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Résumé
Résumé

Cette thèse est dédiée à l’étude des systèmes photoniques de Dirac, le rôle de leur topolo-
gie et Métrique Quantique, et leur comportement vis-à-vis de la non-Hermiticité.

Après des chapitres introductifs sur ces sujets, nous étudions d’abord les points de Dirac
dans les microcavités. En excitant de manière cohérente deux bandes proche d’un point de
Dirac, nous démontrons expérimentalement que le paquet d’onde polaritonique présente des
oscillations de Zitterbewegung. Cet effet peut être compris avec une théorie de Yang-Mills
non-Abélienne, qui couple la précession du spin à la dynamique spatiale.

Ensuite, nous présentons un ancien travail, décrivant l’effet Hall anormal photonique dans
le régime opposé, lorsqu’une seule bande est excitée de manière adiabatique. Après, nous
démontrons que ces deux régimes peuvent être décrits dans un formalisme unique, prenant la
forme d’équations semi-classiques utilisant uniquement des paramètres statiques des bandes,
à savoir la dispersion et la Métrique Quantique.

Suite à cela, nous présentons un travail expérimental sur un régime de couplage fort
lumière-matière sélectif en spin qui se traduit par une non-linéarité optique exceptionnelle-
ment forte et un effet Zeeman géant, qui permet d’ouvrir une bande interdite au point
de Dirac dans les systèmes polaritoniques, et qui a des applications directes en physique
topologique.

Dans le dernier chapitre, nous démontrons qu’en présence de non-Hermiticité, un point de
Dirac se transformera en une paire de points exceptionnels, reliés par un arc de Fermi. Nous
montrons que la Métrique Quantique diverge au voisinage d’un point exceptionnel. Cette
divergence permet de comprendre le comportement complexe d’un paquet d’onde centré sur
ce point.

Enfin, nous présentons la première extraction expérimentale de la Métrique Quantique
dans un système non-Hermitien, présentant des points exceptionnels. Cette thèse se termine
sur l’observation de la divergence de la Métrique Quantique aux points exceptionnels, en
accord avec la théorie.

Keywords

Topologie, Métrique Quantique, Tenseur Géométrique Quantique, physique non-Hermitienne,
points de Dirac, points exceptionnels, équations semiclassiques, dynamique d’un paquet
d’onde, photonique, microcavités, exciton-polaritons, couplage spin-orbite, théorie de Yang-
Mills, monocouche de semiconducteur, Zitterbewegung, Zeeman géant.
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Abstract
Abstract

This thesis is dedicated to the study of photonic Dirac systems, the role of their associated
topology and Quantum Metric, and their behavior with respect to non-Hermiticity.

After introductory chapters on these subjects, we first study Dirac points in microcavi-
ties. By exciting coherently two bands near a Dirac point, we experimentally demonstrate
Zitterbewegung oscillations from a polariton wavepacket. The dynamics can be fully under-
stood thanks to a non-Abelian Yang-Mills theory, which couple the precession of the spin to
the spatial dynamics.

Then we introduce a previous work, describing the photonic anomalous Hall effect in the
opposite regime, when a single band is excited adiabatically. Afterwards, we demonstrate
that both of these regime can be described in a single formalism, taking the form of semiclas-
sical equations using only static band parameters, namely the dispersion and the Quantum
Metric.

Following this, we present an experimental work about a spin-selective strong light-matter
coupling regime which results in unusually strong optical nonlinearity and a giant Zeeman
effect, which allows to open a gap at the Dirac point in polaritonic systems, and which has
direct applications in topological physics.

In the last chapter, we demonstrate that in presence of non-Hermiticity, a Dirac point
will transform into a pair of exceptional points, linked by a Fermi arc. We show theoretically
that the Quantum Metric diverges at the vicinity of an exceptional point. This divergence
allows to understand the complex behavior of a wavepacket centered at this point.

Lastly, we present the first experimental extraction of the Quantum Metric in a non-
Hermitian system, exhibiting exceptional points. This thesis ends with the observation of
the divergence of the Quantum Metric at the vicinity of exceptional points, accordingly with
the theory.

Keywords

Topology, Quantum Metric, Quantum Geometric Tensor, non-Hermitian physics, Dirac
points, exceptional points, semiclassical equations, wavepacket dynamics, photonics, micro-
cavities, exciton-polaritons, spin-orbit coupling, Yang-Mills theory, monolayer semiconduc-
tor, Zitterbewegung, giant Zeeman.
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My contributions

I will present here my contributions to all my published articles.

E.1 1st author articles

• High-frequency exciton polariton clock generator.

• Universal semiclassical equations based on the QM for a two-band system.

For both of these theoretical articles, I did the analytics under the guidance of my advisors.
I also performed the numerical simulations both with the semi-classical equations and with
the Schrodinger equation. Finally, I wrote the draft versions of the manuscript and worked
on their improvement together with my supervisors.

• Experimental measurement of the divergent quantum metric of an Exceptional point.

In this experimental paper, in collaboration with a Chinese group, I performed the full
treatment of the raw experimental data that we received. I extracted and analyzed the data
to obtain the experimental dispersion for each polarization. With a double Lorentzian fit,
I extracted the real and imaginary part of the modes, which allowed us to demonstrate the
presence of an EP in the cavity. I extracted the Stokes vectors and finally the QM in the 2D
reciprocal space. I precisely extracted the QM behavior along a line which crosses the EP,
demonstrating the divergence of the metric. With the guidance of my advisors, I developed
a Hamiltonian describing the system to fit the dispersion, and to model theoretically the
Stokes vector and the QM. Finally, I made all the 14 panels in the main article, wrote the
draft of the manuscript and worked on its improvement.

• Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective
strong light–matter coupling.

This experimental paper is a collaboration with a lot of experimental groups. With the group
of A. I. Tartakovskii, we discussed the bare flake and cavity spectroscopy data. With the
help of my advisors, I developed the cavity fitting model accounting for the Stokes shift (fig.
1.D), that I used to extract the main result of this article: a giant Zeeman splitting (fig. 2.b).
I also developed a rate equation model, which I used to fit the Rabi splitting (fig. 3.c), the
DOCP versus the pumping power (fig. S4), and the blueshift of the LPB (fig. 3.c). From the
fits I extracted the important parameters to model the effective interaction between trion-
polariton. I showed that we obtain strong nonlinearities at low pumping, the second main
result of this article. I wrote with my advisors the section 2 of the supplementary, and I made
all the figures in this section. During this collaboration, I was exchanging directly with the
other first author Tomas P. Lyons about the data analysis, the fits, and the improvements
of the figures and the manuscript.
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E.2 Other articles

• Quantum metric and wave packets at exceptional points in non-Hermitian systems.

My main contribution to this article is the derivation of the QM at the vicinity of an EP,
showing the divergence of 1/q. I also participated in the discussion and interpretation of
the wavepacket behavior. I took part in the search for ideas about the possible interesting
consequences of the divergence of the QM. I participated in the testing of these ideas and
the selection of the best ones for the paper.

• Domain-Wall topology induced by spontaneous symmetry breaking in polariton graphene.

I participated in the discussion and interpretation of the numerically observed phenomena
all along the development of this work. I suggested several ideas concerning the possible
applications of the chiral domain wall currents. I made an aesthetic and clear 3D figure
showing the polariton graphene, the domain walls excited by lasers, and the topological
current at the interface (fig. 3.a. and fig. S1). I wrote a part of the supplementary.

• Experimental investigation of a non-Abelian gauge field in 2D perovskite photonic
platform.

Right from the start, I studied the Yang-Mills theory together with my supervisors. I derived
the equations of motion in a non-Abelian field (the classical chromodynamics equations), and
I simulated this spin-dependent trajectory in real space with these equations (fig. 2.J). I also
made 3D figures representing the system (fig. 2.A and fig. 3.A.).

• Quantum analogue of a Kerr black hole and the Penrose effect in a Bose-Einstein
condensate.

In this article, I showed that the Bose-Einstein condensate’s metric is equivalent to the Kerr’s
one. I derived theoretically the wavefunction of an acoustic Kerr (rotating) black hole. I
have shown that the black hole exhibits two limits: the event horizon and the ergosphere.
I demonstrated the validity of this result by performing numerical simulations, solving the
Gross-Pitaevskii equation. I was also involved in the simulations of the Penrose effect in the
ergoregion, using vortices with quantized angular momentum in the condensate.



Acknowledgements
Acknowledgements

Si j’avais un unique conseil à donner à quelqu’un qui voudrait se lancer dans une thèse,
ce serait probablement de bien choisir ses encandrants de thèse. Bien avant le sujet

de thèse. C’est ce que je pensais au début de ma thèse, au milieu de celle-ci, et c’est
ce que je pense encore maintenant. Si cette thèse est un succès, c’est avant tout parce
que j’ai eu la chance d’avoir des encadrants passionés, passionants, et qui ont su être là
dans des moments difficiles, aussi. Ce sont devenus des modèles pour moi, chacun avec ces
particularités. Dmitry, avec son efficacité, ses idées originales et brillantes, et qui ne ménage
jamais ses efforts; et Guillaume, avec sa rigueur et ses connaissances, et qui a le super pouvoir
de comprendre des sujets complexes et de les retranscrire de façon très simple, afin qu’un
pauvre doctorant comme moi puisse les comprendre. Ce serait dur de résumer ce que j’ai
vécu et appris dans cette équipe pendant ces 3 ans de thèse et ces 8 mois de stage, et c’est
bien sûr avec une légère pointe au coeur que je vais quitter ce bureau. Merci pour tout,
Dmitry et Guillaume.

A l’Institut Pascal, je voudrais aussi remercier chaleureusement Ismaël, dont les interac-
tions m’ont beaucoup aidées, tant sur le point scientifique que humain. Merci à Pavel, pour
ces questions toujours pertinentes, et sa fascinante culture russe. Je n’ai aucun doute sur
votre réussite future. Merci à Léo et Gabin pour ces moments amicaux. Biensûr je remer-
cie aussi l’équipe spectroscopie optique pour nos échanges, ainsi que Guy et Hiba pour ces
petites pauses hebdomadaires. Merci à Francoise, Vanessa et Sabrina pour mes démarches
administratives qui me perdent tant.

Je voudrais témoigner ma reconaissance aux différents collègues expérimentateurs avec
qui j’ai eu la chance de collaborer. Tout d’abord, je remercie l’équipe de Sheffield dirigée par
Alexander Tartakovskii, et en particulier merci à Tom pour ces interactions tout le long de
cette collaboration, j’ai beaucoup appris. Merci aussi à l’équipe de Lecce dirigée par Daniele
Sanvitto, c’était un réel plaisir de travailler sur un article aussi ambitieux.

Merci à mes amis, que j’ai cité ou non, et qui constituent une partie importante de mon
bien-être. Ces soirées jeux, ces soirées TdV, ces moments de sport, de randonnée, de musique,
des débats animés. Ces sorties loin de tout, à Saint-Désiré, dans le Jura, dans l’Aubrac, mais
aussi au fameux festival du Roi de l’Oiseau. Merci pour ces souvenirs, merci d’avoir répondu
présent, et j’espère tous vous revoir très bientôt.

Merci à Lauriane, qui a réussi à alleger mes soucis et tracas pendant cette thèse. Merci
pour ton support et ton aide, qui m’ont été très précieux.

Évidemment, merci à ma famille, et particulèrement à mon père et ma mère, pour m’avoir
accompagné tout au long de mes études. Je n’aurais pas réussi sans vous. Votre fils va enfin
finir ses études!

Charly Leblanc

5





Contents
Contents

Résumé 1

Abstract 3

Acknowledgements 5

Introduction 11

1 Dirac points in graphene 15
1.1 Pseudospin model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Tight-binding Hamiltonian of graphene . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Effective Hamiltonian at the Dirac point . . . . . . . . . . . . . . . . . . . . . 20
1.4 Topology of graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Dirac equation: relativistic physics and graphene . . . . . . . . . . . . . . . . 23
1.6 Staggered honeycomb lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Singularities in optical systems 27
2.1 Dirac points in crystal optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Dirac points in microcavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Fabry-Pérot cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Photonic cavity modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 TE-TM splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.5 Linear Birefringence and Dirac points . . . . . . . . . . . . . . . . . . 34

3 Microcavity polaritons 37
3.1 Exciton-polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 2D polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Quantum fluid of light . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Resonant pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Optical Spin Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Interaction with a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Diamagnetic effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Quantum Geometric Tensor 49
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Berry curvature and Chern number . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Berry phase and related quantities . . . . . . . . . . . . . . . . . . . . 50

7



CONTENTS

4.2.2 Bulk-boundary correspondence . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Example: the Jackiw-Rebbi interface state . . . . . . . . . . . . . . . . 53
4.2.4 Topological photonics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Riemannian metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Minkowski metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Quantum metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Wavepacket dynamics 59
5.1 Experimental investigation of a non-Abelian gauge field in a 2D perovskite

photonic platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Presentation of the system . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 Link with the Yang-Mills theory . . . . . . . . . . . . . . . . . . . . . 62
5.1.4 Polariton propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Semiclassical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Bloch oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 Anomalous Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Photonic anomalous Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Universal semiclassical equations based on the Quantum Metric . . . . . . . . 72

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.4 Berry curvature and Quantum Metric. . . . . . . . . . . . . . . . . . . 80
5.4.5 Link with the Yang-Mills theory . . . . . . . . . . . . . . . . . . . . . 81
5.4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Giant effective Zeeman in a monolayer semiconductor . . . . . . . . . . . . . . 83
5.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.2 MoSe2 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.3 Photoluminescence from polariton modes . . . . . . . . . . . . . . . . 86
5.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.5 Rate equation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Non-Hermitian systems 95
6.1 PT-symmetric systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Exceptional points in microcavities . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 The role of the Quantum Metric at exceptional points . . . . . . . . . . . . . 99

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.2 Circularly polarized wavepacket . . . . . . . . . . . . . . . . . . . . . . 100

8



CONTENTS

6.3.3 Linearly polarized wavepacket . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Experimental measurement of the Quantum Metric . . . . . . . . . . . . . . . 105
6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4.2 Presentation of the system . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.4 Extraction of the Quantum Metric . . . . . . . . . . . . . . . . . . . . 110
6.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Conclusion 117

Bibliography 149

Appendices 151

A Pseudospin texture 153

B Mathematical tools 155

C Gauge theory 157

D Co-occurence/authorship analysis 159

E My contributions 161

Abbreviations 163

Index 165

9





Introduction
Introduction

Topology is a field of Mathematics. In Physics, it allowed the description of materials
beyond the Fermi level model. Indeed, before the 80s and the discovery of the Quan-

tum Hall effect, a material was described as a conductor or insulator based on its electronic
band structure, the position of the gaps and the Fermi level (see fig. 1). The Quantum
Hall Effect revealed that a material can be an insulator in the bulk, but still conduct on its
surface, leading to a new classification of materials. Topology was found to be an adequate
tool to describe these new properties, and so now in order to fully understand a material we
need to study the behavior of the eigenstates along the bands.

The Quantum Geometric Tensor is a matrix introduced in the 80s which contains all the
information needed. This matrix is built with eigenstates and their derivatives in the recip-
rocal space. The imaginary part of this matrix is linked to the Berry Curvature, and by inte-
grating it along the bands we will obtain an integer topological invariant, the so-called Chern
number. If this integer is non-zero the material is said to be topologically non-trivial (see
fig. 1). Since then, the field of topological physics has been growing exponentially. It found
potential applications in quantum computing where "topological protection" is expected to
strongly limit qubits decoherence. In photonics, topologically-protected unidirectional edge
states are very appealing in order to build integrated photonic circuits. On another side,
the real part of the Quantum Geometric Tensor is linked to the Quantum Metric. Initial
understanding of the Quantum Metric is that it permits the calculation of quantum distances
between eigenstates. In recent years, it has appeared that the Quantum Metric describes
non-adiabatic corrections of effects mostly explained by the Berry curvature, such as the
Anomalous Hall Effect.
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Figure 1: Classification of materials. Chern insulators insulate in the bulk and conduct on
the edge, a property well explained by topology.

This thesis also focuses on a specific type of bands singularity: 2D Dirac points. Dirac
points are linear crossing points carrying a singular Berry curvature distribution. They
appear in the 2D band structure of graphene (see fig. 2). An interesting property is that
when a gap opens at Dirac points due to time-reversal breaking, the two bands that split
acquire nonzero Chern numbers, and so the bands become topologically non-trivial. We will
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use this property not with graphene, but by implementing Dirac points in photonic systems.
A convenient way to do so is by using microcavities (planar Fabry-Perot resonators). These
microcavities display a series of modes with quasi-parabolic dispersion, each one of these
modes being a doublet of polarization, TE and TM. If we focus on the dispersion, we will
see that if there is presence of birefringence in the cavity, the doublet will split at k = 0, and
because their effective mass is different the bands will cross in two points of the reciprocal
space. The crossings are linear, meaning we have Dirac points in the system (see fig. 2).
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Figure 2: (a) A sheet of graphene, which is made of carbon atoms arranged into a 2D honey-
comb lattice composed of two triangular sublattices (blue and red). (b) Graphene dispersion
displaying 6 Dirac points. (c) Fabry-Pérot cavity. (d) Series of modes of the cavity. (e)
Dirac points in presence of birefringence in the cavity.

In order to get more control of the light in the microcavity we will use light-matter
interaction. For example we can insert a semiconductor slab in the microcavity so there will
be a coupling between the photonic modes and the excitations of the semiconductor, called
excitons. A quasiparticle arises from this coupling, part matter and part light, which we call
exciton-polariton, or polariton. This quasi-particle has already demonstrated superfluidity,
Bose-Einstein condensation and also appears to be an interesting candidate to study room
temperature photonics and analogue physics.

In this thesis, we will present in the 1st chapter some historical viewpoints about Dirac
physics, starting from graphene, its topology and how the electrons are solution to a massless
Dirac equation near the Dirac points. In the 2nd chapter, we will study Dirac points in simple
optical systems, such as crystals and microcavities, and crucial effects that allow to obtain
these points in microcavities, namely linear birefringence and TE-TM splitting. A more
versatile photonic platform, known as microcavity exciton-polaritons, will be introduced in
the 3rd chapter. The Quantum Geometric tensor, giving both topology and the Quantum
Metric, is at the heart of this thesis, and will be presented in the 4th and last introductory
chapter. Generally, systems which display Dirac points can be described at the vicinity of
the latter by a superposition of eigenstates, with a (pseudo)spin coupled with the spatial
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dynamics, which can be interpreted as an effect of a non-Abelian gauge field. Oscillations,
known as Zitterbewegung oscilattions, can be observed owing to the pseudospin precession.
A theoretical formalism presented in the 5th chapter describing both the adiabatic limit,
with the anomalous Hall effect, and the opposite limit of coherent band superposition, with
this Zitterbewegung motion, can be exactly defined with Quantum Metric terms. These
effects and the first extraction of the Quantum Metric have been realized recently in exciton-
polariton microcavities. This chapter will end with the study of an experimental work on a
semiconductor monolayer embedded in a microcavity. We show that a spin-selective strong
light-matter coupling regime results in unusually strong optical nonlinearity and a giant
Zeeman effect, which has direct applications in topological physics. The 6th and last chapter
will be devoted to non-Hermitian physics. In photonic systems, losses appear quite naturally,
and different losses for different eigenstates transform a Dirac point into a pair of exceptional
points linked with a Fermi arc. The effective Hamiltonian becomes non-Hermitian. We will
demonstrate that if we send a wavepacket (a light beam) near an exceptional point, the
dynamics of this wavepacket can be expressed with Quantum Metric terms. Finally, we
will present the first experimental measurement of the Quantum Metric in a non-Hermitian
system, more precisely near an exceptional point.
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In the 1st introductory chapter, we present the most famous system displaying Dirac
points, namely the graphene. After introducing the pseudospin model, which is a crucial

tool with respect to this thesis, we study how to develop a tight-binding Hamiltonian for
graphene, and how to use it to describe the topology of Dirac points. A link is made
between the equation describing electrons at the vicinity of Dirac points and the well-known
relativistic Dirac equation. Finally, we investigate how to develop Dirac physics for massive
particles.

1.1 Pseudospin model

In this thesis and in a substantial part of our work, we are dealing with physical systems
with two states, represented by a two-by-two matrix. A geometrical representation of the
Schrödinger equation for solving two-level quantum systems has been developed by Richard
Feynman in the 50s [1]. In this section, I will first summarise these results with notations
consistent with the rest of this manuscript, then I will explain why this model is of crucial
interest for our works.

We consider a general superposition of two eigenstates which can be written as

|ψ(t)〉 = c1(t) |ψ1〉+ c2(t) |ψ2〉 1.1

From this point, we usually solve the Schrödinger equation with a perturbation V for the
coefficients c1,2(t), which allow to compute the population of the eigenstates, and deduce the
physical properties of the system from them [2]. Here the idea is different, considering that
the phase of |ψ(t)〉 does not play any role, only three real numbers are needed to completely
define the wavefunction. We then construct a 3-component vector S with three real functions
S1, S2, and S3 depending on c1,2(t)

S1 = c1c2
∗ + c2

∗c1
S2 = i(c1c2

∗ − c2
∗c1)

S3 = c1c1
∗ − c2c2

∗

where c∗1,2 is the complex conjugate of c1,2. The time dependence of S can be obtain from
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Chapter 1. Dirac points in graphene

the Schrödinger equation which gives for c1

i�
dc1
dt

= c1 (E0/2 + V11) + c2V12 1.2

where E0 is the energy splitting of the two levels. Similar equations for c2 and c∗1,2 can
be derived. Usually V11 and V22 are negligible compared to E0. From eq. 1.2 we find the
differential equation for S [1]

dS

dt
= Ω× S 1.3

where Ω is a 3-component vector with real values Ωi defined by

Ω1 =
1
�
(V12 + V21)

Ω2 =
i
�
(V12 − V21)

Ω3 = E0/�

1.4

The remaining combination c1c1
∗ + c2c2

∗ is equal to the length of the vector S, which is
equal to 1 when |ψ(t)〉 is normalised to unity. The eq. 1.3 describes the precession motion
of a spin in a constant magnetic field [3]. Hence one should expect that in the case of the
transitions between the two magnetic levels of a spin 1/2 particle, the component S1, S2 and
S3 would be proportional with μx, μy and μz, and Ω1, Ω2 and Ω3 would be proportional
with the magnetic field components Hx, Hy and Hz respectively. By analogy, any two-state
transition described by equation 1.3 can be thought in terms of the classical vector model
for spin precession. In this case, S describe not a spin but a pseudospin, and Ω describe
not a magnetic field but an effective magnetic field. Feynman wrote about this model:
"Although the approach does not obtain results inaccessible to straight-forward calculation,
the simplicity of the pictorial representation enables one to gain physical insight and to obtain
results quickly which display the main features of interest".

Indeed, any two-level quantum system can be represented geometrically on a Bloch sphere
[4, 5] as shown in fig. 1.1. This representation is massively used in modern physics thanks to
the development of quantum computing and more precisely the concept of qubit [6]. Knowing
the effective magnetic field acting on the system, and knowing the precession equation, there
is no apparent difficulties to understand geometrically the possible states of the system. An
analogue of the Bloch sphere is the Poincaré sphere, more used to represent polarisation of
light. In the Poincaré sphere, the states are the six polarisation states of light (H,V,D,A,R,L).
In this thesis, we are using microcavities, whose eigenstates are characterized by polarisation
[7] represented on the Poincaré sphere by the so-called Stokes vectors (an analogue of the
pseudospin). Feynman developed this model to described two quantum levels in presence of
a perturbation Ω, but his work is actually more general than that, and successfully describe
systems where the effective field is similar or greater than the splitting between the two
states. Also, we will be dealing mostly with two-level systems, such as two coupled modes or
two levels of a micropillar. Consequently, we will use the Bloch sphere representation with
the pseudospin model.

For the practical point of view, we can rewrite any two-by-two Hermitian matrix H under
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Figure 1.1: Bloch sphere representation of a two-level quantum system. The position of the
pseudospin S and the effective magnetic field Ω is given by the polar and azimuthal angles
θS,f and φS,f respectively, where f means field.

the form

H =

(
H0(k)− Ωz(k)

2 −Ωx(k)−iΩy(k)
2

−Ωx(k)+iΩy(k)
2 H0(k) +

Ωz(k)
2

)
= H0I2 −Ωeff (k) · σ 1.5

where σ = (σx, σy, σz) represents the Pauli vector composed of Pauli matrices, I2 is the
identity matrix, and Ω is the effective magnetic field. The eigenstates are parallel or anti-
parallel to this effective field. Moreover, considering ψ+ and ψ− are the two eigenstates, the
pseudospin S = (Sx, Sy, Sz) is given by

Si = (ψ+ ψ−)∗σi

(
ψ+

ψ−

)
= 〈σi〉 1.6

This geometrical representation of the Hamiltonian as an effective magnetic field acting on a
pseudospin will be extensively used in the following of this thesis. The pseudospin precession
is not needed in the adiabatic approximation where the system stays in a single eigenstate,
in a single band. However, it will be used when bands are coherently excited, something
that we will study in chapter 5.

1.2 Tight-binding Hamiltonian of graphene

Graphene is made of carbon atoms arranged in a 2D honeycomb lattice. A lot of struc-
tures are made with graphene. For instance graphite, used in pencils since 1960, is a stack
of graphene layers [8]. Also carbon nanotubes are made of rolled-up cylinders of graphene.
More recently a stack of rotated layers of graphene led to a promising structure, moiré
graphene [9], with interesting properties such as superconductivity and Mott insulating.
K. Novoselov and A. Geim first isolated graphene sheets using scotch tape in 2004 [10, 11],
and got the Nobel prize for it in 2010. Since then, the properties of graphene have been
heavily studied [12, 13, 14]. In this chapter we will study the graphene dispersion using the
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Figure 1.2: (a) Graphene sheet. (b) Lattice structure of graphene, a honeycomb lattice made
of 2 triangular sublattices. For graphene, the atoms A and B are the same, but for hexagonal
Boron Nitride, they are different. (c) First Brillouin zone of graphene.

tight-binding model. This model is useful to describe the case where atomic wavefunctions
are overlapping enough that there is a need to correct the description of an isolated atom,
but not overlapping too much, so this is still only a correction. A comprehensive description
of the tight-binding model can be found in the well written book Ashcroft and Mermin [15].
The unit cell of graphene, shown in fig. 1.2, is composed of two atoms, which we will call A
(cyan) and B (magenta) atoms. These atoms form a honeycomb lattice. Each type of atom
forms a triangular lattice, and its unit vectors are:

a1 = a
2

(
3,
√
3
)

a2 = a
2

(
3,−√

3
)

where a is the distance between nearest neighbours (A and B). The first Brillouin zone of
graphene is shown in the panel (c) of fig. 1.2. The K and K’ points are at the corners of
this zone, and represent Dirac points, which will be one of the central objects of interest in
this thesis. Considering only nearest-neighbour hopping, the tight-binding Hamiltonian for
graphene is:

Ĥ = −t
∑
i

∑
j

(
â†i b̂j + b̂†j âi

)
1.7

where i and j correspond to sites in A and B sublattices, â†i and âi correspond to fermionic
operators which create and annihilate electrons on the sites in A sublattice, and b̂†i and b̂i are
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1.2 Tight-binding Hamiltonian of graphene

doing the same for the sites of B sublattice. The term t corresponds to the overlap between
the pz orbitals of adjacent carbon atoms and is known to be approximately t � 2.7 eV [14].
In the honeycomb lattice, one atom has three nearest neighbours. The three corresponding
vectors are (in the case of A atom):

u1 = a
2

(
1,
√
3
)

u2 = a
2

(
1,−√

3
)

u3 = a (−1, 0)

We can then rewrite the sum over the nearest neighbours:∑
i

∑
j

(
â†i b̂j + b̂†j âi

)
=

∑
i∈A

∑
u

(
â†i b̂i+u + b̂†i+uâi

)
1.8

The A sublattice sites (noted i) are at the position ri, and b̂†i+u and b̂i+u respectively creates
and annihilates an electron on the B neighbours sites (noted i + u) at position ri + u (u1,
u2 or u3). The operator can be written in the tight-binding approximation [16] such as

â†i =
1√
N/2

∑
k

eik·ri â†k 1.9

where N is the number of atoms, therefore N/2 is the number of A sites. Using the same
property for b̂†i , eq. 1.7 becomes

Ĥ =
−t

N/2

∑
i∈A

∑
u

∑
k

∑
k′

(
ei(k−k′)·rie−ik′·uâ†kb̂k′ + h.c.

