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Résumé

Le monde produit 2,5 quintillions d’octets par jour', appelés mégadonnées. Le volume,
la valeur, la variété, la vélocité et la véracité définissent les cing caractéristiques du
Big Data qui représentent une complexité fondamentale pour de nombreux algorithmes
d’apprentissage automatique, tels que le clustering, la reconnaissance d’images et d’autres
techniques d’apprentissage modernes. Avec ces données volumineuses, les estimations
d’hyperparametres ne prennent pas la forme de la moyenne de ’échantillon (non linéaire),
mais celle de la forme de la moyenne sur m-tuples, appelée I'estimateur U-statistique.
Nous considérons dans cette these la collection de U-statistiques, connue sous le nom de
U-processus, pour deux types de variables dépendantes, les données Markoviennes et les
variables aléatoires localement stationnaires. Ainsi, nous avons divisé notre travail en
deux parties pour aborder chaque type indépendamment.

Dans la premiere partie, nous considérons les variables Markoviennes. Nous nous
concentrons particulierement sur les développements de U-processus bootstrappés dans
un cadre de Harris. L’idée fondamentale utilisée repose sur les méthodes régénératives
consistant essentiellement a diviser 1’échantillon en blocs de données indépendants et
identiquement distribués (i.i.d.), ou chaque bloc correspond a des segments de chemin
entre deux visites a un atome appelé A formant une séquence de renouvellement. Nous
caractérisons les propriétés limites pour les U-processus indexés par des classes de fonc-
tions uniformément bornées et non bornées. Nous montrons la consistance du bootstrap
dans ce cadre. L’approche du bootstrap permet de contourner les problemes fréquem-
ment rencontrés pour I’évaluation des lois limites dépendants d’'une maniere complexe de
parametres inconnus. La technique de bootstrap que nous utilisons dans cette these est le
bootstrap de renouvellement, ou 1’échantillon bootstrap est formé par rééchantillonnage
a partir des blocs. Comme les blocs non bootstrapés sont indépendants, une partie des
preuves se réduit au cas i.i.d. Les principales difficultées sont liées a la taille aléatoire
des blocs rééchantillonnés, ce qui crée un probleme non trivial de temps d’arréts aléa-
toires, constituant un des grands obstacles de la généralisation de la théorie dans notre
contexte. Pour contourner cette difficulté, nous avons utilisé comme étape intermédiaire
la substitution du temps d’arrét aléatoire par son espérance. La convergence faible des

U-processus bootstrappés est tres délicate dans notre cadre, en particulier I’équicontinuité

thttps://financesonline.com /how-much-data-is-created-every-day/
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en utilisant la comparaison avec le U-processus initial. Nous avons étendu les résultats
susmentionnés au cas ou le degré du U-processus croit avec la taille de 1’échantillon n, le
noyau variant dans une classe de fonctions. Nous avons caractérisé la convergence faible
pour le bootstrap de renouvellement pour le U-processus a degré infini en faisant usage de
la technique de découplage combinée avec des techniques de symétrisation. Enfin, nous
considérons un bootstrap pondéré échangeable des U-processus empiriques.

Dans la deuxieme partie de cette these, les données dépendantes sont représentées par
des fonctions aléatoires localement stationnaires. Propulsés par la représentation crois-
sante des séries temporelles par des données fonctionnelles ou courbes, et le comportement
non stationnaire de ces dernieres, nous nous sommes intéressés au U-processus condition-
nel des séries temporelles fonctionnelles localement stationnaires. Plus précisément, nous
avons étudié la convergence faible des U-processus conditionnels, indexée par des classes
de fonctions, dans le cadre de données fonctionnelles localement stationnaires. Nous
avons caractérisé la convergence faible dans les deux cas lorsque la classe de fonctions est
bornée ou non bornée satisfaisant certaines conditions de moment. Enfin, nous étendons
la théorie asymptotique du U-processus conditionnel au champ aléatoire fonctionnel lo-
calement stationnaire {X; 4, : s € R, } observés a des emplacements espacés irréguliers
dans R, = [0, A,]¢ € R, et incluant a la fois le domaine croissant pur et le domaine crois-
sant mixte. Nous avons obtenu la convergence faible dans les deux cas lorsque la classe de
fonctions est bornée ou non bornée. Ces résultats sont établis sous des conditions struc-
turelles assez générales sur les classes de fonctions et les modeles sous-jacents. La majeure
partie de la theése est motivée par les problemes d’apprentissage statistiques, y compris
parmi beaucoup d’autres, les probléemes de discrimination, ’apprentissage métrique et le

classement multipartite.

