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ABSTRACT 
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Accurate understanding of the land surface functioning, such as the energy budget, carbon and 

water cycles, and ecosystem dynamics, is essential to better interpret, predict, and mitigate the 

impact of the expected global changes. It thus requires observing our planet at different spatial 

and temporal scales that only the remote sensing (RS) can achieve because of its ability to 

provide systematic and synoptic radiometric observations. These observations can be 

transformed to surface parameters (temperature, vegetation biomass, etc.) used as input in 

process models (e.g., SCOPE and ORCHIDEE) or be assimilated in the latter. Understanding 

the radiation interactions in the land surface and atmosphere is essential in two aspects: interpret 

RS signals as information about the observed land surfaces and model the processes of 

functioning of land surfaces where the radiation participates. This explains the development of 

radiative transfer models (RTMs) that simulate the radiative budget and RS observations. The 

initial 3D RTMs in the 1980s simulated basic radiation mechanisms in very schematic 

representations of land surfaces (e.g., turbid medium, geometric primitive). Since then, their 

accuracy and performance have been greatly improved to address the increasing need of 

accurate information about land surfaces as well as the advances of RS instruments. So far, two 

types of improvements are still needed:  

1. More accurate and efficient radiative transfer (RT) modelling (polarization, specular 

reflection, atmospheric scattering, and emission, etc.)  

2. Representation of land surfaces at different realism degrees and spatial scales.  

 

DART (http://dart.omp.eu) is one of the most accurate and comprehensive 3D RTMs. It 

simulates the radiative budget and RS observations of urban and natural landscapes, with 

topography and atmosphere, from the ultraviolet to the thermal infrared domains. Its initial 

version, DART-FT, in 1992, used the discrete ordinates method to iteratively track the radiation 

along finite number of discrete directions in voxelized representations of the landscapes. It has 

been validated with other RTMs, and also RS and field measurements. However, it cannot 
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simulate RS observations with the presently needed precision because of its voxelized 

representation of landscapes, and absence of some physical mechanisms (e.g., polarization). 

 

During this thesis, in collaboration with the DART team, I developed in DART a new Monte 

Carlo vector RT mode called DART-Lux that takes full advantage of the latest advances in RT 

modelling, especially in computer graphics. The central idea is to transfer the radiation transfer 

problem as a multi-dimensional integral problem and solve it with the Monte Carlo method that 

is considerably efficient and accurate in computing multi-dimensional integral such as the 

complex mechanisms (e.g., polarization) in realistic representations of 3D landscapes. For that, 

I implemented the bidirectional path tracing algorithm that generates a group of “source-sensor” 

paths by connecting two sub-paths, one is generated starting from the light source and another 

one is generated starting from the sensor. Then, the contribution of these paths to the integral is 

estimated by the multiple importance sampling. This method allows to accurately and 

efficiently simulate polarimetric RS observations of kilometre-scale realistic landscapes 

coupled with plane-parallel atmosphere, with consideration of the anisotropic scattering, the 

thermal emission, and the solar induced fluorescence. Compared to DART-FT, DART-Lux 

improves the computer efficiency (i.e., computer time and memory) usually by a factor of more 

than 100 for large-scale and complex landscapes. It provides new perspectives for studying the 

land surface functioning and also for preparing Earth observation satellite missions such as the 

missions TRISHNA (CNES and ISRO), LSTM and next generation Sentinel-2 (ESA), and 

CHANGE (NASA). 

 

 

 

 

 



RÉSUMÉ 

 x 

La connaissance du fonctionnement des surfaces terrestres, comme le bilan énergétique, les 

cycles du carbone et de l’eau et la dynamique des écosystèmes, est essentielle pour mieux 

interpréter, prévoir et atténuer l’impact des changements globaux. Elle nécessite d’observer 

notre Planète à différentes échelles de temps et d’espace que seule la télédétection permet de 

par sa capacité d'observations radiométriques systématiques et synoptiques. Ces dernières sont 

transformées en paramètres de surface (température, biomasse végétale, etc.) utilisés en entrée 

des modèles de processus (e.g., SCOPE et ORCHIDEE) ou bien assimilées dans ces derniers. 

Comprendre l'interaction du rayonnement dans les surfaces terrestres et l’atmosphère est 

essentiel à deux niveaux : interpréter le signal de télédétection en tant qu’information sur les 

surfaces terrestres observées, et modéliser les processus du fonctionnement des surfaces 

terrestres où le rayonnement intervient. Ceci explique le développement de modèles de transfert 

radiatif (MTR) qui simulent le bilan radiatif et les mesures de télédétection. Les premiers MTRs 

3D datent des années 1980. Ils simulaient uniquement des mécanismes radiatifs assez simples 

dans des représentations très schématiques des surfaces terrestres (e.g., milieu turbide, primitive 

géométrique). Depuis, leur précision et leurs performances ont été énormément améliorées pour 

répondre au besoin croissant d’informations précises sur les surfaces terrestres et aux progrès 

en instrumentation de télédétection. A ce jour, deux types d’améliorations sont particulièrement 

nécessaires : 

1. Modélisation plus précise et efficace du transfert radiatif (TR) avec réflexion spéculaire 

de surface, diffusion polarisée et émission atmosphériques, etc. 

2. Représentation des surfaces terrestres à différents degrés de réalisme et échelles spatiales. 

 

DART (http://dart.omp.eu) est l’un des MTRs 3D les plus précis et les plus complets. Il simule 

le bilan radiatif et les observations de télédétection des paysages urbains et naturels, avec relief 

et atmosphère, de l’ultraviolet à l’infrarouge thermique. Sa version initiale de 1992, appelée 

DART-FT, utilise la méthode des ordonnées discrètes pour le suivi des rayons selon un nombre 

Résumé 
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fini de directions dans une représentation voxélisée du paysage. DART-FT a été validé avec 

d’autres modèles et des mesures terrain et de télédétection. Cependant, il ne peut simuler les 

mesures de télédétection avec la précision désormais attendue, du fait de son mode de 

représentation des paysages, de l’absence de certains mécanismes radiatifs et de l’algorithme 

de suivi des rayons.  

 

Durant cette thèse, en collaboration avec l’équipe DART, j’ai conçu et implanté dans DART le 

nouveau mode de TR vectoriel DART-Lux qui permet de bénéficier des dernières avancées en 

infographie. Ainsi, j’ai exprimé le problème du TR en une intégrale multidimensionnelle, 

résolue avec une méthode Monte Carlo bi-directionnelle très efficace. Cette méthode calcule 

tout trajet “Source de lumière – Capteur” en combinant un sous-trajet issu des sources de 

lumière et un sous trajet issu du capteur. La contribution de ces trajets à l’intégrale est estimée 

par l’échantillonnage préférentiel multiple. Il en résulte une simulation précise et efficace des 

mesures de télédétection polarimétrique de paysages réalistes à l’échelle kilométrique avec une 

atmosphère “plan-parallèle”, et tous les mécanismes physiques majeurs (diffusion anisotrope, 

émission thermique, fluorescence chlorophyllienne induite par le soleil, etc.). DART-Lux 

améliore l’efficacité informatique (i.e., temps de calcul, volume mémoire) de DART-FT d’un 

facteur souvent supérieur à 100 pour de grands paysages 3D complexes. Il ouvre de nouvelles 

perspectives pour modéliser le fonctionnement des surfaces terrestres, et pour préparer des 

missions satellitaires d’observation de la Terre comme les missions TRISHNA (CNES et ISRO), 

LSTM et Sentinel-2 nouvelle génération (ESA), et CHANGE (NASA). 
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Since the industrial revolution, the comfort, health, education, and wealth of human populations 

have been greatly improved. At the same time, the increasing human activities (e.g., urbanizing, 

deforestration, burning fossil fuels, etc.) significantly impact our planet system and cause most 

current environmental issues. For example, the rapid and large-scale accumulation of CO2 in 

the atmosphere is intensifying the global warming and accelerating the climate change, which 

causes increasingly frequent and more extreme meteorological events such as droughts, floods, 

and fires. The sharp decline in forest cover accelerates the soil erosion and biodiversity loss, 

reduces the carbon sink, and disrupts the water cycle. Our society is increasingly aware of 

environmental issues and their serious consequences for human well-being whereas the impact 

of global change on land surfaces and the feedback of land surfaces on global change are still 

not adequately understood and quantified. Therefore, the scientific community is mobilized to 

study land surface functioning at a variety of spatial and temporal scales, including physical, 

chemical, and biological processes, urban and ecosystem dynamics, etc. These studies are 

crucial to understand, predict, and mitigate the impact of the expected global changes. They are 

also important in many other thematic research domains, such as agriculture, forest, urban, 

climate, snow, etc. 

 

Remote sensing, especially with Earth observation satellites, is proving to be a unique and 

increasingly efficient technology for gathering synoptic information about our planet. The 

continuous improvement of temporal and spatial resolutions further enhances its ability to 

monitor the status of, and the changes in, the natural and urban landscapes. In the last decades, 

there were significant advances in transforming remote sensing data into parameters and surface 

processes (e.g., temperature, emissivity, albedo, vegetation coverage, evapotranspiration, etc.) 

that provide insight into land surface functioning. In general, the observed radiation is not 

directly related to the land surface parameter of interest, as it is often the result of complex 

radiation mechanisms at the observed land surface and is strongly influenced by the atmosphere. 

General introduction  
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For example, the remote sensing observation of a crop does not directly reveal its instantaneous 

photosynthetic behaviour and growth stage. Indeed, the observation varies with observing 

direction that is a function of the anisotropy of radiation emitted and reflected by plant canopies 

which depends on their optical and structural properties and thus on their physiological status 

and growth stage. In addition, a remote sensing sensor can only measure one or a few 

radiometric quantities (e.g., intensity and polarization) in limited spectral ranges and angular 

directions. It illustrates that remote sensing data depend on both experimental (e.g., land surface 

three-dimensional (3D) architecture, optical properties, atmospheric conditions, etc.) and 

instrumental (e.g., spectral band, observing direction, field of view, etc.) configurations. 

Therefore, obtaining accurate land surface parameters from remote sensing observations 

requires a good physical understanding of all the radiation mechanisms involved. This 

understanding is also important in the preparation of Earth observation satellite missions, 

especially to predict the accuracy of the information that they plan to provide. 

 

The radiation plays two important roles in the study of land surface functioning. 1) It contributes 

to major processes in the functioning of land surfaces. For example, the radiation absorbed by 

vegetation contributes to its photosynthesis and evapotranspiration mechanisms. 2) It carries 

essential information about the surfaces that emit and scatter it. For example, the spectral and 

directional variation of radiation originating, and therefore measured, from plants depends on 

the characteristics (e.g., growth stage) that are often represented by surface parameters (e.g., 

total biomass and its spatial distribution) adapted to land surface functioning models. Ideally, 

the application of inversion techniques to remote sensing data gives this information. These two 

roles of radiation underline the increasing need for physical models, called radiative transfer 

models (RTMs), that simulate remote sensing observations and the radiation budget (e.g., 

absorption, thermal emission) of natural and urban landscapes. This simulation should, if 

possible, be carried out using the same RTM and the same representation of the landscape to 

ensure good consistency between the simulated remote sensing measurements and radiative 

budget. MTRs use more or less realistic descriptions of direct (e.g., sun, thermal emitter) and 

indirect (e.g., atmosphere) light sources, sensors (e.g., camera, pushbroom) and land surfaces 

if possible, at different scales of analysis (e.g., a crop field and a landscape). Their usefulness 

depends a lot on their precision and is generally twofold. (1) Establish, study, and quantify the 

relationships between remote sensing observations and surface parameters (e.g., albedo, 



GENERAL INTRODUCTION 

 xxviii 

thermal exitance and chlorophyll content of the canopy), taking into account the conditions for 

acquiring these measurements (e.g., solar and observation). (2) Obtain the radiative budget of 

land surfaces, for example to simulate surface gas and energy fluxes with urban models such as 

SOLENE (https://aau.archi.fr/crenau/solene) and global land surface models such as 

ORCHIDEE (https://orchidee.ipsl.fr). 

 

Pioneering 3D RTMs that describe the radiative transfer at land surface were developed in the 

1980s. In these models, the studied landscape was usually discretized as cell arrays and the 

vegetation inside was abstracted as turbid medium (i.e., homogeneous medium consists of 

infinite number of statistically distributed infinitely small elements). Also, they used relatively 

simple radiation transfer approaches such as the finite element method. Since then, scientists in 

radiative transfer field greatly improved the accuracy and performance of RTMs. It is typically 

the case of DART (https://dart.omp.eu), developed in CESBIO since 1992, that is one of the 

most general-purpose 3D RTMs. It simulates remote sensing observations (e.g., spectro-

radiometer, LiDAR) and the radiative budget of urban and natural land surfaces with 

topography and atmosphere, including sun induced chlorophyll fluorescence (SIF), from the 

ultraviolet to the thermal infrared domains. Its initial radiative transfer modelling, called 

DART-FT, depended on the discrete ordinates method. In this method, the radiation propagates 

iteratively along a finite number of discrete directions. In addition, the propagation medium is 

represented by a matrix of voxels which may contain turbid matters that represent vegetation 

and surface elements (i.e., facets) that represent vegetation (i.e., wood and leaf elements), 

topography, the building (i.e., houses, roads, etc.), … 

 

The RAMI initiative, dedicated to benchmark RTMs under well controlled experiment 

conditions, illustrates the continuous improvement of RTMs through its five phases from 1999 

to 2022 (Pinty et al., 2004, 2001; Widlowski et al., 2015, 2013, 2007). Its third phase (RAMI-

III, 2005-2007) was a milestone in terms of quality and number of participating (i.e., 18) RTMs. 

Up to 52 structurally homogeneous canopy scenarios (turbid vegetation) and 8 structurally 

heterogeneous canopy scenarios (floating geometric primitives) were tested. It demonstrated, 

for the first time, a general convergence of the simulated directional reflectance and radiative 

budget for all canopy scenarios. The submissions of six selected benchmark models (i.e., DART, 

drat, FLIGHT, Rayspread, raytran, Sprint3) were in unprecedented agreement (relative 

https://aau.archi.fr/crenau/solene
https://orchidee.ipsl.fr/
https://dart.omp.eu/
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difference below 1%). The fourth phase of RAMI (RAMI-IV, 2009-2015) significantly 

improved the representation of land surfaces, with detailed description of plant stems, branches, 

and leaves. However, many participating models, including the benchmark models selected in 

RAMI-III, were not adapted to such a degree of complexity, because of their initial design 

limitations and/or the enormous computation cost. Approximations in the representation of 

plants and in the modelling of radiative transfer resulted in dispersion between the participating 

RTMs. This result emphasizes that the improvement of RTMs should be coupled with the 

improvement of the 3D representation of land surfaces at different spatial scales and complexity 

degrees. The fifth phase of RAMI (RAMI-V, 2021-present) continues to focus on realistic 

representations of land surfaces. It takes this further by simulating atmospheric-corrected 

satellite observations of eight study sites. The new RAMI initiative (RAMI4ATM, 2022-present) 

is dedicated to the simulation of radiative processes at the land surface, in the atmosphere and 

the coupling between the two. The continuous efforts of RAMI show the importance of 3D 

RTMs to support the calibration and validation of satellite observations of land surfaces. 

 

The increasing requirements of precise information about land surfaces requires to improve the 

modelling of the radiative budget of land surfaces and their remote sensing observations, in 

connection with the continuous technological advances in remote sensing instruments. In 

particular, two types of improvements are needed: 

- More accurate and efficient modelling of radiative transfer, with the consideration of the 

nature of the polarized radiation, the radiative coupling of surface-atmosphere, the better 

description of the anisotropic scattering and emission of land surface elements (e.g., 

specular scattering, aerosol forward scattering). 

- More realistic representations of natural and urban land surfaces and less costly in terms of 

computer memory. 

 

Due to its initial design limitations, i.e., the discrete ordinates method, it is difficult, if not 

impossible, that DART-FT to be adapted to address the above-mentioned accuracy and 

efficiency. For example, hundreds of discrete directions must be set to accurately describe the 

peak angular distribution of the specular reflection which greatly slows down the computation. 

On the other hand, since the design of DART-FT, much progress is realised to represent 

complex 3D artificial landscape and to simulate complex radiation mechanisms such as 
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specular scattering. In addition to this, it is more and more feasible to reconstruct land surfaces 

at different resolutions in computer using LiDAR signals, photogrammetry, and graphics 

software (e.g., xfrog, arbaro).  

 

To meet the increasing requirements of RTMs for simulating remote sensing observations of 

land surfaces, I developed, in collaboration with DART team, a new Monte Carlo vector 

radiative transfer mode in DART. This new mode, called DART-Lux, takes full advantage of 

the latest advances in the modelling of land surfaces and radiative transfer, especially in the 

computer graphics domain. The central idea of DART-Lux is to transform the complex 3D 

radiative transfer problem as a multi-dimensional integral problem over the whole path space. 

The path space includes all possible light paths between the light sources and the sensor, after 

propagation in the land surfaces and atmosphere. The integral is then solved by the Monte Carlo 

bidirectional path tracing that generates a group of paths based on sub-paths starting from both 

the light sources and the sensor. This thesis presents the theory, implementation, and validation 

of DART-Lux. 

 

Chapter 1 gives an overview of the basic principles and theory of radiometry and radiative 

transfer. It reviews the properties of the electromagnetic radiation, the related fundamental 

quantities and definitions that are used in the following chapters. The radiation-matter 

interactions and their mathematical formulations are also described. 

 

Chapter 2 presents the 3D radiative transfer models and stress their challenges and limitations. 

The DART model is then presented as well as the motivated developments for better studying 

the land surface functioning. 

 

Chapter 3 details the preliminary theory and implementation of DART-Lux. The mathematical 

formulation of the 3D radiative transfer problem as a Lebesgue integral is introduced as well as 

its Monte Carlo solution. The bidirectional path tracing algorithm and the stochastic process to 

efficiently generate a group of light paths and evaluate their contributions to the integral are 

then presented. Finally, the accuracy of DART-Lux and its performance are discussed. 

 



GENERAL INTRODUCTION 

 xxxi 

Chapter 4 describes the modelling of atmospheric radiative transfer. The mathematical 

formulation of the 3D radiative transfer is generalized for both surfaces and volumes. A new 

Earth-Atmosphere system designed for modelling atmospheric effects based on the 

bidirectional path tracing algorithm is then presented. Its accuracy is assessed with the 

atmospheric radiative transfer model MODTRAN. In addition, an experiment that studies the 

adjacency effect due to the atmospheric scattering is also presented. 

 

Chapter 5 centres on the modelling of polarization. The representation of the polarized radiation 

and the associated interactions are described. The mathematical formulation of the vector 

radiative transfer problem in a Lebesgue integral is given, as in Chapter 3 and Chapter 4. The 

bidirectional path tracing algorithm is then adapted, and its accuracy is evaluated. Then, the 

impact of polarization on the remote sensing observations is analysed. 
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Depuis la révolution industrielle, le confort, la santé, l’éducation et la richesse des populations 

humaines se sont considérablement améliorés. Dans le même temps, les activités humaines 

croissantes (e.g., l’urbanisation, le déboisement, la combustion de combustibles fossiles, etc.) 

ont un impact fort sur notre système planétaire et causent la plupart des problèmes 

environnementaux actuels. Par exemple, l’accumulation rapide et à grande échelle de CO2 dans 

l’atmosphère accroît le réchauffement climatique et accélère le changement climatique, ce qui 

provoque des événements météorologiques de plus en plus fréquents et extrêmes comme les 

sécheresses, les inondations et les incendies. La forte diminution du couvert forestier accélère 

l’érosion des sols et la perte de biodiversité, réduit les puits de carbone et perturbe le cycle de 

l’eau. Notre société est de plus en plus consciente des enjeux environnementaux et de leurs 

graves conséquences sur le bien-être humain alors que l’impact du changement global sur les 

surfaces terrestres et la rétroaction des surfaces terrestres sur le changement global ne sont pas 

encore suffisamment compris et quantifiés. Par conséquent, la communauté scientifique est 

mobilisée pour étudier le fonctionnement de la surface terrestre à différentes échelles spatiales 

et temporelles, y compris les processus physiques, chimiques et biologiques, la dynamique 

urbaine et écosystémique, etc. Ces études sont cruciales pour comprendre, prévoir et atténuer 

l’impact des changements globaux attendus. Elles sont également importantes pour beaucoup 

d’autres domaines de recherche (e.g., agriculture, forêts, villes, neige). 

 

La télédétection, notamment avec les satellites d’observation de la Terre, s’avère être une 

technologie unique et de plus en plus efficace pour recueillir des informations synoptiques sur 

notre planète. L’amélioration constante des résolutions temporelles et spatiales renforce encore 

sa capacité à suivre l’état et l’évolution des paysages naturels et urbains. Au cours des dernières 

décennies, des progrès considérables ont été réalisés dans la transformation des données de 

télédétection en paramètres et processus de surface (e.g., température, émissivité, albédo, taux 

de couvert végétal, évapotranspiration, etc.) qui aident à mieux comprendre le fonctionnement 

Introduction générale  
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des surfaces terrestres. En général, le rayonnement observé n’est pas directement lié aux 

paramètres de surface d’intérêt, en particulier parce qu’il résulte de mécanismes radiatifs 

complexes et dépend de l’atmosphère. Par exemple, l’observation par télédétection d’une 

culture ne révèle pas directement son comportement photosynthétique instantané et son stade 

de croissance. En effet, cette observation varie avec la direction d’observation en fonction de 

l’anisotropie des rayonnements émis et réfléchis par les couverts végétaux qui dépend des 

propriétés optiques et structurales du couvert et par suite de leur état physiologique et stade de 

croissance. De plus, un capteur de télédétection ne peut mesurer qu’une ou quelques grandeurs 

radiométriques (e.g., intensité et polarisation) dans des bandes spectrales et des directions 

angulaires limitées. Ceci illustre que les données de télédétection dépendent des configurations 

expérimentales (e.g., architecture tridimensionnelle (3D) de la surface terrestre, propriétés 

optiques, conditions atmosphériques, etc.) et instrumentales (e.g., bande spectrale, direction 

d’observation, champ de vision, etc.). Par conséquent, l’obtention de paramètres de surface 

terrestre précis à partir d’observations de télédétection nécessite une bonne compréhension 

physique de tous les mécanismes de rayonnement inclus. Cette compréhension est également 

importante dans la préparation des missions des satellites d’observation de la Terre, notamment 

pour prévoir la précision des informations qui seront acquises. 

 

Le rayonnement a 2 rôles majeurs dans le cadre de l’étude du fonctionnement des surfaces 

terrestres. 1) Il contribue aux processus majeurs du fonctionnement des surfaces terrestres. 

Ainsi, le rayonnement absorbé par la végétation contribue aux mécanismes de photosynthèse et 

d’évapotranspiration. 2) Il renseigne sur les surfaces qui l’émettent et le diffusent. Ainsi, la 

variation spectrale et directionnelle du rayonnement issu, et donc mesuré, des plantes dépend 

de caractéristiques (e.g., stade de croissance) qui sont souvent représentées par des paramètres 

de surface (e.g., biomasse totale et sa distribution spatiale) adaptées aux modèles de 

fonctionnement. Idéalement, l’application de techniques d’inversion aux images de 

télédétection fournit ces paramètres. Ces deux rôles du rayonnement soulignent le besoin 

croissant de modèles physiques, appelés modèles de transfert radiatif (MTR), qui simulent les 

mesures de télédétection et le bilan radiatif (e.g., absorption, émission thermique) des paysages 

naturels et urbains. Cette simulation doit si possible être réalisée par le même MTR et la même 

représentation du paysage pour assurer une bonne cohérence entre les simulations des mesures 

de télédétection et du bilan radiatif. Les MTRs utilisent des descriptions plus ou moins réalistes 
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des sources de lumière directes (e.g., soleil, émetteur thermique) et indirectes (e.g., atmosphère), 

des capteurs (e.g., caméra, pushbroom) et des surfaces terrestres si possible à différentes 

échelles d’analyse (e.g., champ de culture et paysage). Leur utilité dépend beaucoup de leur 

précision et est en général double. (1) Établir, étudier et quantifier les relations entre mesures 

de télédétection et paramètres de surface (e.g., albédo, exitance thermique et teneur en 

chlorophylle des couverts), compte tenu des conditions d’acquisition de ces mesures (e.g. 

directions solaire et d’observation). (2) Obtenir le bilan radiatif des surfaces terrestres, par 

exemple pour simuler les flux de gaz et d’énergie des surfaces avec des modèles urbains comme 

SOLENE (https://aau.archi.fr/crenau/solene) et des modèles globaux des surfaces terrestres 

comme ORCHIDEE (https://orchidee.ipsl.fr). 

 

Les premiers MTRs 3D adaptés aux surfaces terrestres ont été développés dans les années 1980. 

Dans ces modèles, le paysage étudié était généralement discrétisé sous forme de matrice de 

cellules et la végétation était représentée en tant que milieu turbide (i.e., milieu homogène 

constitué par une infinité d’éléments infiniment petits, statistiquement distribués). En outre, ils 

utilisés souvent des approches de transfert de rayonnement relativement simples comme la 

méthode des éléments finis. Depuis lors, les scientifiques dans le domaine de transfert radiatif 

ont considérablement amélioré la précision et les performances des MTRs. C’est le cas du 

modèle DART (https://dart.omp.eu), développé au CESBIO depuis 1992, qui est un des MTRs 

3D les plus précis et les plus complets. Il simule les observations de télédétection (e.g., spectro-

radiomètre, LiDAR) et le bilan radiatif des paysages urbains et naturels avec relief et 

atmosphère, y compris la fluorescence chlorophyllienne induite par le soleil (SIF), de 

l’ultraviolet à l’infrarouge thermique. Sa modélisation initiale du transfert radiatif, appelée 

DART-FT, dépendait de la méthode des ordonnées discrètes. Dans cette méthode, le 

rayonnement se propage selon de manière itérative selon un nombre fini de directions. De plus, 

le milieu de propagation est représenté par une matrice de voxels qui peuvent contenir de la 

matière turbide qui représentent la végétation et des éléments de surface (i.e., facettes) qui 

représentent la végétation (i.e., éléments ligneux et foliaires), la topographie, le bâti (i.e., 

maisons, routes, etc.), … 

 

Les cinq phases de l’initiative RAMI de comparaison des MTRs dans des conditions 

expérimentales bien contrôlées, illustre les améliorations constantes de ces modèles de 1999 à 

https://aau.archi.fr/crenau/solene
https://orchidee.ipsl.fr/
https://dart.omp.eu/
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2022  (Pinty et al., 2004, 2001; Widlowski et al., 2015, 2013, 2007). La troisième phase RAMI-

III, de 2005 à 2007, a marqué une étape importante en termes de qualité et nombre (i.e., 18) de 

MTRs participants. 52 scénarios de canopée structurellement homogène (milieu turbide) et 8 

scénarios de canopée structurellement hétérogène ont pour la première fois permis de montrer 

la convergence des réflectances directionnelle et du budget radiatif simulés de nombreux MTRs. 

Ainsi, les simulations des six modèles 3D de référence (i.e., DART, drat, FLIGHT, Rayspread, 

raytran, Sprint3) concordaient avec une différence relative inférieure à 1 %. La quatrième phase 

RAMI-IV, de 2009 à 2015, a considérablement amélioré la représentation des surfaces terrestres, 

avec une description détaillée des tiges, branches et feuilles des plantes. Cependant, de 

nombreux modèles participants, y compris les modèles de référence de RAMI-III, n’étaient pas 

adaptés au degré de complexité proposé, en raison de limitations dues à leur conception initiale 

et / ou à un énorme coût de calcul. Par suite, les nécessaires approximations réalisées pour 

représenter les plantes et la modélisation du transfert radiatif ont résulté en une dispersion des 

simulations réalisées par les MTRs participants. Ce résultat souligne que l’amélioration des 

modèles de transfert radiatif doit être couplée à l’amélioration de la représentation 3D des 

surfaces terrestres à différents échelles spatiales. La cinquième phase RAMI-V, de 2021 à 2022, 

met aussi l’accent sur la représentation réaliste des surfaces terrestres, avec en plus la simulation 

des observations satellitaires corrigées des effets atmosphériques pour huit sites d’étude. La 

nouvelle initiative RAMI4ATM, à partir de 2022, est dédiée à la simulation des processus 

radiatifs à la surface terrestre, dans l’atmosphère et le couplage entre les deux. L’effort continu 

de l’expérience RAMI illustre l’importance des MTRs 3D pour l’étalonnage et la validation des 

observations satellitaires des surfaces terrestres. 

 

Le besoin d’information de plus en plus précis sur les surfaces terrestres nécessite d’améliorer 

la modélisation du bilan radiatif des surfaces terrestres et de leurs observations de télédétection, 

en lien avec les incessantes avancées technologiques des instruments de télédétection. En 

particulier, deux types d’améliorations sont nécessaires : 

- Modélisation plus précise et efficace du transfert radiatif, avec prise en compte de la nature 

du rayonnement polarisé, du couplage radiatif “Terre -Atmosphère”, de l’anisotropie des 

diffusions et émissions thermiques des éléments de surface terrestre (e.g., diffusion 

spéculaire et diffusion avant des aérosols).  



INTRODUCTION GÉNÉRALE 

 xxxvi 

- Représentations plus réalistes des paysages naturels et urbains, et peu couteuses en termes 

de mémoire informatique.  

 

Du fait des limites de sa conception initiale basée sur la méthode des ordonnées discrètes, il est 

difficile, si ce n’est impossible, que DART-FT puisse être adapté pour répondre aux exigences 

de précision et d’efficacité indiquées ci-dessus. Ainsi, des centaines de directions discrètes sont 

nécessaires pour décrire précisément la distribution angulaire de la réflexion spéculaire, ce qui 

ralentit considérablement les calculs. Par contre, depuis la conception de DART-FT, de 

nombreux progrès ont été réalisés pour simuler à la fois des paysages 3D très réalistes et les 

mécanismes radiatifs complexes comme la réflexion spéculaire. De plus, il est de plus en plus 

facile de reconstruire des surfaces terrestres numériques à différentes résolutions avec des 

mesures LiDAR, la photogrammétrie et des logiciels graphiques (e.g., xfrog, arbaro). 

 

Pour répondre aux besoins croissants en termes simulation des mesures de télédétection des 

surfaces terrestres, j’ai développé, en collaboration avec l’équipe DART, un nouveau mode 

Monte Carlo de transfert radiatif vectoriel au sein de DART. Ce nouveau mode, appelé DART-

Lux, bénéficie des dernières avancées en modélisation des paysages et du transfert radiatif, en 

particulier dans le domaine de l’infographie. L’idée centrale de DART-Lux est de transformer 

le problème complexe du transfert radiatif 3D en un problème intégral multidimensionnel sur 

tout l’espace des trajets de rayon. L’espace de ces trajets comprend tous les trajets possibles 

entre les sources de lumière et le capteur, après propagation dans les surfaces terrestres et 

l’atmosphère. L’intégrale est résolue avec la méthode de Monte Carlo de suivi de rayon 

bidirectionnelle qui génère des trajets “Source-Lumière” à partir de sous trajets issus des 

sources de lumière et issus du capteur. Cette thèse présente la théorie, l’implémentation et la 

validation de DART-Lux. 