)
1.10

Using the fact that
∑
i∈A

ei(k−k′)·ri = N
2 δkk′ , we can rewrite the Hamiltonian:

Ĥ = −t
∑
u

∑
k

eik·uâ†kb̂k + h.c. 1.11

In this thesis, we will usually express the Hamiltonian in the matrix representation, using
the Pauli matrices basis. Hence the Hamiltonian reads:

Ĥ =
∑
k

Ψ†h(k)Ψ 1.12

where

Ψ =

(
âk

b̂k

)
,Ψ† =

(
â†k b̂†k

)
1.13

and h is the matrix representation of the Hamiltonian:

h(k) = −t
∑
u

(
0 cos (k · u) + i sin (k · u)

cos (k · u)− i sin (k · u) 0

)
1.14
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Chapter 1. Dirac points in graphene

As mentioned, the two-by-two form of the matrix allows to express it as an effective magnetic
field acting on the pseudospin of the lattice. This pseudospin is a degree of freedom describing
the orbital wave functions positioned in two different sublattices of the honeycomb lattice.
Using the Pauli matrices basis:

h(k) = −t
∑
u

(cos (k · u)σx − sin (k · u)σy) 1.15

The eigenvalues of this matrix can be written as:

E±(k) = ±t
√

3 + f(k) 1.16

where
f(k) = 2 cos

(√
3kya

)
+ 4 cos (3/2kxa) cos

(√
3/2kya

)
1.17

The energy bands are plotted in fig. 1.3. The top and lower bands are touching in six points
which are the Dirac points. Using eq. 1.16, we can compute the position of these points in
the momentum space, with two of them given by the formulas:

K =

(
2π

3a
,

2π

3
√
3a

)
, K′ =

(
2π

3a
, − 2π

3
√
3a

)
1.18

We want to emphasize that not any linear crossing of two bands is a Dirac point, these points
are also characterized by a topological quantity named the winding number which will be
introduced later.

1.3 Effective Hamiltonian at the Dirac point

Figure 1.3: (a) Graphene dispersion in the 2D reciprocal space with a = 1 and t = 3. (b)
Zoom on the Dirac point, the crossing is linear.

We are interested in the behavior of the system near the Dirac points. We can define
the relative wavector near one Dirac point positioned in K ′ as: q = k−K′ where K′ is the
wavevector of the Dirac point. The series expansion of the Hamiltonian h near the Dirac
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point reads [14]:

hK′ (q) = �vf

(
0 qx − iqy

qx + iqy 0

)
= �vf (qxσx + qyσy) 1.19

It can be written under the form
hK′ = �vfq · σ 1.20

with q = (qx, qy). We remark that this Hamiltonian is similar to a Rashba Hamiltonian
[17, 18]. Close to the Dirac point, the eigenvalues given by eq. 1.16 become

E±(q) = �vf |q| 1.21

where vf is the Fermi velocity given by vf = 3/2at. We observe that the dispersion is linear
near the Dirac point, so it forms a cone in the reciprocal space (see fig. 1.3.b). This result
was obtained the first time by Wallace in 1947 [16]. In the same manner, we can obtain the
effective Hamiltonian near the K point

hK (q) = �vf

(
0 qx + iqy

qx − iqy 0

)
= �vfq

∗ · σ 1.22

with q∗ = (qx,−qy). This time, we observe that this Hamiltonian is similar to the Dresselhaus
Hamiltonian [19]. It gives the same dispersion as the one in the K’ point, but not the
same eigenvectors. The two Hamiltonians can be distinguished by a winding number – a
topological invariant that we introduce below.

1.4 Topology of graphene

Topology was first a field of Mathematics studying topological invariants. These are
quantities which do not change under continuous transformations. For example, the number
of holes in an object is a topological invariant. The cube and the polyhedron in fig. 1.4 have
both zero holes, and hence they are considered as topologically trivial objects. It is different
for the torus and the cup which have one hole, and hence are topologically non-trivial objects.
It is possible to transform the cube into the polyhedron with a continuous transformation,
but not into the torus [20]. The first applications of topology in physics date from the
18th century [21, 22], but began to gain prominence with the work of Poincaré in 1895,
who was studying celestial mechanics [23]. Interest in topology has grown exponentially in
recent times in physics since the discovery of the quantum Hall effect in the 1980s by K. von
Klitzing, work which earned him the Nobel Prize in 1985 [24]. The topology underneath
this effect is linked with the famous Chern number, which characterises the topology of the
bands. The Chern number will be one of the subjects of interest in this thesis. It will be
explained in the chapter 4.

The topology of the Dirac points in graphene can be described by another topological
invariant – the winding number. This number describes the winding of the phase of the
wavefunction around a point. Let us find the winding number of the Dirac point. We start
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��� ���

Figure 1.4: The number of holes in a object is a topological invariant. (a) The cube and the
spherical polyhedron have both zero holes. (b) The torus and the cup have one hole.

by expressing the effective Hamiltonian of graphene at the K point 1.19 under the form [25]

HD = �νfq

(
0 e−iθq

eiθq 0

)
1.23

where νf is the Fermi velocity and θq corresponds to the angle between the +kx direction and
q = (qx, qy) in the 2D reciprocal space (that is, the polar angle determining the orientation
of the wave vector). The resulting wavefunction written as a spinor is

ψ± =
1√
2

(
±e−iθq

1

)
1.24

The winding number of the Dirac point corresponds to the number of rotations that the
pseudospin performs when the wavevector fully rotates once around this point. It is expressed
as [26]

ω =
1

2π

∮
∇Φ(q)dq 1.25

where Φ(q) is the relative phase between the two components of the spinor. As we see,
the winding number is an integral value, which is usually the case for topological numbers.
This expression is strongly related to the Berry connection (phase) and the Berry curvature,
which will be discussed in detail in chapter 4. In our case, Φ(q) = θq and eq. 1.25 can be
written as

ω =
1

2π

∮
1

q

∂θq
∂θq

qdθq = 1 1.26

In the same manner, the winding number at the K’ point is ω = −1, meaning that the
pseudospin is rotating in the other direction. A representation of the pseudospin texture1

is given in fig. 1.5 around two Dirac points with opposite winding numbers. The non-zero
winding numbers mean that the Dirac points are topologically non-trivial. They are stable
in the sense that they can be moved, e.g. by deformation of the lattice, but they can’t be
easily destroyed. The only way to annihilate a Dirac point is through a topological phase
transition, by merging two Dirac points of opposite winding numbers [27, 28].

1Example of computation of pseudospin textures in Appendix A.
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Figure 1.5: Representation of the pseudospin texture in the 2D reciprocal space. The winding
number is ω = +1 at the K point, and ω = −1 at the K’ point. Color, in arbitrary unit,
represents the intensity of the field.

1.5 Dirac equation: relativistic physics and graphene

But why is it called Dirac point exactly? To answer this question, we need first to take
a look at the Dirac equation, introduced by one of the most famous physicists of his time,
Paul Dirac, in 1928 [29]. This equation was derived in the framework of relativistic quantum
mechanics, and it describes particles with spin 1/2:

H = cα · p+mc2β 1.27

where m is the rest mass of a particle and c the speed of light. αi and β are the Dirac
matrices which must satisfy

αi
2 = β2 = 1

αiαj + αjαi = 0

αiβ + βαi = 0

1.28

In 3D, these matrices can be expressed in term of Pauli matrices σi (i = x, y, z) such as

αi =

(
0 σi

σi 0

)
, β =

(
σ0 0

0 −σ0

)
1.29

with σ0 the identity matrix. The matrices are of dimension four because there are two
degrees of freedom to consider: the spin ±1/2 and the particle/antiparticle. The eigenvalues
of eq. 1.27 are E2 = m2c4+p2c2, which ultimately gives the stunning result that there should
exist the antiparticles with negative energy. Owing to this result, Paul Dirac predicted the
existence of positron [30], the electron’s antiparticle.

In this thesis, we are more interested in 2D systems, because we are using microcavities
which confine the particles in one direction (generally z). In this case, one obtains a simpler
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two-by-two Hamiltonian
H = hck · σ +mc2σz 1.30

which can be interpreted as fixing the spin in eq. 1.27 while keeping the particle/antiparticle
degree of freedom. In this equation, k = (kx, ky) and σ = (σx, σy) is a vector of Pauli
matrices. We see that without the second term, which is the term corresponding to the
mass, this equation is similar to eq. 1.20. So the 2D massless Dirac equation is similar to
the equation describing graphene near the K points. The differences are in the values of the
parameters, for instance the Fermi velocity in graphene is approximately 300 times slower
than the speed of light. The eigenvalues of this Hamiltonian are plotted in fig. 1.6, and we
observe that without a mass (left panel, m = 0), the dispersion is similar to the dispersion
of graphene at the Dirac point. The first analogy between graphene and the Dirac equation
was noticed by Semenoff in 1984 [31]. We can also get the dispersion of a massive Dirac
Hamiltonian (right panel, m �= 0). In this case, the bands are not crossing and we observe
the emergence of a gap 2mc2 proportional to the mass.

To focus on graphene again, the effective mass m∗ of a particle in a solid, meaning the
mass the particle seems to have in the material, is given by the equation

1

mij
∗ =

1

�2

∂2E

∂ki∂kj
1.31

We understand from eq. 1.31 that a massless particle has a linear dispersion. So near
the Dirac cones in graphene the electrons behave like particles with no mass! Using this
property, a 2D massless electron gas has been realized experimentally in 2005 [10]. The
outstanding properties of graphene have made this material useful for many applications [32].
For instance, the high conductivity and capacity of graphene make it a great candidate for
electronics [33], such as electronic batteries [34, 35], which are expected to be industrialized
in the close future, owing to the recent improvements for scalable production of the material
[36, 37, 38]. Also, the high ratio of surface over volume and the low density of defects of the
material is interesting for sensors, for example to detect single molecules [39].

1.6 Staggered honeycomb lattice

Note that in this chapter we focused on graphene, but it is only a particular case among
all possible honeycomb lattices. For instance, the Boron Nitride [40] is still a honeycomb
lattice, but with different atoms in the two sublattices A and B, as shown in fig. 1.2.a.b
(with colors now meaning different atoms). It appears to behave differently near the K
and K’ points [41, 42]. Indeed, the staggering2 of the lattice adds a term in the effective
Hamiltonian proportional to σz, which reads

hBN,K′ (q) = �vf (qxσx + qyσy) + χσz 1.32

2Meaning the difference of neighbour atoms.
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Figure 1.6: Dispersion of the 2D Dirac Hamiltonian (a) without mass m = 0 (b) with a
non-zero mass m �= 0. The gap is proportional to the mass.

Owing to this term, the dispersion near the K’ now becomes

EBN,K′(q) = ±�vf

√
qx2 + qy2 + χ2 1.33

and the plot of this dispersion is similar to the panel b of fig. 1.6. We remark that it opens
a gap at the K’ point, proportional to χ. We can demonstrate that it does the same at
the K point. It means that, contrary to the case with the linear crossing of the bands, the
electrons near this points have an effective mass. Consequently, in the following, we will call
this type of Hamiltonian "massive Dirac Hamiltonian".
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In the 2nd introductory chapter, we study simple optical systems where Dirac points have
been predicted theoretically and then observed. First, we investigate crystal optics which

displays Dirac points in presence of linear birefringence, which is an effect demonstrated
more than a hundred years ago. Then we study microcavities, which are more contemporary
systems and are the central platform of the works done in this thesis. We develop the cavity
formalism, and finally we demonstrate how with only a few ingredients we can obtain Dirac
points.

2.1 Dirac points in crystal optics

In this part we will study electromagnetic waves in crystals, which are anisotropic media.
The properties of such media are given by the permittivity and permeability tensors, which
are respectively εij(ω) and μij(ω). The most common case is where the medium is a non-
magnetic transparent biaxial dielectric [43]. The constitutive equations for such crystals can
be written as

E = ε−1D, B = μ0H 2.1

where ε−1 is the inverse dielectric tensor, which can be expressed as

ε−1 =
1

ε0

⎛⎜⎝ 1/εx 0 0

0 1/εy 0

0 0 1/εz

⎞⎟⎠ 2.2

In the case of a biaxial crystal, all the principal components are different. We will take
εx < εy < εz. Also, the Maxwell’s curl equations for a monochromatic wave are:

ωD = −k×H, B = μ0H 2.3

We can define a vector n such as
k = ωn/c 2.4

We see that, contrary to the case of an isotropic medium where n =
√
ε depends only on

the frequency, here the magnitude of this vector depends on its direction. Substituting 2.1
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in 2.3 and using the last equation we obtain

D = n× (E× n) = n2E− (n ·E)n 2.5

which forms a set of three linear homogeneous equations for the three components of E:
n2Ei − ninkEk = εijEk. These equations are compatible only if the following condition is
fulfilled [44]

det
∣∣n2δik − nink − εik

∣∣ = 0 2.6

We consider the case of the section with the xy-plane, hence we take nz = 0 in equation 2.6
which cancels lot of terms and the equation now reads:

(
n2 − εz

) (
εxnx

2 + εyny
2 − εxεy

)
= 0 2.7

The cancellation of the first term of the product gives the equation of a circle

n2 = εz 2.8

and for the second term it gives the equation of an ellipse

nx
2

εy
+

ny
2

εx
= 0 2.9

which is inside the circle because εx < εy < εz. We can find in the same way the section with
the yz and xz-planes. In this case in the yz-plane the circle is inside the ellipse. Finally, in
the xz-plane they intersect, as shown is the figure 2.1; indeed the plane wave exhibits four
degeneracy points which are actually Dirac points, which were named Diabolocial points at
the time of the discovery of the conical refraction in biaxial crystals, first theoretically by
Hamilton in 1837 [45] and shortly after experimentally by Lloyd [46]. Hamilton asked himself
what would happen if a wavepacket or a light beam was sent near the degeneracy points.
He realised that a ray cone would appear inside a crystal slab, as shown in fig. 2.2.d., which
is peculiar, because an incident beam in any other direction would give a double refraction.
The conical refraction effect was getting attention because it was one of the first, if not the
very first, mathematical prediction of a physical effect. Airy said that conical refraction was
"perhaps the most remarkable prediction that has ever been made". The relation of the
linear energy crossing exhibited by the diabolical points to the Dirac Hamiltonian can be
understood from the polarization of the different wave surfaces crossing at this point. The
full theory of the intensity evolution in such systems was developed relatively recently [47].
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2.1 Dirac points in crystal optics

��
��

��

Figure 2.1: Wave surface for εx = 1, εy = 2.25 and εz = 4, displaying four Dirac points.

�

Figure 2.2: (a-c) Transition from double refraction to conical refraction as the light beam ap-
proaches the Dirac point. (d) Schematic of internal conical refraction predicted by Hamilton.
These figures are taken from Berry and Jeffrey [43]
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Figure 2.3: (a) Wave propagation at an interface. (b) Fabry-Pérot cavity made of vacuum-
metal-dielectric-metal-vacuum.

2.2 Dirac points in microcavities

2.2.1 Formalism

Let us consider an electromagnetic wave propagating in two media noted 1 and 2 on
fig 2.3, separated by an interface at z = 0. The amplitudes of the wave are given by
Re

(
Ei(z)e

iωt
)

where
Ei(z) = Erie

−jkiz + Elie
jkiz 2.10

with j the complex number j =
√−1 and ω = 2πν the angular frequency. Er is the part

of the wave going from left to right (e−jkiz) and El is going in the opposite direction. We
write Fresnel conditions, which express the continuity of the electric and magnetic field at
the interface {

Er1 + El1 = Er2 + El2

Br1 +Bl1 = Br2 +Bl2

2.11

and using the third Maxwell equation in the reciprocal space B = k×E/ω, equations 2.11
become {

Er1 + El1 = Er2 + El2

k1 (Er1 − El1) = k2 (Er2 − El2)
2.12

In a realistic experiment, a wave is coming from one particular direction. We suppose it
comes from the left, meaning El2 = 0. Because ki = 2πni/λ0, the equations 2.12 give{

Er2 = τ12Er1

El1 = ρ12Er1

2.13

where {
τ12 =

2n1
n1+n2

ρ12 =
n1−n2
n2+n2

2.14

τ12 is the transmission coefficient of the wave from the medium 1 to the medium 2. ρ12 is
the reflection coefficient of the wave from the medium 1 on the medium 2. We observe that
τ12 �= τ21 and ρ12 = −ρ21. Also, we see that τ12τ21+ρ12

2 = 1. These results are very general
and can be extended to an arbitrary number of media and interfaces, using the so-called
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2.2.2 Fabry-Pérot cavities

S-matrix formalism [48]. In the case of N layers of dielectric, the electric field of the first
medium is connected to the N medium with the formula[

E1
′]

= P12D2P12 . . . DN−1PN−1 [EN ] = S1,N [EN ] 2.15

where [E1] = (Er1 Eg1) is the matrix representation of the electric field, S is the propagation
matrix, P is a transition matrix, and D is a dephasing matrix defined by

Pi−1,i =
1

τi−1,i

[
1 ρi−1,i

ρi−1,i 1

]
, Di =

[
e−jϕi 0

0 ejϕi

]
2.16

with ϕi = kili correspond to the phase-shift of the wave in the layer number i of thickness
l. To obtain the transmission and reflection coefficient of the whole structure, we need to
consider a wave coming from the left for instance, meaning ErN = 0, which gives

ρ1N =
S12

S22
, τ1N =

1

S22
2.17

2.2.2 Fabry-Pérot cavities

In this section I will present microcavities (cavities operating in a micrometer range),
which are one of the main platforms used in this thesis. Microcavities are optical microres-
onators close to or below the dimension of the wavelength of light, and are used to confine
light. Different types of microcavities exist. For instance, metallic cavities that use the reflec-
tion from a single metallic interface, planar multilayer Bragg reflectors with high reflectivity
or photonic crystals. Historically, optical microcavities are also called Fabry-Pérot cavities
or Fabry–Pérot interferometers, because they were used for calibration of optical systems. A
cavity in vacuum can be considered as a sequence of 5 layers represented in fig. 2.3: vacuum,
metal, dielectric, metal, vacuum. This problem can be treated as a 3 media problem if we
describe the metallic mirrors with transition matrices given by

P12 =
1

τ12

(
1 ρ0e

jθ

ρ0e
jθ 1

)
, P21 =

1

τ21

(
1 ρ0e

−jθ

ρ0e
−jθ 1

)
2.18

with ejθ corresponding to the phase shift due to the metallic interface, and ρ0 is the reflection
coefficient close to unity which takes into account the high reflectivity of the mirrors. The
propagation matrix S13 = P12D2P23 can be easily obtained

S13 =
1

τ12τ21

(
e−jϕ + ρ0

2ejϕ ρ0(e
−j(ϕ−θ) + ej(ϕ−θ))

ρ0(e
−j(ϕ−θ) + ej(ϕ−θ)) ejϕ + ρ0

2e−jϕ

)
2.19

which gives the transmittance Tcav of the Fabry-Pérot cavity

Tcav =
|τ12τ21|2∣∣1− ρ02e−2j(ϕ−θ)

∣∣2 2.20
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Figure 2.4: Normalized transmittance of Fabry-Pérot cavity modes for m equal 1 to 5.

Depending on the wavelength of the incident beam, the transmittance oscillates between Tmin

and Tmax. It can be shown [48] that close to the resonance of the cavity the transmittance
can be written as

Tcav ≈ Tmax
1

1 + (2F/π)2[(ν/Δν − j)π − θ]2
2.21

where Δν = c/(2nresL) is the separation between the cavity modes (free spectral range) and
F is the finesse of the cavity given by F = π

√
R/(1− R). The full width at half maximum

is δ = Δν/F . We understand why F was named finesse: it defines how fine a mode is.
The normalized transmittance from eq. 2.21 is plotted in fig. 2.4 and we observe that a
Fabry-Pérot cavity displays a series of modes. An important parameter of these cavities is
the thickness L, because the resonances are obtained for L = jλ0/(2nres) (j ∈ N ), meaning
they are half-wave type cavities.

2.2.3 Photonic cavity modes

In this part we will consider a Fabry-Pérot cavity excited by a laser (see fig. 2.5.a) with
a small angle θ with respect to the normal of the mirrors. In this case, light will slowly
propagate in the cavity plane, which means kz 
 k// with k// =

√
k2x + k2y. The wavector

kz is quantized. It is defined by the thickness and refractive index of the cavity L and nc

respectively, and the number j (j ∈ N) of the mode considered kz = jπ/ncL. Since the
energy is given by

E = �ck = �c
√

k//
2 + kz

2, 2.22

its Taylor expansion gives:

E = �ckz

(
1 +

k//
2

2kz
2

)
2.23

which means that the in-plane dispersion depends quadratically on the wavevector. The
dispersion is plotted in fig. 2.5.b, and we observe an interesting property of these cavities
which is that we can obtain a massive dispersion for light! Indeed, in our case, from 2.23 we
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2.2.4 TE-TM splitting

write

E = �ckz +
c

�kz

�
2k2//

2
2.24

which, using the definition of kz, can be put in the simple form

E =
�cjπ

ncL
+

�
2k2//

2m∗ 2.25

where m∗ = �πj/(cLnc) is the effective mass of the photonic mode number j. It is also
possible to obtain the effective mass using eq. 1.31 which is useful in many cases where
the equation of the dispersion is not known, for instance from experimental data. The two
consequences of eq. 2.25 are the massive behavior of photons as mentioned above, and also
the presence of a photonic ground state.

2.2.4 TE-TM splitting

The in-plane wavevector k// is given by the angle of the incoming beam: k//= ωc−1 sin θ.
Actually the in-plane photonic modes of the cavity are a doublet of polarisation called
transverse-electric (TE) and transverse-magnetic (TM) modes. The reflectance and trans-
mittance of the cavity are polarization-dependent. Because of that, a splitting occurs between
these two polarizations [49, 50, 51] which can be described by a 2 × 2 Hamiltonian in the
linear polarisation basis (ψTE , ψTM )T

Hlin =

⎛⎝ �
2k2

//

2mTE
0

0
�
2k2

//

2mTM

⎞⎠ 2.26

We can rewrite this Hamiltonian in the circular basis (ψ+, ψ−)T using(
ψTE

ψTM

)
=

1√
2

(
eiφ e−iφ

ieiφ −ie−iφ

)(
ψ+

ψ−

)
2.27

which gives

Hcirc =

⎛⎝ �
2k2

//

2m∗ −βk2//e
−2iϕ

−βk2//e
2iϕ

�
2k2

//

2m∗

⎞⎠ 2.28

where ϕ = arctan(ky/kx) is the in-plane polar angle of the wavevector, β is the strength of
the TE-TM splitting and m∗ the effective mass of the modes defined by

1

m∗ =
1

2

(
1

mTE
+

1

mTM

)
, β =

�
2

4

(
1

mTE
− 1

mTM

)
2.29

We see that the sign of the off-diagonal term, which depends on ϕ, changes twice in a full
circle in the reciprocal space, which is the reason why there is a winding number two [52]
as shown in fig. 2.6.c. The splitting is zero at k//= 0 and increases with k//, as shown in the
dispersion plotted in fig. 2.6.a-b. It shows a cut of the 2D dispersion in two perpendicular
directions; kx and ky. We observe that the TE-TM splitting changes the effective mass of the
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TE and TM modes. As we will see later, the TE and TM bands carry a Berry topological
charge of opposite sign at k//= 0.

2.2.5 Linear Birefringence and Dirac points

Now we need to add an interesting ingredient to these microcavities to modify the band
geometry: the linear birefringence [53]. This birefringence comes from the anisotropic prop-
erties of particular materials, for instance perovskite [54], or liquid-crystal microcavities [55]
which display high birefringence. These birefringent materials will be inserted inside the
cavity. From the theoretical point of view, the Hamiltonian now reads [18]

Hcirc =

⎛⎝ �
2k//

2

2m∗ β0 − βk2//e
−2iϕ

β0 − βk2//e
2iϕ �

2k//
2

2m∗

⎞⎠ 2.30

where β0 is the birefringence term. This term splits the linearly-polarized modes at k// = 0

as shown in fig. 2.6.d-e. Because the effective masses of the two modes are different, they
cross in two points in the 2D reciprocal space [18]. The crossing is linear and we are in the
presence of a pair of tilted Dirac points (with winding number 1) replacing the touching
parabola singularity (with winding number 2) induced by TE-TM splitting, as shown in the
fig. 2.6.f. Indeed, it is not obvious from the fig. 2.6.d but we can [18], like in the chapter 1,
describe the system near this degeneracy point with an effective Hamiltonian which reads

HD (q) =

(
0 qx + iqy

qx − iqy 0

)
= (qxσx − qyσy) 2.31

where q =
√
q2x + q2y is small and is defined by k// = KD + q, with KD the position of the

Dirac point in the reciprocal space. We remark that this Hamiltonian is similar to the Dirac
Hamiltonian in graphene presented in chapter 1, and consequently will give the same winding
number ω = 1 and the same dispersion which is plotted in fig. 1.3.b. However, contrary to
graphene, both Dirac points in a cavity have the same winding. The band topology is not
modified by the birefringence, but the geometry is [56]. This aspect will be discussed later
in detail. Cavities are one of the simplest optical systems to obtain Dirac points, considering
also the high tunability of these structures. For instance, liquid crystal microcavities [55]
have tunable birefringence depending on the electric field applied in the z direction. It allows
a certain control of the position of the Dirac point in the reciprocal space, since the position
of the these points is given by kD =

{
0,±√β0/β

}
, which means that kD,y increases with

the birefringence β0.
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Figure 2.5: (a) Microcavity composed of two DBRs of semiconductor and a spacer. The
in-plane dispersion depends on the angle θ of the incident light. (b) In-plane dispersion of
the cavity modes.
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Figure 2.6: (a-b) Dispersion of TE-TM modes in kx and ky direction passing by k// = 0.
(c) Pseudospin texture with only TE-TM splitting. We observe the texture of a monopole,
with a winding number 2. The background density plot shows the linear polarization. (d-e)
Dispersion of TE-TM modes in kx and ky direction with linear birefringence β0 �= 0. A Dirac
point is present at k// = kD. (f) Pseudospin texture with linear birefringence and TE-TM
splitting. The monopole of winding number 2 splitted into two monopoles (at the position
of the Dirac points) of winding number 1. The background density plot shows the linear
polarization.
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Chapter 3: Microcavity polaritons
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In the 3rd introductory chapter, we present a general description of exciton-polaritons,
and then we focus on microcavity exciton-polaritons. We describe the key phenomena

observed with polaritons, such as Bose-Einstein condensation and superfluidity. We inves-
tigate the optical spin-Hall effect, which can be viewed as the starting point of topological
polaritonics. Lastly, we study magnetism effects on polaritons, and particularly the Zeeman
effect which has direct applications in topological physics.

3.1 Exciton-polaritons

3.1.1 Introduction

A quasiparticle is an object which behaves like a particle. They can be both solutions of
the same equations (e.g. Schrödinger equation), they have a mass, a momentum, a position,
a charge, a spin, etc... The difference between a particle and a quasiparticle is a more
complex question that it seems at first glance [57]. The notion of quasiparticle was first
implemented by Lev Landau to describe helium superfluidity [58], and a common definition
is that quasiparticles are used to describe collective phenomena in a underlying medium.
For instance, a hole in a semiconductor comes from the collective behavior of electrons
moving in this semiconductor. We can understand that the concept of quasiparticles is a
useful simplification, reducing drastically the number of objects to study to understand the
behavior of the system.

A polariton is another quasiparticle, resulting from the strong-coupling of a photonic
mode and matter. Numerous types of polaritons exist. For instance, the coupling of a
photonic mode and a surface plasmon in a metal is called a surface plasmon polariton.
There is also phonon-polaritons, resulting from the coupling of a photon with an optical
phonon. What will interest us in this thesis are exciton-polaritons, arising from the strong
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coupling of light and excitons in a semiconductor, and more precisely in microcavity exciton-
polaritons. Bulk exciton-polaritons have been discovered by Hopfield [59] and Agranovich
[60] independently in the late 50’s, and 2D cavity exciton-polaritons have been realised in
1992 by Arakawa [61]. Even if this thesis is not dedicated only to microcavity exctiton-
polaritons, the expertise of our group [7, 62] on the matter has made these quasiparticles a
natural platform to explore new ideas and projects [63, 2, 64].

Polaritons obtain properties from both of their composite parts. From the photonic
part the polaritons get a small effective mass, for instance m∗ = 5 × 10−5 m0 is a typical
polariton mass, with m0 the free electron mass. From their excitonic part, the polaritons
inherit the possibility to interact with each other. These interactions can be neglected only
for the case of weak polariton density. Signatures of polariton-polariton interactions have
been demonstrated, as optical parametric oscillations [65] and bistability [66] in polariton
systems have been observed. Moreover, excitons possess a real spin, which is sensitive to an
external magnetic field via a Zeeman splitting. Another property of polaritons is that since
excitons and photons are bosons, polaritons are bosons too. Hence it is possible to achieve
Bose-Einstein condensation with polaritons, something that will be more studied later in this
chapter. All these properties make polaritonic an exciting field in order to implement optical
devices, like all-optical polariton transistor [67], high-frequency polariton clock generator [2],
or polariton lasers [68, 69] to cite a few [70].

