from simulations of CMIP6 under different
SSP scenarios. Dark dots indicate years in which the extreme threshold is exceeded. Light
dots are years when the threshold is not exceeded. Changes in the intensity of drought are
expressed as fractions of the standard deviation of annual soil moisture. Source: IPCC AR6
WG1 SPM, Masson-Delmotte et al. (2021a).

Projected increases in the likelihood of extreme precipitation of fixed mag-
nitudes have been proven to be non-linear, with larger increases for rarer events
(Fischer and Knutti, 2015; Li et al., 2020; Kharin et al., 2018). Increases in the prob-
ability of high (99th and 99.9th) percentile precipitation projected by the CMIP5
model between 1.5◦C and 2◦C warming scenarios are consistent with what might
be expected based on observed changes (Fischer and Knutti, 2015), lending con-
fidence to the projections. According to CMIP5 model simulations, the frequency
of present-day climate 20-year extreme precipitation is projected to increase by
10% at the 1.5◦C global warming level and by 22% at the 2.0◦C global warming
level, while the frequency of present-day climate 100-year extreme precipitation
is projected to increase by 20% and more than 45%, respectively, at the 1.5◦C and
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1. Precipitation extremes in a changing climate

2.0◦C warming levels (Kharin et al., 2018). At a very high warming level of 4◦C,
CMIP6 simulations with SSP scenarios show that the frequency of 10-year and
50-year events will be roughly doubled and tripled, respectively (Figure 1.10).

Faced with such uncertainties in water cycle projections, various methods
have been proposed to refine these projections based on observations. These
range from more or less sophisticated bias correction methods (e.g., Schmidt et
al., 2021), generally assuming that the biases diagnosed in the recent period will
remain unchanged in the future, to even more empirical statistical methods that
seek to constrain the projections on the basis of the performance of the models
(e.g., Grose et al. 2017) or of emerging relationships between their recent and fu-
ture behaviours (e.g., O’Gorman et al. 2012; Shiogama et al. 2022). More recently,
direct observational constraints based on the instrumental record have been also
applied to both recent and future changes simulated by global climate models
(e.g., Brunner et al. 2020). Yet, preliminary results suggest that such methods
are more efficient for temperature than for precipitation, given the higher signal-
to-noise ratio and the clear emergence of the regional temperature response to
anthropogenic forcings over recent decades (e.g., O’Reilly et al. 2022).

1.5 Synthesis

The frequency and severity of heavy precipitation have likely increased at the
global scale throughout a majority of land regions with strong observational cov-
erage, according to the AR6 WG1 report (Masson-Delmotte et al., 2021a). Over
the land regions with sufficient observational coverage for assessment, the annual
maximum amount of precipitation falling in a day or over five consecutive days has
likely increased since 1950, with increases in more regions than declines. Heavy
precipitation has likely increased on a continental scale across three continents:
North America, Europe, and Asia, where observational data is more plentiful.

Although the fundamental mechanisms of precipitation response to ris-
ing GHG concentrations are reasonably well understood, some of them remain
challenging to capture in global climate models (especially the possible dynam-
ical amplification of precipitation extremes at the mesoscale). They include a
fast radiative adjustment, a slower thermodynamical response induced by ocean
warming, and large-scale dynamical changes owing to both radiative adjustment
and non-uniform warming, among other processes and timescales. At the global
scale, thermodynamic changes result in a spatially homogenous fractional increase
in the intensity of precipitation extremes, but the dynamic contribution can either
accentuate or counteract the reaction at the regional scale, according to multiple
analyses.

In current global climate models, the future change in global-mean pre-
cipitation per degree of warming still has a significant spread (1-3 %/K). Because
the entire distribution of daily precipitation intensities is perturbed, this spread
is partly controlled by the response of extreme precipitation, with a model-
dependent compensation between increasing extreme precipitation events and
decreasing weak-moderate precipitation events (Thackeray et al., 2018). Due to
the energy constraint on the latent heat released by water condensation within
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the global atmosphere, the range of increase is much less than the increase in
global-mean water vapour (around 6-7 %/◦C). Regional precipitation changes are
dominated by water vapour transport and dynamical processes, particularly at
scales less than 4000 km. As a result, they are far more uncertain than the
global-mean response.

The thermodynamic contribution to precipitation extremes is more robust
than for seasonal mean rainfall. Storm-related extremes are expected to increase
in a moister environment because storms are fueled by moisture convergence.
Limited moisture availability over land and probable stabilization of atmospheric
temperature profiles tend to minimize the empirically derived response in pre-
cipitation extremes below the CC based increase in water vapour of 6%–7% per
◦C, therefore the magnitude of this increase is still unknown. Simulating changes
to convective extremes may require accurate modelling of local storm dynamics,
especially at sub-daily timescales, which are outside the scope of this study.

Drought projections are also uncertain because precipitation deficits are in-
fluenced by dynamic mechanisms operating at various spatial scales, such as syn-
optic processes like atmospheric rivers and extratropical cyclones, blocking and
ridges, dominant large-scale circulation patterns, and global ocean-atmosphere
coupled patterns. They’re also sensitive to land-atmosphere coupling, which in-
cludes moisture feedbacks and a direct CO2 effect on plant transpiration and
photosynthesis, which isn’t taken into consideration in all models but might be
important at the regional scale, particularly over tropical forests.

Given the difficulty for climate models to converge on projected water cycle
changes, including extremes, there is a need for both a better understanding of the
drivers and mechanisms of simulated changes and better quantifying projection
uncertainties and their contributions (i.e., scenario uncertainty, model response
uncertainty, internal climate variability). In the continuation of the present study,
we will focus primarily on projected changes in heavy precipitation and their
seasonality, but we will also pay attention to the maximum number of consecutive
dry days (CDD), particularly in Chapter 3.
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If I cease searching, then, woe is me, I am lost.
That is how I look at it - keep going,
keep going come what may.

Ð Vincent van Gogh

2
Data, methods and models

There is now a widespread recognition that any increase in the frequency or
severity of extreme weather events can have far-reaching consequences for nature
and society. As a result, it is critical to assess recent and future changes in extreme
events and to quantify related uncertainties. Monitoring, detecting, and attributing
recent changes in climate extremes typically necessitate at least daily resolution
data (sub-daily data can be even more informative but are generally not available
at the global scale or in archived model outputs). This study makes use of diverse
daily and monthly observational and global climate model data sets with varying
spatial resolution. This chapter describes these multiple datasets, as well as the
main methods that have been used to analyze the response of precipitation and
related extremes to climate change.

2.1 Daily precipitation datasets

Precipitation is a key variable for assessing changes in both water and energy
cycles. Observational records of precipitation have a long history (Park et al.,
2017) and have evolved considerably in the recent decades. The advancements in
the remote sensing technologies have also made it possible to record continuous
observations with a global coverage (Levizzani et al., 2018) and complement the
historically available in situ archives and associated gridded products (e.g., Becker
et al. 2013; Roca et al. 2019; cf. Table 2.1). Apart from this, rapidly growing archives
of reanalysis precipitation are also very useful to document and understand the
observed precipitation variability, although the diversity of assimilated observa-
tions questions the feasibility or validity of trend analyses using such products
(Bosilovich et al., 2008).

Based on the overall assessed performance of the different datasets to
capture the relevant climatology of the mean and extreme precipitation (Roca
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2.2. ETCCDI Ð Extreme precipitation indices

et al., 2019; Contractor et al., 2020), and the availability of a longer-term gridded
product with wide geographical coverage (cf. Table 2.1), we have decided to
focus on a limited number of datasets in the continuation of this study. However
there is no clear consensus about the single best observational data set to use,
especially for model evaluation (Randall et al., 2007; Gleckler et al., 2008; Gómez-
Navarro et al., 2012; Kotlarski et al., 2019). We have therefore often selected one
reference dataset, but also used other plausible observations and reanalysis that
are generally considered reliable for the evaluation of daily precipitation intensities
and related extremes. Regarding global climate models (GCMs), we have used a
large subset of the latest generation (phase 6) of Coupled Model Intercomparison
Project (CMIP6) models (cf. Table A.1).

We have acquired most observational and reanalysis data sets (except two)
from the Frequent Rainfall Observations on GridS (FROGS) database (Roca et al.,
2019), composed of gridded daily-precipitation products on a common 1◦×1◦ grid
which helps in the intercomparison and assessment exercises. This database in-
cludes satellite, ground-based and reanalysis products. Table 2.1 shows the names
of the observational and reanalysis datasets along with their native resolution and
the range, that we used in the course of our study. Appendix A contains the maps
of mean and extreme precipitation captured by these individual datasets (except
CHIRPS and EOBs).

Product short name Period used Spatial Coverage
Native Horizontal Resolution

(lon× lat)
References

MSWEP V1 1979–2015 90◦S-90◦N 0.25◦ × 0.25◦ Beck et al. (2017)

REGEN 1950-2016
60◦S-90◦N

(land only)
1◦ × 1◦ Contractor et al. (2020)

GPCP 1997-2017 90◦S-90◦N 1◦ × 1◦ Huffman et al. (2001)

GPCC 1982-2016 60◦S-90◦N 1◦ × 1◦ Ziese et al. (2018)

EOBs 1950-2019
Europe

(land only)
0.25◦ × 0.25◦ Cornes et al. (2018)

CHIRPS 1981-2016
50◦S-50◦N

(land only)
0.05◦ × 0.05◦ Funk et al. (2015)

ERA5 1959 to present 90◦S-90◦N 0.25◦ × 0.25◦ Hersbach et al. (2018)

Table 2.1: List of the different observational and reanalysis data sets used in this study. Also
shows the period available, the spatial coverage, native resolution and the main references
to the data set.

2.2 ETCCDI — Extreme precipitation indices

Focusing on temperature and precipitation extremes, the joint Expert Team (ET)
on Climate Change Detection and Indices (ETCCDI) was charged with addressing
the need for objective measurement and characterization of climate variability and
change by providing international coordination and assisting in the organization of
collaboration on climate change detection and indices relevant to climate change
detection, as well as encouraging the comparison of modelled data and observa-
tions. A total of 27 core indices have been considered within the framework of
ETCCDI. They are based on daily temperature values or the amount of precipi-
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2. Data, methods and models

tation that falls on a given day. Some are based on predefined thresholds that are
relevant to specific applications. Thresholds are the same for all stations in these
cases. Other indices are based on thresholds that vary by location. Thresholds
are typically defined in these cases as a percentile of the relevant data series. We
used a small subset of the indices as listed in table 2.2.

Index Indicator Name Definition Units

CDD Consecutive Dry Days Number of maximum consecutive dry days with RR < 1 mm Days

CWD Consecutive Wet Days Number of maximum consecutive dry days with RR > 1 mm Days

R10mm Number of heavy precipitation days Number of days when RR >10 mm Days

R20mm Number of heavy precipitation days Number of days when RR >20 mm Days

RX1DAY Max 1 day precipitation amount Maximum of total RR in 1 day mm

RX5DAY Max 5 day precipitation amount Maximum of total RR in 5 day mm

PRCPTOT Annual total wet-day precipitation Annual total RR in wet days (when RR > 1 mm) mm

SDII Simple daily intensity index Annual Total RR divided by the number of wet days (when RR > 1 mm) mm/day

R95p Very wet days Annual sum daily of RR >95th percentile mm

R99p Extremely wet days Annual sum daily of RR >99th percentile mm

R95PTOT Contribution from very wet days Fraction of total wet-day rainfall that comes from very wet days %

Table 2.2: The list of different ETCCDI indices used in the course of this study

There are a plethora of indices based on daily precipitation data (Alexander
et al., 2019). Individual studies often choose the different indices to define the
extremes (e.g., annual maxima or predefined thresholds such as the 95th, 99th and
99.9th percentile), which lead to unintentional consequences associated with the
interpretation of different results. It also makes the intercomparison difficult and
causes mismatches across studies that employ various indexes. Furthermore, the
indices should only incorporate variations induced by climate processes in order
to robustly monitor and detect climate change. When creating these indexes,
there are two things to bear in mind. To begin, the original daily data should be
homogeneous, meaning that they should be free of non-climate-related volatility.
Second, the method for constructing the indices should not introduce any further
variation.

ETCCDI have facilitated the analysis of extremes by defining a set of climate
indices that provide a comprehensive overview of temperature and precipitation
statistics focusing particularly on extreme aspects (Karl and Easterling, 1999; Data,
2009). It has led to the standardisation of the extreme indices (Peterson and Man-
ton, 2008) and now the same indices could be calculated and compared between
observations and climate model output (e.g., Sillmann et al. 2013a). Many of the
recent studies (e.g., Donat et al. 2013; de los Milagros Skansi et al. 2013; Dunn
et al. 2014; Donat et al. 2016a; Herold et al. 2016, 2017; Tangang et al. 2017; Cattani
et al. 2018) have concentrated on the set of ETCCDI indices calculated from in situ-
based, satellite and reanalysis datasets, and also global climate model outputs on
both regional and global scales. Figure A.4 shows an illustration of the RX1DAY (an
ETCCDI index) based on a time series of daily precipitation. The indices are com-
puted for the gridded daily precipitation observational datasets which facilitates
the comparison with climate models, similar to the previous works mentioned
above. It should be noted that the analysis of sub-daily precipitation extremes is
beyond the scope of the present study, although dedicated studies suggest that
they usually show an even stronger sensitivity to global warming (Barbero et al.,
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2017; Poschlod et al., 2021) than the extremes in daily intensities.

2.3 Generalized Extreme Value methods

Statistical extreme values theory (EVT) is a branch of statistics that deals with
large deviations from the median of probability distributions, or extreme val-
ues (Coles et al., 2001; De Haan et al., 2006). The theory evaluates the type
of probability distribution of the extremes that processes generate. The limiting
distributions for the minimum and maximum of large collections of independent
random variables from the same arbitrary distribution are known as extreme
value distributions. In practice, there are two main approaches. The first ap-
proach uses a continuous record to determine the block maxima (minima) series,
whereas the second method uses a continuous record to extract peak values
above (below) a specific threshold. Many studies (e.g., Cunnane 1973; Wang 1991;
Madsen et al. 1997b,a; Martins and Stedinger 2001; Caires 2009) have discussed
the relative merits of these parallel approaches.

In our thesis, we have employed the block maximum approach to investi-
gate daily extreme precipitation rates. There are many practical reasons for using
the block maxima method, like; the only available data may be block maxima (e.g.,
annual maxima, Kharin et al. 2007); the observations are not exactly independent
and identically distributed (e.g., there is seasonality for the maxima, Katz et al.
(2002)); the ease of applicability as blocks appear naturally in many situations
(Van den Brink et al., 2005; Naveau et al., 2009). The main drawback is that the
block maxima method can both miss some high values (within the same block)
and consider low values (when blocks do not exhibit high values). Our choice to
use the block maxima method was also partly dictated by the possibility to com-
pare our results with the previous studies (e.g., Kharin et al. 2013; Li et al. 2020;
Wehner 2020) that had focused on the annual maximum of daily precipitation
intensities.

EVT describes the probability distribution of the maxima of sequences from
a given ordered sample of random variablesX1, ..., Xn with a common distribution
function F . In most applications, the Xi indicates values of a process observed on
a regular time scale, like daily values, so that Mn denotes the process’s maximum
(minimum) across n time units of observation.

Mn = max{X1, ..., Xn},

Under general conditions of independence and homoscedasticity (Indepen-
dent and Identically Distributed: IID), the probability distribution of the block
maxima Mn of any random variable Xi converges to a General Value Distribu-
tion, hereafter GEV (Coles et al., 2001; De Haan et al., 2006). This GEV does
not depend on the detailed analytical formulation of the distribution of X . This
result is similar to the Central Limit Theorem, which stipulates that under general
conditions, the block average of Xi converges to a Gaussian.
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The GEV distribution is a family of continuous probability distributions
developed under extreme value theory and was formed by combining the Gum-
bel, Fréchet, and Weibull families (Coles et al., 2001). The GEV distribution is
the distribution toward which the sampling distributions of largest-of-m values
converge. According to the extreme value theorem, the GEV distribution is the
only conceivable limit distribution of appropriately normalized maxima of a se-
ries of independent identically distributed random variables. It’s important to
note that a limit distribution is necessary, which imposes regularity constraints
on the tail of the distribution. Regardless, the GEV distribution is widely used
to describe the maxima of lengthy (finite) sequences of random variables as an
approximate approximation. In a nutshell, GEV theory outlines how the m biggest
values behave.

GEV asserts that G is a non-degenerate limiting cumulative distribution
function (CDF) that exits for particular sequences maxima and can be written in
the form:

G(z) = exp

{

−

[

1 + ξ

(
z − µ

σ

)]−1

ξ

}

(2.1)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where the parameters satisfy −∞ <
µ < ∞, σ > 0 and −∞ < ξ < ∞. There are three parameters for the GEV model:
a location parameter, µ; a scale parameter, σ; and a shape parameter, ξ. According
to the value of the shape parameter, the GEV simplifies into the different types
of distributions (cf. Figure 2.1). The type I and type II classes of extreme values
distribution correspond respectively to the cases ξ>0 and ξ <0. The subset of
the GEV family with ξ = 0 is interpreted as the limit of Eq. (2.1) as ξ → 0, leading
to the Gumbel family. The statistical implementation is substantially simplified by
the consolidation of the original three families of extreme value distribution into
a single family. The data themselves determine the most appropriate type of tail
behaviour through inference on ξ.

Figure 2.1: PDFs for (left) and CDFs (right) for GEV. For each plot, x and µ=1, σ=0.5. For ξ,
blue=-0.5, black=0, and red=0.5

It’s important to remember here that the location parameter µ represents
the ’centre’ of the distribution rather than the mean, and that the scale parameter
σ governs the size of the deviations about µ rather than the standard deviation.
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Probability density functions (PDFs) and cumulative dis-

tribution functions (CDFs)

The probability density function (illustrated in Figure 2.1 (left)) depicts the
relative likelihood (on the y-axis) of a variable having value X. (on the x-
axis). In contrast, the cumulative distribution function (illustrated in Figure
2.1 (right)) defines the probability of X by integrating the PDF over the
range when the variable ≤ X. Eq. 2.1 is in CDF format, not PDF.

2.3.1 Return Levels

For modeling extremes of a series of independent observations X1, X2, ..., data
are blocked into sequences of observations of length n, for some large value
of n, yielding a series of block maxima, Mn,1, ...,Mn,m, say to which the GEV
distribution can be fitted. The blocks are often chosen to correspond to one year,
in which case n is the number of observations per year and the block maxima are
annual maxima. As previously stated, we compute the annual maximum one-day
precipitation (RX1DAY), which are yearly block maxima, for this thesis. Estimates of
extreme quantiles of the annual maximum distribution are obtained by inverting
Eq. (2.1):

zp =







µ− σ
ξ
[1− {− log(1− p)}−ξ], forξ ̸= 0,

µ− σlog {− log(1− p)} , forξ = 0,
(2.2)

where G(zp) = 1 - p. Here zp is the return level associated with the return period
1/p. The level zp is expected to be exceeded on average once every 1/p years or in
other words, zp is exceeded by the annual maximum in any particular year with
probability p. The return levels were computed using both stationary and non-
stationary assumptions, as discussed in the section 2.3.2 (Figure 2.3). In Chapter
4, we also examine the rare extreme precipitation events that we computed as
the 20-year return values from the RX1DAY after fitting a non-stationary GEV.

2.3.2 Non-stationary vs. stationary GEV

A stationary process in statistics is a stochastic process whose joint probability
distribution does not change with time. When calculating the model fit, it’s rel-
evant to see if the model distribution stays the same throughout time. In GEV
models, non-stationarity can be introduced by describing one or more parame-
ters as a function of a covariate (e.g., time). Figure 2.2 depicts how the likelihood
of extremes may evolve in the future under several climatic scenarios. It’s worth
noting that the model that was fitted to a 20th-century extreme temperature
distribution would not work so well for 21st-century values.

This change can be represented as a function of time in the model; for ex-
ample, µ, σ and ξ can be represented as a function of time. A non-stationary model
is one in which the model parameters are not set to constant, as opposed to a sta-
tionary model. If we expect a higher proportion of extremely high temperatures
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in the future, the shape of a GEV function fitted to the data may shift toward a
more heavy-tailed distribution. As a candidate model for the non-stationary GEV,
we can assume a model where linear trends in the location and scale parameter
(µ(t) = µ0 + µ1(t), σ(t) = σ0 + σ1(t)) are considered while no trend is considered
in the shape parameter (ξ(t) = ξ). The parameter µ1 can be interpreted as the
slope of a linear trend in the centre of the distribution, and the parameter σ1 as
the appropriate rate of change in the scale or the size of the distribution.

Figure 2.2: Temperature magnitudes and probability of occurrence in the context of a
warmer climate. Source: IPCC SPM 2012, Field et al. (2012)

The return level is the same for all years under the assumption of station-
arity, or there is a one-to-one relationship between the return level and the return
period, as shown in Figure 2.3 (top). In a non-stationary model with linear time
trends in the location and/or scale parameters, the effective return level would
likewise vary linearly as shown in Figure 2.3 (bottom).

So we can mainly fit three different forms of GEV distributions into our
data:

• A stationary GEV in which no parameters are dependent on a covariate.

• A non-stationary GEV in which either µ or σ change with a covariate

• A non-stationary GEV in which both µ and σ change with a covariate

2.4 Interpolation techniques

Interpolation is often employed in climate studies, for example when remapping
model output data in post-processing applications or for model intercomparison
or model evaluation against gridded observations. Several software libraries
have been developed in recent years to apply various, more or less conservative,
interpolation techniques. Examples include the ESMF library (Hill et al., 2004),
SCRIPS (Jones et al., 1998), and others. Typically, these libraries offer linear,
bilinear, multilinear, and conservative interpolation (Jones, 1999). When dealing
with water or energy, conservative interpolation, also known as area-weighted
interpolation, is commonly used. It is more computationally expensive than linear
interpolation because the overlaps between target and source cell regions must
be computed. Regardless, conservative interpolation has grown in popularity and
is now the most widely used regridding interpolation method (Pletzer and Hayek,
2019).
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Figure 2.3: Return level plots from a stationary (top) and non-stationary (bottom) GEV
analysis of the annual Rx1DAY over a single grid point for the period 1850-2100. The non-
stationary fit is calculated by ln[CO2] as a covariate for both location and scale.

Irrespective of the mathematical method used to remap the fields, derived
fields such as the daily precipitation temporal standard deviation and other indices
can be remapped using two different procedures:

• the final-step procedure, in which statistics and climate indices are calculated
directly from fields on the native grid and then interpolated on the target
grid, and

• the initial-step procedure, in which the fields are interpolated on the target
grid before the statistics and climate indices are calculated.

At the moment, there is no agreement on which procedure is best for evaluat-
ing model climate indices. It may appear self-evident that after computing the
derived field, the remapping should be done as the last step. In practice, how-
ever, it is preferable to interpolate all fields on a common grid before computing
statistics and climate indices (the first-step procedure), particularly in intercom-
parison studies of simulations from several models with different native grids
(e.g., Loikith et al. 2015; Mehran et al. 2014). Some studies (e.g., Chen and Knut-
son 2008; Bootsma et al. 2005; DeAngelis et al. 2013; John et al. 2022) used
the initial-step procedure to evaluate climate indices, while others (e.g., Sillmann
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et al. 2013a; Bhowmik and Costa 2015; Sunyer et al. 2013; Diaconescu et al. 2015)
used the final-step procedure. Other studies (e.g., Tencer et al. 2014; Sylla et al.
2013) make no mention of the procedure at all. Throughout the thesis, we have
used the initial-step procedure in all of our analyses.

Figure 2.4 depicts the difference between the aforementioned orders of
interpolation. For most of the analysis, we have regridded all the models as well
as the observations onto a 1◦ by 1◦ latitude-longitude (1◦×1◦ hereafter) grid using
a first-order conservative remapping. This enables us to directly compare the
results from a diverse model suit with the observations. The 1◦ × 1◦ grid is a
finer horizontal grid when compared with most of the CMIP6 model native grids,
which are based on an average grid size of 2 degrees or more. In contrast, for
some observations, this target grid size is coarser and regridding may smooth
out the values. When going to a smaller grid from the coarser one as we do in
most of the CMIP6 models, we do not expect to over-estimate the values, but we
may be equipped with the analysis of some regional features. We have followed
this method consistently throughout the thesis, and there is always a trade-off
between the smoothing of intensity and regional analysis.

Figure 2.4: Maps showing the multi-model mean climatology of RX1DAY after regridding all
models onto a common 1◦x1◦ grid by using the two procedures of interpolation; a) initial-
step, b) final-step. The right panel c) shows the difference (b minus a) results obtained using
the two procedures.

2.5 Circulation type classifications

Synoptic circulation typing has been routinely used for various purposes through-
out the previous few decades. The classification of atmospheric circulation into
different types or clusters proves to be an important tool for better understanding
the two-way interactions between the atmosphere and the surface climate (e.g.,
the day-to-day variability of temperature and precipitation). The different classes
are collectively called circulation types (CTs) or weather types. There are several
circulation classifications utilized in a variety of applications and regions. The
synoptic classifications limit the number of representative categories and simplify
the atmospheric circulation (Huth et al., 2016). A weather regime approach (e.g.,
Cassou et al. 2005; Van den Besselaar et al. 2010; Franzke et al. 2011; Cattiaux
et al. 2013) can also be used that however usually focus on persistent circulation
patterns that are identified either after applying a prefiltering or using a duration
criterion a posteriori. Our focus here is on synoptic or day-to-day variability so
this common weather regime approach is not considered.

The majority of the CTs have been developed in regions around the globe
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where synoptic variability is an important driver of regional weather conditions
(Huth et al., 2008). Many studies have addressed synoptic situations around the
world, including North America (Sheridan, 2002; Lee, 2015), Australia (Hart et al.,
2006), New Zealand (Jiang, 2011), Asia (Chen et al., 2008), and all of Europe (Huth
et al., 2016; Otero et al., 2018). This section illustrates how to use a gridded
CT categorization based on the classic Lamb weather type (Lamb, 1972), which
Jenkinson and Collison (Jenkinson and Collison, 1977) objectively applied (here-
inafter JC). This CT classification scheme, which was originally established for the
British Isles, has become one of the most widely used in the mid-high latitudes.

Examining the strength and direction of the airflow is the foundation for
distinguishing synoptic patterns (cyclonic or anticyclonic). Here we implement
the objective JC classification by applying a movable 16-point mask to every grid
point from 1◦ × 1◦ regridded climate model outputs. We constructed a gridded
JC categorization, similar to Otero et al. (2018), by treating each grid-point on
the map as the central point, surrounded by the 16 points (cf. Figure A.5) that
would represent the synoptic condition for that central point. This approach can
be used anywhere in the mid-latitudes (Donat et al., 2010). However, here only
the European domain encompassing Ð 15.5◦W – 35.5◦E and 30.5◦N – 70.5◦N was
used. These are then used to conduct the additional analysis in chapter 5. Also,
this method takes daily mean sea level pressure as an input, which is one of the
main advantages because free atmospheric variables are thought to be relatively
effectively replicated by GCMs (Goodess and Palutikof, 1998). Before computation,
the daily pressure datasets were brought to a standard 1◦ × 1◦ resolution using a
bilinear interpolation.

