At risk of disappointing the reader, it is necessary to state that the author of this thesis does not provide the ultimate key for explaining the Universe and make all crises, in physics and in the wider public, disappear. They hope, however, to be doing their part in making life in both realms easier to bear. In the outside world, their part was admittedly zero during France's retirement crisis ("I'll get very rich so I don't have to worry about my pension"); a sensible amount during the pandemic because they stuck to the rules quite strictly and avoided human contact even when it put other parts of their own health at risk; and non-zero during the war until the time of writing because they are helping to get people, especially LGBT+ people, from the war zones into safe spaces in-and outside of Ukraine, and organizing the transport and any important supplies for them.

In the world of physics, the author is alleviating the current crises with, well, the content of this thesis. To prepare the reader for what is to come, it starts with two introductory chapters: Chapter 1 outlines what the Standard Model of particle physics is about, and how to search beyond it. Particular focus is placed on supersymmetry (SUSY) and on dark matter (DM) as possible clues of what is beyond. Concrete models employing SUSY and DM are discussed as well because they are used later in this work. Chapter 2 details the technical details, i.e. the computer side, of the work that follows. It lays out how BSMArt, the scanning framework that the author co-developed, is used and explains the underlying mechanisms of the machine learning algorithms that are employed in it. After these two chapters, the reader should be well-equipped to understand and enjoy what follows.

Chapter 3 is, essentially, a silver lining of hope in the conundrum about matter, which the physics community has faced for decades. Using BSMArt and unitarity constraints on colourful mediators, it is shown that the upper limit for the mass of a stable scalar DM singlet can be significantly lower than classic estimations of upper limits. It is worth noting that limits like the one presented in this chapter can only be calculated in a model-specific way. Using the BSMArt framework, however, such limits can be found a lot faster than previously possible. The content of this chapter has already been published in [1] 

Humans have rarely survived a crisis without strong ties to one another. It is this sense of cohesion that makes us as a species so resilient, so ready for the future -if we survive the climate crisis at least. It is the constant give and take of many humans among each other, the altruism, the conditional and unconditional trust, that makes us strong in the face of adversity and that prepares us for the challenges of the future. Community, one could say.

Writing this PhD thesis has not been a process of many crises, despite the fact that so many ugly events shook the world during this time. One could argue that most challenges during this PhD got tackled before they became crises. And I can hardly credit myself for that. Sure, my own work plays a role, as do the many different privileges and favourable circumstances in my life. But the all-important factor that made this thesis possible were the people around me. It is what they gave (and hopefully received from me), their altruism, their trust, their belief in me that made this thesis possible. What they gave is what made me who I am today, what made my existence in spirit and in flesh possible today.

Since this is a PhD thesis, the one I thank the first and foremost is Mark, my thesis director. The fact that you believed in me, a scrappy little university graduate with a slightly enlarged ego, is not something I take for granted. It is your belief in me that has made me a not-quite-as-scrappy confused person with a PhD and an all-the-same enlarged ego. On the numerous, some would say constant, occasions where I didn't understand much about the ideas behind our projects, or the code, or when I was just perpetually confused, your office door was always open. And I always ended up walking out of your office, in person or virtually, with a better plan than the one I entered with.

I don't really know how I would have gone through the early days of the biggest crisis during my PhD, the pandemic, without your support. Pandemic or not, you didn't blink an eye when the kid that presented themselves as the next Albert Einstein or Stephen Hawking turned out to be just another run-of-the-mill studybody, who on top of that is queer and disabled, and has way too many big dreams about building startups and whatnot else to become a proper scientist. You believed in me regardless, and worked with me in ways that made me feel valued and productive. I think we managed to put together some nice projects that, I'm hoping, are worthy of a PhD. I'm also grateful for the existence and support by my thesis reviewers, Julia Harz and Fawzi Boudjema, who hopefully will not need to believe in me because they have my PhDrelated achievements right here, black-on-white. I'm equally grateful for Susanne Westhoff and Eli Ben-Haim, who also have a seat on my jury. Thanks to all four of you for investing the time to read my thesis, think of interesting questions, travel all the way to Paris, listen to my defense, and doing whatever else is required. I know I'm a heap of work, but I hope I'm making myself worth it.
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Introduction

In the three years' work that this thesis took, three major public crises took place. First, a massive wave of protest against President Macron's proposed pension reform made France shudder to its core. The author remembers how some of their students were unable to come to the lessons because of the weeks-long strike of public transport. On one morning during this time they woke up to smashed glass windows throughout their entire street because of a violent protest involving the gilets jaunes the night prior. Second, a major global health crisis forced just about everyone to stay at home for two years. To this day, the world is unsure whether the post-pandemic era is here to stay, or whether the virus will force people back into the confines of their houses every winter -with all the consequences that this has for people's education, livelihood, social situation, physical and mental health. Third, just when it seemed like better days were underway, the Kremlin decided to launch a large-scale attack on Ukraine, forcing millions of people to flee their homes and shedding the blood of tens of thousands.

This may seem like a better opener for a PhD thesis in political science than in physics. But bear with it for a moment. It is not as if physicists do not worry about their retirement, their health, or their safety in a war that, at one point, looked as if it could spread all over Europe and even go nuclear. ("I'm a particle physicist," the author thinks, "surely that'll help me invent systems to prevent and counter a nuclear attack?") It's not as if physicists do not emit greenhouse gases or, without intending to, hold onto harmful stereotypes about ethnicity, gender, disability, and more.

The world is not facing one crisis, it is facing at least one thousand at once. Back when the author was still an ignorant teen, it seemed justifiable to spend one's life with physics for the sheer joy of it. It seemed like a positive side-effect if they could use their knowledge to help solve the climate crisis. But that was about as far as their ambitions went. That was just how blissfully unaware they were of what the world outside, and the physics world, were going through each and every day.

With the recent crises that shook the world, such ignorance seems no longer possible. It is clear that physics can and does bring great things to the world: Without special relativity, for example, satellites would not work properly. And what great improvements to daily life do we have through those! Radio, TV, GPS navigation, weather predictions, andsoon -internet access would be unthinkable for many people without our extraterrestrial orbiters. The author will forgo listing all the other achievements that physics has brought (X-ray scans! Semiconductors! Quantum computing!) because the readership -that is, the physicists among them -should really know about them.

Then again, it is not as if particle physics were not facing a few crises of its own. Even if these are not putting human lives at risk exactly, their eventual resolution is crucial for the xvii INTRODUCTION survival of the field. The last major discovery, the Higgs boson in 2012, is now a decade old. Supersymmetry has not been discovered, despite tremendous efforts by experimentalists and theorists alike to find it. Dark matter remains as elusive as ever. The Standard Model of particle physics remains, despite its beauty, flawed and unsatisfactory. Quo vadis, physica?

INTRODUCTION Chapter 1
Where new physics is hiding The Standard Model of particle physics has seen astonishing success since its inception in the mid-1970s. Despite the fact that it has flaws and is incomplete, measurement after measurement delivers compelling evidence to its favour. The most notorious measurement of all is, perhaps, the detection of the Higgs boson in 2012 [3,4]. But there are many more that the critical reader may use to convince themselves, e.g. [5][START_REF] Campagnari | The Discovery of the top quark[END_REF][START_REF] Kodama | Observation of tau neutrino interactions[END_REF].

The SM is large and complicated and not every part of it is calculated -this can be seen from the many recent theoretical results [START_REF] Brivio | The Standard Model as an Effective Field Theory[END_REF][START_REF] Hannesdottir | What is the iε for the S-matrix?[END_REF][START_REF] Plätzer | Amplitude Factorization in the Electroweak Standard Model[END_REF][START_REF] Aebischer | NLO QCD Renormalization Group Evolution for Non-Leptonic ∆F = 2 Transitions in the SMEFT[END_REF][START_REF] Martin | Three-loop QCD corrections to the electroweak boson masses[END_REF][START_REF] Moodie | Optimising hadronic collider simulations using amplitude neural networks[END_REF], and those that will follow once this work has aged a little bit (hopefully like fine wine). On the other hand, many more efforts (and funding money, and papers) are being put out to explain things that go beyond the SM [START_REF] Arun | Search for the Z boson decaying to a right-handed neutrino pair in leptophobic U(1) models[END_REF][START_REF] Zhao | Probing the electroweak symmetry breaking history with Gravitational waves[END_REF][START_REF] Trautner | Anatomy of a top-down approach to discrete and modular flavor symmetry[END_REF][START_REF] Athron | Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY[END_REF][START_REF] Bittar | Form Factors in Higgs Couplings from Physics Beyond the Standard Model[END_REF][START_REF] Fan | Inert Higgs Dark Matter for New CDF W-boson Mass and Detection Prospects[END_REF]. The flaws and the incompleteness of the SM are a big fat itch that any good physicist (including the author, would the jury say?) needs to scratch. Having a beautiful model that fails to explain gravity (yes, gravity!), dark matter, the early Universe, and so much more, is not satisfactory by any means.

The author of this work -unfortunate but true -is no smarter than their colleagues and predecessors. They will not provide better answers to the conundrums that particle physics has today. They will, however, propose new ways of exploring these conundrums in the following chapters, in the hope that some very smart brain uses them and figures out solutions to all the big and small problems of particle physics.

This chapter is broadly divided into two sections. The first section explores the big things: The SM itself, because who would one be to complain about the flaws of something that one did not even explain in sufficient detail; the (numerous) flaws of the SM; supersymmetry as an alternative to the SM; and some basic notions about dark matter. The second section develops, from the insights of the first, specific models that are used throughout this work. These models are by no means meant to solve all problems -as has been said earlier, the author is not that smart. They are merely illustrative examples to put the tools to work that are presented in later chapters -these tools are hopefully somewhat smart. So, without further ado, let the journey begin.

What we (don't) know

This section covers, quite roughly, all the big and little joys and problems that a regular theoretical particle physicist might encounter in their daily life. Clearly, the weight of each joy or problem may vary depending on one's individual specialty; equally clear is the fact that this much information cannot possibly be contained in a single PhD thesis. The content of this section is therefore merely an overview.

The beautiful but incomplete Standard Model

The Standard Model (SM) is the closest the particle physics community has gotten to finding a theory of everything. Admittedly, it does not explain everything. Not even close. It is, however, the most successful theory to date, delivering overwhelmingly accurate predictions since its final formulation in the mid-1970s. Since then, its most significant triumphs have been the discovery of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012). It is perhaps the most famous and well-studied quantum field theory as of now, and exhibits many interesting quirks like non-perturbative behaviour, quantum anomalies, and spontaneous symmetry breaking.

The SM is not without big and little problems; a number of these are detailed in section 1.1.2. This next section is intended to provide a (very) brief overview over SM physics. It is by no means a full introduction; many standard textbooks on QFT do this already [START_REF] Halzen | Quarks and Leptons: An Introductory Course in Modern Particle Physics[END_REF][START_REF] Donoghue | Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology[END_REF][START_REF] Robinson | Symmetry and the standard model: Mathematics and particle physics[END_REF][START_REF] Schwartz | Quantum Field Theory and the Standard Model[END_REF][START_REF] Logan | TASI 2013 lectures on Higgs physics within and beyond the Standard Model[END_REF][START_REF] Cheng | Gauge theory of elementary particle physics[END_REF][START_REF] Lee | Particle Physics and Introduction to Field Theory[END_REF]. It is more intended as a brief relay of the basis which this entire work hinges on. Special attention is given to the implications of unitarity and vacuum stability in the SM and beyond. These play a huge role in constraining dark matter masses in BSM models, as will be seen in chapter 3 and beyond.

SM basics

In a nutshell, the SM is an SU (3)×SU ( 2)×U (1) gauge theory which describes the interactions of all known elementary particles. Generally speaking, a gauge theory is one where the Lagrangian does not change under smooth families of operations, which are given by Lie groups -such as the composite of the three that define the symmetries of the SM. When these symmetry groups are invariant under a transformation performed identically at every point in spacetime, the corresponding theory is said to have a global symmetry. Local symmetries, on the other hand, keep a property invariant even if different transformations are applied at different points of spacetime. The latter are, in consequence, stronger constraints. The SM gauge group is a local symmetry; the SUSY gauge group, on the other hand, is a global one.

Every symmetry group is linked to one or more gauge bosons, vector particles which mediate the three fundamental interactions that are covered by the SM. The name boson comes from the fact that they obey Bose-Einstein statistics. B corresponds to the U (1) group and the hypercharge generator Y ; W i , i = 1, 2, 3, correspond to SU (2) and the chirality L; G a , a = 1 . . . 8, correspond to SU (3) and the colour C. All these bosons have spin 1. The W i correspond to the three weak generators σ i /2 given by the Pauli matrices,

σ 0 =      1 0 0 1      , σ 1 =      0 1 1 0      , ( 1.1 
)

σ 2 =      0 -i i 0      , σ 3 =      1 0 0 -1      . (1.
2)

The first Pauli matrix σ 0 is, for clarity, not related to a weak generator, but listed here for the sake of completeness. The G a correspond to the strong generators, given by the eight Gell-Mann matrices λ a , which are not listed for the sake of brevity.

In addition to these gauge bosons, there is the scalar Higgs boson φ with spin 0. It does not correspond to any force but gives mass to the other bosons via the Higgs mechanism. The latter will not be discussed in detail here because it is not directly necessary for understanding this work; it can be found in many excellent papers and textbooks [START_REF] Organtini | Unveiling the Higgs mechanism to students[END_REF][START_REF] Bednyakov | On Higgs mass generation mechanism in the Standard Model[END_REF][START_REF] Hashi | Higgs Mechanism in Nonlocal Field Theories[END_REF][START_REF] Grojean | Higgs Physics. In 8th CERN-Latin-American School of High-Energy Physics[END_REF]. One consequence of the Higgs mechanism is that the states of some physically observable bosons have a nonzero mass. The underlying bosons W i and B are, in fact, massless in order to retain gauge invariance. The observable states are:

Z = cos θ W W 3 -sin θ W B (1.3) A = sin θ W W 3 + cos θ W B (1.4) W ± = 1 √ 2 (W 1 ± iW 2 ), (1.5) 
where θ W is the Weinberg mixing angle. The Z and W ± fields are the massive observable bosons from the weak force. The boson A is massless and is the photon, thus corresponding to the electromagnetic four-potential from classical physics. The SM contains three generations of fermions, i.e. quarks and leptons, and their corresponding antifermions which have the opposite electric charge but otherwise identical properties. Quarks and leptons can differ in terms of chirality, which, crudely speaking, indicates how the phase of the wavefunction shifts when a fermion is rotated. Only left-handed fermions interact weakly. Quarks and leptons differ from one another in the sense that the former are charged under the strong force, and the latter are not. All fermions obey Fermi-Dirac statistics and have a 1/2-integer spin.

A summary of all particles -without antiparticles -and their properties is shown in table 1.1. The numbers in thick print indicate under which representation of the gauge group the field in question transforms. The weak isospin T 3 = σ 3 /2 is, in fact, the third component of the isospin generators T i = σ i /2, i= 1, 2, 3. The electric charge Q is also listed for the sake of completeness.

One might ask why no right-handed neutrinos are listed in this table. These so-called sterile neutrinos are hard to observe because they only interact through gravity, and only do so if they have mass. Notably, they cannot interact via the weak force because they are right-handed, not via the strong force because they are leptons, and not via electromagnetic forces because they are neutrally charged. Nevertheless, sterile neutrinos are an area of active research [START_REF] Abazajian | Sterile neutrinos in cosmology[END_REF][START_REF] Kopp | Sterile neutrinos as dark matter candidates[END_REF][START_REF] Naumov | The Sterile Neutrino: A short introduction[END_REF].

Unitarity

It is not uncommon to impose unitarity contraints on BSM models. They play quite an important role in the SM and the Higgs mechanism as well, though. The Higgs field is a complex scalar field of the SU (2) group:

φ = 1 √ 2   φ + φ 0   . (1.6)
The Higgs part of the SM Lagrangian is

L H = ∂ µ -igW a µ t a -ig Y φ B µ φ 2 + µ 2 φ † φ -λ(φ † φ) 2 , (1.7) Particle Field SU (3) SU (2) Y T 3 Q Left-handed lepton ν i,L 1 2 -1 2 0 e i,L - -1 Right-handed lepton e i,R 1 1 -1 - 1 
Left-handed quark u i,L 3 2

1 6 2 3 d i,L - -1 3 
Right-handed quark u i,R 3 1

2 3 2 3 d i,R -1 3 -1 3 Higgs boson φ 1 2 +1 - 0 Vector bosons B 1 1 +1 0 W 1 1 3 0 -1 +1 W 2 0 +1 -1 W 3 0 0 G a 8 1 0 0
Table 1.1 -Field content of the SM. The index i = 1, 2, 3 corresponds to the three generations. Y denotes the weak hypercharge, T 3 the weak isospin, and Q the electric charge.

where λ and µ are parameters from the Higgs potential, and are chosen to both be greater than zero so spontaneous symmetry breaking can take place. In a unitary gauge, one can now choose φ + = 0 and φ 0 to be real. The expectation value φ 0 is called the vacuum expectation value (vev) of the Higgs boson, and has units of mass. This gives the following masses to the W and Z boson, as well as to the Higgs boson itself:

M W = 1 2 vg, ( 1.8 
)

M Z = 1 2 v g 2 + g 2 , ( 1.9 
)

M H = 2µ 2 ≡ √ 2λv 2 .
(1.10)

The photon remains massless because the vacuum is invariant under the electric charge:

σ 3 2 + Y φ 0 = 1 2 (σ 3 + σ 0 ) v √ 2 = 0, (1.11) 
where φ 0 refers to the Higgs field φ in its ground state. Imposing unitarity constraints on the SM, i.e. requiring that the S-Matrix be unitary and thus satisfying S † S = 1, leads to one of two conditions: Either there is a Higgs boson with a mass below about 800 GeV, or the SM is invalid for energies in the few TeV range [START_REF] Lee | Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass[END_REF]. Based on the fact that the properties measured on the 125 GeV-boson are very Higgs-like, it seems that the former condition is true.

One can also impose unitarity constraints on BSM models to limit various masses, including that of the Higgs boson. To illustrate this, consider a minimal BSM with a scalar singlet S, as proposed by [START_REF] Kang | Unitarity Constraints in the standard model with a singlet scalar field[END_REF]. The extra terms to the Lagrangian can be written as follows:

L = L SM + 1 2 ∂ µ S∂ µ S - 1 2 µ 2 S S 2 + 1 4 λ S S 4 + 1 2 λ HS (H † H)S 2 .
(1.12)

By imposing unitarity on the S-Matrix and considering partial-wave unitarity, one can then derive the well-known Lee-Quigg-Thacker bound [START_REF] Lee | Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass[END_REF] on the Higgs mass:

m H < 8 √ 2π 3G F ≡ M LQT 1 TeV, (1.13) 
where G F = 1 √ 2v 2 is given through the vev v of the Higgs boson. In the case where there is a non-zero vev to S and considering the limit s → ∞, unitarity considerations lead to the bound

m H ≤ 1 √ 2 M LQT . (1.14)
With the same methodology, unitarity can lead to bounds on many extra particles in BSM models. This will notably be the case in chapter 3, where unitarity bounds are imposed on the SMSQQ (see section 1.2.5 ).

Vacuum stability

The aforementioned toy model, see equation (1.12), can be further constrained through considerations regarding vacuum stability. In the case where there is a non-zero vev to S, there are some constraints on the quartic couplings λ H , λ S and λ HS . If, however, one requires that the vev of S vanishes, one gets the following expression for the singlet mass:

m 2 S = µ 2 S + λ HS v 2 2 , (1.15)
where v is the vev of the Higgs field, as before. Requiring that the vacuum is located at the global minimum of the potential, one obtains

0 < µ 2 S < λ S λ HS v 2 . (1.16)
In the remainder of this work, vacuum constraints like this one contribute to imposing upper mass limits on stable dark matter particles.

In deriving the Higgs vev, not only unitarity, but also considerations on vacuum stability play a role. The problem is that even so, vacuum stability in the SM is not ensured. This has been explored in works such as [START_REF] Tang | Vacuum Stability in the Standard Model[END_REF], or [START_REF] Anchordoqui | Vacuum Stability of Standard Model ++[END_REF] for a BSM model. The basic idea is the following: One is given an energy scale Λ, often conveniently packaged into the operator

Λ d dΛ = β λ .
(1.17)

The quantum effective Higgs potential can be written as

V eff = - 1 2 µ(φ) 2 φ 2 + 1 4 λ(φ)φ 4 . (1.18)
Here, the scale Λ has been set to the field value φ. As long as the field value is large, i.e. φ v, the operator β λ at one-loop order is given by

β λ = 1 (4π) 2 24λ 2 -6y 4 t + 3 8 2g 4 + (g 2 + g 2 ) 2 + -9g 2 -3g 2 + 12y 2 t λ . (1.19)
The first term in the large brackets comes from the Higgs self-interaction, the second from the top quark loop, the third from the gauge boson loop and the last from the Higgs field renormalization. Here, y t is the Higgs boson Yukawa coupling with the top quark, g is the SU (2) gauge coupling, and g is the U(1) gauge coupling. Considering the second term and neglecting the running for the y f , one can then solve analytically to obtain .20) Similarly coupled RGEs need to be solved for all other terms as well. Putting all RGEs together and pushing up to the Planck scale then results in the following constraint on the Higgs mass [START_REF] Tang | Vacuum Stability in the Standard Model[END_REF]: The big problem arises when one tries to compute λ(Λ) at two-loop order, and takes into account other couplings like y b to the bottom quark. The detailed calculations will be omitted here for the sake of brevity. The point is that one then sees that λ(Λ) can very well drop below zero within parameter ranges that are not experimentally excluded [START_REF] Pullin | Vacuum Stability in the Standard Model and Beyond[END_REF]. This is a huge deal for the SM because it means that vacuum stability is not guaranteed. According to current literature [START_REF] Isidori | On the metastability of the standard model vacuum[END_REF][START_REF] Markkanen | Cosmological Aspects of Higgs Vacuum Metastability[END_REF][START_REF] Froggatt | Standard model Higgs boson mass from borderline metastability of the vacuum[END_REF], it seems that the SM vacuum is in a metastable state, and that the Higgs quartic coupling becomes negative before the Planck scale. It is therefore theorized that new physics must arise around the point where λ ≤ 0, and that this new physics is responsible for stabilizing the potential beyond this point.

λ(Λ) = λ(v) -6y 4 t ln λ v . ( 1 
m H [GeV] > 129.5 + 1.4 • m t [GeV] -173.1 0.7 -0.

Reasons to look beyond

Apart from the aforementioned conundrum about vacuum stability in the SM, there are, somewhat unfortunately, other reasons why HEP theorists might wish to go beyond. Complete lists of problems with the SM can be found in the literature [START_REF] Ellis | Physics Beyond the Standard Model[END_REF][START_REF] Ellis | Outstanding questions: Physics beyond the Standard Model[END_REF][START_REF] Csáki | Beyond the Standard Model[END_REF][START_REF] Allanach | Beyond the Standard Model Lectures for the 2016 European School of High-Energy Physics[END_REF][START_REF] Lykken | Beyond the Standard Model[END_REF]. Some important ones include the following:

• It is not totally understood why neutrinos have mass -this has been experimentally observed [START_REF] Fukuda | Evidence for oscillation of atmospheric neutrinos[END_REF] but is not predicted in the SM. Neutrino oscillations are not predicted, either.

• It is also not understood why QCD does not violate CP symmetry [START_REF] Dine | A simple solution to the strong CP problem with a harmless axion[END_REF][START_REF] Kim | The mu-problem and the strong CP-problem[END_REF][START_REF] Peccei | The Strong CP problem and axions[END_REF][START_REF] Kim | Axions and the Strong CP Problem[END_REF]. This would, in principle, be allowed, yet strangely no such violation has been observed. This phenomenon is called the strong CP problem.

• Why are there exactly three generations of quarks and leptons? What makes them different from one another? Why does a fermion from one generation only transition to another generation with a W-or Z boson? Why is the CKM matrix, the only source of quark flavour violation in the SM, so hierarchical? All these questions are part of the Flavour puzzle [START_REF] Feruglio | Pieces of the Flavour Puzzle[END_REF][START_REF] Djordjevic | Heavy flavor puzzle at LHC: a serendipitous interplay of jet suppression and fragmentation[END_REF][START_REF] Nir | Flavour Physics and CP Violation[END_REF].

• The SM does not explain cosmic inflation sufficiently. Attempts have been made at fixing this [START_REF] Kamada | Inflationary cosmology and the standard model Higgs with a small Hubble induced mass[END_REF][START_REF] Chen | Standard Model Mass Spectrum in Inflationary Universe[END_REF][START_REF] Simone | Running Inflation in the Standard Model[END_REF]; however, as of now not a single BSM theory is able to explain this and all the other problems and have some experimental evidence speaking for it, as one would require from a good "theory of everything."

• Baryogenesis, the process that cosmologists assume gave rise to matter in the early Universe and, inexplicably, produced more baryons than antibaryons (this is the reason the world exists), is not explained in the SM. Theoretical attempts at explaining this process together with CP violation have been made [START_REF] Huet | Electroweak baryogenesis and standard model CP violation[END_REF][START_REF] Huet | Electroweak baryogenesis and the standard model[END_REF][START_REF] Chung | Standard model baryogenesis through four fermion operators in brane worlds[END_REF][START_REF] Vries | Electroweak Baryogenesis and the Standard Model Effective Field Theory[END_REF][START_REF] Girmohanta | A Natural Model of Spontaneous CP Violation[END_REF], but they lack experimental confirmation.

• Although for the most part the SM is in astonishing accordance with experimental measurements, two measurements stand out: First, oscillations of the B meson seem to hint at a solution to baryogenesis due to a discrepancy with the SM on the decay rates to matter and antimatter [START_REF] Aaij | Measurement of CP violation and the B 0 s meson decay width difference with B 0 s → J/yK + Kand B 0 s → J/yp + pdecays[END_REF][START_REF] Kostelecky | CPT violation and B-meson oscillations[END_REF][START_REF] Aaij | A precise measurement of the B 0 meson oscillation frequency[END_REF][START_REF] Nelson | Baryogenesis from B Meson Oscillations[END_REF]. Second, the magnetic moment of the muon is, as of now, deviant by more than three standard deviations from the prediction of the SM [START_REF] Miller | Muon (g-2): Experiment and theory[END_REF][START_REF] Jegerlehner | The Muon g-2[END_REF][START_REF] Keshavarzi | Muon g -2: A review[END_REF].

• The SM does not contain gravity, and is therefore not a "theory of everything." Theories such as those relating to quantum gravity lack experimental evidence, so that they cannot be proven right or wrong at the time of writing this work [START_REF] Bilson-Thompson | Quantum gravity and the standard model[END_REF][START_REF] Chamseddine | Gravity and the standard model with neutrino mixing[END_REF][START_REF] Eichhorn | Quantum gravity and Standard-Model-like fermions[END_REF][START_REF] Shaposhnikov | Standard Model Meets Gravity: Electroweak Symmetry Breaking and Inflation[END_REF].

In addition to these (small or big, depending on who one asks) problems, there are three major problems which are explained away by SUSY. (It is truly a pity that no experimental evidence has occured for SUSY for more years than anyone can remember.) These are explained below.

Hierarchy problem

Somewhat relating to the problems with vacuum stability, the hierarchy problem asks the question what is out there at the Planck scale [START_REF] Csáki | Beyond the Standard Model[END_REF][START_REF] Graham | A Little Solution to the Little Hierarchy Problem: A Vector-like Generation[END_REF][START_REF] Jegerlehner | The hierarchy problem of the electroweak Standard Model revisited[END_REF]. The Higgs field is naïvely expected to be either zero or on the Planck scale because of the large quantum contributions that are made to its square. In reality, however, the vev is around 246 GeV, which is tiny compared to the Planck mass of about 1.22 • 10 19 GeV, and significantly larger than zero. This is startling because, yes, the Higgs scalar gives masses to the W and Z bosons which are in the same order of magnitude as the vev, as experimentally observed. There is, however, no symmetry that somehow protects the vev itself, so that one would expect humungous quartic couplings in an SM Lagrangian that contains a Higgs field. These quartic couplings would be of the same order of magnitude as the heaviest particle coupling to it, which, according to many BSM theories, should be in the ballpark of a few TeV. Too much!

Unification of gauge couplings

Einstein's great dream was to find a way to unify all forces. He did not succeed, though, and neither has the rest of the physics community (as of now). These days, many grand unified theories (GUTs) abound, but not one of these has been experimentally confirmed -not even SUSY. The basic idea is to fuse together the electromagnetic, weak, and strong force to one extremely fundamental force that might have been manifest in its original form in the very early Universe. This can be achieved by putting the SM into a higher rank gauge group, like for example SU (5) or SU [START_REF] Plätzer | Amplitude Factorization in the Electroweak Standard Model[END_REF]. This sounds fun, but unfortunately many GUTs suffer from a malady called doublet-triplet problem [START_REF] Georgi | Unity of All Elementary-Particle Forces[END_REF][START_REF] Frampton | Staying alive with SU(5)[END_REF][START_REF] Ibanez | Gauge coupling unification: Strings versus SUSY GUTs[END_REF]. They often predict that for each electroweak Higgs doublet, there must be a corresponding coloured Higgs triplet with a small mass. This has not been observed, however. In other words, it's time for the next Einstein to come around and show us some actual GUTs.

Dark matter, dark energy

Some 85 percent of the matter in the Universe are believed to be dark matter (DM). Dark matter cannot or can almost not be seen in a regular (electromagnetic) way, cannot be subject to the strong force, and cannot be electrically charged either -hence it is dark. The only viable way to detect dark matter is through its effects on gravity . And no, it is not part of the SM. Its effects are observable, notably in the microwave background [START_REF] Bertone | Particle dark matter: Evidence, candidates and constraints[END_REF][START_REF] Kapteyn | First Attempt at a Theory of the Arrangement and Motion of the Sidereal System[END_REF][START_REF] Begeman | Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics[END_REF][START_REF] Copi | Big bang nucleosynthesis and the baryon density of the universe[END_REF], but so far humanity has failed to detect a single dark matter particle on or outside of Earth. There are many theories that attempt to explain DM, but not one is confirmed experimentally.

As for dark energy (DE), it, too, has not been confirmed in a direct way (capturing it and doing something with it is not in the realm of the possible at the moment). It is the most plausible explanation to why the Universe is expanding, however, and as such widely accepted since the 1990s. And again there is no entry for it in the SM, because there is no experimental proof for it. When one considers that DE is believed to constitute almost 70 percent of the Universe, that is rather astounding, right? Possible forms of DE are either having a non-zero cosmological constant -this assumes that DE fills the entire Universe evenly -or having scalar fields which may vary in time and space. It is possible, however, that DE does not even exist because physicists just need to do their homework and calculate the general relativity of the structures of all scales (far from an easy task). If DE does exist, though, it better find its way into the SM before it is too late.

Supersymmetry

Supersymmetry is one of the strongest frameworks for solving many problems with the SM. Its mathematical beauty has brought it many admirers; however, SUSY has failed to provide evidence of its existence where physicists would have expected it [START_REF] Aaboud | Search for supersymmetry in events with four or more leptons in sqrt s =13 TeV pp collisions with ATLAS[END_REF][START_REF] Aad | Search for supersymmetry at sqrt s =13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector[END_REF][START_REF] Tumasyan | Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at sqrt s = 13 TeV[END_REF][START_REF] Aad | Search for supersymmetry in events with four or more charged leptons in 139 fb (-1) of sqrt s = 13 TeV pp collisions with the ATLAS detector[END_REF]. This does not make its shine lackluster, though, for two reasons. Number one, it makes up a large class of BSM models and has been studied extensively before. This implies that classic SUSY models are the perfect objects to test routines on, for example new HEPtools or scanning frameworks. This is done in chapters 4 and 5 of this work. Second, if there is no evidence for classic SUSY models, that does not mean that more sophisticated workarounds do not exist which might make it a valid framework of thought anyway. Illustrated by the many talks entitled SUSY is NOT dead or similar, this may sound a little bit corny and a tad too hopeful. However, the possibility remains that SUSY particles leave more exotic traces in detectors, making them harder to find. Or they could be much heavier than originally expected due to symmetry breaking. Either way, SUSY is worth being investigated a little bit more.

SUSY hinges on the idea that fermions could have a bosonic counterpart and vice versa. These -so for unobserved -counterparts are called superpartners. The remainder of this subsection will outline the underlying thoughts of SUSY. For a more detailed explanation, the author refers to the brilliant work of their two predecessors [START_REF] Braathen | Automating Higgs precision calculations[END_REF][START_REF] Williamson | Phenomenology and collider constraints of Supersymmetric models in the Run 2 era of the LHC[END_REF] and the literature [START_REF] Bagger | Weak scale supersymmetry: Theory and practice[END_REF][START_REF] Lykken | Introduction to supersymmetry[END_REF][START_REF] Martin | A Supersymmetry primer[END_REF][START_REF] Gunion | A Simplified summary of supersymmetry[END_REF][START_REF] Drees | Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics[END_REF][START_REF] Quevedo | Cambridge Lectures on Supersymmetry and Extra Dimensions[END_REF]. As will be seen in the next few pages, SUSY provides powerful answers to the hierarchy problem, and might even lead the way to predicting the properties of dark matter particles -if SUSY gets experimentally confirmed, that is. It does not, however, address a variety of other problems with the SM. Therefore, even if it gets confirmed and becomes an amelioration of the SM, it still will not be a theory of everything.

Two-component notation

It is customary, and practical, to write supersymmetric fields in two-component Weyl spinors instead of four-component Dirac spinors. One can write a Dirac spinor Ψ as

Ψ =   ξ α χ α  , ( 1.22) 
where the two entries are Grassmannian, complex and anti-commuting components of the Weyl spinors ξ α and χ. Here, ξ is left-, and χ right-handed. The two components have different indices α = 1,2, hence the dotted one. The barred and non-barred spinors correspond to the (0, 1 2 ) and ( 1 2 , 0) representations of the Lorentz group SO(3,1) SU (2) L ⊕ SU (2) R . These are related by complex conjugation:

χ α ≡ (χ α ) † .
(1.23)

Lower and upper indices can be changed with the relations

ξ α = αβ ξ β , ξ α = αβ ξ β , ξ α = α β ξ β , ξ α = α β ξ β , (1.24) 
where αβ and α β are two-dimensional antisymmetric tensors with 12 = -12 = 1. The indices are contracted like so:

ξχ ≡ ξ α χ α = αβ ξ β χ α = βα ξ β χ α = -ξ α αβ χ β = -ξ α χ α = χ α ξ α ≡ χξ ξ χ ≡ ξ α χ α = α β ξ β χ α = β α ξ β χ α = -ξ α α β χ β = -ξ α χ α = χ α ξ α ≡ χ ξ (1.25)
Note the fact that unlike bosonic variables, fermionic variables anti-commute, i.e. ξ 1 χ 2 = -χ 2 ξ 1 . Next, the Dirac conjugate ψ can be written as

ψ = ψ † γ 0 = χ α , ξ α . (1.26)
Introducing the left-and right-handed projectors via the identity 1 4 = P L + P R = P 2 L + P 2 R , one obtains for the Dirac mass term:

m ψ ψψ = m ψ ξχ + ξ χ .
(1.27)

The charge conjugate of the Dirac spinor is:

ψ C = iγ 0 γ 2 ψT =   αβ 0 0 α β     χ α ξ α   =   χ α ξ α   . (1.28)
With the Majorana condition that ψ C M = ψ M one thus concludes that ξ = χ, and therefore a Majorana spinor and mass term can be written as

ψ M = ξ α ξ α , and 1 2 M ψ ψM ψ M = 1 2 m ψ ξξ + ξ ξ . (1.29)
This concludes the formalism on how to write down fermions in the language of SUSY.

SUSY algebra

Symmetries play a huge role in the SM and in SUSY particularly; this is self-evident. An enormous amount of work has, unsurprisingly, been devoted to find out which space-time symmetries are viable candidates to base theories in physics on. In 1967 (yes, this stuff has been around for a while), researchers found out that the largest possible symmetry group is the Poincaré group, if only bosonic symmetry generators are allowed [START_REF] Coleman | All Possible Symmetries of the S Matrix[END_REF]. A few years later, others noticed that Poincaré symmetry can in fact be extended by adding fermionic symmetry generators [START_REF] Haag | All possible generators of supersymmetries of the S-matrix[END_REF]. Therefore, the spinors encountered in the last section have (dotted or undotted) spinor indices and behave as one would expect under transformations of the rest of the Poincaré group. These generatos are denoted Q A α in the following, where A indicates the possible different generators. Their complex conjugates are QA α . The supersymmetry transformations that they generate turn bosons into fermions and vice versa. Hence, the SUSY algebra can be derived, complete with supercharges A, B, . . . ∈ [1, . . . , N ]:

{Q A α , QB α } = 2 σ µ α α P µ δ AB , {Q A α , Q B β } = αβ Z AB , { QA α , QB β } = α β Z AB * , [P µ , Q A α ] = [P µ , QA α ] = 0, (1.30) 
where σ µ = (1 2 , σ i ) with σ i the Pauli matrices, P µ is the generator of translations, and Z AB anti-symmetric tensors called central charges. In the next few pages, σµ = (1 2 , -σ i ) is also used.

Four bosonic coordinates x µ , associated with the generator P µ , are used to describe bosonic spacetime here. In analogy, four fermionic coordinates, so-called Grassmann coordinates, are introduced. They are a set of two-component anti-commuting spinors θ α and θ α (α = 1, 2 as before) which are associated with the SUSY generators Q α , Q α. The spinor θ α is left-handed; θ α is right-handed, and both have the mass dimension -1/2. They obey

{θ α , θ β } = { θ α, θ β } = {θ α , θ α} = 0. (1.31)
The four bosonic and four fermionic coordinates span open a superspace, i.e. an eightdimensional manifold. One important set of identities from this space is the following:

∂ ∂θ β (θ α ) = δ α β , ∂ ∂ θ β ( θ α) = δ α β , ∂ ∂θ β (θ α ) = δ β α , ∂ ∂ θ β ( θ α) = δ β α ∂ ∂θ β (θ α ) = αβ , ∂ ∂ θ β ( θ α) = α β , ∂ ∂θ β (θ α ) = αβ , ∂ ∂ θ β ( θ α) = α β , (1.32) 
where αβ βγ = δ γ α was used. One can also construct the superderivative, which is given by:

D α = ∂ ∂θ α -i σ µ θ α ∂ µ , D α = - ∂ ∂θ α + i θσ µ α ∂ µ , D α = ∂ ∂ θ α -i (σ µ θ) α ∂ µ , D α = - ∂ ∂ θ α + i (θσ µ ) α ∂ µ .
(1.33)

The following anti-commutation relations hold:

{D α , Q β } = {D α , Q β } = { D α,Q β } = { D α, Q β } = 0, {D α , D β } = { D α, D β } = 0, {D α , D β } = 2iσ µ αβ ∂ µ .
(1.34)

From this one can derive the behaviour of the supersymmetry generators:

Qα = i ∂ ∂θ α -σ µ θ α ∂ µ , Qα = -i ∂ ∂θ α + θσ µ α ∂ µ , Q α = i ∂ ∂ θ α -(σ µ θ) α ∂ µ , Q α = -i ∂ ∂ θ α + (θσ µ ) α ∂ µ . (1.35)
Finally, the integral in superspace is called Berezin integral and is defined as follows:

1 = dθ θ = d 2 θ θθ = d θ θ θ = d 2 θ θ θ, 0 = dθ = d θ.
(1.36)

This completes the machinery needed to study SUSY fields and their interactions.

Superspace and superfields

Many SUSY theories only have a single supersymmetry, i.e. N = 1. This case will be studied in the following. Other SUSY theories with N = 2 are studied in subsection 1.1.3.6. Superfields are the SUSY-equivalent to regular fields. There are two kinds of them: Chiral superfields contain the physical degrees of freedom (d.o.f.) of a fermion and a complex scalar, and describe lepton-slepton, quark-squark and Higgs-Higgsino multiplets. Vector superfields contain a gaugino and a gauge-boson and describe the three W ± , Z-wino multiplets, the gluon-gluino multiplet, and the photon-photino multiplet.

The most general superfield can be written as follows:

S(x,θ, θ) = a(x) + θξ(x) + θ χ(x) + θθb(x) + θ θc(x) + θσ µ θv µ (x) + θθ θλ (x) + θ θθψ(x) + θθ θ θd(x), (1.37) 
where a, b, c, d are scalar fields, ξ, ψ are left-handed fermionic fields, χ, λ are right-handed fermionic fields, and v µ is a vector field. These fields are called component fields, and live in Minkowski space. Chiral superfields obey the condition D αΦ = 0; anti-chiral superfields obey D α Φ = 0. By rescaling a → φ, ξ → √ 2ψ, and b → F , one finds the general expression for a chiral superfield:

Φ(x,θ, θ) = φ(x) + √ 2θψ(x) + θθF (x) -i θσ µ θ∂ µ φ - i √ 2 θθ θσ µ ∂ µ ψ(x) - 1 4 θθ θ θ∂ µ ∂ µ φ(x). ( 1.38) 
A chiral field thus has 2 d.o.f. each from the two complex scalars φ and F , and 4 d.o.f. from the complex spinor ψ. The F -terms, called auxiliary fields, do not have a kinetic term, but allow the SUSY algebra to close off-shell. With help of the Euler-Lagrange equations, they can be integrated out to bring the Lagrangian off-shell. The Lagrangian for the F -auxiliaries is L aux ⊃ F * F ; therefore they have vanishing equations of motion F = 0 and F * = 0. Vector superfields can be written as follows under the Wess-Zumino gauge:

V a (x,θ, θ) = θσ µ θv a µ (x) + θ θθλ a (x) + θθ θλ a (x) + 1 2 θθ θ θD a (x). (1.39)
One sees a gauge boson in the first term, one massive gaugino in the second and third terms, and an auxiliary field D in the last term. Similarly to the F -term, the Lagrangian density for the latter is L aux ⊃ 1 2 a D a D a . Also, D a = 0 holds. Since the vector superfield is of dimension zero, one can exponentiate the field to create supergauge invariant kinetic terms. From equation (1.39) one can see that the lowest component has a θθ parametrisation. This, in turn, implies that terms like

V 2 = 1 2 θθ θ θv µ a v a µ (1.40)
and any terms with V n>2 vanish. Thus, the Taylor expansion of the exponentiated vector is limited to which simplifies calculations a lot. Table 1.2 provides a brief overview over the components of the chiral and vector supermultiplets. Generally speaking, SUSY does contain a gravity multiplet; covering this would go beyond the scope of this thesis but it is included for the sake of completeness.

e V = 1 + V + 1 2 V 2 , ( 1 

Supersymmetric Lagrangians

As a next and final step to cover the very basics of SUSY, the actions will be constructed. Generally, these include kinetic terms K via chiral superfields, and the superpotential W . To be supersymmetrically invariant, however, the function K must be a real superfield. Its realness implies that K = K(Φ, Φ) must be a function both of chiral and anti-chiral superfields. The kinetic terms can then be described by a Kähler potential,

S matter, kinetic = d 4 x d 2 θ d 2 θ K(Φ, Φ) = d 4 x d 2 θ d 2 θ ΦΦ, (1.42)
where the second equality comes from the requirement that the θ 2 θ2 component of the superspace integral needs to be a scalar function. In addition, the mass dimension needs to fulfill [L] = 4 and [θ] = [ θ] = -1 2 due to renormalisability, hence [K(Φ, Φ)] = 2. This is then the most general Kähler potential.

One now needs to include the dynamics of vector superfields V a . Without going too deep into the derivation of it, it shall be stated that the correct ansatz is

L gauged-matter, kinetic = d 2 θd 2 Φ exp (2g a T a V a ) Φ = d 2 θ d 2 θ [ ΦΦ + 2g a ΦT a V a Φ + 2g 2 a ΦT 2 V 2 Φ] θθ θ θ = F F + ∂ µ φ∂ µ φ + i ψσ µ ∂ µ ψ + g( φT a φ)D a - √ 2g a ( φT a ψ)λ a + λ2 ( ψT a φ) + ig a ( φT a ∂ µ φ)v a µ + g a ( ψT a ∂ µ ψ) + ig a (∂ µ φT a φ)v µ,a + g 2 a φv µ a v a µ φ, (1.43)
where the exponentiation of equation (1.41) was used in the second step. This concludes the expression for the kinetic term, which essentially contains combinations of chiral superfields that transform in field space. What is left to do is to write a term for the components that do not propagate, i.e. the F -terms. As before, first consider the action:

S matter, interactions = d 4 x d 2 θ W (Φ) + h.c. (1.44)
Here, W is a holomorphic function, which implies that

D αW (Φ) = 0, D α W ( Φ) = 0 (1.45)
because a holomorphic function of a chiral superfield is still a chiral superfield (analogous for antichiral superfields). Therefore, W (Φ) must not contain any covariant derivatives. Also, one knows that [W ] = 3 because [d 2 θ] = 1; thus the superpotential should be at most cubic.

