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In transportation applications, the problem of detection of road defects is not only important to build an efficient Advanced Driver-Assistance System, but also to contribute to the maintenance of road infrastructures with the aim of an overall improvement in road safety. This issue is being taken into consideration in this thesis, but the presented works primarily focus on the use of a 3D scanning laser rangefinder (LiDAR) allowing to observe the vehicle's environment and delivering measurements of extended targets. In order to be efficient in terms of localization accuracy and defect identification, the detection/estimation process involves a high resolution on the target, which requires that the LiDAR sensor to be positioned relatively close to the road with a selected orientation in order to increase the coverage resolution. However, before any detection, this operational context leads to consideration of methods for estimating extrinsic parameters of the sensor taking into account of this operational specificity.

The first part of this thesis involves a new method of extrinsic calibration for 3D LiDAR sensor, called LiDAR/Ground Calibration Method, which focuses on the geometrical ground plane-based estimation. This method is also efficient in the challenging experimental configuration of a high tilt angle of the LiDAR sensor. In this configuration, the calibration of the LiDAR sensor is a key problem particularly to ensure the efficiency of the detection of objects with small size on the ground. The proposed extrinsic calibration method can be summarized by the following procedure: fitting geometric road surface model, extrinsic parameters estimation (3D orientation, altitude) and extrinsic parameters optimization. The results are presented on synthetic and real data in terms of precision and robustness against variations of height and accuracy on orientation and distance, showing the stability and relevance of the proposed extrinsic calibration method.

The second part proposes two novel road defect detection methods, called Feature-Based Defect Detection Method (FBDDM) and Grid-Based Defect Detection Method (GBDDM). The FBDDM detection method, based on concavity properties provided by a second-order differential Gaussian filter, allows the detection and identification of several homogeneous road defects at each laser elevation. However, the GBDDM detection method is based on two main steps: a weighted interpolation step built on inverse distance of the LiDAR impacts and a surface splitting in terms of dynamic grid which makes it possible to detect, visualize and localize multiple road defects. The evaluation results show a very good performance of these defect detection methods, in terms of accuracy and precision against existing detection methods. They also prove their effectiveness in detecting pothole defect or pavement deformation (hump) in a controlled experimental context.
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Résumé

Dans les applications liées au transport, la problématique de détection des défauts de la route est non seulement importante pour construire un système efficace d'aide à la conduite mais également contribuer à la maintenance des infrastructures routières dans une logique d'amélioration globale de la sécurité des routes. Cette thèse s'inscrit dans ce cadre, avec comme particularité d'être axée sur un télémètre laser à balayage 3D (LIDAR) permettant de percevoir l'environnement du véhicule et délivrant des mesures de cibles étendues. Afin d'être efficace en termes de précision en localisation et d'identification du défaut, le processus de détection/estimation nécessite une résolution élevée sur la cible, ce qui impose que le LiDAR soit positionné relativement proche de la route avec une orientation choisie afin d'augmenter cette résolution. Cependant, avant toute détection, ce contexte opérationnel conduit à envisager des méthodes d'estimation des paramètres extrinsèques du capteur tenant compte de cette spécificité opérationnelle.

La première partie de cette thèse porte donc sur une nouvelle méthode de calibration extrinsèque d'un capteur LiDAR 3D, appelée « LiDAR/Ground Calibration Method » qui se concentre sur l'estimation du plan de la route. Cette méthode est également efficace dans la configuration expérimentale particulière d'un angle élevé d'inclinaison du LiDAR. Dans cette configuration, la calibration du capteur LiDAR est un problème clé en particulier pour garantir l'efficacité de la détection des objets de taille modeste au sol. La méthode de calibration extrinsèque proposée peut être résumée en différentes étapes : ajustement du modèle géométrique de surface de la route, estimation des paramètres extrinsèques (orientation 3D, altitude) et optimisation des paramètres extrinsèques. Les résultats sur données synthétiques et réelles sont présentés en termes de précision et de robustesse par rapport à la variation de hauteur et à la précision sur l'orientation et la distance, montrant ainsi la stabilité et la pertinence de la méthode de calibration extrinsèque proposée.

La deuxième partie propose deux nouvelles méthodes de détection de défauts routiers, dénommées Feature-Based Defect Detection Method (FBDDM) et Grid-Based Defect Detection Method (GBDDM). La méthode de détection FBDDM, basée sur les propriétés de concavité fournies par un filtre gaussien différentiel du second ordre, permet de détecter plusieurs défauts de route homogènes à chaque élévation laser. Quant à elle, la méthode de détection GBDDM est basée sur deux étapes principales : une étape d'interpolation construite sur une pondération des impacts lidar dépendant de la distance et un découpage de la surface en quadrillage dynamique qui permet de détecter, visualiser et localiser des défauts routiers multiples. Les résultats d'évaluation montrent une très bonne performance de ces méthodes de détection de défauts, en termes d'exactitude et de précision par rapport à d'autres méthodes de détection existantes. Elles montrent également leur efficacité dans la capacité de détection des défauts de type nids-de-poule ou de déformation de chaussée (bosses) en contexte expérimental maîtrisé. The state of road network knowledge in a country is an important issue in order to be able to deploy a rational policy of road maintenance, rehabilitation and traffic improvement. As we know, some traffic accidents are the result of the presence of disabilities or small obstacles on the roads, and one of the major problems that the population suffers from on a daily lives. Although, road traffic injuries represents a major global health problem of human safety. As a key facts, the World Health Organization (WHO) report on the Global status of road traffic safety, reflecting information from worldwide countries, indicates that the total number of road traffic deaths has plateaued at 1.15 million person in 2000. Then it increases 0.1 million to reach 1.25 million road traffic deaths in 2015 [START_REF] Chan | Global status report on road safety 2015: Report[END_REF], [2], and 1.35 million deaths in 2018 [3]. Especially in lowmiddle-income countries as Africa and South-East Asia, record 95% of the world's fatalities occur on the road [4], and more than half road traffic deaths are among vulnerable road users: motorcyclists, cyclists, and pedestrians, where most of deaths and disabilities are for individuals aged 5-29 years [START_REF] Roth | Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the global burden of disease study 2017[END_REF]- [START_REF]World Health Organization (WHO) Road Traffic Injuries RTI[END_REF]. In addition, the estimation of road traffic injuries consumption reach 3% of the gross national products of world governments, which have a serious impact on national economies [3], [4]. Therefore, the United Nations (UN) road safety collaboration has developed a global plan that proposes an 2030 agenda for sustainable development to set an ambitious target of halving the global number of deaths and injuries from road traffic crashes by 2020 [START_REF]Global Plan for the Decade of Action for Road Safety 2011-2020[END_REF], [START_REF]Transforming our world: the 2030 Agenda for Sustainable Development[END_REF].

This thesis topic falls within this framework since it proposes to provide a geometrical and topological model of the route and to extract semantic information about the roads. In addition, these works will focus on the characterization of road surface and the presence of potentially dangerous areas, first, through a calibration of the geometrical environment information, followed by detection and localization of the road defects. It will also be important to visualize and locate the geometrical information of each defect obtained on the road.

This work is a part of the general framework of multi-sensor perception systems, more particularly focusing on the above different characteristics, that Chapter 1. Introduction will be obtained from a telemetric information of a multi-lasers rangefinder (Light Detection and Ranging LiDAR, Laser Range Finder LRF) mounted on a vehicle. In transport applications, the development of Advanced Driver Assistance Systems (ADAS) has been the subject of much work for the past twenty years [START_REF] Bengler | Three decades of driver assistance systems: Review and future perspectives[END_REF]. In transportation systems context, the objective is to monitor the vehicle environment in order to inform the driver, at each moment, about the potentially hazardous situations. Multi-object detection methods in data from a scanning laser rangefinder on board a moving vehicle have been proposed. Even though, these methods retain some limitations inherent in the physical nature of the measurement signal, this laser sensor has many advantages for ADAS: day/night vision, low accuracy, high frequency of measurement, directive laser shots, wide field of perception. The major drawback of a single-layer laser rangefinder is its sensitivity to pitching movements, linked to its directivity: the distances measured can be disturbed and give rise to undesirable measurements of the scene, designated by the more general term of " clutter ". The development of multi-layer rangefinders, that is to say working on several measurement planes, has made it possible to minimize these disturbances inherent in the physical nature of the measurement. Although, having the particularity of delivering precise relative positioning information unlike sensors of the video camera type, laser rangefinders are distinguished by the relative poverty of the information received on the scene (directly linked to the angular resolution of the sensor).

Therefore, it is necessary to develop solutions informing the driver by a prior information about the road defects. This information is important to obtain a statistical road defects data in order to avoid the risky accidents and to take a right decision for road enhancement in a spatial road network. Our hypothesis precisely works on an extrinsic calibration method for the LiDAR sensor based on the geometrical plane model estimation, which serves the two methods of road defects detection: feature-based and grid-based.

Thesis Aims and Objectives

In transportation applications, many articles use LiDAR to detect and track objects of interest (pedestrians, vehicles, etc...) from 3D measurements. The LiDAR sensor is also used to detect the road, often in addition to camera sensors. In these applications, the idea is to have a thorough view of the driver's environment over the widest possible horizon. Therefore, the aim of this thesis involves a LiDAR sensor with a low angle of inclination (horizontally oriented sensor) to study and analyze the road defects: holes, humps or any homogeneous out-layers. Which contribute in solving the car accidents problem that are caused by spatial dangerous areas in the road network. This study includes several scientific objectives: road defects' detection, visualization and localization.

1.3. Thesis Key Points 3

Thesis Key Points

The key points of the thesis problem are shown in Figure 1 2. Optimization of the LiDAR altitude and orientation using the synthetic data, before analyzing the coverage of LiDAR distribution points over the ground, to be suitable for the practical application and to ensure the possibility of road defect detection.

3. Data acquisition using LiDAR sensor mounted on a moving vehicle.

4. Data extraction (Range, Azimuth, Elevation, Reflectivity, and Time) from the .pcap format file. Then data preprocessing and PointCloud player presentation.

5. 3D Extrinsic LiDAR/Ground calibration method using 3D geometrical plane-based estimation.

6. Ground selection PointCloud method using differential Gaussian filter, to eliminate: the obstacles that exist on the road, and the objects that surround the road.

7. Extrinsic re-calibration for the road PointCloud to enhance the calibration process.

8. Defect Detection feature-based method.

9. Defect visualization and localization using grid-based method.

Proposed Contributions

In the context of this study (road defects detection), the LiDAR sensor is rotated toward the ground in order to increase the points' density covering the defects by the multi elevation laser. This causes a complicated modification in the ground 3D view scene with respect to the LiDAR frame. Therefore, extrinsic calibration was adopted in order to transform the LiDAR frame into a global reference frame, thus modifying the ground impact points transformation into an understandable view scene.

Calibration Method Novelty

The perspective of our framework is to propose a calibration method (and road plane estimation) that works under difficult experimental conditions (high angle of inclination). Indeed, we aim at developing a calibration method that allows to determine precisely the road plane in a very close vicinity of the vehicle. The idea in the long term is to detect road defects when driving on the road network. Although developed with this in mind (i.e. with a high degree of accuracy in determining the road plane), our method is general enough to be applicable in any wider operational context.

In order to attain the above key objective, this thesis addresses a new flexible extrinsic calibration method, published in [START_REF] Zaiter | 3d lidar extrinsic calibration method using ground plane model estimation[END_REF], [START_REF] Zaiter | Extrinsic lidar/ground calibration method using 3d geometrical planebased estimation[END_REF]. The proposed calibration method can be summarized by the following two-fold contributions: (1) ground plane model estimation and (2) rotation transformation matrix estimation from world ground reference to LiDAR sensor frame. The 3D Euler's angles (sensor orientation) and the height (sensor altitude above the ground) are two essential extrinsic parameters required to calibrate the full 3D LiDAR sensors, in order to improve the capability of road defect detection as will be explained in section 4.2.1. In addition, the problem is modeled by 4-DOF (degree of freedom) transformation: 3-DOF rotation and 1-DOF height, instead of 6-DOF transformation: 3-DOF rotation and 3-DOF translation. This modeling advantage provides the simplicity in the optimization process of the extrinsic parameters.

As compared to a previous plane-based methods [START_REF] Morales | Boresight calibration of construction misalignments for 3d scanners built with a 2d laser rangefinder rotating on its optical center[END_REF], [START_REF] Zhe | Calibration of rotating 2d lidar based on simple plane measurement[END_REF], the developed approach can be generalized to all types of scanning laser rangefinders and presents an optimized estimation of all extrinsic calibration parameters (angles, height). This global method can be implemented on different cylindrical LiDAR sensors (low-cost 3D and full 3D) with various range accuracy.

In addition, the proposed technique outperforms in high orientation scenarios, which is a very interesting and challenging task that aims to increase the points' density coverage.

Road Defect Detection Methods Novelty

Moving to main thesis subject, two novel road defect detection methods are proposed, called Feature-Based Defect Detection Method and Grid-Based Defect Detection Method. The Feature-Based Defect Detection Method, based on the concavity feature delivered by second order of Differential Gaussian Filter. First, this method works on each single elevation laser individually, to detect multi road defects (pothole,hump) with homogeneous patterns and small sizes properties. This method is very sensitive to concavity feature, but it requires enough LiDAR coverage resolution on the target.

On the other hand, the Grid-Based Defect Detection Method includes twofold contributions: (1) improved Inverse Distance Weighted interpolation 1.5. Report Structure method, based on the altitude distribution in a spatial grid to generate altitude georeferenced image, and (2) Grid Splitting Algorithm, provides dynamic grid size to increase the georeferenced image resolution. This method works simultaneously on all elevation lasers, it is sensitive to altitude distribution feature, and it requires high LiDAR coverage resolution to detect, visualize and localize the multi homogeneous road defects in a high resolution georeferenced image. The evaluation results show a compromised performance and impressive efficiency of our proposed defect detection methods, in terms of accuracy, precision and recall against other defect detection methods, proving the detection ability of potholes and humps defects using real data.

Report Structure

Later, after this chapter, this report introduces the following chapters:

• Chapter 2 presents the state of the art of the thesis, which includes the difference between 2D and 3D sensors, 3D LiDAR definition, comparison between 3D LiDAR with other 3D sensors, LiDAR calibration definition and LiDAR calibration related work. In addition, it presents also the literature review of road defect detection methods based on LiDAR, Camera and Accelerometer sensors.

• Chapter 3 presents the characteristics of Velodyne VLP-16 LiDAR sensor features, the data extraction and preprocessing operations.

• Chapter 4 presents the geometrical impact modeling of the LiDAR sensor on the ground, and the proposed extrinsic LiDAR/Ground Calibration Method. In addition, it shows the extrinsic calibration experimental results using simulation and real data.

• Chapter 5 presents the ground selection process, the proposed Feature-Based Defect Detection Method and Grid-Based Defect Detection Method.

In addition, it shows the evaluation results of the proposed road defect detection methods, compared against other methods using real data.

Chapter 2

State of The Art

Overview

In this chapter, the organized surveys and a literature review for the thesis subject are provided. The review will start with general topic of 3D intelligent sensors evolution and will cover the emergence of laser scanner sensor compared with other 3D sensors, followed by 3D LiDAR definition and highlighting 3D LiDAR sensor among 2D LiDAR sensor, then it presents the applications of LiDAR sensor in several different fields, focusing on the importance of LiDAR sensor calibration process and the related work in this field. Finally, introduce different detection methods in the field of object detection application, followed by various road defect detection systems based on different sensors.

3D Intelligent Sensing Systems Evolution

With the rapid evolution of intelligent systems, these have become the focus of attention in previous years to date, and its development has begun to intensely reshape our lives. In the transportation application of roads network, the aim is to detect the surrounding obstacles of the driver (pedestrians, holes, cracks, vehicles, etc...). This process is the first step of a Driver Assistance System that warns him in case of environmental potential hazardous conditions using 3D smart sensors [START_REF] Thakur | Scanning lidar in advanced driver assistance systems and beyond: Building a road map for next-generation lidar technology[END_REF]- [START_REF] Xique | Evaluating complementary strengths and weaknesses of adas sensors[END_REF].

3D sensing systems is one of the interesting research field for this task, including localization [START_REF] Hoang | 3d motion estimation based on pitch and azimuth from respective camera and laser rangefinder sensing[END_REF]- [START_REF] Yu | A low-complexity autonomous 3d localization method for unmanned aerial vehicles by binocular stereovision technology[END_REF], segmentation [START_REF] Hau | Recommendation system based on multilingual entity matching on linked open data[END_REF]- [START_REF] Golban | Moving rigid objects segmentation in 3d dynamic traffic scenes using a stereovision system[END_REF], recognition [START_REF] Song | Deep sliding shapes for amodal 3d object detection in rgb-d images[END_REF] and tracking [START_REF] Alqahtani | 3d face tracking using stereo cameras: A review[END_REF]. More than that, 3D data provides more features and information of the surrounding than a 2D data, which allows a high performance and accuracy in data processing [START_REF] Ben Soltana | Comparison of 2D/3D Features and Their Adaptive Score Level Fusion for 3D Face Recognition[END_REF].

Laser Technology vs 3D Sensors Systems

The applications start using laser remote sensing since the 1970s. It's a popular technology, that has been developed in both the civil and military fields. We can for example cite its use in several fields of activity:

• information transfer: reading, recording, printing, holography, ...
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• medical community: ophthalmology, dermatology, dentistry, ...

• police applications: cinemometer (speed control), forensics, ...

• military field: anti-missile weapons, aiming aid, ...

We focus in the following on laser rangefinders that are used in the fields of interest i.e. surveillance and automation.

Moving to road networks maintenance and transportation applications [START_REF] Gargoum | Automated extraction of road features using lidar data: A review of lidar applications in transportation[END_REF], the responsibility imposes itself in detecting and locating the road distortion (cracking, patching, potholes, rutting, shoving...). The literature review in [START_REF] Coenen | A review on automated pavement distress detection methods[END_REF] presents different automated detection experiments and extensive research conducted on pavement adversity in recent years. The work shows the importance and the incredible progress of 3D sensors compared with the other sensors, especially the laser profiler that is characterized by its high precision measurement capability, high spatial resolution and acquisition flexibility. In addition, in their survey on road and lane detection [START_REF] Bar | Recent progress in road and lane detection: A survey[END_REF], the authors confirmed that the stereo imaging cannot provide the same reliability and range accuracy that laser rangefinder can.

Among several types of 3D sensors as like as stereo camera, time-of-flight camera, structure light camera and 3D laser scanner, the 3D laser scanner sensor provides the best measurement results according to [START_REF] Antunes | Can stereo vision replace a laser rangefinder?[END_REF]. In this article, the authors study the possibility of replacing a laser scanner by a stereo camera, and conclude that this approach has unsatisfactory performance when the surface has very low texture. Moreover, stereo camera provides data with lower precision in long range as compared with laser scanner, and it is vulnerable to the variation of weather conditions, but it is still used as an assistive lightweight system in autonomous vehicle for obstacle detection [START_REF] Han | Enhanced road boundary and obstacle detection using a downward-looking lidar sensor[END_REF].

Although, Radio Detection and Ranging RADAR is reported in literature as an efficient system for object detection in several studies [START_REF] Lakshmanan | A deformable template approach to detecting straight edges in radar images[END_REF], [START_REF] Li | Comparative study on targets detection in high-resolution sar images[END_REF]. However, due to their low mechanism scanning speed, they are semi-efficient for obstacle detection in road networks especially in real-time implementation [START_REF] Wijesoma | Road-boundary detection and tracking using ladar sensing[END_REF].

Light Detection and Ranging sensor

At a glance on LiDAR sensor [START_REF] Warren | Automotive lidar technology[END_REF], which stands for Light Detection and Ranging, is a digital technique of remote sensing instrument, that uses light in the form of a pulsed laser to measure the surrounding environment ranges. Therefore, LiDAR sensors are attractive for environment perception because, unlike cameras, these sensors readily provide the depth information about the environment.

There exist two ways to obtain 3D telemetric data by using a LiDAR sensor: either a 2D LiDAR sensor coupled with a specific mechanism or a full 3D LiDAR. The system based on a 2D LiDAR scanner consists of a single laser beam in rotation and scanning the environment in 2D. To obtain the third dimension, this LiDAR can be, for example, fitted on a tilt unit as shown in Figure 2.1a. However, the 3D LiDAR scanner consists of multi-lasers beams, oriented in different elevation and using an integrated rotational mechanism to produce various azimuth angles, in order to scan the environment in 3D as shown in Figure 2.1b.

