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Résumé
Le monde produit 2,5 quintillions d’octets par jour1, appelés mégadonnées. Le volume,
la valeur, la variété, la vélocité et la véracité définissent les cinq caractéristiques du
Big Data qui représentent une complexité fondamentale pour de nombreux algorithmes
d’apprentissage automatique, tels que le clustering, la reconnaissance d’images et d’autres
techniques d’apprentissage modernes. Avec ces données volumineuses, les estimations
d’hyperparamètres ne prennent pas la forme de la moyenne de l’échantillon (non linéaire),
mais celle de la forme de la moyenne sur m-tuples, appelée l’estimateur U -statistique.
Nous considérons dans cette thèse la collection de U -statistiques, connue sous le nom de
U -processus, pour deux types de variables dépendantes, les données Markoviennes et les
variables aléatoires localement stationnaires. Ainsi, nous avons divisé notre travail en
deux parties pour aborder chaque type indépendamment.

Dans la première partie, nous considérons les variables Markoviennes. Nous nous
concentrons particulièrement sur les développements de U -processus bootstrappés dans
un cadre de Harris. L’idée fondamentale utilisée repose sur les méthodes régénératives
consistant essentiellement à diviser l’échantillon en blocs de données indépendants et
identiquement distribués (i.i.d.), où chaque bloc correspond à des segments de chemin
entre deux visites à un atome appelé A formant une séquence de renouvellement. Nous
caractérisons les propriétés limites pour les U -processus indexés par des classes de fonc-
tions uniformément bornées et non bornées. Nous montrons la consistance du bootstrap
dans ce cadre. L’approche du bootstrap permet de contourner les problèmes fréquem-
ment rencontrés pour l’évaluation des lois limites dépendants d’une manière complexe de
paramètres inconnus. La technique de bootstrap que nous utilisons dans cette thèse est le
bootstrap de renouvellement, où l’échantillon bootstrap est formé par rééchantillonnage
à partir des blocs. Comme les blocs non bootstrapés sont indépendants, une partie des
preuves se réduit au cas i.i.d. Les principales difficultées sont liées à la taille aléatoire
des blocs rééchantillonnés, ce qui crée un problème non trivial de temps d’arrêts aléa-
toires, constituant un des grands obstacles de la généralisation de la théorie dans notre
contexte. Pour contourner cette difficulté, nous avons utilisé comme étape intermédiaire
la substitution du temps d’arrêt aléatoire par son espérance. La convergence faible des
U -processus bootstrappés est très délicate dans notre cadre, en particulier l’équicontinuité

1https://financesonline.com/how-much-data-is-created-every-day/
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en utilisant la comparaison avec le U -processus initial. Nous avons étendu les résultats
susmentionnés au cas où le degré du U -processus croît avec la taille de l’échantillon n, le
noyau variant dans une classe de fonctions. Nous avons caractérisé la convergence faible
pour le bootstrap de renouvellement pour le U -processus à degré infini en faisant usage de
la technique de découplage combinée avec des techniques de symétrisation. Enfin, nous
considérons un bootstrap pondéré échangeable des U -processus empiriques.

Dans la deuxième partie de cette thèse, les données dépendantes sont représentées par
des fonctions aléatoires localement stationnaires. Propulsés par la représentation crois-
sante des séries temporelles par des données fonctionnelles ou courbes, et le comportement
non stationnaire de ces dernières, nous nous sommes intéressés au U -processus condition-
nel des séries temporelles fonctionnelles localement stationnaires. Plus précisément, nous
avons étudié la convergence faible des U -processus conditionnels, indexée par des classes
de fonctions, dans le cadre de données fonctionnelles localement stationnaires. Nous
avons caractérisé la convergence faible dans les deux cas lorsque la classe de fonctions est
bornée ou non bornée satisfaisant certaines conditions de moment. Enfin, nous étendons
la théorie asymptotique du U -processus conditionnel au champ aléatoire fonctionnel lo-
calement stationnaire {Xs,An : s ∈ Rn} observés à des emplacements espacés irréguliers
dans Rn = [0, An]d ∈ Rd, et incluant à la fois le domaine croissant pur et le domaine crois-
sant mixte. Nous avons obtenu la convergence faible dans les deux cas lorsque la classe de
fonctions est bornée ou non bornée. Ces résultats sont établis sous des conditions struc-
turelles assez générales sur les classes de fonctions et les modèles sous-jacents. La majeure
partie de la thèse est motivée par les problèmes d’apprentissage statistiques, y compris
parmi beaucoup d’autres, les problèmes de discrimination, l’apprentissage métrique et le
classement multipartite.

Mots clés : U -processus, Bootstrap, Classe de fonctions, variables dépendantes, Chain
de Markov, Processus régénératif, séries temporelles, donnée fonctionnelle, Stationnarité,
Stationnarité locale, Champ aléatoire.
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Abstract
The world is producing 2.5 quintillion bytes daily2, known as big data. Volume, value,
variety, velocity, and veracity define the five characteristics of big data that represent a
fundamental complexity for many machine learning algorithms, such as clustering, image
recognition, and other modern learning techniques. With this large data, hyperparameter
estimations do not take the form of the sample mean (not linear). Instead, they take
the form of average over m-tuples, known as the U -statistic estimator in probability
and statistics. In this work, we treat the collection of U -statistics, known as the U -
process, for two types of dependent variables, the Markovian data, and locally stationary
random variables. Thus, we have divided our work into two parts to address each type
independently.

In the first part, we deal with Markovian data. The approach relies on regenerative
methods, which essentially involve dividing the sample into independent and identically
distributed (i.i.d.) blocks of data, where each block corresponds to the path segments
between two visits of an atom called A, forming a renewal sequence. We derive the lim-
iting theory for Harris recurrent Markov chain over uniformly bounded and unbounded
classes of functions. We show that the results can be generalized also to the bootstrapped
U statistics. The bootstrap approach bypasses the problems faced with the asymptotic
behavior due to the unknown parameters of limiting distribution. Furthermore, the boot-
strap technique we use in this thesis is the renewal bootstrap, where the bootstrap sample
is formed by resampling the blocks. Since the non-bootstrapped blocks are independent,
most proofs reduce to the i.i.d. case. The main difficulties are related to the random
size of the resampled blocks, which creates a problem with random stopping times. This
problem is degraded by replacing the random stopping time with their expectation. Also,
since we resample from a random number of blocks, and the bootstrap equicontinuity can
be verified by comparing with the initial process, the weak convergence of the bootstrap
U -process must be treated very carefully. We successfully derive the results in the case of
the k-Harris Markov chain. We extend all the above results to the case where the degree
of U -statistic grows with the sample size n, with the kernel varying in a class of functions.
We provide the uniform limit theory for the renewal bootstrap for the infinite-degree
U -process with the help of the decoupling technique combined with symmetrization tech-

2https://financesonline.com/how-much-data-is-created-every-day/
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niques in addition to the chaining inequality. Remaining in the Markovian setting, we
extend the weighted bootstrap empirical processes to a high-dimensional estimation. We
consider an exchangeably weighted bootstrap of the general function-indexed empirical
U -processes.

In the second part of this thesis, dependent data are represented by locally stationary
random variables. Propelled by the increasing representation of the data by functional
or curves time series and the non-stationary behavior of the latter, we are interested in
the conditional U -process of locally stationary functional time series. More precisely, we
investigate the weak convergence of the conditional U -processes in the locally station-
ary functional mixing data framework. We treat the weak convergence in both cases
when the class of functions is bounded or unbounded, satisfying some moment condi-
tions. Finally, we extend the asymptotic theory of conditional U -process to the locally
stationary functional random field {Xs,An : s ∈ Rn} observed at irregular spaced locations
in Rn = [0, An]d ∈ Rd, and include both pure increasing domain and mixed increasing do-
main. We treat the weak convergence in both cases when the class of functions is bounded
or unbounded, satisfying some moment conditions. These results are established under
fairly general structural conditions on the classes of functions and the underlying models.
The major part of the thesis is motivated by machine learning problems, including, among
many others, discrimination problems, metric learning, and multipartite ranking.

Keywords : U -processes, Bootstrap, Class of functions, dependent variables, Markov
chain, Regenerative process, Time series, Functional data, Stationarity, Local stationary
time series, Random fields.
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Chapter 1
Introduction

1 U -statistics and U -processes

U -statistics arose with Halmos, 1946 where he searched for a class of “best-unbiased es-
timate[s]”, and then formally introduced by Hoeffding, 1948. The idea of Halmos is as
follows: Let P be a class of probability measures {Pθ : θ ∈ Θ}, he aimed to construct
an optimal, unbiased estimator for θ using {Xi}ni=1 a sample of i.i.d real valued random
variables with measure Pθ, for each θ. He found that if there exist a function h : Rm → R

such that Pkθ , the k-fold product measure for Pθ, is equal to θ for every θ ∈ Θ, then the
minimum-variance unbiased estimator for θ can be written as follows:

Un (h) := (n−m)!
n!

∑
i∈Im

n

h (Xi1 , . . . , Xim) , (1.1)

where
Inm := {i := (i1, . . . , im) : 1 ≤ ij ≤ n and ij ̸= ir if j ̸= r} ,

and the function h is called the kernel of the U -statistic Un (h), and it is said to have
degree m. If the kernel h is symmetric (permutation-invariant), the U -statistic formula
will be:

Un (h) := (n−m)!m!
n!

∑
i∈Im

n

h (Xi1 , . . . , Xim) , (1.2)

where
Inm := {i := (i1, . . . , im) : 1 ≤ ij ≤ n and ij < ir if j < r} ,

in other word, if h is symmetric, i ∈ Imn is a m-tuple (i1, . . . , im) of m ordered and
distinct elements of Nn.

Recently, the explosive data enrichment motivated the researchers to be attracted by
the regularized estimation and dimension reduction of high-dimensional data problems,
which include the graphical models (e.g. M. Yuan et al., 2007, Bühlmann et al., 2011),
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Chapter 1. Introduction

discriminant analysis (see Mai et al., 2012), covariance matrix estimation (e.g. Bickel et
al., 2008, X. Chen et al., 2013) and others problems. These issues require the consistent
estimation of an expectation of U -statistics of order two. This gives us a sight of the
importance of this estimator in modern probability. Let us cite some examples.

Example 1. Consider g(x, y) = 1
2(x − y)2. A short calculation shows that the related

U-statistic is the well-known variance estimator

Un(g) = 1
n− 1

∑
1≤i≤n

(
Xi − X̄

)2
.

Example 2. Let g(x, y) = |x− y|. Then the corresponding U-statistic is

Un(g) = 2
n(n− 1)

∑
1≤i<j≤n

|Xi −Xj| ,

known as Gini’s mean difference.

Example 3. Let d = p× p. The sample covariance matrix

Ŝn = (n− 1)−1
n∑
i=1

(
Xi − X̄n

) (
Xi − X̄n

)⊤
,

is an unbiased estimator of the covariance matrix Σ = Cov (X1). Here, Ŝn is a matrix-
valued U-statistic of form (1.1) with the quadratic kernel, for x1, x2 ∈ Rp,

h (x1, x2) = (x1 − x2) (x1 − x2)⊤ /2.

Example 4. The covariance matrix quantifies the linear dependency in a random vector.
The rank correlation is another measure of the nonlinear dependency in a random vector.
Two generic vectors y = (y1, y2) and z = (z1, z2) in R2 are said to be concordant if
(y1 − z1) (y2 − z2) > 0. For m, k = 1, . . . , p, define

τmk = 1
n(n− 1)

∑
1≤i ̸=j≤n

1 {(Xim −Xjm) (Xik −Xjk) > 0} .

Then Kendall’s tau rank correlation coefficient matrix T = {τmk}pm,k=1 is a matrix-valued
U-statistic with a bounded kernel. It is clear that τmk quantifies the monotonic dependency
between (X1m, X1k) and (X2m, X2k) and it is an unbiased estimator of

P ((X1m −X2m) (X1k −X2k) > 0) ,

that is, the probability that (X1m, X1k) and (X2m, X2k) are concordant.
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1. U -statistics and U -processes

Example 5. Hoeffding’s D From the symmetric kernel,

hD (z1, . . . , z5)

:= 1
16

∑
(i1,...,i5)∈P5

[{1 (zi1,1 ≤ zi5,1) − 1 (zi2,1 ≤ zi5,1)} {1 (zi3,1 ≤ zi5,1) − 1 (zi4,1 ≤ zi5,1)}]

× [{1 (zi1,2 ≤ zi5,2) − 1 (zi2,2 ≤ zi5,2)} {1 (zi3,2 ≤ zi5,2) − 1 (zi4,2 ≤ zi5,2)}] .

We recover Hoeffding’s D statistic, which is a rank-based U-statistic of order 5 and gives
rise to Hoeffding’s D correlation measure EhD.

Example 6 (Blum-Kiefer-Rosenblatt’s R). The symmetric kernel

hR (z1, . . . , z6)

:= 1
32

∑
(i1,...,i6)∈P6

[{1 (zi1,1 ≤ zi5,1) − 1 (zi2,1 ≤ zi5,1)} {1 (zi3,1 ≤ zi5,1) − 1 (zi4,1 ≤ zi5,1)}]

× [{1 (zi1,2 ≤ zi6,2) − 1 (zi2,2 ≤ zi6,2)} {1 (zi3,2 ≤ zi6,2) − 1 (zi4,2 ≤ zi6,2)}] ,

yields Blum-Kiefer-Rosenblatt’s R statistic (see Blum et al., 1961), which is a rank-based
U-statistic of order 6.

Example 7. Bergsma-Dassios-Yanagimoto’s τ ∗ Bergsma et al., 2014 introduced a rank
correlation statistic as a U-statistic of order 4 with the symmetric kernel

hτ∗ (z1 , . . . , z4)

:= 1
16

∑
(i1,...,i4)∈P4

{1 (zi1,1, zi3,1 < zi2,1, zi4,1) + 1 (zi2,1, zi4,1 < zi1,1, zi3,1)

−1 (zi1,1, zi4,1 < zi2,1, zi3,1) − 1 (zi2,1, zi3,1 < zi1,1, zi4,1)}
× {1 (zi1,2, zi3,2 < zi2,2, zi4,2) + 1 (zi2,2, zi4,2 < zi1,2, zi3,2)
−1 (zi1,2, zi4,2 < zi2,2, zi3,2) − 1 (zi2,2, zi3,2 < zi1,2, zi4,2)} .

Here
1 (y1, y2 < y3, y4) := 1 (y1 < y3) 1 (y1 < y4) 1 (y2 < y3) 1 (y2 < y4) .

The development of U -statistics and their theory received great importance. It be-
came one of the central places in statistical problems due to their interest characteristic
as unbiased estimators of parameters of interest and as components of higher order terms
in expansions of smooth statistics like von Mises expansion or delta-method. It is con-
venient also to consider U -processes indexed by class of kernels H which is a collection
of U -statistics {Un (h) : h ∈ H }. In general and similar to empirical process theory,
the theory of U -processes aims to comprehend the process’s behavior uniformly over the
index set by combining the pointwise properties of the U -process with attributes of the
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index set. Hoeffding, 1961 continues with the theory of U , and he solved one of the main
mysteries of the nature of U -statistics, where he offered us what we called the Hoeffding’s
decomposition, or the H-decomposition, which allows the U -statistic to be written as a
sum of uncorrelated terms. We use the H-decomposition heavily in deriving properties of
the different order U -statistics and processes generated in this manuscript. This decom-
position is based on a sequence of conditional expectations and kernel projections, and it
will be presented in detail in the sequel. Up to 1986, only the U -statistics with kernel h
belonging to R is studied. For instance, we have Berk, 1966 who found a reverse martin-
gale structure for U -statistic and after P. K. Sen, 1974a added some valuable contributions
on this topic. Gregory, 1977 got the asymptotic distribution for degenerate U -statistics
with rank two. The asymptotic distribution of the U -statistic with an arbitrary rank was
extended by Janson, 1979 and H. Rubin et al., 1980. All these papers, among others like
the pioneered work of Serfling, 1980, who has shown that (nUn)n∈N∗ converges in distri-
bution to a random variable which is written, in terms of the eigenvalues of an operator
associated with the kernel h(·), as a weighted sum of Chi-squared independent variables,
also he improves the rate of convergence when certain conditional variances are zero, are
for h ∈ R. The first works for h belong to the Hilbert space is devoted to Dehling et al.,
1984 and Borovskikh, 1986. We refer to A. J. Lee, 1990 and Koroljuk et al., 1994 books
for a detailed review and major historical developments in this field.

Besides, de la Peña, 1992 and de la Peña et al., 1995 mainly discovered the decou-
pling inequality for U -processes which play an important role in the asymptotic theory
of U -statistics and U -processes, followed by others like Arcones et al., 1993, Giné et al.,
1994, Arcones et al., 1995. Decoupling is a tool where the decoupled U -statistics can be
treated as a sum of independent random variables conditionally on one of the different
independent sequences, and it allows us to use maximal inequalities and randomization
by Rademacher variables. This makes the analysis of U -processes deal more or less with
that of empirical processes. Other important results can be viewed in Arcones and Yu,
1994 where he developed the functional central limit theorems for U -processes under ab-
solute regular observations. Hoffmann-Jorgensen type moment inequalities for entirely
degenerate U -statistics of any order m were found by Giné et al., 1992. Klass et al., 1997
provided moment inequalities for non-negative generalised U -statistics of order m = 2 as
well. There is also established more recent research on both U -statistics and U -processes,
such as Adamczak, 2006 who extended the results of Giné et al., 2000 to canonical U -
statistics of arbitrary order. Using an estimator given by Frees, 1994, Giné et al., 2007a
proposed a local U -statistic process and demonstrated its central limit theorems for several
norms, including the sup and the Lp-norms (for p ≥ 1). Others investigated the fields of
application of U -statistics; for example, Clémençon et al., 2008 used the U -statistics in the
ranking problems and clustering Clémençon, 2014. A natural occurrence of U -statistics
also took place in learning on graphs Biau et al., 2006 or in expansions of smooth statistics
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Robins et al., 2009 as components of higher-order terms. In 2016, Gábor and Joly pub-
lished an article Joly et al., 2016 named Robust estimation of U -statistics, in which they
investigate the estimation of the mean of multivariate functions in some specific cases.

1.1 Background

In this part, we will give some examples of the application of U -statistics that explain our
interest in this estimator.

1.1.1 Neural network ensemble based U -statistics

This example is considered by Schupbach et al., 2020. In their work, they aimed to
estimate uncertainty in ensemble regressors to the case of neural network ensembles using
the U -statistics and to prove that neural networks fit within this U -statistics framework,
especially infinite-degree U -statistics framework. In order to understand the situation, we
will briefly define each term. Neural network ensembles are used to improve predictive
power and specifically to train many networks with different hyperparameter combinations
while only using the network that performs the best on the validation set. An ensemble
neural network method is Negative correlation learning, where an ensemble of neural
networks is trained simultaneously with a loss function that contains a penalty for the
correlation between the networks. The authors used the U -statistics to describe the
resampling technique used in this chapter which is subsample aggregating (subbagging).
Consider a random sample (X,Y ) iid∼ F of size n, a neural network N from a subbagged
sample size m taken from the dataset is built. The same strategy is done for all

(
n
m

)
subsamples. Then, the predictions average for some x∗ from these neural networks can
be taken as an estimate of our predicted value. This average is written as follows

b (x∗) = 1 n

m


∑
(i)
Nx∗ ((Xi1 , Yi1) , . . . , (Xim , Yim)) .

Given some regularity conditions-unbiased and permutation symmetric, we have a proce-
dure that results in a U -statistic for these predicted values. N has been shown to be an
unbiased estimator that is asymptotically consistent and, if trained by the batch update,
is permutation symmetric. N can be used as an estimator, resulting in a U -statistic for
the predicted values. Unfortunately, it is generally computationally infeasible to build

neural networks for all
 n

m

 subsamples of the data. It has been shown that taking
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b ⩽

 n

m

 subsamples of size m results in

bb (x∗) = 1
b

∑
(i)
Nx∗ ((Xi1 , Yi1) , . . . , (Xim , Yim)) ,

which is an incomplete U -statistic. Even so, this has been shown to be asymptotically
normal and unbiased by Janson, 1984, assuming the variance of the estimator converges to
zero at a rate faster than

√
n. Neural Network N has been shown to be a mean integrated

squared error (MISE) consistent, as

MISE = O

(
C2
f

s

)
+O

(
sd

n
log n

)
,

where Cf is a constant related to smoothing from the training process, s is the number of
nodes in the network, d is the number of covariates, and n is the sample size. It may also

make sense to scale b with n. Specifically, considering subsamples of size bn =
 n

mn


give

bbn,mn (x∗) = 1
bn

∑
(i)
Nx∗ ((Xi1 , Yi1) , . . . , (Xim , Yim)) ,

which is an infinite order U -statistic or a resampled statistic when bn ̸=
 n

mn

. Frees,

1994 developed necessary and sufficient conditions for asymptotic normality when bn

grows faster than n, and Mentch et al., 2016 developed conditions for individual means
E [b (x∗)] for all growth rates of bn with respect to n. So as long as the estimates for a
bounded regression function are bounded, the variance of the kernel function ϕ is bounded,
lim n

bn
= α, lim mn√

n
= 0, and lim σ1,mn ̸= 0, then the infinite order U -statistic will be

asymptotically normal with the following distributions given in Mentch et al., 2016:

• if α = 0, then √
n (Un,bn,mn − θbn)√

b2
nζ1,mn

d→ N (0, 1);

• if 0 < α < ∞, then √
bn (Un,bn,mn − θmn)√
m2

n

α
ζ1,bn + ζmn,bn

d→ N (0, 1);

• if α = ∞, then √
bn (Un,bn,mn − θmn)√

ζbn,mn

d→ N (0, 1).

mn is chosen approximately on the order of
√
n. This choice of mn replaces the require-
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ment of exponential tails on the error distribution with the requirement that nP(|ε| >
√
n) → 0. It also assures that the lim mn√

n
= 0. Finally, by choosing a small mn, the

time complexity is similar to a bootstrap method while generating large ensembles. Note
that it is not required to choose mn on the order of

√
n. The subbagging approach

presupposes that the estimator is constructed in the same way. Outside of the weak reg-
ularity constraints, the distributional findings do not rely on the way of generating the
neural network; nonetheless, the subbagging approach requires that each neural network
be formed using the same method. This would rule out the use of dropout since each
estimator would be constructed from randomly selected samples of nodes on each training
period. The estimator would therefore require a new justification, similar to the extension
of U -statistics to random forests.

1.1.2 Maximum Mean Discrepancy

The following example is treated in Schrab et al., 2022 and Kim et al., 2022. Let {Xi}n1
i=1

be a sequence of i.i.d random variables with probability density function P and {Yj}n2
j=1

be a sequence of i.i.d random variables with probability density function Q, such that
{Xi}n1

i=1 is independent from {Yj}n2
j=1 and the sample sizes n1 and n2 are balanced, i.e.,

there exists a constant C such that max(n1, n2) ≤ C min(n1, n2). The goal is to test if
the two samples have the same distribution or not, then the hypothesis is as follows:H0 : P = Q,

H1 P ̸= Q.

In order to test this hypothesis, a non-parametric kernel test has been introduced by
Gretton et al., 2012, based on a measure between probability densities P and Q on Rd called
the Maximum Mean Discrepancy (MMD). This measure is the integral probability metric
(IPM; Müller, 1997) over a reproducing kernel Hilbert space HK (RKHS; Aronszajn,
1950) with associated kernel K. The MMD is defined as the HK-norm of the difference
between the mean embeddings µP(u) := EX∼P[K(X, u)] and µQ(u) := EY∼Q[K(Y, u)] for
u ∈ Rd (see Gretton et al., 2012, Lemma 4). For X ′ and Y ′ ) are independent copies of
X and Y respectively, Define

MMD2
K(P,Q) :=

 sup
f∈HK :∥f∥HK

≤1
|EP[f(X)] − EQ[f(Y )]|

2

= ∥µP − µQ∥2
HK

= EP,P [K (X,X ′)] − 2EP,Q[K(X, Y )] + EQ,Q [K (Y, Y ′)] .

In Fukumizu et al., 2007; Sriperumbudur et al., 2011, there is a essential property that
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guarantees that MMD2
K(P,Q) = 0 if and only if P = Q. This property provides the use

of MMD as a two-sample test and leads Gretton et al., 2012 (Lemma 6) to estimate the
parameter of interest MMD, using the following unbiased quadratic-time MMD estimator:

M̂MD
2
K (Xn1 ,Yn2) = 1

n1(n1 − 1)
∑

(i,i′)∈I2
n1

K (Xi, Xi′) − 2
n1n2

n1∑
i=1

n2∑
j=1

K (Xi, Yj)

+ 1
n(n− 1)

∑
(j,j′)∈I2

n2

K (Yj, Yj′)

= 1⊤K̃XX1
n1(n1 − 1) − 21⊤KXY1

n1n2
+ 1⊤K̃YY1
n2(n2 − 1) ,

where K̃XX and K̃YY are the kernel matrices KXX := (K (Xi, Xi′))1≤i,i′≤n1
and KYY :=

(K (Yj, Yj′))1≤j,j′≤n2
with diagonal entries set to 0 , where KXY := (K (Xi, Yj))1≤i≤n1,1≤j≤n2

,
and where 1 is a one-dimensional vector with all entries equal to 1 of variable length de-
termined by the context. Based on the bivariate symmetric kernel K, define the following
kernel:

hMMD
K (x1, x2; y1, y2) := K (x1, x2) −K (x1, y2) −K (x2, y1) +K (y1, y2) , (1.3)

and write the MMD estimator M̂MD
2
K (Xn1 ,Yn2) as a two-sample U -statistic (hMMD

K is
not symmetric) as follows:

M̂MD
2
K (Xn1 ,Yn2) := (n1 − 2)!

n1!
(n2 − 2)!
n2!

∑
(i,i′)∈I2

n1

∑
(j,j′)∈I2

n2

hMMD
K (Xi, Xi′ ;Yj, Yj′) .

By the unbiased property of U -statistics, the symmetric form of M̂MD
2
K (Xn1 ,Yn2), de-

fined by symmetrization of the kernel hMMD
K (x1, x2; y1, y2), is an unbiased estimator of

E(hMMD
K (x1, x2; y1, y2)). Kim et al., 2022 studied the properties of this estimator based

on the treatment of error Type I and error Type II. In contrast, Schrab et al., 2022
replace the quadratic-time U -statistic M̂MD

2
K (Xn1 ,Yn2) with a second order incomplete

U -statistic and then they provide quantile and variance bounds using a wild bootstrap.

1.1.3 Hilbert Schmidt Independence Criterion

Let PXY denote the joint distribution of i.i.d pairs of samples {Xi}i∈N and {Yi}i∈N , and let
PXPy the product of their marginal distributions. If we observe the pairs Zi := (Xi, Yi) i.i.d∼

8
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PXY , the hypotheses for testing independence are:H0 : PXY = PXPy,

H1 PXY ̸= PXPy.

To test these hypotheses, a non-parametric kernel test based on the Hilbert Schmidt
Independence Criterion (HSIC) is given by Gretton et al., 2007; Gretton et al., 2005. We
will explain this test in the following. Define the HSIC as:

HSICK,L (pxy) := MMD2
K (PXY ,PXPy)

= EPXY ,PXY
[K (X,X ′)L (Y, Y ′)]

−2EPXY
[EPX

[K (X,X ′)] EPY
[L (Y, Y ′)]]

+EPX ,PX
[K (X,X ′)] EPY ,PY

[K (Y, Y ′)] ,

with K and L are two bivariate kernels, symmetric in their arguments, and define the
product kernel associated with K (x1, x2) and L (y1, y2) by

hHSICK,L {(x1, y1) , (x2, y2) , (x3, y3) , (x4, y4)}
:= {K (x1, x2) +K (x3, x4) −K (x1, x3) −K (x2, x4)}

× {L (y1, y2) + L (y3, y4) − L (y1, y3) − L (y2, y4)} .

Clearly, using the definition of hMMD
K given in Equation (1.3), we have

hHISC
K,L (z1, z2, z3, z4) := 1

4h
MMD
K (x1, x2;x3, x4)hMMD

L (y1, y2; y3, y4) .

Based on this definition, the estimator of HSIC is a fourth-order U -statistic defined by

ĤSICK,L (Z) := (N − 4)!
N !

∑
(i,j,r,s)∈I4

N

K (Xi, Xj)L (Yr, Ys)

= (N − 4)!
N !

∑
(i,j,r,s)∈I4

N

hHISC
K,L (Zi, Zj, Zr, Zs) .

This estimator is treated in Gretton et al., 2007, and in L. Song et al., 2012 where they
provided the following closed-form expression

ĤSICK,L (ZN) = 1
N(N − 3)

(
tr(K̃L̃) + 1⊤K̃11⊤L̃1

(N − 1)(N − 2) − 2
N − 21⊤K̃ L̃1

)
,

where K̃ and L̃ are the kernel matrices K := (K (Xi, Xj))1≤i,j≤N and L := (L (Yi, Yj))1≤i,j≤N
with diagonal entries set to 0, and 1 is a one-dimensional vector with all entries equal to

9
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1 of variable length determined by the context. After symmetrizing the kernel hIISIC
k with

its symmetrized variant

h̄HISC
K,L (z1, z2, z3, z4) := 1

4!
∑

(i1,i2,i3,i4)∈I4
4

hHISC
K,L (zi1 , zi2 , zi3 , zi4) ,

Kim et al., 2022 give the type II error of the permutation test based on the unbiased
estimator ĤSICK,L.

1.1.4 Kernel Stein Discrepancy

Remaining in the kernels test settings, we will give in this example a non-parametric
goodness-of-fit test extracted from the Kernel Stein Discrepancy (KSD). It is good to
mention here that a review of classical goodness-of-fit tests can be found in Lehmann et al.,
2005, where most methods have computational difficulty for unnormalized distributions.
The studied test in this example was introduced by Chwialkowski et al., 2016; Q. Liu
et al., 2016 where they searched for writing the maximum discrepancy between the target
distribution P and the observed sample distribution Q in a modified Reproducing kernel
Hilbert space RKHS. The technique of combining Stein’s identity with RKHS was first
developed by Oates et al., 2017 for variance reduction. The test can be described as
follows. Let P be a given model density on Rd, and let {Xi}i∈n an i.i.d sample drawn from
a density Q on Rd, the goal is to test the hypotheses:H0 : P = Q,

H1 P ̸= Q.

The Kernel Stein Discrepancy (KSD) can be defined as

KSD2
P,K(Q) := MMD2

hKSD
K,p

(Q,P)

= EQ,Q

[
hKSD
K,P (Z,Z ′)

]
− 2EQ,P

[
hKSD
K,P (Z,X)

]
+ EP,P

[
hKSD
K,P (X,X ′)

]
= EQ,Q

[
hKSD
K,P (Z,Z ′)

]
,

where X is a random variable distributed according to the target measure P, and, for all
x, y ∈ Rd,

hKSD
K,P (x, y) :=

(
∇ log P(x)⊤∇ log P(y)

)
K(x, y) + ∇ log P(y)⊤∇xK(x, y)

+∇ log P(x)⊤∇yK(x, y) +
d∑
i=1

∂

∂xi∂yi
K(x, y).

10



2. Markov chain

For X from the target measure, the Stein kernel satisfies the Stein identity

EP

[
hKSD
K,P (X, ·)

]
= 0,

for instance, see Chwialkowski et al., 2016, Lemma 5.1, which is a desirable property.
It is straightforward to estimate the squared Stein discrepancy KSD2

P,K(Q) from samples
{Xi}i∈n, Chwialkowski et al., 2016 used a V -Statistic as a quadratic time estimator, while
it can also be computed as the second-order U -statistic:

K̂SD
2
P,K (X) := (n− 2)!

n!
∑

(i,j)∈I2
n

hKSD
K,P (Xi, Xj) = 1⊤H1

n(n− 1) ,

where H is the kernel matrix H :=
(
hKSD
K,P (Xi, Xj)

)
1≤i,j≤N

with diagonal entries set to 0?
and 1 is a one-dimensional vector with all entries equal to 1 of variable length determined
by the context. The Stein kernel hKSD

K is already symmetric.

2 Markov chain

Stochastic processes are mathematical models of random phenomena that change over
time or space. Due to this notion of randomness, this type of process has a diverse type
of applications ( telecommunication, finance, internet, supply chains, medicine, energy,
etc. . . ), and has different classes like Poisson processes, Brownian motion, regenerative
processes, etc. . . The focus of our work is on Markov chain, one of the principal classes of
stochastic process, commonly used to model random dynamical systems, storage, queuing
models, signal processing, control theory, and much more applications. A Markov chain is
a sequence of random variables X0, X1, . . . with values in a countable set S if at any time
n, the future states Xn+1, Xn+2, . . . depend on the history X0, X1, . . . , Xn only through
the present state Xn. So, we can formally define a Markov chain as follows:

11



Chapter 1. Introduction

Definition 2.1. A stochastic process X = {Xn : n ≥ 0} on a countable set S is a Markov
Chain if, for any i, j ∈ S and n ≥ 0,

P {Xn+1 = j | X0, . . . , Xn} = P {Xn+1 = j | Xn} , (2.1)

and
P {Xn+1 = j | Xn = i} = pij. (2.2)

where pij is the probability that the Markov chain passes from state i to state j. These
transition probabilities satisfy ∑

j∈S
pij = 1, i ∈ S,

and the matrix P = (pij) is the transition matrix of the chain.

Equation (2.1) is called the Markov property, where we can understand the dependence
structure of the Markov model, which says that the next state is in the past and present
only through the present state. Equation (2.2) shows that the Markov chain is time-
homogeneous since the transition probabilities do not depend on the time parameter n.
If not, the process Xn will be called a non-time-homogeneous Markov chain.

2.1 Motivated examples

Example 8 (Random walks). Let {Zn, n ∈ N∗} be a sequence of i.i.d. random variables
with values in X = Rd and distribution µ. Let X0 be a random variable in Rd independent
of {Zn, n ∈ N∗}. A random walk with jump or increment distribution µ is a process
{Xk, k ∈ N} defined by X0 and the recurrence

Xk = Xk−1 + Zk, k ≥ 1.

This model follows a recurrence with f(x, z) = x + z, and thus the process {Xk, k ∈ N}
is a Markov chain with kernel given for x ∈ Rd and A ∈ B

(
Rd
)

by P (x,A) = µ(A− x);
that is, P is entirely determined by the increment distribution µ.

Example 9 (ARMA(p,q)). A generalization of the AR(p) model is obtained by adding a
moving average part to the autoregression:

Xk = µ+ α1Xk−1 + · · · + αpXk−p + Zk + β1Zk−1 + · · · + βqZk−q,

where {Zk, k ∈ Z} is a sequence of i.i.d. random variables with E [Z0] = 0. This yields a

12



3. Bootstrap

Markov chain of order r = p∨q. Indeed, setting αj = 0 if j > p and βj = 0 if j > q yields


Xk+1

...
Xk+r

 =



0 1 · · ·
... 0 1 . . .
... . . . . . .
0 . . . 0 1
αr . . . α1




Xk

...
Xk+r−1

+


0
...
0

µ+ Zk + β1Zk−1 + · · · + βrZr

 .

Example 10 (ARCH (p)). Many financial time series, such as log-returns of share prices,
stock indexes, and exchange rates, are commonly employed in econometrics and applied
financial literature to illustrate stochastic volatility and heavy-tailedness. A linear time
series model cannot accurately catch these characteristics simultaneously. To capture these
latters, nonlinear models were devised, because a linear time series model requires heavy-
tailed marginal distributions. The input noise sequence must also be heavy-tailed. Heavy-
tailed marginals can be constructed for nonlinear models even when the system is injected
with a light-tailed input, such as normal noise. Taking the autoregressive conditional
heteroscedastic model of order p into account, the ARCH(p) model is defined as a solution
to the recurrence problem:

Xk = σkZk,

σ2
k = α0 + α1X

2
k−1 + · · · + αpX

2
k−p,

where the coefficients αj ≥ 0, j ∈ {0, . . . , p}, are nonnegative, and {Zk, k ∈ Z} is a se-
quence of i.i.d. random variable with zero mean (often assumed to be standard Gaussian).
The ARCH(p) process is a Markov chain of order p. Assume that Z1 has a density g with
respect to Lebesgue measure on R.

3 Bootstrap

Let X1, . . . , Xn be a sequence of random variables with joint probability P, and let θ be
our parameter of interest depending on the unknown joint probability of the underlying
sequence. Statistical inference constantly searches to find an estimator to this parameter,
and many standard methods were introduced to getting this target depending on the form
of parameter θ, like maximum or quasi-Likelihood, M-estimators, kernels estimators, etc.
For θ̂n an estimator of the parameter θ; it is crucial to test the estimator and verify the
accuracy of the estimator. As the joint probability of X1, . . . , Xn is unknown, as well
as the sampling distribution of the centred estimator θ̂n − θ, many quantities related to
the inference of the estimator, like the quantiles and the mean square error MSE are
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unknown 1. The resampling techniques and bootstrap were general methods to find the
latest quantities.

Bootstrapping techniques have been extensively used to handle a wide range of is-
sues. It tries to restore the relationship between the “population” and the “sample”,
by treating the sample as the podium of the underlying population and appropriately
resampling from it to produce the “bootstrap sample”, which acts as an analog of the
original sample. If the resampling technique is properly designed, the “resample” and the
current sample are supposed to represent the initial relationship between the population
and the sample. Thus, to address the statistical inference problems related to the un-
known distribution, statisticians use the “sample” and the “resamples”, instead of the
“population” and the “sample”, which are either known or have known distributions.

Following such extensive attention, various methodological improvements have arisen
to enhance the original bootstrap approach proposed by Efron, 1979, even if the core
concept remains intact (e.g., see the methodological discussion on the classical bootstrap
methods in D. A. Freedman, 1984; Freedman et al., 1984; Efron et al., 1986; Efron et al.,
1993). The bootstrap involves resampling observations to earn a decent estimate of the
statistical features of the original population. The constraint that the observations in the
sample are realizations of independent and identically distributed random variables is a
significant limitation of Efron’s bootstrap approaches. However, in the case of real-life
time series, this condition needs to be more accurate. When such a hypothesis is rejected,
a theoretical model for the data is required, and the bootstrap method is used for the
model errors. Other bootstrap techniques have been presented to overcome this weakness
of Efron’s bootstrap and avoid model misspecification. We can cite the block, sieve, and
local methods of bootstrapping. The block bootstrap was introduced by Künsch, 1989,
where he tried to extend the standard Jackknife and bootstrap for a general stationary
process without resorting to reduction to the i.i.d case, while the sieve bootstrap is an
alternative of block bootstrap procedure, for the stationary categorical time series. It
is worth mentioning here that there are several varieties of the block bootstrap method;
we can cite Politis et al., 1992, 1994b for the blocks-of-blocks bootstrap and the sta-
tionary bootstrap respectively, and Paparoditis et al., 2001b, 2002b for trapped block
bootstrap. Nevertheless, they only partially achieved their objective (keeping the depen-
dence structure of the data) because they faced the loss of dependency among blocks.
Indeed, Bühlmann, 2002 gives us a good comparison between the previously mentioned
methods. The local bootstrap procedure follows a general autoregressive structure and
involves resampling from a neighborhood of each data point. The advantage of these
methods is that they are fully data-driven, in other words, the dependence structure of

1Parameters like θ are called level-1 parameters, while parameters like the mean square error are
level−2 parameters. Bootstrap, in general, was introduced to fix the problems of higher-level parameters
(2-level and higher)
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data can be easily captured, controlling the risk of incorrectly describing the model and
the problems of estimating its parameters.

3.1 Bootstrap for Markov chain

Different contributions to resampling approaches based on Markov chain theory can be
grouped. Earlier methods for bootstrapping Markov chains were developed by Athreya et
al., 1992b; Basawa et al., 1990; Datta et al., 1992; Kulperger et al., 1989 and Kulperger,
1999, where they focused on the transition probabilities of a stationary Markov chain
with a distinction between the different strategies studied. Furthermore, Bühlmann, 2002
developed the idea of a sieve bootstrap, introduced by himself in Bühlmann, 1997, where
he searches to fit Markovian models to a data series and resampling randomly from the
residuals. He proves that this bootstrap technique has a faster convergence rate for
variance estimation than the more general block bootstrap. This strategy searches for
relevant pathways in a hierarchical manner, which might be a significant drawback when
time dependency is not monotonically decreasing.

As well, Rajarshi, 1990 and Horowitz, 2003 embrace the so-called local bootstrap tech-
niques for Markov processes invented in Paparoditis et al., 2001a, 2002a, where they
estimate the conditional density by kernel methods and generate bootstrap data by suc-
cessively sampling observations according to the estimated density.

Another collection of works is included in the works of Andrews, 2005; Csiszár et al.,
2000; Finesso, 1992; Kieffer, 1993; C.-C. Liu et al., 1994; Merhav et al., 1989. This
collection investigates the problem of estimating the order of a Markov chain, assuming
that all states are relevant for delays up to the estimated order at all times. However,
in certain situations, a reasonable estimate of the relevant states is more significant than
an exact estimate of the process’s “memory”. For instance, in economics and finance, we
refer to the bootstrapping of series with regimes that characterize the dynamics of various
processes (such as traded volumes in stock markets and prices in commodity markets).

Furthermore, Regenerative block bootstrap approach was introduced by Athreya et al.,
1992b and Datta et al., 1993 and have been developed by Radulović, 2004 and then in
Bertail et al., 2011a; Bertail et al., 2006b. We adopted this method in our work, and it will
be more developed in the framework of U -processes in the following of this manuscript.

On the other hand, we explore in Chapter 5 the new possibility brought by considering
bootstrap weights other than Efron’s multinomial weights for U -processes Markov chain.
The non-parametric bootstrap technique has been extended to estimate the posterior dis-
tribution for some statistics. The idea is to explore the possibility of considering bootstrap
weights other than Efron’s multinomial weights. This general resampling scheme was first
introduced by D. B. Rubin, 1981, and extensively studied by Barbe et al., 1995, who sug-
gested the name “Weighted bootstrap” and in Mason et al., 1992 and Præstgaard et al.,
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1993, who showed that, for a large class of exchangeable weights, the bootstrap empirical
processes are asymptotically validated both in probability and almost surely sense. Other
versions of Efron’s bootstrap are also studied in Chatterjee et al., 2005 using the term
“Generalized bootstrap”.

4 Weak dependence measure, stationarity and locally
stationarity

This section is devoted to introducing other mathematical concepts used in this thesis.
Preferably, we will introduce different notions of weak dependence, stationarity, and local
stationarity. We proceed with a basic introduction to functional data and finish with a
short recap of important results on weak convergence in metric spaces.

Historically, the independent random variables were frequently studied, and many re-
sults in probability theory and statistics (like the central limit theorem) were first shown
for such variables, see Liapounoff, 1900; Lindeberg, 1922, among others. Then, a gener-
alization of the central limit theorem to time series was attempted, i.e, a generalization
to dependent random variables indexed in discrete time (see, e.g., Bernstein, 1927). In
this setting, the central limit theorem is based on the so-called strong mixing condition
(α-mixing condition) by Rosenblatt, 1956 was born, and it represents a significant break-
through in the analysis of dependent variables. Other mixing conditions, such as β-mixing
by Volkonskiui et al., 1959 or φ-mixing by Blum et al., 1963, were later suggested and
frequently utilized for the analysis of dependent data; see, for example, Doukhan, 2012
for a review of different mixing approaches.

Despite the attractive theoretical properties of the strong mixing condition, two sig-
nificant downsides appear. First, it is not easy to be verified in reality (see, for instance,
Vogt, 2012), and second, there are significant groups of linear processes that do not meet
the strong mixing condition (see, e. g., Andrews, 1984). Wu, 2005 provided another tech-
nique for weak dependence, the so-called physical dependency measure, which is simple
to compute and proves to be a useful tool. Both techniques, strong mixing and physical
dependency, suggest that, as the distance between two random variables becomes bigger,
their covariance disappears. From this idea, Brillinger, 1981 utilized constraints on cumu-
lants, an extension of covariance, to ensure that a given time series is weakly dependent.
Strong mixing implies Brillinger’s cumulant condition under particular moment assump-
tions (see, for example, Statulevicius et al., 1988 and Doukhan et al., 1989). Following
that, we define the dependent measures.
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4. Weak dependence measure, stationarity and locally stationarity

Definition 4.1 (Strong Mixing Condition). Let F and G be σ-fields on a probability
space (Ω,A ) and define their mixing coefficient as

α(F ,G ) = sup{|P(A ∩B) − P(A)P(B)| : A ∈ F , B ∈ G }.

A stationary time series (Xt)t∈Z satisfies the strong mixing condition or is simply called
strongly mixing if the mixing coefficients:

α(k) = sup
t∈Z

α
(
σ
{
(Xs)ts=−∞

}
, σ
{
(Xs)∞

s=t+k

})
,

vanish as k tends to infinity, where σ(B) denotes the σ-field generated by a family of
random variables B.

Definition 4.2 (Cumulant Condition). A stationary time series (Xt)t∈Z satisfies the
cumulanta condition for some k ∈ N, if

∞∑
t1,...,tk−1=−∞

|cum (Xt1 , . . . , Xtk)| ≤ C < ∞,

for some constant C ∈ R.

a Cumulants:[Doukhan et al., 1989] Let {X1, . . . , Xk} be centered real-valued random variables.
Let X = (X1, . . . , Xk) and mv = EXv1

1 . . . Xvk

k if v = (v1, . . . , vk) ∈ Nk. If φ(t) = EeitX, t ∈ Rk, is the
characteristic function of A, the Taylor expansions of φ(t), and logφ(t) if X admits n-th order moments
is:

φ(t) =
∑

|v|<n

i|v|

v! mvt
v +O (|t|n) ,

logφ(t) =
∑

|v|<n

i|v|

v! cvt
v +O (|t|n) for t → 0.

Here v ∈ Nk, t = (t1, . . . , tk) ∈ Rk and |v| = v1 + . . .+ vk ≤ n, v! = v1! . . . vk!, t = tv1
1 . . . tvk

k The
coefficients cv are called cumulants of X. Leonov et al., 1959 write

mv =
∑

λ1+...+λq=v

1
q!

v!
λ1! . . . λq!

q∏
j=1

cλj
,

cv =
∑

λ1+...+λq=v

(−1)q−1

q

v!
λ1! . . . λq!

q∏
j=1

mλj ,

where the sums are taken for every integer q and λ1, . . . , λq ∈ Nk such that λ1 + . . . + λq = v. In the
above definition, we used cum (X1, . . . , Xk) = cv
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Definition 4.3 (Physical Dependence Measure). Let (ηt)t∈Z be a sequence of independent
identically distributed random variables and let η′

0 be an independent copy of η0. Further,
define the filtrations:

Ft = (. . . , η−2, η−1, η0, η1, . . . , ηt) and F ∗
t = (. . . , η−2, η−1, η

′
0, η1, . . . , ηt) .

Finally, let G : RN → R denote a possibly nonlinear filter such that G (Ft) and G (F ∗
t )

are properly defined random variables. The physical dependence measure of G, for some
k ∈ N, is defined as

δk(G, t) =
(
E |G (Ft) −G (F ∗

t )|k
)1/k

.

In classical probability theory and statistics, random variables are commonly assumed
to be identically distributed. Similarly to the generalization of the independence assump-
tion, another path of generalization is to allow for a varying distribution. An analogy
of this assumption and its generalization to the time series analysis is considered by sta-
tionarity and nonstationarity. Stationarity is a trivial indicator that plays a big role in
time series modeling. Various models, techniques, and methodologies have been made
for stochastic processes based on this indicator; furthermore, an important asymptotic
theory was well developed, like weak convergence, limit distributions theorems, or ergodic
theorem. However, a weak stationarity assumption is not always advantageous for mod-
eling Spatio-temporal data, even with detrending and deseasonalization, and not all type
of time series shows a stationarity behavior, frequently seen in many physical phenomena
and in economic data, which makes all these methodologies unfitted and unsuitable. A
more realistic environment is based on the idea that many processes in real applications
behave locally like stationary processes but evolve continuously over time. This realistic
concept is called locally stationarity, and it is explicitly introduced first by Dahlhaus,
1996a. Historically, R. A. Silverman, 1957 introduced the locally stationary random pro-
cess. As its name indicates, this type of process approximates a non-stationary process
by a stationary one locally over short stretches of time. The intuitive idea of local sta-
tionarity was also discussed in the works of Priestley, 1965, Dahlhaus, 1997, Neumann
et al., 1997, Sakiyama et al., 2004, Dahlhaus and Polonik, 2006, and many others. It is
worth mentioning here that the pioneering works of Dahlhaus, 1997 represent a solid basis
for the inference of locally stationary processes. Besides the generalization of stationary
processes, this new approach removes time-varying parameters. Other important notions
of local stationarity were introduced by Birr et al., 2017; Vogt, 2012 and Zhou et al., 2009.
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Definition 4.4 (Local Stationarity, Vogt, 2012). A sequence of time series (Xt,T )t∈Z in
a normed vector space (V, ∥ · ∥), indexed by T ∈ N, is called locally stationary (of order
ρ ) if there exists a family of strictly stationary time series

{
X

(u)
t : t ∈ Z

}
, indexed by

u ∈ [0, 1], and an array of real-valued random variables
{
P

(u)
t,T : 1 ≤ t ≤ T, T ∈ N, u ∈

[0, 1]} with E
∣∣∣P (u)
t,T

∣∣∣ρ < ∞, uniformly in 1 ≤ t ≤ T, T ∈ N and u ∈ [0, 1], such that

∥∥∥Xt,T −X
(u)
t

∥∥∥ ≤
(∣∣∣∣ tT − u

∣∣∣∣+ 1
T

)
P

(u)
t,T .

Even though
{
(Xt,T )t∈Z : T ∈ N

}
is a sequence of time series, we will occasionally call

(Xt,T )t∈Z a locally stationary time series.

Example 11. Let (εt)t∈Z be a sequence of independent, standard normally distributed
random variables and consider the extension:

Xt,T =
∞∑
i=0

ai(t/T )εt−i

of the MA(∞)-process Xt = ∑∞
i=0 a

iεt−i, where ai : [0, 1] → R, i ∈ N0 are continuous
functions. Under certain regularity assumptions, Xt,T is locally stationary in the sense
of Vogt, 2012 and Zhou et al., 2009, for example, if ai(u) = aif(u) for some Lipschitz
continuous function f : [0, 1] → R, a constant a ∈ (0, 1) and any i ∈ N. For the
approximating family of stationary processes defined by

X
(u)
t =

∞∑
i=0

aif(u)εt−i,

it follows

∣∣∣Xt,T −X
(u)
t

∣∣∣ = |
∞∑
i=0

ai(f(t/T ) − f(u))εt−i |

≤
∞∑
i=0

ai|f(t/T ) − f(u)| |εt−i|

≤
∣∣∣∣ tT − u

∣∣∣∣C ∞∑
i=0

ai |εt−i| .

Thus, Xt,T is locally stationary of order 2 according to Vogt, 2012, as for

P
(u)
t,T =

∞∑
i=0

ai |εt−i| ,

it holds
E
∣∣∣P (u)
t,T

∣∣∣2 =
∞∑

i1,i2=0
ai1+i2E [|εt−i1εt−i2|] ≤

∞∑
i1,i2=0

ai1+i2 < ∞.
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Local stationarity according to the second concept follows from Proposition 3 of Zhou et
al., 2009.

5 Functional data

Modern statistics and statistical learning systems often have an interest in complex data
analysis from both a methodological and a practical standpoint, particularly in the setting
of big data. The goal is to create statistical models and algorithms with solid foundations
that can extract knowledge from unstructured data while addressing issues with data
complexity, such as heterogeneity, high dimensionality, dynamical behaviors, and missing
data. Most statistical methods use data whose constituent elements are typically unstruc-
tured finite-dimensional vectors called xi ∈ Rd. However, rather than being defined as
finite-dimensional vectors in many application fields, the individual data units are bet-
ter expressed as functions, curves, or surfaces. This case is referred to as a “functional”
aspect of the data. To clarify this aspect, a functional random variable is defined as a
random variable with values in an infinite dimensional space F . For example, this space
F can be a space of functions and linear operators... According to the terminology used
in the literature, we speak both of functional random variables and of functional data,
which includes, in particular, everything concerning the statistical analysis of curves. The
difficulties, from a theoretical and practical perspective, comes from the fact that the ob-
servations of this type of variable are supposed to belong to an infinite dimensional space.
Frédéric Ferraty proposed a general theoretical framework capable of systematically over-
riding the challenges caused by this functional context. Furthermore, applications and
practical developments take an important place too in his works. He was inspired and
motivated by the following guidelines. The first in Bosq, 1991, where he stated in a study
dealing with autoregressive Hilbertian processes: " These being nonparametric by them-
selves, it seems rather heavy to introduce a nonparametric model for observation lying in
functional space ...". The second can be found in the section "Challenges for the Future"
of Ramsay et al., 2005 book “Functional Data Analysis” where he reclaims that: “the-
oretical aspects of Functional Data analysis have not been researched in sufficient depth,
and it is hoped that appropriate theoretical developments will feed back into advances in
practical methodology”. For this purpose, we can find the following definitions in Ferraty
et al., 2006.

Definition 5.1. A random variable X is called a functional variable (f.v.) if it takes
values in an infinite dimensional space (or functional space). An observation χ of X is
called functional data.
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Definition 5.2. Let Z be a random variable valued in some infinite-dimensional space F
and let ϕ be a mapping defined on F and depending on the distribution of Z . A model for
the estimation of ϕ consists in introducing some constraint of the form ϕ ∈ C . The model
is called a functional parametric model for estimating ϕ if C is indexed by a finite number
of elements of F . Otherwise, the model is called a functional nonparametric model.

Definition 5.3. Let X be a random vector-valued in Rp and let ϕ be a function defined
on Rp and depending on the distribution of X. A model for estimating ϕ consists of
introducing some constraint of the form ϕ ∈ C . The model is called a parametric model
for the estimation of ϕ if C is indexed by a finite number of elements of R. Otherwise,
the model is called a nonparametric model.

Definition 5.4. Let Z be a random variable valued in some infinite-dimensional space
F and let ϕ be a mapping defined on F and depending on the distribution of Z . A model
for the estimation of ϕ consists in introducing some constraint of the form ϕ ∈ C . The
model is called a functional parametric model for the estimation of ϕ if C is indexed by a
finite number of elements of F . Otherwise, the model is called a functional nonparametric
model.

To better understand the importance of functional data analysis, readers can refer to
Bosq, 2000; Ferraty et al., 2006; Horváth et al., 2012; Levitin et al., 2007; Ramsay et al.,
2002 among others.

Another challenge related to the functional data is the proximity measures. In finite-
dimensional, any classical norm can be used to measure the closeness between two mathe-
matical objects due to the equivalence between all norms in Euclidean space, which is not
the case for infinite dimensional space; that is why the choice of the preliminary norm in
the functional context is crucial and restrictive. Researchers found that the semi-metric
are more adapted than the metric space in this case. In fact, a semi metric is a metric
where the condition that d(x, y) = 0 ⇒ x = y is not satisfied. In the functional data,
the family of semi-metric must be adapted for each dataset and each statistical problem.
Another concept has been extended to the functional nonparametric framework, the local
weighting techniques or local smoothing. In the univariate non-functional case, the idea
of the local weighting around a fixed real number x is to attribute at each real random
variable Xi a weight taking into consideration the distance between x and Xi, the greater
the distance between x and Xi, the smaller the weighting.

In our work, we will use the Kernel estimation method, which is widely used in the
nonparametric setting and is such a valuable method to do local weighting, and having the
celebrity from the Nadaraya-Watson kernel estimates introduced by Nadaraja, 1964 and
Watson, 1964. This method is based on a kernel function and a parameter h, called the
smoothing parameter, window width, or bandwidth, that governs the amount of smooth-
ing applied to the sample. The effect of the smoothing parameter h is important since it
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influences the level of smoothing. A little value of h may lead the estimator to display
unimportant details. Whereas a big value of h causes oversmoothing of the information
contained in the sample, which may disguise certain important characteristics, such as
multimodality. Many kernel functions can be found in the literature for symmetrical and
asymmetrical functions. Below we will cite some of them:

Symmetrical kernel function K:

Epanechnikov: K(t) =
 3

4
√

5

(
1 − 1

5t
)2

for |t| <
√

5,
0 for |t| ≥

√
5,

Biweight: K(t) =


15
16 (1 − t2)2 for |t| < 1,

0 for |t| ≥ 1.

Asymmetrical kernel functions K:

Reciprocal Inverse: KIG(x, b; t) = 1√
2πbt3

e− 1
2bx( t

x
−2+ x

t ),

Gamma 2: KGAM2 (ρb(x), b; t) = tρb(x)−1e−t/b

bρb(x)Γ (ρb(x))

For the functional case, the kernel method can be seen as follows: Let X1,X2, . . . ,Xn

be n functional random variable valued in E and let χ be a fixed element of E. The
functional extension of multivariate kernel local weighting ideas would be to transform
the n functional random variable X1,X2, . . . ,Xn into the n quantities

1
ϕ(h)K

(
d (χ,Xi)

h

)
,

where d is a semi-metric on E,K is a real (asymmetrical) kernel. In this expression ϕ(h)
would be defined as the probability that X belong to B(χ, h) where

B(χ, h) = {χ′ ∈ E, d (χ, χ′) ≤ h} ,

is the ball centred at χ and of radius h, with respect to the topology induced by the
semi-metric d. This definition shows us the link between local weighting and the notion
of small ball probabilities, which play an essential role in the analysis of functional kernel
estimates due to their relation with the semi-metric d, and this will be shown with the rate
of convergence of our estimator where the small ball probability function ϕ(h) appears.
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6 Examples of applications

6.1 Clustering

Clustering refers to the unsupervised learning task that consists in partitioning a set of
data pointsX1, . . . , Xn in a feature space X into a finite collection of subgroups depending
on their similarity (in a sense that must be specified). Roughly, data points in the same
subgroup should be more similar to each other than to those lying in other subgroups.
One may refer to Chapter 14 in Hastie et al., 2009 for an account of state-of-the-art
clustering techniques. Formally, let M ≥ 2 be the number of desired clusters and consider
D : X × X → R+such that D(x, x) = 0 for any x ∈ X . D measures the dissimilarity
between pairs of observations (x, x′) ∈ X 2 : the larger D (x, x′), the less similar x and
x′. For instance, if X ⊂ Rd, D could take the form D (x, x′) = Ψ

(
∥x− x′∥q

)
, where

q ≥ 1, ∥a∥q =
(∑d

i=1 |ai|q
)1/q

for all a ∈ Rd and Ψ : R+ → R+is any borelian non-
decreasing function such that Ψ(0) = 0. In this context, the goal of clustering methods
is to find a partition P of the feature space X in a class Π of partition candidates that
minimizes the following empirical clustering risk:

Ŵn(P) = 2
n(n− 1)

∑
1≤i<j≤n

D (Xi, Xj) · ΦP (Xi, Xj) ,

where
ΦP (x, x′) =

∑
C ∈P

I
{
(x, x′) ∈ C 2

}
.

Assuming that the data X1, . . . , Xn are i.i.d. realizations of a generic random variable
X drawn from an unknown probability distribution F(dx) on X , the quantity Ŵn(P),
also known as the intra-cluster similarity or within cluster point scatter, is a one sample
U -statistic of degree two (K = 1 and d1 = 2) with kernel given by:

∀ (x, x′) ∈ X 2, HP (x, x′) = D (x, x′) · ΦP (x, x′) ,

provided that
¨

(x,x′)∈X 2
D2 (x, x′) · ΦP (x, x′)F (dx)F (dx′) < +∞.

The expectation of the empirical clustering risk Ŵn(P) is given by

W (P) = E [D (X,X ′) · ΦP (X,X ′)] ,
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where X ′ is an independent copy of the r.v. X, and is named the clustering risk of
the partition P. The statistical analysis of the clustering performance of minimizers
P̂n of the empirical risk (5) over a class Π of appropriate complexity can be found in
Clémençon, 2014. Based on the theory of U -processes, it is shown in particular how
to establish rate bounds for the excess of clustering risk of any empirical minimizer,
W
(
P̂n

)
− infP∈Π W (P) namely, under appropriate complexity assumptions on the cells

forming the partition candidates. More detail on this example can be found in Clémençon
et al., 2016.

6.2 Testing stochastic monotonicity

Let us recall the following example from X. Chen et al., 2020. Let X, Y be real-valued
random variables and denote by FY |X(y | x) the conditional distribution function of Y
given X. Consider the problem of testing the stochastic monotonicity:

H0 : FY |X(y | x) ≤ FY |X(y | x′) ∀y ∈ R whenever x ≥ x′.

Testing for stochastic monotonicity is an important topic in various applied fields such
as economics Blundell et al., 2007; Ellison et al., 2011; Solon, 1992. For this problem,
S. Lee et al., 2009 consider a test for H0 based on a local Kendall’s tau statistic, inspired
by Ghosal et al., 2000. Let (Xi, Yi), i = 1, . . . , n be i.i.d. copies of (X, Y ). S. Lee et al.,
2009 consider the U -process

Un(x, y) = 1
n(n− 1)

∑
1≤i ̸=j≤n

{1(Yi ≤ y) − 1(Yj ≤ y)}sign(Xi −Xj)Lbn(x−Xi)Lbn(x−Xj),

where bn → 0 is a sequence of bandwidths, sign(x) = 1(x > 0) − 1(x < 0) is the sign
function, and Lbn is a one dimensional kernel function with bandwidth bn. They propose
to reject the null hypothesis if Sn = sup(x,y)∈X ×Y Un(x, y)/cn(x) is large, where X ,Y

are subsets of the supports of X, Y , respectively and cn(x) > 0 is a suitable normalizing
constant. S. Lee et al., 2009 argue that as far as the size control is concerned, it is enough
to choose, as a critical value, the (1 − α)-quantile of Sn when X, Y are independent,
under which Un(x, y) is centered. Under independence between X and Y and regularity
conditions, they derive a Gumbel limiting distribution for a properly scaled version of
Sn using techniques from (Piterbarg, 1996). However, they do not consider bootstrap
approximations to Sn. It should be noted that S. Lee et al., 2009 considered a slightly more
general setup than that described above. They allow Xi not to be directly observed but
assume that estimated Xi are available and cover the case where X is multi-dimensional.
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6.3 Testing curvature and monotonicity of nonparametric re-
gression

Let us recall the following example from X. Chen et al., 2020. Consider the nonparametric
regression model Y = f(X) + ε with E[ε | X] = 0, where Y is a scalar outcome variable,
X is an m-dimensional vector of regressors, ε is an error term, and f is the conditional
mean function f(x) = E[Y | X = x]. We observe i.i.d. copies Vi = (Xi, Yi), i = 1, . . . , n
of V = (X, Y ). We are interested in testing for qualitative features (e.g., curvature,
monotonicity) of the regression function f .

Abrevaya et al., 2005 consider a simplex statistic to test linearity, concavity, and
convexity of f under the assumption that the conditional distribution of ε given X is
symmetric. To define their test statistics, for x1, . . . , xm+1 ∈ Rm, let

∆◦(x1, . . . , xm+1) = {
m+1∑
i=1

aixi : 0 < aj < 1, j = 1, . . . ,m+ 1,
m+1∑
i=1

ai = 1}

denote the interior of the simplex spanned by x1, . . . , xm+1, and define D = ⋃m+2
j=1 Dj,

where

Dj =
(x1, . . . , xm+2) ∈ Rm×(m+2) :

x1, . . . , xj−1, xj+1, . . . , xm+2 are affinely independent
and xj ∈ ∆◦(x1, . . . , xj−1, xj+1, . . . , xm+2)

.
The sets D1, . . . ,Dm+2 are disjoint. For given vi = (xi, yi) ∈ Rm × R, i = 1, . . . ,m + 2,
if (x1, . . . , xm+2) ∈ D then there exist a unique index j = 1, . . . ,m + 2 and a unique
vector (ai)1≤i≤m+2,i ̸=j such that 0 < ai < 1 for all i ̸= j,

∑
i ̸=j ai = 1, and xj = ∑

i ̸=j aixi;
then, define w(v1, . . . , vm+2) = ∑

i ̸=j aiyi − yj. The index j and vector (ai)1≤i≤m+2,i ̸=j are
functions of xi’s. The set D is symmetric (i.e., its indicator function is symmetric), and
w(v1, . . . , vm+2) is symmetric in its arguments. Under this notation, Abrevaya et al., 2005
consider the following localized simplex statistic

Un(x) = 1
|Im+2
n |

∑
(i1,...,im+2)∈In,m+2

φ(Vi1 , . . . , Vim+2)
m+2∏
k=1

Lbn(x−Xik), (6.1)

where
φ(v1, . . . , vm+2) = 1{(x1, . . . , xm+2) ∈ D}sign(w(v1, . . . , vm+2)),

which is a U -process of order (m + 2). To test concavity and convexity of f , Abrevaya
et al., 2005 propose to reject the hypotheses if Sn = supx∈X Un(x)/cn(x) and Sn =
infx∈X Un(x)/cn(x) are large and small, respectively, where X is a subset of the support
of X and cn(x) > 0 is a suitable normalizing constant.
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6.4 Lévy-driven MA random field

This example is an example of a wide class of random fields and represents an application
to our theoretical results; for instance, see Chapter 7. Lévy process is a stochastic process
whose increments in overlapping time intervals are independent and whose increments are
stationary on time; for details, see Sato, 1999 and Bertoin, 1996.

Define L =
{
L(A) : A ∈ B

(
Rd
)}

as an infinitely divisible random measure on some
probability space (Ω,A , P ), in the sense that

1. For each sequence (Em)m∈N of disjoint sets in B
(
Rd
)
,

i) L (∪∞
m=1Em) = ∑∞

m=1 L (Em) a.s. whenever ∪∞
m=1Em ∈ B

(
Rd
)
,

ii) (L (Em))m∈N is a sequence of independent random variables.

2. The random variable L(A) has an infinitely divisible distribution for any A ∈
B
(
Rd
)
.

A Lévy-Khintchine representation of the form φL(A)(t) = exp(|A|ψ(t)) is the characteristic
function φL(A)(t) of L(A) where

ψ(t) = itγ0 − 1
2t

2σ0 +
ˆ

R

{
eitx − 1 − itxI(x ∈ [−1, 1])

}
ν0(x)dx

and i =
√

−1, γ0 ∈ R, 0 ≤ σ0 < ∞, ν0 is a Lévy density with
´

R min {1, x2} ν0(x)dx < ∞,
and |A| is the Lebesgue measure of A. The triplet (γ0, σ0, ν0) determines the distribution
of random measure L, which is called the Lévy characteristic of L; Sato, 1999 is a standard
reference on Lévy processes.

A Lévy-driven MA random field driven by an infinitely divisible random measure L,
which we call Lévy random measure, is defined by

X(s) =
ˆ

Rd

g(s− v)L(dv)

for every s ∈ Rd. In particular, when g(·) is a kernel function of the form

g(s) =
p∑
i=1

b (λi)
a′ (λi)

eλi∥s∥

where a′ is the the derivative of the polynomial a(z) = ∏p
i=1 (z2 − λ2

i ), with real coefficients
and distinct negative zeros λ1, . . . , λp, and b(z) = ∏q

i=1 (z2 − ξ2
i ), with real coefficients and

real zeros ξ1, . . . , ξq. X(s) is a univariate (isotropic) CARMA(p,q) random field, which
is a special case of Lévy-driven MA random fields. Brockwell et al., 2017 generalized
CARMA(p,q) from R to Rd.
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For, g : [0, 1]d×[0,∞) → R is a bounded function such that |g(u, ·)−g(v, ·)| ≤ C∥u−
v∥ḡ(·) with C < ∞, if we define:

Xs,An =
ˆ

Rd

g
(
s

An
, ∥s − v∥

)
L(dv) and Xu(s) =

ˆ
Rd

g(u, ∥s − v∥)L(dv),

then, Xs,An is a locally stationary Lévy-driven MA random fields, and Xu(s) is a strictly
stationary Lévy-driven MA random fields.

7 Organisation of the dissertation

Chapter 2. Mathematical Background

This chapter is devoted to the preliminary results for a few specific topics, which we will
need to be self-contained and better understand the forthcoming chapters. We also review
some of the standard facts concerning U -processes and their weak convergence, class of
functions, mixing condition, and random field, with particular attention given to the basic
tools needed to treat the U -processes. Readers not interested in the asymptotic theory
may merely go over this chapter to become familiar with the concepts and definitions
central to the work. It should be mentioned here that, for the clarity of each chapter,
other definitions and notions are also defined in each of them.

Chapter 3. Renewal type bootstrap for increasing degree U -
process of a Markov chain

Let X = (Xn)n∈N be an homogeneous Markov chain defined on a measurable space (E,E ).
Let π(x, dy) the transition probability, ν = ν(i)i>0 initial probability. Therefore, we will
denote by Pν or just P the probability measure determined by P = (π, ν). Consider
a parametric function Θ(h) = Θ, which is a unique invariant measure for the Harris-
recurrent Markov chain, and a sequence of parameters Θm such that Θm converges to θ,
these two parameters are defined as follows, for P a probability measure:

Θ(h) = Ph(X1, X2, . . .),

and, for hm : Em → R,

Θm(hm) = Pmhm(X1, . . . , Xm) =
ˆ
E

. . .

ˆ
E

hm(x1, . . . , xm)µ(dx1) . . .µ(dxm),

There exists an infinite-argument unbiased estimator for this parameter and it can be
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defined as an infinite-degree U -statistic:

Un (hm) =
(
n

m

)−1 ∑
i∈Im

n

hm (Xi1 , . . . , Xim) . (7.1)

Throughout the chapter, Hm will denote the class of kernels hm, of degree m = mn that
increases with sample size n, and where the kernel is a function hm : Em → R.

In this chapter, we investigate the uniform limit theory for a U -statistic of increas-
ing degree, also called an infinite-degree U -statistic defined in (7.1). Infinite-degree U -
statistics (IDUS) are useful tools for constructing simultaneous prediction intervals that
quantify the uncertainty of several methods such as subbagging and random forests. The
stochastic process based on collections of U -statistics is referred to as a U -process, and
if the U -statistic is infinite-degree, we have an infinite-degree U -process. C. Heilig et al.,
2001 provided conditions for the pointwise asymptotic theory for the infinite-degree U -
processes. The main purpose here is to extend their findings to the Markovian setting.
The second aim is to provide the uniform limit theory for the renewal bootstrap for the
infinite-degree U -process, which is of its own interest. The main ingredients are the de-
coupling technique combined with symmetrization techniques of C. Heilig et al., 2001 to
obtain uniform weak law of large numbers and functional central limit theorem for the
infinite-degree U -process. To the best of our knowledge, we are the first to present suc-
cessful results on the infinite-degree U -process in the Markovian context. The primary
purpose of the present chapter is to generalize the work of U -statistic and U -process for
the case where the degree m converges to infinity or, in other words, increases with the
size of the sample in the framework of Markov chains. We generalize the work of C. Heilig
et al., 2001 to the Harris recurrent Markov chain by using the renewal properties of this
chain. In addition, we study the limit theorems of the U -statistic estimators in a class
of functions that keep some properties to find the desired results. We also consider the
bootstrapped version of the U -process, which is in its own interest. The context of the
present chapter has, as far as we know, yet to be considered so far in the literature, which
is substantially more complicated than the independence framework. We commonly use
the abbreviations IDUS or IOUS for increasing (or infinite) degree/order U -statistics.

In this chapter, we have established the weak law of large numbers and the uniform
central limit theorems given by the following. The appropriate notation and definitions
are given in Chapter 3.
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Theorem 7.1

Let {Xi}ni=1 be a sequence of Harris-recurrent Markov chain random variables and
assume that the following conditions hold.

(A.1) The class Gm is a uniformly bounded permissible such that for the envelope
Ḡm, for all m, V > 1 and ε ∈ (0, 1]:

N
(
ε∥Ḡm∥L2(P), Gm, ∥ · ∥L2(P)

)
≤ Aε−V .

(A.2) σ1(gm, ğm) = limn→∞ Pgm(X)ğm(X) exists for every gm, ğm in Gm, where, for
hm and h̆m ∈ Hm, ğm(x) = ∑m

j=1 j h̆j|1(x) and gm(x) = ∑m
j=1 j hj|1(x). For

ρ2
n(gm, ğm) =

m∑
j=1

m∑
k=1

jkP
[
hj|1 (X1) − h̆j|1 (X1)

] [
hk|1 (X1) − h̆k|1 (X1)

]
,

the limit ρ(·, ·) = limn→∞ ρn(·, ·) is well-defined, and for all sequences of func-
tions {ḡn} and

{
¯̄gn
}

in Gm, if ρ
(
ḡn, ¯̄gn

)
→ 0, then ρn

(
ḡn, ¯̄gn

)
→ 0.

(A.3) ∑n
i=1 PḠm (Xi)2

{
Ḡm (Xi)2 > ε

}
→ 0, for every ε > 0.

(A.4) We suppose that PA
[(∑T 0

j=1 gm(Xj)
)2
]
< ∞.

(A.5) E (τ )2+α < ∞ (α > 0 fixed ).

Then
√
n (Pn − P) gm converges in distribution to a mean-zero Gaussian process

which is uniformly ρ -continuous and has covariance given by

σ(g, ğ) = lim
n→∞

m∑
j=1

m∑
k=1

jkP
[
hj|1 (X1) − h̆j|1 (X1)

] [
hk|1 (X1) − h̆k|1 (X1)

]
.

Theorem 7.2: Weak convergence theorem for IDUS

Let (Xn)n≥0 be a Harris-recurrent Markov chain with atom A, and τ (j) the renewal
time such that E(τ )2+α < ∞. Suppose also that all conditions of Theorem 7.1 hold.
Then, if the class Hm has Pm-square integrable envelope H̄m, i.e., Pm(H̄2

m) < ∞,
we have

√
n [Un(hm) − Pm(hm)] converges in distribution to a mean-zero Gaussian

process G which is uniformly ρ -continuous.
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Theorem 7.3

Let {Xi}ni=1 be a sequence of r. v. of Harris Markov chain, and Hm an euclidean
permissible class of function. Under the assumptions of Theorem 7.1 and Theorem
7.2, we have

sup
Υ∈BL1

∣∣∣E∗
(
Υ
(√

n∗
(
U∗
n(h̃m) − Un(h̃m)

)))
− E (Υ(G))

∣∣∣ → 0 in probability, (7.2)

where BL1 is the set of all functions Υ : ℓ∞(Hm) 7→ [0, 1] such that | Υ (z1) −
Υ (z2) |≤ ∥z1 − z2∥Hm

for every z1, z2.

To better understand the idea of infinite degree U -statistics, we will give some examples
extracted from different references. Although only four examples will be given here, they
stand as archetypes for various examples that can be similarly investigated. This includes
Simultaneous prediction intervals for random forests, the Renewal estimator, the Kaplan-
Meier estimator, and the Subsampling Distribution.

Chapter 4. Renewal type bootstrap for U - process Markov chains

The primary purpose of the present chapter is to establish bootstrap uniform functional
central limit theorems U -processes for Harris recurrent Markov chains over uniformly
classes of functions satisfying some entropy conditions. To simplify our approach, we will
employ the well-known regenerative properties of Markov chains, avoiding some compli-
cated mixing conditions. The most related work of the present chapter is (2011a). In
the last reference, the authors provided an approach to the study of U -statistics in the
Markovian setup based on the (pseudo-) regenerative properties of Harris Markov chains.
Exploiting the fact that any sample path X1, . . . , Xn of a general Harris chain X may be
divided into asymptotically independent and identically distributed (i.i.d.) data blocks.
This kind of regeneration in Markov chains has been detailed in the paper of Nummelin,
1991. A similar approach will be used in our work without restriction to the case m = 2.
The present chapter considers the general framework of the U -processes in the Markov
chain setting and their bootstrapped versions. This investigation is far from trivial, and
it is harder to control equicontinuity, which forms an unsolved open problem in the liter-
ature. The main difficulties in proving our results are related to the random size of the
resampled blocks. This fact creates problems with random stopping times (in real and
Banach space settings). In fact, delicate mathematical derivations will be required to cope
with U -processes in our context. Our result is obtained under the minimal condition of
the envelope function. We also consider an extension to the k Markov chain setting and
prove the bootstrap consistency. The main theorems are the following.
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Theorem 7.4: Weak convergence

Let (Xn)n be an Harris-recurrent Markov chain with an atom A satisfying Assump-
tion 2.1 and such that, for a fixed γ > 0,

sup
x∈A

E(τ )2+γ < ∞ (7.3)

and satisfying also the technical assumptions (C.1), (C.2), (C.3), (C.4) and (C.5).
Let F a class of measurable functions uniformly bounded on E and

ˆ ∞

0

√
logN(ε,F , en,2)dε < ∞,

a with expectation zero, i.e.,

E
ˆ ∞

0
n−1/2 logN(ε,F , en,2)dε → 0.

Then the U -statistic converges weakly in l∞(F ) to a Gaussian process G indexed
by F whose sample paths are bounded and uniformly continuous with respect to
the metric L2(P).

auniform entropy integral

Theorem 7.5

Let (Xn)n be a positive recurrent Harris Markov chain, with an accessible atom A,
Xn satisfies the conditions (C.1) and (C.2) (moments assumptions). Let F be a
uniform bounded class of functions with an envelope H square integrable such that:

ˆ ∞

0
(logN(ε,F , en,2))m/2dε < ∞.

Then the process
(n∗)1/2(U∗

n∗(h) − Un(h)),

converges weakly in probability under Pν to a Gaussian process G indexed by F

whose sample paths are bounded and uniformly continuous with respect to the
metric L2(P).
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Theorem 7.6

Let U(n1,n2)(h) be a generalized U -statistic based on two Markov chains trajec-
tories (X(1)

1 , . . . , X(1)
n1 ) and (X(2)

1 , . . . , X(2)
n2 ), and R(ln1 −1,ln2 −1)(h) the regenerative

U -statistics generated by two samples of blocks independents. Let τ A1 and τ A2

represent the renewal time for the first and second chains with atom A1 and A2

respectively. Then

n1/2(U(n1,n2) − Θ) d→ N

(
0, l
n

(EA1(τ A1)−2(EA2(τ A2)−2
(
m2

1δ
2
1,0

p
+
m2

2δ
2
0,1

1 − p

))
,

and
l1/2R(ln1 −1,ln2 −1)

d→ N(0, l(p−1m2
1δ

2
1,0 + (1 − p)−1m2

2δ
2
0,1)),

where l = ln1 + ln2 , n = n1 + n2 and p = ln1/l → p, 0 < p < 1. We have also

δ(c,d) = Var h(c,d)(B(1)
1 , B

(1)
2 ;B(2)

1 , B
(2)
2 ),

such that δ1,0, δ0,1 > 0.

Chapter 5. Exchangeably weighted bootstraps of the General
Markov U -process

We consider an exchangeably weighted bootstrap of the general function-indexed empirical
U -processes in the Markov setting, a natural higher-order generalization of the weighted
bootstrap empirical processes extending the previous chapter. Many bootstrap resampling
schemes emerge as special cases of our results. To the best of our knowledge, this general
context has yet to be considered so far in the literature. We will combine, in a non-trivial
way, the techniques of the renewal bootstrap with the randomly weighted bootstrap. At
this point, we mention a connection between moving blocks bootstrap and its modification,
matched block bootstrap. Instead of artificially breaking a sample into blocks of a fixed
size and then resampling from them, the latter tries to match the blocks to make a
smoother transition; refer to Radulović, 2004 for the explanation. This chapter aims to
investigate the exchangeable bootstrap for the U -processes in a similar fashion as in Q.
Han, 2022. As in the previous chapter, the main difficulties in proving Theorems 4.2
related to the random size of the resampled blocks, which generates problems with the
random stopping times; and can not be removed by replacing a random stopping time
with its expectation. In the present setting, the random bootstrap variables are formed by
resampling from a random number of blocks. The conditioning arguments can overcome
the problem, but the answer is negative. Our proof uses some arguments from Radulović,
2004 and Q. Han, 2022 by verifying bootstrap stochastic equicontinuity by comparing it
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to the original process in a similar way as in Giné et al., 1990. However, as will be seen
later, the problem requires much more than ‘simply’ combining ideas from these papers.
The following theorems are established under fairly general structural conditions on the
classes of functions (eventually unbounded) and the underlying distributions. This chapter
provides the first general theoretical study of the bootstrap of the empirical U -processes
in the Markov setting.

Theorem 7.7

Let (Xn)n be a positive recurrent Harris Markov chain, with an accessible atom A,
Xn satisfies the conditions (C.1) and (C.2) (moments assumptions), (C.3), (C.4),
(C.5). Let F be a uniform bounded class of functions with an envelope H square
integrable such that:

ˆ ∞

0
(logN(ε,F , en,2))m/2dε < ∞.

Then the process Zn converges weakly in probability under Pν to a Gaussian process
GP indexed by F whose sample paths are bounded and uniformly continuous with
respect to the metric L2(Pν).

Theorem 7.8

Suppose Assumptions (A1) to (A4), and Conditions(C.1)-(C.5) hold. Let F ⊂
Lc,m2 (P ) permissible 2 , admit a Pm-square integrable envelope F such that

ˆ 1

0

(
sup
Q

log N
(
ε∥F∥L2(Q),F , L2(Q)

))m/2
dε < ∞,

where the supremum is taken over all discrete probability measures. Then

sup
ψ∈BL

∣∣∣∣∣Eξψ
(
Z∗
n(h)

)
− Eψ(c · KP)

∣∣∣∣∣ →Pν 0,

where c is the constant in (A3), and the convergence in probability →Pν is with
respect to the outer probability of P∞ defined on (E∞,E ∞).

An application to testing symmetry, the test of independence, and Kendall’s Tau are
provided.
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Chapter 6. Weak convergence of the Conditional U -processes for
Locally Stationary Functional Time Series

U -statistics are a fundamental type of statistics that arise from modeling quantities of
interest defined by multi-subject responses. The empirical mean of a random variable X
is generalized to sums over every m-tuple of distinct observations of X by U -statistics.
W. Stute [Ann. Probab. 19 (1991) 812–825] introduced a class of U -statistics that can
be thought of as a generalization of the Nadaraya-Watson regression function estimates.
Stute proved their strong pointwise consistency to :

r(m)(φ, t) = E (φ(Y1, . . . , Ym) | (X1, . . . ,Xm) = t) , for t ∈ Rdm,

Stationarity is frequently assumed in time series modeling, resulting in various models,
techniques, research, and methodologies. Even with detrending and deseasonalization,
the stationarity assumption is only sometimes advantageous for modeling Spatio-temporal
data. It is worth noting that some important time series models are not stationary, which
is common in many physical phenomena and economic data. As a result, the stationarity
assumption is violated, rendering classical methods inapplicable. To address this issue,
R. A. Silverman, 1957 extended the concept of the stationary process to the so-called
locally stationary random process. As the name implies, this type of process approximates
a non-stationary process by a stationary one locally over short periods.

The intuitive concept of local stationarity is also discussed in the works of Priestley,
1965, Dahlhaus, 1997, Neumann et al., 1997, Sakiyama et al., 2004, Dahlhaus and Polonik,
2006, to name a few. It is worth noting that Dahlhaus’s pioneering work provides a solid
foundation for inferring locally stationary processes. In addition to generalizing stationary
processes, this new approach eliminates time-varying parameters. Since the empirical
processes theory rocketed in the resolution of statistical problems and spread in time
series analysis and regression estimation, Dahlhaus et al., 2009, Vogt, 2012 and, more
recently, Mayer et al., 2020 and Phandoidaen et al., 2022. The extension of the preceding
investigation to conditional empirical U -processes is of great practical and theoretical
interest. We are specifically interested in the conditional U -process, which is indexed by
a class of functions in the functional data setting. The main goal of this chapter is to
establish weak convergence of conditional U -processes in the locally stationary functional
mixing data framework. The kernel estimator considered is defined by

r̃(m)
n (φ,x,u;hn) =

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

hn

)
K2

(
d(xk, Xik,n)

hn

)}
φ(Yi,n)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

hn

)
K2

(
d(xk, Xik,n)

hn

)} ,

34



7. Organisation of the dissertation

where K1(·) and K2(·) denote one-dimensional kernel functions. Here, h = hn is a
bandwidth satisfying h → 0 as n → ∞ and φ : Y m −→ R is a symmetric measurable
function belonging to some class of functions Fm. The primary goal of this chapter is to
provide the first comprehensive theoretical investigation in this context. This necessitates
applying large sample theory techniques for empirical and U -empirical processes. We
look specifically at the weak convergence of the conditional empirical process indexed by
a suitable class of functions and conditional U -processes when the explicative variable is
functional. We consider weak convergence in both cases where the class of functions is
bounded or unbounded and some moment conditions are satisfied. The precise statement
of the following theorems is given in the corresponding chapter.

Theorem 7.9

Let FmK m be a measurable VC-subgraph class of functions such as Assumption
6 is satisfied. Assume also that Assumptions 1, 2, 3, and 4 are satisfied. Then we
have

sup
FmK m

sup
x∈H m

sup
u∈[C1h,1−C1h]m

∣∣∣r̃(m)
n (φ,x,u;hn) − r(m)(φ,x,u)

∣∣∣
= OP

(√
log n

nhmϕ(h) + h2m∧α
)
. (7.4)

Theorem 7.10

Let FmK m be a measurable VC-subgraph class of functions, and assume that all
the assumptions of Section 2.8 are satisfied. Then as n → ∞, for any x ∈ H m and
u ∈ [0, 1]m: √

nhmϕ(h)
(
r̃(m)
n (φ,x,u;hn) − r(m)(φ,x,u)

)
converges in law to a Gaussian process {Gn(ψ) : ψ ∈ FmK m} that admits a version
with uniformly bounded and uniformly continuous paths with respect to ∥·∥2−norm
with covariance function given in (4.2).

To motivate our work, we considered discrimination and metric learning as appli-
cations. We believe that the local stationary process provided in this chapter could be
applied in various fields, such as economics and medicine. Therefore, relaxing the assump-
tion of stationary behavior of the data-generating processes has received increased interest
from the statistical community in recent years. It is encouraged by the rise of possible
applications that contradict the stationary assumption, such as the work of Anderson
et al., 2019; Bardet et al., 2018; Clémençon et al., 2004, among others.
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Chapter 7. Nonparametric conditional U -processes for locally
stationary random fields under stochastic sampling design

For many years, statisticians and probabilists have worked hard to solve the regression
problem, which greatly impacts the development of a wide range of methods. Indeed,
various topics, such as modeling, estimation method purposes, tests, and other related
issues, have been addressed. Aside from the parametric framework, in which a finite
number of parameters must be estimated based on an a priori specified model structure,
the nonparametric setting is dedicated to data with no a priori structural information.
Nonparametric procedures have natural drawbacks in estimation biases and rate of conver-
gence losses compared to parametric methods. Kernel nonparametric function estimation
methods have long piqued the interest of researchers looking for good references to the
research literature in this area, along with statistical applications consult B. W. Silver-
man, 1986, Nadaraya, 1989, Härdle, 1990, Wand et al., 1995, Eggermont et al., 2001,
Devroye et al., 2001 and the references therein. By extending the previous chapter to
the spatial data setting, we will focus on constructing consistent kernel-type estimators
for conditional U -statistics in this article. Spatial data collected at measurement sites
and statistically treated typically arise in a variety of fields of research, including econo-
metrics, epidemiology, environmental science, image analysis, oceanography, meteorology,
geostatistics, and many others. Refer to Ripley, 1981, Rosenblatt, 1985, Guyon, 1995
and Cressie, 2015 and the references therein for good sources of references to the research
literature in this area as well as statistical applications. We cite some key references in
the context of nonparametric estimation for spatial data, primarily concerned with the
estimation of probability density and regression functions. Tran, 1990, Tran et al., 1993,
Biau et al., 2004, Dabo-Niang et al., 2013 and the references therein.

We use these studies to present a more general and abstract context by focusing on
conditional U -processes for locally stationary random fields {Xs,An : s ∈ Rn} in Rp ob-
served at irregularly spaced locations in Rn = [0, An]d ⊂ Rd. We adopt a stochastic
sampling scheme that can generate irregularly spaced sampling sites in a flexible manner
and include both pure increasing domain and mixed increasing domain frameworks. Moti-
vated by numerous applications, the theory of U -statistics and U -processes (introduced in
a seminal work by Hoeffding, 1948) has received considerable attention in recent decades.
The primary goal of this chapter is to consider a general framework and characterize the
weak convergence of the conditional U -processes based regular sequence of spatial random
functions. This investigation is far from trivial, and it is even more difficult to control
the asymptotic equi-continuity under minimal conditions in this general context, which
constitutes a largely unsolved open problem in the literature. We hope to fill this gap
in the literature by combining results from Arcones and Yu, 1994, and Bouzebda et al.,
2019b, 2022 with techniques for dealing with functional data from Masry, 2005. However,
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as will be seen later, the problem necessitates far more than simply combining ideas from
previous results. To deal with the regular functional data in our context, delicate math-
ematical derivations will be required. This necessitates the effective application of large
sample theory techniques developed for empirical processes, where we used results from
Arcones and Yu, 1994 and Bouzebda et al., 2019b, 2022.

The purpose of this work is to establish the weak convergence of the conditional U -
process based on the following U -statistic

r̂(m)
n (x,u;hn) := r̂(m)

n (φ,x,u;hn)

=

∑
i∈Im

n

φ(Ysi1 ,An , . . . ,Ysim,An
)
m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
∑

i∈Im
n

m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}

=

∑
i∈Im

n

φ(Ysi1 ,An , . . . ,Ysim,An
)
m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
∑

i∈Im
n

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
,

where

Imn := {i = (i1, . . . , im) : 1 ≤ ij ≤ n and ir ̸= ij if r ̸= j} , K(u) =
d∏
ℓ=1

K1(uℓ),

and φ : Y m −→ R is a symmetric measurable function belonging to some class of functions
Fm, and {hn}n∈N∗ a sequence of positive real numbers satisfying hn → 0 as n → ∞.

The following theorem provides uniform rates of strong convergence.
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Theorem 7.11

Let FmK m be a measurable VC-subgraph class of functions satisfying Assumption
13. Let Ih = [C1h, 1 −C1h]dm and let Sc be a compact subset of Rm. Suppose that

inf
u∈[0,1]dm,x∈Sc

f(u,x) > 0.

Then, under Assumptions 7, 8, 9, Condition (B1) in 10, 11 and 12 (with Wsi,An = 1
and εsi,An), the following result holds for PS almost surely:

sup
FmK m

sup
x∈H m

sup
u∈Ih,x∈Sc

∣∣∣r̂(m)
n (x,u;hn) − r(m)(x,u;hn)

∣∣∣
= OP.|S

(√
log n/nhmdϕm(h) + h2∧α + 1

Adpn ϕ(h)

)
,

where p = min{1, ρ}.

The following theorem gives the main results of the chapter concerning the uniform
CLT for the conditional U -processes.

Theorem 7.12

Let FmK m be a measurable VC-subgraph class of functions satisfying Assump-
tion 13. Suppose that fS(u) > 0 and εsij

,An = σ
(
sij/An,x

)
εij , where σ(., .) is

continuous and {εi}ni=1 is a sequence of i.i.d. random variables with mean zero and
variance 1. Moreover, suppose nhm(d+1)+4 → c0 for a constant c0. If all assumptions
assumed in Theorem 3.1 hold in addition of Conditions (B2), (B3) and (B4), then
the following result holds for PS almost surely:

√
nhmdϕm(h)

[
r̂(m)
n (φ,x,u;hn) − r(m)(φ,x,u) −Bu,x

]
converges to a Gaussian process Gn over FmK m, whose simple paths are bounded
and informally continuous with respect to ∥.∥2−norm with covariance function given
by (4.1)and where the bias term Bu,x = OP.|S (h2∧α).

This chapter provides detailed applications, including metric learning and the mul-
tipartite ranking adapted to the spatial framework. The sampling design discussed is
sufficiently applicable for numerous applications such as geostatistical and environmental
monitoring applications (cf. Lahiri, 2003a). Likewise, the results can be applied to dif-
ferent scenarios such as CARMA(p, q) random fields, for instance, see Brockwell et al.,
2017. Furthermore, the obtained results can also be used to study simultaneous confidence
bands for the mean of multivariate Spatio-temporal data, and investigate the inference of
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the time-varying mean of univariate Spatio-temporal data.

Chapter 8. Conclusions and perspectives

In this chapter, we conclude this thesis by giving some remarks and future developments.

Remark 7.1. The thesis is written in the form of research articles and certainly does not
avoid a certain number of repetitions, but this choice of writing allows each chapter to be
read as an autonomous entity.
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Chapter 2
Mathematical Background

This chapter presents some basic tools and concepts that will be used in the
remainder of this thesis.

Objective
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1. Mathematical Background

1 Mathematical Background

1.1 Weak convergence

In this section, we give some notions for the weak convergence of a stochastic process. It
should be noted that the weak convergence of a stochastic process is a generalization of
the convergence in law from random vectors to sample paths of the stochastic process.
Let (X ,A ,P) be a probability space on which we define the sequence X1, . . . , Xn and a
collection of random variables X = {X(t) = X(t, ω), ω ∈ X , t ∈ T}, T is an arbitrary
index set. Suppose that the set T is equipped with a semi-metric ρ and (D, d) is a metric
space.

Definition 1.1. • The collection X = {X(t) = X(t, ω), ω ∈ X , t ∈ T}, is a stochas-
tic process.

• An empirical process is a stochastic process based on random observations
X1, . . . , Xn.

• For a fixed point ω ∈ X , the map:

X(·, ω) : T 7→ D,

is called the sample path of the stochastic process X.

Note that the space ℓ∞(T ) is where most of the action occurs for statistical applications
of empirical processes, so next, we will consider D = ℓ∞(T ), and for x, y ∈ D : d =
sup
t∈T

|x(t) − y(t)| is the uniform distance on D.
Now we say that the process Xn converges weakly to a Borel measurable process X,

and we write Xn ⇝ X if the sample paths of Xn behave in distribution like X when
n → ∞. This is reflected in

Xn ⇝ X ⇐⇒ ∀f ∈ Cb (D) : E∗ (f(Xn)) −→E (f(X)) , (1.1)

where
Cb (D) := {f : D → R; with f continuous and bounded} .

If P is the law of X then the last expression can be rewritten as

E∗f (Xn) →
ˆ
f(x)dP(x), for every f ∈ Cb(D).

However, in practice, the latter formulation is not easy to handle. An equivalent
theorem is given in Theorem 2.1 in Kosorok, 2008.
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Theorem 1.2 (Kosorok, 2008). The stochastic process Xn converges weakly to a tight
stochastic process X in ℓ∞(T ), if and only if:

(i) For all finite {t1, . . . , tk} ⊂ T , the finite-dimensional distribution of {Xn(t1), . . . , Xn(tk)}
converges to that of {X(t1), . . . X(tk)};

(ii) There exists a semi-metric ρ for which T is totally bounded such that for all ε > 0:

lim
δ→0

lim sup
n→∞

P∗
{

sup
s,t∈T :ρ(s,t)<δ

|Xn(t) −Xn(s)| > ε

}
= 0. (1.2)

Beneficial results are the continuous mapping theorem and Slutsky’s Theorem:

Theorem 1.3. (Continuous mapping) Let g : D 7→ Y be continuous at all points in
D0 ⊂ D, where D and Y are metric spaces. Then if Xn ⇝ X in D, with P∗ (X ∈ D0) = 1,
then g (Xn)⇝ g(X).

Theorem 1.4. (Slutsky’s theorem) Suppose Xn ⇝ X and Yn ⇝ c, where X is sepa-
rable and c is a fixed constant. Then the following are true:

(i) (Xn, Yn)⇝ (X, c).

(ii) If Xn and Yn are in the same metric space, then Xn + Yn ⇝ X + c.

(iii) Assume in addition that the Yn are scalars. Then whenever c ∈ R, YnXn ⇝ cX.

Also, whenever c ̸= 0, Xn/Yn ⇝ X/c.