By obtaining daily atmospheric synoptic circulations over every grid point
of a defined region, the tailored version of the JC classification allows for the
direct linkage of the dominant atmospheric pattern with any atmospheric vari-
able over a specific time frame. The JC classification can identify a total of 27
different synoptic patterns (cf Table A.2). These are determined by the dominant
atmospheric pressure pattern (cyclonic and anticyclonic) and wind flow directions.
For days with very weak pressure gradients that make it difficult to assign to a
dominant advection or dominant CT, a "low flow" or "unclassified" type is also
assigned. For the sake of simplicity, the 27 CTs have been merged into 11 broader
types for this study, which include the Anticyclonic (A) and Cyclonic (C) pressure
patterns, the eight dominant directional patterns are named after the direction
of advection (NE, E, SW, W, and so on) and the unclassified (U) type (cf. Table
A.2). These circulation types are considered sufficient to analyse the influence of
circulation on extreme precipitation, as discussed in chapter 5, section 5.5.

2.6 The ARPEGE-Climat 6.3 atmospheric model

The Centre National de Recherches Météorologiques (CNRM) has been developing
a spectral global atmospheric general circulation model (AGCM) dubbed ARPEGE
(a French acronym for "research project on small and large scales"; Courtier et al.
1991) for both numerical weather prediction (NWP) and climate applications since
the 1990s. The model code is jointly developed by Météo-France and the European
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Center for Medium-range Weather Forecast (ECMWF, Integrated Forecast System -
IFS - project). ARPEGE and IFS hence share the same software system. Derivatives
of ARPEGE-IFS, called ARPEGE-Climat, have been tailored for climate studies at a
lower resolution than the NWP model but coupled with other climate component
models (dynamical ocean, enhanced land surface, carbon cycle, ozone chemistry
and aerosols), and longer integrations, which need a "frozen" version for several
years. The first-ever version of the ARPEGE-Climat AGCM was described in
Déqué et al. (1994). Since then, it has been updated regularly, by including new
atmospheric physical packages, improving the representation of the land surface
and its coupling with the atmosphere, extending the top of the model beyond the
troposphere, and increasing both the vertical and horizontal resolution.

Figure 2.5: Mean annual percentage of rainy days (daily precipitation above 1 mm/day, in %):
(a) GPCP Version 1.3,(c) CNRM-CM5.1, and (d) its bias with respect to GPCP Version 1.3, and
(e) CNRM-CM6-1 and (f) its bias with respects to GPCP Version 1.3. Zonal averages of these
annual percentages are indicated on panel (b) (GPCP Version 1.3:black line; CNRM-CM5.1:
red line; CNRM-CM6-1: blue line; MSWEP Version 1.2: dashed grey line; and TRMM 3B42
Version 7: dotted grey line). Only one member is used for CNRM-CM6-1. Source: Roehrig
et al. (2020)

ARPEGE-Climat is the atmospheric component of the CNRM-CERFACS (Cen-
tre National de Recherches Météorologiques - Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique) Climate Model (CNRM-CM; e.g., Voldoire
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et al. 2013) and Earth System Model (CNRM-ESM; e.g., Séférian et al. 2016). This
model has contributed to the CMIP, including the last two phases CMIP5 and CMIP6.
For CMIP6, three model versions have been used: the standard climate model at
standard (T127 truncation) resolution, CNRM-CM6-1 (Voldoire et al., 2019), its high-
resolution counterpart, CNRM-CM6-1-HR (T359 truncation), and its Earth System
version, CNRM-ESM2-1 (Séférian et al., 2019). Here, our focus will be mainly on
CNRM-CM6-1 given its participation in the Cloud Feedback Model Intercomparison
Project (CFMIP, Webb et al. 2017; Douville and John 2021), with targeted idealized
coupled and atmosphere-only experiments aimed at a better understanding of
the climate response to increased CO2.

Like any other atmospheric model, ARPEGE-Climat is made up of a dry
dynamical core and a set of physical parameterizations for representing diabatic
processes. It also necessitates a numerical grid, coupling to a land surface model,
and boundary external parameters (e.g., trace gas and aerosol concentration, gas
absorption optical properties, temporal variations in the solar irradiance, land
surface properties, and sea surface temperature (SST) and sea ice (SIC)). The most
recent version of the ARPEGE-Climat global atmospheric model is 6.3. (Roehrig
et al., 2020). Cycle 37 of the ARPEGE/IFS is used to derive the dynamical core of
ARPEGE-Climat 6.3. The vorticity and divergence form of the primitive equations
were resolved by the dynamical core, with temperature and surface pressure
logarithm serving as thermodynamic state variables. All nonlinear terms (including
physical tendencies) are computed on the related reduced Gaussian grid, which
has a spatial resolution of around 150 km in both latitude and longitude (Hortal and
Simmons, 1991), whilst, the linear terms are computed using a spectral transform
on the sphere with a T127 triangular truncation. ARPEGE-Climat 6.3 is a "high-
top" model that features 91 vertical levels and a progressive hybrid pressure
coordinate system (Simmons and Burridge, 1981).

ARPEGE-Climat 6.3 is the atmospheric component of the coupled model
CNRM-CM6-1, which we have analysed but also integrated for our idealized sen-
sitivity study in Chapter 3. Voldoire et al. (2013) describe its previous version
5.2. Roehrig et al. (2020) evaluate the present-day precipitation modelled by
CNRM-CM6-1 in AMIP (Eyring et al., 2016) atmosphere-only experiments driven
by observed SST and observed radiative forcings. Figure 2.5 depicts the mean
precipitation greater than 1 mm/day from CNRM-CM6-1 AMIP simulations. The
GPCP v1.3 and TRMM 3B42 V7 reference data sets reveal a mean frequency of
rainy days of about 60% to 80% in the ITCZ region, while it falls below 20%
over much of the subtropics (Figure 2.5 b). It rains roughly half of the time in the
mid-latitudes. The reference dataset, MSWEP v1.2, shows a 10 to 20% increase in
the frequency of rain occurrences (Figure 2.5 b). Given that this rainfall product
incorporates both observational and reanalysis data, such a disparity is to be
expected, as numerical models have been found to exaggerate the occurrence of
light precipitation (e.g., Dai 2006; Flato et al. 2014). This systematic error was
however much more pronounced in the former CNRM-CM5.1 AGCM. The model
considerably overestimates the frequency of rainy days across the tropics, other
than in the eastern subtropical ocean basins, where it is more consistent with data
(Figures 2.5 b and d). Likewise, the model precipitates far too frequently along
mid-latitude storm tracks. Except for tropical continental areas and the maritime

34



2. Data, methods and models

continent, CNRM-CM6-1 greatly eliminates these biases over the majority of the
globe (Figures 12.5 b, e, f). The frequency of wet days is underestimated there,
implying that the dry biases are partly due to a paucity of rainy events.

Figure 2.6: Global bias maps for the extreme indices a) SDII, b) RX1DAY, c) CDD, and d)
CWD simulated by the CNRM-CM6-1 in the GMMIP experiments for the period 1979-2014
with respect to the MSWEP observations. The maps show the 10-member mean biases for
each index.

Figure 2.6 portrays the present-day bias (1979-2014) in the precipitation
extreme values simulated by the ensemble mean (10 members) CNRM-CM6-1 using
GMMIP experiment framework (ensemble of extended atmospheric only simula-
tions, Zhou et al. 2016) with respect to the MSWEP V1.2 observation dataset. The
maps show the present-day biases for extreme indices SDII, RX1DAY, CDD and
CWD which are defined in section 2.2. The analysis of the mean values of these
extremes (cf. Figure A.3) shows a good general agreement and the model’s ability
to capture the overall pattern and average intensity of the observed extremes.
There are however significant differences between the modelled and observed
estimates. We note an overestimation of average and extreme precipitation in-
tensities as indicated by the SDII and RX1DAY maps (Figure 2.6 a and b). The
frequency of extreme precipitation, on the other hand, is a different story. The
CWD (Figure 2.6 d) shows a deficit in the maximum number of consecutive wet
days. There is also an overestimation of the total number of dry days (CDD,
(Figure 2.6 c), particularly over land. As a result, the lack of precipitation in some
tropical areas (land), particularly the maritime continent, shows an overabun-
dance of moisture convergence along the continent’s boundaries and a challenge
for humid oceanic air masses to penetrate the continent’s interior. This is in line
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with the well-known shortcomings of global climate models with parameterized
convection, which show difficulties to deal with inland areas where convergence
from sea-breeze circulations is critical for convection initiation (Birch et al., 2015).

Taylor Diagram

The Taylor diagram (cf. Figure 2.7) provides a graphical framework for
comparing or evaluating a set of models and observations/reanalyses ver-
sus a single reference dataset. The reference data can be observational
(like reanalysis), or it can refer to a specific model or simulation (for model
intercomparison). It is measured in terms of pattern correlation (R), cen-
tred root-mean-square-error (RMSE), and the amplitude of their variations,
represented by their normalized spatial standard deviations (STD) (Taylor,
2001). The graphic illustrates how to plot three statistics showing how
well a pattern matches observations on a two-dimensional graph. The
pattern correlation between the models and the observational products is
the angular dimension of the Taylor diagram, while the normalized spatial
standard deviation is the radial dimension. The centred RMSE is based on
a geometric relationship between the basic definitions of a centred root
mean square error (RMSE), correlation, and standard deviation. It is a
byproduct of the Taylor Diagram that the distance between a model re-
sult and the reference data on the abscissa is the centred RMSE. A data
point will be on a radial arc of unity when a model has the same spatial
variance as the reference data. The data point for a model will be on the
abscissa if it is well correlated with the reference data. If both of these
conditions are met, the RMSE will be zero, and the model data will coin-
cide with the reference data point on the abscissa. These statistics make
it simple to establish how much of a pattern’s overall root mean square
difference is due to variation and how much is due to poor pattern cor-
relation. Thus, standard deviations and correlations between the values
simulated by the models and those from the reanalysis are presented in
the same diagram, offering a full picture of the model’s ability to reproduce
the different variables. It’s vital to remember that all variables must be on
the same grid, which may necessitate regridding (cf. section 2.4). Taylor
diagrams have been employed in several parts of this work (e.g., sections
2.6, 2.7.7), particularly for model evaluations.

Taylor diagrams as shown in Figure 2.7 depict the skill of each ensemble
member of CNRM-CM6-1 as well as the multi-ensemble mean and observations
in capturing the global geographical distribution of various daily precipitation
statistics during the recent period (1979-2014). We see that, in all the panels in
Figure 2.7, the individual ensembles are tightly clustered around the ensemble
mean, with high pattern correlation values ranging from 0.8 to 0.9, which means
that the CNRM-CM6-1 is pretty realistic and that this good performance is not
obtained by chance (i.e., not heavily dependent on internal climate variability and
the choice of the ensemble member). We also see that the model compares with
the MSWEP reference dataset (available over both land and ocean) almost as well
as the other observational datasets. For all the indices, the ensemble mean and all
individual members fall within the centred RMSE value of 0.75 despite the large
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biases of Figure 2.6. Normalized standard deviation values for intensity of the
extremes (SDII and RX1DAY) are more than one for the members as well as the
mean, however, for the frequency of dry and wet extremes ( CDD, CWD cf fig 2.7
c, d) it falls inside unity. To summarize the atmospheric part of CNRM-CM6-1 is
capable of capturing the pattern of the intensity and frequency of the extremes to
a decent level and the overall model performance is similar across all individual
members. However, there is a large bias in the magnitude of these values as
depicted by Figure 2.6.

Figure 2.7: Taylor diagram illustrating the model performance of the atmospheric-only
CNRM-CM6-1 experiments in simulating the extreme indices; a) SDII, b) RX1DAY, c) CDD and
d) CWD for the historical period from 1979-2014. The radial axis is the normalized standard
deviation while the angular axis is the centered pattern correlation. The reference data set
is MSWEP (REF). The pink concentric circles show the centred RMSE. Individual ensemble
members are shown in red (hollow markers) and the ensemble mean in black (solid marker).
Other observational products are also marked with colours as mentioned in the legend.
The periods analysed for the other observational products depend on the available data
during the reference period as mentioned in Table 2.1
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2.7 CMIP6 models and experiments

2.7.1 Overview

Climate models are now widely used as a key tool for understanding the climate
system, its natural variations as well as its response to human perturbations
(emissions of greenhouse gases and aerosols, but also possible changes in land
use and land cover). Different simulations provide information on how the climate
system has changed over time and what we might expect in the future. These
model simulations are increasingly used as a benchmark to develop and implement
climate policies, although adaptation policies also need higher resolution climate
information that cannot be delivered by the current generation of GCMs.

The Coupled Model Intercomparison Project (CMIP), which began 20 years
ago, has brought together a diverse set of climate models under one umbrella,
allowing for coordinated model comparisons and climate change assessments on
a global scale. CMIP is now in its sixth phase (CMIP6, Eyring et al. 2016), with the
goal of continuing to lead the development and evaluation of climate models. It
also acts as a framework for open-access climate simulations that adhere to pre-
scribed experimental protocols, greatly expanding our understanding of climate
change and related uncertainties, basically divided into three contributions: future
emissions of greenhouse gases (as assessed by a small set of illustrative scenar-
ios), model uncertainties (as assessed by a multi-model approach although CMIP
models are not entirely independent since they can share common components
or structural assumptions), internal variability (as assessed by multiple realiza-
tions of the same model at least for global modelling centres that have sufficient
computing resources). Furthermore, an important part of CMIP is making the
multi-model outputs publicly available in a standardized manner for assessment
by the global climate community and users.

2.7.2 Different experiments in CMIP6

Over the course of recent decades, remarkable progress has been made in model
evaluation (Randall et al., 2007; Schaller et al., 2011). Many baseline aspects of
model evaluation must now be performed much more efficiently in order to allow
for a systematic and rapid performance assessment of the large number of models
participating in CMIP. In terms of the number of modelling groups involved, the
number of future scenarios evaluated, and the number of distinct experiments
undertaken, CMIP6 marks a significant increase over CMIP5.

The new CMIP6 structure consists of three major components (Eyring et al.,
2016). First, a number of common experiments, the Diagnostic, Evaluation, and
Characterization of Klima (DECK) experiments, and CMIP historical simulations
are used to evaluate the model properties. Second, is the common standards,
coordination, infrastructure, and documentation that facilitate sharing of model
outputs and the characterisation of model ensembles. Third, is the implementation
of a more decentralized structure based on more independent CMIP-Endorsed
MIPs. Idealized "diagnostic" simulations (called DECK) in which CO2 is increased
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by 1% each year, suddenly quadrupled, or the preindustrial radiative forcings are
left unaltered for long periods of time are included in the CMIP6 experiments.
Historical runs (1850-2014) based on observed CO2 concentrations and other
climate forcings, as well as future emission scenarios for the twenty-first century
(2015-2100) and beyond, are also considered by all modelling centres in CMIP6.
Other Model Intercomparison Projects, or MIPs, have been also proposed to the
global modelling community. These are more specific experiments that provide
useful (sometimes process-based) assessments of climate change. This includes
the Cloud Feedback Model Intercomparison Project (CFMIP, cf. chapter 3) which
aims at a better understanding of cloud feedback, as well as of the role of the SST
pattern effect and of the fast (mostly radiative, but also physiological) adjustment
to increased CO2 levels. Other examples are the LS3MIP project (Van den Hurk
et al., 2016) dedicated to the land-atmosphere coupling or GeoMIP (Kravitz et al.,
2011) that compares the effect of various types of geoengineering techniques. The
diagram below (Figure 2.8) depicts the MIPs included in CMIP6.

Figure 2.8: Schematic of the CMIP/CMIP6 experimental design and the 21 CMIP6-Endorsed
MIPs. Source: Eyring et al. (2016)

Not all modelling groups participate in all the MIPs due to the limited com-
puting resources they might have. The complete list of MIPs and their definition
can be obtained from Eyring et al. (2016).
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2.7.3 Historical simulations

Historical simulations have been conducted with most if not all CMIP6 models.
Unlike the DECK experiments, they are not fully comparable from one generation
of CMIP models to the next since (i) the historical period is extended from one CMIP
exercise to the next, (ii) the natural (solar, volcanoes) and anthropogenic forcings
(GHG, aerosols, land cover and land use) may also slightly evolve between succes-
sive CMIP exercises. In CMIP6, the historical period is from 1850 to 2014. Based
on observations, these simulations are forced by changing, externally imposed
forcings such as solar variability, volcanic aerosols, and changes in atmospheric
composition (GHGs and aerosols) caused by human activities. The aim is to as-
sess the models’ ability to simulate the recent climate, including its variability and
multidecadal trends. These simulations can also be used to see if climate model
forcing and sensitivity match the observed record, allowing researchers to bet-
ter constrain climate sensitivity and/or the scale of aerosol forcing. Furthermore,
they, along with the control preindustrial runs, provide the baseline simulations
for conducting formal detection and attribution studies (e.g., Stott et al. 2006),
which aid in determining the causes of observed climate changes. Despite the fact

Figure 2.9: Observed temperatures compared to CMIP5 and CMIP5 hindcasts. CMIP6 model
historical runs from 1850-2014 are combined with mean projections through 2019 across
all available scenarios. One run is used per model. Solid lines show the multi-model
mean, while the shaded areas represent the two-sigma range. Values in brackets reflect
the number of models used in the analysis. Source: CarbonBrief

that there are dozens of different climate variables, the climate modelling commu-
nity focuses on global surface temperature as one of the most important variables.
The near-surface air temperature gives us a notion of how warm the lower at-
mosphere has become, as well as the overall picture of the atmosphere’s energy
budget. When models accurately represent past changes (historical simulations), it
gives users confidence that they will accurately represent future changes as well.
The graph below (figure 2.9) compares global surface temperature from historical
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simulations of the CMIP6 (blue) and CMIP5 (grey) climate models to observations
from the NASA GISTEMP dataset. The lines depict the average of 42 CMIP5 and
36 CMIP6 models, while the shaded area depicts the 95% confidence interval of
model runs which shows the large uncertainty range associated with the models.

Climate models cannot resolve all of the small-scale physics of the Earth’s
climate due to their limited spatial resolution. To accurately simulate small-scale
processes, such as cloud formation or cloud-aerosol interactions, models include
parameterization methods (Anthes, 1977; Pitman, 2003), which provide an empir-
ical surrogate for these processes. The process of determining these characteris-
tics, which are sometimes poorly known or very uncertain, is known as model
tuning. While most modellers avoid explicitly adjusting their models to account
for past temperature changes, significant mismatches may force them to scramble
for a solution. Only a few CMIP6 modelling groups have tuned certain parameters
to better match historical temperatures, whereas the bulk do not and only use
present-day and preindustrial climatological constraints. As a result, there is a
large inter-model spread in terms of recreating past and future climates, a part
of this owing to differences in the physical representation of atmospheric process
across the models, known as model uncertainty.

Additional uncertainty can also arise from the limited sample size (lack of
multiple member ensembles) also called uncertainty due to the internal variabil-
ity (cf. Chapter 4). This intrinsic variability of the climate system arises from
non-linear processes in the atmospheric and oceanic circulation, but also from
interactions between the multiple components of the climate system. Emblematic
examples include the El Nino-Southern Oscillation (ENSO) in the tropics or, the
Atlantic Multidecadal Variability (AMV) in the North Atlantic. Beyond the forced
component of the climate evolution, one MIP (DCPP, Decadal Climate Prediction
Project Boer et al. 2016) aims at constraining the unforced component (i.e., in-
ternal climate variability) by initializing the ocean state and running decadal to
multi-decadal hindcasts and forecasts, which show increasing skill (and improved
skill compared to uninitialized historical simulations) in predicting surface temper-
ature, but more difficulties to improve the simulation of precipitation over land
(Douville et al., 2021).

2.7.4 SSP Scenarios

This set of standard simulations of future climate enables the comparison of the
results from different CMIP6 models. This aids researchers in piecing together
images of climate change in the near (2021-2040) to long-term (2081-2100 and
beyond) future, assessing the most likely responses, but also quantifying related
uncertainties. ScenarioMIP (O’Neill et al., 2016) includes the scenario runs and is,
therefore, one of the most popular sets of CMIP6 simulations. To estimate future
climate, all models employ a common set of future GHG concentrations, aerosols,
and other radiative forcings. For CMIP6, a new set of illustrative shared socio-
economic pathways (SSP) have been developed and associated with contrasted
emission scenarios ranging from low (e.g., SSP1-2.6) to high (e.g., SSP5-8.5) emis-
sions of greenhouse gases. When compared to their predecessors, Representative
Concentration Pathways (RCPs, Van Vuuren et al. 2011), in CMIP5, they take into
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account many socioeconomic elements in addition to the radiative forcings. The
IPCC AR5 report featured four RCPs, each of which looked at different scenarios
for future greenhouse gas emissions. These RCP2.6, RCP4.5, RCP6.0, and RCP8.5
scenarios have been updated in CMIP6. The new scenarios include the SSP1-2.6,
SSP2-4.5, SSP4-6.0, and SSP5-8.5 illustrative pathways, and they result in similar
2100 radiative forcing values as their predecessors in AR5.

A variety of new scenarios are also being employed in CMIP6 to enable
scientists a larger range of possibilities to simulate. These scenarios are depicted
in the Figure 2.10, which displays the estimated annual CO2 and other GHG emis-
sions (top panel) for each scenario until 2100. The Figure (bottom panel) also
illustrates the change in global surface temperature caused by various emissions
for each scenario.

A broader study of various baseline "no climate policy" outcomes is one
of the primary improvements to CMIP6 scenarios. Only one very high baseline
scenario (RCP8.5) and one relatively modest mitigation scenario (RCP6.0) com-
mensurate with baseline outcomes were included in the previous generation of
climate models featured in CMIP5. Despite being a worst-case scenario among
possible no-policy outcomes, much of the ensuing research focused on RCP8.5 as
the only no-policy baseline, often referring to it as "business as usual." SSP3-7.0,
a new scenario added to CMIP6, falls in the middle of the spectrum of base-
line outcomes generated by models. Researchers can now investigate worst-case
(SSP5-8.5), middle-of-the-road (SSP3-7.0), and more optimistic (SSP4-6.0) pos-
sibilities while projecting how the planet will warm if no climate policies are im-
plemented. SSP4-3.4 is a new scenario that attempts to bridge the gap between
scenarios that restrict warming to below 2 degrees Celsius (RCP2.6 / SSP1-2.6)
and approximately 3 degrees Celsius (RCP4.5 / SSP2-4.5) by 2100. It will enable
scientists in assessing the effects of warming if countries reduce emissions rapidly
but fail to offset them quickly enough to keep temperatures below 2 degrees Cel-
sius. SSP5-3.4OS is an overshoot scenario (OS) in which emissions maintain a
worst-case SSP5-8.5 trajectory until 2040, after which they quickly drop with
extensive late-century use of negative emissions. Finally, SSP1-1.9 is a scenario
that aims to keep warming below 1.5 degrees Celsius over pre-industrial levels
by 2100. It was included following the Paris Agreement when countries pledged
to undertake efforts to keep global warming to 1.5◦C. Energy models and basic
climate models built to keep warming to 1.5◦C played a key part in the IPCC’s spe-
cial report on 1.5◦C, which was issued in 2018. With these new CMIP6 scenarios,
full climate models will be able to examine climate change and its consequences
at 1.5◦C warming. New scenarios in CMIP6 result in 2100 forcing, similar to the
RCP scenarios in CMIP5. Regardless of the fact that their end-of-century forcing
is identical, their emission trajectories and mix of CO2 and non-CO2 emissions
differ.

2.7.5 CFMIP experiments

The Cloud Feedback Model Intercomparison Project (CFMIP) has been a part of
the CMIP since its third phase (CMIP3) and is one of the important MIPs in the
CMIP6 framework. CFMIP experiments are now in their third phase (CFMIP3).
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Figure 2.10: Future anthropogenic emissions of key drivers of climate change and warming
contributions by groups of drivers for the five illustrative scenarios used in this report. The
five scenarios are SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Source, Masson-
Delmotte et al. (2021a); cf. Figure SPM.4 from the report for detailed caption

The major objective of CFMIP is to improve the understanding of cloud-climate
feedback mechanisms and evaluation of cloud processes and cloud feedback in cli-
mate models. Other aspects of the climate response, such as changes in circulation,
regional-scale precipitation, and non-linear change, can be better understood us-
ing the CFMIP experimental hierarchy and process diagnostics. CFMIP contributes
to CMIP6 by coordinating a hierarchy of targeted experiments with cloud-related
model outputs. How does the Earth system respond to forcing? and What are
the origins and consequences of systematic model biases? are two of the pri-
mary questions CFMIP addresses within the CMIP6 distribution. It also supports
the activities of the World Climate Research Program (WCRP) Grand Challenge
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on Clouds, Circulation and Climate Sensitivity. Groups of experiments are di-
vided into Tiers 1 and 2 using the CMIP6 design process, which is inspired by
scientific questions CFMIP addresses (Eyring et al., 2016). All Tier 1 experiments
must be completed and released through the CMIP6 shared data portal and this
is a prerequisite for modelling organizations participating in the CFMIP3/CMIP6
model intercomparison. Tier 2 experiments are optional and address more spe-
cific scientific questions which are discussed in Webb et al. (2017). The modelling
groups have the freedom to perform any subset of Tier 2 experiments. All the
CFMIP3/CMIP6 experiments are summarized in Figure A.6 (adapted from Webb
et al. 2017). This thesis has utilised different CFMIP-tier 2 experiments, which
are detailed in chapter 3. We have used the tier 2 experiments to investigate
the response of the mean and extreme (wet and dry) precipitation to the uniform
warming of the SST, increase in the CO2 concentrations, and also the contribution
from the SST patterns.

2.7.6 Climate sensitivity of models

Equilibrium (ECS) and transient (TCR) climate sensitivities to a given abrupt or
gradual increase in CO2 concentration compared to preindustrial levels are key
metrics that sit at the heart of climate change science. They are generally in-
trinsic properties of GCMs that arise from physical and biogeochemical simulated
processes, rather than being intentionally tuned by modellers (Flynn and Mau-
ritsen, 2020). These climate sensitivities are typically expressed in terms of
the global mean temperature that would follow if atmospheric carbon dioxide
concentrations were abruptly (abrupt-4xCO2 experiment) or gradually (1pctCO2
experiment) doubled compared to preindustrial times (piControl experiment). The
ECS is therefore an estimate of global warming at doubling CO2 levels in the long
run, while, TCR is the mean global warming anticipated to occur around the
time of CO2 doubling in climate simulations with atmospheric CO2 concentrations
increasing at 1% per year. TCR values are less than ECS values across a suite
of models due to the deep-ocean heat uptake leading to a lag in the response of
global temperature to increasing CO2 concentration (Hansen et al., 1985). Moreover,
the ratio of TCR over ECS tends to decrease as ECS increases and is influenced
by the spatial pattern of the ocean warming (Armour, 2017).