 

Le chapitre 1 donne un aperçu des principes de base et la théorie de la radiométrie et du transfert 

radiatif. Il résume les propriétés du rayonnement électromagnétique, les quantités 

fondamentales et les définitions associées utiles pour les chapitres suivants. Les interactions 

rayonnement-matière et leurs formulations mathématiques sont aussi décrites. 
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Le chapitre 2 présente les modèles numériques de transfert radiatif 3D et souligne leurs défis et 

limites. Le modèle DART est ensuite présenté ainsi que les axes de développement pour mieux 

étudier le fonctionnement des surfaces terrestres. 

 

Le chapitre 3 détaille la théorie préliminaire et la mise en œuvre de DART-Lux. La formulation 

mathématique du problème de transfert radiatif 3D est introduite en tant qu’intégrale de 

Lebesgue ainsi que sa solution Monte Carlo. L’algorithme de suivi de rayon bidirectionnel, le 

processus stochastique de génération efficace de trajets de rayon, et l’évaluation des 

contributions des trajets à l’intégrale sont ensuite présentés. Finalement, la précision de DART-

Lux et sa performance sont discutées. 

 

Le chapitre 4 décrit la modélisation du transfert radiatif atmosphérique. La formulation 

mathématique du transfert radiatif 3D pour les surfaces et les volumes est généralisée. Le 

nouveau système Terre-Atmosphère conçu pour modéliser les effets atmosphériques à partir du 

suivi de rayon bidirectionnel est présenté. Sa précision est évaluée avec le modèle de transfert 

radiatif atmosphérique MODTRAN. De plus, une expérience qui quantifie les effets 

d’environnement du fait de la diffusion atmosphérique est aussi présentée. 

 

Le chapitre 5 est centré sur la modélisation de la polarisation. La représentation du rayonnement 

polarisé et les interactions associées sont décrites. Une formulation mathématique du problème 

du transfert radiatif vectoriel dans une intégrale de Lebesgue est donnée, comme dans les 

chapitres 3 et 4. L’algorithme de suivi de rayon bidirectionnel est ensuite adapté, et sa précision 

est évaluée. Finalement, l’impact de la polarisation sur les observations de télédétection est 

analysé. 

 

 



 

 1 

This chapter describes the quantities and equations that are used for radiative transfer 

calculations. We start by describing the nature and the representation of electromagnetic 

radiation. We then define the radiometric quantities, including the energy flux, irradiance, and 

radiance, that are needed in radiation measurements and in radiative transfer calculations. We 

also describe how the radiation is scattered, emitted, and absorbed by a surface or a medium 

and how these interactions can be mathematically formulated. 

 

Relevant references include (Chandrasekhar, 1960; Mishchenko et al., 2006; Petty, 2006; Pharr 

et al., 2016). Chandrasekhar (1960) is the most classic reference to radiative transfer. 

Mishchenko et al. (2006) derive the mathematical formulation of radiative transfer using the 

theory of statistical electromagnetics instead of the rule of the radiant energy conservation. Petty 

(2006) gives a good introduction to the basic quantities and principles of the radiative transfer 

in the atmosphere. Pharr et al. (2016) focuses on the theory and implementation of the 

physically based rendering. It is a good reference for studying the radiative transfer in land 

surfaces. 

Chapter 1  

Radiometry and radiative transfer 
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1.1 Electromagnetic radiation 

1.1.1 Radiation representation 

The electromagnetic radiation or the electromagnetic wave is a form of energy propagated 

through space or medium by the periodic vibration of electric and magnetic fields. The 

propagation direction is always perpendicular to the vibration direction (transverse wave). The 

radiation in radiative transfer calculations is often represented by the monochromatic plane 

wave, which is more or less true if the radiation is far from the source or the scatterer. The 

electric field vector 𝑬 of a monochromatic plane wave propagating in direction �̂�𝑃 = �̂�𝑃 × �̂�𝑃 

can be represented as the sum of two orthogonal complex vectors 𝐸𝑥𝑃�̂�𝑷 and 𝐸𝑦𝑃�̂�𝑃 (Eq. (1.1)) 

vibrated in the plane transverse to �̂�𝑃. In our definition, 𝐸𝑥𝑃 is perpendicular to the meridional 

plane and 𝐸𝑦𝑃 is in the meridional plane (Figure 1.1). Usually, 𝐸𝑥𝑃 and 𝐸𝑦𝑃 are defined as the 

horizontal and the vertical oscillation component, respectively.  
 

𝑬 = 𝐸𝑥𝑃�̂�𝑃 + 𝐸𝑦𝑃�̂�𝑃 (1.1) 
 

with   𝐸𝑥𝑃 = 𝐴𝑥𝑃 ∙ 𝑒
−𝑖(𝑘𝑧𝑃−𝜔𝑡−𝛿𝑥𝑃)    and    𝐸𝑦𝑃 = 𝐴𝑦𝑃 ∙ 𝑒

−𝑖(𝑘𝑧𝑃−𝜔𝑡−𝛿𝑦𝑃) 

where 𝐴𝑥𝑃 and 𝐴𝑦𝑃 are the amplitude. 𝑘 = 2𝜋/𝜆 is the wavenumber, 𝑧𝑃 is the propagation 

distance from the source, 𝑡 is the oscillation time with period 𝑇, 𝜔 = 2𝜋/𝑇 is the angular 

frequency, 𝛿𝑥𝑃 and 𝛿𝑦𝑃 are the initial phases when 𝑧𝑃 = 0 and 𝑡 = 0. 

 

 

Figure 1.1. The reference coordinate (�̂�𝑃 , �̂�𝑃 , �̂�𝑃) of a plane wave used to define the Stokes 

vector. �̂�𝑃 is the unit vector of the direction of propagation. �̂�𝑃 and �̂�𝑃 are orthogonal 

unit vectors in the plane perpendicular to �̂�𝑃 , with �̂�𝑃=
�̂�×�̂�𝑃
‖�̂�×�̂�𝑃‖

 perpendicular to the 

meridional plane (�̂�, �̂�𝑃), and �̂�𝑃=�̂�𝑃×�̂�𝑃 in the meridional plane. Then: �̂�𝑃=�̂�𝑃×�̂�𝑃 . 
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The electromagnetic radiation can also be characterized by quantum properties. Conversely to 

the continuous wave representation, it sometimes behaves like a series of discrete packets of 

energy, called photons. The energy content 𝑄photon  of each individual photon is solely 

determined by the frequency 𝜈 or wavelength 𝜆 of the radiation via the relationship: 

 

𝑄photon = ℎ𝜈 

 

with ℎ=6.62607015 × 10−34 J∙s the Planck constant and 𝜈=𝜔/2𝜋 the frequency that has unit 

of cycles per second or Hertz (Hz). 𝜆=𝑐/𝜈 with 𝑐 the speed of light in the propagation medium. 

 

Although the electromagnetic radiation has wave and quantum properties, an important point 

is to know when it should be viewed as wave or as photons. Usually, the wave property matters 

when considering medium and surface scattering, and the quanta property matters when 

considering the emission and absorption by individual atoms or molecules. Sometimes, the 

property point of view does not matter, such as when comping the radiant energy. 

1.1.2 Polarization and Stokes vector 

The transverse wave property is well adapted to inform about the polarization state of the 

radiation. The geometrical orientation of the oscillation can be any direction perpendicular to 

the propagation direction. The polarization state is often represented by a column of four real 

quantities 𝑺 = [𝐼, 𝑄, 𝑈, 𝑉]T (unit: W/m2) known as the Stokes vector. 𝐼 is the radiation 

intensity. 𝑄 is the horizontal/perpendicular (+) or vertical/parallel (–) polarization. 𝑈 is the 45° 

(+) and 135° (–) diagonal polarization, with the angle counted anticlockwise starting from �̂�𝑃. 

𝑉 is the clockwise (+) and anticlockwise (–) circular polarization (Lee and Pottier, 2017). The 

Stokes vector of the monochromatic plane wave is computed in Eq. (1.2), with 𝜀 the permittivity 

and 𝜇 the permeability, 𝛿 = 𝛿𝑦𝑃 − 𝛿𝑥𝑃 is the initial phase difference. 

 

𝑺 = [

𝐼
𝑄
𝑈
𝑉

] =
1

2
√
𝜀

𝜇

[
 
 
 
 
𝐸𝑥𝑃𝐸𝑥𝑃

∗ + 𝐸𝑦𝑃𝐸𝑦𝑃
∗

𝐸𝑥𝑃𝐸𝑥𝑃
∗ − 𝐸𝑦𝑃𝐸𝑦𝑃

∗

𝐸𝑥𝑃𝐸𝑦𝑃
∗ + 𝐸𝑦𝑃𝐸𝑥𝑃

∗

𝑖(𝐸𝑥𝑃𝐸𝑦𝑃
∗ − 𝐸𝑦𝑃𝐸𝑥𝑃

∗ )]
 
 
 
 

=
1

2
√
𝜀

𝜇

[
 
 
 
 

𝐴𝑥𝑃
2 + 𝐴𝑦𝑃

2

𝐴𝑥𝑃
2 − 𝐴𝑦𝑃

2

2𝐴𝑥𝑃𝐴𝑦𝑃 cos(𝛿)

2𝐴𝑥𝑃𝐴𝑦𝑃 sin(𝛿)]
 
 
 
 

 (1.2) 

 

For a monochromatic plane wave: 𝐼 = √𝑄2 + 𝑈2 + 𝑉2. However, the amplitude and phase of 

an actual electric field vector 𝑬 can fluctuate in time. Indeed, an actual wave can be viewed as 
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a superposition of many monochromatic plane waves with angular frequency randomly 

distributed in [𝜔 − ∆𝜔,𝜔 + ∆𝜔], ∆𝜔/𝜔 ≪ 1. It is the so-called quasi-monochromatic plane 

wave. Its instantaneous Stokes vector cannot be traced by most optical sensors (Mishchenko et 

al., 2006). Then, the definition of the Stokes vector is extended by averaging the instantaneous 

component over a time interval ∆𝑡 long compared to the typical period of fluctuation of 𝑬. 

(Mishchenko et al., 2006) show that Eq. (1.3) holds for the quasi-monochromatic plane wave. 

The equality holds only if the ratio 𝐴𝑥𝑃/𝐴𝑦𝑃  and the phase difference 𝛿 are independent of time. 

Then, 𝐸𝑥𝑃 and 𝐸𝑦𝑃 are totally correlated (i.e., full polarization). 

 

𝐼 ≥ √𝑄2 + 𝑈2 + 𝑉2 (1.3) 

 

If the amplitudes 𝐴𝑥𝑃 , 𝐴𝑦𝑃  and the initial phases 𝛿𝑥𝑃 , 𝛿𝑦𝑃  are totally uncorrelated and their 

averages over a time interval ∆𝑡 verify 〈𝐴𝑥𝑃〉∆𝑡=〈𝐴𝑦𝑃〉∆𝑡 (operator 〈𝑓(𝑡)〉∆𝑡=
1

∆𝑡
∫ 𝑓(𝑡′)𝑑𝑡′
𝑡+∆𝑡

𝑡
). 

Then, the wave is unpolarized (𝑄 = 𝑈 = 𝑉 = 0). Usually, waves are partially polarized with a 

state of polarization between the full and un-polarized state with a degree of linear polarization 

defined as 𝑃𝐿=√𝑄2 + 𝑈2/𝐼, a degree of circular polarization defined as 𝑃𝐶=𝑉/𝐼, and a degree 

of polarization 𝑃:  
 

𝑃 =
√𝑄2 + 𝑈2 + 𝑉2

𝐼
 (1.4) 

 

The Stokes vectors 𝑺A and 𝑺B of two independent quasi-monochromatic plane waves can be 

summed up and represented by the combined Stokes vector 𝑺AB = 𝑺A + 𝑺B (Goldstein, 2017). 

1.1.3 Electromagnetic spectrum 

Frequency 𝜈 is the most fundamental characteristic of a harmonic electromagnetic field. It is 

constant until the radiation is absorbed or converted to another form of energy. In radiative 

transfer calculations, it is more convenient to use the wavelength 𝜆 rather than the frequency 𝜈, 

because the frequencies of interest to Earth observation tend to be numerically large and 

unwieldy. The two parameters are related by Eq. ((1.5)) in which 𝑐 = 𝑐0/𝑛 is the speed of light 

in a medium with refractive index 𝑛, and 𝑐0 = 299792458 m/s is the speed of light in vacuum. 

The corresponding wavelength in vacuum is 𝜆0 = 𝑐0/𝜈 = 𝑛𝜆. 
 

𝜆 =
𝑐

𝜈
 (1.5) 
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The electromagnetic spectrum spans a wide range of frequencies, from zero to very high 

frequencies associated to energetic photons released by nuclear reactions. For practical reasons, 

scientists and engineers subdivided the spectrum into a few discrete spectral domains, and it 

exists different definitions of discrete spectral domains in literature. Table 1.1 shows the 

spectral domains commonly used for vegetation studies. 

 

Table 1.1. Standard definitions of spectral regions of the electromagnetic spectrum for 

vegetation studies. 

Region Spectral range 

Visible 0.4 < 𝜆 < 0.75 𝜇m 

Near infrared 0.75 < 𝜆 < 1.4 𝜇m 

Short wave infrared 1.4 < 𝜆 < 3 𝜇m 

Mid-wave infrared 3 < 𝜆 < 8 𝜇m 

Long wave infrared 8 < 𝜆 < 15 𝜇m 

Far infrared 15 < 𝜆 < 1000 𝜇m 

Microwave 𝜆 > 1000 𝜇m 

1.2 Radiometric quantities 

Any radiation transports energy. Considering the wave nature of radiation, the Poynting vector 

gives the instantaneous direction and magnitude of the transported energy. For the harmonic 

wave, we are interested in the average energy over one complete cycle. This is the intensity 

[W/m2] of the radiation incident onto a unit area perpendicular to the propagation direction. It 

is proportional to the square of the scalar amplitude 𝐴𝐸  of the electric filed at the location:  

 

𝐼 =
1

2
√
𝜀

𝜇
= 〈𝐴𝐸

2 〉∆𝑡   with 𝐴𝐸
2 = 𝐴𝑥𝑃

2 + 𝐴𝑦𝑃
2  (cf. Eq. (1.2)) 

 

Considering the quantified nature of radiation, the intensity of a monochromatic plane wave is:  

 

𝐼 = 𝜙 ∙ 𝑄photon = 𝜙 ∙ ℎ𝜈 

 

with 𝜙 the photon flux defined as the number of photons per unit area per unit of time. 
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Several quantities can characterize the energy of the radiation, in relation to the various ways 

of measuring it, including measurements per unit area, solid angle [sr], time, etc. These 

quantities are described below: 

 

Radiant energy 𝑸𝐞 [J]. It is the energy that is emitted, reflected, transmitted, or received in the 

form of electromagnetic radiation during a period of time. 

 

Radiant flux 𝚽(𝝀) [W/𝝁m]. It is the radiant energy per unit time per unit wavelength interval. 

Actually, it should be called spectral radiant flux. It can be for a unique direction, a cone or a 

hemisphere, depending on the measurement geometry. It is sometimes called radiant power.  

 

Φ(𝜆) =
𝑑2𝑄𝑒
𝑑𝜆𝑑𝑡

 

 

Radiant intensity 𝑰(𝝀, 𝛀)  [W/sr/ 𝝁m]. It is the radiant flux that is emitted, reflected, 

transmitted, or received along direction Ω per unit solid angle per unit wavelength interval. 

 

𝐼(𝜆, Ω) =
𝑑Φ(𝜆)

𝑑Ω
 

 

Irradiance 𝑬(𝝀) [W/m2/𝝁m]. It is the radiant flux incident onto a surface 𝐴 per unit area per 

unit wavelength interval. 
 

𝐸(𝜆) =
𝑑Φ(𝜆)

𝑑𝐴
 

 

Exitance (or emittance) 𝑴(𝝀)  [W/m2/𝝁m]. It is the radiant flux that exits (e.g., thermal 

emission, scattering) a surface 𝐴 per unit area per unit wavelength interval.  
 

𝑀(𝜆) =
𝑑Φ(𝜆)

𝑑𝐴
 

 

Radiance 𝑳(𝝀,𝛀) [W/m2/sr/𝝁m]. It is the radiant flux that exits or is incident onto a surface 𝐴 

per unit solid angle per unit projected area of 𝐴 per unit wavelength interval. It is a directional 
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quantity. With Ω the radiation direction and 𝜃 the angle between the surface normal and the 

radiation direction, radiance is written:  
 

𝐿(λ, Ω) =
𝑑2Φ(𝜆)

𝑑Ω𝑑𝐴cos𝜃
 

 

The irradiance 𝐸(𝜆) and exitance 𝑀(𝜆) are angular integrals of the radiance. With 2𝜋+ and 

2𝜋− the 2𝜋 space of the surface upper and lower hemisphere, respectively, we have: 
 

𝐸(𝜆) = ∫ 𝐿(λ, Ω)
2𝜋−

∙ cos𝜃𝑑Ω   and   𝑀(𝜆) = ∫ 𝐿(λ, Ω)
2𝜋+

∙ cos𝜃𝑑Ω  

1.3 Radiation interactions in a medium 

A radiation 𝑑𝐿(Ω) that crosses any media along a direct Ω is attenuated by absorption (i.e., 

𝑑𝐿𝑎(Ω)) and scattering (i.e., 𝑑𝐿𝑠
out(Ω)) and is increased by thermal emission along Ω (i.e., 

𝑑𝐿𝑒(Ω)) and scattering along Ω (i.e., 𝑑𝐿𝑠
in(Ω)) of radiation from other incident directions over 

the 4𝜋 space of directions. Eq. (1.6) expresses the radiation budget for a direction Ω. Absorption 

converts the energy of the incident radiation into internal energy of the absorbing volume or 

surface, which gives rise to radiant energy through thermal emission. Scattering does not 

convert the incident radiant energy into another form of energy. It simply redirects part of the 

incident radiation. The terms of Eq. (1.6) are detailed below. The radiative properties of 

molecules and particles used to describe these processes are defined in 1.Appendix A. 

𝑑𝐿(Ω) = 𝑑𝐿𝑎(Ω) + 𝑑𝐿𝑠
out(Ω) + 𝑑𝐿𝑒(Ω) + 𝑑𝐿𝑠

in(Ω) (1.6) 

1.3.1 Scattering 

The attenuation due to the scattering of the radiation 𝐿(λ, Ω) to other line of sight through an 

infinitesimal volume (infinitesimal segment 𝑑𝑠  in the line of sight) for any direction Ω  is 

proportional to the scattering coefficient 𝛼𝑠(λ, Ω) (Eq. (1.7)). 

𝑑𝐿𝑠
out(λ, Ω)

𝑑𝑠
= −𝛼𝑠(λ, Ω) ∙ 𝐿(λ, Ω) (1.7) 

 

Besides, the scattering of the radiation 𝐿(λ, Ω′) from all directions Ω′ in the 4𝜋 angular space 

into the line of sight Ω contributes to the radiation along the direction Ω: 
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𝑑𝐿𝑠
in(λ, Ω)

𝑑𝑠
=
1

4𝜋
∫ 𝐿(λ, Ω′) ∙ 𝛼𝑠(λ, Ω

′) ∙ 𝑃(𝜆, Ω′ → Ω)
4𝜋

𝑑Ω′ (1.8) 

 

with 𝑃(𝜆, Ω′ → Ω) the scattering phase function (
1

4𝜋
∫ 𝑃(𝜆, Ω′ → Ω)
4𝜋

𝑑Ω′=1). It gives the 

angular distribution of the scattered radiation energy due to the incident radiation from Ω′.  

 

In the atmosphere, as most molecules and particles are either spherical or randomly oriented, 

the extinction coefficient (unit: 1/m, cf. Annex A.1) is invariant by rotation (i.e., 𝛼𝑠(λ, Ω) ≡

𝛼𝑠(λ)), Eq. (1.7) and (1.8) can be simplified: 

𝑑𝐿𝑠
out(λ, Ω)

𝑑𝑠
= −𝛼𝑠(λ) ∙ 𝐿(λ, Ω)                                       

𝑑𝐿𝑠
in(λ, Ω)

𝑑𝑠
=
𝛼𝑠(λ)

4𝜋
∙ ∫ 𝐿(λ, Ω′) ∙ 𝑃(𝜆, Ω′ → Ω)
4𝜋

𝑑Ω′ 

 

Scattering phase functions commonly used in radiative transfer calculation are presented below. 

 

Isotropic scattering. It characterizes the simpler angular distribution of scattering with a 

constant scattering phase function (Eq. (1.9)). Although scattering is rarely isotropic in nature, 

it is frequently employed in theoretical studies as a preliminary approximation. 

𝑃(𝜆, Ω′ → Ω) = 1 (1.9) 

 

Rayleigh scattering. It is the major atmospheric scattering mechanism for elements (e.g., gases) 

whose size parameter 𝜒 (cf. Annex A.1) is much smaller than the radiation wavelength (0.002 

< 𝜒 < 0.2). The scattered radiation has an intensity that is inversely proportional to the fourth 

power of the wavelength, with forward and backward scattering that are symmetric. Its phase 

function is:  

𝑃𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜆, Ω
′ → Ω) =

3

4
(1 + cos2𝛾) (1.10) 

 

with 𝛾  the phase angle between the incident direction Ω′  and scattered direction Ω : 

cos 𝛾=Ω′∙Ω.  

 

Actually, the anisotropy of scattering elements influences 𝑃𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ. This influence is usually 

represented by a depolarization factor 𝛿 that modifies 𝑃𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ in Eq. (1.11). 𝛿 is a spectral 

quantity (Bates, 1984; Bucholtz, 1995) that decreases from 0.04545 at 0.2 𝜇m down to 0.02955 
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at 0.4 𝜇m, 0.02730 at 0.8 𝜇m, and is nearly constant for longer wavelengths. Its relative 

influence on 𝑃𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ of dry air is smaller than 0.1% for wavelengths larger than 0.4 𝜇m. It is 

commonly assumed to be equal to 0.0279 as advised by (Young, 1980).  

𝑃𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜆, Ω
′ → Ω) =

3

2
∙
1 − 𝛿

2 + 𝛿
∙ (
1 + 𝛿

1 − 𝛿
+ cos2𝛾) (1.11) 

 

Mie scattering. It is the major scattering mechanism if the size parameter is comparable or 

larger than the radiation wavelength (0.2 < 𝜒 <  2000). The Maxwell’s equations give its 

scattering coefficient and phase function for homogeneous spheres with any size parameter 𝜒 

and any relative refractive index 𝑚  (ratio of the particle refractive index to that of the 

surrounding medium) (Frisvad et al., 2007; Hulst and van de Hulst, 1981). The Mie scattering 

phase function is: 
 

𝑃𝑀𝑖𝑒(𝜆, Ω
′ → Ω) =

𝜆2

2𝜋𝜎𝑠(𝜆)
(|𝑆1|

2 + |𝑆2|
2) 

with   𝜎𝑠(𝜆) =
𝜆2 

2𝜋
∑ (2𝑛 + 1) ∙ (|𝑎𝑛|

2 + |𝑏𝑛|
2)∞

𝑛=1  

 𝑆1 = ∑
2𝑛+1

𝑛(𝑛+1)
∙ (𝑎𝑛𝜋𝑛 + 𝑏𝑛𝜏𝑛)

∞
𝑛=1  

 𝑆2 = ∑
2𝑛+1

𝑛(𝑛+1)
∙ (𝑎𝑛𝜏𝑛 + 𝑏𝑛𝜋𝑛)

∞
𝑛=1  

 

with coefficients 𝑎𝑛 and 𝑏𝑛 depend on the size parameter 𝜒 and relative refractive index 𝑚. 

The coefficients 𝜋𝑛 and 𝜏𝑛 depend on the phase angle 𝛾. 

 

The Henyey-Greenstein phase function (Eq. (1.12)) is frequently used to represent 𝑃𝑀𝑖𝑒 

because it has a convenient mathematical form and is physically meaningful. In most cases 𝑃𝐻𝐺  

is a good approximation of 𝑃𝑀𝑖𝑒, but in specific cases such as short wave with a small solar 

zenith, the difference with 𝑃𝑀𝑖𝑒 can reach 20% (Boucher, 1998).  

𝑃𝐻𝐺(𝜆, Ω
′ → Ω) =

1 − g2

(1 + g2 − 2g ∙ cos 𝛾)1.5
 (1.12) 

with g=
1

4𝜋
∫ 𝑃(𝜆, Ω′ → Ω)∙cos 𝛾𝑑Ω
4𝜋

 the asymmetry parameter. Eq. (1.12) can well mimic 

the scattering forward peak (i.e., 𝛾=0). In order to also correctly simulate the backward peak 

(i.e., 𝛾 = 𝜋), the double Henyey-Greenstein phase function (Eq. (1.13)) is frequently used 

(Kattawar, 1975). 
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𝑃𝐷𝐻𝐺(𝜆, Ω
′ → Ω) =

𝑎 ∙ (1 − g1
2)

(1 + g12 − 2g1 ∙ cos 𝛾)1.5
+

(1 − 𝑎) ∙ (1 − g2
2)

(1 + g22 − 2g2 ∙ cos 𝛾)1.5
 (1.13) 

with g1 > 0, g2 < 0 and 0 < 𝑎 < 1. 

 

1.3.2 Absorption and emission 

The absorption attenuation of the radiation 𝐿(λ, Ω)  through an infinitesimal volume is 

proportional to the absorption coefficient 𝛼𝑎(λ, Ω) (Eq. (1.14)). 

𝑑𝐿𝑎(λ, Ω)

𝑑𝑠
= −𝛼𝑎(λ, Ω) ∙ 𝐿(λ, Ω) (1.14) 

 

Figure 1.2 shows the absorption vertical transmittance over [0.3 𝜇m, 50 𝜇m] (without cloud or 

aerosol) for each major absorbing gas (e.g., H2O, CO2, O3, CH4, N2O). For a given wavelength 

λ , the total atmospheric absorption vertical transmittance is the product of the absorption 

vertical transmittance of all individual gases.  

 

𝛼𝑎(λ, Ω)𝑑𝑠 can be thought as the directional absorptance of a volume of depth 𝑑𝑠 because it is 

the fraction of the incident energy that is absorbed. Kirchhoff's law tells that the directional 

absorptance is equal to the directional emissivity under thermodynamics equilibrium condition. 

Therefore, the thermal emission of the volume of depth 𝑑𝑠 is: 

𝑑𝐿𝑒(λ, Ω) = 𝛼𝑎(λ, Ω) ∙ 𝐿B(𝜆, 𝑇) ∙ 𝑑𝑠 = 𝛼𝑎(λ, Ω) ∙
2ℎ𝑐2

𝜆5
∙

1

exp (
ℎ𝑐
𝜆𝑘B𝑇

) − 1
∙ 𝑑𝑠 (1.15) 

where 𝐿B(𝜆, 𝑇) is the thermal emission of a blackbody defined in Annex A.1. 
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Figure 1.2. Absorption vertical transmittance of a cloud- and aerosol-free midlatitude 

summer atmosphere, adapted from (Petty, 2006). The seven upper panels are for the 

seven major gases, and the bottom panel is for the total atmospheric molecules  

1.3.3 Radiative transfer equation and its formal solution 

The combination of the equations (1.6), (1.7), (1.8), (1.14), and (1.15), gives the radiative 

transfer equation (Chandrasekhar, 1960) that describes the radiative transfer in a medium.  

𝑑𝐿(λ, Ω)

𝑑𝑠
=-𝛼𝑒(λ, Ω)∙𝐿(λ, Ω)+∫

𝛼𝑠(λ, Ω
′)

4𝜋
∙𝐿(λ, Ω′)∙𝑃(𝜆, Ω′ → Ω)

4𝜋

𝑑Ω′+
𝑑𝐿𝑒(λ, Ω)

𝑑𝑠
 (1.16) 

 

For a medium whose elements are spheres, this equation is reduced to:  

𝑑𝐿(λ, Ω)

𝑑𝑠
= −𝛼𝑒(λ)∙𝐿(λ, Ω) +

𝛼𝑠(λ)

4𝜋
∙ ∫ 𝐿(λ, Ω′)∙𝑃(𝜆, Ω′ → Ω)
4𝜋

𝑑Ω′ +
𝑑𝐿𝑒(λ, Ω)

𝑑𝑠
 (1.17) 
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Figure 1.3. Exit radiance 𝐿(𝑟0, Ω) leaving a surface 𝛴 from 𝑟0 and transmitted to 𝑟, with 

scattering and thermal emission along the path 𝑟𝑜𝑟⃗⃗⃗⃗  ⃗. 

The method of variation of parameters applied to the integro-differential equation (Eq. (1.16)) 

gives the so-called formal solution of the radiative transfer equation (cf. (Chandrasekhar, 1960)). 

 

𝐿(𝑟, Ω) = 𝐿(𝑟0, Ω) ∙ 𝒯(𝑟 ↔ 𝑟0) + ∫
𝑑𝐿𝑠(𝑟

′, Ω)

𝑑𝑠

𝑠

0

∙ 𝒯(𝑟 ↔ 𝑟′)𝑑𝑠′ (1.18) 

 

with 𝑠 = ‖𝑟 − 𝑟0‖ the distance between 𝑟 and 𝑟0 (Figure 1.3), 𝑟′ = 𝑟 − 𝑠′Ω the location at 

the distance 𝑠′ from 𝑟 along the direction Ω, and the source function: 

𝑑𝐿𝑠(𝑟, Ω)

𝑑𝑠
= ∫

𝛼𝑠(𝑟, Ω
′)

4𝜋
∙ 𝐿(𝑟, Ω′) ∙ 𝑃(𝑟, Ω′ → Ω)𝑑Ω′

4𝜋

+
𝑑𝐿𝑒(𝑟, Ω)

𝑑𝑠
 (1.19) 

 

Eq. (1.18) shows that radiance 𝐿(𝑟, Ω) at 𝑟  in a medium is the sum of (1) the transmitted 

radiance 𝐿(𝑟0 , Ω) from 𝑟0, with  𝒯(𝑟 ↔ 𝑟0)=exp(−∫ 𝛼𝑒(𝑟
′)𝑑𝑠′

𝑠

0
) the transmittance function, 

and (2) the cumulated scattering and thermal emission from 𝑟0 to 𝑟 (Figure 1.3). 

1.4 Radiation interactions at a surface 

When a radiation encounters a surface, part of its energy is scattered in the surface upper 

hemisphere, transmitted in the surface lower hemisphere, and absorbed by the surface. The 

absorption increases the surface internal energy, which increases the thermal emission of that 

surface. Therefore, the surface radiance 𝐿(Ω) is the sum of three radiance terms due to thermal 
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emission 𝐿𝑒(Ω), scattering 𝐿𝑟(Ω) and transmittance 𝐿𝑡(Ω). Surface radiative properties (i.e., 

reflectance, absorptance, emissivity, transmittance) and definitions are given in 1.Appendix B. 