LiDAR Sensor Applications

LiDAR sensor is a multi-laser scanning system that is a very interesting and efficient sensor which provides dense and accurate range measurement with high sampling rate, high angular and coverage resolution, long range distance, and generate 3D point cloud data of the surrounding area. A wide variety of promising applications, which rely on LiDAR sensors, are developed in different fields: intelligent transportation systems, mobile robotics and connected vehicles. Thus, LiDAR is a fundamental sensor contributing for indoor and outdoor applications [START_REF] Montemerlo | Winning the darpa grand challenge with an ai robot[END_REF] especially in autonomous mobile systems [START_REF] Markom | A mapping mobile robot using rp lidar scanner[END_REF], [START_REF] Hervieu | Semi-automatic road/pavement modeling using mobile laser scanning[END_REF]. Therefore, it can efficiently be used for many tasks in different applications such as civil engineering [START_REF] Armesto | Modelling masonry arches shape using terrestrial laser scanning data and nonparametric methods[END_REF], environmental protection [START_REF] Skowronski | Remotely sensed measurements of forest structure and fuel loads in the pinelands of new jersey[END_REF], planning [START_REF] Johnson | The jet propulsion laboratory autonomous helicopter testbed: A platform for planetary exploration technology research and development[END_REF], [START_REF] Levinson | Robust vehicle localization in urban environments using probabilistic maps[END_REF], autonomous vehicles and robots [START_REF] Lacroix | Autonomous rover navigation on unknown terrains functions and integration[END_REF]- [START_REF] Li | Motion field estimation for a dynamic scene using a 3d lidar[END_REF], object detection and recognition [START_REF] Douillard | A 3d laser and vision based classifier[END_REF]- [START_REF] Nagashima | Object recognition method commonly usable for lidars with different vertical resolution[END_REF], scene understanding [START_REF] Steinhauser | Motion segmentation and scene classification from 3d lidar data[END_REF], Simultaneous Localization and Mapping (SLAM) [START_REF] Segal | Generalized-icp[END_REF]- [START_REF] Liang | Visual laser-slam in large-scale indoor environments[END_REF], 3D reconstruction [START_REF] Zhang | Asipp remotely operated vehicle design (rov) and feasibility study[END_REF]- [START_REF] Qi | Reconstruction of 3d forest mock-ups from airborne lidar data for multispectral image simulation using dart model[END_REF], and visual navigation [START_REF] Borrmann | Globally consistent 3d mapping with scan matching[END_REF]- [START_REF] Real-Moreno | Accuracy improvement in 3d laser scanner based on dynamic triangulation for autonomous navigation system[END_REF]. Almost all of these applications appear in world challenges like Defense Advanced Research Projects Agency (DARPA) Urban and Grand Challenge [START_REF] Clifton | Medium altitude airborne Geiger-mode mapping LIDAR system[END_REF]- [START_REF] Montemerlo | Junior: The stanford entry in the urban challenge[END_REF], and support the development of Advanced Driver Assistance Systems (ADAS) [START_REF] Garcia | Analysis of lidar sensors for new adas applications. usability in moving obstacles detection[END_REF]- [START_REF] Garcia | Enhanced obstacle detection based on data fusion for adas applications[END_REF].

3D LiDAR Features

Every 3D laser scanner has its specific features, which depend on the company developer. 

Polar Coordinate Features

• Range ρ defines the distance from the origin O of the LiDAR frame to the reflected point on the target. Each LiDAR sensor has specific maximum range, which depend on the power of the emitted signal and the receiver sensitivity.

• Azimuth α defines the horizontal angle (in clockwise direction) between Y-axis and the line passing through the LiDAR frame origin O and the projection of the reflected target on XOY-plane.

• Elevation β defines the vertical angle (in clockwise direction) between XOY-plane and the line passing through the LiDAR frame origin O and the reflected target.

Other Usable Features

• Timestamp represents the acquisition time of each reflected point from the counter o'clock (timer) of the LiDAR sensor.

• Intensity represents the received power of the signal reflected by the surface of the target signal. This quantity depends on the surface type, as shown in Figure 2.3.

• Range accuracy σ ρ describes the standard deviation of range error.

• Azimuth accuracy σ α describes the standard deviation of azimuth error, often given negligible by the constructor.

• Elevation accuracy σ β describes the standard deviation of elevation error, often given negligible by the constructor.

• Horizontal FOV represents the angular coverage by the LiDAR sensor on the azimuth coverage field.

• Vertical FOV represents the angular coverage by the LiDAR sensor on the elevation coverage field.

• Azimuth angular resolution defines the periodic angle on XOY-plane between each firing sequence.

• Elevation angular resolution defines the periodic angle on YOZ-plane between each laser.

• Rotating frequency expresses the number of rotating cycles per second.

• Channels expresses the number of lasers in LiDAR sensor.

• Data rate expresses the number of collecting points per second, where it is constant. This feature is obtained as follow: 

Principle of Operation

As sonars and radars, LiDAR sensor works on the principle of time-of-flight measurement. A laser diode emits an infrared laser pulse (typically manufactured about 905nm wavelength) which is acclimated by a transmitter lens as shown in Figure 2.4a. The emitted laser beam hits a target and a part of the reflected light hits a photo-diode after passing through a receiver lens as shown in Figure 2.4b.

A precise clock is used to measure the time between transmitted and received signal which in turn is used to compute the target distance from the device [START_REF] Petrie | Introduction to laser ranging, profiling, and scanning[END_REF], as expressed in Equation 2.2. The intensity of the received signal is also used to define target characteristics such as reflectivity as shown in Figure 2.3, that represents the type of the reflector: absorbent diffuse reflector (black), reflective diffuse reflector (white), retro-reflector covered with semi transparent white surface and retro-reflector without any coverage. The magnitude of the reflectivity is directly correlated to the transmitted signal power, received signal power, range, and surface incident angle [START_REF] Jutzi | Normalization of lidar intensity data based on range and surface incidence angle[END_REF], [START_REF] Kaasalainen | Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods[END_REF].

D = 1 2 × C × (T receiver -T transmitter ) = C × t (2.2)
Where:

-D is the distance between the sensor and the target.

-C is the speed of light.

-T transmitter is the start time of the transmitted signal.

-T reciever is the end time of the received signal.

t is the relative time measurement. The precision of the measurement is given by the standard deviation in [START_REF] Besesty | Télémètre à laser puce[END_REF]:

σ D = t rise pulse 2.36 × SNR (2.3)
Where:

t rise pulse is the rise time of the laser pulse.

-SNR is the signal to noise ratio which depends in particular on the distance between the target and the rangefinder.

It should be noted that the distance between the sensor and the object can be determined, taking in consideration the:

• Angle of reflection with when the laser beam is received.

• Phase shift of the laser signal.

• Modulation frequency of the emitted signal.

The important characteristics of these sensors in the context of surveillance and detection are:

• The accuracy of the measurement.

• The horizontal and vertical angular aperture.

• The sensitivity, i.e. the ability to detect the obstacle in different climatic environments (rain, fog, smoke).

• The reliability, i.e. the ability to repeat information (robustness to roll, pitch and yaw)

This type of sensor nevertheless has some faults including:

• Sensitivity to the reflection properties of objects.

• Problems due to the refraction of light at crossing objects, clouds, etc...

LiDAR Usage Advantages and Disadvantages

Moreover, LiDAR sensor has several benefits other than 3D sensors [START_REF] Fernandez Diaz | Lidar remote sensing[END_REF]:

1. Quick acquisition and fast processing with high accuracy.

2. High sample density on the surface data collective, based on the angular resolution and number of lasers.

3. Additional data like intensity and precise time of acquisition along with the polar coordinates (range, azimuth, elevation).

4. Work on day and night due to the active illumination sensor. It is not affected by darkness and light, sun inclination and presence/absence of shades.
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6. Flexible with slightly bad weather scenarios.

7. Minimum human dependence, i.e. it works on automatic processes in most applications.

8. Cheaper cost in many applications in order to achieve high accuracy and density of data, compared with RADAR systems.

On the other hand, LiDAR sensor has some drawbacks:

1. Sparse measurement for far ranges.

2. There are no strict international protocols that guide the collection and analysis of the data.

3. Unreliable in several conditions: water depth and turbulent breaking waves.

4. The laser beams may affect human eye in case the beam is powerful.

LiDAR Calibration Process

In the context of problematic objective case study, the LiDAR sensor is rotated toward the ground in order to increase the points' density covering the defects by the multi elevation laser. This technical operation enhances the defect resolution and improves the possibility of road defect detection process.

But, this causes a complicated modification in the ground 3D view scene with respect to the LiDAR frame. Therefore, a calibration process needs to be adopted in order to transform the LiDAR frame into a global reference frame, thus modifying the ground impact points transformation into an understandable view scene. So, the next literature will introduce the related work concerning the calibration and road defect detection methods.

LiDAR calibration is the first step that is necessary to maintain the environment measurement model. Calibration is the process of configuring the Li-DAR's environment measurements to provide a result for a sample within an acceptable range. As for the other sensors, the calibration process of multibeam LiDAR needs two steps: intrinsic and extrinsic calibration. The intrinsic calibration is the relationship between the sensor and the environment, which is applied in order to find the suitable model fitting and to estimate the intrinsic parameters of this model including the measurement errors. While the extrinsic calibration, which is important to create a worldwide frame, aims at merging common frames coming from different other sensors and to know the LiDAR position in that wide frame.

Intrinsic Calibration

The intrinsic calibration process considers the configuration of each individual beam inside the unit by modeling the process of beam creation and environment measurements. The goal is to estimate the sensor-environment relationship in terms of internal parameters, like the distance offset D • , horizontal offset H • , vertical offset V • , and the additive errors ε α , ε β on the azimuth and elevation α, β respectively, as shown in Figure 2.5. 
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Extrinsic Calibration

The extrinsic calibration process aims to determine the relationship between the LiDAR frame and other reference frame. The transformation between both frames is often composed of one rotation -→ R (ψ z , θ y , ϕ x ) and one translation -→ T (X 

Related Works

Numerous authors investigated intrinsic and extrinsic calibration methods in LiDAR sensors. An intrinsic calibration method is presented in [START_REF] Muhammad | Calibration of a rotating multi-beam lidar[END_REF]. The calibration process is based on an optimization method, where the calibration pattern is a wide planar wall on a flat surface scanned using Velodyne HDL-64E. In addition, a static calibration method is presented in [START_REF] Glennie | Static calibration and analysis of the velodyne hdl-64e s2 for high accuracy mobile scanning[END_REF], to derive an optimal solution for the laser's intrinsic calibration parameters by a planar feature-based least squares in advantage of minimal constrained network. A study in [START_REF] Glennie | Calibration and stability analysis of the vlp-16 laser scanner[END_REF] shows a correlation between the internal operating temperature of the LiDAR and the Laser scanner ranging error (intrinsic parameter). The calibration process considers a planar calibration approach to estimate the internal parameters for Velodyne VLP-16.

On the other hand, an extrinsic calibration method is presented in [START_REF] Zeng | An improved calibration method for a rotating 2d lidar system[END_REF]. In this method, a flat plane is used for the calibration and an algorithm based on the inequality of two symmetric rays in azimuth with respect to the origin is proposed. This inequality is due to the shift angle of the center line. Another extrinsic calibration method is presented in [START_REF] Kurnianggoro | Calibration of a 2d laser scanner system and rotating platform using a point-plane constraint[END_REF], where the authors work on a 2D laser scanner and on the rotating platform to extract the rotation axis and radius using point-plane constraint. The Levenberg-Marquardt optimization method is applied in the two above extrinsic calibration methods to optimize the non-linear least squares function problem.

An extrinsic calibration method for a low-cost 3D LiDAR (based on a rotating 2D LiDAR) is proposed in [START_REF] Morales | Boresight calibration of construction misalignments for 3d scanners built with a 2d laser rangefinder rotating on its optical center[END_REF] using an iterative maximization of 3D plane parameters (flatness and visible area). These parameters are extracted by Random Sample Consensus (RANSAC) method, which is a time consuming method. The authors use a fixed 2D LiDAR that requires multi-scan frames to provide a single 3D point cloud frame, by which the yaw angle is not considered in the calibration. An extrinsic calibration method is proposed in [START_REF] Zhe | Calibration of rotating 2d lidar based on simple plane measurement[END_REF], using a similar low-cost 3D LiDAR where each extracted plane is calibrated separately in order to improve the estimation of extrinsic parameters without using extra hardware.

In [START_REF] Atanacio-Jiménez | Lidar velodyne hdl-64e calibration using pattern planes[END_REF], a numerical algorithm is presented to compute both of the intrinsic and extrinsic parameters by minimizing the systematic errors due to the geometric calibration factors. Another approach is introduced in [START_REF] Levinson | Unsupervised calibration for multi-beam lasers[END_REF], which computes the intrinsic and extrinsic parameters of LiDAR sensor (Velodyne HDL-64E) by unsupervised calibration for each of multi-laser beams. An optimization function seeking to minimize the point-to-plane iterated closest point is then proposed.

LiDAR-Based Object Detection Process in Transportation Systems

The fundamental support technology behind advanced driver assistance systems ADAS is object detection, that enables cars to detect driving lanes or perform pedestrian and vehicle detection to improve road safety. Several methods implemented for object detection are useful in multiple applications such as video surveillance, image retrieval and telemetric LiDAR systems. Each method is based on a specific scientific approach (feature-based, modelbased, grid-based, histogram-based, etc...), and this is what distinguishes it from others. The next subsections will present a brief explanation for numerous applications in the context of object detection field using different sensors: Camera, GPS, 2D LiDAR and 3D LiDAR.

Road/Road Boundary and Obstacle Detection Approaches

Some of the interesting challenges in autonomous vehicle application are road, road boundary and obstacle detection, with several approaches developed in this field. In [START_REF] Yalcin | Approaches of road boundary and obstacle detection using lidar[END_REF], the authors present two previous approaches to detect the breaking points A, B, C, D, E, F, G, H using LiDAR sensor as shown in Figure 2.7, where the major detection term refers to the altitude and the inclination angle of the LiDAR's laser beams. The principle of breaking points detection depends directly on the smooth change of the range points or the distance between the points. The segments are then obtained from the breaking points to identify or classify whether these segments are: logical roads, physical roads, obstacles, blind spot or road boundaries. For clarification, the logical road is a part of the road where the vehicle can pass through it as the segment [EF], while the physical roads are parts of the road that the vehicle can not pass through as the segments [AB] and [GH]. According to the LiDAR laser beams shown in Figure 2.8, in the first approach [START_REF] Kang | A lidar-based decision-making method for road boundary detection using multiple kalman filters[END_REF], if the measured distance between the two consecutive points P 1 , P 2 is greater than a constant threshold d th as expressed in Equation 2.4, and the tangent of the passing line through the two points P 1 , P 2 is greater than a constant threshold tan th as expressed in Equation 2.5, then the two points P 1 , P 2 are supposed to be breaking points.

(x i -x i+1 ) 2 + (y i -y i+1 ) 2 ≥ d th (2.4) tan -1 x i -x i+1 y i -y i+1 ≥ tan th (2.5)
However, in the second approach [START_REF] Wijesoma | Road-boundary detection and tracking using ladar sensing[END_REF], if the difference between the range ρ i+2 of point P 3 and the range ρ p is greater than a constant threshold ρ th as expressed in Equation 2.7, then the points P 3 , P 2 are supposed to be breaking points. Where the value ρ p is a measured range depend on the ranges of the two previous consecutive points P 1 , P 2 and the azimuth angular resolution α as expressed in Equation 2.6. Some detection and localization applications in autonomous mobile robotic systems needs a fusion of multi-sensors in order to get better precision and accuracy. In [START_REF] Fernandes | Road detection using high resolution lidar[END_REF] the authors propose a road detection approach based on the depth feature of the 3D LiDAR and 2D imaging. The approach is built up of four stages as depicted in Figure 2.9. The main goal of this article is to explain how to generate a reconstructed image (in 2 dimensions) by projecting 3D LiDAR points to 2D image based on height distribution of the neighboring region of each point. Then morphological operations are applied to detect the edges of the image.

ρ p = ρ i ρ i+1 2ρ i cos α -ρ i+1 (2.6) ρ i+2 -ρ p ≥ ρ th (2.
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Sparse 3D points FIGURE 2.9: Four main stages for road detection approach [START_REF] Fernandes | Road detection using high resolution lidar[END_REF] Machine Learning [START_REF] Polikar | Pattern recognition[END_REF] takes into account all the suitable factors, thus called as features, in order to get the best evaluated model that classifies or recognizes the input object by its appropriate features. In [START_REF] Zhang | Lidar-based road and road-edge detection[END_REF], the author proposes a sequential method for road and road edge detection including five steps as shown in Figure 2.10.

In this article, a number of candidate points are selected as an input of a Support-Vector-Machine (SVM) classifier in order to extract the suitable features and to classify these points as belonging to the road or not. Then, a false alarm mitigation is used to detect the road segments. has been validated through the DARPA urban Challenge scenarios to show its efficiency and robustness.

Lines Extraction Algorithms for Multi-Vehicle Tracking

In [START_REF] Nguyen | A comparison of line extraction algorithms using 2d laser rangefinder for indoor mobile robotics[END_REF], the authors introduce a survey including six line extraction algorithms: Split-and-Merge [START_REF] Pavlidis | Segmentation of plane curves[END_REF], Line-Regression [START_REF] Arras | Feature extraction and scene interpretation for map-based navigation and map building[END_REF], Incremental [START_REF] Siadat | An optimized segmentation method for a 2d laser-scanner applied to mobile robot navigation[END_REF], RANSAC [START_REF] Fischler | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF], Hough-Transform [START_REF] Forsyth | Computer Vision: A Modern Approach[END_REF] and Expectation-Maximization [START_REF] Pfister | Weighted line fitting algorithms for mobile robot map building and efficient data representation[END_REF]. The algorithms are compared on 2D points using laser rangefinder. In terms of speed and correctness, the authors prove that the Split-and-Merge and Incremental algorithms are more efficient among the other algorithms.

While in [START_REF] Noyer | Automatic feature extraction in laser rangefinder data using geometric invariance[END_REF], [START_REF] Fortin | Feature extraction in scanning laser range data using invariant parameters: Application to vehicle detection[END_REF], the authors propose a new lines extraction algorithm, called Geometric Invariant algorithm, which is efficient in terms of number of extracted and rebuilt segments (as comparison, the Split-and-Merge algorithm extracts 50% more segments in order to describe the same scene). This algorithm is based on parameterized geometric feature (Polar points) that provides more efficiency as compared to other point-based algorithms (Cartesian points). A statistical test based on Mahalanobis distance is applied at the end of the algorithm in order to merge the segments [START_REF] Arras | An introduction to error propagation: Derivation, meaning and examples of equation cy= fx cx fxt[END_REF], which increases the efficiency of this method of segmentation. The Geometric Invariant algorithm is also used in a vehicles tracking model-based approach in [START_REF] Fortin | A model-based joint detection and tracking approach for multi-vehicle tracking with lidar sensor[END_REF], applied on a real data collected from IBEO LD automative scanning laser telemeter, mounted on a moving ego-vehicle whose velocity is estimated using a GPS sensor.

Road Defect Detection Systems

Ground defect detection is one of the interesting fields in autonomous driving vehicles and robotics applications. Till now, these types of applications are mostly vision-based in our current era, which witnesses many developments in that field. The interesting challenge is to develop ground defect detection methods based on the LiDAR sensor that has advantage against the camera and accelerometer sensors. In the next subsections, a detailed explanation review on road defect detection approaches based on LiDAR sensor, and a brief description of other related approaches based on Camera and Accelerometer sensors are presented.

LiDAR-Based Defect Detection Approaches

A first study in [START_REF] Laurent | High performance 3d sensors for the characterization of road surface defects[END_REF] describes two road surface anomalies detection systems using two high resolution and very low accuracy laser profiler mounted on a moving vehicle as shown in Figure 2.11, where X-axis (transverse) resolution is equal to 1mm and Z-axis (depth) accuracy is equal to 0.5mm.
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30Gb per kilometer at 100 the 3D data and fast JPE down to a very manageabl LCMS system can be foun The first one is Laser Rut Measurement System (LRMS), that detects and characterizes the pavement rutting in four steps: filtering low frequencies and linear approximation of the laser profile, then search for the rut support points and finally measurement of the rut characteristics, as expressed in Equations 2.8 and 2.9 and shown in Figure 2.12. The second one, detailed in [START_REF] Laurent | Development of a new 3d transverse laser profiling system for the automatic measurement of road cracks[END_REF], [START_REF] Laurent | Using 3d laser profiling sensors for the automated measurement of road surface conditions[END_REF], is a Laser Crack Detection System (LCDS) which was developed in order to generate a crack map from several 3D profiler scans. The algorithm was implemented in two major steps. The candidate hole is detected in each segment by searching for the minimal elevation point and the two maximal elevation points, where the hole depth is measured as the difference between the minimum elevation point and the average of the two maximum elevation points, and the hole width is measured as the distance between the two maximum elevation points. If the hole depth is beyond a minimum threshold, and the hole width is less than a maximum threshold, then it is considered as a potential candidate crack. The depth threshold was set to filter the high frequencies of the points' elevation signal. At the end, the first step shows a series of candidate crack points from various profile scans.

