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ce manuscrit et de le rapporter. Merci aux membres du jury Jean-François Chassagneux,

François Delarue, Ashkan Nikeghbali, et Vianney Perchet de m’honorer de leur présence.

J’aimerais aussi remercier l’équipe du LPSM, chercheurs et doctorants, qui con-
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Résumé

Cette thèse étudie des modèles mathématiques pour des problématiques sociales et

économiques en ligne, et plus précisément, des modèles de grandes populations en in-

teractions, d’influence sociale, de choix risqués, et de publicité ciblée. L’intérêt de la

communauté mathématique pour les sujets socio-économiques sur Internet est relative-

ment nouveau comparé à son intérêt classique pour la physique, ce qui en fait un domaine

dans lequel beaucoup reste encore à explorer. La création d’Internet a conduit à de nom-

breux changements de paradigme concernant la façon dont les gens intéragissent (réseaux

sociaux), agissent (navigation sur Internet, décision de clic et d’achat), et dont les busi-

ness fonctionnent (sites gratuits vivant de la publicité ciblée). Le but de cette thèse est

de fournir des outils mathématiques contribuant à une meileure compréhension de ces

problématiques, d’un point de vue à la fois théorique et pratique. L’objectif est double:

sur le plan mathématique, nous souhaitons illustrer le fait qu’Internet et les réseaux so-

ciaux conduisent naturellement à des mathématiques diverses et intéressantes, et sur le

plan des applications, nous voulons fournir des outils mathémathiques potentiellement

utiles pour les problèmes concrets se posant sur Internet.

La première partie de ce manuscrit est consacrée à des problèmes de grande popu-

lation avec une approche relativement théorique, comparée aux parties suivantes plus

appliquées. Nous étudions un processus de décision markovien (MDP) à N -agent et un

processus de décision markovien de type McKean-Vlasov, avec bruit commun et contrôles

open-loop, en horizion infini. Nous obtenons dans un premier temps l’équation de Bell-

man pour le MDP de type McKean-Vlasov, en exposant et contournant des problèmes

de mesurabilité dans le cas d’un espace d’états continu en présence de bruit commun,

puis nous établissons la réduction à des politiques stationnaires feedback randomisées,

et montrons que l’optimisation sur des contrôles randomisés peut donner un gain stricte-

ment supérieur à l’optimisation sur des contrôles non-randomisés, démontrant ainsi la

nécessité de randomiser. Nous obtenons dans un second temps l’équation de Bellman du

MDP à N -agents, et établissons enfin des résultats de propagation du chaos, à savoir,

la convergence des valeurs optimales quand N → ∞ vers la valeur optimal du MDP de

type McKean-Vlasov, avec taux de convergence O(M�
N ), où γ est explicite et MN est

lié à la convergence de mesures empiriques vers la mesure théorique associée au sens de

Wasserstein, et le fait qu’une politique feedback randomisée stationnaire ε-optimale pour

le MDP de type McKean-Vlasov est une politique (ε+O(M�
N ))-optimale pour le MDP

à N -agents. Finalement, nous appliquons la propagation du chaos pour approximative-

ment résoudre le MDP à N -agent via la résolution du MDP de type McKean-Vlasov

associé dans des exemples jouets motivés par la publicité ciblée.
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La seconde partie est dédiée à l’étude de modèles d’économie comportementale.

Notre premier travail analyse des jeux en grande population via le concept de solution

d’Elimination Itérative de Stratégies Dominées, au moyen de méthodes d’estimation de

champ moyen. Plus précisément, nous étudions un jeu dans lequel une population de

N joueurs doit faire un choix binaire (dans un espace de choix X = {0, 1}). Ces choix

peuvent avoir de nombreuses interprétations: acheter ou non un produit, s’inscrire ou

non à un service, publiquement soutenir ou non une opinion, etc. Chaque joueur n, pour

n ≤ N , est caractérisé par deux informations:

1. Ses utilités intrinsèques: un = (un,x)x∈X ∈ R
2: pour x ∈ X , un,x représente l’utilité

que le joueur n aurait de faire le choix x, en dehors de toute influence sociale.

2. Sa classe kn ∈ K = {1, ...,K}: La classe d’un individu peut représenter toute

façon pertinente de grouper les individus dans une population (age, classe sociale,

genre, orientation politque, etc). Cette séparation permet de modéliser et étudier

l’influence sociale asymétrique. L’influence sociale multi-class permet notamment

l’étude de phénomènes qualitatifs comme la répulsion de classe. Cela se produit

quand deux classes d’individus différentes ne veulent pas agir ou penser de la même

manière. Par exemple, si le choix est de soutenir ou non une opinion, il y a un

phénomène de répulsion entre les individus de droite et de gauche: une personne

de gauche est réticente à publiquement soutenir la même opinion qu’une personne

de droite, et vice versa, même si les deux personnes sont intrinsèquement d’accord

sur le sujet en question.

Un choix est un élément de X = {0, 1}. Un profil de choix est un élément de XN décrivant

l’ensemble des configurations possible de choix dans la population de N joueurs. Par

exemple, un profil de choix x = (xn)n∈J1,NK ∈ XN signifie que chaque joueur n fait le

choix xn. Le reward perçu par le joueur n étant donné un profil de choix x est défini par

Rn(xn,x−n) = un,xn
+ u(kn, xn,

1

N

N
X

i=1

δki,xi
),

où u : K × X × P(K × X ) → R est appelée fonction d’utilité sociale. un,xn
est la partie

du reward que le joueur n obtient du fait de choisir xn en soi, et u(kn, xn,
1

N

PN
i=1

δki,xi
)

est interprétée comme l’utilité sociale du choix xn pour le joueur n étant donnée la

distribution 1

N

PN
i=1

δki,xi
des paires (classe, choix) de la population. Nous étudions

alors deux jeux basés sur ce framework:

1. Le jeu statique en information complète: les joueurs ne jouent qu’une fois, et

connaissent chacun les données de toute la population,
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2. Le jeu répété sans information initiale: les joueurs ne connaissent initialement

presque rien les uns sur les autres mais jouent plusieurs fois au même jeu et peuvent

observer les actions des jeux passés.

Les deux types de jeu sont étudiés via le concept d’Elimination Itérative de Stratégies

Strictement Dominées (IESDS). Le résultat principal est la prédiction des choix ra-

tionnels de presque toute la population au moyen d’outils de champ moyen. Dans

un second temps, nous utilisons ce résultats pour étudier des phénomènes qualitatifs

d’influence sociale comme l’effet boule de neige et l’effet de répulsion de classe.

Le second travail de cette partie est un modèle de choix risqué paramétrant la théorie

des prospects cumulés (CPT) de Kahneman et Tversky, permettant une calibration

flexible et donnant une formule explicite pour l’évaluation d’un choix risqué donnant une

récompense gaussienne. Dans chacun des deux travaux, nous discutons des applications

commerciales et politiques.

Dans la troisième et dernière partie de ce manuscrit, nous développons deux études

spécifiquement motivées par la publicité ciblée. Notre premier travail propose des al-

gorithms d’apprentissage en ligne pour la prédiction de clics, prenant la forme d’un

problème de classification binaire.

Un produit est associé à un prix p ∈ R et à des caractéristiques f ∈ F := [0, 1]d. Les

caractéristiques d’un produit f ∈ F peuvent correspondre par exemple à sa qualité, la

réputation de la marque, sa forme, sa durée de vie, etc. Ainsi, un produit est caractérisé

par un couple prix-caractéristiques (p, f) ∈ R × F . Dans la suite, nous identifions une

publicité au produit dont elle fait la publicité, et nous dirons donc aussi bien “le produit

(p, f)” que “la publicité (p, f)”. Une intention de clic est représentée par une variable

binaire c ∈ {−1, 1}, 1 signifiant “intention de cliquer”, et −1 “pas d’intention de cliquer”.

Le problème de prédiction de clic est alors défini comme suit. Considérons une

suite aléatoire (pk, fk, ck)k∈N de publicités (pk, fk) et d’intentions de clic ck associées,

pour tout k ∈ N. Plus précisément, à chaque instant k ∈ N, un nouveau produit est

créé par une entreprise, avec un prix pk ∈ R et des caractéristiques fk = (fk,i)i∈J1,dK ∈

F , correspondant donc au produit/publicité (pk, fk). La variable binaire ck représente

l’intention de clic de l’individu pour ce produit, c’est-à-dire, ck est la réponse à la question

“si la publicité (pk, fk) était affichée à l’individu, cliquerait-il dessus?”. Si oui, alors

ck = 1, sinon, ck = −1.

Nous supposons qu’il existe une fonction de récompense R? de forme polynomiale,

avec degré borné, telle que ∀k ∈ N,

pk < R?(fk)− ε ⇒ ck = 1, and pk > R?(fk) + ε ⇒ ck = −1,
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où ε ≥ 0 est une marge tenant compte des cas où aucun classifieur polynomial ne peut

parfaitement séparer les données. Décrivons à présent les règles du problème de publicité

ciblée. A chaque temps k ∈ N les étapes suivantes se produisent:

1. Nouvelle publicité: une nouvelle publicité (pk, fk) est créée.

2. Décision d’affichage: le publicitaire décide d’afficher ou non la publicté à l’individu.

3. Réaction de clic: si (et seulement si) la publicité à été affichée à l’individu à la

précédente étape, sa réaction de clic (ou non) est observée par le publicitaire.

4. Mise à jour de la mémoire: Le publicitaire peut mettre à jour les variables stoquées

en mémoire en fonctions des données observées durant les précédentes étapes, pour

améliorer l’algorithme de décision d’affichage.

Les principales propriétés de l’algorithme développé dans ce travail sont les suivantes.

• Pas de faux négatifs: L’algorithme évite complètement les faux négatifs, i.e. ne

pas afficher une publicité qui aurait conduit à un clic.

• Retour asymétrique: l’algorithme ne nécessite d’observer a posteriori que les inten-

tions de click ck de l’individu sur les publicités qui ont été affichées par l’algorithme.

• Faux positifs logarithmiques: Malgré la contrainte forte d’éviter tout faux négatif,

l’algorithme fait seulement un nombre logarithmique O(ln(k) + 1) de faux positifs

après k publicités générées.

Le second travail de cette partie modélise et résout explicitement des problèmes de

contrôle optimal pour les enchères de publicité ciblée. Nous étudions quatre modèles

s’appliquant aussi bien à la publicité commerciale qu’au marketing social, et impliquant

de la publicité ciblée, non-ciblée, ainsi que des interactions sociales. Nous détaillons ici

le modèle le plus simple parmi les quatre étudiés dans ce travail. Introduisons progres-

sivement les concepts.

L’élément clé est la notion d’information. Nous supposons qu’il y a une information

qu’initialement personne, excepté l’agent (l’entreprise), ne connait. Cette information

peut representer par exemple l’existence d’un nouveau produit vendu par l’agent. Dans

la suite, nous appelons cette information l’Information I.

Nous modélisons à présent un Individu et son comportement. L’Individu est car-

actérisé par deux processus de Poisson indépendants (N I, NT) tels que:

• N I est un processus de Poisson avec intensité ηI, comptant les instants quand

l’Individu se connecte à un site web contenant l’information I.
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• NT est un processus de Poisson avec intensité ηT, comptant les instants où l’Individu

se connecte à un site web ne contenant, a priori, pas l’Information I mais affichant

de la publicité ciblée sur ses pages web, donc susceptible d’afficher l’Information I

via une publicité ciblée.

Nous considérons à présent une famille de variables aléatoires réelles i.i.d. (BT

k )k∈N.

For k ∈ N, BT

k représente le prix au-dessus duquel l’enchère de l’agent doit être pour

gagner la k-ème enchère de publicité ciblée. Nous modélisons donc ce prix de façon

exogène (i.e. sans explicitement modéliser les autres enchérisseurs).

Le control d’enchère de l’Agent est supposé non-anticipatif, i.e. il ne dépend pas

des événements futurs. Nous modélisons cela, en considérant la filtration (Ft)t∈R+
telle

que Ft = σ(N I
s , N

T
s , BT

NT
s

, s ≤ t). Une stratégie d’enchère open-loop pour l’Agent est

alors un processus aléatoire β à valeur réelle et progressivement mesurable par rapport

à (Ft−)t∈R+
(propriété non-anticipative), tel que βt correspond à l’enchère que l’Agent

ferait s’il y avait une opportunité d’afficher une publicité à l’Individu à l’instant t (i.e.

si ∆NT
t = 1).

Notons X� le processus à valeur dans {0, 1} tel que X
�
t = 1 si et seulement si

l’Individu a obtenu l’Information avant l’instant t, supposant que la stratégie d’enchère

open-loop de l’Agent est β. X� est modélisé comme la solution au système dynamique

X
�
0

= 0

dX
�
t = (1−X

�
t−)(1�t≥BT

NT
t

dNT

t + dN I

t )

Cette dynamique signifie que l’Individu commence non-informé. Il acquiert l’information

aussitôt que 1) il se connecte à un site web affichant des publicités ciblées, et l’Agent

gagne l’enchère (partie “1�t≥BT

NT
t

dNT
t ”), ou 2) il se connecte à un site web contenant

l’Information I (partie “dN I
t ”). Ensuite, il reste informé indéfiniment (partie “(1 −

X
�
t−)”).

Le gain moyen de l’Agent, étant donnée une stratégie d’enchère β, est

V (β) = E

h

Z ∞

0

e−⇢t(KdX
�
t − 1�t>BT

NT
t

c(βt, B
T

NT

t

)dNT

t )
i

où K ∈ R représente le profit marginal fait par l’Agent quand l’Individu acquiert

l’information, i.e. quand ∆X
�
t = 1, et où c : R

2 → R est une a fonction represen-

tant ce que l’Agent paiera s’il gagne l’enchère. La seconde partie correspond au prix

payé quand l’enchère est gagnée par l’Agent: une enchère arrive quand ∆NT
t = 1, et elle

est gagnée si 1�t>BT

NT
t

. Le prix payé est c(βt, B
T

NT

t

):
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• Si on considère des enchères de type first-price, on a c(b, B) = b, i.e. si l’Agent

gange l’enchère, il paie son enchère βt.

• Si on considère des enchères de type second-price, on a c(b, B) = B, i.e. si l’Agent

gagne l’enchère, il paie la seconde enchère le plus élevé de l’enchère, i.e. BT

NT

t

.

Le but de l’Agent est alors d’utiliser une stratégie d’enchère β? telle que V (β?) =

sup� V (β) =: V ?. Notre résultat principal est le suivant. La valeur optimale est donnée

par

V ? = sup
b∈R

ηIK + ηTE[(K − c(b, BT

1
))1b≥BT

1
]

ηI + ρ+ ηTP(b ≥ BT

1
)

,

et tout contrôle d’enchère optimal β? tel que β?
t = (1−X

�?

t )b?, où

b? ∈ argmax
b∈R

ηIK + ηTE[(K − c(b, BT

1
))1b≥BT

1
]

ηI + ρ+ ηTP(b ≥ BT

1
)

,

est optimal. En d’autres termes, une politique d’enchères optimales est de faire l’enchère

constante b? tant que l’Individu n’est pas informé, et ensuite d’arrêter d’enchérir (ce qui

est clairement optimal une fois que l’Individu est informé).

Le modèle que nous avons détaillé dans ce résumé est le modèle de publicité commer-

ciale avec récompense basée sur l’achat. Nous avons aussi étudié trois autres modèles

avec différentes applications: la publicité commerciale avec récompense basée sur une

inscription, le marketing social avec discount rate, et un modèle plus riche de market-

ing social incluant, en plus de la publicité et les connections à des sites web contenant

l’Information, 1) la publicité non-ciblée, et 2) les interactions sociales entre les individus

de la population. Dans tous ces modèles, nous obtenons une formule fermée pour la

valeur et la politique optimales.
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Abstract

This thesis studies mathematical models for online social and economic problems, namely,

models of large connected populations, social influence and interactions, risky choices,

and targeted advertising.

The first part focuses on large population problems, with a more general and theo-

retical approach than the other parts. We study N -agent and McKean-Vlasov Markov

Decision Processes with common noise and open-loop controls in infinite horizon. We

obtain the Bellman equations for both problems, the reduction to stationary randomized

feedback policies for the McKean-Vlasov MDP, as well as the propagation of chaos for

the N -agent MDP, with convergence rates. We expose and circumvent measurability

issues in the case of continuous state spaces in the presence of common noise, show that

optimizing over randomized controls can yield a strictly greater gain than over non-

randomized controls, and finally use propagation of chaos to approximately solve the

N -agent MDP with toy model for advertising.

In part II, we study two economic behavioral models. Our first work analyses re-

peated game in a large population where players initially have no information about each

others, via the Iterated Elimination of Strictly Dominated Strategies solution concept,

and using mean-field estimating methods. We finally use our results to study the snow-

ball and class repulsion social influence effects. Our second work is a choice under risk

model, proposing a parametrization of Kahneman and Tversky’s Cumulative Prospect

theory, allowing for flexible calibration and yielding explicit formulas for the Certainty

Equivalence in the case of gaussian prospects. In both works, we propose commercial

and political applications.

In Part III, we make two studies specifically designed for targeted advertising. Our

first study proposes an online click prediction learning algorithm for targeted advertis-

ing, for which we obtain a logarithm error efficiency, with bounded memory usage and

computational complexity. Our second work is the modeling and explicit resolution of

optimal control problems for targeted advertising auctions. We study four models, with

applications to both commercial advertising and social marketing involving targeted ad-

vertising, non-targeted advertising, and social interactions.

Keywords: Large population, mean-field approximation, McKean-Vlasov, stochastic

control, propagation of chaos, game theory, Mean-field games, social influence, social

interactions, choice under risk, Cumulative Prospect theory, Prospect theory, targeted

advertising, auctions, machine learning, online classification learning



Abstract

Cette thèse étudie des modèles mathématiques pour des problèmes socio-économiques

en ligne, à savoir, des modèles de grande population en interaction, d’influence sociale,

de choix risqué, et de publicité ciblée.

La première partie se concentre sur des problèmes de grande population, avec une

approche plus générale et théorique que les autres parties. Nous étudions des processus

de décision markoviens (MDP) à N -agent et de type McKean-Vlasov avec bruit com-

mun et contrôles open-loop en horizion infini. Nous obtenons les équations de Bellman

pour chaque problème, la réduction à des politiques stationnaires feedback randomisées

pour le MDP de type McKean-Vlasov, ainsi que la propagation du chaos pour le MDP

à N -agents, avec taux de convergence. Nous exposons et contournons des problèmes de

mesurabilité dans le cas d’un espace d’état continu en présence de bruit commun, mon-

trons qu’optimiser sur des contrôles randomisés peut donner un gain strictement plus

grand que d’optimiser sur des contrôles non-randomisés, et utilisons finalement la prop-

agation du chaos pour résoudre le MDP à N -agents pour des modèles jouets appliqués

à la publicité.

Dans la partie II, nous étudions deux modèles de comportement économique. Notre

premier travail analyse un jeu répété en grande population où les joueurs ne connais-

sent initialement rien les uns sur les autres, via le concept d’Elimination Itérative de

Stratégies Strictement Dominées, et au moyen d’outils d’estimation de champ moyen.

Nous utilisons finalement nos résultats pour étudier deux phénomènes d’influence sociale

qualitatifs: l’ effet boule de neige et l’effet de répulsion de classe. Notre second travail

est un modèle de choix risqué, proposant une paramétrisation de la théorie des prospects

cumulés de Kahneman et Tversky, permettant une calibration flexible, avec formule ex-

plicite de valorisation dans le cas de prospects gaussiens. Dans les deux travaux, nous

proposons des applications politiques et commerciales.

Dans la partie III, nous faisons deux études spécifiquement dédiées à la publicité

ciblée. Notre première étude propose un algorithme d’apprentissage en ligne pour la

prédiction de clic sur des publicités, pour lequel nous obtenons une erreur de prédiction

logarithmique, avec complexités mémoire et computationelle bornées. Notre second tra-

vail est la modélisation et résolution explicite de problèmes de contrôle optimal pour les

enchères de publicité ciblée. Nous étudions quatre modèles, avec applications aussi bien

à la publicité commerciale et qu’au marketing social, impliquant de la publicité ciblée,

non ciblée, et des interactions sociales.
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Chapter 1

Introduction

1.1 General motivations of the thesis

This thesis studies mathematical models addressing thematics that are particularly im-

portant on Internet, namely, large populations, social influence, social games, risky

choices, interactions and targeted advertising. This work is part of the growing sci-

entific interest towards modern online sociologic and economic matters. The interest

of the mathematical community toward these problematics is much younger than its

classical interest toward physics, and there is still a lot of room for exploration in that

field, especially since the sociologic and economic world is evolving so fast. The creation

of Internet led to several changes of paradigm regarding the way people interact (social

networks), act (internet navigation, clicking and buying decisions), and regarding the

way businesses work (free websites living from targeted advertising).

Internet and more specifically social networks rely on three basic elements: Content,

social interactions, and advertising. Providing contents and facilitating social interac-

tions are the mains services they provide. On the other hand, advertising is the way the

vast majority of websites make profit and are viable economic systems.

These three aspects are well suited for mathematical analysis:

1. The “content” component is strongly related to choice under risk theories: indeed,

each time an individual decides whether or not to access or pay for a content, he

is making a risky choice based on partial information.

2. The “social interactions” component is linked to several mathematical theories, like

mean-field theories modeling large population behaviors, game theory modeling

rational choices when one’s reward depends upon other people’s choices (social
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influence), and information spreading models, studying how a given information

can spread in a population via social interactions.

3. The “advertising” component is a strategic element for marketing, and it is thus

naturally well modeled by optimal control theory (model-based approach) and

machine learning algorithms (model-free approach).

The aim of this thesis is to provide mathematical tools contributing to a better

understanding of Internet and social network problematics, from a both theoretical and

practical viewpoint. Our goal is twofold: from the mathematical’s viewpoint, to illustrate

how Internet and social networks can naturally lead to interesting and diverse mathe-

matics, and from the applications’ viewpoint, to provide potentially useful mathematical

tools for Internet problems. Depending upon the model we study, the solutions will take

the form of correspondences, formulas, explicit formulas, explicit optimal policies, and

learning algorithms.

1.2 Background of related mathematical topics

In this section, we provide succinct overviews of the various research fields and theories

related to the present work. We organize these non-exhaustive overviews in parts and

paragraphs roughly following the thesis’ organization. We will not provide full and

detailed overviews of each research field, instead focusing on the aspects relevant to

understand its contributions.

1.2.1 Large populations models and mean-field approximation

Part I of the thesis focuses on the control of large populations under mean-field inter-

actions, with natural motivations to advertising. Large populations have been studied

in several ways. An important separation in the literature comes from the way that

individuals are assumed to be connected to each other. One approach is to consider that

even when we make number of individuals N go to infinity, the number of neighbors

of each individual stays the same, i.e. does not scale with N . Another currently very

popular approach is to scale the number of neighbors of an individual with N , with the

extreme case where each individual is connected to everyone. Our study of controlled

large populations adopts the latter approach, which most naturally allow to use the

mean-field approximation principle.
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Mean-field theory

The mean-field approximation is a principle used in the mean field theory, taking its

source in the statistical physics community, back to P. Weiss’ work in the 1900’s [94] and

earlier in the work of P. Curie. The motivation of mean-field theory is to simplify the

study of large particle systems. The starting point is a formal manipulation consisting

in replacing empirical distributions by theoretical ones in the transition’s dynamic of the

system. This formal manipulation turns the dynamic system into another one, where

the particles are independent, and, under symmetry assumptions, identically distributed.

The analysis of such mean-field system can thus be reduced to the study of a single

particle, called the representative particle.

The belief behind this manipulation is twofold:

1. the mean-field system is expected to be more tractable than the original large

system,

2. its study is expected to provide insightful information on the original large system.

The origin of this belief is empirical. Indeed, apart from some exceptions like the one

dimensional nearest neighbor Ising model, wrongly predicted by a mean-field approxima-

tion, and the mean-field system of the Sherrington-Kirkpatrick model of spin glasses [79]

has raised many challenges, only recently seeing significant progress ([3, 14, 35, 36, 82]),

this belief is empirically satisfied in a wide majority of cases, as in the ferromagnetic

Ising and Potts models [46, 95].

These empirical evidences motivated mathematical rigorous justifications, and point

2 of the belief was justified for large classes of systems by means of law of large number

arguments. The convergence of the large system to the mean-field system was termed

propagation of chaos. There is now a large body of research investigating the links

between mean field and actual systems. The mathematical formulation of mean field

theory has found several applications outside of statistical physics, in particular in game

theory and in optimal control theory, via the recent theories of Mean-field games and

of McKean-Vlasov optimal control, see, for more details about these developments, the

two-volumes book of Rene Carmona and François Delarue [15].

Optimal control and McKean-Vlasov optimal control

In part I, the large population models that we study are optimal control problems.

Optimal control is a fundamental tool with important applications in the industry, as it

is the main theory proposing strategies to maximize an agent’s profit. Recalling that the

goal of this thesis is to study mathematical models for Internet problematics, optimal
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control may be the most appealing tool for modeling online advertising problems, the

other natural tool being machine learning algorithms, some of them being theoretically

based on optimal control as well (e.g. reinforcement learning). Optimal control is also a

vast theory, with several branches, namely, deterministic optimal control and stochastic

optimal control, adding randomness to the controlled dynamic. When considered in a

discrete time framework, a stochastic optimal control problem is called a Markov Decision

Process.

Recently, the popularization of mean-field theory outside of the world of statistical

physics spread to the optimal and stochastic control communities, leading to a mod-

ern theory called McKean-Vlasov optimal control theory. The idea of McKean-Vlasov

optimal control is to consider a problem involving the control of a large population to

maximize a profit, when the population is subject to mean-field interactions. As always

in mean-field theories, the underlying motivation is to solve the a priori more complex

optimal control problem on N interacting individuals. Notice that such problem seems

particularly relevant for advertising applications.

A large literature has already emerged on continuous-time models for the optimal con-

trol of McKean-Vlasov dynamics, and dynamic programming principle (in other words

time consistency) has been established for these types of problems in [53], [72], [7], [24].

Propagation of chaos also has been established in several frameworks, and we refer to

[49], which was the first paper to rigorously connect mean-field control to large systems

of controlled processes, see also the recent paper [29] and [23]. We refer to the books [8],

[15] for an overview of the subject.

Compared to continuous-time models, discrete-time McKean-Vlasov control problems

have been less studied in the literature, but there is a growing interest for this framework,

see [71] [16], and [33] for applications to the context of reinforcement learning.

1.2.2 Behavioral economics models: games and risky choices

The second part of this thesis is devoted to economic behavioral models, the first one be-

ing a large population game and the second one a choice under risk model. Such theories

indeed are natural candidates to understand online behaviors: clicking on any web link is

a risky choice as the reward generated by its content is not fully known, and interactions

with other people on social networks are susceptible to introduce dependencies of one’s

reward in other people’s choices (e.g. via trend phenomenons).

Whether they are games or choice under risk theories, economic behavioral theories

traditionally aim to understand and predict people’s choices, generally based on an

assumption of rationality, i.e. on the basic principle that people’s choices generally aim

to maximize their happiness.
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Game theory with large populations

Game theory aims to predict people’s behavior in a situation where their respective

rewards depend upon each other’s choices.

Game theory started with the study of 2-player games, as in a letter written by

James Waldegrave in 1713 and Antoine Cournot’s duopoly in 1838, before game theory

was formalized.

The study of N -player games, present in the work of Von Neumann and Morgenstern

([91]), followed by the developments brought by Nash ([68, 43, 66, 67]) and later Au-

mann ([5]), naturally led to observe a phenomenon that had already long been known in

statistical physics: They noticed that when studying N -player games, some predictions

for the N -player game often “converged” to asymptotic predictions when N was sent to

infinity. Robert Aumann later published a seminal paper on games with infinitely many

players (see [5]), initiating a long list of studies of games with continuum of players, see

for instance the large games literature ([47, 41, 13, 42]), and the prolific literature in

Mean-field games theory, a theory initiated 15 years ago simultaneously in the engineer-

ing community by Peter Caines, Minyi Huang and Roland Malhamé [38, 37], and in the

mathematical community by Pierre Louis Lions and Jean Michel Lasry [50, 51, 52, 34],

aiming to understand the limiting behavior, for N large, of N -player differential games

under symmetry assumption.

Besides the well-known Nash-equilibrium concept introduced by John Nash ([43]),

other concepts have been studied in game theory. A concept that particularly interests

us in this thesis is the concept of Iterated Elimination of Dominated Strategies (IESDS).

This concept is for instance studied in [64]. More precisely, in [64], Milgrom defines the

concept of serially undominated strategies, which are simply all the remaining strategies

after performing an IESDS. The general idea of the IESDS is the following. We define an

iterative mechanism consisting in progressively eliminating strategies from the set of all

possible strategies. At each iteration, there is thus a set of non-eliminated strategies, i.e.

strategies that have not been eliminated yet. Each iteration consists in eliminating the

strategies that are strictly dominated over all the currently non-eliminated strategies.

The idea is that, assuming that each player is intelligent enough and knows that the

other players are intelligent as well, he assumes that no player would play a strictly

dominated strategy. He can thus eliminate dominated strategies of the set of strategies

because they will not be played. He knows that all the players will also eliminate these

strategies. Then, on the sub-game restricted to the non-eliminated strategies, some

strategy might now, in turn, be strictly dominated. All players will then eliminate them

as well. Then, Milgrom calls serially undominated strategies the set of strategies that

10



are never eliminated after any number of iterations of the above mechanism.

For large population games, the IESDS concept has not been studied a lot. See

however Dufwenberg and Stegeman [26] and Chen, Long, Luo [17] for studies of the

IESDS concept for general games, with potentially infinitely many players and strategies.

Risky choices and Cumulative prospect theory

The motivation of Cumulative Prospect theory is to propose a more realistic alternative

to Expected Utility Theory (EUT) to model human behaviors when facing risky choices.

EUT was initially proposed by Daniel Bernoulli as a response to what should be the

reasonable maximal price to pay to enter a gamble. At the time, the natural assumption

was that it should be the expectation of the gamble’s reward. However, Bernoulli con-

vincingly argued (see St. Petersburg game) that it could not truthfully model people’s

choices, and introduced the concept of utility function: the value associated to a gamble

R (i.e. a choice with random reward) was not E[R] anymore but VEUT (R) = E[v(R)],

where v is the utility function. Therefore, when facing a family of gambles G (i.e. real

random variables), an individual would choose the gamble

argmax
R2G

VEUT (R) = argmax
R2G

E[v(R)].

This was the first formulation of EUT. Later, John Von Neumann ([91]) proved that EUT

is implied by a set of very compelling axioms of rationality, bringing a lot of credibility to

EUT. However, empirical studies soon revealed that people’s behaviors were consistently

violating EUT.

A promising alternative was Kahneman and Tversky’s Nobel Prize awarded Prospect

theory ([40]). Later, John Quiggin, inspired by Prospect theory, developed the rank-

dependent expected utility theory ([74]), which in turn led Kahneman and Tversky

to improve their own theory by developing the Kahneman and Tversky’s Cumulative

Prospect theory ([40]).

Since then, rank-dependent utility and Cumulative Prospect theories have sparked a

great interest outside of the economic behavioral community, e.g. in finance, see [10, 96].

1.2.3 Targeted advertising: learning algorithms and optimal control

In the last part of the thesis, we focus on models specifically designed for targeted

advertising strategies. There are two natural mathematical tools to design strategies for

optimizing a gain or reaching a satisfying one: learning methods, coming from machine

learning and statistical learning, and optimal control.
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Classification learning

Probably the most studied problem in machine learning are classification problem. Clas-

sification problems are all based on a common framework: there is an input space X

and an output, or label, space Y . In our case, X can encode every aspect of an ad, and

Y can correspond to the binary clicking decision that a given individual would make for

this ad. The goal essentially is to find a map f : X ! Y making a small amount of

prediction errors. The map f : X ! Y is then referred to as a classifier. Classification is

a type of supervised learning, because the labels from past observed data are observed,

and the algorithm does not have to “create” labels.

In classical “offline” learning, one assumes that we have access to training data

(X1, Y1), ..., (Xn, Yn) 2 X⇥Y , and a classification algorithm is then a procedure receiving

the training data and outputting a classifier f . Another branch of classification learning,

called online classification learning, refers to the situation where no training data is

initially accessible, and where inputs (Xt, Yt)t2N comes as time goes by. An online

classification algorithm builds a sequence (ft)t2N of classifiers such that ft corresponds

to the update of the classifier before time t. At each time t, two actions are taken: 1)

a prediction of the output of Xt using classifier ft, and 2) an update of the classifier to

ft+1 for future predictions, taking into account the data received at time t.

Several algorithms have been developed for this task, the most used ones being Vapnik

and Chervonenkis’s Support Vector Machine algorithm presented in the seminal paper

[12], and Logistic Regression, invented by Berkson [9] and Cox [20].

For more details about classification learning, we refer to the many textbooks, sur-

veys, and monographs on these topics: [4], [57], [22], [25], [30], [45], [48], [60], [62], [63],

[69], and [85, 86, 87].

Optimal control for targeted advertising, auctions, and social interactions

The other important theoretical tool for situations with a strategic component allowing

to increase one’s profit is the optimal control theory. An important application of optimal

control is advertising.

Optimal control for advertising. Several approaches have been proposed in the

past to model advertising problems: mathematical programming, dynamic programming,

simulation, and heuristic procedures ([56, 98]). An important addition is optimal control

theory. In this approach, a dynamical system is modeled with controlled differential

equations and optimized by means of the maximum principle [42]. We mention the

important Nerlove-Arrow ([70]), and Vidale-Wolfe ([89]) models, and for an overview of

this research field, see [78] and its sequel [27].
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The main particularity of the optimal control advertising models studied in this

thesis is that they are population models, therefore modeling each individual and their

behaviors in a population of N people, while the existing literature about optimal control

for advertising focuses on differential models, considering, from the start, controlled

differential equations directly modeling the dynamics of sales as a continuous process

affected by an advertising expenditures process.

Auction theory. Auctions are an inevitable component of today’s advertising, and

particularly of targeted advertising. Indeed, ad emplacements allocation are made via

targeted advertising auctions. Each time an individual connects to a website displaying

targeted ads, several agents (companies, influencers, etc) compete in an auction for the

ad emplacement. Each agent makes a bid, the winner pays the price resulting from the

auction’s rule, and his ad is displayed to the individual.

The long history of auctions, and their omnipresence on the Internet, illustrate the

crucial importance of auction theory. As a sub-field of game theory, auctions have been

widely studied by game theorists such as John Nash ([66]), William S. Vickrey ([88]), and

the 2020 Nobel prize in economics winners Milgrom and Wilson, for their contributions

to auction theory.

Information spreading. Finally, advertising also relates to information spreading, as

the goal of an advertiser is to efficiently spread an information. Information spreading is

a sub-field of population dynamics theory. This research field is very vast, often termed

as opinion dynamics theory, as it is one of its main applications. Models goes from

Bayesian to non Bayesian models and from games to evolutionary dynamics. They apply

to information propagation, opinions formation, and choices dynamics. For a detailed

overview of populations dynamics, opinions dynamics, and learning in social networks,

see [2].

1.3 Contributions of the thesis

Last section illustrates that studying social networks and Internet problematics from a

mathematical point of view is a widely interdisciplinary task and can be done from the

viewpoint of several mathematical disciplines. Social networks reunites them in a com-

mon playground, where large populations, risky choices, social games, social interactions

and targeted advertising cohabite.

In this thesis, we studied models from each of these points of view and sometimes

mixing them. To make the presentation as clear as possible, we choose to group our
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works into three parts, each containing two chapters, from the most theoretical to the

most applied works, and separated by main thematics:

1. We study in Part I large population models. Our study is part of the modern wide

interest in mean-field models for populations. Although works outside of this part

will also involve populations, the studies of Part I specifically study phenomenons

related to large populations with mean-field interactions. The main goal of these

studies is to provide methods and tools to deal with large population problems

in general (propagation of chaos, mean-field Bellman equation, problem lifting

methods, etc), and to expose and resolve theoretical challenges in these types of

problem. Part I is the most theoretical part of the thesis, as it deals with a general

large population framework.

2. In part II, we study economic behavioral models, that is, how to model human be-

haviors when facing choices in situations involving two types of unknowns: games

(involving other players choices), and choices under risk (involving randomness).

Although still theoretical in the sense the works in this part theorize human behav-

iors, this part is more applied than part I, and we shall discuss some commercial

and political applications in each study.

3. In Part III, we focus on very concrete problematics from targeted advertising.

While this is the most applied part, the studies therein also have interesting theo-

retical aspects, as part of the optimal control and online learning research fields.

1.3.1 Large population models with mean-field interactions

In Part I, we study a theoretical model of large population in a work separated in two

chapters. This part is based on the paper [65], with improved results of propagation of

chaos. The initial common framework involves two models. In one model, we consider

a controlled population with N individuals, and in the other model, we consider a con-

trolled single individual (called representative individual). In both models, the controller

aims to maximize a profit depending upon the models dynamic and his gain function.

We start with a probabilistic universe Ω on which are defined the following random

variables:

• Idiosyncratic noises ("it)t2N,i2N, such that "i will, for i 2 N, represent the idiosyn-

cratic noise of an individual i in the studied models,

• Common noise ("0t )t2N,i2N, representing a noise affecting all the individuals,
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• Randomization variables (U i
t )t2N,i2N, such that U i serves to randomize actions on

individual i.

We consider a state space X and an action space A.

Given this basic setup, we consider the two control problems, formally similar:

1. The N-individual control problem: In this model, an open-loop control is a

random process ↵ valued in AN and adapted to FN
t := �(("is)i2J1,NK, "

0
s, s  t).

For t 2 N and i 2 J1, NK, ↵i
t represents the action to send to individual i at time t

(to keep an intuitive image of the model, let us assume that the action represents

sending a targeted ad ↵i
t to individual i, although it could be a marketing offer or

any related type of action). The fact that ↵ is adapted to FN
t simply means that

any action to any individual can depend upon all past data (past common noise

and past idiosyncratic noise of all the individuals). The set of open-loop controls

is denoted ΠOL,N . The dynamic of the population with control ↵ is defined by

Xi,N,↵
0 = xi, i 2 J1, NK

Xi,N,↵
t+1 = F

⇣
Xi,N,↵

t ,↵i
t,

1

N

NX

n=1

�
(Xn,N,↵

t ,↵n
t )
, "it+1, "

0
t+1

⌘
, i 2 J1, NK, t 2 N.

where F is a measurable function. This is a general dynamic, F does not necessarily

have to depend upon all these objects, but in this theoretical work, our goal is to

keep a neutral and general framework. An importent element is the dependence

in 1
N

PN
n=1 �(Xn

t ,↵
n
t )
, which encodes a mean-field interaction with the rest of the

population, which is a key aspect of the model. The state Xi,N,↵
t corresponds to

the state of individual i at time t, in a dynamic where the control ↵ was used

to influence the population. As ↵ was interpreted as sending targeted ads to each

individual, Xi
t can be interpreted, for instance, as the company to which individual

i is client at time t. The expected gain of the external agent, in this model, with

control ↵, takes the form

VN (↵) = E[
1

N

NX

i=1

+1X

t=0

�tf(Xi,N,↵
t ,↵i

t,
1

N

NX

n=1

�
(Xn,N,↵

t ,↵n
t )
)].

As for F , the function f is a general reward function and does not have to depend

upon all its parameters. The main idea is that it represents the reward of the

external agent generated by individual i at time t. If the agent is a company, it

is clear that its reward coming from individual i at time t depends upon his state

Xi
t (saying whether or not he is client of the company) and the action ↵i

t (did the
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company paid to send him a targeted ad?). The dependence in 1
N

PN
n=1 �(Xn,N,↵

t ,↵n
t )

is an additional degree of freedom, of particular theoretical interest since it is

another place where mean-field aspects can play a role. The goal is then to study

VN (↵) and in particular the optimal expected gain VN := sup↵2ΠOL,N
VN (↵) as

well as providing tools to compute it and design controls ↵✏ leading to ✏-optimal

expected gains, for ✏ � 0.

2. The McKean-Vlasov control problem: In this model, we focus on a single

individual, e.g. individual 1, and an open-loop control is a random process ↵

valued in A and adapted to Ft := �("1s, "
0
s, s  t), that is, only depending upon

this single individual’s past data and the past common noise, and only representing

the actions made for this single individual. The set of open-loop controls is denoted

by ΠOL. Given a control ↵, we define the following dynamic:

X↵
0 = ⇠,

X↵
t+1 = F (X↵

t ,↵t,P
0
(X↵

t ,↵t)
, "1t+1, "

0
t+1), t 2 N.

where P0
(X↵

t ,↵t)
denotes the probability distribution of (X↵

t ,↵t) conditionally to the

past common noise. The gain of the external agent, in this problem, is

V (↵) = E[

1X

t=0

�tf(Xi↵
t ,↵t,P

0
(X↵

t ,↵t)
)].

Notice the formal similarity of this problem with the N -individual control problem.

Essentially, the empirical distributions 1
N

PN
n=1 �(Xn,N,↵

t ,↵n
t )

were replaced by the

theoretical conditional probability distributions P0
(X↵

t ,↵t)
. The reason to make such

substitution simply results from our knowledge that in many probabilistic situa-

tions, empirical distributions tend to be close to theoretical distributions. This

knowledge starts from the strong law of large numbers, its various extensions,

eventually turning into the phenomenon of propagation of chaos in uncontrolled

stochastic dynamic systems. We now know that replacing empirical distributions

by theoretical distributions often leads to two models that are close to each others

in several ways, and closer and closer as the population size N increases.

Given these kind of framework, usual mathematical studies involve:

1. Studying the McKean-Vlasov problem,

2. studying the proximity of the N -agent problem with the McKean-Vlasov problem.

16



There is already a vast literature on this subject, studying various models (uncontrolled,

controlled, mean-field games, etc). From a theoretical viewpoint, here are the key chal-

lenges and contributions of our study:

1. Possible finite spaces and regularity in expectation: our models allow X

and A to be finite. Although in general, finite spaces are simpler than continuous

spaces, this is not the case when it comes to chaos propagation results. Propagation

of chaos usually requires regularity in the state transition function that cannot

reasonably be assumed when the state space is discrete, essentially because F ’s

domain contains a continuous space P(X ) and has a finite codomain X , which

prevents continuity unless F is constant in is P(X ) coordinate, which is equivalent

to have no mean-field interactions. However, a weaker form of regularity can

reasonably be assumed even with finite spaces: regularity in expectation w.r.t. the

idiosyncratic noise coordinate. We shall use this weak regularity assumption to

obtain propagation of chaos.

2. Measurability issues due to common noise and continuous state space:

We shall see that the simultaneous presence of common noise and a continuous

state space poses measurability issues when attempting to use standard methods

working in the no common noise or finite state space setup. Theses issues are

avoided by means of a more flexible lifting procedure.

3. Necessity of randomization: We show that in our discrete time framework,

randomization is in general necessary to build "-optimal controls. This result

contrasts with the usual result of Markov Decision Processes that one can restrict

to feedback (non randomized) controls without reducing the optimal gain.

4. Measurable objects on measure spaces: we introduce measurable functions

on measure spaces: a measurable coupling function, and a measurable projection,

useful to build more complex functions on measure spaces in a mesurable way.

The study is split in two chapters:

1. In Chapter 1, we study the McKean-Vlasov control problem, establish the fixed

point Bellman equation for V : for all µ 2 P(X ),

V (µ) = sup
a:X⇥[0,1]!A

E[f(⇠, a(⇠, U1),P
0
⇠,a(⇠,U1)

) + �V (P0
F (⇠,a(⇠,U1),P0

⇠,a(⇠,U1)
,"11,"

0
1)
)].

Furthermore, we prove a verification result, and that reduction to stationary ran-

domized feedback policies is possible, and necessary in the sense that reducing to
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non-randomized feedback policies is susceptible to strictly decrease the optimal

gain.

2. In Chapter 2, we prove results of propagation of chaos of the N -individual control

problem to the McKean-Vlasov problem, with rates of convergence. More precisely,

with an explicit sequence (MN )N2N coming from the convergence rate of empirical

measures toward theoretical measures in the Wasserstein sense, and with en explicit

�  1:

• We prove the convergence of value functions: kVN�V k = O(M�
N ). This result

can be seen as a discrete time version of the result in [23] for diffusions, as

it links the N -individual and McKean-Vlasov MDPs when the optimization

is performed on open-loop controls. Compared to our published work [65],

which only linked the McKean-Vlasov MDP to the N -individual MDP over

individualized open-loop controls, we were able to improve our result by linking

the McKean-Vlasov MDP with the N -individual MDP over fully open-loop

controls.

• We prove that any ✏-optimal stationary randomized feedback policy for the

McKean-Vlasov is a (✏ + O(M�
N ))-optimal stationary randomized feedback

policy for the N -individual MDP.

• Conversely, we provide a simple way to turn any ✏-optimal stationary feed-

back policy for the N -individual MDP into a (✏+O(M�
N ))-optimal stationary

randomized feedback policy for the McKean-Vlasov MDP.

1.3.2 Games and economic behavioral models

In Part II, we turn to studies that are much more applied than Part I in their mo-

tivations, and yet still theoretical in that they aim to theorize human behavior. Our

study contributes to the effort of providing mathematical models to economics and in

particular behavioral economics. It contains two chapters:

1. Chapter 3 fits into game theory (study of choice when the reward depends upon

other people’s choices). More precisely, we study a large population game with so-

cial rewards, via the concept of Iterated Elimination of Strictly Dominated Strate-

gies, and by means of mean-field approximation tools.

2. Chapter 4 fits into decision under risk theory (study of choice when the rewards

are random). More precisely, our work provides a parametrization of the well-

established Cumulative Prospect theory in which gambles certainty equivalence
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can be explicitly computed when rewards are gaussian, and we discussed important

applications to targeted advertising.

Although game theory and choice under risk are different theories, they are probably

the most successful mathematical theories so far to study human behaviors in complex

choice situations. The fact that they each tackle a different kind of complexity (presence

of other players, and randomness) make them greatly complementary, as evidenced by

their joint presence in the groundbreaking book Games and Economic Behaviors, by

John Von Neumann.

Iterated Elimination of Strictly Dominate Strategies in large population games

In this study, we consider a binary space X = {0, 1}, representing two possible choices.

These choices can represent many things: buying or not a product, subscribing or not

to a service, publicly supporting or not an opinion, etc. We consider a population with

N players. Each player n, for n  N , is characterized by two pieces of information:

1. His intrinsic utilities un = (un,x)x2X 2 R
2: for x 2 X , un,x represents the utility

that player n has for choice x, outside of all social influence and interactions. For

instance, if the choice is to buy (choice 1) or not (choice 0) a product, one could

consider that un,1 represents how much player n will like the product in itself,

un,0 = 0 could represent the null utility of not buying it. If the choice is to publicly

support an opinion (choice 1) or reject it (choice 0), un,1 represents the intrinsic

happiness of player n to support this opinion, and un,0 to reject it.

2. His class kn 2 K = {1, ...,K}: The class of an individual can represent any

relevant way to group individuals in a population (age, social class, gender, political

orientation, etc). This separation allows to study asymmetric social influence.

Multi-class social influence makes it possible to study qualitative phenomenons

like class repulsion. This happens when two different classes of individuals don’t

want to act or think the same way. Let us provide two natural examples. In the

example of supporting or not an opinion, there is a repulsion between the left-

wing and right-wing politically oriented classes: a politically left-wing person is

reluctant to support the same opinion as a politically right-wing person, even if

they intrinsically agree on it. In the example of buying or not a product, a well

known example is the case of diet coke. It is known that one of the main reasons

why Coca-cola commercialized coke zero is that males were reluctant to buy diet

coke because they associated it to a female product. Coke zero was designed to

have a less female connotation. Thus, the simple fact that diet coke was seen as a

female product was enough to dissuade some men from buying it.
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For each n  N , we then denote by dn = (kn, un) the data of player n. Let us now

describe the unrolling of the game. First of all, each player n makes a choice xn 2 X

(buying or not the product, publicly supporting or not the opinion). This simple choice

guarantees each player n to receive the associated intrinsic utility un,xn . Then, players

socially interact with each others, e.g. on a social network, and this way observe the

choices made by other people. From these observations, player n perceives a social reward

given by u(kn, xn,
1
N

PN
i=1 �ki,xi

) (where u : K⇥X ⇥P(K⇥X ) is a measurable function),

meaning that his social reward depends upon his class, choice, and the distribution of

class and choices in the population. Therefore, player n’s overall utility for this game is

defined, for all (dn)nN 2 (K ⇥ R
2)N and (xn)nN 2 XN , by

R(dn, xn,d�n,x�n) = un,xn + u(kn, xn,
1

N

NX

i=1

�ki,xi
).

Our study consists in investigating two games based on the above core framework but

differing in the following aspects:

• The first game is a static game, and players are assumed to know the population’s

data d, i.e. the data dn of any player n in the population.

• The second game is a repeated game, and players are assumed to initially have no

information about each others.

Both games are studied via the Iterated Elimination of Strictly Dominated Strategies

(IESDS) solution concept. The reason why we study the IESDS is that it provides a

way to describe people’s rationality that is more convincing than the Nash-equilibrium

solution concept. Let us briefly explain why.

The Nash-equilibrium concept essentially claims that players would not play a strat-

egy profile x = (xn)n2J1,NK if for some n 2 J1, NK , player n could have a strictly better

response x0n to the strategies x�n of the other players, thus only leaving, by definition,

Nash-equilibrias as potential strategy profiles.

There are three natural ways to understand such concept:

1. Empirically: it has been observed, in many cases, that people play a (close to)

Nash-equilibrium. This can in itself justify to study it.

2. With the implicit mechanism argument: In this interpretation, we say that

each player uses an internal mechanism to determine what strategy to play, and,

without specifying it, we assume that this mechanism involves the computation
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of best responses in an iterative way. It thus seems natural to assume that such

mechanism converges to a fix point of the best response functions i.e. a Nash-

equilibrium.

3. As an intrinsically rational decision criterion: In this argument, the strategy

xn of player n is justified by the fact that, knowing that the others play x�n, he

should rationally play his best response xn. However, to justify that the others play

x�n, the same argument requires to know that player n play xn. In other words,

this way of justifying that players will play a Nash-equilibrium is logically circular,

and therefore does not lead to an actual logical deductive argument, starting from

an obviously true assertion and logically deducting what players will play.

The downside of the empirical approach is that it does not give an explanation of why

people play a Nash-equilibrium. The downside of the implicit argument mechanism is

that it assumes the existence of such mechanism without describing it precisely, which,

again, does not really rigorously explain why they play a Nash-equilibrium, and finally,

the downside of the rational decision criterion approach is that it is logically flawed

because of its circularity.

Therefore, the Nash-equilibrium is a good concept from a descriptive and empirically

predictive standpoint, but not from a logical and explanatory point of view, which can

be disappointing given that the players are supposed to be rational and logical.

The IESDS solution concept is, on the other hand, a logical and deductive itera-

tive mechanism, consisting in starting from all possible strategy profiles, and, at each

iteration, removing the strategy profiles containing strictly dominated strategies, simply

encoding the idea that 1) no player would play a dominated strategy, and 2) all the play-

ers know this fact, and thus, all the players can simply dismiss all the strategy profiles

with a dominated strategy.

The main result of Chapter 3 is that, using the IESDS solution concept, we are

able to predict with precision the rational choices of most players in the population.

Furthermore, this prediction will be obtained by means of mean-field methods. The

second result is that we will be able to use these predicted choices to study qualitative

social phenomenons like the snowball effect and the class repulsion effect.

Gaussian Cumulative Prospect Theory

In Chapter 4, we propose a parametrization of Cumulative Prospect Theory, yielding an

explicit gamble valuation formula for gaussian prospects. Cumulative Prospect Theory
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models how, given a set of prospects, that is, a set of gambles G represented by random

variables, an individual attributes a subjective value V (R) to each gamble R 2 G, to

choose the gamble with highest gamble valuation. Such model is interesting to predict

an individual’s choices, and thus very useful for targeted advertising.

Cumulative Prospect Theory defines the gamble valuation assigned by an individual

to a given prospect as follows:

1. Functions with constraints: For this individual, there exists three functions

v : R ! R and w�, w+ : [0, 1] ! [0, 1] satisfying 1) v(0) = 0, v concave on R+,

convex with steeper curve on R�, 2) w+(0) = w�(0) = 0, w+(1) = w�(1) = 1,

both increasing inverse S shape functions, such that the gamble valuation V (R)

given to any gamble R is given by:

2. Gamble valuation formula:

V (R) =

Z 0

�1
v�(r)d(w

� � FR)(r) +

Z 0

+1
v+(r)d(w

+ � F̄R)(r)

where FR : R ! [0, 1] is the cumulative distribution function of R, and F̄R : R !
[0, 1] is its tail function.