𝐿(Ω) = 𝐿𝑒(Ω) + 𝐿𝑟(Ω) + 𝐿𝑡(Ω) (1.20) 

  

1.4.1 Reflection 

A radiation 𝐿𝑖(𝜆, Ω
′)  incident in a direction Ω′  onto a surface of normal �⃗�  can generate 

reflected radiation 𝐿𝑟(λ, Ω) in directions Ω in the surface upper hemisphere 2𝜋+ centred on �⃗⃗� . 

A surface that scatters light isotopically is said to be Lambertian. Natural surfaces are usually 

not Lambertian. A surface that scatters an incident mono-directional light in a unique direction 

with a zenith angle equal to the zenith angle of the incident radiation is said to be specular. It is 

the case of a perfectly smooth water surface. Then, the direction of the scattered radiation is 

commonly called “specular direction”. The scattering behaviour natural surfaces is usually 

between “Lambertian” and “specular”, often with a peak in the specular direction and a peak in 

the hot-spot direction (i.e., configuration with equal sun and viewing directions).  

𝐿𝑟(λ, Ω) = ∫ 𝐿𝑖(𝜆, Ω
′) ∙ 𝑓𝑟(𝜆, Ω

′ → Ω) ∙ cos 𝜃′ 𝑑Ω′

2𝜋+
 (1.21) 

 

with 𝜃′  the angle between Ω′  and �⃗⃗� . 𝑓𝑟(𝜆, Ω
′ → Ω)  is the bidirectional reflectance 

distribution function (BRDF). It is equal to the bidirectional reflectance factor (BRF) 

divided by . Ω , Ω′ and �⃗⃗�  can be defined in different reference systems; e.g., use of 

𝑓𝑟(𝜆, −Ω
′ → Ω) if Ω′ and Ω point away from the surface.  

 

 

Figure 1.4. Light transport at a surface 𝛴. Exit radiance along direction Ω is due to the 

reflection of incident radiance along direction −Ω′ . Incident angle 𝜃′  is the angle 

between Ω′ and �⃗� , and exit angle 𝜃 is the angle between Ω and �⃗� . 
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BRFs can be derived from many sources, such as laboratory and field measurements, numeric 

simulations, analytical models, and geometric optics. They are characterized by two important 

properties: reciprocity and radiant energy conservation. The reciprocity indicates that a BRF 

is invariant by changing its incident and exit radiation direction arguments. 

 

𝑓𝑟(𝜆, Ω
′ → Ω) = 𝑓𝑟(𝜆, Ω → Ω′) 

 

The radiant energy conservation implies that the reflected radiant flux cannot be greater than 

the incident radiant flux. Therefore:  

 

∫ 𝑓𝑟(𝜆, Ω
′ → Ω)

2𝜋+
∙ cos 𝜃 𝑑Ω ≤ 1 

 

Five common reflectance models are presented below. 

 

Lambertian model. It represents the isotropic reflection and transmission of an ideal matte 

surface (Eq. (1.22)). A Lambertian surface has equal directional-hemispherical reflectance, bi-

hemispherical and bi-directional reflectance: ℛDH(𝜆, Ω) = ℛHH(𝜆) = 𝜌(𝜆)   ∀Ω. Then: 

 

𝑓𝑟(𝜆, Ω
′ → Ω) =

𝜌(𝜆)

𝜋
 (1.22) 

 

RPV (Rahman-Pinty-Verstraete) model. This parametric model was designed to represent 

the land surface anisotropy patterns (Rahman et al., 1993). It depends on four parameters: the 

amplitude 𝜌0, parameter 𝑘 in the modified Minnaert function 𝑀a(𝑘) to give the overall BRF 

angular shape, the asymmetric parameter 𝑔 of the Henyey-Greenstein function 𝐹HG(𝑔),  and 

the parameter 𝜌𝑐 of the hotspot function 𝐻s(𝜌𝑐).  
 

𝑓𝑟(𝜆, Ω
′ → Ω) =

𝜌0
𝜋
∙ 𝑀a(𝑘) ∙ 𝐹HG(𝑔) ∙ 𝐻𝑠(𝜌𝑐) (1.23) 

with   𝑀a(𝑘) =
(cos𝜃′ cos𝜃)

𝑘−1

(cos𝜃′+cos𝜃)1−𝑘
  

𝐹HG(𝑔) =
1−𝑔2

(1+𝑔2+2𝑔cos𝛾)1.5
, 𝛾 is the phase angle 

𝐻𝑠(𝜌𝑐) = 1 +
1−𝜌𝑐

1+√tan2𝜃′+tan2𝜃−2 tan𝜃′ tan𝜃 cos(𝜑−𝜑′)
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Hapke model. It describes the reflection distribution of a plane-parallel and semi-infinite 

medium made of irregular, randomly distributed particles (single scattering albedo 𝜔(𝜆) , 

scattering phase function 𝑃(𝜆, Ω′ → Ω)) of large size relative to the radiation wavelength 

(Hapke, 1986, 1981). It is an approximate solution of the radiative transfer equation (cf. section 

1.5) with exact computation of single scattering and approximate computation of multiple 

scattering. It uses three parameters: the single scattering 𝜔 of particles, and the parameters 𝑏0 

and ℎ that respectively describe the height and the width of the hotspot function 𝐵(𝑏, ℎ, cos𝜃). 

 

𝑓𝑟(𝜆, Ω
′ → Ω) =

𝜔

4𝜋(cos 𝜃′ + cos 𝜃)
∙ {[1 + 𝐵(𝑏, ℎ, Ω′, Ω)] ∙ 𝑃(𝜆, Ω′ → Ω) 

+𝐻(𝜔, cos 𝜃′) ∙ 𝐻(𝜔, cos 𝜃) − 1}                               

(1.24) 

with  𝐵(𝑏, ℎ, cos𝜃) =
𝑏

1+tan(𝛾/2)/ℎ
 and 𝐻(ω, cos𝜃) =

1+2cos𝜃

1+2cos𝜃√1−𝜔
  

 

Specular model. Specular reflection and transmission occur at the interface between two 

different media (Figure 1.5). In this figure, the axis Ox is in the incidence plane. It is the axis 

Ox in Figure 1.1 after a rotation of 𝜋 2⁄  around the axis of the radiation propagation. The 

Fresnel’s law gives the ratio of the reflected radiation’s electric field to that of the incident 

radiation. It leads to the specular bidirectional reflectance: 

ℛ𝑠(𝜆, Ω
′ → Ω) =

ℛ𝑥𝑝
+ ℛ𝑦𝑝

2
 (1.25) 

 

with the reflectance for parallel (𝑥𝑝) and perpendicular (𝑦𝑝) polarized radiation: 
 

ℛ𝑥𝑝 = (
𝑛

𝑛′
cos𝜃′−cos𝜃

𝑛

𝑛′
cos𝜃′+cos𝜃

)

2

  and  ℛ𝑦𝑝 = (
cos 𝜃′−

𝑛

𝑛′
cos𝜃

cos 𝜃′+
𝑛

𝑛′
cos𝜃

)

2

  (1.26) 

 

𝑛′(𝜆0) and 𝑛(𝜆0) are respectively the refractive indices of the medium where the incident and 

transmitted radiation propagate, with 𝜆0=𝑛𝜆 the wavelength in vacuum. 𝜃′ is the local incident 

zenith angle, and 𝜃 is the local transmitted zenith angle. They are related by the Snell’s law: 

 

𝑛′ sin 𝜃′ = 𝑛 sin 𝜃 
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Figure 1.5. Coordinate system at the local surface adapted from (Collett, 1971; Hecht, 

1987). The parallel (�̂�𝑃
′ , red colour) and perpendicular (�̂�𝑃

′ , blue colour) components 

of the incident, reflected and transmitted radiation in the local coordinates are marked. 

As the incident and reflected radiation are monodirectional (i.e., infinitesimal solid angle) and 

symmetric about the normal to the interface, the delta function 𝛿(Ω′-Ω′∗) can define the specular 

BRDF, with Ω′∗ symmetric to the reflected direction Ω with respect to the normal of the interface. 

 

𝑓𝑟(𝜆, Ω
′ → Ω) = ℛ𝑠(𝜆, Ω

′ → Ω) ∙
𝛿(Ω′ − Ω′∗)

cos 𝜃′
 (1.27) 

 

Microfacet model. This geometric-optics-based model gives the reflection and transmission of 

a rough surface idealized as a collection of microfacets characterized by areas much smaller 

than the considered surface, and statistical distributions of their normals and positions. Two 

conditions are generally verified in the local coordinates of a differential rough surface 𝑑𝐴:  

 

(1) The area of the vertical projection of the microfacets is 𝑑𝐴 (i.e., no overlap in projection). 

Therefore, with Ωf the normal of facets and 𝐷m(Ωf) the microfacet distribution function: 
 

∫ 𝐷m(Ωf) ∙ cos 𝜃f 𝑑Ωf
2𝜋+

= 1 

 

(2) The visible area in direction Ω is 𝑑𝐴 cos 𝜃. Microfacets can be invisible or shaded by other 

microfacets depending on the viewing-illumination directions. With 𝐺m(Ω, Ωf) the masking-

shadowing function; i.e., area fraction of microfacets with normal Ωf visible in direction Ω:  
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∫ 𝐺m(Ω,Ωf) ∙ 𝐷m(Ωf) ∙ max(0, Ω ∙ Ωf) 𝑑Ωf
2𝜋+

= cos 𝜃 

 

With the microfacet assumption, the BRF of a rough surface depends on 𝐷m(Ωf)  and 

𝐺m(Ω, Ωf). Frequently, microfacets are assumed to exhibit perfect specular reflection and 

transmission, as with the Beckmann distribution (Beckmann and Spizzichino, 1987) 

 

𝐷m(Ωf) =
exp (−

tan2 𝜃f
2𝜎2

)

2𝜋𝜎2 ∙ cos4 𝜃f
 

(1.28) 

 

with 𝜎 the RMS of the microfacet slopes. The fraction of microfacet differential area both 

visible for the incident and exit directions 𝐺m(Ω
′, Ω) is frequently given by the modified 

Smith’s masking-shadowing function independent of the microfacet normal and neglect of 

the height correlation between neighbouring microfacets (Heitz et al., 2013; Smith, 1967): 

𝐺m(Ω
′, Ω) =

1

1 + Λ(Ω′) + Λ(Ω)
 (1.29) 

 

with Λ(Ω) =
1

2
(erf (

1

√2𝜎 tan𝜃
) − 1 +

exp(−
1

2𝜎2 tan2 𝜃
)

√2𝜋𝜎 tan𝜃
) and erf(𝑥) the error function. 

 

The BRDF defined by (Torrance and Sparrow, 1967; Walter et al., 2007) is frequently used:  

 

𝑓𝑟(𝜆, Ω
′ → Ω) =

ℛ𝑠(𝜆, Ω
′ → Ω) ∙ 𝐷m(Ωf) ∙ 𝐺m(Ω

′, Ω)

4 cos 𝜃′ cos 𝜃
 (1.30) 

1.4.2 Transmission 

A surface illuminated by an incident radiation 𝐿𝑖(𝜆, Ω
′)  transmits the radiation 𝐿𝑡(𝜆, Ω) to 

direction Ω in the surface lower hemisphere 2𝜋−. 

 

𝐿𝑡(𝜆, Ω) = ∫ 𝐿𝑖(𝜆, Ω
′) ∙ 𝑓𝑡(𝜆, Ω

′ → Ω) ∙ cos 𝜃′ 𝑑Ω′

2𝜋−
 (1.31) 

 

with 𝑓𝑡(𝜆, Ω
′ → Ω)  the bidirectional transmittance distribution function (BTDF). If the 

wavelength changes from 𝜆′=𝜆0/𝑛
′ in the medium that contains the incident radiation, to 

𝜆=𝜆0/𝑛 in the medium that contains the transmitted radiation, Eq. (1.31) should be written: 

 

𝐿𝑡(𝜆, Ω) = ∫ 𝐿𝑖(𝜆
′, Ω′) ∙ 𝑓𝑡(𝜆

′ → 𝜆,Ω′ → Ω) ∙ cos 𝜃′ 𝑑Ω′

2𝜋−
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The radiant energy conservation requires that ∫ 𝑓𝑡(𝜆, Ω
′ → Ω)

2𝜋−
∙ cos 𝜃 𝑑Ω ≤ 1. 

The reciprocity property of BTDF is not always valid because the refraction changes the solid 

angle 𝑑Ω′  and wavelength 𝜆′  of the incident radiation: cos 𝜃′ 𝑑Ω′/ cos 𝜃 𝑑Ω=(𝑛/𝑛′)2  and 

𝜆′/𝜆=𝑛/𝑛′. (Veach, 1997) proves a symmetric relationship for any physically valid BTDF: 

 

𝑛′
3
∙ 𝑓𝑡(𝜆

′ → 𝜆, Ω′ → Ω) = 𝑛3 ∙ 𝑓𝑡(𝜆 → 𝜆′, Ω → Ω′) (1.32) 

 

Below, we present three commonly used BTDFs in radiative transfer calculations. 

 

Lambertian transmission. Its directional-hemispherical transmittance and bi-hemispherical 

transmittance are equal: 𝒯DH(𝜆, Ω) = 𝒯HH(𝜆) = 𝜏(𝜆), ∀ Ω. The corresponding BTDF is:  

𝑓𝑡(𝜆, Ω
′ → Ω) =

𝜏(𝜆)

𝜋
 (1.33) 

 

Specular transmission. The Fresnel’s law gives the ratio of the transmitted radiation’s electric 

field to that of the incident radiation. The resulting bidirectional transmittance is: 

 

𝒯s(𝜆, Ω
′ → Ω) =

𝒯𝑥𝑝 + 𝒯𝑦𝑝
2

 (1.34) 

 

with the transmittance for parallel and perpendicular polarized radiation 
 

𝒯𝑥𝑝 = (
2 cos𝜃′

𝑛

𝑛′
cos𝜃′+cos𝜃

)

2

    and   𝒯𝑦𝑝 = (
2 cos𝜃′

cos𝜃′+
𝑛

𝑛′
cos𝜃

)

2

  (1.35) 

 

The BTDF expression in Eq. (1.36) considers the change of solid angle and wavelength of the 

radiation, with Ω′∗ the incident angle that induces transmittance along Ω by the Snell’s law. 

 
 

𝑓𝑡(𝜆, Ω
′ → Ω) = 𝒯𝑠(𝜆, Ω

′ → Ω) ∙
(
𝑛
𝑛′)

3

∙ 𝛿(Ω′ − Ω′∗)

cos 𝜃′
 

(1.36) 

 

Microfacet model. The transmission of a rough surface idealized as a collection of specular 

microfacets considers the change of solid angle and wavelength of the incident radiation due to 

the refraction. (Walter et al., 2007) propose the following BTDF definition:  

 

𝑓𝑡(𝜆, Ω
′ → Ω) =

|Ω′ ∙ Ωf| ∙ |Ω ∙ Ωf|

cos 𝜃′ ∙ cos 𝜃
∙
(
𝑛
𝑛′)

3

∙ 𝒯𝑠(𝜆, Ω
′ → Ω) ∙ 𝐷m(Ωf) ∙ 𝐺m(Ω

′, Ω)

(|Ω′ ∙ Ωf| −
𝑛
𝑛′
|Ω ∙ Ωf|)

2  (1.37) 
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1.4.3 Absorption and emission 

The absorptance 𝒜(𝜆) characterizes the absorption of a surface. For an arbitrary surface, it is 

related to BRDF and BTDF: 

 

𝒜D(𝜆, Ω
′) = 1 − [∫ 𝑓𝑟(𝜆, Ω

′ → Ω) ∙ cos 𝜃 𝑑Ω
2𝜋+

+∫ 𝑓𝑡(𝜆, Ω
′ → Ω) ∙ cos 𝜃 𝑑Ω

2𝜋−
] 

 

For a Lambertian surface, i.e., 𝒜D(𝜆, Ω
′)=𝒜H(𝜆)=𝑎(𝜆) ∀ Ω

′, 𝜆, we have: 𝑎(𝜆)=1-𝜌(𝜆)-𝜏(𝜆). 

 

The internal energy of a surface gives rise to the emission of radiation. The emissivity 𝜀(𝜆) 

characterizes the capacity of emission. Under the thermodynamic equilibrium condition, the 

absorptance is equal to the emissivity. The thermal emitted radiance is:  

 

𝐿𝑒(𝜆, Ω) = 𝜀D(𝜆, Ω) ∙ 𝐿B(𝜆, 𝑇) = 𝜀D(𝜆, Ω) [
2ℎ𝑐2

𝜆5
∙

1

exp (
ℎ𝑐
𝜆𝑘B𝑇

) − 1
] (1.38) 

1.4.4 Light transport equation 

The light transport equation, also called Rendering equation (Kajiya, 1986; Pharr et al., 2016), 

describes the surface radiative interaction. It is derived from equations (1.20), (1.21), (1.31) and 

(1.38):  

 

𝐿𝑜(λ, Ω) = 𝐿𝑒(𝜆, Ω) + ∫ 𝐿𝑖(𝜆, Ω
′) ∙ 𝑓𝑠(𝜆, Ω

′ → Ω) ∙ cos 𝜃′ 𝑑Ω′

4𝜋

 (1.39) 

 

with 𝑓𝑠(𝜆, Ω
′ → Ω) the bidirectional scattering distribution function (BSDF). It is BRDF 

(i.e., 𝐵𝑅𝐹/𝜋) for reflection and BTDF for transmission. 

1.5 Introduction to polarized radiative transfer 

The radiative transfer is mathematically defined by the radiative transfer equation (Eq. (1.16)) 

for media and by the light transport equation (Eq. (1.39)) for surfaces. Both are scalar equations 

based on the heuristic principles of radiometry, i.e., the principle of radiant energy conservation 

and the notions of ray and ray pencil (cf. section 1.3 and 1.4). This approach is intuitive, easy 
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to understand and accurate enough for many radiative transfer applications in particular if the 

size of objects is much larger than the radiation wavelengths. However, not taking polarization 

into account is a source of inaccuracy that is less and less acceptable as the need for accuracy 

increases for many scientific and societal applications. For example, accuracy requirements is 

 0.0025 for surface albedo (https://gcos.wmo.int/en/essential-climate-variables/albedo/ecv-

requirements) and  1-2 K for land surface temperature (Sobrino et al., 2016). The 

consideration of polarization implies to introduce equations directly related to principles of 

electromagnetism, i.e., Maxwell’s equations. Below, we present the vector radiative transfer 

equation deduced from the statistical electromagnetics and the vector light transport equation 

deduced from the geometric optics. Their scalar approximations are consistent with the 

equations in previous sections. Here, the notation 𝜆 is thus omitted because all the equations 

are for a monochromatic radiation. 

1.5.1 Vector radiative transfer equation 

(Mishchenko, 2002) demonstrated a microphysical derivation of the vector radiative transfer 

equation from statistical electromagnetics in case of a medium composed of sparsely positioned, 

arbitrarily shaped and arbitrarily oriented particles (Eq. (1.40)).  

 

𝑑𝑳(𝑟, Ω)

𝑑𝑠
= −𝐊𝑒(𝑟, Ω)𝑳(𝑟, Ω) + ∫ 𝐏(𝑟, Ω′ → Ω) ∙ 𝑳(𝑟, Ω′)𝑑Ω′

4𝜋

+
𝑑𝑳𝑒(𝑟, Ω)

𝑑𝑠
 (1.40) 

 

with 𝑳=𝐿𝑺∗ the radiance vector defined as the product of scalar radiance 𝐿 and the reduced 

Stokes vector 𝑺∗=[1, 𝑄/𝐼, 𝑈/𝐼, 𝑉/𝐼 ]T. 𝑠 is the propagation distance along the line of sight 

and 𝑟 is the position in the absolute reference. 𝐊𝑒 is the ensemble average of 4×4 extinction 

matrix. 𝐏 is the 4×4 phase matrix that describes the distribution of the scattered radiance 

vectors. 𝑳𝑒 is the polarized thermal emitted radiance vector averaged over particle state.  

 

This approach links the radiative transfer theory and Maxwell’s equations. By replacing the 

vectors and matrices by their first element, we get the usual form of radiative transfer equation 

(Eq. (1.16)). (Mishchenko et al., 2006) proved that the scalar approximation is quite accurate if 

the first order scattering approximation is valid and that the error increases if the contribution 

of multiple scattering increases. For example, for an homogeneous Rayleigh scattering 

atmosphere layer (single scattering albedo 0.8, vertical transmittance 0.6) over a black surface, 

https://gcos.wmo.int/en/essential-climate-variables/albedo/ecv-requirements
https://gcos.wmo.int/en/essential-climate-variables/albedo/ecv-requirements
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the maximum error of scalar equation can reach ±8%. Also, he proved that the scalar equation 

gives results accurate enough if particles have a size far larger than the radiation wavelength. 

For example, for a layer of polydisperse, randomly oriented oblate spheroids (single scattering 

albedo 1.0, vertical transmittance 0.6, reflective index 1.33, size parameter 0.01) over a black 

surface, the maximum error of scalar approximation can reach ±10%. The maximum error is 

reduced to less than ±1.0% if the size parameter is larger than five (Mishchenko et al., 2006).  

1.5.2 Vector light transport equation 

Most land surface elements (e.g., crops, trees, buildings, etc.) have dimensions much larger 

than wavelengths (i.e., size parameter ≫  1) in spectral regions from ultraviolet to thermal 

infrared (Table 1.1). Then, we are in the scattering regime of geometric optics (Petty, 2006). It 

means that the geometric optics and radiant energy conservation are very good approximations 

to the electromagnetic theory. Also, the exit radiance vector 𝑳𝑜(𝑟, Ω) in direction Ω is the sum 

of the emitted radiance vector 𝑳𝑒(𝑟, Ω) in direction Ω and scattered radiance vector to direction 

Ω  due to all incident radiance 𝑳𝑖(𝑟, Ω
′)  from the 4𝜋  space (Eq.(1.41)). 𝑳𝑒(𝑟, Ω)  can be 

polarized depending on the surface optical properties. For example, it is isotropic and 

unpolarized for Lambertian surfaces and linearly polarized for specular surfaces (Mishchenko 

et al., 1999; Tsang et al., 1985). 

 

𝑳𝑜(𝑟, Ω) = 𝑳𝑒(𝑟, Ω) + ∫ 𝐏(𝑟, Ω′ → Ω) ∙ 𝑳𝑖(𝑟, Ω
′)

4𝜋

𝑑Ω′ (1.41) 

 

By replacing the vectors and matrices by their first element, we get the light transport equation 

(Eq. (1.39)) proposed by (Kajiya, 1986). 

 

 

 

 

 

 

 

 

 



CHAPTER 1 RADIOMETRY AND RADIATIVE TRANSFER 

 22 

 

 

 



 

 

 23 

The chapter presents computational approaches to radiative transfer calculations. We review 

the importance of knowledge about radiative transfer. We then discuss how radiative transfer 

can be simulated on a computer and review the numerical methods commonly used to solve the 

radiative transfer problem. Finally, we present the DART model. The improvement of the 

DART model is the main objective of this thesis.  

 

Good references are (Disney et al., 2000; Gastellu-Etchegorry et al., 1996; Myneni et al., 1989; 

Pinty et al., 2004, 2001; Wang and Gastellu-Etchegorry, 2021; Widlowski et al., 2015, 2013, 

2007). Myneni et al. (1989) review the theory of radiation transport in vegetation canopies. 

Pinty et al. (2004, 2001) and Widlowski et al. (2015, 2007) document the advances of numerical 

models that simulate radiative transfer at or near land surfaces. Gastellu-Etchegorry et al. (1996) 

is the first paper about DART that details its underlying theory. 

2.1 Why radiative transfer modelling is important 

A major interest of the study of radiative transfer is to improve the understanding of the 

radiation related processes in our environment (e.g., cities, forests, countryside, atmosphere). 

For example, knowledge of the solar radiation absorbed by a vegetation canopy provides 

Chapter 2  

Numerical models for radiative transfer 
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information on its photosynthesis activity. The propagation of radiation in a medium can be 

described mathematically by the equations of radiative transfer, which allows to study 

quantitatively the radiation behaviour. Because these equations cannot be solved exactly except 

under very simplifying assumptions, numerical modelling of radiative transfer is an essential 

tool to obtain reasonably accurate solution of the radiative transfer in a complex environment. 

 

Electromagnetic radiation carries not only energy but also a wealth of information about the 

environment in which it originates and/or propagates. However, in general, this information 

(e.g., moisture, biomass, thermodynamic temperature) cannot be measured directly by a 

radiometric instrument. This highlights a major objective of radiative transfer modelling: to 

help retrieve information about our environment through the inversion of radiometric 

measurements, provided that forward modelling can link the desired information and the 

radiometric measurements.  

 

Radiative transfer modelling also allows to conduct virtual experiments. It is particularly useful 

for the preparation of Earth observation satellite missions for which measurements cannot be 

deduced in advance. The virtual experiment provides preliminary results according to the 

defined experimental and instrumental configurations which allows to test the mission and 

improve the calibration and validation activities. The virtual experiment can also generate data 

sets if existing measurements are not sufficient. For example, it can effectively simulate huge 

volumes of input data to train deep learning algorithms. It can also help filling gaps in time 

series measurements of our environment.  

 

If accurate, efficient, and robust methods for radiative transfer modelling can be found, they 

will inevitably be widely used in many fields such as earth and atmosphere science, thus 

contributing greatly to the study of increasingly pressing environmental problems. 
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2.2 Radiative transfer models 

2.2.1 An overview 

The radiative transfer model (RTM) is the computer realization of radiative transfer. It provides 

a platform to manage a virtual environment (also called scene), including the geometry and 

radiative properties (e.g., scattering, absorption, thermal emission) of its elements, with light 

sources and sensors, which can be instruments or the environment itself, for example for 

simulating the radiative budget (i.e., 3D radiation intercepted, scattered, absorbed and emitted). 

This platform runs a computer algorithm that tracks the radiation in this virtual environment to 

simulate the required quantities, such as instrument observations and radiation balance.  

 

The design of RTMs depends on the scientific context. Here, for the study of land surface 

functioning, RTMs aim at simulating radiative transfer at or near land surfaces. Depending on 

their numerical solution of the radiative transfer equations, these RTMs are often divided into 

three categories: (i) radiosity methods, (ii) Monte Carlo methods and (iii) discrete ordinates 

methods. 

 

Radiosity methods, such as DIANA (Goel et al., 1991) and RGM (Qin and Gerstl, 2000), solve 

the equations of radiative transfer through the inversion of a square matrix that includes the 

geometric view factors of each surface relative to all other surfaces in the environment. The 

advantage of the radiosity method is that once the inverse square matrix is computed, the 

bidirectional reflectance factor (BRF), directional brightness temperature (DBT), images and 

radiation balance of the environment can be very easily derived. However, the major limitation 

is that its computation time and computer memory dramatically increase with the complexity 

of the radiative transfer problem. Also, these methods are limited to simulate certain physical 

phenomena such as polarization and atmospheric scattering. Monte Carlo methods, such as 

FLIGHT (North, 1996), Raytran (Govaerts, 1996) and librat (Lewis, 1999), estimate the 

solution of the equations of radiative transfer by repeatedly sampling the light paths in the 

environment. This stochastic process converges to the exact solution after sufficient trials and 

repetitions. The Monte Carlo method is usually considered as the most accurate, flexible, but 

also the most computer expensive solution of the radiative transfer problem (Goel, 1988; 

Myneni et al., 1989). Discrete ordinates methods solve the radiative transfer problem for a finite 
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number of radiation propagation directions. Many models use them such as the models of 

(Kimes and Kirchner, 1982; Myneni et al., 1990), DART (Gastellu-Etchegorry et al., 1996), and 

DIRSIG (Kraska, 1996). Like the Monte Carlo method, the discrete ordinates method is flexible 

to simulate a variety of light sources, sensors, radiometric quantities and radiative processes of a 

complex environment. It is known as a good compromise between accuracy and efficiency. A 

more detailed table that lists the functionalities of some of the best 3D RTMs are in Annex F. 

2.2.2 Development and challenge 

The RTMs designed in the 1980s and 1990s are usually suited to very abstract representations 

of land surfaces. For example, plants are represented by turbid medium or simple geometric 

primitives. They simulate basic radiative processes and limited radiometric measurements (e.g., 

BRF, images). Since then, many efforts have been made to improve their accuracy and 

capability. For example, RAPID (Huang et al., 2013), developed on the basis of RGM, 

significantly improved the computation efficiency of RGM by representing complex vegetation 

canopies by porous objects (i.e., clusters of triangle/rectangle flat leaves) instead of facets while 

retaining reasonable accuracy. Rayspread, a speeded up successor of Raytran, implemented the 

photon spreading method that sends a group of virtual photons to all possible sensors after each 

interaction (Widlowski et al., 2006). It also provided the absorption, transmission, and albedo 

products for studying photosynthesis and other physiological processes. DART and DIRSIG 

were designed upon the discrete ordinates method that they greatly adapted for general-purpose 

remote sensing applications and land surface studies (Brown and Schott, 2010; Gastellu-

Etchegorry et al., 2017, 2015). 

 

The RAdiation transfer Model Intercomparison (RAMI) initiative is a very good indicator of 

the progress of RTMs. It benchmarks the latest generation RTMs under well controlled 

experimental conditions close to in-situ measurements. About 60-65% existing RTMs 

participated to this program. Launched in 2005, the RAMI-III made significant progress 

compared to RAMI-II (2002-2004) and RAMI-I (1999-2000) in terms of model agreement, 

model capacity, and model participation. Six benchmark models (i.e., DART, drat, FLIGHT, 

Rayspread, Raytran, Sprint3) among eighteen participants have good agreement (difference 

below 1% in relative) for abstract vegetation canopies in which vegetation was represented by 

layers of homogeneous turbid or geometric primitives (e.g., cuboid, sphere, cylinder, ellipsoid, 
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cone) (Widlowski et al., 2007). It has concluded that RTMs in the 2000s were able to reproduce 

benchmark results for small-scale abstract representations of land surfaces.  

 

RAMI-IV (2009-2015) significantly improved the representation of the vegetation canopy by 

representing plants with detailed facet-based descriptions of stems, branches and leaves 

(Widlowski et al., 2015). Totally six well reconstructed agricultural fields and forests, namely 

actual canopies, were defined. Plant models were extracted from LiDAR observations or 

constructed by professional software (e.g., xfrog, arbaro) using plant allometric measurements. 

