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Résumé
Dans les applications liées au transport, la problématique de détection des
défauts de la route est non seulement importante pour construire un sys-
tème efficace d’aide à la conduite mais également contribuer à la mainte-
nance des infrastructures routières dans une logique d’amélioration globale
de la sécurité des routes. Cette thèse s’inscrit dans ce cadre, avec comme
particularité d’être axée sur un télémètre laser à balayage 3D (LIDAR) per-
mettant de percevoir l’environnement du véhicule et délivrant des mesures
de cibles étendues. Afin d’être efficace en termes de précision en localisa-
tion et d’identification du défaut, le processus de détection/estimation né-
cessite une résolution élevée sur la cible, ce qui impose que le LiDAR soit
positionné relativement proche de la route avec une orientation choisie afin
d’augmenter cette résolution. Cependant, avant toute détection, ce contexte
opérationnel conduit à envisager des méthodes d’estimation des paramètres
extrinsèques du capteur tenant compte de cette spécificité opérationnelle.

La première partie de cette thèse porte donc sur une nouvelle méthode de
calibration extrinsèque d’un capteur LiDAR 3D, appelée « LiDAR/Ground
Calibration Method » qui se concentre sur l’estimation du plan de la route.
Cette méthode est également efficace dans la configuration expérimentale
particulière d’un angle élevé d’inclinaison du LiDAR. Dans cette configu-
ration, la calibration du capteur LiDAR est un problème clé en particulier
pour garantir l’efficacité de la détection des objets de taille modeste au sol.
La méthode de calibration extrinsèque proposée peut être résumée en dif-
férentes étapes : ajustement du modèle géométrique de surface de la route,
estimation des paramètres extrinsèques (orientation 3D, altitude) et optimi-
sation des paramètres extrinsèques. Les résultats sur données synthétiques et
réelles sont présentés en termes de précision et de robustesse par rapport à la
variation de hauteur et à la précision sur l’orientation et la distance, montrant
ainsi la stabilité et la pertinence de la méthode de calibration extrinsèque pro-
posée.

La deuxième partie propose deux nouvelles méthodes de détection de dé-
fauts routiers, dénommées Feature-Based Defect Detection Method (FBDDM)
et Grid-Based Defect Detection Method (GBDDM). La méthode de détection
FBDDM, basée sur les propriétés de concavité fournies par un filtre gaussien
différentiel du second ordre, permet de détecter plusieurs défauts de route
homogènes à chaque élévation laser. Quant à elle, la méthode de détection
GBDDM est basée sur deux étapes principales : une étape d’interpolation
construite sur une pondération des impacts lidar dépendant de la distance et
un découpage de la surface en quadrillage dynamique qui permet de dé-
tecter, visualiser et localiser des défauts routiers multiples. Les résultats
d’évaluation montrent une très bonne performance de ces méthodes de dé-
tection de défauts, en termes d’exactitude et de précision par rapport à d’autres
méthodes de détection existantes. Elles montrent également leur efficacité
dans la capacité de détection des défauts de type nids-de-poule ou de défor-
mation de chaussée (bosses) en contexte expérimental maîtrisé.
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Mots-clés: LiDAR Mobile 3D, Étalonnage Extrinsèque LiDAR, Systèmes de
Transport Intelligents, Détection et Localisation des Défauts Routiers, Identi-
fication et Visualisation des Défauts Routiers.



xi

Abstract
In transportation applications, the problem of detection of road defects is not
only important to build an efficient Advanced Driver-Assistance System, but
also to contribute to the maintenance of road infrastructures with the aim of
an overall improvement in road safety. This issue is being taken into consid-
eration in this thesis, but the presented works primarily focus on the use of
a 3D scanning laser rangefinder (LiDAR) allowing to observe the vehicle’s
environment and delivering measurements of extended targets. In order to
be efficient in terms of localization accuracy and defect identification, the de-
tection/estimation process involves a high resolution on the target, which
requires that the LiDAR sensor to be positioned relatively close to the road
with a selected orientation in order to increase the coverage resolution. How-
ever, before any detection, this operational context leads to consideration of
methods for estimating extrinsic parameters of the sensor taking into account
of this operational specificity.

The first part of this thesis involves a new method of extrinsic calibration for
3D LiDAR sensor, called LiDAR/Ground Calibration Method, which focuses
on the geometrical ground plane-based estimation. This method is also effi-
cient in the challenging experimental configuration of a high tilt angle of the
LiDAR sensor. In this configuration, the calibration of the LiDAR sensor is
a key problem particularly to ensure the efficiency of the detection of objects
with small size on the ground. The proposed extrinsic calibration method
can be summarized by the following procedure: fitting geometric road sur-
face model, extrinsic parameters estimation (3D orientation, altitude) and ex-
trinsic parameters optimization. The results are presented on synthetic and
real data in terms of precision and robustness against variations of height and
accuracy on orientation and distance, showing the stability and relevance of
the proposed extrinsic calibration method.

The second part proposes two novel road defect detection methods, called
Feature-Based Defect Detection Method (FBDDM) and Grid-Based Defect
Detection Method (GBDDM). The FBDDM detection method, based on con-
cavity properties provided by a second-order differential Gaussian filter, al-
lows the detection and identification of several homogeneous road defects
at each laser elevation. However, the GBDDM detection method is based on
two main steps: a weighted interpolation step built on inverse distance of the
LiDAR impacts and a surface splitting in terms of dynamic grid which makes
it possible to detect, visualize and localize multiple road defects. The evalua-
tion results show a very good performance of these defect detection methods,
in terms of accuracy and precision against existing detection methods. They
also prove their effectiveness in detecting pothole defect or pavement defor-
mation (hump) in a controlled experimental context.

Keywords: 3D Mobile LiDAR, LiDAR Extrinsic Calibration, Intelligent Trans-
portation Systems, Road Defect Detection and Localization, Road Defect Iden-
tification and Visualization.
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Chapter 1

Introduction

1.1 Context

The state of road network knowledge in a country is an important issue in or-
der to be able to deploy a rational policy of road maintenance, rehabilitation
and traffic improvement. As we know, some traffic accidents are the result of
the presence of disabilities or small obstacles on the roads, and one of the ma-
jor problems that the population suffers from on a daily lives. Although, road
traffic injuries represents a major global health problem of human safety. As a
key facts, the World Health Organization (WHO) report on the Global status
of road traffic safety, reflecting information from worldwide countries, indi-
cates that the total number of road traffic deaths has plateaued at 1.15 million
person in 2000. Then it increases 0.1 million to reach 1.25 million road traffic
deaths in 2015 [1], [2], and 1.35 million deaths in 2018 [3]. Especially in low-
middle-income countries as Africa and South-East Asia, record 95% of the
world’s fatalities occur on the road [4], and more than half road traffic deaths
are among vulnerable road users: motorcyclists, cyclists, and pedestrians,
where most of deaths and disabilities are for individuals aged 5-29 years [5]–
[7]. In addition, the estimation of road traffic injuries consumption reach 3%
of the gross national products of world governments, which have a serious
impact on national economies [3], [4]. Therefore, the United Nations (UN)
road safety collaboration has developed a global plan that proposes an 2030
agenda for sustainable development to set an ambitious target of halving the
global number of deaths and injuries from road traffic crashes by 2020 [8],
[9].

This thesis topic falls within this framework since it proposes to provide a
geometrical and topological model of the route and to extract semantic infor-
mation about the roads. In addition, these works will focus on the charac-
terization of road surface and the presence of potentially dangerous areas,
first, through a calibration of the geometrical environment information,
followed by detection and localization of the road defects. It will also be
important to visualize and locate the geometrical information of each defect
obtained on the road.

This work is a part of the general framework of multi-sensor perception sys-
tems, more particularly focusing on the above different characteristics, that
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will be obtained from a telemetric information of a multi-lasers rangefinder
(Light Detection and Ranging LiDAR, Laser Range Finder LRF) mounted on
a vehicle. In transport applications, the development of Advanced Driver
Assistance Systems (ADAS) has been the subject of much work for the past
twenty years [10]. In transportation systems context, the objective is to mon-
itor the vehicle environment in order to inform the driver, at each moment,
about the potentially hazardous situations. Multi-object detection methods
in data from a scanning laser rangefinder on board a moving vehicle have
been proposed. Even though, these methods retain some limitations inher-
ent in the physical nature of the measurement signal, this laser sensor has
many advantages for ADAS: day/night vision, low accuracy, high frequency
of measurement, directive laser shots, wide field of perception. The ma-
jor drawback of a single-layer laser rangefinder is its sensitivity to pitching
movements, linked to its directivity: the distances measured can be disturbed
and give rise to undesirable measurements of the scene, designated by the
more general term of " clutter ". The development of multi-layer rangefind-
ers, that is to say working on several measurement planes, has made it pos-
sible to minimize these disturbances inherent in the physical nature of the
measurement. Although, having the particularity of delivering precise rel-
ative positioning information unlike sensors of the video camera type, laser
rangefinders are distinguished by the relative poverty of the information re-
ceived on the scene (directly linked to the angular resolution of the sensor).

Therefore, it is necessary to develop solutions informing the driver by a prior
information about the road defects. This information is important to obtain
a statistical road defects data in order to avoid the risky accidents and to
take a right decision for road enhancement in a spatial road network. Our
hypothesis precisely works on an extrinsic calibration method for the LiDAR
sensor based on the geometrical plane model estimation, which serves the
two methods of road defects detection: feature-based and grid-based.

1.2 Thesis Aims and Objectives

In transportation applications, many articles use LiDAR to detect and track
objects of interest (pedestrians, vehicles, etc...) from 3D measurements. The
LiDAR sensor is also used to detect the road, often in addition to camera
sensors. In these applications, the idea is to have a thorough view of the
driver’s environment over the widest possible horizon. Therefore, the aim of
this thesis involves a LiDAR sensor with a low angle of inclination (horizon-
tally oriented sensor) to study and analyze the road defects: holes, humps or
any homogeneous out-layers. Which contribute in solving the car accidents
problem that are caused by spatial dangerous areas in the road network. This
study includes several scientific objectives: road defects’ detection, visualiza-
tion and localization.
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1.3 Thesis Key Points

The key points of the thesis problem are shown in Figure 1.1, and are listed
below:

Data Extraction 

and 

Preprocessing

Generation of 

Simulation Data

Extrinsic 

Calibration

Ground 

Selection

Defect 

Detection

Extrinsic 

Recalibration

Data 

Acquisition

Defect 

Visualization 

and Localization

FIGURE 1.1: Thesis Block Diagram

1. Generation of simulation data on LiDAR sensor data for different ori-
entations and altitudes.

2. Optimization of the LiDAR altitude and orientation using the synthetic
data, before analyzing the coverage of LiDAR distribution points over
the ground, to be suitable for the practical application and to ensure the
possibility of road defect detection.

3. Data acquisition using LiDAR sensor mounted on a moving vehicle.

4. Data extraction (Range, Azimuth, Elevation, Reflectivity, and Time) from
the .pcap format file. Then data preprocessing and PointCloud player
presentation.

5. 3D Extrinsic LiDAR/Ground calibration method using 3D geometrical
plane-based estimation.

6. Ground selection PointCloud method using differential Gaussian filter,
to eliminate: the obstacles that exist on the road, and the objects that
surround the road.

7. Extrinsic re-calibration for the road PointCloud to enhance the calibra-
tion process.

8. Defect Detection feature-based method.

9. Defect visualization and localization using grid-based method.

1.4 Proposed Contributions

In the context of this study (road defects detection), the LiDAR sensor is ro-
tated toward the ground in order to increase the points’ density covering the
defects by the multi elevation laser. This causes a complicated modification
in the ground 3D view scene with respect to the LiDAR frame. Therefore, ex-
trinsic calibration was adopted in order to transform the LiDAR frame into
a global reference frame, thus modifying the ground impact points transfor-
mation into an understandable view scene.
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1.4.1 Calibration Method Novelty

The perspective of our framework is to propose a calibration method (and
road plane estimation) that works under difficult experimental conditions
(high angle of inclination). Indeed, we aim at developing a calibration method
that allows to determine precisely the road plane in a very close vicinity of
the vehicle. The idea in the long term is to detect road defects when driving
on the road network. Although developed with this in mind (i.e. with a high
degree of accuracy in determining the road plane), our method is general
enough to be applicable in any wider operational context.

In order to attain the above key objective, this thesis addresses a new flexible
extrinsic calibration method, published in [11], [12]. The proposed calibra-
tion method can be summarized by the following two-fold contributions: (1)
ground plane model estimation and (2) rotation transformation matrix esti-
mation from world ground reference to LiDAR sensor frame. The 3D Euler’s
angles (sensor orientation) and the height (sensor altitude above the ground)
are two essential extrinsic parameters required to calibrate the full 3D LiDAR
sensors, in order to improve the capability of road defect detection as will be
explained in section 4.2.1. In addition, the problem is modeled by 4-DOF
(degree of freedom) transformation: 3-DOF rotation and 1-DOF height, in-
stead of 6-DOF transformation: 3-DOF rotation and 3-DOF translation. This
modeling advantage provides the simplicity in the optimization process of
the extrinsic parameters.

As compared to a previous plane-based methods [13], [14], the developed
approach can be generalized to all types of scanning laser rangefinders and
presents an optimized estimation of all extrinsic calibration parameters (an-
gles, height). This global method can be implemented on different cylindri-
cal LiDAR sensors (low-cost 3D and full 3D) with various range accuracy.
In addition, the proposed technique outperforms in high orientation scenar-
ios, which is a very interesting and challenging task that aims to increase the
points’ density coverage.

1.4.2 Road Defect Detection Methods Novelty

Moving to main thesis subject, two novel road defect detection methods are
proposed, called Feature-Based Defect Detection Method and Grid-Based
Defect Detection Method. The Feature-Based Defect Detection Method, based
on the concavity feature delivered by second order of Differential Gaussian
Filter. First, this method works on each single elevation laser individually,
to detect multi road defects (pothole,hump) with homogeneous patterns and
small sizes properties. This method is very sensitive to concavity feature, but
it requires enough LiDAR coverage resolution on the target.

On the other hand, the Grid-Based Defect Detection Method includes two-
fold contributions: (1) improved Inverse Distance Weighted interpolation
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method, based on the altitude distribution in a spatial grid to generate al-
titude georeferenced image, and (2) Grid Splitting Algorithm, provides dy-
namic grid size to increase the georeferenced image resolution. This method
works simultaneously on all elevation lasers, it is sensitive to altitude distri-
bution feature, and it requires high LiDAR coverage resolution to detect, vi-
sualize and localize the multi homogeneous road defects in a high resolution
georeferenced image. The evaluation results show a compromised perfor-
mance and impressive efficiency of our proposed defect detection methods,
in terms of accuracy, precision and recall against other defect detection meth-
ods, proving the detection ability of potholes and humps defects using real
data.

1.5 Report Structure

Later, after this chapter, this report introduces the following chapters:

• Chapter 2 presents the state of the art of the thesis, which includes the
difference between 2D and 3D sensors, 3D LiDAR definition, compari-
son between 3D LiDAR with other 3D sensors, LiDAR calibration defi-
nition and LiDAR calibration related work. In addition, it presents also
the literature review of road defect detection methods based on LiDAR,
Camera and Accelerometer sensors.

• Chapter 3 presents the characteristics of Velodyne VLP-16 LiDAR sen-
sor features, the data extraction and preprocessing operations.

• Chapter 4 presents the geometrical impact modeling of the LiDAR sen-
sor on the ground, and the proposed extrinsic LiDAR/Ground Calibra-
tion Method. In addition, it shows the extrinsic calibration experimen-
tal results using simulation and real data.

• Chapter 5 presents the ground selection process, the proposed Feature-
Based Defect Detection Method and Grid-Based Defect Detection Method.
In addition, it shows the evaluation results of the proposed road defect
detection methods, compared against other methods using real data.
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Chapter 2

State of The Art

2.1 Overview

In this chapter, the organized surveys and a literature review for the thesis
subject are provided. The review will start with general topic of 3D intel-
ligent sensors evolution and will cover the emergence of laser scanner sen-
sor compared with other 3D sensors, followed by 3D LiDAR definition and
highlighting 3D LiDAR sensor among 2D LiDAR sensor, then it presents the
applications of LiDAR sensor in several different fields, focusing on the im-
portance of LiDAR sensor calibration process and the related work in this
field. Finally, introduce different detection methods in the field of object de-
tection application, followed by various road defect detection systems based
on different sensors.

2.1.1 3D Intelligent Sensing Systems Evolution

With the rapid evolution of intelligent systems, these have become the fo-
cus of attention in previous years to date, and its development has begun to
intensely reshape our lives. In the transportation application of roads net-
work, the aim is to detect the surrounding obstacles of the driver (pedestri-
ans, holes, cracks, vehicles, etc...). This process is the first step of a Driver
Assistance System that warns him in case of environmental potential haz-
ardous conditions using 3D smart sensors [15]–[18].

3D sensing systems is one of the interesting research field for this task, in-
cluding localization [19]–[21], segmentation [22]–[24], recognition [25] and
tracking [26]. More than that, 3D data provides more features and informa-
tion of the surrounding than a 2D data, which allows a high performance and
accuracy in data processing [27].

2.1.2 Laser Technology vs 3D Sensors Systems

The applications start using laser remote sensing since the 1970s. It’s a pop-
ular technology, that has been developed in both the civil and military fields.
We can for example cite its use in several fields of activity:

• information transfer: reading, recording, printing, holography, ...
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• medical community: ophthalmology, dermatology, dentistry, ...

• police applications: cinemometer (speed control), forensics, ...

• military field: anti-missile weapons, aiming aid, ...

We focus in the following on laser rangefinders that are used in the fields of
interest i.e. surveillance and automation.

Moving to road networks maintenance and transportation applications [28],
the responsibility imposes itself in detecting and locating the road distor-
tion (cracking, patching, potholes, rutting, shoving...). The literature review
in [29] presents different automated detection experiments and extensive re-
search conducted on pavement adversity in recent years. The work shows
the importance and the incredible progress of 3D sensors compared with the
other sensors, especially the laser profiler that is characterized by its high pre-
cision measurement capability, high spatial resolution and acquisition flexi-
bility. In addition, in their survey on road and lane detection [30], the au-
thors confirmed that the stereo imaging cannot provide the same reliability
and range accuracy that laser rangefinder can.

Among several types of 3D sensors as like as stereo camera, time-of-flight
camera, structure light camera and 3D laser scanner, the 3D laser scanner sen-
sor provides the best measurement results according to [31]. In this article,
the authors study the possibility of replacing a laser scanner by a stereo cam-
era, and conclude that this approach has unsatisfactory performance when
the surface has very low texture. Moreover, stereo camera provides data
with lower precision in long range as compared with laser scanner, and it is
vulnerable to the variation of weather conditions, but it is still used as an as-
sistive lightweight system in autonomous vehicle for obstacle detection [32].
Although, Radio Detection and Ranging RADAR is reported in literature as
an efficient system for object detection in several studies [33], [34]. How-
ever, due to their low mechanism scanning speed, they are semi-efficient for
obstacle detection in road networks especially in real-time implementation
[35].

2.2 Light Detection and Ranging sensor

At a glance on LiDAR sensor [36], which stands for Light Detection and
Ranging, is a digital technique of remote sensing instrument, that uses light
in the form of a pulsed laser to measure the surrounding environment ranges.
Therefore, LiDAR sensors are attractive for environment perception because,
unlike cameras, these sensors readily provide the depth information about
the environment.

There exist two ways to obtain 3D telemetric data by using a LiDAR sensor:
either a 2D LiDAR sensor coupled with a specific mechanism or a full 3D
LiDAR. The system based on a 2D LiDAR scanner consists of a single laser
beam in rotation and scanning the environment in 2D. To obtain the third
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FIGURE 2.1: (a) 2D LiDAR with tilt unit, (b) 3D LiDAR with
various elevation beams

dimension, this LiDAR can be, for example, fitted on a tilt unit as shown in
Figure 2.1a. However, the 3D LiDAR scanner consists of multi-lasers beams,
oriented in different elevation and using an integrated rotational mechanism
to produce various azimuth angles, in order to scan the environment in 3D
as shown in Figure 2.1b.

2.2.1 LiDAR Sensor Applications

LiDAR sensor is a multi-laser scanning system that is a very interesting and
efficient sensor which provides dense and accurate range measurement with
high sampling rate, high angular and coverage resolution, long range dis-
tance, and generate 3D point cloud data of the surrounding area. A wide
variety of promising applications, which rely on LiDAR sensors, are devel-
oped in different fields: intelligent transportation systems, mobile robotics
and connected vehicles. Thus, LiDAR is a fundamental sensor contributing
for indoor and outdoor applications [37] especially in autonomous mobile
systems [38], [39]. Therefore, it can efficiently be used for many tasks in
different applications such as civil engineering [40], environmental protec-
tion [41], planning [42], [43], autonomous vehicles and robots [44]–[46], ob-
ject detection and recognition [47]–[49], scene understanding [50], Simulta-
neous Localization and Mapping (SLAM) [51]–[55], 3D reconstruction [56]–
[60], and visual navigation [61]–[64]. Almost all of these applications ap-
pear in world challenges like Defense Advanced Research Projects Agency
(DARPA) Urban and Grand Challenge [65]–[70], and support the develop-
ment of Advanced Driver Assistance Systems (ADAS) [71]–[74].

2.2.2 3D LiDAR Features

Every 3D laser scanner has its specific features, which depend on the com-
pany developer. But in general rotated laser scanners have common features
are expressed below (see Figure 2.2).
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FIGURE 2.2: LiDAR polar coordinate features

2.2.2.1 Polar Coordinate Features

• Range ρ defines the distance from the origin O of the LiDAR frame
to the reflected point on the target. Each LiDAR sensor has specific
maximum range, which depend on the power of the emitted signal and
the receiver sensitivity.

• Azimuth α defines the horizontal angle (in clockwise direction) be-
tween Y-axis and the line passing through the LiDAR frame origin O
and the projection of the reflected target on XOY-plane.

• Elevation β defines the vertical angle (in clockwise direction) between
XOY-plane and the line passing through the LiDAR frame origin O and
the reflected target.

2.2.2.2 Other Usable Features

• Timestamp represents the acquisition time of each reflected point from
the counter o’clock (timer) of the LiDAR sensor.

• Intensity represents the received power of the signal reflected by the
surface of the target signal. This quantity depends on the surface type,
as shown in Figure 2.3.
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• Range accuracy σρ describes the standard deviation of range error.

• Azimuth accuracy σα describes the standard deviation of azimuth error,
often given negligible by the constructor.

• Elevation accuracy σβ describes the standard deviation of elevation er-
ror, often given negligible by the constructor.

• Horizontal FOV represents the angular coverage by the LiDAR sensor
on the azimuth coverage field.

• Vertical FOV represents the angular coverage by the LiDAR sensor on
the elevation coverage field.

• Azimuth angular resolution defines the periodic angle on XOY-plane
between each firing sequence.

• Elevation angular resolution defines the periodic angle on YOZ-plane
between each laser.

• Rotating frequency expresses the number of rotating cycles per second.

• Channels expresses the number of lasers in LiDAR sensor.

• Data rate expresses the number of collecting points per second, where
it is constant. This feature is obtained as follow:

Data Rate =
Channels × Horizontal FOV
Azimuth angular resolution

× Rotating f requency (2.1)

Black, absorbent diffuse reflector White, reflective diffuse reflector

Retro-Reflector covered with semi 

transparent white suface

Retro-Reflector without any 

coverage

FIGURE 2.3: Reflector types

2.2.3 Principle of Operation

As sonars and radars, LiDAR sensor works on the principle of time-of-flight
measurement. A laser diode emits an infrared laser pulse (typically manu-
factured about 905nm wavelength) which is acclimated by a transmitter lens
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as shown in Figure 2.4a. The emitted laser beam hits a target and a part of
the reflected light hits a photo-diode after passing through a receiver lens as
shown in Figure 2.4b.

A precise clock is used to measure the time between transmitted and re-
ceived signal which in turn is used to compute the target distance from the
device [75], as expressed in Equation 2.2. The intensity of the received sig-
nal is also used to define target characteristics such as reflectivity as shown
in Figure 2.3, that represents the type of the reflector: absorbent diffuse re-
flector (black), reflective diffuse reflector (white), retro-reflector covered with
semi transparent white surface and retro-reflector without any coverage. The
magnitude of the reflectivity is directly correlated to the transmitted signal
power, received signal power, range, and surface incident angle [76], [77].

