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RESUME

La thése est centrée sur la modélisation des signaux présents dans les données d'un réseau de pul-
sars chronométrés (Pulsar Timing Array ou PTA) afin d’améliorer la sensibilité pour la recherche
d’ondes gravitationnelles de tres basses fréquences (du nano-Hz au micro-Hz). Le premier chapitre
est une introduction générale du sujet ou je présente le contexte scientifique et les méthodes
d’analyse utilisés. J'y développe d’abord la notion de modele de chronométrie des pulsars, en
m’appuyant sur un exemple particulier : la caractérisation précise du modele de rotation du pul-
sar J1909-3744, avec mise-a-jour des mesures sur '’ensemble des parametres. Je poursuis avec
I'application de cette méthode pour la recherche d’ondes gravitationnelles au nano-Hertz avec
PTA, et termine sur les concepts et les outils utilisés dans cette thése afin de réaliser des analyses
de données dans un cadre Bayésien. Le deuxiéme chapitre porte sur 'optimisation de la prise
en compte des bruits intrinseques a chacun des pulsars, ceci appliqué avec les données récentes
de 'EPTA incluant a ce jour six pulsars. Ce travail souligne notamment la grande complexité de
I'analyse des données PTA qui combinent des dizaines d’années d’observations de différents pul-
sars provenant de plusieurs radio téléscopes. Le troisieme chapitre présente ma participation aux
études récentes sur la recherche d'un fond stochastique d’ondes gravitationnelles (GWB) avec les
données de 'European Pulsar Timing Array (EPTA) et celles de 'International Pulsar Timing Array
(IPTA), ainsi qu'une évaluation des conséqu-

uences induites par I'optimisation des modeles individuels des pulsars (présentée dans le Chapitre
2) sur la mesure du GWB. Les résultats récents provenant des différentes collaborations sont parti-
culierement intéressants puisqu’ils convergent sur la présence d’un signal commun entre les pul-
sars, avec 'amplitude et I'indice spectral attendu, sans toutefois pouvoir confirmer encore sa na-
ture gravitationnelle et donc la détection recherchée. Les collaborations travaillent actuellement
sur 'amélioration des lots de données (élongation de la couverture temporelle et augmentation
significative du nombre de pulsars) afin d’améliorer la précision des résultats. Le quatrieme et
dernier chapitre est centré sur la prise en compte des incertitudes des éphémérides du Systéme
solaire (SSE) sur les résultats des PTAs, notamment sur la mesure du GWB. En effet, afin de prendre
en compte le mouvement de la Terre dans le Systeme solaire, les temps d’arrivées des impulsions
mesurées sont virtuellement translatés au barycentre de celui-ci, et dont la position est donnée
par les SSEs. Une collaboration avec I'Institut de mécanique céleste et de calcul des éphémeérides
(IMCCE), qui produit les SSE, a permis de construire un modele (nommé EphemGP) appliqué a
PTA et prend en compte des perturbations d’orbite des objets principaux du Systéme solaire. J'y
présente une étude détaillée sur I'efficacité du modele a réduire 'impact des potentielles erreurs
des SSEs pour larecherche du GWB, en incluant une comparaison avec d’autres modeéles existants,
et termine avec I'application du modele sur les données récentes de I'EPTA.

Mots clés: Ondes gravitationnelles - Pulsars - Analyse de données






ABSTRACT

The thesis focuses on the noise modelling in pulsar timing data and the search for very-low fre-
quency (from nano-Hz to micro-Hz) gravitational waves with Pulsar Timing Array (PTA). The first
chapter gives a general introduction of the subject where I present the scientific context and de-
scribe the data analysis methods. I start with the notion of pulsar timing, using a specific example:
modelling the timimng data of pulsar J1909-3744, where I also present the updated timing param-
eters. Then I introduce methodology used in searching for gravitational waves at nano-Hertz with
PTA, and conclude with the description of tools used in this thesis to perform data analysis within
a Bayesian framework. The second chapter focuses on the single-pulsar noise modelling, applied
to six pulsars of the EPTA Data Release 2. In particular, this work highlights the great complexity
in the analysis of the PTA data which combine decades of observations of different pulsars from
several radio telescopes. The third chapter presents results of the search for a stochastic gravita-
tional wave background (GWB) in the European Pulsar Timing Array (EPTA) and the International
Pulsar Timing Array (IPTA) data with a focus on parts with my direct participation. In particular, I
present the impact of the custom single-pulsar noise modelling (given in Chapter 2) on the GWB
measurement. The recent results from three PTA collaborations are particularly interesting as they
converge on the presence of a common red noise signal across considered pulsars with similar am-
plitude and spectral index, but without being able to confirm yet its gravitational nature and thus
the desired GWB detection. Currently, PTAs are working on extending the data sets by adding the
latest observations and including more pulsars into analysis to improve the accuracy and uncover
the nature of the observed signal. The fourth and last chapter describes the uncertainties in the
Solar System Ephemeris (SSE) and their impact on the PTA results, especially on the GWB mea-
surement. We use SSE provided by Institut de mécanique céleste et de calcul des éphémérides
(IMCCE) as a basis to construct the model called EphemGP. We demonstrate that this model is
efficient at absorbing systematics in the SSE by introducing variations in the orbital parameters
of the main planets of the Solar System. The ability to absorb dipolar correlations induced by
SSE uncertainties is very import for the robust detection of the GWB. I compare performance of
EphemGP to other existing models, and conclude with the application of this model to the recent
EPTA data.

Key words: Gravitational waves - Pulsars - Data analysis






RESUME DETAILLE

Modélisation des avant-plans et sources de bruits corrélés
pour la recherche d’ondes gravitationnelles de trés basses
fréquences avec les radiotélescopes de I'International Pulsar
Timing Array

Cette theése porte sur la modélisation des sources de bruit contenus dans les données
de chronométrage de pulsars afin d’optimiser la recherche d’ondes gravitationnelles de
tres basses fréquences avec Pulsar Timing Arrays (PTA). Elle présente mes travaux effec-
tués durant ces trois dernieres années, chacun donnant lieu a une publication publiée,
soumise ou bien en cours de rédaction pour publication dans une revue a comité de lec-

ture.

1. Introduction

Cette partie introduit les concepts de base liés aux études effectuées lors de cette these: les
pulsars, le chronométrage de pulsars, le projet PTA et les méthodes statistiques dans un
cadre Bayésien. Elle y présente notamment des résultats publiés dans Liu et al. 2020, qui
porte sur le chronométrage du pulsar PSR J1909-3744 en utilisant les données du grand
radio télescope de Nancay. Pour cette publication, j’ai participé aux analyses de données

liées au chronométrage, et a une partie de la rédaction.

1.1 Ftoiles a neutron et pulsars

Les étoiles a neutrons sont des objets compacts pouvant résulter de I'effondrement grav-
itationnel d’étoiles massives (de 8 a ~ 20 M, ou masses solaires), donnant lieu a une
supernova. Ces objets compacts ont des rayons d’environ 10 — 12 km et des masses de
I'ordre de 1 —2 M,. Apres l'effondrement gravitationnel, les conservations du moment
cinétique et du flux magnétique impliquent respectivement une fréquence rotationnelle
élevée (de 1 ms a ~ 10 s) ainsi qu'un champ magnétique intense (de 107 2 10'* G). La com-
posante dipolaire du champ magnétique est a 'origine d'un faisceau d’émission radio au
niveau des poles magnétiques. Dans le cas d'un non-alignement entre ’axe magnétique
et rotationnel, si la trajectoire du faisceau d’émission passe dans la direction de la Terre,
il est alors possible d’observer un signal radio périodique donnant lieu au phénomene de
pulsar.

Les pulsars, bien que majoritairement observés en radio, sont également détectés

dans les domaines de 'infra-rouge, de I'optique, des rayons X, et en gamma. La version
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la plus récente a ce jour (v.1.65) de I’Australia Telescope National Facility (ATNF) Pulsar
Catalogue (Manchester et al. 2005) compte 3177 pulsars, dont 3055 pulsars radio. Chaque
pulsar se démarque par son profile (flux en fonction de la phase rotationnelle), souvent
intégré en temps et en fréquence radio, qui est différent pour chacun d’entre eux. La plu-
part des pulsars connus, les pulsars canoniques, ont une période rotationnelle de I'ordre
de la seconde. D’autres, appelés pulsars millisecondes (MSP), se démarquent pour leurs
faibles périodes (<~ 20 ms), et sont particulierement remarquables pour leur haute régu-
larité rotationnelle (P < 10718 s.s71). La version 1.65 du catalogue ATNF en dénombre 468.
Cette these se concentre uniquement sur cette catégorie de pulsars, qui est particuliére-
ment adaptée pour la méthode du chronométrage de pulsars.

1.2 Le chronométrage de pulsar

Le chronométrage de pulsar (pulsar timing en anglais) consiste a dater les temps d’arrivée
des impulsions radio provenant des pulsars afin de caractériser tout effet influant sur la
régularité du signal. Entre autres, cette méthode permet d’obtenir des informations sur
la physique interne des pulsars, leur environnement, d’effectuer des tests de la Relativité
Générale (notamment dans le cas de systemes multiples) ou d’étudier le milieu interstel-
laire et les vents solaires au travers desquels le signal radio se propage. Les observations de
chronométrage durent en général quelques dizaines de minutes et permettent d’évaluer
un ou plusieurs temps d'arrivée caractéristique (time of arrival, ou ToA), qui est daté a
I'aide d'une horloge de référence locale. Chaque ToA est évalué avec une incertitude qui
est notamment optimisée pour des pulsars de faible période rotationnelle ayant un faible
rapport cyclique (i.e., faible rapport entre largeur de profile et phase rotationnelle). En
moyenne, les MSPs sont observés a un rythme hebdomadaire sur plusieurs années. Les
ToAs mesurés sont ensuite regroupés afin d’ajuster un modele de chronométrage (timing
model en anglais), qui caractérise les principales propriétés mesurables du pulsar.

Le modeéle de chronométrage permet de prendre en compte la fréquence rotationnelle
du pulsar en fonction du temps (exprimée en série de Taylor) et d’appliquer différentes
corrections pour, in fine, estimer le temps d’émission de chaque ToA au référentiel pro-
pre du pulsar. Les temps d’arrivée mesurés a I’aide de I'horloge locale sont premierement
transformés a 'echelle temporelle standard appelée temps terrestre (TT), définie a par-
tir du temps atomique international (TAI) qui est évalué et publié régulierement par le
Bureau international des poids et mesures (BIPM) via la combinaison de mesures effec-
tuées par des centaines d’horloges atomiques réparties sur la Terre. Une deuxieme cor-
rection consiste a transposer les ToAs au barycentre du systéme solaire afin de compenser
le mouvement de la Terre et d’autres effets comme par exemple la dispersion du signal
radio due au contenu de I'atmosphere terrestre et du milieu interplanétaire, ou bien des

effets relativistes induits par la présence des objets principaux du systeme solaire (Soleil
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ou Jupiter). La troisieme correction prend en compte la dispersion causée par le contenu
électronique du milieu interstellaire traversé par le signal radio. Cet effet, caractérisé par
la mesure de dispersion (DM), entraine un retard sur les temps d’arrivée proportionnel
a l'inverse du carré de la fréquence radio f (Af o 1/ fz). Enfin, si le pulsar est dans un
systeme binaire, le ToA est transformé depuis le barycentre du systeme binaire jusqu’au
référentiel du pulsar, notamment en tenant compte d’effets relativistes.

En pratique, le modele de chronométrage est constitué de parametres ajustés aux
ToAs de maniere a appliquer les corrections mentionnées ci-dessus. Lajustement est
obtenu via la minimisation de la différence entre les ToAs observés et ceux prédits par
le modele par méthode des moindres carrés. Ces différences sont appelées les résidus des
temps d'arrivée (timing residuals en anglais), et sont ensuite analysées afin de caractériser
d’autres phénomeénes non pris en compte, comme la présence d’ondes gravitationnelles

de tres basses fréquences.

1.3 Application sur PSR J1909-3744 avec le NRT

Le pulsar milliseconde PSR J1909-3744 est 'un des plus stables connus. Il possede une
période rotationnelle de 2.95 ms et un rapport cyclique de seulement 1.5%. Situé a envi-
ron 1 kpcde la Terre, il posséde une naine blanche comme compagnon. Il est chronométré
par le grand radiotéléscope de Nancay (NRT) depuis décembre 2004 avec une cadence de
I'ordre de la semaine. La publication Liu et al. 2020 rapporte une étude du chronométrage
de ce pulsar a partir des observations effectuées par le grand radio télescope de Nancay
(NRT), depuis décembre 2004 jusqu’en septembre 2019.

L'analyse de chronométrage est effectuée via une estimation des parametres du mod-
ele de chronométrie, ainsi que des parametres du bruit blanc, du bruit rouge achroma-
tique (indépendent de la fréquence radio) et de la variation du DM dans un cadre Bayésien,
al’aide dulogiciel TEMPONEST en utlisant le sampler MULTINEST. Les distributions obtenues
des parametres de bruit blanc et de bruits rouges sont comparées avec celles obtenues
avec le logiciel ENTERPRISE (Ellis et al. 2019) et I'’echantillonneur PTMCMCSAMPLER
(Ellis and Haasteren 2017) permettant une estimation des distributions posterieures des
parametres, tout en marginalisant sur les parametres du modéle de chronométrage.

Le chronométrage appliqué a ce pulsar abouti finalement a une précision des temps
d’arrivée de’ordre de 100 ns sur une période de 15 ans. Entres autres, cette étude a permis
d’améliorer la précision sur certains parametres orbitaux tels que la dérivée de la période
orbitale (P}, = 5.1087(13) x 107!3) ou la dérivée de la projection du demi-grand axe (X =
—2.61(55) x 10716). La mesure du retard lié a I'effet Shapiro permet de déduire la masse du
pulsar (m, = 1.492+0.014 M,) et celle de son compagnon (m, = 0.209+0.001 Mo). Enfin,
le chronométrage précis de PSR J1909-3744 donne lieu a une mesure de I'eccentricité de

son orbite de e = (1.15+0.07) "/, la plus faible valeur connue pour un pulsar a ce jour.
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1.4 Pulsar Timing Arrays

Le principe de détection d’ondes gravitationnelles de tres basses fréquences (nHz-uHz)
via le chronométrage de pulsars, appelé Pulsar Timing Array (PTA), a été introduit durant
la fin des années 1970 (Sazhin 1978, Detweiler 1979), puis développé jusqu’a la fin du
XXeme siecle (Foster and Backer 1990, Backer 1995).

Le principe de PTA consiste a sonder la présence d’'un signal commun entre les pul-
sars contenant une corrélation spatiale spécifique aux ondes gravitationnelles. Le signal
peut étre déterministe. correspondant par exemple a 'orbite d'un systeme binaire de
trous noirs supermassifs, ou bien stochastique, provenant de 1’addition d'une multitude
de sources faibles en intensité. Cette thése se concentre uniquement sur le deuxieme
type: le fond stochastique d’ondes gravitationnelles (GWB), dont la corrélation spatiale
attendue suit la courbe de Hellings-Downs (Hellings and Downs 1983). Le principal can-
didat pour un tel signal est la population de trous noirs supermassifs (M = 108 M) bi-
naires dans I'Univers local (z < 2). Pour une population simpliste de systémes circulaires
dont I'évolution est dominée par I’emission d’ondes gravitationnelles, le spectre suit une
simple loi de puissance h.(f) x f ~2/3 (jaffe and Backer 2003, Chen et al. 2017).

Le paysage des PTAs est divisé en plusieurs collaborations: Parkes Pulsar Timing Ar-
ray (PPTA) en Australie ; I’ European Pulsar Timing Array (EPTA), regroupant des équipes
et instruments situés en Allemagne, en Angleterre, en France, aux Pays-Bas et en Italie ; le
North American Nanohertz Observatory for Gravitational Waves (NANOGrav) en Amérique
du Nord ; 'Indian Pulsar Timing Array (InPTA) en Inde ; le Chinese Pulsar Timing Array
(CPTA) en Chine ; MeeKAT en Afrique du Sud. l'international Pulsar Timing Array (IPTA)
regroupe ces consortia, et permet ainsi de concentrer les efforts pour larecherche d’ondes
gravitationnelles, notamment via la combinaison des données des différents PTAs. A ce
jour, les membres officiels sont PPTA, 'EPTA, NANOGrav et 'InPTA.

En pratique, les PTAs observent les MSPs les plus stables sur plusieurs dizaines d’années
afin d’étre sensible aux plus basses fréquences, la ol le signal attendu est le plus fort. Les
résidus de chronométrage sont ensuite regroupées et analysées afin de rechercher les on-
des gravitationnelles. La these se concentre en majeure partie sur la modélisation des
bruits d’avant-plans a prendre en compte lors de ’analyse des données.

1.5 Analyses Bayésiennes

Les analyses de données effectuées lors de cette thése suivent une approche Bayésienne,
danslaquelle les parametres a determiner sont considérés comme des variables aléatoires
que I'on infere, compte-tenu des données acquises et des informations connues a priori.
Elle sont utilisées soit pour effectuer une estimation de parametres (i.e., évaluer les den-
sités de "probabilité des parametres du modele sachant le modele choisi et les données

acquises", appelées distributions posterieures), ou bien pour appliquer une sélection de
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modele via la détermination de facteur de Bayes. Cet estimateur permet en effet de quan-
tifier a quel point un modéle est statistiquement préféré a un autre pour décrire les don-
nées observées. Dans le Chapite 2, nous utilisons I'echelle de Jeffreys (Jeffreys 1961) pour
la sélection de modele, qui propose que, pour comparer deux modeles M, et M, un
facteur de Bayes de Bﬁ: > 100 indique une préférence décisive pour le modele M,,.
Lestimation de parametre est effectuée par I'application de logiciel permettant un
echantillonage via la méthode de Markov Chain Monte Carlo (MCMC), dans laquelle une
chaine parcours 'espace des parametres en maximisant la fonction de vraisemblance
(likelihood en anglais). Les logiciels utilsés ici sont PTMCMCSAMPLER et MC3 (https:
//gitlab.in2p3.fr/stas/samplermcmc). L'évaluation des facteurs de Bayes est effec-
tuée via le rapport d’évidences (i.e., la probabilité d’obtenir les données observées en
supposant que le modele utilisé est le bon). Nous utilisons un echantilloneur appelé
DYNESTY (Speagle 2020, utilisant la méthode de 'nested sampling’ permettant de calculer
une évidence. Le calcul de facteurs de Bayes peut également se faire via une méthode
appelée 'space-product’, dans laquelle une chaine MCMC permet de commuter entre
différents modeles. Dans notre cas, nous utilisons la classe python "Hypermodel" im-
plémentée dans le logiciel ENTERPRISE_EXTENSIONS (https://github.com/nanograv/

enterprise_extensions).

2. Sélection des modeles individuels des pulsar

Cette partie se concentre sur I’application d'une sélection de modéle dans un cadre Bayésien
afin d'optimiser le modele décrivant les processus liés a chacun des pulsars, afin d’améliorer
la robustesse des analyses visant a rechercher le fond stochastique d’ondes gravitation-
nelles. Cette étude est appliquée aux données de la deuxieme Data Release de 'EPTA
pour six pulsars. Elle a donné lieu a une publication (Chalumeau et al. 2021 en cours
d’impression) a la revue Monthly Notices of the Royal Astronomical Society (MNRAS).

L'EPTA Data Release 2 (DR2) - 6 pulsars est un jeu de données comprenant plus de 24
années d’observations de PSRs J0613-0200, J1012+5307, J1600-3053, J1713+0747, J1744-
1134 et J1909-3744. Ces observations ont été effectuées par quatre instrument européens:
le Radiotélescope d’Effelsberg (EFF) en Allemagne, le Grand Radiotélescope de Nancay
(NRT) en France, le télescope Lovell a 'Observatoire de Jodrell Bank (JBO), ainsi que le
Westerbork Synthesis Radio Telescope (WSRT) aux Pays-Bas. De plus, 'EPTA DR2 con-
tient des données provenant du Large European Array of Pulsars (LEAP), correspondant
aux observation simultanées mensuelles des instruments ci-dessus, en plus du radiotéle-
scope de Sardaigne en Italie. Pour chaque pulsar, les temps d’arrivée mesurés sont ac-
compagnés d'une éphéméride associée au modele de chronométrage estimé avec le logi-
ciel TEMPO2 (Hobbs et al. 2006).


https://gitlab.in2p3.fr/stas/samplermcmc
https://gitlab.in2p3.fr/stas/samplermcmc
https: //github.com/nanograv/enterprise_extensions
https: //github.com/nanograv/enterprise_extensions

2.1 Modélisation des signaux dans les données PTA

La modélisation des signaux contenus dans les résidus des temps d’arrivée se fait via la
construction de la fonction de vraisemblance, qui correspond a la probabilité p(g 1164

d’observer les n résidus 6 ¢ sachant le set de parametres 6. Elle peut s’exprimer comme

p(6116) = p(61164,GP)

exp [—% Xij (6ti—d(ti; éd)) (Nij+Cij)_1 (5tj—d(tj ; éd))]
i v (2m)"det(N + C) ’ (1

oui,j=1,..,n, N estlamatrice de covariance contenant les composantes de bruit blanc,
C estla matrice de covariance comprenant les processus Gaussiens (GP) et d(t ; éd) corre-
spond aux signaux déterministes représentés par le jeu de parametres 6.

Le bruit blanc permet de prendre en compte les possibles erreurs sur I’évaluation de
I'incertitude sur les ToAs, via I'utilisation des parametres EFAC (Eg) et EQUAD (Eq), défi-
nis tels o = 4 /E% 0%0 At qu, oll 0 et 01op sont les respectivement les incertitudes corrigées
etinitiales des ToAs. Ce type de signal peut notamment correspondre a une erreur instru-
mentale, ou bien au changement de profile du pulsar a court terme. Il s’agit d'un bruit
non corrélé entre chacune des observations.

Les autres types de signaux, appelés bruits rouges, sont corrélés dans le temps, c’est-
a-dire qu’ils induisent des variations a long terme sur les temps d’arrivée. Ces signaux
peuvent étre stochastiques, et sont dans ce cas généralement décris comme processus
Gaussiens (GP), définis par la matrice de covariance C tel

C=Y Fa(ZapFs(0), )
a,b

ol F est 'ensemble des fonctions de base comprenant une suite de fonctions cosinus
et sinus, et £, est la matrice de covariance de covariance dans le domaine fréquenciel,
contenant la densité spectral de puissance (PSD), définie comme une simple loi de puis-
sance, comme une loi de puissance brisée, ou bien comme un ’spectre libre’ ou chaque
fréquence est indépendante des autres. Alors que les deux derniers sont utilisés pour
mieux comprendre les données, les signaux stochastiques sont plus généralement carac-
térisés par une loi de puissance dans le domaine spectral, avec des fréquences distribuées
telles 1/T,2/T,...,N/T, ou T est la durée totale du jeu de données, et N est un entier choisi
(typiquement quelques dizaines).

Les signaux rouges stochastiques peuvent étre indépendants de la fréquence radio
(achromatic red noise, ou RN) ou bien au contraire étre chromatiques. Pour le premier
cas, il peut s’agir par exemple des variations de fréquence rotationnelle du pulsar a long

terme. Pour le deuxiéme, ceci peut correspondre par exemple aux variations a long terme
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de la mesure de dispersion (DM variations, ou DMv), ou bien de la multi-propagation
(scattering variations, ou Sv) se produisant dans le milieu interstellaire. Enfin, les signaux
rouges stochastiques peuvent correspondre au ’'System noise’ (SN), décrivant les varia-
tions a long terme des temps d’arrivée causée par un défaut de systeme d’acquisition, ou
bien au 'Band noise’ (BN), permettant de caractériser toute variation relative a une band
de fréquence radio spécifique. Ces deux types de processus sont généralement modélisés
comme des signaux achromatiques, a part pour le System noise correspondant au sys-
teme NUPPI de Nancay, a 1.4 GHz, ou nous avons également considéré une dépendance
en fréquence radio correspondant a celle du DM (DM-SN). Chaque observation effectuée
avec ce systeme a été divisée en quatre sous-bandes de fréquence, donnant lieu a quatre
ToA, et ainsi une résolution fréquencielle.

Les autres signaux rouges d, dits déterministes, sont définis de maniere 'exacte’ via
leurs parametres éd. Il peut s’agir d'une variation annuelle de DM, de scattering, ou bien
d’'un ’'exponential dip), i.e., une chute brutale du contenu électronique dans la ligne de
visée du pulsar donnant lieu a une brusque avance chromatique des temps d’arrivée,
suivie d'une relaxation exponentielle vers la valeur de départ.

2.2 Sélection de modeles individuels dans 'EPTA DR2

Pour chaque pulsar, la sélection du modele de bruit est effectuée en plusieurs étapes
décrites ci-dessous. Les modéles sont nommeés a partir des signaux inclus (hors bruit
blanc qui est tout le temps utilisé), en explicitant le nombre de fréquences spectrales
utilisées pour caractériser la loi de puissance pour les signaux rouges stochastiques. Le
modele de base utilisé est RN30 DMv100, incluant le bruit blanc et deux bruits rouges
stochastiques: le bruit rouge achromatique (RN) et les variations de DM (DMv), mod-
élisés par des processus Gaussiens avec respectivement 30 et 100 fréquences spectrales.
Nous débutons par une optimisation du nombre de fréquences spectrales pour le RN
et DMv. Pour ce faire, nous avons appliqué une sélection de modele via I’évaluation de
facteurs de Bayes entre différents modeles candidats. Nous testons des valeurs entre 30 et
100 pour la variation de DM, et entre une valeur minimale et 30 pour le bruit rouge achro-
matique. Cette valeur minimale est déterminée via une analyse du spectre en utilisant loi
de puissance brisée, ou bien comme un ’spectre libre’ comme PSD. Pour la plupart des
pulsars, nous avons trouvé les valeurs minimales pour le RN (10 ou 15), et une valeur de
100 ou 150 pour DMy, sauf pour PSR J0613-0200, ou nous sommes arrivés a la valeur min-
imale de 30. Nous avons notamment remarqué que le spectre de bruit rouge pour PSR
J1909-3744 semble s’aplanir dans les plus basses fréquences. Un tel phénoméne pour-
rait étre lié a des processus internes au pulsar, ou bien la présence d'un fond stochastique
d’ondes gravitationnelles provenant d'une population de trous noirs supermassifs en sys-

témes binaires excentriques. Toutefois, nous ne sommes pas en mesure de confirmer ceci
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compte tenu de la faible contrainte sur les plus basses fréquences.

La deuxieme étape consiste a procéder a une sélection de modele entre les trois sig-
naux rouges stochastiques physiques appliqués dans cette étude: le bruit rouge achroma-
tique, la variation de DM et la variation de scattering. Nous avons trouvé que le modele
de base, composé de RN et de DMy, est favorable pour la plupart. Le modele favorisé par
les données pour PSR J1600-3053 est composé de DMv et de Sy, ce qui est en accord avec
des résultats obtenus dans Main et al. (en préparation), ot le pulsar semble montrer une
variation de scattering. Pour PSR J1909-3744, le modele obtenu est contient les trois sig-
naux. Dans cette partie, nous avons reporté la présence de signaux rouges achromatiques
a hautes fréquences spectrales pour PSR J1012+5307, ce qui nous a réévaluer le nombre
de fréquences spectrales pour RN a 150.

En tenant compte de résultats précédents, nous avons recherché la présence de deux
exponential dips pour PSR J1713+0747. Nous avons confirmé leurs présence et rapporté
des valeurs d’indice chromatique différent de celle correspondant au DM (valant 2): yg, =
4.07*177 pour le premier et yg, = 1.0079-2%

1.13 1.13
confirmé la présence de variations annuelles chromatiques pour PSR J0613-0200.

pour le deuxiéme. Nous n’avons cependant pas

Enfin, nous avons recherché la présence de Band et System noise pour les six pulsars.
Le tableau 1 montre les modéles complets obtenu apres la sélection de modele. 11 est
intéressant de remarquer les modeles sont différents entre les pulsars et que les facteurs
de Bayes ont des valeurs treés importantes, ce qui souligne 'importance de traiter chaque

pulsar de maniére unique afin de caractériser proprement les sources de bruit.

3. Recherche d’un GWB avec 'EPTA et 'IPTA

Cette partie présente en premier lieu les résultats obtenus lors de la recherche d'un GWB
avec six pulsars de 'EPTA DR2 présentés dans Chen et al. 2021. Puis, ’analyse sur 'impact
delasélection des modeles individuels de pulsars (voir chapitre précédent) sur la recherche
d’'un GWB est détaillée. Cette section est contenue dans Chalumeau et al. 2021. Enfin, la
derniére section présente une partie de I’étude sur la recherche d'un GWB avec la duex-
ieme Data Release de I'IPTA (Antoniadis et al. 2022).

3.1 Modélisation des signaux corrélés dans les données PTA

La recherche du GWB nécessite de combiner les données provenant de plusieurs pulsars
afin de sonder les corrélations spatiales, et vérifier qu’elles obeissent a la signature décrite
par la courbe de Hellings-Downs (Hellings and Downs 1983), caractéristique d'un GWB.
En plus d’etre corrélé spatialement, la déformation caractéristique k. attendue peut étre

décrite selon une loi de puissance
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Table 1: Modeles de bruits obtenus aprés application de la sélection de modéle pour cha-
cun des six pulsars. La troisieme et quatriéeme colonne montrent la médiane des distri-
butions posterieures de I'amplitude et de I'indice spectral du bruit rouge achromatique,
avec un intervalle de confiance de 95%. La cinquieéme colonne montre les facteurs de
Bayes obtenus entre le modele de base (M1) et celui résultant de la selection de modele
(M2).

Pulsar Sel. model ARN YRN logy Byt
J0613-0200 D;féZD]%};OM -14.93*14% 507138 159
RN150 DMv30
J1012+5307 DMv-SN_NUP_1.4 —13.037008 1.167035  40.7
SN_NUP_2.5
J1600-3053 DMu30 Sv150 - - 20.0
SN_LEAP_1.4
RN15DMv150
2 Exp. dips
DMv-SN_NUP_1.4
J1713+0747 SN_JBO_1.5 —14.50702%  3.9471% 1954
SN_LEAP_1.4
SN_BON_2.0
BN_Band.3
RN10 DMv100
J1744-1134  DMv-SN_NUP_1.4 -15.31*52 3.68*313  22.6
BN Band.2

J1909-3744 RNI10 DMv100 Sv150 —14.45%08% 4.22+218 2.1




) 3)

) AGWB

he(f) = Agws (Y?

ol Agws et agwg sont respectivement I’'amplitude correspondant a la fréquence f =
lyr~! et I'indice spectral. Ce dernier a une valeur attendue de —2/3 pour une population
simple de systémes binaires de trous noirs supermassifs.