Rut Depth = (x B -x T ) 2 + (z B -z T ) 2 (2.8) Rut Width = (x R -x L ) 2 + (z R -z L ) 2 (2.
While, the aim of the second step is to validate the candidate crack points in order to eliminate the spurious points, and to produce a crack map. The process in this step is executed to find the neighborhood point of each potential crack point. If the neighbor point is closer than a maximum threshold distance, then the two crack points are connected by a line segment as shown in Figure 2.13. Finally, the remaining unconnected candidate crack points are eliminated. An automatic defect detection method study in [START_REF] Bian | Lidar based edge-detection for bridge defect identification[END_REF] shows that the LiDAR reflectivity (intensity) is an important property that supports ground surface evaluation. It starts by mapping the 3D point cloud on the horizontal XYplane, ignoring the altitude Z coordinate and exchanging it by the laser reflectivity, then a filtering operation is applied in order to remove the noisy points, followed by a block division operations on the map. The main principle of this method is to cluster the ground blocks to one of these three essential classes: asphalt, painting and cracks. Another efficient histogram-based detection method was proposed in [START_REF] Chen | Lidar-histogram for fast road and obstacle detection[END_REF] to detect the obstacles, holes and water hazards. This method is evaluated on the KITTI-ROAD data-set [START_REF] Fritsch | A new performance measure and evaluation benchmark for road detection algorithms[END_REF] and has obtained a promising performance result on a large size object existence compared with [START_REF] Shinzato | Road terrain detection: Avoiding common obstacle detection assumptions using sensor fusion[END_REF], [START_REF] Xiao | Crf based road detection with multi-sensor fusion[END_REF]. Normally, the measured ranges from the LiDAR sensor to ground plane have nearly the same values on each individual horizontal line. But when an obstacle exists on the road, the obstacle reflected ranges are shorter than the road line ranges. On the contrary side, the hole reflected ranges are longer than the road line ranges because of the object altitude when its above or below the road plane as shown in Figure 2 Whereas in [START_REF] Sucgang | Road surface obstacle detection using vision and lidar for autonomous vehicle[END_REF], the authors work on a simple speed hump detection method as shown in Figure 2.17, starting with acquisition of low cost LiDAR datapoints, then removing the noise using median filter, followed by comparing the difference of each consecutive neighboring sets, in order to mark the points as speed hump if the difference varies between two constant thresholds. Finally, the authors cascade their system with camera to enhance the results of speed hump detection.
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Difference Thresholding FIGURE 2.17: Diagram for speed hump detection method

Vision-Based Defect Detection Approaches

A segmentation pavement distress thresholding algorithm from background images was proposed in [START_REF] Lin | Potholes detection based on svm in the pavement distress image[END_REF], based on Neighboring Difference Histogram Method (NDHM) using a weighted statistical numerical value difference for each cracking pixel with their surrounding pixels. Therefore, the neighboring differential statistical numerical value was selected as a feature in order to identify the target region as potholes using nonlinear Support Vector Machine (SVM) classifier. Experimental results show a high recognition accuracy. However, the polluted potholes and environmental conditions such as sunlight and visibility are encountered as detection difficulties.

In [START_REF] Salari | Pavement distress detection and classification using a genetic algorithm[END_REF], an adaptive method was proposed for pavement distress detection and classification based on Genetic Algorithm (GA) and entropy theory [START_REF] Holland | Genetic algorithms and the optimal allocation of trials[END_REF].

The process aims to choose the optimal threshold segmentation by an objective function based on the captured pavement images and maximized by information theory. A vertical and horizontal distress measures are computed, by accumulating the difference between the numbers of distressed tiles in an adjacent columns and rows respectively. The vertical and horizontal distress measures with the total number of distress tiles were fed to a three layer feedforward Neural Network (NN) classifier to identify the type of pavement distress (pothole, crack). The experimental results of the threshold segmentation technique based on GA show a better performance among the Otsu segmentation method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF].

In addition, a proposed method [START_REF] Koch | Pothole detection in asphalt pavement images[END_REF] for automated potholes detection in asphalt pavement images presents a segmentation algorithm that depends on a histogram shape-based threshold to segment the images into defect and nondefect region. According to the geometric properties of the defect region, the potential potholes shapes are extracted using morphological thinning operations [START_REF] Gonzalez | Digital Image Processing Using MATLAB[END_REF] and elliptical regression [START_REF] Fitzgibbon | Direct least square fitting of ellipses[END_REF]. Afterwards, the potential pothole shape is compared to the texture of the non-defect surrounding pavement in order to identify the interest region as a potential defect. Experimental results show that an accurate technique was developed to detect the potholes from pavement images.

An improved pavement videos recognition method is proposed in [START_REF] Koch | Improving pothole recognition through vision tracking for automated pavement assessment[END_REF] which is a continuation for the previous work in [START_REF] Koch | Pothole detection in asphalt pavement images[END_REF]. The method incrementally updates the texture signature for intact pavement regions, and uses a kernelbased vision system to track detected potholes taking in consideration the texture and shape of the object [START_REF] Yilmaz | Object tracking: A survey. acm comput surv[END_REF], [START_REF] Makhmalbaf | 2d vision tracking methods' performance comparison for 3d tracking of construction resources[END_REF]. Hence, the approach obtained an effective pothole detection in the appearance of a global pavement surface design.

Furthermore, a general framework that provides a centralized system which detects potholes on roads and assists the driver to avoid them was proposed in [START_REF] Venkatesh | An intelligent system to detect, avoid and maintain potholes: A graph theoretic approach[END_REF]. A laser line stripper sensor attached to the vehicle [START_REF] Mertz | Continuous road damage detection using regular service vehicles[END_REF] is used to send out a plane of light that intersects with objects which in turn is viewed by a camera. The camera has a band pass filter to suppress background illumination and stands out the projected laser line in the resulting image. Then the line in the image is transformed into cartesian coordinates by a triangulation operation. When a potholes is detected, an inter-vehicle protocol such as Dedicated Short-Range Communications (DSRC) channel broadcasts a notification message containing its GPS location [START_REF] Xu | Vehicle-to-vehicle safety messaging in dsrc[END_REF], to warn immediately the other nearby vehicles. This process increases the accuracy of the system by eliminating the delay at the server end.

In [START_REF] Danti | An image processing approach to detect lanes, pot holes and recognize road signs in indian roads[END_REF], the authors proposed a K-means clustering-based algorithm for potholes detection. The algorithm is implemented on the region of interest segmentation, which uses Hough transformation technique [START_REF] Duda | Use of the hough transformation to detect lines and curves in pictures[END_REF] to detect lines and curves in a capture image. The experimental results show a sufficient performance.

A robust method supported by heuristically derived decision logic for automated detection and assessment of potholes, cracks and patches from real life video clips highways is presented in [START_REF] Huidrom | Method for automated assessment of potholes, cracks and patches from road surface video clips[END_REF]. This approach uses various image processing methods: segmentation, median filtering, weighted mean based adaptive thresholding, morphological operation, connected component labeling and chain coding techniques [START_REF] Huidrom | Robust method for automated segmentation of frames with/without distress from road surface video clips[END_REF]- [START_REF] Yang | Methods to estimate areas and perimeters of blob-like objects: A comparison[END_REF]. At the end of the proposed method, the extracted information can be used for determining maintenance levels of the roads, in order to take the suitable actions for repairing and rehabilitation. In terms of robustness and efficiency, the experimental results show the defect detection ability in an effective and accurate process.

Moreover, a technique based on an laser image for pavement distress detection was proposed in [START_REF] Yu | Pavement pothole detection and severity measurement using laser imaging[END_REF]. The process includes a three layer feed-forward Neural Network [START_REF] Lee | Position-invariant neural network for digital pavement crack analysis[END_REF], fed with four computed numerical features: vertical distress measure, horizontal distress measure, depth index and total number of distress tiles, in order to identify pothole severity and to classify the crack type. Finally, the experimental results demonstrate that the proposed model works well for potholes and cracks detection.

Accelerometer-Based Defect Detection Approaches

A data acquisition hardware that was used to develop a vibration-based system for preliminary evaluation of pavement conditions is proposed in [START_REF] Yu | Vibration-based system for pavement condition evaluation[END_REF]. The vibration-based system senses the ground conditions based on mechanical responses of the testing vehicles, where the cracks and surface rutting impose impacting force on the vehicle. The pavement surface conditions can be estimated from the recorded responses of the testing vehicle when driving on the pavement. This system has the advantage of being cost-effective, having small storage requirement and amenable for automatic real-time data processing. However, it does not provides a complete details on distress characteristics as the video-based system. In addition, the video-based systems has the advantage of collecting a prior information about the pavement distress before crossing it.

Another vibration-based system is proposed in [START_REF] De Zoysa | A public transport system based sensor network for road surface condition monitoring[END_REF], where public transportation system based on network sensor BusNet is used to monitor the road surface condition, by adding an acceleration sensor boards to the system. BusNet is a network sensor initially designed to monitor environmental pollution using sensors mounted on a public transportation buses. The collected acceleration readings are transmitted over the BusNet to the central main station collection point. The process based on preliminary results, is still in process for collection of more data for developing an analytical model.

An investigated application of mobile sensing to detect and report the surface conditions of roads was proposed in [START_REF] Eriksson | The pothole patrol: Using a mobile sensor network for road surface monitoring[END_REF]. The authors developed pothole patrol system gathering data from three axis acceleration sensor, and GPS devices deployed on embedded computers in the vehicle. They identified potholes and other several road surface anomalies from the accelerometer data, using a machine-learning approach. Also, the authors uploaded the detection results to a central server via opportunistic WiFi modulation provided by participating open WiFi access points, or using an available cellular data service. The vibration-based method may provides false positive and false negative results due to the manhole existence that can be detected as potholes, and potholes position at the middle of the road that cannot be detected using accelerometer because of no contact with any of the vehicle's wheels.

Conclusion

This chapter presents an explanation on the 3D LiDAR sensor and its features, and the advantage of LiDAR sensors among the other sensors. In addition, the literature review is introduced on the general application of LiDAR sensor, and highlights the related work of LiDAR calibration methods and defect detection methods using different senors as LiDAR, camera and accelerometer. The addressed popular plane-based extrinsic calibration methods in [START_REF] Morales | Boresight calibration of construction misalignments for 3d scanners built with a 2d laser rangefinder rotating on its optical center[END_REF], [START_REF] Zhe | Calibration of rotating 2d lidar based on simple plane measurement[END_REF] are modeled on the concept of 6-DOF. Whereas, our proposed extrinsic plane-based calibration method LiDAR/Ground Calibration Method is modeled on concept of 4-DOF, which indicates the simplicity of our proposed model, but it's not realistic to compare the evaluation results due to the difference of the modeling concepts between the 6-DOF and 4-DOF. Moreover, the most important defect detection method is depth's histogram-based [START_REF] Chen | Lidar-histogram for fast road and obstacle detection[END_REF], which records the first rank using benchmark evaluation results.

Chapter 3

LiDAR Measurement Modeling

Introduction

After presenting some of the background works related to this thesis processes in chapter 2, this chapter will explain in details the technical and specifications of the LIDAR model used to understand and describe the application setups, which are summarized in the first two blocks of the thesis diagram i.e. data acquisition, followed by data extraction and preprocessing as shown in Figure 1.1. Basically, the experimental configuration of the LiDAR sensor is an important initialization step to reach the main final goal, which imposes itself technically to attain a good setups, so that the data is ready to be processed.

Velodyne VLP-16 Sensor

N U A L A N D M I N G G U I D E

VLP-16

Velodyne LiDAR Puck firing planes (elevation angular resolution). A relevant usable return can be between 1m (minimum range) and 100m (maximum Range), and up to 300000 points per second can be measured (data rate). The azimuth angular resolution is a free selection variable choice 0.1 • , 0.2 • , 0.4 • , and it is respectively correlated to the rotating frequency 20Hz, 10Hz, 5Hz. The received intensity value is enrolled between 0 and 255 (reflectivity). This sensor is also characterized by a range measurement accuracy of 3cm (for more details about Velodyne VLP-16 LiDAR sensor products [START_REF]User manual and programming guide vlp-16[END_REF]).

Data Extraction

As mentioned in the previous section, the data from the packet capture file .pcap are extracted depending on the flags (0 × FFEE, see Appendix A.2) in successive way (point by point). Every point is characterized by its features (range, azimuth, elevation, reflectivity or intensity, and time), and the Cartesian coordinates (x, y, z) are computed by the 3D conversion from polar coordinates ρ, α, β to Cartesian coordinates as it will be described in Chapter 4. Finally, the data of each point will be stocked in memory as shown in Table 3.1.

There exists a second fast recommended way by using VeloView software, where this software supports a service to export the 3D point cloud data in to Excel .csv files. Each file represents one scanning frame, however the frames must be concatenated then separated due to the point cloud interference or overlap problem between each two successive frames. 

Range Azimuth Elevation Intensity Time X Y Z

Point 1 ρ 1 α 1 β 1 I 1 t 1 x 1 y 1 z 1 Point 2 ρ 2 α 2 β 2 I 2 t 2 x

Data Preprocessing

In Data Preprocessing block, a developed algorithm aims to solve the nonperiodic azimuth angular resolution problem in each LiDAR frame. The algorithms is composed in two steps: frames separation and points associations. Therefore, in the next subsections the preprocessing parts are explained in details.

Frames Separation

In this first step, the PointCloud data must be separated into individual frames from all points in the above Table 3.1, since this table delivers all the frames in successive and sequential order. Each scanning frame represents a complete cycle around the z-axis of 360 • . Since the azimuth angular resolution is set to 0.2 • , that means each scanning frame will start with azimuth angle between [0 • , 0.2 • ] and end with azimuth angle between [359.8 • , 360 • ] (see Figure 3.3) due to the angular shift error of the motor rotating frequency problem. 

Points Association

In the second step, the preprocessing will focus on the azimuth feature, to provide an arithmetic sequence with the azimuth angular resolution, which will earn an advantage by using it in orderly algorithms. As for the elevation, it is ready and regular, especially for close ranges, because it has constant angular resolution.

After frames separation step, each frame is composed of different number of points because there is no arithmetic sequential angular resolution for azimuth, due to the rotation nature of sensor motor (drifted angular resolution) and may be to the non-periodic firing timestamp. Therefore, we implement an algorithm with periodic azimuth angular resolution 0.2 • , by associating the points features to the nearest new azimuth if the difference is less than half the angular resolution as shown in Figure 3.5. Otherwise, the algorithm adds a zero padding points with zero point features to the new azimuth (see Table 3.2). VLP-16 LiDAR sensor has several interesting properties for our application, mainly:

If |𝛼(n) -γ(k)| < 0.5×angular_resolution
• 360 • azimuth angular field of view.

• 30 • elevation angular field of view.

• 0.2 • azimuth angular resolution.

• Good accuracy of measurement (±3cm).

• Relatively low cost.

A software, supplied by the manufacturer and named VeloView [START_REF]Veloview software[END_REF] is used for data acquisition in order to record, view and store the telemetric data in a packet capture .pcap file. Then, Wireshark software [START_REF]Wireshark software[END_REF] permits to read the data from the .pcap file in hexadecimal format, and Matlab software [START_REF]Matlab software[END_REF] is used to extract the data from the .pcap file (Appendix A.2) and to process them.

Results

It is necessary to estimate the additive error in the data, that emerged after using the preprocessing step. The evaluation is composed by two cases, each case represents a new associated standard azimuth, sampled with azimuth angular resolution 0.2 • while conserving the same number of azimuth angles in both cases. In the first standard case, the new associated azimuths α std1 is equal to [0 • , 359.8 • ]. While in the second standard case, the new as- sociated azimuths α std2 start from half the azimuth angular resolution and covers the range [0.1 • , 359.9 • ]. In these two cases, the error induced by our preprocessing is computed below, and a conclusion is given on the interest of this step.

The error parameters of each preprocessing method are evaluated by using the old azimuth α old and the new standard associated azimuths α std1 , α std2 , the old transverse x old and the new associated transverses x std1 , x std2 , and the old longitude y old and the new associated longitudes y std1 , y std2 , for all of a 50 sample frames' points in a given sequence, and are expressed in the equations below:

• The standard deviation σ α old /α i of the azimuth error, between the old azimuth α old with respect to the first and second standard associated azimuths α std1 , α std2 .

σ α old /α i = 1 N ∑ ((α old -α i ) -(α old -α i )) 2 (3.2) 
Where i = {std1, std2} and N is the number of impact points.

• The standard deviation σ x old /x i of the transverse error, between the old transverse x old with respect to the new associated transverses x std1 , x std2 .

σ x old /x i = 1 N ∑ ((x old -x i ) -(x old -x i )) 2 (3.3)
• The standard deviation σ y old /y i of the longitude error, between the old longitude y old with respect to the new associated longitudes y std1 , y std2 .

σ y old /y i = 1 N ∑ ((y old -y i ) -(y old -y i )) 2 (3.4)
• The average associated points represents the percentage of the association points number M with respect to the total number N of impact points.

Average associated points = M N × 100% (3.5) Table 3.3 shows the standard deviations above on four different acquisitions.

The first two acquisitions are downloaded from the Velodyne website [START_REF]User manual and programming guide vlp-16[END_REF] where the LiDAR sensor setup is with no orientation, while the second two acquisitions are recorded in the lab corridor and outdoor road by our LiDAR sensor where it is setup with a high orientation angle. 

Results Discussion

The obtained azimuth errors σ α old /α std1 , σ α old /α std2 in the two standard cases are very small and close to each other. In addition, the azimuth error's σ α old /α i effect on the transverse and longitude errors σ x old /x i , σ y old /y i of our acquisition is widely smaller than the effect of Velodyne acquisitions, due to the orientation of our LiDAR sensor which leads to a decrease of the ranges of the impact points. After the analysis of Table 3.3 results, the second azimuth standard α std2 tends to be selected for two reasons. The first reason, is that the second azimuth standard error σ α old /α std2 is slightly smaller than the first azimuth standard error σ α old /α std1 . The second reason, is that the second azimuth standard α std2 doesn't includes 0 • , 90 

Conclusion

To summarize it up, the familiarity with an instrument sensor is an important initialization step to avoid several technical problems that may face it in any scientific subject. Therefore, this chapter addresses a brief explanation about Velodyne VLP-16 LiDAR features, an easy ways for data extraction from the LiDAR sensor export file, and a data preprocessing procedure in order to solve the problem of azimuth angular resolution from non-periodic into arithmetic sequence order, using frames separation and points association for a recommended standard, which provides a suitable prepared data for points selection at a specific azimuth that used later in Chapter 4.

Chapter 4

Extrinsic Calibration Method

Introduction

After introducing the preprocessing block, which expresses an arithmetic sequential order for the azimuth feature, this sequential order generates a periodic angular resolution. So that, we can benefit from this process to select a number of points at a specific azimuth as used later in the calibration process (section 4.3.3).

In general, calibration block part is an important process block in most applications using sensors. This calibration process has to be launched in a first time before the beginning of the processing, in order to deliver suitable data usable for the successive steps. In our system, the internal parameters of the LiDAR are supposed to be known and given by the manufacturer, so no intrinsic calibration is necessary, especially that the study environment region is the road, which is characterized by a close range values due to the downward orientation of the LiDAR sensor. Therefore, the calibration step considers only an extrinsic calibration method, that is explained in details in the next sections of this chapter.

LiDAR/Ground Geometrical Impact Modeling

In order to test our methods using 3D telemetric data and to study their robustness in presence of noise, it is necessary to form a plane-based model.

The model is generated depending on the features of multi-laser rangefinder or 3D LiDAR sensor, where the environment impact points can be modeled as an intersection between the LiDAR laser beams and the environmental surrounding surfaces. In this work, the LiDAR sensor must be oriented toward the ground in order to study the road defects. Therefore, the LiDAR laser beams are represented as straight lines and the ground surface as a flat plane in a 3D frame.

Depending on the application situation, two concepts can represent the geometrical reflection model between the LiDAR sensor and the ground surface as shown in Figure 4.1:

• Practical orientation concept: the LiDAR laser beams (d) are supposed to be rotated and the ground's real plane (P re ) is a fixed horizontal plane as shown in Figure 4.1b.

• Scientific orientation concept: the LiDAR laser beams (d) are supposed to be fixed and the virtual horizontal ground surface (P H ) must be rotated by the LiDAR's inverse orientation in the practical concept, to get the real oblique ground plane (P re ) in LiDAR frame as shown in Figure 4.1c. 

Extrinsic Parameters vs Practical Concept

The research goal depends on the four extrinsic parameters (altitude and orientation angles), where the orientation parameter is the strongest influence factor on the ground points distribution process as shown in Figures 4.2a • Goal: plane-based extrinsic calibration, that needs large sparsity area to improve the plane estimation, which requires high altitude and low orientation angles.

• Constraint: the stated finality of road surface object detection, that needs high density points to improve the capability of detecting defect coverage points, which requires low altitude and high orientation angles.

Therefore, a trade-off is needed in order to optimize the extrinsic parameters (altitude and orientation angles), providing the suitable coverage points distribution over the ground.