One obtains the most general form

W (Φ i ) ≡ a i Φ i + 1 2 M ij Φ i Φ j + 1 6 y ijk Φ i Φ j Φ k . (1.46)
One can now formulate the corresponding part of the Lagrangian:

L matter, interactions = a i Φ i + 1 2 M ij Φ i Φ j + 1 6 y ijk Φ i Φ j Φ k θθ + h.c. = a i F i + 1 2 M ij (φ i F j -ψ i ψ j ) + 1 6 (φ i φ j F k -φ i ψ j ψ k ) + h.c. = - 1 2 M ij ψ i ψ j - 1 6 y ijk φ i ψ j ψ k + h.c., (1.47) 
where one used that θψ i θψ i = -1 2 θθψ i ψ j , and F has been set to 0 from its equations of motion. This Lagrangian does not need any modification to account for gauge covariance: Its holomorphism ensures this already.

Next, one wants to construct the supersymmetric version of the gauge Lagrangian. To this end, one defines superderivatives:

W α ≡ - 1 8 D α D α e -2gV a T a D α e 2gV a T a , W α ≡ 1 8 D α D α e 2gV a T a D αe -2gV a T a , (1.48) 
from which the SUSY field strength superfield in the adjoint represenation for the gauge group can be derived:

W a α = λ a α + θ α D a -(σ µν θ) α F a µµ + iθθ σ µ ∇ µ λa α . (1.49)
W α is also called gaugino superfield because it is in principle a chiral superfield but with a scalar at its bottom component. One can now write the gauge action as

S gauge = d 4 x d 2 θ W a α W α a + h.c. = d 4 x D a D a + 2iλ a σ µ ∇ µ λa - 1 2 F aµν F aµν + i 4 µντ κ F µν F τ κ + h.c. . (1.50)
Putting it all together, one can write the most general N = 1 SUSY Lagrangian as

L = d 2 θ d 2 θ Φe -2gV a T a Φ θ 2 θ2 + d 2 θ [W (Φ)] θ 2 + d 2 θ W ( Φ) θ2 + d 2 θ [W a α W α a ] θ 2 + d 2 θ W a α W α a θ2 + A κ A V A , (1.51)
where the last term is a so-called Fayet-Iliopoulos term.

R-symmetry

In addition to what is contained in the general SUSY Lagrangian, there are more symmetries that it can accommodate. The global U (N ) R symmetry, called R-symmetry, is a prominent one of these [START_REF] Quevedo | Cambridge Lectures on Supersymmetry and Extra Dimensions[END_REF][START_REF] Ruffini | Introducing the black hole[END_REF][START_REF] Bekaert | How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples[END_REF]. It is a group which commutes with the Lorentz group but still leaves the SUSY algebra invariant. For N = 1, this is just the U (1) R symmetry group.

For N = 2, however, this is the non-abelian group

U (2) R = SU (2) R × U (1); for N = 4, U (4) R = SU (4) R × U (1)
; and so on. These groups are quite interesting: For example if N = 2, the SU (2) R rotates the supercharges, and U (1) changes the phase.

The charges associated with an R-symmetry are called R-charges. The R-charges of matter fields depend on the model. Real fields always have an R-charge of 0, which implies that any terms in the Lagrangian which come from the Kähler potential are invariant under R-symmetry. If the superpotential transforms with an R-charge of 2, i.e. W → e 2iα W , then the whole Lagrangian is invariant under R-symmetry. If this is not the case, and the Lagrangian does accommodate R-symmetry, then its superspace coordinates transform as

θ → e iα θ, θ → e -iα θ, (1.52) 
with R-charges +1 and -1, and superspace derivatives R dθ = -1 and R d θ = 1, respectively. The covariant derivatives D α and D α will therefore carry R-charges +1 and -1, respectively. Because the spacetime coordinates must not be affected by internal rotations of the supercharges, the SUSY generators must also transform under the R-symmetry with R-charges -1 and +1:

Q → e -iα Q, Q → e iα Q. (1.53)
In consequence, the supersymmetry generators do not commute with the R-symmetry generator R:

[R,Q] = -Q, [R, Q] = Q. (1.54)
The vector field is real, thus its components transform like

v a µ → v a µ , λ a → e iα λ a , D a → D a , (1.55)
with R-charges 0, 1, and 0, respectively. In contrast, the R-charge for chiral superfields can be chosen, so one gets the transformations

φ → e ir Φ α φ, ψ → e i(r Φ -1)α ψ, F → e i(r Φ -2)α F, (1.56)
with choosable R-charges r Φ , r Φ -1, and r Φ -2, respectively. R-symmetry must be broken due to quantum gravity arguments [START_REF] Ruffini | Introducing the black hole[END_REF]. It cannot be broken spontaneously in the visible sector because this would lead to a massles R-axion, which has not been experimentally observed. One can break it explicitly in a specific sector, though. This will be seen later with the MSSM and the MDGSSM.

Extended SUSY

As mentioned before, extensions to N > 1 generators are worth studying. Mathematically, they can be quite interesting [START_REF] Seiberg | Electric -magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory[END_REF][START_REF] Seiberg | Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD[END_REF]; however, most phenomena that are predicted by such extended SUSY models are not observed in nature, for example when SUSY fermions are in real representations and SM fermions are in chiral representations. There are some exceptions, nevertheless, and experimentally viable theories with N = 2.

Essentially, an N = 2 SUSY theory consists of two N = 1 sub-supersymmetries. Following this logic, an N = 2 hypermultiplet can be constructed out of two N = 1 chiral multiplets, and an N = 2 vector multiplet can be formed from an N = 1 chiral and vector multiplets:

N = 2 vector multiplet: Φ = (φ, ψ α , F ) ⊕ V = (λ a , A µ , D), N = 2 hypermultiplet: Φ H 1 = (φ H 1 , ψ 1α , F 1 ) ⊕ Φ H 2 = ( φH 2 , ψ2 α , F1 ).
(1.57)

The two supersymmetries can exist independently of one another, so an additional symmetry linking the multiplets is needed to make such a model interesting. In this work -and, in fact, in the vast majority of works out there -the R-symmetry will be used; theoretically, though, other symmetries are also possible. With R-symmetry, it turns out that in the hypermultiplet, the fermionic fields ψ 1 and ψ2 transform as singlets, while the complex scalars φ H 1 , φH 2 transform as doublets. In the vector multiplet, the bosonic fields A µ and φ transform as singlets, and the gaugino from the N = 1 gauge multiplet and the chiral fermion from the N = 1 chiral multiplet transform as doublet (λ α , ψ α ) under the SU (2) R symmetry. This is only the case, however, if additional restrictions are put into place. Among other things, the superpotential must be zero, because a non-zero superpotential would give rise to mass and interaction terms for the chiral fermion, and this is forbidden by R-symmetry. There still can be potential coming from the D-terms, however.

At N = 4 SUSY, there is just one gauge coupling for the theory, and the separation between matter and vector multiplets disappears. Instead there is one multiplet containing a vector, four fermions and three complex scalars, i.e. three N = 1 chiral multiplets and one N = 1 vector multiplet, or one N = 2 hypermultiplet and one N = 2 vector multiplet. The physical limit for SUSY generators is N = 8. In this last case, the multiplets contain massless particles of helicity |λ| > 2; this, however, makes it difficult to get the theory to work with the known restrictions from QFT.

In this work, only SUSY models of N = 1 are studied. There is, of course, excellent literature covering and investigating models with more supersymmetries.

SUSY breaking

What has been discussed over the last sections is all well and good, but it goes against experimental evidence in a big way. Whatever calculations took place before this point always had the same result: Superpartners had the same mass as their SM counterparts. This cannot be true because one would have seen evidence of them a long time ago already. Thus, SUSY can only be true if it is broken at a low energy scale, such that all the extra particles are heavier and thus have gone unobserved so far [START_REF] Poppitz | Dynamical supersymmetry breaking[END_REF][START_REF] Chung | The Soft supersymmetry breaking Lagrangian: Theory and applications[END_REF][START_REF] Intriligator | Lectures on Supersymmetry Breaking[END_REF][START_REF] Dine | Supersymmetry and Its Dynamical Breaking[END_REF].

Spontaneous symmetry breaking only takes place if the vacuum energy of any global or local minimum of the potential is non-zero, i.e.,

Q α |vac = 0, Q α|vac = 0.
(1.58)

In order words, SUSY is spontaneously broken if any of the scalar components acquires a vev. One can relate the momentum operator P µ , whose lowest component is the energy P 0 , to the SUSY generators via the permutation relations (1.30):

α= β=1,2 {Q α , Q β } = 2 (σ µ 11 + σ µ 22 ) P µ = 2 ((P 0 + P 3 ) + (P 0 -P 3 )) = 4P 0 ≡ H. (1.59)
This leads to the conclusion that the SUSY vacuum energy is always definite positive:

vac|H|vac = 1 4 vac|Q 1 Q1 |vac + vac| Q1 Q 1 |vac + vac|Q 2 Q2 |vac + vac| Q2 Q 2 |vac = 1 4 | Q1 |vac | 2 + |Q 1 |vac | 2 + | Q2 |vac | 2 + |Q 2 |vac | 2 ≥ 0.
(1.60) Thus, the vacuum state is invariant under SUSY if the Hamiltonian is. If there are no space-time dependent effects or fermionic condensates, one therefore gets H|vac = V |vac . The scalar potential consists of the D-components from the gauge superfields, and the Fcomponents from the chiral superfields. All interaction terms are in the F -terms because these are derived from the superpotential, i.e.,

V F = F * i (Φ * i )F i (Φ i )
with

F i = - ∂W * ∂Φ * i | Φi = φi , F * i = - ∂W ∂Φ i | Φ i =φ i , (1.61) 
where φ denotes the scalar field component of the chiral superfield Φ, and the subscript i implies that all fields contributing to the superpotential are summed. The D-terms can be written in terms of the gauge couplings of the U (1) Y and SU (2) L gauge groups, respectively:

D Y = -g Y j Y j φ * j φ j , D a 2 = -g 2 j φ * j σ a 2 φ j , (1.62) 
The total D-term potential is then given by:

V EW D = 1 2 3 a=1 (D a 2 ) 2 + 1 2 D 2 Y . (1.63)
The electroweak scalar potential is then given by

V (φ i , φ * i ) = F * F + 1 2 a D a D a = ∂W ∂Φ i 2 Φ i →φ i + 1 2 a g 2 a φ * i T a ij φ j 2 , ( 1.64) 
where T a ij are the group generators. One can now see that if any of the F -or D-terms gets a vev, then SUSY will be spontaneously broken No matter what ends up breaking SUSY, one can look at the low energy theory where the hidden sectors have been integrated out. Then the Lagrangian will no longer be UV complete but an effective description, and contains soft terms breaking SUSY explicitly. If one is a little bit lazy -as many physicists are -one can just write such soft terms down without bothering about how these might have come about at the high-energy scale. The new operators just need to be of positive mass dimension to keep the theory renormalisable, and should not add quadratic divergences, because these would destabilise the mass hierarchy between the electroweak and the Planck scale. The most general form of soft terms is

vac|H|vac = F * F + 1 2 a D a D a = 0. ( 1 
L soft = - 1 6 a ijk φ i φ j φ k + 1 2 b ij φ i φ j + i i φ i + h.c. + 1 2 M a λ a λ a + h.c. -m 2 i j φ j * φ i , (1.66) 
where one sees, from left to right, the scalar trilinear coupling, scalar bilinear coupling, tadpole, Majorana gaugino mass, and scalar mass terms, respectively. The first three terms would each be allowed in a soft SUSY breaking model as long as their counterparts in the superpotential are also allowed by gauge invariance. Majorana-and diagonal scalar mass terms always preserve gauge invariance and are allowed. Majorana mass terms, however, always break R-symmetry. Whether diagonal scalar mass terms break R-symmetry depends on their choice.

The hierarchy problem

As a final step, the way SUSY solves the hierarchy problem is presented in more detail. This shall be demonstrated on a toy model of a massless chiral superfield L interacting with another heavy chiral superfield H. To keep the two superfields from mixing, the model is required to be invariant under the transformation H → -H. The superpotential is then

W (Φ) = 1 2 M H 2 + 1 2 Y LH 2 .
(1.67)

One can then calculate the Lagrangian to be

L = |∂ µ L| 2 + |∂ µ H| 2 + i ψL σµ ∂ µ ψ L + i ψH σµ ∂ µ ψ H -M 2 |H| 2 - 1 2 M (ψ H ψ H + h.c.) - 1 2 Y (ψ H ψ H L + 2ψ L ψ H H + h.c.) -Y M L|H| 2 + h.c. -Y 2 |L| 2 |H| 2 - 1 4 Y 2 |H| 4 .
(1.68)

From this, three diagrams contribute to radiative corrections to the light scalar mass. For them one obtains:

Π (A) LL * (p 2 ) = -(-iY ) 2 d d k i(2π) d i k 2 -M 2 = Y 2 16π 2 A(M 2 ), (1.69) 
Π (B) LL * (p 2 ) = -(-iY M ) 2 d d k i(2π) d i k 2 -M 2 i (p + k) 2 -M 2 = - Y 2 M 2 16π 2 B(p 2 , M 2 , M 2 ), (1.70) 
Π (C) LL * (p 2 ) = + (-iY ) 2 2 d d k i(2π) d iσ µ α αk µ k 2 -M 2 i (σ ν ) αα (k ν + p ν ) (p + k) 2 -M 2 = Y 2 d d k i(2π) d k • (k + p) (k 2 -M 2 )((p + k) 2 -M 2 ) = - Y 2 16π 2 A(M 2 ) -M 2 - p 2 2 B(p 2 ,M 2 ,M 2 ) .
(

At tree level light scalar mass, i.e. p 2 = 0, the sum of the three diagrams vanishes. Thus, the light scalar mass does not receive any correction, be it finite or quadratically divergent like in the SM. For a model where the symmetry is broken, this still holds. Consider, for example, the case where the superfield H in the toy model receives a soft mass m 2 soft , so that H has mass m 2 = M 2 +m 2 soft . Assuming that m soft M and going to leading order, one can thus obtain

A(m 2 ) -A(M 2 ) = m 2 log m 2 -m 2 -M 2 log M 2 + M 2 = (M 2 + m 2 soft ) log M 2 + log 1 + m 2 soft M 2 -M 2 log M 2 -m 2 soft = m 2 soft log M 2 .
(1.72)

In the limit p 2 = 0 one obtains

M 2 B 0 (M 2 ,M 2 ) -B 0 (m 2 ,m 2 ) = -m 2 soft + ..., (1.73) 
and the one-loop corrections to the light scalar masses in the end read

Π (A) LL * (0) + Π (B) LL * (0) + Π (C) LL * (0) = Y 16π 2 m 2 soft log M 2 -m 2 soft . (1.74)
In effect, there are new terms compared to the unbroken SUSY version above. The divergence in the heavy mass M is logarithmic, however, rather than quadratic. It is thus much less severe. If, however, m 2 soft gets driven up by experimental advances, one would still run into a rather tricky situation which is dubbed the little hierarchy problem. There is no guarantee, thus, that SUSY solves the SM hierarchy problem. It does, however, make it a lot less frightening.

Dark matter

It has been a while since 1687, when our old friend Isaac Newton published his classic work Philosophiae naturalis principia mathematica [START_REF] Newton | Jussu Societatis Regiae ac Typis Josephi Streater; prostat apud plures Bibliopolas[END_REF]. It still holds up pretty strong and has explained a great deal of phenomena in the sky and on the ground; essentially every non-relativistic massive object obeys his laws of gravitation. The amount of anomalies and deviations from these laws is tiny compared to all the evidence for -and the applications of -gravity as physicists know it today [START_REF] Bertone | Particle dark matter: Evidence, candidates and constraints[END_REF].

That, however, just makes deviations from Newton's laws of gravity all the more exciting. The always-raised question in these cases is: Is it due to matter that we cannot see, or is our understanding of gravity wrong? The former was correct in the case of the anomalous motions of the planet Uranus, which eventually led to the discovery of Neptune. On the other hand, explaining deviations of Mercury from the Newtonian prediction with another planet did not work out; this was eventually explained through Einstein's theory of general relativity.

In (slightly) more modern times, observations of the motions of large astrophysical systems, sizes ranging from galactic to cosmological scales, are showing anomalies, too. While theories of modified gravity beyond general relativity can potentially explain some of these, there is not much experimental evidence to their support overall. That is why the former hypothesis, that there is matter out there that is going unobserved except for its influence on gravity, is leading the way in most cases.

This section further explores the notion of dark matter in the context of physics in the present day. As with the entirety of this chapter, this is by no means a full explanation of this field of research. It is rather a quick glimpse at the foundations that the work in subsequent chapters is built upon. The interested reader will find many excellent guides in the literature [START_REF] Bertone | Particle dark matter: Evidence, candidates and constraints[END_REF][START_REF] Griest | Supersymmetric dark matter[END_REF].

The Standard Model of cosmology

The Standard Model of particle physics has been discussed in section 1.1.1. In particular, it was clear that there was no such thing as dark matter in it. The Standard Model of cosmology (SMC) does not do so in an explicit way either (as in postulating particles with certain features); it does, however, postulate at least the possibility of it existing due to stating the abundance of matter in the Universe. If this abundance is greater than all observable matter, then the rest must be dark matter or something like it.

Constructing the SMC starts with the Einstein field equation:

R µν - 1 2 g µν R = - 8πG N c 4 T µν + Λg µν , (1.75)
where R µν and R are the Ricci tensor and scalar, respectively, g µν is the metric tensor, G N is Newton's constant, T µν is the energy-momentum tensor, and Λ is the cosmological constant. In English, this means that the geometry of the Universe, described by the left-hand side (R and R µν are obtained by contraction of the Riemann curvature tensor), is determined by its energy content, described by the energy-momentum tensor on the right-hand side. One strongly assumes this to be true because it is the key concept of general relativity, for which there is abundant experimental evidence [START_REF] O'raifeartaigh | Testing General Relativity on the Largest Scales in the Years 1915-1955: the Dawning of Modern Cosmology[END_REF][START_REF] Moore | Testing general relativity with gravitational-wave catalogs: the insidious nature of waveform systematics[END_REF][START_REF] Abbott | Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog[END_REF].

The term with the cosmological constant was originally introduced by Einstein to obtain a stationary solution for the Universe, and was then abandoned once the expansion of the Universe was discovered. Analyses of type Ia supernovae and parameter estimates from the cosmic microwave background (CMB) suggest that Λ should indeed not be ignored. It represents a "vacuum energy" which is associated with space-time itself rather than with its matter content because it is a source of a gravitational field even in the absence of matter.

To solve these Einstein equations, one must make further assumptions about the symmetries of the problem. Such assumptions typically include statistical homogeneity and isotropy of the Universe. Isotropy is supported by evidence from the CMB, and homogeneity by evidence from galaxy surveys, suggesting a homogeneous distribution at scales in excess of 100 Mpc. Equipped with this, the line element can be expressed as

ds 2 = -c 2 dt 2 + a(t) 2 dr 2 1 -kr 2 + r 2 dΩ 2 , (1.76)
where a(t) is the scale factor, and the constant k = -1, 0, +1 describes the spatial curvature. This can be used to solve the Einstein equations. One of its components then leads to the Friedmann equation

ȧ a 2 + k a 2 = 8πG N 3 ρ tot , (1.77)
where ρ tot is the total average energy density of the Universe. It is common to introduce the Hubble parameter

H(t) = ȧ(t) a(t) . (1.78)
There is a bit of a conundrum regarding the exact value (this is called Hubble tension), but many estimates put the present-day value of it at H 0 = 73 ± 1km s -1 Mpc -1 . The Universe is flat (k = 0) when the energy density equals

ρ c ≡ 3H 2 8πG N , (1.79)
which is called the criticial density. In terms of this, the quantity Ω i of a substance of species i and density ρ i is defined as

Ω i ≡ ρ i ρ c . (1.80)
One also defines In terms of this, the Friedmann equation (equation (1.77) can be written as

Ω = i Ω i ≡ i ρ i ρ c . (1.81) energy density ρ quantity Ω constant k universe ρ < ρ c Ω < 1 k = -1 open ρ = ρ c Ω = 1 k = 0 flat ρ > ρ c Ω > 1 k = +1
Ω -1 = k H 2 a 2 .
(1.82)

The sign of k is therefore dependent on whether Ω is greater than, equal to, or less than 1 (see table 1.3). The various Ω i evolve differently over time:

H 2 (z) H 2 0 = Ω X (1 + z) 3(1+α X ) + Ω K (1 + z) 2 + Ω M (1 + z) 3 + Ω R (1 + z) 4 , (1.83) 
where M and R stand for matter and radiation, respectively,

Ω K = -k a 2 0 H 2 0
, X refers to a generic substance with equation of state p X = α X ρ X , and z is the redshift.

Relic density

The relic density of dark matter is an often-discussed quantity [START_REF] Kolb | The Early Universe[END_REF][START_REF] Gondolo | Cosmic abundances of stable particles: Improved analysis[END_REF][START_REF] Servant | Elastic Scattering and Direct Detection of Kaluza-Klein Dark Matter[END_REF]. It makes sense at this stage to recall how the relic density is usually calculated. A particle species in the early Universe has to interact sufficiently with other particles or it will fall out of local thermodynamic equilibrium. If its interaction rate drops below the expansion rate of the Universe, it is said to be decoupled.

The Boltzmann equation describes the evolution of the phase space distribution function f (p, x):

L[f ] = C[f ], (1.84) 
where L is the Liouville operator, and C is the collision operator. Manipulating this equation a little bit yields the equation for the particle number density n:

dn dt + 3Hn = -σv n 2 -(n eq ) 2 , (1.85)
where σv is the thermal average of the total annihilation cross section times the velocity, H is the Hubble constant, and n eq is the number density at thermal equilibrium. For massive particles, i.e. in the non-relativistic limit and in the Maxwell-Boltzmann approximation, one obtains

n eq = g mT 2π 3 2
e -m/T , (1.86) where m is the particle mass and T is the temperature. Next, the variables Y ≡ n/s and Y eq ≡ n eq /s are introduced, where s is the entropy density s = 2π 2 g * T 3 /45, and g * counts the number of relativistic d.o.f. Using the conservation of entropy per co-moving volume, i.e. sa 3 = constant, and introducing the variable x ≡ m/T , it follows that ṅ + 3Hn = s Ẏ , (1.87)

⇒ dY dx = - σv s Hx Y 2 -(Y eq ) 2 2
.

(1.88)

For heavy states, σv can be approximated with the non-relativistic expansion

σv = a + b v 2 + O( v 4 ) ≈ a + 6b/x. (1.89)
This leads to the final version of equation (1.88) in terms of the variable ∆ = Y -Y eq (prime denotes d/dx):

∆ = -Y eq -f (x) ∆ (2Y eq + ∆)
,

where f (x) = πg * 45 m M Planck (a + 6b/x) x -2 . (1.90)
Introducing x F ≡ m/T F , one can solve the equation above analytically in the two extremes, long before and long after freeze-out, respectively:

∆ = - Y eq 2f (x)Y eq for x x F (1.91) ∆ = -f (x)∆ 2 for x x F . (1.92)
Integrating the last equation between x F and ∞ and using ∆ x F ∆ ∞ , one can derive

Y -1 ∞ = πg * 45 M Planck m x -1 F (a + 3b/x F ). (1.93)
The present density of a generic relic, X, is given by ρ X = m X n X = m X s 0 Y ∞ , where s 0 = 2889.2cm -3 is the present entropy density. The relic density can finally be expressed in terms of the critical density:

Ω X h 2 ≈ 1.07 × 10 9 GeV -1 M Planck x F √ g * 1 a + 3b/x F , ( 1.94) 
where a and b carry units GeV -2 and g * is evaluated at the freeze-out temperature. It is convention to write the relic density in terms of the Hubble parameter, h = H 0 /100 km s -1 Mpc -1 .

To estimate the relic density, one must thus calculate the annihilation cross sections and extract the parameters a and b, which depend on the particle mass. The freeze-out temperature can be estimated through the iterative solution of the equation

x F = ln c(c + 2) 45 8 g 2π 3 m M Planck (a + 6b/x F ) g 1/2 * x 1/2 F , (1.95)
where c is a constant that is determined by matching late-time and early-time solutions. There are cases where the calculation of the relic density must be modified due to coannihilations. For such calculations, the reader is advised to consult the literature [START_REF] Balazs | Dark matter, light stops and electroweak baryogenesis[END_REF][START_REF] Binetruy | Constraints on a System of Two Neutral Fermions From Cosmology[END_REF][START_REF] Edsjo | Neutralino relic density including coannihilations[END_REF][START_REF] Edsjo | Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA[END_REF][START_REF] Griest | Three exceptions in the calculation of relic abundances[END_REF]. It is good, of course, to understand the trail of thoughts behind such a calculation. In this work, however, all relic density calculations are automated using micrOMEGAs [START_REF] Belanger | micrOMEGAs: Version 1.3[END_REF][START_REF] Belanger | Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios[END_REF][START_REF] Belanger | micrOMEGAs: A Tool for dark matter studies[END_REF][START_REF] Belanger | micrOMEGAs 2.0.7: A program to calculate the relic density of dark matter in a generic model[END_REF][START_REF] Bélanger | micrOMEGAs5.0 : Freeze-in[END_REF].

Unitarity and DM

Unitarity can not only be used to constrain the Higgs mass and the masses of additional particles proposed by BSM scenarios (see section 1.1.1.2), but also the mass of a DM particle. In the classic paper by Griest and Kamionkowski [START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF], this limit was determined to be 340 TeV for Majorana particles and 240 TeV for Dirac particles. Perhaps the most remarkable part about this result is that it was conducted in a model-independent way. It is therefore intuitive that one might obtain stricter mass limits using unitarity depending on the choice of a model. This classic limit was deduced more than 30 years ago, however, using the constraint on the relic density that was available at that time. Today, there are much more accurate measurements of the relic density, which means that instead of using Ω X h 2 ≤ 1 like Griest and Kamionkowski did, one can now impose Ω X h 2 ≤ 0.12. Re-calculating the new DM mass limit in all its detail would go beyond the scope of this thesis. To get a feeling for the order of magnitude of the new limit, however, one can consider equation ( 12) of the classic paper:

Ωh 2 ≥ 1.7 × 10 -6 √ x f [m X /(1 TeV)] 2 , ( 1.96) 
where x f = m X /T f and T f is the temperature at freeze-out. Finding x f is not entirely straightforward, considering that it depends on the DM mass, but the freeze-out temperature is not independent of the mass either. The classic paper finds a value of x f ≈ 28. Most cosmology textbooks propose a value in the range of x f ≈ 20 -25 (see e.g. [START_REF] Liddle | An Introduction to Modern Cosmology[END_REF][START_REF] Dodelson | Modern Cosmology[END_REF][START_REF] Baumann | Primordial Cosmology[END_REF]). Using today's limit on the relic density and the most conservative value x f = 20, one obtains an upper mass limit of about 130 TeV for Majorana-and 90 TeV for Dirac DM particles.

When one applies unitarity constraints on a specific model with one or more DM particles, one might get stricter limits due to the fact that the DM-annihilation channel (which was the one contemplated by Griest and Kamionkowski) is not necessarily the most constraining channel. The updated model-independent mass limits and the possibility of imposing unitarity constraints on other channels in specific models both lead to the intuition that DM mass limits are often well below the classic bounds. This, of course, is great news for experimentalists and theorists alike who can now go ahead and throw all models out the window which propose too light (i.e. experimentally excluded) or too heavy (i.e. theoretically excluded) DM particles.

Evidence for DM

Having made all these calculations, it is time to list the experimental evidence that suggests that dark matter (or some form of modified gravity) exists. What makes it compelling is not just the sheer amount of anomalies, but also the fact that they span so many astronomical scales.

The galactic scale

The most direct and convincing evidence for dark matter comes from the rotation curves of galaxies, i.e. the distribution of circular velocities of stars and gas as a function of their distance from the galactic center. These are usually obtained by combining observations of the 21 cm line with optical surface photometry. Observed rotation curves tend to be flat at large distance, although Newtonian dynamics predict a falling curve:

v(r) = GM (r) r , ( 1.97) 
where M (r) ≡ 4π ρ(r)r 2 dr is the mass enclosed between the center and radius r and ρ(r) is the mass density profile. The fact that v(r) is approximately constant implies the existence of a DM halo with M (r) ∝ r and ρ ∝ 1/r 2 . Of particular interest are galaxies of low surface brightness (LSB), because they are probably dark matter-dominated everywhere and the visible stellar populations only make a small contribution to the rotation curves. It is fairly clear that there are DM halos on the outskirts of large galaxies; less clear, however, is whether galaxies present cuspy or shallow profiles in their innermost regions [START_REF] Combes | The Role of bars[END_REF][START_REF] Debattista | Dynamical friction and the distribution of dark matter in barred galaxies[END_REF][START_REF] Debattista | Constraints from dynamical friction on the dark matter content of barred galaxies[END_REF][START_REF] De Blok | Mass density profiles of LSB galaxies[END_REF][START_REF] Koopmans | The structure and dynamics of luminous and dark matter in the early-type lens galaxy of 0047-281 at z=0.485[END_REF][START_REF] Hayashi | The Inner structure of lambda-CDM halos. 2. Halo mass profiles and LSB rotation curves[END_REF][START_REF] Reed | Evolution of the density profiles of dark matter halos[END_REF][START_REF] Rhee | The Rotation curves of dwarf galaxies: A Problem for cold dark matter?[END_REF][START_REF] Salucci | The intriguing distribution of dark matter in galaxies[END_REF][START_REF] Slyz | Exploring spiral galaxy potentials with hydrodynamical simulations[END_REF][START_REF] Van Den Bosch | Dwarf galaxy rotation curves and the core problem of dark matter halos[END_REF]. It is also not clear just how large the percentage of DM in a galaxy is because it is unclear how far the halo extends outwards.

Without claiming that this list is complete, other evidence for DM on galactic scales includes [START_REF] Azzaro | Motion properties of satellites around external spiral galaxies[END_REF][START_REF] Bahcall | Local Dark Matter from a Carefully Selected Sample[END_REF][START_REF] Hoekstra | Current status of weak gravitational lensing[END_REF][START_REF] Mateo | Dwarf galaxies of the Local Group[END_REF][START_REF] Metcalf | Spectroscopic gravitational lensing and limits on the dark matter substructure in Q2237+0305[END_REF][START_REF] Moustakas | Detecting dark matter substructure spectroscopically in strong gravitational lenses[END_REF][START_REF] Cote | Internal Kinematics of the Andromeda II Dwarf Spheroidal Galaxy[END_REF][START_REF] Zatsepin | Upper limit of the spectrum of cosmic rays[END_REF]:

• Weak modulation of strong lensing around individual massive elliptic galaxies. This provides evidence for substructure on scales of ∼ 10 6 M .

• The Oort discrepancy in the disk of the Milky Way. Oort postulated that there must be unobserved matter there because of the inconsistency between the amount of stars and the gravitational potential implied by their distribution.

• Weak gravitational lensing of distant galaxies by foreground structure.

• The velocity dispersions of dwarf spheroidal galaxies imply mass-to-light ratios larger than those observed in our local neighbourhood.

• The velocity dispersions of spiral galaxy satellites suggest the existence of dark halos around spiral galaxies extending at 200 kpc, i.e. well behind the optical disc. This applies to the Milky Way in particular.

The scale of galaxy clusters

It was the Coma cluster of galaxies that got F. Zwicky to infer a much higher-thanexpected mass-to-light ratio than what was conventionally expected back in 1933 [START_REF] Zwicky | Die Rotverschiebung von extragalaktischen Nebeln[END_REF]. The mass of a cluster can be determined in several ways: By using the virial theorem on the observed distribution of radial velocities, by weak gravitational lensing, and by studying the profile of X-ray emission that traces the distribution of hot emitting gas in rich clusters.

Consider the equation of hydrostatic equilibrium for a system with spherical symmetry,

1 ρ dP dr = -a(r), (1.98) 
where P , ρ, and a are the pressure, density and gravitational acceleration, respectively, of the gas at radius r. For an ideal gas, this can be rewritten in terms of the temperature T and the average molecular weight µ ≈ 0.6:

d log ρ d log r + d log T d log r = - r T µm p k a(r), (1.99)
where M r is the mass enclosed within radius r, and is usually identified as the baryonic mass for the calculation. The disparity between the temperature obtained using this and the observed temperature, T ≈ 10 keV, suggests that a substantial amount of dark matter exists in clusters. These conclusions can then be checked against estimates from gravitational lensing: The distortion of images of the background objects can be used to infer the shape of the potential well created by the cluster and thus its mass.

Similarly to what has been said about the galaxy scale, it is generally clear that lots of DM is present on the outskirts of galaxy clusters. What is less clear is how much, if any, DM is present in their cores [START_REF] Dalal | Lack of) lensing constraints on cluster dark matter profiles[END_REF][START_REF] Lewis | Chandra observations of Abell 2029: The Dark matter profile at < 0.01 R(VIR) in an unusually relaxed cluster[END_REF][START_REF] Sand | The dark matter density profile of the lensing cluster ms2137-23: a test of the cold dark matter paradigm[END_REF][START_REF] Tyson | Detailed Mass Map of CL 0024+1654 from Strong Lensing[END_REF].

Cosmological scales

Studies of the cosmic microwave background (CMB) permit to make an estimate of the total amount of DM in the Universe. The existence of background radiation originating from the propagation of photons in the early Universe was first predicted in 1948 and finally discovered in 1965. Today, the CMB is known to be isotropic at the 10 -5 level and to follow the spectrum of a black body corresponding to a temperature T = 2.726 K [START_REF] Hu | Cosmic Microwave Background Anisotropies[END_REF][START_REF] Hu | The Physics of microwave background anisotropies[END_REF].

The observed temperature anisotropies in the sky are usually expanded as

δT T (θ, φ) = +∞ l=2 +l m=-l a lm Y lm (θ, φ), (1.100) 
where Y lm are spherical harmonics. The variance C l of a lm is given by

C l ≡ |a lm | 2 ≡ 1 2l + 1 l m=-l |a lm | 2 .
(

If all temperature fluctuations are Gaussian -which seems to be the case -then all information can be compressed into C l as a function of l. Typically, one plots l(l + 1)C l /2π. To extract information from such CMB anisotropy maps, one starts with a cosmological model with a fixed number of parameters and then extracts the best-fit parameters from the peak of the N-dimensional likelihood surface. Recent results are [START_REF] Kuo | High resolution observations of the CMB power spectrum with ACBAR[END_REF][START_REF] Pearson | The Anisotropy of the microwave background to l = 3500: Mosaic observations with the Cosmic Background Imager[END_REF][START_REF]The 2dF Galaxy Redshift Survey: The Power spectrum and the matter content of the Universe[END_REF][START_REF] Spergel | First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters[END_REF][START_REF] Tegmark | Cosmological parameters from SDSS and WMAP[END_REF][START_REF] Jarosik | Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results[END_REF]:

Ω b h 2 = 0.0224 ± 0.0009, Ω M h 2 = 0.135 ± 0.009. (1.102)
The value of Ω b h 2 is consistent with the prediction from Big Bang nucleosynthesis [START_REF] Olive | TASI lectures on dark matter[END_REF] which requires that 0.018 < Ω b h 2 < 0.023.

N-body simulations

Space is pretty messy and full of massive objects that all interact with one another. It should come as no surprise, therefore, that quick analytical calculations are insufficient to explain the plethora of interactions going on. The most widely adopted approach to get ahead in this situation are N-body simulations [START_REF] Hayashi | The Inner structure of lambda-CDM halos. 2. Halo mass profiles and LSB rotation curves[END_REF][START_REF] Reed | Evolution of the density profiles of dark matter halos[END_REF][START_REF] Bergstrom | Observability of gamma-rays from dark matter neutralino annihilations in the Milky Way halo[END_REF][START_REF] Bertschinger | Self-similar secondary infall and accretion in an Einstein-de Sitter universe[END_REF][START_REF] Fukushige | Structure of dark matter halos from hierarchical clustering. 3. Shallowing of the Inner cusp[END_REF][START_REF] Holmberg | On the Clustering Tendencies among the Nebulae. II. a Study of Encounters Between Laboratory Models of Stellar Systems by a New Integration Procedure[END_REF][START_REF] Kravtsov | The Cores of dark matter dominated galaxies: Theory versus observations[END_REF][START_REF] Navarro | The Structure of cold dark matter halos[END_REF][START_REF] Navarro | The inner structure of cold dark matter halos[END_REF][START_REF] Navarro | The Inner structure of Lambda-CDM halos 3: Universality and asymptotic slopes[END_REF][START_REF] Prada | Dark Matter Annihilation in the Milky Way Galaxy: Effects of Baryonic Compression[END_REF][START_REF] Taylor | The Phase -space density profiles of cold dark matter halos[END_REF]. Recent findings in this area suggest that a universal dark matter profile might exist for all masses, epochs, and input power spectra:

ρ(r) = ρ 0 (r/R) γ [1 + (r/R) α ] (β-γ)/α . (1.103)
It is very unclear, however, how the falloff slope behaves at small radii, and whether it is universal or varies depending on whichever factors.

The Milky Way

It is worth asking, after all the talk about galaxies, how DM is distributed in our home galaxy, the Milky Way. One approach is to study microlensing events in the direction of the Galactic Center [START_REF] Binney | Cuspy dark-matter haloes and the Galaxy[END_REF][START_REF] Klypin | Lambda CDM-based models for the Milky Way and M31 I: Dynamical models[END_REF]. Such events can only come from compact objects, and it is commonly believed that DM cannot clump on such small scales because it interacts too weakly. Following such approaches, one finds that only very little DM is allowed in the central few kpc.

Observations of the velocity dispersion of high proper motion stars suggest the existence of a supermassive black hole (SMBH) at the center of the Galaxy, with a mass M SMBH ≈ 4.28 × 10 6 M [START_REF] Bertone | Annihilation radiation from a dark matter spike at the galactic center[END_REF][START_REF] Ghez | Stellar orbits around the galactic center black hole[END_REF][START_REF] Ghez | High proper motion stars in the vicinity of Sgr A*: Evidence for a supermassive black hole at the center of our galaxy[END_REF][START_REF] Gondolo | Dark matter annihilation at the galactic center[END_REF][START_REF] Schodel | Stellar dynamics in the central arcsecond of our Galaxy[END_REF][START_REF] Ullio | A Dark matter spike at the galactic center?[END_REF][START_REF] Gillessen | An Update on Monitoring Stellar Orbits in the Galactic Center[END_REF]. This might imply the existence of a spike in the DM density profile due to the process of adiabatic accretion of DM by the SMBH. If an initial power-law type profile of index γ is assumed (see equation (1.103)), the corresponding DM profile after this accretion is

ρ = α γ M ρ D D 3 3-γ γsp-γ ρ D g(r) D r γsp , ( 1.104) 
where γ sp = (9 -2γ)/(4 -γ), D 8 kpc is the solar distance from the Galactic center and ρ D 0.3 GeV/c 2 /cm 3 is the density in the solar neighbourhood. The factors α γ and g γ (r) cannot be determined analytically. The presence of such spikes would have dramatic effects on indirect detection of DM. One important property is the local density of DM. There are somewhat differing results on this, but generally it is measured to be on the order of ρ 0 = 0.2 -0.8 GeV/cm 3 . The average velocity of DM is found to be about v = v 2 1/2 270 km/s.

DM candidates

It should be clear by now that experimentalists have been hard at work to find and measure DM. Theorists have not been slacking off in the last few decades either. The sheer amount and variety of DM candidates suggests that there is one for everybody out there. The jury is out, though, on which one of them, if any, nature will eventually choose to reveal. The most favoured class of candidates is that of the WIMP, under which several of the non-baryonic candidates listed below fall:

• Standard Model neutrinos [START_REF] Beacom | Neutrinoless universe[END_REF][START_REF] Hahn | Clementine observations of the zodiacal light and the dust content of the inner solar system[END_REF][START_REF] Matos | Quintessence at galactic level?[END_REF][START_REF] Bond | The collisionless damping of density fluctuations in an expanding universe[END_REF][START_REF] Bond | Massive Neutrinos and the Large-Scale Structure of the Universe[END_REF][START_REF] Han | A new channel to search for extra-solar systems with multiple planets via gravitational microlensing[END_REF] would be a viable candidate if they were not so light (m ν < 0.23 eV) that their relic abundance can at best reach Ω ν h 2 ≤ 0.007. This is well below what one would require. In addition, neutrinos are relativistic collisionless particles, which means that they erase fluctuations below a scale of ∼ 40 Mpc. This would imply a top-down formation history of structure in the Universe, where big structures form first. However, our Galaxy appears to be older than the Local Group, which contradicts this.

• Sterile neutrinos [START_REF] Abazajian | Sterile neutrino hot, warm, and cold dark matter[END_REF][START_REF] Dodelson | Sterile-neutrinos as dark matter[END_REF][START_REF] Hansen | Do we need stars to reionize the universe at high redshifts? Early reionization by decaying heavy sterile neutrinos[END_REF][START_REF] Shi | A New dark matter candidate: Nonthermal sterile neutrinos[END_REF][START_REF] Yoshida | Early structure formation and reionization in a warm dark matter cosmology[END_REF] (more on them in section 1.1.1.1) could, for similar arguments, also only be DM candidates if their mass is quite a bit larger than that of SM neutrinos.

• Axions [START_REF] Rosenberg | Searches for invisible axions[END_REF][START_REF] Campeti | New constraints on axion-gauge field dynamics during inflation from Planck and BICEP/Keck data sets[END_REF] are constrained to be very light due to experimental results. Originally proposed to solve the problem of CP violation, there is to this day a window that would render them acceptable DM candidates despite the existing constraints.

• SUSY neutralinos [START_REF] Griest | Cross-Sections, Relic Abundance and Detection Rates for Neutralino Dark Matter[END_REF] are an excellent candidate for dark matter and by far the most widely studied ones.

• SUSY sneutrinos [START_REF] Falk | Heavy sneutrinos as dark matter[END_REF] are the superpartners of SM neutrinos and could theoretically lead to the correct relic density if their mass is between 500 and 2300 GeV. However, the scattering cross section of a sneutrino with nucleons is much larger than the limits found by direct detection experiments.

• SUSY gravitinos [START_REF] Barnes | First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Galactic signal contamination from sidelobe pickup[END_REF][START_REF] Pagels | Supersymmetry, Cosmology, and New Physics at Teraelectronvolt Energies[END_REF][START_REF] Weekes | Status of VHE astronomy c[END_REF][START_REF] Khlopov | Is It Easy to Save the Gravitino?[END_REF] are the superpartners of gravitons in some SUSY models. However, they can pose problems for cosmology, like destroying the primordial light elements in some scenarios, and getting overproduced in the early Universe if the temperature of the reheating epoch is not sufficiently low.

• SUSY axinos [START_REF] Bonometto | Mixed dark matter from axino distribution[END_REF] share somewhat similar phenomenological properties to gravitinos and may therefore also be a DM candidate.

• Light scalar dark matter comes a bit ad hoc from a particle physics perspective, but may be an option.

• Dark matter from the Little Higgs model: The model aims to stabilize the weak scale and thus address the hierarchy problem. Some of these models contain a possibly stable, scalar particle which can provide the measured DM density.

• Kaluza-Klein states [START_REF] Krause | The Magnetic field along the jets of NGC 4258 as deduced from high frequency radio observations[END_REF] are excitations of SM fields which appear in models of universal extra dimensions. In such frameworks, an exotic particle with gauge quantum numbers of a right-handed neutrino and fractional baryon-number might be a candidate.