Generally, when dealing with empirical processes, the index set T = F is a class of
measurable functions. That is what, in the following section, we give some definitions and
examples concerning these classes.

1.2 Classes of functions

This section is devoted to entropy, a fundamental tool for the empirical process. The
primary use of such entropy calculus in this thesis is for establishing the rate of convergence
U -estimators as discussed in Chapter (1) and evaluating whether the class of functions
F is Glivenko-Cantelli and/or Donsker or neither. There are several additional uses of
entropy bounds, we refer the interested reader to the monographs of A. W. van der Vaart
et al., 1996 and Kosorok, 2008; see also Pakes et al., 1989.

Definition 1.5. An envelope function of a class F is any function x 7→ F (x) such that

|f(x)| ≤ F (x),

for every x and f .
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Definition 1.6. A class of subsets C on a set C is called a VC-class if there exists a
polynomial P (·) such that, for every set of N points in C, the class C picks out at most
P (N) distinct subsets.

Definition 1.7. The subgraph of a function f : X 7→ R is the subset of X × R given by

{(x, t) : t < f(x)}.

Definition 1.8. A class of functions F is called a VC-subgraph class if the collections
of all subgraphs of the functions in F form a VC-class of sets in X × R.

Example 12. let C = {C ⊂ X } and F (C ) =
{
1{X∈C},C∈C

}
. Then F (C ) is a VC-

subgraph class if and only if C is a VC class of sets.

Definition 1.9. A class F of measurable functions is P-measurable if the map

(x1, . . . , x2) 7→ sup
f∈F

∥∥∥∥∥
n∑
i=1

eif (xi)
∥∥∥∥∥

is measurable for all (e1, . . . , en) ∈ Rn.

A stronger but easier-to-verify measurability assumption is pointwise measurability, de-
fined as:
Definition 1.10. The class F is pointwise measurable if there exists a countable subset
G ⊂ F such that for every f ∈ F there exists a sequence {gl} ∈ G with gl(x) → f(x) for
every x.

Definition 1.11. (Covering number). Let (F , ∥ · ∥) be a subset of a normed space of
real functions f on some set. The covering number N(ε,F , ∥ · ∥) is the minimal number
of balls {g : ∥g − f∥ < ε} of radius ε needed to cover the set F . The entropy (without
bracketing) is the logarithm of the covering number. Define

J(δ,F ) = sup
Q

ˆ δ

0

√
1 + logN (ε∥F∥Q,2,F , L2(Q)))dε,

where the supremum is taken over all finitely discrete probability measures Q with
∥F∥Q,2 > 0.

Definition 1.12. (Bracketing number). Given two functions l and u, the bracket
[l, u] is the set of all functions f with l ⩽ f ⩽ u. An ε bracket is a bracket [l, u] with
∥l− u∥ < ε. The bracketing number N[](ε,F , ∥ · ∥) is the minimum number of ε brackets
needed to cover F . The entropy with bracketing is the logarithm of the bracketing number.
For a given norm ∥ · ∥, define bracketing integral of a class of functions F as

J[](δ,F , ∥ · ∥) =
ˆ δ

0

√
1 + logN[](ε||F∥,F , ∥ · ∥)dε.
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The next lemma presents a link between the covering and the packing numbers of a
functions class F .

Lemma 1.1. For a class of functions F we have:

N[] (2ε,F , d) ≤ N (ε,F , d) ≤ N[] (ε,F , d) .

The following lemma concerns the covering numbers of a V C- type class of functions.

Example 13. The set F of all indicator functions 1{(−∞,t]} of cells in R satisfies :

N (ε,F , L2(Q)) ≤ 2
ε2 ,

for any probability measure Q and ε ≤ 1. Notice that :

ˆ 1

0

√
log

(1
ε

)
dε ≤

ˆ ∞

0
u1/2 exp(−u)du ≤ 1.

For more details and discussion on this example, refer to Example 2.5.4 of A. W. van der
Vaart et al., 1996 and Kosorok, 2008, p. 157. The covering numbers of the class of cells
(−∞, t] in higher dimension satisfy a similar bound, but with higher power of (1/ε), see
Theorem 9.19 of Kosorok, 2008.

Example 14. (Classes of functions that are Lipschitz in a parameter, Section 2.7.4 in
A. W. van der Vaart et al., 1996). Let F be the class of functions x 7→ φ(t, x) that are
Lipschitz in the index parameter t ∈ T . Suppose that:

|φ(t1, x) − φ(t2, x)| ≤ d(t1, t2)κ(x)

for some metric d on the index set T , the function κ(·) defined on the sample space X ,
and all x. According to Theorem 2.7.11 of A. W. van der Vaart et al., 1996 and Lemma
9.18 of Kosorok, 2008, it follows, for any norm ∥ · ∥F on F , that :

N(ε∥F∥F ,F , ∥ · ∥F ) ≤ N(ε/2, T, d).

Hence if (T, d) satisfy J(∞, T, d) =
´∞

0

√
logN(ε, T, d)dε < ∞, then the conclusions holds

for F .

Example 15. Let us consider as an example the classes of functions that are smooth
up to order α defined as follows, see Section 2 of A. W. van der Vaart et al., 1996.
For 0 < α < ∞ let ⌊α⌋ be the greatest integer strictly smaller than α. For any vector
k = (k1, . . . , kd) of d integers define the differential operator :

Dk. := ∂k.

∂k1 · · · ∂kd
,
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where :
k. :=

d∑
i=1

ki.

Then, for a function φ : X → R, let :

∥φ∥α := max
k.≤⌊α⌋

sup
x

|Dkφ(x)| + max
k.=⌊α⌋

sup
x,y

Dkφ(x) −Dkφ(y)
∥x− y∥α−⌊α⌋ ,

where the suprema are taken over all x, y in the interior of X with x ̸= y. Let Cα
M(X )

be the set of all continuous functions φ : X → R with :

∥φ∥α ≤ F.

Note that for α ≤ 1, this class consists of bounded functions φ(·) that satisfy a Lipschitz
condition. Kolmogorov et al., 1959 computed the entropy of the classes of Cα

F (X ) for the
uniform norm. As a consequence of their results A. W. van der Vaart et al., 1996 shows
that there exists a constant K depending only on α, d and the diameter of X such that
for every measure γ and every ε > 0 :

logN[ ](εFγ(X ), Cα
F (X ), L2(γ)) ≤ K

(1
ε

)d/α
,

N[ ] is the bracketing number, refer to Definition 2.1.6 of A. W. van der Vaart et al., 1996
and we refer to Theorem 2.7.1 of A. W. van der Vaart et al., 1996 for a variant of the
last inequality. By Lemma 9.18 of Kosorok, 2008, we have :

logN(εFγ(X ), Cα
F (X ), L2(γ)) ≤ K

(1
ε

)d/α
.

2 Useful notes for studying U -processes

First, we begin by introducing some notation needed in this thesis. Let X1, . . . , Xn are
i.i.d. P on X . Then the empirical measure Pn is defined by

Pn := 1
n

n∑
i=1

δXi
,

where δx denotes the Dirac measure at x. For each n ≥ 1,Pn denotes the random discrete
probability measure which puts mass 1/n at each of the n points X1, . . . , Xn. For a real
valued function f on X , we write

Pn(f) :=
ˆ
fdPn = 1

n

n∑
i=1

f (Xi) .
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If F is a class of functions defined on X , then {Pn(f) : f ∈ F} is the empirical
measure indexed by F . Let us assume that

Pf :=
ˆ
fdP,

exists for each f ∈ F . The empirical process Gn is defined by

Gn :=
√
n (Pn − P ) ,

and the collection of random variables {Gn(f) : f ∈ F} as f varies over F is called the
empirical process indexed by F . We define the following quantity :

∥Gn∥F := sup
f∈F

|Gn(f)| .

Definition 2.1. A class F of measurable functions f : X → R with P |f | < ∞ for every
f ∈ F is called Glivenko-Cantelli (GC) if

∥Pn − P∥F := sup
f∈F

|Pnf − Pf | → 0, in probability (or almost surely).

Definition 2.2. A class F of measurable functions f : X → R is Donsker if the empirical
process {Gnf : f ∈ F} indexed by F converges in distribution in the space ℓ∞(F ) to a
tight random element.

Theorem 2.3 (Entropy control with bracketing number, A. W. van der Vaart et al.,
1996). Let F be a class of measurable functions with envelope F . Then

E [∥Gn(f)∥∗
F ] ⩽ KJ[] (1,F, L2(p)) ∥F∥P,2,

where K does not depend on F or F .

2.1 Bootstrapped Empirical processes

Let Pn be the empirical measure of an i.i.d. sample X1, . . . , Xn from a probability measure
P. Given the sample values, let X∗

1 , . . . , X
∗
n be an i.i.d. sample from Pn. The bootstrap1

empirical measure and process are, respectively, defined by

P̂n = 1
n

n∑
i=1

δX∗
i
,

1The bootstrap is the statistical procedure that models sampling from a population by the process of
resampling from the sample.
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and
Ĝn =

√
n
(
P̂n − Pn

)
.

Giné et al., 1990 proved the following result, for a class of function F with its envelope
F . Here we will consider that the class F is the collection of indicator functions of sets
of the form [0, c], 0 < c ≤ 1. Then under measurability restriction on F , we have:

Gn ⇝ G and PF 2 < ∞,

is equivalent to

Ĝn ⇝ G for almost all data sequences X1, X2, . . . ,

where G is some tight Brownian bridge, and the weak convergence is in ℓ∞(F ). This result
is proved "in probability" by the same authors, who settled questions about the validity
of Efron’s bootstrap in many situations. We can remark that the bootstrap empirical
measure given before can be expressed as

P̂n = 1
n

n∑
i=1

δX∗
i

= 1
n

n∑
i=1

ξniδXi
,

where ξni is the number of times that Xi is "redrawn" from the original sample. As
observed by Efron, 1982, Section 2.9, pages 17-72, this suggests that there are, in fact,
not just one way but several ways to bootstrap; and this is the idea of the exchangeable-
weighted bootstrap. Let W = {Wni, i = 1, 2, . . . , n, n = 1, 2, . . .} are a triangular array
defined on the probability space (Z ,E , P̂). Let Wn ≡ (Wn1, . . . ,Wnn) be an exchangeable
vector of nonnegative weights which sum to n. Then the exchangeably weighted bootstrap
empirical measure is defined by

P̂n = 1
n

n∑
i=1

WniδXi
,

with corresponding bootstrap empirical process

Ĝn =
√
n
(
P̂n − Pn

)
= 1√

n

n∑
i=1

(Wni − 1) δXi
. (2.1)

The formulation of the weighted bootstrap was originally initiated by Lo, 1993. Mason
et al., 1992 and Præstgaard et al., 1993 established sufficient conditions on the weights W
for the exchangeable weighted bootstrap to work asymptotically, where they suggested
the following general conditions on W.

(B.1) The vectors Wn = (Wn1,Wn2, . . . ,Wnn)T are exchangeable for all n = 1, 2, . . ., i.e.,
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for any permutation π = (π1, . . . , πn) of (1, 2, . . . , n), the joint distribution of

π (Wn) = (Wnπ1 ,Wnπ2 , . . . ,Wnπn)T

is the same as that of Wn.

(B.2) Wni ≥ 0 for all n, i and
n∑
i=1

Wni = n for all n.

(B.3) The following L2,1 norm of Wn1 is uniformly bounded:

Rn =
ˆ ∞

0

√
P̂ (Wn1 ≥ u)du ≤ K < ∞.

(B.4) lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2P̂ {Wn1 ≥ t} = 0.

(B.5) 1
n

n∑
i=1

(Wni − 1)2 → c2 > 0 in P̂-probability.

We note that Efron’s nonparametric bootstrap (or multinomial bootstrap) corresponds
to the choice of the weights

Wn ∼ Multinomial(n;n−1, . . . , n−1)

for which conditions (B.1)–(B.5) are satisfied. In general, in order to satisfy the condi-
tions (B.3)–(B.5) we have to impose some moment conditions on Wni, see their Lemma
3.1. The other sampling schemes that satisfy conditions (B.1)–(B.5), include Bayesian
bootstrap, Multiplier bootstrap, Double bootstrap, and Urn bootstrap. These examples are
sufficient to show that conditions (B.1)–(B.5) are very general. It is worth noticing that
the value of c in (B.5) is independent of the sample at hand and depends only on the
chosen resampling method, e.g., c = 1 for the nonparametric bootstrap and Bayesian
bootstrap, whereas c =

√
2 for the double bootstrap. A more precise discussion of this

general formulation of the bootstrap and further details can be found in Mason et al.,
1992, Præstgaard et al., 1993, Barbe et al., 1995, A. W. van der Vaart et al., 1996, §3.6.2.,
p. 353, Kosorok, 2008, §10. p. 179, Cheng et al., 2010. The interested reader may refer
to Billingsley, 1968, Aldous, 1985, and Kallenberg, 2002 for excellent general coverage of
the theory of exchangeability. One could claim that the general first-order limit theory for
the bootstrap was known to Laplace by about 1810 (since Laplace developed one of the
earliest general central limit theorems); and that second-order property were developed
by Chebyshev at the end of the 19th Century, as mentioned by Peter Hall 2. In 1923,
Hubback began a series of crop trials in the Indian states of Bihar and Orissa, where
he developed spatial sampling schemes. In 1927 he published an account of his work

2http://www.cms.zju.edu.cn/conference/2005/zlx/peter.pdf
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in Bulletin No. 166 of the Indian Agricultural Research Institute. Notice that the idea
of bootstrap appeared in different forms in Mahalanobis, 1946, Quenouille, 1949, 1956,
Tukey, 1958, Simon, 1969, Chapters 23-25 and Maritz et al., 1978.

We assume further that the collection F possesses enough measurability for random-
ization with i.i.d. multipliers to be possible and the usual Fubini’s theorem can be used
freely; such a set of conditions is F ∈ NLDM(P) (Nearly Linearly Deviation Measurable),
and F 2,F ′2 ∈ NLSM (P) (Nearly Linearly Supremum Measurable) in the terminology of
Giné et al., 1990. Here F 2 and F ′2 denote the classes of squared functions and squared
differences of functions from F , respectively. When all of these conditions hold, we write
F ∈ M(P). It is known that F ∈ M(P) if F is countable, or if the empirical processes
Gn are stochastically separable, or if F is image admissible Suslin (see Giné et al., 1990,
p. 853 and 854). The following Præstgaard et al., 1993’s result concerns a central limit
theorem in probability for the bootstrap empirical process as given in (2.1) indexed by
the class F .

Theorem 2.4. Let F ∈ M(P) be a class of L2(P) functions, and let W be a triangular
array of bootstrap weights satisfying assumptions 1.-5.. Then

F is P − Donsker

implies that

Ĝn = 1√
n

n∑
j=1

(Wnj − 1) δXj
⇝ cG in l∞(F ) in probability,

where c is given by assumption A5.

If, in addition, the envelope function F is square integrable, then the result holds
almost everywhere.

These results for bootstrapped empirical processes can be applied to many kinds of
bootstrapped estimators since most estimators can be expressed as functional empirical
processes.

2.2 The mixing notion

To estimate the dependence between two σ-algebras A and B defined on a probability
space (Ω,D , P ), we are going to use some classical measures of dependence (c.f. Bradley,
2005) :

α(A ,B) := sup |P (A ∩B) − P (A)P (B)| , A ∈ A , B ∈ B, (2.2)
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β(A ,B) := sup 1
2

I∑
i=1

J∑
j=1

|P (Ai ∩Bj) − P (Ai)P (Bj)| , (2.3)

ϕ(A ,B) := sup |P (B|A) − P (A)P (B)|, A ∈ A , B ∈ B, P (A) > 0, (2.4)
ψ(A ,B) := sup |P (A ∩B) − P (A)P (B)|

/
P (A)P (B), A ∈ A , B ∈ B, (2.5)

ρ (A ,B) := sup
∣∣∣∣∣∣ Cov(X, Y )√
V ar(X)

√
V ar(Y )

∣∣∣∣∣∣ , X ∈ L2 (A ) , Y ∈ L2 (B) , (2.6)

where for β(A ,B) the sup is taken over all pairs of finite partitions {A1, . . . , AI} and
{B1, . . . , BJ} of Ω such that Ai ∈ A for all 1 ⩽ i ⩽ I and Bj ∈ B for all 1 ⩽ j ⩽ J .
The coefficient in (2.2) is called strong mixing or α-mixing coefficient, that in equation
(2.3) is called absolute regularity or β-mixing. In equation (2.4), the coefficient is the
uniform mixing coefficient or ϕ-mixing coefficient, and in equation (2.5), the coefficient
is ψ-mixing. Let Z1,Z2, . . . be a stationary sequence of random variables defined on the
probability space (Ω,D , P ) and let:

σLJ := σ(Zi, J ⩽ i ⩽ L).

Assume that Ξ denotes any of the dependence coefficients α, β, ϕ, ψ, ρ. A c-mixing se-
quence is defined by requiring the Ξ-mixing coefficient Ξk to satisfy :

Ξk := sup
J∈Z

c(σJ−∞, σ
∞
J+k) −→

k→∞
0.

The following proposition gives the relations between the different mixing.

Proposition 2.5. we have:

2α (A ,B) ≤ β (A ,B) ≤ ϕ (A ,B) ≤ 1
2ψ (A ,B) ,

4α (A ,B) ≤ ρ (A ,B) ≤ 2ϕ1/2 (A ,B)ϕ1/2 (B,A ) ,
ρ (A ,B) ≤ ϕ (A ,B) .

From the previous proposition, we can deduce the following schema:

ψ − mixing=⇒
̸⇐=
ϕ− mixing =⇒


β − mixing =⇒

̸⇐=
α− mixing~ww ̸

ww�
ρ− mixing =⇒

̸⇐=
α− mixing.

(2.7)

In this thesis, we are mainly interested in establishing some properties of β-mixing con-
ditional U -processes.
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3 Locally stationary random field

3.1 Random field

The notation “random field” can be heard in different domains. The most straightforward
clarification in the statistical field, a random field is a stochastic process usually taking
value in Euclidean space and defined over a parameter space of dimensionality at least
1. The literature on random fields is not rich like that of stochastic process; we can cite
Dougherty, 1999, Yaglom, 1987, Adler et al., 2007 and recently Christakos, 2012.

Random’s fields concept can be defined similarly to that of stochastic processes. In
this case, each random variable x1, x2, . . . , xn is associated with the points s1, s2, . . . , sn
in the space Rn. A random spatial field can be considered as a function of events ω ∈ Ω,
where Ω is the sample space, and also as a function of the spatial position s ∈ Rn, that
is, x(s) = x(ω, s). Let x(s) be the vector random field which represents the set of random
spatial fields x1(s), x2(s), . . . , xm(s), that is,

x(r) = [x1(s), x2(s), . . . , xm(s)]T .

The distribution function of a vector random spatial field is then defined as:

Fx(x, s) = P ({ω : x(s) ≤ x; s ∈ Rn}) .

Remember again that random fields extend the concept of a stochastic process. A stochas-
tic process is a random field for which the spatial argument r ∈ Rn, is introduced for n = 1
and s → s → t so that the random variable becomes x(t), as before.

The distribution function is related to the probability density through the expression

px(x, s) = ∂nFx(x, s)
∂x

,

and consequently
Fx(x, r) =

ˆ x

−∞
px (x′, s) dx′,

and in fact, such a random field is said to be a white field (analogously to the white
process seen previously).

Basically, all the concepts defined for random processes can be generalized for spatial
random fields:

• Markovian process → Markovian field;

• Gaussian process → Gaussian field;

• White process → white field.
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We start with defining a random field more formally using random variables.

Definition 3.1 (Random field). Let (Ω,F , P ) be a probability space. Given d, δ ∈ N, we
say that a function X :

X : Ω × Zd → Rδ

is a Random Field if and only if ∀t ∈ Zd, the function:

Xt :Ω → Rδ

ω → X(ω, t)

is F − B
(
Rδ
)
-measurable; where B denotes the Borel σ-algebra.

Definition 3.2. A random variable X is called a functional variable (f.v.) if it takes
values in an infinite dimensional space (or functional space). An observation χ of X is
called functional data.

Definition 3.3 (Strict stationarity). A random sequence (Xn)n∈Z is said to be strictly
stationary if, for each k ≥ 0, the distribution of the vector (Xl, . . . , Xl+k) does not depend
on l ∈ Z.

Definition 3.4 (Weak stationarity). A random sequence (Xn)n∈Z is second order station-
ary if EX2

l < ∞ and if only:

EXl = EX0, and Cov (Xl, Xk+l) = Cov (X0, Xk) , for each l, k ∈ Z.

Definition 3.5. A function K from R into R+such that
´
K = 1 is called a kernel of type

I if there exist two real constants 0 < C1 < C2 < ∞ such that:

C11[0,1] ≤ K ≤ C21[0,1].

ii) A function K from R into R+such that
´
K = 1 is called a kernel of type II if its

support is [0, 1] and if its derivative K ′ exists on [0, 1] and satisfies for two real constants
−∞ < C2 < C1 < 0 :

C2 ≤ K ′ ≤ C1.
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Chapter 3
Renewal type bootstrap for increasing degree
U -process of a Markov chain

This chapter develops the content of an accepted article published in Jour-
nal of Multivariate Analysis with the required modifications to fit this thesis
manuscript.

In this chapter, we investigate the uniform limit theory for a U -statistic of
increasing degree, also called an infinite-degree U -statistic. Infinite-degree U -
statistics (IDUS) (or infinite-order U -statistics (IOUS)) are useful tool for con-
structing simultaneous prediction intervals that quantify the uncertainty of
several methods such as subbagging and random forests. The stochastic pro-
cess based on collections of U -statistics is referred to as a U -process, and if the
U -statistic is of infinite-degree, we have an infinite-degree U -process. C. Heilig
et al., 2001 provided conditions for the pointwise asymptotic theory for the
infinite-degree U -processes. The main purpose here is to extend their findings
to the Markovian setting. The second aim is to provide the uniform limit theory
for the renewal bootstrap for the infinite-degree U -process, which is of its own
interest. The main ingredients are the decoupling technique combined with
symmetrization techniques of C. Heilig et al., 2001 to obtain uniform weak law
of large numbers and functional central limit theorem for the infinite-degree
U -process. The results obtained in this chapter are, to our knowledge, the first
known results on the infinite-degree U -process in the Markovian setting.

Objective
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1 Introduction

Let X = (Xn)n∈N be an homogeneous Markov chain, defined on a measurable space
(E,E ), where E is a separable σ-algebra. The infinite or increasing degree U -statistics
can be defined as :

Un(hm) = (n−mn)!
n!

∑
i∈I(n,mn)

hm(Xi1 , . . . , Ximn
), (1.1)

where I(n,mn) = {i = (i1, . . . , imn) : 1 ≤ ij ≤ n and ij ̸= ir if j ̸= r} , is the set of
all mn-tuples of different integers between 1 and n. Common examples of estimators
for a finite degree are the empirical variance, Gini’s mean difference, or Kendall’s rank
correlation coefficient, while a classical test based on a U -statistic is Wilcoxon’s signed
rank test for the hypothesis of the location at zero (see, e.g., A. W. van der Vaart, 1998,
Example 12.4). Halmos, 1946; Hoeffding, 1948; v. Mises, 1947, who provided (amongst
others) the first asymptotic results for the case that the underlying random variables are
independent and identically distributed. U -statistics of infinite-order (IOUS). Frees uses
the term infinite order U-statistics (IOUS), and C. Heilig et al. used the term infinite
degree U-statistics (IDUS) in keeping with Hoeffding’s original use of the terms degree
and order, so the terms IOUS and IDUS indicate the same object. have attracted renewed
interest in the recent statistics and machine learning literature in relation to uncertainty
quantification for Breiman’s bagging Breiman, 1996 and random forests Breiman, 2001.
In such applications, the tree-based prediction rules can be thought of as U -statistics
with deterministic and random kernels, respectively, and their order corresponds to the
sub-sample size of the training data Mentch et al., 2016. Statistically, the subsample
size m used to build each tree needs to increase with the total sample size n to produce
reliable predictions. As a leading example, we mention the construction of simultaneous
prediction intervals for a version of random forests discussed in Mentch et al., 2016; Y.
Song et al., 2019. We mention that several classes of statistics share commonalities with
IDUS, including infinite-degree V -statistics, partial-sum U -processes [there are two per-
spectives on U-processes: 1) they are infinite-dimensional versions of U-statistics (with
one kernel); 2) they are stochastic processes that are nonlinear generalizations of empirical
processes] symmetric statistics, and elementary symmetric polynomials. The computa-
tional intractability of the IDUS is a significant constraint when the sample size and/or
order are large. Extensive literature have treated the theory of U -statistics of fixed or-
der, for instance, see among many others Arcones et al., 1993; Bouzebda et al., 2019a;
Bouzebda and Soukarieh, 2022a; Bouzebda et al., 2021; Bouzebda and Nemouchi, 2020,
2022; Bouzebda and Nezzal, 2022; de la Peña et al., 1999; Hoeffding, 1948; A. J. Lee,
1990; Serfling, 1980; Soukarieh et al., 2022. However, the U -statistics of infinite degree
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have been studied for the first time by FreesFrees, 1989, he called it the infinite order U -
statistics. In his work, he aimed to show if Un is still an unbiased estimator, even more, a
desirable estimator of a parameter of interest, say θ, and what conditions are needed to be
satisfied for the asymptotic convergences. Besides, he presented many examples to illus-
trate the usefulness of the IDUS. The authors of Bickel et al., 1997; Bouzebda, Elhattab,
and Ferfache, 2022; Politis et al., 1994a consider statistics based on resampling procedures.
Among the procedures summarized in Bickel et al., 1997, the m out of n bootstrap is an
infinite-degree V -statistic and the n choose m bootstrap is an infinite-degree U -statistic.
Historically speaking, Kohatsu-Higa, 1991 generalized the study of Frees, 1989 by repre-
senting the weak convergence of infinite U -process in the degenerate case. Precisely, he
used a technique from his previous work Kohatsu-Higa, 1990. Kohatsu-Higa in Rempala
et al., 1999 discussed the projection’s conditions of the asymptotic behavior of U -statistics
from the finite degree to the infinite degree. Kohatsu-Higa Kohatsu-Higa, 1991 revisited
the results related to those of Dynkin et al., 1983 for symmetric statistics. C. Heilig
et al.C. Heilig et al., 2001 treated the subject of infinite degree, as well as many previous
works for both, like C. M. Heilig, 1997; C. M. Heilig et al., 1998. On the other hand, Shieh
in Shieh, 1994 has proposed an analogy between infinite-degree V -statistics and the IDUS,
which may have more efficient calculation techniques than U -statistics, even though they
are not typically unbiased. A class of deterministic weighted U -statistics was proposed in
Pinheiro et al., 2009, called quasi U -statistics. The kernels of this U -statistics are degen-
erate of degree two, and then they generalized their investigation to the kernels of degree
m in Pinheiro et al., 2011 and to an infinite order degenerate kernels in Pinheiro et al.,
2014. The last cited references’ major concern is the limiting laws’ characterization. But
the problem in both cases, finite and infinite order, resides in the fact that the limiting
distributions of the U -processes, or their functionals, are rather complicated, which does
not permit explicit computation in practice. To overcome that difficulty, many authors
suggested and studied solutions like Arcones et al., 1992; Q. Han, 2022; Korolyuk et al.,
1990 by investigating what is called bootstrapped U -statistics. Then using the bootstrap
approach, we can simulate the limiting distribution of U -statistics. Those last references
used Efron’s bootstrap developed in Efron, 1979, which is an important non-parametric
technique to solve the problem of complex limiting distribution. Nevertheless, as it is well
known, Efron’s technique is assigned to the independent and identically distributed ran-
dom variable. As a result, different types of processes emerge in response to an expanded
number of statistical criteria while adhering to the core principles of the i.i.d. (indepen-
dent and identically distributed) bootstrap. D. A. Freedman, 1984 gives for the first time
an extension of Efron’s technique to the dependent framework, followed by Bose, 1988;
Carlstein, 1986a; Rajarshi, 1990 who offer different non-parametric and semi-parametric
methods or models of bootstrap concerning the dependent data. Over and above, as the
Markov chain model is an important tool for statisticians, engineers, data scientists, and
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econometricians, the investigation of bootstrap in this field is relevant. This investigation
can be found in many papers like in Athreya et al., 1992a, 1992b; Datta et al., 1993. In
the dependent setup, the most results of U -statistics are proved under the mixing con-
ditions; see the work of Borovkova et al., 2002; Borovkova et al., 2001; Dehling et al.,
1989, 1991; Denker et al., 1983; Hsing et al., 2004. However, in the stationary setup, it
can be referred to Hsing et al., 2004; Yoshihara, 1976. Note that Y. Song et al., 2019
have investigated an incomplete version of the infinite order U -statistics with a random
kernel. They derived sub-sampling procedures for making inferences on the parameter
of interest with a class of high-dimensional random kernels of diverging orders. In our
approach, we will use the same strategy as our previous work Bouzebda and Soukarieh,
2022a, i.e., no mixing conditions are involved. We are based on the strong property of
Markov chains, which allows us to divide the chain into i.i.d. blocks, based on Bertail
et al., 2011a. In addition to the previously mentioned work, Bertail et al., 2011a, the
authors in Duchemin et al., 2020; Fort et al., 2012; Harel et al., 1989 remain within the
framework of Markov chain U -statistics while showing other assumptions and properties
concerning this estimator. The primary purpose of the present chapter is to generalize the
work of U -statistics and U -process for the case where the degree m converges to infinity or,
in other words, increases with the size of the sample in the framework of Markov chains.
We generalize the work of C. Heilig et al., 2001 to the Harris recurrent Markov chain by
using the renewal properties of this chain. In addition, we study the limit theorems of
the U -statistic estimators in a class of functions that keep some properties to find the
desired results. We also consider the bootstrapped version of the U -process, which is of
its own interest. The context of the present chapter has, to the best of our knowledge,
not been considered so far in the literature, which is substantially more complicated than
the independence framework. Recall that we use the abbreviations IDUS or IOUS for
increasing (or infinite) degree/order U -statistics.

This chapter is organized as follows. In Section 2, we summarize notation, definitions,
and properties related to the Markov chain and U -statistics with a kernel of many ar-
bitrary arguments belonging to a class of functions. Section 3 reviews U -statistics with
infinite degree, including the Hoeffding decomposition. In Section 4, we apply the empir-
ical process technique to the first-order projection for the U -statistics based on the Harris
Markov chain. The core of this chapter is the asymptotic theory of IDUS represented in
Section 5 and the asymptotic theory of bootstrapped IDUS in Section 6. Then, Section 7
collects some examples and potential applications. Finally, to avoid interrupting the flow
of the presentation, all mathematical proofs are presented in Section 8.
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2 Preliminaries and notation

In this part and to facilitate the notation and indices of U -statistics and Markov chain,
we will properly define each term used in this chapter. Let X = (Xn)n∈N be an homoge-
neous Markov chain, i.e., the chain has a stationary transition probabilities, defined on a
measurable space (E,E ), where E is a separable σ-algebra. Let π(x, dy) be the transition
probability, ν = ν(i)i>0 denotes the initial probability. Therefore, we will denote by Pν
or just P the probability measure determined by P = (π, ν). Likewise, E will denote the
integration with respect to P. Under the same assumptions in Bouzebda and Soukarieh,
2022a, we will assume that (Xn)n≥0 be an Harris-recurrent Markov chain with a unique
invariant measure µ. We will also suppose that the chain is regenerative and there exists
a set A called an atom. We point out that the atomic setting includes the whole class
of Harris recurrent Markov chains with a countable state space (for which any recurrent
state is an accessible atom) and many other specific Markovian models widely used by
practitioners for modeling storage and queuing systems, for instance, refer to Sect. 2.4 in
S. P. Meyn et al., 1993 and Asmussen, 1987 for an overview. visited infinite times almost
surely. See Douc et al., 2018; Revuz, 1984, for an exhaustive treaty of the basic concepts
of the Markov chain theory. The existence of recurrent atoms A gives an immediate
consequence for constructing a regenerative extension of this chain. That is why we have
to define:

• The hitting times

T0 := inf{n ≥ 0 : Xn ∈ A}, Tj := inf{n > Tj−1 : Xn ∈ A};

• The renewal times

τ (0) := T0 + 1, τ (j) := Tj − Tj−1.

Similar to the regenerative process, the sequence of renewal times {τ(j)}∞
j=1 is i.i.d. and

independent of the choice of the initial probability. In this work, we set τ = τ (1).
Note that the hitting time Tj is finite for any starting probability and for all j ∈ N.

Let Bj : E → T a sequence of the following random variables: B0 = {X0, . . . , XT0}
and Bj =

{
XT j−1+1, . . . , XT j

}
in T = ⋃∞

n=1 E
n, for all j ∈ {1, . . . , ℓn} and B

(n)
ℓn

={
XT ℓn+1 , . . . , Xn

}
defined by

ℓn =
∑

1⩽i⩽n
1 {Xi ∈ A} .
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2. Preliminaries and notation

For more details on the preceding objects, we refer to Radulović, 2004. In the modern
theory of the empirical processes, it is customary to identify P and the empirical measure
Pn with the mappings given by

f → Pf =
ˆ
E

fdP, and f → Pnf =
ˆ
E

fdPn = 1
n

n∑
k=1

f(Xi).

Given a measure Q on (E,E ), for 1 ≤ p < ∞, we define

∥f∥Lp(Q) =
[ˆ

E

|f |pdQ

]1/p

.

Throughout the article Hm will denote the class of kernels hm, for each m = mn, where
the kernel is a function hm : Em → R. Consider the parameter Θ = Θ(h) for which there is
an unbiased estimator and a sequence of parameters Θm(hm) such that Θm(hm) converges
to Θ(h), these two parameters are defined as follows, for P a probability measure:

Θ(h) = Ph(X1, X2, . . .),

and, for hm : Em → R,

Θm(hm) = Pmhm(X1, . . . , Xm) =
ˆ
E

· · ·
ˆ
E

hm(x1, . . . , xm)µ(dx1) . . .µ(dxm).

The kernel hm may be seen as a “grand” kernel and it can be written as a sum of sub-kernel
{fι}mι=1:

hm (x1, . . . , xm) = f1(x1) + f2(x1, x2) + · · · + fm(x1, . . . , xm) =
m∑
ι=1

fι (x1, . . . , xι) .

Construct now the symmetrized kernel. The permutation-symmetrized grand kernel is:

h̃m (x1, . . . , xm) = 1
m!

∑
i∈I(m,m)

hm (xi1 , . . . , xim) ,

where

I(m,m) = {i = (i1, . . . , imn) : 1 ≤ ij ≤ m and ij ̸= ir if j ̸= r} ,

with cardinal
(
n
m

)
= n!

m!(n−m)! . Finally, we define the IDUS as in (1.1) in the following
way

Un(hm) = (n−m)!
n!

∑
i∈I(n,m)

hm (Xi1 , . . . , Xim) ,
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and for the symmetric kernel by :

Un
(
h̃m
)

=
(
n

m

)−1 ∑
i∈I(n,m)

h̃m (Xi1 , . . . , Xim) .

We highlight that Un(hm) = Un
(
h̃m
)
. Let us recall the following usual definitions. The

function H is an envelope for the class H if |h(x)| ≤ H(x) for all x ∈ Em and h ∈ H .
For a metric space (H , d), the covering number N (ε,H , d) is the minimal number of
balls of size ε needed to cover H . The metric that we use here is the L2(Q)-norm denoted
by ∥ · ∥L2(Q).

Definition 2.1. A class H of measurable functions Em → R is called Euclidean (C, V )
for an envelope H(·) and admissible characteristic (C, V ) (positive constants) such that
C ≥ (3

√
e)V and V ≥ 1, if for all probability measure Q on (Em,E ) with 0 < ∥H∥L2(Q) <

∞ and every 0 < ε < 1,

N
(
ε∥H∥L2(Q),H , ∥ · ∥L2(Q)

)
≤ Cε−V .

3 Infinite degree U -statistics and Hoeffding decom-
position

As previously stated, we are interested in the estimation of

Θ(hm) = Ehm(X1, . . . , Xm) =
ˆ
E

· · ·
ˆ
E

hm(x1, . . . , xm)µ(dx1) . . .µ(dxm),

where hm : Em → R is a kernel function. The estimation of this parameter should be
possible using the U -statistics of infinite degree. Hence we make use of the symmetric
form of this estimator in the following such that for m = mn and h̃m a symmetric kernel

Un
(
h̃m
)

=
(
n

m

)−1 ∑
i∈I(n,m)

h̃m(Xi1 , . . . , Xim), (3.1)

where
I(n,m) = {i = (i1, . . . , im) : 1 ≤ ij ≤ n and ij ̸= ir if j ̸= r} .

Hoeffding decomposition is a valuable method for achieving asymptotic limits of U -
statistics, as in C. Heilig et al., 2001. Here, we will present this decomposition for the
infinite degree U -statistics. The kernel is supposed to be symmetric because it is re-
quired for the Hoeffding decomposition. Remind that, if Pm |hm| < ∞, then Un

(
h̃m
)

is an unbiased estimator. Using this projection of the kernel, we obtain the Hoeffding
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3. Infinite degree U -statistics and Hoeffding decomposition

decomposition of the symmetric statistic, for c ≤ m, as follows

Un
(
h̃m
)

=
m∑
c=0

(
m

c

)
Un,c

(
h̃m(c)

)
, (3.2)

where
Un,c

(
h̃m(c)

)
=
(
n

c

)−1 ∑
i∈I(n,c)

h̃m(c) (Xi1 , . . . , Xic) ,

such that

h̃m(c) (x1, . . . , xc) = h̃m|c (x1, . . . , xc) − Θ(hm) −
c−1∑
k=1

∑
π∈I(c,k)

h̃m(k) (xπ1 , . . . , xπk
)

=
c∑

k=0
(−1)c−k

∑
π∈I(c,k)

[
h̃m|c (xπ1 , . . . , xπk

) − Θ(hm)
]

=
c∑

k=0
(−1)c−k

∑
π∈I(c,k)

h̃m|c (xπ1 , . . . , xπk
) , (3.3)

where I(c, k) := {π = (π1, . . . , πk) : 1 ≤ πj ≤ c and πj ̸= πr if j ̸= r} and

h̃m|c (x1, . . . , xc) =
ˆ
h̃m (x1, . . . , xm) dP (xc+1) . . . dP (xm) .

We have used the fact

c∑
k=0

(−1)c−k
∑

π∈(c,k)
Θm(hm) = Θm(hm)

c∑
k=0

(−1)c−k
 c

k

 = Θm(hm)(1 − 1)c = 0.

The first order projection, as is widely known, is the leader term for the central limit
theorem in the finite degree U -statistics. However, due to its dependency on m in the
infinite degree, this term has far more sensitive characteristics. To be more precise, notice
that

mUn,1
(
h̃m(1)

)
:= 1

n

n∑
i=1

mh̃m(1) (Xi) ,

where mh̃m(1) can be viewed as:

mh̃m(1)(x) = m
[
H̃m|1 (x) − Pmhm

]
=

m∑
j=1

j
[
h̃j|1(x) − Pjhj

]
.
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where by applying (3.3),

mH̃m|1(x) = m
m∑
j=1

 m

j

−1 m− 1
j

 h̃j|0 +m
m∑
j=1

 m

j

−1 m− 1
j − 1

 h̃j|1(x)

=
m∑
j=1

(m− j)Pjhj + j h̃j|1(x).

Subtract mPmhm = ∑m
j=1 mPjhj from the previous expression to find mh̃m(1)(x). Taking

gm(x) =
m∑
j=1

j h̃j|1(x),

we can see the first projection as follows:

mUn,1
(
h̃m(1)

)
= (Pn − P) gm. (3.4)

The definition of the new function gm(x) gives a convenient way to analyze the behavior
of mh̃m|1(x).

4 Asymptotic theory: first-order projection

In the case of increasing degree U -statistic, the first-order projection is used in the same
way as with finite-degree U -statistics, except that it has considerably more delicate char-
acteristics, especially in our Markov chain framework. That is why we start by studying
the asymptotic behavior of this empirical process as an intermediate step to investigate
the U -process. We adapt in a non-trivial way the techniques from both papers C. Heilig
et al., 2001; Levental, 1988 . However, as will be seen later, the problem requires much
more than ’simply’ combining ideas from these two papers. In fact, delicate mathematical
derivations will be required to cope with the IDUS in the Markovian framework. From
now on, Hm denotes the class of symmetric functions hm.
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4. Asymptotic theory: first-order projection

4.1 Strong law of large numbers

Theorem 4.1

Let (Xn)n≥0 be a Harris-recurrent Markov chain, and τ (j) the renewal time
such that τ (0) < ∞ a.s and E(τ ) < ∞. For all m, let Gm ={
gm = ∑m

j=1 j hj|1 : hm ∈ Hm

}
a permissible class of functions such that

N
(
ε∥Ḡm∥L1(P), Gm, ∥ · ∥L1(P)

)
≤ Aε−Vm ,

with an envelope Ḡm and lim sup PmḠ2
m < ∞. Then as n → ∞, we have

sup
gm∈Gm

|Pngm − Pgm| → 0, a.s.

Remark 4.1. C. Heilig et al. proved the weak law of large numbers under the conditions
that KmmV

1/2
m = o

(
n1/2

)
and mV 1/2

m = o
(
n1/2

)
. This condition is crucial to investigate

all terms in the Hoeffding decomposition. In Theorem 4.1, we treated only the first term
of the Hoeffding decomposition by providing the asymptotic convergence in a general way
where we make use of Pollard, 1984, Theorem 37. Another subtle difference is that C.
Heilig et al. use that the class of functions is bounded by some constant depending on m,
while in this chapter, we use the truncation arguments to obtain the law of large numbers.

4.2 Weak convergence theorem

Recall that controlling the rate with increasing m = mn is a difficult aspect that dis-
tinguishes the infinite degree U -processes (IDUP). C. Heilig et al., 2001 investigated the
central limit theorem of the first order projection, which is treated as an empirical process.
We will modify the proof for the case of Markovian data by keeping similar conditions as
in the i.i.d. setting with particular attention to the factor of m in front of Un,1

(
hm(1)

)
in

equation (3.4).
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Chapter 3. Renewal type bootstrap for increasing degree U -process of a Markov chain

Theorem 4.2

Let {Xi}ni=1 be a sequence of Harris-recurrent Markov chain random variables and
assume that the following conditions hold.

(A.1) The class Gm is a uniformly bounded permissible such that for the envelope
Ḡm, for all m, V > 1 and ε ∈ (0, 1]:

N
(
ε∥Ḡm∥L2(P), Gm, ∥ · ∥L2(P)

)
≤ Aε−V .

(A.2) σ1(gm, ğm) = limn→∞ Pgm(X)ğm(X) exists for every gm, ğm in Gm, where, for
hm and h̆m ∈ Hm, ğm(x) = ∑m

j=1 j h̆j|1(x) and gm(x) = ∑m
j=1 j hj|1(x). For

ρ2
n(gm, ğm) =

m∑
j=1

m∑
k=1

jkP
[
hj|1 (X1) − h̆j|1 (X1)

] [
hk|1 (X1) − h̆k|1 (X1)

]
,

the limit ρ(·, ·) = limn→∞ ρn(·, ·) is well-defined, and for all sequences of func-
tions {ḡn} and

{
¯̄gn
}

in Gm, if ρ
(
ḡn, ¯̄gn

)
→ 0, then ρn

(
ḡn, ¯̄gn

)
→ 0.

(A.3) ∑n
i=1 PḠm (Xi)2

{
Ḡm (Xi)2 > ε

}
→ 0, for every ε > 0.

(A.4) We suppose that PA
[(∑T 0

j=1 gm(Xj)
)2
]
< ∞.

(A.5) E (τ )2+α < ∞ (α > 0 fixed ).

Then
√
n (Pn − P) gm converges in distribution to a mean-zero Gaussian process

which is uniformly ρ -continuous and has co-variance given by

σ(g, ğ) = lim
n→∞

m∑
j=1

m∑
k=1

jkP
[
hj|1 (X1) − h̆j|1 (X1)

] [
hk|1 (X1) − h̆k|1 (X1)

]
.

Remark 4.2. At first glance, one can not see the connection between g(·) and ğ(·) in the
variance given in the last theorem. One can consider g(·) = h(·, t) and in a similar way
ğ(·) = h(·, s), for s, t ∈ T (T is some index set) that is in agreement with the notation
given in C. Heilig et al., 2001, then we have

σ(s, t) = lim
n→∞

m∑
j=1

m∑
k=1

jkP
[
hj|1 (X1; s) − Phj|1 (X1; t)

][
hk|1 (X1; s) − Phk|1 (X1; t)

]
,

and

ρ2
n(s, t) =

m∑
j=1

m∑
k=1

jkP
[
hj|1 (X1; s) − hj|1 (X1; t)

][
hk|1 (X1; s) − hk|1 (X1; t)

]
.

64



5. Increasing degree U-processes: asymptotic theory

5 Increasing degree U-processes: asymptotic theory

We now consider the IDUPs. We will extend and complement the work of C. Heilig et
al., 2001 by considering the theory of the IDUP for the Markovian setting. In the next
theorem, we seek to establish the law of large numbers, which follows from the almost
sure convergence in the fixed degree settings. The main problem is that the increasing
degree or infinite degree U -statistics is not a reverse martingale given any filtration, as
well as the kernel changes with the sample size n.

Let X1, . . . , Xn, X
′
1, . . . , X

′
n be two independent samples from the distribution P. Also,

let Wi = Xi and Wn+i = X ′
i, i = 1, . . . , n. For ζ ≥ 1, suppose that Hζ is a class of

symmetric kernels {hζ} of degree ζ, with envelop Hζ and for hζ and h̆ζ ∈ Hζ , define the
pseudometric

d2n,ζ
(
hζ , h̆ζ

)
=

U2n,ζ
(
hζ − h̆ζ

)2

U2n,ζ
(
H2
ζ

)


1/2

where U2n,ζ(hζ) is a U -statistic based on the double sample W1, . . . ,W2n and hζ is a
symmetric kernel of degree ζ.

Theorem 5.1: Law of Large Numbers

Let (Xn)n≥0 be a Harris-recurrent Markov chain with atom A and E(τ ) < ∞. For
m = 1, . . . ,∞, let hm : Em → R be the associated kernel belonging to the class of
functions Hm. Assume that the kernels have an envelope H̄m for each m and

lim
m→∞

PmH̄m < ∞.

Let rm be a sequence of integers, and

ϕ(m) = n−m/2ΓmP

[[
U2n,mH̄

2
m

]1/2
ˆ δn,m

0
N (x, d2n,m,Hm)1/2rm dx

]
, (5.1)

where Γm = [64m!(16rm − 8)m]1/2. If

ϕ(m) = o(1), (5.2)

then, as n → ∞, we have

sup
hm∈Hm

|Un(hm) − Pm(hm)| P→ 0.
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Remark 5.1. It would be possible to use the Hoeffding decomposition of the infinite degree
U-process to prove the law of large numbers given in Theorem 5.1 and apply the maximal
inequality to terms of this decomposition. For c = 1, . . . ,m, let rc be a sequence of positive
integers and Hm(c) be the classes of functions associated with the kernel projections hm(c),
each with the envelope function Hm(c). It will be required to assume that the classes Hm(c)

are totally bounded under pseudometric d2n,c for each c,m, and m < n/3 and

m∑
c=1

ϕ(c) = o(1),

where

ϕ(c) = n−c/2
(
m

c

)
ΓcP

[[
U2n,cH

2
m(c)

]1/2
ˆ δn,k

0
N
(
x, d2n,c,H (hm(c))

)1/2rc

dx

]
, (5.3)

and Γc = [64c!(16rc − 8)c]1/2.

Remark 5.2. Suppose the kernel classes are Euclidean (Am, Vm) Condition (5.1) becomes
:

ϕ(m) = n−m/28m!1/2 (8Vm)m/2
(
Am
4

) 1
Vm+1

(Vm + 1) (PmH̄2
m)1/2, (5.4)

for rm ≥ (Vm + 1)/2, ShermanSherman, 1994 studied this case and gives us the results.
Note that by evaluating the integral we have

´ 1/4
0

(
Ax−V

)1/2r
dx = A1/2r4V/2r−1

(
1 − V

2r

)−1

and by applying (concave) Jensen’s inequality we have

P
(
U2n,mH̄

2
m

)1/2
≤
(
PU2n,mH̄

2
m

)1/2
=
(
PmH̄2

m

)1/2
.

Also, we write ϕ(c) defined in Equation (5.3) with a general form for the case of class of
functions associated with the kernel projections, if the classes Hm(c) are euclidean with
parameters (Ac, Vc) for the envelopes Hm(c) and if rc ≥ (Vc+1)/2, then ϕ(c) can be viewed
as:

ϕ(c) = n−c/2
(
m

c

)
8c!1/2 (8Vc)c/2

(
Ac
4

) 1
Vc+1

(Vc + 1) (PcH2
m(c))1/2, (5.5)

if in addition
∣∣∣Hm(c)

∣∣∣ ≤ Mm for each c, and for Mm a finite constant, then
(
PcH̃2

m(c)

)1/2
≤

2iMm and the results are still valid.

The following theorem aims to prove the weak convergence of the infinite degree U -
processes for the Harris Markov chains. This convergence is investigated over a class
of functions Hm, where certain conditions will be preserved against any complications
caused by the non-fixed kernels.

66



6. Bootstrap of the increasing degree U-processes

Theorem 5.2: Weak convergence theorem for IDUS

Let (Xn)n≥0 be a Harris-recurrent Markov chain with atom A, and τ (j) the renewal
time such that E(τ )2+α < ∞. Suppose also that all conditions of Theorem 4.2 hold.
Then, if the class Hm has Pm-square integrable envelope H̄m, i.e., Pm(H̄2

m) < ∞,
we have

√
n [Un(hm) − Pm(hm)] converges in distribution to a mean-zero Gaussian

process G which is uniformly ρ -continuous.

Remark 5.3. Let us recall that the strong or α− mixing coefficient between two σ− fields,
A and B in (Ω,C , P ), was defined by Rosenblatt, 1956 as

α(A ,B) := sup
(A,B)∈A ×B

|P(A ∩B) − P(A)P(B)|.

The alpha mixing coefficient associated to a sequence of random variables is defined as

αk = sup {α (Fj,Gj+k) : j ∈ N} ,

where Fj = σ (X0, X1, . . . , Xj) and Gn = σ (Xn, Xn+1, . . .). Theorem 2.2 in Bolthausen,
1982 provides a connection between α-mixing coefficients and renewal times for countable
Markov chains, given by

∞∑
i=1

iλαi < ∞ ⇔ E
(
τ 2+λ

)
< ∞, for every λ ≥ 0.

6 Bootstrap of the increasing degree U-processes

We describe here the resampling algorithm, and then we will establish the bootstrap
version of the uniform central limit theorem of IDUS for the Harris Markov chains. As we
have mentioned in the introduction, as the data is not i.i.d., we will use the block bootstrap
to resample a new sequence. There is a connection with moving blocks bootstrap and
its modification, matched block bootstrap. Instead of artificially breaking a sample into
blocks of a fixed size and then resampling from them, the latter tries to match the blocks
to make a smoother transition. Recall that the regeneration-based bootstrap procedure
introduced by Datta et al., 1993 to deal with atomic Markov chains and further explored
by Bertail et al., 2006c; Radulović, 2004. Keep in mind that ℓn is the number of visits to
the atom A.

As we explained in Section 2, we divide the observed sample X(n) = (X1, . . . , X
(n)
n ) into

(ℓn + 1) regenerative blocks B0, . . . , Bℓn−1, B
(n)
ℓn

∈ T, where B0 = {X0, . . . , XT0} and Bj ={
XT j−1+1, . . . , XT j

}
in T = ⋃∞

n=1 E
n, for all j ∈ {1, . . . , ℓn} where ℓn total number of

blocks. We drop the first and the last blocks, non-regenerative blocks, to avoid the bias
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problem, see Remark 6.3. We draw sequentially bootstrap data blocks B∗
1,n, . . . , B

∗
k,n

independently. We generate the bootstrap blocks until the joint length of the bootstrap
blocks

l∗(k) =
k∑
j=1

l
(
B∗
j,n

)
of the bootstrap data series is larger than n. Let

ℓ∗
n = inf{k > 1, l∗(k) > n}.

In this case we can see, for j ∈ {1, . . . , ℓn − 1}, that

P∗
[
B∗
j = Bk

]
= 1
ℓn − 1 , (6.1)

where P∗ is the bootstrap distribution given (Bn)n, and we will denote by E∗ and Var∗

respectively the expectation and the variance of the bootstrapped sample conditionally
on the original sample. We generate a trajectory X∗(n) = (X∗

1 , . . . , X
∗
n∗) of length n∗ =

l∗ (N∗
n) by connecting the bootstrap data blocks created by the previous mechanism, then

plugging this trajectory sample to build the bootstrapped U -statistic:

U∗
n(h̃m) =

(
n∗

m

) ∑
i∈I(n∗,m)

h̃m
(
X∗
i1 , . . . , X

∗
im

)
= E∗(U∗

n) + 1
n∗

n∗∑
i=1

mh̃m(1) (X∗
i ) +

m∑
c=2

(
m

c

)
U∗
n,c

(
h̃m(c)

)
(6.2)

:= E∗(U∗
n) +mU∗

n,1

(
h̃m(1)

)
+ U∗

n,R

(
h̃m
)
, (6.3)

where hm(c) is the projected kernels defined in (3.3).

6.1 Asymptotic validity of bootstrapped Markovian U -statistics

In the following theorem we give the main result concerning the bootstrap of the infinite
degree U -processes for the Harris Markov chains.

Theorem 6.1

Let {Xi}ni=1 be a sequence of r. v. of Harris Markov chain, and Hm an euclidean
permissible class of function. Under the assumptions of Theorem 4.2 and Theorem
5.2, we have

sup
Υ∈BL1

∣∣∣E∗
(
Υ
(√

n∗
(
U∗
n(h̃m) − Un(h̃m)

)))
− E (Υ(G))

∣∣∣ → 0 in probability, (6.4)

where BL1 is the set of all functions Υ : ℓ∞(Hm) 7→ [0, 1] such that | Υ (z1) −
Υ (z2) |≤ ∥z1 − z2∥Hm

for every z1, z2.
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Remark 6.1. The main difficulties in proving Theorem 6.1 related to the random size
of the resampled blocks. This generates problems with the random stopping times, and
this can not be removed by replacing a random stopping time with its expectation. In the
present setting, the random bootstrap variables are formed by resampling from a random
number of blocks. One can think that the use of the conditioning arguments can overcome
the problem, but the answer is negative. To circumvent this, we will follow the reasoning
of Radulović, 2004.

Remark 6.2. In the present chapter, we have considered a renewal type of bootstrap
for atomic Markov chains under minimal moment conditions on renewal times. The
atomic Markov chains assumption can be dropped by mimicking the ideas of Athreya et
al., 1978; Nummelin, 1978 by introducing an artificial atom and deriving the bootstrap
procedure that applies to non-atomic Markov chains. Precisely, in the case of a general
irreducible chain X with a transition kernel Π(x, dy) satisfying a minorization condition:
∀x ∈ S,Π(x, dy) ⩾ δψ(dy), for an accessible measurable set S, a probability measure ψ and
δ ∈]0, 1[ (note that such a minorization condition always holds for Π or an iterate when the
chain is irreducible), an atomic extension (X, Y ) of the chain may be explicitly constructed
by the Nummelin splitting technique (see Nummelin, 1984) from the parameters (S, δ, ψ)
and the transition probability Π, see for instance Bertail et al., 2006c; Radulović, 2004.
From a practical viewpoint, the size of the first block may be large compared to the size
n of the whole trajectory, for instance, in the case where the expected return time to
the (pseudo-)atom when starting with the initial probability distribution is large. The
effective sample size for constructing the data blocks and the corresponding statistic is
then dramatically reduced. However, in Bertail et al., 2008 some simulations are given
together with examples including the content-dependent storage systems and the general
AR models supporting the method discussed in this work.
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Remark 6.3. The first data block B0 may produce a bias of order O(n−1) when the initial
distribution ν is different from the limiting distribution µ (non-stationary Markov chain),
for instance, refer to Bertail et al., 2004, Proposition 3.1. That is why it is advised not to
employ estimators based on the entire trajectory. This fact is well known in the Bayesian
literature when the matter is to control the convergence of Markov chain Monte Carlo
algorithms. It is closely related to the important problem of burn-in (time), that is, the
time that one should wait before the marginal of a (simulated) chain is close enough to the
limit distribution (see, for instance, Hobert et al., 2004). When the statistic is produced
using exclusively regeneration blocks, the first block does not affect the regenerative block
bootstrap estimate’s second-order properties. However, from a practical standpoint, the
initial block size may be greater than the size n of the entire trajectory, such as when
the estimated return time to the atom is long when starting with ν. The effective sample
size for building the data blocks and accompanying statistics is consequently substantially
decreased. We mention that eliminating the first block allows deleting the only quantity
depending on the initial distribution ν in the first order term of the bias, which may
be interesting for estimation purpose and is crucial when the matter is to deal with an
estimator of which variance or sampling distribution may be approximated by a resampling
procedure in a nonstationary setting. On the other hand, the last block could be empty if
the last block ("full" block) ends with n. In such a case, for mimicking the distribution
of the original statistic, it is preferable, heuristically speaking, to draw sequentially the
bootstrap blocks B∗

1 , . . . , B
∗
k independently from the empirical distribution Pn, until l (B0)+∑k

j=1 l
(
B∗
j

)
is larger than n, taking into account in an effective way the size l (B0) this

way. Although it does not play any role asymptotically, since l (B0) /n = OPv (n−1) as
n → ∞, simulation studies show that this may improve the finite sample properties of
the bootstrapped distribution, see for instance Bertail et al., 2008 for more details and
recommendations about this problem.
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Remark 6.4. To better understand the role of the block number, let us describe the Moving
Block Bootstrap (MBB). Suppose that {Xt}t∈Z is a stationary weakly dependent time series
and that {X1, . . . , Xn} are observed. Let ℓ be an integer satisfying 1 ≤ ℓ < n. Define
the blocks B1 = (X1, . . . , Xℓ), B2 = (X2, . . . , Xℓ+1) , . . . ,BN = (XN , . . . , Xn), where
N = n−ℓ+1. For simplicity, suppose that ℓ divides n. Let b = n/ℓ. To generate the MBB
samples, we select b blocks at random with replacement from the collection {B1, . . . ,BN}.
Since each resampled block has ℓ elements, concatenating the elements of the b resampled
blocks serially yields b · ℓ = n bootstrap observations X∗

1 , . . . , X
∗
n. Note that if we set

ℓ = 1, then the MBB reduces to the standard bootstrap method of Efron, 1979 for i.i.d
data. However, for a valid approximation in the dependent case, it is typically required
that ℓ−1 + n−1ℓ = o(1) as n → ∞. It is well known (see Chung, 1967, Chapter I.14)
that for any starting probability ν and all j ∈ N0,Tj < ∞,P a.s. In our setting, ℓ is not
fixed and is replaced by Tj − Tj−1. Therefore the number of blocks k → ∞ as n → ∞. At
this point, we mention that the conditions on k are imposed implicitly by the fact that, by
definition, k is related to l∗.

7 Examples and Applications

For a better understanding of the idea of infinite degree U -statistics, we will give some
examples extracted from different references. Although only four examples will be given
here, they stand as archetypes for various examples that can be investigated similarly.
Example 16 (Simultaneous prediction intervals for random forests (Y. Song et al., 2019)).
Consider a training dataset of size n, {(Y1, Z1), . . . , (Yn, Zn)} = {X1, . . . , Xn} = Xn

1 ,
where Yi ∈ Y is a vector of features and Zi ∈ R is a response. Let h be a deterministic
prediction rule that takes as input a sub-sample {Xi1 , . . . , Xim} with 1 ≤ m ≤ n and
outputs predictions on d testing points (y∗

1, . . . , y
∗
d) in the feature space Y . For random

forests, the tree-based prediction rule is constructed on each sub-sample with additional
randomness. Specifically, let {Wι : ι ∈ I(m,n)} be a collection of random variables
taking value in a measurable space (S ′,S ′) that are independent of the data Xn

1 . Let
H : Em × S ′ → Rd be an Em ⊗ S ′-measurable function such that E[H(x1, . . . , xm,W )] =
h(x1, . . . , xm). Then predictions of random forests are given by a d-dimensional U-statistic
with random kernel H:

Ûn := (n−m)!
n!

∑
i∈I(m,n)

H(Xi1 , . . . , Xim ,Wi). (7.1)

where the random kernel H varies with m. For forests based on subsamples, (Mentch et al.,
2016) first show the asymptotic normality of its estimator under a U-statistic framework
with growing tree (kernel) size m = o(

√
n), where m is the subsampling size and n is the

training sample size. Unfortunately, the conditions in Mentch et al., 2016 for asymptotic

71



Chapter 3. Renewal type bootstrap for increasing degree U -process of a Markov chain

normality cannot hold simultaneously. Further conditions and proofs are given in DiCiccio
et al., 2022; Hediger et al., 2022; Peng et al., 2022; Qiu et al., 2022; Zhou et al., 2021.

Example 17 (Renewal estimator). In this example, we will treat the famous estimator
of Frees, 1989; the renewal estimator. This estimator introduced by Frees, 1989 was
completed by C. Heilig et al., 2001. Let (E,E ) be a probability space, and let {Xi}ni=1 be a
sequence of random variables with probability measure P (which is assumed to have finite
second moment). Then, for some index set T , and for each t ∈ T

{
ω ∈ E :

k∑
i=1

Xi(ω) ∈ (−∞, t]
}
,

denotes the event that the kth renewal occurs by time t. The k-fold convolution measure
is given by

M[k](t) = P

{
k∑
i=1

Xi ≤ t

}
.

The renewal measure is
N(t) =

∞∑
k=1

M[k](t).

To estimate this function, we can use the U-statistic estimator for the convolution measure
and define the sub-kernel and the U-statistic respectively by:

hk (x1, . . . , xk; t) = 1 {x1 + · · · + xk ≤ t} ,

M[k]
n (t) = Un,khk(. . . ; t) =

(
n

k

)−1 ∑
1≤i1<...<ik≤n

1 {Xi1 + · · · +Xik ≤ t} . (7.2)

Frees’ non-parametric renewal estimator is then the following grand kernel, averaged over
the sample:

Hm (x1, . . . , xm; t) =
m∑
k=1

1 {x1 + · · · + xk ≤ t} ,

and

N̂m(t) = Un,mHm(. . . ; t) = (n−m)!
n!

∑
1≤i1···im≤n

m∑
k=1

1 {Xi1 + · · · +Xik ≤ t} =
m∑
k=1

Un,khk(. . . ; t),

where m = mn grows with n and this estimator is seen as a U-statistic of degree m or a
sum of U-statistics with kernels of degree k ∈ {1, . . . ,m}, and its expectation converges
to the renewal function N . The following theorems extend Lemma 4 and 5 of C. Heilig
et al., 2001 to the Markov setting.
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Theorem 7.1. Let {Xi}ni=1 be a sequence of Harris-recurrent Markov chain random vari-
ables with positive mean, finite variance, with E(τ ) < ∞. Let Γ be a finite constant. The
associated renewal estimator with grand kernel defined in (7.3) satisfies the uniform weak
law of large numbers over [0,Γ], for any m < n and m → ∞,

sup
t∈[0,Γ]

∣∣∣N̂m(t) − PmHm

∣∣∣ P→ 0.

Proof of Theorem 7.1.

This theorem is an immediate consequence of Theorem 5.1 and, as in C. Heilig et al., 2001,
the use of the fact that if the class Hm is euclidean (C, 2) for the constant envelope m and
that Hm(i) is Euclidean (C, 4) for the envelope 2im, at this point refer to C. Heilig et al.,
2001 and Dudley, 1985, Example 5.4. We can see also the convergence of |Pmhm −N(t)|
to 0, as well as m → ∞, we have

sup
t∈[0,Γ]

|PmHm −N(t)| =
∑
k>m

M[k](Γ) → 0.

The rest of the proof follows similar lines of the proof of Lemma 4 in C. Heilig et al.,
2001.

Remark 7.2. The preceding theorem is an empirical law of large numbers. No additional
assumptions relative to the i.i.d. case are needed to get the result except the assumption
that guarantees the existence of a steady state distribution for the process, namely E(τ) <
∞.

Theorem 7.3. Let {Xi}ni=1 be a sequence of Harris-recurrent Markov chain random vari-
ables with positive mean and finite variance, and that for some η > 0,P|X−

1 |5+η > 0,
where X−

1 = min(X, 0), E (τ )2+α < ∞ (α > 0 fixed ). Let Γ be a finite constant. Then
for any m ≥ n1/(6+2η), we have the functional central limit theorem, over [0,Γ], for the
IDUS n1/2(N̂m(t) − PmHm) associated with the renewal estimator.

Proof of Theorem 7.3.

We can apply Theorem 5.2 or we can prove that

P

(
sup
t∈[0,Γ]

∣∣∣N̂m(t) − PmHm − (Pn − P) gm
∣∣∣ > ε

)
→ 0,
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under the condition ∑m
j=2 ϕ(j) = o(n−1/2), where ϕ is defined in (5.3) and then we consider

the functional central limit theorem for the first order projection. We have

gm(x; t) =
m∑
j=1

j h̃j|1(x; t) =
m∑
j=1

jM[j−1](t− x).

Now, we consider the first-order projection n1/2 (Pn − P) gm:

σm|1(s, t) = P [gm (X1; s) − Pgm(s)] [gm (X1; t) − Pgm(t)]

=
m∑
j=1

m∑
k=1

jk
[
P M[j−1] (s−X1) M[k−1] (t−X1) − M[j](s)M[k](t)

]
.

Observe that

PM[j−1] (s−X1) M[k−1] (t−X1) − M[j](s)M[k](t) ≤ PM[j−1] (s−X1) = M[j](s).

The roles of j and k are symmetric, so

PM[j−1] (s−X1) M[k−1] (t−X1) − M[j](s)M[k](t) ≤ M[j](s) ∧ M[k](t). (7.3)

For r ≥ 2, condition P|X−|r > 0 implies

∑
k≥1

kr−2M[k](t) < ∞,

for instance, see Gut, 1974b, which in combination with (7.3) gives that the limit of
σm|1(s, t) is finite, say σ1(s, t). We also have g2

m is uniformly integrable over the interval
[0,Γ]. Taking Ḡm(x) = gm(x,Γ), and the fact that gm(x, t) is nondecreasing in t, all
conditions of Theorem 4.2 are fulfilled. Hence the proof is complete.

Remark 7.4. In the proof of the preceding theorem, we have followed the lines of Lemma
5 in C. Heilig et al., 2001. The main difference is that the last reference used the paper
Theorem 2.1 of Gut, 1974a as a key step in the proof that is tailored for the independent
setting. The key step in this paper uses Theorem 2.1 of Gut, 1974b, that is adapted to the
dependent framework. In addition, we suppose that E (τ )2+α < ∞, which is a fundamental
condition to prove the uniform CLT in the Markov framework. The key step in the proof
of the uniform CLT in Levental, 1988 is Lemma 4.2, which shows that the main condition
concerning the entropy for the uniform CLT in the i.i.d. case still holds for the block
structure that we have here even though the length of each block is random, provided that
E (τ )2+α < ∞.
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Example 18 (C. Heilig et al., 2001). In the right censorship model, the data set is
given by {(Yi, δi) : 1 ≤ i ≤ n}, where Yi = min (Ti, Ci) and δi = 1{Ti ≤ Ci} for i ≥ 1.
Here, {Ti : i ≥ 1} is a sequence of Markov nonnegative lifetimes, and {Ci : i ≥ 1} is an
independent sequence of independent and identically distributed nonnegative censoring
times, defined on the same probability space. Set T = T1, C = C1, Y = Y1, δ = δ1.
For example, survival data in clinical trials or failure time data in reliability studies are
often subject to such censoring. More specifically, many statistical experiments result in
incomplete samples, even under well-controlled conditions. For example, clinical data
for surviving most types of disease are usually censored by other competing risks to life
that result in death. Liebscher et al., 1997 studied the strong convergences and the weak
convergences of the Kaplan Meier Kaplan et al., 1958 estimator in the Harris recurrent
Markov chain framework. For example, in reliability statistics, failure of one element of
a system can be censored by failure of another element of the same system, provided both
elements are connected in series. However, failure times of elements may strongly depend
on the load the system is subject too. Consequently, failure time T and censoring time C
may become dependent; for instance, refer to Liebscher et al., 1997. In this example,
assume that T and C are independent and Y = T ∧ C, we have P(T > t) = P(Y >

t)/P(C > t). The censoring distribution has a cumulative hazard similar to the failure
hazard:

Q(t) =
ˆ t

0

P(Y ∈ du, δ = 0)
P(Y > u) , P(C > t) = exp(−Q(t)).

So P(T > t) = P(Y > t) exp(Q(t)). Let F̄Y (t) = P(Y > t) and FY 0(t) = P(Y ≤ t, δ = 0).
By expanding the exponential and rewriting each Q as

´
dQ :

P(T > t) = P(Y > t)
[
1 +
ˆ t

0

FY 0 (du1)
F̄Y (u1)

+
ˆ t

0

FY 0 (du1)
F̄Y (u1)

ˆ u1

0

FY 0 (du2)
F̄Y (u2)

+ · · ·
]
.

The first-order term can be written as follows, for k ≥ 1:
ˆ t

0

FY 0 (du1)
F̄Y (u1)

=
ˆ t

0

∞∑
k1=1

FY (u1)k1 FY 0 (du1) =
ˆ t

0

∞∑
k1=1

γk1 (du1) .

The empirical version of γk(du) is

qk (x1, . . . , xk; du) = 1 {y1 ∈ du, δ1 = 0}1 {y2 ≤ y1} . . .1 {yk ≤ y1} ,

where xi = (yi, δi), so that Pqk (X1, . . . , Xk; t) =
´ t

0 γk(du). The first three terms of the
grand kernel have respectively the form:

P(Y > t) ↔ 1 {Yn > t} , (7.4)
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P(Y > t)Q(t) = P(Y > t)
ˆ t

0

∞∑
k1=1

γk1 (du1) ↔ 1 {Yn > t}
ˆ t

0

n−1∑
k1=1

qk1 (X1, . . . , Xk1 ; du1)

= 1 {Yn > t}
n−1∑
k1=1

qk1 (X1, . . . , Xk1 ; t)

= 1 {Yn > t}1 {Y1 ≤ t, δ1 = 0}
n−1∑
k1=1

k∏
j=1

{Yj ≤ Y1} ,

P(Y > t)Q(t)2/2 ↔ 1 {Yn > t}
ˆ t

0

n−2∑
k1=1

qk1 (X1, . . . , Xk1 ; du1)

×
ˆ u1

0

n−k1−1∑
k2=1

qk2 (Xk1+1, . . . , Xk1+k2 ; du2) .

We now extend the general expansion of the grand kernel. So let Sm(t) = {(u1, . . . , um) ∈
Rm : 0 ≤ u1 ≤ · · · ≤ um ≤ t}, so that

ˆ
S2(t)

f (du1) g (du2) =
ˆ t

0
f (du1)

ˆ u1

0
g (du2) .

In the parameter expansion, we have infinite sums over index sets of the form {1, 2, . . .}m.
Let

Km = {(k1, . . . , km) ∈ Nm} .

Now, by the the Péano series expansion, see for instance Gill et al., 1990, we can write
the fully expanded parameter:

P(T > t) = P(Y > t)
∞∑
i=0

ˆ
u∈Si(t)

∑
k∈Ki

i∏
j=1

γkj
(duj) .

Let X (k1 + (1, . . . , k2))
def= (Xk1+1, . . . , Xk1+k2) and Jm,n =

{
(k1, . . . , km) ∈ Nm : ∑j kj < n

}
,

the grand kernel is:

Hn (X1, . . . , Xn) = 1 {Yn > t}
n−1∑
i=0

ˆ
u∈Si(t)

∑
k∈Ji,n

i∏
j=1

qkj

X

∑
ℓ<j

kℓ + (1, . . . , kj)
 ; duj

 .
The grand kernel has the following expectation

PHn(t) = P(Y > t)
n−1∑
i=0

ˆ
u∈Si(t)

∑
k∈Ji,n

i∏
j=1

γkj
(duj) .

C. M. Heilig, 1997, Proposition 5.6 showed that this IDUP is equivalent to the Kaplan-
Meier estimator. The IDUS offers an alternative way to investigate the Kaplan-Meier es-
timator that is entirely different from the view of Alvarez-Andrade et al., 2013; Bouzebda
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and El-hadjali, 2020a; Liebscher et al., 1997. In the last mentioned references, the au-
thors heavily use the notion of the Hadamard differentiability in connection with the weak
convergence of the bivariate empirical processes that involve more intricate steps of the
proof. Finally, in Chapter 5 of C. M. Heilig, 1997, IDUP theory is applied to several
example estimators in renewal theory and survival analysis. He also compares the IDUP
method with other techniques for obtaining similar results for the examples.

In DiCiccio et al., 2022, some motivating examples of the IOUS are presented, includ-
ing a class of Hodges-Lehmann estimators, subsampling estimators, maximin tests, and
combining p-values through data splitting. Let us recall the following.

Example 19 (Subsampling Distribution). Let {Xi}ni=1 be a sequence of Harris-recurrent
Markov chain random variables with distribution P, where interest focuses on a real-valued
parameter ξ(P). Assume ξ̂n = ξ̂n (X1, . . . , Xn) is an estimator of ξ(P). Fix 1 < k < n

and let S1, . . . , SN be the N =
 n

k

 subsets of size k taken without replacement from

the data, ordered in any fashion. For a given hypothesized value of ξ, say ξ0, let Jn(t,P)
be the true c.d.f. of τn

(
ξ̂n − ξ0

)
, evaluated at some generic t. Typically, τn =

√
n. Then,

a subsampling estimator of Jn(t,P) is given by

Un(t) = 1
N

N∑
i=1

I
{
τk
(
ξ̂k (Si) − ξ0

)
≤ t

}
.

Evidently, for each t, Un(t) is a U-statistic of degree k. In order to consistently estimate
the true distribution Jn(t,P), it is generally required that k → ∞.

8 Mathematical developments

This section is devoted to the proof of our results. The previously defined notation
continues to be used in what follows.

Proof of Theorem 4.1.

Note that the envelope Ḡm is derived from the envelope H̄m in a similar way Gm is derived
from Hm. We can assume, without loss of generality, that the envelope Ḡm is bounded
by Km, a finite constant for each m, and

lim
m→∞

PmḠm < ∞.
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We have

∥Pngm − Pgm∥ ≤
∥∥∥∥Pn (gm1{Ḡm≤Km}

)
− P

(
gm1{Ḡm≤Km}

)∥∥∥∥+
∥∥∥∥Pn (gm1{Ḡm>Km}

)∥∥∥∥
+
∥∥∥∥P(gm1{Ḡm>Km}

)∥∥∥∥ .
We observe that: ∥∥∥∥P(gm1{Ḡm>Km}

)∥∥∥∥ ≤
∥∥∥∥P(Ḡm1{Ḡm>Km}

)∥∥∥∥ , (8.1)

and ∥∥∥∥Pn (gm1{Ḡm>Km}
)∥∥∥∥ ≤

∥∥∥∥Pn (Ḡm1{Ḡm>Km}
)∥∥∥∥ . (8.2)

Using Lemma 2.11 in Levental, 1988, we can see that :

Pn
(
Ḡm1{Ḡm>Km}

)
→
∥∥∥∥P(Ḡm1{Ḡm>Km}

)∥∥∥∥ . (8.3)

By combining (8.1), (8.2) and (8.3), we obtain

lim
n→∞

sup
{∥∥∥Pn(gm1{Ḡm>Km})

∥∥∥}+
∥∥∥P (gm1{Ḡm>Km}

)∥∥∥ ≤ 2
∥∥∥∥P(Ḡm1{Ḡm>Km}

)∥∥∥∥ .
Choose a Km large enough to make the right hand size of the last inequality as small as
we want. Now, we will see, as in Levental, 1988, if we can assume that gm ≥ 0, for every
gm ∈ Gm. In order to prove this hypothesis, it is sufficient to show that for

G +
m = {g+

m = gm ∨ 0 | gm ∈ Gm}, G −
m = {g−

m = gm ∧ 0 | gm ∈ Gm},

if the condition of Euclidean class of functions holds then it holds for Gm, i.e., if

N
(
ε∥Ḡ+

m∥L2(Q), G +
m , ∥ · ∥L2(Q)

)
≤ Aε−Vm , N

(
ε∥Ḡ−

m∥L2(Q), G −
m , ∥ · ∥L2(Q)

)
≤ Aε−Vm .

Then
N

(
ε∥Ḡm∥L2(Q), Gm, ∥ · ∥L2(Q)

)
≤ Aε−Vm .

This assumption permits to work with gm ≥ 0, for all gm ∈ Gm. Let (ℓn − 1) be the
number of blocks of our Markov chain with elimination of the first and the last one. An
explanation of this Markov chain drawing can be found in our previous paper Bouzebda
and Soukarieh, 2022a, in the same manner as in Bertail et al., 2011a. For

ℓn =
n∑
i=1

1{Xi∈A} = min{j, τ (j) > n},
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be the number of successive visit to the atom A. It is obvious to see that

∑
0≤j≤(ℓn−1)

T j+1∑
k=T j+1

gm(Xk) ≤ nPgm ≤
∑

0≤j≤ℓn

T j+1∑
k=T j+1

gm(Xk) +
T 0∑
k=1

gm(Xk).

This implies that

[
(ℓn − 1)

n

]  1
(ℓn − 1)

∑
0≤j≤(ℓn−1)

T j+1∑
k=T j+1

gm(Xk) − n

(ℓn − 1)Pgm


≤ Pngm − Pgm ≤

[
ℓn
n

]  1
ℓn

∑
0≤j≤ℓn

T j+1∑
k=T j+1

gm(Xk) + 1
ℓn

T 0∑
j=1

gm(Xj) − n

ℓn
Pgm

 .(8.4)

To prove the SLLN of our process, it is sufficient to prove the convergence of each bound
to 0 a.s. We have, as ℓn → ∞,∥∥∥∥∥∥ 1
ℓn

T 0∑
j=1

gm(Xj)
∥∥∥∥∥∥ = 1

ℓn

∥∥∥∥∥∥τ (0)
τ (0)

T 0∑
j=1

gm(Xj)
∥∥∥∥∥∥ ≤ 1

ℓn
× ∥τ (0)∥ × PA

T 0∑
j=1

gm(Xj)
 → 0 a.s.

As well as

τ (0)PA

T 0∑
j=1

gm(Xj)
 < ∞.

Keep in mind that according to Radulović, 2004, Lemma 3.2 we have:

Pν

(
lim

n→+∞

ℓn
n

→ α−1 = (E (τ ))−1
)

= 1.

We now treat the following term∥∥∥∥∥∥ 1
ℓn

∑
0≤j≤ℓn

T j+1∑
k=T j+1

gm(Xk) − E (τ ) Pgm

∥∥∥∥∥∥ .
To this end, we will apply the following theorem.

Theorem 8.1 (PollardPollard, 1984). For each n, let Fn be a permissible class of func-
tions whose covering numbers satisfy

sup
Q

N
(
ε2/2, Fn, ∥ · ∥L1(Q)

)
≤ A(ε2/2)−V , for 0 < ε < 1,

with constants A and V not depending on n and a measure Q. Let {αn} be a non-increasing
sequence of positive numbers for which nδ2

nα
2
n ≫ log n. If |f | ≤ 1 and (Pf 2)1/2 ≤ δn for
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each f in Fn, then, we have almost surely

sup
Fn

|Pnf − Pf | ≪ δ2
nαn.

Without loss of generality, we will consider that the envelop function is less then 1.
Using the proof of the last theorem, found in Pollard, 1984, Theorem 37, and the fact
that

N
(
ε∥Ḡm∥, Gn, ∥ · ∥L1(P)

)
≤ N

(
ε2/2, Gn, ∥ · ∥L1(P)

)
≤ A(ε2/2)−Vm ,

the left and the remaining of right hand sizes of (8.4) must converge to 0, this completes
the proof.

Proof of Theorem 4.2.

In order to prove the weak convergence for an empirical process, as it is well known, it is
sufficient and necessary to prove finite dimensional convergence and stochastic equiconti-
nuity of the U -process. The finite dimensional convergence will be considered if, for every
collection {g(1)

m , . . . , g(k)
m },

(√
n (Pn − P) g(1)

m , . . . ,
√
n (Pn − P) g(k)

m

)
, (8.5)

converges in probability to
(
Gp(g(1)

m , . . . ,Gp(g(k)
m

)
, using the second and the third con-

ditions, the Lindeberg central limit theorem implies that
√
n (Pn − P) gm converges in

probability to the Gaussian process Gp(gm). Combining this theorem with the classical
proof for the multivariate CLT in (8.5), whose essential idea is to demonstrate that for
every fixed a1, . . . , ak ∈ R,

k∑
i=1

ai
√
n
(
Png

(i)
m − Pg(i)

m

)
→ N(0, σ2), (8.6)

where

σ2 =
k∑
i=1

a2
iVar

(√
n
(
Png

(i)
m − Pg(i)

m

))
+
∑
i ̸=j

aiajCov
(√

n
(
Png

(i)
m − Pg(i)

m

)
,
√
n
(
Png

(j)
m − Pg(j)

m

))
.

Take qm = ∑k
i=1 aig

(i)
m , and by linearity, we have, in probability,

√
n (Pnqm − Pqm) → Gp(qm).

Consequently, the finite dimensional convergence is proved.
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Remark 8.2. We can refer to Chung, 1967; Radulović, 2004 to prove the CLT of an
empirical process for Markov chain, so under condition (A.5), which is a necessary condi-
tion for the CLT, we can see that

√
n (Pn − P) gm converges in probability to the Gaussian

process Gp(gm), and then we use equation (8.6) with the property of linearity to establish
the finite dimensional convergence. The use of these references does not imposed the two
conditions (A.2) and (A.3).

We consider now the equicontinuity, in the same way as Levental, 1988, we can see that

√
n |E(gm − ğm)| ≤ n− 1

2

∣∣∣∣∣∣
T 0∑
j=1

(gm − ğm)(Xj) − P(gm − ğm) · τ (0)
∣∣∣∣∣∣

+n− 1
2

∣∣∣∣∣∣
∑

1≤j≤ℓn−1

T j+1∑
k=T j+1

(gm − ğm)) (Xk) − E (τ ) P (gm − ğm)
∣∣∣∣∣∣

+n− 1
2

∣∣∣∣∣∣
∑

Tℓn +1≦j≦n
[(gm − ğm) (Xj) − P(gm − ğm)]

∣∣∣∣∣∣
+n− 1

2 |[E (τ (1) − τ (0)) · (ℓn − 1) − τ (ℓn − 1) + τ (0)] P(gm − ğm)|
= A+B + C +D. (8.7)

For gm − ğm ∈ Gm, observe that

A = n− 1
2

∣∣∣∣∣∣
T0∑
j=1

(gm − ğm)(Xj) − P(gm − ğm) · τ (0)
∣∣∣∣∣∣ ≤ n− 1

2 × τ (0) × EA

 T0∑
j=1

(gm − ğm)(Xj)
 → 0.

For the second term in (8.7), we infer that

B =
n− 1

2
∑

Tℓn +1≤j≤n
[(gm − ğm) (Xj) − P(gm − ğm)]

2

≤

4 EA

 T0∑
j=1

(gm − ğm)(Xj)
 ·

(
n− T (ℓn)

)
/n

1
2

2

≤ 16 EA

T 0∑
j=1

(gm − ğm)(Xj)
2

· max
1≦j≦n

(Tj+1 − Tj)2 /n.

We can see that by using condition (A.5)

P

{
max
1≦j≦n

(Tj+1 − Tj)2 /n > ε

}
≦ n−1 · P

{
τ 2/n > ε

}
→ 0.

Note that

τ (⌊ℓn⌋) = τ (0) +
⌊n/α⌋−1∑
j=1

{Tj+1 − Tj} .
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Let us consider the term D in (8.7). If we assume that

(gm − ğm) ∈ [δ]m = {(gm − ğm) : gm − ğm ∈ Gm and ∥gm − ğm∥ < δm} ,

then we infer that

|[E (τ (1) − τ (0)) (ℓn − 1) − τ (ℓn − 1) + τ (0)] P(gm − ğm)| /n 1
2

≤ δm
∣∣∣[E (τ (1) − τ (0)) (ℓn − 1) − τ (ℓn − 1) + τ (0)] /n 1

2
∣∣∣ . (8.8)

By choosing appropriately δm, we have the convergence of D to 0 in probability. It remains
the study of the term B. We have∣∣∣∣∣∣

ℓn−1∑
j=1

T j+1∑
k=T j+1

[(gm − ğm)(Xk) − E(τ )P(gm − ğm)]
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑
a≤j≤b

T j+1∑
k=T j+1

[(gm − ğm)(Xk) − E(τ )P(gm − ğm)]
∣∣∣∣∣∣

+
∣∣∣∣∣∣

∑
1≤j≤⌊n/E(τ )⌋

T j+1∑
k=T j+1

[(gm − ğm)(Xk) − E(τ )P(gm − ğm)]
∣∣∣∣∣∣ ,

where a = min(ℓn − 1, ⌊n/E(τ )⌋) and b = max(ℓn − 1, ⌊n/E(τ )⌋). Let us introduce H =
{integer s : |s− ⌊n/E(τ )⌋| ≤ cn1/2}. For the first term in the last inequality, we have∣∣∣∣∣∣

∑
a≤j≤b

T j+1∑
k=T j+1

[(gm − ğm)(Xk) − E(τ )P(gm − ğm)]
∣∣∣∣∣∣

≤ max
s∈H

2
∣∣∣∣∣∣

∑
⌊n/E(τ )⌋−cn1/2≤j≤s

T j+1∑
k=T j+1

[(gm − ğm)(Xk) − E(τ )P(gm − ğm)]
∣∣∣∣∣∣

≤ max
1≤s≤cn1/2

2
∣∣∣∣∣∣
∑

1≤j≤s

T j+1∑
k=T j+1

[(gm − ğm)(Xk) − E(τ )P(gm − ğm)]
∣∣∣∣∣∣

≤ max
1≤s≤cn1/2

2
∣∣∣∣∣∣
∑

1≤j≤s

T j+1∑
k=T j+1

[gm(Xk) − E(τ )Pgm)]
∣∣∣∣∣∣

+ max
1≤s≤cn1/2

2
∣∣∣∣∣∣
∑

1≤j≤s

T j+1∑
k=T j+1

(
ğm(Xk) − E(τ )P(ğm)

)∣∣∣∣∣∣
≤ 2 sup

gm∈Gm

max
1≤s≤cn1/2

2
∣∣∣∣∣∣
∑

1≤j≤s

T j+1∑
k=T j+1

(
gm(Xk) − E(τ )P(gm)

)∣∣∣∣∣∣
≤ 2 sup

gm∈Gm

max
1≤s≤n

 2
∣∣∣∣∣∣
∑

1≤j≤s

T j+1∑
k=T j+1

(
gm(Xk) − E(τ )Pgm

)∣∣∣∣∣∣
 ,
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where 2n1/2c ≤ n. By dividing the last inequality by
√
n and using Lemma 3.2 of Levental,

1988 which prove the convergence∣∣∣∣∣∣ 1n
n∑
j=1

T j+1∑
k=T j+1

gm(Xk) − E(τ )Pgm

∣∣∣∣∣∣ → 0.

Hence the proof is complete.

8.1 Proof of Theorem 5.1:

] To prove our results, we make use two main steps. Before start the proof, we will recall
all necessary material.

Definition 8.3 (de la Peña et al., 1999). Let {ei} and {di} be two sequences of random
variables adapted to the σ-fields {Fi}. Then {ei} and {di} are tangent with respect to {Fi}
if, for all i L (di | Fi−1) = L (ei | Fi−1) , where L (di | Fi−1) denotes the conditional
probability law of di given Fi−1.

Proposition 8.4 (de la Peña et al., 1999). For any sequence of random variables {di}
adapted to an increasing sequence Fi of σ-algebras, there always exists a decoupled se-
quence {ei} (on a possibly enlarged probability space) which is tangent to the original
sequence and in addition conditionally independent given a master σ-field g. Frequently
g = σ ({di}).

Remark 8.5. It is possible to obtain more than one tangent decoupled to any sequence
di. For example, if we want two tangents, it is sufficient to take two Fi−1 independent
repetitions of di, ei and ẽi, independent from each other and having the same distribution.

Definition 8.3 and Proposition 8.4 will be used for the purpose of decoupling our Markov
random variables to independent random variables, which is the important advantage
behind decoupling. de la Peña et al., 1999 studied the idea of decoupling and proposed
the idea of tangent sequence for dependent random variables. Recently, many authors
use the tangent sequence as McDonald et al., 2017; Rakhlin et al., 2011.
The use of tangent sequence represents the first step in our proof, the second is to studied
the symmetrization technique, we will adopt the results of C. Heilig et al., 2001 for the
symmetrization of IDUS, extended nicely from Arcones et al., 1993. Let us recall the
following lemma.
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Lemma 8.1 (Bonami’s inequality). Let u (i1, . . . , im) be a mapping that is permutation
symmetric in its m indices. For each integer s ≥ 1, we have

P

 ∑
i∈(n,m)

ξi1 . . . ξimu (i1, . . . , im)
2s

≤ (2s− 1)ms∥u∥2s
2 ,

where ∥u∥2
2

def= ∑
i∈(n,m) u (i1, . . . , im)2 , and {ξi}ni=1 is a sequence of independent sign

variables placing mass 1
2 at +1 and −1.

Lemma 8.2 (Chaining inequality). (Nolan et al., 1987) Let Ψ(·) be a convex, strictly
increasing function on [0,∞) with 0 ≤ Ψ(0) ≤ 1. Let p be a positive integer. Suppose
that the set T is endowed with pseudometric d, and the stochastic process {Z(t) : t ∈ T}
satisfies the following conditions.

(i) If d(s, t) = 0, then Z(s) = Z(t) almost surely.

(ii) If d(s, t) > 0, then
P [Ψ (|Z(s) − Z(t)|p/d(s, t)p)] ≤ 1.

(iii) There exists a point t0 in T for which δ = supT d (t, t0) < ∞.

(iv) The sample paths of Z are continuous.

Then [
P

(
sup
T

|Z(t) − Z (t0)|p
)]1/p

≤ 8
ˆ δ/4

0

[
Ψ−1(N (x, d, T ))

]1/p
dx, (8.9)

where N (x, d, T ) is the covering number defined in the previous section.

Theorem 8.6. (Maximal inequality) [Sherman, 1994] Let H be a class of degenerate
functions {h} of degree j with envelope H. Assume PjH2 < ∞. Let p and r be positive
integers, and let

Γj =
[
64j!(16pr − 8)j

]p/2
, γn,j =

[
U2n,j

(
H2
)]1/2

, δn,j = sup
H

[
U2n,j

(
h2
)]1/2

/4
[
U2n,j

(
H2
)]1/2

Then
P

[
sup
H

∣∣∣nj/2Un,j(h)
∣∣∣p] ≤ ΓjP

[
γn,j

ˆ δn,j

0
N (x, dj,H )1/2pr dx

]p
.

Lemma 8.3 (C. M. Heilig, 1997). Let Y i = {Y (i)
1 , . . . , Y (i)

n } and Y ′
i = {Y ′(i)

1 , . . . , Y ′(i)
n }.

Define Wi = Y i and Wn+i = Y ′
i, for i = 1, . . . , n.

∑
i∈I(n,m)

[h◦ (Y i,Y
′
i)]

2 ≤ 2m
∑

j∈I((2n),m)
h (Wj1 , . . . ,Wjm)2 .
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It is worth noting that Bonami’s inequality is used to prove the second condition of the
chaining lemma. The interested reader can find the details for the proofs of the lemmas,
proposition and theorem above in C. Heilig et al., 2001. We are now equipped to start
the proof.
Let X = {X1, . . . , Xn} be a sequence of Markov chain. Let Y = {Y (i)

1 , . . . , Y (i)
n }, for

i = 1, . . . , n, be n independent copies of the original random variables. Moreover, we can
see that Y i

i have the same distribution as Xi. We have:

P( sup
hm∈H

Un(h̃m)) = PX

 sup
hm∈H

(
n

m

)−1 ∑
i∈I(n,m)

h̃m(Xi1 , . . . , Xim)


= PX

 sup
hm∈H

PY

(n
m

)−1 ∑
i∈I(n,m)

h̃m(Y (1)
i1 , . . . , Y

(m)
im )


≤ PXPY

 sup
hm∈H

(
n

m

)−1 ∑
i∈I(n,m)

h̃m(Y (1)
i1 , . . . , Y

(m)
im )

 (By Jensen’s inequality).

The last inequality are valid under condition of existence of

PY

 sup
hm∈H

(
n

m

)−1 ∑
i∈I(n,m)

h̃m(Y (1)
i1 , . . . , Y

(m)
im )

 .
Then we succeed to switch from dependence variables to the independence setting. We will
pass to treat the last inequality, which have the same distribution of P( sup

hm∈H
Un(h̃m)), as

IDUS of i.i.d.random variables. We will use the complete sign-symmetrization technique.
This technique can be summarized as follows:

• Introduce a second i.i.d sample {Y ′} independent of {Y }, with the same distribu-
tion.

• Introduce an i.i.d sign-variables {εi}ni=1 independent of both samples {Y ′} and {Y },
taking values ±1 such that P(εi = 1) = P(εi = −1) = 1/2.

• Investigate some approximations and moment inequality using chaining lemma and
Bonami’s inequality mentioned above to get a maximal inequality.

• Applied results of the last step to the U -process generated from the i.i.d sequence.

Let {Y ,Y ′} be independent variables defined above. Let H be a class of functions
related to the kernel h. for j ∈ {1, . . . ,m}, define:

h◦ (Y i,Y
′
i) :=

2m−1∑
b=0

(−1)
∑

bjh
(
Y b1
i1 , . . . , Y

bm
im

)
,
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for (b1, . . . , bk) is a binary expansion of an integer b taking value in [0, 2m−1]. This kernel
is defined in a way such that:

PY

[2m−1∑
b=0

(−1)
∑

bjhm
(
Y b1
i1 , . . . , Y

bm
im

)
| Y1, . . . , Yn

]
= h

(
Y

(1)
i1 , . . . , Y

(m)
im

)
.

Return to the main equation, we have:

PY sup
hm∈H

∣∣∣∣∣∣nm/2
(
n

m

)−1 ∑
i∈I(n,m)

hm(Y (1)
i1 , . . . , Y

(m)
im )

∣∣∣∣∣∣
p

= PY sup
hm∈Hm

∣∣∣∣∣∣nm/2
(
n

m

)−1 ∑
i∈I(n,m)

[
PY

(2m−1∑
b=0

(−1)
∑

bjhm
(
Y b1
i1 , . . . , Y

bm
im

)
| Y1, . . . , Yn

)]∣∣∣∣∣∣
p

≤ PY sup
hm∈H

∣∣∣∣∣∣nm/2
(
n

m

) ∑
i∈I(n,m)

h◦ (Y i,Y
′
i)
∣∣∣∣∣∣
p

. (8.10)

We will now move on to the sign variables. As we will mention before, we introduce an
i.i.d sign-variables {εi}ni=1 independent of both samples {Y ′} and {Y }, taking values ±1
such that P(εi = 1) = P(εi = −1) = 1/2. We will define a new double samples {Zi, Z ′

i}
in a way that:

(Zi, Z ′
i)

def= {εi = 1} (Yi, Y ′
i ) + {εi = −1} (Y ′

i , Yi) .