ECS and TCR estimate only need three basic idealized experiments (the
so-called DECK experiments: piControl, abrupt-4xCO2 and 1pctCP2) that can be
reconducted between successive generations of global climate models. The range
of ECS and TCR still remains uncertain even after decades of advancement in
climate science. The previous IPCC assessment reports have quoted the likely
range of ECS from 1.5 to 4.5 K, with an exception in the fourth assessment re-
port which moved the likely lower range temporarily to 2K. Similarly, the IPCC
AR5 gives a plausible range of TCR of 1 to 2.5K based on multiple lines of ev-
idence. Nevertheless, the CMIP6 models have a general upward drift towards
higher climate sensitivities with more than one-third of the models estimated to
have ECS values over 4.5K (Forster et al., 2020) and a few with TCR values over
2.5K (Nijsse et al., 2020). Also, a quarter of the CMIP6 models have a higher
sensitivity than any of the models in CMIP5. The Paris climate targets will be far
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more difficult to accomplish if the real climate system is equally sensitive (Tanaka
and O’Neill, 2018). A comprehensive investigation of these two sensitivity metrics
and how they have changed with successive generations of the climate models to
date (CMIP6) is summarised in (Meehl et al., 2020). Figure 2.11 depicts the IPCC
AR5 likely ECS range (black bar), the range and individual values for CMIP5 mod-
els (grey bar; black dots), and the range and values for CMIP6 models that are
currently available (grey bar; black dots) (blue bar; black dots).

Beyond climate sensitivity, other metrics have been proposed to depict the
response of the global water cycle (Douville et al., 2021). Hydrological sensitivity
(HS) is among such metrics, which represents the rate of increase in global mean
surface evaporation and precipitation per degree of warming in a climate change
scenario (Webb et al., 2018). HS simply denotes the ratio of the global-mean pre-
cipitation changes to the corresponding global-mean surface temperature changes
(Fläschner et al., 2016). It can be estimated as differences between the perturbed
and control mean states (eg., Held and Soden 2006; Bala et al. 2008; Previdi
2010; Pendergrass and Hartmann 2014) or using a linear regression approach
based on the abrupt-4xCO2 experiments (Fläschner et al., 2016). Definition of HS
is important for understanding water cycle changes since it depicts the forcing-
independent response of global precipitation to any change in global mean surface
temperature. Studies like Allen and Ingram (2002), Lambert and Webb (2008), An-
drews et al. (2009) incorporate the exception that precipitation not only changes
proportionally with surface temperature, but also adjusts directly to radiative
forcing agents, whereas, other studies like Mitchell et al. (1987), Andrews et al.
(2010), Fläschner et al. (2016) refer HS specifically to the temperature-dependent
increase in global precipitation with surface warming, excluding the effects of
radiative forcing agents.

Figure 2.11: Likely ECS range (e.g., with an estimated 66% chance of occurring) from the
IPCC AR5 (black bar), CMIP5 model ECS values (grey), and CMIP6 model ECS values (blue).
Source: CarbonBrief

Fläschner et al. (2016) has thus introduced a formal terminology analogous
to the ECS framework to facilitate the comparison of global precipitation response
estimates. According to this study, the slope of temperature-dependent precip-
itation change, when discarding rapid precipitation changes (adjustment) of the
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atmosphere to radiative forcings, is referred to as hydrological sensitivity, while
the slope of the total precipitation response to a gradual increase in CO2 is the
apparent hydrological sensitivity. The apparent HS encompasses the contribution
from both a fast atmospheric adjustment to the prescribed radiative forcing and
slower precipitation response to the induced surface ocean warming. According
to the AR6 WG1, the apparent hydrologic sensitivity exhibits a threefold spread
(1–3%/K) across the CMIP6 climate models. The term equilibrium hydrological
sensitivity was also introduced as the equilibrium change of precipitation due to
a doubling of CO2. Pendergrass (2020) has estimated the multi-model mean HS
from the CMIP6 ensemble as 2.5%/K (ranging from 2.1-3.1%/K), very close to the
former CMIP5 ensemble mean (2.6%/K). HS is not strongly related to ECS across
both CMIP5 and CMIP6 global climate models (Fläschner et al., 2016; Pendergrass,
2020), and other physical processes may thus control the simulated precipitation
response.

2.7.7 Taylor diagram — A synthetic tool to assess the model skill

Figure 2.12: Taylor diagram measuring the model performance of each CMIP model (33 here)
in simulating the a) annual mean precipitation (P) and b) extremes (RX1DAY) for the historical
period from 1979-2014. The radial axis is the normalized standard deviation while the
angular axis is the centered pattern correlation. The reference data set is MSWEP (REF).
The pink concentric circles show the centred RMSE. Individual models are shown in red and
the multi-model ensemble mean is in black. CNRM-CM6-1 is highlighted using green and
other observational products are also marked with colours as mentioned in the legend.

The Taylor diagrams (Figure 2.12) show the statistical overview of each
CMIP6 model’s performance in capturing the mean and extreme precipitation val-
ues, as well as the multi-model mean and observational products. The models
are tightly clustered for mean precipitation values (Figure 2.12 a), with the spatial
standard deviation (radial distance from the origin) of all models being somewhat
higher than the reference data. In addition, all models have a high pattern corre-
lation between 0.8 to 0.95, however, some models are at the lower end of this
range. Except for one model, the centred RMSE is less than 0.75; nonetheless,
the outlier does not surpass unity. However, for extreme precipitation (Figure
2.12 b), the models exhibit wider ranges of Taylor skills than they do for mean
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precipitation and are not as densely clustered in the Taylor diagrams. The pattern
correlation ranges from 0.75 to 90 with most of the models falling near the upper
end of this range. Except for four outliers with centred RMSE values exceeding
unity, all models have centred RMSEs of the annual RX1DAY values between 0.5
and 1.0.

The Taylor skills for both the mean and extreme precipitation is not de-
graded, though the skills for mean precipitation are a bit more than that for the
extremes. Needless to say, the spread is large for the extremes, largely due to
the considerable cross-model differences in the amplitude of the spatial patterns,
with some models substantially underestimating pattern amplitude while others
overestimating it. The pattern correlation and Taylor skill for the multi-model
averages are better than any single model for both mean and extreme precipi-
tation. The CMIP6 models’ overall performance in simulating mean and extreme
precipitation is adequate.

2.8 Synthesis

A growing set of global observational datasets, reanalyses and climate simulations
is available to understand, assess and quantify climate change and its impact on
recent and future precipitation extremes. With the expansion in the number of
different products (e.g., Roca et al. 2019), the evaluation of climate model outputs
is now being done more carefully, given the potential for observation errors or
for compensating errors in global climate models (e.g., too frequent and too light
rainy events). We have employed a small fraction of the most reliable observational
datasets available for the evaluation of the CMIP6 models we used in this thesis,
focusing not only on seasonal and annual mean precipitation but also on the full
distribution of daily precipitation rates including extremes. One of the important
aspects we came across is the difference in the evaluation of the models based
on the reference dataset used. We can see that for some variables, the spread
across datasets is as large as the spread across models. This raises the question
of which dataset is the most suitable to evaluate the models, depending on spatial
and temporal scales, selected domains, and the focus on present-day climatology
versus historical variations (highly sensitive to potential inhomogeneities in the
timeseries).

Climate models have improved significantly in several respects across suc-
cessive generations of CMIP intercomparisons (Brunner et al., 2022). The major-
ity of the CMIP6 models are capable of reasonably simulating mean and extreme
precipitation. Even at a standard resolution, CNRM-CM6-1 performs well in com-
parison to the other CMIP6 models. There are significant limitations when using
climate models to predict future changes. One example is the models’ inability to
resolve small-scale atmospheric features. The majority of climate models avail-
able today are coarse resolution models, which necessitate the use of various
parameterization schemes to resolve and quantify small-scale phenomena occur-
ring within a grid. Because models depict physical processes differently, there is
a large degree of spread when computing the mean and extreme precipitation,
which we refer to as model uncertainties. Another source of systematic error
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or deviations from realistic climatology values can be the irreducible uncertainty
caused by internal variability. This is related to the fact that we don’t have enough
samples when utilizing climate models as most of them do not provide multiple
members to analyse the present and the future simulations. While investigating
future changes in the mean and extreme precipitation, this results in a deficit of
sampling and a significant source of uncertainty, beyond the choice of the CMIP6
model and/or of the illustrative SSP scenario.

Despite their limited resolution and their parametric and structural uncer-
tainties, global climate models are employed as first-hand tools to project future
climate. The latest generation of CMIP6 models has been evaluated and shown to
be capable of capturing the overall present-day patterns of mean and extreme
precipitation, even if they are over or under-estimated at regional scales. We
can see that the majority of the CMIP6 models can generate geographical patterns
with correlations ranging from 0.8 to 0.95, with the majority of the models falling
in the middle of this range. The new set of scenario simulations from the CMIP6
also enables us to understand and investigate a wide range of plausible futures,
with varying CO2 concentration and other radiative forcings.

We are now equipped with different tools and methods to understand
and quantify the projected changes in daily precipitation extremes, thanks to the
availability of a growing number of global climate models. Regional climate models,
including convection-permitting models, are also very useful for this purpose but
are beyond the scope of our study. The methods to define extreme events in a
changing climate have also advanced. We will use simple ETCCDI indices in our
study of extremes, which enable us to compare our results with a large volume
of previous studies. The use of a state-of-the-art non-stationary GEV technique
will enable us to assess changes in the intensity of rare extreme events based on
the 20-year return values of the block maxima RX1DAY. We will also use a simpler
stationary GEV analysis to investigate the response of extreme precipitation to
different global warming levels (GWLs) or CO2 concentrations.

Despite the advances in available observations, global climate models, and
statistical tools, we still face multiple difficulties in conducting such quantitative
analyses. Models and observations are available at different resolutions and must
be interpolated onto a common grid before evaluation and comparison, which may
lead to a loss of information and smooth the results of the highest-resolution mod-
els. Higher-resolution projections can be obtained with dynamical or statistical
downscaling techniques that are however beyond the scope of the present study.
Another related issue is the limited model’s ability to capture the present-day
distribution of daily precipitation intensities, including extremes, which may also
affect their ability to project precipitation changes. While various bias correction
or bias adjustment techniques have been proposed to circumvent this obstacle,
they all have shortcomings (Maraun et al., 2017) and will be only briefly discussed
in our manuscript. Finally, internal climate variability remains a key contribution
to the future climate in the near term, especially for extremes, and may need
the use of large ensembles that are still not systematically available for all CMIP6
models. This important limitation will be further discussed in Chapter 4, based
on a relatively large ensemble available from one illustrative CMIP6 model.
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All intelligent thoughts have already been thought;
what is necessary is only to try to think them again.

Ð Johann Wolfgang von Goethe

3
Fast adjustment versus slow

SST-mediated response

The precipitation response to escalating GHG concentrations is now well es-
tablished to be a combination of a fast atmospheric adjustment to the radiative
forcing and a slower response mediated by ocean surface warming (Allen and In-
gram, 2002; Andrews et al., 2010; Allan et al., 2020). The temperature-dependent
response, or hydrological sensitivity, is about 2-3%/◦C and is substantially less
forcing-dependent than the fast adjustment (Samset et al., 2016; Myhre et al.,
2018). The fast adjustment accounts for a major fraction of the change in tropical
precipitation and partly suppresses the global mean precipitation response to in-
creasing SST (Bony et al., 2013). This chapter addresses the response of not only
mean but also extreme precipitation to an abrupt quadrupling of atmospheric CO2

forcing. The analysis is based on dedicated atmospheric-only experiments, first
with the global climate model CNRM-CM6-1, then with a few other AGCMs that
have also contributed to this component of the Cloud Feedbacks Model Intercom-
parison Project (CFMIP, cf. sections 2.7.5 in chapter 2 and 3.1). Most of the content
discussed in this chapter is adapted from the from Douville and John (2021), with
however a stronger focus on precipitation extremes and a preliminary assessment
of the model-dependence of our key findings.

3.1 The CFMIP experiment design

As briefly discussed in Chapter 2 (section 2.7.5), The primary objective of the
Cloud Feedbacks Model Intercomparison Project (CFMIP) is to improve our un-
derstanding of cloud–climate feedback mechanisms (Webb et al., 2017). However,
the CFMIP approach is also increasingly being used to explore other aspects of
climate change, such as the understanding of changes in large-scale atmospheric
circulation and regional precipitation. In particular, original atmosphere-only ex-
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periments have been proposed to assess how regional precipitation responses and
their uncertainties in coupled global climate models arise from the combination
of different aspects of CO2 forcing and sea surface temperature (SST) warming.
A pilot study (Chadwick et al., 2017) was first realized and suggested that the
pattern of the non-uniform SST warming is the dominant cause of annual mean
precipitation change over the tropical oceans but also contributes to inter-model
spread over tropical land regions. The results also revealed that the so-called
physiological CO2 effect (e.g., the effect of atmospheric CO2 on plant transpira-
tion and photosynthesis) can be the dominant contribution to annual precipitation
changes over the tropical rainforests. Yet, limited attention has been paid so far
to daily precipitation intensities.

Here, the focus is on the distribution of daily precipitation rates, includ-
ing extremes. The next section highlights the main results obtained with the
ARPEGE-Climat 6.3 atmospheric general circulation model (AGCM) (already de-
scribed in Chapter 2), which is the atmospheric component of the CNRM-CM6-1
coupled model that has contributed to the sixth phase of the Coupled Model Inter-
comparison Project (CMIP6). It was highlighted in chapter 2, section 2.6 that this
model has been significantly improved compared to its former version (Roehrig
et al., 2020) and shows a much more realistic simulation of daily precipitation
intensities, with no drizzle syndrome (i.e., too many and too light rainy events) in
contrast to most global climate models (Tan et al., 2018). The improved precipita-
tion distribution of ARPEGE-Climat makes it a good candidate to assess changes
in daily precipitation to fast adjustment to increasing CO2 levels versus the slow
SST-mediated response (Section 3.2). In addition, a comparison of the results from
ARPEGE-Climat with those of other AGCMs participating in CFMIP is included in
Section 3.4.

Name of experiment Monthly mean annually varying SST and SIC boundary conditions CO2 forcing

piSST Years 111-140 of piControl Preindustrial (1xCO2)

piSST-pxK
As piSST + uniform SST anomaly computed as the climatological global

mean difference between years 111-140 of abrupt-4xCO2 and piControl
preindustrial

a4SSTice Years 111-140 of abrupt-4xCO2 preindustrial

a4SSTice-4xCO2 As a4SSTice
4xCO2 seen by

radiation and vegetation

Table 3.1: Summary of the CFMIP atmosphere-only timeslice experiments conducted with
ARPEGE-Climat 6.3. All experiments are 30-year integrations after spin-up except amip
and amip-a4SST-4xCO2 (36-year long integrations after spin-up)

The CFMIP experiment design is summarized in Table 3.1. The first pair
of time-slice simulations, piSST and a4SSTice-4xCO2, aims at replicating the pi-
Control and abrupt-4xCO2 coupled experiments. This is done by prescribing the
same atmospheric CO2 concentrations but also monthly mean annually varying
oceanic boundary conditions derived from the SST and sea-ice concentration
(SIC) simulated from year 111 to 500 in piControl and abrupt-4xCO2 respectively.
Note that this is a much more extended period than the default simulation length
(30 years) suggested in CFMIP. Such an extension of the CFMIP simulations was
motivated by the analysis of daily precipitation statistics, including wet and dry
extremes. Since the coupled model is still not fully at equilibrium after 500 years
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of abrupt-4xCO2, a linear trend was removed from all łwarm climatež simulations
from years 111 to 500 in order to avoid slight inconsistencies with CFMIP results
usually shown for years 111 to 140 only.

3.1.1 Coupled vs. Atmospheric only experiments

Despite the lack of coupling, the atmosphere-only experiments capture the an-
nual mean precipitation changes simulated by CNRM-CM6-1 (Figure 3.1 a, b). The
geographical pattern of the annual mean precipitation response to abrupt-4xCO2
is well reproduced by the atmosphere-only configuration of CNRM-CM6-1, as re-
vealed by the high spatial anomaly correlation coefficient (ACC=0.97) between the
patterns found in the coupled and atmosphere-only configurations. This pattern is
broadly consistent with the results of the previous-generation models (e.g., Muller
and O’Gorman 2011). It shows significant positive anomalies over the ITCZ and
in the high latitudes, but significant negative anomalies in the subtropics. Some
features, such as the response of regional monsoons in the tropics, are likely
to be model-dependent and can be better understood based on complementary
atmosphere-only simulations. Globally averaged and although the model is still
not at full equilibrium after 390 years of simulation, the annual mean precipitation
increases by 0.3 mm/day after an abrupt quadrupling of atmospheric CO2. Such
a model response corresponds to a global hydrological sensitivity of 2.3%/◦C,
within the 2-3%/◦C range of the previous generation global climate models.

Figure 3.1: Year 111-500 annual mean response to abrupt-4xCO2 of annual mean precip-
itation (mm/day, left panels) and annual maximum daily precipitation intensity (RX1DAY
in mm/day, right panels), as simulated either by CNRM-CM6-1 (panels a,c) or in the piSST
and a4SSTice-4xCO2 atmosphere-only experiments (panels b,d). Stippling highlights areas
where the differences are significant at the 5% level. GMD denotes the global mean response
and ACC denotes the spatial pattern correlation with the coupled model response shown
in the upper panel. A single isoline of the control (preindustrial) climatology is shown as a
black solid line in each panel, corresponding to 5 mm/day in panels a,b and to 50 mm/day
in panels c,d.

The ARPEGE-Climat 6.3 AGCM ability to capture the CNRM-CM6-1 response
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to an abrupt quadrupling of CO2 has been also verified for the daily statistics
(Figure 3.1) which are used in the continuation of the study. The sensitivity of
extreme precipitation to ocean-atmosphere coupling may depend on the details
of the experimental design and deserves careful verification (e.g., Fischer et al.
2018). As for the annual mean precipitation, our atmosphere-only simulations
reproduce accurately the coupled model response of the annual maximum of
daily precipitation intensity (RX1DAY), both in terms of magnitude and geographical
distribution (Figure 3.1 c, d). Note that the SST boundary conditions of ARPEGE-
Climat are prescribed on a daily basis, but that the day-to-day SST variability
is very weak since daily SSTs are interpolated (conservatively) from the monthly
mean SSTs derived from CNRM-CM6-1. The lack of realistic intraseasonal SST
variability does not appear to be a major obstacle to simulating the response
of extreme rainfall. A small impact of ocean-atmosphere coupling appears over
the tropical ocean, with annual maximum daily intensities slightly stronger in the
AGCM. This effect is consistent with our understanding of the high-frequency SST
feedback but is only slightly enhanced in a warmer climate. The net effect on
the response of RX1DAY to abrupt-4xCO2 is therefore weak compared to other
potential sources of uncertainty.

3.1.2 Decomposition of total response

The study utilises CFMIP experiments that were extended to 390-year integra-
tions rather than their standard time frame. Various combinations of the different
experiments can be used in splitting the atmospheric response to abrupt-4xCO2
into separate responses to different aspects of CO2 forcing and related ocean
warming (uniform SST warming, patterned SST change, sea ice change, radiative
and physiological CO2 effects, cf. Table 3.2). The latter effects can be diagnosed
by driving the AGCM with preindustrial SST boundary conditions, but a qua-
drupling of the atmospheric CO2 concentration. This CO2 increase can be seen
by either the radiative parameters or the vegetation scheme, to distinguish the
radiative versus physiological CO2 effect.

Component Calculation

All forcings a4SSTice-4xCO2 - piSST
Uniform SST warming piSST-pxK - piSST
SST anomaly pattern and SIC change a4SSTice - piSST-pxK
Radiative and physiological CO2 effects a4SSTice-4xCO2 - a4SSTice

Table 3.2: Calculation of the different components of the CNRM-CM6-1 coupled model re-
sponse to abrupt-4xCO2 based on CFMIP atmosphere-only experiments.

The total response to an abrupt quadrupling of CO2 concentration can be
first decomposed as follows:

a4SSTice-4xCO2− piSST = (a4SSTice-4xCO2− a4SSTice)

+ (a4SSTice− piSST-pxK)

+ (piSST-pxK − piSST )

(3.1)

where the three right-hand terms represent the fast direct (radiative and phys-
iological) CO2 effect, the SST anomaly pattern and SIC effects, and the uniform
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SST warming effect respectively.

Table 3.2 summarizes how each component of the total response to abrupt-
4xCO2 is calculated. As in Figure 3.1 showing the total model response, the
statistical significance of the different contributions will be assessed using a two-
sided t-test at the 5% level (Wilks, 2016). Such a method adjusts the p values for
multiple testing and, thereby, avoids overconfidence in the statistical significance
of the results. It does not make here a significant difference with a basic t-test
given the large sampling of our extended CFMIP experiments.

3.2 Changes in daily precipitation statistics

3.2.1 Response of Annual mean precipitation

As discussed in section 3.1.2 (cf. Eq 3.1), the total response of the precipitation
(mean as well as extreme) can be decomposed as the sum of the contributions
from fast direct CO2 effect, slow uniform SST warming effect and SST anomaly
pattern and SIC effects. Figure 3.2 shows the Equation (3.1) decomposition of the
annual mean precipitation response to abrupt-4xCO2 in the ARPEGE-Climat 6.3
AGCM. The global-mean response (+0.30 mm/day i.e., about 10%) is dominated by
the uniform SST warming (+0.49 mm/day), which is, however, partly cancelled by
the CO2 effect (-0.20 mm/day). The total change in the annual mean precipitation
response is globally driven by the uniform SST warming but shows substantial
geographical variations which are primarily explained by the non-uniform pattern
of the SST warming and may therefore depend on the precipitation sensitivity
to local SST.

Regionally speaking, the uniform SST warming (Figure 3.2 b) drives a sig-
nificant drying in the subtropics, but mostly increased precipitation over the ITCZ
and poleward of about 45◦N/S. It explains 20% of the spatial variability of the
global precipitation response. In contrast, the fast adjustment to the increased
CO2 level (Figure 3.2 d) shows a widespread drying (except over the tropical
land areas due to an apparent competition between convection over land versus
ocean) and only explains a very limited fraction of the spatial variability in Figure
3.2 a. Despite its negligible contribution to global-mean precipitation changes,
this spatial distribution is partly explained by the SST pattern effect (ACC=0.54),
which drives contrasting regional changes in the tropics. The results are broadly
consistent with former studies based on CMIP5 models, suggesting that the pre-
cipitation response to abrupt-4xCO2, especially in the subtropics, does not only
depend on the global mean ocean warming and cannot be explained without in-
voking the fast adjustment to CO2 forcing and, in certain regions, the pattern of
the SST warming (He and Soden, 2017).

3.2.2 Changes in daily precipitation frequency and intensity

Response of daily precipitation intensity

The annual mean daily mean precipitation intensity (SDII, cf. chapter 2,
section 2.2) is defined as the average precipitation rate estimated during these
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Figure 3.2: Breakdown of the climatological (Year 111-500) annual mean precipitation re-
sponse (mm/day) to abrupt-4xCO2 in CNRM-CM6-1 using pairs of atmosphere-only times-
lice experiments (cf. Tables 3.1 & 3.2): a) total AGCM response, b) response to uniform SST
warming, c) response to SST and sea-ice anomaly pattern and d) response to CO2. Stip-
pling highlights areas where the differences are significant at the 5% level. GMD denotes
the average global-mean precipitation response and ACC is the spatial continental pattern
correlation with the total change shown in a).

Figure 3.3: Same as Figure 3.2, but for the daily mean precipitation intensity (mm/day)

wet days (i.e., days with precipitation > 1 mm). The annual mean SDII response
to abrupt-4xCO2 in ARPEGE-Climat 6.3 is decomposed using the Eq. 3.1 and
is quite similar to the annual mean precipitation response. The uniform SST
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warming (+1.23mm/day) and the SST warming pattern (+0.25mm/day) contribute
positively to the total global-mean response (+1.38mm/day) where the former
dominates the latter. The response to uniform SST shows a widespread increase
in SDII (except in some regions like the Sahel), while the response to SST warming
pattern shows more contrasted geographical patterns with enhanced intensities
along the south equatorial Pacific, south tropical Atlantic and north tropical Indian
oceans. Poleward of 45◦N/S and mostly over land, the uniform SST warming has
the upper hand over the SST pattern effect, even though both of these explain
the overall spatial variability almost equally. The CO2 effect shows a dominant
decrease in daily precipitation intensities over the tropical ocean. This fast re-
sponse partly offsets (-0.1mm/day) the slower global-mean increase in annual
mean SDII, but only explains a small fraction of the spatial variability in Figure
3.3 a. This drying is the consequence of a weaker net radiative cooling of the at-
mosphere associated with higher atmospheric carbon dioxide levels, which limits
the strength of atmospheric vertical motions (Bony et al., 2013). In contrast, a
significant increase in SDII was found over most tropical monsoon regions. This
is again consistent with stronger moisture convergence over the rapidly warmed
land, mostly due to the fast radiative CO2 effect.

Response of daily precipitation frequency

Figure 3.4: Same as Figure 3.2, but for the annual maximum consecutive number of wet
days.

From Figure 3.4 a, it is clear that the frequency of wet days (R1mm, cf.
chapter 2, section 2.2) can decrease regardless of the general increase in daily
precipitation intensity. This overall reduction in the number of wet days (overall
annual mean of R1mm is -6.26 days/year) confirms the results from previous
studies, in which the recent and projected rainfall days in a year has a clear
negative trend (Polade et al., 2014, 2017; Benestad, 2018). Thus, it tends to rain less
frequently but more intensely. Figure 3.4 can also be highlighted as the complex
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3.2. Changes in daily precipitation statistics

and multi-driver response of the annual mean number of dry days (defined as
days with less than 1mm precipitation). Beyond the global mean response and
as highlighted by Polade et al. (2014), the pattern of the R1mm response shows a
strong similarity with the pattern of changes in interannual variability (cf. Figure
A.8) and suggests that the decreased frequency of precipitation events plays a key
role in the increased variability of annual mean precipitation. Fast adjustments
to increased CO2 (-6.20 days/year) are the main contributor to the global-mean
reduction of wet days. Yet, the signal is relatively smooth and only explains a
limited fraction of the geographical pattern in the total response. Both uniform
SST warming and SST warming pattern effects almost equally (ACC=0.57 and
0.55 respectively) explain the spatial variability in Figure 3.4 a. They partly cancel
out each other at both regional and global scales, which explains the dominant
direct CO2 effect on the global-mean response.

Published article
Douville and John (2021) (cf. Annex A) discusses the response of the mean
and extreme precipitation using the ARPEGE-Climat 6.3 AGCM abrupt-
4xCO2 experiments. The results discussed are broadly consistent with the
study by Chadwick et al. (2017). Nonetheless, the ARPEGE-Climat 6.3 AGCM
does not show the same breakdown as the former CNRM AGCM for multiple
reasons. Such differences highlight that the precipitation breakdown is
model-dependent and that it may be useful to better understand the inter-
model spread in the total precipitation response. This model-dependence
is also supported by the stronger uniform SST warming contribution to
subtropical drying in CNRM-CM6-1 compared to previous studies (He and
Soden, 2017), although the fast adjustment to increased CO2 is also found
to dominate the large-scale subtropical precipitation decline.
A major highlight of the paper is that the increase in daily precipitation
intensity drives the global-mean magnitude of the annual precipitation
change. In contrast, the response of wet day frequency shapes the geo-
graphical distribution and interannual variability of the annual mean pre-
cipitation, especially in the subtropics, and is more sensitive to changes in
near-surface relative humidity than in the total water column over land.
Although the annual precipitation response does not seem highly sensitive
to the base state, these results deserve further investigation and model
intercomparison within CFMIP. By focusing on wet day intensity versus
wet day frequency the daily precipitation statistics can be used to re-
construct the annual precipitation response, and may also have a more
straightforward connection with the model formulation.
In the following sections of this chapter, I will discuss the response of
the extremes (wet/dry) to the abrupt quadrupling of the CO2 using the
AGCM, which is one of the objectives of this PhD. The analysis that was
initially done using only CNRM-CM6-1 is now extended with additional
available CMIP6 models, which qualifies for the inter-model evaluation of
the results. The rest of the chapter will focus on the response of the
precipitation extremes to an abrupt increase of CO2 and will assess the
individual contributions from the decomposition based on the Eq. 3.1.
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Additional to this, in section 3.5, a preliminary analysis of a stationary
GEV fitting for the idealised climate change experiments with CNRM-CM6-
1 is discussed.

