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Titre : Méthodes d’apprentissage automatique appliquées à l’analyse des signaux d’utilisations des
grands calculateurs
Mots clés : Séries temporelles, Apprentissage, Statistique, HPC, Optimisation convexe

Résumé : L’objectif de cette thèse est de détermi-
ner quelles méthodes statistiques peuvent actuel-
lement être utilisées pour améliorer la compréhen-
sion de l’utilisation qui est faite d’un grand calcu-
lateur.

Nous décomposons le calculateur en trois par-
ties : matériel, logiciels et utilisateurs afin de dé-
gager trois pistes de recherches qui nous paraissait
pertinentes.

Nous proposons un modèle permettant la pré-
diction de la consommation électrique d’un calcul
avant qu’il ne soit placé dans la file d’attente, ainsi

le logiciel qui gère cette file d’attente peut piloter
la consommation du calculateur.

Nous cherchons également à visualiser plus fa-
cilement les données relatives aux évènements dans
le calculateur qui peuvent être textuelles ou un
nombre d’occurrences.

Enfin nous proposons de regrouper et décou-
per des séries temporelles issues de senseurs posés
sur les calculateurs du CEA.

Ces méthodes sont donc bien utiles pour les
informaticiens et peuvent être originales pour les
statisticiens.

Title : Statistical and learning methods for the analysis of signals from HPC computer
Keywords : Time series, Machine-Learning, Statistics, HPC, Convex Optimization

Abstract : The aim of this thesis is to determine
what statistical methods can currently be used to
improve the understanding of the use of a compu-
ting center.

We decompose the computer into three parts :
hardware, software and users in order to identify
three relevant research directions.

We propose a model allowing the prediction
of the power consumption of a computer before it
is placed in the queue, so that the software that
manages this queue can control the computer’s

consumption.

We also seek to visualise more easily the data
relating to events in the computing center which
can be textual or a number of occurrences.

Finally, we propose to group and slice in re-
levent parts time series from sensors installed on
the CEA’s computers.

These methods are therefore very useful for
computer scientists and can be original for statis-
ticians.



Résumé en français
Le CEA opère des centres de calculs qui sont extrêmement sollicités en in-terne et par des partenaires scientifiques et industriels. Un enjeu important estla surveillance du bon fonctionnement des calculateurs HPC et de leurs périphé-riques. Pour cela le CEA a déployé une plateforme matérielle et une chaîne detraitement logicielle qui enregistrent et traitent de nombreux signaux temporelsou agrégés issus de ces matériels.L’objectif de cette thèse à cheval entre les mathématiques et l’informatiqueest l’utilisation et la définition de nouvelles méthodes statistiques et d’appren-tissage pour exploiter toutes les données d’utilisation des grands calculateursafin mieux comprendre son utilisation : classifier les utilisations de différentesressources, détecter les comportements aux limites, détecter les dérives ou picsd’utilisation.Nous commençons par identifier les cas d’usages pour lesquels des mé-thodes statistiques auraient un apport significatif dans la gestion des grandscalculateurs. Pour cela, nous décomposons le calculateur en trois grandes par-ties : le matériel, les logiciels et les différentes personnes qui interagissent dansle centre de calcul. Cette décomposition nous permet de contextualiser les don-nées que l’on peut collecter et comment les exploiter. Cela nous permet de dé-finir des pistes de recherche qui sont explorés dans le reste de la thèse.Une première application est la prédiction de la consommation électriqued’une allocation de ressources avant même son ordonnancement grâce aux in-formations données par l’utilisateur dans sa demande de ressources de calculau logiciel chargé de les ordonner. Nous détaillons pourquoi cette prédictionest indispensable pour piloter la consommation électrique du calculateur. Aprèsavoir bien délimité quelles informations peuvent être utilisées et quelle quan-tité peut être prédite, nous proposons unmodèle basé sur les instances passéespour réaliser cette prédiction. La simplicité de ce modèle nous permet de pro-poser une version particulièrement adaptée pour une utilisation en production.Enfin, nous évaluons la prédiction de la consommation globale future du calcu-lateur de ce modèle une fois les allocations ordonnées.Les experts utilisent souvent des données collectées sur les évènementstelles que les journaux système ou les résultats de logiciels profiler pour mieuxcomprendre l’activité a posteriori. Nous proposons donc de faciliter l’analyse deces données grâce à une analyse statistique et une visualisation. Pour cela, nousdétaillons quels pré-traitements des données semblent nécessaires avant depouvoir conduire une telle analyse et s’ils semblent envisageable avec le format
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actuel des données collectées. Dans le cas favorable, nous proposons une trans-formation des données qui semble pertinente avant l’utilisation de méthodesd’analyse statistique et visualisation classiques. Nous décrivons alors les diffé-rentes possibilités ainsi que les compromis de chacune pour justifier le choixd’utiliser la projection du résultat de notre transformation sur les composantesprincipales comme visualisation des données liées aux évènements.
Enfin nous proposons un modèle de regroupement et segmentation de cer-tains signaux temporels extraits par le CEA. Nous proposons d’abord une ex-ploration et un modèle des ces données pour identifier les caractéristiques quisemblent pertinentes à extraire. Nous formalisons l’ajustement de ce modèleaux données comme un problème d’optimisation convexe et proposons uneméthode de résolution spécifique plus rapide sur des grands signaux. Cetteméthode de résolution nous permet d’utiliser un autre a priori qui semble plusadapté à nos données et à la segmentation.
Cette thèse conclut que les méthodes statistiques sont utiles pour la ges-tion d’un grand centre de calcul quand les données extraites sont appropriéesà leur usage. Réciproquement, ce type de données peut motiver des modèlesoriginaux dans le domaine de l’apprentissage automatique.

Contexte
Le progrès est ce qui fait l’histoire et l’humanité d’une société. C’est une évo-lution dirigée vers un idéal. Cette évolution se décompose en l’alternance dedeux grandes taches : la mobilisation de la créativité humaine pour imaginerune situation désirée et sa confrontation avec la réalité complexe. Il est clair quel’expérience du monde physique est indispensable au progrès, mais la créationd’un scénario potentiel est tout aussi nécessaire pour qu’une expérience fasseprogresser la société ou qu’elle valide les anticipations du scénario. La modé-lisation est initiée par l’imagination d’un modèle. La manipulation du modèlese décompose en plusieurs opérations sur les quantités du modèle, appeléesaussi "calcul". Mais ces opérations n’ont plus besoin de cette étincelle initialed’imagination, bien que le calcul n’ait aucun sens en dehors du modèle imaginépar l’Homme. Ainsi, nous avons pu rapidement utiliser des outils, de simples pe-tits cailloux comme le suggère l’étymologie latine du mot "calcul" par exemple,pour nous aider à manipuler ces quantités irréelles qui sont le fruit de l’esprithumain. Le calcul a toujours été lemoteur du progrès, unmoteur qui consommela créativité humaine pour produire un scénario, une anticipation. Aujourd’hui,ce moteur est matérialisé par un outil présent dans la vie de tous, même dansles pays les plus reculés : l’ordinateur.
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Avant de devenir un assistant pour de nombreuses autres tâches plus oumoins quotidiennes comme aujourd’hui, la fonction des premiers ordinateursétait de construire des représentations d’un modèle facile à confronter à la réa-lité. Le modèle était conçu pour être aussi précis que possible, c’est pourquoice processus est appelé "simulation". Ces représentations sont donc aussi com-plexes que la réalité pour être confrontées à elle, il est parfois impossible pourl’hommede les calculer par lui-même car le nombre d’opérations est trop impor-tant et l’homme, même le plus expérimenté, trop lent pour mener à bien le cal-cul. Ainsi, la puissance de calcul, c’est-à-dire le nombre d’opérations effectuéespar seconde, d’un ordinateur est un facteur limitant du progrès, une ressourceque l’on doit produire au maximum et dont l’utilisation doit être optimisée sil’on veut progresser plus vite, notamment dans le domaine technologique. C’estpourquoi, aujourd’hui encore, la course à la puissance de calcul est un enjeumajeur pour nos sociétés.
Dans lemondemoderne, la simulation a surtout une application industrielle.Elle permet à l’industrie de réaliser l’ensemble de la conception d’un produitcomplexe dans le monde immatériel du numérique, réduisant ainsi considéra-blement le coût du prototypage, les conséquences d’un échec de conceptionet accélère la recherche et le développement de plusieurs ordres de grandeuren modélisant des situations qui ne pourraient jamais être expérimentées outrès rarement. Pour répondre à ce besoin croissant de l’industrie, des machinesspécialisées pour fournir la plus grande puissance de calcul possible sont re-groupées dans de grands centres de calcul et sont partagées entre plusieursutilisateurs. Au fil du temps, ces superordinateurs sont devenus plus grands etplus complexes afin de produire de plus en plus de calculs à un rythme plus ra-pide, c’est pourquoi on les appelle les centre de calcul haute performance (highperformance computing abrégé HPC en anglais).
L’administration des centres de calcul est donc une industrie à part entièreavec une véritable production : le résultat des calculs, et ses usines remplies demoteurs du progrès technique : les ordinateurs. Contrairement aux ordinateursà usage personnel, les acteurs humains qui gèrent le centre de calcul ne sont pasles mêmes que les utilisateurs de ces ordinateurs. La gestion du centre de cal-cul que les clients paient comprend le renouvellement des machines, la fourni-ture d’énergie pour leur fonctionnement, la gestion des externalités qu’elles pro-voquent... Mais la particularité de cette industrie est que ceux qui interagissentdirectement avec l’outil de production qu’est l’ordinateur le font souvent pour lecompte des clients. Les utilisateurs imposent eux-mêmes à la machine une listed’opérations à effectuer dans un format plus ou moins restrictif. Ainsi, contrai-rement à toutes les autres industries, la production est faite par les clients viales moyens de production et non par les employés du propriétaire de ceux-ci.
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Bien entendu, l’administration de l’ordinateur contraint l’utilisateur afin qu’il nepuisse pas abuser de son droit d’utiliser la machine. L’administration peut aussidécider d’utiliser la machine avec des privilèges pour son propre bénéfice oupour faciliter l’utilisation de la machine. Mais ce qui est payé par le client est ledroit de l’utiliser pour effectuer les opérations autorisées qu’il souhaite, donc larentabilité d’une telle industrie n’est possible que si les utilisateurs sont libresde demander à la machine d’effectuer leur séquence d’opérations. En d’autrestermes, l’administration peut encadrermais pas imposer strictement lamanièredont les moyens de production seront utilisés pour produire.
Cette séparation entre les utilisateurs et l’administration de la machine renddifficile la compréhension de son activité par l’administration. L’administrationprogramme souvent les ordinateurs pour qu’ils enregistrent les événements liésà leur utilisation. Cependant, il n’est pas possible d’interpréter les opérations élé-mentaires tant elles sont nombreuses. De plus, les utilisateurs ne partagent gé-néralement pas le détail des opérations qu’ils effectuent car ils sont des acteursindustriels et les codes et résultats qu’ils ont produits ont une valeur qu’ils nesouhaitent pas partager. Les opérateurs du centre de calcul ne peuvent donc nisavoir ce que les utilisateurs calculaient exactement aumoment où les donnéesont été produites, ni savoir ce que fait exactement l’ordinateur au moment où ilest en production sans autre information de la part de l’utilisateur. Les donnéesproduites par le suivi des machines sont donc nombreuses, mais mal structu-rées et souvent incomplètes. A l’heure actuelle, ces données sont principalementlues et utilisées par des opérateurs humains lors d’un incident pour caractériserl’origine du problème (on parle alors d’analyse forensique) ou pour concevoir leprochain modèle de supercalculateur. Ce travail est d’autant plus long et fasti-dieux que le supercalculateur devient de plus en plus complexe, ainsi que lescodes qui produisent les événements enregistrés.
Cette impossibilité pour l’administration de déterminer le type d’utilisationde la machine par les utilisateurs n’a pas été un problème depuis le début del’utilisation des premiers supercalculateurs etmême jusqu’à très récemment. Eneffet, l’augmentation de la puissance de calcul a été principalement dominée parle développement de nouvelles machines plus puissantes. L’illustration la plusconnue est bien sûr la loi deMoore, qui postule une augmentation exponentielledu nombre de transistors sur la cartemère. Pendant plus de 30 ans, la fréquenced’horloge des unités de calcul, c’est-à-dire la fréquence temporelle des opéra-tions arithmétiques élémentaires à effectuer, a également doublé presque tousles 18mois. Ainsi, la compétitivité du gestionnaire de l’ordinateur était beaucoupplus déterminée par sa capacité à changer régulièrement et rapidement les ma-chines pour des modèles plus récents que par l’optimisation de l’administrationde la machine. De plus, les programmeurs étaient beaucoup plus incités à op-
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timiser leurs programmes en raison des contraintes plus fortes sur les autresressources informatiques. Cependant, cette analogue de la loi de Moore n’estplus valable pour les fréquences d’horloge des processeurs, qui n’ont pas aug-menté depuis au moins 2005. Seul le nombre de transistors sur une carte mèrede même taille continue de croître de manière exponentielle et de faire face àses propres défis. Cela signifie qu’un programme ne peut espérer tirer parti desrécentes avancées matérielles que s’il peut distribuer efficacement le calcul àplusieurs unités en parallèle. Les programmes s’exécutant sur les ordinateursHPC sont donc encore plus complexes et il est donc encore plus difficile pourl’administration de les caractériser sans connaître le code qui les a générés.
Mais la situation est en fait pire aujourd’hui et nécessite un changement.L’amélioration des équipements ne suffit plus car un nouveau facteur limitantest apparu récemment et concerne également les équipements récents : laconsommation électrique. La puissance consommée par opération ne diminueplus de manière exponentielle comme auparavant. Maintenir une croissanceexponentielle de la puissance de calcul nécessite aujourd’hui une croissance ex-ponentielle de la consommation électrique comme illustré par la figure ci-après.Cette croissance n’est pas durable, un très gros ordinateur peut déjà consom-mer autant d’énergie que la production d’une centrale thermique. Au-delà de lacroissance exponentielle du prix de l’heure de calcul en raison du coût de cetteénergie, il est physiquement impossible d’augmenter la puissance de calcul dansun futur proche. Il est donc nécessaire d’adapter l’utilisation de l’ordinateur àl’énergie disponible et d’optimiser aumaximum son fonctionnement. Il est doncnécessaire de réduire au maximum les indisponibilités liées à la maintenanceou aux incidents et d’optimiser l’allocation des ressources informatiques afinde réduire les pics de consommation voire de s’adapter à la production d’éner-gie disponible. Tout cela nécessite une bonne compréhension de l’activité dela machine : il doit être possible de trouver des synergies entre les différentesdemandes des utilisateurs.
Mais l’interprétation des données dont nous disposons pour ce faire est troplongue et coûteuse pour être systématique car seule l’expertise humaine est ca-pable de faire cette analyse. Dans le même temps, nous assistons à l’essor desméthodes d’apprentissage automatique et des techniques statistiques qui as-pirent à mieux comprendre et contrôler des systèmes complexes produisantde grandes quantités de données. Ironiquement, ces techniques sont renduespossibles par la puissance de calcul disponible pour entraîner desmodèles com-plexes et par des ensembles de données étiquetées massives. La question estdonc de savoir s’il est possible d’automatiser totalement ou partiellement cetteanalyse avec desméthodes statistiques ou dumoins de fournir des outils fiablespour faciliter la compréhension de l’activité de la machine tout en respectant
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Évolution de la puissance électrique consommée par le calculateur le plus hautclassé du TOP500 à l’instant considéré enMégaWatt (MW, échelle de 0 à 30 MW)entre Juin 2005 et Juin 2020.
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les contraintes de production telles que la confidentialité des utilisateurs et lesperformances. Cela nécessite d’identifier les données qui peuvent être systéma-tiquement extraites de la machine tout en respectant les droits des utilisateurset en ne dégradant pas les performances de la machine.

Contributions
Les contributions de cette thèse à chaque chapitre sont les suivantes :
Chapitre 1 : Nous présentons une représentation simplifiée des différentesparties qui interagissent dans un centre HPC, utile pour comprendreles données qui peuvent être collectées et les applications possibles decelles-ci. Nous décrivons comment la politique tarifaire d’un centre de cal-cul peut être utilisée pour piloter la partie humaine du centre de calcul parle biais d’incitations. Nous proposons trois applications ou pistes de re-cherche de l’apprentissage automatique pour la surveillance des centresde calcul qui méritent d’être creusées.
Chapitre 2 : Nous décrivons quelles données disponibles pour l’ordon-nancement peuvent être utilisées pour effectuer une prédiction de laconsommation électrique de l’allocation d’un job. Nous avons proposé unmodèle basé sur les instances ou mémorisation pour prédire la consom-mation électrique moyenne par noeuds d’un job, nous en avons fait uneversion d’estimation au fil de l’eau pour le rendre adapté au suivi de laconsommation électrique de tout un centre de calcul dans un contextede production et nous avons évalué ses performances. Ce travail a étépublié dans l’édition 2020 de la conférence ISC-HPC.
Chapitre 3 : Nous constatons que l’analyse des journaux non formatés n’estpas un problème bien défini qui ne peut être résolu sans expertise. Nousavons proposé une méthode de visualisation des données d’événementshautement agrégées.
Chapitre 4 : Nous trouvons les caractéristiques des séries temporelles decommunication brutes d’octets et identifions que la plus intéressantepeut être extraite par un regroupement de sous-espaces après une nor-malisation bien choisie. Nous proposons une résolution efficace pour unmodèle générique de regroupement de sous-espaces pour les séries tem-porelles et décrivons la version la plus appropriée de cemodèle pour nosdonnées. Nous proposons une heuristique pour définir les hyperpara-mètres de ce dernier modèle.
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Introduction
The CEA (Commisariat à l’Énergie Atomique et aux Énergies Alternatives) isin charge of three High Performance Computing (HPC) centers and has installedthe necessary infrastructure to systematically collect and store data on the useof their computing resources using sensors and aggregation software. This datahas already been used to optimize the specifications for the different computingresources of the next supercomputer models. However, this data has not yetbeen used to classify the different programs executed on the machine.An interesting question is to better understand how the computing center isused and how this knowledge could improve the monitoring of HPC centers ingeneral. To answer this question, we propose a concrete review of the potentialcontributions of statistical signal analysis methods on the set of data that canbe connected and exploited in a production context.We identify several applications that could have strong positive impact onHPC center management if the potential information contained in the data col-lected can be extracted. Our first work presents a review of the different partsand actors of a HPC center and what data is collected. From this review, we pro-pose three research tracks on the computing center and the data available thatare worth digging.
• The first track focus on the monitoring of the power consumption of thecomputing center. In order to predict the electrical power consumptionof a user’s allocation of computing node, we propose an instance-basedmodel using the data the user provides when he submits his request. Wealso adapt the model to make it easy to update in industrial productioncontext. The prediction of ourmodel can be then used to reliably estimatethe global power consumption of the computing center when combinedwith the schedule of allocations. This implies our model could be usedto schedule resource allocation while keeping the power consumption ofthe computing center under control.
• Our second research track is the visualization of log and event data. Wefirst show that the automatic analysis of log data may not be reliable wi-thout any human preprocessing or supplementary information on the loggeneration. However, we show that when reliable error codes or identi-fiers are available to identify which events are the same, the data can bepresented in a very simple but helpful way for the human analyzing suchdata. But events data with such an aggregation seems to have an originalbehavior not well studied in machine learning. We describe them as high
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count data and we propose several consistent embedding of such kindof data to better visualize it. Further research to mine such data wouldrequire labeled data.
• The last research track is an unsupervised model of the time series datacollected by sensors. We first choose to focus only on the number ofincoming bytes to a computing node and review what interesting fea-tures may be extracted from the data. We propose a model to clusternodes implicated in the same allocation and segmented their time-seriesso that more reliable estimators of computing resources utilization canbe build. We accelerate the resolution of the model using convex optimi-zation techniques. They open up the path to variant to better match theprior knowledge we have on the data which ends up being interestingproblem for the machine learning field.
All this work is the first step toward practical applications ofmachine learningfor HPC management.

Context
Progress is what makes the history and the humanity of a society. It is anevolution directed towards an ideal. This evolution is decomposed in two greatstages : the mobilization of the human creativity to imagine a desired situationand its confrontation with the complex reality. It is clear that the experience ofthe physical world is indispensable to progress, but the creation of the scena-rio is just as necessary for an experience to make society progress, whether itvalidates the anticipations of the scenario. The modeling is initiated with theimagination of a model. The manipulation of the model is broken down into se-veral operations on the model’s quantities, also called "calculation". But theseoperations no longer need this initial spark of imagination, although the calcu-lation has no meaning outside the model imagined by Man. Thus, we were ableto quickly use tools, simple little stones as suggested by the Latin etymology ofthe word "calculus" for example, to help us manipulate these unreal quantitiesthat are the fruit of the human mind. Calculation has always been the engineof progress, an engine that consumes human creativity to produce a scenario,an anticipation. Today, this engine is physically embodied by a tool present ineveryone’s life, even in the most remote countries : the computer
Before becoming an assistant to many other more or less daily tasks like to-day, the function of the first computers was to build representations of a modeleasy to confront with reality. The model was designed to be as accurate as pos-sible, which is why this process is called a "simulation". These representations
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are therefore as complex as reality to be confronted with it, it is sometimes im-possible for man to calculate them by himself because the number of opera-tions is too great and man, even the most experienced, too slow to completethe calculation. Thus, the computing power, the number of operations perfor-med per second, of a computer is a limiting factor of progress, a resource thatwemust produce to the maximum and whose use must be optimized if we wishto progress faster, in particular in technology. This is why even today the racefor computing power is a major challenge for our societies.
In the modern world, simulation has mainly an industrial application. It al-lows the industry to realize the whole design of a complex product in the imma-terial world of digital, reducing considerably the cost of prototyping, the conse-quences of a design failure and accelerates research and development by seve-ral orders of magnitude by modeling situations that could never be experien-ced or very rarely. To meet this growing need in industry, specialized machinesto deliver as much computing power as possible are grouped together in largecomputing centers and are shared among several users. Over time, these super-computers have become larger andmore complex in order to producemore andmore calculations at a faster pace, which is why they are called high performancecomputing (HPC) centers.
The administration of computing centers is thus a full-fledged industry witha real production : computing, and its factories filled with engines of technicalprogress : the computers. Unlike computers for personal use, the human ac-tors who manage the computing center are not the same as the users of thesecomputers. The management of the computing center that the customers payfor includes the renewal of the machines, the energy supply for their operation,the management of the externalities they cause... But the uniqueness of thisindustry is that those who interact directly with the production tool that is thecomputer often do so on behalf of the customers. The users themselves imposea list of operations to be performed in a more or less restrictive format on themachine. Thus, contrary to all other industries, the production is made by thecustomers via the means of production and not by the employees of the ownerof these. Of course, the administration of the computer constrains the user sothat he cannot abuse his right to use the machine. The administration can alsodecide to use the machine with privileges for its own benefit or to facilitate theuse of the machine. But what is paid for by the customer is the right to use it todo the permitted operations he wants, so the profitability of such an industry isonly possible if the users are free to ask the machine to perform their sequenceof operations. In other words, the administration can frame but not strictly im-pose how the means of production will be used to produce.
This separation between the users and the administration of the machine
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makes it difficult for the administration to understand its activity. The adminis-tration often programs the computers so that they record the events related totheir use. However, it is not possible to interpret the elementary operations asthey are so numerous. Moreover, the users do not generally share the details ofthe operations they are performing because they are industrial actors and thecodes and results they have produced have a value they do not wish to share.The operators of the computing center can therefore neither know what exactlythe users were calculating at the time the data was produced, nor know whatexactly the computer is doing at the moment when it is in production withoutfurther information from the user. The data produced by machine monitoringis therefore numerous, but poorly structured and often incomplete. At present,this data is mainly read and used by human operators during an incident to cha-racterize the origin of the problem (this is called forensic analysis) or to designthe next supercomputer model. This work is all the more time-consuming andtedious as the supercomputer becomes more and more complex, as well as thecodes that produce the recorded events.
This impossibility for the administration to determine the type of use of themachine by the users has not been a problem since the beginning of the use ofthe first supercomputers and even until quite recently. Indeed, the increase incomputing power was mainly dominated by the development of new, more po-werfulmachines. Themost known illustration is of course theMoore’s law,whichpostulated exponential increase of the number of transistors on motherboard.For more than 30 years, the clock frequency of the calculation units, i.e. the timefrequency of the elementary arithmetic operations to be performed, also dou-bled almost every 18 months. Thus, the competitiveness of the manager of thecomputer was much more determined by his capacity to change the machinesregularly for more recent models quickly than by the optimization of the admi-nistration of themachine. Moreover, the programmers weremuchmore incitedto optimize their programs because of the stronger constraints on the compu-ting resources. However, this kind of Moore’s law is no longer valid for clockfrequencies, which have not increased since at least 2005. Only the number oftransistors on a motherboard of the same size continues to grow exponentiallyand face its own challenges. This means that a program can only hope to takeadvantage of recent hardware advances if it can efficiently distribute the com-putation to several units in parallel. Programs running on HPC computers aretherefore even more complex and it is therefore even more difficult for the ad-ministration to characterize themwithout knowledge of the code that generatedthem.
But the situation is actually worse today and requires a change. The improve-ment of the equipment is no longer enough because a new limiting factor has re-
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cently appeared and also concerns the recent equipment : the power consump-tion. The power consumed per operation is no longer decreasing exponentiallyas it used to. Maintaining an exponential growth of the computing power re-quires today an exponential growth of the electrical consumption. This growthis not sustainable, a very large computer can already consume as much energyas the production of a thermal power plant. Beyond the exponential growth ofthe price per hour of computing because of the cost of this energy, it is physicallyimpossible to increase the computing power in the near future. It is thereforenecessary to adapt the use of the computer to the available energy and to op-timize its operation as much as possible. It is therefore necessary to reduce asmuch as possible the unavailability linked to maintenance or incidents and tooptimize the allocation of computing resources in order to reduce consumptionpeaks or even to adapt to the available energy production. All this requires agood understanding of the machine’s activity : it should be possible to find sy-nergies between the various user requests.But the interpretation of the data available to us to do this is too long andcostly to be systematic because only human expertise is able to make this ana-lysis. At the same time, we are witnessing the rise of machine learning methodsand statistical techniques that aspire to better understand and control complexsystems producing large amounts of data. Ironically, these techniques aremadepossible by the computing power available to train complexmodels and bymas-sive labeled data sets. The question is therefore whether it is possible to fullyor partially automate such analysis with statistical methods or at least providereliable tools to facilitate the understanding of the machine’s activity while res-pecting production constraints such as user confidentiality and performance.This requires to identify the data that can be systematically extracted from themachine while respecting the users’ rights and not degrading themachine’s per-formance.

Main contributions
The contributions of this thesis by chapter are the following
Chapter 1 : We present a simplified representation of the different part in-teracting in a HPC center useful to understand the data that can be col-lected and the possible applications of it. We describe how the pricingpolicy of a computing center can be used to monitor the human part ofthe computing center through incentives. We propose three applicationsor research tracks of machine learning for the monitoring of computingcenters worth digging.
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Chapter 2 : We describe which data available for scheduling can be used toperform a prediction of the electrical power consumption of a job alloca-tion. We proposed an instance basedmodel to predict the average powerconsumption per nodes of a job, made an online version of it to make itsuitable for the power consumption monitoring of a whole computingcenter in a production context and evaluate its performance. This workhas been published in the 2020 edition of the ISC-HPC conference.
Chapter 3 : We find that the parsing of unformatted logs is not well-definedproblem that cannot be solved without expertise. We proposed amethodof visualization of highly aggregated event data.
Chapter 4 : Wefind the features of raw byte communication time series andidentify that themost interesting one can be extracted by a subspace clus-tering after a well-chosen normalization. We propose an efficient solverfor a generic model for time series subspace clustering and describe themost appropriate version of this model for our data. We propose a heu-ristic to set the hyperparameters of this last model.
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1 - Issues and data for monitoring HPC cen-
ters

Our topic of interest is the monitoring of a particular type of computing facilities : the HighPerformance Computing Centers. This work may be applied on any kind of High PerformanceComputing centers, whether they are performing computation on floating numbers for simula-tion or on integers for cryptography. These centers aim to provide the most computing powerpossible to its users which implies constraint on available memory, disk read and write speedand interconnections between very efficient programmable chips or integrated circuits calledprocessing units.Other types of computing facilities may focus on data storage, like data centers for data re-plication and cloud storage which rather constraint storage size and disk read speed, or goodconnectivity, like web server hosting, cloud gaming or financial server which rather constraintnetwork latency and the location of the facilities. We do not expect our work to apply well onsuch type of facilities because the needs are very different. We won’t be referring to such facili-ties when using the name "computing centers".In order to find where machine learning can help the operation of a computing center weneed to formalize how the computing center can be described from a high level perspective. Acomputing center is an industrial system and any such system is complex. We need to formalizeit to have a better understanding on how it behaves and to identify what can be improved forproduction.We first decompose the computing center in main parts. Then we discuss what data can beobserved and collected about the interaction between them. This leads us to propose several re-search tracks for which we identify conditions for machine learning to be relevant in monitoring.