D =
1
2
× C × (Treceiver − Ttransmitter) = C × t (2.2)

Where:

– D is the distance between the sensor and the target.

– C is the speed of light.

– Ttransmitter is the start time of the transmitted signal.

– Treciever is the end time of the received signal.

– t is the relative time measurement.

Flight Time = 2t
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FIGURE 2.4: (a) Principle of a single-shot laser rangefinder, (b)
Determination of time



2.2. Light Detection and Ranging sensor 13

The precision of the measurement is given by the standard deviation in [78]:

σD =
trise pulse

2.36 × SNR
(2.3)

Where:

– trise pulse is the rise time of the laser pulse.

– SNR is the signal to noise ratio which depends in particular on the dis-
tance between the target and the rangefinder.

It should be noted that the distance between the sensor and the object can be
determined, taking in consideration the:

• Angle of reflection with when the laser beam is received.

• Phase shift of the laser signal.

• Modulation frequency of the emitted signal.

The important characteristics of these sensors in the context of surveillance
and detection are:

• The accuracy of the measurement.

• The horizontal and vertical angular aperture.

• The sensitivity, i.e. the ability to detect the obstacle in different climatic
environments (rain, fog, smoke).

• The reliability, i.e. the ability to repeat information (robustness to roll,
pitch and yaw)

This type of sensor nevertheless has some faults including:

• Sensitivity to the reflection properties of objects.

• Problems due to the refraction of light at crossing objects, clouds, etc...

2.2.4 LiDAR Usage Advantages and Disadvantages

Moreover, LiDAR sensor has several benefits other than 3D sensors [79]:

1. Quick acquisition and fast processing with high accuracy.

2. High sample density on the surface data collective, based on the angu-
lar resolution and number of lasers.

3. Additional data like intensity and precise time of acquisition along with
the polar coordinates (range, azimuth, elevation).

4. Work on day and night due to the active illumination sensor. It is not
affected by darkness and light, sun inclination and presence/absence
of shades.
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5. Integration compatibility with other data sources, which allow the fu-
sion with other sensors (Camera, IMU, GPS).

6. Flexible with slightly bad weather scenarios.

7. Minimum human dependence, i.e. it works on automatic processes in
most applications.

8. Cheaper cost in many applications in order to achieve high accuracy
and density of data, compared with RADAR systems.

On the other hand, LiDAR sensor has some drawbacks:

1. Sparse measurement for far ranges.

2. There are no strict international protocols that guide the collection and
analysis of the data.

3. Unreliable in several conditions: water depth and turbulent breaking
waves.

4. The laser beams may affect human eye in case the beam is powerful.

2.2.5 LiDAR Calibration Process

In the context of problematic objective case study, the LiDAR sensor is ro-
tated toward the ground in order to increase the points’ density covering the
defects by the multi elevation laser. This technical operation enhances the de-
fect resolution and improves the possibility of road defect detection process.
But, this causes a complicated modification in the ground 3D view scene
with respect to the LiDAR frame. Therefore, a calibration process needs
to be adopted in order to transform the LiDAR frame into a global reference
frame, thus modifying the ground impact points transformation into an un-
derstandable view scene. So, the next literature will introduce the related
work concerning the calibration and road defect detection methods.

LiDAR calibration is the first step that is necessary to maintain the environ-
ment measurement model. Calibration is the process of configuring the Li-
DAR’s environment measurements to provide a result for a sample within an
acceptable range. As for the other sensors, the calibration process of multi-
beam LiDAR needs two steps: intrinsic and extrinsic calibration. The intrin-
sic calibration is the relationship between the sensor and the environment,
which is applied in order to find the suitable model fitting and to estimate the
intrinsic parameters of this model including the measurement errors. While
the extrinsic calibration, which is important to create a worldwide frame,
aims at merging common frames coming from different other sensors and to
know the LiDAR position in that wide frame.
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2.2.5.1 Intrinsic Calibration

The intrinsic calibration process considers the configuration of each individ-
ual beam inside the unit by modeling the process of beam creation and en-
vironment measurements. The goal is to estimate the sensor-environment
relationship in terms of internal parameters, like the distance offset D◦, hor-
izontal offset H◦, vertical offset V◦, and the additive errors εα, εβ on the az-
imuth and elevation α, β respectively, as shown in Figure 2.5.
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FIGURE 2.5: (a) Scanner parameters in vertical plane, (b) Scan-
ner parameters in horizontal plane

2.2.5.2 Extrinsic Calibration

The extrinsic calibration process aims to determine the relationship between
the LiDAR frame and other reference frame. The transformation between
both frames is often composed of one rotation

−→
R (ψz, θy, ϕx) and one trans-

lation
−→
T (X◦, Y◦, Z◦) transformations as shown in Figure 2.6. Indeed, it is

necessary to estimate the 6-degree of freedom extrinsic parameters ψz, θy, ϕx,
X◦, Y◦, Z◦ in order to transform the LiDAR frame to the reference frame.
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FIGURE 2.6: (a) 3D orientation of LiDAR frame, (b) 3D Transla-
tion of LiDAR frame

2.2.5.3 Related Works

Numerous authors investigated intrinsic and extrinsic calibration methods
in LiDAR sensors. An intrinsic calibration method is presented in [80]. The
calibration process is based on an optimization method, where the calibration
pattern is a wide planar wall on a flat surface scanned using Velodyne HDL-
64E. In addition, a static calibration method is presented in [81], to derive an
optimal solution for the laser’s intrinsic calibration parameters by a planar
feature-based least squares in advantage of minimal constrained network. A
study in [82] shows a correlation between the internal operating temperature
of the LiDAR and the Laser scanner ranging error (intrinsic parameter). The
calibration process considers a planar calibration approach to estimate the
internal parameters for Velodyne VLP-16.

On the other hand, an extrinsic calibration method is presented in [83]. In
this method, a flat plane is used for the calibration and an algorithm based on
the inequality of two symmetric rays in azimuth with respect to the origin is
proposed. This inequality is due to the shift angle of the center line. Another
extrinsic calibration method is presented in [84], where the authors work on a
2D laser scanner and on the rotating platform to extract the rotation axis and
radius using point-plane constraint. The Levenberg-Marquardt optimization
method is applied in the two above extrinsic calibration methods to optimize
the non-linear least squares function problem.

An extrinsic calibration method for a low-cost 3D LiDAR (based on a rotating
2D LiDAR) is proposed in [13] using an iterative maximization of 3D plane
parameters (flatness and visible area). These parameters are extracted by
Random Sample Consensus (RANSAC) method, which is a time consuming
method. The authors use a fixed 2D LiDAR that requires multi-scan frames



2.3. LiDAR-Based Object Detection Process in Transportation Systems 17

to provide a single 3D point cloud frame, by which the yaw angle is not con-
sidered in the calibration. An extrinsic calibration method is proposed in
[14], using a similar low-cost 3D LiDAR where each extracted plane is cali-
brated separately in order to improve the estimation of extrinsic parameters
without using extra hardware.

In [85], a numerical algorithm is presented to compute both of the intrinsic
and extrinsic parameters by minimizing the systematic errors due to the ge-
ometric calibration factors. Another approach is introduced in [86], which
computes the intrinsic and extrinsic parameters of LiDAR sensor (Velodyne
HDL-64E) by unsupervised calibration for each of multi-laser beams. An op-
timization function seeking to minimize the point-to-plane iterated closest
point is then proposed.

2.3 LiDAR-Based Object Detection Process in Trans-
portation Systems

The fundamental support technology behind advanced driver assistance sys-
tems ADAS is object detection, that enables cars to detect driving lanes or
perform pedestrian and vehicle detection to improve road safety. Several
methods implemented for object detection are useful in multiple applications
such as video surveillance, image retrieval and telemetric LiDAR systems.
Each method is based on a specific scientific approach (feature-based, model-
based, grid-based, histogram-based, etc...), and this is what distinguishes it
from others. The next subsections will present a brief explanation for nu-
merous applications in the context of object detection field using different
sensors: Camera, GPS, 2D LiDAR and 3D LiDAR.

2.3.1 Road/Road Boundary and Obstacle Detection Approaches

Some of the interesting challenges in autonomous vehicle application are
road, road boundary and obstacle detection, with several approaches devel-
oped in this field. In [87], the authors present two previous approaches to de-
tect the breaking points A, B, C, D, E, F, G, H using LiDAR sensor as shown
in Figure 2.7, where the major detection term refers to the altitude and the in-
clination angle of the LiDAR’s laser beams. The principle of breaking points
detection depends directly on the smooth change of the range points or the
distance between the points. The segments are then obtained from the break-
ing points to identify or classify whether these segments are: logical roads,
physical roads, obstacles, blind spot or road boundaries. For clarification,
the logical road is a part of the road where the vehicle can pass through it
as the segment [EF], while the physical roads are parts of the road that the
vehicle can not pass through as the segments [AB] and [GH]. The blind spot
is a hidden zone that cannot be covered by the LiDAR laser beam as the part
between the two points B and C.
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FIGURE 2.7: Road breaking points and laser beams propagation
with some obstacles

According to the LiDAR laser beams shown in Figure 2.8, in the first ap-
proach [88], if the measured distance between the two consecutive points
P1, P2 is greater than a constant threshold dth as expressed in Equation 2.4,
and the tangent of the passing line through the two points P1, P2 is greater
than a constant threshold tanth as expressed in Equation 2.5, then the two
points P1, P2 are supposed to be breaking points.√

(xi − xi+1)2 + (yi − yi+1)2 ≥ dth (2.4)∣∣∣∣tan−1
(

xi − xi+1

yi − yi+1

)∣∣∣∣ ≥ tanth (2.5)

However, in the second approach [35], if the difference between the range
ρi+2 of point P3 and the range ρp is greater than a constant threshold ρth as
expressed in Equation 2.7, then the points P3, P2 are supposed to be breaking
points. Where the value ρp is a measured range depend on the ranges of the
two previous consecutive points P1, P2 and the azimuth angular resolution α
as expressed in Equation 2.6.

ρp =
ρiρi+1

2ρi cos α − ρi+1
(2.6)

∣∣ρi+2 − ρp
∣∣ ≥ ρth (2.7)
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FIGURE 2.8: LiDAR sensor aligned with a downwards-looking
angle

Some detection and localization applications in autonomous mobile robotic
systems needs a fusion of multi-sensors in order to get better precision and
accuracy. In [89] the authors propose a road detection approach based on the
depth feature of the 3D LiDAR and 2D imaging. The approach is built up of
four stages as depicted in Figure 2.9. The main goal of this article is to explain
how to generate a reconstructed image (in 2 dimensions) by projecting 3D
LiDAR points to 2D image based on height distribution of the neighboring
region of each point. Then morphological operations are applied to detect
the edges of the image.

Point Projection Upsampling
Histogram 
Similarity 
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Post-Processing
Projected

points
Dense map Similarity map

Input Output

Sparse 3D points

FIGURE 2.9: Four main stages for road detection approach [89]

Machine Learning [90] takes into account all the suitable factors, thus called
as features, in order to get the best evaluated model that classifies or recog-
nizes the input object by its appropriate features. In [91], the author proposes
a sequential method for road and road edge detection including five steps as
shown in Figure 2.10.

In this article, a number of candidate points are selected as an input of a
Support-Vector-Machine (SVM) classifier in order to extract the suitable fea-
tures and to classify these points as belonging to the road or not. Then, a
false alarm mitigation is used to detect the road segments. This framework
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FIGURE 2.10: Flowchart of road/road-edge detection algo-
rithm [91]

has been validated through the DARPA urban Challenge scenarios to show
its efficiency and robustness.

2.3.2 Lines Extraction Algorithms for Multi-Vehicle Tracking

In [92], the authors introduce a survey including six line extraction algo-
rithms: Split-and-Merge [93], Line-Regression [94], Incremental [95], RANSAC
[96], Hough-Transform [97] and Expectation-Maximization [98]. The algo-
rithms are compared on 2D points using laser rangefinder. In terms of speed
and correctness, the authors prove that the Split-and-Merge and Incremental
algorithms are more efficient among the other algorithms.

While in [99], [100], the authors propose a new lines extraction algorithm,
called Geometric Invariant algorithm, which is efficient in terms of number
of extracted and rebuilt segments (as comparison, the Split-and-Merge al-
gorithm extracts 50% more segments in order to describe the same scene).
This algorithm is based on parameterized geometric feature (Polar points)
that provides more efficiency as compared to other point-based algorithms
(Cartesian points). A statistical test based on Mahalanobis distance is ap-
plied at the end of the algorithm in order to merge the segments [101], which
increases the efficiency of this method of segmentation. The Geometric In-
variant algorithm is also used in a vehicles tracking model-based approach
in [102], applied on a real data collected from IBEO LD automative scan-
ning laser telemeter, mounted on a moving ego-vehicle whose velocity is es-
timated using a GPS sensor.

2.4 Road Defect Detection Systems

Ground defect detection is one of the interesting fields in autonomous driv-
ing vehicles and robotics applications. Till now, these types of applications
are mostly vision-based in our current era, which witnesses many develop-
ments in that field. The interesting challenge is to develop ground defect
detection methods based on the LiDAR sensor that has advantage against
the camera and accelerometer sensors. In the next subsections, a detailed ex-
planation review on road defect detection approaches based on LiDAR sen-
sor, and a brief description of other related approaches based on Camera and
Accelerometer sensors are presented.
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2.4.1 LiDAR-Based Defect Detection Approaches

A first study in [103] describes two road surface anomalies detection systems
using two high resolution and very low accuracy laser profiler mounted on a
moving vehicle as shown in Figure 2.11, where X-axis (transverse) resolution
is equal to 1mm and Z-axis (depth) accuracy is equal to 0.5mm.
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FIGURE 2.11: Laser profiler system [104]

The first one is Laser Rut Measurement System (LRMS), that detects and
characterizes the pavement rutting in four steps: filtering low frequencies
and linear approximation of the laser profile, then search for the rut sup-
port points and finally measurement of the rut characteristics, as expressed
in Equations 2.8 and 2.9 and shown in Figure 2.12.

Rut Depth =
√
(xB − xT)2 + (zB − zT)2 (2.8)

Rut Width =
√
(xR − xL)2 + (zR − zL)2 (2.9)

(𝑥𝑇 , 𝑧𝑇) (𝑥𝐿 , 𝑧𝐿) (𝑥𝑅 , 𝑧𝑅) 

(𝑥𝐵 , 𝑧𝐵) 

𝑋 
𝑍 

FIGURE 2.12: Manual rut

The second one, detailed in [104], [105], is a Laser Crack Detection System
(LCDS) which was developed in order to generate a crack map from several
3D profiler scans. The algorithm was implemented in two major steps.
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determined by evaluating its width (opening) typically cracks will be separated in 
low, medium and high severity levels. The cracks also need to be grouped into two 
main categories: Longitudinal and transverse cracks. Furthermore, transverse 
cracks are further divided into complete and incomplete types and joints need to 
be classified separately. Longitudinal cracks are further refined into three sub-
categories: simple, multiple and alligator.  

The LCMS system was used by the MTQ to survey nearly10,000km of its road 
network. In order to validate the system an independent 3rd party under the 
supervision of the MTQ was mandated to manually qualify the crack detection 
results of the LCMS system over the entire survey. To do this each 10m section 
was visually analyzed and the results were categorized in 3 classes (Good, 
Average and Bad). A forth class (NA) was used when for when it was not possible 
to correctly evaluate a section. Figure 12 shows an example of crack detection 
results on a 10m pavement section. Transverse cracks are identified with a 
bounding box. Regions in red indicate high severity cracks (15mm+) and light 
blue and green represent low severities (less than 5mm). Table 2 shows the results 
of the compilation of the manual evaluation. The final results are deemed 
excellent by the MTQ as the overall ‘Good’ rating reaches 96.5%. Repeatability 
tests were also conducted on several MTQ test sections and the results shown on 
the figure 13 also demonstrate very repeatable crack detection results on these 
sections. 

 

Fig. 12. Example crack detection results (severity = color code) 

FIGURE 2.13: Road crack map

The aim of first step is to find the candidate cracks points in each individ-
ual road profile. It works for each 3cm segment of the 3D road profile, each
segment is overlapped at the central point of an another neighbor segment.
The candidate hole is detected in each segment by searching for the mini-
mal elevation point and the two maximal elevation points, where the hole
depth is measured as the difference between the minimum elevation point
and the average of the two maximum elevation points, and the hole width is
measured as the distance between the two maximum elevation points. If the
hole depth is beyond a minimum threshold, and the hole width is less than a
maximum threshold, then it is considered as a potential candidate crack. The
depth threshold was set to filter the high frequencies of the points’ elevation
signal. At the end, the first step shows a series of candidate crack points from
various profile scans.

While, the aim of the second step is to validate the candidate crack points
in order to eliminate the spurious points, and to produce a crack map. The
process in this step is executed to find the neighborhood point of each po-
tential crack point. If the neighbor point is closer than a maximum threshold
distance, then the two crack points are connected by a line segment as shown
in Figure 2.13. Finally, the remaining unconnected candidate crack points are
eliminated.
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FIGURE 2.14: Diagram for automatic defect detection method
[106]

An automatic defect detection method study in [106] shows that the LiDAR
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reflectivity (intensity) is an important property that supports ground surface
evaluation. It starts by mapping the 3D point cloud on the horizontal XY-
plane, ignoring the altitude Z coordinate and exchanging it by the laser re-
flectivity, then a filtering operation is applied in order to remove the noisy
points, followed by a block division operations on the map. The main princi-
ple of this method is to cluster the ground blocks to one of these three essen-
tial classes: asphalt, painting and cracks. A hierarchical clustering algorithm
is utilized on each block, depending on the intensity histogram and the 2D
Discrete Fourier Transform (DFT) intensity spectral features as shown in Fig-
ure 2.14. Through the above analysis, the authors highlight the identification
role of the intensity histogram feature that shows a clear difference between
the three classes.

Another efficient histogram-based detection method was proposed in [107]
to detect the obstacles, holes and water hazards. This method is evaluated on
the KITTI-ROAD data-set [108] and has obtained a promising performance
result on a large size object existence compared with [109], [110].
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FIGURE 2.15: Diagram for obstacle and water hazard detection
method [107]

Referring to Figure 2.15, the method begins by transforming the 3D point
cloud to 2D image according to the spherical coordinate azimuth and ele-
vation α, β respectively, and the range ρ represented by the pixel intensity in
order to obtain a depth image. The water hazard spot is represented by black
color pixels in the depth image due to laser pulse miss back bouncing to the
receiver, because of specular reflection and absorption between laser and wa-
ter. Then a histogram study is applied on each row line in the depth image,
followed by road line estimation and road segmentation using RANSAC al-
gorithm, taking into consideration a tolerance margin due to the non flatness
of the road surface.

Normally, the measured ranges from the LiDAR sensor to ground plane have
nearly the same values on each individual horizontal line. But when an ob-
stacle exists on the road, the obstacle reflected ranges are shorter than the
road line ranges. On the contrary side, the hole reflected ranges are longer
than the road line ranges because of the object altitude when its above or
below the road plane as shown in Figure 2.16.
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FIGURE 2.16: The effect of laser scanning line on obstacle, hole
and water hazard spot

Whereas in [111], the authors work on a simple speed hump detection method
as shown in Figure 2.17, starting with acquisition of low cost LiDAR data-
points, then removing the noise using median filter, followed by compar-
ing the difference of each consecutive neighboring sets, in order to mark the
points as speed hump if the difference varies between two constant thresh-
olds. Finally, the authors cascade their system with camera to enhance the
results of speed hump detection.
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FIGURE 2.17: Diagram for speed hump detection method

2.4.2 Vision-Based Defect Detection Approaches

A segmentation pavement distress thresholding algorithm from background
images was proposed in [112], based on Neighboring Difference Histogram
Method (NDHM) using a weighted statistical numerical value difference for
each cracking pixel with their surrounding pixels. Therefore, the neighbor-
ing differential statistical numerical value was selected as a feature in order
to identify the target region as potholes using nonlinear Support Vector Ma-
chine (SVM) classifier. Experimental results show a high recognition accu-
racy. However, the polluted potholes and environmental conditions such as
sunlight and visibility are encountered as detection difficulties.

In [113], an adaptive method was proposed for pavement distress detection
and classification based on Genetic Algorithm (GA) and entropy theory [114].
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The process aims to choose the optimal threshold segmentation by an objec-
tive function based on the captured pavement images and maximized by in-
formation theory. A vertical and horizontal distress measures are computed,
by accumulating the difference between the numbers of distressed tiles in an
adjacent columns and rows respectively. The vertical and horizontal distress
measures with the total number of distress tiles were fed to a three layer feed-
forward Neural Network (NN) classifier to identify the type of pavement
distress (pothole, crack). The experimental results of the threshold segmen-
tation technique based on GA show a better performance among the Otsu
segmentation method [115].

In addition, a proposed method [116] for automated potholes detection in as-
phalt pavement images presents a segmentation algorithm that depends on a
histogram shape-based threshold to segment the images into defect and non-
defect region. According to the geometric properties of the defect region, the
potential potholes shapes are extracted using morphological thinning opera-
tions [117] and elliptical regression [118]. Afterwards, the potential pothole
shape is compared to the texture of the non-defect surrounding pavement in
order to identify the interest region as a potential defect. Experimental re-
sults show that an accurate technique was developed to detect the potholes
from pavement images.

An improved pavement videos recognition method is proposed in [119] which
is a continuation for the previous work in [116]. The method incrementally
updates the texture signature for intact pavement regions, and uses a kernel-
based vision system to track detected potholes taking in consideration the
texture and shape of the object [120], [121]. Hence, the approach obtained an
effective pothole detection in the appearance of a global pavement surface
design.

Furthermore, a general framework that provides a centralized system which
detects potholes on roads and assists the driver to avoid them was proposed
in [122]. A laser line stripper sensor attached to the vehicle [123] is used to
send out a plane of light that intersects with objects which in turn is viewed
by a camera. The camera has a band pass filter to suppress background illu-
mination and stands out the projected laser line in the resulting image. Then
the line in the image is transformed into cartesian coordinates by a triangula-
tion operation. When a potholes is detected, an inter-vehicle protocol such as
Dedicated Short-Range Communications (DSRC) channel broadcasts a noti-
fication message containing its GPS location [124], to warn immediately the
other nearby vehicles. This process increases the accuracy of the system by
eliminating the delay at the server end.

In [125], the authors proposed a K-means clustering-based algorithm for pot-
holes detection. The algorithm is implemented on the region of interest seg-
mentation, which uses Hough transformation technique [126] to detect lines
and curves in a capture image. The experimental results show a sufficient
performance.
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A robust method supported by heuristically derived decision logic for auto-
mated detection and assessment of potholes, cracks and patches from real life
video clips highways is presented in [127]. This approach uses various image
processing methods: segmentation, median filtering, weighted mean based
adaptive thresholding, morphological operation, connected component la-
beling and chain coding techniques [128]–[132]. At the end of the proposed
method, the extracted information can be used for determining maintenance
levels of the roads, in order to take the suitable actions for repairing and re-
habilitation. In terms of robustness and efficiency, the experimental results
show the defect detection ability in an effective and accurate process.

Moreover, a technique based on an laser image for pavement distress detec-
tion was proposed in [133]. The process includes a three layer feed-forward
Neural Network [134], fed with four computed numerical features: vertical
distress measure, horizontal distress measure, depth index and total number
of distress tiles, in order to identify pothole severity and to classify the crack
type. Finally, the experimental results demonstrate that the proposed model
works well for potholes and cracks detection.

2.4.3 Accelerometer-Based Defect Detection Approaches

A data acquisition hardware that was used to develop a vibration-based sys-
tem for preliminary evaluation of pavement conditions is proposed in [135].
The vibration-based system senses the ground conditions based on mechani-
cal responses of the testing vehicles, where the cracks and surface rutting im-
pose impacting force on the vehicle. The pavement surface conditions can be
estimated from the recorded responses of the testing vehicle when driving on
the pavement. This system has the advantage of being cost-effective, having
small storage requirement and amenable for automatic real-time data pro-
cessing. However, it does not provides a complete details on distress charac-
teristics as the video-based system. In addition, the video-based systems has
the advantage of collecting a prior information about the pavement distress
before crossing it.