• Superheavy dark matter particles or Wimpzillas [START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF][START_REF] Chang | Stable superstring relics[END_REF][START_REF] Kolb | WIMPzillas![END_REF] have interesting phenomenological consequences, such as a possible solution to the observed sudden cutoff of cosmic rays.

• Q-balls; mirror particles; CHArged Massive Particles (CHAMPs); self interacting dark matter; D-matter; cryptons; superweakly interacting dark matter; brane world dark matter; heavy fourth generation neutrinos; . . . Baryonic candidates exist, too, such as MACHOs [START_REF] Griest | The Search for dark matter: WIMPs and MACHOs[END_REF] or black holes [START_REF] Frampton | Primordial Black Holes as All Dark Matter[END_REF]. These, however, are a lot more constrained by experimental evidence and thus harder to postulate at this point. An overview of the different classes of DM candidates can be found in figure 1.1.

Experiments

What is left to do is to list past and current efforts to find DM. Such efforts are no easy task -a particle that interacts with ordinary matter very weakly is by definition hard to detect. It might therefore be of no surprise that no DM candidate has been detected thus far. There are some interesting excesses of events for example from XENON1T [START_REF] Aprile | Excess electronic recoil events in XENON1T[END_REF]; however, at the 

Collider searches

Collider searches can span the lower mass ranges of where DM candidates are thought to reside [START_REF] Mitsou | Overview of searches for dark matter at the LHC[END_REF][START_REF] Argyropoulos | Collider Searches for Dark Matter through the Higgs Lens[END_REF][START_REF] Buchmueller | Search for dark matter at colliders[END_REF]. Unfortunately, though, it is hard to conduct collider searches in a modelagnostic way. The most common method is searching for invisible decay widths, i.e. where an SM -most commonly a Z or Higgs boson -particle decays into invisible particles that might be DM. This decay manifests as an experimental signature of a production process of such an SM particle alongside a matching missing energy in the direction where that particle presumably would have been. The same principle can be used for non-SM particles -such as SUSY or other postulated non-DM particles -which might produce DM candidates while decaying. One therefore does not need to be able to predict what properties a colliderproduced DM particle might have. One needs, however, to assume some SM-or BSM process that gives rise to these particles. This requires rather strong prior assumptions about what is going on. Given that all important assumptions need to be probed, this implies that phenomenologists have a lot of work in terms of data extraction, simulation, and so on in order to see whether any collider search is bearing fruits or not.

Direct detection

Perhaps the most promising way to find DM particles is through direct detection [START_REF] Cooley | Dark Matter Direct Detection of Classical WIMPs[END_REF][START_REF] Schumann | Direct Detection of WIMP Dark Matter: Concepts and Status[END_REF]. The underlying idea is that, if our Galaxy is filled with WIMPs, then many of them should pass through the Earth. From time to time, they would bump into nuclei there and scatter off them. The recoil energy of the nuclei can then be recorded to determine whether WIMPs were the culprits or not.

There are some differences among the possible scattering processes: The elastic scattering of a WIMP off of a nucleus is just its interaction with the nucleus as a whole. With a Boltzmann velocity distribution of WIMPs, centered at 270 km/s, the spectrum of recoils is exponential with typical energies of E ∼ 50 keV. Detectors of the present day can observe signals as low as ∼ 1 keV. During inelastic scattering, on the other hand, the WIMP interacts with orbital electrons in the target either by exciting them or by kicking them out of their orbit, thus ionizing the shell. This process leaves the signature of a recoil followed by the emission of a photon about a nanosecond later. The difficulty with such signatures, however, is that they are quite similar to backgrounds of natural radioactivity.

Several experiments are underway at the time of writing this work, including DAMA/LI-BRA, COSINE-100, and CRESST-III [START_REF] Bernabei | First model independent results from DAMA/LIBRA-phase2[END_REF][START_REF] Adhikari | Three-year annual modulation search with COSINE-100[END_REF][START_REF] Abdelhameed | First results from the CRESST-III low-mass dark matter program[END_REF]. Most recently, results by XENON1T made headlines due to the measurement of excess events at energies between 2 and 3 keV. This translated to a significance of 3.4 σ for the solar axion model, and of 3.2 σ for the neutrino magnetic moment model. At the time of writing it is unclear whether this excess will be confirmed in further searches, and if so, which DM candidate will be the best-fitting one for it.

Indirect detection

Finally, indirect detection experiments aim to leverage astronomical observations to find DM candidates [START_REF] Leane | Indirect Detection of Dark Matter in the Galaxy[END_REF]. Over collider searches and direct detection, this has the advantage that higher energies, longer particle decay lengths, and weaker particle couplings are accessible for search. There are three main ways to conduct indirect searches: Either one does this with neutrinos [START_REF] Argüelles | Dark matter annihilation to neutrinos[END_REF][START_REF] Beacom | General Upper Bound on the Dark Matter Total Annihilation Cross Section[END_REF][START_REF] Yuksel | Neutrino Constraints on the Dark Matter Total Annihilation Cross Section[END_REF], with X-rays [START_REF] Abazajian | Sterile neutrinos in cosmology[END_REF][START_REF] Dessert | The dark matter interpretation of the 3.5-keV line is inconsistent with blank-sky observations[END_REF][START_REF] Perez | Almost closing the νMSM sterile neutrino dark matter window with NuSTAR[END_REF][START_REF] Boyarsky | of Dessert et al[END_REF], or with gamma rays [START_REF] Cholis | A New Determination of the Spectra and Luminosity Function of Gamma-Ray Millisecond Pulsars[END_REF][START_REF] Cholis | Challenges in Explaining the Galactic Center Gamma-Ray Excess with Millisecond Pulsars[END_REF][START_REF] Haggard | Low Mass X-Ray Binaries in the Inner Galaxy: Implications for Millisecond Pulsars and the GeV Excess[END_REF][START_REF] Zhong | Testing the Sensitivity of the Galactic Center Excess to the Point Source Mask[END_REF][START_REF] Leane | The enigmatic Galactic Center excess: Spurious point sources and signal mismodeling[END_REF]. Other approaches use micro-and radio waves [START_REF] Calore | Radio detection prospects for a bulge population of millisecond pulsars as suggested by Fermi LAT observations of the inner Galaxy[END_REF][START_REF] Colafrancesco | Multi-frequency analysis of neutralino dark matter annihilations in the Coma cluster[END_REF][START_REF] Fornengo | Cosmological Radio Emission induced by WIMP Dark Matter[END_REF], or charged cosmic rays [START_REF] Hooper | HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess[END_REF][START_REF] Arkani-Hamed | A Theory of Dark Matter[END_REF][START_REF] Bell | Leptophilic dark matter with Z interactions[END_REF].

Because they are so weakly interacting, neutrinos provide a unique window to the darkest places of the Universe; on the other hand, this makes them so hard to detect and to study. There are two ways of using neutrinos anyway: Either one establishes constraints on DM annihilation and decay into neutrinos, or on DM scattering and annihilation in the Sun.

The advantage of X-rays is that they are not affected by astrophysical magnetic fields, and propagate directly from their source. Decay products of electrically charged DM can lead to an X-ray signature, making this viable. The most striking hint at DM in X-ray is the 3.5 keV-line. It was first detected in stacked galaxy clusters in 2014 and is still consistent with many present-day observations. The line may be compatible with a process of χ → ν + γ, where a DM particle decays to an active neutrino and a photon.

The third approach hinges on the thought that DM might annihilate and emit gamma rays in the process. Indeed, an anomalous flux of GeV gamma rays, peaked at ∼ 2 -3 GeV, has been observed, around the Galactic center. This is a little funny, though, because DM is expected to occur much more around and beyond the visible edges of the galaxy. Pulsars might explain this gamma ray flux away.

DM searches with radio-and microwaves are not as popular as the three approaches mentioned above, but they do take place and are interesting in their own right. Likewise, charged cosmic rays are very interesting for DM searches because of their often extreme energies which far exceed anything ever made on Earth. The flipside is that cosmic ray propagation is not totally understood at the moment, which leads to rather large systematic uncertainties. Nevertheless, an excess of 10 -1000 GeV positrons has been found by several experiments, which is compatible with DM masses of a few TeV. The annihilation cross section, however, is three orders of magnitude above what would be expected of a vanilla thermal relic. In addition, an excess of 5 -10 GeV antiprotons suggests a DM candidate with mass around 50 -100 GeV, and a thermal relic cross section that is consistent with theoretical expectations. For these reasons, DM searches are not conducted as much with charged cosmic rays (yet?).

This concludes the essentials of DM. The models in this work which explicitly mention DM particles are the SMSQQ (see section 1.2.5) and the CMSSM (via its LSP).

Specific models

The remainder of this chapter is a brief exposé of models that are used in this work. All models except for the SMSQQ (see section 1.2.5) are SUSY-models. For a more in-depth explanation of the supersymmetric models, the reader might refer to the literature [START_REF] Braathen | Automating Higgs precision calculations[END_REF][START_REF] Williamson | Phenomenology and collider constraints of Supersymmetric models in the Run 2 era of the LHC[END_REF][START_REF] Bagger | Weak scale supersymmetry: Theory and practice[END_REF][START_REF] Lykken | Introduction to supersymmetry[END_REF][START_REF] Martin | A Supersymmetry primer[END_REF][START_REF] Gunion | A Simplified summary of supersymmetry[END_REF][START_REF] Drees | Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics[END_REF][START_REF] Quevedo | Cambridge Lectures on Supersymmetry and Extra Dimensions[END_REF]. The first four models are all SUSY models. Of these, the constrained MSSM and the MDGSSM are used in chapter 4. The NMSSM is not used in this work; however, it is worth including because other studies similar to those in chapter 3 have been performed on it. Similarly, the MRSSM is not used in this work; nevertheless it is worth stating its existence because of its strong links with the MDGSSM and its potential to be studied with the tools developed in this work. The SMSQQ, on the other hand, is specifically constructed to provide an answer to the missing dark matter in the SM and is not supersymmetric. It is extensively studied in chapters 3 and 4 in the context of further developing tools for parameter scans.

Minimal supersymmetry

The MSSM, as its name already suggests, is the most minimal SUSY theory with N = 1. Its particle content is listed in table 1.4. SUSY transformations do not change the SM quantum numbers; therefore, every superpartner carries the same ones as its original SM particle. In the SM, there simply are not enough particles with the right quantum numbers to group with others; hence the need for supermultiplets. Quarks and leptons are hence grouped with scalar quarks and sleptons, and the gauge bosons are grouped with gauginos, their fermionic superpartners.

The only exception to this pattern is the Higgs doublet. In the MSSM one needs two of these, for two reasons. First, if one only adds one Higgsino, the SU (2) and U (1) gauge symmetries would become anomalous, and this is not what one wants because it would mean that the Lagrangian preserves gauge symmetry but at loop-level it is violated anyway. Second, the SM-Higgs field generates masses for up-type fermions, and its complex conjugate for down-type ones. In SUSY, however, the superpotential must be a holomorphic function, so it can (and should) be a function of Φ i but not of Φi . This evokes the need for another Higgs doublet that gives mass to down-type fermions.

Superfield

Scalars Fermions Vectors (SU (3), SU (2), U (1) Y ) R-charge quarks / squarks Q i Qi = (ũ i,L , di,L ) (u L , d L ) - (3, 2, 1/6) R Q u i ũc i,R u c i,R - ( 3, 2, -2/3) 2 -R Q -R H d i dc i,R d c i,R - ( 3, 2, 1/3) R H -R Q leptons / sleptons L i (ν i,L ,ẽ i,L ) (ν i,L , d i,L ) - (1, 2, -1/2) R L e i ẽc i,R e c i,R - (1, 2, -1/2) R H -R L Higgs / Higgsinos H u (H + u ,H 0 u ) ( H+ u , H0 u ) - (1, 2, 1/2) R H H d (H 0 d ,H - d ) ( H0 d , H- d ) - ( 1, 2, -1/2) 2 -R H gluons / gluinos W 3,α - λ 3,α [≡ gα ] G µ (8, 1, 0) 1 W / Winos W 2,α - λ 2,α [≡ W 0 , W ± ] W ± µ , W 0 µ (1, 3, 0) 1 B / Binos W Y,α - λ 1,α [≡ B] B µ (1, 1, 0) 1
Table 1.4 -Particle content of the MSSM. Essentially, the particle content of the SM is doubled, and with a superpartner for each one.

The possible gauge invariant terms that can be added to the MSSM superpotential are:

W MSSM = µ (H u ) α (H d ) β αβ + (y u ) j i ūia Q jαa (H u ) β αβ -(y d ) j i dia Q jαa (H d ) β αβ + (y e ) j i ēia L jαa (H d ) β αβ = µH u • H d + y u ūQ • H u -y d dQ • H d -y e ēL • H d , (1.105) 
where y u,d,e are 3 × 3 matrices with the family indices i,j as in the SM; a denotes colour indices, which are lowered in the fundamental representations of SU (3) and raised in the antifundamental ones; α, β are SU (2) L indices as encountered in previous sections; and µ parametrises the SU (2) invariant coupling between the two Higgs doublets. In principle, one could add terms which violate the baryon-or lepton-numbers B and L, but clearly one would not like to do this because such a violation has not been observed experimentally. These terms can be forbidden by introducing a discrete symmetry called R-parity:

R P = (-1) 3B+L+2s , (1.106)
where s is the particle spin. By doing so, couplings like

W R P ⊃ µ i L i • H u + λ ijk e L i • L j ēk + λ ijk B ūi • dj dk + λ ijk L L i • Q j dk , (1.107) CHAPTER 1. WHERE NEW PHYSICS IS HIDING
which would allow the decay of SUSY-to SM particles, cannot occur. Using that

B[Q i ] = 1/3, B[ū i , d] = -1/3, L[L i ] = 1 and L[ē i ] = -1,
one can see that lepton-and baryon numbers would not be conserved, would these couplings be allowed.

There are several interesting consequences of R-parity. All SM matter must have an Rparity of +1, and each superpartner has -1. A particle with R-parity -1 cannot decay into one with R-parity +1; in other words, the examples from equation (1.107) are generalisable. This implies that the lightest superpartner cannot decay and must be stable. It is therefore called the lightest supersymmetric partner (LSP). Also, R-parity conservation implies that SUSY-particles in colliders can only be produced in pairs -parity is multiplicative, so the final state of such a production would have parity (-1) 2 = 1, like the initial (SM) state. Therefore, any missing energy in collider experiments must be at least 2m χ0 , where χ0 is an LSP. If this LSP is neutral under the gauge groups, it becomes an excellent candidate for DM.

The MSSM can also contain soft-SUSY terms that break its Lagrangian. They can generally be written as:

-L soft = Qi † (m 2 Q ) j i Qj + ũci R (m 2 ū) j i ũc Rj † + dci R (m 2 d) j i dc Rj † + Li † (m 2 L ) j i Lj + ẽci R (m 2 ē ) j i ẽc Rj † + m 2 Hu |H u | 2 + m 2 H d |H d | 2 + B µ (H u • H d + h.c.) + 1 2 M 3 ga ga + M 2 W b W b + M 1 B B + h.c. + a ij u ũc Ri Qj • H u + a ij d dc Ri Qj • H d + a ij e dc Ri Lj • H d + c.c. , (1.108) 
where the first two lines show the squark and slepton mass squared terms and m 2 Q,L,ū, d,ē are 3 × 3 hermitian matrices; the third line shows the Higgs mass squared terms; the fourth line shows the complex Majorana gaugino mass terms for each gauge group with a = 1, . . . , 8 and b = 1, 2, 3, and the last line shows the trilinear scalar couplings where a u,d,e are 3 × 3 complex matrices.

Many words could be lost on the Higgs sector and EWSB in the MSSM. It could fill an entire PhD thesis and then some, but shall be omitted here because it is not directly relevant for this work. One more interesting point are Majorana gaugino masses. They are the only sort of gaugino mass that is generated in the MSSM. Majorana mass terms are composed of two Weyl fermions,

Ψ M = λ α λ α , ΨM = λ α , λ α . (1.109)
These lead to the two soft SUSY breaking mass terms

L soft ⊃ - 1 2 M a ΨM Ψ M = - 1 2 M a λ α λ α + λ α λ α . (1.110)
The SM fermions cannot acquire masses through the soft terms because they are in the same representation of the gauge group as their respective gauge bosons and are therefore real. This may all sound fairly neat and concise, but it really is not. If one wanted to perform phenomenological studies on the MSSM -as many physicists already have -one would have to consider more than 50 parameters. For comparison, the SM "only" has 26 free parameters, and the value of 19 of them is already well known. The free parameters in the MSSM are constituted by:

• Five independent 3 × 3 mass matrices for the squarks and sleptons,

m 2 j 0i A * j A i ,
plus two independent masses for the Higgs scalars;

• Three independent gaugino masses,

m a 1/2 λλ,
for the three constituents of the SM gauge group;

• One analytic mass for the two Higgs doublets, µB h 1 h 2 ;

• 27 analytic trilinear couplings for the scalar fields,

A ijk A i A j A k ,
where A ijk = 0 unless the coupling is allowed by gauge invariance.

Such a heap of parameters is not manageable in most cases. However, one can take into account the fact that restrictions on parameters amount to assumptions about physics at the scale of soft symmetry breaking. Because it is known that in SUSY, the running gauge couplings unify at a scale M GUT 10 16 GeV, it seems plausible that the soft parameters unify as well. One is then left with • One common scalar mass m 0 ;

• One common gaugino mass m 1/2 ;

• One analytic Higgs mass Bµ;

• One trilinear coupling A 0 λ F , where A 0 is the soft parameter and λ F is the appropriate Yukawa coupling from the superpotential.

Instead of the Higgs mass, typically considered parameters tend to be tan β and sign(µ).

The MSSM with such restrictions is commonly called constrained MSSM, or short CMSSM.

The scalar mass and the gaugino mass of the CMSSM are investigated with respect to their allowed ranges in section 4.4.

For all its beauty, there are some shortcomings to the MSSM. One such shortcoming is that it does not really explain what µ is. It occurs in the SUSY mass term µ H u • H d in its superpotential and is the only parameter that does not come from symmetry breaking.

Contrary to what one might expect, µ is involved in the mass terms both of the Higgs and of the Higgsino:

-L SUSY Higgs mass = |µ| 2 |H 0 u | 2 + |H + u | 2 + |H 0 d | 2 + |H - d | 2 , (1.111) -L Higgsino mass = |µ| 2 H+ u • H- d -H0 u • H0 d . (1.112)
In consequence, the charged Higgsinos mix with the charged winos to form the charginos χ± 1,2 of the electroweak sector. Such a chargino has not been experimentally observed to date, which excludes energies lower than 100 GeV [START_REF] Egana-Ugrinovic | Charged Fermions Below 100 GeV[END_REF]. If µ is too large, then EWSB does not work, though. It turns out that one requires O(µ) ∼ O(m soft ). This, however, is strange because µ is supposedly different from the other parameters precisely because it does not come from symmetry breaking. This µ-problem has been addressed in numerous ways [START_REF] Kim | The mu-problem and the strong CP-problem[END_REF][START_REF] Polonsky | The Mu parameter of supersymmetry[END_REF][START_REF] Ellwanger | The Next-to-Minimal Supersymmetric Standard Model[END_REF][START_REF] Nelson | The Minimal supersymmetric model without a mu term[END_REF][START_REF] Benakli | Generating mu and Bmu in models with Dirac Gauginos[END_REF][START_REF] Dimopoulos | Maximally Natural Supersymmetry[END_REF], but, as with most things SUSY, the experimental jury is still out on it.

A second big pain point of the MSSM is its lack of naturalness, i.e. the missing correctness of its predictions for electroweak scale physics. Limits can already be set to 1-2 TeV for squarks and gluinos [START_REF] Aaboud | Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb -1 of √ s = 13 TeV pp collision data with the ATLAS detector[END_REF][START_REF] Sirunyan | Search for new phenomena with the M T2 variable in the all-hadronic final state produced in proton-proton collisions at √ s = 13 TeV[END_REF][START_REF] Aaboud | Search for squarks and gluinos in events with an isolated lepton, jets, and missing transverse momentum at √ s = 13 TeV with the ATLAS detector[END_REF]. This makes the call for fine-tuning the MSSM, which is necessary to generate large enough radiative corrections to get the right Higgs mass at higher energies. Again, one bumps face-forward into the little hierarchy problem.

These two points, the µ-problem and the little hierarchy problem, point to insufficiencies in the MSSM. Then again, the MSSM is minimal by definition, so it might lack the necessary features to shake these problems off. It is nice and cute (which is why it is used e.g. in section 4.4), but it leaves room for improvement. That is the reason why, in the next section, the MDGSSM is presented (another reason is that it is studied somewhat in section 4.6). It is part of a larger class of Dirac gaugino models, and helps increase the naturalness of SUSY. First, however, the simplest possible extension of the MSSM is presented.

Next-to-minimal SUSY

The simplest-possible way of adding to the MSSM is by introducing a new gauge-singlet chiral supermultiplet that is even under R-parity. The resulting model is called NMSSM, or sometimes (M+1)SSM [START_REF] Nilles | Weak interaction breakdown induced by supergravity[END_REF][START_REF] Frère | Fermion masses and induction of the weak scale by supergravity[END_REF][START_REF] Derendinger | Quantum effects and SU(2) x U(1) breaking in supergravity gauge theories[END_REF][START_REF] Ellwanger | Radiative corrections to the neutral Higgs spectrum in supersymmetry with a gauge singlet[END_REF][START_REF] Ellwanger | Particle spectrum in supersymmetric models with a gauge singlet[END_REF][START_REF] Ellwanger | Higgs phenomenology of the supersymmetric model with a gauge singlet[END_REF][START_REF] Ellwanger | Phenomenology of supersymmetric models with a singlet[END_REF][START_REF] Ellwanger | Towards a no lose theorem for NMSSM Higgs discovery at the LHC[END_REF]. The most general superpotential for this is

W NMSSM = W MSSM + λS H u • H d + 1 3 κ S 3 + 1 2 µ S S 2 , ( 1.113) 
where S denotes both the new chiral supermultiplet and its scalar component. There is no term linear in S because such a term could always be removed by redefining S with a constant shift. The soft SUSY-breaking Lagrangian is

L NMSSM soft = L MSSM soft -(a λ S H u • H d - 1 3 κ S 3 + 1 2 b S S 2 + tS + c.c.) -m 2 S |S| 2 . (1.114)
It is worth noting that the tadpole coupling t could be subject to dangerous quadratic divergences in supergravity [START_REF] Bagger | Destabilizing divergences in supergravity coupled supersymmetric theories[END_REF][START_REF] Jain | On destabilizing divergencies in supergravity models[END_REF][START_REF] Bagger | Destabilizing divergences in supergravity theories at two loops[END_REF] unless it is suppressed by an additional symmetry at very high energies.

What makes the NMSSM so attractive is that it can provide a solution to the µ-problem. This can be seen in the following way: Let µ S = µ = 0, so that there are no mass terms or dimensionful parameters in the superpotential. Also let the corresponding terms in the SUSY-breaking Lagrangian vanish, i.e. b S = b = 0 and t = 0. One can then shownot in this thesis -that there are choices of λ, κ, a λ and a κ for which phenomenologically acceptable vevs are induced for S, H 0 u and H 0 d . By doing phase rotations on these fields, s ≡ S , v u = v sin β ≡ H 0 u and v d = v cos β ≡ H 0 d can then be made real and positive. As a consequence, a λ + λκ * s and a κ + 3λ * κv u v d /s are also real and positive.

In order to avoid the unacceptably large CP violation that would technically follow from this setup, one can assume that λ, κ, a λ and a κ are all real in the same convention that makes s, v u and v d real and positive. This procedure is justifiable if the mediation mechanism for SUSY breaking does not introduce new CP violating phases, and is assumed here. To obtain a stable minimum with respect to variations in the scalar field phases, one also needs to fulfill a λ + λκs > 0 and a κ (a λ + λκs)

+ 3 λ κ a λ v u v d /s > 0.
With all these conditions, an effective µ-term for H u • H d arises from equation (1.113), with

µ eff = λs. (1.115)
This term arises from the dimensionless couplings and the soft terms of order m soft , meaning that it is no longer an free parameter and it is no longer unrelated to SUSY breaking. The fact that there are no dimensionful terms in W NMSSM can be enforced by introducing another symmetry. The simplest one comes from noting that the new superpotential and Lagrangian will be invariant under a Z 3 discrete symmetry, under which every field in a chiral supermultiplet transforms as Φ → e 2πi/3 Φ, and all gauge and gaugino fields are inert. This indeed makes µ, µ S , b, b S and t vanish. If this symmetry is exact, however, then it must be spontaneusly broken by the vevs of S, H u and H d , and lead to the production of so-called domain walls in the EWSB phase transition in the early universe. This is a problem because they would dominate the cosmological energy density and lead to anisotropies in the microwave background radiation that have not been observed. The problem can be avoided, however, by including late inflation after the domain walls are formed, embedding the discrete symmetry in a continuous gauge symmetry at very high energies, or allowing either higher-dimensional terms in the Lagrangian or a very small µ-term to explicitly break the discrete symmetry.

In addition to the particle content of the MSSM, the NMSSM contains a real scalar with even R-parity, a real pseudoscalar with even R-parity, and a Weyl fermion "singlino" with odd R-parity. These fields have no gauge couplings of their own, which means that they can only interact with SM particles by mixing with the neutral MSSM fields with the same spin and chaarge. The real scalar mixes with the MSSM particles H 0 u , H 0 d , and the pseudoscalar mixes with H + u . From replacing the µ-term with the dynamical field S there is, in fact, an effect that raises the mass of the lightest Higgs boson by an amount bounded at tree-level by: .116) This extra contribution comes from the |F S | 2 contribution to the scalar potential. Its effect is limited, however, because one must satisfy λ ≤ 0.8 if one requires that λ does not have a Landau pole in its RG running below the GUT mass scale. In addition, the neutral Higgs scalars have weaker couplings to the electroweak gauge bosons, compared to those in the SM, because of the mixing with the singlets. Because the 125 GeV Higgs boson discovered by the LHC is in such astonishing degree of accordance with the SM, this would mean that there ought to be a fairly small influence by the field S and therefore, perhaps, a yet undiscovered lighter neutral Higgs scalar. The singlino with odd R-parity mixes with the four MSSM neutralinos and could be the LSP if the parameters of the model are chosen wisely [START_REF] Abel | Neutralino dark matter in a class of unified theories[END_REF][START_REF] Menon | Electroweak baryogenesis and dark matter in the nMSSM[END_REF][START_REF] Cerdeno | Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM[END_REF][START_REF] Belanger | Relic density of dark matter in the NMSSM[END_REF].

∆ m 2 H 0 u ≤ λ 2 v 2 sin 2 (2β). ( 1 

Dirac Gauginos

Given all the lack of experimental evidence for the MSSM and the NMSSM, the cause for introducing other features is clear. One such feature is allowing gauginos to have Dirac masses instead of, or in addition to, Majorana ones; see e.g. [START_REF] Nelson | The Minimal supersymmetric model without a mu term[END_REF][START_REF] Benakli | Generating mu and Bmu in models with Dirac Gauginos[END_REF][START_REF] Fox | Dirac gaugino masses and supersoft supersymmetry breaking[END_REF][START_REF] Antoniadis | A New gauge mediation theory[END_REF][START_REF] Kribs | Flavor in supersymmetry with an extended R-symmetry[END_REF][START_REF] Amigo | R-symmetric gauge mediation[END_REF][START_REF] Plehn | Seeking Sgluons[END_REF][START_REF] Benakli | Dirac Gauginos in General Gauge Mediation[END_REF][START_REF] Belanger | Dark Matter with Dirac and Majorana Gaugino Masses[END_REF][START_REF] Benakli | Dirac Gauginos and Kinetic Mixing[END_REF][START_REF] Benakli | Dirac Gauginos, Gauge Mediation and Unification[END_REF] among many other examples. The SM fermions are of Dirac type, so there is no reason to assume that SUSY fermions should somehow not be that, too. This idea leads to many interesting properties, such as an enhanced tree-level Higgs mass due to new quartic couplings, simpler SUSY breaking models in the case of R-symmetry preservation, and relaxing of LHC bounds because gluino direct production gets suppressed. Dirac masses are introduced through supersoft terms which do not appear in the renormalisation group (RG) equations for any other operators [START_REF] Fox | Dirac gaugino masses and supersoft supersymmetry breaking[END_REF][START_REF] Jack | Quasiinfrared fixed points and renormalization group invariant trajectories for nonholomorphic soft supersymmetry breaking[END_REF][START_REF] Goodsell | Two-loop RGEs with Dirac gaugino masses[END_REF]. A Dirac term can also be used to make gluinos massive, because it still preserves R-symmetry, unlike a Majorana term for mass. Dirac masses are four-component spinors and can be written in terms of two Weyl spinors, .117) which gives rise to the supersoft SUSY breaking mass terms

Ψ =   ψ α χ α  , Ψ = (ψ α , χ α) , ( 1 
L supersoft ⊃ -m D Ψ Ψ = -m D χ α ψ α + ψ α χ α . (1.118)
Every additional Weyl fermion contributes two more fermionic d.o.f., which means that there are four more neutral scalar d.o.f. after EWSB. One then needs to add chiral fermions (χ S , χ a T , χ a O ) in the adjoint representation of each gauge group. These fermions are embedded in the chiral superfields S, T a , O a which are of a U (1) Y singlet, SU (2) L triplet and SU (3) c octet, respectively, and which carry no R-charge. These are defined by

S = S + √ sθ χ S + θθF S , T a = T a + √ 2θχ T a + θθF a T , O a = O a + √ 2θ a χ O + θθF a O .
(1.119)

The resulting field content is summarised in table 1.5.

Superfield Scalars

(R = 0) Fermions (R = -1) (SU (3), SU (2), U (1) Y ) Adjoint octet O a O a = 1 √ 2 (O a 1 + iO a 2 ) χ a O (8, 1, 0) Adjoint triplet T a T 0 = 1 √ 2 (T 0 R + iT 0 I ), T ± = 1 √ 2 (T ± R + iT ± I ) W 0 , W ± [≡ χ a T ] (1, 3, 0) Adjoint singlet S S = 1 √ 2 (S R + iS I ) B 0 [≡ χ S ] (1, 1, 0)
Table 1.5 -Additional superfields to allow Dirac masses for the gauginos. These are in addition to the MSSM fields listed in table 1.1, which also occur in models like the MDGSSM.

The Dirac masses for gauginos come from the extended gauge sector. This can be seen in the following way:

L supersoft = d 2 θ √ 2 W α W a jα Σ a j M + h.c. = d 2 θ √ 2 D θ α W a α Σ a j M + h.c. = d 2 θ √ 2 m D θ α (λ a + θ α D a + ...) Σ a + √ 2θ α χ a Σ + ... ⊃ -m D λ a χ a Σ + √ 2m D D a Σ a + h.c., (1.120) 
where W a j = λ a j + θD a j + ... are the supersymmetric gauge field strengths associated to the U (1), SU (2) and SU (3) gauge groups for j = 1, 2, 3 respectively; Σ a j = Σ a j + √ 2θD a j + ... are the Dirac gaugino multiplets with scalar components Σ a = S, T a , O a ; W = λ + θD + ... is the field strength of a vector superfield in the hidden sector; and M is the mass scale at which the Dirac gaugino masses are generated. The hidden auxiliary field D then acquires a vev (second line), which breaks SUSY explicitly in the visible sector. Here, m D = D /M has been substituted and (θλ)(θχ) has been used.

In contrast to the logarithmically divergent Majorana mass terms, these Dirac terms only induce a finite correction to the sfermion masses. This means that a large hierarchy between the gaugino and squark masses can be accommodated for. This, in turn, increases the naturalness of the model and provides a better answer to the hierarchy problem because new couplings with the Higgs can be introduced which enhance the Higgs mass at tree level.

Various realisations of this approach can be considered. Broadly speaking, they fall into two categories: Those that preserve an exact R-symmetry are called MRSSM and will be covered in the next subsection. This section covers those that allow a small amount of R-symmetry breaking.

The MDGSSM, in fact, requires explicit R-symmetry breaking in the Higgs sector by a B µ because it would otherwise be spontaneously broken at the same time as the electroweak symmetry and generate a massless R-axion in the Higgs sector. The B µ term controls the mass of the Higgs pseudoscalar, so if it becomes very heavy, the heavy Higgs would become decoupled, and if it becomes very light, the heavy Higgs would become involved in squark and gluino decays, which makes low energy phenomenology more complicated. It is therefore assumed that a small -as to not become involved in the decays of electroweakinos -but non-zero B µ term is the only source of R-symmetry breaking. Then the superpotential is

W MDGSSM Higgs = Y ij u U i Q j • H u -Y ij d D i Q j • H d -Y ij e E i L j • H d + µH u • H d + λ S SH u • H d + 2λ T H d • TH u , ( 1.121) 
where 

Q i , L i , U i , D i , E i , H d ,
L standard, soft = Qi m 2 Q j i Q j + Ū i m 2 U j i U j + Di m 2 D j i D j + Li m 2 L j i L j + Ēi m 2 E j i E j + m 2 Hu |H u | 2 + m 2 H d |H 2 | + B µ (H u • H d + h.c.) + 1 2 M i λ i λ i + m 2 S |S| 2 + 2m 2 T tr(T † T ) + 1 2 B S (S 2 + h.c.) + B T (tr(T T ) + h.c.) + m 2 O |O| 2 + B O (tr(OO) + h.c.) + A S (SH u • H d + h.c.) + 2A T (H d • T H u + h.c.) + A κ 3 (S 3 + h.c.) + A ST (S tr(T T ) + h.c.) + A SO (S tr(OO) + h.c.), (1.122) 
where λ i = {λ Y , λ 2 , λ 3 } are the gauginos of U (1), SU (2) and SU (3), respectively, with corresponding Majorana masses M i . To these terms, the supersymmetry-breaking supersoft operators m Di θ α are added:

L supersoft = d 2 θ √ 2 m DY θ α W 1α S + 2 √ 2 m D2 θ α tr(W 2α T) 2 √ 2 m D3 θ α tr(W 3α O) + h.c. (1.123)
This concludes all the necessary basics of the MDGSSM for this thesis. In section 4.6, the parameters µ, λ S and λ T (equation (1.121)); m DY and m D2 (equation (1.123); m D3 remains fixed at 3.7 TeV); and tan β, which is defined as the ratio between the vevs of H 0 u and H 0 d (see also section 1.2.2 for context), are investigated. More explanations can, as usual, be found in the literature.

R-symmetry

As mentioned above, the second option for constructing Dirac gaugino models is that which maintains an exact continuous R-symmetry throughout. This is achieved by adding R-Higgs doublet superfields, listed in table 1.6, which couple to the Higgs bosons but do not obtain an expectation value [START_REF] Kribs | Flavor in supersymmetry with an extended R-symmetry[END_REF][START_REF] Dießner | Higgs boson mass and electroweak observables in the MRSSM[END_REF][START_REF] Diessner | Two-loop correction to the Higgs boson mass in the MRSSM[END_REF][START_REF] Diessner | Exploring the Higgs sector of the MRSSM with a light scalar[END_REF][START_REF] Diessner | Squark production in R-symmetric SUSY with Dirac gluinos: NLO corrections[END_REF]. These Higgs-like leptons have the same gauge quantum numbers as the Higgs doublet fields, so that the actual Higgs doublets can carry zero R-charge. In addition to the Yukawa interactions of the MSSM, the MRSSM allows the

Superfield Scalars (R = 0) Fermions (R = -1) (SU (3), SU (2), U (1) Y ) R-Higgs / R u (R + u , R 0 u ) ( R+ u , R0 u ) (1, 2, -1/2) R-Higgsinos R d (R 0 d , R - d ) ( R0 d , R- d ) (1, 2, 1/2)
Table 1.6 -Additional field content in the MRSSM. Both fields carry R-charge 2. These are in addition to the MSSM fields listed in table 1.1 and the MDGSSM fields listed in table 1.5, which slightly differing R-charges as specified in the text.

following interactions:

W MRSSM Higgs ⊃ µ u R u • H u + µ d R d • H d + λ Su SR u • H u + λ S d SR d • H d + λ Tu R u • TH u + λ T d R d • TH d . (1.124)
As required by R-symmetry, any couplings between two Higgs superfields, two R-Higgs superfields, multiple adjoint superfields, or scalar adjoint-Higgs superfields are forbidden.

The most general MRSSM Lagrangian contains the standard soft terms for the MDGSSM, and in addition to this holomorphic scalar adjoint-Higgs couplings and new soft-mass terms for the Higgs-like leptons:

L MRSSM standard, soft = m 2 Hu |H u | 2 + m 2 H d |H d | 2 + B µ (H u • H d + h.c.) + m 2 Ru |R u | 2 + m 2 R d |R d | 2 + m 2 S |S| 2 + 2m 2 T tr(T † T ) + 1 2 B S (S 2 + h.c.) + B T (tr(T T ) + h.c.) + B O (tr(OO) + h.c.) + m 2 O |O| 2 + A S (SH u • H d + h.c.) + 2A T (H d • T H u + h.c.) + A κ 3 (S 3 + h.c.) + A ST (S tr(T T ) + h.c.) + A SO (S tr(OO) + h.c.).
(1.125)

The trilinear terms A i are usually neglected, but in principle one could take them onboard anyway. Because the Higgs sector is larger in the MRSSM, there are more electroweakinos. This implies that there are neutralinos and charginos, composed of eight neutral and charged Weyl fermions, respectively. The mass matrices are subdivided according to R-charge, and one obtains four physical four-component neutralinos and two sets of two physical fourcomponent charginos. To preserve R-symmetry, these two sets of charginos also do not mix with one another, which results in an interesting and distinct phenomenology.

A model of colourful mediators

Unlike the three other models discussed above, the SMSQQ is not supersymmetric. It is a model with colourful scalar mediators, in which the dark matter candidate is the usual scalar singlet S with a Z 2 symmetry. The scalar mediator fields Q E and Q O both have quantum numbers (3,1) -1/3 under (SU (3), SU (2)) Y ; the difference between them is that Q E is even under the Z 2 , and Q O is odd. Then the most general Lagrangian where the hidden sector respects CP symmetry is

L SMSQQ = L SM + 1 2 ∂ µ S∂ µ S + D µ Q O † D µ Q O + D µ Q E † D µ Q E - 1 2 µ 2 S S 2 -µ 2 E |Q E | 2 -µ 2 O |Q O | 2 -λ S S 4 - 1 2 λ HS S 2 |H| 2 -λ 3 |H| 2 |Q E | 2 -λ 4 |H| 2 |Q O | 2 - 1 2 λ 1 S 2 |Q O | 2 - 1 2 λ 2 S 2 |Q E | 2 -λ 5 |Q E | 4 -λ 6 |Q O | 4 -λ 7 |Q O | 2 |Q E | 2 -λ 8 |Q O Q * E | 2 -κSQ E Q * O + Y ij Q Q E q k q l + 1 4 λ C (Q E Q * O ) 2 + h.c. (1.126)
Here, the q k , q l are the (3,2) 1/6 Weyl fermions representing left-handed SM quarks. The covariant derivative is given by

D µ,ij = ∂ µ δ ij -ig s G a µ (T a R ) ij . (1.127)
where i,j are colour indices, and the fully indexed version of the kinetic Lagrangian terms would be in the form of D

µ,ij Q X,j with X = O,E.
This model has several interesting features. The first, which is the main point of considering it, is the trilinear coupling κ: this entirely controls the s/t/u-channel processes for dark-matter annihiliation and is crucial for the unitarity and vacuum stability analysis. The next is the baryonic coupling Y ij Q : the mediators carry baryon number, which is respected by the model (perturbatively). It also means that the state Q E decays to pairs of quarks; in this work it is taken to predominantly couple to the third generation, i.e. it decays to a tb pair. Therefore it is somewhat hard to search for at the LHC, being constrained mainly by ttbb searches for which no BSM reanalysis is yet possible, so one expects its mass to be only bounded to be larger than 1 TeV (rather than 2 TeV and above for other colourful scalars that decay to the first two generations of quarks). This choice also makes the model somewhat safe from direct detection constraints (provided that the Higgs portal coupling λ HS is small). In this work, much larger masses are considered in any case, so collider and direct searches are not relevant.

Another interesting feature is that the state Q O can only decay to the singlet plus Q E , requiring it to be heavier than the singlet. In addition, there are three operators containing two pairs of Q O , Q E , namely the λ 7 , λ 8 and λ C terms. It is now possible within SARAH, a package for building and analyzing SUSY and non-SUSY models [271,[START_REF] Staub | SARAH 4 : A tool for (not only SUSY) model builders[END_REF], to specify all of these and for them to be properly taken into account in the unitarity constraints; however, for this analysis only λ 7 is considered and λ C , λ 8 are taken to be zero. This is mildly relevant for unitarity and vacuum stability constraints -but not at all for the dark matter density.

In chapter 3, special attention is given to the mass of the singlet, m S . Comparing the Lagrangian 1.126 with equations 1.12 and 1.15 where a minimal BSM scenario with a scalar singlet but without colourful mediators was considered, one can intuit that the masses m S,E,O could be inferred from the couplings in the above Lagrangian in a similar fashion. This is true because the singlet S must have a vanishing vev. The mediators Q O and Q E could, in theory, have non-zero vevs because they are not fermions. This would make the picture more complicated, though, because one would need to ensure that this does not affect the SM physics in any way. Either way, one could write down equations which relate the masses m S,E,O to µ S,E,O via the Higgs vev and the couplings λ i and κ. One could then find constraints on these couplings to naturally ensure the mass hierarchy m E ≤ m S ≤ m O (see chapter 3 for more details on this). Such a calculation, however, is not needed in this work because the mass scales that are treated exceed the electroweak scale by about two orders of magnitude. This means that µ S,E,O m S,E,O down to about an error of about one percent.

In order to focus on the interesting features of this model and simplify the process, many other couplings are ignored from chapter 3. Including these is left for future work. In detail, the simplifications entail the following:

• The coupling λ 7 is fixed to the value 0.1.

• The couplings λ 5 = λ 6 =: Λ are taken to be the same value.

• The coupling λ S = Λ/4 is not independent of λ 5,6 .

• The couplings λ HS , λ C , λ 1,2,3,4,8 are all set to zero. This helps reduce the number of input parameters, so that there are only the three masses m S,E,O and the couplings Λ and κ left to scan over. Setting all other couplings to zero implies several things. The only possible annihilation channel is

Q O → S+Q E . Apart from this, only the process Q O Q O * → Q E Q E * is allowed through λ 7 . The processes Q O Q E * → Q O Q E * and Q E Q O * → Q E Q O * ,
which would normally be allowed through non-zero λ 8 and λ C , respectively, are neglected. Scattering processes between the scalar singlet S and either Q O or Q E are equally neglected by setting λ 1,2 to zero. All other channels, notably Higgs portals which would otherwise be allowed through λ HS , λ 3,4 , do not play a role in this work either.

Since heavy dark matter that has little interaction via the Higgs portal is being considered, the relevant part of the scalar potential for this model involves the fields S, Q E and Q O . These can develop expectation values and a colour-breaking minimum if κ is large enough; however, finding the minimum of the potential involves solving coupled cubic equations and is not analytically tractable except for the the point where the masses and couplings are equal. To find possible true minima a small Python code was written which is briefly described in appendix A. This uses HOM4PS2 [START_REF] Lee | HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method[END_REF] to quickly find all minima of the set of coupled minimisation conditions for the chosen field directions. This was simpler than installing the no-longer-supported Vevacious [START_REF] Camargo-Molina | Stability of the CMSSM against sfermion VEVs[END_REF], especially since there is a potentially large separation of scales between the dark matter sector studied here and the Higgs sector; also note that only the tree-level minima are of interest because this study's search is explicitly for points which have large trilinear couplings where perturbativity may break down. This concludes the physics side of this thesis, and the relevant models. The next chapter covers the technical aspects of the studies performed later on. This work is not the first -and definitely not the last -to investigate models that go beyond the Standard Model. Nor is it the first effort at scanning their parameter spaces, and at writing software for this purpose. Such scanning software already exists and is, at this point, incredibly sophisticated. GAMBIT [START_REF] Athron | GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool[END_REF][START_REF] Kvellestad | GAMBIT and its Application in the Search for Physics Beyond the Standard Model[END_REF][START_REF] Bloor | The GAMBIT Universal Model Machine: from Lagrangians to likelihoods[END_REF], for example, is a global fitting tool which can use several different scanners and interface to different precision calculation tools of high energy physics (denoted HEPtools for short). HEPtools include MicrOMEGAs and SPheno, which are also used in this work [START_REF] Pukhov | CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages[END_REF][START_REF] Belanger | SLHAplus: a library for implementing extensions of the standard model[END_REF][START_REF] Belanger | MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model[END_REF][START_REF] Allanach | SOFTSUSY: a program for calculating supersymmetric spectra[END_REF][START_REF] Allanach | SUSY Les Houches Accord 2[END_REF][START_REF] Carrasco Kind | Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs[END_REF][START_REF] Abdul Khalek | Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider[END_REF]. Scanning algorithms in GAMBIT include MultiNest [START_REF] Feroz | MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics[END_REF] and Diver [START_REF] Martinez | Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module[END_REF], the latter of which is notably quite efficient and aims, to some extent, at sampling interesting points.