We stress that both points are crucial to Cumulative prospect theory: the constraints

imposed on v, w� and w+ are as important as the gamble valuation formula, because each

constraint was deduced from many experiments performed by Kahneman and Tversky

in their work.

Our contribution is to propose a parametric model for Cumulative Prospect theory,

i.e. to propose parametrized classes of 1) reward distributions R (from which to draw

the gamble R), 2) value functions V (from which to draw v), and 3) weighting functions

W (from which to draw w� and w+), satisfying the required constraints in 1., flexible

enough to approximate any function satisfying these constraints, and yielding an explicit

valuation formula. The classes we propose are:

1. For R: the class of gaussian reward distributions, parametrized by their mean and

variance,

2. For V: the utility functions

vm�,V �,a�,m+,V +,a+(x) = �(m�x+ V �(1� e�a�(�x)))1x<0

+(m+ + V +(1� e�a+x))1z�0

with m� � m+, V � � V +, and a� � a+.
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3. For W: the weighting functions

wp0,�(p) = N (�N�1(p) + (1� �)N�1(p0)), 8p 2 [0, 1]

where N denotes the cumulative distribution of the standard normal distribution.

Our main result is the following.

Theorem 1.3.1 We have

• Validity: any value function v 2 V and weighting function w 2 W satisfies the

constraints in 1..

• Density: R, V, W contains Gaussian reward distributions with any mean and

variance, value functions with any asymptotes and rate of convergence to the asymp-

totes, and weighting functions with any crossover point and slope at the crossover

point.

• Analytic valuation function: We have

Vµ,�,p0,�,m�,V �,a�,m+,V +,a+

= �m�
✓
xN (x)� 1p

2⇡
e�

1
2
x2

◆
� V �

✓
N (x)� e�a+x+

(a+)2

2 N (x� a+)

◆

+ m+

✓
xN (x)� 1p

2⇡
e�

1
2
x2

◆
+ V +

✓
N (x)� e�a+x+

(a+)2

2 N (x� a+)

◆

where, x := µ̂
�̂
, x̄ :=

¯̂µ
�̂
, m+ := �̂m+, m� := �̂m�, a+ := �̂a+, a� := �̂a�, where

µ̂ = µ� �(��1 � 1)N�1(p0), ¯̂µ = µ+ �(��1 � 1)N�1(p0), �̂ = ���1.

Our second contribution is to to discuss some applications of our results, in particular

to large population’s behavioral models when facing risky choices, with commercial and

political applications.

1.3.3 Models for targeted advertising

In Part III, we study concrete models for solving targeted advertising problems. This is

the most applied part of the thesis. It is split in two chapters, each studying important

targeted advertising problematics.

1. In Chapter 5, we study an online learning algorithm for ad clicking prediction.

This work ranges into the class of online binary classification algorithms, which is

a major field of machine learning, widely used for targeted advertising and web

recommendations.
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2. In Chapter 6, we study models of optimal bidding strategies for targeted adver-

tising auctions. This is a crucial problem for commercial companies or companies

specialized in targeted advertising: every time an individual connects to a website

using targeted advertising, an auction is automatically opened, where the bidders

are all the companies interested in displaying their ad to this individual. Each

bidding company then makes a bid for this auction, and the company winning the

auction has its ad displayed to the individual and pays the website an amount

depending upon the auction rules. This chapter is at the intersection of optimal

control and auction theory.

Although both studies are designed for specific applications, both works involve interest-

ing theoretical techniques to derive, on one hand, a logarithmic bound for the prediction

efficiency of the click prediction algorithm, and on the other hand an explicit formula

for optimal bidding strategies for targeted advertising.

Online click prediction learning algorithm

Our first work for targeted advertising defines and studies an online click prediction

learning algorithm. A product is associated to a price p 2 R and to features f 2 F :=

[0, 1]d. A product’s features f 2 F represent the characteristics of a product (quality,

brand’s reputation, shape, life duration, etc). Thus, a product is characterized by a

price-features pair (p, f) 2 R⇥ F . By misuse of language, we identify the product with

any advertisement of the product. We will thus indifferently say “the product (p, f)”

and “the ad (p, f)”.

A click will be represented by a binary variable c 2 {�1, 1}, 1 meaning “click”, and�1
“no click”. Depending upon what happens, it will have slightly different interpretations:

as long as an ad (p, f) 2 R⇥ F has not been displayed to the individual, the associated

c 2 {�1, 1} is a click intention, but once (and if) the ad (p, f) is displayed to the

individual, c will correspond to his clicking decision.

We denote by Rd,D the set of multi-dimensional polynomial functions from F to R

with maximal degree D in each coordinate, i.e. taking the form

R(f) =
X

i2J0,DKd

ri

dY

k=1

f ik
k , 8f = (fk)k2J1,dK 2 F .

where r = (ri)i2J0,DKd 2 R
Dd

is a multi-index vector. A function R 2 R will be in-

terpreted as a reward function, associating to any features f = (fi)i2J1,dK the reward

R(f).
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The framework for the online learning algorithm is the following. We consider a

random sequence (pk, fk, ck)k2N of ads (pk, fk) and associated clicking intentions ck for

all k 2 N. More precisely, at each time k 2 N, a new product is created by a company,

with price pk 2 R and features fk = (fk,i)i2J1,dK 2 F , yielding the product/ad (pk, fk).

For a given individual, the company wonders if it should display the ad (pk, fk) to a given

individual. The binary value ck represents the clicking intention of the individual for

this product, that is, ck is the answer to the question “if ad (pk, fk) was displayed to the

individual, would he click on it?”. If so, then, by definition, ck = 1. Otherwise, ck = �1.
We assume that there exists a reward function R? 2 R such that, 8k 2 N,

pk < R?(fk)� ") ck = 1, and pk > R?(fk) + ") ck = �1,

where " � 0 is a margin, important for realism because it encompasses several natural

phenomenons:

• Non-polynomial reward functions: the “real” reward function of the individual

might not be polynomial, but only approximable with a polynomial reward function

up to an error ",

• Hidden variables, or inconsistent clicking decisions: there might be an

unobservable noise in the individual’s evaluation of the product’s utility making

him value slightly differently a same product at two different times.

• Time varying reward function: The underlying reward function of the individ-

ual might slightly evolve with time, and thus, for n  N , all the successive utility

functions of the individual are close to the first one up to a margin error ".

I.i.d. products with atomless distribution: We assume that (pk, fk)k2N is a se-

quence of i.i.d. random variables with common distribution ⌫ assumed atomless and

such that d⌫
d�  C for some constant C.

Upper and lower bounded conditional density at the margin: We assume that

there exists ⌘ > " such that

c <
dL(p1 �R?(f1) | f1)

d�
(y) < C, 8y 2 [�⌘, ⌘], a.s.

Let us now informally describe the rules of the targeted advertising problem. At each

time k 2 N the following steps occur:

1. New ad event: a new ad advertising a new product (pk, fk) is created. At this

point, (pk, fk) is observable to the advertiser and can be used, along with data

stored in memory from past times, for the subsequent steps.
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2. Displaying decision: the advertiser executes a program processing (pk, fk) and

data stored in memory from last times to decide whether or not to display ad

(pk, fk) to the individual.

3. Clicking reaction (this step happens only if ad (pk, fk) was displayed to

the individual): Once ad (pk, fk) is displayed, the individual sees (pk, fk) it and

either clicks on it or not, according to the clicking intention ck. In either case, the

advertiser observes the reaction of the individual, which means that he observes

ck. We stress that if the advertiser chose to not display ad (pk, fk) in last step, this

step does not happen and the advertiser does not observe ck.

4. Memory update: The advertiser has the possibility to update the variables stored

in memory, and in particular he can choose to remember (pk, fk), and, provided that

he displayed the ad to the individual at step 2, the clicking reaction ck observed

ad step 3, for future use.

For the sake of conciseness, let us not detail the algorithm here, but let us instead

describe its main characteristics and properties.

Main characteristics. The main elements of the algorithm are:

• Feature space transformation: We transform the data (fk)k2N ⇢ [0, 1]d into

data (�(fk))k2N ⇢ [0, 1]D
d
for some function � : [0, 1]d ! [0, 1]D

d
, essentially

allowing us to see R? as a linear function, i.e. such that R?(fk) = r? · �(fk) for

all k 2 N, for some reward vector r? 2 R
Dd

. Notice that in this case we have

R?(f)� p = u? · (p,�(f)), where u? = (�1, r?).

• Utility vector approximation: The learning side of the algorithm then essen-

tially consists in approximating u? with a sequence of vectors (un)n2N ⇢ R
Dd

,

supposed to be closer and closer to u?, allowing to make better and better click

predictions.

Main properties. Our main results are:

• No false negative: The algorithm completely avoids false negatives, i.e. not

displaying an ad that would have led to a click. In other words, it does not miss

any click.

• Asymmetric feedback: As discussed above, the algorithm only observes the

clicking intention ck of the individual after he displayed the ad (pk, fk) to him.

Thus, when (pk, fk) is not displayed, ck is never accessed.
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• Logarithmic false positives: Despite the strong constraint the avoid all false

negative, the algorithm is able to only make

– a logarithm number C ln(k) of false positives (displaying an ad that does not

lead to a click) before time k, in the case where " = 0 (i.e. when there exists a

polynomial reward function R? perfectly determining the clicking intention).

– In the general case " � 0, a number C(ln(k)+k") of false positives (where we

stress that C does not depend upon ").

• Computational and memory efficiency: The algorithm has a bounded average

memory usage and computational efficiency per each time k.

Optimal bidding strategies for targeted advertising

In this work, we design several population optimal control problems for targeted adver-

tising. We here detail the simplest one, and then informally mention the other models

with more features. To make this summary clearer, let us progressively introduce the

features of the models.

Information: In our model, the key element is the notion of information. We assume

that there is an information that initially nobody, except the agent (e.g. a company),

knows. This information can represent for instance the existence of a new product sold

by the agent. In the sequel, we denote by I the information.

The individual: We now model an individual and his behavior. The individual is

characterized by two independent Poisson processes (N I, NT) such that:

• N I is a Poisson process with intensity ⌘I, counting the times when the individual

connects to a website containing information I. It can be a specialized website

about products, or even the agent’s commercial website itself, both providing in-

formation I when one connects to these.

• NT is a Poisson process with intensity ⌘T =: 1 (by convention), counting the times

when the individual connects to a website not containing, a priori, information I

but displaying targeted ads on his web pages, thus susceptible to display informa-

tion I via a targeted ad provided that the agent pays for it. Many websites display

targeted ads: search engines, social networks, and many standard websites.

The targeted advertising auctions: We consider a family of i.i.d. real random

variables (BT
k )k2N. For k 2 N, BT

k represents the price above which the agent’s bid

has to be to win the k-th targeted advertising auction. We thus model this price with

exogenous random variables (as opposed to modeling it endogenously by considering each
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bidder, which would turn the problem into a N -bidders game). The process (BT
NT

t

)t2R+

has at each time t 2 R+ the value of the price of the last auction.

Past data: We have now introduced all the randomness generating the model. The

bidding control of the Agent is assumed to be non-anticipative, i.e. to not depend upon

future random events. To represent this, we consider the filtration (Ft)t2R+ such that

Ft = �(N I
s , N

T
s , BT

NT
s
, s  t).

Open-loop bidding strategy: An open-loop bidding strategy, for the agent willing to

diffuse information I, is a real valued random process �, progressively measurable w.r.t.

(Ft�)t2R+ (non-anticipative property), such that �t corresponds to the bid that the agent

would make if there is an opportunity to display a targeted ad to the individual at time

t (i.e. if ∆NT
t = 1).

The controlled dynamic system: We denote by X� the {0, 1}-valued process such

that X�
t = 1 iff the individual has obtained the information before time t, given the

bidding strategy � of the agent. X� is modeled as the solution to the dynamic system

X�
0 = 0

dX�
t = (1�X�

t�)(1�t�BT

NT
t

dNT
t + dN I

t )

Essentially, this dynamic means that the individual starts uninformed. He gets informed

as soon as either 1) he connects to a website displaying targeted ads, and the agent wins

the auction (“1�t�BT

NT
t

dNT
t ” part), or 2) he connects to a website containing information

I (“dN I
t ” part). Then, he stays informed forever (“(1�X�

t�)” part).

The agent’s gain: The expected gain of the agent, given a bidding strategy �, is

V (�) = E

h Z 1

0
e�⇢t(KdX�

t � 1�t>BT

NT
t

c(�t, B
T
NT

t
)dNT

t )
i

where K 2 R represents the margin profit made by the agent when the individual gets

informed, i.e. when ∆X�
t = 1, and where c : R2 ! R is a function representing what the

Agent will pay if he wins the auction. More precisely, the second part corresponds to

the price paid when auctions are won by the agent: an auction happens when ∆NT
t = 1,

the auction is won if 1�t>BT

NT
t

. The price paid is c(�t, B
T
NT

t

):

• If we consider a first-price auction rule, we have c(b, B) = b, i.e. if the Agent wins

the auction, he pays his bid �t.

• If we consider a second-price auction rule, we have c(b, B) = B, i.e. if the Agent

wins the auction, he pays the second highest bid in the auction, i.e. BT
NT

t

.
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The goal of the agent is then to use a bidding strategy �? such that V (�?) = sup� V (�) =:

V ?.

The optimal policy and value: The optimal value is given by

V ? = sup
b2R

⌘IK + ⌘TE[(K � c(b, BT
1 ))1b�BT

1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

,

and the optimal bidding control �? is the unique open-loop bidding control such that

�?
t = (1�X�?

t )b?, where

b? := argmax
b2R

⌘IK + ⌘TE[(K � c(b, BT
1 ))1b�BT

1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

In other words, the optimal bidding policy is to make the constant bid b? as long as the

individual is not informed, and then to stop bidding (which is an obvious part of the

strategy).

We now mention the other models in this work. We have designed models for two

types of advertising:

1. Commercial advertising, modeling situations where informing an individual

triggers a reward for the agent, which is generally the case in commercial advertis-

ing. We consider two types of reward: purchase-based reward, modeling the case

where the information triggers a purchase and thus a punctual payment from the

individual to the agent, and subscription-based reward, modeling cases where the

information triggers a subscription of the individual to a service proposed by the

agent, and thus pays a regular fee to the agent.

2. Social marketing, modeling situations where informing an individual cancels a

cost continuously perceived by the agent. In this model, each individual, as long

as he is not informed, incurs a continuous cost to the agent, which is particularly

well suited for social marketing where the agent’s goal is not to make profit but

instead to change people’s behaviors and promoting social change by sensitizing

them about dangers (anti-drugs campaigns, road-safety campaigns, sexual-safety

campaigns, low-fat diet campaigns, etc).

The model we detailed in this summary is the commercial advertising model with

purchased-base reward. The model with subscription-based reward only differs in the

gain function, because informing the individual triggers his subscription and thus a reg-

ular fee instead of a punctual payment. The social marketing model has much more

features than the commercial marketing models, as it additionally involves 1) social in-

teractions, and 2) non-targeted advertising. In all these models, we obtain a closed

formula for the optimal value and the optimal policy, with a similar form.
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1.4 Outline of the thesis

1. Part I: Chapter 2: Mean-field Markov decision processes with common noise and

open-loop controls. Chapter 3: Chaos propagation of N -agent Markov decision

processes with common noise and open-loop controls.

2. Part II: Behavioral economics models. Chapter 4: Large population games with

the Iterative Elimination of Strictly Dominated Strategies concept. Chapter 5:

Gaussian cumulative prospect theory.

3. Part III: Models for targeted advertising. Chapter 6: Online click prediction learn-

ing algorithm. Chapter 7: Optimal control for targeted advertising.
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Part I

Large populations with mean-field

interactions
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Chapter 2

Mean-field Markov decision

processes with common noise and

open-loop controls

Abstract. In this chapter, we develop an exhaustive study of Markov decision process (MDP)

under mean field interaction both on states and actions in the presence of common noise, and

when optimization is performed over open-loop controls on infinite horizon. Such model, called

CMKV-MDP for conditional McKean-Vlasov MDP, is formally obtained by substituting em-

pirical distributions by theoretical ones in a N -agent Markov Decision Process. We highlight

the crucial role of relaxed controls and randomization hypothesis for this class of models with

respect to classical MDP theory. We prove the correspondence between CMKV-MDP and a gen-

eral lifted MDP on the space of probability measures, and establish the dynamic programming

Bellman fixed point equation satisfied by the value function, as well as the existence of ✏-optimal

randomized feedback controls. The arguments of proof involve an original measurable optimal

coupling for the Wasserstein distance.

2.1 Introduction

Optimal control of McKean-Vlasov (MKV) systems, also known as mean-field control

(MFC) problems, has sparked a great interest in the domain of applied probabilities

during the last decade. In these optimization problems, the transition dynamics of

the system and the reward/gain function depend not only on the state and action of

the agent/controller, but also on their probability distributions. These problems are

motivated from models of large population of interacting cooperative agents obeying to

a social planner (center of decision), and are often justified heuristically as the asymptotic
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regime with infinite number of agents under Pareto efficiency. Such problems have found

numerous applications in distributed energy, herd behavior, finance, etc.

A large literature has already emerged on continuous-time models for the optimal con-

trol of McKean-Vlasov dynamics, and dynamic programming principle (in other words

time consistency) has been established in this context in the papers [53], [72], [7], [24].

We refer to the books [8], [15] for an overview of the subject.

Our work and main contributions. In this paper, we introduce a general discrete

time framework by providing an exhaustive study of Markov decision process (MDP)

under mean-field interaction in the presence of common noise, and when optimization is

performed over open-loop controls on infinite horizon. Such model is called conditional

McKean-Vlasov MDP, shortly abbreviated in the sequel as CMKV-MDP, and the set-up

is the mathematical framework for a theory of reinforcement learning with mean-field

interaction. Let us first briefly describe and motivate the main features of our framework:

(i) The controls are open-loop, which is a natural assumption to study the problem

with the richest possible set of controls adapted to the past. This is useful to prove

that apparently more restrictive control sets are actually sufficient in the sense that

allowing access to more information would not increase the optimal value.

(ii) The dynamics of individuals depend upon a common noise, emulating the fact

that they are influenced by common information (public data) which may vary

over time. We consider an i.i.d. common noise sequence ("0t )t2N, but we stress that
this framework contains the apparently more realistic framework of a Markovian

common noise sequence, up to a change of state space, as we shall discuss.

Compared to continuous-time models, discrete-time McKean-Vlasov control prob-

lems have been less studied in the literature. In [71], the authors consider a finite-

horizon problem without common noise and state the dynamic programming (Bellman)

equation for MFC with closed-loop (also called feedback) controls, that are restricted

to depend on the state. Very recently, the works [16], [33] addressed Bellman equations

for MFC problems in the context of reinforcement learning. The paper [33] considers

relaxed controls in their MFC formulation but without common noise, and derives the

Bellman equation for the Q-value function as a deterministic control problem that we

obtain here as a particular case (see our Remark 2.4.10). The framework in [16] is closest

to ours by considering also common noise, however with the following differences: these

authors restrict their attention to stationary feedback policies, and reformulate their

MFC control problem as a MDP on the space of probability measures by deriving for-

mally (leaving aside the measurability issues and assuming the existence of a stationary

feedback control) the associated Bellman equation, which is then used for the develop-

33



ment of Q-learning algorithms. Notice that [16], [33] do not consider dependence upon

the probability distribution of the control in the state transition dynamics and reward

function.

Our first contribution is to obtain the correspondence of our CMKV-MDP with a

suitable lifted MDP on the space of probability measures. Starting from open-loop

controls, this is achieved in general by introducing relaxed (i.e. measure-valued) controls

in the enlarged state/action space, and by emphasizing the measurability issues arising

in the presence of common noise and with continuous state space. In the special case

without common noise or with finite state space, the relaxed control in the lifted MDP

is reduced to the usual notion in control theory, also known as mixed or randomized

strategies in game theory. While it is known in standard MDP that an optimal control

(when it exists) is in pure form, relaxed control appears naturally in MFC where the

social planner has to sample the distribution of actions instead of simply assigning the

same pure strategy among the population in order to perform the best possible collective

gain.

The reformulation of the original problem as a lifted MDP leads us to consider an

associated dynamic programming equation written in terms of a Bellman fixed point

equation in the space of probability measures. Our second contribution is to establish

rigorously the Bellman equation satisfied by the state value function of the CMKV-

MDP, and then by the state-action value function, called Q-function in the reinforcement

learning terminology. This is obtained under the crucial assumption that the initial

information filtration is generated by an atomless random variable, i.e., that it is rich

enough, and calls upon original measurable optimal coupling results for the Wasserstein

distance. Moreover, and this is our fourth contribution, the methodology of proof allows

us to obtain as a by-product the existence of an ✏-optimal control, which is constructed

from randomized feedback policies under a randomization hypothesis. This shows in

particular that the value function of CMKV-MDP over open-loop controls is equal to

the value function over randomized feedback controls, and we highlight that it may be

strictly larger than the value function of CMKV-MDP over “pure” feedback controls,

i.e., without randomization. This is a notable difference with respect to the classical

(without mean-field dependence) theory of MDP as studied e.g. in [11], [81]. We discuss

and illustrate with a set of simple examples the difference of control strategies (open

loop vs feedback), and the crucial role of the randomization hypothesis.

Finally, we discuss how to compute the value function and approximate optimal

randomized feedback controls from the Bellman equation according to value or policy

iteration methods and by discretization of the state space and of the space of probability

measures.
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Outline of the paper. The rest of the paper is organized as follows. In Section 2.3,

we establish the correspondence of the CMKV-MDP with a lifted MDP on the space of

probability measures with usual relaxed controls when there is no common noise or when

the state space is finite. In the general case considered in Section 2.4, we show how to

lift the CMKV-MDP by a suitable enlargement of the action space in order to get the

correspondance with a MDP on the Wasserstein space. We then derive the associated

Bellman fixed point equation satisfied by the value function, and obtain the existence

of approximate randomized feedback controls. We also highlight the differences between

open-loop vs feedback vs randomized controls. We conclude in Section 2.5 by indicating

some questions for future research. Finally, we collect in the Appendix some useful

and technical results including measurable coupling arguments used in the proofs of the

paper.

Notations. Given two measurable spaces (X1,Σ1) and (X2,Σ2), we denote by pr
1

(resp. pr
2
) the projection function (x1, x2) 2 X1 ⇥ X2 7! x1 2 X1 (resp. x2 2 X2).

For a measurable function Φ : X1 ! X2, and a positive measure µ1 on (X1,Σ1), the

pushforward measure Φ ? µ1 is the measure on (X2,Σ2) defined by

Φ ? µ1(B2) = µ1

�
Φ
�1(B2)

�
, 8B2 2 Σ2.

We denote by P(X1) the set of probability measures on X1, and C(X1) the cylinder (or

weak) �-algebra on P(X1), that is the smallest �-algebra making all the functions µ 2
P(X1) 7! µ(B1) 2 [0, 1], measurable for all B1 2 Σ1.

A probability kernel ⌫ on X1⇥X2, denoted ⌫ 2 X̂2(X1), is a measurable mapping from

(X1,Σ1) into (P(X2), C(X2)), and we shall write indifferently ⌫(x1, B2) = ⌫(x1)(B2), for

all x1 2 X1, B2 2 Σ2. Given a probability measure µ1 on (X1,Σ1), and a probability

kernel ⌫ 2 X̂2(X1), we denote by µ1 · ⌫ the probability measure on (X1 ⇥ X2,Σ1 ⌦ Σ2)

defined by

(µ1 · ⌫)(B1 ⇥B2) =

Z

B1⇥B2

µ1(dx1)⌫(x1, dx2), 8B1 2 Σ1, B2 2 Σ2.

Let X1 and X2 be two random variables valued respectively on X1 and X2, denoted Xi

2 L0(Ω;Xi). We denote by L(Xi) the probability distribution of Xi, and by L(X2|X1)

the conditional probability distribution of X2 given X1. With these notations, when X2

= Φ(X1), then L(X2) = Φ ? L(X1).

When (Y, d) is a compact metric space, the set P(Y) of probability measures on Y

is equipped with the Wasserstein distance

W(µ, µ0) = inf
nZ

Y2

d(y, y0)µ(dy, dy0) : µ 2 Π(µ, µ0)
o
,
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where Π(µ, µ0) is the set of probability measures on Y ⇥Y with marginals µ and µ0, i.e.,
pr

1
?µ = µ, and pr

2
?µ = µ0. Since (Y, d) is compact, it is known (see e.g. Corollary 6.13

in [90]) that the Borel �-algebra generated by the Wasserstein metric coincides with the

cylinder �-algebra on P(Y), i.e., Wasserstein distances metrize weak convergence. We

also recall the dual Kantorovich-Rubinstein representation of the Wasserstein distance

W(µ, µ0) = sup
nZ

Y
� d(µ� µ0) : � 2 Llip(Y;R), [�]lip  1

o
,

where Llip(Y;R) is the set of Lipschitz continuous functions � from Y into R, and [�]lip
= sup{|�(y)� �(y0)|/d(y, y0) : y, y0 2 Y, y 6= y0}.

2.2 The N-agent and McKean-Vlasov MDP

We formulate the mean-field Markov Decision Process (MDP) in a large population

model with indistinguishable agents i 2 N
⇤ = N \ {0}.

Let X (the state space) and A (the action space) be two compact Polish spaces

equipped respectively with their metric d and dA. We denote by P(X ) (resp. P(A))

the space of probability measures on X (resp. A) equipped respectively with their

Wasserstein distance W and WA. We also consider the product space X ⇥ A, equipped

with the metric d((x, a), (x0, a0)) = d(x, x0) + dA(a, a
0), x, x0 2 X , a, a0 2 A, and the

associated space of probability measure P(X⇥A), equipped with its Wasserstein distance

W . Let G, E, and E0 be three measurable spaces, representing respectively the initial

information, idiosyncratic noise, and common noise spaces.

Let (Ω,F ,P) be a probability space on which are defined the following family of

mutually i.i.d. random variables

• (Γi, ⇠i)i2N? (initial informations and initial states) valued in G⇥ X

• ("it)i2N?,t2N (idiosyncratic noises) valued in E with probability distribution �"

• "0 := ("0t )t2N (common noise) valued in E0.

We assume that F contains an atomless random variable, i.e., F is rich enough, so that

any probability measure ⌫ on X (resp. A or X ⇥ A) can be represented by the law of

some random variable Y on X (resp. A or X ⇥A), and we write Y ⇠ ⌫, i.e., L(Y ) = ⌫.

Given N 2 N
⇤, we denote by AN the set of open-loop controls for the N -individual

MDP, that is, the set of AN -valued random sequences ↵, adapted to the filtration

(FN,t)t2N defined by FN,t = �(Γi, ⇠i, ("is)st, i 2 J1, NK, ("0s)st).
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Given ↵ 2 AN , the state process of agent i = 1, . . . , N in an N -agent MDP is given

by the dynamical system
(

Xi,N,↵
0 = ⇠i

Xi,N,⇡
t+1 = F (Xi,N,↵

t ,↵i
t,

1
N

PN
j=1 �(Xj,N,↵

t ,↵j,⇡
t )

, "it+1, "
0
t+1), t 2 N,

where F is a measurable function from X ⇥ A ⇥ P(X ⇥ A) ⇥ E ⇥ E0 into X , called

state transition function. The i-th individual contribution to the influencer’s gain over

an infinite horizon is defined by

JN,↵
i :=

1X

t=0

�tf
⇣
Xi,N,↵

t ,↵i
t,

1

N

NX

j=1

�
(Xj,N,↵

t ,↵j
t )

⌘
, i = 1, . . . , N,

where the reward f is a measurable real-valued function on X ⇥A⇥P(X ⇥A), assumed

to be bounded (recall that X and A are compact spaces), and � is a positive discount

factor in [0, 1). The influencer’s renormalized and expected gains are

JN,↵ :=
1

N

NX

i=1

JN,↵
i , V N,↵ := E

⇥
JN,↵

⇤
,

and the optimal value of the influencer is V N := sup↵2AN
V N,↵. Observe that the agents

are indistinguishable in the sense that the initial pair of information/state (Γi, ⇠i)i, and

idiosyncratic noises are i.i.d., and the state transition function F , reward function f , and

discount factor � do not depend on i.

Let us now consider the asymptotic problem when the number of agents N goes to

infinity. In view of the propagation of chaos argument, we expect the N -individual MDP

to converge in some sense to the following McKean-Vlasov MDP.

Let us rename Γ, ⇠ and ("t)t2N the random variables Γ1, ⇠1, and ("1t )t2N. We also

introduce A, the set of open-loop controls for the McKean-Vlasov MDP, that is, the

set of A-valued random sequences ↵ adapted to the filtration (Ft)t2N such that Ft :=

�(Γ, ⇠, ("s)st, ("
0
s)st). Given ↵ 2 A, we define the conditional McKean-Vlasov dynamic
(

X↵
0 = ⇠

X↵
t+1 = F (X↵

t ,↵t,P
0
(X↵

t ,↵t)
, "t+1, "

0
t+1), t 2 N.

(2.2.1)

Here, we denote by P
0 and E

0 the conditional probability and expectation knowing the

common noise "0, and then, given a random variable Y valued in Y, we denote by P
0
Y or

L0(Y ) its conditional law knowing "0, which is a random variable valued in P(Y) (see

Lemma 2.6.2). The influencer’s expected gain in the McKean-Vlasov model is

V ↵ := E
⇥ 1X

t=0

�tf
�
X↵

t ,↵t,P
0
(X↵

t ,↵t)

�⇤
, V := sup

↵2ΠOL

V ↵. (2.2.2)
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Problem (3.2.1)-(3.2.2) is called conditional McKean-Vlasov Markov decision process,

CMKV-MDP in short. The study of the CMKV-MDP is a priori justified by the em-

pirical efficiency of mean-field approximations. It is often preferable to have a good

understanding of the limit candidate before proving that it is indeed the limit of the

N -individual MDPs, which is why we first study it and postpone rigorous convergence

results to next chapter.

In the sequel, we make the following regularity assumptions on F and f :

(HFlip) There existsKF > 0, such that for all a 2 A, e0 2 E0, x, x0 2 X , ⌫, ⌫ 0 2 P(X⇥A),

E
⇥
d
�
F (x, a, ⌫, "11, e

0), F (x0, a, ⌫ 0, "11, e
0)
�⇤
 KF

�
d(x, x0) +W (⌫, ⌫ 0)

�
).

(Hflip) There exists Kf > 0, such that for all a 2 A, x, x0 2 X , ⌫, ⌫ 0 2 P(X ⇥A),

d(f(x, a, ⌫), f(x0, a, ⌫ 0))  Kf

�
d(x, x0) +W (⌫, ⌫ 0)

�
).

Remark 2.2.1 We stress the importance of making the regularity assumptions for F in

expectation only. For the same argument as in Remark ??, when X is finite, F cannot

be, strictly speaking, Lipschitz. However, F can be Lipschitz in expectation, e.g. once

integrated w.r.t. the idiosyncratic noise, which is a very natural assumption. 2

2.3 Lifted MDP on P(X )

In the sequel, we shall denote by G = �(Γ) the �-algebra generated by the random

variable Γ, hence representing the initial information filtration, and by L0(G;X ) the set

of G-measurable random variables valued in X . We shall assume that the initial state ⇠

2 L0(G;X ), which means that the policy has access to the agent’s initial state through

the initial information filtration G.

From now on, we denote the expected gain of the agent associated to initial state ⇠

and open-loop control ↵ V ↵(⇠), equal to

V ↵(⇠) = E

hX

t2N
�tf(Xt,↵t,P

0
(Xt,↵t)

)
i
,

where we stress the dependence upon the initial state ⇠. The value function to the

CMKV-MDP is then defined by

V (⇠) = sup
↵2A

V ↵(⇠), ⇠ 2 L0(G;X ).

Let us now show how one can lift the CMKV-MDP to a (classical) MDP on the space

of probability measures P(X ). We set F0 as the filtration generated by the common noise
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"0. Given an open-loop control ↵ 2 A, and its state process X = X⇠,↵, denote by {µt =

P
0
Xt
, t 2 N}, the random P(X )-valued process, and notice from Proposition 2.6.1 that

(µt)t is F
0-adapted. From (??), and recalling the pushforward measure notation, we have

µt+1 = F
�
·, ·,P0

(Xt,↵t)
, ·, "0t+1

�
?
�
P
0
(Xt,↵t)

⌦ �"

�
, a.s. (2.3.1)

As the probability distribution �" of the idiosyncratic noise is a fixed parameter, the

above relation means that µt+1 only depends on P
0
(Xt,↵t)

and "0t+1. Moreover, by intro-

ducing the so-called relaxed control associated to the open-loop control ↵ as

↵̂t(x) = L0
�
↵t|Xt = x

�
, t 2 N,

which is valued in Â(X ), the set of probability kernels on X ⇥A (see Lemma 2.6.2), we

see from Bayes formula that P
0
(Xt,↵t)

= µt · ↵̂t. The dynamics relation (2.3.1) is then

written as

µt+1 = F̂ (µt, ↵̂t, "
0
t+1), t 2 N,

where the function F̂ : P(X )⇥ Â(X )⇥ E0 ! P(X ) is defined by

F̂ (µ, â, e0) = F
�
·, ·, µ · â, ·, e0

�
?
�
(µ · â)⌦ �"

�
. (2.3.2)

On the other hand, by the law of iterated conditional expectation, the expected gain

can be written as

V ↵(⇠) = E

hX

t2N
�t
E
0
⇥
f(Xt,↵t,P

0
(Xt,↵t)

)
⇤i
,

with the conditional expectation term equal to

E
0
⇥
f(Xt,↵t,P

0
(Xt,↵t)

)
⇤
= f̂(µt, ↵̂t),

where the function f̂ : P(X )⇥ Â(X ) ! R is defined by

f̂(µ, â) =

Z

X⇥A
f(x, a, µ · â)(µ · â)(dx, da). (2.3.3)

The above derivation suggests to consider a MDP with state space P(X ), action

space Â(X ), a state transition function F̂ as in (2.3.2), a discount factor � 2 [0, 1), and a

reward function f̂ as in (2.3.3). A key point is to endow Â(X ) with a suitable �-algebra

in order to have measurable functions F̂ , f̂ , and F
0-adapted process ↵̂ valued in Â(X ),

so that the MDP with characteristics (P(X ), Â(X ), F̂ , f̂ ,�) is well-posed. This issue is

investigated in the next sections, first in special cases, and then in general case by a

suitable enlargement of the action space.

39



2.3.1 Case without common noise

When there is no common noise, the original state transition function F is defined from

X ⇥ A ⇥ P(X ⇥ A) ⇥ E into X , and the associated function F̂ is then defined from

P(X )⇥ Â(X ) into P(X ) by

F̂ (µ, â) = F
�
·, ·, µ · â, ·

�
?
�
(µ · â)⌦ �"

�
.

In this case, we are simply reduced to a deterministic control problem on the state space

P(X ) with dynamics

µt+1 = F̂ (µt,t), t 2 N, µ0 = µ 2 P(X ),

controlled by  = (t)t2N 2 bA, the set of deterministic sequences valued in Â(X ), and

cumulated gain/value function:

bV (µ) =

1X

t=0

�tf̂(µt,t), bV (µ) = sup
2 bA

bV (µ), µ 2 P(X ),

where the bounded function f̂ : P(X )⇥ Â(X ) ! R is defined as in (2.3.3). Notice that

there are no measurability issues for F̂ , f̂ , as the problem is deterministic and all the

quantities defined above are well-defined.

We aim to prove the correspondence and equivalence between the MKV-MDP and

the above deterministic control problem. From similar derivation as in (2.3.1)-(2.3.3)

(by taking directly law under P instead of P0), we clearly see that for any ↵ 2 A, V ↵(⇠)

= bV ↵̂(µ), with µ = L(⇠), and ↵̂ = R⇠(↵) where R⇠ is the relaxed operator

R⇠ : A �! bA
↵ = (↵t)t 7�! ↵̂ = (↵̂t)t : ↵̂t(x) = L

�
↵t|X

⇠,↵
t = x

�
, t 2 N, x 2 X .

It follows that V (⇠)  bV (µ). In order to get the reverse inequality, we have to show that

R⇠ is surjective. Notice that this property is not always satisfied: for instance, when the

�-algebra generated by ⇠ is equal to G, then for any ↵ 2 A, ↵0 is �(⇠)-measurable at time

t = 0, and thus L(↵0|⇠) is a Dirac distribution, hence cannot be equal to an arbitrary

probability kernel 0 = â 2 Â(X ). We shall then make the following randomization

hypothesis.

Rand(⇠,G): There exists a uniform random variable U ⇠ U([0, 1]), which is G-measurable

and independent of ⇠ 2 L0(G;X ).

Remark 2.3.1 The randomization hypothesis Rand(⇠,G) implies in particular that Γ

is atomless, i.e., G is rich enough, and thus P(X ) = {L(⇣) : ⇣ 2 L0(G;X )}. Furthermore,
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it means that there is extra randomness in G besides ⇠, so that one can freely randomize

via the uniform random variable U the first action given ⇠ according to any probability

kernel â. Moreover, one can extract from U , by standard separation of the decimals

of U (see Lemma 2.21 in [44]), an i.i.d. sequence of uniform variables (Ut)t2N, which
are G-measurable, independent of ⇠, and can then be used to randomize the subsequent

actions. 2

Theorem 2.3.1 (Correspondence in the no common noise case)

Assume that Rand(⇠,G) holds true. Then R⇠ is surjective from A into bA, and we have

V (⇠) = bV (µ), for µ = L(⇠). Moreover, for ✏ � 0, if ↵✏ 2 A is an ✏-optimal control for

V (⇠), then R⇠(↵
✏) 2 bA is an ✏-optimal control for bV (µ), and conversely, if ↵̂✏ 2 bA is

an ✏-optimal control for bV (µ), then any ↵✏ 2 R�1
⇠ (↵̂✏) is an ✏-optimal control for V (⇠).

Consequently, an optimal control for V (⇠) exists iff an optimal control for bV (µ) exists.

Proof. In view of the above discussion, we only need to prove the surjectivity of R⇠. Fix

a control  2 bA for the MDP on P(X ). By Lemma 2.22 in [44], for all t 2 N, there exists

a measurable function at : X ⇥ [0, 1]! A such that Pat(x,U) = t(x), for all x 2 X . It is

then clear that the control ↵ defined recursively by ↵t := at(X
⇠,↵
t , Ut), where (Ut)t is an

i.i.d. sequence of G-measurable uniform variables independent of ⇠ under Rand(⇠,Γ),

satisfies L(↵t | X
⇠,↵ = x) = t(x) (observing that Ut is independent of X

⇠,↵
t ), and thus

↵̂ = , which proves the surjectivity of R⇠. 2

Remark 2.3.2 The above correspondence result shows in particular that the value func-

tion V of the MKV-MDP is law invariant, in the sense that it depends on its initial state

⇠ only via its probability law µ = L(⇠), for ⇠ satisfying the randomization hypothesis.

2

2.3.2 Case with finite state space X and with common noise

We consider the case with common noise but when the state space X is finite, i.e., its

cardinal #X is finite, equal to n.

In this case, one can identify P(X ) with the simplex S
n�1 = {p = (pi)i=1,...,n 2

[0, 1]n :
Pn

i=1 pi = 1}, by associating any probability distribution µ 2 P(X ) to its

weights (µ({x}))x2X 2 S
n�1. We also identify the action space Â(X ) with P(A)n by

associating any probability kernel â 2 Â(X ) to (â(x))x2X 2 P(A)n, and thus Â(X ) is

naturally endowed with the product �-algebra of the Wasserstein metric space P(A).

Lemma 2.3.1 Suppose that #X = n < 1. Then, F̂ in (2.3.2) is a measurable function

from S
n�1 ⇥P(A)n ⇥E0 into S

n�1, f̂ in (2.3.3) is a real-valued measurable function on
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S
n�1 ⇥ P(A)n. Moreover, for any ⇠ 2 L0(G;X ), and ↵ 2 A, the P(A)n-valued process

↵̂ defined by ↵̂t(x) = L0(↵t|X
⇠,↵
t = x), t 2 N, x 2 X , is F

0-adapted.

Proof. By Lemma 2.6.1, it is clear, by measurable composition, that we only need to

prove that Ψ : (µ, â) 2 (P(X ), Â(X )) 7! µ · â 2 P(X ⇥ A) is measurable. However, in

this finite state space case, µ · â is here simply equal to
P

x2X µ(x)â(x) and, thus Ψ is

clearly measurable. 2

In view of Lemma 2.3.1, the MDP with characteristics (P(X ) ⌘ S
n�1, Â(X ) ⌘

P(A)n, F̂ , f̂ ,�) is well-posed. Let us then denote by bA the set of F0-adapted processes

valued in P(A)n, and given  2 bA, consider the controlled dynamics in S
n�1

µt+1 = F̂ (µt,t, "
0
t+1), t 2 N, µ0 = µ 2 S

n�1, (2.3.4)

the associated expected gain and value function

bV (µ) = E

h 1X

t=0

�tf̂(µt,t)
i
, bV (µ) = sup

2Â
bV (µ). (2.3.5)

We aim to prove the correspondence and equivalence between the CMKV-MDP and

the MDP (2.3.4)-(2.3.5). From the derivation in (2.3.1)-(2.3.3) and by Lemma 2.3.1, we

see that for any ↵ 2 A, V ↵(⇠) = bV ↵̂(µ), where µ = L(⇠), and ↵̂ = R0
⇠(↵) where R0

⇠ is

the relaxed operator

R0
⇠ : A �! bA

↵ = (↵t)t 7�! ↵̂ = (↵̂t)t : ↵̂t(x) = L0
�
↵t|X

⇠,↵
t = x

�
, t 2 N, x 2 X .

(2.3.6)

It follows that V (⇠)  bV (µ). In order to get the reverse inequality from the surjectivity

of R0
⇠ , we need again as in the no common noise case to make some randomization

hypothesis. It turns out that when X is finite, this randomization hypothesis is simply

reduced to the atomless property of Γ.

Lemma 2.3.2 Assume that Γ is atomless, i.e., G is rich enough. Then, any ⇠ 2
L0(G;X ) taking a countable number of values, satisfies Rand(⇠,Γ).

Proof. Let S be a countable set s.t. ⇠ 2 S a.s., and P[⇠ = x] > 0 for all x 2 S. Fix

x 2 S and denote by Px the probability “knowing ⇠ = x”, i.e., Px[B] := P[B,⇠=x]
P[⇠=x] , for all

B 2 F . It is clear that, endowing Ω with this probability, Γ is still atomless, and so there

exists a G-measurable random variable Ux that is uniform under Px. Then, the random

variable U :=
P

x2S Ux1⇠=x is a G-measurable uniform random variable under Px for all

x 2 S, which implies that it is a uniform variable under P, independent of ⇠. 2
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Theorem 2.3.2 (Correspondance with the MDP on P(X ) in the X finite case)

Assume that G is rich enough. Then R0
⇠ is surjective from A into bA, and V (⇠) = bV (µ),

for any µ 2 P(X ), ⇠ 2 L0(G;X ) s.t. µ = L(⇠). Moreover, for ✏ � 0, if ↵✏ 2 A is an ✏-

optimal control for V (⇠), then R0
⇠(↵

✏) 2 bA is an ✏-optimal control for bV (µ). Conversely,

if ↵̂✏ 2 bA is an ✏-optimal control for bV (µ), then any ↵✏ 2 (R0
⇠)

�1(↵̂✏) is an ✏-optimal

control for V (⇠). Consequently, an optimal control for V (⇠) exists iff an optimal control

for bV (µ) exists.

Proof. From the derivation in (2.3.4)-(2.3.6), we only need to prove the surjectivity of

R0
⇠ . Fix  2 bA and let πt 2 L0((E0)t; Â(X )) be such that t = πt(("

0
s)st). As X is

finite, by definition of the �-algebra on Â(X ), πt can be seen as a measurable function

in L0((E0)t ⇥ X ;P(A)). Let � 2 L0(A,R) be an embedding as in Lemma 2.6.2. By

Lemma 2.6.1, we know that �?πt is in L0((E0)t⇥X ;P(R)). Given m 2 P(R) we denote

by F�1
m the generalized inverse of its distribution function, and it is known that the

mapping m 2 (P(R),W) 7! F�1
m 2 (L1

caglad(R), k · k1) is an isometry and is thus measu-

rable. Therefore, F�1
�?πt

is in L0((E0)t ⇥ X ; (L1
caglad(R), k · k1)). Finally, the mapping

(f, u) 2 (L1
caglad(R), k · k1)⇥ ([0, 1],B([0, 1])) 7! f(u) 2 (R,B(R)) is measurable, since it

is the limit of the sequence n
P

i2Z 1[ i+1
n

, i+2
n

)(u)
R i+1

n
i
n

f(y)dy when n ! 1. Therefore,

the mapping

at : (E
0)t ⇥ X ⇥ [0, 1] �! A

((e0s)st, x, u) 7�! ��1 � F�1
�?πt((e0s)st,x)

(u)

is measurable. We thus define, by induction, ↵t := at(("
0
s)st, X

⇠,↵
t , Ut). By construction

and by the generalized inverse simulation method, it is clear that ↵̂t = t. 2

Remark 2.3.3 We point out that when both state space X and action space A are

finite, equipped with the metrics d(x, x0) := 1x 6=x0 , x, x0 2 X and dA(a, a
0) := 1a 6=a0 , a, a

0

2 A, the transition function F̂ and reward function f̂ of the lifted MDP on P(X ) inherits

the Lipschitz condition (HFlip) and (Hflip) used for the propagation of chaos. Indeed, it

is known that the Wasserstein distance obtained from d (resp. dA) coincides with twice

the total variation distance, and thus to the L1 distance when naturally embedding P(X )

(resp. P(A)) in [0, 1]#X (resp. [0, 1]#A). Thus, embedding Â(X ) in M#X ,#A([0, 1]), the

set of #X ⇥#A matrices with coefficients valued in [0, 1], we have

kF̂ (µ, â, e0), F̂ (⌫, â0, e0)k1  (1 +KF )(2kµ� µ0k1 + sup
x2X
kâx,· � â0x,·k1).

We obtain a similar property for f . In other words, lifting the CMKV-MDP not only

turns it into an MDP, but also its state and action spaces [0, 1]#X and [0, 1]#X⇥#A are
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very standard, and its dynamic and reward are Lipschitz functions with factors of the

order of KF and Kf according to the norm k · k1. Thus, due to the standard nature of

this MDP, most MDP algorithms can be applied and their speed will be simply expressed

in terms of the original parameters of the CMKV-MDP, KF and Kf . 2

Remark 2.3.4 As in the no common noise case, the correspondence result in the finite

state space case for X shows notably that the value function of the CMKV-MDP is

law-invariant.

The general case (common noise and continuous state space X ) raises multiple issues

for establishing the equivalence between CMKV-MDP and the lifted MDP on P(X ).

First, we have to endow the action space Â(X ) with a suitable �-algebra for the lifted

MDP to be well-posed: on the one hand, this �-algebra has to be large enough to make

the functions F̂ : P(X )⇥ Â(X )⇥ E0 ! P(X ) and f̂ : P(X )⇥ Â(X ) ! R measurable,

and on the other hand, it should be small enough to make the process ↵̂ = R0
⇠(↵) F

0-

adapted for any control ↵ 2 A in the CMKV-MDP. Beyond the well-posedness issue of

the lifted MDP, the second important concern is the surjectivity of the relaxed operator

R0
⇠ from A into bA. Indeed, if we try to adapt the proof of Theorem 2.3.2 to the case

of a continuous state space X , the issue is that we cannot in general equip Â(X ) with

a �-algebra such that L0((E0)t; Â(X )) = L0((E0)t ⇥ X ;P(A)), and thus we cannot see

πt 2 L0((E0)t; Â(X )) as an element of L0((E0)t⇥X ;P(A)), which is crucial because the

control ↵ (such that ↵̂ = ) is defined with ↵t explicitly depending upon πt(("
0
s)st, Xt).

In the next section, we shall fix these measurability issues in the general case, and

prove the correspondence between the CMKV-MDP and a general lifted MDP on P(X ).

2

2.4 General case and Bellman fixed point equation in P(X )

We address the general case with common noise and possibly continuous state space X ,

and our aim is to state the correspondence of the CMKV-MDP with a suitable lifted

MDP on P(X ) associated to a Bellman fixed point equation, characterizing the value

function, and obtain as a by-product an ✏-optimal control. We proceed as follows:

(i) We first introduce a well-posed lifted MDP on P(X ) by enlarging the action space

to P(X ⇥A), and call Ṽ the corresponding value function, which satisfies: V (⇠) 
Ṽ (µ), for µ = L(⇠).

(ii) We then consider the Bellman equation associated to this well-posed lifted MDP

on P(X ), which admits a unique fixed point, called V ?.
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(iii) Under the randomization hypothesis for ⇠, we show the existence of an ✏-randomized

feedback policy, which yields both an ✏-randomized feedback control for the CMKV-

MDP and an ✏-optimal feedback control for Ṽ . This proves that V (⇠) = Ṽ (µ) =

V ⇤(µ), for µ = L(⇠).

(iv) Under the condition that G is rich enough, we conclude that V is law-invariant and

is equal to Ṽ = V ?, hence satisfies the Bellman equation.

Finally, we show how to compute from the Bellman equation by value or policy iteration

approximate optimal strategy and value function.

2.4.1 A general lifted MDP on P(X )

We start again from the relation (2.3.1) describing the evolution of µt = P
0
Xt
, t 2 N, for

a state process Xt = X⇠,↵
t controlled by ↵ 2 A:

µt+1 = F (·, ·,P0
(Xt,↵t)

, ·, "0t+1) ? (P
0
(Xt,↵t)

⌦ �"), a.s. (2.4.1)

Now, instead of disintegrating as in Section 2.3, the conditional law of the pair (Xt,↵t),

as P0
(Xt,↵t)

= µt ·↵̂t where ↵̂ = R0
⇠(↵) is the relaxed control in (2.3.6), we directly consider

the control process αt = P
0
(Xt,↵t)

, t 2 N, which is F
0-adapted (see Proposition 2.6.1),

and valued in the space of probability measures A := P(X ⇥A), naturally endowed with

the �-algebra of its Wasserstein metric. Notice that this A-valued control α obtained

from the CMKV-MDP has to satisfy by definition the marginal constraint pr
1
?αt = µt

at any time t. In order to tackle this marginal constraint, we shall rely on the following

coupling results.

Lemma 2.4.1 (Measurable coupling)

There exists a measurable function ⇣ 2 L0(P(X )2 ⇥ X ⇥ [0, 1];X ) s.t. for any (µ, µ0) 2
P(X ), and if ⇠ ⇠ µ, then

• ⇣(µ, µ0, ⇠, U) ⇠ µ0, where U is an uniform random variable independent of ⇠.

• (i) When X ⇢ R:

E
⇥
d(⇠, ⇣(µ, µ0, ⇠, U))

⇤
= W(µ, µ0).

(ii) In general when X Polish: 8 " > 0, 9⌘ > 0 s.t.

W(µ, µ0) < ⌘ ) E
⇥
d(⇠, ⇣(µ, µ0, ⇠, U))

⇤
< ".
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Proof. See Appendix 2.6.2. 2

Remark 2.4.1 Lemma 2.4.1 can be seen as a measurable version of the well-known

coupling result in optimal transport, which states that given µ, µ0 2 P(X ), there exists

⇠ and ⇠0 random variables with L(⇠) = µ, L(⇠0) = µ0 such that W(µ, µ0) = E
⇥
d(⇠, ⇠0)]. A

similar measurable optimal coupling is proved in [28] under the assumption that there

exists a transfer function realizing an optimal coupling between µ and µ0. However,

such transfer function does not always exist, for instance when µ has atoms but not µ0.
Lemma 2.4.1 builds a measurable coupling without making such assumption (essentially

using the uniform variable U to randomize when µ has atoms). 2

From the measurable coupling function ⇣ as in Lemma 2.4.1, we define the coupling

projection p : P(X )⇥A! A by

p(µ,a) = L
�
⇣(pr1 ? a, µ, ⇠

0, U),↵0

�
, µ 2 P(X ),a 2 A,

where (⇠0,↵0) ⇠ a, and U is a uniform random variable independent of ⇠0.