Another vibration-based system is proposed in [136], where public trans-
portation system based on network sensor BusNet is used to monitor the
road surface condition, by adding an acceleration sensor boards to the sys-
tem. BusNet is a network sensor initially designed to monitor environmental
pollution using sensors mounted on a public transportation buses. The col-
lected acceleration readings are transmitted over the BusNet to the central
main station collection point. The process based on preliminary results, is
still in process for collection of more data for developing an analytical model.

An investigated application of mobile sensing to detect and report the surface
conditions of roads was proposed in [137]. The authors developed pothole
patrol system gathering data from three axis acceleration sensor, and GPS
devices deployed on embedded computers in the vehicle. They identified
potholes and other several road surface anomalies from the accelerometer
data, using a machine-learning approach. Also, the authors uploaded the
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detection results to a central server via opportunistic WiFi modulation pro-
vided by participating open WiFi access points, or using an available cellular
data service. The vibration-based method may provides false positive and
false negative results due to the manhole existence that can be detected as
potholes, and potholes position at the middle of the road that cannot be de-
tected using accelerometer because of no contact with any of the vehicle’s
wheels.

2.5 Conclusion

This chapter presents an explanation on the 3D LiDAR sensor and its fea-
tures, and the advantage of LiDAR sensors among the other sensors. In
addition, the literature review is introduced on the general application of
LiDAR sensor, and highlights the related work of LiDAR calibration meth-
ods and defect detection methods using different senors as LiDAR, camera
and accelerometer. The addressed popular plane-based extrinsic calibration
methods in [13], [14] are modeled on the concept of 6-DOF. Whereas, our
proposed extrinsic plane-based calibration method LiDAR/Ground Calibra-
tion Method is modeled on concept of 4-DOF, which indicates the simplic-
ity of our proposed model, but it’s not realistic to compare the evaluation
results due to the difference of the modeling concepts between the 6-DOF
and 4-DOF. Moreover, the most important defect detection method is depth’s
histogram-based [107], which records the first rank using benchmark evalu-
ation results.
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Chapter 3

LiDAR Measurement Modeling

3.1 Introduction

After presenting some of the background works related to this thesis pro-
cesses in chapter 2, this chapter will explain in details the technical and spec-
ifications of the LIDAR model used to understand and describe the applica-
tion setups, which are summarized in the first two blocks of the thesis dia-
gram i.e. data acquisition, followed by data extraction and preprocessing as
shown in Figure 1.1. Basically, the experimental configuration of the LiDAR
sensor is an important initialization step to reach the main final goal, which
imposes itself technically to attain a good setups, so that the data is ready to
be processed.

3.2 Velodyne VLP-16 Sensor

U S E R ‘ S  M A N U A L  A N D  
P R O G R A M M I N G  G U I D E  
 
 
 
 
 
 
 

VLP-16 
Velodyne LiDAR Puck 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

FIGURE 3.1: LiDAR VLP-16 3D PointCloud System

From now on, we will consider the Velodyne VLP-16 LiDAR as shown in Fig-
ure 3.1, which is the telemeter used for the experimental data acquisition part
of our works. Unlike many other LiDARs used in this kind of applications,
the VLP-16 has its own internal processor and network interface as shown in
Figure 3.2.

This sensor contains 16 vertical firing planes (emitter/receiver pairs) and is
able to acquire up to two returns per one laser shot in dual mode. It spins
around its vertical axis and provides an horizontal FOV of 360◦. The vertical
FOV is equal to [−15◦, 15◦] with 2◦ spacing between each pair of adjoining
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P R I N C I P L E S  O F  O P E R A T I O N  V L P - 1 6  U S E R ’ S M A N U A L  

2 

The VLP-16 creates 360º 3D images by using 16 laser/detector pairs mounted in a compact housing. The housing 
rapidly spins to scan the surrounding environment.

The lasers fire thousands of times per second, providing a rich, 3D point cloud in real time.

Advanced digital signal processing and waveform analysis provide high accuracy, extended distance sensing, and 
calibrated reflectivity data. 

Unique features include:
• Horizontal Field of View (FOV) of 360°
• Rotational speed of 5-20 rotations per second (adjustable) 
• Vertical Field of View (FOV) of 30° 
• Returns of up to 100 meters (useful range depends on application) 

Figure 1. Overview of the LiDAR VLP-16 3D Imaging SystemFIGURE 3.2: LiDAR VLP-16 3D PointCloud System [138]

firing planes (elevation angular resolution). A relevant usable return can
be between 1m (minimum range) and 100m (maximum Range), and up to
300000 points per second can be measured (data rate). The azimuth angular
resolution is a free selection variable choice 0.1◦, 0.2◦, 0.4◦, and it is respec-
tively correlated to the rotating frequency 20Hz, 10Hz, 5Hz. The received
intensity value is enrolled between 0 and 255 (reflectivity). This sensor is
also characterized by a range measurement accuracy of 3cm (for more details
about Velodyne VLP-16 LiDAR sensor products [138]).

3.3 Data Extraction

As mentioned in the previous section, the data from the packet capture file
.pcap are extracted depending on the flags (0 × FFEE, see Appendix A.2)
in successive way (point by point). Every point is characterized by its fea-
tures (range, azimuth, elevation, reflectivity or intensity, and time), and the
Cartesian coordinates (x, y, z) are computed by the 3D conversion from polar
coordinates ρ, α, β to Cartesian coordinates as it will be described in Chapter
4. Finally, the data of each point will be stocked in memory as shown in Table
3.1.

There exists a second fast recommended way by using VeloView software,
where this software supports a service to export the 3D point cloud data in to
Excel .csv files. Each file represents one scanning frame, however the frames
must be concatenated then separated due to the point cloud interference or
overlap problem between each two successive frames.

TABLE 3.1: PointCloud features

Range Azimuth Elevation Intensity Time X Y Z
Point 1 ρ1 α1 β1 I1 t1 x1 y1 z1
Point 2 ρ2 α2 β2 I2 t2 x2 y2 z2

...
...

...
...

...
...

...
...

...
Point n ρn αn βn In tn xn yn zn
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3.4 Data Preprocessing

In Data Preprocessing block, a developed algorithm aims to solve the non-
periodic azimuth angular resolution problem in each LiDAR frame. The
algorithms is composed in two steps: frames separation and points asso-
ciations. Therefore, in the next subsections the preprocessing parts are ex-
plained in details.

3.4.1 Frames Separation

In this first step, the PointCloud data must be separated into individual frames
from all points in the above Table 3.1, since this table delivers all the frames in
successive and sequential order. Each scanning frame represents a complete
cycle around the z-axis of 360◦. Since the azimuth angular resolution is set to
0.2◦, that means each scanning frame will start with azimuth angle between
[0◦, 0.2◦] and end with azimuth angle between [359.8◦, 360◦] (see Figure 3.3)
due to the angular shift error of the motor rotating frequency problem.

start

data

search for 

indexes = 0°<azimuth(n)<0.2° 
0°<azimuth(n)<0.2°

frame(i) = data(indexes(i) : indexes(i+1)-1)

end

azimuth(n)

indexes(i) = n

Yes

n = n+1

No

 range azimuth elevation intensity time x y z 

Point 1 ρ1 α1 β1 i1 t1 x1 y1 z1 

Point 2 ρ2 α2 β2 i2 t2 x2 y2 z2 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

Point n ρn αn βn in tn xn yn zn 

 

FIGURE 3.3: Data preprocessing flowchart

Indeed, the asynchronous start of recording, the LiDAR begins, in first frame,
to collect data during a cycle in progress, i.e. from an angle bigger than 0.2◦.
The same problem exists for the last frame that stops scanning at an angle
less than 359.8◦. Which means that the first and last frames are incomplete
scanning frames as shown in Figure 3.4. Therefore, the first and the last frame
should be eliminated.
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Y

First firing 

sequence

Missing 
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scanning Y

Last firing 

sequence

Missing 

scanning

Recorded 

scanning

First Scanning Frame Last Scanning Frame

FIGURE 3.4: First and last scanning frames

3.4.2 Points Association

In the second step, the preprocessing will focus on the azimuth feature, to
provide an arithmetic sequence with the azimuth angular resolution, which
will earn an advantage by using it in orderly algorithms. As for the elevation,
it is ready and regular, especially for close ranges, because it has constant
angular resolution.

After frames separation step, each frame is composed of different number
of points because there is no arithmetic sequential angular resolution for az-
imuth, due to the rotation nature of sensor motor (drifted angular resolution)
and may be to the non-periodic firing timestamp. Therefore, we implement
an algorithm with periodic azimuth angular resolution 0.2◦, by associating
the points features to the nearest new azimuth if the difference is less than
half the angular resolution as shown in Figure 3.5. Otherwise, the algorithm
adds a zero padding points with zero point features to the new azimuth (see
Table 3.2).

TABLE 3.2: Zero padding point in a point cloud frame

Range Azimuth Elevation Intensity Time X Y Z
Point 1 ρ1 α1 β1 I1 t1 x1 y1 z1
Point 2 ρ2 α2 β2 I2 t2 x2 y2 z2

...
...

...
...

...
...

...
...

...
Zero padding 0 α5 β5 0 0 0 0 0

...
...

...
...

...
...

...
...

...
Point 2800 ρ28800 α28800 β28800 I28800 t28800 x28800 y28800 z28800

The aim of this algorithm is to modify the frames for a specific angular res-
olution with constant number of points 28800 points/ f rame as expressed in
Equation 3.1.

f rame points number =
360◦ × Channels

Azimuth angular resolution

=
360◦ × 16

0.2◦
= 28800 points/ f rame

(3.1)
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If |𝛼(n) - γ(k)| < 
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with azimuth 𝛼(n)

If n > 360°/angular_resolution
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Yes

No
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end

Yes

(b)

Add zero padding 

fire

FIGURE 3.5: (a) Top view for old and new azimuth association,
(b) Azimuth association algorithm Flowchart
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3.4.3 Experimental Results

3.4.3.1 Experimental Configuration

This thesis topic integrates LiDAR telemetry techniques for road network
evaluation. The perception system, based on one LiDAR sensor (Velodyne
VLP-16), is mounted on a moving vehicle or on a fixed stand, directed toward
the ground by a high inclination angle as shown in Figure 3.6.

(a) VLP-16 LiDAR mounted on a vehicle (b) VLP-16 LiDAR mounted on a fixed stand

FIGURE 3.6: VLP-16 system

VLP-16 LiDAR sensor has several interesting properties for our application,
mainly:

• 360◦ azimuth angular field of view.

• 30◦ elevation angular field of view.

• 0.2◦ azimuth angular resolution.

• Good accuracy of measurement (±3cm).

• Relatively low cost.

A software, supplied by the manufacturer and named VeloView [139] is used
for data acquisition in order to record, view and store the telemetric data in
a packet capture .pcap file. Then, Wireshark software [140] permits to read
the data from the .pcap file in hexadecimal format, and Matlab software [141]
is used to extract the data from the .pcap file (Appendix A.2) and to process
them.

3.4.3.2 Results

It is necessary to estimate the additive error in the data, that emerged after
using the preprocessing step. The evaluation is composed by two cases, each
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case represents a new associated standard azimuth, sampled with azimuth
angular resolution 0.2◦ while conserving the same number of azimuth an-
gles in both cases. In the first standard case, the new associated azimuths
αstd1 is equal to [0◦, 359.8◦]. While in the second standard case, the new as-
sociated azimuths αstd2 start from half the azimuth angular resolution and
covers the range [0.1◦, 359.9◦]. In these two cases, the error induced by our
preprocessing is computed below, and a conclusion is given on the interest
of this step.

The error parameters of each preprocessing method are evaluated by using
the old azimuth αold and the new standard associated azimuths αstd1, αstd2,
the old transverse xold and the new associated transverses xstd1, xstd2, and
the old longitude yold and the new associated longitudes ystd1, ystd2, for all
of a 50 sample frames’ points in a given sequence, and are expressed in the
equations below:

• The standard deviation σαold/αi of the azimuth error, between the old
azimuth αold with respect to the first and second standard associated
azimuths αstd1, αstd2.

σαold/αi =

√
1
N ∑((αold − αi)− (αold − αi))2 (3.2)

Where i = {std1, std2} and N is the number of impact points.

• The standard deviation σxold/xi of the transverse error, between the old
transverse xold with respect to the new associated transverses xstd1, xstd2.

σxold/xi =

√
1
N ∑((xold − xi)− (xold − xi))2 (3.3)

• The standard deviation σyold/yi of the longitude error, between the old
longitude yold with respect to the new associated longitudes ystd1, ystd2.

σyold/yi =

√
1
N ∑((yold − yi)− (yold − yi))2 (3.4)

• The average associated points represents the percentage of the associ-
ation points number M with respect to the total number N of impact
points.

Average associated points =
M
N

× 100% (3.5)

Table 3.3 shows the standard deviations above on four different acquisitions.
The first two acquisitions are downloaded from the Velodyne website [138]
where the LiDAR sensor setup is with no orientation, while the second two
acquisitions are recorded in the lab corridor and outdoor road by our LiDAR
sensor where it is setup with a high orientation angle.
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TABLE 3.3: Preprocessing azimuth association errors for four
different acquisitions

Acquisition
name

Frames
number σαold/αstd1

σxold/xstd1
σyold/ystd1

Average
associated

points
σαold/αstd2

σxold/xstd2
σyold/ystd2

Average
associated

points
Country

Fair 50 0.0686◦ 0.0168 0.0134 98.57% 0.0649◦ 0.0160 0.0127 98.85%

Monterey
Highway 50 0.0685◦ 0.0178 0.0201 98.68% 0.0643◦ 0.0166 0.0189 99.06%

ULCO
Corridor 50 0.0696◦ 0.0013 0.0010 99.38% 0.0681◦ 0.0013 0.0010 99.27%

ULCO
Outdoor 50 0.0696◦ 0.0015 0.0067 99.17% 0.0677◦ 0.0015 0.0067 99.11%

3.4.4 Results Discussion

The obtained azimuth errors σαold/αstd1
, σαold/αstd2

in the two standard cases are
very small and close to each other. In addition, the azimuth error’s σαold/αi
effect on the transverse and longitude errors σxold/xi , σyold/yi of our acquisi-
tion is widely smaller than the effect of Velodyne acquisitions, due to the
orientation of our LiDAR sensor which leads to a decrease of the ranges of
the impact points. After the analysis of Table 3.3 results, the second azimuth
standard αstd2 tends to be selected for two reasons. The first reason, is that
the second azimuth standard error σαold/αstd2

is slightly smaller than the first
azimuth standard error σαold/αstd1

. The second reason, is that the second az-
imuth standard αstd2 doesn’t includes 0◦, 90◦, 180◦, 270◦, 360◦, which avoids
the undetermined mathematical problem conditions in the next calibration
and detection processes (for example tan αstd1 where αstd1 = 90◦, is an unde-
termined case).

3.5 Conclusion

To summarize it up, the familiarity with an instrument sensor is an impor-
tant initialization step to avoid several technical problems that may face it in
any scientific subject. Therefore, this chapter addresses a brief explanation
about Velodyne VLP-16 LiDAR features, an easy ways for data extraction
from the LiDAR sensor export file, and a data preprocessing procedure in
order to solve the problem of azimuth angular resolution from non-periodic
into arithmetic sequence order, using frames separation and points associa-
tion for a recommended standard, which provides a suitable prepared data
for points selection at a specific azimuth that used later in Chapter 4.
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Chapter 4

Extrinsic Calibration Method

4.1 Introduction

After introducing the preprocessing block, which expresses an arithmetic se-
quential order for the azimuth feature, this sequential order generates a pe-
riodic angular resolution. So that, we can benefit from this process to select a
number of points at a specific azimuth as used later in the calibration process
(section 4.3.3).

In general, calibration block part is an important process block in most ap-
plications using sensors. This calibration process has to be launched in a
first time before the beginning of the processing, in order to deliver suitable
data usable for the successive steps. In our system, the internal parameters
of the LiDAR are supposed to be known and given by the manufacturer, so
no intrinsic calibration is necessary, especially that the study environment
region is the road, which is characterized by a close range values due to the
downward orientation of the LiDAR sensor. Therefore, the calibration step
considers only an extrinsic calibration method, that is explained in details in
the next sections of this chapter.

4.2 LiDAR/Ground Geometrical Impact Modeling

In order to test our methods using 3D telemetric data and to study their ro-
bustness in presence of noise, it is necessary to form a plane-based model.
The model is generated depending on the features of multi-laser rangefinder
or 3D LiDAR sensor, where the environment impact points can be modeled
as an intersection between the LiDAR laser beams and the environmental
surrounding surfaces. In this work, the LiDAR sensor must be oriented to-
ward the ground in order to study the road defects. Therefore, the LiDAR
laser beams are represented as straight lines and the ground surface as a flat
plane in a 3D frame.

Depending on the application situation, two concepts can represent the geo-
metrical reflection model between the LiDAR sensor and the ground surface
as shown in Figure 4.1:
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• Practical orientation concept: the LiDAR laser beams (d) are supposed
to be rotated and the ground’s real plane (Pre) is a fixed horizontal plane
as shown in Figure 4.1b.

• Scientific orientation concept: the LiDAR laser beams (d) are supposed
to be fixed and the virtual horizontal ground surface (PH) must be ro-
tated by the LiDAR’s inverse orientation in the practical concept, to get
the real oblique ground plane (Pre) in LiDAR frame as shown in Figure
4.1c.
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(a)

(b) (c)

Reflection Point

Rotated LiDAR

Fixed Ground
Rotated 
Ground

Fixed LiDAR

FIGURE 4.1: (a) No orientation, (b) Practical orientation con-
cept, (c) Scientific orientation concept

4.2.1 Extrinsic Parameters vs Practical Concept

The research goal depends on the four extrinsic parameters (altitude and ori-
entation angles), where the orientation parameter is the strongest influence
factor on the ground points distribution process as shown in Figures 4.2a
and 4.2b. The proposed calibration method must satisfy two contradictory
conditions in relation to the final research objectives:

• Goal: plane-based extrinsic calibration, that needs large sparsity area
to improve the plane estimation, which requires high altitude and low
orientation angles.

• Constraint: the stated finality of road surface object detection, that needs
high density points to improve the capability of detecting defect cover-
age points, which requires low altitude and high orientation angles.
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Therefore, a trade-off is needed in order to optimize the extrinsic parame-
ters (altitude and orientation angles), providing the suitable coverage points
distribution over the ground.

Four geometric view patterns are summarized in three cases depending on
the variation of pitch angle ϕx with respect to the LiDAR’s vertical field of
view "vFOV" as shown in Figure 4.2: (1) circles patterns (Figure 4.2c), (2)
combination of ellipses, parabola and hyperbolas patterns (Figure 4.2d) and
(3) hyperbolas patterns (Figure 4.2e).

The main objective of this thesis is road defect detection, which requires high
coverage resolution. Therefore, the study case in this problem focuses on
the hyperbolas case as shown in Figure 4.2e, in order to increase the points
density on the ground.

h h
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(a) No orientation
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FIGURE 4.2: Large sparsity area vs high density points
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4.2.2 LiDAR Laser Beams and Oblique Ground Surface In-
tersection

In the following part, the scientific orientation concept was chosen to model
the reflections of the laser beams (d) on the real oblique ground surface (Pre).
Therefore, the LiDAR is supposed to be fixed and the parametric equations
of the fixed straight lines (d) in LiDAR frame are given by:

(d) :



 x
y
z

 =

 t · tan α

t
t ·

√
1 + tan2 α · tan β

 for


0◦ < α < 90◦ or
270◦ < α < 360◦

−15◦ < β < 15◦

t ≥ 0 x
y
z

 =

 t · tan α

t
−t ·

√
1 + tan2 α · tan β

 for


90◦ < α < 270◦

−15◦ < β < 15◦

t ≤ 0

(4.1)

Where α and β describe the azimuth and the elevation angles of each laser
beam and t is the parameter of the parametric representation.

The virtual horizontal ground plane (PH) must be rotated by the 3D Euler’s
angles ψz, θy, ϕx, so that the equation of the rotated real ground plane (Pre)
is expressed as a function of the horizontal ground plane (PH) with height h
and rotational matrix Rz,y,x(ψz, θy, ϕx).This transformation is expressed as:

Pre = Rz,y,x(ψz, θy, ϕx)PH (4.2)

The parametric and Cartesian equations of the horizontal ground plane (PH)
are expressed as follows:

(PH) :


 x

y
z

 =

 t + aw
t + bw
−h

 parametric equation ∀a, b ∈ R

z + h = 0 Cartesian equation

(4.3)

The rotational matrix Rz,y,x(ψz, θy, ϕx) [142] is expressed as:

Rz,y,x(ψz, θy, ϕx) = Rz(ψz)Ry(θy)Rx(ϕx)

=

 cos ψz cos θy
cos ψz sin θy sin ϕx
− sin ψz cos ϕx

cos ψz sin θy cos ϕx
+ sin ψz sin ϕx

sin ψz cos θy
sin ψz sin θy sin ϕx
+ cos ψz cos ϕx

sin ψz sin θy cos ϕx
− cos ψz sin ϕx

− sin θy cos θy sin ϕx cos θy cos ϕx

 (4.4)

Therefore, the Cartesian coordinates of the real points cloud cre obtained from
the intersection between the fixed straight lines (d) and the rotated real plane
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(Pre) are expressed as:

(cre) :



 x
y
z

 =

 t · tan α

t
t ·

√
1 + tan2 α · tan β

 for


0◦ < α < 90◦ or
270◦ < α < 360◦

−15◦ < β < 15◦

t ≥ 0

∀t = (ul′−u′l)hk′′+(u′k−uk′)hl′′+(lk′−l′k)hu′′

(k′l′′−l′k′′) tan α+(lk′′−kl′′)+(l′k−lk′)
√

1+tan α2 tan β x
y
z

 =

 t · tan α

t
−t ·

√
1 + tan2 α · tan β

 for


90◦ < α < 270◦

−15◦ < β < 15◦

t ≤ 0

∀t = (ul′−u′l)hk′′+(u′k−uk′)hl′′+(lk′−l′k)hu′′

(k′l′′−l′k′′) tan α+(lk′′−kl′′)−(l′k−lk′)
√

1+tan α2 tan β

(4.5)

Where:

k = cos ψz cos θy + cos ψz sin θy sin ϕx − sin ψz cos ϕx

l = a cos ψz cos θy + b cos ψz sin θy sin ϕx − b sin ψz cos ϕx

u = cos ψz sin θy cos ϕx + sin ψz sin ϕx

k′ = sin ψz cos θy + sin ψz sin θy sin ϕx + cos ψz cos ϕx

l′ = a sin ψz cos θy + b sin ψz sin θy sin ϕx + b cos ψz cos ϕx

u′ = sin ψz sin θy cos ϕx + cos ψz sin ϕx

k′′ = − sin θy + cos θy sin ϕx

l′′ = −a sin θy + b cos θy sin ϕx

u′′ = cos θy cos ϕx



∀a, b ∈ R (4.6)

4.2.3 Error Modeling in Polar and Cartesian Coordinates

In this section, the systematic and random errors wρ, wα, wβ were taken in
consideration as a source of error [85], [143], to represent the modeling of the
additive white Gaussian noise for each polar coordinates ρ, α, β of the real
points cloud cre in Equation 4.7, where ρw, αw, βw are the real measurements
of the range ρ, azimuth α and elevation β respectively for each reflecting
point.

