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INTRODUCTION

One can measure a society’s development by how advanced its transport infras-

tructure is. With the globalization setting of the 21st century, freight and people’s

mobility has become compulsory for a country to flourish. Not only that, but trans-

port systems also insure opportunities such as access to employment, education,

culture and is directly connected to the quality of life of a population.

In the past twenty years, transport has been revolutionized: online bookstore

companies becoming leaders in delivering electronics and everyday-use objects

or start-up companies competing with taxi companies modifying how people get

their rides are only few out of many examples of the deep changes the sector has

witnessed.

One mode of transport that really blossomed in this context is the air transport.

With all the technological advances on powered flights brought by the Second

World War as well as the advent of digital electronics producing great innovations

in flight instrumentation, aircraft rapidly became a very popular mean of transport

in civilian mobility.

This popularity led to a whole set of new challenges. For instance, with the ap-

pearance of low-cost air companies and the access to cheap flights for any man

or woman in the street, the air traffic has seen an unprecedented rise of aircraft in

the air, leading to congestion problems. To face these unseen challenges, the Air

Traffic Control (ATC) had to innovate to create new ways to better oversee their

traffic.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Situation of both air and maritime traffic in western Europe on
the 15th of September 2021. Courtesy of FlightRadar24 and Marine Traffic.

This introductory chapter aims at giving an overall presentation of the context in

which this dissertation takes place as well as the objective of this thesis. The first

section presents the technologies used in the air surveillance domain and their

use leading to numerous cybersecurity issues. The second section presents how

these security failures can be treated, and in particular how Machine Learning

technologies can be used for this purpose. Lastly, the final section introduces

the different research questions originating from this first analysis that we tried to

tackle in the context of this thesis.

1.1/ ADS-B PROTOCOL: A NEW PARADIGM

The original surveillance data in air traffic control come from primary surveillance

radars (PSR). This kind of radars work with an antenna that rotates between 5 to

12 rounds per minute, emitting a pulse of radio waves. When reaching any flying

object, the wave is then reflected and some of it is returned to the antenna. The

antenna is then able to give the range and the bearing of the target in respect of

its position by calculating the time difference between the emission and the re-

ception. Due to their design, PSR antennas do not openly transmit their data and
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come with a handful of limitations like a zone of the airspace above the antenna

not being surveyed (called the cone of silence) or the impossibility to precisely

determine an aircraft position without knowing its altitude (level). Due to these

limitations, secondary surveillance radars (SSR) have been introduced to use as

co-location.

The SSR uses similar types of an antenna as the PSR by transmitting a pulse

from a rotating antenna. The main difference is the presence of a transponder in

the aircraft receiving this pulse. The transponder, upon receiving the pulse sends

back a reply containing only a code if the transponder is in Mode A, but most of

the time this code is combined with level information (mode C) or additional infor-

mation like the aircraft identification, position information etc. (mode S for Select).

The information received by the antenna both depends on the interrogation sent

and the transponder capacities.

The Mode S being the newest but also the most comprehensive of all transponder

downlink interrogation formats, efforts were made to extend its capacity to allow

what is called squitters. Squitters are periodic burst transmissions that are self-

generated — not sent to answer an interrogation from SSR systems — and are

used for two surveillance techniques, namely ACAS and ADS-B. ACAS is the Air-

borne Collision Avoidance System which is squitter information received by other

aircraft to avoid eventual collisions. ADS-B or Automatic Dependent Surveillance-

Broadcast uses an extended squitter to send a series of messages broadcasting

the aircraft’s identification and its GPS position but also navigation status. These

data are sent encoded and can be received by anyone decoding them in the

vicinity of the transmission. In addition, compared to the PSR or SSR, the ADS-B

transmissions do not need massive and expensive antennas to be picked up.

This new technology unlocked a whole new level of access to surveillance data.

On one hand, the data being broadcast without being encrypted allows anyone

with the right equipment to receive data from an aircraft. On the other hand, the

said equipment is cheap compared to other surveillance systems, leading to an

increasing number of people having their own antenna to monitor the air.
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Figure 1.2: Each dot represents a seeder to the FlightAware ADS-B
database

However, this accessibility is a double-edged sword. This kind of open-access

surveillance data allows anyone to track almost any commercial flight currently

travelling, which causes an obvious threat to the security of the observed area.

Not only this, but anyone with the right equipment and right knowledge can also

simulate and emit fake surveillance data, which is then picked up by traffic con-

trollers. This can be as benign as figures drawn in the sky (see Figure 1.3) but

could also lead to major disturbances.

The progressive shift from independent and non-cooperative technologies

(PSR/SSR) to dependent and cooperative technologies (ADS-B) has created a

strong reliance on external entities (aircraft, GNSS) to estimate the aircraft state.

This reliance, along with the introduction of air-to-ground data links via Mode S

A/C/S and the broadcast nature of ADS-B, has brought alarming cybersecurity

issues. Extensive research can be found in the literature that discuss these is-

sues (Schäfer et al., 2013; Zhang et al., 2017; Strohmeier et al., 2017), stressing

that the introduction of ADS-B has enabled a class of attacks referred to as False

Data Injection Attacks (FDIAs). FDIAs are a type of attacks that consists in an

attacker penetrating the communication system of ADS-B to either create, modify

or delete messages sent by aircraft and received by antennas. This could lead to

airport receiving false reports of flight crashes, false emergency reports, flooding

etc. Still, performing FDIAs on surveillance communications like the ATC requires

a deep understanding of the system, its protocol(s) and its logic, to covertly alter
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the surveillance flow. These attacks are much more complex to carry out than

e.g., jamming, because the logic of the communication flow must be preserved

and the falsified data must appear probable. Nonetheless, one can sense the

potential for disaster if one of these fake operations were to be executed success-

fully. It is of the utmost importance that no real threat can be carried out to such

a critical infrastructure with human lives on the line.

Of course, other protocols are used in combination with the ADS-B and the radar

technologies to secure the traffic. For instance, the voice exchanges between

controllers and pilots or the Aircraft Communication Addressing and Reporting

System. Nonetheless, the ADS-B stays crucial in the ways of determining an

aircraft position thanks to its precision and its possibilities in a crowded area, es-

pecially during departure and arrival phases. For this reason, there is a strong

need to secure this protocol. However, due to the properties of the protocol, the

solutions aiming at strengthening it tend to be costly and often end up modifying

how the protocol itself works (Strohmeier et al., 2017). For these reasons, efforts

are made to improve the analysis capacities of the ADS-B protocol but differentiat-

ing real-life situations from attacks is a challenge for ATC. This need for analysis

improvement is one of the motivations for this thesis and the exploration of the

state of the art presents different approaches to examine the ADS-B surveillance

protocol in order to improve its security.

Figure 1.3: A typical anomalous emission of ADS-B data resulting in a
plane drawing pattern
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1.2/ HOW TO IMPROVE ADS-B SECURITY?

Many work on securing the ADS-B protocol using different technologies already

exist with different degrees of feasibility. First, multilateration techniques or MLAT

can be used to determine an aircraft position based on measures of time of ar-

rivals (TOAs) of radio feeds. Each ADS-B message is time-stamped and broad-

cast by aircraft. If several radars with synchronized clocks and known positions

received the same ADS-B feed, then it is possible to calculate the position of the

aircraft based on the differences of TOAs.

Using the physical layer information like the strength of a signal, it is also possible

to detect intrusions (Strohmeier et al., 2015a) or to use physical phenomena like

the Doppler effect (Schäfer et al., 2016) to verify the En-Route positions.

On another level, several solutions were proposed for encrypting ADS-B. Based

on the identity of an aircraft (Baek et al., 2017) or through authentication (Cook,

2015) using Public Key Infrastructure (PKI) to try and secure ADS-B but it either

suppresses the open characteristics of ADS-B or requires a change in the protocol

itself.

Figure 1.4: Basic architecture of a classic autoencoder for anomaly
detection

Among these different existing solutions, some are based on Machine Learning

(ML) anomaly detection models. These models already find applications in many
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different domains like power systems (Wang et al., 2018) or sensor networks

(Malhotra et al., 2016) and have been found quite popular in recent years. One

downside of these models is their need for consequent data availability to achieve

meaningful results. It is indeed critical for ML researchers to have access to

reliable and genuine data sources to train their models. Thankfully, for ADS-B

data, the OpenSky Network (Schäfer et al., 2014) and other websites gathering

ADS-B data from seeders 1.2 allow an easy accessibility of surveillance data from

almost anywhere on the globe.

ML models can be decomposed into 2 different categories of approach: super-

vised and unsupervised. The supervised ones use labelled data to train models to

then categorise the data depending on said labels. The name supervised comes

from the fact that these models learn what they are told as if they were children

taught by a professor. To schematise, if during training, someone gives an image

to a model and labels it as an apple, the model will learn it that way, even if a pear

is on the image due to mislabelling.

On the contrary, unsupervised methods give unlabelled data to a model and it

tries to separate these data into categories, or clusters. It will not know what is an

apple or what is a pear, but it will be able to differentiate them by identifying their

characteristic features.

Both approaches could be used as anomaly detection methods. However, the

access to genuine data and the lack of anomalous ones in comparison favours

unsupervised approaches as they will try to comprehend the features of regular

flight during training and then use this knowledge to separate normal behaviours

from suspicious ones. Comparatively, supervised models would have way too

much data labelled as normal behaviour compared to anomalies and it would have

trouble to properly separate them. This phenomena is called class imbalance.

One particular architecture of unsupervised ML called auto-encoder (AE) (Figure

1.4) is often used for anomaly detection and can be found in the literature in

many different forms. These models use a first network called the encoder which

encodes the input data into a latent representation which is then decoded by a
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second network called the decoder. The discrepancies between the input data

and the output ones are then used to detect anomalies in the original data. They

can be coupled with Recurrent Neural Networks - RNN - to address the temporal

nature of the data (Malhotra et al., 2016). Shown to be quite effective, they have

already been used in the past to detect different types of anomalies in the ADS-B

protocol like en-route trajectory anomalies (Olive and Basora, 2019) or spoofing

attempts (Ying et al., 2019). However, there is no existing work giving a clear

answer as to how efficient ML models are to detect FDIAs. Work like Habler and

Shabtai (2018) only give partial answers to this question on very limited anomaly

scenarios.

1.3/ THESIS OBJECTIVE AND RESEARCH QUESTIONS

From the different existing work using unsupervised architectures to detect

anomalies in ADS-B data, none clearly takes into account the context from which

data are issued to make decisions. Simply put, the context of a data is a label

or background information that provides a broader understanding of an event, a

person, or in our case, an ADS-B message. The motivation behind the use of

contextual data is that data issued from FDIAs, depending on the context, could

be regarded as regular data. For instance, a sudden important drop in altitude is

perfectly normal in the context of a descending phase, while it is quite abnormal

in the context of an ascending or cruising phase.

Creating an ML architecture using context to detect anomalies can be worth ex-

ploring and has led to the following thesis research objective:

Investigate the benefits of adding contextual awareness to unsupervised

ML models to better detect FDIAs in air traffic surveillance data.

This research objective led to 3 separate Research Questions (RQ) expressed

below:

RQ1: To what extent unsupervised ML algorithms can detect False Data
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Injection Attacks in ADS-B data?

Before even introducing the effect of the context on the detection of FDIAs, there

is a need to assess the capacities of ML models at detecting anomalous scenar-

ios in ADS-B. ADS-B data are peculiar and fall under the multivariate time-series

category. There are already several existing models that are available in the lit-

erature to detect these kind of anomalies (Audibert et al., 2020) and some that

are already applied to ADS-B data (Habler and Shabtai, 2018) but none clearly

state efficiency on lifelike FDIAs on ADS-B data. To answer this research ques-

tion, experiments are done using different existing auto-encoder architectures on

a testing dataset creating our data pipeline. The different results are presented in

Chapter 7.

RQ2: Is using the context of a data helpful in detecting anomalies?

ADS-B anomalies often fall under the contextual anomaly category as explained

in Chapter 3. Training models without taking into account the different context

of the data can lead to a model being trained on all regular data that will only

detect outliers in terms of feature aberrations but will omit the anomalies tied to a

given context like a hijacking. To avoid that and to answer RQ2, one of the main

contributions of this thesis is a new model of auto-encoder using data context

of ADS-B messages called the Contextual Auto-Encoder (CAE) (Chevrot et al.,

2022) that specialises each of its decoders in a given context. Evaluation of the

CAE are also presented in Chapter 7 where it is compared to other AE models in

order to show the relevance of the approach.

RQ3: Is the CAE a field-specific approach or can it be extended to other

transport domains?

From its very definition, a context is field-dependant. Any kind of context defined

in the ATC domain will not be applicable in any other domain. This means that

for each domain, one needs to define their own context and use the CAE model

using these contexts. Therefore, it is only normal to question the efficiency of

the CAE model on other domains with other contexts. To show its genericity, in

Chapter 8, the CAE model is tested in a different domain, namely the VTS or
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Vessel Traffic Services. This domain uses the Automatic Identification System or

AIS, a communication protocol very similar to ADS-B with comparable security

issues. However, the number of contexts identified for the VTS domain is bigger

than for the ATC. For this reason, the CAE needs modifications not to get a too

high number of decoders. These improvements are also presented in Chapter 8.

1.4/ STRUCTURE OF THE THESIS

Overall, this thesis dissertation is composed of three main connected topics: the

data, the models, and the evaluations, as shown in the flowchart 1.5. The Data

module represents surveillance data, and more particularly air traffic data. The

Models module represents ML models with their link to data needed for training.

The Evaluation module is the final stone to the architecture representing the de-

cisions taken by models given different data. The different modules presented in

this flowchart are the backbone of this thesis and the content order of the disser-

tation is based on it.

The first part presents the background and the related work of the thesis. Chap-

ter 2 gives an overall presentation of the functioning of the ATC and its different

surveillance systems. Focus is made on the ADS-B protocol and its potential se-

curity caveats. Chapter 3 presents all the related work in terms of FDI-A, how to

detect anomalies in ADS-B data and how one can use ML techniques to detect

anomalies in time-series. At the end of the first part, Chapter 4 introduces all the

different existing tools to receive, aggregate and manipulate ADS-B data for the

purpose of training an ML model. It also includes a presentation of FDI-T, a tool

that enables the generation of FDIA scenarios.

The second part presents the different contributions and is composed of two dif-

ferent chapters. Chapter 5 presents the main contribution of this thesis: the con-

textual auto-encoder or CAE. It is introduced as a new mean to take advantage of

the benefits of the auto-encoder architecture while taking into account the context

of the input data by using several decoders instead of a single one. The second
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Figure 1.5: Flowchart of the different part of this thesis

chapter of this part, Chapter 6, presents the data architecture created to process

the data on top of the already existing work. It includes outlier detection and

different pre-treatment to create a training and testing dataset for our model.

Lastly, the third part presents the different experiments using the CAE model.

Chapter 7 exposes the different experimental results of different anomaly detec-

tion models using a dataset created by the data processing pipeline presented in

Chapter 6, including the CAE. The first two research questions are answered in

this chapter.

Then, Chapter 8 answers to the last research question by using an improved

version of the CAE on the maritime domain. The improvement is the use of an

affinity score between the different contexts to group them together, resulting in

a smaller model. Only early experiments are presented, however, as it is still a

work in progress.
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2

AIR TRAFFIC CONTROL

The main domain of application of this thesis is the Air Traffic Control (ATC) and

more specifically the Automatic Dependent Surveillance-Broadcast (ADS-B) pro-

tocol, its usage, its vulnerabilities and security countermeasures. The first chapter

of this first part aims to give the reader a basic understanding of the ATC by giv-

ing an overview of the different surveillance systems used by Air Traffic controllers

(ATCo) to monitor the air traffic. The already existing technologies and how these

work together are developed in its different sections, from primary surveillance

radars to the newer Mode-S protocol. This chapter also gives a presentation

of the ADS-B protocol and more precisely the type of data found in it and its

specifications, how to decode it and the potential vulnerabilities in terms of digital

security such a system is exposed to.

2.1/ OVERALL DESCRIPTION

Airspace surveillance is a critical and complex process whose goal is to detect,

localize, and identify all active aircraft in the sky at a given time (Nolan, 2011).

Air Traffic Control or ATC uses airspace surveillance to assure the security of the

different aircraft by ensuring, for instance, a proper distance between them. This

distance is set to be at least 3 nautical miles next to an airport but over 50 nautical

miles when aircraft are cruising at sea, where surveillance systems are minimal.

Surveillance systems like radars detect aircraft, identifying their position and their

15
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Figure 2.1: The profile of a typical flight.

trajectory. This information is then sent to ATC systems, helping the controllers to

properly guide pilots. In zones with low-density traffic, aircraft are usually followed

by the controller through textual or voice reports given by the different pilots. This

method is unfortunately impossible in high-density zones like around international

airports, thus requiring automatic facilities to help the controllers in their task.

With more than 160, 000 flights per day over the world, the task of ATC to keep

aircraft from colliding is no easy task and requires good coordination and knowl-

edge. To ensure this, the airspace is divided by the International Civil Aviation

Organization (ICAO) into Flight Information Regions (FIR), each under the re-

sponsibility of a given country having the operational control within it. Each FIR

is then managed by an area control centre (ACC) and, depending on the country,

these regions can be subdivided into smaller zones based, for instance, on the

proximity of an airport using terminal control (TMC). An aircraft in a specific zone

division is thus managed by the authority of the area, giving information and or-

ders to the pilot. When the aircraft crosses the border between two divisions, the

previous controller passes it to the controller of the new area.

A commercial airline usually crosses several areas during its flight and will be

managed differently depending on the phase it is in. The different phases, de-
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scribed in the Figure 2.1 can be presented as follow:

Preflight: Pilots in a commercial flight fly using mostly their instrument (Instru-

ment Fly Rules, or IFR) to allow them to fly in most kinds of weather (e.g. above

the clouds where it is hard to apprehend the altitude). Pilots using IFR have to

submit a flight plan at least a half-hour before the departure. This flight plan in-

cludes flight information like the ICAO of the aircraft (a unique aircraft code), the

airline name, the type of aircraft, its equipment, the intended speed and cruising

altitude, and the route of the flight including departure airport and arrival airport.

Takeoff: Once the aircraft is checked and the flight plan is submitted to the local

ATCo, it is then processed to give clearance to the pilot along with information

for their incoming flight. The aircraft is then ready to leave its gate to head to

the runway and take off. During this time, the ground controller ensures that the

aircraft takes the right taxiway as well as the clearance of the aircraft’s path on

the ground. Finally, when the plane is ready to leave the ground, a local controller

checks the airspace around the airport to give final orders for take-off.

Departure: Once departed, the pilot of the aircraft turns on its transponder. It is

used to detect incoming radar transmissions as well as broadcasting an amplified

and encoded radio signal including different flight data like the flight number, alti-

tude etc. A departure controller using primary radars controls the different flights

in the area of the airport (e.g. the TRACON or Terminal radar approach control

in the USA). This controller gives an indication to the recently departed aircraft to

lead it towards ascent corridors and its cruising phase.

En route: Once the plane leaves the vicinity of its departure airport and enters

its En Route phase, it is usually monitored by FIR controllers. The FIR controllers

monitor the airspace at both high (above 24, 000 feet) and low altitudes. They pro-

vide information about the weather and the traffic to the pilot as well as information

about surrounding aircraft. They will follow the aircraft until it passes to another

FIR. This is all done using different kinds of information, most of it coming from

radars. Radars are usually coupled with other technologies for areas they cannot
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reach like over some mountain ranges or out at sea. Most of these technologies

use satellite communication to talk with air-traffic control. High-frequency radio

can also be used, but is not as reliable.

Descent: The FIR controller directs the aircraft reaching the vicinity of the arrival

airport (usually around 250km from it). He directs all the planes flying towards

their destination to move from high altitudes to low altitudes and merges all the

descending flights into a single line towards the arrival runways. Depending on

the traffic and eventual congestions, the flight might be put into a holding pattern,

which is a route around the airport where the aircraft wait till the runway can

handle the arrival. The FIR controller keeps monitoring the flight till it executes its

approach manoeuvres.

Approach: Once the aircraft gets clearance to land, it is handled by an approach

controller that directs the pilot to adjust the course of the aircraft with the desig-

nated runway. Once aligned with the runway, the local controller from the airport

tower takes control for the final landing.

Landing: The local controller uses binoculars and surface radar to check clear-

ance of the runways. Once they make sure everything is safe, the clearance is

given for the final landing. The plane is then directed to a taxiway and the pilot is

then given the frequency for the ground controller, watching runways and taxiways

to direct the aircraft to its appropriate terminal gate.

As seen in the different flight phases, one can sense the importance of the dif-

ferent surveillance systems used and how important it is for controllers and pilots

to have precise information. We will now take a deeper look at the different tech-

nologies used by ATC.

2.2/ SURVEILLANCE PROTOCOLS

In this section, the different main surveillance systems used by ATC are presented

with an emphasis on Mode S protocol and particularly ADS-B, which is the focus
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of the remainder of this dissertation.

2.2.1/ PRIMARY RADAR

Primary Surveillance Radars (PSR) are the types of radars one usually pictures

when thinking about air surveillance. Even though the theory behind their func-

tioning is rather complex, their principle is intuitive. Radars emit an electromag-

netic (EM) pulse and then measure the time it takes to travel a round-trip from

them to an aircraft to determine the aircraft’s position relative to the radar (Skol-

nik, 2008). This is possible for 3 different reasons:

• Electromagnetic waves reflect on conductive surfaces meaning that any

pulse received back by a radar usually results from it being reflected by

the hull of an aircraft.