Lemma 2.4.2 (Measurable coupling projection)

The coupling projection p is a measurable function from P(X ) ⇥A into A, and for all

(µ,a) 2 P(X )⇥A:

pr
1
? p(µ,a) = µ, and if pr1 ? a = µ, then p(µ,a) = a. (2.4.2)

Proof. By construction, it is clear that ⇣(µ, µ, ⇠, U) = ⇠, and so relation (2.4.2) is

obvious. The only result that is not trivial is the measurability of p. Observe that

p(µ,a) = g(µ,a, ·, ·, ·) ? (a⌦ U([0, 1])) where g is the measurable function

g : P(X )⇥ P(X ⇥A)⇥ X ⇥A⇥ [0, 1] �! X ⇥A

(µ,a, x, a, u) 7�! (⇣(pr1 ? a, µ, x, u), a)

We thus conclude by Lemma 2.6.1. 2

By using this coupling projection p, we see that the dynamics (2.4.1) can be written

as

µt+1 = F (µt,αt, "
0
t+1), t 2 N, (2.4.3)

where the function F : P(X )⇥A⇥ E0 ! P(X ) defined by

F (µ,a, e0) = F (·, ·,p(µ,a), ·, e0) ?
�
p(µ,a)⌦ �"

�
,
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is clearly measurable. Let us also define the measurable function f̃ : P(X )⇥A ! R by

f̃(µ,a) =

Z

X⇥A
f(x, a,p(µ,a))p(µ,a)(dx, da).

The MDP with characteristics (P(X ),A = P(X ⇥A), F̃ , f̃ ,�) is then well-posed. Let

us then denote by A the set of F0-adapted processes valued in A, and given an open-loop

control ν 2 A, consider the controlled dynamics

µt+1 = F (µt,νt, "
0
t+1), t 2 N, µ0 = µ 2 P(X ), (2.4.4)

with associated expected gain/value function

eV ν(µ) = E

hX

t2N
�tf̃(µt,νt)

i
, eV (µ) = sup

ν2A
eV ν(µ). (2.4.5)

Given ⇠ 2 L0(G;X ), and ↵ 2 A, we set α = L0
⇠(↵), where L0

⇠ is the lifted operator

L0
⇠ : A �! A

↵ = (↵t)t 7�! α = (αt)t : αt = P
0
(X⇠,↵

t ,↵t)
, t 2 N.

By construction from (2.4.3), we see that µt = P
0
X⇠,↵

t

, t 2 N, follows the dynamics

(2.4.4) with the control ν = L0
⇠(↵) 2 A. Moreover, by the law of iterated conditional

expectation, and the definition of f̃ , the expected gain of the CMKV-MDP can be written

as

V ↵(⇠) = E

hX

t2N
�t
E
0
⇥
f(X⇠,↵

t ,↵t,P
0
(X⇠,↵

t ,↵t)
)
⇤i

= E

hX

t2N
�tf̃(P0

X⇠,↵
t

,αt)
i

= eV α(µ), with µ = L(⇠). (2.4.6)

It follows that V (⇠)  eV (µ), for µ = L(⇠). Our goal is to prove the equality, which implies

in particular that V is law-invariant, and to obtain as a by-product the corresponding

Bellman fixed point equation that characterizes analytically the solution to the CMKV-

MDP.

2.4.2 Bellman fixed point on P(X )

We derive and study the Bellman equation corresponding to the general lifted MDP

(2.4.4)-(2.4.5) on P(X ).

By defining this MDP on the canonical space (E0)N, we identify "0 with the canonical

identity function in (E0)N, and "0t with the t-th projection in (E0)N. We also denote by
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✓ : (E0)N ! (E0)N the shifting operator, defined by ✓((e0t )t2N) = (e0t+1)t2N. Via this

identification, an open-loop control ν 2 A is a sequence (νt)t where νt is a measurable

function from (E0)t into A, with the convention that ν0 is simply a constant in A.

Given ν 2 A, and e0 2 E0, we define ~νe0 := (~νe0

t )t 2 A, where ~νe0

t (.) := νt+1(e
0, .),

t 2 N. Given µ 2 P(X ), and ν 2 A, we denote by (µµ,ν
t )t the solution to (2.4.4) on the

canonical space, which satisfies the flow property

�
µµ,ν
t+1,νt+1

�
⌘
�
µ
µµ,ν
1 ,~ν"01 (✓("0))

t , ~ν
"01
t (✓("0))

�
, t 2 N.

where ⌘ denotes the equality between functions on the canonical space. Given that

"01 ?? ✓("0)
d
= "0, we obtain that the expected gain of this MDP in (2.4.5) satisfies the

relation

eV ν(µ) = f̃(µ,ν0) + �E
h
eV ~ν"01 (µµ,ν

1 )
i
. (2.4.7)

Let us denote by L1(P(X )) the set of bounded real-valued functions on P(X ), and by

L1
m (P(X )) the subset of measurable functions in L1(P(X )). We then introduce the

Bellman “operator” T : L1
m (P(X ))! L1(P(X )) defined for any W 2 L1

m (P(X )) by:

[T W ](µ) := sup
a2A

n
f̃(µ,a) + �E

⇥
W
�
F̃ (µ,a, "01)

�⇤o
, µ 2 P(X ). (2.4.8)

Notice that the sup can a priori lead to a non measurable function T W . This Bellman

operator is consistent with the lifted MDP derived in Section 2.3, with characteristics

(P(X ), Â(X ), F̂ , f̂ ,�), although this MDP is not always well-posed. Indeed, its corre-

sponding Bellman operator is well-defined as it only involves the random variable "01
at time 1, hence only requires the measurability of e0 7! F̂ (µ, â, e0), for any (µ, â) 2
P(X )⇥ Â(X ) (which holds true), and it turns out that it coincides with T .

Proposition 2.4.1 For any W 2 L1
m (P(X )), and µ 2 P(X ), we have

[T W ](µ) = sup
â2Â(X )

[T̂ âW ](µ) = sup
a2L0(X⇥[0,1];A)

[TaW ](µ), (2.4.9)

where T̂ â and T
a are the operators defined on L1(P(X )) by

[T̂ âW ](µ) = f̂(µ, â) + �E
⇥
W
�
F̂ (µ, â, "01)

�⇤
,

[TaW ](µ) = E

h
f(⇠, a(⇠, U),L(⇠, a(⇠, U))) + �W

�
P
0
F (⇠,a(⇠,U),L(⇠,a(⇠,U)),"1,"01)

�i
,(2.4.10)

for any (⇠, U) ⇠ µ ⌦ U([0, 1]) (it is clear that the right-hand side in (2.4.10) does not

depend on the choice of such (⇠, U)). Moreover, we have

[T W ](µ) = sup
↵02L0(Ω;A)

E

h
f(⇠,↵0,L(⇠,↵0)) + �W

�
P
0
F (⇠,↵0,L(⇠,↵0),"1,"01)

�i
. (2.4.11)
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Proof. Fix W 2 L1
m (P(X )), and µ 2 P(X ). Let a be arbitrary in A. Since p(µ,a)

has first marginal equal to µ, there exists by assertion 3 in Lemma 2.6.2 a probability

kernel â 2 Â(X ) such that p(µ,a) = µ · â. Therefore, F̃ (µ,a, e0) = F̂ (µ, â, e0), f̃(µ,a)

= f̂(µ, â), which implies that [T W ](µ)  supâ2Â(X )[T̂
âW ](µ) =: T1.

Let us consider the operator R defined by

R : L0(X ⇥ [0, 1];A) �! Â(X )

a 7�! â : â(x) = L
�
a(x, U)

�
, x 2 X , U ⇠ U([0, 1]),

and notice that it is surjective from L0(X ⇥ [0, 1];A) into Â(X ), by Lemma 2.22 in

[44]. By noting that for any a 2 L0(X ⇥ [0, 1];A), and (⇠, U) ⇠ µ ⌦ U([0, 1]), we have

L
�
⇠, a(⇠, U)

�
= µ · R(a), it follows that [TaW ](µ) = [T̂ R(a)W ](µ). Since R is surjective,

this yields T1 = supa2L0(X⇥[0,1];A)[T
aW ](µ) =: T2.

Denote by T
3 the right-hand-side in (2.4.11). It is clear that T2  T

3. Conversely, let

↵0 2 L0(Ω;A). We then set a = L(⇠,↵0) 2 P(X ⇥A), and notice that the first marginal

of a is µ. Thus, p(µ,a) = L(⇠,↵0), and so

f̃(µ,a) =

Z

X⇥A
f(x, a,p(µ,a))p(µ,a)(dx, da) = E

⇥
f(⇠,↵0,L(⇠,↵0))

⇤

F̃ (µ,a, "01) = F (·, ·,p(µ,a), ·, "01) ?
�
p(µ,a)⌦ �"

�
= P

0
F (⇠,↵0,L(⇠,↵0),"1,"01)

.

We deduce that T3  [T W ](µ), which gives finally the equalities (2.4.9) and (2.4.11).

2

We state the basic properties of the Bellman operator T .

Proposition 2.4.2 Assume that (Hlip) holds true. (i) The operator T is monotone

increasing: for W1,W2 2 L1
m (P(X )), if W1  W2, then T W1  T W2. (ii) Furthermore,

it is contracting on L1
m (P(X )) with Lipschitz factor �, and admits a unique fixed point

in L1
m (P(X )), denoted by V ?, hence solution to:

V ? = T V ?.

(iii) V ? is �-Hölder, with � = min
⇣
1, | ln�|

ln(2KF )

⌘
, i.e. there exists some positive constant

K? (depending only on KF , Kf , �, and explicit in the proof), such that

��V ?(µ)� V ?(µ0)
��  K?W(µ, µ0)� , 8µ, µ0 2 P(X ).

Proof. (i) The monotonicity of T is shown by standard arguments.
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(ii) The �-contraction property of T is also obtained by standard arguments. Let us now

prove by induction that the iterative sequence Vn+1 = T Vn, with V0 ⌘ 0 is well defined

and such that

|Vn(µ)� Vn(µ
0)|  2Kf

1X

t=0

�tmin((2KF )
tW(µ, µ0),∆X ) (2.4.12)

for all n 2 N. The property is obviously satisfied for n = 0. Assume that the property

holds true for a fixed n 2 N, and let us prove it for n + 1. First of all, the inequality

(3.3.3) implies that Vn is continuous, and thus Vn 2 L1
m (P(X ). Therefore, Vn+1 = T Vn

is well defined. Fix µ, µ0 2 P(X ). In order to use the expression (2.4.11) of the Bellman

operator T , we consider an optimal coupling (⇠, ⇠0) of µ and µ0, i.e. ⇠ ⇠ µ, ⇠0 ⇠ µ0, and
E[d(⇠, ⇠0)] = W(µ, µ0), and fix an A-valued random variable ↵0. Let us start with two

preliminary estimations: under (Hlip), we have

E
⇥
|f(⇠,↵0,L(⇠,↵0))� f(⇠0,↵0,L(⇠

0,↵0))|
⇤
 Kf (E[d(⇠, ⇠

0)] +W(L(⇠,↵0),L(⇠
0,↵0)))

 Kf (E[d(⇠, ⇠
0)] + E[d((⇠,↵0), (⇠

0,↵0))])

 2KfE[d(⇠, ⇠
0)] = 2KfW(µ, µ0). (2.4.13)

Similarly, for e0 2 E0, we have

E[d(F (⇠,↵0,L(⇠,↵0), "
1
1, e

0), F (⇠0,↵0,L(⇠,↵0), "
1
1, e

0))]  2KFW(µ, µ0). (2.4.14)

Now, we prove the hereditary property. The definition of T and Vn+1 combined with

(2.4.13) and the induction hypothesis, imply that

|Vn+1(µ)� Vn+1(µ
0)|  2KfW(µ, µ0) + �E[2Kf

X
�tmin((2Kt

FW(µ1, µ
0
1),∆X )]

where µ1 = L0(F (⇠,↵0,L(⇠,↵0), "
1
1, "

0
1)) and µ0

1 = L0(F (⇠0,↵0,L(⇠
0,↵0), "

1
1, "

0
1)). By

Jensen’s inequality and (2.4.14), we have

|Vn+1(µ)� Vn+1(µ
0)|

 2Kf min(W(µ, µ0),∆X ) + �2Kf

X
�tmin((2Kt

FEW(µ1, µ
0
1),∆X )

 2Kf min(W(µ, µ0),∆X ) + �2Kf

X
�tmin((2Kt

F 2KFW(µ, µ0),∆X )

 2Kf

X
�tmin((2Kt

FW(µ, µ0),∆X ).

This concludes the induction and proves that Vn is well defined and satisfies the inequality

(3.3.3) for all n 2 N. As T is �-contracting, a standard argument from the proof of the

Banach fixed point theorem shows that (Vn)n is a Cauchy sequence in the complete

metric space L1
m (P(X )), and therefore admits a limit V ? 2 L1

m (P(X )). Notice that

V ?(µ) = lim
n

Vn+1(µ) = lim
n

T Vn(µ) = T V ?

50



by continuity of the contracting operator T .

(iii) By sending n to infinity in (3.3.3), we obtain

|V (µ)� V (µ0)|  2Kf

1X

t=0

�tmin((2KF )
tW(µ, µ0),∆X ) =: S(W(µ, µ0)).

where S(m) = 2Kf
P1

t=0 �
tmin((2KF )

tm,∆X ). If 2�KF < 1, we clearly have

S(m)  m
1X

t=0

(�2KF )
t =

m

1� �2KF
,

and so V is 1-Hölder. Let us now study the case 2�KF > 1. In this case, in particular,

2KF > 1, thus t 7! st(m) is nondecreasing, and so

S(m) 
1X

t=0

Z t+1

t
�tmin

⇥
st(m);∆X

⇤
ds

 1

�

1X

t=0

Z t+1

t
�smin

⇥
m(2KF )

s;∆X

⇤
ds

 1

�

Z 1

0
e�| ln�|smin

⇥
meln(2KF )s;∆X

⇤
ds.

Let t? be such that meln(2KF )t? = ∆X , i.e. t? = ln(∆X /m)
ln(2KF ) . Then,

Z 1

0
e�| ln�|smin

⇥
meln(2KF )s;∆X

⇤
ds  m

Z t?

0
eln(2KF �)sds+∆X

Z 1

t?
eln(�)sds

 m

ln(2KF�)

h
eln(2KF �)t? � 1

i
� ∆X

ln�
eln(�)t

?

.

After substituting t? by its explicit value, we then obtain

Z 1

0
e�| ln�|smin

⇥
meln(2KF )s;∆X

⇤
ds

 m

ln(2KF�)

h⇣
∆X

m

⌘ ln(2KF �)

ln(2KF ) � 1
i
� ∆X

ln�

✓
∆X

m

◆ ln(�)
ln(2KF )

 ∆X

⇣ 1

ln(2KF�)
� 1

ln�

⌘⇣
∆X

m

⌘ ln(�)
ln(2KF ) � m

ln(2KF�)

 O
⇣
m

min
⇥
1,

| ln �|
ln(2KF )

⇤⌘
.

This implies that V is �-Hölder and concludes the proof. 2
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Remark 2.4.2 In the proof of Proposition 2.4.2, one could also have proved that the

set S of functions W : P(X )! R such that

|W (µ)�W (µ0)|  2Kf

1X

t=0

�tmin((2KF )
tW(µ, µ0),∆X )

for all µ, µ0 2 P(X ) is a complete metric space, as it is a closed set of the complete metric

space L1
m (P(X )), and is stabilized by the contracting operator T (which is essentially

proved by replacing Vn by W in the proof). One could then have invoked the Banach

fixed point theorem on this set S, implying the existence and uniqueness of the fixed

point V ?. Notice that this argument would not work if we considered, instead of S, the

set of �-Hölder continuous functions. Indeed, while it is true that such set is stabilized

by T (it essentially follows from (2.4.13) and (2.4.14)), the set of �-Hölder continuous

functions is not closed in L1
m (P(X )) (and thus not a complete metric space): there might

indeed exist a converging sequence of �-Hölder continuous functions with multiplicative

factors (in the Hölder property) tending toward infinity, such that the limit function is

not �-Hölder anymore. 2

As a consequence of Proposition 2.4.2, we can easily show the following relation

between the value function Ṽ of the general lifted MDP, and the fixed point V ? of the

Bellman operator.

Lemma 2.4.3 For all µ 2 P(X ), we have Ṽ (µ)  V ?(µ).

Proof. From (2.4.7), we have

inf
µ2P(X )

�
V ?(µ)� eV ν(µ)

 

� inf
µ2P(X )

⇢
T V ?(µ)�

⇣
f̃(µ,ν0) + �E

h
V ?(µµ,ν

1 )
i⌘

+ �E
h
V ?(µµ,ν

1 )� eV ~ν"01 (µµ,ν
1 )

i�

� �E
h
V ?(µµ,ν

1 )� eV ~ν"01 (µµ,ν
1 )

i
� � inf

µ2P(X )

�
V ?(µ)� eV ν(µ)

 
.

This shows that infµ2P(X )(V
?(µ)� eV ν(µ)) � 0, hence

eV ν(µ)  V ?(µ) 8µ 2 P(X ).

Taking the sup over ν 2 A, we obtain the required result. 2

We aim to prove rigorously the equality Ṽ = V ?, i.e., the value function Ṽ of the

general lifted MDP satisfies the Bellman fixed point equation: Ṽ = T Ṽ , and also to show
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the existence of an ✏-optimal control for Ṽ . Notice that it cannot be obtained directly

from classical theory of MDP as we consider here open-loop controls ν 2 A while MDP

usually deals with feedback controls on finite-dimensional spaces. Anyway, following the

standard notation in MDP theory with state space P(X ) and action space A, and in

connection with the Bellman operator in (3.3.2), we introduce, for π 2 L0(P(X );A) (the

set of measurable functions from P(X ) into A) called (measurable) feedback policy, the

so-called π-Bellman operator T π on L1(P(X )), defined for W 2 L1(P(X )) by

[T πW ](µ) = f̃(µ,π(µ)) + �E
⇥
W
�
F̃ (µ,π(µ), "01)

�⇤
, µ 2 P(X ). (2.4.15)

As for the Bellman operator T , we have the basic properties on the operator T π.

Lemma 2.4.4 Fix π 2 L0(P(X );A).

(i) The operator T π is contracting on L1(P(X )) with Lipschitz factor �, and admits

a unique fixed point denoted Ṽ π.

(ii) Furthermore, it is monotone increasing: for W1,W2 2 L1(P(X )), if W1  W2,

then T πW1  T πW2.

Remark 2.4.3 It is well-known from MDP theory that the fixed point Ṽ π to the oper-

ator T π is equal to

Ṽ π(µ) = E

hX

t2N
f̃(µt,π(µt))

i
,

where (µt) is the MDP in (2.4.4) with the feedback and stationary control νπ = (νπ

t )t
2 A defined by ν

π

t = π(µt), t 2 N. In the sequel, we shall then identify by misuse of

notation Ṽ π and Ṽ ν
π

as defined in (2.4.5). 2

Our ultimate goal being to solve the CMKV-MDP, we introduce a subclass of feedback

policies for the lifted MDP.

Definition 2.4.1 (Lifted randomized feedback policy)

A feedback policy π 2 L0(P(X );A) is a lifted randomized feedback policy if there exists

a measurable function a 2 L0(P(X ) ⇥ X ⇥ [0, 1];A), called randomized feedback policy,

such that
�
⇠, a(µ, ⇠, U)

�
⇠ π(µ), for all µ 2 P(X ), with (⇠, U) ⇠ µ⌦ U([0, 1]).

Remark 2.4.4 Given a 2 L0(P(X ) ⇥ X ⇥ [0, 1];A), denote by π
a 2 L0(P(X );A) the

associated lifted randomized feedback policy, i.e., πa(µ) = L
�
⇠, a(µ, ⇠, U)

�
, for µ 2 P(X ),

and (⇠, U) ⇠ µ⌦ U([0, 1]). By definition of the ⇡-Bellman operator T π
a

in (2.4.15), and
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observing that p(µ,πa(µ)) = π
a(µ) = L

�
⇠, aµ(⇠, U)

�
, where we set aµ = a(µ, ·, ·) 2

L0(X ⇥ [0, 1] : A), we see (recalling the notation in (2.4.10)) that for all W 2 L1(P(X )),

[T π
a

W ](µ) = [TaµW ](µ), µ 2 P(X ). (2.4.16)

On the other hand, let ⇠ 2 L0(G;X ) be some initial state satisfying the randomization

hypothesis Rand(⇠,G), and denote by ↵a 2 A the randomized feedback stationary con-

trol defined by ↵a
t = a(P0

Xt
, Xt, Ut), where X = X⇠,↵a

is the state process in (??) of the

CMKV-MDP, and (Ut)t is an i.i.d. sequence of uniform G-measurable random variables

independent of ⇠. By construction, the associated lifted control αa = L0
⇠(↵

a) satisfies

α
a

t = P
0
(Xt,↵a

t )
= π

a(µt), where µt = P
0
Xt
, t 2 N. Denoting by V a := V ↵a

the associated

expected gain of the CMKV-MDP, and recalling Remark 2.4.3, we see from (2.4.6) that

V a(⇠) = Ṽ ν
π
a

(µ) = Ṽ π
a

(µ), where µ = L(⇠). 2

We show a verification type result for the general lifted MDP, and as a byproduct

for the CMKV-MDP, by means of the Bellman operator.

Proposition 2.4.3 (Verification result)

Fix ✏ � 0, and suppose that there exists an ✏-optimal feedback policy π✏ 2 L0(P(X );A)

for V ? in the sense that

V ?  T π✏V ? + ✏.

Then, ν⇡✏ 2 A is ✏
1��

-optimal for Ṽ , i.e., Ṽ π✏ � Ṽ � ✏
1��

, and we have Ṽ � V ?� ✏
1��

.

Furthermore, if π✏ is a lifted randomized feedback policy, i.e., π" = π
a✏, for some a" 2

L0(P(X )⇥X ⇥ [0, 1];A), then under Rand(⇠,G), ↵a✏ 2 A is an ✏
1��

-optimal control for

V (⇠), i.e., V a✏(⇠) � V (⇠)� ✏
1��

, and we have V (⇠) � V ?(µ)� ✏
1��

, for µ = L(⇠).

Proof. Since Ṽ π✏ = T π✏ Ṽ π✏ , and recalling from Lemma 2.4.3 that V ? � Ṽ � Ṽ π✏ , we

have for all µ 2 P(X ),
���(V ? � Ṽ π✏)(µ)

��� 
���T π✏(V ? � Ṽ π✏)(µ) + ✏

���  �kV ? � Ṽ π✏k+ ✏,

where we used the �-contraction property of T π✏ in Lemma 2.4.4. We deduce that

kV ? � Ṽ π✏k  ✏
1��

, and then, Ṽ � Ṽ π✏ � V ? � ✏
1��

, which combined with V ? � Ṽ ,

shows the first assertion. Moreover, if π" = π
a✏ is a lifted randomized feedback policy,

then by Remark 2.4.4, and under Rand(⇠,G), we have V a✏(⇠) = Ṽ π✏(µ). Recalling that

V (⇠)  Ṽ (µ), and together with the first assertion, this proves the required result. 2

Remark 2.4.5 If we can find for any ✏ > 0, an ✏-optimal lifted randomized feedback

policy for V ?, then according to Proposition 2.4.3, and under Rand(⇠,G), one could
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restrict to randomized feedback policies in the computation of the optimal value V (⇠) of

the CMKV-MDP, i.e., V (⇠) = supa2L0(P(X )⇥X⇥[0,1];A) V
a(⇠). Moreover, this would prove

that V (⇠) = Ṽ (µ) = V ?(µ), hence V is law-invariant, and satisfies the Bellman fixed

equation.

Notice that instead of proving directly the dynamic programming Bellman equation

for V , we start from the fixed point solution V ? to the Bellman equation, and show via

a verification result that V is indeed equal to V ?, hence satisfies the Bellman equation.

By the formulation (2.4.9) of the Bellman operator in Proposition 2.4.1, and the fixed

point equation satisfied by V ?, we know that for all ✏ > 0, and µ 2 P(X ), there exists

aµ✏ 2 L0(X ⇥ [0, 1];A) such that

V ?(µ)  [Taµ✏ V ?](µ) + ✏. (2.4.17)

The crucial issue is to prove that the mapping (µ, x, u) 7! a✏(µ, x, u) := aµ✏ (x, u) is measu-

rable so that it defines a randomized feedback policy a✏ 2 L0(P(X )⇥X ⇥ [0, 1];A), and

an associated lifted randomized feedback policy π
a✏ . Recalling the relation (2.4.16), this

would then show that π
a✏ is a ✏-optimal lifted randomized feedback policy for V ?, and

we could apply the verification result. 2

We now address the measurability issue for proving the existence of an ✏-optimal

randomized feedback policy for V ?. The basic idea is to construct as in (2.4.17) an

✏-optimal aµ✏ 2 L0(X ⇥ [0, 1];A) for V ?(µ) when µ lies in a suitable finite grid of P(X ),

and then “patchs” things together to obtain an "-optimal randomized feedback policy.

This is made possible under some uniform continuity property of V ?.

The next result provides a suitable discretization of the set of probability measures.

Lemma 2.4.5 (Quantization of P(X ))

Fix ⌘ > 0. Then for each finite ⌘/2-covering X⌘ of X , one can construct a finite subset

M⌘ of P(X ), of size N⌘ = n
#X⌘�1
⌘ , where n⌘ is a grid size of [0, 1], that is an ⌘-covering

of P(X ).

Proof. As X is compact, there exists a finite subset X⌘ ⇢ X such that d(x, x⌘)  ⌘/2 for

all x 2 X , where x⌘ denotes the projection of x on X⌘. Given µ 2 P(X ), and ⇠ ⇠ µ, we

denote by ⇠⌘ the quantization, i.e., the projection of ⇠ on X⌘, and by µ⌘ the discrete law

of ⇠⌘. Thus, E[d(⇠, ⇠⌘)]  ⌘/2, and therefore W(µ, µ⌘)  ⌘/2. The probability measure

µ⌘ lies in P(X⌘), which is identified with the simplex of [0, 1]#X⌘ . We then use another

grid G⌘ = { i
n⌘

: i = 0, . . . , n⌘} of [0, 1], and project its weights µ⌘(y) 2 [0, 1], y 2 X⌘,

on G⌘, in order to obtain another discrete probability measure µ⌘,n⌘ . From the dual

55



Kantorovich representation of Wasserstein distance, it is easy to see that for n⌘ large

enough, W(µ⌘, µ⌘,n⌘)  ⌘/2, and so W(µ, µ⌘,n⌘)  ⌘. We conclude the proof by noting

that µ⌘,n⌘ belongs to the set M⌘ of probability measures on X⌘ with weights valued in

the finite grid G⌘, hence M⌘ is a finite set of P(X⌘), of cardinal N⌘ = n
#X⌘�1
⌘ . 2

Remark 2.4.6 Lemma 2.4.5 is actually a simple consequence of Prokhorov’s theorem,

but the above proof has some advantages:

• it provides an explicit construction of the quantization grid M⌘,

• it explicitly gives the size of the grid as a function of ⌘, which is particularly useful

for computing the time/space complexity of algorithms,

• this special grid simultaneously quantizes P(X ) and X , in the sense that the mea-

sures from M⌘ are all supported on the finite set X⌘. This is also useful for algo-

rithms because for µ 2M⌘, â 2 Â(X ), and W 2 L1(R), the expression T̂ âW (µ)

only depends upon (â(x))x2X⌘ . Therefore, in the Bellman fixed point equation, the

computation of an ✏-argmax over the set L0(X ,P(A)) is reduced to a computation

of an ✏-argmax over the set P(A)X⌘ , which is more tractable for a computer.

We can conclude this paragraph by showing the existence of an ✏-optimal lifted

randomized feedback policy for the general lifted MDP on P(X ), and obtain as a by-

product the corresponding Bellman fixed point equation for its value function and for

the optimal value of the CMKV-MDP under randomization hypothesis.

Theorem 2.4.1 Assume that (Hlip) holds true. Then, for all ✏ > 0, there exists a lifted

randomized feedback policy π
a✏, for some a✏ 2 L0(P(X )⇥X ⇥ [0, 1];A), that is ✏-optimal

for V ?. Consequently, under Rand(⇠,G), the randomized feedback stationary control ↵a✏

2 A is ✏
1��

-optimal for V (⇠), and we have V (⇠) = Ṽ (µ) = V ?(µ), for µ = L(⇠), which

thus satisfies the Bellman fixed point equation.

Proof. Fix ✏ > 0, and given ⌘ > 0, consider a quantizing grid M⌘ = {µ1, . . . , µN⌘}

⇢ P(X ) as in Lemma 2.4.5, and an associated partition Ci
⌘, i = 1, . . . , N⌘, of P(X ),

satisfying

Ci
⌘ ⇢ B⌘(µ

i) :=
n
µ 2 P(X ) : W(µ, µi)  ⌘

o
, i = 1, . . . , N⌘.

For any µi, i = 1, . . . , N⌘, and by (2.4.17), there exists ai✏ 2 L0(X ⇥ [0, 1];A) such that

V ?(µi)  [Tai✏V ?](µi) +
✏

3
. (2.4.18)
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From the partition Ci
⌘, i = 1, . . . , N⌘ of P(X ), associated to M⌘, we construct the

function a✏ : P(X )⇥ X ⇥ [0, 1] ! A as follows. Let h1, h2 be two measurable functions

from [0, 1] into [0, 1], such that if U ⇠ U([0, 1]), then (h1(U), h2(U)) ⇠ U([0, 1])⌦2. We

then define, for all µ 2 P(X ), x 2 X , u 2 [0, 1],

a✏(µ, x, u) = ai✏
�
⇣(µ, µi, x, h1(u)), h2(u)

�
, when µ 2 Ci

⌘, i = 1, . . . , N⌘,

where ⇣ is the measurable coupling function defined in Lemma 2.4.1. Such function a"

is clearly measurable, i.e., a" 2 L0(P(X )⇥X ⇥ [0, 1];A), and we denote by π" = π
a" the

associated lifted randomized feedback policy, which satisfies

[T π"V ?](µi) = [Tai✏V ?](µi), i = 1, . . . , N⌘, (2.4.19)

by (2.4.16). Let us now check that such π✏ yields an ✏-optimal randomized feedback

policy for ⌘ small enough. For µ 2 P(X ), with (⇠, U) ⇠ µ ⌦ U([0, 1]), we set U1 :=

h1(U), U2 := h2(U), and define µ⌘ = µi, when µ 2 Ci
⌘, i = 1, . . . , N⌘, and ⇠⌘ :=

⇣(µ, µ⌘, ⇠, U1). Observe by Lemma 2.4.5 that W(µ, µ⌘)  ⌘, and by Lemma 2.4.1 that

(⇠⌘, U2) ⇠ µ⌘ ⌦ U([0, 1]). We then write for any µ 2 P(X ),

[T π✏V ?](µ)� V ?(µ) =
⇣
[T π✏V ?](µ)� [T π✏V ?](µ⌘)

⌘
+
⇣
[T π✏V ?](µ⌘)� V ?(µ⌘)

⌘

+
�
V ?(µ⌘)� V ?(µ)

�

�
⇣
[T π✏V ?](µ)� [T π✏V ?](µ⌘)

⌘
� ✏

3
� ✏

3
, (2.4.20)

where we used (3.3.6)-(2.4.19) and the fact that |V ?(µ⌘) � V ?(µ)|  ✏/3 for ⌘ small

enough by uniform continuity of V ? in Proposition 2.4.2. Moreover, by observing that

a✏(µ, ⇠, U) = a✏(µ⌘, ⇠⌘, U2) =: ↵0, so that π✏(µ) = L(⇠,↵0), π✏(µ⌘) = L(⇠⌘,↵0), we have

[T π✏V ?](µ) = E

h
f(Y ) + �V ?(P0

F (Y,"1,"01
)
i
,

[T π✏V ?](µ⌘) = E

h
f(Y⌘) + �V ?(P0

F (Y⌘ ,"1,"01
)
i
,

where Y = (⇠,↵0,π✏(µ)), and Y⌘ = (⇠⌘,↵0,π✏(µ⌘)). Under (Hlip), by using the �-

Hölder property of V ? with constant K? in Proposition 2.4.2, and by definition of the

Wasserstein distance (recall that ⇠ ⇠ µ, ⇠⌘ ⇠ µ⌘), we then get

��[T π✏V ?](µ)� [T π✏V ?](µ⌘)
��

 2KE
⇥
d(⇠, ⇠⌘)

⇤
+ �K?E

h
E
⇥
d
�
F (⇠,↵0,π✏(µ), "1, e), F (⇠⌘,↵0,π✏(µ⌘), "1, e)

��⇤
e:="01

i

 2KE
⇥
d(⇠, ⇠⌘)

⇤
+ �K?E

h
E
⇥
d
�
F (⇠,↵0,π✏(µ), "1, e), F (⇠⌘,↵0,π✏(µ⌘), "1, e)

�⇤
e:="01

i�

 CE
⇥
d(⇠, ⇠⌘)

⇤�
.
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for some constant C independent from E
⇥
d(⇠, ⇠⌘)

⇤
. Now, by the coupling Lemma 2.4.1,

one can choose ⌘ small enough so that CE
⇥
d(⇠, ⇠⌘)

⇤�  ✏
3 . Therefore,

��[T π✏V ?](µ) �
[T π✏V ?](µ⌘)

��  ✏/3, and, plugging into (2.4.20), we obtain T π✏V ?(µ)� V ?(µ) � �✏, for
all µ 2 P(X ), which means that π✏ is ✏-optimal for V ?. The rest of the assertions in the

Theorem follows from the verification result in Proposition 2.4.3. 2

Remark 2.4.7 We stress the importance of the coupling Lemma in the construction of

✏-optimal control in Theorem 3.3.1. Indeed, as we do not make any regularity assumption

on F and f with respect to the “control arguments”, the only way to make [T π✏V ?](µ)

and [T π✏V ?](µ⌘) close to each other is to couple terms to have the same control in

F and f . This is achieved by turning µ into µ⌘, ⇠ into ⇠⌘ and set ↵0 = a✏(µ, ⇠, U)

= a✏(µ⌘, ⇠⌘, U2). Turning µ into µ⌘ is a simple quantization, but turning ⇠ into ⇠⌘ is

obtained thanks to the coupling Lemma. 2

Remark 2.4.8 Theorem 3.3.1, although applying to a more general case than the results

from Section 2.3, provides a weaker result. Indeed, it does not state that any control

ν for the lifted MDP Ṽ (µ) can be represented, i.e., associated to a control ↵ for V (⇠)

such that αt := P
0
(Xt,↵t)

= νt for all t 2 N. This theorem only implies that one can

restrict the optimization to representable controls without changing the optimal value.

Consequently, contrarily to Theorem 2.3.1 and Theorem 2.3.2, here one cannot conclude

that an optimal control for V (⇠) exists iff an optimal control for Ṽ (µ) exists. More

precisely, it is possible that an optimal control ν for Ṽ (µ) exists but cannot be associated

to a control ↵ for V (⇠) such that α = ν, and thus the existence of an optimal control

for Ṽ (µ) does not guarantee the existence of an optimal control for V (⇠). 2

Remark 2.4.9 From Theorems 3.3.1 under the condition that (Hlip) holds true, the

value function V of the CMKV-MDP is law-invariant, and the supremum in the Bellman

fixed point equation for V ⌘ Ṽ with the operator T can be restricted to lifted randomized

feedback policies, i.e.,

V = T V = sup
a2L0(P(X )⇥X⇥[0,1];A)

T aV

where we set T a := T π
a

equal to

[T aW ](µ) = E

h
f(Y a(µ, ⇠, U)) + �W (P0

F (Y a(µ,⇠,U),"1,"01
)
i
,

with Y a(µ, x, u) := (x, a(µ, x, u),πa(µ)), and (⇠, U) ⇠ µ ⌦ U([0, 1]). Notice that this

Bellman fixed point equation is not the same as the Bellman fixed point equation obtained
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by optimizing over feedback controls only (not randomized nor open-loop). Let us call

Vf the associated optimal value. Then it is known that

Vf = TfVf = sup
af2L0(P(X )⇥X ;A)

T afV.

In other words, in the feedback case, the sup in the Bellman fixed point equation is only

taken over (non-randomized) feedback policies. 2

2.4.3 Open-loop vs feedback vs randomized controls

In this paper, we have mentioned different types of controls: open-loop controls, feedback

controls, and randomized feedback controls. To fix ideas, let us address three problems:

• Feedback problem: Optimizing over stationary feedback controls. We note Vf

the corresponding optimal value.

• Open-loop problem: Optimizing over open-loop controls. We note Vol the cor-

responding optimal value.

• Randomized feedback problem: Optimizing over stationary randomized feed-

back controls. We note Vr the corresponding optimal value.

When do the optimal values coincide? Theorem 3.3.1 shows that Vr is the same as

the optimal value when the optimization is performed over open-loop controls. Also, we

clearly have Vol(⇠) � Vf (⇠). The problem is now to figure out if the inequalities can be

strict. Examples 2.4.1 and 2.4.2 below illustrate that one can have Vr(⇠) > Vf (⇠).

Example 2.4.1 (Feedback problem) Let us take an example similar to Example 3.1

in [33]. Consider X = {�1, 1} = A, "1 ⇠ B(1/2), F (x, a, ⌫, e, e0) = ax, f(x, a, ⌫) =

�W(pr1 ? ⌫,B(1/2)). In other words, the reward is maximal and equal to 0 when the law

of the state is a Bernoulli(1/2) on X , and minimal equal to �1/2 when the law of the state

is a Dirac (��1 or �1). Assume that Γ ⇠ U([0, 1]) a.s.. Fix ⇠ =: x to be deterministic.

We perform the optimization over feedback controls. It is clear that the law of Xt will

always be a Dirac, and thus the gain will be Vf (⇠) =
P1

t=0 �
t(�1

2) = � 1
2(1��) which is

the worst possible gain.

Example 2.4.2 (Randomized feedback problem) Let us consider the same prob-

lem as in Example 2.4.1, and then optimize over stationary randomized feedback controls.

The randomization allows to set ↵0 = sgn(U � 1
2) and ↵t = 1 for t 2 N?. It is clear that

the strategy is optimal and leads to a gain Vr(⇠) = �1
2 .

Put the big example with explicit resolution
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2.4.4 Computing value function and ✏-optimal strategies in CMKV-

MDP

Having established the correspondence of our CMKV-MDP with lifted MDP on P(X ),

and the associated Bellman fixed point equation, we can (up to a simple discretization of

the state space in the Bellman fixed point equation) design two methods for computing

the value function and optimal strategies:

(a) Value iteration. We approximate the value function V = Ṽ = V ? by iteration from

the Bellman operator: Vn+1 = T Vn, and at iteration N , we compute an approximate

optimal randomized feedback policy aN by (recall Remark 2.4.9)

aN 2 arg max
a2L0(P(X )⇥X⇥[0,1];A)

T aVN .

From aN , we then construct an approximate randomized feedback stationary control ↵aN

according to the procedure described in Remark 2.4.4.

(b) Policy iteration. Starting from some initial randomized feedback policy a0 2
L0(P(X )⇥ X ⇥ [0, 1];A), we iterate according to:

• Policy evaluation: we compute the expected gain Ṽ π
a0 of the lifted MDP

• Greedy strategy: we compute

ak+1 2 arg max
a2L0(P(X )⇥X⇥[0,1];A)

T aṼ π
ak .

We stop at iteration K to obtain aK , and then construct an approximate randomized

feedback control ↵aK according to the procedure described in Remark 2.4.4.

Practical computation. Since a randomized feedback control ↵ is a measurable func-

tion a of (P0
X⇠,↵

t

, X⇠,↵
t , Ut), we would need to compute and store the (conditional) law of

the state process, which is infeasible in practice when X is a continuous space. In this

case, to circumvent this issue, a natural idea is to discretize the compact space X by

considering a finite subset X⌘ = {x1, . . . , xN⌘} ⇢ X associated with a partition Bi
⌘, i =

1, . . . , N⌘, of X , satisfying: Bi
⌘ ⇢

�
x 2 X : d(x, xi)  ⌘

 
, i = 1, . . . , N⌘, with ⌘ > 0. For

any x 2 X , we denote by [x]⌘ (or simply x⌘) its projection on X⌘, defined by: x⌘ = xi,

for x 2 Bi
⌘, i = 1, . . . , N⌘.

Definition 2.4.2 (Discretized CMKV-MDP) Fix ⌘ > 0. Given ⇠ 2 L0(G;X⌘), and

a control ↵ 2 A, we denote by X⌘,⇠,↵ the McKean-Vlasov MDP on X⌘ given by

X⌘,⇠,↵
t+1 =

⇥
F (X⌘,⇠,↵

t ,↵t,P
0
(X⌘,⇠,↵

t ,↵t)
, "t+1, "

0
t+1)

⇤
⌘
, t 2 N, X⌘,⇠,↵

0 = ⇠,
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i.e., obtained by projecting the state on X⌘ after each application of the transition function

F . The associated expected gain V ↵
⌘ is defined by

V ↵
⌘ (⇠) = E

h 1X

t=0

�tf
�
X⌘,⇠,↵

t ,↵t,P
0
(X⌘,⇠,↵

t ,↵t)

�i
.

Notice that the (conditional) law of the discretized CMKV-MDP on X⌘ is now valued

in a finite-dimensional space (the simplex of [0, 1]N⌘), which makes the computation of the

associated randomized feedback control accessible, although computationally challenging

due to the high-dimensionality (and beyond the scope of this paper). The next result

states that an ✏-optimal randomized feedback control in the initial CMKV-MDP can be

approximated by a randomized feedback control in the discretized CMKV-MDP.

Proposition 2.4.4 Assume that G is rich enough and (Hlip) holds true. Fix ⇠ 2
L0(G;X ). Given ⌘ > 0, let us define ⇠⌘ the projection of ⇠ on X⌘. As Rand(⇠⌘,G) holds

true, let us consider an i.i.d. sequence (U⌘,t)t2N of G-measurable uniform variables inde-

pendent of ⇠⌘. For ✏ > 0, let a✏ be a randomized feedback policy that is ✏-optimal for the

Bellman fixed point equation satisfied by V . Finally, let ↵⌘,✏ be the randomized feedback

control in the discretized CMKV-MDP recursively defined by ↵
⌘,✏
t = a✏(P

0
X⌘,✏

t
, X⌘,✏

t , U⌘,t),

t 2 N, where we set X⌘,✏
t := X

⌘,⇠⌘ ,↵✏,⌘

t . Then the control ↵⌘,✏ is O(⌘� + ✏)-optimal for

the CMKV-MDP X with initial state ⇠, where � = min
�
1, | ln�|

(ln 2K)+

�
.

Proof. Step 1. Let us show that

sup
↵2A

1X

t=0

�t
E
⇥
d(X⇠,↵

t , X
⌘,⇠⌘ ,↵
t )

⇤
 C⌘� , (2.4.21)

for some constant C that depends only on K, � and �. Indeed, notice by definition of

the projection on X⌘, and by a simple conditioning argument that for all ↵ 2 A, and t

2 N,

E
⇥
d(X⇠,↵

t+1, X
⌘,⇠⌘ ,↵
t+1 )

⇤
 ⌘ + E

⇥
∆
�
X⇠,↵

t , X
⌘,⇠⌘ ,↵
t ,↵t,P

0
(X⇠,↵

t ,↵t)
,P0

(X
⌘,⇠⌘ ,↵

t ,↵t)
, "0t+1

�⇤
,

where

∆(x, x0, a, ⌫, ⌫ 0, e0) = E[d(F (x, a, ⌫, "t+1, e
0), F (x0, a, ⌫ 0, "t+1, e

0))].

Under (Hlip), we then get

E
⇥
d(X⇠,↵

t+1, X
⌘,⇠⌘ ,↵
t+1 )

⇤
 ⌘ +KE

h
d(X⇠,↵

t , X
⌘,⇠⌘ ,↵
t ) +W(P0

X⇠,↵
t

,P0

X
⌘,⇠⌘ ,↵

t

)
i

 ⌘ + 2KE
⇥
d(X⇠,↵

t , X
⌘,⇠⌘ ,↵
t )

⇤
,
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by the same argument as in (??). Hence, the sequence (E
⇥
d(X⇠,↵

t , X
⌘,⇠⌘ ,↵
t )

⇤
)t2N satisfies

the same type of induction inequality as in (??) in Theorem ?? with ⌘ instead of MN ,

and thus the same derivation leads to the required result (2.4.21). From the Lipschitz

condition on f , we deduce by the same arguments as in (??) in Lemma ?? that

sup
↵2A

��V ↵(⇠⌘)� V ↵
⌘ (⇠⌘)

�� = O(⌘�). (2.4.22)

Step 2. Denote by µ = L(⇠), and µ⌘ = L(⇠⌘), and observe that W(µ, µ⌘)  E[d(⇠, ⇠⌘)]

 ⌘. We write

V ↵⌘,✏

(⇠)� V (⇠) =
⇥
V ↵⌘,✏

(⇠)� V ↵⌘,✏

(⇠⌘)
⇤
+
⇥
V ↵⌘,✏

(⇠⌘)� V ↵⌘,✏

⌘ (⇠⌘)
⇤

+
⇥
V ↵⌘,✏

⌘ (⇠⌘)� V (⇠⌘)
⇤
+
⇥
V (⇠⌘)� V (⇠)

⇤
=: I1 + I2 + I3 + I4.

The first and last terms I1 and I4 are smaller than O(⌘�) by the �-Hölder property of V ↵

and V in Lemma ??. By (2.4.22), the second term I2 is of order O(⌘�) as well for ⌘ small

enough. Regarding the third term I3, notice that by definition, V ↵⌘,✏

⌘ (⇠⌘) corresponds

to the gain associated to the randomized feedback policy a✏ for the discretized CMKV-

MDP. Denote by π✏ the lifted randomized feedback policy associated to a✏, and recall

by Remark 2.4.4 the identification with the lifted MDP: V ↵⌘,✏

⌘ (⇠0) = Ṽ π✏
⌘ (µ0), µ0 = L(⇠0),

where Ṽ π✏
⌘ is the expected gain of the lifted MDP associated to the discretized CMKV-

MDP, hence fixed point of the operator

[T a✏
⌘ W ](µ0) = E

h
f(Y a✏(µ0, ⇠0, U)) + �W

�
P
0⇥
F (Y a✏ (µ0,⇠0,U),"1,"01)

⇤
⌘

�i
,

Y a(µ, x, u) = (x, a(µ, x, u),πa(µ)) and (⇠0, U) ⇠ µ0 ⌦ U([0, 1]). Recalling that V (⇠0) =

Ṽ (µ0), µ0 = L(⇠0), with Ṽ fixed point to the Bellman operator T , it follows that

I3 = Ṽ π✏
⌘ (µ⌘)� Ṽ (µ⌘) =

⇣
[T a✏

⌘ Ṽ π✏
⌘ ](µ⌘)� [T a✏

⌘ Ṽ ](µ⌘)
⌘
+
⇣
[T a✏

⌘ Ṽ ](µ⌘)� [T a✏ Ṽ ](µ⌘)
⌘

+
⇣
[T a✏ Ṽ ](µ⌘)� Ṽ (µ⌘)

⌘
=: I13 + I23 + I33 .

By definition of a✏, we have |I33 |  ✏. For I23 notice that the only difference between the

operators T a✏
⌘ and T a✏ is that F is projected on X⌘. Thus,

���[T a✏
⌘ Ṽ ](µ⌘)� [T a✏ Ṽ ](µ⌘)

���  �E
h��Ṽ

�
P
0
[F (Y⌘ ,"1,"01)]⌘

�
� Ṽ

�
P
0
F (Y⌘ ,"1,"01)

���
i
,

where Y⌘ = (⇠⌘, a✏(µ, ⇠⌘, U),π✏(µ⌘)). It is clear by definition of the Wasserstein distance

and the projection on X⌘ that

W
�
P
0
[F (Y⌘ ,"1,"01)]⌘

,P0
F (Y⌘ ,"1,"01)

�
 E

0[d(F (Y⌘, "1, "
0
1), [F (Y⌘, "1, "

0
1)]⌘)]  ⌘.
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From the �-Hölder property of Ṽ in Proposition 2.4.2, we deduce that I23 = O(⌘�).

Finally, for I13 , since T a✏
⌘ is a �-contracting operator on (L1(M⌘), k · k⌘,1), we have

��[T a✏
⌘ Ṽ π✏

⌘ ](µ⌘)� [T a✏
⌘ Ṽ ](µ⌘)

��  �kṼ π✏
⌘ � Ṽ k⌘,1,

and thus |Ṽ π✏
⌘ (µ⌘) � Ṽ (µ⌘)| = |I3|  |I13 | + |I23 | + |I33 |  �kṼ π✏

⌘ � Ṽ k⌘,1 + O(⌘� + ✏).

Taking the sup over µ⌘ 2M⌘ on the left, we obtain that kṼ π✏
⌘ �Ṽ k⌘,1  1

1��
O(⌘�+✏) =

O(⌘� + ✏), and we conclude that |I3|  kṼ π✏
⌘ � Ṽ k⌘,1  O(⌘� + ✏), which ends the proof.

2

Remark 2.4.10 (Q function) In view of the Bellman fixed point equation satisfied by

the value function V of the CMKV-MDP in terms of randomized feedback policies, let

us introduce the corresponding state-action value function Q defined on P(X ) ⇥ Â(X )

by

Q(µ, â) = [T̂ âV ](µ) = f̂(µ, â) + �E
⇥
V
�
F̂ (µ, â, "01)

�⇤
,

From Proposition 2.4.1, and since V = T V , we recover the standard connection between

the value function and the state-action value function, namely V (µ) = supâ2Â(X )Q(µ, â),

from which we obtain the Bellman equation for the Q function:

Q(µ, â) = f̂(µ, â) + �E
h

sup
â02Â(X )

Q
�
µâ
1, â

0�i, (2.4.23)

where we set µâ
1 = F̂ (µ, â, "01). Notice that this Q-Bellman equation extends the equation

in [33] (see their Theorem 3.1) derived in the no common noise case and when there is

no mean-field dependence with respect to the law of the control. The Bellman equation

(2.4.23) is the starting point in a model-free framework when the state transition function

is unknown (in other words in the context of reinforcement learning) for the design of

Q-learning algorithms in order to estimate the Q-value function by Qn, and then to

compute a relaxed control by

âµn 2 arg max
â2Â(X )

Qn(µ, â), µ 2 P(X ).

From Lemma 2.22 [44], one can associate to such probability kernel âµn, a function an :

P(X ) ⇥ X ⇥ [0, 1] ! A, such that L(an(µ, x, U)) = âµn(x), µ 2 P(X ), x 2 X , where U

is an uniform random variable. In practice, one has to discretize the state space X as

in Definition 2.4.2, and then to quantize the space P(X ) as in Lemma 2.4.5 in order to

reduce the learning problem to a finite-dimensional problem for the computation of an

approximate optimal randomized feedback policy an for the CMKV-MDP. 2
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2.5 Conclusion

We have developed a theory for mean-field Markov decision processes with common

noise and open-loop controls, called CMKV-MDP, for general state space and action

space. Such problem is motivated and shown to be the asymptotic problem of a large

population of cooperative agents under mean-field interaction controlled by a social plan-

ner/influencer, and we provide a rate of convergence of the N -agent model to the CMKV-

MDP. We prove the correspondence of CMKV-MDP with a general lifted MDP on the

space of probability measures, and emphasize the role of relaxed control, which is crucial

to characterize the solution via the Bellman fixed point equation. Approximate ran-

domized feedback controls are obtained from the Bellman equation in a model-based

framework, and future work under investigation will develop algorithms in a model-free

framework, in other words in the context of reinforcement learning with many interacting

and cooperative agents.

2.6 Appendix

2.6.1 Some useful results on conditional law

Lemma 2.6.1 Let (S,S), (T, T ), and (U,U) be three measurable spaces, and F 2
L0((S,S)⇥(T, T ); (U,U)) be a measurable function, then the function F̂ : (P(S), C(S))⇥
(T, T )! (P(U), C(U)) given by F̂ (µ, x) := F (·, x) ? µ is measurable.

Proof. This follows from the measurability of the maps:

• x 2 (S,S) 7! �x 2 (P(S), C(S)),

• (µ, ⌫) 2 (P(S), C(S))⇥ (P(T ), C(T )) 7! µ⌦ ⌫ 2 (P(S ⇥ T ), C(S ⇥ T )),

• µ 2 (P(S), C(S)) 7! F ? µ 2 (P(T ), C(T )),

and the measurability of the composition (µ, x) 7! (µ, �x) 7! µ ⌦ �x 7! F ? (µ ⌦ �x) =

F̂ (µ, x). 2

Lemma 2.6.2 (Conditional law) Let (S,S) and (T, T ) be two measurable spaces.