3.1.2 2D polaritons

In the following, microcavity exciton-polaritons will be noted simply polaritons, and since
we will be working exclusively in 2D, k// will be noted k. Polaritons arise from the strong
coupling of excitons confined in a quantum well and photons confined in the cavity. An
illustration of a possible system, composed of a semiconductor slab placed in a Fabry-Perot
cavity, is shown in fig. 3.1.a The polariton modes can be described by the Hamiltonian

Hpol =

(
EC(k) �ΩR/2

�ΩR/2 EX(k)

)
3.1

where ΩR is the strength of the exciton-photon coupling, named Rabi splitting, k =
√

k2x + k2y
is the in-plane wavevector and EX and EC are the bare exciton and photon energies, respec-
tively. These energies are given by the relations

EX(k) = EX(0) +
�
2k2

2mX
, EC(k) =

�cjπ

ncL
+

�
2k2

2m∗ 3.2

with mX the mass of the exciton, typically of order of magnitude of the electron mass,
m∗ = �πj/(cLnc) the effective mass of the photon, typically 105 order of magnitude lower
than the electron mass, and L the width of the cavity, nc its refractive index, and j the
number of the cavity mode. The eigenvalues of Hpol are the lower and upper polariton
modes given by

EU/L =
1

2

(
EX + EC ±

√
(EC − EX)2 + �2Ω2

R

)
3.3
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Figure 3.1: (a) Fabry-Perot microcavity with quantum wells (QW) inserted in it. The pho-
tonic modes are confined between the two DBRs and the excitons are confined in the QW. (b)
Dispersion of polaritons (upper and lower branches) in red and dispersion of non-interacting
photonic and excitonic modes in blue. Parameters: EC = EX = 0 meV , ΩR = 5 meV ,
mX = 0.4 m0, mC = 10−5 m0 with m0 the free electron mass. (c) Photonic and excitonic
fraction of the lower polariton branch. It is the opposite for the upper branch.

The dispersion is plotted in fig. 3.1.b. The upper and lower polariton branches are in red,
and the bare photon and exciton dispersions are in dashed blue. The interaction between
the two polariton branches is determined by the Rabi splitting ΩR, which can be found
graphically from the minimum distance between the two branches. In the experiments, the
Rabi splitting needs to be larger than the linewidths of the modes, which are induced by
the losses, in order to consider the system in the strong coupling regime. The eigenstates of
Hpol are

PU =

(
XU (k)

CU (k)

)
, PL =

(
XL(k)

CL(k)

)
3.4

with XU/L and CU/L the Hopfield’s coefficients satisfying the relation |XU |2 + |CU |2 = 1,
and which are defined by

XU (k) =
EU (k)− EL(k)√

�2Ω2
R + (EU (k)− EL(k))

2
, CU (k) =

�ΩR√
�2Ω2

R + (EU (k)− EL(k))
2

3.5

|XU |2 and |CU |2 correspond to the excitonic and photonic fraction of the mixed upper po-
lariton state at a particular k. The lower polariton state fractions are plotted in fig. 3.1.c.
We observe that far away from k = 0 the polariton states are pure states, and in vicinity of
k = 0 these states are close to be 50% mixed.
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3.2 Bose-Einstein condensation

3.2.1 Definition

Bose-Einstein condensation (BEC) is a phenomenon studied by Einstein [71] and Bose
[72] which were working on the statistics of gas of bosons. Bosons, contrary to fermions,
are not subject to the Pauli exclusion principle. Hence they can accumulate in the same
quantum state. Einstein’s idea was to consider an ideal gas of bosons, which allowed him
to predict a new kind of phase transition. We consider an ideal gas of N bosons, without
interaction and at a temperature T . The total number of particles N is described according
to the Bose-Einstein distribution fBE by:

N =
∑
i

fBE(ε, μ, T ) =
∑
i

1

exp (β(εi − μ))− 1
3.6

where β = 1/kBT , with kB The Boltzmann’s constant, Ei the energy of the i-th state, and
μ the chemical potential. We can separate particles in two groups: those in the ground state
and those in the excited states:

N = N0 +NT =
1

exp (β(ε0 − μ))− 1
+
∑
i �=0

1

exp (β(εi − μ))− 1
3.7

Since the number of particles in a state has to be positive, necessarily ε0 > μ. When
the chemical potential has a value close to the energy of the ground state, the number
of particles in this state becomes very large, it is the mechanism at the base of the Bose-
Einstein condensation. Nevertheless, without taking into account the interaction between the
particles, the compressibility of the system becomes infinite [73]. The solution to this problem
came from Bogoliubov and his model of weakly interactive boson gas. By introducing an
interaction between particles, Bogoliubov solves the main problem of the theory describing
the ideal boson gas, and thus lays the foundation for a modern theory that can accurately
describe the Bose-Einstein condensation [74]. Nevertheless, to make the problem more simple
and solvable, some approximations are necessary. Thus, interactions between more than two
particles are neglected. The interaction considered has a range less than the average distance
between the particles : d = n−1/3 = (N/V )−1/3. We start by writing the equation for the
field operator in the Heisenberg representation [73]

i�
∂Ψ

∂t
=

(
−�

2∇2

2m
+ Vext(r, t) +

∫
Ψ†(r′, t)Vint(r

′ − r)Ψ(r′, t)dr′
)
Ψ(r, t) 3.8

with Ψ the field operator, and where the first term represents a free particle without external
potential, Vext is an external potential and Vint is the interaction potential between two
particles. In order to obtain the equation that we want, two approximations are necessary.
First, we consider the boson gas dilute enough to deal only with the contact interactions:
Vint = αδ(r′−r). Second, we assume that T = 0 and all the particles of the system are in the
ground state, then the field operator Ψ can be replaced by ψ(r, t) = 〈Ψ(r, t)〉, which means
we are in the mean-field approximation. This allows to obtain the so-called Gross-Pitaveskii
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3.2.2 Quantum fluid of light

equation

i�
∂ψ(r, t)

∂t
=

(
−�

2∇2

2m
+ Vext + α|ψ|2

)
ψ(r, t) 3.9

which is also called the non-linear Schrödinger equation, due to the interaction term between
particles. If we set the interaction constant α = 0, we obtain the Schrödinger equation. This
equation was derived independently by Gross [75] and Pitaevskii [76] in 1961. Coherence
and interaction are important effects that can be studied starting from the Gross-Pitaevskii
equation. Bose-Einstein condensates are a rich platform to investigate experimental and
theoretical physics [73, 77].

3.2.2 Quantum fluid of light

Experimentally, two types of excitations are possible to obtain polaritons. First is the
off-resonant excitation consisting by exciting a reservoir, which is a large number of excitons
at high-energy, excitons which will then relax to the lower polariton state at k = 0 via
phonon emission, forming a BEC. This process is shown in the fig. 3.2.a. In 1997, Imamoglu
demonstrated that to obtain a BEC of polaritons was equivalent to obtain a polariton laser
[78], which was experimentally demonstrated few years later [79]. The simulation of the
polariton relaxation and condensation under non-resonant pumping, neglecting polarisation
effects, can be described by the damping GPE [80, 64]

i�
∂ψ

∂t
= − (1− iΛ)

�
2

2m∗Δψ + α|ψ|2ψ + (U0 + UR + iγ(ntot)− iΓ)ψ 3.10

with m∗ the polariton effective mass, α is the interaction constant, U0 an external potential,
and UR is the repulsive potential created by the reservoir. The satured gain term is given by
γ(ntot) = γ0(nR) exp(−ntot/ns), where ntot =

∫ |ψ|2dxdy is the total particle density, and ns

and nR are respectively the saturation density and the reservoir density. The decay time of
polaritons is given by Γ. Finally, the Λ term is a small dimensionless coefficient, which was
introduced by Pitaevskii to describe energy relaxation [81], and here it describes the effect
of the scattering rates between the condensate and its excited states and the reservoir.

If we consider the spin degree of freedom, one can write a spinor GPE, written in the
circular polarization basis which is the true spin projection basis ψ = (ψ+, ψ−)T . The kinetic
term written in this basis is described by real space operators kx,y → −i∂x,y [82, 83]

i�∂ψ+

∂t = − �
2

2m∗Δψ+ + β(∂y + i∂x)
2ψ− + α1|ψ+|2ψ+ + α2|ψ−|2ψ+

i�∂ψ−
∂t = − �

2

2m∗Δψ− + β(∂y − i∂x)
2ψ+ + α1|ψ−|2ψ− + α2|ψ+|2ψ−

3.11

These equations differ from the ones which describe a condensed binary mixture of cold atoms
[84, 85] because of the additional TE-TM spin-orbit coupling term. An interesting property
is the strong anisotropy of the interaction constants α1 
 α2, which means they are miscible
condensates. The first demonstration of polariton BEC was done at low temperature [68], as
shown in fig. 3.2.b.c. The authors observed the condensation occurring when the power of the
pump P exceeded a threshold Pthr. The first polariton condensates were achieved using CdTe
and later GaAs semiconductor quantum well microcavities , which are limited to cryogenic
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Figure 3.2: (a) Polariton dispersion, with the pump laser exciting high-energy excitons in
the reservoir, which then relax in the ground state at k = 0 via phonon emission, creating a
polariton BEC. (b-c) Experimental dispersion demonstrating polariton condensation at low
temperature. Figures from this review on polariton BEC [101].

temperature. Since then, wide bandgap semiconductors[86] and organic microcavities[87]
(owing to the high binding-energy of organic materials [88]) have shown the possibility to
obtain a polariton BEC at room temperature. Another interesting property of these polariton
BEC is that they are an ideal platform to study quantum fluids [89], meaning fluids displaying
macroscopic quantum effects such as superfluidity [90, 91], optically controllable [92] and
even at room temperature [93]. These fluids can host qualitatively different excitations,
such as linear small perturbations of the condensate known as bogolons, but also non-linear
solutions of the GPE known as solitons in 1D and quantum vortices in 2D [94, 95]. Some
crucial advantages of polariton quantum fluids is the possibility to create metastable flows of
particles, and also a full experimental access to the wavefunction, in real, reciprocal space,
frequency, time domain, and also to the pseudo-spin degree of freedom. This allowed to
investigate quantum fluids effects not easily achieved in other platforms, such as oblique
solitons [96, 97]. Very recently, Kardar–Parisi–Zhang universality was demonstrated in a 1D
polariton condensate [98]. It also allows to investigate analogue gravity [99, 100] in quantum
systems, like 2D rotating black holes with a quantized angular momentum [63].

3.3 Resonant pumping

Another way of obtaining polaritons is quasi-resonant injection, which means to create
macroscopically occupied and coherent states at a given energy, wavector, density and even
pseudospin, by a direct laser excitation fixing all these parameters. In this case, and for
relatively low wavevectors, the polariton wavefunction ψ(r, t) can be described by the GPE
with a pump and a decay term. We also neglect the polarization degree of freedom [102] to
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simplify the theoretical description, hence the equation reads

i�
∂ψ

∂t
=

[
− �

2

2m∗∇2 + α|ψ|2 − i
�

2τ

]
ψ + Pe−iωpt 3.12

where the chosen parameters are from GaAs samples: m∗ = 5 × 10−5 m0 is the polariton
mass, α = 5 μeV μm2 is the coefficient of polariton-polariton interactions [103], τ ∼ 100 ps

is the polariton lifetime [56], and P (r) is the pump, exciting the system at a certain energy
EP = �ωp. The confinement potential term U can describe particular structures which can
be obtained by lithography. These structures can be for instance micropillars [104, 105],
where polaritons are also confined in the x and y directions, making the confinement 0D.
Quasi-resonant excitation is mandatory to obtain effects such as bistability [66] and optical
parametric oscillations [65].

3.4 Optical Spin Hall effect

The TE-TM splitting of photonic cavity modes, explained in the previous chapter, gives
rise to a TE-TM splitting of polariton modes. This TE-TM splitting can be seen as an
effective magnetic field ΩTE−TM acting on the pseudospin of polaritons. Their spin (i.e. the
angular momentum) has a ±1 projection in the growth direction of the microcavity (usually
z), so the polariton can be considered as a two-level system with an effective pseudospin
S = 1/2. We consider here polaritons described by a spinor (Ψ+,Ψ−)T . The propagation
of polaritons in a microcavity can be described by an effective Hamiltonian, which is a
reformulation of 2.28 and reads [52]

Heff =
�
2k2

2m∗ + �σ ·ΩTE−TM 3.13

with σ = (σx, σy, σz) the Pauli matrix vector, Ω = (ΔTE−TM (k) cos 2ϕ,ΔTE−TM (k) sin 2ϕ, 0)

the effective magnetic field, where ΔTE−TM is the TE-TM splitting term and m∗ the effective
mass of the polaritons. The pseudospin obeys the precession equation1

dS

dt
= S×ΩTE−TM 3.14

where Si = (ψ+ ψ−)∗σi

(
ψ+

ψ−

)
= 〈σi〉 is the polariton pseudospin, and ΩTE−TM =

(Ωx,Ωy) is defined by

Ωx =
ΔTE−TM

�k2
(
kx

2 − ky
2
)
, Ωy =

2ΔTE−TM

�k2
kxky 3.15

So let’s stop a few seconds here and look at the value of the effective magnetic field along a
circle in the 2D reciprocal space of radius 1 (a.u.) and center at k = 0

• If (kx, ky) = (1, 0) or (−1, 0) then Ωx =
ΔTE−TM

�k2
, Ωy = 0

1Note that the crossover product is not in the same order as in Feyman’s description [1] described in
chapter 1. It’s actually a matter of convention [106, 107].
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• If (kx, ky) = (0, 1) or (0,−1) then Ωx = −ΔTE−TM

�k2
, Ωy = 0

• If (kx, ky) =
(

1√
2
, 1√

2

)
or

(
−1√
2
, −1√

2

)
then Ωx = 0 , Ωy =

ΔTE−TM

�k2

• If (kx, ky) =
(

1√
2
, −1√

2

)
or

(
1√
2
, −1√

2

)
then Ωx = 0 , Ωy =

−ΔTE−TM

�k2

It is represented the fig 3.3.a, and we observe that the effective magnetic field is rotating
twice for a single rotation in the reciprocal space. When we excite coherently the TE and
TM modes at a given frequency, as shown in fig 3.3.b., we obtain a circular cross section,
with a circle centered at k = 0, and along this cross section the effective magnetic field will
behave the same way. Now, for the pseudospin S we start by getting in the polarization of
light, which can be totally determined by the Stokes parameters which correspond to the
following polarization degrees

ρL =
IH − IV
IH + IV

, ρD =
ID − IA
ID + IA

, ρC =
I+ − I−
I+ + I−

3.16

where H, V , D, A, + and − note for horizontal, vertical, diagonal, antidiagonal, circular
right and left respectively. There is a strict correspondance between the polarization of light
emitted from the cavity and the polariton pseudospin, meaning Sx = ρL, Sy = ρD and
Sz = ρC . Now we can fully understand the system using the Bloch sphere representation on
fig. 3.3.c. When the TM polarized incident light oscillates in the (x, z) plane, it excites a
polariton state in the reciprocal space along the Sx vector. In this case, the effective magnetic
field and the pseudospin are aligned and the cross product of the two vectors is zero, meaning
there will be no precession of the pseudospin. It is true for the four only configurations
where the pseudospin are aligned or anti-aligned with either Sx or Sy. Every other possible
configuration will make the pseudospin rotate around the effective magnetic field. Since the
latter is in the (Sx, Sy) plane, the pseudospin will acquire a Sz component, and hence the
polariton will be circularly polarized. Indeed, if we excite with a laser polarized linearly, it has
been demonstrated theoretically [52] and experimentally [108] that the photons coming out of
the cavity along diagonal directions in the k-space are circularly polarized. This polarization
depends fully on the emission angle θ = arctan(ky/kx), as shown in the fig. 3.3.d., where
the red color means it is polarized circular right and blue left respectively. Hence, the
polarization of light absorbed and re-emitted by the cavity is different due to the pseudospin
precession. This effect is called the Optical Spin Hall Effect, and it is the starting point of
topological polaritonics [62].

3.5 Interaction with a magnetic field

3.5.1 Zeeman effect

As mentioned before, one important property of polaritons is their (pseudo)spin inherited
from the spins of excitons and cavity photons, which gives the polarization of the emitted
photons. The optical spin Hall effect allows to tune the spin of the polaritons owing to
their photonic part. We will study in this section how to control the polariton spin using its
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Figure 3.3: (a) Double rotation of the effective magnetic field ΩTE−TM in the 2D reciprocal
space. (b) Cross section of a parabolic TE or TM mode. (c) Bloch sphere with polarization
of light as states: linear polarization (Sx, Sy) and circular one Sz. (d) Experimental measur-
ment of the intensity of the circular degree of polarization. Color red means circular right,
color blue means circular left.
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excitonic part. Indeed, one big advantage of polaritons with respect to other optical systems
is the possibility to interact with them with an electromagnetic field [109, 62]. For instance,
the excitonic part of polaritons are sensitive to a Zeeman splitting [110]. The exciton energy
splits into two levels in a magnetic field according to the equation

EX(B) = EX(0) +
�
2k2

2mX
+ΔZ(B)/2 3.17

where mX is the exciton mass and ΔZ is the Zeeman splitting term, with g the g-factor,
and μB the Bohr magneton. The second term, meaning the exciton dependence on the
wavevector k, is usually negligeable compared to the Zeeman effect. The excitons with a
total angular momentum J couple with light following the rules

• the excitons with Jz = −1 couple with σ− photons, creating spin-down polaritons

• the excitons with Jz = +1 couple with σ+ photons, creating spin-up polaritons

Due to that, polaritons demonstrate also a Zeeman splitting, which will split the two circular
polarized polariton modes. This effect is represented in the fig. 3.4.a. At B = 0 T , the two
branches are degenerate, but at B = 4T we observe a splitting of the two modes and of
the exciton energy [111]. This splitting was found to be larger that the linewidth of the
modes with an applied magnetic field of a few Tesla in GaAs- and CdTe-based microcavities
[112, 113]. The Hamiltonian describing the polaritons under magnetic field was introduced
for the first time in 2009 [114], and is composed of the Hamiltonian of polaritons with TE-TM
splitting 3.13 and a Zeeman term, in the circular polarization basis

H =

(
�
2k2

2m∗ + ΔZ
2

ΔTE−TM (k)
2 e−2iϕ

ΔTE−TM (k)
2 e−2iϕ �

2k2

2m∗ − ΔZ
2

)
=

�
2k2

2m∗ + �σ ·Ω 3.18

with σ the Pauli matrix vector, Ω = (ΔTE−TM (k) cos 2ϕ,ΔTE−TM (k) sin 2ϕ,ΔZ) the effec-
tive magnetic field, ΔTE−TM the TE-TM splitting term, m∗ the effective mass of polaritons
and ΔZ the Zeeman splitting term. The importance of the Zeeman effect on polariton stems
from the fact that this Hamiltonian was shown to be sufficient to study topological photonics
[114]. Note that this effect has been predicted [112] and experimentally demonstrated [111]
to disappear in the case where polaritons form a BEC. Starting from the left of the panel b
of fig 3.4, the system is under constant magnetic field B = 4 T and we see a clear Zeeman
splitting. It is at low power of the pump, P = 8 μW . As the power increases, we observe the
formation of the polariton BEC at k = 0. When the BEC is fully formed, at P = 171 μW ,
there is no presence of the Zeeman splitting anymore. It is known as the Mesner effect.

3.5.2 Diamagnetic effect

It has been demonstrated that the exciton energy under a magnetic field not only splits
due to the Zeeman effect, but there were also an overall blue shift of the energy [115] which
increases quadratically with B

EX(B) = EX(0) +
�
2k2

2mX
+ΔZ(B)/2 + γB2 3.19
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Figure 3.4: Experimental demonstration of the Zeeman effect, Mesner effect, and
diamagnetic effect. We consider only the lower polariton branch (a) σ+ and σ− polarized
polariton dispersion with no applied magnetic field (left panel) and under a magnetic field of
4T (right panel). We observe a splitting of the two polarizations. (b) σ+ and σ− polarized
polariton dispersion under a constant 4T magnetic field, but with a ramping power of the
pump, from P = 8 μW to P = 171 μW . As the polariton BEC forms, we observe a
supression of the Zeeman splitting. (c) In some materials, the Zeeman effect is negligeable
compared to the diamagnetic shift. We observe the blue shift of the exciton energy as the
magnetic field increases.

where γ is the diamagnetic term, and ΔZ(B) = gμBB is the Zeeman splitting, with g

the g-factor, and μB the Bohr magneton. Depending on the material used to build the
microcavity, the diamagnetic effect can be negligible, comparable, or far greater than the
Zeeman effect. The latter [116] is shown on the panel c of fig 3.4. At constant pumping
power, as the magnetic field B increases, we observe a blue shift of the exciton energy, from
EX = 1485 meV at B = 0 T to EX = 1493 meV at B = 14 T .
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In the 4th and last introductory chapter, we investigate the properties of the Quantum
Geometric Tensor, which is at the heart of topological physics. It allows to compute

the Berry curvature and the Quantum Metric. We develop the notions of Berry phase,
of the so-called Chern number, and of bulk-boundary correspondence. We study one of
the simplest topological systems, known as the Jackiw-Rebbi interface state, then we talk
about the development of topological photonics in the last two decades. The last part of
this chapter is dedicated to metrics, and more precisely to the properties of different known
metrics such as the Riemannian and Minkowski metrics. Finally, the Quantum Metric, its
applications and its relation with the Chern number is discussed.

4.1 Definition

As mentioned earlier, the story of topological physics date from the 18th century [21, 22].
For instance, the geometria situs, which is the latin term for topology, took an important
part in the works of Gauss. The field began to gain prominence with the work of Poincaré
in 1895, who was studying celestial mechanics [23]. The analysis of magnetic monopoles by
Dirac in the 30s was of the topological nature [30], and in the 60s, Gell-Mann and Lévy
have created the non-linear sigma model in the quantum field theory, which incorporates
the concepts of topology [117]. Interest in topology has grown exponentially in recent times
in physics since the discovery of the quantum Hall effect in the 1980s by K. von Klitzing,
work which earned him the Nobel Prize in 1985 [24]. This effect unravelled the necessity to
develop a description beyond the Fermi level model. We will not develop here a band theory
of crystals, starting from the Bloch theorem [15], but we will rather consider the dispersion
relation as a known entity. A dispersion links the energy of a particle to its wavevector.
Theoretically, the dispersion is given by the eigenvalues of the Hamiltonian describing the
system. Another important quantity is the Fermi level, describing the highest occupied single
particle state. In graphene, for instance, it corresponds to the energy of the Dirac point,
meaning that the bands below the Dirac point are fully occupied, and the bands above are
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empty. This band model for materials was sufficient until the rise of topological physics,
which expresses the fact that not only the dispersion and the Fermi level are important, but
also the geometry of the eigenstates along these bands over the Brillouin zone.

The Quantum Geometric Tensor (QGT) is a complex tensor introduced by Provost and
Vallée in the 1980 [118], that is composed of eigenstates and their derivatives in a parameter
space (in our case it will be the reciprocal space)

Tij =

〈
∂ψ

∂ki

∣∣∣∣ ∂ψ∂kj
〉
−
〈
ψ

∣∣∣∣ ∂ψ∂kj
〉〈

∂ψ

∂ki

∣∣∣∣ψ〉 4.1

From this matrix, two quantities of interest can be derived

• The antisymmetric imaginary part which defines the Berry Curvature. It is given by
Fij = −2Im(Tij)

• The symmetric real part which determines the Quantum Metric1. It is given by gij =

Re(Tij)

This chapter is dedicated to explaining these two concepts, their fundamental interest and
their applications.

4.2 Berry curvature and Chern number

4.2.1 Berry phase and related quantities

Berry phase is an example of a geometric phase appearing in quantum mechanics [119].
Other examples include the Pancharatnam phase in optics [120, 121, 122] or the Hannay
angle in classical mechanics [123], including the Foucault pendulum [124].

We start by considering an Hamiltonian H changing slowly over time, meaning in an
adiabatic process. A particle in the nth eigenstate ψn is described by the equation

H(t)ψn(r, t) = Enψn(r, t) 4.2

where the eigenstate can be written under the form

ψn(r, t) = ψn(r)e
−iEnt/� 4.3

The adiabatic theorem says that if H changes adiabatically, then the particle in the nth will
remain in this state during the evolution of the system. However, the eigenstate will acquire
a time-dependant phase

Ψn(r, t) = ψn(r, t)e
−tθn(t)/�eiγn(t) 4.4

where γn is called the geometric phase and θn is called the dynamic phase and is described
by

θn(t) = −1

�

∫ t

0
En(t

′)dt′ 4.5

1It is also called the Fubini-Study metric.
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It generalizes the Ent/� term when En is changing over time. Note that the energy is not
conserved here, which is a direct consequence to the evolution in time of the Hamiltonian.
If we use the eigenfunction form in eq. 4.4 into the time-dependant Schrödinger equation

i�
∂ψn

∂t
= H(t)ψn 4.6

we will observe the annihilation of the energy En term and it leads to an equation for the
geometric phase γn

dγn
dt

= i

〈
ψn

∣∣∣∣∂ψn

∂t

〉
4.7

The Hamiltonian changes over time because of some parameter which does so. We consider
k(t) as a time-dependant function, and we use the simple fact that the derivative of ψn can
be written as

∂ψn

∂t
=

∂ψn

dk

dk

dt
4.8

A careful derivation [125] allows to obtain the following expression

γn(t) = i

∫ kf

ki

〈ψn |∇kψn 〉 · dk 4.9

Now, of course the Hamiltonian can describe a loop and returns to its original form after a
time tL. In this case, the geometric phase takes the form

γn(tL) = i

∮
〈ψn |∇kψn 〉 · dk 4.10

which is known as the Berry phase, derived by Berry the first time in 1984 [126], and usually
takes a non-zero value. According to the Stokes’ theorem, it can be written as an integral
of a curl of the same scalar product over the surface encircled by the contour:

γn =

∫∫
S
∇× i 〈ψn|∇ψn〉 d2k 4.11

Berry noticed the analogy with the magnetic field: the expression of the Berry phase is
similar to the one of a magnetic flux in terms of vector potential A whose curl appears in
the latter expression. Indeed, let us define a curve C around a surface S, and B is a magnetic
field. The flux Φ through this surface can be written as

Φ =

∫
S

B · da 4.12

and of course if we write the magnetic field under the form B = ∇×A and use the Stokes’
theorem the equation takes the form

Φ =

∫
S

(∇×A) · da =

∮
C

A · dr 4.13

If we want to study the nth band of periodic system, we can generalize the results above with
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a periodic Hamiltonian, thus a periodic eigenstate [15]. The latter can be written under the
form ψn,k(r) = eik·run,k(r), with un,k the Bloch state of the nth band considered. In this
case, the Berry phase of this band can be described as a flux of an analogue of a magnetic
field B, called Berry curvature and which is defined by the following equation

Bn = i∇k × 〈ψn |∇kψn 〉 = ∇k ×An(k) 4.14

where A is the analogue of the vector potential A. It is called the Berry connection and can
be written under the form

An(k) = i 〈un,k |∇k|un,k〉 4.15

Using this notation the Berry phase γ can be re-expressed as

γn =

∮
An(k) · dk 4.16

The Berry connection, phase, and curvature are key concepts in topological physics [127, 128].
We note that, under a gauge transformation |un,k〉 → eiν(k) |un,k〉, the Berry connection A
is not gauge invariant [129] and transforms as An(k) → An(k) − ∇kν(k). In contrary,
the Berry curvature B, as a magnetic field, appears naturally as gauge invariant under this
transformation.

4.2.2 Bulk-boundary correspondence

One can compute the flux of B on a surface S in the reciprocal space to obtain the Berry
flux ∫∫

S
B(k) · ds 4.17

This flux is equal to 2πn on a closed surface, where n is an integer, simply because it
corresponds to a Berry phase on a vanishingly small contour (Eq. 4.10), which is necessarily
equal to 0 modulo 2π. The 2D Brillouin zone is geometrically equivalent to a torus, as shown
in fig. 4.1.a. The Chern number C is defined as the Berry flux on a closed surface divided
by 2π and so it is an integer

C =
1

2π

∫∫
©
S

B(k) · ds 4.18

It can be viewed as the number of charges2 of the gauge field represented by the Berry
curvature, located inside the torus, as shown in the fig. 4.1.b-d. The Chern number is defined
in a band, and the sum of the Chern numbers over all the bands is equal to zero. It allows to
describe topological insulators: insulating materials with topological gaps. Since the Chern
number is a topological invariant, it can’t change its value under continuous transformations,
meaning without the gap closing. A peculiar phenomenon happens at the interface between
two materials with different topological invariants. In this case, the topology allows these
different Chern numbers to connect only through a topological transition which happens at
the interface. This transition requires the energy gap to close at the interface, nullify the

2The topological charge can be seen as a monopole of the Berry flux.
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Figure 4.1: The arrows represent the Berry curvature, from positive to negative charge (a)
Mapping between the 2D Brillouin zone and a torus. Without topological charge (monopole
of Berry flux) inside the closed surface, the system is topological trivial, meaning the Chern
number C is equal to zero. (b) Presence of negative charge of Berry flux. The Chern number
of the system is equal to C = −1. (c) Positive charge of Berry flux: C = 1 (d) The Chern
number is equal to the number of the charges. C = 2.