Mots clés : U-processus, Bootstrap, Classe de fonctions, variables dépendantes, Chain
de Markov, Processus régénératif, séries temporelles, donnée fonctionnelle, Stationnarité,

Stationnarité locale, Champ aléatoire.



Abstract

The world is producing 2.5 quintillion bytes daily?, known as big data. Volume, value,
variety, velocity, and veracity define the five characteristics of big data that represent a
fundamental complexity for many machine learning algorithms, such as clustering, image
recognition, and other modern learning techniques. With this large data, hyperparameter
estimations do not take the form of the sample mean (not linear). Instead, they take
the form of average over m-tuples, known as the U-statistic estimator in probability
and statistics. In this work, we treat the collection of U-statistics, known as the U-
process, for two types of dependent variables, the Markovian data, and locally stationary
random variables. Thus, we have divided our work into two parts to address each type
independently.

In the first part, we deal with Markovian data. The approach relies on regenerative
methods, which essentially involve dividing the sample into independent and identically
distributed (i.i.d.) blocks of data, where each block corresponds to the path segments
between two visits of an atom called A, forming a renewal sequence. We derive the lim-
iting theory for Harris recurrent Markov chain over uniformly bounded and unbounded
classes of functions. We show that the results can be generalized also to the bootstrapped
U statistics. The bootstrap approach bypasses the problems faced with the asymptotic
behavior due to the unknown parameters of limiting distribution. Furthermore, the boot-
strap technique we use in this thesis is the renewal bootstrap, where the bootstrap sample
is formed by resampling the blocks. Since the non-bootstrapped blocks are independent,
most proofs reduce to the i.i.d. case. The main difficulties are related to the random
size of the resampled blocks, which creates a problem with random stopping times. This
problem is degraded by replacing the random stopping time with their expectation. Also,
since we resample from a random number of blocks, and the bootstrap equicontinuity can
be verified by comparing with the initial process, the weak convergence of the bootstrap
U-process must be treated very carefully. We successfully derive the results in the case of
the k-Harris Markov chain. We extend all the above results to the case where the degree
of U-statistic grows with the sample size n, with the kernel varying in a class of functions.
We provide the uniform limit theory for the renewal bootstrap for the infinite-degree

U-process with the help of the decoupling technique combined with symmetrization tech-

Zhttps://financesonline.com /how-much-data-is-created-every-day/
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niques in addition to the chaining inequality. Remaining in the Markovian setting, we
extend the weighted bootstrap empirical processes to a high-dimensional estimation. We
consider an exchangeably weighted bootstrap of the general function-indexed empirical
U-processes.

In the second part of this thesis, dependent data are represented by locally stationary
random variables. Propelled by the increasing representation of the data by functional
or curves time series and the non-stationary behavior of the latter, we are interested in
the conditional U-process of locally stationary functional time series. More precisely, we
investigate the weak convergence of the conditional U-processes in the locally station-
ary functional mixing data framework. We treat the weak convergence in both cases
when the class of functions is bounded or unbounded, satisfying some moment condi-
tions. Finally, we extend the asymptotic theory of conditional U-process to the locally
stationary functional random field {X; 4, : s € R, } observed at irregular spaced locations
in R, = [0, 4,]¢ € RY, and include both pure increasing domain and mixed increasing do-
main. We treat the weak convergence in both cases when the class of functions is bounded
or unbounded, satisfying some moment conditions. These results are established under
fairly general structural conditions on the classes of functions and the underlying models.
The major part of the thesis is motivated by machine learning problems, including, among

many others, discrimination problems, metric learning, and multipartite ranking.