1. If (S,S) is a Borel space, there exists a conditional law of Y knowing X.

2. If Y = '(X,Z) where Z ?? X is a random variable valued in a measurable space V

and ' : S⇥V ! T is a measurable function, then L('(x, Z)) |x=X is a conditional

law of Y knowing X. In the case S = S1 ⇥ S2, X = (X1, X2), and Y = '(X1, Z),

then P
X
Y = L('(x1, Z)) |x1=X1, and thus PX

Y is �(X1)-measurable in (P(T ), C(T )).
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3. For any probability kernel ⌫ from S to P(T ), there exists a measurable function � :

S ⇥ [0, 1]! T s.t. ⌫(s) = L(�(s, U)), for all s 2 S, where U is a uniform random

variable.

Proof. The first assertion is stated in Theorem 6.3 in [44], and the second one follows

from Fubini’s theorem. The third assertion is a consequence of the two others. 2

Proposition 2.6.1 Given an open-loop control ↵ 2 A, and an initial condition ⇠ 2
L0(X ;G), the solution X⇠,↵ to the conditional McKean-Vlasov equation is such that: for

all t 2 N, X⇠,↵
t is �(⇠,Γ, (")st, ("

0
s)st)-measurable, and P

0
(X⇠,↵

t ,↵t)
is F0

t -measurable.

Proof. We prove the result by induction on t. It is clear for t = 0. Assuming that it

holds true for some t 2 N, we write

X⇠,↵
t+1 = F (X⇠,↵

t ,↵t,P
0
(X⇠,↵

t ,↵t)
, "t+1, "

0
t+1), t 2 N.

By induction hypothesis, there is a measurable function ft+1 : X⇥G⇥Et+1⇥(E0)t+1! X

s.t. X⇠,↵
t+1 = ft+1(⇠,Γ, ("s)st+1, ("

0
s)st+1), and thus X⇠,↵

t+1 is �(⇠,Γ, (")st+1, ("
0
s)st+1)-

measurable and P
0
(X⇠,↵

t+1,↵t+1)
is �("0s, s  t+ 1)-measurable by Lemma 2.6.2. 2

2.6.2 Proof of coupling results

Lemma 2.6.1 Let U, V be two independent uniform variables, and F a distribution

function on R. We have

⇣
F�1(U), F (F�1(U))� U

⌘
d
= (F�1(U), V∆F (F�1(U)),

where we denote ∆F := F � F�.

Proof. Notice that F (F�1(U)) � U is the position (from top to bottom) of U in the

set {u 2 [0, 1], F�1(u) = F�1(U)} and is thus smaller than ∆F (F�1(U)). Now, given a

measurable function f 2 L0(A⇥ [0, 1];R), we have

E

h
f
�
F�1(U), F (F�1(U))� U)

i
(2.6.1)

= E
⇥
f(F�1(U), 0)1∆F (F�1(U))=0

⇤
+ E

⇥
f(F�1(U), F (F�1(U))� U))1∆F (F�1(U))>0

⇤
.

The second term can be decomposed as

X

∆F (c)>0

E

h
f
�
c, F (c)� U

�
1F�1(U)=c

i
=

X

∆F (c)>0

Z 1

0
f (c,∆F (c)u))∆F (c)du.
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where the equality comes from a change of variable. Summing over ∆F (c) > 0, we obtain

E
⇥
f
�
F�1(U), V∆F (F�1(U))

�
1∆F (F�1(U))>0

⇤
, and combined with (2.6.1), we get

E

h
f
�
F�1(U), F (F�1(U))� U)

i
= E

⇥
f
�
F�1(U), V∆F (F�1(U))

�⇤
,

which proves the result. 2

Lemma 2.6.2 Let X be a compact Polish space, then there exists an embedding � 2
L0(X ,R) such that

1. � and ��1 are uniformly continuous,

2. for any probability measure µ 2 P(X ), we have Im
⇣
F�1
�?µ

⌘
⇢ Im(�). In particular,

��1 � F�1
�?µ is well posed.

Proof. 1. Without loss of generality, we assume that X is bounded by 1. Fix a countable

dense family (xn)n2N in X . We define the map �1 : x 2 X 7! (d(x, xn))n2N 2 [0, 1]N. Let

us endow [0, 1]N with the metric d((un)n2N, (vn)n2N) :=
P

n�0
1
2n |un � vn|. �1 is clearly

injective and uniformly continuous (even Lipschitz). The compactness of X implies that

its inverse ��1
1 is uniformly continuous as well. Let us now consider �2 : ([0, 1]N, d) 7!

[0, 1] where �2((un)n2N) essentially groups the decimals of the real numbers un, n 2 N,

in a single real number. More precisely, let ◆ : N ! N
2 be a surjection, then we define

the k-th decimal of �2((un)n2N) as the (◆(k))2-th decimal of u(◆(k))1 (with the convention

that for a number with two possible decimal representations, we choose the one that

ends with 000...). �2 is clearly injective, uniformly continuous, as well as its inverse ��1
2 .

Thus, � := �2 ��1 defines an embedding of X into R, such that � and ��1 are uniformly

continuous.

2. F�1
�?µ being caglad, and Im(�) being closed (by compactness of X ), it is enough to

prove that F�1
�?µ(u) 2 Im� for almost every u 2 [0, 1] (in the Lebesgue sense). However,

given a uniform variable U , we have F�1
�?µ(U) ⇠ � ? µ, and thus

P(F�1
�?µ(U) 2 Im(�)) = PY⇠µ(�(Y ) 2 Im(�)) = 1.

2

Proof of Lemma 2.4.1
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(1) We first consider the case where X ⇢ R. Let us call Fµ the distribution function of µ

2 P(X ), and F�1
µ its generalized inverse. Let us define the function ⇣ : P(X )⇥P(X )⇥

X ⇥ [0, 1] ! X by

⇣(µ, µ0, x, u) := F�1
µ0

�
Fµ(x)� u∆Fµ(x)

�
,

which is measurable by noting that the measurability in µ, µ0 comes from the continuity

of

P(X ) ! L1
caglad([0, 1],X )

µ 7! F�1
µ .

By construction, we then have for any ⇠ ⇠ µ, and U, V two independent uniform variables,

independent of ⇠

(⇠, ⇣(µ, µ0, ⇠, V )) = (⇠, F�1
µ0

�
Fµ(⇠)� V∆Fµ(⇠)

�
)

d
= (F�1

µ (U), F�1
µ0

�
Fµ(F

�1
µ (U))� V∆Fµ(F

�1
µ (U))

�
)

= (F�1
µ (U), F�1

µ0

�
Fµ(F

�1
µ (U))� V∆Fµ(F

�1
µ (U))

�
)

d
=

�
F�1
µ (U), F�1

µ0 (U)
�
,

where the last equality holds by Lemma 2.6.1. It is well-known (see e.g. Theorem 3.1.2

in [75]) that
�
F�1
µ (U), F�1

µ0 (U)
�
is an optimal coupling for (µ, µ0), and so W(µ, µ0) =

E
⇥
d(⇠, ⇣(µ, µ0, ⇠, V ))

⇤
.

(2) Let us now consider the case of a general compact Polish space X . Denoting by

⇣R the ”⇣” from the case ”X ⇢ R”, and considering an embedding � 2 L0(X ,R) as in

Lemma 2.6.2, let us define

⇣(µ, µ0, x, u) := ��1(⇣R(� ? µ,� ? µ0,�(x), u)),

which is well posed by definition of ⇣R and Lemma 2.6.2. Now, fix ⇠ ⇠ µ, U a uniform

variable independent of ⇠, and define ⇠0 := ⇣(µ, µ0, ⇠, U). By definition of ⇣, its clear that

⇠0 ⇠ µ0, and

E
⇥
d(�(⇠),�(⇠0))

⇤
= W(� ? µ,� ? µ0). (2.6.2)

Fix ✏ > 0. We are looking for ⌘, � > 0 such that

W(µ, µ0) < ⌘ ) W(� ? µ,� ? µ0) < � , E
⇥
d(�(⇠),�(⇠0))

⇤
< � ) E[d(⇠, ⇠0)] < ✏.
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Let us first show that there exists � > 0 such that E[d(�(⇠),�(⇠0))] < � ) E[d(⇠, ⇠0)] < ✏.

Fix � > 0 such that d(x, x0) < � ) d(��1(x),��1(x0)) < ✏
2 . Denoting by ∆X the

diameter of X , we then have

E[d(⇠, ⇠0)]  E[d(⇠, ⇠0)1d(�(⇠),�(⇠0))<� ] +
∆X

�
E
⇥
d(�(⇠),�(⇠0))

⇤
 ✏

2
+

∆X

�
E
⇥
d(�(⇠),�(⇠0))

⇤
,

so that we can choose � = �
∆X

✏
2 . On the other hand, by uniform continuity of � and

by definition of the Wasserstein metric, there exists ⌘ > 0 such that d(µ, µ0) < ⌘ )
W(� ? µ,� ? µ0) < �. From (2.6.2), we thus conclude that d(µ, µ0) < ⌘ ) E[d(⇠, ⇠0)] < ✏.

2
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Chapter 3

Chaos propagation of N-agent

Markov decision processes with

common noise and open-loop

controls

Abstract. In this chapter, we study a N -agent Markov Decision Process (MDP) with com-

mon noise, infinite horizon, and where the optimization is performed open-loop controls. We

first obtain the Bellman fixed point equation for this problem and the reduction to feedback con-

trols. Then, by comparing it with the fixed point Bellman equation of the associated mean-field

approximation studied in previous chapter (CMKVMDP), we obtain the propagation of chaos

of the optimal value functions of the N -agent MDP to the CMKVMDP when N ! +1, with

some convergence rate, denoted by O(Mγ
N
). We also provide ways to build ("+O(Mγ

N
))-optimal

policies for the N -agent MDP from "-optimal policies for the CMKVMDP, and vice-versa. We

finally provide a concrete application of the propagation of chaos result, by approximately solv-

ing an N -agent advertising problem under social influence via the resolution of the associated

CMKVMDP.

3.1 Introduction

This chapter is a companion work to the previous chapter. In the previous chapter,

we formulated a N -agent Markov Decision Process, simply to naturally introduce the

associated McKean-Vlasov Markov Decision Process, via the so-called mean-field approx-

imation. The mean-field approximation is a procedure consisting in replacing empirical
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distributions by theoretical ones in a dynamic system. This allows to formally obtain

a different problem called the mean-field, or McKean-Vlasov, “limit” of the problem.

This procedure comes from statistical physics in the study of large dynamic particle

systems. Besides allowing to define another problem, the underlying belief is that this

McKean-Vlasov problem must be, in some ways, “close” to the original N -agent problem

it was formally derived from. This belief initially comes from experience, in the sense

that such procedure has been applied many times, for many problems, and that one has

experimentally observe the proximity of the N -agent and the McKean-Vlasov problems

in most cases. Besides the empirical evidences, mathematical justifications of this phe-

nomenon have been rigorously obtained for large classes of problems. It is thus now

acknowledged that 1) the mean-field approximation is likely to yield a Mckean-Vlasov

problem that is close to the N -agent base model, and 2) that, when it is indeed the case,

the mathematical arguments to prove it rely on extensions of the law of large numbers.

It is now very standard to first formally derive the McKean-Vlasov MDP, study it in

detail, and then only, prove that the N -agent MDPs “converge” to it as N !1.

A detailed study of the McKean-Vlasov MDP limit candidate was made in previous

chapter. We shall now use our knowledge about this McKean-Vlasov MDP to establish

the propagation of chaos of the N -agent MDPs, i.e. their convergence to the McKean-

Vlasov MDP from previous chapter as N !1.

We point out the work [49], which is the first paper to rigorously connect mean-field

control to large systems of controlled processes, see also the recent paper [29], and refer

to the books [8], [15] for an overview of the subject.

Main contributions. In this paper, we introduce a general N -individual Markov De-

cision Process in discrete time framework in the presence of common noise, and when

optimization is performed over open-loop controls on infinite horizon, and link it to the

associated McKean-Vlavov Markov Decision Process obtained by means of a mean-field

approximation procedure.

Our first contribution is to provide a detailed study of the N -agent MDP, in partic-

ular yielding the Bellman fixed point equation and the reduction to stationary feedback

policies.

Our second and main contribution is to rigorously connect the N -agent MDPs to the

McKean-Vlasov MDP formally obtained via a mean-field approximation procedure. We

prove the following results:

• Propagation of chaos of the value functions, i.e. the uniform convergence, as the

number of interacting agents N tends to infinity, of the optimal value function of

the N -individual MDP towards the optimal value function of the CMKV-MDP.
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• We provide simple ways to turn any close-to-optimal stationary randomized feed-

back policies of the McKean-Vlasov MDP into a close-to-optimal randomized feed-

back policy for the N -individual MDP, and vice-versa.

Furthermore, by relying on rate of convergence in Wasserstein distance of the empirical

measure, we give a rate of convergence for the limiting CMKV-MDP under suitable

Lipschitz assumptions on the state transition and reward functions, which is new to the

best of our knowledge.

Finally, we illustrate the usefulness of such chaos propagation result with an example

that can be explicitly solved in the mean-field approximation.

Outline of the paper. The rest of the paper is organized as follows. Section 3.2

carefully formulates both the N -individual model and the CMKV-MDP. In Section 3.3,

we establish the Bellman fixed point equation for the N -individual MDP, as well as the

reduction to stationary feedback controls. Then, in Section 3.4, we show the several

connections between the N -individual and the McKean-Vlasov MDP, with rates of con-

vergence, when N goes to infinity. We then in Section 3.5 describe and study a concrete

example. We finally conclude in Section 3.6 by discussing the concrete implications of

these results for the N -individual MDP.

Notation. When (Y, d) is a compact metric space, the set P(Y) of probability measures

on Y is equipped with the Wasserstein distance

W(µ, µ0) = inf
nZ

Y2

d(y, y0)µ(dy, dy0) : µ 2 Π(µ, µ0)
o
,

where Π(µ, µ0) is the set of probability measures on Y ⇥Y with marginals µ and µ0, i.e.,
pr

1
? µ = µ, and pr

2
? µ = µ0.

3.2 The N-agent Markov Decision Process

We formulate the mean-field Markov Decision Process (MDP) in a large population

model with indistinguishable agents i 2 N
⇤ = N \ {0}.

Let X (the state space) and A (the action space) be two compact Polish spaces

equipped respectively with their metric d and dA. We denote by P(X ) (resp. P(A))

the space of probability measures on X (resp. A) equipped respectively with their

Wasserstein distance W and WA. We also consider the product space X ⇥ A, equipped

with the metric d((x, a), (x0, a0)) = d(x, x0) + dA(a, a
0), x, x0 2 X , a, a0 2 A, and the

associated space of probability measure P(X⇥A), equipped with its Wasserstein distance

W . Let G, E, and E0 be three measurable spaces, representing respectively the initial

information, idiosyncratic noise, and common noise spaces.
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Let (Ω,F ,P) be a probability space on which are defined the following family of

mutually i.i.d. random variables

• (Γi, ⇠i)i2N? (initial informations and initial states) valued in G⇥ X

• ("it)i2N?,t2N (idiosyncratic noises) valued in E with probability distribution �"

• "0 := ("0t )t2N (common noise) valued in E0.

We assume that F contains an atomless random variable, i.e., F is rich enough, so that

any probability measure ⌫ on X (resp. A or X ⇥ A) can be represented by the law of

some random variable Y on X (resp. A or X ⇥A), and we write Y ⇠ ⌫, i.e., L(Y ) = ⌫.

Given N 2 N
⇤, we denote by AN the set of open-loop controls for the N -individual

MDP, that is, the set of AN -valued random sequences ↵, adapted to the filtration

(FN,t)t2N defined by FN,t = �(Γi, ⇠i, ("is)st, i  N, ("0s)st).

Given ↵ 2 AN , the state process of agent i = 1, . . . , N in an N -agent MDP is given

by the dynamical system
(

Xi,N,↵
0 = ⇠i

Xi,N,⇡
t+1 = F (Xi,N,↵

t ,↵i
t,

1
N

PN
j=1 �(Xj,N,↵

t ,↵j,⇡
t )

, "it+1, "
0
t+1), t 2 N,

where F is a measurable function from X ⇥ A ⇥ P(X ⇥ A) ⇥ E ⇥ E0 into X , called

state transition function. The i-th individual contribution to the influencer’s gain over

an infinite horizon is defined by

JN,↵
i :=

1X

t=0

�tf
⇣
Xi,N,↵

t ,↵i
t,

1

N

NX

j=1

�
(Xj,N,↵

t ,↵j
t )

⌘
, i = 1, . . . , N,

where the reward f is a measurable real-valued function on X ⇥A⇥P(X ⇥A), assumed

to be bounded (recall that X and A are compact spaces), and � is a positive discount

factor in [0, 1). The influencer’s renormalized and expected gains are

JN,↵ :=
1

N

NX

i=1

JN,↵
i , V N,↵ := E

⇥
JN,↵

⇤
,

and the optimal value of the influencer is V N := sup↵2AN
V N,↵. Observe that the agents

are indistinguishable in the sense that the initial pair of information/state (Γi, ⇠i)i, and

idiosyncratic noises are i.i.d., and the state transition function F , reward function f , and

discount factor � do not depend on i.

Let us now consider the asymptotic problem when the number of agents N goes to

infinity. In view of the propagation of chaos argument, we expect the N -individual MDP

to converge in some sense to the following McKean-Vlasov MDP.
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Let us rename Γ, ⇠ and ("t)t2N the random variables Γ1, ⇠1, and ("1t )t2N. We also

introduce A, the set of open-loop controls for the McKean-Vlasov MDP, that is, the

set of A-valued random sequences ↵ adapted to the filtration (Ft)t2N such that Ft :=

�(Γ, ⇠, ("s)st, ("
0
s)st). Given ↵ 2 A, we define the conditional McKean-Vlasov dynamic
(

X↵
0 = ⇠

X↵
t+1 = F (X↵

t ,↵t,P
0
(X↵

t ,↵t)
, "t+1, "

0
t+1), t 2 N.

(3.2.1)

Here, we denote by P
0 and E

0 the conditional probability and expectation knowing the

common noise "0, and then, given a random variable Y valued in Y, we denote by P
0
Y or

L0(Y ) its conditional law knowing "0, which is a random variable valued in P(Y) (see

Lemma 2.6.2). The influencer’s expected gain in the McKean-Vlasov model is

V ↵ := E
⇥ 1X

t=0

�tf
�
X↵

t ,↵t,P
0
(X↵

t ,↵t)

�⇤
, V := sup

↵2ΠOL

V ↵. (3.2.2)

In the sequel, we make the following regularity assumptions on F and f :

(HFlip) There existsKF > 0, such that for all a 2 A, e0 2 E0, x, x0 2 X , ⌫, ⌫ 0 2 P(X⇥A),

E
⇥
d
�
F (x, a, ⌫, "11, e

0), F (x0, a, ⌫ 0, "11, e
0)
�⇤
 KF

�
d(x, x0) +W (⌫, ⌫ 0)

�
).

(Hflip) There exists Kf > 0, such that for all a 2 A, x, x0 2 X , ⌫, ⌫ 0 2 P(X ⇥A),

d(f(x, a, ⌫), f(x0, a, ⌫ 0))  Kf

�
d(x, x0) +W (⌫, ⌫ 0)

�
).

Remark 3.2.1 We stress the importance of making the regularity assumptions for F in

expectation only. For the same argument as in Remark ??, when X is finite, F cannot

be, strictly speaking, Lipschitz. However, F can be Lipschitz in expectation, e.g. once

integrated w.r.t. the idiosyncratic noise, which is a very natural assumption. 2

3.3 Bellman fixed point equation for the N-agent MDP

We derive and study the Bellman equation corresponding to N -agent MDP, seen as a

Markov Decision Process with state space XN , action space AN , state transition function

F (x,a, (ei)iN , e0) =
⇣
F (xi,ai,

1

N

NX

n=1

�xn,an , e
i, e0)

⌘
iN

and reward function

f(x,ν0) =
1

N

NX

i=1

f
⇣
xi,ai,

1

N

NX

n=1

�xn,an

⌘
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By defining this MDP on the canonical space (EN , E0)N, we identify (("i)iN , "0)

with the canonical identity function in (EN , E0)N, and "it (resp. "
0
t ) with the projection

((ei)iN , e0) 7! eit for all ((e
i)iN , e0) 2 (EN , E0)N. We also denote by ✓ : (EN , E0)N !

(EN , E0)N the shifting operator, defined by ✓((eit)iN , e0t )t2N = ((eit+1)iN , e0t+1)t2N. Via
this identification, an open-loop control ν 2 A is a sequence (νt)t where νt is a measur-

able function from (EN , E0)t into A, with the convention that ν0 is simply a constant

in A. Given ν 2 A, and ((ei)iN , e0) 2 (EN , E0)N, we define ~ν(ei1)iN ,e01 := (~ν
(ei1)iN ,e01
t )t

2 A, where ~ν
(ei1)iN ,e01
t (.) := νt+1((e

i
1)iN , e01, .), t 2 N. Given x 2 XN , and ν 2 A, we

denote by (xx,νt )t the solution to (2.4.4) on the canonical space, which satisfies the flow

property

�
xx,νt+1,νt+1

�
⌘
�
x
xx,ν
1 ,~ν

("i1)iN,"01 (✓(("i)iN ,"0))
t , ~ν("i1)iN ,"01(✓(("i)iN , "0))

�
, t 2 N.

where ⌘ denotes the equality between functions on the canonical space. Given that

(("i1)iN , "01) ?? ✓(("i)iN , "0))
d
= ("i)iN , "0), we obtain that the expected gain of this

MDP in (2.4.5) satisfies the relation

V ν(x) = f(x,ν0) + �E
h
V ~ν

("i1)iN,"01
(xx,ν1 )

i
. (3.3.1)

Let us denote by L1(XN ) the set of bounded real-valued functions on XN , and by

L1
m (XN ) the subset of measurable functions in L1(XN ). We then introduce the Bellman

“operator” T : L1
m (XN )! L1(XN ) defined for any W 2 L1

m (XN ) by:

[T W ](x) := sup
a2A

n
f(x,a) + �E

⇥
W
�
F (x,a, ("i1)iN , "01)

�⇤o
, x 2 XN . (3.3.2)

Notice that the sup can a priori lead to a non measurable function T W .

We state the basic properties of the Bellman operator T .

Proposition 3.3.1 Assume that (Hlip) holds true. (i) The operator T is monotone

increasing: for W1,W2 2 L1
m (XN ), if W1  W2, then T W1  T W2. (ii) Furthermore,

it is contracting on L1
m (XN ) with Lipschitz factor �, and admits a unique fixed point in

L1
m (XN ), denoted by V ?, hence solution to:

V ? = T V ?.

(iii) V ? is �-Hölder, with � = min
⇣
1, | ln�|

ln(2KF )

⌘
, i.e. there exists some positive constant

K? (depending only on KF , Kf , �, and explicit in the proof), such that

��V ?(x)� V ?(x0)
��  K?dN (x, x0)� , 8x, x0 2 XN .

74



Proof. (i) The monotonicity of T is shown by standard arguments.

(ii) The �-contraction property of T is also obtained by standard arguments. Let us now

prove by induction that the iterative sequence Vn+1 = T Vn, with V0 ⌘ 0 is well defined

and such that

|Vn(x)� Vn(x
0)|  2Kf

1X

t=0

�tmin((2KF )
tdN (x, x0),∆X ) (3.3.3)

for all n 2 N. The property is obviously satisfied for n = 0. Assume that the property

holds true for a fixed n 2 N, and let us prove it for n + 1. First of all, the inequality

(3.3.3) implies that Vn is continuous, and thus Vn 2 L1
m (XN . Therefore, Vn+1 = T Vn is

well defined. Fix x, x0 2 XN . Fix an A-valued random variable ↵0. Let us start with

two preliminary estimations: under (Hlip), we clearly have

E
⇥
|f(x,↵0)� f(x0,↵0)|

⇤
 2KfdN (x, x0). (3.3.4)

Similarly, for e0 2 E0, we have

E[d(F (x,↵0, ("
i
1)iN , e0),F (x0,↵0, ("

i
1)iN , e0))]  2KFdN (x, x0). (3.3.5)

Now, we prove the hereditary property. The definition of T and Vn+1 combined with

(3.3.4) and the induction hypothesis, imply that

|Vn+1(x)� Vn+1(x
0)|  2KfdN (x, x0) + �E[2Kf

X
�tmin((2Kt

FdN (x1, x
0
1),∆X )]

where x1 = F (x,↵0, ("
i
1)iN , e0) and x01 = F (x0,↵0, ("

i
1)iN , e0). By Jensen’s inequality

and (3.3.5), we have

|Vn+1(x)� Vn+1(x
0)|

 2Kf min(dN (x, x0),∆X ) + �2Kf

X
�tmin((2Kt

FEdN (x1, x
0
1),∆X )

 2Kf min(dN (x, x0),∆X ) + �2Kf

X
�tmin((2Kt

F 2KFdN (x, x0),∆X )

 2Kf

X
�tmin((2Kt

FdN (x, x0),∆X ).

This concludes the induction and proves that Vn is well defined and satisfies the inequality

(3.3.3) for all n 2 N. As T is �-contracting, a standard argument from the proof of the

Banach fixed point theorem shows that (Vn)n is a Cauchy sequence in the complete

metric space L1
m (XN ), and therefore admits a limit V ? 2 L1

m (XN ). Notice that

V ?(x) = lim
n

Vn+1(x) = lim
n

T Vn(x) = T V ?

by continuity of the contracting operator T .
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(iii) By sending n to infinity in (3.3.3), we obtain

|V ?(x)� V ?(x0)|  2Kf

1X

t=0

�tmin((2KF )
tdN (x, x0),∆X ) =: S(dN (x, x0)).

where S(m) = 2Kf
P1

t=0 �
tmin((2KF )

tm,∆X ). If 2�KF < 1, we clearly have

S(m)  m
1X

t=0

(�2KF )
t =

m

1� �2KF
,

and so V is 1-Hölder. Let us now study the case 2�KF > 1. In this case, in particular,

2KF > 1, thus t 7! st(m) is nondecreasing, and so

S(m) 
1X

t=0

Z t+1

t
�tmin

⇥
st(m);∆X

⇤
ds

 1

�

1X

t=0

Z t+1

t
�smin

⇥
m(2KF )

s;∆X

⇤
ds

 1

�

Z 1

0
e�| ln�|smin

⇥
meln(2KF )s;∆X

⇤
ds.

Let t? be such that meln(2KF )t? = ∆X , i.e. t? = ln(∆X /m)
ln(2KF ) . Then,

Z 1

0
e�| ln�|smin

⇥
meln(2KF )s;∆X

⇤
ds  m

Z t?

0
eln(2KF �)sds+∆X

Z 1

t?
eln(�)sds

 m

ln(2KF�)

h
eln(2KF �)t? � 1

i
� ∆X

ln�
eln(�)t

?

.

After substituting t? by its explicit value, we then obtain
Z 1

0
e�| ln�|smin

⇥
meln(2KF )s;∆X

⇤
ds

 m

ln(2KF�)

h⇣
∆X

m

⌘ ln(2KF �)

ln(2KF ) � 1
i
� ∆X

ln�

✓
∆X

m

◆ ln(�)
ln(2KF )

 ∆X

⇣ 1

ln(2KF�)
� 1

ln�

⌘⇣
∆X

m

⌘ ln(�)
ln(2KF ) � m

ln(2KF�)

 O
⇣
m

min
⇥
1,

| ln �|
ln(2KF )

⇤⌘
.

This implies that V is �-Hölder and concludes the proof. 2

Remark 3.3.1 In the proof of Proposition 2.4.2, one could also have proved that the

set S of functions W : XN ! R such that

|W (x)�W (x0)|  2Kf

1X

t=0

�tmin((2KF )
tdN (x, x0),∆X )
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for all x, x0 2 XN is a complete metric space, as it is a closed set of the complete metric

space L1
m (XN ), and is stabilized by the contracting operator T (which is essentially

proved by replacing Vn by W in the proof). One could then have invoked the Banach

fixed point theorem on this set S, implying the existence and uniqueness of the fixed

point V ?. Notice that this argument would not work if we considered, instead of S, the

set of �-Hölder continuous functions. Indeed, while it is true that such set is stabilized

by T (it essentially follows from (3.3.4) and (3.3.5)), the set of �-Hölder continuous

functions is not closed in L1
m (XN ) (and thus not a complete metric space): there might

indeed exist a converging sequence of �-Hölder continuous functions with multiplicative

factors (in the Hölder property) tending toward infinity, such that the limit function is

not �-Hölder anymore. 2

As a consequence of Proposition 3.3.1, we can easily show the following relation

between the value function V of the general lifted MDP, and the fixed point V ? of the

Bellman operator.

Lemma 3.3.1 For all x 2 XN , we have V (x)  V ?(x).

Proof. From (3.3.1), we have

inf
x2XN

�
V ?(x)� V ν(x)

 

� inf
x2XN

⇢
T V ?(x)�

⇣
f(x,ν0) + �E

h
V ?(xx,ν1 )

i⌘
+ �E

h
V ?(xx,ν1 )� V ~ν"01 (xx,ν1 )

i�

� �E
h
V ?(xx,ν1 )� V ~ν"01 (xx,ν1 )

i
� � inf

x2XN

�
V ?(x)� V ν(x)

 
.

This shows that infx2XN (V ?(x)� V ν(x)) � 0, hence

V ν(x)  V ?(x) 8x 2 XN .

Taking the sup over ν 2 A, we obtain the required result. 2

We aim to prove rigorously the equality V = V ?, i.e., the value function V of the

general lifted MDP satisfies the Bellman fixed point equation: V = T V , and also to

show the existence of ✏-optimal stationary feedback control for V .

A stationary feedback policy is a measurable function π 2 L0(XN ;A) (the set of

measurable functions from XN into A). The associated stationary feedback control is

the unique control ν⇡ satisfying the constraint νt = ⇡(Xx,ν
t ) for all t 2 N. The flow

property applied to this control clearly implies that V ν
⇡
is a fixed point of the operator

T π on L1(XN ), defined for W 2 L1(XN ) by

[T πW ](x) = f(x,π(x)) + �E
⇥
W
�
F (x,π(x), ("i1)iN , "01)

�⇤
, x 2 XN .
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By misuse of notation, we shall identify V π and V ν
π

. We have the basic properties on

the operator T π.

Lemma 3.3.2 Fix π 2 L0(XN ;A).

(i) The operator T π is contracting on L1(XN ) with Lipschitz factor �, and V π is its

unique fixed point.

(ii) Furthermore, it is monotone increasing: for W1,W2 2 L1(XN ), if W1  W2, then

T πW1  T πW2.

We show a verification type result for the N -individual MDP, by means of the Bellman

operator.

Proposition 3.3.2 (Verification result)

Fix ✏ � 0, and suppose that there exists an ✏-optimal feedback policy π✏ 2 L0(XN ;A)

for V ? in the sense that

V ?  T π✏V ? + ✏.

Then, ν⇡✏ 2 A is ✏
1��

-optimal for V , i.e., V π✏ � V � ✏
1��

, and we have V � V ?� ✏
1��

.

Proof. Since V π✏ = T π✏V π✏ , and recalling from Lemma 3.3.1 that V ? � V � V π✏ , we

have for all x 2 XN ,
���(V ? � V π✏)(x)

��� 
���T π✏(V ? � V π✏)(x) + ✏

���  �kV ? � V π✏k+ ✏,

where we used the �-contraction property of T π✏ in Lemma 3.3.2. We deduce that

kV ? � V π✏k  ✏
1��

, and then, V � Ṽ π✏ � V ? � ✏
1��

, which combined with V ? � V ,

concludes the proof. 2

We can conclude this paragraph by showing the existence of an ✏-optimal lifted

randomized feedback policy for the general lifted MDP on XN , and obtain as a by-

product the corresponding Bellman fixed point equation for its value function and for

the optimal value of the CMKV-MDP under randomization hypothesis.

Theorem 3.3.1 Assume that (Hlip) holds true. Then, for all ✏ > 0, there exists feedback

policy π that is ✏-optimal for V ?. Consequently, the feedback stationary control ν⇡ 2 A

is ✏
1��

-optimal for V (x), and we have V (x) = V ?(x), which thus satisfies the Bellman

fixed point equation.
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Proof. Fix ✏ > 0, and given ⌘ > 0, consider a quantizing grid M⌘ = {x1, . . . , xN⌘} ⇢
XN , and an associated partition Ci

⌘, i = 1, . . . , N⌘, of X
N , satisfying

Ci
⌘ ⇢ B⌘(x

i) :=
n
x 2 XN : dN (x, xi)  ⌘

o
, i = 1, . . . , N⌘.

For any xi, i = 1, . . . , N⌘, and by (2.4.17), there exists ⇡i
" 2 L0(XN ;AN ) such that

V ?(xi)  T ⇡i
"V ?(xi) +

✏

3
. (3.3.6)

From the partition Ci
⌘, i = 1, . . . , N⌘ of XN , associated to M⌘, we construct the function

⇡ : XN ! AN as follows: we define, for all x 2 XN ,

⇡"(x) = ⇡i, when x 2 Ci
⌘, i = 1, . . . , N⌘,

Such function ⇡" is clearly measurable. Let us now check that such π✏ yields an ✏-

optimal feedback policy for ⌘ small enough. For x 2 XN , we define x⌘ = xi, when x 2
Ci
⌘, i = 1, . . . , N⌘. Observe that dN (x, x⌘)  ⌘. We then write for any x 2 XN ,

[T π✏V ?](x)� V ?(x) =
⇣
[T π✏V ?](x)� [T π✏V ?](x⌘)

⌘
+
⇣
[T π✏V ?](x⌘)� V ?(x⌘)

⌘

+
�
V ?(x⌘)� V ?(x)

�

�
⇣
[T π✏V ?](x)� [T π✏V ?](x⌘)

⌘
� ✏

3
� ✏

3
, (3.3.7)

where we used (3.3.6)-(2.4.19) and the fact that |V ?(x⌘) � V ?(x)|  ✏/3 for ⌘ small

enough by uniform continuity of V ? in Proposition 3.3.1. Moreover, by observing that

⇡"(x) = ⇡"(x⌘) =: ↵0, we have

[T π✏V ?](x) = E

h
f(x,↵0) + �V ?(F (x,↵0, ("

i
1)iN , "01))

i
,

[T π✏V ?](x⌘) = E

h
f(x⌘,↵0) + �V ?(F (x⌘,↵0, ("

i
1)iN , "01))

i
,

Under (Hlip), by using the �-Hölder property of V ? with constant K? in Proposition

3.3.1, we then get
��[T π✏V ?](x)� [T π✏V ?](x⌘)

��

 2Kd(x, x⌘) + �K?E

h
E
⇥
d
�
F (x,↵0, ("

i
1)iN , e),F (x⌘,↵0, ("

i
1)iN , e)

��⇤
e:="01

i

 2Kd(x, x⌘) + �K?E

h
E
⇥
d
�
F (x,↵0, ("

i
1)iN , e),F (x⌘,↵0, ("

i
1)iN , e)

�⇤
e:="01

i�

 CdN (x, x⌘)
�  C⌘� .

for some constant C. Therefore,
��[T π✏V ?](x) � [T π✏V ?](x⌘)

��  ✏/3, and, plugging into

(3.3.7), we obtain T π✏V ?(x) � V ?(x) � �✏, for all x 2 XN , which means that π✏ is

✏-optimal for V ?. The rest of the assertions in the Theorem follows from the verification

result in Proposition 3.3.2. 2
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3.4 Propagation of chaos results

In this section, we establish propagation of chaos results between the N -individual MDP

and the limiting McKean-Vlasov MDP.

We compare the optimal values of each problem. The first step is to compare the

Bellman operators. Let a(⇠, U) be a randomized feedback policy, and let a be a random

action valued in AN . Let us denote

✏ := E[W(P⇠,a(⇠,U),
1

N

NX

n=1

�xn,an)]

Our goal is to compare T aV ? to T a
NV ?.

Lemma 3.4.1 We have

|E[T aV ? � T a
NV ?]|  2(Kf + �KF )E[W(P⇠,a(⇠,U),

1

N

NX

n=1

�xn,an)] + �KFMN

Proof. We have

E[T aV ? � T a
NV ?]

= E

h
E

⇠⇠ 1
N

P
�xn

h
f(⇠, a(⇠, U),P⇠,a(⇠,U)) + �V ?

�
P
0
F (⇠,a(⇠,U),L(⇠,a(⇠,U)),"n1 ,"

0
1

�i

�
⇣ 1

N

NX

i=1

f(xi,ai,
1

N

NX

n=1

�xn,an) + �V ?
� 1
N

NX

i=1

�F (xi,ai, 1
N

PN
n=1 �xi,ai ,"

i
1,"

0
1

�⌘i

= E

h
E

⇠⇠ 1
N

P
�xn

h
f(⇠, a(⇠, U),P⇠,a(⇠,U))

i
� 1

N

NX

i=1

f(xi,ai,
1

N

NX

n=1

�xn,an)
i

+ �E
h

E
⇠⇠ 1

N

P
�xn

h
V ?
�
P
0
F (⇠,a(⇠,U),L(⇠,a(⇠,U)),"n1 ,"

0
1

�i
� V ?

� 1
N

NX

i=1

�F (xi,ai, 1
N

PN
n=1 �xi,ai ,"

i
1,"

0
1

�⌘i

It is easy to show that we have

E
⇠⇠ 1

N

P
�xn

h
f(⇠, a(⇠, U),P⇠,a(⇠,U))

i
� 1

N

NX

i=1

f(xi,ai,
1

N

NX

n=1

�xn,an)  2KfW(P⇠,a(⇠,U),
1

N

NX

n=1

�xn,an)

as it is a difference of a Lipschitz function applied to P⇠,a(⇠,U) and 1
N

PN
n=1 �xn,an . Let
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us focus on the second term:

E
⇠⇠ 1

N

P
�xn

h
V ?
�
P
0
F (⇠,a(⇠,U),L(⇠,a(⇠,U)),"n1 ,"

0
1

�i
� V ?

� 1
N

NX

i=1

�F (xi,ai, 1
N

PN
n=1 �xi,ai ,"

i
1,"

0
1

�⌘i

 C E
⇠⇠ 1

N

P
�xn

h
W(P0

F (⇠,a(⇠,U),L(⇠,a(⇠,U)),"n1 ,"
0
1)
,
1

N

NX

i=1

�F (xi,ai, 1
N

PN
n=1 �xi,ai ,"

i
1,"

0
1)

��i

 C E
⇠⇠ 1

N

P
�xn

h
W(P0

F (⇠,a(⇠,U),L(⇠,a(⇠,U)),"n1 ,"
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For any i.i.d. random variables (Un, "̃n1 )nN such that (Un, "̃n1 )
d
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Let us now focus on
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The reason why we allowed to take a random family ("̃n1 )nN with same distribution as

("n1 )nN instead of just taking ("n1 )nN was to allow us to couple things nicely before using

the formula W( 1
N

PN
n=1 �yn ,

1
N

PN
n=1 �zn)  1

N

PN
n=1 d(yn, zn) in order to obtain a good

estimation. It is known that there always exists a transport map realizing an optimal cou-

pling between two measures of the form 1
N

PN
n=1 �yn and 1

N

PN
n=1 �zn , that is, a function

T such that 1
N

PN
n=1 �zn = 1

N

PN
n=1 �T (yn). and such thatW( 1

N

PN
n=1 �yn ,

1
N

PN
n=1 �zn) =

1
N

P
n d(yn, T (yn)). In this finite support framework, notice that there necessarily exists

a permutation � 2 Sn such that T (yn) = z�n . In other words, there always exists such

permutation � such that W( 1
N

PN
n=1 �yn ,

1
N

PN
n=1 �zn) =

1
N

P
n d(yn, z�n). This permu-

tation of course depends upon y and z, so let us denote it �y,z. Because the number of

permutations is finite, it is clear that (y, z) 7! �y,z is a measurable function. Let us thus

consider the random variable �(⇠n,a(⇠n,Un))nN ,(xn,an)nN that we shall, to simplify nota-

tion, simply note �. Notice that as (⇠n, ⇠n, a(⇠n, Un))nN ?? ("n1 )nN , we clearly have

that ("�n

1 )nN satisfies the required condition for ("̃n1 )nN , i.e. ("�n

1 )nN
d
= ("n1 )nN and
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("�n

1 )nN ?? (⇠n, ⇠n, a(⇠n, Un))nN . Therefore the above relation applies to ("̃n1 )nN :=

("�n

1 )nN . We are thus reduced to study
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By condition w.r.t. (⇠n, Un)nN and using the regularity in expectation of F given by

(HFlip), we obtain
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= KFE[W(
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X
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�xn,an) +W
⇣
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X
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�xn,an

⌘i

 KF (MN + 2✏)

Combining all the above computations, we obtain

|E[T aV ? � T a
NV ?]|  2Kf ✏+ �KF (MN + 2✏) = 2(Kf + �KF )✏+ �KFMN

which concludes the proof. 2

We are thus clearly reduced to study how well one can couple randomized feedback

policies of the form a(⇠, U) and AN -valued random variables a to have a small term

E[W(P⇠,a(⇠,U),
1

N

NX

n=1

�xn,an)]

Given any randomized feedback policies of the form a(⇠, U), one possibility is to define

82



aa such that aa,n = a(⇠�
⇠,x
n , Un) for all n  N . Indeed, we have

E[W(P⇠,a(⇠,U),
1

N

NX

n=1

�xn,aa,n)]

 E[W(P⇠,a(⇠,U),
1

N

X
�
⇠�

⇠,x
n ,a(⇠�

⇠,x
n ,Un)

) +W(
1

N

X
�
⇠�

⇠,x
n ,a(⇠�

⇠,x
n ,Un)

,
1

N

NX

n=1

�xn,aa,n)]

 MN + E[W(
1

N

X
�
⇠�

⇠,x
n ,a(⇠�

⇠,x
n ,Un)

,
1

N

NX

n=1

�xn,aa,n)]

 MN + E[
1

N

NX

n=1

d(⇠�
⇠,x
n , xn)]  2MN

On the other hand, given a deterministic AN -valued variables a, we can clearly define

aa(x, U) such that L(aa(⇠, U)) = 1
N

P
n �xn,an .

Theorem 3.4.1 Let � = min
⇣
1, | ln�|

ln(2KF )+

⌘
. We have

kVN (x)� V
⇣ 1

N

X

nN

�xn

⌘
kx2XN  O(M�

N )

Proof. We have

V ?(x) = T V ?(x)

= sup
a(x,u)

T aV ?(x)  sup
a(x,u)

T aa

N V ?(x) + 2(Kf + �KF )2MN + �KFMN

 TNV ?(x) + (2Kf + �3KF )MN

Likewise, we have

V ?(x) = T V ?(x) = sup
a(x,u)

T aV ?(x) � sup
a

T aa

N V ?(x)

� sup
a

T a
NV ?(x)� �KFMN � TNV ?(x)� �KFM

�
N

Now, recalling that VN (x) = TNVN (x), we have:

(VN � V )(x)  (TNVN � TNV (x)) + ((1 +KF )MN )�

and thus

(VN � V )(x)  � sup
x2XN

(VN � V )(x) + ((1 +KF )MN )�
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which implies

sup
x2XN

(V � V ?(x))  ((1 +KF )MN )�

1� �

and thus VN (x)  V (x) + ((1+KF )MN )�

1��
for all x 2 XN . By a similar argument, one can

prove that VN (x) � V (x) + O(M�
N ), and thus, kV � VNk = O(M�

N ), which concludes

the proof. 2

It is now possible to link policies of both problems to each others, using the compar-

ison of operators, of the value functions, and the verification results of both problems.

Let a be an "-optimal randomized feedback policy for the McKean-Vlasov MDP. We

thus have

V (x) � T aV (x)� �", 8x 2 XN .

Thus, we have

V (x) � T aa

N V (x)� �("+O(MN )�), 8x 2 XN .

and thus

VN (x) � T aa

N VN (x)� �"�O(MN )�), 8x 2 XN .

which, by the verification result, implies that aa is �"+O(MN )�)
1��

-optimal for VN . However,

we can improve this policy by simply considering (âa)n = a(xn, Un). Indeed, we have

T a
NVN (x) � E[T a

NVN (⇠)]� E[W(
1

N

X
�⇠n ,

1

N

X
�xn)]�

= E[T aa

N VN (⇠�
x,⇠

)]�O(M�
N ) � E[T aa

N VN (x)]� 2O(M�
N )

� VN (x)�O("+M�
N )

and we conclude by the verification result that a is O("+M�
N )-optimal for VN .

Conversely, the comparison of operators and the verification result for the MKV-

MDP imply that given an "-optimal feedback policy a for the N -individual MDP, the

randomized feedback policy aa is O("+M�
N )-optimal for V .

3.5 Toy example for advertising

In this section, we provide an example illustrating the utility of the results of this chapter.

A careful look at the proofs of these results shows that actually, all that we have done
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was to compare the Bellman fixed point operator of the N -individual MDP to another

operator. This operator happens to be the Bellman operator of the MKV-MDP from

previous chapter, but we have not really used this fact. In other words, it is possible to

see the previous section as simply performing a mean-field approximation of the Bellman

operator of the N -individual MDP, independently of the fact that the resulting operator

is in turn the Bellman operator of the MKV-MDP.

Therefore, one question could be: given that often, one solves an MDP via the study

of its Bellman operator, is it really useful to link the N -individual MDP to the MKV-

MDP, rather than simply linking its Bellman-operator to its mean-field approximation?

The answer is yes, and the following example illustrates it. The above question

relies on the assumption that the MKV-MDP would always be solved via its Bellman

operator. However, we will solve the MKV-MDP of the next example not simply by

using the Bellman operator, but also with other tools directly related to the MKV-MDP

itself. Solving it analytically entirely with the Bellman operator would be very hard, and

thus, having the possibility to perform various analysis on the MKV-MDP rather than

being limited to a mean-field Bellman-operator is in practice very useful.

The model is specified as follows: We consider a targeted advertising situation. At

each time t 2 N, each individual connects to a website and can receive an ad from a given

Company. The Company’s goal is to use targeted ads to attract people as quickly as

possible while minimizing its advertising cost. To fix ideas, let us say that the Company

is selling phones.

• State space X = {0, 1} (x = 0 means “not being a customer of C”, and x = 1

means being one of company C).

• Action space A := {0, 1} (a = 0 means “SN does not display an ad to the user”,

and a = 1 means displaying one).

• Idiosyncratic noises ("it)i2N?,t2N where "it ⇠ U([0, 1]) represents the time spent by

the i-th individual on a forum about phones during day t.

• No common noise.

• State transition function: for (x, a) 2 X ⇥A, e 2 [0, 1], µ 2 P(X ),

F (x, µ, a, e) =

(
1e>µ({0})�⌘a if x = 0

1e<µ({1})+⌘a if x = 1,

for some parameter ⌘ > 0, measuring the efficiency of an ad for incentive to become

a customer of C. The interpretation is the following: if a user is not a customer of
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C (x = 0), then she will be more likely to become a customer of C if the proportion

of people that are not customers of C is small (i.e. µ({0}) is small) and if an ad

has been sent to him (i.e. a = 1), while spending enough time e in forum. On the

other hand, if a user is already a customer of C (x = 1), she will be more likely to

stay a customer of C if the proportion µ({1}) of customers of C is large, and if an

ad has been sent to him (a = 1). Here ⌘ > 0 is a an efficiency parameter of ad for

incentive to become a customer of C.

• Reward function: for (x, a) 2 X ⇥A,

f(x, a) = x� ca,

for some c > 0 representing an ad cost. This means that if the user is a customer

of C (x = 1), she contributes to the revenue of the company C, but if C had to

make SN send him an ad (a = 1), it costs c to the company.

One can easily verify that (HFlip) and (Hflip) are satisfied. From Theorem 3.4.1,

we thus know that propagation of chaos holds true. A useful reformulation of F is given

by

F (x, a, µ, e) = 1✏(e,x)<p+⌘a

where ✏(e, x) := (1 � e)(1 � x) + ex is e when x = 1 and 1 � e when x = 0. Fix an

initial state variable ⇠ and a control ↵. Let pt (resp. qt) denote the Bernoulli parameter

of P
X⇠,↵

t
(resp. ↵t) for t 2 N. Let "Xt+1 = ✏("t+1, Xt). Then (pt)t2N follows the dynamics:

pt+1 = P[F (X⇠,↵
t ,P

X⇠,⇡
t

,↵t, "t+1) = 1] = P
⇥
"Xt+1 < pt + ⌘↵t

⇤

= P
⇥
"Xt+1 < pt

⇤
+ P

⇥
pt  "Xt+1 < pt + ⌘,↵t = 1

⇤
.

The conditional law of "Xt+1 knowing (Γ, ("s)st) is constant equal to U([0, 1]), thus "Xt+1

is uniform and independent of (Γ, ("s)st), thus

pt+1 = pt + qtmin(⌘, 1� pt).

On the other hand, notice that the gain functional can be rewritten as

V ⇡(⇠) := E
⇥X

t2N
�tf(X⇠,⇡

t ,↵t)
⇤
= E

⇥X

t2N
�t
�
X⇠,⇡

t � c↵t

�⇤

=
X

t2N
�t(pt � cqt).

86



This derivation leads us to consider the deterministic control problem on [0, 1] with

dynamics:

pt+1 = Φ⌘(pt, qt) := pt +min(⌘, 1� pt)qt, t 2 N, p0 = p 2 [0, 1],

controlled by the deterministic sequence q = (qt)t valued in [0, 1], and with value function:

V(p) = sup
q2[0,1]N

Vq(p), Vq(p) :=
X

t2N
�t(pt � cqt).

Notice that the corresponding dynamic programming equation takes the form of the

fixed point Bellman equation:

V (p) = sup
q2[0,1]

⇥
p� cq + �V (Φ⌘(p, q))

⇤
, p 2 [0, 1],

The above arguments show the equivalence between the MKV-MDP and the deter-

ministic problem (3.5.4)-(3.5.5): fix some arbitrary initial state function ⇠ with Bernoulli

parameter p = P[⇠(Γ) = 1]. Then,

• For any control ↵ with policy ⇡ of the MKV-MDP, by defining q = (qt) with qt =

P[↵t = 1], we have V ⇡(⇠) = Vq(p)

• Conversely, for any q = (qt)t 2 [0, 1]N, by defining ↵ = (↵t)t with ↵t = 1Utqt , we

have V ⇡(⇠) = Vq(p).

Besides reducing the MkV-MDP to a simpler problem, this correspondence shows that

in the MkV-MDP, one can restrict to purely randomized controls of the form ↵t := 1Ut<qt ,

i.e. not depending upon the state Xt.

Proposition 3.5.1 Let us define the function q̂ : [0, 1] ! [0, 1], depending on the posi-

tion of c
⌘
relative to [�, �

1��
]:

• If c
⌘
< �,

q̂(p) :=

(
1, for p < 1� c1��

�

0, for 1� c1��
�
 p  1.

• If �  c
⌘
< �

1��
,

q̂(p) :=

8
>>><
>>>:

1, for p < 1� 2⌘
1�⌘�p

⌘
, for 1� 2⌘  p < 1� (2� �)⌘

1, for 1� (2� �)⌘  p < 1� c1��
�

0, for 1� c1��
�
 p  1.
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• If �
1��
 c

⌘
,

q̂(p) := 0, for all p 2 [0, 1].

Then, the feedback control q? = (q?t )t with q?t = q̂(pt), t 2 N, is an optimal control for

problem (3.5.4)-(3.5.5), and thus the stationary randomized control ↵? = (↵?
t )t2N with

↵?
t = 1Ut<q̂(pt) is optimal for the MkV-MDP.

Proof. • Step 1: Tt will be useful to see this control problem completely in terms of

“increments” from pt to pt+1, rather than in terms of the control qt. In other words, it

will be easier to consider that we directly choose the increment pt+1 � pt, instead of a

control qt determining this increment. We thus rewrite the gain functional as

Vq(p0) =
X

t2N
�t(pt � cqt)

=
X

t2N
�t

0
@p0 +

X

0s<t

(ps+1 � ps)� c
pt+1 � pt

min(⌘, 1� pt)

1
A

=
p0

1� �
+
X

t2N
�t(pt+1 � pt)

✓
�

1� �
� c

min(⌘, 1� pt)

◆

=
p0

1� �
+
X

t2N
�t(pt+1 � pt)r(pt),

where we rearranged the sums in the third equality, and where r(p) := �
1��
� c

min(⌘,1�p) .

Notice that r is constant on [0, 1 � ⌘], then decreases. So if r(0) is negative, r(pt) will

always be negative, thus the sum is negative, and thus the best thing to do is nothing:

pt = p0 8t 2 N, corresponding to the control qt := 0 8t 2 N. This trivial case is obtained

under the assumption that r(0)  0, which is equivalent to c
⌘
� �

1��
, corresponding to

the third case disjunction.