• The speed of an EM wave is constant in the air and is roughly equal to the

speed of light (300, 000 km per second). Thanks to this property, the distance

between the radar and the aircraft can be directly induced by calculating the

time an EM pulse took to travel this said distance.

• EM waves travel in a straight line in a constant environment and will only

curve when changing said environment. This property, combined with ef-

ficient radars sending pulses in a precise direction, helps to determine the

azimuths and the altitude of the detected aircraft.

Using these different properties of EM waves, a PSR radar uses a rotative an-

tenna emitting waves in all directions and determines the position of any flying

object in its vicinity thanks to their echo. This independent approach offers sev-

eral advantages. First and foremost, this is a non-cooperative approach, mean-

ing the aircraft is passive and does not require onboard devices to work. The

other main advantage of PSR is the integrity of the data received as it is very

complicated for an adversary entity to temper the electromagnetic waves sent or

received by PSR antennas.
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Classical radars, or PSR, were created during the Second World War in order

to detect hostile aircraft flying in a restricted area and obviously needed a non-

cooperative approach to detect them. These technologies held out well in a civil-

ian context to monitor with limited air traffic. However, PSR technologies suffer

from several limitations. Indeed, aircraft are not the only objects that can reflect

EM waves sent by PSR antennas. Buildings, mountain ranges, thicker clouds or

even windmills (Sergey et al., 2008) can create noise and disturb the function-

ing of PSR (such reflections are called clutter). It also requires a strong enough

signal to be able to be received back from an echo, resulting in expensive energy

consumption. Moreover, PSR does not allow the identification of aircraft and even

though it could determine the altitude of a flying plane, it requires expensive and

precise radar that are not often used in a civilian context.

Finally, PSR, by its very way of functioning, has trouble distinguishing targets be-

ing at the same slant range but at different levels, which often results in echos

overlapping. This problem is actually amplified with the advent of air transporta-

tion and an ever-growing number of aircraft in the sky. To face the new set of

challenges crowded air traffic brings, the ATC rolled out the Secondary Surveil-

lance Radars (SSR) to assist PSR.

2.2.2/ SECONDARY RADAR

The Secondary Surveillance Radar technologies or SSR (Trim, 1990) embody a

switch of surveillance paradigm compared to PSR. Instead of using echoes from

the aircraft’s hull to scan the air, the SSR introduces communication between the

antenna and the aircraft, implying the necessity for a device receiving and trans-

mitting signals in every aircraft. This means that SSR technologies depend on

the aircraft capabilities of answering to communications. To do so, SSR radars

broadcast interrogations that are received by an onboard transponder (transmit-

ting responder) in any aircraft in range. On reception, the transponder emits a

reply containing information about its flight. The interrogation format, (also called
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uplink format) only consists of two pulses separated by a certain time which deter-

mines the mode of interrogation. For simplicity, we will only consider the Mode A

(8 µs between the two pulses) and the Mode C (21 µs between the two pulses).

Other modes exist but are mainly used in a military context, which is out of scope

in this dissertation. The Mode A is the equivalent of the interrogation Who are

you? and the Mode C is the equivalent of What is your altitude?. The interro-

gation is then answered by the transponder using the reply format (also called

downlink format). The identification code is coded on 8 bits, providing 4096 differ-

ent possibilities entered by the pilot. This code is usually provided by the ATC of

the area and can be bound to changes during the flight. Special codes like 7700

for emergencies or 7500 for hijacking are international standards and should be

avoided in regular conditions.

Unfortunately, it quickly became difficult to assign a unique code to an aircraft

within an area with only the 4096 allowed by the Mode A. Having two aircraft with

the same code would lead to safety issues, which, added to other problems like

asynchronous interference named FRUIT (for False Replies Un-synchronised In

Time) or overlapping replies (also called garbling) led the ATC to develop more

advanced communication protocols to acquire even more information from a large

number of aircraft.

2.2.3/ MODE S

Created in the 70’s and rolled out in the 90’s, the Mode S is one of the main

sources of information the ATC has at its disposal today. It uses selective unique

interrogation (S stands for Select) and provides an addressing capability of 24-

bits, which is enough to give a unique registration code for each aircraft. In ad-

dition, it improves the data integrity by adding a parity check at the end of each

message and also improves the precision of some information like the altitude,

passing from a 100 feet minimum increment to 25 by changing the way it is en-

coded.
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Downlink Format Use

DF0 Short air to air surveillance (ACAS)
DF4 Surveillance (roll call), altitude reply
DF5 Surveillance (roll call), identify reply
DF11 Mode S only All-call reply
DF16 Long air to air surveillance (ACAS)
DF17 Extended Squitter
DF18 Extended squitter, supplementary
DF19 Military Extended squitter
DF20 Comm-B, altitude reply
DF21 Comm-B, identify reply
DF24 Comm-D Extended Length Message (ELM)

Table 2.1: The different downlink format for Mode S transmissions

There are currently 8 different types of uplink formats UF the Mode S is able to

handle. As for the downlink format DF, 11 can be sent by a capable aircraft and

are presented in the Table 2.1. This difference is due to the extended squitters

sent through the DF17, the DF18 or DF19 which are designed to be broadcast

automatically without prior interrogation. The main use for these extended squit-

ters is the Automatic Dependent Surveillance-Broadcast protocol, also known as

ADS-B.

2.2.4/ ADS-B

The Automatic Dependent Surveillance-Broadcast protocol or ADS-B is a surveil-

lance technology used in addition to the primary and secondary radars to improve

the monitoring of airspace with heavy traffic or limited access. It was created in

the 90’s to use the advances in GPS (Global Positioning System) technologies

and more particularly the GNSS (global navigation satellite system) to obtain ac-

curate information of an aircraft. It is, as of today, compulsory to be equipped with

an ADS-B transponder to comply with most airspace worldwide.

The ADS-B protocol uses a specific downlink format of the previously presented

Mode S called extended squitter that enables aircraft to Automatically broadcast

periodically different data gathered from the onboard systems and could not work
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Figure 2.2: The overall mode of operation of the ADS-B protocol

without them (hence the Dependant). Its structure is always the same and is

represented in Figure 2.3. It is decomposed into 5 different components that can

be described as follows:

DF stands for Downlink Format. These 5 bits are used by all the different Mode S

types of messages.

CA stands for CApability. This 3-bits part defines the level of the transponder

which emitted the message. There are 4 different levels of transponders with in-

creasing receiving and emitting capabilities. For instance, the European Airspace

requires all aircraft flying in IFR to be equipped with a level 4 transponder.

ICAO: These 24 bits are used to identify the aircraft which sent the message. It is

called the ICAO address because it is allocated by ICAO or the region the aircraft

is registered in. This code is often used as a string of 6 characters representing

the hexadecimal conversion of the 24 bits. For instance, all flights registered in

France have their ICAO code starting with 0011 − 10, so French flights hexadec-

imal identifier always starts with 38, 39, 3A or 3B. This code is not supposed

to change over the lifespan of the aircraft except for some specific demands for
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Figure 2.3: The structure of an ADS-B message.

privacy reasons.

Message Data: This is the core of the message and where the information gath-

ered from the different onboard instruments are located. It is itself decomposed

into different parts. The first 5 bits are called the type code (TC) and determine

what kind of information is included in the message. As seen on the Table 2.2,

depending on the TC, the composition of an ADS-B message will change from

position information like GNSS position to identification of the aircraft, including,

for instance, its callsign.

Parity Check: or Parity Information is used as an error detection code. It uses

a cyclic redundancy code based on a polynomial calculated on both the sending

and receiving end to make sure the message is not corrupted.

Type Code Information

1-4 Identification and Category Message
5-8 Surface Position Message
9-18 Airborne Position Message
19 Airborne Velocity Message
20-22 Airborne position Message
23-27 Reserved
28 Aircraft status
29 Target state and status information
31 Aircraft operation status

Table 2.2: The different Type Code dictating the information contained
in an ADS-B message

To summarize, the ADS-B protocol embodies the shift from independent and non-

cooperative surveillance technologies, historically used for aircraft surveillance,

to dependent and cooperative technologies. It means, for instance, that not only

ground stations with antennas positioned at the right angle and direction can re-
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ceive position information. Aircraft can now receive squitters from other aircraft,

which notably improves cockpit situational awareness as well as collision avoid-

ance.

Another advantage of the ADS-B protocol is that, as we have seen in this short

introduction of the protocol, its messages always follow the same structure. This

property makes the automation of its decoding and processing easier than the

other surveillance technologies (Sun, 2021).

The major drawback of the technology lies in its lack of encryption and authenti-

cation, which is discussed in the following section.

2.3/ ADS-B CYBERSECURITY ISSUES

This section presents the different security vulnerabilities a protocol like ADS-B

could suffer from and how a malicious person could use them to create undesir-

able situations.

2.3.1/ ADS-B VULNERABILITIES

The shift from independent and non-cooperative technologies (PSR/SSR (Skol-

nik, 2008)) to dependent and cooperative technologies (ADS-B) has created a

strong reliance on external entities (aircraft, GNSS) to estimate aircraft state. This

reliance, added to the fact that none of the aforementioned data link based surveil-

lance technologies (SSR’s Mode A/C/S or ADS-B) feature any kind of encryption

or authentication, has brought alarming cybersecurity issues. Considering the

attacker has the necessary equipment, they can perform three malicious basic

operations using the vulnerabilities of the protocol:

(i) Message injection which consists of emitting non-legitimate but well-formed

ADS-B messages. This is possible by the lack of authentication in the ADS-

B protocol preventing any logical verification.
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(ii) Message deletion which consists of physically deleting targeted legitimate

messages using destructive or constructive interference. It should be noted

that message deletion may not be mistaken for jamming, as jamming blocks

all communications whereas message deletion drops selected messages

only.

(iii) Message modification which consists of modifying targeted legitimate mes-

sages. This modification can be done using different techniques like over-

shadowing, bit-flipping or combinations of message deletion and message

injection. A successful message modification has to respect the syntax of

the protocol expected by the control systems. Otherwise, it will often be con-

sidered as a message deletion as the message will often simply be ignored

by the receptors.

In 2010, a report (Administration, 2010) was published by the Federal Aviation

Administration (FAA) on many different aspects of the ADS-B cybersecurity. From

confidential analysis, the report assures that the use of the ADS-B protocol does

not expose an aircraft more than it was already exposed before its creation and

thus, it makes the ADS-B protocol a key component of the increased capacity and

safety of the air transportation system. It also claims that there is a low likelihood

of malicious exploitation of unencrypted data links. In their analysis, McCallie

et al. (2011) disagree with this conclusion by presenting security vulnerabilities

associated with the ADS-B implementation.

The lack of encryption of the ADS-B protocol leads to an absence of confiden-

tiality. While this makes the process of encoding and decoding data quicker and

assures the availability of the ADS-B data to any aircraft or controller that would

need it, it also makes most of the air traffic data available to anyone, whether

they are simple aircraft aficionados, ill-intended persons or criminal organisations.

Furthermore, there is no authentication process from the emitter in ADS-B. The

main consequence of this lack of security is the possibility to simulate an aircraft’s

emissions. This is an issue for secondary radars as the position of the aircraft is

calculated based on the physical properties of the signal (its bearing etc), compli-
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cating message injections. As for ADS-B, the position and elevation of the aircraft

are fully calculated onboard and sent through messages, which allows omnidirec-

tional antennas listening to 1090 MHz communications to receive ADS-B but ease

the emission of false data, allowing authenticity usurpation and at the same time

jeopardizing its integrity.

Hence, the ADS-B protocol violates the three key characteristics of the internet

security: confidentiality, integrity and authenticity. Also called the CIA triad (Sa-

monas and Coss, 2014), these characteristics can act as a benchmark on how

well an information system is secured. These violations automatically lead to

vulnerabilities, giving further credit to McCallie et al. (2011)’s analysis.

2.3.2/ ATTACK TAXONOMY OF ADS-B PROTOCOL

The three previously presented techniques (Message injection, deletion and mod-

ification) allow the execution of several attack scenarios (Schäfer et al., 2013) that

can be categorized in the following taxonomy:

• Ghost Aircraft Injection. Creation of a non-existing aircraft by broadcasting

fake ADS-B messages on the communication channel.

• Ghost Aircraft Flooding. This attack is similar to the first one but con-

sists of injecting multiple aircraft simultaneously with the goal of saturating

the air situation and thus generating a denial of service of the controller’s

surveillance system.

• Virtual Trajectory Modification. Using either message modification or a

combination of message injection and deletion, the objective is to modify the

trajectory of an aircraft, for instance, to simulate an emergency scenario.

• False Alarm Attack. Modification of the messages of an aircraft in order

to indicate a fake alarm. A typical example would be modifying the squawk

code to 7500, indicating the aircraft has been hijacked.
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• Aircraft Disappearance. Deletion of all messages emitted by an aircraft

can lead to the failure of collision avoidance systems and ground sensors

confusion. It could also force the aircraft under attack to land for safety

checks.

• Aircraft Spoofing. Spoofing of the ICAO number of an aircraft through

message deletion and injection. This could allow an enemy aircraft to pass

for a friendly one and reduce causes for alarm when picked up by PSR.

2.4/ SUMMARY

In this chapter, we introduced the main functioning parts of the Air Traffic Con-

trol along with its main surveillance technologies including both primary and sec-

ondary surveillance radar systems. Using the Mode S and GNSS technologies,

the ADS-B protocol enables ground controllers to have a more precise and com-

plete monitoring of the airspace, especially in congested areas. This protocol,

however, is a double-edged sword. Its simplicity and access made it vulnerable

to spoofing with all the risks it implies for the security of the air traffic. In the two

following chapters of this part, the different work carried out to try and improve the

ADS-B integrity as well as the different efforts made to acquire and manipulate

data will be presented.



3

RELATED WORK

This chapter introduces the different core notions in terms of anomalies, attacks

and how to detect them as well as the different published work revolving around

them. The first section of this chapter introduces the notion of FDIA. Then the

second section focuses on the different solutions to detect anomalies specifically

used in the ATC domain. Finally, the last section focuses on ML-based tech-

niques on anomaly detection, their different applications and how anomaly detec-

tion methods have been applied to the ADS-B protocol so far.

3.1/ FALSE DATA INJECTION ATTACKS

FDIAs were initially introduced in the domain of wireless sensor networks. A wire-

less sensor network is composed of a set of nodes (i.e. sensors) that send data

reports to one or several ground stations. Ground stations process the reports

to reach a consensus about the current state of the monitored system. A typical

scenario (Ma, 2008) consists of an attacker who first penetrates the sensor net-

work, usually by compromising one or several nodes, and thereafter injects false

data reports to be delivered to the base stations. This can lead to the production

of false alarms, the waste of valuable network resources, or even physical dam-

age. Active research regarding FDIAs has been conducted in the power sector,

mainly against smart grid state estimators (Dan and Sandberg, 2010). It shows

that these attacks may lead to power blackouts but can also disrupt electricity

29
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markets (Xie et al., 2010), despite several integrity checks.

After the apparition of the term FDIA in the sensor network domains, it appeared

in different articles centred on how to improve the resilience against these attacks

(Zhou and Chakrabarty, 2006; Ozdemir, 2006; Zhu et al., 2007). However, the

term was solely used for this domain and no proper definition was given until

2011. Liu et al. (2011) formally introduces the term of FDIA in the smart grids and

greatly helps to democratize the term in other fields.

FDIAs also exist in the domain of air traffic surveillance. Since surveillance relies

on the information provided by aircraft’s transponders to ground stations, aircraft

transponders are equivalent to nodes from a wireless network, and ground sta-

tions are equivalent to base stations. Although in the ATC domain, there is no

real effort needed to penetrate the sensor network, as all communications are

unauthenticated and in cleartext.

Still, performing FDIAs on surveillance communications requires a deep under-

standing of the system, its protocol(s) and its logic, to covertly alter the surveil-

lance flow. These attacks are much more complex to achieve than, e.g., jamming

because the logic of the communication flow must be preserved and the falsified

data must appear probable.

3.2/ SECURITY SOLUTIONS FOR ADS-B PROTOCOL

Many work on securing the ADS-B protocol using different technologies already

exist with different degrees of feasibility. These solutions include the encryption of

the data, the analysis of the physical layer, multilateration techniques, and finally

ML algorithms.



3.2. SECURITY SOLUTIONS FOR ADS-B PROTOCOL 31

3.2.1/ MULTILATERATION

The multilateration (MLAT) is a technique used in both military and civil air ser-

vices to monitor traffic. MLAT determines an aircraft position based on measures

of time of arrivals (TOAs) of radio feeds received by at least four different radars.

If several radars with synchronized clocks and known positions received the same

ADS-B feed, then it is possible to calculate the position of the aircraft based on

the differences of TOAs. MLAT can be used to detect ADS-B anomalies (Monteiro

et al., 2015) and has the advantage to be very accurate. Recent work from Zhao

et al. (2020) also uses MLAT to improve the ADS-B protocol accuracy as well as

increase the robustness of the surveillance systems.

Thus, FDIA signals emitted from an attacker next to an airport would be directly

discarded by the MLAT due to incoherent TOAs. The main downside to this ap-

proach is the necessity of precise time-stamps (usually nano-seconds) which can

be hard to obtain due to weather situations or mountain ranges as well as the

price induced by having several radars instead of a single one. Finally, Fute

et al. (2019) show experimentally that FDIAs can also be created to attack mul-

tilateration systems assuming an organized attacker with several devices to emit

fake ADS-B proving that MLAT can have ultimately similar issues as ADS-B w.r.t.

FDIAs.

3.2.2/ ENCRYPTION

On another level, several solutions were proposed for encrypting ADS-B. Finke

et al. (2013) discuss different encryption schemes and highlights the difficulties

associated with implementing security protections for the ADS-B environment us-

ing encryption. Based on the identity of aircraft, Baek et al. (2017) describe a

confidentiality framework to encrypt the ADS-B. Similarly, Cook (2015) uses Pub-

lic Key Infrastructure (PKI) to try and secure ADS-B but it either suppresses the

open characteristics of ADS-B or requires a change in the protocol itself. Further

discussion and analysis can be found in a survey by Strohmeier et al. (2015b),
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with, for instance, modifications of the current mechanism of the ADS-B protocol

by adding a new type of message broadcasting the public key of a given aircraft.

Overall, the main constraints for encryption solutions are that it would often mean

a modification of the ADS-B protocol which would be rather hard to implement

worldwide given it took 20 years to roll out the current version.

3.2.3/ PHYSICAL LAYER

Regarding the use of the physical layer information, Strohmeier et al. (2015a)

create an intrusion detection system based on the strength of the signals they

received from 2 different sensors. Similarly, Schäfer et al. (2016) use the Doppler

shift measurements to verify the En-Route positions of aircraft over time. Using

the clocking system of the Mode S sensors, Leonardi (2019) manages to obtain

similar results to multilateration systems regarding on-board anomalies without

the hassle of having at least 4 different sensors. Yang et al. (2019) uses ML

methods such as Gradient Boosting or Support Vector Machine to successfully

flag anomalies on the PHY-layer features of ADS-B. Another way of using the

physical layer is to check the velocity and the position of aircraft by using the

coherence time of electromagnetic waves (Ghose and Lazos, 2015). The main

issue of the detection of anomalies on the physical layer is that it goes against the

paradigm ADS-B embodies. Indeed, these techniques would require additional

instruments to analyse it, negating the main advantage of the ADS-B protocol

being its cheaper implementation compared to PSR techniques as well as its fully

cooperative approach.

3.2.4/ MACHINE LEARNING TECHNIQUES

Compared to the other kind of solutions presented so far, ML techniques are

most of the time data-driven and applied directly to the data carried by the ADS-B

protocol, also called logical layer, trying to find abnormalities in the time-series

received by air traffic controllers, which could be due to FDIAs. This has the
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advantage of not requiring additional radars, nor modifying the protocol. Most of

the ML models can be used offline or online and can be quite adaptive depending

on the kind of attacks one wants to detect.

Anomaly detection is a wide field that many domains are subject to. For this

reason, many solutions exist as of today and the next section gives an overview

before presenting more precisely what has already been developed regarding the

ADS-B protocol.

3.3/ DETECTING ANOMALIES IN TIME-SERIES

Figure 3.1: A collection of anomaly detection techniques

As we can see in Figure 3.1, the subject of anomaly detection using statistical or

ML techniques is a subject that can be found in many application domains and

takes many forms. In 2009, Chandola et al. (2009) published a survey present-

ing different research on anomaly detection, both generic and applied to specific

fields. In this survey, they separate anomalies into different categories, each with

specific properties. The difference between those categories are mainly based on

their nature: individual outliers among a set of data, for instance, are called point
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anomalies, while data being abnormal depending on a specific context are called

contextual anomalies. The third type of anomaly called collective anomalies is a

group of data considered abnormal while individuals inside this group might be

considered normal. In the case of anomaly detection in ADS-B data, the first type

is often due to encoding errors and can be considered as outlier data to clean up

before model training. Contextual anomalies are usually the main anomaly type

concerning time-series. Indeed, an example of contextual anomaly is an anomaly

detected because it breaks a time seasonality or because the evolution of a fea-

ture over time is not going in the expected direction. These anomalies would not

be detected as point anomalies because their features’ values do not stray away

from normality but they are anomalies nonetheless.

Many traditional anomaly detection methods are not fit to detect these types of

anomalies in time-series. For instance, most distance-based or clustering meth-

ods like DBSCAN (Ester et al., 1996), or IMS (Iverson et al., 2012) are most ef-

fective to detect individual outliers in the data but disregard contextual anomalies.