3.3 Changes in wet and dry extremes

Given the extensive sampling of the day-to-day variability, the extended CFMIP
experiments enable the diagnosis of the changes in daily precipitation extremes
accurately. Figure 3.5 and 3.6 show the simulated changes in the annual maxi-
mum of daily mean precipitation intensity (RX1DAY) and the maximum number of
consecutive dry days (CDD, defined as consecutive days with less than 1mm/day
intensities), respectively. Wet extremes generally feature a lower spatial coherence
than dry extremes (Donat et al., 2016b; Alexander and Arblaster, 2017). Figure
3.5 a however shows a widespread increase in RX1DAY, at least over the regions
which roughly coincide with the increase in annual mean precipitation. The uni-
form SST warming dominates this increase (+8.10 mm/day), which is consistent
with the fact that extreme precipitation scales with the global warming level and
does not depend on emissions scenario in most global climate models (Pender-
grass et al., 2015). The CO2 effect has very little statistical significance, and the
response illustrates relatively moderate extreme events on land. There is a non-
negligible contribution (+1.75 mm/day) to the wet precipitation extremes from the
SST warming pattern effect, which also contributes to shaping the spatial dis-
tribution of the total response (ACC=0.39). It is noticeable that, over the tropics
and subtropics, the uniform SST warming and its pattern have almost opposite
effects which partly cancel out each other.

Figure 3.5: Same as Figure 3.2, but for the annual maximum daily mean precipitation
intensity (mm/day).

Regions with a significant increase in the annual maximum number of CDD
(Figure 3.6 a) coincide with regions affected by a decrease in annual mean precip-
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itation. Figure 3.6 a indicates intensified meteorological drought-like conditions
over Central America, the Mediterranean, southern Africa as well as Northern
Australia with significant positive annual mean anomalies as high as 30 days/year.
Both uniform SST warming (+2.29 days/year) and CO2 effects (+3.72 days/year)
contribute to this increase in the total CDD, where the latter plays the dominant
role. The increase in CDD over the Mediterranean is reinforced by both uni-
form SST warming and the CO2 effect, while these effects partly cancel out each
other over South and Southeast Asia. The SST warming pattern effect (+0.91
days/year) contributes least to the global-mean increase in CDD while it limits
the amplification of dry extremes, especially over the Mediterranean. Despite be-
ing the most significant contributor to the global-mean increase in meteorological
droughts, the CO2 effect only explains a limited fraction of the spatial distribu-
tion of CDD changes (ACC=0.47), which is mostly explained by the uniform SST
warming (ACC=0.70).

Figure 3.6: Same as Figure 3.2, but but for the annual maximum consecutive number of
dry days.

In the northern high latitudes, the projected significant reduction of CDD
coincides with an increase in RX1DAY. This is in agreement with many studies
showing that these regions are projected to become much wetter in the future
(Behrangi and Richardson, 2018), as already detected in the instrumental record
(Wan et al., 2015). In contrast, there are many continental regions (Northern
Amazonia, Central America, US, Europe, South and Southeast Asia, Southern Aus-
tralia) where increases in CDD are combined with increases in RX1DAY. Such a
strengthening of both wet and dry extremes represents a major challenge for
the adaptation to climate change, for instance, an increasing need to derive wa-
ter resources from floodwater in Mediterranean-like climates where seasonal to
annual precipitation accumulation depends on a decreasing number of precipita-
tion events, thus leading to more volatile water resources (Gershunov et al., 2019).
The results also suggest that solar radiation modification Jarvis and Leedal (2012)
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3. Fast adjustment versus slow SST-mediated response

techniques aimed at cooling the Earth’s surface without changing the atmospheric
CO2 level may be more effective reducing wet extremes than dry extremes (e.g.,
Curry et al. 2014; Adler et al. 2017).

To sum up, the spatial response of annual mean precipitation to an abrupt
4xCO2 is mostly shaped by the simulated changes in wet day frequency. The
latter changes are themselves partly governed by changes in near-surface relative
humidity (RH, Figure 3.7 a, see also Douville et al. (2020)), which is a crucial
driver of convective inhibition over land. Other processes may also contribute to
modulating global and regional changes in the annual mean number of wet days.
Precipitation is associated with an upward motion and is therefore controlled
by atmospheric stratification or static stability. Unstable atmospheric stratifica-
tion favours upward motion and heavy precipitation, whereas stable atmospheric
stratification suppresses upward motion and precipitation. In response to abrupt
4xCO2, our model shows a widespread increase in the low-troposphere (below
700 hPa) static stability (Figure 3.7 b) whose centred anomalies are indeed spa-
tially anti-correlated (ACC=-0.38) with the changes in the number of wet days.
Such an anti-correlation remains however limited over land (ACC=-0.18), where
precipitation changes are particularly complex and do also depend on orogra-
phy and its contrasted interaction with different weather types at the regional
scale. Nevertheless, the low-troposphere static stability seems less important
than the low-troposphere RH for understanding the projected changes in wet day
frequency and annual precipitation amount in our model.

Figure 3.7: Annual mean response to abrupt 4xCO2 simulated in atmosphere-only
mode (a4SSTice-4xCO2 minus piSST): a) anomalies in near-surface relative humidity (%)
(ACC/ACCL denotes the global/global land spatial anomaly correlation coefficient with the
R1mm anomalies; b) anomalies in the low-troposphere static stability (KhPa) vertically aver-
aged below 700hPa (ACC/ACCL denotes the global/ global land spatial anomaly correlation
coefficient with the relative precipitation anomalies. Stippling highlights areas where the
differences are significant at the 5% level (the statistical significance has not been assessed
but is also high in the last panel given the 390-year sampling

Globally speaking, the SDII and RX1DAY response to abrupt 4xCO2 shows a
negligible fast adjustment. This response is therefore primarily driven by the uni-
form SST warming, which mostly controls the response of atmospheric moisture
availability. In contrast, the mean number of wet days and the annual maximum
of consecutive dry days (CDD) show a substantial (-6.2 and 3.7 days respectively)
fast adjustment to increased CO2. In areas like the Mediterranean basin, where
both atmospheric adjustment and SST changes are significant (and additive), the
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drying is particularly severe and is associated with a significant increase in the
annual maximum of CDD. Total annual precipitation is therefore projected to rely
more and more on a limited number of heavy precipitation events in such regions
(Polade et al., 2017).

3.4 Comparison with a subset of available CMIP6 coupled models

Figure 3.8: Breakdown of relative changes (%) in annual mean precipitation. The total
changes are split into three contributions for each of the four selected models: the response
to the uniform component of SST warming (left panels a,d,g,j), the response to the geo-
graphical pattern of the SST change (also including changes in sea-ice cover, middle pan-
els b,e,h,k), and the radiative and physiological adjustment to increased CO2 levels (right
panels c,f,i,l). In each panel, stippling highlights areas where the difference is significant at
the 10% level and ACC denotes the spatial anomaly correlation coefficient with the total
AGCM response

While the analysis of daily model outputs using CNRM-CM6-1 allowed us to
go one step further in the understanding of the annual mean precipitation response
to abrupt 4xCO2, the inadequacy of the sample space by not using a large subset
of models is still a drawback. The longer 390-year integration of the simulations
has been an advantage as our results are consistent with a previous multi-model
study (Polade et al., 2014). Both show that future changes in the number of dry (or
wet) days per year can either reinforce or counteract projected increases in daily
precipitation intensity as the climate warms, especially in the subtropics where
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3. Fast adjustment versus slow SST-mediated response

such changes dominate the projected changes in annual mean precipitation. Not
all the CMIP6 models have participated in the CFMIP experiments to date. This
section includes the comparison of the finding from CNRM-CM6-1 using additional
results with the three (cf. Table 3.3) models now available with CFMIP-Tier2
experiments.

Figure 3.9: Same as Figure 3.8, but for changes in the annual maximum length of dry spells
(in days)

Figure 3.8 shows the breakdown of the annual precipitation response to
abrupt-4xCO2 using the Eq. 3.1, from the atmospheric-only experiments of the
different CMIP6 models. In all the models the global mean response is dominated
by the uniform SST warming followed by the SST pattern response and the fast
adjustments. Also similar regional features can seen in all four models among all
the three contributions. The uniform SST warming drives a significant drying in
the subtropics especially over the Saharan desert and the Mediterranean, while
it causes increased precipitation over the ITCZ and poleward of about 45N/S. It
explains at least 20% of the spatial variability of the global precipitation response
in all models. The fast adjustment to increased CO2 on the other hand, except
over the tropical land areas, shows a widespread drying, possibly due to the
convective disparities between land and ocean. Moreover, it only explains a very
limited fraction of the spatial variability of the total response in most of the models.
The contribution of the SST pattern effect in driving the spatial distribution of the
mean precipitation is commendable in all four models. Table 3.3 summarises how
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much of the spatial variability of the total mean precipitation can be explained by
the three individual contributions. Appendix A includes additional Figures (A.10
that illustrate the changes in the total response of annual mean precipitation in all
the four models and their multimodel mean.

CNRM-CM6-1 IPSL-CM6A-LR HadGEM3-GC31 CESM2

Uniform SST
P 0.40 0.24 0.24 0.20

CDD 0.71 0.56 0.63 0.49

SST pattern
P 0.75 0.59 0.83 0.97

CDD 0.43 0.63 0.55 0.76

Fast adjustment
P 0.09 0.15 0.24 0.08

CDD 0.43 0.47 0.36 0.39

Table 3.3: List of the values of spatial anomaly correlation coefficient (ACC) with the total
AGCM response to abrupt-4xCO2 experiments among the four different models analysed.
The ACC values indicates the contribution from the uniform SST warming, SST pattern
and the fast adjustment to the spatial distribution of the total anomalies. Table summaries
the ACC values for the breakdown of annual mean precipitation (P) and annual maximum
consecutive dry days (CDD).

Despite a great number of studies, the dry side of the daily precipitation
distribution has received less attention. Figure 3.9 compares changes in the an-
nual maximum length of dry periods in four global climate models caused by an
abrupt quadrupling of atmospheric CO2. Similar to the analysis in the previ-
ous sections, the total response (cf. Figure 3.6) of the yearly maximum CDD is
broken down using Eq. 3.1 to analyze the individual roles of the fast, slow, and
SST pattern responses. In all three deconstructed parts, regions with an increase
in annual maximum CDD overlap with regions affected by a reduction in annual
mean precipitation (cf. Figure 3.8). This is consistent with the previous studies
that assessed more intense but less frequent precipitation events throughout sev-
eral locations (Giorgi et al., 2019; Donat et al., 2019), with projections of a higher
incidence of extreme precipitation events associated with prolonged dry spells
(Sillmann et al., 2013b; Thackeray et al., 2018). There is a widespread increase in
the CO2 contribution to dry periods, with the exception of a few land regions,
such as the Saharan and Sahel regions, Southeast Asia, etc., where it is found to
decrease. Over the majority of the continental areas, with the exception of the
northern high latitudes, the uniform SST is to account for an overall increase in the
CDD. The SST pattern response is clearly distinct from the other two responses,
with considerable regional discrepancies in all models. The offsetting effect of
the SST pattern and uniform SST warming, particularly over the Mediterranean
and North Africa, is an intriguing observation in this case. The patterns of SST
anomalies are indeed model-dependent and can contribute to large uncertainty in
the regional dry spell response, which requires further investigation. Despite the
overall increase in the CDD from the CO2 effect in all the models, it only explains
a limited fraction of the spatial distribution of the CDD changes (with the highest
ACC = 0.47, cf. Table 3.3). Moreover, there is no conclusive evidence (at least from
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the models available) that either SST warming or SST pattern effects dominate
the regional distribution of CDD changes (cf. Table 3.3).

3.5 Stationary GEV analysis of idealised climate change experi-
ments

In the previous sections, I have discussed and compared the response of an-
nual mean and extreme daily precipitation to the fast atmospheric and vegetation
adjustment and the slow SST- mediated changes using some CFMIP Tier2 ex-
periments. I have compiled the major results based on the CNRM-CM6-1 model
and also have extended the analysis using three more additional CMIP6 mod-
els, that took part in the CFMIP intercomparison. In this section, I analyse the
response of extreme daily precipitation intensities in complementary idealised,
atmospheric-only, climate change experiments consisting of increasing either the
CO2 concentration or the global mean SST. For this purpose, I have used three
levels of increased SST (with global mean anomalies of 2K, 3K and XK respec-
tively) or three levels of increased CO2 concentration (with a factor of 2, 3, and 4
compared to preindustrial level). These idealized experiments allow us to avoid
transient responses to variable forcings and thus to analyse changes in precipita-
tion extremes (by comparison with a preindustrial climate) under an assumption
of stationarity. For each experiment, the estimation of location, scale and shape
parameters (here for RX1DAY) can be computed by fitting the entire time series
with a stationary GEV method (cf. section 2.3.2).

Figure 3.10 depicts the obtained changes relative to a preindustrial climate
in the experiments pisst-pXK (left panel) and pisst-4XCO2 (right panel). The
results clearly highlight that both the fast (mostly radiative) and slower (SST-
mediated) responses of daily precipitation intensities are likely to alter the tail of
the RX1DAY distribution. This finding further supports our earlier results based on
the CFMIP Tier2 experiments (cf. Figure 3.5), but also allow us to quantify more
precisely what could be the expected changes in the GEV parameters and thus in
specific return levels or return periods. A widespread increase can be seen in the
extreme precipitation distribution with the global mean of all location, scale and
shape parameters positive, in response to the uniform warming. However, there
is an overall decrease in the extreme precipitation location parameter in response
to the CO2 increases, with slight changes in the scale and shape parameters.

The GEV analysis of these different experiments can be used to assess the
changes in the extreme precipitation with respect to different levels of increase in
the atmospheric CO2 and global warming. This lead to the question that whether
these changes happen linearly as the emissions or temperatures increase? Grid
point analysis by taking random separate single grids points over the globe with
differing climatologies revealed that there are regions across the globe where the
changes in the extremes are not linear even when the experiments are idealized.
To identify the regions where extremes follow a non-linear change, an idea of
a simple non-linearity matrix is introduced. The matrix is based on a linear fit
between the control experiment along with consecutive levelled warming and
CO2 experiments. Initially, a regression curve is fitted for the control, +2K/2X and
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+4K/4X experiments and then for the control, +3K/3X and +4K/4X experiments.
From the two separate linear fits slopes are computed between the experiments
across all the grid points. The ratio of the two slopes is then used to give a crude
idea about the linearity of the experiments. An assumption is now considered
that the linearity is satisfied when the ratio is between +/-1 and +/-1.15. This
assumption is not built on any criteria and will need to be critically reviewed,
evaluated, and revised in the future; nonetheless, it is only a simple tool used to
indicate the linearity of the changes in extremes. The limits of the ratio used here
are not constant and can change with a more focused and oriented design and
development of the nonlinearity matrix, which is one of the future prospectuses
of the study.

Figure 3.10: Global maps of the anomalies of location, scale and shape parameter obtained
by fitting a stationary GEV in the extended CFMIP experiments with CNRM-CM6-1. The
anomalies shown here are the difference between the pisst with the pisstXK (a, c, e) and
pisst4c (b, d, f) experiments. The stippling highlights the areas where the changes are
linear with the different levels of global warming (2K, 3K&XK ) and CO2 concentrations
(2×, 3×&4×). The linearity is calculated using a simple method as detailed in the text.

The stippling that marks all the panels in Figure 3.10 are an approximation
of the linearity of the changes in the extremes among the three corresponding
experiments of different levels of SST and CO2, using the custom non-linearity
matrix. The stippling helps to identify the regions where the changes in the
extremes may increase or decrease linearly with the warming and emissions. For
the warming experiments, there is a decrease in the linearity of the extremes
along the equatorial and tropical regions (Figure 3.10), when compared to the mid
and high latitudes, in line with the previously documented results (Pendergrass
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et al., 2019). For the CO2 experiments, the stippling shows no coherent patterns
and hence no conclusive results illustrating linear or non-linear regions. This
could be a limitation of the nonlinearity matrix used and suggests a refinement
of this technique.

3.6 Synthesis

Projected water cycle changes are driven by both fast atmospheric adjustments
and slower ocean-mediated responses to increasing concentrations of greenhouse
gases. Understanding the relative influence of these multiple drivers is one of the
main objectives of the CFMIP. The chapter mainly focuses on the daily precipi-
tation response to an abrupt quadrupling of atmospheric CO2, as simulated by
the CNRM-CM6-1 global climate model. Besides the results already published in
the Douville and John (2021) (cf. Annex A), the chapter also discusses the recent
intercomparison results using the additional CMIP6 models now available with the
CFMIP-Tier 2 experiments along with the analysis of a stationary GEV distribution
of the extreme precipitation in different idealised experiments.

Extended atmosphere-only experiments with prescribed SST (cf Table 3.1)
are used to decompose the precipitation changes into separate responses to uni-
form SST warming, the pattern of SST anomalies, as well as fast radiative and
physiological CO2 effects. The combination of the different experiments repre-
sents the different individual components as mentioned in Table 3.2. The total
response can then be derived (cf. Eq. 3.1) as the sum of the individual responses
obtained from the different experiments. Our results highlight that the uniform
SST warming dominates the global and regional changes in annual mean and
annual maximum daily precipitation intensity. In contrast, the annual mean num-
ber of wet days or the response of daily precipitation frequency show a strong
fast adjustment. The results state that there is a global-mean reduction in the
wet days irrespective of the general increase in the daily precipitation. They are
also sensitive to the SST warming pattern that strongly influences changes in
large-scale circulation.

Analysis of the extreme (RX1DAY and CDD) precipitation enabled the evalu-
ation of the factors involved in shaping the global total precipitation changes. The
total changes in RX1DAY which approximately coincides with the annual mean
precipitation changes show a widespread increase. The uniform SST warming is
the dominant contributor here responsible for this increase as the extreme pre-
cipitation scales with the global warming levels. The contribution from the CO2

effect to the overall increase in extreme precipitation is modest but non-negligible,
demonstrating that extreme precipitation changes do not depend on the emission
scenario (Pendergrass et al., 2015). However, for the annual maximum of CDD,
both the uniform SST and CO2 contribute to the total increase with the CO2 effect
being the dominant one. The SST warming pattern effect has the least influence
on the global-mean increase in the CDD, although it does limit the amplification
of dry extremes, particularly over the Mediterranean.

Insufficiency of the sample space that existed when the analysis was solely
done using the CNRM-CM6-1 is resolved by further investigation and model inter-
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comparison within CFMIP using the newly accessible additional CMIP6 models. A
comparison of the breakdown of total annual mean precipitation and an annual
maximum of CDD demonstrates that the models produce fairly similar results.
The uniform SST warming effect can account for most of the total mean precip-
itation changes, whereas the contribution from the CO2 effect is the least across
all models. Furthermore, all the models illustrate that the SST warming pattern
effect has an offsetting influence on the uniform SST warming, especially over the
Mediterranean, North Africa and the Middle East. Another significant conclusion
is that the SST warming pattern makes up the majority of the spatial variability
in annual mean precipitation in all the models evaluated. Intercomparison of the
annual maximum CDD among the models is a no different story from the find-
ings reached when using only CNRM-CM6-1. The CO2 effect exhibits a general
increase and is a factor for the increase of dry spells in all models. Both uniform
SST warming and the SST pattern effects have significant contributions to the
increase of the CDD, but with regional heterogeneity from model to model. The
uniform SST warming or SST pattern provides the best explanation for the spatial
variability of the total annual maximum CDD, and this explanation depends on the
model. An increase in the CDD is also detected over the regions with a decrease
in the mean annual precipitation, which suggests more intense precipitation with
fewer occurrences.

The role played by the warming of the atmosphere and increase in emis-
sions in driving the extreme precipitation is further highlighted by the stationary
GEV analysis of the idealized experiments with uniform SST warming anomalies
and varying levels of atmospheric CO2 concentrations. There is an overall in-
crease in the location and scale parameters for the warming experiments, which is
a widespread decrease in the CO2 experiments. The spatial variation of the GEV
parameters (location and scale, cf. Figure 3.10) from the warming and the CO2

experiments respectively coincides with the uniform SST warming and CO2 con-
tributions to the total extreme precipitation change (cf. Figure 3.5). This analysis
reaffirms the direct relation of the extreme precipitation to the warming and the
non-dependency over the emission scenarios (Pendergrass et al., 2015). In addi-
tion, the rudimentary non-linearity matrix adopted (which needs further analysis
and evaluation), indicates the regions where changes in the extreme precipitation
distribution are not linear.
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As far as the laws of mathematics refer to reality,
they are not certain; and as far as they are certain,
they do not refer to reality.

Ð Albert Einstein

4
Model uncertainty and internal

variability

Changes in the magnitude and frequency of extreme weather events are at the
nucleus of many climate change discussions. The latest IPCC Assessment Report
(AR6) dedicates a whole chapter (Seneviratne et al., 2021) in this regard. Because
of a better understanding of the mechanisms, an increasing number of scientific
literature incorporating diverse lines of evidence, and easy access to a large suite
of global and regional climate models, our confidence in past and future changes
in weather and climate extremes has increased over recent years. Although the
amplitude of the trends may differ, climate models can reproduce the sign of
changes in temperature extremes reported globally and in most locations. In
this chapter, I discuss the projected changes in precipitation extremes and their
uncertainties using a large subset of CMIP6 global climate models. The extremes
are expressed in terms of 20-yr return values (RV20) of annual maximum one-
day precipitation by fitting a non-stationary GEV (cf. chapter 2, section 2.3). The
extremes are also scaled by corresponding changes either in global mean surface
temperature (∆GSAT) or in local surface temperature (∆T). By using the scaled
extreme changes, I not only quantify the model response uncertainty but also
highlight the regions where changes may not be consistent with the widely used
assumption of a Clausius-Clapeyron (CC) rate of ≈7%/K. Moreover, this chapter
also assesses the potential contribution of internal variability to the apparent
inter-model spread using a large ensemble of the CanESM5 model in addition to
the multi-model ensemble with a single realization for each model. The content
of this chapter is largely borrowed from our published paper (John et al., 2022).
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4.1 Overview of preliminary studies based on CMIP5 and CMIP6

Today global climate models provide an increasingly comprehensive summary of
the climate system. They are used as a primary tool for understanding and pro-
jecting changes in climate mean, variability and extremes due to human activities
and used as a benchmark to devise and execute different policy changes. In its
sixth assessment report (AR6), the IPCC re-estimated a 1.09◦C increase in ob-
served global mean surface temperature in the present day (2011–2020) relative
to the beginning of the industrial revolution (1850-1900), which can be fully at-
tributed to human influence (IPCC AR6 SPM Masson-Delmotte et al. (2021a)). This
anthropogenic global warming is expected to have long-term repercussions on all
components of the climate system, including changes in the distribution of daily
precipitation. Several generations of multi-model simulations contributing to the
CMIP, supported by recent observational evidence, show that both the frequency
and intensity of extreme daily precipitation events have increased over recent
decades (Allen and Ingram, 2002; Asadieh and Krakauer, 2015; Scherrer et al.,
2016; Karl and Easterling, 1999; Kharin et al., 2013; Min et al., 2011; O’Gorman,
2015), owing to the enhanced warming. This is also documented in the IPCC spe-
cial report on Managing the Risks of Extremes Events to Advance Climate Change
Adaptation (SREX, Seneviratne (2012)).

In the absence of moisture constraint and significant dynamical response,
the intensity of extreme precipitation is expected to increase exponentially with
the atmospheric temperature at a rate determined by the Clausius–Clapeyron (CC)
relationship. A robust scaling of daily precipitation extremes with global warming
across scenarios was confirmed by Li et al. (2020) who found that changes in
precipitation extremes follow changes in global warming at roughly the CC rate
of ≈ 7%/°C in the latest-generation CMIP6 models. Several studies based on
climate model simulations show a future increase of precipitation extremes with
the temperature at a rate comparable to or higher than the CC rate (Li et al.,
2020; Kharin et al., 2007; Pall et al., 2007; Allan and Soden, 2008; Sugiyama
et al., 2010; Kao and Ganguly, 2011; Muller et al., 2011). However, wet extremes
are not expected to intensify in all regions (Trenberth, 2011; Pfahl et al., 2017).

Amid the backdrop of a warming climate, both thermodynamic and dy-
namic effects influence the changes in the extreme precipitation (Pfahl et al., 2017).
A sub-CC relation or even negative dependence on global mean temperature has
been found for precipitation extremes over some regions, especially over the cli-
matologically dry oceanic regions in the subtropics, presumably as a result of
decreasing moisture availability and enhanced large-scale subsidence (Berg et al.,
2009; Hardwick Jones et al., 2010; Utsumi et al., 2011; Pfahl et al., 2017). But the
question of an appropriate choice of temperature for scaling extreme precipita-
tion is still an open question and the available studies differ in scope (Zhang et al.,
2019; Schroeer and Kirchengast, 2018; Sun et al., 2021b). There is a large-scale
warming contrast between the continental landmass and the oceans with certain
regions over the ocean experiencing a negligible or limited change in the pro-
jected surface temperature. The larger warming observed over land may result
in a lower scaling with local mean temperature, which may not be considered as
a sub-CC scaling rate (Wang et al., 2017). Any departure from the CC rate can be
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an indication of a dynamical response which may be either amplified or offset by
a thermodynamic response regionally (Pfahl et al., 2017; Sherwood et al., 2010;
O’Gorman, 2015).

The strong internal variability of precipitation can obscure the observed
changes of precipitation extremes, thereby challenging their detection and attri-
bution (Hegerl et al., 2015). Over recent years, there has been however multiple
evidence of a human influence on extreme precipitation. Based on CMIP5 models,
the observed increase in RX1DAY over the Northern Hemisphere land area during
1951-2005 has been attributed to the effect of anthropogenic forcing, including
both greenhouse gases (GHG) and anthropogenic aerosols, with a rate of inten-
sification consistent with CC scaling (Zhang et al., 2013). This finding has been
supported by further studies based on both CMIP5 and CMIP6 models although
the relative influence of GHG versus aerosols remains a matter of debate (Lin et al.,
2018; Paik et al., 2020). A human influence has been also detected in the fraction
of annual precipitation due to extreme events, including over Europe (Dong et al.,
2021). Spatial aggregation can be useful to detect changes in the observed ex-
treme rainfall given the limited instrumental record and the low signal-to-noise
ratio (Fischer et al., 2013; Ribes et al., 2019).