Keywords : U-processes, Bootstrap, Class of functions, dependent variables, Markov
chain, Regenerative process, Time series, Functional data, Stationarity, Local stationary

time series, Random fields.
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Chapter

Introduction

1 U-statistics and U-processes

U-statistics arose with Halmos, 1946 where he searched for a class of “best-unbiased es-
timate[s]”, and then formally introduced by Hoeffding, 1948. The idea of Halmos is as
follows: Let & be a class of probability measures {F, : § € O}, he aimed to construct
an optimal, unbiased estimator for 6 using {X;}? , a sample of i.i.d real valued random
variables with measure Py, for each 6. He found that if there exist a function h : R™ — R
such that P% the k-fold product measure for Py, is equal to 6 for every § € O, then the

minimum-variance unbiased estimator for 6 can be written as follows:

U, (h) = (n=m) Zh (Xiy, -, X)), (1.1)

ielm

where
Il ={i:=(t1,...,0p) : 1 <i; <n and i;#4, if j#r},

and the function h is called the kernel of the U-statistic U, (h), and it is said to have
degree m. If the kernel h is symmetric (permutation-invariant), the U-statistic formula
will be:

(n—m)lm!
Uy (h) = ——— > h(Xy,.... Xi,). (1.2)
ielm
where
I ={i:=(i1,...,0p): 1 <4;<n and i; <i, if j<r},
in other word, if h is symmetric, ¢ € I' is a m-tuple (iy,...,%,) of m ordered and

distinct elements of N™.

Recently, the explosive data enrichment motivated the researchers to be attracted by
the regularized estimation and dimension reduction of high-dimensional data problems,
which include the graphical models (e.g. M. Yuan et al., 2007, Bithlmann et al., 2011),

1



Chapter 1. Introduction

discriminant analysis (see Mai et al., 2012), covariance matrix estimation (e.g. Bickel et
al., 2008, X. Chen et al., 2013) and others problems. These issues require the consistent
estimation of an expectation of U-statistics of order two. This gives us a sight of the

importance of this estimator in modern probability. Let us cite some examples.

2

Example 1. Consider g(z,y) = i(x — y)>. A short calculation shows that the related

U -statistic is the well-known variance estimator

> (x-x)".

1<i<n

1
n—1

Un(g) =

Example 2. Let g(x,y) = |x — y|. Then the corresponding U -statistic is

2
Unlg) = ——= > [Xi—Xl,

n(n —1) 1<i<j<n
known as Gini’s mean difference.

Example 3. Let d = p X p. The sample covariance matriz

(X = %) (i = %)

1

Sp=(n—1)"

n
1=

is an unbiased estimator of the covariance matriz ¥ = Cov (X;). Here, S, is a matriz-

valued U-statistic of form (1.1) with the quadratic kernel, for x,,xs € RP,
h (C(]l, l‘g) = (l‘l — ZEQ) (l‘l — ZEQ)T /2

Example 4. The covariance matriz quantifies the linear dependency in a random vector.
The rank correlation is another measure of the nonlinear dependency in a random vector.
Two generic vectors y = (y1,y2) and z = (z1,29) in R?* are said to be concordant if
(y1 —21) (y2 — 22) > 0. Form,k=1,...,p, define

1

=Ty (X = X (Yo = Xu) > 0.

1<ij<n

Tmk =

Then Kendall’s tau rank correlation coefficient matric T = {7} ,_, is a matriz-valued
U -statistic with a bounded kernel. It is clear that T, quantifies the monotonic dependency

between (X1im, X1x) and (Xom, Xog) and it is an unbiased estimator of
P (Xim — Xom) (X1x — Xop) > 0),

that is, the probability that (Xim, X1x) and (Xom, Xox) are concordant.
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Example 5. Hoeffding’s D From the symmetric kernel,

hD (21,...,Z5)

1
= — > {1(zua < zia) = (20 < 20) H{1 (200 < 2is1) — L(200 < 2i50) }]

(i1,...,i5)EP5
X {1 (212 < 2i2) = L(2ip2 < 2i52) {1 (2132 < 2is2) — L (212 < 2i52)}] -

We recover Hoeffding’s D statistic, which is a rank-based U -statistic of order 5 and gives

rise to Hoeffding’s D correlation measure Ehp.

Example 6 (Blum-Kiefer-Rosenblatt’s R). The symmetric kernel

hR (21,...,26)

1
= o= > H1(zia < zi1) = (20 < 20) {1 (200 < 2is1) — 1(200 < 2i51) }]

32 (%1,...,i6 ) E P
X {1 (21,2 < 2ig2) = L(Zin2 < 2ig2) {1 (Ziz2 < Zig2) — L(2i2 < 2ig2) H

yields Blum-Kiefer-Rosenblatt’s R statistic (see Blum et al., 1961), which is a rank-based
U-statistic of order 6.