Chapter 2

How to scan for new physics

What makes this work different is not that it makes use of existing sophisticated scanning tools -it does not -but that it aims at producing boundaries for new models with as little sophistication and compute resource consumption as possible. GAMBIT can do much more than find boundaries, see e.g. [START_REF] Athron | Status of the scalar singlet dark matter model[END_REF][START_REF] Athron | Impact of vacuum stability, perturbativity and XENON1T on global fits of Z 2 and Z 3 scalar singlet dark matter[END_REF][START_REF] Bhom | A model-independent analysis of b→sµ + µtransitions with GAMBIT 's FlavBit[END_REF][START_REF] Stöcker | Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments[END_REF]; however, considering that the search for boundaries in new models is such an integral part of HEP today, it makes sense to develop a leaner tool which is geared towards this goal and other relatively simple tasks. Part of the overarching vision of this work is to, one day, be able to run and make exclusion limits and simple parameter space explorations for BSM models on a laptop, while using all up-to-date results and achieving a similar accuracy as established frameworks do. This is the reason why BSMArt was created (the basic ideas of its predecessor can be found in the literature [START_REF] Krauss | Perturbativity Constraints in BSM Models[END_REF][START_REF] Staub | A Tool Box for Implementing Supersymmetric Models[END_REF][START_REF] Staub | The Electroweak sector of the NMSSM at the one-loop level[END_REF]). It does not do away with the established scanners and HEPtools -these are very good and useful algorithms. It does, however, provide a way of selecting those points in parameter spaces which directly lead to the establishment of boundaries. This implies that not as many points need to be sampled, and that HEPtools therefore do not need to be used as much as they typically do in other scanning frameworks.

In the first part of this chapter, the core pieces of BSMArt and the most important HEPtools are introduced. The second part of this chapter is geared towards exploring how to select interesting points in a parameter space using machine learning algorithms. It culminates in the introduction of AL scans, which are a core part of this work.

BSMArt

BSMArt is a new software package which aims at scanning parameter spaces in more efficient ways. The tried-and-tested approach is that one computes a likelihood function, and then scans for points with the highest likelihood. The problem with this is that for many cases in HEP phenomenology, likelihood functions vary sharply in small or narrow regions. A possible way of dealing with this is making an algorithm predict the observables directly, or making it predict whether a point with the given coordinates is valid or not. The latter approach -where the definition of "valid" is set by the user -has been implemented in BSMArt.

This section introduces the core concepts that are needed to understand and use BSMArt. The first part (re)introduces the HEPtools that are included in BSMArt to this date, although more will be added in the near future. The second part introduces very basic scans -which can be found in almost any scanning framework -and uses them to exemplify how BSMArt is used. [271,[START_REF] Staub | SARAH 4 : A tool for (not only SUSY) model builders[END_REF][START_REF] Staub | Linking SARAH and MadGraph using the UFO format[END_REF][START_REF] Staub | Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies[END_REF][START_REF] Staub | From Superpotential to Model Files for FeynArts and CalcHep/CompHep[END_REF] is used to generate the relevant model files (more about it below). It is not part of BSMArt; however, it seamlessly integrates in its workflow. SPheno [START_REF] Porod | a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e-colliders[END_REF][START_REF] Porod | SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM[END_REF] is used to generate the SUSY spectrum of every point. Then, if needed, the spectrum is passed to MicrOMEGAs [START_REF] Belanger | micrOMEGAs: Version 1.3[END_REF][START_REF] Belanger | Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios[END_REF][START_REF] Belanger | MicrOMEGAs: A Program for calculating the relic density in the MSSM[END_REF], which calculates the dark matter relic density and related observables. Finally, the VacStab routine checks whether a point is excluded by vacuum stability or not. Passing one point from one tool to another is automated with BSMArt. It also handles the generation of new points with whichever scan one chooses, and writes the relevant output and log files for subsequent evaluation by the user.

Stringing together HEP packages

In the following, SARAH and the three listed HEPtools are presented in further detail. In addition, MadGraph [START_REF] Alwall | MadGraph 5 : Going Beyond[END_REF] is briefly presented. It is not used in this work; however, since it is already available in BSMArt, it is worth talking about for the sake of completeness.

SARAH

SARAH is a Mathematica package that generates necessary information for SUSY-and non-SUSY models. This includes vertices, mass matrices, tadpole equations, and more. It is fairly easy for a user to implement new models in it, and it writes files for a variety of tools, including SPheno and MicrOMEGAs.

After installing SARAH, the usage is very straightforward. To generate files for the SMSQQ (see section 1.2.5), for example, one only needs four lines of code in Mathematica: § ¤

<< SARAH . m Start [ " SMSQQ " ] MakeSPheno [ ] MakeCHep [ ] ¦ ¥
The output files now only need to be inserted in SPheno and MicrOMEGAs.

SPheno

SPheno generates a SUSY spectrum using low energy data. In the SMSQQ (chapter 3 and section 4.5), it is with SPheno that the particle masses and observables relating to unitarity constraints are calculated, based on the SARAH input files. Likewise, in the MDGSSM (section 4.6), it is with SPheno that the Higgs mass is calculated.

After copying the SARAH-generated files over and making the model in SPheno, one needs to make the appropriate changes to the template input LesHouches file. This means toggling any wanted or unwanted calculations or outputs on or off, and changing the variable values to a suitable value for a test run. This file can then be copied over to the BSMArt directory. For use in BSMArt, the values of the variables need to be replaced by placeholders like VARIABLE[0], VARIABLE [1] and so on. The order should be the same as the order in the BSMArt JSON input file, which is explained in section 2.1.2. After specifying the SPheno path in the JSON file, the user is ready to run it with BSMArt.

MicrOMEGAs

MicrOMEGAs is used whenever a model contains stable dark matter particles and desires to calculate their relic density or the direct detection rate. This is the case for the SMSQQ, but not for the MSSM and related models. Similar to SPheno, one just needs to copy the SARAHgenerated files over, make the model, and specify the path to the MicrOMEGAs executable in the JSON file. The emphasis on finding interesting points in the parameter space is particularly applicable to models where MicrOMEGAs is used because the calculations it does are often more complicated, which means that it typically takes longer to compute than SPheno.

VacStab

The vacuum stability package is a small home-grown module. In this work, it is only applied to the SMSQQ. Details on its implementation for this model can be found in appendix A.

All the user needs to do to run it is to specify the path of the package in the JSON file and add an observable relating to it. BSMArt will then run this package and append the outcome of the calculation to the results file.

MadGraph

BSMArt and SARAH also interact with MadGraph, which is a powerful simulation software for studying HEP particle collisions. Together with BSMArt, it is not only possible to explore the parameter space of a model, but also to see how this space might be accessed with different collisions. Interfacing BSMArt with it therefore might increase the value brought to HEP phenomenology.

To generate MadGraph input files, one writes in SARAH:

§ ¤ 1 MakeUFO [ ] ¦ ¥
The produced files can then be put in the appropriate MadGraph directory, and are loaded with the command: § ¤

1 import model MODEL -modelname ¦ ¥
Here, MODEL is a placeholder for the name of the MadGraph model subfoloder. MadGraph is, however, not used in this work.

Making better scans

BSMArt aims at providing a quick and easy way of finding boundaries of BSM models and making quick parameter space explorations. This should not only be fast to compute and doable on a smaller computer but should also be easy to use. To this end, JSON files list all necessary input settings, and are, besides the LesHouches input file discussed in section 2.1.1.2, the only things the user needs to worry about. After editing these files, it is literally just one command, and the user can call it a day. In the following, the structure of these JSON files is discussed. After studying the next few pages, the reader should be able to execute a basic scan in BSMArt. (At the time of writing, BSMArt has not been published; this, however, is planned to happen soon.) In addition, some specifics of different scans are discussed. A deeper discussion of various settings can be found in sections 2.2.2.2, 2.2.3.2 and 5.

How to run BSMArt

First of all, the user needs to prepare a JSON file with all relevant inputs. Relevant example files are planned to feature in the released version of the code. BSMArt JSON files must always contain four sections: Codes, Setup, Variables, and Observables. The file on the next page, SMSQQ_Random_50k.json, is an example of a JSON file for a random scan of the SMSQQ.

For each of the Codes, the execution command and the path to an input file needs to be specified. An output file must also be specified for SPheno and MicrOMEGAs. Note that the output file of SPheno is usually the input file of MicrOMEGAs and of VacStab. All Codes have the toggle setting Run for the case that the user needs to switch off one of the HEPtools for a run. The user can also specify whether they want to run direct detection limits with MicrOMEGAs by using DD_Limits. 

SMSQQ_Random_50k.json

" mqm " : { " SLHA " : [ " MASS " , [ 1 0 3 ] ] } , " mqp " : { " SLHA " : [ " MASS " , [ 1 0 5 ] ] } , " Oh2 " : { " SLHA " : [ " DARKMATTER " , [ 1 ] ] } , " DD " : { " SLHA " : [ " DARKMATTER " , [ 5 0 1 ] ] } , " TreeU " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y " , [ 0 ] ] } , " TriU " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y W T R I L I N E A R S " , [ 0 ] ] } , " TriU_a0 " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y W T R I L I N E A R S " , [ 1 ] ] } , " Vacstab " : { " SLHA " : [ " VA CU U MS TA BI L IT Y " , [ 1 ] ] } } } ¦ ¥
The user can then specify the directory where they want to store the results with RunName. The scan type is specified with Type; as of now, the basic options are Random, Grid, MCMC and AL. Some combinations of the MCMC scans with machine learning algorithms, and some AL scans with specific features are also available. All possible scan types can be found in the bsmart/scans subdirectory; every Type name is identical to its filename. With the setting csv, the user can choose to receive the results file in a csv format. If StoreAllPoints is True, all points are written to the output files. Otherwise, only good points are written. The user can choose to Merge Results or to keep the results of each core separate. The number of cores to run the scan on is specified with Cores. The number of Points is also specified here.

Next, the variables and their scan ranges are specified. They need to have the corresponding entries VARIABLE[0], VARIABLE [1] and so on in the LesHouches input file. Finally, the observables and their corresponding entry in SLHA files are defined. Note that the scan will not work if an observable is listed but the corresponding HEPtool is set to False.

The input files typically are in a separate directory from the source files. Once the JSON file has been edited, it only needs to be passed to BSMArt:

§ ¤ python3 . . / bin / BSMArt . py --debug SMSQQ_Random_50k . json ¦ ¥
The JSON file as argument is mandatory here. The option -debug can be left away; it helps diagnose runtime errors by writing supplementary log files.

Grid-and random scans

The previously shown JSON file is for a random scan. For a grid scan, one can use almost the same file. One just needs to change the Type entry Random to Grid, and change the variables like so for example: Here, 10 points are scanned in every dimension, thus one generates 10 5

SMSQQ_Random_50k.json § ¤

" Variables " : { " kappa " : " np . linspace (1.5 e5 , 1.85 e5 , num =10) " , " ms2 -mqp2 " : " np . linspace (1 e8 , 1.5 e9 , num =10) " , " mqm2 -ms2 " : " np . linspace (1 e8 , 5 e9 , num =10) " , " mqp2 " : " np . linspace (2.8 e8 , 1.8 e9 , num =10) " , " lams " : " np . linspace (2.8 , 3.2 , num =10) "

} , ¦ ¥
points in total. Because the total number of points is implicitly contained in the listing of variables, it is not necessary to specify it in the Setup block of the file as well.

With models where the dimensionality is large, the computing time of grid scans can quickly get out of hand because the desired number of points grows exponentially with the number of dimensions. Random scans do not offer much more help with such situations, either. MCMC scans, on the other hand, shine in these conditions.

SMSQQ_MCMC_50k.json § ¤

" Variables " : { " kappa " : { " RANGE " : [ 1 . 5 e5 , 1 . 8 5 e5 ] ,

" VARIANCE " : 2 e4 } , " ms2 -mqp2 " : { " RANGE " : [ 1 . 0 e8 , 1 . 5 e9 ] ,

" VARIANCE " : 1 e8 } , " mqm2 -ms2 " : { " RANGE " : [ 1 e8 , 5 . 0 e9 ] ,

" VARIANCE " : 1 e8 } ,

" mqp2 " : { " RANGE " : [ 2 e8 , 1 . 8 e9 ] ,
" VARIANCE " : 1 e8 } ,

" lams " : { " RANGE " : [ 2 . 8 , 3 . 2 ] ,
" VARIANCE " : 0 . 3 } } , " Observables " : { " ms " : { " SLHA " : [ " MASS " , [ 5 5 ] ] ,

" SCALING " : " BIAS " , " MEAN " : 1 0 0 0 0 . 0 ,

" VARIANCE " : 0 . 2 } , " mqm " : { " SLHA " : [ " MASS " , [ 1 0 3 ] ] ,
" SCALING " : " OFF " } ,

" mqp " : { " SLHA " : [ " MASS " , [ 1 0 5 ] ] ,
" SCALING " : " OFF " } ,

" Oh2 " : { " SLHA " : [ " DARKMATTER " , [ 1 ] ] ,
" SCALING " : " UPPER " , " MEAN " : 0 . 1 1 2 , " VARIANCE " : 0 . 0 0 1 } ,

" DD " : { " SLHA " : [ " DARKMATTER " , [ 5 0 1 ] ] ,
" SCALING " : " OFF " } ,

" TreeU " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y " , [ 0 ] ] ,
" SCALING " : " OFF " } ,

" TriU " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y W T R I L I N E A R S " , [ 0 ] ] ,
" SCALING " : " OFF " } ,

" TriU_a0 " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y W T R I L I N E A R S " , [ 1 ] ] ,
" SCALING " : " UPPER " , " MEAN " : 0 . 5 , " VARIANCE " : 0 . 0 0 1 } , " Vacstab " : { " SLHA " : [ " VA CU U MS TA BI L IT Y " , [ 1 ] ] ,

" SCALING " : " UPPER " , " MEAN " : 1 . 0 ,

" VARIANCE " : 0 . 2 } } ¦ ¥

MCMC scans

Markov Chain Monte Carlo (MCMC) scans are powerful tools when models are complicated and have many dimensions. They use a fake likelihood which assigns each set of observables some score. The MCMC scan aims to maximize this score in the following way: First, it selects a random starting point, and calculates its likelihood. It then attempts to find another point in the vicinity of the starting point which has a higher likelihood. If this fails, it starts with a new starting point. If it succeeds, it tries to find yet another point in the vicinity of the second point, and so on. Such a chain of increasingly good points is called Markov Chain. This process of chaining or breaking off and starting anew repeats until the maximum desired amount of points is reached. One can force the MCMC scan to explore more interesting points by imposing a maximum length for the Markov Chains. This has been done in the literature, e.g. in [START_REF] Brivio | O new physics, where art thou? A global search in the top sector[END_REF]. This ensures, to some degree, that the entire parameter space is explored and not just the areas where there are good points because the Markov Chains need to start anew even when there are still better points available. In this work, another approach is used: The likelihood is modified in such a way that not the best points are favoured, but the most interesting ones, i.e. those which are close to the border between good and bad regions. This way, more of those points which directly lead to an assessment of the boundaries of a model are sampled. Less points are needed overall, and the scan needs less time to compute.

To implement an MCMC scan, one needs to set the scan Type to MCMC in the JSON file. In addition, the Variables and Observables blocks need to be modified in the ways shown in the example file SMSQQ_MCMC_50k.json.

The additional entry VARIANCE is the mean distance of one point to the next in a Markov Chain. It is not a priori clear how large it must be. The flatter a direction is, the larger its variance can be; the steeper, the smaller. The additional entries in the Observables block relate to the scaling functions which modify the likelihood to favour interesting points. More details about these can be found in section 5.1.2.

AL scans

Although the scaling functions manipulate MCMC scans to prioritize more interesting points, even their capabilities are limited. On a fundamental level, MCMC scans are there construct a meaningful propability density -which as a side product leads to finding more good points -and manipulating this towards more interesting points has its limits. This is where active learning (short AL) scans come into play. With these, a neural network learns which points are good and which ones are bad. It then selects points which it does not know too much about for the scan, and carries on learning on these. Points selected in this way have a tendency to be close to the border between good and bad points, and are therefore interesting for the exploration of limits.

To implement such a scan, one sets the JSON scan Type to AL and modifies the other sections as shown in the example file SMSQQ_AL_50k.json. Like with the MCMC scan, there is the entry VARIANCE for each variable in order to better select points. This is not as crucial as with the MCMC because the network can find interesting points by itself; however, in models where good points are scarce it can be useful to search for points in the vicinity of known good points. This is regulated with the VARIANCE entry.

There are also new functions in the Observables block. These are not scaling functions but rather give information to the AL scan on whether to exclude a point or not based on the values of its observables. The new block Networks contains settings related to the network. The most fundamental of these are covered in section 2.2.3.2; for the more advanced settings see section 5.3.

With these illustrative examples at hand, it is hopefully sufficiently clear how to implement a model in BSMArt and run a scan over it. Clearly there is a lot more ground left to cover, though. This includes the foundations of machine learning and how to classify and select points with it. And, more concretely, it includes the key concept of active learning and how a user might tune it to their likings.

SMSQQ_AL_50k.json § ¤

" Networks " : { " MLmodel " : " SM SQ Q _A Ln ew _ 50 k " , " HiddenSize " : 1 0 0 , " HiddenLayers " : 3 , " LearningRate " : 0 . 0 0 1 , " SGDmomentum " : 0 . 1 , " DSteps " : 5 0 0 0 , " WeightDecay " : 0 . 0 0 1 , " Kinitial " : 1 0 0 0 0 , " K " : 5 0 0 , " L " : 1 0 0 0 0 0 , " FromGood " : 0 . 2 , " Epsilon " : 0 . 8 , " Diversity Alpha " : 0 . 5 , " FullTrain " : 0 ,

" AutoStop " : " False " } , " Variables " : { " kappa " : { " RANGE " : [ 1 . 5 e5 , 1 . 8 5 e5 ] , " VARIANCE " : 2 e4 } , " ms2 -mqp2 " : { " RANGE " : [ 1 . 0 e8 , 1 . 5 e9 ] , " VARIANCE " : 1 e8 } , " mqm2 -ms2 " : { " RANGE " : [ 1 e8 , 5 . 0 e9 ] , " VARIANCE " : 1 e8 } , " mqp2 " : { " RANGE " : [ 2 e8 , 1 . 8 e9 ] ,
" VARIANCE " : 1 e8 } , " lams " : { " RANGE " : [ 2 . 8 , 3 . 2 ] ,

" VARIANCE " : 0 . 3 } } , " Observables " : { " ms " : { " SLHA " : [ " MASS " , [ 5 5 ] ] ,

" TYPE " : " OFF " } ,

" mqm " : { " SLHA " : [ " MASS " , [ 1 0 3 ] ] ,
" TYPE " : " OFF " } , " mqp " : { " SLHA " : [ " MASS " , [ 1 0 5 ] ] ,

" TYPE " : " OFF " } , " Oh2 " : { " SLHA " : [ " DARKMATTER " , [ 1 ] ] ,

" TYPE " : " UPPER " ,

" MAX " : 0 . 1 1 2 } , " DD " : { " SLHA " : [ " DARKMATTER " , [ 5 0 1 ] ] ,
" TYPE " : " OFF " } ,

" TreeU " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y " , [ 0 ] ] ,
" TYPE " : " OFF " } ,

" TriU " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y W T R I L I N E A R S " , [ 0 ] ] ,
" TYPE " : " OFF " } ,

" TriU_a0 " : { " SLHA " : [ " T R E E L E V E L U N I T A R I T Y W T R I L I N E A R S " , [ 1 ] ] ,
" TYPE " : " UPPER " , " MAX " : 0 . 5 } ,

" Vacstab " : { " SLHA " : [ " VA CU U MS TA BI L IT Y " , [ 1 ] ] ,
" TYPE " : " USER " } } ¦ ¥

Actually being smart

Scanning parameter spaces by being indiscriminate or by trying to target good points is useful for some models. However, it is also quite compute-and labour-intensive. The overarching goal of BSMArt is to provide more efficient parameter space scans and determinations of the boundaries of BSM models by spritzing in a little bit of artificial intelligence or other new and exciting algorithms. Since artificial intelligence, specifically machine learning, is the most promising contender by far, some basic ML algorithms are explored in the following sections. These include random forest classifiers, neural networks, and active learning scans.

A walk in the forest

If you are tired of reading this work, the author suggests you take a quick walk in the forest before continuing. Immersing oneself in trees upon trees has the potential to revive a wilted soul and to rejuvenate a shriveled brain. It turns out that this is the same for computers! Except that our machine counterparts produce trees and forests themselves, powerful as they are. . . Alright, senseless analogies shall end here. Random forest classifiers [START_REF] Ho | The random subspace method for constructing decision forests[END_REF][START_REF] Kleinberg | On the algorithmic implementation of stochastic discrimination[END_REF][START_REF] Breiman | Random Forests[END_REF], or RFCs, can be trained to figure out whether a point is good or bad pretty quickly. The underlying idea is that many decision trees are better than one, and therefore a random forest of decision trees will make a more accurate classification than a single tree. Decision trees [START_REF] Quinlan | Induction of decision trees[END_REF], in turn, are algorithms which split a pool of data in subsequently smaller parts based on its features. For example, consider a decision tree which is presented with 100 images. It is tasked with categorizing these images into those showing a cat and those showing an orange. Originally there are 60 images of cats and 40 images of oranges, but the decision tree does not know this. The decision tree might take a look at the images and decide to ask the following questions:

1. Is it orange? Many of the oranges are orange! But 5 oranges have a more reddish tone due to the lighting of the picture, 4 more are unripe and yellow, and 3 are moldy and green. Also, there are 12 ginger cats which look very orange in the picture.

Is it fluffy?

The 12 ginger cats are all quite fluffy, the 28 orange oranges are not. The 3 moldy green oranges are fluffy, and 45 cats are, too. The remaining 9 oranges and 3 hairless cats are not fluffy.

Does it have ears?

The 3 hairless cats have ears, the 9 off-colour oranges do not. The 3 moldy oranges do not have ears, but the pictures of 2 cats also cut off the ears. The other 43 cats all have visible ears.

4.

Is it green? The 3 moldy oranges are green, the 2 earless cats are not. Now everything is classified! This is also depicted in figure 2.2. Note that there surely would be better questions and more efficient ways to classify cats and oranges, but the decision tree does not know anything a priori and therefore asks random questions. If presented with a new picture, the decision tree will go through the same set of questions to determine whether it is a cat or an orange. Of course it could get it wrong because the picture might be slightly different from the ones it trained on. This is why a forest of decision trees is important. Because each tree might Trained on the points of a model, RFCs do not perform as well as neural networks (see chapters 4.5, 4.6 and 5.2.2). They do have some advantages: they train very fast, and they require very little configuration. Nevertheless, the bulk of this work focuses on neural networks due to their higher accuracy and better versatility.

Electric brains

In Mandarin Chinese, computers are called 计算机 (pronounced jìsuànj ī). Translated literally, this means "electric brain machine." Computers, then, are electronic devices with a brain, according to around a billion people who speak Mandarin many times better than the author does. It is certainly quite intuitive that computers might somehow think -given how they sometimes seem to do things against a user's will (it's often just a consequence of the user's stupidity, though, in the author's experience). Around the mid-20th century, researchers went a step further than that [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF][START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF][START_REF] Werbos | Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences[END_REF][START_REF] Lecun | Backpropagation Applied to Handwritten Zip Code Recognition[END_REF]: They decided to reconstruct neurons like they exist in the brains of humans and many animals. Neural networks were born.

The basic principle of a neural network is very similar to that of a function in the mathematical sense: If some input is passed to the network, it does something with it, and produces some output. For example: If the sun is shining (input), the author (network) might be happy (output). One does hope that the author is a tiny bit more complex than such a basic neural network; however, the point is that this principle of input-magic-output applies pretty much everywhere one enounters neural networks.

A neural network consists of layers of individual nodes. This is shown in figure 2.3. Nodes of each layer are, in the most basic case, connected to all nodes of the next layer. Each node is thought to be a sort of artificial neuron in the sense that it transforms and transmits some data across a bigger structure. A neural network always has an input-and an output layer. In the task that this work is focused on, the input usually consists of the variables of a point in the parameter space of a model. The output is a number between 0 and 1, where a value close to 0 corresponds to the network estimating that a point is bad and a value close to 1 that a point is good. In the case of deep learning -which is the case of this whole workthere are additional hidden layers. Crudely speaking, these hidden layers provide additional steps in calculating the end result from the input information. Following that intuition, more hidden layers are needed the more complex the input data and the problem at hand are. Likewise, more hidden nodes per layer correspond to a more granular view of the problem. So more complicated input data means that more hidden nodes might be required.

Thinking, computer edition

An individual node -or an artificial neuron, if you want -can be thought of as a linear regression model. For a point x with components x i , the model of a node can be written as the following:

f (x) = A n i=1 w i x i + b , ( 2.1) 
where w i are weights and b is a bias value, both of which are adjusted during training of the network. A is an activation function [START_REF] Ramachandran | Searching for Activation Functions[END_REF], which helps the neural network process important information while suppressing useless parts. With a linear activation function, all information is regarded as equal in the output; a sigmoid function on the other hand prioritizes outputs around 0 and suppresses very positive and negative values because it is flat in these areas.

Generally, the choice of activation functions depends largely on the problem at hand. In this work, linear, ReLU [START_REF] Agarap | Deep learning using rectified linear units (relu)[END_REF], and sigmoid functions [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF] are used. For the input layer, a Fig. 2.3 Schematic of a basic neural network. In this example there are five input nodes (red), ten hidden nodes (blue) for each of the three hidden layers, and one output node. Every node is interconnected to the nodes of the next layer.

linear activation function is used to transmit the input data to the first hidden layer in its original state. Every hidden layer contains a ReLU function, which is linear for values greater than zero and flat zero otherwise. In other words, ReLU functions prioritize linear regression values greater than zero. Generally speaking, when the activation function outputs zero, the neuronal node in question does not fire, i.e. it does not transmit any information. This is one of the advantages of ReLU functions, because they produce more zeroes and thus the computation becomes more efficient than for example with sigmoid functions. In addition, the ReLU function accelerates the convergence of the gradient descent towards zero. Both of these advantages are useful for large hidden layers where a lot of computations happen.

The last layer has a sigmoid as an activation function. The advantage of this is that the output range is between 0 and 1, which is easy to process in the sense of a good and bad point. Also, having such a range in principle opens up the possibility of treating the output as a probability -although strictly speaking this is not correct because of the fact that ReLU functions were used earlier on. In addition, the sigmoid function zooms into the space where the linear regression is around zero and treats very large or small points about the same. This is in the interest of the work at hand, because one wants to distinguish good or bad points, and put special focus on those points where the network is not yet sure whether they are good or bad.

One can therefore view whatever a neural network does with a certain amount M of data as a series of linear regressions with some activation functions in between. Analogous to a goodness-of-fit evaluation, the goodness of a neural network is defined by its loss function. This can take the form of a quadratic loss function as an example:

loss = 1 2M M i=1 (y -ŷ) 2 , (2.2)
where y is the outcome of the data, and ŷ the fitted outcome by the neural network. In the case of what is studied in this work, ŷi is some number between 0 and 1, so a sigmoid function is used for the output of the final layer); y i is either 0 or 1 depending whether a point is bad or good. This loss function is minimized by influencing ŷi through changing the weights of the networks. Calculating the loss function and making subsequent adjustments is called backpropagation.

Computer thinking refined

With such a simple network as discussed so far, a lot of things can go wrong. Fortunately there are, by far and large, more features that one can play with when dealing with neural networks than some hidden layers and activation functions. Neural networks cannot and do not learn all data at once, determine the best fit, and then call it a day. Data is always limited, so there are many best fits that would work for one set of data. The aim is to find a fit that does not only minimize the loss function for the points in the dataset, but also still does so when the network is tested on new points. A network which succeeds to minimize the loss function but fails to correctly perform on a new test set is called overtrained [START_REF] Tetko | Neural network studies, 1. Comparison of overfitting and overtraining[END_REF][START_REF] Zhang | Understanding deep learning requires rethinking generalization[END_REF]. to finding good settings for any other model. As is typical for machine learning, though, initial settings might need to be finetuned (more details in chapters 4 and 5). This is by no means a complete list of possible network settings; for this work, however, it is complete in the sense that no other modification is done to the network. There are more settings relating to scans in general and the AL scan in particular; for these see section 2.2.3. Generally speaking, the total amount of nodes needs to be large enough to process the amount of data at hand. For more details about this, see section 5.3.3.

Similar
Training a neural network happens in several steps, which are often called iterations [START_REF] Ball | The Path to Proton Structure at One-Percent Accuracy[END_REF][START_REF] Shwartz-Ziv | Opening the Black Box of Deep Neural Networks via Information[END_REF][START_REF] Feindt | A Neural Bayesian Estimator for Conditional Probability Densities[END_REF]. In each step, a batch of the available data is sampled, and input into the network, which adjusts its weights accordingly. How much data is sampled in each batch depends on a variety of factors relating to the capacities of the machine and others; fortunately, this process is automated with the DataLoader function in pytorch. Many training steps -on the order of O(1000) in this work -are usually used, which implies that the same data is presented to the network multiple times. The amount of times that the network trains on some batch of data is called the number of epochs [START_REF] Frankle | The Early Phase of Neural Network Training[END_REF]. Having more than one epoch is justified by the fact that adjusting the weights is an iterative and gradual process. Adjusting the weights perfectly to the points presented in each epoch is not desirable because of, you guessed it, overtraining. Other settings ensure that this adjustment happens slowly enough.

The learning rate [START_REF] Wu | Demystifying Learning Rate Polices for High Accuracy Training of Deep Neural Networks[END_REF][START_REF] Senior | An empirical study of learning rates in deep neural networks for speech recognition[END_REF] is a measure of how much the weights are adjusted in each training step. A high learning rate corresponds to a lot of change in the weights, and a low learning rate means that not much change happens from one step to the next. Higher learning rates are not only dangerous because of overtraining, though. Because each step uses a different batch of data, a too high learning rate can sway the weights in one, then in the other direction, risking that the fit oscillates or never even converges. If the learning rate is too small, on the other hand, the fit may take overly long to converge. In extreme cases, it can even fail to converge or get stuck on a suboptimal solution. Complicating this, it is a priori not clear which learning rate is optimal for the task at hand. Diverse data might require a lower learning rate, whereas one can often afford having a higher learning rate with not-so-diverse data. Typically, one uses a grid search with learning rates ranging from 0.1 to 10 -6 to search for the optimal value. This a slow but often necessary process.

The weights are usually adjusted using stochastic gradient descent (SGD) [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF]. This is an optimization algorithm which helps find the minima of a function -in the case of neural networks the loss function. There are several forms, the choice of which depends on the task at hand. For classification problems, one uses the cross-entropy. If one classifies two categories only, this boils down to the binary cross-entropy, which is used in the AL scans in this work because the scan classifies points as either good or bad. If there are more categories, one uses the categorical cross-entropy. For regression problems, where a network is trained to predict a value, one uses the mean squared error.

In addition to the loss, information about the prior updates to each weight can be included in the loss function. It is usually implemented in the form of an exponentially weighted average, so that the last update is the most important. This feature is called momentum and makes the weights adjust in the same direction as previously, thus helping the fit converge faster. In this work, SGD with momentum [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF][START_REF] Shi | On the Hyperparameters in Stochastic Gradient Descent with Momentum[END_REF] is used. Its effects on the network are similar to that of the learning rate: If it is too low, the network will take unnecessarily long to converge. If it is too high, the network might move in the wrong direction and thus fail to converge. Again, it is not a priori clear which value might be best because this depends on the diversity of the data at hand. Generally, though, it is safer to choose smaller values for the SGD momentum if the learning rate is chosen correctly.

Finally, weight decay [START_REF] Krogh | A Simple Weight Decay Can Improve Generalization[END_REF][START_REF] Nakamura | Adaptive Weight Decay for Deep Neural Networks[END_REF] helps stabilize the fit by preventing large increases to the weights. This also helps simplify the resulting network because unnecessary weights are driven to near-zero values, which prevents overfitting and makes it faster to train because there are effectively fewer parameters. Weight decay is implemented by adding another term to the loss function. The procedure can be generalized to all types of loss functions, and is illustrated here on the mean squared error:

loss = 1 2M M i=1 (y -ŷ) 2 + λw 2 i , (2.3) 
where λ is the setting that is chosen by the user. The gradient with respect to each weight w i is calculated:

∂loss ∂w i = - ∂ ŷ ∂w i (y -ŷ) + λw i . (2.4)
Then, during backpropagation, the weight is updated with the help of said gradient:

w i,new = w i -ρ ∂loss ∂w i (2.5) = w i + ρ ∂ ŷ ∂w i (y -ŷ) -ρλw i , (2.6)
where ρ is the learning rate. In other words, the weights are decreased by a factor ρλw i , which helps prevent overtraining. This can act as a safeguard in case the learning rate was chosen too high. It is also useful when the data is quite diverse and batch sizes are small: Even with an optimal learning rate, one could risk increasing the absolute value of the weights too much when encountering a freakish batch with lots of outliers. Weight decay guards against that by driving the weights back in the direction of zero in such cases. In summary, several settings help prevent overtraining and thus ensure that the training process stays stable and converges. These settings cannot be known a priori and need to be tested out. This is particularly true for the learning rate. It is conservative to choose smaller values for the SGD momentum and higher values for the weight decay, as well as allowing many training steps if the available compute resources allow for this.

Active learning

RFCs and neural networks are both able to distinguish good and bad points from one another. They are not, however, able to generate interesting parameter points by themselves, like random-or MCMC scans can do. To enable them to do this, ML algorithms need to be embedded deeper in a scanning framework. RFCs are easy to use but pretty blunt instruments; in contrast, neural networks can produce far more accurate models. The author therefore chooses a neural network to embed in a scanning framework called active learning [START_REF] Ren | Exploring supersymmetry with machine learning[END_REF][START_REF] Hino | Active Learning: Problem Settings and Recent Developments[END_REF][START_REF] Settles | Active Learning Literature Survey[END_REF], or short AL scan. The first part of this section covers the basic principle of active learning, and the second part goes into more detail about the basic settings that are available to tune the scan in such a configuration. In section 4.2, more detail is provided about how AL works with neural networks.

Basic principle

The aim of the AL scan, as it is presented in this work, is to find as many interesting points, i.e. points that are near the border between good and bad regions, as possible. This puts it in contrast with the MCMC scan, which aims to maximize a likelihood function. Without any modification of said likelihood, it mainly targets good points. (The performance of MCMC scans with modified likelihoods such that they target interesting points is discussed in section 5.1.2.2.) This may sound like a good idea, especially if one is dealing with models that only have very small good regions. It is, however, a suboptimal strategy for finding the boundaries of a model. AL scans solve this conundrum by targeting interesting points by design.

The aim is to find points close to the border between good and bad, and then accurately distingish whether these are good or bad based on their input variables, with little regards to the actual value of any observable. This is what the neural network should learn, and because of this role it is called "discriminator" in the remainder of this work. It is possible that in future versions of the scan one might try to predict the value of the observables directly. As this is generally a more complex task, both on the end of development but also in terms of the training overhead, this is left for future work.

Figure 2.4 shows the basic principle of an AL scan. It starts with some initial dataset. This dataset can be user-specified and come from a previous scan of any type. If nothing is specified, then random points are generated and subsequently evaluated using HEPtools (see section 2.1.1). The discriminator then trains on this dataset. This is called initial training. Then, a number L points are proposed to the freshly trained discriminator. These L points can be obtained through random point generation, or through other more specialized algorithms (see section 5.3.1 for more details). The points are then passed to the discriminator, which outputs whether it thinks that a point is good or bad. Typically, it marks a point it thinks is good with a value close to 1, one it thinks is bad with a value close to 0, and one that it is unsure about with a value around 0.5. One assumes that those points that the discriminator is most unsure about are also the most interesting ones. In consequence, the K points which the discriminator scored closest to 0.5 are selected and passed to the HEPtools for evaluation. Once the results are back, the discriminator trains on these newly obtained points. Then new points are proposed, the discriminator selects again, and the cycle starts anew.

Settings for active learning

Like with the neural network itself, AL scans have a number of settings that are needed for it to function properly and that the user must specify. The settings for the neural network do not go away, though, because they are crucial for the functioning of the discriminator. These settings are listed in table 2.2. This is by no means a complete list (see section 5.4.2 for a comprehensive list of all present and possible future settings); it should, however, provide a basic understanding of the levers that the user can pull. As mentioned before, the user can specify an initial dataset by putting the setting InitCSV into the JSON file with a filepath. Without this setting, the initial dataset is obtained by generating K random points and then evaluating them using HEPtools. In all subsequent training cycles, K new points are passed to the HEPtools too (see previous subsection). K should not exceed 1000 (and preferably stay well below that) because some calculations relating to these points take very long at large K values. L is the number of points that are in the pool out of which K points are chosen. This number can be pretty large; the amount needed depends on the diversity of the dataset. A more diverse dataset implies the need for a larger L. The target number of points is user-specified like in the other BSMArt scans. Roughly speaking, one would expect about K/N points training cycles. In practice this number can be larger than that because new points are also rebalanced in order to retain an equal amount of good and bad points. On the other hand, the number of training cycles can be smaller than K/N points if there is an initial dataset -especially if it is large.

The Diversity Alpha is a measure for how far apart the K newly proposed points should be from one another. This number is between 0 and 1: at 0, the only selection criterion for the points is whether the discriminator is unsure about them or not; at 1, the points are selected primarily in function of their distance from one another. The choice of this setting depends on the data at hand. Finally, with FullTrain the user has the option to train the discriminator on all points obtained so far. This is useful when the model is fairly complicated because then the discriminator might misclassify a lot of points in the early stages of training. More details about this can be found in chapter 4.3.

In summary, AL scans provide a powerful way to find interesting, rather than just good, points. Armoured with this knowledge as well as the basics about the other scans and the underlying physics, the reader now is ready to appreciate the published and unpublished work that was produced for this thesis. 

Conclusions 87

Scans of parameter spaces of new models are useful for a variety of reasons, including searches for boundaries. Where dark matter is concerned, the upper mass boundary of a stable particle, i.e. a particle of which most were generated during freeze-out, is of particular interest. From an experimental standpoint, it is clear why this is the case: An upper mass boundary provides a rough idea about how much of the allowed parameter space is attainable by experiments like the future 100 TeV collider. From a theoretical point of view, establishing an upper mass boundary is interesting because the mass is related to the relic density. If finding the maximum mass of a model is made simple, then this would be a powerful approach for checking whether it would violate findings about the relic density, and thus be ruled out, or whether it is indeed a promising model for future searches. It turns out that this can indeed be done fairly easily with the use of unitarity.

This work is by far not the first one to explore such boundaries. A seminal work by Griest and Kamionkowski back in 1989 found that, regardless of the chosen DM model, the mass of a stable elementary particle that was once in thermal equilibrium cannot exceed 340 TeV [START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF]. The mathematical elegance of this approach looks very nice indeed until one notices that such high masses will not even be close to attainable with colliders in the next decade. Instead of lazing at the beach while the experimentalists build the colliders of the future, though, theoretical physicists have been hard at work trying to make the most of the data that is available today [START_REF] Lee | Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass[END_REF][START_REF] Kang | Unitarity Constraints in the standard model with a singlet scalar field[END_REF].

Despite all this hard work, however, unitarity bounds have rarely been applied to models where the colour charge of some particle is non-zero. In this chapter, a detailed investigation of a model with colour charges takes place to find unitarity bounds with finite scattering momentum -most other works are in the large scattering momentum limit. In addition, constraints on the relic density and vacuum stability are also applied to get the most stringent limits possible.

This work has been published with only minor changes in 

Dark matter and unitarity

Unitarity of scattering amplitudes has long been used to constrain the masses and couplings of thermal relic dark matter (DM) particles [START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF][START_REF] Hedri | Perturbative Unitarity Constraints on Gauge Portals[END_REF][START_REF] Harling | Bound-state formation for thermal relic dark matter and unitarity[END_REF][START_REF] Cahill-Rowley | Perturbative Unitarity Constraints on Charged/Colored Portals[END_REF][START_REF] Kahlhoefer | Implications of unitarity and gauge invariance for simplified dark matter models[END_REF][START_REF] Baldes | Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds[END_REF][START_REF] Hedri | Simplified Phenomenology for Colored Dark Sectors[END_REF][START_REF] Hedri | Cornering Colored Coannihilation[END_REF][START_REF] Harz | Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter[END_REF][START_REF] Hektor | Improved bounds on Z 3 singlet dark matter[END_REF][START_REF] Kannike | Gravitational wave signals of pseudo-Goldstone dark matter in the Z 3 complex singlet model[END_REF][START_REF] Alanne | Pseudo-Goldstone dark matter: gravitational waves and direct-detection blind spots[END_REF][START_REF] Fuks | Heavy dark matter through the dilaton portal[END_REF][START_REF] Espinoza | Prospects of Indirect Detection for the Heavy S3 Dark Doublet[END_REF][START_REF] Espinoza | An Inert Scalar In The S3 Symmetric Model[END_REF]. More generally, it is applied to constrain new physics Beyond the Standard Model such as Z couplings [START_REF] Kahlhoefer | Implications of unitarity and gauge invariance for simplified dark matter models[END_REF][START_REF] Fuks | Heavy dark matter through the dilaton portal[END_REF][START_REF] Hosch | Unitarity constraints on anomalous top quark couplings to weak gauge bosons[END_REF][START_REF] Shu | Unitarity Bounds for New Physics from Axial Coupling at LHC[END_REF][START_REF] Babu | Perturbative unitarity constraints on general W' models and collider implications[END_REF], and most often (and relevant for this work) scalar couplings [34, 35, 337-339, 341, 342, 349, 349-378] (including some one-loop calculations [START_REF] Grinstein | One-loop corrections to the perturbative unitarity bounds in the CP-conserving two-Higgs doublet model with a softly broken Z2 symmetry[END_REF][START_REF] Cacchio | Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft Z 2 breaking[END_REF][START_REF] Murphy | NLO Perturbativity Bounds on Quartic Couplings in Renormalizable Theories with φ 4 -like Scalar Sectors[END_REF][START_REF] Cheng | Novel theoretical constraints for color-octet scalar models[END_REF]). Unitarity famously limits the maximum possible cross-section for dark-matter annihilation, and thus gives an upper-bound on the mass of DM particles. The classic bound of ref. [START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF] is derived for scattering momentum on-shell and represents a true all-orders bound, whereas standard constraints evaluated at large scattering momentum provide a complementary probe of the theory. Since they are usually evaluated at tree-level these should instead be considered really as a measure of the breakdown of perturbativity of the theory.