Four geometric view patterns are summarized in three cases depending on the variation of pitch angle ϕ x with respect to the LiDAR's vertical field of view "vFOV" as shown in The main objective of this thesis is road defect detection, which requires high coverage resolution. Therefore, the study case in this problem focuses on the hyperbolas case as shown in Figure 4.2e, in order to increase the points density on the ground. 

LiDAR Laser Beams and Oblique Ground Surface Intersection

In the following part, the scientific orientation concept was chosen to model the reflections of the laser beams (d) on the real oblique ground surface (P re ).

Therefore, the LiDAR is supposed to be fixed and the parametric equations of the fixed straight lines (d) in LiDAR frame are given by:

(d) :

                            x y z    =    t • tan α t t • √ 1 + tan 2 α • tan β    for          0 • < α < 90 • or 270 • < α < 360 • -15 • < β < 15 • t ≥ 0    x y z    =    t • tan α t -t • √ 1 + tan 2 α • tan β    for      90 • < α < 270 • -15 • < β < 15 • t ≤ 0 (4.1)
Where α and β describe the azimuth and the elevation angles of each laser beam and t is the parameter of the parametric representation.

The virtual horizontal ground plane (P H ) must be rotated by the 3D Euler's angles ψ z , θ y , ϕ x , so that the equation of the rotated real ground plane (P re ) is expressed as a function of the horizontal ground plane (P H ) with height h and rotational matrix R z,y,x (ψ z , θ y , ϕ x ).This transformation is expressed as:

P re = R z,y,x (ψ z , θ y , ϕ x )P H (4.2)
The parametric and Cartesian equations of the horizontal ground plane (P H ) are expressed as follows:

(P H ) :

            x y z    =    t + aw t + bw -h    parametric equation ∀a, b ∈ R z + h = 0 Cartesian equation (4.
3)

The rotational matrix R z,y,x (ψ z , θ y , ϕ x ) [START_REF] Brannon | Rotation: A review of useful theorems involving proper orthogonal matrices referenced to three-dimensional physical space[END_REF] is expressed as:

R z,y,x (ψ z , θ y , ϕ x ) = R z (ψ z )R y (θ y )R x (ϕ x ) =    cos ψ z cos θ y cos ψ z sin θ y sin ϕ x -sin ψ z cos ϕ x cos ψ z sin θ y cos ϕ x + sin ψ z sin ϕ x sin ψ z cos θ y sin ψ z sin θ y sin ϕ x + cos ψ z cos ϕ x sin ψ z sin θ y cos ϕ x -cos ψ z sin ϕ x -sin θ y cos θ y sin ϕ x cos θ y cos ϕ x    (4.4)
Therefore, the Cartesian coordinates of the real points cloud c re obtained from the intersection between the fixed straight lines (d) and the rotated real plane (P re ) are expressed as:

(c re ) :                                         x y z    =    t • tan α t t • √ 1 + tan 2 α • tan β    for          0 • < α < 90 • or 270 • < α < 360 • -15 • < β < 15 • t ≥ 0 ∀t = (ul ′ -u ′ l)hk ′′ +(u ′ k-uk ′ )hl ′′ +(lk ′ -l ′ k)hu ′′ (k ′ l ′′ -l ′ k ′′ ) tan α+(lk ′′ -kl ′′ )+(l ′ k-lk ′ ) √ 1+tan α 2 tan β    x y z    =    t • tan α t -t • √ 1 + tan 2 α • tan β    for      90 • < α < 270 • -15 • < β < 15 • t ≤ 0 ∀t = (ul ′ -u ′ l)hk ′′ +(u ′ k-uk ′ )hl ′′ +(lk ′ -l ′ k)hu ′′ (k ′ l ′′ -l ′ k ′′ ) tan α+(lk ′′ -kl ′′ )-(l ′ k-lk ′ ) √ 1+tan α 2 tan β (4.5)
Where:

k = cos ψ z cos θ y + cos ψ z sin θ y sin ϕ x -sin ψ z cos ϕ x l = a cos ψ z cos θ y + b cos ψ z sin θ y sin ϕ x -b sin ψ z cos ϕ x u = cos ψ z sin θ y cos ϕ x + sin ψ z sin ϕ x k ′ = sin ψ z cos θ y + sin ψ z sin θ y sin ϕ x + cos ψ z cos ϕ x l ′ = a sin ψ z cos θ y + b sin ψ z sin θ y sin ϕ x + b cos ψ z cos ϕ x u ′ = sin ψ z sin θ y cos ϕ x + cos ψ z sin ϕ x k ′′ = -sin θ y + cos θ y sin ϕ x l ′′ = -a sin θ y + b cos θ y sin ϕ x u ′′ = cos θ y cos ϕ x                                    ∀a, b ∈ R (4.6)

Error Modeling in Polar and Cartesian Coordinates

In this section, the systematic and random errors w ρ , w α , w β were taken in consideration as a source of error [START_REF] Atanacio-Jiménez | Lidar velodyne hdl-64e calibration using pattern planes[END_REF], [START_REF] Filin | Recovery of systematic biases in laser altimetry data using natural surfaces[END_REF], to represent the modeling of the additive white Gaussian noise for each polar coordinates ρ, α, β of the real points cloud c re in Equation 4.7, where ρ w , α w , β w are the real measurements of the range ρ, azimuth α and elevation β respectively for each reflecting point.

(c w ) :

  ρ w α w β w   =   ρ + w ρ α + w α β + w β   (4.7)
The 3D transformation from polar coordinates ρ w , α w , β w to Cartesian coordinates x w , y w , z w of the ground noisy points cloud c w is given by:

(c w ) :   x w y w z w   =   ρ w cos β w sin α w ρ w cos β w cos α w ρ w sin β w   (4.8)
Then the standard deviation of the error can be derived from polar to Cartesian parameters in Equation 4.9, assuming that σ x w , σ y w , σ z w , σ ρ w , σ α w , σ β w are respectively the standard deviations of the added noise on x w , y w , z w , ρ w , α w , β w . The terms of the standard deviations σ ρ w , σ α w , σ β w with a power higher than two can be neglected in this derivation to obtain this approximation:

  σ 2 x w σ 2 y w σ 2 z w   ≃    σ 2 ρ w cos 2 β w sin 2 α w + ρ 2 w (σ 2 β w sin 2 β w sin 2 α w + σ 2 α w cos 2 β w cos 2 α w ) σ 2 ρ w cos 2 β w cos 2 α w + ρ 2 w (σ 2 β w sin 2 β w cos 2 α w + σ 2 α w cos 2 β w sin 2 α w ) σ 2 ρ w sin 2 β w + ρ 2 w σ 2 β w cos 2 β w    (4.9)
Remark: Glennie et al. [START_REF] Glennie | Calibration and stability analysis of the vlp-16 laser scanner[END_REF] have shown in particular that the error of a scanning LiDAR sensor is mainly manifested over range. In this type of sensor, angles are not directly measured, but the error is mainly related to the reproducibility of the measurement for a given angle. The hypothesis of neglecting the scanning angle error is a very common assumption in the field of LiDAR detection: it is part of the manufacturers' specifications and is commonly used in the literature. This is particularly related to the very small influence of the angle reproducibility errors on the range measurement of the object of interest.

In this study, we then focus on the range error σ ρ w and neglect the azimuth and elevation errors σ α w , σ β w respectively in the simulation data as given by the constructor. The transformation in Equation 4.9 is then simplified as:

  σ x w σ y w σ z w   =   σ ρ w cos β w sin α w σ ρ w cos β w cos α w σ ρ w sin β w   (4.10)

Extrinsic LiDAR/Ground Calibration Method

In multi-sensor applications, data acquired from the different sensors must be fused in one common reference frame. In this application, the calibration of LiDAR frame scans is necessary to merge them in one world reference frame, in order to increase the points density coverage on the ground, which facilitates the road defect detection. Therefore, the extrinsic calibration aims to model the relationship between the LiDAR frame and the world reference frame. The main role of LGCM procedure is to estimate the extrinsic parameters: the Euler's rotational angles ψ z , θ y , ϕ x and the height h. The opt-LGCM is initialized by the estimated extrinsic parameters to optimize them. Finally, the distributed ground noisy points c w along the real plane (P re ) are rotated along the horizontal plane (P H ) by the optimized extrinsic parameters in the frame of fixed LiDAR.

opt-LGCM Proposed Calibration Method: LGCM

The proposed method consists mainly in two steps. A first, totally unsupervised step, which consists in estimating a first value of the steering angles. This first estimate is then used as a basis for the optimization step which will seek the best orientation parameters. The proposed method is therefore totally unsupervised and does not require a priori knowledge of the orientation of the sensor by a pan/tilt unit for example [START_REF] Magnusson | The three-dimensional normal-distributions transform an efficient representation for registration, surface analysis, and loop detection[END_REF].

Fitting Plane

The first step aims to fit an estimated plane (P est ) with the rotated ground noisy points c w . The Least Squares estimator is used to obtain the normal vector of the plane (P est ).

The equation of the estimated plane (P est ) in the LiDAR frame is expressed by: f (x, y) = z = Ax + By + D + w (4.11)

Where A,B, and D are the plane parameters, and w is an additive white Gaussian noise with standard deviation σ w .

Therefore, Equation 4.11 of the estimated plane (P est ) can be written in linear form as: Z = HO + w (4.12)

Where:

Z = z(0) • • • z(N -1) T H =    x(0) y(0) 1 . . . . . . . . . x(N -1) y(N -1) 1    O = A B D T w = w(0) • • • w(N -1)
T where N is the number of reflected points.

The solution of Least Squares estimator for this linear model [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation theory (Fundamentals of Statistical Signal Processing)[END_REF] is expressed as: ÔLS = (H T H) -1 H T Z (4.13)

Rotation about Axis

Rodrigues formula is an efficient rotation transformation that computes the rotation matrix R rod , which rotates a vector into another vector in 3D frame around a fixed axis vector --→ Axis by rotational angle η [START_REF] Taubin | 3d rotations[END_REF]. Therefore, after having estimated the parameter vector of the oblique estimated plane (P est ) in the previous section 4.3.1, the next step is to compute the rotational matrix R rod from the normal vector -→ n 1 of the oblique estimated plane (P est ) to the normal vector -→ n 2 of the horizontal plane (P H ) that is parallel to X L Y L -plane with height -h (cf . Figure 4.1c). The objective of this step is to use Rodrigues formula in order to estimate the first two Euler's angles pitch φx , roll θy , and the first partial yaw angle Ψz1 -due to the incomplete calibration in yaw rotation, which is solved by the next step-from Rodrigues Matrix R rod .

Assuming that -→ n 1 , -→ n 2 and --→ Axis are expressed as:

-→ n 1 (-Â, -B, 1) -→ n 2 (0, 0, 1) --→ Axis(m, n, p) = -→ n 1 × -→ n 2 ∥ -→ n 1 × -→ n 2 ∥
The Rodrigues rotation formula R rod can be then written as:

R rod = I 3 + sin ηK + (1 -cos ηK 2 ) (4.14)
Where:

I 3 =   1 0 0 0 1 0 0 0 1   K =   0 -p n p 0 -m -n m 0   sin η = ∥ -→ n 1 × -→ n 2 ∥ ∥ -→ n 1 ∥•∥ -→ n 2 ∥ cos η = -→ n 1 • -→ n 2 ∥ -→ n 1 ∥•∥ -→ n 2 ∥
Now, by using Equation 4.15 below:

R rod = R x,y,z ( Ψz1 , θy , φx ) = R x ( Ψz1 )R y ( θy )R z ( φx ) (4.15)
Then, the Rodrigues matrix R rod provides the computation of Ψz1 , θy , and φx as expressed in the equations below:

Ψz1 = arctan ((R rod ) 21 /(R rod ) 11 ) (4.16) θy = arcsin(-(R rod ) 31 ) (4.17) φx = arctan ((R rod ) 32 /(R rod ) 33 ) (4.18)
Where ij represents the matrix element index of (R rod ) ij . As a graphical result, the ground noisy points c w are rotated by Rodrigues matrix R rod to the distributed points c H1 along the horizontal plane (P H ) by Equation 4. [START_REF] Hoang | 3d motion estimation based on pitch and azimuth from respective camera and laser rangefinder sensing[END_REF] 

Yaw Angle Estimation

After rotating the noisy points c w to the horizontal points c H1 , the second partial yaw angle Ψz2 is estimated by an efficient Algorithm 1 that we proposes in 

y(N -1)    , H =    x(0) 1 . . . . . . x(N -1) 1    , ÔLS = m b
Compute the coordinates of the intersection points S of each two symmetric lines of (l) and (l ′ ).

Assume that:

(l) : y = m1 x + b1 (l ′ ) : y = m2 x + b2 Therefore, the intersection points S of the straight lines (l) and (l ′ ) are computed as follows: 

x s = b2 -b1 m1 -m2 ,y s = m1 b2 -b1 m1 -m2 + b1 Fit a line (v) that

Height Estimation

At the end of LGCM approach, a suitable way to estimate the height is to compute the altitude mean of the points c H2 , due to the ground geometrical model used in this paper. Therefore, the estimated height is then expressed as:

ĥ = 1 N N-1 ∑ i=0 z i
where N is the number of calibrated points (4.22)

Extrinsic Parameters Optimization

The role of optimized LiDAR/Ground Calibration Method opt-LGCM is to optimize the extrinsic parameters ψ z , θ y , ϕ x , h in order to obtain an optimized plane represents the ground. Therefore, Levenberg-Marquardt algorithm is an optimization algorithm, which combines both Gradient-Descent and Gauss-Newton methods [START_REF] Duc-Hung | Parameter extraction and optimization using levenberg-marquardt algorithm[END_REF]. In addition, it is a very efficient technique to find the minima and it performs well on most non-linear functions. The Levenberg-Marquardt algorithm is initialized by the estimated extrinsic parameters ψz , θy , φx , ĥ to obtain the optimized extrinsic parameters ψ′′ z , θ′′ y , φ′′ x , ĥopt , in order to minimize the mean square error mse that represents the square difference between the position of noisy points c w and the optimized position of points c opt in Equation 4.24. The optimized points c opt represent the intersection between all the LiDAR beams (d) and the optimized plane (P opt ) which is the rotation of the horizontal plane (P H ) by the new optimized Euler's angles ψ′′ z , θ′′ y , φ′′

x and the optimized height ĥopt in Equation 4. [START_REF] Song | Deep sliding shapes for amodal 3d object detection in rgb-d images[END_REF]. In other words, the importance of the above procedure is to get the optimized height ĥopt and the optimized Euler's angles ψ′′ z , θ′′ y , φ′′ x that rotate, in the inverse ordering orientation, the horizontal plane (P H ), to fit the noisy points c w that are distributed along the oblique real plane (P re ) with minimum mse on the position.

( ψ′′ z , θ′′ y , φ′′ x , ĥopt ) = arg min

(ψ z ,θ y ,ϕ x ,h) mse (4.23)
Where the non-linear function mse is expressed by:

mse = 1 m m ∑ i=1 (x c opt -x c w ) 2 + (y c opt -y c w ) 2 + (z c opt -z c w ) 2 (4.24)
The optimized points c opt represent the intersection between the straight lines (d) and the rotated optimized plane (P opt ), where the plane (P opt ) is the rotation of the fixed ground horizontal plane (P H ) of height ĥopt by -ψ′′ z , -θ′′ y , -φ′′

x based on R x,y,z rotation matrix as shown in Equation 4.25:

P opt = R x,y,z (-ψ′′ z , -θ′′ y , -φ′′ x )P H (4.25) 
Where the rotation matrix R x,y,z is the reverse of R z,y,x . 

R x,y,z (-ψ′′ z , -θ′′ y , -φ′′ x ) = R x (-φ′′ x )R y (-θ′′ y )R z (-ψ′′ x ) =     
(c opt ) :                                           x y z    =    t • tan α t t • √ 1 + tan 2 α • tan β    for          0 • < α < 90 • or 270 • < α < 360 • -15 • < β < 15 • t ≥ 0 ∀t = (ul ′ -u ′ l) ĥopt k ′′ +(u ′ k-uk ′ ) ĥopt l ′′ +(lk ′ -l ′ k) ĥopt u ′′ (k ′ l ′′ -l ′ k ′′ ) tan α+(lk ′′ -kl ′′ )+(l ′ k-lk ′ ) √ 1+tan α 2 tan β    x y z    =    t • tan α t -t • √ 1 + tan 2 α • tan β    for      90 • < α < 270 • -15 • < β < 15 • t ≤ 0 ∀t = (ul ′ -u ′ l) ĥopt k ′′ +(u ′ k-uk ′ ) ĥopt l ′′ +(lk ′ -l ′ k) ĥopt u ′′ (k ′ l ′′ -l ′ k ′′ ) tan α+(lk ′′ -kl ′′ )-(l ′ k-lk ′ ) √ 1+tan α 2 tan
                                         ∀a, b ∈ R (4.28)

Experimental Results

In this section, the proposed calibration method LGCM is applied on two types of data: simulation data obtained by the modeling as mentioned in the sections 4. The extrinsic calibration results are presented in terms of precision and robustness. According to our application, the precision shows the stability of the method with respect to the variation of: pitch angle ϕ x toward the ground, and height h above the ground. While the robustness shows the method strength with respect to the variation of range accuracy σ ρ of the measurements.

Therefore, the evaluation parameters of the results will focus on the point cloud features of the real points c re on the real plane (P re ), noisy points c w distributed along the real plane (P re ), estimated points c est on the estimated plane (P est ) obtained by LGCM and the optimized points c opt on the optimized plane (P opt ) obtained by opt-LGCM as described below:

• The real height h, estimated height ĥ and the optimized height ĥopt .

• The standard deviation σ d w/i of the noisy points c w orthogonal Euclidean distance with respect to the real plane (P re ), the estimated plane (P est )

and the optimized plane (P opt ).

σ d w/i = 1 N ∑ (d w/i -d w/i ) 2 (4.29) d w/i = |A i x w + B i y w + C i z w + D i | A 2 i + B 2 i + C 2 i (4.30)
Where x w , y w , z w are the Cartesian coordinates of the noisy points c w , A i , B i , C i , D i are the coefficient parameters of the planes, i = {re, est, opt} and N is the number of impact points.

• The standard deviation σ ρ re /ρ i of the real points c re range difference with respect to the noisy points c w , the estimated points c est and the optimized points c opt .

σ ρ re /ρ i = 1 N ∑ ((ρ re -ρ i ) -(ρ re -ρ i )) 2 (4.31)
Where i = {w, est, opt} and N is the number of impact points.

• The standard deviation σ ρ w /ρ i of the noisy points c w range difference with respect to the real points c re , the estimated points c est and the optimized points c opt .

σ ρ w /ρ i = 1 N ∑ ((ρ w -ρ i ) -(ρ w -ρ i )) 2 (4. 32 
)
Where i = {re, est, opt} and N is the number of impact points.

• The gain in performance PF i that describes the range accuracy enhancement obtained from the Levenberg-Marquardt optimization algorithm which is defined as:

PF i = σ ρ w /ρ i -σ ρ w /ρ re (4.33)
Where σ ρ w /ρ re is the LiDAR range accuracy and i = {est, opt}.

Simulation Data Results

Using the simulation data, the setups used to validate the proposed calibration method are separated in two categories:

• In terms of precision, the real height h = 2m, roll angle θ y = 2 • , yaw angle ψ z = 2 • and LiDAR range accuracy σ ρ w /ρ re = 0.03m, with respect to the variation of pitch angle ϕ x = [-70 

Standard Deviation σ d w/i in Terms of Precision and Robustness

Referring to Figure 4.7a, the increasing of standard deviation σ d w/i along the planes is due to the orientation effect of the LiDAR by the pitch angle ϕ x on σ d w/i . So as pitch angle ϕ x tends to 90 • the increase of pitch angle ϕ x in positive and negative sides, which decreases the sparsity of impact points on the ground. This leads to decrease the precision of plane fitting estimation.

• the increase of LiDAR range accuracy σ ρ w /ρ re , that decreases the precision of plane fitting estimation. 

Height Estimation in Terms of Precision and Robustness

In terms of precision and robustness, Figure 4.10 highlights the recovering of the height parameter and how the optimized height ĥopt is closer to the real height h than the estimated height ĥ, which presents the height optimization importance and the strength of the Levenberg-Marquardt optimization algorithm.

- 

Performance Gain PF i in Terms of Precision and Robustness

Figure 4.11 shows the gain in performance of the optimized plane points c opt against the estimated plane points c est distributed by the noisy points c w compared to the LiDAR range accuracy σ ρ w /ρ re as expressed in Equation 4.33, with respect to the variation of pitch angle ϕ x , height h and LiDAR range accuracy σ ρ w /ρ re . Moreover, the negligible of the method performance PF opt after the optimization means that the standard deviation σ ρ w /ρ opt after optimization is closer than the standard deviation σ ρ w /ρ est before optimization to the LiDAR range accuracy σ ρ w /ρ re . In addition, it presents the recovering of noisy points c w range distribution along the real plane (P re ) after the optimization algorithm, taking in advantage of maintaining the standard deviation σ ρ w /ρ opt value as negligible. The gain feature PF i proves again the better fit between the optimized plane (P opt ) and the real plane (P re ) rather than the estimated plane (P est ).