De la méme maniere que pour les analyses de donnée mono-pulsar, I’analyse multi-

pulsars fait intervenir I’évaluation d'une fonction de vraisemblance

> €xp [—% 5t (N + CPSRN | CCRS)—I 5‘[]
p(0t|GP) = , "
\/(ZJT)”det(N + CPSRN 4 CCRS)

oi1 N, CPSRN et CERS sont les matrices de covariances comprenant respectivement les
termes de bruit blanc, de bruits rouges stochastiques intrinseques a chacun des pulsars,
et de signaux rouges stochastiques contenus dans tous les pulsars, appelé Common Red
Signal (CRS).

Le CRS est modélisé en processus Gaussiens décris par une loi de puissance spectrale.
Dans cette these, nous considérons différents types de corrélations spatiales: Le Common
Uncorrelated Red Noise (CURN), la corrélation Hellings-Downs (GWB), une corrélation
constante égale a 1 (CLK), correspondant a une erreur de correction d’horloge, une cor-
rélation dipolaire (EPH) caractéristique d’erreur sur les éphémérides du Systeme solaire,

ou bien en parametre libre afin de les mesurer dans les données.

3.2 Recherche d’'un GWB dans 'EPTA DR2

Larecherche d'un GWB dans I'EPTA DR2 - 6 pulsars (Chen et al. 2021) a abouti aux mémes
conclusions présentés récemment par NANOGrav (Arzoumanian et al. 2020) et PPTA (Gon-
charov et al. 2021) en reportant la présence d'un signal rouge commun entre les pul-
sars, mais sans pouvoir confirmer la présence de corrélations Hellings-Downs. Les ré-
sultats présentés dans Chen et al. 2021 sont obtenus avec deux logiciels indépendants
permettant d’estimer les distributions posterieures des parametres et d’évaluer des fac-
teurs de Bayes, ENTERPRISE avec PTCMC (EP) et FORTYTWO avec PYMULTINEST ou
POLYCHORDLITE (42).

La Figure 1 présente les distributions postérieures obtenues en modélisant le CRS
avec une loi de puissance et les corrélations spatiales en parametres libres. Ces derniéres
s’averent non contraintes, et ne permettent donc pas de confirmer ni d’'infirmer la présence
d’ondes gravitationnelles. Cependant, un signal commun est présent, avec une ampli-
tude et un indice spectral alog,, Acrs = —14.327035 et ycgs = 3.8370-32 (médiane et régions
crédibles a 95%).
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Figure 1: Distributions posterieures des corrélations spatiales (a gauche), et de
I'amplitude et de I'indice spectral de la loi de puissance (a droite) décrivant le CRS avec
corrélations en parametres libres obtenues avec I'EPTA DR2 - 6 pulsars, soit avec EN-
TEPRISE (EN), soit avec FORTYTWO (42). Les courbes en tirets et en pointillés dénotent
les régions crédibles respectivement a 95% et 99.7%. La courbe rouge correspond aux
corrélations Hellings-Downs théoriques, et les étoiles rouges montrent les séparations

angulaires entre les six pulsars considérés.

Le facteur de Bayes obtenu avec ENTERPRISE en faveur du modele content un CRS
sans corrélation spatiale (CURN) contre un modele sans CRS est de 3.8 en échelle log-
arithmique, ce qui s’avere hautement significatif. Cependant, le facteur de Bayes entre
le modele incluant les corrélations de Hellings-Downs (GWB) contre le CURN est de 0.4
en faveur du deuxieme, ne permettant pas de favoriser I'un des deux modéles. En effet,
nous attendons une valeur importante en faveur du GWB pour pouvoir prétendre d'une
détection du GWB.

3.3 Impact de la sélection de modeles individuels sur la recherche d’'un
GWB

La sélection de modele de bruit individuel présentée précédemment a abouti a des mod-
eles différents pour chacun des pulsars. Cette partie se concentre sur 'impact de cette
optimisation sur la mesure du GWB.

La Figure 2 montre un large accord entre les loi de puissance obtenues avec (droite)
ou sans (gauche) corrélation angulaire, ce qui permet de confirmer le résultat présenté
dans Chen et al. 2021. De plus, nous observons un leger élargissement ainsi qu'un léger
décalage des distributions, ce qui montre I'importance d’'une telle optimisation pour per-

mettre une caractérisation propre du GWB si présent dans les données.
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Figure 2: Distributions postérieures de 'amplitude et de I'indice spectrale de la loi de
puissance du CURN (a gauche) et du GWB (a droite), en utilisant les modeles individuels
standards (RN DMv) en bleu et ceux obtenus apres la selection de modeles en rouge.
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3.4 Evaluation des signaux corrélés dans PIPTA DR2

L'IPTA Data Release 2 est un jeu de donnée comprenant 65 pulsars provenant de I'EPTA,
NANOGrav et PPTA. La publication Antoniadis et al. 2022 présente la recherche du GWB
effectuée par I'IPTA dans ces données. Celles-ci sont antérieures aux données utilisées
pour les récentes analyses des trois PTAs. Toutefois, la combinaison globale des données
a permis une forte amélioration de la sensibilité en ondes gravitationnelles, permettant
une mesure d'un signal commun entre les pulsars en accord avec les derniers résultats.
Tout comme ces derniers, la corrélation Hellings-Downs n’a pu étre reportée.

Létude est particulierement focalisée sur I'évaluation des corrélations spatiales dans
les données via (1) une estimation des parametres décrivant une loi de puissance ou bien
un 'spectre libre’ (2) une sélection de modeéle comprenant différentes corrélations, mais
aussi en séparant directement les termes corrélés entre les pulsars aux autres dans la
fonction de vraisemblance. Ceci corrobore les autres résultats en produisant une limite
supérieure sur le signal purement corrélé. La Figure 3 montre la concordance des dis-
tributions posterieures des parametres de la loi de puissance entre les différents jeux de
données récents des PTAs et celui de I'IPTA DR2.

4. Modélisation des erreurs des SSEs avec PTA

Lapplication du modele de chronométrage implique une transformation des ToAs au
référentiel quasi-inertiel du barycentre du Systeme solaire (SSB). Pour ce faire, nous util-

isons la position donnée par les éphémérides du Systéme solaire (SSEs), régulierement
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Figure 3: Comparaison des spectres (a gauche) et des distributions posterieures de
I'amplitude et de 'indice spectral des lois de puissance (a droite) obtenues avec les plus
récents jeux de données de NANOGrav, PPTA et 'EPTA, ainsi qu’avec I'IPTA DR2. Figure

provenant de Antoniadis et al. 2022.
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publiée par différentes collaborations telles que I'Institut de Mécanique Céleste et de Cal-
cul des Ephémérides (IMCCE), via Intégrateur Numérique Planétaire de I'Observatoire de
Paris (INPOP), ou bien le Jet Propulsion Laboratory (JPL), via les Development Ephemeris
(DE). Une erreur sur la position du SSB donnerait lieu a un signal dans les résidus des
temps d’arrivée corrélée spatialement, avec une signature dipolaire (Tiburzi et al. 2016).
Il est ainsi particulierement important de prendre en compte les possibles imperfections
des SSEs pour assurer une mesure correcte du GWB. Cette partie présente mes travaux
sur la construction d'un modele permettant de décrire les incertitudes des SSEs et son
application sur des données simulées et celles de 'EPTA DR2 - 6 pulsars. L'étude de la

performance du modele donne lieu a une publication en cours d’écriture.

4.1 Modélisation des incertitudes dans les SSEs pour PTA

Nous avons construit un modele nommé EphemGP qui permet la description du signal
dans les résidus des temps d’arrivée correspondant a la variation de la position du SSB
causée par une perturbation des parametres orbitaux des principaux objets du Systéme
solaire (Jupiter et Saturne dans cette these). Le signal est modélisé comme un processus
Gaussien, dont les fonctions de bases et la matrice de covariance sont obtenues a partir
de données provenant de I'intégration numérique effectuée pour obtenir les éphémérides
INPOP (INPOP19a dans notre cas). Ces données ont été partagées par A. Fienga (GEOAZUR)
qui dirige la production de ces SSEs. Afin de pouvoir décrire des signaux visibles dans
les données PTA, nous avons largement étendu les incertitudes des parametres orbitaux
donnés par INPOP19a.

Dans la suite nous comparons des résultats obtenus avec EPHEMGP a ceux produit
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Table 2: Notations simplifiées des différents jeux de donnée simulés et leurs signaux in-
clus. WN, SSE et GWB dénotent respectivement la présence de bruits blancs, de d’erreur
sur les SSEs, et du GWB avec une précision sur 'amplitude.

Data Signal
‘Bl WN + GWB (A=10716)
‘B2° WN + GWB (A =10"19)

‘A+B1‘ | WN + SSE + GWB (A = 10716
‘A+B2‘ || WN + SSE + GWB (A= 10719

avec un CRS contenant des corrélations dipolaires ou bien avec BAYESEPHEM (Vallisneri
et al. 2020), un modele décrivant la variation de la position du SSB par la perturbation
d’orbites et de masses des objets principaux du Systéme solaire en signaux déterministes.

4.2 Impact des erreurs des SSEs dans la recherche d'un GWB

Cette section présente ’étude de la performance d’' EPHEMGP a décrire les systématismes
contenu dans les SSEs, et a séparer un tel signal avec celui produit par un GWB. Pour cela,
nous avons simulé des temps d’arrivée a partir de données EPTA réelles. Les quatre jeux

de données simulés sont présentés dans le Tableau 2.

Le signal d’erreur des SSEs ('A’) est simulé en injectant dans les données la différence
des résidus des temps d’arrivée obtenus avec deux SSEs différentes. Dans cette étude,

nous considérons la différence entre DE438 et INPOP19a.

La Figure 4 montre les distributions postérieures de I'amplitude et de I'indice spectral
du CRS avec des corrélations Hellings-Downs obtenues en considérant les jeux de don-
nées analysés avec différents modeles décrivant les erreurs des SSEs. En haut, le signal de
GWB est injecté avec une amplitude A = 107'® ('B1’) relativement faible par rapport au
signal 'A’ qui induit un faux positif (distributions rouges). Pour les trois modeles d’erreur
sur les SSEs, les distributions postérieures (en vert) n'indiquent plus de faux positif. Dans
le cas d’'un signal fort de GWB avec une amplitude A = 1071 (en bas ; 'B2"), le signal ‘A’
ne semble pas affecter les distributions posterieures. Ces résultats montrent ainsi que les
trois modeles testés permettent d’absorber des potentielles erreurs dans les SSEs, et qu’ils

n’'ont pas d'impact significatif sur la caractérisation du GWB.
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Figure 4: Distributions postérieures des parametres de la loi de puissance décrivant un
signal de GWB obtenues pour les quatre jeux de données simulés pour un GWB avec une
amplitude de A = 10716 (en haut), et A = 10"!® (en bas). Les erreurs provenant des SSEs
sont modélisées avec EPHEMGP (a gauche ; EGP), BAYESEPHEM (au centre ; BFM) et un

CRS dipolaire (a droite ; EPH). Les lignes en noir montrent les valeurs de GWB injectées.
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Figure 5: Distributions postérieures de 'amplitude et de l'indice spectral du CURN
obtenues sans modeéle décrivant les erreurs contenues dans les SSEs (DE438), ou bien
en utilisant BAYESEPHEM (BE), EPHEMGP (EGP) ou LINIMOSS (LM).

4.3 Impact sur 'estimation des parametres du GWB avec 'EPTA DR2

Les résultats publiés dans Chen et al. 2021 contiennent également une partie qui décrit
une étude sur 'impact de la modélisation des erreurs des SSEs sur la mesure du signal
commun. En plus de considérer EPHEMGP et BAYESEPHEM, le modeéle LINIMOSS (Guo
et al. 2019) y est également considéré. La Figure 5 montre les distributions postérieures
des parametres décrivant la loi de puissance du signal CURN (sans corrélation spatiale)
obtenues avec les différents modeles. Les résultats restent compatibles avec la mesure
initiale (en bleu), avec un léger élargissement des distributions. Ainsi, le signal commun

mesuré persiste méme apres l'inclusion des modéles considérés.

5. Conclusion et perspectives

Les travaux effectués lors de cette theése ont pour objectif commun d’améliorer la descrip-
tion des sources de bruit et signaux contenus dans les données de chronométrage de pul-
sar, afin d’optimiser la recherche d’ondes gravitationnelles avec PTA. En plus de participer
a la recherche du GWB avec I'EPTA et I'IPTA, j’ai étudié I'impact de la modélisation des
signaux individuels et des erreurs des éphémérides du Systeme solaire sur la mesure du

GWB. Dans ces travaux, j'ai construit une méthode afin d’optimiser la modélisation des
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bruits rouges individuels, et j’ai construit un modele permettant de prendre en compte
les erreurs des SSEs en utilisant des informations provenant des éphémérides INPOP.

Les résultats récents des PTAs sont particulierement prometteurs pour les prochaines
années. Je participe en ce moment aux efforts fournis par la collaboration européenne
afin d’effectuer une recherche du GWB avec 25 pulsars dont les résultats sont attendus
pour I'année 2022. Cette augmentation du nombre de pulsars devrait permettre une large
amélioration pour la recherche des corrélations spatiales. Enfin, la combinaison des don-
nées provenant des différents PTAs continentaux au niveau de I'IPTA dans les prochaines
années permettra d’obtenir la mesure la plus précise et peut étre de confirmer (ou in-
firmer) la présence d'un fond stochastique d’ondes gravitationnelles.
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CHAPTER 1

INTRODUCTION

Abstract

This chapter begins with a presentation of pulsars in general and a focus on millisecond

pulsars (MSPs). It is followed by a detailed introduction on pulsar timing methods, in-

cluding the concepts of Time of Arrival (ToA) and Timing Model. The application to PSR
J1909-3744 and some related results published in Liu et al. 2020 are developed. I have
contributed to this project in the timing data reduction, the red noise analysis and writing

part of the paper. The third section gives a description of the Pulsar Timing Array (PTA)

gravitational wave detector principle, a brief review of the related expected sources, and

an overview of PTAs in the gravitational wave field. The last section details the concepts,

the techniques and tools used to perform Bayesian analyses presented in the next chap-

ters.
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Chapter 1 — INTRODUCTION

1.1 Neutron stars and Pulsars

1.1.1 Overview

Two years after the discovery of the neutron by Chadwick in 1932 (Chadwick 1932), Baade
and Zwicky (Baade and Zwicky 1934) proposed the existence of very small and high den-
sity objects called neutron stars, resulting from supernovae, i.e., the gravitational collapse
of an "ordinary" star. For decades then, these predicted objects have been studied mainly
to understand the state of ultra-dense matter (Oppenheimer and Volkoff 1939, Harrison
etal. 1958), described by the equation of state. Giacconi and colleagues suggested in 1962
that the first extra-solar X-ray source observed, named Scorpius X-1, was a young and hot
neutron star (Giacconi et al. 1962). This proposition was corrected by Shklovsky five years
later who concluded that the X-ray signal was emitted by the accretion of matter from a
putative neutron star (Shklovsky 1967). In 1964, Hoyle, Narlikar and Wheeler discussed
about the existence of a highly magnetized neutron star within the Crab nebula (Hoyle et
al. 1964), followed by Pacini in 1967 (Pacini 1967) who designated the hypothetical com-
pact object as the source of energy of the nebula.

In 1967, the Ph.D. student Jocelyn Bell and her supervisor Anthony Hewish observed a
regular signal at 19" 19™ right ascension and 21 degrees of declination with the Interplan-
etary Scintillation Array at Cambridge, built to monitor the interplanetary scintillation
with high time-resolution. In the same year, an upgrade of the instrumentation allowed
them to measure the period of the signal at 1.337 s. Firstly named LGM-1 (for little green
man) with humour, this source was then more seriously called CP 1919 (CP standing for
Cambridge Pulsar) (Hewish et al. 1968). In 1968, Gold proposed an interpretation of radio
pulsars to be fastly spinning and highly magnetized neutron stars which lose energy from
electromagnetic radiation and emission of relativistic particules (Gold 1968). The discov-
ery of pulsars in Vela (Large et al. 1968) and Crab (Howard et al. 1968) nebulae the same

year finally validated the correspondence between pulsars and neutron stars.

1.1.2 General description

Neutron stars are remnant compact objects that are produced (among other processes)
from core-collapse supernovae, the violent "death" of stars with masses from 8 to ~ 20
solar masses (My). In such events, the degeneracy pressure of electrons and the fusion
reactions inside the massive star are not high enough to compensate against the gravita-
tional compression, leading to a cataclysmic implosion forming the neutron star at the

core, and an explosion from the rebound of the external matter. Models of internal struc-

2
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tures of neutron stars, which are still in status of active researches, predict masses from 0.5
to 2.5 M, and radii of about 10 — 12 km. Measurements of masses (e.g., from pulsar tim-
ing of binary systems) have an average of 1.4 M., and only few radii have been evaluated,
such as for the double neutron star merger GW170817 with multimessenger observations
(R1 = R, =11.9*]]) (Abbott et al. 2018), or for the pulsar PSR J0030+0451" (R = 12.717['10)
(Riley et al. 2019), from the Neutron Star Interior Composition Explorer (NICER) X-ray

telescope.

After the rapid collapse at the origin of the supernova, the conservations of both an-
gular momentum and magnetic flux imply respectively a fast rotation and an intense
magnetic field of the neutron star. The rotating dipolar magnetic field (in the case of
non-aligned rotation and magnetic axes) induces a very high electric field, parallel with
the magnetic axis, that tears out particules from the compact object which fill the mag-
netosphere (Goldreich and Julian 1969), and follow the co-rotating magnetic field lines.
The "light cylinder" of the neutron star with a period P (see Fig. 1.1) defines an imagi-
nary cylinder aligned with the rotation axis and with a radius cP/(2n) at which the mag-
netic field lines spin at the speed of light. Therefore, the openned lines that reach out of
the light cylinder emmit charged particules at the magnetic poles, which produce radio
beams from curvature radiation. If the trajectory of (at least) one beam passes through
our radiotelescope, we can then detect a pulsated radio signal, and therefore observe the
neutron star as a pulsar (and in our case, a radio pulsar).

Each pulsar act as a cosmic lighthouse with a particular profile, i.e, the flux ampli-
tude as a function of its rotational phase. The observed profiles are subject to change
at each rotation of the pulsar, due for instance to the variations of the magnetosphere
content. Therefore, we usually consider the average profiles (integrated over many rota-
tions), which then appear most of the time very stable between two observations. The
mean profile is the fingerprint of the pulsar, it is unique (see Fig. 1.2) and depend on (1)
the distribution of the charged particles in the magnetosphere of the pulsar, (2) the angle
between the rotation and magnetic axes of the pulsar, (3) the different effects on the radio
beam as it travels from the pulsar to the radio telescope and (4) the angle between the line
of sight and the rotation axis of the pulsar.

IThe conventionnal nomenclature of pulsars is defined as "PSR J" (for Pulsating Source of Radio), fol-
lowed by the right ascension and declination in equatorian Julian coordinate system (J2000). For the pul-
sars discovered before the late 1990's, the "J" is often replaced with "B" and the positions are given in the
Besselian system (B1950). If several pulsars have the same names, their names end with letter in order to
distinguish them, such as PSR J0737-3039A.

2http://www.epta.eu.org/epndb/
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Figure 1.1: Toy-model for the pulsar, with the dipolar magnetosphere, the light cylinder
and the radio beam emission (from Lorimer and Kramer 2004).
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Figure 1.2: Rotational phase fractions of integrated pulse profiles of four different pulsars
from the European Pulsar Network? (EPN) database.
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1.1.3 Millisecond pulsars

The current version (v.1.65, up to December 2020) of the Australia Telescope National Fa-
cility (ATNF) Pulsar Catalogue (Manchester et al. 2005) reports 3177 pulsars, including
3055 radio pulsars with periods ranging from 1.4 ms (Hessels et al. 2006) to 23.5 s (Tan
et al. 2018). The population of radio pulsars is often represented by the so-called “P-P*
diagram (see Fig. 1.3), with the spin period P and its first derivative P. The majority of
pulsars, referred as canonical pulsars, have periods between 0.1 and few seconds, and a
deceleration rate P between 1077 and 107 '3 s.s™!. The slowing down due to electromag-
netic radiation and particle emission among other processes makes these (usually young)

pulsars migrate to the right side of the diagram.

The lower left part of the P-P diagram contains the millisecond pulsars (MSPs), with
very low periods (< 30 ms). In contrast to canonical pulsars, the vast majority of MSPs are
located in binary systems. This characteristic can be explained by the following scenario:
if the star that originated the pulsar was contained in a binary (or multiple) system that
remained from the original supernova, after a certain time, the approaching companion
undergoes mass transfer to the pulsar which gains angular momentum from mass accre-
tion (Alpar et al. 1982). These old pulsars are therefore named recycled pulsars because
they are accelerated by recycling part of their companion.

The v.1.65 of the ATNF Catalogue counts 468 MSPs observed in radio, 276 of which are
contained in a binary system. MSPs are remarkable for their high rotational regularity (P <

10718 5.s71), which allows them to be used as cosmic clocks with pulsar timing studies.

1.2 Pulsar Timing

The Pulsar Timing in radio exploits the high rotational stability of millisecond pulsars
in order to measure various physical values with very high accuracy. The first indirect
detection of gravitational waves (Taylor and Weisberg 1982) have been obtained by timing
the first pulsar detected in a binary system, PSR B1913+16, or PSR J1915+1606 (Hulse and
Taylor 1975), where the evaluation of the periastron advance of the orbital period is in
strong agreement with the prediction of General Relativity. The timing of PSR B1257+12
has enabled to discover the very first exoplanets (Wolszczan and Frail 1992), that induce
slight movements of this MSP. Furthermore, the pulsar timing enable to perform tests
of general relativity in the strong-field regime with very high accuracy, see for example
Kramer et al. 2006 for the double pulsar PSR J0737-3039A/B.

Among many other applications, the pulsar timing also permits to measure masses

of pulsars contained in binary systems (Demorest et al. 2010) and therefore induce con-

5
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Figure 1.3: The pulsar zoology with the P-P diagram obtained from the ATNF Pulsar Cata-
logue v.1.65. All pulsars are shown with grey dots and different subgroups are represented:
soft Gamma-ray repeaters (SGR) and anomalous X-Ray pulsars (AXP) in red squares, those
in a binary system with a grey circle, those observed in the infrared in yellow diamonds,
those not detected in radio in blue triangle, rotating radio transient sources (RRAT) with
intermittent pulsed radio emission in green hexagons and neutron stars with thermal
pulsed X-ray emission in pink triangles. The orange shaded region is called the pulsar
"graveyard", delimited by the "death line", under which the pulsars are not expected to
emmit detectable radio beams because they supposedly cannot support pair production
(Chen and Ruderman 1993).



Chapter 1 — INTRODUCTION

Rotation axis )
Mean pulse profile

- = Refi
. 7’\ ~ e erer_{Cf: clock
i L TOA /\
N /
S o Telescope / AJ
Neutron star ~~_ [ / - < -
Radiobeam % De-dispersion &
' on-line folding
Receiver N

Figure 1.4: Basic concept of a pulsar timing observation (from Lorimer and Kramer 2004).

straints on the equations of state of ultra dense matter.

The millisecond pulsars are weak radio sources and in most of the case it is impos-
sible to detect each single pulse. In practice during a timing observation, the pulses are
stacked together in real time for ~ 1000 — 10000 rotations in order to increase the signal-
to-noise ratio (S/N) and obtain a stable mean pulse profile, this is called the folding (see
Fig. 1.4). Moreover, the radio signal is affected by the dispersion induced by the free elec-
tron content between the pulsar and the telescope. This creates a delay proportional to
the inverse of the square radio frequency, i.e., the pulses arrive later for the lower frequen-
cies. The timing observations correct this effect in real-time in order to obtain the most
precise folded profiles. This method is called the dedispersion (see again Fig. 1.4).

A pulsar timing observation therefore provides a measure of average pulses at several
radio frequencies during a given time (usually at the range of an hour). The timing proce-
dure consists of (1) extracting one or several times of arrival (ToA) from each observation
and (2) build a timing model from a full set of of observations which takes into account
the different effects that impact the ToAs.

1.2.1 The Time of Arrival

The Time of arrival is the observed time of a fiducial point in the average profile used
to time precisely the pulsar signal. Their conventional unit is the Modified Julian Date?
(MJD). Usually, the ToAs are produced from an observation fully averaged in time and ei-
ther fully averaged in radio frequency, or only partially. If the latter is chosen, one has sev-

eral “sub-bands“ ToAs for one observation, each one representing a part of the observed

3The MJD is defined as the number of days since midnight on November 17, 1858, exactly 2400000.5 days
after day 0 of the Julian Date (JD) calendar that has been proposed in the 16-th century in order to cover all
human history (JD 0 corresponds to 12: 00 on Janurary 1, 4713 BC.).
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frequency band. This option is especially useful for wideband observations because it
allows to describe possible effects that depend on the radio frequency (i.e., chromatic

processes).

The ToAs are determined from the cross-correlation of the observed profile Pypg(t)
with a reference “template” profile T(t), usually the smoothed (i.e., noise reduced) ad-

dition of several high S/N observations. One can express the observed profile as
Pobs() =a+b T(t—1) + N (1), (1.1)

where a, b and N/ (t) are respectively an arbitrary offset, a scaling factor and Gaussian
noise. 7 is the time shift between P, and T, it permits to evaluate the ToA defined at a
fiducial point of the template. The common approach to evaluate ToAs is based on the
minimization the difference between both profiles transformed in the Fourier domain
(Taylor 1992). The manipulation of observation files, the creation of the profile template

and the ToA creation is most of the time performed with the software PSRCHIVE®.

The uncertainty o1, of the ToA depends on the pulse width W and observed signal-
to-noise ratio S/ N as follows (Lorimer and Kramer 2004)

w Ssys p 532

x x ,
SIN \/m Smean

where Sqys is the “system equivalent flux density“, used to characterize the effectiveness

OToA = (1.2)

of a system, typs and A f are the integration time and the bandwidth of the observation, P
is the pulsar spinning period, 6 = W/P is the pulse duty cycle and Spyean is the mean flux
density of the pulsar. The first term on the right hand side displays the dependence of
the precision on the radio telescope and observation quality, which is optimized with an
effective instrument (low Sgys) observing the pulsar with a wide band (large A f) for along
duration (large t,,s). The second term shows that the ToA accuracy is optimal for bright
pulsars (large Smean) With short periods (low P) and small pulse duty cycles (low §). The

millisecond pulsars are therefore particularly adapted to obtain very high quality ToAs.

For wideband observations, the ToA measurement can be significantly impacted by
effects that induce variations of the profile with a frequency dependence (i.e., chromatic).
As mentionned previously, one can split the full bandwidth in sub-bands and create sub-
band ToAs in order to account for chromatic effects afterwards. Another possibility is to
use modern methods that extends the common ToA creation procedure shown in Taylor
1992 by considering chromatic processes, such as the dispersion (Liu et al. 2014, Pennucci
et al. 2014, Pennucci 2019). This method, often referred as “2D-template“ matching, al-
lows to add the radio frequency f information into the cross-correlation as

Pobs(t, £) =a(f) +b(f) T(t—1(f), f)+ N, ), (1.3)

‘http://psrchive.sourceforge.net
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where 7(f) describes time shifts as function of observational frequency.

1.2.2 The Timing Model

The ToAs obtained for a given pulsar are then combined using the Timing Model (TM),
which permits the phase-connection between them, and therefore to study any effect that
impacts the arrival time of the pulses at time scales larger than the observation cadence.
Most of the MSPs were observed at least once a week for several years, or decades. Note
that the cadence and the time span of a timing dataset are important to characterize short
and long term processes. Let us now have a look on how the Timing Model is built.

The pulsar spin frequency

First of all, the TM takes into account the change in rotation of a pulsar over time. Its spin

frequency v is expressed as a Taylor expansion (Lorimer and Kramer 2004) :
1
v(t):v0+1'/0(t—t0)+§i>0(t—to)2+..., (1.4)

where v = v(ty), Vo = V(fp) and vy = V(ty) are the spin frequency and first two derivatives
at a reference epoch 7). The term v, and higher derivatives are usually too small to be
significantly measured. These components are part of the “red noise“(see Chapter 2) that
is often treated with analyses post-application of the Timing Model.

The TM permits the phase-connection between the ToAs, which means that every ro-
tations of the pulsar is unambiguously counted. The rate of change of pulse number N

can be expressed as (Lorimer and Kramer 2004)
1. 2 1. 3
N(t):N0+V0(l'—t0)+§1/(l'—t0) +EV(t_t0) + ..., (1.5)

where Nj is the pulse number at the reference epoch fy.

Transformation to the pulsar reference frame

The regularity of the observed pulses is also altered by the relative motions of both the
pulsar and the Earth, and also by the electron content of the interstellar medium. The
Timing Model describes these effects and transforms the “topocentric“ ToAs to the pulsar
reference frame. The pulse emission time at the pulsar frame £, related to the arrival
time measured at the observatory frame #2°° and dated with the local observatory clock,
is expressed as (Hobbs et al. 2006, Edwards et al. 2006)

(5 = 1% _ A — Ao — Arsm (— Ap), (1.6)
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with the following correction components :

¢ The clock correction A¢:

This term is used to convert the local time measurements to the Terrestrial Time (TT)
standard; an ideal clock placed on the geoid, i.e, the Earth surface at mean sea level. In
practice, the correction is divided into several stages: the observatory time standard de-
fined by a clock (usually rubidium clock or hydrogen maser) used to measure pulse arrival
times is compared with the Universal Time Coordinate (UTC) broadcast by the Global Po-
sitioning System (GPS). The UTC is then reduced to the most stable long-term time scale
available, the “Temps Atomique International“ (TAI), a weighted average of hundreds of
atomic clocks given by the Bureau International des Poids et Mesures (BIPM). The TT is
finally obtained directly from TAI by adding a constant time. The TT is regularly refined in
order to take into account for TAI instabilities and published by the BIPM (Guinot 1988).
The most recent release up to October 2021 is TT(BIPM20).