Example 7. Bergsma-Dassios- Yanagimoto’s 7° Bergsma et al., 201/ introduced a rank

correlation statistic as a U-statistic of order 4 with the symmetric kernel

hT* (Zl ,...,Z4)

1
= 16 Z {1 (2i1,15 Zig1 < Zig1,2ig1) +1 (Zig1s Zig 1 < Zig 1, Zig1)

(i150-,14)EP
=1 (2i,,15 Zig1 < Zig1s Zin1) — 1 (Zig 1, Zig1 < Zig 1, Zig1) }
X {1 (21,2, Zi,2 < Zin2s Zia2) + 1 (Zig2, 2is2 < 212, Zis 2)

-1 (Zi1,27 Zig2 < Ziy,2, Zi3,2) -1 (%,2, Zig,2 < Ziy,2, Zu,z)}-

Here
1y, 92 <wssya) =1 <y3) Ly <ya) L(yo <y3)L(ya <wa).

The development of U-statistics and their theory received great importance. It be-
came one of the central places in statistical problems due to their interest characteristic
as unbiased estimators of parameters of interest and as components of higher order terms
in expansions of smooth statistics like von Mises expansion or delta-method. It is con-
venient also to consider U-processes indexed by class of kernels 7 which is a collection
of U-statistics {U, (h) : h € }. In general and similar to empirical process theory,
the theory of U-processes aims to comprehend the process’s behavior uniformly over the

index set by combining the pointwise properties of the U-process with attributes of the
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index set. Hoeffding, 1961 continues with the theory of U, and he solved one of the main
mysteries of the nature of U-statistics, where he offered us what we called the Hoeffding’s
decomposition, or the H-decomposition, which allows the U-statistic to be written as a
sum of uncorrelated terms. We use the H-decomposition heavily in deriving properties of
the different order U-statistics and processes generated in this manuscript. This decom-
position is based on a sequence of conditional expectations and kernel projections, and it
will be presented in detail in the sequel. Up to 1986, only the U-statistics with kernel h
belonging to R is studied. For instance, we have Berk, 1966 who found a reverse martin-
gale structure for U-statistic and after P. K. Sen, 1974a added some valuable contributions
on this topic. Gregory, 1977 got the asymptotic distribution for degenerate U-statistics
with rank two. The asymptotic distribution of the U-statistic with an arbitrary rank was
extended by Janson, 1979 and H. Rubin et al., 1980. All these papers, among others like
the pioneered work of Serfling, 1980, who has shown that (nU,,), .. converges in distri-
bution to a random variable which is written, in terms of the eigenvalues of an operator
associated with the kernel h(-), as a weighted sum of Chi-squared independent variables,
also he improves the rate of convergence when certain conditional variances are zero, are
for h € R. The first works for h belong to the Hilbert space is devoted to Dehling et al.,
1984 and Borovskikh, 1986. We refer to A. J. Lee, 1990 and Koroljuk et al., 1994 books
for a detailed review and major historical developments in this field.

Besides, de la Pena, 1992 and de la Pena et al., 1995 mainly discovered the decou-
pling inequality for U-processes which play an important role in the asymptotic theory
of U-statistics and U-processes, followed by others like Arcones et al., 1993, Giné et al.,
1994, Arcones et al., 1995. Decoupling is a tool where the decoupled U-statistics can be
treated as a sum of independent random variables conditionally on one of the different
independent sequences, and it allows us to use maximal inequalities and randomization
by Rademacher variables. This makes the analysis of U-processes deal more or less with
that of empirical processes. Other important results can be viewed in Arcones and Yu,
1994 where he developed the functional central limit theorems for U-processes under ab-
solute regular observations. Hoffmann-Jorgensen type moment inequalities for entirely
degenerate U-statistics of any order m were found by Giné et al., 1992. Klass et al., 1997
provided moment inequalities for non-negative generalised U-statistics of order m = 2 as
well. There is also established more recent research on both U-statistics and U-processes,
such as Adamczak, 2006 who extended the results of Giné et al., 2000 to canonical U-
statistics of arbitrary order. Using an estimator given by Frees, 1994, Giné et al., 2007a
proposed a local U-statistic process and demonstrated its central limit theorems for several
norms, including the sup and the L,-norms (for p > 1). Others investigated the fields of
application of U-statistics; for example, Clémencon et al., 2008 used the U-statistics in the
ranking problems and clustering Clémencon, 2014. A natural occurrence of U-statistics

also took place in learning on graphs Biau et al., 2006 or in expansions of smooth statistics

4
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Robins et al., 2009 as components of higher-order terms. In 2016, Gabor and Joly pub-
lished an article Joly et al., 2016 named Robust estimation of U-statistics, in which they

investigate the estimation of the mean of multivariate functions in some specific cases.