These sample are constructed by conserving the same joint distribution of {Y ′} and {Y },
that is why we can replace ∑i∈I(n,m) h

◦ (Y i,Y
′
i) by ∑i∈I(n,m) h

◦ (Zi,Z
′
i) in (8.10). So we

have, for j ∈ {1, . . . ,m} :

PZ sup
hm∈Hm

 ∑
i∈(n,m)

h◦ (Zi,Z
′
i)


= PZ sup
hm∈Hm

 ∑
i∈I(n,m)

εi1

2m−1∑
b=0

(−1)
∑

bjhm
(
Y b1
i1 , Z

b2
i2 , . . . , Z

bm
im

)
= PZ sup

hm∈Hm

 ∑
i∈I(n,m)

εi1εi2

2m−1∑
b=0

(−1)
∑

bjhm
(
Y b1
i1 , Y

b2
i2 , Z

b3
i3 , . . . , Z

bm
im

)
= PZ sup

hm∈Hm

 ∑
i∈I(n,m)

εi1 . . . εim

2m−1∑
b=0

(−1)
∑

bjhm
(
Y b1
i1 , . . . , Y

bm
im

)
= PZ sup

hm∈Hm

 ∑
i∈I(n,m)

εi1 . . . εimh
◦ (Y i,Y

′
i)
 .

Let
U◦
n,m(h) =

(
n

m

)−1 ∑
i∈I(n,m)

εi1 . . . εikh
◦ (Y i,Y

′
i) , (8.11)
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adjust the inequality (8.10) to consider the complete sign symmetrized process U◦
n,kh in

place of (
n

m

)−1 ∑
i∈I(n,m)

hm
(
Y

(i1)
i1 , . . . , Y

(ik)
ik

)
and we obtain the following:

PY sup
hm∈Hm

∣∣∣∣∣∣nm/2
(
n

m

)−1 ∑
i∈I(n,m)

hm(Y (i1)
i1 , . . . , Y

(im)
im )

∣∣∣∣∣∣
p

≤ PZ sup
hm∈Hm

∣∣∣nm/2U◦
n,m(h)

∣∣∣p . (8.12)

At that time, the IDUS represented in the right hand size in (8.12) is prepared to be used
in the chaining inequality. If U2n,mH̄

2
m is finite, the pseudo-metric related to the inequality

is:

d2n,m(hm, h̆m) =

U2n,m
(
hm − h̆m

)2

U2n,mH̄2
m


1/2

.

The stochastic process Z(t) defined in the inequality will be defined as nm/2U◦
n,mh/

[
U2n,mH̄

2
m

]1/2
,

in this case inequality (8.9) will be:

[
PW

(
sup
hm∈H

∣∣∣∣nm/2U◦
n,m(hm − h̆m)/

[
U2n,mH̄

2
m

]1/2
∣∣∣∣p
)]1/p

≤ 8
ˆ δ/4

0

[
Ψ−1(N (x, d2n,m,Hm))

]1/p
dx,

(8.13)
where the function Ψ(x) is convex and it can be equal to x2r/γ and γ = [m!(16pr − 8)m]pr,
chosen in this way to fulfill the second condition of Lemma 8.2. We have:

PWΨ
nm/2

∣∣∣U◦
n,m(hm − h̆m)

∣∣∣p
d2n,m(hm, h̆m)p

 = γ−1PW

 nm/2U◦
n,m(hm, h̆m)[

U2n,m(hm, h̆m)2
]1/2


2rp

(8.14)

= γ−1PW

nm/2
(

2n
m

)1/2∑
i∈I(n,m) εi1 . . . εim(h◦

m − h̆◦
m) (Y i,Y

′
i)(

n
m

) [∑
j∈I(2n,m)(hm − h̆m) (Wj1 , . . . ,Wjm)2

]1/2


2rp

(Take u (i1, . . . , im) = (h◦
m − h̆◦

m) (Y i,Y
′
i)∑

j∈I(2n,m)(hm − h̆m) (Wj1 , . . . ,Wjk)
and nm/2

(
2n
m

)1/2(
n

m

)−1

< 2m)

≤ 4kpr
γ

[m!pr(2pr − 1)mpr] PW

 (h◦
m − h̆◦

m) (Y i,Y
′
i)

2∑
j∈I(2n,m)(hm − h̆m) (Wj1 , . . . ,Wjm)2

pr (by Bonami’s inequality)

≤ 4mpr
γ

[m!pr(2pr − 1)mpr] × (2m)pr (by Lemma 8.3)

= γ−1 [m!(16pr − 8)m]pr ≤ 1, (as well as γ = [m!(16pr − 8)m]pr).

Here the second condition are achieved. To met the third one, it sufficient to take the
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gm a zero function, the first and the last condition related to the continuity can be seen
directly from (8.14) as well as:

∣∣∣U◦
n,m(hm − h̆m)

∣∣∣ < 2md2n,m(hm, h̆m).

Then, with Ψ−1(x) = (γx)1/2r, we obtain from Lemma 8.9 the result (8.13):

PW

(
sup

hm∈Hm

∣∣∣∣U◦
n,m(hm − h̆m)/

[
U2n,mH̄

2
]1/2

∣∣∣∣p
)

≤
[
8
ˆ δn,m

0
[γ(N (x, d2n,m,Hm))]1/2pr dx

]p
,

with Γm = 8pγ1/2r = [64m!(16pr − 8)m]p/2, this expectation satisfies

P sup
hm∈Hm

∣∣∣nm/2U◦
n,m(h)

∣∣∣p ≤ ΓmP

[[
U2n,mH̄

2
]1/2
ˆ δn,m

0
N (x, d2n,k,Hm)1/2pr dx

]p
. (8.15)

Under Condition (5.2), the desired result will be obtained.

8.2 Proof of Theorem 5.2:

] Using the Hoeffding decomposition, we can see that

√
n
[
Un(h̃m) − Θ(hm)

]
=

√
nmUn,1

(
h̃m(1)

)
+

√
nUn,R

(
h̃m
)

+
√
n [Θm(hm) − Θ(h)] ,

(8.16)
where Un,R

(
h̃m
)

denotes the remainder term of the Hoeffding decomposition in (3.2) (for
c ≥ 2). Using Chebyshev’s inequality, we obtain, if m ≤ n− 2,

P
(√

n
∣∣∣Un,R (h̃m)∣∣∣ > ε

)
≤ n

ε2

m∑
c=2

(
m

c

)2(
n

c

)−1

Pm
[
h̃m(c)

]2
≤ n

ε2

(
n

2

)−1 m∑
c=2

Pm
[(
m

c

)
h̃m(c)

]2

= 1
n (1 − n−1) ε2 Pmh⋆

2

m ,

for h⋆m :=
(
m
c

)
h̃m(c). If Pm(h⋆m)2 < ∞ a.s., it is clear that the remainder term of Hoeffding

decomposition vanishes when n → ∞. Now, let us show that the last term in (8.16)
converges. Frees, 1989 proposed a sufficient condition that the parameter Θ(h) exists and
finite, and they used the reverse martingale property to show that

Θm(hm) − Θ(h) = o(n−1).

Furthermore, C. M. Heilig, 1997 mentioned that the proof of this term varies according to
each example. Finally, the first term of (8.16) can be viewed directly from the Theorem
4.2.
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Remark 8.7. As the degree m = mn of kernel increases with the sample size, the IDUS
can not be assumed reverse martingales, but it can be approximated by a reverse one, with
a necessary requirement that the infinite degree kernel exists and is finite. Readers can
refer to C. Heilig et al., 2001; C. M. Heilig, 1997, who have represented the approximated
martingale in their work.

Remark 8.8. The proof of Theorem 5.2 imposed some strong conditions. In C. Heilig
et al., 2001, different conditions are imposed with different proof for the weak convergence
theorem of infinite degree U-statistics. The main ingredients are the use of the chaining
inequality from Nolan et al., 1987 and the maximal inequality in Sherman, 1994 combined
with some geometric properties of function classes.

Remark 8.9. In this remark, we highlight an alternative method to prove Theorem 5.2.
In order to investigate the weak convergence

√
n(Un(hm) − Pmhm) to a Gaussian limit

distribution Gp and without the strong condition on the remainder term of the Hoeffding
decomposition. This method has the same main steps of the proof of the law of large
number (Theorem 5.1) applied to the Hoeffding decomposition of the U-process defined
in (8.11) and it can be achieved immediately, it is sufficient to suppose that ∑m

c=2 ϕ(c) =
o(n−1/2), where ϕ(c) and Γc is defined as in Remark 5.1. Then

sup
hm∈Hm

√
n
∣∣∣Un(hm) − Pm(hm) −mUn,1

(
h̃m(1)

)∣∣∣ → 0 in probability P.

8.3 Proof of Theorem 6.1:

] A main step towards the Gaussian approximation and the validity of the bootstrap
method is related to the Hoeffding decomposition of the U -statistics. As we have men-
tioned above, this decomposition can be written as follows

U∗
n(h̃m) = E∗(U∗

n) +mU∗
n,1

(
h̃m(1)

)
+ U∗

n,R

(
h̃m
)
. (8.17)

To get equation (6.4), the key step is to bound the nonlinear terms of the Hoeffding
decomposition. To be more specific, we will prove the convergence of the variance of the
last term in (8.17) to zero. After, we will prove that the difference of the variance of the
bootstrapped linear term and the principal one converges to 0 also in probability. In the
following, we will rigorously prove these steps. Notice that

Var∗
[√
n∗U∗

n,R

(
h̃m
)]

= Var∗

√
n∗

m∑
c=2

(
m

c

)(
n∗

c

)−1

h̃m(c)


= n∗

m∑
c=2

(
m

c

)2(
n∗

c

)−2

Var∗(h̃m(c)) + 2
√
n∗

m∑
c,j=2

(
m

c

)(
n∗

c

)−1(
m

j

)(
n∗

j

)−1

Cov∗(h̃m(c), h̃m(j))
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= n∗
m∑
c=2

(
m

c

)2(
n∗

c

)−2

P∗(h̃m(c))2 + A.

To treat the term A in the last inequality, observe that

A = 2
√
n∗

m∑
c,j=2

(
m

c

)(
n∗

c

)−1(
m

j

)(
n∗

j

)−1

Cov∗(h̃m(c), h̃m(j))

= 2
√
n∗

m∑
c,j=2

(
m

c

)(
n∗

c

)−1(
m

j

)(
n∗

j

)−1 [
P∗(h̃m(c)h̃m(j)) − P∗(h̃m(c))P∗(h̃m(j))

]
.

Now, for the bootstrap expectation, we must distinguish in our bootstrap method of two
types of variables, X∗

i drawn from the same blocks Bi and X∗
i drawn from different blocks.

We will treat both cases in the following.

• For a1, . . . , ai, b1, . . . , bj generated from different block:

∣∣∣P [P∗
(
h̃m(c)

(
X∗
a1 , . . . , X

∗
ac

)
h̃m(j)

(
X∗
b1 , . . . , X

∗
bj

))]∣∣∣
=

∣∣∣∣∣∣P
 1
n∗m

n∗∑
a1,...,ac,b1,...,bj=1

(
h̃m(c)

(
X∗
a1 , . . . , X

∗
ac

)
h̃m(j)

(
X∗
b1 , . . . , X

∗
bj

))∣∣∣∣∣∣
≤ 1

n∗m

n∗∑
a1,...,ac,b1,...,bj=1

P
∣∣∣h̃m(c)

(
X∗
a1 , . . . , X

∗
ac

)
h̃m(j)

(
X∗
b1 , . . . , X

∗
bj

)∣∣∣ .
• For as1 , . . . , ak1 lie in the same block, then they are dependent between them and

independent compared with {a1, . . . , ac} \ {as1 , . . . , ak1}.

∣∣∣P [P∗
(
h̃m(c)

(
X∗
a1 , . . . , X

∗
ac

)
h̃m(j)

(
X∗
b1 , . . . , X

∗
bj

))]∣∣∣
≤ 1

n∗m−k

∑
a1,...,ai,b1,...,bj=1

P
∣∣∣h̃m(c)

(
X∗
a1 , . . . , X

∗
as
, Xas+1 , . . . , X

∗
as+k

, . . . , X∗
ac

)
× h̃m(j)

(
X∗
b1 , . . . , X

∗
bj

)∣∣∣
≤ 1

n∗m−k

n∗∑
a1,...,ac,b1,...,bj=1

P
∣∣∣h̃m(c)

(
X∗
a1 , . . . , X

∗
ai

)
h̃m(j)

(
X∗
b1 , . . . , X

∗
bj

)∣∣∣ .
According to Radulović, 2004, Lemma 3.2 n∗/n → 1 in probability P × P∗. We can
see that that this expectation converges with a rate O(n−(m−k)). Finally, let Hm(j) be
a class of function associated with the kernel projections each with envelop Hm(j), for
j ∈ {1, . . . ,m}. We have

Var∗
[√
n∗U∗

n,R

(
h̃m
)]

≤ n∗
(
n∗

2

)−2 m∑
c=2

(
m

c

)2

P∗(h̃m(c))2

+2
√
n∗

m∑
c,j=2

(
m

c

)(
n∗

c

)−1(
m

j

)(
n∗

j

)−1 1
n∗m−k

n∗∑
a1,...,ac,b1,...,bj=1
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P
∣∣∣h̃m(c)

(
X∗
a1 , . . . , X

∗
ai

)
h̃m(j)

(
X∗
b1 , . . . , X

∗
bj

)∣∣∣
≤ 1

n∗(n∗ − 1)2

m∑
c=2

(
m

c

)2

P∗(Hm(c))2

+2
√
n∗

(
n∗

2

)−2 m∑
c,j=2

(
m

c

)(
m

j

)
1

n∗m−k

n∗∑
a1,...,ac,b1,...,bj=1

P
(
Hm(c)

(
X∗
a1 , . . . , X

∗
ai

)
Hm(j)

(
X∗
b1 , . . . , X

∗
bj

))
≤ 1

n(n− 1)2

m∑
c=2

(
m

c

)2

P∗(Hm(c))2

+ 2
n1/2(n− 1)2

m∑
c,j=2

(
m

c

)(
m

j

)
1

nm−k

n∗∑
a1,...,ac,b1,...,bj=1

P
(
Hm(c)

(
X∗
a1 , . . . , X

∗
ac

)
Hm(j)

(
X∗
b1 , . . . , X

∗
bj

))

≤ 1
n(n− 1)2

m∑
c=2

(
m

c

)2

P∗(Hm(c))2

+ 2
n1/2(n− 1)2

m∑
c,j=2

(
m

c

)(
m(n)
j

) [
P(Hm(c))2

]1/2 [
P(Hm(j))2

]1/2
.

It is worth be cognizant that if the class of function Gm is euclidean (Am, Vm) and bounded
above by Km, then Hm(j) is euclidean (Am, 2Vm) for the envelop Hm(j) = 2jMm.

Hence :

Var
[√
nUn,R

(
h̃m
)]

n→∞−→ 0 and Var∗
[√
n∗U∗

n,R

(
h̃m
)]

P∗
→ 0. (8.18)

Now, as it is well known, a random sequence (Xn : n ∈ N) converges to a random variable
X in probability if and only if each subsequence (Xnk

: k ∈ N) contains a further sub-
sequence

(
Xnkj

: j ∈ N
)

converges almost surely to X. We can see that under equation
(8.18), we can find an arbitrary subsequence nk such that

sup
x∈R

∣∣∣P∗
[√
n∗
(
U∗
nk

(h) − E∗
[
U∗
nk

(h)
])

≤ x
]

− P∗
[
mU∗

nk,1

(
h̃m(1)

)
≤ x

]∣∣∣ a.s→ 0. (8.19)

In that case, the convergence in probability is achieved:

sup
x∈R

∣∣∣P∗
[√
n∗ (U∗

n(h) − E∗ [U∗
n(h)]) ≤ x

]
− P∗

[
mU∗

n,1

(
h̃m(1)

)
≤ x

]∣∣∣ n→∞−→ 0. (8.20)

Finally and based on the paper Datta et al., 1993, we can see clearly that:
∣∣∣Var∗

[√
n∗mU∗

n,1

(
h̃m(1)

)]
− Var

[√
nmUn,1

(
h̃m(1)

)]∣∣∣ a.s.→ 0. (8.21)
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Pass now to the proof of stochastic asymptotic equicontinuity in probability. Let

H ′
δ =

{
hm − h̆m : hm, h̆m ∈ Hm, ∥hm − h̆m∥L2(Pm) ≤ δ

}
,

it is enough to show that a.s.

lim
δ→0

lim sup
n→∞

P∗
∥∥∥√n∗ (U∗

n(hm) − Un(hm))
∥∥∥

H ′
δ

= 0, (8.22)

where for any functional Φ and a class of function H , we assume ∥Φ(h)∥H := sup
h∈H

|Φ(h)|
and 0 ∈ H ′

δ . Keep in mind that we have

√
n∗U∗

n(hm) =
√
n∗E∗(U∗

n) +mU∗
n,1

(
hm(1)

)
+

m∑
c=2

(
m

c

)
U∗
n,c

(
hm(c)

)
,

√
nUn(fm) =

√
nE(Un) +

√
nmUn,1

(
hm(1)

)
+

√
n

m∑
c=2

(
m

c

)
Un,c

(
hm(c)

)
.

An application of the triangle inequality gives

∥∥∥√n∗ (U∗
n(hm) − Un(hm))

∥∥∥
H ′

δ

=
∥∥∥∥∥√n∗E∗(U∗

n) +
√
n∗mU∗

n,1

(
hm(1)

)
+

√
n∗

m∑
c=2

(
m

c

)
U∗
n,c

(
hm(c)

)
−

√
n∗E(Un) −

√
n∗mUn,1

(
hm(1)

)
−

√
n∗

m∑
c=2

(
m

c

)
Un,c

(
hm(c)

)∥∥∥∥∥
H ′

δ

≤
∥∥∥√n (mU∗

n,1 −mUn,1
) (
hm(1)

)∥∥∥
H ′

δ

+
∥∥∥∥∥√n

m∑
c=2

(
m

c

)
U∗
n,c

(
hm(c)

)∥∥∥∥∥
H ′

δ

+
∥∥∥∥∥√n

m∑
c=2

(
m

c

)
Un,c

(
hm(c)

)∥∥∥∥∥
H ′

δ

The first term in the inequality is the bootstrapped Markovian empirical process inves-
tigated among other by S. P. Meyn et al., 1993; Radulović, 2004, and under the same
assumptions as Theorem 4.2, tends to zero. The second and the third terms are the
Hoeffding nonlinear terms converging to zero as n tends to infinity.
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Chapter 4
Renewal type bootstrap for U - process
Markov chains

This chapter develops the content of an accepted article published in Markov
Processes and Related Fields with the required modifications to fit this thesis
manuscript.

The primary purpose of the present chapter is to establish bootstrap uni-
form functional central limit theorems U -processes for Harris recurrent Markov
chains over uniform classes of functions satisfying some entropy conditions. To
simplify our approach, we will employ the well-known regenerative properties
of Markov chains, avoiding some complicated mixing conditions. Our result is
obtained under minimal conditions on the envelope function. In addition, we
consider an extension to the k Markov chain setting and prove the bootstrap
consistency. The theoretical uniform central limit theorems set out below are
(or will be) key tools for further developments in Markovian data analysis.
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1. Introduction

1 Introduction

Motivated by a wide variety of applications, a substantial focus has been paid, over
the last decades, to the theory of the U -Statistics (initiated in the pioneering work by
Hoeffding, 1948) and the U -Processes. U -processes help address complicated statistical
issues. Examples include density approximation, non-parametric regression tests, and
goodness-of-fit tests. Mainly, in several different ways, U -processes occur in statistics,
e.g., as components of higher order terms in von Mises expansions. In the study of
estimators (including function estimators) with various degrees of smoothness, U -statistics
were used in particular. In this context, for an analysis of a product limit estimator of
truncated data, Stute, 1993 applied almost sure uniform bounds for the P-canonical U -
Processes. In addition, Arcones et al., 2006 provided two new normality tests based on
the U -processes. Based on standardized findings of Giné et al., 2007b, new measures
for normality that use L1-distances between regular normal density and local U -statistics
based on structured observations as test statistics were implemented by Schick et al.,
2011. Joly et al., 2016 addressed the calculation of the mean of multivariate functions in
the case of likely heavy-tailed distributions and adopted a median-of-means based on U -
statistics. In a wide variety of methodological applications, for instance, to establish the
limiting distributions of M -estimators [see, for example, Arcones et al., 1993, Sherman,
1993, Sherman, 1993 and Sherman, 1993], to check the qualitative function characteristics
in non-parametric statistics [S. Lee et al., 2009, Ghosal et al., 2000, Abrevaya et al., 2005],
or to set cross-validation for density estimation, U -processes are valuable methods. An
extension of the finite case of U -statistics to the infinite case is called infinite-order U -
statistic. Briefly, the case of an infinite quantity of variables was explained that would later
represent a parameter that can be estimated by a finite sum of terms wherein each term
can be approximated unbiasedly. This extension, introduced by Frees, 1989, is a useful
tool to build simultaneous prediction intervals that measure the uncertainty of existing
approaches such as sub-bagging and random forests. The following relevant example is
given by Y. Song et al., 2019:

Example 20 (Simultaneous prediction intervals for random forests (Y. Song et al.,
2019)). Let us consider a training dataset of size n,

{(Y1, Z1), . . . , (Yn, Zn)} = {X1, . . . , Xn} = Xn
1 ,

where Yi ∈ Y is a vector of features and Zi ∈ R is a response. Let h be a deterministic
prediction rule that takes as input a sub-sample {Xi1 , . . . , Xim} with 1 ≤ m ≤ n and
outputs predictions on d testing points (y∗

1, . . . , y
∗
d) in the feature space Y . For random

forests, the tree-based prediction rule is constructed on each sub-sample with additional
randomness. Specifically, let {Wi : i ∈ Imn } be a collection of i.i.d. random variables
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taking value in a measurable space (S ′,S ′) that are independent of the data Xn
1 , where

Imn = {i = (i1, . . . , im) : ij ∈ N, 1 ≤ ij ≤ n, ij ̸= ik if j ̸= k}.

is the set of all m-tuples of different integers between 1 and n. Let H : X m × S ′ → Rd be
an S m ⊗ S ′-measurable function such that

E[H(x1, . . . , xm,W )] = h(x1, . . . , xm).

Then predictions of random forests are given by a d-dimensional U-statistic with random
kernel H:

Ûn := (n−m)!
n!

∑
i∈Im

n

H(Xi1 , . . . , Xim ,Wi), (1.1)

where the random kernel H varies with m.

On the other hand, Peng et al., 2022 developed in great depth the notion of general-
ized U -statistics random forest predictions. The problem of rating instances has gained
particular attention in machine learning because of its great significance. In particular
rating issues, it is important to compare two separate observations, depending on their
observed features, and to determine which is better instead of merely classifying them.
Ordering problems have many uses in diverse fields of banking (Data Mining Tool for Di-
rect Marketing Data Extraction), document type classification, and so on . . . In order to
solve these frequent problems, U -statistics play an instrumental role, refer to Clémençon
et al., 2008. Historically, the first asymptotic results of U -statistics for the case of inde-
pendent and identically random variables were provided by Halmos, 1946, v. Mises, 1947
and Hoeffding, 1948, among others. While under weak dependency assumptions, asymp-
totic results have seen, for example, in Borovkova et al., 2001, Denker et al., 1983 or more
recently in Leucht, 2012 and more broadly in Leucht et al., 2013, Bouzebda et al., 2019b
and Bouzebda and Nemouchi, 2020. For an excellent reference resources for U -statistics
and U -processes, the reader may refer to A. J. Lee, 1990, Arcones et al., 1993, Koroljuk
et al., 1994, Arcones, Chen, et al., 1994, Arcones et al., 1995 and Borovskikh, 1996. A
valuable contribution in the theory of U -processes is given by de la Peña et al., 1999. They
also have a pivotal role in developing the theory of U -processes by following patterns from
the theory of empirical process and adding new techniques such as decoupling inequality
and randomization. The key request for an estimator is to approximate the confidence
intervals. By far, the most preferred confidence interval is a standard confidence interval
based on a normal or student t-distribution. These basic intervals are considered useful
methods, but they are based on an estimate that can be very misleading in practice. Aim-
ing to set the problem of the estimation of confidence intervals, Efron, 1979 discussed the
"Bootstrap" method, which was and still is an attractive solution. In this groundbreak-

96



1. Introduction

ing article, a broad variety of articles in the literature have introduced bootstrap tech-
niques, discussed, researched, and applied them. As one of the most significant concepts
in the practice of statistics, the bootstrap has presented a wealth of creative probabil-
ity problems, which, in essence, provided the foundation for the development of modern
mathematical theories. The bootstrap can be briefly described as follows. Let T (F) be
a functional of an unknown df F(·), X1, . . . , Xn a sample from F(·), and X∗

1 , . . . , X
∗
n an

independent and identically distributed [i.i.d.] sample with common distribution given by
the empirical distribution Fn(·) of the original sample. The distribution of {T (Fn)−T (F)}
is then approximated by that of {T (F∗

n) −T (Fn)} conditionally on X1, . . . , Xn, with F∗
n(·)

being the empirical distribution of X∗
1 , . . . , X

∗
n. The main idea behind the bootstrap is:

if the sample is representative of the underlying population, inferences on the population
characteristics can be made by resampling the current sample, and an approximation of
the distribution of a function of the observations and the underlying distribution will be
made by replacing the unknown distribution by the empirical distribution of the sample,
for more detail, see Efron et al., 1993 and Shao et al., 1995. Generally, it is well known
that the bootstrap functions in the i.i.d. case if and only if the central limit theorem
holds for the random variable under consideration. Further, we refer the reader to the
Giné et al., 1990 seminal article. There is a huge amount of literature on bootstrap and
its applications. It is not the purpose of this chapter to survey this extensive literature.
In the present work, we are interested in the bootstrap for the U -processes based on
Markov chains. Results on the bootstrap for the empirical processes based on Markov
chains are reported in Radulović, 2004 and Ciołek, 2016. Bootstrap of U -statistics in
the independent setting are investigated in Csörgő et al., 2013, Arcones and Giné, 1994
and X. Chen, 2018, and in dependent setting in Dehling et al., 2010, Leucht et al., 2013
and Sharipov et al., 2016. The most related work of the present chapter is (2011a). In
the last reference, the authors provided an approach to the study of U -statistics in the
Markovian setup based on the (pseudo-) regenerative properties of Harris Markov chains.
Exploiting the fact that any sample path X1, . . . , Xn of a general Harris chain X may be
divided into asymptotically independent and identically distributed (i.i.d.) data blocks.
This kind of regeneration in Markov chains has been detailed in the paper of Nummelin,
1991. A similar approach will be used in our work without restriction to the case m = 2.
The present chapter considers the general framework of the U -processes in the Markov
chain setting and their bootstrapped versions. This investigation is far from trivial and
harder to control equicontinuity, constituting a fundamentally unsolved open problem in
the literature. Our work aims at filling this gap in the literature. The main difficulties in
proving our results are related to the random size of the resampled blocks. This creates
problems with random stopping times (in real and Banach space settings). However, as
will be proven later, the problem requires much more than “simply” combining ideas from
the existing results. In fact, delicate mathematical derivations will be required to cope
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with U -processes in our context. This requires the effective application of large sample
theory techniques developed for the empirical processes.

The layout of the present chapter is as follows. Section 2 is devoted to the introduction
of the Markov framework and the definitions needed in our work. In Section 3, we recall
the necessary ingredient for the U -statistics in the Markov setting. We provide some
asymptotic results in Section 4, including the consistency, the weak convergence of U -
processes, and the law of the iterated logarithm. In Section 5, we will come up with
the main results concerning the bootstrap of the U -statistics. In Section 6, we extend
our work to the k-Markov chains. The bootstrap results are given in Section 7. In
Section 8, we collect some examples of the class of functions and examples of conditional
U -statistics. To prevent from interrupting the flow of the presentation, all proofs are
gathered in Section 9. A few relevant technical results are given in the Appendix.

2 Preliminaries and notation

Before properly presenting our results and providing a strong base for our discussion, we
will need to introduce some notation and fundamental definitions.

2.1 Markov chain Assumptions

Let X = (Xn)n∈N be a homogeneous ψ-irreducible Markov chain, which means this chain
has a stationary transition probabilities, defined on a measurable space (E,E ), where
E is a separable σ-algebra. Let π(x, dy) the transition probability, ν = ν(i)i>0 initial
probability. Therefore, we will denote by Pν or just P the probability measure for P =
(π, ν). Likewise, Eν will denote the integration with respect to Pν . We will further
assume that the Markov chain is Harris positive recurrent with an atom A. Let us recall
the following definitions.

Definition 2.1 (Harris-recurrent). A Markov chain X = (Xn)n∈N is said to be Harris-
recurrent if there exists a σ-finite measure such that, for ψ a positive measure on a count-
able generated measurable space (E,E ), ψ(E) > 0 and if for all B ∈ E with ψ(B) > 0
then

Pν (x,∪∞
i=1(Xi ∈ B)) = 1 for any x ∈ E.

Definition 2.2 (irreducibility). The chain is ψ-irreducible if there exists a σ-finite mea-
sure ψ such that, for all set B ∈ E , when ψ(B) > 0, for any x ∈ E there exists n > 0
such that Pn(x,B) > 0.
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Definition 2.3 (aperiodicity). Assuming ψ-irreducibility, there exists d′ ∈ N∗ and dis-
joints sets D1, . . . , Dd′ (set Dd′+1 = D1) positively weighted by ψ such that ψ(E\ ∪1⩽i⩽d′

Di) = 0 and ∀x ∈ Di, P(x,Di+1) = 1. The period of the chain is the greatest common
divisor d of such integers, it is said to be aperiodic if d = 1.

Recall that a chain is positive Harris recurrent and aperiodic if and only if it is ergodic
Nummelin, 1984, Proposition 6.3, i.e., there exists a probability measure π, called the
stationary distribution, such that, in total variation distance,

lim
n→+∞

∥Pn(x, ·) − π∥tv = 0.

Definition 2.4 (Strong Markov property). Let (Xn)n≥0 be a Markov chain and let T be
a stopping time of (Xn)n≥0. Then conditionally on T < ∞ and XT = i, (XT+n)n≥0 is a
Markov chain and independent of X0, . . . , XT .

Definition 2.5 (small sets). A set S ∈ E is said to be Ψ-small if there exists δ > 0, a
positive probability measure Ψ supported by S and an integer m ∈ N∗ such that

∀x ∈ S, B ∈ E , Pm(x,B) ≥ δ Ψ(B). (2.1)

Definition 2.6. Let (Xn)n≥ be a Markov Chain taking value in (E,E ). We say that
(Xn)n≥ is positive recurrent if

1. (Xn)n≥ is (A, p, ν,m) recurrent (or Harris-recurrent if E is countably generated),
where A ∈ E a set, 0 < p < 1, m an integer and ν a probability measure.

2. sup
x∈A

Ex(T0) < ∞, where T0 is the hitting time of A by the m step chain, roughly
speaking,

T0 = min{i ≥ 1 : Xi,m ∈ A}.

Definition 2.7. A ψ-irreducible aperiodic chain X is called regenerative or atomic if
there exists a measurable set A called an atom, in such a way that ψ(A) > 0 and for all
(x, y) ∈ A2 we have P(x, ·) = P(y, ·). Roughly speaking, an atom is a set on which the
transition probabilities are the same. If the chain visits a finite number of states, then any
state or any subset of the states is an atom.

One of the essential properties of Harris-recurrent Markov chains is the existence of
invariant distribution, which we will be called µ (a limiting probability distribution, also
called occupation measure). Also, Harris-recurrent Markov chains can permanently be
embedded in a certain Markov chain on an extended sample space possessing a recurrent
atom. The fact of the existence of recurrent atom A gives an immediate consequence
for the construction of a regenerative extension of this chain. The time the chain hits a
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given atom (recurrent state) is considered the regenerative time. Athreya et al., 1978 and
Nummelin, 1978 give the construction of such a regenerative extension. This technique is
discussed in Section 5.2. The development of a regenerative extension makes the use of
regenerative technique possible to study this type of Markov chain. As mentioned above,
we will assume in this work that the Harris-recurrent chain is atomic, i.e., the set which
is infinitely almost sure recurrent is well-defined and accessible. This set A is called an
atom. By definition, an atom A is a measurable set, in E , such that µ(A) > 0, and for all
x, y ∈ A, π(x, ·) = π(y, ·). We will indicate by PA (respectively by EA) the probability
measure on the underlying space such that x ∈ A (respectively the PA-expectation).

The imposed conditions on the Markov chain ensure that the defined atom A ( or the
constructed one in the case of a non-atomic chain) is one recurrent class, and let us define
the following terms.

Hitting times: Define Tj : E → N ∪ {∞} by

T0 := inf{n ≥ 0 : Xn ∈ A},
Tj := inf{n ≥ Tj−1 : Xn ∈ A}. (2.2)

A well-known property of the hitting time is that for all k ∈ N, Tj < ∞, Pν − a.s Chung,
1967, chap. I14.

Renewal times: Using the Hitting times, we can define the renewal times as

τ 0 := T0 + 1,
τ (j) := Tj − Tj−1. (2.3)

Similar to the regenerative process, the sequence of renewal times {τ(j)}∞
j=1 is i.i.d

and independent of the choice of the initial probability. Throughout this work, we set
τ = τ (1). We will denote throughout the chapter α = EA(τ ).

Regenerative Blocks: Let ln := max{j : ∑j
i=0 τ(j) ≤ n} be the number of visits to

the atom A. Using the Strong property of the Markov chain and under the Markov chain
assumption in 2.1, it is possible to divide the given sample (X1, . . . , Xn) into a sequence
of blocks {Bj}lnj=0 such that, for all j = 1, · · · , ln = number total of blocks:

B0 = {X1, · · · , XT0}

Bj =
{
XT j−1+1, . . . , XT j

}
in T =

∞⋃
n=1

En, (2.4)
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B(n)
ln

=
{
XT ln−1+1, . . . , Xn

}
The length of each block will be denoted by l(Bj) := T j − T j−1.

2.2 U-process

Let (Xn)n∈N a sequence of random variables with values in a measurable space (E,E ),
and let h : Em → R a measurable function symmetric in its arguments, a U -statistic of
order (or degree) m and kernel h(·) is defined as:

Un(h) =
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim), for n ≥ m, (2.5)

where
Imn = {(i1, . . . , im) : ij ∈ N, 0 ≤ ij ≤ n, ij ̸= ik if j ̸= k}.

Accordingly, a U -process is the collection {Un(h) : h ∈ F}, with F is the class of
kernels h(·) of m variables. Decoupling inequality of U -statistics and U -process plays a
significant role in the latest developments of its asymptotic theory. As a result, decoupling
inequality can give a relation between the quantities

EΦ
∣∣∣∣∣∣
∑
Im

n

h (Xi1 , . . . , Xim)
∣∣∣∣∣∣
 and EΦ

∣∣∣∣∣∣
∑
Im

n

h
(
X1
i1 , . . . , X

m
im

)∣∣∣∣∣∣
 ,

where Φ(·) is a non-negative function, and {Xk
i }, k = 1, . . . ,m are independent copies

of the original sequence {Xi}. One of the good reasons for decoupling is randomization,
which is frequently used in the study of the asymptotic theory of U -statistics, and studied
by de la Peña et al., 1999, and used in the work of Arcones et al., 1993. The main idea of
randomization is to compare the tail probabilities or moments of the original U -statistic
or process, ∑Im

n
h(Xi1 , . . . , Xim), with the tail probabilities or moments of the statistic

∑
Im

n

εi1 . . . εirh(Xi1 , . . . , Xim),

where εi are independent Rademacher variables independent from Xi, and 1 ≤ r ≤ m

depend on the degree of degeneracy (centering) of the kernel h(·).
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Definition 2.8. (de la Peña et al., 1999) A symmetric Pm-integrable kernel h : Em → R

is P-degenerate of order r − 1 if and only if
ˆ
h(x1, . . . , xm)dPm−r+1(xr, . . . , xm) =

ˆ
hdPm

holds for any x1, . . . , xr−1 ∈ E, whereas
ˆ
h(x1, . . . , xm)dPm−r(xr+1, . . . , xm),

is not a constant function.

Besides, h(·) is said to be canonical or completely degenerated if the integral with respect
to one variable is equal to zero, i.e.,

ˆ
h(x1, . . . , xm)dP(x1) = 0 for all x2, . . . , xm ∈ E.

The fact that the kernel is completely degenerate with the condition Pm h2 < ∞, is
used for the orthogonality of the different elements of the Hoeffding decomposition of
U -statistics. This decomposition is examined in Section 3.

Definition 2.9 (V-statistics). Let {Xn}n∈N a sequence of random variables with values
in a measurable space (E,E ), and let h : Em → R a measurable function symmetric in its
arguments, a V-statistics of degree m and kernel h(·) is defined as:

Vn(h) = n−m
n∑

i1=0
. . .

n∑
im=0

h(Xi1 , . . . , Xim), n ≥ m. (2.6)

We can associate some distances en,p to the covering numbers, where

en,p = (Un(|f − g|p))1/p.

In this work, we use the two distances defined afterward

en,2(f, g) =
(n−m)!

n!
∑

0≤i1<...<im≤n
(f − g)(Xi1 , . . . , Xim)2

1/2

.

For decoupled statistics, we also associated covering numbers, well-known as Ñ(ε,F , ẽn,p)
and a distance, which can be defined for p = 2 as follows:

ẽn,2(f, g) = n1/2 (n−m)!
n!

Eε

 ∑
0≤i1<...<im≤n

εi1(f − g)(Xi1 , . . . , Xim)
2


1/2

.
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Definition 2.10 (Permissible classes of function). Let (Ω,Σ, P ) be a complete probability
space, (E,E ) a measurable space (E a Borel σ-field on E). F is a class of function
indexed by a parameter x that belongs to a set E. F is called permissible if it can be
indexed by a E such that:

• There exists a function g(x, f) = f(x) defined from S × F to R in such a way that
this function is L ⊗B(F ) measurable function, where B(F ) is the Borel σ-algebra
generated by the metric on F .

• E is a Suslin measurable space that is mean E is an analytic subset of a compact
metric space E from which it inherits its metric and Borel σ-field.

Definition 2.11. A class F of measurable functions E → R is said to be of VC-type (or
Vapnik-Chervonenkis type) for an envelope F and admissible characteristic (C, v) (positive
constants) such that C ≥ (3

√
e)v and v ≥ 1, if for all probability measure Q on (E,E )

with 0 < ∥F∥L2(Q) < ∞ and every 0 < ε < 1,

N
(
ε∥F∥L2(Q), F , ∥ · ∥L2(Q)

)
≤ Cε−v.

Assuming that the class is countable to avoid measurability issues (but the non-countable
case may be handled similarly using outer probability and additional measurability assump-
tions, see A. W. van der Vaart et al., 1996).

Definition 2.12 (Stochastic equicontinuity). (Pollard, 1984) Let {Zn} be a sequence of
stochastic processes. Call {Zn} stochastically equicontinuous at t0 if for each δ > 0 there
exists a neighborhood D of t0 such that

lim sup P

{
sup
D

|Zn(t) − Zn(t0)|
}
< ε. (2.7)

In the context of U -process {Un}, stochastic equicontinuity at a function g ∈ F (where
this class of functions needs to be permissible) generally implies that |Un(h) − Un(g)|
should be uniformly small for all h(·) close enough to g(·), with high probability and for
all n large enough.

3 Hoeffding decomposition

A significant issue was detected in recovering the estimation of our parameter of interest
using the U-process. The given shape of this parameter is as follows:

Θ(h) =
ˆ
x1∈E

. . .

ˆ
xk∈E

h(x1, . . . , xk)µ(dx1) . . .µ(dxk),
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where h : Em → R is a kernel function. The estimation of this parameter should be
possible using the U -statistics of the form:

Un(h) =
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim), for n ≥ m, (3.1)

As the parameter of interest will be defined and based on Kac’s theorem for occupation
measure, µ(h) in the regeneration setup can be written as follows:

Θ(h) = 1
(EA(τ ))mEA

 T1∑
i1=T0+1

T2∑
i2=T1+1

. . .
T m∑

im=T(m−1)+1
h(Xi1 , . . . , Xim)

 . (3.2)

In the Markovian context and since the variables are not independent, the approxi-
mation related to the i.i.d. blocks and the regenerative case will be introduced below:

Definition 3.1. (Regenerative Kernel) Let h : Em → R a kernel. We define the regener-
ative kernel ωh : Tm → R as follows:

ωh((x11, . . . , x1n1), . . . , (xk1, . . . , xknk
)) =

n1∑
i1=1

. . .
nk∑
ik=1

h(x1i1 , . . . , xkik). (3.3)

It is not necessary that the kernel ωh(·) to be symmetric, as soon as h(·). In fact, we can
use the symmetrization of Smωh in the following way

(Sm ωh) = (m!)−1∑ n1∑
σ(1)=1

. . .
nk∑

σ(m)=1
h(xσ(1), . . . , xσ(m)), (3.4)

where the sum is over all permutations σ = {i1, . . . , im} of {1, . . . ,m}. Next, we consider
the U -statistic formed by the regenerative data.

Definition 3.2. (Regenerative U-statistic) Let h : Em → R a kernel such that Θ(|h|) < ∞
and set h̃(·) = h(·) − Θ(h). The regenerative U-statistic associated to the sequence of
regenerative blocks {Bj}Lj=1, for L = ln − 1 ≥ 1, generated by the Markov chain is given
by

RL(h) =
(
L

m

)−1 ∑
(i1,...,im)∈Im

L

ω
h̃
(Bi1 , . . . ,Bim). (3.5)

We mention that RL(h) is a standard U -statistic with zero mean. Hence we can write its
Hoeffding decomposition according to the following

RL(h) = SL(h) +DL(h), (3.6)

104



3. Hoeffding decomposition

with

SL(h) = m

L

L∑
i=1

h̃(1)(Bi), (3.7)

DL(h) =
m∑
j=2

(
m

j

)(
L

j

)−1 ∑
1≤i1<···<ij≤L

h̃(j)
(
Bi1 , . . . ,Bij

)
. (3.8)

We define the associated functions:

h̃(1)(B1) = E(ω
h̃
(B1, . . . ,Bm | B1)) = ω

(1)
h̃

(B1),
h̃(c)(B1, . . . ,Bc) = E(ω

h̃
(B1, . . . ,Bm | B1, . . . ,Bc))

= ω
(c)
h̃

(B1, . . . ,Bc) −
m∑
i1=1

h̃(1)(Bi1) −
∑

1≤i1<i2≤m
h̃(2)(Bi1 ,Bi2)

− · · · −
∑

1≤i1<···<ic−1≤m
h̃(c−1)(Bi1 , . . . ,Bic−1),

where h̃(c)(·) represents the conditional expectation of ω
h̃
(·) given c of the coordinates, for

all Bc ∈ T. The U -statistics DL(h), obtained by truncating the Hoeffding decomposition
after the first term, is degenerate, which means that its variance converges to a constant of
order 1/L2 (see Bose et al., 2018 Theorem 1.1). The leading term is SL(h) that converges
to the normal distribution with mean zero and variance equal to E(h̃(1)2(B1)). Then, only
the first term of the Hoeffding decomposition of RL(h) asserts their limit.

3.1 Technical Assumptions:

For our results, we need the following assumptions.

(C.1) (Block-length assumption) For all q ≥ 1 , and l ≥ 1,

Eν
[
τ l
]
< ∞, EA

[
τ q
]
< ∞;

(C.2) (Non-regenerative blocks) For l ≥ 1, we have

Eν


 T 0∑
i1=1

T 1∑
i2=T 0+1

T 2∑
i3=T 1+1

. . .
T m∑

im=T m−1+1
|h(Xi1 , . . . , Xim)|

l
 < ∞,

also

Eν


 T 1∑
i1=T 0+1

T 2∑
i2=T 1+1

. . .
T m∑

im−1=T m−1+1

n∑
im=T (ln)+1

|h(Xi1 , . . . , Xim−1 , Xim)|
l
 < ∞
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(C.3) (Block-sum : Moment assumptions) For l ≥ 1, we have

Eν


 T 1∑
i1=T 0+1

T 2∑
i2=T 1+1

. . .
T m∑

im=T m−1+1
|h(Xi1 , . . . , Xim)|

l
 < ∞,

and

EA


 ∑

T 0+1≤i1≤...≤im≤T 1

h(Xi1 , . . . , Xim)
l
 < ∞;

(C.4) For l ≥ 1, we have

Eν


(

T 1∑
i1=T 0+1

T 2∑
i2=T 1+1

T k+1∑
ik=T k+1

. . .
T k+1∑

ik=T k+1︸ ︷︷ ︸
u times

T k+u+1∑
ik+u=T k+u+1

. . .
T m∑

im=T m−1+1

|h(Xi1 , Xik , . . . , Xik ,︸ ︷︷ ︸
u times

Xik+u
, . . . , Xim)|

)l < ∞;

(C.5) (Non-degeneracy.) We suppose also that

EA


 T 1∑
i=T 0+1

h1(Xi)
2
 > 0.

Remark 3.3. [Moment assumptions] In practice, we recall that block-moment assump-
tions for the split Markov chain can be generally checked by establishing drift conditions
of Lyapounov’s type for the original chain, see Chapter 11 in S. Meyn et al., 2009b and
Douc et al., 2008, as well as the references therein. All these moment conditions are
discussed in detail in the book of S. P. Meyn et al., 1993, Chapters 11 & 17. There is
a key condition in the proof of ergodic theorems in the Markovian context, which is the
fact that EA(τ 0) < ∞, for all A a set in E , such that ψ(A) > 0. In fact, when there is
a finite invariant measure and an atom A, then this condition is right-founded. We also
refer to Bertail et al., 2006a for an explicit check of such conditions on several important
examples and to Section 4.1.2 of Bertail et al., 2011b for sufficient conditions expressed
in terms of uniform return rate to small sets. Finally, as discussed in Chapter 8 of Re-
vuz, 1984, similar conditions can be expressed in potential kernels. Observe that, in the
positive recurrent case, the assumptions of (C.1) are not independent when ν = µ: from
basic renewal theory, one has Pµ (τ = k) = (EA [τ ])−1 PA (τ ≥ k) for all k ≥ 1. Hence,
conditions Eµ

[
τ l
]
< ∞ and EA

[
τ l+1

]
< ∞ are equivalent.
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3.2 General case

Let (Xn)n≥0 be a sequence of random variables. We can write the projection mentioned
above and define the degenerate U -statistic in terms of integral. More precisely, we have

Θ := Pmh =
ˆ
. . .

ˆ
h(x1, . . . , xm) dµ(x1, . . . , xm), (3.9)

with
h(1)(x) := Pm−1h =

ˆ
. . .

ˆ
h(x, x2, . . . , xm) dµ(x2, . . . , xm). (3.10)

It is known that if
E|h(X1, . . . , Xn)| < ∞,

the the U -statistic converges almost sure and in L1 to Eh(X1, . . . , Xn), with h(·) is a real
measurable symmetric function. To ensure that E|h(X1, . . . , Xm)| < ∞, we must have
h > 0 and { 1

nm
∑

h(X1, . . . , Xm)
}∞

n=1

is bounded. We can also define the Hoeffding projection of a kernel h : Em → R symmetric
as:

πkh(X1, . . . , Xk) := πP
k,mh(X1, . . . , Xk) := (δx1 − P) . . . (δxk

− P)Pm−kh.

For xi ∈ E and 0 ≤ k ≤ m, such that π0h = Pmh bring a decomposition of the U -
statistic into a sum of U -statistics of orders k ≤ m, and πk(h) is a degenerate function of
k-variables, for k > 0, the Hoeffding decomposition for any U -statistics Un(h) is:

Un(h) =
m∑
k=0

(
m

k

)
Uk
n(πk(h)).

The kernel h(·) is degenerated of order r− 1 if and only if the Hoeffding expansion except
the constant term start at term r, i.e.,

Un(h) − Pm(h) =
m∑
k=r

(
m

k

)
Uk
n(πk(h)).

We are primarily interested in the investigation of the behavior of

∥Un(h) − Pm(h)∥F = sup
h∈F

|Un(h) − Pmh|,
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Chapter 4. Renewal type bootstrap for U - process Markov chains

with F is an uncountable family of symmetric functions h : Em → R. The first term in
this decomposition is a linear function written as follows:

Sn(h) = m

n

n∑
i=1

(Pm−1h(Xi) − Pmh) = m

n

n∑
i=1

π1h(Xi).

We have in terms of regenerative blocks:

SL(h) = m

L

L∑
k=1

h̃1(Bk) := m

L

L∑
k=1

(Pm−1h(Bk) − Pmh).

3.3 Regenerative approximation

The following proposition plays an instrumental role in the present chapter. Actually, the
U -statistics of order m = 2 tends to be more widely used in literature, and this proposition
can be seen in the work of Bertail et al., 2011a. However, when m ≥ 3, our proofs shall
contain additional terms which do not exist when m = 2. Such situations require delicate
treatment and place additional conditions.

Proposition 3.4. Suppose that conditions (C.1), (C.2), (C.3), and (C.4) are fulfilled.
Let

Wn(h) = Un(h) − Θ(h) −
(
ln − 1
m

)(
n

m

)−1

RL(h). (3.11)

Then, we have the following stochastic convergences:

Wn(h) → 0, P − a.s.

4 Asymptotic theory for Markovian U-statistics

We point out that the U -statistic Um
n (h), given in (3.1), can be approximated by the regen-

erative U -statistic RL(h)(3.5) based on the observed regenerative blocks. The following
theorems provide the behavior of Markovian U -statistics over a uniformly bounded class
of functions that satisfy some entropy conditions. We begin the study of limit theorems
by proving the strong law of large numbers in the following theorem.

Theorem 4.1: Strong Law of Large Numbers

Let (Xn)n be a Markov chain satisfying the Assumption 2.1. Under the assumptions
(C.1), (C.2), (C.3) and (C.4) mentioned in Section 3 and if Θ(|h|) < ∞, we have,
as n → ∞:

Un(h) → Θ(h), Pν a.s.
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4. Asymptotic theory for Markovian U-statistics

Theorem 4.2 represents a fundamental result in this chapter. A result on the CLT for
the U -statistics will be presented in this theorem. Assume that the class of measurable
function F satisfies the CLT, or the U -statistic satisfies the CLT, if the Gaussian process
GΘ indexed by F is sample continuous on F with covariance

E[GΘ(f) −GΘ(g)] = Θ(fg) − (Θf)(Θg); f, g ∈ F ,

and
n1/2 (Un − Pm) (h) −→

L
mGΘ ◦ Pm−1 ◦ h; in l∞(F ).

The convergence of n1/2 (Un − Pm) is in the sense Hoffmann-Jørgensen, which is defined
as, for all F : l∞(F ) → R bounded and continuous,

EF
(
n1/2 (Un − Pm) (h)

)◦
→ EF (mGΘ ◦ Pm−1 ◦ h),

where F
(
n1/2 (Un − Pm)

)◦
is the measurable envelope of F

(
n1/2 (Un − Pm)

)
. Note that

h(·) must be symmetric for the convergence to the Gaussian process; if not, we must use
the symmetrization form of h(·), Sm(h), in the limit mGΘ ◦ Pm−1 ◦ Sm(h) instead of h(·).

Theorem 4.2: Weak convergence

Let (Xn)n be an Harris-recurrent Markov chain with an atom A satisfying Assump-
tion 2.1 and such that, for a fixed γ > 0,

sup
x∈A

E(τ )2+γ < ∞ (4.1)

and satisfying also the technical assumptions (C.1), (C.2), (C.3), (C.4), and (C.5).
Let F a class of measurable functions uniformly bounded on E and

ˆ ∞

0

√
logN(ε,F , en,2)dε < ∞,

a with expectation zero, i.e.,

E
ˆ ∞

0
n−1/2 logN(ε,F , en,2)dε → 0.

Then the U -statistic converges weakly in l∞(F ) to a Gaussian process G indexed
by F whose sample paths are bounded and uniformly continuous with respect to
the metric L2(P).

auniform entropy integral
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Chapter 4. Renewal type bootstrap for U - process Markov chains

Remark 4.1. Note that condition 4.1 is related to the validity of strong mixing condi-
tions for dependent data and the renewal times of stationary sequences. This question is
discussed in Bolthausen, 1982 and Bolthausen, 1980. A brief and clear explanation of this
relation is also used by Radulović, 2004.

In addition, a rate of convergence for the SLLN can be given by the law of iterated
logarithm by proving that the distance between Un(h) and the parameter to estimate
Θ(h) is of order

√
log log n. It is noteworthy that the law of iterated logarithm has been

proved by Dehling, 1989 and Dehling et al., 1986.

Theorem 4.3: Law of Iterated logarithm

Let (Xn)n be a Markov chain satisfying the Assumption 2.1. Suppose that the
Assumptions (C.1), (C.2), (C.3), (C.4), and (C.5) are fulfilled. Then we have

lim
n→∞

sup
√
n(Un(h) − Θ(h))√

2σ2 log log n
= 1, Pν − a.s.

5 Uniform bootstrap central limit theorem

We now establish the bootstrap central limit theorem over a uniformly bounded class
of functions that satisfy the uniform entropy condition. Starting by describing the re-
sampling algorithm and establishing our bootstrap version of the uniform central limit
theorem for Harris Markov chains.

5.1 RBB method

The Regenerative blocks bootstrap (RBB) method steps are as follows:

• Recall that ln the number of visits to the atom A. Divided the observed sample
X(n) = (X1, . . . , X

(n)
n ) into (ln + 1) regenerative blocks B0, . . . ,Bln−1,B(n)

ln
∈ T.

Drop the first and the last blocks (to avoid bias) (non-regenerative blocks).

• Draw sequentially bootstrap data blocks B∗
1,n, . . . ,B∗

k,n independently from the em-
pirical distribution function

Pn = 1
ln − 1

ln−1∑
i=1

δBi
,

the generated of blocks bootstrap will be until the joint length of bootstrap blocks

l∗(k) =
k∑
j=1

l
(
B∗
j,n

)
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5. Uniform bootstrap central limit theorem

exceeds n. Let
l∗n = inf{k > 1, l∗(k) > n} and L∗ = l∗n − 1

• Reconstruct, by binding the blocks together X∗ = (B∗
1,n, . . . ,B∗

l∗n−1,n), a new trajec-
tory of size l∗(l∗n − 1), with B∗

0,n = B0 and B∗
ln,n = B(n)

ln
.

Denoted by n∗ length of bootstrapped sample, which is given by

n∗ =
L∗∑
i=1

l (B∗
i ) .

Remark 5.1. The fact that some observations may be sampled more than once while
others are not sampled at all is one of the potential disadvantages of the original boot-
strap developed by Efron, 1979. The weighted (or smooth) bootstrap is an alternative that
has been proven to be computationally more efficient in numerous situations. This has
been demonstrated both theoretically and empirically. The use of subsampling, a type of
resampling method, is another approach that can be taken. This technique is utilized to
estimate statistical estimator properties such as the variance, distribution function, and
so on. The subsampling method is less effective than the bootstrapping method in general,
but it can be useful in many circumstances where other approaches are ineffective. Let’s
recall some facts about the repeats in the resampled sample from Hall, 1987, Appendix 1,
Fisher et al., 1991, pp. 160-161, Hall, 1992, Appendix I. With probability one, all values
in the sample X = X1, . . . , Xn are distinct. The number of different unordered resamples
X ∗ = X∗

1 , . . . , X
∗
n that can be drawn from X with replacement, equals the number of ways

of choosing non-negative integers k1, . . . , kn satisfying k1 + · · · + kn = n. This is given by

N(n) =
 2n− 1

n

 ,
which is asymptotic to (nπ)− 1

2 22n−1 as n → ∞. The qualification "with probability one"
here and below refers to realizations of X . It means that if C is the collection of realiza-
tions for which the qualified statement is valid, then P(X ∈ C ) = 1. Not all atoms have
equal probability. The atom with the greatest mass is the one corresponding to X ∗ = X ,
and has probability pn = n!/nn ∼ (2nπ) 1

2 e−n. If B bootstrap simulations are conducted,
the chance that each results in a different value is not less than

(1 − pn) (1 − 2pn) . . . {1 − (B − 1)pn} ⩾ 1 − 1
2B

2pn,

provided (B − 1)pn < 1. Therefore if B increases at a slower rate than n−1/4e
1
2n, in

particular, if B = O (nc) for some c > 0, then the chance that an atom is sampled twice
converges to zero.
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Chapter 4. Renewal type bootstrap for U - process Markov chains

5.2 Splitting technique

Geared toward conserving the entire power of renewal theory in Markov chain analysis
on a general state space, a strategy is provided for "splitting" the state space of a Harris
recurrent Markov chain in such a way that an "atom" is introduced into the split state
space while preserving the chain’s recurrent character. This strategy is called the splitting
technique, and it was introduced by Nummelin, 1978. The basic assumption in this
technique is that for all x ∈ E and A a set in E , there exists δ ∈ E + with ψ(h) > 0
such that the k-step transition probability Pk is bounded by h × ϕ(A), where ϕ is a
probability measure. This assumption can be viewed as the existence of a small set S
for the Harris Markov chain treated (see definition 2.5). This Minorization assumption
is automatically set up in a countably generated σ-algebra. For the sake of simplicity,
most of the literature presents the case with k = 1 and then the idea is to build a Markov
chain X∗ that somehow the original Markov chain X is "embedded" in the chain X∗and
has an atom that is visited infinitely often with probability one by extending the sample
space E in a new one E ∗. That is why a new sequence of Bernoulli Yn ∈ {0, 1} should be
defined and the new chain will be X∗ = {Xn, Yn} in (E∗,E ∗) with a transition probability
P∗ presented above. For all arbitrary x ∈ S and A ∈ E :

• If Yn = 1 (with probability δ) then we draw Xn+1 according to Ψ(A),

• If Yn = 0 (with probability 1−δ) then
Xn+1 = (1 − δ)−1(π(Xn, A) − δΨ(A). δ < 1

Xn+1 = Ψ(A) δ = 1

As a result of this method, the atom aimed to build is S×{1} and Nummelin, 1978 has
proved that the constructed Markov chain and the original one have the same marginal
distribution and they are both Harris recurrent Markov chains.

In this setting, we note AM = S × {1} the atom of the split chain X∗, and τAM
(i)

where i = 1, . . . , l̂n the successive hitting time, where l̂n is the total number of vis-
its of the split chain to AM up to time n. The approximated blocks are of the form
(B̂0, . . . , B̂j, . . . , B̂l̂n−1, B̂

(n)
l̂n

). Then we could apply the RBB to the sample path of X∗

as in Bertail et al., 2011a.

5.3 Bootstrap of U-statistic

We can write the bootstrap U -statistics as follows

U∗
n(h) =

(
n∗

m

)−1 ∑
(i1,...,im)∈Im

n∗

h(X∗
i1 , . . . , X

∗
im). (5.1)

The bootstrapped regenerative U -statistics can be written as follows
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5. Uniform bootstrap central limit theorem

R∗
L∗(h) =

(
L∗

m

)−1 ∑
(i1,...,im)∈Im

L∗

ω
h̃
(B∗

i1,n, . . . ,B
∗
im,n). (5.2)

Let L ∗ denotes the conditional law given the sample {B1, . . . ,BL} and E∗ denotes con-
ditional expectation given the same sample. In order to prove the weak convergence of
U∗
n(h), it will be sufficient to prove the convergence of R∗

L∗(h). As B∗
i,n are i.i.d., we can

use the same proof of Arcones and Giné, 1994 for bootstrap U -process, Theorem 2.1.
therein, we will impose the following conditions to prove the convergence of R∗

L∗(h):

(C.6) Let F denotes a measurable class of symmetric functions h : Em → R. There is a
function λ : (0,∞) → [0,∞) with

´∞
0 λ(η)d(η) < ∞ such that for each probability

measure Θ with ΘF 2 < ∞

[
logN2(η(ΘF 2)1/2,F ,Θ)

]1/2
≤ λ(η), η > 0, (5.3)

(C.7) For each i1, . . . , im,

E|F (Bi1 , . . . ,Bim)|2card{i1,...,im}/m < ∞. (5.4)

The last conditions are essential in the proof of the bootstrap CLT, as in Arcones and
Giné, 1994, to ensure the convergence of V -statistics, and represent the law of large
numbers for V -statistics.

V ln
m = (ln − 1)−m

ln−1∑
i1,...,im=1

ω
h̃
(Bi1 , . . . ,Bim) → Eω

h̃
(B1, . . . ,Bm), a.s.

For more details, we can see Arcones et al., 1992 and the law of large numbers for U -
statistics can be bootstrapped under some integrability’s conditions.

Theorem 5.1

Assume that for every possible combination of integers i1, . . . , im, condition (C.7)
is fulfilled. Then

U∗
n(h) →

P∗
Eh(X1, . . . , Xm) a.s. (5.5)

The theorem below establishes the weak convergence of bootstrapped U -statistic. We
show that if the class of functions satisfies the entropy condition (C6), the CLT for the U -
process indexed by this class of functions can be bootstrapped. Recall that L (·) reflects
convergence in the sense of Hoffmann-Jørgensen, 1991.

113



Chapter 4. Renewal type bootstrap for U - process Markov chains

Theorem 5.2

Assume that the conditions (C.6)-(C.7) are satisfied. Then if l∗n → ∞,

lim
n→+∞

L ∗
{
L∗1/2(R∗

L∗(h) − V ln
m (h)) : h ∈ F

}
=
a.s

lim
n→+∞

L
{
L1/2(RL(h) − Pmh) : h ∈ F

}
. (5.6)

In the following, using other conditions for the class of functions is a must to set the
bootstrap uniform weak convergence.

Theorem 5.3

Let (Xn)n be a positive recurrent Harris Markov chain, with an accessible atom A,
Xn satisfies the conditions (C.1) and (C.2) (moments assumptions). Let F be a
uniform bounded class of functions with an envelope H square integrable such that:

ˆ ∞

0
(logN(ε,F , en,2))m/2dε < ∞.

Then the process
(n∗)1/2(U∗

n∗(h) − Un(h)),

converges weakly in probability under Pν to a Gaussian process G indexed by F

whose sample paths are bounded and uniformly continuous with respect to the
metric L2(P).

6 Generalized U -statistics

In this section, we will generalize the study to the case of many Markov chain trajectories.
We consider k Markov chains, each of which is described in a measurable space (Ei,Ei),
with a transition probability πi, initial probability νi and invariant probability measure
µi for 1 ≤ i ≤ k. Then, the k trajectories of Markov chains will be represented by
X

(1)
n1 = {X(1)

1 , . . . , X(1)
n1 }, . . . , X(k)

nk
= {Xk

1 , . . . , X
k
nk

}. Throughout this section, we assume
that all these chains are regenerative, each of them with an accessible atom Ai, and denote
by B(i)

j the corresponding regenerative blocks. In the case of a Harris Markov chain, all
effects can be preserved using the Nummelin technique, Section 5 § 5.2. Let Θ defined by

Θ = Eh
(
X

(1)
1 , . . . , X(1)

m1 ; . . . ; X(k)
1 , . . . , X(k)

mk

)
=
ˆ
. . .

ˆ
h
(
u

(1)
1 , . . . , u(1)

m1 , . . . , u
(k)
1 , . . . , u(k)

mk

) k∏
j=1

dµnj

(
u

(j)
1 , . . . , u(j)

mj

)
, (6.1)
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where h(·) is assumed, without loss of generality, to be a symmetric kernel defined on
Em1

1 × . . .×Emk
k with values in R. To approximate this parameter, the U-statistic can be

written as follows:

U(n1,··· ,nm)(h) =


k∏
j=1

(
nj
mj

)−1
∑

c

h
(
X

(1)
i11 , . . . , X

(1)
i1m1

; . . . ; X(k)
ik1
, . . . , X

(k)
ikmk

)
. (6.2)

Denote by {ij1, . . . , ijmj
} a set of mj distinct elements of the set {1, 2, . . . , nj}, where

1 ≤ j ≤ k and ∑
c

denotes summation over all combination and nj ≥ mj whatever
j = 1, . . . , k.

The study of multi-sample U -statistics began with Lehmann, 1951 and Dwass, 1956.
P. K. Sen, 1977 provided a convergence almost sure for generalized U -statistics for inte-
grable kernels. Weak convergence has also been studied by P. K. Sen, 1974b. Zhang et al.,
1996 established the asymptotic distribution for bootstrapping generalized U -statistics
and bootstrapping generalized V -statistics, and their work represents a good reference
in this framework. All these studies require an independent and identical distribution
between sequences and between observations of each sequence.

6.1 Decomposition of generalized U -statistics

As the sample U-statistics, we can write a decomposition of the generalized U-statistics
as follows

U(n1,··· ,nm) = Û + D̂,

in such a way that

Û − Θ =
k∑
j=1

nj∑
i=1

mj

nj
h∗
j

(
X

(j)
i

)
, (6.3)

where
h∗
j(x) = Eh

(
X

(1)
1 , . . . , X(1)

m1 ; . . . ; X(k)
1 , . . . , X(k)

mk
|X(j)

1 = x
)

− Θ.

We define

h(c1,...,ck)(x(1)
1 , . . . , x(1)

c1 ; . . . ; . . . ;x(k)
1 , . . . , x(k)

ck
)

=
ˆ
. . .

ˆ
h(u(1)

1 , . . . , u(1)
m1 , . . . , u

(k)
1 , . . . , u(k)

mk
)

k∏
j=1

 cj∏
i=1

d
(

δ
x

(j)
i

(
u

(j)
i

)
− µj

(
u

(j)
i

) ) mj∏
i=cj+1

dµj

(
u

(j)
i

) .
Such that δ

x
(j)
i

(·) represents the d.f. of a single point mass at x, and µi is the probability
measure of each sequence. Note that sequences must be i.i.d to get this writing. We can
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write the principal kernel as follows:

h
(
X

(1)
i11 , . . . , X

(1)
i1m1

; . . . ; X(k)
ik1
, . . . , X

(k)
ikmk

)
=

m1∑
c1=0

. . .
mk∑
ck=0

∑
(m1,c1)

. . .
∑

(mk,ck)
h(c1,...,ck)

(
x

(1)
1 , . . . , x(1)

c1 ; . . . ; . . . ;x(k)
1 , . . . , x(k)

ck

)
.

Hence, we can write now the H-decomposition of generalized U -statistics:

Un(h) =
m1∑
c1=0

. . .
mk∑
ck=0

k∏
j=1

(nj
cj

)−1(
mj

cj

)
∑

(n1,c1)
. . .

∑
(nk,ck)

h(c1,...,ck)
(
x

(1)
1 , . . . , x(1)

c1 ; . . . ; . . . ;x(k)
1 , . . . , x(k)

ck

)
.

Note that the function h(c1,...,ck)(·) satisfy:

E
{
h(c1,...,ck)

(
x

(1)
1 , . . . , x(1)

c1 ; . . . ; . . . ;x(k)
1 , . . . , x(k)

ck

)}
= 0.

6.2 Regenerative Chains

As mentioned above, we have k- regenerative Markov chains, so by applying the strong
property of the Markov chain to each chain that we have, k- sequences of indepen-
dent identically distributed regenerative blocks can be obtained, {B(1)

0 , . . . ,B(1)
ln1

}, . . . ,
{B(k)

0 , . . . ,B(k)
lnk

}, resp. generated from the chains (X1
n1)n1>0, . . . , (Xk

nk
)nk>0. Note that

each chain meets all the properties, conditions, and results studied in the preceding sec-
tions of the Markov chain sample. As shown in the previous work, we presume that B(j)

0

and B(j)
lnj

are the non-regenerative blocks (possibly empty), to prevent bias. In the case of
non-stationary Markov chains, i.e., the initial distribution is different from the stationary
distribution, the bias of the first block is noteworthy. For simplicity’s sake, we shall limit
the study to the case where k = 2 and mj = 2. All results can be extended to the general
case.

Definition 6.1. (Regenerative Kernel) Let h(·) be a kernel of m1 + m2 arguments, wish
is symmetric in each argument, the regenerative kernel related to h(·) is given by:

ωh

((
x

(1)
1 , . . . , x

(1)
k1

)
;
(
x

(1)
1 ; . . . , x(1)

k2

)
;
(
x

(2)
1 , . . . , x

(2)
k3

)
;
(
x

(2)
1 , . . . , x

(2)
k4

))
=

k1∑
i1=1

k2∑
i2=1

k3∑
i3=1

k4∑
i4=1

h(xi1 , xi2 , xi3 , xi4).
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Definition 6.2. (Regenerative Generalized U-Statistic) Let h : Em1 × . . .× Emk → R be
a symmetric kernel, such that µ(|h|) < ∞. The regenerative U-statistic can be written as
follows:

R(ln1 −1,··· ,lnm −1)(h) =
k∏
j=1

(
lj − 1
mj

)−1∑
c

ω
h̃

(
B(1)
i11 , . . . ,B

(1)
i1m1

, . . . ,B(k)
ik1
, . . . ,B(k)

ikmk

)
. (6.4)

Then, for k = 2 and mj = 2, (6.4) can be given by

R(ln1 −1,ln2 −1)(h)(h) =
(
ln1 − 1

2

)−1(
ln2 − 1

2

)−1 ∑
1≤i11<i12≤ln1 −1

∑
1≤i21<i22≤ln2 −1

×ω
h̃

(
B(1)
i11 ,B

(1)
i12 ; B(2)

i21 ,B
(2)
i22

)
. (6.5)

Therefore, its Hoeffding decomposition is given by :

R(ln1 −1,ln2 −1)(h) =
m1=2∑
c1=0

2∑
c2=0

(
ln1 − 1
c1

)−1(
ln2 − 1
c2

)−1( 2
c1

)(
2
c2

)

×
∑

(ln1 −1,c1)

∑
(ln2 −1,c2)

h(c1,c2)
(
B(1)
i11 ,B

(1)
i12 ; B(2)

i21 ,B
(2)
i22

)
= S(h) +D(h). (6.6)

Let

Wn(h) = U(n1,n2)(h) − µ(h) −
(
ln1 − 1

2

)(
ln2 − 1

2

)(
n1

2

)−1(
n2

2

)−1

R(ln1 −1,ln2 −1)(h). (6.7)

Proposition 6.3. Assume that each one of the k-Markov chains satisfies the same con-
ditions of Proposition 3.4. We have Wn(h) converges to 0 as n → ∞.

6.3 Asymptotic theory for Markovian generalized U -statistics

Let us recall

U(n1,n2)(h) =
(
n1

2

)(
n1

2

) ∑
1≤i11<i12≤n1

∑
1≤i21<i22≤n2

h
(
X

(1)
i11 , X

(1)
i12 ;X(2)

i21 , X
(2)
i22

)
,

and

R(ln1 −1,ln2 −1)(h)

=
(
ln1 − 1

2

)−1(
ln2 − 1

2

)−1 ∑
1≤i11<i12≤ln1 −1

∑
1≤i21<i22≤ln2 −1

ω
h̃

(
B(1)
i11 ,B

(1)
i12 ; B(2)

i21 ,B
(2)
i22

)
.
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Theorem 6.1: Strong Law of Large Numbers

Assume that
E{|h|(log+ |h|)k−1} < ∞,

and under the conditions used in the SLLN for the simple chain in Theorem 4.1,
we have, as n → ∞,

U(n1,n2)(h) → Θ(h).

Theorem 6.2

Let U(n1,n2)(h) be a generalized U -statistic based on two Markov chains trajec-
tories (X(1)

1 , . . . , X(1)
n1 ) and (X(2)

1 , . . . , X(2)
n2 ), and R(ln1 −1,ln2 −1)(h) the regenerative

U -statistics generated by two samples of blocks independents. Let τ A1 and τ A2

represent the renewal time for the first and second chains with atom A1 and A2

respectively. Then

n1/2(U(n1,n2) − Θ) d→ N

(
0, l
n

(EA1(τ A1)−2(EA2(τ A2)−2
(
m2

1δ
2
1,0

p
+
m2

2δ
2
0,1

1 − p

))
,

and
l1/2R(ln1 −1,ln2 −1)

d→ N(0, l(p−1m2
1δ

2
1,0 + (1 − p)−1m2

2δ
2
0,1)),

where l = ln1 + ln2 , n = n1 + n2 and p = ln1/l → p, 0 < p < 1. We have also

δ(c,d) = Var h(c,d)(B(1)
1 , B

(1)
2 ;B(2)

1 , B
(2)
2 ),

such that δ1,0, δ0,1 > 0.

7 Bootstrapping generalized U -statistics

In this section, we apply the bootstrap method to generalized U -statistics and study the
asymptotic properties of the bootstrapped U -statistics indexed by a class of functions
H . We can draw bootstrap samples from P1,ln1

and P1,ln2
correspondingly, see Section 5,

and obtain two mutually independent random sequences X∗
n1 = (B∗

1,n1 , . . . ,B
∗
l∗n1 −1,n1) and

X∗
n2 = (B∗

1,n2 , . . . ,B
∗
l∗n2 −1,n2). Let n∗ = n∗

1 + n∗
2 where n∗

j is the length of bootstrapped
sample of each chain

n∗
j =

l∗nj∑
ij=1

l(B∗
jij

),
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7. Bootstrapping generalized U -statistics

and l∗ = l∗n1 + l∗n2 . The generalized bootstrap of the U -statistic and the regenerative
bootstrapped generalized U -statistic can be written as follow:

U∗
(n∗

1,n
∗
2)(h) =

(
n∗

1
2

)(
n∗

2
2

) ∑
1≤i11<i12≤n1

∑
1≤i21<i22≤n2

h
(
X∗
i11 , X

∗
i12 ;X∗

i21 , X
∗
i22

)
, (7.1)

and

R∗
(l∗n1 −1,l∗n2 −1)(h)

=
(
l∗n1 − 1

2

)−1(
l∗n2 − 1

2

)−1 ∑
1≤i11<i12≤l∗n1 −1

∑
1≤i21<i22≤l∗n2 −1

ω
h̃

(
B∗
i11 ,B

∗
i12 ; B∗

i21 ,B
∗
i22

)
.(7.2)

Let us introduce the following conditions.

(C8) H is a class of measurable function, and for any h ∈ H , h is symmetric in its
arguments.

(C9) H is permissible, there exists H > 0, |h| ≤ H for any h ∈ H and

E(H2(Xi11 , Xi12 , Xi21 , Xi22)(log+ H(Xi11 , Xi12 , Xi21 , Xi22))2 < ∞,

for any 1 ≤ ijk ≤ nk, and where log+(·) = max{0, log(·)}.

Theorem 7.1

If H satisfies the conditions (C8) and (C9), in addition if

2∑
j=1

(
µjh

2
j,1 − (µjhj,1)2

)
> 0, for any h ∈ H ;

where hj,1 = E(h(X11, X12;X21, X22)|Xj1 = x), j = {1, 2}, and let nj/n → pj, 0 <
pj < 1, then the U -process

T ∗
n =

√
n
(
U∗

(n∗
1,n

∗
2)(h) − U(n1,n2)(h)

)
converges to a Gaussian process Gµ over H , whose simple paths are bounded and
informally continuous with respect to the L2(P), with mean zero and covariance

Cov(Gµh,Gµg) =
2∑
j=1

m2
j

pj

[
µj(hj,1gj,1) − (µjhj,1)(µjgj,1)

]
,

for any h, g ∈ H .
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Remark 7.1. Ciołek, 2016 established a bootstrap uniform functional central limit theo-
rem over uniformly bounded classes of functions for Harris recurrent Markov chains. As
in the present chapter, the bootstrap in question is the approximate block bootstrap intro-
duced by Bertail et al., 2006b. The proof of Ciołek, 2016 relies on the bootstrap central
limit theorem of Giné et al., 1990. In this chapter, we develop theory and tools for study-
ing bootstraps of U-processes, a natural higher-order generalization of the bootstraps of the
empirical processes investigated in Ciołek, 2016. The random size of the resampled blocks,
which is more complex in our context than for empirical processes, poses the greatest dif-
ficulty in establishing our conclusions. In the present work, we have investigated the case
of k Markov chains in their full generality, which has been studied elsewhere in a general
framework. Finally, when we investigate U-processes, the nonlinear terms appearing in
the Hoeffding decomposition are difficult to control in our setting and do not appear in
the study of the empirical process, which is the greatest challenge in generalizing to our
setting.

8 Examples

8.1 Classes of functions

Example 21. The set F of all indicator functions 1I{(−∞,t]} of cells in R satisfies

N
(
ε,F , d

(2)
P

)
≤ 2
ε2 ,

for any probability measure P and ε ≤ 1. Notice that

ˆ 1

0

√
log

(1
ε

)
dε ≤

ˆ ∞

0
u1/2 exp(−u)du ≤ 1.

For more details and discussion on this example, refer to Example 2.5.4 of A. W. van der
Vaart et al., 1996 and Kosorok, 2008, p. 157. The covering numbers of the class of cells
(−∞, t] in higher dimension satisfy a similar bound, but with higher power of (1/ε), see
Theorem 9.19 of Kosorok, 2008.

Example 22. (Classes of functions that are Lipschitz in a parameter, Section 2.7.4 in
A. W. van der Vaart et al., 1996). Let F be the class of functions x 7→ f(t, x) that are
Lipschitz in the index parameter t ∈ T . Suppose that

|f(t1, x) − f(t2, x)| ≤ d(t1, t2)κ(x)

for some metric d on the index set T , the function κ(·) defined on the sample space X ,
and all x. According to Theorem 2.7.11 of A. W. van der Vaart et al., 1996 and Lemma
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9.18 of Kosorok, 2008, it follows, for any norm ∥ · ∥F on F , that

N (ε∥F∥F ,F , ∥ · ∥F ) ≤ N (ε/2, T, d).

Hence if (T, d) satisfy J(∞, T, d) =
´∞

0

√
log N (ε, T, d)dε < ∞, then the conclusion holds

for F .

Example 23. As an example, the classes of functions that are smooth up to order α are
defined as follows; see Section 2.7.1 of A. W. van der Vaart et al., 1996 and Section 2 of
A. van der Vaart, 1996. For 0 < α < ∞ let ⌊α⌋ be the greatest integer strictly smaller
than α. For any vector k = (k1, . . . , kd) of d integers define the differential operator

Dk. := ∂k.

∂k1 · · · ∂kd
,

where
k. :=

d∑
i=1

ki.

Then, for a function f : X → R, let

∥f∥α := max
k.≤⌊α⌋

sup
x

|Dkf(x)| + max
k.=⌊α⌋

sup
x

Dkf(x) −Dkf(y)
∥x− y∥α−⌊α⌋ ,

where the suprema are taken over all x, y in the interior of X with x ̸= y. Let Cα
M(X )

be the set of all continuous functions f : X → R with

∥f∥α ≤ M.

Note that for α ≤ 1 this class consists of bounded functions f that satisfy a Lipschitz
condition. Kolmogorov et al., 1959 computed the entropy of the classes of Cα

M(X ) for the
uniform norm. As a consequence of their results A. van der Vaart, 1996 shows that there
exists a constant K depending only on α, d and the diameter of X such that for every
measure γ and every ε > 0,

log N[ ](εMγ(X ), Cα
M(X ), L2(γ)) ≤ K

(1
ε

)d/α
,

N[ ] is the bracketing number, refer to Definition 2.1.6 of A. W. van der Vaart et al.,
1996 and we refer to Theorem 2.7.1 of A. W. van der Vaart et al., 1996 for a variant of
the last inequality. By Lemma 9.18 of Kosorok, 2008, we have

log N (εMγ(X ), Cα
M(X ), L2(γ)) ≤ K

( 1
2ε

)d/α
.
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8.2 U-statistics

Example 24. Let Ŷ1Y2 denote the oriented angle between Y1, Y2 ∈ T , T is the circle of
radius 1 and center 0 in R2. Let :

φt(Y1, Y2) = 1{Ŷ1Y2 ≤ t} − t/π, for t ∈ [0,π).

B. W. Silverman, 1978 has used this kernel in order to propose the U-process to test
uniformity on the circle.

Example 25. Hoeffding, 1948 introduced the parameter

△ =
ˆ ∞

−∞

ˆ ∞

−∞
D2(y1, y2)dF (y1, y2),

where D(y1, y2) = F (y1, y2) −F (y1,∞)F (∞, y2) and F (·, ·) is the distribution function of
Y1 and Y2. The parameter △ has the property that △ = 0 if and only if Y1 and Y2 are
independent. From A. J. Lee, 1990, an alternative expression for △ can be developed by
introducing the functions

ψ (y1, y2, y3) =


1 if y2 ≤ y1 < y3

0 if y1 < y2, y3 or y1 ≥ y2, y3

−1 if y3 ≤ y1 < y2

and

φ (y1,1, y1,2, . . . , y5,1, y5,2) = 1
4ψ (y1,1, y1,2, y1,3)ψ (y1,1, y1,4, y1,5)ψ (y1,2, y2,2, y3,2)ψ (y1,2, y4,2, y5,2) .

We have

△ =
ˆ
. . .

ˆ
φ (y1,1, y1,2, . . . , y5,1, y5,2) dF (y1,1, y1,2) . . . dF (y1,5, y2,5) .

The corresponding U-statistics may be used to test the independence.

Example 26. For m = 3, let φ(Y1, Y2, Y3) = 1{Y1 − Y2 − Y3 > 0}, the corresponding
U-Statistic corresponds to the Hollander-Proschan test-statistic (Hollander et al., 1972).

Example 27. For :
φ(Y1, Y2) = 1

2(Y1 − Y2)2,

we obtain the variance of Y .

Example 28. Many machine learning models like deep neural networks, support vector
machines and K-means use the method of gradient descent to find a minimizer to their
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risks. In Clémençon et al., 2016, an example of the application of generalized U-statistics
in this field is provided. A representation of the gradient descent iterations:

θt+1 = θt − ηt∇θL (θt) ,

where ηt is called the learning rate, θ ∈ Θ ⊂ Rd be a parameter space and ∇θ the gradient
operator with respect to θ. Let H : H : ∏Λ

k=1 X ak
k × Θ → R the loss function and

X(k)
{1,...,nk} =

(
X

(k)
1 , . . . , X(k)

nk

)
with 1 ≤ k ≤ K a random variables. The risk minimization

problem consists of finding the minimum of the gradient

L(θ) = E
[
H
(
X

(1)
1 , . . . , X

(1)
d1 , . . . , X

(K)
1 , . . . , X

(K)
dK

; θ
)]

= µ(H(·; θ)).

An estimator of this parameter can be written by generalized U-statistics, and then:

θt+1 = θt − ηt∇θL̂n (θt) ,

where

Un(H) = ∇θL̂n(θ) = 1
∏K
k=1

 nk

dk


∑
I1

· · ·
∑
IK

∇θH
(
X(1)
I1 ; X(2)

I2 ; . . . ; X(K)
IK

; θ
)
.

9 Mathematical developments

This section is devoted to the proof of our results. The previously defined notation
continues to be used in what follows.

Proof of Proposition 3.4

Let B0 = {X1, · · · , XT0} and B(n)
ln

=
{
XT ln−1+1, . . . , Xn

}
the possibly empty non-regenerative

blocks of observations. Note that, for ln ≤ 2, the demonstration can be viewed directly
in Bertail et al., 2011a, under the assumptions (C1), ( C2) and (C3) where we can see
that obtain Pν(ln ≤ 2) = O(n−2). Otherwise, for ln > 2, we can write Wn(h) as follow:

Wn(h) = (I) + (II),

where

(I) = 1(
n
m

)
 ∑

1≤i1<...<im−1≤ln−1
ω
h̃
(B0,Bi1 , . . . ,Bim−1)
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+
∑

1≤i1<...im−1≤ln−1
ω
h̃
(Bi1 , . . . ,Bim−1 ,Bln)

 ,
(II) = 1(

n
m

)
 m∑
j=2

∑
0≤k<i1<...im−1−j≤ln

ω
h̃
(Bk, . . . ,Bk,Bi1 , . . . ,Bim−1−j

)

−
m∑
j=2

∑
1≤k<i1<...<im−1−j≤n

h̃(Xk, . . . , Xk, Xi1 , . . . , Xim)


= 1(
n
m

)
 ∑
(Iln−1

m )c

ω
h̃
(Bi1 , . . . ,Bim) −

∑
(In

m)c

h̃(Xi1 , . . . , Xim)

 ,
where

(Ism)c = {(i1, . . . , im) : ij ∈ N, 1 ≤ ij ≤ n; at least there is j and k such that ij = ik},

the complement of index set, with cardinal equals to
(
s+m−1
m

)
−
(
s
m

)
:=
(
s
m

)
. To prove the

convergence of Wn(h) to zero in probability, we must fulfill the convergence of (I) and (II)
to zero in probability.

A =
(
n

m

)−1 ∑
(Iln−1

m )c

ω
h̃
(Bi1 , . . . ,Bim)

=
(
n

m

)−1 ∑
(Iln−1

m )c

ωh(Bi1 , . . . ,Bim) −
T∑

i1=T 0+1

T 2∑
i2=T +1

. . .
T m+1∑

im=T m+1
Θ(h)


=

(
n

m

)−1


∑
(Iln−1

m )c

ωh(Bi1 , . . . ,Bim) −
∑

(Iln−1
m )c

(
l(Bik)k) ∗ (l(Bi(k+1))) ∗ . . . ∗ (l(Bi(m))

)
Θ(h)


=

(
n

m

)−1

(
ln−1
m

)
(
ln−1
m

) ∑
(Iln−1

m )c

ωh(Bi1 , . . . ,Bim)

−

(
ln−1
m

)
(
ln−1
m

) ∑
(Iln−1

m )c

(l(Bik)k) ∗ (l(Bi(k+1))) ∗ . . . ∗ (l(Bi(m)))Θ(h)


=

(
ln−1
m

)
(
n
m

)−1

 1(
ln−1
m

) ∑
(Iln−1

m )c

ωh(Bi1 , . . . ,Bim)
∑

(Iln−1
m )c

ωh(Bi1 , . . . ,Bim)

− 1(
ln−1
m

) ∑
(Iln−1

m )c

(l(Bik)k) ∗ (l(Bi(k+1))) ∗ . . . ∗ (l(Bi(m)))Θ(h)


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≤ lmn
nm

 1[(
ln+m
m

)
−
(
ln−1
m

)] ∑
(Iln−1

m )c

ωh(Bi1 , . . . ,Bim)

− 1[(
ln+m
m

)
−
(
ln−1
m

)] ∑
(Iln−1

m )c

(l(Bik)k) ∗ (l(Bi(k+1))) ∗ . . . ∗ (l(Bi(m)))Θ(h)


→
n→∞

α−m[E(ωh(B1,Bk, . . . ,Bk,︸ ︷︷ ︸
u times

Bk+u, . . . ,Bm)) − EA((τ )u)(EA(τ ))m−uΘ(h)],

where 1 ≤ k ≤ m and 1 ≤ u ≤ k. Applying the SLLN for Harris Markov chains to find
the convergence of

B =
(
n

m

)−1 ∑
(In

m)c

h̃(Xi1 , . . . , Xim),

to

ˆ
. . .

ˆ
h(x1, xk, . . . , xk,︸ ︷︷ ︸

u times

xk+u, . . . , xm)dΘ(x1)dΘu(x1)dΘ(xk+u) . . . dΘ(xm) − Θ(h).

Using the conditions, all terms in A and B are finite, and we can prove the convergence
of (II) to zero. Now for (I), applying the SLLN and always by Lemma 10.2 part i) where
we can see that

Pν

(
lim

n→+∞

ln
n

→ α−1
)

= 1. (9.1)

We have

n−2m Eν

[( ∑
1≤i1<...<im−1≤ln−1

ω
h̃
(B0,Bi1 , . . . ,Bim−1)

)2]

= n−2mEν

[((ln−1
m−1

)
(
ln−1
m−1

) ∑
1≤i1<...<im−1≤ln

ω
h̃
(B0,Bi1 , . . . ,Bim−1)

)2]

≤ Eν

[((ln−1
m−1

)
nm

1(
ln−1
m−1

) ∑
1≤i1<...im−1≤ln

ω ˜|h|(B0,Bi1 , . . . ,Bim−1)
)2]

≤ α−2mEν

[(
ω ˜|h|(B0,B1, . . . ,Bm−1)

)2]

≤ α−2mEν

[(
ω|h|(B0,B1, . . . ,Bm−1) −

T 0∑
i0=0

T∑
i1=T 0+1

T 2∑
i2=T +1

. . .
T m∑

im−1=T m−1+1
Θ(h)

)2]

≤ α−2mEν

[(
ω|h|(B0,B1, . . . ,Bm−1) − (τ 0)(τ ) . . . (τ (m))Θ(h)

)2]

≤ 2α−2m
{

Eν

[(
ω|h|(B0,B1, . . . ,Bm−1)2

]
+
[
Eν(τ 0)Eν [(τ ) . . . (τ (m)]Θ(h)2

]}
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≤ 2α−2m
{

Eν

[(
ω|h|(B0,B1, . . . ,Bm−1)2

]
+
[
Eν(τ 0)Eν(l(B1)) . . .Eν(l(Bm−1))Θ(h)2

]}

≤ 2α−2m
{

Eν

[(
ω|h|(B0,B1, . . . ,Bm−1)2

]
+
[
Eν(τ 0)EA(τ ) . . .EA(τ )Θ(h)2

]}

≤ 2α−2m
{

Eν

[(
ω|h|(B0,B1, . . . ,Bm−1)2

]
+ Eν(τ 0)(EA(τ )m−1Θ(h)2

}
< ∞.

We obtain, in turn, that

n−2mEν

[( ∑
1≤i1<...im−1≤ln

ω
h̃
(Bi1 , . . . ,Bim−1 ,Bln)

)2]

≤ α−2mEν

[(
ω ˜|h|(B0,B1, . . . ,Bm−1,Bln)

)2]

≤ α−2mEν

[(
ω|h|(B1, . . . ,Bm−1,Bln) −

T∑
i1=T 0+1

T 2∑
i2=T +1

. . .
T m∑

im−1=T m−1+1

n∑
im=T (ln)+1

Θ(|h|)
)2]

≤ 2α−2m
{

Eν

[(
ω|h|(B1, . . . ,Bm−1,Bln)2

]
+
[
Eν(l(B1)) . . .Eν(l(Bln))Θ(|h|)2

]}

≤ 2α−2m
{

Eν

[(
ω|h|(B1, . . . ,Bm−1,Bln)2

]
+ (EA(τ ))mΘ(|h|)2

}
< ∞.

Hence, (I) also converges to zero a.s under Pν as n → ∞.
□

Proof of theorem 4.1

According to Hoeffding, 1948, these results can be found directly from Serfling, 1980 and
A. J. Lee, 1990, the SLLN for U -statistics provides the convergence of RL(h) to 0, by the
fact that RL(h) is centered. Using Proposition 3.4 combined with Lemma 10.2 part i),
the result of the theorem follows. □

Proof of Theorem 4.2

In what follows, let L denote the number of Blocks observed. We find that

RL(h) = SL(h) +DL(h), (9.2)

where SL(h) and DL(h) are also well defined. Keep in mind that the blocks Bi are i.i.d.,
and the kernel can be non-symmetric. We must now prove that ∥RL(h)−Pmh∥ converges
weakly to G ◦ Pm−1 ◦ h, h ∈ F . Then we need to show that:
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1.
L1/2SL(h) converges weakly to G on l∞(F ),

2.
∥L−m+1/2DL(h)∥F → 0.

Let
PL(h1) = 1

L

L∑
i=1

h̃1(Bi),

and introduce

ZL(h) =
√
L(PL(h1) − P(h1)) = 1√

L

L∑
i=1

(PL
(
Pm−1(h)) − Pm(h)

)
.

By using the fact (9.1), we can replace the random variable L = ln − 1 with the deter-
ministic quantity L̆ and we write

ZL̆(h) = 1√
L̆

L̆∑
i=1

(PL̆
(
Pm−1(h)) − Pm(h)

)
+ oP,

where
L̆ = 1 +

⌊
n

EA(τ)

⌋
.

Clearly, ZL̆ is an empirical process for which we want to prove its weak convergence
to a Gaussian process G. In order to establish weak convergence for an empirical pro-
cess, it is sufficient and necessary to prove finite-dimensional convergence and stochas-
tic equicontinuity. For the finite multidimensional convergence, we have to prove that
(ZL̆(hi1), . . . , ZL̆(hik)) converges weakly to (G(hi1), . . . , G(hik)) for every fixed finite col-
lection of functions

{hi1 , . . . , hik} ⊂ F .

In order to fix this, it is enough to show that for every fixed a1, . . . , ak ∈ R,

k∑
j=1

ajZL̆(hij ) → N(0, σ2), in distribution, (9.3)

where
σ2 =

k∑
j=1

a2
jVar(ZL̆(hij )) +

∑
s ̸=r

ajaiCov(ZL̆(his), ZL̆(hir)).
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By linearity, we have

k∑
j=1

ajZL̆(hij ) = ZL̆

 k∑
j=1

ajhij

 = ZL̆(f).

So the finite multidimensional convergence is proved if and only if

ZL̆(f) → G(f), for f ∈ F .

According to S. Meyn et al., 2009a and in the same footsteps of the arguments of Chapter
17, we can prove that

1√
n

L̆∑
j=1

h̃1(Bj) → N
(
0, γ2

h1

)
,

where, under Condition (C5),

γ2
h1 = αEA

(
h̃2

1(B1)
)
.

We readily infer that we have
√
LSL(h) → N

(
0,m2EA

(
h̃2

1(B1)
))
.

Due to this demonstration, we can find that ZL(f) → G(f), f ∈ F , and finally, the
finite-dimensional convergence is proved.
Now, to verify the equicontinuity, we need to check that for every ε > 0,

lim
δ→0

lim
n→∞

P

(
sup

d(f,g)≤δ
|ZL(f) − ZL(g)| > ε

)
= 0, (9.4)

where d(·, ·) is a pseudo distance for which the class F is totally bounded, and f, g belong
to F . According to Levental, 1988, we have

|ZL(f − g)| =
∣∣∣∣∣ 1√
L

[
L∑
k=1

(f − g)(Bk) − Pm(f − g)
]∣∣∣∣∣

≤

∣∣∣∣∣∣ 1√
L

∑
a≤k≤b

((f − g)(Bk) − Pm(f − g))
∣∣∣∣∣∣

+
∣∣∣∣∣∣ 1√
L

∑
1≤k≤⌊n/E(τ )⌋

((f − g)(Bk) − Pm(f − g))
∣∣∣∣∣∣ , (9.5)

where
a = min(L, ⌊n/E(τ )⌋) and b = max(L, ⌊n/E(τ )⌋).
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For the left-hand part of the last inequality, we have∣∣∣∣∣∣
∑

a≤k≤b
((f − g)(Bk) − Pm(f − g))

∣∣∣∣∣∣
≤ max

s∈H
2
∣∣∣∣∣∣

∑
⌊n/E(τ )⌋−cn1/2≤k≤s

((f − g)(Bk) − Pm(f − g))
∣∣∣∣∣∣ ,

(for H =
{
integer s : |s− ⌊n/E(τ )⌋| ≤ cn1/2

}
),

≤ max
1≤s≤cn1/2

2
∣∣∣∣∣∣
∑

1≤k≤s
((f − g)(Bk) − Pm(f − g))

∣∣∣∣∣∣
≤ max

1≤s≤cn1/2
2
∣∣∣∣∣∣
∑

1≤k≤s

(
f(Bk) − Pm(f)

)∣∣∣∣∣∣+ max
1≤s≤cn1/2

2
∣∣∣∣∣∣
∑

1≤k≤s

(
g(Bk) − Pm(g)

)∣∣∣∣∣∣
≤ 2sup

f∈F
max

1≤s≤cn1/2
2
∣∣∣∣∣∣
∑

1≤k≤s

(
f(Bk) − Pm(f)

)∣∣∣∣∣∣
≤ 2sup

f∈F
max

1≤s≤n

 2
∣∣∣∣∣∣
∑

1≤k≤s

(
f(Bk) − Pm(f)

)∣∣∣∣∣∣
 .

Divide the last inequality by L1/2 and using the convergence result in Lemma 2.11 in
Levental, 1988 with Condition (C1), we obtain the desired result. The right-hand part
in the inequality will be treated using the Lemma 4.2 in Levental, 1988 providing that
EA(τ )2+α < ∞, for α > 0 and the hypothesis of finite uniform entropy integral.