- 

Real Data Results

The 3D point cloud acquisitions are obtained using a multi-lasers rangefinder VLP-16 LiDAR mounted on a vehicle. In order to obtain a telemetric information about the ground surface and to achieve the application goal, the VLP-16 LiDAR is rotated toward the ground direction with a pitch angle ϕ x ≃ 70 • and is at a height h ≃ 1.05m above the ground surface. The real setup is shown in Figure 3.6a.

The proposed method is applied to two different acquisitions:

• Acquisition 1: the vehicle is at rest on the road.

• Acquisition 2: the vehicle is moving at a slow speed on the road.

Standard Deviation σ ρ w /ρ i per LiDAR Frames

In the absence of real plane (P re ) when using real data, the results focus on the range distribution of the noisy points c w along the estimated plane (P est ) and the optimized plane (P opt ). It is clear that the standard deviations σ ρ w /ρ opt curve is lower than the σ ρ w /ρ est in the two acquisitions as shown in Figure 4.12. The optimization algorithm is thus proved to be more efficient for real data as well in decreasing the range distribution of the noisy points c w along the fitting planes. 

Results Discussion

In general, the results turn out to prove the efficiency of the optimization algorithm which is represented by the optimized plane (P opt ), versus the estimated plane (P est ), compared with the real plane (P re ), in terms of precision and robustness. On other hand, the convergence of the optimization algorithm is granted automatically by the suitable initialization parameters: the estimated Euler's angles ψz , θy , φx and the estimated height ĥ that are computed in stage one (LGCM) to obtain the estimated plane (P est ), then optimized by Levenberg-Marquardt optimization algorithm (opt-LGCM) in stage two to get the optimized Euler's angles ψ′′ z , θ′′ y , φ′′

x and the optimized height ĥopt in order to obtain the optimized plane (P opt ). Finally, the results show the strength and the method performance in terms of precision and robustness against the variation of pitch angle ϕ x and LiDAR range accuracy σ ρ w /ρ re respectively, in order to achieve the application's aim as shown in 

Conclusion

A new global extrinsic LiDAR/Ground calibration method for 3D cylindrical LiDARs is modeled on 4-DOF unlike the previous 6-DOF calibration method, to fit the problematic case study due to the high orientation of LiDAR sensor. Due to the modeling difference concept between 4-DOF and 6-DOF, it is impractical to compare our proposed calibration method with other methods.

The solution relies on plane-based modeling of the ground which allows the estimation of the LiDAR's orientation and altitude using Rodrigues formula, Least Squares Conic Algorithm for yaw angle estimation and height estimation. The proposed method LGCM is extended to an optimized derivation opt-LGCM using the Levenberg-Marquardt algorithm and is shown to be a suitable solution to LiDAR/Ground calibration problem. It is implemented on LiDAR's synthetic and real telemetric data. The results show the performance in terms of precision and robustness against the variation of LiDAR's orientation and range accuracy respectively, proving the stability and the accuracy of the proposed calibration method.

Chapter 5. Road Defect Detection Methods Therefore, the procedure starts with ground points selection to remove the environment surrounding points that are outside the road zone as shown in Figure 5.2. Then, a primary feature-based defect detection method is initially applied to extract and separate the defects points from the road points, followed by the same previous extrinsic calibration method just on the road points avoiding the defects points, which clearly enhances the extrinsic recalibration results. Finally, two defect detection methods are executed successfully on the calibrated ground points, to ensure and increase the detection precision in a perfect calibrated frame. The first method is an optimized feature-based method that depends on the altitude concavity feature to detect and identify the defects. While, the second method is a grid-based method that transforms the calibrated ground points from 3D point cloud frame into 2D image, depending on the altitude distribution feature in each spatial grid, in order to detect, visualize and localize the defects.

In the next section, the view scene results are implemented directly on real data acquisition as shown in Figure 5.3. The recorded acquisition scenario takes in consideration the existence of two edges on both sides of the ground, where the first right edge is characterized by one corner and the second left edge by two corners. In addition, the acquisition includes two types of defects: hump and hole defects, in other words positive and negative defects respectively [START_REF] Chen | Lidar-histogram for fast road and obstacle detection[END_REF]. As mentioned before, the ground selection procedure aims to extract the ground points from full points of the LiDAR frame, making it easier to study and analyze the defect existence just on the road zone. Referring to Figure 5.4, the ground points selection procedure includes four main steps: plane distance thresholding to bound the interest study region, Gaussian filter to smooth the signal, differential Gaussian filter to detect the road edges center and Peak Constraints Algorithm to detect the inner corner of the road edges. Each step is explained in details with its role in the next subsections.

Plane Distance Thresholding

Initially, the role of plane distance thresholding step is to bound the interest study zone of the 3D point cloud full frame to an environment points (road, defects and road edges), which eliminates all unnecessary outer points from the study zone as shown in Figure 5.5. This step depends on the orthogonal Euclidean distance threshold constraint d th = 30cm from the LiDAR noisy point c w (x w , y w , z w ) to the optimized plane (P opt ) as expressed in Equations 5.1 and 5.2, since the most representative plane of the ground is the optimized plane (P opt ) after the extrinsic calibration process. Where the orthogonal Euclidean distance threshold d th must be high enough to cover the height of the road edges, that consist of two corners. 

Gaussian Filter

Gaussian filter is one of average filters in time domain to mitigate the noise effect, where the Fourier transform of Gaussian impulse response in frequency domain is also Gaussian distribution centered at zero. This is what clarifies that Gaussian filter is a type of low-pass filter. Referring to Figure 5.6, which represents the convolution relationship in the output signal z GF (n) between the input altitude signal z w (n) and the impulse response system h GF (n), as expressed in Equations 5.3 and 5.4.

z GF (n) = z w (n) * h GF (n) (5.3) h GF (n) = G √ 2πσ 2 exp -n 2 2σ 2 for -3σ ≤ n ≤ 3σ (5.4)
Where G is a gain parameter for signal amplification, σ is the standard deviation of the Gaussian distribution, and n is the points' index number of the signals z w , z GF and the impulse response system h GF .

ℎ 𝐺𝐹 (𝑛) 𝑧 𝑤 (𝑛) 𝑧 𝐺𝐹 (𝑛) In this step, the Gaussian filter system h GF (n) deals with each elevation impact points as an individual noisy discrete signal z w (n) to mitigate the noise effect and especially for the high noisy impact points that exist on surface edges, in order to get a smoothed discrete signal z GF (n) as shown in Figure 5.7. In addition, the edge localization accuracy decreases when the Gaussian filter's spread increases in the index n domain, which imposes a trade-off between edge localization accuracy and noise filtering. 

Differential Gaussian Filter

Differential Gaussian filter is a system that represents the first derivative of an input signal, which indicates the slope or the instantaneous rate variation (increasing or decreasing) of the input signal. In addition, the differential Gaussian filter function is simply a subtraction between two shifted Gaussian functions in an opposite direction as expressed in Equation 5.6. Referring to Figure 5.8, which represents the convolution relationship in the output signal z DGF (n) between the input signal z GF (n) and the impulse response system h DGF (n), as expressed in Equation 5.5.

z DGF (n) = z GF (n) * h DGF (n) (5.5) h DGF (n) = G √ 2πσ 2 exp -(n -µ) 2 2σ 2 - G √ 2πσ 2 exp -(n + µ) 2 2σ 2 for -µ ≤ n ≤ µ σ = µ/2 (5.6)
Where G is a gain parameter for signal amplification, σ is the standard deviation of the Gaussian distribution, and n is the points' index number of the signals z GF , z DGF and the impulse response system h DGF .

ℎ 𝐷𝐺𝐹 (𝑛) 𝑧 𝐺𝐹 (𝑛) 𝑧 𝐷𝐺𝐹 (𝑛) 

Peak Constraints Algorithm PCA

The role of Peak Constraints Algorithm PCA is to extract both edges of the road as presented in Algorithm 2. The algorithm is based on several peak conditions, applied on the road's left and right side.

Algorithm 2: Peak Constraints Algorithm Input: Signal z DGF (n) Output: Boundary indexes of the road edges i r , i l Find the main first right and last left peaks pk r1 , pk l1 of the z DGF (n) signal on the road's right and left sides respectively as shown in Figure 5.10a, provided that the peaks values z DGF (i r1 ), z DGF (i l1 ) must be higher than a constant threshold pk th = 450 as expressed in the below inequalities, which identify a high transitions of the road edges in the signal z GF (n) that are higher than the transitions of the road defects.

Where the indexes i r1 , i l1 values of the main peaks indicate the midpoints of the edge width in z GF (n

) signal. |z DGF (i r1 )| ≥ pk th |z DGF (i l1 )| ≥ pk th
Find the first side lobe peaks pk r2 , pk l2 before and after the peaks pk r1 , pk l1 respectively, as shown in Figure 5.10b. Where the side lobes indexes are noted as i r2 , i l2 .

Compute the indexes i r , i l of the right and left boundary b r , b l of the road edges, which represent the midpoint indexes of the main and side lobe peaks, as shown in Figure 5.10c and expressed in the below equations:

i r = (i r1 + i r2 ) /2 i l = (i l1 + i l2 ) /2
Chapter 5. Road Defect Detection Methods This procedure is applied at each elevation laser impact in order to get a ground selection points, which means extracting the road and the defect points by eliminating the road edges points from the 3D point cloud frame as shown in Figure 5.12. 

Feature-Based Defect Detection Method FBDDM

Moving to the first detection approach, the Feature-Based Defect Detection Method FBDDM depends on the altitude concavity feature to extract the homogeneous defect patterns that exist below or above the road network. For this, the second order of differential Gaussian filter h DGF2 (n) represents the second derivative of an input signal, which indicates the concavity feature in the output signal z DGF2 of the input signal z w (n) as shown in Figure 5.13. In addition, one advantage of second order differential Gaussian filter is being low sensitive to the noise effect because of its wide spread in the index n domain, which is doubled than the first order, since the second order differential Gaussian filter consists of two consecutive differential Gaussian impulse responses as expressed in Equation 5.7.

z DGF2 (n) = z w (n) * h DGF2 (n) = z w (n) * h DGF (n) * h DGF (n) (5.7) h DGF (n) = G √ 2πσ 2 exp -(n -µ) 2 2σ 2 - G √ 2πσ 2 exp -(n + µ) 2 2σ 2 for -µ ≤ n ≤ µ σ = µ/2 (5.8)
Where G is a gain parameter for signal amplification, σ is the standard deviation of the Gaussian distribution, and n is the points' index number of the signals z w , z DGF , z DGF2 and the system impulse responses h DGF , h DGF2 . To start on, the altitude signal z w (n) is fed through a double differential Gaussian system, where the first output z DGF (n) identifies the transition sense feature of the input signal z w (n) as mentioned before in section 5.2.3, and the second output z DGF2 (n) identifies the concavity feature of the input signal z w (n) as shown in Figure 5.14. Where the sign of the concavity feature, positive or negative, identify the type of the road defect whether its pothole or hump.

Referring to Figure 5.14c, the signal analysis indicates that the indexes of the primary peaks pk 2 , pk 5 represent the midpoint or the center point of the pothole and the hump respectively, and the secondary peaks pk 1 , pk 3 , pk 4 , pk 6 are the sides lobes of the main peaks. But, in order to distinguish the primary peaks that represent the existence of defects, the Instantaneous Differential Gaussian Algorithm IDGA is applied on each peak to mitigate the False alarm detection and to measure the defect width as explained in Algorithm 3. The principle of the Algorithm 3 is to compute the concavity magnitude of the altitude signal z w (n) at each instantaneous peak pk i with various widths of the filter h DGF2 . The concavity magnitude will then reach the maximum value when the filter width covers the defect width.

Algorithm 3: Instantaneous Differential Gaussian Algorithm

Input: Signal z DGF2 (n) Output: Defect midpoint index n i and defect width 2n IDGF2 Find all candidature peaks pk i with their indexes n i in the z DGF2 (n) signal as shown in Figure 5.14c, taking in account that the peaks values z DGF2 (n i ) must be higher than a low constant threshold pk th = 20 as expressed in the below inequality, which find and identify all the candidate defects existence in the signal z w (n). Apply the second order differential Gaussian filter h DGF2 (n) with increment sequential width µ at each instantaneous index n i on the altitude signal z w (n) as shown in the below sub algorithm, where z IDGF2 (n) signal identify the concavity magnitude of the altitude signal z w (n) at each instantaneous index n i . µ = 80 defines the maximum filter width

f or n = 1 : µ z IDGF2 [n] = |z w [n i -2n : n i + 2n] . * h DGF2 [n] | end
Find the maximum peak value pk IDGF2 and its index n IDGF2 for each instantaneous signal z IDGF2 as shown in Figure 5.15.

Compute the ratio r IDGF2 that defines the maximum concavity magnitude pk IDGF2 divided by its index n IDGF2 as expressed below.

Finally, if the ratio r IDGF2 is greater than a constant threshold r th = 3.5, then the candidate peak pk i represents a primary peak (defect existence), characterized by a width n IDGF2 points to the right and to left of the midpoint index n i . Otherwise, the candidate peak pk i represents a secondary peak (no defect existence). In order to enhance the feature based defect detection results, the LiDAR frame is re-calibrated according to the new optimized extrinsic parameters ψ′′ z , θ′′ y , φ′′ x , ĥopt that computed by the road points as shown in Figure 5.16c, which is almost road points, using the same calibration method opt-LGCM that was presented in Chapter 4. The re-calibration method provides better results because of the defect points absence that affects the plane model representation of the road points. Then, the feature based detection method is applied on the elevation lasers of the new recalibrated frame with additional constraint in the instantaneous differential Gaussian algorithm in step 4, in case:

r IDGF2 = pk IDGF2 n IDGF2 r IDGF2 ≥ r th
• Positive defect (hump) pk i < 0, then the altitude mean of the candidate point must be closer to the maximum altitude of the candidate points than the altitude mean of the elevation laser points |µ z candidatesmax(z candidates )| < |µ z candidatesµ z elevation |.

• Negative defect (pothole) pk i > 0, then the altitude mean of the candidate point must be closer to the minimum altitude of the candidate points than the altitude mean of the elevation laser points |µ z candidatesmin(z candidates )| < |µ z candidatesµ z elevation |.

Finally, the feature based detection method shows an improvement of defect detection results after the re-calibration process. As mentioned before, the feature based defect detection method works on each elevation laser signal z w that represents the altitude Z-axis with respect to the transverse variation X-axis. So, the feature based defect detection method process must be executed on each elevation laser points to obtain a full frame detection for each of defect and road points separately as shown in Figure 5.16. 

Grid-Based Defect Detection Method GBDDM

Moving to the second detection approach, the Grid-Based Defect Detection Method GBDDM, which is extended method after the Feature-Based Defect Detection Method FBDDM. The principal outlines of this method are: automated detection, high resolved visualization and localization for the road defects in each LiDAR frame. Where this method works directly on the recalibrated 3D ground points frame which includes both of road and defect points as shown in Figure 5.17.

(a) 3D frame of ground points Therefore, instead of processing road surface point clouds in 3D space, the grid-based defect detection method projects the 3D points in to 2D plane XY-plane, in order to generate or rasterize a georeferenced gray level image, whose intensity pixels represent a non-linear interpolation based on the euclidean altitude distance d w/opt between the points' altitude z w and the road altitude -ĥopt of the optimized plane (P opt ) within a spatial grid as expressed in the similar Equations 5.9,5.10. A linear normalization is applied on the altitude distance d w/opt , then transformation into numerical intensity gray levels I d , as expressed in Equation 5.11.

d w/opt = |A opt x w + B opt y w + C opt z w + D opt | A 2 opt + B 2 opt + C 2 opt
(5.9)

d w/opt = z w + h (5.10) 
I d = d w/opt -d min d max -d min × L gray (5.11) 
Where x w , y w , z w are the Cartesian coordinates of the 3D recalibrated ground points, A opt , B opt , C opt , D opt are the parameters of the optimized plane (P opt ), d min and d max are the minimum and maximum values of the altitude distance d w/opt respectively, and L gray = 255 is the maximum intensity gray level.

An improvement strategy is developed using the Inverse Distance Weighted IDW interpolation method [START_REF] Yang | Automated extraction of road markings from mobile lidar point clouds[END_REF], [START_REF] Yu | Automated detection of road manhole and sewer well covers from mobile lidar point clouds[END_REF], in order to generalize the process case by adopting a dynamic size of the spatial grids that split the XY-plane as shown in Figure 5.18. Therefore, the non-linear interpolation derivations based on rectangular grid pattern assumption gains an advantage point in case of low azimuth or elevation angular resolution for LiDAR beams coverage situation. Where the horizontal and the vertical grid lengths H, V variate according to the distance distribution σ d w/opt to obtain a high resolution georeferenced intensity image. The intensity computation concept of georeferenced image pixels is based on two rules:

𝐻

1. A point with a distance D farther away from the grid cell center gets a smaller weight.

According to the above rules, the intensity gray value of the grid cell (i, j), which is denoted by G ij , is expressed as follows:

G ij = n ij ∑ k=1 W k,ij I k,ij d n ij ∑ k=1 W k,ij (5.12) 
W k,ij = aW k,ij D + bW k,ij I d (5.13) a + b = 1 (5.14)
Where n ij is the number of data points within grid cell (i, j), W k,ij and I The planar Euclidean distance weight W k,ij D is a non-linear normalized parameter, whose function within each grid cell (i, j) is to confirm the first interpolation rule: gain higher weights for the k th points with a nearer planar Euclidean distance D to the grid cell center and vice versa as shown in Figure 5.19 and expressed in Equation 5.15. Where the initial assumption for grid's horizontal and vertical length parameters in Figure 5.19 are H = 0.08m and V = 0.08m respectively, then the maximum planar Euclidean distance D max is expressed in Equation 5.17, where ϑ is the acute angle between the grid's vertical length V and the grid's diagonal 2D max . The grid cell size H × V must be large enough to cover the maximum Euclidean distance between each two elevation lasers, in order to avoid the empty grid cells especially in the defect zone. The role of this non-linear normalized weight W k,ij D is to take into consideration the far planar Euclidean distance D values from the grid cell center, in order to be a sensitive weight at the rising or dropping defect edges.

W k,ij D = H 2 -2D k,ij sin (arctan (H/V)) 2 H 2 D k,ij 2 + 1 (5.15) D k,ij = x k,ij w -x ij 0 2 + y k,ij w -y ij 0 2 (5.16 
)

D max = H 2 sin (ϑ) = H 2 sin (arctan (H/V))
(5.17 A high resolution generated georeferenced gray image is shown in Figure 5.23a, using the proposed improved inverse distance weighted interpolation method with grid splitting algorithm. Then, Otsu segmentation method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] is performed on the georeferenced gray image, in order to transform it to a binary image as shown in Figure 5.23b. 

I d = W k,ij I 1 • W k,ij I 2 (5.18) W k,ij I 1 = 2 I k,ij d -g ij min 2 I k,ij d -g ij min 2 + g ij max -g ij min 2 (5.19) W k,ij I 2 = 2 I k,ij

Evaluation Parameters

There exist multiple performance evaluation metrics that are related to detection process. Four widely used metrics are Accuracy, Precision, Recall, and F-measure [START_REF] Fritsch | A new performance measure and evaluation benchmark for road detection algorithms[END_REF]. To clearly explain them, we consider having two classes, a presence class and a absence class to build the confusion matrix. It holds the four different combinations of predicted and actual values of these two classes as can be seen in Figure 5.25. • True Positives TP: the total number of correct predictions that are presence, which means, were predicted to be presence knowing that they actually belong to the presence class.

• False Positives FP: the total number of incorrect predictions that are presence, which means, were predicted to be presence knowing that they actually belong to the absence class.

• True Negative TN: the total number of correct predictions that are absence, which means, were predicted to be absence knowing that they actually belong to the absence class.

• False Negative FN: the total number of incorrect predictions that are absence, which means, were predicted to be absence knowing that they really belong to the presence class.

• Accuracy: a well-known evaluation metric defined as a percentage of correct predictions as expressed in Equation 5.21. Thus, it evaluates how many defects and non-defects classes are correctly detected. • F-measure: another popular evaluation parameter used to compare between detection and classification methods. F-measure, also called F-score, is a single score that balances both the concerns of Precision and Recall in one number. In other words, F-measure defines the harmonic mean of the Precision and Recall metrics as expressed in Equation 5.24.

F-measure = 2 Precision × Recall Precision + Recall = 2TP 2TP + FP + FN (5.24)

Experimental Setups

The detection methods FBDDM and GBDDM are performed on several real data acquisitions with various experimental scenarios. The experiments take place in the laboratory, which include a flat ground with size 2.5 × 1.8m 2 (l × w), the height of right edge is > 1m, the height of left edge is ≃ 20cm, the size of the hump defect is 7.5 × 30.5 × 22cm 3 (h × l × w) and the size of the pothole defect is 7.5 × 30.5 × 22cm 3 (h × l × w):

• Acquisition 1: provides a recording frames of empty defects.