1.1 Background

In this part, we will give some examples of the application of U-statistics that explain our

interest in this estimator.

1.1.1 Neural network ensemble based U-statistics

This example is considered by Schupbach et al., 2020. In their work, they aimed to
estimate uncertainty in ensemble regressors to the case of neural network ensembles using
the U-statistics and to prove that neural networks fit within this U-statistics framework,
especially infinite-degree U-statistics framework. In order to understand the situation, we
will briefly define each term. Neural network ensembles are used to improve predictive
power and specifically to train many networks with different hyperparameter combinations
while only using the network that performs the best on the validation set. An ensemble
neural network method is Negative correlation learning, where an ensemble of neural
networks is trained simultaneously with a loss function that contains a penalty for the
correlation between the networks. The authors used the U-statistics to describe the
resampling technique used in this chapter which is subsample aggregating (subbagging).

iid

Consider a random sample (X,Y) ~ F of size n, a neural network N from a subbagged

sample size m taken from the dataset is built. The same strategy is done for all (::L)
subsamples. Then, the predictions average for some z* from these neural networks can
be taken as an estimate of our predicted value. This average is written as follows

1

b(az*)( )zzvm*((Xil,n1>,...7<Xim,m>'
n (@)

Given some regularity conditions-unbiased and permutation symmetric, we have a proce-
dure that results in a U-statistic for these predicted values. N has been shown to be an
unbiased estimator that is asymptotically consistent and, if trained by the batch update,
is permutation symmetric. N can be used as an estimator, resulting in a U-statistic for

the predicted values. Unfortunately, it is generally computationally infeasible to build

neural networks for all ( "
m

) subsamples of the data. It has been shown that taking
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n
b < ( ) subsamples of size m results in
m

Nw* 117 11) (X Y; ))

im) < im
(@)

@\»—l

which is an incomplete U-statistic. Even so, this has been shown to be asymptotically
normal and unbiased by Janson, 1984, assuming the variance of the estimator converges to
zero at a rate faster than \/n. Neural Network N has been shown to be a mean integrated

squared error (MISE) consistent, as

CQ
MISE =0 <f> +0 (Sdlogn> :
S n

where C is a constant related to smoothing from the training process, s is the number of

nodes in the network, d is the number of covariates, and n is the sample size. It may also

n
make sense to scale b with n. Specifically, considering subsamples of size b, = )
My
give
bbn,mn ZNSB* 217 ) . (XlnuY ))
n
which is an infinite order U-statistic or a resampled statistic when b, # . Frees,

My
1994 developed necessary and sufficient conditions for asymptotic normality when b,

grows faster than n, and Mentch et al., 2016 developed conditions for individual means
E [b(x*)] for all growth rates of b, with respect to n. So as long as the estimates for a
bounded regression function are bounded, the variance of the kernel function ¢ is bounded,
limbﬂ = « lim% = 0, and limoy,,, # 0, then the infinite order U-statistic will be
asymptotically normal with the following distributions given in Mentch et al., 2016:

o if a =0, then

n(Upp m —0
\/_( 7bn7 n bn) i ~'/1/(07 ]-)7

\/ b%CI,mn

Vi (Unbomn = Omn)

- — A(0,1);
V22 C1b, G b

\/E (Un,bn,mn - Hmn)

\/ Cbn ;M

my, is chosen approximately on the order of y/n. This choice of m,, replaces the require-

e if 0 < a < oo, then

e if o = oo, then

4 4(0,1).

6
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ment of exponential tails on the error distribution with the requirement that nP(|e| >
v/n) — 0. It also assures that the limm—\/% = 0. Finally, by choosing a small m,,, the
time complexity is similar to a bootstrap method while generating large ensembles. Note
that it is not required to choose m, on the order of y/n. The subbagging approach
presupposes that the estimator is constructed in the same way. Outside of the weak reg-
ularity constraints, the distributional findings do not rely on the way of generating the
neural network; nonetheless, the subbagging approach requires that each neural network
be formed using the same method. This would rule out the use of dropout since each
estimator would be constructed from randomly selected samples of nodes on each training
period. The estimator would therefore require a new justification, similar to the extension

of U-statistics to random forests.