In the rest of the proof, we shall then focus on the case where r(0) > 0, i.e., c
⌘
< �

1��
.

• Step 2: The nonincreasing function r starts from a positive value r(0), and only becomes

negative after the solution to r(p) = 0, given by p̄ := 1 � c1��
�

> 1 � ⌘. Thus, for the

same reason as in Step 1, as soon as pt � p̄, (say from t = t̄), the optimal strategy is to

do nothing, because
P1

t=t̄ �
t(pt+1 � pt)r(pt)  0. Consequently, the optimal trajectory

will remain constant after we get in the interval [p̄, 1] (and thus the optimal control will

be qt = 0 from that point).

We now analyze different situations:

(i) Assume that there is some point pt0 2 [1� ⌘, p̄). Then r(pt0) > 0, and a possible

strategy is to jump to pt0+1 = 1 by taking qt0 = 1. Moreover, for any strategy,
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we have
P1

t=t0
�t(pt+1 � pt)r(pt)  �t0(1 � pt0)r(pt0). Therefore in this case, the

optimal strategy is indeed to jump directly to 1 from t0.

(ii) Assume that for some t0 we have pt0  1 � ⌘ and pt0+1  1 � ⌘. Notice that the

gain function between pt0 and pt0+2 is given by

g(pt0+1) = pt0 � c
pt0+1 � pt0

⌘
+ �

�
pt0+1 � c

pt0+2 � pt0+1

⌘

�
,

and its derivative is equal to

g0(pt0+1) = (1� �)
� �

1� �
� c

⌘

�
> 0,

which is negative, as c
⌘
< �

1��
. This means that for an optimal strategy pt0+1 

1 � ⌘, it cannot be moved to the right since otherwise it would increase the gain

contradicting its optimality. In other words, an optimal pt0+1  1 � ⌘ should be

associated to a control qt0 = 1, and this can only occur when pt0  1� 2⌘ leading

to pt0+1 = Φ⌘(pt0 , 1) = pt0 + ⌘.

To sum up Step 2, we have dealt with the optimal strategy in the areas [0, 1 � 2⌘]

and [1� ⌘, 1]: when pt  1� 2⌘, it is optimal to jump to pt+1 = pt + ⌘ with a control qt
= 1; when pt 2 [1� ⌘, p̄), we jump optimally to 1 (with a control qt = 1), and when pt
2 [p̄, 1], we do not act anymore (qs = 0 for s � t), hence keeping constant ps = pt for s

� t.

• Step 3: It remains to deal with the case when there is some point pt0 2 (1� 2⌘, 1� ⌘),

for which we only know from Step 2(ii) that pt0+1 should lie in [1 � ⌘, pt0 + ⌘]. Let us

consider the gain function from t0 as a function of pt0 + 1:

G(pt0+1) :=

1X

t=t0

�t(pt+1 � pt)r(pt).

From Step 2(i), we know that if pt0+1 2 [1� ⌘, p̄), then pt = 1 for t > t0 + 1, and so

G(pt0+1) = (pt0+1 � pt0)r(pt0) + �(1� pt0+1)r(pt0+1)

= (pt0+1 � pt0)r(0) + �
�
(1� pt0+1)

�

1� �
� c
�
, pt0+1 2 [1� ⌘, p̄),

with derivative equal to G0(pt0+1) = r(0)� �2

1��
= � � c

⌘
. If pt0+1 2 [p̄, 1], then we also

know from Step 2 that pt = pt0+1, for t > t0 + 1, and so

G(pt0+1) = (pt0+1 � pt0)r(pt0) = (pt0+1 � pt0)r(0), pt0+1 2 [p̄, 1],
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which is increasing on [p̄, 1) as r(0) = �
1��
� c

⌘
> 0.

We then make a second case disjunction:

(i) If c
⌘
< �, then G is increasing w.r.t. pt0+1 2 [1�⌘, 1], and thus the optimal strategy

is to take pt0+1 as high as possible, i.e., pt0+1 = pt0 + ⌘ (corresponding to qt0 = 1).

(ii) If c
⌘
� �, then G is first decreasing on [1 � ⌘, p̄) and then increasing on [p̄, 1]. Its

maximum on [1� ⌘, pt0 + ⌘] is then reached either at pt0+1 = 1� ⌘ or at pt0+1 =

pt0 + ⌘. This situation corresponds to the case when two different phenomenons

are fighting against each other, namely a “small” jump to 1 � ⌘ vs a big jump to

pt0 + ⌘ (with control qt0 = 1). We shall then distinguish the subcases depending

on the position of pt0 in (1� 2⌘, 1� ⌘),:

– If pt0 2 (1�2⌘, p̄�⌘]. Then pt0+⌘  p̄, and so G is decreasing on [1�⌘, pt0+⌘],

and the maximum is reached at pt0+1 = 1 � ⌘ corresponding to a control qt0
= (1� ⌘ � pt0)/⌘.

– If pt0 2 (p̄�⌘, 1�⌘). We then compare G(pt0+1) at pt0+1 = 1�⌘ and pt0 +⌘.

We have from (3.5.6)-(3.5.7)

G(1� ⌘) = (1� ⌘ � pt0 + �⌘)r(0),

G(pt0 + ⌘) = ⌘r(0),

and then see that G(1 � ⌘) > G(pt0 + ⌘) iff pt0 < 1 � ⌘(2 � �). In this case,

the optimal strategy is to go to pt0+1 = 1� ⌘, corresponding to a control qt0
= (1� ⌘ � pt0)/⌘. Otherwise, when pt0 2 [1� ⌘(2� �), 1� ⌘), it is better to

jump to pt0+1 = pt0 + ⌘, corresponding to a control qt0 = 1.

2

By the propagation of chaos results in Theorem 3.4.1, we thus know that a(p, x, u) =

1u<q̂(p) yields an O( 1p
N
)-optimal policy for the associated N -agent MDP. Notice that,

from the above proof, it is clear that we did not simply use the Bellman equation of the

MKV-MDP to solve this problem. We in particularly used variational arguments based

on the trajectories of the mean-field proportion of clients. This illustrates that linking

the N -agent MDP with the MKV-MDP can be really useful to solve the N -agent MDP.

3.6 Conclusion

We have developed a theory of mean-field Markov decision processes with common noise

and open-loop controls, called CMKV-MDP, for general state space and action space,
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and rigorously connected it to theN -individual Markov Decision Process it was originally

formally derived from. We have provided a rate of convergence of the N -agent model to

the CMKV-MDP. We have finally provided an example illustrating the usefulness of this

result, by approximately solving a N -agent MDP via its limiting McKean-Vlasov MDP.

Interesting developments could be to find other N -agent problems that are hard to solve

(or unsolvable) in the N -agent framework but that yet can be approximately solved via

the associated McKean-Vlasov MDP. We believe that although the example we provide

is a toy model for advertising under social influence, using this general framework to

model advertising problems with social influence is one of its natural applications, and

we believe that it could be interesting to build and study other models of advertising

and social influence within this general framework.
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Chapter 4

Population games in social

networks with IESDS solution

concepts

Abstract. In this work, we study a game with large population of players, by means of the

so-called Iterative Elimination of Strictly Dominated Strategies (IESDS) solution concept. This

concept has the advantage to describe a strongly rational iterative mechanism, as opposed to the

Nash-equilibrium based on a circular, or fixed point, justification. Our game will also assume

that players initially know nothing about each other, but can observe the result of past games

as the game repeats itself. Our main result is to show that assuming that players strategies are

consistent with the IESDS mechanism, almost all the choices of the population can be predicted

with certainty after a few stage games. Furthermore, the distribution of the predicted choices

is characterized as the fixed point of an analytical operator, thanks to arguments of mean-

field approximation, and our second contribution is to use this characterization to analyze the

population’s choices, allowing us, in particular, to study social influence phenomenons like the

snowball effect and the class repulsion effect.

4.1 Introduction

In this work, we study a game with a population of N player with N large by means of

a solution concept that is not the Nash-equilibrium concept, but the stronger rational

concept of Iterated Elimination of Strictly Dominated Strategies (IESDS).

To motivate this study, let us briefly overview how game theory evolved towards large

population game theories.

The first games that were studied, before game theory was even formalized, were
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2-player games (e.g. a game studied in a letter by James Waldegrave in 1713, and the

duopoly game by Antoine Cournot in 1838. The study of N -player games, present in

the work of Von Neumann and Morgenstern ([91]), followed by the developments of

Nash ([68, 43, 66, 67]) and later Aumann ([5]), led to observe propagation of chaos

phenomenons: they noticed that predictions for N -player games often “converged” to

asymptotic predictions when N !1. Robert Aumann later published a seminal paper

on games with infinitely many players ([5], [6]), initiating a long list of studies of games

with continuum of players, see for instance the large games literature ([47, 41, 13, 42]),

and the prolific Mean-field games literature initiated by the seminal paper of Lions and

Lasry ( [50, 51, 52, 34]), and independently in the engineering community by Caines,

Huang and Malhamé [38, 37]. For a detailed exposition of the theory, we refer to the

two-volume monograph by Rene Carmona and François Delarue [15].

However, the richer and richer structures of considered games made it harder and

harder to study the more complex solution concepts. Therefore, research in large popu-

lation games seems to have lately entirely focused on the concept of Nash-equilibria.

Despite its mathematical simplicity, the Nash-equilibrium has, as a standalone so-

lution concept, been subject to criticism, because it relies on a circular rational justifi-

cation. Indeed, given a Nash-equilibrium (xn)nN , the justification that player n will

indeed play strategy xn is that it is the best response to the strategies x�n of the other

players. However, the strategies x�n of the other players are themselves justified by

assuming that player n plays xn. There is thus clearly a circular (or fixed point) justifi-

cation here, which raises some inconsistency issues regarding the non-cooperative aspect

among players in Nash-equilibrium. The real strength of Nash-equilibrium is, besides

its mathematical simplicity, its experimental validity. It has been observed, both exper-

imentally and in theoretical games with a different solution concept, that players often

end up playing a Nash-equilibrium or an "-Nash-equilibrium. The reason is that most

rational mechanisms are based on computing best responses in an iterative manner. It

is thus not surprising that if the mechanism converges to a unique strategy for each

player, the strategies obtained must form a fixed point for the best response functions.

However, we stress that by directly focusing on the study of such fixed points, Nash-

equilibria ignores the study of the convergence of the underlying rational mechanism (and

thus assumes it). It is however easy to build games who have a unique Nash-equilibrium

and such that, yet, rational solution concept mechanisms do not converge to a unique

strategy profile, in which case nothing prevents the players to play something else than

this Nash-equilibrium.

The IESDS solution concept, studied in this paper, breaks the circularity of Nash-

equilibrium by proposing a strategic iterative rational mechanism starting from a uni-

versal set of strategies (as opposed to Nash which starts directly from the limiting fixed
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point strategy). Let us informally illustrate how it works by modifying the justification

of a Nash-equilibrium. The IESDS solution concepts encodes the idea that a solution

strategy (xn)nN is played by all players when

1. some player i has a best response xi regardless what the others do.

2. Then, any other player, knowing that player i is rational, knows that player i will

play xi with certainty. Given this knowledge, some other player j 6= i may have a

best response xj regardless what the others do, provided that player i indeed plays

xi.

3. Then again, everyone knows that player j is rational and will thus necessarily play

xj . Likewise, some player k 62 {i, j} may have a best response xk regardless what

the others do provided that players i and j indeed play xi and xj ,

4. etc.

Notice that in this argument, the action of player i is intrinsically justified, the action of

player j is justified by the fact that he knows that player i is rational, and the action of

player k is justified by the fact that he knows that players i and j are rational. Notice

that there is thus no circularity in this mechanism, but instead, a “hierarchy” of rational

justifications among players.

In this paper, we shall thus focus on the IESDS. This concept is well known in the

game theoretic community, see for instance the work of Milgrom on super-modular games

[64]. The Iterated Elimination of Dominated Strategies has not been studied a lot for

large population games. See Dufwenberg and Stegeman [26] and Chen, Long, Luo [17]

for studies of the IESDS concept for general games, with potentially infinitely many

players and strategies.

Here are the main other aspects of our study:

1. We assume virtually no information of players about each other at the beginning.

The players are not assumed either to have a Bayesian information, i.e. they

don’t initially have a statistical representation of the population. Generally when

players know nothing about each other, it is difficult for them to rationally eliminate

strategies, however:

2. We make the game repeat itself, so that players are able to learn from past games,

which will allow most of them to rationally eliminate strategies after a finite number

of stage games.

Our first contribution is to prove that even by relying on this complex structure and

solution concept, we are able to precisely predict the rational choices of almost all the
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players. In particular, we characterize the class-wise proportion of rational choices 1 in

the population as an approximate fixed point p? 2 [0, 1]K of a contracting operator.

Our second contribution is to provide different ways to analyze this class-wise choice

distribution p? using fixed point analysis methods: numerical methods, example with

explicit formula for p?, and first order expansions for small social influence. Finally, we

use these tools to study two qualitative social influence phenomena:

1. The snowball (or amplification) effect, occurring in situations where people

like to make the same choices as other people, generally resulting in an accentuation

of the popularity of the intrinsically more popular choice.

2. The class repulsion effect: corresponding to situations where there are two

classes that don’t like to make the same choices (e.g. left-wing people don’t like

to support the same reform as right-wing people, and vice versa). This generally

results in the polarization of classes on the two choices, i.e. one class appropriates

choice 1, and the other one, choice 0.

Outline of the chapter: In Section 7.2, we provide the core framework common to

the games studied in this chapter. In Section 4.3, we study a static game based on this

framework, with fully informed players. In Section 4.4, we study a repeated version

of this game, with initially uninformed players. In Section 4.5, we provide tools and

methods for analyzing the prediction made for both games, and we use them to study

social phenomenons.

4.2 Core framework

We consider a binary space X = {0, 1}, representing two possible choices (buying or not

a product, subscribing or not to a service, publicly supporting or not an opinion, etc).

We consider a population with N players. Each player n, for n  N , is characterized by:

1. His intrinsic utilities (un,x)x2X 2 R
2: for x 2 X , un,x represents the utility

that player n has for choice x, outside of all social influence and interactions. For

instance, if the choice is to buy (choice 1) or not (choice 0) a product, un,1 repre-

sents how much player n will like the product in itself, and for instance un,0 = 0

represents the neutral utility from not buying it. If the choice is to publicly support

an opinion (choice 1) or reject it (choice 0), un,1 represents the intrinsic happiness

of player n to support this opinion, in itself, and un,0 to reject it, reflecting how

his choice is consistent with his true opinion.
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2. His class kn 2 K = {1, ...,K}: The class of an individual can represent any

relevant way to group individuals in a population (age, social class, gender, political

orientation, etc). This separation allows to study asymmetric social influence.

Multi-class social influence makes it possible to study qualitative phenomenons

like class repulsion. This happens when two different classes of individuals don’t

want to act or think the same way. Let us provide two examples. In the case

of supporting or not an opinion, there is a repulsion between the left-wing and

right-wing politically oriented classes: a politically left-wing person is reluctant to

support the same opinion as a politically right-wing person, and vice versa, even

when they intrinsically agree on it. In the case of buying or not a product, a well

known example is the diet coke. It is known that the main reason why Coca-cola

commercialized coke zero is that males were reluctant to buy diet coke because

they associated it to a female product. Coke zero, with a less female connotation,

was invented for this reason. Thus, males were willing to drink sugar-free coke,

but the simple fact that diet coke was seen as a female product dissuaded some of

them to do so.

For each n  N , we denote by dn = (kn, un) the data of player n, and d = (dn)nN .

Game theoretic notations: In the sequel, we shall adopt the standard index notation

from game theory, that is:

• given a vector y 2
NY

i=1

Yi, for some spaces (Yi)iN , and given n  N , we denote

y�n = (yi)iN,i 6=n.

• given a family of spaces (Πy)y2Y parametrized by y 2 Y, and given a vector

y = (yi)iN 2 YN , we introduce the the notation Πy =

NY

i=1

Π
yi .

Let us now describe the core structure of the game. First of all, each player n makes a

choice xn 2 X (buying or not the product, publicly supporting or not the opinion). This

simple choice guarantees each player n to receive the associated intrinsic utility un,xn .

Then, players socially interact with each others, e.g. on a social network, and this way

observe the choices made by other people. From these observations, player n perceives a

social reward given by U(kn, xn,
1

N�1

P
�ki,xi

) (where u : K⇥X ⇥P(X )! R is assumed

to be Lipschitz in its P(X ) coordinate), meaning that his social reward depends upon

his class, choice, and the distribution of class and choices in the population. Therefore,

player n’s overall utility for this game is defined, for all (dn)nN 2 (K ⇥ R
2)N and
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(xn)nN 2 XN , by

R(dn, xn,d�n, x�n) = un,xn + u(kn, xn,
1

N

NX

i=1

�ki,xi
).

4.3 Static game under full information

4.3.1 The game

Let us start with the static game. In the static framework, each player n’s strategy is a

choice xn 2 X , and the gain function V of player n coincides with his reward function R

defined in previous section, i.e. we define V ⌘ R in this game. More precisely, a strategy

profile is here given by a family (xn)nN 2 XN . Given data d = (dn)nN 2 (K ⇥ R
2)N

and a strategy profile (xn)nN , the gain of player n is defined by

V (dn, xn,d�n, x�n) = un,xn + u
⇣
kn, xn,

1

N

NX

i=1

�ki,xi

⌘

The solution concept that we are interested in is the notion of Iterated Elimina-

tion of Strictly Dominated Strategies (IESDS). Let us start by describing the underly-

ing principle of IESDS. The IESDS consists in defining, for each player n, a sequence

(Πdn,d
k )k2N 2 XN, starting with Π

dn,d
0 = X , and decreasing for the inclusion.

The interpretation of Πdn,d
k is as follows. To find his rational strategy, each player

must think about what the other players could do. The idea is that each player i tries

to remove as many irrational strategies as possible for other players, hoping that he may

himself find a best strategy for him in response to the remaining set of strategies. The

game thus forces each player to put himself in the shoes of all the other players and think

about their interests.

Each player i wonders, for every player n  N : “What strategy would be irrational

for player n to play?”. Because he knows that everyone is rational, player i considers that

each player n will not play such strategies, and denotes Π
dn,d
1 the remaining strategies

for each player n. Because he knows that everyone is as intelligent as him, player i then

asks himself: “Given that everyone knows that each player j will play in Π
dj ,d
1 , what

strategy would be irrational for player n to play?”.

As we shall see, this question will make new strategies appear as irrational for each

player n. Again, player i then assumes that player n, being rational, will not play them,

and he denotes Π
dn,d
2 the remaining strategies for each player n. This iterative process

can then clearly be repeated over and over.
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Because this is an elimination process, clearly, it must be stationary. Thus, after

asking themselves these questions enough times, each player i will have computed a set

Π
dn,d1 for every player n  N , representing the strategies that could not be eliminated

for player n, because he did not find a reason to consider them as irrational.

Notice that player i asked these questions for all player n  N , including himself.

Therefore, Πdi,d1 corresponds to the set of strategies that he has not eliminated for himself.

The result of this process is that we consider that each player i will necessarily play a

strategy in Π
di,d1 , simply because the other strategies have, at some point in the process,

be proved to be irrational.

Given the above description, the only thing that remains to be specified is: what do

we call an “irrational strategy”? And why does it depend upon what we assume that

the other players could do?

Perhaps the most convincing criterion to consider a strategy as irrational is that it is

dominated. A strategy is said to be dominated if there exists another strategy performing

strictly better than it regardless what the other players do. More generally, a strategy

xi is dominated given that other players n play in Π
dn,d
k if there exists a strategy x0i

bringing to player i a gain strictly better than xi regardless what the other players n do

in Π
dn,d
k . Therefore, assuming that it was established before that each player n would

play in Π
dn,d
k , player i has no reason to play xi, as he would then strictly increase his

gain with x0i.

Π
dn,d
k is the set of remaining strategies for a player with data dn observing the whole

data d after k iterations of dominated strategy eliminations.

Let us now translate the concept of IESDS in a rigorous mathematical definition:

For all n  N , we define

Π
dn,d
0 = X

Π
dn,d
k+1 = {xn 2 Π

dn,d
k : 6 9x 2 X

s.t. V (dn, x,d�n,x�n) > V (dn, xn,d�n,x�n), 8x�n 2 Π
d�n,d
k }, 8k 2 N

Let us describe this elimination process:

1. Initially, player n assumes that for all i 6= n, player i, with data di, could choose

any action. Player n thus defines Πdi,d
0 = X , for all i  N .

2. Player n assumes that any player i with a strictly dominated strategy would never

play it. As he knows the population’s data (di)iN , he knows who has a strictly
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dominated strategy. For these players i, player n eliminates their dominated strat-

egy from their set of actions. In other words, from each strategy set Π
di
0 , i  N ,

player n obtain new strategy sets Πdi
1 , i  N , such that Πdi

1 only keeps the actions

xi that are not dominated, i.e. the actions xi s.t.

6 9x 2 X s.t. V (di, x,d�i,x�i) > V (di, xi,d�i,x�i), 8x�i 2 Π
d�n,d
0 .

3. The elimination step is then repeated over and over.

In this first game that we study, each player knows the data dn of each player n and

is thus not only able to compute his own reduction of strategies but also the reduction

of strategies of the other players. As (Πdn,d
k )k2N is, for all n  N , a decreasing sequence

of sets, it converges to a set Π
dn,d1 that cannot be reduced more with this iterative

procedure. The interpretation of Πdn,d1 is that any rational strategy of player n should

thus belong to Π
dn,d1 , or, equivalently, any strategy outside of Πdn,d1 would be irrational

for player n.

For a given n  N , Πdn,d1 might be reduced to a single remaining possible strategy,

which is thus the strategy that they shall rationally play, but Π
dn,d1 might also still

contain more than one strategy, and in this case the above iterative procedure is not

enough to reduce the set of strategies to a single one for this player. In this case, such

player should use an additional criterion of reduction to keep reducing the possibilities,

but we shall see in this study that modeling this additional criterion will not be necessary,

as the above iterated elimination of dominated strategies will be enough to predict the

behavior of the population with high precision.

Our goal is to study the properties of the set of remaining strategies (Πdn,d1 )nN for

each player in the population, to understand and predict as well as possible how the

game will unroll.

We will use mean-field methods by introducing a family of K differentiable distribu-

tion functions (Fk)k2K and " > 0 such that

k 1

Nk

NkX

n=1

1un<v � Fk(v)k  ", 8k 2 K

where un := un,1�un,0 is player n differential intrinsic utility for all n  N . Such family

of distribution functions can essentially be obtained via statistical fitting methods and

can be chosen in any class of distribution functions, and " simply represents the associated

fitting error.
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To the distribution functions Fk we associate a random variable (K,U) such that

P(U  v | K = k) = Fk(v), such that we have by definition

k 1

Nk

NkX

n=1

1un<v � P(U  v | K = k)k  ", 8k 2 K

In other words, the distribution function of U uniformly approximate the empirical

distributions of (un)nN conditionally to each class. Another way to see it is to say

that given a uniform random variable V ⇠ U({1, ..., N}), the random variable (K,U),

is, in distribution, uniformly close to the random variable (kV , uV ) selecting a player at

random in the population. The upside of (K,U) is that its distribution is regular, which

will allow us to use analytical tools coming from differentiation, contracting properties,

etc, while keeping track of the approximation error ".

We finally assume that the operator

p 7! L(argmax
x2X

(U1,x + u(k1, x, p)),

is contracting. This assumption simply means (assuming that " is small, i.e. that the

mean-field approximation of the population is good) that when the distribution of class-

choices pairs in the population changes, it is not able to change the best response of

more people than the number of people who changed their choices. In other words, we

assume that social influence affects people’s utility in a small enough way that a small

group of people is not able to trigger a huge change in the population (we thus exclude

uncontrollable herd behavior effects). Notice that it does not mean that there is no social

influence, but simply that it is not too strong.

The following result shows that if the population’s data is the result of a stochastic

genetic mechanism, then the data should satisfy the propagation of chaos, and one

should thus, with high probability, be able to fit them with regular distribution functions

(Fk)k2K with " = O( 1p
N
).

Theorem 4.3.1 (Fitting error and propagation of chaos) Let us endow (Ω,F) =

((K ⇥ R
2)N ,B((K ⇥ R

2)N )) with the probability distribution P of a family of N i.i.d.

random variables with common distribution L(K,U), i.e. P = L(K,U)⌦N . Then, for any

↵ > 0, there exists an event E↵ 2 F and a constant C↵ 2 /R+, such that P(E↵) � 1�↵,

and such that 8(kn, un)nN 2 E↵, we have

k 1

Nk

NkX

n=1

1uk,n<v � Fk(v)k 
C↵p
N

, 8k 2 K
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Consequently, if the population’s data (kn, un)nN was generated with N i.i.d. random

variables with common distribution L(K,U) (e.g. via a stochastic genetic algorithm),

then, with probability greater than ↵, the functions (Fk)k2K will fit the population’s data

with error at most C↵p
N
, and thus Theorem holds true with " = C↵p

N
.

Proof. This directly follows from Dvoretzky–Kiefer–Wolfowitz’s inequality. 2

4.3.2 Game’s analysis

We shall formalize our analysis by 1) introducing predictions (and motivate them), and

2) estimating their accuracy.

Heuristically guess a prediction by mean-field approximation: We derive a

prediction for the game’s unrolling under the assumption that each player n plays a

strategy in Π
dn,d1 , with an heuristic. Let us assume that a prediction is “possible”,

that is, that there actually exists a vector of choices (x?n)nN such that Πdn,d1 ' {x?n} for

n  N . This implies that each player was able to restrict his possible strategies and other

players’ strategies such that each player n has a unique remaining possible choice x?n left.

By definition of the iterated elimination process, and as Πdn,d1 is its limit, there should not

exist x 2 X such that V (dn, x,d�n,x�n) > V (dn, x̃n,d�n,x�n), 8x�n 2 Π
d�n
1 . However,

as we assumed that Πdi1 ' {x?i }, the part “ 8x�n 2 Π
d�n
1 ” essentially means “ 8x�n :

x�n = x?�n ”, and thus we have 6 9x 2 X : V (dn, x,d�n, x
?
�n) > V (dn, x

?
n,d�n, x

?
�n).

This means that the choices x?n should approximately satisfy

x?n = argmax
X

(un,x + u(kn, x,
1

N

NX

i=1

�ki,x?
i
))

and thus

1

N

X

n

�kn,x?
n

=
1

N

X

n

�kn,argmax
X

(un,x+u(kn,x,
1
N

PN
i=1 �ki,x

?
i
)

Which suggests that the distribution of class-choices 1
N

P
n x

?
n should approximately be

the unique fixed point p? of the contracting operator

p 7! L(argmax
x2X

(U1,x + u(k1, x, p)),

and that x?n should thus approximately satisfy

x?n = argmax
X

(un,x + u(kn, x, p
?))
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Of course, this heuristic derivation is by essence not rigorous, but it has the advantage

to make very quick the formal derivation of a prediction. Let us now make this prediction

a rigorous mathematical object, so that we can then study our games with the goal to

estimate how much such prediction is validated in each game.

Definition 4.3.1 (Predictions) We define the following predictions:

• Predicted class-wise distribution of choices: The Predicted class-wise choices

distribution p? is defined as the unique fixed point of the contracting operator

p 7! L(argmax
x2X

(U1,x + u(k1, x, p))

• Predicted choices: The predicted choice of player n is defined by

x?n = argmax
x

(un,x + u(k1, x, p
?))

• Predicted rewards: The predicted reward of player n is defined by

V ?
n = un,x?

n
+ u(k1, x, p

?))

• Predicted differential reward: The predicted differential reward of player n is

defined by

∆V ?
n =

⇥
un,x?

n
+ u(k1, x

?
n, p

?))
⇤

�
⇥
un,1�x?

n
+ u(k1, 1� x?n, p

?))
⇤

We start by establishing the quality of this prediction in the current basic game in

the next result.

Theorem 4.3.2 For all x 2 Π
d,d
1 , we have the following properties:

• Distribution of choices prediction accuracy:

1

N

X
�kn,xn

= p? +O(")

i.e. p? is an approximation with error O(") of the distribution, class by class, of

the choices of a rational population in this game.
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• Choices prediction accuracy:

xn = x?n 8n : ∆V ?
n > O(")

i.e. x? predicts correctly the rational choice of all players except the ones such that

∆V ?
n = O("). Furthermore, these wrongly predicted choices represent a proportion

at most O(") of the population.

• Reward prediction accuracy: For all n, including for the players with wrongly

predicted choices, we have

V (kn, un, xn, k�n, x�n) = V ?
n +O(")

i.e. V ?
n predicts the reward of each player up to an error O(").

The above result essentially means that the above predictions are able to predict

most of the aspects of the game’s unrolling from the computation of one single object,

that is, p?, simply defined as the unique fixed point of the operator

p 7! L(argmax
x2X

(U1,x + u(k1, x, p)),

which, depending upon the choice of the distributions Fk used to approximate the em-

pirical distribution of the players data, can be an infinitely differentiable or an analytic

function, for which the unique fixed point can be analytically estimated with a k-th

order extension for small kuk using the implicit function theorem. Alternatively, one

or two steps of Newton’s method can yield a very precise analytical estimation of such

fixed point. More generally, such analytical and regular object allows us to use many

estimation techniques that could not directly apply to the irregular empirical distribu-

tion of (u). Another upside of using an analytical approximation is that it allows to

express results in terms of a few meaningful parameters like the mean and variance of

the approximate distribution, assuming that it is selected in a class of distribution that

is parametrized by their mean and variance (e.g. gaussian distributions), which is inter-

esting for deriving meaningful interpretations. The above results provides an estimation

of the error that we have to agree to make in counterpart. Notice that the better the fit

with the approximate distribution function Fk is (i.e. the smaller " is), the better will

be the predictions associated to this approximation.

4.4 Repeated game with no initial information

4.4.1 The game

The game we have studied up to now is a static game, where each player fully knows the

data of each other player in the population. Although this is an interesting framework,

104



and although one could easily generalize it to a more realistic one where players only

know an approximation of the class-utility distribution in the population, perhaps a more

interesting framework is to assume that players do not know anything about each other.

If we do not provide any knowledge to the players in the static game, a simple study

shows that, except for the players with a dominant choice from the start, player will not

be able to eliminate any choice.

However, if we make the game repeats itself several times, and if we assume that

players can observe the class-choices distribution from past games, there is hope that

via these observations, players will be able to “learn” information about each other, and

that the game will be precisely predictable after a few stage games.

Notice that observing the class-choices distributions does not require to observe peo-

ple’s intrinsic utilities, which is a realistic feature in many situations.

In the repeated game framework, a strategy for player n is represented as a sequence

of function xn := (xn,t)tT , where T 2 N is the total number of stage games, such that

xn,t : ((K ⇥ X )N )t ! {0, 1} what choice player n will make at the t-th game given the

distributions of (class, choice) in the population in past games. The choices associated

to data d := (dn)nN and strategy profile x := (xn)nN are described by the choice

processes (Xn,d,x
t )t2N defined by induction by

Xn,d,x
0 = xn,0

Xn,d,x
t+1 = xn,t+1

⇣
ki, X

i,d,x
s , i  N, s  t

⌘

This is simply a repeated version of the game from previous chapter, such that each

action at time t can depend upon the class and choices made in past games in the

population. The reward of player n is

V (dn,xn,d�n,x�n) =
X

tT

�t
⇣
u
n,Xn,d,x

t
+ u(kn, X

n,d,x
t ,

1

N

NX

i=1

�
ki,X

i,d,x
t

)
⌘

We introduce the following notation. For x 2 Π and t 2 N, we denote X x
t := {x0 2

Π : x0s ⌘ xs, 8s  t}. This is simply the set of all strategy coinciding with x before time

t. Intuitively, the meaning of this notation is that from time t, a player with strategy x

can always “change” his strategy as long as he selects a new strategy in X x
t , because the

games before time t have already happened and thus it is too late to change his strategy

for these games, but games happening after time t have not happened yet and thus the

individual can, at time t, readjust his strategy for these future games.
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Although we said that players would not know anything about each other, we shall

assume that they have a very minimal belief about the population. To describe this

belief, let us introduce the following data set: for " � 0, we consider

D" := {d 2 DN : 9(Fk)k2K : Fk is 1 Lipschitz and k 1

Nk

NkX

n=1

1uk,n<v � Fk(v)k  ", 8k 2 K}

This is simply the set of population data d such that there exists regular functions fitting

the population data with error smaller than ".

Essentially, we will assume that players know that d 2 D", that is, they know (or

assume) that the population data is regular enough to be well fitted by some Lipschitz

distribution functions. We stress that players are not assumed to know such (Fk)k2K,
but only that it exists. This is, as we shall see in our probabilistic study, a belief justified

by mean-field theory and propagation of chaos. To summarize, the actual population

data d is, as we assumed earlier, in D", and players don’t know d anymore, but simply

that d 2 D".

Let us know provide our solution concept for the repeated game with no initial

information:

Π
dn
k+1 = {xn 2 Π

dn
k : 8d�n, 8x�n 2 Π

d�n

k , 8t 2 N,

6 9x0n 2 X xn

t�1 : V (dn, x
0
n, d

0
�n, x

0
�n) > V (dn,X

xn
t , d0�n, x

0
�n),

8d0�n 2 D", 8x0�n 2 Π
d0�n

k :
NX

i=1

�
d0i,X

i,x0
s

=
NX

i=1

�
di,X

i,x
s
, s  t}

The interpretation of this solution concept is as follows. If we compare it to the solution

concept of the static game, the main differences are the time and information compo-

nents. The general idea is that at each time t  T , there should not be a strategy from

time t, i.e. a strategy x0n 2 X xn
t , that is strictly better than xn for player n, over all

strategies of other players that are consistent with player n’s information, i.e. such that

d0�n 2 D", and such that

1

N

NX

i=1

�
d0i,X

i,x0
s

=
1

N

NX

i=1

�
di,X

i,x
s
, 8s  t

The underlying idea is thus that each player does not simply eliminate strategies that

are strictly dominated from time 0, but also the strategies that are strictly dominated

from any time t, with the interpretation that they would never play such strategy after

time t since another strategy, that they can still adopt, is strictly better regardless the

strategies of the other players.

106



4.4.2 Game’s analysis

Before stating the result in the repeated game framework, let us, as for the static game,

heuristically derive how should the game rationally unroll.

The idea is that if we in mind the idea that the game’s repetition is supposed to allow

players to learn about each other via their observations of past games, we can assume

that after many stages, players should have a behavior that is close to a fully informed

population’s behavior. The class-wise choice distribution should thus eventually get close

to p? after enough stage games. If this is really the case, we should be able to predict

that W( 1
N

PN
n=1 �kn,Xn,d,x

t
, p?)  "t, where ("t)t2N is a decreasing sequence. The best

way to then obtain the right sequence ("t)t2N is to try to prove that this prediction holds

true and finally see the conditions required on ("t)t2N to make the proof work. We obtain

the sequence characterized by

"0 = 1

"t+1 = 2
c"t + "

1� �
, t 2 N

Notice that by explicitly writing "t, we can show that

"t =

✓
2c

1� �

◆t

+O(")

We now state our main result.

Theorem 4.4.1 For all x 2 Π1(!), we have the following properties:

• Distribution of choices prediction accuracy:

1

N

NX

n=1

�
kn,X

n,d,x
t

= p? +O("t)

i.e. p? is an approximation with error O(") of the distribution, class by class, of

the choices of a rational population in this game.

• Choices prediction accuracy:

Xn,d,x
t = x?n 8n : ∆V ?

n > O("t)

i.e. x? predicts correctly the rational choice of all players except the ones such that

∆V ?
n = O("t). Furthermore, these wrongly predicted choices represent a proportion

at most O("t) of the population.
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• Reward prediction accuracy: For all n, including for the players with wrongly

predicted choices, we have

R(kn, un, X
n,d,x
t , k�n, X

�n,d,x
t ) = V ?

n +O("t)

i.e. V ?
n predicts the t-th reward of each player up to an error O("t).

4.5 Analysis of the class-wise choice distribution p?

4.5.1 Iterative methods

Notice that the computation of the fixed point p? is a straightforward numerical task as

soon as

�(p) = L(argmax
x

(Ux + u(k, x, p)), k) ⇠ (P(Uk < u(k, p)))k2K = (Fk(u(k, p)))k2K

is fast to compute, which is the case for many classes of distribution functions.

4.5.2 Parametric fitting functions and explicit fixed point

Let us assume that the fitting functions Fk have been chosen in a parametric class of

functions, then:

�(p) = (F (✓k, u(k, p)))k2K

If the class is parametrized by means and variances, we have

�(p) = (F (
u(k, p)� µk

�k
))k2K

Many parametric class of distribution functions can be used in this context: gaussians,

Logistics, etc. One can choose any of them, the prediction will hold true, but the error

" will be larger if the fitting is not good. Nonetheless, if we choose to use the class of

uniform distributions, assuming that u(k,p)�µk

�k
2 [�1, 1] for all p 2 [0, 1]K , we have

�(p) =
1

2
+

1

2
(
u(k, p)� µk

�k
)k2K

Let us now assume that the social reward function u is affine in p.

�(p) =
1

2
+

1

2
(
Akp+ bk � µk

�k
)k2K = (

Ak

2�k
)k2Kp+

1

2
(
1 + bk � µk

�k
)k2K

And thus the limit is

p? = (1� (
Ak

2�k
)k2K)

�1(
1 + bk � µk

2�k
)k2K

if it goes above u(f) + " or under u(f)� "
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4.5.3 Small social influence

In situations where social influence is very small, i.e. when u = cũ with c small, we can

also make interesting analysis. In this case, the operator writes

�(p) = (Fk(cũ(k, p)))k2K

Let us make explicit the dependence of its fixed point in c by writing p? = p?(c). We

have

p?(c) = �(p?(c)) = (Fk(cũ(k, p
?(c))))k2K

A standard argument of implicit function theorem implies that p? is derivable for c small

enough, and we have

(p?)0(c) = (@xF (✓k, cũ(k, p
?(c)))ũ(k, p?(c)))k2K

which, in c = 0, yields

(p?)0(0) = (@xFk(0)u(k, p
?(0)))k2K

We thus have

(p?)0(0) = (fk(0)u(k, p
?(0)))k2K

And we can finally write the first order expansion of p?(c):

p?(c) = p?(0) + (fk(0)cu(k, p
?(0)))k2K +O(c2)

which means that the effect of social influence on class k’s choices is fk(0)u(k, p(0)), that

is, the density of indecisive people from class k (i.e. fk(0)) multiplied by the influence

exercised on class k by the intrinsic class-wise choice distributions (i.e. cu(k, p(0))). Let

us consider two simple examples.

Snowball effect

First, we address the social phenomenon of amplification. This happens when social

influence increases the largest proportions and decreases the smallest ones. We conjecture

that this is a consequence of feeling happiness to share the same choice with someone else.

To illustrate this, let us consider a single class, i.e. K = 1 and K = {1}. Happiness to

share the same choice would naturally lead to a social reward function cu(k, p) = c(p� 1
2).

This thus leads to

p(c) = p(0) + f(0)c(p(0)� 1

2
) +O(c2)

and thus

p(c)� 1

2
= (p(0)� 1

2
)(1 + f(0)c) +O(c2)
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Class repulsion effect

In the second example, we address the social phenomenon of class repulsion. This hap-

pens when social influence prevents two opposite classes to mix together, i.e. to both

concentrate on a same choice. We conjecture that this is a consequence of feeling un-

happiness to share the same choice with someone in the other class. To illustrate it,

we consider two classes, i.e. K = 2 and K = {�1, 1}. Unhappiness to share the same

choice as people in the opposite class would naturally lead to the social reward function

cu(k, p) = �cp�k. This thus leads to

p(c) = p(0) + (�fk(0)cp(0)�k)k2{�1,1} +O(c2)

and thus

p(c) = p(0)� c(fk(0)p(0)�k)k2{�1,1} +O(c2)

i.e.

p(c)k = p(0)k � cfk(0)p(0)�k +O(c2)

The result is that

P (c) = P (0)� c(P1f1(0)p(0)�1 + P�1f�1(0)p(0)1) +O(c2)

Notice that the intrinsic choice distribution is indeed decreased because of social class

repulsion.

4.6 Proofs

4.6.1 Proof of Theorem 4.3.2

We introduce a concept useful to study (Πdn
k )k2N, that we call “strategy elimination

sup-process”.

Definition 4.6.1 (strategy elimination sup-process) A family (Π̃d
k)d2D,k2N of strat-

egy sets is a strategy elimination sup-process if

• Π̃d
0 = Π for all dn 2 D,

• (Π̃d)k2N is decreasing for the inclusion, for all dn 2 D,

• we have, 8k 2 N,

Π̃
dn
k+1 � {xn 2 Π̃

dn
k : 6 9x 2 X \ {xn}

s.t. V (dn, x,d�n,x�n) > V (dn, xn,d�n,x�n), 8x�n 2 Π̃
d�n

k }, 8dn 2 D
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The idea of a strategy elimination sup-process is that it is a strategy elimination sequence

such that each iteration does not require to eliminate all the strategies that can be

eliminated: it can in particular eliminate only a subset of these strategies. This is an

interesting tool because the sequence (Πdn
k )k2N, requiring to eliminate all the strategies

that can be eliminated can be complex to express, because some strategies might involve

a difficult argument to prove their irrationality, and it might be easier to eliminate them

later in the process.

We can use this tool to study a well chosen strategy elimination sup-process (Π̃dn
k )k2N

keeping a simple form as k grows. The following result explains how strategy elimination

sup-processes can be used in practice for the game’s analysis.

Lemma 4.6.1 Let (Π̃k)k2N be a strategy elimination sup-process. We have

Π
dn
k ⇢ Π̃

dn
k , 8n  N, 8k 2 N

and thus Πdn1 ⇢ Π̃dn1 .

In other words, a strategy elimination sup-process is a good tool to analyze the solution

concept: if well designed, Π̃k will keep a simple and tractable form, for instance allowing

us to simply study properties shared by all its elements. As we have Πk ⇢ Π̃k, any

property satisfied by all the elements of Π̃k will be satisified by all the elements of Πk.

Proof of the Lemma. We prove this property by induction. For k = 0, we have

Π
dn
0 = Π = Π̃

dn
0 by definition. Let us assume that the property holds true for some k 2 N

and let us prove it for k + 1. We have

Π
dn
k+1 = {xn 2 Π

dn
k : 6 9x 2 X \ {xn}

s.t. V (dn, x,d�n,x�n) > V (dn, xn,d�n,x�n), 8x�n 2 Π
d�n

k },

⇢ {xn 2 Π̃
dn
k : 6 9x 2 X \ {xn}

s.t. V (dn, x,d�n,x�n) > V (dn, xn,d�n,x�n), 8x�n 2 Π̃
d�n

k }

⇢ Π̃
dn
k+1

where the first inclusion comes from the induction hypothesis. This concludes the in-

duction and the proof. 2

Let us now prove Theorem 4.3.2. We define the following candidate for our strategy

elimination sup-process:

Π̃
dn
k =

8
<
:
{x?n} if : x?n = argmax

x
V (dn, x, µ), 8µ 2 B(p?, "k)

X else.
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This sequence simply claims that the first players to find their strategy x?n are the players

for whom it is dominant over the largest sets of possible choices distributions of other

players. More precisely, it says that k elimination’s iterations are sufficient for the players

with strategy x?n dominant over choice distributions in B(p?, "k) to isolate their strategy

x?n. This is consistent with the intuition that the first players to find their rational choice

are the players with the most dominant choice.

Lemma 4.6.2 The sequence (Π̃k)k2N is a strategy elimination sup-process.

Proof. It is clear that Π̃dn
0 = Π, and that (Π̃dn

k )k2N is a decreasing sequence for the

inclusion, for all dn 2 D. To show that Π̃ is a strategy elimination sup-process, it only

remains to prove that

Π̃
dn
k+1 � {x0n 2 Π̃

dn
k : 6 9x00 2 X \ {x0n}

s.t. V (dn, x
00,d�n, x

0
�n) > V (dn, x

0
n,d�n, x

0
�n), 8x0�n 2 Π̃

d�n

k }

If Π̃dn
k+1 = Π̃

dn
k , i.e. if there has not been any elimination between stage k and k + 1

for player n, this is obviously true. The only other case is when Π̃
dn
k = X and then

Π̃
dn
k+1 = {x?n}. In this case, the eliminated strategy is 1 � x?n. Let us show that it was

indeed right to eliminate it, i.e. that

9x0 2 X \ {1� x?n} s.t. V (dn, x
0,d�n,x�n) > V (dn, 1� x?n,d�n,x�n), 8x�n 2 Π̃

d�n

k

As there are only two strategies, it reduces to prove that

V (dn, x
?
n,d�n,x�n) > V (dn, 1� x?n,d�n,x�n), 8x�n 2 Π̃

d�n

k

We have

V (dn, 1� x?n,d�n,x�n) < V (dn, 1� x?n, p
?) + c"k + "

< V (dn, x
?
n, p

?)� "k+1 + c"k + "

< V (dn, x
?
n,d�n,x�n)� "k+1 + 2(c"k + ")

< V (dn, x
?
n,d�n,x�n)

This concludes the proof. 2

We can now establish the precision of our prediction for this game.

Corollary 4.6.1 We have, for all x 2 Π1:

x?n = argmax
x

V (dn, x, µ), 8µ 2 B(p?, "1)) xn = x?

and thus, Theorem 4.3.2 holds true.

Proof. This is a direct implication of Lemma 4.6.1 and Lemma 4.6.2. 2
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4.6.2 Proof of Theorem 4.4.1

We adapt our proof for the static framework under full information for this framework.

We start by transposing the notion of strategy elimination sup-process.

Definition 4.6.2 A consistent strategy profile reduction process is a decreasing sequence

Π̃k such that:

1. Π̃0 = Π,

2. We have

Π̃
dn
k+1 = {xn 2 Π̃

dn
k : 8d�n, 8x�n 2 Π̃

d�n

k , 8t 2 N,

6 9x0n 2 X xn

t�1 : V (dn, x
0
n, d

0
�n, x

0
�n) > V (dn,X

xn
t , d0�n, x

0
�n),

8d0�n 2 D", 8x0�n 2 Π̃
d0�n

k :
NX

i=1

�
d0i,X

i,x0
s

=
NX

i=1

�
di,X

i,x
s
, s  t}

We have the following result.

Lemma 4.6.3 For any consistent strategy profile reduction process Π̃dn, we have Πdn1 ⇢
Π̃dn1 .

Proof. Let us show by induction that for all k we have Π
dn
k ⇢ Π̃

dn
k . For k = 0, it is

obvious. Let us assume that it holds true for some k 2 N, then we have

Π
dn
k+1 = {xn 2 Π

dn
k : 8d�n, 8x�n 2 Π

d�n

k , 8t 2 N,

6 9x0n 2 X xn

t�1 : V (dn, x
0
n, d

0
�n, x

0
�n) > V (dn,X

xn
t , d0�n, x

0
�n),

8d0�n 2 D", 8x0�n 2 Π
d0�n

k :

NX

i=1

�
d0i,X

i,x0
s

=

NX

i=1

�
di,X

i,x
s
, s  t}

⇢ {xn 2 Π̃
dn
k : 8d�n, 8x�n 2 Π̃

d�n

k , 8t 2 N,

6 9x0n 2 X xn

t�1 : V (dn, x
0
n, d

0
�n, x

0
�n) > V (dn,X

xn
t , d0�n, x

0
�n),

8d0�n 2 D", 8x0�n 2 Π̃
d0�n

k :
NX

i=1

�
d0i,X

i,x0
s

=
NX

i=1

�
di,X

i,x
s
, s  t}

⇢ Π̃k+1

which concludes the induction. We conclude by taking the limit in k. 2

We define the following sequence of strategy profiles.

Π̃
dn
k+1 =

8
<
:
{xn 2 Π̃

dn
k : Xn,d,x

t = x?n 8t � k 8x�n 2 Π̃
d�n

k } if x?n = argmax
x

R(dn, x, B(p?, "k))

Π else.
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Lemma 4.6.4 Π̃ is a consistent strategy profile reduction process.

Proof. We only have to prove that

Π̃
dn
k+1 � {xn 2 Π̃

dn
k : 8d�n, 8x�n 2 Π̃

d�n

k , 8t  T,

6 9x0n 2 X xn
t : Vt(dn, x

0
n, d

0
�n, x

0
�n) > Vt(dn, xn, d

0
�n, x

0
�n),

8d0�n, 8x0�n 2 Π̃
d0�n

k :
1

Nn

X

i2In
�
d0i,X

i,x0
s

=
1

Nn

X

i2In
�
di,X

i,x
s
, s  t}

We prove it as in the static game case. First, when Π̃
dn
k+1 = Π̃

dn
k , this is obvious. The

only remaining case is when Π̃
dn
k = Π and

Π̃
dn
k+1 = {xn 2 Π : Xn,d,x

t = x?n 8t � k 8x�n 2 Π̃
d�n

k }

which happens only if x?n = argmax
x

R(dn, x, B(p?, "k)). The strategies in Π̃
dn
k which

have been eliminated in Π̃
dn
k+1 are, in this case, the strategies xn such that there exists

x�n 2 Π̃
d�n

k such that Xn,d,x
t 6= x?n. Let us show that it was right to eliminate this

strategy, i.e. that indeed, there exists x0n 2 Xxn
t such that

Vt(dn, x
0
n, d

0
�n, x

0
�n) > Vt(dn,xn, d

0
�n, x

0
�n),

8d0�n, 8x0�n 2 Π̃
d0�n

k :
1

Nn

X

i2In
�
d0i,X

i,xn,x0�n
s

=
1

Nn

X

i2In
�
di,X

i,xn,x�n
s

, s  t}

Let us naturally consider the strategy (x0
n,t)t 2 Xxn

t such that x0
n,s ⌘ x?n for all s � t,

that is, the strategy stationary at x?n after time t. We study each reward for s � t.

R(dn, X
n,dn,xn,d0�n,x

0
�n

s , d0�n, X
�n,dn,xn,d0�n,x

0
�n

s )

 R(dn, X
n,dn,xn,d0�n,x

0
�n

s , p?) + c"k + "

 R(dn, x
?
n, p

?) + c"k + "

 R(dn, x
?
n, X

n,dn,x0
n,d

0
�n,x

0
�n

s ) + 2(c"k + ")

However, at time t, as we have assumed that X
n,dn,xn,d0�n,x

0
�n

t 6= x?n, we have the more

refined estimation

R(dn, X
n,dn,xn,d0�n,x

0
�n

t , d0�n, X
�n,dn,xn,d0�n,x

0
�n

t )

 R(dn, x
?
n, X

n,dn,x0
n,d

0
�n,x

0
�n

s )� "k+1 + 2(c"k + ")

As we have, by definition, "k+1 = 2 c"k+"
1��

, we thus have

Vt(dn,x
0
n, d

0
�n, x

0
�n) > Vt(dn,xn, d

0
�n, x

0
�n)

2

Proof of Theorem 4.4.1. This directly follows from Lemmas 4.6.3 and 4.6.4. 2
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4.7 Conclusion

In this work, we have studied games with a large amount of players with the strongly

rational Iterative Elimination of Strictly Dominated Strategies solution concept. We

have been able to study this concept in a repeated game where players initially do

not have any information about each other, and we have proved that, although the

remaining strategy profiles resulting from this process are not necessarily reduced to a

unique one, they all share common properties allowing us to make precise predictions

about people’s rational choices after a few stage games. We believe that the ability to

make precise predictions in such a complex game, with a large population, no initial

information, repeated games, and the IESDS rational concept, with techniques that are

mathematically not too heavy thanks to mean-field tools, is appealing and promising.