So as mentioned above, the first term in the Hoeffding decomposition is just the sum
of i.i.d random variables, which are asymptotically normal when multiplied by

√
L. Now,

to complete the convergence of the regenerative U -statistic, we must treat the remaining
terms of its Hoeffding decomposition. For ζ ∈ F , let us introduce

ζ := ω
h̃
(B1, . . . ,Bm) − Pm(h) −

m∑
i=1

π1h(Bi), Bi ∈ T. (9.6)

One can see that ζ is centred, that is
ˆ
ζ(B1, . . . ,Bm)dP (B1) . . . dP (Bi) . . . dP (Bm) = 0. (9.7)

By randomization theorem, according to Arcones et al., 1993 (for r = 2):

E

∥∥∥∥∥∥
∑

1≤i1<···<im≤L̆

ζ(Bi1 , . . . ,Bim)
∥∥∥∥∥∥
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= E

∥∥∥∥∥∥
∑

1≤i1<···<im≤L̆

ε
(1)
i1 ε

(2)
i2 ζ(B

(1)
i1 , . . . ,B

(1)
im )

∥∥∥∥∥∥ .
Hence, for C a constant:

E

∥∥∥∥∥∥L̆−1/2 ∑
1≤i1<···<im≤L̆

ζ(Bi1 , . . . ,Bim)
∥∥∥∥∥∥

F

≤ E

∥∥∥∥∥∥L̆−1/2 ∑
1≤i1<···<im≤L̆

εi1εi2ζ(B
(1)
i1 , . . . ,B

(1)
im )

∥∥∥∥∥∥
F

≤ C E

∥∥∥∥∥∥L̆−1/2 ∑
1≤i1<···<im≤L̆

ε
(1)
i1 ε

(2)
i2 h(B(1)

i1 , . . . ,B
(1)
im )

∥∥∥∥∥∥
F

≤ CE

∥∥∥∥∥∥L̆−1/2 ∑
1≤i1<···<im≤L̆

ε
(1)
i1 ε

(2)
i2 h(B(1)

i1 , . . . ,B
(1)
im )

∥∥∥∥∥∥
F

≤ CE
ˆ ∞

0
L̆−1/2 logNn,2(ε,F )dε.

It is sufficient now to use the theorem hypothesis of uniform entropy integral to complete
the proof of the theorem. □

Proof of Theorem 4.3

We can see the detailed proof of the law of iterated algorithm (LIL) in A. J. Lee, 1990
Chapter 3 Theorem 1 of §3.5 in the i.i.d. framework. Briefly, we have:

√
LDL√

L log logL → 0 a.s.,

where V ar(DL) = Θ(n−2). Then

lim sup
n

√
L(RL(h) − Pm(h))√

2m2EA
(
h̃2

1(B1)
)

log log(L)
= 1.

This, in turn, implies that

lim sup
n

√
n(Un(h) − Θ(h))√
8m2σ2

h1 log log n
= 1,

as we have Wn(h) → 0 with mean equal to zero. □
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Proof of Theorem 5.1

We must begin the proof by the bootstrap of the law of large number for regenerative
U -statistic R∗

L∗(h), the i.i.d case, studied and proved in Arcones et al., 1992. This con-
vergence is based on the law of large numbers of the regenerative V -statistic

VL(h) = L−m
n∑

i,...,im=1
ω
h̃
(Bi1 , . . . ,Bim),

which converges to Pm(h) = Eω
h̃
(B1, . . . ,Bm) almost sure in probability, under the con-

dition
Eω

h̃
(Bi1 , . . . ,Bim)2card{i1,...,im}/m < ∞.

Hence, the proof of the theorem is found immediately using the Proposition 3.4, which
is still true if we replace the U -statistic, and the regenerative one by the bootstrapped
U -statistic, and the bootstrapped regenerative U -statistic. □

Proof of Theorem 5.2

Step 1:

Before we state the proof of this theorem, we will replace the random variable represented
by the number of Blocks L = ln − 1 with its deterministic quantity E(ln − 1) = E(L). For

ZL = L1/2

 1(
L
m

) ∑
(i1,...,im)∈Im

L

(ωh(Bi1 , . . . ,Bim) − E(ωh(Bi1 , . . . ,Bim)))

h∈F

,

and

Z̃L = E(L)1/2

 1(
E(L)
m

) ∑
(i1,...,im)∈Im

E(L)

(ωh(Bi1 , . . . ,Bim) − E(ωh(Bi1 , . . . ,Bim)))


h∈F

.

The goal is to show that, for

Fδ =
{
f − g, f, g ∈ F , ∥f − g∥L2(Pm) ≤ δ

}
.

P
[∥∥∥Z̃L − ZL

∥∥∥
Fδ

> ε
]
< ε. (9.8)

This result signifies that the stochastic equicontinuity of the process ZL implies stochastic
equicontinuity of the process Z̃L. Without loss of generality, we will assume that L ≤
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E(L), and we will define the following set:

I(V ) := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ V : ij ̸= ik for j ̸= k,

such that ∃ ℓ ∈ {1, . . . ,m} : L ≤ iℓ ≤ E(L), } .

We have:

P
[∥∥∥Z̃L − ZL

∥∥∥
Fδ

> ε
]

= P


∥∥∥∥∥∥∥
L̆1/2(
L̆
m

) ∑
(i1,...,im)∈Im

E(L)

(ωh(Bi1 , . . . ,Bim) − E(ωh(Bi1 , . . . ,Bim)))

−L1/2(
L
m

) ∑
(i1,...,im)∈Im

L

(ωh(Bi1 , . . . ,Bim) − E(ωh(Bi1 , . . . ,Bim)))
∥∥∥∥∥∥

Fδ

> ε


Define I := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ E(L) : ij ̸= ik for j ̸= k,

such that ∃ ℓ ∈ {1, . . . ,m} : L ≤ iℓ ≤ E(L)} .

≤ P


∥∥∥∥∥∥∥
L̆1/2(
L̆
m

) ∑
(i1,...,im)∈I

(ωh(Bi1 , . . . ,Bim) − E(ωh(Bi1 , . . . ,Bim)))

∥∥∥∥∥∥∥
Fδ

> ε



= P


∥∥∥∥∥∥∥
L̆1/2(
L̆
m

) ∑
(i1,...,im)∈I

(ωh(Bi1 , . . . ,Bim) − E(ωh(Bi1 , . . . ,Bim)))

∥∥∥∥∥∥∥
Fδ

> ε ∩ |E(L) − L| ≤ k
√
n∥


+P(|E(L) − L| > k

√
n),

According to Lemma 10.2 part i), we can see that |E(L) −L| = OP(
√
n), i.e., there exists

k > 0 such that P(|E(L) − L| > k
√
n) is bounded by ε for every ε > 0, and the first

expression in the last inequality is bounded by

P

 max
M≤Kε

√
n+EL

∥∥∥∥∥∥∥
L̆1/2(
L̆
m

) ∑
(i1,...,im)∈I

′
(ωh(Bi1 , . . . ,Bim) − E(ωh(Bi1 , . . . ,Bim)))

∥∥∥∥∥∥∥
Fδ

> ε


where I

′ := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ EL, (9.9)
∃ℓ = 1, . . . ,m,EL < iℓ ≤ M, ij ̸= ik for j ̸= k}

≤ C1P


∥∥∥∥∥∥∥
L̆1/2(
L̆
m

) ∑
(i1,...,im)∈I

′′
(ωh(Bi1 , . . . ,Bim) − E(ωh(Bi1 , . . . ,Bim)))

∥∥∥∥∥∥∥
Fδ

> C2ε

 ,

132



9. Mathematical developments

where

I
′′
m := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ EL,∃ℓ = 1, . . . ,m,

EL < iℓ ≤ EL+Kε

√
n, ij ̸= ik for j ̸= k

}
.

This last equation converges to 0 by stochastic equicontinuity of the regenerative U -
statistic. Therefore, this proves Expression (9.8).

Step 2:

We proved in Section 4 the convergence of

L1/2(RL(h) − Pmh).

So we need only to prove bootstrap convergence. For the finite-dimensional convergence,
we can refer to de la Peña et al., 1999 to prove the linearity of U -process Section 4.2,
and Arcones et al., 1992 (Remark 2.5, 2.10 and Corollary 2.6) to see the convergence of
the finite-dimensional distributions of the bootstrap. Hence, we just need to prove the
equicontinuity of

{L∗1/2(R∗
L∗(h,Pn) − VL(h,P)) : h ∈ F}.

We should comment that decoupling and randomization techniques of de la Peña et al.,
1999 and Arcones et al., 1993 cannot be directly applied here since we have a random
number of blocks ln as well as a random number of l(Bj) from which the bootstrapped
length l

(
B∗
j,n

)
are re-sampled. However, in Step 1, we were able to prove that we have

an equivalent asymptotic equicontinuity if we replace the number of blocks L by the
deterministic quantity E(L), and since the bootstrap quantities L∗ and n∗ are equivalents
to n and L, one can use without hesitation their deterministic forms and the decoupling
technique. Hence, it is sufficient to show that, for h ∈ Fδ,

lim
δ→0

lim
n→+∞

sup E∗
∥∥∥E(L)1/2(R∗

E(L)(h,Pn) − VE(L)(h,P))
∥∥∥

Fδ

= 0, (9.10)

where
Fδ =

{
f − g, f, g ∈ F , ∥f − g∥L2(Pm) ≤ δ

}
.

We have

(∗) := E∗
∥∥∥E(L)1/2(R∗

E(L)(h,Pn) − VE(L)(h,P))
∥∥∥

Fδ

≤ E∗
∥∥∥E(L)1/2(R∗

E(L)(h,Pn) − Pmh+ Pmh− VE(L)(h,P))
∥∥∥

Fδ

≤ E∗
∥∥∥E(L)1/2(R∗

E(L)(h,Pn) − Pmh)
∥∥∥

Fδ

+ E(L)1/2
∥∥∥Pmh− VE(L)(h,P)

∥∥∥
Fδ

.
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Using the fact that the V -statistics converges to Pmh, we have, for some positive constant
c,

≤ E∗
∥∥∥E(L)1/2(R∗

E(L)(h,Pn)
∥∥∥

Fδ

≤ E∗

∥∥∥∥∥∥∥E(L)1/2
(

E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

ω
h̃
(B∗

i1 , . . . ,B
∗
im)

∥∥∥∥∥∥∥
Fδ

≤ cE∗

∥∥∥∥∥∥∥E(L)1/2
(

E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

ω
h̃
(B∗(1)

i1 , . . . ,B∗(m)
im )

∥∥∥∥∥∥∥
Fδ

.

By decoupling

≤ cE∗

∥∥∥∥∥∥∥E(L)1/2
(

E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

ω
h̃
(B∗(1)

i1 , . . . ,B∗(m)
im )

∥∥∥∥∥∥∥
Fδ

.

By symmetrisation, where
{
ε

(1)
i

}
is a Rademacher sequence independent of {B∗(1)

i }. We
have

≤ cE∗

∥∥∥∥∥∥∥E(L)1/2
(

E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

∑
1≤j1≤m

ε
(j1)
ij1

ω
h̃
(B∗(1)

i1 , . . . ,B∗(m)
im )

∥∥∥∥∥∥∥
Fδ

.

If we add to the last inequality, within the norm signs, the term

∑
1≤j1≤m

ε
(j1)
ij1
,

then the pth moment of the norm does not decrease, see de la Peña et al., 1999 Section
3.5.1.

≤ cE∗

∥∥∥∥∥∥∥E(L)1/2
(

E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

(ε(1)
i1 + . . .+ ε

(m)
im )ω

h̃
(B∗(1)

i1 , . . . ,B∗(m)
im )

∥∥∥∥∥∥∥
Fδ

.

By symmetrisation , where {ε(1)
i } is a Rademacher sequence independent of {B∗(1)

i }

≤ cE∗

∥∥∥∥∥∥∥E(L)1/2
(

E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

(εi1 + . . .+ εim)ω
h̃
(B∗(1)

i1 , . . . ,B∗(m)
im )

∥∥∥∥∥∥∥
Fδ

.
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By coupling (Theorem 3.1.2 de la Peña et al., 1999) or Proposition 2.1 Arcones and Giné,
1994, we obtain

≤ cE∗

∥∥∥∥∥∥∥E(L)1/2
(

E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

εi1ω
h̃
(B∗

i1 , . . . ,B
∗
im)

∥∥∥∥∥∥∥
Fδ

.

By Proposition 2.6 Arcones and Giné, 1994, we have

≤ cE∗
ˆ D∗

0
(logN(η,Fδ, σ))1/2 dη

≤ cE∗
ˆ D∗

0
λ
(
η/2

(
Pmn F

2
)1/2

)
dη

≤ c
(
E∗Pmn F

2)1/2
)(

E∗
(ˆ D∗/2(Pm

n F
2)1/2

0
λ(η)dη

)2)1/2

.

Using the fact that N(ε,F , σ) ≤ (N(ε/2,F , σ))2 and the first hypothesis. Note that
0 ∈ Fδ and Eε denotes integration with respect to the Rademacher variables εi. The
quantity σ is defined by:

σ(f, g) =

Eε

∣∣∣∣∣∣∣E(L)1/2
(

E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

εi1ω(f−g)

(
B∗
i1 , . . . ,B

∗
im

)∣∣∣∣∣∣∣
2

1/2

.

The diameter of T, D∗ is given by

D∗ = sup
h∈Fδ

Eε


∣∣∣∣∣∣∣E(L)1/2

(
E(L)
m

)−1 ∑
(i1,...,im)∈Im

E(L)

εi1ω
h̃
(B∗

i1 , . . . ,B
∗
im)

∣∣∣∣∣∣∣
2

1/2

.

Arcones et al., 1992 proved that

lim
δ→0

lim
n→+∞

sup
n→∞

D = 0

in probability P∗, and then we have, for all ε > 0,

lim
δ→0

lim
n→+∞

sup
n→∞

E∗
(ˆ D∗/2(Pm

n F
2)1/2

0
λ(η)dη

)2

= lim
δ→0

lim
n→+∞

sup
n→∞

E∗
(ˆ D′

0

(
1I(D′>ε) + 1I(D′<ε)

)
λ(η)dη

)2

= lim
δ→0

lim
n→+∞

sup
n→∞

E∗
(ˆ D

′

0

(
1I(D′>ε) + 1I(D′<ε)

)
λ(η)dη

)2
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≤ lim
δ→0

lim
n→+∞

sup
n→∞

(ˆ ∞

0
λ(η)dη

)2

× P∗(D′
> ε) +

(ˆ ε

0
λ(η)dη

)2


as
ˆ ∞

0
λ(η)dη < ∞

≤
(ˆ ε

0
λ(η)dη

)2

a.s.

Hence the proof is complete. □

Proof of Theorem 5.3

As mentioned above, we have n∗ =
l∗n−1∑
j=1

l(B∗
j) the size of bootstrapped sample X∗. For

the Bootstrapped U -statistics in (5.1), Hoeffding decomposition, as in Section 3, can be
written as follow:

U∗
n(h) = Θ + m

n∗

n∗∑
i=1

h1(X∗
i ) +

m∑
j=2

(
m

j

)(
n∗

j

)−1 ∑
1≤i1<···<ij≤n∗

h(j)(X∗
i1 , . . . , X

∗
ij

), (9.11)

with

h1(x) = E(h(X∗
1 , . . . , X

∗
m|X∗

1 ))
h(c)(x1, . . . , xc) = E(h(X∗

1 , . . . , X
∗
m|X∗

1 , . . . , X
∗
c )).

In order to prove the consistency of U∗
n(h), usually, it is enough to prove the convergence

of the second summation to zero. Hence we can also write the Hoeffding decomposition
of regenerative U -statistic block bootstrap in 5.2 and treat its convergence.

R∗
L∗(h) = m

L∗

L∗∑
i=1

h1(B∗
i )

+
m∑
j=2

(
m

j

)(
L∗

j

)−1 ∑
1≤i1<···<ij≤l∗n−1

h(j)(B∗
i1 , . . . , B

∗
ij

). (9.12)

Let
Z∗
L∗ =

√
L∗

(
1
L∗

L∗∑
i=1

h1(B∗
i ) − 1

L

L∑
j=1

h̃1(Bj)
)
.

We must begin the demonstration of convergence of regenerative bootstrapped U -statistic
by proving the weak convergence of Z∗

n, i.e., the convergence of this process in probability
under Pν to a Gaussian process G indexed by F whose simple paths are bounded and
uniformly continuous with respect to the metric L2(Pm). Note that Giné et al., 1990
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studied the weak convergence and the central limit theorem for Bootstrapped sample.
To prove the weak convergence of the first summation, we do the same footstep used
in Theorem 4.2 Section 4. We want to prove first the finite-dimensional convergence of
distributions of Z∗

l∗n
to G. So, we only need to prove that for every fixed finite collection

of functions {fi1 , . . . , fik} ⊂ F , (Z∗
l∗n

(fi1), . . . , Z∗
L∗(fik)) converges weakly in probability to

(G(fi1), . . . , G(fik)). It is sufficient to show that for every fixed collection (a1, . . . , ak) ∈ R

we have;
k∑
j=1

ajZ
∗
L∗

(
fij

)
→ N

(
0, σ2

)
in probability under Pν ,

where
σ2 =

k∑
j=1

a2
jVar

(
ZL∗(fij )

)
+
∑
s ̸=r

aiajCov(ZL∗

(
fis), ZL∗(fir)

)
. (9.13)

Take
h(·) =

k∑
j=1

ajfij (·).

By linearity of h(·), and theorem 1, we have Z∗
L∗(h) → G(h). The convergences of ZL∗

to G(h) in probability under Pν was guaranteed by Bertail et al., 2006b. Hence, finite-
dimensional convergence is proved. To verify stochastic asymptotic equicontinuity, we are
going to check if for every ε > 0

lim
δ→0

lim
n→∞

P∗
(

sup
d(f,g)≤δ

|Z∗
L∗(f) − Z∗

L∗(g)| > ε

)
= 0 in probability under Pν .

Notice that we have

Z∗
L∗ =

√
L∗

 1
L∗

L∗∑
i=1

h1(B∗
i ) − 1

L

L∑
j=1

h̃1(Bj)


=
√
L∗

L∗

(
L∗∑
i=1

h1(B∗
i ) − L∗Pnh

)

=
(√

L∗
)−1

(
L∗∑
i=1

h1(B∗
i ) −

L∗∑
i=1

Pnh

)

=
(√

L∗
)−1

(
L∗∑
i=1

(
h1(B∗

i ) − Pnh
))

=

√√√√1 +

⌊
n

EA(τ )

⌋−1


1+
⌊

n
EA(τ)

⌋
∑
i=1

(
h1(B∗

i ) − Pnh
)+ oP∗(1).
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Let us introduce

T ∗
n =

(
1 +

⌊
n

EA(τ )

⌋)−1/2


1+
⌊

n
EA(τ)

⌋
∑
i=1

(
h1(B∗

i ) − Pnh
) ,

now we switch to treat this process. As we study the equicontinuity here, we take Γ =
f − g. For simplicity, let

Ψ(n) = 1 +
⌊

n

EA(τ )

⌋
and Yi = Γ1(B∗

i ) − PnΓ.

We shall now evaluate the following probability

P∗

∥∥∥∥∥∥
Ψ(n)∑
i=1

Yi

∥∥∥∥∥∥
Fδ

> εΨ(n)
 = P∗

(∥∥∥Y1 + . . .+ YΨ(n)

∥∥∥
Fδ

> ε
√

Ψ(n)
)

≤ P∗

∥∥∥Γ1(B∗
1) + . . .+ Γ1(B∗

Ψ(n))
∥∥∥

Fδ

>
ε
√

Ψ(n)
2


+P∗

∥∥∥∥∥∥
Ψ(n)∑
i=1

PnΓ
∥∥∥∥∥∥

Fδ

>
ε
√

Ψ(n)
2


= I + II.

Using Markov’s inequality and the fact that Γ1(B∗
i ) are i.i.d, for every i ≥ 1, we have:

I = P∗

∥∥∥Γ1(B∗
1) + . . .+ Γ1(B∗

Ψ(n))
∥∥∥

Fδ

>
ε
√

Ψ(n)
2


≤ 4

Ψ(n)E∗
(∥∥∥Γ1(B∗

1) + . . .+ Γ1(B∗
Ψ(n))

∥∥∥
Fδ

)2

= 4
Ψ(n)Ψ(n)E∗

(∥∥∥Γ1(B∗
1)
∥∥∥

Fδ

)2
.

Remark that we have

E∗
(∥∥∥Γ1(B∗

1)
∥∥∥

Fδ

)2
= 1

Ψ(n)

Ψ(n)∑
i=1

∥∥∥Γ1(B∗
1)
∥∥∥2

Fδ

→ EA
(∥∥∥Γ1(B1)

∥∥∥
Fδ

)2
a.s.

We have

EA
(∥∥∥Γ1(B1)

∥∥∥
Fδ

)2
= EA

∥∥∥∥∥∥
T1∑

i=T0+1
Γ1(Xi)

∥∥∥∥∥∥
Fδ

2
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= EA

∥∥∥∥∥∥
T1∑

i=T0+1
Γ12(Xi)

∥∥∥∥∥∥
Fδ

+ EA

∥∥∥∥∥∥
T 1∑

i=T0+1

∑
i ̸=j

Γ1(Xi)Γ1(Xj)
∥∥∥∥∥∥

Fδ


≤ δ2EA

(
τ
)

+ 2δ2 (EA(τ ))2

−→
δ→0

0 in Pν in probability.

This in turn implies that

I = P∗

∥∥∥Γ1(B∗
1) + . . .+ Γ1(B∗

Ψ(n))
∥∥∥

Fδ

>
ε
√

Ψ(n)
2

 ,
converges to zero in Pν probability. For the asymptotic behavior of II, and ∥PnΓ∥Fδ

→ 0
in Pν probability, by using the stochastic equicontinuity of Zn proved in Section 4, so :

P∗

∥∥∥∥∥∥
Ψ(n)∑
i=1

PnΓ
∥∥∥∥∥∥

Fδ

>
ε
√

Ψ(n)
2

 = P∗

∥(Ψ(n) − 1)PnΓ∥Fδ
>
ε
√

Ψ(n)
2


≤ 4

Ψ(n)E∗
(
|Ψ(n) − 1| ∥PnΓ∥Fδ

)2

−→
n→∞

0 in Pν probability.

These two convergences imply the equicontinuity of the linear part of regenerative boot-
strapped U -statistics. Then finite multidimensional convergence and equicontinuity are
satisfied by Z∗

n. The second summation of (9.12) will be proved in the same footsteps
used in the proof of Theorem 1. We have, for C > 0,

E∗

∥∥∥∥∥∥E(L)1/2
m∑
j=2

(
m

j

)(
l∗n − 1
j

)−1 ∑
1≤i1<···<ij≤l∗n−1

h(j)(B∗
i1 , . . . , B

∗
ij

)
∥∥∥∥∥∥


≤
m∑
j=2

(
m

j

)(
Ψ(n)
j

)−1

E∗

(Ψ(n))1/2

∥∥∥∥∥∥
∑

1≤i1<···<ij≤Ψ(n)
h(j)(B∗

i1 , . . . , B
∗
ij

)
∥∥∥∥∥∥
+ oP∗

≤ C
√

Ψ(n)
m∑
j=2

(
m

j

)(
Ψ(n)
j

)−1

E∗

∥∥∥∥∥∥
∑

1≤i1<···<ij≤Ψ(n)
h(j)(B∗(1)

i1 , . . . , B∗(j)

ij
)
∥∥∥∥∥∥
+ oP∗

≤ C
√

Ψ(n)
m∑
j=2

(
m

j

)(
Ψ(n)
j

)−1

E∗

∥∥∥∥∥∥
∑

1≤i1<···<ij≤Ψ(n)
ε

(1)
i1 ε

(2)
i2 h

(j)(B∗(1)

i1 , . . . , B∗(j)

ij
)
∥∥∥∥∥∥
+ oP∗

≤ C
√

Ψ(n)
m∑
j=2

(
m

j

)(
Ψ(n)
j

)−1

E∗

∥∥∥∥∥∥
∑

1≤i1<···<ij≤Ψ(n)

∑
1≤j1<j2≤j

ε
(j1)
i1 ε

(j2)
i2 h(j)(B∗(1)

i1 , . . . , B∗(j)

ij
)
∥∥∥∥∥∥
+ oP∗

≤ C
√

Ψ(n)
m∑
j=2

(
m

j

)(
Ψ(n)
j

)−1

E∗

∥∥∥∥∥∥
∑

1≤i1<···<ij≤Ψ(n)

∑
1≤j1<j2≤j

εij1
εij2

h(j)(B∗
i1 , . . . , B

∗
ij

)
∥∥∥∥∥∥
+ oP∗
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≤ C
√

Ψ(n)
m∑
j=2

(
m

j

)(
Ψ(n)
j

)−1

E∗

∥∥∥∥∥∥
∑

1≤i1<···<ij≤Ψ(n)
εi1εi2h

(j)(B∗
i1 , . . . , B

∗
ij

)
∥∥∥∥∥∥


≤ C
√

Ψ(n)
(

Ψ(n)
m

)−1

E∗

∥∥∥∥∥∥
∑

1≤i1<···<im≤Ψ(n)
εi1εi2ω

h̃
(B∗

i1 , . . . , B
∗
im)
∥∥∥∥∥∥

F

+ oP∗

≤ C
√

Ψ(n)
(

Ψ(n)
m

)−1

E∗

∥∥∥∥∥∥
∑

1≤i1<···<im≤Ψ(n)
ε

(1)
i1 ε

(2)
i2 ω

h̃
(B∗

i1 , . . . , B
∗
im)
∥∥∥∥∥∥

F

+ oP∗

≤ CE∗

∥∥∥∥∥∥(Ψ(n))−m+1/2 ∑
1≤i1<···<im≤Ψ(n)

ε
(1)
i1 ε

(2)
i2 ω

h̃
(B∗

i1 , . . . , B
∗
im)
∥∥∥∥∥∥

F

+ oP∗(By randomization)

≤ CE∗

∥∥∥∥∥∥(Ψ(n))−m+1/2 ∑
1≤i1<···<im≤Ψ(n)

ε
(1)
i1 ε

(2)
i2 (ω

h̃
1{H≤M})(B∗

i1 , . . . , B
∗
im)
∥∥∥∥∥∥

F


+CPm(H1{H>M}) + oP∗ ,

where H is the envelope of F , and by integrability of H, Pm(H1{H>M}) → 0 as M → ∞.
Let

FM = {h1{H≤M} : h ∈ F}

be a subset of F of cardinality N(FM , en,1, δ), δ dense in FM for the distance en,1, and
let Eε the integration with respect to the Rademacher variables only. We have

≤ CE∗

∥∥∥∥∥∥Ψ(n)−m+1/2 ∑
1≤i1<···<im≤Ψ(n)

ε
(1)
i1 ε

(2)
i2 (ω

h̃
1{H≤M})(B∗

i1 , . . . , B
∗
im)
∥∥∥∥∥∥

F



≤ Cδ + CEε


∥∥∥∥∥∥Ψ(n)−m+1/2 ∑

1≤i1<···<im≤Ψ(n)
ε

(1)
i1 ε

(2)
i2 (ω

h̃
1{H≤M})(B∗

i1 , . . . , B
∗
im)
∥∥∥∥∥∥

Fδ,M

 ,
where Fδ,M is a subset of FM . We have

≤ Cδ + CEε


∥∥∥∥∥∥(Ψ(n))−m+1/2 ∑

1≤i1<···<im≤Ψ(n)
ε

(1)
i1 ε

(2)
i2 (ω

h̃
(B∗

i1 , . . . , B
∗
im)
∥∥∥∥∥∥

Fδ,M


≤ Cδ +KMEε

 (log 2 + log Ñ(F , ẽn,1, δn
−1/2)

)
; for K < ∞

× max
h∈FM

Eε

∣∣∣∣∣∣(Ψ(n))−m+1/2 ∑
1≤i1<···<im≤Ψ(n)

ε
(1)
i1 ε

(2)
i2 (ω

h̃
(B∗

i1 , . . . , B
∗
im)
∣∣∣∣∣∣
2


1/2
 .
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But,

E

max
h∈FM

Eε

∣∣∣∣∣∣(Ψ(n))−m+1/2 ∑
1≤i1<···<im≤Ψ(n)

ε
(1)
i1 ε

(2)
i2 (ω

h̃
(B∗

i1 , . . . , B
∗
im)
∣∣∣∣∣∣
2


≃ 4E((Ψ(n))2(m−1))EH2(B∗
1, . . . ,B∗

m).

Then, we infer that

E∗

∥∥∥∥∥∥(Ψ(n))1/2
m∑
j=2

(
m

j

)(
Ψ(n)
j

)−1 ∑
1≤i1<···<ij≤Ψ(n)

h(j)(B∗
i1 , . . . , B

∗
ij

)
∥∥∥∥∥∥


≤ Cδ +KMΨ(n)−1/2Eε
[(

log 2 + log Ñ(F , ẽn,1, δn
−1/2)

)2
]1/2 [

EH2(B∗
1, . . . ,B∗

m)
]1/2

.(9.14)

We must show log Ñ(F , ẽn,1, δn
−1/2) is finite, which can be noticed by using the property

of covering numbers as it follows:

Ñ(F , ẽn,1, δn
−1/2) ≤ (Ñ(F , ẽn,2, δn

−1/2/2))2 < ∞. (9.15)

So, for c < ∞, (9.14) and (9.15) imply

lim
n→∞

E∗

∥∥∥∥∥∥(Ψ(n))1/2
m∑
j=2

(
m

j

)(
Ψ(n)
j

)−1 ∑
1≤i1<···<ij≤Ψ(n)

h(j)(B∗
i1 , . . . , B

∗
ij

)
∥∥∥∥∥∥

F

 = 0. (9.16)

Hence the proof is complete. □

Proof of Proposition 6.3

We can write Wn(h) as follow:

Wn(h) = (I) + (II),

where

(I) =
(
n1 − 1

2

)−1(
n2 − 1

2

)−1

×

 ∑
(I(n1,n2))c

ω
h̃
(B(1)

0 ,B(1)
i11 ; B(2)

0 ,B(2)
i21) +

ln1∑
i11=1

ln2∑
i21=1

ω
h̃
(B(1)

i11 ,B
(1)
ln1

; B(2)
i21 ,B

(2)
ln2

)


(II) =

(
n1 − 1

2

)−1(
n2 − 1

2

)−1
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×

ln1 −1∑
i11=1

ln2 −1∑
i21=1

ω
h̃
(B(1)

i11 ,B
(1)
i11 ; B(2)

i21 ,B
(2)
i21) −

n1∑
i11=1

n2∑
i21=1

h̃(X(1)
i11 , X

(1)
i11 ;X(2)

i21 , X
(2)
i21 )

 .
Note that , lni

/ni → α−1
i Pνi

-a.s, ∀1 ≤ i ≤ nk. Let us treat the convergence of (I) and
(II) to prove our results. Note that

A= n−1
1 n−1

2

ln1 −1∑
i11=1

ln2 −1∑
i21=1

ω
h̃
(B(1)

i11 ,B
(1)
i11 ; B(2)

i21 ,B
(2)
i21)

= n−1
1 n−1

2

ln1 −1∑
i11=1

ln2 −1∑
i21=1

[
ωh(B(1)

i11 ,B
(1)
i11 ; B(2)

i21 ,B
(2)
i21)

−
τ A1 (2)∑

i11=τ A1 +1

τ A1 (2)∑
i11=τ A1 +1

τ A2 (2)∑
i21=τ A2 +1

τ A2 (2)∑
i21=τ A2 +1

Θ(h)


= n−1
1 n−1

2

ln1 −1∑
i11=1

ln2 −1∑
i21=1

ωh(B(1)
i11 ,B

(1)
i11 ; B(2)

i21 ,B
(2)
i21)

−
ln1 −1∑
i11=1

ln2 −1∑
i21=1

T A1 (1)∑
i11=T A1 (0)+1

T A2 (1)∑
i21=T A2 (0)+1

Θ(h)


= (ln1 − 1) × (ln2 − 1)
n1 × n2

 1
(ln1 − 1) × (ln2 − 1)

ln1 −1∑
i11=1

ln2 −1∑
i21=1

ωh(B(1)
i11 ,B

(1)
i11 ; B(2)

i21 ,B
(2)
i21)

− 1
(ln1 − 1) × (ln2 − 1)

ln1 −1∑
i11=1

ln2 −1∑
i21=1

(τA1)(τA1)(τA2)(τA2)Θ(h)


= (ln1 − 1) × (ln2 − 1)
n1 × n2

 1
(ln1 − 1) × (ln2 − 1)

ln1 −1∑
i11=1

ln2 −1∑
i21=1

ωh(B(1)
i11 ,B

(1)
i11 ; B(2)

i21 ,B
(2)
i21)

− 1
(ln1 − 1) × (ln2 − 1)

ln1 −1∑
i11=1

ln2 −1∑
i21=1

(l(B1
i11))(l(B1

i11))(l(B2
i21))(l(B2

i21))Θ(h)


→ α−1
1 α−1

2

{
E(ωh(B(1)

1 ,B(1)
1 ; B(2)

1 ,B(2)
1 ) − EA1((τA1)2)EA2((τA2)2)Θ(h)

}
.

Now for I. We have

n−2
1 n−2

2 E

( ln1∑
i11=1

ln2∑
i21=1

ω
h̃

(
B(1)

0 ,B(1)
i11 ; B(2)

0 ,B(2)
i21

))2


= n−2
1 n−2

2 E

((ln1)(ln2)
(ln1)(ln2)

ln1∑
i11=1

ln2∑
i21=1

ω
h̃

(
B(1)

0 ,B(1)
i11 ; B(2)

0 ,B(2)
i21

))2

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= E

((ln1)(ln2)
n1 × n2

1
ln1 × ln2

ln1∑
i11=1

ln2∑
i21=1

ω
h̃

(
B(1)

0 ,B(1)
i11 ; B(2)

0 ,B(2)
i21

))2


≤ E

ω |̃h|

(
B(1)

0 ,B(1)
1 ; B(2)

0 ,B(2)
1

))2


≤ E

ω|h|
(
B(1)

0 ,B(1)
1 ; B(2)

0 ,B(2)
1

)
−

T A1 (0)∑
i10=0

T A1 (1)∑
i11=T A1 (0)+1

T A2 (0)∑
i20=0

T A2 (1)∑
i21=T A2 (0)+1

Θ(h)
)2


≤ 2E

(ω|h|
(
B(1)

0 ,B(1)
1 ; B(2)

0 ,B(2)
1

))2
+

T A1 (0)∑
i10=0

T A1 (1)∑
i11=T A1 (0)+1

T A2 (0)∑
i20=0

T A2 (1)∑
i21=T A2 (0)+1

Θ(h)2
)

≤ 2E

(ω|h|
(
B(1)

0 ,B(1)
1 ; B(2)

0 ,B(2)
1

))2


+
[
Eν1(τA1(0))EA1(τA1(1))Eν2(τA2(0))EA2(τA2(1))Θ(h)2

)]
< ∞.

The last one, and in the same footsteps, we have

n−2
1 n−2

2 E

(ω
h̃
(B(1)

i11 ,B
(1)
ln1

; B(2)
i21 ,B

(2)
ln2

)
)2


≤ 2
E

(ω|h|
(
B(1)

1 ,B(1)
2 ; B(2)

1 ,B(2)
2

))2


+
 T A1 (1)∑
i11=T A1 (0)+1

n1∑
i1m1 =T A1 (ln1 )+1

T A2 (1)∑
i21=T A2 (0)+1

n2∑
i2m2 =T A2 (ln2 )+1

Θ(|h|)2


≤ 2

E

(ω|h|
(
B(1)

1 ,B(1)
2 ; B(2)

1 ,B(2)
2

))2


+
[
E(l(B(1)

1 )E(l(B(1)
ln1

)E(l(B(2)
1 )E(l(B(2)

ln2
)Θ(|h|)2

]
≤ 2

E

(ω|h|
(
B(1)

1 ,B(1)
2 ; B(2)

1 ,B(2)
2

))2
+

(
EA1(τA1)

)2(
EA2(τA2)

)2
Θ(|h|)2


< ∞.

Therefore the proof is complete. □

Proof of theorem 6.1

The proof is due to P. K. Sen, 1977. In our case, k = 2, the condition will be

E{|h|(log+ |h|)} < ∞,
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then the regenerative U -statistics converges almost sure to 0 (as it is centered). Therefore,
Theorem 6.1 holds from Proposition 6.3. □

Proof of Theorem 6.2

The H-decomposition of R(ln1 ,ln2
) can be written as

R(ln1 ,ln2
(h) = m1H

(1,0)
ln1 ,ln2

(h) +m2H
(0,1)
ln1 ,ln2

(h) +Dln1 ,ln2
(h), (9.17)

such that

H
(1,0)
ln1 ,ln2

(h) = (ln1 − 1)−1
ln1 −1∑
i=1

ω
(1,0)
h̃

(B(1)
i ),

and

H
(0,1)
ln1 ,ln2

(h) = (ln2 − 1)−1
ln2 −1∑
j=1

ω
(0,1)
h̃

(B(2)
j ).

We know that H(1,0)
ln1 ,ln2

(h) and H
(0,1)
ln1 ,ln2

(h) converge to a normal distributions with mean
zero and variance δ1,0and δ0,1 respectively. We know also that

Var(Dln1 ,ln2
) = O(l−1).

To complete the proof, it is necessary to take l = ln1 +ln2 and suppose that min(ln1 , ln2) →
∞, pn = ln1/l → p. The proof is attributed to A. J. Lee, 1990. Lehmann, 1951 and P. K.
Sen, 1974b have both demonstrated weak convergences in various methods. □

Proof of Theorem 7.1

In our Markovian context, we will set the weak convergence of Markovian U -statistic via
the regenerative method, where the samples of the blocks are i.i.d. So, we will handle the
weak convergence of the bootstrapped regenerative U -statistic (7.2) by using

RL(h) =
(
l∗n1 − 1

2

)−1(
l∗n2 − 1

2

)−1 ∑
1≤i11<i12≤ln1 −1

∑
1≤i21<i22≤ln2 −1

ω
h̃

(
B∗
i11 ,B

∗
i12 ; B∗

i21 ,B
∗
i22

)
.

For the first step, we write the H-decomposition for this U -statistic :

R(ln1 ,ln2 )(h) =
m1=2∑
c1=0

m2=2∑
c2=0

(
ln1 − 1
c1

)−1(
ln2 − 1
c2

)−1(
m1

c1

)(
m2

c2

)
∑

(ln1 −1,c1)

∑
(ln2 −1,c2)

h(c1,c2)
(
B∗
i11 ,B

∗
i12 ; B∗

i21 ,B
∗
i22

)
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= m1

ln∗
1−1

l∗n1 −1∑
i1=1

h̃(1,0)(B∗
i1) + m2

ln∗
2−1

l∗n2 −1∑
i2=1

h̃(1,0)(B∗
i2) +D∗(h)

= S∗(h) +D∗(h),

where

h̃(1,0)(b∗) = E(ω
h̃
(B∗

11,B∗
12; B∗

21,B∗
22|B∗

11 = b)) = ω
(1)
h̃

(B∗
11),

h̃(0,1)(b∗) = E(ω
h̃
(B∗

11,B∗
12; B∗

21,B∗
22|B∗

21 = b)) = ω
(1)
h̃

(B∗
21).

Using the projection method, based on the Hoeffding decomposition of this U -statistic,
we begin with the weak convergence of the linear part of this decomposition. Let

Z∗
(ln1 ,ln2 ) =

√
l∗ (S∗(h) − S(h)) ,

where
l∗ = (l∗n1 − 1) + (l∗n2 − 1).

Commonly, we begin to prove first the finite-dimensional convergence of distributions
of Z∗

(ln1 ,ln2 ) to GΘ. So, we have to prove that for every fixed finite collection of func-
tions {h1, . . . , hk} ⊂ H , (Z∗

l∗n
(hi1), . . . , Z∗

(ln1 ,ln2 )(hik)) converges weakly in probability to
(GΘ(hi1), . . . , GΘ(hik)). It is sufficient to show that for every fixed collection (a1, . . . , ak) ∈
R, we have

k∑
j=1

ajZ
∗
l∗n

(
fij

)
→ GΘ(h) in probability under Pν ,

where
σ2 =

k∑
j=1

a2
jVar

(
Zn(hij )

)
+
∑
s ̸=r

aiajCov(Zn
(
his), Zn(hir)

)
(9.18)

and
h(·) =

k∑
j=1

ajhij (·).

We just need to show the linearity of h(·), to ensure this convergence. So, we have

Z∗
(ln1 ,ln2 )(h) =

√
l∗ (S∗(h) − S(h))

=
√
l∗

 m1

ln∗
1−1

l∗n1 −1∑
i1=1

h̃(1,0)(B∗
i1) + m2

ln∗
2−1

l∗n2 −1∑
i2=1

h̃(1,0)(B∗
i2)

− m1

ln1−1

ln1 −1∑
i1=1

h̃(1,0)(Bi1) − m2

ln2−1

ln2 −1∑
i2=1

h̃(1,0)(Bi2)


145



Chapter 4. Renewal type bootstrap for U - process Markov chains

=
√
l∗

 m1√
ln∗

1−1
Z∗

1(h) + m2√
ln∗

2−1
Z∗

2(h)
 .

We have

k∑
j=1

ajZ
∗
(ln1 ,ln2 )(hij ) =

√
l∗

 m1√
ln∗

1−1

k∑
j=1

ajZ
∗
1(hij ) + m2√

ln∗
2−1

k∑
j=1

ajZ
∗
2(hij )


=

√
l∗

 m1√
ln∗

1−1
Z∗

1(
k∑
j=1

ajhij ) + m2√
ln∗

2−1
Z∗

2(
k∑
j=1

ajhij )


= Z∗
(ln1 ,ln2 )

 k∑
j=1

ajhij

 .
Therefore, by linearity of Z∗

1 and Z∗
2 , we can see the linearity of Z∗

(ln1 ,ln2 ), which is sufficient
to be used with Theorem 6.2, to prove the finite multidimensional convergence for this
linear term. For the second part, stochastic equicontinuity of this empirical process, we
can check that:

lim
δ→0

lim
n→∞

P∗
(

sup
d(f,g)≤δ

|Z∗
(ln1 ,ln2 ) (f − g) | > ε

)
= 0 in probability under Pν . (9.19)

for all f, g ∈ H and δ > 0. Note that

Z∗
(ln1 ,ln2 ) =

√
l∗ (S∗(h) − S(h))

=
√
l∗

 m1

ln∗
1−1

l∗n1 −1∑
i1=1

h̃(1,0)(B∗
i1) + m2

ln∗
2−1

l∗n2 −1∑
i2=1

h̃(1,0)(B∗
i2)

− m1

ln1−1

ln1 −1∑
i1=1

h̃(1,0)(Bi1) − m2

ln2−1

ln2 −1∑
i2=1

h̃(1,0)(Bi2)


≤
√
l∗

 m1

ln∗
1−1

l∗n1 −1∑
i1=1

h̃(1,0)(B∗
i1) − m1

ln1−1

ln1 −1∑
i1=1

h̃(1,0)(Bi1)


+
 m2

ln∗
2−1

l∗n2 −1∑
i2=1

h̃(1,0)(B∗
i2) − m2

ln2−1

ln2 −1∑
i2=1

h̃(1,0)(Bi2)


≤
√
l∗

 m1

ln∗
1−1

l∗n1 −1∑
i1=1

h̃(1,0)(B∗
i1) − m1

ln1−1

ln1 −1∑
i1=1

h̃(1,0)(Bi1)


+
√
l∗

 m2

ln∗
2−1

l∗n2 −1∑
i2=1

h̃(1,0)(B∗
i2) − m2

ln2−1

ln2 −1∑
i2=1

h̃(1,0)(Bi2)


≤
√
l∗√

ln∗
1−1

(Z∗
1(h)) +

√
l∗√

ln∗
2−1

(Z∗
2(h)) .
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We can complete the demonstration if we prove that
√
l∗√

ln∗
i

−1
is finite, while Z∗

1(h) and

Z∗
2(h) will be treated as the same way as the proof of Theorem 5.3, and then the stochastic

equicontinuity is established. According to A. J. Lee, 1990 and Bertail et al., 2006b, we
have to see that the number of blocks and the number of observations satisfies the following

l

lni
− 1 → p−1

i , n∗/n → 1, (l∗ni
− 1)/ni − EAi

(τAi
)−1 → 0.

As V (
√
l∗D∗(h)) = O(∑2

i=1 n/ni) = O(l−1), the proof of this theorem is completed. Note
that Zhang et al., 1996 treat the convergence of bootstrapped generalized U -process by
proving

√
n(Un − U∗

n), so they did not use or treat those terms. Also, we can use this
reference as a second method for the demonstration where the projection method is not
used. □

10 Appendix

Lemma 10.1 (Levental, 1988). Let (Xn)n be a regenerative process, then

• If EA(τ ) < ∞, then

µ(B) = 1
EA(τ )EA

 ∑
T0<k≤T1

1B(Xk)
 ,

here µ(·) is called a stead state distribution, for any set B ∈ E .

• If E(τ ) < ∞, then

1
n

∑
1≤i≤n

f(Xi) → µ(f) a.s, for every f ∈ L1(µ).

• The τ (j) are i.i.d. random variables, also the f(Bj), j = 1, 2, . . . are i.i.d. for any
measurable function f(·).
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Lemma 10.2 (Radulović, 2004). Let (Xn)n be a Markov Chain satisfying the Assumption
2.1 with an initial probability ν and (C1) and let α = EA(τ ) defined in (2.1), we have:

i)
∣∣∣Eν(ln)
α−1n

− 1
∣∣∣ ≤ C

n
, for C > 0 and for µ > 0,

√
n
(

Eν(ln)
α−1n

− 1
)

→ N(0, µ2) in the sense
of Hoffman-Jørgensen.

ii) For n large enough and for ε > 0 there exists M > 0

P

|n−
ln∑
i=0

l(Bi)| > Mn1/4

 < ε

.

iii) For n∗ denotes the size of the bootstrapped sample and n denotes the size of initial
one, we have

n∗

n
→

Pν×P∗
0.

iv) If Xi is a sequence of random variables such that X̄ := 1
n

∑n
i=1 Xi → C a.s and if

tn is an integer valued sequence of random variables, then

1
tn

tn∑
i=1

Xi → C.

Lemma 10.3 (Montgomery-Smith, 1993). Let (Xi)∞
i=0 be a sequence of independent iden-

tically distributed random variables, then there is a universally positive and finite constants
C1 and C2 such that

P

(
max
k≤n

∥∥∥∥∥
k∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ C1P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > C2t

)
. (10.1)

Theorem 10.1 (de la Peña et al., 1999). If H is a measurable class of real-valued
functions of m variables with envelope H satisfying the integrability conditions

E |H (Xi1 , . . . , Xim)|♯(i1,...,im}/m < ∞

for all 1 ≤ i1, . . . , im ≤ m, then the V -processes {V n
n (h) : h ∈ H } satisfy the strong law

of large numbers, that is
∥Vn(h) − Pmh∥H → 0 a.s.,

if and only if the U-processes {Un(h) : h ∈ H } do.
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Explicit details for the Hoeffding decomposition:

To examine the oscillations of U -process, we can dissect the various components of its
Hoeffding decomposition. Hoeffding decomposition or the H-decomposition is the repre-
sentation of U -statistics of degree m into a sum of m uncorrelated U -statistics of degree
1, . . . ,m respectively, often used to study the asymptotic behavior of U -statistic, which
is directly related to its order of degeneracy. We have

RL(h) =
(
L

m

)−1 ∑
1≤i1<···<im≤L

ω
h̃
(Bi1 , . . . ,Bim) =

(
L

m

)−1

Hn.

Let
Hnj =

∑
1≤i1<···<ij≤L

h̃(j)(Bi1 , . . . ,Bij ).

For c = m;

RL(h) =
(
L

m

)−1 ∑
1≤i1<···<im≤L

ω
h̃
(Bi1 , . . . ,Bim)

=
(
L

m

)−1 ∑
1≤i1<···<im≤L

m∑
k=1

∑
1≤j1<···<jk≤m

h̃(k)(Bij1
, . . . ,Bijk

)

=
(
L

m

)−1 m∑
k=1

∑
1≤i1<···<im≤L

∑
1≤j1<···<jk≤m

h̃(k)(Bij1
, . . . ,Bijk

)

=
(
L

m

)−1 m∑
k=1

(
L− k

m− k

) ∑
1≤i1<···<ij≤L

h̃(j)(Bij1
, . . . ,Bijk

)

=
m∑
k=1

(
L

m

)−1(
L− k

m− k

) ∑
1≤i1<···<ij≤L

h̃(j)(Bi1 , . . . ,Bij )

=
m∑
k=1

(
L

k

)−1(
m

k

) ∑
1≤i1<···<ij≤L

h̃(j)(Bi1 , . . . ,Bij ).

According to Hoeffding, the representation of U -statistics can be being as follow:

RL(h) =
m∑
j=1

(
m

j

)(
L

j

)−1

Hnj.

This decomposition asserts the martingale property for the sequence {Hnj}n>j for each
j = 1, . . . ,m. Note that the terms of Hnj are non-correlated with increasing variance of
order n. Then,

RL(h) =
(
m

1

)(
L

1

)
Hn1 +

m∑
j=2

(
m

j

)(
L

j

)−1

Hnj.

The interested reader can refer to Serfling, 1980 and A. J. Lee, 1990 for more details.
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Remark 10.2. In general, statistics of interest can be treated as a vector space projected in
the sub-space. We are interested in the projection to evaluate this statistic’s variance and
the rate of convergence. The space of U-statistics is L2, the Hilbert space constructed by
square-integrable random variables, given by the usual dot product. Suppose L(1)

2 represents
a sub-space of random variables of form ∑

h(Xi) where Xi are i.i.d. with the mean square-
integrable. In that case, the linear term is a projection in this sub-space, and the other
term of the Hoeffding decomposition is orthogonal to L(1)

2 .

Order of convergence of the regenerative U -statistics

To show the moment rate of convergence of regenerative U -statistics, we first introduce
the following lemma

Lemma 10.4 (Moment inequality of U -statistics). (Zhang et al., 1996) Let Un a U-
statistics of degree 2 (m = 2). Suppose that Eh(X1, X2) = 0 and Eh(X1, X2)q < ∞ for
q ≥ 2. Then there exists constants C1q and C2q depend only on q such that

E|Un|q ≤ C1qn
−q(E|h(X1, X2)|2)q/2 + C2qn

2−2q(E|h(X1, X2)|)q (10.2)

Looking at the second-order moment of regenerative U -statistics to show the rate of
convergence, then we have:

E|RL(h)|q = E

∣∣∣∣∣∣
(
ln − 1
m

)−1 ∑
1≤i1<···<im≤L

ω
h̃
(Bi1 , . . . ,Bim)

∣∣∣∣∣∣
q

≤ C1q(ln − 1)−q
(

E
∣∣∣ω

h̃
(B1, . . . ,Bm)

∣∣∣2)q/2
+ C2q(ln − 1)2−2qE

∣∣∣(ω
h̃
(B1, . . . ,Bm)

∣∣∣q
≤ C1q(ln − 1)−qE

∣∣∣(ω
h̃
(B1, . . . ,Bm)

∣∣∣2)q/2 + C1q(ln − 1)−qEA(τ )m(|Θ(h)|2)q/2

+C2q(ln − 1)2−2qE
∣∣∣ω|h|(B1, . . . ,Bm)

∣∣∣q + C2q(ln − 1)2−2qEA(τ )m |Θ(h)|q .

For q = 2 and using the previous lemma with the fact that all terms in the last
inequality are finite, we can find that RL(h) is of order O((ln − 1)−2).

Blocks assumptions

Regarding the first and the last block, which represents the sum respectively from
the initial state of the Markov chain up to the first regeneration time and the initial
segment of the last block, which could be empty if the last block ("full" block) ends with
n. Adamczak in Adamczak, 2008 gives us a bound for the first and last blocks to control
them.
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Chapter 5
Exchangeably weighted bootstraps of the
General Markov U -process

This chapter develops the content of an accepted article published in Mathe-
matics with the required modifications to fit this thesis manuscript.

We explore an exchangeably weighted bootstrap of the general function-indexed
empirical U -processes in the Markov setting, which is a natural higher-order
generalization of the weighted bootstrap empirical processes. As a result of our
findings, a considerable variety of bootstrap resampling strategies arise. This
chapter aims to provide theoretical justifications for the exchangeably weighted
bootstrap consistency in the Markov setup. General structural conditions on
the classes of functions (possibly unbounded) and the underlying distributions
are required to establish our results. This chapter provides the first general
theoretical study of the bootstrap of the empirical U -processes in the Markov
setting. Potential applications include the symmetry test, Kendall’s tau and
the test of independence.

Objective
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1. Introduction

1 Introduction

U -statistics are a class of estimators, initially explored in association with unbiased esti-
mators by Halmos, 1946 and officially introduced by Hoeffding, 1948,and are defined as
follows: let {Xi}∞

i=1 be a sequence of random variables defined on a measurable space
(E,E ), and let h : Em → R be a measurable function, the U -statistics of order m and
kernel h based on the sequence {Xi} are

Un(h) = (n−m)!
n!

∑
(i1,...,im)∈Im

n

h (Xi1 , . . . , Xim) , n ≥ m,

where
Imn = {(i1, . . . , im) : ij ∈ N, 1 ≤ ij ≤ n, ij ̸= ik if j ̸= k} .

The empirical variance, Gini’s mean difference or Kendall’s rank correlation coefficient
are common examples of U -estimators, while a classical test based on a U -statistic is
Wilcoxon’s signed rank test for the hypothesis of the location at zero (see, e.g., A. W. van
der Vaart, 1998, Example 12.4). Halmos, 1946, v. Mises, 1947 and Hoeffding, 1948 pro-
vided, amongst others, the first asymptotic results for the case in which the underlying
random variables have independent and identical distributions. Extensive literature have
treated the theory of U -statistics, for instance, see Serfling, 1980, de la Peña et al., 1999,
Arcones et al., 1993, A. J. Lee, 1990, etc. Complex statistical issues are also amenable to
being solved using U -processes. Examples include tests for goodness-of-fit, nonparametric
regression, and density estimation. U -processes are a set of U -statistics that are indexed
by a family of kernels. U -processes might be viewed as infinite-dimensional variants of
U -statistics with a single kernel function or as nonlinear stochastic extensions of empirical
processes. Both thoughts have the following advantages: first, considering a large group
of statistics rather than a single statistic is more statistically interesting. Second, We
may use ideas from the theory of empirical processes to construct limit or approximation
theorems for U -processes. Nevertheless, achieving results in U -processes is not easy. Ex-
tending U -statistics to U -processes necessitates significant effort and distinct methodolo-
gies; generalizing empirical processes to U -processes is quite challenging, especially when
U -processes are presented in the stationary setting. We highlight that the U -processes are
used often in statistics, such as when higher order terms are a part of von Mises expan-
sions. Particularly, the study of estimators (including function estimators) with various
smoothness degrees involves U -statistics. For instance, Stute, 1993 applied almost sure
uniform bounds for P-canonical U -processes to analyse the product limit estimator for
truncated data. Two new tests for normality based on U -processes are also presented in
Arcones et al., 2006. Inspired by Giné et al., 2007a, 2007b, Schick et al., 2011 developed
another tests for normality that employ weighted L1-distances between the standard nor-
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mal density and local U -statistics based on standardized observations as test statistics.
Estimating the mean of multivariate functions in case of possibly heavy-tailed distribu-
tions was explored by Joly et al., 2016, they presented the median-of-means too, and both
explorations were based on U -statistics. Besides, other researchers emphasize the impor-
tance of U -processes, Ghosal et al., 2000; S. Lee et al., 2009 and Abrevaya et al., 2005
used it for testing qualitative features of functions in nonparametric statistics, Nolan et al.,
1987 represent the cross-validation for density estimation using U -statistics, in addition
to Arcones et al., 1993, Sherman, 1994 and de la Peña et al., 1999 where they established
limiting distributions of M -estimators. Since then, this discipline has made significant
advancements, and the results have been broadly interpreted. Asymptotic behavior are
demonstrated under weak dependence assumptions, for example, in the works of Yoshi-
hara, 1976, Borovkova et al., 2001, and in Denker et al., 1983 or more recently in Leucht,
2012 as well as more generally in Leucht et al., 2013 and Bouzebda and Nemouchi, 2022.
But, in practice, explicit computation is not always possible due to the complexity of the
U -processes’ limiting distributions or their functionals. We suggest a general bootstrap
of the U -processes in the Markov setting to solve this issue, which is a challenging prob-
lem. The concept of the bootstrap, given by Efron, 1979, in the case of independent and
identically distributed (iid) random variables, is to re-sample from an original sample of
observations of an unknown marginal distribution function F (x), X1, . . . , Xn, a new i.i.d
sample X∗

1 , . . . , X
∗
n with the marginal distribution function Fn(x), which represents the

empirical distribution function constructed from the original sample. Moreover, it is com-
monly known that the bootstrap approach gives a better approximation to the statistic’s
distribution, mainly when the sample size is small, Hall, 1992. Bootstrap for U -statistics
of independent observations were studied by Bickel et al., 1981, Arcones et al., 1992,
Dehling et al., 1994 and Leucht et al., 2009. However, the Bootstrap technique is differ-
ent and not the same for dependent variables because the dependence structure cannot
be conserved in the new sample. For this reason, other Blockwise Bootstrap methods were
introduced, aiming to keep the structure of dependence. Among those methods, we can
cite the circular Block Bootstrap introduced by Politis et al., 1992 and the non-overlapping
block bootstrap introduced by Carlstein, 1986b. Politis et al., 1994b proposed a bootstrap
method related to the weakly dependent stationary observation, the stationary bootstrap.
This latter can be seen as an expansion of the circular block bootstrap, where a random
variable, such as a geometric random variable, can be used for the block length. It is
important to note that Efron’s initial bootstrap formulation (see Efron, 1979) had a few
flaws. To be more precise, certain observations might be sampled several times while
others might not be at all. A more generalized version of the bootstrap, the weighted
bootstrap, has been developed to get around this issue and has also been demonstrated
to be computationally more appealing in some applications. This resampling strategy
was initially described in D. B. Rubin, 1981 and thoroughly investigated by Bickel et al.,
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1981, who coined the name "weighted bootstrap". For example, bayesian bootstrap when
the weighted vector

(ξn1, . . . , ξnn) = (Mn1, . . . ,Mnn),

is equal to the vector of n spacings of n − 1 ordered uniform (0, 1) random variables in
distributions, that is,

(Mn1, . . . ,Mnn) ∼ Dirichlet(n; 1, . . . , 1).

For more details see Lo, 1993. This diversity of resampling approaches necessitates the
use of a uniform approach, commonly known as general weighted resampling, and was
first described by Mason et al., 1992 and has since been developed by Præstgaard et al.,
1993 and A. van der Vaart, 1996. Alvarez-Andrade et al., 2013 investigated the almost
sure rate of convergence of strong approximation for the weighted bootstrap process by
a sequence of Brownian bridge, refer to Bouzebda, 2012 for the multivariate setting and
Bouzebda, Elhattab, and Ferfache, 2022 for recent references. The concept of the general-
ized bootstrap, introduced by Mason et al., 1992 is extended to the class of nondegenerate
U -statistics of degree 2 and the corresponding Studentized U -statistics by Hǔsková et al.,
1993, refer to Janssen, 1994 and Alvarez-Andrade et al., 2020. Q. Han, 2022 generalized in
his article this theory for a higher order. In his work, he developed a multiplier inequality
of U -process for i.i.d random variables. We mention that the multiplier processes’ theory
is directly and strongly related to the symmetrization inequalities investigated by Arcones
et al., 1993 and de la Peña et al., 1999.

This chapter aims to investigate the exchangeable bootstrap for U -processes in the
same way that Q. Han, 2022 did but without the restriction of independence setting. The
previous reference focused on U -processes in the independent framework, whereas this
chapter considers U -processes in the dependent setting of Markov chains. We believe we
are the first to present a successful consideration in this general context. We will com-
bine the techniques of the renewal bootstrap with the randomly weighted bootstrap in a
non-trivial way. We mention a connection between moving blocks bootstrap and its mod-
ification, matched block bootstrap, at this point. Instead of artificially splitting a sample
into fixed-size blocks and then resampling them, the latter seeks to match the blocks
to create a smoother transition; for more information, see Radulović, 2004. The main
difficulties in proving Theorem 4.2 are due to the random size of the resampled blocks.
This randomness generates a problem with the random stopping times, which can not be
removed by replacing a random stopping time with its expectation. In the present setting,
the bootstrap random variables are generated by resampling from a random number of
blocks. One can think that using the conditioning arguments can overcome the problem,
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but the answer is negative. Our proof uses some arguments from Radulović, 2004 and Q.
Han, 2022 by verifying bootstrap stochastic equicontinuity by comparing it to the original
process in a similar way as in Giné et al., 1990. However, as we shall see later, integrating
concepts from these papers is not enough to solve the problem. To deal with U -processes
in the Markov framework, sophisticated mathematical derivations will be necessary. We
present the first complete theoretical justification of the bootstrap consistency. This jus-
tification requires the efficient use of large sample theoretical approaches established for
U -empirical processes.

The rest of this chapter is organized as follows. Section 2 is devoted to the introduction
of the Markov framework, the U−process, the bootstrap weights, and the definitions
needed in our work. In Section 3, we recall the necessary ingredient for the U -statistics
and the U -processes in the Markov setting. Also, we provide some asymptotic results
including the weak convergence of U -processes in Theorem 3.1. In Section 4, we will
come up with the main results concerning the bootstrap of the U -processes. In Section
5, we collect some examples of weighted U -statistics. To prevent interrupting the flow
of the presentation, all proofs are gathered in Section 6. The Appendix contains a few
pertinent technical findings and proofs.

2 Notation and definitions

In what follows, we aim to define properly our settings. For this reason, we have collected
the definitions and notation needed.

2.1 Markov chain

Let X = (Xn)n∈N be an homogeneous ψ-irreducible Markov chain, that means that the
chain has a stationary transition probabilities, defined on a measurable space (E,E ),
where E is a separable σ-algebra. Let π(x, dy) be the transition probability, ν = ν(i)i>0

the initial probability. Therefore, we will denote by Pν or just P the probability measure
for P = (π, ν). Likewise, Eν will denote the integration with respect to Pν . In our
framework, let Px be a probability measure such that X0 = x and X0 ∈ E and Ex(·)
is the Px-expectation. We will further assume that the Markov chain is Harris positive
recurrent1 with an atom A.

1

Definition 2.1 (Harris-recurrent). A Markov chain X = (Xn)n∈N is said to be Harris-recurrent if there
exists a σ-finite measure such that, for ψ a positive measure on a countable generated measurable space
(E,E ), ψ(E) > 0 and if for all B ∈ E with ψ(B) > 0 then

Px (∪∞
i=1(Xi ∈ B)) = 1 for any x ∈ E.
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Recall that a chain is positive Harris recurrent and aperiodic if and only if it is ergodic
Nummelin, 1984, Proposition 6.3, i.e., there exists a probability measure π, called the
stationary distribution, such that, in total variation distance,

lim
n→+∞

∥Pn(x, ·) − π∥tv = 0.

Definition 2.2 (small sets). A set S ∈ E is said to be Ψ-small if there exists δ > 0, a
positive probability measure Ψ supported by S and an integer m ∈ N∗ such that

∀x ∈ S, B ∈ E , Pm(x,B) ≥ δ Ψ(B). (2.1)

Definition 2.3. Let (Xn)n≥1 be a Markov Chain taking value in (E,E ). We say that
(Xn)n≥1 is positive recurrent if

1. (Xn)n≥1 is (A, p, ν,m) recurrent (or Harris-recurrent if E is countably generated),
where A ∈ E a set, 0 < p < 1, m an integer and ν a probability measure.

2. sup
x∈A

Ex(T0) < ∞, where T0 is the hitting time of A by the m step chain, roughly

speaking, T0 = min{i ≥ 1 : Xi,m ∈ A}.

Definition 2.4. A ψ-irreducible aperiodica chain X is called regenerative or atomic if
there exists a measurable set A called an atom, in such a way that ψ(A) > 0 and for
all(x, y) ∈ A2 we have P(x, ·) = P(y, ·). Roughly speaking, an atom is a set on which the
transition probabilities are the same. If a finite number of states or subsets are visited
from the chain, then any state or any subset of the states is actually an atom.

a

Definition 2.5 (aperiodicity). Assuming ψ-irreducibilitya, there exists d′ ∈ N∗ and disjoints sets D1, . . . ,
Dd′ (set Dd′+1 = D1) positively weighted by ψ such that

ψ(E\ ∪1⩽i⩽d′ Di) = 0

and
∀x ∈ Di,P(x,Di+1) = 1.

The period of the chain is the greatest common divisor d of such integers, it is said to be aperiodic if
d = 1.

a

Definition 2.6 (irreducibility). The chain is ψ-irreducible if there exists a σ-finite measure ψ such that,
for all set B ∈ E , when ψ(B) > 0, for any x ∈ E there exists n > 0 such that Pn(x,B) > 0.

One of the most important properties of Harris-recurrent Markov chains is the exis-
tence of invariant distribution which we will be called µ (a limiting probability distribu-
tion, also called occupation measure). Also, Harris-recurrent Markov chains can always
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be embedded in a certain Markov chain on an extended sample space with a recurrent
atom. The existence of recurrent atom A gives an immediate consequence for the con-
struction of a regenerative extension of this chain. The time that the chain hits a given
atom (recurrent state) is seen as the regenerative time. Athreya et al., 1978 and Num-
melin, 1978 give the construction of such a regenerative extension. The development of a
regenerative extension makes the use of regenerative technique possible in order to study
this type of Markov chain. As we mentioned above, we will assume in this work that the
Harris-recurrent chain is atomic, i.e., the set which is infinitely almost sure is well defined
and accessible, this set A is called an atom. By definition, an atom A is a set, in E ,
where µ(A) > 0, and for all x, y ∈ A, π(x, ·) = π(y, ·). Let PA (respectively by EA)
be the probability measure on the underlying space such that x ∈ A (respectively the
PA-expectation).

The imposed conditions on the Markov chain insure that the defined atom A (or the
constructed one in the case of a non-atomic chain) is one recurrent class, and let us define
the following terms.

Hitting times: Define Tj : E → N ∪ {∞} by

T0 := inf{n ≥ 0 : Xn ∈ A},
Tj := inf{n ≥ Tj−1 : Xn ∈ A}. (2.2)

A well known property of the hitting time is that for all j ∈ N, Tj < ∞, Pν − a.s Chung,
1967, chap. I14.

Renewal times: Using the hitting times, we can define the renewal times as

τ 0 := T0 + 1,
τ (j) := Tj − Tj−1. (2.3)

Similar to the regenerative process, the sequence of renewal times {τ(j)}∞
j=1 is i.i.d. and it

is independent of the choice of the initial probability. All over this work, we set τ = τ (1)
and α = EA(τ ).
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Regenerative Blocks: Let ln := max{j : ∑j
i=0 τ(j) ≤ n} be the number of visits to

the atom A. Using the strong property2 of Markov chain it is possible to divide the given
sample (X1, . . . , Xn) into a sequence of blocks {Bj}lnj=0 such that:

B0 = {X1, · · · , XT0} ,

Bj =
{
XT j−1+1, . . . , XT j

}
in T =

∞⋃
n=1

En, for all j = 1, · · · , ln,

B(n)
ln

=
{
XT ln−1+1, . . . , Xn

}
, (2.4)

here ln is the total number of blocks. The length of each block will be denoted by

l(Bj) := T j − T j−1.

2.2 Exchangeable weights

In what follows, ξ represents a real-valued random variable, ξi are independent from (Xi).
For 1 ≤ p < ∞, we denote the p-norm by

∥ξ∥p = (E(|ξ|p))1/p .

Assuming the following:

(A1) (ξ1, . . . , ξn) are exchangeable3, non-negative, symmetric and for all n

n∑
i=1

ξi = n.

(A2) 1
n

max
1≤i≤n

(ξi − 1)2 → 0 in Pξ-probability which satisfied by the assumption of the
moment

sup
n

∥ξ1∥2m,1 < ∞.

2

Definition 2.7 (Strong Markov property). Let (Xn)n≥0 be a Markov chain, with T the stopping time of
(Xn)n≥0. Then conditionally on T < ∞ and XT = i, (XT +n)n≥0 is a sequence of Markov chain and is
independent of X0, . . . , XT .

3

Definition 2.8. (Exchangeability). Let ξn1, . . . , ξnn be a sequence of random variables with joint distri-
bution Pξ and let Σ(n) be the group of all permutations acting on {1, . . . , n}. We say that ξn1, . . . , ξnn

is exchangeable if, for all σ(i) ∈ Σ(n),

Pξ(ξn1, . . . , ξnn) = Pξ(ξnσ(1), . . . , ξnσ(n)).
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(A3) There exists c > 0 such that, in Pξ-probability,

1
n

n∑
i=1

(ξi − 1)2 → c2 > 0.

(A4) Assume
lim
λ→∞

lim
t≥λ

t2Pξ(ξ1 ≥ t) = 0.

2.3 The U-process framework

Let (Xn)n∈N be a sequence of random variables with values in a measurable space (E,E ).
Let h : Em → R be a measurable function symmetric in its arguments. The U -statistic
of order (or degree) m and kernel h(·) is defined as:

Un(h) =
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim), for n ≥ m. (2.5)

The fact the the kernel is completely degenerated with the condition Pm h2 < ∞, are
used for the orthogonality of the different elements of the Hoeffding decomposition of the
U -statistics. We can associate some distances en,p to the covering numbers, where

en,p = (Un(|f − g|p))1/p.

In this work, we use the two distances defined afterward

en,2(f, g) =
(n−m)!

n!
∑

0≤i1<...<im≤n
(f − g)(Xi1 , . . . , Xim)2

1/2

.

For decoupled statistics, we also associated covering numbers, well-known as Ñ(ε,F , ẽn,p)
and a distance, which can be defined for p = 2 as follows:

ẽn,2(f, g) = n1/2 (n−m)!
n!

Eε

 ∑
0≤i1<...<im≤n

εi1(f − g)(Xi1 , . . . , Xim)
2


1/2

.

In the context of U -process {Un}, stochastic equicontinuity at a function g ∈ F

implies generally that |Un(h) −Un(g)| should be uniformly small for all h(·) close enough
to g(·), with high probability and for all n large enough.
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2.4 Gaussian chaos Process

Definition 2.9. Let H denotes a real separable Hilbert space with scalar product ⟨., .⟩H .
We say that a stochastic process G = {GP(h), h ∈ H} defined in a complete probability
space (E,E ,P) is an isonormal Gaussian process (or a Gaussian process on H ) if GP is
a centered Gaussian family of random variables such that E(GP(h)GP(g)) = ⟨h, g⟩H for all
h, g ∈ H.

Define the mapping h → GP(h). Under the assumption mentioned above, this map is
linear and it provides a linear isometry of H onto a closed subspace L2(E,E ,P) which
contains a zero mean Gaussian random variables as elements. Let KP be the isonormal
Gaussian chaos process associated with GP determined by:

KP
(
hψm
)

= (m!) 1
2Rm

(
GP(ψ),Eψ2, 0, . . . , 0

)
,

where hψm (x1, . . . , xm) = ψ (x1) · · ·ψ (xm) , ψ ∈ L2(P), Rm is a polynomial defined as a
sum of monomials of degree m, de la Peña et al., 1999 give us a simple expression of this
polynomial, extracted from Newton’s identity given by

∑
1≤i1<·<im≤n

ti1 · · · tim = Rm

(
n∑
i=1

ti,
n∑
i=1

t2i , . . . ,
n∑
i=1

tmi

)
.

Therefore,

∑
1≤i1<·<im≤n

ψ (xi1) · · ·ψ (xim) = Rm

(
n∑
i=1

ψ (xi) ,
n∑
i=1

ψ (xi)2 , . . . ,
n∑
i=1

ψ (xi)m
)
.

Hence, by continuous of mapping theorem, we can see that CLT and LLN give:

( n

m1

) 1
2

Un
(
hψ1
m1

)
, . . . ,

(
n

mr

) 1
2

Un
(
hψr
mr

)
→
(
(m1!)

1
2 Rk1

(
GP (ψ1) ,Eψ2

1, 0, . . . , 0
)
. . . , (mr!)

1
2 Rkr

(
GP (ψr) ,Eψ2

r , 0, . . . , 0
))
.

Under linearity of kernel, we only need to show that:

(
n

m

) 1
2

Un (f) : f ∈ F


→
d

{
KP (fk) = m!Rm

(
GP (ψ) ,Eψ2, 0, . . . , 0

)
: fk ∈ F

}
in ℓ∞(F ),

to hold the weak convergence. The limit KP is useful in the case of degenerate U -statistics
and it provides a convergence of all moments, which in turn plays a crucial role because it
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is due to the hypercontractivity which makes the uniform integrability better. For a good
explanation of KP, readers are invited to see de la Peña et al., 1999, Chapter 4, Section
4.2.

2.5 Technical Assumptions:

For our results, we need the following assumptions.

(C.1) (Block-length assumption) For all q ≥ 1 , and l ≥ 1,

Eν
[
τ l
]
< ∞, EA

[
τ q
]
< ∞;

(C.2) (Non-regenerative blocks) For l ≥ 1, we have

Eν


 T 0∑
i1=1

T 1∑
i2=T 0+1

T 2∑
i3=T 1+1

. . .
T m∑

im=T m−1+1
|h(Xi1 , . . . , Xim)|

l
 < ∞,

also

Eν


 T 1∑
i1=T 0+1

T 2∑
i2=T 1+1

. . .
T m∑

im−1=T m−1+1

n∑
im=T (ln)+1

|h(Xi1 , . . . , Xim−1 , Xim)|
l
 < ∞

(C.3) (Block-sum : Moment assumptions) For l ≥ 1, we have

Eν


 T 1∑
i1=T 0+1

T 2∑
i2=T 1+1

. . .
T m∑

im=T m−1+1
|h(Xi1 , . . . , Xim)|

l
 < ∞,

and

EA


 ∑

T 0+1≤i1≤...≤im≤T 1

h(Xi1 , . . . , Xim)
l
 < ∞;

(C.4) For l ≥ 1, we have

Eν


(

T 1∑
i1=T 0+1

T 2∑
i2=T 1+1

T k+1∑
ik=T k+1

. . .
T k+1∑

ik=T k+1︸ ︷︷ ︸
u times

T k+u+1∑
ik+u=T k+u+1

. . .
T m∑

im=T m−1+1

|h(Xi1 , Xik , . . . , Xik ,︸ ︷︷ ︸
u times

Xik+u
, . . . , Xim)|

)l < ∞;
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(C.5) (Non-degeneracy.) We suppose also that

EA


 T 1∑
i=T 0+1

h1(Xi)
2
 > 0.

Remark 2.10. [Moment assumptions] In practice, we recall that block-moment assump-
tions for the split Markov chain can be generally checked by establishing drift conditions
of Lyapounov’s type for the original chain, see Chapter 11 in S. Meyn et al., 2009b and
Douc et al., 2008, as well as the references therein. All these moment conditions are
discussed in detail in the book of S. P. Meyn et al., 1993, Chapters 11 & 17. There is a
key condition in the proof of ergodic theorems in the Markovian context, which is the fact
that EA(τ 0) < ∞, for all A a set in E , such that ψ(A) > 0. In fact, when there is a
finite invariant measure and an atom A then this condition is right founded. We also
refer to Bertail et al., 2006a for an explicit check of such conditions on several important
examples and to §4.1.2 of Bertail et al., 2011b for sufficient conditions expressed in terms
of uniform return rate to small sets. Finally, as discussed in Chapter 8 of Revuz, 1984,
similar conditions can be expressed in potential kernels. Observe that, in the positive
recurrent case, the assumptions of (C.1) are not independent when ν = µ : from basic re-
newal theory, one has Pµ (τ = k) = (EA [τ ])−1 PA (τ ≥ k) for all k ≥ 1. Hence, conditions
Eµ
[
τ l
]
< ∞ and EA

[
τ l+1

]
< ∞ are equivalent.

3 Preliminary results

A significant issue was detected in recovering the estimation of our parameter of interest
using the U-process. The given shape of this parameter is as follow:

Θ(h) =
ˆ
x1∈E

. . .

ˆ
xk∈E

h(x1, . . . , xk)µ(dx1) . . .µ(dxk),

where h : Em → R is a kernel function. The estimation of this parameter should be
possible using the U -statistics of the form:

Un(h) =
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim), for n ≥ m, (3.1)

As the parameter of interest will be defined, and based on Kac’s theorem for occupation
measure, µ(h) in the regeneration setup can be written as follows:
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µ(h) = 1
(EA(τ ))mEA

 T1∑
i1=T0+1

T2∑
i2=T1+1

. . .
T m∑

im=T(m−1)+1
h(Xi1 , . . . , Xim)

 . (3.2)

In the Markovian context and since the variables are not independent, the approximation
related to the i.i.d. blocks and the regenerative case will be introduced below:
Definition 3.1. (Regenerative Kernel) Let h : Em → R a kernel. We define the regener-
ative kernel ωh : Tm → R as follows:

ωh((x11, . . . , x1n1), . . . , (xk1, . . . , xknk
)) =

n1∑
i1=1

. . .
nk∑
ik=1

h(x1i1 , . . . , xkik). (3.3)

It is not necessary that the kernel ωh(·) to be symmetric, as soon as h(·). In fact, we can
use the symmetrization of Smωh in the following way

(Sm ωh) = (m!)−1∑ n1∑
σ(1)=1

. . .
nk∑

σ(m)=1
h(xσ(1), . . . , xσ(m)), (3.4)

where the sum is over all permutations σ = {i1, . . . , im} of {1, . . . ,m}. Next, we consider
the U -statistic formed by the regenerative data.

Definition 3.2. (Regenerative U-statistic) Let h : Em → R a kernel such that Θ(|h|) < ∞
and set h̃(·) = h(·) − Θ(h). The regenerative U-statistic associated with the sequence of
regenerative blocks {Bj}Lj=1, generated by the Markov chain is given by

Rln(h) =
(
ln − 1
m

)−1 ∑
(i1,...,im)∈Im

ln−1

ω
h̃
(Bi1 , . . . ,Bim). (3.5)

Hence, Rln(h) is a standard U -statistics with mean zero.
Proposition 3.3. Let us define

Wn(h) = Un(h) − Θ(h) −
(
ln − 1
m

)(
n

m

)−1

Rln(h). (3.6)

Then, under conditions (C.1), (C.2), (C.3) and (C.4), we have the following stochastic
convergences:

Wn(h) → 0, Pν − a.s.
Before stating the weak convergence in the next theorem, we will define the corresponding
U -processes related to the U -statistic Un and the regenerative U -statistics RL respectively:

Zn :=
(
n

m

)1/2

[Un − Θ(h)] , (3.7)
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Tln :=
(
ln
m

)1/2

[Rln − E(Rln)] . (3.8)

Theorem 3.1

Let (Xn)n be a positive recurrent Harris Markov chain, with an accessible atom A,
Xn satisfies the conditions (C.1) and (C.2) (moments assumptions), (C.3), (C.4),
(C.5). Let F be a uniform bounded class of functions with an envelope H square
integrable such that:

ˆ ∞

0
(logN(ε,F , en,2))m/2dε < ∞.

Then the process Zn converges weakly in probability under Pν to a Gaussian process
GP indexed by F whose sample paths are bounded and uniformly continuous with
respect to the metric L2(Pν).

3.1 The bootstrapped U- Processes

Trying to facilitate the bootstrap technique, we write the detailed steps of regenerative
block construction and the weighted bootstrap method in the following algorithm:

Algorithm 1 Regenerative Block and weighted bootstrap construction:

1. Identify the number of visits ln = ∑n
i=0 1Xi∈A to the atom A.

2. Divide the observed sample X(n) = (X1, . . . , X
(n)
n ) into (ln + 1) regenerative blocks

B0, . . . ,Bln−1,B(n)
ln

∈ T, each block Bi with a length l(Bi) ≡ τi.

3. Drop the first and the last blocks if τln < n to avoid bias.

4. Let ξ = (ξi,ln , i = 1, . . . , n) be a triangular array of random variables. Define the
weighted bootstrap empirical measure from the data:

P∗
n = 1

ln

n∑
i=1

ξi,lnδBi
.

In what follow, we will denote by P∗ and E∗ respectively the conditional probability
and the conditional expectation given the sample {X1, . . . , Xn}. The same notation will
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be used for the sample {B1, . . . ,BLn}. Define the bootstrapped U -statistic as

U∗
n(h) =

(
n

m

)−1 ∑
(i1,...,im)∈Im

n

ξi1,n . . . ξim,nh(Xi1 , . . . , Xim) (3.9)

and the regenerative bootstrapping

R∗
ln(h) =

(
ln
m

)−1 ∑
(i1,...,im)∈Im

ln

ξi1,ln . . . ξim,lnωh(Bi1 , . . . ,Bim). (3.10)

and the U−processes are:

Z∗
n :=

(
n

m

)1/2

[U∗
n(h) − Un(h)]h∈F

=
(
n

m

)−1/2 ∑
(i1,...,im)∈Im

n

(ξi1,ln − 1) . . . (ξim,ln − 1)h(Xi1 , . . . , Xim). (3.11)

and

T ∗
ln :=

(
ln
m

)1/2 [
R∗
ln(h) − E(R∗

ln(h))
]
h∈F

=
(
ln
m

)−1/2 ∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim,ln − 1)ωh(Bi1 , . . . ,Bim). (3.12)

Given a real-valued function ∆n defined on the product probability space. We say that
∆n is of an order ooPξ

(1) in Poν-probability if for any ε, δ > 0

Poν
{
Poξ|X (|∆n| > ε) > δ

}
−→ 0 as n → ∞

and that ∆n is of an order Oo
Pξ

(1) in Poν-probability if for any δ > 0, there exists a
0 < M < ∞ such that

Poν
{
Poξ|X (|∆n| ≥ M) > δ

}
−→ 0 as n → ∞

We must comment here that the bootstrap works in probability if

dBL(T ∗
ln , Tln) → 0 in probability,

where
dBL(T ∗

ln , Tln) = sup
g∈BL(l∞(F ))

∣∣∣Eg (T ∗
ln

)◦
− Eg(Tln)

∣∣∣ ,
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and
BL (l∞(F )) := {g : l∞(F ) → R, |g(x) − g(y)| ≤ ∥x− y∥F , ∥g∥∞ ≤ 1} ,

and g
(
T ∗
ln

)◦
the measurable envelop of g

(
T ∗
ln

)
. In addition, for any measurable random

elements Yn and Y , the convergence in law of Yn to Y will be in the sense of Hoffman-
Jorgensen, which is defined as

Eg (Yn)◦ → Eg(Y ),

for g bounded and continuous. This weak convergence is metrizable by Theorem 6.3 in
the Appendix.

Proposition 3.4. Suppose that the bootstrap weights (ξ1, . . . , ξn) satisfy Assumptions
(A1)-(A4). Let

W ∗
n(h) := U∗

n(h) −
(
ln − 1
m

)(
n

m

)−1

R∗
ln(h). (3.13)

Then we have

W ∗
n(h) → 0, Pν × Pξ − a.s.

The proof of Proposition 3.4 is postponed until Section 6 Now, in the following lemma
there is some instrumental results needed later.

Lemma 3.1. Let (Xn)n be a Markov chain defined in 2.1. Define p := P(X0 ∈ A) = α−1.
Then, for any initial probability ν, we have:

i) For some η > 0 and C > 0:∣∣∣∣∣Eν(ln)
np

− 1
∣∣∣∣∣ ≤ C

n
and

√
n

(
ln
np

− 1
)

→ N(0, η2). (3.14)

ii) n∗
n

→ 1 in Pν × Pξ-probability .

iii) Let Xi be a sequence of random variables. If

Tn = 1
n

n∑
i=1

Xi → C a.s.

Then, for any integer tn valued sequence of random variables,

1
tn

tn∑
i=1

Xi → C in Pν-probability.
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4 Weighted Bootstrap weak convergence

In this section, we will extend some existing results concerning the multiplier U -process
to prove the bootstrap uniform weak convergence. Most of these results can be founded
in Q. Han, 2022 generalizing the empirical process work of Præstgaard et al., 1993 in
the iid setting. The weak convergence will be proved for degenerate U -processes, as
we mentioned before, and under the weighted regenerative bootstrap schemes described
in Algorithm 1. Before stating the weak convergence theorem, we recall the following
important results. The next theorem, proved in Q. Han, 2022, is a sharp multiplier
inequality, which is essential in the study of the multiplier U -process. These results
are based on the decoupling symmetrized U -process, a basic framework of U -statistics.
Radulović, 2004 solved these problems for the empirical process settings in the Markov
setting (multinomial bootstrap) that we generalise to the U -process by considering more
general weights, i.e., the exchangeable weighted bootstrap.
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4. Weighted Bootstrap weak convergence

Theorem 4.1: Q. Han, 2022

Let (ξ1, . . . , ξn) be a random vector independent of (Y1, . . . , Yn). Then there exists
some measurable function ψn : Rm≥0 → R≥0 such that the expected supremum of the
decoupled a U -processes

E

∥∥∥∥∥∥
∑

1≤ik≤ℓk,1≤k≤m
ε

(1)
i1 · · · ε(m)

im f
(
Y

(1)
i1 , . . . , Y

(m)
im

)∥∥∥∥∥∥
F

≤ ψn(ℓ1, . . . , ℓm),

for all 1 ≤ ℓ1, . . . , ℓm ≤ n, consequently,

E

∥∥∥∥∥∥
∑

1≤i1,...,im≤ln−1

ξi1 · · · ξimf
(
Y

(1)
i1 , . . . , Y

(m)
im

)∥∥∥∥∥∥
F

≤ K

ˆ
Rm

≥0

Eψn

ln−1∑
i=1

1|ξi|>t1 , . . . ,
ln−1∑
i=1

1|ξi|>tm

 dt1 · · · dtm.

Furthermore, if there exists a concave and non-decreasing function ψ̄n : R → R such
that ψn(ℓ1, . . . , ℓm) = ψ̄n

(∏m
k=1 ℓk

)
, then

E

∥∥∥∥∥∥
∑

1≤i1,...,im≤n
ξi1 · · · ξimf

(
Y

(1)
i1 , . . . , Y

(m)
im

)∥∥∥∥∥∥
F

≤ K

ˆ
Rm

≥0

ψ̄n

 ∑
1≤i1,...,im≤n

m∏
k=1

P
(
|ξik | > tk

)1/m
 dt1 · · · dtm.

Here K > 0 is a constant depending on m only, and can be taken as K =
22m∏m

k=2(kk − 1) for m ≥ 2.
aHere "decoupled" refers to fact that {Y (k)

i }, k ∈ N are independent copies of {Yi}, and
{ε(k)

i }, k ∈ N are independent copies of the Rademacher sequence {εi}.
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Lemma 4.1 (Q. Han, 2022). Let {F(ℓ1,...,ℓm),n : 1 ≤ ℓ1, . . . , ℓm ≤ n, n ∈ N} be function
classes such that F(ℓ1,...,ℓm),n ⊃ F(n,...,n),n for all 1 ≤ ℓ1, . . . , ℓm ≤ n. Suppose that ξi’s
have the same marginal distributions with ∥ξ1∥2m,1 < ∞. Suppose that there exists some
bounded measurable function a : Rm(n)

≥0 → R≥0 with a(ℓ1, . . . , ℓm) → 0 as ℓ1 ∧ . . .∧ℓm → ∞,
such that the expected supremum of the decoupled U-processes satisfies

E

∥∥∥∥∥ ∑
1≤ik≤ℓk,1≤k≤m

ε
(1)
i1 · · · ε(m)

im f
(
Y

(1)
i1 , . . . , Y m

im

) ∥∥∥∥∥
F(ℓ1,...,ℓm),n

≤ a(ℓ1, . . . , ℓm)
(

m∏
k=1

ℓk

)1/2

,

for all 1 ≤ ℓ1, . . . , ℓm ≤ n. Then

n−m/2E

∥∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξim(n)f
(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F(n,...,n),n

→ 0, n → ∞.

The main result of this chapter is represented in the following theorem. It is worth
noting here that it is not easy to prove the stochastic equicontinuity in the present setting
as explained in the introduction.

Theorem 4.2

Suppose Assumptions (A1) to (A4), and Conditions(C.1)-(C.5) hold. Let F ⊂
Lc,m2 (P ) permissible 4 , admit a Pm-square integrable envelope F such that

ˆ 1

0

(
sup
Q

log N
(
ε∥F∥L2(Q),F , L2(Q)

))m/2
dε < ∞,

where the supremum is taken over all discrete probability measures. Then

sup
ψ∈BL

∣∣∣∣∣Eξψ
(
Z∗
n(h)

)
− Eψ(c · KP)

∣∣∣∣∣ →Pν 0,

where c is the constant in (A3), and the convergence in probability →Pν is with
respect to the outer probability of P∞ defined on (E∞,E ∞).

4[Permissible classes of function] Let (E,E ,P) be a measurable space (E a Borel σ-field on E). Let
F be a class of functions indexed by a parameter x that belongs to a set E. F is called permissible if it
can be indexed by a E such that:

• There exists a function g(x, f) = f(x) defined from S × F to R in such a way that this function
is L ⊗ B(F ) measurable function, where B(F ) is the Borel σ-algebra generated by the metric
on F .

• E is a Suslin measurable space that is mean E is an analytic subset of a compact metric space E
from which it inherits its metric and Borel σ-field.
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4. Weighted Bootstrap weak convergence

4.1 Bootstrap weights examples:

Let (ξ1, · · · , ξn) be a class of real random variables satisfy Assumptions (A1)- (A4). We
give some examples of bootstrap weights, for instance, refer Præstgaard et al., 1993 and
Cheng, 2015 for more explanation.

Bayesian resampling scheme. In this case, for (ξ1, . . . , ξn) are positive i.i.d. random
variables with mean µ and finite variance σ2. The weights satisfy ∥ξ1∥2,1 < ∞, and define

ξn =
n∑
i=1

ξi.

The Bayesian Bootstrapped weight can be defined as:

ξni = ξi/ξn,

satisfying
∥ξn1∥2,1 =

ˆ ∞

0

√
Pξ(ξn1 ≥ u)du.

For ξni ∼ Exponential(1) or ξni ∼ Gamma(4, 1), the Bayesian weights are distributional
equivalent with Dirichlet weights. For the value of c2, we have:

1
n

n∑
i=1

(ξni − 1)2 → σ2

µ2 := c2, n → ∞.

Efron’s resampling scheme. For Efron’s bootstrap,we have

(ξ1, . . . , ξn) ∼ Multinomial(n;n−1, . . . , n−1).

Condition (A1) follows directly. Condition (A3) follows usind Mason et al., 1992, Lemma
4.1, and Condition (A2) is detailed in Hǔsková et al., 1993.

The delete h-Jackknife . Shao et al., 1987 permute deterministic weights wn, where,

wn =
{

n

n− h
, . . . ,

n

n− h
, 0, . . . , 0

}
with

n∑
i=1

wni = n.

in order to build a new bootstrap weights, they defined the new weights ξnj := wnRn(j)

where Rn(·) is a random permutation uniformly distributed over {1, . . . , n}. These weights
are called The delete h-Jackknife. In order to achieve Assumption (A3), we must assume
that h/n → α ∈ (0, 1), as c2 = h/(n− h) and c > 0.
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The multivariate hypergeometric resampling scheme As its name indicates, the
bootstrap weights of this scheme follow the multivariate hypergeometric distribution with
density:

P (ξn1 = ε1, . . . , ξnn = εn) =

(
K
ε1

)
· · ·

(
K
εn

)
(
nK
n

) ,

where K is a positive integer. Assumption (A3) is satisfied with c2 = (K − 1)/K.

Remark 4.1. As was pointed out in Præstgaard et al., 1993, the preceding mentioned
bootstraps are "smoother" in some way than the multinomial bootstrap because they place
some (random) weight on all elements in the sample, whereas the multinomial bootstrap
applies the positive weight at about 1 − (1 − n−1)n → 1 − e−1 = 0.6322 proportion of
each element of the sample, on the average. Notice that when ωi ∼ Gamma(4, 1) so that
the ξni/n are equivalent to four-spacings from a sample of 4n− 1 Uniform (0, 1) random
variables. In Weng, 1989 and van Zwet, 1979, it was noticed that, in addition to being four
times more expensive to implement, the choice of four-spacings depends on the functional
of interest and is not universal.

Remark 4.2. It is worth noticing that an appropriate choice of the bootstrap weights
ξni’s implies a smaller limit variance, that is, c2 is smaller than 1. A typical example is
the multivariate hypergeometric bootstrap, refer to Præstgaard et al., 1993, Example 3.4
and the Subsample Bootstrap, Pauly, 2012, Remark 2.2-(3). A detailed discussion about
the choice of the weights is certainly out of the scope of the present chapter, we refer for
review to Shao et al., 1995.

5 Applications

5.1 Symmetry test

This example gives application for the bootstrap U -statistics, inspired by the goodness of
fit tests Fan et al., 1999. They have considered the symmetry test for the distribution of
Xt. Let (Xt)t∈N a stationary mixing process with fX(·) the Lebesgue density. Testing the
hypothesis: H0 : fX(u) = fX(−u), almost every were,

H1 : fX(u) ̸= fX(−u) on a set of positive measure.
(5.1)

The estimator of fX(u) is:

f̂X(u) = 1
nhn

n∑
i=1

K
(
u−Xi

hn

)
,
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5. Applications

where K(·) is a kernel function and hn > 0 is a smoothing parameter or the bandwidth.
An appropriate estimator of the integrated squared difference represent the symmetry
test:

I =
ˆ

R
(fX(u) − fX(−u))2 du.

According to Fan et al., 1999, I can be estimated by

În := 4
n2hn

∑
1≤i<j≤n

Φn (Xi, Xj) ,

where
Φn (Xi, Xj) = KXi,Xj

−KXi,−Xj

with KXi,Yj
= K

(
Xi−Yj

hn

)
, for Yj ∈ {Xj,−Xj}. Clearly, În is a degenerate U -statistic with

kernel varying with the sample size n. Thus, the stationary bootstrap test,

Î∗
n := 4

n2hn

∑
1≤i<j≤n

Φn

(
X∗
i , X

∗
j

)
,

can be shown to have the same limiting as În.

5.2 Kendall’s tau

The covariance matrix quantifies the linear dependency in a random vector. The rank cor-
relation is another measure of the nonlinear dependency in a random vector. Two generic
vectors y = (y1, y2) and z = (z1, z2) in R2 are said to be concordant if (y1 − z1) (y2 − z2) >
0. For m, k = 1, . . . , p, define

τmk = 1
n(n− 1)

∑
1≤i ̸=j≤n

1 {(Xim −Xjm) (Xik −Xjk) > 0} .

Then Kendall’s tau rank correlation coefficient matrix T = {τmk}pm,k=1 is a matrix-valued
U -statistic with a bounded kernel. It is clear that τmk quantifies the monotonic depen-
dency between (X1m, X1k) and (X2m, X2k) and it is an unbiased estimator of

P ((X1m −X2m) (X1k −X2k) > 0) ,

that is, the probability that (X1m, X1k) and (X2m, X2k) are concordant.
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5.3 Test of independence

Hoeffding, 1948 introduced the parameter

△ =
ˆ ∞

−∞

ˆ ∞

−∞
D2(y1, y2)dF (y1, y2),

where D(y1, y2) = F (y1, y2) −F (y1,∞)F (∞, y2) and F (·, ·) is the distribution function of
Y1 and Y2. The parameter △ has the property that △ = 0 if and only if Y1 and Y2 are
independent. From A. J. Lee, 1990, an alternative expression for △ can be developed by
introducing the functions

ψ (y1, y2, y3) =


1 if y2 ≤ y1 < y3

0 if y1 < y2, y3 or y1 ≥ y2, y3

−1 if y3 ≤ y1 < y2

and

φ (y1,1, y1,2, . . . , y5,1, y5,2) = 1
4ψ (y1,1, y1,2, y1,3)ψ (y1,1, y1,4, y1,5)ψ (y1,2, y2,2, y3,2)ψ (y1,2, y4,2, y5,2) .