Chern number, then re-open the gap, as shown in the fig. 4.2.b. This is called the bulk-edge
correspondence: the number of the states at the interface is determined by the topology
of the bulk on both sides. The resulting state, localized at the interface, stems from the
difference of topology of the different materials and hence is called topological edge state.
The interface between a topologically non-trivial insulator and a trivial one, like vacuum, is
sufficient to assure the existence of a topological edge state.

4.2.3 Example: the Jackiw-Rebbi interface state

In this section, we will study a famous example of topological interface, known as Jackiw-
Rebbi interface [130]. Even if this effect stems from particle physics, it is nowadays more
studied in condensed matter physics because there exist real implementations of this ef-
fect [64, 131], especially in topological photonics [132]. We consider a 2D massive Dirac
Hamiltonian, which reads

H(q) = �νfq · σ +mσz 4.19

where νf is the Fermi velocity, m the mass of the particle, q = (qx, qy) is the 2D wavevector
and σ = (σx, σy) is the Pauli matrix vector. As mentioned in previous chapters, the gap
opens because of the σz term, and this gap is proportional to the mass. It has been shown
that the corresponding Berry curvature reads

Bz =
α2m

2(m2 + α2k2)3/2
4.20

with B = (0, 0,Bz), meaning the Berry curvature is oriented perpendicularly with respect to
the 2D wavevector q. We remark that the sign of the Berry curvature is controlled by the
sign of the mass. Thus, if we consider two half-spaces with opposite signs of the mass, they
will be characterized by opposite Berry curvatures and opposite Chern numbers ±1/2 (the
Chern numbers here can be different from 1, because the integration surface is not a closed
manifold). The interface Chern number is the difference of these Chern numbers, and in
this case it is equal to one. It means that the existence of one localized state is guaranteed
at this interface. This configuration is particularly interesting, because it has an analytical
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Figure 4.2: (a) A topologically protected edge mode appears at the interface of systems with
different topology (i.e. different Chern number). (b) Dispersion of systems (e.g. waveguides)
with different topology cannot transition into each other without closing the energy gap. A
topological phase transition happens on the right, but not on the left. Figures from [128].

solution for the interface state [127, 130].

4.2.4 Topological photonics

The theoretical possibility to obtain one-way edge modes in photonics was proposed by
Haldane in 2005 [133], and, as we see, it took three years to be published because it was
too difficult to believe. Almost at the same time, topological effects started to be studied in
polaritonics [114]. Quite rapidly after the initial proposal, Wang realized in 2009 a photonic
analogue of the quantum Hall effect in a gyromagnetic photonic crystal [134], utilizing a
square lattice, as shown in fig. 4.4.a, and breaking the time-reversal symmetry3 by applying
a magnetic field. As we see in the fig. 4.4.b, the edge state whose dispersion is shown in red,
possesses a unidirectional group velocity vg = (1/�)∂E/∂k. This edge state is also isolated
in energy from the bulk modes, hence exciting this mode will result in one-way propagation
without the possibility for the particles to backscatter into another edge mode or bulk mode:
this one-way edge mode is said to be topologically protected against backscattering. It allows
the propagation in a unique direction even in presence of minor defects, which naturally
appear in the growth of microstructures. This is shown in fig. 4.4.c: the authors excite
the photonic crystal at the point A, and apply a magnetic field B perpendicular to the
plane of the crystal. We observe that the mode is propagating to the right. Below, we
see that the wave gets around the defect without any backscattering, and continues its
propagation to the right. This effect has numerous applications for integrated photonics,
such as optical insulators and topological lasers, the latter combining in a single component
the laser and the topological insulator. Topological optical isolating behavior has already
been demonstrated [135], and topological lasers have first been theoretically suggested [136]

3More details about symmetries in appendix B.
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Figure 4.3: Scheme of the implementation of a Jacky-Rebbi interface state. We
consider a massive Dirac Hamiltonian (a) with a particle with a positive mass, exhibiting a
positive Chern number (b) with a particle with a negative mass, exhibiting a negative Chern
number. (c) We join these two spaces. The bulk-boundary correspondence says that the gap
should close at the interface. The interface state (in red) is exponentially localized in the x
direction, and is unidirectional in the y direction, due to its unique velocity in the dispersion
along ky.

and experimentally [137] demonstrated in 1D, then demonstrated in 2D in the same year
[138]. For the last two decades the studies of non-trivial topological structures, such as
analogue graphene [139, 140, 141, 142], and their applications have exhibited an exponential
growth [128, 129, 143, 144].

4.3 Metrics

4.3.1 Riemannian metric

A metric, as we can guess, allows to define the distances between different objects. Most
of metrics used in Physics are Riemannian metrics, which is the reason why we will focus
on this particular metric in this section. A Riemannian metric is a metric tensor field on a
manifold4 M , making the latter a Riemannian manifold [145]. The metric tensor g can be
expressed in terms of coordinate differential forms [146]

g = gijdx
i ⊗ dxj 4.21

where dxi are infinitesimal real numbers and gij = gji = g(∂i, ∂j). It allows also to define
infinitesimal displacement ds2, called elementary arc length, which reads

ds2 = gijdx
idxj 4.22

4Definition of a manifold in Appendix B.2.
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Figure 4.4: (a) Experimental setup to observe a one-way edge state in a square gyromagnetic
photonic crystal (b) Dispersion of the photonic crystal. One-way edge mode (in red) joining
the second and third bands, which are topologically non-trivial. (c) Simulated field propagation
of the one-way edge mode and its topological protection against backscattering in the presence
of a defect. Figures from [134].

The equivalence between these two forms is the reason why we use the elementary arc length
in general. The latter allows to obtain all the metric components gij and to compute all the
relevant geometric quantities from it.

4.3.2 Minkowski metric

For exemple, the well-known Minkowski metric is a Riemannian metric. Classical non-
relativistic physics is based on a three-dimensional affine space on R, which is called "space",
and manipulates vectors �v of the associated vector space R

3. On this vector space, a very
important structure is the scalar product of two vectors

�u.�v = u1v1 + u2v2 + u3v3 4.23

where the ui and vi are the components of �u and �v in an orthonormal base. The scalar
product describes all the geometry. It allows in particular to define the norm of a vector,
and the angle between two vectors. Relativistic physics has some particularities :

• The space is not R
3 anymore but E of dimension 4 : it unites time and space, and it

is now called spacetime.

• The scalar product is not euclidean : for each point p ∈ E , a vector space basis exists
where it can be written

�u.�v = −u0v0 + u1v1 + u2v2 + u3v3 4.24

More specifically, for each point p ∈ E , one can provide [147] a bilinear form g (associ-
ated to the tangent vector space), which is symmetrical, not degenerate5 and of signature

5Clear definitions are given in appendix B.1.
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(−,+,+,+):
g(�u,�v) = −u0v0 + u1v1 + u2v2 + u3v3 4.25

The bilinear form g defined above is called a metric tensor. Thanks to this metric, we can
now define different types of 4-vectors6. If �u is a non-trivial 4-vector, we observe that it can
only be one of 3 types :

• a timelike ⇐⇒ g(�u, �u) < 0

• a spacelike ⇐⇒ g(�u, �u) > 0

• a lightlike ⇐⇒ g(�u, �u) = 0 with (�u �= 0)

Another important feature of this metric, hence its name, is the measure of distance. If we
consider two points P and P’ infinitely close, we can associate an infinitesimal separation
4-vector

−→
dP and define the square of the distance by:

ds2 = g(
−→
dP ,

−→
dP ) 4.26

Given a coordinate system (xα) near P, if dxα is the difference of coordinates between P and
P’, then 4.26 can be written [148]

ds2 = gαβdx
αdxβ 4.27

For example, for a flat spacetime, the metric is given by : ds2 = ηαβdx
αdxβ where ηαβ is

the Minkowski matrix:

ηαβ =

⎛⎜⎜⎜⎜⎝
−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ 4.28

i.e. in Cartesian coordinates the metric can be written

ds2 = −c2dt2 + dx2 + dy2 + dz2 4.29

4.3.3 Quantum metric

Definition

The Quantum Metric (QM) is a gauge-invariant tensor which allows to compute the
quantum distance between states

ds2 = gijdkidkj = 1− |〈ψ(k)|ψ(k + δk)〉|2 4.30

where ds is an infinitesimal distance between two points in the reciprocal space, gij is the QM
term, and ψ(k) and ψ(k+δk) are the two states. We remark that if these two states are the
same, the distance is equal to zero, but if they are orthogonal, the distance is maximal, equal

6Meaning a vector with 3 spatial components and 1 time component.
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to one. In our case, the states of our system will correspond to the polarization of light, that
we can experimentally extract from a cavity. A distance ds2 = 1 at a particular point in the
reciprocal space means that at this point the polarization changes abruptly to orthogonal if
we move by δk from this point, and a distance ds2 = 0 means that the polarization remains
still.

It is also a quantity that has been studied in Quantum Information [149], in topological
physics [150], in Moiré materials [151, 152, 153], in flat bands [154, 155] and more specif-
ically in the study of superfluidity in flat band systems [156, 157, 158] by Päivi Törmä.
For instance, the square root of the Quantum Metric appears as a fundamental criterion to
understand the stability of Bose-Einstein condensates [159]. What will interest us more in
this thesis is the possibility to describe interband transitions between two quantum levels
with the QM. Indeed, it has been shown that the QM allows the description of small nona-
diabatic corrections to the Anomalous Hall Effect [160]. As we will see in the next chapters,
the QM term can even dominate the dynamics in non-Hermitian systems [161], and also
totally describe the semiclassical trajectories of a wavepacket [162]. The interest for the QM
stems also from the fact that its experimental measurements have been recently achieved in
microcavities, in Hermitian [56] and non-Hermitian [163] systems.

Relations between Quantum Metric and Chern number

It has been proved relatively recently that many properties of the Chern number and the
QM are linked [164, 165, 166]. For instance, let us consider a 2D parameter space, such as
a 2D reciprocal space formed by kx, ky. The Chern number C is the integral of the Berry
curvature B

C =
1

2π

∫∫
©B(kx, ky)dkxdky 4.31

and the quantum volume volg is the volume of the parameter space computed by the metric,
and is defined by

volg =

∫ √
det(g)dkxdky 4.32

where det(g) = gijg
ij is the determinant of the Quantum Metric tensor. In this case, a

theorem says that [150, 164]:
volg ≥ π |C| 4.33

which means that if there is no QM or if the QM is too small, it assured the non-existence of
the Chern number. Moreover, it has been shown that one can compute the Berry curvature
from the QM [167, 168]. The relation reads

B2 = 4det(g) = 4gijg
ij 4.34

One result of this equation is that there is more information in the QM than in the Berry
curvature. Very recently the Quantum Metric has been shown to dictate the Chern number
and the Winding number of Dirac Hamiltonian [166]. These works are the examples of the
rising interest in the QM.
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In the 5th chapter, we investigate the dynamics of particles described as wavepackets. By
exciting coherently two bands near a Dirac point, we experimentally demonstrate that

the polariton wavepacket exhibits Zitterbewegung oscillations. It can be understood with
a non-Abelian Yang-Mills theory, which couple the precession of the spin to the spatial
dynamics. Then we introduce a previous work, describing the photonic anomalous Hall
effect in the opposite regime, when a single band is excited adiabatically. Afterwards, we
demonstrate that both of these regime can be described in a single formalism, taking the form
of semiclassical equations using only static band parameters, namely the dispersion and the
Quantum Metric. Following this, we present an experimental work about a spin-selective
strong light-matter coupling regime which results in unusually strong optical nonlinearity
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and a giant Zeeman effect, which allows to open a gap at the Dirac point in polaritonic
systems, and which has direct applications in topological physics

5.1 Experimental investigation of a non-Abelian gauge field in
a 2D perovskite photonic platform

5.1.1 Context

Electromagnetism is the first and simplest gauge theory, introduced in 1865 by Maxwell
[169]. A gauge theory means that different configurations of the gauge potential yield similar
observations. This inherent vagueness in the physical description gives us the choice about
which formulation to use in a particular situation. We can use what is called a gauge
transformation to switch from one description to another, and the underlying invariance is
called a gauge invariance. Starting from a massive scalar field Lagrangian [170]

L = (∂μψ)† (∂μψ)−m2ψ†ψ 5.1

which has a U(1) symmetry, we can change the field as ψ(x) → ψ(x)eiα, and the Lagrangian
will not be changed1.

Since the particle charges are scalars, the components of the vector potential commute
with each other, forming the U(1) group and making this gauge theory Abelian. Yang and
Mills worked in 1954 [171] on the generalization of a gauge theory in more complicated
groups, such as SU(2) and SO(3). It is important because those non-Abelian gauge theories
allow to describe the weak and strong interactions: the strong interaction is described by the
SU(3) group, and the weak interaction by the U(1)⊗SU(2) group. Even if the SU(2) gauge
theory developed by Yang and Mills can not describe those interactions, it was important
as a first non-Abelian gauge theory. Indeed, they replaced the scalar charge by a vector
charge, the isospin, with the vector potential components being the Pauli matrices that do
not commute.

More recently, experiments successfully implemented emergent2 gauge fields [173], such as
the Berry curvature [126], which can be interpreted as an analogue of a magnetic field in the
momentum space. The evolution along a trajectory (real or momentum space) is associated
with an additional Berry phase, which means topological physics can be seen as a the result
of an emergent Abelian gauge field. Such gauge fields in real space have been already been
demonstrated in photonics [174]. However, no realization of emergent non-Abelian gauge
fields has been reported so far. A recent work discovered a mapping between the Rashba
spin-orbit coupling [175] (SOC) for massive particles and a SU(2) Yang-Mills non-Abelian
gauge field [176]. Since the Rashba SOC has been already well studied and implemented
in solid state physics [177, 178], this mapping allows the development of analogous non-
Abelian gauge field theories in these systems. Rashba SOC for photons has been proposed

1See Appendix C for more details about gauge theory.
2"The term emergent is used to evoke collective behaviour of a large number of microscopic constituents

that is qualitatively different than the behaviours of the individual constituents." [172].
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theoretically [18, 179] and realized experimentally using microcavities, and more precisely
using polaritons [55, 56].

5.1.2 Presentation of the system

In this work [54], together with the group of Prof. D. Sanvitto from the Institute of Nan-
otechnology at Lecce, Italy, we investigate experimentally a Yang-Mills vector potential with
space-like components. We measure the transverse acceleration of a polariton wavepacket
owing to the Yang-Mills force. A precession of the pseudospin corresponding to this force is
established for the propagation of the wavepacket, and it corresponds (within our analogy)
to a change color of quarks in the strong interaction. Indeed, the system of the equations for
the trajectory of the wavepacket and the pseudospin precession is similar to the equations of
classical "two-color" chromodynamics. It makes this experiment a simplified SU(2) analogue
of the strongly interacting quarks with possible direct measurements.

The system is composed of a 2D fluorine-based perovskite crystal embedded in a planar
microcavity with a DBR at the bottom and a metallic layer at the top, as shown in fig. 5.1.a.b
(see caption for more details). The cavity is relatively thick (� 7 μm), and the cavity modes
have a quality factor of Qf � 1000. As mentioned in chapter 2, the quantization of the
wavevector kz gives rise to a series of 2D modes, whose dispersion is parabolic in the case
where kx,y � kz. Aformentioned, a non-Abelian gauge field requires a vector charge, which
is in our case given by the polarization of light. The pseudospin polarization of light, whose
components are determined by the Stokes vector, are directly given by the polarization
degrees. As we have seen in chapter 1, the three components of the pseudospin S read [1]

S1 =
IV − IH
IV + IH

, S2 =
ID − IA
ID + IA

, S3 =
IR − IL
IR + IL

5.2

where H/V means horizontal and vertical, D/A means diagonal and antidiagonal, and R/L

means right and left circular polarization. The microcavity displays a series of doublet,
namely the TE and TM modes. The spin-orbit coupling comes from the energy splitting
between these two modes at k �= 0, where k = (kx, ky) is the in-plane wavevector. This
energy splitting stems from the TE-TM splitting explained in chapter 2, where the TE and
TM modes inherit different masses mTE and mTM as a direct consequence. The excitons
of the perovskite slab are localized at 2.39 eV , and are strongly coupled with the TE and
TM photonic modes of the cavity, giving rise to exciton-polariton modes. The large Rabi
splitting of 208 meV allows to obtain polaritons at room temperature [180]. The fluorine
part of the perovskite crystal changes the symmetry of the latter and gives rise of a strong
linear birefringence. The experimental dispersion of the cavity is given in fig. 5.1, in the kx

direction with ky = 0 in the panel c, and in the ky direction with kx direction in the panel d.
Moreover, we can see in these panels that a given doublet is separated from its neighbour by
50 meV , owing to the thickness of the cavity. Indeed, we have shown in the chapter 2 that
the separation between cavity modes is proportional to the inverse of the thickness of the
cavity: Δν ∝ 1/L, meaning a thick cavity results in a large number of modes in an energy
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window. As we have seen3, a polarization doublet of modes in presence of TE-TM splitting
and linear birefringence can be modeled by an effective Hamiltonian written on the circular
polarization basis

Heff =

(
E0 +

�
2k2

2m β0 − βke−2iϕ

β0 − βke2iϕ E0 +
�
2k2

2m

)
5.3

with E0 the energy of the modes at k = 0, m = mTMmTE/(mTM + mTE) the average

mass, k is the norm of the in-plane wavevector k = |k| =
√
kx

2 + ky
2 and ϕ is the angle

of propagation defined by kx = k cosϕ and ky = k sinϕ. β is the strength of the TE-TM
splitting and β0 is the birefringence term. The TE and TM modes cross in two points in the
2D reciprocal space, at kD = (

√
β0/β, 0) = (±4.48 μm−1, 0), as shown in the fig. 5.1.c, giving

rise to two Dirac points. The fit of the experimental data with the effective Hamiltonian
gives E0 = 2.1415 eV , m = 2.4× 10−5me, β = 2.5× 10−4 eV · μm2, and β0 = 10 meV , me

being the free electron mass.
A crucial point of this work [54] is the possibility to rewrite the Hamiltonian, in the

vicinity of the Dirac points [18], as a Rashba-like Hamiltonian [175]

ĤR =
1

2m
p̂2 + α · p̂ =

1

2m
(p̂+mασ)2 −mα2σ0 5.4

where σ0 is the identity matrix, p = �q is the momentum, with q = k− kD the wavevector
starting to a Dirac point. σ represents the Pauli matrices vector and α =

√
β0β/2. The

fig. 5.1.e shows the dispersion along the ky direction but crossing the Dirac point. It displays
the typical shape of a Rashba dispersion. The pseudospin texture of the eigenstate is shown
in panel f 4, it comes from the polarization degree, as we remember from eq. 5.2. We remark
that the pseudospin for the different modes is pointing in opposite direction (green and dark
arrows), which confirms that the system is well described by the Rashba Hamiltonian at the
Dirac point.

5.1.3 Link with the Yang-Mills theory

In this section we will see how the Rasbha spin-orbit coupling can be regarded as a partic-
ular case of a Yang-Mills field. Indeed, we can derive a non-Abelian Yang-Mills Hamiltonian
starting from a general relativistic Yang-Mills Lagrangian for the matter field φ, which is
coupled with a non-Abelian field F [171, 181]

L =
1

2
(Dμφ) · (Dμφ)− m2

2
φ · φ− 1

4
Fμν · Fμν 5.5

with Dμφ = ∂μφ + ηAμ × φ the covariant derivative carrying the coupling with the vector
potential A, proportional to the coupling constant η = �/2. The summation variables μ

and ν denote (t, x, y, z). We remark that the two first terms are similar to the eq. 5.1, but
describing here a massive spinor field. The Yang-Mills field stems from the third term, and
we remark the vectorial nature of the elements of the field strength tensor Fμν , which make

3See the derivation of eq. 2.30 for more details.
4One can wonder why this texture is different from the "usual" Rashba texture, as in Appendix A. It is

because here it is a cut at constant energy, whereas usually we show the field texture for all energies.
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Figure 5.1: Experimental implementation of a non-Abelian gauge field. A) Sketch
of a PEAI-F (4-fluoro-phenethylammonium tetraiodoplumbate) 2D perovskite single crystal
structure. B) Schematic representation of the microcavity sample. Perovskite flakes are em-
bedded in an optical microcavity made by a DBR (seven T iO2/SiO2 pairs) and a 80 nm thick
silver mirror. C,D) Experimental dispersions along kx and ky showing two Dirac points along
kx. E) Experimental dispersion along ky for a fixed value of kx = 4.48 μm−1 (crossing point)
highlights the formation of a Rashba-type dispersion. Solid and dashed lines – dispersion fit
with the parameters given in the main text. F) PL at the Dirac point energy together with the
pseudo-spin orientation (arrows) obtained from polarisation measurments. The monopolar
pseudospin texture around the Dirac points is another signature of the Rashba SOC.

63



Chapter 5. Wavepacket dynamics

the Lagrangian gauge-invariant. Since our problem does not involve relativistic particles,
we can separate the space and time components of the 4-vectors, which allows to write a
non-relativistic Lagrangian which reads

LNR =
i�

2

(
φ̇†φ− φ†φ̇

)
+ φ†ηAa

0φ+
1

2m
[(p− ηAaσa)φ]† [(p− ηAaσa)φ]− 1

4
F a
μνF

a
μν 5.6

A natural way to obtain the equations of motion from this point is to use the Euler-Lagrange
equations

∂L
∂φ

− ∂

∂xμ
∂L

∂ (Dμφ)
= 0 5.7

with φ the matter field. It allows to obtain the following equation

i�
∂φ

∂t
=

[
1

2m
(p− ηAaσa)2 + ηAa

0σ
a

]
φ 5.8

where the upper index a takes the values 0 to 3 and σ represents the Pauli matrices. The
equation represents a spinor Schrödinger equation, describing the wavefunction of a particle
with a vectorial charge, like a spin, coupled to a field acting on this charge. Hence the
non-relativistic Hamiltonian of a massive particle coupled with a non-Abelian gauge field,
determined by a vector potential, is expressed by

HYM =
1

2m
(p̂− ηAaσa)2 + ηAa

0σ
a 5.9

The terms of the first part of this Hamiltonian can be compared with the terms of the Rashba-
like Hamiltonian from eq. 5.4. It allows to identify the components of A: A1

x = A2
y = −mα/η.

The last term corresponds to a Zeeman splitting which is zero in our case. We remark that
the vector potential is constant, but the non-Abelian property of the field comes from the
underlying symmetry group which is SU(2) and not U(1)5. It results in a non-zero field
strength, whose components read

F a
μν = ∂μA

a
ν − ∂νA

a
μ − ηεabcAb

νA
c
μ 5.10

It gives for the two non-zero components F 3
yx = −F 3

xy = −m2α2/η, which couple the spatial
degrees of freedom. Indeed, similar to the Lorentz force which is written as a product between
the electric current and the field, the general formulation of the force given by a non-Abelian
field links a unified spin-current vector J and the field strength tensor F . The equation of
motion for the velocity v and spin (color) s of a classical relativistic particle coupled to the
non-Abelian field read [54]

m
dvμ

dτ
= Jν · Fμν ,

ds

dτ
= −ηAμ × Jμ 5.11

where Jν = svν is the spin current. Solving these two coupled equations allows to obtain the
particle trajectory and color dynamics in classical chromodynamics [182], studying general-
ized vector charges, in contrast with electrodynamics and its scalar charges. We note that

5The underlying symmetry group of theory of electromagnetism which is an Abelian gauge field is U(1).
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chromodynamics equations describing quark and gluon dynamics are based on SU(3) gauge
theory with three colors (spin-1), whereas the present implementation is SU(2), as in the
original Yang-Mills paper [171] with two colors only (spin-1/2). The resulting acceleration
components can be written under the form

ax = −4mα2J3
y/�

2 , ay = 4mα2J3
x/�

2 5.12

with J3
x and J3

y the circular (spin-up/spin-down) components of the polariton spin current
propagating along x and y, respectively. We notice that the acceleration is transverse, but,
contrary to the Lorentz force which affects the charge current, here it acts on the circular
component of the spin current instead. The strength of the force is given by α2 = β0β/2,
which is three orders of magnitude larger than in GaAs-based microcavities [56], owing to the
strong anisotropy from the PEAI-F, giving a high value of β0. We stress that the effective
magnetic non-Abelian field we consider here differs crucially from a simple spin-dependent
Lorentz force appearing in the presence of Abelian gauge fields different for the two spin
components [55, 183], as the spin equations are not coupled in those cases.

5.1.4 Polariton propagation

To observe this effect, we use a key specificity of cavity polaritons, which is the possibility
to resonantly6 create a wavepacket with a well-defined pseudospin, centered on a specific state
in reciprocal space, and then to study its real space evolution (this specificity will be used
many times in this chapter). The first experiment we perform consists in exciting resonantly
the vicinity of the Rashba Dirac point with a pulsed polarized laser, which in the language of
Yang–Mills gauge theories corresponds to creating a color current. The energy of the laser is
tuned to the Dirac point, while the wavevector is slightly detuned from it, providing a color
(spin) current. The scheme of the experiment is shown in fig. 5.2.a. The blue, white and red
arrows represent the σ+, vertical and σ− polarization states of the incident laser, respectively.
The figure 5.2.b-d show the spatial intensity distribution together with the center of mass
trajectories for three different excitation conditions: σ+ (s1 = 0, s3 = 1), vertical (s1 = 1,
s3 = 0) and σ− (s1 = 0, s3 = −1). We can also see the difference between these three
scenarios on the panel h, displaying the transverse profile of the total intensity. Ideally, the
center of mass trajectory and circular polarization degree (charge vector) shown in fig. 5.2.i
are expected to be reproduced theoretically (fig. 5.2.j) by the equation of motion 5.10, using
the parameters m, α, β and β0 extracted from the experiments and given above. The two
colors in the figure correspond to the two s3 spin components, σ+ in red, and σ− in blue, and
they are strongly correlated with the trajectories. The non-Abelian magnetic-like field acts
on the spin currents, which exhibit lateral deviations depending on their spin and velocity.
Meanwhile, the spin itself changes depending on the propagation direction. This gives rise
to opposite oscillating trajectories for red (σ+) and blue (σ−) wavepackets, often called
Zitterbewegung oscillations [184, 185, 186]. Both effects are absent for colorless excitation
(vertical polarization): the wavepacket propagates along a straight line. We note that other,

6Which means at a given energy: the laser is resonant with the band in energy.
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qualitatively different types of behavior are possible for other parameters, including closed
circular orbits, analogues of cyclotron orbits or Landau levels in an ordinary Abelian magnetic
field. These represent an interesting subject for future studies.

The second experiment consists in creating an energy potential in the plane of the cavity
and to launch the flow of neutral particles (vertically polarized polaritons, s1 = 1, s3 = 0)
against the defect, as shown in fig. 5.3.A. This type of experiment in the high density regime
allowed to demonstrate polariton superfluidity [90, 91, 93], the formation of oblique solitons
[96], half-solitons [97], and of vortex anti-vortex pairs [187]. Here we work in the linear, low
density regime, with polarised excitation at the Dirac point.

The polariton flow is in different conditions upstream and downstream of the defect.
Upstream, the particle trajectory is strongly constrained by the defect potential and by the
quantum pressure. The effects of the magnetic Yang-Mills force on trajectories is negligible
compared to these two other contributions. However, the effects of the Yang-Mills field
on the spin evolution, described by the second equation of chromodynamics 5.10, are not
negligible. For upward and downward propagation, the gained s3 components, proportional
to J1

y , have opposite signs. Opposite colors are thus generated above and below the defect, as
shown in the sketch gig. 5.3.A. In the region after the defect, the magnetic Yang-Mills force
becomes dominant, and the coupled chromodynamics equations 5.10 completely describe
the particle trajectories and their spins. Due to the opposite colors (and therefore spin
currents J3

x) above and below the defect, the transverse force in eq. 5.10 is also opposite.
This force brings the particles into the shadow of the defect. This convergent flow is clearly
visible in fig. 5.3.B showing experimental spatial images of the total particle density. The
results of chromodynamic simulations based on eqs. 5.10 corresponding to the wavepacket
trajectories are shown as points, whose color shows the s3 spin projection. The panel C
presents the difference between the s2 components (chosen as the new color basis), showing
the best contrast due to the particular color dynamics. Dashed lines show the calculated
particle trajectories (same as in panel B). It confirms that the density flows observed in total
intensity in fig. 5.3.B are not due to a particular disorder pattern, but to the chromodynamics
in presence of a single well-defined defect. We would like to underline that these curved
trajectories have nothing in common with the recently observed anomalous Hall drift [56] of
accelerated polariton wavepackets which is induced by the non-zero Berry curvature of the
polariton bands when time-reversal symmetry is broken. Anomalous Hall effect caused by an
emergent Abelian magnetic field in the reciprocal space occurs during the adiabatic motion of
a wavepacket within a single band. On the opposite, the non-Abelian magnetic field studied
in the present section acts in real space, and the oscillating trajectories in figs. 5.2 and 5.3
are due to beatings between two coherently excited eigenstates (spin precession, described
by the second equation of chromodynamics).