1.1.2 Maximum Mean Discrepancy

The following example is treated in Schrab et al., 2022 and Kim et al., 2022. Let {X;}*,
be a sequence of i.i.d random variables with probability density function P and {Y}}}2,
be a sequence of i.i.d random variables with probability density function Q, such that
{Xi}i2, is independent from {Y;}72, and the sample sizes n; and ny are balanced, i.e.,
there exists a constant C' such that max(ny,ny) < C'min(ny,ny). The goal is to test if

the two samples have the same distribution or not, then the hypothesis is as follows:

Hy: P=Q,
H, P+#Q.

In order to test this hypothesis, a non-parametric kernel test has been introduced by
Gretton et al., 2012, based on a measure between probability densities P and Q on R? called
the Maximum Mean Discrepancy (MMD). This measure is the integral probability metric
(IPM; Miiller, 1997) over a reproducing kernel Hilbert space % (RKHS; Aronszajn,
1950) with associated kernel K. The MMD is defined as the .#-norm of the difference
between the mean embeddings pp(u) := Exp[K (X, u)] and po(u) := Eyo[K (Y, u)] for
u € R? (see Gretton et al., 2012, Lemma 4). For X’ and Y’ ) are independent copies of
X and Y respectively, Define

FeHK| fll e <1

MMD% (P, Q) := ( sup |Ep[f(X)] - EQ[f(Y)H)

= llup — oll,,
= Epp [K (X, X')] = 2Epo[K(X,Y)] + Eqq [K (Y, Y")].

In Fukumizu et al., 2007; Sriperumbudur et al., 2011, there is a essential property that
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guarantees that MMD?% (P, Q) = 0 if and only if P = Q. This property provides the use
of MMD as a two-sample test and leads Gretton et al., 2012 (Lemma 6) to estimate the

parameter of interest MMD, using the following unbiased quadratic-time MMD estimator:

—2 1 N2
MMD . (X, Y, S K (X:, Xy) K (X,
K ( ) nl(nl — 1) G, 1%312 nlng ;; j
1
o 2 K
n(n—1) ; inee,
_ 1TKxx1 21TKXY1 N 1TKyyl
nl(nl — 1) ning n2<n2 — 1)’

where Kxx and Kyv are the kernel matrices Kxx := (K (X, X)), ciir<n, and Kyy =
(K (Y}, Y5)) 1< jr<n, With diagonal entries set to 0, where Kxy := (K (X, Y)))1<icp, 1<j<ny
and where 1 is a one-dimensional vector with all entries equal to 1 of variable length de-
termined by the context. Based on the bivariate symmetric kernel K, define the following

kernel:
h%MD (9517172§311;y2) = K(xth) - K ($17y2) - K (55273/1) + K(y17y2)7 (1-3)

2
and write the MMD estimator MMD; (X,,,, Y,,) as a two-sample U-statistic (R}™MP s

not symmetric) as follows:

s —9) (ny — 2)!
MIMDy, (X, Yy) 1= 2R 22 s s i (¢ vy,

| |
Cs " anenz, GaNelz,

By the unbiased property of U-statistics, the symmetric form of m; (Xiys Yo, ), de-
fined by symmetrization of the kernel h3¥MP (xy, 25551, 12), is an unbiased estimator of
E(WMMD (21, 29591, 2)). Kim et al., 2022 studied the properties of this estimator based
on the treatment of error Type [ and error, Type II. In contrast, Schrab et al., 2022
replace the quadratic-time U-statistic MMD x (X, Yy,) with a second order incomplete

U-statistic and then they provide quantile and variance bounds using a wild bootstrap.

1.1.3 Hilbert Schmidt Independence Criterion

Let Pxy denote the joint distribution of i.i.d pairs of samples { X; }sen and {Y; }ien, and let
PxP, the product of their marginal distributions. If we observe the pairs Z; := (X;,Y;) ~ kG
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Pxy, the hypotheses for testing independence are:

H() . PXY = PXpy,
H, Pxy #PxP,.