1.1 . Formalization of the different parts of a computing cen-
ter

A computing center can be decomposed in three parts interacting with each other : the ma-chine itself, the software running on it and the human users of the machine.The machine is the simplest part. Its behavior is given by the laws of physics which are inde-pendent of the software or human.
1.1.1 . Breaking up the hardware of a computing center

The machine itself is already a complex system. The main components are the computingnodes. We introduce what they are, how they are organized as a network and its two kinds ofinputs and outputs : data and electricity.
The computing nodes
The industrial production of an HPC center can be seen as the result of the execution of a highnumber of elementary instructions required by a user. A core is a set of electrical circuits capable
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of decoding and executing any sequence of instructions called a program. The core will be consi-dered as the smallest unit of a computing center in this work, but it is often composed of severalsmallest computational unit specialized or not in the execution of some common instructions(like multiplication or vectorized computation...). The instructions are executed at a rate given bya clock (a physical resonating quartz) so the rate of execution of a sequence of instructions iscalled clock frequency.
Not all instructions have to be executed in one sequence, instructions are often split in severalsequences so several cores can be used to execute a given set of instructions. We call parallel

computations or parallelism the fact that some instructions of a given set are executed at thesame time thanks to several cores. The core is the smallest computation unit of a computer whichcontains often 2, 4 or 8 core units in the case of Personal Computer. An HPC center maximizesits production by using many cores.
Cores by themselves are not capable of storing instructions and results of computations. Theinstructions and data are stored inmemorywhich can be read or written. The core are packagedin integrated circuit already containing memory with very fast access rate in the form of registersand several caches (organized in a hierarchy from L1, L2 and sometimes to L3). Such integratedcircuits are called CPUs (Central Processing Unit). CPUs are considered the most generic type ofProcessing Unit, they execute any program with reasonable performances. But cores and me-mory amount and distribution can be more or less specialized, often at the cost of being lessgeneric, resulting in other type of chips which are called differently : Graphical Processing Unit(GPU) specialized in computational graphics at first, Associative Processing Unit (APU) for massi-vely parallel data processing or Tensor Processing Unit (TPU). Some computer may be dedicatedto execute one very small set of instructions very efficiently like Field Programmable Gate Array(FPGA) or even Application-Specific Integrated Circuit (ASIC) used for cryptocurrencies mining.There are also new prototypes like neuromorphic chips or Quantum Processing Unit where theconcept of instruction can be quite different from other chips. The HPC centers considered inthis work and in the general case mostly use CPUs and GPUs but all the considerations on themonitoring of HPC center can be made for any type of chip.
The memory inside CPUs are rarely used by the user to store the instructions he wants toexecute and are more reserved for a better management of the cores. Other memory socketscalled RAM (Random-Access Memory) are used to store and transmit the instructions to the CPUthrough a shared communication bus, a data highway. All of these circuits are put on a mother-board which also include components to deliver electrical power, cool down circuits if neededand communicate with other devices. The resulting device is a computer. In HPC a computing

node is a computer as a member of a network which can be used to execute together a set ofinstructions.
The numbers of cores, clock frequency and amount of memory in caches or RAM must bechosen when building the node. These features will have implications on the rate at which aset of instructions will be executed. An HPC center can have different types of nodes for differenttypes of applications. For example, genetics computations often required to store long sequencesin memory that must be stored in RAM to be accessed, this means the size of RAM will be alimiting factor of a node while massively parallel applications are limited by the number of cores.A partition is a set of nodes which all have the same type in the HPC center.
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Distributed computing architecture of nodes

The computing nodes of an HPC center must be able to communicate with each other to beable to run a program together. The nodes are connected to each other thanks to high-qualitywired network called the interconnection network. The topology of this network is often desi-gned tominimize the latency of a subnetwork of given size, to increase the overall bandwidth andtominimize the interaction between two independently allocated subsets of nodes (it is often thefat-tree, the butterfly or the tore). The topology of the interconnection network implies variationof latency between any pair of nodes depending of the number of switches on the shortest pathbetween two nodes. In this work we won’t consider this effect and use a simplification where theinterconnection network is a simple intermediary between nodes which is agnostic to the pair ofnodes considered.
The interconnection network adds another layer of parallelism on top of nodes but withmoreconstraints. The parallelism inside a node can be based on multiple threads, where a thread isa sequence of instructions which can be executed independently. All of the threads executedby a node can be part of the same process, an instance of a program, and they will share theresources (core andmemory) assigned to the process by the node. However a process cannot beshared between several nodes since there is no memory shared by all nodes directly accessibleto the CPUs. This means that the parallelism layer between nodes can be used only by severalprocesses and the resources are distributed according to the ones available on each node.
The different inputs and outputs of the computing network

The HPC center also features auxiliary services to interact with the computing nodes. Thefunction of these services is to provide instructions and data to process by the computing net-work.
The most important auxiliary service is the File System, like NFS specified by [Shepler et al.,2003]. The file system is a set of devices which write data on permanent physical support. Thisallows the data to persist when system is shutdown and to transport the data. The file systemis often a set of hard drives (HDD) or solid state devices (SSD) in the case of personal computer.In the case of an HPC center a combination of several types of storage are used depending onthe trade-off between the access speed needed and the failure rate. An interesting illustration ofthis trade-off is the use of magnetic tapes to store results for a very long time because it is veryreliable despite the slow access rate and low price.
The file systemdeserves a particular attention. It can be a limiting factor in computation speedbecause the access to data stored in file system is very slow compared to the cached and RAMmemory but it must be used to store high amount of data between shutdown. The memory isalso a significant source of failures which are purely random because they come fromwear ratesand it can be very hard to detect them in advance.
The other main class of auxiliary services are connection utilities. They are servers acting asgateway between the computing center and the public Internet from which users connect to in-teractwith the nodes. Users can also use specialized nodes in graphical processing to interactivelyrender the result of their simulation.
Other servers are used for administration purpose. In the case of the studied HPC center, aserver is in charge of collecting utilization statistics and store them.
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Power supply and distribution
The HPC center must be continuously supplied with electricity to work. The power used isprovided by the electrical grid at industrial scale. The current is distributed to nodes, servers andstorage systems to keep them up. The electrical supply is by far the main cost of the biggest HPCcenters business model [Pospieszny, 2012]. The electrical consumption is naturally increasingwith the amount of computation.A big part of the power supply is dissipated by devices as heat. This heatmust be driven out sothat the nodes stay at the optimal temperature. Heat pipes often in copper are used to conductthe heat to heat exchangers. The heat exchangers are close to a cooling source which can be airor liquid. The cooling source is maintained cold by a big cooling system which is often a pumpwhich transfer the heat to the naturally present water or cold air around the location site of theHPC center and reject it as waste.
The COBALT and IRENE computing centers
Our data comes from two very large High Performance Computing centers which are hostedby the CEA called IRENE andCOBALT. The complete hardware specifications of the two computingcenters can be found at [CEA, 2022b] and [CEA, 2022a] respectively.Both computing centers are for research purpose, IRENE is focusing on public domain whileCOBALT is dedicated to the industrial research.More details on their hardware andother contem-porary HPC centers can be found in [Vetter, 2013].

1.1.2 . Distinction of the different software
To be executed programs must be send to the computing resources. This is made easy forhuman thanks to other programs. We classify the functions fulfilled by software running in acomputing center in three classes depending on how they interact with hardware and humansand who run them.
System software and resources management
Most of the system software are used to optimize the resources management and hide thecomplexity to the user behind simple interface. In particular, the users can use different type offile systems with very little practical difference thanks to file system management software like

HPSS (High Performance Storage System) which is able to handle the specificities of each storagesystem instead of the user.On apersonal computer, resourcemanagement software are all systemsoftware andhumansrarely interact with such software. However, for shared computers like an HPC center there mustbe a resource management software which assign resources and it must interact with users.Users do not have a direct access to computing nodes. Servers are used as a gateway to al-low users to interact with the nodes. This allows to regulate access to the computing resourcesthrough administration software. Almost every computer regulate the access to its content with asystem of privileges. The operators of the computing center have access to all the features whileusers are limited for cybersecurity reasons.To connect to the HPC center, a user must have an account. But having an account is notsufficient to be able to run a program. When the user logs in to the HPC center, he ends upconnected to a login node with generally insufficient resources for the program he want to run.To launch his program on potentially several computing nodes, he must submit a sequence ofinstructions to theResources and JobsManagement System (RJMS). It is a text file of commands
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called a script which instructs the programs to launch and in which order. The simplest kind ofscript is a command line, an executable with its arguments. The users also add criteria on theduration of the resource allocation, the number of nodes needed to run all the programs andthe maximum number of processes allowed if relevant. The user can also ask to interact directlyin real-timewith the node instead of running a script. An allocation of resources by a user is calleda job. Each call to an executable during the job is called a step.The RJMS fulfills the function of a job scheduler. It collects all the job submissions and definesan order in which the resources will be allocated. The way the order is set depends on the policyimplemented on the computing center. The scheduling policy may be defined by a priority asso-ciated to each user or group of user, it may also depend on the previous job allocations of thesame user or group of users.
Shared software for node
Given the current complexity of the programs, no developer specifies entirely the sequenceof instructions to execute. Instead, they use language compilers to write a source code that isunderstandable by human then translated in themachine language of the nodes. They also used

libraries of functions which are trusted subsequences of instructions to realize andmanage cer-tain computations. Those programs are very often launched by many users and they are madeavailable by the computing center administrators to users. They are known and trusted by theHPC center operators in general. Some users may use open source libraries (source code is avai-lable and free to use) or known programs from ISV (Independent Software Vendor).The administrators of the computing center may also provide other software to facilitate opti-mal settings for the available hardware and certain tests. For example, users may not have directaccess to the complete status of the machine but may use a profiler furnished by the computingcenter operators.
Application software
Once the RJMS allocated resources to a user, it will execute the programs inmachine languagethe users asked him to execute in the submitted script or open an interactive session for the user.Because the sequence of instructions is coded in machine language, it is very hard to reliablyidentify what are the instructions exactly for the administrator. It is possible to extract nameof functions also called symbols in the executable but users can choose unusual names andthis can be considered as retro-engineering which poses legal concern. This acts as a naturallimit of confidentiality for the user which generally does not want to share the details on what iscomputed.Although the users programs are not editable, they often use the shared libraries describedpreviously. In HPC, the users makes generally numerical simulation and run known industrialproduction code with the optimized libraries installed on the computing center. The librariescan be instrumented by the administrators to log some event that they can use to improve thecomputing center management or better understand the users need.The users’ software are probably where the administration of the computer center has theleast information and control.

1.1.3 . Understanding the human actors of a computing center
An HPC center is more than just a lot of hardware running a lot of software : it is maybe themost representative instance of a business model where a resource (here the computing power
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of the HPC center) is better used when shared. The pricing policy is the key element directly inthe hand of the computing center administration which drives how the users will interact withthe hardware through software. However, the users may also have incentives on which the ad-ministration has less control.
Economics of an HPC center
The rise of cloud computing in 2010 was already predicted [Harms and Yamartino, 2010] bythe fact that it allows to get an updated information systemwith high performance and quality ofservice at low cost [Gupta et al., 2013] and less ecological footprint. One reason is that the productof a computing center is a highly user specific, intangible, non-rival and non-excludable asset :once the results of the execution of the exact program the user wanted to execute is out, thereis no need to redo the computation ever again. This means that users of computer will do theircomputation only once in an ideal case and do not need the computing resources anymore. Itimplies that a computing center is more profitable when shared with a sufficient number of usersto always fill the jobs schedule of ideal computations that users need to do once. This profitabilitywill then benefit to every user since it allows concentrating efficientlymore computing power andhuman expertise tomaintain them in one place thanks to significant economies of scale, allowingnew possibilities at a lower price for everyone. When production is information itself, everyonewins by sharing the means to produce the information.
The incentives of humanactors are not external to anHPC center, they are a feature of theHPCcenter to align the users and administrators self-interest with a more efficient use of computingresources. These incentives are asymmetric gain and cost between users and administrators.The sharing of computing resources aims to transform users’ CAPEX (capital expenditure) intoOPEX (operational expenditure) when their need are not enough to justify that they build andmaintain their own computing center. It implies that the main incentive is the pricing policy ofthe computing center. Different pricing policy implies different users with different behavior.
Pricing as a tool of administration
The different pricing of HPC centers usage can be mainly split into three categories :
— Pay-as-you-go or On-demand pricingThis model is often used in cloud computing, the primary example is the main offer ofAmazon Web Service [AWS, 2022]. The users are charged per unit of time of allocation ofthe computing resources. The main feature of such pricing policy is that there is no unde-rutilization of computing resources from users point of view. It provides a lot of flexibilityto users but it also incentives them to minimize their use of the computing resources. Thistype of allocation imposes more constraints to the administration point of view since it ishard to predict demand, and it may quickly end up in situation where users compete forthe same computational resources at the same time.To smooth the spikes of demands, the service provider sells saving offers to users if theyreserve instances in advance, use more than a certain amount of resources in a fixed timeperiod or allow their computation to be temporarily stopped if needed (using a notificationsystem). The usage of resource can then be anticipated in the short term to fill more easilythe job schedule and incentive the users to run their job when the constraints are low fromadministration point of view.— Monthly rent, Project assignationCloud computing providers like OVHcloud [OVHcloud, 2022] can also propose to pay a
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monthly rent for a user-dedicated server. The advantage is that the user does what hewants and there is no job scheduling to do by the administration. However, the productionmay not be maximal, the user may sometimes not use the computing resources he paidfor.The computing centers for research often assign a quota of computing hours to a researchproject which must be consumed over a given time period. This means the computinghours are paid no matter what.In the case of public research, the quota is often given to users based on their projectsubmission as in the Juliot-Curie computing center. For private and industrial research,the companies can pay a share of the computing center and they get the same share ofthe computing hours of the center. This is the case of COBALT computing center. In such aquota systems, theremay be a penalty for users which do not use the computing resourceto attract users with a real need of computing hours at a cheap price.— Free of charge with prioritySome industries (applications in military, meteorology, geology prospection) know theywill always need more computing power at any time. In that case, it can be interesting forthe company or institution to have its own computing center, as Total and its computingcenter Pangea III. The users and administrators are then company employees. Multiplesharing system can be used for such computing center.In particular, a priority queue can be set up by the administration to define which activityof the company get more computing power depending on their need and the need of thecompany.Another case is when the requirements are very specific to the industry itself. The financialsector needs to have their servers as close as possible to the stock exchange to reducelatency as much as possible and may use dedicated servers.
These three categories of pricing policy imply very different incentives to users because theychange the cost structure of a computation andwe can expect that the usage of computing powerwill be very different if the pricing policy is different.
However, the cost structure is almost the same in every case from the administration pointof view. The main cost is more than before the electrical energy supply which is approximatelyproportional to the number of computing hours. But the marginal cost can be higher if the elec-trical power supplied spikes at high values : the same amount of electricity is often more costlyif it is delivered in spikes than when it is supplied uniformly in time. The administration mustalso perform maintenance regularly and fix any breakdown which reduce the availability of thecomputing center and can be interpreted as an additional loss. Finally, building the computingcenter is an initial cost that must be compensated when pricing the usage.
The pricing policy can be a tool to reduce the cost of administration of the computing center toincrease overall profitability. It incentives the users to constraint their usage against a reductionof their cost. Knowing how the users will use the computing center allows the administration toreduce all the costs. The pricing policy can smooth power spikes, allows anticipating when theregular maintenance can be done to avoid rejecting users asks for computing power as much aspossible and to reduce machine requirements when possible which reduces the building cost.
Sociology and Human Behavior
The pricing policy is a driving force of the users’ behavior but it has its limit to help the ad-ministration of the computing center. The user is human and can not be described as a simple
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agent maximizing a utility because the computing center is a shared means of production. Whata user does, can impact what others users will be able to do.
The users can try to compensate a bad choice of pricing policy for them. If they overestimatedtheir needs, they may have a penalty. Such users may run programs like cryptocurrency miningwhich canbe runon any type of computing resources to avoid penalty and get a little financial gainfrom the burned computing resources. This behavior can be considered as malicious becausethe cost is carried by the administration of the computing center and the others users may havetrouble to run legitimate programs. Other malicious programs like malware can run against thewill of the user too. It is in the best interest of everyone that the administration detects andshutdowns such programs.
The user decides which type of computing resources he will use and which programs to runto produce the results he wants. But because of many practical reasons, he may not use thebest hardware or software available to get the result. One reason is that changing the industrialproduction software is a very long process because the users must evaluate if the new codeis really the best choice and learn how to use the new one if they decided that it was worththe change. Not using the best software impacts the user production but also the production ofother users because a user using the suboptimal software will use the computing resources forhimself longer than needed. This means that it is in the best interest of the administration of thecomputing center to propose working sessions to promote new hardware and software whichare known to be more efficient for users applications.
A pricing policy can help to monitor the computing center but it is not sufficient at all. Tobe efficient, we need to include expert knowledge and information about what the users intendto do. A better understanding of the human actors using the computing center could make themonitoring more efficient and robust through a personalized pricing policy using data or meta-data collected on the user and its jobs.

1.2 . Contextualization of the collected data

To improve the monitoring of the computing center beyond the incentives of a simple pricingpolicy, precise data about computing center usage is needed. We can first use the meta-dataabout submitted jobs logged by the RJMS, which contains no information on the content of thejobs themselves but about the typical usage of the computing center by a user or a group ofusers. The administration of the computing center can also use sensors to collect data aboutthe usage of the resources and use them to guess what the users need. Finally, data about thecontent of the jobs themselves are hard to obtain because the users rarely share the source codeof their software but the codes can be slightly instrumented by changing the shared libraries usedto return interesting aggregated measures in what is called system logs files which are alreadyused for maintenance.
1.2.1 . Usage pattern from Job scheduling data

The RJMS is an administration software so it is easy to collectmeaningful data on how itmakesits task. However, data on the job content seems to be irrelevant in practice. Only the meta-data(data about the job but not its content) can be used as feature for a prediction of other data wecan only collect once the job is over.
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Constraint on collected data and malleability
Whenuserswant to run a job, they have to submit their request to the RJMS. The request oftentake the form of command line which call a text file with high-level sequence of instructions torun. A such text file of commands is called a script.The script will instruct the RJMS which executable files of the user must be run once the re-sources are allocated by the RJMS. The executables are unknown before they are started and itis often hard to guess what an executable will do just from its name for various reasons :— The users may use the default name for the output of a compilation (which is often a.out)— The executable could be the interpreter of a language (like python). The relevant name isthen the file used as input argument of the executable butwe can’t be surewhich argumentis relevant— Users may use the name to differentiate executables which result from different compila-tion settings for his own convenienceThat is why it is difficult to use the instructions inside the script for monitoring : the scriptitself is noisy and user-malleable. Another idea [Yamamoto et al., 2018] is to run simple decom-pilation tools like symbols extraction (the name of functions in the executable) to identify if twoexecutables come from the same source code but the exploitation of such information is hardbecause it can be very noisy and the user has no incentives to use the same symbols.This means that we must carefully focus our attention on meta-data related to job submis-sions to better understand the users’ utilization of the computing center.
User submitted and Job consumption data collected
Meta-data are much more reliable because the users cannot change them without practicalconsequences on the computational performance. The users need to ask for a precise numberof nodes and processes so that what they submitted run correctly. This data is directly related towhat the user want to do, it can be trusted.Other data provided by the user may or may not provide information on how he wants to usethe computing nodes depending on the computing center. Such data is the hard timelimit of a jobafter which it is killed by the RJMS. The value is needed to schedule jobs. But on computing centerlike COBALT, users often let this value at default (which is the maximal one) because there is nostrong incentive for users to give a right estimate. It often gives no information on the durationof the job but some computing center could incentive users to input a more representative valueof the job duration by charging the computing hour as a ratio of the timelimit set by the users.Finally, some data about the job itself are available only once it is over.
Aggregation with RJMS logging
Once a job is over, some observation can be easily recorded to have a better understandingof the usage. The RJMS can record the true job duration, which could not be used to schedule thejobs. The RJMS will often return the data aggregated at the whole job level as a log.Those data are combined with meta-data and logs information. The RJMS will log the userID and a timestamp about when it received the submission. In the case of COBALT, the user ismember of a group and the ID of the group is also recorded. Then it combines these with dataabout the time on the submission itself and the aggregated data about the job. The resulting datais about 4000 jobs a month, each job has about 15 features.The resulting data summaries how much the computing center was used in average at thegiven period of allocation. It can be used to better understand the usage of a computing center
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by user. However, it would be difficult to use such data for other computing centers becausethe user and group ID are specific to the computing center. The type of computing center alsoimplies different behavior in general, we may have less diversity of codes in industrial computingcenters than in a public research computing center. This implies that the information we canextract about usage pattern is very different depending on what is known on the users of thecomputing center.
1.2.2 . Information extraction with Communication data

Jobmetadata is useful to understand the habits of users but not the content of what they sub-mitted. While it is not possible to get the details on the instructions that a program contains, it ispossible to monitor how much it consumes computational resources of a node which could beuseful to understand users’ utilization of nodes. One particularly interesting metric is the num-ber of bytes exchanged between nodes already studied in HPC research field. However, it is notdirectly available, so we cannot apply the same analysis.
Collection of data at node level
With sensors on the nodes of the computing center it is possible to collect signals of usageof the computing resources of a node during a job allocation. In the case of COBALT computingcenter, more than 500 metrics are collected on 2000 nodes. Those metrics are directly related tothe code that the user is running. One advantage of using such metrics is that a job classificationmodel trained on the data of one computing center may be easier to use to classify job from thesame kind of data of another computing center because users tend to use the same productioncode for their application no matter the computing center.Some metrics collected on each node are CPU usage (in system time, user time and wait),allocated RAM, the number of certain functions’ calls, power usage... For most of the possiblemetrics, the values are sampled or aggregated every 5 seconds. They are sent to a statistic clusterthat runs a log aggregation software like Logstash [B.V., 2022] which aggregates the data in timeseries indexed by job to store them.One very interesting metric to attempt to characterize jobs is the count of the bytes comingin and out of a node. It is collected by the network card of each node. The bytes count’s valuesare regularly sent to the log collector and it computes how many bytes was sent and received byeach node. Asmost of themeasurements, the bytes counts are sent every 5 seconds. It is a trade-off between data precision and storage and limited bandwidth of the interconnection network.Given this data, as it is, it should be possible to compute features from it that enable an analysisof applications based on the data exchanged between nodes with tools of HPC.
Distinction with communication in HPC context
The importance of communication in HPC is the reason why the bytes count is an interestingmetric.In HPC, the communications refers to the data exchanged between workers which can bethreads or processes. The communications between nodes can be a limiting factor in computingspeed. Indeed, the transmission of data is slow compared to CPUs frequency and RAM memoryaccess. This explains the expansion of a whole field of HPC research dedicated to the study andoptimal reduction of communication loads in applications, the set of processes running toge-ther. Two widely used libraries in HPC, MPI [Gabriel et al., 2004] and OpenMP [Dagum and Me-non, 1998], allow managing communications between threads and processes respectively. The
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communication management of production ready application is generally very optimized andstrongly dependent of the type of application.The way distributed resources and workers are managed define the Parallel Programming
Model.While communicatingworkers are necessarily processeswhen they are ondifferent nodes,the workers inside nodes can be either processes or threads. We say the parallel programmingmodel is Full MPI in the latter hybrid OpenMPMPI in the former. There are several paradigm todistribute tasks, the most known is client server distribution model (also known as master andslave model) with the Peer-To-Peermodel.The communication patterns of an application that can be observed are strongly related tothe Parallel Programming Model and distribution model it uses. Those pattern has been studiedusing a specialized profiler like [Knüpfer et al., 2008] mainly as a tool to optimize a given applica-tion. The extraction of precise communications pattern often requires to instrument the sourcecode and imply an overhead which limit the ability to let it run during production. It is possibleto discriminate the different running applications with the reporting of such communication.That’s why we could expect that the evolution of the number of bytes received and send byeach node may contain characteristic patterns of certain jobs since communications are aggre-gated in such metric.

Distinction between applications by the raw inter-nodes communication pattern
However, the data we are collecting is not the same as in the case of study on HPC communi-cations.The byte’s counts are raw measure of information exchanged between nodes. There are se-veral differences between our data and the communications in the sense of HPC :— The network card is not aware of the data exchanges inside each node between workers,CPUs or caches. It implies that communications inside the node are ignored, in particularwewill not be able to discriminate between fully MPI job and hybrid OpenMP andMPI jobs.— Every byte is counted, they can be MPI’s communication, data to be read from/written ondisks or even control messages. As the bytes are aggregated, the behavior of resultingcommunication data can be very different of what we expect in communications’ analysisin HPC if they do not represent the majority of exchanged data.— When the network card counts an incoming or outgoing byte, it does not discriminatewhere the byte came from or where the byte goes. Every incoming byte is counted toge-ther no matter where it came from and the same holds for outgoing bytes. Even if com-munications in HPC sense are dominating, themethods of pattern analysis are not directlyapplicable.— The data are aggregated by step of 5 seconds, which is quite long compared to the per-iod (or frequency) of a CPU. The common study of communications patterns is often at amuch finer scale [Knüpfer et al., 2008], we expect that many patterns will be aggregated ifcomputational iterations period is less than 5 seconds.We will still call communication data the collected raw bytes counts even if it doesn’t havethe samemeaning as the classical HPC definition of "raw communication data" when we need todifferentiate them from the classical HPC sense.

1.2.3 . The state of monitoring of computing center
For now, we only presented data that are collected but not used currently for monitoring. Mo-nitoring of the computing center is often made with log data. We give the most generic definition
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of log data and describe, they are created and we present how it is used practically. Finally, wepresent the current state of automated processing of such data.
Logs for monitoring
Even with sensors data, it is impossible to observe the exact sequence of instructions andintermediary results in situ. To know what a program is currently doing, a developer must inadvance plan that the program will print information during its execution and include such ins-truction in its content.The event logs are files maintained by the operating software where programs are allowed towrite information as text strings about their execution. The event logs are then a way to monitorthe execution of a program and record the events about a software by the system which wereevaluated as relevant by the developers of the software themselves. That’s why they are also oneof the main tools used by the computing center administration to monitor the computing center.Each event is recorded as a string of human-readable text along with the timestamps of itsrecord. The string of text is also called the message. Although the text is human-readable, it ishighly dependent on how the software developer format it and fill it with value of interest whichmakes the text a semi structured content.Several conventions can be used to allow the exploitation of logs. The developer of a softwarecan allow its user to print different verbosity level depending on a criticality level (ERROR, WAR-NING, INFO or DEBUG level). The logs can be aggregated along with the name of the programsor Process IDentifier (PID) to improve subset selection of logs against such criteria.
Practical software solution in current HPC centers
Although made for human, aggregated system logs are notoriously hard to read by a human,even with a lot of expertise. One issue is that each developer will use a different log format forhis/her software. This means a log can really be interpreted only by a human who knows thesoftware which print such logs.To help the administration to monitor the computing center, logs are aggregated and parsedtomake visual rendering. Information in logs are combinedwith other data collected, in particularusage data. All aggregated, those data can be used to create alarmswith automatic threshold anda human operator can check the status of the system.The proposed tools for monitoring by the private sector are often an infrastructure to collectsome data andmetrics on the node usage and aggregate them in a visual display so that the ope-rators can visually monitor the usage of the computing center. Certain known log pattern can becollected to improve event detection. They also provide services like integration and deploymentof the material and support.Some example of such commercial solution are Datadog. Manufacturers like ATOS can alsoprovide tools to monitor their computing nodes.
State-of-the-art monitoring
Several papers have already been published on themonitoring of HPC center in the literature.Many articles focus [Nikitenko et al., 2016] on how to build a data extraction system to aggregatethem in a visual manner which is easier to interpret for the human. This is the step before ren-dering of data of the visualization pipeline, the rendering itself is often a commercial solution ormade by the operator of computing center directly. Such rendering is the most important toolfor monitoring.
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Monitoring is mainly human driven. The best indicator of a problem is a user calling HPCcenter support line because something went wrongwith one of his job. The HPC center operatorsalso try to build a reproducer, a program which goes wrong in the same way, using log files andinformation from the user on what he tried to do. The reproducer is then used to find where theproblem comes from and the operators may add some indicator to detect a similar problem nexttime if it was unknown before.
These steps are hard tomake automatically. The first step to automation of monitoring wouldbe to be able to identify logs that are generated by the same instruction of a program in the ag-gregated logs file. This problem is called parsing and it is notoriously hard to solve [He et al.,2016] with machine learning, and it is also very difficult to evaluate the quality of the result. [Zhuet al., 2019] made an extensive review of the state of the art of log parsers and present an indus-trial deployment of parser. They acknowledge that it cannot be reliable without regular humanintervention to update rules based preprocessing and control the concept drift introduced bythe changes of log structure because of upgrades of the software. This result in a painful main-tenance for engineers. Some papers claim to provide good results of event analysis [Klinkenberget al., 2017] on the monitoring of failure event but rarely describe how the logs were preproces-sed to make the analysis. So it is very hard to evaluate if the results are sufficiently good to beuseful in practice. Several parsing algorithms based on statistical analysis of the occurrence ofwords or tokens of a log line [Vaarandi and Pihelgas, 2015] were proposed, but it is very hard toreliably tell if they are accurate enough as preprocessing to not impact too much performanceof the monitoring of the sequence of logs as events once parsed as already pointed by [He et al.,2016].
The monitoring of HPC center using logs is as challenging as it is promising. It seems thatmachine learning has not enough guarantees to be reliably used without efficient preprocessingand choice of analyzed data. This already requires knowingwhat type of error wewant to identify,which somewhat defeats the original purpose of log analysis : discovering new ones.

1.2.4 . Simplified model of extracted data on the computing center

A global representation of the computing center studied in this work and data collected isshown figure 1.1. This sketch does not aim to represent all the part of the computing centerwith equal details but summaries previous sections about which data was available and usedin this work and where it comes from. The elements in the white rectangles are hardware part,the software part is in gray rectangles and the humans are not inside box. The Log collector isdescribed as a software which is often an implementation of syslog protocol, the logs data canbe stored in the same server or not.
The aim of this work is to propose methods to have a better understanding of this complexsystem using the data available. As we saw, the data can take many forms and combining themmay require expertise that deserve its own research field. Instead of working on the whole sys-tem,we focus on solving interesting issues involving only a subpart of thewhole systemdescribedfor which data can be combined.

1.3 . Research tracksproposals for themonitoringofHPC sys-
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Figure 1.1 – The computing center parts and related data collected implicated in our researchtracks. White rectangles correspond to hardware elements, the different parts of software areshown in gray rectangles. Humans actors or group are shown without box.
The arrows label the information flux and known interaction between elements.
The dotted rectangles are interactions enclosures : we have no reliable data about the interac-tions between components inside. These are the user data and the direct connection betweencore hardware components of the computing center.
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Section 1.3. Research tracks proposals for the monitoring of HPC system

tem
After describing more formally a computing center as a complex system and the collecteddata, we now propose some research tracks on the topic of monitoring such system or subpartof it using the statistical analysis of the collected data. We identify 3 issues that are worth digging :the prediction of power consumption of a job using its RJMS submission data, the visualizationof aggregated count data at the job or duration level and conception of well-defined summarystatistic about the usage of resources and Parallel Programming Model of a job using time seriesof collected metrics, in particular raw communications.