(cw) :

 ρw
αw
βw

 =

 ρ + wρ

α + wα

β + wβ

 (4.7)

The 3D transformation from polar coordinates ρw, αw, βw to Cartesian coor-
dinates xw, yw, zw of the ground noisy points cloud cw is given by:

(cw) :

 xw
yw
zw

 =

 ρw cos βw sin αw
ρw cos βw cos αw

ρw sin βw

 (4.8)
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Then the standard deviation of the error can be derived from polar to Carte-
sian parameters in Equation 4.9, assuming that σxw , σyw , σzw , σρw , σαw , σβw are
respectively the standard deviations of the added noise on xw, yw, zw, ρw, αw, βw.
The terms of the standard deviations σρw , σαw , σβw with a power higher than
two can be neglected in this derivation to obtain this approximation:

 σ2
xw

σ2
yw

σ2
zw

 ≃

 σ2
ρw cos2 βw sin2 αw + ρ2

w(σ
2
βw

sin2 βw sin2 αw + σ2
αw cos2 βw cos2 αw)

σ2
ρw cos2 βw cos2 αw + ρ2

w(σ
2
βw

sin2 βw cos2 αw + σ2
αw cos2 βw sin2 αw)

σ2
ρw sin2 βw + ρ2

wσ2
βw

cos2 βw

 (4.9)

Remark: Glennie et al. [82] have shown in particular that the error of a scan-
ning LiDAR sensor is mainly manifested over range. In this type of sensor,
angles are not directly measured, but the error is mainly related to the repro-
ducibility of the measurement for a given angle. The hypothesis of neglecting
the scanning angle error is a very common assumption in the field of LiDAR
detection: it is part of the manufacturers’ specifications and is commonly
used in the literature. This is particularly related to the very small influence
of the angle reproducibility errors on the range measurement of the object of
interest.

In this study, we then focus on the range error σρw and neglect the azimuth
and elevation errors σαw , σβw respectively in the simulation data as given by
the constructor. The transformation in Equation 4.9 is then simplified as:

 σxw

σyw

σzw

 =

 σρw cos βw sin αw
σρw cos βw cos αw

σρw sin βw

 (4.10)

4.3 Extrinsic LiDAR/Ground Calibration Method

In multi-sensor applications, data acquired from the different sensors must
be fused in one common reference frame. In this application, the calibration
of LiDAR frame scans is necessary to merge them in one world reference
frame, in order to increase the points density coverage on the ground, which
facilitates the road defect detection. Therefore, the extrinsic calibration aims
to model the relationship between the LiDAR frame and the world reference
frame.

opt-LGCMProposed Calibration Method: LGCM
Euler’s Angles Estimation

Rotation about Axis

(Rodrigues Formula)

Fitting Plane

(L.S Method)

Yaw Angle Estimation

(L.S Conic Algorithm)
Height Estimation

Extrinsic Parameters 

Optimization

(L.M Algorithm)

LiDAR Data

FIGURE 4.3: The proposed extrinsic calibration method block
diagram
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Thus, we propose a new method called LiDAR/Ground Calibration Method
(LGCM) presented in Figure 4.3. The method includes the following proce-
dures: fitting the ground plane by Least Squares estimator, rotation about
axis by Rodrigues formula and Least Squares Conic Algorithm for Euler’s
angles estimation, and then height estimation. The proposed method is sup-
plemented by Levenberg-Marquardt optimization algorithm as (opt-LGCM).

The main role of LGCM procedure is to estimate the extrinsic parameters:
the Euler’s rotational angles ψz, θy, ϕx and the height h. The opt-LGCM is
initialized by the estimated extrinsic parameters to optimize them. Finally,
the distributed ground noisy points cw along the real plane (Pre) are rotated
along the horizontal plane (PH) by the optimized extrinsic parameters in the
frame of fixed LiDAR.

The proposed method consists mainly in two steps. A first, totally unsuper-
vised step, which consists in estimating a first value of the steering angles.
This first estimate is then used as a basis for the optimization step which will
seek the best orientation parameters. The proposed method is therefore to-
tally unsupervised and does not require a priori knowledge of the orientation
of the sensor by a pan/tilt unit for example [144].

4.3.1 Fitting Plane

The first step aims to fit an estimated plane (Pest) with the rotated ground
noisy points cw. The Least Squares estimator is used to obtain the normal
vector of the plane (Pest).

The equation of the estimated plane (Pest) in the LiDAR frame is expressed
by:

f (x, y) = z = Ax + By + D + w (4.11)

Where A,B, and D are the plane parameters, and w is an additive white Gaus-
sian noise with standard deviation σw.

Therefore, Equation 4.11 of the estimated plane (Pest) can be written in linear
form as:

Z = HO+ w (4.12)

Where:

Z =
[

z(0) · · · z(N − 1)
]T

H =

 x(0) y(0) 1
...

...
...

x(N − 1) y(N − 1) 1


O =

[
A B D

]T

w =
[

w(0) · · · w(N − 1)
]T where N is the number of reflected points.
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The solution of Least Squares estimator for this linear model [145] is ex-
pressed as:

ÔLS = (HT H)−1HTZ (4.13)

4.3.2 Rotation about Axis

Rodrigues formula is an efficient rotation transformation that computes the
rotation matrix Rrod, which rotates a vector into another vector in 3D frame
around a fixed axis vector

−−→
Axis by rotational angle η [146]. Therefore, after

having estimated the parameter vector of the oblique estimated plane (Pest)
in the previous section 4.3.1, the next step is to compute the rotational matrix
Rrod from the normal vector −→n 1 of the oblique estimated plane (Pest) to the
normal vector −→n 2 of the horizontal plane (PH) that is parallel to XLYL-plane
with height −h (cf . Figure 4.1c). The objective of this step is to use Rodrigues
formula in order to estimate the first two Euler’s angles pitch ϕ̂x, roll θ̂y,
and the first partial yaw angle Ψ̂z1 -due to the incomplete calibration in yaw
rotation, which is solved by the next step- from Rodrigues Matrix Rrod.

Assuming that −→n 1, −→n 2 and
−−→
Axis are expressed as:

−→n 1(−Â,−B̂, 1)
−→n 2(0, 0, 1)
−−→
Axis(m, n, p) =

−→n 1×−→n 2
∥−→n 1×−→n 2∥

The Rodrigues rotation formula Rrod can be then written as:

Rrod = I3 + sin ηK + (1 − cos ηK2) (4.14)

Where:

I3 =

 1 0 0
0 1 0
0 0 1


K =

 0 −p n
p 0 −m
−n m 0


sin η = ∥−→n 1×−→n 2∥

∥−→n 1∥·∥−→n 2∥

cos η =
−→n 1·−→n 2

∥−→n 1∥·∥−→n 2∥

Now, by using Equation 4.15 below:

Rrod = Rx,y,z(Ψ̂z1, θ̂y, ϕ̂x) = Rx(Ψ̂z1)Ry(θ̂y)Rz(ϕ̂x) (4.15)



4.3. Extrinsic LiDAR/Ground Calibration Method 45

Then, the Rodrigues matrix Rrod provides the computation of Ψ̂z1, θ̂y, and ϕ̂x
as expressed in the equations below:

Ψ̂z1 = arctan ((Rrod)21/(Rrod)11) (4.16)

θ̂y = arcsin(−(Rrod)31) (4.17)

ϕ̂x = arctan ((Rrod)32/(Rrod)33) (4.18)

Where ij represents the matrix element index of (Rrod)ij. As a graphical re-
sult, the ground noisy points cw are rotated by Rodrigues matrix Rrod to the
distributed points cH1 along the horizontal plane (PH) by Equation 4.19 as
shown in Figure 4.4.

cH1 = Rrodcw (4.19)
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FIGURE 4.4: (a) distributed ground noisy points cw about the
real plane (Pre), (b) distributed points cH1 along the horizontal

plane (PH)

4.3.3 Yaw Angle Estimation

After rotating the noisy points cw to the horizontal points cH1 , the second
partial yaw angle Ψ̂z2 is estimated by an efficient Algorithm 1 that we pro-
poses in Figure 4.5 to rotate the points cH1 to cH2 about z-axis. This algorithm
is called Least Squares Conic Algorithm LSCA which takes an advantage of
the center S characteristic of the geometrical impact patterns (hyperbolas,
parabolas, circles) formed by the points cH1 as shown in Figure 4.5. The aim
of this part is to compute yaw angle ψ̂z from the partial angles Ψ̂z1 and Ψ̂z2
as shown in Equation 4.20.
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Algorithm 1: Least Squares Conic Algorithm
Input: x,y,z,α,β of the distributed points cH1

Output: Ψ̂z2
1 Fit the lines (l) and (l′) that pass through the points at each ζ = 10◦

consecutive azimuth by Least Squares estimator.
The solution of Least Squares estimator for linear model:

ÔLS = (HT H)−1HTY where Y =

 y(0)
...

y(N − 1)

, H =

 x(0) 1
...

...
x(N − 1) 1

,

ÔLS =

[
m̂
b̂

]
2 Compute the coordinates of the intersection points S of each two

symmetric lines of (l) and (l′).
Assume that:
(l) : y = m̂1x + b̂1
(l′) : y = m̂2x + b̂2
Therefore, the intersection points S of the straight lines (l) and (l′) are
computed as follows:
xs =

b̂2−b̂1
m̂1−m̂2

,ys = m̂1
b̂2−b̂1

m̂1−m̂2
+ b̂1

3 Fit a line (v) that passes through the intersection points S and the origin
O by Least Squares estimator.
The solution of Least Squares estimator:

ÔLS = (HT H)−1HTY where Y =

 y(0)
...

y(N − 1)

, H =

 x(0)
...

x(N − 1)

,

ÔLS =
[

m̂
]

4 Finally, compute the angle Ψ̂z2 formed by the fitting line (v) and y-axis:
Ψ̂z2 = arctan m̂ − 90◦ if m̂ > 0
Ψ̂z2 = arctan m̂ + 90◦ if m̂ < 0
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Therefore, the third Euler’s angle of rotation (yaw angle) ψ̂z is computed as
follows:

ψ̂z = Ψ̂z1 − Ψ̂z2 (4.20)
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FIGURE 4.5: (1) fitting the lines passing through the points of
each ζ = 10◦ consecutive azimuth, (2) intersection points S of
each symmetric lines between (l) and (l′), (3) fitting line (v)
that passes through the points S and the origin O, (4) angle Ψ̂z2

formed by line (v) and y-axis
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Finally, the points cH1 are rotated to points cH2 by an angle −Ψ̂z2 around z-axis
as shown in Figure 4.6.

cH2 = Rz(−Ψ̂z2)cH1 (4.21)
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FIGURE 4.6: (a) points cH1 before LSCA, (b) points cH2 after
LSCA rotated by Ψ̂z2 about z-axis

4.3.4 Height Estimation

At the end of LGCM approach, a suitable way to estimate the height is to
compute the altitude mean of the points cH2 , due to the ground geometrical
model used in this paper. Therefore, the estimated height is then expressed
as:

ĥ =
1
N

N−1

∑
i=0

zi where N is the number of calibrated points (4.22)

4.3.5 Extrinsic Parameters Optimization

The role of optimized LiDAR/Ground Calibration Method opt-LGCM is to
optimize the extrinsic parameters ψz, θy, ϕx, h in order to obtain an optimized
plane represents the ground. Therefore, Levenberg-Marquardt algorithm
is an optimization algorithm, which combines both Gradient-Descent and
Gauss-Newton methods [147]. In addition, it is a very efficient technique
to find the minima and it performs well on most non-linear functions. The
Levenberg-Marquardt algorithm is initialized by the estimated extrinsic pa-
rameters ψ̂z, θ̂y, ϕ̂x, ĥ to obtain the optimized extrinsic parameters ψ̂′′

z , θ̂′′y , ϕ̂′′
x , ĥopt,

in order to minimize the mean square error mse that represents the square dif-
ference between the position of noisy points cw and the optimized position
of points copt in Equation 4.24. The optimized points copt represent the in-
tersection between all the LiDAR beams (d) and the optimized plane (Popt)
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which is the rotation of the horizontal plane (PH) by the new optimized Eu-
ler’s angles ψ̂′′

z , θ̂′′y , ϕ̂′′
x and the optimized height ĥopt in Equation 4.25. In other

words, the importance of the above procedure is to get the optimized height
ĥopt and the optimized Euler’s angles ψ̂′′

z , θ̂′′y , ϕ̂′′
x that rotate, in the inverse or-

dering orientation, the horizontal plane (PH), to fit the noisy points cw that
are distributed along the oblique real plane (Pre) with minimum mse on the
position.

(ψ̂′′
z , θ̂′′y , ϕ̂′′

x , ĥopt) = arg min
(ψz,θy,ϕx,h)

mse (4.23)

Where the non-linear function mse is expressed by:

mse =
1
m

m

∑
i=1

(
(xcopt − xcw)

2 + (ycopt − ycw)
2 + (zcopt − zcw)

2 ) (4.24)

The optimized points copt represent the intersection between the straight lines
(d) and the rotated optimized plane (Popt), where the plane (Popt) is the rota-
tion of the fixed ground horizontal plane (PH) of height ĥopt by −ψ̂′′

z ,−θ̂′′y ,−ϕ̂′′
x

based on Rx,y,z rotation matrix as shown in Equation 4.25:

Popt = Rx,y,z(−ψ̂′′
z ,−θ̂′′y ,−ϕ̂′′

x )PH (4.25)

Where the rotation matrix Rx,y,z is the reverse of Rz,y,x.

Rx,y,z(−ψ̂′′
z ,−θ̂′′y ,−ϕ̂′′

x ) = Rx(−ϕ̂′′
x )Ry(−θ̂′′y )Rz(−ψ̂′′

x )

=


cos ψ̂′′

x cos θ̂′′y sin ψ̂′′
x cos θ̂′′y − sin θ̂′′y

cos ψ̂′′
x sin θ̂′′y sin ϕ̂′′

x
− sin ψ̂′′

x cos ϕ̂′′
x

sin ψ̂′′
x sin θ̂′′y sin ϕ̂′′

x
+ cos ψ̂′′

x cos ϕ̂′′
x

cos θ̂′′y sin ϕ̂′′
x

cos ψ̂′′
x sin θ̂′′y cos ϕ̂′′

x
+ sin ψ̂′′

x sin ϕ̂′′
x

sin ψ̂′′
x sin θ̂′′y cos ϕ̂′′

x
− cos ψ̂′′

x sin ϕ̂′′
x

cos θ̂′′y cos ϕ̂′′
x

 (4.26)

Finally, the Cartesian coordinates of rotated optimized points cloud copt in
the reverse orientation sense are estimated by ψ̂′′

z , θ̂′′y , ϕ̂′′
x , ĥopt as expressed

below:

(copt) :



 x
y
z

 =

 t · tan α

t
t ·

√
1 + tan2 α · tan β

 for


0◦ < α < 90◦ or
270◦ < α < 360◦

−15◦ < β < 15◦

t ≥ 0

∀t = (ul′−u′l)ĥoptk′′+(u′k−uk′)ĥoptl′′+(lk′−l′k)ĥoptu′′

(k′l′′−l′k′′) tan α+(lk′′−kl′′)+(l′k−lk′)
√

1+tan α2 tan β x
y
z

 =

 t · tan α

t
−t ·

√
1 + tan2 α · tan β

 for


90◦ < α < 270◦

−15◦ < β < 15◦

t ≤ 0

∀t = (ul′−u′l)ĥoptk′′+(u′k−uk′)ĥoptl′′+(lk′−l′k)ĥoptu′′

(k′l′′−l′k′′) tan α+(lk′′−kl′′)−(l′k−lk′)
√

1+tan α2 tan β

(4.27)
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Where:

k = cos ψ̂′′
z cos θ̂′′y + sin ψ̂′′

z cos θ̂′′y
l = a cos ψ̂′′

z cos θ̂′′y + b sin ψ̂′′
z cos θ̂′′y

u = − sin θ̂′′y
k′ = − sin ψ̂′′

z cos ϕ̂′′
x + cos ψ̂′′

z sin θ̂′′y sin ϕ̂′′
x + cos ψ̂′′

z cos ϕ̂′′
x + sin ψ̂′′

z sin θ̂′′y sin ϕ̂′′
x

l′ = −a sin ψ̂′′
z cos ϕ̂′′

x + a cos ψ̂′′
z sin θ̂′′y sin ϕ̂′′

x + b cos ψ̂′′
z cos ϕ̂′′

x + b sin ψ̂′′
z sin θ̂′′y sin ϕ̂′′

x

u′ = cos θ̂′′y sin ϕ̂′′
x

k′′ = sin ψ̂′′
z sin ϕ̂′′

x + cos ψ̂′′
z sin θ̂′′y cos ϕ̂′′

x − cos ψ̂′′
z sin ϕ̂′′

x + sin ψ̂′′
z sin θ̂′′y cos ϕ̂′′

x

l′′ = a sin ψ̂′′
z sin ϕ̂′′

x + a cos ψ̂′′
z sin θ̂′′y cos ϕ̂′′

x − b cos ψ̂′′
z sin ϕ̂′′

x + b sin ψ̂′′
z sin θ̂′′y cos ϕ̂′′

x

u′′ = cos θ̂′′y cos ϕ̂′′
x



∀a, b ∈ R (4.28)

4.4 Experimental Results

In this section, the proposed calibration method LGCM is applied on two
types of data: simulation data obtained by the modeling as mentioned in the
sections 4.2.2 and 4.2.3, and real data acquisition from the Velodyne VLP-16
LiDAR. The most important features of Velodyne VLP-16 LiDAR are shown
in Table 4.1.

TABLE 4.1: VLP-16 Features

Features VLP-16
Laser beams 16

Horizontal FOV 360◦

Vertical FOV −15◦ → +15◦

Azimuth angular resolution 0.1◦ - 0.2◦ - 0.4◦

Elevation angular resolution 2◦

Range accuracy σρ 3cm

The extrinsic calibration results are presented in terms of precision and ro-
bustness. According to our application, the precision shows the stability
of the method with respect to the variation of: pitch angle ϕx toward the
ground, and height h above the ground. While the robustness shows the
method strength with respect to the variation of range accuracy σρ of the
measurements.

Therefore, the evaluation parameters of the results will focus on the point
cloud features of the real points cre on the real plane (Pre), noisy points cw
distributed along the real plane (Pre), estimated points cest on the estimated
plane (Pest) obtained by LGCM and the optimized points copt on the opti-
mized plane (Popt) obtained by opt-LGCM as described below:

• The real height h, estimated height ĥ and the optimized height ĥopt.

• The standard deviation σdw/i
of the noisy points cw orthogonal Euclidean

distance with respect to the real plane (Pre), the estimated plane (Pest)



4.4. Experimental Results 51

and the optimized plane (Popt).

σdw/i
=

√
1
N ∑(dw/i − dw/i)2 (4.29)

dw/i =
|Aixw + Biyw + Cizw + Di|√

A2
i + B2

i + C2
i

(4.30)

Where xw, yw, zw are the Cartesian coordinates of the noisy points cw,
Ai, Bi, Ci, Di are the coefficient parameters of the planes, i = {re, est, opt}
and N is the number of impact points.

• The standard deviation σρre/ρi of the real points cre range difference with
respect to the noisy points cw, the estimated points cest and the opti-
mized points copt.

σρre/ρi =

√
1
N ∑((ρre − ρi)− (ρre − ρi))2 (4.31)

Where i = {w, est, opt} and N is the number of impact points.

• The standard deviation σρw/ρi of the noisy points cw range difference
with respect to the real points cre, the estimated points cest and the op-
timized points copt.

σρw/ρi =

√
1
N ∑((ρw − ρi)− (ρw − ρi))2 (4.32)

Where i = {re, est, opt} and N is the number of impact points.

• The gain in performance PFi that describes the range accuracy enhance-
ment obtained from the Levenberg-Marquardt optimization algorithm
which is defined as:

PFi = σρw/ρi − σρw/ρre (4.33)

Where σρw/ρre is the LiDAR range accuracy and i = {est, opt}.

4.4.1 Simulation Data Results

Using the simulation data, the setups used to validate the proposed calibra-
tion method are separated in two categories:

• In terms of precision, the real height h = 2m, roll angle θy = 2◦, yaw
angle ψz = 2◦ and LiDAR range accuracy σρw/ρre = 0.03m, with respect
to the variation of pitch angle ϕx = [−70◦, 70◦].

• In terms of precision, the pitch angle ϕx = 45◦, roll angle θy = 2◦, yaw
angle ψz = 2◦ and LiDAR range accuracy σρw/ρre = 0.03m, with respect
to the variation of height h = [0.5m, 4.8m].



52 Chapter 4. Extrinsic Calibration Method

• In terms of robustness, the real height h = 2m, pitch angle ϕx = 45◦,
roll angle θy = 2◦ and yaw angle ψz = 2◦, with respect to the variation
of σρw/ρre = [0, 0.095m].

4.4.1.1 Standard Deviation σdw/i
in Terms of Precision and Robustness

Referring to Figure 4.7a, the increasing of standard deviation σdw/i
along the

planes is due to the orientation effect of the LiDAR by the pitch angle ϕx on
σdw/i

. So as pitch angle ϕx tends to 90◦, the standard deviation σdw/i
tends

to the LiDAR range accuracy σρw/ρre . Where in Figure 4.7c, the increasing of
the standard deviation σdw/i

is due to increasing of LiDAR range accuracy
σρw/ρre . Moreover, Equation 4.34 describes the relation of σdw/i

with ϕx and
σρw/ρre which proves the increasing of σdw/i

. While, Figure 4.7b shows that
there is no correlation effect between the height h and the standard deviation
σdw/i

.
σdw/i

= sin (ϕx + φk)σρw/ρre (4.34)

Where φk is the elevation angle of each VLP-16 LiDAR laser, and k = {1, 2, ..., 16}
represents the laser index.

In Figures 4.7d,4.7e and 4.7f, we can see that the standard deviation σdw/opt
is

closer to the the standard deviation σdw/re
than the standard deviation σdw/est

.
This shows that the optimized plane (Popt) is better fit to the real plane (Pre)
than the estimated plane (Pest).
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FIGURE 4.7: The variation of σdw/i in terms of precision and ro-
bustness
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4.4.1.2 Standard Deviation σρre/ρi and σρw/ρi in Terms of Precision and Ro-
bustness

In terms of precision and robustness, Figures 4.8a, 4.8c, 4.9a and 4.9c show
the increasing behavior of the range standard deviations σρre/ρest and σρw/ρest
after the LGCM calibration, due to:

• the increase of pitch angle ϕx in positive and negative sides, which de-
creases the sparsity of impact points on the ground. This leads to de-
crease the precision of plane fitting estimation.

• the increase of LiDAR range accuracy σρw/ρre , that decreases the preci-
sion of plane fitting estimation.
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FIGURE 4.8: The variation of σρre/ρi in terms of precision and
robustness

Vice versa, Figures 4.8b and 4.9b show the decreasing of the range standard
deviations σρre/ρest and σρw/ρest after the LGCM calibration, due to increasing
of height h that increases the sparsity of impact points on the ground, which
leads to increase the precision of plane fitting estimation.

The standard deviation σρre/ρopt is lower than the standard deviation σρre/ρest
as shown in Figures 4.8a, 4.8b and 4.8c, which indicate how the optimized
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FIGURE 4.9: The variation of σρw/ρi in terms of precision and
robustness

points copt are closer to the real points cre than the estimated points cest. On
the other hand, the standard deviation σρw/ρopt is very close to LiDAR range
accuracy σρw/ρre than for the standard deviation σρw/ρest as shown in Figures
4.9a, 4.9b and 4.9c, which indicate the similarity of the noisy points cw range
distribution along the real plane (Pre) and the optimized plane (Popt).

The negligibility of standard deviation σρre/ρopt in Figures 4.8a, 4.8b and 4.8c,
and the coincidence of standard deviations σρw/ρopt and σρw/ρre in Figures 4.9a,
4.9b and 4.9c, proves the similarity of the real plane (Pre) and the optimized
plane (Popt) other than the estimated plane (Pest).
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4.4.1.3 Height Estimation in Terms of Precision and Robustness

In terms of precision and robustness, Figure 4.10 highlights the recovering of
the height parameter and how the optimized height ĥopt is closer to the real
height h than the estimated height ĥ, which presents the height optimiza-
tion importance and the strength of the Levenberg-Marquardt optimization
algorithm.
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FIGURE 4.10: Height recovering in terms of precision and ro-
bustness
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4.4.1.4 Performance Gain PFi in Terms of Precision and Robustness

Figure 4.11 shows the gain in performance of the optimized plane points copt
against the estimated plane points cest distributed by the noisy points cw com-
pared to the LiDAR range accuracy σρw/ρre as expressed in Equation 4.33,
with respect to the variation of pitch angle ϕx, height h and LiDAR range
accuracy σρw/ρre . Moreover, the negligible of the method performance PFopt
after the optimization means that the standard deviation σρw/ρopt after opti-
mization is closer than the standard deviation σρw/ρest before optimization to
the LiDAR range accuracy σρw/ρre . In addition, it presents the recovering of
noisy points cw range distribution along the real plane (Pre) after the opti-
mization algorithm, taking in advantage of maintaining the standard devia-
tion σρw/ρopt value as negligible. The gain feature PFi proves again the better
fit between the optimized plane (Popt) and the real plane (Pre) rather than the
estimated plane (Pest).
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FIGURE 4.11: The variation of PFi in terms of precision and
robustness
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4.4.2 Real Data Results

The 3D point cloud acquisitions are obtained using a multi-lasers rangefinder
VLP-16 LiDAR mounted on a vehicle. In order to obtain a telemetric informa-
tion about the ground surface and to achieve the application goal, the VLP-16
LiDAR is rotated toward the ground direction with a pitch angle ϕx ≃ 70◦

and is at a height h ≃ 1.05m above the ground surface. The real setup is
shown in Figure 3.6a.