Beyond the low signal-to-noise ratio of precipitation changes and the lim-
ited observational record, the deficiencies of global climate models to simulate re-
alistic precipitation extremes can also hamper the attribution of observed trends
and future projections (e.g., Borodina et al. 2017). Despite these limitations, most
global climate models are able to capture the large-scale spatial distribution of
precipitation extremes over land. The magnitude and frequency of extreme pre-
cipitation simulated by CMIP6 models are similar to those simulated by CMIP5
models (Wehner et al., 2020), although an overall increase in horizontal resolu-
tion tends to produce larger and more realistic heavy precipitation intensities.
Depending on the atmospheric parameterizations, even a model with a medium
resolution like the CNRM-CM6-1 model (Voldoire et al., 2019) can produce real-
istic daily precipitation intensities (Roehrig et al., 2020) although many models
still show too frequent too little precipitation events (e.g., Sun et al. 2015). Al-
though convection-permitting simulations now offer considerably more accurate
insights into the nature of precipitation extremes and their changes (e.g., Chan
et al. 2020), they require large computing resources and are still not suitable for
transient climate change simulations covering the whole 21st century.

In CMIP5 global climate models, projected changes in RX1DAY showed a
rate of increase with global warming which was found to be independent of the
GHG emission scenario (Pendergrass et al., 2015), although some models showed a
quadratic rather than linear relationship with global warming (Pendergrass et al.,
2019). CMIP5 models also indicated that extreme precipitation could occur later
in the year in a warmer climate, shifting in most regions from summer and early
fall toward fall and winter although the sign and magnitude of this shift were
highly region-dependent (Marelle et al., 2018). The robust scaling of precipita-
tion extremes with global warming across scenarios was confirmed by Li et al.
(2020) who found that changes in precipitation extremes follow changes in global
warming at roughly the CC rate of 7%/°C in CMIP6 models. Projected long-
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period RX1DAY return value changes are larger than changes in mean RX1DAY and
increase with increasing rarity (Mizuta and Endo, 2020; Wehner, 2020). Over
Europe, the CMIP6 multi-model median projects an overall increase in the 10-
and 50-yr return values of RX1DAY (Li et al., 2020). The most intense precip-
itation events observed today are projected to almost double in occurrence for
each additional degree Celsius of global warming (Myhre et al., 2019). There are
however regional differences (Rajczak and Schär, 2017; Cardell et al., 2020), with
decreases or no change for the southern part of Europe (Tramblay and Somot,
2018; Coppola et al., 2020; Lionello and Scarascia, 2020) but a strong increase
over northern Europe (Madsen et al., 2014).

All these studies show changes in either the multi-model mean or median
and, inter alia have not yet assessed the uncertainties in global precipitation
projections. A suite of different model projections often exhibits a large spread
(Lehner et al., 2020) and can even disagree on a particular region becoming wetter
or drier (sign change in the future). Even where there is an overall consensus
among the models on the sign of changes in the projected extremes due to a
warmer climate, the magnitude of such changes can differ considerably. Though
the climate models have improved over recent decades (Wyser et al., 2020; Zelinka
et al., 2020), these improvements do not necessarily result in a reduced spread
among the projections (Douville et al., 2021). Thus, the main focus of this Chapter
is to quantify the model uncertainties in extreme precipitation projections based
on CMIP6 models. I also provide a blueprint for using these projections to identify
regions where the projected changes in daily precipitation extremes are consistent
with the CC rate and those where they are not.

4.2 Computation of extremes

Daily precipitation data from 35 (cf. Table A.1) global climate models from the
CMIP6 repositories (Eyring et al., 2016) are used in this study. I combine the
historical simulations (1850-2014) with one shared socioeconomic pathways (SSPs)
projections (O’Neill et al., 2016) running from 2015 to 2100. The "end of the road"
scenario SSP5-8.5 with the highest emissions is used to get maximum climate
change signals and, therefore, better isolate the forced RX1DAY response from
internal variability without using large initial conditions ensembles (which are
only available for a limited number of models). I use the one-model-one-vote
approach i.e., without giving any particular weights, although there are inter-
dependencies across models (eg Knutti and Masson (2013); Bador et al. (2018)).
For each available CMIP6 model, only one member of the historical and SSP5-8.5
simulations is used Ð a treatment that is consistent with the recent IPCC AR6,
and which ensures that all models are treated equally. As the total uncertainty in
the projected changes is the sum of both model uncertainties and internal climate
variability, I here also analyze a single model initial condition large ensemble,
provided by the CanESM5 model (Swart et al., 2019), with 25 individual members.
Hence I can quantify an upper bound for the total uncertainties.
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4.2.1 Climate extreme indices and GEV analysis

I first interpolate the daily precipitation data for each model onto a 1◦x1◦ grid using
a first-order conservative remapping. This allows us to compare multiple models
with different resolutions (typically 1–2◦). For each model, grid point and year,
I calculate the annual maximum daily precipitation (RX1DAY), which is a widely
used extreme index defined by the expert group on Climate Change Detection
and Indices (ETCCDI) (Karl et al., 1999; Peterson et al., 2001). I then analyze
changes in the return values of RX1DAY, in line with some previous studies of
Kharin et al. (2013) and Wehner et al. (2020). To estimate the 20-year return
values, I modelled the annual maxima of precipitation at each grid point using
a nonstationary Generalized Extreme Value (GEV) distribution using ln(CO2) as
the covariate for both the location and scale parameters (Coles et al., 2001). The
parameters are fitted using the Maximum Likelihood Estimate technique (Easterling
et al., 2016). ln(CO)2 is used as a single co-variate since it has long been recognized
to dominate the world mean temperature projections (Arrhenius, 1896) and allows
us to use a common co-variate for all models without introducing any internal
variability (Wehner et al., 2020).

The cumulative distribution function for a non-stationary GEV distribution
for a random variable X is:

F (x) = exp

{

−

[

1 + ξ
(x− µ(t))

σ(t)

]−1

ξ

}

(4.1)

where the co-variate appears linearly in the GEV location parameter as
µ(t) = µ0 + µ1 log(CO2) and in the scale parameter as σ(t) = σ0 + σ1 log(CO2)
while ξ is constant in time. This non-stationary fit is performed for each grid
point.

To reduce statistical uncertainty in fitting the GEV distributions, the entire
RX1DAY time series from 1850 to 2100 was used for all models. Having fitted GEV
distribution, the precipitation extremes of our interest are defined as the 20-
year return values. Return values are calculated as the exceedance of the annual
extreme with probability p or as the quantiles of a GEV distribution. The changes
in the intensity of extreme events can be accordingly estimated for different future
periods or periods of different warming levels. Changes in the future (2051–2100)
are computed with respect to the historical period (1951–2014), while changes
at different warming levels are expressed relative to their intensity during the
pre-industrial period (1850–1900).

Comparison of GEV methods

As mentioned earlier, the non-stationary GEV estimates are computed by
introducing a linear co-variate into the location and the scale parameters
while the shape parameter is fitted as constant in time (but not uniform
across models and grid cells). In a warming world, all GEV parameters
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may vary between present-day and future climates, but a time-varying
shape parameter would not be meaningful because of high estimate un-
certainties due to the limited sampling. This assumption was advocated
in recent related studies (e.g., Cooley et al. 2007) and widely used since
then (Kharin et al., 2013; Wehner et al., 2020). In contrast, non-stationary
location and scale parameters may further increase the quality of the fit-
ted RX1DAY distribution in some regions. Figure 4.1 depicts this notion of
why I assume both location and scale as non-stationary rather than only
considering location parameters to vary with time. It is clear from Figure
4.1 a, b that by the end of the 21st century both location and the scale are
supposed to undergo large deviations, hence proving our assumption of
non-stationarity for both parameters. While shape parameter (Figure 4.1
c) does not change much, indicating that the shape of the distribution of
extremes almost remains a constant

4.2.2 Global warming levels

I frame the projections by considering the changes at a specified global warming
target of 1.5, 2 and 3 K above the pre-industrial level. Climate sensitivity, or the
simulated global mean surface air temperature response to more comprehensive
radiative forcings, is different across different models (Vial et al., 2013; Lee et al.,
2021). As a consequence, the point in time when specified global warming levels
(GWLs) are achieved differs largely across models. Models with higher climate
sensitivity reach specified GWLs earlier than others. However, some models may
not even reach the highest specified GWL before 2100. The first year when GWLs
is reached for the 35 CMIP6 models used in this study under the scenario SSP5-8.5
is shown in Table 4.1. The extreme precipitation statistics are then calculated for
each model individually over 21 years, extending from 10 years before and after
the "central year". I have used a moving average of 21 years before computing
the central year.

4.2.3 Scaling of extreme precipitation with local and global temper-
ature changes.

I scale changes in extreme precipitation (∆RV20) with both global mean sur-
face air temperature change (∆GSAT) and local surface air temperature change
(∆T). ∆GSAT is calculated as the difference between the areal mean surface
temperatures for the projected period and reference period (Table 4.1). Simi-
larly, ∆T is estimated as the local change in the climatological surface temper-
ature or the rate of change of mean surface temperature at each grid point for
the same periods as above. Instead of considering the linear rate of change
(Rlin = ∆Pext/∆Tsurf ) of the extreme precipitation, I assume a multiplicative rate
of change, i.e., ∆Pext + 1 = (1 + Rmul)

∆Tsurf . The multiplicative rate of change is
thus calculated as:

Rmul = (∆Pext + 1)
1

∆Tsurf − 1, (4.2)
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Figure 4.1: Maps showing the changes in the location, scale and shape parameters at the
end of the 21st century (2051-2100). The parameters and computed by fitting a stationary
GEV distribution to the RX1DAY values.

where ∆Pext is the change in precipitation extremes (here, ∆RV20) and
∆Tsurf is the change in surface temperature (either ∆GSAT or ∆T). Both the
linear and the multiplicative rates become approximately equal (Rlin ≈ Rmul) when
∆RV20 ≪ 1 mm/day. Another important point to note here is that for scaling with
local temperature changes I masked the regions where the temperature changes
are too small (i.e., ∆T ≪1 K) to avoid the infinite scaling while using Eq. 4.2. The
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Model
Warming Levels

Model
Warming Levels

1.5K 2K 3K 1.5K 2K 3K

CNRM-CM6-1 2028 2040 2058 MIROC6 2040 2052 2076

ACCESS-CM2 2025 2038 2055 MPI-ESM1-2-1 2034 2048 2071

CESM2 2024 2034 2053 NESM3 2021 2034 2054

CanESM5 2012 2022 2040 TaiESM1 2028 2036 2052

FGOALS-g3 2027 2045 2072 IITM-ESM 2035 2048 2075

INM-CM5-0 2030 2046 2074 CMCC-CM2-SR5 2021 2033 2052

KACE-1-0-G 2014 2023 2043 CMCC-ESM2 2028 2039 2054

MPI-ESM1-2-3 2032 2049 2073 CNRM-ESM2-1 2032 2045 2064

MRI-ESM2-0 2026 2038 2064 CNRM-CM6-1-HR 2018 2030 2051

NorESM2-LM 2043 2056 2077 EC-Earth3-CC 2007 2036 2056

ACCESS-ESM10 2027 2039 2060 EC-Earth3-Veg 2011 2027 2050

BCC-CSM2-MR 2030 2043 2065 EC-Earth3-Veg071 2028 2041 2061

EC-Earth3 2024 2035 2057 INM-CM4-8 2030 2046 2069

GFDL-CM4 2029 2041 2059 KIOST-ESM 2017 2037 2064

MIROC-ES2L 2034 2047 2070 UKESM1-0-LL 2023 2031 2046

HadGEM3-GC31-LL 2020 2030 2047 CESM2-WACCM 2021 2033 2053

HadGEM3-GC31-MM 2025 2034 2049 GFDL-ESM4 2039 2053 2075

IPSL-CM6A-LR 2018 2034 2050

Table 4.1: The year that CMIP6 models reach target warming levels under SSP5.8.8 scenario.
Using a 21 year rolling average.

masking is done only for those models which show ∆T ≪1 K, while I keep the
others so that the results are calculated for the models which project a minimum
surface warming.

4.2.4 Hypothesis testing

I also aim to identify the regions where the change in extreme precipitation
may occur at a super-CC rate or sub-CC rate. The latest IPCC report, (Senevi-
ratne et al., 2021) concludes with high confidence that precipitation extremes are
controlled by both thermodynamic and dynamic processes, and that warming-
induced thermodynamic change results in an increase in extreme precipitation at
a rate that closely follows the CC relationship at the global scale. Any depar-
ture from the CC rate could therefore indicate an additional large-scale dynamical
response. Attribution studies such as Pall et al. (2017) show the local dynam-
ical responses lead to non-CC rates. Small-scale dynamical responses such as
enhanced convection, orographic lifting in atmospheric rivers, or wind intensifi-
cation in tropical cyclones, can also induce a non-CC rate of change at the local
scale. However, our analysis is only based on coarse resolution global CMIP6
models with parameterized convection so the dynamical response here does not
account for explicit mesoscale changes in the storm dynamics that could also
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modulate the extreme precipitation response (e.g. Chan et al., 2020). Thus, the
large-scale dynamics are the only non-thermodynamic mechanisms that can be
simulated by these models.

The blueprint I provide will serve as a framework for an extended analysis.
This can provide us with much confidence in the areas that are dominated by
warming and those regions where changes in the circulation patterns may also
matter. For this, I use a simple hypothesis test, where I identify the regions
where, e.g., there is no change, using the 80% confidence intervals obtained
from the multi-model framework. If the targeted Rmul (rate of change of RV20
with temperature) does not fall within the confidence interval calculated from
the 35 models, the hypothesis is rejected. When it comes to the range of the
confidence interval, the null hypothesis is accepted, and the regions are identified
accordingly. To identify the regions with no change, I consider the null-hypothesis
Rmul = 0%/C, while Rmul = 7%/K is used as our second hypothesis to find regions
of sub-, super-, or consistent with the CC rate.

4.3 Quantifying CMIP6 model uncertainties in their projection
of RX1DAY

4.3.1 Intensification of extreme precipitation

Figure 4.2 shows the analysis for the median, 10th, and 90th percentiles along
with the uncertainty range, which is, the difference between the 90th and 10th
percentiles, of the extreme precipitation changes scaled by both the global mean
(∆GSAT, left panel) and local mean (∆T, right panel) surface air temperature
changes. The extreme precipitation rate as a function of both ∆GSAT and ∆T
shows a clear increase in its intensity with respect to the historical period (1951-
2014). The global average of the multi-model median changes is 5.0%/K (Figure
4.2 c) for the scaling with ∆GSAT, while it is 5.3%/K (Figure 4.2 d) for that of
∆T. These close values are slightly smaller than the CC rate of ≈ 7%/K, which
suggests some negative dynamical influence at the regional scale in increasingly
subsiding regions, but also some water limitation in such dry regions.

From the maps in figure 4.2 c, d, the overall large-scale patterns of change
remain similar for both temperature scalings, although changes are a bit more
pronounced for the scaling with local temperatures. The largest percentage of
increase occurs over the tropical areas followed by the high latitudes for the global
temperature scaling. For the local scaling, the largest percentage of changes occurs
over the tropics followed by the mid-latitude oceans. The stronger warming over
the continental landmass can be a major reason for these differences (Wang et al.,
2017). Certain regions over the ocean like the north Atlantic and the Southern
Ocean in figure 4.2c are characterized by moderate to high scaled changes in
precipitation extremes, which can be linked to the limited changes in the projected
local surface temperatures.

Changes in extreme precipitation with ∆GSAT and ∆T scalings vary sub-
stantially across the globe. Over most of the mid-latitude land areas, changes do
not strongly depend on the scaling method and exhibit a sub-CC rate of 0–4%/K.
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Over the subtropics, the assessed rate of change deviates further from the CC rate.
In particular, there are high rates (super CC) over the Sahara and the intertropical
convergence zone (ITCZ), while the climatological dry areas like the basins of the
South Pacific, the north and the south Atlantic, and the south Indian Ocean are
marked by reduced, or even negative, rates of change in the extremes. Again,
this deviation from the CC rate (≈7%/K) indicates some other factors apart from
the thermodynamic features might be at play. Notably, a remarkable property
is the increased multi-model spread over these regions (cf. Figure A.13), in line
with the less robust dynamical response across global climate models (Pfahl et al.,
2017). Large departures, whether it is positive or negative, from the CC rate are
associated with a larger inter-model spread, suggesting that these regions may
be influenced by less robust changes in atmospheric circulation, possibly related
to model-dependent patterns of sea surface temperature anomalies or land-sea
temperature contrasts (Douville and John, 2021). Another noticeable feature is
the impact of the scaling method over the northern high latitudes. This is partly
linked to the Arctic amplification, where the Arctic region gets warm more than
twice as fast as the global average (Cohen et al., 2014).

4.3.2 Range of projected responses in extreme precipitation

Figure 4.2 a, b, e and f illustrate the 10th and 90th percentiles of extreme precip-
itation rates for scalings with global and local warming. The lower and the upper
tails of distribution help us to study the worst possible case scenarios and more
importantly quantify the uncertainties. The lower tails of extreme precipitation
rates are characterized by large-scale features like the negative scaling over the
subtropical oceans in the western continental boundaries for both global and local
temperature scaling. It is important to note that these regions are predominantly
dry areas due to the descending branches of the Hadley cells. The rest of the
globe is marked by very small changes either positive or negative that are very
close to zero. However, the 90th percentile maps or the upper tail of the distribu-
tion show a strong positive increase in precipitation extremes almost everywhere
around the globe. These are consistent with super-CC rates (stippling) for the
scaling with global warming and, to a large extent, with local warming. Typical to
the local warming scaling, the northern mid- and high-latitude land areas are not
stippled. This means that the rate of change in extreme precipitation with local
warming is sub-CC over these regions even for the 90% quantiles. Moreover,
this is consistent across the three maps in the right panel of Figure 4.2 b, d, f.
This results directly from a larger and consistent local warming over these areas,
especially in the Arctic.

Another noticeable result is the zero or low-density stippling over the
tropical Atlantic ocean, Southern Europe, Chilean Coast, Continental North Amer-
ica and South Africa in all maps of both global and local temperature scalings
(figure 4.2). This implies a sub-CC rate over these areas irrespective of the scal-
ing choice. One could speculate that the circulation changes, such as a broadening
of the subtropical subsidence region, might be responsible for this (Pfahl et al.,
2017). Indeed this kind of extension can effectively replace a low-level mois-
ture convergence zone with a regime with low-level divergence where there is
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a weaker connection between the projected changes in precipitable water versus
temperature.

The bottom panels (g, h) in figure 4.2 show the difference between the 10th
and 90th percentile values as simulated by a single realization from 35 CMIP6
models. Large differences between the upper and lower quantiles indicate a
substantial spread in the projected extreme precipitation changes. These maps
quantify the uncertainties in extreme precipitation response and the pattern is
very similar to those of the inter-model standard deviation maps as stated earlier
in section 4.3.1 (cf. Figure A.13). As clearly depicted in these figures, the spread
is larger over tropical areas than in the rest of the globe. Particularly, over the
tropics, the values are notably large in the regions which are climatologically dry
or wet, e.g., the subsidence zones of the Hadley cells, the ITCZ, and the Saharan
desert. It can be seen that the overall pattern of the inter-model spread is similar
for both temperature scalings. Table 4.2 reflects the range of model uncertainty
in projected changes in extreme precipitation with respect to both local as well
as global warming. It summaries the areal averages of the median, 10%-, 90%-
quantiles and their difference for the total (global) area, the global land, and global
ocean areas separately. It is clear from this Table that the width of confidence
range averaged globally is large, about 10.5%, which is more than the average CC
rate.

Several sources of uncertainty can contribute to this spread. The main
source is likely due to different representations of the relevant physical processes
and related biases in the models’ climatology of present-day precipitation. More-
over, the non-homogeneous temperature gradient from the equator to the poles
and the land/sea temperature differences are also a source of larger uncertainty
in the local temperature scaling maps. Another potential source of uncertainty
is the internal climate variability which also gets translated differently into the
total uncertainty with the use of different temperatures for scaling. The potential
contribution of internal variability is discussed in the next section 4.3.3.

4.3.3 Role of internal variability

The spread among the single realizations of CMIP6 projections has been mainly
interpreted so far as model uncertainty. Yet, it can also arise from internal vari-
ability given the limited sampling. In the case of historical extreme precipitation
changes at a multi-decadal time scale, internal variability was shown to be a
significant driver due to the cancellation between different external forcings (Nath
et al., 2018). To get more insight into this, I analyzed the rate of change in precip-
itation extremes in the 25-member ensemble of the CanESM5 model, and assess
the spread across members (figure 4.3). A large ensemble from CanESM5 is con-
sidered a representative estimate of the internal variability range. It should be
noted that CanESM5 is one of the low-resolution CMIP6 models, with moderate
skill in simulating global extreme precipitation (Wehner et al., 2020). It is also
one of the CMIP6 models with the highest climate sensitivity, but this effect is
accounted for by the scaling. The globally averaged median values are thus very
close between the CMIP6 ensemble and the CanESM5 ensemble for both scaling
with ∆GSAT and ∆T (Table 4.2).
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Figure 4.2: Projected relative changes (%/K) in 20-yr return values of RX1DAY scaled by
both global mean surface temperature change (∆GSAT in K, left panel) and local mean
surface temperature change (∆T in K, right panel). The changes are calculated for the
future period of 2051-2100 relative to the historical period of 1951-2014 using the SSP5-
8.5 scenario. (a),(b) show the 10% quantile maps, (c),(d) shows the median maps and (e),(f)
show the 90% quantile maps, calculated from the CMIP6 multimodel ensemble. The bottom
panel shows the width of the confidence range of extreme precipitation, computed as the
difference between the 90% and 10% quantile maps. Stippling highlights the grid cells
where the rate of change is more than 7%/K for respective scalings with ∆GSAT (left panel)
and ∆T (right panel). GMD denotes the global mean differences.
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10 med 90 width (90-10)

Total
GSAT

CMIP6 0.7 5.0 9.5 8.8

CanESM5 3.3 4.8 6.2 2.9

T
CMIP6 0.2 5.3 10.7 10.5

CanESM5 3.2 5.0 6.8 3.6

Land
GSAT

CMIP6 1.5 5.8 11.1 9.5

CanESM5 4.3 5.9 7.4 3.1

T
CMIP6 1.0 4.6 9.3 8.3

CanESM5 3.4 4.7 6.0 2.5

Ocean
GSAT

CMIP6 0.3 4.6 8.8 8.5

CanESM5 2.9 4.3 5.7 2.8

T
CMIP6 -0.1 5.6 11.4 11.5

CanESM5 3.1 5.1 7.1 4.0

Table 4.2: Areal mean values (in %/K) of 10%-, 90%- quantiles and median of the extreme
precipitation changes scaled by both ∆GSAT and ∆T over the total global area, global
land, and global oceans. The table includes the respective values for both the CMIP6 multi-
model changes and CanESM5 multi-ensemble changes.

Figure 4.3 shows the same diagnostics as in figure 4.2, but there are obvious
visible differences between them along with a few matching large-scale patterns.
For instance, the rates of change for both ∆GSAT and ∆T match over the clima-
tologically dry regions like the north and south tropical Atlantic oceans as well
as over primarily wet regions like the inter-tropical convergence zone. Further-
more, the regions like North American inland, Europe and Eurasia, Chilean Coasts,
and South Africa are marked by a sub-CC rate of change with both temperature
scales, likewise in figure 4.2. Another noticeable result here is the changes in the
areas that are stippled. CanESM5 shows areas of super-CC (>7%/K) even for the
10th percentile maps which are not observed in the CMIP6 ensemble. While for
90th percentile maps there is a decrease in the regions that are super-CC rated.
The range of uncertainties (2.9%/K for ∆GSAT and 3.6%/K for ∆T) across the
CanESM5 ensemble members is evidently less than that across the CMIP6 models.
The total uncertainties depicted in Figure 4.3 (bottom panel) are just the result of
internal variability. Table 4.2 again summarizes the mean value of median, 10%-,
90%- quantiles and their difference for the total (global) area, the global land, and
global ocean areas separately.

The evidenced range of uncertainty for the large ensemble of CanESM5
suggests that internal variability can contribute significantly to the total uncer-
tainty of extreme precipitation rates, when estimated from one single simulation,
even in a very high emission scenario. Figure 4.4 depicts the ratio of the width
of the confidence range (the difference between 90% and 10% quantiles) of the
CanESM5 large ensemble to that of the CMIP6 cross model ensemble. It is clearly
seen that for mean extreme precipitation rates scaled by global mean surface
temperature, internal variability alone can induce a range of responses about half
as large as the CMIP6 multi-model spread (global average of ≈40%). For the
high- and mid-latitude regions, internal variability is even larger and explains a
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Figure 4.3: Same as figure 4.2, but for the ensemble of 25 individual members of CanESM5
model.

range of response ≈75% (darker shades of blue) as large as the total uncertainty.
These regions exhibit a low to moderate increase in the percentage response of
the extreme precipitation (as shown in figures 4.2, 4.3) which explains the strong
influence that internal variability may have on the extreme precipitation signals.
However, throughout the equatorial belt and the adjacent tropical areas, there is a
rather less but non-negligible contribution from internal variability. Interestingly,
most of these regions fall along with the average position of the ITCZ, which is
characterized by high values of extreme precipitation changes. Here, model un-
certainty is very likely the major contributor to the assessed inter-model spread,
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whereas internal variability only contributes to about 0–20% but is still poten-
tially significant.

Overall, these results suggest that internal variability contributes substan-
tially to the assessed uncertainty (i.e., the width of the 80% confidence range)
reported in Figure 4.2. As a consequence, modelling uncertainty alone is probably
less than shown in Figure 4.2. Filtering out internal variability could be done by
using multiple members for each CMIP6 model involved Ð but such data are not
available for all models so far.

Figure 4.4: Ratio of the width of confidence range of extreme precipitation in large ensemble
CanESM5 to the CMIP6 multi-model ensemble. The result shown here is for scaling with
global mean surface temperature change (∆GSAT).

4.3.4 Sensitivity of precipitation extremes at different global warm-
ing levels

Figure 4.5 provides analyses of the 10%- and 90%- quantiles of global climate
sensitivity of RV20 in the CMIP6 ensembles at GWLs of 1.5 K, 2 K, and 3 K
respectively. The median changes (figure not shown) relative to the preindustrial
period for all GWLs are close to the CC rate of ≈ 7%/K. Not surprisingly, globally
these scaled rates of change in precipitation do not appear to depend on the
selected GWL. There is only a slight difference of 0.7%/K in the average multi-
model median as the GWL is increased from 1.5K to 3 K possibly due to a non-linear
response in some models (e.g., Pendergrass et al. 2019 based on a CMIP5 model),
or just a sampling uncertainty. A notable observation as summarized in Table 4.3
is that the inter-model uncertainty range tends to decrease as the GWL increases.
The lower-tail of the extreme precipitation rates shown by 10th percentile maps
for the three GWLs (figure 4.5 left panel) reveals a very small decrease in the
average negative precipitation rate values from 1.2%/K (+1.5K) to 1.1%/K (+2K) and
to 1.0%/K (+3K). Also, as seen from the right panel of Figure 4.5, the upper-
tail of the distribution or the 90th percentile maps show that the upper bound
of extreme precipitation rate moves closer to the median value from 14.9%/K
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(+1.5K) to 13.6 %/K (2K) and 12.1%/K (3K). This reduced uncertainty for higher
GWLs is consistent with the expected contribution of internal variability. At lower
GWLs, the forced response remains limited, and the additional noise resulting
from internal variability is proportionally larger. This finding provides support
for investigating changes in extreme precipitation at high GWLs. Moreover, the
uncertainty at +3K GWL remains larger than that reported in Figure 4.2. Again,
this is consistent with a smaller contribution of internal variability in Figure 4.2
compared to a +3K GWL Ð consistent with the fact that SSP5-8.5 leads to global
warming higher than +3K in most CMIP6 models, and that estimating changes over
a longer period (50-yr in Fig 4.2, vs 20-yr for GWLs) leads to better filtering of
internal variability.