We have

△ =
ˆ
. . .

ˆ
φ (y1,1, y1,2, . . . , y5,1, y5,2) dF (y1,1, y1,2) . . . dF (y1,5, y2,5) .

The corresponding U -statistics may be used to test the independence.

6 Mathematical development

This section is devoted to the proof of our results. The previously defined notation
continues to be used in what follows.

Proof of Proposition 3.4

We have

U∗
n(h) −

(
ln − 1
m

)(
n

m

)−1

R∗
ln(h)

=
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

ξi1,n∗ . . . ξim,n∗h(Xi1 , . . . , Xim)

−
(
n

m

)−1 ∑
(i1,...,im)∈Im

ln

ξi1,ln . . . ξim,lnω
h̃
(Bi1 , . . . ,Bim)
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=
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

ξi1,n∗ . . . ξim,n∗h(Xi1 , . . . , Xim)

−
(
n

m

)−1 ∑
(i1,...,im)∈Im

ln

ξi1,ln . . . ξim,lnω
h̃
(Bi1 , . . . ,Bim)

+
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim) −
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim)

+
(
n

m

)−1 ∑
(i1,...,im)∈Im

ln

{ξi1,ln . . . ξim,ln − 1} ω
h̃
(Bi1 , . . . ,Bim)

−
(
n

m

)−1 ∑
(i1,...,im)∈Im

ln

{ξi1,ln . . . ξim,ln − 1} ω
h̃
(Bi1 , . . . ,Bim)

=
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

{ξi1,n∗ . . . ξim,n∗ − 1}h(Xi1 , . . . , Xim)

−
(
n

m

)−1 ∑
(i1,...,im)∈Im

ln

{ξi1,ln . . . ξim,ln − 1} ω
h̃
(Bi1 , . . . ,Bim)

+
(
n

m

)−1 ∑
(i1,...,im)∈Im

ln

ω
h̃
(Bi1 , . . . ,Bim)

−
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim).

Given J ⊆ {1, . . . ,m}(J = ∅ is not excluded ), and i = (i1, . . . , im) ∈ {1, . . . , n}m, we
set iJ to be the point of {1, . . . , n}|J | obtained from i by deleting the coordinates in the
places not in J (e.g., if i = (3, 4, 2, 1), then i{1,3} = (3, 2)

)
. Also, ∑iJ indicates the sum

over 1 ≤ ij ≤ n, j ∈ J (for instance, if m = 4 and J = {1, 3}, then

∑
iJ

hi =
∑

i{1,3}

hi1,i2,i3,i4 =
∑

1≤i1,i3≤n
hi1,i2,i3,i4

(
X

(1)
i1 , . . . , X

(4)
i4

)
.

By convention, ∑i a = a. Notice that

E

(
n

m

)−1 ∑
(i1,...,im)∈Im

n

{ξi1,n . . . ξim,n − 1}h(Xi1 , . . . , Xim)

=
(
n

m

)−1 ∑
(i1,...,im)∈Im

n

E {ξi1,n . . . ξim,n − 1} Eh(Xi1 , . . . , Xim)

=
(
n

m

)−1 ∑
i{1,...,m−1}

m∑
j=1

E


m∏

k=1,k ̸=j
ξik,nE


n∑

ij=1
(ξij ,n − 1) |

m∏
k=1,k ̸=j

ξik,n




×Eh(Xi1 , . . . , Xim)
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= 0.

In a similar way, we have

E

(
n

m

)−1 ∑
(i1,...,im)∈Im

ln

{ξi1,ln . . . ξim,ln − 1} ω
h̃
(Bi1 , . . . ,Bim) = 0.

Making use of the Proposition 3.3 and the law of large numbers, we infer that

U∗
n(h) −

(
ln − 1
m

)(
n

m

)−1

R∗
ln(h) = 0, a.s.

Hence the proof is completed. □

Proof of Lemma 3.1

The proof of the part i) and part iii) follows from Radulović, 2004, Lemma 3.1 & Lemma
3.2. In order to prove ii), we need to show that, for every ε > 0:

Pν × Pξ|X
(∣∣∣∣n∗
n

− 1
∣∣∣∣ > ε

)
→ 0, (6.1)

which follows if, conditioned on the sample,

Pξ|X
(∣∣∣∣n∗
n

− 1
∣∣∣∣ > ε

)
→ 0. (6.2)

We have:

n∗
n

− 1 =
∑ln
i=1 ξiτi
n

− 1 = ln
n

[∑ln
i=1 (ξiτi + ξiE∗(τ) − ξiE∗(τ)) − n

ln

]

= ln
n

[∑ln
i=1 ξi (τi − E∗(τ))

ln

]
+ ln
n

[∑ln
i=1 ξiE

∗(τ)
ln

− n

ln

]
= I + II. (6.3)

We will denote the E∗ for the expectation conditionally on X1, . . . , Xn. By the fact that
τi are i.i.d. and using Chebyshev’s inequality, we have:

Pξ|X (|I| > ε) ≤ ε−2
(
ln
n

)2 1
ln

Eξ|X (ξ1,ln (τ1 − E∗(τ)))2

≤ 2ε−2
(
ln
n

)
1
n

E(ξ2
1,ln) 1

ln

ln∑
i=1

τ 2
i → 0 in probability.
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The last inequality follows using i) which imply that ln
n

→ p, iii) where

1
ln

ln∑
i=1

τ 2
i → E(τ 2),

for E(ξ2
1,ln) < ∞. For II we have:

II = ln
n

[∑ln
i=1 ξiE

∗(τ)
ln

− n

ln

]
= ln
n

[
E∗(τ) − n

ln

]
by (A1)

= ln
n

 1
ln

ln∑
i=1

(τi − E(τ) + E(τ)) − n

ln


= ln

n

 1
ln

ln∑
i=1

(τi − E(τ))
+ ln

n

[
E(τ) − n

ln

]
.

The last equality converges to zero by the fact that n/ln → α = E(τ) and by iii)

1
ln

ln∑
i=1

(τi − E(τ)) → 0.

This proves Lemma 3.1. □

Proof of Theorem 4.2

For the weak convergence, we need to show the finite-dimensional convergence and the
asymptotic equicontinuity. According to Proposition 3.4 and de la Peña et al., 1999, the
finite-dimensional convergence will be considered if, for every fixed finite collection of
functions {f1, . . . , fk} ⊂ F ,

((
n

m1

)−1/2

R∗
ln(f1), . . .

(
n

mk

)−1/2

R∗
ln,(fk)

)
→
(
KP(f1), . . . ,KP(fk)

)
,

where KP is the Gaussian chaos process. According to Cramér-Wold and countability of
F , we only need to show that for any f ∈ Lc,m2 (P),

sup
ψ∈BL

∣∣∣∣∣E
[
ψ

((
n

m

)−1/2

R∗
ln(f)

)∣∣∣∣∣{Bi}
]

− Eψ(c · KP(f))
∣∣∣∣∣ → 0 a.s. (6.4)

By de la Peña et al., 1999, Section 4.2 and Arcones et al., 1992, Section 2A, any f ∈
Lc,m2 (P) can be expanded in L2(Pm) by f = ∑∞

q=1 cqh
ψq
m , where {cq} is a sequence of real

numbers, and
hψq
m (x1, . . . , xm) ≡ ψq(x1) · · ·ψq(xm)

177



Chapter 5. Exchangeably weighted bootstraps of the General Markov U -process

for some bounded ψq ∈ Lc,12 (P). Fix ε > 0. Then there exists Qε ∈ N such that with
f εn ≡ ∑Qε

q=1 cqh
ψq
m ,

∥f − fε∥L2(Pm) ≤ ε.

The left hand side of (6.4) can be further bounded by

sup
ψ∈BL

∣∣∣∣∣E
[
ψ

((
n

m

)−1/2

R∗
ln(f)

)∣∣∣∣∣{Bi}
]

− Eψ(c · KP(f))
∣∣∣∣∣

≤ sup
ψ∈BL

∣∣∣∣∣E
[
ψ

((
n

m

)−1/2

R∗
ln(f)

)∣∣∣∣∣{Bi}
]

− E

[
ψ

((
n

m

)−1/2

R∗
ln(f ε)

)∣∣∣∣∣{Bi}
]∣∣∣∣∣

+ sup
ψ∈BL

∣∣∣∣∣E
[
ψ

((
n

m

)−1/2

R∗
ln(f ε)

)∣∣∣∣∣{Bi}
]

− Eψ(c · KP(f ε))
∣∣∣∣∣

+ sup
ψ∈BL

∣∣∣Eψ(c · KP(f ε)) − Eψ(c · KP(f))
∣∣∣

≡ (I) + (II) + (III). (6.5)

Let f̄ ε ≡ f − f ε, and noting that that ψ is bounded by 1, and using Lemma 3.1, we can
replace ln by the φ(n) =

⌊
n

EA(τ )

⌋
which is deterministic. In the following, we will denote

by π a random permutation uniformly distributed over Σ(n), the set of all permutations
over 1, . . . , n. We have

(I)2 ≤ E∗
∣∣∣∣∣2 ∧

(
n

m

)1/2

R∗
ln(f̄ ε)

∣∣∣∣∣
2

≲ Eξ|XER

1 ∧ n−m/2 ∑
1≤i1 ̸=... ̸=im≤φ(n)

(
ξπi1

− 1
)

· · ·
(
ξπim

− 1
)
f̄ε (Bi1 , . . . ,Bim)

2

≲
∑

αi∈{1,2}:
∑l

i=1 αi=2m,α1≥...≥αl,1≤l≤m

E∗
ξ

[
1 ∧ n−m/2ER

[
l∏

i=1

(
ξπi

− 1
)αi

]

×
∑

i1 ̸=... ̸=im,
i′1 ̸=... ̸=i′m,

ij=i′j ,1≤j≤max{j:αj=2}

f̄ ε
(
Bi1 , . . . ,Bim(n)

)
f̄ εn
(
Bi′1

, . . . ,Bi′m(n)
)]

≲
∑

αi∈{1,2}:
∑l

i=1 αi=2m,
α1≥...≥αl,1≤ℓ≤m

E

[
1 ∧ 1

n

n∑
i=1

(
ξi − 1

)2
]m

× n−ℓ ∑
i1 ̸=... ̸=im,
i′1 ̸=... ̸=i′m,

ij=i′j ,1≤j≤max{j:αj=2}

f̄ ε
(
Bi1 , . . . ,Bim

)
f̄ ε
(
Bi′1

, . . . ,Bi′m

)
.

We have, according to Hǔsková et al., 1993, for (ξ1, . . . , ξn) a non-negative sequence of
variables such that ∑n

i=1 ξi = n. For π = (π1, . . . , πn) be a random permutation of
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6. Mathematical development

{1, . . . , n}. Then for any ℓ ∈ N and α = (α1, . . . , αℓ) ∈ Nℓ,

∣∣∣∣∣Eπ
[

ℓ∏
i=1

(
ξπi

− 1
)αi

]∣∣∣∣∣ ≤ Cl,αn
−ℓ
[

ln∑
i=1

(
ξi − 1

)2
]∑

i
αi/2

.

And according to Frees, 1989 and Rempala et al., 1999, we have :

n−ℓ ∑
i1 ̸=... ̸=im,
i′1 ̸=... ̸=i′m,

ij=i′j ,1≤j≤max{j:αj=2}

f̄ ε(Bi1 , . . . ,Bim)f̄ ε(Bi′1
, . . . ,Bi′m)

→a.s. EA(τ )−ℓEf̄ ε(B1, . . . ,Bm)f̄ ε(B′
1, . . . ,B′

m)
(where Bj = B′

j for 1 ≤ j ≤ max{j : αj = 2} and for ln/n → EA(τ )−1)

≤ EA(τ )−ℓPmf̄ ε
2 ≤ ε2. (Under Condition (C.1) and (C.3).)

Hence we have

lim sup
n→∞

(I) ≲m,ξ ε, a.s. (6.6)

Now for the second term, we have:
(
n

m

)−1/2

R∗
ln(f ε)

= 1(
n
m

)1/2

Qε∑
q=1

cq
∑

1≤i1<...<im≤φ(n)
(ξπi1

− 1) · · · (ξπim
− 1)ψq(Bi1) · · ·ψq(Bim)

= φ(n)m/2(
n
m

)1/2

Qε∑
q=1

cqRm

(
1

φ(n)1/2

φ(n)∑
i=1

(ξπi
− 1)ψq(Bi), . . . ,

1
φ(n)m/2

φ(n)∑
i=1

(ξπi
− 1)mψmq (Bi)

)

≡ (1 + o(1))(m!)1/2EA(τ )−m/2
Qε∑
q=1

cqRm(A(1)
φ(n),q, . . . , A

(m)
φ(n),q),

where Rm is the polynomial of degree m (cf. de la Peña et al., 1999, pp. 175):

∑
1≤i1<...<im≤φ(n)

ti1 · · · tim = Rm

( φ(n)∑
i=1

ti,
φ(n)∑
i=1

t2i , . . . ,
φ(n)∑
i=1

tmi

)
. (6.7)

As we mentioned before, this polynomial follows from Newton’s inequality and allows us
to show a polynomial function as a sum of monomials. All we need now is to check each
argument of this polynomial function.
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Chapter 5. Exchangeably weighted bootstraps of the General Markov U -process

For ℓ = 1: We first recall the following lemma from A. W. van der Vaart et al., 1996.

Lemma 6.1 (A. W. van der Vaart et al., 1996). Let (a1, . . . , an) be a vector and
(ξ1, . . . , ξn) be a vector of exchangeable random variables. Suppose that

ān = 1
n

n∑
i=1

ai = 0, 1
n

n∑
i=1

a2
i → σ2, lim

M→∞
lim sup
n→∞

1
n

n∑
i=1

a2
i1{|ai|>M} = 0,

and

ξ̄n = 1
n

n∑
i=1

ξi = 0, 1
n

n∑
i=1

ξ2
i →Pξ

α2,
1
n

max
1≤i≤n

ξ2
i →Pξ

0.

Then
1√
n

n∑
i=1

aiξi → N
(
0, σ2α2

)
.

Applying Lemma 6.1 with ai ≡ ψq(Bi) − Pnψq and ξi replaced by ξRi
− 1, we can see that

A
(1)
φ(n),q → c · GP(ψq), a.s.,

where GP is a Gaussian process defined on Lc,12 (P) with co-variance

EGP(f)GP(g) = P(fg), for f, g ∈ Lc,12 (P).

For ℓ = 2: Note that

E∗,ξ
π (A(2)

φ(n),q) = 1
φ(n)

φ(n)∑
i=1

(ξi − 1)2 · 1
φ(n)

φ(n)∑
i=1

ψ2
q (Bi)

→Pν,ξ
c2Eψ2

q (B1) = c2EA


 T 1∑
i=T 0+1

h1(Xi)
2
 , a.s.

Furthermore,

Var∗,ξ(A(2)
φ(n),q)

= E∗,ξ
(
A

(2)
φ(n),q

)2
−
(
E∗,ξ
π

(
A

(2)
φ(n),q

))2

= E∗,ξ
π

 1
φ(n)

φ(n)∑
i=1

(
ξi − 1

)2
ψ2
q (Bπi

)
2

−

 1
φ(n)

φ(n)∑
i=1

(
ξi − 1

)2
Pnψ

2
q

2

= 1
φ(n)2

∑
i,j

(
ξi − 1

)2(
ξj − 1

)2 [
E∗
πψ

2
q (Bπi

)ψ2
q (Bπj

) − (Pnψ2
q )2
]

= 1
φ(n)2

∑
i

(
ξi − 1

)4 [
E∗
πψ

4
q (Bπi

) − (Pnψ2
q )2
]
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6. Mathematical development

+ 1
φ(n)2

∑
i ̸=j

(
ξi − 1

)2(
ξj − 1

)2 [
E∗
πψ

2
q (Bπi

)ψ2
q (Bπj

) − (Pnψ2
q )2
]

≤ 1
φ(n)2

∑
i

(
ξi − 1

)4
· Pnψ

4
q + 1

φ(n)2

(∑
i

(ξi − 1)2
)2

· 1
φ(n) − 1Pnψ

4
q

≤ C
1

φ(n)2

n∑
i=1

(
ξi − 1

)4
· Pnψ

4
q

≤ C∥ψq∥4
∞

maxi(ξi − 1)2

φ(n) · 1
φ(n)

φ(n)∑
i=1

(
ξi − 1)2 →Pξ

0, a.s.

The first inequality in the above display follows since

E∗
πψ

2
q (Bπi

Bπi
)ψ2

q (Bπj
) − (Pnψ2

q )2

= 1
φ(n)(φ(n) − 1)

∑
i ̸=j

ψ2
q (Bπi

)ψ2
q (Bπj

)
− (Pnψ2

q )2

≤ 1
φ(n) − 1(Pnψ2

q )2 ≤ 1
φ(n) − 1Pnψ

4
q .

This shows that
A

(2)
φ(n),q →Pξ

c2Eψ2
q a.s.

For ℓ ≥ 3:

E∗,ξ
π |A(ℓ)

φ(n),q| ≤ 1
φ(n)ℓ/2

φ(n)∑
i=1

|ξi − 1|ℓ · 1
φ(n)

φ(n)∑
i=1

|ψq(Bi)|ℓ

≤
(

maxi|ξi − 1|2

φ(n)

) ℓ−2
2

· 1
φ(n)

φ(n)∑
i=1

|ξi − 1|2 · ∥ψq∥∞

→Pξ
0, a.s.

This shows that
A

(ℓ)
φ(n),q →Pξ

0, a.s.

Then we have

Rm(A(1)
φ(n),q, . . . , A

(m)
φ(n),q) → Rm(GP(cψq),E(cψq)2, 0, . . . , 0) = c(m!)−1/2 · KP(ψq) a.s.,

where KP be the Gaussian chaos process defined on5

R ⊕ Lc,N2 (P) ≡ R ⊕
(

⊕∞
m=1 L

c,m
2 (P)

)
.

5⊕ is the orthogonal sum in L2 (E∞,E ∞, P∞)
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Hence, it follows that, by linearity of KP,
(
n

m

)−1/2

R∗
ln(f̄ ε) → c · KP(f ε), a.s.

The last term in (6.5) follows from the definition of KP

(III) ≤ c
√

EK2
P(f̄ ε) → 0 (ε → 0). (6.8)

All these final results give finite-dimensional convergence.

Now, we will take a step-by-step approach to establish stochastic equicontinuity. We
assume that the class of functions must be bounded, so we will suppose that h ≤ H, for
H an envelop. Throughout the sequel, we will denote by

Fδ := {f, g ∈ F : d(f, g) ≤ δ}.

Step 1

Let

Z∗
n :=

(
n∗

m

)1/2

[U∗
n(h) − E∗(U∗

n(h))] , (6.9)

and

T̆ ∗
ln :=

(
n

m

)−1/2(
ln
m

) [
R∗
ln − E∗(R∗

ln)
]
. (6.10)

In this step, we must prove that stochastic equicontinuity of U -process implies the one of
regenerative U -process. This is a consequence of 3.3, and for the weighted bootstrap the
Proposition 3.4 and part ii) of Lemma 3.1.

Step 2

Define

T̆ ∗
ln :=

(
n

m

)−1/2 ∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim,ln − 1)ωh(Bi1 , . . . ,Bim)

and

T̃ ∗
ln =

(
n

m

)−1/2 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim).
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Hypothesis: Stochastic equicontinuity of T̆ ∗
ln implies stochastic equicontinuity of T̃ ∗

ln .

Proof. In order to prove the previous implication, we only need to show that:

P∗
(∥∥∥T̃ ∗

ln − T̆ ∗
ln

∥∥∥
Fδ

> ε
)

≤ P∗


∥∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim,ln − 1)ωh(Bi1 , . . . ,Bim)

∥∥∥∥∥∥∥
Fδ

> ε

 .
Suppose that ln ≤ E(ln), the opposite case can be treated in a similar way. We have

P∗
(∥∥∥T̃ ∗

ln − T̆ ∗
ln

∥∥∥
Fδ

> ε
)

= P∗


∥∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim,ln − 1)ωh(Bi1 , . . . ,Bim)

−
(
n

m

)−1/2 ∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim,ln − 1)ωh(Bi1 , . . . ,Bim)

∥∥∥∥∥∥∥
Fδ

> ε


Define I := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ E(ln) : ij ̸= ik for j ̸= k,

such that ∃ ℓ ∈ {1, . . . ,m} : ln ≤ iℓ ≤ E(ln)}

≤ P∗


∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈I

(ξi1,ln − 1) . . . (ξim,ln − 1)ωh(Bi1 , . . . ,Bim)
∥∥∥∥∥∥

Fδ

> ε


= P∗

∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈I

(ξi1,ln − 1) . . . (ξim,ln − 1)ωh(Bi1 , . . . ,Bim) > ε

∩ (|E(ln) − ln| ≤ n/4)
∥∥∥∥∥∥

Fδ

+ P∗ (|E(ln) − ln| > n/4) .

However, |E(ln)− ln| = OP(
√
n) by Lemma 3.1 part i). Then the exists a constant K > 0,

such that for every ε > 0,
P∗ (|E(ln) − ln| > n/4) < ε,

and the first expression in the previous expression will be bounded by:

P∗

 max
M≤n/2+E(ln)

∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈I′

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)

∥∥∥∥∥∥
Fδ

> ε


where I′ := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ E(ln),∃ℓ = 1, . . . ,m,E(ln) < iℓ ≤ M,

ij ̸= ik for j ̸= k}
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≤ C1P∗


∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)

∥∥∥∥∥∥
Fδ

> C2ε


where I′′

m := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ E(ln),∃ℓ = 1, . . . ,m,
E(ln) < iℓ ≤ E(ln) + n/2, ij ̸= ik for j ̸= k} .

The last expression follows by Montgomery-Smith inequality. Since

E(ln)/n → α−1,

the last expression matches the stochastic equicontinuity condition for T̃ ∗
ln . This proves

this step.

Before passing to the next step, we will introduce a new bootstrap sample. Define B̂i :={
XT i−1+1, . . . , XT i

}
for i = 1, . . . ,E(ln). Now, apply the weighted bootstrap procedure

on the sample {B̂i}E(ln)
i=1 . This new procedure is the same as the old one for Bi, but we

aim here to replace the random quantity ln with a deterministic one which is E(ln).

Step 3

Define:

T̂ ∗
ln =

(
n

m

)−1/2 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(B̂i1 , . . . , B̂im)

Hypothesis: Stochastic equicontinuity of T̃ ∗
ln implies stochastic equicontinuity of T̂ ∗

ln .

Proof. First case: ln ≤ E(ln):

In this case, all of the terms in the following computation should be multiplied with
1(ln≤E(ln)). We’ll leave it out to keep the already complex notation simple. Define

An := {B1, . . . ,Bln}
−→
T ∗
ln := T̂ ∗

ln1(B̂i1 ,...,B̂im )∈An
+ T ∗

ln1(B̂i1 ,...,B̂im )∈A c
n
.

−→
T ∗
ln is well defined, i.i.d, and have the same distribution as T ∗

ln and (i1, . . . , im) ∈ ImE(ln).
Hence, if we show that:

lim
δ→0

lim sup
n→∞

P∗
(∥∥∥−→T ∗

ln

∥∥∥
Fδ

> ε
)

= 0 in probability,
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then the stochastic equicontinuity of T̃ ∗
ln is established. But we aim to approximate the

one of T̂ ∗
ln . In order to achieve our goal, it is sufficient to estimate:

∥∥∥−→T ∗
ln − T̂ ∗

ln

∥∥∥
Fδ

=
∥∥∥∥T̂ ∗

ln1(B̂i1 ,...,B̂im )∈An
+ T ∗

ln1(B̂i1 ,...,B̂im )∈A c
n

−
[
T̂ ∗
ln1(B̂i1 ,...,B̂im )∈An

+ T̂ ∗
ln1(B̂i1 ,...,B̂im )∈A c

n

]∥∥∥∥
Fδ

≤
∥∥∥∥T ∗

ln1(B̂i1 ,...,B̂im )∈A c
n

∥∥∥∥
Fδ

+
∥∥∥∥T̂ ∗

ln1(B̂i1 ,...,B̂im )∈A c
n

∥∥∥∥
Fδ

:= In + IIn. (6.11)

For In: Let
S∗
n :=

∑
(i1,...,im)∈Im

E(ln)

1(B̂i1 ,...,B̂im )∈A c
n
,

conditioned on the sample, we have:

L

 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)1(B̂i1 ,...,B̂im )∈A c

n


= L

 ∑
(i1,...,im)∈Im

S∗
n

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)

 .
Hence,

P∗ (In > ε)

= P∗


(
n

m

)−1/2
∥∥∥∥∥∥∥

∑
(i1,...,im)∈Im

S∗
n

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)

∥∥∥∥∥∥∥
Fδ

> ε


= P∗


∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈Im

S∗
n

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim) > ε

∩
(
S∗
n ≤ K

√
n
) ∥∥∥∥∥∥

Fδ

+ P∗
(
S∗
n > K

√
n
)

≤ P∗

 max
M≤K

√
n

∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈I′

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)

∥∥∥∥∥∥
Fδ

> ε


+P∗

(
S∗
n > K

√
n
)
, for any K > 0.

where I′ := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ S∗
n,∃ℓ = 1, . . . ,m, S∗

n < iℓ ≤ M,

ij ̸= ik for j ̸= k} .
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≤ C1P∗

∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)

∥∥∥∥∥∥
Fδ

> C2ε


+P∗

(
S∗
n > K

√
n
)
, for any K > 0, (6.12)

where

I′′
m := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ S∗

n,∃ℓ = 1, . . . ,m,
S∗
n < iℓ ≤ K

√
n, ij ̸= ik for j ̸= k

}
.

For n large enough, we need to show that there exists a K > 0 such that

P∗
(
S∗
n > K

√
n
)

→ 0.

As 1B̂i∈A c
n

are i.i.d and bounded,

S∗
n − E(S∗

n)√
E(ln)

→ N(0, η2) in probability.

therefore, we can find M > 0 such that

P∗
(
S∗
n > E(S∗

n) + M
√
n
)
< ε.

But,
E(S∗

n) = E(ln)P∗(B̂∗
i ∈ A c

n ) = E(ln) − ln = OP(
√
n),

by Lemma 3.1 i), then
P∗
(
S∗
n > K

√
n
)

→ 0.

Then, we only need to estimate the first part in (6.12). Define the following bootstrap
procedure: Let −→B i :=

{
XT i−1+1, . . . , XT i

, 0, 0, . . .
}

and let −→
F be a class of function,

related to the class of functions F , such that, for every −→ω h ∈
−→
F :


−→ω h(

−→B1,
−→B2, · · · ,−→Bk) =

∞∑
i1=1

. . .
∞∑
ik=1

h(xi1 , . . . , xik)1xk ̸=0 if defined,

∞ otherwise.
(6.13)

It is classical that {
−→
B i} are i.i.d. Applying the same bootstrap method of Algorithm 1.
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This new sample allows us to enlarge and bound (6.12) by

P∗

 sup
−→
h ∈

−→
H

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)−→ω −→
h

(−→B i1 , . . . ,
−→B im)

∣∣∣∣∣∣ > ε

 ,
(6.14)

where −→
h ∈

−→
H = {−→ω −→

f
−−→ω −→g ,

−→
f ,−→g ∈

−→
F} the corresponding class H = {ωf −ωg, f, g ∈

F}, each one with envelop F̃ and F respectively. To estimate the last expression, we will
use the bracketing. Define the Bracket [f ℓ, fu] by:

[f ℓ, fu] := {f ∈ F : f ℓ ⩽ f ⩽ fu},

and the bracketing entropy number by N1(γ,F ,P) which is denote the smallest the min-
imal number N ≥ 1 for which there exist functions f ℓ1 , · · · , f ℓN and fu1 , · · · , fuN such that:

F ⊂
N⋃
k=1

[
f ℓk, f

u
k

]
,

ˆ
S

(
fuk − f ℓk

)
P ≤ γ.

(6.15)

For the class of functions H , consider the brackets [hℓ, hu], such that E∗(hℓ, hu) ⩽ γ,
where γ > 0 and it will be determined later. In this framework, the bracketing entropy
number will be N∗(γ) := N1(γ,H ,D∗), for

D∗ =
(
ln
m

)−1 ∑
(i1,...,im)∈Im

ln

ξi1,ln . . . ξim,ln δ(−→Bi1 ,...,
−→Bim ).

Hence, we have the following inequalities

sup
−→
h ∈

−→
H

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)−→ω −→
h

(−→B i1 , . . . ,
−→B im)

∣∣∣∣∣∣
≤ max

k≤N∗(γ)

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)
(
huk − hℓk

)
(−→B i1 , . . . ,

−→B im)
∣∣∣∣∣∣

≤ max
k≤N∗(γ)

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)

[
huk(

−→B i1 , . . . ,
−→B im) − E∗

(
huk(

−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣
+ max
k≤N∗(γ)

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)
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[
hℓk(

−→B i1 , . . . ,
−→B im) − E∗

(
hℓk(

−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣
+ max
k≤N∗(γ)

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)

[
E∗
(
huk(

−→B i1 , . . . ,
−→B im)

)
− E∗

(
hℓk(

−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣
:= IA + IB + IC . (6.16)

Treating each term, keeping in mind the condition (A.1), i.e., ∑n
i=1 ξi = n, we have

IC := max
1≤k≤N∗(γ)

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)

[
E∗
(
huk(

−→B i1 , . . . ,
−→B im)

)
− E∗

(
hℓk(

−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣
≤ γ

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)
∣∣∣∣∣∣

= γ

∣∣∣∣∣∣
(
n

m

)−1 ∑
i{1,...,m−1}

m∑
j=1

m∏
k=1,k ̸=j

ξik,n


n∑

ij=1
(ξij ,n − 1)


∣∣∣∣∣∣ = 0,

and

P(IB > ε) := P

 max
k≤N∗(γ)

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)

[
hℓk(

−→B i1 , . . . ,
−→B im) − E∗

(
hℓk(

−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣ > ε


≤ N∗(γ) max

k≤N∗(γ)
P

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)

[
hℓk(

−→B i1 , . . . ,
−→B im) − E∗

(
hℓk(

−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣ > ε


(For hℓk = hℓk1hℓ

k
≤Mn

+ hℓk1hℓ
k
>Mn

)

≤ N∗(γ) max
k≤N∗(γ)

P

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)

[
hℓk1hℓ

k
≤Mn

(−→B i1 , . . . ,
−→B im) − E∗

(
hℓk1hℓ

k
≤Mn

(−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣ > ε


+N∗(γ) max

k≤N∗(γ)
P

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)
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[
hℓk1hℓ

k
>Mn

(−→B i1 , . . . ,
−→
B im) − E∗

(
hℓk1hℓ

k
>Mn

(−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣ > ε


≤ N∗(γ)

ε2
(
n
m

)1/2 E∗
(
(ξ1,ln − 1) . . . (ξm,ln − 1)

[
hℓk1hℓ

k
≤Mn

− E∗
(
hℓk1hℓ

k
≤Mn

)])2

+N
∗(γ)
ε

E∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)

[
hℓk1hℓ

k
>Mn

− E∗
(
hℓk1hℓ

k
>Mn

)]∣∣∣
≤ N∗(γ)

ε2
(
n
m

)1/2 Eξ

(
m∏
i=1

(ξi,ln − 1)2
)

E∗
([
hℓk1hℓ

k
≤Mn

− E∗
(
hℓk1hℓ

k
≤Mn

)])2

+N
∗(γ)
ε

E∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)

[
hℓk1hℓ

k
>Mn

− E∗
(
hℓk1hℓ

k
>Mn

)]∣∣∣
≤ N∗(γ)

ε2
(
n
m

)1/2 c
2 × 4M2

n + N∗(γ)
ε

E∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)hℓk1hℓ

k
>Mn

∣∣∣
≤ N∗(γ)

ε2
(
n
m

)1/2 c
2 × 4M2

n + 2N∗(γ)
ε

E∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)F̃1

F̃>Mn

∣∣∣
≤ N∗(γ)

ε2
(
n
m

)1/2 c
2 × 4M2

n

+4N∗(γ)
ε

(
ln
m

)−1 ∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim,ln − 1)
∣∣∣F̃1

F̃>Mn
(−→B i1 , . . . ,

−→B im)
∣∣∣ ,

(6.17)

yet, −→B i are i.i.d and and E
(
F̃
)

= E(τ)mEF < ∞, for any Mn ↗ ∞, we have

(
E(ln)
m

)−1 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim,ln − 1)F̃1
F̃>Mn

(−→B i1 , . . . ,
−→B im) → 0 a.s.

Using the same argument as in part iii) of Lemma 3.1, we can prove that
(
ln
m

)−1 ∑
(i1,...,im)∈Im

ln

(ξi1,ln −1) . . . (ξim,ln −1)
∣∣∣−→F 1−→

F >Mn
(−→B i1 , . . . ,

−→B im)
∣∣∣ → 0 in probability.

Then it remains just to find that, for every fixed γ > 0, N∗(γ) is bounded in probability, as
the last expression in (6.17) does not depend on k. Good to be noting that N1(γ,

−→
H ,P)

is finite, due to the boundness of −→
H by 2F with E

−→
F (−→B) < ∞ and the fact that −→B i

are i.i.d and discrete random variables. Under the norm L1(P), define a γ/2 Brackets,
hℓ1, · · ·hℓN(γ/2) and hu1 , · · · , huN(γ/2). Observe that

max
j≤N(γ/2)

∣∣∣∣∣∣
(
ln
m

)−1/2 ∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim,ln − 1)
(
huj − hℓj

)
(−→B i1 , . . . ,

−→B im)
∣∣∣∣∣∣, (6.18)
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converge to zero in probability, with N(γ/2) does not depend on n. That implies that
N∗(γ) ≤ N(γ/2) < ∞ in probability. Replacing hℓ by hu, IA will be identical to IB, i.e
IA also converges to 0 in probability. This proves the convergence of In to 0 in probability.

For IIn: In the same manner, let

S∗
n :=

∑
(i1,...,im)∈Im

E(ln)

1(B̂i1 ,...,B̂im )∈A c
n
.

Define a new bootstrap sample {B∗∗
i } in i = ln + 1, . . . ,E(ln). Clearly, the new sample

is well defined since we assumed at the beginning that that ln ≤ E(ln), and it is defined
independently from B∗

i and B̂∗
i . In this case:

L

 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(B̂i1 , . . . , B̂im)1(B̂i1 ,...,B̂im )∈A c

n


= L

 ∑
(i1,...,im)∈Im

S∗
n

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(B∗∗

i1 , . . . ,B
∗∗
im)

 .
Hence, as same as in (6.12), we have:

P∗ (IIn > ε)

= P∗∗


(
n

m

)−1/2
∥∥∥∥∥∥∥

∑
(i1,...,im)∈Im

S∗
n

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)

∥∥∥∥∥∥∥
Fδ

> ε


≤ C1P∗∗

∥∥∥∥∥∥
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)ω
h̃
(Bi1 , . . . ,Bim)

∥∥∥∥∥∥
Fδ

> C2ε


+P∗

(
S∗
n > K

√
n
)
, for any K > 0, (6.19)

where

I′′
m := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ S∗

n,∃ℓ = 1, . . . ,m,
S∗
n < iℓ ≤ K

√
n, ij ̸= ik for j ̸= k

}
.

Using the same bootstrap procedure defined previously for In, let

−→B i :=
{
XT i−1+1, . . . , XT i

, 0, 0, . . .
}
,

for i = ln + 1, . . . ,E(ln), and let −→
F be a class of function such that, for every −→ω h ∈

−→
F :
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
−→ω h(

−→B1,
−→B2, · · · ,−→Bk) =

∞∑
i1=1

. . .
∞∑
ik=1

h(xi1 , . . . , xik)1xk ̸=0 if defined

∞ otherwise.
(6.20)

It is classical that {−→B i} are i.i.d. Applying the same bootstrap method of Algorithm 1.
This new sample allows us to enlarge and bound (6.12) by

P∗∗

 sup
−→
h ∈

−→
H

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)−→ω −→
h

(−→B i1 , . . . ,
−→B im)

∣∣∣∣∣∣ > ε

 ,
(6.21)

where
−→
h ∈

−→
H = {−→ω −→

f
− −→ω −→g ,

−→
f ,−→g ∈

−→
F}

corresponding to the class
H = {ωf − ωg, f, g ∈ F},

each one with envelop −→
F and F respectively. As before, for the class of functions H ,

consider the brackets [hℓ, hu], such that

E∗∗(hℓ, hu) ⩽ γ,

where γ > 0 and it will be determined later. In this framework, the bracketing entropy
number will be N∗∗(γ) := N1(γ,H ,D∗∗), for

D∗∗ =
(

E(ln) − ln
m

)−1 ∑
(i1,...,im)∈Im

E(ln)−ln

ξi1,ln . . . ξim,ln δ(−→Bi1 ,...,
−→Bim ).

Following the same arguments from displays (6.16) through (6.17), we can find that (6.21)
will be

≤ N∗∗(γ) max
k≤N∗∗(γ)

P

∣∣∣∣∣∣
(
n

m

)−1/2 ∑
(i1,...,im)∈I′′

m

(ξi1,ln − 1) . . . (ξim,ln − 1)

[
hℓk(

−→B i1 , . . . ,
−→B im) − E∗∗

(
hℓk(

−→B i1 , . . . ,
−→B im)

)] ∣∣∣∣∣∣ > ε


≤ N∗∗(γ)

ε2
(
n
m

)1/2 c
2 × 4M2

n + 2N∗∗(γ)
ε

E∗∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)F̃1

F̃>Mn

∣∣∣
≤ N∗∗(γ)

ε2
(
n
m

)1/2 c
2 × 4M2

n + 4N∗∗(γ)
ε

191



Chapter 5. Exchangeably weighted bootstraps of the General Markov U -process

(
E(ln) − ln

m

)−1 ∑
(i1,...,im)∈Im

E(ln)−ln

(ξi1,ln − 1) . . . (ξim,ln − 1)
∣∣∣F̃1

F̃>Mn
(−→B i1 , . . . ,

−→B im)
∣∣∣ .

(6.22)

Here, we must pay attention to the randomness of N∗∗ which depends on n. According
to Lemma 3.1 i), we can see that |E(ln) − ln| → ∞ in probability, under the assumption
that ln < E(ln). Now, using the same treatment of In, and for Mn := n1/3 ( to provide
the convergence of Mn to ∞), as same as in Radulović, 2004, this allows the convergence
of (6.22) to 0 in probability. Estimating now N∗∗ by considering the same γ/2 brackets
hℓ1, · · ·hℓN(γ/2) and hu1 , · · · , huN(γ/2). We have N∗∗(γ) < N(γ/2), which is does not depend
on n. Then, IIn is proved. Following the same footsteps, we can prove the case where
ln > E(ln). This proves Step 3.

The end of the previous step provides that we only need to show the stochastic equicon-
tinuity of T̂ ∗

ln , where the number of blocks is replaced by the deterministic quantity E(ln).
In order to achieve the equicontinuity of this statistic, Lemma 4.1 shows that it is sufficient
to prove that:

E

∥∥∥∥∥ ∑
1≤ik≤ℓk,1≤k≤m(n)

ε
(1)
i1 · · · ε(m)

im ω−→
h

(
B̂(1)
i1 , . . . , B̂

(m)
im

) ∥∥∥∥∥−→
H

≤ a(ℓ1, . . . , ℓm)
(

m∏
k=1

ℓk

)1/2

for all 1 ≤ ℓ1, . . . , ℓm ≤ n. We begin to define the distance:

e2
ℓ(f, g) ≡ 1∏m

k=1 ℓk

∑
1≤ik≤ℓk,1≤k≤m

ω2−→
h

(
B̂(1)
i1 , . . . , B̂

(m)
im

)
,

defined in L2, associated with the Rademacher process 1
(∏m

k=1 ℓk)
1/2

∑
1≤ik≤ℓk,1≤k≤m

ε
(1)
i1 · · · ε(m)

im ω−→
h

(
B̂(1)
i1 , . . . , B̂

(m)
im

)
: −→
h ∈

−→
H | B̂1, . . . , B̂m

 .
Take ∥f∥2

ℓ ≡ e2
ℓ(f, 0) and

rℓ(δ) ≡ sup
f∈

−→
F δ

∥f∥2
ℓ .

Using Corollary 6.2, we have

E

∥∥∥∥∥∥ 1
(∏m

k=1 ℓk)
1/2

∑
1≤ik≤ℓk,1≤k≤m

ε
(1)
i1 · · · ε(m)

im ω−→
h

(
B̂(1)
i1 , . . . , B̂

(m)
im

)∥∥∥∥∥∥−→
H
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≤ C

ˆ rℓ(δ)

0
(log N (ε,F , eℓ))m/2 dε

= C∥F∥ℓ ·
ˆ rℓ(δ)/∥F∥ℓ

0
(log N (ε∥F∥ℓ,F , eℓ))m/2 dε

≤ C∥F∥ℓ ·
ˆ rℓ(δ)/∥F∥ℓ

0

(
sup
Q

log N
(
ε∥F∥L2(Q),F , L2(Q)

))m/2

dε. (6.23)

Assuming that F ≥ 1, the upper bound in the integral can be replaced by rℓ(δ). The
following proposition is necessary for the following

Proposition 6.1 (Q. Han, 2022). Let {Xi} be i.i.d. random variables with law P. Let H

be a class of measurable real-valued functions defined on (X m,A m) with an Pm-integrable
envelope such that the following holds: for any fixed δ > 0,M > 0, 1 ≤ k ≤ m,

max
1≤j′≤k

E

(
log N (δ, (πkH )M , eℓ,j′)

ℓj′

)1/2

→ 0 (6.24)

holds for any ℓ1 ∧ · · · ∧ ℓk → ∞. Here for ℓ = (ℓ1, . . . , ℓk) and {Xi}∞
i=1,

eℓ,j′(f, g) ≡ 1
ℓj′

ℓj′∑
ij′ =1

∣∣∣∣∣∣ 1∏
j ̸=j′ ℓj

∑
1≤ij≤ℓj :j ̸=j′

(f − g) (Xi1 , . . . , Xik)
∣∣∣∣∣∣

and
(πkH )M ≡ {h1Hk≤M : h ∈ πkH } ,

where Hk is an envelope for πkH . Then

sup
h∈H

∣∣∣∣∣∣ 1∏m
k=1 ℓk

∑
1≤ik≤ℓk,1≤k≤m

(h (Xi1 , . . . , Xim) − Pmh)
∣∣∣∣∣∣ → 0

in L1 as ℓ1 ∧ . . . ∧ ℓm → ∞. The above display can be replaced by the decoupled version.

By this proposition, ∥F∥ℓ →P ∥F∥L2(P ) as ℓ1 ∧ . . . ∧ ℓm → ∞, therefore, it suffices to
get rℓ(δ) →p 0 as ℓ1 ∧ . . . ∧ ℓm → ∞ and δ → 0. It is obvious that all that is left to do
now is to demonstrate that

sup
f∈F̃δ

∣∣∣∣∣∣ 1∏m
k=1 ℓk

∑
1≤ik≤ℓk,1≤k≤m

(
ω2
h̃

(
B̂(1)
i1 , . . . , B̂

(m)
im

)
− Pmω2

h̃

)∣∣∣∣∣∣ →p 0. (6.25)

Verifying condition (6.24)

max
1≤j′≤k

E

(
log N (δ,F 2

M , eℓ,j′)
ℓj′

)1/2
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≤ (ℓ1 ∧ · · · ∧ ℓk)−1/2 E

[ˆ δ

0

(
log N

(
ε,F 2

M , eℓ,j′

))m/2
dε
]

≤
(

δ√
2M

)−1

(ℓ1 ∧ · · · ∧ ℓk)−1/2 E

ˆ δ/
√

2M

0

(
log N

(
ε,F 2

M , eℓ,j′

))m/2
dε


≤ (δ/2M)−1 (ℓ1 ∧ · · · ∧ ℓk)−1/2
ˆ 1

0

(
sup
Q

log N
(
ε∥F∥L2(Q),F , L2(Q)

))m/2

dε

× ∥F∥L2(Pm) → 0. (6.26)

The shift from the second to the third line is true because

N
(
δ,F 2

M , L2(Q)
)

≤ N
(
δ/

√
2M,FM , L2(Q)

)
.

As the condition is verified, as well as ℓ1 ∧ · · · ∧ ℓm → ∞, (6.25) follows directly using the
previous proposition. Hence, there exists some sequence {aℓ}, in a way that aℓ → 0 for
any sequence {δℓ} with δℓ → 0 both under ℓ1 ∧ · · · ∧ ℓm → ∞, such that:

E

∥∥∥∥∥∥
∑

1≤ik≤ℓk,1≤k≤m
ε

(1)
i1 · · · ε(m)

im ω
h̃

(
B̂(1)
i1 , . . . , B̂

(m)
im

)∥∥∥∥∥∥
H̃

≤ aℓ

(
m∏
k=1

ℓk

)1/2

.

(6.27)

An application of Lemma 4.1 proves that

n−m/2E

∥∥∥∥∥ ∑
1≤i1,...,im≤n

(ξi1 − 1) · · · (ξim − 1)ω
h̃
(B̂i1 , . . . , B̂im)

∥∥∥∥∥
Fδn

→ 0, n → ∞.

This completes the proof for the asymptotic equicontinuity. □

Appendix

This appendix contains supplementary information that is an essential part in providing
a more comprehensive understanding of the chapter.

Proof of Theorem 4.1:

We have

E

∥∥∥∥∥∥
∑

1≤i1<...<im≤n
ξi1 . . . ξimf

(
Y

(1)
i1 , . . . , Y

(m)
im

)∥∥∥∥∥∥
F

.
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By decoupling of U -process, due to de la Peña et al., 1999

≤ Cm E

∥∥∥∥∥ ∑
1≤i1<...<im≤n

ξi1 . . . ξimf
(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F

.

By symmetrization, due to de la Peña et al., 1999, we have

≤ 2mCm E

∥∥∥∥∥ ∑
1≤i1<...<im≤n

ξi1 . . . ξimε
(1)
i1 . . . ε

(m(n))
im f

(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F

for (sgn(ξ1)ε∗
1, . . . , sgn(ξn)ε∗

n) a sequence independent and with the same distribution of
(ξ1, . . . , ξn), By the invariance of (Pε ⊗ P)mn and the fact that ξ is independent of X ·, ε·,
we have that

= 2mCm Ex,ε

∥∥∥∥∥ ∑
1≤i1<...<im≤n

|ξi1| . . . |ξim|sgn(ξi1)ε(1)
i1 . . . sgn(ξim)ε(m(n))

im f
(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F

= 2mCm Ex,ε

∥∥∥∥∥ ∑
1≤i1<...<im≤ln−1

|ξi1| . . . |ξim|ε(1)
i1 . . . ε

(m(n))
im f

(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F

,

using the reversed order statistics of {|ξi|}ni=1, |ξ(1)| ≥ · · · ≥ |ξ(n)|, and the permutations
between the different sequences of random variable, and in the same footsteps as Q. Han,
2022,

= 2mCm E

∥∥∥∥∥ ∑
1≤i1<...<im≤n

|ξ(i1)| . . . |ξ(im)|ε(1)
i1 . . . ε

(m(n))
im f

(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F

substitute ξ(i) by ∑n
k=i ξ(k) − ξ(k+1), with |ξ(n+1)| = 0,

≤ 2mCm E

∥∥∥∥∥ ∑
1≤i1<...<im≤n

∑
kj≥ij ,1≤j≤r

(|ξ(l1)| − |ξ(l1+1)|) . . . (|ξ(lm)| − |ξ(lm+1)|)

× ε
(1)
i1 . . . ε

(m(n))
im f

(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F

≤ 2mCm E

∥∥∥∥∥ ∑
1≤i1,...,im≤n

∑
ℓk≥ik,1≤k≤m

(|ξ(ℓ1)| − |ξ(ℓ1+1)|) · · · (|ξ(ℓm)| − |ξ(ℓm+1)|)

× ε
(1)
i1 · · · ε(m(n))

im f
(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F

≤ 2mCm E

[ ∑
1≤ℓ1,...,ℓm≤n

(|ξ(ℓ1)| − |ξ(ℓ1+1)|) · · · (|ξ(ℓm)| − |ξ(ℓm+1)|)

× E

∥∥∥∥∥ ∑
1≤ik≤ℓk,1≤k≤m

ε
(1)
i1 · · · ε(m(n))

im f
(
Y

(1)
i1 , . . . , Y

(m)
im

) ∥∥∥∥∥
F

]
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≤ 2mCm E

[ ∑
1≤ℓ1,...,ℓm≤n

ˆ |ξ(ℓ1)|

|ξ(ℓ1+1)|
· · ·
ˆ |ξ(ℓm)|

|ξ(ℓm+1)|)
ψn(ℓ1, . . . , ℓm)dtm · · · dt1

]

≤ 2mCm E

[ ∑
1≤ℓ1,...,ℓm≤n

ˆ |ξ(ℓ1)|

|ξ(ℓ1+1)|
· · ·
ˆ |ξ(ℓm)|

|ξ(ℓm+1)|)

ψn(|{i : |ξi| > t1}|, . . . , |{i : |ξi| > tm}|)dtm · · · dt1
]

≤ 2mCm E

[ ˆ
Rm

≥0

ψn(|{i : |ξi| > t1}|, . . . , |{i : |ξi| > tm}|)dt1 · · · dtm
]

≤ 2mCm
ˆ

Rm
≥0

Eψn

(
n∑
i=1

1|ξi|>t1 , . . . ,
n∑
i=1

1|ξi|>tm

)
dt1 · · · dtm. (By Fubini theorem.)

Now suppose that ψn(ℓ1, . . . , ℓm) = ψ̄n(∏m
k=1 ℓk). Then we may further bound the above

display by
ˆ

Rm
≥0

Eψ̄n

(
m∏
k=1

n∑
i=1

1|ξi|>tk

)
dt1 . . . dtm

=
ˆ

Rm
≥0

Eψ̄n

( ∑
1≤i1,...,im≤n

m∏
k=1

1|ξik
|>tk

)
dt1 . . . dtm

≤
ˆ

Rm
≥0

ψ̄n

( ∑
1≤i1,...,im≤n

E
m∏
k=1

1|ξik
|>tk

)
dt1 . . . dtm (by Jensen’s inequality)

≤
ˆ

Rm
≥0

ψ̄n

( ∑
1≤i1,...,im≤n

m∏
k=1

P
(
|ξik | > tk

)1/m
)

dt1 . . . dtm,

where the last inequality follows from generalized Hölder’s inequality and the assumption
that ψ̄n is non-decreasing.

Proof of Lemma 4.1

For ψn (ℓ1, . . . , ℓm) ≡ a (ℓ1, . . . , ℓm) (∏m
k=1 ℓk)

1/2. Theorem 4.1 implies that:

E

∥∥∥∥∥∥
∑

1≤i1,...,im≤n
ξi1 · · · ξimf (Yi1 , . . . , Yim)

∥∥∥∥∥∥
F(n,...,n),n

≤ Km

ˆ
Rm

≥0

E

a( n∑
i=1

1|ξi|>t1 , . . . ,
n∑
i=1

1|ξi|>tm

)
m∏
k=1

(
n∑
i=1

1|ξi|>tk

)1/2
 dt1 · · · dtm

≤ Km

ˆ
Rm

≥0

A2,n (t1, . . . , tm)
{

E
m∏
k=1

n∑
i=1

1|ξi|>tk

}1/2

dt1 · · · dtm

≤ Km

ˆ
Rm

≥0

A2,n (t1, . . . , tm)
 ∑

1≤i1,...,im≤n

m∏
k=1

P (|ξik | > tk)1/m

1/2

dt1 · · · dtm
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= nm/2Km

ˆ
Rm

≥0

A2,n (t1, . . . , tm)
m∏
k=1

P (|ξ1| > tk)1/2m dt1 · · · dtm.

Here

A2,n (t1, . . . , tm) ≡
{

E

[
a2
(

n∑
i=1

1|ξi|>t1 , . . . ,
n∑
i=1

1|ξi|>tm

)]}1/2

→ 0

as long as none of {P (|ξ1| > tk) : 1 ≤ k ≤ m} vanishes. The claim now follows from
dominated convergence theorem.

Corollary 6.2 (de la Peña et al., 1999). Let X(t), t ∈ T , be a (weak) Gaussian or
Rademacher chaos process of degree m and let

dX(s, t) :=
[
E(X(t) −X(s))2

]1/2
, s, t ∈ T.

If ˆ D

0
(logN (T, dX , ε))m/2 dε < ∞.

Then there is a version of X, which we keep denoting as X, with almost all of its sample
paths in Cu (T, dX) and such that

∥∥∥∥∥sup
t∈T

|X(t)|
∥∥∥∥∥
ψ2/m

≤ ∥X (t0)∥ψ2
+K

ˆ D

0
(log (N (T, dX , ε)))m/2 dε,

and ∥∥∥∥∥∥∥ sup
dX(s,t)≤δ
s.t∈T

|X(t) −X(s)|

∥∥∥∥∥∥∥
ψ2/m

≤ K

ˆ δ

0
(log (N (T, dX , ε)))m/2 dε,

for all 0 < δ ≤ D, where K is a universal constant and D is the diameter of T for the
pseudodistance dX and ψ2 defined in the last reference. In fact, every separable version of
X satisfies these properties.

Theorem 6.3 (Dudley, 1990). For any random elements Yn with values in a metric space
(S, d), where Y is measurable and has separable range, the following are equivalent:

1. Yn converge in law to Y .

2. dBL (Yn, Y ) → 0 as n → ∞.
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Chapter 6
Weak Convergence of the Conditional
U -processes for Locally Stationary
Functional Time Series

This chapter develops the content of a submitted article with the required
modifications to fit this thesis manuscript.

In recent years, the direction has turned to non-stationary time series. Here the
situation is more complicated: it is often unclear how to set down a meaningful
asymptotic for non-stationary processes. For this reason, the theory of locally
stationary processes arose, and it is based on infill asymptotics created from
non-parametric statistics. The current chapter aims to develop a framework
for inference of locally stationary functional time series based on the so-called
conditional U -statistics introduced by W. Stute [Ann. Probab. 19 (1991) 812–
825], and may be viewed as a generalization of the Nadaraya-Watson regression
function estimates. In this chapter, we are mainly interested in establishing
weak convergence of conditional U -processes in the locally stationary functional
mixing data framework. More precisely, we investigate the weak convergence
of conditional U -processes when the explicative variable is functional. We treat
the weak convergence when the class of functions is bounded or unbounded,
satisfying some moment conditions. These results are established under fairly
general structural conditions on the classes of functions and the underlying
models. The theoretical results established in this chapter are (or will be)
critical tools for further functional data analysis developments.

Objective
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Chapter 6. Conditional U -statistics

1 Introduction

Historically, the first asymptotic results of U -statistics for the case of independent and
identically distributed random variables were provided by Halmos, 1946, v. Mises, 1947
and Hoeffding, 1948, among others. While for the asymptotic results under the weak
dependency assumptions, we may refer to Borovkova et al., 2001, in Denker et al., 1983
or more recently in Leucht, 2012 and more broadly in Leucht et al., 2013, and Bouzebda
et al., 2019b, 2020. For an excellent reference resources for U -statistics and U -processes,
the reader concerned may refer to A. J. Lee, 1990, Koroljuk et al., 1994, Borovskikh, 1996,
Arcones et al., 1993, Arcones, Chen, et al., 1994 and Arcones et al., 1995. A profound
insight into the theory of U -processes is given by de la Peña et al., 1999. They have an
even more pivotal role in developing the theory of U -processes by following patterns from
the theory of empirical process and adding new techniques such as decoupling inequal-
ity and randomization. U -processes are powerful tools for a broad range of statistical
applications, such as testing for qualitative features of functions in nonparametric statis-
tics (see Abrevaya et al., 2005, Ghosal et al., 2000, S. Lee et al., 2009), cross-validation
for density estimation (see Nolan et al., 1987), and establishing limiting distributions of
M-estimators (see, e.g., Arcones et al., 1993, de la Peña et al., 1999, Sherman, 1993,
Sherman, 1994). In a wide variety of problems that received a good deal of attention in
the machine learning literature and ranging from clustering to image recognition through
ranking or learning on graphs, natural estimates of the risk are not basic sample means
but take the form U -statistics, refer to Clémençon et al., 2016. The ranking problem
can be considered a pairwise classification and the empirical ranking error of any given
prediction rule is a U -statistic of order 2, refer to Clémençon et al., 2008, just like the
within-cluster point scatter in cluster analysis, considered in Clémençon, 2014, or empir-
ical performance measures in metric learning, for instance, refer to Cao et al., 2016. For
the U -statistics with random kernels of diverging orders we refer to Frees, 1989, Rempala
et al., 1999, C. Heilig et al., 2001 and Y. Song et al., 2019. Infinite-order U -statistics are
useful tools for constructing simultaneous prediction intervals that quantify the uncer-
tainty of ensemble methods such as subbagging and random forests; for more details on
the subject, refer to Peng et al., 2022. The MeanNN approach estimation for differential
entropy introduced by Faivishevsky et al., 2009 is a particular of the U - statistic. Using
U -statistics, Q. Liu et al., 2016 proposed a new test statistic for goodness-of-fit tests.
Clémençon, 2014 defined a measure by U -statistics to quantify the clustering quality of a
partition. Cybis et al., 2018 have explored a model-free approach for clustering and clas-
sification of genetic data based on U -statistics that leads to alternative ways of looking
at these problems. Cybis et al., 2018 were motivated by the fact that the U -statistics are
versatile enough to be applied to a wide variety of genetic problems and adaptable enough
to consider the specificities of different data types. Lim et al., 2013 proposed the use of
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the U -statistics, in a natural way, for analyzing random compressed sensing matrices in
the non-asymptotic regime.

Stute, 1991 introduced a class of estimators for r(m)(φ, t), called conditional U -statistics,
which may be viewed as a generalization of the Nadaraya-Watson (Nadaraja, 1964-
Watson, 1964) estimates of a regression function. Nonparametric density (Akaike, 1954,
Rosenblatt, 1956 and Parzen, 1962) and regression function estimation has been the sub-
ject of intense investigation by both statisticians and probabilistic for many years, and this
has guided the development of a large variety of methods. Kernel nonparametric func-
tion estimation methods have long attracted a great deal of attention. For good sources
of references to the research literature in this area, along with statistical applications,
consult B. W. Silverman, 1986, Nadaraya, 1989, Härdle, 1990, Wand et al., 1995, Egger-
mont et al., 2001, Devroye et al., 2001 and the references therein. In the present work,
we will investigate problems related to the nonparametric conditional U -statistics. For
the reader’s convenience, we first introduce Stute’s estimators. Let us consider a regular
sequence of random elements {(Xi, Yi), i ∈ N∗} with ,Xi ∈ Rd and Yi ∈ Y some polish
space and N∗ = N\{0}. Let φ : Y m → R be a measurable function. In this chapter, we
are primarily concerned with the estimation of the conditional expectation or regression
function :

r(m)(φ, t) = E (φ(Y1, . . . , Ym) | (X1, . . . ,Xm) = t) , for t ∈ Rdm, (1.1)

whenever it exists, i.e.,
E (|φ(Y1, . . . , Ym)|) < ∞.

We now introduce a kernel function K : Rd → R with support contained in [−B,B]d,
B > 0, satisfying :

sup
x∈Rd

|K(x)| =: κ < ∞ and
ˆ
K(x)dx = 1. (1.2)

Stute, 1991 introduced a class of estimators for r(m)(φ, t), called conditional U -statistics,
which is defined for each t ∈ Rdm to be :

r̂(m)
n (φ, t;hn) =

∑
(i1,...,im)∈Im

n

φ(Yi1 , . . . , Yim)K
(t1 − Xi1

hn

)
· · ·K

(tm − Xim

hn

)
∑

(i1,...,im)∈Im
n

K
(t1 − Xi1

hn

)
· · ·K

(tm − Xim

hn

) , (1.3)

where
Imn = {i = (i1, . . . , im) : 1 ≤ ij ≤ n and ij ̸= ir if j ̸= r} ,

is the set of all m-tuples of different integers between 1 and n and {hn}n≥1 is a sequence
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of positive constants converging to zero at the rate nhdmn → ∞. In the particular case
m = 1, the r(m)(φ, t) is reduced to

r(1)(φ, t) = E(φ(Y) | X = t)

and Stute’s estimator becomes the Nadaraya-Watson estimator of r(1)(φ, t). The work
of A. Sen, 1994 was devoted to estimating the rate of the uniform convergence in t of
r̂(m)
n (φ, t;hn) to r(m)(φ, t). In the paper of Prakasa Rao et al., 1995, the limit distributions

of r̂(m)
n (φ, t;hn) are discussed and compared with those obtained by Stute. Harel et al.,

1996 extend the results of Stute, 1991, under appropriate mixing conditions, to weakly
dependent data (see also Basu et al., 2002) and have applied their findings to verify the
Bayes risk consistency of the corresponding discrimination rules in the same spirit as in
Stute, 1994a and Section 5.1. Stute, 1996 proposed symmetrized nearest neighbor condi-
tional U -statistics as alternatives to the usual kernel-type estimators; we may also refer
to Bouzebda et al., 2021. Fu, 2012 had considered the functional conditional U -statistic
and had established its finite-dimensional asymptotic normality. Despite the importance
of the subject, nonparametric estimation of the conditional U -statistics in a functional
data framework has received relatively scant attention. Some recent advances are given
in Bouzebda et al., 2021; Bouzebda and Nemouchi, 2020, where the authors consider
the problems related to the uniform bandwidth consistency in a general setting. Jadhav
et al., 2019 considered the test of independence in the functional framework based on
the Kendall statistics, which can be considered as particular cases of the U -statistics.
Extending the above exploration to conditional empirical U -processes in the functional
setting is practically useful and technically more challenging. There are two perspec-
tives on conditional U -processes: 1) they are infinite-dimensional versions of conditional
U -statistics (with one kernel); 2) they are stochastic processes that are nonlinear general-
izations of conditional empirical processes. Both views are useful in that: 1) statistically,
it is of greater interest to consider a rich class of statistics rather than a single statistic;
2) mathematically, we can borrow the insights from empirical process theory to derive
limit or approximation theorems for U -processes. Significantly, 1) extending U -statistics
to U -processes requires substantial efforts and different techniques; and 2) generalization
from conditional empirical processes to conditional U -processes is highly nontrivial.

Stationarity condition is frequently assumed in time series modeling producing various
models, techniques, research, and methodologies. However, the stationarity assumption
is not always advantageous for modeling Spatio-temporal data, even with detrending and
deseasonalization. Some important time series models are not stationary, frequently seen
in many physical phenomena and economic data. Therefore, the stationarity assumption
is violated, making the classical methods unsuitable. To overcome this problem, R. A.
Silverman, 1957 generalized the notion of the stationary process to the so-called locally
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stationary random process. As its name indicates, this type of process approximates a
nonstationary process by a stationary one locally over short stretches of time. The intu-
itive idea of local stationarity is also discussed in the works of Priestley, 1965, Dahlhaus,
1997, Neumann et al., 1997, Sakiyama et al., 2004, Dahlhaus and Polonik, 2006, among
many others. It is worth mentioning here that the pioneering work of Dahlhaus represents
a solid basis for the inference of locally stationary processes. Besides the generalization
of stationary processes, this new approach removes time-varying parameters. During the
last decade, the theory of empirical processes for locally stationary times series has re-
ceived much attention since the empirical processes theory rocketed in the resolution of
statistical problems and propagated in the time series analysis and regression estimation,
to mention just a few references Dahlhaus et al., 2009, Vogt, 2012, and recently Mayer
et al., 2020 and Phandoidaen et al., 2022. The extension of the above exploration to
conditional empirical U -processes is of great interest from both practical and theoretical
points of view. More precisely, we consider the conditional U -process, indexed by a class
of functions in the functional data setting. We present an excerpt from Aneiros et al.,
2019: ”Functional data analysis (FDA) is a branch of statistics concerned with the anal-
ysis of infinite-dimensional variables such as curves, sets, and images. It has undergone
phenomenal growth over the past 20 years, stimulated in part by major advances in data
collection technology that have brought about the “Big Data” revolution. Often perceived
as a somewhat arcane area of research at the turn of the century, FDA is now one of
the most active and relevant fields of investigation in data science.” For an introduction
to the FDA, the reader is referred to the books of Ramsay et al., 2002, Ferraty et al.,
2006. These references provide basic analysis methods and various case studies in sev-
eral areas, including criminology, economics, archaeology, and neurophysiology. It should
be noted that the extension of probability theory to random variables taking values in
normed spaces (e.g., Banach and Hilbert spaces), including extensions of certain classical
asymptotic limit theorems, predates the recent literature on functional data; the reader
is referred to the books Araujo et al., 1980. Gasser et al., 1998 have considered density
and mode estimation for data-taking values in a normed vector space. In the context of
regression estimation, nonparametric models were considered by Ferraty et al., 2006; for
recent references, see Mohammedi et al., 2021 and Almanjahie, Bouzebda, Kaid, et al.,
2022a. We may refer also to Bosq, 2000, Horváth et al., 2012, Ling et al., 2018. Recently,
modern empirical process theory was used to treat functional data. Ferraty et al., 2010
provided the uniform consistency rates of some functionals of the conditional distribution,
including the regression function, the conditional cumulative distribution, and the con-
ditional density. Kara-Zaitri et al., 2017 also gave consistency rates for some functional
nonparametric models, including the regression function, the conditional distribution, the
conditional density, and the conditional hazard function, uniformly in bandwidth (UIB
consistency). Bouzebda, 2016 provide several limiting law results for the conditional
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model in the functional setting for ergodic data. One can refer to recent advances to
Bouzebda and Chaouch, 2022 and Almanjahie, Bouzebda, Chikr Elmezouar, et al., 2022.

The main focus of this chapter is to consider a general framework of the conditional
U -process of arbitrary fixed order indexed by a class of functions in a nonparametric frame-
work. More precisely, we consider the conditional U -process in the setting of functional
covariate by taking into account a possible nonstationary behavior of the functional time
series. The main aim of the present work is to provide a first full theoretical investigation
in this setting. This requires the effective application of large sample theory techniques,
which were developed for the empirical processes and U -empirical processes.

The organization of this chapter is as follows. In Section 2, we describe our frame-
work and provide the necessary definitions and some explanations together with technical
assumptions. Sections 3 and 4 are devoted to the main results. In particular, Section
3 gives the results concerning the rate of convergence where we recall the instrumental
tool of the Hoeffding decomposition. Section 4 contains weak convergence results. Some
applications are given in Section 5.We provide all the proofs in Section 6. Finally, some
technical properties and lemmas are given in Appendix 6.

2 Background and preliminaries

2.1 Notations

Throughout the article, we write an ≲ bn if there exists a constant C independent of n
whose numeric value may change from line to line, unless otherwise specified, such that
an ≤ Cbn for all n, and an ≪ bn if an/bn → 0 as n → ∞. For all n, if an ≲ bn and
bn ≲ bn, we will write an ∼ bn. We will also denote (i1, . . . , im) by i and (i1/n, . . . , im/n)
by i/n. For any c, d ∈ R, we write c∨d = max{c, d} and c∧d = min{c, d}. ⌊a⌋ will denote
the integer part of a number. For m < n two positive integer, let Cn

m = n!
(n−m)!m! . Let

Imn := {i = (i1, . . . , im) : 1 ≤ ij ≤ n and ij ̸= ir if j ̸= r} , is the set of all m-tuples
of different integers between 1 and n.

2.2 Model

Let {Yi,n, Xi,n}ni=1 be stochastic processes, where Yi,n is in some space Y and Xi,n takes
values in some abstract space H . We will assume that H a semi-metric vector space
with semi-metric d(·, ·)1, while in most applications, this space would be Hilbert or Banach
space with d(u, v) = ∥u−v∥, for all u and v ∈ H . Let φ(·) be any function of k-variables
(the U -kernel) such that φ(Y1, . . . , Ym) is integrable. For x = (x1, . . . , xm) ∈ H m, define

1A semi-metric (sometimes called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some
x1 ̸= x2.
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the regression functional parameter

r(m)(φ, i
n
,x) := E (φ(Y1, . . . , Ym) | X1 = x1, . . . , Xm = xm) ; i = (1, . . . ,m) (2.1)

In this study, we consider the following model

φ(Yi,n) = r(m)
(
φ,

i
n
,Xi,n

)
+ σ

( i
n
,Xi,n

)
εi, i = (i1, · · · , im); 1 ≤ ij ≤ n, (2.2)

where {εi}i∈Z is a sequence of independent and identically distributed random variables,
independent of {Xi,n}ni=1. We denote σ

(
i
n
, Xi,n

)
εi by εi,n. We also assume that {Xi,n} is

a locally stationary functional time series. The regression function r(m)(φ, ·) is allowed to
change smoothly over time, depending on a rescaled quantity i/n not on the point i ( i
usually represent the time in time series framework).

2.3 Local stationarity

We were considering non-stationary processes with dynamics that change slowly over
time and may thus be behaved as stationarity at a local level. So the process {Xi,n}
can be approximated in a stochastic sense by a stationary process {X(u)

i,n } around each
rescaled time point u, that is for those i where i/n−u is small. As we are interested in the
functional data, we call a functional time series locally stationary if a stationary functional
time series can locally approximate it. A standard definition of local stationarity will be
given in the following.

Definition 2.1 (Local stationarity.). A sequence of stochastic processes, indexed by n ∈ N

and taking values in H , {Xi,n} is locally stationary if for all rescaled times u ∈ [0, 1],
there exists an associated H −valued process {X(u)

i } strictly stationary such that

d
(
Xi,n, X

(u)
i

)
≤
(∣∣∣∣ in − u

∣∣∣∣+ 1
n

)
U

(u)
i,n a.s., (2.3)

for all 1 ≤ i ≤ n, where {U (u)
i,n } is a positive valued process satisfying E[(U (u)

i,n )ρ] < C for
some ρ > 0, C < ∞ that is independent of u, i, and n.

van Delft et al., 2018 give this definition with H is a Hilbert space L2
R[0, 1], and all

real-valued functions are square-integrable with respect to the Lebesgue measure on the
interval [0, 1] with the inner product L2-norm:

∥f∥2 =
√

⟨f, f⟩, ⟨f, g⟩ =
ˆ 1

0
f(t)g(t)dt,

where f, g ∈ L2
R([0, 1]). The authors also give sufficient conditions so that an L2

R([0, 1])-
valued stochastic process {Xi,n} satisfies (2.3) with d(f, g) = ∥f − g∥2 and ρ = 2.
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Remark 2.2. van Delft et al., 2018 generalize the definition of local stationary processes,
given by Dahlhaus, 1996b, to the functional setting in the frequency domain. Under the
following assumptions:

(A1) (i) {εt}t∈Z is a weakly stationary white noise process taking values in H with spectral
representation εt =

´ π
−π e

iωtdZω, where Zω is a 2π-periodic orthogonal increment
process taking values in HC; (ii) the functional process Xt,T with t = 1, . . . , T and
T ∈ N is given by

Xt,T =
ˆ π

−π
eiωtA (T )

t,ω dZω a.e. in H

with transfer operator A (T )
t,ω ∈ Bp and an orthogonal increment process Zω.

(A2) There exists A : [0, 1]×[−π, π] → Sp (HC) with Au,· ∈ Bp and Au,ω being continuous
in u such that for all T ∈ N

sup
ω,t

∥∥∥A (T )
t,ω − A t

T
,ω

∥∥∥
p

= O
( 1
T

)
.

They had proved in van Delft et al., 2018, Proposition 2.2 that:

Proposition 2.3. Suppose that assumptions (A1) and (A2) hold. Then {Xi,n} is a locally
stationary process in H .

2.4 Mixing conditions

Statistical observations are frequently not independent but close to being so. Dependence
can have powerful consequences for statistical inference. Mixing is a term that illustrates
how close a sequence of random variables is to be independent. It may be used to extend
standard findings for independent sequences to weakly dependent or mixing sequences.
The development of the theory of mixing conditions has been motivated by the fact that a
time series seems to have some "asymptotic independence" properties and is used to handle
the analysis and statistical inference of the latter. Let us define the type of dependency
used in this work. Let (Ω,F , P ) be a probability space Let Z1,Z2, . . . be a stationary
sequence of random variables on some probability space (Ω,D ,P) and let σji be the σ-field
generated by Zi, . . . ,Zj, for i, j ⩾ 1. Moreover, for an array {Zi,n : 1 ≤ i ≤ n}, define the
coefficients

β(k) = sup
i,n:1≤i≤n−k

β (σ (Zs,n, 1 ≤ s ≤ i) , σ (Zs,n, i+ k ≤ s ≤ n)) ,

where σ(Z) is the σ-field generated by Z. The array {Zi,n} is said to be β-mixing if
β(k) → 0. Keep in mind that β-mixing implies α-mixing.
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Throughout the sequel, we assume that the sequence of random elements {(Xi,n, Yi,n), i =
1, · · · , n;n ≥ 1} is absolutely regular. The Markov chains, for instance, are β-mixing un-
der the milder Harris recurrence condition if the underlying space is finite [Davydov,
1973]. In the concluding remarks, see Section 4, we give more motivation to the choice of
the regular process rather than the strong mixing processes.

2.5 Kernel estimation

We are interested in estimating the regression function represented in (2.1). The kernel
estimator is defined to be

r̃(m)
n (φ,u,x;hn) =

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

hn

)
K2

(
d(xk, Xik,n)

hn

)}
φ(Yi,n)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

hn

)
K2

(
d(xk, Xik,n)

hn

)} , (2.4)

where K1(·) and K2(·) denote one-dimensional kernel functions. Here, h = hn is a
bandwidth satisfying h → 0 as n → ∞ and φ : Y m −→ R is a symmetric measurable
function belonging to some class of functions Fm. This estimator is a conditional U -
statistic based on the sequence of random variables {Yi,n, Xi,n}ni=1 and of kernel φ×K1 ×
K2. It is well known that this type of statistics has been introduced by Stute, 1991. We
need to introduce some notation to investigate the weak convergence of the conditional
empirical process and the conditional U -process in the functional data setting. Let

Fm = {φ : Y m → R},

denote a point-wise measurable class of real-valued symmetric measurable functions on
Y m with a measurable envelope function :

F (y) ≥ sup
φ∈Fm

|φ(y)|, for y ∈ Y m. (2.5)

For a kernel function K(·), we define the point-wise measurable class of functions, for
1 ≤ m ≤ n

K m :=
{

x 7→
m∏
k=1

K2

(
d(xk, Xk,n)

h

)
, h > 0 and x ∈ H m

}
.

The conditional U -process indexed by FmK m:{
Gn(φ,x) :=

√
nhmϕm(hn)

(
r̃(m)
n (φ,u,x, ;hn) − r(m)(φ,u,x)

)}
FmK m

. (2.6)
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Notice that point-wise measurability is crucial in our setting. In fact, it allows us
to express our claimed results in their usual form under the classical definition of the
probability notion avoiding the abstract notion of outer probability or outer expectation
A. W. van der Vaart et al., 1996.

Remark 2.4. The bandwidth h is the same in each direction to make things easier while
dealing with product kernels. However, the findings may be easily adjusted for the scenario
of non-product kernels and varying bandwidths.

Remark 2.5. Our estimator differs from the classical one in the conditional U-statistics
not only in the type of the sequence {Xi}i but also in the addition of a kernel in the time
direction, so we have smoothness from the direction of the covariate (Xi,n) and form the
time direction, which allows us to cover the characteristic that a regression model varies
over time.

2.6 Small ball probability

One of the technical difficulties in infinite-dimensional spaces is the lack of a universal
reference measure, such as the Lebesgue measure, which causes the non-existence of the
density function of the functional variable. We use the usual “small-ball probability”
notion to overcome this difficulty. Specifically, controlling the concentration of probability
measure of the functional variable on a small ball is done by the function ϕx(·), which is
defined, for a fixed x ∈ H for all r > 0, by

P (X ∈ B(x, r)) =: ϕx(r) > 0, (2.7)

where the abstract space H is equipped with the semi-metric d(·, ·) and

B(x, r) = {y ∈ H : d(x, y) ⩽ r}

is a ball in H with the center x ∈ H and radius r.

2.7 VC-type classes of functions

The asymptotic analysis of functional data is related to some concentration properties
expressed in terms of the small-ball probability notion; when considering a process indexed
by a class of functions, one needs to take into account other topological concepts: metric
entropy, VC-subgraph classes (”VC” for Vapnik and Červonenkis).
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Definition 2.6. Let SE be a subset of a semi-metric space E , a finite set of points
{e1, . . . , eN} ⊂ E is called, for a given ε > 0, a ε-net of SE if :

SE ⊆ ∪N
j=1B(ej, ε).

If Nε(SE ) is the cardinality of the smallest ε-net (the minimal number of open balls of
radius ε) in E , needed to cover SH , then we call Kolmogorov’s entropy (metric entropy)
of the set SE , the quantity

ψSE
(ε) := logNε(SE ).

From its name, one can figure that Kolmogorov(cf. Kolmogorov et al., 1959) introduced
this concept of metric entropy, which was subsequently studied for numerous metric
spaces. This concept was used by Dudley, 1967 to give sufficient conditions for the con-
tinuity of Gaussian processes. It was the basis for striking generalizations of Donsker’s
theorem on the weak convergence of the empirical process. Suppose that BH and SH

are two subsets of the semi-metric space H with Kolmogorov’s entropy (for the radius ε)
ψBH

(ε) and ψSH
(ε) respectively, then the Kolmogorov entropy for the subset BH ×SH

of the semi-metric space H 2 by :

ψBH ×SH
(ε) = ψBH

(ε) + ψSH
(ε).

Hence, mψSH
(ε) is the Kolmogorov entropy of the subset S m

H of the semi-metric space
H m. Noting that if we designate by d the semi-metric on H then, we can define the
semi metric on H m by :

dH m (x, z) := 1
m
d (x1, z1) + · · · + 1

m
d (xm, zm) (2.8)

for
x = (x1, . . . , xm), z = (z1, . . . , zm) ∈ H m.

Notice that the semi-metric plays an essential role in this kind of study. The reader
will find useful discussions about how to choose the semi-metric in Ferraty et al., 2006,
Chapters 3 and 11.

We also need to deal with another topological concept which is VC-subgraph classes.

Definition 2.7. A class of subsets C on a set C is called a VC-class if there exists a
polynomial P (·) such that, for every set of N points in C, the class C picks out at most
P (N) distinct subsets.
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Definition 2.8. A class of functions F is called a VC-subgraph class if the graphs of the
functions in F form a VC-class of sets, that is, if we define the subgraph of a real-valued
function f on S as the following subset Gf on S × R :

Gf = {(s, t) : 0 ≤ t ≤ f(s) or f(s) ≤ t ≤ 0}

the class {Gf : f ∈ F} is a VC-class of sets on S×R. Informally, a VC-class of functions
is characterized by having a polynomial covering number (the minimal number of required
functions to make a covering on the entire class of functions).

A VC-class of functions F with envelope function F have the following entropy property,
for a given 1 ⩽ q < ∞, there are constants a and b such as :

N(ε,F , ∥ · ∥Lq(Q)) ≤ a

(
(QF q)1/q

ε

)b
(2.9)

for any ε > 0 and each probability measure such that QF q < ∞. For instance, see Nolan
et al., 1987, Lemma 22, Dudley, 2014, §4.7. A. W. van der Vaart et al., 1996, Theorem
2.6.7, Kosorok, 2008, §9.1 provide a number of sufficient conditions under which (2.9)
holds, we may refer also to Deheuvels, 2011, §3.2 for further discussions.

2.8 Assumptions

For the reader’s convenience, we have gathered the essential assumptions in the following.

Assumption 1. [Model and distribution assumptions]

i) The process {Xi,n} is locally stationary satisfy that for each time point u ∈ [0, 1],
there exists a stationary process {X(u)

i } such that

d
(
Xi,n, X

(u)
i

)
≤
(∣∣∣∣ in − u

∣∣∣∣+ 1
n

)
U

(u)
i,n a.s.,

with E[(U (u)
i,n )ρ] < C for some ρ > 0, C < ∞

ii) Let B(x, h) be a ball centered at x ∈ H with radius h, defined in Section 2.6, and
let cd < Cd be positive constants. For all u ∈ [0, 1]m,

0 < cdϕ
m(h)f1(x) ≤ P

((
X

(u1)
i1 , . . . , X

(um)
im

)
∈ B(x, h)

)
=: Fu(h; x) ≤ Cdϕ

m(h)f1(x),
(2.10)

where ϕ(0) = 0 and ϕ(u) is absolutely continuous in a neighborhood of the origin,
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f1(x) is a non-negative functional in x ∈ H and

B(x, h) =
m∏
i=1

B(xi, h).

iii) There exist constants Cϕ > 0 and ε0 > 0 such that for any 0 < ε < ε0,
ˆ ε

0
ϕ(u)du > Cϕεϕ(ε). (2.11)

iv) Let ψ(h) → 0 as h → 0, and f2(x) is a non-negative functional in x := (x1, . . . , xm) ∈
H m

sup
i∈Im

n

P
((

(Xi1,n, . . . , Xim,n), (Xi′1,n
, . . . , Xi′m,n)

)
∈ B(x, h) × B(x, h)

)
≤ ψm(h)f2(x).

We will also assume that the ratio ψ(h)/ϕ2(h) is bounded.

Assumption 2. [Kernel assumptions]

i) K1(·) is a symmetric kernel around zero, bounded, and has a compact support, that
is, K1(v) = 0 for all | v |> C1 for some C1 < ∞. Moreover,

ˆ
K1(z)dz = 1

and K1(·) is Lipschitz continuous, that is,

|K1(v1) −K1(v2)| ≤ C2|v1 − v2|

for some C2 < ∞ and all v1, v2 ∈ R.

ii) The kernel K2(·) is non-negative, bounded, and has a compact support in [0, 1] such
that 0 < K2(0) and K2(1) = 0. We can also see K2(·) as an asymmetrical triangle
kernel, that is, K2(x) = (1 − x)1(x∈[0,1]), and K2(·) is Lipschitz continuous, that is,

|K2(v1) −K2(v2)| ≤ C2|v1 − v2|.

Moreover, K ′
2(v) = dK2(v)/dv exists on [0, 1] and for two real constants −∞ <

C ′
1 < C ′

2 < 0, we have:
C ′

2 ≤ K ′
2(v) ≤ C ′

1.
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Assumption 3. [Smoothness]

i) r(m)(u, x) is twice continuously partially differentiable with respect to u. We also
assume that

sup
u1,u2∈[0,1]m

|r(m)(u1,x) − r(m)(u2, z)| ≤ cm (dH m (x, z)α + ∥u1 − u2∥α) (2.12)

for some cm > 0 and α > 0 and the semi-metric dH m (x, z) is defined on H m by:

dH m (x, z) := 1
m
d (x1, z1) + · · · + 1

m
d (xm, zm)

for x = (x1, . . . , xm), z = (z1, . . . , zm) ∈ H m.

ii) σ : [0, 1] × H m → R is bounded by some constant Cσ < ∞ from above and by some
constant cσ > 0 from below, that is, 0 < cσ ≤ σ(u,x) ≤ Cσ < ∞ for all u and x.

iii) σ(·, ·) is Lipschitz continuous with respect to u.

iv) supu∈[0,1]m supz:d(x,z)≤h|σ(u,x) − σ(u, z)| = o(1) as h → 0.

Let Wi,φ,n be an array of one-dimensional random variables. In this study, this array will
be equal to Wi,φ,n = 1 and Wi,φ,n = εi,n.

Assumption 4. [Mixing].

i) It holds that supx∈H m E|Wi,n|ζ ≤ C and supx∈H m E
[
|Wi,n|ζ | Xi,n = x

]
≤ C for

ζ > 2 and C < ∞.

ii) The β-mixing coefficients of the array {Xi,n,Wi,n} satisfy β(k) ≤ Ak−γ for some
A > 0 and γ > 2. We also assume that δ + 1 < γ(1 − 2

ν
) for some ν > 2 and

δ > 1 − 2
ν
, and

h2(1∧α)−1

ϕ(h)an +
∞∑

k=an

kδ(β(k))1− 2
ν

 → 0, (2.13)

as n → ∞, where an = [(ϕ(h))−(1− 2
ν

)/δ] and for all α > 0.

iii) Let αn =
√

logn
nhmϕ(h) . As n → ∞, (logn)

−m+γ+1
2 +ζ0(γ+1)

n
−m+γ+1

2 −1− γ+1
ζ h

m+γ+1
2 ϕ(h)

−m+γ+1
2

→ 0 for some

ζ0 > 0.

iv) nh2, nhϕ(h) → ∞,

Assumption 5 (Blocking assumptions). There exists a sequence of positive integers {vn}
satisfying vn → ∞, vn = o(

√
nhϕ(h)) and

√
n

hϕ(h)β(vn) → ∞ as n → ∞.
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Assumption 6. [Class of functions assumptions]
The classes of functions K m and Fm are such that :

i) The class of functions Fm is bounded and its envelope function satisfies for some
0 < M < ∞ :

F (y) ≤ M, y ∈ Y m.

ii) The class of functions FmK m is supposed to be of VC-type with envelope function
previously defined. Hence, there are two finite constants b and ν such that:

N
(
ε,FmK m, ∥ · ∥L2(Q)

)
≤
(
b∥Fκm∥L2(Q)

ε

)ν

for any ε > 0 and each probability measure such that Q(F )2 < ∞.

iii) The class of functions Fm is unbounded and its envelope function satisfies for some
p > 2 :

θp := sup
t∈S m

H

E (F p(Y) | x = x) < ∞.

iv) The metric entropy of the class FK satisfies, for some 2 < p < ∞ :
ˆ ∞

0
(logN(u,FK , ∥ · ∥1))

1
2du < ∞,

ˆ ∞

0
(logN(u,FK , ∥ · ∥2))

1
2du < ∞,

ˆ ∞

0
(logN(u,FK , ∥ · ∥p))

1
2du < ∞.

2.9 Comments

Some comments on the assumptions are in order. Most of these assumptions are inspired
by Gasser et al., 1998, Masry, 2005, Ferraty et al., 2006, Vogt, 2012 and Kurisu, 2022a. In
Assumption 1, we begin by formalizing the property of Xi to be locally stationary, and we
continue by some conditions on the distribution behavior of the variables. Equation (2.10)
controls the behavior of the small ball probability around zero and is the usual condition
on the small ball probability. This approximately shows that the small ball probability can
be written approximately as the product of two independent functions ϕm(·) and f1(·), for
instance, for m = 1, refer to Mayer-Wolf et al., 1993 for the diffusion process, Bogachev,
1998 for a Gaussian measure, W. V. Li et al., 2001 for a general Gaussian process and
these assumptions have been employed by Masry, 2005 for strongly mixing processes. For
example, the function ϕ(·) can be expressed as ϕ(ε) = εδ exp(−C/εa) with δ ≥ 0 and
a ≥ 0, and it corresponds to the Ornstein–Uhlenbeck and general diffusion processes (for
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such processes, a = 2 and δ = 0) and the fractal processes (for such processes, δ > 0 and
a = 0). We refer to the paper of Ferraty et al., 2007 for other examples. Assumptions 2 are
the kernel assumptions. We can see that the kernel K2(·) is a symmetric one belonging to
the kernel’s family of type II, which contains continuous kernels (triangle, quadratic...). It
also assumes that the kernels are compactly supported on [0, 1] to obtain an expression for
the asymptotic variance. The Lipschtiz type assumptions on K2(·) and σ(·, ·) (Assumption
2ii) and Assumption 3iii)) are essential to obtain the rate of convergence. Assumption 3
is an essential one, where it requires limiting the growth of r(m)(·, ·) and σ(·, ·). The latter
is a restriction on the function r(m)(·, ·), σ(·, ·) and their derivations by preventing them
from growing too fast outside a large bound. Assumption 4 ii) is a standard assumption
of mixing condition. Assumption 4 iii) and iv) are technical conditions to obtain the
desired results. Assumption 6 asserts that we deal with a class of functions satisfying
some entropy conditions. Part ii) and iii) of these assumptions are both connected to the
class of functions, but the first one declares that this class is bounded. Nevertheless, as
we are interested in demonstrating the functional central limit theorem for conditional
U -processes indexed by unbounded class of function, part iii) substitutes the first one in
this case.

All these general assumptions are sufficiently weak relative to the different objects
involved in the statement of our main results. They cover and exploit the principal axes
of this contribution, which are the topological structure of the functional variables, the
probability measure in this functional space, the measurability concept on the class of
function, and the uniformity controlled by the entropy properties.

Remark 2.9. Note that the Assumption 6 iii) may be replaced by more general hypotheses
upon moments of Y as in Deheuvels, 2011. That is

iii)′′ We denote by {M (x) : x ≥ 0} a nonnegative continuous function, increasing on
[0,∞), and such that, for some s > 2, ultimately as x ↑ ∞,

x−sM (x) ↓; x−1M (x) ↑ . (2.14)

For each t ≥ M (0), we define M inv(t) ≥ 0 by M (M inv(t)) = t. We assume further
that:

E(M (| F (Y ) |)) < ∞.

The following choices of M (·) are of particular interest:

(i) M (x) = xp for some p > 2;

(ii) M (x) = exp(sx) for some s > 0.
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3 Uniform convergence rates for kernel estimators

Before expressing the asymptotic behavior of our estimator represented in (2.4), we will
generalize the study to a U -statistic estimator defined by:

ψ̂(u,x, φ) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
Wi,φ,n, (3.1)

where Wi,φ,n is an array of one-dimensional random variables. In this study, we use the
results with Wi,φ,n = 1 and Wi,φ,n = εi,n.

3.1 Hoeffding’s decomposition

Note ψ̂(u,x, φ) is a classical U -statistic with a kernel depending on n. We define

ξk := 1
h
K1

(
uk − k/n

h

)
,

H(Z1, . . . , Zm) :=
m∏
k=1

1
ϕ(h)K2

(
d(xk, Xk,n)

h

)
Wi,φ,n,

thus, the U -statistic in (3.1) can be viewed as a weighted U -statistic of degree m:

ψ̂(u,x, φ) = (n−m)!
n!

∑
i∈Im

n

ξi1 . . . ξimH(Zi1 , . . . , Zim). (3.2)

We can write Hoeffding’s decomposition in this case. If we will not assume symmetry for
Wi,φ,n or H, we must define:

• The expectation of H(Zi1 , . . . , Zim):

θ(i) := EH(Zi1 , . . . , Zim) =
ˆ
Wi,φ,n

m∏
k=1

1
ϕ(h)K2

(
d(xk, νk,n)

h

)
dPi(zi). (3.3)

• For all ℓ ∈ {1, . . . ,m} the position of the argument, construct the function πℓ such
that:

πℓ(z; z1, . . . , zm−1) := (z1, . . . , zℓ−1, z, zℓ, . . . , zm−1). (3.4)

• Define:

H(ℓ) (z; z1, . . . , zm−1) := H {πℓ (z; z1, . . . , zm−1)} (3.5)
θ(ℓ) (i; i1, i2, . . . , im−1) := θ {πℓ (i; i1, i2, . . . , im−1)} . (3.6)
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Hence, the first order expansion of H(·) will be seen as:

H̃(ℓ) (z) :=E
(
H(ℓ) (z, Z1, . . . , Zm−1)

)
(3.7)

=
ˆ
W(1,...,ℓ−1,i,ℓ,...,m−1)

m−1∏
k=1
k ̸=i

1
ϕ(h)K2

(
d(xk, νk)

h

)
× 1
ϕ(h)K2

(
d(xi, νi)

h

)

P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1)

:= 1
ϕ(h)K2

(
d(xi, x)
h

)
× w ×

ˆ
W(1,...,ℓ−1,ℓ,...,m−1)

m−1∏
k=1
k ̸=i

1
ϕ(h)K2

(
d(xk, νk)

h

)

P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1),

with P is the underlying probability measure, and define

f
(ℓ)
i,i1,...,im−1 :=

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1

(
H̃(ℓ) (z) − θ(ℓ) (i; i1, . . . , im−1)

)
. (3.8)

Then, the first-order projection can be defined as:

Ĥ1,i(u,x, φ) := (n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

f
(ℓ)
i,i1,...,im−1 , (3.9)

where

Im−1
n−1 (−i) := {1 ≤ i1 < · · · < im−1 ≤ n and ij ̸= i for all j ∈ {1, . . . ,m− 1}} .

For the remainder terms, we denote by i\iℓ := (i1, . . . , il−1, il+1, . . . , im) and for ℓ ∈
{1, . . . ,m}, let

H2,i(z) := H(z) −
m∑
l=1

H̃
(ℓ)
i\iℓ(zℓ) + (m− 1)θ(i), (3.10)

where
H̃

(ℓ)
i\iℓ(zℓ) = E (H (Z1, . . . , Zℓ−1, z, Zℓ+1Zm−1)) ,

defined in (3.7), this projection derive us to the following remainder term:

ψ̂2,i(u,x, φ) := (n−m)!
(n)!

∑
i∈Im

n

ξi1 · · · ξimH2,i(z). (3.11)

Finally, using Equation (3.9) and Equation (3.11), and under conditions that :

E
(
Ĥ1,i(u, X, φ)

)
= 0, (3.12)

E (H2,i(Z | Zk)) = 0 a.s., (3.13)
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we get the Hoeffding, 1948 decomposition:

ψ̂(u,x, φ) − E
(
ψ̂(u,x, φ)

)
= 1

n

n∑
i=1

Ĥ1,i(u,x, φ) + ψ̂2,i(u,x, φ)

:= ψ̂1,i(u,x, φ) + ψ̂2,i(u,x, φ).

For more details, the interested reader can refer to F. Han et al., 2018, Lemma 2.2.

3.2 Uniform convergence rate

We start by giving the following general result.

Proposition 3.1. Let FmK m be a measurable VC-subgraph class of functions such as
Assumption 6 is satisfied and assume that Assumptions 1, 2, 3, 4 are also satisfied. Then
the following result holds

sup
FmK m

sup
x∈H m

sup
u∈[0,1]m

∣∣∣ψ̂(u,x, φ) − E[ψ̂(u,x, φ)]
∣∣∣ = OP

(√
log n

nhmϕm(h)

)
.

Based on the previous proposition, the uniform convergence rate of the kernel estimator
r̃(m)
n (φ,u,x;hn) can be investigated. It should be essential to mention that when m = 1

and fixed function φ, we obtain the same results as the pointwise convergence rate of the
regression function of a strictly stationary functional time series in Ferraty et al., 2006.
The following theorem (2.4) will generalize the uniform convergence rate to the estimator.

Theorem 3.1

Let FmK m be a measurable VC-subgraph class of functions such as Assumption 6
is satisfied and assume that Assumptions 1, 2, 3 and 4 are satisfied. Then we have

sup
FmK m

sup
x∈H m

sup
u∈[C1h,1−C1h]m

∣∣∣r̃(m)
n (φ,u,x;hn) − r(m)(φ,u,x)

∣∣∣
= OP

(√
log n

nhmϕm(h) + h2m∧α
)
. (3.14)

4 Weak convergence for kernel estimators

In this section, we are interested in studying the weak convergence of the conditional
U -processes under absolute regular observations. Observe that

r̃(m)
n (φ,u,x;hn) − r(m)(φ,u,x) = 1

r̃1(φ,u,x)
(
ĝ1(u,x) + ĝ2(u,x) − r(m)(φ,x,u)r̃1(φ,u,x)

)
= 1

r̃1(φ,u,x)
(
ĝ1(u,x) + ĝB(u,x)

)
, (4.1)
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where

r̃1(φ,u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
,

ĝ1(u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
Wi,φ,n,

ĝ2(u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
r(m)

( i
n
,Xi,n

)
.