Additionally, they are usually suffering from the curse of dimensionality, which

is troublesome when working on big time-series datasets. Similarly, ensemble

methods like Isolation Forests (Liu et al., 2012), though sometimes coupled with

sliding windows (Ding and Fei, 2013) to manage time-dependencies, are also

falling behind other techniques to properly detect contextual abnormalities.

To detect contextual anomalies in time-series, one approach would be to trans-

form them first into point anomalies and then use one of the previously cited tech-

niques. For instance, in cell phone fraud detection, Fawcett and Provost (1996)

use cell phone usage records to create rules which are used to contextualize

data. Once contextualized, the data are then processed by a linear threshold unit

to determine if they are fraudulent or not. Similarly, Ma and Perkins (2003) trans-

form time-series into a feature space which can then be processed by a one-class

SVM to detect anomalies.

Another way to tackle contextual anomalies is to utilize the structure of the time-

series itself. To do so, during its training, a model is only given normal data, with
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a regular pattern given a context. Once trained, this model is expected to behave

improperly when given abnormal data, hence raising an alert. For instance, statis-

tical models such as ARIMA (Bianco et al., 2001) can be trained to predict future

values of a given sequence. ARIMA computes predictions based on a given test

sequence and compares it against the real value to raise an alarm or not. Zhao

et al. (2017) uses a similar statistical approach to make short-term state forecast-

ing on power micro-grids to detect FDIAs. Other efforts like this one can actually

be found to predict FDIAs in smart grids whether using residual functions cou-

pled with a threshold (Ameli et al., 2018) or using deep neural networks (Yu et al.,

2018).

3.3.1/ RECONSTRUCTION-BASED METHODS

Reconstruction-based methods also use the structure of the time-series itself.

As described by Pimentel et al. (2014), reconstruction methods use a lower-

dimensional representation of the original data which helps models to separate

normal representations from anomalous ones. They are separated into two dif-

ferent categories: subspace-based models and neural networks. While subspace

models like PCA can be used to detect anomalies (Dutta et al., 2007), most of

the time it is used to reduce the dimensions of a given problem to then use other

methods like clustering (Jarry et al., 2020). On the other hand, neural networks

and more precisely auto-encoders are widely applied methods to detect anoma-

lies, including anomalies in time-series.

Auto-encoders (AE) are neural network models that have the same number of in-

put and output neurons, with a smaller hidden layer that compresses the original

data. As shown in Figure 3.2, it is composed of two different parts: an encoder

and a decoder. The encoder takes the input data window and creates a latent

representation that embeds the most important features of the original data. Usu-

ally, the latent representation is made to be smaller than the original input to force

the encoder to retain only the important information, in the same way as a file
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Figure 3.2: Architecture of a classic auto-encoder

archiver would do it.

The decoder, on the other hand, is trained to take this representation and re-

construct the original data back, the same way an archiver would take the com-

pressed data to uncompress it. This type of architecture has a wide range of

use like feature extraction (Masci et al., 2011), reinforcement learning (Lange and

Riedmiller, 2010), or anomaly detection (Kundu et al., 2020). For anomaly de-

tection, the assumption is that anomalies are troublesome to reconstruct once in

a latent representation, leading to a margin between the original and the recon-

structed data. This margin is calculated using a reconstruction loss, that is used

to train the model through gradient descent techniques.

AEs using regular perceptrons are very basic but this architecture can easily be

improved by using other units or by changing the nature of the latent represen-

tation, and many new models are based on it. Often coupled with Recurrent

Neural Network (RNN) like LSTM (Long-Short-Term-Memory) (Hochreiter and

Schmidhuber, 1997) or GRU (Gated Recurrent Unit) (Cho et al., 2014) , auto-

encoders (Malhotra et al., 2016) have shown good accuracy to detect coarse

anomalies (Habler and Shabtai, 2018), or more specific behaviours (Olive et al.,
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2018; Olive and Basora, 2019). Li et al. (2019) use LSTM-based AEs in a genera-

tive adversarial network (GAN) as a mean to avoid an anomaly threshold selection

but miss proper metrics like recall or precision to correctly prove the efficiency of

this method. More recently, Audibert et al. (2020) also created a GAN architec-

ture by using two adversely trained AE architectures sharing the same encoder.

The results obtained by this approach are at least as good as the VAE-LSTM

approach of Su et al. (2019) on public multivariate time-series datasets.

Indeed, VAE – variational auto-encoder, a stochastic variation of the auto-encoder

– are shown to be useful for detecting anomalies in time-series like in the work

of Park et al. (2018). Unlike a traditional auto-encoder, which maps the input onto

a latent vector, a VAE maps the input data into the parameters of a probability

distribution, such as the mean and variance of a Gaussian. Further explanations

about this type of model are given in Chapter 7.

3.3.2/ MACHINE LEARNING AND ADS-B

As stated by Janakiraman and Nielsen (2016), the challenges of detecting anoma-

lies in ADS-B messages are mainly due to the high dimensionality, the time-

dependencies and the multivariate nature of the data. Most of the traditional

methods of detecting anomalies do not tackle properly all these challenges ex-

cept for the more recent neural network / deep-learning methods (Chalapathy

and Chawla, 2019). The same conclusion in their survey presenting anomaly

solutions in aviation applications, Basora et al. (2019) place a great emphasis

on AEs to help secure ADS-B protocol. Indeed, even though several efforts to-

ward securing ADS-B using unsupervised ML techniques can be found – Li et al.

(2020) uses a hidden Markov model to predict hidden states of the ADS-B proto-

col and uses them to analyze the deviations during attacks to detect them – their

results do not show any advantages compared to other ML solutions like Recur-

rent Neural Network (RNN) based models in terms of accuracy or false positive

rate (FPR).
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Habler and Shabtai (2018) are the first to use neural networks to try and se-

cure ADS-B communication by implementing a regular AE with LSTM units to

detect hand-crafted anomalies. These first experiments done on several world-

wide flights gathered from online sources showed good accuracies on anomalies

like velocity drift, trajectory replacement or added random noise. While promis-

ing, these first experiments showed only good results on obvious anomalies with

a FPR of around 5%, which is quite high for an anomaly detection model.

Akerman et al. (2019) use similar LSTM-AE along with convolutional networks to

provide images of the traffic and the anomalies to improve the user experience

of such a solution. Luo et al. (2021) use an LSTM-VAE model coupled to a sup-

port vector data description (SVDD) model to automatically generate its anomaly

threshold showing good results on similar coarse anomalies introduced by Habler

and Shabtai (2018). However, as pointed by Su et al. (2019), simply coupling

LSTM and VAE together ignores the temporal dependence for the stochastic vari-

ables. It also assumes a Gaussian distribution of the z-space of the ADS-B data

which can lead to mediocre results depending on the given data.

3.4/ SUMMARY

The different solutions presented to secure ADS-B have shown limited results on

FDIAs with some degrees of realism and the literature, while showing interesting

models to detect anomalies in ADS-B, lacks proper evaluation on more subtle

FDIAs. Experiments presented in Chapter 7 show that these models actually do

not perform very well on anomalies where the context of the data is important to

be taken into account.

Compared with these presented auto-encoder models, the approach developed

in this thesis is a deterministic uneven auto-encoder using a single encoder to

create a latent representation of the ADS-B data linked to several decoders, each

getting different data chosen thanks to a contextual feature. This architecture,

called Contextual Auto-Encoder (CAE) stems from Yook et al. (2020) work on
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separating the sound received by speakers placed differently and to the best of

our knowledge, was never used in the anomaly detection field. As a result, the

latent space created from the single encoder represents the ADS-B data well

while the different specialized decoders capture the information in a given context,

addressing the variability of the time-series over a certain period of time, resulting

in better detection. But before diving into the presentation of this model, the

next chapter presents the different existing tools used during this thesis to obtain

ADS-B data, enabling the creation of a sane environment to train and evaluate

ML models.





4

ADS-B DATA ACQUISITION AND

MANIPULATION

In any ML application, the most critical part is the data. Before starting any kind

of ML architecture, one needs to assure they have access to a reliable source of

data. Of course, the reliability of a data source can be defined in different ways

depending on the application but it can generally be broken down into three main

factors: its accuracy, its integrity and its accessibility.

An accurate data source ensures that its data are overall correct, consistent and

precise. This helps the data scientist to have data in a uniform format properly

displaying the situation from where they were taken from. The integrity of a data

source, on the other hand, makes sure those data can be trusted, ensuring the

data’s accuracy was not fabricated and that they remained objective throughout

the processing phase. Finally, the constant accessibility of the data is another

critical part to have for a data source, especially for research purposes. It helps

the reproduction of results by other researchers which would not be possible if ex-

periments were done on a private access database. Secondly, in the case of data

bounded to time, long term access to a data source can help show seasonalities

in the data and can improve their overall comprehension.

In this chapter, we introduce some of the existing work done in terms of data ac-

quisition and data curation concerning the ADS-B protocol we used during this

thesis. Following the architecture in Figure 4.1, first is introduced the data acqui-

41
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sition using the Opensky Network. Then, the different existing Python libraries are

presented along with the different ADS-B format used. Our data processing and

the model are presented in the next part of the thesis. This chapter focuses on

the sources and tools used during this thesis. Most of the choices for the sources

were made based on the three criteria developed above.

4.1/ DATA ACQUISITION

Figure 4.1: Architecture of the data processing

Acquiring ADS-B data is made possible thanks to several factors. With the num-

ber of daily flights all across the world’s airspace and the broadcast and unen-

crypted nature of the protocol, anyone with a small antenna linked to a relatively

cheap receptor1 can have access to a reliable source of ADS-B data. However,

these data would only come from the vicinity of the antenna which is usually

within a 200 kilometres radius around it. Depending on the experiment and the

area, this can be plenty of data from many unique aircraft. But in other cases, a

more diversified source of data can be needed. To obtain such data, seeded on-

1https://shop.jetvision.de/radarcape en

https://shop.jetvision.de/radarcape_en
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line databases exists and can be queried to get historical ADS-B data. Following

the architecture presented in Figure 4.1, the first step is the gathering of the data

through these seeding-fed databases.

4.1.1/ SEEDED DATABASE

The easy access to ADS-B data for anyone with the right equipment was the main

incentive that led to the creation of different organisations using a multitude of

sensors to monitor the air worldwide. These sensors are connected to the Internet

and maintained by volunteers, industrial supporters, and academic/governmental

organizations who act as seeders for a common historical database.

FlightRadar24 2, ADSBExchange 3 or the Opensky-Network 4 are a few examples

of these organisations using seeders to compile ADS-B data together.

Taking care of petabytes of data can be cumbersome, especially when the data

come from many different sources. Problems related to redundancy, faulty an-

tennas or decoding abnormalities, are a few examples that need to be dealt with

when maintaining such a data load. Furthermore, Opensky-Network not only

keeps all the ADS-B messages but also generalize their approach to most of the

mode S down-link formats, including all-call and roll-call replies.

For this thesis, the main data source used is the Opensky-Network. They provide

free access to their historical data to academic researchers and have many seed-

ers across the world, helping them to have desirable coverage. Their database

store their data into different tables and different formats with some degrees of

data-processing done on it. In the following subsection, the different formats of

ADS-B used during the thesis are presented as well as how they can be accessed.

2https://www.flightradar24.com/
3https://www.adsbexchange.com/
4https://opensky-network.org/

https://www.flightradar24.com/
https://www.adsbexchange.com/
https://opensky-network.org/
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4.1.2/ THE OPENSKY-NETWORK

The Opensky-Network (Schäfer et al., 2014) database uses an Impala architec-

ture that can be accessed using SQL-like queries. The data is separated in dif-

ferent tables, each hosting a different type of Mode S data. In particular, for

ADS-B data, there are three tables for the data directly received by the network

(identification, velocity and position) and one table compiling them together with a

pre-processing done by Opensky called the state-vector5. For future references,

the three tables containing the original messages are called raw tables, and the

data itself is named raw data.

The state-vector table contains all the main information one could find in the dif-

ferent ADS-B messages like the bearing of the flight, its altitude, its speed, its

identification etc. Additional to the concatenation of the data, some additional

processing is done on the state vectors. For instance, a down-sampling is done

to reduce the number of total messages to only have one every other second. In

addition, some treatment is done to get rid of the aberration data due to faulty

antennas, errors in decoding, missing messages etc. All these pre-processing

treatments are done under the hood by the Opensky-Network API.

4.2/ THE DATA PROCESSING

Access to data is easy nowadays and this is especially true when it comes to

the thousands of aircraft flying in the air every day. Compiled in a database like

the Opensky-Network, the data itself does not provide much value to anyone.

However, information extracted out of these petabytes of data is valuable and

can provide good insight into an air situation. This section presents the existing

different libraries and algorithms used as baseline for our own pre-processing

framework.

5There is another table with another level of abstraction called flight data but for simplicity, we
only refers to these processed data tables as a state-vector table.
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4.2.1/ TRAFFIC

The process of extracting information is hard and the traffic library is a great help

when it comes to ADS-B data. Made by Olive (2019) and openly available on

his Github page6, the Traffic library is a Python framework helping users with

the data-processing of ADS-B data. It comes with many methods that could be

rather tedious to rewrite and with a whole data architecture based on Panda’s

dataframes using objects called traffics and flights.

Adding to this, it brings an API to the Opensky-Network that allows querying the

database using Python functions instead of SQL queries, making easier the cre-

ation of a whole Python-based pipeline as presented in Chapter 6.

4.2.2/ TRAJECTORY CLUSTERING

Data from an ADS-B source is chaotic. Whether it is from a single antenna or

from a raw table from the Opensky-Network, the data need a heavy treatment

before being in a state to be usable by any ML model. As we already introduced

in the previous chapters, different types of messages translate into different data

in each message of the time-series. Adding to this, ADS-B data are not regular,

meaning that the time between messages may vary as opposed to data coming

from, eg., a sensor in a power grid.

The algorithm for data curation to transform the raw data into a more regular

time-series is straightforward but can be costly in time when dealing with a large

amount of data.

From these continuous ADS-B time-series datasets, the next goal of the data

processing is flight clustering. The flight clustering takes a time-series of several

flights of an aircraft and split it into different flights according to their ICAO code.

This is needed because of some later processing done on the data that require

to have only data from a given flight without interference from other flights. This

6https://github.com/xoolive/traffic

https://github.com/xoolive/traffic
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could be done easily by following a simple 5 step method:

1. Group the data into aircraft groups by ICAO address

2. Sort these groups by ascending time-stamp

3. Calculate the time difference between each message

4. Find an average of this time difference to calculate a separation threshold

5. Extract flights from each aircraft group using this threshold

This method is easily implemented but time-consuming and inefficient. Added to

the already long pre-processing to create a usable dataset, this would lead to an

unusable pipeline to create training data for ML model.

Another solution is to use a clustering method that would take a flight group from

the first step of the previously presented method and cluster each of the different

flights in its own group. Many different unsupervised clustering algorithms exist

and have their own pros and cons. Sun et al. (2017) proposed the use of the

DBSCAN algorithm (Ester et al., 1996), mainly for its handling of an unknown

number of clusters.

DBSCAN (which stands for density-based spatial clustering of applications with

noise) uses the density of the data to create clusters. It uses two main parame-

ters:

• eps: It is the distance that specifies the neighbourhoods. Two data points

are considered neighbours if they are within this distance. Usually, the Eu-

clidian distance is used as it is the simplest to calculate provided that all the

different features are within the same range.

• minPts: This is the minimum number of data-point needed to define a clus-

ter

Using these two parameters, the algorithm defines core data-points which are

data-points that have more than minPts other data-points in their neighbourhood
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Figure 4.2: Simple example of the application of the DBSCAN algorithm

including themselves. These cores can be considered as the centre of a density-

based cluster. All other data points in the vicinity of these cores (i.e. within eps

distance from a core) are called border points and are included in the closest

core cluster. All the other data that do not fit in the two previous categories of

data points are considered outliers by the algorithm. The Figure 4.2 shows the

different categories of data points used by DBSCAN.

To apply DBSCAN on a set of flights and more precisely to each group of air-

craft defined earlier, only the time-stamp is considered to calculate the distance

between data-points used to determine the neighbours as using all the features

would cause problems due to the differences between aircraft. While this would

be a good idea to directly try and eliminate outliers at the same step as clustering

the flight, it would be harder to find an eps and a minPts that fit all the flights

and all the different types of aircraft. For this reason, only the outliers from the

time-stamp feature perspective are treated during this phase.
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4.3/ FDIA AND TESTING SCENARIO GENERATION

This chapter has been focused on acquiring regular data to train ML models. To

test and validate an approach, one also need a reliable source of data including

anomalies that can be used to evaluate the accuracy of a model. While some

websites and pages survey many anomalies that happened in the past years7, this

could hardly be transformed into a reliable source of testing material. To overcome

this problem, we proposed (Chevrot et al., 2020) a framework that generates

synthetic anomalous data covering the whole spectrum of seen and anticipated

attack scenarios, as compiled in the already presented taxonomy Strohmeier et al.

(2015b). This includes vehicle spoofing and disappearance, but also ghost vehicle

injection, vehicle flooding, and virtual trajectory modification. The framework is

built upon an existing FDIA testing framework called FDI-T (Cretin et al., 2018),

designed for surveillance systems testing. Several extensions were brought to

FDI-T in order to turn it into an efficient and intuitive tool for training and testing

ML models.

4.3.1/ FDI-T : FALSE DATA INJECTION TESTING

FDIA Scenario 
Designer

Data Acquisition

Test Execution

Alteration directives

Surveillance
System

Altered recording

Alteration 
Engine

Recording

1

2

3

4

Figure 4.3: FDI-T Framework Architecture

FDI-T8 is a testing framework that allows domain experts to design FDIA scenar-
7https://www.flightradar24.com/blog/category/special-event/
8FDI-T is conjointly developed by Smartesting (https://www.smartesting.com) and Kereval

https://www.flightradar24.com/blog/category/special-event/
https://www.smartesting.com
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ios by altering (creating, modifying and deleting) recorded legitimate surveillance

messages in a fruitful, scalable and productive manner. The altered recordings

are then played back (with respect to time requirements) onto real surveillance

systems, to simulate an attacker tampering with the surveillance communication

flow. The approach mainly aims to evaluate the system resilience against poten-

tial security and safety anomalies, and more precisely to FDIAs.

As depicted in Fig. 4.3, the architecture of the FDI-T framework is composed of

five components:

1 Data acquisition. This component collects legitimate surveillance messages

(in Beast or SBS formats for ADS-B) obtained either from the Internet or a Mode S

receiver. Data take the form of a recording, i.e. a sequence of surveillance mes-

sages ordered by reception time.

2 FDIA Scenario Design. The domain expert defines FDIA scenarios to be ap-

plied on a recording obtained via the data acquisition component. FDIA scenarios

have various parameters, such as a time window, a list of targeted aircraft, trig-

gering conditions, etc. Once designed, FDIA scenarios are translated into a set of

alteration directives, which is the output of the component (an alteration directive

is a small modification of the initial recording, usually doable by hand). Scenario

design is specified via a Domain Specific Language (DSL).

3 Alteration Engine. This component takes as input a set of original sub-

recordings, a set of alteration directives, and a correspondence matrix that de-

fines which alteration scenario should be applied on which given sub-recording.

It then produces altered sub-recordings in the system input format.

4 Execution Engine. The obtained altered ATC sub-recordings are fed to the

Surveillance system as if it was receiving live surveillance messages.

(https://www.kereval.com/)

https://www.kereval.com/
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4.3.2/ FDI-T FOR THE TRAINING AND TESTING OF ANOMALY DE-

TECTION MODELS

Although FDI-T was initially designed for surveillance systems testing, it also en-

ables the generation of datasets for training and testing ML-based anomaly de-

tection systems.

Described below are the four features brought to the existing testing framework in

order to turn it into an efficient synthetic data generation tool, capable of generat-

ing hundreds of thousands of data samples with very little effort.

Labelling. Storing alteration information (which messages were tampered with,

what properties were altered) is achieved by directly appending an alteration bit-

mask at the end of each surveillance message. Each bit of this bitmask is asso-

ciated with a message field: if the field content has been modified by FDI-T, its

corresponding bit is flipped to 1, and 0 otherwise. For example, given an 8 fields

message, and only the latitude and longitude (fields no. 3 & 4 in the message)

were tempered with, the bitmask 00110000 is appended to the original message.

Massification capabilities. While test engineers usually seek a sharp test suite

that satisfies all test requirements with as few test cases as possible, data sci-

entists need the consequent amount of data in order to properly train and test

models. FDI-T in its original state allowed users to create one altered recording

at a time, and constituting a dataset was realistically unfeasible in these condi-

tions. Thus, massification capabilities to the DSL were developed: users may first

define variables containing lists of values, and thereafter reference the variables

inside a scenario instead of a value. The framework creates as many single-

valued scenarios as there are values in the variable. In the case of a scenario

with several references to variables, a single-valued scenario shall be created per

combination of variables values. An example of a massified false alarm scenario

is presented below:

let $start = {0,25,40,112}, let $end = {120,215,230},
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alter plane from $start seconds until $end seconds with values SQUAWK =

7700

It contains two variables, $start and $end (containing 4 and 3 values respec-

tively), which are used for defining the alteration start and end time. The frame-

work, therefore, generates 4∗3 = 12 single-valued scenarios leading to 12 altered

recordings, each having a different start and end time.

Recording-Agnostic scenarios. Initially, the test engineer had to have some

knowledge about the recording to be altered.