To illustrate the relationship between the two, consider 2 → 2 scattering processes from states a ≡ (i,j) to b ≡ (k,l) with matrix elements M ba and centre-of-mass momenta p a , p b . One can decompose them into partial waves with

a ba J ≡ 1 32π 4|p a ||p b | 2 δa 2 δ b s dz P J (z) M ba (z), (3.1) 
where δ a (δ b ) is 1 for identical i = j (k = l) and 0 otherwise; and z the cosine of the angle between the three-momenta p a , p b . Then using unitarity of the corresponding S-matrix

S ∼ 1 + iM, one finds 1 2i (a J -a † J ) ba ≥ c a cb J a ca J ∀ a, b, J. (3.2)
Since the matrix a ba J is normal, both sides can be diagonalised simultaneously and so the same equation holds for the eigenvalues a i J ; so the typical "perturbative" unitarity constraints yield

|Re(a i J )| ≤ 1 2 . (3.3)
To derive the limits of ref. [START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF] the decomposition of partial waves can be inverted and inserted into the expression for the scattering cross-section σ ba = J σ ba J for states a → b to obtain:

σ ba J = 4π 2J + 1 p 2 a 2 δa |a ba J | 2 . (3.4)
Then one has

Im(a aa J ) ≥ |a aa J | 2 + |a ba J | 2 -→ |a ba J | 2 ≤ 1 4 , ( 3.5) 
and this leads to an "absolute" bound of

σ ba J ≤ π 2J + 1 p 2 a 2 δa . (3.6)
In limiting the dark matter mass, the factor of 2 δa is compensated for non-identical particles by having two different species. There are possible exceptions where this bound does not appear, such as in the presence of poles. Discussing these would go beyond the scope of this work, though. These bounds should be contrasted with the typical "perturbative" ones; for example, consider a toy model dark matter candidate S with a Z 2 symmetry that annihilates to a charged scalar X via a quartic interaction:

L toy ⊃ - 1 2 λ toy S 2 |X| 2 . (3.7)
If the high-energy scattering is considered as s → ∞ then one obtains a ba 0 = -λtoy 16π √ 2 and one finds the bound λ toy < 8π √ 2 at tree level. This leads to the bound

σ 0 ≤ 8π |p b | |p a |s . ( 3.8) 
Consider now non-relativistic annihilation of the singlet S into relativistic X, so

|p a | ≈ m S v, |p b | ≈ m S , s ≈ 4m 2 S .
Then one obtains the perturbative bound

σ 0 ≤ 2π m 2 S v
(3.9) compared to the "absolute" bound of

σ 0 ≤ 2π m 2 S v 2 .
(3.10)

Clearly even for this trivial case, for v 1 the perturbative bound is stronger and will lead to a lower limit on the DM mass, since the bound on λ toy has been taken at s → ∞ and applied it for small s. Crucially, though, this bound is really a measure of the perturbativity of the theory, since it was only derived with tree-level information, so it is entirely possible that a theory would saturate the "absolute" bound in the non-perturbative regime.

To illustrate the importance of the perturbative unitarity bound, in the following it will be contrasted to the classic Griest-Kamionkowski bound [START_REF] Griest | Supersymmetric dark matter[END_REF] in the aforementioned toy model. In their classic paper one finds the approximate formula

Ωh 2 = 2.12 • 10 -10 GeV -2 σv rel , ( 3.11) 
where v rel is given through

v rel = |v A -v B | (3.12)
between particles A and B.

In the center-of-mass frame, one can then calculate the scattering cross-section σ CM between particles A and B.

σ CM = 1 4E A E B |v M φl | |M| 2 16π 2 dΩ p f CM √ s = 1 4E A E B |v M φl | |M| 2 4π p f CM √ s 1 4m 2 S |v M φl | |M| 2 4π p f CM 2m S = 1 32πm 3 S |v M φl | λ 2 toy m 2 S (m 2 S -4m 2 X ) 4m S = 1 128πm 3 S |v M φl | λ 2 toy m 2 S -4m 2 X , (3.13) 
where in the third step the approximations

E A E B m 2 S and
√ s m S were used, and in the fourth step |M| 2 = λ 2 toy was inserted. The relative velocity v 2 M φl is defined through

v 2 M φl = |v A -v B | 2 -|v A × v B | 2 , ( 3.14) 
again between particles A and B. To a good approximation, one can take v rel ≈ v M φl .

Neglecting m X , one obtains

σ CM v λ 2 128πm 2 S .
(3.15)

By inserting this into the Griest-Kamionkowski formula (3.11), one obtains a relation between the coupling λ toy and m S :

m 2 S = λ 2 128π Ωh 2 2.12 • 10 -10 GeV -2 λ 2 • 1.41TeV 2 , (3.16)
where in the second step the experimental limit Ωh 2 ≤ 0.12 was used. Now the upper limit on the mass, or equivalently the coupling λ toy , shall be deduced for this toy model. Griest-Kamionkowski do this by applying partial-wave unitarity. Doing the same, one obtains

σv J ≤ π(2J + 1)v p 2 . ( 3.17) 
One can just use J = 0 because higher orders are suppressed by at least a factor of v 2 rel /4. The approach also involves taking v rel ≈ 1/2, which stems from cosmological freeze-out mechanisms. One can therefore simplify to get

σv 0 ≤ 2πv m 2 S v 2 4π m 2 S . (3.18)
Now, this can be inserted into equation (3.11) and one obtains 0.12 ≥ Ωh 2 2.12 • 10 -10 4π

m 2 S 1 GeV 2 (3.19)
This leads to a limit of m S 84 TeV or equivalently λ 70 using equation (3.16). On a side note, one obtains a limit of about m S 243 TeV and λ 203 when using the old limit of Ωh 2 ≤ 1 from the time when the classic paper was published. As expected, both limits on the singlet mass are well below the model-independent limits of about 130 TeV or about 340 TeV with the old limit on the relic density (see section 1.1.4.3 for a more detailed derivation of today's Griest-Kamionkowski limit). In previous works it has been shown that the classic bound can only be saturated if there is bound state formation [START_REF] Harling | Bound-state formation for thermal relic dark matter and unitarity[END_REF][START_REF] Baldes | Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds[END_REF][START_REF] Harz | Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter[END_REF], which neither this toy model nor the SMSQQ exhibit. Now that the classic limit for this toy model has been established, it can be contrasted to the perturbative bound. Again one uses the fact that λ toy ≤ 8π √ 2, as has been done earlier, before equation (3.8). Inserting this limit on the coupling into equation (3.15) leads to the bound

σ CM v π m 2 S . ( 3.20) 
Comparing this to equation (3.18), one sees that the relic density misses a factor of 4 if the perturbative bound is applied. This leads to a mass limit of a factor 2 less, i.e. m S 42 TeV and λ toy 35 with Ωh 2 ≤ 0.12. This is a substantially stricter limit.

These findings are illustrated in figure 3.1. Note that one could, of course, run similar calculations for the SMSQQ. By the nature of the matter, though, these would get rather tedious given the number of new particles and coupling constants that are involved. It is therefore omitted in this work as it would go beyond its scope and is of limited use for any other models. It should be pointed out, nevertheless, that the limit on Λ, the range of κ/m S and κ/m max as well as the behaviour of Λ/(κ/m max ) in the SMSQQ are all derivable by such unitarity calculations (see table 3.2 for a simplified list of these).

In this toy example, for simplicity only a quartic coupling was included and the limit s → ∞ was taken. This is rather typical in the literature among calculations of unitarity constraints. These ignore the contributions from, in particular, scalar trilinear couplings -Fig. 3.1 Visualization of various unitarity limits in the toy model. The perturbative bounds impose a twice-as-strict limit on the quartic coupling and the singlet mass than the classic Griest-Kamionkowski bound for this model. The allowed area is shaded light green.

which have enormous implications for dark matter phenomenology, since they are responsible for all s/t/u channel interactions. However, a framework within the package SARAH [271,[START_REF] Staub | SARAH 4 : A tool for (not only SUSY) model builders[END_REF] for automatically calculating the constraints on scalar trilinears was introduced in ref. [START_REF] Goodsell | Unitarity constraints on general scalar couplings with SARAH[END_REF], which can automatically scan over scattering momentum to find the best limit on the couplings of the theory. This has since been applied in e.g. ref. [337-339, 341, 342, 368-370, 374]. As has been seen above even in a trivial example, this will lead to generally stronger bounds on the dark matter mass than in ref. [START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF]. However, the calculation in ref. [START_REF] Goodsell | Unitarity constraints on general scalar couplings with SARAH[END_REF] was until now limited to colour neutral scalars. In this section the extension in SARAH v4.14.4 to colourful scalars is described, where all group theory factors are automatically calculated. This is used to place constraints on scalar trilinear couplings that are relevant for a simple dark matter model with colourful mediators.

Unitarity, however, is not the only constraint on trilinear couplings: they can also lead to alternative vacua, which in the case of charged fields mean charge-or colour-breaking minima of the potential. These are offset by having larger quartic couplings to stabilise the vacuum at the origin in field space. The typical approach to constraining a new model with such scalars, therefore, would be to use vacuum stability to constrain the size of cubic couplings, which in turn push the theory to large quartic couplings; large scattering-momentum unitarity to give an upper bound on the quartic couplings; and the dark matter annihilation cross-section is then limited by the values of both (since it can proceed via both quartic and s/t/u-channel interactions).

This reasoning is reinforced, as discussed for example in ref. [START_REF] Goodsell | Unitarity constraints on general scalar couplings with SARAH[END_REF], by the fact that for a single neutral scalar field with both cubic and quartic couplings, the full bounds from unitarity on the cubic coupling are generally less constraining than those from vacuum stability plus the upper limit on the quartic from unitarity. On the other hand, this naïve picture does not necessarily hold for models with colourful states, or more scalars, but up until now there was no simple way of deriving the unitarity constraints for such theories. To the author's knowledge, such bounds had only been applied in a model with a colour octet in ref. [START_REF] Cheng | Novel theoretical constraints for color-octet scalar models[END_REF][START_REF] Cao | The SM extension with color-octet scalars: diphoton enhancement and global fit of LHC Higgs data[END_REF][START_REF] He | Unitarity and vacuum stability constraints on the couplings of color octet scalars[END_REF] (in the large scattering momentum limit only); and in the (N)MSSM in ref. [START_REF] Schuessler | Unitarity constraints on MSSM trilinear couplings[END_REF][START_REF] Schüssler | Unitaritäts-Schranken an triskalare Kopplungen im MSSM[END_REF] (with a scan over scattering momentum as discussed here) and [START_REF] Staub | Theoretical Constraints on Supersymmetric Models: Perturbative Unitarity vs. Vacuum Stability[END_REF] (using an earlier version of the code described in this paper). In the latter reference, a comparison of unitarity and vacuum stability bounds was performed for the Higgs-squark sector where the conclusion was that the unitarity constraints on the trilinear and quartic couplings between scalars were irrelevant in the MSSM (where the quartic couplings are given only by gauge and Yukawa couplings) but were complementary to the vacuum stability constraint in the NMSSM. However, in those models the colourful scalar sectors interact only with the Higgs scalars, which cannot provide a dark matter candidate. The author also points to ref. [START_REF] Baker | Has the Origin of the Third-Family Fermion Masses been Determined?[END_REF], which makes use of the routines described here to constrain models of radiative fermion mass generation.

In this section a detailed investigation of the (genuine) complementarity of the requirements of (full) unitarity including finite momentum scattering, vacuum stability and relic density to place an upper bound on a scalar dark matter model with colourful mediators shall take place for the first time, which will make it possible to put an upper bound on the dark matter mass well below the Griest-Kamionkowski limit. In section 3.2 the automatisation of the group theory calculations is described as they have been implemented in SARAH v4.14.4; in sec. 3.3 the procedure is described that was used to investigate the parameter space of the model and the results are shown, giving an upper bound on the mass of the dark matter particle.

Colourful unitarity bounds

Unitarity bounds on colourful scattering amplitudes for the MSSM were considered in [START_REF] Schüssler | Unitaritäts-Schranken an triskalare Kopplungen im MSSM[END_REF] where a derivation of the colour factors was given case by case for the different representations and amplitudes present. Here a description shall be given of the general procedure that was used, that applies to the scattering of any states.

Suppose that the initial (or final) states can be labelled A i , B j and transform non-trivially under a non-Abelian group, with dimensions d A , d B . This means that one needs to multiply the number of rows that it takes up in the scattering matrix by d A × d B . Clearly, however, this can be broken into irreducible representations:

d A × d B = n C d C , (3.21)
where n is the total number of irreducible representations. Obviously the scattering matrix will only be non-zero when the incoming and outgoing pairs are in the same irreducible representation, so then one needs to apply a unitary transformation on the d A d B states to split them into n blocks; these are given by (generalised) Clebsch-Gordan coefficients. These can be built from invariant tensors, that is a mapping of A ⊗ B ⊗ C * → 1; this can be denoted as (t C ) ij a so that A i B j C a (t C ) ij a is invariant under group tranformations. By considering infinitesimal transformations it is easy to see that contracting different invariant tensors together makes another invariant tensor, and since the only invariant with just one representation and its conjugate is a Kronecker delta, then one must have

(t C ) ij a (t C ) b ij ∝ δ b a . (3.22)
In ref. [START_REF] Cao | The SM extension with color-octet scalars: diphoton enhancement and global fit of LHC Higgs data[END_REF], one also finds explicit Clebsch-Gordan coefficients for a model with octets.

There could be more than one copy of any given representation in the decomposition above, however -the most relevant example here being for a product of two octet representations, for which

8 × 8 =1 + 27 + 10 + 10 + 2 × 8 (3.23)
where the relevant bit is the appearance of two 8 reps; this is more familiarly understood as the existence of two invariants, d abc and f abc , which contract the symmetric and antisymmetric combinations. Hence if there are two or more copies of a given representation, they can be labeled C and D and one obtains

(t C ) ij a (t D ) b ij = g CD δ b a , g CD = 0 if reps C, D not identical . (3.24)
Now one is free to diagonalise the basis of invariants and normalise them appropriately. Since the scattering matrix is an isomorphism of the initial to final colour rep, by Schur's lemma it is proportional to the identity. Then each matrix will just be d C copies of this along the diagonal. So then a unitary transformation R ij,i needs to be performed on the scattering matrix to split it into blocks. For it to be unitary, one needs

R ij a R b ij = δ b a δ CD , a ∈ C, b ∈ D, (3.25) C a∈C R ij a R a kl = δ i k δ j l . (3.26)
Note that the second line involves the sum over all representations present. From the above, it is clear that these matrices can be constructed from the diagonalised basis of invariants, and the first condition implies that one must take

g CD = δ CD and R ij a = ⊕ C (t C ) ij a .
Translating this to amplitudes, for i,j → k,l one has a scattering matrix M kl ij or equivalently (a 0 ) kl ij upon which one is free to make unitary tranformations of the states to get

(t C ) b kl (a 0 ) kl ij (t C ) ij a ≡ δ b a a (C) 0 , ( 3.27) 
since outgoing states are equivalent to conjugated incoming ones. So, once the invariants have been constructed, they are contracted with the scattering matrices to obtain a block-diagonal form. There now is a choice to extract a (C) 0 : one can take the trace over the remaining indices a, b, pick one example, or construct a 0 a † 0 on colour space and take the square root of the diagonal entries. In SARAH the simplest choice is taken: a = b = 1 is put as constraints in the evaluation of the amplitudes as it is by far the least computationally expensive. However, it should be noted that, if some of the couplings/invariants are specified by the user in a different basis, then there could in principle be a rotation between the incoming and outgoing states which would then yield incorrect results here.

The general technique used here is different from the approach in ref. [START_REF] Schüssler | Unitaritäts-Schranken an triskalare Kopplungen im MSSM[END_REF], and so it is instructive to give some simple examples. All of the colour factors produced by the SARAH in the (N)MSSM have been cross-checked with the results there. However, since the colour representations available in those models are not different from this one, instead examples are given directly in the model here and in appendix B.2.

Consider first the dark matter annihilation channel S, S → (Q E ) i , (Q E ) j . One can decompose the final state into a singlet and an octet, but here only the singlet representation can be found. To find the projectors one can consider the SU (N ) identity

δ ii δ jj = 1 N δ j i δ j i + 2 (T a ) j i (T a ) j i . (3.28)
The projectors for the singlet and octet are 1 √ 3 δ i j and √ 2(T a ) i j in order for the above equation to become equation (3.26). In this model there only is t/u-channel annihilation via Q O exchange, so the diagram is proportional to κ 2 1 δ j i and so

a (0) 0 (SS → Q E Q E ) ∝ κ 2 1 1 √ 3 × 3 = √ 3 κ 2 1 . (3.29) Similarly the t/u-channel elastic interaction Q E Q E → Q E Q E ∝ 3κ 2 1 .
Consider now the interaction with coupling λ 5 with scattering of Q E , Q E pairs to each other. The vertex in this case is -2λ 5 (δ j i δ l k + δ l i δ j k ). So for this diagram via the singlet and octet channels one has

a (0) 0 (Q E Q E → Q E Q E ) = s→∞ -2λ 5 2 32π 1 3 (9 + 3) = - λ 5 2π , (3.30) a (8) 0 (Q E Q E → Q E Q E ) = s→∞ -2λ 5 2 32π 2 tr (T 1 T 1 ) = - λ 5 8π . ( 3.31) 
Hence the s → ∞ limit produces the strongest limit from the singlet representation, and a limit of λ 5 ≤ π; the same limit applies for λ 6 .

If one considers Q E , Q E scattering then the same vertex can be used, but the representations need to be decomposed into 3 + 6. The projector for the antisymmetric combination can be taken to be 1 √ 2 (δ 1i δ 2k -δ 2k δ 1i ) for incoming states (and (i ↔ j, k ↔ l) for outgoing) and for the symmetric δ 1i δ 1k or equivalently 1 √ 2 (δ 1i δ 2k + δ 2i δ 1k ) can be taken. These lead to

a (3) 0 (Q E Q E → Q E Q E ) = s→∞ 0, (3.32) a (6) 0 (Q E Q E → Q E Q E ) = s→∞ - λ 5 4π . (3.33)
Hence again these give weaker bounds than the singlet representation.

Criterion Constraint

Dark matter density ρ DM ≥ Ωh 2 = 0.120(3)

Vacuum stability S ≡ x, Q E ≡ 1 √ 2 y, Q O ≡ 1 √ 2 z, x, y, z ∈ R

Mass hierarchy and cubic coupling

m E ≤ m S ≤ κ, m O , where m S O(300TeV) Quartic couplings Λ ≡ λ 5 = λ 6 = 4λ S ≤ 3.5
Only decay of Q E to top-bottom pair Y 33 Q = 1, all other terms are 0 Table 3.1 -Constraints on the allowed parameter space.

Limiting the dark matter mass

Now that the relevant machinery is assembled, in this section an upper bound on the dark matter mass in this model will finally be searched for. To do this, the SPheno [START_REF] Porod | a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e-colliders[END_REF][START_REF] Porod | SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM[END_REF] code generated by SARAH for this model is used to calculate the spectrum, decays and unitarity constraints; the vacuum stability code described in appendix A is used to determine whether the colour-preserving vacuum is stable; and micrOMEGAs 5.2.1 [START_REF] Belanger | Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios[END_REF][START_REF] Bélanger | micrOMEGAs5.0 : Freeze-in[END_REF] is used to calculate the dark matter relic density and direct detection cross-sections. Since the allowed parameter space of the model is of particular interest, it will simply be required that the dark matter relic density not exceed the Planck value Ωh 2 = 0.120(3) [START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF]. All constraints on the parameter space are listed in table 3.1. However, to find the maximal dark matter mass with these constraints in this model with three heavy scalars, a cubic coupling, and several quartic couplings involves a search on a multidimensional parameter space. Of particular interest are the mass hierarchy m O > m S > m E and exploring ranges of m S up to O(300) TeV. Moreover, the quartic couplings should naïvely be bounded by λ S ≤ 2π 3 , λ 5,6 ≤ π. However, as seen in [START_REF] Goodsell | Unitarity constraints on general scalar couplings with SARAH[END_REF], cancellations between the contributions from quartics and cubic couplings, and the effect of a finite momentum cutoff could in principle allow somewhat larger values. Therefore, in a series of Markov Chain Monte Carlo (MCMC) scans the author explored larger values with the final, finer scan of one million points having an upper limit of λ 5,6 ≤ 3.5. This rather generous upper limit was chosen (instead of, say, λ 5,6 ≤ 3.2) to make sure that there are no unexpected phenomena in a theoretically excluded range. These are the most important quartic couplings since they control the overall stability of the potential. As described in appendix A, for the vacuum stability determination, the field directions along

S ≡ x, Q E ≡ 1 √ 2 y, Q O ≡ 1 √ 2 z
are considered where x,y,z are real. Taking λ 5 = λ 6 = 4λ S renders the potential symmetric in x,y,z at large field values (when other couplings vanish) so for simplicity this condition is imposed in this search which leaves a scan over

m E ≤ m S ≤ κ, m O , (3.34) Λ ≡ λ 5 = λ 6 = 4λ S , (3.35) 
and the other quartic couplings are simply taken to be zero except for λ 7 which was, quite arbitrarily, set to 0.1 -although this has no impact on the search, except perhaps a very slight influence on vacuum stability. In other words, self-couplings of the mediators and the singlet, respectively, and some coupling between the mediators is being allowed. On the other hand, quartic couplings among the singlet and the mediators, and those where a Higgs boson is involved, are being ignored, since the model with a t/u-channel mediator is of interest and not the one with the quartic coupling channel -or as a Higgs-portal model which have been extensively studied in the literature and has larger direct detection prospects. Moreover, for simplicity Y 33 Q = 1 is taken and zero for other Baryonic couplings, so that the Q E field only decays to a top and bottom quark pair. This leaves five parameters, four of which are dimensionful. In principle λ 2 would also have an important impact on the annihilation of singlets to mediators, while changing the relationships of the quartic couplings may have some impact on the stability results. In future it would be interesting to perform a more sophisticated scan to allow for a more high-dimensional parameter space.

To explore the parameter space, a series of scans was performed, starting from a uniform grid, then implementing several parallel Markov Chain Monte Carlo scans via the Metropolis-Hastings algorithm distributed across multiple cores on a cluster. Since only the upper bound on the singlet mass was of interest, a likelihood function L is constructed as a product: L ≡ L upper (Ωh 2 , 0.120, 0.001) × L upper (a 0 , 0.5, 0.001)

× L upper (δ stability , 1, 0.2) × L bias (m S , m S , 0.2), (3.36) 
where the first three likelihoods are sigmoid functions that cut off smoothly above the upper limit:

L upper (x, x, s) ≡ 1 1 + exp((x -x)/s) (3.37)
and δ stability is 1 for a stable vacuum and 0 otherwise. This amounts to a fixed large bias for stable over unstable points without categorically excluding unstable points. (In principle one could check for metastability and assign a likelihood based on a tunnelling probability. However, other than adding a significant complication, this is not very meaningful for this model since such points would correspond to large trilinear couplings and a loss of perturbativity.) The second term of the combined likelihood corresponds to the unitarity constraint. The last term is a bias on the dark matter mass, forcing the scan to probe heavier singlets:

L bias (m S , m S , s) = m S m S s . (3.38)
The value of m S differs depending on the scan. After completing the MCMC scans, the points of the sample are selected that strictly satisfy the imposed constraints, which are therefore imposed as "hard cuts." Employing MCMC scans bears the advantage that a valid parameter space can be proposed more efficiently than a grid or random scan because the latter focus on regions that are allowed and avoid wasting computational resources on regions that are clearly excluded. In all MCMC scans, the largest partial wave amplitude is selected to get a "good" point. Figure 3.2 shows the distribution of the singlet mass after this scan, including only those points which passed all cuts. As can be seen from the content in table 3. 3.2 -Approximate limits imposed on the parameter space through unitarity-, vacuum stability-, and DM relic density constraints, deduced from the dataset obtained after scanning. Fields where no clear limit can be deduced from a constraint contain a "-" symbol. Note how no one constraint can be left out, because they each impose different limits. The plane Λ -m S stands out because the limit is not imposed by unitarity alone but from the combination of all three constraints (compare also to figure 3.5). Compare this table also with table 3.3 to see that all three limits together cut significantly more bad points away than just one or two alone. limit of around 50 TeV is mainly due to the cut on the DM relic density. On the other hand, one can see in table 3.3 from the amount of points that pass after each combination of cuts that the other cuts cannot be neglected. Hereby, the cut on the mass hierarchy ensures that m S ≤ m O , and that λ S ≥ 0.5. The existence of a clear cutoff at around m S 47 TeV after all cuts implies that a considerable amount of this mass range could be covered with a 100-TeV-collider. This is also the central result of this chapter.

Figure 3.3 shows the effect of the separate cuts on the remaining points on the parameters m S , κ and Λ. As can be seen, Λ is bound by the naïve unitarity constraint of π.

As was expected when setting up the model, a pretty clear relation between the strength of the coupling κ and the masses of the involved particles is found. This can be seen in lower left panel of figure 3.2. There is a clear peak around 3.5 for κ/m S , although there are some outliers towards higher values. If instead κ is taken in relation to the largest mass of each datapoint, i.e., one chooses the largest out of m S and m O , the outliers disappear (lower right panel of figure 3.2). Instead, a peak is found at a ratio of about around 2.5.

Figure 3.4 shows the valid points in the κ -m S -plane after each individual cut. One can see a clear correlation between the two, and the peak of κ/m S at 3.5 (figure 3.2) is manifest. The outliers with a higher κ/m S ratio tend to be concentrated around the lower end of the distribution, where κ is around 50 TeV and m S is below 10 TeV. One can see that the vacuum stability constrains the allowed area from the bottom, i.e., the valid points are situated above Bottom: the same for Λ. One can see that the cutoff at Λ ∼ π is due to unitarity. The y-axis shows, in all three plots, how many of one million scan points made it through each cut, respectively. In contrast to figure 3.2, these plots do not contain any information about which points make it through two or more cuts.

Cut number of points

Mass hierarchy 508918

Dark matter density (D) 252098

Unitarity (U) 359274

Vacuum stability (V) 101365

U + D 140163 U + V 70056 D + V 10568
All 3963 Table 3.3 -Points left over after each cut. The raw sample contained one million points. D refers to the cut on the dark matter density, U to that on unitarity, and V to that on vacuum stability. Details see text.

the diagonal passing through (κ, m S ) = (100TeV, 10TeV) and (150TeV, 30TeV). Likewise, the dark matter criterion constrains the allowed area from the top, i.e., the valid points are below the diagonal passing through (50TeV, 25TeV) and (150TeV, 45TeV).

In figure 3.5, one can see the distribution of valid points in the Λ -m S -plane after every cut.Vacuum stability eliminates points with low values of Λ or m S . The dark matter cut, by itself does not have much impact on the shape of the distribution. As expected, the cutoff Λ ≤ π is ensured by unitarity (third panel of figure 3.5). After all cuts, the points in the lower m S range are excluded, as expected, but also those above the diagonal passing through (Λ, m S ) = (1.5, 25TeV) and (3.0, 50TeV). The latter is a compound effect from the cuts on dark matter and unitarity, which shows that the dark matter cut does play a role after all. Figure 3.6 shows the distribution of valid points in the κ -m O -plane. After each of the individual cuts, the resulting shape is bordered by three diagonals: one almost vertical one on the low-κ end, and two more or less parallel ones going from the bottom left to the top right of the respective panel. The distribution of valid points after all cuts can be deduced almost directly from the overlap of the distributions after the three individual cuts.

Finally, figure 3.7 shows the distribution of κ/m max as a function of Λ after various cuts. One can see that vacuum stability imposes κ/m max Λ + 1. Unitarity cuts away at some of the higher values of Λ and κ/m max , and cuts off at Λ ≤ π. The z-axis shows how many of one million scan points made it through the cut(s). The colour code is again normalised for each plot separately.

Highest singlet mass

The point with the largest singlet mass, and hence the main result of this section, is the one with the coordinates The uncertainties stem from considering the next closest points with similar values. The dark matter relic density is Ωh 2 = 0.122 for this point and the maximal a 0 = 0.49 is from the scattering matrix corresponding to the singlet representation (as might be expected from the earlier discussion), evaluated at √ s = 141 TeV, well away from any poles. This point is on the cusp of being ruled out by the unitarity calculation, which is dominated by the coupling κ; decreasing the coupling Λ changes a 0 very little at this point but leads to an unstable vacuum already at Λ = 3, while increasing κ to 180 TeV leads to a 0 > 0.5 (and also an unstable vacuum).

Trilinears excluded by unitarity alone

Finally, it is important to highlight that, although most points conformed to the naïve expectation that Λ < π from unitarity and that κ could be constrained just from vacuum stability, there are exceptions that underline the importance of the unitarity calculation and its complementarity with vacuum stability and relic density constraints. For example, consider the point with the coordinates This point has Ωh 2 = 0.12 and maximum a 0 = 0.51 (again from the singlet submatrix) and the vacuum stability equations have no other solutions than the origin. In fact, this point is typical of a whole branch of points where m S ∼ m O m E for which this is true -these points are excluded by unitarity because of the size of κ. This, however, would not have been seen either from classic unitarity bounds where s → ∞ or from the vacuum stability constraints.

Conclusions

The calculation and implementation of constraints from unitarity of scattering for 2 → 2 processes has been described involving scalars of any representation under the strong gauge group, and finite scattering momentum. Since these unitarity constraints automatically constrain all the scalar couplings of a theory, they are now very straightforward to include for a whole new class of models.

In addition, the utility of these routines and the complementarity of the information that they provide for studying dark matter models has been illustrated, compared to vacuum stability and both naïve infinite momentum perturbative unitarity constraints, and the "absolute" bound of ref. [START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF]. This work has shown that there are points for which vacuum stability and "naïve" unitarity are insufficient, i.e. the full perturbative unitarity calculation is indispensable. A toy model has been introduced with a baryonic coupling and colourful mediators that decay in an interesting way to a top-bottom quark pair, that is a very simple example of the sort of models that can now be explored with these constraints.

It would be very interesting to explore models with more complicated gauge representations. In particular, having a model with coannihilations would intuitively lead to higher possible DM masses. Investigating such a model is in principle possible with the tools presented in this work. Also of interest are non-perturbative effects such as Sommerfeld enhancements and bound-state formation. There is, as of now, no automation available to take these into account; however, they could be very interesting for future work. Both effects drive up the DM mass limit. Bound-state formation can also lead to a possible saturation of the Griest-Kamionkowski limit [START_REF] Harling | Bound-state formation for thermal relic dark matter and unitarity[END_REF][START_REF] Harz | Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter[END_REF], which might pique the interest of a particle phenomenologist.

This work also paves the way for several further extensions in future work: additional unbroken gauge groups; fermions and/or vectors in the scattering matrix; loop corrections. Moreover, this dark matter model had a maximum mass of 47 TeV, and coupled to colourful states, so much of the allowed parameter space would be accessible to a future 100 TeV collider. It would therefore be interesting to consider dark matter-collider complementarity in terms of both its signatures at such a collider; but also the low-mass bounds at the LHC, since it could be searched for in the ttbb channel. One way of speeding up parameter space scans is imposing physically sensible conditions. This was done in the previous chapter using unitarity, among other bounds. In this chapter, this optimisation goes further by introducing active learning (AL) scans (see section 2.2.3 for a brief explanation). These do not impose any new physics on the model, but instead try to seek out points close to the border between what is allowed by existing conditions and what is not. This can lead not only to a better understanding of how physical bounds affect a model, but also to a more efficient exploration of the parameter space.

Chapter 4

Active learning BSM parameter spaces

The following work applies AL scans to a number of different models to highlight their benefits and drawbacks. It has also been preprinted as 

Introduction

The Standard Model (SM) is a remarkably economic theory, making many predictions based on only a few parameters. In principle all of the parameters of the model can be fixed by observations, and then many more observables can be predicted. Once new particles and interactions are added to the SM -the bread and butter of many theoretical particle physicists -one necessarily encounters many new parameters. It is then in general a very difficult task to fix as many of these by existing observations and then make predictions for new observations. In many cases these observations have not yet been made; for example, it is usually not possible to fix the mass of a particle that has not yet been observed. In others, the relationship with the observable is complicated; for example the Higgs mass in supersymmetric models, which is highly sensitive to loop corrections (see e.g. [START_REF] Slavich | Higgs-mass predictions in the MSSM and beyond[END_REF]). Therefore the first task with a new model is generally to explore the parameter space for plausible allowed regions according to some basic list of observations, before a more detailed examination can be made. There now exists a whole chain of tools for computing the properties of general new theories. Most relevant for this work are SARAH [1,271,[START_REF] Staub | SARAH 4 : A tool for (not only SUSY) model builders[END_REF][START_REF] Goodsell | Unitarity constraints on general scalar couplings with SARAH[END_REF][START_REF] Goodsell | Generic two-loop Higgs mass calculation from a diagrammatic approach[END_REF][START_REF] Goodsell | The Higgs Mass in the MSSM at two-loop order beyond minimal flavour violation[END_REF][START_REF] Braathen | Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons[END_REF], SPheno [START_REF] Porod | a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e-colliders[END_REF][START_REF] Porod | SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM[END_REF] and MicrOmegas [START_REF] Belanger | Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios[END_REF][START_REF] Bélanger | micrOMEGAs5.0 : Freeze-in[END_REF], but there exist many others, such as HiggsSignals [START_REF] Bechtle | HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC[END_REF][START_REF] Bechtle | HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era[END_REF], HiggsBounds [START_REF] Bechtle | HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron[END_REF][START_REF] Bechtle | HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era[END_REF], Vevacious/Vevacious++ [START_REF] Camargo-Molina | Vevacious: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars[END_REF] and FlexibleSUSY [START_REF] Athron | FlexibleSUSY -a meta spectrum generator for supersymmetric models[END_REF][START_REF] Athron | FlexibleSUSY 2.0: Extensions to investigate the phenomenology of SUSY and non-SUSY models[END_REF]. Thanks to SUSY Les Houches Accords [START_REF] Allanach | SUSY Les Houches Accord 2[END_REF][START_REF] Skands | SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators[END_REF], the output of these codes is standardised and can be passed from one to the other in the form of text files. However, the actual task of doing this job is generally left to the user, and of course there is then the task of choosing the strategy of exploring the parameter space of models.

Almost universally the community has adopted the practice of computing a likelihood function based on the desired set of observables and using techniques developed in other fields to sample the parameter space with a point density proportional to this likelihood. In its simplest form, this involves assigning a gaussian or log likelihood to each observable, with a given mean and variance that may be related to experimental measurements and uncertainties (e.g. when selecting for observables such as ∆ρ), or just reflect the uncertainty of the tools (e.g. taking an uncertainty of the Higgs mass of the order a few GeV). These likelihoods are generally combined assuming no correlations. The search strategy is then often a Markov Chain Monte Carlo (MCMC) based on the Metropolis-Hastings alogrithm; or other groups use more efficient versions based e.g on MultiNest [START_REF] Feroz | MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics[END_REF].

GAMBIT [START_REF] Athron | GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool[END_REF][START_REF] Athron | SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables[END_REF], especially with the advent of the GAMBIT Universal Machine [START_REF] Bloor | The GAMBIT Universal Model Machine: from Lagrangians to likelihoods[END_REF], attempts to solve this problem for the user by creating backends for common tools and taking over the task of interfacing between them. Likelihoods are computed by its included tools and combined across all observables; and the user then has the option of certain included search strategies [START_REF] Martinez | Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module[END_REF]. This is an admirable and powerful tool and best for large-scale scans on a computing cluster.

One problem with the use of likelihood functions is that for many use cases in High Energy Physics (HEP) they vary sharply around a small or narrow region in high-dimensional parameter spaces. While in principle they are continuous functions and therefore contain useful information when exploring regions away from the experimentally allowed region, allowing a smart algorithm to guide itself towards more likely points, in practice, and especially when combining many unrelated observables, they are effectively step or delta functions. This was noted in [START_REF] Ren | Exploring supersymmetry with machine learning[END_REF], where a different approach, named "Machine Learning Scan," was proposed in and later implemented in the tool xBit [START_REF] Staub | xBIT: an easy to use scanning tool with machine learning abilities[END_REF]. This involves training a neural network directly on observables rather than on a likelihood function and this was then used to select points that would be in the "good" region. The user can then reasonably rapidly find many points in the allowed region, again with sample density proportional to the likelihood in that region, reproducing the results of MCMC-based strategies after sampling fewer points.

This work aims at a different goal, namely for users who merely want to find, as a first step, the boundaries of the allowed region. Indeed, for many phenomenologists exploring a model for the first time, the most likely point or region is profoundly uninteresting; for many models they are more likely if new physics effects are set to large masses or very weak couplings. As a more pertinent example, in the previous chapter the goal was finding the heaviest possible dark matter mass for a given model; this is a long way away from the most likely region, and the author was interested there in exploring the decision boundary itself. There, a simple MCMC algorithm was adapted by biasing the likelihood function to favour heavier masses. Here, that computation is revisited, and the effect of such a bias on the sampling distribution is shown more clearly. However, the main result of this work is a new algorithm using active learning to train a neural network discriminator and choose points near the decision boundary so as to best explore the limits of the allowed parameter space of a model.

Active Learning (AL) (for a useful review see [START_REF] Settles | Active Learning Literature Survey[END_REF]) is the general name for machine learning where the algorithm chooses its own inputs. This means finding a measure of the uncertainty of the algorithm about its prediction for any given inputs, and then choosing points where the uncertainty is greatest. Since a neural network used as a predictor does not have a natural definition for this uncertainty, this is generally applied to approaches such as random forest classifiers, where the decision is made based on the results of a set of models, and then the uncertainty can be related to the differing predictions within the set. This has recently been applied in the HEP context [START_REF] Caron | Constraining the Parameters of High-Dimensional Models with Active Learning[END_REF][START_REF] Rocamonde | Picking the low-hanging fruit: testing new physics at scale with active learning[END_REF]. Here it is noted that a neural network classifier does have a natural notion of uncertainty, and an algorithm is proposed to use this to efficiently select points in high-dimensional parameter spaces. Since neural networks are much more sophisticated than random forests and have unlimited potential for generalisation, for more complicated parameter spaces this should lead to more efficient sampling and discovery, and -despite the extra overhead in training neural networks -save time and give a more accurate description of the allowed range of a model. Indeed, once the model has been trained through active learning, the discriminator can then be used to describe the parameter space.

The algorithm, the details of which can be found in section 4.2, is applied to several models of increasing complexity. First, simple toy models (see section 4.3), then the CMSSM (section 4.4), the SMSQQ [1] (section 4.5), and finally the MDGSSM (section 4.6). The performance is also compared to standard MCMC scans, and to vanilla neural networks and random forest classifiers (RFCs). The chapter is concluded with a brief discussion of the possible use cases of AL scans, and perspectives for future work. The code for this work is implemented in a general framework and so will be released along with an upcoming publication.

Active learning with neural networks

The AL algorithm can be used to train a neural network (which is then its discriminator). Neural networks and deep learning are becoming ubiquitous in science; see e.g. [START_REF] Abdughani | Supervised deep learning in high energy phenomenology: a mini review[END_REF][START_REF] Boehnlein | Artificial Intelligence and Machine Learning in Nuclear Physics[END_REF][START_REF] Gili | Evaluating Generalization in Classical and Quantum Generative Models[END_REF] for recent HEP theory applications.

The approach in this work is based on data that can be simply categorised as "good" or "bad." This decision can be made on a given point by an "oracle" which in a simple model could just be a formula, whereas in HEP applications it will be based on ranges of observables computed using HEPtools. In traditional likelihood-based approaches, being somewhat outside of the "excluded" range for one observable could be compensated by being very likely in other obserables, and indeed this has a reasonable explanation: If hundreds of observables are sampled randomly then one should expect a few to be outside their "allowed" range. In the approach of this work it is for the user to decide what "allowed" or interesting range they want to investigate, and this gives added flexibility without introducing biases.

The first step is to create an initial dataset, typically consisting of random points, and query the oracle to get the result. These points and the oracle results are then fed to a neural network, which trains on those. The parameters of the networks used in this work are described further along (see chapters 4 and 5), but they all consist of an input layer feeding to a series of 2 to 5 hidden layers of large (order 100) size connected by ReLU activation functions, and a final ouput layer with one neuron whose output is mapped to a sigmoid function. The implementation is done in pytorch and the default weight initialisation is used.

During training the neural network tries to minimize the loss function. Since AL scans essentially deal with binary classification problems, in the following the Binary Cross Entropy is used instead of the form shown in equation 2.2:

loss = - 1 N N i=1 y i log(ŷ i ) + (1 -y i ) log(1 -ŷi ), (4.1)
where again y i is the outcome of the data, and ŷi the fitted outcome by the neural network. After initial training, at each further step in the scanning/training cycle, the aim will be to choose K points to pass to the oracle, from L proposed to the discriminator. The results of the oracle's evaluation of the K points are then used to further train the discriminator. However, there are several choices about both how to propose the L points, and then how to select the batch of K. An initial strategy would be to choose the L points completely randomly (similar to the MLS approach [START_REF] Ren | Exploring supersymmetry with machine learning[END_REF]); this would help to randomly discover interesting regions, but is very inefficient in high-dimensional parameter spaces. Indeed, if one has n parameters with an interesting region of a hypercube of side 0.1 of the parameter range, then a random scan would require O(10 n ) points to find it; if L = 100000 and n ≥ 6, then subsequent passes would not be likely to pick a point near the region. As an alternative one can choose points "near" good points that have been found, somewhat like the jumps during an MCMC; however, in that case one does not want to spend time in uninteresting regions away from the boundary near many good points, if the "good" region is large. Therefore, a hybrid approach is adopted where 10 percent of the L points are chosen purely randomly, and the remaining 90 percent from the vicinity of good points. (In chapter 5 a more sophisticated way of splitting these proportions is discussed; this, however, was not extensively tested for the work in this chapter.) Furthermore, if the discriminator is not providing useful information then it is hardly worthwhile choosing points near its decision boundary. Hence the batch of K points contains a further proportion p of the K points selected randomly/within jumps of good points. The proportion p is chosen based on the training score of the classifier: if q is the proportion of points incorrectly classified after the last training, then p = 2 × min(q, 0.5).

(4.2)

In other words, if the discriminator is no better than a coin toss then one needs to propose entirely random points.

In order to select the pK points to pass to the oracle one also needs a prescription for scoring the batch. First an uncertainty score s i is assigned to each point:

s i = ŷi (1 -ŷi ). (4.3)
This score s i peaks at ŷi = 0.5 and reaches 0.25 there, and falls off to 0 for ŷi = 0 and ŷi = 1.

It is essentially equivalent to the Binary Cross Entropy above for one variable, but simpler to calculate.

An initial choice would be to select the pK points which score highest. However, this would potentially lead to clustered points and insufficient diversity. This is also a classic issue in AL, and is solved by introducing a diversity/distance measure [START_REF] Xu | Incorporating Diversity and Density in Active Learning for Relevance Feedback[END_REF] to quantify the distance between points in feature space. In random forest appraoches, naïvely the entropy of the predictions on the sample can be maximised; or the Kullback-Leibler (KL) divergence can be used. In the case at hand this is not possible, but one can instead use a score based on the physical distance in parameter space. The author experimented with using a positive score for larger distances, but found that this simply drove the sampling to the boundaries, so instead a distance measure based on an electrostatic repulsion between points is introduced. If x i , x j are the vectors representing the input parameters for two points, and d 2 = |x i -x j | 2 then the "repulsion" is given by

r(x i , x j ) =          -a a+d 2 , d < 0.01 0 d ≥ 0.01 (4.4)
Here a is some constant that is taken to be 0.0001. Of course, this requires that all of input parameters are rescaled to have range [0,1]. One then starts with the point that has the highest score s i , removes it from the pool P and puts it in the selected set pK. Then one iteratively adds points until one has selected pK points as follows:

1. Compute r j ≡ i r(x i , x j ) for {x i } ∈ pK, {x j } ∈ P for each point x j 2. Compute the maximum total repulsion r max = max({r j }) and the standard deviation σ of the uncertainty scores {s i }.

3. Assign to each point a score:

S i = (1 -α)s i + α r i σ × 1 4r max 4.
Add the point with the highest score S i to the set pK and remove it from the pool P .

Note that at each step it is not necessary to recompute the whole sum r j , since by storing the old scores one just needs to add the scores for the total repulsion from the last point added to the selected set. The parameter α is a diversity weighting that can be adjusted depending on the scan: if the user thinks that the sample contains only one small intersting region they may wish to set α small. By using the standard deviation and r max it is ensured that the relative weight of the diversity measure and the neural network uncertainty have a weight that depends only on α.

Once the set of K points is together, it is passed to the oracle, and then the discriminator is trained on the outputs over a given number of epochs. The user also has a choice as to whether to train the discriminator on the whole dataset or just on new points. The cost of training on the full dataset is time, especially once a large number of points have been accrued; however, only training on new data, especially when those points are chosen to be near the boundary, can be deleterious. Hence one trains on the full dataset every fixed number of iterations of this procedure, where the exact number is left to be chosen by the user.

As a final remark, it is also necessary to balance the dataset for training the discriminator: in cases where there are many bad points and few good ones (especially initially) it is advantageous for the discriminator to just classify everything as bad. Hence in the training set copies are made of the underrepresented point set so that the discriminator is fed an equal number of good and bad points at each training epoch.