Due to the increase of the complexity of the simulated land surfaces, the participant RTMs, 

including the benchmark models in RAMI-III, were much less consistent. Indeed, for most of 

them, the exact and accurate simulations of the RAMI-IV exercises required very high-

performance computers. In addition, some of them could only represent plants by geometric 

primitives. Thus, many RTMs were run with approximations in plant representation and 

radiative transfer modelling, leading to inaccuracies and differences between participants’ 

models. For example, DART used a relatively small number of discrete directions, and 

represented pine shoots by turbid foliage medium. As a result, RAMI-IV failed to provide 

benchmark results as RAMI-III. The successor RAMI-V (2021-present) added two more actual 

canopies and required participative RTMs to reproduce atmospheric-corrected satellite images 

of eight experiment fields in addition to in-situ measurements such as BRF and radiation fluxes. 

The latest initiative, RAMI4ATM (2022-present), proposes to simulate satellite observations 

under a variety of atmospheric conditions. Although the analysis of submissions in RAMI-V 

and RAMI4ATM is not yet published, it shows the ambition to use RTMs in the calibration and 

validation activities of Earth observation satellite missions.  

 

RAMI and many remote sensing applications highlight four challenges for RTMs: 

 

1. Realism of land surface representations. It greatly impacts the accuracy of the simulation 

of the radiative budget and remote sensing observations of the land surfaces. For example, 

row orientations in crop fields and tree plantations lead to very large directional effects 

in satellite images. The required realism of the representation of land surfaces depends 

on the expected accuracy on the simulated radiative budget and remote sensing 

observations. It also depends on the scale of analysis. For example, the spatial variation 
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of the row orientation changes its influence on the radiative budget and remote sensing 

observations at different spatial scales. 

2. Realism of radiation representation. Radiation is usually characterized by its wavelength, 

intensity, direction, and polarization. However, up to now, most RTMs do not consider 

polarization both in the atmosphere and land surfaces. Its simulation should increase the 

accuracy of radiative transfer modelling (cf. section 1.5.1).  

3. Surface-atmosphere radiative coupling. This coupling influences the spectral irradiance 

of the Earth’s surface, in particular in presence of high reflectance surfaces and at small 

wavelengths where the atmosphere tends to be highly scattering. However, most RTMs 

neglect this radiative coupling or treat it in an approximated way (e.g., the spatially 

heterogeneous upwelling radiation from land surfaces is considered as homogeneous). 

4. Optical properties of scene elements. Most RTMs assume that scenes are made of 

Lambertian surfaces (i.e., isotropic reflectance). It is a very large simplification in many 

cases. In particular, the specular behaviour of surfaces (e.g., foliar elements in vegetation 

canopies and windows in buildings) should be considered. Depending on the viewing 

direction and the scene considered, it should greatly improve the simulation of 

observations in all spectral ranges, including the thermal infrared range.  

 

Also, the 3D RTMs are more and more used in generating datasets for the inversion of land 

surface parameters. For example, Miraglio (2021) simulated DART images to train machine 

learning models to derive the leaf equivalent water thickness (EWT) and leaf mass per area 

(LMA) from synthetic spectral images of forests (Miraglio, 2021). Makhloufi (2021) and 

Abdelmoula (2021) did massive DART simulations (order of 400,000) to create look-up tables 

in order to train machine learning models to derive biophysical properties (LAI, leaf chlorophyll 

content, leaf water content, leaf mesophyll structure) of olive trees from Sentinel-2 satellite 

images (Abdelmoula et al., 2021; Makhloufi et al., 2021). In the frame of DIAPOS project 

financed by French Space Agency (CNES), CESBIO simulated more than 1 million high-

resolution DART images to train a machine learning model in order to assess the potential of 

high-resolution satellites to detect a specific type of tree (i.e., Babassu: palm tree) in a forest. 

To make these applications operational, 3D RTMs must be improved in terms of accuracy and 

also computer time and memory. 
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2.3 The classic DART model 

2.3.1 A general introduction 

DART (Discrete Anisotropic Radiative Transfer) is a large code ( 500,000 lines of C++) 

developped at CESBIO since 1992 (Gastellu-Etchegorry et al., 2015, 1996). It is one of the most 

accurate and comphrehensive 3D RTMs in the remote sensing community. Based on the discrete 

ordinate method, it can simulate the radiative budget and remote sensing observations (e.g., in-

situ, ariborne and satellite measurements.) of urban and natural land surfaces, with topography 

and atmopshere, from ultraviolet to thermal infrared domain. It can simulate also the solar induced 

fluorescence of vegetation canopies and the terrestrial, airborne, and space-based LiDAR signal 

(point cloud, waveform, photon counting). DART shows good agreement (differences below 1% 

in relative) with the other five benchmark models (i.e., drat, FLIGHT, Rayspread, Raytran, 

Sprint3) in RAMI-III (Widlowski et al., 2007). It was also successfully evaluated by satellite, 

airborne and ground-based measurements. For example, Landier et al. (2018) found shortwave 

albedo  2.5% between DART and time series flux tower measurements for the whole year of 

2016 (Landier et al., 2018) in the frame of URBANFLUX projet. In the thermal infrared, RMSE 

was less than 2 K between DART and measured (in-situ, airborne hyperspectral ASH, spaceborne 

ASTER) brightness temperature of three homogeneous land surfaces (bare soil, green grass, sand) 

at 5 thermal bands (8.1 - 8.5, 8.5 - 8.9, 8.9 - 9.3, 10.3 - 11.0, 11.0 - 11.7 𝜇m) (Sobrino et al., 2011). 

These authors found the same accuracy between directional brightness temperature (viewing 

zenith between -60° and 60°) simulated by DART and measured by a goniometric system. 

Similarly (Guillevic et al., 2003), an RMSE = 1.25 K was found between DART and in-situ 

infrared thermometer (spectral band: 8 - 14 𝜇m) brightness temperature of a cotton row crop, for 

five viewing zenith angles (0°, 20°, 40°, 60°, 80°).  

 

DART was initially designed for simulating directional reflectance and images of turbid 

vegetation canopies in the visible and near infrared domains (Gastellu-Etchegorry et al., 1996). 

Later, it included a specifically designed atmospheric radiative transfer modelling module 

(Gascon et al., 2001) and was extended to the thermal infrared domain with the provision of 3D 

radiation balance of canopies (Guillevic et al., 2003). Afterwards, it supported an additional 

representation of the vegetation and urban elements by polygons with various surface scattering 

properties (e.g., Lambertian, Hapke and RPV models) (Gastellu-Etchegorry, 2008). It was also 
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improved to simulate LiDAR, passive sensors (e.g., pushbroom scanner, frame camera, 

hemispheric camera) (Gastellu-Etchegorry et al., 2015; Yin et al., 2016), and the solar induced 

fluorescence (SIF) and polarization (Gastellu-Etchegorry et al., 2017). Subsequently, it 

integrated a powerful ray-object intersection kernel Embree (Wald et al., 2014) that 

considerably accelerated its modelling (Qi et al., 2019b). 

2.3.2 Numerical modelling 

DART tracks the radiation from the source, through the environment to the sensor with an 

adapted iterative discrete ordinates method. The light sources can be the sun, the sky, the laser, 

and any thermal emitter in the land surfaces and in the atmosphere. The sensor can be a 

pushbroom scanner, a frame camera, a hemispheric camera, an orthographic camera, a LiDAR 

receiver at an arbitrary position with an arbitrary orientation. It is also the scene itself for 

simulating the scene 3D radiation balance. 

 

The environment (classic DART scene) consists of the stratified atmosphere and the 3D 

heterogeneous land surface (Figure 2.1). The land surface is made up of surfaces (e.g., facets, 

triangles) and volumes (e.g., turbid vegetation, air, soot). It is placed in a 3D voxel matrix to 

ease the transfer of radiation and to ease the computation of radiation fluxes on any interface. 

The elements in the environment (e.g., 3D object, triangle cloud, digital elevation model (DEM), 

and digital surface model) can either be directly imported or be constructed by DART object 

generating modules. The surface scattering is characterized by BSDF, such as the Lambertian, 

RPV, Hapke and specular model. The media (e.g., turbid vegetation, air, soot) are defined by 

their physical and optical properties. For example, the fluid (e.g., gases, aerosols, soot) is 

defined by its concentration, cross-section, single scattering albedo, and scattering phase 

function. The atmosphere is made up of three levels: (1) bottom atmosphere inside the land 

surface voxel matrix, (2) mid-atmosphere made up of voxels, and (3) high atmosphere made up 

of layers. The atmosphere SQL database stores vertical profiles of atmospheric constituents 

(temperature, pressure, concentration, etc.) of six standard atmospheres (e.g., USSTD76, 

MIDLATSUM) (Anderson et al., 1986) and five standard aerosol models (e.g., rural, urban) 

(Shettle and Fenn, 1979). It also stores the associated spectral optical properties (e.g., vertical 

transmittance, single scattering albedo, scattering phase function, etc.) of these atmosphere 

models that are derived from MODTRAN (Berk et al., 1987) simulations and LOWTRAN 
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(Kneizys et al., 1983) source code. The vertical profiles and the optical properties of gases and 

aerosols derived from the reanalysis datasets (e.g., ECMWF reanalysis: https://www.ecmwf.int) 

or the measurements (e.g., Aeronet: https://aeronet.gsfc.nasa.gov) can also be imported. 

 

 

Figure 2.1. The classic DART scene, adapted from Gastellu-Etchegorry et al. (2015). Land 

surface elements are made up of triangles, and/or fluid and turbid vegetation. The land 

surface itself is in a voxel matrix in order to ease the transfer of radiation. The 

atmosphere has three levels: upper level made of layers, middle level made of voxels 

of any size, and lower level in the landscape.  

The radiation intercepted by the surface/volume in the iteration 𝑘 is scattered to N discrete 

directions {Ω𝑛}𝑛=1,2,…,𝑁 in the iteration 𝑘 + 1. The radiant flux of the exit radiation along any 

direction is computed by solving the equations of radiative transfer at the local surface/volume. 

The iterative procedure ends if the radiation is totally absorbed, escapes from the environment, 

is captured by the sensor or reaches the predefined maximum iteration number. The radiation 

scattered into the field of view (FOV) of the sensor contributes to the corresponding sensor 

measurements (Gastellu-Etchegorry et al., 1996; Yin et al., 2013). The transfer of radiation in 

the atmosphere and at the land surface is modelled sequentially. The land surface is set up in 

one of three ways: isolated scene (Figure 2.2.a) for isolated land surface; repetitive scene 

(Figure 2.2.b) for infinitely repeated land surface; and infinite slope (Figure 2.2.c) for infinitely 

repeated sloping land surface (Wang et al., 2020). The atmosphere is assumed to be an infinitely 

https://www.ecmwf.int/
https://aeronet.gsfc.nasa.gov/
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parallel plane with implicit consideration of its curvature. Figure 2.3 illustrates the five major 

steps of modelling in the environment in order to simulate images with atmospheric effects 

(Grau and Gastellu-Etchegorry, 2013; Wang et al., 2020): (1) Source illumination followed by 

the atmospheric scattering and emission; (2) Land surface emission and radiative transfer; (3) 

Surface-atmosphere radiative coupling; (4) Land radiative transfer of the atmosphere 

backscattered radiation; (5) Transfer of the bottom of atmosphere (BOA) upward radiation to 

the sensor and top of atmosphere (TOA).  

 

a)
 

b)  c)
 

Figure 2.2. The three ways to arrange the DART 3D land surface. a) Isolated scene. b) 

Repetitive scene. c) Infinite slope. The simulated land surface is framed by a black 

box. The dotted box frames one of the fictive neighbourhoods of the simulated scene. 

 

Figure 2.3. Major steps of the radiative transfer in classic DART. Step 1: Sun illumination 

and atmospheric scattering and emission. Step 2: Land surface radiative transfer, 

including scattering, absorption, and emission. Step 3: Atmosphere - Land surface 

radiative coupling. Step 4: Land surface transfer of the atmosphere backscattered 

radiation. Step 5: Transfer of the BOA upward radiation to the sensor and TOA. 
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2.3.3 Framework architecture 

DART has a complete framework for 3D radiative transfer modelling (Gastellu-Etchegorry et 

al., 2015), with specific input data, processing modules and output data (Figure 2.4). 

 

Input data. Input data set up all the parameters to run a DART simulation. A graphical user 

interface (GUI) allows one to import/manage 3D objects and DEM, to define and assign optical 

and temperature properties, to configure the atmosphere (geometry, vertical profile and optical 

properties of gases, aerosols and/or clouds) and to select the products. All the input parameters 

are encoded in extensible markup language (XML) for easy data access. 

 

Processing modules. Four major modules process the input data. (1) Direction: it subdivides 

the 4𝜋 space into 𝑁 user-defined discrete directions for the transfer of radiation. (2) Phase: it 

computes bandpass optical properties, temperature properties, and scattering phase functions of 

turbid and fluid (gas, aerosol, cloud, soots, etc.) media. (3) Mock-up: it creates the 3D mock-

up of the land surface and the atmosphere, assigns the temperature and optical properties per 

scene element, and computes the atmosphere vertical profiles (pressure, temperature, density). 

(4) Dart: it simulates the transfer of radiation at the land surface and in the atmosphere and 

generates the requested measurements. 

 

Output data. Two types of products are simulated. (1) Remote sensing observation: 

satellite/airborne/in-situ radiometric images, BRF/DBT, LiDAR signal, solar induced 

fluorescence, etc. (2) Radiative budget: 1D/2D/3D distribution of intercepted, absorbed, 

scattered, and emitted (i.e., thermal emission, solar induced fluorescence) radiation. All 

products (i.e., images and 1D/2D/3D radiative budget) can be stored per type of scene element 

(e.g., leaf, trunk) and in a look-up-table. In addition, DART also generates geometric products 

such as the digital surface model, the area per type of scene element, the leaf area index, etc. 

 

In addition to the above mentioned bacis modules, DART contains many useful modules for 

quick and easy simulations and subsequent analysis of the simualted results. For example, the 

PROSPECT and FLUSPECT modules simulate leaf optical properties as a function of leaf 

structural and biochemical properties (Féret et al., 2017; Jacquemoud and Baret, 1990; Vilfan 

et al., 2016). The MARMIT module (Bablet et al., 2018; Dupiau et al., 2022) module simulates 

the soil reflectance as a function of water content. The object module can construct 3D urban 
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and natural object (e.g., geometric primitive of trees, DEMs, buildings). The application 

programming interface (API) can create complex 3D environment (DART scene) without 

manipulating the interface. The sequence module can manage and launch a series of simulations 

with any set of variable input parameters. The broadband module can generate broadband 

radiative budget and sensor measurements with specific sensor response functions. Several 

display tools can visualize the input data and the simulated results, and so on.  

 

 

Figure 2.4. DART framework. Its four modules (Direction, Phase, Mock-up, Dart) simulate 

remote sensing observations and the radiative budget for any 

instrumental/experimental configurations. 

2.3.4 Motivations and objectives 

The flux tracking method of standard DART, called DART-FT hereinafter, uses a breadth-first 

strategy to simulate radiation transfer: the radiation intercepted in each iteration 𝑘 is stored in 

computer memory (e.g., location, direction, spectral flux, etc. per radiation), to be absorbed and 

scattered to 𝑁 discrete directions, one by one, at iteration 𝑘 + 1. Because this approach leads 

to an unmanageable number of rays to track, several accelerating techniques were implemented 
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to limit the numbers of rays and scattering points. Three examples are given here. (1) In each 

turbid voxel, possibly with facets: scattering is simulated from only two optimally located 

points per incident direction in this voxel. In addition, for each sub-voxel, the scattering points 

associated to the same or very close incident directions are grouped as a single scattering point, 

which greatly decreases the number of scattering points. (2) In each voxel with facets: points 

of a same facet that intercept radiation with same or very close incident directions and that are 

spatially very close are grouped as a unique interception point, which greatly decreases the 

number of scattering points. (3) In any voxel: rays that exit a cell in a same direction through 

very close points on the same cell face are grouped, which greatly decreases the number of rays.  

 

However, even with all its accelerating techniques, DART-FT becomes less and less adapted 

for simulating larger and larger scenes at high spatial resolution, as is increasingly needed in 

research works. Indeed, the computational time and memory of DART-FT increase 

dramatically with the complexity of the radiative transfer problem (e.g., more detailed 

description of the scene) and scattering events (e.g., larger scattering albedo of atmospheric 

constituents or surfaces). Two examples are given here. (1) DART-FT treats any ray regardless 

of its contribution to the expected result. For example, when simulating a sensor image, all 

possible rays are tracked, even those that have a negligible impact on the sensor signal. The 

computational problem is even worse when simulating accurate specular reflectance, the hot spot 

phenomena and the polarization. (2) DART-FT does not optimize the modelling strategy (e.g., 

geometry instancing) if scene elements (e.g., trees) are identical to a scaling xyz and rotation xyz. 

 

Actually, most limitations of DART-FT for efficient and accurate simulations with realistic 3D 

scenes are due to its initial design: the discrete ordinate method that discretizes the space of 

coordinates and directions. On the other hand, the Monte Carlo method, known as a good solver 

of high dimensional problem, shows great potential to overcome these limitations (cf. section 2.2). 

In addition, scientists in computer graphics made great progress in the design of variance 

reduction methods, the acceleration of raytracing and the optimization of representation of 

realistic artificial landscape. This is why we have chosen to develop in DART an accurate, 

efficient, and robust Monte Carlo method for vector radiative transfer modelling at the Earth’s 

surface and in the atmosphere, that takes full advantage of the latest advances in computer 

graphics.  
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The main goal of this chapter is to develop a new 3D Monte Carlo radiative transfer mode in 

DART namely DART-Lux to accurately and efficiently simulate the remote sensing 

observations of an environment represented by a collection of surfaces (Chapter 4 further 

generalizes its formalism and implementation for fluids and turbid media in the volumes). We 

first demonstrate how to transform the 3D radiative transfer problem to a multi-dimensional 

integral problem of the form 

 

𝐿(𝑗) = ∫ 𝑓(𝑗)(�̅�)
𝒟

𝑑𝜇(�̅�) 

 

Then, we present how to estimate this integral with a robust Monte Carlo integration method, 

i.e., the multiple importance sampling. Usually, both the straightforward sampling of a series 

of random variables (more precisely, the vertices of a random light path in the environment) 

and the straightforward evaluation of their contribution to the integral estimate are 

computationally expensive. We thereby implement the bidirectional path tracing algorithm to 

efficiently sample a group of paths that connect the light source and the sensor and to 

incrementally evaluate the estimate without any redundant computation. Finally, the 

performance of this new DART-Lux is assessed and discussed. 

Chapter 3          

DART-Lux: theory and implementation 
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3.1 Theoretical background 

3.1.1 The three-point form of the light transport equation 

Eq. (1.39) indicates the radiation leaving a surface is the sum of scattered and emitted radiation. 

It can be alternatively expressed in a three-point form or area form (Figure 3.1) where an 

integral over all surfaces 𝐴 replaces the integral over the angular space using the dependence 

of the solid angle of the incident radiation on the surface area 𝑑Ω𝑖(𝑟
′) =

𝑑𝐴(𝑟′′).cos𝜃𝑜
𝑟′′

‖𝑟′′−𝑟′‖2
: 

 

𝐿(𝑟′ → 𝑟) = 𝐿𝑒(𝑟
′ → 𝑟) + ∫ 𝐿(𝑟′′ → 𝑟′) ∙ 𝑓𝑠(𝑟

′′ → 𝑟′ → 𝑟) ∙ 𝐺(𝑟′ ↔ 𝑟′′)𝑑𝐴(𝑟′′)
𝐴

 (3.1) 

 

with vertex 𝑟 ∈ 𝐴(𝑟) ⊆ surface 𝐴 whose BSDF is 𝑓𝑠(𝑟
′′→𝑟′→𝑟) and 𝐿𝑒(𝑟

′ → 𝑟) the surface 

thermal radiance from 𝑟′ to 𝑟. For compactness, the wavelength notation is omitted since all 

wavelength-dependent quantities are monochromatic and defined for the same medium. The 

geometric term 𝐺(𝑟′ ↔ 𝑟′′) defines the geometric relationship between vertices 𝑟′ and 𝑟′′: 

 

𝐺(𝑟′ ↔ 𝑟′′) = 𝑉(𝑟′↔𝑟′′)∙
cos 𝜃𝑖

𝑟′ ∙ cos 𝜃𝑜
𝑟′′

‖𝑟′′ − 𝑟′‖2
 

 

with 𝑉(𝑟′ ↔ 𝑟′′) the visibility function (𝑉(𝑟′ ↔ 𝑟′′) = 1 if there is nothing between 𝑟′ and 

𝑟′′, and 0 otherwise), 𝜃𝑖
𝑟′ the incident angle at 𝑟′ and 𝜃𝑜

𝑟′′ the exit angle at 𝑟′′. 

 

 

Figure 3.1. Geometry of the three-point form: a ray from 𝑟′′ on 𝑑𝐴(𝑟′′) is intercepted at 𝑟′, 

then scattered to 𝑟, with exit angle 𝜃𝑜
𝑟′′ at 𝑟′′, incident angle 𝜃𝑖

𝑟′at 𝑟′, and exit angle 

𝜃𝑜
𝑟′ at 𝑟′. 

In the absence of medium, an incident radiation on a surface is the exit radiation from a previous 

surface. Therefore, we can incrementally expand Eq. (3.1) to an infinite sum of multi-dimensional 
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integration with 𝑟0 a vertex on the sensor lens, 𝑟1 a previous vertex, and so on. Each term is the 

result of emitted radiance 𝐿𝑒(𝑟𝑛 → 𝑟𝑛−1) from the light source after 𝑛 − 1 scattering events: 

 

𝐿(𝑟1 → 𝑟0) = 𝐿𝑒(𝑟1 → 𝑟0) + ∫ 𝐿𝑒(𝑟2 → 𝑟1)∙𝑓𝑠(𝑟2 → 𝑟1 → 𝑟0)∙𝐺(𝑟1 ↔ 𝑟2)𝑑𝐴(𝑟2)
𝐴

                                      

         +∫ ∫ 𝐿𝑒(𝑟3 → 𝑟2)∙𝑓𝑠(𝑟3 → 𝑟2 → 𝑟1)∙𝐺(𝑟2 ↔ 𝑟3)∙𝑓𝑠(𝑟2 → 𝑟1 → 𝑟0)∙𝐺(𝑟1 ↔ 𝑟2)𝑑𝐴(𝑟3)𝑑𝐴(𝑟2)
𝐴𝐴

 

          +∫ ∫ ∫ 𝐿𝑒(𝑟4 → 𝑟3)∙𝑓𝑠(𝑟4 → 𝑟3 → 𝑟2)∙𝐺(𝑟3 ↔ 𝑟4)∙𝑓𝑠(𝑟3 → 𝑟2 → 𝑟1)∙𝐺(𝑟2 ↔ 𝑟3)∙𝑓𝑠(𝑟2 → 𝑟1
𝐴𝐴𝐴

→ 𝑟0)∙𝐺(𝑟1 ↔ 𝑟2)𝑑𝐴(𝑟4)𝑑𝐴(𝑟3)𝑑𝐴(𝑟2) + ⋯ 
 

It can be rewritten in the form: 

 

𝐿(𝑟1 → 𝑟0) = ∑𝐿(�̅�𝑛)

∞

𝑛=1

 (3.2) 

 

with 𝐿(�̅�𝑛) the radiance from 𝑟1 to 𝑟0 integrated over all paths of length 𝑛, i.e., paths of 𝑛+1 

vertices and 𝑛 edges, vertex 𝑟𝑛 on the light source, vertex 𝑟0 on the sensor lens and �̅�𝑛=𝑟0𝑟1…𝑟𝑛 

with 𝑟𝑘=0,1,…,𝑛∈𝐴, and �̅�𝑛∈ path space 𝒟𝑛 (𝑛∈ℕ∗). 𝒟𝑛 is the set of paths of length n.  

 

Figure 3.2 shows a path of length 4. If 𝑛 = 1, we have 𝐿(�̅�1) = 𝐿𝑒(𝑟1 → 𝑟0). If 𝑛 > 1, we have: 

 

𝐿(�̅�𝑛) = ∫ 𝑓𝑠(𝑟2 → 𝑟1 → 𝑟0)∙𝐺(𝑟1 ↔ 𝑟2)
𝐴

∫ ⋯
𝐴

∫ 𝑓𝑠(𝑟𝑛−1 → 𝑟𝑛−2 → 𝑟𝑛−3)∙𝐺(𝑟𝑛−2 ↔ 𝑟𝑛−1)
𝐴

 

     ∙ ∫ 𝐿𝑒(𝑟𝑛 → 𝑟𝑛−1)∙𝑓𝑠(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2)∙𝐺(𝑟𝑛−1 ↔ 𝑟𝑛)𝑑𝐴(𝑟𝑛)𝑑𝐴(𝑟𝑛−1)⋯𝑑𝐴(𝑟2)
𝐴

 

 

 

Figure 3.2. Path of length 4 from light source at 𝑟4, successively scattered at 𝑟3, 𝑟2, 𝑟1, and 

incident on the sensor at 𝑟0.  
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3.1.2 Sensor and radiance measurement 

The sensor response 𝑆(𝑗) (cf. Annex A.3) at the level of sensor pixel 𝑗 is due to a radiation in 

direction Ω0  that reaches the sensor lens at vertex 𝑟0 . Figure 3.3 shows the acquisition 

configuration of a pinhole camera.  𝑆(𝑗)  corresponds to the measured radiance 𝐿(𝑗) . The so-

called flux responsivity 𝑊𝑒
(𝑗)(𝑟0, Ω0)  (cf. Annex A.3), usually defined as the importance 

function, links the total incident radiant flux to the measured radiance: 

 

𝐿(𝑗) = ∫ ∫ 𝑊𝑒
(𝑗)(𝑟0, Ω0) ∙ 𝐿(𝑟1 → 𝑟0) ∙ cos 𝜃𝑖

𝑟0 𝑑Ω0𝑑𝐴(𝑟0)
∆Ω0𝐴0

 (3.3) 

 

with 𝑊𝑒
(𝑗)(𝑟0, Ω0) = 0 if the incident ray is outside the support of pixel 𝑗. 𝜃𝑖

𝑟0 is the angle 

between the incident direction and the principal optical axis. ∆Ω0 is the solid angle that 

encloses all directions of the incident radiation. 𝐴0 ≡ 𝐴(𝑟0) is the lens area.  

 

 

Figure 3.3. Pinhole camera. The lens (area 𝐴0) is at a distance 𝑓 in front of the image plane 

of normal �⃗� . Radiation from a differential surface 𝑑𝐴(𝑟1) in the scene along direction 

𝑟1 → 𝑟0 is focused by the lens onto the differential surface 𝑑𝐴(𝑟img) in the image 

plane.  

The analytical expression of 𝑊𝑒 depends on sensor properties (lens surface, FOV, focal length 𝑓, 

optics aperture, etc.). The radiance 𝐿(𝑟img) on the image plane (Figure 3.3) is a continuous 

function of the location 𝑟img. The averaged radiance over the pixel 𝐴img
(𝑗)

 is the pixel radiance: 
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𝐿(𝑗) =
1

𝐴img
(𝑗)

∫ 𝐿(𝑟img)𝑑𝐴(𝑟img)
𝐴
img
(𝑗)

 (3.4) 

 

Below, we give the theoretical expression of 𝑊𝑒 for two sensors: pinhole camera (𝐴0→0) and 

orthographic camera (∆Ω0 → 0). Their optical system does not change the radiation direction.  

 

Pinhole camera. Only the radiance that crosses the lens at the position 𝑟d is recorded: 

 

𝐿(𝑗) =
1

𝐴img
(𝑗)

∫ 𝐿(𝑟img)𝑑𝐴(𝑟img)
𝐴
img
(𝑗)

=
1

𝐴img
(𝑗)

∙∫ 𝐿(𝑟1→𝑟0)∙𝒥𝑇𝑑Ω0
∆Ω0

(𝑗)
 

 

with the Jacobian determinant 𝒥𝑇=
𝜕𝐴(𝑟img)

𝜕Ω0
=

𝑓2

(cos𝜃
𝑖
𝑟0)3

 [m2/sr], and ∆Ω0
(𝑗)

 the solid angle 

that contains the directions to 𝐴img
(𝑗)

.  

 

By comparing 𝐿(𝑗) with its expression in Eq. (3.3) we get the importance function: 

𝑊𝑒
(𝑗)(𝑟0, Ω0) = {

𝑓2 ∙ 𝛿(𝑟0 − 𝑟d)

𝐴img
(𝑗)

∙ (cos 𝜃𝑖
𝑟0)

4 ,    Ω0 ∈ ∆Ω0
(𝑗)

0,                                  Ω0 ∉ ∆Ω0
(𝑗)

 (3.5) 

 

with 𝛿(𝑟0-𝑟d) the Dirac function: 𝛿(0)= lim
𝐴0→0

1

𝐴0
; therefore, the unit of 𝒥𝑇 ∙𝛿(𝑟0-𝑟d) is sr-1. 

 

Orthographic camera (orientation −Ωd). The sensor lens is supposed to have the same size and 

shape as the image plane. Only the radiance in direction Ωd is recorded: 

 

𝐿(𝑗) =
1

𝐴img
(𝑗)

∫ 𝐿(𝑟img)𝑑𝐴(𝑟img)
𝐴
img
(𝑗)

=
1

𝐴0
(𝑗)
∫ 𝐿(𝑟img)𝑑𝐴(𝑟img)
𝐴0
(𝑗)

 

 

with surface 𝐴0
(𝑗)

 the projection of the pixel support 𝐴img
(𝑗)

 to the sensor lens along −Ωd.  

The comparison of 𝐿(𝑗) to its expression in Eq. (3.3) gives the importance function: 

 

𝑊𝑒
(𝑗)(𝑟0, Ω0) = {

𝛿(Ω0 − Ωd)

𝐴img
(𝑗)

,    𝑟0 ∈ 𝐴0
(𝑗)

0,                         𝑟0 ∉ 𝐴0
(𝑗)

 (3.6) 

 

with 𝛿(Ω0 −Ωd) the Dirac function: 𝛿(0)= lim
∆Ω0→0

1

∆Ω0
 [sr-1]. 
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3.1.3 The integral formulation 

The expansion of Eq. (3.3) by substituting the incident radiance (Eq. (3.2)) gives:  

 

𝐿(𝑗) = ∫ ∫ 𝑊𝑒
(𝑗)(𝑟0, Ω0) ∙ 𝐿(𝑟1 → 𝑟0) ∙ cos 𝜃𝑖

𝑟0 𝑑Ω0𝑑𝐴(𝑟0)
∆Ω0𝐴0

                                      

        = ∑∫ ∫ ⋯∫ 𝑊𝑒
(𝑗)(𝑟0, Ω0) ∙ 𝐿(�̅�𝑛) ∙ 𝐺(𝑟0 ↔ 𝑟1)𝑑𝐴(𝑟𝑛)⋯𝑑𝐴(𝑟1)𝑑𝐴(𝑟0)

𝐴𝐴𝐴

∞

𝑛=1

 (3.7) 

 

Eq. (3.7) can be expressed in the more compact form: 

 

𝐿(𝑗) = ∫ 𝑓(𝑗)(�̅�)
𝒟

𝑑𝜇(�̅�) (3.8) 

 

with 𝑓(𝑗)(�̅�)  the measurement contribution function at pixel 𝑗  and 𝜇  the area-product 

measure, 𝜇(𝒟𝑛) = ∫ 𝑑𝜇(�̅�𝑛)𝒟𝑛
= ∫ 𝑑𝐴(𝑟𝑛)𝑑𝐴(𝑟𝑛−1)…𝑑𝐴(𝑟0)𝒟𝑛

. �̅� is a path connecting the 

light source and the sensor, it is an element of the path space 𝒟 = ⋃ 𝒟𝑛
∞
𝑛=1 .  