To test these hypotheses, a non-parametric kernel test based on the Hilbert Schmidt
Independence Criterion (HSIC) is given by Gretton et al., 2007; Gretton et al., 2005. We
will explain this test in the following. Define the HSIC as:

HSICk 1, (psy) = MMDj (Pxy,PxP,)

= Epyypyy K (X, X/) L(Y, Y/)]
—2Ep,, [Epy [K (X, X")]Ep, [L (Y, Y")]]
+Epypy [K (X, X)] Epy py [K (Y, Y')],

with K and L are two bivariate kernels, symmetric in their arguments, and define the

product kernel associated with K (z1,z9) and L (yi1,y2) by

hgsLIC (x1,91) 5 (T2, 92) , (3, 3) , (T4, ys) }
= {K (r1,72) + K (23,24) — K (21,23) — K (22, 74)}
XL (y1,y2) + L (y3:y1) — L (y1,y3) — L (y2,y4)} -

Clearly, using the definition of h3MP given in Equation (1.3), we have

1
h%l,%c (21, 29, 23, 24) 1= Zh%MD (w1, %25 3, 24) hp " (Y1, 923 Y3, )

Based on this definition, the estimator of HSIC is a fourth-order U-statistic defined by

WD S g (x, X)) L (YY)

HSICK’L (Z) = N
) (’i,j,T,S)EI?\,
(N — 4)!
= T X ki (402,20, 7).
) (i,j,T’,S)EI?\,

This estimator is treated in Gretton et al., 2007, and in L. Song et al., 2012 where they

provided the following closed-form expression

—— 1 - 1TK11'L1 2 e =

where K and L are the kernel matrices K := (K (X;, Xj)h<ijenyand L= (L (Y, Y))) o icn

with diagonal entries set to 0, and 1 is a one-dimensional vector with all entries equal to
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1 of variable length determined by the context. After symmetrizing the kernel A5 with

its symmetrized variant

- 1
hllgic (217 22, 23, 24) = 1 Z h%lic (Zi17 Zigs Rig Zi4) ,

Kim et al., 2022 give the type II error of the permutation test based on the unbiased

estimator H/SE K,L-

1.1.4 Kernel Stein Discrepancy

Remaining in the kernels test settings, we will give in this example a non-parametric
goodness-of-fit test extracted from the Kernel Stein Discrepancy (KSD). It is good to
mention here that a review of classical goodness-of-fit tests can be found in Lehmann et al.,
2005, where most methods have computational difficulty for unnormalized distributions.
The studied test in this example was introduced by Chwialkowski et al., 2016; Q. Liu
et al., 2016 where they searched for writing the maximum discrepancy between the target
distribution P and the observed sample distribution Q in a modified Reproducing kernel
Hilbert space RKHS. The technique of combining Stein’s identity with RKHS was first
developed by Oates et al., 2017 for variance reduction. The test can be described as
follows. Let P be a given model density on RY, and let {X;};c, an i.i.d sample drawn from

a density Q on RY, the goal is to test the hypotheses:

Hy: P=Q,
Hy, P#Q.
The Kernel Stein Discrepancy (KSD) can be defined as

KSD? «(Q) = MMDjxsn(Q,P)
= Eqq|hk¥ (2.2)] - 2Eqp [hiF(Z.X)] + Epp [hi% (X, X')]
= Eoo Wi (2,2))],

where X is a random variable distributed according to the target measure P, and, for all
v,y € RY,
WP (e,y) == (VlogP(z) ViogP(y)) K(z,y) + Vlog P(y) VK (z,y)

d

0
+VlogP(2) 'V, K (2,y) + )
=1

K .
> 900, (z,y)

10
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For X from the target measure, the Stein kernel satisfies the Stein identity
Ep [hgsll)()(, )} =0,

for instance, see Chwialkowski et al., 2016, Lemma 5.1, which is a desirable property.
It is straightforward to estimate the squared Stein discrepancy KSD%’ x(Q) from samples
{X}ien, Chwialkowski et al., 2016 used a V-Statistic as a quadratic time estimator, while

it can also be computed as the second-order U-statistic:

1"H1
n(n—1)

. —9)!
KSDp  (X) 1= (n=2)!

o YRR (X, X;) =

(i.4)el

where H is the kernel matrix H := (h%SFP (X, Xj))1<' _ With diagonal entries set to 07
’ —/L?J -
and 1 is a one-dimensional vector with all entries equal to 1 of variable length determined

by the context. The Stein kernel hESP is already symmetric.