Again, this is not acceptable in an ML model training/testing context, and two

additions to the DSL were needed to fix the issue. First, relevant information

(about the recording and vehicle) is gathered and stored as constant in the DSL.

Then, it was made possible to use value offsets when altering vehicle properties

and defining waypoints. This way, initial values can be unknown by the user.

In addition, it makes such scenarios applicable to different vehicles without any

change required. The aforementioned additions are illustrated below:

alter plane at 0.5 * REC DURATION seconds with waypoints [

(>> 0.5,∼) with altitude 2000 at 0.2 * ALT TW, (>> 0.5,∼) with altitude 2000 at

0.8 * ALT TW ]

The scenario contains two constants representing the recording duration and the

alteration time window. Simple arithmetic operations may involve these constants,

e.g., 0.5 * REC DURATION equals to half the recording duration. Both waypoints

have their coordinates defined using offsets: >> 0.5 represents an 0.5 latitude

offset while ∼ means preserving the initial longitude. Time of passage is defined

as a ratio of the alteration time window ALT TW.

Batch generation. Making FDIA scenarios recording-agnostic means they can

be applied sequentially on a set of recordings without human intervention. A

batch generation function was added to FDI-T as it could initially only process one

recording at a time. It is now possible to supply FDI-T with a set of recordings, and

the framework iteratively applies FDIA scenarios on each of the recordings. This
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function, combined with the massification capabilities of the DSL, truly enables

data scientists to obtain large albeit rich synthetic data sets with few efforts.

4.4/ SUMMARY

The purpose of this chapter was to give a swift presentation of the main tools and

libraries used during the major part of the thesis. It can be seen as a preamble

to chapter 6 which presents the different contributions done regarding data pre-

processing.

Thanks to the different existing tools presented in this chapter, from the raw data

extracted in the Opensky-database using traffic, we can extract meaningful infor-

mation usable in different algorithms like DBSCAN. These information can then

be used in tools like FDI-T to create testing scenarios. All the work done on FDI-

T, improving its original functionalities, to enable the creation of testing dataset

allowing the evaluation of our model was mostly a part of the thesis of Aymeric

Cretin (Cretin, 2021).

This ends the first part of this dissertation. The next part presents the main con-

tributions of this thesis starting with a new auto-encoder model called the CAE.
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5

CAE: CONTEXTUAL AUTO-ENCODER

To detect FDIAs in ADS-B time-series, the context in which the data are issued

is primordial. Indeed, a long drop in altitude is perfectly normal in the context of

a descending phase, while it is quite abnormal in the context of an ascending or

cruising phase. These types of anomalies are called contextual anomalies. As

discussed in Chapter 3, while neural network models like auto-encoders are well

suited to detect anomalies in time-series, they are usually trained with as many

training examples as possible, disregarding the context of the input data. This

leads to a generalized model that does not manage to recognise an anomalous

scenario as long as its data are not away from the distribution of normal data.

In this chapter, the Contextual Auto-Encoder (CAE), a novel type of anomaly de-

tection auto-encoder architecture is introduced as a new means to take advan-

tage of the benefits of the auto-encoder architecture while taking into account the

context of the input data by using several decoders instead of a single one.

5.1/ MOTIVATION

As developed in Chapter 3, the task of detecting abnormal ADS-B messages

falls into the category of anomaly detection, and more particularly, in multivariate

time-series. A time-series can be defined as successive observations which are

usually collected at equal-spaced timestamps. A multivariate time-series x of

length N is defined as x = {x1, x2, . . . , xN}, where an observation xt ∈ x is an M-

55
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dimensional vector at time t(t ≤ N), i.e. xt = [x1
t , x

2
t , . . . , x

M
t ] such that x ∈ RM×N.

The dimension M represents the number of features in an observation xt. In the

domain of anomaly detection in time-series, the goal is to find out if an observation

xt is anomalous or not.

However, time windows are usually preferred to single observations in order to

get a better understanding of the evolution of the data over time. A time window

Wt−T:t ∈ R
M×(T+1) is a set of T + 1 observations {xt−T, xt−T+1, . . . , xt} from time t − T

to t. The goal is then to determine if a particular time window holds anomalous

observations or not. Auto-encoder models, like most ML models, train on datasets

full of these windows when dealing with time-series. The observations they are

based on are usually similar, meaning they hold the same features and these

features come respectively from similar sources. Mingling different features or

sources too different from each other during training can jeopardise a model due

to the data distribution being too uneven.

Nonetheless, having the same features and the same sources does not neces-

sarily translate into uniform data. This statement is especially true for time-series

which can variate quite heavily with time. A regular auto-encoder, even if fitted

with LSTM units taking into account time dependency, will suffer from variations

inside its training data. These variations, among other reasons, can be due to a

change of context in the data. The context for a given data observation can be

defined as the situation within which it has been created. This situation can either

be described by the other immediate surrounding observations, by other external

data called meta-data or can simply be apprehended through the knowledge of

the data expert. For instance, household energy consumption data are heavily

influenced by their context. Not only a given observation is dependent on its pre-

decessors, but it is also dependent on meta-data such as the time of the day, the

external temperature on a given day (Fumo and Rafe Biswas, 2015), the week-

day, the month (Franses, 1991) etc. These meta-data come often in the form of

categorical features, making it difficult to directly include them as features of the

observed time-series.
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Thus, for the presented approach, every time windows Wt−T:t are associated with

a contextual feature Ct−T:t to address these discrepancies. The goal of this feature

is to mark differences between time windows whether it is time-wise, nature wise

etc. This can be seen as a static feature that is used by the model in the likes

of Miebs et al. (2020) but which is not a part of the training per se. In the context

of this thesis, the flight phases from which ADS-B time windows are used as a

contextual feature.

Using a single auto-encoder for all the contexts can lead to a sub-optimal model

trained on slightly different distributions. While it can have a good reconstruc-

tion loss, it will however ignore the contextual differences in the data and this is

critical when used for anomaly detection. Indeed, contextual anomalies are data

that could be considered normal in one given context but completely abnormal in

another one. If an auto-encoder is trained by disregarding the context of its data,

then a contextual anomaly could not possibly be detected. One approach to tackle

the context of the data would be to divide-and-conquer the problem, consequently

creating one model for each given context. This would work for time-series with

limited contextual variations but it would require too much time and space to train

these models when the number of contexts increases.

In the next section, we present the CAE, a model separating the different contexts

during the training, without the need of having several different models trained.

5.2/ MODEL ARCHITECTURE

The CAE can be described as a single auto-encoder with several decoders, all

sharing the same encoder, and each specialized in one context. This architecture

by itself has a range of different uses, just like any other classical auto-encoder.

The literature shows the usage of auto-encoder architecture to denoise images

(Lu et al., 2013), for language translation (Li et al., 2015) and even the more recent

transformer architecture are all based on an encoder-decoder structure (Vaswani

et al., 2017). In the case of anomaly detection, an auto-encoder takes advantage
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Figure 5.1: The architecture of the CAE model

of the error in the reconstruction of the input to determine its nature. This section

explains the different parts of the model that can be found in Figure 5.1.

5.2.1/ THE INPUT AND ITS CONTEXT PARTITIONS

The input dataset is constituted of batches of time windows. Each of the batches

has a vector of contexts meta-data associated to them, linking every time window

inside these batches to the context they are issued.

Through the use of the meta-data, each window of observation is arranged in sub-

datasets, one for each context. Therefore, a tensor of windows W is transformed

into wi partition tensors. This is accomplished by using the dynamic partitioning

functionality from Tensorflow 1 that allows the partition of data into tensors using

the labels as shown in Figure 5.2.

1https://www.tensorflow.org/api docs/python/tf/dynamic stitch

https://www.tensorflow.org/api_docs/python/tf/dynamic_stitch
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This function also yields order indices that can be used later on by the stitch

function. Once the reconstruction of the different decoders is done, the stitch-

ing, which is just the reverse computation explained on Figure 5.2, will merge

together the outputs in the order given by the indices to eventually compare this

reconstruction to the original data.

Figure 5.2: An example of how data can be partitioned from labels

5.2.2/ THE ENCODER

The encoder is the first layer of the model. It is unique and transforms all of the

original input into its encoded counterpart, also called latent representation. The

encoder can be seen as a simple transition function ϕ : X → L where X is the

input space and L is the latent space. In its simplest form, the encoder function

ϕ can be a simple perceptron unit with an activation function. In the case of time-

series analysis, one can use recurrent neural networks (RNN) to address the time

dependencies of the data. The main problem of classic RNNs is their struggle to

learn the long-term dependencies in a sequence because of the gradient vanish-

ing during learning which can be detrimental for long time windows (e.g. ADS-B

time windows can be up to 60 seconds long and the model must remember what

the state of the aircraft was in this time span). Alternatives to RNNs are LSTMs

and more recently the GRU, which do not suffer from the vanishing gradient prob-
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lem thanks to a system of gating units. In most cases, these variants perform

equally, and while GRU can have fewer parameters on a smaller dataset, LSTMs

having a separate update gate and forget gate can be more effective on longer

sequences than the GRU. To add up additional information to the latent represen-

tation of the ADS-B time windows, a bidirectional mechanism can also be added

in the encoder layer in order to use both close past and future to encode the data.

5.2.3/ THE LATENT REPRESENTATION

The latent representation h ∈ L is the encoded version of the input of the encoder.

By itself, the latent space does not have any meaning for a human, and can

be considered as a black box representation just like an archived file could be.

However, this vector captures the most important features of the input, including

the time dependencies thanks to gated units like LSTMs or GRUs. In other words,

with a properly trained encoder, h could be used by any model afterwards as if it

was the original observation, provided that the said model knows how to extract

information from this latent representation.

The dimension of this vector is primordial and is closely related to the type and

number of units chosen in the encoder layer. If the latent representation has fewer

features than its input counterpart, then the encoder compresses the information

to keep only the most important ones. In this case, the encoder can be considered

as a dimensionality reduction model. On the other hand, if the latent space is

bigger than the input, then while there are still possibilities of learning important

representing features of the data, the risk of creating an identity function out of

the encoder appears, rendering it useless. Regularisation methods like dropout

(Goodfellow et al., 2016) or sparsity of the encoder (Ng et al., 2011) can help

avoid this problem.

In the case of windowed data, the time-dependency can be seen as a feature that

needs to be addressed by the latent space. This directly affects the size of the la-

tent representation, effectively increasing it when compared to the original number
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Algorithm 1: Pseudo-code of the Contextual Auto-Encoder
1 CAE (W,C)

inputs: A window of input W = x0, . . . , xn; an array of context labels
C = c1, . . . , cn

output: A reconstructed window Ŵ; A reconstruction loss array L
2 w0, . . . ,wn ← Split(W,C)
3 h0, . . . , hn ← Encoder(w0, . . . ,wn)
4

5 foreach context i← 0 to n do
6 ŵi ← Decoderi(hi)

7

8 Ŵ ← Combine(ŵ0, . . . , ŵn)
9 L← MSE(W, Ŵ)

10 return Ŵ, L

of input. In other words, a latent space with more features than the original data

can still be perceived as a compressed representation due to the time-dependent

nature of the input. More precise dimension figures are showcased in Section 7

during the experimentation of the CAE.

5.2.4/ THE CONTEXTUAL DECODERS

The decoding part of the CAE is what makes it different from a regular auto-

encoder. While the encoder encodes all the input data regardless of their context,

the decoding part is carried out by several decoders, each decoder being repre-

sented by a transition function ψi : Li → X̂i, where Li is the latent representation

of the input from the sub-dataset Xi and X̂i is its reconstructed counterpart. Like

the encoder transition ψ, each decoder transition function ψi can be composed

of any kind of neural network unit, from shallow perceptron to deep multi-layered

RNNs. Each decoder is independent of another and has its own training depend-

ing on the loss of its attributed training data and therefore, could be composed of

different elements, depending on the needs for each contextual distribution.
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5.3/ LOSS CALCULATION

The main architecture is now presented and as seen in the algorithm1, the loss L

is one of the two outputs of the CAE. The loss is the deviation between the input

W and the reconstructed tensor Ŵ.

The function most commonly used for training auto-encoders is the Mean

Squared Error or MSE. This function calculates the mean value of the squared

deviations of the model’s predictions from the original true values. Given an input

window W of n observations x and its reconstructed counterpart Ŵ = x̂0 . . . x̂n,

the MSE between these two windows can be calculated as:

MSE(W, Ŵ) =
1
n

n∑
i=0

(xi − x̂i)2 (5.1)

This loss is also called L2 loss. L2 stands for Least Square Errors and comes

from the fact that the error (xi − x̂i) is squared compared to L1 losses where the

absolute value of the error is used instead. An example of L1 loss is the Mean

Absolute error computed as followed:

MAE(W, Ŵ) =
1
n

n∑
i=0

|xi − x̂i| (5.2)

Overall, the MSE is preferred to the MAE as the deviation is squared, which can

avoid loss values going too small, preventing the gradient descent. The only times

where MAE can be better than the MSE is when the dataset has many outliers,

squaring their value will increase even more their values, throwing off the model’s

training. This is not a desired behaviour during the training but is valuable during

testing to better detect anomalies. Since we make sure there are no outliers in

the training dataset beforehand, the MSE is a good candidate for the model.

Other loss functions exist and could be used instead of the presented Mean

Squared Error. For instance, Habler and Shabtai (2018) use the Cosine Simi-

larity between their input and output window to calculate the anomaly score of
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an ADS-B window. This choice does not have any proven downside to the MSE

loss nor has any advantages. For the CAE experiments, the MSE performed the

best. The global MSE loss of the model is calculated between input from the input

space X and output from the output space X̂. This loss is used for the gradient

descent to train the encoder part of the model. As for the decoders, each decoder

is trained on the MSE loss between their own Xi and X̂i spaces.

5.4/ ANOMALY DETERMINATION

As presented so far in this chapter, for each input of the CAE, a reconstructed

output is given by one of the decoders. The deviation of this reconstruction from

the original input is called the loss associated with the said input during training

but is usually called error during evaluation. A low reconstruction loss means

the input fits in the learnt distribution of the decoder it went into. On the other

hand, a high reconstruction loss is due to the decoder not being able to properly

reconstruct the input data. If the decoder was properly trained and the input

data indeed originated from the context the decoder was trained for, then the

likely reason for a high reconstruction loss is that the input data originated from

abnormal behaviour. The task left to do is then to take a decision on the nature of

the original data based on its reconstructed representation output by the CAE.

This section discusses how we can properly differentiate normal data from

anomalies using the CAE’s error score and the different methods chosen for the

experimentation done in this dissertation.

5.4.1/ ANOMALY DETECTION METHODS USING CAE’S OUTPUT

In Section 3 is introduced different ways of using the auto-encoder architecture to

detect anomalies, each having its own perks regarding the data they are dealing

with. For the CAE, the main particularity is the presence of a different decoder

for each given context. Each decoder being trained on their own subset, their
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output distribution can quite substantially differ from each other. This affects the

way the model can detect anomalies as one method could perform very well on

some decoders but very poorly on others at the same time.

In the case of very similar distributions or applications where false positives are

not an issue, having the same anomaly detection method for all the decoders is

likely to be the best solution as it will not involve any additional calculation. Oth-

erwise, there is a need to associate every decoder to its own anomaly detection

system. Complex and time-consuming solutions like the SVDD used by Luo et al.

(2021) to calculate thresholds over the output error of the auto-encoder are only

viable if the application has a limited number of contexts since this number is

directly correlated to the number of decoders of the model.

In the remainder of this section, the chosen method of calculation of a thresh-

old over a given error score distribution is developed. Other solutions like the

use of the latent representation of the CAE to train other anomaly models are

discussed later on in Section 7.4 as potential improvements of the currently pre-

sented model.

5.4.2/ THE 3-SIGMA DEVIATION RULE

To handle the problems related to having different decoders, working directly with

their own output error score offers several advantages. First, to refer back to the

anomaly taxonomy of Chandola et al. (2009), using the reconstruction loss from

the CAE and detecting anomalies based on it can be seen as using the CAE

model as a model transforming a contextual anomaly problem into one of the

point categories. Indeed, its input is a multivariate time-series and its output is a

univariate error score with no time dependency. This means we then can rely on

the literature at our disposal on this family of problems. Please note that for future

references, after training, we refer to the reconstruction loss as the anomaly score

of a given window W. Using the equation 5.1, we simply define the anomaly score

given by the CAE as:
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Anomaly(W) = MSE(W, Ŵ) (5.3)

Figure 5.3: The anomaly score’s distributions of the training data for each phase

Among the different solutions for point anomaly detection in univariate time-series,

in this dissertation, we favoured the 3-sigma deviation rule, a simple and efficient

method to determine a threshold on a given normal distribution. Also called the

empirical rule or the 68−95−99.7 rule, it is a statistical rule stating that 99.7% of the

data of a normal distribution fall within three standard deviations, noted σ, away

from its mean, noted µ. We can use this property to calculate a threshold between

normal data and anomalous data on a given anomaly score distribution. This

method has the advantage to be rather cost-efficient as only the mean and the

standard deviation of the training distribution need to be calculated to determine

a threshold for each decoder. Once these thresholds are calculated, one only

needs to compare the anomaly score given by a decoder to the corresponding

threshold to determine a decision. It is also quite fitting as it is rather simple to

store different thresholds for each decoder, making it convenient to use along with

the CAE.

However, as we can observe in Figure 5.3, the anomaly score distributions of
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the different decoders are following a log-normal distribution more than a regular

normal distribution. As shown in Figure 5.4, we can transform our distribution

into a normal distribution to calculate our threshold using the three-sigma rule.

The green plot is the original distribution following a log-normal distribution. Once

the natural logarithm function is applied to it, the red plot is obtained, following a

Normal distribution. From this normal distribution, a threshold can be calculated

using the 3-sigma rule deviation. Then, we can apply the exponential function to

this threshold to obtain the final threshold usable on our distribution and use it

seamlessly.

Figure 5.4: shows the equivalence between a log-normal distribution and a nor-
mal distribution thanks to the exponential/natural logarithm function.

5.5/ SUMMARY

In this chapter, we introduced the main contribution of this thesis, the Contextual

Auto-Encoder architecture. The novelty of this architecture is its awareness to
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the context of the data, allowing for the detection of contextual anomalies. Com-

pared to a classical AE that encodes and decodes data regardless of their origin,

the CAE separates the different data into different decoders, one for each of the

context identified while keeping a single encoder.

Combined with a method to calculate an anomaly threshold, the CAE is a good

candidate to detect anomalies in multivariate time-series. For the experiments of

this thesis, a 3-sigma deviation rule was chosen for the threshold selection as it

is an efficient way of finding the outliers of a statistical distribution.

In order to prove the efficiency of this method on ADS-B data, the next step is to

create an evaluation set-up to try and compare this model against other anomaly

detection models. The following chapter presents the whole data architecture

created around the CAE during the thesis. It ties together the model with the

data gathered through the Opensky network to create a safe environment for

evaluations.





6

ADS-B DATA PRE-PROCESSING

The aim of this dissertation is not only to present a new type of auto-encoder

model able to detect anomalies in ADS-B time-series, but also more generally an

architecture able to use a raw ADS-B feed as input using said model. In fact, an

ML model like the one presented in the previous chapter is only as good as the

architecture revolving around it. The importance of the quality of the data going in

the model has already been discussed and it highlights the necessity of having a

good data structure prior to the ML model. This is the reason why a hefty part of

the thesis was dedicated to the understanding and the processing of the ADS-B

data in order to properly experiment on the detection of anomalies in them.

This chapter, based on the work presented in chapter 4, presents the full data

architecture, from raw ADS-B data to a dataset of time-series usable by the CAE

model for both training and evaluation. While the presentation of the model in the

previous chapter tries to be domain agnostic, this data pre-processing part, while

giving some general insights about ML structure, is centred on the ADS-B data.

6.1/ ML PROJECT STRUCTURE

Before diving into the ADS-B pipeline implemented during this thesis, let us take

a step back and have a more generic approach to what an ML project looks like.

Figure 6.1 presents the hierarchy of a whole ML project from data collection to

deep-learning-based model training and testing.
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Figure 6.1: The structure of an ML project.

This pyramid can be decomposed into 4 different main parts, each including one

or more layers of the pyramid:

1. Data Collection. The first step for any ML project is to ensure the accessi-

bility to data. The amount of data needed to train a model depends on its

type but in general, deep learning models do require more than other clas-

sical ML models, as they usually underperform when having limited access

to data (Barbedo, 2018). The data collection step may not be done by the

scientist itself, but can come from the user’s data or from a range of different

data collectors like sensors, antennas ...

2. Data Movements and Storage The second stage is focused on the data

recuperation and its storage. A good source of data can only be valued

if its data can be accessed in a timely manner with as few constraints as

possible. For this reason, an efficient data pipeline working along with a

database to store the collected data enables the conservation of a historical

set of data that is quite beneficial when working with time-series.

3. Data exploration and transformation Now that the data is collected and
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properly stored, the actual data pre-processing can start. This part is ar-

guably the most important in a project. Indeed, stored data is mostly useless

by itself. For instance, gigabytes of ADS-B messages received from many

different flights in random orders do not have much significance and do not

give any insights about the traffic situation. To gain knowledge out of these

data, exploration and diverse transformation need to be applied to them.

Whether it is clustering, sorting, outlier cleaning etc., these manipulations

dictates what can be done from this information.

This layer is also the moment where the first ideas for the chosen ML model

are drafted. Thanks to the analysis of the data and the transformation of

erratic data into engineered features, the additional insights on the problem

allows for choosing the fittest model for it.