5.1.5 Conclusion

Particle physics is the field where non-Abelian gauge theories found their application. The
particles coupled with a Yang-Mills gauge field are the quarks. Their color determines their
coupling to the field, and the excitations of the field are the gluons. In our analogue system,
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Figure 5.2: Polariton propagation in a non-Abelian field. (a): Scheme of the ex-
periment. A polarized laser creates a flow that is deviated by the gauge field, depending on
the sign of the spin current. Polarization of the excitation: left-circular (s3 = 1), vertical
(s1 = 1, s3 = 0) and right-circular (s3 = 1). (b-d) Spatial images of the total emission
intensity for the three spin excitation conditions. Log-scale false color map is used for all
images. The dashed lines are the center of mass trajectories. (b): s3 = +1, the center of
mass deviated downwards and then back. (c): s3 = 0, the center of mass has no deviation
along the in-plane propagation. (d): s3 = −1, the center of mass deviated upwards and then
back. (e-g): Calculated spatial images of the total emission intensity based on eq. 5.10 for
three excitations (s3 = −1, 0, 1). (h): Transverse profiles of the total intensity at x = 20
μm (curve color corresponds to local s3 of emission). (i) Experimentally measured center of
mass trajectories extracted from panels (b-d) and spin dynamics for three excitation condi-
tions (s3 = −1, 0, 1). Dot color corresponds to s3. (j): Classical simulations of propagation
trajectories and spin for the same initial conditions (s3 = −1, 0, 1). Dot color corresponds
to s3. Lines are extracted from the quantum simulations (e-g).
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Figure 5.3: Chromodynamics behind a defect potential. A) Scheme of the experiment.
A linear polarized laser creates a propagating flow, which hits a potential and splits into
circular-polarized flows deviated by the Yang-Mills field. B) Experimental image of the total
emission intensity (false color). Colored dots show the theoretical results (color corresponds
to the s3 spin projection, the scale is the same as on fig. 3). The white circle shows the
position of the potential defect. C) Experimental image of the difference between the diagonal
polarization intensities (s2). Dashed lines mark the theoretical trajectories.
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the field is constant and fixed externally, so there are no analogue gluons in this experiment
yet. This allows to obtain a simpler, fully solvable configuration, with the advantage of
the possibility of direct experimental measurements of the particle trajectories and of their
isospin orientation, which is evidently impossible in the original, much more complex quark-
gluon system. A very interesting outlook is provided by the polariton platform with its
high non-linearities (spin-anisotropic polariton-polariton interaction). This could be used to
access more complex dynamical situations, where charges self-consistently interact via the
field they create. The role of vectorial charges could there be played by spinor topological
charges of the polariton quantum fluid, such as half-vortices and half-solitons [97]. Both the
magnetostatic-like experiment we are reporting and the outlook related to the use of polariton
non-linearities make of our photonic system a valid and attractive simulation platform for
quark QCD.

5.2 Semiclassical equations

5.2.1 Introduction

We will first consider the motion of a wavepacket in a crystal. The studies of lattices
and their interaction with light and electrons have been extensive in the past century [15],
and now form an important foundation of solid state physics. The motion of electron in
a lattice described by a wavepacket has been developed by Wannier starting from 1937
[188, 189]. The electron is described by a wavefunction ψ =

∑
cnψn, using Wannier func-

tion ψn, a position and a wavevector. The Hamiltonian describing the system is given by
H = 〈ψ(r, k) |H|ψ(r, k)〉. To obtain the so-called semiclassical equations, we start from the
Hamilton’s equations

dr

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂r
5.13

where p = hk is the wavepacket momentum, and r is the position of its center of mass. The
Ehrenfest’s theory [190] demonstrates that the center of mass moves similarly to the corre-
sponding classical Hamiltonian, if the latter is time independent [191]. Hence the wavepacket
motion associated with a charge −q, in a perturbing Hamiltonian of the form H1 = −qV

moves conforming to the equations

vg(k) =
∂r

∂t
=

1

�

∂E(k)

∂k
, �

∂k

∂t
= q

∂V

∂r
= −qE 5.14

with vg the group velocity, and F = −qE is the Lorentz force acting on the wavepacket.
Also, �k is an analogue of the classical momentum, and is called the crystal momentum of
the wavepacket [15]. These two equations are called the semiclassical equations, which are
valid in the adiabatic limit when the electron described by it is in an eigenstate and stays
in this state during the propagation. It means that this theory does not allow interband
transitions. The velocity and momentum at a given time t of an electron vary rapidly as it
travels through the periodic potential of the crystal, so the crystal momentum is not directly
given by the actual electron momentum and the wavepacket velocity should be interpreted
as an average drift velocity. Also, the semiclassical equations are valid for a wavepacket size
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larger than approximately ten times the lattice constant, so that it only feels the average
effect of the lattice, but small enough in comparison with the length scale of the variation
of the electric field. The name, semiclassical, stems from the fact that the periodic potential
of the lattice is treated non-classically (via the quantum-mechanically calculated dispersion
E(k)), but the electric field is treated classically.

5.2.2 Bloch oscillations

An important consequence of equations 5.14 is that the knowledge of the dispersion E(k)
and, in general, of the band structure, allows to obtain the motion of the particle. The Bloch
oscillations, discovered by Bloch in 1929 [192], are a perfect and understandable example
of non-trivial results from the semiclassical equations. We consider the 1D motion of an
electron, described as a wavepacket in a single band, in a constant electric field Efield. In
this case, the second part of the equation 5.14 reads

dp

dt
= �

dk

dt
= −eEfield 5.15

The trivial solution of this equation is

k(t) = k(0)− eEfield

�
t 5.16

The first part of equation 5.14 gives the group velocity

vg(k) =
1

�

dE

dk
5.17

with E(k) the dispersion of the band considered. Using the tight-binding approximation,
the dispersion of an electron in a 1D lattice (with only nearest neighbor couplings) can take
the form

E(k) = α cos(ak) 5.18

with α is a constant and a the lattice parameter. The solution for the velocity and the
position of the wavepacket is straightforward and reads

vg(k) = −αa

�
sin(ak) , x(t) = x(0) +

α

eEfield
cos (ωBt) 5.19

where ωB = ae |E| /� is the Bloch frequency at which the electron oscillates in the real
space. Even if this effect was explained a long time ago, its experimental observation was
challenging. Indeed, the impurities in natural crystals make this effect difficult to observe.
Finally, the realization of semiconductor superlattices (large period of the artificial lattice a

means large ωB, with the period of the oscillations shorter than the carrier scattering times)
at very low temperatures [193, 194] made the experimental measurement possible in 19927.

7This year is also the one of the observation of 2D polaritons, but more importantly, the year of my birth!
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5.2.3 Anomalous Hall effect

At the end of the 19th century, Edwin H. Hall discovered that opposite electric charges
accumulate on the opposite sides of a conductor when a magnetic field was applied to a
current in this conductor. This is now known as the Hall effect [195], one of the most
important effects, and one of the most studied effects, in solid state physics. Two years later
he discovered that this effect was an order of magnitude larger in ferromagnetic iron [196]
than in nonmagnetic conductors8. This effect is called the Anomalous Hall effect (AHE), and
it was, for a long time, far less understood than the "normal" Hall effect, and is still studied
nowadays [197, 56]. A first attempt to describe theoretically the AHE was done by Karplus
and Luttinger in 1954 [198], but a comprehensive explanation of this effect came 40 years
later from topology, and more precisely from the Berry curvature concept [126]. Indeed, Niu
and Sundaram re-expressed the semiclassical equations [199, 200] under the form

�
∂k

∂t
= F , vg =

∂r

∂t
=

1

�

∂En

∂k
− ∂k

∂t
×Bn(k) 5.20

where F is the force, usually equal to F = −eE in electronic systems, and Bn and En are the
Berry curvature and the dispersion associated with the nth band, respectively. We observe
that there is a correction term contributing to the group velocity which is proportional to
the Berry curvature of the band. This equation means that if an electron propagates along
a band with a nonzero distributed Berry curvature, a lateral drift will occur. This model is
valid in the adiabatic limit when the electron is in a single band. Here, contrary to topological
insulators, global topology of the band is not required (e.g. nonzero Chern number). Only
a local distribution of the Berry curvature is enough to observe the AHE.

5.3 Photonic anomalous Hall effect

We have introduced in chapter 4 the Quantum Geometric Tensor and its real and imagi-
nary parts, named respectively the Quantum Metric and the Berry curvature. The extension
of topological concepts from solid state physics to other classical or quantum systems has
opened up possibilities for measuring the local geometrical properties of bands, not just
the global properties (such as the conductivity measured in the quantum Hall effect). Sev-
eral protocols have been proposed to measure the Berry curvature [201, 202]. Experimental
reconstructions via indirect dynamical measurements have been reported [203, 204].

In their work, Gianfrate et al. [56] demonstrate a direct measurement of the Quantum
Geometric tensor in the reciprocal space, which allows to obtain both the Berry curvature
and the Quantum Metric. As we can see in fig. 5.4.a.b, these two quantities have a non-zero
distribution over the 2D reciprocal space. They are also in good agreement with the theory,
shown on panels e and f. In the same work, the polariton anomalous Hall effect (panels c
and d) was experimentally observed, and the measured trajectory is in agreement with the
theoretical calculations. Lastly, the panel g shows the intensity oscillations as a function of
the polariton propagation the opposite polarization to that of the injected polaritons. Their

8Materials that are not attracted by a magnet.
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Figure 5.4: Quantum Geometric Tensor and polariton anomalous Hall effect. (a)
Experimental and (e) theoretical Berry curvature. (b) Experimental and (f) theoretical Quan-
tum Metric. (c) Spatial distribition of emission at +9 T (red) and −9 T (in blue). (d) Center
of mass trajectories for both initial conditions. (g) Intensity oscillations, whose contrast is
determined by the Quantum Metric [56]. Figure from the review [62].

contrast is determined by the non-adiabatic fraction, whose value is in agreement with the
measured Quantum Metric.

5.4 Universal semiclassical equations based on the Quantum
Metric

5.4.1 Introduction

General relativity is the first example of a geometrical theory of motion, where the particle
trajectories are not governed by gravitational forces, but are found as the geodesics of the
spacetime metric. In a completely different perspective, we have seen in last sections that the
semiclassical theory of electron dynamics in solids was derived in the 1930s from quantum
mechanics [205, 206], involving as a key element the wavevector-dependent group velocity.
These equations have been corrected in 1999 [199] by Niu and Sundaram to include the
impact of the Berry curvature and describe the anomalous Hall effect (AHE). The AHE was
discovered in the 50s [198], but the deep understanding of the underlying physics and of its
importance came with its description in terms of geometrical properties of the quantum space.
The key hypothesis of the Niu-Sundaram [199, 200] equations is the adiabatic approximation,
when the wavepacket remains in a single energy band, as in the original work of Berry [126].
The extension to the situation where several bands have comparable populations was done in
Ref. [207], but using time-dependent components of the generalized Berry curvature tensor,
which depend on initial conditions and not only on static band parameters. Multi-band
Bloch oscillations with non-Abelian Berry curvature were recently studied in [208].

It is well understood that the Quantum Metric should appear in the description of tran-
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sitions between quantum levels. For example, it allows to describe small non-adiabatic
corrections to the AHE [209, 160, 210]. In some cases, the Quantum Metric was even found
to dominate the dynamics. This occurs in systems with non-reciprocal directional dichroism
[211] and also in strongly non-Hermitian systems in the vicinity of the exceptional points,
where the evolution can never be adiabatic [161]. A situation of a particular interest occurs
in spin-orbit-coupled systems [212, 176, 213] which can be described in terms of non-Abelian
gauge potentials [214, 171, 181] with emergent vectorial charges [18, 179]. The resulting Zit-
terbewegung (ZBW) motion [215, 54] involves a coherent superposition of several bands. The
ZBW is studied theoretically and experimentally in various electronic [216, 217, 218], atomic
[219, 220, 221], and photonic systems [186, 222, 223, 224] including polaritons [185, 184].
This is an appealing situation for its description in terms of Quantum Metric, as noticed
in [225], where the Quantum Metric was shown to be responsible for a contribution to the
effective mass.

In this work [162], we derive semiclassical equations of motion in a two-band system using
only the static band geometry encoded in the Quantum Metric. The solutions of these new
equations are in complete agreement with the direct numerical solutions of the Schrödinger
equations for all the cases we considered. They describe the AHE, traditionally attributed
to the Berry curvature. They also describe the opposite limit, when the wavepacket is
coherently distributed over the two bands, and in particular the ZBW motion induced by an
emergent non-Abelian gauge field. We show that a wavepacket centered at k = 0 exhibits
a circular trajectory in real space, with its radius given by the square root of the Quantum
Metric. This quantity appears as a universal length scale, determining the uncertainty of
the position of a particle involving several bands. It provides a geometrical origin of the
Compton wavelength.

5.4.2 The model

We begin with the Hamilton’s equations of motion for a wavepacket. Working with a
2-band system allows us to use the mapping to the pseudospin S interacting with an effective
magnetic field Ω [1, 5] (see 1st chapter), with the Hamiltonian given by H = −�Ω · S/2,
and the associated geometry of the Bloch sphere (fig. 5.5). A general superposition of two
eigenstates can be written as

|ψ〉 = c1 |ψ1〉+ c2 |ψ2〉 , 5.21

with c1 = cos θs/2e
−iφs and c2 = sin θs/2, where θs and φs are the time-dependent angles,

giving the orientation of the pseudospin on the Bloch sphere. The equations of motion for
the spatial degrees of freedom are therefore accompanied with the precession equation for
the pseudospin describing the wavepacket distribution within the two bands:

ṗ = −∂H

∂r
, ṙ =

∂H

∂p
, Ṡ = S×Ω 5.22

Here, r is the spatial coordinate of the wavepacket center of mass, p = �k is the center of
mass momentum of the wavepacket (k is the center of mass wavevector). The wavepacket
is considered as a classical point-like particle and its distribution over the bands is encoded
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���

Figure 5.5: (a) Bloch sphere representation showing the pseudospin S, the effective field Ω,
and their polar and azimuthal angles θ and φ. The angle between the spin and the field
is η. b,c) Dispersion along kx of the eigenmodes of the b) Rashba and c) Rashba+Zeeman
Hamiltonians. The red arrows show the pseudo-spin orientation of the modes. Wave packet
dynamics from Schrödinger equation (black solid line) and analytical solution of semiclassical
Eqs. (5.28) and 5.29) (red dashed line) using the Rasbha Hamiltonian.

in its pseudospin vector. At a given moment of time, the effective field is Ω(k(t)) and the
pseudospin is S(t), shown in fig. 5.5.a with violet and red arrows, respectively. While it is
often possible to convert Hamilton’s equations to geodesics equation in an abstract metric
[226], our goal is rather to elucidate the role of the Quantum Metric, while keeping the other
coordinates intact.

The first of eqns. 5.22 describes the acceleration of the wavepacket due to a spatial
gradient of the potential. We will rather focus on the second of eqns. 5.22, describing the
group velocity. The Hamilton’s function H corresponds to the energy E = 〈ψ| Ĥ |ψ〉 of
the full wavepacket. It depends on the wavevector both directly, via the band dispersion
Ei(k), and indirectly, via the fractions fi = |ci|2. This energy can be rewritten as E =

f1E1 + f2E2 = (f1 + f2)Ē + (f2 − f1)�Ω where Ē is the spinless part of the dispersion and
Ω is the absolute value of the effective field.

We characterize the pseudospin S and the effective field Ω by the respective spherical
coordinates θs, φs and θf , φf (see fig. 5.5.a). The fractions fi are determined by the distance
between these two vectors on the Bloch sphere η as f1,2 = (1± cos η) /2, and this distance
can be found from the spherical law of cosines. Indeed, the equation for the angle η given
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by the spherical cosine law reads:

cos η = cos θs cos θf + sin θs sin θf cos (φf − φs) 5.23

The contribution to the spin-dependent part of the energy stemming from the wavevector
dependence of the coefficients fi can be found via the wavevector dependence of the spherical
coordinates θf , φf of the effective field:

∂fi
∂kj

=
∂fi
∂φf

∂φf

∂kj
+

∂fi
∂θf

∂θf
∂kj

5.24

and the latter are determined by the metric part of the Quantum Geometric Tensor (QGT)
[118]. This is our key idea: to use the Quantum Metric as the link between the angles on
the Bloch sphere and the wavevectors. By definition, the Quantum Metric provides a link
between the quantum distance ds and the distance in reciprocal space:

ds2 = gki,kjdkidkj , 5.25

with the Quantum Metric defined by

gij = Re

[〈
∂ψ1

∂ki

∣∣∣∣ ∂ψ1

∂kj

〉
−
〈
ψ1

∣∣∣∣ ∂ψ1

∂ki

〉〈
∂ψ1

∂kj

∣∣∣∣ ψ1

〉]
5.26

The corresponding quantum distance for the displacement dη on the Bloch sphere is ds2 =

(dη)2/4. This allows writing

∂θf
∂ki

= 2
√
gkiki cos ζ,

∂φf

∂ki
= 2

√
gkiki

sin ζ

sin θf
5.27

with ζ controlled by the evolution of the effective field with ki as tan ζ = sin θf (∂φf/∂θf )i.
Ultimately, the equations of motion read:

�k̇ = −∂E

∂r
, Ṡ = S×Ω 5.28

�ṙ =
∂Ē

∂k
− 2

∂�Ω

∂k
(cos θs cos θf + sin θs sin θf cos (φf − φs)) 5.29

− �Ω
√
gkk

[
(− cos θs sin θf + sin θs cos θf cos(φf − φs))− sin θs sin(φf − φs) sin θf

(
∂φf

∂θf

)]
√

1 + sin2 θf

(
∂φf

∂θf

)2

In these expressions, the Quantum Metric √
gkk = (

√
gkx,kx ,

√
gky ,ky)

T is that of a single
band (the lowest energy band of the doublet). We see that the Quantum Metric appears as a
overall factor of the corresponding term, entering 5.29 together with Ω and thus completely
determining the scale of the corresponding physical effect. The physical meaning of this
term is the modification of the energy of the wavepacket due to its redistribution over the
two bands with the rotation of the spin, and this is controlled by the Quantum Metric.
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A similar system of equations can be derived from the Hamilton’s equations for an arbi-
trary number of bands. As in the two-band case, the terms containing the Quantum Metric
appear from the variation of the fractions ∂fi/∂kj : the variation of the overlap integral
is determined by the variation of the length of the corresponding geodesic curve, which is
entirely determined by the product of the Quantum Metric gk,k and the projection of the
displacement δkj on the geodesic’s tangent vector, according to the well-known theorem from
the differential geometry [227]. We leave this for future works.

Although this equation does not include the Berry curvature explicitly, it allows to recover
the semiclassical equations of Ref. [199] with the Berry curvature terms in the adiabatic limit
[162] (see section 5.4.4). In spite of being written only in terms of the Quantum Metric, it
entirely describes the AHE drift, and allows to go far beyond it, as we shall show below.
In other words, being derived from the Hamilton’s equations 5.22 without any additional
approximations, the equations 5.29 are valid up to arbitrary order in the field strength,
being limited only by the requirement of wavepacket localization [228]. Another advantage
of Eq. 5.29 is that they contain only the static properties of the bands. These equations
could also be extended to account for a magnetic field by including it into the equations for
the momentum and for the pseudospin dynamics 5.28 [229, 230].

If the Hamiltonian is such that the effective field remains for all k in the equatorial plane
(θf = π/2, ∂φf/∂θf = ∞), as is the case for the massless Dirac, Rashba, Dresselhaus [231],
and TE-TM [52] Hamiltonians, Eq. 5.29 is considerably simplified, reducing to

�ṙ =
∂E

∂k
+ �Ω

√
gkk sin θs sin(φf − φs) 5.30

with E = Ē + �Ω(cos θs cos θf + sin θs sin θf cos (φf − φs)). In what follows, we consider a
Rashba Hamiltonian extensively studied in electronics, spintronics, and photonics, both with
and without a Zeeman field:

Ĥ =
�
2k2

2m
+ αk · σ +Δσz 5.31

where σ is a vector of Pauli matrices, α is the Rashba magnitude, and Δ the magnitude
of the effective Zeeman field. When Δ = 0, the eigenvalues are E± = �

2k2/(2m) ± αk,
plotted in fig 5.5.b. Close to k = 0, the Hamiltonian is analogous to a 2D massless Dirac
Hamiltonian, with α playing the role of the speed of light c. The bands have no distributed
Berry curvature. A non-zero Zeeman field opens a gap at k = 0 (fig 5.5.c), making appear
an effective mass meff = �

2Δ2/α2 (equivalence with a massive Dirac Hamiltonian). The
corresponding bands show a non-zero distributed Berry curvature (see next section). We are
now going to consider the wavepacket motion in these two situations.
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5.4.3 Results and Discussion

Crossing bands: Rashba SOC (Dirac cone)

The equation of motion 5.30 writes explicitly:

ṙ =

(
�k

m
+

α

�
cos(φs − φk) sin θs

)(
cosφk

sinφk

)
+Ωsin θs sin(φk − φs)

( √
gkxkx√
gkyky

)
5.32

where φk is the polar angle of the wavevector, to which the effective field is antiparallel (φf =

φk−π). This equation contains only the orientation of the spinor θs, φs and the center of mass
wavevector k. The first part of the group velocity contains the spin-independent parabolic
dispersion and a spin-dependent contribution, with the propagation direction ultimately
controlled by the current orientation of the spinor. The second part of this expression,
which includes the Quantum Metric gkk, appears because of the explicit time dependence
of the spinor. The x and y projections of the velocity are controlled by the corresponding
projections of the Quantum Metric.

As an illustration, we consider the case without external fields (k̇ = 0), with k = k0ex

(φk = 0), and the spinor S = Szez perpendicular to the effective field at t = 0, so θs = 0. The
wavefunction is projected equally on both bands, and the pseudospin precession frequency
is Ω = 2αk0/�. In this case, the x projection of the group velocity is constant. The time-
dependent trajectory reads:

x(t) =
�k0
m

t 5.33

y(t) = (1− cosΩt)
√
gkyky =

1− cosΩt

2k0

because the Quantum Metric is gkyky = 1/4k20. This oscillating motion due to the pseudospin
precession is the ZBW effect. The magnitude of the oscillation along y is given by √

gkyky ,
which acts as a fundamental characteristic length scale of the problem, as we will discuss
more in details below.

To confirm our analytical results, we perform numerical simulations, solving the time-
dependent 2D spinor Schrödinger equation

i�
∂ψ

∂t
= Ĥψ 5.34

with the Rashba Hamiltonian 5.31, taking a finite-size Gaussian wavepacket defined by ψ0 =

exp
(−(r − r0)

2/2σ2
)
exp(ik0r) with a width σ in real space (and 1/σ in reciprocal space)

centered at a wavevector k0, with its spinor part given by (1, 0)T (corresponding to θs = 0)
as an initial condition. We choose the simulation parameters typical for polaritonic systems
[56]: α = 1 meV/μm−1, k0 = 1 μm−1, m = 2 × 10−5m0 (m0 is the free electron mass),
σ = 128 μm. We can observe a truly excellent agreement with the analytical trajectory in a
substantial time window, limited only by the transient nature of the ZBW due to the finite
wavepacket size in numerical simulations [228].

As said in the introduction, the Rashba Hamiltonian can be described as resulting from
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the action of a non-Abelian gauge field [212, 176, 213, 214] described by the Yang-Mills
Lagrangian [171]. Within this picture, it is also possible to derive a semiclassical equation
of motion, where the acceleration is the result of the action of a non-Abelian magnetic
force acting on (pseudo)-spin currents, as recently measured in [54]. As shown in [162],
the time derivative of Eq.5.32 gives an expression of the transverse acceleration in terms of
the Quantum Metric, equivalent to the results of the Yang-Mills theory [176] (see section
5.4.5). This acceleration appears because of the precession of the spin, or, in other words,
because of the interband transitions described by the Quantum Metric. This provides a
microscopic mechanism behind the non-Abelian Lorentz force of the Yang-Mills field, which
can be interpreted as being the consequence of the geometry of the underlying quantum
space.

Anticrossing bands: Rashba + Zeeman (massive Dirac)

We now consider the Rashba Hamiltonian combined with a Zeeman term. The resulting
bands are non-degenerate and show a distributed Berry curvature. A wavepacket accelerated
in such a system can show either AHE or ZBW, or a combination of both effects, depending
on initial conditions. figure 5.6(a-c) considers the acceleration by a spatial energy gradient
2 × 10−3 meV/μm for different initial conditions. We compare the center of mass trajec-
tories obtained by solving the spinor Schrödinger equation 5.34 and the one obtained from
the semiclassical equations of motion 5.29. The Zeeman splitting is Δ = 0.5 meV, other
parameters as above. Panel (a) demonstrates the AHE regime, with the initial condition
corresponding to an eigenstate of the system (the lowest energy band at k = 0): the devia-
tion along y is the AHE drift. The correspondence between the description of the AHE in
terms of Berry curvature and the one based on the use of the Quantum Metric is explicitly
shown in the next section. Panel (b) corresponds to the pure ZBW, with the initial condition
corresponding to the equal fraction of both branches: f1 = f2. In this case, there is no AHE
drift, because the effect of the Berry curvature is completely canceled by f1−f2 = 0. Finally,
panel (c) corresponds to a particular case of f1−f2 = 0.9, allowing to observe both the AHE
drift and the large oscillations due to the ZBW. Qualitatively similar results are obtained
with a TE-TM SOC (see [162]) characterized by a double winding number and typical for
photonic systems. The AHE has been recently measured in an optical system with TE-TM
SOC and Zeeman splitting [56].

If we consider a wavepacket with zero intial wavevector and zero external force k̇ = 0, the
effective field is completely determined by the Zeeman splitting: θf = 0. If the spin of the
initial wavepacket is in the plane θs = π/2 (and φs = 0 as an example), the third equation
of motion 5.28 gives that the spin will remain in the plane (sin θs = 1) and rotate with an
angular frequency Ω (φs = Ωt). The equation 5.29 gives:

ẋ = Ω
√
gkxkx cosΩt, ẏ = Ω

√
gkyky sinΩt 5.35

where the Quantum Metric at k = 0 is given by gkxkx = gkyky = α2/4Δ2. These equations
explicitly show the wavepacket rotation in real space, with a radius determined by the value
of the Quantum Metric R =

√
gkk = α/2Δ, as illustrated in fig. 5.6(d).
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5.4.3 Results and Discussion

1�2

1�2 1�2

Figure 5.6: Rashba+Zeeman Hamiltonian. Wavepacket dynamics from Schrödinger (black
solid lines) and semiclassical (red dashed lines) equations: a) AHE (single-band initial ex-
citation); b) ZBW (equal fractions of both bands); c) both effects together; d) cyclotron-like
orbits at constant k (no potential gradient) with a radius determined by the metric.
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Our results show that the Quantum Metric provides a characteristic length scale l =√
gmax for the semiclassical behavior. This is best seen with the example of the Dirac

equation, where the value of the Quantum Metric at k = 0 is

√
gkk =

�

mc
, 5.36

which is the well-known Compton wavelength λC of the electron, determining a universal
length scale in Physics. Indeed, it enters the expressions for the classical electron radius, the
Bohr radius, the electron-proton scattering cross-section, and even determines the Planck
length. We note that the full Dirac equation contains 4 components, and the Quantum
Metric associated with both the particle-antiparticle and the spin degrees of freedom is the
same, determined by the relativistic effects.

The physical meaning of the Compton wavelength can be understood with the Quantum
Metric. Qualitatively, it limits the precision of the measurement of the electron’s position.
Indeed, scattering of a photon with the wavelength λC brings the electron into a 50% electron-
positron superposition, corresponding exactly to the case of fig. 5.6(d): the electron’s center
of mass exhibits a cyclotron motion with the radius R =

√
gkk(0) = λC . This rotation is

what determines the uncertainty of its position. Even for Hamiltonians which do not have
a single length scale, the Quantum Metric still can be used to determine the scales of the
ZBW at rest or at high velocities, changing from the Compton to the de Broglie wavelength
[216, 217]: indeed, √gkk ∼ 1/k = �/p at large k.

The maximal value of the trace of the Quantum Metric is an important physical quantity.
This maximal value determines the extension of the metric in the parameter space, that is,
the characteristic scale at which the changes occur (for example, level crossing), because
the integral of the Quantum Metric (approximately, the product of the maximal value and
the extension) is often quantized, representing a topological invariant [165] similar to the
Chern number. It determines both the maximal amplitude of the ZBW oscillations and of
the anomalous Hall drift (even though the latter is an integral quantity). It determines the
spatial extension of the chiral edge state in topological insulators, controlling the minimal
size of topological lasers and optical isolators. This will be a subject for future works.