Figure 4.5: Projected relative changes (%/K) in 20-yr return values of RX1DAY scaled by
global mean surface temperature change (∆GSAT in ◦K) at global warming levels of 1.5,
2 and 3 ◦K above the preindustrial (1850-1900) average values. The left panel shows the
10% quantile maps and the right panel shows 90% quantile maps for the CMIP6 multimodel
changes. Stippling marks the grid cells where the rate of change is more than 7%/K. GMD
denotes the global mean differences.
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10 med 90 width (90-10)

Total
1.5K 1.2 6.5 14.9 13.7

2K 1.1 6.2 13.6 12.5

3K 1.0 5.9 12.0 11.0

Land
1.5K 2.0 7.5 19.3 17.4

2K 1.9 7.2 17.3 15.4

3K 1.8 6.8 14.8 13.0

Ocean
1.5K 0.8 6.0 12.9 12.1

2K 0.8 5.8 12.0 11.2

3K 0.6 5.4 10.8 10.2

Table 4.3: Areal mean values (in %/K) of 10%- and 90%- quantiles of the extreme precipi-
tation changes scaled by ∆GSAT over the total global area, global land, and global oceans
for three target global warming levels of 1.5, 2, and 3 K.

4.3.5 Regions of hypothesis tests

Using a simple hypothesis test as described in Section 4.2.4, the global areas
are classified into three categories. Three general hypotheses that have been
considered here are Ð (H0) extreme precipitation does not change with global
warming, and (H1, H2) the change in extreme precipitation follows the CC rate
of ≈ 7%/K for ∆GSAT and ∆T scaling, respectively or not. Figure 4.6 shows
the regions categorized accordingly to our hypotheses. Red and blue colours are
regions where the hypothesis is rejected while yellow represents regions where
the hypothesis cannot be rejected. It is important to notice that, not rejecting a
hypothesis doesn’t mean that it is true. It rather means that the hypothesis is
plausible, i.e., there is not enough evidence to reject it.

Figure 4.6 a shows the regions all over the globe where the rate of pre-
cipitation change to ∆GSAT is consistent with ≈0%/K (i.e., no significant change,
yellow colour). The regions for which H0 cannot be rejected are limited and these
are particularly identified over the global oceans. It is to be noted that over these
regions the median values of the projected precipitation changes are consistently
low and close to zero. The same results are found for the local temperature scaling
(with a correlation ≈99%). Over these regions, the cohort of CMIP6 models does
not provide robust evidence that global warming will intensify extreme precipita-
tion. While the small patches of red-coloured regions over the subtropical ocean
west to the continents indicate that the hypothesis is rejected but the changes are
negative. Another notable feature over the yellow and red-coloured regions is the
similarity of negative scaling the figure 4.6a to the patterns of negative dynamic
contribution as observed in figure 3 of Pfahl et al. (2017) for the CMIP5 models.
This implies a consistency between the CMIP5 and CMIP6 projections of extreme
precipitation, possibly for a common reason, perhaps, a less robust dynamical
response. The negative dynamic factors may perchance responsible for keeping
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Figure 4.6: Global maps of confidence areas (80% confidence interval) for the CMIP6 using
35 individual models with a single realization. The maps show where the rate of extreme
precipitation changes is consistent with constant rates of ≈0%/K or ≈7%/K. Red colour
denotes the regions where the changes are always less than the constant, yellow denotes
areas where the constant falls within the confidence interval and blue denotes areas where
the rates are always greater than the constant. Map (a) shows the areas where the rate
of changes in extreme precipitation remains unchanged or consistent to 0%/K when scaled
with ∆GSAT. Maps (b), (c) show the global areas where the rate of changes are consistent
with the CC rate of ≈7%/K with respect to ∆GSAT and ∆T. The values on top of colourbar
show the percentage of each coloured area over the global land surface, while the values
at the bottom indicate the same over the total global surface.
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the extreme precipitation not to increasing at large as it does with moisture in-
crease in the rest of the globe. Remarkably, there is no land region where extreme
precipitation is robustly expected to decrease in response to global warming.

Figure 4.6 b, c shows the regions where the hypotheses H1, H2 are accepted
or rejected. Both H1 and H2 are used for identifying the regions where the
extreme precipitation changes are consistent with the CC rate of ≈7%/K with
respect to ∆GSAT and ∆T respectively. These maps can be used as a blueprint
to identify the regions which are consistent with the CC rate and those which are
not. The first outcome is that a vast majority of places on Earth, about 83% of the
global land area, are expected to undergo a change in extreme precipitation that
is consistent with the CC rate, particularly with the ∆GSAT scaling. This doesn’t
mean that these regions will experience a change of exactly +7%/K. It means that,
over these regions, the expected change in RX1d is not robustly sub-CC or super-
CC, i.e., not inconsistent with CC. The majority of regions that follow a sub-CC
rate of change for both temperature scalings are over the oceans, especially at
the western continental boundaries, which are climatologically dry regions. A few
continental regions like the North American continent, South and Central Eastern
Europe, Chilean Coast, South Africa and South Australia are also marked by the
sub-CC rate for both scaling temperatures. There are also patches of consistent
super-CC rates over the equatorial Pacific and the Sahel region. Scaling with two
different temperatures displays different areas of consistency with CC, especially
over the high Northern latitudes. The map for the local temperature scaling shows
a significant increase in the sub-CC areas, especially over the Arctic and most of
the mid-latitude landmasses. This indicates that the expected increase in extreme
precipitation over these regions does not follow the local warming at the CC
rate. This result is consistent with the enhanced warming expected over these
regions, while the surrounding oceans (the main source of moisture) are warming
less quickly.

4.4 Sensitivity to model biases

Bias correction or bias adjustment of global or regional climate models has be-
come a common and quasi-mandatory step before using model simulations in
impact studies context. Indeed, most of the łrawž climate model outputs suffer
from biases with respect to reality (or at least to what is measured) in the sense
that their statistical distribution and properties differ from those of the observa-
tions (e.g., Vrac and Friederichs 2015). Bias correction adjusts or corrects model
outputs by transforming them in order to have adjusted values with statistical
properties/distribution similar to those of observations used as a reference that
can be employed as input into impact (or more generally subsequent) models.

In the previous sections 4.3.2 and 4.3.5), I have quantified the upper bound
of the total uncertainty in projecting extremes along with the classification of
the global areas which follow the CC rate or not. In addition, I am interested in
understanding the potential sensitivity of the estimated changes in precipitation
extremes to bias correction of the daily precipitation intensities. Therefore, I com-
puted the RV20 from the RX1DAY values of five CMIP6 models, as obtained after
applying a daily bias correction using the method called "Singularity Stochastic
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Removal", as described in Vrac et al. (2016). By using this method, it is possible
to handle cases in which the proportion of dry days in the model is higher than
that in the reference data and instances in which the converse is true and the
proportion of dry days in the model is lower than that in the reference data in the
same way. Here, the daily ERA5-Land data from 1981 to present (Muñoz Sabater
et al., 2019) is used as the reference dataset for the bias correction.

Figure 4.7: Comparison of the bias corrected model outputs with the raw model outputs
using Taylor diagrams. The maps in the left panels depict the observed a) RX1DAY, c) RV20
from a non-stationary GEV analysis. The Taylor (b, d) diagrams illustrate the model skills
before (red) and after bias-corrections (green) for the variable as illustrated by the maps
respectively. The solid markers indicate the multi-model means and circles are individual
models. Red is for raw outputs, while green is for bias-corrected outputs. Panel b) depicting
the Taylor skill in RX1DAY also consists of other observational data sets as indicated by the
coloured legends. The reference data set for the Taylor diagrams in ERA5-Land and the
period analysed is 1981-2014.

As a preliminary step, a comparison of the bias-corrected data with the
raw data is made by regridding both onto a common 1◦ × 1◦ grid. This assesses
how the bias correction improves the data, i.e., will the corrected data be better at
capturing precipitation extremes than the raw outputs? I used the observational
dataset, daily ERA5-Land, same as the bias correction reference dataset for the
comparison. The maps in Figure 4.7 (a, c) depict the mean values of RX1DAY
and the RV20 from a stationary GEV analysis (stationarity is assumed due to a
shorter period of analysis) on the RX1DAY values for the period 1981-2014 from
the ERA5-Land. Both RX1DAY and the RV20 maps are marked by very similar
spatial characteristics with regional variations in the magnitude of the intensity
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of the corresponding values. The RV20 values are more intense than the RX1DAY
as illustrated by the colours at the high end of the colour bar spectrum. Now
I compare the different models’ ability to capture these spatial patterns of the
observed extremes for the same period as above using the Taylor diagrams (cf.
chapter 2) as illustrated in Figure 4.7 b and d. Within the diagram red markers
indicate the raw outputs, while green markers are for the bias-corrected ones.
The filled circles (both red and green) are the corresponding multi-model means
of the models considered. Other observational datasets, although with different
periods, are also included in Figure 4.7 b, marked by respective colours as in the
legend.

The bias-corrected outputs exhibit a very noticeable improvement in the
skill to capture the historical extremes similar to the observations, as illustrated by
the Taylor diagrams. For RX1DAY, the green markers are tightly packed, all falling
between 0.5 to 1.0 centred RMSE curves. The values of pattern correlation are
appreciably high and are very close to 0.99 indicating a high Taylor skill after bias
correction. The raw model outputs on the other hand have a reasonable Taylor
skill with a range of 08 to 0.9 and >0.9 for the multi-model mean. However, the
values largely spread across the spectrum with the centred RMSEs from 1.5 to 3.5.

Improvement in the bias-corrected RX1DAY is also reflected in the calcula-
tions of the historical RV20 values (cf. Figure 4.7 d). The model’s competence for
bias-corrected outputs (RV20) as illustrated in Figure 4.7 d and shows a significant
improvement relative to the raw outputs. The raw model outputs have Taylor
skills ranging below 0.8 up to even 0.55. The spread in the RV20 for the raw
outputs is reduced when compared to the raw values of the RX1DAY but is still
large and should be accounted for. The spread in the bias-corrected models is
narrowed and falls between the centred RMSE curves of range 0.5 to 1.0. The
Taylor skills for the raw model outputs are under 0.85 and even degrade to about
0.55, however, the multi-model mean skill is about 0.9. It is important to notice
that the Taylor skills of the bias-corrected models have substantially improved,
where all models have a very high pattern correlation value of ≥0.95 with the
skill for the multi-model mean close to about 0.99.

The Taylor skills of the raw vs. bias corrected outputs also depend on the
reference dataset used. However, it is clear that with bias correction the mod-
els can capture the extremes more efficiently and are close to the observational
dataset used. An increase in the Taylor skill of RV20 boils down to a very basic
question of does all the GEV parameters have improved after bias correction.
Figure 4.8 illustrates the Taylor diagrams for the location (a) and scale (b) param-
eters before and after bias corrections. The Taylor skills for the shape parameter
are not computed here as the spatial values of the shape parameter are highly
non-coherent and do not seem to show any particular pattern. This makes it
meaningless to compare the shape parameters for the Taylor skill, which is based
on pattern correlation. As depicted in Figure 4.8, one could understand that the
improvement in the Taylor skills of RV20 can be owed to the improvement in
the location parameter rather than the scale. Skills of scale parameters are very
much degraded for both the raw and bias corrected outputs. There is no vis-
ible improvement in the bias corrected scale parameter, at least which, can be
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Figure 4.8: Taylor diagrams illustrating the same as in the Figure 4.7b ,d; but for the location
and scale parameters from the stationary GEV fit on the RX1DAY values for the period 1971-
2014.

obtained by using Taylor diagrams. For the bias-corrected location parameter,
the correlation is between 0.8 and 0.9, which is good, however for the raw data
the Taylor skills are degraded with correlation values for most of the models less
than 0.6. A larger spread in the raw values is another noticeable feature while
the bias-corrected outputs are clustered tightly. The improvement in the bias-
corrected RV20 is mainly contributed by the improvement in the corresponding
location parameter Ð while keeping in mind that further analysis is required to
fully comprehend this.

Note that the spread in the raw outputs as illustrated by the Taylor dia-
grams is largely due to large inter-model differences in the amplitude of the spatial
pattern, with some models substantially underestimating the pattern amplitude
while others it is overestimated. A simple comparison of the red and green mark-
ers in the Taylor diagram demonstrates that when biases are accounted for by
utilizing observational constraints, the models perform more efficiently with a
significant reduction in the inter-model spread. This means that the large differ-
ence in the amplitude of the spatial patterns of the extremes can be reduced by
bias correction and can produce outputs which are more genuine to the observed
data.

Provided the improvements in the bias-corrected outputs, it was intriguing
to revisit the changes in the extreme precipitation that were already analysed
with the raw outputs. So I analysed the changes in the RV20 values of the bias-
corrected models and compare them with the respective raw outputs. Maps in
the figure 4.9 depict (raw model outputs in left panels; bias-corrected in middle
panels) the changes in mean RV20 at the end of the 21st century (2051-2100)
relative to the historical period (1951-2014) for the 5 different individual models.
The overall large-scale geographical patterns of the relative changes in the extreme
precipitation remain the same for both the raw and bias-corrected outputs. In all
the models except one (MPI-ESM1-2-HR), the bias correction enhances the relative

88



4. Model uncertainty and internal variability

changes in extreme precipitation. This is indicated by the areal mean values given
at the top of each panel. However, there are many regional dissimilarities between
the two, which are illustrated by the right panels in the figure 4.9 showing the
difference between the bias-corrected and raw outputs. The highest disparities
between the two are seen mostly over North and Equatorial Africa in all models.
Nevertheless, the global average values indicated on the top of the difference
maps indicate a reasonably small difference between the mean of raw and bias-
corrected values. This in turn shows a limited sensitivity of the extreme changes
to bias correction when averaged globally, but the regional differences are worth
further studies and analysis.

Figure 4.9: Maps showing the future (2051-2100; SSP5-8.5) changes in the RV20 relative
to the historical period (1951-2014) for the raw model outputs (left panels) and the bias
corrected outputs (middle panels) and the difference between the bias corrected and the raw
outputs. The name of individual models is indicated on each panel with the corresponding
global mean values.

Four out of the five models assessed here show an overall increase in
the extreme precipitation changes after bias correction. Figure 4.10 depicts the
ensemble mean of the changes from these five models shown in Figure 4.9 (right
panel). The map’s stippling highlights the areas where more than 80% of the
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models (in this case, four out of five) exhibit a sign change that is similar to
the mean value, confirming the locations where the majority of models exhibit a
similar difference (either positive or negative) between the bias-corrected and the
raw data. The contours illustrate that the average values are a bit smoother when
compared to the individual model differences, however, the regional differences
are very evident. High model agreement and the substantial differences between
the two (bias corrected vs. raw) are primarily seen over the Saharan region, the
North and South high latitudes, Central India, etc. The global average value (1.9%)
shown at the top of the mean difference map does, however, point to a relatively
negligible difference between the means of raw and bias-corrected values. In
turn, this demonstrates that, when averaged globally, the extreme changes are
only moderately sensitive to bias correction, but the regional variations deserve
additional research and analysis using a broader group of models.

Figure 4.10: The multi-model mean of the difference between the bias corrected (BC) and
the raw projected relative changes (in %) in RV20. The stippling indicates the regions where
more than 80% of the models agree with the sign change of the multi-model mean. The
mean value indicated at the top is the global average of the difference.

By limiting model biases against ERA5-Land data, one can get better and
more accurate findings. However, there are a variety of bias correction techniques
available today (e.g., Panofsky et al. 1958; Haddad and Rosenfeld 1997; Graham et al.
2007; Sperna Weiland et al. 2010; Watanabe et al. 2012; Wong et al. 2014; Eden
et al. 2014; Vrac and Friederichs 2015; Vaittinada Ayar et al. 2016; Xu et al. 2021),
and the outcomes of each technique may differ. One difference between bias-
correction strategies is the difference between simulated and observed data in
the baseline period Graham et al. (2007); Sperna Weiland et al. (2010)). Here
I have only considered one among many available bias correction techniques
to compare the GEV parameter and RL20 estimates derived from raw versus
adjusted daily precipitation outputs. The results need to be further discussed and
analysed using more global (e.g., CMIP6) or regional (e.g., CORDEX, Giorgi et al.
2009) climate models and other bias-adjustment methods to fully comprehend
the models’ sensitivity to such corrections. This will be the main objective of
my last secondment during this PhD, which could not be organized before the
submission of this manuscript.
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4.5 Synthesis

Despite an overall agreement that extreme precipitation follows a ≈7%/K rate of
increase at the global scale, projected changes in the intensity of extreme pre-
cipitation are influenced by multiple factors, including large-scale and mesoscale
dynamics, that can lead to large uncertainties at the regional scale. This study
quantifies the uncertainty in the projected changes in extreme precipitation Ð
while most studies look at the mean or median change across an ensemble of
models Ð using a large subset of CMIP6 global climate models and a single high-
emission scenario. I provide a first assessment of the 10-90% range in the RV20
responses at the grid-point scale and a global picture of the regions where changes
in extreme precipitation are consistent with the CC rate. Our results suggest that
uncertainty remains usually quite large (and has not decreased compared to the
results of the former generation GCMs). Averaged globally, GSAT scaling ranges
extend from about 0 up to a super-CC rate, with a median close to the CC rate.
Uncertainty can be larger if changes in extreme precipitation are investigated for
a given GWL. This may be an artefact of internal variability due to the lack of
sampling which has a stronger relative contribution at lower GWLs compared to
our selected very-high emissions scenario.

Our assessed CMIP6 uncertainty arises both from model uncertainty and
internal variability, as only a few CMIP6 models provide large ensembles and our
calculations are based on single runs from each CMIP6 model. Internal variability
can be seen as a basic sampling uncertainty, which could be overcome by aver-
aging across multiple members for each global climate model. Model uncertainty
alone would lead to narrower ranges than those reported in this study. However,
despite the widening induced by a non-negligible contribution of internal vari-
ability, our results show that the intensification of extreme daily precipitation is
robust over most regions, with more than 90% of models simulating an increase
of 20-yr RVs. I believe that this study helps strengthen our confidence in the
intensification of extreme precipitation.

Most regions around the world exhibit a RV20 change consistent with the
CC rate of ≈7%/K. Remarkably, about 83% of the global land fraction is consis-
tent with this rate of change when scaled by ∆GSAT. Exceptions to this include
limited areas over subtropical oceans (showing a significantly sub-CC rate), and
parts of the equatorial Pacific and Sahelian ITCZ (showing a significantly super-
CC rate). These findings are consistent with well-known projected changes in
large-scale atmospheric circulation, i.e., strengthened subsidence over the sub-
tropics and enhanced convection over the core of the ITCZ (Douville et al., 2021).
Not surprisingly, the rate of change in the Arctic is particularly sensitive to the
scaling applied, since this region is warming much faster than the global average.
This example suggests that the spatial distribution of the warming (e.g., Arctic
amplification, land-sea contrast) can be also responsible for changes in the low-
level atmospheric circulation and, therefore, for the departure from the CC rate
of intensification.

Due to the multiple uncertainties, the rate of change in extreme precipita-
tion depicted here only represents a plausible 21st-century scenario. This hints at
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the fact that we cannot produce a more accurate projection as long as we are faced
with both strong model uncertainty and substantial (potentially irreducible) inter-
nal variability (not to mention uncertainties about future GHG emissions). Better
filtering of internal variability would require using multiple ensemble members
for each CMIP model. Therefore, I suggest to the modelling community consider
producing a minimum number (at least 9 according to O’Neill et al. (2016)) of re-
alizations for each selected emissions scenario in the forthcoming CMIP7 exercise.

Beyond internal variability, evidence suggests that modelling uncertainty
also contributes to a large fraction of the reported uncertainty. This source of
uncertainty is related to our limited knowledge of the key physical processes
controlling the response of extreme precipitation that is simulated by both global
and regional climate models. Thus the improvement of the current-generation
GCMs and RCMs, along with the development and wider use of convection-
permitting models (Lucas-Picher et al., 2021), could increase the reliability of
projected changes in extreme precipitation. Bias adjustment on the raw model
outputs can help reduce the model uncertainty, however, keeping in mind that
different bias correction techniques have different limitations which makes it dif-
ficult to choose the optimum method Maraun et al. (2017). Other methods such as
the development and application of observational constraints (Ribes et al., 2021)
could be also very useful to constrain the response of both global and regional
climate models.
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In the middle of winter, I was finally learning
that there was an invincible summer inside me.

Ð Albert Camus

5
Changes in seasonality and circulation

types

As quantified in Chapter 4, the intensification of extreme precipitation is a well-
known consequence of global warming, which could have devastating conse-
quences on human societies and the environment. Yet, beyond the increase in
the magnitude and frequency of heavy precipitation events, and the related un-
certainties in global climate projections, better quantifying and understanding the
potential changes in the seasonality of such events is also a key question for adap-
tation strategies (Bevacqua et al., 2020). This chapter builds on a preliminary
study based on CMIP5 models by Marelle et al. (2018) and further explores the
seasonal shifts in the occurrence of extreme precipitation in the future, with a
particular emphasis on Europe. The mechanisms behind these shifts are briefly
explored based on an analysis of the dominant circulation types and their pro-
jected changes in an illustrative high-emissions scenario. The inter-model spread
in the circulation response is also quantified, as well as its contribution to model
uncertainties in the assessed seasonality changes.

5.1 The relevance of seasonality

The seasonality of the extremes and how it changes in the future is a relevant but
rather less explored topic. Heavy precipitation events have intensified and oc-
curred more frequently under a warming climate (Masson-Delmotte et al., 2021a).
It has been shown that in a warmer world, where the atmosphere can hold more
moisture and precipitable water, the global hydrological cycle becomes more ac-
tive (Folland et al., 2001) and thus results in more frequent and severe precipitation
events (Trenberth, 2005; Min et al., 2011; Stocker et al., 2014; Roderick et al., 2019;
Myhre et al., 2019). Both observations and historical model simulations show that
extreme daily precipitation has increased in many regions across the globe since
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the mid-20th century (Du et al., 2019; Dunn et al., 2020; Sun et al., 2021b).
More specifically, a significant increase in RX1DAY (cf. chapter 2, section 2.2) was
observed from 1950 to 2018 over Europe (Sun et al., 2021b), where the 5 to
20-year events of RX1DAY during 1951-1960 became more common over recent
decades (Van den Besselaar et al., 2013). Although the evidence is weaker over the
Mediterranean (cf. Figure SPM.3 b, Masson-Delmotte et al. 2021a), recent studies
also support such an observed intensification over Southeast France (Ribes et al.,
2019).

However, there can be significant discrepancies among regions and seasons,
with more evidence for increasing extreme precipitation in given seasons than in
others (Madsen et al., 2014). Trends in the mean intensity of Mediterranean ex-
treme rainfall are not always positive (e.g., Serrano-Notivoli et al. 2018). Positive
trends in extreme precipitation intensity are more evident over northern Europe,
although extreme rainfall trends may differ in different seasons (Irannezhad et al.,
2017). Furthermore, the increase of extreme daily precipitation varies throughout
the year, with regional simulations indicating that extreme precipitation increases
faster in winter than in summer across Europe and that it may even decrease
slightly in southern Europe during summer. The rain gauge observations in Aus-
tralia from 1966-2012 (Zheng et al., 2015) also show that the extreme precipitation
has increased significantly during summer but decreased during fall.

Climate change is likely to alter the annual cycle of extreme precipitation
with regional shifts in extreme rainfall seasons around the globe where both the
thermodynamic and dynamic effects contribute to changes in the frequency and
intensity of heavy precipitation (e.g., Pfahl et al. 2017). The thermodynamic influ-
ence can be positive and relatively homogeneous globally, although the dynamical
contribution varies significantly between regions and the pattern and size of the
dynamic contribution differ between summer and winter. Pfahl et al. (2017) also
indicate a possible global "shift of the seasonality of precipitation extremes to-
wards the cold seasons". Among other things, precipitation extremes with high
intensity and widespread geographical spread could contribute to extensive flood-
ing, which potentially causes transportation disruption, infrastructure damage
(Kendon and McCarthy, 2015), and a great deal of personnel casualty (Rappaport,
2014) and thus bring about immense socio-economic (Tebaldi et al., 2006; Schmitt
et al., 2016; Stocker et al., 2013) and ecological (Mullan et al., 2012; Woodward
et al., 2016; Paerl, 2018) impacts. Hence to understand the future risks of flooding,
understanding the future seasonality of extreme precipitation is essential.

5.2 Projected changes in the seasonality of extreme precipita-
tion

5.2.1 Seasonal Classification of RX1DAY

Along with calculations of RX1DAY, I also computed the particular day in a year
when the extremes are occurring for each grid point and every year. Then I
calculated the median day of the year for each CMIP6 model for relatively long
periods of the historical simulations (1951-2014) and SSP5-8.5 projections (2051-
2100) (cf. section 2.7.4). Instead of the empirical median, the circular median was
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calculated using the algorithm developed by Berens (2009). A circular median
was used as the date values are always cyclic, and using an empirical median will
produce a different result from the expected as the date values may be spread
throughout the year. This narrows down the distribution of RX1DAY in each grid
cell and period to one representative median day. I then classify the median day
as seasons based on the month of the year to which it belongs. The median
day occurrences (of RX1DAY) are also used to quantify the number of days the
extremes can be shifted, i.e. is there an early occurrence of extremes or a delayed
occurrence? Furthermore, the day of the year is used to compute the seasonal
frequency of occurrence of RX1DAY for each model and each time period, which
is also used to analyse how the seasonal frequency of extreme precipitation will
change over time.

5.2.2 Seasonality in CMIP6 models

Observations vs. CMIP6

Using the seasonal classification technique discussed in section 5.2.1, maps
of extreme precipitation seasonality were produced for the historical period using
the CMIP6 ensemble mean and the global observation data REGEN (cf. Chapter
2, section 2.1). Figure 5.1 depicts that the models can recreate the seasonal-
ity of heavy precipitation. Different colours in the maps represent four sea-
sons; December-January-February (DJF), March-April-May (MAM), July-August-
September (JJA) and September-October-November (SON). A good agreement is
seen between the two maps. The multi-model median map is a bit smoother
when compared to that of observation, which is expected as the median is es-
timated independently for each grid cell. There are slight regional differences
between the maps (especially over Greenland), but over the rest of the globe
performance of models in simulating the seasonality similar to the observation is
notable. Even the areas covered by the different seasonal colours (as indicated by
the colour bars) are comparable and close.

CMIP5 v/s CMIP6

The similarity and robustness of models in simulating the seasonality of
extreme precipitation can be found by comparing our results with the previous
works of Marelle et al. (2018). Our analysis using the CMIP6 models is almost
identical to the already reported results using the CMIP5 models. There are
subtle differences due to the different time periods and smaller sample sizes used
in the two studies (Marelle et al. (2018) included 18 models, while here 30 models
were analysed).