Under the same assumption in Theorem 3.1, we will show in the next theorem that
V ar(ĝB(u,x)) = o

(
1

nhmϕm(h)

)
and 1/r̃1(φ,u,x) = OP(1). Then, we have

r̃(m)
n (φ,u,x;hn) − r(m)(φ,u,x) = ĝ1(u,x)

r̃1(φ,u,x) +Bn(u,x) + oP

(√
1

nhmϕm(h)

)
,

where Bn(u,x) = E[ĝB(u,x)]/E[r̃1(φ,u,x)] is the “bias” term and ĝ1(u,x)
r̃1(φ,u,x) is the “vari-

ance” term. Let us define, for φ1, φ2 ∈ Fm

σ(φ1, φ2) = lim
n→∞

E(
√
nhmϕm(h)(r̃(m)

n (φ1,u,x;hn) − r(m)(φ1,u,x)

×
√
nhmϕm(h)(r̃(m)

n (φ2,u,x;hn) − r(m)(φ2,u,x)). (4.2)

In the following, we would set K2(·) as the asymmetrical triangle kernel, that is, K2(x) =
(1 − x)1(x∈[0,1]) to simplify the proof. The main results of this section are given in the
following theorems.

Theorem 4.1

Let FmK m be a measurable VC-subgraph class of functions, and assume that all
the assumptions of Section 2.8 are satisfied for both caseWi,φ,n = 1 andWi,φ,n = εi,n.
Then as n → ∞, for any x ∈ H m and u ∈ [0, 1]m, the U-process

√
nhmϕm(h)(r̃(m)

n (φ,u,x;hn) − r(m)(φ,u,x) −Bn(u,x))

converges to a Gaussian process Gn over FmK m, whose simple paths are bounded
and informally continuous with respect to ∥ · ∥2−norm with covariance function
given in (4.2).

If we want to investigate the weak convergence of our estimator in the standard way,
i.e., using the well-known steps of Hoeffding decomposition and then finite-dimensional
convergence and the equicontinuity, we can follow the next theorem. In the proof of the
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following theorem, we will represent the conditional U -process in terms of the U -process
based on a stationary sequence that will be proved to converge to some Gaussian process.

Theorem 4.2

Let FmK m be a measurable VC-subgraph class of functions, and assume that all
the assumptions of Section 2.8 are satisfied. Then as n → ∞, for any x ∈ H m and
u ∈ [0, 1]m: √

nhmϕm(h)
(
r̃(m)
n (φ,u,x;hn) − r(m)(φ,u,x)

)
converges in law to a Gaussian process {Gn(ψ) : ψ ∈ FmK m} that admits a version
with uniformly bounded and uniformly continuous paths with respect to ∥·∥2−norm
with covariance function given in (4.2).

5 Applications

Although only the following examples will be given here, they stand as archetypes for a
variety of problems that can be investigated in a similar way.

5.1 Discrimination

Now, we apply the results to the problem of discrimination described in Section 3 of Stute,
1994b, refer to also to Stute, 1994a. We will use a similar notation and setting. Let φ(·)
be any function taking at most finitely many values, say 1, . . . ,M . The sets

Aj = {(y1, . . . , ym) : φ(y1, . . . , ym) = j} , 1 ≤ j ≤ M,

then yield a partition of the feature space. Predicting the value of φ(Y1, . . . , Ym) is tan-
tamount to predicting the set in the partition to which (Y1, . . . , Ym) belongs. For any
discrimination rule g, we have

P(g(X) = φ(Y)) ≤
M∑
j=1

ˆ
{x:g(x)=j}

maxMj(x)dP(x),

where
Mj(x) = P(φ(Y) = j | X = x), x ∈ H m.

The above inequality becomes equality if

g0(x) = arg max
1≤j≤M

Mj(x).

219



Chapter 6. Conditional U -statistics

g0(·) is called the Bayes rule, and the pertaining probability of error

L∗ = 1 − P(g0(X) = φ(Y)) = 1 − E
{

max
1≤j≤M

Mj(x)
}

is called the Bayes risk. Each of the above unknown function Mj’s can be consistently
estimated by one of the methods discussed in the preceding sections. Let, for 1 ≤ j ≤ M ,

Mj
n(x) =

∑
i∈Im

n

1{φ(Yi1 , . . . , Yim) = j}
m∏
k=1

{
K1

(
u− ik/n

h

)
K2

(
d(x,Xik,n)

h

)}
∑

i∈Im
n

m∏
k=1

{
K1

(
u− ik/n

h

)
K2

(
d(x,Xik,n)

h

)} ,

Set
g0,n(x) = arg max

1≤j≤M
Mj

n(x).

Let us introduce
L∗
n = P(g0,n(X) ̸= φ(Y)).

Then, one can show that the discrimination rule g0,n(·) is asymptotically Bayes’ risk
consistent

L∗
n → L∗.

This follows from the apparent relation:

| L∗ − L∗
n |≤ 2E

[
max

1≤j≤M
| Mj

n(X) − Mj(X) |
]
.

5.2 Metric learning

Metric learning aims at adapting the metric to the data and has attracted much interest
in recent years; for instance, see Bellet et al., 2013 and Clémençon et al., 2016, for
an account of metric learning and its applications. This is motivated by a variety of
applications ranging from computer vision to information retrieval through bioinformatics.
To illustrate the usefulness of this concept, we present the metric learning problem for
supervised classification as in Clémençon et al., 2016. Let us consider independent copies
(X1, Y1) , . . . , (Xn, Yn) of a H ×Y valued random couple (X, Y ), where H is some feature
space and Y = {1, . . . , C}, with C ≥ 2 say, a finite set of labels. Let D be a set of distance
measures D : H × H → R+. Intuitively, the aim of metric learning in this setting is to
find a metric under which pairs of points with the same label are close to each other, and
those with different labels are far away. The natural way to define the risk of a metric D
is

R(D) = E [ϕ ((1 −D (X,X ′) · (21 {Y = Y ′} − 1))] , (5.1)
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where ϕ(u) is a convex loss function upper bounding the indicator function 1{u ≥ 0}, for
instance, the hinge loss ϕ(u) = max(0, 1 −u). To estimate R(D), we consider the natural
empirical estimator

Rn(D) = 2
n(n− 1)

∑
1≤i<j≤n

ϕ ((D (Xi, Xj) − 1) · (2π {Yi = Yj} − 1)) , (5.2)

which is one sample U -statistic of degree two with kernel given by:

φD ((x, y), (x′, y′)) = ϕ ((D (x, x′) − 1) · (21 {y = y′} − 1)) .

The convergence to (5.1) of a minimizer of (5.2) has been studied in the frameworks of
algorithmic stability (Jin et al., 2009), algorithmic robustness (Bellet et al., 2015) and
based on the theory of U -processes under appropriate regularization (Cao et al., 2016).

6 Mathematical Developments

This section is devoted to the proof of our results. The previously presented notation
continues to be used in the following. We begin this section with the following lemma
before providing the proofs of the main results.

Lemma 6.1. Let K2(·) denote one dimensional kernel function satisfying Assumption 2
part i), if Assumption 1, then:

i) E

∣∣∣∣∣∣
m∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣ ≲ mϕm−1(h)
nh

. (6.1)

ii) E

[
m∏
k=1

K2

(
d(xk, Xik,n)

h

)]
≲
mϕm−1(h)

nh
+ ϕm(h). (6.2)

iii) E

 m∏
k=1

K2
2

d(xk, X(ik/n)
ik,n

)
h

 ∼ ϕm(h). (6.3)

The proof of this lemma is given below.

Proof of Lemma 6.1 For the first inequality i), by assuming that the kernel function
K2(·) is an asymmetrical triangle kernel, that is, K2(x) = (1 − x)1(x∈[0,1]), we have

E

∣∣∣∣∣∣
m∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
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= E

∣∣∣∣∣∣
m∑
k=1

K2

(
d(xk, Xik,n)

h

)
−K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
×
∣∣∣∣∣
k−1∏
i=1

K2

(
d(xk, Xik,n)

h

)∣∣∣∣∣×
∣∣∣∣∣∣

m∏
j=k+1

K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣


(Using a telescoping argument)

≤

E

∣∣∣∣∣∣
m∑
k=1

K2

(
d(xk, Xik,n)

h

)
−K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
3


1/3

×

E

∣∣∣∣∣
k−1∏
i=1

K2

(
d(xk, Xik,n)

h

)∣∣∣∣∣
3

1/3

×

E

∣∣∣∣∣∣
m∏

j=k+1
K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
3


1/3

(By Hölder’s inequality)

≤

E

 m∑
k=1

∣∣∣∣∣∣
K2

(
d(xk, Xik,n)

h

)
−K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
3


1/3

×


k−1∏
i=1

E

∣∣∣∣∣K2

(
d(xk, Xik,n)

h

)∣∣∣∣∣
3pi
1/pi


1/3

×


m∏

j=k+1
E


∣∣∣∣∣∣K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
3qj


1/qj


1/3

(By Hölder’s inequality)

≲

{
m∑
k=1

E
∣∣∣∣ 1
nh
U

(ik/n)
ik,n

∣∣∣∣3
}1/3

×
{
k−1∏
i=1

(
E
∣∣∣1{d(xk,Xik,n)≤h}

∣∣∣3pi
)1/pi

×
m∏

j=k+1

(
E
∣∣∣∣1{d(xk,X

(ik/n)
ik,n )≤h}

∣∣∣∣3qj
)1/qj


1/3

(By Assumption 1)

≲

{
m∑
k=1

1
n3h3 E

∣∣∣U (ik/n)
ik,n

∣∣∣3}1/3

×


k−1∏
i=1

(
F 3pi(h, xk)

)1/pi
m∏

j=k+1

(
F

3qj

ik/n
(h, xk)

)1/qj


1/3

≲
1
nh

{
m∑
k=1

E
∣∣∣U (ik/n)

ik,n

∣∣∣3}1/3

×


k−1∏
i=1

Cdϕ
3(h)f 3

1 (xk) ×
m∏

j=k+1
Cdϕ(h)3f 3

1 (xk)


1/3

≲
mϕm−1(h)

nh
. (6.4)

For the second inequality ii), we have:

E

[
m∏
k=1

K2

(
d(xk, Xik,n)

h

)]
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= E

 m∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

+
m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

 .
By linearity of the expectation, inequality i) and for

E

 m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

 ≲ ϕm−1(h),

using Assumption 1 part iv), the proof of this inequality holds. Now, we consider the last
one. Set K̃2

2(xk) := K2
2

(
d(xk, X(ik/n)

ik,n
)
)
:

E

[(
m∏
k=1

K̃2
2

(
xk
h

))]
=
ˆ h

0
· · ·
ˆ h

0

m∏
k=1

K̃2
2

(
yk
h

)
P(dy1, . . . , dyk)

= −2
h

ˆ h

0
· · ·
ˆ h

0

m∏
j=1,j ̸=k

K̃2 (yj)

×
ˆ h

0
K̃2 (yℓ) K̃ ′

2 (yℓ) P(dy1, . . . , dyℓ−1, yℓ, dyℓ+1, . . . , yk)dyℓ (Integration by parts)

= (−2)m
hm

ˆ h

0
· · ·
ˆ h

0

m∏
k=1

K̃2 (yk) K̃ ′
2 (yk) P(y1, . . . , yk)dy1 . . . dyk

∼ 2m
hm

ˆ h

0
· · ·
ˆ h

0

m∏
k=1

K̃2 (yk) K̃ ′
2 (yk)ϕk(yk)dP(y1, . . . , yk)

= 2m
hm

ˆ h

0
· · ·
ˆ h

0

m∏
k=1

(
1 − yk

h

)
ϕk(yk)dP(y1, . . . , yk)

(Using Assumption 2 ii) and K2(x) = (1 − x)I(x ∈ [0, 1]))

= 2m
h2m

ˆ h

0
· · ·
ˆ h

0

(ˆ y

0
· · ·
ˆ y

0

m∏
k=1

ϕk(εk)d(ε1, . . . , εk)
)
dP(y1, . . . , yk)

(By an integration by parts)

∼ 2m
h2m

ˆ h

0
· · ·
ˆ h

0

m∏
k=1

ykϕk(yk)dP(y1, . . . , yk) ∼ 1
h2mϕ

m(h)h2m ∼ ϕm(h).

The final result holds by using the small ball lower bound given in (2.11). Hence, inequality
(6.3) follows. □

Proof of Proposition 3.1

As previously mentioned, our statistic is a weighted U -statistic that can be decomposed to
a sum of U -statistics using the Hoeffding decomposition. We will treat this decomposition
detailed in the Sub-section 3.1 to achieve the desired results. In the mentioned section,
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we have seen that

ψ̂(u,x, φ) − E
(
ψ̂(u,x, φ)

)
= ψ̂1,i(u,x, φ) + ψ̂2,i(u,x, φ),

where the linear term ψ̂1,i(u,x, φ) and the remainder term ψ̂1,i(u,x, φ) are well defined
in (3.9) and (3.11) respectively. We aim to prove that the linear term leads this statistic’s
convergence rate while the remaining one converges to zero, almost sure, as n → ∞. We
will begin treating the first term in the decomposition.

For B = [0, 1], αn =
√

log n/nhmϕm(h) and τn = ρnn
1/ζ , where ζ is a positive constant

that appears in Assumption 4 part i), with ρn = (log n)ζ0 for some ζ0 > 0. Define

H̃
(ℓ)
1 (z) := H̃(ℓ)(z)1{|Wi,n|≤τn}, (6.5)
H̃2(z) := H̃(ℓ)(z)1{|Wi,n|>τn}, (6.6)

and

ψ̂
(1)
1 (u,x, φ) − θ(i) = 1

n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξℓξiℓ · · · ξim−1H̃
(ℓ)
1 (z),

ψ̂
(2)
1 (u,x, φ) − θ(i) = 1

n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξℓξiℓ · · · ξim−1H̃
(ℓ)
2 (z).

Clearly, we have

ψ̂1,i(u,x, φ) − Eψ̂1,i(u,x, φ)
=

[
ψ̂

(1)
1 (u,x, φ) − Eψ̂(1)

1 (u,x, φ)
]

+
[
ψ̂

(2)
1 (u,x, φ) − Eψ̂(2)

1 (u,x, φ)
]
. (6.7)

First, we can see that

P

(
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(2)
1 (u,x, φ) − θ(i)

∣∣∣ > αn

)

= P

(
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(2)
1 (u,x, φ) − θ(i)

∣∣∣ > αn

)
⋂{

sup
FmK m

sup
x∈H m

n⋃
i=1

|Wi,n| > τn

}⋃{
sup

FmK m
sup

x∈H m

{
n⋃
i=1

|Wi,n| > τn

}c}

≤ P

{
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(2)
1 (u,x, φ) − θ(i)

∣∣∣ > αn

⋂{
sup

FmK m
sup

x∈H m
sup

u∈Bm

n⋃
i=1

|Wi,n| > τn

}}

+P

{
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(2)
1 (u,x, φ)

∣∣∣ > αn
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⋂{{
sup

FmK m
sup

x∈H m
sup

u∈Bm

n⋃
i=1

|Wi,n| > τn

}c }}

≤ P

(
sup

FmK m
sup

x∈H m
sup

u∈Bm
|Wi,n| > τn for some i = 1, . . . , n

)
+ P(∅)

≤ τ−ζ
n

n∑
i=1

E

[
sup

FmK m
sup

x∈H m
sup

u∈Bm
|Wi,n|ζ

]
≤ nτ−ζ

n = ρ−ζ
n → 0.

We infer that

E
[∣∣∣ψ̂(2)

1 (u,x, φ)
∣∣∣] ≤ 1

n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1E
(∣∣∣H̃(ℓ)

2 (z)
∣∣∣) ,

(6.8)

where

E
(∣∣∣H̃(ℓ)

2 (z)
∣∣∣) = E

[
1

ϕ(h)K2

(
d(xi, Xi,n)

h

)
Wi,n ×

ˆ
W(1,...,ℓ−1,ℓ,...,m)

m∏
k=1
k ̸=i

1
ϕ(h)K2

(
d(xk, νk)

h

)
P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1)1{|Wi,n|>τn}


≲ τ−(ζ−1)

n E

[
1

ϕ(h)K2

(
d(xi, Xi,n)

h

)
|Wi,n|ζ

]

≲
τ−(ζ−1)
n

ϕ(h) E

[
K2

(
d(xi, Xi,n)

h

)]

≲
τ−(ζ−1)
n

ϕ(h) ×
[ 1
nh

+ ϕ(h)
]

≲
τ−(ζ−1)
n

nhϕ(h) + τ−(ζ−1)
n , (6.9)

where

E

(
K2

(
d (xi, Xi,n)

h

))

= E

K2

(
d (xi, Xi,n)

h

)
+K2

d
(
xi, X

i/n
i

)
h

−K2

d
(
xi, X

i/n
i

)
h


⩽ E

∣∣∣∣∣∣K2

(
d (xi, Xi,n)

h

)
−K2

d
(
xi, X

i/n
i

)
h

∣∣∣∣∣∣+ E

∣∣∣∣∣∣K2

d
(
xi, X

i/n
i

)
h

∣∣∣∣∣∣
≲ Ch−1E

∣∣∣d (xi, Xi,n) − d
(
xi, X

i/n
i

)∣∣∣+ E

1(
d

(
x,X

(i/n)
i,n

)
≤h
) (K2 is Lipschitz)
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≲
1
nh

E
∣∣∣U (i/n)

i

∣∣∣+ Fi/n(h;xi)(using Assumption 1 i))

≲
1
nh

+ ϕ(h).

Hence we obtain

E
[∣∣∣ψ̂(2)

1 (u,x, φ)
∣∣∣] ≤ 1

n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1E
(∣∣∣H(ℓ)

2 (z)
∣∣∣)

≲
1
n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1

︸ ︷︷ ︸
≤C uniformly in u

×
[
τ−(ζ−1)
n

nhϕ(h) + τ−(ζ−1)
n

]

≲

[
τ−(ζ−1)
n

nhϕ(h) + τ−(ζ−1)
n

]
≲ τ−(ζ−1)

n = (ρnn1/ζ)−(ζ−1) ≲ αn.

As a result, we infer that

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(2)
1 (u,x, φ) − Eψ̂(2)

1 (u,x, φ)
∣∣∣ = OP(αn). (6.10)

Second, let us treat

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(1)
1 (u,x, φ) − Eψ̂(1)

1 (u,x, φ)
∣∣∣ .

To achieve the aimed result, we will cover the region Bm = [0, 1]m by

N(u)⋃
k1,...,km=1

m∏
j=1

B(ukj
, r),

for some radius r. Hence, for each u = (u1, . . . ,um) ∈ [0, 1]m, there exists l(u) =
(l(u1), . . . , l(um)), where ∀1 ≤ i ≤ m, 1 ≤ l(ui) ≤ N(u) and such that

u ∈
m∏
i=1

B(ul(ui), r) and |ui − ul(ui)| ≤ r, for 1 ≤ i ≤ m,

then for each u ∈ [0, 1]m, the closest center will be ul(u), and the ball with the closest
centre will be defined by

B(u, l(u), r) :=
m∏
j=1

B(ukj
, r).

In the same way H m should be covered by

N(x)⋃
k1,...,km=1

m∏
j=1

B(xkj
, r),
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for some radius r. Hence, for each x = (x1, . . . , xm) ∈ H m, there exists l(x) =
(l(x1), . . . , l(xm)), where ∀1 ≤ i ≤ m, 1 ≤ l(xi) ≤ N(x) and such that

x ∈
m∏
i=1

B(ul(xi), r) and d(xi, xl(ui)) ≤ r, for 1 ≤ i ≤ m,

then for each x ∈ H m, the closest center will be xl(x), and the ball with the closest
centre will be defined by

B(x, l(x), r) :=
m∏
i=1

B(xl(xi), r).

We define:

K∗(ω,v) = C
m∏
k=1

1(|ωk|≤2C1)

m∏
k=1

K2(vk) for (ω, v) ∈ R2.

We can show that, for (u, x) ∈ Bj,n and n large enough,
∣∣∣∣∣
m∏
k=1

K1

(
uk − ik

n

h

)
−

m∏
k=1

K1

(
uj,k − ik

n

h

)∣∣∣∣∣K2

(
d(xi, Xi,n)

h

)

≤ αnK
∗
(
un − i

n
, d (xi, Xi,n)
h

)
.

Let

ψ̄
(1)
1 (u,x, φ) = 1

nhmϕ(h)

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∏
k=1

K∗
(
uk − ik

n
, d (xik , Xik,n)
h

)
Wi,n

ˆ
W(1,...,ℓ−1,ℓ,...,m)

m∏
k=1
k ̸=i

1
ϕ(h)K2

(
d(xk, νk)

h

)
P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1)1{|Wi,n|≤τn}.

Note that E
[∣∣∣ψ̄(1)

1 (u,x, φ)
∣∣∣] ≤ M < ∞ for some sufficiently large M . Then we obtain

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(1)
1 (u,x, φ) − E

[
ψ̂

(1)
1 (u,x, φ)

]∣∣∣ (6.11)

≤ sup
FmK m

sup
x∈H m

∣∣∣ψ̂(1)
1 (un,x) − E

[
ψ̂

(1)
1 (un,x)

]∣∣∣
+ sup

FmK m
sup

x∈H m
αn
(∣∣∣ψ̄(1)

1 (un,x)
∣∣∣+ E

[∣∣∣ψ̄(1)
1 (un,x)

∣∣∣])
≤ sup

FmK m
sup

x∈H m

∣∣∣ψ̂(1)
1 (un,x) − E

[
ψ̂

(1)
1 (un,x)

]∣∣∣
+ sup

FmK m
sup

x∈H m

∣∣∣ψ̄(1)
1 (un,x) − E

[
ψ̄

(1)
1 (un,x)

]∣∣∣+ 2MF (y)αn.

Therefore
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P

(
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(1)
1 (u,x, φ) − E

[
ψ̂

(1)
1 (u,x, φ)

]∣∣∣ > 4Mαn

)
≤ NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

P
(∣∣∣ψ̂(1)

1 (u,x, φ) − E
[
ψ̂

(1)
1 (u,x, φ)

]∣∣∣ > 4Mαn
)

≤ Q1,n +Q2,n, (6.12)

where, for NFmK mNm
(x)N(u) denotes the covering number related respectively to the class

of functions FmK m, the balls that cover [0, 1]m and the balls that cover H m.

Q1,n = NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

P
(∣∣∣ψ̂1 (uj,x) − E

[
ψ̂1 (uj,x)

]∣∣∣ > Mαn
)
,

Q2,n = NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

P
(∣∣∣ψ̄1 (uj,x) − E

[
ψ̄1 (uj,x)

]∣∣∣ > Mαn
)
.

Notice that Q1,n and Q1,n might be treated in the same way, so,we restrict our attention
to Q1,n. Write:

P
(∣∣∣ψ̂(1)

1 (u,x, φ) − Eψ̂(1)
1 (u,x, φ)

∣∣∣
FmK m

> Mαn

)

= P


∣∣∣∣∣∣∣hmϕm(h)

n∑
i=1

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1H
(ℓ)
1 (z)

− E

hmϕm(h)
n∑
i=1

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1H
(ℓ)
1 (z)


∣∣∣∣∣∣∣
FmK m

> Mn
(n− 1)!
(n−m)!αnh

mϕm(h)
]

= P

∣∣∣∣∣
n∑
i=1

Φi,n(u,x, φ)
∣∣∣∣∣
FmK m

> Mn
(n− 1)!
(n−m)!αnh

mϕm(h)
 .

Note that the array {Φi,n(u, x)} is α-mixing for each fixed (u, x) with mixing coefficients
βΦ,n such that βΦ,n(k) ≤ β(k). We apply Lemma 6.6 with

ε := Mn
(n− 1)!
(n−m)!h

mϕm(h)αn,

and bn = Cτnfor sufficiently large C > 0 and Sn = α−1
n τ−1

n . As same as Masry, 2005,
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Theorem 2, we can see that σ2
Sn,n ≤ C ′Snh

mϕm(h), and we obtain:

P

(∣∣∣∣∣
n∑
i=1

Zi,n(u, x)
∣∣∣∣∣ ≥ ε

)

≤ 4 exp
(

− ε2

64σ2
Sn,n

n
Sn

+ 8
3εbnSn

)
+ 4 n

Sn
β (Sn)

≤ 4 exp

−
M2α2

nn
2
(

(n−1)!
(n−m)!

)2
h2mϕ2m(h)

64C ′Snhϕ(h) n
Sn

+ 8
3Mn (n−1)!

(n−m)!h
mϕm(h)αnbnSn

+ 4 n
Sn
β (Sn)

≤ 4 exp

−
M
(√

log n/nhmϕm(h)
)2
n
(

(n−1)!
(n−m)!

)
64C ′hmϕm(h) (n−m)!

M(n−1)! + 8
3Ch

mϕm(h)

+ 4 n
Sn
β (Sn)

≲ exp
−

M (n−1)!
(n−m)! log n

64 (n−m)!
(n−1)!

C′

M
+ 8

3C

+ nS−γ−1
n .

To get the last inequality, we must choose M > C ′. Since N ≤ Ch−mϕ(h)α−m
n , it follows

that
Q̂n ≤ O (R1n) +O (R2n) ,

with

R1T = h−mα−m
n n

−
M

(n−1)!
(n−m)!

64 (n−m)!
(n−1)! +3C

R2T = h−mα−m
n nS−γ−1

n .

For M sufficiently large, we can see that R1n ≤ n−ς for some small ς > 0. As
ϕn log T
T θhd+1 = o(1) by assumption, we further get that

R2n = h−mα−m
n nS−γ−1

n

= h−mn

(√
log n

nhmϕm(h)

)−m

(α−1
n τ−1

n )−γ−1

= h−m
(√

log n
nhmϕm(h)

)−m+γ+1

((log n)ζ0n1/ζ)γ+1

= (log n)−m+γ+1
2 +ζ0(γ+1)

n
−m+γ+1

2 −1− γ+1
ζ h

m+γ+1
2 ϕ(h)−m+γ+1

2

.

By our Assumptions 4 part ii), it holds that R2n = o(1). This shows the result. Now let’s
move on to the nonlinear part of the Hoeffding decomposition. Accordingly, the goal is
to prove that
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P

[
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂2,i(u,x, φ)
∣∣∣ > λ

]
→ 0 as n → ∞.

In the following, we will give a lemma which can be viewed as a technical result in the
proof of our proposition.

Lemma 6.2. Let FmK m be a uniformly bounded class of measurable canonical functions,
m ≥ 2. Suppose that there are finite constants a and b such that the FmK m covering
number satisfies :

N(ε,FmK m, ∥ · ∥L2(Q)) ≤ aε−b, (6.13)

for every ε > 0 and every probability measure Q. If the mixing coefficients β of the local
stationary sequence {Zi = (Xi,n,Wi,n)}i∈N⋆ achieve:

β(k)kr → 0, as k → ∞, (6.14)

for some r > 1, then :

sup
FmK m

sup
x∈H m

sup
u∈Bm

P

hm/2ϕm/2(h)n−m+1/2 ∑
i∈Im

n

ξi1 · · · ξimH(Zi1 , . . . , Zim)
 → 0. (6.15)

Remark 6.1. As mentioned before, Wi,n will be equal to 1 or εi,n = σ
(

i
n
, Xi,n

)
εi. In the

proof of the previous Lemma, Wi,n will be equal εi,n = σ
(

i
n
, Xi,n

)
εi, and we will use the

notation W
(u)
i,n to indicate σ (u,x) εi

Proof of Lemma 6.2 The proof of this lemma is based on the blocking method and,
in particular, on the techniques employed by Arcones and Yu, 1994: their fundamental
concept is partitioning the strictly stationary sequence (Z1, . . . , Zn) into 2n blocks, each
of which is of length an and a remainder block of length n− 2vnan. This concept is called
Bernstein’s method, referred to Bernstein, 1927, in which we are enabled to apply the
symmetrization and the many other techniques available for the i.i.d random variables.
To establish this independence between the blocks, the little ones should be placed between
two consecutive big blocks, and it should be asymptotically negligible. In this proof, for
clarity of exposition, we present the case of m = 2, the sizes an and bn are different where
bn denotes the size of the alternative blocks. Both an and bn satisfy

bn ≪ an, (vn − 1) (an + bn) < n ⩽ vn (an + bn) , (6.16)

and set, for 1 ⩽ j ⩽ vn − 1 :

H(U)
j = {i : (j − 1) (an + bn) + 1 ⩽ i ⩽ (j − 1) (an + bn) + an} ,
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T(U)
j = {i : (j − 1) (an + bn) + an + 1 ⩽ i ⩽ (j − 1) (an + bn) + an + bn} ,

H(U)
vn

= {i : (vn − 1) (an + bn) + 1 ⩽ i ⩽ n ∧ (vn − 1) (an + bn) + an} ,
T(U)
vn

= {i : (vn − 1) (an + bn) + an + 1 ⩽ i ⩽ n} .

Then introduce the sequence of independent blocks (η1, . . . , ηn) such as :

L (η1, . . . , ηn) = L (Z1, . . . ,Zan) × L (Zan+1, . . . ,Z2an) × · · ·

An application of the result of Eberlein, 1984 implies that for any measurable set A:

∣∣∣P{
{
η1, . . . , ηan , η2an+1, . . . , η3an , . . . , η2(vn−1)an+1, . . . , η2vnan

)
∈ A

}
−P

{(
Z1, . . . ,Zan ,Z2an+1, . . . ,Z3an , . . . ,Z2(vn−1)an+1, . . . ,Z2vnan

)
∈ A

}∣∣∣
⩽2 (vn − 1) β(an). (6.17)

As we are dealing with a locally stationary sequence (X1, . . . , Xn), then the sequence of
the independent blocks that we use in the following is given by {ηi}i∈N∗ . We decompose
the process according to this distribution of the blocks:

n∑
i1 ̸=i2

1
h2ϕ2(h)

2∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
Wi1,i2,φ,n

=
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

Wi1,i2,φ,n

h2ϕ2(h)

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}

+
vn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

Wi1,i2,φ,n

h2ϕ2(h)

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}

+2
vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

Wi1,i2,φ,n

h2ϕ2(h)

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}

+2
vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩽1

∑
i2∈T(U)

q

Wi1,i2,φ,n

h2ϕ2(h)

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}

+
vn∑
p ̸=q

∑
i1∈T(U)

p

∑
i2∈T(U)

q

Wi1,i2,φ,n

h2ϕ2(h)

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}

+
vn∑
p=1

∑
i1 ̸=i2

∑
i1,i2∈T(U)

p

Wi1,i2,φ,n

h2ϕ2(h)

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}

:=I + II + III + IV + V + VI. (6.18)
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(I): The same type of block but not the same block: Assume that the sequence
of independent blocks {ηi}i∈N∗ is of size an. An application of (6.17) shows that:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

2∏
k=1

K2

(
d(xk, Xik,n)

h

)
Wi1,i2,φ,n

∣∣∣∣∣ > δ

)

≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

 2∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

Wi1,i2,φ,n

∣∣∣∣∣∣ > δ


+ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

[Wi1,i2,φ,n −W
(u)
i1,i2,φ,n

]∣∣∣∣∣∣ > δ


+ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

W (u)
i1,i2,φ,n

∣∣∣∣∣∣ > δ


≤ oP(1) + oP(1) + P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2

h

)
W

(u)
i,φ,n

∣∣∣∣∣ > δ

)
+ 2υnβ(bn)

Because:

E

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

 2∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

Wi1,i2,φ,n

∣∣∣∣∣∣
= n−3/2hϕ−1(h)

vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

∣∣∣∣∣∣E
 2∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

Wi1,i2,φ,n

∣∣∣∣∣∣
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= n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

E

∣∣∣∣∣∣
 2∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

σ ( i
n
,Xi,n

)
εi

∣∣∣∣∣∣
= n−3/2hϕ−1(h)

vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2E(εi)E
∣∣∣∣∣
[ 2∏
k=1

K2

(
d(xk, Xik,n)

h

)

−
2∏

k=1
K2

d(xk, X(i/n)
i,n )

h

 [σ ( i
n
,Xi,n

)
− σ (u, Xi,n) + σ (u, Xi,n)

]∣∣∣∣∣∣
≲ n−3/2hϕ−1(h)

vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2E(εi)(σ (u,x) + oP(1))

E

∣∣∣∣∣∣
 2∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

∣∣∣∣∣∣
≲ n−3/2hϕ−1(h)

vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2E(εi)(σ (u,x) + oP(1))
[
mϕm−1(h)

nh

]

(where m=2 and using Lemma 6.1 Equation (6.1))
∼ oP(1),

and

E

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

[Wi1,i2,φ,n −W
(u)
i1,i2,φ,n

]∣∣∣∣∣∣
= n−3/2hϕ−1(h)

vn∑
p̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

E

∣∣∣∣∣∣
2∏

k=1
K2

d(xk, X(i/n)
i,n )

h

[σ ( i
n
,Xi,n

)
εi − σ (u,x) εi

]∣∣∣∣∣∣
= n−3/2hϕ−1(h)

vn∑
p̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2E(εi)

E

∣∣∣∣∣∣
2∏

k=1
K2

d(xk, X(i/n)
i,n )

h

[σ ( i
n
,Xi,n

)
− σ (u,x)

]∣∣∣∣∣∣
≲ n−3/2hϕ−1(h)

vn∑
p̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2E(εi)(oP(1))
ˆ h

0

m∏
k=1

K2

(
yk
h

)
dFik/n(yk, xk)
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≲ n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2E(εi)(oP(1))(ϕ2(h)) ∼ oP(1). (6.19)

We keep the choice of bn and υn such that

υnb
r
n ⩽ 1, (6.20)

which implies that 2υnαbn → 0 as n → ∞, so the term to consider is the second summand.
For the second part of the inequality, we will use the work of Arcones et al., 1993 in the
non-fixed kernels settings, precisely, we will define fi1,...,im = ∏m

k=1 ξik × H and Fi1,...,im

respectively as a collections of kernels and the class of functions related to this kernel,
then we will use de la Peña et al., 1999, Theorem 3.1.1 and Remarks 3.5.4 part 2 for
decoupling and randomization. As we mentioned above, we will suppose that m = 2.
Then we can see that

E

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
vn∑
p̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

2∏
k=1

K2

(
d(xk, ηik)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥∥∥
F2K 2

= E

∥∥∥∥∥∥∥n−3/2hϕ(h)
vn∑
p̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

fi1,i2(u,η)

∥∥∥∥∥∥∥
Fi1,i2

≤ c2E

∥∥∥∥∥∥∥n−3/2hϕ(h)
υn∑
p ̸=q

εpεq
∑

i1∈H(U)
p

∑
i2∈H(U)

q

fi1,i2(u,η)

∥∥∥∥∥∥∥
Fi1,i2

⩽ c2E
ˆ D

(U1)
nh

0
N
(
t,Fi1,i2 , d̃

(1)
nh,2

)
dt, (By Lemma 6.7 and Proposition 6.2.) (6.21)

where D(U1)
nh is the diameter of Fi1,i2according to the distance d̃(1)

nh,2, respectively defined
as

D
(U1)
nh :=

∥∥∥∥∥∥∥Eε
∣∣∣∣∣∣∣n−3/2hϕ(h)

υn∑
p̸=q

εpεq
∑

i1∈H(U)
p

∑
i2∈H(U)

q

fi1,i2(u,η)

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

Fi1,i2

=

∥∥∥∥∥∥∥Eε
∣∣∣∣∣∣∣n−3/2hϕ−1(h)

υn∑
p̸=q

εpεq
∑

i1∈H(U)
p

∑
i2∈H(U)

q

ξi1ξi2

2∏
k=1

K2

(
d(xk, ηik)

h

)
W

(u)
i1,i2,φ,n

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

F2K 2

,

and :

d̃
(1)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
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:= Eε

∣∣∣∣∣∣∣n−3/2hϕ−1(hn)
υn∑
p ̸=q

εpεq
∑

i1∈H(U)
p

∑
i2∈H(U)

q

[
ξ1i1ξ1i2

2∏
k=1

K1,2

(
d(xk, ηik)

h

)
W

′(u)
i1,i2,φ,n

− ξ2i1ξ2i2

2∏
k=1

K2,2

(
d(xk, ηik)

h

)
W

′′(u)
i1,i2,φ,n

]∣∣∣∣∣∣∣ .
Let consider another semi-norm d̃

(2)
nh,2 :

d̃
(2)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
= 1

nh2ϕ2(h)

 υn∑
i ̸=j

(
ξ1i1ξ1i2

2∏
k=1

K1,2

(
d(xk, ηik)

h

)
W

′(u)
i1,i2,φ,n

− ξ2i1ξ2i2

2∏
k=1

K2,2

(
d(xk, ηik)

h

)
W

′′(u)
i1,i2,φ,n

)2


1/2

.

One can see that

d̃
(1)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
⩽ ann

−1/2hϕ(h)d̃(2)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
.

We readily infer that

E

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2

2∏
k=1

K2

(
d(xk, ηik)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥∥∥
F2K 2

⩽ c2E
ˆ D

(U1)
nh

0
N
(
ta−1
n n1/2,Fi,j, d̃

(2)
nh,2

)
dt

⩽ c2ann
−1/2P

{
D

(U1)
nh a−1

n n1/2 ⩾ λn
}

+ cmann
−1/2
ˆ λn

0
log t−1dt, (6.22)

where λn → 0. We have (ˆ λn

0
log t−1dt

)
(
λn log λ−1

n

) → 0,

where an and λn must be chosen in such a way that the following relation will be achieved

anλnn
−1/2 log λ−1

n → 0. (6.23)

Making use of the triangle inequality, in combination with Hoeffding’s trick, we obtain
readily that

ann
−1/2P

{
D

(U1)
nh ⩾ λnann

−1/2
}
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⩽ λ−2
n a−1

n n−5/2hϕ−1(h)E

∥∥∥∥∥∥∥
υn∑
p̸=q

 ∑
i1∈H(U)

p

∑
i2∈H(U)

q

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η

′
i2)

h

)
W

(u)
i1,i2,φ,n

]2
∥∥∥∥∥∥

F2K 2

⩽ c2υnλ
−2
n a−1

n n−5/2hϕ−1(h)E

∥∥∥∥∥∥∥
υn∑
p=1

 ∑
i1,i2∈H(U)

p

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η

′
i2)

h

)
W

(u)
i1,i2,φ,n

]2
∥∥∥∥∥∥

F2K 2

,

(6.24)

where {η′
i}i∈N∗ are independent copies of (ηi)i∈N∗ . By imposing :

λ−2
n a1−r

n n−1/2 → 0, (6.25)

we readily infer that
∥∥∥∥∥∥∥υnλ−2

n a−1
n n−5/2hϕ−1(h)E

υn∑
p=1

 ∑
i1,i2∈H(U)

p

ξi1ξi2

2∏
k=1

K2

(
d(xk, ηik)

h

)
W

(u)
i1,i2,φ,n


2∥∥∥∥∥∥∥

F2K 2

⩽ O
(
λ−2
n a1−r

n n−1/2
)
.

A symmetrization of the last inequality in (6.24) succeeded by an application of the
Proposition 6.2 in the Appendix, gives

υnλ
−2
n a−1

n n−5/2hϕ−1(h)E

∥∥∥∥∥∥∥
υn∑
p=1

 ∑
i1,i2∈H(U)

p

εpξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η

′
i2)

h

)
W

(u)
i1,i2,φ,n

]2
∥∥∥∥∥∥

F2K 2

⩽ c2E

ˆ D
(U2)
nh

0

(
logN(u,Fi,j, d̃

′
nh,2)

)1/2
 , (6.26)

where

D
(U2)
nh =

∥∥∥Eε ∣∣∣υnλ−2
n a−1

n n−5/2ϕ−1(h)

υn∑
p=1

εp

 ∑
i1,i2∈H(U)

p

ξi1ξi2K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, η

′
i2)

h

)
W

(u)
i1,i2,φ,n


2∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

F2K 2

.
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and for ξ1.K2,1W
′ , ξ2.K2,2W

′′ ∈ Fij :

d̃′
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
:= Eε

∣∣∣∣∣∣∣υnλ−2
n a−1

n n−5/2ϕ−1(hn)
υn∑
p=1

εp


 ∑
i1,i2∈H(U)

p

ξ1i1ξ1i2K2,1

(
d(x1, ηi1)

h

)
K2,1

(
d(x2, η

′
i2)

h

)

W
′(u)
i1,i2,φ,n

)2
−

 ∑
i1,i2∈H(U)

p

ξ2iξ2jK2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, η

′
i2)

h

)
W

′′(u)
i1,i2,φ,n


2
∣∣∣∣∣∣∣ .

By the fact that :

Eε

∣∣∣∣∣∣∣υnλ−2
n a−1

n n−5/2ϕ−1(hn)
υn∑
p=1

εp

 ∑
i1,i2∈H(U)

p

ξi1ξi2K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, η

′
i2)

h

)
W

(u)
i1,i2,φ,n


2∣∣∣∣∣∣∣

⩽ a3/2
n λ−2

n n−1

υ−1
n a−2

n ϕ−2(hn)
υn∑
p=1

∑
i1,i2∈H(U)

p

(
ξi1ξi2K2

(
d(xi, ηi1)

h

)
K2

(
d(x2, η

′
j)

h

)
W

(u)
i1,i2,φ,n

)4


1/2

,

so:
a3/2
n λ−2

n n−1 → 0, (6.27)

we have the convergence of (6.26) to zero. For the choice of an, bn and υn, it should be
noted that all the values satisfying (6.16), (6.20), (6.23), (6.25) and (6.26) are suitable.

(II): The same block:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ(h)
vn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

1
ϕ2(h)ξi1ξi2

K2

(
d(x1, Xi1,n)

h

)
K2

(
d(x2, Xi2,n)

h

)
Wi1,i2,φ,n

∣∣∣∣∣ > δ

)

≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∥∥∥∥∥∥∥n−3/2hϕ(h)
vn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

1
ϕ2(h)ξi1ξi2 2∏

k=1
K2

(
d(xk, Xik,n)

h

)
−

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

Wi1,i2,φ,n

∣∣∣∣∣∣ > δ


+ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ(h)
vn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

ξi1ξi2

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

[Wi1,i2,φ,n −W
(u)
i1,i2,φ,n

]∣∣∣∣∣∣ > δ


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+ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ(h)
vn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

ξi1ξi2

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

W (u)
i1,i2,φ,n

∣∣∣∣∣∣ > δ


⩽ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

ξi1ξi2K2

(
d(xi, ηi1)

h

)

K2

(
d(x2, ηi2

h

)
W

(u)
i1,i2,φ,n

∣∣∣∣∣ > δ

)
+ 2υnαbn (6.28)

In the same manner of I, we can show that the first and the second term in the previous
inequality is of order oP(1). So, as the preceding proof, it suffices to prove that

E


∥∥∥∥∥∥∥n−3/2hϕ−1(h)

υn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

)
→ 0.

Notice that we treat a uniformly bounded classes functions in, we obtain uniformly in
Bm × F2K 2

E

 ∑
i1 ̸=i2;i1,i2∈H(U)

p

ξi1ξi2K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2

h

)
Wi1,i2,φ,n

 = O(an).

This implies that we have to prove that, for u ∈ Bm

E


∥∥∥∥∥∥∥n−3/2hϕ−1(h)

υn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

[
ξi1ξi2K2

(
d(xi, ηi1)

h

)
K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

− E

(
ξi1ξi2K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2

h

)
Wi1,i2,φ,n

)]∥∥∥∥∥
F2K 2

)
→ 0.

(6.29)

As for empirical processes, to prove (6.29), it suffices to symmetrize and show that

E


∥∥∥∥∥∥∥n−3/2hϕ−1(h)

υn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

εpξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

)
→ 0.
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In a similar way as in (6.21), we infer that :

E


∥∥∥∥∥∥∥n−3/2hϕ−1(h)

υn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

εpξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

)
⩽ E

ˆ D
(U3)
nh

0

(
logN

(
u,Fi1,i2 , d̃

(3)
nh,2

))1/2
du

 ,
where

D
(U3)
nh =

∥∥∥∥∥∥∥Eε
∣∣∣∣∣∣∣n−3/2hϕ−1(h)

υn∑
p=1

εp
∑

i1 ̸=i2;i1,i2∈H(U)
p

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∣∣∣∣∣
∥∥∥∥∥

F2K 2
, (6.30)

and the semi-metric d̃(3)
nh,2 is defined by

d̃
(3)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
= Eε

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
υn∑
p=1

εp
∑

i1 ̸=i2;i1,i2∈H(U)
p

(
ξ1iξ1jK2,1

(
d(x1, ηi1)

h

)
K2,1

(
d(x2, ηi2)

h

)

W
′(u)
i1,i2,φ,n − ξ2iξ2jK2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, ηi2)

h

)
W

′′(u)
i1,i2,φ,n

)∣∣∣∣∣ .
Since we are trading uniformly bounded classes of functions, we infer that

Eε

∣∣∣∣∣∣∣n−3/2hϕ−1(hn)
υn∑
p=1

εp
∑

i1 ̸=i2;i1,i2∈H(U)
p

ξi1ξi2K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∣∣∣∣∣∣∣
⩽ a3/2

n (n)−1hϕ−1(hn)

 1
υna2

n

υn∑
p=1

∑
i1 ̸=i2;i1,i2∈H(U)

p

(
ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

)2
1/2

⩽ O
(
a3/2
n (n)−1ϕ−1(hn)

)
.

Since a3/2
n (n)−1ϕ−1(h) → 0, D(U3)

nh → 0, we obtain II → 0 as n → ∞.
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(III): Different types of blocks:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣
vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

1
ϕ2(h)ξi1ξi2K2

(
d(x1, Xi1)

h

)

K2

(
d(x2, Xi2)

h

)
Wi1,i2,φ,n

∣∣∣∣∣ > δ

)

≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

1
ϕ2(h)ξi1ξi2 2∏

k=1
K2

(
d(xk, Xik,n)

h

)
−

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

Wi1,i2,φ,n

∣∣∣∣∣∣ > δ


+ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ξi1ξi2

2∏
k=1

K2

d(xk, X(i/n)
i,n )

h

[Wi1,i2,φ,n −W
(u)
i1,i2,φ,n

]∣∣∣∣∣∣ > δ


+ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣n−3/2hϕ−1(h)
vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ξi1ξi2

2∏
k=1

K2

d(xk, X(i/n)
i )

h

W (u)
i1,i2,φ,n

∣∣∣∣∣∣ > δ


(6.31)

As we claimed before, the first and the second summands of the previous inequality have
been treated. We have left with the last summation where an application of (6.17) shows
that

υn∑
p=1

E

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
∑

i1∈H(U)
p

υn∑
q:|q−p|⩾2

∑
i2∈T (U)

q

ξi1ξi2

2∏
k=1

K2

d(xk, X(i/n)
i )

h

W (u)
i1,i2,φ,n

∥∥∥∥∥∥∥
F2K 2

⩽
υn∑
p=1

E

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
∑

i1∈H(U)
p

υn∑
q:|q−p|⩾2

∑
i2∈T (U)

q

ξi1ξi2

K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

+ n−3/2hϕ−1(hn)υ2
nanbnβ(an),

we have
n−3/2ϕ−1(h)υ2

nanbnβ(an) → 0,
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using Condition (6.14) and the choice of an, bn and υn. For p = 1 and p = νn:

E

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
∑

i1∈H(U)
1

υn∑
q:|q−p|⩾2

∑
i2∈T (U)

q

ξi1ξi2K2

(
d(x1, Xi1)

h

)
K2

(
d(x2, Xi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥∥∥
F2K 2

= E

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
∑

i1∈H(U)
1

υn∑
q=3

∑
i2∈T (U)

q

ξi1ξi2K2

(
d(x1, Xi1)

h

)
K2

(
d(x2, Xi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥∥∥
F2K 2

.

For 2 ⩽ p ⩽ υn − 1, we obtain :

E

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
∑

i1∈H(U)
p

υn∑
q:|q−p|⩾2

∑
i2∈T (U)

q

ξi1ξi2K2

(
d(x1, Xi1)

h

)
K2

(
d(x2, Xi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥∥∥
F2K 2

= E

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
∑

i1∈H(U)
1

υn∑
q=4

∑
i2∈T (U)

q

ξi1ξi2K2

(
d(x1, Xi1)

h

)
K2

(
d(x2, Xi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥∥∥
F2K 2

⩽ E

∥∥∥∥∥∥∥n−3/2hϕ−1(hn)
∑

i1∈H(U)
1

υn∑
q=3

∑
i2∈T (U)

q

ξi1ξi2K2

(
d(x1, Xi1)

h

)
K2

(
d(x2, Xi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥∥∥
F2K 2

,

therefore it suffices to treat the convergence:

E

∥∥∥∥∥∥∥υnn−3/2hϕ−1(hn)
∑

i1∈H(U)
1

υn∑
q=3

∑
i2∈T (U)

q

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

−→ 0. (6.32)

By similar arguments as in Arcones and Yu, 1994, the usual symmetrization is applied
and:

E

∥∥∥∥∥∥∥υnn−3/2hϕ−1(hn)
∑

i1∈H(U)
1

υn∑
q=3

∑
i2∈T (U)

q

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

⩽ 2E

∥∥∥∥∥∥∥υnn−3/2hϕ−1(hn)
∑

i1∈H(U)
1

υn∑
q=3

∑
i2∈T (U)

q

εqξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2
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= 2E


∥∥∥∥∥∥∥υnn−3/2hϕ−1(hn)

∑
i1∈H(U)

1

υn∑
q=3

∑
i2∈T (U)

q

εqξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

1{
D

(U4)
nh
⩽γn

}
+2E


∥∥∥∥∥∥∥υnn−3/2hϕ−1(hn)

∑
i1∈H(U)

1

υn∑
q=3

∑
i2∈T (U)

q

εqξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

1{
D

(U4)
nh

>γn

}
= 2III1 + 2III2, (6.33)

where

D
(U4)
nh =

∥∥∥∥∥∥∥υnn−3/2hϕ−1(hn)

 υn∑
q=3

 ∑
i2∈T (U)

q

∑
i1∈H(U)

1

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

)2
1/2

∥∥∥∥∥∥∥
F2K 2

.(6.34)

In a similar way as in (6.21), we infer that

III1 ⩽ c2

ˆ γn

0

(
logN

(
t,Fi1,i2 , d̃

(4)
nh,2

))1/2
dt, (6.35)

where

d̃
(4)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
:= Eε

∣∣∣∣∣∣∣υnn−3/2hϕ−1(hn)
∑

i1∈H(U)
1

υn∑
q=3

∑
i2∈T (U)

q

εq

[
ξ1i1ξ1i2K2,1

(
d(x1, ηi1)

h

)

K2,1

(
d(x2, ηi2)

h

)
W

′(u)
i1,i2,φ,n − ξ2i1ξ2i2K2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, ηi2)

h

)
W

′′(u)
i1,i2,φ,n

]∣∣∣∣∣ .
Since we have

Eε

∣∣∣∣∣∣∣υnn−3/2hϕ−1(h)
∑

i1∈H(U)
1

υn∑
q=3

∑
i2∈T (U)

q

εqξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∣∣∣∣∣
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⩽ a−1/2
n bnh

2ϕ(h)

 1
anbnυnh2ϕ4(hn)

∑
i1∈H(U)

1

υn∑
q=3

∑
i2∈T (U)

q

[
ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

]2
1/2

,

and considering the semi-metric

d̃
(5)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
:=

 1
anbnυnh2ϕ4(h)

∑
i1∈H(U)

1

υn∑
q=3

∑
i2∈T (U)

q

[
ξ1i1ξ1i2K2,1

(
d(x1, ηi1)

h

)
K2,1

(
d(x2, ηi2)

h

)

W
′(u)
i1,i2,φ,n − ξ2i1ξ2i2K2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, ηi2)

h

)
W

′′(u)
i1,i2,φ,n

]2


1/2

.

We show that the expression in (6.35) is bounded as follows

υ1/2
n bnn

−1/2h2ϕ(h)
ˆ υ

−1/2
n b−1

n n1/2h2γn

0

(
logN

(
t,Fi1,i2 , d̃

(5)
nh,2

))1/2
dt,

by choosing γn = n−α for some α > (17r − 26)/60r, we get the convergence to zero of
the previous quantity. To bound the second term on the right hand side of (6.33), we can
notice that

III2 = E


∥∥∥∥∥∥∥υnn−3/2hϕ−1(h)

∑
i1∈H(U)

1

υn∑
q=3

∑
i2∈T (U)

q

εqξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

∥∥∥∥∥
F2K 2

1{
D

(U4)
nh

>γn

}
⩽ a−1

n bnn
1/2hϕ−1(h)P


∥∥∥∥∥∥∥υ2

nn
−3h2ϕ−2(hn)

υn∑
q=3

 ∑
i2∈T (U)

q

∑
i1∈H(U)

1

ξi1ξi2

K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2)

h

)
W

(u)
i1,i2,φ,n

)2
∥∥∥∥∥∥

F2K 2

⩾ γ2
n

}
. (6.36)

We now apply the square root trick to the last expression conditionally on HU
1 . We denote

by ET the expectation with respect to σ {ηi2 : i2 ∈ Tq, q ⩾ 3} and we will suppose that any
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class of functions Fm is unbounded and its envelope function satisfies for some p > 2 :

θp := sup
t∈S m

H

E (F p(Y)|X = t) < ∞, (6.37)

for 2r/(r − 1) < s < ∞, (in the notation in of Giné et al., 1984, Lemma 5.2).

Mn = υ1/2
n ET

 ∑
j∈T (U)

q

∑
i∈H(U)

1

ξi1ξi2K2

(
d(x1, Xii)

h

)
K2

(
d(x2, Xij )

h

)
W

(u)
i1,i2,φ,n


2

where
t = γ2

na
5/2
n n1/2hϕ−1(hn), ρ = λ = 2−4γna

5/4
n n1/4h1/2ϕ−1/2(hn),

and
m = exp

(
γ2
nnh

2ϕ−2(hn)b−2
n

)
.

However, since we need t > 8Mn, and m → ∞, by similar arguments as in Arcones and
Yu, 1994, page 69, we get the convergence of (6.35) and (6.36) to zero.

(IV): Different types of blocks: The target here is to prove that:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣
vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩽1

∑
i2∈n(U)

q

ξi1ξi2K2

(
d(x1, Xi1)

h

)

K2

(
d(x2, Xi2)

h

)
Wi1,i2,φ,n

∣∣∣∣∣ > δ

)
→ 0.

We have

∥∥∥∥∥∥∥n−3/2hϕ−1(h)
υn∑
p=1

∑
i1∈H(U)

p

υn∑
q:|q−p|⩽1

∑
i2∈T (U)

q

ξi1ξi2K2

d(x1, X
(i1/n)
i1 )
h


K2

d(x2, X
(i2/n)
i2 )
h

W (u)
i1,i2,φ,n

∥∥∥∥∥∥
F2K 2

⩽ c2υnanbnn
−3/2hϕ−1(h) → 0.

Hence the proof of the lemma is complete. □

The final step in the proof of Proposition 3.1 lies in the use of Lemma 6.2 to prove
that the nonlinear term converges to zero. □
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Proof of Theorem 3.1

Equation (4.1) in Section 4 shows that

r̃(m)
n (φ,u,x;hn) − r(m)(φ,u,x)

= 1
r̃1(φ,u,x)

(
ĝ1(u,x) + ĝ2(u,x) − r(m)(φ,x,u)r̃1(φ,u,x)

)
,

where

r̃1(φ,u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
,

ĝ1(u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
Wi,φ,n,

ĝ2(u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
r(m)

( i
n
,Xi,n

)
.

The proof of this theorem is involved and divided into the following 4 steps, where in each
one, we aim to show that

Step 1.
sup

FmK m
sup

x∈H m
sup

u∈Bm
|ĝ1(u,x)| = OP

(√
log n/nhmϕ(h)

)
.

Step 2.

sup
FmK m

sup
x∈H m

sup
u∈Bm

|ĝ2(u,x) − r(m)(φ,u,x)r̃1(φ,u,x;hn)

−E(ĝ2(u,x) − r(m)(φ,u,x)r̃1(φ,u,x;hn))| = OP

(√
log n/nhmϕm(h)

)
.

Step 3.

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣E(ĝ2(u,x) − r(m)(φ,u,x)r̃1(φ,u,x;hn))
∣∣∣ = O(h2) +O(hα).

Step 4
1

inf
FmK m

inf
x∈H m

inf
u∈[C1h,1−C1h]m

|r̃1(φ,u,x)| = OP(1).

Step (1) follows directly from Proposition 3.1. The second one holds by replacing φ(Yi1 , . . . , Yim)
with ĝ2(u,x)−r(m)(φ,u,x)r̃1(φ,u,x;hn) and applying Proposition 3.1. We will pass now
to the proof of Step (4). Let

r̃1(φ,u,x) = r̂1(φ,u,x) + r̄1(φ,u,x), (6.38)
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where

r̂1(φ,u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

K1

(
uk − ik/n

h

)
K2

d(xk, X(i/n)
ik,n

)
h


r̄1(φ,u,x) = (n−m)!

n!hmϕm(h)
∑

i∈Im
n

m∏
k=1

K1

(
uk − ik/n

h

)
m∏
k=1

K2

(
d(xk, Xik,n)

h

)
−K2

d(xk, X(i/n)
ik,n

)
h

 .
For W ≡ 1, the previous proposition proved that

sup
FmK m

sup
x∈H m

sup
u∈Bm

|r̃1(φ,u,x) − E (r̃1(φ,u,x))| = oP(1).

So we can see that

r̃1(φ,u,x) = r̃1(φ,u,x) + E(r̃1(φ,u,x)) − E(r̃1(φ,u,x))
= oP(1) + E[r̂1(φ,u,x)] + E[r̄1(φ,u,x)]. (6.39)

Furthermore, we have

E (r̄1(φ,u,x))

= E

 (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

K1

(
uk − ik/n

h

)
(6.40)

m∏
k=1

K2

(
d(xk, Xik,n)

h

)
−K2

d(xk, X(ik/n)
ik,n

)
h


≲

(n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

K1

(
uk − ik/n

h

)(
mϕm−1(h)

nh

)
= o(1).

(6.41)

The final result follows as K2(·) is Lipschitz (Assumption 2, i)) and by applying Assump-
tion 1i), by Lemma 6.4), uniformly in u. We also have

E [r̂1(φ,u,x)] = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

K1

(
uk − ik/n

h

)
E

 m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h


= (n−m)!

n!hmϕm(h)
∑

i∈Im
n

m∏
k=1

K1

(
uk − ik/n

h

)ˆ h

0

m∏
k=1

K2

(
yk
h

)
dFik/n(yk, xk)

≳
(n−m)!
n!hmϕm(h)

∑
i∈Im

n

m∏
k=1

K1

(
uk − ik/n

h

)
ϕm(h)f1(x) ∼ f1(x) > 0,
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uniformly in u. Then, we obtain

1
inf

FmK m
inf

x∈H m
inf

u∈[C1h,1−C1h]m
|r̃1(φ,u,x)|

= 1
inf

FmK m
inf

x∈H m
inf

u∈[C1h,1−C1h]m
o(1) + oP(1) + E [r̂1(φ,u,x)] = OP(1). (6.42)

We should define K0 : [0, 1] → R a Lipschitz continuous function with support [0, q] for
some q > 1 and such that K0(x) = 1,∀x ∈ [0, 1]. Notice that

E
[
ĝ2(u,x) − r(m)(φ,u,x)r̃1(φ,u,x;hn))

]
=

4∑
i=1

Qi(u,x), (6.43)

where Qi can be defined as follows

Qi(u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

{
m∏
k=1

K1

(
uk − ik/n

h

)}
qi(u,x), (6.44)

such that

q1(u,x) = E

[
m∏
k=1

K0

(
d(xk, Xik,n)

h

){
m∏
k=1

K2

(
d(xk, Xik,n)

h

)

−
m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

×
{
r(m)(φ, i

n
,Xi,n) − r(m)(φ,u,x)

} ,
q2(u,x) = E

 m∏
k=1

K0

(
d(xk, Xik,n)

h

)
K2

d(xk, X(ik/n)
ik,n

)
h

{
r(m)(φ, ik

n
,Xik,n) − r(m)(φ, ik

n
,X

(ik/n)
ik,n

)
}]
,

q3(u,x) = E


m∏
k=1

K0

(
d(xk, Xik,n)

h

)
−

m∏
k=1

K0

d(xk, X(ik/n)
ik,n

)
h


m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

×
{
r(m)(φ, ik

n
,X

(ik/n)
ik,n

) − r(m)(φ,u,x)
} ,

q4(u,x) = E

 m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

{r(m)(φ, ik
n
,X

(ik/n)
ik,n

) − r(m)(φ,u,x)
} .

247



Chapter 6. Conditional U -statistics

Observe that

Q1(u,x) ≲ (n−m)!
n!hmϕm(h)

∑
i∈Im

n

{
m∏
k=1

K1

(
uk − ik/n

h

)
E

[
m∏
k=1

K0

(
d(xk, Xik,n)

h

)
∣∣∣∣∣∣
m∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
×
∣∣∣∣∣r(m)(φ, i

n
,Xi,n) − r(m)(φ,u,x)

∣∣∣∣∣
]}

,

using Assumption 3 ( i), these properties of r(u,x) allow us to show that

m∏
k=1

K0

(
d(xk, Xik,n)

h

) ∣∣∣∣∣r(m)
(
φ,

i

n
,Xi,n

)
− r(m)(φ,u,x)

∣∣∣∣∣
≲

m∏
k=1

K0

(
d(xk, Xik,n)

h

)(
dH m (Xi,n,x) + ∥u − i

n
∥
)α
≲ hm∧α

and under Assumption 2, part ii), we will use Lemma 6.1, Equation (6.1) to show that:

Q1(u,x) ≲ (n−m)!
n!hmϕm(h)

∑
i∈Im

n

{
m∏
k=1

K1

(
uk − ik/n

h

)}
× hm∧α × mϕm−1(h)

nh
.

≲
1

nϕ(h)hm−(m∧α) uniformly in u. (6.45)

In a similar way, we can see that

sup
FmK m

sup
x∈H m

sup
u∈[C1h,1−C1h]m

Q2(u,x) ≲ 1
nϕ(h)hm−(m∧α) , (6.46)

and
sup

FmK m
sup

x∈H m
sup

u∈[C1h,1−C1h]m
Q3(u,x) ≲ 1

nϕ(h)hm−(1∧α) . (6.47)

For the last term, we have

Q4(u,x) = (n−m)!
n!hmϕm(h)

∑
i∈Im

n

{
m∏
k=1

K1

(
uk − ik/n

h

)}

E

 m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

{r(m)(φ, i
n
,X

(i/n)
i,n ) − r(m)(φ,u,x)

} .
Using Lemma 6.3 and inequality (2.12) and Assumption 1, it becomes apparent that

sup
FmK m

sup
x∈H m

sup
u∈[C1h,1−C1h]m

|Q4(u,x)|
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≤ (n−m)!
n!hmϕm(h)

∑
i∈Im

n

∣∣∣∣∣
{

m∏
k=1

K1

(
uk − ik/n

h

)}∣∣∣∣∣
E

∣∣∣∣∣∣
m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
∣∣∣∣{r(m)

(
φ,

i
n
,X

(i/n)
i,n

)
− r(m)(φ,u,x)

}∣∣∣∣


≲
(n−m)!
n!hmϕm(h)

∑
i∈Im

n

∣∣∣∣∣
{

m∏
k=1

K1

(
uk − ik/n

h

)}∣∣∣∣∣
E

∣∣∣∣∣∣
m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣
(
dH m

(
X

(i/n)
i,n ,x

)
+ ∥u − i

n
∥
)α

≲
(n−m)!
n!hmϕm(h)

∑
i∈Im

n

∣∣∣∣∣
m∏
k=1

K1

(
uk − ik/n

h

)

−
ˆ 1

0
· · ·
ˆ 1

0

1
hm

m∏
k=1

K1

(
(uk − vk)

h

)
dvk

∣∣∣∣∣E
∣∣∣∣∣∣

m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣ hα


+ (n−m)!
n!hmϕm(h)

∑
i∈Im

n

ˆ 1

0
· · ·
ˆ 1

0

1
hm

m∏
k=1

K1

(
uk − vk

h

)
dvk

×E

∣∣∣∣∣∣
m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

∣∣∣∣∣∣ hα


≲ O

( 1
nmh2m

)
hα + hα.

(6.48)

But
(n)−mhα−2m ≲ h2mϕm(h) ≪ h2m,

we can see that

sup
FmK m

sup
x∈H m

sup
u∈[C1h,1−C1h]m

|Q4(u,x)| ≪ h2m + hα.

Indeed, under our assumptions, the approximation error can be viewed as

O

(
1

nmϕ(h)hm−(1∧α)

)
≪ h2m∧α. (6.49)

This inequality completes the proof. □

Proof of Theorem 4.1

The subject here is to prove the weak convergence, so the finite-dimensional convergence
and the asymptotic equicontinuity for the stochastic U -process

√
nhmϕ(h)Dn(f) =

√
nhmϕ(h)

(
r̃(m)
n (φ, i,u;hn) − r(m)(φ, i,u) −BT (u, x)

)
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must be proved over all the functions classes mentioned in the framework. By de la Peña
et al., 1999, Section 4.2, the finite-dimensional convergence simply asserts that every finite
set of functions f1, . . . , fq in L2(√

nhmϕ(h)Dn(f1), . . . ,
√
nhmϕ(h)Dn(fq)

)
(6.50)

convergences to the corresponding finite-dimensional distributions of the process Gp.
Cramér-Wold and the countability of the different classes allow us to reduce the situ-
ation from weak convergence of U -process to weak convergence of U -statistics with kernel
fr, for all r ∈ {1, . . . , q}, as well as the U -process is a linear operator. Then, we only
need to show that

√
nhmϕ(h)Dn(fr) converge to a Gaussian distribution. So, for a fixed

kernel, we have

r̃(m)
n (φ, i,u;hn) − r(m)(φ, i,u)

= 1
r̃1(φ, i,u)

(
ĝ1(u,x) + ĝ2(u,x) − r(m)(φ, i,u)r̃1(φ, i,u;hn)

)
= 1

r̃1(φ, i,u)
(
ĝ1(u,x) + Ĝ(u,x)

)
, (6.51)

where
Ĝ(u,x) = ĝ2(u,x) − r(m)(φ, i,u)r̃1(φ, i,u;hn).

We begin treating each term. For this sake, we will calculate the variance of Ĝ(u,x).
Take

∆i,n(u,x) =
m∏
k=1

K2

(
d(xk, Xik,n)

h

) [
r(m)(φ, i

n
,u, Xi,n) − r(m)(φ, i,u)

]
.

Observe that

V ar(Ĝ(u,x)) = V ar
(
ĝ2(u,x) − r(m)(φ, i,u)r̃1(φ, i,u;hn)

)
= V ar

 (n−m)!
n!hmϕm(h)

∑
i∈Im

n

{
m∏
k=1

K1

(
uk − ik/n

h

)}
∆i,n(u,x)


= ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)
V ar (∆i,n(u,x))

+ ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i1 ̸=... ̸=im,
i′1 ̸=... ̸=i′m,
∃j/ij ̸=i′j

m∏
k=1

K1

(
uk − ik/n

h

)
m∏
k=1

K2
1

(
uk − i′k/n

h

)

Cov
(
∆i,n(u,x),∆i′,n(u,x)

)
:= V1 + V2. (6.52)
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Looking on V1,

|V1| = ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)
V ar (∆i,n(u,x))

= ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

) [
E
(
∆2

i,n(u,x)
)

− (E (∆i,n(u,x)))2
]

≤ ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)
E
(
∆2

i,n(u,x)
)

≤ ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)
E

(
m∏
k=1

K2
2

(
d(xk, Xik,n)

h

)
[
r(m)(φ, i

n
,u, Xi,n) − r(m)(φ, i,u)

]2)

≤ ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)
E

(
m∏
k=1

K2
2

(
d(xk, Xik,n)

h

)

−
m∏
k=1

K2
2

d(xk, X(ik/n)
ik,n

)
h

+
m∏
k=1

K2
2

d(xk, X(ik/n)
ik,n

)
h


×
[
r(m)(φ, i

n
,u, Xi,n) − r(m)(φ, i,u)

]2)

≤ ((n−m)!)2h2α

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)
E

[
m∏
k=1

K2
2

(
d(xk, Xik,n)

h

)

−
m∏
k=1

K2
2

d(xk, X(ik/n)
ik,n

)
h

+ E

 m∏
k=1

K2
2

d(xk, X(ik/n)
ik,n

)
h

 .
(6.53)

The last part of (6.53) follows from the smoothness assumption on r(m) in 3 i)

∣∣∣∣r(m)(φ, i
n
,u, Xi,n) − r(m)(φ, i,u)

∣∣∣∣2≲ h2α. (6.54)

Combining the latter inequalities with Equation (6.3) and Equation (6.1) from Lemma
6.1 where:

E

 m∏
k=1

K2
2

(
d(xk, Xik,n)

h

)
−

m∏
k=1

K2
2

d(xk, X(ik/n)
ik,n

)
h


≲ E

 m∏
k=1

K2

(
d(xk, Xik,n)

h

)
−

m∏
k=1

K2

d(xk, X(ik/n)
ik,n

)
h

 ,
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to get

|V1| ≲
((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)

≲
h2α(h)((n−m)!)2

(n!)2h2mϕ2m(h)

[
mϕm−1(h)

nh
+ ϕm(h)

]
≪ 1

nhmϕ(h) . (6.55)

A deep sight into the work of Arcones, 1998, specially Lemma 2, makes us see V2 as
follows:

|V2| = ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

1≤i1≤···≤i2m≤n
j1≥j2,...,jm

2m∏
k=1

K1

(
uk − ik/n

h

)

×Cov
(
∆iσ(1),...,iσ(2m),n(u,x),∆iσ(m+1),...,σ(2m),n(u,x)

)
≤ ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

1≤i1≤···≤i2m≤n
j1≥j2,...,jm

2m∏
k=1

K1

(
uk − ik/n

h

)
∣∣∣E [∆iσ(1),...,iσ(2m),n(u,x)∆iσ(1),...,iσ(2m),n(u,x)

]∣∣∣
≤ ((n−m)!)2

(n!)2h2mϕ2m(h)
∑

1≤i1≤···≤i2m≤n
j1≥j2,...,jm

2m∏
k=1

K1

(
uk − ik/n

h

)
× cM2

(
1 +

n−1∑
k=1

km−1β
(p−2)/p
k

)

≲
((n−m)!)2

(n!)2h2mϕ2m(h)
∑

1≤i1≤···≤i2m≤n
j1≥j2,...,jm

2m∏
k=1

K1

(
uk − ik/n

h

)
×M2 ≪ 1

nhmϕ(h) , (6.56)

where
M := sup

1≤i1<···<im<∞
E [|∆i,n|p]1/p ,

and j1 = i2 −i1, jl = min (i2l−1 − i2l−2, i2l − i2l−1) for 2 ≤ l ≤ m−1, and jm = i2m−i2m−1.
If j1 = max (j1, . . . , jm), we compare the initial sequence {X1, . . . , Xn} with the one having
the independent blocks {i1} , {i2, . . . , i2m} and the same block distribution. Then it is
easy now to show that

V ar(Ĝ(u,x)) ≤ |V1| + |V2| = o

(
1

nhmϕ(h)

)
. (6.57)

This result implies the quadratic-mean convergence of Ĝ(u,x) with the rate specified as
follows

Ĝ(u,x) − E
(
Ĝ(u,x)

)
= o

(
1

nhϕm(h)

)
in probability. (6.58)
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Let’s remember that

r̃(m)
n (φ, i,u;hn) − r(m)(φ, i,u) = 1

r̃1(φ, i,u)
(
ĝ1(u,x) + Ĝ(u,x)

)
,

BT (u,x) = E[ĝB(u, x)]/E[r̃1(φ, i,u)],

r̃1(φ, i,u) = E[r̃1(φ, i,u)] + oP(1),

and
lim
n→∞

E[r̃1(φ, i,u)] > 0,

then

r̃(m)
n (φ, i,u;hn) − r(m)(φ, i,u) = ĝ1(u,x)

r̃1(φ, i,u) +Bn(u,x) + oP

(
1

nhmϕ(h)

)
.

In the next, we will consider the first part of the last equation.
√
nhmϕ(h)V ar(ĝ1(x))

=

√
nhmϕ(h)((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)
V ar

[
m∏
k=1

K2

(
d(xk, Xik,n)

h

)
εi,n

]

=

√
nhmϕ(h)((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)
E

[
m∏
k=1

K2
2

(
d(xk, Xik,n)

h

)
ε2

i,n

]

=

√
nhmϕ(h)((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)

E

[
m∏
k=1

K2
2

(
d(xk, Xik,n)

h

)
σ2
( i
n
,Xi,n

)
ε2

i

]
( {εi}i∈Z is a sequence i.i.d r.v.’s, independent of {Xi,n}ni=1)

=
E(ε2

i )
√
nhmϕ(h)((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)

E

[
m∏
k=1

K2
2

(
d(xk, Xik,n)

h

)] [
σ2
( i
n
,Xi,n

)]

=
E(ε2

i )
√
nhmϕ(h)((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)

E

 m∏
k=1

K2
2

d(xk, X ik/n
ik,n

)
h

 [σ2 (u,x) + o(1))
]

(According to Assumption 3 [ii)- iii)- iv)] )
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+
E(ε2

i )o(ϕm(h))
√
nhmϕ(h)((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

) [
σ2 (u,x) + o(1)

]

=
E(ε2

i )o(ϕm(h))
√
nhmϕ(h)((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)

E

 m∏
k=1

K2
2

d(xk, X ik/n
ik,n

)
h

 [σ2 (u,x) + o(1)
]

+ o(1)

∼
E(ε2

i )o(ϕm(h))(σ2 (u,x) + o(1))
√
nhmϕ(h)((n−m)!)2

(n!)2h2mϕ2m(h)
∑

i∈Im
n

m∏
k=1

K2
1

(
uk − ik/n

h

)

∼ 1√
nhmϕ(h)

E(ε2
i )σ2 (u,x)

ˆ
[0,h]m

m∏
k=1

K2
1(z)dP(z1, . . . , zm).

(6.59)

We can then see that the weak convergence is somewhat linked to the weak convergence of
ĝ1. In order to show the last one, we will: 1) truncate the function ĝ1 as we work with an
unbounded class of functions, 2) verify that the remainder term of truncation converges
to zero, 3) apply the Hoeffding’s decomposition to the truncated part, 4) prove that the
non-linear term of this decomposition converges to zero, 5) prove the weak convergence
to the linear term, by proving the finite-dimensional convergence and the asymptotic
equicontinuity. All these steps follow in the same way as in the proof of Theorem 4.2.
Hence the proof is complete. □

Proof of Theorem 4.2

We have

r̃(m)
n (φ,u,x;hn) =

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)}
φ(Yi,n)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

h

)
K2

(
d(xk, Xik,n)

h

)} , (6.60)

Define:

Gφ,i(x,y) :=

m∏
k=1

{
K2

(
d(xk, Xik,n)

h

)}
φ(Yi,n)

E
m∏
k=1

{
K2

(
d(xk, Xik,n)

h

)} for x ∈ H m,y ∈ Y m;

G := {Gφ,i(·, ·) φ ∈ Fm, i = (i1, . . . , im)} ;
G (k) := {πk,mGφ,i(·, ·), φ ∈ Fm, } ;
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Un(φ, i) = U(m)
n (Gφ,i) := (n−m)!

n!
∑
i∈Im

n

m∏
k=1

ξikGφ,i(Xi,Yi);

and the U -empirical process is defined to be

µn(φ, i) :=
√
nhmϕ(h) {Un(φ, i) − E(Un(φ, i))} .

Then ,
r̃(m)
n (φ,u,x;hn) = Un(φ, i)

Un(1, i)
In order to establish the weak convergence of our estimator, it must be established first
for µn(φ, i). We have mentioned before that we deal with unbounded classes of functions,
that is why we should truncate the function Gφ,i(x,y), indeed, for λn = n1/p, with p > 0,
we have:

Gφ,i(x,y) = Gφ,i(x,y)1{F (y)≤λn} +Gφ,i(x,y)1{F (y)>λn}

:= G
(T )
φ,i (x,y) +G

(R)
φ,i (x,y).

We can write the U -statistic as follows :

µn(φ, i) =
√
nhmϕ(h)

{
U(m)
n

(
G

(T )
φ,i

)
− E

(
U(m)
n

(
G

(T )
φ,i

))}
+
√
nhmϕ(h)

{
U(m)
n

(
G

(R)
φ,i

)
− E

(
U(m)
n

(
G

(R)
φ,i

))}
:=
√
nhmϕ(h)

{
U(T )
n (φ, i) − E

(
U(T )
n (φ, i)

)}
+
√
nhmϕ(h)

{
U(R)
n (φ, i) − E

(
U(R)
n (φ, i)

)}
:=µ(T )

n (φ, i) + µ(R)
n (φ, i). (6.61)

The first term is the truncated part and the second is the remaining one. We have to
prove that:

1. µ(T )
n (φ, i) converges to a Gaussian process.

2. The remainder part is negligible, in the sense that∥∥∥∥√nhmϕ(h)
{
U(R)
n (φ, i) − E

(
U(R)
n (φ, i)

)}∥∥∥∥
FmK m

P−→ 0.

For the first point, we will use the decomposition of Hoeffding, which would be the same
as the previous decomposition in Subsection 3.1 except that we replace Wi,n by φ(Yi,n)

U(T )
n (φ, i) − E

(
U(T )
n (φ, i)

)
:= U1,n(φ, i) + U2,n(φ, i),
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where,

U1,n(φ, i) := 1
n

n∑
i=1

Ĥ1,i(u,x, φ) (6.62)

U2,n(φ, i) := (n−m)!
(n)!

∑
i∈Im

n

ξi1 · · · ξimH2,i(z). (6.63)

The convergence of U2,n(φ, i) to zero in probability follows from Lemma 6.2. Hence, it is
enough to show that U1,n(φ, i) converges weakly to a Gaussian process called G(φ). In
order to achieve our goal, we will go through finite-dimensional convergence and equicon-
tinuity.

The finite-dimensional convergence simply asserts that every finite set of functions
f1, . . . , fq in L2, for Ũ the centred form of U:

(√
nhmϕ(h)Ũ1,n(f1, i), . . . ,

√
nhmϕ(h)Ũ1,n(fq, i)

)
(6.64)

convergences to the corresponding finite-dimensional distributions of the process G(φ).It
is sufficient to show that for every fixed collection (a1, . . . , ak) ∈ R we have;

q∑
j=1

ajŨ1,n(fj, i) → N
(

0, σ2
)
,

where
σ2 =

q∑
j=1

a2
jVar

(
Ũ1,n(fj, i)

)
+
∑
s ̸=r

asarCov(Ũ1,n(fs, i)), Ũ1,n(fr, i)
)
. (6.65)

Take
h(·) =

q∑
j=1

ajfj(·).

By linearity of h(·), we have to see that Ũ1,n(h, i) → G(h). Let

N = E
m∏
k=1

{
K2

(
d(xk, Xik,n)

h

)}
.

We have:

Ũ1,n(hn, i) = N−1 × 1
n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1

1
ϕ(h)K2

(
d(xi, Xi)

h

)

×
ˆ
h(y1, . . . , yℓ−1, Yi, yℓ, . . . , ym−1)

m−1∏
k=1
k ̸=i

1
ϕ(h)K2

(
d(xk, νk)

h

)

P(d(ν1, y1), . . . , d(νℓ−1, yℓ−1), d(νℓ, yℓ), . . . , d(νm−1, ym−1)),
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= N−1 1
n

n∑
i=1

ξi
1

ϕ(h)K2

(
d(xi, Xi)

h

)
h̃(Yi).

Now, we will use the blocking procedure for this empirical process. We will decompose
the set {1, . . . , n} into 2νn + 1 subsets contains small and big blocks. To keep the same
notation as in Lemma 6.2, the size of large blocks is an and the small one is bn, such that
:

νn :=
⌊

n

an + bn

⌋
,

bn
an

→ 0, an
n

→ 0, n

an
β(bn) → 0. (6.66)

In this case we can see that :

Ũ1,n(h, j) =
νn−1∑
j=1

Û(1)
j,n +

νn−1∑
j=1

Û(2)
j,n + Û(3)

j,n

:= Ũ(1)
1,n + Ũ(2)

1,n + Ũ(3)
1,n, (6.67)

where

Û(1)
j,n = N−1

j(an+bn)+an∑
i=j(an+bn)+1

ξi
1

ϕ(h)K2

(
d(xi, Xi)

h

)
h̃(Yi), (6.68)

Û(2)
j,n = N−1

(j+1)(an+bn)∑
i=j(an+bn)+an+1

1
ξiϕ(h)K2

(
d(xi, Xi)

h

)
h̃(Yi), (6.69)

Û(3)
j,n = N−1

n∑
i=ν(an+bn)+1

ξi
1

ϕ(h)K2

(
d(xi, Xi)

h

)
h̃(Yi). (6.70)

First, we aim to prove that 1
n
E(Ũ(2)

1,n)2 → 0 and 1
n
E(Ũ(3)

1,n)2 → 0 to show that the case of
summation over the small blocks and the summation over the last one are asymptotically
negligible. Hence,

E(Ũ(2)
1,n)2 = V ar

νn−1∑
j=1

Û(2)
j,n

 =
νn−1∑
j=1

V ar
(
Û(2)
j,n

)
+

νn−1∑
j=1

νn−1∑
k=1

j ̸=k

Cov
(
Û(2)
j,n, Û

(2)
k,n

)
,

We have :

V ar
(
Û(2)
j,n

)
= V ar

N−1
(j+1)(an+bn)∑

i=j(an+bn)+an+1
ξi

1
ϕ(h)K2

(
d(xi, Xi)

h

)
h̃(Yi)


= N−2 1

ϕ2(h)
an
an

(j+1)(an+bn)∑
i=j(an+bn)+an+1

ξ2
i V ar

(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)

≲
bn

ϕ2(h) (mϕm−1(h)/nh+ ϕm(h))2 ×
[ˆ

[0,h]
K2

1

(
ω

h

)
dω

]
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×V ar
(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)
. (Using Lemma 6.1ii))

Thus,

νn−1∑
j=1

V ar
(
Û(2)
j,n

)
≲ νnbn

1
ϕ2(m+1)(h)

[ˆ
[0,h]

K2
1

(
ω

h

)
dω

]
× V ar

(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)

∼ n

an + bn
bn ∼ nbn

an
= oP(n), (by (6.66)) . (6.71)

and

νn−1∑
j=1

νn−1∑
k=1

j ̸=k

Cov
(
Û(2)
j,n, Û

(2)
k,n

)

=
νn−1∑
j=1

νn−1∑
k=1

j ̸=k

(j+1)(an+bn)∑
i=j(an+bn)+an+1

(k+1)(an+bn)∑
i′=k(an+bn)+an+1

N−2

ϕ(h)ξiξi
′

Cov

(
K2

(
d(xi, Xi)

h

)
h̃(Yi), K2

(
d(xi′ , Xi′)

h

)
h̃(Yi′)

)

=
νn−1∑
j=1

νn−1∑
k=1

j ̸=k

bn∑
l1=1

bn∑
l2=1

1
N2ϕ2(h)ξλi+l1ξλi′ +l2

Cov

(
K2

(
d(xλi+l1 , Xλi+l1)

h

)
h̃(Yλi+l1), K2

(
d(xλi′ +l2 , Xλi′ +l2)

h

)
h̃(Yλi′ +l2)

)
,

where λi = j(an + bn) + an, but for j ̸= k, |λi − λi′ + l1 − l2| ≥ bn, then∣∣∣∣∣∣∣∣∣
νn−1∑
j=1

νn−1∑
k=1

j ̸=k

Cov
(
Û(2)
j,n, Û

(2)
k,n

)∣∣∣∣∣∣∣∣∣
≤

νn−1∑
j=1

νn−1∑
k=1

|j−k|≥bn

1
N2ϕ2(h)ξjξk

∣∣∣∣∣Cov
(
K2

(
d(xj, Xj)

h

)
h̃(Yj), K2

(
d(xk, Xk)

h

)
h̃(Yk)

)∣∣∣∣∣ ,

here, the use of Davydov’s lemma (Lemma 6.8) is necessary, we have∣∣∣∣∣Cov
(
K2

(
d(xj, Xj)

h

)
h̃(Yj), K2

(
d(xk, Xk)

h

)
h̃(Yk)

)∣∣∣∣∣
≤ 8

(
E

∣∣∣∣∣K2

(
d(xj, Xj)

h

)∣∣∣∣∣
p)1/p

E(|h̃(Yj)|p)1/pβ(|i− j|)1−2/p

≲ ϕ(h)E(|h̃(Yj)|p)1/pβ(|i− j|)1−2/p,
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it follows that ∣∣∣∣∣∣∣∣∣
νn−1∑
j=1

νn−1∑
k=1

j ̸=k

Cov
(
Û(2)
j,n, Û

(2)
k,n

)∣∣∣∣∣∣∣∣∣
≲

νn−1∑
j=1

νn−1∑
k=1

|j−k|≥bn

1
N2ϕ2(h)ξjξkϕ(h)E(|h̃(Yj)|p)1/pβ(|i− j|)1−2/p

≲
1

bϱnN2ϕ2(h)ϕ(h)E(|h̃(Yj)|p)1/p
∞∑

l=bn+1
lϱβ(l)1−2/p

≲
1

bϱnN2ϕ2(h)ϕ(h)E(|h̃(Yj)|p)1/pnϱ = oP(n), (6.72)

where the last inequality follows also from (6.66) and the size of bn. Then, (6.71) and
(6.72) shows us that 1

n
E(Ũ(2)

1,n)2 → 0. Using the same footsteps, we find that

V ar
(
Ũ(3)

1,n

)
= V ar

N−1
n∑

i=ν(an+bn)+1
ξi

1
ϕ(h)K2

(
d(xi, Xi)

h

)
h̃(Yi)


= N−2

n∑
i=ν(an+bn)+1

ξ2
i

1
ϕ2(h)V ar

(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)

+ 1
N2ϕ2(h)

n∑
i=ν(an+bn)+1

n∑
j=ν(an+bn)+1

|i−j|>0

ξiξjCov

(
K2

(
d(xi, Xi)

h

)
h̃(Yi), K2

(
d(xj, Xj)

h

)
h̃(Yj)

)

= N−2
n∑

i=ν(an+bn)+1
ξ2
i

1
ϕ2(h)V ar

(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)
+ 1
N2ϕ2(h)

n−ν(an+bn)∑
l1=1

n−ν(an+bn)∑
l2=1

|i−j|>0

ξiξj

Cov

(
K2

(
d(xλi+l1 , Xλi+l1)

h

)
h̃(Yλi+l1), K2

(
d(xλi+l2 , Xλi+l2)

h

)
h̃(Yλi+l2)

)
( For λi := n− ν(an + bn))

≲
n− ν(an + bn)

ϕ2(h) (mϕm−1(h)/nh+ ϕm(h))2 ×
[ˆ

[0,h]
K2

1

(
ω

h

)
dω

]
× V ar

(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)

+ 1
(n− ν(an + bn))ϱ (mϕm−1(h)/nh+ ϕm(h))2 ϕ2(h)

ϕ(h)E(|h̃(Yj)|p)1/p

×
∞∑

l=(n−ν(an+bn))+1
lϱβ(l)1−2/p

(Using Lemma 6.1 ii) and Lemma 6.8)

≲
n− νn(an + bn)

ϕ2(h) (mϕm−1(h)/nh+ ϕm(h))2 ×
[ˆ

[0,h]
K2

1

(
ω

h

)
dω

]
× V ar

(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)

+ 1
(n− ν(an + bn))ϱ (mϕm−1(h)/nh+ ϕm(h))2 ϕ2(h)

ϕ(h)E(|h̃(Yj)|p)1/pnϱ. (6.73)
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By (6.66), we find that
1
n
V ar

(
Ũ(3)
i,n

)
→ 0.

We should now demonstrate that the summation of variables in Ũ(1)
1,n are asymptotically

independent so that we can use it after the conditions of Lindeberg-Feller for asymptotic
finite normality. An application of Lemma 6.9, where Û(1)

a,n is F ja
ia -measurable with ia =

a(an + bn) + 1 and ja = a(an + bn) + an, gives us
∣∣∣∣∣E (exp(itn−1/2Ũ(1)

1,n

)
−

νn−1∏
i=0

E
(
exp(itn−1/2Û(1)

i,n

)∣∣∣∣∣ ≤ 16νnβ(bn + 1), (6.74)

which tends to zero using (6.66), then the asymptotic independence is achieved. We can
see also that

1
n
var

(
Ũ(1)

1,n

)
≲

νnan
nϕ2(h)N2 ×

[ˆ
[0,h]

K2
1

(
ω

h

)
dω

]
× V ar

(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)

→ 1
ϕ2(h)N2 ×

[ˆ
[0,h]

K2
1

(
ω

h

)
dω

]
× V ar

(
K2

(
d(xi, Xi)

h

)
h̃(Yi)

)
(since νnan/n → 1).

:= V(X, Y ). (6.75)

So far, we have the last condition of finite dimensional convergence to establish. Notice
that, for n is sufficiently large, {|Û(1)

i,n| > εV(X, Y )
√
n} is empty, so

1
n

νn−1∑
i=0

E
(

Û(1)2
i,n 1{|Û(1)

i,n|>εV(X,Y )
√
n}

)
→ 0. (6.76)

Hence, the demonstration of finite-dimensional convergences is complete. We end up with
asymptotic equicontinuity. We have to prove that:

lim
δ→0

lim
n→∞

P
{√

nhmϕ(h)
∥∥∥Ũ1,n(hn, i)

∥∥∥
FK (δ,∥.∥p)

> ε
}

= 0, (6.77)

where,

FK (δ, ∥.∥p) :=
{
Ũ′

1,n(hn, i) − Ũ′′
1,n(hn, i) :∥∥∥Ũ′

1,n(hn, i) − Ũ′′
1,n(hn, i)

∥∥∥ < δ, Ũ′
1,n(hn, i), Ũ′′

1,n(hn, i) ∈ FK
}
,(6.78)

for

Ũ′
1,n(hn, i) = N−1 1

n

n∑
i=1

ξi
1

ϕ(h)K2,1

(
d(xi, Xi)

h

)
h̃1(Yi) − E

(
U′

1,n(hn, i)
)
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Ũ′′
1,n(hn, i) = N−1 1

n

n∑
i=1

ξi
1

ϕ(h)K2,2

(
d(xi, Xi)

h

)
h̃2(Yi) − E

(
U′′

1,n(hn, i)
)

(6.79)

At this point, we will use also the chaining technique of Arcones and Yu, 1994, and by
Bouzebda et al., 2019b for the conditional setting. The main idea is to break down a
sequence (X1, . . . , Xn), into 2υn, equal-sized blocks, that each one is of length equal to an
and a remainder block of length n− 2υnan that is (for 1 ⩽ j ⩽ υn):

Hj = {i : 2(j − 1)an + 1 ⩽ i ⩽ (2j − 1)an},
Tj = {i : (2j − 1)an + 1 ⩽ i ⩽ 2jan},
R = {i : (2υnan + 1 ⩽ i ⩽ n}.

The values of υn, an are given in the following. Another ingredient is essential, in this
proof, that is a sequence of independent blocks (ζ1, . . . , ζn) such as:

L (ζ1, . . . , ζn) = L (X1, . . . , Xan) × L (Xan+1, . . . , X2an) × · · · .

In the same line as Bouzebda et al., 2019b, the results of the work of Eberlein, 1984 on
β-mixing are applied, and get, for any measurable set A:

∣∣∣P{(ζ1, . . . , ζan , ζ2an+1, . . . , ζ3an , . . . , ζ2(υn−1)an+1, . . . , ζ2υnan

)
∈ A

}
−P

{(
X1, . . . , Xan , X2an+1, . . . , X3an , . . . , X2(υn−1)an+1, . . . , X2υnan

)
∈ A

}∣∣∣
⩽ 2(υn − 1)βan . (6.80)

And we will work only with the independent blocks called ζi = (ηi, ςi) sequences instead
of working with the dependence variables, we will use the same strategy as in Lemma 6.2
to pass from the sequence of locally stationary random variables to the stationary one:

P


∥∥∥∥∥∥(nϕ (h))−1/2

hm/2N−1
n∑

j=1

(
ξiK2

(
d(xi, Xi)

h

)
h̃(Yi) − E (U1,n(hn, i))

)∥∥∥∥∥∥
FK (b,∥·∥p)

> ε


≤ 2P


∥∥∥∥∥∥(nϕ (h))−1/2

hm/2N−1
νn∑

j=1

∑
i∈Hj

(
ξiK2

(
d(xi, ηi)

h

)
h̃(ςi) − E (U1,n(hn, i))

)∥∥∥∥∥∥
FK (b,∥·∥p)

> ε′


+2(νn − 1)βan

+ oP(1). (6.81)

We choose
an = [(log n)−1(np−2ϕp(hK))1/2(p−1)] and υn =

[
n

2an

]
− 1.

Making use of the condition (v) of Assumption 4, we get (υn − 1)βan −→ 0 as n → 0,
then it’s just a matter of the first term in the right-hand sight of (6.81). The blocks being
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independent, we symmetrize using a sequence {εj}j∈N∗ of i.i.d. Rademacher variables,
i.e., r.v’s with

P(εj = 1) = P(εj = −1) = 1/2.

It should be noted that the sequence {εj}j∈N∗ is independent of the sequence {ξi = (ςi, ζi)}i∈N∗ ,
thus it remains to establish, for all ε > 0,

lim
δ→0

lim
n→∞

P


∥∥∥∥∥∥(nϕ (h))−1/2hm/2N−1

νn∑
j=1

∑
i∈Hj

(
ξiK2

(
d(xi, ηi)

h

)
h̃(ςi) − E (U1,n(hn, i))

)∥∥∥∥∥∥
FK (b,∥·∥p)

> ε


(6.82)

Define the semi-norm:

d̃nϕ,2 :=
(nϕ (h))−1/2hm/2N−1

νn∑
j=1

∑
i∈Hj

∣∣∣∣∣
(
ξiK2,1

(
d(xi, ηi)

h

)
h̃1(ςi) − E (U′

1,n(hn, i))
)

−
(
ξiK2,2

(
d(xi, ηi)

h

)
h̃2(ςi) − E (U′′

1,n(hn, i))
)∣∣∣∣∣

2
1/2

(6.83)

and the covering number defined for any class of functions E by :

Ñnϕ,2(u,E ) := Nnϕ,2(u,E , d̃nϕ,2).

By the latter, we can bound (6.82), (more details are in Bouzebda et al., 2019b). In the
same way, as in Bouzebda et al., 2019b and back in Arcones and Yu, 1994, as a result of
the independence between the blocks and Assumption 6 ii), and by applying Giné et al.,
1984, Lemma 5.2, the equicontinuity is achieved, and then the weak convergence too.

Now, we need to show that :

P
{∥∥∥µ(R)

n (φ, t)
∥∥∥

FmK m
> λ

}
→ 0 as n → ∞.

For clarity purposes, we restrict ourselves to m = 2. We have:

µ(R)
n (φ, i) =

√
nϕ(hn)

{
U(R)
n (φ, i) − E

(
U(R)
n (φ, i)

)}
=

√
nϕ(hn)

n(n− 1)

n∑
i1 ̸=i2

ξi1ξi2
{
G

(R)
φ,t (((Xi1 , Xi2), (Yi1 , Yi2)))

−E
[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]}
⩽

1√
nϕ(hn)

vn∑
p̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi, Xj), (Yi, Yj))

−E
[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]}
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+ 1√
nϕ(hn)

υn∑
p=1

∑
i1 ̸=i2 i1,i2∈H(U)

p

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi, Xj), (Yi, Yj))

−E
[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]}
+2 1√

nϕ(hn)

vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi, Xj), (Yi, Yj))

−E
[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]}

+2 1√
nϕ(hn)

vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩽1

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,t ((Xi, Xj), (Yi, Yj))

−E
[
G

(R)
φ,t ((Xi1 , Xi2), (Yi1 , Yi2))

]}

+ 1√
nϕ(hn)

vn∑
p ̸=q

∑
i1∈T(U)

p

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,t ((Xi, Xj), (Yi, Yj))

−E
[
G

(R)
φ,t ((Xi1 , Xi2), (Yi1 , Yi2))

]}
+ 1√

nϕ(hn)

vn∑
p=1

∑
i1 ̸=i2

∑
i1,i2∈T(U)

p

ϕ(hn)ξi1ξi2
{
G

(R)
φ,t ((Xi, Xj), (Yi, Yj))

−E
[
G

(R)
φ,t ((Xi1 , Xi2), (Yi1 , Yi2))

]}
=: I′ + II′ + III′ + IV′ + V′ + VI′.