1.3.1 . Formalization of power consumption prediction
We saw that the main cost in HPC center operation is now the cost of electrical power sup-ply. Most of the HPC center act as a high demanding agent of the electricity market, the powerconsumption of an HPC can spike because of high demand of users. A prediction of the powerconsumption of a job may help in monitoring it. We first describe the ideal goal and how suchprediction may help a lot to achieve it, then we present what are the relevant assumption forsuch work to be useful for monitoring and finally add what features we need in the model used.
Monitoring power consumption of using incentives
We saw that the administration of an HPC center must collect some information about thecomputing resource usage of a user in order to allocate them for him. This work is automaticallymade by the RJMS that asks the user for the duration of the allocation, the type of computingnodes and how many nodes the user need.
The allocationpolicy of the RJMS is generally a priority queue combinedwith back-filling [Mu’alemand Feitelson, 2001]. At any time if the computing center can provide enough computing resourcegiven the demand for it, it will immediately allocate all the asked computing resource no matterthe potential spike of power consumption it may create. If all the computing resources are allo-cated, the RJMS will sort the waiting jobs submissions based on criteria that can be internal, likethe duration of the job, the number of nodes to allocate or the number of jobs already submittedby this user, or external, like a priority score on a user defined by the administration of the com-puting center which may depend of the price paid by this user for example. Back-filling allowsthe RJMS to satisfy faster a job allocation using their durations to fill the schedule and increasethe utilization of computing resources.
The RJMS could monitor the power consumption by using it as a supplementary constraintlike computing resource are. It could delay some jobs to smooth the power consumption of thewhole computing center in time. The problem is that the RJMS need to know howmuch a job willconsume before it is run, andwe already saw that application software run by users are unknownbefore it is executed.
One solution could be to ask the user to add in job submission send to the RJMS what theconsumption of his job will be. But this is a bad idea because even the user may not now howmuch his application will consume before running it and even in the very ideal case where heknows it, the user estimate is inherently user-malleable, he has incentives to give a strong unde-restimation instead of a fair value so that his job will be run earlier.
Thismeans theRJMSneeds apredictionmadeby itself to reliablymonitor the power consump-tion of the computing center.
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Case where reliable prediction is feasible
The feasibility of monitoring the power consumption of a computing center using the RJMSmainly depends first on the desired level of monitoring and the material available to realize it.Battery can be used to smooth unavoidable sharp transition in utilization but they can also bebigger to monitor a budget of energy fixed by the supply as [Dutot et al., 2017] to make the HPCcenter a electricity consumer of last resort like some cryptocurrency mining farm can do to get acheap electricity. The HPC center administrationmay also prefer to not add any delay in resourceallocation and act as demand in electricity market. The needed level will not be the same for allcomputing centers depending on the priorities of each one and it is out of the scope of this work.However, it requires having a prediction of a job power consumption before it runs, it is clearthat the reliability of the power consumption estimation that the RJMS can make is a very impor-tant factor of the feasibility of monitoring through the RJMS. This means that what impacts thereliability of estimation must also be taken into account.Some computing center will incentivize job redundancy. This is the case of an industrial com-puting center like COBALT where users paid computing hours in advance and are incentivized touse them no matter what. In such cases, it is clear that the job power consumption estimationwill be more reliable in average since the exact same job will be submitted several times by thesame user, with slightly different physical parameters. This may not be the case of all computingcenters, particularly in the case of on-demand pricing where we might expect user behavior tobe less predictable.We also assume that the administration of the HPC center has a prior knowledge about whattype of application users will generally run. This again applies well on an industrial computingcenter like COBALT. Users often interact with computing center administration and present themwhat common applications they will run on the computing center before using it. This allows theadministration to agglomerate users in group project which can be used to have an idea on howmuch of each computing resources (CPU, RAM, Inputs/Outputs or communication) they will usein advance. In cloud computing, administration rarely has any interaction with its users directly.So such grouping wouldn’t be available in much of the cases.We focused on the COBALT computing center in a attempt to make a proof-of-concept toknow if reliable prediction of global power consumption with statistical models is doable in aexpected good case.
The data, the predicted value and the model constraint
Because we want to use the estimation of the power consumption of a job before it is evenscheduled by the RJMS, we must restrict the model to use only the data available when the job’ssubmission is received by the RJMS. These data are composed of what the user must send to theRJMS for his job to be scheduled correctly and the executable location, the RJMS also uses theuser identifiers to schedule the job.Once the job is finished, the RJMS collects aggregated data on the job like the duration andtotal energy consumption and append the submission data and usage data to a log file that weuse to train our model. Naturally, our model must not use the usage data to make its prediction.However, the predicted value can be a function of any value in the data. The framework in whichthe power consumption prediction must be made is illustrated figure in 1.2.The data is also collected in a stream in production context, so the model should be fitted on-line to avoid storing data that may not be useful anymore after a long time. Although we expectusage value to be quite redundant in the short term, we can’t expect users to always have the
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Figure 1.2 – The part of the global computer center model implicated in the power consumptionprediction
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same usage. This could introduce "concept drift" [Webb et al., 2016] which would require retrai-ning the model. An online model handles this more naturally and there are several strategies tohandle it [Gama et al., 2014] provided the model is simple enough.We develop our proposal in chapter 2.
1.3.2 . Visualization framework for aggregated high-count data

We identify that having correct representation of high-count data is a major research trackfor machine learning to be useful to help monitor in industrial context. We first explain how largecount data naturally arise from industrial monitoring. Then we show how the HPC data naturallyfit in this framework. Then we show what assumptions can be made to get helping visualizationand the challenging issues that remain unsolved.
Monitoring and high count data
Complex industrial system composed by humans cannot be monitored only through moni-toring of physical quantities. Because human are in the loop, the monitoring is made throughevents which report what the system is doing in respond to some human command or otherevents. Because the system is complex, a chain of events more or less critical and relevant mayhappen and they are logged in some database. The number of events and their diversity in suchcontext can be massive. They are often aggregated so that we can easily group them by a cer-tain criterion when an operator needs to figure out what happen retrospectively. The groupingcriteria can be the expected severity of the event, the subpart of the system involved or the date.The hand made analysis of event data is very hard because it requires expertise about howhuman are expected to act and knowledge of which events are normal or not in which cases.Even if aggregation of events by counting them removes some information, it can be a simplebut efficient approach to visualize, compress or preprocess the dataset before feeding it to a
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model for training or prediction. It is then natural or even technically required to aggregate theevents to process and store them. Because they are many events in the groups, the resultingdata will be a time series or vectors of high counts.This is how high count data naturally emerges from the event monitoring of complex system.
High count data in HPC monitoring
We formalized the HPC center as a complex system in which humans are a subpart. So thereare many events which happen in response to humans commands and other events, and we candeduce many types of high count data.Such events occur in a sample space (in the probability theory sense) with at least three inde-pendent dimensions to aggregate them :
Time aggregation : Events can be grouped together if they happen during the same timeperiod. This period can be variable or not. Regular time windows are used when we wantto obtain time series of resource utilization. It is variable when we don’t know when therelevant period ends, particularly when we want to understand users’ behaviors. This isthe case of jobs where the duration of the job is not known in advance. Both aggregationcan be combined to obtain time series restricted to a job.
Computing units aggregation : The event happening in the same subpart of the compu-ting center must sometimes be aggregated to avoid that the data acquisition disturbs thecomputing center utilization. However, some events are collected on the node while theyare related to the usage of cores of the node. The reason may be that there is no wayto conceptually map event with a core (the shared node’s RAM utilization cannot be par-titioned in individual core RAM utilization). Another reason is that the sensors measuredevents at a fixed granularity and finer information is lost (the raw bytes counts are mea-sured by the node’s network card which is not aware of bytes exchanged between coreinside the node).
Software criteria : The software also create type of events which can be recorded and ag-gregated. It can be the call of a function or the reporting of a state value or event in alog file. This also mean that we have to define a meaningful event type. The type by whichevents are aggregated can be a software, a library of functions, a function or a line of code.In the case of log lines for example, logs can be aggregated with respect to the softwarewhich produce them, or by the line of the code which produce it. This implies that wemustat least be able to find log generated from a common software or even template.
Given all the events’ aggregation that can be performed, the statistical analysis of high countdata is necessary to better understand the utilization of an HPC computing center.
Use cases of high count data analysis in HPC monitoring
We proposed a proof of concept presented chapter 3 of high count data visualization formonitoring and understanding of computing center usage with log data and using two types ofaggregated high event count data to show how useful a model adapted to high count data canbe to better monitor the computing center.We looked at how it can be used for the log analysis which we expect will have a strong impacton the automatic early detection of problems. While it is easy to aggregate log by nodes, time andeven software, themain issue is that we need to group log linesmore precisely and this is hard todo. We first show that a very simple but efficient visualization of the evolution of the computing
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Figure 1.3 – The part of the global computer center model implicated in high count data analysis
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center can already be useful if we know how to group them by template, which is however veryhard to do reliably. Therefore, we perform high count data visualization on logs data of HPSSsubsystem where an identifier of the type of logs is also returned.
We also looked at count data available only once a job end. A great candidate for high countdata is the information extracted by light profilers which are added to shared library by the com-puting center administration. Like profilers, they return information about effective hardwareand software usage but aggregated on the whole run of a program to be "light" in the sense thatthey do not slow the profiled program and often count function calls or CPU cycles.
We summarize which part of the computing center are involved in this research track in figure1.3. The main issue with such data is the structural zeros which are hard to handle because theyare not explained by the low frequency of the event counted. That is also why we will not applysuch analysis to time series of counts that tend to have a lot of them.

1.3.3 . Time series analysis of raw communication metric
We finally propose a model of the time series of raw bytes’ communication. The model canbe used to build new estimators of resource utilization with less bias. We first present how es-timation of resource utilization is currently used. Then we show the limit of the currently usedestimators and which issue should be solved to improve them. Finally, we present a promisingsolution on the time series of raw bytes communication that we will be explained in depth inchapter 4.
Calibration of an HPC center with utilization data
We saw that the economic reason HPC center exist at the first place is to share the capitalexpenditure among users so that they all benefit from more computing power. This means anHPC center must be upgraded to remain economically attractive. While the software are keptupdated to the latest version by operators to benefit from their best performance, hardware
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must also be changed regularly, either because of failure or because new and better hardwareis available on the market. This raises important economic issues which are at the core of thebusiness model of an HPC center.
This means the administration must choose when the hardware is replaced and by what. Thereplacement has several costs : the price of hardware but also the duration where the computingresources changed won’t be available to users so they may not be able to run the programs theyusually run. The newhardwaremust be attractive enough for current users. So the administrationneeds to know what kind of computing resource is a limiting factor for the HPC center’s users.
Knowing the limiting factor of a job is not trivial and a part of the high performance computingresearch field is dedicated to this task. It often requires runningmodified codes that returnmoreinformation on what computational unit are doing, using, receiving and sending called trace. Butthis reduces the computational performance, so we cannot expect users to run them, and evenif they may sometimes do it, we cannot expect them to share what they found because it goesagain their confidentiality.
That is why sensors were added on the nodes of COBALT computing center directly to collectmore precise usage data withoutmodifications of software run by users andwithminimal impacton the computational performance.
Improve utilization understanding with sensors time series
The data collected by sensors can be used to estimate the needs of users with simple esti-mators. It is generally aggregated by jobs into multivariate time series. The operator will consi-der certain metric collected and compute some simple estimator on them for each jobs like theminimum, maximum, median or mean. The choice for the new hardware is based on these esti-mations. If CPU usage of a job is close to 100%, we expect in a first approximation that it showsthe job is limited by the CPU, we say it is CPU-bound. The same can be done with RAM usage.Another interesting metric is the amount of communication between nodes or storage disks. Ifthe number of bytes send or received is high then wemight expect the job is limited by the band-width of the interconnection network (we say it is communication-bound), the same analysis canbe applied for the data exchanged with storage disks also called I/O (Inputs/Outputs).
The needs of users are estimated thanks of this rational. But the time series property is neverreally used in the estimation. This can introduce bias in previous estimators. Indeed, a job is sim-ply the time period during which computing nodes are dedicated to running the user’s programsor interactive session with him. This means there are periods where no program is running, orthey take time to load to fully use the computing resources. These periods are still taken intoaccount with simple estimator of utilization. It may be useful to automatically detect with timeseries analysis when the program is performing the most intensive computation to restrict theprevious estimators only on the relevant periods in the data and also quantify how much time isnot dedicated to the main computation.
Another issue is that different nodes in the same job can perform different tasks or even beused by others at the same time. The previous estimators do not use the patterns that may allowto identify such partition of nodes and this information is lost. Being able to get such estimatorsby tasks requires clustering the nodes time series, if it is possible, then using previous estimatoron each group.
Thus, a systematic clustering and segmentation of the sensors time series would improveprevious estimators of the resource utilization by applying them to different groups and periodsand avoid mixing all of them.
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Figure 1.4 – The part of the global computer center model implicated in sensor data analysis
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Classify jobs by usage with raw byte communication data
Our goal is also to determine if the time series of sensor data can also provide useful informa-tion for practical monitoring although the reason they are extracted is having a better understan-ding of HPC center utilization for next HPC center design. Such information could be a methodto classify jobs and determine if resource utilization is suboptimal for example.
The full time series is available only once the job is over, we are in an offline learning frame-work. But we need that our time series preprocessing is fast enough to be run each time a job isover to return estimators that could be used to monitor next jobs. It is difficult to use each timeseries of the hundreds of metric collected per nodes for all the jobs because the computationof our preprocessing will at least take a linear time in the number of metrics used and it can bedifficult to interpret what we are modeling in the nodes’ utilization. So we must focus on fewermetrics.
We choose to focus only on the raw bytes’ communication data because it is one of the bestknown metrics to characterize the Parallel Programming Model of a program and a whole fieldof HPC research is dedicated to study finer pattern in communication as already detailed in sec-tion 1.2.2. We find that a clustering of nodes by task and segmentation of intensive computationperiod is possible using the patterns in the raw bytes’ communication, although communicationare highly aggregated by nodes and time period.
The involved part of the computing center of this work are presented figure 1.4. We presentour work on such preprocessing in chapter 4.

1.4 . Conclusion
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We introduce the subject of this thesis : the large-scale computing center. Like a personal com-puter or PC, a computing center is composed of hardwarematerial running software but contraryto PCs, the human actors are an integrated part of the computing center that must be modeled.This decomposition of an HPC center allow us to provide more context about the data we cancollect on it and its potential usage and the current state of its monitoring. Using this simplifiedmodel, we propose machine learning research tracks about using collected data to improve themonitoring that are detailed in further chapters of this thesis manuscript, starting with the mostinteresting monitoring that can be improved : the power consumption of the computing center.
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2 - Predicting jobpower consumptionbased
on RJMS submission data in HPC systems

This chapter is for the most part published in [Saillant et al., 2020].

2.1 . Introduction

2.1.1 . Power consumption, the new limiting factor
The primary material to run a computing center is the electrical energy. The Moore’s law is of-ten generalized to the observation that the computational performance of the computing centersincreases exponentially. Despite this exponential increase of the production, the electrical powerwas not themain issue at first : the growth of theHPC facility businesswas driven by the growth ofcomputations rate of nodes, in particular thanks to the growth of the clock frequency. The addedvalue by the computation speed is so high that it is always more profitable to increase frequencyeven if electrical power consumption increase. However, this growth of energy consumption isnot sustainable and has come up against more and more limits.
The physical limit of the clock frequency growthwas reached in 2000 years because of thermaldissipation and quantum physics limitations. The growth of computations rate was still sustainedthanks to the growth of the number of transistors in cores of decreasing size and the growth ofthe number of cores themselves. This implies that the applications was run on more and morecores and the optimization of the computations rate require a fine-gained study of the parallelismbehavior of each one. The growth of computation rate by the growth of the number of cores im-plies that the evolution of electrical power consumption is more and more in linear dependencyof the one of computational rate.
This implies that electrical power is now a limiting factor to increase the computation rate ofanHPC center. The cost of the primarymaterial, electrical energy, becomemuchmore significant.The electrical supply weights today more than half of the cost of the biggest HPC center businessmodel. The time evolution of the electrical power consumption of the largest HPC center since2005 is shown in Figure 2.1 and illustrates this exponential increase. The power consumptionof an HPC center will be a new limit in the HPC computer race as it may reach the order of theproduction of a thermal power plant (100 MW) for ExaFLOP performance [Bugbee et al., 2017]which implies drastic change of infrastructure and business model because electricity is hard tostore.
That’s whyminimizing electricity consumption to reduce production costs and environmentalissues is of ever increasing importance. It is illustrated by the creation of the Green500 ranking ofcomputer systems in 2007, it ranks the 500most energy-efficient computer systems to raise awa-reness other performance metrics. There are several way to leverage the power consumption is-sue. Themain one is power efficiency. In a common effort, themanufacturers buildmore efficienthardware and the HPC developers optimize the applications to reduce their power consumption.

2.1.2 . Monitoring through power-aware scheduling
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Figure 2.1 – Time evolution of the power consumption in Megawatts (MW) of the first HPC centerof TOP500 ranking from June 2005 to June 2020
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Another solution is to monitor the resource usage of the computing center. Indeed the ins-tantaneous power consumption of the computing center is not optimized to reduce the energycost, the users’ jobs are run as soon as possible. It implies that the power consumption can spikewhich increases the charged electricity price for the same total energy consumption. Withoutmonitoring it is also not possible to increase the power consumption when electricity is cheaper,in particular when new renewable electrical production is high and must be consumed.
Resource usage monitoring has several requirements. The power consumption must be firstmeasured at the desired precision and time resolution, this is done with watt meters on eachnode [Georgiou et al., 2014]. This implies that the measured power consumption is the aggrega-tion of the consumption of the cores of each node. Tomonitor the consumption wemust be ableto limit the global instantaneous consumption of the HPC center. The trivial solution is to boundthe consumption of the hardware with implemented manufacturers solutions, which generallylimit the clock frequency. But it is frustrating for the user to discover that his job is not finished ontime because of it, it may also crash the jobs, particularly in a parallel paradigm when nodes mayhave different clock frequency. A much better solution is to incentive the user to limit himself hisown consumption as the HPC center wish. This can be done thanks to a charging policy based onthe consumed energy measured by watt meters and the electrical price. However, this radicallychanges the HPC center business model because it transfers the electrical market price risk fromthe HPC center to the user.
We are more interested in a solution that doesn’t imply such change. The Resources and JobsManagement System (RJMS), or SLURM job’s scheduler is the subset of the general structure ofthe HPC center shown in Figure 1.2. It is the software in the current management of the com-puting center that have a jobs’ monitoring function. It monitors what will run in the short termwith respect to a scheduling policy. This scheduling policy could take the consumed power intoaccount tomonitor it without significantly changing the habits of users and businessmodel of theHPCCenter. The RJMS can then schedule jobs so that the power consumption does not go beyonda budget [Dutot et al., 2017] that may vary when starting a job run or follow any other monitoringpolicy based on power consumption [Borghesi et al., 2018]. This is called power-aware schedu-ling. It could avoids usage peaks and progressively reduces the global usagewhen electricity priceare too high and only delay jobs a little.

2.1.3 . Asserting the prediction possibilities
In practice, it is not so easy to implement a such policy because we do not have access tothe consumption of a given job before it is at least starting to run. The RJMS monitoring needs areliable estimation of jobpower consumptionwhenuser submit its jobs so that the RJMS schedulethem according to the implemented policy. This estimation framework is challenging, the onlydata that can be used for inference is the one asked to the user when he submits his/her jobto be scheduled and we may suppose that the users are not trustworthy. Figure 2.2 shows theestimation framework. We want to provide an estimate to the RJMS of the power consumptionso that it can monitor the power consumption of the HPC center which is the main operationalcost. This implies using only the data that are send to the RJMS to infer it.
The use of RJMS data in this type of problem has already been investigated using applicationtypes [Bugbee et al., 2017] or symbol information [Yamamoto et al., 2018] to derive a predictions.In these works, the data is not restricted to submission data.
An online model to forecast the elapsed time of the job using only the data given at submis-sion and the current user’s usage is proposed by [Gaussier et al., 2015] so that the RJMS can use
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Figure 2.2 – Context of the power consumption modelling.

backfilling more efficiently [Mu’alem and Feitelson, 2001]. This estimation is designed for back-filling and may not be good for power-aware scheduling. An estimate for memory usage and runtime using only submission data has been proposed [Tanash et al., 2019]. Although these papersdid not estimate power consumption, the used inputs suggest that user information is neededto provide a practical estimate when application types are not available.
Except in a few cases, the instantaneous power consumption of a user and the whole com-puter center can be predicted with workload information as the number of nodes, componentsused by the user’s jobs and runtime [Sîrbu and Babaoglu, 2016]. However the time evolution ofpower consumption within a job is not available in the SLURM log files. In a further study [Sîrbuand Babaoglu, 2018], submission data to predict job duration, and not power consumption, areused with the executable name as input data.
Our study consists of assessing the practical feasibility of estimation for the realistic frame-work for power-aware scheduling purpose by data exploration and a prediction model explai-nable and usable in production context.
Before proposing a model, we explore the data to define the best prediction target and pro-cess the raw data into relevant features. We propose an instance-basedmodel to predict averagepower consumption using only the submission logs and trusted user provided job data to theSLURM RJMS. We extant this model to production context with online computation which make
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it easier to use and maintain in production while a weighted model is introduced to predict theglobal power consumption of all jobs using instances re-weighting.
Submitted data appears to be sufficient to provide a good estimate of job power consumptionfor the RJMS. This can be used in power-aware scheduling with our generic model because jobsubmission is redundant. This model may be used in other industrial HPC facilities for power-aware scheduling because it uses only the data that is necessary for scheduling and because it iseasy to maintain, but further tests must be made using data from other computing centers.
The chapter is organized as follows : we first extract and pre-process log data from SLURMRJMS [Yoo et al., 2003] and we introduce an instance-based model to process the submitted dataas categorical inputs. The model is then adapted to remove biases and to handle streamed data.The final section presents the results.

2.2 . Extracted data and preprocessing

2.2.1 . The COBALT supercomputer and the SLURM RJMS
The data used for this application are collected from the COBALT 1 supercomputer, more pre-cisely, from its main partition which is composed of 1422 nodes ATOS-BULL with Intel Xeon E5-2680V4 2.4 GHZ processors that have 2 CPUs per node and 14 cores per CPU. The Thermal DesignPower of each CPU is equal to 120 Watts.
The energy accounting and control mechanisms are implemented within the open-sourceSLURM [Yoo et al., 2003] Resource and Job Management System (RJMS) [Georgiou et al., 2014].The data are recorded from accounting per node based on the IMPI measuring interfaces [Geor-giou et al., 2014]. IMPI collects data on the consumed power from all the components (e.g. CPU,memory, I/O, ...) of the node, temporally aggregates it and returns the consumed energy duringan elapsed time to SLURM. As it is impossible to differentiate between jobs running on the samenode, so it was decided to exclude jobs that did not have exclusivity on a node.
The collected dataset is the resulting logs of SLURM submission data of 12476 jobs run on thesupercomputer over 3 months at the beginning of 2017 and their respective consumed energy.The jobs that do not have exclusive usage of a node or for which the consumed energy is null arefiltered out.

2.2.2 . From raw data to relevant features
There are two potential outputs to predict : the elapsed time and the total consumed energywhich are both available once the job is finished. For various reasons (e.g. failure of jobs or sen-sors), null value can be sometimes returned for energy consumption. Only non-zero values ofenergy consumption are here considered.
Three groups of information provided to SLURM may be used to predict the output (a sum-mary is provided in Table 2.1)
1. Information on the user :

User Identifier (or UID) is a number identifying the user that submits the job. 200 sepa-rate UIDs were observed over the 3 months period.
1. https ://www.top500.org/system/178806
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Group Identifier (or GID) characterizes the users that belong to the same company orcommunity sharing the same group. This number allows the inclusion of an a priori onwhat type of job the user runs. 30 unique GIDs were observed over the selected period.
2. Type of resources required by the job :

Quality of Service (QoS) sets the maximum timelimit, and discriminates between testand production jobs.
Timelimit can be set by the user to benefit from backfilling. This is a continuous systemvariable, but only 520 distinct values were used over the 3 month period (430 by thesame user), showing that users often reuse the same value. Hence, we chose to discre-tize this variable by taking only the number of hours that are needed (c.f. Table 2.1)

3. Computing power quantities required by a job :

Number of tasks in parallel is defined by SLURM with option -n (e.g. the number of MPIprocesses if MPI is used)
Number of cores per task is defined by SLURM with option -c and is used for threadingmodels or if anMPI job needsmorememory than is available per core. This informationis combined with the number of tasks to form the number of nodes required and is notstored.
Number of nodes : SLURM combines the number of tasks and the number of cores pertask to define the number of nodes needed but the user may specifying this directly.

SLURM logs may also be useful for prediction :
Date of submission of the job. This cannot be used directly as input since no future job willhave the same date. However, some features can be computed based on the time of daythe submission was made (c.f. Table 2.1).
Final number of nodes that the SLURM allocated for the job. This is the same as the numberof nodes required in our data.
Start date of the job can differ from the submission date if the job has to wait to be run, butit is set by SLURM and not the user, so it is not used. The same holds for the end date.
Executable name could be used in some cases to identify the type of application the job isrunning. However, it can be irrelevant (’python’ or ’a.out’ are extreme examples) and usersmay take advantage to manipulate SLURM if it is used to define scheduling policy. Hence,it was decided to ignore this in our model.
Table 2.1 summarizes the model’s inputs and the potential outputs of interest. Although thenumber of cores per task is unavailable as it is not memorized by SLURM, it is an interestingvalue. The average number of tasks per node (tasks/node in Table 2.1) can be computed as anequivalent quantity. Redundant features, such as the required number of nodes that is given bythe SLURM RJMS but is almost always equal to the final number of nodes, are removed.
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Table 2.1 – Synthesis of the relevant handcrafted input features and outputs of SLURM for thestudied model.
Feature Meaning Comment

Potential raw Inputs Information before allocationUID User IDentifier Anonymized and unique identifierGID Group IDentifier Project membership identifierQoS Quality of Service Indicates if job is in test/production#nodes Number of nodes allocated Redundant with requested number#tasks Number of tasks in parallel E.g. number of MPI processessubmit Date of submission by the user Cannot be used directlytimelim Time limit before a job is killed Cannot be used directly
Computed features Knowledge incorporationtasks/node Number of tasks per node Manually created featuressubmit_h Hour of submission in the day Relevant information from submittimelim_h Limit duration in hours Relevant information from timelim
Outputs Given after the job is finishedelapsed Time elapsed True duration of the job (wall time)energy Total consumed energy by the job Aggregate temporally and by nodes
Target Model outputmeanpow Average power consumption per node computed as equation (2.1)

2.2.3 . Target and problem formalization
The elapsed time and the power consumption are the two unknown values needed beforethe job runs to improve the management of power consumption by the RJMS.The elapsed time inference which has been a subject of interest in several papers [Mu’alemand Feitelson, 2001, Gaussier et al., 2015, Sîrbu and Babaoglu, 2018] improves the backfilling ofthe scheduling policy so that resource usage is maximal at any time.The energy usage value returnedby SLURM is the total consumedenergy usedby all the nodesfor the entire job duration. The energy consumption increases by definition if the elapsed timeincreases or if the number of nodes that a job uses increases. The total energy grows approxi-mately linearly with the number of nodes and elapsed time. However, this assumption has somelimitations, as it implicitly means that the power consumption remains constant when the job isrunning and each node uses the same amount of resources over time. Although this assumptionis strong, it is not far from reality for the majority of jobs, as shown by [Borghesi et al., 2016], andit can be removed only with time-evolving data inside jobs that is not available.If the number of nodes and elapsed time are not provided, the meaningful consumption sta-tistic able to be predicted given the information collected by SLURM is the average power pernode. The average power per node, denoted by meanpow, is defined and computed as :

meanpow =
energy

elapsed×#nodes
(2.1)

Once amodel returns the average power per node, the job’s power consumption can be com-puted bymultiplying it by the number of nodes and used in amonitoring policy as the estimation
P̃comp for budget control [Dutot et al., 2017] or powercapping. If the elapsed time is given (byother models like [Gaussier et al., 2015]), the consumed energy can also be predicted under the
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Figure 2.3 – Distributions of average power per node. Each histogram is computed for jobs usingthe same number of tasks by node. Full MPI jobs use 28 tasks by node.

linearity assumption.
Most of the previously proposed methods use standard machine learning models from theSciKit-Learn python library [Pedregosa et al., 2011], such as decision tree, random forest for [Bug-bee et al., 2017] or SVR for [Sîrbu and Babaoglu, 2016]. Those models provide interesting results,but all of these rely on several parameters known to be difficult to tune and they assume regu-larity in the input space that may not exist in our case. Our first motivation and our contributionare to propose an alternativemodel that requires fewer assumptions and that works at the sametime efficiently.

2.3 . Instance based Regression Model

2.3.1 . Inputs as categorical data
Using all the available data, Figure 2.3 shows four empirical distributions of the approximatedaverage power per node for jobs with the same number of cores per task. We observe that thedistributions are well separated with respect to the power. It shows that the number of coresper task is already an efficient criterion to estimate average power per node for certain jobs. Thisis particularly the case for the most power consuming jobs (reaching 300 Watts/nodes), whichmost likely use one core for each task, and those using 7 cores per task, which mainly use halfof the full power. This is in fact expected as the number of cores assigned to the same tasksgenerally depends on the threading model of the application, which implies a different powerconsumption. The Gaussian like distributions contain interesting and useful information. Hencewe infer that a low complexity model may be useful for modeling. Combined with other inputs,such as UIDs, we expect a good discrimination of power usage for any submitted job can bemadebased on a few internal parameters.
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In our application, the input features are either categorical or numerical, for example :— The metadata related to the chosen QoS, the user and group identifiers (UID, GID) arecategorical and thus their values (numerical or not) cannot be ordered.— Other features are numerical and describe two types of information ; discrete (the numberof nodes or tasks) or continuous related to date or time (submit, start, end date of the job,duration and timelimit).However, the discrete numerical features (number of nodes, tasks, or their ratio) may alsobe considered as categorical variables. For example, an application’s performance depends onthe number of cores and is sometimes optimal when the number of cores verifies arithmeticproperties, e.g. LULESH 2.0 should be used with a number of MPI processes that is a perfectcube [Karlin et al., 2013]. An application running with 27 = 33 cores is likely to be different to aplausible OpenMP application using 28 cores (28 is the number of cores on a COBALT’s node).Full MPI jobs use one task for each core while full OpenMP jobs use one task for the whole node.It shows that the threading model imposes the number of tasks per node.It then seems more relevant to consider the number of nodes or tasks as a class of job or acategory. Only 55 unique values were observed for requested nodes in the data when the rangeof possibilities is theoretically ≃ 1000, which confirms the discrete and categorical behavior ofthe number of nodes or tasks. Although time related data is continuous by nature, we choose todiscretize it at an hour level to have categories.In the end, we transform all available inputs as categorical. We then propose a data-model topredict the average power consumption per node (meanpow) of any job, using only categoricalinputs.
2.3.2 . An input-conditioning model

Algorithm 1 instance-based model Training
instance-based model Training
Require: FeatSelected, Estimator, trainset
V alues← Unique(FeatSelected(trainset)) ▷ FeatSelected’s values in trainset
for all val ∈ V alues do ▷ Group by jobs’ value of FeatSelected
Jval ← ∅
for j ∈ trainset do ▷ Jval = Jobs where FeatSelectedmatch val

if FeatSelected({j}) = val then
Jval = Jval ∪ {j}

end if
end for
OutputDict(val)← Estimator(Jval) ▷ Estimate output value for val input

end for
return OutputDict

Algorithm 2 instance-based model Prediction
instance-based model Prediction
Require: FeatSelected,OutputDict, job
return OutputDict(FeatSelected({job})) ▷ OutputDict for FeatSelected of job
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Categorical data is generally hard to handle in machine learning because all possible combi-nations of input values must be considered for optimization and this grows exponentially withthe number of inputs. However, though a large number of combinations are possible, only a feware observed in our dataset. Submissions may be redundant and this is a motivation to use aninstance-based regression model.
An instance-based model computes a prediction by searching comparable instances in a his-torical training set. The simplest case of instance-based learning is Rote-Learning [Russell and ,2010] as the nearest neighbor approach with a trivial distance [Cover and Hart, 1967]. The predic-tion for a given job is an estimator computed on the subset of the training instances that sharesome inputs as already proposed in [Sîrbu and Babaoglu, 2018].
LetJ denotes our job training dataset. Each job j ∈ J is a combination of observed values forthe features described in Table 2.1. Rote-Learning is a supervised problem for data as (Xj, Yj)j∈J .

Xj is the vector containing selected input features (i.e. a subset of the submission data as seenby SLURM) of job j used to predict Yj .Xj is referred as the "job profile". Yj is the target output ofjob j computed with any available features. In our case, it is the average power per node calledmeanpow as defined by (2.1). This is a regression task of Yj given Xj since Yj is real valued.
Common regressionmodels make assumptions regarding the behavior of Y givenX througha linear hypothesis or a kernel method like SVR in SciKit-Learn [Pedregosa et al., 2011] and as-sume implicitly that X is either a continuous or a binary variable. In our case X is discrete andthese models can be used consistently with “dummy indicators” for each possible modality ofa categorical variable. However, the input space dimension grows at the rate of the number ofunique values for categories, which makes these models impractical.
On the contrary, the Rote-Learning regression model computes an estimator of the targetfor the jobs in the training set that have the same job profile as described in the pseudo-code1 for training and 2 for prediction. We introduce two functions to tune how the predictions arecomputed. FeatSelected() is a function that extracts job profiles (Xj)j∈J that are the values froma fixed subset of inputs from job set J . Estimator() is a function that takes a list of jobs withthe same profile Xj and computes a chosen estimator as prediction. After training, we return

OutputDict() as amapping or dictionary that returns the prediction of any job j having the profile
Xj extracted with FeatSelected(). When the job has a profile Xj that is not found in the trainingset, a prediction for a subset of the profile Xj can be made by another Rote-Learner to handlethis case or a default value can be returned.

It is well-known that the Rote-Learner is the best unbiased estimator as discussed by [Mitchell,1980]. Thismeans that if no prior knowledge is incorporated into anothermodel, the Rote-learnerhas a smaller loss. Despite this strength, the Rote-learner is rarely used in machine learning be-cause ofmemory issues and for statistical reasons : the number of samples for each combinationof inputs must be sufficiently large and this is rarely the case.
In our case, the number of unique observed inputs is limited in our dataset because the num-ber of samples for a combination of inputs is large enough, hence there are no memory issues.Training time is then short because it is basically the time taken to compute the Estimator()multiplied by the number of unique job profiles in the training set.
In the sequel, we use the arithmetic mean of average power per node as Estimator(). Thisminimizes the Root Mean Square Error (RMSE) for average power per node, which is then theloss function used to evaluate the possible models. In our framework,Estimator() is defined as :
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OutputDict(val) = Estimator(Jval) =
1

cardJval

∑
j∈Jval

energyj
elapsedj ×#nodesj

with Jval = {j ∈ J |FeatSelected({j}) = Xj = val} for the job profile val.
2.3.3 . Variable selection

The number of internal parameters that the Rote-Learner has to learn during training is thenumber of unique job profiles in the training dataset. For a fixed training dataset, this numberdepends of the choice of subset of inputs that defines the job profile. If this number increases,themodel complexity also increases. Themodel complexity is a statistical concept that quantifiesthe ability of the model to fit complex phenomena, even in the case of simple noise. But a lowcomplexity model is able to generalize for new data. For this reason, complexity and then the jobprofile FeatSelected() definition must be carefully chosen.In our application there are less than 10 features, so the number of possible input featurecombinations needed to define FeatSelected() is quite low, and we can exhaustively test all thefeatures subsets one by one and retain only the best one. In this work, a cross-validation proce-dure is used to find the best inputs : we split our data into two parts, the training set is the firsttwo months of data and the test set is the last month.This procedure allows the identification of SLURM information pieces which are meaningful.However the computations can be time consuming. Once we empirically find the best inputs, weuse only these for the followingmodels as jobprofileswithout repeating theprocess of finding themost relevant inputs. We discuss the performance results in the experimental part of Section 5.At its best, the resulting model predicts the average power consumption per node of anyjob. Nevertheless, this objective is not monitoring the global power consumption. Certain jobsmatter more than others and they are presented one by one in practice with no training time,which motivates the improvements of the following section.