* The Solar-system barycentric correction Ag:

The ToAs at the telescope frame are transformed to correspond at the arrival time of
the pulse wavefront at the quasi-inertial Solar-system barycenter (SSB), in order to correct
any effect related to the Earth motion around the SSB, the Solar sytem spacetime curva-
ture and the electron content of the interplanetary medium and the Earth atmosphere.

This correction can be expressed as
A@ :AA+AG@+AD@+AE@+AS@, (1.7)
with

— Ap, the atmospheric delay that comes from the radio wave dispersion and refrac-

tion in the ionized (ionosphere) and neutral (troposphere) layers of the Earth atmosphere.

— Ago, The geometric vacuum delay (Observatory to SSB frame transformation) that
compensates for the observatory motion around the SSB frame assuming a vacuum flat
space. It is described with the Solar system Roemer delay Are and the annual parallax

term Ap (related to the pulse spherical wavefront curvature) :
Age = Age +Ap, (1.8)

The Solar-system Roemer delay is defined as the classical light travel time from the ob-
servatory to the SSB frame projected toward the pulsar’s direction (Lorimer and Kramer
2004) :

T. ﬁBB
AR@ = c ’ (]-9)

10
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with T, Rgg and ¢ respectively the observatory position, the pulsar (or binary barycenter
if the pulsar has a companion) position unit vector, usually expressed in SSB frame, and
the speed of light. The vector T is in practice constructed as the sum of the observatory

position in the geocentric frame § and the geocentre position in the SSB frame ¥s:

(S+7s) . Rpp
c )

Ago = — (1.10)

The geocentre position T is directly defined by a chosen Solar-system ephemeris (SSE)
that gives informations on Solar-system body positions, velocities and masses. They are
produced and shared by collaborations such as the french Institut de Mécanique Céleste
et de Calcul des Ephémérides (IMCCE), the american Jet Propulsion Laboratory (JPL) or
the russian Ephemerides of Planets and the Moon (EPM).

— Apo, the dispersion due to the electron content present in the interplanetary medium
which affects the pulsar radio signal. It mainly comes from the solar winds.

— Ago, the Solar system Einstein delay due to the relativistic time dilation and the
gravitational redshift induced by the Solar system objects.

— Ase, the Solar system Shapiro delay caused by the spacetime curvature in the Solar
system, for which the major contributions come from the Sun and Jupiter.

¢ The Interstellar medium correction Agv:

The ToAs expressed at the SSB are then subjected to a coordinate transformation to
the pulsar frame. This term corrects for the secular distance variations between the pul-
sar and the SSB, and for the dispersion of the radio signals happening in the interstellar
medium (ISM). The ISM dispersion delay of a ToA at the observed frequency f,,s can be

expressed as

k x DM
Abjgy = —5—’ (1.11)

obs

where DM is the dispersion measure, defined as the integral of the column density of the
electron between the reference frame and the pulsar, and k = 4.149x 103 MHz? cm?® pc™!' s

is the dispersion constant.

* The binary correction Ag:

If the pulsar has a companion, which is the case for a good fraction of MSPs, one needs
to correct for the geometric delay due to the orbital motion in the binary system and re-

lated relativistic effects. In other words, we need to transform the ToA from the binary

11
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barycenter to the pulsar rest frame. The binary correction can be expressed as (Lorimer
and Kramer 2004)

Ap :ARB+ASB+AEB+AAB» (1.12)
with

— ARgs, the binary Roemer delay, similar to Solar system Roemer delay, but now to
describe the orbital motion of the pulsar in the binary system.

— Aap, the aberration delay that takes into account the variation of the direction of the
Earth seen from the pulsar, which affects the observed time of emission along the orbit of

the pulsar in the binary system.

— Agp, the binary Shapiro delay due to the curvature of spacetime from the compan-

ion.

— Agp, the binary Einstein delay due to the relativistic time dilation and the gravita-

tional redshift in the frame of the pulsar.

The Timing Model parameters

Technically, the Timing Model describes the pulsar spin frequency and the corrections
detailed above by fitting parameters to the ToA dataset of a given pulsar. The fitted Timing

Model parameters can be grouped as the following :

— The rotational parameters, usually the spin frequency F0 and its first derivative F1,

defined at a reference epoch.

— The astrometric parameters, the pulsar position and proper motion at a reference
epoch, given by the right ascension RA and declination DEC and their related proper
motions PMRA and PMDEC. The positions are derived from the annual variation of the
ToAs coming from the Solar system Roemer delay (see Eq. 1.9). Thus, the precision of
the position parameters depends strongly on the ecliptic latitude of the pulsar because of
the term T . Rgp. The proper motion is also measured from the Roemer delay component.
A transverse component of the pulsar velocity related to the SSB might modify the term
Rgg, and induce a linear time-dependent trend in the Roemer delay. The annual parallax

PX, related to the Ap correction (see Eq. 1.8), can also be evaluated for nearby pulsars.

— The dispersion measure parameters are given by its constant value DM at a refer-
ence epoch and the its derivatives (DM1,DM2, ...). Note that the dispersion effect is re-
lated to the non homogeneous electron content between the pulsar and the Earth, which
varies because their relative motions. Therefore, the dispersion measure variations can ei-

ther (1) be treated during the timing procedure, with the “DMX"“ parameters, that describe

12
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the DM by dividing the total duration into time intervals, or (2) taken as a chromatic “red
noise“ signal (see Chapter 2), as it is always performed for the results presented in this

manuscript.

— The orbital parameters, formed by the Keplerian and post-Keplerian components

of the pulsar binary system.

1.2.3 The timing procedure and timing residuals

In practice, only few Timing Model parameters are approximately known just after the
discovery of a given pulsar. Building up an observational dataset over time allows to im-
prove their accuracy and estimate other timing parameters. For instance, it is important
to have a time span over one year in order to characterize components that are dependent

to annual terms, such as the astrometric parameters.

The Timing Model parameters are evaluated using a least-square fitting procedure ap-
plied to match the set of the m observed ToAs to pulse numbers shown in Eq. 1.5 namely
(Lorimer and Kramer 2004)

2

NI
(M) , (1.13)

O

=
1
™M=

where 7; is the nearest integer of N(f;), and o; is the uncertainty of the i-th ToA in units

of pulse period.

This procedure is performed to obtain a phase-coherent TM solution that minimizes
the differences between the observed ToAs and those predicted by the Timing Model, ref-
ered as timing residuals § t. If the Timing Model accurately describes all processes affect-
ing the arrival times of the pulses, the weighted residuals 6 #(¢) / o should follow a Normal
distribution NV (0,1). However, incorrect TM parameter values induce systematics in the
post-fit timing residuals with specific structures (see Fig. 1.5). Several processes might
not be captured by the Timing model and therefore the timing residuals still contain un-
modelled signals, such as intrinsic pulsar red noise, variations of chromatic processes,
systematics in the SSEs or very-low frequency gravitational waves. A next step of data

analyis is then required in order to account for such processes.

The main software packages that allow to fit for the TM parameters and evaluate tim-
ing residuals are TEMPO2 (Hobbs et al. 2006) and (more recent) PINT (Luo et al. 2019).
In this work, all timing residuals and TM parameters have been obtained using TEMPO2.

Instead of performing pulsar timing with ToAs, one can directly analyse and charac-

terize signals from the timing observations. Usually referred as “profile domain“ pulsar

13
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Figure 1.5: Simulated timing residuals for the case of (top left) a perfect TM fit, (top right)
error in the projected semi-major axis Al, (second row left) error in positions RAJ and
DEC]J, (second row right) errors in proper motions PMRA and PMDEC, (lower left) er-
ror in frequency FO and (lower right) error in the frequency derivative F1. The reference
epochs for the position and frequency are both at MJD 55000.
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Figure 1.6: L-band observation of PSR J1909-3744 from the Nancay Radio Telescope.

timing (Lentati et al. 2015, Lentati and Shannon 2015, Lentati et al. 2017), such methods

are however currently under development.

1.2.4 Application on PSR J1909-3744 with the NRT

Now that the pulsar timing procedure is described, we apply it to PSR J1909-3744 and

detailed analysis is given below.

PSR J1909-3744 is a millisecond pulsar with a white dwarf companion. This MSP has
been discovered in 2003 (Jacoby et al. 2003) from a survey applied with the Parkes 64-m
Radio Telescope in Australia. It is one of the best-timed pulsars, with a timing precision
at the level of hundreds of nano-seconds. Indeed, this relatively nearby (~ 1 kpc) pulsar
has a spinning period at approximately 2.95 ms and a profile composed of a single narrow
peak (see Fig. 1.6) with a full width at half maximum at about 43 us (< 1.5% of the phase).
According to eq. (1.2), these properties allow to compute ToAs with high accuracy.

A study of this pulsar is published in Liu et al. 2020, which presents a precise timing
analysis of this binary system with 15 years of data from the french Nancay Radio Tele-
scope (NRT). For this work, I have participated in the process of the ToA creation, the

15



Chapter 1 — INTRODUCTION

Figure 1.7: The Nancay Radio Telescope.

timing and noise analysis, and writing part of the paper. Let us first introduce the NRT

and then present some results of that paper.

The Nancay Radio Telescope

The Nancay Radio Telescope is a meridian Kraus-type instrument inaugurated in 1967,
with a flat primary mirror (200 m x 40 m panel at the right of Fig. 1.7) that reflects the
radio signal coming from the sky at the meridian toward the spherical secondary mirror
(300 m x 35 m spherical structure at the left of Fig. 1.7), which focuses the signal to the
focal cart in the center of instrument. The 7000 m? collecting area makes it equivalent
to a 94-m single dish. The rotating primary mirror permits to observe at all declinations
over —40° and the focal cart which carries the receivers can move over 100 m during the
observations in order to compensate the Earth’s rotation.

There are currently two receivers allowing to observe at L-band (1.1 - 1.8 GHz) and S-
Band (1.7 —3.5) GHz. The recent pulsar timing data from the NRT combines observations
performed with two backends : BON (Berkeley-Orléans-Nancay) that observed from 2004
until 2014 with bandwidths of 64 and 128 MHz before and after July 2008, and NUPPI
(The Nancay Ultimate Pulsar Processing Instrument) from August 2011 with a bandwidth
at 512 MHz separated into 128 frequency channels.
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Timing analysis of PSR J1909-3744

The dataset used in Liu et al. 2020 is constituted of 15 years (from December 2004 to
September 2019) of weekly cadenced observations performed with both BON and NUPPI
backends. The data is first reduced by (1) calibrating the polarizations, (2) applying radio
frequency interference (RFI) mitigation methods and (3) removing the top and bottom
16 MHz frequency ranges that are affected by signal reflections in the receiver. In total,
the timing dataset contains 615 L-band and 231 S-band ToAs, produced with the stan-
dard Fourier domain cross-correlation method Taylor 1992 for BON, and a 2D-Template
matching method for NUPPI, using the Channelised Discrete Fourier Transform (CDFT)
algorithm presented in Liu et al. 2014.

The timing analysis in this work extends the timing procedure detailed previously. The
ToAs are modelled by the Timing Model and stochastic processes (described in details in
Chapter 2) that are (1) the Gaussian white noise that corrects for possible errors in the ToA
uncertainty evaluation, (2) the time-dependent DM variations and (3) the achromatic red
noise that characterizes long-term signals that are independent of the observed radio fre-
quency. The parameters of the TM and the stochastic models are simultaneously evalu-
ated following Bayesian approach (see Section 1.4) with the software TEMPONEST (Lentati
et al. 2014), which combines TEMPO2 and the nested sampler MULTINEST (Feroz et al.
2009). The stochastic parameters are also estimated with ENTERPRISE package (Ellis et al.
2019) for a cross check.

It is interesting to notice that the timing residuals before subtracting the stochastic
noise signals (upper panel of Fig. 1.8) display a long term variation consistent with Ar-
zoumanian et al. 2018b. The final “whitened“ residuals shown in the lower panel of Fig.
1.8 yield to a timing precision of 103 ns weighted root mean square (rms), which is partic-
ularly notable for a 15 years of data. The measured and derived Timing Model parameters
are shown in Table 1.1 with uncertainties relating to the 68% credible intervals of the 1D

marginalized posteriors.

Among other results, the high quality timing analysis allowed to derive the masses of
the MSP and white dwarf companion at m;, = 1.492+0.014 M, and my,q = 0.209+0.001 Mo
from the measurement of the post-Keplerian parameters s (‘shape‘) and r (‘range‘) that
are related with the binary Shapiro delay (see Section 1.2.2). Assuming General Rela-
tivity, they can be expressed as (Edwards et al. 2006) s = sin(i) and r = Gmo/c®, where
i is the inclination orbit with respect to the line of sight and m, is the mass of the bi-
nary companion. The Figure 1.9 shows the nice consistency with the mass ratio obtained
from optical observations of the white dwarf. Also, the orbital eccentricity evaluation
e=/k2+n? = (1.15+0.07) x 1077 is consistent with previous results (Manchester et al.
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Table 1.1: Measured and derived timing parameters of PSR J1909-3744 (Liu et al. 2020).

Parameter Value

M]D range 53368-58693
Number of TOAs 846

Timing residual rms (us) 0.103
Reference epoch (MJD) 55000

Measured parameter

Right ascension, a (J2000)
Declination, § (J2000)

Proper motion in a, p, (masyr™?)
Proper motion in &, s (masyr™1)
Parallax, 7 (mas)

Spin frequency, v (Hz)

Spin frequency derivative, v

DM (cm ™3 pc)

DMI1 (cm™3 pcyr™1)

DM2 (cm ™3 pcyr2)

Orbital period, Py, (d)

Epoch of ascending node (MJD), Tysc
Projected semi-major axis, x (s)

X component of the eccentricity, x
y component of the eccentricity, n
Orbital period derivative, P,
Derivative of x, X

Shape of Shapiro delay, s

19:09:47.4335812(6)
—37:44:14.51566(2)
—-9.512(1)

—35.782(5)

0.861(13)
339.315687218483(1)
~1.614795(7) x 10~1°
10.3928(3)
—0.00035(5)

2.2(7) x107°
1.533449474305(5)
53113.950742009(5)
1.89799111(3)
4.68(98) x 1078
—~1.05(5) x 1077
5.1087(13) x 10713
—2.61(55) x 10716
0.998005(65)

Range of Shapiro delay, r (us) 1.029(5)
Derived parameter (assuming GR)

Galactic longitude, [ (deg) 359.7
Galactic latitude, b (deg) -19.6
Longitude of periastron, w (deg) 156(5)
Orbital eccentricity, e 1.15(7) x 1077
Pulsar mass, my, (Mo) 1.492(14)
Companion mass, ni. (M) 0.209(1)
Parallax distance, d, (kpc) 1.16(2)
kinematic distance, dy (kpc) 1.158(3)

Spin period, P (ms) 2.94710806976663(1)
Spin period derivative, P (x10721) 14.02521(6)
Pga (x10721) 0.0587(2)
Pgpi (x1072h) 11.36(3)

Pt (x1072h 2.60(3)
Characteristic age, 7. (Gyr) 18.0

Surface magnetic field, B (G) 8.9 x 107
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Figure 1.8: Timing residuals of PSR J1909-3744 (Liu et al. 2020) from NRT observations us-
ing BON (white) and NUPPI (blue) backends at L-band (circles) and S-band (triangles).
The upper panel displays the residuals after fitting for the Timing Model parameters, and
the lower panel shows the residuals after subtracting the evaluated stochastic noise de-
lays.

2005), which confirms that PSR J1909-3755 is in the most circular pulsar binary system
known so far. Finally, the orbital parameters obtained in this work shown in Table 1.2

appear to be in agreement with other pulsar timing studies on this pulsar.

1.3 Pulsar Timing Arrays

In General Relativity, the spacetime is curved and driven by its matter (mass-energy) con-
tent as formulated by Einstein equation. The dynamic aspect of spacetime naturally led

Einstein to predict the existence of gravitational waves (Einstein 1918), that are ‘ripples'

Table 1.2: Comparison of a selection of timing parameters measured in Liu et al. 2020
with previous publications. The values of orbital eccentricity e were calculated from two
eccentricity vectors «, 7, except for the case of Reardon et al. 2016 where it was directly
fitted for.

7 (mas) Py x sini Me (Mo) e
Desvignes et al. 2016 0.87(2) 5.03(5) x 10713 -0.6(17)x 10716 0.99771(13) 0.213(2) 1.22(11) x10~7
Reardon et al. 2016 0.81(3) 5.03(6) x 10713 - 0.99811(16) 0.2067(19) 1.14(10) x 10~/
Arzoumanian et al. 2018b  0.92(3) 5.02(5) x 10713 —4.0(13) x 1076 0.99808(9) 0.208(2) 1.16(12) x 1077
Perera et al. 2019 0.88(1) 5.05(3) x 10713 —3.9(7) x 10716 0.99807(6) 0.209(1)  1.04(6) x 1077
Alam et al. 2021 0.88(2) 5.09(3) x 10713 —2.9(8) x 10716 0.99794(7) 0.210(2)  1.10(9) x 1077
Liu et al. 2020 0.861(13) 5.1087(13) x 10713  —2.61(55)x 1071  0.998005(65) 0.209(1)  1.15(6) x 1077
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Figure 1.9: Mass-mass diagram of PSR J1909-3744 binary system (Liu et al. 2020). Con-
traints from r and s parameters are obtained from the pulsar timing analysis and g is
obtained from optical observations of the white dwarf companion (Antoniadis 2013).

due to spacetime perturbations propagating at the speed of light.

The idea of detecting gravitational waves from pulsar timing measurements was first
proposed in Sazhin 1978, following the method described in Estabrook and Wahlquist
1975 to detect GWs with Doppler spacecraft tracking, and elaborated by Detweiler 1979
who derived an upper-limit on the dimensionless GW amplitude of a stochastic gravita-
tional wave background (GWB). In Hellings and Downs 1983, the correlations in the tim-
ing residuals induced by a GWB as function of the angular separation of pulsars in the sky
have been formulated (See Chaper 2). The concept of Pulsar Timing Array (PTA), using a
combined dataset of several pulsars to probe GWs has been developped in practice since
the last years of the 20-th century (Romani 1988, Foster and Backer 1990, Backer 1995).

This part contains a brief discussion of the principle of detecting gravitational waves
with a Pulsar Timing Array (PTA), followed by a review of the main expected sources, a
brief discussion on PTA sensitivity and an overview of PTAs collaborations.

1.3.1 Detecting gravitational waves with a Pulsar Timing Array

The pulsar timing datasets of ultra-stable millisecond/recycled pulsars consist of decades

of weekly cadenced measurements with a precision at the level of hundreds of nano-
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seconds. The principle of PTAs is to utilize these measurements to detect very-low fre-
quency (nHz - pHz) GWs that perturb the geodesics followed by the pulsated radio sig-
nals from the pulsar to the radio telescope, and therefore induce (long-term) delays on
the timing residuals. For a pulsar with a spinning frequency at v, the passage of GWs
modulates the measured frequency v(¢,), and generates a signal 0 fgw in the timing resid-
uals as (Detweiler 1979)

5zGW(ta):ftamdr’:[[“@(r’)dt’, (1.14)

te Yo te Vo

with ¢, and ¢, the emission and reception times of the the radio pulses.

If the gravitational wave comes from the direction k, the term 6v/v, for a pulsar a
with a sky position unit vector 7, can be expressed as (Anholm et al. 2009)
ov_ ALnl
Vo 2(1+fg.k)
where Ah; j is the difference between the GW characteristic strain at £, and f4, respectively
defined as the pulsar term h; ;(z.) and the Earth term h; (z,), thus

Ahij, (1.15)

Ahij = hij(te) — hij(ta), (1.16)
And the emission and reception times are related such as
te = ta—L—C“(1+ﬂa.l%), (1.17)
with L, the distance between the Earth and the pulsar.

The hunted signal in the residuals depends on the relative sky positions of the GW
source and the pulsar, and on the distance between the Earth and the pulsar which is
usually of the order of few kilo-parsecs (kpc; ~ 10000 light-years). This means that the
pulsar term imprints the GWs emitted tens of thousands of years earlier relative to the
Earth term.

In practice, a GW signal cannot be distinguished from intrinsic signals of the pulsar
such as stochastic variations of its spin due to internal processes. The idea behind PTAs is
to combine of a full array of pulsars and probe for the correlated signals. It is important to
note that unlike the pulsar terms, the Earth terms are correlated across all pulsars. For this
case, the difference between the signals in timing residuals of two pulsars only depends
on their angular separation in the sky.

In summary, PTAs are galactic-sized multi-arm GW dectectors that use (typically tens)
MSPs as clocks for which one measures variations on the regularity of the pulse arrival
time. To give an idea, the characteristic precision of PTA from a dataset with a time span
T =20 year, a one-week cadence (AT) and a timing precision § £ = 100 ns can be evaluated
as dt/T ~ 1.6 x 10716 in dimensionless amplitude, with an observable frequency range at
Af=[1/T-1/AT] ~[107°-107%] Hz.
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1.3.2 GW sources at very-low frequencies

Several sources are expected to emmit GWs in the frequency range of PTAs. Some of the
signals are deterministic, meaning that the signal 6 fGy expressed in Eq. 1.14 can be ex-
actly calculated from the characteristic strain /() related to the source. Alternatively,
we could expect stochastic (noise-like) GW signals that could be produced either during
energetic processes in the early universe or as a superposition of many weak individual

(monochromatic) signals. Let us now briefly review different sources seeked by PTAs.

The inspiralling supermassive black hole binaries

The most promising GW sources observable with PTAs are the inspiralling supermassive
(= 10° M) black hole binaries (SMBHBs) located at the center of nearby (z < 2) galaxies.
These binary systems are formed by the mergers of galaxies that occur during the history
of the Universe.

The nearest and most massive SMBHBs could be seen as continuous GW sources,
producing deterministic signals in the data (top right of Fig. 1.10). At PTA frequencies
(107° - 107% Hz), the detectable systems would have orbital periods of order ~ 0.1 — 10
years®, emitting quasi-monochromatic GWs within the time span of PTA datasets. A de-
tection of continuous waves would permit to characterize properties of sources such as
the sky location, the orbital eccentricity, the chirp mass® and the luminosity distance.
The disentanglement of the last two parameters is in practice challenging and could be
achieved either through an independent measurement of the SMBHB distance (e.g., via
the distance to the host galaxy), or exploiting the waveform evolution in time, e.g., com-
paring one or several pulsar terms with the Earth term (see Section 1.3.1) that each corre-

spond to different moment in the system orbital evolution.

Other possible deterministic processes produced by SMBHBs are short-lived GW sig-
nals often referred to as GW bursts. For instance, a close encounter of two supermassive
black holes would cause a generic burst that might induce a transient effect (~ weeks
- months) in the timing residuals (bottom right of Fig. 1.10). Moreover, the merger of a
SMBHB might produce a sudden (less than one day; Favata 2010) GW burst with a perma-
nent change of the spacetime metric after the event named burst with memory (Blanchet
and Damour 1992). As shown in the bottom left panel of Fig. 1.10, such signal yields to
a linear trend that begins at the event epoch (here at day 1500) in the timing residuals,

5The frequency of GWs emitted by a circular and GW-driven SMBHB system is equal to twice the orbital
frequency.

SFor a binary system with masses m; and my, the chirp mass M is an effective mass derivable from GW
measurement and defined as M = (m; m2)3® / (my + mp)V/>.

22



Chapter 1 — INTRODUCTION

due to the different configuration of the metric that is not taken in account by the timing
model. The quadratic shaped post-fit residuals (bottom sub-panel) are caused by the in-

accurate fit of the pulsar spin and spin derivative parameters affected by the burst signal.

The superposition of all signals from a population of SMBHBs forms a stochastic grav-
itational wave background (GWB ; top left of Fig. 1.10) that is considered to be the main
candidate for detection with PTAs (Rajagopal and Romani 1995, Sesana et al. 2008). The
inspiral of SMBHBs get faster as the orbital separation decreases. Therefore, the related
spectrum is expected to display higher power at lower frequencies, where most systems
are located. For a simplified population of circular and GW-driven orbits, the derived
strain using the GW quadrupole formula follows a simple powerlaw h(f) < f~2/3 (Jaffe
and Backer 2003, Chen et al. 2017). Contrary to circular systems, the GW power induced
by an eccentric binary is distributed over multiples harmonics of the orbital frequency.
With such systems in the population of SMBHBs, part of the power of the stochastic back-
ground at the lowest frequencies is therefore shifted to higher frequencies, causing a turn-
over in the related spectrum. The perturbations of SMBHB orbits via the interactions with
the surrounding environment (stars in the core of the host galaxy, circumbinary gaseous
disk) are expected to reduce GW power at lower frequencies, but to increase in the orbital
energy dissipation and accelerating the orbital evolution. The probability for the presence
of a single bright source rising over the total background increases at higher frequencies,
making this frequency range attractive for continuous wave searches. Finally, in case of
bright but unresolvable single sources, or an excesses of SMBHB in specific regions in the
sky (e.g., galaxy clusters), the GWB sky distribution would be anisotropic. We only con-
sider the isotropic component of GWB in this thesis.

Other sources

Besides the GWs from SMBHBs, which are the main focus of this work, we mention briefly
other GW sources in the PTA band.

The cosmic strings are one-dimensional macroscopic topological defects that would
be produced in the early Universe from phase transitions. After these, a network of cosmic
strings would then evolve in time, with interconnections and self-intersections of strings,
producing loops that would oscillate and decay via GW emission (Olmez et al. 2010).
Cosmic superstrings predicted from string theory would also produce GWs with similar
mechanisms. A stochastic GWB coming from the addition of all sources is expected to
contains a flat part at higher frequencies (from loops decaying during the radiation era)
and broad peak at lower frequencies (from loops decaying during the radiation-to-matter
era transition and the matter era). Cosmic (super)strings are also expected to emmit GW

bursts from bend and reconnection mechanisms such as cusps and kinks (Damour and
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Figure 1.10: Simulated pulsar timing residuals before and after fitting for the TM parame-
ters (resp. top and bottom of each sub-panel) for three pulsars with different sky locations
(black, blue and red) that contains signals from (a) a GWB from a SMHBH population, (b)

a single SMBHB system, (c) a burst with memory and (d) a generic (Gaussian) burst (from
Burke-Spolaor 2015).
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Vilenkin 2001, Key and Cornish 2009).

There are other sources expected to emmit GWs in PTA band such as quantum space-
time fluctuations at the early stage of the Universe that are amplified by the inflation (Gr-
ishchuk 1976, Fabbri and Pollock 1983), or magnetohydrodynamic processes happening
at the quantum chromodynamics phase transition (Neronov et al. 2021), which would
both produce a stochastic GWB.

1.3.3 Assessing the detectability of GWs with PTAs

Let us now explore the time evolution of the signal-to-noise ratio (S/N) for different types
of signals. In this part, we only focus on GWs produced from inspiralling SMBHBs with
PTAs.

The S/N of a deterministic GW signal from a circular SMBHB (pcw) with an amplitude
Acw emitted at frequency fcw using an array of M identical MSPs, all observed with a
uniform cadence At for a total time span T, assuming white noise only (i.e., with a con-
stant power for all frequencies ; see Chapter 2) and considering only the Earth term, can
be derived as (Perrodin and Sesana 2018)

A T 1/2
Pcw X CW( M) )

o few E

where o is the rms of the timing residuals (see Section 1.2.3).

Therefore, the S/N for a single SMBHB increases linearly with the emitted amplitude
and decreases linearly with the residuals rms and the GW frequency. Conversely, pcw is
proportionnal to the square root of the observational time span, the number of pulsars in
the array, and the inverse of the observing cadence. Note that the choice of white noise
only is relevant since we expect this noise to dominate at high GW frequencies, where the

probability of having a single source rising over the background is maximal.

In this thesis, we focus on the stochastic GWB produced by the population of SMBHBs
in the local Universe. In the same way as above, we assume only white noise and the
GWB to be present in the data. As discussed in Chapter 3, the smoking gun of a GWB
detection is given by the Hellings-Downs correlation function that only depends on the
angular separation between each pair of MSPs in the case of an isotropic GWB. The S/N
of the GWB, pgws, can be derived through the evaluation of the cross-correlated power
in MSPs. Assume an array composed of M equal pulsars, all observed with a cadence At
during the total time span T and a timing precision o, let us consider the expectation
value of the S/N (pgws) for a GWB signal modelled as a powerlaw power spectral density
(see Chapter 2) with a spectral index ygwg and an amplitude Agwg setat f = 1yr~!. In the
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weak signal regime (GWB spectrum fully under the white noise), the S/N scales with time
as (Siemens et al. 2013)

2
(pgw)] x M ( A(\}/WAEI) TYews, (1.18)
o

Hence, at the low-S/N regime, (pgws); increases linearly with the number of pulsars
and the inverse of the observing cadence, quadratically with the GWB amplitude and the
timing residual rms. It is proportional to 7768, where ygwp = 13/3 in case of an idealistic

population of circular and GW-driven SMBHBs.

At the intermediate S/N regime (with low frequencies of the GWB spectrum over the
white noise level, but highest frequencies below), the average S/N can be written as

AGwB

Ny TV?, (1.19)
(0

/yGws
(ogws)i o< M ( )

In this case, the S/N has weaker dependence on the GWB amplitude, the cadence and
the timing residual rms. Moreover, it is now proportional to the square root of the total
duration of observations. The number of pulsars in the array has now the biggest impact
on the S/N, with a linear dependence. Given the current timing precision and GWB signal
constraints (see Chapter 3), the strong S/N regime (where the signal is all over the white

noise) is not realistic and therefore not considered here.

Note that this scaling of S/N has to be taken carefully since only white noise have been
involved, while other noise become important at the lowest frequencies (see Chapter 2),
which might impact significantly the actual S/N for the GWB. It is also possible to derive

scaling laws for more complex GWB spectrum (see e.g., Vigeland and Siemens 2016).

1.3.4 PTAs in the GW landscape

The gravitational waves are also probed at higher frequencies, with different types of de-
tectors that are summarized just below.

— The gound-based laser interferometers:

The ground-based laser interferometers observe gravitational waves at frequencies
from 1 to 10® Hz (see Fig. 1.11). A laser beam is split into two parts that travel back
and forth in two perpendicular four km long arms. The lasers beams are then recom-
bined at the beam splitter and sent to a photodiode. The passage of a GW modifies dif-
ferently the size of each arms, leading to a phase difference between the two lasers and
thus changing the interference pattern at the detector output. The first direct observa-

tion of gravitational waves has been accomplished by the two American detectors, the
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Figure 1.11: The gravitational wave spectrum with the related sources and detectors (from
Moore et al. 2014).