The proposed method is applied to two different acquisitions:

• Acquisition 1: the vehicle is at rest on the road.

• Acquisition 2: the vehicle is moving at a slow speed on the road.

Standard Deviation σρw/ρi per LiDAR Frames

In the absence of real plane (Pre) when using real data, the results focus on the
range distribution of the noisy points cw along the estimated plane (Pest) and
the optimized plane (Popt). It is clear that the standard deviations σρw/ρopt
curve is lower than the σρw/ρest in the two acquisitions as shown in Figure
4.12. The optimization algorithm is thus proved to be more efficient for real
data as well in decreasing the range distribution of the noisy points cw along
the fitting planes.
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FIGURE 4.12: The variation of σρw/ρi with respect to LiDAR
frame
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4.4.3 Results Discussion

In general, the results turn out to prove the efficiency of the optimization
algorithm which is represented by the optimized plane (Popt), versus the
estimated plane (Pest), compared with the real plane (Pre), in terms of pre-
cision and robustness. On other hand, the convergence of the optimization
algorithm is granted automatically by the suitable initialization parameters:
the estimated Euler’s angles ψ̂z, θ̂y, ϕ̂x and the estimated height ĥ that are
computed in stage one (LGCM) to obtain the estimated plane (Pest), then
optimized by Levenberg-Marquardt optimization algorithm (opt-LGCM) in
stage two to get the optimized Euler’s angles ψ̂′′

z , θ̂′′y , ϕ̂′′
x and the optimized

height ĥopt in order to obtain the optimized plane (Popt). Finally, the results
show the strength and the method performance in terms of precision and ro-
bustness against the variation of pitch angle ϕx and LiDAR range accuracy
σρw/ρre respectively, in order to achieve the application’s aim as shown in Fig-
ure 4.13.

(a) uncalibrated frame (b) calibrated frame

(c) uncalibrated frame (d) calibrated frame

FIGURE 4.13: uncalibrated and calibrated LiDAR frames from
acquisitions 1 and 2
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4.5 Conclusion

A new global extrinsic LiDAR/Ground calibration method for 3D cylindrical
LiDARs is modeled on 4-DOF unlike the previous 6-DOF calibration method,
to fit the problematic case study due to the high orientation of LiDAR sensor.
Due to the modeling difference concept between 4-DOF and 6-DOF, it is im-
practical to compare our proposed calibration method with other methods.
The solution relies on plane-based modeling of the ground which allows the
estimation of the LiDAR’s orientation and altitude using Rodrigues formula,
Least Squares Conic Algorithm for yaw angle estimation and height estima-
tion. The proposed method LGCM is extended to an optimized derivation
opt-LGCM using the Levenberg-Marquardt algorithm and is shown to be a
suitable solution to LiDAR/Ground calibration problem. It is implemented
on LiDAR’s synthetic and real telemetric data. The results show the perfor-
mance in terms of precision and robustness against the variation of LiDAR’s
orientation and range accuracy respectively, proving the stability and the ac-
curacy of the proposed calibration method.
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Chapter 5

Road Defect Detection Methods

5.1 Introduction

In this chapter, we present the kernel objective of this thesis, that aims to de-
tect, identify, visualize and localize the road defects in each LiDAR frame.
In fact, a prior procedure is applied to the LiDAR frame after the extrinsic
calibration process as shown in Figure 5.1, in order to obtain a better results
by the detection methods, because the road’s defect affects the extrinsic cali-
bration process results, due to the ground consideration as a flat plane.

Extrinsic 

Calibration

Ground 

Selection

Optimized 

Defect Detection

Extrinsic 

Recalibration

Defect 

Visualization 

and Localization

Primary 

Defect Detection

FIGURE 5.1: Prior defect detection process

Environment surrounding points

Defect points

Road points

∪ Ground points

FIGURE 5.2: Different PointCloud labels
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Therefore, the procedure starts with ground points selection to remove the
environment surrounding points that are outside the road zone as shown in
Figure 5.2. Then, a primary feature-based defect detection method is initially
applied to extract and separate the defects points from the road points, fol-
lowed by the same previous extrinsic calibration method just on the road
points avoiding the defects points, which clearly enhances the extrinsic re-
calibration results. Finally, two defect detection methods are executed suc-
cessfully on the calibrated ground points, to ensure and increase the de-
tection precision in a perfect calibrated frame. The first method is an opti-
mized feature-based method that depends on the altitude concavity feature
to detect and identify the defects. While, the second method is a grid-based
method that transforms the calibrated ground points from 3D point cloud
frame into 2D image, depending on the altitude distribution feature in each
spatial grid, in order to detect, visualize and localize the defects.

In the next section, the view scene results are implemented directly on real
data acquisition as shown in Figure 5.3. The recorded acquisition scenario
takes in consideration the existence of two edges on both sides of the ground,
where the first right edge is characterized by one corner and the second left
edge by two corners. In addition, the acquisition includes two types of de-
fects: hump and hole defects, in other words positive and negative defects
respectively [107].

(a) View scene photo (b) 3D PointCloud zoom in frame

FIGURE 5.3: Acquisition of hump and pothole defects
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5.2 Ground Selection
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FIGURE 5.4: Ground points selection procedure

As mentioned before, the ground selection procedure aims to extract the
ground points from full points of the LiDAR frame, making it easier to study
and analyze the defect existence just on the road zone. Referring to Figure
5.4, the ground points selection procedure includes four main steps: plane
distance thresholding to bound the interest study region, Gaussian filter to
smooth the signal, differential Gaussian filter to detect the road edges center
and Peak Constraints Algorithm to detect the inner corner of the road edges.
Each step is explained in details with its role in the next subsections.

5.2.1 Plane Distance Thresholding

Initially, the role of plane distance thresholding step is to bound the interest
study zone of the 3D point cloud full frame to an environment points (road,
defects and road edges), which eliminates all unnecessary outer points from
the study zone as shown in Figure 5.5. This step depends on the orthogonal
Euclidean distance threshold constraint dth = 30cm from the LiDAR noisy
point cw(xw, yw, zw) to the optimized plane (Popt) as expressed in Equations
5.1 and 5.2, since the most representative plane of the ground is the optimized
plane (Popt) after the extrinsic calibration process. Where the orthogonal Eu-
clidean distance threshold dth must be high enough to cover the height of the
road edges, that consist of two corners.

dw/opt =
|Aoptxw + Boptyw + Coptzw + Dopt|√

A2
opt + B2

opt + C2
opt

(5.1)

dw/opt ≤ dth (5.2)

(a) Top left view (b) Forward side view

FIGURE 5.5: Acquisition of hump and hole defects
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5.2.2 Gaussian Filter

Gaussian filter is one of average filters in time domain to mitigate the noise
effect, where the Fourier transform of Gaussian impulse response in fre-
quency domain is also Gaussian distribution centered at zero. This is what
clarifies that Gaussian filter is a type of low-pass filter. Referring to Figure 5.6,
which represents the convolution relationship in the output signal zGF(n)
between the input altitude signal zw(n) and the impulse response system
hGF(n), as expressed in Equations 5.3 and 5.4.

zGF(n) = zw(n) ∗ hGF(n) (5.3)

hGF(n) =
G√

2πσ2
exp

(−n2

2σ2

)
for − 3σ ≤ n ≤ 3σ (5.4)

Where G is a gain parameter for signal amplification, σ is the standard devi-
ation of the Gaussian distribution, and n is the points’ index number of the
signals zw, zGF and the impulse response system hGF.

ℎ𝐺𝐹(𝑛) 𝑧𝑤(𝑛) 𝑧𝐺𝐹(𝑛) 

(a) System input & output
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FIGURE 5.6: Gaussian filter system

In this step, the Gaussian filter system hGF(n) deals with each elevation im-
pact points as an individual noisy discrete signal zw(n) to mitigate the noise
effect and especially for the high noisy impact points that exist on surface
edges, in order to get a smoothed discrete signal zGF(n) as shown in Figure
5.7. In addition, the edge localization accuracy decreases when the Gaussian
filter’s spread increases in the index n domain, which imposes a trade-off
between edge localization accuracy and noise filtering.
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(a) Signal zw(n) at elevation β = −3◦
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(b) Signal zGF(n) at elevation β = −3◦

FIGURE 5.7: Input and output signals

5.2.3 Differential Gaussian Filter

Differential Gaussian filter is a system that represents the first derivative of
an input signal, which indicates the slope or the instantaneous rate variation
(increasing or decreasing) of the input signal. In addition, the differential
Gaussian filter function is simply a subtraction between two shifted Gaussian
functions in an opposite direction as expressed in Equation 5.6. Referring to
Figure 5.8, which represents the convolution relationship in the output signal
zDGF(n) between the input signal zGF(n) and the impulse response system
hDGF(n), as expressed in Equation 5.5.

zDGF(n) = zGF(n) ∗ hDGF(n) (5.5)

hDGF(n) =
G√

2πσ2
exp

(
− (n − µ)2

2σ2

)

− G√
2πσ2

exp

(
− (n + µ)2

2σ2

)
for

{
−µ ≤ n ≤ µ

σ = µ/2

(5.6)

Where G is a gain parameter for signal amplification, σ is the standard devi-
ation of the Gaussian distribution, and n is the points’ index number of the
signals zGF, zDGF and the impulse response system hDGF.
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FIGURE 5.8: Differential Gaussian filter system

In this step, the differential Gaussian filter hDGF deals with each smoothed
discrete signal sample zGF(n) to indicate the transition sense in the zDGF(n)
signal as shown in Figure 5.9.
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(a) Signal zGF(n) at elevation β = −3◦
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(b) Signal zDGF(n) at elevation β = −3◦

FIGURE 5.9: Input and output signals



5.2. Ground Selection 67

5.2.4 Peak Constraints Algorithm PCA

The role of Peak Constraints Algorithm PCA is to extract both edges of the
road as presented in Algorithm 2. The algorithm is based on several peak
conditions, applied on the road’s left and right side.

Algorithm 2: Peak Constraints Algorithm
Input: Signal zDGF(n)
Output: Boundary indexes of the road edges ir, il

1 Find the main first right and last left peaks pkr1, pkl1 of the zDGF(n)
signal on the road’s right and left sides respectively as shown in Figure
5.10a, provided that the peaks values zDGF(ir1), zDGF(il1) must be
higher than a constant threshold pkth = 450 as expressed in the below
inequalities, which identify a high transitions of the road edges in the
signal zGF(n) that are higher than the transitions of the road defects.
Where the indexes ir1, il1 values of the main peaks indicate the
midpoints of the edge width in zGF(n) signal.
|zDGF(ir1)| ≥ pkth
|zDGF(il1)| ≥ pkth

2 Find the first side lobe peaks pkr2, pkl2 before and after the peaks
pkr1, pkl1 respectively, as shown in Figure 5.10b. Where the side lobes
indexes are noted as ir2, il2.

3 Compute the indexes ir, il of the right and left boundary br, bl of the road
edges, which represent the midpoint indexes of the main and side lobe
peaks, as shown in Figure 5.10c and expressed in the below equations:
ir = (ir1 + ir2) /2
il = (il1 + il2) /2
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(a) First step of PCA on zDGF(n) signal at elevation β = −3◦
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(b) Second step of PCA on zDGF(n) signal at elevation β = −3◦
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(c) Third step of PCA on zDGF(n) signal at elevation β = −3◦

FIGURE 5.10: PCA input signal



5.2. Ground Selection 69

After finding the right and left boundary br, bl of the road, the original alti-
tude signal zw(n) is clipped between both boundary indexes br, bl in order to
eliminate the road edges as shown in Figure 5.11.
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(a) Signal zDGF(n) at elevation β = −3◦
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(b) Signal zw(n) before clipping at elevation β = −3◦
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(c) Signal zw(n) after clipping at elevation β = −3◦

FIGURE 5.11: Signal zw(n) clipping boundaries
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This procedure is applied at each elevation laser impact in order to get a
ground selection points, which means extracting the road and the defect
points by eliminating the road edges points from the 3D point cloud frame
as shown in Figure 5.12.

(a) Top left view with road edges (b) Top left view without road edges

(c) Forward side view with road edges (d) Forward side view without road edges

FIGURE 5.12: Road edges filtering

5.3 Feature-Based Defect Detection Method FBDDM

Moving to the first detection approach, the Feature-Based Defect Detection
Method FBDDM depends on the altitude concavity feature to extract the ho-
mogeneous defect patterns that exist below or above the road network. For
this, the second order of differential Gaussian filter hDGF2(n) represents the
second derivative of an input signal, which indicates the concavity feature in
the output signal zDGF2 of the input signal zw(n) as shown in Figure 5.13. In
addition, one advantage of second order differential Gaussian filter is being
low sensitive to the noise effect because of its wide spread in the index n do-
main, which is doubled than the first order, since the second order differen-
tial Gaussian filter consists of two consecutive differential Gaussian impulse
responses as expressed in Equation 5.7.

zDGF2(n) = zw(n) ∗ hDGF2(n)
= zw(n) ∗ hDGF(n) ∗ hDGF(n)

(5.7)

hDGF(n) =
G√

2πσ2
exp

(
− (n − µ)2

2σ2

)

− G√
2πσ2

exp

(
− (n + µ)2

2σ2

)
for

{
−µ ≤ n ≤ µ

σ = µ/2

(5.8)

Where G is a gain parameter for signal amplification, σ is the standard devi-
ation of the Gaussian distribution, and n is the points’ index number of the
signals zw, zDGF, zDGF2 and the system impulse responses hDGF, hDGF2.
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FIGURE 5.13: Second order differential Gaussian filter
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(c) Signal zDGF2(n) at elevation β = −3◦

FIGURE 5.14: Second order differential Gaussian filter input
and output

To start on, the altitude signal zw(n) is fed through a double differential Gaus-
sian system, where the first output zDGF(n) identifies the transition sense
feature of the input signal zw(n) as mentioned before in section 5.2.3, and the
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second output zDGF2(n) identifies the concavity feature of the input signal
zw(n) as shown in Figure 5.14. Where the sign of the concavity feature, pos-
itive or negative, identify the type of the road defect whether its pothole or
hump.

Referring to Figure 5.14c, the signal analysis indicates that the indexes of the
primary peaks pk2, pk5 represent the midpoint or the center point of the pot-
hole and the hump respectively, and the secondary peaks pk1, pk3, pk4, pk6
are the sides lobes of the main peaks. But, in order to distinguish the pri-
mary peaks that represent the existence of defects, the Instantaneous Differ-
ential Gaussian Algorithm IDGA is applied on each peak to mitigate the False
alarm detection and to measure the defect width as explained in Algorithm
3. The principle of the Algorithm 3 is to compute the concavity magnitude of
the altitude signal zw(n) at each instantaneous peak pki with various widths
of the filter hDGF2. The concavity magnitude will then reach the maximum
value when the filter width covers the defect width.

Algorithm 3: Instantaneous Differential Gaussian Algorithm
Input: Signal zDGF2(n)
Output: Defect midpoint index ni and defect width 2nIDGF2

1 Find all candidature peaks pki with their indexes ni in the zDGF2(n)
signal as shown in Figure 5.14c, taking in account that the peaks values
zDGF2(ni) must be higher than a low constant threshold pkth = 20 as
expressed in the below inequality, which find and identify all the
candidate defects existence in the signal zw(n). Where the indexes ni
values indicate the midpoints of the defect in zw(n) signal.
|zDGF(ni)| ≥ pkth

2 Apply the second order differential Gaussian filter hDGF2(n) with
increment sequential width µ at each instantaneous index ni on the
altitude signal zw(n) as shown in the below sub algorithm, where
zIDGF2(n) signal identify the concavity magnitude of the altitude signal
zw(n) at each instantaneous index ni.

µ = 80 defines the maximum filter width
f or n = 1 : µ

zIDGF2 [n] = |zw [ni − 2n : ni + 2n] . ∗ hDGF2 [n] |
end

3 Find the maximum peak value pkIDGF2 and its index nIDGF2 for each
instantaneous signal zIDGF2 as shown in Figure 5.15.

4 Compute the ratio rIDGF2 that defines the maximum concavity
magnitude pkIDGF2 divided by its index nIDGF2 as expressed below.
Finally, if the ratio rIDGF2 is greater than a constant threshold rth = 3.5,
then the candidate peak pki represents a primary peak (defect
existence), characterized by a width nIDGF2 points to the right and to
left of the midpoint index ni. Otherwise, the candidate peak pki
represents a secondary peak (no defect existence).
rIDGF2 = pkIDGF2

nIDGF2
rIDGF2 ≥ rth
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(a) Signal zIDGF2(n) at instantaneous index n1
of signal zw(n)

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

(b) Signal zIDGF2(n) at instantaneous index n2
of signal zw(n)

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

(c) Signal zIDGF2(n) at instantaneous index n3
of signal zw(n)
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(d) Signal zIDGF2(n) at instantaneous index n4
of signal zw(n)
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(e) Signal zIDGF2(n) at instantaneous index n5
of signal zw(n)
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(f) Signal zIDGF2(n) at instantaneous index n6
of signal zw(n)

FIGURE 5.15: Signal zIDGF2(n) with the variation of filter width
n at each instantaneous index ni
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Referring to Figure 5.15, the instantaneous differential Gaussian algorithm
at peaks pk3, pk4 in Figures 5.15c and 5.15d respectively, are not confirm the
constraint rIDGF2 ≥ rth, which are true. While, the instantaneous differential
Gaussian algorithm at peaks pk1, pk2, pk5, pk6 in Figures 5.15a, 5.15b, 5.15e,
5.15f respectively, are confirm the constraint rIDGF2 ≥ rth, which are true for
peaks pk2, pk5 and false for peaks pk1, pk6 (False Alarm).

In order to enhance the feature based defect detection results, the LiDAR
frame is re-calibrated according to the new optimized extrinsic parameters
ψ̂′′

z , θ̂′′y , ϕ̂′′
x , ĥopt that computed by the road points as shown in Figure 5.16c,

which is almost road points, using the same calibration method opt-LGCM
that was presented in Chapter 4. The re-calibration method provides better
results because of the defect points absence that affects the plane model rep-
resentation of the road points. Then, the feature based detection method is
applied on the elevation lasers of the new recalibrated frame with additional
constraint in the instantaneous differential Gaussian algorithm in step 4, in
case:

• Positive defect (hump) pki < 0, then the altitude mean of the candi-
date point must be closer to the maximum altitude of the candidate
points than the altitude mean of the elevation laser points |µzcandidates −
max(zcandidates)| < |µzcandidates − µzelevation |.

• Negative defect (pothole) pki > 0, then the altitude mean of the can-
didate point must be closer to the minimum altitude of the candidate
points than the altitude mean of the elevation laser points |µzcandidates −
min(zcandidates)| < |µzcandidates − µzelevation |.

Finally, the feature based detection method shows an improvement of defect
detection results after the re-calibration process. As mentioned before, the
feature based defect detection method works on each elevation laser signal
zw that represents the altitude Z-axis with respect to the transverse variation
X-axis. So, the feature based defect detection method process must be exe-
cuted on each elevation laser points to obtain a full frame detection for each
of defect and road points separately as shown in Figure 5.16.
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(a) 3D frame of ground points
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(b) 2D frame of ground points

(c) 3D frame of road points
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(d) 2D frame of road points

(e) 3D frame of defect points
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(f) 2D frame of defect points

FIGURE 5.16: 3D and 2D sample frames for ground, road and
defect points
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5.4 Grid-Based Defect Detection Method GBDDM

Moving to the second detection approach, the Grid-Based Defect Detection
Method GBDDM, which is extended method after the Feature-Based Defect
Detection Method FBDDM. The principal outlines of this method are: au-
tomated detection, high resolved visualization and localization for the road
defects in each LiDAR frame. Where this method works directly on the re-
calibrated 3D ground points frame which includes both of road and defect
points as shown in Figure 5.17.

(a) 3D frame of ground points
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(b) 2D frame of ground points

FIGURE 5.17: 3D and 2D sample frames for ground points after
recalibration

Therefore, instead of processing road surface point clouds in 3D space, the
grid-based defect detection method projects the 3D points in to 2D plane
XY-plane, in order to generate or rasterize a georeferenced gray level image,
whose intensity pixels represent a non-linear interpolation based on the eu-
clidean altitude distance dw/opt between the points’ altitude zw and the road
altitude −ĥopt of the optimized plane (Popt) within a spatial grid as expressed
in the similar Equations 5.9,5.10. A linear normalization is applied on the alti-
tude distance dw/opt, then transformation into numerical intensity gray levels
Id, as expressed in Equation 5.11.

dw/opt =
|Aoptxw + Boptyw + Coptzw + Dopt|√

A2
opt + B2

opt + C2
opt

(5.9)

dw/opt = zw + h (5.10)

Id =
dw/opt − dmin

dmax − dmin
× Lgray (5.11)

Where xw, yw, zw are the Cartesian coordinates of the 3D recalibrated ground
points, Aopt, Bopt, Copt, Dopt are the parameters of the optimized plane (Popt),
dmin and dmax are the minimum and maximum values of the altitude distance
dw/opt respectively, and Lgray = 255 is the maximum intensity gray level.
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An improvement strategy is developed using the Inverse Distance Weighted
IDW interpolation method [148], [149], in order to generalize the process case
by adopting a dynamic size of the spatial grids that split the XY-plane as
shown in Figure 5.18. Therefore, the non-linear interpolation derivations
based on rectangular grid pattern assumption gains an advantage point in
case of low azimuth or elevation angular resolution for LiDAR beams cover-
age situation. Where the horizontal and the vertical grid lengths H, V variate
according to the distance distribution σdw/opt

to obtain a high resolution geo-
referenced intensity image.
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(a) Graphical grid model
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(b) Grid model of ground points for 2D frame

FIGURE 5.18: Grid model of ground surface point cloud

The intensity computation concept of georeferenced image pixels is based on
two rules:

1. A point with a distance D farther away from the grid cell center gets a
smaller weight.

2. A point with a larger altitude distance intensity Id gets a greater weight.
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According to the above rules, the intensity gray value of the grid cell (i, j),
which is denoted by Gij , is expressed as follows:

Gij =

( nij

∑
k=1

Wk,ij Ik,ij
d

)/ ( nij

∑
k=1

Wk,ij

)
(5.12)

Wk,ij = aWk,ij
D + bWk,ij

Id
(5.13)

a + b = 1 (5.14)

Where nij is the number of data points within grid cell (i, j), Wk,ij and Ik,ij
d are

the general weight and the altitude distance intensity of the kth point within
grid cell (i, j), respectively. a and b are the weight coefficients, Wk,ij

D and Wk,ij
Id

are the weight components calculated considering the planar Euclidean dis-
tance D from the grid cell center and the altitude distance intensity Id within
grid cell (i, j), respectively.

The planar Euclidean distance weight Wk,ij
D is a non-linear normalized pa-

rameter, whose function within each grid cell (i, j) is to confirm the first in-
terpolation rule: gain higher weights for the kth points with a nearer planar
Euclidean distance D to the grid cell center and vice versa as shown in Figure
5.19 and expressed in Equation 5.15. Where the initial assumption for grid’s
horizontal and vertical length parameters in Figure 5.19 are H = 0.08m and
V = 0.08m respectively, then the maximum planar Euclidean distance Dmax
is expressed in Equation 5.17, where ϑ is the acute angle between the grid’s
vertical length V and the grid’s diagonal 2Dmax. The grid cell size H × V
must be large enough to cover the maximum Euclidean distance between
each two elevation lasers, in order to avoid the empty grid cells especially in
the defect zone. The role of this non-linear normalized weight Wk,ij

D is to take
into consideration the far planar Euclidean distance D values from the grid
cell center, in order to be a sensitive weight at the rising or dropping defect
edges.