 

For a path of length 𝑛, the function 𝑓(𝑗)(�̅�𝑛) is defined by: 

 

𝑓(𝑗)(�̅�𝑛)=𝐿𝑒(𝑟𝑛→𝑟𝑛-1)∙𝐺(𝑟0↔𝑟1)∙𝑊𝑒
(𝑗)(𝑟0→𝑟1)∙∏𝑓𝑠(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)∙𝐺(𝑟𝑘-1↔𝑟𝑘)

𝑛

𝑘=2

 (3.9) 

 

We call 𝐶𝒟𝑛  the contribution ∫ 𝑓(𝑗)(�̅�𝑛)𝑑𝜇(�̅�𝑛)𝒟𝑛
 due to the (𝑛 − 1)th scattering order. Then, 

𝐶𝒟1 is the contribution of direct illumination, 𝐶𝒟2  is the contribution of first order scattering, 

and so on. The radiance measurement is simply the sum of 𝐶𝒟𝑛 terms: 

 

𝐿(𝑗) = ∫ 𝑓(𝑗)(�̅�)
𝒟

𝑑𝜇(�̅�) = ∑𝐶𝒟𝑛

∞

𝑛=1

 (3.10) 

3.2 Bidirectional path tracing 

The Monte Carlo integration (cf. Annex C) can assess the multi-dimensional integral form of 

𝐿(𝑗)  in Eq. (3.8). For example, a random path �̅� ∈ 𝒟  sampled according to a choosing 

probability density function 𝑝(�̅�), can give an unbiased estimate of 𝐿(𝑗): 
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𝐹(𝑗) =
𝑓(𝑗)(�̅�)

𝑝(�̅�)
 (3.11) 

 

with the unbiased expected value 𝔼(𝐹(𝑗))=∫
𝑓(𝑗)(�̅�)

𝑝(�̅�)
𝑝(�̅�)

𝒟
𝑑𝜇(�̅�) =∫ 𝑓(𝑗)(�̅�)

𝒟
𝑑𝜇(�̅�)=𝐿(𝑗) 

 

The efficiency function (Eq. (C.14)) indicates that Eq. (3.11) can be efficiently evaluated if (1) 

the path samples are rapidly generated (to minimize computer time) and (2) the sample 

distribution 𝑝(�̅�) is close to the distribution of 𝑓(𝑗)(�̅�) in the path space (to minimize variance). 

Both requirements depend on the illumination conditions, the sensor characteristics, the surface 

optical properties and the heterogeneity of the environment. This section presents a robust 

algorithm namely bidirectional path tracing that has quite good performance for a wide variety 

of scenarios. This algorithm can efficiently sample a group of light paths and determine the 

paths with a large integrand 𝑓(𝑗)(�̅�)  using an ingenious weighting method (Lafortune and 

Willems, 1996; Veach and Guibas, 1995a, 1995b). 

3.2.1 The adjoint transport 

It is intuitive to sample a path by a random walk (a stochastic Markov chain) from the light 

source and to connect it to the sensor since it is what happens in nature. This light transport or 

forward ray tracing has long been used in many 3D radiative transfer models (e.g., FLiES, 

FLIGHT and Raytran). Usually, the 3D radiative transfer modelling considers a path connecting 

the light source and the sensor, i.e., end-to-end modelling. Although counterintuitive, it is also 

possible to sample a path by a random walk from the sensor and to connect it to the light source. 

This sampling way, called adjoint transport, importance transport or backward path tracing, 

has proved to be more efficient than the light transport for simulating images. It is increasingly 

used in 3D radiative transfer models (e.g., DIRSIG and LESS).  

 

From the mathematical point of view, the light transport is equivalent to the adjoint transport. 

Using the Fubini’s theorem, (Christensen et al., 1993) prove that the radiance 𝐿𝑒  and 

importance 𝑊𝑒 are interchangeable in Eq. (3.7): 𝑊𝑒 can be treated symmetrically as 𝐿𝑒 as an 

exit quantity. Furthermore, the estimate of radiance measurement (Eq. (3.11)) does not depend 

on the way a path sample is generated; the estimate is unbiased as long as the path is sampled 
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according to its distribution. It results the adjoint transport equation also called importance 

transport equation has a form similar to the light transport equation (Eq. (3.1)): 

 

𝑊(𝑟′→𝑟′′) = 𝑊𝑒(𝑟
′→𝑟′′) + ∫ 𝑊(𝑟→𝑟′) ∙ 𝑓𝑠

∗(𝑟→𝑟′→𝑟′′) ∙ 𝐺(𝑟↔𝑟′)𝑑𝐴(𝑟)
𝐴

 (3.12) 

 

The exit importance 𝑊(𝑟′→𝑟′′) quantifies the potential contribution of incident radiation to the 

radiance measurement. Eq. (3.12) stresses that 𝑊(𝑟′→𝑟′′) is the sum of the emitted importance 

𝑊𝑒(𝑟
′ → 𝑟′′) and importance due to the scattering of all incident importance 𝑊(𝑟 → 𝑟′). The 

adjoint bidirectional scattering distribution function 𝑓𝑠
∗(𝑟 → 𝑟′ → 𝑟′′) is equal to 𝑓𝑠(𝑟 → 𝑟′ →

𝑟′′)  if the reciprocity is verified, i.e., BSDF is constant if the incident and exit radiation 

directions are interchanged. Otherwise, it is corrected to be equal to 𝑓𝑠(𝑟
′′ → 𝑟′ → 𝑟). 

3.2.2 Bidirectional path tracing 

Although both the forward ray tracing and the backward path tracing are commonly used in 3D 

radiative transfer modelling and perform well for most scenarios, these unidirectional path 

samplings can introduce large variance. Figure 3.4 shows two examples. 1) Daylight sensor 

with a small FOV compared to the simulated environment: the forward ray tracing can generate 

many paths that do not contribute to the radiance measurement. The resulting image is unbiased, 

but very noisy. 2) Night time sensor with wide FOV compared to the light source (i.e., fire): the 

backward path tracing can create many useless paths. These inefficiencies are explained below.  

 

 

Figure 3.4. Scenarios for which the unidirectional path sampling is inefficient. a) Narrow 

FOV sensor: the forward ray tracing can generate a lot of paths that do not contribute 

to the measurement. b) Wide FOV sensor: the backward path tracing can generate 

many useless paths if the size of the light source is small such as the fire. 

a) b) 
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Because the distribution of the contribution function 𝑓(𝑗)(�̅�) greatly depends on experimental 

and instrumental configurations, it is nearly impossible to get the distribution of 𝑓(𝑗)(�̅�) when 

we formulate the probability density function, except for very simple scenarios (e.g., specular 

ground illuminated by a parallel distant light). Therefore, the use of a unique sampling strategy 

to evaluate the measurement is not optimal: it cannot ensure that the sample distribution is close 

to the distribution of 𝑓(𝑗)(�̅�) for a wide variety of scenarios. A robust algorithm should combine 

all possible sampling strategies and weight their contributions according to the probability 

density of the sample. It stresses the interest of the bidirectional path tracing (Figure 3.5). It 

effectively generates a group of paths by connecting two sub-paths, one starting from the light 

source and another from the sensor. More precisely, a random walk starts from the light source 

and gives a light sub-path:  

 

�̅�𝑁𝑣 = 𝑝0, 𝑝1, … , 𝑝𝑁𝑣−1 

 

with vertex 𝑝0 on the light source and other vertices in the environment. 𝑁𝑣 is the sub-path 

depth (i.e., 𝑁𝑣 is the total number of vertices).  

 

A second one starts from the sensor and gives a sensor sub-path: 

 

�̅�𝑁𝑣 = 𝑞0, 𝑞1, … ,  𝑞𝑁𝑣−1 

 

with vertex 𝑞0 on the sensor lens and other vertices in the environment.  

 

An end-to-end path �̅�𝑠,𝑡 is generated by connecting the light sub-path �̅�𝑠 = 𝑝0, 𝑝1, … , 𝑝𝑠−1 and 

the sensor sub-path �̅�𝑡 = 𝑞0, 𝑞1, … ,  𝑞𝑡−1 with 𝑠, 𝑡 ∈ [0, 𝑁𝑣]: 

 

�̅�𝑠,𝑡 = �̅�𝑠, �̅�𝑡 = 𝑝0, 𝑝1, … , 𝑝𝑠−1, 𝑞𝑡−1, 𝑞𝑡−2, … , 𝑞0 

 

Vertex 𝑞𝑡−1 is on the light source if 𝑠 = 0. Vertex 𝑝𝑠−1 is on the sensor lens if 𝑡 = 0. Any path 

of length 𝑛 (i.e., 𝑠 + 𝑡 = 𝑛 + 1 vertices) can be created in 𝑛 + 2 ways. For example, Figure 3.6 

shows how a path of length 3 can be created in five ways. 

 

Because a path of length 𝑛 can be created by 𝑛+2 different ways, 𝑛+2 different sampling 

strategies can evaluate the contribution 𝐶𝒟𝑛-1  (Eq. (3.10)) using the importance sampling (Eq. 

(3.11)). For example, the backward path tracing applies the “connect to light” way (Figure 

3.6.b), and the forward ray tracing applies the “connect to sensor” way (Figure 3.6.d). As 
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mentioned above, the use of a unique strategy risks to produce defects in some scenarios. The 

bidirectional path tracing sums and weights all possible sampling strategies possibly for a wide 

variety of scenarios. It results the multiple importance sampling (Eq. (C.15)) with only one 

sample per sampling strategy. An estimate of the radiance measurement takes the form: 

 

𝐹MIS
(𝑗)

=∑∑𝑤𝑠,𝑡(�̅�𝑠,𝑡) ∙
𝑓(𝑗)(�̅�𝑠,𝑡)

𝑝(�̅�𝑠,𝑡)𝑡≥0𝑠≥0

 (3.13) 

 

 

Figure 3.5. DART-Lux bidirectional path tracing with 𝑁𝑣 = 4 vertices (maximal scattering 

order 3). The “random walk” process creates two sub-paths: a light sub-path 

�̅�4=𝑝0, 𝑝1, 𝑝2, 𝑝3 from the light source, and a sensor sub-path �̅�4 = 𝑞0, 𝑞1, 𝑞2, 𝑞3 from 

the sensor. A path is created by connecting a vertex of light sub-path and a vertex of 

sensor sub-path, using an intersection test at each connection. Three connecting 

methods are used. 1) Connect to light: a sensor sub-path vertex is connected to a new 

sampled vertex on the light source. 2) Connect to sensor: a light sub-path vertex is 

connected to a new sampled vertex on the sensor lens and mapped to the image plane. 

3) Connect vertices: a light sub-path vertex and a sensor sub-path vertex are connected. 

A light sub-path can randomly hit the sensor lens, and a sensor sub-path can randomly 

hit the light source. All above mentioned processes are repeated. 

Eq. (3.8) and Eq. (3.10) gives the expression of the measured radiance at an infinite scattering 

order although infinite scattering order cannot be simulated explicitly. Usually, the contribution 

𝐶𝒟𝑛 decreases exponentially with the scattering order (Kallel, 2018). After a scattering order 
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𝑀0 that depends on the optical and structural properties of the environment, the contribution of 

higher scattering orders is negligible, i.e., ∑ 𝐶𝒟𝑛
∞
𝑛=𝑀0+2

≪𝐿(𝑗), we use the approximation: 

 

𝐿(𝑗) ≈ 𝐶𝒟1 + 𝐶𝒟2 +⋯+ 𝐶𝒟𝑀0+1 (3.14) 

 

and 
 

𝐹MIS
(𝑗)

≈ ∑ ∑𝑤𝑠,𝑡(�̅�𝑠,𝑡) ∙
𝑓(𝑗)(�̅�𝑠,𝑡)

𝑝(�̅�𝑠,𝑡)

𝑛+1

𝑠=0 

𝑀0+1

𝑛=1

 (3.15) 

 

 

Figure 3.6. Five ways to create a path of length 3. (a) Hit light: a ray starts from a sensor, 

is scattered twice, then hits a light source. (b) Connect to light: a ray starts from a 

sensor, is scattered once, then intersects a scene element from which a path is created 

using an intersection test to a light source. (c) Connect vertices: 2 rays start from a 

sensor and light source, are intercepted by scene elements, then a path is created 

between the two intersect vertices, using an intersection test. (d) Connect to sensor: a 

ray starts from a light source, is scattered once, then intersects a scene element from 

which a connecting path to the sensor is created using an intersection test. (e) Hit 

sensor: a ray starts from a light source, is scattered twice, then hits a sensor. 

3.2.3 Measurement evaluation 

The contribution function can be straightforwardly computed once the path is generated: 
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𝑓(𝑗)(�̅�𝑠,𝑡) = 𝐿𝑒(𝑝0→𝑝1)∙∏[𝑓𝑠(𝑝𝑘-2→𝑝𝑘-1→𝑝𝑘)∙𝐺(𝑝𝑘-1↔𝑝𝑘)]∙𝑓𝑠(𝑝𝑠-2→𝑝𝑠-1→𝑞𝑡-1)                     

𝑠−1

𝑘=1

      ∙𝐺(𝑝𝑠-1↔𝑞𝑡-1)∙𝑓𝑠
∗(𝑞𝑡-2→𝑞𝑡-1→𝑝𝑠-1)∙∏[𝑓𝑠

∗(𝑞𝑘-2→𝑞𝑘-1→𝑞𝑘)∙𝐺(𝑞𝑘-1↔𝑞𝑘)]

𝑡−1

𝑘=1

∙𝑊𝑒
(𝑗)(𝑞0→𝑞1)

 (3.16) 

 

The virtual BSDFs 𝑓𝑠(𝑝-2→𝑝-1→𝑝0)  and 𝑓𝑠(𝑝-1→𝑝0→𝑝1),  the virtual adjoint BSDFs 

𝑓𝑠
∗(𝑞-2→𝑞-1→𝑞0)  and 𝑓𝑠

∗(𝑞-1→𝑞0→𝑞1),  and the virtual geometric terms 𝐺(𝑝-1↔𝑞𝑡-1)  and 

𝐺(𝑝𝑠-1↔𝑞-1) are introduced to simplify the mathematical formulation. They are all set to one. 

 

The path probability density function is computed incrementally along each random walk. For 

the light sub-path, a vertex 𝑝0 and an emission direction Ω0 are sampled. 𝑝1 is determined using 

an intersection test in the emission direction. We define the probability density as: 

 

𝑝 (𝑝0) = 𝑝(𝑝0)       

𝑝 (𝑝1) = 𝑝(𝑝1|𝑝0) 

 

The successive vertices are sampled according to the surface optical properties and the local 

incident direction. In particular, the next vertex is directly derived by an intersection test along 

the sampled direction. We have: 

 

𝑝 (𝑝𝑘) = 𝑝(𝑝𝑘|𝑝𝑘−1, 𝑝𝑘−2), ∀ 𝑘 > 1 

 

Similarly, for the sensor sub-path, �⃖�(𝑞0)=𝑝(𝑞0), �⃖�(𝑞1)=𝑝(𝑞1|𝑞0) and �⃖�(𝑞𝑘)=𝑝(𝑞𝑘|𝑞𝑘-1, 𝑞𝑘-2) 

  ∀ 𝑘>1. The overall probability density is formulated as: 

𝑝(�̅�𝑠,𝑡) = 𝑝(�̅�𝑠) ∙ 𝑝(�̅�𝑡) =∏𝑝 (𝑝𝑘)

𝑠−1

𝑘=0

∙∏�⃖�(𝑞𝑘)

𝑡−1

𝑘=0

 3.17) 

The weight function 𝑤𝑠,𝑡 is crucial for the performance of the multiple importance sampling. It 

can be defined in many ways (cf. Annex C.3.2). For example, each sampling strategy can have 

the same weight 𝑤𝑠,𝑡(�̅�𝑠,𝑡)=1/(𝑠+𝑡+1). Also, 𝑤𝑠,𝑡 can be set to 1 for the sampling strategy 

with maximum probability of occurring and set to 0 otherwise. A good choice is a power 

heuristic weight function 𝑤𝑠,𝑡 proportional to the probability density of each strategy, which 

effectively reduces the variance in practical applications. The power heuristic weight function 

for a fixed path length 𝑛 (𝑠+𝑡=𝑠′+𝑡′=𝑛+1) is: 
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𝑤𝑠,𝑡(�̅�𝑠,𝑡) =
(𝑝(�̅�𝑠,𝑡))

2

∑ (𝑝(�̅�𝑠′,𝑡′))
2

𝑛+1
𝑠′=0,𝑡′=𝑛−𝑠′+1 

 (3.18) 

 

where the virtual path �̅�𝑠′,𝑡′ with (𝑠′, 𝑡′) ≠ (𝑠, 𝑡) has the same vertices as the sampled path 

�̅�𝑠,𝑡, but is created in another sampling way (Figure 3.6). It is called “virtual” because it is only 

used to evaluate the MIS weight 𝑤𝑠,𝑡(�̅�𝑠,𝑡). Eq. (3.18) is unbiased for any path of length 𝑛 

provided that: ∑ 𝑤𝑠,𝑡(�̅�𝑠,𝑡)
𝑛+1
𝑠=0,𝑡=𝑛−𝑠+1 =1 if 𝑓(𝑗)(�̅�𝑠,𝑡)≠0, and 𝑤𝑠,𝑡(�̅�𝑠,𝑡)=0 if 𝑝(�̅�𝑠,𝑡)=0. 

 

Finally, the estimate of the radiance measurement is: 
 

                  𝐹MIS
(𝑗)

≈ ∑ ∑𝑤𝑠,𝑡(�̅�𝑠,𝑡) ∙
𝑓(𝑗)(�̅�𝑠,𝑡)

𝑝(�̅�𝑠,𝑡)

𝑛+1

𝑠=0 

𝑀0+1

𝑛=1

= ∑ ∑{
(𝑝(�̅�𝑠,𝑡))

2

∑ (𝑝(�̅�𝑠′,𝑡′))
2

𝑛+1

s′=0,𝑡′=𝑛−𝑠′+1 

∙ [𝑇(�̅�𝑠) ∙ 𝐶𝑠,𝑡 ∙ 𝑇(�̅�𝑡)]}

𝑛+1

𝑠=0 

𝑀0+1

𝑛=1

 

(3.19) 

 

with throughputs 𝑇(�̅�𝑠) and 𝑇(�̅�𝑡) computed incrementally along the random walks: 

𝑇(�̅�𝑠) =
𝐿𝑒(𝑝0 → 𝑝1)

𝑝 (𝑝0)
∏

𝑓𝑠(𝑝𝑘−2 → 𝑝𝑘−1 → 𝑝𝑘) ∙ 𝐺(𝑝𝑘−1 ↔ 𝑝𝑘)

𝑝 (𝑝𝑘)

𝑠−1

𝑘=1

        

𝑇(�̅�𝑡) =
𝑊𝑒

(𝑗)(𝑞0 → 𝑞1)

�⃖�(𝑞0)
∏

𝑓𝑠
∗(𝑞𝑘−2 → 𝑞𝑘−1 → 𝑞𝑘) ∙ 𝐺(𝑞𝑘−1 ↔ 𝑞𝑘)

�⃖�(𝑞𝑘)

𝑡−1

𝑘=1

 

(3.20) 

 

and the connection term defined by: 

𝐶𝑠,𝑡 = 𝑓𝑠(𝑝𝑠−2 → 𝑝𝑠−1 → 𝑞𝑡−1) ∙ 𝐺(𝑝𝑠−1 ↔ 𝑞𝑡−1) ∙ 𝑓𝑠
∗(𝑞𝑡−2 → 𝑞𝑡−1 → 𝑝𝑠−1) (3.21) 

3.3 Light, sensor, and BSDF models 

The Monte Carlo method is flexible to integrate a variety of light sources (e.g., sun, sky, moon, 

LiDAR, etc.), sensors (e.g., pinhole camera, orthographic camera, fisheye camera, etc.) and 

surface BSDF models (e.g., Lambertian, specular, RPV, etc.). This section presents some light, 

sensor and BSDF models commonly used in 3D radiative transfer modelling. All of them have 

been implemented in DART-Lux. 
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3.3.1 Light sources 

Here, the sun and the atmosphere are the only light sources. The other light sources (i.e., thermal 

emission in the atmosphere and land surfaces, and sun-induced fluorescent sources) will be 

presented in Regaieg (2023)1. If more than one light source is simulated, the light sources are 

sampled with the probability distribution depending on their radiant power. Sunlight can be 

parallel or within a cone, and sky light can be isotropic or anisotropic. In both cases, light is 

uniformly emitted from a virtual disk 𝐴disk that is the projection of the scene sphere along the 

illumination direction. The probability density function of the first vertex on the light source is:  
 

𝑝(𝑝0) = 1/𝐴disk 

 

The so-called scene sphere is the sphere with minimum radius 𝑅 that encloses the scene (Figure 

3.7). The light direction is sampled according to the energy angular distribution of the source. 

The emitted radiance 𝐿𝑒(𝑝0, Ω0) is always determined by: 
 

𝐸BOA = ∫𝐿𝑒(𝑝0, Ω0)∙ cos 𝜃0 𝑑Ω0 

with 𝐸BOA the BOA irradiance of a horizontal surface due to the light source. This strategy 

is more robust than the usual strategy that illuminates the scene with rays from the horizontal 

plane above the scene (North, 1996; Thompson and Goel, 1998). Indeed, it ensures that the 

scene can be fully illuminated in any direction even for strong sloping topography. 

 

Sunlight. If it is parallel (solar direction Ω𝑠 ), the probability density function of the light 

direction is interpreted as a Dirac delta function: 

𝑝(Ω0) = 𝛿(Ω0 − Ω𝑠) 

 

with BOA direct irradiance 𝐸BOA
dir , the incident radiance is:  

𝐿𝑒(𝑝0, Ω0) =
𝐸BOA
dir

cos 𝜃𝑠
∙ 𝛿(Ω0 − Ω𝑠) 

 

The penumbra phenomena can be simulated. Then, the direction Ω0 is uniformly sampled in 

the solid angle ∆Ω𝑠=𝐴sun/(1 𝐴𝑈)
2, with 𝐴sun  the solar disk area and 1 𝐴𝑈 the distance 

from the Earth to the sun. The incident radiance is: 
 

                                                 

1 Regaieg, O., Lauret, N., Wang, Y., et al., 2023. DART Monte-Carlo based modelling of chlorophyll solar-

induced fluorescence images of 3D canopies. [ready to submit]. 
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𝐿𝑒(𝑝0, Ω0) =
𝐸BOA
dir

cos 𝜃𝑠 ∙ ∆Ω𝑠
 

 

Light of the sky. If it is isotropic, the incident radiance is 𝐿𝑒(𝑝0, Ω0)=
𝐸BOA
diff

𝜋
, with 𝐸BOA

diff  the 

BOA diffuse irradiance. Its probability density function follows a cosine distribution: 

𝑝(Ω0) =
cos 𝜃𝑜
𝜋

 

 

If it is anisotropic: 𝐸BOA
diff =∫ ∫ 𝐿(𝜃, 𝜑)∙ cos 𝜃 ∙ sin 𝜃 𝑑𝜃𝑑𝜑

𝜋

𝜋/2

2𝜋

0
 with 𝐿(𝜃, 𝜑) the radiance in 

the downward direction Ω(𝜃, 𝜑) and the light direction probability density function is: 

𝑝(Ω0) =
𝑝(𝜃) ∙ 𝑝(𝜑|𝜃)

sin 𝜃
 

with 𝑝(𝜃) =
∫ 𝐿(𝜃,𝜑)𝑑𝜑
2𝜋
0

𝐸BOA
diff  and 𝑝(𝜑|𝜃) =

𝑝(𝜃,𝜑)

𝑝(𝜃)
=

𝐿(𝜃,𝜑)

∫ 𝐿(𝜃,𝜑)𝑑𝜑
2𝜋
0

. 

 

The illumination radiance is computed according to the sampled zenith and azimuth angle: 

𝐿𝑒(𝑝0, Ω0) = 𝐿(𝜃, 𝜑) 

 

The radiance distribution 𝐿(𝜃, 𝜑) can also come from a parametric model (e.g., CIE model) 

or discrete values from an atmospheric radiative transfer model (e.g., MODTRAN, DISORT). 

 

(a)
 

(b)
 

Figure 3.7. Scene illumination. a) Sunlight. b) Diffuse light from the sky. The scene sphere 

is the smallest sphere that contains the scene. Any ray from the sun or the sky 

originates from a virtual disk that is the projection of the scene sphere in the 

illumination direction. 
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3.3.2 Sensors 

Two common sensors, i.e., pinhole camera and orthographic camera, have been implemented. 

The pinhole camera has an infinitesimal lens. It is used to simulate airborne and in-situ 

observations with infinite depth of field. The orthographic camera has an infinitesimal FOV. It 

is used to simulate satellite images. For both cameras, the random walk starts by sampling a 

random vertex on the lens 𝐴0 and a direction in the FOV. In addition, a special camera, called 

BRF camera, has been implemented for an efficient simulation of scene albedo, BRF and DBT.  

 

Pinhole camera (Figure 3.3). It is at a distance 𝑓 in front of the image plane 𝐴img. The vertex 

on the lens is sampled by a Dirac delta function:  

 

𝑝(𝑞0) = 𝛿(𝑞0 − 𝑞d) 

 

with 𝑞d the pinhole position. The direction is obtained by uniformly sampling a vertex 𝑞img
(𝑗)

 

on the pixel support (𝑝 (𝑞img
(𝑗)
)=1/𝐴img

(𝑗)
) and connecting 𝑞0 on the lens. Since the lens does 

not refract rays, the probability density function of the importance direction is derived from: 

 

𝑝 (Ω0
(𝑗)
) = 𝒥𝑇 ∙ 𝑝 (𝑞img

(𝑗)
) =

𝑓2

𝐴img
(𝑗)

∙ cos3 𝜃𝑖
𝑞0

 

with Jacobian determinant 𝒥𝑇=(𝑓/ cos 𝜃𝑖
𝑞0)

2
/ cos 𝜃𝑖

𝑞0 .  Eq. (3.5)gives the corresponding 

emitted importance 𝑊𝑒
(𝑗)  for pixel 𝑗. In DART-Lux implementation, we often sample a 

vertex 𝑞img on the image plane instead of sampling on the support of a specific pixel. Then, 

the mathematically equivalent importance function 𝑊𝑒(𝑞0, Ω0) applied to any pixel is:  

 

𝑊𝑒(𝑞0, Ω0) =
𝑓2 ∙ 𝛿(𝑟0 − 𝑟d)

𝐴img ∙ (cos 𝜃𝑖
𝑟0)

4 (3.22) 

 

The term “mathematically equivalent” means that the estimate by sampling a vertex 𝑞img
(𝑗)

 on 

a specific pixel 𝑗 and the importance function in Eq. (3.5) is identical to the estimate by 

sampling a vertex 𝑞img on the image plane and the importance function in Eq. (3.22). 
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Orthographic camera (Figure 3.8). It captures parallel radiation perpendicular to the image 

plane. Hence, the lens has the same shape as the image (𝐴0 ≡ 𝐴img). The vertex on the lens 

corresponding to pixel 𝑗 is uniformly sampled with the probability density function: 

𝑝 (𝑞0
(𝑗)
) =

1

𝐴img
(𝑗)

 

 

The importance direction is sampled by the Dirac delta function: 

𝑝(Ω0) = 𝛿(Ω0 − Ωd) 

with -Ωd the camera orientation. The corresponding emitted importance 𝑊𝑒
(𝑗) is computed 

by Eq. (3.6). In DART-Lux implementation, 𝑞0 is often uniformly sampled on the lens 

support with 𝑝(𝑞0)=1/𝐴img and the mathematically equivalent importance function: 

𝑊𝑒(𝑞0, Ω0) =
𝛿(Ω0 − Ωd)

𝐴img
 (3.23) 

 

 

Figure 3.8. Orthographic camera. The lens (area 𝐴0) is in front of the image plane 𝐴img 

(𝐴0 ≡ 𝐴img). Radiation from a scene differential surface 𝑑𝐴(𝑞1) in direction 𝑞1→𝑞0 

is focused by the lens onto the differential surface 𝑑𝐴(𝑞img) at the image plane.  

BRF camera (Figure 3.9). It is designed for assessing the directional radiance from the 

simulated scene, for an illumination configuration. The mean scene radiance in any direction 

Ω0 is captured by an orthographic camera (Figure 3.9) that has a lens area equal to the 

projected area 𝐴ortho(Ω0) of the environment, i.e., 𝐴0 ≡ 𝐴img = 𝐴ortho(Ω0). This specific 

orthographic camera has only one pixel. The sensor of the BRF camera is a hemispheric 

dome with infinite radius (Figure 3.9.b). The pixel array has equal zenith ∆𝜃 and azimuth 

∆𝜑 steps. The corresponding solid angle of pixel 𝑗 viewing from the environment is: 
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∆Ω(𝑗) = ∫ ∫ sin 𝜃(𝑗) 𝑑𝜃𝑑𝜑
∆𝜃∆𝜑

 

 

Each pixel stores the mean scene radiance over ∆Ω(𝑗). It is an average of measurements of 

orthographic cameras with direction angles in 𝜃(𝑗)±∆𝜃/2 and 𝜑(𝑗)±∆𝜑/2. 

 

The direction of the exit importance is uniformly sampled with the probability density:  
 

𝑝(Ω0) =
𝑝(𝜃, 𝜑)

sin 𝜃
=
𝑝(𝜃) ∙ 𝑝(𝜑)

sin 𝜃
 

with   𝑝(𝜃) =
1

𝜋/2
      and      𝑝(𝜑) =

1

2𝜋
 

 

Once the exit direction is sampled, the vertex is uniformly sampled on the lens area: 

𝑝(𝑞0) =
1

𝐴0
=

1

𝐴ortho(Ω0)
 

 

and the corresponding mathematically equivalent importance is computed by: 
 

𝑊𝑒(𝑞0, Ω0) =
1

𝜋2 ∙ 𝐴ortho(Ω0)
 (3.24) 

 

Compared to the photon spread method (Thompson and Goel, 1998) commonly used in 

forward ray tracing codes (e.g., SPRINT and Rayspread), the BRF camera has two 

advantages: (1) it is easy to implement in Monte Carlo codes (e.g., forward, backward and 

bi-directional algorithm), and (2) the mean radiance/reflectance of any direction with any 

solid angle can be derived in a postprocess once the BRF camera pixel values are computed. 