We will use blocking arguments and treat the resulting terms. We start by considering
the first I′. We have

P


∥∥∥∥∥∥∥

1√
nϕ(hn)

vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

−E
[
G

(R)
φ,t ((Xi1 , Xi2), (Yi1 , Yi2))

]}∥∥∥
F2K 2

> δ
}

⩽ P


∥∥∥∥∥∥∥

1√
nϕ(hn)

vn∑
p̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

−E
[
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

]}∥∥∥
F2K 2

> δ
}

+ 2υnβ(bn).

Notice that υnβbn → 0 and recall that for all φ ∈ Fm, and :

x ∈ H 2,y ∈ Y 2 : 1{d(x,Xi,n)⩽h}F (y) ⩾ φ(y)K2

(
d (x, Xi,n)

h

)
.
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Hence, by the symmetry of F (·):∥∥∥∥∥∥∥
1√

nϕ(hn)

vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

−E
[
G

(R)
φ,t ((ςi1 , ςi2), (ζi1 , ζi2))

]}∥∥∥
F2K 2

≲

∣∣∣∣∣∣∣
1√

nϕ(hn)

vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
{
F (ζi, ζj)1{F>λn}

−E
[
F (ζi, ζj)1{F>λn}

]} ∣∣∣∣∣∣∣ . (6.84)

We are going to use Chebyshev’s inequality, Hoeffding’s trick and inequality, respectively
to obtain:

P


∣∣∣∣∣∣∣

1√
nϕ(h)

vn∑
p ̸=q

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
{
F (ζi, ζj)1{F>λn}

−E
[
F (ζi, ζj)1{F>λn}

]} ∣∣∣∣∣∣∣ > δ


≲ δ−2n−1ϕ−1(h)V ar

 ∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2F (ζi, ζj)1{F>λn}


≲ c2υnδ

−2n−1ϕ−1(h)V ar

 ∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2F (ζi, ζ ′
j)1{F>λn}


≲ 2c2υnδ

−2n−2ϕ−1(h)
∑

i1∈H(U)
p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2E
[
(F (ζ1, ζ2))2

1{F>λn}
]
. (6.85)

Under Assumption 6 iii), we have for each λ > 0 :

c2υnδ
−2n−2ϕ−1(hn)

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2E
[
(F (ζ1, ζ2))2

1{F>λn}
]

= c2υnδ
−2n−2ϕ−1(hn)

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
ˆ ∞

0
P
{
(F (ζ1, ζ2))2

1{F>λn} ⩾ t
}
dt

= c2υnδ
−2n−2ϕ−1(hn)

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
ˆ λn

0
P {F > λn} dt

+c2υnδ
−2n−2ϕ−1(hn)

∑
i1∈H(U)

p

∑
i2∈H(U)

q

ϕ(hn)ξi1ξi2
ˆ ∞

λn

P
{
(F )2 > t

}
dt,
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which tends to 0 as n → ∞. Terms II′,V′ and VI′ will be treated in the same way as
the previous term. The terms II′,VI′ do not follow the same line because the variables
{ζi, ζj}i,j∈H(U)

p

(
or {ζi, ζj}i,j∈T (U)

p
for VI′

)
belong to the same blocks. Term IV′ can be

deduced from the study of Terms I′ and III′ . Considering the term III′, we have

P


∥∥∥∥∥∥∥

1√
nϕ(hn)

vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi, Xj), (Yi, Yj))

−E
[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]} ∥∥∥∥∥∥∥
F2K 2

> δ


⩽ P


∥∥∥∥∥∥∥

1√
nϕ(hn)

vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

−E
[
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

]} ∥∥∥∥∥∥∥
F2K 2

> δ

+ υ2
nanbnβ(an)√
nϕ(hn)

. (6.86)

We have also

P


∥∥∥∥∥∥∥

1√
nϕ(hn)

vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

−E
[
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

]}∥∥∥
F2K 2

> δ
}

⩽ P


∥∥∥∥∥∥∥

1√
nϕ(hn)

vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

−E
[
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

]}∥∥∥
F2K 2

> δ
}
.

Since the equation (6.84) is still satisfied, the problem is reduced to

P


∣∣∣∣∣∣∣

1√
nϕ(hn)

vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2
{
F (ζi, ζj)1{F>λn}

−E
[
F (ζi, ζj)1{F>λn}

]} ∣∣∣∣∣∣∣ > δ


≲ δ−2n−1ϕ(hn)V ar

 vn∑
p=1

∑
i1∈H(U)

p

vn∑
q:|q−p|⩾2

∑
i2∈T(U)

q

ϕ(hn)ξi1ξi2F (ζi, ζj)1{F>λn}

 ,
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we follow the same procedure as in (6.85). The rest has just been shown to be asymp-
totically negligible. Finally, with r(m)(φ,u,x) → E (Un(φ, i)), and for (Un(1, i)) →

P
1, the

weak convergence of our estimator is accomplished. □

Appendix

This appendix contains supplementary information that is an essential part of providing
a more comprehensive understanding of the chapter.

Lemma 6.3. Let Ih = [C1h, 1 − C1h]. Suppose that kernel K1 satisfies Assumption 2
part(i). Then for q = 0, 1, 2 and m > 1:

sup
u∈Ih

∣∣∣∣∣∣ 1
nmhm

∑
i∈Im

n

m∏
k=1

K1

(
uk − ik/n

h

)(
uk − ik/n

h

)q

−
ˆ 1

0
· · ·
ˆ 1

0

1
hm

m∏
k=1

{
K1

(
(uk − vk)

h

)(
uk − vk

h

)q} m∏
k=1

dvk

∣∣∣∣∣ = O
( 1
nhm+1

)
.

Proof of Lemma 6.3 Notice that

sup
u∈Ih

∣∣∣∣∣∣ 1
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∑
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m∏
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(
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)(
uk − ik/n

h

)q

−
ˆ 1

0
· · ·
ˆ 1

0

1
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k=1

{
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(
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h

)(
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h

)q} m∏
k=1

dvk

∣∣∣∣∣
= sup

u∈Ih
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∑
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m∏
k=1

1
n
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(
uk − ik/n

h

)(
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h

)q

−
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{
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(
(uk − vk)

h

)(
uk − vk

h

)q}
dvk

}∣∣∣∣∣
= sup

u∈Ih

∣∣∣∣∣∣ 1
hm

∑
i∈Im

n

m∏
k=1

ˆ ik/n

(ik−1)/n
K1

(
uk − ik/n

h

)(
uk − ik/n
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)q
dvk

−
m∏
k=1

ˆ ik/n

(ik−1)/n

{
K1

(
(uk − vk)

h

)(
uk − vk

h

)q}
dvk

∣∣∣∣∣
≤ C

nhm+1 .

The last inequality can be founded by applying some additional treatment with the help
of the mean value theorem and the telescoping arguments. □
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Lemma 6.4. Suppose that kernel K1 satisfies Assumption 2 part (i) and let g : [0, 1] ×
H → R, (u,x) 7→ g(u,x) be continuously differentiable with respect to u. Then,

sup
u∈Ih

∣∣∣∣∣∣ 1
nmhm

∑
i∈Im

n

m∏
k=1

K1

(
uk − ik/n

h

)
g
(
ik
n
, xk

)
−

m∏
k=1

g(uk, xk)
∣∣∣∣∣∣

= O
( 1
nhm+1

)
+ o(h). (6.87)

Proof of Lemma 6.4 Remark that

sup
u∈Ih

∣∣∣∣∣∣ 1
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where
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1
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(
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)
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(
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≤ C sup
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∣∣∣∣∣
m∑
k=1

ˆ (1−uk)/h

−uk/h

K1 (tk) [g (uk + htk, xk) − g(uk, xk)] dtk
∣∣∣∣∣

≤ C sup
u∈Ih

∣∣∣∣∣
m∑
k=1

ˆ (1−uk)/h

−uk/h

K1 (tk) [g′(uk + θk, xk)htk + o(h)] dtk
∣∣∣∣∣ ≤ o(h).

This completes the proof. □

The following result is an exponential inequality for strongly mixing sequences given
in Liebscher, 1996.
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Lemma 6.5. (Liebscher, 1996, Theorem 2.1). Let {Zi,n} be a zero-mean triangular array
such that |Zi,n| ≤ bn with α-mixing coefficients α(k). Then for any ε > 0 and Sn ≤ n

with ε > 4Snbn,

P

(∣∣∣∣∣
n∑
i=1

Zi,i(u, x)
∣∣∣∣∣ ≥ ε

)
≤ 4 exp

(
− ε2

64σ2
Sn,n

n
Sn

+ 8
3εbnSn

)
+ 4 n

Sn
α (Sn) . (6.88)

Lemma 6.6. Let {Zi,n} be a zero-mean triangular array such that |Zi,n| ≤ bn with β-
mixing coefficients β(k). Then for any ε > 0 and Sn ≤ n with ε > 4Snbn,

P

(∣∣∣∣∣
n∑
i=1

Zi,i(u, x)
∣∣∣∣∣ ≥ ε

)
≤ 4 exp

(
− ε2

64σ2
Sn,n

n
Sn

+ 8
3εbnSn

)
+ 4 n

Sn
β (Sn) . (6.89)

Proof of Lemma 6.6 Using Lemma 6.5 and the fact that for any σ-algebra A and B,
α(A ,B) ⊆ β(A ,B), Lemma 6.8 holds.

Lemma 6.7. (de la Peña, 1992) Let X1, . . . , Xn be a sequence of independent random
elements taking values in a Banach space (B, ∥ · ∥) with EXi = 0 for all i. Let {εi} be
a sequence of independent Bernoulli r.v’s independent of {Xi} . Then, for any convex
increasing function Φ,

EΦ
(

1
2

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
)

≤ EΦ
(∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
)

≤ EΦ
(

2
∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
)
.

Proposition 6.2. (Arcones et al., 1993, Proposition 3.6) Let {Xi : i ∈ n} be a process
satisfying, for m ⩾ 1 :

(E ∥Xi −Xj∥p)1/p ⩽

(
p− 1
q − 1

)m/2

(E ∥Xi −Xj∥q)1/q
, 1 < q < p < ∞,

and the semi-metric : ρ(j, i) =
(
E ∥Xi −Xj∥2

)1/2
. There exists a constant K = K(m)

such that :
E sup
i,j∈n

∥Xi −Xj∥ ⩽ K

ˆ D

0
[logN(ε, n, ρ)]m/2dε,

where D is the ρ-diameter of n.

Corollary 6.3. (Hall et al., 1980) Suppose that X and Y are random variables which
are G and H -measurable, respectively, and that E|X|p < ∞,E|Y |q < ∞, where p, q >
1, p−1 + q−1 < 1. Then

|EXY − EXEY | ⩽ 8∥X∥p∥Y ∥q[α(G ,H )]1−p−1−q−1
.
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Lemma 6.8. Suppose that X and Y are random variables which are G and H -
measurable, respectively, and that E|X|p < ∞, E|Y |q < ∞, where p,

q > 1, p−1 + q−1 < 1.

Then
|EXY − EXEY | ⩽ 8∥X∥p∥Y ∥q[β(G ,H )]1−p−1−q−1

.

Proof of Lemma 6.8: This Lemma follows directly using Corollary 6.3 and the fact
that for any σ-algebra A and B, α(A ,B) ⊆ β(A ,B). □

Lemma 6.9. . Let V1, . . . , VL be strongly mixing random variables measurable with respect
to the σ-algebras F j1

i1 , . . . ,F
jL
iL

respectively with 1 ⩽ i1 < j1 < i2 < · · · < jL ⩽ n, il+1 −
jl ⩾ w ⩾ 1 and |Vj| ⩽ 1 for j = 1, . . ., L. Then

∣∣∣∣∣∣E
 L∏
j=1

Vj

−
L∏
j=1

E (Vj)
∣∣∣∣∣∣ ⩽ 16(L− 1)α(w),

where α(w) is the strongly mixing coefficient.
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Chapter 7
Nonparametric conditional U -processes for
locally stationary random fields under
stochastic sampling design

This chapter develops the content of an accepted article published in Mathe-
matics with the required modifications to fit this thesis manuscript.

W. Stute (Ann. Probab. 19, No. 2 (1991), 812-825) presented the so-called
conditional U -statistics generalizing the Nadaraya-Watson estimates of the re-
gression function. Stute demonstrated their pointwise consistency and the
asymptotic normality. In this chapter, we extend the results to a more ab-
stract setting. We develop an asymptotic theory of conditional U -statistics
for locally stationary random fields {Xs,An : s in Rn} observed at irregularly
spaced locations in Rn = [0, An]d a subset of Rd. We employ a stochastic
sampling scheme that may create irregularly spaced sampling sites in a flexi-
ble manner and includes both pure and mixed increasing domain frameworks.
We specifically examine the rate of the strong uniform convergence and the
weak convergence of conditional U -processes when the explicative variable is
functional. We examine the weak convergence where the class of functions is
either bounded or unbounded and satisfies specific moment conditions. These
results are achieved under somewhat general structural conditions pertaining
to the classes of functions and the underlying models. The theoretical results
developed in this chapter are (or will be) essential building blocks for several
future breakthroughs in functional data analysis.

Objective
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Chapter 7. Conditional U -statistics

1 introduction

The regression problem has been studied by statisticians and probability theorists for
many years, resulting in a vast array of approaches. Various themes have been cov-
ered, such as modeling, estimate method applications, tests, and other related topics. In
addition to the parametric framework, in which one must estimate a finite number of
parameters based on an a priori specified model structure, the nonparametric framework
is devoted to data that lacks a priori structural information. As inherent disadvantages,
nonparametric processes are susceptible to estimation biases and reductions in conver-
gence rates compared to parametric methods. Kernel nonparametric function estimation
techniques have long been of great interest; for good references to research literature and
statistical applications in this area, see B. W. Silverman, 1986, Nadaraya, 1989, Härdle,
1990, Wand et al., 1995, Eggermont et al., 2001, Devroye et al., 2001 and the references
therein. Even though they are widely used, they are just one of several possible ap-
proaches to building reliable function estimators. Despite their popularity, methods such
as nearest-neighbor, spline, neural network, and wavelet analysis are examples of these
approaches. These techniques have been utilized on a vast range of different types of data.
In this article, our focus will be narrowed to the development of consistent kernel-type
estimators for the conditional U -statistics in the context of spatial data. Spatial data are
typically generated in numerous research fields, such as econometrics, epidemiology, en-
vironmental science, image analysis, oceanography, meteorology, geostatistics, etc. These
data are typically collected in various fields and treated statistically on measurement
sites. Consult Ripley, 1981, Rosenblatt, 1985, Guyon, 1995 and Cressie, 2015 as well as
the references contained in these works, to find reliable sources of references to the re-
search literature in this area and discover some statistical applications. In the context of
nonparametric estimation for spatial data, the existing papers are mostly concerned with
estimating probability density and regression functions. Hence, we will cite some impor-
tant references Tran, 1990, Tran et al., 1993, Biau et al., 2004, Dabo-Niang et al., 2013,
Ndiaye et al., 2022 and the references that they are included. By considering the condi-
tional U -processes, we give a more generic and abstract context based on this research.
With many possible applications, the idea of U -statistics (introduced in a landmark work
by Hoeffding, 1948), and U -processes have attracted a great deal of interest over the past
few decades.

U -processes are effective for resolving intricate statistical issues: density estimation,
nonparametric regression tests, and goodness-of-fit tests are among the examples. Specif-
ically, U -processes emerge in statistics in a variety of contexts, such as the terms of
higher order in von Mises expansions. In particular, U -statistics assist in the analysis
of estimators, and function estimators, with varying degrees of smoothness. For exam-
ple, Stute, 1993 aimed to analyze the product limit estimator for shortened data, so he
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employs almost sure uniform bounds for P-canonical U -processes. Also, Arcones et al.,
2006 introduced two novel normality tests based on U -processes. Likewise, new tests for
normality that use as test statistics weighted L1-distances between the standard normal
density and local U -statistics based on standardized data were introduced by Giné et al.,
2007a, 2007b, Schick et al., 2011. In addition, Joly et al., 2016 challenged the estimate
of the mean of multivariate functions under the assumption of possibly heavy-tailed dis-
tributions and presented the median-of-means based on U -statistics. The applications of
U -processes in various statistical applications may also include tests for functions’ qual-
itative features in nonparametric statistics [c.f. S. Lee et al., 2009, Ghosal et al., 2000,
Abrevaya et al., 2005], cross-validation for density estimation [Nolan et al., 1987], and es-
tablishing limiting distributions of M -estimators [see, e.g., Arcones et al., 1993, Sherman,
1994, de la Peña et al., 1999]. Historically, Arcones et al., 1993 furnishes the necessary
and sufficient criteria for the law of large numbers and xthe sufficient conditions for the
central limit theorem for U -processes, equipped by Halmos, 1946, v. Mises, 1947 and Ho-
effding, 1948, who provided (amongst others) the first asymptotic results for the case that
the underlying random variables are independent and identically distributed. However,
under weak dependency assumptions, asymptotic outcomes are illustrated in Yoshihara,
1976, Borovkova et al., 2001, in Denker et al., 1983 or just lately in Leucht, 2012 and in
more general setting in Leucht et al., 2013 and Bouzebda and Nemouchi, 2022, Bouzebda,
Nezzal, and Zari, 2022, Bouzebda and Soukarieh, 2022a; Soukarieh et al., 2022, 2023. The
applicability of U -statistics in estimation and machine learning applications is compre-
hensive. We refer to the U -statistics with random kernels of divergent orders to Frees,
1989, Rempala et al., 1999, C. Heilig et al., 2001, Y. Song et al., 2019 and Soukarieh
et al., 2023. Infinite-order U -statistics are helpful tools for creating simultaneous predic-
tion intervals. These constructed intervals are important to quantify ensemble methods’
uncertainty such as subbagging and random forests. For additional information on the
topic, c.f Peng et al., 2019. The MeanNN method estimation for differential entropy,
which was first described by Faivishevsky et al., 2009, is a remarkable instance of the
U -statistic. A novel test statistic for goodness-of-fit tests was proposed by Q. Liu et al.,
2016 using U -statistics. Using U -statistics, the conference Clémençon, n.d. proposed a
measure to quantify the level of clustering quality exhibited by a partition. The interested
reader may refer to quote Borovskikh, 1996, Koroljuk et al., 1994 and A. J. Lee, 1990
for outstanding resources of references on the U -statistics. The book of de la Peña et al.,
1999 provides a profound and in-depth view of the notion of U -processes.

In this work, our primary focus is on the scenario, including spatial-functional data.
We give an excerpt from Aneiros et al., 2019: "Functional data analysis (FDA) is a
branch of statistics concerned with the analysis of infinite-dimensional variables such as
curves, sets, and images. It has undergone phenomenal growth over the past 20 years,
stimulated in part by major advances in data collection technology that have brought about
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the "Big Data" revolution. Often perceived as a somewhat arcane area of research at the
turn of the century, FDA is now one of the most active and relevant fields of investigation
in data science." The reader is directed to the works of reference Ramsay et al., 2002
and Ferraty et al., 2006 for an overview of this subject area. These references include
fundamental approaches to functional data analysis and a wide range of case studies from
diverse disciplines, such as criminology, economics, archaeology, and neurophysiology.
It is important to note that the extension of probability theory to random variables
taking values in normed vector spaces (for example, Banach and Hilbert spaces), including
extensions of certain classical asymptotic limit theorems, predates the recent literature on
functional data; the reader is referred to the book Araujo et al., 1980 for more information
on this topic. Considering density and mode estimates for data with values in a normed
vector space is the focus of the work done by Gasser et al., 1998. The problem of the
curse of dimensionality, which occurs when functional data have too many dimensions, is
discussed in this study, along with potential solutions to the issue. According to Ferraty
et al., 2006, nonparametric models were deemed useful in regression estimation. We could
also refer to Bosq, 2000, Horváth et al., 2012, Ling et al., 2018.

Modern empirical process theory has recently been applied to processing functional
data. Ferraty et al., 2010 provided the consistency rates of several conditional models, such
as the regression function, the conditional cumulative distribution, the conditional density,
and others, uniformly over a subset of the explanatory variable. Bouzebda and Chaouch,
2022 extended Kara-Zaitri et al., 2017’s UIB consistency to the ergodic setting. Attouch
et al., 2019 considered the problem of local linear estimation of the regression function
when the regressor is functional and showed strong convergence, with specified rates,
uniformly in bandwidth parameters. Ling et al., 2019 examined the k-nearest neighbors
(kNN) estimate of the nonparametric regression model for strong mixing functional time
series data and determined the uniform, almost complete convergence rate of the kNN
estimator under some mild conditions. Bouzebda, 2016 treated the ergodic data and
offered a variety of results related to the limiting distribution for the conditional mode
in the functional setting, for recent references, c.f Mohammedi et al., 2021, Bouzebda,
Mohammedi, et al., 2022, Bouzebda and Nezzal, 2022; Bouzebda, Nezzal, and Zari, 2022,
Didi et al., 2022 and Almanjahie, Bouzebda, Chikr Elmezouar, et al., 2022; Almanjahie,
Bouzebda, Kaid, et al., 2022b.

Stute, 1991 raised a class of estimators for r(m)(φ, t), known as conditional U -statistics,
attempted to generalize the Nadaraya-Watson regression function estimations. Foremost,
we present Stute’s estimators. Consider regular sequence of random elements {(Xi, Yi), i ∈
N∗} with Xi ∈ Rd and Yi ∈ Y some polish space and N∗ = N\{0}. Let φ : Y m → R be
a measurable function. In this study, the estimation of the conditional expectation, or
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regression function, is our primary concern:

r(m)(φ, t) = E (φ(Y1, . . . , Ym) | (X1, . . . ,Xm) = t) , for t ∈ Rdm, (1.1)

whenever it exists, i.e.,
E (|φ(Y1, . . . , Ym)|) < ∞.

We now introduce a kernel function K : Rd → R with support contained in [−B,B]d,
B > 0, satisfying :

sup
x∈Rd

|K(x)| =: κ < ∞ and
ˆ
K(x)dx = 1. (1.2)

Hence, the class of estimators for r(m)(φ, t), given by Stute, 1991, is defined,for each
t ∈ Rdm, as follows:

r̂(m)
n (φ, t;hn) =

∑
i∈Im

n

φ(Yi1 , . . . , Yim)K
(t1 − Xi1

hn

)
. . . K

(tm − Xim

hn

)
∑

i∈Im
n

K
(t1 − Xi1

hn

)
. . . K

(tm − Xim

hn

) , (1.3)

where
Imn = {i = (i1, . . . , im) : 1 ≤ ij ≤ n and ij ̸= ir if j ̸= r} ,

denotes the set of all m-tuples of different integers ij between 1 and n and {hn := hn}n≥1

is a sequence of positive constants that converge to zero with rate nhmn → ∞.
For m = 1, the r(m)(φ, t) becomes

r(1)(φ, t) = E(φ(Y)|X = t)

and the estimate of Stute will be transformed to the Nadaraya-Watson estimator of
r(1)(φ, t).

Behind, A. Sen, 1994 aimed to estimate the rate of uniform convergence in t of
r̂(m)
n (φ, t;hn) to r(m)(φ, t). While, the study of Prakasa Rao et al., 1995 developed the

limit distributions of r̂(m)
n (φ, t;hn), by discussing and contrasting the findings of Stute.

Correspondingly, under appropriate mixing conditions, Harel et al., 1996 spread the re-
sults of Stute, 1991 to weakly dependent data and employed their findings to validate
the Bayes risk consistency of the relevant discrimination rules. Stute, 1996 suggested
symmetrized nearest neighbor conditional U -statistics as alternatives to conventional ker-
nel estimators. Fu, 2012 taken into consideration the functional conditional U -statistic
and established the finite-dimensional asymptotic normality. Nevertheless, the nonpara-
metric estimate of the conditional U -statistics in the functional data framework had not
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received significant attention, despite the subject’s relevance. Some recent developments
are discussed in references Bouzebda et al., 2021; Bouzebda and Nemouchi, 2020, in which
the authors examine the challenges associated with maintaining a uniform bandwidth in
a general framework. The test of independence in the functional framework was based
on the Kendall statistics, which may be thought of as examples of the U -statistics, for
instance, see Jadhav et al., 2019. The extension of the investigation described above
to conditional empirical U -processes is theoretically attractive, practically helpful, and
technically challenging.

The primary objective of this study is to examine a general framework and the weak
convergence’s characterization of the regular sequence of random spatial functions based
on conditional U -processes. This inquiry is simple, as it is difficult to hold the asymp-
totic equicontinuity under minimal conditions in this general setting, which constitutes a
fundamentally unresolved open subject in the literature. We intend to fill this gap in the
literature by merging the findings of Arcones and Yu, 1994 and Bouzebda et al., 2019a;
Bouzebda and Nemouchi, 2022 with techniques handling the functional data given in
Masry, 2005 and Kurisu, 2022a, 2022b; Kurisu et al., 2021. However, as demonstrated in
the following section, the challenge requires much more than "just" merging concepts from
the current outcomes. In fact, complex mathematical derivations are necessary to deal
with the typical functional data in our context. This requires the successful application
of large-sample theoretical tools, which have been established for empirical processes.

The structure of the present article is as follows. Section 2 introduces the functional
framework and the definitions requested in our work. The assumptions used in our asymp-
totic analysis go along with a brief discussion. Section 3 gives the uniform rates of the
strong convergence. Section 4 includes the chapter’s main results concerning the uniform
weak convergence for the conditional U -processes. In Section 5, we provide some potential
applications. In Section 6, we consider the conditional U -statistics in the right censored
data framework. In Section 7, we present how to select the bandwidth through the cross-
validation procedures. All proofs are gathered in Section 8 to prevent interrupting the
presentation flow. Finally, some relevant technical results are given in the Appendix.

2 The functional framework

2.1 Notation

For any set A ⊂ Rd, |A| represents the Lebesgue measure of A and [[A]] denotes the
number of elements in A. For any positive sequence an, bn, we write an ≲ bn if a constant
C > 0 independent of n exists such that an ≤ Cbn for all n, an ∼ bn if an ≲ bn and
bn ≲ an, and an ≪ bn si an/bn → 0 as n → ∞. We use the notation d→ to indicate
convergence in the distribution. We write X d= Y if the random variables X and Y have
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2. The functional framework

the same distribution. PS will denote the joint probability distribution of the sequence
of independent and identically distributed (i.i.d.) random vectors {S0,j}j≥1, and P.|S is
the conditional probability distribution for {S0,j}j≥1. Let E.|S represent the conditional
expectation and Var.|S represent the variance for {S0,j}j≥1.

2.2 Generality on the model

In this investigation, we examine the following model:

φ(Ysi1 ,An , . . . ,Ysim ,An)

= r(m)
(
φ,Xsi1 ,An , . . . ,Xsim ,An ,

si1
An

, . . . ,
sim
An

)
+

m∏
j=1

σ
(

sij
An

,x
)
εij

= r(m)
(
φ,Xsi1 ,An , . . . ,Xsim ,An ,

si1
An

, . . . ,
sim
An

)
+

m∏
j=1

εsij
,An , sij ∈ Rn, j = 1, . . . ,m,(2.1)

where E[εs,An|Xs,An ] = 0 and Rn = [0, An]d ⊂ Rd denotes a sampling region with
An → ∞ as n → ∞. Here, Ysj ,An and Xs,An denote random functions in H and Y .
We consider {Xs,An : s ∈ Rn} as a locally stationary random function field on Rn ⊂ Rd

(d ≥ 2). As suggested by Dahlhaus, 1997, locally stationary processes are nonstationary
time series in which the parameters of the time series can change over time. Locally in
time, they can be modeled by a stationary time series, which makes it possible to use
asymptotic theories to estimate the parameters of models that depend on time. Time
series analyses mostly look at locally stationary models in a parametric framework with
coefficients that change over time.

2.3 Local stationarity

A random function field {Xsj ,An : s ∈ Rn} (An → ∞ as n → ∞) is considered to be
locally stationary if it exhibits behavior that is approximately stationary in the local space.
To guaranteed that it is locally stationary around each rescaled space point u, a process
{Xs,An} can be approximated by a stationary random function field {Xu(s) : s ∈ Rd}
stochastically, for instance, see Dahlhaus and Subba Rao, 2006. The following is one
possible way to define this idea.
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Definition 2.1. The H -valued stochastic process {Xs,An : s ∈ Rn} denotes locally
stationary if for each rescaled time point u ∈ [0, 1]d, there exists an associated H -valued
process {Xu(s) : s ∈ Rd} with the following properties:

(i) {Xu(s) : s ∈ Rd} denotes strictly stationary.

(ii) It holds that

d (Xs,An ,Xu(s)) ≤
(∥∥∥∥ s

An
− u

∥∥∥∥
2

+ 1
Adn

)
Us,An(u) a.s., (2.2)

where {Us,An(u)} denotes a process of positive variables satisfying E[(Us,An(u))ρ] <
C for some ρ > 0, C < ∞; C is independent of u, s, and An. ∥.∥2 is arbitrary
norms of Rd.

The concept of local stationarity for real-valued time series was first presented by Dahlhaus,
1997, and Definition 2.1 is a natural extension of that idea.

In addition, the definition we offer is the same as that of van Delft et al., 2018 (Def-
inition 2.1) when H is the Hilbert space L2

R([0, 1]) of all real-valued functions that are
square integrable with respect to the Lebesgue measure on the unit interval [0, 1] with
the L2-norm given by

∥f∥2 =
√

⟨f, f⟩, ⟨f, g⟩ =
ˆ 1

0
f(t)g(t)dt,

where f, g ∈ L2
R([0, 1]). In addition to this, the authors provide necessary conditions so

that an L2
R([0, 1])-valued stochastic process {Xt,T} satisfies (2.2) with d(f, g) = ∥f − g∥2

and ρ = 2.

2.4 Sampling design

We are going to look at the stochastic sampling strategy in order to accommodate the
data that are irregularly spaced. First, defining Rn, the sampling region. Let {An}n≥1 be
a sequence of positive numbers such that An → ∞ as n → ∞. We consider the sampling
region as follows:

Rn = [0, An]d. (2.3)

We will discuss the (random) sample designs we will use. Let fS(s0) be a continuous,
everywhere positive probability density function on R0 = [0, 1]d, and let {S0,j}j≥1 be a
sequence of i.i.d. random vectors with probability density fS(s0) such that {S0,j}j≥1 and
{Xs,A : s ∈ Rn} share a common probability space (Ω,F , P ) and are independent. The
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2. The functional framework

realizations s0,1, . . . , s0,n of random vectors S0,1, . . . ,S0,n by the following relation:

sj = Ans0,j, j = 1, . . . , n.

gives the sampling sites s1, . . . , sn

Herein, we assume that nA−d
n → ∞ as n → ∞.

Remark 2.2. In practice, An can be derived by taking the sampling region’s diameter. We
can extend the applicability of the assumption (2.3) to Rn to a broader range of situations,
i.e.,

Rn =
d∏
j=1

[0, Aj,n],

where Aj,n are sequences of positive constants with Aj,n → ∞ as n → ∞. To avoid more
challenging outcomes, we assumed (2.3). For additional discussion, please refer to Hall
et al., 1994, Matsuda et al., 2009, Lahiri, 2003a, Lahiri, 2003b, Chapter 12, Kurisu et al.,
2021 and Kurisu, 2022b.

2.5 Mixing condition

The sequence Z1,Z2, is said β-mixing or absolute regular, refer to Volkonskiui et al., 1959
and Rosenblatt, 1956, if :

β(k) := E sup
l⩾1

{∣∣∣P (A|σl1
)

− P (A)
∣∣∣ : A ∈ σ∞

l+k

}
−→ 0 as k → ∞.

Notably, Ibragimov et al., 1969 produced a comprehensive description of stationary Gaus-
sian processes matching the last condition. Now we define β-mixing coefficients for a
random function field X̃. Let σ

X̃
(T ) = σ({X̃(s) : s ∈ T}) be the σ-field generated by

variables {X̃(s) : s ∈ T}, T ⊂ Rd. For subsets T1 and T2 of Rd, let

β̄(T1, T2) = sup 1
2

J∑
j=1

K∑
k=1

|P (Aj ∩Bk) − P (Aj)P (Bk)|,

where the supremum is taken over all pairs of (finite) partitions {A1, . . . , AJ} and {B1, . . . , BK}
of Rd such that Aj ∈ σ

X̃
(T1) and Bk ∈ σ

X̃
(T2). Furthermore, let

d(T1, T2) = inf{|x − y| : x ∈ T1,y ∈ T2},

where |x| = ∑d
j=1 |xj| for x ∈ Rd, and let R(b) be the collection of all finite disjoint

unions of cubes in Rd with a volume total not exceeding b. Subsequently, the β-mixing
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coefficients for the random field X̃ can be defined as

β(a; b) = sup{β̄(T1, T2) : d(T1, T2) ≥ a, T1, T2 ∈ R(b)}. (2.4)

We assume that a non-increasing function β1 with lima→∞ β1(a) = 0 and a non-decreasing
function g1 exist such that the β-mixing coefficient β(a; b) satisfies the following inequality:

β(a; b) ≤ β1(a)g1(b), a > 0, b > 0, (2.5)

where g1 may be unbounded for d ≥ 2.

Remark 2.3 (Some remarks about mixing conditions). The size of index sets T1 and
T2 in the definition of β(a; b) must be restricted. Let us explain this point. If the β-
mixing coefficients of a random field X are defined similarly to the β-mixing coefficients
for the time series as follows: Let O1 and O2 be half-planes with boundaries L1 and L2,
respectively. For each real number a > 0, define

β(a) = sup
{
β̄ (O1,O2) : d (O1,O2) ≥ a

}
,

where sup is taken over all pairs of parallel lines L1 and L2 such that d (L1, L2) ≥ a.
Subsequently, Bradley, 1989, Theorem 1 shows that if {X(s) : s ∈ R2} is a strictly sta-
tionary mixing random field, and a > 0 is a real number. Then β(a) = 1 or 0. This
means that if a random field X is β-mixing ((lima→∞ β(a) = 0)), then, for η a positive
constant and for some a > η, the random field X is "m-dependent", i.e., β(a) = 0. But,
this is highly restricted in practice. In order to loosen these results and make them more
flexible for practical purposes, it will be necessary to restrict the size of T1 and T2 and
adopt Definition 2.4 for the β-mixing. We refer to Kurisu, 2022b, Kurisu et al., 2021,
Bradley, 1993, Doukhan, 1994 and Dedecker et al., 2007 for additional information on
mixing coefficients for random fields.

Lahiri, 2003a writes the form of mixing condition given in Equation (2.5) for the
α-mixing condition and it was considered also in the works of Lahiri et al., 2006 and
Bandyopadhyay et al., 2015. We have considered the β-mixing case, and it is well known
that the β-mixing implies the α-mixing. In general, in the expression (2.5) β1 is a function
defined in a way that it could be dependent on n as the random field Xs,An depends on n,
yet, g does not, just for the simplicity sake, despite that the general cases where g changes
with n are not difficult. We note that the random field Y s,An(or φ(Y s,An)) not necessary
satisfies the mixing condition (2.5), since the mixing condition is assumed for Xs,An , but
with the regression form represented by the model in (2.1), Y s,An(or φ(Y s,An)) may have
a flexible dependence structure.
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2.6 Generality on the model

Let {Xs,An ,Y s,An : s ∈ Rn} be random variables where Y s,An is in Y and Xs,An takes
values in some semi-metric space H with a semi-metric d(·, ·) 1 defining a topology
to measure the proximity between two elements of H and which is dissociated from
the definition of X in order to prevent concerns with measurability. This study aims to
establish the weak convergence of the conditional U -process using the following U -statistic.

r̂(m)
n (x,u;hn) := r̂(m)

n (φ,x,u;hn)

=

∑
i∈Im

n

φ(Ysi1 ,An , . . . ,Ysim,An
)
m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
∑

i∈Im
n

m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}

=

∑
i∈Im

n

φ(Ysi1 ,An , . . . ,Ysim,An
)
m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
∑

i∈Im
n

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
,(2.6)

where

Imn := {i = (i1, . . . , im) : 1 ≤ ij ≤ n and ir ̸= ij if r ̸= j} ,

K(u) =
d∏
ℓ=1

K1(uℓ), (2.7)

and φ : Y m −→ R is a symmetric, measurable function that belongs to some class of
functions Fm, and {hn}n∈N∗ a sequence of positive real numbers satisfying hn → 0 as n →
∞. In order to examine the weak convergence of the conditional empirical process and
the conditional U -process under functional data, we must introduce new notations, let

Fm = {φ : Y m → R},

is a point-wise measurable class of real-valued symmetric measurable functions on Y m

with a measurable envelope function :

F (y) ≥ sup
φ∈Fm

|φ(y)|, for y ∈ Y m. (2.8)

1A semi-metric (sometimes called pseudo-metric) d(., .) is a metric which allows d(x1, x2) = 0 for some
x1 ̸= x2.
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For a kernel function K(·), we define the point-wise measurable class of functions, for
1 ≤ m ≤ n

K m :=
{

(x1, . . . , xm) 7→
m∏
i=1

K

(
d(xi, ·)
hn

)
, 0 < hn < 1 and (x1, . . . , xm) ∈ H m

}
.

We use the notation

ψ(·, ·) ∈ FmK m := {φ1(·)φ2(·) : φ1 ∈ Fm, φ2(·) ∈ K m} ,

and
ψ(·, ·) ∈ F1K

1 := FK =
{
φ1(·)φ2(·) : φ1 ∈ F1, φ2(·) ∈ K 1

}
.

2.6.1 Small ball probability

In the absence of a universal reference measure, such as the Lebesgue measure, the density
function of the functional variable does not exist, which is one of the technical challenges
in infinite-dimensional spaces. To circumvent this obstacle, we employ the concept of
"small-ball probability." The function ϕx(·) precisely controls the concentration of the
probability measure of the functional variable on a small ball, which is defined, for a fixed
x ∈ H for all r > 0, by :

P (X ∈ B(x, r)) =: ϕx(r) > 0, (2.9)

where the space H is equipped with the semi-metric d(., .), and :

B(x, r) = {z ∈ H : d(z, x) ⩽ r}

is a ball in H with the center x and radius r.

2.6.2 VC-type classes of functions

The asymptotic analysis of functional data is related to concentration properties expressed
in terms of the small-ball probability concept. When considering a process indexed by a
class of functions, one must also account for other topological concepts, including metric
entropy and VC-subgraph classes (“VC” for Vapnik and Červonenkis).
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Definition 2.4. Let SE denote a subset of a semi-metric space E and Nε a positive
integer, a finite set of points {e1, . . . , eNε} ⊂ E is called, for a given ε > 0, a ε-net of SE

if :
SE ⊆ ∪Nε

j=1B(ej, ε).

If Nε(SE ) denotes the cardinality of the smallest ε-net (the minimal number of open balls
of radius ε) in E , needed to cover SH , then we call Kolmogorov’s entropy (metric entropy)
of the set SE , the quantity

ψSE
(ε) := logNε(SE ).

From its name, one can deduce that Kolmogorov invented this idea of metric entropy
(cf. Kolmogorov et al., 1959), which was then explored for different metric spaces. This
concept was utilized by Dudley, 1967 to provide necessary conditions for the continuity of
Gaussian processes. It served as the foundation for remarkable expansions of Donsker’s
theorem on the weak convergence of empirical processes. BH and SH represent two
subsets of the space H with Kolmogorov’s entropy (for the radius ε) ψBH

(ε) and ψSH
(ε)

respectively, then the Kolmogorov entropy for the subset BH × SH of the semi-metric
space H 2 by :

ψBH ×SH
(ε) = ψBH

(ε) + ψSH
(ε).

Hence, mψSH
(ε) is the Kolmogorov entropy of the subset S m

H of the semi-metric space
H m. We specify by d the semi-metric on H then, this semi-metric defined on H m by :

dH m (x,y) := 1
m
d (x1, y1) + . . .+ 1

m
d (xm, ym)

for
x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ H m.

In this type of study, the semi-metric plays a crucial role. The reader can discover
helpful discussions on how to select the semi-metric in Ferraty et al., 2006 (see Chapter
3 and Chapter 13). We must additionally consider another topological term; namely,
VC-subgraph classes (“VC” for Vapnik and Červonenkis).

Definition 2.5. We call a class of subsets C on a set C a VC-class if there exists a
polynomial P(·) such that, for every set of Nε points in C, the class C picks out at most
P(Nε) distinct subsets.
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Definition 2.6. A class of functions F is called a VC-subgraph class if the graphs of the
functions in F form a VC-class of sets, i.e., if we define the subgraph of a real-valued
function f on S as the following subset Gf on ×R :

Gf = {(s, t) : 0 ≤ t ≤ f(s) or f(s) ≤ t ≤ 0}

the class {Gf : f ∈ F} is a VC-class of sets on S×R. Informally, VC-class functions are
identified by their polynomial covering number (the minimal number of required functions
to make a covering on the entire class of functions).

A VC-class of functions F with envelope function F have the following entropy property,
for a given 1 ⩽ q < ∞, there are constants a and b such as :

N(ε,F , ∥.∥Lq(Q)) ≤ a

(
(QF q)1/q

ε

)b
(2.10)

for any ε > 0 and each probability measure such that QF q < ∞. For instance, see Nolan
et al., 1987, Lemma 22, Dudley, 2014, §4.7. A. W. van der Vaart et al., 1996, Theorem
2.6.7, Kosorok, 2008, §9.1 provide a number of sufficient conditions under which (2.10)
holds, we may refer also to Deheuvels, 2011, §3.2 for further discussions.
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2.7 Conditions and comments

Assumption 7. [Model and distribution assumptions]

(M1) The H -valued stochastic process {Xs,An : s ∈ Rn} is locally stationary. Hence,
for each time point u ∈ [0, 1]d, a strictly stationary process {Xu(s) : s ∈ Rd} exists
such that, for ∥.∥ an arbitrary norm on Rd,

d (Xs,An ,Xu(s)) ≤
(∥∥∥∥ s

An
− u

∥∥∥∥
2

+ 1
Adn

)
Us,An(u) a.s., (2.11)

with E[(Us,An(u))ρ] < C for some ρ ≥ 1 and C < ∞ that is independent of u, s and
An.

(M2) For i = 1, . . . ,m, let B(xi, h) = {y ∈ H : d(xi, y) ≤ h} be a ball centered at
xi ∈ H with radius h, and let cd < Cd be positive constants. For all u ∈ [0, 1]d,

ϕx(hn) := P (Xu(s1) ∈ B(x1, hn), . . . ,Xu(sm) ∈ B(xm, hn)) = Fu(hn, x1, . . . , xm)

satisfies :

0 < cdϕ(h)f1(x) ≤ ϕx(h) ≤ Cdϕ(h)f1(x), (2.12)

where ϕ(h) → 0 as h → ∞, and f1(x) is a nonnegative functional in x ∈ H m.
Moreover, there exist constants Cϕ > 0 and ε0 > 0 such that for any 0 < ε < ε0,

ˆ ε

0
ϕ(u)du > Cϕεϕ(ε). (2.13)

(M3) Let Xs,An = (Xsm,An , . . . ,Xs1,An) and Xv,An = (Xv1,An , . . . ,Xvm,An) and B(x, h) =∏m
i=1 B(xi, h). Assume

sup
s,x,An

sup
s̸=v

P((Xs,An ,Xv,An) ∈ B(x, h) ×B(x, h)) ≤ ψ(h)f2(x),

where ψ(h) → 0 as h → 0, and f2(x) is a nonnegative functional in x ∈ H m. We
assume that the ratio ψ(h)/ϕ2(h) is bounded.

(M4) σ : [0, 1] × H m → R is bounded by some constant Cσ < ∞ from above and by some
constant cσ > 0 from below, that is, 0 < cσ ≤ σ(u,x) ≤ Cσ < ∞ for all u and x.

(M5) σ(., .) is Lipschitz continuous with respect to u.
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(M6) supu∈[0,1]m supz:d(x,z)≤h|σ(u,x) − σ(u, z)| = o(1) as h → 0.

(M7) r(m)(u,x) is Lipschitz, and it satisfy

sup
u∈[0,1]

|r(m)(u1,x) − r(m)(u2, z)| ≤ cm (dH m (x, z)α + ∥u1 − u2∥α) (2.14)

for some cm > 0 and α > 0 and the semi-metric dH m (x, z) is defined on H m by:

dH m (x, z) := 1
m
d (x1, z1) + . . .+ 1

m
d (xm, zm)

for x = (x1, . . . , xm), z = (z1, . . . , zm) ∈ H m, and it is twice continuously partially
differentiable with first derivatives

∂ui
r(m)(u,x) = ∂

∂ui
r(m)(u,x),

and second derivatives

∂2
uiuj

r(m)(u,x) = ∂2

∂ui∂uj
r(m)(u,x).

Assumption 8. [Kernel assumptions]

(KB1) The kernel K2(·) is nonnegative, bounded by κ̃, and has support in [0, 1] such
that 0 < K2(0) and K2(1) = 0. Moreover, K ′

2(v) = dK2(v)/dv exists on [0, 1] and
satisfies C ′

1 ≤ K ′
2(v) ≤ C ′

2 for two real constants −∞ < C ′
1 < C ′

2 < 0.

(KB2) The kernel K : Rd → [0,∞) is bounded and has compact support [−C,C]d.
Moreover,
ˆ

[−C,C]d
K(x)dx = 1,

ˆ
[−C,C]d

xαK(x)dx = 0, for any α ∈ Zd with |α| = 1,

and |K(u) −K(v)| ≤ C∥u − v∥.

(KB3) The bandwidth h converges to zero at least at a polynomial rate; that is, there
exists a small ξ1 > 0 such that h ≤ Cn−ξ1 for some constant 0 < C < ∞.

Assumption 9. [Sampling design assumptions]

(S1) For any α ∈ Nd with |α| = 1, 2, ∂αfS(s) exists and is continuous on (0, 1)d.

(S2) C0 ≤ nA−d
n ≤ C1n

η1 for some C0, C1 > 0 and small η1 ∈ (0, 1).

Assumption 10. [Block decomposition assumptions]
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(B1) Let {A1,n}n≥1 and {A2,n}n≥1 be two sequences of positive numbers such that A1,n, A2,n →
∞, A2,n = o (A1,n), and A1,n = o (An), or A1,n

An
+ A2,n

A1,n
≤ C−1

0 n−η → 0 for some C0 >

0 and η > 0.

(B2) We have limn→∞ nA−d
n = κ ∈ (0,∞] with An ≥ nκ̄ for some κ̄ > 0.

(B3) We have

(
1

nhmdϕ(h)

)1/3 (
A1,n

An

)2d/3 (A2,n

A1,n

)2/3

g
1/3
1

(
Ad1,n

) An/A1,n∑
k=1

kd−1β
1/3
1 (kA1,n + A2,n) → 0.

(B4) We have limn→∞ AdnA
−d
1,nβ

(
A2,n;Adn

)
= 0.

Assumption 11. [Regularity conditions] Let αn =
√

log n/nhmdϕ(h). As n → ∞,

(R1) h−(md)ϕ(h)−1αmdn AdnA
−d
1,nβ(A2,n;Adn) → 0 and Ad1,nA−d

n nhmdϕ(h)(log n) → 0,

(R2) n1/2h(md)/2ϕ(h)1/2/Ad1,nn
1/ζ ≥ C0n

η for some 0 < C0 < ∞ and η > 0 and ζ > 2.

(R3) Adpn ϕ(h) → ∞, where p is defined in the sequel.

Assumption 12. (E1) For Wsi,An = ∏m
j=1 εsij

,An, it holds that supx∈H m E|Ws,An|ζ ≤ C

and
sup

x∈H m
E
[
|Ws,An|ζ | Xi,n = x

]
≤ C

for ζ > 2 and C < ∞.

(E2) The β-mixing coefficients of the array {Xs,An ,Ws,An} satisfy β(a; b) ≤ β1(a)g1(b)
with β1(a) → 0 as a → ∞.

Assumption 13. [Class of functions assumptions]
The classes of functions K m and Fm are such that :

(C1) The class of functions Fm is bounded, and its envelope function satisfies for some
0 < M < ∞ :

F (y) ≤ M, y ∈ Y m.

(C2) The class of functions Fm is unbounded and its envelope function satisfies for some
p > 2 :

θp := sup
t∈S m

H

E (F p(Y) | x = x) < ∞.

(C3) The metric entropy of the class FmK m satisfies, for some 2 < p < ∞ :
ˆ ∞

0
(logN(u,FmK m, L1(Pm))) 1

2du < ∞,
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ˆ ∞

0
(logN(u,FmK m, L2(Pm)))) 1

2du < ∞,

ˆ ∞

0
(logN(u,FmK m, Lp(Pm))) 1

2du < ∞.

2.7.1 Comments:

When it comes to functional data, traditional statistical methods are entirely ineffective.
In our non-parametric functional regression model, we took on the complex theoretical
challenge of establishing functional central limit theorems for the conditional U -process,
under functional absolute regular data and in the context of a two-fold situation. This
was accomplished by adopting a two-fold framework. Despite this, the imposed assump-
tions coincide with some properties of the infinite-dimensional space. These properties
include the topological structure on H m, the probability distribution of X, and the mea-
surability concept for the classes Fm and K m, consequently, a discussion regarding the
aforementioned assumptions is necessary. The majority of these assumptions were moti-
vated by Gasser et al., 1998, Masry, 2005, Ferraty et al., 2006, Vogt, 2012, Bouzebda and
Nemouchi, 2022, Kurisu, 2022a and Kurisu, 2022b. The assumption 7 is the beginning
of a formalization of the property of Xi to be locally stationary, and we continue by
placing certain restrictions on the distribution behavior of the variables. This allows us to
formalize the property in a more precise manner. The condition (M1) refers to the idea
of a locally stationary time series, and various random fields can fulfill this requirement.
Kurisu, 2022b gave us some examples, and particularly he proved that this condition is
satisfied for locally stationary versions of Lévy-driven moving average random fields. Con-
dition (M2) has been adopted by Masry, 2005, who in turn was inspired by Gasser et al.,
1998 in his non-parametric density estimation under functional observations. Masry, 2005
clarifies that if H m = Rm, then the condition overlaps with the fundamental axioms of
probability calculus, furthermore if H m is an infinitely dimensional Hilbert space, then
ϕ(hn) can drop toward 0 by an exponential speed as n → ∞. Equation (2.12) controls
the behavior of the small ball probability around zero and is the quite usual condition
on the small ball probability. This approximately shows that the small ball probability
can be written approximately as the product of two independent functions ϕm(·) and
f1(·), for instance, for m = 1, refer to Mayer-Wolf et al., 1993 for the diffusion process,
Bogachev, 1998 for a Gaussian measure, W. V. Li et al., 2001 for a general Gaussian
process and Masry, 2005 employed these assumptions for strongly mixing processes. For
example, the function ϕ(·) can be expressed as ϕ(ε) = εδ exp(−C/εa) with δ ≥ 0 and
a ≥ 0, and it corresponds to the Ornstein-Uhlenbeck and general diffusion processes (for
such processes, a = 2 and δ = 0) and the fractal processes (for such processes, δ > 0
and a = 0). We refer to the paper of Ferraty et al., 2007 for other examples. Conditions
(M4), (M5), (M6) and Assumption 8 represent the regularity conditions, and they are
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the umbrella that covers the limiting theorems of such a process. Besides, due to the
sampling design strategy employed in section 2.4, a non-uniform density is possible across
the sampling region, by which the number of sampling sites is enabled to increase at
different rates with respect to the region’s volume O(Adn). This sampling design allows
the pure increasing domain case

(
limn→∞ nA−d

n = κ ∈ (0,∞)
)

and the mixed increasing
domain case ( limn→∞ nA−d

n = ∞
)
. Assumption 9 is assumed to address this sampling

design and the infill sampling criteria in the stochastic design case, which can also be seen
in Lahiri et al., 1999 and Lahiri, 2003b. Besides the non-uniform possibility of the sam-
pling density, an approach for irregularly spaced sampling sites based on a homogeneous
Poisson point process was discussed in Cressie, 1993, Chapter 8, where the sampling sites
must have a uniform distribution over the sampling region. This makes the sampling
design used in this work more flexible than the homogeneous Poisson point process and
more useful for practical applications. Condition (B1) in 10 is related to the Blocking
technique used to decompose the sampling region Rn into big and small blocks. The
sequences {A1,n} and {A2,n} are related to the large-block-small-block argument respec-
tively, which is commonly used in proving CLTs for sums of mixing random variables; see
Lahiri, 2003b. Precisely, A1,n corresponds to the side length of large blocks, while A2,n

corresponds to the side length of small blocks. Further, Assumptions 12 help for deriving
the weak convergence of the conditional U -statistic ψ̂ defined in Section 3. Condition
(C1) says that we are dealing with bounded functions, but we are also interested in es-
tablishing the functional central limit theorem for conditional U -processes indexed by an
unbounded class of functions; therefore, this condition will be replaced by (C2). Each of
these generic assumptions is sufficiently weak in connection to the many objects described
in our preliminary results. They discuss and utilize the four key axes of this work, which
are the topological structure of the functional variables, the probability measure in this
functional space, the idea of measurability on the class of functions, and the uniformity
governed by the entropy characteristics.
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Remark 2.7. Note that the Assumption (C4) in 13 might be substituted by more general
hypotheses upon moments of Y as in Deheuvels, 2011. That is

(C4)′ We denote by {M (x) : x ≥ 0} a non-negative continuous function, increasing on
[0,∞), and such that, for some s > 2, ultimately as x ↑ ∞,

x−sM (x) ↓; x−1M (x) ↑ . (2.15)

For each t ≥ M (0), we define M inv(t) ≥ 0 by M (M inv(t)) = t. Assuming further
that:

E(M (| F (Y ) |)) < ∞.

The following choices of M (.) are of particular interest:

(i) M (x) = xp for some p > 2;

(ii) M (x) = exp(sx) for some s > 0.

3 Uniform convergence rates for kernel estimators

Before expressing the asymptotic behaviour of our estimator represented in (2.6), we will
generalize the study to a U -statistic estimator defined by:

ψ̂(u,x) = (n−m)!
n!hmdϕm(h)

∑
i∈Im

n

m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj ,Xsij

,An)
hn

)}
Wsi,An , (3.1)

where Wsi,An is an array of one-dimensional random variables. In this study, we use the
results with Wsi,An = 1 and Wsi,An = ∏m

j=1 εsij
,An .

3.1 Hoeffding’s decomposition

Note ψ̂(u,x) is a standard U -statistic with a kernel depending on n. We define

ξj := 1
hd
K

(
uj − sij/An

hn

)
,

H(Z1, . . . , Zm) :=
m∏
j=1

1
ϕ(h)K2

(
d(xj,Xsij

,An)
hn

)
Wsi,An ,

thus, the U -statistic in (3.1) can be viewed as a weighted U -statistic of degree m:

ψ̂(u,x) = (n−m)!
n!

∑
i∈Im

n

ξi1 . . . ξimH(Zi1 , . . . , Zim). (3.2)
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We can write Hoeffding’s decomposition in this case. If we will not assume symmetry for
Wsi,An or H, we must define:

• The expectation of H(Zi1 , . . . , Zim):

θ(i) := EH(Zi1 , . . . , Zim) =
ˆ
Wsi,An

m∏
j=1

1
ϕ(h)K2

(
d(xj, νsij

,An)
hn

)
dPi(zi). (3.3)

• For all ℓ ∈ {1, . . . ,m} the position of the argument, construct the function πℓ such
that:

πℓ(z; z1, . . . , zm−1) := (z1, . . . , zℓ−1, z, zℓ, . . . , zm−1).

• Define:

H(ℓ) (z; z1, . . . , zm−1) := H {πℓ (z; z1, . . . , zm−1)}
θ(ℓ) (i; i1, i2, . . . , im−1) := θ {πℓ (i; i1, i2, . . . , im−1)} .

Hence, the first order expansion of H(·) will be seen as:

H̃(ℓ) (z) := E
(
H(ℓ) (z, Z1, . . . , Zm−1)

)
(3.4)

=
ˆ
Ws(1,...,ℓ−1,i,ℓ,...,m−1),An

m−1∏
j=1
j ̸=i

1
ϕ(h)K2

(
d(xj, νsj ,An)

h

)
× 1
ϕ(h)K2

(
d(xi, νsi,An)

h

)

×P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1)

:= 1
ϕ(h)K2

(
d(xi, Xsi,An)

h

)
Wsi,An ×

ˆ
Ws(1,...,ℓ−1,ℓ,...,m−1),An

m−1∏
j=1
j ̸=i

1
ϕ(h)K2

(
d(xj, νsj ,An)

h

)

×P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1),

with P is the underlying probability measure, and define

f
(ℓ)
i,i1,...,im−1 :=

m∑
ℓ=1

ξi1 . . . ξiℓ−1ξiξiℓ . . . ξim−1

(
H̃(ℓ) (z) − θ(ℓ) (i; i1, . . . , im−1)

)
. (3.5)

Then, the first order projection can be defined as:

Ĥ1,i(u,x) := (n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

f
(ℓ)
i,i1,...,im−1 , (3.6)

where

Im−1
n−1 (−i) := {1 ≤ i1 < . . . < im−1 ≤ n and ij ̸= i for all j ∈ {1, . . . ,m− 1}} .
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For the remainder terms, we denote by i\iℓ := (i1, . . . , il−1, il+1, . . . , im) and for ℓ ∈
{1, . . . ,m}, let

H2,i(z) := H(z) −
m∑
l=1

H̃
(ℓ)
i\iℓ(zℓ) + (m− 1)θ(i), (3.7)

where
H̃

(ℓ)
i\iℓ(zℓ) = E (H (Z1, . . . , Zℓ−1, z, Zℓ+1Zm−1)) ,

defined in (3.4), this projection derive us to the following remainder term:

ψ̂2(u,x) := (n−m)!
(n)!

∑
i∈Im

n

ξi1 . . . ξimH2,i(z). (3.8)

Finally, using Equation (3.6) and Equation (3.8), and under conditions that :

E
(
Ĥ1,i(u, X)

)
= 0, (3.9)

E (H2,i(Z | Zk)) = 0 a.s., (3.10)

we get the Hoeffding, 1948 decomposition:

ψ̂(u,x) − E
(
ψ̂(u,x)

)
= 1

n

n∑
i=1

Ĥ1,i(u,x) + ψ̂2,i(u,x)

:= ψ̂1(u,x) + ψ̂2(u,x).

3.2 Strong uniform convergence rate

We start by giving the following general result concerning the rate of convergence of the
U -process presented in (3.1).

Proposition 3.1. Let FmK m be a measurable VC-subgraph class of functions satisfying
Assumption 13 and assume that Assumptions 8, 9, Condition (B1) in 10, 11 and 12 are
also satisfied. Then the following result holds

sup
FmK m

sup
x∈H m

sup
u∈[0,1]m

∣∣∣ψ̂(u,x) − E[ψ̂(u,x)]
∣∣∣ = OP.|S

(√
log n

nhmdϕm(h)

)
PS − a.s.

Next, the uniform rate of convergence of the estimator (2.6) of the mean function r(m)

in the model (2.1) will be given, using the results of the last proposition.
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Theorem 3.1

Let FmK m be a measurable VC-subgraph class of functions satisfying Assumption
13. Let Ih = [C1h, 1−C1h]dm and let Sc be a compact subset of H m. Suppose that

inf
u∈[0,1]d

f(u) > 0.

Then, under Assumptions 7, 8, 9, Condition (B1) in 10, 11 and 12 (with Wsi,An = 1
and εsi,An), the following result holds for PS almost surely:

sup
FmK m

sup
x∈Sc

sup
u∈Ih

∣∣∣r̂(m)
n (x,u;hn) − r(m)(x,u;hn)

∣∣∣
= OP.|S

(√
log n/nhmdϕm(h) + h2∧α + 1

Adpn ϕ(h)

)
,

where p = min{1, ρ}, and ρ > 0 given in Definition 2.1 .

It is worth to note here that the approximation of the functional time series Xs,An by
a functional stationary random field Xu(s) provides the error term A−dp

n ϕ−1(h).

4 Weak convergence for kernel estimators

In this section, we are interested in studying the weak convergence of the conditional
U -process, defined by Equation (2.6), under absolute regular observations. The following
theorem represents the main result in this work concerning the weak convergence of the
functional locally stationary random field estimator. Let us define, for φ1, φ2 ∈ Fm

σ(φ1, φ2) = E.|S(
√
nhmdϕm(h)(r̂(m)

n (φ1,x,u;hn) − r(m)(φ1,x,u)

×
√
nhmdϕm(h)(r̂(m)

n (φ2,x,u;hn) − r(m)(φ2,x,u)). (4.1)
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Theorem 4.1

Let FmK m be a measurable VC-subgraph class of functions satisfying
Assumption 13. Suppose that fS(u) > 0 and εsij

,An = σ
(
sij/An,x

)
εij , where

σ(., .) is continuous and {εi}ni=1 is a sequence of i.i.d. random variables with mean
zero and variance 1. Moreover, suppose nhm(d+1)+4 → c0 for a constant c0. If all
assumptions assumed in Theorem 3.1 hold in addition of Conditions (B2), (B3) and
(B4), then the following result holds for PS almost surely:

√
nhmdϕm(h)

[
r̂(m)
n (φ,x,u;h) − r(m)(φ,x,u) −Bu,x

]
converges to a Gaussian process Gn over FmK m, whose simple paths are bounded
and informally continuous with respect to ∥.∥2−norm with co-variance function
given by (4.1) and where the bias term Bu,x = OP.|S (h2∧α).

Remark 4.1. Set Adn = O (n1−η̄1) for some η̄1 ∈ [0, 1), A1,n = O
(
A
γA1
n

)
, A2,n = O

(
A
γA2
n

)
with 0 < γA2 < γA1 < 1/3 and p = min{1, ρ} = 1. Assume that we can take a sufficiently
large ζ > 2 such that 2

ζ
< (1 − η̄1) (1 − 3γA1). Then, Assumption 10 is satisfied for d ≥ 1.

Remark 4.2. It is simple to modify the proofs of our results to demonstrate that they
still hold when the entropy condition is replaced by the bracketing condition:

ˆ ∞

0
(logN[ ](u,FK , Lp(Pm))) 1

2du < ∞

Refer to p. 270 of A. W. van der Vaart, 1998 for the definition of N[ ](u,FK , Lp(Pm)).
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Remark 4.3. There are basically no restrictions on the choice of the kernel function in
our setup apart from satisfying some mild conditions. The selection of the bandwidth,
however, is more problematic. It is worth noticing that the choice of the bandwidth is
crucial to obtain a good rate of consistency; for example, it has a big influence on the
size of the estimate’s bias. In general, we are interested in the selection of bandwidth
that produces an estimator which has a good balance between the bias and the variance of
the considered estimators. It is then more appropriate to consider the bandwidth varying
according to the criteria applied and to the available data and location which cannot be
achieved by using the classical methods. The interested reader may refer to Mason, 2012
for more details and discussion on the subject. It would be of interest to establish uniform-
in-bandwidth central limit theorems in our setting; i.e., we will let h > 0 vary in such a
way that h′

n ≤ h ≤ h′′
n, where {h′

n}n≥1 and {h′′
n}n≥1 are two sequences of positive constants

such that 0 < h′
n ≤ h′′

n < ∞ and, for either choice of hn = h′
n or hn = h′′

n, fulfills our
conditions. It will be of interest to show that

sup
h′

n≤h≤h′′
n

√
nhmdϕm(h)

[
r̂(m)
n (φ,x,u;h) − r(m)(φ,x,u) −Bu,x

]

converges to a Gaussian process Gn over FmK m.

5 Applications

5.1 Metric learning

Metric learning tries to adapt the metric to the data and has garnered significant interest in
recent years; for an overview of metric learning and its applications, see Bellet et al., 2013;
Clémençon et al., 2016. This is prompted by applications ranging from computer vision
to bioinformatics-based information retrieval. As an example of the utility of this notion,
we give the metric learning issue for supervised classification as described in Clémençon
et al., 2016. Let us consider dependent copies (Xs1,An , Y1), . . . , (Xsn,An , Yn) of a H × Y

valued random couple (X, Y ), where H is some feature space and Y = {1, . . . , C}, with
C ≥ 2 say, a finite set of labels. Let D be a set of distance measures D : H × H → R+.
The intuitive objective of metric learning in this context is to identify a measure under
which points with the same label are close together and those with different labels are far
apart. The standard way to define the risk of a metric D is as follows:

R(D) = E [ϕ ((1 −D (X,X ′) · (2 1 {Y = Y ′} − 1))] , (5.1)

where ϕ(u) is a convex loss function upper bounding the indicator function 1{u ≥ 0}: for
instance, the hinge loss ϕ(u) = max(0, 1 −u). To estimate R(D), we consider the natural
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empirical estimator

Rn(D) = 2
n(n− 1)

∑
1≤i<j≤n

K

(
ui − si/An

hn

)
K

(
uj − sj/An

hn

)

×ϕ
((
D
(
Xsi,An ,Xsj ,An

)
− 1

)
· (2π {Yi = Yj} − 1)

)
, (5.2)

which is one sample U -statistic of degree two with kernel given by:

φD ((x, y), (x′, y′)) = ϕ ((D (x, x′) − 1) · (2 1 {y = y′} − 1)) .

The convergence to (5.1) of a minimizer of (5.2), in the non-spatial setting, has been
studied in the frameworks of algorithmic stability Jin et al., 2009, algorithmic robustness
Bellet et al., 2015 and based on the theory of U -processes under appropriate regularization
Cao et al., 2016.

5.2 Multipartite Ranking

Let us recall the problem from Clémençon et al., 2016. Let X ∈ H be a random vector of
attributes/features and the (temporarily hidden) ordinal labels Y ∈ {1, . . . , K} assigned
to it. The goal of multipartite ranking, which uses a training set of labeled examples, is
to put the attributes or features in the same order as the labels. Many different fields
use this statistical learning problem (e.g., medicine, finance, search engines, e-commerce).
Rankings are usually defined by a scoring function, s : H → R, which moves the natural
order on the real line to the feature space. The ROC manifold, or its usual summary, the
VUS criterion (VUS stands for Volume Under the ROC Surface), is the gold standard for
evaluating the ranking performance of s(x); see Clémençon et al., 2015 and the references
therein. The best scoring functions, according to Clémençon et al., 2013, are those that are
best for all bipartite subproblems. More specifically, they are increasing transformations
of the likelihood ratio dFk+1/dFk, where Fk is the class-conditional distribution for the
kth class. When the set of optimal scoring functions is not empty, the authors showed
that it is the same as the set of functions that maximizes the amount of space under the
ROC surface

VUS(s) = P {s (Xs1) < · · · < s (XsK
) | Y1 = 1, . . . , YK = K} .

Given K independent samples
(
X

(k)
s1,Ank

, . . . ,X
(k)
snk

,Ank

)
with distribution Fk(dx) for k =

1, . . . , K, the empirical counterpart of the VUS can be written in the following way:

V̂US(s)
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= 1∏K
k=1 nk

n1∑
i1=1

· · ·
nK∑
ik=1

K∏
j=1

K

(
uj − sij/An

hn

)
1
{
s
(
X

(1)
si1 ,An1

)
< · · · < s

(
siK , A

(K)
nK

)}
.(5.3)

The empirical VUS (5.3) is a K-sample U -statistic of degree (1, . . . , K) with kernel given
by:

φs (x1, . . . , xK) = 1 {s (x1) < · · · < s (xK)} .

5.3 Set Indexed Conditional U -Statistics

We aim to study the links between X and Y by estimating functional operators associated
with the conditional distribution of Y given X, such as the regression operator, for C1 ×
· · · × Ck := C̃ in a class of sets Cm,

G(m)(C1×· · ·×Cm | t,u) = E

(
m∏
i=1

1{Yi ∈ Ci} | (X1, . . . ,Xk) = (t1, . . . , tm) = t
)

for t ∈ Sc,

where u = (u1, . . . , ud). We define metric entropy with the inclusion of the class of sets
C . For each ε > 0, the covering number is defined as:

N (ε,C ,G(1)(· | x)) = inf{n ∈ N : ∃C1, . . . , Cn ∈ C such that ∀C ∈ C ∃ 1 ≤ i, j ≤ n

with Ci ⊂ C ⊂ Cj and G(1)(Cj \ Ci | x) < ε},

the quantity log(N (ε,C ,G(1)(· | x))) is called metric entropy with inclusion of C with
respect to the conditional distribution G(1)(· | x). The quantity log N (ε,C ,G(1)(· | x))
is called metric entropy with inclusion of C with respect to G(· | x). Estimates for
such covering numbers are known for many classes (see, e.g., Dudley, 1984). We will
often assume below that either log N (ε,C ,G(1)(· | x)) or N (ε,C ,G(1)(· | x)) behave like
powers of ε−1: we say that the condition (Rγ) holds if

log N (ε,C ,G(1)(· | x)) ≤ Hγ(ε), for all ε > 0, (5.4)

where

Hγ(ε) =
 log(Aε) if γ = 0,
Aε−γ if γ > 0,

for some constants A, r > 0. As in Polonik et al., 2002, it is worth noticing that the
condition (5.4), γ = 0, holds for intervals, rectangles, balls, ellipsoids, and for classes
which are constructed from the above by performing set operations union, intersection
and complement finitely many times. The classes of convex sets in Rd (d ≥ 2) fulfill the
condition (5.4), γ = (d−1)/2. This and other classes of sets satisfying (5.4) with γ > 0 can
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be found in Dudley, 1984. As a particular case of (2.6), we estimate G(m)(C1×· · ·×Cm | t)

Ĝ(m)
n (C̃, t,u) =

∑
i∈Im

n

m∏
j=1

1{Ysij
,An ∈ Cj}


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
∑

i∈Im
n

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
.

(5.5)
One can apply Theorem 3.1 to infer that, in probabbility,

sup
C̃∈C m

sup
t∈Sc,u∈Ih

∣∣∣Ĝ(m)
n (C̃, t) − G(m)(C̃ | t)

∣∣∣ −→ 0. (5.6)

Remark 5.1. Another point of view is to consider the following situation, for a compact
J ⊂ Rdm,

G(m)(y1, . . . ,yk | t,u) = E

(
m∏
i=1

1{Yi ≤ yi} | (X1, . . . ,Xm) = t
)

for t ∈ Sc, (y1, . . . ,ym) ∈ J.

Let L(·) be a distribution in Rd and hn is a sequence of positive real numbers. One can
estimate G(m)(y1, . . . ,ym | t,u) = G(m)(y | t,u) by

Ĝ(m)
n (y, t,u) := =

∑
i∈Im

n

m∏
j=1

L

(Ysij
,An − tj

hn

)
d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
∑

i∈Im
n

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
.

One can use Theorem 3.1 to infer that, in probability,

sup
t∈Sc,u∈Ih

sup
y∈J

∣∣∣Ĝ(m)
n (y, t,u) − G(m)(y | t,u)

∣∣∣ −→ 0. (5.7)

5.4 Discrimination

Now, we apply the results on the problem of discrimination described in Section 3 of
Stute, 1994c, refer to also to Stute, 1994a. We will use similar notations and settings. Let
φ(·) be any function taking at most finitely many values, say 1, . . . ,M . The sets

Aj = {(y1, . . . ,yk) : φ(y1, . . . ,yk) = j} , 1 ≤ j ≤ M

then yield a partition of the feature space. Predicting the value of φ(y1, . . . ,yk) is tan-
tamount to predicting the set in the partition to which (Y1, . . . ,Yk) belongs. For any
discrimination rule g(·), we have
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P(g(X1, . . . ,Xm) = φ(Y1, . . . ,Ym)) ≤
M∑
j=1

ˆ
{x:g(t)=j}

maxmj(t)dP(t),

where
mj(t) = P(φ(Y1, . . . ,Ym) = j | X1, . . . ,Xm = t), t ∈ Sc.

The above inequality becomes equality if

g0(t) = arg max
1≤j≤M

mj(t).

The function g0(·) is called the Bayes rule, and the pertaining probability of error

L∗ = 1 − P(g0(X1, . . . ,Xm) = φ(Y1, . . . ,Ym)) = 1 − E
{

max
1≤j≤M

mj(t)
}

is called the Bayes risk. Each of the above unknown functions mj(·) values can be con-
sistently estimated by one of the methods discussed in the preceding sections. Let, for
1 ≤ j ≤ M ,

mj
n(x,u) =

∑
i∈Im

n

1{φ(Ysi1 ,An , . . . ,Ysim,An
) = j}

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
∑

i∈Im
n

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
.

Set
g0,n(t) = arg max

1≤j≤M
mj
n(t).

Let us introduce
L∗
n = P(g0,n(X1, . . . ,Xm) ̸= φ(Y1, . . . ,Ym)).

Then, one can show that the discrimination rule g0,n(·) is asymptotically Bayes’ risk
consistent

L∗
n → L∗.

This follows from the obvious relation

|L∗ − L∗
n| ≤ 2E

[
max

1≤j≤M

∣∣∣mj
n(X,u) −mj(X)

∣∣∣] .

6 Extension to the censored case

Consider a triple (Y,C,X) of random variables defined in R×R×H . Here Y is the variable
of interest, C is a censoring variable and X is a concomitant variable. Throughout, we will
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use Maillot et al., 2009 notation and we work with a sample {(Yi, Ci,Xsi,An} of identically
distributed replication of (Y,C,X), n ≥ 1. Actually, in the right censorship model, the
pairs (Yi, Ci), 1 ≤ i ≤ n, are not directly observed and the corresponding information is
given by Zi := min{Yi, Ci} and δi := 1{Yi ≤ Ci}, 1 ≤ i ≤ n. Accordingly, the observed
sample is

Dn = {(Zi, δi,Xsi,An), i = 1, . . . , n}.

Survival data in clinical trials or failure time data in reliability studies, for example, are
often subject to such censoring. More specifically, many statistical experiments result in
incomplete samples, even under well-controlled conditions. For example, clinical data for
surviving most types of disease are usually censored by other competing risks to life which
result in death. In the sequel, we impose the following assumptions upon the distribution
of (X, Y ). For −∞ < t < ∞, set

FY (t) = P(Y ≤ t), G(t) = P(C ≤ t), and H(t) = P(Z ≤ t),

the right-continuous distribution functions of Y , C and Z respectively. For any right-
continuous distribution function L defined on R, denote by

TL = sup{t ∈ R : L(t) < 1}

the upper point of the corresponding distribution. Now consider a pointwise measurable
class F of real measurable functions defined on R, and assume that F is of VC-type. We
recall the regression function of ψ(Y ) evaluated at X = x, for ψ ∈ F and x ∈ H , given
by

r(1)(ψ,x) = E(ψ(Y ) | X = x),

when Y is right-censored. To estimate r(1)(ψ, ·), we make use of the Inverse Probability of
Censoring Weighted (I.P.C.W.) estimators have recently gained popularity in the censored
data literature (see Kohler et al., 2002, Carbonez et al., 1995, Brunel et al., 2006). The
key idea of I.P.C.W. estimators is as follows. Introduce the real-valued function Φψ(·, ·)
defined on R2 by

Φψ(y, c) = 1{y ≤ c}ψ(y ∧ c)
1 −G(y ∧ c) . (6.1)

Assuming the function G(·) to be known, first note that Φψ(Yi, Ci) = δiψ(Zi)/(1−G(Zi))
is observed for every 1 ≤ i ≤ n. Moreover, under the Assumption (I ) below,

(I ) C and (Y,X) are independent.

We have

r(1)(Φψ,x) := E(Φψ(Y,C) | X = x)
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= E

{
1{Y ≤ C}ψ(Z)

1 −G(Z) | X = x
}

= E

{
ψ(Y )

1 −G(Y )E(1{Y ≤ C} | X, Y ) | X = x
}

= r(1)(ψ,x). (6.2)

Therefore, any estimate of r(1)(Φψ, ·), which can be built on fully observed data, turns out
to be an estimate for r(1)(ψ, ·) too. Thanks to this property, most statistical procedures
known to provide estimates of the regression function in the uncensored case can be nat-
urally extended to the censored case. For instance, kernel-type estimates are particularly
easy to construct. Set, for x ∈ H , h ≥ ln, 1 ≤ i ≤ n,

ω
(1)
n,K1,2,hn,i

(x, u) :=

d∏
ℓ=1

K1

(
uℓ − sj,ℓ

An

hn

)
K2

(
d(x,Xsj ,An)

hn

)
n∑
j=1

d∏
ℓ=1

K1

(
uℓ − sj,ℓ

An

hn

)
K2

(
d(x,Xsj ,An)

hn

) . (6.3)

We assume that h satisfies (H.1). In view of (6.1), (6.2), and (6.3), whenever G(·) is
known, a kernel estimator of r(1)(ψ, ·) is given by

r̆(1)
n (ψ, x, u;hn) =

n∑
i=1

ω
(1)
n,K1,2,hn,i

(x, u) δiψ(Zi)
1 −G(Zi)

. (6.4)

The function G(·) is generally unknown and has to be estimated. We will denote by G∗
n(·)

the Kaplan-Meier estimator of the function G(·) Kaplan et al., 1958. Namely, adopting
the conventions ∏

∅
= 1

and 00 = 1 and setting
Nn(u) =

n∑
i=1

1{Zi ≥ u},

we have

G∗
n(u) = 1 −

∏
i:Zi≤u

{
Nn(Zi) − 1
Nn(Zi)

}(1−δi)

, for u ∈ R.

Given this notation, we will investigate the following estimator of r(1)(ψ, ·)

r̆(1)∗
n (ψ, x, u;hn) =

n∑
i=1

ω
(1)
n,K1,2,hn,i

(x, u) δiψ(Zi)
1 −G∗

n(Zi)
, (6.5)

refer to Kohler et al., 2002 and Maillot et al., 2009. Adopting the convention 0/0 = 0,
this quantity is well defined, since G∗

n(Zi) = 1 if and only if Zi = Z(n) and δ(n) = 0,
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where Z(k) is the kth ordered statistic associated with the sample (Z1, . . . , Zn) for k =
1, . . . , n and δ(k) is the δj corresponding to Zk = Zj. When the variable of interest is
right-censored, functional of the (conditional) law can generally not be estimated on the
complete support (see Brunel et al., 2006). To obtain our results, we will work under the
following assumptions.

(A.1) F = {ψ := ψ11{(−∞, τ)m}, ψ1 ∈ F1}, where τ < TH and F1 is a pointwise
measurable class of real measurable functions defined on R and of type VC.

(A.2) The class of functions F has a measurable and uniformly bounded envelope func-
tion Υ with,

Υ(y1, . . . , yk) ≥ sup
ψ∈F

|ψ(y1, . . . , yk)| , yi ≤ TH .

We now have all the ingredients to state the result corresponding to the censored case.
By combining the results of Proposition 9.6 and Lemma 9.7 of Bouzebda and El-hadjali,
2020b, Theorem 3.1, we have, in probability,

sup
x,u

∣∣∣r̆(1)∗
n (ψ, x, u;hn) − Ê(r̆(1)∗

n (ψ, x, u;hn))
∣∣∣ → 0. (6.6)

A right-censored version of an unconditional U -statistic with a kernel of degree m ≥ 1
is introduced by the principle of a mean preserving reweighting scheme in Datta et al.,
2010. Stute et al., 1993 have proved almost sure convergence of multi-sample U -statistics
under random censorship and provided application by considering the consistency of a new
class of tests designed for testing equality in distribution. To overcome potential biases
arising from right-censoring of the outcomes and the presence of confounding covariates,
Y. Chen et al., 2019 proposed adjustments to the classical U -statistics. A. Yuan et al.,
2017 proposed a different way in the estimation procedure of the U -statistic by using a
substitution estimator of the conditional kernel given the observed data. To our best
knowledge, the problem of the estimation of the conditional U -statistics was opened up
to the present, and it gives and main motivation to the study of this section. A natural
extension of the function defined in (6.1) is given by

Φψ(y1, . . . , ym, c1, . . . , cm) =
∏m
i=1{1{yi ≤ ci}ψ(y1 ∧ c1, . . . , ym ∧ cm)∏m

i=1{1 −G(yi ∧ ci)}
.

From this, we have an analogous relation to (6.2) given by

E(Φψ(Y1, . . . , Ym, C1, . . . , Cm) | (X1, . . . ,Xm) = t)

= E

(∏m
i=1{1{Yi ≤ Ci}ψ(Y1 ∧ C1, . . . , Yk ∧ Cm)∏m

i=1{1 −G(Yi ∧ Ci)}
| (X1, . . . ,Xm) = t

)
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= E

(
ψ(Y1, . . . , Ym)∏m
i=1{1 −G(Yi)}

E

(
m∏
i=1

{1{Yi ≤ Ci} | (Y1,X1), . . . (Ym,Xm)
)

| (X1, . . . ,Xm) = t
)

= E (ψ(Y1, . . . , Ym) | (X1, . . . ,Xm) = t) = mψ(t).

An analogue estimator to (2.6) in the censored case is given by

r̆(m)
n (ψ, t,u;hn) =

∑
(i1,...,im)∈I(m,n)

δi1 · · · δimψ(Zi1 , . . . , Zim)
(1 −G(Zi1) · · · (1 −G(Zik))ω

(m)
n,K1,2,hn,i(t,u), (6.7)

where, for i = (i1, . . . , ik) ∈ I(k, n),

ω
(k)
n,K1,2,hn,i(x,u)

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
∑

i∈Im
n

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
. (6.8)

The estimator that we will investigate is given by

r̆(m)∗
n (ψ, t,u;hn) =

∑
(i1,...,ik)∈I(m,n)

δi1 · · · δikψ(Zi1 , . . . , Zim)
(1 −G∗

n(Zi1) · · · (1 −G∗
n(Zim))ω

(k)
n,K1,2,hn,i(t,u). (6.9)

Corollary 6.1. Under the assumptions (A.1)-(A.2) and the conditions of Theorem 3.1,
we have

sup
x∈H m

sup
u∈Ih,x∈Sc

∣∣∣r̆(m)∗
n (ψ, t,u;hn) − Er̆(m)∗

n (ψ, t,u;hn)
∣∣∣

= OP.|S

(√
log n/nhmdϕm(h) + 1

Adpn ϕ(h)

)
,

In the last corollary, we use the law of iterated logarithm for G∗
n(·) established in Földes

et al., 1981 ensuring that

sup
t≤τ

|G∗
n −G(t)| = O

√ log log n
n

 almost surely as n → ∞. (6.10)

At this point, we may refer to Bouzebda and El-hadjali, 2020b, Bouzebda, El-hadjali, and
Ferfache, 2022 and Bouzebda and Nezzal, 2022.

7 The bandwidth selection criterion

Many methods have been established and developed to construct, in asymptotically op-
timal ways, bandwidth selection rules for nonparametric kernel estimators especially for
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Nadaraya-Watson regression estimator we quote among them Hall, 1984, Härdle et al.,
1985 and Rachdi et al., 2007. This parameter has to be selected suitably, either in the
standard finite dimensional case, or in the infinite dimensional framework for insuring
good practical performances. However, according to our knowledge, such studies do not
presently exist for treating a such general functional conditional U -statistic. Nevertheless
an extension of the leave-one-out cross validation procedure allows to define, for any fixed
j = (j1, . . . , jm) ∈ Imn :

r̂
(m)
n,j (x,u;hn)

=

∑
i∈Im

n (j)
φ(Ysi1 ,An , . . . ,Ysim,An

)
m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
∑

i∈Im
n

m∏
j=1


d∏

ℓ=1
K1

uj,ℓ − sij,ℓ

An

hn

K2

(
d(xj,Xsij

,An)
hn

)
,(7.1)

where :
Imn (j) := {i ∈ Imn and i ̸= j} = Imn \{j}.

The equation (7.1) represents the leave-out-(Xj,Yj) estimator of the functional regression
and also could be considered as a predictor of φ(Ysj1 ,An , . . . ,Ysjm,An

) := φ(Yj). In order
to minimize the quadratic loss function, we introduce the following criterion, we have for
some (known) non-negative weight function W (·) :

CV (φ, hn) := (n−m)!
n!

∑
j∈Im

n

(
φ (Yj) − r̂

(m)
n,j (Xj,u;hn)

)2
W̃ (Xj) , (7.2)

where Xj = (Xsj1 ,An , . . . ,Xsjm,An
). Following the ideas developed by Rachdi et al., 2007,

a natural way for choosing the bandwidth is to minimize the precedent criterion, so let’s
choose ĥn ∈ [an, bn] minimizing among h ∈ [an, bn] :

CV (φ, hn) .

The main interest of our results is the possibility to derive the asymptotic properties
of our estimate even if the bandwidth parameter is a random variable, like in the last
equation. Following Benhenni et al., 2007 where the bandwidths are locally chosen by a
data-driven method based on the minimization of a functional version of a cross-validated
criterion, one can replace (7.2) by

CV (φ, hn) := (n−m)!
n!

∑
j∈Im

n

(
φ (Yj) − r̂

(m)
n,j (Xj,u;hn)

)2
Ŵ (Xj,x) , (7.3)
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where
Ŵ (s, t) :=

m∏
i=1

Ŵ (si, ti).

In practice, one takes for i ∈ Imn , the uniform global weights W̃ (Xi) = 1, and the local
weights

Ŵ (Xi, t) =
 1 if d(Xi, t) ≤ h,

0 otherwise.

For sake of brevity, we have just considered the most popular method, that is, the cross-
validated selected bandwidth. This may be extended to any other bandwidth selector
such the bandwidth based on Bayesian ideas Shang, 2014.

Remark 7.1. For notational convenience, we have chosen the same bandwidth sequence
for each margin. This assumption can be dropped easily. If one wants to use the vector
bandwidths (see, in particular, Chapter 12 of Devroye et al., 2001). With obvious changes
of notation, our results and their proofs remain true when hn is replaced by a vector
bandwidth hn = (h(1)

n , . . . , h(d)
n ), where min h(i)

n > 0. In this situation we set hn = ∏d
i=1 h

(i)
n ,

and for any vector v = (v1, . . . , vd) we replace v/hn by (v1/h
(1)
n , . . . , v1/h

(d)
n ). For ease of

presentation, we chose to use real-valued bandwidths throughout.

Remark 7.2. We mention that a different bandwidth criterion suggested by B. W. Sil-
verman, 1986 is the rule of thumb. Strictly speaking, since the cross-validated bandwidth
is random, the asymptotic theory can only be justified with this random bandwidth via a
specific stochastic equicontinuity argument. Cross-validation is employed by Q. Li et al.,
2009 to examine the equality of two unconditional and conditional functions in the context
of mixed categorical and continuous data. However, this approach, which is optimal for
estimation, loses its optimality when applied to non-parametric kernel testing. For testing
a parametric model for conditional mean function against a non-parametric alternative,
Horowitz et al., 2001 proposed an adaptive-rate-optimal rule. Gao et al., 2008 present

the other method for selecting a proper bandwidth. Ref. Gao et al., 2008 propose, utilizing
the Edgeworth expansion of the asymptotic distribution of the test, to select the bandwidth
such that the power function of the test is maximized while the size function is controlled.
Future investigation will focus on the aforementioned three approaches.

8 Mathematical developments

The proofs for our results are covered in this section. The following continues to use the
notations that were previously presented.

To avoid the repetition of the Blocking technique and the notation used, we will devote
the following subsection to introducing all notations needed for this decomposition.
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8.1 A.1. Preliminaries

This treatment requires an extension of the Blocking techniques of Bernstein to the spacial
process, refer to Kurisu, 2022b. Let us introduce some notations related to this technique.
Recall that {A1,n} and {A2.n} are sequences of positive numbers such that

A1,n/An + A2,n/A1,n → 0 as n → ∞.

Let
A3,n = A1,n + A2,n.

We consider a partition of Rd by hypercubes of the form Γn(ℓ; 0) =
(
ℓ + (0, 1]d

)
A3,n, ℓ =

(ℓ1, . . . , ℓd)′ ∈ Zd and divide Γn(ℓ; 0) into 2d hypercubes as follows:

Γn(ℓ; ε) =
d∏
j=1

Ij (εj) , ε = (ε1, . . . , εd)′ ∈ {1, 2}d, (8.1)

where for j = 1, . . . , d,

Ij (εj) =
 (ℓjA3,n, ℓjA3,n + A1,n] if εj = 1,

(ℓjA3,n + A1,n, (ℓj + 1)A3,n] if εj = 2.
(8.2)

We note that
|Γn(ℓ; ε)| = A

q(ε)
1,n A

d−q(ε)
2,n (8.3)

for any ℓ ∈ Zd and ε ∈ {1, 2}d, where

q(ε) = [{1 ≤ j ≤ d : εj = 1}] .

Let ε0 = (1, . . . , 1)′. The partitions Γn (ℓ; ε0) correspond to “large blocks” and the parti-
tions Γ(ℓ; ε) for ε ̸= ε0 correspond to “small blocks”. Let

L1,n =
{
ℓ ∈ Zd : Γn(ℓ, 0) ⊂ Rn

}
be the index set of all hypercubes Γn(ℓ, 0) that are contained in Rn, and let

L2,n =
{
ℓ ∈ Zd : Γn(ℓ, 0) ∩Rn ̸= 0,Γn(ℓ, 0) ∩Rc

n ̸= ∅
}

denote the boundary hypercubes index set. Define Ln = L1,n ∪ L2,n.
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Proof of Proposition 3.1

As we mentioned, our statistic is a weighted U -statistic that can be decomposed into a
sum of U -statistics using the Hoeffding decomposition. We will treat this decomposition
detailed in the Sub-section 3.1 to achieve the desired results. In the mentioned section,
we have seen that

ψ̂(u,x) − E
(
ψ̂(u,x)

)
= ψ̂1(u,x) + ψ̂2(u,x),

where the linear term ψ̂1(u,x) and the remainder term ψ̂2(u,x) are well defined in (3.6)
and (3.8) respectively. We aim to prove that the linear term leads the rate of convergence
of this statistic while the remaining one converges to zero almost surely as n → ∞. We
will deal will the first term in the decomposition. For B = [0, 1], αn =

√
log n/nhmdϕm(h)

and τn = ρnn
1/ζ , where ζ is a positive constant given in Assumption 12 part i), with

ρn = (log n)ζ0 for some ζ0 > 0. Define

H̃
(ℓ)
1 (z) := H̃(ℓ)(z) 1{|Wsi,An|≤τn}, (8.4)

H̃2(z) := H̃(ℓ)(z) 1{|Wsi,An|>τn}, (8.5)

and

ψ̂
(1)
1 (u,x) − θ(i) = 1

n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1H̃
(ℓ)
1 (z),

ψ̂
(2)
1 (u,x) − θ(i) = 1

n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1H̃
(ℓ)
2 (z).

Clearly, we have

ψ̂1(u,x) − Eψ̂1(u,x)
=

[
ψ̂

(1)
1 (u,x) − Eψ̂(1)

1 (u,x)
]

+
[
ψ̂

(2)
1 (u,x) − Eψ̂(2)

1 (u,x)
]
. (8.6)

To begin, it is plain to see that

P·|S

(
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(2)
1 (u,x) − θ(i)

∣∣∣ > αn

)

= P·|S

(
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(2)
1 (u,x) − θ(i)

∣∣∣ > αn

)
⋂{

sup
FmK m

sup
x∈H m

n⋃
i=1

|Wsi,An| > τn

}⋃{
sup

FmK m
sup

x∈H m

{
n⋃
i=1

|Wsi,An| > τn

}c}
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≤ P·|S

{
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(2)
1 (u,x, φ) − θ(i)

∣∣∣ > αn

⋂{
sup

FmK m
sup

x∈H m
sup

u∈Bm

n⋃
i=1

|Wsi,An| > τn

}}

+P·|S

{
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂(1)
2 (u,x, φ) − θ(i)

∣∣∣ > αn

⋂{{
sup

FmK m
sup

x∈H m
sup

u∈Bm

n⋃
i=1

|Wsi,An| > τn

}c }}

≤ P·|S

(
sup

FmK m
sup

x∈H m
sup

u∈Bm
|Wsi,An| > τn for some i = 1, . . . , n

)
+ P·|S(∅)

≤ τ−ζ
n

n∑
i=1

E·|S

[
sup

FmK m
sup

x∈H m
sup

u∈Bm
|Wsi,An|ζ

]
≤ nτ−ζ

n = ρ−ζ
n → 0.

We infer that

E·|S
[∣∣∣ψ̂(2)

1 (u,x)
∣∣∣] ≤ 1

n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1E·|S
(∣∣∣H̃(ℓ)

2 (z)
∣∣∣) ,

where

E·|S
(∣∣∣H̃(ℓ)

2 (z)
∣∣∣)

= E·|S


∣∣∣∣∣∣∣∣

1
ϕ(h)K2

(
d(xi, Xsi,An)

h

)
Wsi,An ×

ˆ
Ws(1,...,ℓ−1,ℓ,...,m−1),An

m−1∏
j=1
j ̸=i

1
ϕ(h)

K2

(
d(xj, νsj ,An)

h

)
P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1)

∣∣∣∣∣
]

≤ E·|S

[∣∣∣∣∣ 1
ϕ(h)

(
K2

(
d (xi, Xsi,An)

h

)
+K2

(
d (xi, Xui

(si))
h

)

−K2

(
d (xi, Xui

(si))
h

))
Wsi,An 1{|Wsi,An|>τn}

∣∣∣∣∣
]

≤ τ−(ζ−1)
n

ϕ(h) E·|S

[∣∣∣∣∣K2

(
d (xi, Xsi,An)

h

)
−K2

(
d (xi, Xui

(si))
h

)∣∣∣∣∣ |Wsi,An|ζ

+
∣∣∣∣∣K2

(
d (xi, Xui

(si))
h

)∣∣∣∣∣ |Wsi,An|ζ
]

≤ τ−(ζ−1)
n

ϕ(h) E·|S
[
h−1 |d (xi, Xsi,An) − d (xi, Xui

(si))| |Wsi,An |ζ
]

+E·|S

[∣∣∣∣∣K2

(
d (xi, Xui

(si))
h

)∣∣∣∣∣ |Wsi,An|ζ
]
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≲
τ−(ζ−1)
n

ϕ(h) ×
[ 1
nh

+ ϕ(h)
]

≲
τ−(ζ−1)
n

nhϕ(h) + τ−(ζ−1)
n . (8.7)

Hence we have

E·|S
[∣∣∣ψ̂(2)

1 (u,x)
∣∣∣] ≲ 1

n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1

[
τ−(ζ−1)
n

]

≲ τ−(ζ−1)
n

1
nm

∑
i∈Im

n

m∏
j=1

1
hd
K

(
uj − sij/An

hn

)

= C

τ
(ζ−1)
n

fS(u) +O

√ log n
nhmd

+ h2

 (Using Lemma 8.2)

≤ C

τ
(ζ−1)
n

= Cρ−(ζ−1)
n n−(ζ−1)/ζ ≤ Cαn PS − a.s.

As a result, we obtain that

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(2)
1 (u,x) − E·|Sψ̂

(2)
1 (u,x)

∣∣∣ = OP·|S (αn). (8.8)

Second, let us treat

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(1)
1 (u,x, φ) − Eψ̂(1)

1 (u,x, φ)
∣∣∣ .

Recall the large blocks and small blocks and the notation given in Section 8.1, and define

Ss,An(u,x) := (n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1H̃
(ℓ)
1 (z),

Sn(ℓ; ε) =
∑

i:si∈Γn(ℓ;ε)∩Rn

Ss,An(u,x) =
(
S(1)
n (ℓ; ε), . . . , S(p)

n (ℓ; ε)
)′
.