Wk,ij
D =

H2 −
(
2Dk,ij sin (arctan (H/V))

)2

H2
((

Dk,ij
)2

+ 1
) (5.15)

Dk,ij =

√(
xk,ij

w − xij
0

)2
+
(

yk,ij
w − yij

0

)2
(5.16)

Dmax =
H

2 sin (ϑ)
=

H
2 sin (arctan (H/V))

(5.17)

Where Dk,ij is the planar Euclidean distance between the points
(

xk,ij
w , yk,ij

w

)
and

(
xij

0 , yij
0

)
, which are the Cartesian coordinates of the kth points and the

grid cell center within grid cell (i, j) on the XY-plane.

In addition, the altitude distance intensity weight Wk,ij
Id

is also a non-linear
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FIGURE 5.19: Planar Euclidean distance weight Wk,ij
D

normalized parameter, whose function within each grid cell (i, j) is to con-
firm the second interpolation rule: gain higher weights for the kth points
with a greater altitude distance intensity Ik,ij

d and vice versa as shown in Fig-
ure 5.20 and expressed in Equations 5.18,5.19,5.20. Where the role of this
non-linear normalization weight Wk,ij

Id
is to mitigate the low altitude distance

intensity Ik,ij
d values.

Wk,ij
Id

= Wk,ij
I1

· Wk,ij
I2

(5.18)

Wk,ij
I1

=
2
(

Ik,ij
d − gij

min

)2

(
Ik,ij
d − gij

min

)2
+
(

gij
max − gij

min

)2 (5.19)

Wk,ij
I2

=
2
(

Ik,ij
d − Imin

)2

(
Ik,ij
d − Imin

)2
+ (Imax − Imin)

2
(5.20)

where Wk,ij
I1

and Wk,ij
I2

are the weight components calculated based on the lo-
cal and the global altitude distance intensity information respectively, gmax
and gmin are the local maximal and minimal altitude distance intensities val-
ues within grid cell (i, j), and Imax and Imin are the global maximal and min-
imal altitude distance intensities values of the point cloud frame.
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FIGURE 5.20: Altitude distance intensity weight Wk,ij
Id
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In order to attain a high resolution georeferenced image, a Grid Splitting Al-
gorithm GSA is developed based on the standard deviation of the distance
distribution σdw/opt

constraint for each grid cell (i, j), as explained in Algo-
rithm 4 that performed on Figure 5.21.

Algorithm 4: Grid Splitting Algorithm
Input: Altitude distance dw/opt, initial horizontal and vertical lengths

values H, V respectively, and the Cartesian coordinates xw, yw, zw
of the kth points within a grid cell (i, j)

Output: Georeferenced gray image Gij

1 If the grid cell is empty, associate the intensity gray value Gij to zero.
Else, compute the distance distribution σdw/opt

of the kth points within a
grid cell (i, j) as expressed below:

σdw/opt
=
√

1
N ∑

nij
k=1(dw/opt − dw/opt)2

2 If the standard deviation of the distance distribution σdw/opt
≥ σth, split

the grid cell into four sub-grids in case if all of the sub-grids are not
empty, by dividing the horizontal and vertical lengths by two H/2, V/2
respectively as shown in Figure 5.22a. Where σth ≃ 1.5cm is a constant
threshold that defines the maximum distance accuracy for the lasers
impact of the LiDAR sensor on a flat plane. Then, go to step 1.
Else, compute the intensity gray value Gij using the above proposed
inverse distance weighted interpolation method.

3 Split the grid cells into sub-grid cells according to the smallest grid cell
size, and associate the intensity gray values of the sub-grid cells equal
to the original grid cell’s intensity gray value as shown in Figure 5.22b.
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FIGURE 5.21: Graphical sample for road defect
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(a) 1st and 2nd steps of GSA result
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(b) 3rd step of GSA result

FIGURE 5.22: High resolution gray image using GSA

A high resolution generated georeferenced gray image is shown in Figure
5.23a, using the proposed improved inverse distance weighted interpolation
method with grid splitting algorithm. Then, Otsu segmentation method [115]
is performed on the georeferenced gray image, in order to transform it to a
binary image as shown in Figure 5.23b.

(a) High resolution gray image (b) High resolution binary image

FIGURE 5.23: High resolution georeferenced images
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5.5 Experimental Results

In this section, the proposed feature-based and grid-based defect detection
methods are applied on real data acquisition from the Velodyne VLP-16 Li-
DAR sensor as shown in Figure 5.24. The most important features of Velo-
dyne VLP-16 LiDAR are shown in Table 5.1.

FIGURE 5.24: Acquisition of hump and pothole defects

TABLE 5.1: VLP-16 Features

Features VLP-16
Laser beams 16

Horizontal FOV 360◦

Vertical FOV −15◦ → +15◦

Azimuth angular resolution 0.1◦ - 0.2◦ - 0.4◦

Elevation angular resolution 2◦

Range accuracy σρ 3cm
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5.5.1 Evaluation Parameters

There exist multiple performance evaluation metrics that are related to detec-
tion process. Four widely used metrics are Accuracy, Precision, Recall, and
F-measure [108]. To clearly explain them, we consider having two classes,
a presence class and a absence class to build the confusion matrix. It holds
the four different combinations of predicted and actual values of these two
classes as can be seen in Figure 5.25.
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FIGURE 5.25: The confusion matrix of four different combina-
tions of predicted and actual class values

• True Positives TP: the total number of correct predictions that are pres-
ence, which means, were predicted to be presence knowing that they
actually belong to the presence class.

• False Positives FP: the total number of incorrect predictions that are
presence, which means, were predicted to be presence knowing that
they actually belong to the absence class.

• True Negative TN: the total number of correct predictions that are ab-
sence, which means, were predicted to be absence knowing that they
actually belong to the absence class.

• False Negative FN: the total number of incorrect predictions that are
absence, which means, were predicted to be absence knowing that they
really belong to the presence class.

• Accuracy: a well-known evaluation metric defined as a percentage of
correct predictions as expressed in Equation 5.21. Thus, it evaluates
how many defects and non-defects classes are correctly detected.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.21)

• Precision and Recall: another two well-known evaluation metrics usu-
ally used together and can be applied in the context of detection. Precision,
also called Positive Predictive Value PPV, answers the question of what
proportion of positive predictions was actually correct. Whereas, Recall,
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also called True Positive Rate TPR, answers the question of what pro-
portion of actual positives was identified correctly.

Precision =
TP

TP + FP
(5.22)

Recall =
TP

TP + FN
(5.23)

• F-measure: another popular evaluation parameter used to compare be-
tween detection and classification methods. F-measure, also called F-score,
is a single score that balances both the concerns of Precision and Recall
in one number. In other words, F-measure defines the harmonic mean
of the Precision and Recall metrics as expressed in Equation 5.24.

F-measure = 2
Precision × Recall
Precision + Recall

=
2TP

2TP + FP + FN

(5.24)

5.5.2 Experimental Setups

The detection methods FBDDM and GBDDM are performed on several real
data acquisitions with various experimental scenarios. The experiments take
place in the laboratory, which include a flat ground with size 2.5 × 1.8m2

(l × w), the height of right edge is > 1m, the height of left edge is ≃ 20cm,
the size of the hump defect is 7.5 × 30.5 × 22cm3 (h × l × w) and the size of
the pothole defect is 7.5 × 30.5 × 22cm3 (h × l × w):

• Acquisition 1: provides a recording frames of empty defects.

• Acquisition 2: provides a recording frames of hump defect, moving in
vertically direction at the middle of the road.

• Acquisition 3: provides a recording frames of hump defect, moving in
obliquely direction from top right to bottom left, to cross the road from
right to left side.

• Acquisition 4: provides a recording frames of fixed pothole defect at
the middle of the road.

• Acquisition 5: provides a recording frames of fixed pothole defect at
the bottom of the road.

• Acquisition 6 and 7: provides a recording frames of moving pothole
defect in vertically direction at the middle of the road, with low Li-
DAR bounce, variation of orientation and altitude of pitch angle ϕx and
height h respectively.

• Acquisition 8: provides a recording frames of multi-defects, fixed pot-
hole defect at the middle of the road, and moving hump defect in ver-
tically direction at the right side near to road edge.
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• Acquisition 9: provides a recording frames of moving pothole defect in
vertically direction at the middle of the road, with high LiDAR bounce,
variation of orientation and altitude of pitch angle ϕx and height h re-
spectively.

In some acquisitions, the hump defect is attached to a thin thread and pulled
to achieve the defect movement. Where in other acquisitions, the motion of
pothole defect is due to the movement of LiDAR sensor using a long stand
tilt unit. The movement of the LiDAR sensor takes advantage to describe
the bounce of the vehicle in a perfect realistic experiment, which performs a
variation of LiDAR sensor height.

5.5.3 Confusion Metrics Results

The confusion metrics results take place on the above different acquisition
scenarios as shown in Tables 5.2,5.3,5.4. Where the confusion matrix result of
FBDDM in Table 5.2 is for the primary feature-based defect detection method
results before the recalibration process, and the confusion matrix result of
opt-FBDDM in Table 5.3 is for the optimized feature-based defect detection
method after the recalibration process.

In FBDDM method, the TP, TN, FP, FN values are computed depending on
the counted concavity peaks pki that confirm the constraints in the instanta-
neous differential Gaussian algorithm compared to the actual presence and
absence defect number using VeloView software. However in GBDDM method,
the TP, TN, FP, FN values are computed depending on the counted labels
using 8-connected objects [150] compared to the actual presence and absence
defect number using VeloView software. The FP, FN values exist because of
the three reasons:

• Un-complete calibration for FBDDM method, then it is solved by recal-
ibration process for opt-FBDDM method.

• The position of the defect when it is very close to the road edge, which
leads to a low coverage resolution.

• The movement of the defect when it starts to cross the laser, which
shows a low coverage altitude.

Referring to the confusion metrics total number of each table, the total num-
bers of FBDDM are greater than the total numbers of GBDDM. Because, the
FBDDM detection process deals with each elevation laser per frame, where
the method operations developed on a laser as a one input object, so in each
frame there exists some lasers including defects and the rest of them are
empty of defects. While, the GBDDM detection process deals with all lasers
simultaneously, so the method operations developed on a frame as a one in-
put object.
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TABLE 5.2: Confusion matrix of FBDDM for each acquisition

FBDDM TP TN FP FN Frames
Acquisition 1 0 1664 0 0 104
Acquisition 2 166 1407 8 10 99
Acquisition 3 211 1006 12 30 78
Acquisition 4 254 1778 0 0 127
Acquisition 5 376 1128 0 0 94
Acquisition 6 88 306 4 5 25
Acquisition 7 167 350 4 10 33
Acquisition 8 472 912 0 39 86
Acquisition 9 96 255 13 1 22

Total 1830 8806 40 95 668

TABLE 5.3: Confusion matrix of opt-FBDDM for each acquisi-
tion

opt-FBDDM TP TN FP FN Frames
Acquisition 1 0 1664 0 0 104
Acquisition 2 167 1408 0 9 99
Acquisition 3 214 1005 6 27 78
Acquisition 4 254 1778 0 0 127
Acquisition 5 376 1128 0 0 94
Acquisition 6 88 306 1 5 25
Acquisition 7 167 350 1 10 33
Acquisition 8 481 912 0 30 86
Acquisition 9 96 255 0 1 22

Total 1843 8806 8 82 668

TABLE 5.4: Confusion matrix of GBDDM for each acquisition

GBDDM TP TN FP FN Frames
Acquisition 1 0 104 0 0 104
Acquisition 2 33 66 0 0 99
Acquisition 3 41 36 2 0 78
Acquisition 4 127 0 3 0 127
Acquisition 5 94 0 4 0 94
Acquisition 6 25 0 1 0 25
Acquisition 7 33 0 3 0 33
Acquisition 8 144 0 3 0 86
Acquisition 9 22 0 1 0 22

Total 519 206 17 0 668
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5.5.4 Evaluation Terms Results Analysis

The Table 5.5 shows the experimental comparative evaluation of FBDDM,
opt-FBDDM and GBDDM methods. To analyze the FBDDM and opt-FBDDM
results, the opt-FBDDM shows higher performance among FBDDM in terms
of Accuracy, Precision, Recall and F-measure, which indicates that the re-
calibration process is important to enhance and improve the results of the
feature-based defect detection method.

TABLE 5.5: Evaluation results of our proposed methods

Method Accuracy Precision Recall F-measure
FBDDM 98.74% 97.86% 95.06% 96.44%

opt-FBDDM 99.16% 99.56% 95.74% 97.61%
GBDDM 97.70% 96.82% 100% 98.38%

In addition, the opt-FBDDM shows higher Accuracy compared with GBDDM
but Accuracy is not enough to compare between both methods, because it
takes into consideration the true negative TN factor. However, the better
valuable parameters are Precision and Recall, because they depend on false
positive FP and false negative FN factors respectively, to describe the posi-
tive predictive value and the true positive rate respectively.

Moreover, the opt-FBDDM shows a higher Precision compared to the GB-
DDM, while the GBDDM shows a higher Recall compared to the opt-FBDDM.
Therefore, the most valuable and popular evaluation term is F-measure, be-
cause it represents both Precision and Recall terms in one single term. So, the
GBDDM shows a higher performance in term of F-measure compared to the
opt-FBDDM. This indicates and proves that the grid-based defect detection
method provides better efficiency and performance against the optimized
feature-based defect detection method.

Both optimized feature-based defect detection method and grid-based defect
detection method show high performance results, which indicate their im-
portance for road defect detection. However, the feature-based method pro-
vides detection and identification of road defects, while grid-based method
provides detection, visualization and localization of road defects.

5.5.5 Evaluation Methods Comparison Results

According to the mentioned methods in Table 5.6, our proposed methods is
compared with two defect detection methods. The first method is LiDAR-
Histogram [107] used the benchmark KITTI-ROAD data-set [108], which in-
cludes 3D high resolution LiDAR sensor Velodyne HDL-64E, cameras, GPS
and IMU. The LiDAR-Histogram method detects huge size of positive and
negative obstacles as like as vehicle and very large pothole respectively, as
shown in Figure 5.26. The second method is Cascade System [111] used a
personal acquisition recorded from 2D LiDAR sensor Lite v1 and camera
ODROID-XU4. The Cascade System method detects normal size of pot-
hole and speed hump. According to the quantitative results in Table 5.6,
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the F-measure, Precision and Recall evaluation performances of our method
rank first among all the methods. In addition, the results are very promising
considering that we use a single cylindrical 3D LiDAR sensor Velodyne VLP-
16 without extra sensors, where Velodyne VLP-16 is a low resolution LiDAR
compared with Velodyne HDL-64E (see Appendix A.1). In addition, our pro-
posed methods gain an advantage to detect a very small size of potholes and
humps compared with the large potholes, speed humps and obstacles sizes
in [107], [111]. It can be regarded as the baseline for the feature and grid
based methods.

Remark: Table 5.6 represents a first attempt to compare our proposed defect
detection methods FBDDM and GBDDM that are developed for cylindrical
LiDARs (Velodyne Puck, Ouster OS1) with other popular defect detection
methods that are developed for non-cylindrical LiDARs (Velodyne HDL).
We will work later on an extension of our proposed methods to deal with
these kind of LiDARs (Velodyne HDL) in order to propose a more satisfac-
tory comparison with KITTI-ROAD data-set.

Fig. 9. Experimental results in off-road environment. Segmentation results
are showed in flat(a) and nonflat(b) road condition. (c) and (d) show the
negative obstacle detection results at different distance. (e) and (f) reflect that
the Lidar-histogram has promising performance in water hazard detection.

Fig. 10. Color and position distribution of road learned from the trainning
set.

Fig. 11. Feature maps and result of the road detection algorithm.

B. Road detection in Kitti-Dataset

The KITTI-ROAD dataset includes calibration parame-
ters, ground-truth images, and scripts for evaluation. Since
most road detection approaches in literature are based on
supervised machine learning techniques, the KITTI-ROAD
Benchmark is divided in two datasets. The first one is
the training dataset, which includes ground-truth images.
The second one is the test dataset, which allows evaluation
only by submission of result images to the website. These
datasets comprise three different categories, namely Urban
Marked (UM), Urban Multiple Marked (UMM), and Urban
Unmarked (UU). Scripts provided by [20] generate a specific
score for each one. These scores are the classical pixel-based
metric known as Precision, Recall, False Positive Rate (FPR)
and False Negative Rate (FNR), and are computed after the
transformation between image domain and BEV space. As
the primary metric value for comparison, the KITTI-ROAD
benchmark uses F1-measure (hamonic mean of Precision and
Recall) to rank all methods.

Although the approach presented in this paper does not
require previous training, the performance surely will im-

Fig. 12. Visual results on road detection in KITTI-ROAD dataset.

prove if providing the training dataset to learn the optimal
parameters. Because the Lidar data in KITTI-ROAD has been
converted to point clouds, we can not generate the Lidar-
imagery. Instead, We project the unordered point clouds to
the image plane based on the cross calibration parameters.
Then we calculate the Lidar-histogram in the image plane. As
mentioned above, the road line is obtained with RANSAC.
If the disparity of a point is close to the line, it has a high
confidence that it belongs to the road. In mathmatics, we
can write it as g(p,q) = 1 − |Δ(p,q)− Δ(q)|/|max(Δ())−
min(Δ())|. This feature can be regarded as the geometrical
prior. After calculating all pixel-level geometrical feature, we
can obtain the geometrical map. Another important clue that
can be calculated from the road line is the vertical coordinate
of vanishing point in image. To speed up our processing, all
the pixels above the vanishing point are ignored. In order
to take advantage of the color images already available in
the dataset. We learned the color distribution(Fig. 10(a)) in
saturation channel from HSV color space and road-pixel
location distribution(Fig. 10(b)) among the training dataset.

Fig. 11 shows the procedure in testing phase. We first
change the color image into HSV color space and calcu-
late the confidence for each pixel according to the learned
probability density function, obtaining a color confidence
map. We can also get the geometry confidence map through
the Lidar-istogram and the geometrical feature. At last, we
use a weighted fusion strategy to combine the three input
confidence maps, and the final road detection is obtained
by thresholding the fusion result with a fixed threshold
value(0.5).

To show the effectiveness of the proposed Lidar-histogram
algorithm, we compare the results with the Lidar based
methods which can be referred ([4], [6] ) in the benchmark.
Fig. 12 illustrates some visual results. We can see that
some areas, that are very ambiguous only based on color
information, are easy to distinguish with 3D information.
So with sensor fusion, we can enhance the performance.
Then we evaluate the results quantitatively in the BEV
space. According to the quantitative result in Table I, the
performance of our method ranks first among all the methods
that use lidar data and color images. This result is very
promising considering that we only use very simple color
feature and proposed geometrical feature. It can be regarded
as the baseline for the Lidar-histogram based method. In
addition, our method is very fast. It can run in realtime with
a single CPU only, and easily parallelized with GPU. The
specific time cost is shown in Table I.
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are showed in flat(a) and nonflat(b) road condition. (c) and (d) show the
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the Lidar-histogram has promising performance in water hazard detection.
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set.

Fig. 11. Feature maps and result of the road detection algorithm.
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the training dataset, which includes ground-truth images.
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only by submission of result images to the website. These
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Marked (UM), Urban Multiple Marked (UMM), and Urban
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prove if providing the training dataset to learn the optimal
parameters. Because the Lidar data in KITTI-ROAD has been
converted to point clouds, we can not generate the Lidar-
imagery. Instead, We project the unordered point clouds to
the image plane based on the cross calibration parameters.
Then we calculate the Lidar-histogram in the image plane. As
mentioned above, the road line is obtained with RANSAC.
If the disparity of a point is close to the line, it has a high
confidence that it belongs to the road. In mathmatics, we
can write it as g(p,q) = 1 − |Δ(p,q)− Δ(q)|/|max(Δ())−
min(Δ())|. This feature can be regarded as the geometrical
prior. After calculating all pixel-level geometrical feature, we
can obtain the geometrical map. Another important clue that
can be calculated from the road line is the vertical coordinate
of vanishing point in image. To speed up our processing, all
the pixels above the vanishing point are ignored. In order
to take advantage of the color images already available in
the dataset. We learned the color distribution(Fig. 10(a)) in
saturation channel from HSV color space and road-pixel
location distribution(Fig. 10(b)) among the training dataset.

Fig. 11 shows the procedure in testing phase. We first
change the color image into HSV color space and calcu-
late the confidence for each pixel according to the learned
probability density function, obtaining a color confidence
map. We can also get the geometry confidence map through
the Lidar-istogram and the geometrical feature. At last, we
use a weighted fusion strategy to combine the three input
confidence maps, and the final road detection is obtained
by thresholding the fusion result with a fixed threshold
value(0.5).

To show the effectiveness of the proposed Lidar-histogram
algorithm, we compare the results with the Lidar based
methods which can be referred ([4], [6] ) in the benchmark.
Fig. 12 illustrates some visual results. We can see that
some areas, that are very ambiguous only based on color
information, are easy to distinguish with 3D information.
So with sensor fusion, we can enhance the performance.
Then we evaluate the results quantitatively in the BEV
space. According to the quantitative result in Table I, the
performance of our method ranks first among all the methods
that use lidar data and color images. This result is very
promising considering that we only use very simple color
feature and proposed geometrical feature. It can be regarded
as the baseline for the Lidar-histogram based method. In
addition, our method is very fast. It can run in realtime with
a single CPU only, and easily parallelized with GPU. The
specific time cost is shown in Table I.
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(b) Vehicle detection

FIGURE 5.26: Positive and negative obstacle detection [107]

TABLE 5.6: Evaluation comparison results with other methods

Method Precision Recall F-measure Run-time Environment
GBDDM 96.82% 100% 98.38% 0.09s 1 core @ 2.8Ghz (Matlab)
FBDDM 99.56% 95.74% 97.61% 0.48s 1 core @ 2.8Ghz (Matlab)

LiDAR-Histogram [107] 95.39% 91.34% 93.32% 0.1s 1 core @ 2.5Ghz (C/C++)
Cascaded System [111] 76.98% 76.33% 76.66%

5.6 Conclusion

In this chapter, two defect detection methods are presented. The Feature-
Based Defect Detection Method FBDDM, where the solution relies on cali-
bration process, that provides a horizontal and understandable ground, in
order to study the concavity feature by second order of Differential Gaus-
sian Filter DGF2, to detect various homogeneous road defects. In addition,
the Grid-Based Defect Detection Method GBDDM relies also on the calibra-
tion process, in order to study the altitude distance, using improved Inverse
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Distance Weighted IDW interpolation method and Grid Splitting Algorithm
GSA, to detect, visualize and localize the defects in a high resolution geo-
referenced image. The results show a compromised performance and im-
pressive efficiency of our proposed defect detection methods, in terms of
Accuracy, Precision, Recall and F-measure compared with other detection
methods, proving the detection ability of potholes and humps defects using
real data.
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Conclusion and Perspectives

As a part of transportation and driver assistance systems framework, our
contribution concerns multi-defect detection from distributed 3D telemetry
measurements. We have developed and validated various global methods,
that are compatible with any cylindrical 3D LiDAR sensors. These have been
applied to of 3D LiDAR perception system mounted and centered on the
vehicle backward. Indeed, the LiDAR sensor is rotated toward the ground
in order to increase the road coverage resolution, which improves the road
defect detection process. Therefore, the calibration process was adopted in
order to transform the LiDAR frame into a global reference frame, thus mod-
ifying the LiDAR frame into an understandable view scene.