 

(a)
 

(b)
 

Figure 3.9. a) Scene exit radiation in direction Ω0 captured by a “single pixel” orthographic 

camera with image plane 𝐴ortho(Ω0). b) The hemispheric image plane of the BRF camera. 
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3.3.3 BSDF models 

BSDF models (cf. section 1.4) define surface scattering events (i.e., reflection, transmission). 

Scattered radiation and importance (adjoint transport) depend on the surface optical properties 

and the distribution of incident radiation (Eq. (1.39)) or importance (Eq. (3.12)). Because the 

distribution of incident radiation or importance is not known when the sampling probability 

density function 𝑝(Ω𝑜|Ω𝑖) is needed, 𝑝(Ω𝑜|Ω𝑖) is usually derived assuming isotropic incident 

quantities 𝐿𝑖 or 𝑊𝑖. For an incident direction Ω𝑖 in the surface local coordinate (i.e., radiation 

direction in light transport and importance direction in adjoint transport): 

 

𝑝(Ω𝑜|Ω𝑖) =
𝑓𝑠(𝑟, Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑜

∫ 𝑓𝑠(𝑟, Ω𝑖 → Ω𝑜′ ) ∙ cos 𝜃𝑜′ 𝑑Ω𝑜′4𝜋

 (3.25) 

 

Eq. (3.25) is valid even if the reciprocity is not verified. To optimize the calculation of 𝑝(Ω𝑜|Ω𝑖), 

reflection and transmission are separated using a constant probability of reflection P∗: 

 

𝑝(Ω𝑜|Ω𝑖) =

{
 
 

 
 P∗ ∙

𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑜

∫ 𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜′ ) ∙ cos 𝜃𝑜′ 𝑑Ω𝑜′2𝜋+

,        if (�⃗� ∙ Ω𝑜) ∙ (�⃗� ∙ Ω𝑖) ≥ 0

(1 − P∗) ∙
𝑓𝑡(𝑟, Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑜

∫ 𝑓𝑡(𝑟, Ω𝑖 → Ω𝑜
′ ) ∙ cos 𝜃𝑜

′ 𝑑Ω𝑜
′

2𝜋−

,   otherwise                   

 (3.26) 

 

In DART-Lux, P∗ is 1 for opaque surfaces (transmittance is zero), 0 for non-reflective surfaces 

(reflectance is zero), and 0.5 for non-zero transmittance and reflectance which reduces the 

dependence of sampling on spectral properties. Once a scattering direction is sampled, an 

intersection test along the sampled direction determines the next path vertex.  

 

Lambertian model. It has constant BRDF (Eq. (1.22)) and BTDF (Eq. (1.33)):  
 

𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) =
𝜌

𝜋
,   𝑓𝑡(𝑟, Ω𝑖 → Ω𝑜) =

𝜏

𝜋
 

 

Plugging 𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) and 𝑓𝑡(𝑟, Ω𝑖 → Ω𝑜) into Eq. (3.26), we get: 

 

𝑝(Ω𝑜|Ω𝑖) = {
P∗ ∙

cos 𝜃𝑜
𝜋

,                  if (�⃗� ∙ Ω𝑜) ∙ (�⃗� ∙ Ω𝑖) ≥ 0

(1 − P∗) ∙
cos 𝜃𝑜
𝜋

,       otherwise                         

 

 

Specular model. The BRDF (Eq. (1.27)) and BTDF (Eq. (1.36)) are based on the Fresnel’s law: 
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𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) = ℛ𝑠(𝑟, Ω𝑖 → Ω𝑜) ∙
𝛿(Ω𝑖 − Ω𝑖

∗)

cos 𝜃𝑖
              

𝑓𝑡(𝑟, Ω𝑖 → Ω𝑜) = 𝒯𝑠(𝑟, Ω𝑖 → Ω𝑜) ∙
(
𝑛𝑜
𝑛𝑖
)
3

∙ 𝛿(Ω𝑖 − Ω𝑖
∗)

cos 𝜃𝑖
 

 

Substituting 𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) and 𝑓𝑡(𝑟, Ω𝑖 → Ω𝑜) into Eq. (3.26), we get:  

 

𝑝(Ω𝑜|Ω𝑖) =

{
 
 

 
 P∗ ∙

𝛿(Ω𝑖 − Ω𝑖
∗) ∙ cos 𝜃𝑜

cos 𝜃𝑖
,                          if (�⃗� ∙ Ω𝑜) ∙ (�⃗� ∙ Ω𝑖) ≥ 0

(1 − P∗) ∙

𝑛𝑜
𝑛𝑖
∙ 𝛿(Ω𝑖 − Ω𝑖

∗) ∙ cos 𝜃𝑜

cos 𝜃𝑖
,       otherwise                         

 

 

Microfacet model. The rough surface is modelled as a collection of microfacets that represent 

the roughness. The microfacets distribution and the masking-shadowing function are 

described by 𝐷m(Ωf) (Eq. (1.28)) and 𝐺m(Ω𝑖, Ω𝑜) (Eq. (1.29)), respectively. The BRDF (Eq. 

(1.30)) and BTDF (Eq. (1.37)) of rough surface is computed by: 

 

𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) =
ℛ𝑠(𝑟, Ω𝑖 → Ω𝑜) ∙ 𝐷m(Ωf) ∙ 𝐺m(Ω𝑖, Ω𝑜)

4 cos 𝜃𝑖 cos 𝜃𝑜
                                                   

𝑓𝑡(𝑟, Ω𝑖 → Ω𝑜) =
|Ω𝑖 ∙ Ωf| ∙ |Ω𝑜 ∙ Ωf|

cos 𝜃𝑖 cos 𝜃𝑜
∙
(
𝑛𝑜
𝑛𝑖
)
3

∙ 𝒯𝑠(𝑟, Ω𝑖 → Ω𝑜) ∙ 𝐷m(Ωf) ∙ 𝐺m(Ω𝑖, Ω𝑜)

(|Ω𝑖 ∙ Ωf| −
𝑛𝑜
𝑛𝑖
|Ω𝑜 ∙ Ωf|)

2  

 

The BRDF and BTDF cannot be analytically integrated. Therefore, their numeric integration 

is done by random sampling a microfacet normal Ωf over the facet distribution 𝐷m(Ωf): 
 

𝑝(Ωf) = 𝐷m(Ωf) ∙ cos 𝜃f 

 

For a unique incident direction Ω𝑖 (i.e., infinitesimal incident solid angle) and for Ωf variable 

in a small solid angle 𝑑Ωf, the geometric optics shows that the reflected direction is in: 
 

𝑑Ω𝑜 = 4 ∙ |Ω𝑖 ∙ Ωf|𝑑Ωf 
 

and the transmitted direction is in: 

𝑑Ω𝑜 =
(|Ω𝑖 ∙ Ωf| −

𝑛𝑜
𝑛𝑖
|Ω𝑜 ∙ Ωf|)

2

(
𝑛𝑜
𝑛𝑖
)
2
|Ω𝑜 ∙ Ωf|

𝑑Ωf 

 

Because 𝑝(Ω𝑜|Ω𝑖) = 𝑝(Ωf)𝑑Ωf/𝑑Ω𝑜, we have: 
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𝑝(Ω𝑜|Ω𝑖) =

{
 
 

 
 P∗ ∙

𝐷m(Ωf) ∙ cos 𝜃f
4 ∙ |Ω𝑖 ∙ Ωf|

,                                               if (𝒏 ∙ Ω𝑜) ∙ (𝒏 ∙ Ω𝑖) ≥ 0

(1 − P∗) ∙
(
𝑛𝑜
𝑛𝑖
)
2

∙ 𝐷m(Ωf) ∙ |Ω𝑜 ∙ Ωf| ∙ cos 𝜃f

(|Ω𝑖 ∙ Ωf| −
𝑛𝑜
𝑛𝑖
|Ω𝑜 ∙ Ωf|)

2 ,   otherwise                         

 

 

Parametric models and measurements. Some parametric BSDF models such as the RPV 

model (Eq. (1.23)) and the Hapke model (Eq. (1.24)) cannot be integrated analytically to 

derive the probability density function using Eq. (3.25). Also, they cannot be approximated 

by a simpler integrable form. In some cases, the BSDF may be known for only a limited 

number of directions. To adapt these parametric models and measurements, we compute or 

interpolate a 2D piecewise-constant BSDF for a set of discrete incident and exit directions 

and then, derive the probability density based on this new BSDF using Eq. (C.9).  

 

 

Figure 3.10. Resampled equal angle step directions on the hemisphere with constant ∆𝜃 

and ∆𝜑 for each solid angle. 

Here, we present how a 2D piecewise-constant BRDF is constructed; its associate BTDF can 

be similarly constructed. The 2𝜋 hemispheric space is discretized into 𝑁𝜃∙𝑁𝜑 solid angles 

(𝑁𝜃=𝜋/2∆𝜃, 𝑁𝜑=2𝜋/∆𝜑) with constant zenith step ∆𝜃 and azimuth step ∆𝜑 (Figure 3.10). 

Ω(𝑥,𝑦)(𝜃𝑥, 𝜑𝑦), with 𝜃𝑥, 𝜑𝑦 (𝑥=1,⋯ ,𝑁𝜃, 𝑦=1,⋯ , 𝑁𝜑) its zenith and azimuth angles, is the 

central direction of the solid angle ∆Ω(𝑥,𝑦)=[𝜃𝑥-∆𝜃/2, 𝜃𝑥+∆𝜃/2] × [𝜑𝑦-∆𝜑/2, 𝜑𝑦+∆𝜑/2]. 

For an incident direction Ω𝑖
(𝑥𝑖,𝑦𝑖) and a reflected direction Ω𝑜

(𝑥𝑜,𝑦𝑜), the BRDF is:  

 

𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) = 𝑐𝑥𝑜,𝑦𝑜|𝑥𝑖,𝑦𝑖 , ∀ Ω𝑖 ∈ ∆Ω𝑖
(𝑥𝑖,𝑦𝑖), Ω𝑜 ∈ ∆Ω𝑜

(𝑥𝑜,𝑦𝑜) 
 

The corresponding probability density function for Ω𝑖 ∈ ∆Ω𝑖
(𝑥𝑖,𝑦𝑖) and Ω𝑜 ∈ ∆Ω𝑜

(𝑥𝑜,𝑦𝑜) is: 
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           𝑝(Ω𝑜|Ω𝑖) =

1

∆Ω𝑜
(𝑥𝑜,𝑦𝑜)

∫ 𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑜∆Ω𝑜
(𝑥𝑜,𝑦𝑜) 𝑑Ω𝑜

∫ 𝑓𝑟(𝑟, Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑜 𝑑Ω𝑜2𝜋+

                                                                 

                             =

1

∫ ∫ sin 𝜃 𝑑𝜃𝑑𝜑
𝜃𝑥𝑜+∆𝜃/2

𝜃𝑥𝑜−∆𝜃/2

𝜑𝑦𝑜+∆𝜑/2

𝜑𝑦𝑜−∆𝜑/2

∫ ∫ 𝑐𝑥𝑜,𝑦𝑜|𝑥𝑖,𝑦𝑖
𝜃𝑥𝑜+∆𝜃/2

𝜃𝑥𝑜−∆𝜃/2

𝜑𝑦𝑜+∆𝜑/2

𝜑𝑦𝑜−∆𝜑/2
cos𝜃 sin𝜃 𝑑𝜃𝑑𝜑

∑ ∑ ∫ ∫ 𝑐𝑥,𝑦|𝑥𝑖,𝑦𝑖
𝜃𝑥+∆𝜃/2

𝜃𝑥−∆𝜃/2

𝜑𝑦+∆𝜑/2

𝜑𝑦−∆𝜑/2
cos𝜃 sin𝜃 𝑑𝜃𝑑𝜑

𝑁𝜑
𝑦=1

𝑁𝜃
𝑥=1

                             

=
𝑐𝑥𝑜,𝑦𝑜|𝑥𝑖,𝑦𝑖 cos 𝜃𝑥𝑜 sin ∆𝜃

2 sin
∆𝜃
2
∑ ∑ 𝑐𝑥,𝑦|𝑥𝑖,𝑦𝑖 sin𝜃𝑥 cos 𝜃𝑥 sin∆𝜃 ∆𝜑

𝑁𝜑
𝑦=1

𝑁𝜃
𝑥=1

                                                        

=
𝑐𝑥𝑜,𝑦𝑜|𝑥𝑖,𝑦𝑖 cos𝜃𝑥𝑜

2 sin
∆𝜃
2
∆𝜑∑ ∑ 𝑐𝑥,𝑦|𝑥𝑖,𝑦𝑖 sin𝜃𝑥 cos 𝜃𝑥

𝑁𝜑
𝑦=1

𝑁𝜃
𝑥=1

                                                                     

 

 

using:    ∫ ∫ sin 𝜃 𝑑𝜃𝑑𝜑
𝜃+∆𝜃/2

𝜃−∆𝜃/2

𝜑+∆𝜑/2

𝜑−∆𝜑/2
= 2 sin 𝜃 sin

∆𝜃

2
∆𝜑  

∫ ∫ cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜑
𝜃+∆𝜃/2

𝜃−∆𝜃/2

𝜑+∆𝜑/2

𝜑−∆𝜑/2
= sin 𝜃 cos 𝜃 sin ∆𝜃 ∆𝜑   

 

Mixed model. It combines two BSDF models with specific mixture ratio 𝑎 to simulate several 

scattering effects (e.g., specular and diffuse reflection) without the effort to create a new 

BSDF model. It is characterized by: 
 

Mixed BSDF:  𝑓𝑠(𝑟, Ω𝑖 → Ω𝑜) = 𝑎 ∙ 𝑓𝑠1(𝑟, Ω𝑖 → Ω𝑜) + (1 − 𝑎) ∙ 𝑓𝑠2(𝑟, Ω𝑖 → Ω𝑜) 
 

Mixed probability density: 𝑝(Ω𝑜|Ω𝑖) = 𝑎 ∙ 𝑝1(Ω𝑜|Ω𝑖) + (1 − 𝑎) ∙ 𝑝2(Ω𝑜|Ω𝑖) 
 

Mixed models can be mixed to represent more than two scattering effects. It is useful in 

radiative transfer modelling if the scattering behaviour of a surface can be decomposed into 

several scattering behaviours that can be represented by an analytical BSDF.  

The mathematical descriptions of the light sources, sensors, and surfaces presented in Section 

3.3 can be evaluated once the vertex location and light geometry is determined. Then, using 

these values in Eq. (3.19) gives the radiance measurement. However, the straightforward 

evaluation of Eq. (3.19) is computationally very expensive. Here we present an algorithm to 

evaluate Eq. (3.19) with a reduced number of computations. 
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3.4 Practical implementation 

3.4.1 Computation of throughput 

The throughput (Eq. (3.20)) is evaluated incrementally along the random walk: 

 

𝑇(�̅�0) = 𝐿𝑒(𝑝0 → 𝑝1)  𝑇(�̅�0) = 𝑊𝑒
(𝑗)(𝑞0 → 𝑞1)  

𝑇(�̅�1) =
𝐿𝑒(𝑝0→𝑝1)

𝑝 (𝑝0)
∙
cos𝜃𝑜

𝑝0

𝑝(𝑝0→𝑝1)
  𝑇(�̅�1) =

𝑊𝑒
(𝑗)(𝑞0→𝑞1)

�⃖�(𝑞0)
∙
cos𝜃𝑖

𝑞0

𝑝(𝑞0→𝑞1)
  

⋯ ⋯ 

𝑇(�̅�𝑘) = 𝑇(�̅�𝑘−1) ∙
𝑓𝑠(𝑝𝑘−2→𝑝𝑘−1→𝑝𝑘)∙cos𝜃𝑜

𝑝𝑘−1

𝑝(𝑝𝑘−1→𝑝𝑘)
  𝑇(�̅�𝑘) = 𝑇(�̅�𝑘−1) ∙

𝑓𝑠
∗(𝑞𝑘−2→𝑞𝑘−1→𝑞𝑘)∙cos𝜃𝑖

𝑞𝑘−1

𝑝(𝑞𝑘−1→𝑞𝑘)
  

 

with    
𝐺(𝑝𝑘−1↔𝑝𝑘)

𝑝 (𝑝𝑘)
=

cos𝜃𝑜
𝑝𝑘−1

𝑝(𝑝𝑘−1→𝑝𝑘)
   and   

𝐺(𝑞𝑘−1↔𝑞𝑘)

�⃖�(𝑞𝑘)
=

cos 𝜃𝑖
𝑞𝑘−1

𝑝(𝑞𝑘−1→𝑞𝑘)
  

 

These throughputs are stored in memory and can be directly used to compute the contribution 

function of any sub-path combinations (cf. section 3.2.2). 

3.4.2 Computation of the weight function 

The division of Eq. (3.18) by its numerator gives 

𝑤𝑠,𝑡(�̅�𝑠,𝑡) =
1

𝑤𝑠−1
light

+ 1 + 𝑤𝑡−1
sensor

 

 

with 𝑤𝑠−1
light

  = ∑ (
𝑝(�̅�

𝑠′,𝑡′
)

𝑝(�̅�𝑠,𝑡)
)

2

𝑠−1
𝑠′=0    and   𝑤𝑡−1

sensor = ∑ (
𝑝(�̅�

𝑠′,𝑡′
)

𝑝(�̅�𝑠,𝑡)
)

2

𝑡−1
𝑡′=0 . 

 

The overall probability density (Eq. 3.17))leads to the probability density of a virtual path �̅�𝑠′,𝑡′: 
 

𝑝(�̅�𝑠′,𝑡′) =

{
 
 

 
 
∏𝑝 (𝑝𝑘)

𝑠′−1

𝑘=0

∙ ∏ �⃖�(𝑝𝑘)

𝑠−1

𝑘=𝑠′

∙∏�⃖�(𝑞𝑘)

𝑡−1

𝑘=0

, 𝑠′ < 𝑠

∏𝑝 (𝑝𝑘)

𝑠−1

𝑘=0

∙∏ 𝑝 (𝑞𝑘)

𝑡−1

𝑘=𝑡′

∙∏ �⃖�(𝑞𝑘)

𝑡′−1

𝑘=0

, 𝑠′ > 𝑠

 

 

Then, the weights 𝑤𝑠−1
light

 and 𝑤𝑡−1
sensor are expressed by: 
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𝑤𝑠−1
light

 = ∑ (
∏ 𝑝 (𝑝𝑘)
𝑠′−1
𝑘=0 ∙ ∏ �⃖�(𝑝𝑘)

𝑠−1
𝑘=𝑠′ ∙ ∏ �⃖�(𝑞𝑘)

𝑡−1
𝑘=0

∏ 𝑝 (𝑝𝑘) ∙ ∏ �⃖�(𝑞𝑘)
𝑡−1
𝑘=0

𝑠−1
𝑘=0

)

2𝑠−1

𝑠′=0

= ∑ (∏
�⃖�(𝑝𝑘)

𝑝 (𝑝𝑘)

𝑠−1

𝑘=𝑠′

)

2𝑠−1

𝑠′=0

 

𝑤𝑡−1
sensor = ∑ (

∏ 𝑝 (𝑝𝑘)
𝑠−1
𝑘=0 ∙ ∏ 𝑝 (𝑞𝑘)

𝑡−1
𝑘=𝑡′ ∙ ∏ �⃖�(𝑞𝑘)

𝑡′−1
𝑘=0

∏ 𝑝 (𝑝𝑘) ∙ ∏ �⃖�(𝑞𝑘)
𝑡−1
𝑘=0

𝑠−1
𝑘=0

)

2𝑡−1

𝑡′=0

= ∑ (∏
𝑝 (𝑞𝑘)

�⃖�(𝑞𝑘)

𝑡−1

𝑘=𝑡′

)

2𝑡−1

𝑡′=0

 

Both weights can be incrementally evaluated after some mathematical inductions. For example:  

 

𝑤−1
light

= 0  

𝑤0
light

= (
�⃖�(𝑝0)

𝑝 (𝑝0)
)
2

  

𝑤1
light

= (
�⃖�(𝑝1)

𝑝 (𝑝1)
∙
�⃖�(𝑝0)

𝑝 (𝑝0)
)
2

+ (
�⃖�(𝑝1)

𝑝 (𝑝1)
)
2

  

𝑤2
light

= (
�⃖�(𝑝2)

𝑝 (𝑝2)
∙
�⃖�(𝑝1)

𝑝 (𝑝1)
∙
�⃖�(𝑝0)

𝑝 (𝑝0)
)
2

+ (
�⃖�(𝑝2)

𝑝 (𝑝2)
∙
�⃖�(𝑝1)

𝑝 (𝑝1)
)
2

+ (
�⃖�(𝑝2)

𝑝 (𝑝2)
)
2

  

…  

 

After some mathematical inductions, we finally derive the expression of 𝑤𝑘
light

 and 𝑤𝑘
sensor 

that can be evaluated incrementally and be stored in memory to compute the weight for any 

sub-path combinations (cf. section 3.2.2): 

 

𝑤𝑘
light

    = [�⃖�(𝑝𝑘)]
2 (

1

[𝑝 (𝑝𝑘)]2
+

𝑤𝑘−1
light

[𝑝 (𝑝𝑘)]2
) 

𝑤𝑘
sensor = [𝑝 (𝑞𝑘)]

2 (
1

[�⃖�(𝑞𝑘)]2
+
𝑤𝑘−1
sensor

[�⃖�(𝑞𝑘)]2
) 

 

3.4.3 Computer programming 

The computer graphics community develops increasingly efficient physically based renderers 

(e.g., LuxCoreRender: https://luxcorerender.org, Mitsuba 3: https://mitsuba-renderer.org, 

Cycles: https://cycles-renderer.org) that simulate very fast and visually pleasing colour images 

or videos of 3D artificial world. They provide well modularized program architecture to 

facilitate the implementation of a large variety of light transport algorithms, light sources, 

sensors, surface and volume materials, and sampling methods. However, they work with three 

colour bands and usually low radiometric accuracy, and neglect important radiative processes 

(e.g., polarization and SIF emission). Therefore, they are not adapted to land surface modelling 

https://luxcorerender.org/
https://mitsuba-renderer.org/
https://cycles-renderer.org/
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and remote sensing applications that need radiometric quantities (e.g., reflectance and radiative 

budget) in various ranges of spectral bands, for specific radiation processes (e.g., dependence 

of leaf reflectance to its chlorophyll content), and with an appropriate radiometric accuracy. 

Therefore, a current trend in the 3D RTM community is to adapt and further develop the 

efficient light transport algorithms. DART-Lux is the result of the implementation and great 

adaptation in DART (Figure 2.4) of the bidirectional path tracing architecture of the renderer 

LuxCoreRender, and a variety of light sources, sensors, and BSDFs (cf. section 3.3).  

 

Due to its flexible algorithm and modularized program, DART-Lux can be extended to many 

uses. Three types of extension, some of which are already implemented, are indicated here. (1) 

Physical modelling: SIF and thermal emission, spherical atmosphere with 3D clouds, any 

surface / volume scattering function, polarization, radiative budget, etc. (2) Products: spectral 

radiance / reflectance / brightness temperature / solar induced fluorescence images, 3D radiative 

budget, images per type of land cover (e.g., tree, ground), LiDAR waveform, point cloud and 

photon counting, polarized components, look-up-tables for inversion and sensitivity work, etc. 

(3) Computer science: accurate ray-object intersection to avoid self-intersection and watertight 

intersection issues (Woo et al., 1996; Woop et al., 2013)), GPU acceleration, distributed 

computing, etc. 

3.5 Evaluation of DART-Lux 

Here, DART-Lux accuracy for reflectance and remote sensing images is assessed using the 

classic DART discrete ordinates mode (referred to DART-FT). The idea here is double. (1) 

Having already been validated by measurements and model comparison (cf. section 2.3.1), 

DART-FT can be used as a reference, even if for doing so, DART-FT must be run with input 

parameters that imply very large computer resources. (2) DART-FT and DART-Lux use two 

totally different radiative transfer modelling methods, while using the same representations of 

3D landscapes. Therefore, there is a high probability that the two models are exact if they give 

the same results. Three scenes are considered: schematic scene, urban scene, and forest scene. 
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3.5.1 Schematic scene 

The schematic scene (Figure 3.11) has seven cherry trees with different sizes and a DART-

created house with gable roof to assess DART-Lux accuracy in presence of slopes. Its mock-

up consists of 0.137 million facets. Table 3.1 and Table 3.2 give DART input parameters. Its 

BOA images are simulated for four spectral bands (blue B: 0.44 𝜇m; green G: 0.56 𝜇m; red R: 

0.66 𝜇m; near infrared NIR: 0.87 𝜇m) at 0.125m spatial resolution, for three light conditions 

(i.e., single and multiple light sources) with SKYL =
BOA sky diffuse irradiance

BOA total irradiance 
 equal to 0 (direct 

sun), 1 (diffuse sky) and 0.5 (direct sun + diffuse sky).  

Table 3.1. Schematic scene: input parameters for the mock-up, light source and spectral band. 

Parameters  Value 

DART scene Scene dimension X=Y=32 m  

 Spatial resolution ∆x=∆y=0.125 m  

 Tree model Cherry tree 

 Building model DART classic house 

 Neighbourhood effect Repetitive mode 

Sunlight Direction Zenith 𝜃sun=30°, Azimuth 𝜑sun=225° 

 TOA irradiance THKUR (Berk et al., 2008) 

Sky light SKYL 0, 0.5 or 1 

Spectral band Spectral band 0.44 𝜇m, 0.56 𝜇m, 0.66 𝜇m, 0.87 𝜇m 

 Bandwidth 0.02 𝜇m 
 

Table 3.2. Configurations of DART-Lux and DART-FT radiative transfer methods. 

DART-Lux DART-FT 

Samples/pixel 400 Discrete direction 1000 

Max scattering order 6 Max scattering order 6 

Number of threads 8 Number of threads 8 

  Illumination rays per pixel 169 
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Figure 3.11. schematic scene: mock-up with its seven cherry trees of different sizes and 

DART classic house. 

The consistency of DART-Lux and DART-FT images is illustrated by visually comparing their 

RGB colour composite images (Figure 3.12) and their scatter plots of NIR reflectance (Figure 

3.13) for the three BOA illumination conditions. Degrading the image resolution from 0.125m 

to 0.5 m greatly improves the pixelwise comparison from {R2
 > 0.968, bias < 0.006} to {R2

 > 

0.995, bias < 0.0004} because it mitigates the noise and discretization effects. Figure 3.14 shows 

the BRF profiles in the solar plane for the four spectral bands (B, G, R, NIR), with viewing 

zenith angle step ∆𝜃𝑣=5°. Differences are quantified by the average absolute relative difference: 

 

𝜀̅ =
1

𝑁𝜃𝑣
∑ |

𝜌DART−Lux(𝜃𝑣) − 𝜌DART−FT(𝜃𝑣)

𝜌DART−FT(𝜃𝑣)
|

𝜃𝑣

∙ 100% 

 

with 𝑁𝜃𝑣  the number of viewing directions.  

 

Usually, 𝜀  ̅ 0.4% (Table 3.3) and maximal 𝜀m̅ax  0.6%. The slight differences in the scatter 

plot and the BRF profile are mostly due to DART-Lux Monte Carlo noise and DART-FT 

discretization processes. Indeed, even with 1000 discrete directions, the DART-FT “atmosphere 

shadows” (i.e., SKYL = 1) have a discrete aspect less realistic than that with DART-Lux.  

 

 SKYL=0 SKYL=1 SKYL=0.5 

D
A

R
T

-F
T
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Figure 3.12. DART-FT (top) and DART-Lux (bottom) RGB images for three light 

conditions: SKYL = 0 (left), SKYL = 1 (centre) and SKYL = 0.5 (right). 
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Figure 3.13. Pixelwise comparison of DART-FT and DART-Lux NIR reflectance. Pixel values 

at 0.5 m resolution result from the degradation of the initial image at 0.125 m resolution. 
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Band SKYL = 0 SKYL = 1 SKYL = 0.5 

B 

   

G 

   

R 

   

NIR 

   

Figure 3.14. DART-FT and DART-Lux solar plane reflectance (∆𝜃𝑣 = 5°) in four spectral 

bands (R, G, B, NIR) for three illuminations (SKYL=0, SKYL=1, SKYL=0.5).  
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Table 3.3. Summary of average absolute relative difference 𝜀 ̅of BRF in Figure 3.14. 

Band SKYL = 0 SKYL = 1 SKYL = 0.5 

B 0.443% 0.335% 0.360% 

G 0.467% 0.336% 0.359% 

R 0.445% 0.349% 0.404% 

NIR 0.605% 0.226% 0.338% 

 

3.5.2 Urban scene 

The urban scene is the Brienne district (1400 m × 750 m) of Toulouse, France. Its 3D mock-up 

(Figure 3.15.a) was provided by the Toulouse town hall (Wang et al., 2022). It contains 953 

buildings, 2433 trees, 3 grasslands, 1 river, 1 canal and other city facilities, represented by 8 

million facets. DART-FT and DART-Lux are configured with direct sunlight ( 𝜃sun =

20°, 𝜑sun = 180°, SKYL = 0), 0.5 m spatial resolution, four spectral bands (B: 0.44 𝜇m, G: 0.55 

𝜇m, R: 0.66 𝜇m, NIR: 0.87 𝜇m), maximal scattering orders six, no topography, and no 

atmosphere. Common optical properties are assigned per type of urban element (e.g., roof, 

vegetation). DART-FT is run with 100 discrete directions and 100 illumination rays per pixel. 

DART-Lux is run with 60 samples per pixel.  

 

DART-FT and DART-Lux RGB images are very close as illustrated by their RGB colour 

composites (Figure 3.16) and scatter plot of pixel reflectance in R band at 0.5m resolution 

(Figure 3.16.a): {R2
 > 0.99 and bias ~ 0.0001}. Degrading image resolution down to 2.0 m 

improves their similarity: {R2
 > 0.999 and bias < 0.0001} (Figure 3.16.b). Figure 3.16.c shows 

the R band BRF in the solar plane with zenith angle step ∆𝜃𝑣 = 2°. Its average absolute relative 

difference 𝜀 ̅is 0.24%. 
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(a) 

 
(b) 

 
(c) 

Figure 3.15. Brienne district: 3D mock-up (1400 m × 750 m) (a) and its DART-FT (b) and 

DART-Lux (c) RGB images.  
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(a) 

 

(b) 

 

(c) 

Figure 3.16. DART-Lux and DART-FT reflectance in R band. Scatter plot of pixel 

reflectance for 0.5 m (a) and 2.0 m (b) spatial resolution. c) Reflectance in the solar 

plane. 