2.4 . Global consumption practical estimation
2.4.1 . Weighted estimator for global power estimation

In practice, jobs that run for the longest on many nodes contribute the most to the globalpower consumption of a computer center. Moreover, we observe a correlation between the du-ration of the jobs and the average power per node. The scatter plot in Figure 2.4 shows that jobsrunning for less than oneminute consumed less power than the others. A possible reason is thatthe jobs are first setting up parallelism and reading data from disks. This phase is not generallycompressible and does not consume significant amounts of power. If a job is short (test, debugjob or crashed), perhaps less than one minute, this phase becomes non-negligible and may thenlower the average power consumption, which explains the observed bias.However, each job has the same contribution to the mean estimate used in the previous sec-tion. Short jobs disproportionately lower the mean estimate that is defined in Section 2.3.2, des-pite their limited contribution to the global consumption. This is why jobs should be weightedby their total consumed node-time (number of nodes multiplied by elapsed time) when compu-ting the mean for global consumption estimation. One method is to sum the total consumedenergies then divide by the sum of their total node-time instead of dividing consumed energiesindividually then taking the mean. More formally, Estimator()must be chosen as :
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Figure 2.4 – Scatter plot of jobs less than two minutes long, short jobs consume less power.

Estimator(J ) =
∑

j∈J energyj∑
j∈J elapsedj ×#nodesj

(2.2)
2.4.2 . Online computations

Previous section has presented a model which computes offline the estimation of the arith-metic mean : training and prediction are two distinct and successive steps. Once training is done,the model is fixed and used to predict the power consumption of the job.In the case of job scheduling, data is presented to SLURM as a stream of logs containing infor-mation on submitted jobs and the previous two step approach has amajor flaw. Amodel used forprediction does not continue to learn : for a job’s profile that was not present in the training data,it can only return a default value at best every time it appears. The whole model can be regularlyretrained but it is then necessary to memorize all the recent data seen by SLURM in prevision ofthe next training round. This approach has other drawbacks : if the rounds are too frequent, atraining set may be too small and if they are too rare, a lot of data has to be memorized and theprediction may be worse before the rounds.Thankfully, the arithmetic mean used as Estimator() can be straightforward to compute on-line and lots of approaches exist in the literature [Hunter, 1986].If OutputDict(Xi)m is the mean estimator at the (m + 1)th occurrence of a job with inputs
Xi and average power per node Yi, it can be updated independently once the job is finished as
OutputDict(Xi)m+1 =

m
m+1

OutputDict(Xi)m+
1

m+1
Yi. The counterm and current valueOutputDict(Xi)monly should bemaintained to compute the next value when a job ends. This is called a cumulativemoving average or CUMSUM [Hunter, 1986]. This is referred to as an online model because themodel is continuously training itself, and a training round is not required.However, this CUMSUM model gives equal weight to old and recent observations of a job
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profileXi, and thus the expected job average power per node is expected to always be the same.This is not always true : a group of users may suddenly change the applications they use whichmay impact the power consumption. A good way to account for such a trend-shift is to computea moving average defined as a mean of recent data within a time-window [Hunter, 1986]. Onceagain, memorization of recent data is required. However, we need to set the number of recentobservations used to compute the moving average, this may not be easy.An Exponentially Weighted Moving Average (EWMA) introduced in [Holt, 2004] and [Hunter,1986] for time series analysis is an nice way to compute a weighted moving average without me-morizing any recent data. This method weights recent data more heavily than old data accordingto an exponential decay and then computes the mean. The exponential decay allows the movingaverage value to be updated with a simple formula :
OutputDict(Xi)m+1 = αOutputDict(Xi)m + (1− α)Yi (2.3)

where α ∈ [0, 1] is a hyperparameter to be chosen (values approaching 0 indicate lesser influencefrom the past). A custom weighting is required to remove underestimation of the computed es-timator for global power consumption estimation.
2.4.3 . Exponential smoothing for weighted and streamed update

As stated before, EWMA has the big advantage of memoryless updating but it must be weigh-ted in the update formula (2.3) for global power consumption estimation. Previous online estima-tors were initially designed and used for time series analysis [Holt, 2004, Hunter, 1986]. To weightthem consistently, as in Section 2.4.1 and keep them online, we formally define their associatedtime series and modify it slightly.At any time, the value of OutputDict(Xi) is the last estimation of meanpow for a job with theprofile Xi since a job with profile Xi ended. The value of the estimate OutputDict(Xi) changesonly when a job with profileXi ends. As it is an evolving mean, it behaves like a trend estimationof the series of meanpow of jobs with profile Xi ordered by end date. Each job contributes inthe same way to the future estimation. The contribution to the estimation of a job with profile
Xi depends only on which rank it ends. The job’s contribution to the online estimation does notdepend on its node-time contrary to section 2.4.1. An example of the series and its estimation byEMWA are given in Figure 2.5. We observe that the EWMA is lowered by the low node-time jobswith low meanpow that have the same weight the highest node-time jobs because the series isagnostic to this quantity.We propose a novel way to account for the needed weighting of the job without changingmuch our online estimation. The idea is to generalize and compute trend estimate on anotherseries that is irregular. It is the same previous series of the average power per node of jobs withgiven profileXi ordered by end date but the intervals between two successive finished jobs is thenode-time of the first job, as if a job must wait the node-time of the last before starting. The re-sulting estimator is a continuous smoothing of this irregular time series parametrized by a node-time constant and can be used as before for online estimation but jobs with lowest node-timewill not change the trend estimation as much as the ones with highest node-time. The adapta-tion of CUMSUM replacesm by the sum of the previous jobs node-time with inputsXi, and in themoving average case the recent job are weighted by their node-time for example. The irregularseries deduced from the previous example are given in Figure 2.5. The short jobs have almost noinfluence on the current re-weighted estimate even if their meanpow value are extreme. On thecontrary, it is clear that the classical EWMA strongly underestimate the irregular series meanpowbecause of them.
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Figure 2.5 – A sequence of average power per node of job with the same profile and the series ofits estimations by EWMA with and without reweighting by node-time.
Up : Series of the average power per node of 200 jobs with the same profile and its estimationby classical and reweight EWMA.
Bottom : The associated irregular series used to weight the jobs according to node-time and thesame EMWA estimations series.EWMA hyperparameters are α = exp(log(0.5)/20) (a job contribution is halved after the 20 nextended jobs) in regular case and τ = 4000 node-hour in irregular case.

60



Section 2.5. Numerical results and discussion

We propose to apply this adaptation to EWMA so that our estimation is memoryless andweighted correctly. We compute directly the weighted estimator without computing the irregu-lar series by slightly modifying the previous estimator formula (2.3) to take into account of thenode-time of the current ending job. EWMA is generalized as exponential smoothing and com-puted for irregular time series in [Zumbach and Müller, 2001] or [Eckner, ], the update formulauses variable α to account for the irregular time interval thanks to the memoryless property ofexponential :
EMWA(Y )tn = e−∆tn/τEWMA(Y )tn−1 + (1− e−∆tn/τ )Yn−1 (2.4)

tn is the time of the nth sample,∆tn = tn− tn−1 the length of the n− 1 interval between samples,and τ a chosen time constant of exponential decay.Applied to the trend estimation of the irregular time series, (2.4) formula shows that α in (2.3)must be replaced by e−∆ti/τ to weight the job i according to its node-time ∆ti. τ must be in theorder of expected node-time value for several meaningful jobs. Due to (2.4), it is not necessaryto compute and maintain the irregular time series, (2.4) is used when a job ends and the currentestimation OutputDict(Xi) is updated by computing node-time ∆ti = elapsedi × #nodesi andsetting α = e−∆ti/τ in (2.3). Our method benefits from both the advantages of EWMA and theweighting correction for global power estimation. Benefits of our approach are discussed in thelast experiment of the next section.

2.5 . Numerical results and discussion
2.5.1 . Offline instance-based model

The proceeding described in Section 2.3.3 is run using the instance-based model offline in-troduced in Section 2.3.2 to determine the best job profile Xi. For each possible job profile, themodel is trained using a training set containing the 8000 jobs of the first two months. Then theRMSE is computed for a testing set of 4000 futur jobs from the next month.It appears that a significant part of the jobs in the testing set show a combination of inputsthat were never observed during training. In this case the model does not return an output valueif the job profile is not seen previously in the training set. For a fair evaluation of any choice of jobprofile, we need to avoid handling the case where a pretrained model does not return an outputbecause the profile is not known by the model. For that, we first extract a small test subset fromthe initial testing set composed of 1022 jobs for which their profiles are present in the trainingset. This is so that any model returns an output value no matter what job profile it uses.We illustrate the bias-variance trade-off by showing the best choice of job profile that has agiven number length with the lowest score (here the RMSE) and the number of unique job profilevalues observed in training set is shown as "diversity". Diversity is a simple way to approximatethe complexity of the model to highlight bias-variance trade-off. We present the results for thesmall testing set in the first column of Table 2.2. In the special case where the job profile haszero inputs, the model always returns the mean of the average power per node of all jobs in thetraining set.The best prediction requires features that identify the user, because users tend to submit thesame jobs. UID is first chosen but the number of tasks per node improves power estimation and ismore general when combined with GID instead of UID. Indeed, diversity is lower when themodeluses GID instead of UID, and GID still indicates well enough that the jobs may be similar as part
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Table 2.2 – Variable selection by cross-validation and results. The score is the RMSE (lower isbetter). Diversity is the number of memorized instances after training.
Results on small test Results on large test

# Best combination Score Diversity Best combination Score0 (returns the mean) 78.04 1 (returns the mean) 89.871 UID 46.17 ≃ 150 UID 44.852 GID, task/node 43.98 48 GID, task/node 43.313 GID, task/node, timelim_h 43.63 217 GID, task/node, QoS 43.834 Add QoS 43.78 232 Add timelim_h 44.165 GID, QoS, #nodes, #tasks 45.09 245 Add UID (all features) 45.496 Add timelim_h 45.53 475 (no more features) -7 Add UID (All but submit_h) 47.55 578 (no more features) -8 All features 52.84 1981 (no more features) -

of the same project given they have the same number of tasks per node. Surprisingly, addingthe hour part of timelimit improves the results although it drastically increases the diversity.However, addingmore inputs to the job profiles worsens the results, and the effect of over-fittingis stronger as diversity increases. In particular, the number of nodes and tasks by themselvesseem to be not relevant for prediction of the power consumption as these parameters are alwaysselected together. QoS does not seem to be informative on power usage. The hour of submissionis the last selected feature showing that the type of job is the same no matter what the hour inthe day is, which can be explained by auto-submissions.
The number of nodes, tasks and the submitted hour can have a large range of unique valuesthat substantially increase the diversity which means they tend to produce over-fitting. In ourexperiment, this is observed when the result does not improve if these values are accounted for.But the reduced testing set is constructed only with jobs that have a combination of all theseinputs values in the training set. To get more robust results about other choices of input featureswe reduce the space of possible job profiles which increases the number of jobs in the testingset with a profile in the training set. As these parameters seem not to be relevant for prediction,they are removed, and a larger testing set of 2216 jobs is constructed with the combination ofinputs without these omitted values. The results are given in Table 2.2 in the second column.
The RMSEs are of the same order of magnitude as they do not depend on the size of thedataset. The same behavior in variable selection is observed, except that timelimit is no longerrelevant, even selected after the QoS (and we can only choose up to 5 features as the others areremoved). This difference may be explained by the strong selection of which jobs are included inthe small testing set slightly favoring over-fitting.
From these observationswe conclude that theGID and the ratio of number of tasks and nodesare the best choice of features to predict the average power consumption per node with anymodel for data on COBALT. The resulting model of this choice of features will be called IBmodelfor Instance-Based model in the next sections.

2.5.2 . Comparison with the offline IBmodel
We compare the IBmodel with models currently in use and proposed by [Bugbee et al., 2017]and [Tanash et al., 2019]. We focus onmodels based on trees, Decision Tree Regression (DTR) andRandom Forest (RF), that are well-known to handle better inputs from categorical features. We

62



Section 2.5. Numerical results and discussion

Table 2.3 – Comparison with other models on test set. Score is RMSE (lower is better).
Score (all) : result with all the input features for the large test set.
Score (selected) : results with input features being GID and task/node.As RF training is not deterministic, it is run 100 times, then themean score and standard deviationare given.
SciKit models Tested parameters Score (all) Score (selected)DTR pure leaves, MSE criterion 48.80 43.31RF pure leaves, 0 to 50 trees (0.15) 45.79 (0.07) 43.14GBRT max-depth 5, 0 to 300 trees 44.40 43.10SVR rbf kernel, C=1000, γ = 0.01 53.58 45.79
IBmodel Xi = (GIDi, task/nodei) 43.31 43.31

also add the Gradient Boosted Regression Trees (GBRT). For these last twomodels, we incrementthe number of tree estimators and retain only the best results.We also compare the IBmodel withresults from Support Vector Regression (SVR), as used by [Sîrbu and Babaoglu, 2018], choosingthe best SVR parameters by manual tuning. The SciKit-Learn library [Pedregosa et al., 2011] isused to run and train the models.
At this stage, the IBmodel is not designed to return an output in case of unknown job profile.So our tests are run on the large testing set of 2216 jobs previously selected andwedrop the samefeatures (number of nodes, tasks and the submitted hour) to avoid unknown job profile duringtesting. In a first test run, all the features used to obtain the second columns of Table 2.2 are themodel inputs. In a second test run, the chosen features are only GIDs and task/node, which arethe best choices for average power per node prediction found with the IBmodel (hence it keepssame score). We point out to the reader that this favours competing models, especially the onesbased on trees for which only the best is retained.
Table 2.3 presents the results with a range of parameters. It is observed that the IBmodeloutperforms all other models when the input space is large. This underlines that there may beno variable selection in the other models. However, RF and GBRT outperform when we explicitlyforce the selection of the relevant inputs we have computed previously for all the models. DTRalso provides the same results as the IBmodel as it becomes similar to an instance-based modelwhen the dimension is low and the decision tree’s leaves may be pure (they can have only onesample in training).
The interpretability of the instance-based models, in particular the selection of explicit fea-tures, is a strong advantage as this improves also the other models. Although RF and GBRT arethe best performers once the most effective inputs for prediction are known, we do not thinkthey are the most suitable for our application. First, the IBmodel can be updated online whereasRF and GBRT must be completely and regularly retrained in order to handle a job’s stream, se-cond, the IBmodel can weight the observations of average power per node of jobs with minimalmodification, and finally, it is not easy to explain how RF and GBRT built their predictions.

2.5.3 . Online IBmodel
For practical monitoring of global power consumption through the RJMS it is necessary to pro-vide online and instanceweightedmodels, as already presented in Section 4. To demonstrate thisclaim we compare predictions of future global power consumption available at the submissiondate of a job by the IBmodel with and without these two improvements. We first construct a re-
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ference target with an oracle estimation over time. At any time t, the oracle value is the sum overall running jobs at time t of the jobs’ average power consumption. The oracle value is not the trueglobal power consumption as a job’s consumption can vary when running, but it is the best ap-proximation following the hypothesis made in [Dutot et al., 2017] and section 2.3 (consumptionis constant over the job’s entire duration).With the data from the same period of two months used in the previous section, the IBmodelis trained with only improved weighting (2.2), only online updating (2.3) with α = exp(log(0.5)/20)(job’s contribution is divided by 2 after the 20 next ended jobs with the same profile) and alsoboth (2.4) with τ = 4000 node hours, then the results are compared to the oracle value of the testset. To compute the estimated value of global power consumption available to SLURM, the list ofjobs is converted to a list of events ordered by their time t of three types :— Submission event : The job j is submitted at time t, its average power consumption pernode is estimatedwith themodels and buffered for a future event. If models cannot returnan estimation (unknown input values), we return the default value 292.89Watts per nodeas it is the global average power per node of all the jobs we have.— Starting event : The job j starts at time t, and its average power consumption per nodethat is estimated at submission is multiplied by the number of nodes to get its powerconsumption, which is added to the current global power consumption (same for oraclebut with true average power per node)— Ending event : Job j ends at time t, then we update the online models and we remove thejob’s power consumption estimation from the current global power consumption estima-tion (same with oracle for the latter)The upper plot of Figure 2.6 shows the global power estimation results over time, and thelower plot shows the relative error of the different models compared to the oracle. The online IB-model (2.3) without weight adaptation of the jobs underestimates the global consumption givenby the oracle by 5% to 10%. The errors of the weighted offline IBmodel (2.2) peak many times.This suggests that some jobs have profiles that themodel did not see enough during training andthat they impact the estimation randomly in high proportions. The model needs to be retrainedusing more recent historical data to improve its estimation, although the spikes will reappear assoon as training stops.On the contrary, the online and weighted model (2.4) gives a much more consistent estima-tion, as the distribution of the relative differences with the oracle are more symmetrical withrespect to 0 due to weighting adaptation. The online estimation seems to have stabilized the er-rors. The peaks in the error patterns may be due to bad default values for new unknown inputs,but as themodel is still learning, it only sets ameaningful value for those inputs once a job has en-ded. Thus, the error remains low even after some time. The absolute deviation of the predictionscompared to the oracle is 99% of the time under 12.7 kW, with a mean of 2.40kW. The relativedeviation for 99% of the time is under 10.4% with a mean of 1.68%. The relative errors approachthe measurement precision of the IMPI interface that was used to collect the data.

2.6 . Conclusion

2.6.1 . Discussion
Our work brings and solves several essential consideration for practical use of the powerconsumption prediction for power-aware scheduling often neglected in others :
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Figure 2.6 – Assuming the power consumption of a job is constant when it is running, we cancompute the evolution of the global electrical consumption of the whole computing center. Wecall this estimation the oracle estimation, it is displayed in black in the first plot. Using the es-timate of meanpow, we can also compute the estimation of global consumption that the RJMScan monitor through scheduling. We plot the estimated values and relative error with the oracleestimation.
Up : Evolution of global electrical consumption in Watts over the test period for the offline andonline, weighted or not, models.
Bottom : Difference between values predicted by the three models and the oracle as percent ofthe oracle value
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— The input data for our prediction are carefully chosen so that they are trustworthy andavailable without additional extraction of information in the job script of binary— We identify a relevant prediction target : average power per node. We find by explorationthat it tends to be close for many job, which was expected as it is not very dependentof their duration or number of used nodes and as many jobs are redundant once thecontribution in variability of these two quantities is removed.— We propose a model already production ready and interpretable. We know exactly howthe model build its prediction. This allows to make variation of the model depending onwhat we want to optimize with power-aware scheduling by SLURM.— We identify that the most expected application of our predictions, global power consump-tion monitoring, need to use an estimator that weights jobs contribution. None of theprevious works have considerations of this fact.— However ourmodel performswell because jobs are very redondantwhich does not preventit to overfit. No study has beenmade to verify that we can expect a such jobs’ features dis-tribution on other computing centers. Our study needs replication on other computingcenters to assert it.This work shows that it is possible to build an efficient model to forecast the power consump-tion based on the exploitation of a historical log database from the SLURM RJMS data collectedfrom the industrial computer center COBALT that is only composed of user inputs of jobs andassociated energy consumption measures. This model computes an accurate estimation of theaverage consumption per node of the submitted jobs using the redondancy of the informationprovided to SLURM by users. This instance-basedmodel brings several advantages. It is interpre-table and shows that jobs on the COBALT computing center have a power consumption that iswell predicted by the GID and the number of tasks per node. We show that instance re-weightingand online computations implemented in the IBmodel are necessary to provide a prediction ofthe global power consumption at submission time that is not underestimated and to stabilize therelative error by avoiding the concept drift issue [Webb et al., 2016] entirely. The proposed mo-del has a relative error that is of the order of the relative measurement error of the data, whichindicates that the IBmodel’s performance is already satisfactory. This model will be a good can-didate for the achievement of consistent power-aware scheduling for other computing centerswith similar informative inputs.
2.6.2 . A finer monitoring with time evolving data

The next step of this work is to evaluate the capability of the instances model for other com-puting centers with different behavior of users. This work should be extended by studying theinstantaneous power consumption of jobs with time evolving data. Accounting for instantaneouspower consumption will allow regulation of each job with a power cap and will enable jobs to beredistributed with more precision.Time evolving data about power consumption were not available at the time of the study. Butother time related data that were available can be used tomonitor the evolution of the computa-tion and determined the type of job that is running. This information can then be used to improvethe power consumption prediction. Themost characteristic time evolving data to use about a jobis often the communication pattern. The chapter 4 focuses on the exploration of these.
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3 - Statistical analysis and visualization of
Log data

Everything that happens in a computer is a sequence of events. Each event is determinis-tically obtained from previous events and current state of the system. The programs instructwhich events should happen at the next tick of the internal clock depending on these parame-ters. Those programs are written by programs themselves (a compiler is an example of programwhich writes another program) or humans with different purposes (the users or administrators)and programs interact with each others. This means that at the most fundamental level, monito-ring a computer or a computing center is monitoring sequences of event. But they are the resultof a many demands of humans that generally do not know each others. The number of eventsis so huge that it is already very hard for an expert to get the full implication of which eventsa source code could generate once compiled into a program in machine code. Given how com-plex this task is already, doing the contrary is practically impossible : a detailed code that can beunderstood by humans is impossible to deduce only from the sequences of events a programgenerate.
Even if the data about the use of an HPC center should take the form of sequences of all theevents, this is never the case in practice. We do not need and cannot handle that many details,some filtering must be applied by humans to make it possible to grasp what the computer’sbehavior. However, programs are interacting with each others and not all programs are writtenby the same human, not even humans from the same computing center or even company. Thus,software developers are the only ones who really choose which events will be worth noticing, andthey generally choose them so that they can find the origin of bugs in the software they wrote,not monitoring the whole computer.
These events are the most detailed data available for the monitoring of what is happening orhappened in the computing center. But given that they are the aggregated result of the choices ofmany software developers, it is already very hard and time-consuming to read and understandthem by a single human. Thus, it is rarely used directly to monitor the computing center butrather forensic analysis since it becomes worth digging once we are sure there were an incident.That’s why it is so critical to find ways to make them easier to grasp. We try to propose visualrepresentations of such data.
We first present which data can be used and how it should be preprocessed. Then we discusshow events can be aggregated by counting them to obtain data that is easier to process withstatistical methods when it is possible. And we finally show some results of visualization and tryto interpret them.

3.1 . Preprocessing of events and logs data
Not all internal events are relevant tomonitor the computing center.Moreover, a simple eventrecord by itself does not bringmuch information, we rather need to know how to link all recordedevents with each others. This requires to identify them. We describe the different data we can
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collect on such events, and discuss how they can be counted so that they are simpler to handlewith statistical methods. We show how the current practices could be changed to be able to applysuch methods on the most general type of recorded events.
3.1.1 . Extractable events in HPC

Event data collected can be of two very different types that we will describe. It can be a ti-mestamp with a message indicating what is happening, or it can be the increment of a counterkeeping track of the occurrence of an event or a category of events when they are too many ofthem to track the timestamps of each one. When the event is a message, this message’s formatis following conventions to store it at the relevant place and sometimes to also make it easy touse for tracking the state of system.
Unformatted syslog files
The logs are recorded events by the system which were evaluated as relevant by softwaredevelopers themself used to monitor the execution of a program but also to get an overview ofits state in the past. In its most generic form, it is a sequence of log lines which are strings ofhuman-readable characters or messages along with the timestamps of record. Although the textis human-readable, it is highly dependent on how the software developer formats it and fill itwith values of interest which makes the text a semi structured content.Syslog is themost commonly used client-server protocol of messages logging. The syslog pro-tocol defined several optional fields that are added before the message depending on how theadministration of the computing center set the logging server. Although the choice of fields ad-ded to the log message is up to the administration of the HPC center, most of the HPC centerswill at least add the following fields to the message :
hostname The hostname is the name of the computing node running the process whichemits the message. This field is very important in distributed computing because it allowsidentifying if a node is acting differently from others.
binary name This is the name of the executable file that is executing and producing themes-sage. If the name is well and uniquely chosen, this field allows quickly finding which sourcecode may generate the event. If the event is generated by a kernel module, this value is

kernel and the name of the module can be generally found in the message and usedinstead.
Process IDentifier (PID) This is a number to uniquely identify a running process at a givenpoint in time. Concurrent programming may use several processes in parallel in the samenode, this number is then the only way to differentiate if two logs are emitted by the sameprocess or not at a given time. However, two different processes may have the same PIDat two different points in time.
Depending on the choice of the administration and software developers, the message itselfmay follow more format conventions defined officially or not. The only consistent fields in theresulting files are the ones above imposed by the administration. No convention can be imposedon the software developers of the program running in the computing center. They tend to applythe same conventions in all the logged messages for the same software but there is no suchguarantee for logs coming from distinct software.The resulting data of syslog is then human-readable text but poorly formatted. This makes itvery hard to use for automated event detection, although we expect the most information about
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a failure will be written in it as highlighted by [Xu et al., 2009b].
Libraries or functions calls
It is impossible for one administration to change the source code of programs the user wantsto execute. However, the source code is not enough to run the program, it requires using sharedlibraries that the administration installed on the computing center. The users use them to compilethe code on the computing center nodes into an executable optimized to work on the nodes ofthe computing center and extract the highest performances.
This is where the administration can interact with code submitted on the computing center,the libraries can be tweaked to log more events related to how the libraries are used. One simpleevent that can be logged is the call of some functions of the library. Users may voluntarily usesuch tools called profilers to observe some pattern during the program execution.
SeLfiE is a light profiler made by [Laurent Nguyen, 2017] and available on IRENE and CURIEcomputing center, it tweaks the commonly used libraries like OpenMPI and returns in syslogssome aggregated count of such functions calls once an execution is done. It also collects usageand efficiency data of the node using profiling tools freely available or provided by the hardwaremanufacturer. The logs are formatted to be easily collected and stored together in a structureddatabase.
SeLfiE is always used on all computations send to computing nodes in the case of IRENE andCOBALT. A profiler may reduce performances of user programs. The Vampire profiler [Knüpferet al., 2008] reports for example that each event introduce an overhead of almost 1 µs and itdoes not depend on the duration of the event. Thus, the overhead is very significant for frequentshort events. The storage of the data also require periodic flush of memory which also introducea significant overhead that will disturb program execution. SeLfiE only counts the calls of givenfunctions and returns the aggregated on the fly result at the endwhich avoid doingmemory flushso that it is light enough to not disturb performances. [Laurent Nguyen, 2017] claims that userswill not notice any change during execution. The resulting data is a count of function calls andother aggregated profiling data for each process sent to the logging server and can be efficientlyextracted.
Formatted Logs or Errors Codes
A software tends to use its own format convention when logging events. This is particularlythe case with programs where the errors tend to be non-trivial to detect because they don’tinterrupt program execution either. This may happen if there is no way for the software itselfto acknowledge the error (like deadlocks, when each of two threads is waiting the other to freea resource it needs to continue) or if the error does not justify stopping the execution but mayhave hidden consequences.
Storage management is one of the main source of errors that are hard to characterize anddetect. Indeed, failures of storage hardware are considered random. The hardware itself tries tominimize such failure and may try to work around the failure, making it hard to determine if theissue is still there or not. Such errors may affect any part of storage, so it may affect the softwaredifferently depending on the type of data corrupted.
This explains why HPSS (High Performance Storage System), a very popular software used forstorage management in HPC center used at the CEA, creates and details in its documentation itsown message convention to facilitate forensic analysis of its logs [hpss collaboration.org, 2021].The error codes returned in HPSS logs allow defining events and to tell if two logs describes the
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same event of not. It is then possible to discard the text of the message itself and focus on thepattern of occurrence of the events.
3.1.2 . Issues with available data granularity

A set of timestamped logs is the most precise data we can get. But this is also a format diffi-cult to use with statistical methods because there is no numbered data. To handle profiler datathe same way as logs, we propose to aggregate logs by counting them. This requires to specifywhich logs are counted together as the occurrence of the same event, this can be interpretedas a choice of smoothing or trade-off between losing information and being able to generalize.We also noticed that log parsing seems to be required to define a good criterion to aggregateunformatted logs.
High count data definition
Count data is very common in many areas like biology, economy... They are obtained afterapplying the simplest yet the most generic aggregation : counting. We first define a criterion andfor each possible value of this criterion we return the cardinal of the observed elements with thesame criterion value. More formally count data can be defined as such :Counted elements are taken in a setΩ. A criterion is a mapping f : Ω→ C where C is denume-rable set which define categories.Ω don’t have to be a discrete or continuous set. An observationis an element of Ωm where m is a finite integer which is the number of observed elements. Wecall count data a dataset which is the result of the following mapping :

counting : Ωm −→ NC

(on)n∈N,n<m 7→ (card(n ∈ N, n < m|f(on) = c)c∈C
(3.1)

The criterion is generally obtained by a combination of these two types :
Categories : Observed elements have a feature which is discrete, it can be a number ormoregenerally a category (element of a finite set). The criterion is then the value of this feature.The count data obtained by countingmapping is the number of elements observed of eachcategory
Window of values : Elements have a continuously-valued feature. The criterion is obtainedfrom a split in covering intervals of the continuous space and is a unique identifier of theinterval in which the value of the feature is found. For example, the observed elementscan be events with a date. Time is split in regular windows of the same duration and thecount data is a time sequence of the number of events in each time window.
Both can be combined using tuples of criteria as the criterion. The criterion acts as a linearprojection preserving the sum but in a discrete set. The information carried by features not usedto define the criterion is lost in the process : it is generally not possible to uniquely recover all ob-served events from count data. We also cannot recover all events that were observed to deducethe count data, that’s why it is aggregated data.By definition, count data takes its value in natural numbers, hence it is non-negative valued.
Aggregation trade off at or after extraction
Our generic definition of count data suggest that we could use a set of observed events fromwhich count data is deduced instead of the aggregated count result. But several trade-offs explainwhy it is not possible to work with observed events directly.
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The first trade-off is that full extraction may be too costly in terms of storage, bandwidth andCPU power. A detailed profiler would reduce performance of the program it is profiling becauseit generates a lot of data that must be sent to storage, and it consumes CPU time. On the contraryincrementing a counter when a function is called has a very low cost and the final value is sentonly once the main program halts. This is the case for the light profiler SeLfiE. The counting ag-gregation is imposed with a step criterion, this means that it will return aggregated data on eachexecutable launched in a job.
Another trade off is to get an estimation of the frequency of common events for the chosencriterion through counting. Better estimation for certain criterion are possible, but counting isgeneric enough to be applied on any type of data and to reduce the computation time. This isvery useful with a categorical criterion like the error codes of the HPSS logs combined with a timewindow criterion to monitor the change of proportion of observed types of logs during a timewindow.
In the case of SeLfiE data we have no choice, we can only estimate if we do not lose too muchinformation in the process. However, we can choose the criterion of aggregation in the case ofHPSS logs, the aggregation criterion must be chosen so that the relevant information is not lost,but it cannot be too specific to avoid over-fitting.
Defining a criterion for unformatted logs
At first glance, there is no clear criterion for counting aggregation with unformatted logs. Thecriterion can be based on the syslogs fields that come with the message of a log line. We couldcount the number of log lines send during a time period by a process running on a host using thehostname, PID and timestamp fields. However, beside timestamps, all fields are optional. Theother issue is that the amount of log lines carries little information about what is happening, acritical error may or may not produce many log lines and a well behaving program may or maynot log many events when it is used normally.
There is however a way to aggregate log lines while preserving the semantic contained in themessage. When a program sends a log line to the syslog server, it must first form a string ofcharacter which will be the message. The string may be just a way to identify which part of thesource code is currently running. Such string is written in one piece in the source code and is sentto the syslog server directly if the program reach the part of the source code where it instructsto log it. This means that the same message is associated to the same event in the source codeunder the assumption that the software developer will not use twice the same log message fordifferent internal events in the source code.
However, we cannot assume the otherway around. The sameevent in the source codemay re-sult in different messages in the log files. The reason is that messages may also inform about thestate of the process running or even the computer. In this case the same strings in the source codemay result in different log lines once send to the logging server. Such strings have a special syntaxand an extended set of features to fill part of themwith other strings deduced from variables. Thisis called a format string. In this case, two different messages may be associated with the sameevent in the source code. For example, systemd (one of the mostly used system and service ma-nager) can log an event using the format string "Invalid loader entry file suffix: %s". The