5.4.4 Berry curvature and Quantum Metric.

The one-to-one correspondence between the Berry curvature and the Quantum Metric
in two-band systems was discussed in Ref. [167, 150, 168], and this discussion was extended
to three-band systems in [232]. Given the existence of such mapping, it is therefore natural
that it is possible to write the semi-classical equations using either the Berry curvature or
the Quantum Metric. Here, we demonstrate that the Berry curvature term responsible for
the AHE drift gives exactly the same contribution to the transverse group velocity as the
term written in the equation using the Quantum Metric.

In the particular case of the Rashba SOC with the Zeeman splitting we consider as an ex-
ample, the AHE drift occurs in the y direction. Therefore, we need to study the y projection
of the group velocity. To establish the equivalence between the equations with the Berry
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curvature, containing the time derivative of the wavevector dky/dt and the semi-classical
equations with the Quantum Metric, we will use the description of the non-adiabaticity by
the Quantum Metric.

We begin by providing the explicit expressions for the Berry curvature and the Quantum
Metric for the Rashba/Zeeman Hamiltonian, equivalent to the massive Dirac Hamiltonian.
The Berry curvature reads:

Bz =
α2Δ

2 (Δ2 + α2k2)3/2
5.37

and the Quantum Metric reads

gkx,kx =
α2

(
Δ2 + α2k2y

)
4 (Δ2 + α2k2)2

, gky ,ky =
α2

(
Δ2 + α2k2x

)
4 (Δ2 + α2k2)2

5.38

The term of the equation 5.29 of the main text responsible for the transverse anomalous Hall
velocity (for a wavepacket characterized by a wavevector along x) reads:

�vy = . . .+ �Ω
√
gky ,ky sin θs sin(φf − φs) 5.39

In the quasi-adiabatic regime, sin θs ≈ sin θf = αk/�Ω and sin(φf − φs) ≈ η/ sin θf , which
gives:

�vy = . . .+ �Ω
√
gky ,kyη 5.40

The angle η here can be obtained from the wavevector change rate dkx/dt using the fact that
any non-zero change of the parameters of the Hamiltonian leads to a finite non-adiabaticity
described by η and given by the Quantum Metric along the wave vector evolution direction
[160, 233]:

fNA =
gkx,kx
�2Ω2

(
dkx
dt

)2

5.41

This non-adiabatic fraction is linked with the angle between the spin and the effective field
η as fNA = η2/4. This allows us to transform the expression obtained using the Quantum
Metric to the familiar expression with the Berry curvature:

�vy = . . .+ 2
√
gyygxx

dkx
dt

= Bz
dkx
dt

5.42

where we have used the identity √
det g =

Bz

2
5.43

valid for all 2-band Hamiltonians with a Berry cuvature of a constant sign [165]. The two
approaches indeed give the same contribution to the transverse velocity.

5.4.5 Link with the Yang-Mills theory

We have seen in the beggining of this chapter that a general non-relativistic Hamiltonian
of a massive matter field (quantum particle) minimally coupled with a non-Abelian gauge
field determined by a vector potential Aa

μ reads [171, 181, 176]
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HYM =
1

2m
(p̂− ηAaσa)2 + ηAa

t σ
a 5.44

The coupling constant is η = �/2 (the quantum of spin). We use upper number indices
0−3 for Pauli matrices. Comparing this expression with the Rashba Hamiltonian (eq. 5.31),
one sees that only two components of the vector potential are non-zero: A1

x = −mα/η,
A2

y = −mα/η. The non-Abelian nature of the field makes that the constant vector potential
nevertheless gives rise to non-zero field strength tensor. In the case of Rashba SOC, the
only non-zero components are F 3

yx = −F 3
xy = −m2α2/g, where g = �/2 is the Yang-Mills

coupling constant (upper indices 0− 3 correspond to Pauli matrices). This non-zero field is
responsible for an analogue of a Lorentz force for a non-Abelian gauge field. The Yang-Mills
theory thus allows to predict an analogue of a transverse force acting on a spin current in
the Rashba Hamiltonian. This force is proportional to the field strength and to the spin
current, as can be seen from the second Newton’s law

mdvμ/dτ = Jν · F μν 5.45

The corresponding acceleration is ultimately found as ax = −2mα2J3
y/�

2, ay = 2mα2J3
x/�

2,
where J3

x , J3
y are the circular (spin-up/down) components of the spin current propagating

along x and y respectively.
We will now compare the predictions of the Yang-Mills theory with those of the semi-

classical equations that we have derived. In the particular case where the external forces
are absent, the first of the equations of motion 5.28 of the main text gives that the central
wavevector of the wave-packet is constant: k̇ = 0. The equation 5.29 of the main text is still
time-dependent, so it can be derived once again to find an analogue of the second Newton’s
law, similar to 5.45. We consider a parabolic band extremum characterized by an effective
mass m, and define the z-projection of the spin current as J = �

2qc cos θs/2m, which allows
writing

mr̈ =
√
gkk

4α2km

�2
ez × J 5.46

making the metric appear explicitly in the expression for the non-Abelian magnetic-like
Yang-Mills force. We can therefore conclude that the QM is at the heart of the microscopic
mechanism behind the Lorentz-like transverse force acting on a spin current in the static
non-Abelian gauge field described by Eq. 5.45.

The covariant derivative appears in the Lagrangian to ensure the fundamental principle
of gauge invariance. But the physical mechanism associated with its microscopic effect is
based on the fact that the group velocity in a spinor system necessarily includes the QM
describing the interband transitions due to the spin dynamics.

5.4.6 Conclusions

We derived the semiclassical equations of motion for a wavepacket in a two-band system
in terms of the static band parameters, in particular, the Quantum Metric. These equations
describe universally the anomalous Hall effect, the Zitterbewegung motion, and every regime
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in between. The Quantum Metric turns out to determine a universal length scale for all
effects beyond the simple group velocity.

5.5 Giant effective Zeeman in a monolayer semiconductor

5.5.1 Introduction

We have seen in the 3rd chapter that the time-reversal symmetry can be broken in
polaritonic systems owing to a Zeeman splitting, meaning in presence of a magnetic field.
We will present here a particular configuration where we can obtain a giant Zeeman effect.
Monolayer Molybdenum diselenide (MoSe2) presents a four-band massive Dirac system for
studying spin and valley pseudospin dependent interactions between electrons, excitons, and
photons [234, 235]. In the presence of an appreciable free carrier density, simple neutral
exciton absorption evolves into two Fermi-polaron branches, repulsive and attractive [234,
235, 236, 237]. The monolayer then plays host to a Bose-Fermi mixture consisting of excitons
dressed by electrons (or holes, for p-type doping). Strong coupling of these Fermi-polaron
resonances to photonic microcavity modes has been demonstrated [234, 238]. Simplistically,
the repulsive and attractive polarons correspond to a spin-triplet or spin-singlet interaction,
respectively, between the two-dimensional electron gas (2DEG) and the constituent electron
of the exciton [234, 235, 236]. In MoSe2, subject to strict spin-valley locking9 and chiral
optical selection rules, this has the consequence of tying the 2DEG degree of spin polarization
to the oscillator strengths of the polaron resonances in opposite photon helicities. The
extreme example of this effect is when the 2DEG becomes fully spin polarized, leading to
vanishing absorption of the attractive polaron in one photon helicity [235, 236].

It has recently been reported that when the Fermi level is significantly smaller than
the trion binding energy, the attractive polaron may be adequately described as a three-
body charged exciton, or trion [240, 241]. Although nominally the trion exists only in the
strict single particle limit, in reality the transition between these two quasiparticle regimes is
unclear, and likely depends heavily on the degree of exciton and carrier spatial localization
over the monolayer, especially at low densities. This is particularly true in the case of
nonequilibrium scenarios such as photoluminescence experiments, in which both species may
coexist [241].

Valley Zeeman splitting of these excitonic complexes has been reported under application
of strong out-of-plane magnetic fields (B-fields) [235, 242, 243]. However, translating the
relatively large Zeeman splitting of a purely matter-bound excitation into a photonic mode
splitting remains a fundamental challenge not only in opto-valleytronics [244], but also in
topological photonics. Indeed, many topological states of light have been implemented in
recent years [129], including using TMD exciton-polaritons [132, 245]. The ultimate goal
of real topological protection against any type of disorder scattering and back-reflection
requires time-reversal symmetry breaking [134, 128], with the size of the topological gap
limited by the effective Zeeman splitting of the photonic modes. Large splittings are difficult
to achieve at optical frequencies, and in the existing realizations either based on the use

9An interesting and clear paper to understand spin-valley locking in MoS2 [239].
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of magnetic proximity effects [138] or on the matter-based Zeeman splitting of exciton-
polaritons [246, 135], the topological gap was < 1 meV, too small to be clearly observable.

In our work [247]10, by harnessing many-body interactions in a 2-dimensional Bose-Fermi
mixture, we realise a giant effective trion-polariton Zeeman splitting, over 5 times larger than
the bare (uncoupled) trion splitting, and more than double the polariton linewidths, a crucial
step towards elimination of unwanted coupling between chiral modes [248]. We moreover
demonstrate giant effective non-linearity α ≈ 0.2±0.05 meV·μm2 for trion-polaritons under a
magnetic field. This value is one order of magnitude larger than previously reported in TMDs
[249, 238] and is based on an original mechanism involving free carrier valley relaxation and
strong light-matter coupling. Large photonic non-linearities, as in this work, are crucial for
classical, quantum and topological photonics [128, 129].

5.5.2 MoSe2 system

Together with the group of Prof. A. I. Tartakovskii from The University of Sheffield,
England, we have studied a MoSe2 monolayer on a 10 nm thick film of the ferromagnetic
semiconductor europium sulphide (EuS) which coats a dielectric distributed Bragg reflec-
tor (DBR). Firstly, we characterize the MoSe2 monolayer in the half-cavity, or bare flake,
configuration, at temperature T = 4.2 K. fig. 5.7.a shows circular polarization resolved re-
flectance contrast (RC = (R0 −R)/R0, where R and R0 are the reflectance from the MoSe2
and adjacent EuS substrate, respectively) spectra from the sample under linearly polarized
broadband illumination at out-of-plane magnetic field strengths B = −8, 0,+8 T. We ob-
serve, at B = 0 T, two clear absorption peaks attributed to the neutral exciton (XRC) and
trion (TRC) at higher and lower energy, respectively. TRC displays a significant spectral
weight, indicating an elevated doping level of the flake. These two resonances may be sim-
ilarly described as Fermi-polarons, sharing the fundamental principle of a neutral exciton
being either bound (attractive interaction, trion-like) or unbound (repulsive interaction) to
itinerant carriers [237, 234, 235, 236]. The energy separation between these peaks allows us
to estimate the free carrier density as 1012 cm−2 (see Supplementary Note 1 of the article
[247]) [236]. We attribute this relatively high carrier density to electron doping from the
EuS film, which we expect to be highly charged owing to the deposition technique (see [247])
[250, 251]. Measuring photoluminescence (PL) using a continuous wave laser at 1.946 eV,
only a single peak is observed, attributed to the trion. The absence of neutral exciton PL
is consistent with the high doping level in the flake, as is the significant Stokes shift of ∼ 6

meV observed between TRC and TPL (fig. 5.7.a) [234].
When B = ±8 T, TRC is only visible in one circular polarization (fig. 5.7.a). Owing to

its spin-singlet or intervalley nature, the trion absorption strength of σ+ (σ−) light depends
upon the itinerant carrier density in the −K (+K) valley. Therefore, the electron Zeeman
splitting is sufficiently large at this temperature to fully spin polarize the 2DEG (fig. 5.7.b)
(see section 5.5.5) [235, 236]. Achieving complete spin polarization of a 2DEG of such
high density as here may point to itinerant ferromagnetism, in which transient domains of
oppositely spin polarized electrons at B = 0 T evolve into a spatially correlated spin polarized

10Reproduced with permission from Springer Nature.
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Figure 5.7: Excitations of a 2-dimensional electron gas strongly coupled to light in
monolayer MoSe2. (a) Reflectance contrast RC = (R0 − R)/R0 from monolayer MoSe2
(reflectance R on flake and R0 on substrate) with raised itinerant carrier density at T = 4.2
K and B = −8, 0,+8 T. Two peaks are attributed to the neutral exciton (XRC) and charged
exciton or trion (TRC). At high B-fields the trion absorption is completely suppressed in one
or the other circular polarization of light. For comparison the trion photoluminescence TPL

signal at B = 0 T is also shown, revealing a Stokes shift of ∼ 6 meV. Neutral exciton emission
is absent owing to the raised doping level of the flake and rapid trion formation. (b) Sketch of
the lowest conduction sub-bands of monolayer MoSe2, in which the electronic spin and valley
pseudospin (+K or −K valley of momentum space) are strictly correlated. These degrees of
freedom are distinct in that the spin couples to magnetic field, while the valley pseudospin
couples to light. Optical selection rules dictate that excitons and trions possess a +K (−K)
valley pseudospin when they couple, weakly or strongly, to σ+ (σ−) polarized photons. At
B = 0 T, the 2DEG has zero net spin polarization. At B = +8 T, the 2DEG is completely
spin polarized, causing the oscillator strength of the −K valley trion to be suppressed owing
to a lack of itinerant electrons in the +K valley. (c) Schematic of the zero-dimensional open
cavity structure used in this work. Applying a DC voltage to the piezo crystal decreases the
cavity length (see [247]). (d) Cavity PL intensity maps (logarithmic scale) as the cavity mode
is tuned through the trion resonances. Shown are the results at B = 0 T (left panels) and
B = +8 T (right panels) in both photon emission helicities. The laser is linearly polarized.
At B = 0 T, the spectra are essentially identical between both polarizations, while the near-
unity spin polarization of the 2DEG at B = +8 T causes strong coupling to break down in
σ− polarization. A modified coupled oscillator model incorporating the trion-polariton Stokes
shift was used to fit the UPB and LPB (overlaid orange curves). The energies of TPL and
TRC in both polarizations (orange horizontal lines) are obtained directly or inferred from
bare flake spectra at B = 0 T and +8 T. The UPB becomes progressively dimmer at higher
energies owing to increasing absorption from the EuS film.
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state when B > 0 T [252, 253]. We additionally note that while EuS is ferromagnetic, we
see no evidence of magnetic proximity effects in the sample (see Supplementary Note 3 of
the article [247]).

For the next stage of the study, we incorporate the MoSe2 / EuS structure into a tun-
able zero-dimensional microcavity (fig. 5.7.c), formed by introducing a downward facing top
concave DBR into the optical path above the sample (as described in Ref. [254]). By control
of the mirror separation using piezo nanopositioners, we tune the ground state longitudinal
cavity mode (Laguerre-Gaussian LG00) through resonance with both TPL and TRC , and
perform cavity PL spectroscopy using a linearly polarized laser at power 5μW. At B = 0 T,
we observe essentially identical PL spectra for both σ+ and σ− detection polarizations. As
the cavity length is tuned, the observation of an anticrossing indicates strong light-matter
coupling and defines upper and lower trion-polariton branches (UPB and LPB) separated
by a Rabi splitting ΩR ∼ 9 meV. We note here that the trion Stokes shift is comparable
with the Rabi splitting, and therefore must be taken into account in order to precisely fit
the polariton PL energies by going beyond the most basic coupled oscillator model (see
next section). Indeed, while the anticrossing originates at the energy of TRC , where cavity
photons are most strongly absorbed, the polariton PL shows a finite Stokes shift causing
both UPB and LPB emission to tend to the trion PL energy at vanishing photon fractions.
Repeating the experiment at B = +8 T (fig. 5.7.d) reveals a larger anticrossing in σ+, while
the strong coupling regime breaks down in σ− (ΩR is smaller than the polariton linewidths
and unresolvable), consistent with the weak oscillator strength of TRC in σ− (fig. 5.7.a top
panel), and constituting observation of valley-specific strong light-matter coupling, in which
the trion is simultaneously strongly coupled to σ+ light while only weakly coupled to σ−

light.

5.5.3 Photoluminescence from polariton modes

We theoretically describe each circularly polarised trion-polariton mode using a standard
two-coupled oscillators model. Since the broadening is significant, we include mode broaden-
ing by using an homogenous imaginary part for the bare photon and trion energies [255, 7].
The trion energies are determined by reflection experiments performed on the bare flake.
The open cavity mode energy reads as Ec = α(V + V0) where α the slope of the photonic
mode energy versus the applied voltage V controlling the optical cavity length. The upper
and lower polariton branch energies read as :

E
σ±
U,LPB =

1

2
Re

(
E

σ±
Ta + Ec ±

√(
E

σ±
Ta − Ec + i (ΓTa − Γc)

)2
+ (Ωσ±)2

)
5.47

where E
σ±
Ta is the energy of the trion in absorption for a given spin component, Ωσ± are

the Rabi splitting values to be determined, Γc=0.6 meV and ΓTa=6 meV are the measured
linewidth of the two modes, which we keep constant.

The trion fractions of the polaritons (square of the Hopfield coefficients) read as:
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Figure 5.8: Fit of the lower and upper polariton branches in two polarizations: dots – exper-
iment, line – theory.

∣∣Xσ±
L

∣∣2 =
(Ωσ±)2

Ω2 +
(
E

σ±
UPB − E

σ±
Ta

) 5.48∣∣Xσ±
U

∣∣2 = 1− ∣∣Xσ±
L

∣∣2 5.49

These energies are the one which could be measured in a transmission or absorption
experiment. As for bare excitons in any media, polaritons demonstrate a finite Stokes shift.
In the presence of finite random disorder, the Stokes shift is the difference between the energy
of a resonance in absorption which corresponds to the maximum density of states, and in
photoluminescence (PL) which corresponds to the lowest energy state of the inhomogeneous
distribution of energy resonances. The Stokes shift is quite large in our sample owing to
the raised itinerant electron density. Indeed, as the Fermi level increases above the bottom
of the conduction band in MoSe2, the Stokes shift will increase as the trion absorption
feature blueshifts [234]. As shown in fig. 5.7.a, we have performed both reflection and PL
measurements on the bare flakes which allows us to precisely determine the bare trion Stokes
shift value, which is of the order of 6 meV. It reads

Δ
σ±
S = E

σ±
Ta − E

σ±
Te 5.50

where E
σ±
Te is the trion energy in PL.

For polaritons, the Stokes shift is reduced with respect the case of the bare trion. The
polariton Stokes shift should tend to the trion Stokes shift when the trion fraction of the
polariton tends to 1. On the other hand, the Stokes shift should tend to 0 when the polariton
becomes strongly photonic. We therefore choose to introduce phenomenologically a polariton
Stokes shift value given by:

E
σ±
U,L = E

σ±
U,LPB −Δ

σ±
S |Xσ±

U,L|2 5.51
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Using the above mentioned formula allows us to fit the voltage-dependence of the trion-
polariton PL energies for different pumping powers and magnetic field strengths, with the
Rabi splitting in each polarisation being the only fitting parameters. The results are shown
in fig. 5.7.d and fig. 5.8. The agreement between the experiment and the phenomenological
theory which we use is extremely satisfactory. The extracted dependence of the Rabi splitting
values versus pumping for both spin components are shown on fig. 5.10.c of the main text.

5.5.4 Results

Fig. 5.9.a shows σ+ and σ− LPB PL versus piezo voltage at B = 0 and 8 T, where a
giant effective Zeeman splitting is observed, exceeding 10 meV as cavity length decreases. The
LPB Zeeman splitting is amplified by valley-specific strong light-matter coupling, whereby
the near-unity spin polarization of the 2DEG at B = +8 T suppresses the oscillator strength
of the trion in σ− polarization, by transferring it to σ+ polarization. Fig. 5.9.b compares
the trion PL g-factor measured on the bare flake (g = 3.9) with that of the trion-polariton
which is over 5 times larger (g = 21.1). While the LPB Zeeman splitting increases at higher
voltages, this comes at the cost of increased polariton linewidths and reduced intensity.
However, we note that the LPB Zeeman splitting exceeds the bare trion splitting for all
B-field strengths and all cavity lengths studied here. This result is in marked contrast to
the expected scenario in which the polariton Zeeman splitting is reduced relative to that of
bare trion by the corresponding Hopfield coefficient [256].

Next, we show how the giant Zeeman splitting can be very effectively optically controlled.
We fix B = +8 T and study the influence of incident laser power on the cavity PL. As can be
seen in fig. 5.10.a, increased power reopens the anticrossing in σ− which previously collapsed
upon application of the B-field (fig. 5.7.d). Fig. 5.10.b shows trion-polariton PL spectra
versus pumping power at fixed cavity length, where ΩR grows in σ− and correspondingly
decays in σ+, suggesting that non-resonant pumping efficiently transfers electrons between
spin states (equivalently, between valley states). Here, qualitatively, electron-hole pairs are
injected by the laser and bind to form excitons and trions on ultrafast timescales (sub-ps).
The initial trion population will be highly valley polarized as the only free carriers available
are from the spin polarized 2DEG, however, exciton and trion valley depolarization in MoSe2
is extremely efficient (ps) owing to the Maialle-Silva-Sham (MSS) mechanism (confirmed
here by transient ellipticity measurements, see Supplementary Note 4 of the article [247])
[254, 209]. Therefore, rapid intervalley scattering of trions followed by their radiative decay
can result in a free electron remaining in the spin state anti-aligned to the external B-
field. This means that each trion emission process results in partial transfer of electrons
between spin-valley states. While trion valley relaxation occurs on ps timescales, the spin
relaxation time for free electrons is ∼ 1000 times longer, of the order ns, as they are immune
to the MSS mechanism and must undergo a large momentum transfer to scatter between
spin-valley states. As such, trion intervalley scattering and subsequent photon emission can
depolarize the 2DEG ∼ 1000 times faster than it can return to spin-polarized equilibrium.
By embedding all of these processes into rate equations, we infer that laser power in the μW
range is enough to fully balance the 2DEG spin populations and associated trion-polariton
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Figure 5.9: Giant effective trion-polariton Zeeman splitting. (a) Cavity PL spectra
at increasing piezo voltages (decreasing cavity length) for B = 0 T (left panel) and B = +8
T (right panel). A giant Zeeman splitting of the lower polariton branch (LPB) can be seen
when the B-field is applied. Spectra normalization factors at B = +8 T are stable around
∼ 1.2 from 9.2 V to 11.6 V, increasing to 6.6 at 12.8 V owing to onset of absorption from
the EuS film, which reduces the cavity Q-factor and weakens σ− intensity. (b) The maximum
valley splitting of the trion-polariton LPB as a function of applied B-field strength. Here,
we extract an effective maximum LPB Zeeman splitting at each 1 T B-field increment from
our cavity fitting procedure. Error bars quantify the uncertainty arising from our cavity data
fitting procedure indicated by orange curves in fig.5.7.d For comparison the valley Zeeman
splitting of the bare (uncoupled) trion is also shown. The g-factors of the trion-polariton and
bare trion are (21.1± 0.9) and (3.93± 0.04), respectively.
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Rabi splittings in opposite circular polarizations. Our simulations are shown in fig. 5.10.c
(top panel) and are in excellent agreement with experimental data.

Lastly, we relate the computed exciton and trion densities to the energy shifts of the
LPB when B = +8 T, and deduce effective LPB interaction strengths, in this case attractive
for σ− and repulsive for σ+. The middle panel of fig. 5.10.c shows the LPB blueshift in σ+

alongside the effective interaction strength, defined as α = ∂E+
LPB/∂n

+ (see next section on
the rate equation model), which corresponds to a repulsive interaction between same-spin
particles since only σ+ excitons can depolarize electrons when B = +8 T. The extracted
value, α ≈ 0.2±0.05 meV·μm2 at P = 5 μW, is one order of magnitude larger than previously
reported for trion-polaritons because it is based on a completely different mechanism [249].
It is based neither on oscillator strength or the Coulomb interaction between carriers, but
instead on linear spin relaxation processes. The increase in the interaction strength at the
lowest laser powers is accompanied by a marked increase in the effective trion-polariton
Zeeman splitting, confirming their shared origin in the 2DEG spin dynamics (fig. 5.10.c
bottom panel).

5.5.5 Rate equation model

In this section we present the system of rate equations we use in order to compute the
free carrier spin polarisation versus pumping power. This model can be used, with different
parameters, to describe the relaxation dynamics both in a bare flake and when the flake is
embedded in the cavity. In this last case, the computed polarisation degree of carriers (free
and those bound to excitons to form trions) allows to directly deduce the dependence of Rabi
splitting values versus pumping, and to compare them with the experiment. The scheme of
the processes taking place in the system is shown in fig. 5.11. When pumping starts, the res-
ident carriers are assumed to be all spin-polarized up, because of the applied magnetic field.
The pump creates excitons (exciton-polaritons), which bind with the free carriers to form tri-
ons (trion-polaritons) with correlated spin. Trions can depolarize a lot faster (∼ ps) than free
carriers (∼ ns) because of the L-T spin-orbit coupling (Maialle-Sham mechanism[257, 209]).
When these depolarized trions emit light via the exciton recombination and emission of the
photon out of the cavity, the remaining free carriers have a reduced polarization. This re-
duced polarisation depends on the ratio between the trion (trion-polariton) decay time and
the trion depolarisation time. The time needed for an electron spin to reorient parallel to
the magnetic field is comparable with its depolarisation time (∼ ns). Therefore, even with
a small pumping (a few excitons per picosecond), the small number of trions formed by this
process can efficiently depolarize a large fraction of free carriers.

The result is that, under optical pumping, we observe strong coupling in a cavity for
both polarizations, because there are free carriers of both spins available in the system. The
key point is that the effect of the injected exciton density on the Rabi splitting is amplified
by the ratio τ se /τ

s
t ∼ 103.

Mathematically, the processes described can be modelled by rate equations involving free
carriers N , excitons (exciton-polaritons) X, and trions (trion-polaritons) T :
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Figure 5.10: Trion-polariton effective nonlinearity. (a) Cavity PL colormaps (logarith-
mic scale) in σ+ and σ− emission at B = +8 T and a high laser power P = 500 μW. An
anticrossing is seen in both polarizations despite the strong applied B-field. Polariton fitting
curves incorporating the Stokes shift are overlaid. (b) Cavity PL spectra at fixed detuning
close to trion-cavity resonance, at B = +8 T, taken at varying incident laser powers. As
the power is decreased, the 2DEG spin polarization increases and the anticrossing in σ− is
suppressed. This has the secondary effect of amplifying the effective Zeeman splitting be-
tween σ+ and σ− lower polaritons. (c) (top panel) Rabi splittings, ΩR, in σ+ and σ− at
B = +8 T against laser power. Nonlinear breakdown of strong coupling in σ− is observed
as the power is decreased. Solid curves are simulated results. (middle panel) The calculated
effective trion-polariton interaction strength, α (see main text for definition), and the cal-
culated and experimental blueshift, ΔE, of the LPB in σ+ polarization, both at B = +8 T
as a function of pump power. As there is no emission at 0 μW, the blueshift between 0 and
5 μW is assumed to be the same as between 5 and 10 μW, measured as (0.23 ± 0.12) meV.
(lower panel) The maximum LPB Zeeman splitting, EZ , at B = +8 T against laser power.
The splitting increases drastically at the lowest powers when the 2DEG spin polarization is
highest. For comparison the bare trion Zeeman splitting is shown.Error bars on experimental
data points arise from our data fitting procedures and the inherent uncertainty in the spec-
trometer resolution.
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dN±
dt

= −WN±X± + ΓT± ± N−
τ se

∓ N+

τ se
e
− Δ

kbTe 5.52

dX±
dt

= −WN±X± + P± − X± −X∓
τ sX

− X±
τX

5.53

dT±
dt

= WN±X± − ΓT± − T± − T∓
τ sT

5.54

The ± indices of N , X, and T correspond to the different spins of the free carriers,
excitons (exciton-polaritons), and trions (trion-polaritons), respectively. Δ is the electron
Zeeman splitting, Te is the temperature. In all cases, we have considered linearly-polarized
pumping: P+ = P−. The initial number of spin-polarized free carriers is N0 = 1000 (es-
timated from the density 1012 cm−2). The table below gives the parameters we used to
describe the bare flake under 0 and 8 T and the cavity system. The trion-polariton decay
rate toward a photon and a free electron is Γ = 1/τT , where τT is the trion-polariton’s
lifetime.

Table of parameters
Parameter Bare flake 0T Bare flake 8T Cavity 8T

Measured experimentally Fit parameters Fit parameters
τT 0.2 ps 2 ps
τ sT 1 ps 2.7 ps 10 ps
τX 0.3 ps 2 ps
τ sX 0.2 ps 0.7 ps 5 ps
τ se 3 ns 3 ns 3 ns
Δ 0 meV 3.4 meV 3.4 meV
W 3x10−3 ps−1 3x10−3 ps−1
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Figure 5.11: Scheme of the population dynamics. Arrows indicate the pumping (violet),
scattering and decay rates (black), spin relaxation rates (small black).
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5.5.6 Conclusion

Our experiments [247] demonstrate the simultaneous manifestation of strong and weak
coupling regimes between a photonic mode and a many-body correlated matter excitation
consisting of an exciton dressed by electrons in an effective ferromagnetic phase, resulting
in a giant Zeeman splitting between trion-polariton modes. We additionally show that laser
illumination acts to depolarize the 2DEG via a process of trion valley pseudospin relaxation
and subsequent radiative recombination. The resulting Rabi splitting transfer between the
two polarization components induces energy renormalisation to which we associate large
effective interactions. While in this work an EuS film was used to introduce additional
free electrons into the flake, similar results should be observed in any MoSe2 monolayer
in which the itinerant carrier density can be raised arbitrarily to give the trion sufficient
oscillator strength. Magnetic 2-dimensional materials may also be used to induce 2DEG
spin polarization without the need for strong external B-fields [253]. Moreover, we note
that extremely high laser powers, often pulsed and quasi-resonant, are typically needed
to enter regimes of polariton non-linearity, while here the strongest effective interactions
occur under low power non-resonant continuous-wave laser excitation. Our work therefore
highlights doped MoSe2 as a flexible system in which to realize and apply ultrastrong low-
threshold non-linearities, for instance towards TMD-based all-optical logic gates [258, 259],
or to explore nonlinear topological photonics [260].