3.5.3 Forest scene 

The forest scene is the Järvselja summer birch forest (summer, HET09_JBS_SUM) of RAMI4 

experiment (https://rami-benchmark.jrc.ec.europa.eu). It has 1029 realistic trees with 465 birch 

trees, 196 common alder trees, 185 aspen trees, 78 linden trees, 39 spruce trees, and 46 ash and 

maple trees (Figure 3.17.a). Its mock-up is created by repeating and/or rotating 18 individual 

3D tree objects. For example, the 465 birch trees are generated by cloning and/or rotating 4 

birch tree objects at different growing stages. This forest stand is very challenging for 3D RT 

models (Figure 3 in (Widlowski et al., 2015)) because it consists of more than 550 million facets.  

 

Simulations are for direct sun illumination (𝜃sun = 36.6°, 𝜑sun = 270.69°, SKYL=0), 0.125 m 

spatial resolution, four spectral bands (B: 0.44 𝜇m, G: 0.55 𝜇m, R: 0.66 𝜇m, NIR: 0.87 𝜇m), 

maximal scattering order 6. Specific optical properties are assigned per tree species. DART-

Lux is run with 200 samples per pixel. DART-FT is run with 62500 illumination rays per pixel, 

and 80 discrete directions. Figure 3.17.b shows DART-FT and DART-Lux RGB colour 

composite images. As for the schematic and urban cases, the scatter plots of pixel NIR 

reflectance indicate that the pixelwise comparison greatly improves from 0.125 m spatial 

resolution (Figure 3.17.d): {R2 > 0.93, bias  0.01} to 1 m spatial resolution (Figure 3.17.e): 

{R2 > 0.997, bias < 0.002}. 

 

https://rami-benchmark.jrc.ec.europa.eu/
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Figure 3.17.f shows DART-FT and DART-Lux NIR reflectance in the solar plane, at first order 

scattering. DART-FT is run with and without an acceleration technique: rays that exit a cell 

face along a same direction are not merged (approximate case called DART-FT) or merged 

(accurate case called DART-FT-REF, used as a reference). DART-Lux average absolute 

relative difference is 𝜀 ̅= 0.5% for DART-FT-REF and 0.7% for DART-FT. Larger differences 

occur at the hot spot direction. DART-FT underestimates the hot spot (Figure 3.17.f) because 

its merging technique reduces the exactly backscattered rays. Multiple scattering is only 

simulated with DART-FT and DART-Lux because DART-FT-REF is very time and memory 

consuming. The average absolute difference 𝜀̅ between DART-Lux and DART-FT is 1.0% 

(Figure 3.17.g). 

 

a)
 

b)  c)  d)  
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e)  f)  g)  

Figure 3.17. Järvselja birch forest. a) Location of trees and 3D mock-up of the centre region. 

DART-FT (b) and DART-Lux (c) RGB images at resolution 0.125 m. Scatter plot of 

pixel NIR reflectance at resolution 0.125 m (d) and 1.0 m (e). DART-FT and DART-

Lux NIR reflectance in the solar plane with zenith angle step ∆𝜃𝑣 = 2°: f) single 

scattering reflectance, g) total reflectance. 

3.6 Discussion 

3.6.1 Correlation of path samples 

The bidirectional path tracing algorithm (cf. section 3.2.2) with 𝑁𝑣 vertices per random walk is 

very efficient because it creates 𝑁𝑣
2 paths with only 𝑁𝑣

2+2(𝑁𝑣-1) intersection tests, compared 

to 𝑁𝑣
3  if each path is created independently. Knowing that the intersection test is the most 

computational expensive process in 3D radiative transfer modelling, this algorithm almost 

reduces the simulation time by a factor of: 

 

𝑁𝑣
3

𝑁𝑣2 + 2(𝑁𝑣 − 1)
 

 

However, it increases the covariance (i.e., Monte Carlo noise) between path samples, because 

they are created with the same light and sensor sub-paths. Although the estimate of radiance 

measurement Eq. (3.15) gives unbiased results (cf. 3.Appendix A), compared to estimates with 

independent path samples, the path sample correlation can increase the overall variance by a 

maximal factor 𝑓(𝜏) (Eq. (3.27)). With 𝐶𝒟𝑛+1/𝐶𝒟𝑛 ≈ 𝜏, ∀ 𝑛 (0 ≤ 𝜏 < 1) the average ratio of 

contributions of successive scattering orders (cf. 3.Appendix B), we have: 
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𝑓(𝜏) =

(1 + 𝜏) ∙ (2 + 𝜏 (
√2
2 − 𝜏) (3 − 𝜏))

(1 − 𝜏)2
 

(3.27) 

 

Figure 3.18.a shows the decrease in the contribution of the scene average nadir radiance of 

scattering order 𝑛 = 1,⋯ ,6, relative to the contribution of first order scattering, for the three 

scenes studied in section 3.5. The trendiness is an exponentiation 

 

𝑔(𝑛) = 𝜏−(𝑛−1) 

 

with 𝜏 usually in [0, 0.1] for visible bands and in [0.4, 0.6] for NIR bands. 𝑓(𝜏) of Eq. (3.27) 

(Figure 3.18.b) is less than 2.4 for simulations in visible bands, and in [9, 22] for most 

simulations in the NIR band. It highlights the usual faster convergence of DART-Lux in 

visible bands than in NIR bands. This is also underlined by the BRF profiles (Figure 3.14): 

NIR BRFs are noisier than VIS BRFs if the same number of samples per pixel is used.  

 

a)    b)  

Figure 3.18. Contribution 𝑔(𝑛) of scene radiance for scattering order n = 1 to 6, relative to the 

contribution of first order scattering, for the three studied scenes: schematic, urban and 

forest. a) Trendlines 𝑔(𝑛)=𝜏-(𝑛-1). b) Factor 𝑓(𝜏) in function of 𝜏 value (Eq. (3.27)).  

Recall the efficiency 𝜖 of a Monte Carlo method (Eq. (C.14)) defined by its variance 𝕍 and 

computation time 𝕋: 

 

𝜖 =
1

𝕍 ∙ 𝕋
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Compared to an algorithm that uses independent paths, DART-Lux appears to be more efficient 

despite the correlation of its path samples. The efficiency gains 𝜂  of DART-Lux over the 

method that uses independent path samples is:  

 

𝜂 = (
𝜖DART−Lux

𝜖independent path
− 1) = (

1

𝑓(𝜏)
∙

𝑁𝑣
3

𝑁𝑣
2 + 2(𝑁𝑣 − 1)

− 1) 

 

In VIS bands, usually 𝑁𝑣=5, 𝑓(𝜏)≤2.5, then 𝜂>50%. In NIR bands, usually 𝑁𝑣≥40, 𝑓(𝜏)

≤22, then 𝜂>70%. Actually, 𝜂 is even larger because the variance is usually smaller than the 

upper boundary variance. 

3.6.2 Advantages of DART-Lux for simulating images 

Compared to DART-FT, DART-Lux has great advantages for simulating remote sensing 

images and BRF, especially for complex environments with millions of facets. Table 3.4 

summarizes the memory allocation and computation time of simulations in section 3.5. For the 

Järvselja birch forest, DART-Lux reduces the simulation time by 715 times, and the memory 

by 142 times. Four factors explain DART-Lux efficiency. 1) End-to-end simulation: DART-

Lux samples the paths that contribute only to the simulated image whereas DART-FT tracks all 

possible paths. 2) Efficient path generating strategy: bi-directional random walk and vertex 

connection ways can generate a group of paths with less time cost. Despite the potential increase 

of variance since path samples can be correlated, the overall efficiency increases (cf. section 

3.6.1). 3) Depth-first strategy: the random walk requires much less memory compared to the 

breadth-first strategy of DART-FT whose memory demand greatly increases with scattering 

order. Although DART-FT applies an acceleration technique by merging rays that come out of 

a cell face for each discrete direction (cf. section 3.5.3), its memory usage is still very high for 

modelling large-scale landscapes. 4) Data organisation: for a scene with 𝑁 instances of a 3D 

object, DART-Lux cloning technique stores a unique 3D object and 𝑁  rotation – scaling 

matrices whereas DART-FT stores 𝑁 3D objects in the memory for simulating the 3D radiative 

budget. Therefore, DART-Lux uses much less memory and time than DART-FT.  

 

Two points must be noted here, (1) single direction image simulation: although DART-Lux is 

much more efficient than DART-FT for simulating complex scenarios, it is slower to simulate 

simple scenarios, such as the bare ground, the simple building arrays; (2) multi-angle image 
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simulation: a single DART-FT simulation can give many directional image, that is to say, the 

computation time of 1000 images is nearly the same as for one image. Presently, for DART-

Lux, the simulation time for N images is nearly N times the simulation time of one image.  

 

Table 3.4. Simulation time and memory demand for the three cases of section 3.5. Cases 1 

and 2 are simulated on a personal computer (Intel Xeon E5-1620 @ 3.5 GHz, 8 cores, 

64 Gb memory). Case 3 is simulated on a server (Intel Xeon E5-2687W @ 3.1 GHz, 

40 cores, 560 Gb memory). 

Scene 
DART-FT DART-Lux 

Time (min) Memory (Gb) Time (min) Memory (Gb) 

Case 1: Schematic  70.8 1.25 1.38 0.07 

Case 2: Urban  571 40.0 10.86 2.60 

Case 3: Forest  4962 469.0 6.93 3.30 

 

3.6.3 Accuracy of DART-Lux 

In theory, the Monte Carlo method is more accurate than the discrete ordinates method, because 

it does not need to simplify the 3D mock-up and radiation processes. The underestimation of 

the hot-spot in Figure 3.17.f illustrates this point. However, because Monte Carlo methods need 

many samples to reach convergence, there is a trade-off between accuracy and number of 

samples. Fortunately, DART-Lux accuracy and efficiency is less dependent than DART-FT on 

the complexity of the radiative transfer problem. For example, the forest scene has an average 

computation time per sample (i.e., 
Simulation time

Number of samples
) that is only 7 times longer than for the 

schematic scene, although it is 4000 times more complex than the schematic scene in terms of 

number of facets (Table 3.5). Table 3.6 shows the accuracy of DART-Lux forest reflectance 

for six values of samples/m2: difference 𝜀mean of image mean reflectance, and RMSE 𝜀pixel of 

image pixel reflectance relative to the reference values computed with a huge number of 

samples/m2. Results stress that DART-Lux configuration can be optimized according to the 

application and accuracy requirements. 1) Convergence is much faster for low reflectance bands 

than for high reflectance bands, which is consistent with discussion in section 3.6.1. 2) 𝜀mean 
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and 𝜀pixel decrease with the increase of samples/m2, with a much faster convergence for 𝜀mean 

than for 𝜀pixel. 

 

Table 3.5. Average time cost per sample 
Simulation time

Number of samples
 of the schematic and forest scenes 

in section 3.5. Intel Xeon E5-2687W server (3.1 GHz, 40 cores, 560 Gb memory). 

Scene Nb facet Nb pixels Samples/pixel Time 

(min) 

Time/sample 

(𝜇s) 

Case 1: Schematic 0.137 106 65536 400 0.20 0.45 

Case 3: Forest 558.2 106 640000 200 6.93 3.25 

 

Table 3.6. Absolute nadir reflectance error 𝜀mean and pixel RMSE 𝜀pixel of the forest scene 

in G and NIR bands for six samples/m2 values. Reference images are simulated with 

128000 samples/m2. 

 Samples/m2 640 3200 6400 12800 25600 51200 

G 
𝜀mean 3.8E-6 9.7E-6 4.0E-7 2.4E-6 1.5E-6 2.1E-6 

𝜀pixel 0.010 0.005 0.003 0.002 0.002 0.001 

NIR 
𝜀mean 3.0E-6 4.1E-5 1.2E-5 4.9E-6 1.3E-5 1.1E-5 

𝜀pixel 0.075 0.034 0.024 0.018 0.013 0.010 

3.7 Conclusions 

The unbiased, rapid and robust DART-Lux is a new Monte Carlo radiative transfer mode in 

DART. Its physical modelling relies on a bidirectional path tracing algorithm that efficiently 

samples a group of paths between the light source and the sensor to estimate radiance 

measurements. The algorithm is flexible to incorporate multi light sources (e.g., sun and sky), 

multi sensors (perspective camera, orthographic camera, BRF camera) and multi surface 

scattering distribution (Lambertian, specular). It greatly improves the computational efficiency 

of DART to simulate spectral images and BRF. Its accuracy and efficiency are assessed by the 

classic DART-FT mode for three landscapes (i.e., schematic scene, urban scene, forest scene). 
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Compared to DART-FT, DART-Lux gives consistent results (relative difference < 1%) while 

reducing the computation time by up to a factor of 700. A better consistency can be achieved if 

DART-FT is configured with much more discrete directions and without the above-mentioned 

acceleration technique. However, in this case, the simulation time and demand in computer 

memory of DART-FT hugely increase. In addition, DART-Lux is nearly independent on the 

land surface complexity conversely to DART-FT, which greatly eases the simulation of 

complex landscapes. 

 

A theoretical demonstration gives analytical expressions of the computation time and the upper 

boundary variance. It appears that DART-Lux algorithm improves efficiency 𝜖 even if it creates 

correlated path samples. It also has great advantages for simulating remote sensing images due 

to end-to-end modelling, efficient path sampling and depth-first strategy. Finally, a sensitivity 

study shows that (1) DART-Lux error decreases with the number of samples, (2) image mean 

values converge much faster than image pixel values, and (3) the convergence is faster for low 

reflectance bands than for high reflectance bands.  

 

The high-performance DART-Lux addresses the requirements for simulating large-scale and 

complex landscapes and massive remote sensing data, as well as the trends in RTM 

development. The Monte Carlo approach is potentially better adapted than discrete ordinates 

method for designing and implementing complex physical phenomena such as adjacency 

effects and clouds scattering and shadowing. DART-Lux opens new avenues for many remote 

sensing applications: design of satellite missions; correction of directional effects; inversion of 

remote sensing images; training machine learning models with many images; studying the 

impact of complex 3D architecture, etc. DART-Lux modelling development is still underway 

to expand its functionality, including solar induced fluorescence and thermal emission, LiDAR, 

atmospheric radiative transfer, polarization, and 3D radiative budget. 
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3.Appendix A  Upper boundary variance of the radiance estimate (Part I) 

The estimation of the upper boundary variance of the radiance estimate gives a good insight 

into the performance of an estimator. Here we analyse the increase of the variance due to the 

path sample correlation in the bidirectional path tracing algorithm. 

 

Recall the estimate of contribution of 𝑛-1 scattering order 𝐶𝒟𝑛 (Eq. (3.10)): 

𝐹𝒟𝑛
(𝑗)
= ∑𝑤𝑠,𝑡(�̅�𝑠,𝑡) ∙

𝑓(𝑗)(�̅�𝑠,𝑡)

𝑝(�̅�𝑠,𝑡)
= ∑𝐹𝑠,𝑡

𝑛+1

𝑠=0

𝑛+1

𝑠=0 

 

where �̅�𝑠,𝑡 ∈ 𝒟𝑛, and 𝑠 + 𝑡 = 𝑛 + 1. The corresponding variance is computed by: 

𝕍(𝐹𝒟𝑛
(𝑗)
) = ∑ ∑ 𝐶𝑜𝑣(𝐹𝑠,𝑡, 𝐹𝑠′,𝑡′)

𝑛+1

𝑠′=0 

𝑛+1

𝑠=0 

= ∑𝕍(𝐹𝑠,𝑡)

𝑛+1

𝑠=0 

+∑ ∑ 𝐶𝑜𝑣(𝐹𝑠,𝑡, 𝐹𝑠′,𝑡′)

𝑛+1

𝑠′=0, 𝑠′≠𝑠 

𝑛+1

𝑠=0 

 

If all path samples are independent, we have: 𝕍(𝐹𝒟𝑛
(𝑗)
) = ∑ 𝕍(𝐹𝑠,𝑡) = 𝜎𝑛

2𝑛+1
𝑠=0 . 

 

Because the bidirectional path tracing algorithm uses the same light and sensor random walk to 

get path samples, the later ones can be dependent (i.e., ∑ ∑ 𝐶𝑜𝑣(𝐹𝑠,𝑡, 𝐹𝑠′,𝑡′)
𝑛+1
𝑠′=0, 𝑠′≠𝑠 

𝑛+1
𝑠=0 ≠0) 

and the overall variance can increase. For a path of length 𝑛=1, we always have: 𝕍(𝐹𝒟1
(𝑗)
)=𝜎1

2. 

 

For a path of length 𝑛>1, we resample vertices on light source or sensor (i.e., no re-use of 

already sampled vertex), and use the “connect to light” and “connect to sensor” methods (Figure 

3.6) to reduce path correlation. It leads to: 

 

𝐶𝑜𝑣(�̅�0,𝑛+1, �̅�𝑛+1,0)=0,   𝐶𝑜𝑣(�̅�1,𝑛, �̅�𝑛,1)=0,   𝐶𝑜𝑣(�̅�0,𝑛+1, �̅�𝑛,1)=0,   𝐶𝑜𝑣(�̅�1,𝑛, �̅�𝑛+1,0)=0   

 

The inequalities √𝕍(X)∙𝕍(Y) ≤ [𝕍(X)+𝕍(Y)]/2  and 𝐶𝑜𝑣(X, Y) ≤ √𝕍(X)∙𝕍(Y)  (Cauchy-

Schwarz) lead to the expression of the upper boundary variance of the estimate 𝐹𝒟𝑛
(𝑗)

: 

 

          𝕍 (𝐹𝒟𝑛
(𝑗)
) ≤ ∑ ∑

𝕍(𝐹𝑠,𝑡)+𝕍(𝐹𝑠′,𝑡′)

2

𝑛+1

𝑠′=0 

𝑛+1

𝑠=0 

− 2[𝕍(𝐹0,𝑛+1)+𝕍(𝐹1,𝑛)+𝕍(𝐹𝑛+1,0)+𝕍(𝐹𝑛,1)]

= (𝑛 + 2)𝛿𝒟𝑛
2 − 2[𝕍(𝐹0,𝑛+1) + 𝕍(𝐹1,𝑛) + 𝕍(𝐹𝑛+1,0) + 𝕍(𝐹𝑛,1)] 
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Finally, we derive: 

{
 
 

 
 𝕍(𝐹𝒟1

(𝑗)
) = 𝜎1

2,                                

𝕍 (𝐹𝒟2
(𝑗)
) ≤ 2𝜎2

2,                              

𝕍 (𝐹𝒟𝑛
(𝑗)
) ≤ (𝑛 + 2)𝜎𝑛

2,   ∀ 𝑛 > 2
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3.Appendix B  Upper boundary variance of the radiance estimate (Part II) 

The methodology in 3.Appendix A can be extended to evaluate the upper boundary variance of  

 

𝐹MIS
(𝑗)

=∑∑𝑤𝑠,𝑡(�̅�𝑠,𝑡) ∙
𝑓(𝑗)(�̅�𝑠,𝑡)

𝑝(�̅�𝑠,𝑡)

𝑛+1

𝑠=0 

∞

𝑛=1

 

 

Since in most optical Earth observation missions, the sensor does not see the light source (e.g., 

sun) directly, contribution 𝐶𝒟1 is null. Besides, the path correlation does not increase the variance 

of 𝐹𝒟1
(𝑗)

 (Eq. (C.2)). Therefore, we analyse the impact of path correlation on 𝐶𝒟2 , ⋯, 𝐶𝒟𝑀0+1.  

 

We rewrite 𝐹MIS
(𝑗)

 as 𝐹MIS
(𝑗)

= ∑ 𝐹𝒟𝑛
(𝑗)∞

𝑛=2 . Its variance is 𝕍(𝐹MIS
(𝑗)
) = ∑ ∑ 𝐶𝑜𝑣 (𝐹𝒟𝑛1

(𝑗)
, 𝐹𝒟𝑛2

(𝑗)
)∞

𝑛2=2
∞
𝑛1=2

. 

(Kallel, 2018) shows that the contribution 𝐶𝒟𝑛 decreases exponentially with the scattering order. 

We can suppose 𝐶𝒟𝑛+1 ≈ 𝜏 ∙ 𝐶𝒟𝑛 , ∀ 𝑛, 𝜏 is a constant, 0 ≤ 𝜏 ≤ 1. It is more or less true in most 

radiative transfer modelling for the Earth observation (Figure 3.18.a). It leads to: 

 

𝕍(𝐹𝒟𝑛+1
(𝑗)

) = 𝜏2 ∙ 𝕍 (𝐹𝒟𝑛
(𝑗)
) 

 

If all the path samples are independent, the variance 𝕍(𝐹MIS) is the sum of variances 𝜎𝑛
2:  

 

𝕍(𝐹MIS
(𝑗)
) = ∑𝜎𝑛

2

∞

𝑛=2

= ∑𝜏2(𝑛−2) ∙ 𝜎2
2

∞

𝑛=2

=
𝜎2
2

1 − 𝜏2
 

 

If path samples are not all independent, the Cauchy-Schwarz inequality and the conclusions in 

the 3.Appendix A lead to: 

 

          𝕍 (𝐹MIS
(𝑗)
) = ∑ ∑ 𝐶𝑜𝑣 (𝐹𝒟𝑛1

(𝑗)
, 𝐹𝒟𝑛2

(𝑗)
)

∞

𝑛2=2

∞

𝑛1=2

≤ ∑ ∑ √𝕍(𝐹𝒟𝑛1
(𝑗)
) ∙ 𝕍 (𝐹𝒟𝑛2

(𝑗)
)

∞

𝑛2=2

∞

𝑛1=2

= 𝕍(𝐹𝒟2
(𝑗)
) + 2√𝕍(𝐹𝒟2

(𝑗)
)∑√𝕍(𝐹𝒟𝑛

(𝑗)
)

∞

𝑛=3

+ ∑ √𝕍(𝐹𝒟𝑛1
(𝑗)
) ∑ √𝕍(𝐹𝒟𝑛2

(𝑗)
)

∞

𝑛2=3

∞

𝑛1=3

≤ 2𝜎2
2 + 2√2𝜎2[∑√𝑛 + 2

∞

𝑛=3

𝜎𝑛] + ∑ √𝑛1 + 2 ∙ 𝜎𝑛1 ∑ √𝑛2 + 2 ∙ 𝜎𝑛2

∞

𝑛2=3

∞

𝑛1=3

= 𝜎2
2[2+2√2∙∑√(𝑛+2) ∙ 𝜏𝑛-2

∞

𝑛=3

+ ∑ ∑ √(𝑛1+2)(𝑛2+2) ∙ 𝜏
𝑛1-2∙𝜏𝑛2-2

∞

𝑛2=3

∞

𝑛1=3

] 
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Using the relationships: √(𝑛1 + 2)(𝑛2 + 2) ≤
(𝑛1+2)+(𝑛2+2)

2
               

         √(𝑛 + 2) ∙ 1 ≤
(𝑛 + 2) + 1

2
, ∀ 𝑛 > 0                         

         ∑(𝑛 + 𝑖) ∙ 𝜏𝑛−2
∞

𝑛=3

=
(3 + 𝑖)𝜏 − (2 + 𝑖)𝜏2

(1 − 𝜏)2
, ∀ 𝑖 ∈ ℕ 

 

we get: 𝕍(𝐹MIS
(𝑗)
) ≤ 𝜎2

2[
2+(6√2−6)𝜏+(11−11√2)𝜏2+(5√2−6)𝜏3

(1−𝜏)3
] 

   = 𝜎2
2[

2 + 𝜏 (
√2
2
− 𝜏) (3 − 𝜏)

(1 − 𝜏)3
+

(
9

√2
− 6) 𝜏 + (14 −

21

√2
) 𝜏2 + (5√2 − 7)𝜏3

(1 − 𝜏)3
] 

    ≈ 𝜎2
2 ∙ [

2 + 𝜏 (
√2
2
− 𝜏) (3 − 𝜏)

(1 − 𝜏)3
] 

 

The term(
9

√2
− 6) 𝜏 + (14 −

21

√2
) 𝜏2 + (5√2 − 7)𝜏3 is omitted since it is less than 0.04 ≪ 1 if 

𝜏 ∈ [0,1]. Hence, the variance will increase maximally by a factor of 

 

𝑓(𝜏) =
𝜎2
2 ∙ [

2 + 𝜏(
√2
2
− 𝜏) (3 − 𝜏)

(1 − 𝜏)3
]

𝜎2
2

1 − 𝜏2

=

(1 + 𝜏) ∙ [2 + 𝜏 (
√2
2 − 𝜏) (3 − 𝜏)]

(1 − 𝜏)2
 

 

In the short waves, a sensor does not usually see the light source, conversely to the long waves 

where the observed environment is a light source, which implies that the contribution 𝐶𝒟1 to 

the measured radiance is usually large. Then, the same method as above shows that the variance 

maximally increases by a factor of 

 

𝑓(𝜏) =
(1 + 𝜏) ∙ (1 + 𝜏2 ∙ (1 − 𝜏2) ∙ (2 − 𝜏))

(1 − 𝜏)2
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Chapter 3 describes a newly developed DART-Lux mode in DART based on the bidirectional 

path tracing algorithm. It efficiently samples a group of stochastic paths that connect the light 

source and the sensor and estimates the unbiased radiance measurement using the weighted 

contribution of these path samples. However, it works with only the environment represented 

by a collection of surfaces without the consideration of fluids and their volume absorption, 

emission and scattering mechanisms. This chapter generalizes DART-Lux modelling to scenes 

made of surfaces and fluids. Regaieg (2023) will present the case of scenes with 3D distribution 

of turbid medium used to represent vegetation statistically.  

 

We first propose a uniform formulation of the radiance measurement: 

 

𝐿(𝑗) = ∫ 𝑓(𝑗)(�̅�)
𝒟

𝑑𝜇(�̅�) 

 

𝐿(𝑗)  is an integral over the generalized path space 𝒟 with path vertices at a surface or in a 

medium. It is evaluated by sampling stochastic paths and an uniform bidirectional path tracing 

algorithm. In its practical implementation, we have designed an innovative Earth-Atmosphere 

system to simulate remote sensing observations with atmospheric effects. The accuracy of the 

atmospheric radiative transfer modelling is assessed by the atmosphere model MODTRAN. 

Chapter 4  

Modelling of atmospheric effects 
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Finally, based on this new modelling, we conduct a virtual experiment to analyse the driving 

factors that create and influence neighbourhood effects in remote sensing images. 

 

The atmosphere in our implementation is abstracted as plane-parallel and horizontally 

homogeneous layers. Considering this simple structure, the discrete ordinates method is more 

efficient, but less accurate, than the Monte Carlo method. Therefore, we also propose an 

alternative fast hybrid method that combines discrete ordinates radiative transfer in the 

atmosphere and the Monte Carlo radiative transfer at land surfaces. Its theory, algorithm and 

accuracy are presented in Annex B. 

4.1 Theoretical background 

4.1.1 The three-point form of the radiative transfer equation 

The formal solution of the radiative transfer equation (Eq. (1.18)) describes the exit radiation 

in direction Ω as the radiation transmitted from the nearest surface “seen” in direction Ω, plus 

the radiation scattered and emitted in direction Ω. In the absence of surfaces (e.g., surfaces are 

infinitely far from the location where radiance is measured), we can derive an alternative 

expression using the source function (Eq. (1.19)) as the exit quantity 𝑑𝐿𝑜/𝑑𝑠: 

𝑑𝐿𝑜(𝑟, Ω)

𝑑𝑠
=
𝑑𝐿𝑒(𝑟, Ω)

𝑑𝑠
+∫

𝛼𝑠(𝑟, Ω
′)

4𝜋
∙𝑃(𝑟, Ω′→Ω)∙ [∫

𝑑𝐿𝑜(𝑟
′, Ω)

𝑑𝑠
∙𝒯(𝑟↔𝑟′)𝑑𝑠′

∞

0

] 𝑑Ω′

4𝜋

 (4.1) 

 

As the light transport equation (section 3.1.1), Eq. (4.1) can be represented by a three-point form: 

𝑑𝐿𝑜(𝑟
′→𝑟)

𝑑𝑠
=
𝑑𝐿𝑒(𝑟

′→𝑟)

𝑑𝑠
                                                                                                                               

         +∫
𝑑𝐿𝑜(𝑟

′′→𝑟′)

𝑑𝑠′
∙
𝛼𝑠(𝑟

′′→𝑟′)∙𝑃(𝑟′′→𝑟′→𝑟)

4𝜋
∙
𝑉(𝑟′′↔𝑟′) ∙ 𝑇(𝑟′′↔𝑟′)

‖𝑟′′ − 𝑟′‖2
𝑑𝑉(𝑟′′)

𝑉

 

(4.2) 

 

with 𝑉(𝑟′′↔𝑟′)  the visibility function and 𝑉  all scene volumes 𝑑𝑉(𝑟′′) = 𝑑𝐴(𝑟′′)𝑑𝑠 =

‖𝑟′′ − 𝑟′‖2𝑑Ω𝑑𝑠. 
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4.1.2 The unified light transport equation 

The three-point form of the light transport equation (Eq. (3.1)) and the three-point form of the 

radiative transfer equation (Eq. (4.2)) can be included in a unified formulation: 

 

�̃�𝑜(𝑟
′→𝑟) = �̃�𝑒(𝑟

′→𝑟) + ∫ �̃�𝑜(𝑟
′′→𝑟′) ∙ 𝑓𝑠(𝑟

′′→𝑟′→𝑟) ∙ �̃�(𝑟′↔𝑟′′)𝑑ℳ(𝑟′′)
ℳ

 (4.3) 

with ℳ  a surface 𝐴  or volume 𝑉  depending on the present material. The effective exit 

radiance �̃�𝑜 and the effective source emission radiance �̃�𝑒 are radiance terms for a surface, 

and radiance per unit distance for a volume: 

 

�̃�(𝑟′ → 𝑟′′) = {
𝐿(𝑟′ → 𝑟′′),      ∀ 𝑟′ ∈ 𝐴
𝜕𝐿(𝑟′ → 𝑟′′)

𝜕𝑟
,   ∀ 𝑟′ ∈ 𝑉

 

 

Then, the scattering distribution function 𝑓𝑠 is BSDF for the surface, and is the product of the 

scattering coefficient by the scattering phase function for the volume: 

 

𝑓𝑠(𝑟
′′ → 𝑟′ → 𝑟) = {

𝑓𝑠(𝑟
′′ → 𝑟′ → 𝑟),                               ∀ 𝑟′ ∈ 𝐴

𝛼𝑠(𝑟
′′ → 𝑟′)∙

𝑃(𝑟′′ → 𝑟′ → 𝑟)

4𝜋
,      ∀ 𝑟′ ∈ 𝑉

 

 

The generalized geometric term �̃� is: �̃�(𝑟′ ↔ 𝑟′′) = 𝑉(𝑟′ ↔ 𝑟′′)∙𝒯(𝑟′′ ↔ 𝑟′)∙
𝜇𝑜
𝑟′ ∙𝜇𝑖

𝑟′′

‖𝑟′′−𝑟′‖2
 with 

𝜇𝑜
𝑟′  = {cos 𝜃𝑜

𝑟′ ,    𝑟′ ∈ 𝐴

1,               𝑟′ ∈ 𝑉
 and  𝜇𝑖

𝑟′′ = {cos 𝜃𝑖
𝑟′′ ,   ∀ 𝑟′′ ∈ 𝐴

1,               ∀ 𝑟′′ ∈ 𝑉
 

4.1.3 Path integral formulation  

In an interaction, �̃�𝑜 is contributed by the �̃�𝑜 from the previous interaction. As a result, Eq. (4.3) 

can be iteratively expanded to an infinite sum of multi-dimensional integral 

 

�̃�𝑜(𝑟1 → 𝑟0) = �̃�𝑒(𝑟1 → 𝑟0) + ∫ �̃�𝑒(𝑟2 → 𝑟1) ∙ 𝑓𝑠(𝑟2 → 𝑟1 → 𝑟0) ∙ �̃�(𝑟1 ↔ 𝑟2)𝑑ℳ(𝑟2)
ℳ

             

     +∫ ∫ �̃�𝑒(𝑟3→𝑟2)∙𝑓𝑠(𝑟3→𝑟2→𝑟1)∙�̃�(𝑟2↔𝑟3)∙𝑓𝑠(𝑟2→𝑟1→𝑟0)∙�̃�(𝑟1↔𝑟2)𝑑ℳ(𝑟3)𝑑ℳ(𝑟2)
ℳℳ

+… 

 

with each multi-dimensional integral being the contribution of a scattering order to �̃�𝑜(𝑟1 → 𝑟0).  
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𝑟1 → 𝑟0 being the direction to the sensor, the radiance measurement 𝐿(𝑗) can be computed by 

integrating and weighting �̃�𝑜(𝑟1 → 𝑟0) using the importance function 𝑊𝑒
(𝑗)(𝑟0 → 𝑟1): 

 

𝐿(𝑗) = ∫ ∫ 𝑊𝑒
(𝑗)(𝑟0 → 𝑟1) ∙ �̃�𝑜(𝑟1 → 𝑟0) ∙ �̃�(𝑟0 ↔ 𝑟1)

ℳ𝐴

∙ 𝑑ℳ(𝑟1) ∙ 𝑑𝐴(𝑟0) (4.4) 

 

Eq. (4.4) can still be represented by a Lebesgue integration over the space measure 𝜇 that 

represents the measurement radiance of the set of paths 𝒟:  

 

𝐿(𝑗) = ∫ 𝑓(𝑗)(�̅�)
𝒟

∙ 𝑑𝜇(�̅�) (4.5) 

 

with 𝒟𝑛 and 𝜇(𝒟𝑛) generalized to the paths that intersect surfaces and volumes. Because a 

vertex is either in a volume 𝑉 or on a surface 𝐴, the new 𝒟𝑛 is the multiple Cartesian product 

of the space set {𝐴, 𝑉}. Integration over it is the sum of 2𝑛 (𝑛+1)-dimensional integrals. 