Although the IESDS with finitely or infinitely many players is not new, to the best

of our knowledge, using mean-field tools for the study of IESDS has not been done

before. From this work, several directions can be taken: adapt the problem to non-

binary space of choices, adding other types of players (e.g. advertisers), etc. In these

possible extensions, making precise predictions is, in itself, not fundamentally harder,

but the main challenge in such extensions is to keep the notations and proofs not too

heavy. We believe that interesting work can be done in the direction of searching for the

most elegant and powerful way to deal with more complex problems. Adding features

to the game is susceptible to lead to heavy notations and formulas in two places: 1)

the definition of the solution concept, which already takes three lines in our work, and

2) the proof of the prediction. Adding complexity to the game would indeed make the

formulation of the solution concept a lot heavier in notations or require to introduce

intermediary objects. On the other hand, the 3-lines solution concept introduced in this

work for the repeated game, with no initial information but with past observations, and

with the IESDS principle, seems interestingly concise considering the amount of features

encoded in it. Likewise, the concept of elimination sup-process that we introduced for

the proof made the argument simple and concise enough. It could be interesting to take

advantage of these two aspects to make the game more complex while maintaining its

tractability.
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Chapter 5

Gaussian Cumulative Prospect

theory

Abstract. In this work, we propose a parametrization of Daniel Kahneman and Amos Tver-

sky’s Cumulative Prospect Theory (CPT) leading to an explicit gamble valuation formula for

gaussian rewards. More precisely, we define parametric functions vθ, w
−

θ and w+

θ , with the three

following properties. We refer to the first property as “validity”: for all ✓, vθ, w
−

θ and w+

θ satisfy

all the properties stated by CPT (vθ concave on R+, convex on R
−

with steeper curve, w−

θ and

w+

θ increasing, inverse S shapes, mapping 0 to 0 and 1 to 1). We refer to the second property

as “Density”: the parametrization is flexible enough so that the choice of ✓ allows to generate a

function vθ with any asymptotes and convergence rate to asymptotes, and w−

θ and w+

θ with any

crossover points and slopes at crossover points. We call the third property “Explicit valuation”:

for any ✓, the functions vθ, w
−

θ and w+

θ lead to explicit gamble valuation for any gaussian reward,

i.e. with any mean and variance (and therefore provides an explicit approximate valuation for

any bell-shaped rewards). The motivation is to propose a CPT framework well suited for fast

computations, for instance on large scale population problems. We illustrate such use with two

examples of problems involving CPT and large populations.

5.1 Introduction

In this chapter, we propose a parametric model for Daniel Kahneman and Amos Tver-

sky’s Cumulative Prospect Theory ([40]), and for one of its major inspirations, John

Quiggin’s rank-dependent expected utility theory ([74]). Our parametric model has the

advantage to yield a gamble valuation formula that is analytic when the gamble’s re-

ward is gaussian, which is an appealing property since most random variables naturally

encountered in reality are close to gaussian random variables, as they result of the com-
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bination of many of small causes, which by Central Limit Theorem arguments naturally

lead to normal bell-shaped distributions.

An analytical gamble valuation formula is useful for many reasons. It can drastically

improve the computational cost of the gamble valuation, which, when studying choice

problems in large populations, can dramatically speed up computations that would be

much costlier, longer, or simply impracticable with non-analytical gamble valuation for-

mulas. Another advantage is the possibility to derive the formula w.r.t. any parameter

of the problem, therefore obtaining analytical formulas for them, and use them for op-

timization problems involving risky choices (e.g. marketing problems) by means of op-

timization methods using the gradient and/or hessian of the gamble valuation function

(e.g. gradient or stochastic gradient descent, Newton’s method) without any instability

issue. Finally, analytical formulas allow to study the gamble valuation qualitatively, by

drawing relations between parameters, studying monotony, convexity, inflexion points,

etc.

5.1.1 Origins and motivations

The choice under risk theories that we address in this work, namely, Kahneman and

Tversky’s Cumulative Prospect Theory ([40]), and John Quiggin’s rank-dependent ex-

pected utility theory ([74]), are, to this day, considered to be the two most compelling

non-expected utility theories for modeling human behavior when facing risky choices.

Both theories present themselves as alternatives to the so-called Expected Utility

Theory (EUT), although they can also be seen as generalizations of the EUT. EUT

was proposed by Daniel Bernoulli, modelling the reasonable maximal price V (R) one

should be willing to pay to enter a gamble R (a real random variable). At the time,

the natural assumption was that such price should be the expectation of the gamble’s

reward, i.e. V (R) = E[R]. However, Bernoulli presented the famous St. Petersburg

game, convincingly arguing against this intuition.

Bernoulli then introduced the concept of utility function, with the idea that the price

someone would pay is not the expectation E[R] of the monetary reward, but instead of

its subjective utility, i.e. V (R) = E[v(R)]. This was the first formulation of EUT. EUT

started sparking a lot of attention from the 1950s, when John Von Neumann, in Games

and Economic Behaviors ([91]), proved that EUT is implied by a set of very compelling

axioms of rationality. However, empirical studies then revealed several patterns of choice

behavior violating EUT ([54, 55]), and there is now a large number of evidences proving

that actual choice behaviors systematically violate EUT.

To circumvent EUT’s empirical inconsistencies, two opposite research branches emerged,

that are now referred to as conventional and non-conventional choice theories (although
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mixing approaches were proposed ([76, 21, 84]).

The non-conventional branch led to Kahneman and Tversky’s Nobel Prize awarded

Prospect theory ([40]). The conventional branch led to John Quiggin’s rank-dependent

expected utility theory ([74]), which, paradoxically, was inspired form Kahneman and

Tversky’s non-conventional Prospect theory ([40]).

Rank-dependent expected utility theory sparked a great interest in the research com-

munity ([61]). Axiomatizations were presented ([77, 92, 1, 97, 93]). Generalizations have

also been proposed ([18, 32]), and extensions were discussed ([80, 59, 84]).

Later, Kahneman and Tversky themselves developped an improvement of Prospect

theory, in turn inspired from Quiggin’s rank-dependent expected utility theory ([74]),

called Cumulative Prospect theory ([40]).

A conventional choice under risk theory (like Bernoulli’s Expected Utility Theory,

John Quiggin’s rank-dependent expected utility theory [74], and Kahneman and Tver-

sky’s Cumulative Prospect theory [40]) models how, given a set of prospects, that is, a

set of gambles G, i.e. a set of real valued random variables, an individual attributes a

deterministic value V (R) to each gamble R 2 G to choose the gamble with highest value,

i.e. to choose the gamble

R? = argmax
R

V (R).

Such model is obviously interesting to predict an individual’s choices, and thus very

useful for commercial or political applications.

5.1.2 Cumulative Prospect Theory

Cumulative Prospect Theory defines the gamble valuation assigned by an individual to

a given prospect as follows:

1. Functions with constraints: For this individual, there exists three functions

v : R ! R and w�, w+ : [0, 1] ! [0, 1] satisfying 1) v(0) = 0, v concave on R+,

convex with steeper curve on R�, 2) w+(0) = w�(0) = 0, w+(1) = w�(1) = 1,

both increasing inverse S shape functions, such that the gamble valuation V (R)

given to any gamble R is given by:

2. Gamble valuation formula:

V (R) =

Z 0

�1
v�(r)d(w

� � FR)(r) +

Z 0

+1
v+(r)d(w

+ � F̄R)(r) (5.1.1)

where FR : R ! [0, 1] is the cumulative distribution function of R, and F̄R : R !
[0, 1] is its tail function.
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It is possible to define the gamble valuation function V in a more probabilistic way:

V (R) is computed with the following steps.

1. The random reward R is split in a gain reward R+ := max(R, 0) and a loss reward

R� := min(R, 0), such that R = R+ +R� a.s.,

2. The cumulative distribution of R� is distorted by applying the weighting w� to it,

yielding a distorted cumulative distribution function. Let us denote R̃� a random

variable with such distorted CDF,

3. Likewise, the tail function of R+ is distorted by applying the weighting w+ to it,

yielding a distorted tail function. Let us denote R̃+ a random variable with such

tail function,

4. The deterministic value attributed to gamble R is then V (R) = E[v(R̃�)] +
E[v(R̃+)].

We stress that the two aspects of CPT, i.e. the constraints on the functions v, w�

and w+, and the gamble valuation formula, are both crucial to CPT: in particular,

the constraints imposed on v, w� and w+ are as important as the gamble valuation

formula, because each constraint was deduced from many experiments performed by

Kahneman and Tversky in their work.

Besides the empirical exposition of v, w� and w+’s general shapes, mathematically

encoded by these constraints, several parametric classes of analytical functions have

been proposed for the value and weight functions v, w� and w+. For instance, for the

weighting functions, some of the proposed parametrizations are the following.

1. In [84], the class of inverse S shape functions used to fit the empirical data is

parametrized by � 2 [0, 1], such that to all � 2 [0, 1], we associate a function

w� : [0, 1]! [0, 1] defined by

w�(p) =
p�

(p� + (1� p)�)
1
�

, 8p 2 [0, 1]

2. In [73], the following function is used, also with � 2 [0, 1]:

w�(p) = e�(� ln(p))� , 8p 2 [0, 1]

3. In [83], the inverse S shape function used is the log-odds probability distortion

function, wp0,� : [0, 1] ! [0, 1], where p0, � 2 [0, 1], characterized by the following

identity:

Lo(wp0,�(p)) = �Lo(p) + (1� �)Lo(p0), 8p 2 [0, 1] (5.1.2)
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where Lo :]0, 1[! R is the log-odds function defined by Lo(p) = ln
⇣

p
1�p

⌘
, 8p 2

]0, 1[.

It is possible to observe graphically that these are, indeed, inverse S shape functions,

although proving it analytically is challenging.

All these functions are hard to distinguish according to [58]. Therefore, it seems that

the parametric class of inverse S shape functions used is not really important as long as

1) its functions all are inverse S shape functions and 2) it is rich enough to reproduce

the general shape of any inverse S shape function.

As Cumulative Prospect Theory was, in its origin, drawn from experiments and

empirical evidences, it appears that even though these various parametrizations were

proposed, they were mainly used for experimental purposes, i.e. to fit empirical data

with a few parameters and analyze the psychology and behavior of a small group of

individual. For these applications, it is not really necessary to have analytical formulas

from end to end: numerical and discretization techniques are sufficient to run algorithms

optimally fitting the empirical data observed in experiments with the right parameters.

However, we believe that interesting analytical problems involving CPT can be stud-

ied, e.g. commercial or political problems with large populations. In such problems, the

goal is not to fit empirical data, but instead make a prediction, e.g. of the proportion

of people who will make a given choice, or to optimize some gain, e.g. designing a com-

mercial product or political program to optimize the proportion of people who will buy

it or vote for it. The large number of computations of gamble valuations in such large

population problem is susceptible to make the computation of integrals in (5.1.1) too

costly. In these cases, being able to analytically compute the gamble valuations without

computing integrals would make computations dramatically faster.

5.1.3 Contributions of this work

Our main contribution is to propose a parametrization of Cumulative Prospect theory,

i.e. to propose parametrized classes of 1) reward distributions R (from which to draw

the gamble R), 2) value functions V (from which to draw v), and 3) weighting functions

W (from which to draw w� and w+), such that each v 2 V , w 2 W satisfy the con-

straints in point 1. above, flexible enough to approximate any function satisfying these

constraints, and yielding an explicit valuation formula, well suited for large number of

gamble valuations in large population problems. The classes we propose are:

1. For R: the class of gaussian reward distributions, parametrized by their mean and

variance,
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2. For V: the utility functions

vm�,V �,a�,m+,V +,a+(x) = �(m�x+ V �(1� e�a�(�x)))1x<0

+(m+ + V +(1� e�a+x))1z�0

with m� � m+, V � � V +, and a� � a+.

3. For W: the weighting functions

wp0,�(p) = N (�N�1(p) + (1� �)N�1(p0)), 8p 2 [0, 1]

where N denotes the cumulative distribution of the standard normal distribution.

This class of weighting functions is similar to the log-odds probability distortion

function (5.1.2), except that the function N�1 is used instead of Lo. We shall

see that this modification still yields inverse S functions (which can be proved

analytically), and that they allow us to make explicit valuation computations.

Our main result is the following.

Theorem 5.1.1 We have

• Validity: any value function v 2 V and weighting function w 2 W satisfies the

constraints in 1..

• Density: R, V, W contains Gaussian reward distributions with any mean and

variance, value functions with any asymptotes and rate of convergence to the asymp-

totes, and weighting functions with any crossover point and slope at the crossover

point.

• Analytic valuation function: We have

Vµ,�,p0,�,m�,V �,a�,m+,V +,a+

= �m�
✓
xN (x)� 1p

2⇡
e�

1
2
x2

◆
� V �

✓
N (x)� e�a+x+

(a+)2

2 N (x� a+)

◆

+ m+

✓
xN (x)� 1p

2⇡
e�

1
2
x2

◆
+ V +

✓
N (x)� e�a+x+

(a+)2

2 N (x� a+)

◆

where, x := µ̂
�̂
, x̄ :=

¯̂µ
�̂
, m+ := �̂m+, m� := �̂m�, a+ := �̂a+, a� := �̂a�, where

µ̂ = µ� �(��1 � 1)N�1(p0), ¯̂µ = µ+ �(��1 � 1)N�1(p0), �̂ = ���1.

Our second contribution is to use the analytical expression of V to compute its ex-

plicit partial derivatives, and to discuss some applications of our results, in particular to

commercial and political problems with large populations.
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5.2 The model

In this section, we introduce and motivate each parametric class of functions for our

parametric CPT model.

5.2.1 The class R of reward probability distribution

The probability distribution that is both ubiquitously met in Nature and mathematically

convenient to deal with is the gaussian probability distribution. Let us thus simply

assume that the class of rewards R is the class of gaussian variables with any mean and

variance (µ,�).

More realistically, we could also assume that it takes the form of a probability dis-

tribution that is only well approximated by a gaussian distribution with same mean and

variance, which is essentially often the case in Nature and is mathematically explained

by the Central Limit Theorem.

Nonetheless, to simplify, we shall only consider rewards R perfectly following a gaus-

sian probability distribution with mean µ and standard deviation �, i.e.

R := {N (µ,�), µ 2 R,� 2 R+}.

5.2.2 The class W of weighting functions

Next, we shall design the weighting function w in a way that 1) w has an increasing

inverse S shape, and w(0) = 0 and w(1) = 1, and 2) w combines nicely with a reward

following a gaussian probability distribution, as assumed in previous paragraph.

First of all, we write in detail the constraints required for a function w : [0, 1]! [0, 1]

to be a valid wieghting function for CPT.

Definition 5.2.1 (Valid weighting function for CPT) A valid weighting function

is a derivable function � : [0, 1]! [0, 1] such that:

• �(0) = 0, �(1) = 1,

• �0(p) > 0, 8p 2 [0, 1] (increasing property),

• � has a unique inflexion point p? 2 [0, 1], such that �00(p?) = 0, �00(p) < 0 for

p 2 [0, p?[ and �00(p) > 0 for p 2]p?, 0] (inverse S shape property).

We shall now define a candidate of parametrized class of probability distortion func-

tions for our model. If we take a look at the so-called log-odds probability distortion
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function used in [83], wp0,� : [0, 1]! [0, 1], characterized by the following identity:

Lo(wp0,�(p)) = �Lo(p) + (1� �)Lo(p0), 8p 2 [0, 1]

we see that it is built from the log-odds function, which can also be seen as the quan-

tile function of the Logistic probability distribution. The Logistic probability distri-

bution looks closely like the Normal probability distribution, in that they both have

bell-shape density functions. Therefore, there distribution and quantile functions are

both S shaped. The Logistic quantile function Lo would not combine very well with

our normal distributed rewards R, so a natural and convenient modification is to re-

place it by the Normal quantile function, i.e., essentially, to define wN
p0,� : [0, 1] ! [0, 1]

characterized by the identity

N�1(wN
p0,�(p)) = �N�1(p) + (1� �)N�1(p0), 8p 2 [0, 1]

where N denotes the normal quantile function, which is equivalent to define it as follows.

Definition 5.2.2 (Normal (probability) distortion function) The Normal proba-

bility distortion function wN
p0,� : [0, 1] ! [0, 1] associated to parameters p0 2 [0, 1],

� 2 [0, 1], is defined by

wN
p0,�(p) = N (�N�1(p) + (1� �)N�1(p0)), 8p 2 [0, 1].

Validity of wN
p0,� for p0 2 [0, 1] and � 2 [0, 1]

Let us now prove that for all p0 2 [0, 1] and � 2 [0, 1], wN
p0,� is indeed a valid weighting

function.

Proposition 5.2.1 For all p0, � 2 [0, 1], the normal probability distortion function wp0,�

is a valid weighting function for the CPT.

Proof. We only have to compute the successive derivatives and study them. We have

wp0,�(p) = N(�N�1(p) + (1� �)N�1(p0)), 8p 2 [0, 1]

For the sake of readability, let u0 := (1� �)N�1(p0). We have

wp0,�(0) = N(�N�1(0) + u0) = N(�1) = 0

and

wp0,�(1) = N(�N�1(1) + u0) = N(+1) = 1
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Let us now compute w0
p0,� : for all p 2 [0, 1], we have

w0
p0,�(p) = �(N�1)0(p)N 0(�N�1(p) + u0) = �

n(�N�1(p) + u0)

n(N�1(p))
> 0,

where n : R! R denotes the gaussian density defined by n(x) = 1p
2⇡
e�

x2

2 , 8x 2 R, and

where the inequality simply comes from the positivity of the gaussian density. We now

check that wp0,� has a unique inflexion point on [0, 1]. Let f : [0, 1] ! R be defined by

f(p) = ln(w0
p0,�(p)), for all p 2 [0, 1]. Notice that f 0 =

w00
p0,�

w0
p0,�

, and thus, w00
p0,�(p) has only

one zero if and only if f 0 has only one zero. We have

f(p) = ln(�) +
1

2

⇣
N�1(p)2 � (�N�1(p) + u0)

2
⌘

Let us take the derivative:

f 0(p) =
1

2

⇣
2(N�1)0(p)N�1(p)� 2�(N�1)0(p)(�N�1(p) + u0)

⌘

= (N�1)0(p)
⇣
N�1(p)� �(�N�1(p) + u0)

⌘

Notice that (N�1)0(p) = 1
n(N�1(p))

> 0 for all p 2 [0, 1] by the positivity of n. Therefore,

we only need to study the sign of N�1(p)� �(�N�1(p) + u0). We have:

N�1(p)� �(�N�1(p) + u0) � 0

, N�1(p)(1� �2)� �u0 � 0

, N�1(p) � �u0
1� �2

, p � N
⇣�N�1(p0)

1 + �

⌘

which means that w00
p0,� is negative on [0, N

⇣
�N�1(p0)

1+�

⌘
] and positive on [N

⇣
�N�1(p0)

1+�

⌘
, 1].

2

Gaussian stability property

The class of weighting functions W has another particularity: it stabilizes gaussian

distributions. More precisely, we have the following result.

Lemma 5.2.1 Let Nµ,� be the distribution function of a gaussian variable with mean µ

and standard deviation �, and let wN
p0,�

be a normal probability distortion function with

crossover point p0 and slope at the crossover point �. Then, the function wN
p0,�
�Nµ,� is

the distribution function of a gaussian variable with mean µ̂ := µ� �(��1 � 1)N�1(p0)

and standard deviation �̂ := ���1, and wN
p0,�
� N̄µ,� is the tail function of a gaussian

variable with mean ¯̂µ := µ+ �(��1 � 1)N�1(p0) and standard deviation ¯̂� := ���1 = �̂.
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Proof. We simply have

wN
p0,� �Nµ,�(x) = N (�N�1(N (

x� µ

�
)) + (1� �)N�1(p0))

= N

✓
�
x� µ

�
+ (1� �)N�1(p0)

◆
= N

✓
x� (µ� (��1 � 1)�N�1(p0))

���1

◆

= Nµ̂,�̂(x),

where

µ̂ = µ� �(��1 � 1)N�1(p0), �̂ = ���1

Likewise,

wN
p0,� � N̄µ,�(x) = wN

p0,� �N�µ,�(�x)
= Nc�µ,�̂(�x) = N̄�c�µ,�̂(x) = N̄µ̃,�̂(x)

where

µ̃ = µ+ �(��1 � 1)N�1(p0)

2

Therefore, the class of normal weighting functions W “stabilizes” the set of gaussian

distributions.

5.2.3 The value function

Let us finally naturally introduce the class V of value functions. In our model, up to now,

we have fixed 1) the class of reward probability distribution to be gaussian distributions,

and 2) the class of weighting functions to be the normal weighting functions. Therefore

typically, when modeling a situation of choice under risk, one would choose µ,�, the

parameters of the gaussian reward distribution for this risky choice, and �, p0, the pa-

rameters of the weighting function for this individual. By the definition of the gamble

valuation in CPT, and by Lemma 5.2.1, clearly, the class V of value functions should

be a class of functions that are explicitly, or close to explicitly, integrable w.r.t. any

gaussian distribution. The only thing left to do now is to build such function satisfying

the requirements of prospect theory, that is, having a concave form on R+ and a steeper

convex form on R�, and cancelling in 0.

An important class of functions that integrate well w.r.t. the gaussian distribution

is the class of exponential functions x! e�ax. The function

v : x! (�m�x� V �(1� e�a�(�x)))1x<0 + (m+x+ V +(1� e�a+x)1x�0
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is concave on R+, convex on R�, and steeper on R� if V � > V +, a� > a+, and m� >

m+. Let us graphically interpreted the parameters of this utility function. First of all, it

is separately designed on R� and R+. We focus on the R+ part. To natural properties

that one can imagine to represent a large variety of increasing concave functions are 1)

an asymptote, to describe the behavior in +1, and 2) a rate of convergence toward the

asymptote, to describe how quickly the function approaches this asymptote.

The function v defined above has an asymptote x 7! V + + m+x in +1. and we

have, for x � 0,

V + +m+x� v(x) = V +e�a+x.

Therefore, the exponential rate of convergence of v(x) to V + +m+x is a+ (it naturally

starts from V + at x = 0 and then exponentially decays toward 0 with rate a+).

5.3 The gamble valuation function

In this section, we provide an explicit expression of the gamble valuation V (R) given

R ⇠ N (µ,�), and given w�, w+ 2 W , v 2 V . Let us stress that, by “explicit”, we

mean any expression containing elementary operations, but we also allow the use of the

exponential function and the normal cumulative distribution function, two functions who

are of course very precisely implemented and optimized (i.e. with fast computation) in

any statistical library.

Theorem 5.3.1 We have

Vµ,�,p0,�,m�,V �,a�,m+,V +,a+

= �m�
✓
xN (x)� 1p

2⇡
e�

1
2
x2

◆
� V �

✓
N (x)� e�a+x+

(a+)2

2 N (x� a+)

◆

+ m+

✓
xN (x)� 1p

2⇡
e�

1
2
x2

◆
+ V +

✓
N (x)� e�a+x+

(a+)2

2 N (x� a+)

◆

where, x := µ̂
�̂
, x̄ :=

¯̂µ
�̂
, m+ := �̂m+, m� := �̂m�, a+ := �̂a+, a� := �̂a�, where

µ̂ = µ� �(��1 � 1)N�1(p0), ¯̂µ = µ+ �(��1 � 1)N�1(p0), �̂ = ���1.

Proof. The idea is to split the computation into several components. First of all, notice

that the fact that gains and losses are processed separately (using different parameters

for the weighting function and value function), we can clearly focus on computing the

part corresponding to the gains: the part a corresponding to losses will take the same

form but with different parameters. On R+, notice that the value function is

v(x) = m+x+ V +(1� e�a+x), 8x 2 R+.
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We can thus separately study the terms m+x, V +, and �V +e�a+x. The “gain” part of

gamble R, i.e. R+ will have its tail function distorted by w+. By Lemma 5.2.1, this will

yield another gaussian variable with parameters ¯̂µ and �̂ given by Lemma 5.2.1. All we

are left to do is, given Z ⇠ N (¯̂µ, �̂) to compute separately

E[m+Z1Z�0], E[V +1Z�0], E[�V +e�a+x1Z�0].

The second term is simply given by E[V +1Z�0] = V +N (
¯̂µ
�̂
). Let us compute the third

term. We have

�V +
E[e�a+Z1Z�0] = �V +e�a+µ̂

E[e�a+�̂N1
N�� µ̂

�̂

] = �V +e�a+µ̂
E[ea

+�̂N1
N< µ̂

�̂

]

= �V +e�a+µ̂

Z µ̂
�̂

�1
ea

+�̂x 1p
2⇡

e�
x2

2 dx = �V +e�a+µ̂e
(a+�̂)2

2

Z µ̂
�̂

�1

1p
2⇡

e�
(x�a+�̂)2

2 dx

= �V +e�a+µ̂+
(a+�̂)2

2 P(N + a+�̂ <
µ̂

�̂
) = �V +e�a+µ̂+

(a+�̂)2

2 P(N <
µ̂� a+�̂2

�̂
)

= �V +(e�a+µ̂+
(a+�̂)2

2 N (
µ̂� a+�̂2

�̂
))

Finally, the first term is obtained as follows. Notice that

E[Z1Z�0] = �@a+=0E[e
�a+Z1Z�0] = µ̂N (

µ̂

�̂
)� �̂p

2⇡
e�

1
2(

µ̂
�̂ )

2

2

Notice that the explicit expression of V (R) makes it easily derivable in each of the

model’s parameters.

5.4 Applications to large population problems

In this section, we provide some ideas about how one can take advantage of the explicit

formulas of this gaussian Cumulative Prospect model.

The reality is that there are an endless amount of possibilities to use analytical

formulas to one’s advantage: quick computation, interpretations, linking parameters

together, studying sensitivities of the gamble valuation to parameters, using explicit

gradient and hessian for optimization algorithms (gradient or stochastic gradient descent,

Newton’s method, etc), analytically solving problems, real-time plotting, high-frequency

decision making (e.g. high-frequency trading) etc. Our goal here is not to investigate

all these possibilities, but instead to detail two possible usages of the formula, in the

context of large population problems.
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5.4.1 Optimal product/program design for a large population

Although numerically approximating an integral, nowadays, does not take any noticeable

computational time, it is still, at the microscopic level, orders of magnitude longer than

computing an explicit formula. When computing a single gamble valuation, it might

thus not make a big difference, but when repeatedly computing a large number of them,

it makes a great one. The way we will illustrate a possible advantage of our analytical

formula is thus by providing natural situations where one would want to repeatedly

compute a large number of gamble valuations.

Consider an agent designing some program. By agent, we mean a company, a politi-

cian, or any influencer in general. By program, we mean a marketing program (designing

a new product, a new show), or an electoral program (designing a presidential program,

a reform, etc). Let P denote the set of all possible programs.

We now consider a population of N individuals. Each individual n, for n  N , has

a personality en in some personality space E. We assume that the personality e 2 E of

an individual fixes his utility and weighting functions, i.e. that there are functions

p+0 ,�
+, V +,m+, a+, p�0 ,�

�, V �,m�, a� : e 2 E

7! p+0 (e),�
+(e), V +(e),m+(e), a+(e), p�0 (e),�

�(e), V �(e),m�(e), a�(e),

fixing the crossover point p+0 (e) and slope at the crossover point �+(e) for the individ-

ual’s weighting function on gains, the asymptote parameters V +(e) and m+(e) and the

convergence rate to the asymptote a+(e) of the utility function on R+, and likewise on

R�. Furthermore, we assume that there are functions µ,� : E ⇥ P ! R,R+ such that

any individual with personality e 2 E receives, from a given program P 2 P, a random

reward with gaussian distribution with mean µ(e, P ) and variance �(e, P ). This can all

be summarized by considering that there exists a function ✓ : E ⇥ P ! Θ associating

to a personality e 2 E and a program P 2 P the parameters ✓(e, P ) associated to this

individual in the model, for the program P , such that the value he attributes to the pro-

gram (seen as a gamble) is CE✓(e,P ), and is thus an analytical function of the parameters

✓(e, P ). Provided that µ(e, P ) and �(e, P ) are analytic in P , CE✓(e,P ) is analytic in P

as well.

Let us assume that the population has to make an action: in the case of a company,

it can be “buying or not the new product”, “watching or not the new show”, etc. In the

case of a politician, it can be “voting or not for the politician”, or for instance “voting

for or against the reform in a referendum”. The action of an individual with personality

e 2 E, given program P , can be assumed to be 1CE✓(e,P )>0, i.e. the individual sees the
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choice as a binary choice with choice 1 representing “buying the product” or “voting for

the candidate”, which has value CE✓(e,P ), and the other choice, essentially representing

“not buying it” or “not voting for him”, can be, to fix ideas, seen as a neutral choice

with null utility. Therefore, the action 1CE✓(e,P )>0 simply means that we assume that

the individual acts according to his preference.

Therefore, if program P 2 P is presented to the population, the distribution of

choices 1 in the population should be 1
N

P
n 1CE✓("n,P )>0. Notice that this is natural sit-

uation where a large number of certainty equivalences have to be computed, N typically

representing millions, or even billions of people. Simply computing this expression with

N integral numerical approximations versus N analytical expressions, is enough to see

a big difference in computational time.

However, the complexity of the problem can naturally be pushed further away: in-

deed, the goal of the agent (the company, or the politician), is to design the right program

P 2 P. We can assume that there exists a gain function for the agent, taking the form

GN (P ) = g(P,
1

N

X

n

1CE✓(en,P )>0)

that is, depending upon the program and the proportion of people who will choose this

program if the agent proposes it. The goal of the agent is then to compute

P ?
N = argmax

P2P
GN (P )

Notice how such optimization problem would require to compute GN (P ) for many differ-

ent P 2 P, each computation itself involving the estimation of N certainty equivalences.

Here, again, we would see a great computational difference between certainty equiva-

lences computed by integral numerical approximation or with an analytical formula.

Furthermore, by a mean-field approximation argument, one could approximate the

problem with its mean-field version: if we approximate 1
N

P
n �en with a probability

distribution ⌫, and denote " a random variable with distribution ⌫, we consider the gain

function:

G(P ) = g(P,P(CE✓(",P ) > 0))

and the optimization problem

P ? = argmax
P2P

G(P )

129



The probability P(CE✓(",P ) > 0) can be approximated with many methods, all involving

the computation of several CE✓(e,P ), which, again, will be faster with analytical formulas.

Finally, the optimization of such function is susceptible to require the computation of

@PP(CE✓(",P ) > 0) = E[@PCE✓(",P ) | CE✓(",P ) = 0]: Here, notice that being able

to explicitly compute the derivatives of the certainty equivalence w.r.t. the models

parameters would be very useful.

5.4.2 Equilibrium computation in a social game with large population

Another situation where an analytical certainty equivalence formula can be useful is if

we consider a social game in a large population.

In the framework introduced in previous section, let us assume that the agent is a

company and that it is selling a product P . Let us fix the product P here. We however

assume that the reward perceived by the individuals in population from making a choice

0 or 1 does not only come from the product P but also from subsequent social interactions

they might have with other people: for instance, if two people who have both bought

the product interact, they receive an additional positive reward.

Concretely, this means that if (xn)nN 2 {0, 1}N represents the choices made by

each individual n, then the reward received by individual n is not simply the product’s

reward RP,"n ⇠ N (µ("n, P ),�("n, P )), but it instead

RP,"n + u(
1

N

X

i

xi) ⇠ N
⇣
µ("n, P ) + u(

1

N

X

i

xi),�("n, P )
⌘

where u( 1
N

P
i xi) is a social reward depending upon other people’s choices. This is equiv-

alent to say that the mean of the reward depends upon the choice distribution of the other

individuals. Thus, the parameter function ✓ now takes the form ✓("n, P, u(
1
N

P
i xi)).

The goal of individual n is to make the choice maximizing his certainty equivalence, i.e.

he would like to make the choice xn such that

xn = 1CE
✓("n,P,u( 1

N

P
i xi)

>0,

but to do so, he would have to know what choice the other players will make. This turns

the problem into a game in large population. Notice that, as in this case, CE✓("n,P,u)

is clearly strictly increasing in u , maximizing the certainty equivalence is equivalent to

make the choice

xn = 1⌧("n,P )<u( 1
N

P
i xi)

,
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where ⌧("n, P ) = CE�1
✓("n,P,·)

(0). We obtain the type of game that we studied in last

chapter, and we know that rational players will end up essentially playing the unique

fixed point of the operator

p 7! P(⌧("n, P ) < u(p))

that is, the unique fixed point of

p 7! P(CE✓("n,P,u(p)) > 0)

Such fixed point can be computed:

• either by applying several iterations of this contracting operator: in this case, it

means computing several times a large amount of CE✓("n,P,u(p)), and thus, using

an analytical expression for it is a great gain of time,

• or, in the case where u(p) = cũ(p) for c small, by using the fact that the fixed point

p?(c) of

p 7! P(CE✓("n,P,cũ(p)) > 0)

is, for c = 0, simply p?(0) = P(CE✓("n,P ) > 0) (the distribution of choices without

social influence), and thus, for c small, one can make a first order extension of p?(c)

using the implicit function theorem. In this case, clearly, such first order extension

would require to derive CE✓("n,P ) w.r.t. its parameters, which is again a lot more

practical when ones has an analytical formula for it.

5.5 Conclusion

In this chapter, we have provided a parametric model for Cumulative Prospect Theory.

More precisely, we have defined a set of parameters Θ and a map ✓ 2 Θ 7! (v✓, w
�
✓ , w

+
✓ )

such that for all ✓ 2 Θ, the functions v✓, w
�
✓ , and w+

✓ , are valid value and weighting

functions (validity result), also such that any general shape of valid functions can be

reproduced with the right parameter ✓ (density result), and yielding an explicit valuation

formula for gaussian rewards. We have shown that such formula could easily be derived

w.r.t. any coordinates of the parameter ✓, and we also have provided two examples

involving large populations, where such analytical valuation function (and its derivatives)

can be very useful for speeding up computations associated to these problems by several

orders of magnitude. We believe that interesting work can be made in this direction to

develop these large population problems, only briefly discussed in this paper. A natural
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application of any choice theory being to predict the choice of individuals, it indeed

seems relevant to apply it to large populations in commercial or political problems, since

generally, what one is really interested in, in these cases, is the aggregation of individuals’

choices rather than the choice of a single individual. As mentioned in our brief discussion,

such problem would naturally apply to the problem of designing the right product to

sell to maximize the number of sales, or designing the right political program to reach a

given proportion of votes.
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Part III

Models for targeted advertising
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Chapter 6

Online click learning algorithm

for targeted advertising

Abstract. In this chapter, we introduce and study an online click prediction learning algo-

rithm for targeted advertising. The algorithm is based on a polynomial classifier with soft or

hard margin, and, to learn, only requires to observe clicks on displayed ads. We show that all the

ads that would lead to a click will be displayed, and that the expected number of displayed ads

that are not clicked on is logarithmic in the number of past ads. In classification terminology,

this is to say that our algorithm makes no false negative and only makes a logarithmic amount

of false positives in the number of past stages. We finally prove the boundedness of the average

memory usage and of the computational complexity.

6.1 Introduction

In this chapter, we define and study an online click prediction learning algorithm specif-

ically designed for targeted advertising. We prove that its learning efficiency is loga-

rithmic. Furthermore, the memory and time complexity of the algorithm at each time

n 2 N is uniformly bounded over all times n. Finally, the particularities of our learning

algorithm are:

• It makes no false negatives, i.e. the prediction errors consisting in not displaying an

ad that would have led to a click never occurs. This is an important feature when

the errors cost are very asymmetric between error types. In advertising, the social

network will generally only be paid by the company if the individual has clicked

on the ad (CPC advertising) or made a purchase/subscription (CPA advertising).

Therefore, not displaying an ad that would have led to a click is a real loss. On the
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other hand, the other prediction error type, consisting in displaying an ad that does

not lead to a click, only generates a small “inconvenience” to the user’s experience.

Therefore, it is much more problematic for the social network to not display an ad

that would have led to a click (and a profit) than displaying and ad which is not

clicked on. This motivates the constraint to completely avoid the first error type

while trying to minimize the other one.

• The algorithm does only need to access the clicking decisions for ads that it displays.

In other words, for each ad that was not displayed by the algorithm, the clicking

decision that would have occurred if the ad had been displayed is never revealed to

the algorithm. In classification terminology, this is called partial, or asymmetric

feedback. This feature is obviously necessary in targeted advertising, since, clearly,

if an ad was not even displayed to the individual, there is no way to access the

reaction he would have had, seeing this ad.

• Finally, our algorithm relies on polynomial classifiers to predict the clicks of the in-

dividual, with a soft margin in the case where the clicks can only be approximately

well predicted with polynomial classifiers. The better the individual’s clicks can

be predicted with polynomial classifiers, the better will the algorithm’s efficiency

be. Eventually, if there exists a polynomial perfectly predicting the individual’s

clicks, the algorithm has a logarithmic number of prediction errors. This prop-

erty is opposite to many classification algorithms relying on gradient descent or

stochastic gradient descent, for which some regularity assumptions generally have

to be made, making the algorithm non-efficient for perfectly separable data (hard

margin), and thus generally requiring only a soft margin, see for instance Logistic

Regression.

The use of classification algorithms for click prediction in targeted advertising and

web recommendation is not new. Probably the most studied problems in machine learn-

ing are classification problems. Many algorithms have been studied to learn binary

classification. Among the most famous are Support Vector Machines, first introduced

by Vapnik and Cortes ([19]), Logistic Regression, invented by Berkson [9] and Cox [20],

probit models, decision trees, and neural networks. Classification problems are all based

on a common framework: there is an input space X and an output, or label, space Y .

In our case, X can encode every aspect of an ad, and Y can correspond to the binary

clicking decision that a given individual would make on this ad. The goal essentially is to

find a map f : X ! Y making a small amount of prediction errors. The map f : X ! Y

is then referred to as a classifier.

Classification is a type of supervised learning. In classical “offline” learning, the
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setup is that one assumes that we have access to training data (X1, Y1), ..., (Xn, Yn) 2
X⇥Y , and a classification algorithm is then a procedure receiving the training data and

outputting a classifier f . An assumption made in general is that (Xi, Yi)in are i.i.d.

random variables (random framework), but not always (see adversarial framework).

For more details about classification learning, we refer to the many textbooks, sur-

veys, and monographs on these topics, like [4], [57], [22], [25], [30], [45], [48], [60], [62],

[63], [69], and [85, 86, 87].

Another branch of classification learning, called online classification learning, refers

to the situation where no training data is initially accessible, and where inputs (Xt)t2N
comes as time goes by. An online classification algorithm is more complex than an offline

classification algorithm as it has to compute a sequence (ft)t2N of classifiers such that

ft is the update of the classifier at time t. The idea is that at each time t, two actions

are taken: 1) a prediction of the output of Xt using classifier ft, and 2) an update of the

classifier to ft+1 for future predictions, taking into account the data received at time t

and the data stored in memory.

The particularity of online learning is to mix the learning and the prediction stages.

This is susceptible to cause problems where one has to choose between learning (ex-

ploration) and predicting well (exploitation). A second challenge is the management of

memory and computational time: the idea is, rather than making at each time t+ 1 an

offline learning from all past data to compute the classifier ft+1, to take advantage of

the previous classifier ft, and simply “surgically incorporate” the data processed since

this last update in the classifier.

Organization of the chapter: In Section 6.2, we introduce the framework and prob-

lem. In Section 6.3, we directly and quickly provide the algorithm in a form that is as

close as possible to its concrete implementation, in order to illustrate its formal simplic-

ity and implementability. Then, in Section 6.4, we introduce the mathematical objects

related to this algorithm that are important to both state and study its efficiency (pre-

diction, memory, computation) in a rigorous way, and in Section 6.5 we state our main

results, estimating this efficiency. Once these two steps are passed, in Section 6.6, we

finally prove the results, and conclude in Section 6.7.

6.2 The problem

We start by modeling commercial products. A product is associated to a price p 2 R

and to features f 2 F := [0, 1]d. A product’s features f 2 F represent the characteristics

of a product (quality, brand’s reputation, shape, life duration, etc). Thus, a product is

characterized by a price-features pair (p, f) 2 R⇥F . By misuse of language, we identify
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the product with any advertisement of the product. We will thus indifferently say “the

product (p, f)” and “the ad (p, f)”.

A click will be represented by a binary variable c 2 {�1, 1}, 1 meaning “click”, and

�1 “no click”. Depending upon the context, it will have slightly different interpretations:

as long as an ad (p, f) 2 R⇥ F has not been displayed to the individual, the associated

c 2 {�1, 1} is a clicking intention, but once (and if) the ad (p, f) is displayed to the

individual, c will correspond to his clicking decision.

We denote by Rd,D the set of multi-dimensional polynomial functions from F to R

with maximal degree D in each coordinate, i.e. taking the form

R(f) =
X

i2J0,DKd

ri

dY

k=1

f ik
k , 8f = (fk)k2J1,dK 2 F .

where r = (ri)i2J0,DKd 2 R
Dd

is a multi-index vector. A function R 2 R will be inter-

preted as an (approximate) reward function, associating to any features f = (fi)i2J1,dK

the reward R(f) 2 R. The higher the degree D is, the better the class R is at approx-

imating any regular function. Notice that as soon as D � 1, F contains all the affine

functions from F to R.

The framework for the online learning algorithm is the following. We consider a

random sequence (pk, fk, ck)k2N of ads (pk, fk) and clicking intentions ck for all k 2 N.

More precisely, at each time k 2 N, a new product is created by a company, with price

pk 2 R and features fk = (fk,i)i2J1,dK 2 F , yielding the product/ad (pk, fk). For a

given individual, the company wonders if it should display the ad (pk, fk) to a given

individual. The binary value ck represents the clicking intention of the individual for

this product, that is, ck is the answer to the question “if ad (pk, fk) were to be displayed

to the individual, would he click on it?”. If so, then, by definition, ck = 1. Otherwise,

ck = �1.
We make the following assumption:

Existence of approximate polynomial reward function: We assume that there

exists a reward function R? 2 R such that, 8k 2 N,

pk < R?(fk)� ") ck = 1, and pk > R?(fk) + ") ck = �1, (6.2.1)

where " � 0 is a margin. This is equivalent to

|R?(fk)� pk| > ") ck = sgn(R?(fk)� pk).

This simply means that except when the product’s price pk is too close to the theoretical

reward R?(fk) (or equivalently, when the theoretical net reward R?(fk)�pk is too close to
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0), the clicking decision of the individual can be inconsistent with the natural prediction

associated to the reward function R?, that is, one might have ck 6= sgn(R?(fk) � pk),

but outside of this case, R? well predicts the individual’s clicks, i.e. we have ck =

sgn(R?(fk)� pk).

The margin " is important for realism because it encompasses several natural phe-

nomenons:

• Non-polynomial reward functions: the “real” reward function of the individual

might not be polynomial, but only approximable with a polynomial reward function

up to an error ",

• Hidden variables, or inconsistent clicking decisions: there might be an

unobservable noise in the individual’s evaluation of the product’s utility making

him value slightly differently a same product at two different times.

• Time varying reward function: The underlying reward function of the individ-

ual might slightly evolve with time, and thus, for n  N , all the successive reward

functions of the individual are close to the first one up to a margin error ".

We also make the following probabilistic assumptions:

I.i.d. products with atomless distribution: We assume that (pk, fk)k2N is a se-

quence of i.i.d. random variables with common distribution ⌫ assumed atomless and

such that d⌫
d�  C for some constant C. We stress that the i.i.d. assumption is only

made on (pk, fk)k2N, not (pk, fk, ck)k2N. Actually, the only assumption involving (ck)k2N
is the previous one.

Upper and lower bounded conditional density at the margin: We assume that

there exists ⌘ > " such that

c <
dL(p1 �R?(f1) | f1)

d�
(y) < C, 8y 2 [�⌘, ⌘], a.s.

Let us now informally describe the rules of the targeted advertising problem. At each

time k 2 N the following steps occur:

1. New ad event: a new ad advertising a new product (pk, fk) is created. At this

point, (pk, fk) is observable to the advertiser and can be used, along with data

stored in memory from past times, for the subsequent steps.

2. Displaying decision: the advertiser executes a program processing (pk, fk) and

data stored in memory from last times to decide whether or not to display ad

(pk, fk) to the individual.
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3. Clicking reaction (this step happens only if ad (pk, fk) was displayed to

the individual): Once ad (pk, fk) is displayed, the individual sees (pk, fk) it and

either clicks on it or not, according to the clicking intention ck. In either case, the

advertiser observes the reaction of the individual, which means that he observes

ck. We stress that if the advertiser chose to not display ad (pk, fk) in last step, this

step does not happen and the advertiser does not observe ck.

4. Memory update: The advertiser has the possibility to update the variables stored

in memory, and in particular he can choose to remember (pk, fk), and, provided that

he displayed the ad to the individual at step 2, the clicking reaction ck observed

ad step 3, for future use.

6.3 The algorithm

The goal of this section is to write the online algorithm in a form that is as close as

possible to its concrete implementation.

6.3.1 Feature space transformation �

We introduce a function � : [0, 1]d ! [0, 1]D
d
, defined by �(f) = (�(f)i)i2J1,DKd , where,

for any multi-index i = (i1, ..., id) 2 J1, DKd, we have

�(f)i =

dY

k=1

f ik
k , 8f = (fk)k2J1,dK 2 [0, 1]d.

This is simply the function associating to a vector f 2 [0, 1]d the vector of evaluations in

f of each multi-dimensional monomials with degree smaller than D in each coordinate.

The purpose of � is to linearize the classification problem, i.e. turning the search of the

polynomial reward function R? into the search of a linear function. This is an important

step for computational efficiency, because it will allow us to implement the core function

of the algorithm, the update function, with standard linear programs.

6.3.2 The update function

In this section, we define the update function, a core function of our online algorithm. Its

definition is here provided in a close to implemented way using linear programs, which

are very standard optimization problems solved by several methods (Simplex method,

interior point method, etc). A more theoretical and mathematically meaningful definition

of the update function would require some intermediary definitions, that we postpone to

Section 6.6.
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Input. (u, e,D) 2 R
Dd+1 ⇥ R+ ⇥ P(RDd+1 ⇥ {�1, 1}).

For any v 2 {0} ⇥ {0, 1}D
d
, we denote pmin(v, u, e,D) (resp. pmax(v, u, e,D)) the

minimum (resp. maximum) reached by the following linear programs

Minimize/Maximize v · u0, 8u0 2 R
Dd+1

subject to: u01 = �1,
a · u0 > �2", 8a : (a, 1) 2 D

a · u0 < 2", 8a : (a, 0) 2 D

v0 · u0 > v0 · u� e, 8v 2 {0}⇥ {0, 1}D
d

v0 · u0 < v0 · u+ e, 8v 2 {0}⇥ {0, 1}D
d

where ev(u
0) = u0(v) is the evaluation function.

Then, we denote by update(u, e,D) the minimizer of the following linear program:

Minimize e0, 8(u0, e0) 2 U ⇥ R

subject to: u01 = �1,
u0(v)� e0 < pmin(v, u, e,D), 8v 2 {0, 1}d ⇥ {0}

u0(v) + e0 > pmax(v, u, e,D), 8v 2 {0, 1}d ⇥ {0}

Output. update(u, e,D) 2 R
Dd+1 ⇥ R+.

The update function will be used to update our classifier during the online algorithm,

and it will thus be called at different times to make the click predictions more and more

efficient. A better understanding of what the update function truly does would require

theoretical intermediary definitions, not needed for the implementation, and thus, again,

postponed to Section 6.6. For now, let us just say that at each call of the update function,

the argument (u, e) 2 R
1+Dd ⇥ R̄+ will correspond to the current classifier, and the set

D ⇢ R
Dd+1 ⇥ {�1, 1} will correspond to a set of transformed labelled data (displayed

ads and associated clicks), and the output update(u, e,D) 2 R
1+Dd⇥ R̄+ will correspond

to the new classifier. The update function will thus use the transformed labelled data set

D to update the classifier (u, e) to the more accurate one update(u, e,D). In this sense,

the update function is how the algorithm learns and gets better and better at predicting

clicks.

Essentially, given this update function, all that the online algorithm consists in is to

define how the transformed labelled data set D is obtained before each update, and when

each update is performed.

140



6.3.3 The online algorithm

In this section, we write our online algorithm in pseudo-language.

Before the problem starts, we run the Setup Algorithm 1 to initialize variables. Then, at

Algorithm 1 Setup.

N  0, n 0, u (�1, 0
RDd ) 2 R⇥ [0, 1]D

d
, e +1, D  ;, c �1

each time k 2 N, we receive an ad (fk, pk) and process it with the Online Algorithm 2,

where the display function is a function such that the call display(f, p) has the following

effect:

• it displays the ad (f, p) to the individual,

• it outputs the individual’s reaction, i.e. display(f, p) = 1 if the individual clicked

on the ad, and display(f, p) = �1 otherwise.

Algorithm 2 Online algorithm.

Input: p 2 R, f 2 [0, 1]d

a (p,�(f)) 2 R⇥ [0, 1]D
d

if u · a > �e then

c display(p, f)

if u · a < e then

D  D [ {(a, c)}

end if

end if

N  N + 1

if N = 2n then

(u, e) update(u, e,D)

D  ;, N  0, n n+ 1

end if

The algorithm is here defined in a close to implemented way. Again, its rigorous theoret-

ical study is postponed to Section 6.4 for the definition of the associated mathematical

objects and to Section 6.6 for their analysis. Let us however here give the general idea

of the algorithm. At each time, the variables “u” and “e” (with value ek) are used to

predict the next click, i.e. to decide whether or not to display the ads, with the test

“u · a > �e”. Let us here admit that such test implies that there will be not click on the

ad. This thus justifies that we don’t display it. If, however, the first test does not fail, we
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display the ad. Likewise, we admit that if the second test “u · a < e” fails, there will be

a click with certainty, and this means that it is not necessary to remember the observed

individual’s clicking reaction for improving our predictor since it was already able to pre-

dict it with certainty. If both tests are positive, we say that the click is non-predictable

with “(u, e)”, and thus, the ad is said to be non-predicted, and as we have displayed it,

we can store the observe clicking reaction in the variable “D”, which will be later used

to update our predictor “(u, e)”. Finally, the updates (calls “(u, e)  update(u, e,D)”)

occur at the times (2n)n2N, i.e. the time between two successive updates doubles at each

update. This is intuitively justified by the idea that the more we update the predictor

“(u, e)”, the more precise it is, and thus the more clicks it will be able to predict with

certainty, and, therefore, the slower the set “D” of non-predicted clicks will fill itself,

which is why more time is needed before using it to update our predictor.

6.3.4 Algorithm with tracking variables

In this section, we re-write the algorithm by adding tracking variables, that is, variables

not really affecting how the algorithm operates, but simply recording the values of some

of the variables at key moments, which will help us to analyze the algorithm.

The tracking variables are the lists “d”, “DM”, “NU”, “DU”, “a”, “u”, “e”,

Algorithm 3 Setup with tracking variables.

N  0, n 0, u (�1, 0
RDd ) 2 R⇥ [0, 1]D

d
, e +1, D  ;, c �1

k  0, d [], DM  [], NU  [] DU  [], a [], u [], e []

and the values that they will record are characterized by Algorithm 4, corresponding

to the online Algorithm 2, with additional assignment instructions recording the values

that we are interested in for the analysis. Let us analyze how the tracking variables are

filled:

At each iteration k:

• The value of the variable “k” clearly is k, the number of past iterations.

• The k-th coordinate of “DM”, i.e. “DM [k]”, is assigned the value of “D” at the

start of the iteration. Thus, D stores the sequence of values of “D” at the start of

each iteration.

• The k-th coordinate of “a”, i.e. “a[k]”, is assigned the value (pk,�(fk)), i.e. the

price pk and transformed features �(fk) associated to the ad (pk, fk). Thus, a stores

the sequence of price-(transformed features) pairs for each ad.
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Algorithm 4 Online algorithm with tracking variables.

DM [k] D, d[k] �1, NU [k] NU [k � 1]

a (p,�(f))

a[k] a

if u · a > �e then

c display(p, f)

d[k] 1

if u · a < e then

D  D [ {(a, c)}

end if

end if

N  N + 1

if N = 2n then

DU [n] D

(u, e) update(u, e,D),

u[n] u, e[n] e, NU [k] NU [k � 1] + 1

D  ;, N  0, n n+ 1

end if

k  k + 1

• The k-th coordinate of “d”, i.e. “d[k]”, is by default �1, but is overwritten with

the value 1 when “display(p, f)” is called. Thus, d stores the sequence of displaying

decisions for each ad.

For n 2 N, at the n-th iteration where the “update(u, e,D)” is called:

• The n-th coordinate of “DU”, i.e. “DU [n]”, is assigned the value of “D” just

before the call “update(u, e,D)”. Thus, DU stores the sequence of values of “D”

in the successive calls “update(u, e,D)”.

• The n-th coordinate of “u”, i.e. “u[n]”, is assigned the value of “u” just after

the call “update(u, e,D)”. Thus, u stores the sequence of values of “u” after each

“update(u, e,D)” call.

• The n-th coordinate of “e”, i.e. “e[n]”, is assigned the value of “e” just after

the call “update(u, e,D)”. Thus, e stores the sequence of values of “e” after each

“update(u, e,D)” call.

• The n-th coordinate of “NU”, i.e. “NU [n]”, is incremented at each “update(u, e,D)”

call. Thus, NU stores the number of past “update(u, e,D)” calls.
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These tracking variables do not change the actual behavior of the algorithm, but will

be very useful to its study. Let us now mathematically characterize the content of these

tracking variables.