5.6 Chapter conclusion

In this chapter, by coherently exciting two bands near a Dirac point, we first studied a
non-Abelian gauge theory, describing vector charges, in an organic microcavity. It allows
to express a classical chromodynamics theory, with a coupled spatial and charge (color) po-
lariton dynamics. It results in Zitterbewegung oscillations observable at room temperature.
Then, we introduce an opposite regime of excitation, in the adiabatic limit of a single band,
which allows to obtain a photonic anomalous Hall effect.

We demonstrate that both of these regimes can be described by a single formalism,
resulting in universal semiclassical equations, using only the static band parameters, namely
the dispersion and the Quantum Metric. The latter turns out to determine a universal length
scale for all effects beyond the simple group velocity, and to provide a geometrical origin of
the Compton wavelength.

This chapter ends with the study of an experimental work on a transition metal dichalco-
genide semiconductor monolayer embedded in a microcavity. We show that a spin-selective
strong light-matter coupling regime gives rise in unusually strong optical nonlinearity and a
giant Zeeman effect, which allows to open a gap at the Dirac point in polaritonic systems,
and which has direct applications in topological physics.
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In the 6th and last chapter, we demonstrate that in presence of non-Hermiticity, a Dirac
point will transform into a pair of exceptional points, linked by a Fermi arc. We show

that the Quantum Metric diverges at the vicinity of an exceptional point. This divergence
allows to understand the complex behavior of a wavepacket centered at this point. Finally, we
present the first experimental extraction of the Quantum Metric in a non-Hermitian system,
exhibiting exceptional points. This thesis ends with the observation of the divergence of the
Quantum Metric at the vicinity of exceptional points, accordingly with the theory.

6.1 PT-symmetric systems

Mathematically speaking, a Hermitian system is described by a Hermitian Hamiltonian
H, meaning H = H†, with † the Hermitian conjugation. Physically, it guarantees eigenvalues
to be real, and that the corresponding time evolution operator is unitary, thanks to which
the total probability to observe a particle 〈ψ|ψ〉 = 1 is conserved. On the contrary, physical
systems with gain or loss can be described by a non-Hermitian Hamiltonian, which means
that the probability to observe a particle is not conserved, because the time evolution is
not unitary anymore. Nevertheless, it was shown that non-Hermitian Hamiltonians can also
have real eigenvalues. These Hamiltonians need to be PT-symmetric [261], ensuring the
commutation with the PT operator

[PT,H] = PTH −HPT = 0 6.1

where P is the parity symmetry operator changing a system into its mirror image, and T is
the time symmetry operator changing the direction of time. The two operators satisfy the
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following properties

P 2 = 1 , P = P † , T 2 = 1 , T = T † , [P, T ] = 0 6.2

and the action of the P and T operators are defined by

P : i → i , x̂ → x̂ , p̂ → −p̂

T : i → −i , x̂ → x̂ , p̂ → −p̂
6.3

where the x̂ and p̂ satisfy [x, p] = xp − px = i�. Now, let us consider a 2 × 2 Hamiltonian
describing a coupled two-level system with different loss/gain

H =

(
E1 − iγ1 κ

κ E2 − iγ2

)
6.4

with κ the coupling constant and γ1,2 the losses of the two different modes. It describes
non-Hermitian systems with complex energies. The eigenvalues are

E± = E0 − iχ±
√

κ2 + Γ2 6.5

with E0 = (E1 + E2)/2 the mean energy, χ = (γ1 + γ2)/2 the mean loss, Γ = δ + iβ

an important parameter defined by δ = (E1 − E2)/2, the energy detuning, and finally
β = (γ1−γ2)/2, the half difference of losses. Necessary conditions to obtain real eigenvalues
are

• χ = 0, which gives γ1 = −γ2, meaning one correspond to gain and the other to loss.

• κ2+Γ2 ≥ 0 (implying that it’s real), which, with nonzero β, is satisfied only for δ = 0,
meaning E1 = E2.

In this case, the Hamiltonian H ′ reads

H ′ =

(
E′ − iγ κ

κ E′ + iγ

)
6.6

with γ = γ1 = −γ2 and E′ = E1 = E2. The resulting eigenvalues read E′± = E′±
√

κ2 − γ2.
This Hamiltonian can describe a system of two coupled resonators, one with gain (G) and
one with loss (L), as shown in fig.6.1.a. This system is PT symmetric as the time operator T
changes loss in gain, and vice-versa, and the parity operator P switches the two resonators.
At the end of a PT operation, the system is identical to what it was before this operation.
We can plot the real and imaginary parts of the eigenvalues with respect to the coupling
strength κ. It is displayed in blue and red. At low coupling strength, there is a degeneracy
of the real part of eigenvalues, and a splitting of the imaginary part, which means that one
mode exhibits amplification and the other attenuation. When κ/γ > 1, we observe the
opposite – a splitting of the real part of eigenvalues, and a degeneracy of the imaginary
part. The eigenvalues are now purely real (and different). The transition point, at κ = γ,
is called an exceptional point, and will be extensively studied in the following. One should

96



6.2 Exceptional points in microcavities

��� ��� ���

�

�

�

�

�

�

�

��

�

�

�����	
� �
��
��
 ��� �����	
� �
��
��
 ���

�

�
��
��
��


�
�
�	
��


��
��
��

��
��
	

��
�
�
��


�
�
�	
��


��
��
��

Figure 6.1: (a) A PT-symmetric system composed of two coupled resonators, one with gain
(G) and one with loss (L). A PT operation on this system leaves it unchanged. (b-c) Real
and imaginary part of the eigenvalues versus the coupling constant κ. The theory is displayed
with dashed lines, and a COMSOL simulation is displayed with red circles and blue squares.
The exceptional point is located at κ = γ. At lower coupling κ < γ, there is a degeneracy
of the real part of eigenvalues, and a splitting of the imaginary part. It is the opposite when
κ > γ. At the exceptional point, there is a unique eigenvalue and a unique eigenstate, owing
to the Hamiltonian becoming defective. Figures from [262].

keep in mind this figure, as it is the signature of the presence of an exceptional point. An
exceptional point differs from a Dirac point because not only the eigenvalues coalesce at this
point, but also the eigenvectors, making the matrix describing the Hamiltonian a defective
matrix (non-diagonalizable).

6.2 Exceptional points in microcavities

The losses in photonics are inevitable, and it was overall seen as an unwanted feature for
quite a long time by the scientific community. But, as the reader probably understands by
now, it is one of the main features that made photonic systems a central platform [263, 264,
262, 265, 266] to study non-Hermitian physics, like exceptional points. We will study in this
section how to implement non-Hermiticity in a microcavity. We start by a microcavity with
TE-TM splitting and linear birefringence, which, as we have shown in chapter 2, exhibits
two Dirac points. As a reminder, the Hamiltonian, written in the circular basis, reads

Hcav =

(
�
2k2

2m∗ β0 − βk2e−2iϕ

β0 − βk2e2iϕ �
2k2

2m∗

)
6.7

where k =
√
k2x + k2y is the in-plane wavevector, ϕ = arctan(ky/kx) is the in-plane polar

angle of the wavevector, β0 is the linear birefringence term, lifting the degeneracy at k = 0.
Finally, m∗ is the effective mass of the modes and β is TE-TM splitting strength given by

1

m∗ =
1

2

(
1

mTE
+

1

mTM

)
, β =

�
2

4

(
1

mTE
− 1

mTM

)
6.8
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It allows to construct an effective Hamiltonian near a Dirac point which reads

HD (q) = �c

(
0 qe−iϕ

qeiϕ 0

)
= �cq · σ 6.9

where q is the wavevector in polar coordinates starting from the Dirac point, ϕ its polar
angle, c is the celerity and σ represents the Pauli matrix vector. Plotting the eigenvalues
of this Hamiltonian allows to obtain a Dirac dispersion shown in fig.6.2.a. This dispersion
changes drastically in presence of non-Hermiticity. Indeed, adding a non-Hermitian term in
the Hamiltonian HD will split the Dirac point into a pair of exceptional points, linked by a
Fermi arc, as shown in the panel b of the figure. We will consider the case where the distance
in the reciprocal space between the two exceptional points is sufficient. In this case, we can
write an effective Hamiltonian with an exceptional point centered at q = 0 [161], with � = 1

H1 =

(
0 αqe−iϕ + a

αqeiϕ + a 0

)
+ i

(
0 −ia

ia 0

)
6.10

The first part corresponds to a Rashba-like Hamiltonian with α the celerity of the waves
close to this point. This Hamiltonian displays a Dirac point at q = 0, and a constant term
a along x, shifting this point. The second part of the Hamiltonian corresponds to the non-
Hermiticity, with a term proportional to σy. To get one of the two exceptional points at
q = 0, it is crucial that the value a of this term is equal to the constant term along x, because
this configuration allows the a terms to cancel out, as we see if we write the Hamiltonian
under the form

H1 =

(
0 αqe−iϕ + 2a

αqeiϕ 0

)
6.11

Due to that, the Hamiltonian becomes defective and exhibits an exceptional point at q = 0.
The Hamiltonian H1 describes a microcavity with TE-TM splitting, linear birefringence and
linear dichroism1, with the dichroism giving the non-Hermitian term. This Hamiltonian is
similar to the gain-loss Hamiltonian [267], and is very general, as it allows to describe an
arbitrary exceptional point in an arbitrary 2D parameter space. At low wavevector q, its
eigenvalues read

E(q) =
√

2aαqe−iϕ/2 6.12

which gives are real and imaginary parts ReE =
√
2aαq cosϕ/2 and ImE =

√
2aαq sinϕ/2.

The dispersion is shown in fig. 6.2.b and c. We can observe here an important difference
between a Dirac point and an exceptional point. For the Dirac point, the dispersion at its
vicinity is linear in q, meaning the group velocity is constant. However, the dispersion at
the vicinity of an exceptional point is proportional the the square root of q, which results
in a diverging group velocity proportional to 1/

√
q. The imaginary parts of the eigenvalues

are marked in color in the figure. Along the line in the reciprocal space defined by ϕ = 0

and which ends at an exceptional point, we remark that the imaginary part is zero, meaning
the states are "stable". For any other point, there is a non-zero imaginary part determining

1Dichroism means that the absorption depends on the polarization.
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Figure 6.2: (a) Dispersion near the Dirac point. (b) The Dirac point transforms into a pair
of exceptional points, linked by a Fermi arc. (c) Zoom on an exceptional point. The color
shows the imaginary part of the energy.

either the decay (in blue) or the growth (in red) of the states.

6.3 The role of the Quantum Metric at exceptional points

6.3.1 Introduction

As a reminder, the Quantum Metric allows one to calculate the distance between two
quantum states [118], and is defined in the reciprocal space2 by

ds2 = gijdkidkj = 1− |〈ψ(k)|ψ(k + δk)〉|2 6.13

A crucial point is that the overlap integral between a state |ψ0〉 and some arbitrary state |ψ〉
can be expressed using the Quantum Metric tensor gij under the form

I = 1−
(∫ |ψ0〉

|ψ〉

√
gijdλidλj

)2

6.14

where the integral follows a geodesic line. It allows to obtain the behavior of the coefficients
cl(λ), with |cl|2 = I. These coefficients allow to express an arbitrary initial state ψ as a
superposition of eigenstates ψl used in the Schrödinger equation

|ψ(λ, t)〉 =
∑
l

cl(λ)e
−i

El(λ)

�
t |ψl(λ, t)〉 6.15

In our case, we will consider a two-band system, so only two eigenstates, and a wavepacket
centered at an exceptional point in the reciprocal space. The wavepacket dynamics depends
on the projection of the state on the two bands, and so on the integral I. And in our
theoretical paper [161], we are interested in the dynamics of a wavepacket near an exceptional
point, so we are interested in the overlap integral I. This integral depends on the Quantum

2Of course the Quantum Metric, as the Quantum Geometric Tensor, can be defined on any parameter
space.
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Metric, this is why we are interested in obtaining the Quantum Metric. This article shows
that the Quantum Metric diverges near an exceptional point, and that such divergence results
in a particular behavior of a wavepacket if the latter is sent at the vicinity of an exceptional
point.

6.3.2 Circularly polarized wavepacket

We start by considering the Hamiltonian H1 from eq. 6.11. At q = 0, meaning at the ex-
ceptional point, there is a unique eigenstate, which is |ψ0〉 = (1, 0)T , corresponding to a circu-
larly polarized mode. At any other point in the reciprocal space, there will be two eigenstates
of H1 noted ψ±. We consider a circular polarized wavepacket, with a finite wavevector distri-
bution σq, centered at an exceptional point. The first step is to obtain the Quantum Metric.

For small wavevectors, the eigenstates of H1 reads |ψ±(q)〉 =
(
1− αq/4a,

√
αq/2aeiϕ/2

)T
.

Due to this result, we can compute the radial component of the Quantum Metric tensor gqq

which reads

gqq ≈ α2

16a2
+

α

8aq
6.16

We see that it diverges as 1/q, with q the wavevector starting at the exceptional point. It
was shown that we obtain this divergence for any second-order exceptional point [268]. The
order of divergence depends on the order of the exceptional point. The angular part of the
Quantum Metric tensor gϕϕ is linear in q and reads gϕϕ ≈ αq/8a. For a Dirac point, this
term diverges and determines the behavior of a wavepacket at its vicinity. In our case, we
see that gqq does not depend on ϕ, which allow to write the overlap integral Icirc between
the states |ψ0〉 and |ψ(q)〉 as

Icirc = 1−
(∫ |ψ(q)〉

|ψ0〉

√
gqq(dq)

2

)
6.17

with |ψ0〉 the spinor of the wavepacket, corresponding to the circular polarization, and |ψ(q)〉
the eigenstate at q. Due to the independence of the integral on ϕ, the wavepacket is at first
equally distributed between the two modes, meaning n+ = n−. But the difference in the
imaginary parts of these states will result in their growth or decay. The most important
growth or decay is experienced along a line defined by sinϕ/2 = 1, meaning ϕ = π. To
obtain the group velocity at a certain point in the reciprocal space, we need to calculate the
derivative of the dispersion, and then fix the wavevector. The consequence is that, even if
along the line ϕ = π we have qy equal to zero, we will calculate the group velocity before
fixing its value. We start from the real part of the dispersion given by eq. 6.12. Along the
line described by ϕ = π, we use the the fact that cosϕ/2 =

√
(1 + cosϕ)/2, and we use a

Taylor expansion to finally obtain

E(q) ≈
√
2αa

(
qx

2 + qy
2
)1/4√1

2
+

qx

2
√

qx2 + qy2
≈ √

αa
qy

|qx|1/2
6.18

From that point, we can obtain the group velocity. In the horizontal (qx) direction, vx =

∂E/∂qx ∝ qy which is equal to zero along the line ϕ = π. In the vertical (qy) direction, a
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Figure 6.3: Circularly polarized wavepacket at an exceptional point. (a) Probability
density distribution |ψ(x, y, t)|2 for a circularly polarized initial wavepacket of σr = 64μm
at t = 0 and (b) t = 5 ps. The white cross marks the center of mass. (c) Center of
mass position as a function of time. (d) Center of mass velocity as a function of time,
demonstrating constant acceleration.
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non-zero group velocity vy = ∂E/∂qy reads

vy ≈
√
αa

|qx|1/2
6.19

So the group velocity vg = (0, vy) is perpendicular to the wavevector q = (qx, 0) along this
line. Meanwhile, the decay and the growth of the modes are given by the imaginary part of
eq. 6.12 which reads Γ ∼ ±qx

1/2. These growing ( population n+) and decaying (population
n−) fractions constitute two different parts of the wavepacket. These populations fill different
modes with opposite propagation directions (along ±y). What interests us is the average
velocity of this wavepacket, which for small times can be written under the form

〈vy〉 = (n+ − n−)vy ≈ 2vyΓt ≈ 2
√
2αat 6.20

We remark that the q
1/2
x terms from vy and from γ cancel each other, resulting in the

average group velocity not depending on qx. Accordingly, one should expect a finite-size
wavepacket centered at an exceptional point to demonstrate a constant acceleration in the
vertical (y) direction. This constant acceleration depends linearly on the dichroism, the
non-Hermitian term a, and on the celerity noted α. To validate this result, we performed
numerical simulations, solving the time-dependent spinor Schrödinger equation. We used
the Hamiltonian H1 described by eq. 6.11 and we plotted the trajectory of the center of
mass position of the wavepacket, for different initial sizes of the wavepacket. We used the
parameters of the perovskite microcavities explained in section 5.1 [54]. For a wavepacket
size of σr = 64 μm, two snapshots of the particle density |ψ(x, y, t)|2 are displayed in fig. 6.3,
describing the position of the center of mass in the real space (white cross) at t = 0 (panel
a) and t = 5 ps (panel b), and showing the trajectory between these two times (pink line).
We clearly see a vertical movement of the wavepacket, coming with its distortion. This
distortion is less visible as the size of the wavepacket increases, such as it is not visible
anymore with σr = 256 μm. The fig. 6.3.c. shows the time evolution of the y coordinate of
the center of mass, exhibiting a quadratic dependence. Owing to this quadratic dependence,
which falls off quicker for smaller wavepacket sizes, the vertical group velocity vy shows a
linear evolution. It confirms the constant acceleration, whose value corresponds well to the
theoretical solution obtained earlier.

Changing the size of the wavepacket in the real space σr (as shown by the line style in
Fig. 6.3(a,b)) also leads to a very interesting and counter-intuitive behavior. Indeed, the
linear increase of the velocity occurs only while the populations of the two branches n+ and
n− are comparable. The duration of this regime is determined by the maximal gain/loss
ratio available within the wavepacket size in the reciprocal space σq. For high σq, the regime
of linear increase is lost more rapidly. While the wave vector of the center of mass q0 of
the wavepacket is at this moment higher than for a smaller σq, the corresponding group
velocity is lower, because vg ∼ 1/

√
q0. So, a wavepacket which is larger in reciprocal space

(dash-dotted line) exhibits a smaller final velocity and a shorter acceleration period (and,
finally, a smaller total displacement for the same amount of time).
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Figure 6.4: (a) The gradient of the imaginary part of the energy ∇ ImE for one dispersion
branch. The arrows show how the center of mass of the wavepacket moves in the reciprocal
space due to the amplification of its components. The linear-polarized wavepacket projection
of the branch is marked with a red circle. (b) The group velocity map ∇ReE with the
trajectory of the center of mass in red, and the corresponding group velocities highlighted in
blue.

6.3.3 Linearly polarized wavepacket

In the last section, we have shown that the Quantum Metric gqq is independent on ϕ,
which resulted in the circularly polarized wavepacket to overlap similarly for the two different
states and so the populations were identical n+ = n− at t = 0, also with a zero initial
velocity. It will not be the same case if the polarization of the wavepacket is different from
the one of the eigenstate of the exceptional point. The Quantum Metric allows to obtain the
distance between states, so the divergent Quantum Metric gqq means that the eigenstates
change tremendously fast with a change of the wavevector q. Due to that, this linearly
polarized wavepacket demonstrates a non-symmetrical overlap with the two modes. Indeed,
from eq. 6.14, we find that the overlap between one of the eigenstates and a H-polarized
wavepacket described by a spinor |ψ0〉 =

(
1/

√
2, 1/

√
2
)T can be written as

Ilin ≈ 1

2
+

∫ |ψ(q)〉

|ψ0〉
√
gqqdq ≈ 1

2
+

√
αq

2a
6.21

which is proportional to √
q, leading to a rapid growth of the overlap. An interesting result

is the non-zero wavevector q0 for the center of mass of the wavepacket in each of the bands.
Indeed, the equation describing the effective center of mass of the wavepacket reads

q0 =

∫
qIlin|ψ0(q)|2dq 6.22

with |ψ0(q)|2 the excitation wavefunction, which is a Gaussian with σq its width (small σq
means large σr). The equation 6.22 gives a non-zero value for q0 as it reads q0 ∼ σq

3/2
√

α/2a

for small σq.
In the fig. 6.4.a is plotted the gradient of the imaginary part of the energy ∇ImE,
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with the trajectory of the center of mass due to this gradient in the reciprocal space in
red. Indeed, the two parts of the gradient are (ηx, ηy) = ∇ImE and their ratio reads
ηx/ηy =

(
−qx +

√
qx2 + qy2

)
/qy. For an inital wavevector q0, it results in a parabolic

shape qx = −(qy
2 − q0

2)/(2q0). In the panel b of fig. 6.4, the blue arrows represent the
group velocity, which is time-dependent. At the beginning, this velocity is mostly defined
by the q-dependent celerity term α in the Hamiltonian H1 given by eq. 6.11. Afterwards,
the velocity decreases up to a value corresponding to the ratio of the populations n+ and
n− of the two states. To find the x component of the group velocity vx, we start by the
dispersion calculated previously in eq. 6.18, then we derive this equation over qy and then
use a Taylor expansion over qy, for qx > 0. The solution reads vx ≈ 3

√
αaqy

2/8qx
2. To

obtain the time dependence of the group velocity, we need to use the center of mass wave
vector qx(t), whose calculation again involves the Quantum Metric via the overlap integral
Ilin (see supplementary of [161]). For small t, qx(t) ≈ αaq20t

2/
√
2π, and finally the group

velocity tends to a constant non-vanishing value

〈vx〉 ≈ 0.38α 6.23

which does not depend on the wavepacket size. Moreover, it only depends on the celerity α of
the Hermitian part of the Hamiltonian, and not on the non-Hermitian dichroism parameter
a.

All this is indeed confirmed by numerical simulations. Figure 6.5(a) shows all possible
trajectories for wavepackets of different polarizations. They all demonstrate a constant
acceleration along y, as for a circular wavepacket. An additional polarization dependent
constant velocity contribution appears. For an H-polarized wavepacket (black circles in
panel (a)), it is directed along x and therefore can be studied independently from the other
contribution vy. Fig. 6.5(b) shows that the velocity vx of an H-polarized wavepacket quickly
drops from the value given by the Hermitian part of the Hamiltonian (vx = α) at t = 0 down
to the constant value predicted by 6.23 and indeed independent of the dichroism a (dashed
line). This finite constant velocity differs drastically from the behavoir of a gapped Dirac
Hamiltonian, where the radial metric decays as gqq ∼ −q2 and therefore does not diverge.
Because of this, the associated group velocity tends to zero in the limit of a wavepacket
infinitely large in real space vDirac ∼ 1/σ2

r → 0. Contrary to a diabolical point, associated
with a localized Berry curvature (delta function), an exceptional point exhibits distributed
Berry curvature [269, 270]. However, dynamical effects associated with this Berry curvature,
such as the anomalous Hall effect, are practically unobservable, because the divergent group
velocity dominates all possible corrections.

6.3.4 Conclusion

These results demonstrate that the Quantum Metric plays a particularly important role in
the vicinity of the exceptional points, determining the dynamical behavior of wavepackets.
The crucial feature is that the radial component of the Quantum Metric diverges. This,
together with the divergent group velocity, leads to a non-vanishing polarization-dependent
velocity for any finite-size wavepacket, centered at the exceptional point. Our studies are
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�

Figure 6.5: Linearly polarized wavepacket. (a-b) Probability density distribution
|ψ(x, y, t)|2 for an initial wavepacket of σr = 64μm at (a) t = 0 and (b) t = 10 ps. The
white cross marks the center of mass, and its trajectory is shown in pink. (c) Polarization-
dependent center of mass trajectories. (d) The x-projection of the H-polarized wavepacket
velocity over time, for different initial conditions.

important for future research and applications in non-Hermitian photonics.

6.4 Experimental measurement of the Quantum Metric

6.4.1 Introduction

As we have seen in chapter 5, the recent development of experimental techniques and the-
oretical understanding has allowed to measure both components of the Quantum Geometric
Tensor [118, 270], which are the Berry curvature and the Quantum Metric, experimentally
[271, 56]. In particular, the use of optical systems allows to access the non-trivial geometry
of real photonic bands and to observe the related consequences on wavepacket propagation
and the anomalous Hall effect [56]. In Hermitian systems, the Quantum Metric determines
the non-adiabatic corrections to the anomalous Hall effect [230, 160, 210], with the dominant
role played by the Berry curvature. These measurements have inspired further research on
the Quantum Metric [272], adding on top of the previous works that have demonstrated its
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importance for superfluidity in flat bands [156, 157], the electronic magnetic susceptibility
[230, 168], the characterization of general phase transitions [273, 274], or the exciton Lamb
shift [275].

At the same time, the studies of non-Hermitian systems [276, 277, 278, 262] have also
started to deal with the topology of the exceptional points. It was shown that the chiral
dynamics associated with this non-Hermiticity is extremely promising for applications [279,
280, 267], together with the enhanced sensing properties [281, 282, 283], and also coherent
perfect absorption [284, 285, 286]. Crucially, the good topological invariant in vicinity of
these points is not anymore associated with the Berry curvature of the eigenstates, but with
the winding number of the so-called effective field [287, 288] (and the associated complex
eigenvalues), determined by the Hermitian and non-Hermitian parts of the Hamiltonian itself.
Indeed, because of the non-Hermitian contribution, the adiabatic description of dynamics
based on the Berry curvature becomes irrelevant [289, 290]. On the other hand, the Quantum
Metric should exhibit a hyperbolic divergence at the exceptional points of second order (with
square root topology) [268, 161]. This divergence has remarkable physical consequences,
controlling the dynamics of wavepackets centered at exceptional points [161], as we have seen
in the last section. Here, the Quantum Metric is not responsible for small corrections, it has
a dominant role, determining a non-vanishing constant group velocity with a polarization-
dependent direction. However, the Quantum Metric of a non-Hermitian system has never
been measured experimentally so far, in spite of the extended studies of such points in
optics [291, 262] which date back to Voigt [292], and of their recent recent observation in
microcavities [293].

In this work [163], together with the group of Prof. Q. Liao from Beijing Capital Univer-
sity, China, we investigate the Quantum Metric of exceptional points in an organic microcav-
ity. We study the modes of an organic microcavity [294] exhibiting a polarization-dependent
strong coupling, which provides a pronounced non-Hermitian response ensuring well-defined
exceptional points. We measure the Stokes parameters of the eigenmodes in vicinity of the
exceptional points and extract the corresponding Quantum Metric. We demonstrate that
this metric is diverging, exhibiting a scaling exponent n = −1.01 ± 0.08. The coefficients
of the measured hyperbola correspond to the analytical predictions based on an effective
Hamiltonian.

6.4.2 Presentation of the system

The sample we study is an organic microcavity with metallic mirrors, shown in Fig. 6.6(a)
[295]. The active layer is a microcrystal of an organic molecule, 4,4’-bis[4-(di-p-tolylamino)
styrylbiphenyl (DPAVBi), whose structure is shown in fig. 6.6(b). The microbelt’s width (Y-
axis) is around 20μm, with the thickness of 2.0 − 3.0μm and the length (oriented along X)
is several hundreds of micrometers. The triclinic form of the DPAVBi crystal is determined
by the specific arrangement of molecules. The resulting optical properties of the crystal are
strongly anisotropic, with an optical axis in the XZ plane (cyan arrow) tilted by 36◦ [295]
with respect to the Z-axis.

We start off by displaying the sample unpolarized reflectivity in the two orthogonal
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directions in fig. 6.6(c,d). The light was entered and collected by using the 100× microscope
objective with a high aperture (0.95), the collection angle can achieve ±70◦. The momentum
space of the reflectivity was located at the back focal plane of the objective lens. The
reflectivity is plotted as a function of energy and wave vectors kx and ky. We focus on two
particular eigenmodes, which exhibit the clearest behavior. First of all, we note that the two
branches show very different effective masses and very different linewidths. This is due to
the strongly polarized nature of excitons in DPAVBi (see [295, 296] on the anisotropy of the
excitonic absorption by the microbelt). The exciton (EX ∼ 2.7 eV) strongly couples with
the photonic modes only in the H polarization (electric field aligned along X) exhibiting
a Rabi splitting of 80 meV. The V -polarized modes (electric field aligned along Y) remain
unaffected by the excitonic resonance. The strongly-coupled modes exhibit a higher mass
and a smaller linewidth, both because of their reduced photonic fraction.