Laser Interferometer Gravitational-Wave Observatory (LIGO). The detected signal corre-
sponds to the coalescence of two stellar mass (~ 30 M) black holes (Abbott et al. 2016).
Since this historic event, three joint observational runs with the European Virgo detector
have permitted to detect more than 50 other signals from the coalescence of stellar mass
systems (black holes and/or neutron stars). The observational runs are alternated by up-
grade phases to improve the sensitivity. Other detectors such as KAGRA in Japan or the
future LIGO-India will also join the future observation runs.

— The space-based interferometers:

The Laser Interferometer Space Antenna (LISA) is a future space-based detector planned
for launch in 2034 composed of three spacecrafts exchanging laser signals, forming an in-
terferometer of triangle shape with an arm length of 2.5 million kilometers. It will operate
in the frequency range [10™* — 10~!|] Hz (see Fig. 1.11), and aims at detecting signals from
Galactic low-mass binary systems (for instance composed of two white dwarfs), the coa-
lescence of massive black hole binaries or Extreme Mass Ratio Inspiral (EMRI), formed
by a stellar mass object orbiting around a massive black hole. LISA will also study GW

backgrounds formed by population of Galactic, extra-Galactic and cosmological sources.
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1.3.5 The Pulsar Timing Array collaborations

The detection of gravitational waves with PTA is a long-term task. Each pulsar is observed
over many years at different radio frequencies with telescopes that are subject to regular
updates. It is also important to combine pulsars that cover an optimal part of the sky in
order to probe the presence of spatial correlations. There are several collaborations that
time pulsars and work toward the detection of the very-low frequency GWs with PTA (see
Fig. 1.12):

— The Parkes Pulsar Timing Array (PPTA) is the Australian project formed in 2004
as a collaboration between Commonwealth Scientific and Industrial Research Organisa-
tion (CSIRO) Astronomy and Space Science and Swinburne University of Technology. The
main instrument is the 64-m single dish Parkes Radio Telescope.

— The European Pulsar Timing Array (EPTA) is the European collaboration officially
established in 2006, connecting groups from France, Germany, Italy, Netherlands and
United Kingdom. The EPTA data are collected from the Effelsberg 100-m radio telescope,
the Nancay Radio Telescope, the Lovell Telescope at Jodrell Bank Observatory (JBO), the
Westerbork Synthesis Radio Telescope (WSRT) and the Sardina Radio Telescope. The
Large European Array of Pulsars (LEAP) program also permit to simultaneously time pul-
sars with a monthly cadence by using a combination of the five radio telescopes as a tied-

array telescope (Bassa et al. 2016).

— The North American Nanohertz Observatory for Gravitational Waves (NANOGrav),
founded in 2007, is now made of more than 40 institutions in the United States of Amer-
ica and Canada. The two contributor instruments are Green Bank Telescope, and Arecibo
Radio Telescope which has been decommissioned because of critical damages happen-
ing in late-2020. The Very Large Array and the Canadian Hydrogen Intensity Mapping

Experiment (CHIME) are also expected to participate to the pulsar timing datasets.

— The Indian Pulsar Timing Array (InPTA) is the Indian collaboration formally set up
in 2019. It combines research groups from the National Centre for Radio Astrophysics,
the Tata Institute of Fundamental Research, the Raman Research Institute in India, the
Indian Institute of Technology Hyderabad and the Indian Institute of Mathematical Sci-
ences. The instruments are the Ooty Radio Telescope and the upgraded Giant Metrewave
Radio Telescope (uUGMRT).

— MeerKAT is a South African radio telescope launched in 2018 which comprises 64
13.5-m dishes, and has an total effective area of 9000 m?. About 60% of the antennas are
located in a 1 km diameter circle, and the rest are located around, allowing a maximum

baseline of 8 km. It is one of the precursors of the ambitious Square Kilometer Array radio
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Figure 1.12: The Pulsar Timing Arrays around the world in 2021 (from NANOGrav web-
site”). Note that Arecibo radio telescope sadly broke in late-2020.

telescope that is planned to be held in Australia and South Africa. The MeerKAT radio
telescope performs timing of over 1000 pulsars (189 MSPs) with very high quality data
following the MeerTime project programmed for five years (Bailes et al. 2018) launched
since ~ 3 years ago.

— The Chinese Pulsar Timing Array (CPTA) is a Chinese collaboration which is in a
process of formation. The main instrument is the Five-hundred-meter Aperture Spherical
radio Telescope (FAST) which is officially operating since early-2020. Whereas the 110-m
Qitai Radio Telescope and the Jingdong 120-m Pulsar Radio Telescope are both planned
to be built in the upcoming years.

— The International Pulsar Timing Array (IPTA) is the consortium of consortia orig-
inally formed by EPTA, PPTA and NANOGrav, and joined by the InPTA in early-2021. The
main idea behind IPTA is to combine the data from all PTAs and coordinate the world-
wide effort on searching for low-frequency GWs.

"https://nanograv.github.io/optimalobs/
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1.4 Bayesian framework

The data analyses techniques applied to the single-pulsar model selection (Chapter 2), the
search of a GWB (Chapter 3) and the study of the impact of Solar system ephemeris errors
on GWB searches (Chapter 4) are all performed within a Bayesian framework. This section
introduces this framework and describes the methods, the software and the statistical

tools used to produce the results in the next chapters.

1.4.1 Basic concepts and methods

The data analyses carried in this thesis are based on a statistical Bayesian approach, where
we aim at evaluating noise and signals in the data that are described by parametrized
models. In Bayesian inference, the parameters are (1) considered as random variables
and (2) evaluated using a priori knowledge, through the parameter priors.

We use conditional probabilities to infer parameter probability distributions (i.e., pos-
teriors) given the data and parameter prior distributions, this is refered as parameter es-
timation. The Bayesian framework also permits to perform model selection, where we
determine which model is favored by the data among different candidates. Let us now
formulate the different quantities and describe the methods chosen to perform the model
selection in this thesis.

— The parameter estimation

The Bayes (or Bayes-Price) theorem (Bayes and Price 1763, Laplace 1812, Kolmogorov
1960) permits to formulate the probability distribution of the parameters 0, given the ob-

served data (timing residuals in our case) 5t and the model M a, called posterior distribution,

as:
PB4l6t, M) = PO100 Ma) PlalMa)
PO tIM,)
_ £(5t|9a,Ma) ﬂ(ealMa)’ (1.20)
ZMm,
where

o L(51104,M,) is the likelihood function of observing 5t given the set of parameters
6, of the model M. Its computation for PTA is detailed in Section 2.3.1.

o (04 My,) is the parameter priors, the probability distributions of 6, given M, and

any knowledge prior to observations.
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* Z, is the evidence (or marginal likelihood) associated with M, the probability of
observing 5t assuming that model M is the correct one. It is often presented as a

normalization constant and neglected but it plays a key role in model selection.

Here, the subscript a enumerates the models.
— The model selection

The Chapter 2 focuses on the noise model selection for each pulsar, with an objective
to find the most favored model given the observed data. The probability of a particular
model M, given 5tis expressed from the Bayes theorem

P(gtha) P(Mu) — ZMa 7[_/\/[“

P(M,|61) = - _
P(O1) P11

(1.21)

where Z 4, is the model evidence, 7 o, is the model prior and PG =Y b P(5tIMp) 7 My
the probability of the observed dataset.

Note that the computation of P(61) requires to marginalize (i.e., sum up) the quantity
P(g t| M) over every possible models M, which is often unrealizable. For the study in
Chapter 2, we have used previously published results as a guidance for selecting models
for a given pulsar assuming that all considered models have equal probability (prior) Z 4,
unless otherwise specified. The model selection between two models M, and M, is

based on the posterior odds ratio:

P(Mal6t)  Zpm, T,

. , (1.22)
P(M,pl6t) ZM, M,

Since we use equal (non-informative) priors, the odds ratio reduces to the Bayes factor
Bﬁz = Zm,! Zpm, (Gelman et al. 2004).

In order to calculate B/\/\fl;, one can express the evidence of a given model as a fully

marginalized posterior (Sivia and Skilling 2006):

ZMu :P(gtha) :fdéa P(gtléarMa) P(§a|Ma)

:fdéa L6104, M) 10 4My), (1.23)

As we involve multi-dimensional parameter spaces, this integral is hard to calculate and
requires numerical algorithms such as nested samplers (see the next subsection).

An alternative method called product-space (or hyper-model) is also used to obtain

Bayes factors without evidence evaluation. It has been proposed in Carlin and Chib 1995,
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extended in Hee et al. 2015 and applied in Taylor et al. 2020. In this approach we sam-
ple models and their corresponding parameters using a hyper-parameter that switches

between the models.

The decisions for the model selection in Chapter 2 are based on the scale proposed in
Jeffreys 1961, that is Bﬁ: > 100 indicates a preference for the model M, against M, with
‘decisive’ evidence. This interpretation criteria has been set phenomenologically, and re-
vised in Kass and Raftery 1995, which suggests using a threshold value 150 (log;, Bﬁ: pe
2.2). Therefore, we use the range 2 < |logloBﬁZ| < 2.2 as a selection criteria. In case of
the non-conclusive Bayes factor we follow Occam principle and select the model with the

lowest prior volume (or computational cost).

1.4.2 Data sampling techniques and software

The Bayesian analyses mentionned in this manuscript are carried through numerical eval-
uation appoaches. The likelihood and parameter posteriors are evaluated with ENTER-
PRISE package (Ellis et al. 2019).

The parameter estimation is also conducted with Markov chain Monte Carlo (MCMC
; Gilks et al. 1995) sampler software, PTMCMCSAMPLER (Ellis and Haasteren 2017) and
MC? (https://gitlab.in2p3.fr/stas/samplermcmc), both based on Metropolis-Hastings
algorithms (Metropolis et al. 1953, Hastings 1970). We perform analyses with the former
that is widely used for PTA data analyses as a standard MCMC, with a (long) single chain.
The latter is a sampler that runs several chains independently, which permits convergence

checks.

The Bayes factors calculated through the ratio of evidences are estimated with the
nested algorithms (Skilling 2004, Skilling 2006). They are evaluated either with DYNESTY
(Speagle 2020) package in Chapter 2 and Section 3.4, or with MULTINEST (Feroz et al.
2009) or POLYCHORD (Handley et al. 2015) in Section 3.3. The product-space approach
is applied with the “Hypermodel“ class implemented in ENTERPRISE_EXTENSIONS (https:
//github.com/nanograv/enterprise_extensions) package and used in Chapters 2 and
3.

The following software packages are used to produce the results and figures in this
manuscript: NUMPY (Walt et al. 2011), scIpy (Oliphant 2007), MATPLOTLIB (Hunter 2007),
CORNER (Foreman-Mackey 2016), LA FORGE (https://github. com/Hazboun6/la_forge)
and OUTLIER-UTILS (https://github.com/c-bata/outlier-utils).
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1.4.3 Statistical tools

— The Jensen-Shannon divergence

The Jensen-Shannon divergence (JSD ; (Manning and Schiitze 1999)), or information ra-
dius, is used to compare two posterior distributions. JSD(A||B) quantifies the similarity of
2 distributions A and B:

JSD(A||B) = DKL(;‘”M) + DKL(Q/I”B), (1.24)

with M = (A+ B)/2, and Dgj, the Kullback-Leibler divergence (Kullback 1959), based on

Shannon entropy

(1.25)

A
Dy (AllB) = L A(3) In ( m)

B(x)

The Jensen-Shannon divergence has convenient properties, such symmetricity JSD(A||B) =
JSD(BJ|A)), and presence of boundaries (0 < JSD(A||B) < In(2) ~ 0.69). The consistency
between the two compared distributions is high for low values of JSD. In the thesis, we
empirically consider that JSD(A||B) < 1072 informs that both distributions are indistin-
guishables.

— The Gelman-Rubin ratio

The convergence of MCMC samplers are examined with Gelman-Rubin statistics (Gel-

man and Rubin 1992, Brooks and Gelman 1998). This estimator quantifies the difference

between several MCMC chains. Let’s consider a parameter 8 sampled with m chains of
length n (all equal for simplicity). Let ] i,j» the estimated posterior value of 6 at the itera-

tion i of the chain j that has amean p;, and the overeall estimated mean p = (1/m) Z LM
Let us define the between-chain variance B/n and within-chain variance W as

B 1 =

rwfe a2
S @ -t LY 2

W= m(n =) & 2O —upT= ) 0, (1.27)

]:11:1 j=1

with 0'?, the variance of the chain j.

A pooled posterior variance V can be estimated (with sampling variability correction)

as

~ n-1 m+1B
V= W+ - (1.28)
n m n
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The Gelman-Rubin ratio, also called potential scale reduction factor, is then expressed as

A

C:

d+3 V2
) , (1.29)

d+1W

where d refers to the degree of freedom (Gelman and Rubin 1992).

The estimator tends to 1 as all MCMC chains explore the full posterior, and become
consistent with each other. We follow the interpretation proposed in Brooks and Gelman

1998, which considers that convergence is reached for HAZ-, jif R.<1.2.

The Gelman-Rubin ratio have been calculated to check for the convergence of poste-

riors obtained in the model selection study described in Chapter 2.
— The Anderson-Darling test

As mentionned in Section 1.2.3, the noise subtracted timing residuals divided by ToA er-
rors (i.e., whitenned residuals) should follow a standard Gaussian distribution A/ (0,1) if
the model describes properly the signals in the data. We use the normality test Anderson-
Darling (Anderson and Darling 1952) in Chapter 2 to estimate the performance of the
investigated models. The Anderson-Darling statistic evaluates how much a given data
sample deviates from a chosen probability distribution. It compares the empirical distri-
bution function F (i.e., cumulative distribution function) of the tested sample with a theo-
retical function chosen as a null hypothesis. For A/(0, 1) and thus with both the mean and
variance known, the Anderson-Darling estimator A% of a sample x; (here the whitenned

residuals) with i =1, ..., n can be expressed as

A= =n= Y "= [In(EC) +In(1 = (-], (1.30)
i=1

The likelihood in PTA is based on assuming the Gaussianity of the data. If the data
is modelled correctly, a model selection based on Bayes factor allows to choose the best
model from a given set, but it doesn’t guarantee the goodness of the model. The Anderson-
Darling test, permits to complete the Bayesian model selection by evaluating the per-
formance of the model. The Gaussian assumption (i.e., null hypothesis) is rejected at a
certain confidence level if A2 is over a corresponding critical value. For instance, the null
hypothesis cannot be excluded at 95% confidence level if A% = 2.5 (Table 4.2 of D’Agostino
and Stephens 1986).
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CHAPTER 2

SINGLE-PULSAR NOISE MODEL SELECTION

Abstract

This chapter is dedicated to the optimisation of the single-pulse noise models, with the
aim of giving a special treatment for each pulsar given the data and our a priori knowl-
edge. This work is the main content of a publication (Chalumeau et al. 2021) submitted to
Monthly Notices of the Royal Astronomical Society journal (MNRAS) journal for which a
model selection is performed to six pulsars of the EPTA Data Release 2 (DR2). The chapter
begins with a presentation of the EPTA DR2, followed by a description of the method to
model single-pulsar noise components in PTAs. It concludes with the full study achieved

in order to obtain the most favored single-pulsar noise model for each considered pulsar.
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2.4 Single-pulsar noise model selection with the EPTADR2 . . ... .. 49
2.4.1 Selection on number of Fourier modes for the achromatic
red noise and DM variation . . . . .. ... ... ........ 49
2.4.2 Extending model selection for stochastic and deterministic
signals . . ... L 52
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2.1 Introduction

The three following PTA collaborations, PPTA, NANOGrav and EPTA have recently pub-
lished consistent results on the presence of a red (i.e., time-dependent) signal common
among pulsars with their own independently processed datasets (Goncharov et al. 2021,
Arzoumanian et al. 2020 and Chen et al. 2021) but still without evidence for Hellings-

Downs correlations, which would confirm a detection of the GWB.

The biggest problem with PTA data is the low control on the noise: there are many po-
tential sources which could contribute to the observed data (i.e., timing residuals) which
we model in a parametrized (and sometimes simplified) way and include in the “global
fit". The high frequency end of PTA data is usually dominated by measurement white
noise. The low frequency end is expected to be dominated by red noise processes. Some
of the red noise is expected to be correlated, those are spatial correlations that are a func-
tion of angular separation of each pair of pulsars on the sky (Tiburzi et al. 2016). Besides
the GWB (see Section 1.3.2) we expect other sources of correlated noise such as errors
in the clock time standard (causing monopolar-type correlation) or systematic errors in
the Solar-system ephemeris (causing dipolar-type correlations). Moreover, we also expect
the presence of uncorrelated red noise which is individual to each pulsar in the array, this
is the spin noise (or timing noise) which refers to the rotational variations of the pulsar
caused by different possible phenomena (e.g., unmodeled objects in the vicinity of the
neutron star, intrinsic processes, etc.). The red noise types described above are commonly
referred to as achromatic red noise since it is independent of the observing radio frequen-
cies. Most of the PTA data also show the presence of chromatic red noise that depends on
the radio frequency of observations. In particular there is the long-term variations of dis-
persion measure, which add time delays to the time of arrival as At oc v~2 and scattering
variations (At o< v~%), both caused by the time-varying electrons column density between

the pulsar and the radio telescope.

Our ability to detect and characterize GW signals strongly depends on the faithfulness
of the pulsar noise model (Hazboun et al. 2020). Due to large choice of possible noise
components (we see it as various models of the noise) and their description/parametrization,
the search for GWB assumes a common (and usually simplified) noise model that is the
same for each pulsar and infers parameters of that model together with characterizing the
GWB. It was shown (see, for example, Goncharov et al. 2021 and the references therein)
that actual noise model could vary significantly from pulsar to pulsar and could influence
detectability of GWB (Hazboun et al. 2020). This is the main motivation in this study, in
which we seek for the most favored single-pulsar noise model and compare it with the
standard one used for in recent EPTA search for a GWB (Chen et al. 2021). Based on the
previous investigations for each pulsar in the EPTA DR2, we suggest a finite set of noise
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models and use Bayes factors (cf. Section 1.4) as a ranking statistic for various choices,
assuming that all models are equally probable a priori. When the Bayes factor is not in-
formative (close to one) we make selection based either on simplicity of the model or on
the basis of computational efficiency with very few exceptions which we discuss in the
main text explicitly.

The chapter is organized as follows. A brief presentation of EPTA DR2 data in sec-
tion 2.2 is followed by a detailed description of each noise process that will be used in
building the noise model given in Section 2.3. The Section 2.4 presents all the results ob-

tained for the single-pulsar noise model selection with a summary in Section 2.4.4.

2.2 Description of the EPTA Data Release 2

The EPTA Data Release 2 (DR2) — 6-pulsars dataset (Chen et al. 2021) — comprises up
to 24 years of high cadence observations of PSRs J0613-0200, J1012+5307, J1600-3053,
J1713+0747, J1744-1134 and J1909-3744. These pulsars are observed at four European
radio telescopes: the Effelsberg 100-m radio telescope (EFF), the Nancay Radio telescope
(NRT), the Lovell Telescope at the Jodrell Bank Observatory (JBO), the Westerbork Syn-
thesis Radio Telescope (WSRT). In addition, we have used data of Large European Array
of Pulsars (LEAP), that is the combination of four mentioned telescopes with the Sardinia
Radio Telescope (SRT), forming a tied-array telescope (Bassa et al. 2015). The five ra-
dio telescopes contribute to all pulsars except PSR J1909-3744, which has a dataset that
contains only NRT observations because of its low-declination. Upgrades of telescopes,
including improvements in or changes of receivers/backends, have been applied during
the observational period, which make the dataset heterogeneous in timing precision and
radio frequency coverage. We label the data by the telescope (or observatory) and the sys-
tem that collected it followed by the radio frequency in MHz (e.g., EFEP200.1400). Having
the multiple systems in PTA datasets is a curse, as we need to combine the data from all
systems together taking into account possible systematics, and a blessing as the multi-
band observations are required to disentangle and characterize the chromatic noise and

the system specific instrumental red noise (e.g., system noise, Lentati et al. 2016).

A characteristic time-of-arrival (ToA) is computed from the time and frequency aver-
aged profile of each observation, except for JBO.ROACH and NRT.NUPPI backends, which
use respectively 2 and 4 (radio-frequency) sub-band ToAs per epoch. The ToAs of each
pulsar are assembled together and used to fit the timing model (TM) parameters that de-
scribe pulsars’s sky position and proper-motion, its spin frequency and corresponding
derivative, the DM and its two first derivatives. For pulsars in binary systems, the tim-
ing model accounts also for the orbital motion including Keplerian and post-Keplerian
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parameters. Phase jumps are included in TM for each system and also for each of the
JBO.ROACH & NRT.NUPPI.1484 sub-bands. The fit for TM parameters was obtained us-
ing TEMPO2 package (Hobbs et al. 2006) with the JPL Solar-system ephemeris DE438 (to
transform the local observatory ToAs to the Solar-system barycentre) and with the clock
corrections TT(BIPM2019) (time conversion from the observatory time standard to the
Terestrial Time (TT) given by the Bureau International des Poids et Mesures (BIPM)). The
end result are the timing residuals, i.e. the differences between the observed ToAs and the
predicted arrival times by the TM, that are then analysed to search for GWs.

2.3 Modelling signals in PTA data

This section presents the likelihood computed for PTAs and the signals related to the
single-pulsars components that are either stochastic, defined as Gaussian processes (Ras-
mussen and Williams 2005), or deterministic. The common red-signals related to the
GWB and Solar system ephemeris errors will be further developped in the Chapters 3 and
4. The descriptions follow the methods used in the package ENTERPRISE (Ellis et al. 2019)
which is employed to compute the likelihood and prior values for most of the analyses

presented in the manuscript.

Gaussian processes in a nutshell

Gaussian processes (GPs) are the generalization of multivariate Gaussian distributions in
the case of an infinite number of random variables. GPs are particularly convenient to de-
scribe random functions f(x) and quantify an uncertainty at any given point x. More for-
mally, a GP is a stochastic process { f (x); x € S} where, for any finite set {x, x, ..., x,,} € S",
with n € N, the random vector (f(xl), f(x2),... f(xn))T € R" is distributed as a multivariate

Gaussian.

A Gaussian process can be fully characterized by its mean and covariance that are
both (continuous) functions (see next section). GPs are often used to solve regression
problems, where one wants to predict values of some continuous functions given a set
of input data and a chosen covariance function (also referred as kernel). As mentionned
previously, this method is very convenient since it provides a value and related errors at
any given point using very few assumptions (Gaussian and often stationnary), and allow-
ing irregularly sampled data in any number of dimensions. However, GPs are not sparse
(i.e., they require to use all data to perform the prediction), and they cannot be applied
for big data sets (> 10* points).

In PTA noise modelling, we do not use Gaussian processes to perform regression. In-
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stead, we model (apparent) stochastic processes (pulsar spin noise, DM variations, grav-
itational wave background, ...) as GPs with a parametrized kernel for which we want to
infer hyperparameters through Bayesian method. As described in the next section, the
kernel is built in the frequency domain, using basis functions (expressed as a sum of
sine/cosine functions) and a chosen power spectral density. Note that for PTAs, a sig-
nal modelled as a GP follows a Gaussian distribution at any given epoch (i.e., observation
time), with a zero mean in time domain and where the kernel defines the covariance of
the process between each epoch (i.e., the correlation in time between the times of ar-
rival). The kernel is also used to describe covariances between pulsars (e.g., Hellings-
Downs correlations), or the radio frequency dependence of the process, also referred as
the chromaticity (see Section 2.3.2).

2.3.1 The single-pulsar likelihood

Let us introduce the likelihood for Gaussian processes following Haasteren and Vallisneri
2014. We assume that all noise components are Gaussian and stationary and we separate
the white noise component N (see below) from the rest. The Gaussian process can be

introduced in two equivalent ways:

— As a sum of deterministic basis functions )_; Fj(t)wj, where w; are weights —random

0

Gaussian distributed variable N/ (w?,Z ij), where w ; is a mean value for each weight, Z;;

is a covariance matrix, and Fj(t) are basis functions. This is the weight-space view.

— As a continuous function such that the ensemble average E[f ()] = m(f) and the
covariance E[(f (1) — m(1))(f(t") — m(t'))] = C(¢, t'). This is the function space view.

Those two descriptions are related via

C(t,1") =) Fa(DZapFp (1), 2.1)
a,b

witha,b=1,...,N.

The red noise covariance matrix C(t, t') described in the following Section was intro-
duced in Haasteren and Levin 2012 and it was approximated using an incomplete Fourier
basis (sin, cos) in Lentati et al. 2013. Applying the Gaussian process approach to the PTA
likelihood function we get (Haasteren and Vallisneri 2014):

exp [—3 Yij (6t — XaFa(t) wa) (Ny) ™' (84— Lo Falt) wa)]
v (2m)"det(N)

» exp [_% 2ab Wa Zap) ™ Wb]

V2mNdet(®) ’
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where 0¢; the i-th observed residuals with 7, j = 1,..., n. The equivalent representation is

given as

exp [—% Zij ot; (Nij +Cij)_l 5tj]
v (2m)"det(N + C)

p(5tIGP) = 2.3)

where Cj; = Y 5, Fa(t)) Zap Fp(tj). The convenience of the latter description is that it can
be computed efficiently using the Woodbury equality (Woodbury 1950):
(N+C) '~ (N+FzFH™!
=N!1-NFE ' +FINIBHIFINTY, (2.4)

In what follows we consider C as a combination of several (chromatic and achromatic)
red noise components each decomposed in its own set of basis functions.

For a set of n timing residuals 6¢, the likelihood function describing white noise N,
a stochastic red noise as gaussian process with covariance matrix C, and a deterministic

signal d(t; éd), characterised with parameters éd, is expressed as
exp [—% Zij (5ti —d(t;; éd)) (Nij + Cij)_l (5'[]' — d('[j ; éd))]
Vv (2m)"det(N +C)

p5t|64,GP) = , (2.5)

withi,j=1,...,n.

2.3.2 The single-pulsar noise models
Marginalization over Timing Model parameter errors

Before we introduce the noise components, we should explain how we treat the timing
model. We assume that an initial fit of the timing model obtained with LIBSTEMPO (Val-
lisneri 2020), a python wrapper of TEMPO2, reduces it to a linear model where the co-
efficients are given by a design matrix M (made of partial derivatives of timing residuals
with respect to timing model parameter errors). The deterministic linearized signal from

errors of the p timing model parameters is thus

d™(t; & =M(1) &, (2.6)

with dim(M) = (n x p).
The likelihood function given by eq. (2.3) is therefore expressed (in ‘matrix‘ form) as

exp (5t - ME’)T (N+C)~! (5t - MZ-‘)

1
2

p(6t1E,GP) = , 2.7)

v (2m)"det(N+C)
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In each analysis of the manuscript, we analytically marginalize the likelihood over the
TM parameter errors (left over from the main fit). The analytic marginalization was first

demonstrated in Haasteren et al. 2009 as

p(5tIGP) = f dP& p(6t|¢,GP)

exp | -3 60T K (5|

= , (2.8)
Vv (2m)"Pdet(K) detMTK-1MT)
withK=N+C, and K’ =K' —=K"'M (M’K"'M)™' M7K.
An alternative formulation was proposed after in Haasteren and Levin 2012 as
o exp| -1 (607G (G'KG) ™' GT (51
f dPE p(1E, GP) = , 2.9)
Vv (2m) =P det(GTK-1GT)

where G is obtained after factorising M with a singular-value decomposition (SVD), such
M = UDV*, with D the (n x p) diagonal matrix, and U and V respectively the (n x n) and
(p x p) orthogonal matrices. Then U = [F G], with F the (n x p) matrix, corresponding to

the p first columns of U and G, the remaining (n x (n — p)) matrix.

Rather, it has been shown in Haasteren and Vallisneri 2014 that these analytic marginal-
ization expressions are equivalent to the marginalization of a corresponding Gaussian
process with an improper prior. The implementation of the marginalization in ENTER-
PRISE (used for all data analyses in the manuscript) utilizes in the equivalence of weight
space and function space description of a Gaussian process. The design matrices (Mg (t;))

are used as basis functions, the covariance for the TM process is given as

C™=3Y M) ZI My (1), (2.10)
a,b

where the prior on the parameter errors is modelled with a prior £ = Al with I being
a diagonal unit matrix and A is a large numerical number (see Haasteren and Vallisneri
2014 for details). In the limit A — oo this prior becomes improper, but in this analysis the
values of A are fixed but large so the prior is formally proper. The marginalization over
timing errors (“weights”) is then performed in a usual way by going from eq. (2.2) to eq.
(2.3).

The use of a very wide or improper prior in Bayesian model selection should be taken
with great caution especially comparing two models where one of them uses marginaliza-
tion over the improper prior. The penalization which is embedded in the prior (for being

too wide) and propagates into computation of the evidence is lost and reliable results
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from evidence-based model selection cannot be guaranteed. However in all noise mod-
els described below we perform marginalization over the TM parameters which brings

them all to the common starting point for further comparison.

The white noise

As mentioned above the white noise dominates the high frequency end of the PTA sen-
sitivity band. The ToA errors (0104) are estimated within the template-matching method
(Taylor 1992) that is used to compute the actual ToAs. This method is based on the Fourier
domain cross-correlation of a template profile with the integrated pulse profile at the cor-
responding epoch (see Section 1.2.1). The uncertainties of each ToA are further modified

_ /g2 .2 2
o= Ef0T0A+Eq.

EFAC (Eg) is a multiplicative factor that takes into account ToA measurement errors (or ra-

as

diometer noise). EQUAD (Eq) is added in quadrature to account for any other white noise
(such as a stochastic profile variations (Shannon et al. 2014)) and for a possible systematic

errors. The white noise model, therefore, is given as

Nij = (Bf* 05,5 () +Eq%) 63, (2.11)

where i and j indexing the ToAs of the corresponding backend. EFAC and EQUAD are
the phenomenological parameters that characterize the white noise for each system and

for each pulsar.