Then we have

Sn =
(
S(1)
n , . . . , S(m)

n

)′

=
n∑
i=1

Ss,An(u,x)

=
∑

ℓ∈Ln

Sn (ℓ; ε0) +
∑

ε ̸=ε0

∑
ℓ∈L1,n

Sn(ℓ; ε)
︸ ︷︷ ︸

=:S2,n(ε)

+
∑
ε ̸=ε0

∑
ℓ∈L2,n

Sn(ℓ; ε)
︸ ︷︷ ︸

=:S3,n(ε)

=: S1,n +
∑
ε̸=ε0

S2,n(ε) +
∑
ε ̸=ε0

S3,n(ε). (8.9)
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In order to achieve our result, we will pass by the following two steps.
Step 1 (Reduction to independence). Recall

Sn(ℓ; ε) =
∑

i:si∈Γn(ℓ;ε)∩Rn

Ss,An(u,x).

For each ε ∈ {1, 2}d, let
{
S̆n(ℓ; ε) : ℓ ∈ Ln

}
be a sequence of independent random variable

in R under P·|S such that

S̆n(ℓ; ε) d= Sn(ℓ; ε), under P.|S, ℓ ∈ Ln.

Define
S̆1,n =

∑
ℓ∈Ln

S̆n (ℓ; ε0) =
(
S̆

(1)
1,n, . . . , S̆

(m)
1,n

)′

and for ε ̸= ε0, define
S̆2,n(ε) =

∑
ℓ∈L1,n

S̆n(ℓ; ε)

and
S̆3,n(ε) =

∑
ℓ∈L2,n

S̆n(ℓ; ε).

We start by confirming the following results:

sup
t>0

∣∣∣P·|S (S1,n > t) − P·|S
(
S̆1,n > t

)∣∣∣ ≤ C

(
An
A1,n

)d
β
(
A2,n;Adn

)
,(8.10)

sup
t>0

∣∣∣P·|S
(
∥S2,n(ε)∥∞ > t

)
− P·|S

(∥∥∥S̆2,n(ε)
∥∥∥

∞
> t

)∣∣∣ ≤ C

(
An
A1,n

)d
β
(
A2,n;Adn

)
,(8.11)

sup
t>0

∣∣∣P·|S
(
∥S3,n(ε)∥∞ > t

)
− P·|S

(∥∥∥S̆3,n(ε)
∥∥∥

∞
> t

)∣∣∣ ≤ C

(
An
A1,n

)d
β
(
A2,n;Adn

)
.(8.12)

Keep in mind that
JLnK = O

(
(An/A3,n)d

)
≲ (An/A1,n)d .

For ε ∈ {1, 2}d and ℓ1, ℓ2 ∈ Ln with ℓ1 ̸= ℓ2, let

J1(ε) = {1 ≤ i1 ≤ n : si1 ∈ Γn (ℓ1; ε)} ,J2(ε) = {1 ≤ i2 ≤ n : si2 ∈ Γn (ℓ2; ε)} .

For any sik = (s1,ik , . . . , sd,ik) , k = 1, 2 in such a way that i1 ∈ J1(ε) and i2 ∈ J2(ε), we
get max1≤u≤d | su,i1− su,i2 |≥ A2,n using the definition of Γ(ℓ; ε). This gives

|si1 − si2| ≥ A2,n.

For any ε ∈ {1, 2}d, let Sn (ℓ1; ε) , . . . , Sn
(
ℓ[Ln]; ε

)
be an arrangement of {Sn(ℓ; ε) : ℓ ∈ Ln}.
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Let P (a)
.|S be the marginal distribution of Sn (ℓa; ε) and let P (a:b)

·|S be the joint distribution
of {Sn (ℓk; ε) : a ≤ k ≤ b}. The β-mixing property of X gives that for 1 ≤ k ≤ JLnK − 1,

∥∥∥P·|S − P
(1:k)
·|S × P

(k+1:[Ln])
·|S

∥∥∥
TV
≲ β

(
A2,n;Adn

)
.

The inequality is independent of the arrangement of {Sn(ℓ; ε) : ℓ ∈ Ln}. Therefore, the
assumption 8.66 in Lemma 8.5 is fulfilled for {Sn(ℓ; ε) : ℓ ∈ Ln} with τ ∼ β

(
A2,n;Adn

)
and m ≲ (An/A1,n)d. Combining the boundary condition on Rn and Lemma 8.5, we get
(8.10)- (8.12).

Remark 8.1. Since

J
{
ε ∈ {1, 2}d : ε ̸= ε0

}
K = 2d − 1, JL1,nK ∼ (An/A3,n)d ∼ (An/A1,n)d

and
JL2,nK ∼ (An/A3,n)d−1 ∼ (An/A1,n)d−1 ≪ JL1,nK,

Lemma 8.6 and Equation (8.3) give for n sufficiently large, the summands numbers of
S2,n and S3,n are at most

O
(
Ad−1

1,n A2,nnA
−d
n (An/A1,n)d

)
= O

(
A2,n

A1,n
n

)

and
O
(
Ad−1

1,n A2,nnA
−d
n (An/A1,n)d−1

)
= O

(
A2,n

An
n
)
,

respectively.

Step 2: Recall that we aim to treat

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(1)
1 (u,x, φ) − E·|Sψ̂

(1)
1 (u,x, φ)

∣∣∣ .
To achieve the aimed result, we will cover the region Bm = [0, 1]dm by

N(u)⋃
k1,...,km=1

m∏
j=1

B(ukj
, r),

for some radius r. Hence, for each u = (u1, . . . ,um) ∈ [0, 1]dm, there exists l(u) =
(l(u1), . . . , l(um)), where ∀1 ≤ i ≤ m, 1 ≤ l(ui) ≤ N(u) in such a way that

u ∈
m∏
i=1

B(ul(ui), r) and |ui − ul(ui)| ≤ r, for 1 ≤ i ≤ m,

then for each u ∈ [0, 1]dm, the closest center will be ul(u), and the ball with the closest
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center will be defined by
B(u, l(u), r) :=

m∏
j=1

B(ukj
, r).

In the same way H m should be covered by

N(x)⋃
k1,...,km=1

m∏
j=1

B(xkj
, r),

for some radius r. Hence, for each x = (x1, . . . , xm) ∈ H m, there exists l(x) =
(l(x1), . . . , l(xm)), where ∀1 ≤ i ≤ m, 1 ≤ l(xi) ≤ N(x) in such a way that

x ∈
m∏
i=1

B(ul(xi), r) and d(xi, xl(ui)) ≤ r, for 1 ≤ i ≤ m,

then for each x ∈ H m, the closest center will be xl(x), and the ball with the closest
centre will be defined by

B(x, l(x), r) :=
m∏
i=1

B(xl(xi), r).

We define:

K∗(ω,v) ≥ C0

m∏
j=1

d∏
ℓ=1

1(|ωj,ℓ|≤2C1)

m∏
j=1

K2(vk) for (ω, v) ∈ R2.

We can show that, for (u, x) ∈ Bj,n and n large enough,
∣∣∣∣∣K

(
u − s/An

hn

)
K2

(
d(xi, Xsi,An)

h

)
−K

(
un − s/An

hn

)
K2

(
d(xn,i, Xsi,An)

h

)∣∣∣∣∣
≤ αnK

∗
(

un − s/An, d(xn,i, Xsi,An)
hn

)
.

Then, for

ψ̂
(1)
1 (u,x) = 1

n

n∑
i=1

ξi
1

ϕ(h)K2

(
d(xi, Xsi,An)

h

)
Wsi,An 1{|Wsi,An|≤τn}

×(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiℓ · · · ξim−1

×
ˆ
Ws(1,...,ℓ−1,ℓ,...,m−1),An

m−1∏
j=1
j ̸=i

1
ϕ(h)K2

(
d(xj, νsj ,An)

h

)
P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1).
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Let us define

ψ
(1)
1 (u,x) = 1

nhdϕ(h)

n∑
i=1

K∗
(

un − si/An, d(xn,i, Xsi,An)
hn

)
Wsi,An 1{|Wsi,An|≤τn}

×(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiℓ · · · ξim−1

×
ˆ
Ws(1,...,ℓ−1,ℓ,...,m−1),An

m−1∏
j=1
j ̸=i

1
ϕ(h)K2

(
d(xj, νsj ,An)

h

)
P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1)

:= 1
nhdϕ(h)

n∑
i=1

S ′
s,An

(u,x). (8.13)

We mention that
E·|S

[∣∣∣ψ̄(1)
1 (u,x, φ)

∣∣∣] ≤ M < ∞,

for some M large enough. Let NFmK mNm
(x)N(u) denotes the covering number related

respectively to the class of functions FmK m, the balls that cover [0, 1]m and the balls
that cover H m. Then we obtain

sup
FmK m

sup
x∈H m

sup
u∈B

∣∣∣ψ̂(1)
1 (u,x, φ) − E·|S

[
ψ̂

(1)
1 (u,x, φ)

]∣∣∣
≤ NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣ψ̂(1)
1 (u,x, φ) − E·|S

[
ψ̂

(1)
1 (u,x, φ)

]∣∣∣
≤ NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣ψ̂(1)
1 (un,x) − E·|S

[
ψ̂

(1)
1 (un,x)

]∣∣∣
+NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)
αn

(∣∣∣ψ̄(1)
1 (un,x)

∣∣∣+ E·|S

[∣∣∣ψ̄(1)
1 (un,x)

∣∣∣])
≤ NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣ψ̂(1)
1 (un,x) − E·|S

[
ψ̂

(1)
1 (un,x)

]∣∣∣
+NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣ψ̄(1)
1 (un,x) − E·|S

[
ψ̄

(1)
1 (un,x)

]∣∣∣
+2MF (y)αn

≤ NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∑
ℓ∈Ln

Sn (ℓ; ε0)

∣∣∣∣∣
+NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∣
∑
ε̸=ε0

∑
ℓ∈L1,n

Sn(ℓ; ε)

∣∣∣∣∣∣
+NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∣
∑
ε̸=ε0

∑
ℓ∈L2,n

Sn(ℓ; ε)

∣∣∣∣∣∣
+NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∑
ℓ∈Ln

S′
n (ℓ; ε0)

∣∣∣∣∣
+NFmK mNm

(x)N
m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∣
∑
ε̸=ε0

∑
ℓ∈L1,n

S′
n(ℓ; ε)

∣∣∣∣∣∣
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+NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∣
∑
ε̸=ε0

∑
ℓ∈L2,n

S′
n(ℓ; ε)

∣∣∣∣∣∣+ 2MF (y)αn.

(8.14)

Even more, for each ε ∈ {1, 2}d, let
{
S̆ ′
n(ℓ; ε) : ℓ ∈ Ln

}
denote a sequence of independent

random vectors in Rm under P·|S such that

S̆ ′
n(ℓ; ε) d= S ′

n(ℓ; ε), under P.|S, ℓ ∈ Ln.

Show that

P·|S

NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)

max
1≤i1<···<im≤m

sup
B(ui(u),r)

∣∣∣ψ̂(1)
1 (u,x) − E·|S

[
ψ̂

(1)
1 (u,x)

]∣∣∣ > 2md+1Man

(8.15)

≤ NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)
max

1≤i1<···<im≤m
sup

B(ui(u),r)

P·|S

(
sup

(u,x)∈Bk

∣∣∣ψ̂1(u,x) − E·|S
[
ψ̂1(u,x)

]∣∣∣ > 2md+1Man

)

≤
∑

ε∈{1,2}d

Q̂n(ε) +
∑

ε∈{1,2}d

Q̄n(ε) + 2md+1NFmK mNm
(x)N

m
(u)

(
An
A1,n

)d
β
(
A2,n;Adn

)
,(8.16)

where

Q̂n (ε0) = NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)

max
1≤i1<···<im≤m

sup
B(ui(u),r)

P·|S

∣∣∣∣∣∣
∑

ℓ∈Ln

S̆n(ℓ; ε0)
∣∣∣∣∣∣ > Mann

mhmdϕ(h)
 ,

Q̄n (ε0) = NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)

max
1≤i1<···<im≤m

sup
B(ui(u),r)

P·|S

∣∣∣∣∣∣
∑

ℓ∈Ln

S̆ ′
n(ℓ; ε0)

∣∣∣∣∣∣ > Mann
mhmdϕ(h)

 ,
and for ε ̸= ε0

Q̂n (ε) = NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)

max
1≤i1<···<im≤m

sup
B(ui(u),r)

P·|S

∣∣∣∣∣∣
∑

ℓ∈Ln

S̆n(ℓ; ε)
∣∣∣∣∣∣ > Mann

mhmdϕ(h)
 ,
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Q̄n (ε) = NFmK mNm
(x)N

m
(u) max

1≤i1<···<im≤m
sup

B(xi(x),r)

max
1≤i1<···<im≤m

sup
B(ui(u),r)

P·|S

∣∣∣∣∣∣
∑

ℓ∈Ln

S̆ ′
n(ℓ; ε)

∣∣∣∣∣∣ > Mann
mhmdϕ(h)

 .
Due to the similarity between the two case: ε ̸= ε0 and ε = ε0, we are going to treat Q̂n

only for ε ̸= ε0. An application of Lemma 8.6, with the fact that S̆n(ℓ; ε) are zero-mean
random variables, shows us that:

P·|S

∣∣∣∣∣∣
∑

ℓ∈Ln

S̆n(ℓ; ε)
∣∣∣∣∣∣ > Mannh

mdϕ(h)
 ≤ 2P·|S

∑
ℓ∈Ln

S̆n(ℓ; ε) > Mannh
mdϕ(h)


and

∣∣∣S̆n(ℓ; ε)
∣∣∣ ≤ CAd−1

1,n A2,n(log n)τn, PS − a.s. (from Lemma 8.6)

E·|S

[(
S̆n(ℓ; ε)

)2
]

≤ Chmdϕ(h)Ad−1
1,n A2,n(log n), PS − a.s. (By Lemma 8.7) (8.17)

Using Bernstein’s inequality represented in Lemma 8.8, we have

P·|S

(∑
ℓ∈Ln

S̆n(ℓ; ε) > Mannh
mdϕ(h)

)

≤ exp

−

1
2 ×Mnhmdϕ(h) logn(

An

A1,n

)d

Ad−1
1,n A2,nh

mdϕ(h)(logn) + 1
3 ×M1/2n1/2hmd/2ϕ(h)1/2(logn)1/2Ad−1

1,n A2,nτn

 .

Observe that

nhmd log n(
An
A1,n

)d
Ad−1

1,n A2,nh
md(log n)

= nA−d
n

(
A1,n

A2,n

)
≳
A1,n

A2,n
≳ nη, (8.18)

nhmdϕ(h) log n
n1/2hmd/2ϕ(h)1/2(log n)1/2Ad−1

1,n A2,nτn
= n1/2hmd/2ϕ(h)1/2(log n)1/2

Amd1,n

(
A2,n

A1,n

)
ρnn

1/ζ
≥ C0n

η/2.(8.19)

Taking M > 0 sufficiently large, and for N ≤ Ch−mdϕ(h)α−m
n , this shows the desired

result.
We must move on to the nonlinear part of the Hoeffding decomposition. Accordingly,

the goal is to prove that:
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P·|S

[
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣ψ̂2(u,x)
∣∣∣ > λ

]
→ 0 as n → ∞. (8.20)

In the following, we will give a lemma that can be viewed as a technical result in the
proof of our proposition, and it helps us to achieve our goal in Expression (8.20). The
proof of this lemma used the blocking technique defined before but for the U -statistic,
making the block treatment more complicated.
Lemma 8.1. Let FmK m be a uniformly bounded class of measurable canonical functions,
m ≥ 2. Assume that there are finite constants a and b in such a way that the FmK m

covering number fulfils :

N(ε,FmK m, ∥ · ∥L2(Q)) ≤ aε−b, (8.21)

for all ε > 0 and all probability measure Q. If the mixing coefficients β of the local
stationary sequence {Zi = (Xsi,An ,Wsi,An)i∈N⋆ satisfy Condition (E2) in Assumption 12,
then, for some r > 1, we have:

sup
FmK m

sup
x∈H m

sup
u∈Bm

P

hmd/2ϕm/2(h)n−m+1/2 ∑
i∈Im

n

ξi1 · · · ξimH(Zi1 , . . . , Zim)
 → 0. (8.22)

Remark 8.2. As mentioned before, Wsi,An will be equal to 1 or εsi,An = σ
(

si
An
, Xsi,An

)
εsi.

In the proof of the previous Lemma, Wsi,An will be equal εi,n = σ
(

i
n
, Xi,n

)
εi, and we will

use the notation W
(u)
si,An

to indicate σ (u,x) εi

Proof of Lemma 8.1

This lemma’s proof is based on the blocking technique employed by Arcones and Yu,
1994, and called Bernstein’s method, referred to Bernstein, 1927, in which we are enabled
to apply the symmetrization and the many other techniques available for the i.i.d random
variables. We will extend this technique to the spacial processes in the U -statistics setting,
in the same line as in Lahiri, 2003a. In addition to the notation in Section 8.1, define

Ln := L1,n ∪ L2,n,

∆1 = {ℓ2 : min
1≤i≤d

|ℓ1i − ℓ2i| ≤ 1}

∆2 = {ℓ2 : min
1≤i≤d

|ℓ1i − ℓ2i| ≥ 2}

With the notation introduced above, it is easy to show that, for m = 2,

1
h2dϕ2(h)

∑
i∈I2

n

2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An
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= 1
h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

+ 1
h2dϕ2(h)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

+2 1
h2dϕ2(h)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

+2 1
h2dϕ2(h)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆1

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

+ 1
h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i1:si1 ∈Γn(ℓ1;ε)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

+ 1
h2dϕ2(h)

∑
ℓ1∈L1,n∪L2,n

ε̸=ε0

∑
i1<i2 : si1 ,si2 ∈Γn(ℓ1;ε)∩Rn

×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

:= I + II + III + IV + V + VI. (8.23)

(I): The same type of blocks but not the same block: Let {ηi}i∈N∗ be a sequence
of independent blocks. An application of Lemma 8.5 shows that:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣n−3/2 1
h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

∣∣∣∣∣∣ > δ


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≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)  2∏
j=1

K2

(
d(xj,Xsij

,An)
hn

)
−

2∏
j=1

K2

d
(
xi, Xuj

(sij )
)

h

Wsi,An

∣∣∣∣∣∣ > δ



+ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

d
(
xi, Xuj

(sij )
)

h

[Wsi,An −W
(u)
si,An

]∣∣∣∣∣∣ > δ



+ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

d
(
xi, Xuj

(sij )
)

h

W (u)
si,An

∣∣∣∣∣∣ > δ


≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∣∣∣∣∣∣ > δ


+C

(
An
A1,n

)d
β
(
A2,n;Adn

)
+ oP(1) + oP(1),

Because:

E.|S

∣∣∣∣∣∣ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
 2∏
j=1

K2

(
d(xj,Xsij

,An)
hn

)
−

2∏
j=1

K2

d
(
xj, Xuj

(sij )
)

h

Wsi,An

∣∣∣∣∣∣
= 1

n3/2h2dϕ2(h)
∑

ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)

E.|S

∣∣∣∣∣∣
 2∏
j=1

K2

(
d(xj,Xsij

,An)
hn

)
−

2∏
j=1

K2

d
(
xj, Xuj

(sij )
)

h

Wsi,An

∣∣∣∣∣∣
= 1

n3/2h2dϕ2(h)
∑

ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)

E.|S

∣∣∣∣∣∣
 2∏
j=1

K2

(
d(xj,Xsij

,An)
hn

)
−

2∏
j=1

K2

d
(
xj, Xuj

(sij )
)

h

 m∏
j=1

εsij
,An

∣∣∣∣∣∣
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= 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)

E.|S

∣∣∣∣∣∣
 2∏
j=1

K2

(
d(xj,Xsij

,An)
hn

)
−

2∏
j=1

K2

d
(
xj, Xuj

(sij )
)

h

 m∏
j=1

σ
(

sij
An

, Xsij
,An

)
εsij

∣∣∣∣∣∣
= 1

n3/2h2dϕ2(h)
∑

ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
m∏
j=1

E.|S
(
εsij

)

E.|S

∣∣∣∣∣∣
 2∏
j=1

K2

(
d(xj,Xsij

,An)
hn

)
−

2∏
j=1

K2

d
(
xj, Xuj

(sij )
)

h


 m∏
j=1

σ
(

sij
An

, Xsij
,An

)
−

m∏
j=1

σ (uj,xj) +
m∏
j=1

σ (uj,xj)
∣∣∣∣∣∣

≤ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
m∏
j=1

E.|S
(
εsij

)

E.|S

C
m∑
j=1

∣∣∣∣∣∣∣∣∣K2

(
d(xj, Xsij

,An)
hn

)
−K2


d
(
xj, X sij

An

(sij )
)

h


∣∣∣∣∣∣∣∣∣
p

m∏
j=1

[σ (uj,xj) + oP(1)]

(Using a telescoping argument, and the boundedness of K2 for p = min(ρ, 1) and C < ∞)

≲
1

n3/2h2dϕ2(h)
∑

ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
m∏
j=1

E.|S
(
εsij

)

E.|S

ϕm−1(h)
∣∣∣∣∣ CAdnUsij

,An

( sij
An

)∣∣∣∣∣
p
 m∏
j=1

[σ (uj,xj) + oP(1)]

∼ oP(1), (8.24)

and

E.|S

∣∣∣∣∣∣ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)

2∏
j=1

K2

d
(
xi, Xuj

(sij )
)

h

[Wsi,An −W
(u)
si,An

]∣∣∣∣∣∣
= 1

n3/2h2dϕ2(h)
∑

ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
m∏
j=1

E.|S
(
εsij

)

E.|S

∣∣∣∣∣∣
2∏
j=1

K2

d
(
xi, Xuj

(sij )
)

h

 m∏
j=1

σ
(

sij
An

, Xsij
,An

)
−

m∏
j=1

σ (uj,xj)
∣∣∣∣∣∣

≲
1

n3/2h2dϕ2(h)
∑

ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
m∏
j=1

E.|S
(
εsij

)
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×(oP(1))
ˆ h

0

m∏
k=1

K2

(
yk
h

)
dFik/n(yk, xk)

≲
1

n3/2h2dϕ2(h)
∑

ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
m∏
j=1

E.|S
(
εsij

)
×(oP(1))(ϕ2(h))

∼ oP(1). (8.25)

Under the assumptions of the lemma, we have β(a; b) ≤ β1(a)g1(b) with β1(a) → 0 as
a → ∞ and n → ∞, so the term to consider is the first summand. For the second part of
the inequality, we will use the work of Y. Song et al., 2019 in the non-fixed kernels settings,
precisely, we will define fi1,...,im = ∏m

k=1 ξik × H and Fi1,...,im respectively as a collections
of kernels and the class of functions related to this kernel, then we will use de la Peña
et al., 1999, Theorem 3.1.1 and Remarks 3.5.4 part 2 for decoupling and randomization.
As we mentioned above, we will suppose that m = 2. Then we can see that

E.|S

∥∥∥∥∥∥ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
i,φ,n

∥∥∥∥∥∥
F2K 2

= E.|S

∥∥∥∥∥∥ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

fi1,i2(u,η)
∥∥∥∥∥∥

Fi1,i2

≤ c2E.|S

∥∥∥∥∥∥ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

εpεq
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

fi1,i2(u,η)
∥∥∥∥∥∥

Fi1,i2

≤ c2E.|S

ˆ D
(U1)
nh

0
N
(
t,Fi1,i2 , d̃

(1)
nh,2

)
dt, (By Lemma 8.10 and Proposition 8.6.) (8.26)

where D(U1)
nh is the diameter of Fi1,i2according to the distance d̃(1)

nh,2, respectively defined
as

D
(U1)
nh :=

∥∥∥∥∥∥Eε
∣∣∣∣∣∣ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

εpεq
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

fi1,i2(u,η)
∣∣∣∣∣∣
∥∥∥∥∥∥

Fi1,i2

=
∥∥∥∥∥∥Eε

∣∣∣∣∣∣ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

εpεq
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∣∣∣∣∣∣
∥∥∥∥∥∥

F2K 2

,
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and :

d̃
(1)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
:= Eε

∣∣∣∣∣∣ 1
n3/2hdϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

εpεq
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

[ξ1i1ξ1i2

2∏
k=1

K1,2

(
d(xk, ηik)

h

)
W

′(u)
si,An

− ξ2i1ξ2i2

2∏
k=1

K2,2

(
d(xk, ηik)

h

)
W

′′(u)
si,An

]∣∣∣∣∣∣∣ .
Let consider another semi-norm d̃

(2)
nh,2 :

d̃
(2)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
= 1

nhdϕ2(h)

 ∑
ℓ1 ̸=ℓ2∈Ln

(
ξ1i1ξ1i2

2∏
k=1

K1,2

(
d(xk, ηik)

h

)
W

′(u)
si,An

− ξ2i1ξ2i2

2∏
k=1

K2,2

(
d(xk, ηik)

h

)
W

′′(u)
si,An

)2


1/2

.

One can see that

d̃
(1)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
⩽ A1,nn

−1/2hdϕ(h)d̃(2)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
.

We readily infer that

E.|S

∥∥∥∥∥∥ 1
n3/2h2dϕ2(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)
2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
i,φ,n

∥∥∥∥∥∥
F2K 2

⩽ c2E.|S

ˆ D
(U1)
nh

0
N
(
tA−d

1,nn
1/2,Fi,j, d̃

(2)
nh,2

)
dt

⩽ c2A
d
1,nn

−1/2P
{
D

(U1)
nh A−d

1,nn
1/2 ⩾ λn

}
+ cmA

d
1,nn

−1/2
ˆ λn

0
log t−1dt, (8.27)

where λn → 0. We have (ˆ λn

0
log t−1dt

)
(
λn log λ−1

n

) → 0,

where λn must be chosen in such a way that the following relation will be achieved
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Ad1,nλnn
−1/2 log λ−1

n → 0. (8.28)

By utilizing the triangle inequality in conjunction with Hoeffding’s trick, we are easily
able to derive that

Ad1,nn
−1/2P

{
D

(U1)
nh ⩾ λnA

d
1,nn

−1/2
}

⩽ λ−2
n A−d

1,nn
−5/2hϕ−1(h)E.|S

∥∥∥∥∥∥
∑

ℓ1 ̸=ℓ2∈Ln

 ∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η

′
i2)

h

)
W

(u)
si,An

]2
∥∥∥∥∥∥

F2K 2

⩽ c2[[Ln]]λ−2
n A−d

1,nn
−5/2hϕ−1(h)E.|S

∥∥∥∥∥∥
∑

ℓ1∈Ln

 ∑
i1,i2:si1 ,si2 ∈Γn(ℓ1;ε0)∩Rn

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η

′
i2)

h

)
W

(u)
si,An

]2
∥∥∥∥∥∥

F2K 2

,

(8.29)

where {η′
i}i∈N∗ are independent copies of (ηi)i∈N∗ . By imposing :

λ−2
n Ad−r

1,n n
−1/2 → 0, (8.30)

we readily infer that
∥∥∥∥∥∥[[Ln]]λ−2

n A−d
1,nn

−5/2hϕ−1(h)E.|S

∑
ℓ1∈Ln

 ∑
i1,i2:si1 ,si2 ∈Γn(ℓ1;ε0)∩Rn

ξi1ξi2

2∏
k=1

K2

(
d(xk, ηik )

h

)
W

(u)
si,An

2∥∥∥∥∥∥
F2K 2

⩽ O
(
λ−2

n Ad−r
1,n n

−1/2) .
A symmetrization of the last inequality in (8.29) succeeded by an application of the
Proposition 8.6 in the Appendix, gives

[[Ln]]λ−2
n A−d

1,nn
−5/2hϕ−1(h)E.|S

∥∥∥∥∥∥
∑

ℓ1∈Ln

 ∑
i1,i2:si1 ,si2 ∈Γn(ℓ1;ε0)∩Rn

εpξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η

′
i2)

h

)
W

(u)
si,An

]2
∥∥∥∥∥∥

F2K 2

⩽ c2E.|S

ˆ D
(U2)
nh

0

(
logN(u,Fi,j, d̃

′
nh,2)

)1/2
 , (8.31)
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where

D
(U2)
nh =

∥∥∥∥∥∥Eε
∣∣∣∣∣∣[[Ln]]λ−2

n A−d
1,nn

−5/2ϕ−1(h)

∑
ℓ1∈Ln

 ∑
i1,i2:si1 ,si2 ∈Γn(ℓ1;ε0)∩Rn

ξi1ξi2K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, η

′
i2)

h

)
W

(u)
si,An

2
∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

F2K 2

.

and for ξ1.K2,1W
′ , ξ2.K2,2W

′′ ∈ Fij :

d̃′
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)
:= Eε

∣∣∣∣∣∣[[Ln]]λ−2
n A−d

1,nn
−5/2ϕ−1(h)

∑
ℓ1∈Ln

εp

 ∑
i1,i2:si1 ,si2 ∈Γn(ℓ1;ε0)∩Rn

ξ1i1ξ1i2K2,1

(
d(x1, ηi1)

h

)

K2,1

(
d(x2, η

′
i2)

h

)
W

′(u)
si,An

)2

−

 ∑
i1,i2∈H(U)

p

ξ2iξ2jK2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, η

′
i2)

h

)
W

′′(u)
si,An


2
∣∣∣∣∣∣∣ .

By the fact that :

Eε

∣∣∣∣∣∣[[Ln]]λ−2
n A−d

1,nn
−5/2ϕ−1(h)

∑
ℓ1∈Ln

εp

 ∑
i1,i2:si1 ,si2 ∈Γn(ℓ1;ε0)∩Rn

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η

′
i2)

h

)
W

(u)
si,An

)2
∣∣∣∣∣∣

⩽ A
3d/2
1,n λ−2

n n−1

[[Ln]]−1A−2d
1,n ϕ

−2(hn)
∑

ℓ1∈Ln

∑
i1,i2:si1 ,si2 ∈Γn(ℓ1;ε0)∩Rn

(
ξi1ξi2K2

(
d(xi, ηi1)

h

)

K2

(
d(x2, η

′
j)

h

)
W

(u)
si,An

)4
1/2

,

so:
A
d3/2
1,n λ−2

n n−1 → 0, (8.32)

we have the convergence of (8.31) to zero. Recall that

JLnK = O
(
(An/A3,n)d

)
≲ (An/A1,n)d .

(II): The same block:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2
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×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

∣∣∣∣∣∣ > δ



≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

2∏
j=1

K

(
uj − sij/An

hn

)  2∏
j=1

K2

(
d(xj,Xsij

,An)
hn

)
−

2∏
j=1

K2

d
(
xi, Xuj

(sij )
)

h

Wsi,An

∣∣∣∣∣∣ > δ



+P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

d
(
xi, Xuj

(sij )
)

h

[Wsi,An −W
(u)
si,An

]∣∣∣∣∣∣ > δ



+P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

d
(
xi, Xuj

(sij )
)

h

W (u)
si,An

∣∣∣∣∣∣ > δ



≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2
2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∣∣∣∣∣∣ > δ


+C

(
An
A1,n

)d
β
(
A2,n;Adn

)
+ oP(1) + oP(1),

In the same manner, as I, we can show that the first and the second term in the previous
inequality is of order oP(1). So, as the preceding proof, it suffices to prove that

E.|S


∥∥∥∥∥∥∥∥∥

1
n3/2h2dϕ2(h)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

2∏
j=1

K

(
uj − sij/An

hn

)

2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

 → 0.

Notice that we treat a uniformly bounded classes functions in, we obtain uniformly in

324



8. Mathematical developments

Bm × F2K 2

E.|S

 ∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

 = O(an).

This implies that we have to prove that, for u ∈ Bm

EE.|S


∥∥∥∥∥∥∥

1
n3/2h2dϕ2(h)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i1 ̸=i2i2:si2 ∈Γn(ℓ1;ε0)∩Rn 2∏

j=1
K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

− E.|S

 2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

 → 0.

(8.33)

As for empirical processes, to prove (8.33), it’s enough to symmetrize and show that

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

εp
2∏
j=1

K

(
uj − sij/An

hn

)

2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

→ 0.

Similarly to how in (8.26), we have

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2hd+1ϕ(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

εp
2∏
j=1

K

(
uj − sij/An

hn

)

2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

⩽ E

ˆ D
(U3)
nh

0

(
logN

(
u,Fi1,i2 , d̃

(3)
nh,2

))1/2
du

 ,
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where

D
(U3)
nh =

∥∥∥∥∥∥∥∥∥Eε
∣∣∣∣∣∣∣∣∣

1
n3/2hdϕ(h)

∑
ℓ1∈Ln

εp
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

2∏
j=1

K

(
uj − sij/An

hn

)

2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∣∣∣∣∣∣
∥∥∥∥∥∥

F2K 2

, (8.34)

and the semi-metric d̃(3)
nh,2 is defined by

d̃
(3)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)

= Eε

∣∣∣∣∣∣∣∣∣
1

n3/2hdϕ(h)
∑

ℓ1∈Ln

εp
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

(
ξ1iξ1jK2,1

(
d(x1, ηi1)

h

)

K2,1

(
d(x2, ηi2)

h

)
W

′(u)
si,An

− ξ2iξ2jK2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, ηi2)

h

)
W

′′(u)
si,An

)∣∣∣∣∣ .
Since we are considering uniformly bounded classes of functions, we obtain

Eε

∣∣∣∣∣∣∣∣∣n
−3/2hϕ−1(hn)

∑
ℓ1∈Ln

εp
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
si,An

∣∣∣∣∣
⩽ A

3d/2
1,n n−1hϕ−1(hn)

 1
[[Ln]]A2

1,n

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

(
ξi1ξi2K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W

(u)
si,An

)2
1/2

⩽ O
(
A

3d/2
1,n n−1ϕ−1(hn)

)
.

Since A3d/2
1,n n−1ϕ−1(h) → 0, D(U3)

nh → 0, we obtain II → 0 as n → ∞.

(III): Different types of blocks: Avoiding the repetition, we can directly see that:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0
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∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

∣∣∣∣∣∣ > δ



≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∣∣∣∣∣∣ > δ


+C

(
An
A1,n

)d
β
(
A2,n;Adn

)
+ oP(1) + oP(1). (8.35)

For p = 1 and p = νn:

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dϕ2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

= E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dϕ2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

.

For 2 ⩽ p ⩽ υn − 1, we obtain :

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dϕ2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

= E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dϕ2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=4

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2
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⩽ E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dϕ2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

,

therefore it suffices to show that:

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dϕ2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

.

(8.36)

By similar arguments as in Arcones and Yu, 1994, the usual symmetrization is applied
and:

E.|S

∥∥∥∥∥∥∥∥∥
JLnK

n3/2h2dϕ2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

⩽ 2E.|S

∥∥∥∥∥∥∥∥∥
JLnK

n3/2h2dϕ2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

εq

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

= 2E.|S


∥∥∥∥∥∥∥∥∥

JLnK
n3/2h2dϕ2(h)

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

εq

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

1{
D

(U4)
nh
⩽γn

}
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+2E.|S


∥∥∥∥∥∥∥∥∥

JLnK
n3/2h2dϕ2(h)

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

εq
2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

1{
D

(U4)
nh

>γn

}
= 2III1 + 2III2, (8.37)

where

D
(U4)
nh

=

∥∥∥∥∥∥∥∥∥∥∥
JLnK

n3/2h2dϕ2(h)


∑

ℓ2: min
1≤i≤d

ℓ2i=3

ε̸=ε0

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

 ∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij

h

)
W

(u)
si,An

2


1/2
∥∥∥∥∥∥∥∥

F2K 2

.(8.38)

In a similar way as in (8.26), we infer that

III1 ⩽ c2

ˆ γn

0

(
logN

(
t,Fi1,i2 , d̃

(4)
nh,2

))1/2
dt, (8.39)

where

d̃
(4)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u)

)

:= Eε

∣∣∣∣∣∣∣∣∣JLnKn
−3/2hϕ−1(hn)

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

εq [ξ1i1ξ1i2 K2,1

(
d(x1, ηi1)

h

)
K2,1

(
d(x2, ηi2)

h

)
W

′(u)
si,An

− ξ2i1ξ2i2K2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, ηi2)

h

)
W

′′(u)
si,An

]∣∣∣∣∣ .
Since we have

Eε

∣∣∣∣∣∣∣∣∣JLnKn
3/2h2dϕ2(h)

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

εqξi1ξi2
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K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2)

h

)
W

(u)
si,An

∣∣∣∣∣
⩽ A

−d/2
1,n Ad2,nh

−d+1ϕ(h)

 1
Ad1,nA

d
2,nJLnKhd−1ϕ4(hn)

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

[
ξi1ξi2K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2)

h

)
W

(u)
si,An

]2


1/2

,

and considering the semi-metric

d̃
(5)
nh,2

(
ξ1.K2,1W

′(u) , ξ2.K2,2W
′′(u))

:=

 1
Ad

1,nA
d
2,nJLnKhd−1ϕ4(hn)

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

[ξ1i1ξ1i2

K2,1

(
d(x1, ηi1 )

h

)
K2,1

(
d(x2, ηi2 )

h

)
W

′(u)
si,An

− ξ2i1ξ2i2K2,2

(
d(x1, ηi1 )

h

)
K2,2

(
d(x2, ηi2 )

h

)
W

′′(u)
si,An

]2
)1/2

.

We demonstrate that the statement in (8.39) is bounded as follows

JLnK1/2Ad2,nn
−1/2h2ϕ(h)

ˆ JLnK−1/2A−d
2,nn

1/2h2dγn

0

(
logN

(
t,Fi1,i2 , d̃

(5)
nh,2

))1/2
dt,

by choosing γn = n−α for some α > (17r − 26)/60r, we obtain the convergence of the
preceding quantity to zero. In order to bound the second term on the right-hand side of
(8.37), we can mention that

III2 = E


∥∥∥∥∥∥∥∥∥JLnKn

−3/2hϕ−2(h)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
ℓ2: min

1≤i≤d
ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

εq

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij )

h

)
W

(u)
si,An

∥∥∥∥∥∥
F2K 2

1{
D

(U4)
nh

>γn

}
⩽ A−1

1,nA2,nn
1/2hdϕ−1(h)P


∥∥∥∥∥∥∥∥∥JLnK

2n−3h2ϕ−2(hn)
∑

ℓ2: min
1≤i≤d

ℓ2i=3

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

 ∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

) 2∏
j=1

K2

(
d(xj, ηij )

h

)
W

(u)
si,An

2
∥∥∥∥∥∥∥

F2K 2

⩾ γ2
n

 .(8.40)
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We are going to use the square root method on the last expression conditionally on
Γn(ℓ1; ε0) ∩ Rn. We denote by Eε̸=ε0 the expectation with respect to σ {ηi2 , ε ̸= ε0} and
we will suppose that any class of functions Fm is unbounded and its envelope function
satisfies for some p > 2 :

θp := sup
x∈S m

H

E (F p(Y)|X = x) < ∞, (8.41)

for 2r/(r − 1) < s < ∞, (in the notation in of Giné et al., 1984, Lemma 5.2).

Mn = JLnK1/2Eε̸=ε0

 ∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

2∏
j=1

K

(
uj − sij/An

hn

)

2∏
j=1

K2

(
d(xj, ηij )

h

)
W

(u)
si,An

2

,

where

x = γ2
nA

5d/2
1,n n1/2hmd/2ϕ−m/2(h), ρ = λ = 2−4γnA

5d/4
1,n n1/4hmd/4ϕ−m/4(h),

and
m = exp

(
γ2
nnh

2dϕ−2(hn)A−2d
2,n

)
.

However, since we need t > 8Mn, and m → ∞, by similar arguments as in Arcones and
Yu, 1994, page 69, We reach the convergence of (8.39) and (8.40) to zero.

(IV): Blocks of different types: The target here is to prove that:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆1

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

∣∣∣∣∣∣ > δ

 → 0.

We have

∥∥∥∥∥∥∥∥∥n
−3/2 1

h2dϕ2(h)
∑

ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆1

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn
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×
2∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
Wsi,An

∥∥∥∥∥∥
F2K 2

⩽ c2JLnKAd1,nA
d
2,nn

−3/2h−dϕ−1(h) → 0.

Hence the proof of the lemma is complete. □

The final step in the proof of Proposition 3.1 lies in the use of Lemma 8.1 to prove
that the nonlinear term converges to zero. □

Proof of Theorem 3.1

We have

r̂(m)
n (φ,x,u;hn) − r(m)(φ,x,u)

= 1
r̃1(φ,x,u)

(
ĝ1(u,x) + ĝ2(u,x) − r(m)(φ,x,u)r̃1(φ,x,u)

)
,

where

r̃1(φ,u,x) = (n−m)!
n!hmdϕm(h)

∑
i∈Im

n

m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
,

ĝ1(u,x) = (n−m)!
n!hmdϕm(h)

∑
i∈Im

n

m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
m∏
j=1

εsij
,An ,

ĝ2(u,x) = (n−m)!
n!hmdϕm(h)

∑
i∈Im

n

m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}

×r(m)
(
φ,Xsi1 ,An , . . . ,Xsim ,An ,

si1
An

, . . . ,
sim
An

)
.

The proof of this theorem is involved and divided into the following 4 steps, where in
each one, we aim to show that

Step 1.
sup

FmK m
sup

x∈H m
sup

u∈Bm
|ĝ1(u,x)| = OP

(√
log n/nhmdϕm(h)

)
.

Step 2.

sup
FmK m

sup
x∈H m

sup
u∈Bm

|ĝ2(u,x) − r(m)(φ,u,x)r̃1(φ,u,x;hn)

−E.|S(ĝ2(u,x) − r(m)(φ,u,x)r̃1(φ,u,x;hn))| = OP

(√
log n/nhmdϕm(h)

)
.

Step 3. Let κ2 =
´

R x
2K(x)dx.

332



8. Mathematical developments

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣E.|S (ĝ2(u,x) − r(m)(φ,u,x)r̃1(φ,u,x;hn)
)∣∣∣

= O

(
1

Adpn ϕ(h)

)
+ o

(
h2
)
, PS − a.s.

Step 4.
sup

FmK m
sup

x∈H m
sup

u∈Bm

∣∣∣r̃1(φ,u,x) − E.|S (r̃1(φ,u,x))
∣∣∣ = oP.|S (1).

It is clear that Step 1. follows directly from Proposition 3.1 for Wsi,An = ∏m
j=1 εsij

,An . The
second one ( Step 2.) holds also if we replaceWsi,An with ĝ2(u,x)−r(m)(φ,u,x)r̃1(φ,u,x;hn)
then applying Proposition 3.1.

We will pass now to Step 4.. Observe that
for Wsi,An ≡ 1, the previous mentioned proposition proved that

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣r̃1(φ,u,x) − E.|S (r̃1(φ,u,x))
∣∣∣ = oP.|S (1).

Step 3. will be treated in what follows:
LetK0 : [0, 1] → R be a Lipschitz continuous function compactly support on [−qC1, qC1]

for some q > 1 and such that K0(x) = 1,∀x ∈ [−C1, C1]. Show that

E.|S
[
ĝ2(u,x) − r(m)(φ,u,x)r̃1(φ,u,x;hn))

]
=

4∑
i=1

Qi(u,x), (8.42)

where Qi can be defined as follows

Qi(u,x) = (n−m)!
n!hmdϕm(h)

∑
i∈Im

n


m∏
j=1

K

(
uj − sij/An

hn

) qi(u,x), (8.43)

such that

q1(u,x) = E.|S

 m∏
j=1

K0

(
d(xj, Xsij

,An)
hn

)
m∏
j=1

K2

(
d(xj, Xsij

,An)
hn

)

−
m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h


×

{
r(m)

(
φ,

si

An
,Xsi,An

)
− r(m)(φ,u,x)

} ,

q2(u,x) = E.|S


m∏
j=1

K0

(
d(xj, Xsij

,An)
hn

)
K2


d
(
xi, X sij

An

(sij )
)

h



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{
r(m)

(
φ,

si

An
,Xsi,An

)
− r(m)

(
φ,

si

An
, Xsi/An(si)

)}]
,

q3(u,x) = E.|S




m∏
j=1

K0

(
d(xj, Xsij

,An)
hn

)
−

m∏
j=1

K0


d
(
xi, X sij

An

(sij )
)

h




m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h

×
{
r(m)

(
φ,

si

An
,Xsi/An(si)

)
− r(m)(φ,u,x)

} ,

q4(u,x) = E.|S


m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h


{
r(m)

(
φ,

si

An
,Xsi/An(si)

)
− r(m)(φ,u,x)

} .

Observe that

Q1(u,x) ≲ (n−m)!
n!hmdϕm(h)

∑
i∈Im

n


m∏
j=1

K

(
uj − sij/An

hn

)
E.|S

 m∏
j=1

K0

(
d(xj, Xsij

,An)
hn

)
∣∣∣∣∣∣∣∣∣
m∏
j=1

K2

(
d(xj, Xsij

,An)
hn

)
−

m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h


∣∣∣∣∣∣∣∣∣

×
∣∣∣∣r(m)

(
φ,

si

An
,Xsi,An

)
− r(m)(φ,u,x)

∣∣∣∣]} ,
using the properties of r(m)(u,x) allow us to show that

m∏
j=1

K0

(
d(xj,Xsij

,An)
hn

) ∣∣∣∣r(m)
(
φ,

si

An
,Xsi,An

)
− r(m)(φ,u,x)

∣∣∣∣ ≤ Chm

Q1(u,x) ≤ (n−m)!
n!hmdϕm(h)

∑
i∈Im

n


m∏
j=1

K

(
uj − sij/An

hn

)E.|S [Chm

×C
m∑
j=1

∣∣∣∣∣∣∣∣∣K2

(
d(xj, Xsij

,An)
hn

)
−K2


d
(
xi, X sij

An

(sij )
)

h


∣∣∣∣∣∣∣∣∣
p (Using the telescoping

argument, and the boundness of K2 for p = min(ρ, 1) and C < ∞)

≤ (n−m)!
n!hmdϕm(h)

∑
i∈Im

n


m∏
j=1

K

(
uj − sij/An

hn

)E.|S
Chm m∑

j=1

∣∣∣∣∣ CAdnhUsij
,An

( sij
An

)∣∣∣∣∣
p

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≤ C

Apdn ϕm(h)hp−m
uniformly in u.

In a similar way, and for

E


m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h


 ≤ Cϕm−1(h),

and since r(m)(·) is Lipschitz and d
(

Xsij
,An ,X sij

An

(sj)
)

≤ C
Ad

n
Usij

,An

( sij

An

)
and the variable

Usij
,An

( sij

An

)
have finite p-th moment, we can see that

Q2(u,x) = (n−m)!
n!hmdϕm(h)

∑
i∈Im

n

m∏
j=1

K

(
uj − sij/An

hn

)

E.|S

 m∏
j=1

K0

(
d(xj, Xsij

,An)
hn

)
K2


d
(
xi, X sij

An

(sij )
)

h




{
r(m)

(
φ,

si

An
,Xsi,An

)
− r(m)

(
φ,

si

An
, Xsi/An(si)

)}
≤ (n−m)!

n!hmdϕm(h)
∑

i∈Im
n


m∏
j=1

K

(
uj − sij/An

hn

)E.|S
ϕm−1(h)

∣∣∣∣∣ CAdnUsij
,An

( sij
An

)∣∣∣∣∣
p


≤ C

Apdn ϕ(h)
, (8.44)

and
sup

FmK m
sup

x∈H m
sup

u∈Im
h

Q3(u,x) ≲ 1
Apdn ϕm(h)hp−m

. (8.45)

For the last term, we have

Q4(u,x) = (n−m)!
n!hmdϕm(h)

∑
i∈Im

n

m∏
j=1

K

(
uj − sij/An

hn

)

E.|S


m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h


{
r(m)

(
φ,

si

An
,Xsi/An(si)

)
− r(m)(φ,u,x)

} .

Using Lemma 8.2 and inequality (2.14) and under Assumption 7, it follows that

|Q4(u,x)| ≤ (n−m)!
n!hmdϕm(h)

∑
i∈Im

n

m∏
j=1

K

(
uj − sij/An

hn

)
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E.|S


m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h


∣∣∣∣r(m)

(
φ,

si

An
,Xsi/An(si)

)
− r(m)(φ,u,x)

∣∣∣∣


≲
(n−m)!

n!hmdϕm(h)
∑

i∈Im
n

m∏
j=1

K

(
uj − sij/An

hn

)

E.|S


m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h


∣∣∣∣ dH m

(
Xsi/An(si),x

)
+ ∥u − si

An
∥
∣∣∣∣α


≲
(n−m)!

n!hmdϕm(h)
∑

i∈Im
n

∣∣∣∣∣∣
m∏
j=1

K

(
uj − sij/An

hn

)

−
ˆ 1

0
· · ·
ˆ 1

0

1
hm

m∏
j=1

K

(
(uj − vj)

h

)
dvj

∣∣∣∣∣∣E.|S

∣∣∣∣∣∣∣∣∣
m∏
j=1

K2


d
(
xi, X sij

An

(sij )
)

h


∣∣∣∣∣∣∣∣∣× hα


+ (n−m)!
n!hmdϕm(h)

∑
i∈Im

n

ˆ 1

0
· · ·
ˆ 1

0

1
hmd

m∏
j=1

K
(
uj − vj
h

)
dvj × E.|S

[
ϕm−1(h) hα

]
≲ OP.|S

(
h2∧α

)
.

(8.46)

Adding the obtained results of Qi, 1 ≤ i ≤ 4, Step 3. yields, so as the rate of
convergence of the estimator. □

Proof of Theorem 4.1

Recall that

r̂(m)
n (φ,x,u;hn) =

∑
i∈Im

n

φ(Ysi1 ,An , . . . ,Ysim,An
)
m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)}
∑

i∈Im
n

m∏
j=1

{
K

(
uj − sij/An

hn

)
K2

(
d(xj,Xsij

,An)
hn

)} .

For x ∈ H m,y ∈ Y m, define

Gφ,i(x,y) :=

m∏
j=1

{
K2

(
d(xj,Xsij

,An)
hn

)}
φ(Ysi1 ,An , . . . ,Ysim,An

)

E
m∏
j=1

{
K2

(
d(xj,Xsij

,An)
hn

)} ;

G := {Gφ,i(·, ·) φ ∈ Fm, i = (i1, . . . , im)} ;
G (k) := {πk,mGφ,i(·, ·), φ ∈ Fm, } ;
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Un(φ) = U(m)
n (Gφ,i) := (n−m)!

n!
∑
i∈Im

n

m∏
j=1

ξijGφ,i(Xi,Yi);

and the U -empirical process is defined to be

µn(φ) :=
√
nhmϕ(h) {Un(φ) − E(Un(φ))} .

Then
r̃(m)
n (φ,x,u;hn) = Un(φ)

Un(1) .

In order to establish the weak convergence of our estimator, it must be established first
for µn(φ). We have mentioned before that we deal with unbounded classes of functions,
that is why we should truncate the function Gφ,i(x,y), indeed, for λn = n1/p, with p > 0,
we have:

Gφ,i(x,y) = Gφ,i(x,y) 1{F (y)≤λn} +Gφ,i(x,y) 1{F (y)>λn}

:= G
(T )
φ,i (x,y) +G

(R)
φ,i (x,y).

We can write the U -statistic as follows :

µn(φ) =
√
nhmϕ(h)

{
U(m)
n

(
G

(T )
φ,i

)
− E

(
U(m)
n

(
G

(T )
φ,i

))}
+
√
nhmϕ(h)

{
U(m)
n

(
G

(R)
φ,i

)
− E

(
U(m)
n

(
G

(R)
φ,i

))}
:=
√
nhmϕ(h)

{
U(T )
n (φ, i) − E

(
U(T )
n (φ)

)}
+
√
nhmϕ(h)

{
U(R)
n (φ) − E

(
U(R)
n (φ)

)}
:=µ(T )

n (φ) + µ(R)
n (φ). (8.47)

The first term is the truncated part and the second is the remaining one. We have to
prove that:

1. µ(T )
n (φ) converges to a Gaussian process.

2. The remainder part doesn’t matter much, in the sense that∥∥∥∥√nhmϕ(h)
{
U(R)
n (φ) − E

(
U(R)
n (φ)

)}∥∥∥∥
FmK m

P−→ 0.

For the first point, we will use the decomposition of Hoeffding, which would be the
same as the previous decomposition in Subsection 3.1 except that we replace Wi,n by
φ(Yi,n)

U(T )
n (φ) − E

(
U(T )
n (φ)

)
:= U1,n(φ) + U2,n(φ),
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where

U1,n(φ) := 1
n

n∑
i=1

Ĥ1,i(u,x, φ), (8.48)

U2,n(φ) := (n−m)!
(n)!

∑
i∈Im

n

ξi1 · · · ξimH2,i(z). (8.49)

The convergence of U2,n(φ) to zero in probability follows from Lemma 8.1. Hence, it is
enough to show that U1,n(φ) converges weakly to a Gaussian process called G(φ). In order
to achieve our goal, we will go through finite-dimensional convergence and equicontinuity.

The finite-dimensional convergence simply asserts that every finite set of functions
f1, . . . , fq in L2, for Ũ the centred form of U:

(√
nhmϕ(h)Ũ1,n(f1), . . . ,

√
nhmϕ(h)Ũ1,n(fq)

)
(8.50)

converges to the corresponding finite-dimensional distributions of the process G(φ). It is
sufficient to show that for every fixed collection (a1, . . . , aq) ∈ Rq we have

q∑
j=1

ajŨ1,n(fj) → N
(

0, v2
)
,

where
v2 =

q∑
j=1

a2
jVar

(
Ũ1,n(fj)

)
+
∑
s ̸=r

asarCov
(

Ũ1,n(fs), Ũ1,n(fr)
)
. (8.51)

Take
h(·) =

q∑
j=1

ajfj(·).

By linearity of h(·), we have to see that

Ũ1,n(h, i) → G(h).

Let
N = E

m∏
j=1

{
K2

(
d(xj,Xsij

,An)
hn

)}
.

We have:

Ũ1,n(hn)

= N−1 × 1
n

n∑
i=1

(n−m)!
(n− 1)!

∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiξiℓ · · · ξim−1

1
ϕ(h)K2

(
d(xi, Xsi,An)

hn

)
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×
ˆ
h(y1, . . . , yℓ−1, Yi, yℓ, . . . , ym−1)

m−1∏
j=1
j ̸=i

1
ϕ(h)K2

(
d(xj,Xsij

,An)
hn

)

P(d(ν1, y1), . . . , d(νℓ−1, yℓ−1), d(νℓ, yℓ), . . . , d(νm−1, ym−1)),

:= N−1 1
n

n∑
i=1

ξi
1

ϕ(h)K2

(
d(xi, Xsi,An)

hn

)
h̃(Yi).

The next step requires an extension of the Blocking techniques of Bernstein to the spacial
process where all notions are defined in Section 8.1.

Recall that Ln = L1,n ∪ L2,n and define:

Zs,An(u,x) := ξi
1

ϕ(h)K2

(
d(xi, Xsi,An)

hn

)
h̃(Yi), (8.52)

and
Zn(ℓ; ε) =

∑
i:si∈Γn(ℓ;ε)∩Rn

Zs,An(u,x) =
(
Z(1)
n (ℓ; ε), . . . ,Z(p)

n (ℓ; ε)
)′
. (8.53)

Then we have

Ũ1,n(hn) =
n∑
i=1

Zs,An(u,x)

=
∑

ℓ∈Ln

Zn (ℓ; ε0) +
∑

ε ̸=ε0

∑
ℓ∈L1,n

Zn(ℓ; ε)
︸ ︷︷ ︸

=:Z2,n(ε)

+
∑
ε̸=ε0

∑
ℓ∈L2,n

Zn(ℓ; ε)
︸ ︷︷ ︸

=:Z3,n(ε)

=: Z1,n +
∑
ε ̸=ε0

Z2,n(ε) +
∑
ε̸=ε0

Z3,n(ε). (8.54)

Lemma 8.9 proves that Z2,n and Z3,n, for ε ̸= ε0, are asymptotically negligible. Treat-
ing now the variance of Z1,n is clear, first, mixing conditions are used to replace large
blocks with independent random variables, and then Lyapunov’s condition for the central
limit theorem is applied to the sum of independent random variables. Similary to the
proof of Proposition 3.1 using Lemma 8.5, as in Equation (8.10), observe that

sup
t>0

∣∣∣P·|S (Z1,n > t) − P·|S
(
Z̆1,n > t

)∣∣∣ ≤ C

(
An
A1,n

)d
β
(
A2,n;Adn

)
, (8.55)

where
{
Z̆n(ℓ; ε) : ℓ ∈ Ln

}
denotes a sequence of independent random vectors in Rp under

P·|S such that
Z̆n(ℓ; ε) d= Zn(ℓ; ε), under P|S, ℓ ∈ Ln.

Applying Lyapunov’s condition for the central limit theorem for the sum of indepen-
dent random variables, the remaining condition of finite-dimensional convergence must
be established.
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We end up with the asymptotic equicontinuity. We have to prove that:

lim
δ→0

lim
n→∞

P
{√

nhmϕ(h)
∥∥∥Ũ1,n(hn, i)

∥∥∥
FK (δ,∥.∥p)

> ε
}

= 0, (8.56)

where,

FK (δ, ∥.∥p) :=
{
Ũ′

1,n(hn) − Ũ′′
1,n(hn) :∥∥∥Ũ′

1,n(hn) − Ũ′′
1,n(hn)

∥∥∥ < δ, Ũ′
1,n(hn), Ũ′′

1,n(hn) ∈ FK
}
, (8.57)

for

Ũ′
1,n(hn) = N−1 1

n

n∑
i=1

ξi
1

ϕ(h)K2,1

(
d(xi, Xsi,An)

hn

)
h̃1(Yi) − E

(
U′

1,n(hn)
)

Ũ′′
1,n(hn) = N−1 1

n

n∑
i=1

ξi
1

ϕ(h)K2,2

(
d(xi, Xsi,An)

hn

)
h̃2(Yi) − E

(
U′′

1,n(hn)
)

(8.58)

At this point, we will adapt the chaining technique found in Arcones and Yu, 1994,
and use it for the conditional setting with the locally stationary process in Bouzebda and
Soukarieh, 2022b but for random fields, as in Lemma 8.1.

Using the same strategy also as in Lemma 8.1 to pass from the sequence of locally
stationary random variables to the stationary one and find that, for ζi = (ηi, ςi) the
independent blocks sequences:

P


∥∥∥∥∥(nϕ (h))−1/2hm/2N−1

n∑
i=1

(
ξiK2

(
d(xi, Xi)

h

)
h̃(Yi) − E (U1,n(hn))

)∥∥∥∥∥
FK (b,∥·∥p)

> ε


≤ 2P


∥∥∥∥∥∥(nϕ (h))−1/2hm/2N−1 ∑

ℓ∈Ln

∑
i:si∈Γn(ℓ;ε0)∩Rn

(
ξiK2

(
d(xi, ηi)

h

)
h̃(ςi)

−E (U1,n(hn))


∥∥∥∥∥∥∥

FK (b,∥·∥p)

> ε′

+ C

(
An
A1,n

)d
β
(
A2,n;Adn

)
+ oP(1). (8.59)

Taking Advantage of the Condition (E2) in Assumption 12, we obtain β
(
A2,n;Adn

)
−→ 0

as n → 0, then it’s simply a matter of placing the first phrase in the right-hand sight of
(8.59). Due to the fact that the blocks are independent, we symmetricize using a sequence
{εj}j∈N∗ of i.i.d. Rademacher variables, i.e., r.v’s with

P(εj = 1) = P(εj = −1) = 1/2.

It is important to notice that the sequence {εj}j∈N∗ is independent of the sequence
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{ξi = (ςi, ζi)}i∈N∗ , therefore it remains to establish, for all ε > 0 and δ → 0,

lim
δ→0

lim
n→∞

P


∥∥∥∥∥∥(nϕ (h))−1/2hm/2N−1 ∑

ℓ∈Ln

∑
i:si∈Γn(ℓ;ε0)∩Rn

(
ξiK2

(
d(xi, ηi)

h

)
h̃(ςi)

−E (U1,n(hn, i))


∥∥∥∥∥∥∥

FK (b,∥·∥p)

> ε

 < δ. (8.60)

Define the semi-norm:

d̃nϕ,2 :=
(nϕ (h))−1/2hm/2N−1 ∑

ℓ∈Ln

∑
i:si∈Γn(ℓ;ε0)∩Rn

∣∣∣∣∣
(
ξiK2,1

(
d(xi, ηi)

h

)
h̃1(ςi)

−E (U′
1,n(hn, i))) −

(
ξiK2,2

(
d(xi, ηi)

h

)
h̃2(ςi) − E (U′′

1,n(hn, i))
)∣∣∣∣∣

2
1/2

(8.61)

and the covering number defined for any class of functions E by :

Ñnϕ,2(u,E ) := Nnϕ,2(u,E , d̃nϕ,2).

Because of the latter, we are able to bound (8.60), (more details are in Bouzebda et al.,
2019b). In the same way, as in Bouzebda et al., 2019b and before in Arcones and Yu,
1994, as a result of the independence between the blocks and Assumption 13 (C3), and
by applying Giné et al., 1984, Lemma 5.2, the equicontinuity is achieved, and then the
weak convergence too.
Now, we need to show that :

P
{∥∥∥µ(R)

n (φ, t)
∥∥∥

FmK m
> λ

}
→ 0 as n → ∞.

For clarity purposes, we restrict ourselves to m = 2. Using the same notation as in Lemma
8.1, we have the following decomposition:

µ(R)
n (φ, i) =

√
nhm+dϕ(hn)

{
U(R)
n (φ, i) − E

(
U(R)
n (φ, i)

)}
=

√
nhm+dϕ(hn)
n(n− 1)

n∑
i1 ̸=i2

ξi1ξi2
{
G

(R)
φ,t (((Xi1 , Xi2), (Yi1 , Yi2)))

−E
[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]}
⩽

1√
nhm+dϕ(hn)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi, Xj), (Yi, Yj)) − E

[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]}
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+ 1√
nhm+dϕ(hn)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ1;ε0)∩Rn

i1 ̸=i2

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi, Xj), (Yi, Yj)) − E

[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]}
+2 1√

nhm+dϕ(hn)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi, Xj), (Yi, Yj)) − E

[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]}

+2 1√
nhm+dϕ(hn)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆1

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2
{
G

(R)
φ,t ((Xi, Xj), (Yi, Yj)) −E

[
G

(R)
φ,t ((Xi1 , Xi2), (Yi1 , Yi2))

]}

+ 1√
nhm+dϕ(hn)

∑
ℓ1 ̸=ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i1:si1 ∈Γn(ℓ1;ε)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2
{
G

(R)
φ,t ((Xi, Xj), (Yi, Yj)) − E

[
G

(R)
φ,t ((Xi1 , Xi2), (Yi1 , Yi2))

]}
+ 1√

nhm+dϕ(hn)

∑
ℓ1∈L1,n∪L2,n

ε̸=ε0

∑
i1<i2 : si1 ,si2 ∈Γn(ℓ1;ε)∩Rn

ϕ(hn)ξi1ξi2
{
G

(R)
φ,t ((Xi, Xj), (Yi, Yj)) − E

[
G

(R)
φ,t ((Xi1 , Xi2), (Yi1 , Yi2))

]}
=: I′ + II′ + III′ + IV′ + V′ + VI′.

We shall employ blocking arguments and evaluate the terms that result. We begin by
examining the first I′. We obtain

P


∥∥∥∥∥∥ 1√

nϕ(hn)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

−E
[
G

(R)
φ,t ((Xi1 , Xi2), (Yi1 , Yi2))

]}∥∥∥
F2K 2

> δ
}

⩽ P


∥∥∥∥∥∥ 1√

nϕ(hn)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2

{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2)) −E

[
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

]}∥∥∥
F2K 2

> δ
}

+C
(
An
A1,n

)d
β
(
A2,n;Adn

)
.
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Recall that for all φ ∈ Fm, and :

x ∈ H 2,y ∈ Y 2 : 1{d(x,Xi,n)⩽h}F (y) ⩾ φ(y)K2

(
d(xi, Xsi,An)

hn

)
.

Hence, by the symmetry of F (·):∥∥∥∥∥∥ 1√
nϕ(hn)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2
{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

−E
[
G

(R)
φ,t ((ςi1 , ςi2), (ζi1 , ζi2))

]}∥∥∥
F2K 2

≲

∣∣∣∣∣∣ 1√
nϕ(hn)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2
{
F (ζi, ζj) 1{F>λn}

−E
[
F (ζi, ζj) 1{F>λn}

]} ∣∣∣∣∣∣∣ . (8.62)

We are going to use Chebyshev’s inequality, Hoeffding’s trick and inequality, respectively
to obtain:

P


∣∣∣∣∣∣ 1√
nϕ(h)

∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2
{
F (ζi, ζj) 1{F>λn}

−E
[
F (ζi, ζj) 1{F>λn}

]} ∣∣∣∣∣∣∣ > δ


≲ δ−2n−1ϕ−1(h)V ar

 ∑
ℓ1 ̸=ℓ2∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2F (ζi, ζj) 1{F>λn}


≲ c2JLnKδ−2n−1ϕ−1(h)V ar

 ∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2F (ζi, ζ ′
j) 1{F>λn}


≲ 2c2JLnKδ−2n−2ϕ−1(h)

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2E
[
(F (ζ1, ζ2))2 1{F>λn}

]
.

(8.63)

Under Assumption 13 iii), we have for each λ > 0 :

c2JLnKδ−2n−2ϕ−1(hn)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2E
[
(F (ζ1, ζ2))2 1{F>λn}

]
= c2JLnKδ−2n−2ϕ−1(hn)

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2

×
ˆ ∞

0
P
{
(F (ζ1, ζ2))2 1{F>λn} ⩾ t

}
dt
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= c2JLnKδ−2n−2ϕ−1(hn)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2
ˆ λn

0
P {F > λn} dt

+c2JLnKδ−2n−2ϕ−1(hn)
∑

i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
i2:si2 ∈Γn(ℓ2;ε0)∩Rn

ϕ(hn)ξi1ξi2
ˆ ∞

λn

P
{
(F )2 > t

}
dt,

converging to 0 as n → ∞. Terms II′,V′ and VI′ will be handled the same way as the last
term was. The terms II′,VI′ do not follow the same line because the variables {ζi, ζj}ε=ε0(

or {ζi, ζj}ε ̸=ε0 for VI′
)

belong to the same blocks. Term IV′ can be deduced from the
study of Terms I′ and III′ . Considering the term III′, we have

P


∥∥∥∥∥∥∥∥∥

1√
nϕ(hn)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2

{
G

(R)
φ,i ((Xi, Xj), (Yi, Yj)) −E

[
G

(R)
φ,i ((Xi1 , Xi2), (Yi1 , Yi2))

]} ∥∥∥∥∥∥∥
F2K 2

> δ


⩽ P


∥∥∥∥∥∥∥∥∥

1√
nϕ(hn)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2

{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2)) − E

[
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

]} ∥∥∥∥∥∥∥
F2K 2

> δ


+

JLnKAd1,nAd2,nβ
(
A2,n;Adn

)
√
nϕ(hn)

.

(8.64)

We have also

P


∥∥∥∥∥∥∥∥∥

1√
nϕ(hn)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2

{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2)) −E

[
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

]} ∥∥∥∥∥∥∥
F2K 2

> δ


⩽ P


∥∥∥∥∥∥∥∥∥

1√
nϕ(hn)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2
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{
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2)) −E

[
G

(R)
φ,i ((ςi1 , ςi2), (ζi1 , ζi2))

]} ∥∥∥∥∥∥∥
F2K 2

> δ

 .
Since (8.62) is still true, the problem can be reduced to

P


∣∣∣∣∣∣∣∣∣

1√
nϕ(hn)

∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2

{
F (ζi, ζj) 1{F>λn} − E

[
F (ζi, ζj) 1{F>λn}

]} ∣∣∣∣∣∣∣ > δ


≲ δ−2n−1ϕ(hn)V ar

 ∑
ℓ1∈Ln

∑
i1:si1 ∈Γn(ℓ1;ε0)∩Rn

∑
∆2

∑
ℓ2∈L1,n∪L2,n

ε ̸=ε0

∑
i2:si2 ∈Γn(ℓ2;ε)∩Rn

ϕ(hn)ξi1ξi2

× F (ζi, ζj) 1{F>λn}

 ,
the identical technique is followed as in (8.63). The remainder has just been demon-
strated to be asymptotically negligible. Finally, with r̂(m)(φ,x,u) → E (Un(φ, i)), and for
(Un(1, i)) →

P
1, the weak convergence of our estimator is accomplished. □

Appendix

This appendix contains supplementary information that is an essential part of providing
a more comprehensive understanding of the chapter.

Assumption 14.

(KD1) (KB2) in Assumption 8 holds.

(KD2) For any α ∈ Zd with |α| = 1, 2, ∂αfS(s) exist and continuous on (0, 1)d.

Define
f̂S(u) = 1

nhd

n∑
j=1

K̄h (u − S0,j) .

Lemma 8.2. Masry, 1996, Theorem 2 . Under Assumption 14 and h → 0 such that
nhd/(log n) → ∞ as n → ∞, we have that

sup
u∈[0,1]d

∣∣∣f̂S(u) − fS(u)
∣∣∣ = O

√ log n
nhd

+ h2

PS − a.s.
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Lemma 8.3. Let Ih = [C1h, 1 − C1h]. Suppose that kernel K1 satisfies Assumption 14
part(i). Then for q = 0, 1, 2 and m > 1:

sup
u∈Ih

∣∣∣∣∣∣ 1
nmhmd

∑
i∈Im

n

m∏
j=1

K

(
uj − S0,ij

hn

)(
uj − S0,ij

h

)q

−
ˆ

Rmd

1
hmd

m∏
j=1

{
K
(uj − ωj

hn

)(uj − ωj

h

)q}
fS(ωj)

m∏
j=1

dωj

∣∣∣∣∣∣ = O

√ log n
nhdm

PS − a.s.

Lemma 8.4. Suppose that kernel K satisfies Assumption 14. Let g : [0, 1]md×H m → R,
(u,x) 7→ g(u,x) be a function continuously partially differentiable with respect to uj. For
k = 1, 2, we have

sup
u∈Ih

∣∣∣∣∣∣ 1
nmhmd

∑
i∈Im

n

m∏
j=1

K
(uj − S0,j

hn

)k
g (S0,j,xj) −

m∏
j=1

κkfS(uj)g(uj,xj)
∣∣∣∣∣∣

= O

√ log n
nhmd

+ o(h), PS − a.s. (8.65)

where
κk =

ˆ
Rd

K
k(x)dx.

For any probability measure Q on a product measure space (Ω1 × Ω2,Σ1 × Σ2), we
may define the β-mixing coefficients as follows:

Definition 8.3. Yu, 1994, Definition 2.5 Let Q1 and Q2 be the marginal probability
measures of Q on (Ω1,Σ1) and (Ω2,Σ2), respectively. We set

β (Σ1,Σ2, Q) = P sup {|Q (B | Σ1) −Q2(B)| : B ∈ Σ2} .

The following lemma holds true for every finite n and is essential for the generation of
independent blocks for β-mixing sequences.
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Lemma 8.5. Yu, 1994, Corollary 2.7 Let m ∈ N and let Q denote a probability measure
on a product space (∏m

i=1 Ωi,
∏m
i=1 Σi) with the associated marginal measures Qi on (Ωi,Σi).

Assume that h is a bounded measurable function on the product probability space in such
a way that |h| ≤ Mh < ∞. For 1 ≤ a ≤ b ≤ m, let Qb

a be the marginal measure on(∏b
i=a Ωi,

∏b
i=a Σi

)
. For a given τ > 0, suppose that, for all 1 ≤ k ≤ m− 1,

∥∥∥Q−Qk
1 ×Qm

k+1

∥∥∥
TV

≤ 2τ (8.66)

where Qk
1 ×Qm

k+1 is the product measure and ∥ · ∥TV is the total variation. Then

|Qh− Ph| ≤ 2Mh(m− 1)τ,

where P = ∏m
i=1 Qi, Qh =

´
hdQ and Ph =

´
hdP .

Lemma 8.6. Let
In =

{
i ∈ Zd :

(
i + (0, 1]d

)
∩Rn ̸= ∅

}
.

Then we have

PS

 n∑
j=1

1
{
AnS0,j ∈

(
i + (0, 1]d

)
∩Rn

}
> 2

(
log n+ nA−d

n

)
for some i ∈ In, i.o.

 = 0

and

PS

 n∑
j=1

1 {AnS0,j ∈ Γn(ℓ; ε)} > CA
q(ε)
1,n A

d−q(ε)
2,n nA−d

n for some ℓ ∈ L1,n, i.o.
 = 0

for any ε ∈ {1, 2}d, where " i.o." stands for infinitly often.

Proof. See the proof in Lahiri, 2003a, Lemma A.1 for each statement.

Remark 8.4. Lemma 8.6 implies that each Γn(ℓ; ε) contains at most CAq(ε)1,n A
d−q(ε)
2,n nA−d

n

samples PS-almost surely.

Lemma 8.7. Under Assumptions 8, 9, Condition (B1) in 10, 11, 12, and 14, we have :

E.|S

[(
Sn (ℓ; ε)

)2
]

≤ CAd−1
1,n A2,n(nA−d

n + log n)hmdϕ(h).

Proof of Lemma 8.7:

We have

E.|S

[(
Sn (ℓ; ε)

)2
]
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=
∑

i:si∈Γn(ℓ;ε)∩Rn

E.|S
[
S

2
s,An

(u,x)
]

+
∑

i ̸=j:si,sj∈Γn(ℓ;ε)∩Rn

E.|S
[
Ssi,An(u,x)Ssj ,An(u,x)

]

where

∑
i:si∈Γn(ℓ;ε)∩Rn

E.|S
[
S

2
s,An

(u,x)
]

≤ (n− 1)−2m ∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξ2
i1 · · · ξ2

iℓ−1
ξ2
i ξ

2
iℓ

· · · ξ2
im−1


ˆ
Ws(1,...,ℓ−1,ℓ,...,m−1),An

m−1∏
j=1
j ̸=i

1
ϕ(h)

K2

(
d(xj, νsj ,An)

h

)
P(dν1, . . . , dνℓ−1, dνℓ, . . . , dνm−1)

)2

{
E·|S

(
1

ϕ2(h)K
2
2

(
d(xi, Xsi,An)

h

)
W 2

si,An

)
(8.67)

+
[
E·|S

(
1

ϕ2(h)K2

(
d(xi, Xsi,An)

h

)
Wsi,An

)]2


≤ Cϕ2(h)(n− 1)−2m ∑
Im−1

n−1 (−i)

m∑
ℓ=1

ξ2
i1 · · · ξ2

iℓ−1
ξ2
i ξ

2
iℓ

· · · ξ2
im−1 PS − a.s. (8.68)

Likewise, we can see that

E.|S
[
Ssi,An(u,x)Ssj ,An(u,x)

]
≤ Cϕ2(h)(n− 1)−2m ∑

Im−1
n−1 (−i)

m∑
ℓ=1

ξ2
i1 · · · ξ2

iℓ−1
ξ2
i ξ

2
iℓ

· · · ξ2
im−1 PS − a.s. (8.69)

Applying Lemma 8.6 and Lemma 8.2 to find that

∑
i:si∈Γn(ℓ;ε)∩Rn

K̄2
h

(
u− sj

An

)
× (n− 1)−2m ∑

Im−1
n−1 (−i)

m∑
ℓ=1

ξ2
i1 · · · ξ2

iℓ−1
ξ2
iℓ

· · · ξ2
im−1

≤ C
∑

i:si∈Γn(ℓ;ε)∩Rn

K̄h

(
u− si

An

)
× (n− 1)−2m ∑

Im−1
n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiℓ · · · ξim−1

≤ ChmdJ{i : si ∈ Γn(ℓ; ε) ∩Rn}K

≤ ChmdAd−1
1,n A2,n

(
nA−d + log n

)
, PS − a.s.,

and

∑
i ̸=j:si,sj∈Γn(ℓ,ε)∩Rn

K̄h

(
u− si

An

)
K̄h

(
u − sj

An

)
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×(n− 1)−m(
∑

Im−1
n−1 (−i)

m∑
ℓ=1

ξi1 · · · ξiℓ−1ξiℓ · · · ξim−1

∑
Im−1

n−1 (−j)

m∑
ℓ=1

ξj1 · · · ξjℓ−1ξjℓ · · · ξjm−1)

≤

 ∑
j:sj∈Γn(ℓ;ε)∩Rn

K̄h

(
u − sj

An

)
(n− 1)−m ∑

Im−1
n−1 (−j)

m∑
ℓ=1

ξj1 · · · ξjℓ−1ξjℓ · · · ξjm−1


2

≤ Ch2mdJ{j : sj ∈ Γn(ℓ; ε) ∩Rn}K2

≤ Ch2mdA
2(d−1)
1,n A2

2,n

(
nA−d + log n

)2
, PS − a.s.

Since

Ad−1
1,n A2,n

(
nA−d

n + log n
)
hmdϕ(h) ≤ Ad1,n

(
nA−d

n + log n
)
hmdϕ(h) = o(1),

we have

E·|S

[(
Sn (ℓ; ε)

)2
]

≤ C
{
Ad−1

1,n A2,n
(
nA−d

n + log n
)
hmdϕ(h)

+A2(d−1)
1,n A2

2,n

(
n2A−2d

n + log2 n
)
h2(d)ϕ2(h)

}
≤ CAd−1

1,n A2,n
(
nA−d

n + log n
)
hmdϕ(h), PS − a.s.

Lemma 8.8 (Bernstein’s inequality). Let X1, . . . , Xn be zero-mean independent random
variables. Assume that

max
1≤i≤n

|Xi| ≤ M < ∞, a.s.

For all t > 0, we have

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

−

t2

2
n∑
i=1

E
[
X2
i

]
+ Mt

3


Lemma 8.9. Under Assumptions 8,9, 10, and 12, we have

1
nhmdϕm(h) Var·|S

 ∑
ℓ∈L1,n

Zn(ℓ; ε)
 = o(1), PS − a.s. (8.70)

1
nhmdϕm(h) Var·|S

 ∑
ℓ∈L2,n

Zn(ℓ; ε)
 = o(1), PS − a.s. (8.71)
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Proof of Lemma 8.9

We have

1
nhmdϕ(h) Var·|S

 ∑
ℓ∈L1,n

Zn(ℓ; ε)
 = 1

nhmdϕ(h)
∑

ℓ∈L1,n

E·|S
[
(Zn(ℓ; ε))2

]

+ 1
nhmdϕ(h)

∑
ℓ1 ̸=ℓ2∈L1,n

E·|S [Zn(ℓ1; ε)Zn(ℓ2; ε)]

:= I1 + I2. (8.72)

Using Lemma 8.7 and Assumption 10, it is easy to see that

I1 ≤ C
1

nhmdϕ(h)

(
An
A1,n

)d
Ad−1

1,n A2,n(nA−d
n + log n)hmdϕ(h)

≤ C
A2,n

A1,n
(log n) = o(1). (8.73)

For I2, using Rio, 2013, Theorem 1.1, we have:

E·|S [Zn(ℓ1; ε)Zn(ℓ2; ε)]

≤ E·|S
[
|Zn(ℓ1; ε)|3

]1/3
E·|S

[
|Zn(ℓ2; ε)|3

]1/3
β1/3(d(ℓ1, ℓ2)A2,n, A

md
1,n)

≤ E·|S
[
|Zn(ℓ1; ε)|3

]1/3
E·|S

[
|Zn(ℓ2; ε)|3

]1/3
β

1/3
1 (d(ℓ1, ℓ2)A2,n)g1/3

1 (Amd1,n).

The first inequality holds using Equation (2.5), and for d(ℓ1, ℓ2) = max
1≤j≤d

|ℓj1 − ℓj2|. Using
the same strategy as Lemma 8.7, we have

E·|S
[
|Zn(ℓ1; ε)|3

]
≤ CAd−1

1,n A2,n(nA−d
n + log n)hmd,

and
E·|S

[
|Zn(ℓ2; ε)|3

]
≤ CAd−1

1,n A2,n(nA−d
n + log n)hmd.

Note that for ℓ1, ℓ2 ∈ L1n,Γ (ℓ1; ε0) and Γ (ℓ2; ε0) in Rn are separated by the (ℓ1−)
distance

d (Γ (ℓ1; ε0) ,Γ (ℓ2; ε0)) ≥ ([(|ℓ1 − ℓ2| − d) +A3n] + A2n) .

I2 ≤ C

(
Ad−1

1,n A2,n
(
nA−d

n + log n
)
hp+d

)2/3

nhd+p

×
∑

ℓ1,ℓ2∈L1,n,ℓ1 ̸=ℓ2

β
1/3
1/3 ((|ℓ1 − ℓ2| − d) +A3,n + A2,n) g1/3

1

(
Ad1,n

)

≤ C


( 1
nhd+p

)1/3 (A1,n

An

)2d/3 (A2,n

A1,n

)2/3

+
A

(d−1)/3
1,n A

1/3
2,n (log n)1/3

nh(d+p)/3}
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×g1/3
1

(
Ad1,n

)β1/3
1 (A2,n) +

An/A1,n∑
k=1

kd−1β
1/3
1 (kA3,n + A2,n)

 = o(1) (8.74)

The last inequality follows using Assumption 10 and for

|ℓ1 − ℓ2| =
d∑
j=1

|ℓ1,j − ℓ2,j|.

Equation (8.71) could be treated similarly to (8.70).

Remark 8.5. In order to prove that the summation over the small block is asymptotically
negligible, we can use the method of Kurisu et al., 2021 where they used to pass from the
dependence structure of variables to the independence as a first step, then they proved the
convergence of second order expectation to zero using a maximal inequality. This method
avoids the treatment of covariance, and it is based on the use of maximal inequality.

Proposition 8.6. Y. Song et al., 2019, Proposition 3.6 Let {Xi : i ∈ n} be a process
satisfying, for m ⩾ 1 :

(E ∥Xi −Xj∥p)1/p ⩽

(
p− 1
q − 1

)m/2

(E ∥Xi −Xj∥q)1/q
, 1 < q < p < ∞,

and the semi-metric :
ρ(j, i) =

(
E ∥Xi −Xj∥2

)1/2
.

There exists a constant K = K(m) such that :

E sup
i,j∈n

∥Xi −Xj∥ ⩽ K

ˆ D

0
[logN(ε, n, ρ)]m/2dε,

where D is the ρ-diameter of n.

Lemma 8.10. (de la Peña, 1992) Let X1, . . . , Xn be a sequence of independent random
elements taking values in a Banach space (B, ∥.∥) with EXi = 0 for all i. Let {εi} be
a sequence of independent Bernoulli r.v’s independent of {Xi} . Then, for any convex
increasing function Φ,

EΦ
(

1
2

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
)

≤ EΦ
(∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
)

≤ EΦ
(

2
∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
)
.
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Chapter 8
Conclusion and perspectives

1 Concluding remarks : Chapter 3

In chapter 3, we have presented in this paper the concept of increasing degree U -statistics
in order to treat parameters in high dimensional U -statistics. We attempted to demon-
strate, via some examples, that this expansion may be relevant in a variety of scenarios.
Unlike the literature, we studied this estimator within the framework of a Markov Har-
ris chain. This chain is presented as a regenerative process due to its explicit atom
or the artificial one using the splitting techniques. Infinite degree V -statistics, partial
sum U -processes, symmetric statistics, and elementary symmetric polynomials share a
common property with infinite-degree U -statistics. We used the empirical process the-
ory to build a method to handle the increasing degree U -processes uniformly over kernel
classes. More precisely, we develop theory and tools for studying U -processes, a natural
higher-order generalization of the empirical processes. We also use decoupling theory to
enable the symmetrization of dependent variables and U -statistics indexed by a class of
functions. From different types of decoupling, we used the decoupling of the tangent
sequence, where we adapted two sequences generated from the same filtration and with
the same joint distribution. This technique allows us to use a new sequence with a more
controllable structure than the original one, highlighting the advantage of decoupling by
making relations between two processes where one of them has a more straightforward
dependence structure. Arcones et al., 1993 used the decoupling results for U -process
developed in de la Peña, 1992 as a critical tool for exploring the general theory of the U -
processes and to obtain exponential and Bernstein type inequalities for the last statistics.
It may be remarked that Hitczenko, 1988; Zinn, 1985 provided a solid groundwork for the
idea of decoupling by presenting reasonably generic, easily applicable outcomes. Their
findings include decoupling inequalities demonstrating that the Lp norms of two tangent
processes are similar in some cases. Accessing other tools, we decided to use the com-
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2. Concluding remarks: Chapter 4

plete sign symmetrization techniques, provided by C. Heilig et al., 2001, adapted from
Sherman, 1994, among the two techniques generated in their works: partial sign sym-
metrization and complete sign symmetrization technique. He introduced this technique
for completely degenerate kernels of arbitrary finite degrees. The two previous techniques
impose conditions on the growing rate of mn. For reader convenience, we explain the
difference between these techniques. To obtain the uniform weak law of large numbers in
the partial sign symmetrization technique is satisfied by the condition

n−1/2Mm

m∑
i=1

P (log N (ε/m, d2n,i,H (hm(i))))1/2 = o(1).

Using the complete sign-symmetrization technique, the condition is

n−1/2mMm

m∑
i=1

(2ri − 1)i/2 2iP
ˆ 1/4

0
N (x, d2n,i,H (hm(i)))1/2ri dx = o(1),

where {Mm} is a deterministic sequence as our sequence of envelopes for the grand ker-
nels hm. However, suppose the grand permutation symmetrized grand kernel class is
Euclidean. In that case, the partial sign symmetrization result is still valid, but the com-
plete sign-symmetrization assumption assumes all the Hoeffding projection classes are
Euclidean. In this case, the parameter Vm of the Euclidean class increases faster than
Vi in the projected kernel classes. That is why m grows more quickly in the partial sign
symmetrization technique than the complete sign-symmetrization does. In a future in-
vestigation, it will be of interest to present some sufficient conditions for the bootstrap of
U -statistics (processes) of infinite degree over a stationary sequence of random variables
satisfying an α-mixing condition of the weak dependence concept, which requires non
trivial mathematics, that goes well beyond the scope of the present paper. In particu-
lar, we need to develop some new maximal moment inequalities. As we have mentioned
in the introduction, a significant obstacle in using the IOUS is their computational in-
tractability when the sample size and/or order are large. It will be interesting to derive
non-asymptotic Gaussian approximation error bounds for an incomplete version of the
IOUS with a random kernel in the Markov framework.

2 Concluding remarks: Chapter 4

Chapter 4 is concerned with the U -processes and the renewal type of bootstrap for recur-
rent Harris Markov chain under minimal moment conditions and entropy conditions for a
uniformly class of functions. Three primary findings have been obtained. First, to avoid
the use of mixing conditions, as we deal with markovian variables, we use the regenerative
property of this chain to end up with independent blocks and then write a regenerative
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estimator of our parameter of interest, which is directly connected to the key estimator,
as provided in Proposition 3.4. We can notice that the convergence of the regenerative
estimator in (3.5), or the regenerative U -statistic is of order O((ln−1)−1/2) (see appendix
in Chapter 4 for detail). The second main result concerns the weak convergence of the
U -process in the Markov settings. The third main result considers the weak convergence
of the renewal bootstrap of the U -process under minimum conditions over the class of
function. We generalize our result to the non-trivial setting of the k-Markov chains.
Considering the subsampling procedures for the U -processes in the Markov chains would
be interesting. In contrast to the bootstrap, the subsampling procedures need minimal
conditions for asymptotic validity. Another problem to be studied in the future is the
characterization of the asymptotic properties of the censored U -process for the Markov
chains that require non-trivial mathematics.

3 Concluding remarks: Chapter 5

Chapter 5 is concerned with the randomly weighted bootstrap of the U -process in a
Markov framework. A large number of bootstrap resampling schemes emerge as special
cases of our setting, in particular, the multinomial bootstrap, which is the most known
bootstrap scheme introduced by Efron, 1979. One of the main tools is approximating the
Markov U -process by the corresponding regenerative one. We looked to mimic this result
in Proposition 3.4, in order to approximate the weighted bootstrap U -process U∗

n to the
regenerative weighted bootstrap U -process R∗

ln . Other technical arguments are given in
Lemma 3.1 extended from the work of Radulović, 2004. These intricate tools are used
to reach full independence of regenerative block variables by proving that a deterministic
one can substitute the random size of blocks, which is the main problem for the extension
of the bootstrap results to the Markov framework. After the lengthy proof to arrive at
independence, we use the results of Q. Han, 2022. All the above steps conduct us to
prove the weak convergence of regenerative block weighted bootstrap U -process, which
implies the weak convergence of weighted bootstrap U -process. We would like to consider
the extension of the work to the semi-Markov setting. The more delicate problem is
considering the setting of incomplete data, such as censored cases or missing data. To
the best of our knowledge, this problem is not considered even for the original sample
(without bootstrap) in the Markov framework. It would be interesting to extend our work
to the case of the local stationary process, which requires non-trivial mathematics; this
would go well beyond the scope of the present chapter.
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4. Concluding remarks: Chapter 6

4 Concluding remarks: Chapter 6

In this chapter, we developed the theory of U -processes for locally stationary variables
with a functional data framework. The primary objective is to use functional local sta-
tionary approximations to perform an asymptotic analysis for statistical inference of non-
stationary time series. We highlight that using absolutely regular conditions or the β-
mixing conditions is essential because it does not depend on the entropy dimension of the
class as the other type of mixing. Also, β-mixing is much easier to use than strong mixing
because it allows decoupling and covers interesting examples. By the way, we note that
Ibragimov et al., 1969 obtained a complete description of stationary Gaussian processes
satisfying the β-mixing condition. In addition, the β-mixing coincides with the L2(P)-
norm, which plays an important role, while the use of strong mixing, the class of functions
with a finite dimension of entropy, requires some polynomial rate of decay of strong mix-
ing coefficients, and this rate depends on the entropy dimension of the class of functions.
Also in the strong mixing, the L1-norm is involved, where the metric entropy function
H(·, T, d) will be defined with respect to the pseudo-metric d(s, t) =

√
Var(G(s) − G(t)),

for a Gaussian process G(·), satisfies the integrability condition
ˆ 1

0

√
H(u, T, d)du < +∞.

As a result, we have stated the rate of convergence, where we show that, under suit-
able conditions, the kernel estimator r̃(m)

n (φ,u,x;hn) constructed with the bandwidth h

converges to the regression operator r(m)(φ,u,x) with a rate:

OP

(√
log n

nhmϕm(h) + h2m∧α
)
,

this rate effectively shows the role played by the small ball probability function, which
appeared in the first term, and is directly related to the concentration of the functional
variables Xi. The second term is related to the bias of the estimate. It depends on the
smoothness of the operator r(m)(φ,u,x), represented by the Lipschitz condition and its
parameter α. It is important to point out that the concentration of functional variables X,
the small ball probability, and the convergence rate are proportional, i.e., the estimator
will be more efficient if the variables are less dispersed and the small ball probability
will be higher. As the empirical process settings, the rate of convergence is valid over a
subset [Ch,Ch− 1]m× {x}m, but it can be extended for a subset [Ch− 1, 1]m× {x}m, for
forecasting purposes. It is possible to use one-sided kernels or boundary-corrected kernels
to reach the latter goal, but both under conditions that kernels have compact support
and are Lipschitz.
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The weak convergence follows the classical steps: the finite-dimensional convergence
and the equicontinuity of the conditional U -processes. The finite-dimensional convergence
led using Hoeffding decomposition, followed by approaching independence via a block de-
composition strategy and then proving a central limit theorem for independent variables.
The equicontinuity requires complete oversight, and the contents are very technical and
lengthy due to the general and comprehensive framework we have considered, see the next
section. Extending non-parametric functional principles to a generic dependent structure
is a relatively new area of research. Shedding light on the importance that mixing is
a type of asymptotic independence assumption currently adopted in the pursuit of sim-
plicity but might be unsuitable in scenarios when the data is highly dependent. It is
worth noting that the ergodic framework eliminates the frequently used strong mixing
condition, its variations for measuring dependence, and the more complicated probabilis-
tic computations they imply. It would be of interest to investigate the following kNN
estimator:

r̃(m)
n (φ,u,x;hn) =

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

hn

)
K2

(
d(xk, Xik,n)
Hn,k(xk)

)}
φ(Yi,n)

∑
i∈Im

n

m∏
k=1

{
K1

(
uk − ik/n

hn

)
K2

(
d(xk, Xik,n)
Hn,k(xk)

)} ,

where
Hn,k(xj) = min

{
h ∈ R+ :

n∑
i=1

1B(xj ,h)(Xi) = k

}
.

where
B(t, h) = {z ∈ H : d(z, t) ⩽ h}

is a ball in H with the center t ∈ H and radius h, and 1A is the indicator function of
the set A.

5 Concluding remarks: chapter 7

In Chapter 7, we considered the kernel type estimator for conditional U -statistics, includ-
ing a particular case, the Nadaraya-Watson estimator, in a functional setting with random
fields. To obtain our results, we ought to make assumptions requiring some regularity on
the conditional U -statistics and conditional moments, some decay rates on the probability
of the variables belonging to shrinking open balls, and suitable decreasing rates on the
mixing coefficients. Mainly, the conditional moment assumption enables the considera-
tion of unbounded classes of functions. The proof of the weak convergence respects a
typical technique: finite dimensional convergence and equicontinuity of the conditional
U -processes.

356
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Both results, the uniform rate of convergence and the weak convergence, are grounded
on a general blocking technique adjusted for irregularly spaced sampling sites, where we
need to pay attention to the effect of the non-equidistant sampling sites. We intricately
reduce the work to the independent setting to address this issue. Indeed, as there is no
practical guidance for introducing order to spatial points as opposed to time series, not
asymptotically but exactly independent blocks of observations have been constructed by
(Yu, 1994, Corollary 2.7) (Lemma 8.5) and then results of independent data could be
applied directly to the independent blocks. Here, Ref. Yu, 1994 declares that the uniform
convergence result requires the β-mixing condition to connect the original sequence with
the sequence of the independent blocks, and this connection still holds under the ϕ-mixing
condition but is not necessary under the α-mixing conditions. Therefore, we use the β-
mixing sequence as we aim to derive the weak convergence for processes indexed by classes
of functions.

Kurisu, 2022b in his work gives us a possible extension of the sampling region inspired
by Lahiri, 2003a. This extension can be explained as follows. It is feasible to generalize
the definition of the sample region Rn to include non-standard forms. For instance, we
may use the sample region concept Lahiri, 2003a as follows: First, let Rn be the sampling
region. Define R∗

0 as an open connected subset of (−2, 2]d containing [−1, 1]d and R0

as a Borel set such that R∗
0 ⊂ R0 ⊂ R̄∗

0, and where for any set S ⊂ Rd, S̄ signifies its
closure. Let {An}n≥1 be a sequence of positive numbers such that An → ∞ as n → ∞
and define Rn = AnR0 as a sampling region. In addition, for any sequence of positive
numbers {an}n≥1 with an → 0 as n → ∞, let O

(
a−d+1
n

)
, as n → ∞, be the number of

cubes of the form an
(
i + [0, 1)d

)
, i ∈ Zd with their lower left corner ani on the lattice

anZd that intersects both R0 and Rc
0 (see Condition B in Lahiri, 2003a, Chapter 12,

Section 12.2) (This condition is the prototype R0 boundary’s condition; it must always
be assumed on the region Rn to prevent pathological situations, and it is satisfied by
the majority of areas of practical significance. This condition is satisfied in the plane
(d = 2), for instance, if the boundary ∂R0 of R0 is defined by a simple rectifiable curve
of limited length. When sample sites are defined on the integer grid Zd, this condition
means that the effect of data points toward the boundary of Rn is small compared to the
overall number of data points). In addition, define f as a continuous, everywhere positive
probability density function on R0, and let {S0,i}i≥1 be a sequence of i.i.d. random vectors
with density f . Assume that {S0,i}i≥1 and Xs,An are independent. Replacing our setting
in Section 2.4 with this new one, our results still hold, and it will be possible to show
uniform convergence and weak convergence under the same assumptions and identical
proofs. For future investigation, it will be interesting to relax the mixing conditions to
the weak dependence (or the ergodicity framework). This generalization is nontrivial,
since we need some maximal moment inequalities in our asymptotic results that are not
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available in this setting. Another interesting direction is to consider the incomplete data
setting (missing at random, censored in different schemes) for locally spatial-functional
data. A natural question is how to adapt our results to the wavelet-based estimators, the
delta sequence estimators, the kNN estimators, and the local linear estimators.
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