2 Markov chain

Stochastic processes are mathematical models of random phenomena that change over
time or space. Due to this notion of randomness, this type of process has a diverse type
of applications ( telecommunication, finance, internet, supply chains, medicine, energy,
etc...), and has different classes like Poisson processes, Brownian motion, regenerative
processes, etc. .. The focus of our work is on Markov chain, one of the principal classes of
stochastic process, commonly used to model random dynamical systems, storage, queuing
models, signal processing, control theory, and much more applications. A Markov chain is
a sequence of random variables Xy, Xy, ... with values in a countable set S if at any time
n, the future states X, 11, X, 10,... depend on the history Xy, Xi,..., X, only through

the present state X,,. So, we can formally define a Markov chain as follows:

11
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Definition 2.1. A stochastic process X = {X,, : n > 0} on a countable set S is a Markov
Chain if, for any i,5 € S andn > 0,

P{Xn+1:]|X0’JX'IZ}:P{XTZ-H:]'X'IZ}J (21)

and
P{Xn =3 | Xn =1} = py. (2.2)

where p;; is the probability that the Markov chain passes from state i to state j. These

transition probabilities satisfy

Zpijzl,iGS,

jes
and the matriz P = (p;;) is the transition matriz of the chain.
Equation (2.1) is called the Markov property, where we can understand the dependence
structure of the Markov model, which says that the next state is in the past and present
only through the present state. Equation (2.2) shows that the Markov chain is time-

homogeneous since the transition probabilities do not depend on the time parameter n.

If not, the process X,, will be called a non-time-homogeneous Markov chain.

2.1 DMotivated examples

Example 8 (Random walks). Let {Z,,n € N*} be a sequence of i.i.d. random variables
with values in X = R? and distribution pu. Let Xy be a random variable in R? independent

of {Zn,n € N*}. A random walk with jump or increment distribution p is a process
{Xk, k € N} defined by Xy and the recurrence

Xp=Xo1+ Zp, k>1.

This model follows a recurrence with f(x,z) = x + z, and thus the process { Xy, k € N}
is a Markov chain with kernel given for x € R and A € B (Rd) by P(x,A) = p(A —x);

that is, P is entirely determined by the increment distribution p.

Example 9 (ARMA(p,q)). 4 generalization of the AR(p) model is obtained by adding a

moving average part to the autoregression.:
Xp=p+o X1+ +pXpp+ 2+ b1 Zk—1+ - + By Zi—q,

where {Zx, k € Z} is a sequence of i.i.d. random variables with E[Zy] = 0. This yields a

12
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Markov chain of order r = pV q. Indeed, setting a; =0 if 7 > p and B; = 0 if j > q yields

0 1
. 0
Xk+1 : 0 1 Xk
A St '
X 0 0 1 X '
k+r k+r—1 /L-'—Zk‘l‘ﬁlzk—l_l__}—ﬁrzr
Q. Lo. O

Example 10 (ARCH (p)). Many financial time series, such as log-returns of share prices,
stock indexes, and exchange rates, are commonly employed in econometrics and applied
financial literature to illustrate stochastic volatility and heavy-tailedness. A linear time
series model cannot accurately catch these characteristics simultaneously. To capture these
latters, nonlinear models were devised, because a linear time series model requires heavy-
tailed marginal distributions. The input noise sequence must also be heavy-tailed. Heavy-
tailed marginals can be constructed for nonlinear models even when the system is injected
with a light-tailed input, such as normal noise. Taking the autoregressive conditional
heteroscedastic model of order p into account, the ARCH(p) model is defined as a solution

to the recurrence problem:

Xy = 0x Ly,

2 2 2
O =g+ X+ X,

where the coefficients o; > 0,5 € {0,...,p}, are nonnegative, and {Zy,k € Z} is a se-
quence of i.i.d. random variable with zero mean (often assumed to be standard Gaussian).
The ARCH(p) process is a Markov chain of order p. Assume that Z; has a density g with

respect to Lebesque measure on R.

3 Bootstrap

Let X4,..., X, be a sequence of random variables with joint probability P, and let 6 be
our parameter of interest depending on the unknown joint probability of the underlying
sequence. Statistical inference constantly searches to find an estimator to this parameter,
and many standard methods were introduced to getting this target depending on the form
of parameter 6, like maximum or quasi-Likelihood, M-estimators, kernels estimators, etc.
For 6, an estimator of the parameter 6; it is crucial to test the estimator and verify the
accuracy o