The stochastic red signal

It is essential for PTAs to describe properly the intrinsic red noise because of its possible
correlation with low-frequency GW signals (Shannon and Cordes 2010). Results from sim-
ulations in Hazboun et al. 2020 have clearly demonstrated the impact of red noise mod-
elling on GWB results. The single-pulsar stochastic red noise is a time-correlated signal
modelled as a stationary Gaussian process usually with power-law power spectral density
(PSD) as

A? -
Sp(f) = o (%) yr, (2.12)

where the amplitude A is the normalized value at the frequency of one over one year (f =
1/yr), and y is the spectral index.
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The Fourier cosine transform permits to relate S, (f) to the time-domain correlation
function C(7j;) as (Haasteren et al. 2009)

o0
C(tij) :f df P(f) cos(tij f), (2.13)
0
where 7;; = 27 |; — t;| contains the time difference between two observations.

After defining a low-frequency cutoff f;, the stochastic red noise covariance matrix
can be expressed as (Haasteren et al. 2009)

SRS _ A? ( i )I_Y
yrt

oy sin(TX) ¢ 771 - §2 EDT ST
ra Y)Slfl(z)(fLTl]) (;O(zq)! 2q+1-y) |’

= (2.14)

where I’ is the Euler gamma function.

The analyses applied in the thesis adopt the "weight-space" representation of the
Gaussian Process, that is the timing residuals due to red noise at each epoch t; are ap-

proximated as

N
§t(t;) =Y X cos(2mt; fi) + Vi sin (27, fi), (2.15)
=1

where X; and Y; are playing the role of weights and the basis functions are

Fo-1(t) = cos (27 ; f7),

(2.16)
Fo(ti) = sin (27 1; f;),

where [ = 1,...,N and f; = I/T (where T is the duration of the observation). This rep-
resentation would correspond to the usual Fourier transform if we had regularly spaced
epochs, t;. However the radio observations are quite irregular (besides maybe the last 5
years or so) which makes the Fourier basis not exactly orthogonal. In addition, we do not
use a complete set: we usually truncate it at some low frequency as we are interested in
modelling the red noise. The optimal choice of frequencies was considered in Haasteren
and Vallisneri 2015, however for all results presented here, we have used an evenly spaced
Af =1/T set of frequencies, starting at f = 1/T and truncating at N/ T where N is one of
the parameters in the model selection.

The covariance matrix Z for the Fourier coefficients (weights X;, Y;) is defined by the
PSD, S(f). The simplest model for the PSD of a stochastic red process in a single pulsar
data is a power-law Sp(f; A,7) (Eq. 2.12). The covariance matrix is given in the frequency
domain by

2 =Sp(fis Ay) 6k ! T, (2.17)

where k,1=1,...,.N
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An alternative description takes into account that the data is dominated by white noise
athigh frequencies, and that is captured as a broken power law (Arzoumanian et al. 2020) :

42 — 1/x\K (r=90)
SerL(f3 A, 7,0, f,K) = (f) (1+(£) ) yro, (2.18)

1272 \yr~1 fv

. . 1 ops
with the amplitude A set at f = T fp the transition frequency, y and 6, the slopes for f
respectively below and above f;, and x defines the smoothness of transition.

Jumping a bit ahead, the Bayesian analyses of the data applied for the model selection
use priors on x and fj, as uniform /(0.01,0.5) and log-uniform log,; ¢/ (107'%,107%), and
the priors on A and y are the same as for the simple power-laws models given in Table 2.1.
The high-frequency spectral index ¢ is fixed at 0.

A completely different approach is not to impose any particular spectral shape but
rather estimate it from the data itself: the free-spectrum method (Lentati et al. 2016),

given as
Ses(fip0) = p5 T, (2.19)

where p; is the spectral amplitude at each frequency, f; = i/T with i = 1,..., N, in units of
residuals. This modelling is particularly convenient to understand the spectral content
and to interpret our results for the red noise models given above. The number of parame-
ters in the free-spectrum approach is equal to the number of Fourier bins and, therefore,
computationally more expensive. For all analyses here, the priors for each p; will be log-
uniform: log; A/ (1071°,107%).

The rest of this section gives more details on each specific type of red noise that are

included in the total noise budget for each pulsar.

e Achromatic red noise

The achromatic red-noise (which we denote as RN) is commonly used in single-pulsar
noise models in order to characterize the long-term variability of the pulsar spin. Also re-
ferred to as “timing noise” or “spin noise”, this stochastic signal is expected to be present
and is caused by internal processes in the neutron star (e.g., interactions between the
superfluid and the crust, Cordes and Shannon 2010) or by changes in the pulsar’s magne-
tosphere (Lyne et al. 2010).

For the model selection, we adopt the power law model as our standard approach,
however we also use the free spectrum and broken power law (red noise becomes white

after some frequency) to guide selection of the truncation frequency in the sum given
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by eq. (2.15). This noise component is unique, independent of the observational radio
frequency and uncorrelated in each pulsar data set.

¢ Chromatic red noise

On the way to receiver, the radio emission passes through and interacts with the ion-
ized interstellar medium (IISM), the Solar-system interplanetary medium and the Earth’s

ionosphere, which leads to frequency-dependent delays at the observed signal.

An important effect is the interstellar dispersion that induces a delay in the arrival

tPM o v=2DM, where v is the radio frequency and DM is the path integral of the

time A
free-electron density called the dispersion measure (Lorimer and Kramer 2004). This ef-
fect is taken into account during the observations and inside the timing model which
considers its value at a reference epoch together with its first and second derivatives (see
Section 1.2.2). However, pulsars and Solar-system motions in the turbulent and inhomo-
geneous IISM induce time-dependent DM variations (DMv) that affect the timing residu-

als as 8 PMY  v~2 at the PTA’s timescales (You et al. 2007, Keith et al. 2013).

Another result of interaction with IISM is the scattering variations (Sv), corresponding
to the multi-path propagation of the radio signal due to diffraction and refraction in the
IISM (Lorimer and Kramer 2004, Lyne et al. 2010). This causes a chromatic pulse broad-
ening and a time delay with ~ v~ chromaticity. The scattering variations are described

as a stochastic red signal such that § % oc v™2.

More generally we describe phenomenologically any chromatic red noise (chromatic

due to its dependence on the observational radio frequency v) using the basis functions

Vi X
FEPom () = F(ty) + (—2—] (2.20)
J ‘ " 1.4 GHz

where F is the incomplete set of sin/cos basis functions and v; is an observational radio
frequency for a corresponding residual at the epoch ¢;, and y is the chromatic index. We
use the same covariance matrices for chromatic red noise as for achromatic (power-law,
broken power-law, free spectrum). It is essential to have multiband radio observations

to disentangle chromatic red noise from the achromatic (otherwise they are completely

degenerate).

During the model selection, we will consider the following chromatic red processes:
(i) dispersion measurement variations (DMv) with y = 2, (ii) scattering variations (Sv) with
x =4, and, (iii) phenomenological model (FCN - 'free chromatic noise’) with y taken to
be a free parameter with prior ¢/(0,7). The FCN was first introduced in (Goncharov et al.

2021) and is used here as a diagnostic to verify the combined noise model.

45



Chapter 2 — SINGLE-PULSAR NOISE MODEL SELECTION

e System and Band noise

EPTA DR2 dataset is a combination of ToAs produced by five radio telescopes which use
different systems observing at radio frequencies ranging from ~ 300 MHz to ~ 5 GHz. Fol-
lowing Lentati et al. 2016 we introduce the “system” and “band” red noise to be applied
on the model selection on this dataset. The system noise (SN) is a stochastic red signal
specific to a single receiver system. Such a signal could, for example, arise from a miscal-
ibration of polarizations or specific radio frequency interferences. We model this process
as stochastic red noise applied to the ToAs of only the considered system. This noise is
considered to be achromatic for every system except for NRT.NUPPI.1484 that is divided
into 4 sub-bands and it will be probed for presence of both the chromatic red process SN
and DMv (labelled as DMv-SN).

The band noise (BN) is a stochastic red noise assigned to a specific radio frequency
band. This is to account either for a possible frequency-dependent DM in the amplitude
(additional to the overall v~2 factor) caused by multi-path propagation of radio emission
(Cordes et al. 2016) or by a frequency-dependent calibration errors (van Straten 2013).
Given the frequency coverage of the EPTA DR2 dataset (Chen et al. 2021), we will consider
four radio bands for the BN:

Band.1: <1 GHz

Band.2: [1,2] GHz

Band.3: [2,3] GHz

Band.4: >3 GHz.

The deterministic red processes

In addition to stochastic processes we also consider two types of deterministic signals of
non-GW natures for the model selection. We have used prior information about these

signals and pulsars where those signals were identified.

e Exponential dip

Several pulsars have displayed exponential dips (E), where the ToAs are suddenly per-
turbed by a frequency-dependent advance in ToAs. Most relevant for us is that these
events have been observed at least twice for PSR J1713+0747, in 2008 (~ MJD 54757) and
in 2016 (~ MJD 57510), both those epochs fall into the EPTA DR2 timespan.
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The first event, reported in Coles et al. 2015, Zhu et al. 2015 and Desvignes et al. 2016,
isinterpreted as a “DM event”, i.e. a drop in the electron column density along the line-of-
sight producing a sudden reduction of DM that returns to the previously observed level

exponentially over the time.

The second event, reported in Lam et al. 2018, was accompanied by a pulse shape
change and the corresponding chromatic index lower than 2, so it is not compatible with
a DM-related process. It was proposed instead (Goncharov et al. 2021) that this event is
rather related to processes in the magnetosphere of a pulsar.

We model the exponential dip delay at the epoch ¢; and radio frequency vy as :

0,if t; < 19
dE(ti)Vk; AE;T; tO’XE) = ( Vi )_XE ( tl' - t()
F\14acnz

(2.21)

),iftiE )

where Ag is the amplitude in residual units, fy the reference epoch of the event, 7 the
relaxation time and y g the chromatic index, either fixed or being a free parameter with
prior U (0,7).

* Annual chromatic signals

The second deterministic signal which could be present in the data is an annual chro-
matic process (which we label as “Y”) that comes from the electron density variations
during the Earth motion around the Sun.

The previous investigations (Keith et al. 2013, Main et al. 2020) indicate that this signal
is present in PSR J0613-0200, which we model as in (Lentati et al. 2016, Goncharov et al.
2021):

dY(t f.A — ﬁ _Xy . 2
i [ Ay, ¢, xy) = Ay 14 Gz sin |27 yr+¢) , (2.22)

where Ay is the characteristic amplitude in residual units, y, is the chromatic index and
¢ is the initial phase. We consider either annual DM variations or annual scattering vari-
ations, with a chromatic index fixed at 2 or 4 respectively.

The priors of the single-pulsar noise components used for the model selection de-
scribed in Section 2.4 are given in the Table 2.1.
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Table 2.1: Models and priors used for the single-pulsar model selection.

Model
ode Parameters Priors (or fixed val.)
(abrev.)
White-noise EFAC U(0.1,5)
(WN) EQUAD [s]  log,,i/(1079,107°)
Achromatic red-noise Arn log, /(1071810719
(RN) YRN U,7)
DM variations Apm log, /(1071810719
(DMv) YDM Uo,7)
Scattering variations Asy log, /(1071810719
A 1 1 -18 1 -10
Free-chromatic noise FCN 08¢ (1077, 1077)
YFCN U©,7)
(FCN)
XFCN U0,7)
A 1 1071810710
System-noise SN 08101/{((/{(0 7 )
(SN or DMv-SN) VSN ’
XSN Oor2
Band-noise ApN log, /(1071810719
(BN) YBN U©,7)
Ag [s] log,,A4(1071°,1072)
2.5
DM events 7g [day] log,,U4(1,10°7)
) o IMJD] U (54650,54850) or
U (57490,57530)
XE 1,2,40r4(0,7)
10 10-2
Annual chrom. Ay [5] 10g,t4(107°7, 1075
Xy 20rl(0,7)
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2.4 Single-pulsar noise model selection with the EPTA DR2

This section describes the selection of the noise model optimised for each pulsar. The
selection is done in several steps in a partially iterative way. We start with the base model
used in (Chen et al. 2021) that contains only achromatic red noise (RN) and DM variations
(DMv). Both these models depend on the number of Fourier frequency bins we use for the
basis functions, or, in other words, on the high frequency cut-off that roughly corresponds
to the transition from red noise to white noise dominated region. The analysis in (Chen
etal. 2021) used 30 and 100 lowest Fourier frequencies (k/ T, where k = 1...30(100)) for RN
amd DMv respectively for all 6 pulsars, which is a reasonable (and justifiable) choice.

We start also with those two basic sources of noise and apply Bayesian model selection
to find the number of frequency bins for each pulsar. We use a simple power-law model
for each red noise, and we use broken power-law and free-spectrum models as guidance
to minimize the set of models to try. Next we include stochastic chromatic noise and
deterministic signals to the noise budget, and, finally we test for the presence of system
and/or band noise.

Each pulsar’s noise model always includes white noise and we marginalize over the

TM parameter errors (as implemented in ENTERPRISE).

2.4.1 Selection on number of Fourier modes for the achromatic red noise
and DM variation

The importance of the choice of spectral binning has been discussed in Haasteren and
Vallisneri 2015, where the authors show limitations of the usual Fourier-sum approach
with fi ={1/T,..., N/ T} in the presence of linear and/or quadratic signals, or if the stochas-
tic red process spectral index is relatively high (i.e., y = 7). We do not expect so steeply
rising RN and use a prior on the spectral index /(0,7), and, as we will see later, this prior
range is broad enough.We have chosen to use Fourier frequencies fi in our analysis.

We start with identifying the most favoured number of Fourier bins for each pul-
sar. We extend short-hand notation for RN and DMv by appending the number of bins
(basis functions) used in its description. For example, RN30_DMuv100 refers to a model
marginalized over the TM parameter errors, including white-noise parameters, and both
achromatic red-noise and DM variations with respectively 30 and 100 Fourier modes.

The RN and DMv could be highly correlated if we lack multi-band observations, there-
fore we expect that DMv requires the inclusion of more bins to accommodate disper-

sion information stored at high frequencies. For the RN, we expect that a relatively small
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Figure 2.1: Achromatic red-noise spectrum of PSR J1713+0747 using the model
RN30_DMuv100, with free-spectrum PSD (grey violin plot) and broken power-law (blue)
PSDs, showing 1000 random realisations of the posterior distribution. The thin dotted
line display the 1yr~! frequency and the dashed line show the 15th bin.

number of bins contribute to the analysis before the white noise becomes dominant.
Jumping a bit ahead, for example, we have found that use of (what used to be a default
choice) RN30_DMu30 is disfavoured by Bayes factor of more than 10° compared to the
most favourable model RN30_DMuv100 for PSR J1744-1134. In addition, use of 30 bins
shows a very strong cross-model “leakage” in the posterior of RN and DMv parameters,
which disappears completely in the favourable model.

We have analysed each pulsar using broken power-law and free-spectrum models in
order to get a rough indication on the expected range for the number of Fourier modes.
Typical results of such an analysis (for RN) is given in Fig. 2.1 for PSRJ1713+0747 where the
estimation of power in each bin is given by grey violin-type histograms and we have over-
plotted 1000 realizations of the broken power-law randomly drawn from the posterior as
blue solid lines. The broken power-law model suggests that the transitional frequency
f» should be above 15 bins (as indicated by a vertical dashed line in Fig. 2.1). Therefore
for this pulsar we try 15, 20 and 30 Fourier modes for the RN. Similar analysis could be
performed for DMv and we decided to use 30, 50, 70, 100 and 150 modes (to choose from)
for every pulsars, which allows us to consider frequencies up to fimax = 1/(2 months) for
the longest dataset pulsar (PSR J1713+0747).

We have performed Bayesian model selection across pre-selected number of modes
for both RN and DMv. The favourable models are summarized in Table 2.2. It shows that
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data supports frequencies higher than 100/Tspa, for DMy, except for J0613-0200 which
displays no difference neither in evidence nor in the posterior distribution of parameters
across the range of N-bins for DMv that we have tried. As expected, for the RN, we require
no more than 20 frequency bins for all pulsars except PSR J1012+5307, which remains at
30. In case where there was no clear preference between two (or more) models (Bayes
factor less than 10) we preferred the model with lowest number of bins for the reason of
computational efficiency.

Let us give a few comments on the results presented in Table 2.2. The quoted Bayes
factor compares the selected model for the number of Fourier modes with the model used
in (Chen etal. 2021). You can see a significant gain in the Bayes factor for PSRs J1012+5307
and J1713+0747 which is mainly due to the extension of DMv to higher frequencies, in fact
all pulsars give slight preference to 150 bins but with the Bayes factor close to one, and
following our logic we have chosen to use 100 (30 for PSR J0613-0200) bins to win on the
computational cost. The negative (but close to zero) log-Bayes factor for PSRs J1600-3053,
J1744-1134, J1909-3744 indicates that the use of 30 modes for RN has only a slight prefer-
ence (what we would call inconclusive) and we have chosen the lowest allowed number of
bins to save CPU-time. The residuals in pulsar J0613-0200 data did not favour any partic-
ular number of modes. As we are mainly interested in the red noise, we have quantified
the difference in the posterior of the red noise between two models by computing Jensen-
Shannon divergence. The last column indicates that RN has changed only for J1012+5307:
the increase in frequency range of the DMv process constrained RN to lower frequencies
(the amplitude of RN has slightly dropped but the spectral index increased) we will revisit

the modes selection for this pulsar in Section 2.4.2.

Red noise free-spectrum of PSR J1909-3744

In this paragraph we want to discuss PSR J1909-3744. This is one of the best timers, but
it has the shortest observational span (about 11 years) and the data was only acquired by
NRT. The free spectrum of the achromatic red noise and the power-law (corresponding to
the maximum a posteriori parameters) are plotted in Fig. 2.2 . The blue violin plot shows
the power distribution using our standard Fourier modes (i/Tspan). We performed addi-
tional runs (given by different colours) with the scaled down Tspan — Tspan/1.2, Tspan/1.45,
Tspan/1.7 to get better resolution at low frequency. Note that those frequency bins are not
independent as we have used over-sampling in frequency domain, and the corresponding
basis functions are not orthogonal even for evenly spaced data. One can clearly see that
the spectrum flattens out and probably bends downwards at the lowest frequency bin.
This bend is not very conclusive: the posterior at the lowest bin is poorly constrained,
that could be caused by the gaps in the data (214 epochs from 2004 to 2011 with BON vs.
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Table 2.2: Favored number of Fourier modes for RN and DMv for the 6 pulsars. The third
and fourth columns compare the favored model with RN30_DMuv100, respectively show-
ing the Bayes factors and the Jensen-Shannon divergences for the RN amplitude (top) and
spectral index (bottom). The models for PSR J1713+0747 also include the 2 exponential

dips.
. Fav.NBins i ARN
Pulsar Favored NBins 108,085z paige  J-S div. Y
_ RN
2.31e—03
J0613-0200 RN10_DMuv30 0.0 1.32¢—03
2.68e—02
J101245307 RN30_DMuv150 3.1 2.99¢— 02
4.44e—03
J1600-3053 RN20_DMuv100 -0.3 4.03¢—03
2.71e—-03
J1713+0747 RN15 DMv150 6.3 1.04¢—03
4.85e—-03
J1744-1134 RN10 _DMuvi100 -0.3 4.66e— 03
3.72e—-03
J1909-3744 RN10 _DMuv100 -0.1 1.98¢—03

695 from 2011 to 2020 with NUPPI backends). If this downturn is true, it could have been
caused by the processes intrinsic to the neutron star (Goncharov et al. 2020), or a putative
GWB produced by eccentric SMBHBs (Chen et al. 2017). We require longer time span to

better constrain the lowest frequencies and refine our interpretation.

2.4.2 Extending model selection for stochastic and deterministic sig-
nals

Let us now investigate the different red signals presented in Section 2.3. We start with
the pulsar stochastic processes by (1) inspecting the presence of the chromatic signals in
the data, and (2) performing a model selection to obtain the most favoured signal com-
bination with RN, DMv and Sv. The number of modes selection for Sv process was done
in a manner similar to described in the previous section. We have also checked that the
selected number of basis functions for RN and DMy is still optimal and it is the case for
all pulsars except PSR J1600-3053 which we will discuss separately. Then we probe for
specific deterministic signals chosen from previous investigations. In our case, we in-
spect for an annual chromatic signal in PSR J0613-0200 data and exponential dips in PSR
J1713+0747. Eventually, we search for the presence of system and band noise in each pul-

sar.
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Figure 2.2: Achromatic red-noise spectrum of PSR ]J1909-3744 using the model
RN30_DMv100, with a power-law (black solid line drawn with the maximum a posteri-
ori), and four free-spectrum (violin plots) PSDs computed with four different minimum
frequencies : i/Tspan with i = 1 (blue), 1.2 (orange), 1.45 (green) and 1.7 (pink). Here, 30
bins are drawn for the first one, 6 for the second and 3 for the two others.

Stochastic chromatic signals

In the previous subsection we have assumed presence of RN and DMv and concentrated
on choosing the number of Fourier modes (basis functions) to describe the noise by a
Gaussian Process. Now we fix the number of modes and check if data supports RN, DM
and Sv noise components. The probed models and the Bayes factors (with respect to the
favourable model given by the bold zeros) are summarized in Table 2.3. Below, we outline
the procedure that we have followed.

In parallel to the direct computation of the evidence for each model, we have also
conducted the noise diagnostic by using noise model with RN and FCN (free chromatic
index), which covers RN (chromatic index yrcn = 0), DMv (yrcn = 2) and Sv (yren = 4).
The posterior on the chromatic index with RN_FCN is given by blue histograms in Fig.
2.3 and in most cases it is centred at 2 indicating presence of DMy, with two exceptions:
PSR J1012+5307 (centred at 1.1) and J1909-3744 (centred at 3). We add DMv in our model
and repeat analysis with RN_DMv_FCN. The FCN captures now the remaining noise not
covered by DMv and is presented as red histograms in Fig. 2.3. PSR J1600-3053 shows
presence of the scattering noise (spectral index 4). For this pulsar, variable and clumpy
scintillation arcs in the secondary spectrum (i.e., power-spectrum of the dynamic spec-

trum, see e.g., Cordes and Wolszczan 1986) are also seen in L-band in LEAP data (Main
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Figure 2.3: Marginalized posterior distributions of chromatic index yrcy in RN_FCN
(solid blue) and RN_DMv_FCN (solid red) for the six pulsars. The number of fre-
quency bins for RN and DMv power-law are taken from Table 2.2. For PSR J1012+5307
we performed additional analysis with models RN150_FCNI150 (dashed blue) and
RN150 DMv150_FCN150 (dashed red).

et al. in prep), with power extending up to 16 us in delay, and averaged time delays at
100ns level. These results add more confidence for the inclusion of this process, and in-
deed its presence is confirmed by the Bayes factor. However, including Sv into the noise
model absorbs most of the red noise and its presence is not conclusive (as indicated in
the table). PSRs J0613-0200, J1713+0747 and J1744-1134 show no sign of the scattering
variations noise. The chromatic index remains unchanged for J1909-3744, and the model
selection indicates (though not very strongly) the presence of both DMv and Sv.

It is important to see how the inclusion of Sv changes the RN properties. In Fig. 2.4 we
give the corner plot for the RN parameters for two models RN_DMuv in blue, RN_DMv_Sv
in red for the two pulsars favouring Sv. As mentioned above the data is non-informative
on the presence of RN in PSR J1600-3053 if we add Sv to the model and this can be seen in
the left panel as a poorly constrained posterior (red). For J1909-3744, the inclusion of Sv
is less drastic: we see that it absorbs a small part of RN at very low frequencies reducing
the spectral index but pushing the amplitude slightly up.
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Table 2.3: Model selection for the stochastic chromatic signals. This table contains the
log-10-based Bayes factors of the highest evidence model (log;o B = 0.0) over set of other
models that we have tried (given in columns). The selected model is indicated in bold. We
have used 150 Fourier modes for RN in PSRJ1012+5307 and 2 exponential dips are always
included in analysis of PSR J1713+0747.

Pulsar RN DMv Sv RN_DMv RN_Sv DMv_Sv RN_DMuv_Sv
J0613-0200 —-12.5 -10.3 —-37.7 0.0 -2.2 -1.7 -0.3
J1012+5307 -25.0 —63.0 -—143.7 0.0 -2.0 —47.5 0.4
J1600-3053 —146.1 -10.2 —59.3 —-6.5 -9.1 0.0 0.0
J1713+0747 -36.8 —42.6 —125.0 0.0 -30.0 -285 -0.8
J1744-1134 -121 -3.1 =279 0.0 -10.7 -24 -1.8
J1909-3744 -66.7 —82.1 -—2444 -2.1 -3.4 -21.0 0.0
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Figure 2.4: 2D distributions of achromatic red-noise amplitude and spectral index. Left
plot: J1600-3053, the model RN_DMUv is in blue and RN_DMuv_Svis red ; Right plot: J1909-
3744, with RN_DMv in blue and RN_DMuv_Sv (favourable) in red.
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Peculiar red noise in PSR J1012+5307

PSR J1012+5307 requires a special investigation given the rather strong signal in model
RN_DMuv_FCN displayed in Fig. 2.3 with chromaticity index close to zero. It turned out to
be unaccounted achromatic red noise at high frequencies. In our analysis for the number
of Fourier components we have concentrated at the low frequencies (up to 30 bins) for
RN and, presently, the FCN in RN_DMv_FCN picks up the excess red noise which seems
to extend also to high frequencies.

Based on these findings we have revisited the selection of Fourier modes done in Sec-
tion 2.4.1 for this pulsar by allowing RN to go up to 150 Fourier bins. The favoured model
RN150_DMv30 has a Bayes factor logmBg%égobﬁ%ﬁg = 29.8 over the previous one, and
therefore we adopt it in further investigations_. In Fig. 2.5 we show the evolution of the
red noise parameters (amplitude and spectral index) as we move from RN30_DMuv150
(blue) to the new model RN150_DMuv30 (red). The parameters of the RN process are better
constrained, the red noise is significantly shallower (to accommodate the high frequency
contribution) but the amplitude is slightly higher. The free spectrum estimation for this
pulsar can be seen in Fig, 2.9: second panel from the top, right. One can clearly see the
low frequency red noise (well constrained power at three lowest Fourier bins) however we
also observe significant fluctuations at higher frequencies. The high frequency red noise
is also evident in the time realization of this signal in the left plot. The red noise at high
frequencies flattens out the power-law of the overall RN process. However, we do not

exclude the possibility of two component red noise of different origin.

Using this number of modes, we have repeated analysis of the data with RN150_FCN150
and RN150_DMwv30_FCN150models. The results are presented in Fig. 2.3) as dashed lines
confirming that RN150_DMuv30 is sufficient to describe the data. The green histogram in
Fig. 2.5 shows that adding Sv does not change properties of RN process..

Deterministic chromatic signals

The scattering and scintillation effects for J0613-0200 have been studied in Main et al.
2020, which also discusses the presence of annual variations of the arc curvatures. Fur-
thermore, Keith et al. 2013 has shown the presence of annual chromatic signals which
were reported in Goncharov et al. 2021, suggesting presence of a noise model that con-

tains annual DM process (i.e., yy = 2). However we did not find a conclusive evidence for

RN_DMv_AnnualDM _ RN_DMv_AnnualSv __
RN_DMv - 8'3’ BRN?DMU =7.0

which we do not consider significant to justify its inclusion in the noise model. Note that

presence of this signal with Bayes factor B

(at least part of) annual variations in the timing residuals might be absorbed by the TM
parameter fit (through the pulsar sky position and proper motion).
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Figure 2.5: 2D distribution of achromatic red-noise amplitude and spectral index for
J1012+5307 with the following noise models RN30_DMv150 (blue), RN150_DMwv30 (red)
& RN150_DMwv30_SV150 (green).

As for the exponential dip events, we have found their presence in PSR J1713+0747
data with high statistical confidence: the log-10 Bayes factor is 30.5, 13.9 and 46.8 favour-
ing model that includes respectively one single event at MJD 54757, one single event at
MJD 57510 and both those events together. We found a chromatic index very consistent
with scattering variations (yg, = 4.073:@, error corresponds to 68% confidence interval)
for the first event (left panel of Fig. 2.6), and evaluated to yg, = 1.00*035 for the second
one. The index for the second event is consistent with Goncharov et al. 2021 that reported
a profile change for this event and proposed a cause linked with the pulsar’s magneto-
sphere instead of an IISM process. The posteriors for both events are presented in Fig. 2.6.
Note that the posteriors of ty for both epochs are sharply constrained between the two
consecutive ToAs that surround the actual event dates and it is not railing against the
prior range (see Table 2.1). For the rest of this work, we fix the chromatic indexes of both

events at 4 and 1 as discussed above.

System and Band noise

The dataset for each pulsar is made from the combination of ToAs produced with different
receiver systems integrated in different radio telescopes. It might happen that one (or

several) of these systems unexpectedly introduce extra noise, the idea of the system-noise
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Figure 2.6: Posterior distributions for the exponential dips found in J1713+0747 at MJD

54757 (top) at MJD 57510 (bottom). The chromatic index y g was used as a model param-
eter.
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model is to check this hypothesis.

In EPTA we use a large number of systems, checking each of them in turn is computa-
tionally prohibitive. Instead we have used an approach based on the hyper-model selec-
tion (Hee et al. 2015) to check for the presence of a system noise. We introduce a switch
(inclusion) parameter which regulates whether to include or not a particular system noise
component in the total model. The posterior of this parameters indicates probability of
having red noise across the systems.

For this analysis, we exclude systems that have less than 3 years of time span for any
of the 6 pulsars. The selection comprises JBO.DFB.1400, JBO.DFB.1520, WSRT.P1.323.C,
WSRT.P1.367.C, WSRT.P1.840.C, WSRT.P1.1380.C, WSRT.P1.1380.1, WSRT.P1.1380.2.C,
NRT.BON.1600 and NRT.NUPPI.1854. We also do not investigate NRT.NUPPI.2154, which
contributes ~ 2.4 years for J1600-3053 and about 4.7 years for J1909-3744, but with 16
epochs distributed in 1.1 year, and only 2 epochs 4.6 years after.

The dataset of PSR J1909-3744 is composed by ToAs produced only from NRT obser-
vations, with three systems (BON backend) before and four (NUPPI backend) after MJD
~ 55812. This means that any possible system red noise is totally correlated with RN and

is absorbed in that model.

In Table 2.4 we report the log-10 of the inclusion parameter (which should be propor-
tional to the Bayes factor), where a large number corresponds to a very likely presence of
red-like system noise.