6.4 Preparing the mathematical analysis

6.4.1 Mathematical characterization of the. tracking variables

In this section, we define sequences (dk)k2N, (DM
k )k2N, (NU

k )k2N, (DU
k )k2N, (ak)k2N,

(uk)k2N, and (ek)k2N representing the content of the lists “d”, “DM”, “NU”, “DU”,

“a”, “u”, “e” once they are filled.

A careful look at Algorithm 4 allows to see that, by definition:

• NU
k = blog2(k)c and ak = (pk,�(fk)) for all k 2 N.

• We have

(u0, e0) = (0,+1), DU
0 = ;

DU
n = {(ak, ck) : |un · ak| < en, k 2 J2n, 2n+1J}, n 2 N

(un+1, en+1) = update(un, en, D
U
n )

Notice that the above relations fully determine (un)n2N, (DU
n )n2N.

• We have, for all k 2 N,

dk =

8
<
:
1 if uNU

k
· ak > �eNU

k

�1 else.
,

DM
k = {(aN , cN ) : |uNU

k
· aN | < eNU

k
, N 2 J2N

U

k , kJ}.

These objects being fully determined by the above relations, we shall now take them

as the mathematical definitions of (NU
k )k2N, (ak)k2N, (un)n2N, (DU

n )n2N, (dk)k2N and

(DM
n )n2N.

6.4.2 Measures of efficiency

In this section, we define the measures of efficiency to analyze the algorithm.
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Prediction’s efficiency

The main principle of the prediction efficiency measure is to count, for all time k 2 N,

the number of errors made before time k. As, in binary classification, there are two types

of errors (false positives and false negatives), we introduce two measures of prediction

efficiency.

Definition 6.4.1 (False negative efficiency measure) The false negative efficiency

measure at time k 2 N is defined by

E�
k = E

h kX

i=1

1di=�1,ci=1

i

It is the expected number of false negatives before time k, i.e. the expected number of

times when the algorithm did not display an ad that would have led to a click.

Definition 6.4.2 (False positive efficiency measure) The false positive efficiency

measure at time k 2 N is defined by

E+
k = E

h kX

i=1

1di=1,ci=�1

i

It is the expected number of false positives before time k, i.e. the expected number of

times when the algorithm displayed an ad that did not lead to a click.

Memory efficiency

The memory efficiency at time k 2 N represents the expected memory size taken by the

algorithm at the k-th iteration. Most of the variables of the algorithm take a constant

memory space at each iteration. The only variable that has a variable size is “D”.

Therefore, we will define the memory efficiency by

Mk = E[#DM
k ], 8k 2 N.

Computational efficiency

The computational efficiency at time k corresponds to the total number of operations

(additions, multiplications, comparisons, etc) performed before time k. Most of the op-

erations of the algorithm during an iteration have a constant and very light complexity

(it simply consists in a few comparisons, affectations, and incrementations). The opera-

tion that is susceptible to require a large number of operations is the call the the update
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function. The instruction update(u, e,D) performs 2d+ 1 linear programs with a set of

#D + 2d = O(#D) linear constraints. It is known that there exists algorithms solving

a linear program in linear time in the number of constraints. We thus consider that

the complexity of the call update(u, e,D) is linear in #D. We define the computational

complexity before time k by

Ck = E

h NU

kX

i=1

#DU
i

i

6.5 Main results and interpretations

In this section, we state our main results.

Theorem 6.5.1 (Prediction efficiency) There exists two constants Cp
` and Cp

f , in-

dependent from " 2 R+, such that

E�
k = 0, E+

k  Cp
` ln(k) + Cp

f"k, 8k 2 N

Theorem 6.5.2 (Computational complexity estimation) There exists a constant

Cc such that we have

Ck  Cc
` ln(k) + ck, 8k 2 N

Theorem 6.5.3 (Memory efficiency estimation) There exists a constant Cc, inde-

pendent from k 2 N, such that we have

Mk  Cc, 8k 2 N

Let us provide a few interpretations of these results:

• Prediction efficiency: an important qualitative result is that the constants do

not depend upon ". This is important because, at fixed ", the estimation only claims

that the prediction error is at most linear in k, but this is true of any classification

algorithm: even one constantly making errors will have a linear prediction error.

What gives qualitative meaning to our result is that, as Cp
` and Cp

f do not depend

upon ", we have a bound over all ", even " = 0, where the error becomes perfectly

logarithmic. This means that, provided that we make " smaller and smaller, the

prediction error will actually look more and more logarithmic (which is not the

case for an algorithm constantly making errors).
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• Computational complexity: In this result, the interpretation is that the long

term cost will essentially corresponds to the fixed cost of the algorithm, but the

cost associated to the function update is only logarithmic.

• Memory efficiency: The result simply means that a constant averaged memory

space is necessary to run the algorithm.

6.6 Proofs

6.6.1 Basic definitions

In this section, we introduce some mathematical definitions relevant to our analysis.

• Ball in U : we endow U with the distance

d(u, u0) := sup
a2F̂

|u · a� u0 · a|, 8u, u0 2 U

Given u 2 U and e 2 R̄+, we denote B(u, e) the ball with center u and radius e for

this distance, that is

B(u, e) = {u0 2 U : d(u0, u) < e}

Given any subset U 0 ⇢ U , we denote B(U 0) the smallest ball containing U 0. We

then denote rad(U 0) the radius of B(U 0).

• "-separating hyperplanes in U : Given a labelled data set D, the set of hyper-

planes "-separating D, denoted by H"(D), is the set of elements u 2 U such that

sgn(u · a+ c") = c for all (a, c) 2 D.

6.6.2 Mathematical characterization of the update function

In this section, we study what the update function does from a mathematical viewpoint.

Lemma 6.6.1 (Mathematical characterization of update) For all u 2 U , e 2 R̄+,

and D ⇢ D, update(u, e,D) yields the center and radius of the smallest ball containing

B(u, e) \H2"(D).

Proof. Let u0 2 U and e0 2 R̄+ be such that B(u, e) \ H2"(D) ⇢ B(u0, e0). This, by

definition means that for all u00 2 B(u, e)\H2"(D), we have u00 ⇢ B(u0, e0). As u00 and u0
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are linear, their maximal difference is reached on the vertices of [0, 1]D
d
, i.e. on {0, 1}D

d
.

Therefore, the property u00 2 B(u0, e0) is equivalent to

u00(v) < u0(v) + e0, 8v 2 {0}⇥ {0, 1}D
d

u00(v) > u0(v)� e0, 8v 2 {0}⇥ {0, 1}D
d

The fact that this must be satisfied for all u00 2 B(u, e) \H2"(D) is thus equivalent to

have

u0(v)� e0 < p�v (u, e,D), 8v 2 {0}⇥ {0, 1}D
d

u0(v) + e0 > p+v (u, e,D), 8v 2 {0}⇥ {0, 1}D
d

where

p�v (u, e,D) = min{u00(v) : u00 2 B(u, e) \H2"(D)}

p+v (u, e,D) = max{u00(v) : u00 2 B(u, e) \H2"(D)}

or in other words, by definition of B(u, e) and H2"(D), where pmin(v, u, e,D) (resp.

pmax(v, u, e,D)) are the minimum (resp. maximum) reached by the linear programs

Minimize/Maximize v · u0, 8u0 2 U

subject to: u01 = �1
u0 · a > �2", 8a : (a, 1) 2 D

u0 · a < 2", 8a : (a, 0) 2 D

u0(v) > u(v)� e, 8v 2 {0}⇥ {0, 1}d

u0(v) < u(v) + e, 8v 2 {0}⇥ {0, 1}d

The fact that the function U minimizes e0 over all (u0, e0) such that

u01 = �1
u0(v)� e0 < p�v (u, e,D), 8v 2 {0}⇥ {0, 1}d

u0(v) + e0 > p+v (u, e,D), 8v 2 {0}⇥ {0, 1}d

thus exactly corresponds to finding the center and radius of the smallest ball containing

B(u, e) \H2"(D). 2

6.6.3 Study of un and en

Lemma 6.6.2 We have B(û?, ") ⇢ B(un, en) for all n 2 N.
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Proof. We prove this by induction on n 2 N. For n = 0, as e0 = +1, it is clearly

true. Assume that the property holds true for some n 2 N, and let us prove it for n+1.

Notice that by definition, we have

(un+1, en+1) = update(un, en, D
U
n )

Notice that for all k, the fact that

u?(ak) > ") ck = 1 and u?(ak) < �") ck = �1

implies that

û? · âk > ") ck = 1 and û? · âk < �") ck = �1

which implies that B(û?, ") ⇢ H2"({(âk, ck)}). Given that

DU
n = {(âk, ck) : |un(âk)| < en, k 2 J2n, 2n+1J}, n 2 N

we clearly have B(û?, ") ⇢ H2"(D
U
n ). By induction hypothesis, we have B(û?, ") 2

B(un, en). Thus we have B(û?, ") 2 B(un, en)\H2"(D
U
n ), and thus, by the mathematical

characterization of update(u, e,D), we have

B(û?, ") 2 B(un, en) \H2"(D
U
n ) ⇢ B(update(un, en, D

U
n )) = B(un+1, en+1),

where we used the mathematical characterization of the update function proved in

Lemma 6.6.1 which concludes the proof. 2

6.6.4 Proof that E�
k = 0

We have

E�
k = E

h kX

i=1

1di=�1,ci=1

i
= E

h kX

i=1

1u
NU
i

·âi<�e
NU
i

,ci=1

i

 E

h kX

i=1

1û?·âi<�",ci=1

i
 E

h kX

i=1

1u?(ai)<�",ci=1

i

 E

h kX

i=1

1ci=�1,ci=1

i
= 0

where the first inequality comes from the fact that B(u?, ") 2 B(un, en) and the second

inequality comes from Assumption (6.2.1). This concludes the proof. 2
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6.6.5 Proof of the other results

From E+
k , Mk, and Ck to en

In this section, we show how the analysis of E+
k , Mk, and Ck reduces to the study of en.

Lemma 6.6.3 We have

E+
k  C

X

ndlog2(k)e
2nE[en], Mk  kE[edlog2(k)e], Ck  C

X

ndlog2(k)e
2nE[en]

Proof. E+
k : We have

E[E+
k ] = E

h kX

i=1

1di=1,ci=�1

i

By definition, di = 1 is equivalent to uNU

i
· âi > �eNU

i
. Furthermore, ci = �1 implies

that û? · âi < ", and thus, as B(u?, ") 2 B(uNU

i
, eNU

i
), it implies that uNU

i
· âi < eNU

i
.

Consequently, we have

1di=1,ci=�1  1|u
NU
i

·âi|<e
NU
i

By a simple conditioning, we have

E[1|u
NU
i

·âi|<e
NU
i

] = E[P(1|u·âi|<e)u=u
NU
i

,e=e
NU
i

].

As we assumed that (f1, p1) is a diffuse probability distribution with density bounded

from above by C, we have

P(1|u·âi|<e) = P(1|ǔ(ai)|<e)  C�({ǔ�1([�e, e])})  Ce

and thus

E[P(1|u·ai|<e)u=u
NU
i

,e=e
NU
i

]  CE[eNU

i
]

Thus, we have

E[E+
k ]  C

kX

i=1

E[eNU

i
]  C

kX

i=1

E[eblog2(i)c]  C
X

ndlog2(k)e
2nE[en]

which concludes the proof.
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Mk : We have

Mk = E[#DM
k ]  E[#DU

blog2(k)c] = E

h 2blog2(k)c+1�1X

N=2blog2(k)c

1|ublog2(k)c
·aN |<eblog2(k)c

i

= 2blog2(k)cP(|ublog2(k)c · ak| < eblog2(k)c)  kP(|ublog2(k)c · ak| < eblog2(k)c)

We conclude by the same conditioning argument as in the first step.

Ck : We have Ck = E

hPNU

k

i=1 #DU
i

i
, where, by definition of DU

i , we have #DU
i =

P2i+1�1
k=2i 1|ui(fk)�pk|<ei . We again conclude by the same conditioning argument as in the

first step. This concludes the proof. 2

From ek to rk

For the sequel, we define the labelled data set sequence (Dk)k2N by

Dk = {(ai, sgn(û? · ai) : |û? · ai| � ", i  k}, 8k 2 N

and the sequence (rk)k2N by

rk = rad(H2"(Dk)), 8k 2 N.

The following result illustrate the utility of (rk)k2N.

Lemma 6.6.4 We have

E[en]  E[r2n ]

Proof. For all n 2 N, as we have B(u?, ") ⇢ B(un, en), it is clear that for all k 2
[2n, 2n+1], if |un · âk| > en then |u?(ak)| > ", which implies that

sgn(un · âk) = sgn(u?(ak)) = ck,

where the last identity comes from Assumption (6.2.1). In this case, we thus have

B(un, en) ⇢ H({(âk, ck)}) and thus also B(un, en) ⇢ H2"({(âk, ck)}). Thus we have

B(un, en) ⇢ H2"({(âk, ck) : |un · âk| > en, k 2 J2n, 2n+1J})

Recall that by definition, we have

DU
n = {(âk, ck) : |un · âk|  en, k 2 J2n, 2n+1J}
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and thus we have

B(un, en) \H2"(D
U
n ) ⇢ H2"({(âk, ck) : k 2 J2n, 2n+1J})

Notice that for any k 2 J2n, 2n+1J such that |u?(ak)| > ", as, by Assumption (6.2.1), we

have ck = sgn(u?(ak)), we clearly have

D̃n ⇢ {(âk, ck) : k 2 J2n, 2n+1J}

where

D̃n := {(âk, sgn(u?(ak))) : |u?(ak)| > ", k 2 J2n, 2n+1J}

Therefore, we clearly have

H2"({(âk, ck) : k 2 J2n, 2n+1J}) ⇢ H2"(D̃n)

and thus

B(un, en) \H2"(D
U
n ) ⇢ H2"(D̃n)

Which implies, by definition of en+1 and by the mathematical characterization of the

update function in Lemma 6.6.1, that

en+1  rad(H2"(D̃n))

Because the sequence (ak)k2N is assumed to be i.i.d., we thus have

E[en+1]  E[rad(H2"(D̃n))] = E[rad(H2"(D2n))] = E[r2n ].

This concludes the proof. 2

Preparing the probabilistic analysis

We have the following result.

Lemma 6.6.5 There exists constants C, C 0, such that for all u, u0 2 U , we have

d(u, u0)  C(kǔ� ǔ0k+ kr(ǔ� ǔ0)k)  C 0 max
v2 1

D
{0,D}d

|(ǔ� ǔ0)(v)|

Proof. This comes from the fact that d(u, u0) = ku�u0kF̂ is the norm of u�u0 : F̂ ! R,

which yields a pull-back norm of ǔ � ǔ0 : F ! R, which is a finite-dimensional space,

and thus in which all norms are equivalent. The middle term is clearly a norm, and
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the third term is a norm: the only not completely trivial part is the definite positive

aspect. It is easy to build Dd multi-dimensional Lagrange polynomials forming a basis

of U , indexed by v 2 1
D{0, D}d, each cancelling on all v 2 1

D{0, D}d but one. In such

basis, the coordinate of any polynomial is its values in v 2 1
D{0, D}d. Therefore, if they

all cancel, then the polynomial is null. This proves the definite positive aspect. 2

Lemma 6.6.6 We have

kuk 
C 0
d,D

1� �Cd,D
max

v2 1
D
{0,D}d

max( min
kf�vk�

ǔ(f), min
kf�vk�

(�ǔ(f)))

Proof. We can write ǔ(f) � ǔ(v)�krǔkkf�vk , which implies ǔ(v)  minkf�vk� ǔ(f)+

krǔk�. Likewise, we have

ǔ(f)  ǔ(v) + krǔkkf � vk

and thus ǔ(v) � maxkf�vk� ǔ(f)� krǔk� which can be rewritten

�ǔ(v)  min
kf�vk�

(�ǔ(f)) + krǔk�

By combining these formulas, we obtain

|ǔ(v)|  max( min
kf�vk�

ǔ(f), min
kf�vk�

(�ǔ(f))) + krǔk�

Taking the sup, we get

max
v2 1

D
{0,D}d

|ǔ(v)|  max
v2 1

D
{0,D}d

max( min
kf�vk�

ǔ(f), min
kf�vk�

(�ǔ(f))) + �Cd,D max
v2 1

D
{0,D}d

|ǔ(v)|

and thus

max
v2 1

D
{0,D}d

|ǔ(v)|  1

1� �Cd,D
max

v2 1
D
{0,D}d

max( min
kf�vk�

ǔ(f), min
kf�vk�

(�ǔ(f)))

Finally, we obtain that

kuk 
C 0
d,D

1� �Cd,D
max

v2 1
D
{0,D}d

max( min
kf�vk�

ǔ(f), min
kf�vk�

(�ǔ(f)))

which concludes the proof. 2
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Therefore, for any u 2 H2"(Dk), we have

ku� u?k 
C 0
d,D

1� �Cd,D
max

v2 1
D
{0,D}d

max( min
kf�vk�

((û� u?)(f)), min
kf�vk�

((u? � û)(f)))


C 0
d,D

1� �Cd,D
max

v2 1
D
{0,D}d

max( min
(a,�1)2Dk,kf�vk�

((û� u?)(f)), min
(a,1)2Dk,kf�vk�

((u? � û)(f)))


C 0
d,D

1� �Cd,D
max

v2 1
D
{0,D}d

max( min
u?(ak)<�",kf�vk�

(2"� u?(a)), min
u?(ak)>",kf�vk�

(u?(a) + 2"))

 Kd,D"+Kd,D max
v2 1

D
{0,D}d

max( min
u?(ak)<�",kf�vk�

|u?(a)|, min
u?(ak)>",kf�vk�

|u?(a)|)

 Kd,D"+K 0
d,D

X

v2 1
D
{0,D}d

✓
min

u?(ak)<�",kfk�vk�
|u?(a)|+ min

u?(ak)>",kfk�vk�
|u?(a)|

◆

Probabilistic study

The probabilistic study of the problem relies on arguments of extreme values and records.

This is natural since, in the deterministic study, we essentially made estimations based

on minimums of families of real numbers, and once we put back probability in the

framework, it natural turns into studying the probability distribution of a record. A

core computation of record theory is the following:

E[min
mN

Um] =

Z 1

0
P(min

mN
Um > x)dx =

Z 1

0
(1� x)Ndx =

Z 1

0
xNdx =

1

N + 1

if (Um)mN are i.i.d. uniform random variables.

We shall now do the step 2) of our approach, to prove that falling into this band hap-

pens with small probability. Notice that the width of the band from previous Lemma,

expressed with minimums and maximums, is clearly designed in a way that should facil-

itate the use of extreme value theory and records arguments to estimate the probability

to fall into this band. However, as the situation is more complex than the introductory

example, we have to design a more powerful way to do such type of estimations for our

needs.

Lemma 6.6.7 Let (Xi, Yi)in be a family of i.i.d. random variables such that dL(Y1|X1)
d� (y) �

c > 0 for all 0  y  1
C , a.s.. Then we have, for all measurable set A,

E[min(1, C min
i:Xi2A

Yi)] 
C

cP(X1 2 A)(n+ 1)
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Proof. measurable function. We have

E[min(1, C min
i:Xi2A

Yi)]  E[min(1, C min
i:Xi2A

min(Yi,
1

C
))]  CE[ min

i:Xi2A
min(Yi,

1

C
)]

 CE[min
in

(min(Yi,
1

C
)1Xi2A +

1

C
1Xi 62A)]

 C

Z 1

0
P(min(Yi,

1

C
)1Xi2A +

1

C
1Xi 62A � x)ndx

 C

Z 1
C

0
P(min(Yi,

1

C
)1Xi2A +

1

C
1Xi 62A � x)ndx

 C

Z 1
C

0
(1� P(X1 2 A) + P(X1 2 A)(1� cx))ndx

 C

Z 1
C

0
(1� cxP(X1 2 A))ndx

 C

cP(X1 2 A)(n+ 1)

2

Theorem 6.6.1 We have

P(CU ,Dn(fn+1, pn+1) = 0)  1

N

Proof. We have

P(CU ,Dn(fn+1, pn+1) = 0)  P(|pn+1 � u(fn+1|  max
w2UDn

max
v02[0,1]d

|(u� w)(v)|)

 P(|pn+1 � u(fn+1)|

 6 max
v2{0,1}d

max( min
fn2B(v, 13 ),pn<u(fn)

(u(fn)� pn), min
fn2B(v, 13 ):pn>u(fn)

(pn � u(fn))))

 E[C6 max
v2{0,1}d

max( min
fn2B(v, 13 ),pn<u(fn)

(u(fn)� pn), min
fn2B(v, 13 ):pn>u(fn)

(pn � u(fn)))]

 6C
X

v2{0,1}d
(E[ min

fn2B(v, 13 ),pn<u(fn)
(u(fn)� pn)] + E[ min

fn2B(v, 13 ):pn>u(fn)
(pn � u(fn)))]

 6C
X

v2{0,1}d
("+ E[ min

fn2B(v, 13 ),pn<u(fn)�"
(u(fn)� pn � ")]

+E[ min
fn2B(v, 13 ):pn>u(fn)+"

(pn � u(fn)� "))]

We can now apply the Lemma with Yi = u(fi)� pi and Xi = (fi, sgn(u(fi)� pi)). 2
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Tracing back the estimations to prove the results

Before rigorously proving and adapting this argument in next sections, let us see how

such estimation of height of the thinnest predicting band would allow us to conclude:

provided that this estimation is rigorously proven, we would indeed have

E[Ek]  C
X

nnk

2nE[H2n ]  C
X

nnk

2n(
1

2n
+ ") = nk + 2nk+1"

However, notice that

k �
2nk�1X

m=1

m = 2nk � 1

and thus k + 1 � 2nk , and nk  ln(k + 1), hence the (approximate) conclusion:

E[Ek]  ln(k + 1) + (k + 1)"

Likewise, we would also have

E[(#(Dk))
m]  Cm(2mnkE[em

2nk�1 ])  CmK(1 + 2mnk"m)

After last update, such that 2nk" = 1, the labeled data set will be empty.

6.7 Conclusion

In this chapter, we have studied an online classification algorithm specifically designed

for targeted advertising. The particularities of the problem were 1) Error asymmetry,

in the sense that one error type had to be completely avoided, and the other one only

minimized, and 2) Feedback asymmetry, i.e. the clicking intention of an individual is,

afterward, only revealed when the ad has been displayed to him. Despite these con-

straints, we have proved that our online algorithm performs as efficiently as benchmark

algorithms without these constraints, i.e. we obtain a number of prediction errors given k

past predictions that has a logarithmic component and a linear component proportional

to the problem’s error margin ". An important qualitative aspect is that the logarithmic

component is independent from the linear component and applies even to the case of

sharp separability, i.e. " = 0 (where the linear component completely cancels out). In

this work, we have also provided a description of our algorithm that is as close as possible

to a concrete implementation, via the use of pseudo-language and linear programming.

Besides the prediction efficiency, we have precisely studied both the memory usage and
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computational complexity and proved that the algorithm was also efficient in these re-

gards. Although the algorithm was designed with targeted advertising in mind, other

standard applications of classification can clearly be found, e.g. in finance, to predict

the evolution of a stock’s price or to predict the trading decisions of an individual, or in

medicine, e.g. to design medical tests.
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Chapter 7

Optimal bidding strategies for

advertising auctions

Abstract. In this work, we introduce and study several optimal control models of targeted

advertising with auctions. Each model focuses on a different type of advertising, namely, com-

mercial advertising for triggering purchases or subscriptions, and social marketing for sensitizing

people about unhealthy behaviors (anti-drug, road-safety campaigns). All our models are based

on a common framework encoding people’s online behaviors and the targeted advertising auction

mechanism widely used on Internet. Our main result is to provide semi-explicit formulas for each

problem’s optimal value and optimal bidding policy. Thanks to these formulas, we are able to

draw interpretations about how phenomenons like people’s online behaviors and social interac-

tions affect the optimal bid to make for targeted advertising auctions. We also study how to

efficiently combine targeted advertising and non-targeted advertising mechanism. We conclude

by providing some classes of examples with fully explicit formulas.

7.1 Introduction

Through the emergence of new online channels and information technology, targeted

advertising plays a growing role in our society and progressively replaces traditional

forms of advertising like newspapers, billboards, etc. Indeed, companies can minimize

wasted advertising costs by targeting directly individuals that are potentially interested

by the product the advertiser is promoting. Modern targeted media use historical data

on internet (cookies) such as tracking online or mobile web activities of consumers.

Optimal control is a suitable mathematical tool for studying advertising problems.

There is already a vast literature on optimal control for advertising. Several approaches

have been proposed in the past: mathematical programming, dynamic programming,
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simulation, and heuristic procedures ([56, 98]). Optimal control theory was an important

addition. In the classical approach, a dynamical system is modeled with controlled

differential equations and optimized by means of the maximum principle. We mention

the important Nerlove-Arrow ([70]), and Vidale-Wolfe ([89]) models, and for an overview

of this research field up to the 90s, see [78] and its sequel [27]. We also mention two more

recent works, optimal advertising with delay, studied by Gozzi and Marinelli ([31]), and

Jack, Johnson and Zervos ([39]) on control applied to the goodwill problem. This existing

literature about optimal control for advertising are differential models, considering, from

the start, controlled differential equations directly modeling the dynamics of sales as a

continuous process affected by an advertising expenditures process.

In this work, we study optimal control models for advertising strategies, and the main

novelty is to consider individual or individual or population models aiming to model the

behavior of an individual in a finite population, and describing how advertising will affect

their states. The important upside of explicit population modeling is the integration of

individual’s behaviors, which is more natural and compelling than modeling an abstract

object like the sales process, as the solution to a given differential equation. Indeed,

while the latter approach requires to make a leap of faith to admit that such differential

equation well describes the sales process dynamic, therefore making abstraction of the

complex underlying mechanisms generating such sales process, the former approach de-

fines the model at a more “atomic” level, that we can easily understand and be convinced

by without too much effort or abstraction. Another important consequence of population

models is that they also allow to model the world in which individuals live, and its rules,

in a more explicit and concrete way. This, in particular, allows us to encode the feature

of auctions for targeted advertising in our models. As they are a crucial component of

online advertising, it would seem unreasonable to ignore them.

Auctions, in targeted advertising, are used to determine which company will have its

ad displayed to a given individual. Each time an individual connects to a website using

targeted advertising, several agents (companies, influencers, etc) compete in an auction

for the ad emplacement. The agents make bids, the winner pays a price depending upon

the auction mechanism, and his ad is displayed to the individual. The long history of

auctions, starting from the groundbreaking works of John Nash ([66]) and later William

S. Vickrey ([88]), and their omnipresence on the Internet, illustrate the crucial impor-

tance of auction theory, also evidenced by the 2020 Nobel prize in economics, Milgrom

and Wilson, for their contribution to auction theory.

The output of auctions can be quite challenging to predict even in simple frameworks,

and as the overall framework of our models is complex, we won’t model each bidding

company (which would turn our optimal control models into games) and instead assume

that at each targeted advertising auction, the maximal bid from companies other than
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our agent is a random variable independent from the past, and identically distributed

across auctions. This assumption has the practical advantage to keep the control problem

tractable.

Finally, one of our models will also encode social interactions allowing individuals

who saw the ad to become themselves vectors of information. Again, our modeling of

social interactions will be quite simple and symmetric, to keep the problem tractable.

For an interesting and detailed overview of information spreading models in populations,

we refer to [2].

We shall study two types of models, based on two types of usage of advertising:

1. Commercial advertising, modeling situations where informing an individual

triggers a reward for the agent, which is thus particularly well suited for commer-

cial advertising. We shall consider two types of rewards: purchase-based reward,

modeling situations where the information triggers a purchase and thus a punctual

payment from the individual to the agent, and subscription-based reward, modeling

cases where the information triggers a subscription of the individual to a service

proposed by the agent, and thus pays a regular fee to the agent.

2. Social marketing, modeling situations where informing an individual cancels a

cost continuously perceived by the agent. In this model, each individual, as long as

he is not informed, is considered to incur a continuous cost to the agent, and only

when such individual gets informed, the cost stops. This model is particularly well

suited for social marketing where the agent’s goal is not to make profit but instead

to change people’s behaviors and promoting social change by sensitizing them

about dangers. Classical social marketing campaigns are anti-drugs campaigns,

road-safety campaigns, sexual-safety campaigns, low-fat diet campaigns, etc. From

the agent’s viewpoint, in such campaign, any individual who is not behaving safely

is considered to represent a continuous cost to him.

Besides the different nature of their applications, the both aforementioned studies also

importantly differ in their goals. On one hand, commercial targeted advertising is already

widely spread on the Internet, and in this case, our study simply proposes a model that

could potentially improve a company’s bidding strategies. On the other hand, social

marketing does currently not seem to use targeted advertising a lot, instead relying

more on classical non-targeted advertising, and in this case, our model proposes a way

to combine non-targeted advertising with targeted advertising for any organization or

association using social marketing.

Our main contributions. Our first and main contribution, in this work, is to pro-

pose four advertising models, based on a common core framework explicitly modeling
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individuals online behaviors and advertising auctions, each designed for various types

of advertising, and to obtain for every model a semi-explicit form of the optimal value

function and optimal bidding policies.

Our second contribution is to propose in one of these models a rich population

model, involving individuals spontaneously finding an information, targeted advertis-

ing auctions, non-targeted advertising auctions, and social interactions, while keeping a

problem tractable with semi-explicit optimal value and bidding policies.

Our third contribution is to provide classes of examples where the solutions (optimal

value and bidding policy) are fully explicit.

By observing the form of the models solutions, we are able to clearly understand

how 1) the optimal bid to make in a given targeted advertising auction depends not

only upon the distribution of other bidders’ maximal bids, but also upon the online

behavior of the individual (rates at which he connects to various types of websites), and

2) In the fourth model, involving a population, and adding non-targeted advertising and

social interactions in the population, we are able to understand a) how the presence of

social interactions impact the optimal bid to make, and b) how the optimal bid to make

for non-targeted advertising auctions relates to the optimal bid for targeted advertising

auctions and the proportion of already informed people. More generally, this work allows

to see how each way an individual can learn an information combine together and affect

the optimal bid to make in advertising auctions, and this is our fourth contribution.

The mathematical method used to solve these problems is based on martingale tools,

in particular, on techniques involving Poisson processes and their compensators. By

means of these tools, we essentially prove the results in two steps: 1) bounding from

above (resp. from below) the optimal value when it is a gain (resp. a cost), and then

2) providing a well chosen policy such that the inequalities in 1) become equalities, thus

simultaneously proving that the optimal value is equal to its bound, and obtaining an

optimal policy reaching it.

Outline of the chapter. We introduce in Section 7.2 the core framework on which each

of the four models is based. In Section 7.3, we study two targeted advertising models

designed for applications to commercial advertising, the first one modeling advertising

to trigger a purchase, the second one modeling advertising to trigger a subscription.

In Section 7.4, we study two advertising models applied to social marketing (anti-drug

campaigns, road-safety campaigns, etc), the first one with an arbitrary discount factor,

the second one with no discounting, but with extra features of non-targeted advertising

and social interactions.
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7.2 Basic framework

In this section, we introduce the framework on which all the subsequent models are

based, simply enriching it in various ways.

The core framework essentially consists in modeling 1) the concept of information

for this work, 2) an individual’s online behavior, 3) the targeted advertising auction

mechanism, 4) a targeted advertising bidding strategy, and finally describe how these

four features combine together to determine the dynamic of an individual.

7.2.1 The Information

In this work, all our models will be about some Information. We shall denote it with

a capital “I” to emphasize that it is a specific piece of information. It could a priori

be any information. Let us give a few examples, further discussed in this work. The

Information can be:

• the existence of a service (Netflix, Amazon, etc),

• the existence of a product (smartphone, computer),

• the unhealthiness or healthiness of a behavior (drug/alcohol consuming, road safety,

sexual safety, etc).

In the various models studied in this paper, each model will naturally correspond to

one of these three types of information, but for now, let us simply consider a generic

Information.

The main characteristic of the Information is that any individual can either not know

it or know it. In other words, the Information is naturally associated to a binary state for

any individual: an individual in state 0 means that he does not know the Information,

and an individual in state 1 means that he knows the Information.

7.2.2 The Agent

In our work, the Agent will represent any entity (company, association, etc) desiring to

spread the Information.

• In the case of a new service or product, it will naturally be the company proposing

this service or selling this product.

• In the case of the unhealthiness or healthiness of a given behavior, it will naturally

be an philanthropic association or a governmental entity aiming to work for social

good.
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The main characteristics of the Agent is that 1) he wants to spread the Information, 2)

he has a gain or cost function depending upon how the information spreads, and 3) he

will use a targeted advertising strategy as a mean to diffuse the Information.

7.2.3 The Action

The Agent wants to give the Information to individuals to trigger an Action. The Action

depends upon the type of the Information:

• If the Information is about the existence of a service, the expected Action is a

subscription.

• If the Information is about the existence of a product, the expected Action is a

purchase.

• If the Information is about an unhealthy behavior, the expected Action is a health-

ier behavior.

In this work, we assume that the Agent knows the individuals well enough to be aware

of who would do the Action if they had the Information (who would subscribe to the

service if he learns that it exists, buy the product if he learns that it exists, or stop some

behavior if he learns that it is unhealthy).

The individuals who would not perform the Action, even informed, are dismissed: the

Agent does not try to send them an ad. Therefore, we can assume that the individuals

considered in this work are all such that

Getting the Information ) Doing the Action

7.2.4 The Individual

Let us start by modelling the general behavior of an individual. Our model is in contin-

uous time. An individual is associated to some random times when he does the following

possible actions:

• Spontaneously connect to a website providing the Information. Websites intrinsi-

cally providing the information are numerous, depending upon the kind of infor-

mation: specialized websites relaying the Information, company/association’s own

website, etc. Essentially, any website such that the Information is in the actual

website’s content, as opposed to the other case:

• Visit a website not a priori providing the information, but displaying targeted ads,

and thus susceptible to display the Information in a targeted ad, provided that
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the agent (company, association, etc) pays for it. Important websites displaying

targeted ads typically are social networks and search engines.

An Individual is associated to independent Poisson processes (N I, NT) with respec-

tive intensities ⌘I, ⌘T. N I counts the times when the Individual connects to websites

intrinsically providing the Information. NT counts the times when the Individual con-

nects to websites displaying targeted ads.

We shall, in our fourth model, introduce a population with several individuals mod-

eled on this basis, each with their own Poisson processes, independent across individuals.

7.2.5 The targeted advertising auctions

When the Individual connects to websites displaying targeted ads, in reality, many in-

fluencers are competing to win the right to display their ads to him. The mechanism

used by the website to choose which influencer will display his ad is to make them bid

for it. Each influencer has the possibility to propose a bid associated to the Individual’s

characteristics (intensities of his Poisson processes). This ad emplacement allocation

mechanism is what we call targeted advertising auctions.

Auctions are complicated to study. They involve several bidders, and are thus part

of game theory. The current framework is even more complicated since it is dynamic:

an auction is opened each time the Individual connects to a website displaying targeted

ads. Our goal is to focus on providing a strategic tool to the Agent, and keeping the

problem tractable is important in this work.

A good compromise to both take targeted advertising auctions into account while

having a strategically solvable problem is to model the maximal bid make by the other

bidders (i.e. other than the Agent) as random variables, i.i.d. among auctions. We thus

introduce a sequence of i.i.d. real random variables (BT
k )k2N, such that for k 2 N, BT

k

represents the maximal bid of other bidders during the k-th targeted advertising auction

of the problem.

7.2.6 The targeted advertising bidding strategies

We now introduce the notion of targeted advertising bidding strategies. In essence, a

targeted advertising bidding strategy is simply a real valued process � which depends at

most from the past, i.e. which cannot depend upon the future, such that at each time

t 2 R+, �t represents the bid that the Agent would make if the Individual connects to a

website displaying targeted ads.
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To rigorously formalize this, let us introduce the filtration F = (Ft)t2R+ generated

by the processes

((N I, NT, BT
NT),

i.e. we have, for all t 2 R+,

Ft = �((N I
s , N

T
s , BT

NT
s
)st)

Ft thus represents all the information about event triggered before time t.

The set of open-loop bidding controls, denoted by ΠOL, is then the set of real-valued

processes � predictable and progressively measurable w.r.t. the filtration F.

7.2.7 Information dynamic, constant bidding, and advertising cost

We can now combine all the pieces of modeling previously introduced to define the

information dynamic of the Individual, the notion of constant efficient bidding policy,

and the advertising cost. Given an open-loop bidding control � 2 ΠOL, the information

dynamic of the Individual is the {0, 1}-valued process X� satisfying the relation

X�
0 = 0

dX�
t = (1�X�

t�)(dN
I
t + 1�t�BT

NT
t

dNT
t )

Let us interpret this dynamic. The individual starts uninformed (X�
0 = 0). Once he is

informed (X�
t = 1), he stays informed (hence the (1�X�

t�) part). As long as he is not

informed, the remaining part of the dynamic is effective: when the individual connects

to a website intrinsically providing the Information, he becomes informed (dN I
t part).

When he connects to a website displaying targeted ads (dNT
t part), he becomes informed

if and only if the Agent’s ad is displayed to him, which happens if and only if the Agent

wins the auction (1�t�BT

NT
t

part).

Advertising cost: in the subsequent models, the gain or cost function of the agent will

be the combination of 1) a component depending upon the information dynamic of the

Individual, and 2) an advertising cost component. The component 1) will depend upon

the model, but the advertising cost will always have the same form, namely:

C(�) = E

h Z 1

0
e�⇢t1�t>BT

NT
t

c(�t, B
T
NT

t
)dNT

t )
i
.

The interpretation is the following:

• ⇢ 2 R+ is a discount rate. Usually, discount rate is chosen to be strictly positive

in order to avoid infinite rewards or costs. However, in one of our models (the last
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one), we will specifically assume ⇢ = 0, and it will be an important assumption to

make the problem solvable. We shall see that in this model, infinite rewards/costs

will never occur despite this assumption.

• When the Individual connects to a website displaying targeted advertising (dNT
t

part), if the targeted advertising auction is won by the agent (1�t>BT

NT
t

part), the

agent has to pay a price c(�t, B
T
NT

t

), where c : R2 ! R is a function depending upon

the paying rule defined by the auction. Let us provide two important examples of

such auction rule:

1. First-price auctions: In first-price auctions, the winner of the auction pays

his bid, and thus, we have c(b, B) = b.

2. Second-price auctions: In second-price auctions, the winner of the auction

pays the second winning bid, i.e. the bid that he beat. In this case, we have

c(b, B) = B.

Constant efficient bidding policy: A constant efficient bidding policy is a constant

b 2 R. The efficient constant bidding control �b 2 ΠOL associated to a constant efficient

bidding policy is defined by the feedback form constraint �b
t = (1 � X�b

t�)b. It simply

models a policy where the Agent makes a constant bid b as long as the Individual is not

informed (notice that it would be useless to make a positive bid once he is informed).

We have now introduced all the elements of the core framework. In the sequel, we

shall study several advertising problems based on this framework. modeling different

types of advertising:

• In Section 7.3, we model commercial advertising problems, i.e. problems where

the Agent is a company either trying to sell a service or a product. The common

property of both situations is that informing the Individual triggers an Action

bringing a reward to the company (subscription regular fee, purchase punctual

fee).

• In Section 7.4, we model social marketing problems, i.e. problems where the Agent

is an association or government trying to alert people about unhealthy behaviors

(anti-drug/alcohol campaigns, road-safety campaigns, etc). The particularity of

such type of advertising is that informing people does not bring a reward to the

Agent, but instead, it cancels a cost: as long as an individual has an unhealthy

behavior, he incurs a continuous cost to the philanthropic association. Once in-

formed, he behaves healthier and stops incurring such cost.
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7.3 Commercial advertising model

In this section, we study models for commercial advertising. The Agent is thus a com-

pany trying to maximize its gain. We will study two types of commercial gains: the

subscription-based gain, and the purchase-based gain.

7.3.1 Purchase-based gain function

In this section, we study the situation where the Information is the existence of a prod-

uct, where the Agent is a company selling this product, and where the Action of the

Individual, once informed, is to purchase the product. To this end, we consider the

following purchase based gain function:

V (�) = E

h Z 1

0
e�⇢tKdX�

t

i
� C(�), for � 2 ΠOL

Let us interpret this gain function. The part C(�) is just the advertising cost from the

core framework. ⇢ is still the discount rate. The part
R1
0 e�⇢tKdX�

t simply represents a

punctual payment K from the Individual to the Agent when he becomes informed (dX�
t

part). This thus naturally models the reward obtained by the Agent when the individual

buys the product. Therefore, V (�) represents the net profit of the Agent in the situation

of selling a product.

We now state the result of this section.

Theorem 7.3.1 We have

V ? := sup
�2ΠOL

V (�) = sup
b2R

V (�b),

with

V (�b) =
⌘IK + ⌘TE[(K � c(b, BT

1 ))1b�BT
1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

, 8b 2 R.

Furthermore, any b? 2 R such that b? = argmax
b2R

V (�b) yields an optimal constant bid,

i.e. an optimal open-loop bid taking the form of a constant efficient bid.

Interpretation. The simplest way to interpret this result is by first understanding the

role of ⇢. It is well known that a discount rate is mathematically equivalent to a random

termination date of the problem following an exponential distribution with parameter ⇢.

In the above formulas, this is how ⇢ should be understood. Up to adding this random
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termination time, we can thus consider that the problem has no discount rate. Given

this interpretation, and assuming that the Agent plays a constant efficient bidding policy

b, notice that the inner fraction can be seen as

pIK + p⇢ ⇥ 0 + pTE[K � c(b, BT
1 ) | b � BT

1 ]

where (pI, p⇢, pT) are probability weights proportional to (⌘I, ⇢, ⌘TP(b � BT
1 )). This

expression should be seen as the expected reward of the Agent computed in terms of

how the problem terminates:

• The problem terminates with the Individual finding the Information by himself

with probability pI, and in this case, the Agent only perceives the reward K.

• The problem terminates with the random termination time we just introduced with

probability ⇢, and in this case, the Individual has not had the time to be informed:

the Agent perceives nothing.

• The problem terminates with the Individual getting informed by seeing the Agent’s

targeted ad with probability pT, and in this case, the Agent perceives K and pays

c(b, BT
1 ) because he had to pay the auction’s price.

Given that we removed the discount rate of the problem by introducing the random

termination time, the Agent’s expected reward indeed only depend upon how the game

terminates, rather than when. It is thus natural that the optimal value consists in

maximizing the expected reward at termination.

Besides the quantitative aspect of this result, an important qualitative property is

that a constant bidding policy is enough to reach the optimal value over all open-loop

bidding controls. This is particularly interesting from a model-free viewpoint (reinforce-

ment learning) as it means that one can restrict the search for an optimal strategy to

the set of constant bidding policies, which is a reasonably “small” set.

Cost dual viewpoint. Another interesting way to formulate the optimal value and

bid is from a cost viewpoint (and this is actually how we prove this formula in this

work): the idea is to consider the best possible scenario for the Agent, which is that

the Individual directly connects to a website containing the information from the very

beginning, and then look at the real scenario relatively to this best scenario. The real

scenario necessarily brings a smaller gain than the best scenario, and thus, it is as if

the Agent won the best scenario gain but then perceives a cost corresponding to the
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difference. From this viewpoint, the goal is to minimize this cost. The best scenario gain

clearly is K. This yields the following formulas: we have

sup
�2ΠOL

V (�) = K � inf
b2R

⇢K + ⌘TE[c(b, BT
1 )1b�BT

1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

,

and any b? 2 R such that

b? = argmin
b2R

⇢K + ⌘TE[c(b, BT
1 )1b�BT

1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

yields an optimal constant bid.

Sensitivity of optimal bid to parameters. We start with a useful equivalence.

Lemma 7.3.1 We have for all �1,�2,�
0
2,�3,�4,�

0
4 2 R+ such that �3 > 0 and �4 < �0

4,

we have

�1 + �2

�3 + �4
<

�1 + �0
2

�3 + �0
4

, �0
2 � �2

�0
4 � �4

<
�1

�3
(7.3.1)

Proof. We have

�1 + �2

�3 + �4
>

�1 + �0
2

�3 + �0
4

, (�3 + �0
4)(�1 + �2) > (�3 + �4)(�1 + �0

2), �3�2 + �0
4�1 > �3�

0
2 + �4�1

, (�0
4 � �4)�1 > �3(�

0
2 � �2),

�1

�3
>

�0
2 � �2

�0
4 � �4

2

Let us now consider constant bids b < b0 so that

�4 := ⌘TP(b � BT
1 )  ⌘TP(b0 � BT

1 ) =: �0
4.

Let us denote

�1 := ⌘IK, �3 := ⌘I + ⇢

�2 := ⌘TE[(K � c(b, BT
1 ))1b�BT

1
], �0

2 := ⌘TE[(K � c(b0, BT
1 ))1b0�BT

1
].

Applying the equivalence (7.3.1), we have

V (�b) < V (�b0),
E[(K � c(b0, BT

1 ))1b0�BT
1
]� E[(K � c(b, BT

1 ))1b�BT
1
]

P(b0 < BT
1 )� P(b < BT

1 )
<

⌘IK

⌘I + ⇢
.
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What is interesting in the right-hand side term is that it decouples the dynamic param-

eters of the problem, i.e. ⌘I and ⇢, and the static parameters, i.e. K, c, and L(BT
1 ).

In particular, this implies the following result: let b⌘
I,⇢

? be the smallest optimal bid for

parameters ⌘I, ⇢, then by definition, V⌘I,⇢(�
b⌘

I,⇢
? ) > V⌘I,⇢(�

b) for all b < b⌘
I,⇢

? (where we

stress the dependence of V (�b) in the parameters ⌘I, ⇢, and thus we have

E[(K � c(b⌘
I,⇢

? , BT
1 ))1

b⌘
I,⇢

? �BT
1

]� E[(K � c(b, BT
1 ))1b�BT

1
]

P(b⌘
I,⇢

? < BT
1 )� P(b < BT

1 )
<

⌘IK

⌘I + ⇢
.

Notice that this property will still be true if one decreases ⇢ (yielding ⇢̃) or increases

⌘I (yielding ⌘̃I), and thus we will still have V
⌘̃I,⇢̃

(�b⌘
I,⇢

? ) > V
⌘̃I,⇢̃

(�b) with these new

parameters ⇢̃ and ⌘̃I, for all b < b⌘
I,⇢

? . This clearly implies that b⌘
I,⇢

?  b⌘̃
I,⇢̃

? .

In other words:

• The (smallest) optimal bid is increasing in ⇢. This is consistent with the idea that

when the Individual connects to a website displaying targeted ads, if ⇢ is small, then

the Agent is more patient and thus takes into account the fact that there will be

other opportunities for the Individual to get the Information, which is why he will

bid less than if ⇢ is large, in which case the Agent ignores the future opportunities

and will thus bid as if this was his only chance to display the ad.

• The (smallest) optimal bid is decreasing in ⌘I. This is consistent with the fact that

when the Individual connects to a website displaying targeted ads, if ⌘I is large,

then the Agent knows that the Individual is susceptible to learn the Information

by himself very soon anyway, which gives the Agent less incentive to bid high

compared to the case where ⌘I is small, in which case the Individual has very little

chance to learn the Information by himself.

7.3.2 Subscription-based gain function

In this section, we model the situation where the Information is the existence of a service,

where the Agent is the company proposing this service, and where the Action of the

Individual, once informed, is to subscribe to the service. To that aim, we simply consider

the following subscription-based gain function:

V (�) = E

hX

n2N
e�(⌧�+n)⇢K

i
� C(�), for � 2 ΠOL,

where ⌧� := inf{t 2 R+ : X�
t = 1} is the time of information of the individual.
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Let us interpret this gain function. The part C(�) is simply the advertising cost de-

scribed in the core framework. ⇢ is still the discount rate. The other part, E
hP

n2N �⌧�+nK
i
,

represents the gain coming from the Individual’s information dynamic. It simply corre-

sponds to a regular payment of K every period 1 from the time of information ⌧� (and

thus the time of subscription) of the Individual.

We can now state the result of this section.

Theorem 7.3.2 We have

sup
�2ΠOL

V (�) = sup
b2R

V (�b),

with

V (�b) =
⌘I K

1��
+ E[

⇣
K

1��
� c(b, BT

1 )
⌘
1b�BT

1
]

⌘I + ⇢+ P(b � BT
1 )

and any b? 2 argmax
b2R

V (�b) yields an optimal constant bid, i.e. an optimal open-loop bid

taking the form of a constant bid.

Interpretation: Notice that the regular payment of K every period of duration 1 from

the time of information is, from the Agent’s viewpoint, equivalent to a unique payment

of K
1��

at the time of information. We are thus reduced to the previous case of purchase-

based gain.

7.4 Social marketing model

We now model a very different kind of advertising, called social marketing. Social mar-

keting is the activity of making advertising campaigns not to make profit but to sensitize

people, in particular about unhealthy behaviors (anti-drug campaigns, road-safety cam-

paigns, sexual-safety campaigns, etc). The common point of these campaigns is that

they spread an Information about an unhealthy behavior. The Agent, here, is either an

association or a governmental entity working for social good. As opposed to commercial

advertising from previous section, informing an Individual here does not bring a reward

to the Agent, but instead, cancels a cost.

The idea simply is that the Agent is philanthropic and considers that each Individual

not behaving healthily incurs a cost to him. As long as the Individual is not informed,

he thus keeps behaving unhealthily and incurring a continuous cost to the Agent. Once

informed, the Individual does the Action to stop behaving unhealthily and the cost stops.
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For this application, our study will be split in two sub-cases:

1. The case with a discount rate �, based on the same framework as previous models

but with a cost function, and

2. the important case with no discounting (i.e. � = 1), where we will be able to

make the framework much richer by introducing a population of N individuals as

well as a non-targeted advertising mechanism, therefore turning the model into a

population control problem.

In both cases the Agent’s goal will be to minimize his cost.

7.4.1 Case with a discount rate

We start by the simpler case, with no social interaction nor non-targeted advertising,

but with an arbitrary discount rate ⇢. Besides the processes N I and NT, we consider a

third Poisson process NE , independent from the others, with intensity ⌘E , counting the

times when the Individual behaves unsafely.

In this social marketing problem, the cost function of the Agent is defined by

V (�) = E

h Z 1

0
e�⇢t(K(1�X�

t�)dN
E
t

i
+ C(�), for � 2 ΠOL.

The part C(�) is the advertising cost, and the part E
h R1

0 e�⇢t(K(1�X�
t�)dN

E
t

i
simply

measures the cost perceived in the period before the Individual was informed, assum-

ing that the Individual incurs a cost K to the Agent every time he behaves unsafely,

discounted with the factor �.

We have the following result.

Theorem 7.4.1 We have

inf
�2ΠOL

V (�) = inf
b2R

V (�b),

with

V (�b) =
K + ⌘TE[c(b, BT

1 )1b�BT
1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

and any b? 2 argmin
b2R

V (�b) yields an optimal constant bid, i.e. an optimal open-loop bid

taking the form of a constant bid.
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Interpretation: Here again, we interpret ⇢ as the parameter of a random terminal

time with exponential distribution. Notice that in the case of social marketing, where

the Agent perceives a cost as long as the Individual is not informed, and where the cost

stops as soon as he gets the information, there is already a random terminal time: the

time when the Individual connects on the website intrinsically containing the information.

Indeed, in such case, the cost stops and the problem stops as well. Both terminal times

are exponential random variables with respective parameters ⌘I and ⇢. It is known that

they can be compressed in a unique terminal time (the minimum of both) with parameter

⌘I+⇢. In other words, up to replacing the original intensity ⌘I of connection to a website

containing the Information by ⌘I+⇢, we are reduced to a problem with no discount rate

(⇢ = 0). The inner fraction can be split as follows:

K + ⌘TE[c(b, BT
1 )1b�BT

1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

=
K

⌘I + ⇢+ ⌘TP(b � BT
1 )

+
⌘TE[c(b, BT

1 )1b�BT
1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

We first interpret the first term: ⌘I + ⇢ + ⌘TP(b � BT
1 ) is the intensity of the time

of information of the Individual, and thus 1
⌘I+⇢+⌘TP(b�BT

1 )
is the expected time before

information. During this time, a continuous cost K is essentially perceived, which ex-

plains the term K
⌘I+⇢+⌘TP(b�BT

1 )
. Let us now interpret the second term. It has the same

interpretation as for previous models: it essentially is the expected cost perceived at the

time of termination of the problem, given that in this case, no reward, and only the ad

cost, is perceived.

7.4.2 Case with no discount case, with social interactions and non-

targeted advertising

In this section, we consider a social marketing model with no discounting, but with much

more features than previous models. Although the model we study here is still based on

our core framework, it is so much richer, and then for the sake of clarity, We redefine it

from scratch.