Active learning toy models

The principle of active learning is first and foremost illustrated on a variety of toy models in two dimensions. The models can be written as:

Donut r = (x -a) 2 + (y -a) 2 -r 2 1 if (a -r 1 ) < x < (a + r 1 ) (4.5) r = -(x -a) 2 -(y -a) 2 + r 2 2 else
where a = 0.6, r 1 = 0.15, r 2 = 0.3

Blobs if (x -0.3) 2 + (y -0.8) 2 -0.01 < 0 : r = 1 (4.6) if (x -0.7) 2 + (y -0.6) 2 -0.03 < 0 : r = 1 if (x -0.4) 2 + (y -0.2) 2 -0.003 < 0 : r = 1 else r = -1 Line r = y -0.4 + 0.1 • x (4.7) Ellipse if 1/3 • (x -0.6) 2 + (y -0.4) 2 ) -0.03 < 0 : r = 1 (4.8) else r = -1 Bean x = 2 • (x -0.3), y = 2 • (y -0.3) (4.9) r = x 3 + y 3 -(x 2 + y 2 ) 2 Squiggle r = a + α(x -a 1 )(x -a 2 )(x -a 3 ) -y (4.10)
where a = 0.5, α = 20, a 1 = 0.3, a 2 = 0.6, a 3 = 0.9

Pizza Slice if -y + x + 0.1 < 0 : r = -1 (4.11) else if -y -10x + 9 < 0 : r = -1 else if -y -0.5x + 0.5 > 0 : r = -1 else r = 1 Demicircle if (x -0.5) 2 + (y -0.6) 2 -0.1 > 0 : r = -1 (4.12) else if -0.5x + 0.78 -y > 0 : r = -1 else r = 1 Circle Segment r = (x -a 0 ) 2 + (y -a 1 ) 2 -R 2 (4.13) where R = 1, a 0 = 1.2, a 1 = 0.8 Two Ellipses r = -(x -0.1) 2 -1/25 • (y + 0.2) 2 + 0.3 • xy + 0.0001 if x < 0.3 (4.14) r = -(x -0.3) 2 -1/25 • (y + 0.6) 2 + 0.3 • xy + 0.0001 else
From these models follows the prediction of the oracle. If r > 0, the point is deemed goodthis corresponds to the numeric label "1.0" in the code -and otherwise bad, with the label "0.0" in the code.

The results of the AL scans are depicted in figures 4.1 and 4.2. One can see a fair amount of randomly distributed points, which is intended in order to make sure that no potentially interesting region is missed. Crucially, though, one sees how well the algorithm figuratively zooms into the interesting regions to determine where the border between good and bad points runs.

To obtain these results, a scan is used with settings as shown in table 4.1. As is the case in all AL scans, the discriminator is defined through the settings Hidden Layers to Weight Decay. Generally speaking, a novice should be able to come up with reasonable settings for a new model after studying this table as well as tables 4.3 and 4.7. These settings then may need to be refined in a few iterative runs.

On all toy models, 20,000 points and 2,000 training steps suffice. The settings work for a variety of shapes, including irregular ones like the bean and the squiggle (see figure 4.1) and ones with holes or multiple pieces, like the beams and the blobs (see figure 4.2). Its ability to correctly identify multiple regions is particularly notable as this sets it somewhat apart from an MCMC scan. The known danger in the latter is that it zooms into one good region and missing other good regions in the process. This can be mitigated with additional measures. But in active learning, this danger is circumvented automatically, so that parameter spaces with more than one good region are a lot easier to deal with.

Setting

Value There are a few exceptions where the settings of the scan needed to be adjusted to account for special features of a model. In the case of the donut, more initial random points were needed to identify the hole; without these random points the algorithm finds the outer border but misses the inner one. In the case of the pizza, one of the borders is not recognized without more initial random points. The straight line of the demicircle is not recognized with lower numbers of random points either.

For the donut and the demicircle, the algorithm also needs to train twice as often on the full dataset in order to prevent it from weighting pieces of new data too much. The diversity alpha, which ensures that new points have a certain distance from one another, is also increased for the pizza and the demicircle. This helps identify the pointy corners of these shapes. For the donut, this is not necessary as it has no pointy edges.

It is plausible, albeit far from proven, that similar settings adjustments may be necessary for models which exhibit holes or pointy edges in their parameter space. Nevertheless, the fact that the discriminator was able to correctly identify 7 out of 10 shapes with the exact same settings illustrates the versatility of active learning scans without the need for extensive finetuning.

All figures show the results after 20,000 points for the sake of having a nice plot; however, the algorithm accurately identified all borders between good and bad points already after 10,000 points. It is quite plausible that an interpolation of a grid-or random scan with this amount of points could have led to a similar accuracy. Unless one can press this interpolation into an analytical form, however, the knowledge of the boundaries will be of limited use. In contrast, the active learning scan -or any scan with a neural network, for this point -returns a model in additon to a list of points. This allows the user to do two additional things: First, one can query the model about another point, even if one already ran the scan and the point was not included in it. Second, one can refine this model by training it on more points if one so desires. Both these things would not be as straightforward with an interpolation.

The active learning approach trumps other approaches employing neural networks in the sense that it finds points, unlike for example a vanilla neural network. In addition, it automatically finds interesting points, i.e. points close to the boundaries. This puts it in a similar category as a GAN [START_REF] Goodfellow | Generative Adversarial Networks[END_REF][START_REF] Mohamed | Learning in Implicit Generative Models[END_REF], where two neural networks try to fool one another with increasingly interesting points. The advantage of this approach, however, is its relative simplicity. With active learning, one only has the hyperparameters of one network to tune -finetuning the two competing networks of a GAN is notoriously difficult [START_REF] Lopez | Simulating Transient Noise Bursts in LIGO with Generative Adversarial Networks[END_REF][START_REF] Mescheder | Which Training Methods for GANs do actually Converge?[END_REF] -and one needs to train less, meaning that one potentially uses less compute. And despite the simplicity, compelling accuracies are found even in higher-dimensional models, as can be seen in sections 4.5 and 4.6.

Active learning the CMSSM

Having tested the algorithm on toy oracles, it will now be applied to a simple physics example: the valid dark matter parameter space of the constrained MSSM (see section 1.2.1 for more context). This is a scenario where the masses and gauge couplings unify at the GUT scale, and leads to only five free parameters called m 0 , m 1/2 , A 0 , tan β and sign(µ); it is therefore used as a standard theoretical example, especially for exploration of the valid dark matter parameter space, e.g. [START_REF] Ellis | The MSSM parameter space with nonuniversal Higgs masses[END_REF][START_REF] Ellis | Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses[END_REF][START_REF] Ellis | Revisiting the Higgs Mass and Dark Matter in the CMSSM[END_REF]. To make the problem resemble the toy models, only the m 0 /m 1/2 plane is considered, fixing tan β = 10, A 0 = 0 and sign(µ) = 1. The scan is run over m 0 , m 1/2 ∈ [100 GeV, 2000 GeV] for both an example MCMC scan and the active learning algorithm (using the same codes of SARAH and MicrOmegas for both to give a fair comparison). This is the same parameter plane considered in [START_REF] Staub | xBIT: an easy to use scanning tool with machine learning abilities[END_REF] and in one example in [START_REF] Ellis | Revisiting the Higgs Mass and Dark Matter in the CMSSM[END_REF]. As in the former reference, only a constraint on the dark matter density is imposed and all other constraints are ignored. The difference between those two references is in the latitude allowed; the latter takes Ωh 2 = 0.112 ± 0.012 while in the former Ωh 2 < 0.2 is considered acceptable. In this scan, Ωh 2 < 0.12 is considered by the oracle to be a "good" point and larger densities to be "bad." In the MCMC scan, a log likelihood is used for Ωh 2 with mean 0.112 and variance 0.05. This is peaked around the decision boundary and therefore should provide a simple alternative to the AL procedure to find points near it. In the AL scan, valid points are classified as those with Ωh 2 < 0.12. Furthermore, L = 10000, K = 100 are used, as well as a variance of 200 in the steps around good points.

With those constraints, the parameter plane is not especially interesting: there is an acceptable region at very small m 1/2 which eventually leads to a region at m 0 > 1250 GeV for m 1/2 up to 400 GeV where no points are generated by the spectrum generator because there is no electroweak symmetry breaking. On the left side of the plane at small values of m 0 and large m 1/2 there is a coannihilation region, but in reference [START_REF] Ellis | Revisiting the Higgs Mass and Dark Matter in the CMSSM[END_REF] (and is found with the constraint on Ωh 2 ) this disappears into a region roughly from (m 1/2 , m 0 ) from (100,540) GeV, up to [START_REF] Casalbuoni | Strong Interacting Two Doublet and Doublet Singlet Higgs Models[END_REF]1500) GeV where the LSP is a charged slepton.

Hence in the training the constraint on the charged LSP is ignored and just the dark matter density from MicrOmegas is taken -which shows the density of the neutralino, overlaying the unphysical region on the plot afterwards. Since the points are not especially physical and the idea is to compare strategies, and with the results of the previous references this can therefore be regarded as a toy model.

The results can be seen in figure 4.3. In the MCMC scan, a large amount of points end up in the area where m 0 ∈ [100, 500] and m 1/2 ∈ [750, 2000]. This is inefficient because there are lots of would-be good points in that area, and because the rest of the parameter space remains relatively unexplored in consequence. In contrast, the AL scan clearly favours the regions which are on the border between good and bad. It nonetheless explores the rest of the parameter space in sufficient detail. The comparatively less explored bare band region roughly 10% away from the border region comes about as an artifact from the diversity measure which penalises points for being too close to those already chosen.

In these figures, one is also presented with a discriminator line for both scans. This was achieved by retraining a neural network with the same settings as the original discriminator from the AL scan on either set of points. To make these two lines comparable to one another, not the original discriminator but the one retrained on the whole set of points was used to produce the line for the AL scan. Such a retraining of networks can of course in general lead to better discriminator performance. This is because the gradual introduction of more interesting points, i.e. points near the boundaries, can lead to distortions of the sort where the first points, which were less interesting, have a larger impact on the network than points which follow. With the points distributed as they are, it is not surprising that the line from the AL points traces more accurately the boundary between good and bad points. If one defines "interesting" points to be those near the decision boundary, so for m 1/2 < 250 GeV, or all values to the left of a line from [START_REF] Seiberg | Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD[END_REF][START_REF] Jain | On destabilizing divergencies in supergravity models[END_REF] GeV to [START_REF] Casalbuoni | Strong Interacting Two Doublet and Doublet Singlet Higgs Models[END_REF]1500) GeV, then the active learning scan delivered 42% of its points in this region compared to only 32% for the MCMC.

In conclusion, even in a relatively simple and low-dimensional model like the CMSSM, the AL scan produces a superior choice of points than the MCMC scan. This has the advantage that one could use fewer points to find the boundaries, and one expects that the trained network on a set of points deliberately selected to locate the boundaries should have superior performance at locating the boundary; this can clearly be seen from the two plots. The cost of this, however, is that training the discriminator after each new set of points takes a certain amount of time. For such a simple scenario where only the dark matter density is taken into account, there is no gain from using deep learning. However, if one were to include more constraints -especially collider constraints -one would expect that the time spent training networks to select points would be worth it.

Parameter space of the SMSQQ model

Next the SMSQQ, a model with colourful mediators, is explored with an AL scan. This model is particularly useful to illustrate how colourful unitarity bounds contribute to a mass limit for dark matter. In the previous chapter 4.5, an iterative approach using several MCMC scans had been used, narrowing in on the region of interest. The likelihood function used for the MCMC was artificially weighted in a way that forced it to prioritize points with a higher mass. Doing so, one was able to establish an upper bound for the singlet mass.

In this work, the search for a highest singlet mass is further refined by choosing new, updated ranges. The old and new ranges can be seen in table 4.4. The results are shown in table 4.2. One can see in the latter table that by limiting Λ to a high but valid range, the upper limit amounted to being almost 1 TeV higher than that found before on the highest singlet mass. In addition, the points with the highest singlet mass in an AL and an MCMC scan when only 200k points were generated and looser ranges were used. One can see that these two masses are very close together, the one produced by the AL scan even being slightly higher than the one from the MCMC. Although the highest mass produced by the AL scan was always higher than that by the MCMC in various scans the author carried out on different parameter ranges, it is not overly conservative to say that they are in one another's margin of error. Nevertheless, it is worth noting that, at the cost of a few hours' worth of discriminator training, the AL scan achieves comparable results to the MCMC without extra functions and while exploring the rest of the contour lines between good and bad as well.

Performance of the AL scan

Next, the properties of the AL and the MCMC scans with 200k points each are explored. The MCMC and AL scans have ranges as provided in table 4.4. The settings of the AL scan can be found in table 4.3.

One finds that making an AL scan with many points is not completely straightforward though. Whether a network can handle a load of points depends at least in part on its number of parameters, i.e. its size. Other factors will be discussed in section 4.5.3. An additional difficulty is that the relative scarcity of good points in the ranges that are worth exploring. In a random scan with these ranges, solely around 3/10,000 points are good. While an MCMC would be able to find at least one good region somewhere despite this scarcity, the AL would not be able to operate on such few points because it does not work with gradients of any kind (as of now). The author therefore starts with a smaller AL scan with 50k points on a range of which they suspect that it contains more good points on average (see table 4.4 for these ranges). These 50k points, of which some 23 percent are good, are then fed to a larger network. This network then generates the remaining 150k points based on the lessons it has already drawn after training on the first 50k points. These remaining points are on the loose ranges that the MCMC scan also works on.
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The difference between the first points and last 10k points of the AL scan can be seen in figures 4.4 and 4.5. The first feature that meets the eye is the fact that the model really starts exploring the parameter space, and gets increasingly confident about areas it barely covered in the first 10k points. This is especially apparent in the κ -m S plane. From figure 4.5 it is evident how much exploring the parameter space helps find a point with a higher singlet mass, too. The authors have cross-checked this phenomenon with AL scans of the same model which differed from the one shown here in various settings or point numbers.

Figure 4.6 is similar to figure 4.5, except that now not the point density but the average discriminator value is shown. One can see that there are regions which the first 10k points already investigated sufficiently (in red), and regions which the last 10k points investigated and the discriminator is quite confident about (in blue). Grey regions are regions where the discriminator values of the first 10k points and the last 10k points are rougly equal, or where only one of the two exists and is close to zero. Note that the random points outside the region are grey with a blue border; however, this is an artifact from the grid interpolation. This can be verified by checking figure 4.4: Outside the region with good points, the discriminator is always close to zero.

Figure 4.7 shows the discriminator values in all of the 200k points. One can clearly see that the discriminator only returns values significantly larger than zero inside the region with good points, with the exception of a few outliers around the fuzzy corners of these regions, and a single outlier at a high singlet mass. Two substructures in these distributions are an interesting byproduct: First, the discriminator returns around the fuzzy edges tend to be a bit blotchy. This could be due to the fact that a portion of points is sampled in the vicinity of already-known good points. Around the fuzzy edges there is a significant proportion of bad points and an uneven distribution of good points. This exacerbates the effect of sampling The dark purple star indicates the location of the point with the highest singlet mass m S . Take note of the substructures in the regions with good points: Along some borders, like e.g. the upper border in the κ -m S plane, the discriminator is quite sure about finding good points. Along other borders, for example the upper border in the m S -Λ plane, it is not as sure. On "fuzzy" borders, like e.g. the upper border in the m S -m O plane, the discriminator tends to produce blotchy results -as one would expect. around good points. Second, there are almost straight lines of points that the discriminator deems good, often close to a hard border. This is in parts due to the fact that more points are sampled close to borders. It turns out, however, that these are areas where there are indeed less bad points. We have verified that such a stark dark discriminator line always appears in regions close to a constraint on the dark matter density [START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF]. It is therefore conceivable that the discriminator zeroes in on dark matter constraints particularly well, thus reducing the need to generate and evaluate bad points in those areas. This is rendered even more plausible by the fact that dark matter constaints tend to be pretty abrupt in comparison to those imposed by unitarity [1,[START_REF] Griest | Unitarity Limits on the Mass and Radius of Dark Matter Particles[END_REF][START_REF] Hedri | Perturbative Unitarity Constraints on Gauge Portals[END_REF][START_REF] Harling | Bound-state formation for thermal relic dark matter and unitarity[END_REF][START_REF] Cahill-Rowley | Perturbative Unitarity Constraints on Charged/Colored Portals[END_REF][START_REF] Kahlhoefer | Implications of unitarity and gauge invariance for simplified dark matter models[END_REF][START_REF] Baldes | Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds[END_REF][START_REF] Hedri | Simplified Phenomenology for Colored Dark Sectors[END_REF][START_REF] Hedri | Cornering Colored Coannihilation[END_REF][START_REF] Harz | Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter[END_REF][START_REF] Hektor | Improved bounds on Z 3 singlet dark matter[END_REF][START_REF] Kannike | Gravitational wave signals of pseudo-Goldstone dark matter in the Z 3 complex singlet model[END_REF][START_REF] Alanne | Pseudo-Goldstone dark matter: gravitational waves and direct-detection blind spots[END_REF][START_REF] Fuks | Heavy dark matter through the dilaton portal[END_REF][START_REF] Espinoza | Prospects of Indirect Detection for the Heavy S3 Dark Doublet[END_REF][START_REF] Espinoza | An Inert Scalar In The S3 Symmetric Model[END_REF] or vacuum stability [START_REF] Cheng | Novel theoretical constraints for color-octet scalar models[END_REF][START_REF] Schuessler | Unitarity constraints on MSSM trilinear couplings[END_REF][START_REF] Schüssler | Unitaritäts-Schranken an triskalare Kopplungen im MSSM[END_REF][START_REF] Cao | The SM extension with color-octet scalars: diphoton enhancement and global fit of LHC Higgs data[END_REF][START_REF] He | Unitarity and vacuum stability constraints on the couplings of color octet scalars[END_REF][START_REF] Staub | Theoretical Constraints on Supersymmetric Models: Perturbative Unitarity vs. Vacuum Stability[END_REF][START_REF] Baker | Has the Origin of the Third-Family Fermion Masses been Determined?[END_REF].

Setting

Gradient-agnostic discriminators like the one that is dealt with here are particularly wellsuited for handling such constraints, unlike MCMCs. However, the implementation of a gradient of sorts into the AL scan so that it handles less abrupt constraints similarly well is left for future work. Figure 4.8 shows the distribution of good and bad points and the contour line of where the discriminator thinks the border between good and bad points is. Comparing this to the previous figures, one can see that the discriminator does a pretty good job at identifying the borderline of good points. Marked in blue are points where the discriminator returned a value around 0.5, i.e. where it was not sure whether this point was good or bad. These points are not right on the borderline as they are in the two-dimensional toy models (see figures 4.1 and 4.2 for comparison). This is mostly due to the higher dimensionality of this model. It is noteworthy as well that there is no extreme amount of blue points in the regions Table 4.4 -Variable ranges for the main AL scans in the SMSQQ and the scans to obtain the maximum mass of the singlet. For the new max m S scan, a tightening of Λ proved very useful. Tighter ranges were used for the smaller main scan to ensure that good points are found. In the larger scan this was not necessary because it was possible to generate good points in the vicinity of those that were already found in the previous scan.

where the discriminator showed a large confidence for good points, as shown in figure 4.7. There are some points; however, especially in the κ-m S plane one can see that their amount is not as large as one would assume had the discriminator not been so confident around the hard upper edge of the good region. One can also see that the point with maximum singlet mass is right on the borderline, as was expected. The first thing to jump to the eye is how much larger the region is that the MCMC covers. This does not speak in favor of the MCMC, however. While it does find 283 good points out of 200k total (versus 70 out of 200k for a random scan), the AL finds a whopping 85,291 good points. Not only is this an enormous difference in numbers; as established earlier, the good points that the AL scan finds tend to be of a higher quality because they are more often than not close to the borders of the good regions and thus help finding boundaries better. On the other hand, the AL scan failed to find a region of good points at κ > 140,000 GeV and m S < 30,000 GeV. This failure might have been mitigated by adding more random points to explore the rest of the parameter space, increasing the diversity measure, or generating more initial random points. Nevertheless, this shows that the AL scans can be quite sensitive to tuning parameters. The author deems it feasible to build a similar scan which tunes relevant parameters automatically; however, this is left for future work. On the whole, and despite the one non-identified region, the advantages of AL scans are quite apparent from this figure.Of course the AL scan takes longer to execute than the MCMC scan given a fixed amount of points to scan over because in addition to proposing points and running HEPtools (which both scans do), the AL scan also needs time to train over the datasets. Exact estimates are impossble to give because the training time depends on the model, the diversity of the points at hand, and the scan parameters. In the present Fig. 4.8 Scatter point distribution of good and bad AL-generated points in the SMSQQ. The bright green point indicates the location of the point of the highest singlet mass m S . Note how the distribution of points where the discriminator is uncertain (blue points) matches the regions where there are good points and never goes to regions with bad points. Also note how well the discriminator identifies the borderline between good and bad points even in this higher-dimensional model, as visualized here by an interpolation grid with 100 bins on each axis. The discriminator returns a value close to 1 where it suspects a good point, and close to 0 where it suspects a bad point.

AL vs. MCMC

scan over 200k points in the SMSQQ, the MCMC took around two hours to finish, while the AL scan took around six hours. This may sound like a very substantial difference; however, one needs to contrast to this the fact that AL scans do a much better job at delimiting the boundaries and thus need less points overall. In higher-dimensional parameter spaces where good points are scarce, boundaries are difficult to predict, and points take a long time to evaluate with established HEPtools, AL scans therefore represent a much more efficient way to explore parameter spaces.

AL vs. other networks

In a final step, a benchmark is established to see how well the AL models do against other networks in the SMSQQ. The author sets out generating two new AL scans with 200k points each, but this time stopping the training only after the error rate has dropped below 0.5 percent (compared to 5 percent earlier). Here and in what follows, the error rate e is calculated as follows:

e[%] = ḡ + b G + B × 100, (4.15) 
where G is the number of good points in a sample, B the number of bad points, ḡ the number of good points which were misclassified as bad, and b the number of bad points misclassified as good. ). Each classifier was trained on one set of either 50k or 200k points which are either AL-generated or random. The 50k points that serve the AL as an initial dataset already lead to a very good result; therefore the active learning and the simple neural network are identical in this case. The neural network fails to train on 200k points; it stays at a 50% error throughout the process. The 24k RFC-misclassified points come from the RFC trained on 50k active learning points and tested on 50k active learning points from a separate run. Note that the amount of RFC-misclassified points tallies up with the error rate of 44.0% on 200k test points because, after rebalancing the test data set to contain equal amounts of good and bad points, we're left with about 24k test points.

Next, the author trains two neural networks (NN) and a random forest classifier (RFC) with the exact same settings on these points and a set of random points. They also try to find the amount of points after which the error rate falls below 20 percent; however, this is already reached after 50k points because the network is larger than the one used to generate these 50k initial training points. It is for this reason that the neural network and the active learning scan, trained on 50k points, do identically well (see table 4.5).

One can also see that the error rates of the RFC, kept on its original settings of 150 estimators, are vastly worse than those of the AL and NN. It is worth mentioning that the NN fails to train on 200k points, regardless of whether they are random or AL-generated. This cannot be solely because of the amount of points because the AL trains just fine on 200k points. Rather, it either fails because the network parameters are not ideal for getting all points at once, or it fails because being presented with all these points at once is fundamentally too much for a network this size. As is often the case in this area of research, it is difficult to prove the one or the other, though. The AL network does fine, however, by getting the points in a piecemeal fashion, which gives it the chance to adjust its weights gradually.

As expected, the NN trained on 50k random points does consistently worse than that trained on 50k AL-generated points because the quality of AL-generated points is higher in the sense that there are more points in areas where there is a lot to learn. There is no difference between the AL trained on 50k and 200k points when tested only on random points, differences appear when testing with another set of AL-generated points (which are presumably more interesting). This difference further manifests when tested on only those points which are AL-generated and an RFC, trained on AL-generated points, misclassified (these points are potentially even more interesting).

Keeping this in mind, the author moves to make two more AL scans of 50k points and a smaller network, with settings like the previous AL 50k scan (see table 4.3). We find that the error rate of the AL network drops below 20 percent after about 13k points when tested on a set of 200k random points. As before, the NN fails to train with this amount of points. Unsurprisingly, the NN trained on 13k random points does fairly poorly, especially on interesting points. Surprisingly, though, the NN trained on 13k AL-generated points does better than the AL model on these points, particularly for interesting points. This might be happening due to the fact that there are no initial points in the AL, meaning that the first round of K points might be getting an overly large amount of attention. There is a fairly easy fix to this, though: adding a sufficiently large amount of random points as initial training set into the AL should do the trick, like it was necessary for some of the toy models in section 4.3. It is somewhat surprising that the RFC does comparably well when it is trained and tested on random points. This seeming superiority vanishes quickly, however, when tested on more interesting points. As before, the performance of the AL improves with more points. This is not a monolith, however: The AL trained on 50k points actually does worse than that trained on 13k points, when tested on random points. It is better, however, at judging more interesting points.

Overall, this benchmarking effort demonstrates two advantages that can be generalised beyond the confines of this particular model: First, AL scans are very good at finding interesting points and at scoring well when tested on similarly interesting points. This makes them good for finding boundaries in new models. Second, by using the fact that AL scans feed points to their network in a piecemeal fashion, one is able to get away with smaller networks than one would if one somehow found interesting points and subsequently trained a network on these. These two advantages make AL scans particularly useful for working on new, complex, and higher-dimensional models in a cost-and compute-efficient way. Nevertheless, there is one obvious limitation to AL scans because many parameters need to be tuned, which requires some know-how. As mentioned earlier, writing an autotuning AL scan is left for future work.

Learning the Higgs mass in the MDGSSM

In a final step, the author applies the AL scan to the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM). This is a non-minimal supersymmetric scenario with many parameters at low energy (see section 1.2.3). Collider constraints on strongly-coupled particles on this model were considered in [START_REF] Chalons | LHC limits on gluinos and squarks in the minimal Dirac gaugino model[END_REF]. Subsequently in [START_REF] Goodsell | Constraining Electroweakinos in the Minimal Dirac Gaugino Model[END_REF] the constraints on electroweak-charged particles were considered from both dark matter and collider searches. As a consequence of the constraints on colourful particles, it is prudent to consider them heavy (of order 2 to 3 TeV) where their exact values do not significantly affect the phenomenology. This leaves six interesting parameters for the low energy theory that greatly affect the masses and phenomenology of the electroweak sector. To place constraints, it is therefore necessary to scan over these parameters. However, it was found in [START_REF] Goodsell | Constraining Electroweakinos in the Minimal Dirac Gaugino Model[END_REF] that only a small proportion of parameter choices lead to an acceptable Higgs mass. Therefore a random forest classifier was first trained on a random dataset and used to filter proposed points in a larger MCMC scan over the dark matter parameter space.

Setup and performance of the AL scan

One proceeds in a two-step fashion again, putting a smaller network to work on 20k points, then feeding those points to a larger network and generating 100k points in total. (The author is generating less points than for the SMSQQ for the simple reason that points in the MDGSSM take longer to generate.) As before, the larger network requires a smaller learning rate; in this model, a smaller stochastic gradient descent momentum stabilizes the larger network as well (see table 4.7). The ranges of this scan are chosen such that they include all reference points listed in the literature [START_REF] Goodsell | Constraining Electroweakinos in the Minimal Dirac Gaugino Model[END_REF]. They are listed in table 4.8. Note that one does not needs make tighter ranges for the smaller scan in this model because there is a sufficient amount of good points in the chosen ranges (around 7 percent of randomly selected points are good). Nevertheless, the two-step approach is justified because, as has been seen in section 4.5.3, feeding a generous amount of initial training points from the first run to the larger network brings better training results.

Figure 4.10 shows the result of this scan in various planes. These distributions do not at all exhibit neat, spatially secluded regions of good points like what was seen with the SMSQQ in the previous section. Instead, good and bad points are pretty much all jumbled together, with structures visible mostly in planes containing √ 2λ T and very little structure otherwise. This makes it hard to separate good regions from bad ones in a spatial way, as illustrated by the large areas that the blue line in the figures encompasses. The ranges were chosen so that they include all 10 reference points in [START_REF] Goodsell | Constraining Electroweakinos in the Minimal Dirac Gaugino Model[END_REF].

not as a fault of the scan, but as an intrinsic feature of the model: Several variables in the MDGSSM only have an indirect effect on the Higgs mass, such that their influence does not show in a plot. Crucially, however, a neural network -or an AL scan for that matter -is still able to use these variables as a basis to estimate whether they give rise to a good or bad Higgs mass. This is demonstrated in the section below.

AL vs. other networks

In the same fashion as with the SMSQQ, one now benchmarks the AL scan against various neural networks and RFCs. The results are shown in table 4.9. Regularly testing on a dataset of 20k random points, one finds that the error rate drops below 5 percent after around 24k not-null points, i.e. after adding about 7 sets of K new points to the initial dataset of 20k points. This is a substantially better error rate than the one obtained with the SMSQQ. This should not be overinterpreted, however, because the distributions of good and bad points are vastly different from those in the SMSQQ. Note that the AL scan that was retrained on another 24k points scored slightly more than 5 percent, which is due to statistics. This implies that there is some uncertainty to all values shown in this table. Nevertheless, they provide an idea of where the journey is going.

As expected, the AL trained on 58k points outperforms the one that trained on 24k points only. This means that new interesting points add value to the overall performance of the network. The neural networks trained on the AL-generated points do similarly well as the AL networks. In the case of the 58k training points, the NN slightly outperforms the corresponding AL network. This highlights the importance of training the AL on its full dataset from time to time; this was not done with this model due to the fact that it requires further finetuning of the network to ensure stability in subsequent training rounds. Regularly retraining the AL network on its full dataset therefore is, as of now, only recommended for simpler models -the author did this for the toy models in section 4.3 but not in these more advanced ones. It is conceivable, however, that this might be more feasible with an autotuning AL scan, which has been left for future work.

Unlike the results for the SMSQQ (see tables 4.5 and 4.6), a neural network trained on random points does similarly well to the one trained on AL points. Although all networks shown here handle the impact of indirectly influencing variables well, this shows a limitation to AL scans: When regions of good points are not clearly distinguishable from regions of bad points, the value of generating interesting points is of limited value. It is possible that a set of random points, fed to a sufficiently large neural network, will do a similarly good job as an AL scan in the role of a "Higgs-gatekeeper." There are two reasons why the author would advise using an AL scan nevertheless: First, it is not always clear which spatially separated structures the AL might uncover anyways, which would allow it to generate at least some interesting points. As one can see from the fact that the error rates of tests on random points and AL-generated points do differ in a statistically significant way, the AL scan has managed to produce at least somewhat interesting points even with this model. Second, as has seen in section 4.5.3, AL scans might allow the user to get away with smaller networks by feeding it piecemeal portions of points at a time. Both reasons imply that AL scans are a more computational-and cost efficient procedure.

In summary, even in fairly complex models like the MDGSSM, AL scans are a costefficient way of producing gatekeepers, be it for the Higgs mass or for another observable. The 14k points were selected based on the number of points after which the original AL (with 58k points total) reached an error below 5%. The fact that the 14k AL does not do as well is due to statistical fluctuations. One can see that while the RFC trails far behind, the AL and NN do similarly well on the AL-generated points. The NNs trained on random points yield similar results but become less reliable with RFC-misclassified points when the number of training points is large.

This helps save compute resources which, in other scans, might have gotten wasted using very effective but nevertheless time-consuming HEPtools. Feeding the "Higgs-gatekeeper" presented here to an MCMC-or other scan is left for future work. The standout feature seen from the performance analysis on the MDGSSM is that the concept of such gatekeepers from AL scans is quite generalizable and can be used for all kinds of models.

Conclusions

In this work a novel approach to explore the parameter spaces of new models was proposed.

It was demonstrated on a variety of different models that active learning scans provide a cost-and compute-efficient way to find boundaries and identify areas with good points. It was also shown the use of this approach even with models that do not have a spatially secluded region of good points, as is the case in the MDGSSM. In such cases, AL scans can be used to produce so-called gatekeepers, i.e. networks which are able to predict whether the observables resulting from a set of variables are good or bad with relative certainty. These can be plugged into subsequent MCMC-or other scans to avoid spending unnecessary time and resources evaluating HEP tools on points that are most likely bad anyway.

In comparison to MCMC scans, AL scans do a much better job at finding and identifying regions of good points -exactly as advertised. This is worth the additional time spent training the AL discriminator in many cases because less points are needed overall to delimit the boundaries than with an MCMC scan. If the initial training set is not large enough or does not cover the entire parameter space, however, there is a risk of missing potential good regions (see section 4.5.2). To further ensure finding all good regions, one can finetune AL parameters such as the diversity measure or the proportion of random points in each training set. This shows the importance (and tediousness) of finetuning at this point in time. The author deems feasible, but beyond the scope of this work and in fact a good PhD project for another student or even a postdoc, the implementation of an AL scan that automatically tunes its own parameters without the need of the user's intervention.

In comparison to RFCs, AL scans vastly outperform in terms of accuracy. Vanilla neural networks can sometimes slightly outperform AL networks when trained on the same points (see sections 4.4, 4.5.3 and 4.6.2); however, such NNs cannot generate interesting points on their own. To combine the advantages of the two, one could retrain the AL network on its full dataset every so often. At the time of writing, this is only feasible for small or simple models, though, because retraining on larger models requires more finetuning of the network parameters. One also finds that regular NNs sometimes fail to train with a large amount of training points (see section 4.5.3). This might be due to suboptimal settings to train with such large datasets, or it could be that the network is fundamentally not able to cope with such many points at once. If it is a matter of network parameters, an autotuning AL scan might fix this problem in the future. One last drawback of AL scans is that one needs a sufficiently large amount of good points in order to start training(see section 4.5.1. This could be reduced in the future by introducing gradients to the selection of K from L training points. This, too, is left for future work.

Finally, the code for this work will be released as part of a general framework for running simple scans along with a future publication. At that point it would also be interesting to consider more sophisticated deep learning and AL approaches such as those in the swyft library [START_REF] Miller | Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time[END_REF], and whether they can be used to improve the performance of tasks that are of interest here.

The overarching goal of the last two chapters was to find the most interesting points for determining the boundaries of BSM models. Across a variety of models, AL scans performed best in these regards. In the comparisons to AL scans, the settings of other scans were chosen in a way that would typically be expected in searches for the boundaries of a model. In the literature (see for example [START_REF] Dent | Sensitivity to Dark Sector Scales from Gravitational Wave Signatures[END_REF][START_REF] Brouwer | Introducing DMRadio-GUT, a search for GUT-scale QCD axions[END_REF][START_REF] Brod | Global Constraints on Yukawa Operators in the Standard Model Effective Theory[END_REF][START_REF] Bahl | New constraints on extended Higgs sectors from the trilinear Higgs coupling[END_REF][START_REF] Biswas | Constraining New Physics with Possible Dark Matter Signatures from a Global CKM Fit[END_REF]), this would mean finding as many good points as possible, then finding the boundaries through interpolation or other methods. In the previous chapters, the procedure was largely the same. The only exception is that in the search of the largest singlet mass of the SMSQQ, the masses were pushed upwards in the MCMC scan by means of a scaling function. This scaling function modifies the likelihood function such that higher singlet masses are preferred over lower ones.

In this chapter, the comparison of AL with other scans is taken a step further. AL scans search for interesting points by design; however, it is worth asking how well other scans and ML algorithms perform against them. This can be assessed by fine-tuning them to their maximum effectiveness on an example model. MCMC scans in particular seem like a hot candidate besides AL because it is possible to modify the likelihood of any variable and observable to narrow in on more interesting regions in the parameter space. Options to automate AL scans are also discussed in this chapter because this has the potential to make them more user-friendly and, to some extent, render searches for boundaries more efficient.

The potential of MCMC scans to improve is further investigated in section 5.1. Moving on to machine learning scans, the potential of using MLS in the way it is proposed in [START_REF] Staub | xBIT: an easy to use scanning tool with machine learning abilities[END_REF] is discussed in section 5.2.1. In section 5.2.2, RFCs are tuned to maximize their potential to learn parameter spaces. The advantages and drawbacks of AL scans are discussed in section 5.3. More detail on the distinct features of the AL scan introduced in the previous chapter are also provided. Concrete ideas for the future development of AL scans and how to combine them with other scans are proposed in section 5.4, before concluding in section 5.5.

The discussions in this chapter are illustrated with more results from the SMSQQ because it is well-suited for boundary searches, interesting in terms of its physics, and familiar to the reader from the preceding chapters. In addition, the search for the highest-possible singlet mass from the SMSQQ is a motivating factor for pushing the boundaries. Such a motivation is less clear to be seen in the constrained MSSM and the MDGSSM (see sections 4.4 and 4.6). What is more, the SMSQQ has well-defined regions of good and bad points, unlike the MDGSSM (see section 4.6). With five parameters, its dimensionality is also large enough to consider scans beyond grids or simple MCMCs, and small enough to study and visualize with relative ease. Some basic principles are also illustrated with some of the toy models from section 4.3 for the sake of simplicity. That being said, the insights about the scans obtained in this chapter are largely generalizable to other models with some care, common sense and conservative estimates. The content of this chapter is being prepared for publication at the time of writing this work.

Weighting and iterating MCMC scans

MCMC scans are widely used in particle physics to explore parameter spaces of new models. There are many advantages to them: they work well and efficiently for models with many dimensions, and they can find good points even when these are scarce. This makes them superior to grid-or random scans, especially when dealing with more complex models. On the other hand, their ability to find boundaries and explore the parameter space in its entirety is rather limited. In this section, the potential and limitations of MCMC scans for finding boundaries is further explored. S -m 2 E is also used instead of m 2 S to ensure m S ≥ m E while scanning. After scanning, the cut Λ ≥ 0.5 is imposed; this was not done initially because the author wanted to be able to investigate these points in detail. The condition Λ ≥ 0.5 is also imposed for the work in chapter 4.

Narrowing in on interesting regions

scan κ m 2 S m 2 O m 2 O -m 2 S m 2 E Λ 1 10 3 - 10 5 10 4 - 1.5 • 10 6 5 • 10 4 - 2 • 10 6 - 5 • 10 3 - 10 6 0.1 - 3.2 2 5 • 10 3 - 5 • 10 5
In chapter 3, the parameter space of the SMSQQ was investigated using a series of MCMC scans. Without prior knowledge of where the boundaries might be, a first MCMC scan with fairly arbitrary parameter ranges was performed; in subsequent MCMC scans these ranges were refined until the author had a fairly good idea of where the boundaries might be. The author took about six MCMC scans to find acceptable ranges. The results are displayed in table 5.1.

The author ran every MCMC scan with a million points to make sure they missed no odd regions, then thoroughly evaluated them and plotted the results every time to check for any freakish behavior of the scan or the model. This way of going about things is not abnormal in this field of study; nevertheless, it is rather time-consuming and worth optimising.

To impose the mass inequality m O ≥ m S already at runtime and thus avoid unnecessary bad points, m 2 O -m 2 S was used as a variable. In chapter 4, the mass inequality m S ≥ m E is also imposed at runtime by introducing the variable m 2 S -m 2 E .

One could get away with making a single MCMC scan instead of six or seven by using longer Markov chains and many more points. However, this might further decrease the probability of finding points close to the border between good and bad, as is the author's intention. As an alternative, one could resort to generating a part of all points by proposing new starting points for the Markov chains close to previously found good points. This, however, would come at the expense of exploring the whole parameter space, and one would risk only covering part of the good region and not the whole.

All of the above suggests that MCMC scans are not the right tool when one knows nothing about the model at hand. For the sake of this investigation, though, the MCMC scan is further driven to its limit in the next section. Note that the two mass inequalities are imposed from the start in the following, and that the ranges are identical to those in chapter 4 to make the comparison to AL scans easier later on.

Forcing MCMC scans in any direction

As has already been shown, MCMC scans are not that great at finding interesting points and determining a good parameter range for a scan. However, since the effort has already been done in previous chapters, it is worth investigating how far the MCMC can be pushed to find points close to the boundaries of a model. This is briefly discussed in chapter 3; now, however, this shall be pushed to its limit.

Scaling functions

The likelihood function L of a model at a given point is composed of individual likelihood functions for each observable, L obs . If one observable takes an invalid value, the likelihood function is zero; if all observables are valid, the likelihood function will be greater than zero. This can be written as L = obs L obs .

(5.1)

Every L obs can contain a scaling function which manipulates the resulting likelihood. Such scaling functions are useful to push the MCMC in certain directions: The larger the value of a scaling function for a given observable, the more the MCMC would favour that observable over another one with a lower value in its scaling function, provided that all other observables and their scaling functions remain the same and their respective likelihoods L obs are non-zero. Note that it is customary to keep the likelihood function in the range [0,1]; in this work, however, likelihoods greater than 1 are allowed. This is justified because L is not a measure for the probability that a given point is valid. Particularly in the case when scaling functions are applied this would not be a useful interpretation. Therefore, all values greater than zero are allowed for the purpose of these MCMC scans.

Inbuilt scaling functions are shown in table 5.2. If the user does not wish to scale an observable, the scaling function OFF does the job. The function LOG peaks around a central value, which allows zooming into an area of interest. The functions UPPER and LOWER create an upper and lower boundary, respectively. The BIAS function pushes observables up or down; away from a mean value. User-defined functions can come from external programmes such as micrOMEGAs. Table 5.2 -Scaling functions in the MCMC scan. The likelihood function is the product of the likelihood function of each observable. The user needs to specify one of these scaling functions for each observable. The values µ and σ need to be specified by the user prior to the scan, and are akin to a mean and a variance of each function.

Which scaling function is used for which observable depends on the model at hand and the aim of the scan. For example, in a model with very few good points it makes sense to mimic the allowed ranges of the observables with the scaling functions. After all, it is impossible to establish boundaries without a sufficient amount of good points. This can be achieved with UPPER and LOWER where there is a known upper or lower boundary on the observable in question. For a model with a fairly large proportion of good points, a slightly more risky approach can be used: By centering the LOG function right on the edge between valid and invalid values, the MCMC scan can zoom into the region at the boundary. Furthermore, the BIAS function allows the user to push into directions that would otherwise not be explored so much. Table 5.3 shows the choice of scaling functions that was used in chapters 3 and 4. For the MSSM, a large proportion of points is good within the chosen ranges; therefore, the LOG function is used to zoom into the border above which the dark matter relic density is excluded. On the other hand, good points are fairly rare in the SMSQQ and the MDGSSM, which justifies the use of UPPER for the relic density in these models. For the MDGSSM, a LOG function is used for the Higgs mass, since this is the observable of largest interest. For the SMSQQ, the UPPER function is also used for the the vacuum stability and the value of the matrix element. BIAS is used for higher singlet masses. The mediator masses and the other observables which only return 1 for valid and 0 for invalid points get the scaling function OFF. Note that in the case of the MSSM, the most interesting, not necessarily good, points are used. This is justified by the fact that a sizeable proportion of points within the chosen ranges of the MSSM is good, so that the MCMC scan will find a sufficient amount to draw a border between good and bad.

Pushing the MCMC

Now that the scaling functions have been explained in sufficient detail, they shall be applied to the SMSQQ. Three configurations are compared: One MCMC scan with no scaling functions at all, one with scaling functions as used in chapters 3 and 4, and one with scaling functions as shown in table 5.4. In the latter MCMC scan, the singlet mass is pushed up again, but also there is more focus on the borderline between good and bad where the dark matter relic density and the scattering matrix element are concerned. The vacuum stability measure does not have a scaling function because it only can take the value 1 for a valid point and 0 for an invalid point. One could in principle apply a LOG function regardless; however, the impact would likely be quite minimal.

All three scans satisfy the mass inequality m E ≥ m S ≥ m O at runtime, run over one million points, and run over the ranges stated in table 4.4, column 200k AL / MCMC scan. A visual comparison can be found in figures 5.1 and 5.2. One can see in table 5.4 that the number of good points is improved almost sixfold from MCMC1 to MCMC2. This is expected because all scaling functions except for the BIAS prioritize good points further than they previously were. It seems surprising at first, however, that the MCMC3 scan produces almost 50 percent more points than the MCMC2. One would naïvely expect that the LOG function leads to fewer good points because it prioritizes the border between good and bad, not the region which is known to be good. This surprising result is not a generalizable finding but quite specific to the SMSQQ. Although very low relic densities and small submatrix elements are in principle allowed, they are hard to attain with the SMSQQ because points resulting in such values are often excluded by vacuum stability. This can be seen in figure 5.3, which is explained in detail further down.