Comparison of the Figures 5.2 (Figure 3 a from Marelle et al. (2018)), which
showcased the seasonality of the extremes in CMIP5 models and 5.1 b, indicates
the ability of the CMIP6 models to capture the seasonality of RX1DAY has not
much changed from the previous generation of models. During the historical
period, a large percentage of extreme precipitation events in the tropics and
the mid-latitudes tend to occur during the summer and fall (JJA and SON in
the Northern Hemisphere; DJF and MAM in the Southern Hemisphere). Also, in
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Figure 5.1: Season of the median day of the year of extreme daily precipitation in obser-
vational dataset REGEN (a) and in the multi-model CMIP6 ensemble (b) for the historical
period (1951-2014). Four colours in the colourbar represent four different seasons; blue for
DJF = December-January-February; green for MAM = March-April-May; yellow for JJA =
June-July-August; orange for SON = September-October-November. The numbers pro-
vided below the colourbar indicate the percentage of the total land areas covered by each
season when the extremes occur.

the northern hemispheric subtropics, the extremes tend to occur during winter
(DJF)and spring (MAM).

Figure 5.2: Same as Figure 5.1, but using the CMIP5 ensemble for the period 1976-2005.
Source: Marelle et al. (2018), Figure 3 a

5.3 Global and regional changes in the seasonality of RX1DAY

The extreme precipitation changes at the end of the 21st century, using the highest
emission scenario (here SSP5-8.5), are not expected to be homogeneous across
the globe (Pfahl et al., 2017). Different regions exhibit different responses, with
some marked by significant seasonal shifts. During the end of the 21st century,
the seasonality can change significantly, as shown in Figure 5.3, in several regions
by more than a month. There is a delayed occurrence of extreme precipitation
over most continental areas, which means that extreme precipitation occurs later
in the year. Some regions where the delay in the extreme precipitation can be
clearly seen are over the Northern Hemisphere’s polar regions, Africa, and Central
and South America. Contrarily, RX1DAY happens earlier in Central and Southwest
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Asia and large parts of North America. Several regions show small or inconsistent
changes in combination with a low model agreement, as seen over South and East
Asia, the equatorial regions, most of the United States, and Oceania. Over Europe,
the CMIP6 models show a mixture of responses. Over the Mediterranean, many
parts of central Europe, the UK and Scandinavia, a delayed occurrence of extremes
is seen, while over the north Scandinavian coast and Eastern Europe, there are
early occurrences of extremes. Figure 5.3 helps to infer that the seasonality of the
extremes in the future is expected to change, but this change is not homogeneous
across the globe.

Figure 5.3: The multi-model median change in the median day of the year of extreme daily
precipitation between the end of the 21st century (2051-2100) using the SSP5-8.8 scenario
and the historical period (1951-2014). Stippling indicates the areas where more than 66%
of the models agree on the sign change. Blue shades represent an early occurrence and the
red shades show areas marked with the delayed occurrences of extreme precipitation.

To go a step further, I have also investigated the spread in the median day
changes of extremes. Figure 5.4 shows the spread in the distribution of median
day changes in the RX1DAY. There are widespread areas with a large spread in
the seasonality changes, although most of the northern hemisphere poles, Asia,
the Saharan and Sahel region, North America and the equatorial regions are char-
acterised by a low spread. In particular, a large spread is found over Europe,
north and south Africa, Arabia, South-Western Asia, South and Central America
and the maritime continents. It is to be noted that the areas with a relatively
small spread also coincide with the areas where the historical and future extreme
season is JJA, indicating that there are no significant shifts in the seasons of ex-
tremes over these areas in the future (cf. Figure 5.1 b; also see appendix Figure
A.16 for future seasonality). The large spread in the seasonality changes coincides
with the areas where the extreme season is either of any other three seasons
except JJA. This partly indicates that most models are good at simulating the
wet seasons, especially the monsoon, in the northern hemisphere. While over
other regions, different models simulate different peak seasons, some in fall while
others in winter.
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Figure 5.4: The multi-model spread of change in the median day of the year of extreme daily
precipitation between the end of the 21st century (2051-2100) using the SSP5-8.8 scenario
and the historical period (1951-2014). Darker shades of blue indicate a large multi-model
spread.

The North American continental region and the central Sahel region are two
regions that I say with much confidence that the extreme seasons will occur early
or delayed (respectively) due to the low spread and high model agreement over
these areas. Here I choose to focus on Europe and three different subdomains.
Europe is chosen for further analysis due to the mixed response to the changes
in the seasonality of extremes and the large spread of these changes (Figure 5.3
and 5.4). The choice is also partly made by the influence of a collaborative work
(Lormendez et al., 2022, to be submitted ) that will focus on the dry extremes
over Europe. The subdomains that were chosen over Europe have different cli-
matologies and seasonalities, and they are 1) North-West Mediterranean (NWM), 2)
Scandinavia (SCD) and Central Europe (CEU). They also represent three different
responses to the seasonality changes and their spread.

5.3.1 Seasonal Frequency changes of RX1DAY over Europe

As discussed in the earlier section, the present-day preferential seasons of extreme
precipitation can shift to a different one in the future. I have evaluated the changes
in the seasonal frequency of the extreme precipitation and found that the changes
in the annual cycle of the extremes have definite seasonal differences. Figure 5.5
depicts the seasonal frequency changes of the extreme precipitation. The summer
(JJA) decrease in the occurrence of RX1DAY events is balanced by a limited increase
across all other seasons, with +2.64, +0.51, and +1.51 % increases in DJF, MAM, and
SON, respectively. Summer extremes are found to reduce in numbers, with a
-4.68 % decrease in frequency. There are substantial regional fluctuations in
the frequency changes over Europe. Summer and fall witness an increase in the
frequency of extremes over Scandinavia’s north coast, while winter and spring
show a decrease in the frequency. In the Mediterranean, the frequency is higher in
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the winter and lower in the summer. Similarly, in Central Europe, the frequency
of extremes in the JJA season has decreased while the DJF season has increased.
Delayed and early occurrence of the extremes in a year, as illustrated in Figure
5.3, is linked to changes in the frequency of the extremes. This is also linked to
other physical aspects, such as changes in the water cycle and circulation (Pall
et al., 2007; Norris et al., 2019), which I will examine in the following sections.
It should be emphasized that a decrease in the frequency of extremes (Trenberth,
1999; Allen and Ingram, 2002; Trenberth et al., 2003; Stephens and Hu, 2010;
Trenberth, 2011) does not always imply a decrease in their maximum intensity.

Figure 5.5: Maps depicting the multi-model median changes in the frequency of RX1DAY
in different seasons over Europe. Stippling indicates the areas where at least 66% of the
models agree on the sign change. The mean values given above each panel indicate the
areal average of the changes over the domain for each season. The changes are calculated
in percentage.

I have examined the annual cycle of extreme precipitation occurrences
across Europe to determine whether there is a shift in the frequency of extreme
precipitation. Similar to the maps in Figure 5.5, the annual cycle of the extremes
follows a seasonal pattern (cf. Figure 5.6). Except for June, July, and August, all of
the months’ monthly median values of extreme frequency are positive. September
has a negative median value as well. A sharp decrease in the frequency of extremes
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can be witnessed from May to August, followed by a sharp increase from August.
The blue and red bars in the figure indicate the same thing, but red shows the
annual cycle of extreme frequency after removing a possible climatological bias by
shifting the peak month to a fixed peak month (M0), which in this case is October.
Thus, aligning the months according to M0 allows us to evaluate the results relative
to a peak month and may be useful to avoid possible discrepancies in the model
responses associated with the different model ability to replicate the observed
annual cycle in the present-day climate. However, our expectation of a decrease
in the spread appears to be false. This result indicates that the annual seasonal
cycle response is not much sensitive to the model bias over the historical period.
A comparison of the results before and after shifting reveals that the red curve is
smoother and shows an increase in the frequency of the extremes from August
to September. This increase is also visible in the blue curve. This suggests that
the extreme occurrence has shifted from JJA to SON or that the seasonality has
indeed been delayed to later in the year.

Figure 5.6: Box plots represent the annual cycle of the changes in the frequency of extreme
precipitation. Each box represents the frequency change values for a specific month from
the 30 CMIP6 models used in the study. The blue boxes show the annual cycle of the extreme
where the values of the frequency change correspond to the models’ peak months. The red
boxes depict the annual cycle after shifting peak months of each model to a fixed month
(M0) based on the climatological peak month. The peak month used in this example is
October, marked by light grey colour in the plot. Each whisker represents the spread in
the monthly values; the box ends are the 25th and 75 percentile; the back horizontal line in
each box shows the median values.

Understanding the projected Seasonality Changes

From the previous sections, it is now clear that the seasonality of the
extreme precipitation events is projected to shift in the future. Our sea-
sonality classification technique only tracks an overall displacement sooner
or later in the year and has limitations in that it is not intended to cap-
ture more complicated changes in the shape of the distribution of heavy
precipitation events given the use of the RX1DAY statistics. Additionally,
there is a significant regional spread for the shifts in seasonality. Hence,
one question at the heart of this study is, what are the mechanisms that
are potentially responsible for the seasonality changes and the consequent
large spread? To better understand the projected changes, more research
with a regional focus is required. I extended our inquiry into the causes
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and mechanisms of extreme seasonality shifts in precipitation. To do so, I
narrowed the scope of our investigation from a global to a regional one,
emphasising Europe. As described in section 5.3, I divide the European do-
main into subdomains based on their various climatologies and dominating
circulation patterns to better comprehend the regional shifts. Changes in
the atmospheric circulation turned out to be one of the plausible candidate
variables that could be analysed to explain the seasonality changes. Ana-
lyzing changes in future circulation patterns relative to the past or current
day can provide crucial information on the state of the future atmosphere.
The direction of moisture transport in a given season can be determined
by the mean anomalous wind flow patterns, which can either promote or
prevent excessive precipitation.

5.4 Use of Circulation types

Given the strong relationship between synoptic patterns and local climate vari-
ables, atmospheric circulation is often described as one key driver of the day-
to-day variability of most surface meteorological parameters including extreme
precipitation. The joint research with Lormendez et al., (2022, to be submitted )
has led to the computation and analysis of the dominant synoptic circulation types
(CTs; cf. section 2.5) over Europe, as observed according to the ERA5 reanaly-
ses and as derived from the historical (1951-2014) and future climate (2051-2100;
SSP5-8.5 scenario) simulations of a large subset of CMIP6 models. The objective
of this collaborative work is to understand the interplay between the frequency
changes of the CTs and the dry extremes over Europe. This led to the idea that
the CTs have the potential to prove to be a good framework that can be utilized
to better understand the seasonality shifts in projected extreme precipitation and
their model dependence, especially the relation of the atmospheric circulation in
changing the seasons of extremes. The simplicity in terms of the input data (mean
sea level pressure), the relatively easy interpretation of the underlying airflow in-
dices for the resulting circulation types and its transferability to other regions
with a simple implementation also support our choice to use this classification.
In the subsequent sections changes in the frequency of CTs and extreme precipi-
tation during the JJA and SON seasons will be discussed, primarily because they
are the seasons when most of the extreme occurs in Europe, as illustrated by
Figure 5.1.

5.4.1 Evaluation of circulation types in CMIP6

The models are evaluated according to their ability to reproduce the seasonal
frequencies averaged over the historical period (1951-2014). Assessing the skill of
CMIP6 models in classifying and reproducing the realistic frequencies of different
circulation types is based on the comparison with the state-of-the-art ERA5 re-
analysis (Hersbach et al., 2020). This is considered a very reliable dataset for
this purpose given the assimilation of both in situ and satellite observations over
Europe. Our focus is on two seasons, JJA and SON, as previously mentioned. In
the following subsections, I look at the seasonal spatial differences between the
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frequencies derived from the reanalysis and models for each CT (only cyclonic
type is shown) at each grid point and the average values of the historical frequen-
cies of each CT. The performance of CMIP6 models is assessed through the spatial
correlations between reanalysis and models’ frequencies of CT derived from the
seasonal average over the historical period. Taylor diagram (Taylor (2001), cf.
Chapter 2) are employed to assess this spatial distribution.

Present day frequency of CTs in models

The absolute frequencies throughout the entire European domain and three
different subdomains for relevant JJA and SON seasons during the historical
period are compared to see how accurately the models reflect the circulation
patterns compared to the ERA5 reanalyses. The seasonal frequencies for each CT
are depicted in Figure 5.7. Overall, models can reproduce CT seasonal frequencies,
and reanalyses and the multi-model mean (MMEM) have a reasonable agreement.
The frequency distribution averaged over the entire domain for reanalyses, and
the MMEM shows that the most common types of CTs are anticyclonic (A) and
unclassified (U). The least frequent types vary with season, and the models also
agree on this distribution. Aside from the A and U, the cyclonic (C) type dominates
throughout summer and fall. The Northeasterly (NE) and Easterly (E) types appear
to be more common in summer. On the contrary, these are less common in
autumn, while the South Westerly (SW) and Westerly (W) varieties become more
common.

Figure 5.7: The present-day values of frequency (in %) of the combined 11 circulation types
(CTs) for ERA5 and the CMIP6 ensemble. The error bars represent the multi-model spread
in the present-day values of the frequency. Different panels illustrate the evaluation of the
CTs for different seasons and subdomains as indicated by the subtitles. EUR = Europe; SCD
= Scandinavia; NWM = North-West Mediterranean; CEU = Central Europe.

However, the relative frequencies are different for the various subdomains.
The C type is the most common in the Scandinavian (SCD) subdomain during the
summer, followed by the A and the Northerly (N) types. Whereas in the North-
West Mediterranean (NWM) and Central European (CEU) subdomains, A is the most
prominent in autumn and summer. The U type follows the A type in occurrence
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Figure 5.8: Maps illustrating the historical values of the seasonal frequencies (a, b) of the
cyclonic type from ERA5 reanalysis and the corresponding biases (c, d) of the CMIP6 multi-
model mean. The frequencies are calculated in %, and the maps illustrate the bias and
the observed values for JJA and SON seasons. The mean values given above each panel
indicate the areal averages.

throughout these subdomains, although it is the least common CT across the SCD
in summer.

The ability of models to capture the spatial patterns of relative CT fre-
quencies over Europe is evaluated by comparing them to corresponding CT from
ERA5 over the same recent period. Although any CT can be used for comparison,
I chose first to evaluate the cyclonic type. The MMEM was calculated for the CMIP6
models to compare the CT over Europe with the reanalysis data. Figure 5.8 il-
lustrates the historical values (panels a, b) of the seasonal (JJA, SON) frequencies
for cyclonic type from the ERA5 reanalysis and the corresponding biases (panels
c, d) of the MMEM. Although the model can simulate most geographical features
of CT frequencies as detailed by the ERA5, there are disparities in spatial repre-
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Figure 5.9: Taylor diagram measuring the performance of each CMIP6 model (30 here) in
simulating the seasonal frequency of cyclonic type for JJA (a) and SON (b) over Europe for
the historical period from 1951-2014. The radial axis is the normalized standard deviation
while the angular axis is the centred pattern correlation. The reference data set is ERA5
(REF). The pink concentric circles show the centred RMSE. Individual models are marked in
green circles and the multi-model ensemble mean is in the solid green circle.

sentation among the models when replicating the CT frequencies (Figure 5.8 c,
d). Models overestimate the C type throughout the land in both seasons. A few
places are under-estimated, particularly across the Scandinavian peninsula and
the United Kingdom in JJA and Spain and the Mediterranean in SON. It is worth
noting that the total average bias is relatively low (0.52% for JJA; 0.31 % for
SON), demonstrating the realistic behaviour of the CMIP6 multi-model ensemble.

Figure 5.9 shows the Taylor diagrams for seasonal frequencies of the cy-
clonic type over Europe and allows us to assess the performance of individual
CMIP6 models. For both seasons, there is an overall good correlation among the
models with the reanalysis, with the MMEM with ≈95% correlation for both the
seasons. For JJA, the correlation of individual models is low, and the spread in
the normalized standard deviation is larger than that in SON. This suggests a
poorer performance when comparing the summer to the fall. Indeed there are
evident differences among the models. For example, the lower correlation and
large spread (greater than unity) in two models in the JJA season indicate poor
agreement. During SON, most of the models fall outside the 1 standard devia-
tion curve but have a high correlation value to the reanalysis. While for the JJA
season, 25 out of the 30 models used are within the 1 standard deviation curve
and the correlation is a bit lower than the SON. Overall, most of the models can
simulate the patterns of the CT frequencies reasonably well with a few differences
between the seasons.

5.5 Linking changes in seasonality to circulation types

The seasonality changes in extreme precipitation have been explored in the previ-
ous section 5.3.1. Here I was interested in knowing to what extent the CT changes
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Figure 5.10: CMIP6 multi-model mean changes in the seasonal frequency of the 11 different
circulation types (CTs) that occurred for the RX1DAY days during the period 1951-2014 rela-
tive to 2051-2100. The bars indicate the average values of the occurrences of CTs over the
European domain. Different seasons are indicated by the colours as shown in the legend.

Figure 5.11: Maps depicting the multi-model mean changes in the frequency of cyclonic circu-
lation type for the RX1DAY days (CTRX) for different seasons over Europe. Stippling indicates
the areas where at least 66% of the models agree on the sign change. The mean values
given above each panel indicate the areal average of the changes over the domain for each
season. The changes are calculated in percentage.
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account for the changes in RX1DAY seasonality and the inter-model spread in this
response. I begin by looking at how the average frequency of each circulation
type has changed over time for each season. The change in each circulation type
that occurred just for the RX1DAY days is depicted in Figure 5.10. Because the
values only show changes in the CT during RX1DAY days, they are directly tied
to changes in extreme precipitation. The changes in the cyclonic type are the
most during all seasons. A key point to note is that for the JJA season, all CTs
changes are expected to decrease, with the cyclonic type experiencing the most
significant decline. The cyclonic type shows the largest changes in all seasons
when indexed by RX1DAY days, suggesting that it is one of the dominant CTs that
causes changes to the seasonality of the extremes over Europe. Obviously, there
are local variations, with some types being more sensitive in specific domains
(Figure A.17).

The projections based on the SSP5-8.5 scenario point that the cyclonic type
may be subjected to substantial changes in the future, with increased frequency in
all seasons except summer. The regional patterns of these changes for the cyclonic
type during different seasons are depicted in Figure 5.11. The map illustrates
that regional changes are not uniform across the European continent. Even if
the overall frequency of DJF, MAM, and SON is projected to increase, there are
areas with a reduction in cyclonic type frequency, notably over the Mediterranean,
Scandinavian coast, etc. Moreover, JJA exhibits a widespread decline in frequency
throughout except for the Scandinavian coast, which may suggest a potential
dynamical contribution to a future summer drying (increased precipitation deficit)
over much of the European continent. Although it is beyond the scope of the
study to assess whether such a change is already discernible in ERA5, it should
be emphasized that a former study has reported a decrease in the Northern
Hemisphere summer extratropical cyclone activity over the last 35 years (Chang
et al., 2016).

U A C NE E SE S SW W NW N

DJF 0.36 0.07 0.73 0.28 0.28 0.16 0.19 0.41 0.64 0.61 0.28

MAM 0.09 0.31 0.76 0.44 -0.04 -0.13 0.14 0.47 0.48 0.68 0.63

JJA 0.61 0.46 0.91 0.45 0.42 0.55 0.57 0.64 0.59 0.56 0.51

SON 0.24 0.2 0.59 0.04 0.17 0.2 0.39 0.63 0.6 0.31 0.23

Table 5.1: Spatial correlation values between the frequency of the RX1DAY and different
circulation types for all seasons.

Also noticeable is the similarity of Figure 5.11 with changes in extreme
precipitation frequency, as indicated in Figure 5.5 in section 5.3.1. There are
remarkably similar spatial features between the two maps in all four seasons. The
decrease in the frequency of extremes in summer corresponds to a decrease in the
frequency of the cyclonic type circulation, and the rest of the seasons are marked
by an increase in the frequency of extremes and cyclonic type. As shown in Table
5.1, the high correlation values state that the mean regional frequency changes
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of extremes are closely related to the regional frequency changes of cyclonic
types (other CTs are also related, but the cyclonic type is the dominant one).
The following section will assess the CT influence on frequency variations in
extremes as a possible purely dynamic contribution that should be distinguished
from additional frequency changes that may occur within a given CT category.

5.5.1 Decomposition of precipitation extremes based on conditional
probabilities

In order to assess the link between CTs and extreme precipitation, I consider
using a linear decomposition (Cattiaux et al., 2013) of a mean variable X(X ) as the
mean of conditional probabilities xk weighted by the frequencies of occurrence fk:

X =
∑

k

fkxk (5.1)

where fk = Nk/N the frequency of occurrence of the kth CT and xk the conditional
mean of the CT k.

Using Eq. (5.1) the large scale dynamics to a difference of X can be esti-
mated. Taking the difference between the future (index F) and the historical (index
P) climates, Eq. (5.1) becomes:
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(5.2)

where BC (between class) represents the part of the total difference which is due
to the differences in frequencies of occurrence of CTs, and WC (within-class) the
contribution of differences within the CTs, while RES (Residual) is a mixing term.

5.5.2 Physical understanding of decomposed components

The proposed WC/BC framework is aimed at quantifying two distinct components
of changes in the frequency of extremes. The WC class describes the changes
within a specific CT category, whereas the BC class describes the changes that
occur relative to changes in the occurrence of the various CTs. The WC effect
can be related to both thermodynamic and mesoscale dynamic processes. The
thermodynamic factors include the temperature and the moisture content in the
vicinity of the storms, which can cause the changes in the storm dynamics as-
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sociated with a particular CT at the regional scales. In contrast, the BC effect is
primarily related to changes in the large-scale dynamics, namely changes in the
frequency of the dominant CTs.

For the JJA and SON seasons, Figure 5.12 depicts the individual contri-
butions of the WC, BC, and RES components for each CT over the EUR and
subdomains. Better identification of the primary circulation type responsible for
extremes’ seasonality changes is possible by splitting changes in the seasonal ex-
tremes based on their contributions from the CT. Further deconstruction of the
extremes associated with individual CTs such as WC, BC, and RES allows us to
understand better the factors that may contribute to an increase or decrease in the
seasonal frequency of extreme precipitation. Figure 5.12 shows that the cyclonic
type is the dominant type across Europe and all subdomains, except for cen-
tral Europe, resulting in seasonally changes in extremes. The interplay between
the BC and WC components balances the total change in extreme precipitation
frequency. The effects from the individual components counteract the total oc-
currences of extremes for the cyclonic type, especially over the entire European
domain during the SON season and the subdomains SCD and NWM for the JJA
and SON seasons, respectively. This suggests that severe events are linked to the
interaction of dynamic and thermodynamic factors at both the local and regional
scales. In contrast, there are instances where the individual components add to
each other, particularly in the Central European domain and throughout Europe
during the JJA season. It is worth mentioning that, in addition to the cyclonic
type, other CTs can play a significant role, particularly when focused on a smaller
domain.

Figure 5.12: Bar plots illustrating the multi-model mean and spread of the probability of
three decomposed classes for all the 11 circulation types (CTs). Each panel depicts the figures
for different seasons and subdomains as indicated by the subtitles. The decomposed classes
include within class (red), between class (blue), and residual (green).

Our method to split the changes in the total frequency of extremes into
three contributions (WC, BC and residual) is depicted in Figure 5.13. The further
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decomposition of the influence from different CTs gives us an idea about the dif-
ferent forces that underplay leading to the changes in seasonality. Figure 5.13 d,
h depicts the sum of three decomposed components from all circulation types at
all grid points across Europe for the JJA and SON seasons, based on Eq. 5.2.
The WC makes the most significant (positive or negative) contribution for both
seasons. A striking contrast can be seen between the seasons. For summer, the
average contribution from all components is negative, implying that the frequency
of summer extremes will decrease in the future. In autumn, however, the picture
is evidently different and well established, with a consistent negative contribution
from the BC and a widespread positive contribution from the WC, with average
values of -2.26 % and 4.65 %, respectively. The sum of the three components
(5.13 d and h) for both seasons is essentially the same as the seasonal frequency
of RX1DAY, as shown in Figure 5.5, acknowledging our calculations are accurate. A
meaningful result here is that the contribution of the WC and BC can be linked to
the respective decrease and increase in the frequency of extremes in the summer
and autumn. In both seasons the value of within-class changes is most dominant
and could be controlling the total changes. In the summer, negative WC val-
ues suggest a possible decrease in the occurrence of favourable thermodynamic
conditions leading to extreme precipitation. This may include a model-dependent
near-surface drying (Douville and Plazzotta, 2017; Douville et al., 2020) associated
with a stronger convective inhibition (Chen et al., 2020). The BC contribution is
likewise negative but low, similar to the residual component, indicating that dur-
ing JJA, changes in CT frequency and hence large-scale dynamic contributions
are limited but non-negligible. The negative signals in all components point to
a future (high emission scenario, SSP5-8.5) with fewer extreme precipitation oc-
currences. However, as seen in Figures 5.13 and 5.5, the SON season experiences
an increase in the occurrence of extreme precipitation.

During SON, WC is the primary contributor to the total change (increase) in
the frequency. In addition, BC contributes a net negative and significant amount to
the total frequency. The BC and WC have an overall offsetting effect in SON, but
their contributions complement each other in selected locations, like Spain and
the Scandinavian coast. The rise in extreme precipitation events in the autumn
can be linked to an increase in the thermodynamic feature associated with specific
CTs, allowing for more extremes. In the future, the alteration of the mesoscale
storm dynamic specific to the CT regime may promote an increase in extremes
during SON. While BC, as seen earlier, is also a significant contributor but leading
to a decrease in the extremes. Hence from the preceding two examples, it is
evident that large-scale dynamics contribute significantly to overall changes in
the frequency of extremes; nevertheless, total changes are more dependent on
WC changes.

5.6 Exploring the possible reasons for the inter-model spread

By the end of the twenty-first century, the seasonality of extreme precipitation is
projected to shift, but there is a considerable inter-model spread in this transition.
Previous studies (e.g., Marelle et al. 2018; Brönnimann et al. 2018) have not delved
into the reasons for the shift and subsequently the significant inter-model spread
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Figure 5.13: Maps illustrating individual contributions from three decomposed classes;
within (WC), between (BC) and residual (RES); to the total extreme precipitation changes.
The stippling indicates areas where 66% of the models agree on the sign change of the
multi-model mean. Panels d and h show the sum of the three classes and are identical
to Figures 5.5 c and d. Black boxes are drawn in corresponding panels to showcase the
subdomains - Scandinavia (SCD) and Central Europe (CEU) are marked for the JJA while
for SON only the North-West Mediterranean (NWM) is considered.

associated with them. Section 5.3 discusses the spread observed in the shift of the
median day of extreme precipitation in detail. In section 5.3.1, I confined our focus
to Europe in order to investigate the processes behind these changes. I investigated
the relationship between the seasonal frequency of extreme precipitation and of
dominant CTs, which provided insight into whether or not changes in atmospheric
flow patterns can alter the occurrence of extremes. The Eq. 5.2 decomposition of
the total frequency of extremes by seasons also provided additional information
about the individual contributions of frequency changes of CTs to the frequency
changes of extremes. The role played by WC and BC in shaping the distribution of
extreme precipitation is also discussed. Nonetheless, the analysis of the individual
components also proved to have a significant spread associated with them. One
hypothesis is that the spread in the WC and BC can get translated into the total
spread found in the shift of the seasonality. Hence assessing the spread in the
individual components of decomposition can shed light on the total uncertainty
associated with the seasonal shift of extreme precipitation.