We observe three systems NRT.NUPPI.1484, JBO.ROACH.1520 & LEAP.1396 with a sig-
nificant inclusion factor (10°, 10* and 10* respectively). We notice that these three systems
observe in the L-band, between 2011 and 2020, which corresponds to the major part of
the datasets. The first two of the above mentioned systems (especially NRT.NUPPI.1484)
are the largest contributor to EPTA data and LEAP.1396 produces the ToAs with the lowest
uncertainties (mean at 1.86 us for PSR J1012+5307 and lower than 0.55 ps for others). For
PSR J1713+0747 two additional systems (EFES110.2639 and NRT.BON.2000) show sign of
the system noise, and it might also be present in NRT.NUPPI.2539 for PSRs J1012+5307
and J1744-1134.

The systems with an inclusion factor above 10 (presented in bold in Table 2.4) were
selected for a detailed analysis of all possible combinations of system noise. We have
found that DM-type chromatic system noise (DM-SN) is always favoured (in terms of
Bayes factor) over the achromatic SN for NRT.NUPPI.1484 system and it is included in
the total noise budget for PSRs J0613-0200, J1012+5307, J1713+0747 and J1744-1134. It
is not entirely clear why the data does not support its presence in J1600-3053 (where we
have identified SN only in LEAP.1396). One plausible explanation is that NRT.NUPPI.1484
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Table 2.4: Inclusion factors values (in decimal log-scale) for the achromatic system noise.
Considered systems are given in the second column.

Radio band System J0613-0200 J1012+5307 J1600-3053 J1713+0747 J1744-1134 J1909-3744
WSRT.P1.328 -0.18 -0.23 - - - -
WSRT.P1.328.C -0.23 -0.07 - - - -
WSRT.P1.382 -0.07 -0.10 - - - -
Band.1
WSRT.P1.382.C -0.02 -0.01 - - - -
<1 GHz
WSRT.P1.840 - - - -0.15 - -
WSRT.P1.840.C - - - -0.07 - -
WSRT.P2.350 - -0.11 - -0.16 - -
EFEEBPP.1360 -0.16 -0.15 - 0.24 -0.23 -
EFEEBPP.1410 0.41 -0.16 - -0.18 -0.36 -
EFEP200.1380 - 0.54 - - - -
EFEP200.1400 -0.08 - -0.28 - - -
EFEP200.1400.np - - - —-0.44 - -
EFEP217.1380 - 0.26 - - - -
EFEP217.1400 —0.09 - -0.29 0.32 -0.14 -
Band.2
EFEP217.1400.np - - - -0.09 - -
[1,2] GHz
JBO.ROACH.1520 (JBO_1.5) 1.93 2.48 0.01 >5.00 >5.00 -
LEAP1396 (LEAP_1.4) >5.00 0.42 >5.00 >5.00 >5.00 -
NRT.BON.1400 0.66 -0.23 -0.27 -0.13 0.62 -0.33
NRT.NUPPI.1484 (NUP_1.4) >5.00 2.65 3.80 >5.00 >5.00 -0.41
WSRT.P1.1380 -0.21 - - - - -
WSRT.P1.1380.2 - -0.18 - -0.22 - -
WSRT.P2.1380 -0.01 -0.13 -0.28 0.56 -0.16 -
EFEEBPP.2639 0.05 -0.29 -0.20 -0.19 -
EFES110.2487 - -0.30 - - -0.17 -
EFES110.2639 0.08 - -0.25 2.63 - -
Band.3
NRT.BON.2000 (BON_2.0) -0.24 -0.23 -0.01 =>5.00 -0.31 -0.30
[2,3] GHz
NRT.NUPPI.2539 (NUP_2.5) -0.23 1.53 -0.34 -0.24 1.48 -0.40
WSRT.P1.2273.C - - - -0.10 - -
WSRT.P2.2273 - - - -0.03 - -
Band.4 EFES60.4850 - - - -0.06 - -
>3 GHz EFES60.4857 - -0.16 - - 0.13 -
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Figure 2.7: 2D distributions of amplitude and spectral slope of NRT.NUPPI.1484 DM-SN
(top) and LEAP.1396 SN (bottom), using the final favored model for each pulsar.

ToAs dominate the data of this pulsar and we cannot clearly disentangle SN from RN, we
would need the data from other PTAs to test this assumption (that is a plan for the future
IPTA data combination).

Polarization calibration errors and radio frequency interferences are possible causes
for system noise. Parameter posteriors for SN for NRT.NUPPI.1484 and LEAP.1396 (Figure
2.7) display overall consistency across pulsars, which corroborates for an assumption of
a red noise specific to these systems. We should emphasize again the presence of data
from other systems (like it is expected in IPTA data) should greatly help to identify the
system noise and disentangle it from the RN as it was shown in Lentati et al. 2016 for PSR
J1730-2304 using IPTA DR1 dataset.

The results of the system noise selection is given in Table 2.5: inclusion of the sys-
tem noise lead to log-10 Bayes factors (15.9, 7.4, 13.8, 118.1 & 18.6) for PSRs J0613-0200,
J1012+5307, J1600-3053, J1713+0747 and J1744-1134 respectively .

We switch now to the band noise investigation. The main radio frequency bands (cf.
Table 2.4) in the datasets are Band.2 and Band.3, which contain the bulk of observations
for each pulsar. Band.1 and Band.4 are only covered by one telescope: WSRT and Effels-
berg respectively. Like for SN we do not investigate for BN if the corresponding time span
of observations is less than three years.

We found evidence of the band noise only in Band.3 of PSRs J1713+0747 and Band.2 of
J1744-1134 with corresponding log-10 Bayes factors of 6.5 and 6.2. This result is somewhat
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YRN

Figure 2.8: 2D posterior distribution of the red-noise parameters for PSR J1744-1134 with
models RN_DMuv (blue) and the most favored, RN_DMv_SN_BN (red).

consistent with Goncharov et al. 2021, where Band-noise for both Band,2 and Band.3 were
reported for these 2 pulsars. However, we have found that the inclusion of Band.2 for PSR
J1713+0747 and Band.3 for PSR J1744-1134 results to insignificant log-10 Bayes factors,
0.6 in both cases. All these again points to the importance of IPTA data combination for

the noise analysis. Our results for BN are summarized in Table 2.5.

Poor constraint on RN for PSR J1744-1134

We have revisited Table 2.3 after finding and fixing the set of noise sources in each pul-
sar. We have noticed that the RN for PSR J1744-1134 becomes poorly constrained using
RN_DMv_SN_BN model (see red histograms in Fig. 2.8). After further investigation, we
have found that the Bayes factor Bg]&fg\',’_—g%—BN = 2 hardly supports the presence of the
RN. Similar result was found in Goncharov et al. 2021, where the RN of this pulsar does
not enter the favoured noise model. As another confirmation, the time-domain noise
realizations of the red noise signal (see Fig. 2.9) is quite reduced for RN_DMv_SN_BN
model (light grey) as compared to RN30_DMv100 (red). We have decided to keep the
RN_DMv_SN_BN model (as a conservative assumption), however we will address its im-

pact when we discuss the common red noise.
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2.4.3 Summary of the model selection

The results of the noise model selection for each pulsar are summarized in Table 2.5. We
report the red noise (RN) parameters within each model giving median and 95% confi-
dence interval. We also compare the custom-build noise model (M2) with the default
noise model (M1) used in Chen et al. 2021. We quote the log-10 Bayes factors showing
strong preference of a custom noise model (ranging from 2 to 195). The biggest impact
on the Bayes factor was caused by inclusion of the SN and BN noise components. Finally
we have evaluated the Anderson-Darling diagnostics A*> Anderson and Darling 1952 ap-
plied to the whitened residuals. While Bayes factor measures the relative closeness of the
whitened residuals to Gaussian distribution, it does not tell us if the final result is actually
Gaussian (in other words, if the favoured model is actually good). The Anderson-Darling
statistic addresses precisely this question. As a guidance: A? = 2.5 is a value at which
one fails to reject the null hypothesis (i.e., following Gaussian distribution) at 95% con-
fidence interval. A lower value of the statistic corresponds to a better agreement with
Gaussian distribution. We see the overall improvement for M2 model. The high values
for PSR J1713+0747 could be caused by a few outliers in the whitened residuals. To test
this assumption, we recompute the statistic after removing outliers found with Grubbs’
test Grubbs 1950 which becomes 3.2 and 2.1 for respectively M1 (with 9 outliers) and M2
(with 6 outliers). The Anderson-Darling statistic for PSR J1744-1134 reduces to 1.0 if we
exclude RN from the favourable (M2) model.

In preparation for the next section where we consider common red noise, we investi-
gate how much the white noise parameters impact the measurement of the RN. Following
Lentati et al. 2015, we have performed the noise analysis with all white noise parameters
fixed to the maximum-likelihood values and compare the RN posteriors with previously
obtained results. The results are quoted as Jensen-Shannon divergences (last column of
Table 2.5) showing a very good consistency ( J-S div < 3 x 1073), and therefore confirm

that we can safely fix white noise parameters for the further investigations.

2.4.4 Conclusion

We used a general Bayesian inference approach to select the most favoured noise model
for each pulsar of EPTA DR2. These models are summarized in Table 2.5 and show a sig-
nificant improvement (in terms of Bayes factor) over the default base model used in Chen
etal. 2021. In addition to conventional stochastic processes such as achromatic red noise
(RN) and dispersion measurement variations (DMv), we have considered scattering vari-
ations (Sv), system noise (both chromatic SN-DMv and achromatic SN), band noise (BN)

and two deterministic signals (annual DMy, annual Sv and DM event). Our model selec-
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Table 2.5: Final noise models for the six pulsars in EPTA DR2. The third and fourth
columns show the median of the RN amplitude (Ary) and spectral slope (ygrn), with cor-
responding 95% confidence interval. The fifth column displays the log,, Bayes factors of
the custom model over the model RN30_DMuv100. The sixth and seventh columns show
the Anderson-Darling statistics applied to the whitened residuals for (1) RN30_DMwv100
and (2) the selected noise model. The last column contains Jensen-Shannon divergences
of RN amplitude and spectral index posteriors of the selected noise model with the same
model but fixed white-noise parameters.

A
Pulsar Sel. model ARN YRN log,, BM2 A%, A%, J-Sdivwne YEE
J0613-0200 RN10 DMv30 14,9316 5077383 15.9 04 03  >0e703
DMv-SN_NUP_1.4 oL 2 ' ' ' 1.82e—03
RN150 DMv30 6.60¢ - 04
J1012+5307 DMv-SN_NUP_1.4  —13.03*00% 1.167035  40.7 18 14 '
SN NUP 2.5 : : 3.80e—04
DMwv30 Sv150 -
J1600-3053 SN LEAP 1.4 - - 20.0 03 0.2
RN15 DMv150
2 Exp. dips
DMv-SN_NUP_1.4 L7603
.[oe—
J1713+0747 SN_JBO_1.5 -14.507050 3.9471% 1954 55 4.1
: : 1.92¢—03
SN_LEAP_1.4
SN_BON_2.0
BN_Band.3
RN10 DMv100 139 — 03
0Jde —
J1744-1134  DMv-SN_NUP_1.4 -1531*30 3.68%312 226 1.0 12
BN Band.2 : : 1.79¢-03
_bandad.
3.10e—04
J1909-3744 RNI10 DMv100 Sv150 —14.45%0% 4.22%218 2.1 0.8 0.6
- : 3.20e—04
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tion was guided by previously published investigations or using auxiliary runs that helped
to identify the list of models for further consideration.

The process of the model selection has permitted us to obtain several interesting re-
sults.

(i) PSR J1909-3744 shows sign of downturn in its spectrum at low frequencies. This

feature could be confirmed or disproved with a longer observational span.

(ii) PSR J1012+5307 indicates the presence of high level red noise at high frequencies

of unclear origin.

(iii) PSR J1600-3053 and J1744-1134 are not very informative about the presence of
achromatic red noise (RN), giving only a small preference to the models with RN.

(iv) We did not observe strong evidence for the annual DNv signal previously reported
for PSR J0613-0200.

(v) We found that the first exponential dip of PSR J1713+0747 has a chromatic index
consistent with scattering variations, and confirmed the low chromatic index for the sec-
ond event.

In this work we have emphasized several times the need to combine the data from
multiple systems (to disentangle SN and RN processes) and multi-band observations (dis-
entangling achromatic and chromatic red noise). This gives a strong reason for a joint
analysis of combined IPTA data.

In the Appendix we show RN free spectrum with the default model RN30_DM100 and
its time-domain realization for each pulsar. We also proved a Table 2.6 with parameters of
all noise components.

Appendix A: Achromatic red-noise properties

Here we provide additional plots which demonstrate our main findings about the RN in
each pulsar.

We reconstruct time-domain Gaussian process realizations of this signal modelled
with a power-law PSD. The left panels of Fig. 2.9 display the 68% confidence interval
of 100 random realizations drawn from the posterior distributions of the RN amplitude
and spectral index included in two different single-pulsar noise models : the default base
RN30_DMv100 (red) and the "custom" model shown in Table 2.5 (grey). The peculiar high
frequency red noise is clearly seen in PSR J1012+5307 (see Section 2.4.2 for detailed dis-
cussion). The RN in PSR J1744-1134 is considerably reduced in the "custom" model (see
discussion at the end of Section 2.4.2). Note that we did not include RN in the custom
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model of PSR J1600-3053. The RN in the default and custom models are quite similar for
PSRs J0613-0200, J1713+0747 and J1909-3053.

The right panels of Fig. 2.9 display the spectrum of the achromatic red-noise (using
RN30_DMuv100) for each pulsar computed with (1) a free-spectrum PSD (grey violins), and
(2) a broken-power law PSD (blue), where we give 1000 realizations randomly drawn from

the posterior distributions.

Appendix B: Single-pulsar noise model parameters

In the Table 2.6 we give median values for each noise component with 68% confidence

interval in the custom model of each pulsar.
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Figure 2.9: (left panels) 68% confidence interval of 100 time-domain random realizations
of the achromatic red-noise included in the default base (RN30_DM100) model (red) and
the "custom" selected models (light grey) (cf. Table 2.5) for each of the six pulsars. (right
panels) Achromatic red-noise spectrum for the corresponding pulsar (noted in left panel)
included in the default base model and described with (1) a free-spectrum PSD (grey vio-
lins) or (2) a broken power-law (blue), here showing 1000 random realizations drawn from
the posterior distributions. The figure continues on the next page.
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Table 2.6: Medians and 68% credible intervals of the 1D marginalized posterior distribu-
tions of each single-pulsar noise model parameters for (i) the default base models used
in Chen et al. 2021 and (ii) the final custom models. Note that DMv amplitudes are given
with ENTERPRISE normalization.

Model Signal parameter J0613-0200 J1012+5307 J1600-3053  J1713+0747  J1744-1134 J1909-3744
0.56 0.08 0.33 0.18 0.69 0.32
. logpA  —14.727038  -13.127008  -14.057033  -14.137018  -15.16705) -14.657032
1.09 0.32 1.22 0.54 1.10 0.96
¥ 4.767109 1661932 3.507122 3.297054 5.19+1.10 4.6570:%8
Default lo A ~13 75+0.21 ~13 36+0.05 ~13 09+0404 ~13 47+0.O4 ~13 33+0.05 ~13 56+0‘04
DMy 810 *1Y-0.26 *~~—0.05 7Y -0.04 71 -0.04 *~+~-0.05 7 -0.04
0.66 0.18 0.12 0.20 0.21 0.15
¥ 2.89%0:58 1.20+018 2.081912 149929 1237521 1.53+018
0.64 0.03 0.25 1.31 0.36
. logpA  -14.827080  —13.027003 - -14.48%02  —15.257130  —14.46703¢
1.17 0.13 0.65 2.17 1.03
¥ 4.817117 1197913 - 3.95708 3.677517 4.24710
0.16 0.12 0.32 0.05 0.07 0.27
ot logpA  -13.58701% -13.667013 -14.167032 -13.78700°  -13.45%007 -13.92%0.27
v
0.55 0.42 0.92 0.20 0.36 2.67
Y 2'47t0A47 2.09f039 4~69t076 1'16:121 0'46t030 2~64toA93
s log;yA - - -13.2670%4 - - -13.84%019
14
0.14 0.31
¥ - - 1487314 - - 0.78703%
logyA [s] - - - -5.54105; ) .
Exp. dip 1 log,,7 [day] - - - 154007 ) .
fp IMJD] - - - 54752.49*324 - -
log,yA [s] - - - -5.897005 - -
Exp. dip 2 log,,7 [day] - - - 151550 i} .
to IMJD] . - - 57510651330 - -
log,A - - - -14.7843%3 - -
Custom  gn BON 2.0 e
Y - - - 436713, - R
log;oA - - - -13.1055% ) )
SN_JBO_1.5
- 0.68
Y - - - 1.47%0¢ - -
logA - - -14.97733%  —13.4270%0 - -
SN_LEAP_1.4 o 060
¥ - - 5.167119 1707389 - -
0.29 0.72 0.63 0.99
DM SN NUP 14 logipA  -13.52702% —-14.10%0:72 - -14.05708  -14.657999 -
v-SN_ > 1. -
y 28805 317} - 275713 423718 :
log; A - -13.224073 - - - -
SN_NUP_2.5 Lot
Y - 2.50777 - - - -
log;yA - - - - -13.84%0% -
BN_Band.2 086
Y - - - - 3.022577 -
log;,A - - - ~14.3210% ) -
BN_Band.3 +1.02
Y - - - 2.687 557 - -
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CHAPTER 3

INSPECTING THE PRESENCE OF A STOCHASTIC GWB WITH EPTA
AND IPTA DATASETS

Abstract

This Chapter is focused on the search of the GWB with PTAs. It begins with a descrip-
tion of the expected signal from a GWB and a brief historic on the past results, followed
by the formulation of the multi-pulsar likelihood and CRS models in PTAs. The third sec-
tion presents the results reported in Chen et al. 2021 on the search of a GWB with the
EPTA DR2, for which I have participated on the data analyses and part of the redaction.
The fourth section is the part of Chalumeau et al. 2021 (submitted to MNRAS) which fo-
cuses on the application of the single-pulsar noise model selection (see Chapter 2) for the
GWB search. The fifth section presents results from Antoniadis et al. 2022 (submitted to
MNRAS) which focused on the search of a GWB with the IPTA DR2. I have participated
to the data analysis part of this project, and particularly on the application of the phase
shift method used to evaluate the correlated signals. The last section briefly describes the

promising perspectives toward a detection in the next coming years.

3.1 Introduction . . . ... ... .. ... .. 72
3.2 Modelling correlated signalsfor PTA . . . . ... ............ 74
3.3 Searching for a stochastic GWBwith EPTA . .. ... ... ... ... 76
3.3.1 Evaluating the correlationsoftheCRS . . . . . ... ... ... 77
3.3.2 Analysing the spectrum properties . . . . . ... ........ 80
3.4 Impact of the single-pulsar noise modelling on the GWB searches . 80
3.4.1 Contribution of each pulsartotheCRS . ... ... ... ... 82
3.4.2 Spectral propertiesofthe CRS . . ... ... .......... 82
3.4.3 Statistical significance of the CRS with custom noise models 85
344 SUMMATY . . . . .o e e e e 86
3.5 Evaluating the presence of correlations with IPTAdata . . . . . . .. 86
3.5.1 ThelPTADataRelease2 . . ... ................. 86
3.5.2 EvidencefortheCRS . ... ... .. ... ............ 87
3.5.3 Extended analysis on the spatial correlations . ... ... .. 88
3.6 Future prospectstoward adetection . . . . . ... ........... 92

71



Chapter 3 — SEARCHING FOR A GWB wiTH EPTA AND IPTA

3.1 Introduction

The incoherent superposition of gravitational waves (GWs) from the population of nearby
inspiralling supermassive black hole binaries (SMBHBs) should lead to a stochastic grav-
itational wave background (GWB), the most anticipated GW signal in the nanohertz fre-
quency band (Rajagopal and Romani 1995, Wyithe and Loeb 2003, Sesana et al. 2004).
There are other sources of very-low frequency GWB such as cosmic strings (Kibble 1976,
Sanidas et al. 2012), first order phase transitions (Caprini et al. 2009) or the ‘relic* GWs pro-
duced by quantum fluctuations in the early Universe (Grishchuk 1976, Grishchuk 2005).
The signal of a very-low frequency GWB imprints specific spatial correlations in the tim-
ing residuals. In the case of an isotropic GWB, the correlation pattern predicted by Gen-
eral Relativity is described by the Hellings-Downs (HD) curve (Hellings and Downs 1983)
shown in Fig. 3.1. In case of anisotropic GWB, the correlated signal no longer depends
on the angular separation between the pulsars, but on the position of each pulsar com-
pared to the anisotropic GWB distribution in the sky (Taylor et al. 2015). In any case,
we focus solely on an isotropic stochastic backgroung assuming General Relativity in this

manuscript.
The dimensionless characteristic strain spectrum of the GWB is given as a power-law

(Jenet et al. 2006) with a reference frequency at 1 yr™':

) (3.1

) @GWB

f
he(f) = Agws (YF

where Agws and agwp are respectively the GWB strain amplitude and spectral index.

One can express the corresponding power-law power spectral density (PSD) SgWB (f)
as

I 1
S5 = 7 M)
Adws ( f )-m

3
= —_ r’, 3.2
1272 \yr! y 5-2)

with ygws =3 — 2agws-

The spectrum slope from a population of SMBHBs on circular and GW-driven orbits
(Jaffe and Backer 2003, Chen et al. 2017) is expected to be agwp = —2/3, or ygws = 13/3.
In this thesis, the tilde sign is used to denote the parameters of a power law with a spectral
index fixed at 13/3.

Alot of efforts have been made since many years in the PTA community to detect the
presence of GWB. In the absence of GW detection, EPTA, NANOGrav and PPTA regularly

released upper limits (usually at 95% confidence level) of the dimensionless GW strain
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Figure 3.1: The Hellings and Downs curve for an isotropic stochastic GWB following Gen-
eral Relativity (from Jenet and Romano 2015).
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amplitude A%% set at a reference frequency of 1 yr~! and a spectral index of y = 13/3.
Here is the chronological evolution of upper limits A%% from early-2000’s: 1.1 x 10~
(Jenet et al. 2006), 6 x 107'° (Haasteren et al. 2011), 7.2 x 107> (Demorest et al. 2013),
2.4 x 10715 (Shannon et al. 2013), 1.0 x 101> (Shannon et al. 2015), 3.0 x 10~!® (Lentati
et al. 2015), 1.5 x 107! (Arzoumanian et al. 2016) and 1.45 x 10~'° (Arzoumanian et al.
2018a). The last analysis from NANOGrav (Arzoumanian et al. 2020) have resulted to a
measure of A =1.92*)-72x107°, with a very significant Bayes factor over 10*. However, the
detection of the GWB could not be claimed because the presence of the Hellings-Downs
correlations could not be established. This result has been confirmed by measurements
from PPTA (Goncharov et al. 2021) and EPTA (Chen et al. 2021), with A =2.2*02 x 1071
and A = 2.957089 x1071° respectively, but again without detecting the spatial correlations.

The second section of this chapter describes how to build the PTA likelihood for a
multi-pulsar dataset and to include common signals between several pulsars. The third
section presents the analyses and related results of the search for a GWB with six pulsars in
the EPTA DR2 (Chen etal. 2021). My contribution to Chen et al. 2021 is in the data analyses
of the single-pulsar noise models and the common red signals from a GWB, the investiga-
tion of Solar system ephemeris systematics, and a participation in writing the paper. The
detailed study related to the Solar system ephemeris errors are included in the Chapter 4
of the thesis. The fourth Section describes the impact of the single-pulsar noise modelling
(see Section 2.4) on the GWB searches applied to the EPTA DR2 (Chalumeau et al. 2021).
The last part of this chapter presents results from the very recent IPTA GWB analyses (An-
toniadis et al. 2022) using the IPTA Data Release 2 submitted to MNRAS journal, where I
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have participated in the data analysis process. The section particularly focuses on the in-
vestigation of the spatial correlations and the assessment of their statistical significance.
The Chapter concludes with a brief discussion on the prospects for a detection of a GWB
with the future PTA datasets.

3.2 Modelling correlated signals for PTA

This section expands the formulation of the likelihood given in Section 2.3 to a dataset
that combines timing residuals of several pulsars, and it describes the common red signals
(CRS) models without any spatial correlation, or with angular correlations corresponding
to a signal from a GWB (Hellings-Downs), clock correction errors (monopolar) or system-
atic errors in the Solar system ephemeris (dipolar).

The PTA likelihood

The PTA likelihood for a dataset that combine several pulsars generalizes the single-pulsar
case (Eq. 2.5) and permits to include common signals between pulsars. For a data set of p
pulsars with n timing residuals 6 ¢ in total, the likelihood function describing white noise
N, a red noise C”>RN for each pulsar and a common red signal C®*S is expressed as

-1
. exp | ~3 LapLij Otai (Nai,ﬁj +C§SLR[§\]-]+C§§SM) 6tﬁj]
p(61|GP) =

) (3.3)

v/ (2m)"det(N + CPSRN 4 CCRS)

where the greek letters a, f =1, ..., p enumerate the pulsars and 6 ¢4 ; is the i-th residual of
the pulsar a.

Before we focus on the common red signal, let us re-formulate the components related
to the single-pulsar noise models (see Section 2.3.2):

¢ White noise:
2
Nai gy = | (Ba)® 0%opq(t) + (Eq ) ]6aﬁ 53 (3.4)

where U%O A o (i) is the uncertainty of the ToA measured at the epoch #; for the pulsar
@, and E¢, and Eq , are EFAC and EQUAD parameters attached to each system

observing the pulsar a.

* Single-pulsar red noise:
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The stochastic red noise components is modelled as Gaussian processes (Eq. 2.15).
For the pulsar «, the covariance matric is

Cﬂsf,‘gj =Y Fax(t) Zaip1 Fp(ty), (3.5)
k1

where F is the incomplete set of N sin/cos basis functions that are indexed with
k,1=1,..., N and the covariance matrix of the basis weights Z">8N is defined by the
PSD S%(f):

Zakpt =S (fi) 6x1 Oap ! T, (3.6)

The common red signals

As for the single-pulsar noise description, the CRS is also modelled as a Gaussian process
using the sin/cos basis functions for the single-pulsar stochastic red signal. The covari-

ance matrix of the CRS is
CEI},Sﬁj = ; Fax(t) Zak g1 Fpi(t), 3.7)

where F is the set of basis functions and the covariance matrix of the weights X, g; de-
pends on a PSD which is the same for all pulsars. Let us describe the common signals
considered in PTAs, modelled as a power-law PSD Sp(fi; Acrs,YcRrs)-

— The common uncorrelated red noise (CURN): The CURN shares spectral properties

across all pulsars but does not appear with any particular spatial correlation (random) for

each pair of pulsars, its covariance matrix is described as

2ok, p1 = Sp(fr; AcurN, YCURN) Ok1 Oap / T, (3.8)

where Acyrn and ycurn are the amplitude and the spectral index of the power-law.

CCRS

The term 6,44 implies the block-diagonal structure of the covariance matrix C’ B

and, therefore, describes the ‘auto-correlated‘ processes for every pulsars.

— The spatially correlated red noise processes: The covariance matrix of a correlated

stochastic red signal is given as

Zak,p1=Sp(fis AY) 6x1 TOap) I T, (3.9)

where 04 is the angular separation of a pair of pulsars in the sky and I'(04p) is the overlap
reduction function (ORF ; Finn et al. 2009), which gives the correlation coefficients for

each pair of pulsars.
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Assuming General Relativity, the ORF used to describe an isotropic stochastic GWB
follows the Hellings-Downs curve (Lee et al. 2008):

1,ifOq5=0

I'cws (Haﬁ) = (3
X

1 (3.10)
—In(x) — -
2 4

1
+ 2 otherwise
with x = [1—cos(04p)1/2.

In this manuscript, the CRS with ‘Hellings-Downs‘ ORF is referred to as GWB, and

characterized by the power-law amplitude and spectral index denoted as Agwp and ygws-

A second spatially correlated red noise could originate from errors in the clock cor-
rections applied by the timing model (Section 1.2.2). If such errors contain long-term
processes, a very-low frequency noise would be identically induced in the timing resid-
uals of every pulsars using the same clock correction file (given by the BIPM). The signal

(named CLK) would have monopolar correlations with a constant ORF:

Fek(@ap) =1, (3.11)

Another correlated signal is the Solar system ephemeris systematics. The time-dependent
position of the Earth with respect to the Solar system barycenter used by the timing model
(for instance to perform the Solar system Roemer delay) is given by the SSEs (see Section
1.2.2). An error of the Roemer delay produces a signal with dipolar correlation, and ORF
is given as (See Appendix A of Tiburzi et al. 2016)

L'EpH(0ap) o< cos(@ap), (3.12)
The Chapter 4 of this thesis is specially focused on modelling the SSE errors for robust

measurement of a GWB with PTAs. In order to avoid any confusion, the CRS modelled
with I'gpy ORF is referred as DIP in all the manuscript.

It is also possible to estimate the ORF given the data. For the method applied in Chen
et al. 2021, the ORF is modelled as a Chebyshev polynomial, following the approach pro-
posed in Lentati et al. 2015

I'cheb(X) =1+ Cox+cC3 (2x2 -+ c4(4x3 —3x), (3.13)

where c[1 4] are the Chebyshev coefficients used with uniform priors with the range [-1,1]
for each coefficient and x = (0op —7/2)/ (7/2).

3.3 Searching for a stochastic GWB with EPTA

The main results reported in Chen et al. 2021 are consistent with those recently obtained
by NANOGrav (Arzoumanian et al. 2020) and PPTA (Goncharov et al. 2021) and share the
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same conclusion: a significant detection of a common signal across pulsars but no evi-
dence for Hellings-Downs correlation. The dataset is the EPTA DR2 - about 24 years of
timing observations performed by the five EPTA radio telescopes for six pulsars: PSRs
J0613-0200, J1012+5307, J1600-3053, J1713+0747, J1744-1134, J1909-3744.

In the search for a GWB and other CRSs in the EPTA data, we used two independently
developed algorithms for evaluating the likelihood and with independent Monte-Carlo
(MC) samplers in order to increase our confidence in the results by having a cross-check
for possible bugs and analysis mistakes: ENTERPRISE and FORTYTWO.

We will only focus on results obtained with ENTERPRISE, for which I have participated.
The FORTYTWO analyses were performed by another group. We have combined EN-
TERPRISE with PTMCMCSAMPLER, that allowed us to perform a fully integrated pulsar
noise and correlated signals analysis within the same analysis suite. We also used ENTER-
PRISE_EXTENSIONS that contains additional functionality ENTERPRISE. As in the case of
the single-pulsar noise analysis, ENTERPRISE uses the “Gaussian-process” approach to

perform the marginalization of the timing model.