Somewhat less surprising is the fact that the MCMC3 scan finds a higher limit to the singlet mass than the one from MCMC1 and MCMC2. This can be seen in table 5.5. It is worth remarking, however, that it is higher than the one obtained in chapter 4, where the same scaling functions as in MCMC2 were used but the ranges were a lot tighter and geared towards higher singlet masses. This not only illustrates the power of scaling functions, but also removes part of the tediousness of finding appropriate ranges for a scan. 5.5 -Maximum singlet mass found in the three MCMC scans shown in table 5.4. Note that the maximum singlet mass of MCMC2 is in fact smaller than that of MCMC1. The maximum singlet mass of MCMC3 is slightly higher than the limit found in the previous chapter (see table 4.2). The margin of error is taken to be purely statistical and is estimated to be about 0.5% on all values, as was deduced by evaluating a series of scans in the SMSQQ.

scan samples mainly interesting points, then one can afford fairly generous ranges without using substantially more compute resources. In the case of the SMSQQ, the highest possible singlet mass is thus expected to be around 49-50 TeV, based on the fact that the three limits obtained in the two preceding chapters and this chapter are not too far apart from one another. Table 5.5 also shows that the maximum singlet mass obtained by the MCMC2 scan is lower than the one from the MCMC1 scan. This is explained by the use of UPPER for many observables. The MCMC2 scan is thereby forced to prioritize points with slighly lower relic densities and submatrix elements, which in turn are often excluded by vacuum stability and thus do not qualify for the search for the highest singlet mass. This illustrates the fact that, despite their power, one must tread carefully with scaling functions. If not much is known about the model prior to runtime, it might be advisable to first run several small MCMC scans with different scaling functions. One can then check them for the best scaling functions for one's purposes and use these for a bigger final MCMC scan.

In figure 5.1 the point distributions of the MCMC1 and MCMC2 scans are compared. The MCMC2 scan focuses better on the area of good points because of the UPPER scaling functions on three observables. These scaling functions, however, counteract the BIAS towards higher values imposed on the singlet mass. This causes the maximum singlet mass to drop compared to the MCMC1 scan. In addition, the MCMC2 scan does not do much better at ignoring some fairly useless regions like those where Λ 2. Overall, the gains from the scalers used in the MCMC2 scan are pretty minimal.

Figure 5.2 shows the comparison of MCMC2 and MCMC3 in the same planes of the parameter space as before. The MCMC3 scan is somewhat less focused on the region of good points and explores the whole parameter space a little more. However, it has by far the largest maximum singlet mass. When one compares the faint contour lines on the plot to the right, one sees that the MCMC3 scan is also slightly better at not exploring the rather useless region where Λ 2. However, it is still a far cry from the performance of the AL scan in the same plane; see figure 4.9.

Figure 5.3 shows the distributions of the matrix element and of the relic density in all three MCMC scans. With regards to the matrix element, depicted in the upper plot, one can see that the MCMC3 scan is by far the best performing scan, considering the fact that it samples most points from the region close to the border between good and bad points. 5.3. These are denoted MCMC1 and MCMC2, respectively, following the specification in table 5.4. The pink star marks the point of the highest singlet mass as found by the MCMC1 scan; the purple star that found by the MCMC2 scan. The MCMC2 does focus better on the region of good points; however, the MCMC1 pushes towards higher singlet masses. 5. 4. One can see that the MCMC2 and MCMC3 scans do a fairly good job at sampling points close to the border between good and bad points. The MCMC1 scan does not perform as well. Overall, the MCMC3 scan does best at finding interesting points. Note that a logarithmic y-axis is used to illustrate that the whole range is populated with points. There are points outside the shown range as well, but their number is small.

However, the MCMC2 scan might be better at finding the lower border caused by vacuum stability because most sampled points come from this area. This illustrates the fact that it is not black-and-white: For finding the maximum mass of the singlet, the MCMC3 scan is undoubtedly the best; however, for getting an overall idea of the parameter space the MCMC2 scan is not that bad either. This effect is even more pronounced for the relic density, depicted in the lower plot of the figure. In addition, although the MCMC3 scan finds more good points along the upper border of the relic density, it also samples more useless points than the MCMC2 scan in areas where the relic density is way too large. As expected, the MCMC1 scan does fairly poorly for both observables because it has no scaling functions and optimizes for the most likely, not the most interesting points.

Overall, this illustrates some potential and power in the scaling functions. If, for some reason, a model is not suitable for active learning or a similar algorithm, an MCMC with appropriate scaling functions might therefore be a viable option, despite being a far cry from what an AL scan can generally do. If good ranges are given, it is also a good way of obtaining a single border, as has been done here with finding the highest singlet mass. However, even with all these scaling functions in place, the results do not come close to extent of a global border-exploration that an AL scan can do. This will be shown in section 5.3.

First steps in machine learning

Scaling functions help to find interesting points in parameter spaces. However, as could be seen in the last section, these are not a magical cure. It is still highly advisable to check multiple configurations of scaling functions before settling for the best one for one's purposes. This, however, is time-consuming. One might therefore wish to have a smarter solution. Using machine learning in parameter space scans is hardly a new idea [START_REF] Feroz | MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics[END_REF][START_REF] Sugihara | Parallelization of Markov chain generation and its application to the multicanonical method[END_REF][START_REF] Henriques | Monte Carlo Markov Chain Parameter Estimation in Semi-Analytic Models of Galaxy Formation[END_REF]. In this chapter, two fairly simple concepts, MLS scans and RFC classifiers, shall be introduced.

Machine learning scans, façon xBIT

Machine learning scans [START_REF] Ren | Exploring supersymmetry with machine learning[END_REF] were already introduced in xBIT [START_REF] Staub | xBIT: an easy to use scanning tool with machine learning abilities[END_REF], the predecessor of the scanning framework proposed in this work. These scans, called MLS in xBIT, have a similar iterative working principle as AL scans:

1. A random inital sample of points is generated.

2. A neural network is trained on it.

3.

A new set of random points is generated. The neural network selects those points of which it believes that they are best. In addition, some 10% of this dataset are purely random points to ensure one does not miss out on other good regions.

4. Steps 2 and 3 are repeated until the specified number of points has been reached.

There are three key differences to AL scans: First, the goal of MLS is to find as many good points as possible. As has been mentioned before, this is useful for some tasks but is not an optimal way to find the boundaries of a model. Second, one MLS neural network is trained to predict the actual observable values, or the likelihood thereof if the user chooses this. In contrast, classifiers of AL scans only predict whether a point is good or bad; at least at the time of writing this work. This makes the latter more efficient, especially in models of higher dimensions, as it is just a binary prediction and not a prediction on a sliding scale. Third, MLS has the option to use two neural networks: A predictor learns the observables or the likelihood function; and a classifier learns whether the point is valid or not. The classifier is optional in MLS. As one is ultimately interested in the boundaries of the valid points, AL scans do not use a predictor and get away with just a classifier. A predictor, if accurately trained, might be a powerful tool in environments where the exclusion limits change fast. In this case, one could pretrain a predictor on the available data, then add a cutoff where the new exclusion limit is. In much of BSM physics, however, new exclusion limits often take years to appear for a given observable. This justifies dumping the predictor for AL scans and only using a classifier, and has the added advantage of saving compute resources.

In conclusion, MLS are an interesting approach for fast-moving areas of physics where new exclusion limits pop up all the time, new models are largely unexplored, and compute resources are amply available. Since all this is often not the case, and fine-tuning more than one neural network is known to be tedious work [START_REF] Lopez | Simulating Transient Noise Bursts in LIGO with Generative Adversarial Networks[END_REF][START_REF] Mescheder | Which Training Methods for GANs do actually Converge?[END_REF] if one desires to use both predictor and classifier, it is more advisable to start with AL scans if MCMC scans are not sufficient. For the moment, MLS are not included in BSMArt due to lack of evidence about its potential use.

Random forest classifiers

A somewhat simpler method than using neural networks to predict actual values is using random forest classifiers (see section 2.2.1. These have no power to propose points by themselves unless they're embedded in some scan like a neural network would; however, they train fast and are often enough to produce at least a crude estimate about whether a point is valid or not. In addition, they require very little configuration, which makes them more approachable to novices.

In short, a random forest classifier consists of several decision trees, each of which trains on a subset of data. When tested, the responses of all decision trees get averaged to obtain a final response. A decision tree, in turn, tries to predict whether an observable is valid or not, based on the properties of the variables. For example, the decision tree might consider the variable Λ in a dataset from the SMSQQ, and randomly cut the data into subsets where Λ > 2 and where Λ ≤ 2, respectively. It then checks the observables' values. In this example, it will see that there are virtually no good points, i.e. points with valid observable values, in the subset where Λ ≤ 2. It therefore concludes that good points can only occur if Λ > 2. It then goes another step by splitting these subsets by using another arbitrary criterion on the variables. And another step, and so forth, until each subset of data contains purely good or bad points.

To illustrate the scope and limitations of RFC classifiers, finetuning is conducted on the MCMC2 scan to improve the benchmark results produced in table 4.5. In the previous chapter, the RFC classifier was intentionally left on the default settings to see how much better a vanilla AL scan would perform. However, it is important to see how much potential is left in the RFC regardless.

To this end, and for the sake of brevity, the RFC trained and tested on two different sets of 200k random points, and the RFC trained and tested on two different sets of 200k AL-generated points are contemplated. For the random-trained RFC, the error rate can be improved from 4.8% to 2.7% by decreasing the maximum number of features that are considered on the search for the next split into subbranches or leaves. For the AL-trained RFC, the error rate is improved from 27.2% to 25.1% by:

• Decreasing the maximum number of features that are considered on the search for the next split into subbranches or leaves, and

• increasing the minimum number of samples that are required to split an internal node.

Generally speaking, these adjustments prevent overtraining. Of a good dozen possible RFC parameters, these two settings were the only ones that lead to better results.

It is clear from this that the overall potential for improvement of RFCs is quite limited. This emphasizes the point made earlier in this work: RFCs are good classifiers with regards to their simplicity and ease of use. Their accuracy, however, is quite limited in some models at least. When searching for a good classifier that works out the boundaries of a parameter space, RFCs therefore end up being insufficient due to their lack of accuracy on interesting points.

Active learning, again

Machine learning, at first, sounds like a great idea to get around some of the inconveniences posed by MCMC scans. MCMC scaling functions are powerful but do not prevent searching in useless areas. They also do not always yield intuitive results at first sight, as was seen with the MCMC3 in section 5.1.2.2. The first steps in machine learning discussed in the last section are far from an ideal solution too. MLS is, in some regards, too sophisticated for making exclusion limits. Because of its predictive capabilities, it is better suited for a full parameter space exploration and best employed in areas where compute resources are abundant, new exclusion limits appear often, and models have a low number of dimensions. This is not the case in many areas of particle physics. In contrast to MLS, training RFCs is fast, takes very little configuration and few compute resources, even with highdimensional models [START_REF] Feroz | MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics[END_REF][START_REF] Henriques | Monte Carlo Markov Chain Parameter Estimation in Semi-Analytic Models of Galaxy Formation[END_REF]. RFCs are, however, not very accurate even with finetuning, and are therefore not very suitable for use as a classifier embedded in a system proposing points.

Active learning provides another way of searching for interesting points and finding boundaries in a computationally efficient way. As discussed in depth previously, AL scans find interesting points because that is their job, not due to some additional scaling functions or other finetuning measures. There are, however, some more detailed points to be made. In this section, some essential key features will be discussed.

First, selecting interesting points is far from a trivial task. Section 5.3.1 will go into depth about how these points are selected, how their diversity is ensured, and how the whole parameter space is explored nevertheless. Second, neural networks are not necessarily good at handling points where each dimension is in a different order of magnitude. In section 5.3.2, methods to mitigate this problem with the use of scalers are discussed. Third, training neural networks can get unstable with the wrong settings or a bad sample of data. In section 5.3.3, workarounds for this are discussed, all of which are in the current version of the AL scan. Finally, in section 5.3.4 the performances of an AL scan and the MCMC3 scan in the SMSQQ are compared.

Point selection

KfromL algorithm

The discriminator that is trained in and used for the AL scan cannot generate points by itself. One can, however, feed it a number of random points and choose interesting ones based on how the discriminator rates each point. This is the underlying idea of the KfromL algorithm. More details can be found in section 4.2.

The KfromL algorithm works as follows: A set of L random points (within the userspecified ranges) is generated. The discriminator then rates all L points. If it is very sure that a point is good, it returns a value close to 1; if it is quite certain that a point is bad, it returns a value close to 0; and if it has no idea whether a point is good or bad it returns 0.5. Each point then gets a score s i based on the rating y i of the discriminator, which is calculated with equation 4.3. Of these L scored points, the K points whose scores are highest, i.e. the discriminator rating is closest to 0.5, are selected. These points are the ones that the discriminator is most uncertain about and can thus learn most from in the next training cycle.

There is one problem with this approach, however. If K is sufficiently large, one might stumble upon many points in one small region that the discriminator is currently uncertain about. This will not harm the performance of the AL scan in the long run because the discriminator might learn a lot about this region in the current training cycle and then move on to other regions in the next. It might be more efficient, however, to learn about this region with less points, and add points from other regions in the same training cycle. This would make the KfromL algorithm a lot more efficient.

To this end, the diversity measure α is introduced, and the scoring is modified in such a way that it includes the distance of points. This works as follows: Of all points, the one with the highest "original" score s i is selected. Then, the distance r i of every point to this reference point is calculated. This is used to calculate a new score,

S i = (1 -α)s i + α r i σ × 1 4r max (5.2)
where σ is the standard deviation of all distances, and r max is the highest distance from the reference point. The factor 1/(4r max ) puts the distance score on the same footing as the original score s i . The distance measure α is selected by the user and runs between 0 and 1: If α is close to 0, S contains mainly the information about the rating of the discriminator; if α is close to 1, S contains mainly the information about the points' distances. This score S i therefore does not just select points that are close to the border between good and bad points, but also makes sure (with the right choice of α) that these points are reasonably spaced apart. The K points with the highest score S i are then evaluated using HEPtools and subsequently fed to the discriminator to train on. This point selection process is a core feature of active learning and leads, as has been demonstrated in earlier chapters, to a very efficient way of finding the boundaries of various models.

Staying close to good points

Depending on the model and parameter ranges at hand, it can be sufficient to feed random points to the KfromL algorithm, or there could be the need to add points that are close to known good points. The latter is often the case for new models where little is known about the size and location of good regions, and thus the parameter ranges need to be chosen rather generously. This justifies the existence of a function that does not just select random points, but chooses points in the close vicinity of the last good points that the AL scan already found. This function is called FromGood in the AL scan.

FromGood works as follows: From the last good points that the scan found so far, 0.9 × L points are selected at random. In the likely case that the number of good points is smaller than the required amount, good points are drawn multiple times. Then, for each of these points, another point is selected from a Gaussian point distribution centered on the original point with the user-specified variances around it. There is one variance for each variable, which is defined in the input file, just like it is done for the MCMC scan. The Gaussian is truncated so that the new points do not go out of range. If the scan found no good points thus far, only random points are used.

The points generated by FromGood are not necessarily good themselves, and since they are fed into the KfromL algorithm, there is no guarantee that they might score as high as the other points. This justifies having a rather high proportion of such near-good points to feed to KfromL. In the current version of the AL scan, 90 percent of the points fed to the KfromL algorithm are from FromGood. This is suitable for a wide range of models; from twodimensional toy models over the constrained MSSM to SMSQQ and the MDGSSM. However, in the long run it is envisaged that this proportion adjusts itself based on how many good points the scan finds. This might assure better flexibility while scanning new models.

Points without KfromL

It is fair enough to rely on the KfromL algorithm when the discriminator is well-trained. This, however, is not always the case. With a bad or too inaccurate discriminator, the scoring s (and thus the final scoring S, given a small enough diversity measure α) does not help. In addition, there is a need to challenge any assumptions that the discriminator might have: For example, a discriminator might have found only bad points in a particular direction and might therefore be reluctant to explore it further. If a small good region is further along in that direction, it therefore might end up not being found if one relies on KfromL only.

This raises the need to select "purely" random points, in the sense that they do not pass through KfromL like others do, but get fed to the discriminator directly. How many random points like this are generated depends on the accuracy of the discriminator at that point. The percentage of random points of all new points is calculated with the help of equation 4.2. If the error rate is small, many points pass through KfromL; if it is large, then many points are randomly generated and go directly to the discriminator.

There is just one problem with this approach: In situations where the discriminator is bad and good points are scarce, this method might become quite ineffective. For optimal training, the dataset must be balanced, i.e. the same amount of good and bad points must be fed to the discriminator. If there are only few good points, it will take many training cycles before the final number of points is reached. This is more often than not a waste of compute resources. Therefore, not all points in the random proportion are, in fact, purely random. In the current version of the AL scan, 20% of these points are generated with FromGood (see previous section for explanations). These points do not pass through KfromL, for reasons explained above. Figure 5.4 summarizes the constitution of points from these four sources. It shows a random proportion of 40%, which corresponds to an error rate of 20%. One might conclude that many points end up being good; however, one must keep in mind that not all FromGood points are good or make it through KfromL. Furthermore, it is in the user's interest to have a fairly large amount of good points because the most efficient way of making use of the new points is ensuring that the number of new good points is around the same the number of new bad ones. Note that if the random proportion is small, there will still be around 10% random points for the KfromL algorithm, thus providing some randomness and options for the exploration of the remaining parameter space. Likewise, if the random proportion is large, there will be enough FromGood points to keep the scan going in a fairly efficient way. This makes the scan more robust because the discriminator might learn more (or less) in subsequent training rounds. As was seen in section 4.5.2, at this point the AL scan can miss out on important regions nevertheless. This might be mitigated in the future by ensuring that there always be a minimum amount of new random points that do not pass through KfromL regardless of how good the error rate gets. In a similar line of thought, a separate AL scan that makes no use of FromGood points is also available.

To wrap up, AL scans have a sophisticated mechanism to balance the need to find good points and explore the remaining parameter space. This mechanism adapts the proportion of random points to the current error rate in order to maximize the discriminator's learning in subsequent training rounds. In future versions of the AL scan, the proportions of random points within the random proportion and the KfromL proportion might be adapted from one round to another in order to make the scan even more efficient and more flexible for diverse types of models.

Visualization on toy models

As has been shown above, the capability of the AL scan to focus on interesting regions depends amply on the performance of the discriminator. In turn, only having enough interesting points can ensure that the discriminator draws the line between good and bad points correctly. This is illustrated on a few toy models in figure 5.5. Both models needed additional adjustments relative to the other models shown in table 4.1. The donut in the top panel is particularly illustrative in the sense that the selected points do gather around the dashed oracle line as would be expected from an AL scan. The discriminator line, however, reveals that the classification is in fact terrible. This can be mitigated by using a larger number K initial of random points for the discriminator to train on in its initial training round. It is conceivable that more periodic retraining of the discriminator on the full training set (here this is done every 8 rounds of point generation) would lead to similar results. Alternatively, one could retrain a fresh discriminator on the dataset obtained here. This shows two things: First, the point generation mechanism is fairly robust in the face of a pretty terrible discriminator. Second, there are several levers one could pull to get a proper discriminator line; from using more initial random points to training on the full dataset more often to retraining on a fresh discriminator all is possible.

On the bottom panel one can see the pizza slice with K initial = 1000 and α = 0.005 like most other toy models. In this case, retraining a fresh discriminator or training on the full dataset might help, but it might not lead to the same success. Too many points are clustered in the bottom right corner and too few in the top left side of the slice, which would lead to limited learning of the latter part. Like before, there are several levers one could pull. One could increase the diversity measure α in order to prevent the heaping of points at the lower right corner. Or one could, again, start with more initial random points in order to give the discriminator a better idea of the parameter space from the beginning. One could also decrease the learning rate of the network. The weights of the network likely overshot during the initial training; decreasing the learning rate could prevent this. This comes at the cost of learning slower during subsequent training rounds, though, unless the learning rate is raised again after that. Such an autonomous raising of the learning rate is not implemented as of now, however. alright in the top panel, although there are slightly more points along the circular line than along the straight line. This is fairly random and has nothing to do with the shape itself; in another run with the same settings the discriminator found the circular line well but failed to recognize the straight line.

In the bottom panel, on the other hand, there are many more points in the remaining parameter space where there are only good or only bad points. This shows the limits of the point selection mechanism: If the discriminator is too bad due to lack of training -or, alternatively, due to having too few initial random points or a too high initial learning rate -selecting interesting points will not work. If, on the other hand, the discriminator is just a little bit bad but not terrible, the selection still works fairly well.

In summary, the AL scan has a powerful mechanism for finding good points. It is, however, coupled to the performance of the discriminator. This highlights the need to tune the parameters of the discriminator sufficiently well to increase the robustness of both. In future versions of the code, these parameters might auto-tune, which would save time and energy on the users' end.

Making it easier for the machine

Learning and selecting interesting points is all well and good, but, as has been demonstrated, this hinges on the performance of the discriminator. Neural networks are not necessarily good at training on models where one parameter is, say, in the order of O(1) and another is in order O(8) (this is the case for the SMSQQ, for example). In addition, the current implementation of the point diversity (sections 4.2 and 5.3.1.1) simply would not work with such different orders of magnitude. This makes it necessary to scale all variables down to the same range of values -values between 0 and 1 are used for convenience -so the machine can handle the data better. This has also been done for all neural networks and RFCs that have been trained in this work. It is worth noting that RFCs do not tend to have problems with such situations. The points were scaled anyways in order to ensure comparability to the other networks.

Any new dataset of points is automatically balanced between good and bad and scaled down. Scaling down is carried out using scalers; these are not to be mixed up with the scaling functions for the MCMC scans, see section 5.1.2. There is one scaler for each variable, and it is obtained via sc

(X) = X -v min v max -v min , ( 5.3) 
for a point with un-scaled component X, where v min and v max are the minimum and maximum values of that component, respectively. For running the HEPtools on these points, however, they need to be scaled up again. This is done by using the inverse scaling function,

sc(x) = x • (v max -v min ) + v min , ( 5.4) 
where x is the scaled componend of a point. These scalers are quite fast to compute for each point, so that they do not use substantial compute resources while doing AL scans.

How to make AL scans stable

If handling RFCs and MCMC scans is as hard as cooking eggs or pasta, then getting AL scans to work right is akin to preparing a five-course dinner. Neural networks, which are the beating heart of every AL scan, require more than a handful of settings to work properly (see table 4.1 for some examples). Although there is some robustness to these (see section 5.3.1.4), it is generally hard to predict how changing one setting might affect the performance of the network [START_REF] Roussel | Multi-Objective Bayesian Optimization for Accelerator Tuning[END_REF][START_REF] Diefenbacher | DCTRGAN: Improving the Precision of Generative Models with Reweighting[END_REF][START_REF] Ahmed | Classification and reconstruction of optical quantum states with deep neural networks[END_REF]. In that sense, handling anything related to neural networks feels more like cooking than like doing science: One learns more through trial and error here than through careful theoretical contemplation. AL scans pose additional difficulties to those that neural networks already exhibit. The settings of a network largely depend on the amount of points. AL scans, however, generally need to handle many different numbers of points: There is the initial training set with K initial points; there are the training rounds with K points each; and then there is the full dataset at various stages during the scan. At the time of writing, there is no way to adjust the settings based on the amount of points at hand at each stage. This is generally difficult to implement because hyperparameter and point-selection settings affect a neural network in so many different ways; some settings, however, can tune themselves based on the prior performance of the network. This includes the learning rate which is modified by Epsilon. More details about this can be read below. To some extent, one could also count the constitution of new points to an autotuning effort. As was seen in section 5.3.1.3, how many points pass through the KfromL algorithm and thus make use of the knowledge of the network depends on its prior performance. It is envisageable that in the future more settings might be autotuned so that the user does not lose too much time finetuning and adjusting them (see section 5.4.2).

In order to prevent the network from failing at some point during the scan, it is advisable to choose a network with roughly as many parameters as there are target points. The number of parameters can be estimated as follows:

N params S L , ( 5.5) 
where S corresponds to HiddenSize and L to HiddenLayers, i.e. the number of nodes per hidden layer and the number of layers in the network, respectively. The actual number of parameters is slightly higher because the outer layers contain some, too. Their number tends to be small however. The actual number of parameters is also printed in the BSMArt log file.

If, due to constraints on compute resources or any other reason, the user needs to use a smaller network but does not want to risk running it all again in case of failure, the setting AutoStop can help. If set to True, a copy of the network is automatically saved if the error rate on the test set drops below 5 percent. If the error rate goes back above 20 percent, which can and does happen if the network is too small for the given amount of points, the scan automatically aborts. The downside of using this setting is that the target amount of points might not be reached. The upside is, however, that one retains a fairly good network for later use. In addition, as was demonstrated in section 5.3.1.4, meeting the target amount of points with a bad network does not bear many advantages to a regular random-or MCMC scan anyways.

Another way of getting around the conundrum of having too small networks for the amount of points is decreasing the learning rate. This way, the weights do not overshoot so quickly, which in turn prevents the network from going bad. It is not necessarily advisable to decrease the learning rate from the beginning, however: One would need more training steps then, which would just use more time on the computer. One could, however, decrease the learning rate every time the error rate starts plateauing or increasing on the test set. This is what the setting Epsilon does. Typically this setting is placed somewhere between 0.5 and 0.1, which means that the learning rate gets decreased by a factor of 2 to 10 when the error rate does not go down. With sufficiently large networks, larger values of Epsilon are acceptable as an extra layer of safety. In the previous two chapters, values of Epsilon around 0.8 were used because the networks were generally quite large.

In addition to this, the settings SGDmomentum and WeightDecay can be adjusted for smaller networks [START_REF] Abdul Khalek | Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider[END_REF][START_REF] Ball | The Path to Proton Structure at One-Percent Accuracy[END_REF][START_REF] Shwartz-Ziv | Opening the Black Box of Deep Neural Networks via Information[END_REF][START_REF] Feindt | A Neural Bayesian Estimator for Conditional Probability Densities[END_REF]. The former is a measure for how steep the gradients are, i.e. how much information is made use of while training. The latter is a way to reduce complexity of the network's findings and prevents overfitting (and absurd results). Generally speaking, one can afford to increase SGDmomentum a little if one is dealing with small networks. This is the case especially when one also cannot wait for too long and therefore has set the number of training steps DSteps to a fairly low value. WeightDecay can be decreased a little for smaller networks, because one wants it to learn at least something. Conversely, one should conservatively choose higher values for WeightDecay and lower values for SGDmomentum when dealing with larger networks.

It is not necessary to be overly conservative about DSteps. Training automatically ends once the error rate drops below 5 percent on the current training set to prevent overfitting. To further speed things up, one might also consider setting FromGood to a nonzero value to ensure that a sufficient amount of good points is generated to produce a balanced dataset fast. One might also want to choose a fairly large DiversityAlpha to get the outlines of the borders quickly. This depends on the model at hand, though, so one should not overdo this strategy either.

If the scan fails to produce any good or any bad points in a given training round, the resulting dataset is empty after rebalancing. This can be a statistical oddity, or due to suboptimal scan settings. To prevent falling victim to this, the AL scan automatically aborts if it fails to produce a non-empty dataset 10 times in a row. This saves time and helps not waste valuable compute resources.

In addition, on small initial datasets or with bad networks it can happen that the initial training goes badly. If this occurs, i.e. if the error rate is above 40 percent on the test set after initial training, the AL scan guards against such problems automatically by remixing and rebalancing the initial dataset, re-initializing the network, and training anew. This procedure can only be repeated 10 times; if it still fails the scan aborts. This safeguard not only prevents wasting resources, but also warns the user early about the fact that they need to investigate the initial dataset and the network settings to get the most from AL scans.

As mentioned earlier in this chapter, periodically training the discriminator on the full dataset obtained thus far helps the KfromL algorithm and the subsequent quality of the scan. This setting is called FullTrain. The user is free to define after how many training cycles they would like to FullTrain: 0 means that it is never done; 1 means after every training cycle; 2 means after every second; and so on. With smaller networks, however, one should hold off from using FullTrain too often. This is because once the network nears the maximum amount of points that it can handle, it generally performs badly. This bad performance often continues into all training cycles that follow. For sufficiently large networks and fast-enough computers (since training can be time-consuming), using FullTrain every so often is highly advisable though. For the future, it seems very feasible to implement a catch for FullTrain so that it does not execute as soon as the number of points obtained thus far equals the number of parameters of the network, or if it becomes evident that it is starting to affect the network performance negatively.

Because the AL scans tend to work best with more than K initial random points, the user can specify if they want more points with the setting Kinitial. This is particularly advisable in models where the borders of the good areas are not easy to find, or where there are few good points within the given ranges. If the user prefers to put in another set of initial points, they can do so by specifying the file name with InitCSV. These input points can be from any scan, which allows, for example, to chain multiple AL scans after one another.

Finally, if the user wants to specify a specific test set, they can do so with the Benchmark setting. Without using this setting, the test set consists of 20 percent of the inital dataset. This setting is interesting if one wants to compare the performance of two scans on the same test set, or if the default test set contains too few points to be statistically significant. One can also compare test sets containing random points versus test sets containing interesting points. One caveat to this is that the test set has some influence on the performance of the AL scan. The constitution of new points for a training cycle depends on the error rate on the test set, so one should steer clear of using points in the benchmark set which would impede its correct functioning. This could be the case for example with points which are only in a subset of the scan range, or outside the scan range, or which are too interesting, so that the scan has no chance to get a low error rate after fairly successful training.

Finetuning neural networks is hard. Finetuning AL scans is even harder. However, preventive measures such as the automatic decreasing of the learning rate with Epsilon, automatic aborting, and creating safety copies of good networks mitigate these problems before they get too large. On the other hand, the necessity of having all the descriptions above shows that this is far more complex than a vanilla MCMC scan. But just like cooking a five-course dinner rather than some pasta, it may be tricky but it is also very rewarding.

Comparison to MCMC

It is time to reap the fruits of the preceding labours. The same AL scan with 200k points as in chapter 4 is now compared to the first 200k points of the MCMC3 scan, presented in section 5.1.2.2. It is justified to use the first 200k points of an MCMC scan because, unlike an AL scan, it does not learn anything from one point to the next. In addition, it would be unfair to compare one million MCMC points to 200k AL points.

A comparison between an MCMC-and an AL scan has already been carried out in section 4.5.2. However, a scan with the scaling functions of the previous MCMC2 scan were used. This might be misleading because, as has been seen in section 5.1.2.2, the scaling functions of the MCMC3 scan are in fact better.

In figure 5.7, one can see the distributions of the submatrix element and the dark matter relic density after both scans. From the distributions of the good points in the top panel one can see that the interesting regions are those where a 0 0.35 and a 0 0.5. Particularly around a 0 0.5 one can see that the AL scan outperforms the MCMC scan because it has about five times more points in the vicinity. At first sight the MCMC does better around a 0 0.35, even boasting some 15 times more points in that region. However, as it fails to find any good point in that area, sampling this many points remains useless as it cannot establish a border on as low values of a 0 as the AL can. Overall, the AL scan finds significantly more good points despite the fact that the MCMC is designed to find as many good points as possible and the AL scan is not. In addition, the AL scan explores the parameter space outside the good region in a more efficient way: It samples points outside the most interesting regions, but not unnecessarily many. There is a fairly large amount of bad points in the region of low a 0 , however, even for the AL scan. This heaping of points comes in part due to the fact that some bad points are needed for the scan to work. The other part of the reason is that the upper limit on a 0 is fairly easy to learn; it is imposed by unitarity and thus more-or-less straightforward to "read" it from the input variables. In contrast, the lower limit on a 0 is imposed to a large part by direct detection exclusionthis kills around 98% of all points from the AL scan where a 0 < 0.35. Some 40% of these points are also excluded by vacuum stability. Together, these two criteria make all points below a 0 = 0.35 invalid. This combined border is a lot fuzzier and harder to learn. This explains why the AL scan samples more bad points with low a 0 , though still not as many as the MCMC.

One can observe similar things in the lower panel of the figure, which shows the distribution of points over the dark matter relic density. Again, the AL scan vastly outperforms the MCMC scan in terms of borders found and parameter space scanned, and slighly more points were sampled towards the lower end of Ωh 2 . In this case, however, this asymmetric sampling is less poignant because all points with Ωh 2 < 0.05 are excluded by vacuum stability, and most of these are also excluded by unitarity. Nevertheless, given the abrupt nature of the dark matter density criterion, Ωh 2 < 0.112, one can see slightly more sampling of points in the lower end, despite the fact that most of them are excluded by two criteria and not just one. Overall, the distributions of these two observables show that AL scans are far superior to MCMC scans when it comes to finding boundaries of a model, even when the MCMC has been optimized with scaling functions.

For the sake of completeness, figure 5.8 shows the distributions of the first 200k MCMC3 points versus those of the old AL scan. This does not differ substantially from figure 4.9, as was expected. The more dotty appearance of the MCMC is due to less Gaussian smoothing of the point distribution before plotting and bears no physical interpretation. The only larger difference to the previous figures is that the points of MCMC3 are more skewed towards higher values of Λ than those of the MCMC2 scan. However, as one sees in the lower panel of the figure, the performance of the MCMC3 still does not come close to that of the AL. The latter does explore the parameter space but stays within the confines of the good point area for the most part. In the top panel of the figure, and comparing it to figure 4.9, one can see that the MCMC3 goes slightly further than the MCMC2 with the exploration of the singlet mass range. Nevertheless, the difference remains quite subtle. The locations of the points with the maximum singlet mass are almost identical, with the one found by the AL scan being very slightly larger than that found by the MCMC. This is very similar to the performance shown in chapter 4, and illustrates the limitations of MCMC scans when compared to AL scans.

How to make crisis-proof scans

In the current landscape of particle physics, where the last major breakthrough is already a decade ago, it is tantamount to make the best of the data that is available. Quite obviously, this includes making scans more efficient. AL scans, as of now, have one big blind spot: They can only tell whether a point is good or bad; they cannot tell whether one point is better or worse than another based on anything else than how certain the network is about its good- or badness, and how far away it is from the point that the network is most uncertain about (see section 5.3.1.1). MCMC scans, on the other hand, can move up a gradient because they have a likelihood function. Gearing the whole AL scan towards learning a likelihood or predicting observables, like MLS does, is overkilling the problem of finding boundaries. One could, however, introduce a gradient-based term in the point selection mechanism to reap the benefits of MLS and MCMC scans as well. Alternatively one could use prior knowledge about exclusion limits to directly exert influence on the point selection. Both will be further explored in the first section below.

The most efficient scan in the world will not help anyone, however, if it is difficult to use. Although AL scans (which shall not be claimed to be the world's most efficient, just pretty good as far as the author can see) do not require more steps by the user than any of the other scans presented in this work, they do require a lot more knowledge about the settings, plus some trial-and-error, to get them right. As mentioned before, in a future version of the AL scan this might no longer be necessary because many settings might be auto-adjusted. The bulk of this section is therefore devoted to concrete ideas on how to make this happen. It is by no means a to-do list, however. Rather, it should serve as a starting point, an inspiration, on how one might address the problems that AL scans currently still face.

Finally, the remainder of this section explores the possibilities of combining different scans. No scan is the holy grail, and this applies to the AL scan too. There might be tasks in the future for which other scans are better suited; nevertheless one might be reluctant to give up the unique advantages of AL scans. Fortunately, there are many possibilities to chain various scans together.

Gradient-oriented point selection

The already sophisticated mechanism for finding interesting points can be refined further. One option is making use of gradients, either by introducing a likelihood function or by including information about the boundaries of observables in the point selection. Another option is using points that already exist in the scan. One might identify pairs of good and bad points that are close to one another, then propose new points that lie between the two. Both options are explored below.

Learning from likelihoods or observables

As has been seen with the MCMC scans already, it is an advantage if one does not use the true likelihood function -if it is even available -but rather one that has been manipulated such that the scan zooms in on interesting regions. This can be achieved by using scaling functions as described in section 5.1.2. The same applies to individual observables: priority should be given to interesting spaces within their range, for example spaces close to an exclusion limit, rather than valid spaces only.

If one introduces such new information, one has two ways to go: Either one lets the network learn this information instead of just making it learn which point is good and which one is bad. The upside is that it would automatically prefer points from interesting areas. This would likely make extra information about whether a point is actually good or bad secondary. The downside is that it would need longer to train, and even more so for models with high dimensionalities. Such an AL scan would only be marginally better than an MLS, which had previously been deemed an overkill for the purposes at hand. The other way to go is by including the information about interesting points directly in the point selection mechanism. Instead of inventing some likelihood function for each model it might be a lot easier to include the information about each observable, as it is already done for the MCMC scans. This would include an arbitrary scaling function f as previously, though a two-sided Heaviside θ function with a user-defined width around every known limit would stay truest to the spirit of an AL scan. One would then have several of these functions, one for each observable, which one could summarize in a global function that measures how interesting a point might be:

F (x) = o w o f (o).
(5.6)

In the case where an upper-and a lower exclusion limit exist for one observable, f would need to be the product of two Heaviside functions. In addition, it is up to the user to choose the weights w o because they might be interested in some observables more than in others.

One could then construct a function similar to FromGood (see section 5.3.1.2). It shall be called FromInteresting for now. The key difference to the former is that instead of the last good points, the last interesting points are used. From these, new points in their vicinity are generated, analogous to the principle of FromGood. A percentage of these FromInteresting points would then be fed to the KfromL algorithm alongside the other FromGood and random points. This percentage might be fixed for the beginning, or it might be auto-tuned right away. It is also envisageable that the variance of the function f of each observable gets autotuned as well: It might start off fairly large when the network is not well trained yet, and then get increasingly smaller as the network becomes more and more certain where the limits of the model are.

This second approach is not stricly gradient-oriented like learning the observables or a function thereof would be. It does, however, provide a fast-to-compute way that makes the most of prior knowledge. The power of scaling functions has already been demonstrated with MCMC scans; it is therefore quite logical to include these insights in AL scans too. Here the power of AL scans to zoom into interesting points might be multiplied through the use of FromInteresting points. In addition, it might be intuitive to use because of the users' prior experience with MCMC scans in the same scanning framework if autotuning variances is not an option from the beginning.

Grouping good and bad points

In a similar spirit to FromInteresting, one more option is worth exploring: One could identify groups of points which occupy a small region of the parameter space, and which contain both good and bad points. Then one could propose points which are within or close to those groups. This idea is quite intuitive because if a region contains both good and bad points, then one would expect the border to pass through it. It shall be called FromGroup for now.

Fortunately, identifying such groups is fairly easy to do (the Python package pandas would help). One would need to potentially introduce one more settings parameter which specifies the maximum distance that one point can have to another in order to group the points. This distance shall be called γ ∈ [0,1] and would be applied to the variance of each variable. It is conceivable that this γ would automatically decrease as the network gets better at distinguishing good and bad points. This would mean multiplying the original γ with a factor containing the current error rate to obtain a new value, γ = γ • 2 • min(max(q, q min ), 50) 100 , (5.7)

where q is the current error rate of the network on the test set, and q min is a small nonzero value which ensures that γ is always greater than zero. The expression inside min() ensures that γ does not exceed 1, should the error rate at some point go above 50 percent.

As with FromGood and FromInteresting, one could feed a fixed proportion of FromGroup points to KfromL, or one could autotune that proportion based on the performance of the discriminator. Intuitively, one would expect mostly random points when the discriminator is not so good yet, plus perhaps some FromGood points if good points are hard to come by (the latter proportion is easy to autotune based on the proportion of good points among the initial random points). The proportion of FromInteresting and FromGroup points should then increase as the discriminator gets better, i.e. as the error rate drops. The measure γ could be auto-adjusted based on how many groups there are, and how big they are: Starting from γ = 1, the algorithm would determine the number of groups containing good and bad points and their median size, and then regroup with a successively smaller γ until it reaches a minimum amount of groups or a small enough group size.

Because both the FromInteresting and the FromGroup selection procedures further enhance the capability of the AL scan to zoom into interesting regions, it is quite plausible that they not only make the scan even more efficient but also soften the pressure to finetune the settings of the network as much. These two additional procedures might not only be easy to implement but also potentially easier to autoune than the network itself. Nevertheless, the next section will explore avenues of how to autotune the existing settings of AL scans.

Autotuning active learning

As has been mentioned more than enough times in this work, a lot of the future work might be geared towards autotuning AL scans. Not only does this further increase the efficiency of the scan because suboptimal settings can be adjusted at runtime. It also takes the onus off the user, who as of now needs some deeper understanding and, in many cases, do some trial-and-error to get the settings right. In this section, concrete ideas on how to implement such autotuning settings are proposed.

Table 5.6 summarizes the possibilities of autotuning the AL scan. One can see that a full 11 out of 23 settings might be fully autotuned, another 8 in parts, and only 3 settings are not envisaged to be autotuned at all. Of all of these, only 3 settings have been automated in parts, and none fully. In other words, there is work to do for the people developing this project further.

The number of target points should not be automated, at least for now. It is, in principle, conceivable that a scan stops at the amount of points at which the discriminator has gotten so goood that it gets increasingly difficult to find interesting points. In pratice, there might be other reasons to continue scanning, for example the desire to max out available compute resources or to draw a reasonable comparison with another scan with the same amount of points. Conversely, available compute resources and time constraints might make a user go with less points than an AL scan with automated point number would. As situations like these arise often, it therefore seems unnecessary to automate the number of points. addition, having a sufficient amount of initial points to train on is crucial for a successful scan in some models (see section 5.3.1.4). So it is envisageable that some n × K initial random points get generated so that a certain minimum amount of good and bad points is reached. Finding this amount would require an iterative approach of point proposal and evaluation through HEPtools, but it should not result in a significantly larger consumption of compute resources. The minimum amount might be on the order of O(100) points, although an option to adjust this could be provided as well.

The optional file for initial training points -which, if provided, replaces the initial random points -will not be automated. The same goes for the optional benchmark file, with which a test set can be specified. These are special options for the user and should not be removed.

The numbers of points for KfromL, K and L, could in principle be autotuned. This is not urgent, however, because several other levers exist to optimize the performance of the scan. In addition, adjusting K and L is fairly straightforward and does not require knowledge as deep as that needed for the learning rate or the SGD momentum, for example. If one wanted to autotune them anyway, one could adjust L so that there are around about K points that the discriminator is sufficiently unsure about, i.e. which score above some threshold in the KfromL selection mechanism. K, in turn, could be adjusted such that a sufficient amount of good and bad points comes from this. This amount would be somewhat dependent on the size of the network, but presumably on the order of O(10) -O(100) for most scans. Like for the amount of initial random points, an iterative approach would need to be used. As already mentioned, though, automating this is not urgent. Having an option for the user to override the automation and propose these numbers themselves is presumably worth implementing as well.

The value for the diversity measure α might be autotuned as well, depending on the error rate of the discriminator on the test set. If the error rate is good, α could be increased because it is more "affordable" to sample points from elsewhere; if the error rate is bad, α could be decreased. It is advisable, however, to implement this more in the sense that α is finetuned a small amount from one training cycle to the other to optimize the performance of the scan. Because a bad error rate can have so many different root causes, it is difficult to take the onus of choosing α off the user unless one finds a fairly sophisticated solution.

As mentioned in section 5.3.1.3, the proportion of FromGood points is fixed to be 90% of those points that pass through KfromL, and 20% of those that do not. This works well for the models studied in this work, but might be different for other ones. It is worth implementing a fairly flexible proportion of FromGood points, with the aim of getting roughly equal amounts of good and bad points in the resulting dataset. This proportion would update from one training cycle to the next.