4. ML and optimisation The last part of an ML project is the design, experi-

mentation and comparisons of different ML algorithms. While this last part

is certainly considered as being the front window of an ML project, it is only

efficient if the base layers are solid. The great results of deep learning mod-

els are mainly due to recent access to huge databases as well as pipelines

and machines able to handle them.

This generic architecture can be used in many different domains by different ML

models. This shows how a whole ML project relies on the 3 first layers and then

the ML / Deep Learning layer comes to the top and evolves depending on the task

that needs to be done on the data. The particularity of the ML architecture and its

different models is how the top layer of the data pyramid is switchable with other

top layers, eventually coming from other domain’s pyramids. This particularity,

called transfer learning is one of the main reasons why the artificial intelligence

research domain has grown so quickly in the past years. Chapter 8 tries to prove

this property of the CAE by experimenting on the maritime surveillance domain.
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6.2/ THE OVERALL ARCHITECTURE OF OUR PROJECT

Figure 6.2 presents the general architecture implemented during this thesis.

Though some of it was already presented in Chapter 4, this chapter aims to

present a more detailed view on the ADS-B data pipeline, highlighting our contri-

butions.

Most of the said contributions have been regrouped in a Github library called

Scifly1 along with the different models used during the evaluation.

Most of the data preprocessing is based on back and forth calls between traffic

and scifly. This is due to the baseline data types offered by traffic that intervenes

with the processing all along the pipeline.

The rest of this chapter presents the different parts of the Figure 6.2 by following

the order of the different layers of the data processing presented in the previous

section.

6.3/ ADS-B DATA ACQUISITION AND FORMATING

The data acquisition is the first part of the ML project and might be the most

crucial one. In Chapter 4, we described how ADS-B data can be gathered from

antenna feeds that anyone could get at their home. However, a more convenient

choice is to use a historical database archiving ADS-B data from feeders in every

part of the world like the Opensky Network. Not only does it take care of the data

acquisition, but it also manages the data storage using an Impala database. On

top of that, the traffic library (Olive, 2019) greatly simplifies the data acquisition

from this database. At the beginning of this thesis, however, the traffic library —

which was still a recent addition to the ADS-B data processing world — did not

have the capabilities to query the raw data tables and mainly relied on the pro-

cessed state vectors table. While this could have been usable to train ML models,

1https://github.com/Wirden/scifly

https://github.com/Wirden/scifly
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not having full control on the data pre-processing like the outlier management or

the resampling is not ideal in a research context. This is why one of the early

work of this thesis was to try and access the raw ADS-B data tables using the

Traffic query API. These efforts were included in the traffic library through a soft-

ware contribution 2. This allowed the use of raw data directly using the traffic

dataframes, easing our own data cleaning on raw data.

Another format task is the transformation of the raw data into formats readable by

FDI-T, the FDIA framework like the BEAST format.

6.3.1/ THE BEAST FORMAT AND FDI-T

The BEAST format is a binary format originally created for multilateration (MLAT)

technologies. Indeed, MLAT needs very precise time-stamps to be able to pre-

cisely triangulate the position of an aircraft given the time of reception of one

message from different antennas. The BEAST format is simply a raw ADS-B

message, preceded by a @ and a 12 bytes time-stamp. This is a convenient

way to converse with the FDI-T module which needs both time-stamp and the

raw ADS-B message to work on. Having this part in our pipeline also ensures

that data directly comes from Mode S decoders like the Dump10903 can already

be used seamlessly. The encoding into this format is now included in the traffic

library thanks to the collaboration above-mentioned.

Figure 6.3: Difference between SBS and BEAST formats

2https://github.com/xoolive/traffic/pull/68
3https://www.rtl-sdr.com/tag/dump1090/

https://github.com/xoolive/traffic/pull/68
https://www.rtl-sdr.com/tag/dump1090/
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Another format also output by the Dump1090 decoder is the SBS BaseStation

format (difference between BEAST and SBS can be seen in Figure 6.3. This

format is the original format read by FDI-T and has the advantage to be easily

readable by a human. It is a CSV format including most of the information that

can be found in a raw ADS-B message. It includes a human-readable time-stamp

with a date and has different types depending on the information included in the

message.

To summarize, through a contribution to the traffic library to allow the retrieving of

raw data as well as the transformation of ADS-B data into different formats, we

now have a functioning interface to receive data directly issued from antennas.

The next steps are to clean these data and transform them into datasets readable

by ML models.

6.4/ DATA CLEANING

Having an operational data source, with an accessible and reliable historical

database makes up the 2 first layers of the pyramid presented in the Figure 6.1.

This is done by the combination of the Opensky Network and the Traffic library.

The next step is the processing of the raw ADS-B data and in particular, the ex-

traction of flights using clustering, the outlier detection and removal as well as the

identification of the different phases of the flight for the purpose of using them as

contextual features with the CAE.

6.4.1/ DATA CLUSTERING AND OUTLIER DETECTION

To use the flight clustering presented in4.2.2, the input data need to have limited

outliers. Indeed, DBSCAN using the proximity of its neighbours to determine if a

data point is in a cluster or not eventually takes care of many outliers. However,

more often than not, as shown in Figure 6.4, errors from an antenna can come in

chunks and these types of errors throw off DBSCAN which then consider these
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chunks as separated flights, resulting in flights cut in half.

To prevent that, we added a treatment of outlier detection and deletion prior to

the data clustering in order to get rid of flights with too many aberrations in them.

This treatment could not be done by classical outlier detection algorithms like the

Local Outlier Factor (LOF) (Breunig et al., 2000) or other types of unsupervised

treatments because of how they detect outliers. Indeed, just like DBSCAN, these

algorithms use a proximity factor with their neighbours and they tend to cluster

abnormal chunks together and don’t consider them as anomalous.

This treatment uses the proximity property of ADS-B messages to check the dis-

tance between close messages and further messages. The algorithm 2 explains

the treatment done on every message. The main idea of this algorithm is to check

the distance between a given message and its successor as well as the hundredth

message after it. To do so the Vincenty distance Vincenty (1975) — a formulae

used to calculate the distance between two points on a spheroid — is calculated

between the ieth and the ieth + 1 message (line 2) and the ieth and the ieth + 100

message (line 3). Then on line 5, the messages with a distance higher than the

set thresholds are filtered out.

Commercial flights having a quite regular ground speed, these distances are most

Figure 6.4: Data discrepancy from a flight between Madrid and Moscow
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Algorithm 2: Pseudo-code for the outlier filtering
inputs: M: An array of ADS-B messages from the same ICAO ;

ϕ f , ϕc: thresholds to consider a message as outlier
1 for i = 1 to M.length do
2 M[i][distclose]← Vincenty(Mcoord[i], Mcoord[i + 1])
3 M[i][dist f ar]← Vincenty(Mcoord[i], Mcoord[i + 100])

4

5 M ← M[M[distclose] < ϕc & M[dist f ar] < ϕ f ]

of the time the same. To take advantage of this, we set a threshold on both of

those distances based on a pre-calculated average and filter out the message

above these thresholds. Having two distances calculated ensure we filter single

outliers but also the chunks of anomalous data.

6.4.2/ PHASE IDENTIFICATION

The main contribution of this study is the use of the contextualisation of the data

to detect anomalies (the context of a data point is defined in chapter 3) in ADS-B

data. One of the obvious and easier contexts to grasp for the ADS-B data is the

phase of a flight and it is one that can be quite easily identified.

Figure 6.5: Example of phase identification
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Thanks to the clustering process, we are provided with a dataset full of continuous

individual flights. To identify the different phases of a given flight, one could use

an unsupervised algorithm as the one mentioned before. However, the Euclidian

distance between data points in the same flights are very small, so it would be

rather tedious for a classical clustering method to properly discriminate a data in

a CR phase from a close one in a DE phase. In addition, just like for the flight

clustering, differences in-flight behaviours and aircraft types necessarily result in

a difference between the training data and the testing data.

Instead, Sun et al. (2017) propose an approach based on a fuzzy logic identifi-

cation method. The fuzzy sets theory (Goguen, 1973) is used to model logical

reasoning with vague statements like ”the temperature is average, the air pres-

sure is low and the air humidity is high so it must be raining”. To do so, a fuzzy

set assigns a degree of membership to any elements in the dataset helping the

taking of the decision. Transforming any input into a fuzzy membership function

is called fuzzifying the data. In the case of ADS-B, the membership function are

applied to the different features as followed:

• velocity: High, Medium and Low

• altitude: Ground, low, and high

• vertical rate: Zero, Positive, and negative

Sun et al. (2017) uses Gaussian functions as well as Z-shaped and S-shaped

membership functions to fuzzify the different input data. Now with a set of rules,

we can compute the fuzzy output function that is then used in the last step called

defuzzification, giving the most likely flight phase the input data originated.

It is to be noted that this process of phase identification is done on time windows

and not on isolated data points. The mean of the velocity, altitude and vertical rate

is used for the process of fuzzification. In doing so, we limit the potential errors

due to isolated outliers and we ensure a smoother phase identification.
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In the Figure 6.5, we can see an example of the phase identification used on a

flight.

6.4.3/ IMPROVED PHASE IDENTIFICATION

Figure 6.6: The different phases identified by Junzi Sun and the one used in our
experiments

The main issue with using fuzzy logic to determine the different phases of the

flights is that it is entirely determined by the data of the flight. This leads to a

phenomenon where a crash scenario could be mistaken with a descent phase.

As a result, the data issued from the crash would be processed by the decoder

associated with the descending phase instead of the one associated with the

cruising phase as seen on the left side of Figure 6.7.

To try and mitigate this phenomenon, we can take advantage of the physiognomy

of a flight. In normal conditions, the ascending and descending phase is not

supposed to be found outside the vicinity of the departure and arrival airport re-

spectively. With this information, the improved phase identification adds a layer

of decision on top of the fuzzification algorithm that finds the maximum Vincenty

distance (over the cleaned-up training dataset) between the departure airport po-
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sition and the transition between ascending and cruising phase. The same is

done for the arrival airport and the descending phase. These distances are used

to define the vicinity of the airports and all the training and evaluation data are pro-

cessed to prevent having data labelled with the ascending or descending phase

outside of these vicinities.

This approach is inexpensive in terms of calculation and helps have the right data

in the right decoders. However, it has one main inconvenience: as seen in Figure

6.7, while the right plot shows that most of the crash data is labelled as cruising

data, the end, which entered the vicinity of the airport, is labelled as a descent.

It did not have much impact in the experiments as it concerned only a couple of

data points.

Lastly, as shown in Figure 6.6, we limited the different experiments to 3 flying

phases, neglecting the Level phase. This choice is motivated by the fact that

this phase is very unpredictable and very dependant on the situation. However,

for further experiments, exploring the results of a decoder trained with solely the

Level data could be interesting as these phases are often synonyms of congested

airspace, leading to a decoder specialized in these types of situations.

Figure 6.7: Differences in phase identification between the original algorithm
(left) and our approach (right) on a crash scenario

6.5/ DATASET CREATION

The last part of the chapter presents the different elements allowing the creation of

a dataset fit to be used for training and evaluating the CAE, including the different
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features extracted from the ADS-B data and the data format used to feed the

model.

6.5.1/ FEATURES

From the data gathered through the data architecture presented in this chapter,

only some features of the ADS-B messages are kept and fed to the model. This

subsection aims to present them and how they are pre-treated to be used in the

CAE model.

• Altitude in feet given by the airborne position messages.

• Consecutive Delta in kilometers. This is the Vincenty distance between two

consecutive messages calculated from the latitudes and longitudes. This

distance is bound to change from 2 main factors. The first one is the change

of speed of the aircraft and the second one is the absence of messages

picked up by the OpenSky Network. The third reason would be errors in

decoding or from sensor malfunctions but most are filtered out from the data

cleaning processing explained above.

• Tracking Delta. Difference between the tracking received through ADS-B

and the ideal tracking calculated from the position of the aircraft and the

position of the arrival airport.

• Vertical Rate in feet/mn. Represents the aircraft’s vertical speed – the pos-

itive or negative rate of altitude change with respect to time.

• Groundspeed in knots. Represents the speed over the ground.

It is worth noting that some base features of ADS-B like the tracking, the latitude

and the longitude are not directly used in the dataset. Concerning the tracking,

the feature being a cyclic feature in degree, experiments were made using the

sine and cosine component to avoid the discontinuity implied by having a heading
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varying between 0 and 360 when 0 and 360 are de facto the same angle. Unfor-

tunately, having two features for the heading instead of one doubled its impact on

the model and created some unbalance hence the choice for the heading delta

feature presented earlier.

In a similar fashion, the latitude and longitude also being cyclical data were turned

into the consecutive delta feature. Another reason for this change is the will to

make the model area-agnostic which would have been impossible with the coor-

dinates as is as features. This improves the accuracy of the models on data they

have not seen during their training, as shown by Fried and Last (2021).

6.5.2/ DATA WINDOWING

As presented in chapter 5, the input of the CAE is in the form of time windows. As

shown in Figure 6.8, creating windows of data using the slicing window technique

adds an extra set of hyperparameters to choose to train models: the stride and the

size of the time-windows. The values of these parameters are further discussed

in Section 7.2.

Figure 6.8: Example of time windowing with a window size of 10 and a stride of
1.

Another question raised by the windowing of the data at hand is the phase linked

to each window. Due to the categorical nature of the phase label, it is not possible

to just take the average of a window to labels it. Instead, the choice was made to
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take the most present flight phase in a given window as the flight of said window.

6.5.3/ TFRECORD FORMAT

Now that the whole data process has been described, the only detail left to ex-

plain is how the model is fed with this data. The ML framework used during this

thesis is the Python framework Tensorflow and this framework allows the use of

a serialized format called TFRecord. This format is a simple format for storing

a sequence of binary records. It uses the protocol buffers 4 to serialise the data

and work in a similar fashion to a markup language. Using this TFRecord has two

main advantages:

• The main advantage is that it keeps the hierarchy of the data. This is im-

portant when dealing with ADS-B time-series to know which data belong to

which flight and which time frame. This avoids the costly sorting that would

be needed before the training.

• This format allows the interleaving of different TFRecord dataset files to

avoid a bottleneck linked to input/output limitations on a single file thanks

to parallelisation. Coupled to a model training using a GPU, the CPU can

solely focus on the reading of the file and the transformation of the dataset

into batches for the GPU to train on, leading to efficient training.

The main issue with this format is the extended size of the dataset when in

TFRecord formats compared to other compressed formats. This can be a prob-

lem when using a hefty dataset but this was not an issue for the experiments of

the thesis.

4https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/
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6.6/ SUMMARY

The data pipeline is a necessary part of any ML model. The different choices

explained in this chapter were mostly taken during the span of the thesis while

discovering the topic and might not be optimal in terms of the state of the art data

acquisition and treatment but works well for the experimentation of the CAE.

This pipeline is the second main contribution of this thesis. While tools already

existed to gather and process ADS-B data, no proper end-to-end pipeline existed

for the creation of datasets for anomaly detection experiments. The objective of

the work presented in this chapter was to create said pipeline by adding different

missing parts:

• Different format conversions enabling the use of raw data. It also allowed

for a direct link between ADS-B sources like Opensky and our FDIA testing

framework FDI-T. This led to a software contribution to the traffic library.

• A method based on the calculation of Vincenty distances between related

ADS-B messages enabling the detection and the filtering of outlier mes-

sages. While this outlier elimination method was not necessary with the

processed data of Opensky, it ensures cleaner data on raw stream coming

directly from ADS-B antennas.

• The phase of the flight being the context used for the CAE experiments,

this is primordial to have a phase identification algorithm as accurate as

possible. The improved phase identification presented in this chapter uses

the fuzzy logic introduced by Sun et al. (2017) and takes into account the

distance from the departure and arrival airport to improve its accuracy in

case of an FDIA attack.

This concludes the second part of this dissertation presenting the new type of

auto-encoder model (CAE) for the detection of ADS-B anomalies, as well as all the

software processing and developed components for data acquisition and prepa-
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ration for machine learning. The next and last part presents the experimentation

done using the CAE and the presented data pipeline.
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7

EXPERIMENTS ON AIR TRAFFIC DATA

This third and last part of this dissertation is dedicated to the different experiments

done using the CAE model. In chapter 7, the evaluation of the CAE on ADS-B

data is presented along with other models. Then, in chapter 8, improvements

of the CAE model are presented by modifying how the decoders are specialised.

This new implementation of the model is then showcased using Automatic Surveil-

lance System (AIS) data from the maritime domain.

In this chapter, the evaluation of the CAE model is presented in the air traffic

domain. Using the data pipeline presented previously, we constituted a training

dataset to train a CAE with 3 decoders, one for each phase. Then, we created

an evaluation dataset using real-life anomalies, as well as crafted ones using

attack scenarios in FDI-T, to compare our model to a baseline constituted of other

unsupervised ML models.

7.1/ DATA SPECIFICATIONS

Before presenting the different evaluations made with the CAE in the rest of the

chapter, this section introduces the different data extracted using the data pipeline

presented in chapter 6 to train and evaluate the different models.

89
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7.1.1/ TRAINING DATA DISTRIBUTION

Despite the good coverage of the Opensky Network as well as the outliers man-

agement present in the data pipeline, using international flights as training data

for ML models often lead to unstable data due to different factors:

1. International aircraft often fly over maritime zones where the ADS-B cover-

age is poor if not nonexistent. This lead to cut flights, often for a long period

of time which have a tendency to disturb the flight clustering process which

then considers the separated parts of one flight as different unique flights.

2. Some zones of the world, even though they are covered by sensors have

higher error rates than others. This can be due to an error in the set-up

of the receiver, a faulty antenna or simply due to geographical constraints

like mountain ranges. The latter problem is usually solved using sensor

redundancy but this is not always possible.

3. Depending on the region, the regulations for the commercial flight callsigns

are different. This creates inconsistencies when trying to check on flights for

a given air company or to track results afterwards. This does not have any

impact on the training of the model but simplifies the analysis.

For these different reasons, the training dataset is exclusively focused on internal

European flights. This choice is mainly motivated by the excellent land coverage

of the Opensky Network in this area, thus avoiding factor 2. Factor 1 is not an

issue as there are no big ocean in this area and the regulation of the callsign

is well followed by the countries of the European Union, making the last factor

irrelevant.

It is to be noted that, as explained in chapter 6, the data pipeline could directly

process data from any ATC system issuing ADS-B data. In this case, the different

presented factors could be limited or nonexistent and the CAE could be trained

using data from these sources seamlessly.



7.1. DATA SPECIFICATIONS 91

The different flight routes used for the training can be visualized in Table 7.1.

It compiles together 15 flight routes for a total of 1008 flights. The dataset is

composed of both long and short flights, as well as flights travelling in different

directions to ensure data diversity.

Departure airport Arrival airport Number of flightsDuration (hours)

Athens (LGAV) London (EGGW) 56 3.6
Berlin (EDDB) Kiev (UKBB) 33 1.6
Budapest (LHBP) Dublin (EIDW) 43 2.8
Frankfurt (EDDF) Lisbon (LPPT) 68 2.5
Hamburg (EDDH) Barcelona (LEBL) 29 2.0
Kiev (UKBB) Paris (LFPG) 83 3.3
London (EGGW) Milan (LIMC) 46 1.6
Madrid (LEMD) Moscow (UUEE) 59 4.2
Malaga (LEMG) Frankfurt (EDDF) 81 2.9
Manchester (EGCC)Istambul (LTFJ) 75 3.8
Munich (EDDM) Lisbon (LPPT) 68 3.3
Paris (LFPG) Oslo (ENGM) 34 1.9
Stockholm (ESSA) Barcelona (LEBL) 25 3.2
Vienna (LOWW) Copenhagen (EKCH) 83 1.3
Zurich (LSZH) London (EGLL) 225 1.2

Hamburg (EDHI) Hawarden (EGNR) 45 1.5
London (EGLL) Moscow (UUEE) 184 4.0

Table 7.1: Flights used for the training of the different models
presented. 15 flight routes data taken from September to December

2020 for training and 2 flight routes taken in January 2021 for
validation.

7.1.2/ EVALUATION DATA

The evaluation dataset is composed of two different subsets: an FDIA set and

a baseline set. The FDIA set is composed of data modified using FDI-T. These

data simulates emissions that could be resulting from an FDIA including different

Trajectory modification scenarios an attacker could create. All the anomalies con-

tained in this set are applied on all the flights found in the training set but from

January 2021 only.

On the other hand, the baseline dataset includes real-life data with no modifica-
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tion done by FDI-T. It includes normal data from other parts of the world to see if

there is any bias to train a model on a single region of the world and also includes

a recent anomaly caught through ADS-B. This anomaly is not an FDIA, so it tech-

nically does not belong in the scope of this research, however, its presence in the

dataset enables us to monitor the tool bias eventually induced by FDI-T.

Here is a detailed list of what the evaluation database is composted of :

1 FDIAs

Gradual Drift (DRIFT) – The gradual drift is an attack that consists of simulating

an altitude drift or a velocity drift, either positive or negative. The altitude or veloc-

ity messages on the attacked time windows are all raised/lowered by an increas-

ing/decreasing multiple of an arbitrarily chosen n feet. So, if the first message is

lowered by 2 feet compared to the original message, the second is then lowered

by 4, etc. The Figure 7.1 shows a velocity drift used during the evaluation.

Figure 7.1: Velocity drift attack

Made-up Crashes (CRASH) – Using FDI-T, crash scenarios can be created com-

bining an altitude drift, a negative vertical rate, and a reduction of groundspeed.