In all analyses for common signals, the red-noise and DM-noise parameters are si-
multaneously sampled with the CRS. The priors for the power-law parameters are
log,,U(10718,10719) for Acgs and U(0, 7) for ycgs.

In the single-pulsar analysis, we model the white noise with two parameters per ob-
serving system. Keeping such a configuration in these CRS analyses would result in a
currently unmanageable number of parameters. One approach is to fix the EFAC and
EQUAD for each observing system and use a “global EFAC” parameter per pulsar, that acts
as a global multiplication factor to regulate each pulsar’s white noise level. This has been
shown to be a good strategy during the EPTA DR1 GWB analysis, as shown in Lentati et al.
2015, where in all cases the global EFAC was found to be very consistent with unity. This
means that the white-noise estimation during single-pulsar analysis is very robust. In the
analyses presented in this work, we have verified that the global EFAC values are also close
to unity, allowing us to fix the pulsar white-noise parameters from the single-pulsar anal-
ysis without significant loss of accuracy in CRS analysis. The analysis described in this
section are all performed with a fixed Solar system ephemeris, using DE438.

3.3.1 Evaluating the correlations of the CRS

Figure 3.2 shows the results of the general CRS search by sampling angular correlation
coefficients using Chebyshev polynomial. The analyses clearly recover a common sig-
nal with two giving providing very consistent results. The left panel shows the estima-
tion of the ORF curve and the right panel shows the posterior distributions for the spec-
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Figure 3.2: ENTERPRISE (EP) and FORTYTWO (42) results from a search for a CRS mod-
elled with a single-power-law spectrum simultaneously sampled with the ORF using the
EPTA DR2 6-pulsars. The ORF is approximated with a 4th-order Chebyshev polynomial.
Left: The posterior distribution for the angular correlation curve of the CRS, shown as
boundaries of the credible regions. The dashed and dotted lines denote the 95% and
99.7% credible regions, respectively. The theoretical Hellings-Downs curve is overplot-
ted for comparison as a solid red line. The red stars denote the angular separations of
the pulsars used in this study. Right: Two-dimensional posterior distribution of the spec-
tral parameters for the single-power-law CRS model with the dashed line indicating the
expected y = 13/3 from a GWB from SMBHBs.

tral parameters. The median and 95% credible intervals for the spectral parameters are
log;o Acrs = —14.3270-33 (or Acgs = 4.7975:32 x 107'°) and ycgs = 3.830:85. The ORF figure
shows the 95% and 99.7% credible regions. The boundary encompasses the probability
for ORF to be the HD curve, however other possibilities remain.

We have applied Bayesian model selection to DR2 to investigate which model of CRS
is preferred. The base model to which we make the model comparisons is one where the
pulsar TOAs only have independent, uncorrelated individual pulsar noise (we denote this
as PSRN), without any measurable commonality in the spectral properties of the different
pulsars. We compare this base model to models that add only one CRS, namely either
CURN, GWB, CLK and DIP as well as models which add two CRSs, i.e. a combination of
CURN with one of the remaining three ORFs. The models are listed in Table 3.1. Given
the uncertainty on the ORE we do not expect this analysis to be fully conclusive, but can
provide indications on whether some of these CRS models are more supported by the

present data set.

The evaluations of Bayes Factors with ENTERPRISE were performed through a hyper-
model structure. Table 3.1 shows a summary of the Bayes Factors for the different models.
According to the criteria from Kass and Raftery 1995, the addition of either of the CURN,
GWB or DIP signals to the base PSRN signal is decisively favoured with alog, , Bayes Factor
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Table 3.1: Results from model selection analysis, in logarithmic (base 10) Bayes Factors
(log,,BF), for different CRS models and with fixed SSE (DE438) using the EPTA DR2 6-
pulsars. The model-components acronyms are: (i) PSRN = individual Pulsar noise only,
(ii) CURN = Common uncorrelated red noise, (iii) GWB = isotropic GWB with quadrupo-
lar, Hellings-Downs, angular correlation, (iv) CLK = common signal with monopolar spa-
tial correlation, as expected from a clock error, (v) DIP = common signal with dipolar spa-
tial correlation, as expected from SSE errors. PSRN has no log,, BF values as it serves as
the base model.

Model 10810 BF
ENTERPRISE FORTYTWO

PSRN — -
PSRN + CURN 3.8 3.6
PSRN + GWB 3.4 3.2
PSRN + CLK 0.6 0.8
PSRN + DIP 2.1 2.1
PSRN + CURN + GWB 3.6 3.7
PSRN + CURN + CLK 3.7 3.4
PSRN + CURN + DIP 3.7 3.4

(log,(BF) > 2. The strongest Bayes Factor is for the CURN model, although the evidence
for the GWB is only lower by log,,BF = 0.4. This difference provides only a marginal ad-
vantage to the CURN, barely disfavouring the GWB signal. The DIP model, however, is
clearly less favoured with an log,, BF difference to CURN or the GWB of order ~ 1, which
is a substantial difference. In contrast to the three models discussed above, the monopo-
lar correlation is only mildly favoured with respect to the PSRN base model.

Since the CURN model has the strongest evidence of the models with a single CRS, we
can compare it against models which include another additional common process. The
idea is to test whether there may be evidence for several physically motivated common
processes coexisting in the data. In general, none of the three spatially correlated pro-
cesses add substantial evidence to the single CURN. The ability to distinguish between
different spatial correlations could be improved by using more than 6 pulsars in the anal-
ysis. We thus plan to expand the analysis to include a larger number of MSPs in the future.
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3.3.2 Analysing the spectrum properties

In order to further investigate our results, we use the case of the CURN to investigate
the CRS spectrum modelling. We therefore proceed to also perform the analysis with an
alternative approach to the power-law spectrum model, where the power of each indi-
vidual CRS-spectrum frequency bin is sampled independently. This approach has been
employed in Lentati et al. 2015 and Arzoumanian et al. 2020, and was first discussed in
Lentati et al. 2013. We refer to this as the ‘free spectrum‘ analysis. We conducted the anal-
ysis employing both ENTEPRISE and FORTYTWO, which provided fully consistent results.
The left panel of Figure 3.3 shows the power of the CURN at each frequency, the free spec-
trum, with the straight lines indicating the median values of A and y of their respective
posterior distributions from the power-law spectral analysis from ENTERPRISE. The full

2D posterior contours for the power-law parameters are shown on the right panel.

The free spectrum figure in general has two features. At high frequencies the power is
white-noise dominated and can thus be modelled with a flat horizontal line. The presence
of red noise becomes obvious at the lowest frequency bins and appears to be dominant
for about 10 frequency bins.

The median value and 95% confidence interval for CRS parameters are log;, A = —14.29+2-2¢

~0.33
(or Acurn =5.13573 x 107'%) and y =3.7872.

3.4 Impactofthe single-pulsar noise modelling on the GWB
searches

This part is based on the last section of Chalumeau et al. 2021 which uses the single-
pulsar noise model selection presented in Chapter 2. Now, we investigate how the custom
single-pulsar noise model affects the results of the common red signal (CRS) analyses
given above. We consider here the CRS either with Hellings-Downs spatial correlations
(GWB) or without (CURN).

We denote the default “base“ noise model used for all pulsars in Chen et al. 2021
RN30 DMwv100 as M1, and label the custom models (summarized in Table 2.5) for each
pulsar as M2. For this analysis we fix the parameters of the white noise to their maximum
likelihood values (in the corresponding models). We model the common red noise using
30 uniformly spaced Fourier modes fi = k/Ti, k = 1...30, where Ty is the time span

between the lowest and highest epoch from the data of all pulsars.
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Figure 3.3: Results from CURN analysis using ENTERPRISE (EP) and FORTYTWO (42) with
the EPTA DR2 6-pulsars, both for the free-spectrum (left panel) and the single power-law
(right panel) analyses. The left plot shows the posterior distribution for the amplitude of
the power at each frequency bin using violin plots. Where the inference provides good
measurement of the power, we denote the median with a circle and the 95% uncertain-
ties. We consider the measurement good, if more than 95% of the posterior probability
lies above the lowest 6.25% of the prior. As the results of the two algorithms are almost
identical, we slightly shift the 42 distributions of the lowest 15 frequency bins for easier
visual comparison. The right plot shows the two-dimensional posterior distribution for
the CURN power-law amplitude and spectral index with the dashed line indicating the
expected y = 13/3 from a GWB from SMBHBs. The two analysis pipelines have produced
consistent results.
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3.4.1 Contribution of each pulsar to the CRS

Following Arzoumanian et al. 2020, Goncharov et al. 2021 and Chen et al. 2021, we study
the contribution of each pulsar dataset to a common process using dropout analysis. One
additional parameter is added to the model for each pulsar, with a uniform prior, and
these are sampled as part of the model. When the parameter is one, the common red
signal is included in the model for that pulsar used in the likelihood and when it is zero it
is not. The dropout factor is the ratio of the fraction of posterior samples when the CRS is
included to the fraction when it is not included.

The resulting dropout factors (see Fig. 3.4, blue hollow circles) with M1+CURN are
very similar to those presented in Figure 5 in Chen et al. 2021. The dropout factor for PSR
J1012+5307 is around 1 (consistent with the results of Arzoumanian et al. 2020) and most
likely caused by abnormal red noise at high frequency (see discussion in 2.4.2) .

The contribution of each pulsar to the common red noise has decreased for the cus-
tom model M2+CURN with the biggest drop shown for PSR J1600-3053 (the one which
did not support RN). Despite that the overall result remains: pulsars support presence of
CURN. Interestingly, if we discard RN from M2+CURN model of PSR J1744-1134 (see dis-
cussion in subsection 2.4.2) it is picked up by CURN leading to increase in the drop-out
factor (see hollow red circle in Fig. 3.4). Note that this poorly constrained (and poorly un-
derstood) signal could potentially affect the sensitivity to the GWB. Our choice to keep RN

inside the M2 model for PSR J1744-1134 was a conservative choice.

3.4.2 Spectral properties of the CRS

The Figure 3.5 and Table 3.2 summarize the spectral properties of CURN and GWB. We
do not see significant changes in the new results (red) from the previously found blue,
Chen et al. 2021. The amplitude of both CURN and GWB is slightly lower and the spec-
tral index is a bit shallower with the M2 model. The median amplitude is reduced from
Acurn,M1 =5.4273:38 x 1071 to Acurn,mz =4.887333 x 1071 (95% credible interval) and
the uncertainties of the spectral index are somewhat larger. This slight shift and broad-
ening might be caused by partial absorption of the common red signals by the new noise
models. Similarly for the GWB we have Agwg M1 = 5.017334 x 1071% and Agwp vz = 4.877520x

263 2188
10~ 1. Note that the amplitude of CRS in M2 is the same for CURN and GWB.

We observe no changes in the CURN amplitude and spectral index posteriors using
M2 with or without RN for PSR J1744-1134, with corresponding Jensen-Shannon diver-
gences 2.95x 1073 and 1.84 x 1073,
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Figure 3.4: Dropout score for the contribution of each pulsar to the CURN model with M1
(pink dots) or M2 (empty blue dots) using the EPTA DR2 6-pulsars. The same analysis for
PSR J1744-1134 but without intrinsic red-noise for this pulsar is also shown (empty red
dot).

Figure 3.5: 2D posterior distributions of the CURN (left) and Hellings-Down correlated
GWB (right) power-law parameters with M1 (blue) and M2 (red) single-pulsar noise mod-
els using the EPTA DR2 6-pulsars.
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Figure 3.6: Free-spectrum of the CURN (top) and the GWB (bottom) signals using the

EPTA DR2 6-pulsars, either with M1 (empty black violin) or M2 (filled blue violin) single-
pulsar noise models.
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Table 3.2: Median of amplitude and spectral index posterior (and 95% credible interval) of
both uncorrelated (CURN) and Hellings-Down (GWB) common processes computed with
M1 and M2 using the EPTA DR2 6-pulsars. Two last columns contain Jensen-Shannon
divergences values that compare posteriors of CRS added to M1 and M2.

Model log,,A Y JSdiv. A JSdiv. y
M1 +CURN -14.277028 3.7370-68 0 0
M2 +CURN -14.31"03% 3.68708) 1.55e—02 9.40e-03
M1+GWB —14.307037 3.82+)-79 0 0
M2+GWB 14317032 3.6970%% 8.73e—03 2.60e—02

We have also considered a free-spectrum model for CRS and plot it in Fig. 3.6. The
M1+CRS model is presented by the hollow violins and we plot M2+CRS by filled blue vi-
olins. The left plot shows addition of CURN to M1 and M2 noise models. We notice the
slight drop in the amplitude at the lowest frequency and slightly better constrain of ampli-
tude at the second frequency bin. The free spectrum for GWB (right plot) shows a slight
drop in power at the lowest frequency. These results nicely confirm our main findings
with the power-law model of a decreased amplitude and shallower spectral index with
M2 compared to M1.

3.4.3 Statistical significance of the CRS with custom noise models

Finally, we evaluate Bayes factors checking for presence of the common processes, con-
sidering M1/M2+CURN/GWB against pulsar noise models with no common process (PSRN),
M1/M2.

The results are summarized in Table 3.3. We have used two method to compute Bayes
factors (Dynesty 'Dyn.” and HyperModel 'Hyp’) for cross checking. First of all we have re-
derived the results of Chen et al. 2021 for the M1 model: we observe a strong presence of
a common red process but the data is not informative about its nature (could equally be
CURN or GWB). Analysis with the custom noise model built in this work confirms these
findings. It is quite remarkable that even though the custom noise models used are very
different from the standard ones, we can still confirm the presence of CRS. This gives an
additional confidence in presence of CRS in the EPTA DR2 data. This is the main result of
this paper.
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Table 3.3: Bayes factors in favor of CRS signals (CURN or GWB) inclusion in M1 or M2
single-pulsar noise models using the EPTA DR2 6-pulsars. Estimations are performed
either through evidence ratios (Dyn.) or using the product-space method (Hyp.).

log,, BF
CRS Model
MlDyn. 1vﬂHyp. 1vIZDyn. M2Hyp.
PSRN 0 0 0 0
PSRN + CURN 3.6 3.8 2.9 3.3
PSRN + GWB 3.4 3.6 3.0 3.6

3.4.4 Summary

The main result of this work is that we confirm the presence of a common red noise in
EPTA DR2 despite the use of much more complicated single-pulsar noise models. The
data is not informative on the presence of Hellings-Downs spatial correlations, which is

not surprising given that we have analysed only the 6 best EPTA pulsars.

3.5 Evaluating the presence of correlations with IPTA data

This section presents results reported in Antoniadis et al. 2022 (submitted to MNRAS) on
the search for a GWB with the IPTA Data Release 2 (Perera et al. 2019), the most recent
IPTA dataset today. For this paper, I have participated to the data analyses and in partic-
ular contributed to the false-alarm study.

3.5.1 TheIPTA Data Release 2

IPTA DR2 includes a combination of timing data from the following individual PTA data
releases: the EPTA data release 1.0 (Desvignes et al. 2016, the NANOGrav 9-year data set
(NANOGrav Collaboration et al. 2015), and the PPTA first data release (Manchester et al.
2013) and its extended version (Reardon et al. 2016). The EPTA data set includes high-
precision timing data from 42 MSPs obtained with the largest radio telescopes in Europe
— Effelsberg telescope, Lovell telescope, Nancay telescope, and Westerbork Synthesis tele-
scope — covering data from 1996 to 2015 with a time baseline between 7-18 yr. In addi-
tion to these data, archival timing data of PSR J1939+2134 since 1994 was included. The
NANOGrav 9-year data set includes high-precision timing observations from 37 MSPs ob-
tained with the Robert C. Byrd Green Bank Telescope and the Arecibo telescope, spanning

86



Chapter 3 — SEARCHING FOR A GWB wiTH EPTA AND IPTA

a time baseline between 0.6-9.2 yr, covering the data from 2004 to 2013. In addition, the
long-term timing data of PSR J1713+0747 from (Zhu et al. 2015) and the data of PSRs
J1857+0943 and J1939+2134 from 1984 through 1992 (Kaspi et al. 1994) were included.
The PPTA data set includes high-precision timing observations from 20 MSPs obtained
with the Parkes radio telescope (also known as Murriyang) from 2004 to 2011. IPTA DR2
also included single frequency band (1.4 GHz/L-band) Parkes telescope legacy data ob-
tained since 1994. The additional 3.0 GHz timing data reported in Shannon et al. 2015
for PSRs J0437—-4715,J1744—1134,]J1713+0747, and J1909—3744 were also included in the
data set. In total, the timing data from 65 MSPs were included in IPTA DR2, which has 21
more source than the IPTADR1 (Verbiest et al. 2016). There are 27 and 7 MSPs in IPTA DR2
with a timing baseline >10 yr and >20 yr, respectively. All pulsars were observed at multi-
ple frequencies. All EPTA and PPTA observations were averaged in time and frequency to
obtain a single time-of-arrival (TOA) for each receiver and observation. The NANOGrav
observations were averaged in time and included sub-band information, i.e., averaged in
frequency to maintain a frequency resolution ranging from 1.5 to 12.5 MHz depending on
the receiver and backend instrument combination, resulted in a single TOA for each fre-
quency channel. More details about the constituent PTA data sets can be found in Perera
etal. 2019.

IPTA DR2, being the combination of data from multiple telescopes and many observ-
ing systems, has larger model parameter space than its constituent data sets. The large
number of model parameters and TOAs increases the computational complexity of the
analysis. As we searched for long-term processes, such as the GWB, we limited our anal-
ysis to pulsars whose observation time exceeded 3 years. This reduced the number of
pulsars from the full 65 in DR2 to 53.

3.5.2 Evidence for the CRS

Figure 3.7 compares the results when using two different ORFs: one that uses only the
diagonal ‘auto correlation‘ terms (i.e., CURN) and one with both ‘auto’ and ‘cross corre-
lation terms (i.e., GWB). A small shift towards lower amplitudes and higher spectral index
can be seen when using the GWB model. Using the CURN, we find Acp =5.1757 x 1071
and ycp = 3.9+ 0.9, where the errors represent 95% credible regions. Using the GWB we
can constrain the common process power law to Acp = 3.9fg:§ x 1071 and Ycp =4.0+£0.9.

The CURN model is very strongly favored over a model with only intrinsic pulsar noise
and no common-spectrum process with log,, Bayes factor of 8.2 (see Table 3.4). Despite
the large Bayes factor in favour of the CURN, this does not suffice to claim a GWB detec-

tion, as we have only used the auto-correlations. This strong evidence only indicates that
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Table 3.4: Decimal log-scale Bayes factors obtained with the IPTA DR2 comparing the dif-
ferent CRS models investigated over a model that only include single-pulsar noise models
(named PSRN).

Model log,,BF

PSRN -
PSRN + CURN 8.2
PSRN + GWB 8.5
PSRN + CLK 3.5
PSRN + DIP 5.9

a number of pulsars have red noise with similar spectral characteristics. We must turn
on the cross-correlations to determine if this common process is ‘Hellings-Downs‘ corre-
lated as a GWB should be. Using the GWB ORE we find only middling evidence in favour

of the GWB compared to the CURN model (log,,B& 5y = 0.3).

3.5.3 Extended analysis on the spatial correlations

Similar to how we may consider the auto-correlation parts of the ORF alone, the full ORF
can be split into two independent parts. In this case the auto-correlation and the cross-

correlation parts each have their own independent amplitude, as was done in Arzouma-
CRS

ai,fj
Eq. 3.7 is computed for a # f, with a, f indexing pulsars. In the GWB ORF the auto-

correlation part is I'y, = 1 and the cross-correlation parts are suppressed by at least a

nian et al. 2020. For the ‘cross-correlation only* model, the covariance matrix C in

factor of 2, I';;, < 0.5. This makes the cross-correlations harder to constrain. Figure 3.8
shows the posteriors for the two amplitudes of a split ORF analysis for fixed y = 13/3,
compared to the full auto+cross-correlation model. The cross-correlations do not have
sufficient precision to place constraints on the amplitude of the GWB. However, they do
place an upper limit of ~ 2.15 x 10~° on the amplitude of the GWB, which is consistent
with the lower range of the amplitude derived using the full auto- and cross-correlation
model in Fig. 3.8. The auto-correlation terms are much more informative. Combining
the information from both shifts the amplitude towards lower values. This shows that the
cross-terms can contribute to the full GWB search, even if they provide less information.
The auto-correlations are more likely to be affected by intrinsic pulsar noise. Using a more
sophisticated noise model for each pulsar can help to produce a more robust estimate on

the amplitude of any common process.
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Figure 3.7: 2D marginalized posterior distributions of the power-law amplitude and spec-
tral index for the common process (CP) modelled as a CURN (Auto correlations only) or
a GWB (Auto + cross correlations) with the IPTA DR2. The green lines indicate Acp =

2.8x 1071 and YsmBuB = 13/3.
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Figure 3.8: Marginalized posterior distributions of the amplitude A of power-laws with
fixed spectral index at y = 13/3 for the CURN (blue), the GWB (orange) and the cross

correlation only (green) CRS models using the IPTA DR2.
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Data was also analysed using the frequentist optimal statistic (OS) estimator (Anholm
et al. 2009, Demorest et al. 2013, Chamberlin et al. 2015), which evaluates the amplitude
and a signal-to-noise ration S/N of a correlated common process. The method used fol-
lows the approach proposed in Vigeland et al. 2018, where the accuracy of the statistic is
improved by marginalizing on the single-pulsar red noise parameters using their Bayesian
posteriors distributions. Figure 3.9 shows the amplitudes and signal-to-noise ratio (S/N)
that are recovered by the pulsar noise marginalized optimal statistic (OS) method, which
uses cross-correlations only. We find no evidence for a dipolar correlated process, as the
amplitude and S/N for this model are centered on 0. SSE systematics are expected to
manifest at specific frequencies related to orbital motion of the celestial bodies. The IPTA
DR2 data set is long enough to probe lower frequencies that should be less affected by
SSE errors Vallisneri et al. 2020. The S/N = 0.6J_r(1):§ for the Hellings-Downs correlation is
insufficient to claim a detection. This is consistent with the Bayesian model selection.
The HD amplitude from the OS seems to be in tension with the Bayesian results for the
auto-correlated CP, but consistent with the Bayesian results for the full HD model. This
strengthens the case that the cross-terms have a significant role to play in parameter es-
timation as well as detection confidence. Finally, the OS has the largest S/N = 2.0f}:2 for
a monopole with a small amplitude. This can be due to the complexity of IPTA DR2 and

some amount of unmodeled noise.

The significance of the S/N for the correlated signals have been tested with the two
false alarm studies: the phase-shift and sky scrambles methods (Cornish and Sampson
2016, Taylor et al. 2017). In order to evaluate the significance of a GWB signal, we would
like to compare the S/N measurement of the observed dataset S/ N°" with values derived
from realisations of datasets without any GWB signal. We could then compute a p-value to
get the ‘probability of getting S/ N°PS assuming a null hypothesis (i.e., no correlation)‘. A
very low value would then permit to reject the null hypothesis, and confirm the detection
of a GWB. The idea of the false alarm studies is to destroy any spatial correlations, either by
modifying the pulsar sky locations (sky scrambles) or including a phase shifting to destroy
the coherence of the GWB between pulsars, but preserving the noise in the data.

For this work, the phase shifts are introduced in the CRS model, adding a random
phase in the sin/cos functions of the Gaussian process basis functions described in Eq.
2.16, this is the ‘Model-driven‘ approach (Taylor et al. 2017). The sky scramble method
requires to make assumptions on the nature of the correlations of the signal. The pul-
sar positions are set to minimize the match statistic M, which defines the overlap be-
tween the ORF of the assumed correlation to destroy '™t (here Hellings-Downs), and the
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Figure 3.9: Amplitude A2 (top) and S/N (bottom) obtained from the noise marginalized
optimal statistic applied for a CRS modelled with monopolar (blue), dipolar (green) or
Hellings-Downs correlations using the IPTA DR2. The amplitudes obtained from Bayesian
analysis are also plotted (top) for the CURN (black line) and the cross correlation only

(black dashed-lines).
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Table 3.5: p-values calculated for the false alarm analyses using the IPTA DR2. The mea-
sured S/N value using Hellings-Downs (HD ORF) or monopolar correlations is compared
with the S/N distribution obtained after removing correlations either with phase shift or
sky scrambles methods (10k random realizations).

p, phase shift | p, sky scramble
HD ORF 0.25 0.24
Monopole 0.03 -

‘scrambled‘ ORF T', as (Taylor et al. 2017)
Za,b;éa Tiﬂf Lab

M = . . . . 4
\/Za,b;éa Fl;}; 1-'1;1117'[ XY abza LabLab

(3.14)

Note that the monopolar correlations can’t be removed with sky scrambles because it

is fully uniform in the sky and therefore independent from the pulsar angular separations.

The phase-shift analysis has been applied to the Hellings-Downs and monopolar cor-
relations, and the sky scrambles on the Hellings-Downs. The p-values obtained are shown
in Table 3.5. The very low p-value at 0.03 for the monopolar correlations is consistent with
the high S/N shown in Fig. 3.9. However, the Hellings-Downs p-values at 0.25 for phase
shift and 0.24 for sky scrambles are too high to reject the null hypothesis and report the
measurement of a significant GWB.

3.6 Future prospects toward a detection

The recent results obtained independently from NANOGrav, PPTA and EPTA have pro-
vided evidence of a common signal among pulsars. The challenge now is to determine
whether this is the signature of a stochastic GWB by improving the sensitivity of the cur-
rent PTAs. This section is a brief discussion about different aspects related to the improve-
ment of the current GWB measurements in the coming years.

Eliminating non-GW candidates

Apart from GW, there are various sources that could potentially induce very low frequency

signals in the timing residuals.

Unmodelled processes for the single-pulsar red noise with similar spectra could be
interpreted as an uncorrelated common process (CURN) as demonstrated in Goncharov
et al. 2021 via simulations. Moreover, the study on the single-pulsar model selection in
Chapter 2 has shown that the each pulsar dataset requires quite specific treatment and
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yields to different noise models because of the possible complexity of the intrinsic red
noise (PSR J1012+5307), unmodelled chromatic processes such as scattering variations
(PSR J1600-3053) and exponential dips (PSR J1713+0747) or long-term noise related to in-
strumental effects (system noise). Using custom single-pulsar noise models, the power-
law of both the CURN and the common red signal with Hellings-Downs (GWB) models
have been slightly shifted to lower amplitudes but still remain consistent with main find-
ings (Arzoumanian et al. 2020, Goncharov et al. 2021, Chen et al. 2021). In addition, it is
necessary to ensure that the common signal does not come from errors in clock correction
or Solar system ephemeris with analyses on the correlations of the signal and advanced
modelling. The Chapter 4 focuses on the modelling of Solar system ephemeris uncertain-
ties.

Improvement of the datasets

The recent results published by NANOGrav (Arzoumanian et al. 2020), PPTA (Goncharov
et al. 2021) and EPTA (Chen et al. 2021) were obtained using respectively about 12.5, 15
and 24 years of timing data of 45, 26 and 6 MSPs. It is planned in the coming years to
include additional ToAs for NANOGrav and PPTA to extend the time span of their datasets
and to include more pulsars for EPTA (at least 25) to improve significantly the evaluation
of the spatial correlations.

The GWB analyses with the IPTA DR2 (Antoniadis et al. 2022) have particularly shown
the important improvement of the data combination. It has permit to obtain a measure-
ment of a common process consistent with the results from the three continental PTAs
(see Fig. 3.10), whereas no such tight constraints was found from its constituent datasets.
The combination of the future releases with others datasets from InPTA or MeerKAT might
therefore permit to complete a search with the best sensitivity available.
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Figure 3.10: Comparison of the CRS modelled with a free-spectrum (top) or a power-
law PSD (bottom) between the following datasets: IPTA DR2 (orange; Perera et al. 2019),
NANOGrav 12.5 years dataset (blue; Alam et al. 2021), PPTA DR2 (green; Kerr et al. 2020)
and six pulsars from EPTA DR2. Note that even if the datasets of the three continental
PTAs include more recent ToAs than the IPTA DR2, the time span of the latter if bigger
because it contains legacy data with observations performed in the 1980’s. Figure from

Antoniadis et al. 2022.
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CHAPTER 4

MODELLING THE SOLAR-SYSTEM EPHEMERIS ERRORS TOWARD
THE SEARCH FOR A GWB

Abstract

This chapter describes our work on the modelling of the Solar System ephemeris (SSE)
uncertainties for the search of a GWB with PTAs. The first two sections give a background
on the study of SSE errors with PTA, and describe the methods used to take this signal
into account. It contains a detailed presentation of EPHEMGP, a new model that we de-
velopped and implemented which is based on from the ephemeris numerical integrator
Intégrateur Numeérique Planétaire de I'Observatoire de Paris (INPOP). This work is the re-
sult of a near collaboration with A. Fienga (GeoAzur), who contributes to the elaboration
of INPOP ephemeris. The third section details the study performed to evaluate EPHEMGP
and compare its performances with existing models. It is the subject of a publication to
be submitted in the coming weeks (Chalumeau et al. 2021b in prep.). The last section
presents the application of EPHEMGP (and other models) to study the impact of SSE er-
ror modelling on the parameter estimation of the common red signal detected with EPTA
DR2. This work is a full part of Chen et al. 2021, for which I contributed to the noise anal-
yses and the redaction.
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4.1 Introduction

The analysis presented in Chapter 3 strongly supports the presence of a CRS, however the
PTA data provides no significant evidence for or against Hellings-Downs correlations. In
addition to the preparation of the best possible data sets (see section 3.6), a lot of effort
is put into the optimization of the noise modelling for improving the robustness of the
results (see Chapter 2). It is important to confidently detect quadrupolar correlations in
PTA data to claim GW detection. Errors in the Solar system ephemeris (SSE) also produce

a correlated signal but with a dipolar pattern (bottom in Fig. 4.1).

It has been demonstrated in Arzoumanian et al. 2018b and Vallisneri et al. 2020 that
the measurement of the GWB could depend on the choice of the SSE. The errors in SSE
would introduce systematic errors in the GWB measurement, or even can be mistaken
for a GWB signal. The Figure 4.2 shows that the peaked GWB amplitude posteriors ob-
tained with different SSE versions (dashed lines) become all consistent with upper-limit
distributions (solid lines) after accounting for SSE uncertainties in the noise model, using
BAYESEPHEM algorithm (Vallisneri et al. 2020).