The development and improvement of a novel flexible extrinsic LiDAR/
Ground Calibration Method LGCM was the starting point of this thesis. The
calibration method is relied on ground plane-based modeling, to estimate the
4-DOF extrinsic parameters: height and 3D orientation. Moreover, the cali-
bration process is built on four main aspects: linear model Least Squares es-
timator, Rodrigues formula, Least Squares Conic Algorithm and Levenberg-
Marquardt optimization algorithm. The results show a significant perfor-
mance in terms of precision and robustness against the variation of LiDAR’s
orientation and range accuracy respectively, proving the stability and the ac-
curacy of the proposed calibration method on synthetic and real data. This
reflects the global good capability of this calibration method when applied
on cylindrical LiDAR sensors under difficult experimental conditions.

In addition, we proposed and developed two novel road defect detection
methods in the context of this thesis, where the solution of these two de-
tection method relies on the calibration method, that provides a horizontal
and understandable ground view. First, the Feature-Based Defect Detection
Method FBDDM, that studies the concavity feature on each elevation laser
using second order Differential Gaussian Filter, to detect multi homogeneous
road defects. The recalibration process has imposed itself to enhance the false
alarm, in order to improve the evaluation results of the Feature-Based Defect
Detection Method. Second, the Grid-Based Defect Detection Method GB-
DDM that relies on two main aspects: improved Inverse Distance Weighted
interpolation method and Grid Splitting Algorithm, to detect, visualize and
localize the multi homogeneous road defects in a high resolution georefer-
enced image. The evaluation results show a compromised performance and
impressive efficiency of our proposed defect detection methods, in terms of
accuracy, precision and recall against other defect detection methods, prov-
ing the detection ability of potholes and humps defects using real data.
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Based on the outcomes presented in this thesis, we highlight several interest-
ing future research directions:

• In our work, the detection methods is applied on road defects (potholes
and humps). It will be an interesting application to apply the same
methods on vehicles, obstacles and pedestrians detection. More than
that, modify the grid-based defect detection method to detect the water
hazards using the reflectivity LiDAR feature.

• Using a high resolution LiDAR like OS1-128 LiDAR sensor will increase
the performance of calibration and detection processes. But, it will also
increase the chance of defect size estimation challenge.

• In road selection points process, the road looses a small spatial regions
at the edge of the road. So, we suggest to develop a road detection
method to study the defects that are aligned beside the road edges.

• We recommend a LiDAR and Camera fusion sensors to increase the
performance of the proposed detection methods, especially the grid-
based defect detection method.

• In addition, the fusion of LiDAR, Global Positioning System GPS and
Inertial Measurement Unit IMU will support a defect tracking, localiza-
tion and mapping system in a global world wide reference.

• Moreover, the proposed calibration and detection methods are compat-
ible with cylindrical LiDARs. It will be interesting to find a way to mod-
ify the methods process to be compatible with non cylindrical LiDARs
like Velodyne HDL-64 LiDAR sensor. So, the methods can be directly
applied on the KITTI-ROAD data-set to compare perfectly with other
methods.

• Finally, the most interesting challenge is to implement the methods on
a Digital Signal Processor DSP as a real-time application.
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Appendix A

Velodyne Product Sensors

A.1 Velodyne Products Features

Product Guide

Features HDL-64 HDL-32 VLP-16

Channels 64 32 16

Range 100-120 m 80-100 m 100 m

Accuracy +/- 2cm +/- 2cm +/- 3cm

Data Distance / 
Intensity

Data Rate 1.3M pts/sec 700,000 pts/sec 300,000 pts/sec

Vertical FOV 26.8º 40º 30º

Input Voltage
(with interface box and regulated power supply)

10-32 VDC 9-32 VDC 9-32 VDC

Power 60W 12W 8W

Environmental IP67 IP67 IP67

Operating Temperature -10º to 50º C -10º to 60º C -10º to 60º C

Size 203mm x 284mm (~8” x ~11”) 86mm x 145mm (~3.6” x ~6”) 104mm x 72mm (~4” x ~3”)

Weight 15kg (33lbs) 1kg (2.2lbs) 0.83kg (1.8lbs)

Distance / Calibrated
Reflectivities

Distance / Calibrated
Reflectivities

Vertical Resolution ~ 0.4º ~ 1.3º ~ 2.0º

Horizontal Resolution
 5Hz: 0.08º

10Hz: 0.17º
20Hz: 0.35º

 5Hz: 0.08º
10Hz: 0.17º
20Hz: 0.35º

 5Hz: 0.1º
10Hz: 0.2º
 20Hz: 0.4º

www.velodynelidar.com

(~11”)
284mm

(~8”)203mm

(~6”)
145mm

(~8”)86mm

(~3”)
72mm

(~4”)72mm

Horizontal FOV 360º 360º 360º

www.velodynelidar.com          Email: lidar@velodyne.com          Phone: 408 465 2800 
FIGURE A.1: Some of Velodyne Products Features [138]
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A.2 VLP-16 Packet Structure

Every model of LiDAR sensor has its own packet structure in which the data
is being sent to the user. For the Velodyne LiDARs, the information is ef-
fectively packed to save bandwidth of a communication line, as every point
within a packet does not contain its full description and shares some parame-
ters with other grouped points. According to the supplied packet’s structure
and timing information, we can retrieve every single record of a point with-
out any loss of precision. Packet’s structure is shown in Figure A.2.

......................................3.3. Communication

Figure 3.4: Packet’s structure

Timestamp - Every single packet includes one and only one time stamp.
It is represented by 4 bytes unsigned integer value and is written down from
the 1200th byte in the payload. This time is the firing time of the first
laser shot in a packet (microseconds since the LiDAR’s startup/power-up).
If we want to get a time stamp for every single point, we have to take the
information about the lasers firings timing and do interpolation.

"All sixteen lasers are fired and recharged every 55, 296 µs. The cycle time
between the laser firings is 2, 304 µs. There are 16 firings (16 × 2, 304 µs) fol-
lowed by a recharge period of 18, 43 µs. Therefore, the timing cycle to fire and
recharge all 16 lasers is ((16×2, 304 µs)+(1×18, 43 µs)) = 55, 296 µs." [Inc15]

As we can see in figure 3.4, a packet includes 24 of these 16-laser firing
groups (we will call these "firing block"), hence it takes 1, 33 ms to accumulate
one data packet. This implies data rate of 754 data packets per second. This

15

FIGURE A.2: VLP-16 Packet Structure [138]

• Data Point: 3 bytes from a single firing from a laser.

– 2 bytes of distance.

– 1 byte of calibrated reflectivity.

• Data Block: (100 bytes).

– 2 bytes flag (0 × FFEE).

– 2 bytes azimuth.
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– 96 bytes for 32 Data Points.

• Data Packet:

– 42 bytes of header.

– 12 Data Blocks.

– 4 bytes timestamp

– 2 byte factory field.
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Appendix B

Graphical Clarifications

B.1 Additive distinguish noise

The additive distinguish noise wρ, wα, wβ to each of range, azimuth, and ele-
vation ρ, α, β respectively are shown in the Figure B.1, and expressed in the
below Equation B.1.

(cw) :

 ρw
αw
βw

 =

 ρ + wρ

α + wα

β + wβ

 (B.1)

Z

Y

Y

X

Side View Top View

O

O

Z

Y

Side View

O

Data point

𝜌 

𝑤𝜌  

𝜌𝑤  

𝛼𝑤  

𝛼 
𝑤𝛼  

𝛽𝑤  
𝛽 

𝑤𝛽  

FIGURE B.1: Data PointCloud features with noise
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B.2 Rotation and Translation Transformation for
LiDAR Frame
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FIGURE B.2: Data PointCloud features with noise
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Résumé Étendu de la Thèse
1. Le Contexte
La connaissance de l’état du réseau routier dans un pays est un enjeu impor-
tant pour pouvoir déployer une politique rationnelle d’entretien, de réhabil-
itation et d’amélioration du trafic routier. Comme nous le savons, certains
accidents de la circulation sont le résultat de la présence de défauts ou de pe-
tits obstacles sur les routes. Cependant, les accidents de la route représentent
un problème de santé mondial majeur pour la sécurité humaine. Comme
fait clé, le rapport de l’Organisation mondiale de la santé (OMS) sur l’état
mondial de la sécurité routière indique que le nombre total de décès sur les
routes a plafonné à 1.15 million de personnes en 2000. Ensuite, il augmente
de 0.1 millions pour atteindre 1.25 millions de morts sur les routes en 2015
[1], [2], et 1.35 millions de morts en 2018 [3]. En particulier dans les pays à
faibles revenus tels que l’Afrique et l’Asie du Sud-Est, un record de 95% des
décès dans le monde se produisent sur la route [4], et plus de la moitié des
décès dus aux accidents de la route concernent des usagers de la route vul-
nérables : motocyclistes, cyclistes et piétons, où la plupart des décès et des
incapacités concernent des personnes âgées de 5 à 29 ans [5]–[7]. De plus,
l’estimation du coût des accidents de la route atteint 3% du produit national
brut des économies mondiales, ce qui a un impact sérieux sur les économies
nationales [3], [4]. Par conséquent, la collaboration des Nations Unies (ONU)
sur la sécurité routière a élaboré un plan mondial qui propose un programme
de développement durable à l’horizon 2030 pour fixer un objectif ambitieux
de réduction de moitié du nombre mondial de décès et de blessures dus aux
accidents de la route [8], [9].

Cette thèse de doctorat s’inscrit dans ce cadre puisqu’elle se propose de fournir
un modèle géométrique et topologique de routes et d’en extraire des infor-
mations sémantiques. De plus, ces travaux portent sur la caractérisation
du revêtement routier et la présence de zones potentiellement dangereuses,
d’abord par un calibrage des informations géométriques d’environnement,
suivi d’une détection et localisation des défauts de la route. Il est égale-
ment important de visualiser et de localiser les informations géométriques
de chaque défaut obtenu sur la route.
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Ce travail s’inscrit dans le cadre général des systèmes de perception multi-
capteurs, portant plus particulièrement sur les différentes caractéristiques ci-
dessus, qui seront obtenues à partir d’une information télémétrique d’un
télémètre multi-lasers (Light Detection and Ranging LiDAR, Laser Range
Finder LRF ) monté sur un véhicule comme illustré à la Figure 1.

(a) VLP-16 LiDAR monté sur un véhicule (b) LiDAR VLP-16 monté sur un support fixe

FIGURE 1: Système VLP-16

Dans les applications de transport, le développement des Systèmes Avancés
d’Aide à la Conduite (ADAS) fait l’objet de nombreux travaux depuis une
vingtaine d’années [10]. Dans le contexte des systèmes de transport, l’objectif
est de surveiller l’environnement du véhicule afin d’informer le conducteur,
à chaque instant, des situations potentiellement dangereuses. Des méth-
odes de détection multi-objets dans les données d’un télémètre laser à bal-
ayage embarqué à bord d’un véhicule en mouvement ont été proposées.
Même si ces méthodes conservent certaines limitations inhérentes à la nature
physique du signal de mesure, ce capteur laser présente de nombreux avan-
tages pour l’ADAS : vision jour/nuit, forte précision, fréquence de mesure
élevée, tirs laser directifs, large champ de perception. L’inconvénient majeur
d’un télémètre laser monocouche est sa sensibilité aux mouvements de tan-
gage, liée à sa directivité : les distances mesurées peuvent être perturbées et
donner lieu à des mesures indésirables de la scène, désignées par le terme
plus général de " fouillis ". Le développement des télémètres multicouches,
c’est-à-dire travaillant sur plusieurs plans de mesure, a permis de minimiser
ces perturbations inhérentes à la nature physique de la mesure. Bien qu’ayant
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la particularité de délivrer des informations précises de positionnement re-
latif contrairement aux capteurs de type caméra vidéo, les télémètres laser
se distinguent par la relative pauvreté des informations reçues sur la scène
(directement liée à la résolution angulaire du capteur).

Il est donc nécessaire de développer des solutions informant le conducteur
sur les défauts de route. Par ailleurs, ces informations sont importantes pour
obtenir des données statistiques sur les défauts de route afin de limiter les
zones à risque et de construire une aide à la décision pour l’amélioration du
réseau routier. Notre hypothèse fonctionne précisément sur une méthode
de calibration extrinsèque pour le capteur LiDAR basée sur l’estimation du
modèle de plan géométrique, qui sert les deux méthodes de détection de
défauts de route proposées : celle basée sur les caractéristiques de la route et
celle basée sur une approche par grille.

2. Buts et Objectifs de la Thèse
Dans les applications de transport, de nombreux articles utilisent le LiDAR
pour détecter et suivre des objets d’intérêt (piétons, véhicules, etc...) à par-
tir de mesures 3D. Le capteur LiDAR est également utilisé pour détecter la
route, souvent en complément des capteurs de la caméra. Dans ces appli-
cations, l’idée est d’avoir une vue complète de l’environnement du conduc-
teur sur l’horizon le plus large possible. Par conséquent, l’objectif de cette
thèse repose sur un capteur LiDAR à faible angle d’inclinaison (capteur ori-
enté horizontalement) pour étudier et analyser les défauts de la route : trous,
bosses ou toutes couches externes homogènes, ce qui aura un impact sur
le problème d’accidentologie causée par les zones dangereuses du réseau
routier. Cette étude comprend plusieurs objectifs scientifiques : détection,
visualisation et localisation des défauts de la route.
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3. Points Clés de la Thèse
Les points clés du problème étudié dans cette thèse sont illustrés dans la
figure 2 et sont répertoriés ci-dessous :

Data Extraction 

and 

Preprocessing

Generation of 

Simulation Data

Extrinsic 

Calibration

Ground 

Selection

Defect 

Detection

Extrinsic 

Recalibration

Data 

Acquisition

Defect 

Visualization 

and Localization

FIGURE 2: Schéma Fonctionnel de la Thèse

1. Génération de données de simulation sur des données de capteurs Li-
DAR pour différentes orientations et altitudes.

2. Optimisation de l’altitude et de l’orientation LiDAR à l’aide des don-
nées synthétiques, avant d’analyser la couverture des points de distri-
bution LiDAR au sol, pour convenir à l’application pratique et assurer
la possibilité de détection des défauts de la route.

3. Acquisition de données à l’aide d’un capteur LiDAR monté sur un
véhicule en mouvement.

4. Extraction de données (portée, azimut, élévation, réflectivité et temps)
à partir du fichier au format .pcap. Puis prétraitement des données et
présentation du player PointCloud.

5. Méthode d’étalonnage LiDAR/Sol extrinsèque 3D utilisant une estima-
tion basée sur le plan géométrique 3D.

6. Sélection au sol Méthode PointCloud utilisant un filtre gaussien dif-
férentiel, pour éliminer : les obstacles qui existent sur la route, et les
objets qui entourent la route.

7. Re-calibrage extrinsèque pour le PointCloud routier pour améliorer le
processus de calibrage.

8. Méthode basée sur les fonctionnalités de détection des défauts.

9. Visualisation et localisation des défauts à l’aide de la méthode basée sur
la grille.
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4. Contributions Proposées
Dans le cadre de cette étude (détection des défauts de la route), le capteur
LiDAR est vers le sol afin d’augmenter la densité de points couvrant les dé-
fauts par le laser multi-élévation comme le montre la Figure 3. Cela entraîne
une modification complexe de la scène 3D au sol perçue par le LiDAR. Par
conséquent, un étalonnage extrinsèque a été adopté afin de transformer le
référentiel du LiDAR en un référentiel global, transformation ainsi les points
d’impact au sol en une scène exploitable.

h h

No reflection

Reflection region Orientation

(a) Pas d’orientation

h h

No reflection

Reflection region Orientation

(b) Orientation LiDAR
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FIGURE 3: Grande zone clairsemée par rapport aux points à
haute densité
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4.1. Nouvelle Méthode d’Etalonnage

Notre objectif est de proposer une méthode de calibration (et d’estimation du
plan de route) qui fonctionne dans des conditions expérimentales difficiles
(grand angle d’inclinaison). En effet, nous visons à développer une méthode
de calibrage qui permette de déterminer précisément le plan de route dans
un voisinage très proche du véhicule. L’idée à terme est de détecter les dé-
fauts de la route lors de la conduite sur le réseau routier. Bien que développée
dans cet esprit (c’est-à-dire avec un haut degré de précision dans la détermi-
nation du plan de route), notre méthode est suffisamment générale pour être
applicable dans tout contexte opérationnel plus large.

opt-LGCMProposed Calibration Method: LGCM
Euler’s Angles Estimation

Rotation about Axis

(Rodrigues Formula)

Fitting Plane

(L.S Method)

Yaw Angle Estimation

(L.S Conic Algorithm)
Height Estimation

Extrinsic Parameters 

Optimization

(L.M Algorithm)

LiDAR Data

FIGURE 4: Le schéma fonctionnel de la méthode d’étalonnage
extrinsèque proposée

Afin d’atteindre l’objectif clé ci-dessus, cette thèse aborde une nouvelle méth-
ode de calibration extrinsèque flexible, publiée dans [11], [12]. La méthode
d’étalonnage proposée peut être résumée par les deux contributions suiv-
antes : (1) estimation du modèle de plan au sol et (2) estimation de la matrice
de transformation de rotation de la référence mondiale au sol au cadre du
capteur LiDAR, comme indiqué sur la figure 4. Les angles d’Euler 3D (orien-
tation du capteur) et la hauteur (altitude du capteur au-dessus du sol) sont
deux paramètres extrinsèques essentiels nécessaires pour calibrer les cap-
teurs LiDAR 3D complets comme indiqué sur la figure 5, afin d’améliorer la
capacité de défaut de la route détection comme cela sera expliqué dans la sec-
tion 4.2.1. De plus, le problème est modélisé par une transformation 4-DOF
(degré de liberté) : rotation 3-DOF et hauteur 1-DOF, au lieu d’une transfor-
mation 6-DOF : rotation 3-DOF et translation 3-DOF. Cet avantage de mod-
élisation offre la simplicité dans le processus d’optimisation des paramètres
extrinsèques.

Par rapport à une précédente méthode basée sur le plan [13], [14], l’approche
développée peut être généralisée à tous les types de télémètres laser à bal-
ayage et présente une estimation optimisée de tous les paramètres de cali-
bration extrinsèques (angles, hauteur). Cette méthode globale peut être mise
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Rotated 
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FIGURE 5: (a) Pas d’orientation, (b) Concept d’orientation pra-
tique, (c) Concept d’orientation scientifique

en œuvre sur différents capteurs LiDAR cylindriques (3D low-cost et full 3D)
avec différentes précisions de portée. De plus, la technique proposée est plus
performante dans les scénarios à haute orientation, ce qui est une tâche très
intéressante et stimulante qui vise à augmenter la densité de couverture des
points.

4.2. Nouveauté sur les Méthodes de Détection des Défauts de la Route

Passant au sujet principal de la thèse, deux nouvelles méthodes de détection
des défauts routiers sont proposées, appelées méthode de détection des dé-
fauts basée sur les fonctionnalités et méthode de détection des défauts basée
sur la grille. La méthode de détection de défauts basée sur la fonction de
concavité fournie par le filtre gaussien différentiel du second ordre. Ce fil-
tre hDGF2(n) calcule la dérivée seconde du signal d’entrée et dont la sortie
zDGF2 indique la caractéristique de concavité du signal d’entrée zw(n) telle
qu’exprimée dans les équations 2 et 3. Tout d’abord, cette méthode fonc-
tionne individuellement sur chaque laser d’élévation, pour détecter plusieurs
défauts routiers de petite taille (nids de poule, bosses) avec des motifs ho-
mogènes et des propriétés. Cette méthode est très sensible à la fonction de
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concavité, mais elle nécessite une résolution LiDAR suffisante sur la cible.

zDGF2(n) = zw(n) ∗ hDGF2(n)

= zw(n) ∗ hDGF(n) ∗ hDGF(n)
(2)

hDGF(n) =
G√

2πσ2
exp

(
− (n − µ)2

2σ2

)

− G√
2πσ2

exp

(
− (n + µ)2

2σ2

)
for

−µ ≤ n ≤ µ

σ = µ/2

(3)

où G est un paramètre de gain pour l’amplification du signal, σ est l’écart
type de la distribution gaussienne et n est le numéro d’index des points des
signaux zw, zDGF, zDGF2 et les réponses impulsionnelles du système hDGF, hDGF2.

D’autre part, la méthode de détection de défauts basée sur la grille comprend
deux contributions :

• Méthode d’interpolation pondérée par l’inverse de la distance améliorée,
basée sur la distribution en altitude dans une grille spatiale pour générer
une image géoréférencée en altitude comme exprimé dans les équations
4,5,6,7 ,8 et 9.

dw/opt =
|Aoptxw + Boptyw + Coptzw + Dopt|√

A2
opt + B2

opt + C2
opt

(4)

dw/opt = zw + h (5)

Id =
dw/opt − dmin

dmax − dmin
× Lgray (6)

où xw, yw, zw sont les coordonnées cartésiennes des points au sol re-
calibrés 3D, Aopt, Bopt, Copt, Dopt sont les paramètres du plan optimisé
(Popt), dmin et dmax sont respectivement les valeurs minimale et maxi-
male de la distance en altitude dw/opt, et Lgray = 255 est le niveau de
gris d’intensité maximale.
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La valeur de gris d’intensité de la cellule de la grille (i, j), notée Gij ,
s’exprime comme suit :

Gij =

( nij

∑
k=1

Wk,ij Ik,ij
d

)/ ( nij

∑
k=1

Wk,ij

)
(7)

Wk,ij = aWk,ij
D + bWk,ij

Id
(8)

a + b = 1 (9)

où nij est le nombre de points dans la cellule (i, j), Wk,ij et Ik,ij
d sont le

poids général et l’intensité de la distance en altitude du point kth dans
la cellule (i, j), respectivement. a et b sont les coefficients de poids, Wk,ij

D
et Wk,ij

Id
sont les composantes de poids calculées en tenant compte de la

distance euclidienne plane D à partir de la grille le centre de cellule et
l’intensité de distance d’altitude Id dans la cellule de grille (i, j), respec-
tivement.

• Algorithme de Fractionnement de Grille , fournit une taille de grille dy-
namique pour augmenter la résolution de l’image géoréférencée, comme
expliqué dans Algorithm 5.
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Algorithm 5: Algorithme de Fractionnement de Grille
Input: Distance en altitude dw/opt, valeurs initiales des longueurs

horizontale et verticale H, V respectivement, et coordonnées
cartésiennes xw, yw, zw des points kth dans une cellule de grille
(i, j)

Output: Image grise géoréférencée Gij

1 Si la cellule de la grille est vide, associez la valeur de gris d’intensité Gij à
zéro.
Sinon, calculez la distribution de distance σdw/opt

des points kth dans une
cellule de grille (i, j) comme indiqué ci-dessous :

σdw/opt
=
√

1
N ∑

nij
k=1(dw/opt − dw/opt)2

2 Si l’écart type de la distribution de distance σdw/opt
≥ σth, divisez la

cellule de la grille en quatre sous-grilles au cas où toutes les sous-grilles
ne seraient pas vides, en divisant les longueurs horizontale et verticale
par deux H/2, V/2 respectivement. Où σth ≃ 1.5cm est un seuil
constant qui définit la précision de distance maximale pour l’impact
laser du capteur LiDAR sur un plan plat. Ensuite, passez à l’étape 1.
Sinon, calculez la valeur de niveau de gris Gij en utilisant la méthode
d’interpolation pondérée par l’inverse de la distance proposée
ci-dessus.

3 Divisez les cellules de la grille en cellules de sous-grille en fonction de la
plus petite taille de cellule et associez les valeurs de niveau de gris des
cellules de sous-grille à égalité avec la valeur de niveau de gris de la
cellule de la grille d’origine.

Cette méthode fonctionne simultanément sur tous les lasers d’élévation. Elle
est sensible à la distribution d’altitude et nécessite une résolution LiDAR
élevée pour détecter, visualiser et localiser les défauts routiers multi-homogènes
dans une image géoréférencée à haute résolution. Les résultats de l’évaluation
montrent une performance compromise et une efficacité impressionnante de
nos méthodes de détection de défauts proposées, en termes d’exactitude, de
précision et de rappel par rapport à d’autres méthodes de détection de dé-
fauts, prouvant la capacité de détection des défauts de nids-de-poule et de
bosses à l’aide de données réelles.