This reduction of groundspeed is not to be mistaken with a reduction of airspeed.

Indeed, a stalling aircraft has a groundspeed plummeting while its airspeed in-

creases. The signal is then stopped once the aircraft reaches the ground (for

these experiments, ground level is set at 300 feet above see level). Figure 7.2

shows some of the features modified during a CRASH attack.



7.1. DATA SPECIFICATIONS 93

Figure 7.2: Crash attack. Latitude/longitude on the left and
the altitude on the right. Other features like vertical speed

or track are also modified realistically.

Constant position offset (OFFSET) – This attack, when toggled takes the real

data of a flight and adds an offset of 1 in both the latitude and the longitude (see

Figure 7.3). This offset represents a distance of around 132 kilometres between

the original and the anomalous trajectory.

Figure 7.3: Constant position offset attack

2 Baseline

World Data (WORLD) – As the training dataset is exclusively composed of data

from European flights, including regular data from other parts of the world in the

testing dataset allows for checking the genericity of the approach. This part of

the dataset does not include any anomaly and as such, any alarm raised by mod-

els on these data will be false positives. It includes flights from the European
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airspace, American airspace – e.g. Dallas to Louisville – or Australian airspace –

e.g. Canberra to Perth –.

Ryanair Hijack (HJK) – Constituted of the Ryanair flight 4978 from Athens to

Vilnius which was forcibly diverted to Minsk after entering the Belarus airspace

on the 23rd of May 20211. It is to be noted that the emergency was turned on by

the crew 2 minutes after the flight started to change its course as seen on Figure

7.4. For the evaluation, the labels have been set to 1 from the beginning of the

emergency till the landing. This is not an FDIA as it is actually a real-life abnormal

scenario but detecting this anomaly is important to prove that the model is not

biased into detecting only anomalies created by FDI-T.

Figure 7.4: Flight hijacking initially going to Vilnius, landing
in Minsk

7.2/ TRAINING SPECIFICATIONS

Once the training and evaluation datasets are constructed, the next step is to

prepare an environment to train the model, as well as choosing the different fitting

hyperparameters. This section presents all the leftover aspects of preparation to

evaluate the CAE model including the training environment, the hyperparameters,

1https://www.flightradar24.com/blog/ryanair-flight-4978-to-vilnius-forcibly-diverted-to-minsk/
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the different evaluation metrics and finally the models trained alongside the CAE

to serve as baselines.

7.2.1/ TRAINING ENVIRONMENT

The training environment is defined by the hardware and the software used during

the training. Concerning the software, we used Tensorflow as we already showed

in Chapter 6. The training dataset we described in the previous section represents

336 Mb of data separated into 15 tfrecord files. The interleaving of the different

tfrecord files allowed the training of our models without using more than 6 Gb of

memory. For the hardware part, we used the supercalculator of the Mésocentre

de Calcul de Franche-Comté2. We trained on a calculation node hosting a Tesla

V100 performing at 7.8 TeraFLOPS. The training for the CAE on this node on

average was taking around 26 minutes per epoch for the CAE. In Figure 7.5, the

training loss and the validation loss over the first 100 epochs of training is shown.

One can notice a difference in loss between the training set and the validation

set. It is due to a few leftover outliers in the training set which make the average

training loss much higher than its validation counterpart.

2http://meso.univ-fcomte.fr/

http://meso.univ-fcomte.fr/
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Figure 7.5: The training loss per epoch. In blue is the training loss, in pink the
validation loss

7.2.2/ CAE’S HYPERPARAMETERS

To train any Neural Network model, one needs to find different values of param-

eters to optimize the training of the said model: its learning rate, its number of

layers, units, different kinds of parameters for the optimizers etc. Each of these

parameters have an impact on how well the model trains and a poor choice often

leads to sub-optimal results. These parameters, also called hyperparameters can

be chosen by different means:

• Grid Search. Using common knowledge on the model in training and in-

sights we can have on the data, it is sometimes possible to narrow down

the number of possible “best” hyperparameters to approach the best model

possible. If from this preliminary examination, the combinatorial explosion

of searching through all the possible parameters has been limited, then it is

possible to give a dictionary of all the possible values that every parameter

can take to an algorithm that trains the model for a limited number of epochs

and choose the combination of parameters that yields the best loss out of

all the possibilities.

• Random Search. Sometimes the number of parameters is too important

for a grid search and finding the optimal set of parameters would take way

too much time. Instead, we can use a Monte-Carlo method that consists of

transforming every parameter into uniform distributions and each iteration

randomly samples from each of these distributions to have a set of param-

eters used to train the model. This method does not necessarily yield the

optimal solution but often returns a relatively good one in a much quicker

fashion than a grid search.

• Other methods. Finding the best set of hyperparameters falls under the do-

main of optimisation problems and as such, has a wide range of algorithms
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that exists in the literature to treat it (Bergstra et al., 2011). For instance, a

known one used to find an optimized set of hyperparameters is called the

Bayesian optimiser (Snoek et al., 2012). The goal of the Bayesian optimi-

sation is to minimize a function f (x) bounded to a set of parameters X (e.g.,

here, the function would be the loss of the model and the set of parameters,

the hyperparameters). To do so, it constructs a probability model of f (x) that

gradually improves after some evaluation of f (x) on randomly chosen points.

Iterations after iterations, the algorithm then exploits this model to choose

values of X to next evaluate f (x), while being non-deterministic. The main

advantage of this approach compared to Grid Search or Random Search is

that every iteration uses the results of the previous one to try and approach

the optimal solution. This kind of optimiser has been trialled for the training

of the CAE but unfortunately, the model was not big enough to justify the

extra calculation a Bayesian optimisation adds.

There is also an ad-hoc Random Search, which would describe many of

the first experiments done on a model. It is a regular random search, but

instead of having an algorithm picking randomly the values, the parame-

ters are chosen at the discretion of the researcher, based on its empirical

knowledge and previous experience.

The hyperparameters for the CAE were first found using a grid search using previ-

ous results found on regular auto-encoders. They then were refined through trial

and errors. For the final iteration of the CAE of which the results can be found in

the following section, windows of 30 messages have been used with a stride of 1.

The batch size is 256. The number of units in the encoder’s BiLSTM is 32 which

is then flattened to feed a Dense layer reducing the dimension to 10, the chosen

latent space size. The different decoders each embed a single LSTM layer with

32 units.
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7.2.3/ METRICS

For the evaluation, having metrics that enable the comparison of performance

between different models is necessary. Just like hyperparameters, the choice of

metrics is important and often depends on the task evaluated. For instance, in

a reconstruction task like data compression or denoising, the loss of the model,

representing the distance between the original input and its reconstructed coun-

terpart, can be a first approximation of how well a model compares to another.

However, for an anomaly detection task, this loss is not enough and must be

coupled to a threshold to determine if a given input is an anomaly or not.

One metric often used in ML is accuracy. The accuracy is the proportion of correct

classifications. The accuracy is originally a classification metric but we can ac-

tually consider anomaly detection as a 2-class classification problem. However,

when the different classes are unbalanced, which is often the case in anomaly

detection problems, the accuracy yields misleading results.

For this reason, predictive analytics give other metrics to properly evaluate the

quality of an anomaly detection model. These metrics are based on the different

values found in a confusion matrix as seen in Figure 7.6: the true positives (TP),

the true negatives (TN), the false positive (FP), and the false negatives (FN).

Figure 7.6: The confusion matrix from where the different metrics stems from.

The different metrics used during this evaluation are:
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• Recall. Also called sensitivity, the recall represents the proportion of

anomalies detected. Also referred to as the true positive rate, it tells if the

model was sensible enough to detect anomalies that were actual anomalies.

It is defined as:

R =
TP

TP + FN
(7.1)

• False Positive Rate (FPR). The FPR, also called the false alarm rate, is

the proportion of false-positive predictions over the total negatives. In some

domains like the air surveillance, the FPR is almost as important as the

accuracy for having too many false alarms can be more disturbing than the

real FDIAs for a controller. The FPR is calculated as:

FPR =
FP

FP + TN
(7.2)

• F1-Score. Before defining the F1-Score, we need to define the precision.

The precision is the proportion of identified anomalies being true anomalies.

The F1 score or F-Score uses the recall and the precision to determine a

score of how efficient a model is at detecting anomalies. However, just like

the accuracy, this score can be subjected to bias and would not be as useful

alone. It is defined as:

F1 =
2TP

2TP + FP + FN
(7.3)

• Accuracy. The accuracy, as already defined is the proportion of correctly

predicted observation. It is defined as:

Acc =
TP + TN

TP + TN + FP + FN
(7.4)

For the evaluation made during this thesis, these presented metrics were good

approximations of how well the different models were performing. For future ex-
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periments, the use of the Phi coefficient or of the ROC curve to better tweak the

different thresholds (Powers, 2020) could be considered.

7.2.4/ BASELINE MODELS PRESENTATION

To show the overall performance of the CAE, it is compared with 3 other un-

supervised approaches for anomaly detection of false data injected in ADS-B

time-series: a regular Isolation Forest (Liu et al., 2008) model, an LSTM-auto-

encoder (Habler and Shabtai, 2018), and a VAE-SVDD (Luo et al., 2021). Before

diving into the different results obtained during this evaluation, here is an intro-

duction to these different baseline models.

LSTM-AE is a sequence to sequence model based on an encoder-decoder re-

construction used by Habler and Shabtai (2018) to detect false data in ADS-B

time-series. Both encoder and decoders are composed of LSTM units that take

care of the time-dependency of the data. This model has shown decent results

on coarse anomalies and has the advantage to be rather simple to implement and

fast to train.

The different hyperparameters were chosen using previous experiments on this

model and are similar to the ones used for the CAE. The threshold was calculated

based on the empirical rule too.

VAE-SVDD (Luo et al., 2021) is a variational auto-encoder (VAE) coupled with

a support vector data description model (SVDD) to automatically determine its

threshold. A VAE is a deep Bayesian model which represents an input xt to a

latent representation zt with a reduced dimension, and then reconstructs xt by zt.

The main difference with a regular auto-encoder is that the latent variable zt is

sampled from a probability distribution, such as a Gaussian distribution with the

mean and the standard variation being outputs of the encoder network.

For the VAE-SVDD, the method to choose the anomaly thresholds is already given

in the paper and the different hyperparameters are chosen according to the au-

thor’s remarks.
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Isolation Forest (Liu et al., 2008) is an anomaly detection algorithm using an

ensemble of isolation trees to differentiate normal data from anomalies. It has

the advantage of being fast, light-weight and can be quickly implemented. It is

however not well equipped to tackle the time dependency of the data.

7.3/ RESULTS

This section details the experimental results made to determine the pros and

cons of the different approaches and which one performed the best overall on this

dataset. All the implementations are accessible on the Scifly3 Github repository.

This is made as an effort to improve the replicability of the presented evaluation as

well as propose a non-exhaustive, upgradable baseline dataset for future models

in the growing field of anomaly detection in ADS-B data.

Table 7.2 shows the accuracy, the recall, the FPR and the F1 score on the dif-

ferent datasets for each model. Overall, these experimental results demonstrate

the superiority of the CAE compared with the state-of-the-art approaches in

FDIA detection in ADS-B. Indeed the F1 score on the Total Dataset is more than

20% over the second-best performing model (not considering the IForest for the

reasons explained below). It is to be noted that the WORLD dataset does not

have any true positives nor false negatives which automatically set the Recall to

Nan (division by zero) and the F1 to 0. Next, we analyze the performance of the

different methods in detail.

7.3.1/ BASELINE RESULTS

• LSTM-AE: This simple deterministic model well manages to capture the

ADS-B normal behaviour in its latent space showing very low FPR using

a 3-sigma threshold as well as decent results on the Velocity Drift dataset.

3https://github.com/Wirden/scifly

https://github.com/Wirden/scifly


102 CHAPTER 7. EXPERIMENTS ON AIR TRAFFIC DATA

Evaluation Dataset Metrics LSTM-AE IForest VAE-SVDD CAE

World Data Accuracy 0.994 0.687 0.899 0.989
Recall NaN NaN NaN NaN
FPR 0.006 0.313 0.101 0.011
F1 score 0 0 0 0

Ryanair Hijack Accuracy 0.946 0.890 0.722 0.847
Recall 0.637 1 0.227 0.301
FPR 0.001 0.129 0.231 0.017
F1 score 0.778 0.729 0.152 0.439

Velocity drift Accuracy 0.933 0.944 0.949 0.961
Recall 0.809 0.957 0.930 0.912
FPR 0.001 0.063 0.043 0.012
F1 score 0.886 0.937 0.926 0.939

Constant position offset Accuracy 0.519 0.709 0.541 0.526
Recall 0.033 0.491 0.077 0.053
FPR 0.001 0.073 0.046 0.004
F1 score 0.060 0.598 0.107 0.097

Made-up Crash Accuracy 0.506 0.919 0.710 0.962
Recall 0.003 0.922 0.426 0.929
FPR 0.001 0.084 0.037 0.004
F1 score 0.005 0.925 0.573 0.955

Total Accuracy 0.780 0.830 0.764 0.857
Recall 0.371 0.843 0.415 0.549
FPR 0.002 0.132 0.092 0.010
F1 score 0.544 0.797 0.440 0.738

Table 7.2: Comparison of the different models evaluated

Its very low F1 score on the Made-up Crash dataset can be explained by

the data resembling a regular descent trajectory which leads the decoder to

reconstruct the data as-is. Lowering the threshold to a 2-sigma helps raise

the F1 score but results in an FPR being too high for anomaly detection.

• VAE-SVDD: The stochastic nature of the VAE could explain the better

results compared to the regular LSTM-AE on the Made-up Crash and Ve-

locity drift dataset. Luo et al. (2021) combine LSTM and VAE by replacing

the feed-forward network in a VAE to GRU but do not include information

from zt − 1 into zt in the likes of Su et al. (2019). That might explain the

issues the VAE-SVDD has to properly represent the distributions of the

input data, leading to high FPR compared to the other methods. All in all,
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the VAE-SVDD, while performing well on coarse anomalies like the velocity

drift and to some extent the Made-up Crash thanks to its stochasticity, fails

to reconstruct properly ADS-B data leading to high FPR on new data and

mediocre results overall. This could be explained by the limitation of having

a Gaussian qnet being too trivial to properly reconstruct ADS-B information

coming from other parts of the world, negating the advantages of having

such an architecture.

• IForest: The model yields good results when compared to the other mod-

els, which is explained by the evaluation dataset being based on the same

flights as the training data but one month later. The IForest manages to

flag anomalies on flights it has already seen or in the vicinity of these said

flights – for instance, the Ryanair Hijack – without any trade-off except its

FPR. Indeed, the FPR is on average almost ten times higher than the CAE’s

which makes it hard to use as a reliable anomaly detector. It would even be

completely pointless on flights in part of the world it did not see during its

training. On the contrary, training it on the data from different parts of the

world would add too much complexity for good results.

7.3.2/ CAE RESULTS AGAINST THE BASELINE

Compared to the LSTM-AE with a single decoder, the CAE, thanks to its special-

ized decoders, manages to discriminate anomalous situations like crashes from

regular descent operations while keeping a very similar low FPR overall. How-

ever, from the metrics alone, the CAE seems to be under-performing compared

to the LSTM-AE for the hijack scenario. This can be explained by looking at Fig-

ure 7.7 which compares the anomaly score over the message windows for both

models. One can observe that for the CAE, the anomaly is set off before the ac-

tual emergency due to its delay with the diversion of the flight. It explains the FPR

being much higher than the other models and displays the reactivity of the CAE in
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such circumstances. On the other hand, the low recall is due to the score going

back to a normal value after some time which means the CAE does not label the

end of the flight as abnormal from its ADS-B data.

Compared to the VAE-SVDD, the CAE performs better on all datasets except on

the constant position offset where all models perform poorly due to the scenario’s

very nature. Indeed, the small offset added to the latitude and longitude is not

enough to trigger alarms leading to extremely low F1 scores. This attack can only

be detected by the LSTM based models when the values actually change. Finally,

the IForest model, despite being cost-effective and accurate on the few flights it

has seen during its training, is not as dependable as the LSTM-AE or the CAE due

to its high FPR, limiting its usage in real-life applications. In conclusion, while the

CAE does not well perform on the position offset FDIA, it has the best accuracy

on normal data and the best scores on other FDIAs. It is also the only model that

manages to detect the real-life anomalous scenario as soon as it started, leading

to an alarm raised before the change of flight status.

This comparison of the CAE model against other ML models for anomaly de-

tection allows us to answer the second research question that stems from the

research objective of this thesis: RQ2: Is using the context of a data helpful in

detecting anomalies? The different experiments show an overall improvement

compared to other AE approaches. Indeed, in scenarios where the context is

primordial like the crash scenario, the CAE is the only AE model with both a low

FPR and a high F1 score. The other AE models which trained on all data mistook

the beginning of the crash for a descent phase. Similarly, the Ryanair anomaly

is detected the quickest by the CAE, as a sudden change in heading during a

cruising phase is unusual.
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Figure 7.7: Anomaly score for the LSTM-AE on the left and
the CAE on the right for the Ryanair hijack flight.

Figure 7.8: CAE anomaly scores for a flight taken randomly from the
different evaluation datasets. The top-left figure is from the CRASH

dataset, the top-right is from the Ryanair hijack, the bottom-left is from
the constant position offset and the bottom-right is from the velocity

drift dataset
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7.4/ DISCUSSION

The CAE model shows good results on the chosen evaluation dataset compared

to other ADS-B anomaly detection models. This section first covers a discussion

on the presented results with regards to the RQ1 introduced in Chapter 1. Then

different caveats and limitations are presented.

7.4.1/ USABILITY OF UNSUPERVISED ML MODELS FOR DETECT-

ING FDIAS

The first assumption made for the usability of ML models to detect anomalies is

the authenticity of the data used during the training. If data sources like sen-

sors or the Opensky-Network were to be attacked, the models trained from these

corrupted sources would not be able to detect ADS-B anomalies properly. For

instance, if a corrupted source of ADS-B set the cruising altitude to 45000 of the

commercial flights instead of the regular altitude, a model trained on these data

would raise many false alarm on real non-corrupted data. To avoid that, imple-

menting safeguards ensuring the data follow the ATC standards are advisable.

Once we made sure this was not the case thanks to safeguards ensuring , the

experiments give us enough insights to answer the research question RQ1: To

what extent unsupervised ML algorithms can detect False Data Injection

Attacks in ADS-B data? The answer to this question can be decomposed into

two parts:

1. Results on different attack scenarios showed that unsupervised ML models,

especially the CAE with its context awareness, were fit to detect FDIAs in

ADS-B messages. However, an ML model trained for this task is not able

to make the difference between a real anomalous situation and an FDIA.

Indeed, as seen in the results, the Ryanair hijack was flagged regardless

of it being an FDIA or not. While this proves that models are not detecting

anomalies because of any tool bias induced by FDI-T, it also shows that
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FDIAs and real-life anomalies share the same property of being extraordi-

nary situations, not seen by ML models during their training. For this reason,

unsupervised models are suitable for anomaly detection in the ATC domain

but, as of now, cannot differentiate between anomaly subclasses, aka real-

life scenarios vs FDIAs.

2. While conclusive on most of the scenarios presented, some FDIAs can be

difficult for ML models to be detected, in the likes of the Offset scenario.

Due to their nature, flight trajectories, while being overall linear over the

same routes, can have inconsistencies, mainly due to fluctuating weather or

congestion problems. This results in ADS-B time-series to have a tolerance

margin when used to train ML models. This means that all attacks made

within this margin likely end up not being detected if the attacker carefully

conforms to the ADS-B protocol and to the flight plan. The question of the

severity of such attacks is however out of the scope of this dissertation.

7.4.2/ CAVEATS, LIMITATIONS AND CONSIDERATIONS

Through these experiments, we answered to the two first research questions of

this thesis. Here are some additional reflections that can be added:

• The CAE in its current state does not support online learning and therefore

cannot be updated to the latest ADS-B data. However, all the data used

in the evaluation dataset are from 2021 while the training data were from

2020 showing no significant differences between them. This result only has

two explanations: either the data does not change significantly enough over

time to make a difference or the model is robust enough not to be disturbed

by small changes. Only future data can give proper insight to answer this.

In addition, the low FPR on the world dataset shows that the model is area-

agnostic thanks to the features and the data-processing used for the data.

This avoids the training of different models for specific regions.
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• However, it is also the model where the anomaly disappear once the main

change in the track is over. This can be explained by the switch to the DE-

SCENT decoder which is less sensitive to changes in track due to the flight

activity when approaching the arrival airport including congestion manage-

ment and level flight. These results could be improved by adding other

decoders taking level phase data or congestion management data.

• One of the downsides of the creation of realistic scenarios through a frame-

work like FDI-T is the introduction of a tool bias that could lead to the de-

tection of anomalies being eased. While this would question a supervised

approach being trained using said data, for the unsupervised approach, it

only shows that models are able to detect these abnormal scenarios. If cou-

pled with a few real-life examples of anomaly situations, it only constitutes

content to prove the robustness of the models.

• Having an FPR higher than zero can be a problem in air traffic manage-

ment as it would trigger unnecessary measures to take care of false alarms.