In the two k-space directions, the behavior of the two modes is qualitatively different: a
crossing of the weakly and strongly coupled polarization branches occurs along kx direction
and an anti-crossing along ky. This anti-crossing is not the result of the above mentioned
strong exciton-photon coupling. It is rather due to the emergent optical activity of the
structure, which becomes sufficiently large at the anticrossing wave vector. Optical activity
has recently been shown to emerge at the macroscopic level in cavity structures, when the
linear birefringence is so high that oppositely-polarized modes of opposite parity become
degenerate [55, 297]. It is therefore a coupling which occurs between the photonic part of such
modes. This is illustrated by fig. 6.7, showing (with a thicker sample) that the anticrossing
only appears for opposite parity branches. The direction of the OA is determined by the
tilt of the optical axis [55]: it emerges in the direction Y, perpendicular to the plane XZ,
containing the optical axis of the crystal.

6.4.3 Theory

From the theoretical point of view, we consider a system containing three coupled modes:
two photons with polarizations H and V, and one exciton which couples to the polarization
H only. Here we neglect the splitting between TE and TM polarized modes. The coupling
between the H-polarized photon and the exciton is much stronger than the other couplings
in the system. We therefore begin by a partial diagonalization of the Hamiltonian in the
basis of these two states,

HSC =

(
EX �ΩR/2

�ΩR/2 EP,H

)
where EX and EP,H are the energies of the exciton and the photon (in the H polarization)
and �ΩR is the Rabi splitting (the measure of the light-matter interaction). As we have
seen in chapter 2 and 3, the exciton is approximately dispersionless, while the energy of the
photon depends on the wave vector parabolically (due to the confinement in the cavity):

EP,H = E0 +
�
2k2

2mP
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Figure 6.6: Reflectivity of the organic microcavity. a) Scheme of the microcavity sam-
ple. b) Structure of the DPAVBi molecule. c), d) Reflectivity as a function of wave vector
kx and ky (respectively) and energy, exhibiting anticrossing along ky. e) Reflectivity as a
function of the in-plane polar angle φ and energy E for |k| = |k∗| (EP wave vector). f) Real
and imaginary parts of the mode energies (dots with error bars – experiment, lines – theory).
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The diagonalization of the strong coupling Hamiltonian gives two H-polarized polariton
eigenstates with the energies

ELPB,H =
EX+EP,H

2 −
√
(EX−EP,H)

2
+�2Ω2

R

2

EUPB,H =
EX+EP,H

2 +

√
(EX−EP,H)

2
+�2Ω2

R

2

Only the lower polariton is studied in our experiments since it is energetically well separated
from the upper polariton branch. The effective mass of the lower polariton close to k = 0

can be found as
mH =

2mP

1− δ√
δ2+�2Ω2

6.24

where δ = E0 − EX is the exciton-photon detuning at zero wave vector. We see that at
approximately zero detuning, the polariton mass is twice larger than the photonic mass,
because of the mixing with the dispersionless excitonic mode (which has an infinite effective
mass). On the other hand the photonic mode in the V-polarization keeps the bare photon
mass:

mV = mP 6.25

For the same reason, the broadening of the polariton mode is at this detuning the average
of the exciton and photon broadening. Since in our system the exciton broadening is sub-
stancially smaller than the photonic one, the polariton mode is narrower than the purely
photonic mode.

Fig 6.7 shows the reflectivity spectrum along one direction in reciprocal space of a thicker
cavity than the one studied in the main text and measured in both polarizations (a), and with
H (b) and V polarization (c) only. These figures clearly show a series of weakly coupled Fabry-
Perot modes in V-polarization and strongly to excitons in H polarizations. As visible on panel
(a) these polarization modes become degenerates at some points. Half of these degenerecies
give rise to an anti-crossing around which the modes become circularly polarized. These
anti-crossings do not occur in the perpendicular direction of reciprocal space as illustrated
with a thinner cavity on Fig. 1 of the main text. This anti-crossing occurs when modes
of different parities are crossing. This effect of emergent optical activity was discovered
and fully theoretically explained in [55] by solving Maxwell equations, with a qualitative
explanation provided in [297]. In this case, the tilt of the optical axis of the birefringent
material in the cavity shows up as an emergent optical activity in the direction determined
by the direction of the tilt (if the optical axis is tilted from Z towards X, then the optical
activity emerges along Y ). This effect can be described as a term linear in ky [55], which
couples the two linear polarizations (H and V). Near the anticrossing point, it is possible
to reduce the description of the system to two bands described by the following two by two
Hamiltonian written in the linear polarization basis:

H0 =

(
β0 + (ξ − β)(k2x + k2y)− iΓ− iΓ0 χky

χky −β0 + (ξ + β)(k2x + k2y) + iΓ− iΓ0

)
6.26
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where β0 represents the splitting of the two modes at k = 0, ξ = �
2/2m∗ with m∗ = 2mHmV

mH+mV
,

χ represents the optical activity along the ky axis, and Γ is the difference in the broadening
of the modes. Finally β describes the difference of the (inverse) effective masses of the two
modes, which comes from the fact that one mode is coupled with the exciton, while there is
no coupling for the other mode.

The theoretical dispersions calculated with the Hamiltonian 6.26 are shown in fig. 6.6(c,d)
with dashed lines. The best fit is obtained with the following parameters: β0 = 130±9 meV,
Γ = 11 ± 4 meV, β = (1.00 ± 0.07) meV/μm−2 , m∗ = (2.0 ± 0.1) × 10−5 me and χ =

1.8 ± 0.6 meV/μm−1. The Hamiltonian is symmetric versus kx and anti-symmetric versus
ky. Since the branches are crossing along kx and anticrossing along ky, there are necessarily
4 points at which the transition between the crossing and the anti-crossing occurs. These
are the famous exceptional points characteristic for non-Hermitian systems. The plot of
experimentally measured reflectivity spectra along a circle of constant |k| passing through one
of the exceptional points is shown in fig. 6.6(e). The extracted mode energies and linewidths
are shown in fig. 6.6(f) with points, and the corresponding real and imaginary parts of the
theoretical eigenenergies appear as solid lines. The extraction is performed by fitting the
reflectivity spectra with Lorentzians (see fig. 6.7.d). In systems with perfectly balanced gain
and losses, the exceptional points correspond to the transition between the PT-symmetric
regime with real eigenvalues and the PT-broken regime with imaginary eigenvalues [298].
The same transition is still present in our case, in spite of the overall decay Γ0, and the
observed behavior of the modes confirms the presence of a second-order exceptional point at
k∗.

6.4.4 Extraction of the Quantum Metric

We have demonstrated in chapter 4 that the eigenvalues do not tell everything about
physical systems: the corresponding eigenstates are also important. While the famous Berry
curvature and its integral, the Chern number, seem to be less relevant for non-Hermitian
systems in the vicinity of exceptional points due to the essentially non-adiabatic behavior
[289, 290], other quantities linked with the eigenstates, such as the Quantum Metric, play
a key role in the wavepacket (beam) dynamics [161]. In chapter 5, we have shown that the
measurement of the Stokes vector for each eigenstate in reciprocal space [160, 56] allows to
extract the Quantum Metric using the definition of the Quantum Geometric Tensor (whose
real part is the Quantum Metric, and the imaginary part is the Berry curvature):

gij = Re [〈∇ψ|∇ψ〉 − 〈ψ|∇ψ〉 〈∇ψ|ψ〉] 6.27

where |ψ〉 is the eigenstate written as a spinor (similar to the Jones vector, but on the circular
basis) as follows:

|ψ〉 =
∣∣∣∣∣ cos θ

2e
−iφ

sin θ
2

〉
6.28

and the angles θ = arccosS3, φ = arctanS2/S1 characterize the orientation of the Stokes
vector. We note that the gradient is taken in the parameter space (the reciprocal space).
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Figure 6.7: Branch anticrossings. Anticrossing only appears for branches of opposite
parity. Measured angle-resolved reflectivity spectrum of a microcavity with DPAVBi mea-
sured with both polarizations (a), (b) H-polarization and (c) V-polarization. The series of
V-polarized modes are weakly coupled to photons and have comparable effective masses. The
H-polarized modes are strongly coupled to excitons and shows an effective mass which is in-
crease going to higher energy. On panel (a) one sees that H and V modes anticross each two
crossings. When the measurments are performed along the perpendicular direction in recip-
rocal space, all anticrossing disappear, as shown in fig. 1 of the main text. Near anticrossing,
modes are visible in both polarizations because they are circularly polarized. These distinct
features of cavity modes are consistent with the fact of the highly ordered uniaxial alignment
of DPAVBi molecules in single-crystalline microbelts. Anticrossings of the modes of opposite
parity and crossings of the modes of same parity are both observed in the experiment. (d)
Example of the reflectivity fit. The fit of the experimentally measured reflectivity spectrum
for a particular point in the reciprocal space with a double Lorentzian, allowing to determine
the real and imaginary parts of the eigenvalues.
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Figure 6.8: Stokes vector components of the lowest energy eigenstates (experiment
and theory). a)-c) experiment (S1, S2, S3); d)-f) theory (S1, S2, S3). The hatched region
shows where the pseudospin could not be extracted experimentally.

We now focus on a quarter of the reciprocal space containing a single exceptional point, and
extract the Stokes vectors of the modes from polarization-resolved reflectivity measurements.
In order to investigate the polarization properties, we placed a linear polarizer, half-wave
plate, and a quarter-wave plate in front of the spectrometer slit to obtain the polarization
state of each pixel in the k-space, horizontal-vertical (0◦ and 90◦), diagonal (±45◦) and
circular (σ+ and σ−) basis. An energy spectrum is obtained in each of the six polarizations
(H,V,D,A,L,R) for each point of the reciprocal space. We use a Lorentzian fit in order to get
the positions, the relative intensities I, and the widths of the two modes, which permits the
extraction of a 2D reciprocal space map of the Stokes vector components S1, S2, S3 of the
lower branch, shown in fig. 6.8(a-c). The validity of the effective 2 × 2 Hamiltonian 6.26 is
confirmed by the good fit of the dispersions in fig. 6.6(c,d) and by the agreement between the
experimentally extracted components of the Stokes vector (fig. 6.8(a-c)) and the theoretically
calculated ones (fig. 6.8(d-f)). The EP located at k∗x = 4.01 μm−1 and k∗y = 6.12 μm−1 is
shown by a white star. The two components S1 and S3 cancel at this point, while S2 exhibits
a maximum (similar to the circular polarization observed at the Voigt points).

Once the Stokes vectors are known, one can extract the Quantum Metric elements using
Eq. 6.27, as described in details in [160]. The results of this extraction are shown as a 2D plot
of the trace of the Quantum Metric gxx+ gyy in fig. 6.9(a). The uncertainty of the extracted
points is of the order of 10% [56]. The part of the reciprocal space corresponding to the
branch cut of the Riemann surface formed by the eigenstates is covered by a gray rectangle.
The rectangular shape of the remaining regions facilitates their numerical treatment. A
clear maximum is visible in the vicinity of the EP. The global behavior of the metric is in a

112



6.4.4 Extraction of the Quantum Metric

����

���

���

���

���

��

�

��
� �
��

�����

���

�

	

�

���	 ����
�
���������

�

� �

���
��
��
�� ��


���

�

��

�� �� 

 		



� �
�	
�

��
�

� �	���� � �	����

�!� �"�

�#�
�
��������
�
�������� !� $%
�&'(!) *�

Figure 6.9: Quantum metric of an exceptional point. 2D maps of the trace of the
Quantum Metric in the vicinity of an EP marked as a star: a) experiment; b) theory. The
gray region covers the discontinuity of the wavefunction (branch cut). c) A log-log plot of
the experimentally extracted Quantum Metric gqq near kx = 0 (black dots) and near the EP
(red dots) and its fit (red line), giving the scaling exponent n = −1.01± 0.08. The metric is
extracted along the white dashed lines shown in panel a).

good agreement with theoretical predictions based on the eigenstates of the Hamiltonian 6.26
(fig. 6.9b).

The Quantum Metric is known to diverge hyperbolically at the exceptional points of the
second order (with 2 crossing branches) [268, 161], and an explicit expression for the metric
in the vicinity of the exceptional point can be written as:

gqq =

√
α1

2cos2φ′ + α2
2sin2φ′

8Γq
+

α1
2cos′2φ+ α2

2sin2φ′

16Γ2
6.29

where q is the wave vector measured from the exceptional point, and α1,2 (orientation shown
by white arrows in fig. 6.9(b)) are proportional to the difference of the group velocities at
the crossing point (the celerity of the effective Dirac Hamiltonian, see [296] for details).
Experimentally, the values of the Quantum Metric are obtained only for a finite number of
pixels in the reciprocal space, which can be close to the exceptional point, but never fall
on it exactly. In order to demonstrate the hyperbolic divergence, we choose a particular
direction in the reciprocal space, where the experimental resolution is the highest (ky), and
plot in fig. 6.9(c) the Quantum Metric in log-log scale for several experimental points (red
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dots) closest to the exceptional point as a function of q = |ky − k∗y| (using q0 = 1 μm−1 and
g0 = 1 μm2 as characteristic scales). A fit with a power law gqq ∼ qn (black line) allows to
determine the scaling of the Quantum Metric n = −1.01 ± 0.08. The divergent behavior is
best visible in comparison with another region, which exhibits a finite maximum (black points
in fig. 6.9(c)) appearing as a horizontal asymptotic in log-log scale. Both regions are shown
in fig. 6.9(a) as white lines. We can therefore conclude that we have observed the hyperbolic
divergence of the Quantum Metric of a second-order exceptional point experimentally.

The agreement between the experiment and the theory can be checked further, by ex-
tracting the second (constant) term from the trace of the Quantum Metric and comparing it
with the parameters of the effective Hamiltonian 6.26 obtained from the dispersions shown
in fig. 6.6(c,d). For this, we fit the experimentally extracted values of the Quantum Metric
with a function f(q) corresponding to the reduced expression 6.29 of the Quantum Metric
tensor gqq:

f =
η

q
+ 4η2 6.30

The fit of the metric gives η = 0.173± 0.004 μm. On the other hand, η ≈
√
α2
1 + α2

2/8
√
2Γ.

We take the parameters of the Hamiltonian extracted from the fit of the experimental
dispersion in fig. 6.6: Γ = 11 ± 0.4 meV and the celerity parameter

√
α2
1 + α2

2/
√
2 =

14 ± 2 meV/μm−1, which gives ηexp = 0.16 ± 0.06μm. This agreement validates both the
metric extraction procedure and the theoretical analysis of the Hamiltonian and its eigen-
states.

Our results demonstrate the advantages of the optical systems for the studies of advanced
quantum-mechanical effects, such as the properties of exceptional points in non-Hermitian
systems. We have managed not only to extract the real and imaginary parts of the eigenener-
gies, which determine the topology of the exceptional point, but also studied the eigenstates
and their variation with parameters. The main property of exceptional points is the diver-
gence of the characteristic derivatives in their vicinity. This divergence is responsible for
enhanced sensing properties of these points. While it is very well known that the derivative
of the real part of the energy diverges as q−1/2, the hyperbolic q−1 divergence of the eigen-
states measured by the Quantum Metric is much less known. Yet, it determines the overlap
integrals and therefore the possibilities to excite and to measure the states in vicinity of
exceptional points, and, ultimately, to benefit from the enhanced sensing.

The possibilities of extraction of the eigenstates and their metric are determined by the
experimental resolution in the reciprocal space. In our case, we had to use the axis with the
smallest experimental step in order to get sufficiently close to the exceptional point and to
be able to evidence the particular power law of the divergence. The observation of this power
law on a larger scale would require smaller steps and higher stability of the experimental
platform, in order to avoid the broadening in the k-space. Disorder-induced mixing of the
wave vectors also restrains the possibilities of approaching the exceptional point. The same
considerations apply to enhanced sensing: enhancement applies not only to the useful signal,
but also to the noise [299], which therefore must be reduced as much as possible.
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To conclude, we have studied exceptional points in an organic microcavity. We have
extracted the Stokes vectors of the eigenstates in the vicinity of the exceptional point and
then calculated the Quantum Metric tensor. Our measurements confirm that the Quantum
Metric of a second-order exceptional point exhibits a hyperbolic divergence. This is expected
to affect the dynamics of wavepacket (the trajectories of optical beams) at exceptional points.

6.5 Chapter conclusion

In this last chapter, we have investigated non-Hermitian physics. In photonics, losses
are naturally present, and the difference of losses between two eigenstates results in non-
Hermiticity in the system. We have demonstrated that it happens with effects such as
polarization-dependent absorption (dichroism), and polarization-selective strong coupling.
This non-Hermiticity transforms a Dirac point into a pair of exceptional points, linked by a
Fermi arc. We have theoretically demonstrated the 1/q divergence of the Quantum Metric at
exceptional points of 2nd order, where q is the wavevector starting to this point. Shortly after
this result was confirmed experimentally, in the first extraction of the Quantum Geometric
Tensor in a non-Hermitian system. The divergence of the Quantum Metric results in a
polarization-dependent dynamics of a wavepacket centered at the exceptional point. This
complex dynamics can be expressed with Quantum Metric terms.

115





Conclusion and perspectives
Conclusion and perspectives

In this thesis, we have studied the quantum geometry of different photonic Dirac systems.
First of all, we have provided a general introduction in the first four chapters. In the 5th

Chapter, we first presented a peculiar system which allows to simulate a non-Abelian Yang-
Mills theory by exciting coherently two bands near the Dirac point. The spin precession is
coupled with the spatial dynamics, and the wavepacket exhibits Zitterbewegung oscillations.
It is the opposite limit of a prior work, describing the adiabatic excitation of a single band,
and exhibiting a photonic anomalous Hall effect. Nevertheless, we have developed universal
semiclassical equations, based on the Quantum Metric, describing both these effects, and
every regime in between. The square root of the Quantum Metric appears as a universal
length scale, and provide a geometrical origin of the Compton wavelength. This chapter
ends with the study of an experimental work on a semiconductor monolayer embedded in
a microcavity. We show that a spin-selective strong light-matter coupling regime results in
unusually strong optical nonlinearity and a giant Zeeman effect, which allows to open a gap
at the Dirac point in polaritonic systems, and which has direct applications in topological
physics.

Finally, we have investigated non-Hermitian physics in the 6th Chapter. The losses,
which appear naturally in photonic systems, are a crucial feature to obtain non-Hermiticity.
Different losses for different eigenstates transform a Dirac point into a pair of exceptional
points linked by a Fermi arc. We have demonstrated that the dynamics of a wavepacket
centered at an exceptional point can be expressed with Quantum Metric terms. In the last
part of the Chapter we presented the first experimental measurement of the Quantum Metric
in a non-Hermitian system, where the non-Hermiticity comes from selective polarization
strong-coupling. We demonstrated the divergence of the Quantum Metric, accordingly to
the theory, near the 2nd order exceptional point.

Our works have shed light on the role of the quantum metric in Physics, which has turned
out to be much deeper than found in the first studies. And there is surely much more to be
discovered.

These results appeal for further studies. First, a system of universal semiclassical equa-
tions can be derived from the Hamilton’s equations for an arbitrary number of bands. As in
the two-band case, the terms containing the Quantum Metric appear from the variation of
the overlap integral, which is determined by the variation of the length of the correspond-
ing geodesic curve, which is entirely determined by the product of the Quantum Metric gkk

and the projection of the displacement δkj on the geodesic’s tangent vector. Deriving such
equations for n-band systems might be an important step forward.

Also, the maximal value of the trace of the Quantum Metric is an important physical
quantity. This maximal value determines the extension of the metric in the parameter space,
that is, the characteristic scale at which the changes occur (for example, level crossing),
because the integral of the Quantum Metric is often quantized, representing a topological
invariant similar to the Chern number. It determines both the maximal amplitude of the
Zitterbewegung oscillations and of the anomalous Hall drift. One could demonstrate that it

117



Chapter 6. Non-Hermitian systems

determines the spatial extension of the chiral edge state in topological insulators, controlling
the minimal size of topological lasers and optical isolators. Thus, the quantum metric will
be an important quantity for future applications based on quantum geometry.

Finally, the divergence of the Quantum Metric can be different for higher-order excep-
tional points. Similar polarization dependent trajectories can be expected, and the dynam-
ics of wavepackets (lightbeams) centered around these points could also be understood with
Quantum Metric terms. The knowledge of the Quantum Metric allows to understand how
fast the states change near exceptional points, that is to say the sensitivity of the system
to a small perturbation near this singularity. It will be important in the future in order to
build enhanced (exceptional) sensors.
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Pseudospin texture
Appendix A: Pseudospin texture

"A method is more important than a discovery, since the right method will lead to new
and even more important discoveries." Lev Landau

We will consider a simple case: an Hamiltonian with a momentum term of energy EC

and a Rashba contribution HR [17]. The Hamiltonian reads

H = EC +HR =
�
2k2//

2m
+ α (kyσx − kxσy) A.1

with k// =
√

kx
2 + ky

2, α the Rashba coefficient and m the mass of the particle. The
eigenvalues are

E1 =
�
2k2//

2m
+ αk//, E2 =

�
2k2//

2m
− αk// A.2

and are plotted in fig. A.1.a. We consider the angle ϕ of the wavevector k in the reciprocal
space. This angle is given by

kx = k//cos(ϕ) , ky = k//sin(ϕ) A.3

Hence, the eigenstates of the Hamiltonian H can be described by

ψ1 =

(
ψ+

1

ψ−1

)
=

(
1

−ieiϕ

)
, ψ2 =

(
ψ+

2

ψ−2

)
=

(
1

ieiϕ

)
A.4

As mentioned in the Chapter 1, the equation to obtain the pseudospin components reads

Si = (ψ+ ψ−)∗σi

(
ψ+

ψ−

)
= 〈σi〉 A.5

with i = x, y, z and σi the Pauli matrices. This gives the results for the mode 1 and 2

Sx
1 = sinϕ , Sx

2 = − sinϕ

Sy
1 = − cosϕ , Sy

2 = cosϕ

Sz
1 = 0 , Sz

2 = 0

A.6

We will study the pseudospin texture of (Sx, Sy). We consider a 2D cut at a given energy ε, as
shown in fig. A.1.a, and we display the pseudospin texture along the respective mode energies
in the panel b. We remark that the pseudospin rotates clockwise for the mode number 2

and anticlockwise for the mode number 1. This pseudospin texture is the signature of a
Rashba Hamiltonian [300]. In the same manner, one could obtain the pseudospin texture of
a Dresselhaus Hamilonian which reads [19, 231]

H = EC +HD =
�
2k2//

2m
+ λD (kxσx − kyσy) A.7

153



�

� �

�

� �

���

Figure A.1: (a) Dispersion of the mode 1 and 2. (b) Scheme of the pseudospin texture of
Rashba Hamiltonian at a given energy ε represented on the two corresponding modes. (c)
Same but for a Dresselhaus Hamiltonian.

The texture, also a typical pseudospin texture for a Dresselhaud Hamiltonian, is represented
in the panel c. The dispersion is the same as in the case of the Rashba Hamiltonian, hence
the pseudospin texture is a convenient tool to understand systems beyond their dispersion
relation.



Mathematical tools
Appendix B: Mathematical tools

"Do not worry about your difficulties in Mathematics. I can assure you mine
are still greater." Albert Einstein

B.1 Metrics

We will work with E the spacetime, E the vectorial space associated and g a bilinear
form which is symmetrical and not degenerated [147].

• A bilinear form g is an application E×E → R linear compared to each of his arguments
( meaning that g(λ�x, �y) = λg(�x, �y) and so on).

• g is symmetric meaning that ∀(�x, �y) ∈ E2, g(�x, �y) = g(�y, �x).

• g is not degenerated meaning that if we consider x ∈ E, then:

∀�y ∈ E g(x, y) = 0 ⇐⇒ �x = �0

• g have a signature (−,+,+,+) meaning that a base of E exist where g(u, v) can be
expressed compared to the components uα, uβ in this base such that:

g(�u,�v) = −u0v0 + u1v1 + u2v2 + u3v3

B.2 Manifold

Mathematician have invented the theory of differentiable manifolds, which unifies the
common features of all space together. A definition of a differentiable manifold (called
usually just manifold) reads [146]: A differentiable manifold is a collection of objects called
points that are connected to each other in a smooth fashion such that the neighborhood of
each point looks like the neighborhood of an n-dimensional (Cartesian) space, where n is the
dimension of the manifold.

So any surface with sharp edges or points cannot be a manifold, meaning that a cone or
a cylinder are not manifold. Some examples of differentiable manifolds:

• The space R
n is an n-dimensional manifold.

• The surface of a sphere is a two-dimensional manifold.

• A torus (used in the main text) is a two-dimensional manifold as well.

155





Gauge theory
Appendix C: Gauge theory

"Well, gauge theory is very fundamental to our understanding of physical forces these
days. But they are also dependent on a mathematical idea, which has been around for longer
than gauge theory has." Roger Penrose

C.1 Gauge field

As mentioned in the chapter 5, we can start by writing the Lagrangian for a massless
scalar field under the form

L = (∂μψ)† (∂μψ)−m2ψ†ψ C.1

which has a U(1) symmetry. By choosing ψ(x) → ψ(x)eiα, we can trivially demonstrate that
the equation C.1, as the equations of motions which are derived from it, does not change.
Note here that the transformation is said to be a global U(1) transformation, because it does
not depend on a space parameter. Now, if we consider a more complex transformation such
as ψ(x) → ψ(x)eiα(x), where α(x) transform the field differently in space, things get a little
more complicated. Indeed, the derivation gives

∂μψ(x) → ∂μψ(x)e
iα(x)

= eiα(x)∂μψ(x) + ψ(x)eiα(x)i∂μα(x)

= eiα(x) [∂μ + i∂μα(x)]ψ(x)

C.2

Hence, the Lagrangian now reads

L = (∂μψ)† (∂μψ)− i (∂μα)ψ† (∂μψ)+ i
(
∂μψ†

)
(∂μα)ψ+(∂μα) (∂μα)ψ

†ψ−m2ψ†ψ C.3

which is, without a doubt, different from the initial Lagrangian. We say that it is not
invariant with respect to local U(1) transformation. The idea of gauge theory, is that we can
restore this symmetry by adding a new field term Aμ(x) which would be designed to cancel
terms making this theory non-invariant. We proceed by introducing a new object Dμ known
as the covariant derivative [170], written as

Dμ = ∂μ + iqAμ(x) C.4

where the q parameter is the coupling strength between Aμ and other fields. The two
conditions for the local transformation to be invariant can be written under the form

ψ(x) → ψ(x)eiα(x)

Aμ(x) → Aμ(x)− 1
q∂μα(x)

C.5

From this field, a derivation similar to C.3 will give the initial Lagrangian from eq.C.1. A the-
ory where a field Aμ is introduced to get an invariance with respect to a local transformation
is called a gauge theory, and the field Aμ is a gauge field.
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C.2 Electromagnetism as a gauge theory

The theory of electromagnetism can be described by a vector field Aμ(x) = (V (x),A(x))

which allows to write a Lagrangian under the form

L = −1

4
(∂μAν − ∂νAμ) (∂

μAν − ∂νAμ)− Jμ
emAμ C.6

which is used to obtain the equations of motion

∂2Aν − ∂ν (∂μA
μ) = Jν

em C.7

One important point about this formulation is that both the Lagrangian and the equations
of motions are unchanged if we add to the vector field

Aμ(x) → Aμ(x)− ∂μχ(x) C.8

meaning that its components transform unto

V → V − ∂0χ

A → A+∇χ
C.9

Of course, usually we chose χ so the physics is described as simple as possible. We could
chose χ in such a way that

∇ · A = 0 C.10

which is known as the Coulomb gauge. We could also chose χ so

∂μA
μ(x) = 0 C.11

which is called the Lorenz gauge. This gauge is useful because in the absence of current
Jν
em it gives the massless Klein-Gordon equation ∂2Aμ = 0. By writing χ(x) = α(x)/q, we

can remark that the conditions from eq. C.5 are satisfied, making electromagnetism a gauge
theory [170].



Co-occurence/authorship analysis
Appendix D: Co-occurence/authorship analysis

Figure D.1: Co-occurence of words in the abstract of my articles, using VOSviewer.
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Figure D.2: Co-authorship analysis of all my articles, using VOSviewer.



Abbreviations
Abbreviations

2DEG Two-dimensional electron gaz
AHE Anomalous Hall effect
BEC Bose-Einstein condensate
BN Boron Nitride
DBR Distributed Bragg reflector
DPAVBi 4,4’-bis[4-(di-p-tolylamino)styryl] biphenyl
EP Exceptional point
EuS Europium sulphide
GPE Gross Pitaevskii equation
LPB Lower polariton branch
MoSe2 Monolayer Molybdenum diselenide
MSS Maialle-Silva-Sham
OA Optical activity
PEAI-F 4-fluoro-phenethylammonium tetraiodoplumbate
PL Photoluminescence
PT Parity-Time
QGT Quantum Geometric Tensor
QM Quantum Metric
SOC Spin-orbit coupling
TE Transverse-electric
TM Transverse-magnetic
TMD Transition metal dichalcogenide
UPB Upper polariton branch
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