• Acquisition 2: provides a recording frames of hump defect, moving in vertically direction at the middle of the road.

• Acquisition 3: provides a recording frames of hump defect, moving in obliquely direction from top right to bottom left, to cross the road from right to left side.

• Acquisition 4: provides a recording frames of fixed pothole defect at the middle of the road.

• Acquisition 5: provides a recording frames of fixed pothole defect at the bottom of the road.

• Acquisition 6 and 7: provides a recording frames of moving pothole defect in vertically direction at the middle of the road, with low Li-DAR bounce, variation of orientation and altitude of pitch angle ϕ x and height h respectively.

• Acquisition 8: provides a recording frames of multi-defects, fixed pothole defect at the middle of the road, and moving hump defect in vertically direction at the right side near to road edge.

• Acquisition 9: provides a recording frames of moving pothole defect in vertically direction at the middle of the road, with high LiDAR bounce, variation of orientation and altitude of pitch angle ϕ x and height h respectively.

In some acquisitions, the hump defect is attached to a thin thread and pulled to achieve the defect movement. Where in other acquisitions, the motion of pothole defect is due to the movement of LiDAR sensor using a long stand tilt unit. The movement of the LiDAR sensor takes advantage to describe the bounce of the vehicle in a perfect realistic experiment, which performs a variation of LiDAR sensor height.

Confusion Metrics Results

The confusion metrics results take place on the above different acquisition scenarios as shown in Tables 5.2,5.3,5.4. Where the confusion matrix result of FBDDM in Table 5.2 is for the primary feature-based defect detection method results before the recalibration process, and the confusion matrix result of opt-FBDDM in Table 5.3 is for the optimized feature-based defect detection method after the recalibration process.

In FBDDM method, the TP, TN, FP, FN values are computed depending on the counted concavity peaks pk i that confirm the constraints in the instantaneous differential Gaussian algorithm compared to the actual presence and absence defect number using VeloView software. However in GBDDM method, the TP, TN, FP, FN values are computed depending on the counted labels using 8-connected objects [START_REF] Haralick | Computer and Robot Vision[END_REF] compared to the actual presence and absence defect number using VeloView software. The FP, FN values exist because of the three reasons:

• Un-complete calibration for FBDDM method, then it is solved by recalibration process for opt-FBDDM method.

• The position of the defect when it is very close to the road edge, which leads to a low coverage resolution.

• The movement of the defect when it starts to cross the laser, which shows a low coverage altitude.

Referring to the confusion metrics total number of each table, the total numbers of FBDDM are greater than the total numbers of GBDDM. Because, the FBDDM detection process deals with each elevation laser per frame, where the method operations developed on a laser as a one input object, so in each frame there exists some lasers including defects and the rest of them are empty of defects. While, the GBDDM detection process deals with all lasers simultaneously, so the method operations developed on a frame as a one input object. 

Evaluation Terms Results Analysis

The Table 5.5 shows the experimental comparative evaluation of FBDDM, opt-FBDDM and GBDDM methods. To analyze the FBDDM and opt-FBDDM results, the opt-FBDDM shows higher performance among FBDDM in terms of Accuracy, Precision, Recall and F-measure, which indicates that the recalibration process is important to enhance and improve the results of the feature-based defect detection method. In addition, the opt-FBDDM shows higher Accuracy compared with GBDDM but Accuracy is not enough to compare between both methods, because it takes into consideration the true negative TN factor. However, the better valuable parameters are Precision and Recall, because they depend on false positive FP and false negative FN factors respectively, to describe the positive predictive value and the true positive rate respectively.

Moreover, the opt-FBDDM shows a higher Precision compared to the GB-DDM, while the GBDDM shows a higher Recall compared to the opt-FBDDM. Therefore, the most valuable and popular evaluation term is F-measure, because it represents both Precision and Recall terms in one single term. So, the GBDDM shows a higher performance in term of F-measure compared to the opt-FBDDM. This indicates and proves that the grid-based defect detection method provides better efficiency and performance against the optimized feature-based defect detection method.

Both optimized feature-based defect detection method and grid-based defect detection method show high performance results, which indicate their importance for road defect detection. However, the feature-based method provides detection and identification of road defects, while grid-based method provides detection, visualization and localization of road defects.

Evaluation Methods Comparison Results

According to the mentioned methods in Table 5.6, our proposed methods is compared with two defect detection methods. The first method is LiDAR-Histogram [START_REF] Chen | Lidar-histogram for fast road and obstacle detection[END_REF] used the benchmark KITTI-ROAD data-set [START_REF] Fritsch | A new performance measure and evaluation benchmark for road detection algorithms[END_REF], which includes 3D high resolution LiDAR sensor Velodyne HDL-64E, cameras, GPS and IMU. The LiDAR-Histogram method detects huge size of positive and negative obstacles as like as vehicle and very large pothole respectively, as shown in Figure 5.26. The second method is Cascade System [START_REF] Sucgang | Road surface obstacle detection using vision and lidar for autonomous vehicle[END_REF] used a personal acquisition recorded from 2D LiDAR sensor Lite v1 and camera ODROID-XU4. The Cascade System method detects normal size of pothole and speed hump. According to the quantitative results in Table 5.6, the F-measure, Precision and Recall evaluation performances of our method rank first among all the methods. In addition, the results are very promising considering that we use a single cylindrical 3D LiDAR sensor Velodyne VLP-16 without extra sensors, where Velodyne VLP-16 is a low resolution LiDAR compared with Velodyne HDL-64E (see Appendix A.1). In addition, our proposed methods gain an advantage to detect a very small size of potholes and humps compared with the large potholes, speed humps and obstacles sizes in [START_REF] Chen | Lidar-histogram for fast road and obstacle detection[END_REF], [START_REF] Sucgang | Road surface obstacle detection using vision and lidar for autonomous vehicle[END_REF]. It can be regarded as the baseline for the feature and grid based methods.

Remark: Table 5.6 represents a first attempt to compare our proposed defect detection methods FBDDM and GBDDM that are developed for cylindrical LiDARs (Velodyne Puck, Ouster OS1) with other popular defect detection methods that are developed for non-cylindrical LiDARs (Velodyne HDL). We will work later on an extension of our proposed methods to deal with these kind of LiDARs (Velodyne HDL) in order to propose a more satisfactory comparison with KITTI-ROAD data-set. 

Conclusion

In this chapter, two defect detection methods are presented. The Feature-Based Defect Detection Method FBDDM, where the solution relies on calibration process, that provides a horizontal and understandable ground, in order to study the concavity feature by second order of Differential Gaussian Filter DGF2, to detect various homogeneous road defects. In addition, the Grid-Based Defect Detection Method GBDDM relies also on the calibration process, in order to study the altitude distance, using improved Inverse Distance Weighted IDW interpolation method and Grid Splitting Algorithm GSA, to detect, visualize and localize the defects in a high resolution georeferenced image. The results show a compromised performance and impressive efficiency of our proposed defect detection methods, in terms of Accuracy, Precision, Recall and F-measure compared with other detection methods, proving the detection ability of potholes and humps defects using real data.

Conclusion and Perspectives

As a part of transportation and driver assistance systems framework, our contribution concerns multi-defect detection from distributed 3D telemetry measurements. We have developed and validated various global methods, that are compatible with any cylindrical 3D LiDAR sensors. These have been applied to of 3D LiDAR perception system mounted and centered on the vehicle backward. Indeed, the LiDAR sensor is rotated toward the ground in order to increase the road coverage resolution, which improves the road defect detection process. Therefore, the calibration process was adopted in order to transform the LiDAR frame into a global reference frame, thus modifying the LiDAR frame into an understandable view scene.

The development and improvement of a novel flexible extrinsic LiDAR/ Ground Calibration Method LGCM was the starting point of this thesis. The calibration method is relied on ground plane-based modeling, to estimate the 4-DOF extrinsic parameters: height and 3D orientation. Moreover, the calibration process is built on four main aspects: linear model Least Squares estimator, Rodrigues formula, Least Squares Conic Algorithm and Levenberg-Marquardt optimization algorithm. The results show a significant performance in terms of precision and robustness against the variation of LiDAR's orientation and range accuracy respectively, proving the stability and the accuracy of the proposed calibration method on synthetic and real data. This reflects the global good capability of this calibration method when applied on cylindrical LiDAR sensors under difficult experimental conditions.

In addition, we proposed and developed two novel road defect detection methods in the context of this thesis, where the solution of these two detection method relies on the calibration method, that provides a horizontal and understandable ground view. First, the Feature-Based Defect Detection Method FBDDM, that studies the concavity feature on each elevation laser using second order Differential Gaussian Filter, to detect multi homogeneous road defects. The recalibration process has imposed itself to enhance the false alarm, in order to improve the evaluation results of the Feature-Based Defect Detection Method. Second, the Grid-Based Defect Detection Method GB-DDM that relies on two main aspects: improved Inverse Distance Weighted interpolation method and Grid Splitting Algorithm, to detect, visualize and localize the multi homogeneous road defects in a high resolution georeferenced image. The evaluation results show a compromised performance and impressive efficiency of our proposed defect detection methods, in terms of accuracy, precision and recall against other defect detection methods, proving the detection ability of potholes and humps defects using real data.

A.2 VLP-16 Packet Structure

Every model of LiDAR sensor has its own packet structure in which the data is being sent to the user. For the Velodyne LiDARs, the information is effectively packed to save bandwidth of a communication line, as every point within a packet does not contain its full description and shares some parameters with other grouped points. According to the supplied packet's structure and timing information, we can retrieve every single record of a point without any loss of precision. Packet's structure is shown in As we can see in figure 3.4, a packet includes 24 of these 16-laser firing groups (we will call these "firing block"), hence it takes 1, 33 ms to accumulate FIGURE A.2: VLP-16 Packet Structure [START_REF]User manual and programming guide vlp-16[END_REF] • Data Point: 3 bytes from a single firing from a laser.

-2 bytes of distance.

-1 byte of calibrated reflectivity.

• Data Block: (100 bytes). Résumé Étendu de la Thèse

Le Contexte

La connaissance de l'état du réseau routier dans un pays est un enjeu important pour pouvoir déployer une politique rationnelle d'entretien, de réhabilitation et d'amélioration du trafic routier. Comme nous le savons, certains accidents de la circulation sont le résultat de la présence de défauts ou de petits obstacles sur les routes. Cependant, les accidents de la route représentent un problème de santé mondial majeur pour la sécurité humaine. Comme fait clé, le rapport de l'Organisation mondiale de la santé (OMS) sur l'état mondial de la sécurité routière indique que le nombre total de décès sur les routes a plafonné à 1.15 million de personnes en 2000. Ensuite, il augmente de 0.1 millions pour atteindre 1.25 millions de morts sur les routes en 2015 [START_REF] Chan | Global status report on road safety 2015: Report[END_REF], [2], et 1.35 millions de morts en 2018 [3]. En particulier dans les pays à faibles revenus tels que l'Afrique et l'Asie du Sud-Est, un record de 95% des décès dans le monde se produisent sur la route [4], et plus de la moitié des décès dus aux accidents de la route concernent des usagers de la route vulnérables : motocyclistes, cyclistes et piétons, où la plupart des décès et des incapacités concernent des personnes âgées de 5 à 29 ans [5]- [START_REF]World Health Organization (WHO) Road Traffic Injuries RTI[END_REF]. De plus, l'estimation du coût des accidents de la route atteint 3% du produit national brut des économies mondiales, ce qui a un impact sérieux sur les économies nationales [3], [4]. Par conséquent, la collaboration des Nations Unies (ONU) sur la sécurité routière a élaboré un plan mondial qui propose un programme de développement durable à l'horizon 2030 pour fixer un objectif ambitieux de réduction de moitié du nombre mondial de décès et de blessures dus aux accidents de la route [START_REF]Global Plan for the Decade of Action for Road Safety 2011-2020[END_REF], [START_REF]Transforming our world: the 2030 Agenda for Sustainable Development[END_REF]. Même si ces méthodes conservent certaines limitations inhérentes à la nature physique du signal de mesure, ce capteur laser présente de nombreux avantages pour l'ADAS : vision jour/nuit, forte précision, fréquence de mesure élevée, tirs laser directifs, large champ de perception. L'inconvénient majeur d'un télémètre laser monocouche est sa sensibilité aux mouvements de tangage, liée à sa directivité : les distances mesurées peuvent être perturbées et donner lieu à des mesures indésirables de la scène, désignées par le terme plus général de " fouillis ". Le développement des télémètres multicouches, c'est-à-dire travaillant sur plusieurs plans de mesure, a permis de minimiser ces perturbations inhérentes à la nature physique de la mesure. Bien qu'ayant la particularité de délivrer des informations précises de positionnement relatif contrairement aux capteurs de type caméra vidéo, les télémètres laser se distinguent par la relative pauvreté des informations reçues sur la scène (directement liée à la résolution angulaire du capteur).

Il est donc nécessaire de développer des solutions informant le conducteur sur les défauts de route. Par ailleurs, ces informations sont importantes pour obtenir des données statistiques sur les défauts de route afin de limiter les zones à risque et de construire une aide à la décision pour l'amélioration du réseau routier. Notre hypothèse fonctionne précisément sur une méthode de calibration extrinsèque pour le capteur LiDAR basée sur l'estimation du modèle de plan géométrique, qui sert les deux méthodes de détection de défauts de route proposées : celle basée sur les caractéristiques de la route et celle basée sur une approche par grille.

Buts et Objectifs de la Thèse

Dans les applications de transport, de nombreux articles utilisent le LiDAR pour détecter et suivre des objets d'intérêt (piétons, véhicules, etc...) à partir de mesures 3D. Le capteur LiDAR est également utilisé pour détecter la route, souvent en complément des capteurs de la caméra. Dans ces applications, l'idée est d'avoir une vue complète de l'environnement du conducteur sur l'horizon le plus large possible. Par conséquent, l'objectif de cette thèse repose sur un capteur LiDAR à faible angle d'inclinaison (capteur orienté horizontalement) pour étudier et analyser les défauts de la route : trous, bosses ou toutes couches externes homogènes, ce qui aura un impact sur le problème d'accidentologie causée par les zones dangereuses du réseau routier. Cette étude comprend plusieurs objectifs scientifiques : détection, visualisation et localisation des défauts de la route.

Points Clés de la Thèse

Les points clés du problème étudié dans cette thèse sont illustrés dans la figure 2 

Contributions Proposées

Dans le cadre de cette étude (détection des défauts de la route), le capteur LiDAR est vers le sol afin d'augmenter la densité de points couvrant les défauts par le laser multi-élévation comme le montre la Figure 3. Cela entraîne une modification complexe de la scène 3D au sol perçue par le LiDAR. Par conséquent, un étalonnage extrinsèque a été adopté afin de transformer le référentiel du LiDAR en un référentiel global, transformation ainsi les points d'impact au sol en une scène exploitable. Par rapport à une précédente méthode basée sur le plan [START_REF] Morales | Boresight calibration of construction misalignments for 3d scanners built with a 2d laser rangefinder rotating on its optical center[END_REF], [START_REF] Zhe | Calibration of rotating 2d lidar based on simple plane measurement[END_REF], l'approche développée peut être généralisée à tous les types de télémètres laser à balayage et présente une estimation optimisée de tous les paramètres de calibration extrinsèques (angles, hauteur). Cette méthode globale peut être mise 

Nouveauté sur les Méthodes de Détection des Défauts de la Route

Passant au sujet principal de la thèse, deux nouvelles méthodes de détection des défauts routiers sont proposées, appelées méthode de détection des défauts basée sur les fonctionnalités et méthode de détection des défauts basée sur la grille. La méthode de détection de défauts basée sur la fonction de concavité fournie par le filtre gaussien différentiel du second ordre 

z DGF2 (n) = z w (n) * h DGF2 (n) = z w (n) * h DGF (n) * h DGF (n) (2) h DGF (n) = G √ 2πσ 2 exp -(n -µ) 2 2σ 2 - G √ 2πσ 2 exp -(n + µ) 2 2σ 2 for    -µ ≤ n ≤ µ σ = µ/2 (3 
G ij = n ij ∑ k=1 W k,ij I k,ij d n ij ∑ k=1 W k,ij (7) 
W k,ij = aW k,ij D + bW k,ij I d (8) 
a + b = 1

où n ij est le nombre de points dans la cellule (i, j), W Sinon, calculez la valeur de niveau de gris G ij en utilisant la méthode d'interpolation pondérée par l'inverse de la distance proposée ci-dessus. Divisez les cellules de la grille en cellules de sous-grille en fonction de la plus petite taille de cellule et associez les valeurs de niveau de gris des cellules de sous-grille à égalité avec la valeur de niveau de gris de la cellule de la grille d'origine.

Cette méthode fonctionne simultanément sur tous les lasers d'élévation. Elle est sensible à la distribution d'altitude et nécessite une résolution LiDAR élevée pour détecter, visualiser et localiser les défauts routiers multi-homogènes dans une image géoréférencée à haute résolution. Les résultats de l'évaluation montrent une performance compromise et une efficacité impressionnante de nos méthodes de détection de défauts proposées, en termes d'exactitude, de précision et de rappel par rapport à d'autres méthodes de détection de défauts, prouvant la capacité de détection des défauts de nids-de-poule et de bosses à l'aide de données réelles. • Dans le processus de détection des points de route, nous perdons une petite région spatiale en périphérie de la route. Ainsi, nous proposons de développer une méthode de détection de route pour étudier les défauts qui sont situés le long des bords de route.

Conclusion et Perspectives

• Nous proposons de travailler sur les problématiques de fusion LiDAR/caméra pour augmenter les performances des méthodes de détection proposées, en particulier la méthode de détection de défauts basée sur l'approche par grille.

• En outre, la fusion du LiDAR, avec un système de positionnement global de type GPS et une centrale inertielle (IMU) permettra de prendre en charge le suivi, la localisation et la cartographie des défauts dans une système de référence mondial.

• De plus, les méthodes de calibrage et de détection proposées sont compatibles avec les LiDAR cylindriques. Il sera intéressant d'étudier l'évolution des méthodes proposées pour assurer la compatibilité avec les LiDAR non cylindriques comme le capteur LiDAR Velodyne HDL-64. Ainsi, les méthodes peuvent être directement appliquées sur le jeu de données KITTI-ROAD pour se comparer parfaitement avec d'autres méthodes.

• Enfin, le défi le plus intéressant est d'implémenter les méthodes sur un processeur de signal numérique DSP en tant qu'application temps réel.

Structure du manuscrit

Plus loin, ce manuscrit de thèse introduit les chapitres suivants :

• Chapitre 2 présente l'état de l'art de la thèse, qui comprend l'étude de la différence entre les capteurs 2D et 

Context

The state of road network knowledge in a country is an important issue in order to be able to deploy a rational policy of road maintenance, rehabilitation and traffic improvement. As we know, some traffic accidents are the result of the presence of disabilities or small obstacles on the roads, and one of the major problems that the population suffers from on a daily lives. Although, road traffic injuries represents a major global health problem of human safety. As a key facts, the World Health Organization (WHO) report on the Global status of road traffic safety, reflecting information from worldwide countries, indicates that the total number of road traffic deaths has plateaued at 1.15 million person in 2000. Then it increases 0.1 million to reach 1.25 million road traffic deaths in 2015 [START_REF] Chan | Global status report on road safety 2015: Report[END_REF], [2], and 1.35 million deaths in 2018 [3]. Especially in lowmiddle-income countries as Africa and South-East Asia, record 95% of the world's fatalities occur on the road [4], and more than half road traffic deaths are among vulnerable road users: motorcyclists, cyclists, and pedestrians, where most of deaths and disabilities are for individuals aged 5-29 years [5]- [START_REF]World Health Organization (WHO) Road Traffic Injuries RTI[END_REF]. In addition, the estimation of road traffic injuries consumption reach 3% of the gross national products of world governments, which have a serious impact on national economies [3], [4]. Therefore, the United Nations (UN) road safety collaboration has developed a global plan that proposes an 2030 agenda for sustainable development to set an ambitious target of halving the global number of deaths and injuries from road traffic crashes by 2020 [START_REF]Global Plan for the Decade of Action for Road Safety 2011-2020[END_REF], [START_REF]Transforming our world: the 2030 Agenda for Sustainable Development[END_REF].

This thesis topic falls within this framework since it proposes to provide a geometrical and topological model of the route and to extract semantic information about the roads. In addition, these works will focus on the characterization of road surface and the presence of potentially dangerous areas, first, through a calibration of the geometrical environment information, followed by detection and localization of the road defects. It will also be important to visualize and locate the geometrical information of each defect obtained on the road.