This chapter is centered on modelling the SSE uncertainties in the search for GWB
with PTAs. The second section contains the impact of SSE errors on pulsar timing and
PTAs, followed by a description of the existing models of SSE uncertainties implemented
in ENTERPRISE package. Next we give a detailed description of our own independent
model, named EPHEMGP, developped and implemented within a collaboration with the
Institut de Mécanique Céleste et de Calcul des Ephémeérides (IMCCE). The third section is
a preliminary study of the performance of EPHEMGP using a simulated dataset based on
EPTA DR2, compared with other models. This study will be the subject of a publication
that is currently in preparation. The last section presents the application of EPHEMGP
and other models on the EPTA DR2 dataset, with particular focus on the CRS parameter
estimation.

4.2 Modelling SSE errors for PTA

Let us first describe the impact of SSE errors on PTA data.

4.2.1 The SSE errorsin PTA

In the pulsar timing procedure, the set of measured topocentric ToAs are transformed to
the quasi-inertial Solar system barycenter (SSB) frame to take into account the complex

motion of the Earth in the Solar system (see Section 1.2.2). The Solar system barycentric
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Figure 4.1: Angular separation pairs of pulsars pair vs. correlation coefficient in the pres-
ence of GWB (top) and Solar system Roemer delay error (bottom) which is injected as a
stochastic dipolar signal (from Tiburzi et al. 2016).
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Figure 4.2: Marginalized posterior distribution of the power-law amplitude Agwp (set at
f =1yr 1 of a CRS model with a fixed spectral index at y = 13/3 and Hellings-Downs
correlations (GWB) using the NANOGrav 11-year dataset and including (solid lines) or
not (dashed lines) a model named BAYESEPHEM that takes into account SSE uncertainties
(from Vallisneri et al. 2020). The colors denote different choice of JPL ephemeris used by
the timing model.
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correction includes the Roemer delay Age: the vacuum light travel time between the ob-
servatory and the SSB. If we ignore the observatory-to-geocentre term, one can express

the Solar system Roemer delay as (Eq. 1.10)
_f@ . RBB

ARpo = — , (4.1)
c

where c is the speed of light, Rgp is the pulsar position unit vector in the SSB frame ob-
tained and fitted by the timing model, and T, is the geocentre position in the SSB frame,

fixed in the timing model and given by a chosen SSE.

The Solar system ephemerides provide the Solar system body trajectories (positions
and velocities) and masses. They are produced and regularly updated by several collabo-
rations such as the IMCCE with the Intégrateur Numérique Planétaire de I'Observatoire de
Paris INPOP), the Jet Propulsion Laboratory (JPL) with the Development Ephemeris (DE)
or the Russian Institute for Applied Astronomy of the Russian Academy of Sciences with
the Ephemerides of Planets and the Moon (EPM). The ephemerides are computed from a
numerical integration of the equation of motions. Initial conditions of positions and ve-
locities of celestial bodies are used as parameters, which are obtained by fitting integrated
orbits to the observational data. One of the difficulties is to assign realistic uncertainties
to the heterogeneous sets of data used to generate the SSEs. The observational data come
from measurements obtained from space missions (e.g., very long baseline interferom-
etry (VLBI) or spacecraft ranging and Doppler tracking) or other methods such as Lunar
Laser Ranging (LLR) or radar ranging. Often the latest SSE superseeds in accuracy the pre-
ceding as it is based on extended and, often, more precise observational data. However,
SSE produced by different groups might use different data and/or use different fitting and
numerical methods which could lead to unaccounted systematic errors. The main idea
of this study is to introduce a Gaussian process that absorbs those (possible) systematics

leaving GW signal unaffected.

In this manuscript, we consider the two SSEs, JPL DE438 (Folkner and Park 2018) and
INPOP19a (Fienga et al. 2019), which have been derived with comparable datasets, both
using refined data of Cassini mission for Saturn and range and VLBI tracking of Juno mis-
sion perijoves (6 with DE438 and 9 with INPOP19a) for Jupiter.

An error of the geocentre position 67, with respect to the SSB given by the ephemeris
would cause a systematic error in the timing residuals expressed from the Solar system
Roemer (Eq. 4.1):

1 .
5[R@ :—26?@'RBB, (4.2)

The error in the Roemer delay is also expected to be dipolar-correlated among pulsar
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angular separation, with an overlap reduction function I'ssg (04) as (Tiburzi et al. 2016)

I'epH(0qp) o< cos(Bqp), (4.3)

where 0,4 is the angle between the positions of two pulsars denoted @ and . Note that
other terms of the Solar system barycentric correction use the SSB position given SSEs
such as the Shapiro and Einstein delays, but the Roemer delay appears to be the dominant

term to impact the timing residuals.

The sensitivity of PTAs strongly depends on the ability to separate SSE systematics and
the GWB signal, by including enough pulsars well spaced in the sky (Roebber 2019).

4.2.2 Describing the SSE uncertainties

Several models have been proposed to account for SSE uncertainties in PTA data analysis
to apply robust analysis for the search of very-low frequency GWs (Tiburzi et al. 2016, Guo
et al. 2019, Vallisneri et al. 2020), which is the objective of this work. We consider here the
models implemented in ENTERPRISE software: a common red signal (CRS) with dipolar
correlations, BAYESEPEHEM (Vallisneri et al. 2020), and our model named EPHEMGP.

The dipolar CRS, is modelled as a Gaussian process with a simple power-law and an
ORF as I'pip(0qp) = cos(@qp).

The model BAYESEPHEM includes SSE errors as deterministic signals to describe linear
deviations of masses of Jupiter, Saturn, Uranus and Neptune (4 parameters), Jupiter and
Saturn average orbital elements perturbations (12 parameters) and a rotation rate about
the ecliptic pole (1 parameters). As explained in Vallisneri 2020, the rotation rate should
not have any impact on GW posteriors since its related signal is expected to be absorbed in
the pulsar astrometric parameters during the timing model fitting procedure (see Chapter
1).

Let us now present EPHEMGP that we have developped to model the Roemer delay
errors as Gaussian processes, using INPOP orbital partials derived from the numerical
integration as basis functions. The model do not vary the masses of planets, for which the
values given by INPOP are derived from space mission measurements and considered to
be accurate enough to have any impact on pulsar timing at current precisions. We vary
instead the non-singular orbital elements of planets. Those parameters are related to the

Keplerian parameters:

* a:semimajor axis
* 1: mean longitude of the planet in the orbit
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k = e cos(7), with e as the eccentricity and 7 as the longitude of perihelion.

h =esin(m)

e q=sin (%) cos(Q), with i as the inclination and Q as the longitude of the ascending

node

e p=sin (%) sin(Q).

EPHEMGP is included in the PTA likelihood (see Section 3.2) using the ‘weight-space

view‘ Gaussian process approach (see Section 2.3.1) as

a

where CI)EGP(I) is the basis functions computed from INPOP numerical partials and 1, are
the deviations of the non-singular orbital elements.

Currently, the model uses numerical partials produced for INPOP19A solution and
provided by our collaborator A. Fienga. The basis functions correspond to the numeri-
OXEMB

cal partials of the Earth-Moon barycenter projected onto the Roemer delay which
a

gives us variation in 6t as

q)EGP(t)—a(StRG(t)— f{BB OXEMB @
a 0 | ¢ dAg ’

The Earth-Moon distance errors are considered negligible compared to the SSB position

uncertainties.

The PTA results are particularly sensitive to the long term variations of § 75, and there-
fore mainly to variations in Jupiter or Saturn orbits, which have orbital periods of respec-
tively ~ 12 and ~ 29 years. With their long orbital periods, Uranus (~ 84 yrs) and Neptune
(~ 165 yrs) impacts are expected to be lighter on current PTA results which use ~ 20 years
of data. Moreover, the impact of inner planets on the SSB positions are also expected
to be negligible compared with giant planets. EPHEMGP is currently used to describe
Jupiter and Saturn orbital variations and therefore includes 12 parameters. The inclu-
sion of trans-Neptunian objects actually might be important but we did not consider it
and left this to future investigations. The parameter uncertainties given by the covariance
matrix and derived from INPOP19a reflects the uncertainties in this solution given the
overall set up (observational dataset, equations of motion, number and distribution of
asteroids, etc). This covariance matrix can be used for the multivariate Gaussian prior for

the “weights” in EPHEMGP. However, the typical errors suggested by covariance matrix
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Table 4.1: Prior ranges centered around zero for all EPHEMGP parameters.

parameter | Prior range

ba +1.37x107*

61 +4.07 x107°

5 6k +2.54x107*
E‘ 6h +1.64x107°
6q +5.19x1076

op +4.06 x 1076

ba +8.54x 1074

51 +8.17x107*

£ 5k +6.14x 1074
:% 5h +6.08x 1074
5q +1.02x 1074

&p +6.83x 1074

are too small to have measurable impact on ToAs and therefore on the GW search. The
covariance matrix is a local estimation (in vicinity of the best found INPOP19A solution)
and does not take into account (i) possibility of having another, alternative to INPOP19a4,
solution which still fits the observations; (ii) possible systematics caused by particular
choice of set up (see above) used to obtain INPOP19A ephemeris. We have phenomeno-
logically expanded the priors by several orders of magnitude to permit the absorption of
possible SSE systematic errors and correspond to variations in PTA data at the level of tens
of us. The current priors for each SSE parameter are uniform, centered around zero, with

ranges given in Table 4.1.

4.3 Impact of SSE errors on the GWB searches

In this section, we study the efficiency of EPHEMGP to absorb any SSE systematics in the
search for GWB. We simulate a PTA dataset injecting SSE systematics and/or a GWB signal.
We perform GWB search with or without EPHEMGP. We also compare the performance of
EPHEMGP with BAYESEPHEM and a CRS with dipolar spatial correlations. This work is
currently in the final stage and will be reported in a future publication (Chalumeau et al.
2021b in prep.).
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4.3.1 Methods

We perform noise analysis on simulated (but realistic) datasets that contain real timing
parameters, epochs and ToA errors of 25 pulsars from the EPTA Data Release 1 (Desvi-
gnes et al. 2016) and extended NRT data, using NUPPI observations until late-2020. We
have simulated the data with LIBSTEMPO package (Vallisneri 2020) by applying the fol-
lowing procedure. First we have set all residuals to zero, which means that the timing
model alone describes perfectly the observations. Then we have modified residuals by
adding the noise (or deterministic signal) according to one or several models ("injecting"

the signal according to the set of models) listed below.

* White noise: We simulate white noise as random injection for each observing sys-
tem via the common PTA white noise parameters, EFAC and EQUAD, using the
functions ‘add_efac‘ and ‘add_equad‘ from LiBSTEMPO. The signal is input to the
residuals 6t as:

5 "N (1) = 5 ¢(t) + EFAC x ToAerr(#) x N'(0,1) + EQUAD x A (0,1),

where ToAerr relates to the ToA uncertainties, and A (0,1) is the standard normal

distribution.

The white noise parameters are set to values obtained from single-pulsar analysis

on real data.

* DE438 vs INPOP19a: We simulate planetary ephemeris systematic errors using the
difference between two solar-system ephemeris solutions, here DE438 and IN-
POP19A. The difference is translated into the timing residuals and added as a de-
terministic signal. In practice, the data is simulated as if DE438 would be the true
ephemeris solution for the solar-system and processed with INPOP19A.

* GWB signal: The stochastic gravitational wave background is simulated (using the
function ‘createGWB' from LIBSTEMPO) according to a power-law model with a given
amplitude (set at 1 yr 1) and a slope fixed at y = 13/3, assuming an emission from
an isotropic population of supermassive black hole binaries. In this work, we simu-
late the GWB with two possible amplitudes, A= 10716 or 10715, in order to consider
respectively the ‘low‘ and the ‘high‘ S/N regimes, where the signal is poorly or easily

recoverable given our dataset.

The white noise is included to all simulated data, and we will add other signals (GWB
and/or SSE systematics) in turn checking at each step the correct recovery of the param-
eters characterizing the data. The Figure 4.3 displays simulated timing residuals for PSR
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Figure 4.3: Simulated timing residuals of PSR J1909-3744 with (a) no red signal, (b) the
‘DE438 vs. INPOP19a‘ SSE systematic, (c) a GWB with an amplitude at A = 107!¢ and
(d) idem with A = 10718, For each figure, the residuals are shown before (top) and after

(bottom) fitting for the timing model.
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Table 4.2: Short-hand notations and related injected signals for the simulated datasets
used to study EPHEMGP. WN refers to white noise, SSE to the DE438 vs. IN19a systematic,
and the GWB signal is injected at the given amplitude.

Data Signal

A WN + SSE

‘Bl WN + GWB (A=10716)
‘B2 WN + GWB (A=10"1)

‘A+B1‘ || WN + SSE + GWB (A =10716)
‘A+B2‘ || WN + SSE + GWB (A=10719)

J1909-3744 with the different signals. For each GWB signal level, the same seed have been
used for the random realisation of white noise and GWB to permit fair comparisons be-
tween the different noise models.

Within Bayesian analyses we have used ENTERPRISE to evaluate the likelihood and pri-
ors, and the Markov Chain Monte Carlo (MCMC) sampler PTMCMCSAMPLER (Ellis and
Haasteren 2017) to carry the parameter estimation. For every analyses, we marginalize
over timing model parameters following the ‘Gaussian process‘ approach as described in
Section 2.3.2. We also keep EFAC and EQUAD parameters fixed as for the standard multi-
pulsar noise analyses in PTAs. Depending on the analysis, we then include on the timing

residuals a chosen sub-list of the two following signals :

* Solar-system ephemeris uncertainties/systematics: Described either by a CRS with
dipolar correlations modelled with a power-law PSD, BAYESEPHEM or EPHEMGP,
respectively referred as DIP, BFM and EGP.

* GWB model: Modelled as a CRS with Hellings-Downs correlations.

In order to simplify the text, we introduce short-hand notations for the signal injection
of SSE systematics or GWB with an amplitude at 1071® and one at 107!° repectively as A‘,
‘B1‘ and ‘B2° (see Table 4.2). For the data analysis part, the model of a CRS with Hellings-
Downs correlations is named GWB, the dipolar CRS, BAYESEPHEM and EPHEMGP are re-
spectively labelled DIP, BFM and EGP.
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4.3.2 Impactof unmodelled SSE systematics on the GWB measurement

We first investigate the effect of SSE systematics on the GWB without including any SSE
model.

The left panel of Figure 4.4 dislays the GWB power-law amplitude and spectral in-
dex posterior distributions applied to the dataset with only ‘A - simulated with only SSE
systematics. The signal is well constrained with 1D marginalized distribution medians
at A=3.77*322x 107!° and y = 2.157 88 given with 95% confidence intervals. This first
measurement confims the possibility of a false positive GWB detection in presence of SSE
systematics. However, the spectral index posterior is lower and not consistent with 13/3,

the expected value from a population of SMBHB:s.

The center and right panels of Fig. 4.4 compare the posterior distibution of the power-
law parameters for datasets that are simulated either only with a gravitational wave back-
rgound signal (red) or with both a SSE systematics and a GWB signal. For the dataset
with ‘B1‘ only (middle panel), the GWB signal is poorly constrained, leading to an am-
plitude upper-limit measured at A%” = 1.42 x 10~!® and spectral index constrained from
the low, y%°% = 1.99. For ‘B2 only (right panel), the GWB parameters are constrained
with medians at A = 9.99fg:gg x 10716 and y = 4.35f8:g§, and therefore recovering very
well the injected signal (black solid lines given injected values). For ‘A+B1‘, the SSE sys-
tematic signal dominates ‘B1‘ and the GWB power-law parameters are constrained at
A=2.25%288x1071"° and y = 2.52*)39, consitent with the results obtained with the dataset
‘A’ only. Finally, the posteriors for ‘A+B2° are in solid agreement with the results obtained
with ‘B2 only, with medians at A = 1.09%322 x 107!° and y = 4.31*38L. For this case, the
high-S/N GWB signal ‘B2 dominates over SSE systematics.

These results confirm the non-negligible effect of SSE systematics on the GW analysis,
in particular the possibly to mistake SSE error for GWB signal in the case of the low-S/N
regime. However, the strong GWB signal is correctly recovered and separated from the

SSE systematics that has different spatial correlations and spectral properties.

4.3.3 Describing SSE systematics with EphemGP

The two solutions DE438 and INPOP19a give different SSB positions, leading to a system-
atic Roemer delay error seen as DE438 vs. INPOP19a signal, namely ‘A‘. In this section,
we study this signal with EPHEMGP (EGP) model.

The figure 4.5 shows that the recovered EPHEMGP posteriors are quite gaussian and
off-diagonal panels show the correlation between parameters. Almost all parameters are

well constrained and all of them (except for gjup, Pup, ksar and psat) are not consistent
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Figure 4.4: 2D marginalized posterior distribution of the GWB model power-law ampli-
tude and spectral index applied on different simulated datasets. In the left panel, the data
contains injection of SSE systematics only. In the center panel, it contains either SSE sys-
tematics + GWB (blue) or GWB only (red), both with GWB amplitude A = 10716, In the
right panel, the dataset contains either SSE systematics + GWB (blue) or GWB only (red)
at A=10"1° (right). The black solid lines indicate the injected amplitude and spectral
index of the GWB power-law.
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with zero, manifesting absorption of systematic errors. We also observe a strong corre-
lation between some parameter, for example asyc and ksae. Note, that the correlations
observed here are very different from those observed in the local covariance matrix (Fig.
4.6), in particular, we clearly observe some correlation between orbital elements of Jupiter
and orbital elements of Saturn (interplanetary).

A question which emerges from this analysis is if the INPOP19a solution is unique? As-
suming that the equations, data and solvers are compatible between JPL and INPOP, we
might interprete our results as a non-unique solution: we might recover DE438 ephemeris
if we assume the values displayed in the table 4.3 as initial conditions for the INPOP solver.
Of course the caveats here are that we do not provide possible values for other param-
eters, and/or our assumption about compatibility of JPL and INPOP settings could be
wrong. Moreover the median values are several orders of magnitude larger than typical
r.m.s. predicted by local covariance matrix.

4.3.4 SSE error mitigation in presence of a GWB

The main objective of this study is to inspect EPHEMGP (and other models of SSE error)
performance to (1) avoid false detection of GWB due to the presence of SSE systematics
and (2) allow correct recovery of GWB.

In case of the weak GW signal (top panels of fig. 4.7) the need to include SSE uncertain-
ties in the analysis (in form of EGP, BFM or DIP) is quite obvious: the analysis lead to false
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Figure 4.5: Posterior distributions of EPHEMGP parameters applied on the dataset includ-
ing the signal A only. The black solid lines indicate the zero value for each parameter.
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Table 4.3: The ‘EGP Posterior’ column displays EPHEMGP parameters posterior 1D
marginalized medians given with 95% confidence intervals, obtained on data with DE438
vs INPOP19a systematic injection. The last column display the standard variation of each
EPHEMGP parameter given by the covariance matrix derived from INPOP19a fit.

parameter | EGP Posterior OIN19a
ba -8.7518%3 %1078 | 1.37x 1071
51 —2.21119 %1077 | 4.07 x 1071
5 ok —4.62113 x 1078 | 2.54 x 10712
E‘ Sh -3.077177x107® | 1.64 x 10712
6q 0.057199x1078 | 5.19x 107!
op 0.35%135x1078 | 4.06 x 107!
ba 2.324321 x107° | 8.54 x 10712
61 1.96%132x107% | 8.17x 10712
£ 5k —2.4573% %1077 | 6.14x 10713
3 5h -8.361519x1077 | 6.08x10713
5q -1.31%122x 1077 | 1.02x 1071
op 0.677273x 1077 | 6.83 x107!2

Figure 4.6: Color map of the Jupiter and Saturn non-singular orbital element covariance
matrix given by INPOP19a. For each body, the parameters are a,l,k,h,q,p.

=27

JuFfup Sat

108



Chapter 4 - MODELLING THE SSE ERRORS TOWARD THE SEARCH FOR A GWB

positive (red) which dominates the ‘upper-limit‘ constraints obtained without SSE sys-
tematics (blue). The use of GWB and EGP (green in left panel) gives the expected results
showing rather an upper-limit GWB amplitude distribution. However, EGP does not fully
absorb the SSE systematics (in this particular realisation of the data), which leads to a mild
"bump" of the GWB amplitude posterior at the level of the SSE systematic. The suppres-
sion of the false positive is also observed for BEFM (green in center panel) and DIP (green
in right panel) with upper-limit amplitudes consistent with the results obtained with the
dataset with ‘B1‘ only (blue). If we consider a model with both GWB and a SSE error model
applied on the dataset ‘B1° only (orange), the results are similar from a dataset with both
‘A+B1‘ with one exception: the model DIP recovers the spectral index constraint, unlike
the two others which lead to broad distributions favoring lower values.

In case of the strong (detectable) GWB (lower panel of fig. 4.7) all analyses detect GW
signal, with or without presence of ‘A‘. The models EGP+GWB, BEM+GWB and DIP+GWB
allow GWB measurements that are consistent with the injected value. We also observe
that the inclusion of (any of the three) SSE error model lead to very slight widening of the
2D GWB posterior at low A and high y. Nevertheless, the three SSE models have compa-
rable performances, allowing to detect a GWB at the level of the measurements recently
reported by PTA collaborations (A ~ 10719),

4.4 Effectson the parameter estimation of the CRS with EPTA
DR2

This section describes the application of the SSE error models to the search for a GWB
on EPTA DR2. This section was published as part of Chen et al. 2021, wbere we describe
the impact of the SSE uncertainties and its mitigation the parameter estimation of the
common uncorrelated red noise (CURN). My contribution to this work was in the data
using EPHEMGP.

In this study, three independently developped models have been applied to CRS search
to describe the SSE uncertainties: LINIMOSS (Guo et al. 2019), BAYESEPHEM (Vallisneri
etal. 2020) and EPHEMGP (Chalumeau et al. 2021b in prep.). LINIMOSS is a fully dynam-
ical model of the major Solar system bodies implemented in FORTYTWO software. It is
used to analytically marginalize the mass and orbital parameters for Jupiter and Saturn to-
gether with the rest of the timing models during the search for CRS. The two other models
(see Section 4.2.2) are computed with ENTERPRISE. In the analyses presented below, the
timing models of six pulsars are fitted using the JPL DE438 solution, and the noise models
include marginalized errors on timing model parameters, single-pulsar achromatic red

noise, DM variations and a CURN.
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Figure 4.7: Comparison of the three investigated SSE error models: EGP (left), BFM (cen-
ter) and DIP (right). The figures display the GWB amplitude and spectral index posterior
distributions obtained with different datasets processed with different noise models. All
simulations involve a GWB signal at (top panels) low-S/N regime (‘B1‘: A= 10"%) or high
S/Nregime (‘B1‘: A= 10719, For each plot, the legend indicates the injected signals (‘B1°
or ‘B2 with or without ‘A‘), and the related noise model (GWB with or without SSE error).
The black solid lines show the injected GWB value.
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The analyses with BAYESEPHEM and EPHEMGP perform MCMC sampling on the SSE
parameters and priors are therefore carefully defined. Both methods determine the prior
range phenomenologically by allowing the parameters to vary enough to cover differences
between various SSE models, as well as keeping the resulting residuals of the pulsar TOAs
below a certain threshold to stay within the linear regime. For BAYESEPHEM the delays
are limited to about us level, while EPHEMGP allows for delays from SSE systematics up
to about 100 us. Both use uniform priors for the orbital elements, BAYESEPHEM uses
Gaussian priors for the planetary masses, while they are held fixed in this analysis with
EPHEMGP, after confirming that no mass-error signals could be detected by the pulsar
data. LINIMOSS analysis performs analytical marginalization of planetary masses and
orbital elements together with the pulsar timing model using uniform infinite improper

priors.

Figure 4.8 shows the comparison of the ENTERPRISE results without any SSE fitting,
and with the use of BAYESEPHEM, EPHEMGP and LINIMOSS (while the LINIMOSS anal-
ysis uses FORTYTWO). We can see that all three methods show consistent posterior dis-
tributions. The inclusion of the SSE models slightly increases the uncertainties in the re-
covered parameters, while still keeping them highly confined. As expected, the contours
become progressively broader than the contour with fixed SSE at DE438, as the allowed
prior increases from BAYESEPHEM to EPHEMGP, to the full marginalization in LINIMOSS.

The approach of sampling the SSE parameters requires careful prior choices as it may
leave some dipolar signal unmodelled, potentially affecting the measurement of parame-
ters and detection significance of a true GWB signal. These issues can be reduced signif-
icantly by including more pulsars, and therefore better covering the angular separations

and disentengle Hellings-Downs and dipolar correlations.

4.5 Summary

We have implemented a new model (EPHEMGP; EGP) that permits to vary orbital ele-
ments of Jupiter and Saturn which propagate into the Roemer delay and allows us to ab-
sorb SSE systematics and perform a robust search for the GWB. This model is currently
based on INPOP19a data, it could be updated with new INPOP releases such as INPOP21a
or future versions, and its parametererization could be further extended if needed to any
subset of parameters used by INPOP.

The model has been tested on the simulated datasets and compared against other
existing SSE error models available in ENTERPRISE: BAYESEPHEM (BFM) and a CRS with
dipolar spatial correlations (DIP). For this, we simulate GWB using LIBSTEMPO and SSE
systematics from the difference between two SSE releases (here DE438 vs. INPOP19a). In
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Figure 4.8: Posterior distributions of CURN power-law parameters using ENTERPRISE with
(i) fixed DE438 SSE, (ii) BAYESEPHEM (BE),(iii) EPHEMGP (EGP) and FORTYTWO with
LINIMOSS (LM). Figure from Chen et al. 2021.

case of low amplitude GWB (A = 10716), all three models allow to avoid a false detection of
GWB by absorbing the SSE systematics. With weak GWB and without any SSE systematic
in the data, the model DIP permits a better recovery of the GWB spectral index than two
other models. For a relatively strong GWB with A ~ 107!° (the same as CRS detected by
PTAs, see Chapter 3), all three SSE error models allow the detection of the GWB with only

small distortion in parameter estimation (due to small absorption of GWB).

For completeness, we are currently performing the same tests over several realizations
of the simulated data in order to avoid the effects of randomness. This study might also
be improved in the future by considering more realistic datasets, for instance by including
single-pulsar red noise and DM variations, and investigated using other SSE systematics

(e.g., differences between other SSE solutions).
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CHAPTER 5

SUMMARY AND PERSPECTIVES

The work described in this Ph.D. thesis contributes toward the detection of a very low
frequency stochastic gravitational waves background (GWB) with Pulsar Timing Arrays
(PTA). The study presented here aims at enabling robust search for the GWB, addressing
different aspects such as the timing model (Chapter 1), the single-pulsar noise models
(Chapter 2) and the uncertainties of the Solar system ephemeris (Chapter 4).

Chapter 1 presents results on the timing analysis of PSR J1909-3744 using data from
the Nancay Radio Telescope (Liu et al. 2020). For this work, I have contributed to the
noise analysis, where a simultaneous fit of the timing model and the stochastic noise pa-
rameters has been performed to obtain high precision timing measurements. Chapter 2
is based on the single-pulsar noise model selection applied to the EPTA DR2. This study
is part of an EPTA project that I led, and which resulted in a publication (Chalumeau et al.
2021) that has been submitted to MNRAS journal. In this paper, we emphasize the im-
portance of treating the noise individually for each pulsar to permit the robust search for
GWB. Chapter 3 combines materials from three publications. It first describes the work
reported in Chen et al. 2021 (accepted by MNRAS journal) which focused on the search
of a GWB with six pulsars of the EPTA DR2. This study confirmed the results recently
obtained by other PTAs, with a strong evidence for the presence of a common red signal
(CRS) between pulsars, but inconclusive measurements of the spatial correlations needed
to claim for a detection of a GWB. For this paper, I participated to the noise analyses per-
formed with ENTERPRISE software, and contributed to the paper writing. This Chapter
also describes the last section of Chalumeau et al. 2021, in which the noise model selec-
tion performed in Chapter 2 is applied to the search for a GWB, and compared against
the results with the standard (simple) noise models. This study led to the same conclu-
sions as in Chen et al. 2021, emphasizing the robustness of CRS signal in EPTA data. The
last part of Chapter 3 describes the GWB analysis applied on the IPTA DR2 (Antoniadis
etal. 2022, submitted to MNRAS), which also confirms the recent PTA results, and, in par-
ticular demonstrates the high potential of the data combination from several collabora-
tions to improve the sensitivity of PTA. This project is the achievement of more than two
years of work, where I participated to the discussions and the noise analyses namely in
the false alarm study used to evaluate the significance of the correlations. Finally, Chap-
ter 4 is focused on the impact of the systematic errors of the Solar system ephemeris on
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PTA results. We built our own model (EPHEMGP) based on INPOP data to absorb the
dipolar-correlated signal induced by SSE errors and allow a more robust detection of the
quadrupolar GWB. EPHEMGP has been tested on simulated data for different levels of
GWB amplitudes, and compared against other existing models. This work is currently be-
ing finalised and should be submitted for publication in the coming weeks. The Chapter
ends with the application of EPHEMGP and other SSE models to the EPTA DR2 to study
the robustness of the measured CRS. This investigation has been reported in Chen et al.
2021, where I analysed EPTA DR2 using EPHEMGP and participated in the writing.

Thanks to the massive work performed in the last three years to (1) build high preci-
sion pulsar timing datasets and (2) use complete data analysis pipelines, we are currently
in a very interesting period for Pulsar Timing Arrays. The consistency in the measure-
ments of a common red signal across the different PTA collaborations gives a big hope for
the presence of a GWB. The EPTA, PPTA and NANOGrav have agreed on a shared timeline
to improve their own dataset and perform a search for a GWB with their best sensitivity in
the coming years. The improvement for EPTA measurement is particularly promising be-
cause the dataset will go from 6 to 25 pulsars specifically chosen to optimize the search for
correlations induced by a GWB. I will be co-lead of EPTA effort on the single-pulsar noise
analysis of 25 pulsars, and also contribute to the search for GWB. In addition, this work
will be the opportunity to apply a single-pulsar noise model selection approach given in
Chapter 2, and use EPHEMGP in advanced GWB analysis. Following the publication of
these future results, an analysis at IPTA level will eventually allow to perform the search

and the characterization of a GWB on the most sensitive (combined) data.
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