5.6.1 Spread in the components of decomposition

As discussed earlier, I identified a large spread in the changes in the frequency of
the different CTs. Particularly when analyzing the components of decomposition,
the spread is much larger for the within class than the rest for all domains and
CTs (Figure 5.12). To assess the variation of the WC and BC among the models and
how it contributes to the large spread, I performed a cross-model regression of
the average WC and BC values with different monthly variables (note that daily
model outputs for variables, such as total precipitable water, for instance, are
not available in the CMIP6 archive). I conducted this investigation using monthly
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relative anomalies (after removing the annual mean) of surface temperature (T2M),
total precipitable water (TPW), and low-level (850 hPa) wind circulations (cf.
Figures 5.14 and A.18). The objective is to look for a possible coherent structure
or pattern explaining why there is such a spread among the CMIP6 models.

Any change in global and large-scale T2M can be linked to changes in
regional TPW, while large-scale circulation patterns can alter the moisture ad-
vection. The cross-model regression coefficient values illustrate how T2M or
TPW is related to WC or BC changes. At the same time, their slopes indicate
the percentage of the changes that these variables can address. I evaluate the
subsequent investigation by focusing on a single subdomain (over NWM) to ensure
a methodical approach. NWM is opted for further analysis mainly because of the
more extensive spread in the individual components (cf. Figure 5.12) than the
other subdomains and our interest in further understanding the changes in this
area. The regression is performed on a global scale due to our assumption of the
involvement of large-scale features that contribute to the spread. This assump-
tion is partially correct, as the significant regions identified were not just in the
immediate neighbourhood of the subdomain under study, but also far away.

Figure 5.14 depicts the correlation and slope maps obtained by regressing
the average WC values over the NWM across the models used in our analysis. The
coloured contours in the top panel represent the regressed TPW results, while
the bottom panel represents the corresponding T2M results. Stippled areas on
the correlation maps represent significant areas, whereas the vectors on the slope
maps represent wind flow slopes obtained using the same method as the contours.
As expected, both the correlation and the slopes of T2M and TPW show coinciding
patterns of positive and negative values. The stippling illustrates that the areas
displaying a significant correlation are not widespread; however, the significant
areas in T2M and TPW coincide for most regions. One explanation for the large
spread is in the definition of WC, as it is a combination of both thermodynamic
and mesoscale dynamic factors leading to extreme precipitation. In the T2M
and TPW maps, we see cross-Atlantic positive correlation values (darker blue
shades), indicating that any changes in the WC can be linked to changes in the
surface temperature and thus related to the precipitable water available at lower
levels. Or, to put it another way, most models have positive TPW and T2M
anomalies, which are linked to positive WC values across the board. Hence, we
may assume that the part of the WC contributed by the thermodynamic factors
(over the significant areas) may not be responsible at large for the spread. This
leaves us to investigate the dynamic factors, which are explained using the wind
flux anomalies.

The cross-model wind flow vectors, when regressed with the WC, are
shown in Figures 5.14 b and d. We see wind flow vectors forming regional or
mesoscale structures rather than large-scale flow structures or patterns. The
TPW (figure 5.14 a) map shows a cyclonic wind anomaly related to the WC values
across the models that bring in the moisture, particularly over the NWM. An
anticyclonic low-level wind structure originates over the Arctic Sea and expands
across most of northern Europe, eventually merging with the cyclonic pattern in
the NWM domain. This dipole-like wind flux could explain the significant spread
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in the WC across Europe. The various wind flow configurations generated by the
different models lead to considerable differences in the moisture convergence to
the region of concern, resulting in a large spread in the WC. The thermodynamic
factors are explained by the significant TPW with warmer T2M, while the dynamic
contribution and most of the WC spread are explained by the different mesoscale
wind fluxes seen across the models.

Figure 5.14: Maps showing the correlation (a, c) and slope (b, d) from the cross-model regres-
sion of the within class values across models from the North-West Mediterranean (NWM)
subdomain with the global anomalies (with annual mean removed) of total precipitable
water (TPW; a and b), near-surface temperature (T2M; c and d) and low-level wind flux
(overlayed vectors in b and d). The top panel is for the TPW and the bottom panel is
for the T2M. The stippling over the correlation maps indicates the significant areas with
P-value less than 0.05. The vectors overlayed over panels b and d are the 850 hPa wind
flux slopes.

By regressing the average values of both WC (cf. 5.14) and BC (cf. A.18)
with the relative monthly anomalies of T2M, TPW and circulation patterns across
all the models, a crude perspective of the different factors that may be leading
to the large inter-model spread in the seasonal frequency of the extremes can
be obtained. However, it is difficult to draw any conclusions from the results
until now due to their complexity and shortcomings to explain various factors
leading to the spread. Yet, this gives us a picture of how the different variables
are associated with the seasonality changes and the accompanying spread. Figure
5.14 illustrates only the initial findings for the WC and requires further analysis.
I also have analysed the anomalies in the T2M, TPW, and wind patterns across
the extreme models, i.e, the models with the largest and the lowest values of
the components of decomposition (only for WC, cf. A.19), and looked for the
dissimilarities, which further help in understanding the spread (cf. Figure 5.14).
Constructing composites based on the different values of the WC and BC can also
be a way to distinguish between the models with distinct physical representations,
which could be analysed in future studies.
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As previously stated, this preliminary analysis of the inter-model spread
requires further investigation and evaluation to reach a solid conclusion. Fur-
thermore, the unavailability of relevant daily variables in the CMIP6 archive is a
challenge, as the basic climatology seems to smooth various features and is insuf-
ficient to explain the entire picture. As suggested by Chen et al. 2020, additional
diagnostics such as the atmospheric convective inhibition (CIN) and available po-
tential energy (CAPE) would be particularly interesting to better understand the
response of daily precipitation intensities, including for RX1DAY events in a warmer
climate.

5.7 Synthesis

This chapter focuses on the projected changes in the seasonality of the annual
maxima of daily precipitation intensities (RX1DAY). The global atmospheric warm-
ing associated with climate change increases the RX1DAY intensities, but it may be
also associated with a seasonal modulation of the RX1DAY occurrences given the
projected seasonal and regional variations in the atmospheric warming and the
related circulation changes. Quantifying the future changes in the seasonality of
extremes allows us to get better prepared to handle the risks that may accompany
them.

In most parts of the world, daily precipitation extremes follow a predictable
seasonal pattern (Marelle et al., 2018). Both the latest CMIP6 and the previous
CMIP5 generation of climate models likewise capture the observed seasonality
of extreme precipitation. In a scenario with unabated emissions (SSP5-8.5), the
seasonality of extreme precipitation is projected to change in many places by the
end of the twenty-first century. The later occurrence of the extremes, i.e., from
summer and early fall towards fall and winter, with no regional uniformity, is a
characteristic of this change. Across Africa, South America, Europe, and the high
latitudes, there is a definite later shift. However, an early change is also detected
in central Europe, North America, and other parts of the world. Significant inter-
model spread in the seasonality shifts was also identified, particularly in areas
where the historical extreme season is not summer.

One of the questions was whether the inter-model spread identified in the
seasonality shift was an artefact of model biases. To alleviate this bias, which may
be diluting our findings, an adjustment of the peak month of RX1DAY occurrence in
the future to a fixed peak month was done. The fixed peak month is determined by
calculating the peak month from the historical period. By aligning the model peak
month to a fixed one, I compare the shifts in the seasonality relative to this month,
which smooths the seasonal cycle. The apparent shift that was observed before
and after this adjustment confirms a clear change in the extremes’ seasonality.

To better understand what causes these seasonal shifts in extremes, I nar-
rowed our analysis region to Europe. The European domain is intriguing since
it shows an overall later occurrence of extremes, but with a large inter-model
spread. To get insights into the underlying mechanisms, I analyzed the frequency
changes of 11 circulation types (defined using a simplified version of the JC classifi-
cation) across the whole European domain. The frequency changes of the various
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circulation types are related to changes in extreme precipitation across various
seasons. Not surprisingly, the cyclonic type is the most dominant contributor to
RX1DAY events across Europe (there is a regional difference over different subdo-
mains in the order of contribution) and thus accounts for significant changes in
RX1DAY occurrences. In addition, I computed strong seasonal correlations between
the frequency changes of the cyclonic type and the RX1DAY.

Using a simple decomposition technique, I further analyzed the total change
in RX1DAY occurrences as a sum of three individual contributions. The three
classes, WC, BC and residual, explain the different features of the extremes pre-
cipitation and its link to the circulation types. The breakdown revealed the
offsetting or common nature of the WC and BC effects depending on the subdo-
mains and seasons. WC, which includes the thermodynamic and the mesoscale
dynamic factors, is the dominant contributor to the change in the seasonality of
the extremes. BC, which describes the role of the large-scale dynamics or the
changes in the frequency of a circulation type relative to others, was not found
to be a large contributor (but non-negligible) to the total changes in the seasonal
frequency of the extremes. The contribution of both WC and BC changes accord-
ing to the season analysed and the total change in the frequency of the extreme
is dependent on their interplay.

The study was also a preliminary attempt to address the large inter-model
spread in the decomposed classes. The drivers that may be responsible for
the significant spread, particularly large in the WC, were explored by cross-
model regression of the T2M, TPW, and wind flow vectors. The large spread
can be related to the varying representation of wind fluxes among the various
models, pointing to the distinct dynamical representations implemented. The
investigation also showed that the temperature and moisture features, indicating
the thermodynamic factors, are consistent with the cross-model regression and
in extreme models, leaving us with the differences in the circulation patterns
produced by the different models (cf. section 5.6.1).
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Take home messages

Today, googling "climate change" will get you about 1.7 billion hits. A multitude
of threads has emerged over the course last few decades on many climate policy
blogs and peer-reviewed journals, in which most of them are the gloom-and-
doom variety. Among them, many studies have analysed and documented different
aspects of the changes in the mean water cycle of our planet. This thesis focuses
on the hydrological consequences of increased GHG concentrations and related
global warming, with an emphasis on wet and dry meteorological extremes. The
primary goal here was to quantify and better understand the response of daily
precipitation extremes to increased CO2 concentrations and across various global
warming levels using global projections and idealised climate change experiments
undertaken as part of the CMIP6.

The synthesis section at the end of each chapter summarizes the key find-
ings of the corresponding chapters. This concluding chapter is a wrap-up of all
the chapter summaries. In chapter 1, I reviewed the science of extreme events and
the recent literature available today on the analysis of the extremes. The chapter
also discusses the key mechanisms along with shedding light on the projected
changes and the uncertainties which are further discussed in the later chapters.
The chapter 2 deals with a variety of data and the methods I used to approach
the main question of the PhD scientifically. The chapter also highlights the differ-
ent choices as a researcher I made to conduct and achieve the results. Dynamical
methods include the use of a hierarchy of climate change experiments, ranging
from idealized abrupt-4xCO2 simulations and their AGCM breakdown, to more
realistic projections, here mostly based on a high-emission scenario to limit the
confounding effect of internal climate variability. Statistical methods include the
use of non-stationary GEV analysis for diagnosing robust changes in the 20-year
return level of RX1DAY intensities and classification of daily synoptic circulation
types for a better understanding of changes in RX1DAY seasonality.

In chapter 3, I have assessed the relative contributions of fast atmospheric
adjustment to increased CO2, slow SST-mediated warming, and SST pattern
change to projected daily precipitation extremes. More specifically, I summarised
and identified the role of precipitation extremes’ frequency and intensity in mod-
ulating annual precipitation changes, particularly the differentiation between the
fast and slow responses leading to non-homogeneous regional spatial features de-
pending on the wet/dry extremes. The fast adjustment was also shown to trigger
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an overall increase in atmospheric stability and thus an increase in the number
of dry days and in the annual maximum duration of meteorological droughts (as
evaluated as the number of consecutive dry days).

Using a non-stationary GEV approach for both location and scale parame-
ters, I have then quantified projected changes in the 20-year return value (RV20)
of annual maximum daily precipitation intensities (RX1DAY), as well as the related
uncertainties across different CMIP6 models or different realizations of the same
model (Chapter 4). This original study has been published in Weather and Cli-
mate Extremes and highlights the need for larger ensembles (than in CMIP6) for
individual models and scenarios so that a better distinction can be made be-
tween model uncertainty and internal climate variability. Yet, our results suggest
that most models show an increase in RX1DAY and RV20 values that are consis-
tent with the Clausius-Clapeyron relationship when scaled by the corresponding
global warming.

In chapter 5, I have investigated changes in the seasonality of extreme
precipitation and briefly explored the physical mechanisms that underpin this
change. In line with the former-generation global climate models, the ensemble
mean results of CMIP6 highlight possible changes in the seasonal cycle of the
RX1DAY events, that can sometimes be interpreted as a shift towards a later season,
potentially related to more favourable thermodynamical conditions. Yet, the use
of a circulation type classification over Europe has also enabled the identification
of potential dynamical contributions, such as a decrease in the occurrence of
cyclonic synoptic conditions in summer that could deserve further analysis and
a better understanding of the regional inter-model spread.

If I am asked to sum up this thesis in a single statement, I would say, Ð
"Learning from the past, reasoning about the future, and making sense of the pro-
jections in a warming world"

In this thesis I have complied various aspects of the response of extreme precipi-
tation to climate change, utilising the now available state-of-the-art climate model
projections and observations. I have utilised the end-of-the-road scenarios (high
emission, low mitigation; SSP5-8.5) to represent the future, and analysed the ex-
treme precipitation changes relative to the historical period. This PhD provided
me with the opportunity to strengthen my general appreciation of human-induced
climate change and increased my knowledge in the field by enabling me to prac-
tice and comprehend different dynamic and statistical tools. This also provided
me with a chance exhaustively learn and think about the investigation rational-
ities and disentangle the results. Furthermore, the opportunity to manage and
run a few extended climate simulations with CNRM-CM6-1 that require a lot of
effort in designing allowed me to find an optimal configuration to save computing
resources and monitor the experiments. As this PhD comes to an end, after three
years of dedicated work and a global pandemic, I have gained confidence and en-
ergy to seek after my future research and has given me some new perspectives
to direct my focus which are discussed in the next section.
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Perspectives

This thesis has explored in detail several drivers and mechanisms that contribute
to ongoing and future changes in the intensity and frequency of extreme precip-
itation events under enhanced atmospheric GHG concentrations. It exhaustively
covers the role played by the different atmospheric CO2 concentrations and global
warming levels that influence the extreme precipitation response; the uncertainty
related to the projections; and the change in the seasonality of the extremes. I can
say that this thesis has given me many insights to extend and proceed with my
research in the future. Among the several perspectives I acquired from this PhD,
a few are my personal favourites and I discuss them in this section. There are
a few short-term studies that I would like to pursue in the coming years, while
others are long-term research projects that I am considering.

Building on my PhD experience and on the CMIP6 archive, one of my
near-term goals is to better understand the underlying mechanisms that lead to
extreme precipitation using the different idealised experiments from the CFMIP
(Webb et al., 2017). By coding different process-oriented diagnostics like eval-
uation of the dry static energy, CAPE and CIN analysis (e.g. Cheng et al. 2018;
Chadwick et al. 2022) in the CFMIP model outputs, I would like to assess their ro-
bustness across the different current-generation global climate models. Moreover,
the advancements in climate modelling, especially the development of very high
resolution (HighResMIP, Haarsma et al. 2016) and convection-permitting models
(Lucas-Picher et al., 2021), represent a good opportunity to assess the effect of
model resolution on the response of precipitation extremes. While higher hori-
zontal resolution and explicit convection are expected to improve the simulation
of heavy precipitation intensities, I would like to assess whether they also al-
ter the magnitude of the relative changes, particularly do they lead to super-CC
rates (Bador et al., 2020; Pichelli et al., 2021) that are generally not found in
the coarser-resolution CMIP6 models? Beyond the standard scenarioMIP simula-
tions from the CMIP, I would also like to explore additional MIPs, for instance, the
DAMIP (Gillett et al., 2016). The objective would be to distinguish the contribution
of GHG and other anthropogenic forcings, particularly aerosols, as well as the
combination of both (eg., Baek and Lora 2021; Dong et al. 2021) on the RX1DAY
response. So doing, it could be possible to detect and attribute observed changes,
at least in regions with sufficiently long and reliable records, and, ultimately, to
constrain the model-dependent projections with these observations. One of the
other near-term future projects that I would like to pursue (maybe during my
latest secondment at Predictia after the PhD manuscript submission) is a com-
parison of different bias adjustment techniques and their potential quantitative
impacts on heavy precipitation projections (Vrac et al., 2016).

A few longer-term objectives are also on my to-do list. The assessment
of potential non-linear changes in extreme precipitation (e.g., Pendergrass et al.
2019) has tremendous implications for adaptation and deserves further analysis
in a multi-model (structural uncertainties) and/or multi-parameter (parametric
uncertainties) ensemble framework. Dry extremes should be also assessed more
comprehensively, using a larger set of metrics (not only consecutive dry days) and
going beyond meteorological droughts (e.g., Cook et al. 2020; Ukkola et al. 2020;
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Sun et al. 2021a). I am particularly intrigued by the changes in the South Asian
Monsoon domain, mainly due to my longstanding interest in the tropical agrarian
society that I come from. I would like to investigate the relevant regional changes
over this domain utilising a potential storyline approach (e.g., Shepherd et al.
2018) by identifying and distinguishing the interplay of the large-scale dynamics
and the thermodynamics in influencing the wet and dry extremes (e.g., Allan et al.
2020; Sudharsan et al. 2020). What effect emissions and global warming have on
the fundamental mechanisms and structure of mesoscale convective systems and
related heavy precipitation events is another key question I would like to address
(e.g., Fowler et al. 2021) if I have the opportunity to run a convective-permitting
climate model.
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Supplementary tables and figures

Chapter 2

Tables

Model Name Country
Horizontal resolution

(lon x lat)
Variant label

ACCESS-CM2 Australia 1.9◦ x ◦1.3 r1i1p1f1

ACCESS-ESM1-5 Australia 19◦ x ◦1.2 r1i1p1f1

BCC-CSM2-MR China 1.1◦ x ◦1.1 r1i1p1f1

CESM2 USA 2.8◦ x ◦2.8 r1i1p1f1

CESM2-WACCM USA 1.3◦ x ◦0.9 r1i1p1f1

CMCC-CM2-SR5 Italy 1.25◦ x ◦1.0 r1i1p1f1

CMCC-ESM2 Italy 1.25◦ x ◦0.9 r1i1p1f1

CNRM-CM6-1 France 1.4◦ x ◦1.4 r1i1p1f2

CNRM-CM6-1-HR France 0.5◦ x ◦0.5 r1i1p1f2

CNRM-ESM2-1 France 1.4◦ x ◦1.4 r1i1p1f2

CanESM5 Canada 2.8◦ x ◦2.8 r[1–25]i1p1f1

EC-Earth3 Europe 0.7◦ x ◦0.7 r1i1p1f1

EC-Earth3-CC Europe 0.7◦ x ◦0.7 r1i1p1f1

EC-Earth3-Veg Europe 0.7◦ x ◦0.7 r1i1p1f1
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EC-Earth3-Veg-LR Europe 1.1◦ x ◦1.1 r1i1p1f1

FGOALS-g3 China 2◦ x ◦2.3 r1i1p1f1

GFDL-CM4 USA 2.5◦ x ◦2.0 r1i1p1f1

GFDL-ESM4 USA 1.3◦ x ◦1 r1i1p1f1

HadGEM3-GC31-LL UK 1.86◦ x ◦1.25 r1i1p1f1

HadGEM3-GC31-MM UK 0.8◦ x ◦0.5 r1i1p1f1

IITM-ESM India 1.8◦ x ◦1.8 r1i1p1f1

INM-CM4-8 Russia 2◦ x ◦1.5 r1i1p1f1

INM-CM5-0 Russia 2◦ x ◦1.5 r1i1p1f1

IPSL-CM6A-LR France 2.5◦ x ◦1.3 r1i1p1f1

KACE-1-0-G South Korea 2.5◦ x ◦2.5 r1i1p1f1

KIOST-ESM South Korea 2.5◦ x ◦2.0 r1i1p1f1

MIROC-ES2L Japan 2.8◦ x ◦2.8 r1i1p1f2

MIROC6 Japan 1.4◦ x ◦1.4 r1i1p1f1

MPI-ESM1-2-HR Germany 0.9◦ x ◦0.9 r1i1p1f1

MPI-ESM1-2-LR Germany 1.9◦ x ◦1.9 r1i1p1f1

MRI-ESM2-0 Japan 1.1◦ x ◦1.1 r1i1p1f1

NESM3 China 1.9◦ x ◦1.9 r1i1p1f1

NorESM2-LM Norway 2.5◦ x ◦1.9 r1i1p1f1

TaiESM1 Taiwan 1.25◦ x ◦0.9 r1i1p1f1

UKESM1-0-LL UK 1.9◦ x ◦1.3 r1i1p1f2

Table A.1: List of all CMIP6 models used in the study, along with their native horizontal
resolution, country of origin, and the ensemble variant used

CT categories 27 original weather types 11 merged weather types

Low flow LF LF

Anticyclone A

A
Hybrid anticyclones

AN

ANE

AE

ASE
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AS

ASW

AW

ANW

Cyclone C

C
Hybrid cyclones

CN

CNE

CE

CSE

CS

CSW

CW

CNW

Pure directional

N NW

NE N

E E

SE SE

S S

SW SW

W W

NW NW

Table A.2: Description and acronyms of the original 27 circulation types, obtained from the
classification, and resulting merged 11 types
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Figures

Figure A.1: Mean annual precipitation from the different observational products discussed
in chapter 2. The period of evaluation is different among the datasets, and depends on the
availability of the data (cf. Table 2.1). Unit is mm/day.
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Figure A.2: Same as Figure A.1, but for the mean annual maximum one-day precipitation
(RX1DAY).
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Figure A.3: Global mean maps for the extreme indices a) SDII, b) RX1DAY, c) CDD, and d)
CWD simulated by the CNRM-CM6-1 in the GMMIP experiments for the period 1979-2014.

Figure A.4: Timeseries showing the yearly globally averaged RX1DAY values. This figure is
produced using the Scenario SSP5-8.5 from the CNRM-CM6-1 model.
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Figure A.5: Example figure showing the 16-grid points around a central-grid point used for
the computation of a moving JC classification of circulation types.

Figure A.6: Summary of CFMIP-3/CMIP6 experiments and DECK +CMIP6 Historical experi-
ments. Source: Webb et al. (2017)
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Chapter 3

Figure A.7: Replication of the Figure 3.2, but with the vectors indicating the integrated
moisture transport overlayed.

Figure A.8: Same as Figure 3.2, but for relative changes (%) in interannual precipitation
variability, which is simply defined as the ratio between the standard deviation and the
mean of annual precipitation
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Figure A.9: Same as Figure 3.2, but for relative changes (%) in precipitation seasonality,
which is simply defined as the sum of the absolute deviations of mean monthly rainfalls
from the overall monthly mean, divided by the mean annual rainfall
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Figure A.10: AOGCM intercomparison of relative changes (%) in annual mean precipitation:
a) CMIP6 ensemble mean, b) subset ensemble mean, c) CNRM, d) IPSL, e) MOHC, f) NCAR. All
changes are estimated as annual mean differences between year 111-140 of abrupt-4xCO2
versus piControl respectively. In each panel, stippling highlights areas where the difference
is significant at the 10% level, GMD denotes the global mean difference and green lines
delineate regional domains that will be further discussed for the future studies. In panel
b), ACC denotes the spatial anomaly correlation coefficient between CMIP6 and MME4 as a
measure of the representativity of our subset of four AOGCMs.
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Figure A.11: Annual mean response to abrupt 4xCO2 simulated in atmosphere-only mode
(a4SSTice-4xCO2 minus piSST): a) relative anomalies (%) in total precipitable water
(ACC/ACCL denotes the global/ global land spatial anomaly correlation coefficient with
the relative precipitation anomalies; b) anomalies of moisture convergence (P-E, (mm/day)
(ACC/ACCL denotes the global/global land spatial anomaly correlation coefficient with the
precipitation anomalies. Stippling in panel b highlights areas where the differences are
significant at the 5% level.

Chapter 4

Figure A.12: The ratio of the width of confidence range of extreme precipitation in large
ensemble CanESM5 to the CMIP6 multi-model ensemble. The result shown here is scaled
with the local temperature change (∆T).
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Figure A.13: Projected relative changes (%/K) in 20-yr return values of RX1DAY scaled by
both global mean surface temperature change (∆GSAT in K, left panel) and local mean
surface temperature change (∆T in K, right panel). The changes are calculated for the
future period of 2051-2100 relative to the historical period of 1951-2014 using the SSP5-8.8
scenario. (a),(b) show the multi-model mean (MMEM) maps, and (c),(d) show the multi-model
standard deviation (MMES) maps using the CMIP6 multimodel ensemble. Stippling highlights
the grid cells where the percentage response of the changes is more than 7%/K. GMD denotes
the global mean differences.

Figure A.14: Same as the Figure A.13, but for the ensemble of 25 individual members of
CanESM5 model.
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Figure A.15: Global maps of confidence areas (80% confidence interval) for the CanESM5
large ensemble using 25 individual members. The maps show where the rate of extreme
precipitation changes is consistent with constant rates of ≈0%/K or ≈7%/K. Red color
denotes the regions where the changes are always less than the constant, yellow denotes
areas where the constant falls within the confidence interval and blue denotes areas where
the rates are always greater than the constant. Map (a) shows the areas where the rate
of changes in extreme precipitation remains unchanged or consistent to 0%/K when scaled
with ∆GSAT. Maps (b), (c) show the global areas where the rate of changes are consistent
with the CC rate of ≈7%/K with respect to ∆GSAT and ∆T.
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Chapter 5

Figure A.16: Season of the median day of year of extreme daily precipitation in the multi-
model CMIP6 ensemble; a) for the historical period (1951-2014) and b) for the future period
(2051-2100), using the SSP5-8.5 scenario. Four colors in the colorbar represent four differ-
ent seasons; blue for DJF = December-January-February; green for MAM = March-April-
May; yellow for JJA = June-July-August; orange for SON = September-October-November.
The numbers provided below colorbar indicates the percentage of the total land areas cov-
ered by each seasons when the extremes occurs.

Figure A.17: CMIP6 multimodel mean changes in the seasonal frequency of the 11 different
circulation types (CTs) that occurred for the RX1DAY days during the period 1951-2014 rela-
tive to 2051-2100. The bars indicate the average values of the occurrences of CTs; a) over
Scandinavia (SCD); b) over Central European domain (CEU); c) over North-West Mediter-
ranean (NWM). Different seasons are indicated by the colors as shown in the legend.
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Figure A.18: Maps showing the correlation (a, c) and slope (b, d) from the cross-model re-
gression of the between class values across models from the North West Mediterranean
(NWM) subdomain with the global anomalies (with annual mean removed) of total precipt-
able water (TPW; a and b), surface temperature (T2M; c and d) and low level wind flux
(overlayed vectors in b and d). The top panel is for the TPW and the bottom panel for the
T2M. The stippling over the correlation maps indicate the significant areas with P-value
less than 0.05. The vectors overlayed over the panels b and d are the 850 hPa wind flux
slopes.

Figure A.19: Maps illustrating the anomalies of the change in the available total precipitable
water (a, c), surface temperature (b, d) and the low level wind fluxes (overlayed vectors in b,
d) among the extremes models based on the within class (WC) values from the North West
Mediterranean (NWM). The top panel is for the model with the lowest WC (LM) and bottom
for model with the highest WC (HM).
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