This work is a part of the general framework of multi-sensor perception systems, more particularly focusing on the above different characteristics, that will be obtained from a telemetric information of a multi-lasers rangefinder In transport applications, the development of Advanced Driver Assistance Systems (ADAS) has been the subject of much work for the past twenty years [START_REF] Bengler | Three decades of driver assistance systems: Review and future perspectives[END_REF]. In transportation systems context, the objective is to monitor the vehicle environment in order to inform the driver, at each moment, about the potentially hazardous situations. Multi-object detection methods in data from a scanning laser rangefinder on board a moving vehicle have been proposed. Even though, these methods retain some limitations inherent in the physical nature of the measurement signal, this laser sensor has many advantages for ADAS: day/night vision, low accuracy, high frequency of measurement, directive laser shots, wide field of perception. The major drawback of a singlelayer laser rangefinder is its sensitivity to pitching movements, linked to its directivity: the distances measured can be disturbed and give rise to undesirable measurements of the scene, designated by the more general term of " clutter ". The development of multi-layer rangefinders, that is to say working on several measurement planes, has made it possible to minimize these disturbances inherent in the physical nature of the measurement. Although, having the particularity of delivering precise relative positioning information unlike sensors of the video camera type, laser rangefinders are distinguished by the relative poverty of the information received on the scene (directly linked to the angular resolution of the sensor).

Bibliography 129 Therefore, it is necessary to develop solutions informing the driver by a prior information about the road defects. This information is important to obtain a statistical road defects data in order to avoid the risky accidents and to take a right decision for road enhancement in a spatial road network. Our hypothesis precisely works on an extrinsic calibration method for the LiDAR sensor based on the geometrical plane model estimation, which serves the two methods of road defects detection: feature-based and grid-based.

Thesis Aims and Objectives

In transportation applications, many articles use LiDAR to detect and track objects of interest (pedestrians, vehicles, etc...) from 3D measurements. The LiDAR sensor is also used to detect the road, often in addition to camera sensors. In these applications, the idea is to have a thorough view of the driver's environment over the widest possible horizon. Therefore, the aim of this thesis involves a LiDAR sensor with a low angle of inclination (horizontally oriented sensor) to study and analyze the road defects: holes, humps or any homogeneous out-layers. Which contribute in solving the car accidents problem that are caused by spatial dangerous areas in the road network. This study includes several scientific objectives: road defects' detection, visualization and localization.

Thesis Key Points

The key points of the thesis problem are shown in Figure 2 2. Optimization of the LiDAR altitude and orientation using the synthetic data, before analyzing the coverage of LiDAR distribution points over the ground, to be suitable for the practical application and to ensure the possibility of road defect detection.

3. Data acquisition using LiDAR sensor mounted on a moving vehicle.

4. Data extraction (Range, Azimuth, Elevation, Reflectivity, and Time) from the .pcap format file. Then data preprocessing and PointCloud player presentation.

5. 3D Extrinsic LiDAR/Ground calibration method using 3D geometrical plane-based estimation.

6. Ground selection PointCloud method using differential Gaussian filter, to eliminate: the obstacles that exist on the road, and the objects that surround the road.

7. Extrinsic re-calibration for the road PointCloud to enhance the calibration process.

8. Defect Detection feature-based method.

9. Defect visualization and localization using grid-based method.
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Proposed Contributions

In the context of this study (road defects detection), the LiDAR sensor is rotated toward the ground in order to increase the points' density covering the defects by the multi elevation laser as shown in Figure 3. This causes a complicated modification in the ground 3D view scene with respect to the LiDAR frame. Therefore, extrinsic calibration was adopted in order to transform the LiDAR frame into a global reference frame, thus modifying the ground impact points transformation into an understandable view scene. 

Calibration Method Novelty

The perspective of our framework is to propose a calibration method (and road plane estimation) that works under difficult experimental conditions (high angle of inclination). Indeed, we aim at developing a calibration method that allows to determine precisely the road plane in a very close vicinity of the vehicle. The idea in the long term is to detect road defects when driving on the road network. Although developed with this in mind (i.e. with a high degree of accuracy in determining the road plane), our method is general enough to be applicable in any wider operational context. In order to attain the above key objective, this thesis addresses a new flexible extrinsic calibration method, published in [START_REF] Zaiter | 3d lidar extrinsic calibration method using ground plane model estimation[END_REF], [START_REF] Zaiter | Extrinsic lidar/ground calibration method using 3d geometrical planebased estimation[END_REF]. The proposed calibration method can be summarized by the following two-fold contributions: (1) ground plane model estimation and (2) rotation transformation matrix estimation from world ground reference to LiDAR sensor frame as shown in Figure 4. The 3D Euler's angles (sensor orientation) and the height (sensor altitude above the ground) are two essential extrinsic parameters required to calibrate the full 3D LiDAR sensors as shown in Figure 5, in order to improve the capability of road defect detection as will be explained in section 4.2.1. In addition, the problem is modeled by 4-DOF (degree of freedom) transformation: 3-DOF rotation and 1-DOF height, instead of 6-DOF transformation: 3-DOF rotation and 3-DOF translation. This modeling advantage provides the simplicity in the optimization process of the extrinsic parameters.

As compared to a previous plane-based methods [START_REF] Morales | Boresight calibration of construction misalignments for 3d scanners built with a 2d laser rangefinder rotating on its optical center[END_REF], [START_REF] Zhe | Calibration of rotating 2d lidar based on simple plane measurement[END_REF], the developed approach can be generalized to all types of scanning laser rangefinders and presents an optimized estimation of all extrinsic calibration parameters (angles, height). This global method can be implemented on different cylindrical LiDAR sensors (low-cost 3D and full 3D) with various range accuracy. In addition, the proposed technique outperforms in high orientation scenarios, which is a very interesting and challenging task that aims to increase the points' density coverage.

Road Defect Detection Methods Novelty

Moving to main thesis subject, two novel road defect detection methods are proposed, called Feature-Based Defect Detection Method and Grid-Based Defect Detection Method. The Feature-Based Defect Detection Method, based on the concavity feature delivered by second order of Differential Gaussian Filter. For this, the second order of differential Gaussian filter h DGF2 (n) represents the second derivative of an input signal, which indicates the concavity feature in the output signal z DGF2 of the input signal z w (n) as expressed in Equations 10 and 11. First, this method works on each single elevation laser individually, to detect multi road defects (pothole,hump) with homogeneous Bibliography patterns and small sizes properties. This method is very sensitive to concavity feature, but it requires enough LiDAR coverage resolution on the target.

z DGF2 (n) = z w (n) * h DGF2 (n) = z w (n) * h DGF (n) * h DGF (n) (10) h DGF (n) = G √ 2πσ 2 exp -(n -µ) 2 2σ 2 - G √ 2πσ 2 exp -(n + µ) 2 2σ 2 for    -µ ≤ n ≤ µ σ = µ/2 ( 11 
)
Where G is a gain parameter for signal amplification, σ is the standard deviation of the Gaussian distribution, and n is the points' index number of the signals z w , z DGF , z DGF2 and the system impulse responses h DGF , h DGF2 .

On the other hand, the Grid-Based Defect Detection Method includes twofold contributions: The intensity gray value of the grid cell (i, j), which is denoted by G ij , is expressed as follows: • Grid Splitting Algorithm, provides dynamic grid size to increase the georeferenced image resolution as explained in Algorithm 6.

G ij = n ij ∑ k=1 W k,ij I k,ij d n ij ∑ k=1 W k,ij (15) 
Algorithm 6: Grid Splitting Algorithm Input: Altitude distance d w/opt , initial horizontal and vertical lengths values H, V respectively, and the Cartesian coordinates x w , y w , z w of the k th points within a grid cell (i, j) Output: Georeferenced gray image G ij If the grid cell is empty, associate the intensity gray value G ij to zero.

Else, compute the distance distribution σ d w/opt of the k th points within a grid cell (i, j) as expressed below:

σ d w/opt = 1 N ∑ n ij
k=1 (d w/optd w/opt ) 2 If the standard deviation of the distance distribution σ d w/opt ≥ σ th , split the grid cell into four sub-grids in case if all of the sub-grids are not empty, by dividing the horizontal and vertical lengths by two H/2, V/2 respectively. Where σ th ≃ 1.5cm is a constant threshold that defines the maximum distance accuracy for the lasers impact of the LiDAR sensor on a flat plane. Then, go to step 1. Else, compute the intensity gray value G ij using the above proposed inverse distance weighted interpolation method. Split the grid cells into sub-grid cells according to the smallest grid cell size, and associate the intensity gray values of the sub-grid cells equal to the original grid cell's intensity gray value.

This method works simultaneously on all elevation lasers, it is sensitive to altitude distribution feature, and it requires high LiDAR coverage resolution to detect, visualize and localize the multi homogeneous road defects in a high resolution georeferenced image. The evaluation results show a compromised performance and impressive efficiency of our proposed defect detection methods, in terms of accuracy, precision and recall against other defect detection methods, proving the detection ability of potholes and humps defects using real data.

Conclusion and Perspectives

As a part of transportation and driver assistance systems framework, our contribution concerns multi-defect detection from distributed 3D telemetry measurements. We have developed and validated various global methods, that are compatible with any cylindrical 3D LiDAR sensors. These have been applied to of 3D LiDAR perception system mounted and centered on the vehicle backward. Indeed, the LiDAR sensor is rotated toward the ground in order to increase the road coverage resolution, which improves the road defect detection process. Therefore, the calibration process was adopted in order to transform the LiDAR frame into a global reference frame, thus modifying the LiDAR frame into an understandable view scene.

The development and improvement of a novel flexible extrinsic LiDAR/Ground Calibration Method LGCM was the starting point of this thesis. The calibration method is relied on ground plane-based modeling, to estimate the 4-DOF extrinsic parameters: height and 3D orientation. Moreover, the calibration process is built on four main aspects: linear model Least Squares estimator, Rodrigues formula, Least Squares Conic Algorithm and Levenberg-Marquardt optimization algorithm. The results show a significant performance in terms of precision and robustness against the variation of LiDAR's orientation and range accuracy respectively, proving the stability and the accuracy of the proposed calibration method on synthetic and real data. This reflects the global good capability of this calibration method when applied on cylindrical LiDAR sensors under difficult experimental conditions.

In addition, we proposed and developed two novel road defect detection methods in the context of this thesis, where the solution of these two detection method relies on the calibration method, that provides a horizontal and understandable ground view. First, the Feature-Based Defect Detection Method FBDDM, that studies the concavity feature on each elevation laser using second order Differential Gaussian Filter, to detect multi homogeneous road defects. The recalibration process has imposed itself to enhance the false alarm, in order to improve the evaluation results of the Feature-Based Defect
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 213 FIGURE 2.13: Road crack map

  A hierarchical clustering algorithm is utilized on each block, depending on the intensity histogram and the 2D Discrete Fourier Transform (DFT) intensity spectral features as shown in Figure 2.14. Through the above analysis, the authors highlight the identification role of the intensity histogram feature that shows a clear difference between the three classes.
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 215 FIGURE 2.15: Diagram for obstacle and water hazard detection method [107]
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 35 FIGURE 3.5: (a) Top view for old and new azimuth association, (b) Azimuth association algorithm Flowchart
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 41 FIGURE 4.1: (a) No orientation, (b) Practical orientation concept, (c) Scientific orientation concept

  and 4.2b. The proposed calibration method must satisfy two contradictory conditions in relation to the final research objectives:
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 42 (1) circles patterns (Figure 4.2c), (2) combination of ellipses, parabola and hyperbolas patterns (Figure 4.2d) and (3) hyperbolas patterns (Figure 4.2e).
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 43 FIGURE 4.3: The proposed extrinsic calibration method block diagram
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 444 FIGURE 4.4: (a) distributed ground noisy points c w about the real plane (P re ), (b) distributed points c H1 along the horizontal plane (P H )
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 41 5 to rotate the points c H1 to c H2 about z-axis. This algorithm is called Least Squares Conic Algorithm LSCA which takes an advantage of the center S characteristic of the geometrical impact patterns (hyperbolas, parabolas, circles) formed by the points c H1 as shown in Figure 4.5. The aim of this part is to compute yaw angle ψz from the partial angles Ψz1 and Ψz2 as shown in Equation 4.20. Least Squares Conic Algorithm Input: x,y,z,α,β of the distributed points c H1 Output: Ψz2 Fit the lines (l) and (l ′ ) that pass through the points at each ζ = 10 • consecutive azimuth by Least Squares estimator. The solution of Least Squares estimator for linear model: ÔLS = (H T H) -1 H T Y where Y =
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 4546 FIGURE 4.5: (1) fitting the lines passing through the points of each ζ = 10 • consecutive azimuth, (2) intersection points S of each symmetric lines between (l) and (l ′ ), (3) fitting line (v) that passes through the points S and the origin O, (4) angle Ψz2 formed by line (v) and y-axis

  variation of σ ρ re /ρ i with respect to ϕ x
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 412 FIGURE 4.12: The variation of σ ρ w /ρ i with respect to LiDAR frame

  Figure 4.13. (a) uncalibrated frame (b) calibrated frame (c) uncalibrated frame (d) calibrated frame
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 4604 FIGURE 4.13: uncalibrated and calibrated LiDAR frames from acquisitions 1 and 2
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  FIGURE 5.12: Road edges filtering

  FIGURE 5.13: Second order differential Gaussian filter
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 514 FIGURE 5.14: Second order differential Gaussian filter input and output

FIGURE 5 . 15 :
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 517 FIGURE 5.17: 3D and 2D sample frames for ground points after recalibration
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 518 FIGURE 5.18: Grid model of ground surface point cloud

  general weight and the altitude distance intensity of the k th point within grid cell (i, j), respectively. a and b are the weight coefficients, W k,ij D and W k,ij I d are the weight components calculated considering the planar Euclidean distance D from the grid cell center and the altitude distance intensity I d within grid cell (i, j), respectively.
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 1519 FIGURE 5.19: Planar Euclidean distance weight W k,ij D
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 222 (I max -I min ) the weight components calculated based on the local and the global altitude distance intensity information respectively, g max and g min are the local maximal and minimal altitude distance intensities values within grid cell (i, j), and I max and I min are the global maximal and minimal altitude distance intensities values of the point cloud frame.
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 1520521 FIGURE 5.20: Altitude distance intensity weight W k,ij I d
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 523 FIGURE 5.23: High resolution georeferenced images
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 525 FIGURE 5.25: The confusion matrix of four different combinations of predicted and actual class values

  Accuracy =TP + TN TP + TN + FP + FN (5.21) • Precision and Recall: another two well-known evaluation metrics usually used together and can be applied in the context of detection. Precision, also called Positive Predictive Value PPV, answers the question of what proportion of positive predictions was actually correct. Whereas, Recall, Chapter 5. Road Defect Detection Methods also called True Positive Rate TPR, answers the question of what proportion of actual positives was identified correctly.
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 9109526 Fig. 9. Experimental results in off-road environment. Segmentation results are showed in flat(a) and nonflat(b) road condition. (c) and (d) show the negative obstacle detection results at different distance. (e) and (f) reflect that the Lidar-histogram has promising performance in water hazard detection.
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 234 Figure 3.4: Packet's structure
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 2 bytes flag (0 × FFEE).

  FIGURE B.1: Data PointCloud features with noise

  Ce travail s'inscrit dans le cadre général des systèmes de perception multicapteurs, portant plus particulièrement sur les différentes caractéristiques cidessus, qui seront obtenues à partir d'une information télémétrique d'un télémètre multi-lasers (Light Detection and Ranging LiDAR, Laser Range Finder LRF ) monté sur un véhicule comme illustré à la Figure1.

  (a) VLP-16 LiDAR monté sur un véhicule (b) LiDAR VLP-16 monté sur un support fixe
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  is the number of data points within grid cell (i, j), W k,ij and I k,ij d are the general weight and the altitude distance intensity of the k th point within grid cell (i, j), respectively. a and b are the weight coefficients, W k,ij D and W k,ij I d are the weight components calculated considering the planar Euclidean distance D from the grid cell center and the altitude distance intensity I d within grid cell (i, j), respectively.
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  • , Y • , Z • ) transformations as shown in Figure2.6. Indeed, it is necessary to estimate the 6-degree of freedom extrinsic parameters ψ z , θ y , ϕ x , X • , Y • , Z • in order to transform the LiDAR frame to the reference frame.
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 1 LCMS Specifications

	rofilers	2
	(max.)	11,200 profiles/s
	eed	100 km/h (max)
	cing	Adjustable
	profile	4096 points
	-of-view	4 m
	operation	250 mm
	accuracy	0.5 mm
	) resolution	1 mm
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 1 LCMS Specifications

	rofilers	2
	(max.)	11,200 profiles/s
	eed	100 km/h (max)
	cing	Adjustable
	profile	4096 points
	-of-view	4 m
	operation	250 mm
	accuracy	0.5 mm
	) resolution	1 mm
	to of the LCMS system (sensors and controller)

(b) The laser profilers hardware FIGURE 2.11: Laser profiler system

[START_REF] Laurent | Development of a new 3d transverse laser profiling system for the automatic measurement of road cracks[END_REF] 
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FIGURE 2.16: The effect of laser scanning line on obstacle, hole and water hazard spot

TABLE 3 .

 3 

1: PointCloud features

TABLE 3 .

 3 

		Range Azimuth Elevation Intensity Time	X	Y	Z
	Point 1	ρ 1	α 1	β 1	I 1	t 1	x 1	y 1	z 1
	Point 2 . . .	ρ 2 . . .	α 2 . . .	β 2 . . .	I 2 . . .	t 2 . . .	x 2 . . .	y 2 . . .	z 2 . . .
	Zero padding . . .	0 . . .	α 5 . . .	β 5 . . .	0 . . .	0 . . .	0 . . .	0 . . .	0 . . .
	Point 2800	ρ 28800	α 28800	β 28800	I 28800	t 28800 x 28800 y 28800 z 28800
	The aim of this algorithm is to modify the frames for a specific angular res-
	olution with constant number of points 28800 points/ f rame as expressed in
	Equation 3.1.								
	f rame points number = =	360 • × Channels Azimuth angular resolution 0.2 • = 28800 points/ f rame 360 • × 16	(3.1)

2: Zero padding point in a point cloud frame

TABLE 3 .

 3 old /α std1 σ x old /x std1 σ y old /y std1 Average associated points σ α old /α std2 σ x old /x std2 σ y old /y std2

				3: Preprocessing azimuth association errors for four		
					different acquisitions			
	Acquisition name	Frames number	σ α Average associated points
	Country Fair	50	0.0686 •	0.0168	0.0134	98.57%	0.0649 •	0.0160	0.0127	98.85%
	Monterey Highway	50	0.0685 •	0.0178	0.0201	98.68%	0.0643 •	0.0166	0.0189	99.06%
	ULCO Corridor	50	0.0696 •	0.0013	0.0010	99.38%	0.0681 •	0.0013	0.0010	99.27%
	ULCO Outdoor	50	0.0696 •	0.0015	0.0067	99.17%	0.0677 •	0.0015	0.0067	99.11%

  2.2 and 4.2.3, and real data acquisition from the Velodyne VLP-16 LiDAR. The most important features of Velodyne VLP-16 LiDAR are shown in Table 4.1.

TABLE 4 .

 4 

	1: VLP-16 Features
	Features	VLP-16
	Laser beams Horizontal FOV Vertical FOV Azimuth angular resolution 0.1 • -0.2 • -0.4 • 16 360 • -15 • → +15 • Elevation angular resolution 2 •
	Range accuracy σ ρ	3cm

  In terms of robustness, the real height h = 2m, pitch angle ϕ x = 45 • , roll angle θ y = 2 • and yaw angle ψ z = 2 • , with respect to the variation of σ ρ w /ρ re = [0, 0.095m].

• , 70 • ]. • In terms of precision, the pitch angle ϕ x = 45 • , roll angle θ y = 2 • , yaw angle ψ z = 2 • and LiDAR range accuracy σ ρ w /ρ re = 0.03m, with respect to the variation of height h = [0.5m, 4.8m].

•

Terms of Precision and Ro- bustness

  • , the standard deviation σ d w/i tends to the LiDAR range accuracy σ ρ w /ρ re . Where in Figure4.7c, the increasing of the standard deviation σ d w/i is due to increasing of LiDAR range accuracy σ ρ w /ρ re . Moreover, Equation4.34 describes the relation of σ d w/i with ϕ x and σ ρ w /ρ re which proves the increasing of σ d w/i . While, Figure4.7b shows that there is no correlation effect between the height h and the standard deviationσ d w/i . σ d w/i = sin (ϕ x + φ k )σ ρ StandardDeviation σ ρ re /ρ i and σ ρ w /ρ i in In terms of precision and robustness, Figures 4.8a, 4.8c, 4.9a and 4.9c show the increasing behavior of the range standard deviations σ ρ re /ρ est and σ ρ w /ρ est after the LGCM calibration, due to:
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(4.34) 

Where φ k is the elevation angle of each VLP-16 LiDAR laser, and k = {1, 2, ..., 16} represents the laser index.

In Figures 4.7d,4.7e and 4.7f, we can see that the standard deviation σ d w/opt is closer to the the standard deviation σ d w/re than the standard deviation σ d w/est . This shows that the optimized plane (P opt ) is better fit to the real plane (P re ) than the estimated plane (P est ).