Unfortunately, it is not an easy task to create a model sensitive enough to

detect all kinds of attacks without ever having false positives. In Figure 7.8,

the false positives observed barely exceed the threshold while the anomaly

scores like the one on the Ryanair hijack almost reach five times the thresh-

old value. Adding other soft thresholds – e.g. four or five sigma rule – to

determine the gravity of the attack could help discard the false alarms in

most cases and on the other hand could raise emergencies if the anomaly

score would go too high, disregarding entirely the rest of the flight. This

strategy would help in the case of anomaly spikes like in the constant posi-

tion offset, which would otherwise go undetected.
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7.5/ SUMMARY

In this chapter, we presented the different evaluations made using different mod-

els found in the literature to detect anomalies in ADS-B messages. We also pre-

sented the results of our own approach to compare it against the baseline. The

contributions of this chapter can be summarised as followed:

• The creation of a training dataset using the pipeline of Chapter 6 composed

of different flight data from across Europe.

• The creation of a testing dataset also using the pipeline of Chapter 6 com-

posed of different FDIA anomalies created using FDI-T as well as real-life

anomalies.

• The implementation of different baseline models found in the literature com-

piled in our scifly repository4. It also include the implementation of our own

anomaly detection model, the CAE.

Using these contributions, results showed that FDIA can indeed be detected by

ML models. Not only that, but adding contextual awareness has proven useful at

detecting more realistic anomalies. Even though the CAE, like the other ML mod-

els, manage to detect anomalies, it failed at properly discriminating real anomalies

from crafted ones through ADS-B data alone. While this limits the possibility of

using such models as FDIAs detectors only, this does not prevent these models

from being used as anomaly detection methods, including FDIAs.

The next and last chapter of this dissertation presents early experiments using

the CAE to determine whether it can be extended to other transport domains or

not.

4https://github.com/Wirden/scifly

https://github.com/Wirden/scifly
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VALIDATION OF THE APPROACH USING

MARITIME DATA

To evaluate the genericity of our approach as well as a possible extension to the

CAE model, additional experiments were done by the end of this thesis. The

maritime domain was chosen because we had opportunities to have access to

data thanks to a partnership as well as its similarities to the air traffic domain.

This last chapter gives some insights into the maritime domain and the use of a

similar protocol to ADS-B. It will highlight some specifics of the domain that led

the experiments to an extension of the CAE model. Finally, early experiments1

done with Pierre Bernabé, a Ph.D. student from our research team at UBFC, and

working at Simula Research Laboratory, are presented.

8.1/ MARITIME TRAFFIC SURVEILLANCE

Maritime traffic surveillance is a broad term that includes a numerous variety of

missions. The origin of this diversity is directly linked to the diversity of ships’ ac-

tivities at sea and to the freedom offered by international water status. Of course,

said activities are directly linked to the geographical area they evolve in. For in-

1This work was supported by the Norwegian Research Council (RCN) TSAR project under
contract 287893 and benefited from the experimental infrastructure to explore exascale calculus
(eX3), which RCN funds under contract 270053. Satellite AIS data used for model development
and testing has been made available courteously by its owner, the Norwegian Coastal Adminis-
tration (Kystverket).
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stance, in France, we can identify several categories of missions:

• Assistance and rescue missions include the surveillance of distress signals,

surveillance of the weather forecast, or the patrolling around beaches.

• Traffic and fishing regulation: this includes the regulation of the fishing

zones, the surveillance of the tonnage and the content of ship’s holds, the

control of heavy traffic around busy areas like harbours or even the preven-

tion of polluting activities.

• Territory surveillance: this consists of the surveillance and identification of

vessels sailing in restricted areas and the apprehension of wrongdoers.

These missions not only vary depending on the country but also from one activity

to another. Someone affected by the safety and rescue of tourists will have a very

different everyday routine from a carrier pilot’s.

8.1.1/ THE AUTOMATIC IDENTIFICATION SYSTEM

Like the ADS-B protocol, the Automatic Identification System (AIS) appeared in

the years 1990 and has been broadly used since then. It was initially created to

offer to vessels and surveillance officers an estimation of the traffic surrounding

them at close range. The goal was to improve traffic flow by predicting the course

of other ships, hence avoiding potential collisions. Since 2004, an AIS transpon-

der is compulsory in vessels with a tonnage over 300 tons or embarking more

than 12 passengers.

The AIS protocol uses the GNSS to determine the position of the vessels and

uses the VHF frequencies to exchange information about their speed and the

traffic surrounding them. The broadcast of the information is periodical and they

are not encrypted nor authenticated. Different classes of AIS exist depending on

the size of the vessel and determine how often they broadcast their information

through AIS.
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Initially, the AIS transponders were solely placed inside vessels and on the coasts,

however, this configuration did not allow the collection of data in high seas be-

cause of the limited range of the VHF radio due to the curvature of the earth. In

2008, the introduction of satellites equipped with AIS receptors (S-AIS) allowed

worldwide coverage making the surveillance of most maritime areas using the

AIS protocol possible. Thanks to this technology upgrade, many new applications

using the AIS protocol appeared (e.g the protection of fishing zones (Mazzarella

et al., 2014) or the collision prevention between vessels and cetaceans (Wiley

et al., 2011)).

8.1.2/ THE AIS VULNERABILITIES

Similar to the ADS-B protocol, officials do not communicate much about vulner-

abilities and the overall security of the AIS protocol. Even though the Interna-

tional Association of Marine Aids to Navigation and Lighthouse Authorities (IALA)

showed concerns about loopholes in the protocol 2,3, it is harder to find equiv-

alent conclusions from the International Maritime Organisation (IMO). One can

nonetheless find researches on security analysis (Riveiro et al., 2018) that high-

light the flows of the protocol’s security, failing to prevent the manipulation of its

messages.

The lack of encryption, the use of known and accessible radio frequencies, and

the lack of authentication preventing any source verification are the main factors

for any malicious individual to create, delete or modify AIS data.

Without surprise, we find similar attack patterns in the AIS protocol to the ones

found in ADS-B. Some attacks have already been proven feasible through the AIS

architecture (Balduzzi et al., 2014).

Here is a taxonomy of the different attacks possible found in the literature (Bal-

duzzi et al., 2014; Goudosis and Katsikas, 2018):

2http://www.iainav.org/News/nws0456-ais-vulnerability.pdf
3https://www.navcen.uscg.gov/pdf/IALA Guideline 1082 An Overview of AIS.pdf

http://www.iainav.org/News/nws0456-ais-vulnerability.pdf
https://www.navcen.uscg.gov/pdf/IALA_Guideline_1082_An_Overview_of_AIS.pdf
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• AIS-SART Spoofing This is used to create fake emergency messages to

lure rescue teams in a given area.

• Fake weather forecast Authorities may use the AIS protocol to broadcast

weather forecasts. This attack tries to usurp the sender’s identity to send

fake weather reports.

• Availability disruption This attack’s goal is to disrupt the AIS communica-

tion of a given vessel. There are three ways to do so. The first one is to

simply turn off the AIS transponder, often done by fishing vessels to hide

their real location (this attack is also referred to as AIS Shutdown). The

second is called frequency hopping and consists of stealing the identity of

an authority to force a vessel to change its emission frequency. Lastly, the

straightforward flooding creates a deny of service attack.

• Collision Prevention Assist Spoofing The system of collision prevention

on ships is based on AIS messages emitted by surrounding vessels to avoid

sailing into them. This attack aims to create fake vessels in the close vicinity

of others to set off their collision prevention assist alarm.

• Ship Spoofing This attack aims to create a fake vessel by using the identity

of another one, often in other parts of the world.

• Aid to Navigation spoofing Some floating aids to navigation like buoys,

beacons, or lights are equipped with AIS for the vessels to confirm their po-

sition even before seeing it visually. This attack aims to emit fake messages

to disrupt the manoeuvers of vessels in the area.

• AIS Hijacking This type of attack uses strong signal emissions to override

messages sent by vessels. This aims to modify the content of the AIS mes-

sages.

These different attacks can be treated like FDIAs and as such, the different work

exposed in Chapter 3 for the ADS-B protocol are also applicable in the maritime

domain and its AIS protocol. For this reason, the AIS protocol is a great use case
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for our model to evaluate its genericity. The main concerns now before experi-

menting are the availability of the data and the choice of a contextual feature.

8.1.3/ DATA ACQUISITION

Creating a large-scale dataset of raw data like in ADS-B is a challenge in AIS.

The data are mostly collected by the coastal base stations and satellites operated

by companies and coastal guards. Considered as critical information, the states

are often reluctant to open this data freely. When the AIS data are available, they

have been pre-processed and cleaned. However, to create a model that can be

generalized to every part of the world, using raw data is necessary. We can cite

two organizations that work to make AIS data available. The first one is ”Global

Fishing Watch” which tries to contact the governments directly to access their

data, but the raw data they use in their research is not public. The second one is

”AIS hub”. They aim to become a raw AIS data sharing center where everyone

can get memberships to share the data they collect on their own AIS receiving

station. Although the project is interesting, the coasts’ coverage is still limited,

and data from satellites are necessary to cover the non-coastal areas.

As part of a Norwegian research project, our partner Simula Research Labora-

tory has obtained access to raw satellite AIS data from Statsat, a governmen-

tally owned company that defines, develops and sources space infrastructure for

Norwegian public purpose, which recently sent satellites to space to collect AIS

data.4. This data is collected by four satellites, but they do not cover the whole

earth simultaneously. Moreover, the AIS protocol through satellites (Skauen,

2019) has a limited capacity in dense areas such as the EU, China, or the US

coast. This is due to the large areas covered by satellites, highly increasing the

number of messages they get every second, leading to saturation. To limit this

problem, we integrate data from ground stations from Norwegian coastal guards

to this dataset that does not have this limitation thanks to their smaller coverage.

4https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/norsat-1

https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/norsat-1
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8.1.4/ VESSEL TYPE: THE CONTEXTUAL FEATURE

Similar to the ADS-B protocol, the AIS is subject to contextual anomalies and

attacks. The most blatant examples are vessels trying to conceal their real activity.

One can notice that, compared to ADS-B where the data feed was disrupted

by a third party, in AIS, the anomalies often come from the source itself. For

instance, fishing ships hiding their real intention or cargo ships passing for smaller

vessels. For this reason, the CAE model, by specializing its decoders in different

vessel activities, would be a good candidate to detect fraudulent activities in AIS

data. For that, the AIS protocol already provides a contextual feature called the

Navigational Status (NS). This status defines the activity the vessel is currently

doing and is set manually by the crew. It thus differs from the flight phase used in

the ATC as it is not entirely bound to the data provided by AIS. Another difference

is the diversity of vessels found in the dataset. For ADS-B, we made sure that only

commercial flights were used for the training and the evaluation, avoiding erratic

flights from amateurs. This is not as easily done in AIS because of the vessel

types not being as well-defined as in ATC.

There are 16 different NS in AIS currently, with only the 9 first used worldwide.

The other 7 are used only regionally or are reserved. These 9 NS are each tied

to a number between 0 and 8:

0. Under way using engine. A vessel is considered to be underway when it

meets the following criteria:

– is not aground

– is not at anchor

– was not attached to a dock, the shore, or any other stationary object.

This navigational status message refers to machinery vessels in motion.

1. At anchor. A vessel is at anchor when it is held in position by an anchor on

the bottom of a body of water, thus preventing a vessel from drifting away

from its desired position (e.g. waiting for a berth, heavy weather, receiving
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fuel oil, loading, and unloading cargo, for maintenance purposes). The ”at

anchor” state begins when the anchor hatches firmly hit the seabed and

the ship is held in a certain position. While the vessel is considered to be

”underway” as soon as the anchor is weighed or towed on the seabed. The

vessel is not fixed at a dock, which is called moored.

2. Not under command. The term “not under command” means a vessel

that through some exceptional circumstance is unable to manoeuver and is

therefore unable to keep out of the way of another vessel.

3. Restricted Manoeuvrability. Manoeuvring characteristics include turning,

yaw-checking, course-keeping, and stopping abilities of the vessel. The

term ”restricted manoeuvrability” means the vessel is unable to keep out of

the way of another vessel. It also includes:

– A vessel engaged in laying, servicing, or picking up a navigational

mark, submarine cable, or pipeline.

– A vessel engaged in dredging, surveying, or underwater operations.

– A vessel engaged in replenishment or transferring persons, provisions,

or cargo while underway.

– A vessel engaged in the launching or recovery of aircraft.

– A vessel engaged in mine clearance operations.

– A vessel engaged in a towing operation that severely restricts the tow-

ing vessel and her tow in their ability to deviate from their course.

4. Constrained by draught. A power-driven vessel that is severely restricted

in the ability to deviate from the course it is following. This is due to the

draught in relation to the available depth and width of the navigable water.

5. Moored. Securing a vessel at a pier or elsewhere by several lines or cables

to limit the movement.
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– Multi-Buoy Moorings (MBM), conventional buoy moorings – A facility

whereby a tanker is usually moored by a combination of the ship an-

chors forward and mooring buoys aft and held on a fixed heading.

– Single Point Mooring (SPM) – A facility whereby the tanker is secured

by the bow to a single buoy or structure and is free to swing with the

prevailing wind and current. Three types are common: Catenary An-

chor Leg Mooring, Single Anchor Leg Mooring, and Turret Mooring.

6. Aground. A vessel that ran aground onto or on a shore, reef, or the bottom

of a body of water.

7. Engaged in Fishing. The term ”engaged in fishing” means any vessel fish-

ing with nets, lines, trawls, or other fishing apparatus.

8. Under way sailing. A vessel is considered to be underway when it meets

the following criteria:

– It is not aground

– It is not at anchor

– It was not attached to a dock, the shore, or any other stationary object.

This navigational status message refers to all ships using wind power.

8.2/ THE AFFINITY AUTO-ENCODER

While using the contextual nature of time-series has shown conclusive results

on ADS-B using the flight phase, it is not that easily applicable in the maritime

domain due to the higher number of context from the status. Indeed, for the ADS-

B experiment, only 3 decoders were needed to take care of the different contexts

offered by the flight phases but the status would require 8 different ones to achieve

an adapted architecture. One could easily find an application domain where the

context has many different classes, leading to a CAE architecture way too uneven
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in terms of encoder-decoder number, increasing the training time and the overall

size of the model.

This problem needs to be tackled to claim any genericity of the CAE approach.

As a way to try and improve our model as well as address the mentioned problem,

a pre-training process was added to the CAE base model to calculate an affin-

ity score between the different statuses. This section details how this affinity is

calculated and how it can be used to reduce the number of decoders in the CAE

when the number of contexts increases.

8.2.1/ CLASS AFFINITY

Based on the architecture presented by Fifty et al. (2021) on the calculation of task

affinities for images, the new architecture tries to preemptively reduce the number

of classes by calculating an affinity score between them. Classes with high affinity

will be processed together in the same decoder in the CAE architecture. To do

so, we use a simple auto-encoder model that will, during each step of its training,

calculate the inter-gain between each status. The gain GCiC j of a class Ci over the

class C j is defined as:

GCiC j = (1 − LCiC j/LC j)/lr (8.1)

with LC j being the MSE loss between the input data of class j and its reconstructed

counterpart, LCiC j is also the MSE loss between the input data of class j and its

reconstructed counterpart but with the model using the weights derived from the

gradient descent on the loss LCi. lr is the learning rate.

The higher the inter-gain is between two classes, the higher their affinity. Through

the monitoring of the different inter-gain during the training of the auto-encoder,

classes can be merged together and be considered as one for the training of a

CAE model afterward.

Algorithm 3 shows a training step of the class affinity pre-training approach re-
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turning the loss of the given step as well as the inter-gain between the different

classes. It is to be noted that the calculation of the different gains does not inter-

vene in the model itself as it is only updated using the weights calculated with the

overall loss.

Algorithm 3: Algorithm of Affinity Auto-Encoder
Data: (T,C, S ) ∈ Rb×w× f × Nb × Nb

/* T: 3-dimensional array containing the time-series data */

/* C: Array containing the context information of the data */

/* S: Sample-weights used for the loss calculation */

Result: Model’s loss L, matrix G of inter-gains g for each category C
1 RT ← AE(T,C)
2 L ← MSE(T,RT , S )
3 LC ← (LC1 ,LC2 , . . . ,LCn)← MSEC(T,RT , S )

4 LCσ
←

∑n

i=0
LCi

5 LP ← (LC,LCσ
)

6 G ← []
7 foreach LPi ∈ LP do
8 WPi ← get weights(LPi , AE,O) // Gradient Descent

9 RT Pi ← AE(T, P,WPi) // Reconstruction using updated weights

10 LPiC ← (LPiC1 ,LPiC2 , . . . ,LPiCn ,LPiCσ
)← MSEC(T,RT Pi , S )

11 GCi ← []
12 foreach (LPiC j ,LC j) ∈ (LPiC,LC) do
13 GPiC j ← (1 − LPiC j/LC j)/lr // lr : learning rate

14 GPi .append(GPiC j)

15 G.append(GPi)

16 return L,G

The different parts of this algorithm can be detailed as followed:

• line 1 − 6. Using a classic AE architecture, the total loss of a given step LCσ

is calculated and then decomposed into n LCn, one for each class.

• line 7 − 11. Looping over each obtained loss, a gradient descent calculates

the weights associated with the current loss LPi. These weights are then

used to calculate a new loss LPiC, which represents the loss of a step cal-

culated on all of the data, but with the model trained solely on the class

associated with the current loss LPi. This loss is composed of n LPiCn, again

one for each class
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• line 12 − 14. For each LPiCn, the gain GCiC j is calculated using both the loss

LPiCn and the global loss LC j which represents the loss of all of the data

were used during this step instead of only the data of the class i. This gain

represents how well the model is able to reconstruct the data from a class

while it was trained on the current step using another class’ data.

The evolution of the inter-gains over the different steps and epochs can then be

used to determine the affinity between the different classes. Classes with high

affinities mean that decoders trained with these classes merged together are likely

to perform as well as separate decoders for each class. This helps decrease the

number of decoders in the CAE model, decreasing its training time as well as its

size, without a too significant loss in performance. This architecture is named the

grouped CAE (G-CAE) for the remainder of this chapter.

8.3/ EXPERIMENTS

In this section, the preliminary experiments using the CAE in the maritime domain

are presented. This study aims at specialising the different decoders in one or

more NS in order to detect fraudulent fishing activities. This is still a work in

progress yet to be published and this section does not present final results.

First, the data acquisition and formating are presented with an emphasis on the

features extracted from the AIS data. Then, the remainder of the section presents

the results obtained so far including the effect of the affinity score, the choice of

status groups as well as the accuracies obtained by the different trained decoders.

8.3.1/ DATA ACQUISITION AND FORMATING

For the experiments, the satellite-based AIS dataset used is provided by the Nor-

wegian Coastal Administration and collected by Statsat and consists of 4 050 019

441 AIS messages from all over the world, which corresponds to the messages
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collected during the year 2020. From this dataset, messages from fishing boats

are extracted using their ID resulting in a dataset of over 35,000 windows of 50

AIS messages.

For the first early experiments, 5 different types of fishing boats were used

(namely drifting longlines, set longlines, squid jigger, trawlers, tuna purse seines),

each coupled to the two main statuses of these boats (Engaged in Fishing, Under-

way using engine) resulting in 10 different contexts. Table 8.1 shows the different

contexts created with the number of windows they each have.

Context no Boat Type NS samples Group no

0 drifting longlines Under way using engine 42663 1
1 drifting longlines Engaged in Fishing 42663 1
2 set longlines Under way using engine 35023 1
3 set longlines Engaged in Fishing 33802 2
4 squid jigger Under way using engine 34698 2
5 squid jigger Engaged in Fishing 35000 2
6 trawlers Under way using engine 29139 1
7 trawlers Engaged in Fishing 30948 1
8 tuna purse seines Under way using engine 34435 1
9 tuna purse seines Engaged in Fishing 38216 1

Table 8.1: The different contexts were created using the chosen types
and NS. It also shows the groups created by the affinity calculation.

From each message of the AIS dataset, relevant features were selected, namely

position (latitude, longitude), timestamp (t), and speed (s). Also, we enrich the

features with:

• ∆t: the time difference compared to the preceding message from the same

ship

• ∆DV : the difference in meters on the latitude with the preceding message

from the same ship

• ∆DH : the difference in meters on the longitude, DP the distance to the port

We have chosen to split the relative distance with the previous message between

∆DH and ∆DV to keep the direction of movement.
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Each window is linked to the context label that is used, like the flight phase for

ADS-B, to separate the dataset into separate sets for each of the decoders to be

trained on.

These data are then separated into a context-labeled training dataset as well as

an evaluation dataset. The vessels contained in the evaluation dataset are not

present in the training dataset. Indeed, we made sure through their identifier that

they were not used in both. Once the model is trained with the training dataset,

each decoder reconstructs the whole evaluation dataset to compare the recon-

struction scores obtained in the different contexts. These scores can give first

insights into the efficiency of the CAE model to detect abnormal activities in a

given context.

8.3.2/ PRELIMINARY RESULTS OF THE CAE

We trained the CAE architecture presented in Chapter 7 with some different hy-

perparameters: latent space of 75, batch size of 256, a window size of 50.

Using this CAE architecture, with 10 decoders, we obtain 10 ∗ 10 losses distri-

butions, one for each context reconstructed by each decoder. In Figure 8.1, the

different loss distributions for each context obtained on the decoder specialised in

context 3 are shown. The average loss of every context seems to be overall sim-

ilar, meaning that this decoder in particular seems to properly reconstruct most

of the data, regardless of their context. Results on other decoders show similar

behaviours.

These results can be explained by three different phenomena:

1. First, the different decoders might not have managed to properly specialise

themselves in a specific context. This could be caused by a training being

too short or the decoders’ architecture being too small.