%s is a syntax token of the string to indicate a part that must be filled, in this particular case it willbe filled with the path of a file in the storage. The path of the file may be different depending onthe configuration of the computer resulting in different log line, however the event is the samein the source code.
71



Chapter 3. Statistical analysis and visualization of Log data

The definition of an event through the source code is very similar to the error code usedin HPSS. The unformatted log lines could be aggregated using the associated format string as acriterion. This choice of granularity preserve the semantic features contained in themessage andmay produce enough redundancy to learn significant pattern. The remaining issue to practicallyaggregate unformatted syslogs is to deduce the format string from the log message.
3.1.3 . Identification of issues with parsing

Log parsing is not a simple task but seems to be a requirement to the application of anystatistical method on unformatted logs. We detailed the current state of the art in automatic logparsing, and it seems to not be reliable enough for now. We also discuss some good practices forparsing with data available today and what could be done with humans dedicated to this task.
Preprocessing before applying machine learning
Unformatted logs are the default type of data available on all computers. This makes theanalysis of unformatted logs themost interesting application for HPC center monitoring. We alsoknow that several distinct log messages can be associated with the same category of internalevents when they are build from the same format string. However, this string is not availablein the logs record, we must extract it. This step is called log parsing or just parsing. Using thedifferent logs and their messages, a model can be used to solve the parsing issue. It must returnthe format strings written in the source code in the form of a template where the part that mustbe filled are replaced by wildcards (often noted "*" in log parsing literature) or a generic type ofcontent that must be used to fill the string (that we will denote [type] where type is replaced bythe type of data to fill the template). Most of the log parser proposed use statistical treatment oflog lines based on the repetition of tokens in log lines.
The templates extracted from the logs of one computing center cannot always be used toparse the logs of another computing center. It is clear that if the operating systems are different,the log patterns are not matching. But this can also be the case if the versions of operating sys-tems or running services do notmatch. This implies also that the same templates cannot be usedon the same computing center without time limitation : a set of templates may be deprecatedwhen a software is updated. This means that the templates generally have to be learned or de-duced from the log data prior to any type of analysis.
Before learning the templates with the log parser, the IP addresses, numbers (which can be indigit or hexadecimal notation like port numbers or memory addresses), nodes and users names,file paths, email addresses, URL... are first replaced with wildcards or type token because theyare always variable part of the log line. Names are known or have specific patterns of charactersso they can be easy to identify with a dictionary of names or a set of regular expressions (a way todescribe a pattern of characters). For example, paths are strings of directory name concatenatedwith slashes / to separate directory levels, IP addresses are either 4 digits numbers between 0and 255 separated by dots ’.’ in version 4 either 4 hexadecimal numbers between 0000 and

ffff separated by colons : in version 6. One of the main discoveries of [He et al., 2016] is thatthis preprocessing step increases accuracy of log parsing in practice and [Ghiasvand et al., 2016]also notice that it has the benefit to remove sensitive data from the logs.
Having a good log parser is already useful prior to any analysis of logs. It identifies when twolog lines are emitted from the same internal event, this allows already to have simple visualizationof the timeline of events as proposed by [Ghiasvand and Ciorba, 2017]. Each log line is a dot, thetype of event is an integer on the y-axis. The x-axis is the date at which the log was recorded.
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Figure 3.1 – Simple visualization of syslog events of one node using a log parser based on regularexpression. The x-axis is the time coordinate over a 1-day range. The y-axis is the index of the logtemplate ordered by the date of first occurrence.Thanks to parsing, recurrent and usual events are easy to notice. An out-of-memory event occur-red and produce a lot of rare event type, this explains the long vertical line. Zooming on this timeperiod reveal more vertical lines. Their number corresponds to the number of processes killedby the out of memory killer to free memory.This illustrates how log parsing already allows getting a quick overview of the log files.
On big advantage of such visualization is that we can quickly identify patterns of internal eventsoccurring closely together in time and observe periodic and unusual events. This is much harderto do when reading the logs directly in raw text format because the human must interpret thetext while looking at the timestamps : we can easily miss that more or less time pass betweentwo log lines because they are presented one after the other without a clear visual indicator ofthe duration between them. An example of such visualization obtained with the set of regularexpressions by [Ghiasvand et al., 2016] as a very coarse log parser is shown figure 3.1Once textual logs are transformed into event class thanks to log parsing, a lot of models havebeen proposed to perform task like anomaly detection, finding root cause of problemor profiling.Suchmodelsmayusemethods fromprocessmining, frequent itemsetmining, sequential patternmining. However, it is hard to use them in practice on unformatted logs because such modelsassume perfect automatic log parsing which is not easy to evaluate and to correct.

Current state of log parsing
Themain issuewith log parsing is that it is hard to evaluate if a log parser is good enough for itstask. Many parameters may indeed change the performance of a log parser. Most of themworkswell to find the templates that often appear in log records but not the rarest ones according to
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[Xu et al., 2009a]. The difference in frequency distribution of templates between two logs datasetmakes very hard to compare results between different log parser tested on different datasets.
The way we should measure the performance of a log parser is also unclear. [He et al., 2016]notice that it is necessary to have a good parsing accuracy for any log mining to be effective,wrong parsing increases a lot the number of false alarms in anomaly detection. They evaluatedthe accuracy using the F-score metric of some log parser and notice that although measuredaccuracy is generally high on labeled logs, log parserwith samehigh accuracy can lead to differentorder of magnitude of log mining’s performance. This shows that a such F-score is not a goodmetric to evaluate log parser.
A review by [Zhu et al., 2019] compared 13 state-of-the-art log parsers trained and tested onthe same 16 datasets. They measure the runtime and quality of parsing. To evaluate the qua-lity of returned templates, they sampled 2000 log lines and deduce manually from their expertknowledge the template of each sampled lines that is considered as the ground truth. Then theyran each log parsers on the whole dataset and compute a score called accuracy. This score isdefined as the ratio of "correctly parsed log messages over the total number of log messages",where a log message is correctly parsed if "its event template corresponds to the same groupof log messages as the ground truth does". This is the same accuracy definition as [Du and Li,2016]. The group correspondence is the case where all messages from the same event accor-ding to the ground truth are clustered together. They conclude that their proposal called Drainand published in [He et al., 2017] is the best overall. However the evaluationmetric favors resultswhere the resulting templates cover many cases even if they should not be in the same group. Toillustrate this, the reader may consider the case where the log parser returns one template thatmatches any log lines (the template contains only wildcards tokens and any number of them).Then all messages that must be in the same group according to the ground truth are indeed inthe same cluster since there is only one group (all the log messages together), this implied thatthe score is maximal and equal to 1. It is then not surprising for Drain proposal to perform wellfor this metric because its default behavior is to add wildcard tokens that may never be removed.Thismeans that a rare format stringmay have good chances to bematchedwith amore commonone as having the same template : this metric favors false negative over false positive.
Another approach to log parsing is to use the source code of running programs to extractformat string directly. A code is well-structured and compilers are by definition able to full parsethem. This leads [Xu et al., 2009a] to build the abstract syntaxic tree (AST) using static sourcecode analysis to extract the templates. This method has several advantages : it does not rely onstatistics of the log record, provides much better guarantee that rare and even unknown eventswill be parsed correctly and the deduced wildcards of log pattern can even be replaced with atype of variable that can be used to build more interesting features for anomaly detection asdone by [Xu et al., 2009b]. However, static source code analysis must be run on each programthat appears in the log, but it may not be available, in particular when the software is set up bythe user directly. Different versions of the same software may also use different format stringso software differences between each version running on the computing center must also bemonitored.Moreover, they also notice that someambiguity remains because of language-specificidioms, recursive subclasses and "bad logging practices".
We also noticed that some logs may encapsulate log of others software, adding ambiguityin what should be considered as fixed part of the logs. For example, the Secure ScHell Daemon(SSHD) may log messages from a Pluggable Authentication Module (PAM). The PAM’s messageis than a variable that must be filled in SSHD’s source code but it is build using a fixed format
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string by PAMwhich also returns an error message from another software. One example that weexpect will be common in every HPC center :
sshd_user[PID]: pam_echo(sshd_user:account): Cannot open [file]:
No such file or directoryDepending on the point of view and context, we may interpret this log lines as the message
[file]: No such file or directory (where [file]must be replaced by a path to the file) co-ming from the file manager saying a file is missing whichmay indicate a critical issue with storageif we observe the samemessagewithmany files. It may also be a commonmessage encapsulatedin PAM’s log Cannot open [file_manager_log] telling us that it can’t print the contents of a fileto the user currently trying to log in because this file does not exist since this login does not too,which is not a critical issue at all, the user may just have made a mistake while typing his login.

The previous log parsers aim to return templates that are associated with format strings insource code so that we can identify which logs line results from the exact same internal event.But with the recent advance in natural language processing, [Aussel et al., 2018] proposed to usesemantic techniques (like stemming, synonym replacement and removing stopwords) instead ofparsing. This avoids the issue of ambiguous template but it also implies that different messagesthat share a lot of words will have high probability to be wrongly identified as the same internalevents. [Aussel et al., 2018] conclude that this is rather an advantage because log mining seemsto be more accurate on the result of semantic technique. The runtime of using such techniquesis not discussed.
In conclusion there is no method for log parsing for now that is reliable enough to be usedwithout a human regularly monitoring what the parser is learning, even when the source code isavailable. This can be explained by the fact that logs were made by the software developers, forsoftware developers, not to monitor a computing center. There is no consistent way to considertogether logs from different software and this explains why parsing is not a well-defined problemand is very ambiguous. A part of solution must come from the way logs are produced : better logpractices in order to make logs easy to parse.
Toward good practices for better automatic parsing
Preprocessings are almost always applied on logs data before using a log parser. Experts oftenapplied rules to partially parse the logs using their knowledge of the format of certain variables.But there are also preprocessing applied that seems less justified by expertise.
The very first preprocessing that is often overlooked by domain expert is the choice of rulesused to tokenize of the log lines. Tokenization is the step in language processing where the text iscut in pieces which are assumed to be the smallest semantic unit which can be compared acrossdifferent lines. The tokeniser choice is often made through the choice of separators, the charac-ters in the string of text which delimit the tokens. The most ubiquitous one is the whitespace.However, it is also useful in logs to consider the equal sign = or the colons : too as done by [Pla-tini, 2020]. [Aussel et al., 2018] used all punctuation marks as tokens delimiters. The best choicedepends on what is found in the log data. Brackets [], braces {} or semicolon ; are syntax ele-ments often used to print generic and structured data called object. SelFiE returns its aggregateddata using the JSON (JavaScript Object Notation) in the syslogs which use these three punctuationmarks to print object fields and value for example. The Linux kernel may also use many specialcharacters when it logs backtrace to return a nice table directly in syslog. Finally, some characterslike the dash - can be really ambiguous as delimiter because it is often used in file names andso should not be considered as delimiter but it can also be used to concatenate identifiers with a
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numbering format, like a software name followed by its version, for which it can be interesting toconsider the dash as a delimiter. The tokenization can have a strong impact for certain log parser,in particular when the log parser assume that the number of token by log lines is constant whenemitted from the same line in the source code which is the case of many log parsers (like [Platini,2020], [He et al., 2017]). But its trade-offs are rarely discussed.
Another commonpractice is to replace all numbers by the same token. However, the benefit isalso rarely discussed. Depending on what they represent, number generally have a typical rangeand some value may deserve a specific treatment. The most striking example is the numbersused for exit code which is a number that a program may return to the operating system whenit ends to inform it that it ended normally or not. Thus the three following log lines emitted bySLURMeach carry a very differentmeaning ([number] replaces a number in the original log lines) :

task [number] ([number]) exited with exit code 0.
task [number] ([number]) exited with exit code 1.
task [number] ([number]) exited with exit code 127.The first log line says the task identified by a number and the PID exited normally so there isnothing to worry about. The second says it exited with errors so the user should modify its codeor working environment to make its job running normally. The third says it exited either becausethe command was not found either because job cannot be executed. While the first and secondcase are nothing to worry about for the HPC center administration, the third can be much morecritical : if it appears because shared libraries are not working, many users will not be able to usethe HPC center as intended. [Xu et al., 2009b] actually include in their anomaly detection modelthe abnormal appearance of some value like this in variable value of log lines. They discriminatebetween actual state variable and identifier numbers based on the number of distinct values thatcan be found in place of the variable part (they quote in particular the POSIX norm of exit codeas example of state variable). This example shows that lot of important information can be lostwhen replacing numbers by a simple token at parsing step and we must be more careful aboutwhat is replaced by wildcards or type tokens and how.

A partial solution to the problem of number replacement is to use tokens that also carry in-formation about the range of numbers they are replacing. Some range of numbers are morecommon than other for certain identifiers or variable depending on the context. In informatics,typical ranges are often delimited by powers of 2 (so that only the highest weight bit is flipped tochange the range). For example, port numbers between 0 and 1023 = 210−1must be used by thesystem processes and not user by convention. So it may be interesting to indicate that a numberis less than 210 when replacing it by a token to eventually catch a different pattern if a user usea system port for example (it could be a potential attack). The previous example with exit codealso shows that it could be interesting to know if an exit code is close or not to 27 = 128 or not,and 0 and 1 = 20 should also be treated as individual case. The same idea of keeping informationabout the range of number is also proposed by [Platini, 2020] where the length of the substringreplaced by a token is kept so that it is easy to differentiate memory address which are always10 characters long from other words with numbers in it.
Finally, another solution is to use a semi-supervised framework with active learning. [Carasso,2007] proposed for the monitoring software Splunk to use mutual bootstrapping introduced by[Riloff et al., 1999] to get fields of logs and extract their values. A field is the class of variablewe expect to fill the wildcards. A big advantage of having a field result is that it allows usingmodels as [Xu et al., 2009b] based on the occurrences of a variable of a certain type. Mutualbootstrapping extract templates with fields and variables either using seed word for the field to
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find, or known templates. The most common method is the Basilisk bootstrapping by [Thelenand Riloff, 2002]. A scoring method is defined for words as value of a field or for templates, usingoccurrence of words in a field value or template matching sentences or modern NLP model as[Hu et al., 2020] recently proposed with an AutoEncorer for example... From the words that areknown to be variable of certain field, it replaces the occurrences of each word by its field typeto get some template proposals and the best scoring ones are stored as known templates. Fromknown templates, it extracts the words that are value of the field in the template and store thebest scoring words result as a dictionary of known values for each field. These two steps areiterated, and it is very easy for a human to discard template by specifying bad value for a fieldor the templates directly. This makes it easy to build an active learner that can be improved andupdated. Mutual bootstrapping is useful to extract information of text that are known to alwaysuse the same sentences patterns or with very specialized vocabulary. This is the case for logsdata where sentences are well-defined by log lines and reused patterns which are the formatstrings so it could be an interesting way to build a database of log template. Themain problem ofmutual bootstrapping is collision which happens when the mutual bootstrapping result in a fieldvalue shared with another field. A conflict must be resolved with a heuristic when it happens,this can be done by the human or a heuristic, overwriting the result being the most common oneproposed by [Vulić and Moens, 2013]. There mutual bootstrapping seems to offer a simple andclear way to build and maintain a database of templates and variable to monitor by the operatorof the computing center.
To conclude, the best solution to log parsing would be to not have to run a log parser at all bychanging the log practices. Some software developers, like the ones of HPSS, may details in theirdocumentation the format strings they used to build their logs of events. This practice should bemore common in software used in HPC centers to help monitor. However, a simpler solution inthe shorter-term for generic log in syslog files would be to add as field of a log line an identifierof the format string that generate the log messages. This is analogous to the result returned bythe work of [Ghiasvand et al., 2016] which return a simple hash of the string of the message afterprocessing it with regular expressions. Adding this supplementary data was also proposed as agood direction for log parsing by [He et al., 2016] and following the proposal of [Salfner et al.,2004]. Log parsing is a key step in automatic log processing and it seems very unreliable to let amodel perform it with the currently available syslog data without expert knowledge in the loop.We think this is the most critical limit to the use of any log mining model to monitor an industrialcomputing center and adopting a standard to return an event identifier with the log messageshould be the top priority of any operator who wants to use machine learning on syslog data forcritical monitoring in production.

3.2 . Aggregation into high count data
There is no straightforward way to visualize the content of logs, this is only possible on wellformatted and known ones. That’s why we focus only on the occurrences of specified events orlogs that are well formatted for the rest of this work. We need to aggregate some events togetherto extract information about their occurrence. The most simple way to do it is to count events,as it is already done for functions calls event at extraction.
We first present and propose a preprocessing of the data extracted by SeLfiE and logs fromHPSS and describe the different trade-off when aggregating event logs. We observe from the
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comparison of the two resulting datasets that our visualization must be scale invariant, so wedecide to apply a logarithmic transformation to enforce this constraint, which is not an easy task.
3.2.1 . Exploration of the features of aggregated data

We first present HPSS logs data and discuss the different ways of aggregating them into countdata with their trade-off. Then we present the count data extracted by the SeLfiE profiler runningat the CEA and describe a preprocessing needed to aggregate them by jobs correctly. Finally, wecompare the two datasets and notice that by construction, two samples that can be consideredclose can have different scale because of the aggregation.
Counting aggregation criterion for log data
The data returned by SeLfiE is already aggregated into count data for practical reason at ex-traction. The events set fromwhich SeLfiE data are extracted is however very similar to the HPSS’sevent described in its formatted logs. We propose to create an unsupervised visualization toolto help either with the monitoring of jobs with SeLfiE data either with the storage system withHPSS’s formatted log. To allow the same visualization on SeLfiE data and on HPSS’s logs data, wemust apply a counting aggregation on the HPSS’s log data to work with count data only.While the SeLfiE data are mostly function call events already aggregated based on the stepcriterion, we have to chose how we aggregate the events from HPSS’s logs to also get count data.A recorded event logged by HPSS is a string of the following form :

Record type=ALARM, Event time=2020/03/07 08:27:56 CEST, Severity=MINOR
Subsystem=CORE, Message#=3073, Error code=-1436
Desc name=Core Server, Routine=ss_WriteDisk:Mover 0 (line 708)
PID=22735, Node=node1337, User=
Type=SOFTWARE_ERROR, Object Class=40, Request Id=49975236

Active side of copy operation failed: Resource locked

The first block is a header containing meta-information on the message that comes after.There are many fields with different range of values :
Record type : This value is the general class of the message and is categorical. It is ALARM inthe example, indicating something that requires administrator attention. It can be DEBUG ifit could be useful for troubleshooting or EVENT if it is an informative event for the operatoreven if not worrying (a starting or exiting event for example). Other value are possible like

TRACEif the logger is set to details as much as possible what HPSS is doing but we did notsee them in our data.
Event time : Timestamps of themessage, it is a continuous variable discretized to the nearestsecond.
Severity : The impact that the logged event can have on the running application or system.It can be empty if nothing will happen (that is the case of all EVENT type log messages),

WARNING if it is abnormal behavior but automatically handled, MINOR if an issue must beresolved by the administration operators but the application is still functional, MAJOR ifthe behavior of the application is very different to what we might expect from it. Finally,
CRITICAL indicates that the application is unusable or that it is broken or breaking thesystem. This level of severity is set by the software developer of HPSS. (Two other valuesare possible, Indeterminate and Cleared but was not encounter in our data).
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Subsystem : Acronym of the type of subsystem or server also shown in Desc name which isemitting the message. It is CORE or the Core Server of the storage system in the example,but it can also be a mover MOVR (on-board system for disk loading and management likerobots for magnetic band storage).
Message# : Number associated to the message. Prefixed with the value in Subsystem field, itforms a message identifier that can be used to look up for details in the error manual.
Error code : The type of problem underlying the message.
Routine : The name of the function that was executing when the message was logged. Thename of the routinemay begin with an identifier of the subsystem or type of hardware theroutine interactwith. Object class is an identifier of the class abstraction that implementsthis routine in the source code. The line number in the source code of the routing at whichthe software records the log is also given in parentheses.
Type : The class of the event recorded. It can be a software or hardware error, a servicedegradation, informational text...
Request ID : Identifier generated by the process logging the message. This is very similarto the process ID (PID) except a process may generate several requests. The main one isalways 0 and run continuously. Like the PID, if the request IDs of two messages are thesame and if they are close in time there is a high chance the two logs are recording eventfrom the same request.
PID, Node, User : The PID, the hostname of the node and the username running HPSS whenemitting the log message
The second part is the body of the log and contains the message. The first line is the messagetemplate identified by the message ID filled with value. More information can be added in thenext lines. This part is not formatted and so present the same requirement of parsing to define acriterion. To define ameaningful aggregation criterion, we can however use the log header fields’value since they are formatted.Using message ID (value of Message# field prefixed with value of Subsystem field) we can pro-duce the same kind of timeline as figure 3.1 to get an overview about when something happenedduring the record without having to manually read the logs. The messageIDs are sorted in fre-quency order (the most frequent message have a low rank) and the occurrence of a log messageis displayed as a dot with coordinates corresponding to its date and frequency rank of its mes-sageID. In an attempt to identify relevant event, the dot is colored depending on the severity ofthe message. The result is shown figure 3.2.If we were given enough relevant failures to identify, we could use the sequence of messageID to build a model to maybe forecast them. We do not have such label, so we try to provideunsupervised visualization that rectify some drawback of the one provided in figure 3.2 whichcould also be used for data like SeLfiE. The main issue is that all events are displayed in the sameway but some pattern may be important, so we must find a way to represent pattern of events,not just event. To do that we must aggregate events together, this is done by converting eventdata into count data.Our criterion is a tuple of two criteria. The first is the time periods in which the events happen.The time periods are regular windows of the same duration in which the event time is. We justhave to choose a starting point and the duration for this criterion, given that the time durationof a window must be low compared to the duration of the whole recorded dataset, the starting
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Figure 3.2 – Same visualization as 3.1 but using the available messageID to define the type ofevent. Dots are colored by log severity. The x-axis is the time over a range of 2 mouths. The y-axisis the index of messageID ordered by frequency. We are not aware of any reported event thatdeserves attention.
point does not have a strong impact so we choose it arbitrarily. However, the higher the durationof a window the smoother in time the resulting time series will be. This is because the countingaggregation act as a regular sampling combined with a low pass filter.The second criterion is the value of a field other than event time. It can be notice that somefields form a hierarchical structure of information. A given Routine value implies a unique valuefor Subsystem because only this subsystem may run this routine for example. The same is truefor the messageID (Message# value prefixed with Subsystem value), it implies a unique value for
Routine because a given message can only be generated by a certain routine. This means wecan choose to have a fine or coarse criterion by using certain fields and not other. A criterion isfiner the more unique value it can take because there will be less event counted together. A veryfine criterion would be using the messageID while the subsystem value or Record type would becoarser because those fields act as groups identifier of related messageID value.The resulting data from counting aggregation is a time series for each unique value of thesecond criterion of the number of time an event with this value for the criterion was observedduring the time period considered. This let us two granularity parameters to choose when aggre-gating HPSS log data. To choose these parameters, we propose to compare the resulting countdata with SeLfiE count data.

SeLfiE count data exploration
SeLfiE data are already aggregated for each process of a job. So we don’t have to choose thecriterion. However, SeLfiE data are not time series, they aremore job series indexed by processes.The data returned by SelFiE are logs with a message of the following form :

{ "selfie_version": "1.1", "utime": 85173.62, "stime": 1119.44, "maxmem": 1.09,
"posixio_time": 16.86, "posixio_count": 36148, "papi_ipc": 0.93,
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"papi_vec": 0.00, "papi_mem_bw": 0.00, "mpi_time": 10603.25,
"mpi_count": 784714, "mpi_version": 3.10, "mpi_libversion": "open mpi",
"mpiio_time": 0.00, "mpiio_count": 0, "mpiio_version": 3.10,
"mpiio_libversion": "open mpi", "USER": "saillant", "SLURM_JOBID": "276978",
"SLURM_STEPID": "0", "SLURM_PROCID": "1664", "OMP_NUM_THREADS": "1",
"wtime": 86383.90,
"command": "/opt/abinit-8.8.2/Atos_7__x86_64/intel--17.0.4.196__openmpi--2.0.2
/default/bin/abinit" }

Like the header of HPSS logs, SeLfiE returns formatted logs with fields and values, it uses thedisplay convention JSON for object. The field gives information over several independent partsof the usage of resources by the job.
CPUs’ time : wtime is the wall time ("wall" for "wall-clock"), this is the elapsed real time ofexecution of the program. utime is user-time or the sum of the duration the CPUs areused in user space, meaning the period when they execute instructions which are notfrom the kernel of the operating system. stime is as utime but it is the system-time forkernel instruction. wtime is not always the sum of utime and stime, this is only true forjobs using one unique CPU. For example utime can be higher than wtime if several CPUsare used by the process. Otherwise, the sum of utime and stime is approximately the walltime multiplied by the number of CPUs.
RAMmaximum usage : maxmem value is the maximum resident set size or the maximumamount of RAM in GigaBytes allocated by a process. Given that the nodes of the computingcenter observed have at most 192 GigaBytes of RAM, this value must be less than 192. Ifa process needs more memory while the RAM is full, some processes will be killed or anauxiliary memory in storage will be used but this value does not count it.
Standard Inputs/Outputs : the usage dedicated to reading and writing data in the disk sto-rage is observed through the count of calls of standard functions to interact with data instorage returned as posixio_count, the time spent executing such function is returned in

posixio_time.
PAPI data : PAPI by [Terpstra et al., 2010] is the Performance Application Programming In-terface and provides a consistent interface for hardware performances counters. SeLfiEcollect data from PAPI and return them too. The data returned are the average numberof instructions executed by CPU cycle papi_ipc which indicates an efficient use of CPUs,the ratio of vectorized operations (optimized concurrent operation on vectors) in papi_vecand thememory bandwidth (rate at which data is read orwrite on the RAM) in papi_mem_bwin GigaBytes.
MPI library calls : SeLfiE detects if the processes parallel programming library MPI [Gabrielet al., 2004] is used and which implementation and version returned in mpi_libversionand mpi_version, it tweaks the MPI library to count the number of function calls andreturns it in mpi_count. The sum of durations to execute MPI functions is returned in

mpi_time.
MPI I/O library calls : SeLfiE does the same with the I/O module of MPI to read and writeconcurrently in storage disks. The data are returned into the same format as MPI but pre-fixed by mpiio
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SLURMmetadata : SeLfiE also includes SLURM data in its return (the username USER, jobidentifier in SLURM_JOBID, step identifier in SLURM_STEPID and relative MPI rank of the pro-cess in SLURM_PROCID)
OpenMP data : SeLfiE also collects data from the threads parallel programming libraryOpenMP [Dagum and Menon, 1998]. In the version of SeLfiE used to collect our data, itonly returns the number of OpenMP threads used by the process in OMP_NUM_THREADS.
Command path : The full path of the running program is returned in ’command’ field. Thename of the executed binary file is the string of character after the last slash ’/’. This datais malleable by the user and must be used with caution.
A first issue with SeLfiE data is that SeLfiE returns a raw of value for each process even if theyare part of the same step of the same job. Two processes that are part of the same step are twoprocesses working together so the data returned by SeLfiE are strongly dependent from one-another, although not redundant. This is illustrated in figure 3.3. Each scatter plot displays thenumber of MPI functions call against the wall time of each process. But the second scatter plotonly consider themain andmandatory process 0 of each step (we draw a dot only if SLURM_PROCIDis 0). As expected, there are fewer points in the second plot but the overall distribution of pointsis preserved. However, we lose information on the distribution of values of the processes of astep so we need to aggregate them instead of just sampling the first process.But there is a second issue with SeLfiE data that must be resolved before aggregation. The va-lues returned are either extensive either intensive, meaning values are respectively proportionalor not to the "size" of the process. It is clear that CPUs’ times, MPI library calls and MPI I/O librarycalls are extensive values and PAPI data are intensive since the latter are ratios of extensive va-lues. It is less obvious to tell if the values related to standard inputs and outputs posixio_countand posixio_time and the maximum RAM usage maxmem are extensive or intensive. One way tofind out is to plot them against another extensive value that play the role of reference of the "size"of the process. The real duration of a job and so the duration of a process is the criterion thatall HPC center users try to minimize. The users will often run the same job with almost the exactsame setup twice but with different duration : one "small" run to check that the code is compu-ting what expected and then "large" production run where they let the program completing thefull computation. This makes the wall time wtime the most intuitive value to represent the "size"of a job from users point of view so we choose it as reference. However, notice it may not beappropriate as reference for all values, in particular when a process also uses several threads.Indeed, we might expect the CPUs usage to be proportional to the number of used thread tooif there are several of them, this means the reference could be the wall time multiplied by thenumber of threads given by OMP_NUM_THREADS (provided the threads are managed by OpenMP)or the utime. Figure 3.4 shows the plot in logarithmic scale of posixio_count, posixio_time and

maxmem against the wall time wtime for extracted data from processes 0. If a value is intensive,the value is independent of wtime and we should expect no trend. If a value is extensive, then itshould be proportional to wtime for all jobs so an increasing trend with slope 1 should be noticedin the plot. A line with slope 1 in black shows the expected direction of the trend for extensivevalues (the trend must be parallel to the black line if the value is extensive because of the loga-rithmic scale). We know that posixio_time cannot be greater than wtime, this bound is plottedin red.The plot of themaximumRAMusage clearly shows that it is an intensive value. This is becausea process can only use as much memory as the node on which it is running has RAM. Total me-mory usage could be extensive, we expect bigger jobs to use more memory. But the fact that we
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Figure 3.3 – Scatter plots of the number of MPI functions call against wall time of processes. Thefirst plot consider all the processes while the plot below only consider themain process 0 of eachstep. The trend of both is similar. However, we can see that some cluster with different shapes(horizontal or inclined rectangle) disappear. This shows redundancy of processes of the samestep and the need to reserve information about this shape when aggregating data by step
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Figure 3.4 – A visual test of extensive value test for Inputs/Outputs counts, time and maximumRAM usage respectively. The scales are both logarithmic. An intensive value has no observabletrend compared to wall time. An extensive value should be proportional to wall time, it shouldhave a trendwith a slope of 1, which is displayed as a black line for better readiness. By definition,Inputs/Outputs time cannot be greater than the wall time, this bound is plotted in red in themiddle plot. Inputs/Outputs counts seem to be extensive. The Inputs/Outputs time seems to bean intensive value.