(c) variation of σ d w/i with respect to σ ρ w /ρ re

  σ ρ re /ρ i with respect to hThe negligibility of standard deviation σ ρ re /ρ opt in Figures 4.8a, 4.8b and 4.8c, and the coincidence of standard deviations σ ρ w /ρ opt and σ ρ w /ρ re in Figures 4.9a, 4.9b and 4.9c, proves the similarity of the real plane (P re ) and the optimized plane (P opt ) other than the estimated plane (P est ).
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re /ρ est and σ ρ w /ρ est after the LGCM calibration, due to increasing of height h that increases the sparsity of impact points on the ground, which leads to increase the precision of plane fitting estimation.

The standard deviation σ ρ re /ρ opt is lower than the standard deviation σ ρ re /ρ est as shown in Figures 4.8a, 4.8b and 4.8c, which indicate how the optimized (c) variation of σ ρ w /ρ i with respect to σ ρ w /ρ re

FIGURE 4.9: The variation of σ ρ w /ρ i in terms of precision and robustness points c opt are closer to the real points c re than the estimated points c est . On the other hand, the standard deviation σ ρ w /ρ opt is very close to LiDAR range accuracy σ ρ w /ρ re than for the standard deviation σ ρ w /ρ est as shown in Figures 4.9a, 4.9b and 4.9c, which indicate the similarity of the noisy points c w range distribution along the real plane (P re ) and the optimized plane (P opt ).

  Where the indexes n i values indicate the midpoints of the defect in z w (n) signal.

|z DGF (n i )| ≥ pk th

TABLE 5 .

 5 2: Confusion matrix of FBDDM for each acquisition

	FBDDM	TP	TN FP FN Frames
	Acquisition 1	0	1664 0	0	104
	Acquisition 2 166 1407 8	10	99
	Acquisition 3 211 1006 12 30	78
	Acquisition 4 254 1778 0	0	127
	Acquisition 5 376 1128 0	0	94
	Acquisition 6	88	306	4	5	25
	Acquisition 7 167	350	4	10	33
	Acquisition 8 472	912	0	39	86
	Acquisition 9	96	255 13	1	22
	Total	1830 8806 40 95	668
	TABLE 5.3: Confusion matrix of opt-FBDDM for each acquisi-
			tion			
	opt-FBDDM TP	TN FP FN Frames
	Acquisition 1	0	1664 0	0	104
	Acquisition 2 167 1408 0	9	99
	Acquisition 3 214 1005 6	27	78
	Acquisition 4 254 1778 0	0	127
	Acquisition 5 376 1128 0	0	94
	Acquisition 6	88	306	1	5	25
	Acquisition 7 167	350	1	10	33
	Acquisition 8 481	912	0	30	86
	Acquisition 9	96	255	0	1	22
	Total	1843 8806 8	82	668
	TABLE 5.4: Confusion matrix of GBDDM for each acquisition
	GBDDM	TP TN FP FN Frames
	Acquisition 1	0 104 0	0	104
	Acquisition 2 33	66	0	0	99
	Acquisition 3 41	36	2	0	78
	Acquisition 4 127	0	3	0	127
	Acquisition 5 94	0	4	0	94
	Acquisition 6 25	0	1	0	25
	Acquisition 7 33	0	3	0	33
	Acquisition 8 144	0	3	0	86
	Acquisition 9 22	0	1	0	22
	Total	519 206 17	0	668

TABLE 5 .

 5 

	5: Evaluation results of our proposed methods
	Method	Accuracy Precision Recall F-measure
	FBDDM	98.74%	97.86%	95.06%	96.44%
	opt-FBDDM	99.16%	99.56%	95.74%	97.61%
	GBDDM	97.70%	96.82%	100%	98.38%

TABLE 5 .6: Evaluation comparison results with other methods Method Precision Recall F-measure Run-time Environment GBDDM
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		96.82%	100%	98.38%	0.09s	1 core @ 2.8Ghz (Matlab)
	FBDDM	99.56%	95.74%	97.61%	0.48s	1 core @ 2.8Ghz (Matlab)
	LiDAR-Histogram [107]	95.39%	91.34%	93.32%	0.1s	1 core @ 2.5Ghz (C/C++)
	Cascaded System [111]	76.98%	76.33%	76.66%		

  et sont répertoriés ci-dessous :

	Data Acquisition	Data Extraction and Preprocessing	Extrinsic Calibration	Ground Selection	Extrinsic Recalibration	Defect Detection	Defect Visualization and Localization
		Generation of					
		Simulation Data					
		FIGURE 2: Schéma Fonctionnel de la Thèse		
	1. Génération de données de simulation sur des données de capteurs Li-
	DAR pour différentes orientations et altitudes.		
	2. Optimisation de l'altitude et de l'orientation LiDAR à l'aide des don-
	nées synthétiques, avant d'analyser la couverture des points de distri-
	bution LiDAR au sol, pour convenir à l'application pratique et assurer
	la possibilité de détection des défauts de la route.		
	3. Acquisition de données à l'aide d'un capteur LiDAR monté sur un
	véhicule en mouvement.				
	4. Extraction de données (portée, azimut, élévation, réflectivité et temps)
	à partir du fichier au format .pcap. Puis prétraitement des données et
	présentation du player PointCloud.			
	5. Méthode d'étalonnage LiDAR/Sol extrinsèque 3D utilisant une estima-
	tion basée sur le plan géométrique 3D.			
	6. Sélection au sol Méthode PointCloud utilisant un filtre gaussien dif-
	férentiel, pour éliminer : les obstacles qui existent sur la route, et les
	objets qui entourent la route.				
	7. Re-calibrage extrinsèque pour le PointCloud routier pour améliorer le
	processus de calibrage.				
	8. Méthode basée sur les fonctionnalités de détection des défauts.
	9. Visualisation et localisation des défauts à l'aide de la méthode basée sur
	la grille.					

  . Ce filtre h DGF2 (n) calcule la dérivée seconde du signal d'entrée et dont la sortie z DGF2 indique la caractéristique de concavité du signal d'entrée z w (n) telle qu'exprimée dans les équations 2 et 3. Tout d'abord, cette méthode fonctionne individuellement sur chaque laser d'élévation, pour détecter plusieurs défauts routiers de petite taille (nids de poule, bosses) avec des motifs homogènes et des propriétés. Cette méthode est très sensible à la fonction de concavité, mais elle nécessite une résolution LiDAR suffisante sur la cible.

  ) où G est un paramètre de gain pour l'amplification du signal, σ est l'écart type de la distribution gaussienne et n est le numéro d'index des points des signaux z w , z DGF , z DGF2 et les réponses impulsionnelles du système h DGF , h DGF2 . |A opt x w + B opt y w + C opt z w + D opt | , y w , z w sont les coordonnées cartésiennes des points au sol recalibrés 3D, A opt , B opt , C opt , D opt sont les paramètres du plan optimisé (P opt ), d min et d max sont respectivement les valeurs minimale et maximale de la distance en altitude d w/opt , et L gray = 255 est le niveau de gris d'intensité maximale. La valeur de gris d'intensité de la cellule de la grille (i, j), notée G ij , s'exprime comme suit :

	D'autre part, la méthode de détection de défauts basée sur la grille comprend
	deux contributions :			
	• Méthode d'interpolation pondérée par l'inverse de la distance améliorée,
	basée sur la distribution en altitude dans une grille spatiale pour générer
	une image géoréférencée en altitude comme exprimé dans les équations
	4,5,6,7 ,8 et 9.			
	d w/opt =	A 2 opt + B 2 opt + C 2 opt	(4)
	d w/opt = z w + h		(5)
	I d =	d w/opt -d min d max -d min	× L gray	(6)
	où x w			

  k,ij et I k,ij d sont le poids général et l'intensité de la distance en altitude du point k th dans la cellule (i, j), respectivement. a et b sont les coefficients de poids, W sont les composantes de poids calculées en tenant compte de la distance euclidienne plane D à partir de la grille le centre de cellule et l'intensité de distance d'altitude I d dans la cellule de grille (i, j), respectivement. • Algorithme de Fractionnement de Grille , fournit une taille de grille dynamique pour augmenter la résolution de l'image géoréférencée, comme expliqué dans Algorithm 5. Algorithme de Fractionnement de Grille Input: Distance en altitude d w/opt , valeurs initiales des longueurs horizontale et verticale H, V respectivement, et coordonnées cartésiennes x w , y w , z w des points k th dans une cellule de grille (i, j) Output: Image grise géoréférencée G ij Si la cellule de la grille est vide, associez la valeur de gris d'intensité G ij à zéro. Sinon, calculez la distribution de distance σ d w/opt des points k th dans une cellule de grille (i, j) comme indiqué ci-dessous : (d w/optd w/opt ) 2 Si l'écart type de la distribution de distance σ d w/opt ≥ σ th , divisez la cellule de la grille en quatre sous-grilles au cas où toutes les sous-grilles ne seraient pas vides, en divisant les longueurs horizontale et verticale par deux H/2, V/2 respectivement. Où σ th ≃ 1.5cm est un seuil constant qui définit la précision de distance maximale pour l'impact laser du capteur LiDAR sur un plan plat. Ensuite, passez à l'étape 1.

			Bibliography
	Algorithm 5: σ d w/opt = 1 N ∑	n ij
			k,ij
	et W	k,ij I d	D

k=1

  Dans le cadre des systèmes de transport et d'aide à la conduite, notre contribution concerne la détection multi-défauts à partir de mesures de télémétrie 3D laser distribuée. Nous avons développé et validé différentes méthodes, compatibles avec tous les capteurs LiDAR 3D cylindriques. Celles-ci ont été appliquées à un système de perception LiDAR 3D, monté et centré sur le véhicule, et orienté vers l'arrière. Par ailleurs, le capteur LiDAR est tourné Bibliography 123 vers le sol afin d'augmenter la résolution pour la caractérisation de la route, ce qui améliore le processus de détection de défauts de route. Par conséquent, le processus d'étalonnage a été adopté afin de transformer le référentiel Li-DAR en un référentiel global, modifiant ainsi le référentiel LiDAR en une scène 3D interprétable.Le développement et l'amélioration d'une nouvelle méthode d'étalonnage extrinsèque flexible LiDAR/sol LGCM a été le point de départ de cette thèse. La méthode d'étalonnage s'appuie sur une modélisation basée sur le plan du sol pour estimer les paramètres extrinsèques 4-DOF : hauteur et orientation 3D. De plus, le processus de calibrage repose sur quatre aspects principaux : estimateur des moindres carrés du modèle linéaire, formule de Rodrigues, algorithme conique des moindres carrés et algorithme d'optimisation de Levenberg-Marquardt. Les résultats montrent une performance significative en termes de précision et de robustesse vis-à-vis de la variation de l'orientation et de la précision de distance du LiDAR respectivement, prouvant la stabilité et la précision de la méthode d'étalonnage proposée sur des données synthétiques et réelles. Cela reflète la bonne capacité globale de cette méthode d'étalonnage lorsqu'elle est appliquée sur des capteurs LiDAR cylindriques dans des conditions expérimentales difficiles. Bibliography de défauts tels que les nids-de-poule et les bosses sur données réelles.Sur la base des résultats présentés dans cette thèse, nous mettons en évidence plusieurs directions de recherche futures intéressantes :• Dans notre travail, les méthodes de détection sont appliquées sur les défauts de route (nids de poule et bosses). il serait intéressant d'exploiter ce type de méthodes sur la détection de véhicules, d'obstacles ou de piétons. Au delà, on pourrait s'intérsser à adapter notre méthode de détection de défauts basée sur une approche par grille pour détecter les risques liés à la présence d'eau sur la route, à l'aide de la réflectivité LiDAR.• L'utilisation d'un LiDAR haute résolution comme le capteur LiDAR OS1-128 augmentera les performances des processus de calibrage et de détection. Mais l'enjeu sera également lié à la taille des défauts pour la problématique de détection.

	De plus, nous avons proposé et développé deux nouvelles méthodes de dé-
	tection de défauts routiers dans le cadre de cette thèse, où la solution de
	ces deux méthodes de détection repose sur la méthode d'étalonnage, qui
	fournit une vue horizontale et exploitable du sol. Tout d'abord, la méth-
	ode de détection de défauts basée sur les fonctionnalités FBDDM, qui étudie
	la caractéristique de concavité sur chaque laser d'élévation à l'aide d'un fil-
	tre gaussien différentiel de second ordre, pour détecter plusieurs défauts de
	route homogènes. Le processus de recalibrage s'est imposé pour améliorer
	la fausse alarme, afin d'améliorer les résultats d'évaluation de la méthode de
	détection des défauts basée sur les fonctionnalités. Deuxièmement, la méth-
	ode de détection de défauts basée sur la grille GBDDM qui repose sur deux
	aspects principaux : la méthode d'interpolation pondérée par la distance in-
	verse améliorée et l'algorithme de fractionnement de grille, pour détecter,
	visualiser et localiser les défauts routiers multi-homogènes dans une image
	géoréférencée à haute résolution. L'évaluation de ces méthodes montrent

l'efficacité de nos méthodes de détection de défauts, en termes d'exactitude, de précision par rapport à d'autres méthodes de détection de défauts, prouvant la capacité de notre méthode à fournir une solution efficace de détection 124

  3D, la définition du LiDAR 3D, la comparaison entre le LiDAR 3D et d'autres capteurs 3D, la définition du calibrage du LiDAR et les travaux de la communauté liés à cette problématique. En outre, il présente également une revue des méthodes de détection de défauts de route basées sur les capteurs LiDAR, Caméra et Accéléromètre. • Chapitre 3 présente les caractéristiques du capteur LiDAR Velodyne VLP-16, les opérations d'extraction et de prétraitement des données. • Chapitre 4 présente la modélisation géométrique des impacts laser du capteur LiDAR sur le sol, et la méthode de calibrage extrinsèque Li-DAR/sol proposée. En outre, il montre des résultats expérimentaux de calibrage extrinsèque en simulation et sur des données réelles.

• Chapitre 5 présente le processus de sélection au sol, la méthode de détection des défauts basée sur les fonctionnalités proposée et la méthode de détection des défauts basée sur une approche par grille. En outre, il montre les résultats d'évaluation sur données réelles des méthodes de détection de défauts routiers proposées en comparaison avec d'autres méthodes.

  • Improved Inverse Distance Weighted interpolation method, based on the altitude distribution in a spatial grid to generate altitude georeferenced image as expressed in Equations 12,13,14,15,16 and 17. d w/opt = |A opt x w + B opt y w + C opt z w + D opt | Where x w , y w , z w are the Cartesian coordinates of the 3D recalibrated ground points, A opt , B opt , C opt , D opt are the parameters of the optimized plane (P opt ), d min and d max are the minimum and maximum values of the altitude distance d w/opt respectively, and L gray = 255 is the maximum intensity gray level.

			A 2 opt + B 2 opt + C 2 opt	(12)
	d w/opt = z w + h		(13)
	I d =	d w/opt -d min d max -d min	× L gray	(14)

A point with a larger altitude distance intensity I d gets a greater weight.

bytes for 32 Data Points.• Data Packet:bytes of header.-Data Blocks.bytes timestamp byte factory field.
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Chapter 5

Road Defect Detection Methods

Introduction

In this chapter, we present the kernel objective of this thesis, that aims to detect, identify, visualize and localize the road defects in each LiDAR frame. In fact, a prior procedure is applied to the LiDAR frame after the extrinsic calibration process as shown in Figure 5.1, in order to obtain a better results by the detection methods, because the road's defect affects the extrinsic calibration process results, due to the ground consideration as a flat plane. In order to attain a high resolution georeferenced image, a Grid Splitting Algorithm GSA is developed based on the standard deviation of the distance distribution σ d w/opt constraint for each grid cell (i, j), as explained in Algorithm 4 that performed on Figure 5.21.

Algorithm 4: Grid Splitting Algorithm

Input: Altitude distance d w/opt , initial horizontal and vertical lengths values H, V respectively, and the Cartesian coordinates x w , y w , z w of the k th points within a grid cell (i, j) Output: Georeferenced gray image G ij 1 If the grid cell is empty, associate the intensity gray value G ij to zero.

Else, compute the distance distribution σ d w/opt of the k th points within a grid cell (i, j) as expressed below:

If the standard deviation of the distance distribution σ d w/opt ≥ σ th , split the grid cell into four sub-grids in case if all of the sub-grids are not empty, by dividing the horizontal and vertical lengths by two H/2, V/2 respectively as shown in Figure 5.22a. Where σ th ≃ 1.5cm is a constant threshold that defines the maximum distance accuracy for the lasers impact of the LiDAR sensor on a flat plane. Then, go to step 1. Else, compute the intensity gray value G ij using the above proposed inverse distance weighted interpolation method. 

Experimental Results

In this section, the proposed feature-based and grid-based defect detection methods are applied on real data acquisition from the Velodyne VLP-16 Li-DAR sensor as shown in Figure 5.24. The most important features of Velodyne VLP-16 LiDAR are shown in Table 5.1. 

Chapter 5. Road Defect Detection Methods

Based on the outcomes presented in this thesis, we highlight several interesting future research directions:

• In our work, the detection methods is applied on road defects (potholes and humps). It will be an interesting application to apply the same methods on vehicles, obstacles and pedestrians detection. More than that, modify the grid-based defect detection method to detect the water hazards using the reflectivity LiDAR feature.

• Using a high resolution LiDAR like OS1-128 LiDAR sensor will increase the performance of calibration and detection processes. But, it will also increase the chance of defect size estimation challenge.

• In road selection points process, the road looses a small spatial regions at the edge of the road. So, we suggest to develop a road detection method to study the defects that are aligned beside the road edges.

• We recommend a LiDAR and Camera fusion sensors to increase the performance of the proposed detection methods, especially the gridbased defect detection method.

• In addition, the fusion of LiDAR, Global Positioning System GPS and Inertial Measurement Unit IMU will support a defect tracking, localization and mapping system in a global world wide reference.

• Moreover, the proposed calibration and detection methods are compatible with cylindrical LiDARs. It will be interesting to find a way to modify the methods process to be compatible with non cylindrical LiDARs like Velodyne HDL-64 LiDAR sensor. So, the methods can be directly applied on the KITTI-ROAD data-set to compare perfectly with other methods.

• Finally, the most interesting challenge is to implement the methods on a Digital Signal Processor DSP as a real-time application. Detection Method. Second, the Grid-Based Defect Detection Method GB-DDM that relies on two main aspects: improved Inverse Distance Weighted interpolation method and Grid Splitting Algorithm, to detect, visualize and localize the multi homogeneous road defects in a high resolution georeferenced image. The evaluation results show a compromised performance and impressive efficiency of our proposed defect detection methods, in terms of accuracy, precision and recall against other defect detection methods, proving the detection ability of potholes and humps defects using real data.

Appendix

Based on the outcomes presented in this thesis, we highlight several interesting future research directions:

• In our work, the detection methods is applied on road defects (potholes and humps). It will be an interesting application to apply the same methods on vehicles, obstacles and pedestrians detection. More than that, modify the grid-based defect detection method to detect the water hazards using the reflectivity LiDAR feature.

• Using a high resolution LiDAR like OS1-128 LiDAR sensor will increase the performance of calibration and detection processes. But, it will also increase the chance of defect size estimation challenge.

• In road selection points process, the road looses a small spatial regions at the edge of the road. So, we suggest to develop a road detection method to study the defects that are aligned beside the road edges.

• We recommend a LiDAR and Camera fusion sensors to increase the performance of the proposed detection methods, especially the gridbased defect detection method.

• In addition, the fusion of LiDAR, Global Positioning System GPS and Inertial Measurement Unit IMU will support a defect tracking, localization and mapping system in a global world wide reference.

• Moreover, the proposed calibration and detection methods are compatible with cylindrical LiDARs. It will be interesting to find a way to modify the methods process to be compatible with non cylindrical LiDARs like Velodyne HDL-64 LiDAR sensor. So, the methods can be directly applied on the KITTI-ROAD data-set to compare perfectly with other methods.

• Finally, the most interesting challenge is to implement the methods on a Digital Signal Processor DSP as a real-time application.
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Report Structure

Later, this report introduces the following chapters:

• Chapter 2 presents the state of the art of the thesis, which includes the difference between 2D and 3D sensors, 3D LiDAR definition, comparison between 3D LiDAR with other 3D sensors, LiDAR calibration definition and LiDAR calibration related work. In addition, it presents also the literature review of road defect detection methods based on LiDAR, Camera and Accelerometer sensors.

• Chapter 3 presents the characteristics of Velodyne VLP-16 LiDAR sensor features, the data extraction and preprocessing operations.

• Chapter 4 presents the geometrical impact modeling of the LiDAR sensor on the ground, and the proposed extrinsic LiDAR/Ground Calibration Method. In addition, it shows the extrinsic calibration experimental results using simulation and real data.

• Chapter 5 presents the ground selection process, the proposed Feature-Based Defect Detection Method and Grid-Based Defect Detection Method.

In addition, it shows the evaluation results of the proposed road defect detection methods, compared against other methods using real data.