5. Conclusion et Perspectives
Dans le cadre des systèmes de transport et d’aide à la conduite, notre contri-
bution concerne la détection multi-défauts à partir de mesures de télémétrie
3D laser distribuée. Nous avons développé et validé différentes méthodes,
compatibles avec tous les capteurs LiDAR 3D cylindriques. Celles-ci ont été
appliquées à un système de perception LiDAR 3D, monté et centré sur le
véhicule, et orienté vers l’arrière. Par ailleurs, le capteur LiDAR est tourné
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vers le sol afin d’augmenter la résolution pour la caractérisation de la route,
ce qui améliore le processus de détection de défauts de route. Par conséquent,
le processus d’étalonnage a été adopté afin de transformer le référentiel Li-
DAR en un référentiel global, modifiant ainsi le référentiel LiDAR en une
scène 3D interprétable.

Le développement et l’amélioration d’une nouvelle méthode d’étalonnage
extrinsèque flexible LiDAR/sol LGCM a été le point de départ de cette thèse.
La méthode d’étalonnage s’appuie sur une modélisation basée sur le plan du
sol pour estimer les paramètres extrinsèques 4-DOF : hauteur et orientation
3D. De plus, le processus de calibrage repose sur quatre aspects principaux :
estimateur des moindres carrés du modèle linéaire, formule de Rodrigues, al-
gorithme conique des moindres carrés et algorithme d’optimisation de Levenberg-
Marquardt. Les résultats montrent une performance significative en termes
de précision et de robustesse vis-à-vis de la variation de l’orientation et de
la précision de distance du LiDAR respectivement, prouvant la stabilité et
la précision de la méthode d’étalonnage proposée sur des données synthé-
tiques et réelles. Cela reflète la bonne capacité globale de cette méthode
d’étalonnage lorsqu’elle est appliquée sur des capteurs LiDAR cylindriques
dans des conditions expérimentales difficiles.

De plus, nous avons proposé et développé deux nouvelles méthodes de dé-
tection de défauts routiers dans le cadre de cette thèse, où la solution de
ces deux méthodes de détection repose sur la méthode d’étalonnage, qui
fournit une vue horizontale et exploitable du sol. Tout d’abord, la méth-
ode de détection de défauts basée sur les fonctionnalités FBDDM, qui étudie
la caractéristique de concavité sur chaque laser d’élévation à l’aide d’un fil-
tre gaussien différentiel de second ordre, pour détecter plusieurs défauts de
route homogènes. Le processus de recalibrage s’est imposé pour améliorer
la fausse alarme, afin d’améliorer les résultats d’évaluation de la méthode de
détection des défauts basée sur les fonctionnalités. Deuxièmement, la méth-
ode de détection de défauts basée sur la grille GBDDM qui repose sur deux
aspects principaux : la méthode d’interpolation pondérée par la distance in-
verse améliorée et l’algorithme de fractionnement de grille, pour détecter,
visualiser et localiser les défauts routiers multi-homogènes dans une image
géoréférencée à haute résolution. L’évaluation de ces méthodes montrent
l’efficacité de nos méthodes de détection de défauts, en termes d’exactitude,
de précision par rapport à d’autres méthodes de détection de défauts, prou-
vant la capacité de notre méthode à fournir une solution efficace de détection



124 Bibliography

de défauts tels que les nids-de-poule et les bosses sur données réelles.

Sur la base des résultats présentés dans cette thèse, nous mettons en évidence
plusieurs directions de recherche futures intéressantes :

• Dans notre travail, les méthodes de détection sont appliquées sur les
défauts de route (nids de poule et bosses). il serait intéressant d’exploiter
ce type de méthodes sur la détection de véhicules, d’obstacles ou de
piétons. Au delà, on pourrait s’intérsser à adapter notre méthode de
détection de défauts basée sur une approche par grille pour détecter les
risques liés à la présence d’eau sur la route, à l’aide de la réflectivité
LiDAR.

• L’utilisation d’un LiDAR haute résolution comme le capteur LiDAR
OS1-128 augmentera les performances des processus de calibrage et de
détection. Mais l’enjeu sera également lié à la taille des défauts pour la
problématique de détection.

• Dans le processus de détection des points de route, nous perdons une
petite région spatiale en périphérie de la route. Ainsi, nous proposons
de développer une méthode de détection de route pour étudier les dé-
fauts qui sont situés le long des bords de route.

• Nous proposons de travailler sur les problématiques de fusion LiDAR/caméra
pour augmenter les performances des méthodes de détection proposées,
en particulier la méthode de détection de défauts basée sur l’approche
par grille.

• En outre, la fusion du LiDAR, avec un système de positionnement global
de type GPS et une centrale inertielle (IMU) permettra de prendre en
charge le suivi, la localisation et la cartographie des défauts dans une
système de référence mondial.

• De plus, les méthodes de calibrage et de détection proposées sont com-
patibles avec les LiDAR cylindriques. Il sera intéressant d’étudier l’évolution
des méthodes proposées pour assurer la compatibilité avec les LiDAR
non cylindriques comme le capteur LiDAR Velodyne HDL-64. Ainsi,
les méthodes peuvent être directement appliquées sur le jeu de données
KITTI-ROAD pour se comparer parfaitement avec d’autres méthodes.

• Enfin, le défi le plus intéressant est d’implémenter les méthodes sur un
processeur de signal numérique DSP en tant qu’application temps réel.
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6. Structure du manuscrit
Plus loin, ce manuscrit de thèse introduit les chapitres suivants :

• Chapitre 2 présente l’état de l’art de la thèse, qui comprend l’étude de
la différence entre les capteurs 2D et 3D, la définition du LiDAR 3D, la
comparaison entre le LiDAR 3D et d’autres capteurs 3D, la définition
du calibrage du LiDAR et les travaux de la communauté liés à cette
problématique. En outre, il présente également une revue des méth-
odes de détection de défauts de route basées sur les capteurs LiDAR,
Caméra et Accéléromètre.

• Chapitre 3 présente les caractéristiques du capteur LiDAR Velodyne
VLP-16, les opérations d’extraction et de prétraitement des données.

• Chapitre 4 présente la modélisation géométrique des impacts laser du
capteur LiDAR sur le sol, et la méthode de calibrage extrinsèque Li-
DAR/sol proposée. En outre, il montre des résultats expérimentaux de
calibrage extrinsèque en simulation et sur des données réelles.

• Chapitre 5 présente le processus de sélection au sol, la méthode de dé-
tection des défauts basée sur les fonctionnalités proposée et la méthode
de détection des défauts basée sur une approche par grille. En outre, il
montre les résultats d’évaluation sur données réelles des méthodes de
détection de défauts routiers proposées en comparaison avec d’autres
méthodes.
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Thesis Extended Summary

1. Context
The state of road network knowledge in a country is an important issue in or-
der to be able to deploy a rational policy of road maintenance, rehabilitation
and traffic improvement. As we know, some traffic accidents are the result of
the presence of disabilities or small obstacles on the roads, and one of the ma-
jor problems that the population suffers from on a daily lives. Although, road
traffic injuries represents a major global health problem of human safety. As a
key facts, the World Health Organization (WHO) report on the Global status
of road traffic safety, reflecting information from worldwide countries, indi-
cates that the total number of road traffic deaths has plateaued at 1.15 million
person in 2000. Then it increases 0.1 million to reach 1.25 million road traffic
deaths in 2015 [1], [2], and 1.35 million deaths in 2018 [3]. Especially in low-
middle-income countries as Africa and South-East Asia, record 95% of the
world’s fatalities occur on the road [4], and more than half road traffic deaths
are among vulnerable road users: motorcyclists, cyclists, and pedestrians,
where most of deaths and disabilities are for individuals aged 5-29 years [5]–
[7]. In addition, the estimation of road traffic injuries consumption reach 3%
of the gross national products of world governments, which have a serious
impact on national economies [3], [4]. Therefore, the United Nations (UN)
road safety collaboration has developed a global plan that proposes an 2030
agenda for sustainable development to set an ambitious target of halving the
global number of deaths and injuries from road traffic crashes by 2020 [8],
[9].

This thesis topic falls within this framework since it proposes to provide a
geometrical and topological model of the route and to extract semantic infor-
mation about the roads. In addition, these works will focus on the charac-
terization of road surface and the presence of potentially dangerous areas,
first, through a calibration of the geometrical environment information,
followed by detection and localization of the road defects. It will also be
important to visualize and locate the geometrical information of each defect
obtained on the road.

This work is a part of the general framework of multi-sensor perception sys-
tems, more particularly focusing on the above different characteristics, that
will be obtained from a telemetric information of a multi-lasers rangefinder
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(Light Detection and Ranging LiDAR, Laser Range Finder LRF) mounted on
a vehicle as shown in Figure 1.

(a) VLP-16 LiDAR mounted on a vehicle (b) VLP-16 LiDAR mounted on a fixed stand

FIGURE 1: VLP-16 system

In transport applications, the development of Advanced Driver Assistance
Systems (ADAS) has been the subject of much work for the past twenty years
[10]. In transportation systems context, the objective is to monitor the vehicle
environment in order to inform the driver, at each moment, about the poten-
tially hazardous situations. Multi-object detection methods in data from a
scanning laser rangefinder on board a moving vehicle have been proposed.
Even though, these methods retain some limitations inherent in the physical
nature of the measurement signal, this laser sensor has many advantages for
ADAS: day/night vision, low accuracy, high frequency of measurement, di-
rective laser shots, wide field of perception. The major drawback of a single-
layer laser rangefinder is its sensitivity to pitching movements, linked to its
directivity: the distances measured can be disturbed and give rise to unde-
sirable measurements of the scene, designated by the more general term of "
clutter ". The development of multi-layer rangefinders, that is to say work-
ing on several measurement planes, has made it possible to minimize these
disturbances inherent in the physical nature of the measurement. Although,
having the particularity of delivering precise relative positioning informa-
tion unlike sensors of the video camera type, laser rangefinders are distin-
guished by the relative poverty of the information received on the scene (di-
rectly linked to the angular resolution of the sensor).
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Therefore, it is necessary to develop solutions informing the driver by a prior
information about the road defects. This information is important to obtain
a statistical road defects data in order to avoid the risky accidents and to
take a right decision for road enhancement in a spatial road network. Our
hypothesis precisely works on an extrinsic calibration method for the LiDAR
sensor based on the geometrical plane model estimation, which serves the
two methods of road defects detection: feature-based and grid-based.

2. Thesis Aims and Objectives
In transportation applications, many articles use LiDAR to detect and track
objects of interest (pedestrians, vehicles, etc...) from 3D measurements. The
LiDAR sensor is also used to detect the road, often in addition to camera
sensors. In these applications, the idea is to have a thorough view of the
driver’s environment over the widest possible horizon. Therefore, the aim of
this thesis involves a LiDAR sensor with a low angle of inclination (horizon-
tally oriented sensor) to study and analyze the road defects: holes, humps or
any homogeneous out-layers. Which contribute in solving the car accidents
problem that are caused by spatial dangerous areas in the road network. This
study includes several scientific objectives: road defects’ detection, visualiza-
tion and localization.
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3. Thesis Key Points
The key points of the thesis problem are shown in Figure 2, and are listed
below:

Data Extraction 

and 

Preprocessing

Generation of 

Simulation Data

Extrinsic 

Calibration

Ground 

Selection

Defect 

Detection

Extrinsic 

Recalibration

Data 

Acquisition

Defect 

Visualization 

and Localization

FIGURE 2: Thesis Block Diagram

1. Generation of simulation data on LiDAR sensor data for different ori-
entations and altitudes.

2. Optimization of the LiDAR altitude and orientation using the synthetic
data, before analyzing the coverage of LiDAR distribution points over
the ground, to be suitable for the practical application and to ensure the
possibility of road defect detection.

3. Data acquisition using LiDAR sensor mounted on a moving vehicle.

4. Data extraction (Range, Azimuth, Elevation, Reflectivity, and Time) from
the .pcap format file. Then data preprocessing and PointCloud player
presentation.

5. 3D Extrinsic LiDAR/Ground calibration method using 3D geometrical
plane-based estimation.

6. Ground selection PointCloud method using differential Gaussian filter,
to eliminate: the obstacles that exist on the road, and the objects that
surround the road.

7. Extrinsic re-calibration for the road PointCloud to enhance the calibra-
tion process.

8. Defect Detection feature-based method.

9. Defect visualization and localization using grid-based method.
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4. Proposed Contributions
In the context of this study (road defects detection), the LiDAR sensor is ro-
tated toward the ground in order to increase the points’ density covering the
defects by the multi elevation laser as shown in Figure 3. This causes a com-
plicated modification in the ground 3D view scene with respect to the LiDAR
frame. Therefore, extrinsic calibration was adopted in order to transform the
LiDAR frame into a global reference frame, thus modifying the ground im-
pact points transformation into an understandable view scene.

h h

No reflection

Reflection region Orientation

(a) No orientation

h h
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(b) LiDAR orientation
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FIGURE 3: Large sparsity area vs high density points
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4.1. Calibration Method Novelty

The perspective of our framework is to propose a calibration method (and
road plane estimation) that works under difficult experimental conditions
(high angle of inclination). Indeed, we aim at developing a calibration method
that allows to determine precisely the road plane in a very close vicinity of
the vehicle. The idea in the long term is to detect road defects when driving
on the road network. Although developed with this in mind (i.e. with a high
degree of accuracy in determining the road plane), our method is general
enough to be applicable in any wider operational context.

opt-LGCMProposed Calibration Method: LGCM
Euler’s Angles Estimation

Rotation about Axis

(Rodrigues Formula)

Fitting Plane

(L.S Method)

Yaw Angle Estimation

(L.S Conic Algorithm)
Height Estimation

Extrinsic Parameters 

Optimization

(L.M Algorithm)

LiDAR Data

FIGURE 4: The proposed extrinsic calibration method block di-
agram

In order to attain the above key objective, this thesis addresses a new flexible
extrinsic calibration method, published in [11], [12]. The proposed calibra-
tion method can be summarized by the following two-fold contributions: (1)
ground plane model estimation and (2) rotation transformation matrix es-
timation from world ground reference to LiDAR sensor frame as shown in
Figure 4. The 3D Euler’s angles (sensor orientation) and the height (sensor
altitude above the ground) are two essential extrinsic parameters required to
calibrate the full 3D LiDAR sensors as shown in Figure 5, in order to improve
the capability of road defect detection as will be explained in section 4.2.1. In
addition, the problem is modeled by 4-DOF (degree of freedom) transforma-
tion: 3-DOF rotation and 1-DOF height, instead of 6-DOF transformation:
3-DOF rotation and 3-DOF translation. This modeling advantage provides
the simplicity in the optimization process of the extrinsic parameters.

As compared to a previous plane-based methods [13], [14], the developed
approach can be generalized to all types of scanning laser rangefinders and
presents an optimized estimation of all extrinsic calibration parameters (an-
gles, height). This global method can be implemented on different cylindri-
cal LiDAR sensors (low-cost 3D and full 3D) with various range accuracy.
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FIGURE 5: (a) No orientation, (b) Practical orientation concept,
(c) Scientific orientation concept

In addition, the proposed technique outperforms in high orientation scenar-
ios, which is a very interesting and challenging task that aims to increase the
points’ density coverage.

4.2. Road Defect Detection Methods Novelty

Moving to main thesis subject, two novel road defect detection methods are
proposed, called Feature-Based Defect Detection Method and Grid-Based
Defect Detection Method. The Feature-Based Defect Detection Method, based
on the concavity feature delivered by second order of Differential Gaussian
Filter. For this, the second order of differential Gaussian filter hDGF2(n) repre-
sents the second derivative of an input signal, which indicates the concavity
feature in the output signal zDGF2 of the input signal zw(n) as expressed in
Equations 10 and 11. First, this method works on each single elevation laser
individually, to detect multi road defects (pothole,hump) with homogeneous
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patterns and small sizes properties. This method is very sensitive to concav-
ity feature, but it requires enough LiDAR coverage resolution on the target.

zDGF2(n) = zw(n) ∗ hDGF2(n)

= zw(n) ∗ hDGF(n) ∗ hDGF(n)
(10)

hDGF(n) =
G√

2πσ2
exp

(
− (n − µ)2

2σ2

)

− G√
2πσ2

exp

(
− (n + µ)2

2σ2

)
for

−µ ≤ n ≤ µ

σ = µ/2

(11)

Where G is a gain parameter for signal amplification, σ is the standard devi-
ation of the Gaussian distribution, and n is the points’ index number of the
signals zw, zDGF, zDGF2 and the system impulse responses hDGF, hDGF2.

On the other hand, the Grid-Based Defect Detection Method includes two-
fold contributions:

• Improved Inverse Distance Weighted interpolation method, based on
the altitude distribution in a spatial grid to generate altitude georefer-
enced image as expressed in Equations 12,13,14,15,16 and 17.

dw/opt =
|Aoptxw + Boptyw + Coptzw + Dopt|√

A2
opt + B2

opt + C2
opt

(12)

dw/opt = zw + h (13)

Id =
dw/opt − dmin

dmax − dmin
× Lgray (14)

Where xw, yw, zw are the Cartesian coordinates of the 3D recalibrated
ground points, Aopt, Bopt, Copt, Dopt are the parameters of the optimized
plane (Popt), dmin and dmax are the minimum and maximum values of
the altitude distance dw/opt respectively, and Lgray = 255 is the maxi-
mum intensity gray level.
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The intensity gray value of the grid cell (i, j), which is denoted by Gij ,
is expressed as follows:

Gij =

( nij

∑
k=1

Wk,ij Ik,ij
d

)/ ( nij

∑
k=1

Wk,ij

)
(15)

Wk,ij = aWk,ij
D + bWk,ij

Id
(16)

a + b = 1 (17)

Where nij is the number of data points within grid cell (i, j), Wk,ij and
Ik,ij
d are the general weight and the altitude distance intensity of the kth

point within grid cell (i, j), respectively. a and b are the weight coeffi-
cients, Wk,ij

D and Wk,ij
Id

are the weight components calculated consider-
ing the planar Euclidean distance D from the grid cell center and the
altitude distance intensity Id within grid cell (i, j), respectively.

• Grid Splitting Algorithm, provides dynamic grid size to increase the
georeferenced image resolution as explained in Algorithm 6.

Algorithm 6: Grid Splitting Algorithm
Input: Altitude distance dw/opt, initial horizontal and vertical lengths

values H, V respectively, and the Cartesian coordinates xw, yw, zw
of the kth points within a grid cell (i, j)

Output: Georeferenced gray image Gij

1 If the grid cell is empty, associate the intensity gray value Gij to zero.
Else, compute the distance distribution σdw/opt

of the kth points within a
grid cell (i, j) as expressed below:

σdw/opt
=
√

1
N ∑

nij
k=1(dw/opt − dw/opt)2

2 If the standard deviation of the distance distribution σdw/opt
≥ σth, split

the grid cell into four sub-grids in case if all of the sub-grids are not
empty, by dividing the horizontal and vertical lengths by two H/2, V/2
respectively. Where σth ≃ 1.5cm is a constant threshold that defines the
maximum distance accuracy for the lasers impact of the LiDAR sensor
on a flat plane. Then, go to step 1.
Else, compute the intensity gray value Gij using the above proposed
inverse distance weighted interpolation method.

3 Split the grid cells into sub-grid cells according to the smallest grid cell
size, and associate the intensity gray values of the sub-grid cells equal
to the original grid cell’s intensity gray value.

This method works simultaneously on all elevation lasers, it is sensitive to
altitude distribution feature, and it requires high LiDAR coverage resolution
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to detect, visualize and localize the multi homogeneous road defects in a
high resolution georeferenced image. The evaluation results show a compro-
mised performance and impressive efficiency of our proposed defect detec-
tion methods, in terms of accuracy, precision and recall against other defect
detection methods, proving the detection ability of potholes and humps de-
fects using real data.

5. Conclusion and Perspectives
As a part of transportation and driver assistance systems framework, our
contribution concerns multi-defect detection from distributed 3D telemetry
measurements. We have developed and validated various global methods,
that are compatible with any cylindrical 3D LiDAR sensors. These have been
applied to of 3D LiDAR perception system mounted and centered on the
vehicle backward. Indeed, the LiDAR sensor is rotated toward the ground
in order to increase the road coverage resolution, which improves the road
defect detection process. Therefore, the calibration process was adopted in
order to transform the LiDAR frame into a global reference frame, thus mod-
ifying the LiDAR frame into an understandable view scene.

The development and improvement of a novel flexible extrinsic LiDAR/Ground
Calibration Method LGCM was the starting point of this thesis. The cali-
bration method is relied on ground plane-based modeling, to estimate the
4-DOF extrinsic parameters: height and 3D orientation. Moreover, the cali-
bration process is built on four main aspects: linear model Least Squares es-
timator, Rodrigues formula, Least Squares Conic Algorithm and Levenberg-
Marquardt optimization algorithm. The results show a significant perfor-
mance in terms of precision and robustness against the variation of LiDAR’s
orientation and range accuracy respectively, proving the stability and the ac-
curacy of the proposed calibration method on synthetic and real data. This
reflects the global good capability of this calibration method when applied
on cylindrical LiDAR sensors under difficult experimental conditions.

In addition, we proposed and developed two novel road defect detection
methods in the context of this thesis, where the solution of these two de-
tection method relies on the calibration method, that provides a horizontal
and understandable ground view. First, the Feature-Based Defect Detection
Method FBDDM, that studies the concavity feature on each elevation laser
using second order Differential Gaussian Filter, to detect multi homogeneous
road defects. The recalibration process has imposed itself to enhance the false
alarm, in order to improve the evaluation results of the Feature-Based Defect
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Detection Method. Second, the Grid-Based Defect Detection Method GB-
DDM that relies on two main aspects: improved Inverse Distance Weighted
interpolation method and Grid Splitting Algorithm, to detect, visualize and
localize the multi homogeneous road defects in a high resolution georefer-
enced image. The evaluation results show a compromised performance and
impressive efficiency of our proposed defect detection methods, in terms of
accuracy, precision and recall against other defect detection methods, prov-
ing the detection ability of potholes and humps defects using real data.

Based on the outcomes presented in this thesis, we highlight several interest-
ing future research directions:

• In our work, the detection methods is applied on road defects (potholes
and humps). It will be an interesting application to apply the same
methods on vehicles, obstacles and pedestrians detection. More than
that, modify the grid-based defect detection method to detect the water
hazards using the reflectivity LiDAR feature.

• Using a high resolution LiDAR like OS1-128 LiDAR sensor will increase
the performance of calibration and detection processes. But, it will also
increase the chance of defect size estimation challenge.

• In road selection points process, the road looses a small spatial regions
at the edge of the road. So, we suggest to develop a road detection
method to study the defects that are aligned beside the road edges.

• We recommend a LiDAR and Camera fusion sensors to increase the
performance of the proposed detection methods, especially the grid-
based defect detection method.

• In addition, the fusion of LiDAR, Global Positioning System GPS and
Inertial Measurement Unit IMU will support a defect tracking, localiza-
tion and mapping system in a global world wide reference.

• Moreover, the proposed calibration and detection methods are compat-
ible with cylindrical LiDARs. It will be interesting to find a way to mod-
ify the methods process to be compatible with non cylindrical LiDARs
like Velodyne HDL-64 LiDAR sensor. So, the methods can be directly
applied on the KITTI-ROAD data-set to compare perfectly with other
methods.

• Finally, the most interesting challenge is to implement the methods on
a Digital Signal Processor DSP as a real-time application.
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6. Report Structure
Later, this report introduces the following chapters:

• Chapter 2 presents the state of the art of the thesis, which includes the
difference between 2D and 3D sensors, 3D LiDAR definition, compari-
son between 3D LiDAR with other 3D sensors, LiDAR calibration defi-
nition and LiDAR calibration related work. In addition, it presents also
the literature review of road defect detection methods based on LiDAR,
Camera and Accelerometer sensors.

• Chapter 3 presents the characteristics of Velodyne VLP-16 LiDAR sen-
sor features, the data extraction and preprocessing operations.

• Chapter 4 presents the geometrical impact modeling of the LiDAR sen-
sor on the ground, and the proposed extrinsic LiDAR/Ground Calibra-
tion Method. In addition, it shows the extrinsic calibration experimen-
tal results using simulation and real data.

• Chapter 5 presents the ground selection process, the proposed Feature-
Based Defect Detection Method and Grid-Based Defect Detection Method.
In addition, it shows the evaluation results of the proposed road defect
detection methods, compared against other methods using real data.
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