84



Section 3.2. Aggregation into high count data

Intensive values Extensive values
posixio_time posixio_count

maxmem mpi_count
OMP_NUM_THREADS mpi_time

papi_mem_bw mpiio_count
papi_ipc mpiio_time
papi_vec utime

stime
wtime

Table 3.1 – Summary of our conclusions about extensive and intensive value returned by SeLfiEon processes. Extensive feature must be divided by wall time before being aggregated by jobs.

are measuring the memory usage of process and not job makes it intensive : maxmem measuresa memory usage per nodes, which makes this data intensive because the amount of RAM andmemory on a node is the same for every one of them.
The plot of the POSIX Inputs/Outputs value is more surprising. We may expect that if thenumber of call of functions is extensive as shown in the first plot of posixio_count then thetotal time spent executing them would be extensive too. But this is not so obvious on the plot of

posixio_timewhere it seems there is no significant increasing trend other than the bound givenby wtime. This means posixio_time rather behaves as an intensive value, particularly when thewall time is high. The explanation may be that big jobs will often return intermediary resultsregularly so that the number of I/O calls is indeed proportional to the length of the job but thelongest interaction with storage is rather initializing the domain of computation using data instorage (importing the meshes in memory for example) so that saving intermediary results isnegligible. This also explain why posixio_time is close to wtimemostly when the latter is low. Wechoose to consider that posixio_time is intensive in practice.
We treat the number of OpenMP threads given by OMP_NUM_THREADS as intensive for the samereason as maxmem, a higher number of threads in a node does not imply the job is bigger becausethe usage intensity is bounded by the number of cores in a node. This makes OMP_NUM_THREADSan intensive metric bounded by node specifications as maxmem. However, like memory usage, thetotal numbers of used threads (summed over all processes of a step) can be considered as anextensive value. We summarize which values are intensive and extensive in table 3.1.
We removed from the data the processes with identifier higher than 0 to remove the depen-dency between samples from the same step. By doing so, we lost information of the distributionof values over processes of a step. This information can be important to characteristic differenttype of programs. For example, the longest process is often the one which defines full computa-tion’s duration because others need to wait for it. On the contrary, the fastest could have beenmore used to balance the resource usage over processes. Some kind of jobs are more or lessbalanced between processes. To keep such information, we must aggregate the values for eachprocess into values for each step. One issue is that processes may have different size but weknow how to transform the data to make different processes comparable thanks to the classifi-cation of fields value in intensive and extensive value. The solution is to divide extensive values bythe reference wtime to obtain intensive ones. Then we can aggregate all value together (and wecan remove wtime since it is the reference size). We choose to keep the minimum, the maximum,the mean and the standard deviation of each value of processes of a step for each step of our
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Figure 3.5 – Pareto plot of the executable filename of steps. The blue bars show the number ofoccurrences of a given executable filename in our dataset (scale is given at the left of the plot) andthe yellow curve display the cumulated proportions of jobs in our dataset with more frequentsexecutable filename then the one on x-axis (scale at the right of the plot). Onemight expect that arepresentative dataset would have balanced classes : the blue bars would have roughly the sameheight and the cumulated proportion would be a straight line. This plot shows that our datasetis very unbalanced in terms of filename (the 10 most frequent filenames represent 90% of ourdataset) which can introduce bias in our representation. We resample (with replacement) in it sothat each filename have the same number of samples as others.
dataset. We also add the number of processes of each step to replace SLURM_PROCID. The resultis a dataset of step for which we have the 4 previous estimators for each value returned by SefiEtaken over all the processes of the step and its number of processes.Finally, SeLfiE data are also sampled Depending on the usage of the computing center andthe number of step per job. This means that some programs are oversampled because theyrepresent themain usage of the computing or because they appear in jobs withmany steps whileothers are down-sampled because they are rarely used or only for few applications. This fact isillustrated in the Pareto plot in figure 3.5. Our goal is to build a visualization of SeLfiE data thatallow to see if we can classify the running programs. To resolve the imbalanced sampling issue,we extract the binary name from the command field of SeLfiE data by only keeping the filenameafter the last slash /. Then we sample 50 times with repetition a step with a given filename foreach unique executable filename value to get a new dataset in which all executables have thesame number of occurrences.

Comparison between the two aggregated data
HPSS and SeLfiE datasets are both resulting from a counting aggregation. But there are stillmany differences between them.First the samples have a different type of dependency in the two dataset. HPSS samples arepoints of a time series so they are not independent but the dependency is known. In the case of
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SeLfiE data, our aggregation of processes data results in a sample of estimators of the number ofevents counted in each processes for each step. The dependency between samples is then givenby their membership or not of the same job or step. In both cases the dependency is known andcan be used to evaluate that the proposed visualization renders it clearly.
The major difference between HPSS and SelFiE data is how our choice of counting aggrega-tion introduces the dependency between samples. HPSS events have been aggregated uniformlythrough time with the choice of a time window duration of aggregation. Every value is extensive,the higher the time window duration, the bigger the values. The windows’duration is known sowe can easily create intensive values from count data just by dividing them by the window du-ration. The choice of time windows duration is then similar to a choice of smoothing with a lowpass filter if we consider the resulting count series divided by the window duration. However, theHPSS events are also aggregated by the value of one of the fields of HPSS logs. This choice intro-duces an arbitrary aggregation of events that may be non-uniform. For example, some categoryof events may appear several times for one other category of event. This means that there is stillunknown proportional relationship between counts of events of different categories dependingon what is happening in the considered time window.
This is even more the case for SeLfiE count samples. Events are not aggregated uniformly bythe SeLfiE profiler because not all steps have the same size. As already discussed in previoussection, the non-uniformity of aggregation produce extensive values that are not so trivial toconvert into intensive value. Even after dividing by the wall time the values we identified as ex-tensive, other hidden features like the size of the domain of computation, the number of nodesused by the job, the load balancing between CPUs, the number of processes or thread used andamount of communications required can make a job step a "bigger" aggregation than another.Once again, this implies there is still unknown proportional relationship between the value retur-ned by SeLfiE even after removing the wall time contribution to the scale.
The counting aggregation is a multiplicative mechanism, it imposes its scale to the resultingdata. Thismakes the absolute values notmeaningful, even if we try to remove a global scale effect.However, the origin of this non-uniformity is a macro-event of a larger scale than our choice ofaggregation, this means that in both cases of HPSS and SeLfiE we should visualize the relativevalue of the count data, ignoring the scale introduced by the aggregation. Our goal is to build ascale free visualization for SeLfiE and HPSS count data.

3.2.2 . Scale free result transformation
The counting aggregation introduces an artificial scaling effect. The information is only contai-ned in the relative values. This is the core assumption of a research field in statistics called Com-positional Data analysis. We review how it can be applied to our data.
We first present what are Compositional Data and themain challenge to apply CompositionalData analysis to our data : applying the logarithmon structural zeros.We reviewhow this problemis solved in the literature. Then we propose a way to deal with them for visualization purposeusing the framework of missing values to give a value for the logarithm.
Compositional Data and logarithm transformation
The data carrying relative information is called compositional data. Compositional data oftenappear in measurements of proportions or probabilities. Composition can also take the form ofcounts. The field of Compositional Data analysis (CoDa) was introduced by [Aitchison, 1982]. Inthe most general form, the data points are real vector with positive components. Data must be
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normalized to remove the global scale. Once normalized it is assumed that the samples lives in asimplex of positive data with a fixed sum. This simplex is given a new geometry called "Aitchisongeometry". This geometry is the one obtained from classical vector space for which each com-ponent of the vectors is replaced by their exponential and normalized. The implicit assumptionis that in a composition, a change or error is not additive but multiplicative.
Themain point of this geometry is to take the logarithm of all coordinates of normalized com-positional data before using classical statistical model. The data can be normalized by dividingall coordinates by one of them or any homogeneous statistics like the sum of coordinate or theirgeometric mean. The resulting collection of transformation is called log-ratio transformation.
Even after careful normalization to get intensive values from the extensive ones, we need toplot SeLfiE andHPSS log counts data with a logarithmic scale. This suggests that Aitchison geome-try is relevant to analyze the data so they can be considered as compositional data. The numberof times an event appeared would represent its proportion in the time frame of aggregation (re-gular time window or step running period) where all events were counted once normalized.
The main issue with compositional data analysis is by far the zero-valued coordinates. Thisis clear from the fact that any compositional data analysis will use a log-ratio transformationwhich cannot be valued for zero-valued coordinates because of the undefined logarithmat 0. Thismotivates [O’Hara and Kotze, 2010] to claim that log-transforming count data is a bad practiceand recommend to use Poisson or negative binomial models. However, they also noticed thatthis practice is not so bad when counts are high.
The treatment of zero-valued coordinates must be done depending on the reason why theyare present. The use-case developed by [O’Hara and Kotze, 2010] is when counts are low, whichcorrespond to a case where an element of the composition is undetected because of a detectionlimit of a sensor. Another explanation of zero-value coordinate in count compositional data is arounding error.
By construction, SeLfiE and HPSS contains zero-valued counts. However they are differentfrom previous types. The reason they appear is because they are "true zeros". For example, thecoordinate associated to the value of the field mpiio_count is often 0 when a process did not usethe MPI I/O library at all. In the case of HPSS logs, many messageID will not appear during a timewindow which will also produce a zero-valued coordinate for each messageID if we choose toaggregate the events with the messageID as criterion. We call such zero structural zeros. Thereis no general way to handle structural zeros of compositional data and we must investigate withknowledge on the data why such structural zeros appears.
Logarithmic transformation with zero-valued coordinates
A very common practice to handle zeros when applying a logarithmic transformation is touse smooth surrogate functions for the logarithm that are well-defined at 0 and approximate thelogarithm for positive values. The most common practice is to add a small constant to all valuesbefore applying the log. A common choice of this constant is 1 so that log(x + 1) is 0 when x iszero. When used in a supervised learning problem, it is also possible to learn the best value ofthis constant as proposed by [Le and Cuturi, 2013] to learn generalized Aitchison embedding ofcompositional data like histogram. [Bellego et al., 2021] pointed that "many practitioners use thissolution without even mentioning it because they think that adding a very small constant is notgoing to be harmful" while it is clear that the logarithmwill expand low-values and generate a biasDepending on the range of order of magnitude of the data. They also showed that choosing thesmallest possible constant is not a better choice. An intuitive explanation is that while the choice
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of a very small constant makes the approximation of log very good for low positive counts, itintroduces a very large distance between zeros-valued data and positive data so that almost allthe variance is explained by being zeros-valued or not, no matter the positive value. This makesit hard to detect relevant direction for the variance of log-transformed positive data.
Another old practice introduced by [Johnson, 1949] is to use the inverse hyperbolic sine trans-formation as surrogate of log transformationwhich also offers the possibility of handling negativevalues if they have a meaning (e.g. for data that are difference of counts). This was developed by[Burbidge et al., 1988] along with an extension of the other very common alternative, the Box-Cox transformation, which uses power-based transformation. Those transformations approxi-mate well the logarithm for high values but not low value and present the same kind of issue asadding a constant : a scale of value from which the logarithm is well approximated by the inversehyperbolic sine must be chosen and choosing it the lowest possible is equivalent to choosing anarbitrary value of 0 for zeros-valued data which may introduce bias.
The recommended practice by critics of the logarithm transformation is to use generalizedlinear model (GLM) with a Poisson distribution for counts or zeros-inflated-model that will add adirac at zero in estimated distributions, meaning that the random variable being modelled hasa probability of being zero or is drawn relative to the Poisson distribution with parameters esti-mated with a linear model. Such model made the core assumption that the counted events areemitted by an approximately stationary count process at the scale of aggregation, which could betrue for HPSS data if aggregation time period are short enough. However, we should not expectit for SeLfiE data since the data are at least aggregated over the whole duration of the processes.
In conclusion, it was already noticed that there is no generic way to handle zeros in countdata as the best treatment depend on the reason why such zeros appear. In the case of HPSSdata, the recommended practice to use Poisson based model could be relevant. However norecommendation among the literature seems to be satisfying for highly aggregated count datalike SeLfiE. It seems high count data is different from classical count data in the sense that thezero is rather a categorical feature than a count : it indicates a class ownership that result in nodata for a count feature. This makes it hard to build a common projection space to visualize thedistribution of such data without creating artifacts that could lead to wrong interpretation of theshape of the data.
Mean imputation of logarithms for SeLfiE data
The previousmethods to handle zeros-coordinate implicitly assume that zeros are associatedwith lower values of the data they represent than positive data, they are value that are lower thandetection limit or rounding zeros. The logarithm transformation is handled by setting a low posi-tive value in place of the zero which can be computed from the detection limit or an imputationmodel that uses the positive data to set an appropriated value for the zero of logarithm.
The order between zeros and positive values may also be ignored. Zero values can be as-sociated to missing values. That is why a more radical solution is to remove the samples or toaggregate features with zeros-values with each others to remove them. But even this solutionis not ideal if used : it requires more data for the same quality of estimation and it introducesbias in the data if the zeros are not uniformly distributed and independent of the data. Remo-ving data with missing value does not bias the result only under the assumption that they are"Missing Completely At Random" (MCAR assumption) which means that "missingness" state isindependent of the values, missing or not. Otherwise, the curated data is biased toward valuesthat introduce less missing values.
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When the data is "Missing At Random" the non-missing values are the only dependency of the"missingness" with the true data, this could allow to weight the data once samples with missingdata are removed to remove the bias. This assumption cannot be verified statistically according to[Little andRubin, 2019] andwemust rely on our knowledge of the process that introducesmissingvalues. In the case of our high count data, the zeros values are associated with the fact that alibrary is not used for SeLfiE data or the non-occurrence of a log event. If interpreted as missingvalues, the "missingness" is not random but strongly related to what a sample represents. It isclear in the case of SeLfiE data that the "missingness" of certain value are explained by themissingvalues themselves. This means we have to assume that the data is "Missing Not At Random",which is the worst case and imply that it is impossible to remove samples with missing valuewithout expert knowledge of how this will bias the data, knowledge we do not have.
When it is not possible to delete missing value through samples, we must choose an imputa-tionmethod to replacemissing values with some values that are of the same type as non-missingvalues. The most common and the simplest imputation of missing values is to replace them bythe mean of non-missing values. This choice minimizes the sum of squared error introduced bythe imputation and so minimize the variance on the resulting data. It is strongly criticized by[Donders et al., 2006] because it introduces bias in linear regression coefficients toward "0". Aninterpretation of this fact is that the same value for all missing values of a feature is a constantfunction for which the regression coefficient is 0 mixed with the available data.
Another common method of imputation is to build a binary matrix that indicate if a featurevalue is missing in a sample and impute themissing value with an arbitrary value like themean, 0or an estimate computed from the k nearest neighbors according to a distance computed on non-missing feature of the sample. This was proposed in the case of zero handling of CompositionalData by [Hron et al., 2010] first and used by [Templ et al., 2017] to perform outliers detectionusing a score based on a Mahalanobis distance computed on imputed data and "missingness"binary matrix with good results. The use of an indicator matrix as predictor of a regression ishowever strongly criticized by [Donders et al., 2006] too. This illustrates the often overlookedfact that the best choice of an imputation method of missing values is not just an assumption onthe distribution of true values of themissing value, it strongly depends on what we try to achieve.To get a satisfying solution, we need to model what is missing but the best imputation methodalso depend on what we are trying to achieve.
It is clear that the different jobs can be differentiated by the different libraries they use and thisis easily detected by the presence of zeros on some coordinates. However, since we also wantto know if other patterns are present in the non-zero data, we need to choose a replacementvalue for its zeros that reduces their weight on the final rendering. Since variance is often used todetermine the directions inwhich the datawill be projected for visualization, choosing a value thatminimizes variance seemed to be the most relevant choice for replacing the zeros. We thereforechoose to use mean imputation, where the logarithms of zeros are replaced by the average ofthe logarithms of the other non-zero values of the same feature.

3.3 . Visualization of aggregated data
Thanks to all the preprocessing and the logarithmic transformation, we can now apply clas-sical methods of data visualization. This is generally done by embedding or projecting the datainto a low dimensional vector space, of dimension 2 or 3 for 2D or 3D rendering of the data.
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We review the different way to build such visualization and their trade-offs. We applied themto SeLfiE and HPSS and conclude on the difficulty to get a clear visualization of events data.
3.3.1 . Choice of the embedding method

It is very common that the dimension of the vector space in which numerical data are consi-dered is too high to plot the samples directly. A visualization can only be 2 or 3 dimensional, thismeans that some information will be lost if we plot data that have more than 3 features, whichis that case for both SeLfiE and HPSS datasets after preprocessings. The choice of a visualizationmethod depend on what type of information we are willing to lose or preserve in the result.We sort visualization methods between two extreme cases : linear projections andneighborhood-based embeddings. We then describe the advantages and drawbacks of methodsby describing them for the two extreme cases. We choose to use linear projection methods topreserve the whole shape of the data.
Main features of an embedding method
Visualization methods can be broadly classified into two categories, each with their own ad-vantages and disadvantages : projection methods and neighborhood-based methods.The projection methods require the data representation to be a linear projection via a matrixdecomposition of the data matrix. We find in these methods those based on the SVD decom-position such as the truncated SVD often used for latent semantic analysis, the PCA, the NMF.Additional redundant dimensions deduced from the patterns can also be added and removed toobtain more parsimonious representations as is the case in dictionary learning.Neighborhood-based methods use instead the distances between points, and in particularthe neighbors of each point, to build a non-linear latent space into which the data are projected.Themost popular methods of this type are the Self-Organizing Maps, or Kohonenmap, the t-SNEor more recently UMAP.Some methods can be more or less similar to linear or neighbor-based projection methodsdepending on the parameters used. The kernel SVD or kernel PCA use a positive definite kerneland can be closer to a neighbor-basedmethod if the kernel used is Gaussian or to a linear projec-tionmethod if the kernel is linear or polynomial of low degree. The idea is to do a linear projectionin higher dimensional vector spaces (like RKHS, Reproducing Kernel Hilbert Space, in the case ofkernel based methods) where the coordinates are non-linear functions of the coordinates of thedata matrix.
Description of the trade-offs in visualization
Visualization of data into lower dimensional plan necessarily involves trade-offs, informationwill be lost and it may be difficult to understand how the final representation can be misleading.Themain trade-off is betweenmatching the overall shape of the data in the lower dimensionalvisualization with a shape that is well present in the original data and respecting the distancesbetween the points in the visualization plane with the full data. In other words, either the shapeof the visualized data is well present in the original data but the distances between the points inthe visualization are not representative, or the opposite is true.In general, linear projection methods return a visualization whose overall shape correspondsto a shape present in the original data but may artificially bring together points that are sup-posed to be arbitrarily distant according to the weights of the dimensions retained in the finalprojection. The choice of a linear projectionmethod is therefore often dependent onwell-defined
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assumptions : Truncated SVD is concerned with the directions of the data with respect to the ori-gin, PCA with the axes of the greatest variance, NMF applies to positive data and visualizes thedata as a positive sum of basis vectors.
In contrast, neighbor-based methods distort the data but the distances between neighboringpoints are more representative. However, it is often difficult for these methods to ensure thatthe distance scales between widely separated points are respected. Neighbor-based methodsgenerally have much more complex parameters to handle and interpret to manage this trade-off with distant points, they can take many forms : kernels for kernel-based methods, perplexityfor t-SNE, a number of neighbors for UMAP or a metric to measure distances in general. It is noteasy to knowwhat the appropriate values of these parameters are andwhether some interestingvisualizations are in fact only the result of a wrong choice of them.
In our case, we do not know very well what to expect in the data due to lack of expertise.We have to choose between methods for which any observed patterns results from the origi-nal data but it is possible that the most interesting patterns could be completely erased by theprojection which only focus on a shape of the data with little interest and methods that certainlyreturn patterns that are very difficult to imagine but may be a simple artifact of the visualizationmethod and a bad choice of parameters. For lack of guarantees, we prefer not to take the riskof over-interpreting the data and to stay with methods that facilitate the interpretation of thevisualization and do not backfire by making us imagine artificial patterns. We therefore chooseto focus on methods based on linear projections.

3.3.2 . Visualization of SeLfiE data
The simplest and most used linear projection method to visualize data is the Principal Com-ponent Analysis, so we train it on SeLfiE data. We use the executable filename field of SeLfiE datato approximately check if the visualization is relevant to form clusters of jobs with the same fi-lename, this also leads us to train a Linear Discriminant Analysis mode with a regularization toavoid overfitting. Finally, we use the trainedmodels to visualize the SeLfiE data of all the processes(without rebalancing by executable filename). The PCA components are easier to interpret thanLDA components in general.
Principal Component Analysis on balanced data
After converting all extensive values into intensive values and aggregate values per processes,we assumed in the previous section that the SeLfiE data are compositional data with multiplica-tive noise and that the log function should therefore be applied to them before a classical sta-tistical treatment that generally considers the noise as additive. We also felt that the calculationof a logarithm of a zero should be replaced by the average value of the logarithms of the samecoordinate for the other samples when it is non-zero.
Finally, we want to use a linear projection method. Since the origin does not play a particularrole after the application of the logarithm, there is no reason to use a truncated SVD method. Itis therefore simplest to apply Principal Component Analysis to the results of all these preproces-sings, especially since the mean imputation does not change the mean vector in case the valuesimputed to the logarithms of zeros are ignored.
The result can be seen in Figure 3.6. The points are colored according to the name of the fileextracted from the command path field of SeLfiE data. In most cases, it can be a significant labelof the class of a process. We can notice a shape in the projection over the two first components.The samples appear to be dispersed in a non-convex hull that has the shape of a cross with its
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Figure 3.6 – Result of Principal Component Analysis on transformed balanced SeLfiE data
Left : Projection on the first two principal components
Right : On the second and third components

axes slightly inclined with respect to the principal components and one of its branches running inthe direction of the first principal component. One possible interpretation is that the position ofa sample in the SeLfiE data is mainly determined by its coordinate along the principal componentwhen it is non-zero. To make a practical interpretation, we need to look at which combination ofcoordinates the principal component corresponds to, these are shown in Figure 3.7.
We show the coordinates of the first to third principal components which account for 60% ofthe total variance. The principal component accounts for 35% of the variance and is mainly deter-mined by the number of function calls of theMPI library while ignoring the time spent processingthem and compares it to the RAM usage (information carried by maxmem) and the standard I/O ofthe storage system (information carried by posixio and partly system time stime). The secondcomponent contrasts the time spent reading from and writing to disk storage, the number ofthreads and processes used and the number of instructions per cycle with memory bandwidth,RAM utilization, and the balance of system time and user time. The third component contraststhe number of reads and writes to disk storage and system time with memory bandwidth, RAMusage, parallelism (via the number of processes and threads), number of instructions per cycleand user time. It is not surprising that the MPI I/O library does not explain much of the variancein the data as few jobs use it, in most cases this coordinate contains the imputed mean value,which does not contribute to the total variance.
To simplify, a projection of the SeLfiE data that explains 60% of the variance is determined byfirst looking at the number of MPI calls, then comparing the time spent in reading/writing storagewith the intensity and amount of RAM usage, and finally comparing the number of interactionswith storage with memory usage.
So picking up on the observations about the shape of the projected data, it would seem thatif a job makes frequent calls to MPI functions, then the average number of MPI calls is goingto differentiate it fairly well from the others, otherwise you have to use the other data and inparticular how it interacts with disk storage compared to RAM.
This last conclusion must however be moderated. The principal component carries only 35%of the variance. The first three components only carry 60% of the total variance, which is an indi-cation that 3 dimensions are not enough to represent the distribution of the data and thereforeseparate the jobs according to categories if they exist. However, it is possible to make better useof the names of the commands to try to obtain a low-dimensional representation that allows the
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Figure 3.7 – Weight of each aggregated coordinates for the three first principal components afterlogarithmic transformation. The value of the projection on one of the principal components canbe interpreted as a comparison of positive and negative weighted coordinates as a ratio.
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jobs to be better categorized.
Linear Discriminant Analysis on balanced data
The PCA only uses the distribution of the samples and does not try to separate them in orderto find classes. Thus, we were able to color the samples according to the name of the executableand observe how this variable could be distributed in the projection given by the PCA, but thisdata was not used at all to carry out the projection.
There are however methods that allow to find a linear projection that will rather try to sepa-rate the different classes as much as possible. The names of executables cannot constitute realjob classes because they are chosen by the users at their convenience. Several executable namescan be associated with the same code (LMDZ production code is often deployed in different ap-plications which will have executable names such as orchidee or opa) and several codes can allhave the same executable file name (as is the case for codes using interpreted languages such asPython, it would be necessary to know the other arguments to differentiate them). We renamethe former to a common name and remove the latter from our dataset in an attempt to have aprojection that is minimally distorted by this inconsistency when we are aware of it.
Linear Discriminant Analysis (LDA) is themost commonmethod for determining a linear com-bination of the continuous coordinates of samples in certain classes that allows them to be sepa-rated. LDA assumes that the samples of a class are distributed according to a Gaussian distribu-tion with the same covariance matrix (homoscedasticity assumption), so the decision boundarybetween two classes is linear. In practice, LDA applied to dimension reduction in the case of se-veral classes is searching the coordinates that maximize the Mahalaobis distance between theclasses instead of the principal components of the raw data as in the case of PCA. This optimiza-tion is solved by applying the eigendecomposition on the multiplication of the precision matrix(inverse of the covariance matrix) of the intra-class samples with the inter-class covariance ma-trix.
The direct application of the LDAmethod on the raw data is not a good idea when the numberof features is high. This is because the number of samples per class is 50 and there may berepetition of the same sample for some classes with very few samples in the raw data, while thenumber of features is 47, which makes the estimated intra-class covariance matrices close tothe singular. Thus, its inversion needed to calculate the intra-class accuracy matrix is not stableresulting in a lot of variance of the estimator and thus overfitting.
To reduce the over-interpretation of the LDA in the high dimensional case there are two ap-proaches. First, one can perform a PCAwith a sufficiently small number of components and applythe LDA on the projected data. To choose the number of components for the PCA according to thepercentage of variance explained by these components, the most common practice is to choosea number of components that retains 90% of the variance, which is 11 components in the caseof SeLfiE data. The main drawback of this method is that the key features that allow jobs to beseparated may be compressed by the PCA if it has a low contribution to the variance but this isalso what allows the projection on LDA components to preserve the overall shape of the data ifit is useful. Another method is to regularize the estimation of the intra-class covariance matrix toreduce the variance at the cost of a bias, as done for a Ridge regression for example. The mostcommon method implemented in SciKit-Learn library is the shrinkage between the empirical es-timator of the covariance matrix and the isotropic variance, the optimal shrinkage parameter isthen given by the lemma of [Ledoit and Wolf, 2004].
The result of the two methods are shown in Figure 3.8 and Figure 3.9. The classes seem less
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Figure 3.8 – Result of Linear Discriminant Analysis on transformed balanced SeLfiE data projectedon the first 11 principal components which represent for 90% of the total variance
Left : Projection on the first two partial LDA components
Right : On the second and third components

Figure 3.9 – Result of regularized Linear Discriminant Analysis on transformed balanced SeLfiEdata
Left : Projection on the first two regularized LDA components
Right : On the second and third components

mixed on the projection in both cases than the PCA. Using the PCA before LDA makes the pro-jection closer to the shape of the PCA, particularly when looking at the projection on the first twocomponents. Shrinkage LDA returns a widely different shape which looks like a fork in 3 dimen-sions.
The fact shapes are so different can be explained easily by looking at the coordinates of LDAcomponents in both cases. The coordinates of LDA components on data projected on PCA com-ponents are very similar to the PCA components themselves, particularly for the first componentof LDA while the components of the regularized LDA are widely different and may use very diffe-rently the different estimator of the same data aggregated by processes as shown in Figure 3.10,this makes the result hard to interpret for the regularized LDA. We believe that the difficulty ininterpreting the components of the regularized LDA suggests that it overfits the data. It is pos-sible to obtain poorly reproducible results on some coordinates of the regularized LDA compo-nents because of the random resampling to balance the number of samples per class used inpre-processing.
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Figure 3.10 – Weight of each aggregated coordinates for the three first components given byLinear Discriminant Analysis after logarithmic transformation. The value of the projection on oneof the components can also be interpreted as a comparison of positive and negative weightedcoordinates as a ratio.
Left : Coordinates first three LDA components after projection on first PCA components
Right : Coordinates first three regularized LDA components

Component Analysis on all processes
Another advantage of visualization techniques based on linear projections is that they canmake predictions on new data without needing to be re-trained, this is called an inductive lear-ning. In contrast, visualizations based on neighbors are often transductive, they do not provide away of visualizing the data but propose a visualization for the data presented to it. If onewishes tovisualize new data, one must then re-evaluate the entire visualization on all the data at one’s dis-posal and there is no guarantee that the result of previous visualizations on the data one alreadyhad will be preserved.To ensure that each potential class of jobs is well represented we resampled the data so thateach executable file name represents the same proportion of the data to create the visualization.Since we opted for an inductive modeling based on linear projections, we can therefore observethe visualization of the original data where some executables are called much more often thanothers as shown in the Pareto plot in figure 3.5. The results of the LDAs with PCA or regularizationare shown in Figure 3.11. It seems the regularized LDA is slightly better at separating the differentclasses candidates of jobs but this result does not exclude a possible over-fitting since the datashown are strongly dependent to the data used to train the model. The LDA obtains after PCAprojection seems to also perform well and also deserve further study and more practical testingbecause the components are easier to interpret than regularized LDAon aggregated data directly.

3.3.3 . Application to HPSS data
As made with SeLfiE, we can apply PCA on HPSS logs data. We first choose how we aggregatethem into count data and apply the logarithm transformation. Then we looked at projection on
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Figure 3.11 – Projection of log-transformed SeLfiE data without resampling to have the samenumber of samples with the same executable filename on previous Linear Discriminant Analysiscomponents.
Left : Projection of original data on the first two LDA components on data projected on the firstprincipal components
Right : on the first two regularized LDA components
the principal components while keeping track of the order of counts samples to judge if we areable to discover relevant time periods. Finally, it seems that our work does not apply well on HPSSlogs when compared with SeLfiE results.

Choosing the aggregating criteria
Before proposing a visualization similar to the one we did for SeLfiE, we first need to choosethe aggregation criterion to transform the raw HPSS data in the form of an event list into a counttime series. The aggregation criterion is a pair of time period and field value. We choose to aggre-gate the events over 30-minute periods in order to have few periods where no events are emitted(95 periods out of 2724) while remaining quite short of incident durations that are difficult to de-tect in practice.The severity and type of events are data that have few distinct unique values and informmoreof the interest in reading the content of the message than in differentiating the failures. Messageidentifiers have many unique values and it is expected that the number of unique values willincrease with the number of samples. This would quickly become a problem when generalizingthe visualization obtained to larger datasets. This is why we make the compromise of using thenames of the routines issuing each event as field values, these allow us to know what HPSS wasdoing in a time period and which tasks generated the event record without knowing what theevent is. The number of routines called in our dataset is 121, which is comparable to the numberof features used to visualize the SeLfiE data.The resulting count data is 121 time series, one for each routine, of 2724 time periods.
Visualization with PCA of HPSS data
The time series of HPSS event counts can also be considered as compositional data sinceeach component is the number of events emitted by a routine and is therefore proportional tothe proportion of events emitted by that routine during the period. Therefore, we also have totake the logarithm to transform the multiplicative noise into additive noise in order to use a PCAas for the SeLfiE data. However, we do not have to convert count values which are extensive intointensive values because the time aggregation criterion is the same size for all the points.
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Figure 3.12 – Result of Principal Component Analysis on log-transformed HPSS data
Left : Projection on the first two PCA components of HPSS data
Right : On the second and third components

Since we want to use the PCA, it again seems more reasonable to use an average imputationto give a value to the logarithm of the zeros so that they do not arbitrarily distort the final re-presentation. The result of the PCA is shown in Figure 3.12. The points are colored according tothe date of the time period they represent, the oldest are green and the most recent are yellow.Contrary to the SeLfiE data, no particular grouping can be distinguished, almost all the pointsare in a group which does not present any particular structure, apart from a greater density ofpoints on one of its axes which can certainly be explained by the presence of zeros on a set ofcoordinates for these even if they are not out of the ordinary. In some periods the points deviatefrom this central group and return to it without forming a particular structure.The coordinates of the first three principal components are shown in Figure 3.13. We can seethat the routine ns_Find defines most of the principal component and tp_GenericRead weightsa lot in the definition of the second and first principal components. The coordinates of the firstprincipal components are mostly the routines emitting most of the events.
Open problems with HPSS data
Once in the form of a time series of counts, HPSS data remains quite different from SeLfiEdata. There is no class that our visualization should try to preserve as we did with SeLfiE datawith LDA. This also implies that we cannot resample the data to make it representative of all theevents that may happen as we did for SeLfiE before visualization. A good visualization of HPSSdata could also preserve a proximity between two periods close in time but there is no way toour knowledge to enforce this constraint on the result of visualization. This could be done withconvex optimization by adding a penalty to the objective function associated with PCA that favorsvisualization that keep close point in time close in the visualization space but it goes beyond thefocus of this work.Another big difference is that a feature in HPSS does not have the same role as in SeLfiE.In SeLfiE, more data will not result in more features. In HPSS, collecting more logs implies thatthere are higher chances that we observe rare logs from rarely emitting routines and thereforeincreases the number of features to consider. This means a visualization of HPSS data with theproposed method is not guarantying to be relevant after some time and may have to be trainedagain.While SeLfiE data and HPSS count data can both be considered compositional and requireapplying the logarithm before any processing, HPSS data are much more challenging because of
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Figure 3.13 – Weight of each type of count for the three first principal components after loga-rithmic transformation of HPSS count data. The value of the projection on one of the principalcomponents can be interpreted as a ratio of occurrences between positive and negative weigh-ted coordinates powered by the absolute value of the weight.
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the lack of labeled data and unlimited number of events type.