If the FromInteresting and FromGroup point selection procedures get implemented as well, the proportions of points they contribute can be autotuned as well. Both procedures can help produce more interesting points, but they come in at different stages of the scan. At the early stages of the scan, it should be possible to find interesting groups of points with a fairly large FromGroup γ. The proportion of FromGroup can be fairly large then, whereas the proportion of FromInteresting can stay low. This γ can then decrease as the discriminator learns more and more. Then, once the discriminator is already trained on a fairly large amount of points along the border between good and bad, FromInteresting unleashes its real powers. By the middle of a typical scan, the discriminator is able to tell actually interesting points (because they are on a border) from points that are close by but not right at a border, or in a fairly unexplored but also uninteresting region. It is at this time that the proportion of FromInteresting points can get increased and that of the FromGroup points decreased, based on the performance of the discriminator on the training set. The training set is used rather than the test set because the former more likely contains interesting points -and the performance of the discriminator on these points is the determining factor for how many more of these points are needed. To summarize, the proportion of FromInteresting and FromGroup points together might be roughly the same throughout the scan, but in the beginning more FromGroup and in the end more FromInteresting points should be proposed. As both procedures rely on a fairly well-performing discriminator, it makes sense to feed these points to KfromL only, and leave the proportion of points that does not pass through KfromL to be populated by FromGood and random points only.

As has been seen in section 5.3.1.4, it is also crucial that the network trains on the full dataset obtained thus far from time to time. It is advisable to FullTrain fairly frequently in the beginning but then decrease this if the error rate on the test set remains good. If it drops, FullTrain should happen more often again.

As can be seen in equation 5.5, it is fairly straightforward to calculate the approximate number of network parameters from its hidden size and hidden number of layers. It is therefore possible to give a suggestion for these settings based on the amount of parameters that are needed (although a definite answer cannot be given because two variables would need to be determined at the same time). It is therefore conceivable to go with a suggestion for these settings if the user does not specify anything else, and to print warnings if the user has chosen very different settings to those that are deemed ideal for the amount of target points.

The learning rate can be made more autotuned than it currently is, too. At the moment it is decreased by a fixed factor Epsilon if the error rate on the test set plateaus or increases. One could, however, autotune this Epsilon by keeping it high and close to 1 first, then decreasing it if the error rate still does not improve. One could also increase the learning rate if the error rate decreases but does not do so quickly enough. This would work with the same mechanism used with Epsilon but in reverse, and one could use a factor Zeta > 1 to increase the learning rate until shortly before the point where the performance on the training set becomes unstable, i.e. where it does not decrease uniformly but starts to jump around. The performance on the training set is used because it is assessed more frequently and allows for a more real-time adjustment of the error rate. Similarly, the SGD momentum can be decreased if the error rate is fairly high and unstable on the training set, and increased if the error rate decreases steadily but not quickly enough. Methods for implementing this exist in pytorch. This provides two levers, the learning rate and the SGD momentum, which should be used first if the error rate starts looking fishy.

In addition, the weight decay can be increased if the error rate continues to show room for improvement. The amount of training steps can likewise be autotuned: When adjusting the learning rate and SGD momentum do not show more effect, the training can be aborted, no matter which epoch the training is in. This saves compute resources.

At the point of writing this, two automations are almost completely implemented: The initial training is repeated with a fresh discriminator and a freshly rebalanced initial dataset if the error rate is above 40%. Also, if the scan repeatedly fails to propose new data containing at least one good and one bad point, it aborts. This should be kept this way; however, in the latter case the proportions of FromGood and, if implemented, FromGroup and FromInteresting points should be adjusted before giving up.

To wrap this up, a lot of settings can be autotuned. This might provide further efficiency gains and make AL scans easier to use as well. The aim of this subsection is that whoever continues with this work will deem it a good starting point for optimizing these scans.

Combining different scans

As has been evoked earlier on, one of the big difficulties of tuning AL scans is that the network needs to be suitable for large and small amounts of points because it will train on small batches of new points but periodically train on the full dataset too. It is conceivable that one might train a fresh neural network on the AL-generated points to obtain plottable border lines, as has been done e.g. in section 4.4.

This does not work for all models, however: In the SMSQQ, a neural network with the same settings failed to train at all, see section 4.5.3. Tuning parameters, one can obtain a fresh network with an error rate of 33.7% on the test set of 200k AL-generated SMSQQ points by decreasing the learning rate by a factor of 10 and the SGD momentum by a factor of 20. Further finetuning does not lead to significantly better results. This stands in comparison to an error rate of 13.9% for the old network from the AL scan. In other words, it is up to the user to see whether they want to retrain a neural network on the AL-generated data or not. Whether this is worth the effort depends largely on the model at hand.

As has been seen in the example of the MDGSSM (see section 4.6), AL scans can also be used to produce a gatekeeper which can tell with relative accuracy whether a given point is valid or not. This is particularly adequate to use for models where the regions of good points are not well defined. AL scans are still capable of finding interesting points and producing better discriminators than neural networks trained on random points, which becomes evident when tested on other interesting points (see section 4.6.2). The resulting networks can be used for a subsequent MCMC scan, where other observables besides those covered in the AL scan might be explored.

RFCs can in principle also be used as gatekeepers. The advantage is that they are much quicker to train; however, the result is also less accurate than what can be achieved with an AL discriminator. There is another possibility for using RFCs, though: Similarly to the point selection algorithms FromGroup and FromInteresting, one could imagine having a point selection algorithm FromRFC. This RFC would be trained on the initial dataset, and then tested on potential new input points. Only those points which the RFC misclassifies are then used in the AL scan, because these have a higher probability of being interesting. The ways of using this FromRFC algorithm are manifold: One could pass all potential input points through it, almost like another sort of gatekeeper, before passing them to KfromL or directly to the AL discriminator. One could pass random points through it, and treat FromRFC points as another source of points just like FromGood and the others. Or one could use any combination of the two.

Another, more straightforward perspective for combining scans is using points from another scan, for example a grid scan, an MCMC scan, or another AL scan, as an input file for an AL scan. This is another big advantage of AL scans: They are infinitely expandable and combinable with other scans. This makes them not only a powerhouse tool in themselves, but also something like a glue that binds other scans together in the best possible way.

Conclusions

In this chapter, the burgeoning role of AL scans for parameter space explorations of new BSM models has been further cemented. In the first section, MCMC scans were pushed to their limit by using the optimal scaling functions. This brought some efficiency gains, as was illustrated on the example of the SMSQQ. Regardless, the performance of even the best MCMC scan remained a far cry from what had been seen earlier with AL scans.

An alternative scanning framework called MLS was discussed but quickly dismissed due to several disadvantages. First, MLS contains up to two neural networks. Two networks mean more than double the finetuning effort because the networks need not only be adjusted to the task at hand, but also to each other. Given the already considerable effort needed for AL scans, an MLS with one network is the only option worth considering. Second, MLS learns not whether a point is good or bad, but instead learns to predict each observable, or a likelihood constructed thereof. This makes sense in scenarios where more information is needed, or where exclusion limits appear often, leading to constant updates. For much of BSM physics, however, this is not appropriate because new exclusion limits do not appear every week. Moreover, the amount of necessary computing effort rises with this predictive power. This poses a problem particularly with higher-dimensional models, where larger computers might be needed to produce the same insights that an AL scan would provide.

Random forest classifiers are another alternative. They are tempting because they are almost black-box programs which require very little configuration and train very fast. The disadvantage is that they are not very accurate. Pushing an RFC on SMSQQ points to its limits via finetuning confirmed this for the model at hand. Unless one embeds them in a similar framework as an AL scan, they also do not have the power to find new interesting points. This makes RFCs useful for crude pre-searches, but unsuitable for any precision work.

Despite the fact that AL scans are at this point already very efficient, there are many ways to develop them further. They might be made even more efficient by autotuning scan settings at runtime. This would also make them more user-friendly because the end user would not have to think about and understand so many different settings anymore. In this chapter, concrete ways of autotuning several settings were proposed. Implementing and testing them is left for future work.

In conclusion, AL scans stand as the clear winner when it comes to working out the boundaries of BSM models. Their efficiency and usability might be further improved through autotuning settings in future work. In comparison to many other scans, AL scans are, despite the additional training overhead, outstandingly compute-efficient while delivering similar or better results than their established counterparts.

Conclusion

Crises exist, and will continue to, perhaps until the last day that humanity sees on Earth (or Mars, or wherever the rich and privileged manage to end up once our planet has become uninhabitable due to their actions). That does not mean that people should not do their best to avoid them, or at least navigate them as well as possible. Disease, war, and hunger are preventable and worth avoiding, aren't they?

The particle physics community is facing several crises itself, albeit not half as threatening as disease, war, or hunger -apart from those unlucky researchers who find themselves in geographically unfortunate locations, of course. Philosophically, however, the overarching question troubling particle physicists, Are we thinking about the Universe correctly, and if not, how do we fix it?, is, in an admittedly very ivory-towery arrogance, grander than that of everyday public crises (Will Grandma get fit again? Will uncle Sergei return from the front alive? Do we have enough money to feed the family another day?).

What makes the present-day state of particle physics a crisis is that clearly the way the community is thinking about the Universe is, if not false, flawed and incomplete. It is not clear what approach would fix this, or where to search for evidence next. Hence the monsoonlike flood of papers about this theory and that theory that will explain everything, and this experiment and that experiment that will prove everyone wrong (or right?). This thesis did not aim to become like one of these papers. Although it is understandable if a seasoned researcher thinks they might have the final clue for the understanding of the Universe, it would be nothing short of hybris if a little PhD student thought they had all the answers. Albert Einstein apparently once said, If I had an hour to solve a problem I'd spend 55 minutes thinking about the problem and 5 minutes thinking about solutions. The author's name is not Albert, so this was not the approach that was taken in this work. Nevertheless, a not insignificant amount of pages (chapters 1 and 2) was written with the aim of providing the reader with all the necessary building blocks for understanding the many facets of the big fat state of crisis that particle physics is in today, and how to potentially address them. The beautiful, flawed, incomplete Standard Model was (re-)introduced, too short to be comprehensive, too long to be concise, and the reasons for its insufficiency were laid out. One classic approach for solving many of these insufficiencies was presented, along with several of its models: supersymmetry. Another particular insufficiency, dark matter, was treated with a bit more candour than the rest of them, and a little model dedicated to explaining it was presented as well. Then, the technicalities of BSMArt, serving to scan parameter spaces of new models like the ones just discussed, were introduced. This both served the purpose of reproducibility, and as an illustration so the reader had a better idea what was concretely being done in the subsequent chapters.

The remaining three chapters were, in essence, Einstein's five minutes of problem solving. To catch a glimpse of how long the path to finding dark matter might be, and to demonstrate how colourful unitarity bounds can provide important contributions, an upper limit on the scalar singlet of the SMSQQ was established in chapter 3. This cannot be done in a modelindependent way; however, because it is fast and easy to do in BSMArt, such bounds can be used to quickly exclude dark matter models as soon as new experimental limits become available. An upper mass limit is not at all an indicator of a possible solution to the dark matter conundrum. It does, however, provide a roadmap, an exit perspective, a glimpse of hope for an end for a long search, as futile or fruitful as it may become.

In chapters 4 and 5, the tool BSMArt was shown to be able to do a lot more than finding upper mass limits. The SMSQQ mass limit was refined, but the boundaries of the SMSQQ model were also further explored in their entirety. This was largely possible because of the power of active learning scans, compared to more established MCMC scans. In models where there are no distinct boundaries between good and bad regions, AL scans were nevertheless able to produce a "gatekeeper," i.e. a discriminator that can distinguish between good and bad points and that can be employed for a subsequent scan to save time and compute resources. It was also shown that even if other scanning algorithms were pushed to their utmost limits, AL generally performed a lot better. Nevertheless, it should be pointed out that researchers may scan parameter spaces for many different purposes apart from boundary exploration, and they might be using models that the author never even considered in their dreams. AL scans thus represent a powerful tool for many purposes, ready to coexist alongside the established ones.

These two aspects, being able to provide a model-specific upper limit for dark matter masses, and providing a valuable piece of machinery to explore models in a simple and effective way that is light on compute resources, might be very useful for the particle physics community. They are no solution to the crisis it is currently in; they are, however, powerful tools to better navigate it and potentially get through it faster.

Let us not forget, however, in all the grandeur of us questioning the inner workings of the Universe, that other people are facing much more existential crises to their livelihoods and very existences. It is, clearly, intellectually stimulating to think about why the Universe is this and that; but these questions are only really worth asking when one is healthy enough to think, peaceful enough to function, and well-fed enough that they do not need to worry about surviving until tomorrow. It is in the interest of the particle physics community to grow, to attract minds as bright, and brighter, than our own. In this sense, it is the responsibility of every good physicist to also care about the more mundane questions of life, and to give back to those people who have great minds but not as many resources to effectively put them to work. Let us reach out to these people, wherever they might be, whatever their colour, religion, gender or disability status. Let them have a piece of our compassion, our kindness, our helpful hands. They'll give back to us in due time -and if it's the keys to understanding the Universe.

B.1 A new option for the cut-level of poles

In [START_REF] Goodsell | Unitarity constraints on general scalar couplings with SARAH[END_REF], several settings for the unitarity routines were outlined. For completeness, and to correct a misprint there, here the correct and updated complete options are given: where cp1[i], cp2[j] are the first and second (if present) couplings in the diagram, and i, j here refer to the number of the colour structure. So for the first line, there is a coloursinglet scattering via an s-channel pole, where

Q P , Q P → Q M , Q M .
The couplings in each case here are -vλ 3 and -vλ 4 and the overall colour factor is √ 3 × √ 3 = 3, similar to the cases in section 3.2. The second line involves the scattering Q E , Q E → S, S via the t-channel exhange of Q M in the singlet representation. The colour factor here is again as derived in section 3.2.

The third and fourth lines show a quartic coupling, so prop is given as 1 (since there is no propagator). However, the colour representations are 3 and 6 respectively, and the two possible colour structures of the quartic coupling are involved. Recall that the Lagrangian term is -λ 5 |Q E | 4 , so the two structures are δ ij δ kl and δ il δ kj , both with coupling -2λ 5 in this case. Hence the net result for the antisymmetric term is 0, and for the symmetric one it is -4λ 5 , exactly as is found in section 3.2.

One final note about the routines to avoid confusion: SARAH actually calculates the matrix for -a 0 and then takes the absolute values of the eigenvalues.

B.3 Splitting into CP eigenstates

With the inclusion of more fields, the program must find the eigenvalues of a larger scattering matrix and it is desirable to find simplifications where possible. In much the same way that the representations under charge and the strong force are used to decompose into scattering blocks, CP can also be used to reduce the rank of the matrices. If the user places the line § ¤ UNITARITYCP=True ;

¦ ¥ in the file SPheno.m for the model, SARAH will attempt to assign CP charges for the states and decompose the scattering matrices accordingly. The user should find that the result is entirely unchanged, but for more complicated models some performance improvement may be found.

Sujet : Aller au delà du Modèle Standard en temps de crise

Résumé : Le dernier triomphe du modèle standard (SM) de la physique des particules, la découverte du boson de Higgs, remonte désormais à dix ans. Malgré les nombreux efforts déployés depuis pour trouver de nouvelles particules ou des déviations par rapport au SM, la communauté n'a trouvé, très précisément, pas grand-chose. 

Subject : Reaching beyond the Standard Model in times of crises

Abstract: The last triumph of the Standard Model (SM) of particle physics, the discovery of the Higgs boson, is a decade old by now. Despite the many efforts since then to find new particles or deviations from the SM, the community has found, quite precisely, not much. This is worryingsome would say a crisis -because the SM is known to be flawed and incomplete since its conception. One big pain point is that it does not account for dark matter. Alternative models often contain additional particles which could be dark matter candidates. One such model, the SMSQQ, is investigated in this work and an upper mass limit for dark matter is found using unitarity constraints. The result is not generalizable but the procedure of scanning the parameter space is applicable to other models. To this end, the parameter space scanning tool BSMArt and, in particular, its active learning (AL) algorithm, are developed and introduced. However, like many other models the SMSQQ fails to address other issues with the SM. Supersymmetry (SUSY) could help out because it resolves several of them at once. The power and versatility of AL scans is demonstrated on the SMSQQ, as well as SUSY models like the constrained MSSM and the MDGSSM. In addition, ways to further automate them are discussed. AL scans can, hopefully, become an important tool to get the community beyond the SM and through the current crisis. 
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 11 Fig. 1.1 Incomplete overview over DM candidates. The candidates further explained in the text belong to the WIMPs and axions. Image by author, with inspiration from [204].

  H d are the superfields for the left-handed squarks; left-handed sleptons; right-handed up-type squarks; right-handed down-type squarks; right-handed sleptons; down-and up-type Higgs fields as in the MSSM. The entries Y ij u , Y ij d , Y ij e are the Yukawa couplings like in the MSSM. The most general choice that can be made for the Higgs and adjoint scalar sector for the standard soft terms is:

Fig. 2 . 1

 21 Fig. 2.1 Workflow of tools used in this this work. All files relevant to the model are generated with SARAH. Then, BSMArt is used to tie all HEPtools together and generate relevant points in the parameter space of the model. The results are then evaluated.

Figure 2 .

 2 Figure2.1 shows the tools that are used in this work, and how they interact with one another. SARAH[271,[START_REF] Staub | SARAH 4 : A tool for (not only SUSY) model builders[END_REF][START_REF] Staub | Linking SARAH and MadGraph using the UFO format[END_REF][START_REF] Staub | Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies[END_REF][START_REF] Staub | From Superpotential to Model Files for FeynArts and CalcHep/CompHep[END_REF] is used to generate the relevant model files (more about it below). It is not part of BSMArt; however, it seamlessly integrates in its workflow. SPheno[START_REF] Porod | a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e-colliders[END_REF][START_REF] Porod | SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM[END_REF] is used to generate the SUSY spectrum of every point. Then, if needed, the spectrum is passed to MicrOMEGAs[START_REF] Belanger | micrOMEGAs: Version 1.3[END_REF][START_REF] Belanger | Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios[END_REF][START_REF] Belanger | MicrOMEGAs: A Program for calculating the relic density in the MSSM[END_REF], which calculates the dark matter relic density and related observables. Finally, the VacStab routine checks whether a point is excluded by vacuum stability or not. Passing one point from one tool to another is automated with BSMArt. It also handles the generation of new points with whichever scan one chooses, and writes the relevant output and log files for subsequent evaluation by the user.In the following, SARAH and the three listed HEPtools are presented in further detail. In addition, MadGraph[START_REF] Alwall | MadGraph 5 : Going Beyond[END_REF] is briefly presented. It is not used in this work; however, since it is already available in BSMArt, it is worth talking about for the sake of completeness.

Fig. 2 . 2

 22 Fig. 2.2 Example procedure of a decision tree distinguishing cats and oranges. The tree keeps asking questions and splitting datasets until each subset contains only one category. For more information see text.

  ask different questions, every tree has a different risk of getting the classification of a specific new picture wrong. Averaging the responses of every tree safeguards against this.
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 24 Fig. 2.4 Schematic of a basic AL scan. The discriminator first trains on an initial dataset. Its knowledge is then used to select interesting points. These get passed to HEPtools for evaluation. The discriminator trains on the obtained points, and a new sample of points is selected.

2

 2 Trilinears excluded by unitarity alone 86

[ 1 ]

 1 M. D. Goodsell and R. Moutafis, How heavy can dark matter be? Constraining colourful unitarity with SARAH, Eur. Phys. J. C 81, (2021) 808. arXiv:2012.09022.
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 32 Fig. 3.2 Top: distribution of points as a function of m S . There is a clear cutoff at m S ∼ 47 TeV. Bottom left: the ratio of the coupling κ against m S . While it peaks at around 3.5, there are values around 9, too. Bottom right: the ratio of κ and the highest mass (being either m S or m O ). There is a clear cutoff at about 3.5, and a peak around 2.5. The y-axis shows, in all three plots, how many of one million scan points made it through all cuts.
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 33 Fig. 3.3 Top: distribution of m S after various cuts. Middle: the same for κ.Bottom: the same for Λ. One can see that the cutoff at Λ ∼ π is due to unitarity. The y-axis shows, in all three plots, how many of one million scan points made it through each cut, respectively. In contrast to figure 3.2, these plots do not contain any information about which points make it through two or more cuts.
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 34 Fig. 3.4 Distribution of κ against m S after various cuts. From left to right, top to bottom: after vacuum stability, after dark matter, after unitarity, and after all cuts. A direct comparison of the plots is not possible due to differing scales (see colorbars).
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 35 Fig. 3.5 Distribution of Λ against m S after various cuts. From left to right, top to bottom: after vacuum stability, after dark matter, after unitarity, and after all cuts. One can see that the cutoff at Λ = π is due to the unitarity constraint. A direct comparison of the plots is not possible due to differing scales (see colorbars).
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 36 Fig. 3.6 Distribution of κ against m O after various cuts. From left to right, top to bottom: after vacuum stability, after dark matter, after unitarity, and after all cuts. A direct comparison of the plots is not possible due to differing scales (see colorbars).
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 37 Fig. 3.7 Distribution of κ over the biggest mass (from m S and m O ) against Λ. Top left: valid points after the vacuum stability cut. Top right: same after dark matter cut. Bottom left: same after unitarity cuts. Bottom right: same after all cuts. For values above ∼ 2, one observes a linear relationship where κ/m max Λ. The z-axis shows how many of one million scan points made it through the cut(s). The colour code is again normalised for each plot separately.

m

  S = (47,354 ± 0.5) GeV, m O = (53,874.7 ± 0.05) GeV, m E = (39,025 ± 0.5) GeV, κ = (174,121 ± 0.5) GeV, Λ = (3.05993 ± 5 • 10 -6 ).

m S = 26 .

 26 07 TeV, m O = 28.8 TeV, m E = 7.21 TeV, κ = 73.6 TeV, Λ = 2.645. (3.40)
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 2 M. D. Goodsell and A. Joury, Active learning BSM parameter spaces, (2022), preprint, arXiv:2204.13950, and is being prepared for submission to a journal at the time of writing.
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 4 Fig. 4.1 20,000 AL-generated points for more toy models. Top panel: donut; bottom panel: blobs. Note how the oracle and the discriminator match snugly even around multiple interesting regions or regions with holes.

Fig. 4 . 2

 42 Fig. 4.2 AL-generated points of various toy models with 20,000 points each. From top to bottom, left to right: straight line, ellipse, bean, squiggle, pizza, demicircle, circle segment, and beams. Note how well the discriminator (solid blue line) and the oracle (dashed golden line) match, even with pointy or irregularly shaped objects, and that all points the discriminator is uncertain about or misclassified are on the oracle / discriminator lines.
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 43 Fig. 4.3 Point distribution in the m 0 -m 1/2 plance of the MSSM with 20,000 points each. Top panel: AL scan; bottom panel: MCMC scan. The dark line indicates the location where the disciminator puts the line between good and bad points, as evaluated on a grid with 100 divisions in either direction. The bluegreen shaded area is the region with a charged LSP, which was not taken into account in the discriminator or MCMC scans.
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 44 Fig. 4.4 Comparison of the first and last 10k points in the AL SMSQQ scan with 200k points. Left: the κ -m S plane, right: the κ -Λ plane. The top row shows the point distribution of the first 10k points, the bottom that of the last 10k points. In these plots, the light blue star indicates the location of the point with the highest singlet mass of that subset of data; the dark blue star the location of the highest singlet mass overall.
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 45 Fig. 4.5 Comparison of the first and last 10k points in the AL SMSQQ scan with 200k points, as a colour-coded summary. In a 100-by-100 grid, in each bin the number of points in the first and last 10k points are subtracted from one another. The dark blue star indicates the location of the point with the highest singlet mass m S in the whole dataset, the red one that of the first 10k points and the light blue one that of the last 10k. Note how, again, the area of interest broadens with time as the discriminator explores the borders of the regions of good points.
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 46 Fig. 4.6 Comparison of the discriminator results in the first versus the last 10k AL-generated points. Top panel: κ -m S plane; bottom: κ -Λ plane. The dark blue star indicates the location of the point with the highest singlet mass m S in the whole dataset, the red one that of the first 10k points and the light blue one that of the last 10k. Note how the discriminator explores the border as more points get introduced. In each cell of a 100-by-100 bin grid, the average discriminator value of the first 10k points and the last 10k points are taken, then subtracted from one another. Thus, red or orange indicates areas where the discriminator was confident about finding good points among the first 10k points. Dark or light blue indicates areas where it was confident about finding good poitns among the last 10k. Grey areas indicate that the confidence in these points is roughly equal for the first and last 10k points.
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 47 Fig. 4.7 Distribution of the discriminator values interpolated from a 100x100 grid.The dark purple star indicates the location of the point with the highest singlet mass m S . Take note of the substructures in the regions with good points: Along some borders, like e.g. the upper border in the κ -m S plane, the discriminator is quite sure about finding good points. Along other borders, for example the upper border in the m S -Λ plane, it is not as sure. On "fuzzy" borders, like e.g. the upper border in the m S -m O plane, the discriminator tends to produce blotchy results -as one would expect.
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 4 Figure 4.9 shows a comparison of the points explored by the AL versus those of the MCMC.The first thing to jump to the eye is how much larger the region is that the MCMC covers. This does not speak in favor of the MCMC, however. While it does find 283 good points out of 200k total (versus 70 out of 200k for a random scan), the AL finds a whopping 85,291 good points. Not only is this an enormous difference in numbers; as established earlier, the good points that the AL scan finds tend to be of a higher quality because they are more often than not close to the borders of the good regions and thus help finding boundaries better. On the other hand, the AL scan failed to find a region of good points at κ > 140,000 GeV and m S < 30,000 GeV. This failure might have been mitigated by adding more random points to explore the rest of the parameter space, increasing the diversity measure, or generating more initial random points. Nevertheless, this shows that the AL scans can be quite sensitive to tuning parameters. The author deems it feasible to build a similar scan which tunes relevant parameters automatically; however, this is left for future work.On the whole, and despite the one non-identified region, the advantages of AL scans are quite apparent from this figure.Of course the AL scan takes longer to execute than the MCMC scan given a fixed amount of points to scan over because in addition to proposing points and running HEPtools (which both scans do), the AL scan also needs time to train over the datasets. Exact estimates are impossble to give because the training time depends on the model, the diversity of the points at hand, and the scan parameters. In the present
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 49 Fig. 4.9 Comparison of MCMC-versus AL-generated points in various parameter planes of the SMSQQ model. The dark pink star indicates the location of the point with the highest singlet mass m S found by the MCMC, the dark blue star the one found by the AL. The solid lines indicate the location of good points. Note how many more good points the AL finds than the MCMC, and how much the region of all AL-generated points closely matches the surroundings of the good points while still exploring the parameter space.
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 4 Fig. 4.10 Distribution of good and bad points in various planes of the MDGSSM. Generally speaking there is visible structure for planes along -λ S , and just a little to almost no structure in all other planes. Even in the more insightful figures, it is hard to visually separate good regions from bad ones.
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 51222 Variable ranges for the sequence of MCMC scans, as performed for the work in chapter 3. Scan 6 is used for the final presentation of results. Note the shift from m from scan 3 to ensure m O ≥ m S while scanning. For the work in chapter 4, m 2
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 11 around µ : L obs = 1 at x = µ and L obs → 0 for x → ±∞ UPPER 1 + exp x-µ σ an upper boundary: L obs → 1 for x << µ and L obs → 0 for x >> µ boundary: L obs → 0 for x << µ and L obs → 1 for x >> µ BIAS (x/µ) σ useful for pushing observables up-or downwards, depending on the choice of µ USER -user-defined, e.g. from micrOMEGAs
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 51 Fig. 5.1 Distribution of various variables in the SMSQQ, comparing the MCMC without scaling and the MCMC with scaling as in table5.3. These are denoted MCMC1 and MCMC2, respectively, following the specification in table 5.4. The pink star marks the point of the highest singlet mass as found by the MCMC1 scan; the purple star that found by the MCMC2 scan. The MCMC2 does focus better on the region of good points; however, the MCMC1 pushes towards higher singlet masses.
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 52 Fig. 5.2 Distribution of various variables in the SMSQQ, comparing the MCMC2 scan with old and the MCMC3 scan with new scaling as in tables 5.3 and 5.4, respectively.The pink star marks the point of the highest singlet mass as found by the MCMC3 scan; the purple star that found by the MCMC2 scan. The MCMC2 does focus slightly better on the region of good points; however, the MCMC3 pushes towards higher singlet masses.
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 53 Fig. 5.3 Distribution of the submatrix element a 0 and the relic density Ωh 2 in the three MCMC scans in the SMSQQ model as shown in table5.4. One can see that the MCMC2 and MCMC3 scans do a fairly good job at sampling points close to the border between good and bad points. The MCMC1 scan does not perform as well. Overall, the MCMC3 scan does best at finding interesting points. Note that a logarithmic y-axis is used to illustrate that the whole range is populated with points. There are points outside the shown range as well, but their number is small.
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 54 Fig. 5.4 Visualization of the origin of points for a new training cycle. The random proportion of 40% is an example and corresponds to a training error of 20% on the test set. The FromGood points are always 20% of the random proportion and 90% of the KfromL proportion, respectively, in the current version of the AL scan. The random proportion gets fed to the discriminator directly, the other passes through KfromL to find the points that the discriminator might learn most from.
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 5 6 shows the impact of not training on the full dataset often enough, as exemplified on the demicircle. The top panel shows the result when training on the full set after every 8 training cycles; the bottom panel shows the result when not training on the full set at all and relying on the new points for training. The overall distribution of points looks
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 55 Fig. 5.5 Point distribution and discriminator performance on a donut and a pizza slice. Top:The discriminator only has K = 1000 initial points to learn the donut shape, not 5000 as previously in section 4.3. Bottom: The discriminator learns the pizza slice with the settings of most other models, i.e. K initial = 1000 and α = 0.005. Note that if either K initial = 5000 or α = 0.015, the result is comparable to that obtained earlier.
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 56 Fig. 5.6 Point distribution and discriminator performance on a demicircle. Top: The discriminator retrains on the full dataset every 8 training cycles and starts with only K = 1000 initial random points, as is the case for most toy models in section 4.3. Bottom: The discriminator never trains on the full dataset again; instead it only trains on the newly proposed points in each training cycle.
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 57 Fig. 5.7 Distribution of the submatrix element a 0 (top panel) and the relic density Ωh 2 (bottom panel) in the AL and the MCMC scans in the SMSQQ model. One can see that the AL scan samples points very close to the border, but the MCMC does not do this as much. Note that logarithmic y-axes are used to illustrate that the whole range is populated with points. There are points outside the shown range as well, but their number is small.
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 58 Fig. 5.8 Distribution of various variables in the SMSQQ, comparing the MCMC and AL scans. Top: κ -m S plane; bottom: m S -Λ plane. The pink star marks the point of the highest singlet mass, as found by the MCMC scan; the purple star that found by the AL scan. These figures are very similar to figure 4.9, despite the fact that the MCMC has been pushed towards the limits of the good regions intentionally. This illustrates the applicability of the AL scan, and the natural limitations of the MCMC.
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Table 1 .

 1 2 -Basic types of N = 1 multiplets.

	.41)

Table 1 .

 1 closed 3 -Fate of the Universe depending on the parameter k. More details see text.

Table 2 .

 2 to what is the case with RFCs (see section 2.2.1), most additional settings for neural networks ultimately aim at preventing overtraining.In table 2.1, the network settings that are used in the remainder of this work are listed. The example values therein, and the values listed in chapters 4 and 5, should guide a novice 1 -List of settings of neural networks used in this work. Example values are listed to give an impression of the order of magnitude of each setting; they may differ depending on the task at hand. For more information see text.

	Setting	Example value Comments
	Hidden Layers	3	Amount of hidden layers in a network
	Hidden Size	100	Amount of nodes per hidden layer
	Training steps	5000	Number of times that the network is trained on data
	Learning Rate	0.001	How much the weights are changed in each step to
			minimize the loss function
	SGD momentum 0.1	Helps weights adjust in the correct direction
	Weight decay	0.001	Causes weights to decay to zero if no other update
			happens

Table 2 .

 2 Together with the values listed in

	Setting	Example value	Comments
	InitCSV	initpoints.csv File containing points to do initial training on
	K	500	Amount of new points generated in each training
			cycle
	L	100,000	Amount of points from which K interesting ones
			are selected
	Number of points 100,000	Amount of points to be generated
	Diversity Alpha	0.5	Measure of importance of distance of new points
	FullTrain	10	Train on full dataset after every so-many training
			cycles

2 -List of basic settings of AL scans used in this work. More settings are listed and explained in later chapters. Example values are listed to give an impression of the order of magnitude of each setting; they may differ depending on the task at hand. For more information see text. chapters 4 and 5 a novice should be able to conjure fairly good initial settings and fine-tune them in a small number of iterations.

Table 4 .

 4 

			Exceptions	Comments
	Number of points	20,000 -	Total number of points per
				scan
	Initial random points 1000	Pizza, Donut: 5000;	Number of random points
			Demicircle: 8000	for initial training
	K	100	-	Number of points added
				per iteration
	L	5000	-	Number of random points
				from which the K most in-
				teresting ones are selected
	Diversity Alpha	0.005	Pizza, Demicircle: 0.015	Adjusts the distance of the
				K points
	FullTrain	8	Donut, Demicircle: 4	After this many iterations,
				retrain on whole dataset
	Hidden Layers	2	-	Number of hidden layers in
				the network
	Hidden Size	100	-	Number of nodes per hid-
				den layer
	Learning Rate	0.001	-	How much the weights are
				changed in each training
				step
	SGD momentum	0.05	-	Stochastic gradient de-
				scent momentum, helps
				gradient vectors accelerate
				in the right direction
	Training steps	2000	-	Number of training steps
	Weight decay	0.001	-	Penalty to loss function,
				helps prevent overtraining
	Epsilon	0.3	-	The learning rate decreases
				by this factor if the train-
				ing error goes up

1 -Network settings for the toy models. Note that only 3 out of 10 models need additional finetuning, which speaks for the flexibility of the classifier.

Table 4 .

 4 2 -Maximum singlet mass found in old MCMC scan and new MCMC scan with 1 million points each. The maximum singlet masses of the 200k MCMC and AL scans are also shown. The latter are very close to one another, despite the fact that only the MCMC was explicitly forced to prioritize high masses. The margin of error is taken to be purely statistical and is estimated to be about 0.5% on all values, as was deduced by evaluating a series of scans in the SMSQQ.

	points)	47,354	53,875	39,025	174,121 3.05993
	new MCMC (1m points)	48,392	56,583	42,921	185,782 3.12349
	MCMC (200k points)	45,831	55,334	38,514	173,010 3.09748
	AL (200k points)	45,964	50,699	38,116	169,510 3.11153

Table 4 .

 4 3 -Network settings for the two main AL scans in the SMSQQ. The learning rate of the larger network is smaller because it otherwise diverges. Explanations of each setting can be found in table 4.1 and in the text.

		50k scan 200k scan
	Number of points 50,000	200,000
	Initial points	0	50,000 from previous scan
	K	1000	300
	L	500000	100000
	FullTrain	0	0
	Hidden Layers	2	5
	Hidden Size	100	200
	Learning Rate	0.001	0.0001
	SGD momentum 0.1	0.1
	Training steps	1000	5000
	Weight decay	0.001	0.001
	Epsilon	0.9	0.9
	Diversity Alpha	0.5	0.5

Table 4 .

 4 5 -Benchmark comparison of RFC, AL, and various neural networks (NN

	classifier training points	200k random	percent error testing on 200k AL points 24k RFC-
			points		misclassified
					AL points
	RFC	AL 200k Random 200k	18.7 4.8	27.2 44.0	100 100
	AL	AL 200k AL 50k	1.6 1.6	13.9 28.4	21.6 38.5
		AL 200k	-	-	-
	NN	AL 50k Random 200k	1.6 -	28.4 -	38.5 -
		Random 50k	15.8	42.9	49.1

Table 4 .

 4 [START_REF] Campagnari | The Discovery of the top quark[END_REF] -Benchmark like before but on the first 50k points, with smaller ranges and only K = 500 initial points. The neural network fails to train properly with 50k points, but succeeds with the smaller datasets.

	classifier training points	percent error testing on 50k random points 50k AL points 12k RFC-
					misclassified
					AL points
	RFC	AL 50k Random 50k	33.6 6.2	31.1 44.7	100 100
	AL	AL 50k AL 13k	29.4 16.8	24.7 30.6	31.3 54.4
		AL 50k	-	-	-
	NN	AL 13k Random 50k	19.6 -	13.1 -	19.2 -
		Random 13k	30.6	40.0	42.8

Table 4 .

 4 [START_REF] Kodama | Observation of tau neutrino interactions[END_REF] -Network settings for the two AL scans in the MDGSSM. As in the SMSQQ, the learning rate of the larger network is smaller, otherwise it diverges. Explanations of the settings can be found in table 4.1 and in the text.

	This occurs

Table 4 .

 4 

8 -Variable ranges for the two AL scans in the MDGSSM.

Table 4 .

 4 9 -Benchmark of AL, RFC, and neural networks on the MDGSSM. There are 58k-63k non-null AL-generated points out of 100k total points, and 62k random points of 100k.

	classifier training points	percent error testing on 62k random points 63k AL points 17k RFC-
					misclassified
					AL points
	RFC	AL 58k Random 62k	18.2 19.3	31.6 32.6	100 100
	AL	AL 58k AL 24k	3.3 6.7	10.4 17.3	13.8 22.3
		AL 58k	2.9	5.6	9.3
	NN	AL 24k Random 62k	5.3 2.4	14.1 7.9	23.0 13.7
		Random 24k	5.9	16.4	23.8

Table 5 .

 5 3 -Scaling functions for the observables of each model discussed in chapters 3 and 4.

	model	observable scaling µ	σ	remarks
	SMSQQ	m S	BIAS	10,000 0.2	not scanning below 10,000 GeV,
						therefore this is pushing for higher
						singlet masses
		m O	OFF	-	-	linear version (scan input is squared)
		m E	OFF	-	-	linear version (scan input is squared)
		Ωh 2	UPPER 0.112	0.001 favouring good (low) relic densities
		DD	OFF	-	-	direct detection exclusion criterion
		TreeU	OFF	-	-	tree level unitarity exclusion criterion
		TriU	OFF	-	-	trilinear unitarity exclusion criterion
		TriU_a0	UPPER 0.5	0.001 value of a 0 , the scattering matrix el-
						ement
		VacStab	UPPER 1.0	0.2	vacuum stability exclusion criterion
	MSSM	Ωh 2	LOG	0.112	0.05	favouring the most interesting (not
						necessarily good) relic densities
	MDGSSM m H	LOG	125	3	favouring good Higgs masses
		p-value	USER	0.05	0.01	p-value as calculated by micrOMEGAs
		Ωh 2	UPPER 0.112	0.1	favouring good (low) relic densities

Table 5 .

 5 4 -Overview over the MCMC scans over the SMSQQ which are compared in figures 5.1 and 5.2. All scans have a million points and run over the same ranges as those in chapter 4 (see table 4.4, column 200k AL / MCMC scan).

	After all, if the

  Ceci est inquiétant -certains diraient une crise -car le SM est connu pour être imparfait et incomplet depuis sa conception. Un gros problème est qu'il ne tient pas compte de la matière noire. Les modèles alternatifs contiennent souvent des particules supplémentaires qui pourraient être des candidats à la matière noire. Un tel modèle, le SMSQQ, est étudié dans ce travail et une limite de masse maximale pour la matière noire est trouvée en utilisant des contraintes d'unitarité. Le résultat n'est pas généralisable mais la procédure de scanner de l'espace des paramètres est applicable à d'autres modèles. À cette fin, l'outil de scanner de l'espace des paramètres BSMArt et, en particulier, son algorithme d'apprentissage actif (AL), sont développés et introduits. Cependant, comme de nombreux autres modèles, le SMSQQ ne parvient pas à résoudre d'autres problèmes avec le SM. La supersymétrie (SUSY) pourrait aider car elle résout plusieurs d'entre eux en même temps. La puissance et la polyvalence des analyses AL sont démontrées sur le SMSQQ, ainsi que sur les modèles SUSY comme le MSSM contraint et le MDGSSM. En outre, des moyens de les automatiser davantage sont discutés. Les scans AL peuvent, espérons-le, devenir un outil important pour amener la communauté au-delà du SM et à travers la crise actuelle. Mots clés : Physique des particules, Au delà du Modèle Standard, Matière Noire, Phénoménologie, Scans de l'espace des paramètres, Apprentissage automatique, Apprentissage actif

1.1 WHAT WE (DON'T) KNOW

CHAPTER 1. WHERE NEW PHYSICS IS HIDING
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Similarly, the user might have reasons to prefer a certain number of initial random points over another, perhaps more ideal, one. Nevertheless, it is somewhat more justified to automate this number at least partly. The initial points tend not to be the bulk of the dataset anyway, meaning that they are not usually what consumes the most compute resources. In Appendix A

SARAH implementation of the SMSQQ

Since the model described in section 1.2.5 is implemented in SARAH, here the relevant parts of the model file are listed, which is now also made public with version v4.14.4. The new fields in addition to the SM are given as § ¤

where the last line is the Z 2 symmetry charge. So QP, QM correspond to the fields 

¦ ¥

The colour structure for Lambda7 was not explicitly given and Lambda8 is also not included which has the same fields but a different contraction of the indices.

The routines for computing the vacuum stability constraints are detailed now. Beginning with the potential for the fields S, Q E , Q O one defines

161 where x, y, z are real and the other components of Q E , Q O are zero because this is the most unstable direction in field space. This yields a potential

of which one then takes the derivatives. These give three equations for which all the solutions can be found with HOM4PS2. However, first all of the dimensionful terms are rescaled by

Then the numerical value of the potential is calculated at each of the solutions that is found and, if the minimum value is not at the origin of field space, one notes that the vacuum is not stable.

Appendix B

New routines in SARAH

With the release of version 4.14.4, SARAH contains updated routines to calculate unitarity constraints for scalars including colourful states. For now, no other unbroken non-abelian groups are considered for the unitarity routines. The algorithm is as described in section 3.2, with the group invariants hard-coded for certain common representations -in particular for octet representations the f abc and d abc matrices -but otherwise calculated by the included routines from Susyno [START_REF] Fonseca | Calculating the renormalisation group equations of a SUSY model with Susyno[END_REF]. From the point of view of the user, the calculation functions exactly as in ref. [START_REF] Goodsell | Unitarity constraints on general scalar couplings with SARAH[END_REF] except that colourful scalars are automatically included, unless they are explicitly removed from the scattering (as is done by default for many models). However, some new features have been added to aid the performance, use and inspection of the results which will be described here.

444 : Set the number of steps in which SPheno should vary the scattering energy between √ s min and √ s max . SPheno will store the maximum eigenvalue. For positive values, a linear distribution is used, for negative values a logarithmic one.

445 : RGE running can be included to give an estimate of the higher order corrections.

446 : How t and u-channel poles are treated: 0 : No cut at all.

1 : Only the matrix element with a potential pole is dropped.

2 : Partial diagonalisation (default).

3 : Entire irreducible sub-matrix is dropped.

4 : Disregard all unitarity constraints for this value of s.

447 : The relative proximity to s-channel poles that is allowed,

With the new version, setting SPhenoInput 446 to 4 will cause the unitarity constraints to be disregarded for the value of s whenever a pole is found in an s, t or u channel of any diagram in any scattering submatrix, i.e. the program will continue to scan over the range of values of s in the hope of finding a valid constraint. This is the choice made in e.g. [START_REF] Betre | Perturbative Unitarity Constraints on the NMSSM Higgs Sector[END_REF] and is the most conservative condition that can be placed, especially if coupled with a large √ s min .

B.2 Storage of symbolic form for each diagram

As part of the upgrade to the unitarity routines, couplings having more than one colour structure are properly taken into account and stored in new routines within SPhenoCouplings.f90.

While not all functionality of SARAH will handle such couplings correctly yet (notably the loop decays) the unitarity routines and spectrum generation will give correct results. Here, prop is the field appearing in the propagator (or just 1 for a quartic coupling); Type is one of Q, S, T, U meaning quartic or s/t/u-channel; dyn1, dyn2, dyn3, dyn4 are the dynkin indices of the fields s1, s2, s3, s4. The fields are given as incoming states, and the ordering is s1, s2 → s3, s4 for s-channel and quartic interactions; s1,s3 → s2,s4 for the t-channel; and s1,s3 → s4,s2 for the u-channel. Some typical lines for the model described in this paper in the SARAH notation of appendix A would be 1 See equation [START_REF] Aebischer | NLO QCD Renormalization Group Evolution for Non-Leptonic ∆F = 2 Transitions in the SMEFT[END_REF] of [START_REF] Goodsell | Unitarity constraints on general scalar couplings with SARAH[END_REF].
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