In this model, we do not simply model websites intrinsically containing the Informa-

tion and websites displaying targeted ads, but also:

• social interactions, and

• non-targeted advertising.

Essentially, rather than simply connecting to websites either containing the Information

or displaying targeted ads, people will also connect on website displaying non-targeted
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ads, and they will also socially interact. The reason why we introduce these two extra

features is twofold:

1. For relevance in terms of applications: Social marketing nowadays still widely

happens via non-targeted advertising (TV awareness campaigns, etc). Although

our model proposes to use targeted advertising, it thus seems important to not

completely dismiss the current method, and instead propose a way to combine

both mechanisms.

2. Mathematical reason: The absence of discount factor allows the problem to still

be tractable even by adding these features. In previous models, with a ⇢ > 0, one

could not solve the problem with these extra features.

Let us reintroduce each component of the framework, one by one, with these additional

features.

The population

Instead of a single Individual, we here consider a population with M individuals. Each

individual m 2 J1,MK is modeled with all the features of the Individual from previous

models, and also extra features. The population’s online behavior is characterized by:

• a family of M i.i.d. triplets (Nm,I, Nm,T, Nm,T̄, Nm,E)mN where, for m 2 J1,MK,

Nm,I, Nm,T, Nm,T̄, and Nm,E are four independent Poisson processes with respec-

tive intensities ⌘I, ⌘T, ⌘T̄, and ⌘E , Notice that it implies that each individual is

assumed to share the same intensities. Up to this simplification, we shall see that

the problem stays tractable.

• and a family (Nm,i,S)m,i2J1,MK of i.i.d. Poisson processes with intensity ⌘S, inde-

pendent from the other Poisson processes.

For allm 2 J1,MK, the processesNm,I, Nm,T, andNm,E , have the same interpretation as

in previous model: Nm,I counts the times when individual n visits a website intrinsically

containing the Information (in this case, it would be an association’s website, the website

specialized in health, etc). Nm,T counts the times when individual n connects to a

website displaying targeted ads, and Nm,E counts the time when he behaves unsafely.

The new features are: Nm,T̄, simply counting the times when individual n visits a website

displaying non-targeted ads, and for n, i 2 J1,MK, Nm,i,S counting the social interactions

between individuals n and i in the population.
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Targeted and non-targeted advertising auctions

Instead of only considering targeted advertising auctions, we also introduce a non-

targeted advertising auction mechanism. Let us start by adapting the targeted ad-

vertising framework to the M -individual population.

Targeted advertising auctions: For each individual n, for m 2 J1,MK, each time

individual n connects to a website displaying targeted ads, an auction is automatically

opened where several agents bid to win the right to display their ads to the individual.

As in previous models, to keep the problem tractable, we model the maximal bid from

other bidders (other than our Agent), as random variables, i.i.d. across auctions and

across individuals. We thus introduce an i.i.d. family of real valued random variables

(Bm,T
k )k2N,m2J1,MK, where, for m 2 J1,MK and k 2 N, Bm,T

k represents the maximal bid

from other bidders at the k-th targeted advertising auction concerning individual n.

Non-targeted advertising auctions: In this model, we also consider non-targeted

advertising. Each time when an individual (regardless of his index) connects to a website

displaying non-targeted ads, here again, agents will compete to display their ads (with

the only difference that they cannot make their bid depending upon the individual who

connects to the website, hence the name “non-targeted advertising”). An auction is thus

also opened at each such connection. As before, we model the maximum bid from other

bidders (i.e. not the Agent) by random variables i.i.d. across non-targeted advertising

auctions. We thus consider an i.i.d. family of real valued random variables (BT̄
k )k2N,

where for each k 2 N, BT̄
k represents the maximal bid of other bidders during the k-non-

targeted advertising auction (in all the population). Furthermore, given an Agent’s bid

b and the other bidders maximal bid B, the price that the Agent has to pay if he wins

the auction (i.e. if b � B) is defined by cT̄(b, B), where cT̄ : R2 ! R is a measurable

function defining the auction rule.

The advertising bidding strategies

Given that there are now M individuals, targeted advertising, and non-targeted ad-

vertising, a general bidding map control will take a more complex form as in previous

models.

Informally, a bidding map control, in this model, is a random process, depending

only upon past events (i.e. not upon future events), valued in R
M+1. The idea is that

this vector will store the M bids that the Agent would like to make for each individual

m 2 J1,MK if he were to connect to a website displaying targeted ads, and the remaining

coordinate corresponds to the bid that the Agent would like to make if someone (anony-

mous) connects to a website using non-targeted advertising. This is why M+1 potential
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bids are required at any time, hence the term bidding map.

To make this intuition rigorous, let us first introduce the filtration F = (Ft)t2R+

generated by the processes

((Nm,I, Nm,T, Nm,T̄, Nm,E , Bm,T
Nm,T , N

m,S)mN , BT̄

NT̄
, ((N{m,i},S)m,i2J1,MK)

where N T̄ :=
PM

m=1N
m,T̄ globally counts the connections to a website displaying non-

targeted ads. i.e. we have, for all t 2 R+,

Ft = �(Nm,I
s , Nm,T

s , Nm,T̄
s , Nm,E

s , Bm,T

Nm,T
s

, Nm,S
s ,m 2 J1,MK, BT̄

NT̄
s
, N{m,i},S

s ,m, i 2 J1,MK, s  t)

Let us now define the notion of open-loop bidding map control. An open-loop bidding

map is simply a process � = (�m)m=0,...,M , valued in R
M+1, predictable and progressively

measurable w.r.t. the filtration F. It thus indeed means that for all t, the value of the

open-loop bidding control � at time t, i.e. �t, can only depend upon past events.

Let us now explain the meaning of the bidding map �t = (�m
t )m=0,...,M 2 R

M+1. For

n = 1, ...,M , �m
t is the bid that the Agent would make if a targeted advertising auction

for individual n happened at time t. The remaining coordinate, �0
t is the bid that the

Agent would make if a non-targeted advertising auction happens at time t.

In other words, the idea is that if an individual connects to a website displaying

targeted ads, the website will open the targeted advertising auction for this individual,

look at the bidding map �t = (�m
t )m=0,...,M , and automatically use the bid �m

t inscribed

in this bidding map as the bid of the Agent for this auction. This allows the agent to

specify a different bid for each individual, which encodes the idea of targeted-advertising.

On the other hand, if an individual connects to a website displaying non-targeted ads,

the website will open the non-targeted advertising auction for this connection, look at

the Agent’s bidding map �t = (�m
t )m=0,...,M , and automatically use the bid �0

t inscribed

in this bidding map as the bid of the Agent for this auction. Notice that in this case,

the bid of the Agent can thus not depend upon who connects, which encodes the idea of

non-targeted advertising.

The information dynamic, cost function, and minimal bidding policies

Given an open-loop bidding map control �, we define the information dynamic of the

population as follows. For all m 2 J1,MK, the information process Xn of individual n is

a càd-làg process valued in {0, 1} satisfying the dynamic relation

Xm,�
0 = 0

dXm,�
t = (1�Xm,�

t� )(dNm,I
t + 1

�m
t �Bm,T

Nm,T

dNm,T
t + 1

�0
t�BT̄

NT̄t

dNm,T̄
t +

NX

i=1

Xi,�
t� dNm,i,S

t ).
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The interpretation of this dynamic is similar to previous sections, except that there are

several individuals m 2 J1,MK, and that there is an additional term

1
�0
t�BT̄

NT̄t

dNm,T̄
t +

MX

i=1

Xi,�
t� dNm,i,S

t .

Let us thus explain this extra term. It is essentially related to the new features of non-

targeted advertising and social interactions. Nonetheless, to make the explanation clear,

let us re-interpret the whole dynamic.

As in previous models, each individual n starts uninformed (Xm,�
0 = 0). Once

individual n is informed (Xm,�
t = 1), he stays informed ((1 � Xm,�

t� ) part). As long

as he is not informed, the rest of the dynamic is effective:

• As in previous models, when individual n connects to a website intrinsically con-

taining the Information, individual becomes informed (dNm,I
t part).

• Likewise, when individual n connects to a website displaying targeted ads (dNm,T
t

part), he gets informed if and only if the Agent’s ad is displayed to him, i.e. iff the

Agent wins the targeted advertising auction (1
�m
t �Bm,T

Nm,T

part).

• Additionally to previous models, individual n can also connect to websites dis-

playing non-targeted ads (dNm,T̄
t part), in which case he will get informed if and

only if the Agent’s ad is displayed to him, i.e. iff the Agent wins the non-targeted

advertising auction (1
�0
t�BT̄

NT̄t

part).

• Finally, if individual n socially interacts with individual i (dNm,i,S
t part), he will

get informed if and only if individual i is informed (Xi,�
t part).

Given a bidding map control �, the expected cost incurred to the Agent is defined

by

V (�) = E

h MX

i=1

⇣Z 1

0
K(1�Xi,�

t� )dNE,i
t +

Z 1

0
1
�i
t>Bi,T

Ni,T

cT(bi,Tt , Bi,T
N i,T)dN

i,T

+

Z 1

0
1
�0
t>BT̄

NT̄
t

cT̄(�0
t , B

T̄

NT̄
t

)dN i,T̄
t

⌘i
.

This cost function is similar to previous model, except that there is a cost for each indi-

vidual i 2 J1,MK in the population, (
PM

i=1 part), and that there is an additional termR1
0 1

�0
t>BT̄

NT̄
t

c(�0
t , B

T̄

NT̄
t

)dN i,T̄
t . This new term is similar to the term

R
1
�i
t>Bi,T

Ni,T

cT(bi,Tt , Bi,T
N i,T)dN

i,T

177



measuring the targeted adverting cost of the strategy. It instead clearly measures the

non-targeted advertising cost of the strategy.

Minimal policy dynamic: Aminimal policy is given by a pair of functions b = (bT, bT̄)

where b
T̄ : [0, 1]! R and b

T : [0, 1]! R. To any minimal policy we associate the open-

loop bidding map control �b satisfying the feedback form constraint

�
m,b
t = b

T
⇣ 1

M

MX

i=1

Xi,�b

t�

⌘
(1�Xm,�b

t� ), m 2 J1,MK, �
0,b
t = b

T̄
⇣ 1

M

MX

i=1

Xi,�b

t�

⌘
,

We now state the result for this model.

Theorem 7.4.2 The optimal cost is given by

inf
�2ΠOL

V (�) =
X

p2 J0,MK
M

inf
b2R

K + ⌘TE[c(b, BT
1 )1

b>B1,T
1

] + ⌘T̄E[
cT̄(b,BT̄

1 )
1�p 1

b>
B
1,T̄
1

1�p

]

⌘I + ⌘TP(b � B1,T
1 ) + ⌘T̄P(b � BT̄

1 ) + p⌘S

The minimal policy defined by b
T̄
? (p) = (1� p)b?(p) and b

T
? (p) = b?(p), where

b?(p) = argmin
b2R

K + ⌘TE[c(b, BT
1 )1

b>B1,T
1

] + ⌘T̄E[
cT̄(b,BT̄

1 )
1�p 1

b>
BT̄
1

1�p

]

⌘I + ⌘TP(b � B1,T
1 ) + ⌘T̄P(b � BT̄

1
1�p) + p⌘S

,

yields an optimal control �b?.

Interpretations: Let us provide a few interpretations of this formula.

• Interpretation of the part “
P

p2 J0,MK
M

...”: We can split the problem in several

successive problems each consisting in optimally going from a proportion k
M of

informed people to a proportion k+1
M , for k 2 {0, ...,M � 1}. The fact that there is

no discount rate implies that the time when each problem starts does not matter,

which implies that these successive problems can be optimized independently, i.e.

one by one.

• Interpretation of the term in the sum: The justification of the form of the

terms in the sum is similar to the justification given for the previous model: the

fraction can be split into two fractions, one corresponding to the expected cost

perceived during this period, and the other one corresponding to the expected cost

perceived at the termination time of this period.
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• Interpretation of the term
cT̄(b,BT̄

1 )
1�p : Notice that in the formula, B1,T

1 and
BT̄

1
1�p

play symmetric roles. It is as if the non-targeted advertising mechanism with price

BT̄
1 was equivalent a targeted advertising mechanism with price

BT̄
1

1�p . In other

words, making the advertising mechanism not targeted essentially is equivalent to

multiply the ad cost by 1
1�p . This is natural since when the ad mechanism is not

targeted, there is a probability p that it displays the ad to an already informed

individual. Thus, statistically, for each ad displayed to an uninformed individual,
p

1�p ads will be displayed to already informed individuals (and be useless). This

is thus equivalent to pay the price of 1 + p
1�p = 1

1�p ads to display an ad to an

uninformed individual.

• Interpretation of the term p⌘S: Notice that in the formula, p⌘S plays the

same role as ⌘I. This is consistent with the intuition that socially interacting with

an informed individual has the same effect as visiting a website containing the

information: it will inform the individual and not cost anything to the Agent.

The more individuals are informed, the more likely such interaction is to occur.

More precisely, each informed individual “plays the role” of a website containing

the information, such that an individual has intensity 1
M ⌘S to “visit” it, and thus,

with a k informed individuals, it yields an intensity k
M ⌘S = p⌘S.

Remark 7.4.1 (Mean-field approximation) As in any population models with enough

symmetry, it is expected that when M gets large, the model’s result converge to a mean-

field limit. Let us verify this, and see to what our result converges. Notice that the

Agent’s average optimal value per individual is thus

1

M
inf

�2ΠOL

V (�) =
1

M

X

p2 J0,MK
M

inf
b2R

K + ⌘TE[cT(b, B1,T
1 )1

b>B1,T
1

] + ⌘T̄E[
cT̄(b,B1,T̄

1 )
1�p 1

b>
B
1,T̄
1

1�p

]

⌘I + ⌘TP(b � B1,T
1 ) + ⌘T̄P(b � BT̄

1 ) + p⌘S

which thus takes the form of a Riemann sum, implying that we have

1

M
inf

b2ΠOL

V (�) '
Z 1

0
inf
b2R

K + ⌘TE[cT(b, B1,T
1 )1

b>B1,T
1

] + ⌘T̄E[
B1,T

1
1�p 1

b>
cT̄(b,B

1,T̄
1 )

1�p

]

⌘I + ⌘TP(b � B1,T
1 ) + ⌘T̄P(b � BT̄

1 ) + p⌘S
dp

Such result can be interesting for two important reasons:

1. To obtain an analytical approximation of the optimal value in some cases where

the integral can be explicitly computed,

179



2. and to provide a way to numerically approximate the optimal value, by discretizing

the integral with a suitable discretization step. This can be useful with very large

populations, where one might want to speed up the computation.

7.5 Examples with explicit optimal bidding policies

7.5.1 Constant maximal bid from other bidders

In this section, we assume that the maximal bids from other bidders, i.e. (BT
k )k2N for

the targeted advertising auctions, and (BT̄
k )k2N for the non-targeted advertising auctions,

are constant, i.e. BT
k = BT 2 R and BT̄

k = BT̄ 2 R. Given that they are constant,

the first-rice auction or second-price auction cases essentially become equivalent, so let

us focus on the second price type of auction, i.e. the auction payment rule c(b, B) = B.

Let us study two cases:

1. The commercial advertising problem with purchase-based gain function, and

2. The social marketing problem with no discount factor and with social interactions

and non-targeted advertising.

Commercial advertising problem with purchase-based gain function

In this case, we have

V (�b) =
⌘IK + ⌘T(K �BT)1b�BT

⌘I + ⇢+ ⌘T1b�BT

,

and any b? 2 argmax
b2R

V (�b) yields an optimal constant bid. Notice that V (�b) only takes

two possible values, one for b < BT and one for b � BT. The optimization thus reduces

to choose either b < BT (for instance b = 0), either b � BT (for instance b = BT). Let

us thus simply analyze the case where b � BT is a better option: the optimal bid is

b? � BT iff

⌘IK + ⌘T(K �BT)

⌘I + ⇢+ ⌘T
>

⌘IK

⌘I + ⇢

One straightforwardly proves that for a, b, c, d > 0, we have

a

b
<

a+ c

b+ d
, a

b
<

c

d
(7.5.1)
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and thus the optimal bid is b? � BT iff

K �BT >
⌘IK

⌘I + ⇢

i.e. iff

BT <
⇢

⌘I + ⇢
K.

We clearly see what we had already established in the general case: The optimal bids

are “decreasing” in ⌘I and “increasing” in ⇢, for instance in the sense that the smallest

optimal bid is BT1BT ⇢

⌘I+⇢

, and that this is clearly a decreasing function of ⌘I and an

increasing function of ⇢.

There is another interesting optimal bid, that is, the bid ⇢
⌘I+⇢

K. Indeed, this bid is the

only one to be optimal regardless BT. In other words, simply knowing (or assuming) that

other bidders’ maximal bid is constant is enough to have a dominant bidding strategy
⇢

⌘I+⇢
K, optimal regardless the other bidders’ maximal bid.

Social marketing problem with no discount factor and with social interactions

and non-targeted advertising

In this case, the optimal bidding strategy is given by a minimal bidding policy b? =

(bT, bT̄) with b
T
? (p) = b?(p) and b

T̄
? (p) = (1� p)b?(p), where

b?(p) = argmin
b2R

K + ⌘TB1,T1b>B1,T + ⌘T̄ BT̄

1�p1b> BT̄

1�p

⌘I + ⌘T1b�B1,T + ⌘T̄1
b� BT̄

1�p

+ p⌘S
.

In order to obtain simple and intepretable formulas let us assume that there is only one

type of advertising.

Only targeted advertising. If there is only targeted advertising, i.e. if ⌘T̄ = 0, we

have

b
T
? (p) = argmin

b2R

K + ⌘TB1,T1b>B1,T

⌘I + ⌘T1b�B1,T + p⌘S
,

Here again, we are reduced to compare two costs:

K

⌘I + p⌘S
and

K + ⌘TB1,T

⌘I + ⌘T + p⌘S
,
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the first one being obtained for b < B1,T, and the second one for b � B1,T. The best

option will be b?(p) � B1,T if and only if

K

⌘I + p⌘S
>

K + ⌘TB1,T

⌘I + ⌘T + p⌘S
,

Again using (7.5.1), this is equivalent to

B1,T <
K

⌘I + p⌘S

which is equivalent to

p <
K

B1,T � ⌘I

⌘S
.

This means that below the informed proportion
K

B1,T�⌘I

⌘S
, one should bid higher than

BT (and thus display ads), and after the informed proportion
K

B1,T�⌘I

⌘S
, one should bid

lower than BT (and thus stop displaying ads). Notice, in particular, that the threshold

of informed proportion from which one has to stop displaying ads is decreasing in ⌘I and

in ⌘S. Let us interpret this.

• First of all, the fact that there is an informed proportion below which the Agent

should display ads and above which he should not display ads necessarily comes

from the social interactions, since the no-social interaction case (⌘S = 0) implies

that b?(p) � B1,T is optimal iff B1,T < K
⌘I
. It is however interesting to see that

⌘I affects the threshold proportion
K

B1,T�⌘I

⌘S
. The fact that the presence of social

interactions is susceptible to introduce a threshold proportion after which the Agent

should stop displaying ads is the following: Let us assume that an individual

connects to a website displaying targeted ads. With social interactions, the more

people are informed, the sooner this individual will learn the Information anyway,

by interacting with an informed individual. Therefore, the incentive of the Agent to

display the ad to him is weaker as the proportion of informed individuals increases,

which justifies that the bid he is willing to make is smaller, and once it is small

enough to fall below B1,T, the Agent will stop displaying ads.

• The interpretation of the decreasing nature of the threshold proportion in ⌘I and

⌘S is the following. For a fixed proportion of informed individuals p, increasing

the intensity of social interactions ⌘S will also make more probable a soon inter-

action with an informed people, thus weakening the Agent’s incentive to display
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an ad, such that this incentive will be fully compensated after a smaller informed

proportion. Likewise, increasing the intensity ⌘I of connections to a website con-

taining the information will make people inform themselves faster, thus catalyzing

the increase of the informed proportion, in turn decreasing the Agent’s incentive

to display an ad.

Only non-targeted advertising. If there is only non-targeted advertising, i.e. if

⌘T = 0, we have

b
T̄
? (p) = argmin

b2R

K + ⌘T̄ BT̄

1�p1b>BT̄

⌘I + ⌘T̄1b�BT̄ + p⌘S
.

Here again, we are reduced to compare two costs:

K

⌘I + p⌘S
and

K + ⌘T̄ BT̄

1�p

⌘I + ⌘T̄ + p⌘S
,

the first one being obtained for b < BT̄, and the second one for b � BT̄. The best option

will be b
T̄
? (p) � BT̄ if and only if

K

⌘I + p⌘S
>

K + ⌘T̄ BT̄

1�p

⌘I + ⌘T̄ + p⌘S
,

Again using (7.5.1), this is equivalent to

BT̄

1� p
<

K

⌘I + p⌘S

which is equivalent to

p <
K � ⌘IBT̄

K + ⌘SBT̄

This means that before the informed proportion K�⌘IBT̄

K+⌘SBT̄
, one should bid higher than

BT̄ (and thus display ads), and after the informed proportion K�⌘IBT̄

K+⌘SBT̄
, one should bid

lower than BT̄ (and thus stop displaying ads). Notice, in particular, that, as in the “only

targeted advertising” case, the informed proportion when one has to stop displaying ads

is decreasing in ⌘I and in ⌘S. Let us interpret this. All the interpretations given in the

“only targeted advertising” case still apply here, but there is an additional justification of

the fact that there is a threshold informed proportion above which the Agent should stop
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displaying ads. Recall that in “only targeted advertising” case, we said that the presence

of such threshold came from the presence of social interactions, and that when they are

absent (⌘S = 0), or more generally when ⌘S is small enough, there is no threshold (the

optimal bidding strategy is a constant bid). Here, notice that we have K�⌘IBT̄

K+⌘SBT̄
< 1,

even if ⌘S = 0 (recall that we assumed that ⌘I > 0). Thus, as opposed to the previous

“only targeted advertising” case, the existence of such threshold does not only come from

social interactions. To emphasize that this threshold also comes from the non-targeted

nature of the advertising, let us set ⌘S = 0, and see that even in this case, we still

have a threshold. Indeed, with ⌘S = 0, we obtain the threshold K�⌘IBT̄

K < 1. Let us

interpret this result. Displaying non-targeted ads always comes with the risk to display

ads to already informed people, and thus paying for a useless ad. The more people are

informed, the higher the risk. This is why after some proportion, it is simply not worth

paying for displaying an ad, and thus the Agent has to stop doing so.

7.5.2 Uniform maximal bid from other bidders

Notice that the solutions of all the problems studied in this chapter have similar forms.

We called them “semi-explicit” because they still required to compute an inf, sup, argmin,

or argmax, although it was always an optimization on R of a rather simple fraction

expressed in terms of the problem’s parameters.

Also notice that what essentially prevented the formulas to be fully explicit was 1)

that the probability distribution of BT
1 (and BT̄

1 in the fourth model) had not been

specified, and 2) that the auction payment rule c was not fixed.

In this section, we shall see that by assuming that the other bidders’ maximal bid

distribution is in the class of uniform distribution (with any mean and variance, in par-

ticular including constant bids), we are able to derive fully explicit formulas. Regarding

the auction payment rule, we shall focus on the first-price auction rule, but the same

argument applies to the second-price auction rule.

In this section, we study the case where the auction’s payment rule is given by

c(b, B) = B, that is, if the Agent wins the auction (b � B), he pays his own bid, i.e. the

maximal bid in the auction.

We shall study two classes of distributions for other bidders’ maximal bid that will

lead to fully explicit formulas. We focus on the example of the purchase-based commercial

advertising model, but the same argument can be adapted to the other models, and we

fix the first-price auction rule c(b, B) = b, we get the formula,

V (�b) =
⌘IK + ⌘TE[(K � b)1b�BT

1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

=
⌘IK + ⌘T(K � b)P(b � BT

1 )

⌘I + ⇢+ ⌘TP(b � BT
1 )

.
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Assuming that BT
1 follows a uniform distribution on [b�, b+] where B� < B+, we can

restrict the search for the argmax to the interval [b�, b+], i.e.

b? = argmax
b2[b�,b+]

⌘IK + ⌘T(K � b)P(b � BT
1 )

⌘I + ⇢+ ⌘TP(b � BT
1 )

b being limited to this support, the term P(b � BT
1 ) = b�b�

b+�b�
becomes linear in b, and

we have

b? = argmax
b2[b�,b+]

⌘IK + ⌘T(K � b) b�b�

b+�b�

⌘I + ⇢+ ⌘T b�b�

b+�b�

We can then clearly make a change of variable

b0 = ⌘I + ⇢+ ⌘T
b� b�

b+ � b�

i.e.

b = �1 + �2b
0

where

�1 = b� � (b+ � b�)
⌘I + ⇢

⌘T
, �2 =

b+ � b�

⌘T

such that

argmax
b2[b�,b+]

⌘IK + ⌘T(K � b)P(b � BT
1 )

⌘I + ⇢+ ⌘TP(b � BT
1 )

= argmax
b2[b�,b+]

⌘IK + ⌘T(K � �1 � �2b
0) b

0�(⌘I+⇢)
⌘T

b0

= argmax
b2[b�,b+]

⌘IK + (K � �1 � �2b
0)(b0 � (⌘I + ⇢))

b0

= argmax
b02[b0�,b0+]

a0 + a1b
0 + a2b

02

b0

where

a0 = �1(⌘
I + ⇢)�K⇢, a1 = K � �1 + �2(⌘

I + ⇢), a2 = ��2 < 0,

and

b0� = ⌘I + ⇢, b0+ = ⌘I + ⇢+ ⌘T.
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We thus have

argmax
b2[b�,b+]

⌘IK + ⌘T(K � b)P(b � BT
1 )

⌘I + ⇢+ ⌘TP(b � BT
1 )

= argmax
b02[b0�,b0+]

⇣a0
b0

+ a1 + a2b
0
⌘
.

By deriving the last expression in b0, we obtain a2 � a0
b02

which is negative, for b0 2

[b0�, b0+] ⇢ R+, if and only if b02 � a0
a2
, and thus if and only if b0 �

r⇣
a0
a2

⌘
+
. The optimal

b0 is thus given by

b0? = max

 
b0�,min

 
b0+,

s✓
a0
a2

◆

+

!!

and thus

b? = �1 + �2max

 
b0�,min

 
b0+,

s✓
a0
a2

◆

+

!!

= max
�
b�,min

�
b+, x

��

where

x = �1 + �2

s✓
a0
a2

◆

+

= �1 + �2

s✓
K⇢� �1(⌘I + ⇢)

�2

◆

+

= �1 +
q

�2(K⇢� �1(⌘I + ⇢))+

= b� � (b+ � b�)
⌘I + ⇢

⌘T
+

s
b+ � b�

⌘T
(K⇢� (b� � (b+ � b�)

⌘I + ⇢

⌘T
)(⌘I + ⇢))+

= b� � (b+ � b�)
⌘I + ⇢

⌘T
+

s
b+ � b�

⌘T
(K⇢� b�(⌘I + ⇢) +

b+ � b�

⌘T
(⌘I + ⇢)2))+.

7.6 Proofs

To simplify notations, in the proofs, let us focus on the second-price auction rule, i.e.

c(b, B) = B. The case of first-price auction rule is proved similarly.

7.6.1 Proof for social marketing with no discount factor

Fix an arbitrary open-loop bidding map control �. Let us denote

p�t =
1

M

MX

i=1

Xi,�
t , 8t 2 R+
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the proportion of informed individuals at each time t 2 R+. The underlying idea of

this proof is a change of variable from the Poisson processes of the problem to the

proportion p�t in the cost function. The motivation is that, as we saw in the interpretation

of Theorem 7.4.2, intuitively, the problem is like a sequence of independent problems

consisting in going from proportion p to p + 1
M with minimal cost, for all p 2 J0,MJ

M ,

and thus, the right way to look at the problem should be in terms of optimizing the

cost over the proportions from p = 0 to p = 1 rather than over the times of jumps

of the numerous Poisson processes defined in our model, the idea being that it should

make clearer that one can simply optimize locally, i.e. for each transition from p to

p + 1
M (point-wise optimization). Of course, the cost function is expressed in terms of

the problem’s Poisson processes, and we want to express it in terms of p� , and all these

processes are piece-wise constant processes. Thus, we have to be careful in the way we

change of variable. The idea is to use the compensated processes of the Poisson processes

with martingale arguments to apply the principles of continuous time change of variables

to our discrete random jump processes.

More precisely, changing the variable to p�t in V (�) essentially means to replace the

Poisson processes dNE , dNT, and dN T̄ by dp� , and to that end, we shall express V (�)

first with dt thanks to the intensity processes, then make the change of variable to obtain

another intensity process, and then move back to the world of jump processes to obtain

dp� . Of course, if we want to perfectly obtain dp� , we need to know what intensity

process will fall back on it.

We are looking for an F-predictable process G such that for all H positive and F

predictable, we have

E[

Z 1

0
HtWtdt] = E[

Z 1

0
Htdp

�
t ]

Notice that we have

dp�t =
1

M

MX

i=1

dXi,�
t

=
1

M

MX

i=1

(1�Xi,�
t� )
⇣
dN i,I

t + 1
�i
t�Bi,T

N
i,T
t

dN i,T
t + 1

�0
t�BT̄

NT̄
t

dN i,T̄
t +

X

m2J1,MK

Xm,�
t� dN i,n,S

t

⌘

=
1

M

MX

i=1

(1�Xi,�
t� )
⇣
dN i,I

t + 1
�i
t�Bi,T

N
i,T
t� +1

dN i,T
t + 1

�0
t�BT̄

NT̄
t�+1

dN i,T̄
t +

X

m2J1,MK

Xm,�
t� dN i,n,S

t

⌘
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The process

t 7! p�t �
Z t

0

1

M

X

i

(1�Xi,�
s�)
⇣
⌘I + 1

�i
s�Bi,T

N
i,T
s� +1

⌘T (7.6.1)

+ 1
�0
s�BT̄

NT̄
s�+1

⌘T̄ +
X

m2J1,MK

Xm,�
s� ⌘S

⌘
ds

is thus a martingale. Let us detail why. A classical result of Poisson processes and

martingale theory is that for any Poisson process N with intensity ⌘, the compensated

process of N , defined by dNt�⌘dt (i.e. (Nt�⌘t)t2R+) is a martingale w.r.t. the filtration

generated by N , but also, clearly, w.r.t. any filtration generated by N and any process Y

independent of N . This implies that all the Poisson processes considered in this model

are martingales w.r.t. the filtration F̃ = (F̃t)t2R+ defined by

F̃t = �((Bi,T
k )i2J1,MK,k2N?

, (BT̄
k )k2N?

, (N I
s , N

T
s , N T̄

s , NS
s , N

E
s )st), t 2 R+,

that is, the filtration corresponding to the knowledge, from the start, of all the other

bidders’ maximal bids (Bi,T
k )i2J1,MK,k2N?

, (BT̄
k )k2N?

, and the knowledge, revealed as time

goes by, of the Poisson processes of the problem. Notice that, then, the processes in the

integrand in (7.6.1) is F̃-predictable, which thus implies that the process in (7.6.1) is a

F̃-martingale. Notice that Ft ⇢ F̃t for all t 2 R+, and thus, for any bounded positive

F-predictable process H, we have

E[

Z 1

0
Htdp

�
t ]

= E[

Z 1

0
Ht(

1

M

X

i

(1�Xi,�
t )
⇣
⌘I + 1

�i
t�Bi,T

N
i,T
t� +1

⌘T + 1
�0
t�BT̄

NT̄
t�+1

⌘T̄ +
X

m2J1,MK

Xm,�
t� ⌘S

⌘
dt)],

but as H is assumed F-predictable, we clearly have

E[

Z 1

0
Htdp

�
t ]

= E[

Z 1

0
Ht

1

M

X

i

(1�Xi,�
t )
⇣
⌘I + P(b � Bi,T

1 )b:=�i
t
⌘T + P(b � BT̄

1 )b:=�0
t
⌘T̄ +

X

m2J1,MK

Xm
t ⌘S

⌘
)dt].

We can simplify this expression as follows:

E[

Z 1

0
Htdp

�
t ] (7.6.2)

= E[

Z 1

0
Ht(1� p�t )(⌘

I + ↵
�
t ⌘

T + P(b � BT̄
1 )b:=�0

t
⌘T̄ + p�t ⌘

S)dt].
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where ↵
�
t :=

PM
m=1(1�Xm,�

t� )P(b�BT
1 )

b:=�i
t

M(1�p�t�)
. The process

Gt := (1� p�t )(⌘
I + ↵

�
t ⌘

T + P(b � BT̄
1 )b:=�0

t
⌘T̄ + p�t ⌘

S), 8t 2 R+

will thus play the role of the intensity process we want to obtain in V (�) to make our

change of variable to p�t . Let us now express the Agent’s cost in terms of dt in order to

make this change of variable. First, we work a little bit on the cost function. We have

V (�) = E

h MX

i=1

⇣Z 1

0
K(1�Xi,�

t� )dN i,E
t +

Z
1
�i
t>Bi,T

Ni,T

Bi,T
N i,TdN

i,T +

Z 1

0
1
�0
t>BT̄

NT̄
t

BT̄

NT̄
t

dN i,T̄
⌘i

= E

h MX

i=1

Z 1

0

⇣
K(1�Xi,�

t� ) + 1
�i
t>Bi,T

Ni,T

Bi,T
N i,T⌘

T + 1
�0
t>BT̄

NT̄
t

BT̄

NT̄
t

⌘T̄
⌘
dt
i

= E

h MX

i=1

Z 1

0

⇣
K(1�Xi,�

t� ) + E[B1,T
1 1

b>B1,T
1

]b:=�i
t
⌘T + E[BT̄

1 1b>BT̄
1
]b:=�0

t
⌘T̄
⌘
dt
i

V (�) = E

h MX

i=1

⇣Z 1

0
K(1�Xi,�

t� )dN i,E
t +

Z
1
�i
t>Bi,T

Ni,T

Bi,T
N i,TdN

i,T +

Z 1

0
1
�0
t>BT̄

NT̄
t

BT̄

NT̄
t

dN i,T̄
⌘i

= E

h MX

i=1

Z 1

0

⇣
K(1�Xi,�

t� ) + 1
�i
t>Bi,T

Ni,T

Bi,T
N i,T⌘

T + 1
�0
t>BT̄

NT̄
t

BT̄

NT̄
t

⌘T̄
⌘
dt
i

= E

h MX

i=1

Z 1

0

⇣
K(1�Xi,�

t� ) + E[B1,T
1 1

b>B1,T
1

]b:=�i
t
⌘T + E[BT̄

1 1b>BT̄
1
]b:=�0

t
⌘T̄
⌘
dt
i

We can bound from below the part E[B1,T
1 1

b>B1,T
1

]b:=�i
t
by (1�X�,i

t )E[B1,T
1 1

b>B1,T
1

]b:=�i
t

and the part E[BT̄
1 1b>BT̄

1
]b:=�0

t
by 1

p�t <1
E[BT̄

1 1b>BT̄
1
]b:=�0

t
:

V (�)

� E

h MX

i=1

Z 1

0

⇣
K(1�Xi,�

t� ) + (1�Xi,�
t� )E[B1,T

1 1
b>B1,T

1
]b:=�i

t
⌘T + 1

p�t <1
E[BT̄

1 1b>BT̄
1
]b:=�0

t
⌘T̄
⌘
dt
i

= ME

h Z 1

0

⇣
K(1� p�t ) +

1

M

MX

i=1

(1�Xi,�
t� )E[B1,T

1 1
b>B1,T

1
]b:=�i

t
⌘T + 1

p�t <1
E[BT̄

1 1b>BT̄
1
]b:=�0

t
⌘T̄
⌘
dt
i

This is the first inequality of the proof. Afterward, we shall turn all the inequalities into

equalities with a well chosen control. It is thus important to make sure that each inequal-

ity could be turned into an equality for some controls. For instance, here, the inequality
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will clearly be an equality if the bidding map control makes null targeted advertising

bids for individuals who are already informed, and null non-targeted advertising bids

when the population is fully informed, which is obviously an efficient property. We can

now use (7.6.2) with

Ht :=
K(1� p�t ) +

1
M

PM
i=1(1�Xi,�

t� )E[B1,T
1 1

b>B1,T
1

]b:=�i
t
⌘T + 1

p�t <1
E[BT̄

1 1b>BT̄
1
]b:=�0

t
⌘T̄

(1� p�t )(⌘
I + ↵

�
t ⌘

T + P(b � BT̄
1 )b:=�0

t
⌘T̄ + p�t ⌘

S)

with the convention that 0
0 = 0. The process H is clearly predictible, positive, and

bounded. We thus have

V (�) � ME

h Z 1

0
Ht(1� p�t )(⌘

I + ↵
�
t ⌘

T + P(b � BT̄
1 )b:=�0

t
⌘T̄ + p�t ⌘

S)dt
i
= ME[

Z 1

0
Htdp

�
t ]

= ME

h Z 1

0

K(1� p�t ) +
1
M

PM
i=1(1�Xi,�

t� )E[B1,T
1 1

b>B1,T
1

]b:=�i
t
⌘T + 1

p�t <1
E[BT̄

1 1b>BT̄
1
]b:=�0

t
⌘T̄

(1� p�t )(⌘
I + ↵

�
t ⌘

T + P(b � BT̄
1 )b:=�0

t
⌘T̄ + p�t ⌘

S)
dp�t

i

Now we can turn this cost into a sum over successive values of p�t :

V (�) � E

h X

p2 J0,MJ
M

K(1� p) + 1
M

PM
i=1(1�Xi,�

⌧
�
p

)E[B1,T
1 1

b>B1,T
1

]b:=�i

⌧
�
p

⌘T + E[BT̄
1 1b>BT̄

1
]b:=�0

⌧
�
p

⌘T̄

(1� p)(⌘I + ↵
�

⌧
�
p

⌘T + P(b � BT̄
1 )b:=�0

⌧
�
p

⌘T̄ + p⌘S)

i

Where, for all p 2 J0,MJ
M , ⌧�p is the time at which p� reaches to p, i.e.,

⌧�p := inf{t 2 R+ : p�t = p}.

We now bound from below the inner fraction:

V (�) �
X

p2 J0,MJ
M

inf
bi,T,bT̄2R
i2J1,MK

K(1� p) + 1
M

PM(1�p)
i=1 E[B1,T

1 1
bi,T>B1,T

1
]⌘T + E[BT̄

1 1bT̄>BT̄
1
]⌘T̄

(1� p)
⇣
⌘I +

PM(1�p)
i=1 P(bi,T�BT

1 )
M(1�p) ⌘T + P(bT̄ � BT̄

1 )⌘T̄ + p⌘S
⌘

(7.6.3)

Notice that this is the part explicitly suggesting that the problem reduces to a sum of

local optimizations for all p 2 J0,MJ
M . Now, notice that if we denote by Bp a random

variable such that

Bp = ZBT
1 + (1� Z)

BT̄
1

1� p

where Z ?? (BT
1 , BT̄

1 ) and Z ⇠ Bernoulli
⇣

⌘T

⌘T+⌘T̄

⌘
, we clearly have

V (�) �
X

p2 J0,MK
M

inf
B2L(Ω,R)

K
⌘T+⌘T̄

+ E[Bp1B>Bp ]

⌘I+p⌘S

⌘T+⌘T̄
+ P(B � Bp)
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Where L(Ω,R) simply denotes the set of real random variables. Indeed, one retrieves

the formula in (7.6.3) when

B = Z
X

i2J1,MK

bi,T1U=i + (1� Z)bT̄

where U ⇠ U(J1 : MK) is a random uniform variable on J1 : MK independent from

the rest of the variables. Notice that a natural way to improve the choice of a given

B 2 L(Ω,R) in the above infimum is the following: under the constraint that P(B̃ �
Bp) = P(B � Bp) =: P , we can minimize E[Bp1B̃>Bp

]. It is clear that such B̃ is given

by

B̃ = 1
U<

P�F (F�1(P ))

F (F�1(P+))�F (F�1(P ))

F�1(P ) + 1
U>

P�F (F�1(P ))

F (F�1(P+))�F (F�1(P ))

F�1(P+)

where U ⇠ U([0, 1]) and F (x) = P(cp  x) is the distribution function of cp. We thus

have

V (�) �
X

p2 J0,MK
M

inf
P,✓

K
⌘T̄+⌘T

+ E[cp11U<✓F�1(P )+1U>✓F�1(P+)>cp ]

⌘I+p⌘S

⌘T+⌘T̄
+ P(1U<✓F�1(P ) + 1U>✓F�1(P+) � cp)

�
X

p2 J0,MK
M

inf
P,✓

K
⌘T̄+⌘T

+ ✓E[cp1F�1(P )>cp ] + (1� ✓)E[cp1F�1(P+)>cp ]

⌘I+p⌘S

⌘T+⌘T̄
+ ✓P(F�1(P ) � cp) + (1� ✓)P(F�1(P+) � cp)

However, notice that for a, b, c, d, we have

a+ ✓b

c+ ✓d
=

a� cb
d

c+ ✓d
+

b

d

and thus the minimum in ✓ 2 [0, 1] is necessarily reached for either ✓ = 0 or ✓ = 1. Thus

we have

V (�) �
X

p2 J0,MK
M

inf
b2R

K
⌘T̄+⌘T

+ E[cp1b>cp ]

⌘I+p⌘S

⌘T+⌘T̄
+ P(b � cp)

We can express it back with the problem’s original variables B1,T
1 and BT̄

1 :

V (�) �
X

p2 J0,MK
M

inf
b2R

K + ⌘TE[B1,T
1 1

b>B1,T
1

] + ⌘T̄E[
B1,T

1
1�p 1

b>
B
1,T
1

1�p

]

⌘I + ⌘TP(b � B1,T
1 ) + ⌘T̄P(b � BT̄

1 ) + p⌘S
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We have now determined a lower bound of infb V (�). It is then simple to retrace this

above derivation with the control �b associated to the minimal policy defined by b
T (p) =

B?(p) and b
T̄ (p) = (1� p)B?(p), where

B?(p) = argmin
b2R

K + E[
BT̄

1
1�p1

b>
BT̄
1

1�p

]⌘T̄ + E[B1,T
1 1

b>B1,T
1

]⌘T

⌘I + ⌘TP(b � B1,T
1 ) + ⌘T̄P(b � BT̄

1
1�p) + p⌘S

,

and notice that in this case, all the inequalities turn into identities. 2

7.6.2 Proof for social marketing with discount factor

Let us fix an open-loop bidding control �. We have

V (�) = E

h Z 1

0
e�⇢t(K(1�Xb

t�)dN
E
t + 1�t>BT

NT
t

BT
NT

t
dNT)

i

� E

h Z 1

0
e�⇢t(K(1�X�

t�) + (1�X�
t�)1�t>BT

NT
t

BT
NT

t
⌘T)dt

i

= E

h Z 1

0
e�⇢t(1�X�

t�)(K + 1�t>BT

NT
t

BT
NT

t
⌘T)dt

i
,

This first inequality will become an equality if the bidding control b makes null bids once

the individual is informed.

Notice that, up to removing the discount factor, this problem is a particular case of

previous one. The remaining part of the proof consists in getting rid of this discount

factor and then referring to the result in the non discounted case. A discount factor

can always be interpreted as a devaluation due to the possibility of an unpredictable

termination event happening at an exponential time with parameter ln(�). Indeed,

given such random exponential time ⌧ independent from the existing random variables,

we have

V (�) � E

h Z 1

0
e�⇢t(1�X�

t�)(K + 1�t>BT

NT
t

BT
NT

t
⌘T)dt

i

= E

h Z 1

0
P(⌧ > t)(1�X�

t�)(K + 1�t>BT

NT
t

BT
NT

t
⌘T)dt

i

= E

h Z 1

0
1⌧>t(1�X�

t�)(K + 1�t>BT

NT
t

BT
NT

t
⌘T)dt

i

= E

h Z ⌧

0
(1�X�

t�)(K + 1�t>BT

NT
t

BT
NT

t
⌘T)dt

i

We introduce a Poisson process M with intensity ln(�), first time of jump given by ⌧ ,

and independent of the other random variables, and we denote the process X̃� satisfying
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the dynamic

X̃�
0 = 0

dX̃�
t = (1� X̃�

t�
)(dN I

t + dNt + 1�t�BT

NT
t

dNT
t )

Notice that X̃� has exactly the same dynamic as X� except that there is an additional

cause of transition to state 1 given by the term dN . It is then clear that we have

E

h Z ⌧

0
(1�X�

t�)(K + 1�t>BT

NT
t

BT
NT

t
⌘T)dt

i
= E

h Z 1

0
(1� X̃�

t )(K + 1�t>BT

NT
t

BT
NT

t
⌘T)dt

i

= E

h Z 1

0
(K(1� X̃�

t�
)dNE

t + 1�̃t>BT

NT
t

BT
NT

t
dNT

t )
i

where �̃t = (1� X̃�

t�
)�t. By noting Ñ I = N I +N , we obtain a Poisson process Ñ I with

intensity ⌘ + ⇢, and we have

X̃�
0 = 0

dX̃�
t = (1� X̃�

t�
)(dÑ I

t + 1�t�BT

NT

dNT
t )

The cost V (�) is thus expressed as the cost associated to the bidding map control � =

(0, b̃) in the previous problem with a population with M = 1, i.e. a single individual,

and where ⌘T̄ = ⌘S = 0, i.e. the individual never connects to a website displaying

non-targeted ads, and individuals do not socially interact. We know that V (�) is thus

bounded from below as follows:

V (�) � inf
b2R

K + ⌘TE[BT
1 1

b>B1,T
1

]

⌘I + ⇢+ ⌘TP(b � BT
1 )

It is then simple to retrace this derivation with the particular bidding control �b? asso-

ciated to the constant bidding policy b? such that

b? = argmin
b2R

K + ⌘TE[BT
1 1n>BT

1
]

⌘I + ⇢+ ⌘TP(b � BT
1 )

,

and to turn inequalities into equalities. This concludes the result for this case. 2
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7.6.3 Proof for commercial advertising with purchase-based reward

The idea is to reduce to the previous case. Given an open-loop bidding control �, we

have

V (�) = E

h
e�⇢⌧�K �

Z 1

0
e�⇢t1�t>BT

NT
t

BT
NT

t
dNT

t )
i

= E

h Z 1

⌧�
⇢e�⇢tK �

Z 1

0
e�⇢t1�t>BT

NT
t

BT
NT

t
dNT

t )
i

= E

h Z 1

0
e�⇢t⇢KX�

t�dt�
Z 1

0
e�⇢t1�t>BT

NT
t

BT
NT

t
dNT

t )
i

The problem is thus reduced to a continuous gain problem, with continuous reward ⇢K

from the time of information. We shall now turn the continuous gain problem into a

continuous cost problem as follows:

V (�) = E

h Z 1

0
e�⇢t(⇢KX�

t�dt� 1�t>BT

NT
t

BT
NT

t
dNT

t )
i

= K � E

h Z 1

0
e�⇢t(⇢K(1�X�

t�)dt+ 1�t>BT

NT
t

BT
NT

t
dNT

t )
i

= K � E

h Z 1

0
e�⇢t(⇢K(1�X�

t�)dN
E
t + 1�t>BT

NT
t

BT
NT

t
dNT

t )
i

We are reduced to the previous case (social marketing with discount factor). This con-

cludes the proof. 2

7.6.4 Proof for commercial advertising with subscription-based reward

Given an open-loop bidding control, we have

V (�) = E

hX

k2N
e�⇢(⌧b+k)K +

Z 1

0
e�⇢t1�t>BT

NT
t

BT
NT

t
dNT

t )
i

= E

h
e�⇢⌧b

K

1� e�⇢
+

Z 1

0
e�⇢t1�t>BT

NT
t

BT
NT

t
dNT

t )
i

This reduces the problem to the previous case and concludes the proof. 2

7.7 Conclusion

In this work, we have developed several targeted advertising models with semi-explicit

solutions. The advantage of these models is that they describe the advertising situation

in a very concrete way: one or more individuals are really modeled, and their behaviors
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are concretely described, involving connections to various types of websites at random

times as well as social interactions. The advertising auctions are also precisely defined,

even allowing to consider various auction rules (second-price auctions, first-price auc-

tions). There is however still room for exploration to enrich the models while keeping

them tractable with semi-explicit solutions: in the fourth model with an interacting

population, it might be possible to add a bit of heterogeneity in the population con-

nections and social interactions. Another possible development, regarding the auctions,

could be to model the maximal bid from other bidders more realistically than with an

i.i.d. sequence of random variables. A possible generalization could be, for instance,

to model other bidders’ maximal bid as a Markov process, but another approach could

also be to explicitly model several bidding agents, for instance playing according to the

so-called fictitious play principle, instead of modeling the other bidders’ maximal bid in

an exogenous way.

195



Bibliography

[1] M. Abdellaoui. Parameter-free elicitation of utility and probability weighting func-

tions. Management science, 46(11):1497–1512, 2000.

[2] D. Acemoglu and A. Ozdaglar. Opinion dynamics and learning in social networks.

Dynamic Games and Applications, 1(1):3–49, 2011.

[3] M. Aizenman, R. Sims, and S. L. Starr. Extended variational principle for the

sherrington-kirkpatrick spin-glass model. Physical Review B, 68(21):214403, 2003.

[4] . Anthony and P. L. Bartlett. Neural network learning: Theoretical foundations.

cambridge university press, 2009.

[5] R. J. Aumann. Markets with a continuum of traders. Econometrica: Journal of the

Econometric Society, pages 39–50, 1964.

[6] R. J Aumann. Values of markets with a continuum of traders. Econometrica:

Journal of the Econometric Society, pages 611–646, 1975.

[7] E. Bayraktar, A. Cosso, and H. Pham. Randomized dynamic programming principle

and feynman-kac representation for optimal control of mckean-vlasov dynamics.

Transactions of the American Mathematical Society, 370(3):2115–2160, 2018.

[8] A. Bensoussan, J. Frehse, P. Yam, et al. Mean field games and mean field type

control theory, volume 101. Springer, 2013.

[9] J. Berkson. Application of the logistic function to bio-assay. Journal of the American

statistical association, 39(227):357–365, 1944.

[10] C. Bernard, X. He, J.-A. Yan, and X. Y. Zhou. Optimal insurance design under

rank-dependent expected utility. Mathematical Finance, 25(1):154–186, 2015.

[11] D. P. Bertsekas. Dynamic programming and optimal control 3rd edition, volume II.

2011.

196



[12] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152, 1992.

[13] G. Carmona and K. Podczeck. Ex-post stability of bayes–nash equilibria of large

games. Games and Economic Behavior, 74(1):418–430, 2012.

[14] P. Carmona and Y. Hu. Universality in sherrington–kirkpatrick’s spin glass model.

42(2):215–222, 2006.

[15] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with Ap-

plications II: Mean Field Games with Common Noise and Master Equations, vol-

ume 84. Springer, 2018.

[16] R. Carmona, M. Laurière, and Z. Tan. Model-free mean-field reinforcement learning:

mean-field mdp and mean-field q-learning. arXiv preprint arXiv:1910.12802, 2019.

[17] Yi-Chun Chen, Ngo Van Long, and Xiao Luo. Iterated strict dominance in general

games. Games and Economic Behavior, 61(2):299–315, 2007.

[18] S. H. Chew and L. G. Epstein. A unifying approach to axiomatic non-expected

utility theories. Journal of Economic Theory, 49(2):207–240, 1989.

[19] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–

297, 1995.

[20] D. R. Cox. The regression analysis of binary sequences. Journal of the Royal

Statistical Society: Series B (Methodological), 20(2):215–232, 1958.

[21] W. Darity. Keynes’ principle of effective demand. by edward j. amadeo. aldershot:

Edward elgar publishing limited, 1989. pp. 189. 42.75. The Journal of Economic

History, 52(1):257–258, 1992.

[22] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition,

volume 31. Springer Science & Business Media, 2013.

[23] M. F. Djete. Extended mean field control problem: a propagation of chaos result.

arXiv preprint arXiv:2006.12996, 2020.

[24] M. F. Djete, D. Possamai, and X. Tan. Mckean-vlasov optimal control: the dynamic

programming principle. arXiv preprint arXiv:1907.08860, 2019.

[25] R. O. Duda, P. E. Hart, et al. Pattern classification and scene analysis, volume 3.

Wiley New York, 1973.

197



[26] M. Dufwenberg and M. Stegeman. Existence and uniqueness of maximal reductions

under iterated strict dominance. Econometrica, 70(5):2007–2023, 2002.

[27] G. Feichtinger, R. F. Hartl, and S. P. Sethi. Dynamic optimal control models in

advertising: recent developments. Management Science, 40(2):195–226, 1994.
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