3.4 . Conclusion on treatment of events data
The logs are the data that contain the most valuable information on the operation of the HPCcenter because they are the only data that gives direct information on the tasks performed bythe different software by default and without any particular intervention.However, we have seen that the lack of structure in this data format to identify a type of eventmakes it very difficult to exploit. This problem could only be solved with an expertise or even achange of the data format to include such an identifier.In cases where such an identifier is available (SeLfiE and HPSS), we have presented what is thedata and proposed to consider the aggregation of events by a simple count according to criteriaimposed by the data extraction or not. The result is however quite different from the countingdata in the literature on this subject as the values are either very large or zero. We used thecompositional data framework to model these data, thus leading us to consider the logarithmand to look at an imputation value for the case of structural zeros.Finally, we show the result of the PCA on the result of all these preprocessings. In the casewhere labels are available, we succeed in identifying groups of events that seem to be coherentandwe can refine the visualization to better highlight themwhile keeping the ability to generalize.The result is however difficult to evaluate in the case where labels are not available. All the visua-lizations proposed here are only a first step and it would be risky to deduce from themmethodsthat can be used in production at the moment. More expertise is needed to interpret the resultsand to collect more appropriate datasets for the calibration of such models. With well-made da-taset, more complicated models could be used to add semantic in it, like GPT3 or an attentionlayer to isolate which events are weak signal of failure in the future.
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4 - Unsupervised modelling of interconnect
network nodes’ communication time se-
ries by clustering and segmentation

The communication between nodes is a critical data to understand how the computation aremanaged on the nodes for a given job. However, the volume of such data is so big that it isimpossible to collect it without modifying the code running on nodes or saturating the availablebandwidth. The compromise is to aggregate the data at the node level in time and return it as amultivariate time series of bytes count for every node each 5 seconds. This raises the question :are those aggregated data still meaningful ? Our aim is to provide a way to find features that sumup the communication data of the nodes running a given job at best so that they can be usedlater to improve the understanding of the computation management of production sized jobs.We first explore the data from benchmark jobs and compare them with production jobs. Theexploration reveals that data must be normalized to be able to extract interesting features, wedecide to work on the log-returns series. We propose a conditional modelling of log-returns.We find that inferring the features previously observed is actually a subspaces clustering. Wedescribe a family of models for time series subspaces clustering and provide efficient solversbased on convex optimization to fit them. A numerical experiment of the two simplest models ofthis family on a small dataset shows which model we expect to perform better on our data.However, we found that this model adds too many constraints on the resulting segmenta-tion, so we propose another model with an efficient method to fit it. We check that fitting themodel gives the expected results and propose heuristics to set hyperparameters. We also noticethat there are cases where the heuristic to find the value of model’s hyperparameters cannot beapplied, which suggests again changes in the model for future work.

4.1 . Modeling raw communication data
We first quickly recall what are raw bytes’ communication data and start exploring its mainfeatures on known and unknown examples. This leads us to search a method to normalize thedata so that we can extract features we observe during exploration and propose a model.

4.1.1 . Exploration of the data available
Raw bytes’ communication data has not been well documented before. Therefore, we haveto carry an exploration, first on benchmarks which are known jobs, then on unknown productionjobs. This allows us to identify interesting features to extract.
Exploration of data from known benchmarks
The network card of each computing node counts the number of bytes send and receivedevery 5 seconds. The data is then collected and aggregated into multivariate time series, one foreach job, through the pipeline described Figure 1.4 of Chapter 1. We decide to focus only on the
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incoming bytes on each node and not the outgoing to simplify. The incoming bytes also carryinformation that will be used by workers while outgoing bytes can be directed to other auxiliaryhardware like the storage for record. For a given job, the communication data is the evolution ofthe number of bytes received by each of the node allocated for this job from the time the nodesare allocated to the end of the whole job script execution. The communication data is then a setof integer-valued and regular time series, one for each node. All the time-series also have thesame size as the measurement are aggregated on the same period.We have data from known benchmarks that are regularly run to check that the HPC centeris still performing well after maintenance. These benchmark jobs are well known. We also haveSLURM scheduler log information about them, so we know how many steps the job contains,when it starts and when it stops and the name of the executable file launched. We also knowhow the computation is structured in terms of both parallelism and the nature of the data pro-cessed. It is thus possible to link certain events to observations on the raw communication data.All benchmark jobs have only one step.The data from our benchmarks are shown Figure 4.1. The benchmarks are the following :
xHPCG : It is a benchmark used to rank computing centers. The complete description of thetoy problem solved is described by [Heroux et al., 2013] as "a single degree of freedomheat diffusion model with zero Dirichlet boundary conditions" on a regular mesh using aconjugate gradient solver which assign a cubic region to each MPI process. The resultingtime series are shown at the top left of Figure 4.1. It seems the amount of bytes receivedby a node in average during the computation depend on the number of region neighborsof its assigned cubic region (it can be any integer between 3 and 6 the amount of bytesreceived during 5 seconds is obtained by multiplying the number of neighbors by 5MB)
ABINIT : Abinit is a production code which initially solves density functional theory equations[Gonze et al., 2020] but also support many other quantum physics related computations.It requires solving linear algebra problems, often a generalized eigenvalue problem, orperforming Fast Fourier Transform. No mesh is required. The resulting time series of abenchmark example are shown at the top right of Figure 4.1. The logs from SLURM showsthat the Abinit executable is launched lately and this can be noticed by the long period oflow raw bytes communications. We also see that all nodes have the same communicationload and we can observe a repeated pattern which may correspond to some iterations.
AVBP : AVBP is a production code to solve Navier-Stokes equations mainly used to simulatefluid dynamics and combustion in engines. It is often used on non-regular meshes. Theresulting time series of a benchmark example are shown at the bottom left of Figure 4.1.We can observe big spikes of incoming bytes before and just after the executable file AVBPis launched respectively on one unique node and then all of them. Itmay correspond to theloading of the mesh into the RAM. Once loaded, some nodes seem to always receive morebytes than others in the same proportion but all the nodes seems to follow a commonpattern except for the scale.
YALES2 : YALES2 is a production code similar to AVBP but is more focused on two-phasescombustion problem. The resulting time series of a benchmark example are shown at thebottom right of Figure 4.1. The behavior of the time series seems to be very similar tothe AVBP case except that the spike of incoming bytes to load some data before actuallyrunning the core computation are lower but longer. It seems that it took amore significantamount of time to load data into the RAM of every node before the computation. We can
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Figure 4.1 – The raw incoming bytes communication data measured for 4 jobs running differentbenchmarks.
Top row : xHPCG (left) and ABINIT (right)
Bottom row : AVBP and YALES2 (two industrial codes for fluid and combustion simulation)

not determine if it is related to the meshes or YALES2 code. After loading, there are morecommunications between nodes and as in the case of AVBP, the incoming bytes load isnot balanced between every nodes.
It seems raw bytes communication data behaves like continuous random positive real datadespite being integer-valued for at least two reasons. First, the order of the integers is high en-ough to mask discreet behavior. Second, the time period of 5 seconds to aggregate of the inco-ming byte events is so high that we cannot consider the underlying event process is stationaryduring it. This may explain why the variance is much higher than the average number of countscontrary to what we expect from a Poisson law.
Nodes tend to all follow the same pattern except for the scale when the core computation isrunning, this is however not necessary the case before and after such period. We suspect it maybe associated to load of data on which the computation will be run (and record of the result atthe end). The scale of the amount of received bytesmay provide information on themeshes usedfor the computation, it seems we can clearly differentiate regular from non-regular meshes. Weshould also be able to determine the load imbalance between the nodes with this data alone incase of non-regular meshes. This may also explain that a code solving problems where there isno mesh has an almost perfect load balance between nodes.
So it might be possible to get more information on the code running on nodes from rawbytes’ communication time series if such features also appear in real production job and if wecan extract them consistently.
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Figure 4.2 – Measurement from unknown production jobs used as examples. The plots at the topshow the whole series, the bottom ones display a zoom on a repeating pattern.
Left : A job using 32 nodes over one day.
Right : A job using 189 nodes over 2 hour and a half

Exploration of data from production
The previous benchmarks are used to check that the HPC center is performing normally. Wedo not know if the data is representative of the running jobs of the computing center in produc-tion context. When users run their jobs, it is possible that several jobs run on the same nodes. Wehave no way to detect it reliably without more data from SLURM logs. The jobs in production alsohave several steps : several executables can be run several times. The users’ jobs are also notperfect, the load unbalancing can be bigger and we have no reason to think that the imbalancewill be preserved during the whole job duration. To get an idea of what pattern can be presentin production jobs data, we need to take a look at unknown jobs.
We find that the raw communication time series ofmany jobs are very similar to the ones frombenchmarks. But we focus on two examples that retain our attention shown in Figure 4.2. Eachcolumn shows the evolution over time of raw communication received by each node allocatedduring the same job, the complete evolution is shown at the top row with a zoom on interestingtime periods for better observation at the bottom.
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We can make some observations from the data shown in Figure 4.2.
• The features observed in benchmark jobs can be found in the production jobs.
• There is a periodic pattern that does not look like a simple computational iteration. Thereare regular spikes of extreme values. One or two nodes received suddenly a lot of byteswhile all the others a lot less. This happens for 1 to 10 seconds in general. It suggests acheck-point during the job, intermediaries results are written on disks and it can be longenough to be noticed. However in the first presented case, there are also much longerperiod of several minutes every 4 hours when only one or two nodes received bytes whileall the others received a lot less as shown in the zoomed period Figure 4.2 at the bottom-left.
• It seems that there is a very strong correlation between groups of time series during whatseems to be the core computation periods. We can visually gather nodes which follow thesame pattern up to scale into groups. Contrary to the benckmarks, we must consider se-veral groups of nodes and several periods of intensive correlated communications. Theseperiods can be common to all groups as in the first case or not as in the second case wherea group of nodes seems to stop communicating with each other six timesmore frequently.
• There are regularly periods of low communications that may look like check-pointing mo-ment but are much longer. This may be associated with transition to a new job steps.
The two examples we showed were the most different from the data available. We can findthe same features we observed in the benchmarks’ data with the difference that we may have toconsider groups of nodes instead of all of them. We also found out that we may have to considerthat the core computation period is split into several regular periods separated by check-pointor transitions to a new step.

4.1.2 . Data normalization with log-returns
We chose to work on the log-returns of the series to remove the scale locally. Then we lookat how the log-returns behave during the different phases we identified previously.
Local normalization with log-returns
[Etienne and Latifa, 2014] proposed amodel for count time series obtained fromarrivals coun-ting that follow a Poisson process of variable intensity. They derived that an appropriate norma-lization is to divide each time series by their mean. However, the regular spikes of extreme valueof some nodes when others are close to 0 suggest that the mean will be biased higher for theformer. An alternative method could be to use a robust estimator of central tendency like themedian but such estimators work by ignoring part of the data. It is possible that most of the timepoints are not relevant, for example in the bottom-right plot of Figure 4.1, which makes such es-timator discarding the period where we observe the scaling between series. There is no "globalscaling factor" by which we can divide the series to scale them correctly.
We propose to work on the log-returns of our time series instead. The log-returns are the timeseries obtained by taking the successive difference of their logarithm. They are used in financialdata analysis to remove any influence of the price scale of different assets.
We denote the whole communication data as X = {X1, X2, . . . XN} where N is the numberof nodes used by the job and Xi is the time series of bytes counts received by node i every 5seconds.
Given the time seriesXi ∈ RT+1 of length T+1 the series of log-returns Si ∈ RT are computedas :
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∀t ∈ {1, . . . , T}, sit = log(xi(t+1))− log(xit) = log(
xi(t+1)

xit

)

We can immediately notice that the series Xi and Xj have the same log-returns series if andonly if there is a positive real α such thatXj = αXi. This means log-returns are indeed a form ofdata normalization that remove the effect of scale.
Behavior of the log-returns
The log-returns of our previous examples are shown in Figure 4.3.We observe that log-returnsare matching almost exactly for nodes with the same proportional communication main pat-tern during what seems to be the core computation period. However during low communicationphases, the log-returns have a very high variance and the series don’t match anymore. Nodes stillreceived bytes during low communication phase with several order of magnitude less. However,the communication are much more random at this lower scale as the variance of the logarithmis a lot higher during those phases.This confirms that the log-returns are good candidates for local normalization of our com-munication series. Because they can be computed as the logarithm of the series of successiveratios, it agglomerates series together if they are proportional at a given period. However, the lowcommunication phases are still a problem because the volatility (variance of the log-returns) ishigh since nodes seems to randomly communicate. This suggests that we could use log-returnsto cluster nodes if we are able to exclude high volatility period before or during clustering.

4.1.3 . Modelisation of communication log-returns
Fromour exploration of log-returns, it seems they havewell-defined phases according to theirvariance and they match exactly when time-series are proportional. We propose a simple gaus-sian conditional model to generate log-returns for which we know the phases and clusters. Thisallows us to simulate samples that look like log-returns for which we know the ground truth forclusters and phases.
Gaussian conditional model of log return
To specify a conditional model of log-return, we suppose that we are given latent time series

Wk valued in {0, 1} for each cluster k corresponding to the assignment of a point in time to whatwe believe is a core computation period for a group of nodes or not. We also assume that we aregiven means series Zk for each group k.Our conditional model of log-return is following : if the log-returns series Yi is in cluster k and
Wk is equal to 1 at time t then its value at time t is the value of Zk at time t plus a centered whitenoise of standard deviation σ. If Wk is equal to 0 at time t instead then the log-returns series Yivalue is draw from a centered white noise of standard deviation σ′ where σ ≤ σ′.This model corresponds to a simple mixture of 2 gaussians weighted by the value wkt :

p(yit|Zk,Wk, i ∈ Clusterk) = wktN (zkt, σ) + (1− wkt)N (0, σ′I) (4.1)
Because it is only a conditional model, it doesn’t make any assumption on the prior distribu-tion ofWk and Zk. To generate data, we need to specify how they are chosen.
Simulation of log-return
To simulate a dataset of log-returns with the previous conditional model (4.1), we can set theseries of weightsWk so that each component is regularly in the phase where wkt = 1 for a fixed
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Figure 4.3 – Zoomonparts of the log-returns series of Figure 4.2. The scale invariance of logarithmaggregates the value of proportional series at the same time. They reveal that the communica-tions are much more random when they are low, this is highlighted by the significant increasingof variance of log-returns also called volatility in the financial industry.
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Figure 4.4 – 60 Simulated series data of length 60 with 3 clusters. The weights’ series of eachcluster are shown below. Synchronized phases of each cluster overlap over 1 period.

duration. The samples can be assigned to any cluster uniformly. We choose σ′ = 1 and σ = 0.1.
Once the above parameters with correct size are given, a data simulator generatesN sampleseries of length T in K clusters which by sampling conditionally the distribution (4.1) using thenormal distribution. An example is given in Figure 4.4.
The result is fairly representative of the communication log-returns of a true job as plotted inFigure 4.3. So our goal is now to derive inference methods of the parameter of this conditionalmodel. This corresponds to perform a subspace clustering.

4.2 . Models for Time series Subspace Clustering
For the rest of this chapter, the time-series considered are only the log-returns of raw com-munication data received by nodes.
We propose a generic cost function that can be used to perform a subspace clustering oftime series with a penalization and describe the fitting algorithm.We focus on a particular type ofpenalization and propose a solver for this type that is faster in cases already seen in the literaturethanks to convex optimization. Finally, we compare how the two main penalization functions ofthis type perform.

4.2.1 . Time series Subspace clustering algorithms
We present what is subspace clustering. We propose a model for subspace clustering of timeseries. Then we show how it can be fitted.
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Subspace Clustering
Subspace clustering is a class of clustering algorithmwhere points in the same cluster are notnecessarily close for a given metric but close to a common subspace for this metric. This class ofmodel is very large depending on assumptions we make on the subspaces. Subspaces can haveany dimension depending on the clusters, they can be affine space like in generalized PCA [Vidalet al., 2005] or not.Some subspaces clusteringmethod only consider axis-parallel subspaces. Clustering with fea-ture weighting [Huang et al., 2005] is a subset of this class. The aim of such method is to assignweight to features of each cluster to lower or even remove the contribution of some of them thatdo not matter for clustering. In our case, the features are time points. We would like to ignoretime points only where log-returns are not agglomerated.Themain feature of time series is that their value at different time points are not independent.We expect that the closer the time points to each other, themore dependent the value of the timeseries at these points are.
Time smoothing of subspaces
When a clustering with features selection is applied on a time series dataset, the weights ofclusters are also time series. [Huang et al., 2016] propose to enforce the time series that describethe selection of features of each cluster to be smooth. We formalized in a more general costfunction minimization the subspace clustering of time series :

P (U,Z,W ) =
K∑
k=1

(
N∑
i=1

T∑
t=1

wktuikd(xit, zkt) + pen(Wk)

)
(4.2)

under the constraints :
{
∀i ∈ {1, 2, . . . , N} ,

∑
k uik = 1, uik ∈ {0, 1}

∀k ∈ {1, 2, . . . , K} ,
∑

t wkt = 1, wkt ∈ [0, 1]
d is a distance or dissimilarity measure in the value space. K is the number of clusters wewant to have, N is the number time series in the dataset and their length is T .The results are returned in U andW . U is the assignment matrix of each series with a cluster

k (uik = 1 is equivalent to the series i being in cluster k). The (Wk)k are the positive weights timeseries summing to one of each cluster k. Time series (Zk)k are centroids of groups k dependingon the dissimilarity measure chosen.
pen is a penalization function to enforce the (Wk)k series to have a desired regularity whenminimizing P (U,Z,W ).
Model fitting
Themodel (4.2) is a particular case of K-means if d is the square of the euclidean distance and

pen a characteristic function of constant series (meaning pen(Wk) is +∞ if Wk is not constant).This implies that (4.2) is at least as hard to optimize as K-means, for which the exact resolution isinfeasible [Lloyd, 1982] because it is a hard combinatorial problem.We can approximate a solution with a classical alternate optimization of each variable withothers fixed to attain at least a local minimum of the objective function. The assignment matrix Uis initialized randomly and the weightsW are set as constant series equal to 1. We fix sequentiallyevery variable other than (Zk)k, then U and finally (Wk) and iterate the three steps until conver-gence is achieved. The convergence is reached when the assignment matrix U stay still after aniteration. One iteration is decomposed in three smaller optimization problems :
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Z Step The membership U and weights W are fixed and we optimize the centroids Z. Theterms in the sum over k are independents so that we can compute the series (Zk)k sepa-rately. In the most common case d is the square of euclidean distance and the centroid
Zk is just the series of averages of the time series in group k. A particularity of subspaceclustering is that zkt can be any value if wkt = 0.

E step Themeans series (Zk)k and weights (Wk)k are fixed and we optimize the membershipexpress in the binarymatrixU . Because the terms in the sumover k are independent, eachof this term is minimal at optimum. So we assign each series Xi to the cluster k for which∑T
t=1wktd(xit, zkt) is minimal. Notice also that the choice of the value of zkt when wkt = 0may alter the new membership. If this step did not change the value of U , convergence isreached and we stop the optimization.

W Step The assignmentmatrixU and the centroid series are not fixed and the weights’ series
(Wk)k are updated.

The Z and W steps require their own optimization procedures. The Z step is often simple tosolve because the solution is known to be the average for the most common choice of d which isthe square euclidean distance. However, theW step is harder to solve because there are generallyno way to express solution obtained from a regularization other than the square of euclideannorm that is not useful in this case.
4.2.2 . Resolution for convex gradient-based cases

We present penalization on the weights time series on the successive differences to makethem regular. Thenwepropose a very efficient solver for theW step for such penalization choices.
gradient based penalization
The model 4.2 require specifying two main parameters : the dissimilarity d and the penaliza-tion function pen. The cases where d is not the squared distance are much harder to solve sowe will fix d to be the squared euclidean distance. This means the Z step is just computing theaverage series of each time series in the current cluster.
We want to choose a penalization that translate the fact that close time points are more de-pendent to each other. We want to introduce an explicit chronological dependency in the optimi-zationmodel by choosing a penalization pen inmodel 4.2 that reduce the variation of the weightswhen they are close. A simple way to enforce this is to penalize the high values of the series ofsuccessive differences of weights’ series (that we will call the "gradient of the weight series").
We can use the squared euclidean norm of the gradient as a penalization. This correspondsprecisely towhat [Huang et al., 2016] proposedwhen they used the Sobolev energy of theweights’series (Wk)k as penalization :

pen(Wk) =
α

2

T−1∑
t=1

(wk(t+1) − wkt)
2 =

α

2
||BWk||2 (4.3)

with B ∈ RT−1×T the matrix associated with the computation of successive differences :
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B =


−1 1 0
0 −1 1 0 (0). . . . . . . . . . . .
(0) 0 −1 1 0

0 −1 1


so that

BWk =


wk1 − wk0

wk2 − wk1...
wkT − wk(T−1)


It is well known that Sobolev energy minimization enforce smooth solution that have the re-gularity properties of the result of a low-pass filter or heat diffusion [Calder et al., 2010]. It is alsowell-known [Evans and Gariepy, 1991] that the squared euclidean norm can be replaced by theL1 norm of the gradient to obtain piecewise-constant solutions if desired. α is a hyperparameterthat handle the trade-off between the regularity of the weights’ series and the precision of theselection of features.This lead us to define a gradient-based penalization as a penalization function pen that canbe written in the following form :

pen(Wk) = f(BWk) (4.4)
where f is any proper convex function on RT−1.Weneed to solve theWstep efficiently at each iteration of the three steps of themain alternateoptimization.
Solver for gradient based penalization
From (4.2) and (4.4), we deduce that gradient-based penalization require to solve a W step ofthe following form for each cluster k :{

minX Q⊤
k X + f(BX)

s.t. X ∈ ∆T
(4.5)

where ∆T is the probability simplex ∆T = {X ∈ RT s.t.X ≥ 0,1⊤X = 1} and the (Qk)k aredefined as the series local variances of the time series in each cluster k since d is the squareeuclidean distance :
∀t ∈ 1, . . . , T , qkt =

N∑
i=1

uikd(xit, zkt) =
N∑
i=1

uik(xit − zkt)
2 (4.6)

[Huang et al., 2016] proposed to use a quadratic solver like cvxopt.solvers.qp of CVXOPTlibrary [Vandenberghe, 2010] in the case where the gradient-based penalization is the Sobo-lev energy (4.3). Indeed, calling cvxopt.solvers.qp(αB⊤B,Qk,1
⊤, 1,−Id, 0) exactly solves theWstep for Sobolev energy. However, the solver is slow and cannot be used for other gradient-basedpenalizations. The parameters (except Qk) of the quadratic problem have particular structureswhich are not fully used to optimizer the solver.
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Instead, we propose to use convex optimization to solve (4.5) much faster. The constraints ofthe problem (4.5) can be removed by adding the convex characteristic function δ∆T
as penalty tothe objective function. For any convex set A, its convex characteristic function δA is defined asfollows :

δA : x 7→
{

0 if x ∈ A
+∞ else

The updated value of eachWk is then the solution of the following convex problem :
min
X∈RT

f(KX) + g(X) (4.7)
with g is a convex function (recall that f is also convex by definition) andK the linear operatordefined as : {

K : X 7→ BX
g : X 7→ Q⊤

k X + δ∆T
(X)

Problems of the form (4.7) are particular cases of convex duality theory known as Fenchel-Rockafellar duality. Convex duality provides very fast algorithms to solve convex optimizationproblems. Details on the convex duality and optimization procedures for Fenchel-Rockafellarduality can be found in Annex A. There are several requirements before being able to use op-timization procedures based on convex duality.We need to compute the convex conjugate (defined in the Annex A) of all the functions invol-ved and the dual of the linear operatorK. It is easy to derive that g∗ : X 7→ 1
α
Qk+maxt∈{1,...,T}Xt.The image of a series Y ∈ RT−1 in the dual space by K∗ = Y 7→ B⊤Y is the vector of successivedifference with a first and last supplementary coordinate respectively equal to the opposite ofthe first coordinate of Y and the last.We need that a saddle point solution of the problem (A.2) exist, meaning we want to haveprimal and dual feasible points. (1/T, 1/T, . . . , 1/T ) is in the relative interior of dom(g) = ∆T andits image by K is the null series in RT−1. The relative interior of dom(f ∗) contains also the nullseries as soon as f has a minimum, which is generally the case for a penalization function, so

(1/T, 1/T, . . . , 1/T ) is primal feasible. The domain of g∗ is the whole space RT−1, we can also ex-pect f ∗ to be at least proper, so any point in its domain is strictly dual feasible. The two conditionsof existence of a saddle point of the form (A.2) are verified (details on sufficient conditions forthe strong duality can be found in Annex A).Finally, we need to be able to compute the proximal operators of f ∗ and g. The proximaloperator of g can be obtained directly by including the scalar product with Qk into the squarednorm. 
proxτg(X) = argminY ∈∆T

Q⊤
k Y + 1

2
||X − Y ||22

= argminY ∈∆T

1
2
||(X −Qk)− Y ||22

= Proj∆T
(X −Qk)

The projection on∆T is a threshold of excess-mass above 1. Fast computation of this projec-tion have been already proposed by [Wang and Carreira-Perpinán, 2013].Thanks to all these analytics expressions, we can use the Chamboles-Pock algorithm from[Chambolle and Pock, 2011] detailed in Annex A to solve any W steps for a gradient-based pena-lization where f is convex proper function with aminimum. The solver’s parameters (σ, τ) can be
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chosen so that στ < 1
4
because ||K||2 < 4. The parameters σ and τ are often set equal and thelargest possible by default, this means we could choose them close to 1

2
but slightly lower.

However, we repeat this optimization several times with a vectorQk that will be very differentat the beginning of the clustering algorithm and at the end. The number of iterations niter neededto have a sufficient convergence can be very different and if the optimization algorithm did notconverge enough at each update of the weights the whole clustering may not converge. To avoidhaving to handle parameters while keeping the number of iteration low enough for every timeW step, we use the linesearch method of [Malitsky and Pock, 2016]. Details on the optimizationprocedure with linesearch can be found in Annex A.
4.2.3 . Two gradient-based penalization comparison

We check that we reproduce the result of [Huang et al., 2016] whenwe use the Sobolev energyas penalization. Then we compare with the total variation.
Results with Sobolev penalization
Our solver can be used for the W step with f(X) = α

2
||X||2 in (4.5) to produce the samesubspace clustering as [Huang et al., 2016] called TSkmeans. Such f has a minimum, a knownproper convex conjugate (f ∗(X) = 1

2α
||X||2) and proximal operator (proxσf∗(X) = α

1+α
||X||2).

We simulated the data used by [Huang et al., 2016] to illustrate the smoothness of weights inthe case of a Sobolev penalization. The number of series of length T = 15 is N = 300, there are
K = 3 clusters with non-overlapping phases. When the time series of group are not followingthe same pattern, their values are draw from a uniform noise as well as the pattern they wouldfollow. When they follow the same pattern, a gaussian noise of low enough variance is added.We reproduced these simulated data in Figure 4.5. Our data simulator allows us to evaluate theclustering method result on much bigger data and the scalability.

In the casewhere the penalization is the Sobolev energy, the resulting solutions are exactly thesame as the ones obtained with the quadratic solver used by [Huang et al., 2016]. 100 iterationsof the Chambolles-Pock algorithm with linesearch are enough for all iteration on all the data onwhich we run it, each iteration is very fast as the complexity of one iteration is dominated by theprojection on ∆T which is O(T log T ) where T is the length of the time series.
To compare the smoothness of weights, the weights found byW-k-means [Huang et al., 2005]and our implementationwith Chambolles-Pock solver of TSKmeans [Huang et al., 2016] subspaceclustering after convergence are shown in figure 4.6. We set β = 2 for W-k-means and α = 2 forTSKmeans. We can easily notice that each cluster has a weight series which is high only wherethe series of a true cluster are close of the series of average. Weights are positive for W-k-meanswhile they can be 0 with TSKmeans on time points that are totally irrelevant for clustering, whichis not the case of W-k-means weights. This gives a clear segmentation of the series in a cluster.
However, the smoothness of weights’ series in TSKmeans case implies they are smaller at theedge of relevant time for a cluster. The smoothness of TSKmeans weight introduce a bias at theedges, weights are small when close to irrelevant time point. It is possible to show that the shapeof the weight vector is a reversed parabola when the variance around themean series is constanton relevant periods using the optimality conditions of our problem.
This lead us to minimize the total variation of the weight instead of Sobolev, thus enforcingweights’ series to be piecewise-constant.
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Figure 4.5 – Whole simulated dataset by [Huang et al., 2016] (top-left) and the 3 clusters

Figure 4.6 – The weights found by W-k-means and TSKmeans for [Huang et al., 2016] simulateddata.
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Figure 4.7 – The weights’ series (left plot) found by sharp TSKmeans (total variation penalization)on [Huang et al., 2016] simulated data (cluster shown in the right plot) with α = 2. Weights canstill be exactly 0 and the weights’ series are sharp, they are not smaller at the edge of relevantperiod for a cluster as it is the case of original TSKmeans.
Sharp penalization
Our solver can natively handle the use of total-variation as a gradient-based penalization bysetting f(x) = α||X||1. It is a proper convex function with a minimum. Its convex conjugate isknown to be δ||.||∞≤α which is proper too and its proximal operator is the soft-threshold at level

α. To judge the effect of changing the penalization on weights’ series on clustering result, wepropose to compare ourselves to K-means asmadeby [Huang et al., 2016]with different similaritymeasures such as the Euclidean norm, the Pearson correlation [Liao, 2005] and the "Short Timeseries distance" introduced by [Möller-Levet et al., 2003] as well as the TSKmeans proposed by[Huang et al., 2016]. The quality of a cluster is expressed by the F-measure, the RandIndex and theNMI as introduced and detailed respectively by [Manning et al., 2008], [Rand, 1971] and [Strehland Ghosh, 2002]. On 100 simulated data sets, we observe these scores and retain the average.The results are given in the table 4.1. We use the global scaling defined by [Huang et al., 2016] asvalue for α in TSkmeans.
Algorithm Fscore RandIndex NMIEuclid 0.5949 0.7226 0.4078Pearson 0.5003 0.6642 0.2719STS 0.3818 0.5870 0.0951TSkmeans 0.9736 0.9654 0.8985TV penalization 1.0 1.0 1.0

Table 4.1 – Comparison between clustering algorithms on 4.5 data
Our algorithm perfectly clusters the series. The shape of the weights obtained by this newmodel on the same dataset as Figure 4.5 are shown in Figure 4.7. As expected from the totalvariation minimization, the weights are piecewise-constant. The better clustering results may beexplained by the fact that the series of [Huang et al., 2016] dataset do not smoothly agglomeratebut very suddenly. The Chambolles-Pock solver always find the optimal solution in less than 100iterations.
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The weights also take a zero-value when the series of a group are not following a commonpattern as we saw with previous model. This makes them straightforward to convert into thediscrete valuedWk vectors of each mixture component in (4.1) by associating a value of 1 for anypositive value and 0 for the already zero values. It is straightforward to decompose a job intosmall "benchmark" jobs with the result of this model.