2. The uniformity of the data. If regardless of contexts, vessels follow the same

straight trajectory shape in most of their cruises, then these trajectories can
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Figure 8.1: Losses of the decoder specialized in context 3
for each of the evaluation subsets.

be easily reconstructed by any of the decoders.

3. The chosen latent space is too wide. If the encoder properly manages to

encapsulate all the data contained in its input in a latent space that is big

enough, then the different decoders, similarly to point 2, regardless of their

context, will be able to reconstruct most of the data. Only the more complex

trajectories would be troublesome and yield higher losses.

For the first point, when analysed, the losses of each decoder, on their context

data, have a limited number of data yielding high losses when compared to other

contexts. This shows a specialisation acquired during training. This point is fur-

ther discussed with the G-CAE.

For the third point, reducing the latent space until the reconstruction loss gets

higher is a simple way to limit this phenomenon. Lastly, the second point could be

a result of the data being actually all very similar. If the data are uniform across

the different contexts, then it can be hard to prevent a small loss on most of the

data using any of the decoders. This means that, while these contexts have a

meaning for domain experts, they are not relevant in regards to the data analysis.

In addition, this means that different decoders are trained on very similar data and
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this introduces redundancy in the CAE architecture.

To avoid that, we can limit the number of decoders and specialise them in multiple

contexts. The choice of the concatenated contexts would then be done through

the use of the affinity score presented earlier in this chapter to transform this

classical CAE into a G-CAE.

8.3.2.1/ AFFINITY SCORE AND GROUPING

After 3 epochs representing over 3000 steps of Algorithm 3, the calculation of

the different affinities led to an inter-gain affinity between each context. Using a

spectral clustering technique (Von Luxburg, 2007) on these affinities, the different

similarity matrices created on a different number of groups showed that having

2 groups of contexts led to the best results. We used this technique because it

creates clusters using the eigenvectors of a matrix usually deriving from a set of

pairwise similarities between the points to be clustered, which is exactly what the

inter-gain affinity matrix represents.

These two groups of context are: contexts 3,4 and 5 in one group and the rest in

the other. The group numbers are shown in Table 8.1 in the column Group no.

8.3.2.2/ RESULTS WITH G-CAE

Using the groups of contexts defined by the spectral clustering on the affinity

score, the G-CAE model is trained with only 2 decoders. The first effect of this re-

duction is a CAE architecture having less trainable variables, reducing its training

time as well as its size. To be more precise, the trainable parameters went from

1,930,000 parameters to 450,000.

As shown in Figure 8.2, the losses of the epochs on both training and valida-

tion data are presented. While there is a slight discrepancy between the training

losses, the validation losses stayed very similar with and without the grouping,

meaning the G-CAE did not lose reconstruction capabilities compared to the CAE.



126 CHAPTER 8. VALIDATION OF THE APPROACH USING MARITIME DATA

Once trained, the losses of the two decoders are presented in the boxplots in

Figure 8.3 and Figure 8.4.

Figure 8.2: Training losses of the CAE with and without
context grouping.

Figure 8.3: Boxplots of the evaluation losses of the
decoder trained on group 1.

These boxplots confirm the trend that was noticed on the CAE architecture with-

out the grouping. On data group 1, there seem to be data points that are well

reconstructed by the first decoder, but not by the second decoder. Such a dif-

ference between the two decoders can be explained by their training on different
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Figure 8.4: Boxplots of the evaluation losses of the
decoder trained on group 2.

data, effectively specializing them. This, for at least one of the two groups of con-

text, resulted in the detection of context-dependent data and with that, enabling

the possibility of detecting contextual anomalies in AIS using the CAE.

8.3.3/ DISCUSSION

The goal of these experiments in AIS data is to answer the last research question

RQ3: Is the CAE a field-specific approach or can it be extended to other

transport domains?.

Using the CAE on AIS data has shown that, regardless of the context, most fishing

vessel trajectories can be reconstructed by any decoders trained on a subset of

the training data. This is due to the fact that most of the said trajectories are

straight lines that could not be associated with any specific context.

However, these first experiments also showed that some outliers were detected

by some decoders, but not by others. This phenomenon was accentuated by the

G-CAE results. This is an encouraging observation for anomaly detection as this

would mean that some trajectories can be very specific to a given context, and

could go unnoticed by a generic auto-encoder but not by the CAE.
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Regardless of the potential efficiency of the CAE approach, detecting data spe-

cific to a context proves that the architecture can be used in AIS data, answering

RQ3.

8.4/ SUMMARY

This chapter presented the first experiments on the AIS data using both the CAE

model and its updated version, the G-CAE, with its affinity score calculation to

reduce the number of decoders. This effectively limited the size of the model

without having any noticeable influence on the accuracy of the CAE model.

Using Pierre Bernabé’s own AIS data architecture, we successfully showed that

it was possible to acquire context-awareness on vessel data despite most of the

data being very similar. This means that the model could effectively be used to

detect vessels claiming a false NS.

Future experimentation to the presented results will propose a cross-evaluation

dataset with mislabeled trajectories to evaluate the anomaly detection capabilities

of the approach.

This ends the third part of this thesis about the experiments done using the CAE

model. The next and last chapter concludes this dissertation and presents per-

spectives and future work.
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CONCLUSION AND FUTURE WORK

This last chapter draws up a review of the thesis work that has been carried out

over the last three years. First, we provide a concluding word on the research

objective and its different research questions proposed in Chapter 1. Then, we

propose perspectives and future work aiming at completing and improving our

approach.

CONCLUSION OF THIS DISSERTATION

The ADS-B protocol is currently being deployed world-wide in an effort to im-

prove flight management. ADS-B requires participating aircraft to broadcast their

information periodically in an encoded message. This technology embodies the

shift from independent and non-cooperative surveillance technologies, historically

used for aircraft surveillance, to dependent and cooperative technologies. In this

new context, ground stations need aircraft to cooperate as they depend on air-

craft’s GNSS capabilities to determine their position.

Since 2020, ADS-B has been compulsory in most air-spaces but the protocol itself

stayed sensibly the same as it was imagined twenty years ago when cybersecu-

rity was not of the highest priority. As a result, anyone with the proper equipment

can receive and create messages freely. This liberty in both emission and recep-

tion makes ADS-B vulnerable to spoofing, and more precisely to attacks called

FDIA whose purpose is to create fake surveillance messages conscientiously re-

129
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specting the protocol in order to dupe the air traffic controllers to believe in untrue

situations.

Although ADS-B is not the only protocol used for flight tracking – e.g., radar tech-

nologies – it is, as of today, a central brick in the means of surveillance used by

public air transportation. In this context, there has been a growing interest in con-

ducting research on anomaly detection systems that address these new threats

(Strohmeier et al., 2015b). Among the different existing solutions, some are based

on Machine Learning (ML) anomaly detection models. These models already find

applications in many different domains like power systems (Wang et al., 2018) or

sensor networks (Malhotra et al., 2016) and have become quite popular in recent

years. One downside of these models is their need for consequent data availabil-

ity to achieve meaningful results. It is indeed critical for ML researchers to have

access to reliable and genuine data sources to train their models. Thankfully, for

ADS-B data, the OpenSky Network (Schäfer et al., 2014) is one of the best ADS-

B source in terms of accessibility and data history in air transportation. Thanks

to its historical database, any researcher can easily obtain surveillance data from

almost anywhere on the globe.

From this environment, the question of securing ADS-B using ML led to the estab-

lishment of the examination of the state of the art in three different domains: False

Data Injection Attacks (FDIA), the different existing cybersecurity technologies for

ADS-B and the ML models for detecting anomalies in time-series. The analysis of

these domains led to a better definition of the different baselines this thesis was

built upon as well as different shortcomings that needed to be addressed:

• While many different models exist in the literature to detect anomalies in

ADS-B data, none of them properly tackles the question of FDIAs and to

what extent ML models could be used to detect such attacks. Most of the

studies create their own handmade attacks, often disregarding any realism,

thus not really giving any closure on the efficiency of ML models to detect

FDIAs.
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• The recent solutions to detect anomalies in multivariate time-series do not

seem to properly acknowledge context from which the data are issued. In

applications like the ADS-B protocol, it is primordial to add contextual aware-

ness to a model to properly differentiate normal situations from anomalous

ones.

From these different findings stems the main research objective of this thesis that

is to investigate the benefits of adding contextual awareness to unsuper-

vised ML models to better detect FDIAs in air traffic surveillance data.

This objective led to three research questions we identified as follows:

• RQ1: To what extent unsupervised ML algorithms can detect False

Data Injection Attacks in ADS-B data?

• RQ2: Is using the context of a data helpful in detecting anomalies?

• RQ3: Is the CAE a field-specific approach or can it be extended to

other transport domains?

From these observations, we oriented our work towards the different contributions

of this thesis: the CAE model, the data pre-processing architecture for ADS-B

data and the experiments in both ADS-B and AIS protocols.

THE CAE MODEL

The basis of the CAE model itself uses the architecture of a classic AE

model (Liou et al., 2014) made of an encoder and a decoder. The main difference

with other AE is its unbalanced numbers of encoder and decoder depending on a

context feature. The number of classes a context feature can take directly impacts

the number of decoder the CAE will have.

The creation of the CAE model aimed at answering RQ2. The hunch behind that

idea was that to detect FDIAs in ADS-B time-series, the context in which they
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are issued is primordial. From the related work, while neural network models like

AE are well suited to detect FDIAs, they are usually trained with as many train-

ing examples as possible, disregarding the context of the input data. With the

CAE however, while ADS-B data is still always encoded by the same encoder, the

different decoders manage to specialise in one specific context. Chapter 5 ex-

tensively presents the CAE architecture and how it is used along with a threshold

selection method to detect anomalies in multivariate time-series.

The CAE model by itself does not quite answer RQ2 though. There is a need to

evaluate it and compare it against other ML models used to detect FDIAs and see

if context helps to the detection of FDIAs, which is done in Chapter 7.

THE ADS-B DATA ARCHITECTURE

For these experiments, we needed a stable and reliable source of ADS-B. Thanks

to already existing tools to both aggregate and pre-process ADS-B data like the

Opensky-Network (Schäfer et al., 2014) or the traffic library (Olive, 2019), creating

an end-to-end pipeline from raw data to a training and evaluation dataset for ML

model has never been as possible as it is today.

To complete said pipeline presented in Chapter 6, we added different missing

parts:

• Different format conversions enabling the use of raw data.

• A method based on the calculation of Vincenty distances between related

ADS-B messages enabling the detection and the filtering of outlier mes-

sages.

• The improved phase identification using the fuzzy logic introduced by Sun

et al. (2017) and taking into account the distance from the departure and

arrival airport to improve its accuracy in case of an FDIA attack.
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THE ADS-B EXPERIMENTS

With the CAE and an operational data pipeline to evaluate ML models, experi-

ments on ADS-B data could be realised in order to answer RQ1 and RQ2.

RQ2 was directly answered by the creation and evaluation of the CAE model.

The different experiments made during this thesis to compare this model to other

baselines used to detect anomalies in ADS-B messages showed an improvement

at detecting more realistic abnormal situations while still detecting coarse FDIAs.

It also showed good reactivity on real-life anomalies compared to other AE archi-

tectures.

As to the RQ1, answering it is not straightforward.

First, ML model can be used to detect FDIAs using solely ADS-B data. They have

shown good accuracies on most coarse anomalies and the addition of the context

awareness improved further these results.

On the other hand, for more complex anomalies, even though adding context

awareness to a model helped detect more subtle anomalies than with other mod-

els, there is a limit from which these attacks go undetected. Future consideration

in this domain could be to study the potency of an FDIA going undetected by ML

models. Indeed, if an undetected FDIA does not disrupt the traffic, is it then worth

detecting?

THE AIS EXPERIMENTS

Finally, and as a mean to broaden horizons of the CAE model, first experiments

on the AIS protocol were presented in Chapter 8. The AIS protocol is the VTS

equivalent of ADS-B for ATC and, as such, has very similar problems related to

security.

This opportunity allowed us to have a ground for experiments aiming at answering

our RQ3. These experiments, done with Ph.D. candidate Pierre Bernabé, showed

encouraging results on the use of AIS data to detect anomalous behaviour from
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fishing boats. This is still a work in progress and the results need to be refined

and compared to other approaches to give a definitive answer to the use of the

CAE model in VTS domain.

FUTURE WORK

From the different presented contributions, several extensions and improvements

can be identified for future work. The CAE approach itself on anomaly detec-

tion tasks, while it has already shown good results on ADS-B data, needs to be

confronted with other datasets from domains outside transport data. To that end,

many time-series datasets exist like the SWaT (Secure Water Treatment) dataset

(Goh et al., 2016) or the SMD (Server Machine Dataset)1 to further experiment

on the CAE and show its genericity.

These extra experiments would be a good opportunity to test on aspects not tack-

led by experiments presented in this thesis. These aspects can be divided into

3 different orientations: new sources of data, CAE model improvements and ex-

tended experiments.

NEW TYPES OF DATA

The frame of the thesis was limited to the use of ADS-B. One of the conclusions of

the different experiments presented in this dissertation is that, with ADS-B alone,

it can be tedious to detect all FDIAs and to properly discriminate them from real-

life anomalies. Including other data sources to the training data could help to add

additional context to models. Some of these sources include:

• Weather data. Course inconsistencies and changes of altitude in ADS-B are

often due to meteorological events. Including them in the input data could

1https://github.com/NetManAIOps/OmniAnomaly

https://github.com/NetManAIOps/OmniAnomaly
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give additional insights to the model not to treat some events as anomalous

but rather due to weather emergencies.

• Other mode S data. For instance, in his thesis, Sun (2019) showed that it

was possible to decode COMM-B messages and compare the data found

there to the ones found in ADS-B. In addition, these data combined together

could enable the calculation of the wind spind by comparing the true air-

speed to the ground speed of a flight.

• Adding data from the close surrounding flights. This could add another layer

of context to the data of a given flight by showing the trends of the trajecto-

ries of other airplanes in its vicinity.

DEVELOPING THE CAE MODEL

The CAE model developed in this dissertation brings forth other implementation

ideas to improve its own effectiveness and the effectiveness of other models, such

as:

• Multi-thresholding to try and separate the gravity and nature of anomalies.

Indeed, the different experiments showed disparities of anomaly score de-

pending on the anomaly detected. Using different thresholds would enable

the model to take into account these disparities. This could lead to a differ-

ent level of alarms and possibly allow, to some extent, a distinction between

real-life anomalies and FDIAs.

• Expending the contextual awareness to other types of models. The ap-

proach of dividing the contexts could be implemented into different other

architectures such as VAE or transformers. This architecture could then

be able to eventually take advantage of context aweraness to improve their

accuracy.

• Different decoders depending on the complexity of the data. As shown in

the experiments, the complexity of the data between the different contexts



136 CHAPTER 9. CONCLUSION AND FUTURE WORK

can vary quite sensibly leading to disparities in loss between the decoders.

One way to palliate this would be to use bigger decoders for contexts with

more complex data. While this approach could be hard to implement on

applications with many different contexts, this could help have better results

on a smaller number of contexts.

EXTENDED EXPERIMENTS

Extended experiments could bring more insights on different aspects of the mod-

els like:

• A deeper evaluation of the impact of the hyperparameters. For instance,

parameters like the size of the latent space or the size of the different en-

coder/decoders have shown to have quite an extensive effect on the recon-

struction and the overall performances of the CAE model. Developing a

more extensive analysis on the impact of the different choices made to train

the model could help improve its performance.

• Complexity analysis for the affinity calculation. As shown in Chapter 8, the

pre-training affinity calculation can help reduce the number of decoders the

CAE model gets by merging similar contexts together. While experiments

are still underway for publication, an analysis of the complexity of this ap-

proach, based on the number of epochs necessary to calculate this affinity

score, could help analyse the time gains compared to a standalone CAE

model.

FINAL WORDS

Through a large amount of open ADS-B data available for researchers, the study

of air traffic anomalies using Machine Learning has never been as easy as it is

now. The different chapters of this thesis presented a new take on analysing
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ADS-B data to raise potential alarms in the sky. The end-goal of the work pre-

sented would be the integration of the trained model into a security chain aiming

at helping controllers in their everyday work.

Concerning the CAE architecture, the experiments made during this thesis

showed that its contextual awareness allowed it to better detect anomalies com-

pared to other ML models. These results will hopefully lead to more comparable

studies using context when dealing with multivariate time-series.
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To face the ever-growing number of aircraft flying in the world
airspace, the Air Traffic Control (ATC) needs to adapt and propose
new technologies that are both cheaper to produce and more
accurate, sometimes at the expense of the cybersecurity of
its systems. The Automatic Dependent Surveillance-Broadcast
(ADS-B) protocol is one of the latest compulsory advances in
air surveillance and perfectly depicts this tendency: cheaper to
maintain and to implement thanks to inexpensive transponders
installed in each aircraft broadcasting their GPS information
but way more vulnerable than older technologies. This is due
to the change of paradigm that the ADS-B embodies. Older
technologies like primary and secondary radars were watching
the sky using powerful antennas tracking flights in a given area
while with ADS-B, radars do not scan the air but rather directly
receive information sent by each aircraft. For this reason, and
because of the absence of encryption and authentication in
the protocol, it is particularly vulnerable to False Data Injection
Attacks (FDIA). FDIAs are messages either created, modified, or
deleted by malicious individuals with the intent to disrupt traffic
management. To limit these threats, different solutions were
proposed using both the physical layer (analysis of the signals’

strength, multilateration . . . ) and the logical layer (data fusion,
group verification) including Machine Learning models. The
main incentives for the latter are the recent data sources and
tools available to obtain flight tracking records. This allowed the
researchers to create datasets and develop Machine Learning
models capable of detecting anomalies in En-Route trajectories.
In this context, we propose a novel multivariate anomaly detection
model called Contextual Auto-Encoder (CAE). It uses the baseline
of a regular LSTM-based auto-encoder but with several decoders,
each getting data of a specific flight phase (e.g., climbing,
cruising, or descending) during its training. To illustrate the
CAE’s efficiency, an evaluation dataset was created using real-life
anomalies as well as realistically crafted trajectory modifications,
with which the CAE, as well as three anomaly detection models
from the literature, were evaluated. To complete this work, and to
show the genericity of our approach, experiments on the maritime
domain are presented at the end of this thesis. This choice was
motivated by the Automatic Identification System or AIS being
a similar protocol to the ADS-B with similar problematics but
for vessels. These new experiments led to an extension of the
original model using an affinity score to merge contexts together.
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Résumé :

Pour faire face au nombre sans cesse croissant d’avions volant
dans l’espace aérien mondial, le contrôle du trafic aérien (ATC
pour Air Traffic Control) doit s’adapter et proposer de nouvelles
technologies à la fois moins coûteuses à produire et plus précises,
parfois au détriment de la cybersécurité de ses systèmes. Le
protocole ADS-B (Automatic Dependent Surveillance-Broadcast)
est l’une des dernières avancées obligatoires en matière de
surveillance aérienne et illustre parfaitement cette tendance
: moins cher à entretenir et à mettre en œuvre grâce à
des transpondeurs peu coûteux installés dans chaque avion et
diffusant leurs informations GPS, mais bien plus vulnérable que
les technologies plus anciennes. Ceci est dû au changement
de paradigme que l’ADS-B incarne. Les anciennes technologies,
comme les radars primaires et secondaires, surveillaient le ciel
à l’aide de puissantes antennes pour suivre les vols dans une
zone donnée, alors qu’avec l’ADS-B, les radars ne scrutent
pas l’air mais reçoivent directement les informations envoyées
par chaque avion. Pour cette raison, et du fait de l’absence
de cryptage et d’authentification dans le protocole, celui-ci est
particulièrement vulnérable aux attaques par injection de fausses
données (FDIA pour False Data Injection Attack). Les FDIA sont
des messages créés, modifiés ou supprimés par des personnes
malveillantes dans le but de perturber la gestion du trafic. Pour
limiter ces menaces, différentes solutions ont été proposées
en utilisant à la fois la couche physique (analyse de la force

des signaux, multilatération...) et la couche logique (fusion
de données, vérification de groupe), y compris des modèles
d’apprentissage automatique. Les principales motivations de
ces derniers sont les sources de données récentes et les outils
disponibles pour obtenir des enregistrements de suivi de vol.
Ceci a permis aux chercheurs de créer des jeux de données et
de développer des modèles de Machine Learning capables de
détecter des anomalies dans les trajectoires En-Route. Dans
ce contexte, nous proposons un nouveau modèle multivarié de
détection d’anomalies appelé Contextual Auto-Encoder (CAE).
Il utilise la base d’un auto-encodeur LSTM ordinaire mais avec
plusieurs décodeurs, chacun recevant des données d’une phase
de vol spécifique (par exemple, montée, croisière ou descente)
pendant son apprentissage. Pour illustrer l’efficacité du CAE,
un ensemble de données d’évaluation a été créé en utilisant
des anomalies réelles ainsi que des modifications de trajectoire
réalisées de manière réaliste, avec lesquelles le CAE, ainsi que
trois modèles de détection d’anomalies de la littérature, ont été
évalués. Pour compléter ce travail, et pour montrer la généricité
de notre approche, des expériences sur le domaine maritime sont
présentées à la fin de cette thèse. Ce choix a été motivé par
le fait que le système d’identification automatique ou AIS est un
protocole similaire à l’ADS-B avec des problématiques similaires
mais pour des navires. Ces nouvelles expériences ont conduit à
une extension du modèle original en utilisant un score d’affinité
pour fusionner les contextes entre eux.
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