4.3 . Non-uniqueness of the selection with total variation

Changing the penalization has another undesired property on the weights’ series. To removeit, we add a new term in our penalization, for which we can use an evenmore efficient solver andinterpret hyperparameters. We finally look at the results and find out that there are still openquestions to solve in order to build a model fully matching our expectations.
4.3.1 . Identification of the uniqueness issue

Several issues can be noticed when we use the Time series Subspace Clustering model onlonger series.
First, the Chambolles-Pock algorithm takes more iterations to converge. The alternate opti-mization is also longer and it may also end up in an infinite loop if the Chambolles-Pock requiredmore than 100 iterations to converge.
The resulting weights of time series that have several time intervals where they are close totheir common pattern also look incorrect as shown with simulated data from our conditionalmodel in Figure 4.8. The total-variation penalization seems to allow solutions where only onesegment of uniform weights per cluster is selected to be optimal, but it does not allow to haveseveral segments as we would expect.
This can be explained by the fact that the total-variation is constant on some subsets of theprobability simplex. An example of two weights’ series (of length 3) with the exact same total va-riation is given by the two example on the right of Figure 4.9. The left panel is a potential vectorQkobtained from other step of the whole optimization from the update (4.6) on time series of length3. A high value of Qk is associated with a high deviation of the series of the group consideredaround their mean, the weight update will return weights series that minimizes the penalizationfunction and its scalar product with Qk. Let suppose that the value α is set so that the middleweight is zero. Then the series of weights returned by the optimization is given at the right panel.This is because in this particular case of a zero weight in the middle, the total-variation of theweights’ series is just the sum of the other two, which is necessary 1 because of the constraintthat they sum to 1 to be in∆T (with T=3). So the total variation is constant and the scalar productis maximized by setting the weight maximal where the seriesQk is minimal. This implies that onlyone segment of time points (the one with the lower local variance given a fixed total variation)can be selected.
This is quite similar to the degenerate case of the W-k-means subspace clustering method of[Huang et al., 2005] but with a single segment selection instead of single feature. This can also berelated to a common issue with lasso regression on strongly correlated predictors described indetails by [Zou and Hastie, 2005]. The common solution is to add again an L2 penalization withits own hyperparameter giving a family of penalization called elastic-net. This leads us to onceagain propose another penalization.
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Figure 4.8 – Segment selection with sharp TSKmeans in practice.
First row : The data.
Second row : real segmentation (a small random constant is added to better read segmentationper cluster).
Third row : sum of square errors to the mean series (used to compute weights’ series).
Fourth row : Weight series found, they do not cover all the periods where series in the samegroups are close.
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Figure 4.9 – An example of local sum of squared series and two weights’ series with the sametotal variation. Given a Qk vector shown at the left, the solution of the weights update is at theright while we would prefer to return the ones at the center in subspace clustering, both havethe same total-variation
4.3.2 . Elastic-Net addition to total-variation

We define a new penalization which allow several time periods to be considered as relevantfor the clustering. Then we show how to solve theW step since this penalization is not a gradient-based. We explain how to set the hyperparameters of the new penalization.
Penalization definition
The common approach to solve the previous problem is to introduce an L2 norm in the pena-lization to produce a so-called grouping effect, several variables are selected as relevant featuresat the same time when the penalization factor decreases. The problem of finding the form of se-veral relevant areas for regression is also handled by [Dubois et al., 2014] by adding an L2 normon the features vector to an already present L1 and total variation penalization. The obtained pe-nalization is called TV-Elastic Net. Our approach is the same, we add an L2 norm on the weightsvector to force the selection of several intervals in the original Sharp TSKmeans model. Contraryto [Dubois et al., 2014], we don’t need to add an L1 norm penalization on the weights, this penali-zation is already included in our model through the simplex constraint. This means that our newElastic penalization is defined by :

pen(Wk) = α||BWk||1 + β||Wk||22 (4.8)
This new penalization has one more hyperparameter and is not gradient-based. However, itis still convex, so we can still find way to solve the optimization associated with theW step quickly.
Resolution with proximal operators
The W step that must be solved is the following :

min
Wk∈∆T

Q⊤
k Wk + β||Wk||22 + α||BWk||1 (4.9)

with
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qkt =
N∑
i=1

uik(xit − zkt)
2

This problem (4.9) is much simpler to solve and does not require a primal-dual optimizationas gradient-based penalizations. Indeed, we can also write it :
min

Wk∈∆T

|| 1
2β

Qk +Wk||22 +
α

β
||Wk||TV

We notice that the solution can simply be express as the image of a proximal operator :
Wk = proxδ∆T

+α
β
||.||TV

(− 1

2β
Qk)

This proximal operator can be decomposed as a composition of two proximal operators.For anyX one can show that there exists λ such that proxδ∆T
(X) = projδ∆T

(X) = (X − λ1)+.
This shows that the order of the coordinates is preserved by this proximal operator which is thesufficient condition given by [Shi et al., 2016] to decompose the proximal operator of the sum asa composition of proximal operators as follows :

Wk = proxδ∆T
(proxα

β
||.||TV

(− 1

2β
Qk)) = proj∆T

(proxα
β
||.||TV

(− 1

2β
Qk)) (4.10)

This means that the solutions we are searching for are simply the image of a TV denoiser ofa vector proportional to Qk projected on ∆T . TV denoising is a very well-studied problem, thereis no analytical solution but direct methods to solve it. In particular in our one dimensional case,the most common method is the taut string algorithm introduced by [Davies and Kovac, 2001]which is almost linear complexity. [Condat, 2013] also proposed a direct algorithm to computeit which is linear with respect to the size of the series in practice even if it can be quadratic insome irrelevant cases. We already saw the projection on ∆T is a threshold of excess mass andcan be computed using the algorithm proposed by [Wang and Carreira-Perpinán, 2013] and itscomplexity is almost linear. This means each of the two operators can be directly computed in1D in quasilinear complexity at most. The main advantage is that these methods are direct andnot iterative like primal-dual methods we had to use for other problems.The drawback of this new model is that there are two hyperparameters to tune, but they arehopefully much easier to interpret than the hyperparameters of gradient-based penalizations.
Hyperparameter settings
From the composition of the two proximal operators at the weights update step, the parame-ter β can be interpreted as a scaling constant between the weights and the sumof squared errorswith the series of means of a group when they are close. Because the weights’ series sum to 1,they are close to 1/T in average. So β must be chosen close to the variance of time series whenthey are following the same pattern times T times the number of series in the group conside-red. If the clusters are roughly the same size, this heuristic recommends choosing β = NTσ2/Kwhere σ is the local standard deviation of time series when they are close to their centroids as in(4.1).If we assume β fixed by the previous heuristic, the ratioα/β balances how smooth theweightswill be according to total variation compared to the square of L2 norm of the weight. So we mustset this ratio so that it is proportional to the frequency of time periodswe expect to have times the
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Figure 4.10 – Sumof squared errorswithmeans series of groups andweights foundwith groupingeffect for the same data as Figure 4.8. Notice that weights are positive on several segments, theyare also higher when the segment is at one of the ends of the series
average value of theweights which is at least 1/T (or simply non-zero). If we expectL time periodswhere series are close to their centroids, then this heuristic recommends using α = 2Lβ/T . Inpractice, we noticed that if β is set correctly, the range of values of α that does not change theresult is large.These heuristics assume that the weights’ series are close to 1/T when their values are not
0 but this is a clear underestimation since they must sum to 1. So we recommend using smallhigher multiples of the values given by the heuristics in the hyperparameters of the model.

4.3.3 . Results
Finally, we present the results on simulated data and the real job data that motivated thiswork and propose futures directions to make the model more reliable in practice.
Simulated data
We show the application of this new model on data simulated for Figure 4.8 with the para-meters given by the previously described heuristics. The clustering is once again correct in theshowed example, but we notice that there a lot less failure to cluster simulated series and themain algorithm is much faster. The weight series looks like a piecewise-constant approximationof the opposite of the sums of squared error to the means plus a constant, which is a directconsequence of (4.10). It is easy to read which segment are used to cluster the series by lookingat positive values of the weights. The segments at the ends of the series used for clustering tendto have higher weights because they contribute only once to the total variation of weights’ series
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Figure 4.11 – Results of the sharp TSKmeans clustering with grouping effect on the log-returns ofexamples and weights’ series. The top row shows plots of series on a repeating pattern accordingto cluster label and the bottom row shows the weights’ series
Left : Job using 32 nodes over one day withK = 2, α = 0.1 and β = 22500.
Right : Job using 189 nodes over 2 hour and a half withK = 3, α = 3 and β = 22000

while segments inside implies two changes of values.
Real job data
The results of ourmodel on the production jobs plotted in Figure 4.2 are shown in Figure 4.11.We use α = 0.1 and β = 22500 on the job running on 32 nodes and cluster nodes in two groups,and we use α = 3 and β = 22000 on the job running on 189 nodes and cluster nodes in threegroups. The hyperparameters correspond to higher values than our heuristic to better handlethe largest group of series we expect to find. In both shown cases the clustering seems correct.In practice the results are much more consistent over several runs for the job running for a dayon 32 nodes than for the job running on 189 nodes. This may be explained by the weights foundby our method shown above in Figure 4.11. The weights’ series are similar for the first but notthe second : the period of core computation of the former seems to be the same for all nodeswhile it is not the case for the latter.
The other issue is that the groups are very imbalanced in the case of the job using 189 nodes :one of the group contains 179 nodes, the others 8 and 2. The groups of the job using 32 nodesare much more balanced, the main one has 22 nodes and the other 10. All the log-returns seriesshare the same variance during core computation, thus for the main group of 179 nodes theparameter β should be 20 times higher than what it should be for small ones. This makes βimpossible to tune according to our heuristic since it is shared for all clusters. This may explainwhy the weights’ series of the groups have very different regularity in the jobs running on 189
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nodes, themain group has themost piecewise-constant weights’ series while the other aremuchmore irregular. It is even clear that the time series of one small group cannot be segmented incore computation phases correctly just by checking that a weight is zero valued, even a thresholdcould be incorrect.Handling the fact that groups can be a lot imbalanced remains an issue to solve to have areliable subspace clustering for our data.
Toward a model for imbalanced clusters
Most of our focus was what penalization on the weights’ series should be used. This choice ofpenalization could be linked with a choice of a prior on the shape of theW of our model (4.1) ina bayesian framework.However, we also did not look at a prior on the number of nodes in each group. In all thealgorithms we used, the number of nodes in each group is expected to be roughly the same.Given a number of groups, this prior is often uniform by default. But it seems that groups ofnodes can be very imbalanced in a production job. Thismay explain the poor results of ourmodelon some production job. The consequence of the unbalancing of the groups may be explainedby our heuristic that the ideal β parameter value is proportional to the number of groups but thevalue β must be shared by all the groups.It suggests that instead of considering the weighted sum of the squared errors in our objec-tive function, we should consider the weighted average of squared errors. Surprisingly, we foundno study on a clustering algorithm based on the minimization of the sum of averages of squa-red distances to centroids while the best known clustering algorithm, K-means, is based on theminimization of the sum of squared distances to centroids. The explication could be that suchalgorithm cannot be approximately solved in batches : there is no proof that the way we solveK-means can still be applied to find a local minimum of the sum of the average of squared dis-tances to centroids. This means the resolution must iterate samples by samples and do severalrounds before reaching convergence. The properties of such clustering could be also very unu-sual, some groups may merge together to benefit from an average computed on more samplesfor example. Such shrinkage effect of groups during the optimization was already described by[Hu et al., 2018] on another clustering algorithm close to K-means.Such clustering model could be the topic of further studies along with a more formal inter-pretation on how the hyperparameters of our model should be tuned with such model.

4.4 . Conclusion on the time series from raw bytes’ commu-
nications

We explore a new type of time series available to better understand the computing centerusage and find feature that may be interpreted with expert knowledge. We normalized the datato be able to compare series. Then we model their feature and find that a subspace clusteringseems to be a good way to extract them. We propose a model for the subspace clustering de-signed for time series based on features selection and smoothing penalization. We show thatwe can use a fast convex optimization solvers to fit the model for a whole class of penalizationfunctions we called gradient-based penalization and we compare the result with the two mostrepresentative examples on a small simulated dataset. Finally, we identify a major issue with themost appropriate gradient-based penalization for our data : it extracts only one time period used
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for the clustering. We change the penalization for one that is not gradient-based anymore, andpropose a new solver for the new penalization that is even faster by removing the need of itera-tions in the optimization of weights.We checked that several time periods can be reliably selectedand looked at the result on real job data.This work can be extended in many ways. From the side of HPC expertise, we only looked atincoming bytes’ communication but many other metrics are collected on computing nodes. Ex-periments must also be performed to confirm that reliable interpretation can be made from theincoming bytes data aggregated on the node level, in particular what we interpreted as check-point restart or steps. These experiments could be used to also evaluate ourmodels. This subjectis also a source of original challenges for the machine learning research. The model must be im-proved to handle highly imbalanced data, the heuristics to set the model hyperparameters alsosuggest new generic models that we have never seen to the best of our knowledge and deservemore study of their properties.Joint works, discussions and interactions between statisticians and the operators of the com-puting center are essential to find new way to manage an HPC center and move forward on thetopic of the analysis of industrial count time series.
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Conclusion
This thesis manuscript highlights several statistical analysis contributions of the different si-gnals recorded from large-scale computers. The main objective is to optimize the performanceof the whole computer center through a better organization of the production or to increase theavailability of the computer centers by detecting failures preventively to optimize maintenance.In order to answer this question, we first had to identify use cases in which it is possible to usethese techniques during production and then test them.
We first present a simplified model of the computer to understand the interactions betweenits different parts, whether human or hardware. We detailed the different components and theirroles. Our study also looks at the expected behavior of human individuals. We identify the dif-ferent factors that can influence them and show that the pricing policy of the computer centeris already one of the most effective tools available to computer centers to modulate production.This simplified representation reveals which data is accessible to the administration of the com-puter but also how reliable it is, i.e. whether it can be manipulated by the users. This also allowsus to formalize three research tracks where it could be used with statistical learning methods tobetter understand the use of the calculator or to encourage users to adapt their production to thecontext. First a prediction of the electricity consumption of a job seems necessary to encourageusers to have a less energy-consuming production. Then data visualization tools for large countscould greatly assist in the analysis of system logs, which are generally the only data detailing theactivity of the computer but require a lot of time and expertise to be exploited. Finally, the probedata collected by the CEA could be used to classify jobs reliably. We then exploited these threeresearch tracks.
We begin by proposing a simple model that is easy to integrate into production and that pre-dicts the power consumption of a resource allocation to a user according to his request beforethe SLURM scheduler plans the allocation. This model uses historical data from the SLURM sche-duler combined with the energy consumption of each job to make its prediction. We show thatthis model is able to predict the global consumption of the computing center for a given sche-duling, thus opening the possibility to control its global consumption via the scheduling of jobs.This model does not require regular training and is easy to interpret due to its simplicity. Its maindrawback is that it ismemory-based, so it is not possible to say howmuchmemory is needed. Thisfirst success published in the ISC-HPC 2020 conference therefore shows a concrete contributionof statistical methods to the control of a computer.
We then show that it is very difficult to exploit syslog system logs with statistical methods wi-thout adding message identifiers as soon as they are generated, because they present too manyambiguities for statistical methods. We therefore focus on logs from the HPSS software and theSeLfiE profiler whose generation allows this exploitation. Their aggregation results in count datawith properties that are not often treated together in the literature : high values with scale inde-pendence often better treated by compositional data analysis but many structural zeros oftenbetter treated by counting models. After normalizing the different quantities and a logarithmictransformation by imputing a mean to the zeros, we use a principal component projection tovisualize the low-dimensional data and preserve the possible structures of interest. The resultseems more interesting on SeLfiE data than on HPSS data, showing a structural difference bet-
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ween these two types of data and the difficulty to treat logs as simple identified messages. Theproblem thus remains open and needs more attention by experts to be solved.Finally, we wonder whether it is possible to classify jobs from the time series extracted by thesensors on the computing nodes collected by the CEA. We are first interested in the data gene-rated by benchmarks regularly executed to verify the good performance of the computer duringmaintenance. We are able to note important differences between certain benchmarks and simi-larities when expected.We therefore observed data fromproduction jobs to try to find propertiesclose to those observed on the benchmarks. We interpret a production job as a mixture of datagenerated by the execution of a benchmark on several groups of nodes and over several timeperiods. We therefore propose to perform this decomposition automatically in order to allowthe construction of reliable estimators for job classification. We notice that the decompositionof a job into groups of nodes and computational phases corresponds well to the subspace clus-tering problem in the machine learning literature. We therefore propose an acceleration of theresolution of one of these problems using convex optimization. This acceleration allows us topropose variants that seemmore appropriate and finally to retain a variant where the resolutionis more direct, which allows us to scale up the algorithms. The results are promising, especiallyfor the phase segmentation of time series, but the clustering of nodes seems problematic whenthe number of nodes per cluster is very unbalanced. This is a very common problem for themostused clustering algorithms inmachine learning based on theminimization of a power sum of dis-tances. The interpretation of the parameters of our model suggests an original modification ofthis type of algorithm which should be the subject of future studies in machine learning.This study is therefore an exploration of the application of machine learning to utilization andmonitoring data of computing centers, following the systematic extraction of data from their usesetup by HPC experts. It covers a wide range of topics for machine learning such as time seriesanalysis, convex optimization, NLP, online estimator computation, compositional data analysis.It also covers a wide range of topics for HPC such as the structure of the computer, monitoringand resources management software, and communication patterns between computing nodes.It highlights the existence of problems of varying complexity. Some problems could be solvedvery quickly as soon as the data was made available. Others require more pre-processing byHPC expertise before machine learning can be used. Conversely, other problems require originalresearch in machine learning. This study should be seen as a response of machine learning tothe different problems and data presented by HPC experts. It is part of a discussion that needsto be pursued with more interaction between these two fields. It illustrates the need to integratemachine learning expertise with teams of HPC experts to provide concrete tools to help monitorand control large-scale computers based on statistical analysis. This is a critical topic for the racein computing power given the growing constraint on energy production.
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A.1 . Fenchel duality
Duality is used to name a method that solves a problem in the dual space E∗ of the vectorspace E of the initial problem that we will suppose euclidean. Fenchel-Rockafeller duality is atheory which allows to apply the duality principles to any problem involving convex and lowersemi continuous functions. We show how the definition of the convex conjugate naturally arisefrom the dual representation of a set and what optimization algorithms are good candidate tosolve our problem.The dual space E∗ is the space of linear form of a vector space E. We assume E is euclidean.A linear form in E∗ is a scalar product ⟨. , .⟩ with a vector y of E and each can be associated witha family of sets in E called half-spacesH(y, t) defined as

H(y, t) = {⟨y, .⟩ ⩽ t} ⊂ E

Any set C ⊂ E can be mapped to a set C∗ ⊂ E × R we named "dual set" of half-spacesparameters (y, t) ∈ E × R which contain C , more formally
(y, t) ∈ C∗ ⇔ (∀c ∈ C, ⟨y, c⟩ ⩽ t)⇔ C ⊂ H(y, t)

By definition, the dual set C∗ of C is the polar cone of the set (C,−1) ⊂ E × R. A dual set
C∗ is also the epigraph of y ∈ E 7→ sup{t ∈ R|∀c ∈ C, ⟨y, c⟩ ⩽ t} as a direct consequence of itsdefinition. This function uniquely defines C∗ and is convex, lower-semi-continuous and positivelyhomogeneous since its epigraph C∗ is a polar cone so a closed convex cone.Fenchel introduces the concept of convex conjugate function or dual function f ∗ of a real-valued function f to solve complex convex problems. We allow f to take infinity value, its domainnoted dom(f) is where f < +∞. f is said to be proper if f > −∞ everywhere and dom(f) ̸= ∅.The common definition of f ∗ used and introduced by Fenchel is

f ∗ : E −→ R̄
y 7→ supx∈E⟨y, x⟩ − f(x)

The epigraph of the dual function f ∗ is related to the dual set epi(f)∗ ⊂ (E × R) × R of theepigraph of f as using the definition of f ∗ we have
(y, s) ∈ epi(f ∗)⇔ ∀(x, t) ∈ epi(f), ⟨y, x⟩+ (−1)× t = ⟨(y,−1), (x, t)⟩ ⩽ s⇔ ((y,−1), s) ∈ epi(f)∗

This means the epigraph of f ∗ is the restriction of epi(f)∗ to the affine subspace (E,−1,R)or the intersection of the polar cone of (epi(f),−1) ⊂ E × R × R with (E,−1,R) that we canalso write {(y,−1, s)|(y, s) ∈ epi(f ∗)}. This implies that epi(f ∗) is a closed convex set proving that
f ∗ is convex and lower-semi-continuous. If f is a proper function, we can show that the conegenerated by {(y,−1, s)|(y, s) ∈ epi(f ∗)} is indeed the polar cone of (epi(f),−1) ⊂ E×R×R thesame way as [Rockafellar, 1970, Theorem 14.4 on p.124].The dual function is useful to solve complex problems thanks to the Fenchel-Moreau theoremwhich states when the dual operation is an involution. Using f ∗ in place of f in the above property
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and exchanging the last two coordinates, we obtain that the cone generated by (epi(f ∗∗),−1) ⊂
E × R × R is the polar cone of {(y,−1, s)|(y, s) ∈ epi(f ∗)}. We already said that the formergenerated cone is also the polar cone of (epi(f),−1). This means that the cone generated by
(epi(f ∗∗),−1) is the polar cone of the polar cone of (epi(f),−1). The polar cone theorem (deducedfrom Hahn-Banach theorem or axiom of choice) states that the polar cone of the polar cone ofa set is the smallest closed convex cone which contains this set. It implies that epi(f ∗∗) is thesmallest closed convex set containing epi(f). The biconjugate f ∗∗ is the highest convex and lower-semi-continuous function below f . If f is already convex and lower-semi-continuous, then f ∗∗ is fbecause epi(f) is a closed convex set so epi(f ∗∗) = epi(f). The convex conjugation is a one-to-onemapping for convex lower-semi-continuous functions and is its own inverse.

The highest lower-semi-continuous function below f must match f where it is lower-semi-continuous as it is everywhere equal to the lower limit of f at any point. If f is convex then itis also convex because its epigraph is the closure of the convex set epi(f). It implies that for fconvex, f ∗∗(z) = f(z) if and only if f is lower-semi continuous at point z. This Fenchel-Moreauequality can be interpreted as a valid case of min-max inversion :
f ∗∗(z) = supy∈E infx∈E ⟨y, z − x⟩+ f(x)
f(z) = infx∈E supy∈E ⟨y, z − x⟩+ f(x)

A.2 . Convex optimization with duality
To solve an optimization problem, called primal problem in the context of convex optimiza-tion, a duality method uses a smoother convex function F , also called the perturbation function,of two variables such that the function of the first variable matches the objective function whenthe second variable (interpreted as a perturbation) is 0. The value of the optimization problem, orprimal value, is then the value at 0 of the minimum of the perturbation function F as a functionof the second variable, also called the value function ϑ, which is known to be convex as soon as

F is convex.
The value ϑ∗∗(0) of the biconjugate of the value function at 0 is called the dual value. We canshow it is by definition the supremum of−F ∗ as a function of the perturbation function when itsfirst variable is set to 0. This maximization problem is called the dual problem and we know fromthe inequality ϑ∗∗(0) ⩽ ϑ(0) that the value of the dual problem is then less than the primal value.We say weak duality holds and the difference between the primal value and the dual value iscalled the duality gap. When the value function ϑ is lower-semi-continuous at 0 then ϑ∗∗(0) = ϑ(0)by the Fenchel-Moreau equality, thismeans the value of the primal convexminimization problemis equal to the one of a dual concavemaximization deduced from the dual of the perturbation. Insuch cases where primal and dual value are equal, meaning the duality gap is zero, we say thatstrong duality holds.
The Fenchel-Rockafellar duality corresponds to aminimizationproblemof the form (4.7)where

f, g can be any proper convex lower-semi-continuous functions of a real vector space.
inf

X∈RT
f(KX) + g(X) (4.7)

An interesting perturbation function, such that F (X, 0) = f(KX) + g(X), is
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F : RT × RT−1 −→ R
(X, Y ) 7→ f(KX + Y ) + g(X)

The value function is ϑ : Y ∈ RT−1 7→ infX∈RT F (X, Y ) for which we have
ϑ(0) = inf

X∈RT
f(KX) + g(X)

Its biconjugate at 0 is then supY ∈RT−1 −F ∗(0, Y )It is the associated dual problem that we deduce using the expression of F ∗

ϑ∗∗(0) = sup
Y ∈RT−1

−F ∗(0, Y )

= sup
Y ∈RT−1

− sup
(X′,Y ′)∈RT×RT−1

⟨Y, Y ′⟩ − F (X ′, Y ′)

= sup
Y ∈RT−1

− sup
(X′,Y ′)∈RT×RT−1

⟨Y, Y ′⟩ − f(KX ′ + Y ′)− g(X ′)

= sup
Y ∈RT−1

− sup
X′∈RT

f ∗(Y )− ⟨KX ′, Y ⟩ − g(X ′)

= sup
Y ∈RT−1

−f ∗(Y )− ( sup
X′∈RT

⟨X ′,−K∗Y ⟩ − g(X ′))

= sup
Y ∈RT−1

−g∗(−K∗Y )− f ∗(Y ) (A.1)
Under sufficient conditions, the value function is convex and lower-semi-continuous at 0.Using Fenchel-Moreau equality we conclude that strong duality holds. The sufficient conditionsare often related to the existence of a point in the relative interior of domain of the involvedfunctions. The relative interior of a set is its interior for the topology of the smallest affine setcontaining it, it is known that a convex function is continuous on the relative interior of its do-main. The sufficient conditions formulated by [Rockafellar, 1970, Corollary 31.2.1 on p.327] arethe existence of X ∈ RT in the relative interior of dom(g) such that KX is in the relative interiorof dom(f) or the existence of Y ∈ RT−1 in the relative interior of dom(f ∗) such that −K∗Y isin the relative interior of dom(g∗). These two conditions are called respectively primal and dualstrict feasibility conditions and points that verify them are called strict feasible points becausethey are values for which the objective function of the primal or dual problems is not infinite. Theexistence of primal and dual strict feasible points respectively also imply that the maximum ofthe dual problem respectively the minimum of the primal problem is attained.Using that f = f ∗∗ in (4.7), we can write a primal dual formulation of our problem as findinga saddle point of a saddle function as (A.2). If the two feasibility conditions are satisfied then theminimum and supremum are attained and the minimum and maximum can be exchanged andthere is a saddle-point whose coordinates are the solutions of the primal and dual problems.When fulfilled, these conditions allows using very efficient optimization algorithm.

min
X∈RT

max
Y ∈RT−1

⟨KX,Y ⟩+ g(X)− f ∗(Y ) (A.2)
An illustration of the use of a saddle-point problem is shown Figure A.1 on a toy example.The primal problem is to minimize h1(x) = 0.5x2 + δ|.|⩽1(x + 2) which corresponds to findingthe minimum of x 7→ 0.5x2 on [−3,−1]. The surface is a plot of h(x, y) = 0.5x2 − |y| + (x + 2)y
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Figure A.1 – Illustration of saddle-point duality with a toy problem. The surface is a plot of a saddlefunction that can be used to minimize the square function on the interval [−3,−1].
which is a saddle function so that the dual problem is minimizing h2(y) = 2y−|y|−0.5y2. For anyfeasible point P = (x, y), we construct (dashed lines) Pprimal = (x, y1) in red and Pdual = (x2, y)in green where y1 ∈ argmaxy h(x, y) (almost always 0 or infinite-valued, any positive or negativerespectively values are possible if x is respectively−3or−1) and x2 = argminx h(x, y) = −y so that
h(Pprimal) = h1(x) and h(Pdual) = h2(y). They are the values of the primal and dual problemswhen
x and y are set to 0. By constructionh(Pprimal) ≥ h(P ) ≥ h(Pdual), this is theweak duality property :the set of values of the primal problem (shown in plain red) is above the one of dual problem(shown in plain green), this could be written infP h(Pprimal) ≥ supP h(Pdual). Strong duality is whenthese two sets are both arbitrarily close to the same height. It is the case as the two sets intersectat a saddle point S = (−1, 1) which match the trivial primal solution x = −1. Pdual is also anexample of a point that is only dual feasible and not primal feasible since its first coordinate doesnot satisfy the constraints of the primal problem, this can be seen by the red dashed lines goingto infinity.

A.3 . Chambolles-Pock algorithm
Assuming strong duality hold, we can use a primal-dual method to solve our problem. Aprimal-dual algorithm alternates between solving the primal problem (4.7) and the dual problem(A.1) at each iteration. The iteration can be visualized on Figure A.1. From the current solution

(x, y) on the algorithm fixes y and makes a step toward the minimum in the primal space (in red)to a new x to minimize h(Pprimal) then fixes y and makes a step toward the maximum in the dualspace (in green) to a new y to maximize h(Pdual) and repeat until convergence.When dealing with known convex functions, it is often more practical to apply the proximaloperator instead of doing a gradient step if it can be computed analytically. The definition ofproximal operator is
prox

h
(X) = argmin

Y
h(Y ) +

1

2
||X − Y ||22

proxf can be found using sub-gradient optimal conditions. The proximal operator of the cha-
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racteristic function of a convex set is the projection on it, a vector is mapped to the closest onein this set.[Chambolle andPock, 2011] proposed aprimal-dual algorithm to solve theproblem (A.2)whenthe proximal operators of f and g are known and the problem has a saddle-point, which is ourcase. The algorithm of [Chambolle and Pock, 2011] is given in pseudocode 3. It alternates proxi-mal gradient descent with an equivalent of step size σ for the primal problem (4.7) and proximalgradient ascent of step size τ for the dual problem (A.1). At the end of an iteration, the currentprimal solution is updated by extrapolation with the new primal solution. The parameter θ tunesthis extrapolation and is fixed to 1 in the algorithm of [Chambolle and Pock, 2011]. Previousprimal-dual algorithm also have this form, like Arrow-Hurwicz studied in [Zhu and Chan, 2008]but there is no extrapolation, θ is 0. This parameter can also be tuned differently if the involvedfunctions are strictly convex to get convergence rate to the primal solution. The primal-dual al-gorithm of [Chambolle and Pock, 2011] is the first with a proof of convergence and assumptiononly on the step size of the two proximal methods. The step parameters σ and τ must be chosensuch that στ ||K||2 < 1 to ensure that the algorithm converges in the case θ = 1. [Chambolle andPock, 2011] also proves that Arrow-Hurwicz converges but only when the feasible set is bounded,which is also our case.
Algorithm 3 Chambolle’s algorithm
First-order primal-dual algorithm, θ = 1 is Chambolle’s algorithm
Require: proxf∗ , proxg,K andK∗, σ and τ the gradient step parameters and niter the number ofiteration and initial values for the solutions (X0, Y 0)
Ensure: στ ||K||2 < 1

θ ← 1
X̄ ← X0

X ← X0

Y ← Y 0

for n = 1 . . . niter do
Xold = X
Y = proxσf∗(Y + σKX̄)
X = proxτg(X − τK∗Y )
X̄ = X + θ(X −Xold)

end for
return (X, Y )

The only constraint on σ and τ is that στ ||K||2 is smaller than 1. Making this product as closeas possible (but not equal) to 1 minimize the number of iterations required to be close to thesolution. However, this only constraints the product of σ and τ and minimizing the number ofiterations further may require different step size in primal and dual space depending on theproblem. To keep the number of iterations the same for many problems of the same form, wecan use the linesearch method proposed by [Malitsky and Pock, 2016]. The parameters σ and τare adjusted at each iteration to have a ratio of β until a stopping condition is reached as shownin Algorithm 4.The linesearch parameters δ, µ ∈]0, 1[ respectively tune the largest primal step size we acceptat each epoch to avoid that στ ||K||2 ⩾ 1 and how much the primal step size is reduced if it is toobig. The resulting choice of step size is theoretically better if these two parameters are close to 1
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(but not 1). In practice, the linesearch is longer if µ is closer to 1 and limit the speedup providedby choosing δ too close to 1.
Algorithm 4 Primal-Dual proximal splitting with linesearch [Malitsky and Pock, 2016]
Require: proxf∗ , proxg, K and K∗, τ0 > 0 the initial primal gradient step size parameter, β theratio of primal and dual gradient step size, niter the number of iterations, µ and δ the precisionof linesearch estimation and initial values for the solutions (X0, Y 0)

θ ← 1
x̄← x
for k ∈ 1, ..., n_iter do

xold ← x
x← proxτk−1g

(x− τk−1K
∗y)

τk ← τk−1(1 +
√

θk−1)/µ
repeat ▷ Linesearch loop

τk ← µτk
θk ← τk

τk−1

x̄← x+ θk(x− xold)
yk+1 ← proxβτkf∗(yk + βτkKx̄)

until
√
βτk||K∗yk+1 −K∗yk|| ⩽ δ||yk+1 − yk|| ▷ Stopping condition

end for
return (x, y) ▷ (x, y) primal-dual solutions of A.2
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