 

𝒟𝑛 = ⋃ (𝐴 ×ℳ1 ×⋯×ℳ𝑛)

𝑐∈{0,1}𝑛

, with ℳ𝑘 = {
𝐴, 𝑐𝑘 = 0
𝑉, 𝑐𝑘 = 1

 

𝜇(𝒟𝑛) = ∫ 𝑑𝜇(�̅�𝑛)
𝒟𝑛

= ∑ ∫ 𝑑𝐴(𝑟0) ∙∏{
𝑑𝐴(𝑟𝑘),   𝑐𝑘 = 0

𝑑𝑉(𝑟𝑘),   𝑐𝑘 = 1

𝑛

𝑘=1
(𝐴×ℳ1×⋯×ℳ𝑛)𝑐∈{0,1}𝑛

 

 

with the Cartesian product {0, 1}𝑛 = {(𝑐1, 𝑐2,⋯,𝑐𝑘,⋯,𝑐𝑛)|𝑐𝑘∈{0, 1} ∀ 𝑘∈{1,2,⋯,𝑛}}.  

 

The re-defined contribution function 𝑓(𝑗)(�̅�𝑛) using the unified surface and volume terms is: 

𝑓(𝑗)(�̅�𝑛)=�̃�𝑒(𝑟𝑛→𝑟𝑛−1)∙�̃�(𝑟0↔𝑟1)∙𝑊𝑒
(𝑗)(𝑟0→𝑟1)∙∏𝑓𝑠(𝑟𝑘→𝑟𝑘−1→𝑟𝑘−2)∙�̃�(𝑟𝑘−1↔𝑟𝑘)

𝑛

𝑘=2

 (4.6) 

4.2 Radiative transfer modelling 

Eq. (4.6) has the same formulation as Eq. (3.9). It stresses that a unified algorithm (cf. section 

3.2) can be used to treat the interactions with both surfaces and media. The only difference is 

that the evaluation of the effective source emission, the scattering distribution function and the 

geometric term depend on the present material. The bidirectional path tracing algorithm is still 

efficient for small environment that is a mixture of surfaces and media, for example, to simulate 

a cloud of smoke over a city building. However, with the usual representation of the atmosphere 
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(Figure 4.1) with an infinite horizontal dimension, the forward random walk from the light 

source is very inefficient. For example, a random walk from the light source can be 200 km 

away from the target has very small probability to give a ray that is scattered into the FOV of a 

sensor. Also, its intersection with an object (e.g., leaf) is not accurate at all due to the computer 

decimal imprecision. Therefore, the forward random walk can waste time and be a source of 

inaccuracy. Consequently, the forward random walk is disactivated if one simulates the remote 

sensing observations in the new Earth-Atmosphere system (Figure 4.1). In short, a random 

virtual ray is emitted from the sensor, and is connected to the light source after each interaction 

with a medium or a surface (cf. Figure 3.6.b). The estimator in Eq. (3.13) is then reduced to 

𝐹IS
(𝑗)
=∑

𝑓(𝑗)(�̅�𝑛)

𝑝(�̅�𝑛)

∞

𝑛=1

 (4.7) 

 

Because the infinite scattering order cannot be explicitly simulated, a user defined maximal 

scattering order 𝑀0  is usually set to limit the path length as in Eq. (3.15).  

4.2.1 The proposed Earth-Atmosphere system 

Usually, the ground area imaged by the instantaneous FOV of the sensor is much smaller 

compared to the dimension of the atmosphere and Earth surfaces. Therefore, because of 

atmospheric scattering, the radiance of a pixel in a remote sensing image depends on the 

radiance of the surfaces that neighbour the land surface geometrically associated to the 

considered pixel. This is the so-called adjacency effect. It emphasizes the need to consider the 

near-infinity of the surrounding surface and atmosphere in modelling radiative transfer. 

Therefore, we designed a new Earth-Atmosphere system (Figure 4.1) in which the target 3D 

landscape (also called scene) is in its bottom centre and is surrounded by a quasi-infinite 

background and atmosphere. In presence of topography on the target scene boundary with the 

background, a smooth connection is done using the Bézier triangle (Farin, 2014; Wang et al., 

2020). The atmosphere (i.e., gases, aerosols, clouds) is simulated as horizontally homogeneous 

layers with continuous vertical properties (e.g., extinction coefficient, temperature). The default 

atmosphere geometry is 1 km vertical step from 0 to 15 km and 5 km step from 15 to 50 km. In 

each layer, vertical variations are represented by polynomials. The default dimension of the 

horizonal cross section of the system is X × Y = 500 km × 500 km. This configuration is 

chosen because most atmospheric constituents are concentrated below 50 km altitude and the 

impact of the environment at 250 km away is usually negligible. Experiments in 4.Appendix A 
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prove that the default choice gives relative differences less than 0.1% compared to an 

atmosphere up to 100 km in altitude and up to 10000 km in horizontal size. One can also define 

the atmosphere geometry according to the experiment requirement. Six standard atmosphere 

models (i.e., TROPICAL, MIDLATSUM, MIDLATWIN, SUBARCSUM, SUBARCWIN and 

USSTD76 (Anderson et al., 1986)) and five standard aerosol models (i.e., Rural, Urban, 

Maritime, Tropospheric and Fog (Shettle and Fenn, 1979)) are provided (note that the fog is 

not a type of aerosol, but its modelling is treated similarly as aerosols). One can adjust them 

with multiplicative factors or import external measurements. The methods to compute the 

vertical properties at each altitude are detailed in 4.Appendix B and 4.Appendix C. Sensors in 

the system can be placed at an arbitrary position with an arbitrary orientation and FOV. This 

innovative concept allows one to simulate atmospheric and adjacency effects. 

 

 

Figure 4.1. DART-Lux Earth-Atmosphere system (default dimension: X × Y × Z = 500 km 

× 500 km × 50 km). The atmosphere is in a rectangular parallelepiped. The target scene 

is at the bottom centre and is surrounded by a horizontal bare ground (background).  

4.2.2 Light transmission in the atmosphere 

Radiation 𝐿(𝑟, Ω) in a medium is attenuated due to absorption and scattering (cf. section 1.3.2): 
 

𝑑𝐿(𝑟, Ω)

𝑑𝑠
= −𝛼𝑒(𝑟, Ω) ∙ 𝐿(𝑟, Ω) 
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Therefore, the longer the radiation propagates, the more likely it is intercepted by a molecule 

or a particle. The probability that a free path 𝑆 that terminates before a distance 𝑠 is:  
 

ℙ(𝑆 ≤ 𝑠) = 1 − 𝒯(𝑠) 
 

with 𝒯(𝑠) the transmittance of the line of sight from a location 𝑟 to 𝑟+𝑠∙Ω in direction Ω.  

 

Based on this definition, it is convenient to derive the cumulative distribution function 𝑃𝑆(𝑠) 

and the probability density function of the free path 𝑝(𝑠): 

𝑃𝑆(𝑠) = ℙ(𝑆 ≤ 𝑠) = 1 − 𝒯(𝑠)   and   𝑝(𝑠) =
𝑑𝑃𝑆(𝑠)

𝑑𝑠
= 𝛼𝑒(𝑠, Ω) ∙ 𝒯(𝑠) (4.8) 

 

with 𝛼𝑒(𝑠, Ω) the extinction coefficient at location 𝑟+𝑠∙Ω (Figure 4.2). Note that 𝛼𝑒 is the 

spectral average quantity if the spectral signal is modelled. 

 

 

Figure 4.2. Distance sampling scheme. 𝑠 is the distance from the start location 𝑟 to the 

location 𝑟+𝑠∙Ω in direction Ω. 𝛴 is the nearest surface in the propagation direction. 

The probabilistic free path 𝑆  is derived from a random variable 𝜉∈[0, 1)  and an inversion 

function: 

𝑆 = 𝑃𝑆
−1(𝜉) (4.9) 

 

𝑆 has an analytic solution if the medium is homogeneous (i.e., constant 𝛼𝑒 in the line of sight): 
 

𝑆 = 𝑃𝑆
−1(𝜉) = −

ln(1 − 𝜉)

𝛼𝑒
 

 

If 𝛼𝑒 varies along the line of sight, which is the most common situation in the atmosphere, 

𝑃𝑆
-1(𝜉)  cannot be derived analytically. Then, we represent the heterogeneous medium by 

discrete layers or cells and implement a so-called Regular Tracking method (Amanatides and 
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Woo, 1987) to sample the free path. For example, for a series of homogeneous segment medium 

each one with extinction coefficient 𝛼𝑖 and segment length ∆𝑠𝑖 along the line of sight: 

𝑃𝑆(𝑠) = 1 − 𝑒
−∑ 𝛼𝑘∙∆𝑠𝑘

𝑖−1
𝑘=0 +𝛼𝑖∙(𝑠−∑ ∆𝑠𝑘

𝑖−1
𝑘=0 ),   ∀ 𝑠 ∈ [∑∆𝑠𝑘

𝑖−1

𝑘=0

,∑∆𝑠𝑘

𝑖

𝑘=0

) 

𝑝(𝑠) = 𝛼𝑖 ∙ 𝑒
−∑ 𝛼𝑘∙∆𝑠𝑘

𝑖−1
𝑘=0 +𝛼𝑖∙(𝑠−∑ ∆𝑠𝑘

𝑖−1
𝑘=0 ),     ∀ 𝑠 ∈ [∑∆𝑠𝑘

𝑖−1

𝑘=0

,∑∆𝑠𝑘

𝑖

𝑘=0

) 

(4.10) 

 

The free path equation 𝑠 = 𝐹𝑆
−1(𝜉) can be recursively solved until we reach the equality:  

 

−ln(1 − 𝜉) = ∑𝛼𝑘 ∙ ∆𝑠𝑘

𝑖−1

𝑘=0

+ 𝛼𝑖 ∙ (𝑠 −∑∆𝑠𝑘

𝑖−1

𝑘=0

) 

 

Once the free path is sampled, we compare it to the distance to the nearest surface (Figure 4.2). 

If it does not reach the surface, the sampled vertex is in a medium. Otherwise, the sampled 

vertex is on the nearest surface and the path probability is multiplied by the probability 

ℙ(𝑆>𝑠0)=∫ 𝑝(𝑠)𝑑𝑠
∞

𝑠0
, with 𝑠0 the distance to the nearest surface. 

4.2.3 Light scattering in the atmosphere 

Radiation attenuation in the line of sight is described by two mechanisms. (1) Absorption of 

(1-𝜔) times its incident energy (i.e., increases of the medium internal energy), with 𝜔=𝛼𝑠/𝛼𝑒 

the single scattering albedo (cf. Annex A.1). (2) Redirection of 𝜔 times the incident energy to 

another line of sight, which is described by the scattering phase function 𝑃(𝑟, Ω′ → Ω). Usually, 

absorption is not explicitly modelled as it does not contribute directly to observations. 

 

The general expression of the probability density function of scattering is formulated by: 

𝑝(Ω|Ω′) =
𝑃(𝑟, Ω′ → Ω)

∫ 𝑃(𝑟, Ω′ → Ω)𝑑Ω
4𝜋

=
𝑃(𝑟, Ω′ → Ω)

4𝜋
 

(4.11) 

 

𝑝(Ω|Ω′) is not proportional to 𝑃(𝑟, Ω′ → Ω) if the scatterers are not macroscopically isotropic 

and mirror-symmetric, as if the scattering coefficient 𝛼𝑠(𝑟, Ω
′)  depends on the incident 

direction (Mishchenko et al., 2006). More generally, 𝑝(Ω|Ω′) should be formulated by: 
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𝑝(Ω|Ω′) =
𝛼𝑠(𝑟, Ω

′) ∙ 𝑃(𝑟, Ω′ → Ω)

∫ 𝛼𝑠(𝑟, Ω′) ∙ 𝑃(𝑟, Ω′ → Ω)𝑑Ω
4𝜋

 

 

Two scattering phase functions are implemented in DART-Lux: 

- Rayleigh scattering phase function. It considers the impact of the molecule anisotropy. 

𝑃(𝑟, Ω′ → Ω) =
3

2
∙
1 − 𝛿

2 + 𝛿
∙ (
1 + 𝛿

1 − 𝛿
+ cos2𝛾) (4.12) 

with  scattering phase angle 𝛾 (cos 𝛾=Ω′∙Ω) and depolarization factor 𝛿. 

 

- Double Henyey-Greenstein scattering phase function. It often represents the scattering of 

particles (e.g., aerosols) with strong forward (g1>0) and smaller backward (g2<0) peaks, 

using the asymmetry factor g and a constant 𝑎 that describes the degree of forward scattering. 

𝑃(𝑟, Ω′ → Ω) =
𝑎 ∙ (1 − g1

2)

(1 + g12 − 2g1 ∙ cos 𝛾)1.5
+

(1 − 𝑎) ∙ (1 − g2
2)

(1 + g22 − 2g2 ∙ cos 𝛾)1.5
 (4.13) 

4.2.4 Measurement evaluation 

Starting from the sensor, a complete path is created by repeatedly sampling a vertex and free 

path. In detail, a vertex 𝑟0 on the lens and an emitted virtual ray direction Ω0 are first sampled 

using sensor characteristics. Then, a vertex 𝑟𝑘  is generated by sampling a stochastic exit 

direction Ω𝑘-1 at the vertex 𝑟𝑘-1. This sampling depends only on the local incident direction 

𝑟𝑘-2 → 𝑟𝑘-1. The free path is always sampled after each bounce. Finally, the last vertex 𝑟𝑛 on the 

light source is generated by uniformly sampling the solid angle subtended by the light source 

at the previous vertex 𝑟𝑛-1. Here the free path is not sampled; instead, we force the radiation to 

connect the light source to increase the efficiency. We have: 
 

�⃖�(𝑟0) = 𝑝(𝑟0)       
 

and  �⃖�(𝑟1) = 𝑝(𝑟1|𝑟0) = {
𝑝(Ω0) ∙

𝒯(𝑟0↔𝑟1)∙cos 𝜃𝑜
𝑟1

‖𝑟0−𝑟1‖2
,             ∀ 𝑟1 ∈ 𝐴

𝑝(Ω0) ∙
𝛼𝑒(𝑟0→𝑟1)∙𝒯(𝑟0↔𝑟1)

‖𝑟0−𝑟1‖2
,          ∀ 𝑟1 ∈ 𝑉

  

 

After the vertex 𝑟1, the next vertex 𝑟𝑘 (𝑘>1) usually depends on the direction decided by the 

previous two vertices except the last one 𝑟𝑛. Therefore: 
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�⃖�(𝑟𝑘) = 𝑝(𝑟𝑘|𝑟𝑘−1, 𝑟𝑘−2) =

{
 
 

 
 𝑝(Ω𝑘−1|Ω𝑘−2) ∙

𝒯(𝑟𝑘−1 ↔ 𝑟𝑘) ∙ cos 𝜃𝑜
𝑟𝑘

‖𝑟𝑘−1 − 𝑟𝑘‖2
,                 ∀ 𝑟𝑘 ∈ 𝐴

𝑝(Ω𝑘−1|Ω𝑘−2) ∙
𝛼𝑒(𝑟𝑘−1 → 𝑟𝑘) ∙ 𝒯(𝑟𝑘−1 ↔ 𝑟𝑘)

‖𝑟𝑘−1 − 𝑟𝑘‖2
,    ∀ 𝑟𝑘 ∈ 𝑉

 

�⃖�(𝑟𝑛) = 𝑝(𝑟𝑛|𝑟𝑛−1) = 𝑝(Ω𝑛−1) ∙
𝒯(𝑟𝑛−1 ↔ 𝑟𝑛) ∙ cos 𝜃𝑜

𝑟𝑛

‖𝑟𝑛−1 − 𝑟𝑛‖2
                                                            

 

The resulting path probability density is: 

𝑝(�̅�𝑛) =∏�⃖�(𝑟𝑘)

𝑛

𝑘=0

 (4.14) 

 

Considering the contribution function in Eq. (4.6), the estimate (Eq. (4.7)) can be rewritten as: 

𝐹IS
(𝑗)
=∑[

�̃�𝑒(𝑟𝑛→𝑟𝑛-1)∙�̃�(𝑟0↔𝑟1)∙𝑊𝑒
(𝑗)(𝑟0→𝑟1)

�⃖�(𝑟0) ∙ �⃖�(𝑟1)
∙∏

𝑓𝑠(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)∙�̃�(𝑟𝑘-1↔𝑟𝑘)

�⃖�(𝑟𝑘)

𝑛

𝑘=2

]

∞

𝑛=1

 (4.15) 

 

Eq. (4.15) is analysed in 4.Appendix D for a specific environment that is a semi-infinite plane 

parallel atmosphere, illuminated by parallel sunlight and observed by a TOA orthographic 

camera. Results are consistent with the familiar SSA method (Spada et al., 2006).  

4.3 Accuracy evaluation 

For land surfaces, DART-Lux has already been shown to be consistent (relative difference < 

1%) with classic DART-FT that agrees within 1% with Monte Carlo models of the RAMI 

experiment and has a reflectance accuracy  0.02 compared to measurements (Janoutová et al., 

2019; Widlowski et al., 2007). This section presents the evaluation of DART-Lux accuracy of 

atmospheric radiative transfer modelling using the atmosphere model MODTRAN (Berk et al., 

2005, 1987) as a reference. For both models, we consider a USSTD76 atmosphere (Anderson 

et al., 1986), without aerosols, a nadir sun illumination, a TOA sensor with a viewing zenith 

angle 𝜃𝑣 from nadir to 60°, and a flat Lambertian ground with albedo equal to 0.5 for all 2721 

spectral bands from 0.32 to 2.5 𝜇m (10 cm-1 interval). DART-Lux and MODTRAN agree very 

well (Figure 4.3), using the average absolute relative difference as the measure of difference: 
 

𝜀 =
1

𝑁
∑|

𝜌DART−Lux(𝜆) − 𝜌MODTRAN(𝜆)

𝜌MODTRAN(𝜆)
|

𝑁

𝜆=1
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We have: 𝜀 = 0.38% for 𝜃𝑣  = 0°, 𝜀 = 0.40% for 𝜃𝑣  = 30° and 𝜀 = 0.91% for 𝜃𝑣  = 60°. For nadir or 

near nadir viewing angle (i.e., 𝜃𝑣 ≤ 30° ), the small differences between DART-Lux and 

MODTRAN are mainly due to the modelling of multiple scattering. Indeed, DART-Lux 

samples random scattering directions in the 4𝜋  space whereas MODTRAN couples the 

DISORT model (Stamnes et al., 2000) that uses the N-streams approximation (note that with 

current version 5 of MODTRAN, the maximum number of streams is 32). As the viewing zenith 

increases, the difference slightly increases because of two factors: (1) Earth and atmosphere 

curvature. DART-Lux currently models parallel atmosphere layers without refraction at 

interfaces while MODTRAN considers both the curvature of the Earth surface and atmosphere 

refraction. (2) Radiation transmission. DART-Lux uses the monochromatic assumption to 

compute the atmosphere absorption transmittance (i.e., absorption is spectrally constant in each 

spectral band of the atmosphere spectral database), whereas MODTRAN considers that 

absorption is spectrally variable within bands. It causes slight difference for very oblique 

viewing directions for bands where absorption is spectrally very variable. 

 

(a)
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(b)
  

(c)  

Figure 4.3. MODTRAN (black dashes) and DART-Lux (red line) TOA reflectance over 

[0.32 2.5 𝜇m] with 10 cm-1 spectral interval for viewing zenith at nadir (a), 30° (b) and 

60 °  (c). Solar zenith 𝜃𝑠=0° . USSTD76 atmosphere. DART-Lux - MODTRAN 

residual is plotted (blue line) with indication of the average absolute relative difference.  

4.4 Modelling and studying the adjacency effect 

The adjacency effect is defined as the atmospheric scattering of the reflected radiation from the 

surrounding pixels into the line of sight of the pixel of interest. It is one of the most challenging 

sources of inaccuracy in the interpretation of remote sensing images since the advent of high-
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resolution Earth observation satellite (Borel and Gerstl, 1992; Bulgarelli and Zibordi, 2018; 

Feng and Hu, 2017; Pearce, 1977; Sterckx et al., 2015; Tanré et al., 1979). It depends on the 

atmospheric condition (Reinersman and Carder, 1995), the heterogeneity and the anisotropic 

scattering of the land surface (Bulgarelli and Zibordi, 2018), the light source and the sensor 

configuration (Vermote et al., 1997), the spectral region (Dave, 1980), etc. According to 

(Bulgarelli and Zibordi, 2018; Sterckx et al., 2015; Tanre et al., 1981; Tanré et al., 1979), it can 

account for more than 30% of the observed TOA signals. Ground reflectance can be greatly 

overestimated if we neglect the adjacency effect. Below, we quantify the influence of 3D 

structure, sensor altitude, and atmosphere absorption attenuation on the adjacency effect using 

DART-Lux based virtual experiment for the visible and near infrared bands of Sentinel-2A. 

 

4.4.1 Design of experiment 

The target is a city of 2 km radius surrounded by a forest of dimension 10 km × 10 km (Figure 

4.4),which is itself surrounded by flat Lambertian background as shown in Figure 4.1.  The city 

consists of 55828 regularly aligned houses and streets between houses. The house model is 

created by the DART object module. The optical properties of the roof, the wall and the street 

are from the DART database. The forest consists of 1553504 quasi-randomly distributed Tilia 

cordata trees at five growing stages with a homogeneous understory. The geometry and optical 

properties of the trees as well as the optical properties of the understory are from the RAMI 

experiment (https://rami-benchmark.jrc.ec.europa.eu/_www/index.php). The albedo of the 

background (Table 4.1) is equal to that of the forest. It was computed using DART simulations 

of a 3 km × 3 km forest subzone of the considered scene (Figure 4.4). The atmosphere model 

is USSTD76 with both gases and aerosols. Its mean single scattering albedo (𝜔=𝜏𝑠/𝜏𝑒, with 𝜏𝑠 

and 𝜏𝑒 the atmosphere scattering and total optical depths, respectively) is computed in Table 

4.1. The solar zenith and azimuth angles are 𝜃𝑠=30° and 𝜑𝑠=225°, respectively. The focus of 

the sensor is at 80 km altitude and is centred at the midpoint of the target (nadir observation). 

In this experiment, we consider four spectral bands of Sentinel-2A: blue (B: 𝜆 = 0.4924 𝜇m, 

∆𝜆 = 0.066 𝜇m), green (G: 𝜆 = 0.5598 𝜇m, ∆𝜆 = 0.036 𝜇m), red (R: 𝜆 = 0.6646 𝜇m, ∆𝜆 =

0.031 𝜇m) and near infrared (NIR: 𝜆 = 0.8328 𝜇m, ∆𝜆 = 0.106 𝜇m).  

 

https://rami-benchmark.jrc.ec.europa.eu/_www/index.php
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The adjacency effect is the difference of two simulations, one with the defined neighbourhood 

and another one without it (set as black ground). Here, we quantify it by: 

- The horizontal profile of the adjacency radiance 𝐿adj(𝑟) (the additional radiance due to the 

adjacency effect) as a function of distance 𝑟 from the centre to the target boundary. 𝐿adj(𝑟) 

is the average for all pixels in the ring [𝑟, 𝑟 + ∆𝑟] (Figure 4.4). 

- The adjacency perturbation 𝜁adj = �̅�adj/�̅�tot . It is defined as the ratio of the average 

adjacency radiance �̅�adj and the average total radiance of the target �̅�tot. 

 

 

Figure 4.4. Mock-up for studying the adjacency effect. The target scene is a circular city (2 

km radius; 55828 houses with gable roof and   15 m average building distance) 

surrounded by a square 10 × 10 km forest (1553504 quasi-randomly distributed Tilia 

cordata trees at five growing stages, derived from the RAMI experiment: https://rami-

benchmark.jrc.ec.europa.eu/_www/index.php; the average tree distance is 5 m). The 

evaluation of the average radiance at distance 𝑟+∆𝑟/2  from the target centre is 

computed by averaging all the pixels within the red dashed ring from 𝑟 to 𝑟+∆𝑟. 

 

https://rami-benchmark.jrc.ec.europa.eu/_www/index.php
https://rami-benchmark.jrc.ec.europa.eu/_www/index.php
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In order to configure a simulation with no impact of the 3D structure of the forest and the city, 

we simulated the nadir reflectance of the target and the albedo of the surrounding forest. These 

optical properties (Table 4.1) are chosen because the direct radiation from the target and the 

diffuse radiation from the surrounding forest are the quantities that contribute most to the 

observation of the target. We calculated them by simulating a subzone (i.e., city or forest) of 

the target scene under BOA direct and diffuse illuminations that were precomputed by DART-

FT (i.e., discrete ordinates radiative transfer mode) using 1000 discrete directions in the 4𝜋 

space and the previously mentioned solar direction and atmosphere model. All simulations were 

run with 100 scattering orders to mimic the results of infinite scattering orders since the 

contribution after 100 scattering order is negligible compared to the total signal. 

Table 4.1. Average single scattering albedo of the USSTD76 atmosphere, target (city) nadir 

reflectance and albedo of the neighbourhood (forest), for four Sentinel-2A bands. 

Band Wavelength (𝜇m) Scattering albedo Target reflectance Neighbour albedo 

B 0.4924 0.9437 0.064 0.033 

G 0.5598 0.8716 0.073 0.067 

R 0.6646 0.8881 0.096 0.032 

NIR 0.8328 0.8090 0.101 0.419 

4.4.2 Impact of the 3D structure of land surfaces 

The impact of the 3D structure is evaluated by comparing the results simulated with the exact 

3D surrounding forest (Figure 4.5.b) and those simulated with the 1D neighbourhood (Figure 

4.5.a). The flat Lambertian neighbourhood in Figure 4.5.a is configured with the neighbour 

albedo in Table 4.1. Figure 4.6 shows that the adjacency radiance 𝐿adj(𝑟) increases from the 

target centre to the border. This trend is similar for both 1D and 3D cases, as the influence of 

the neighbouring surface decreases with the distance that is independent of the land structure. 

Table 4.2 summarizes the average adjacency radiance �̅�adj  of the target and the adjacency 

perturbation 𝜁adj for the four Sentinel-2A bands. Due to the impact of the 3D structure, 𝜁adj can 

differ by up to 0.5% in absolute and by up to 9.2% in relative (green band). The difference 

between 1D and 3D is mostly due to the adjacent anisotropic scattering linked to the 3D 

structure. For example, there is a strong backward reflectance of the canopy due to the hot spot 

effect and there is a decrease of forward reflectance due to shadows.  
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Besides, it can be noticed that both �̅�adj  and 𝜁adj  increase with the scattering albedo of the 

neighbouring surface and the atmosphere. For example, 𝜁adj at near infrared band is  7 times 

larger than that at red band because the neighbour albedo at near infrared band is  13 times 

larger; 𝜁adj at blue band is  1.5 times larger than that at red band although they have similar 

neighbour albedo, because the atmospheric scattering albedo at blue band is larger.  

 

(a)
 

 

(b)
 

Figure 4.5. The 1D (a) and 3D (b) cases. They have a same target, but the neighbourhood 

is a Lambertian ground for the 1D case (a) and a realistic forest for the 3D case (b). 

 

(a)
   (b)
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(c)
   (d)

   

Figure 4.6. The adjacency radiance 𝐿adj(𝑟) as a function of distance 𝑟 away from the target 

centre for 1D (Figure 4.5.a) and 3D (Figure 4.5.b) cases, for the blue (a), green (b), 

red (c) and near infrared (d) bands of Sentinel-2A satellite. 

 

Table 4.2. The average adjacency radiance �̅�adj (W/m2/sr/𝜇m) of the target city and the 

adjacency perturbation 𝜁adj(%) = �̅�adj/�̅�tot for 1D and 3D cases. 

Band 
1D  3D 

�̅�adj 𝜁adj  �̅�adj 𝜁adj 

B 1.6 2.8%  1.8 3.0% 

G 2.3 4.9%  2.6 5.4% 

R 0.7 1.8%  0.8 1.9% 

NIR 4.4 13.7%  4.7 14.6% 

 

4.4.3 Impact of the sensor altitude 

To study the impact of the sensor altitude on the adjacency effect, we eliminate the anisotropic 

scattering due to the 3D structure and to keep the same viewing direction for every pixel. For 

that, the 3D mock-up in Figure 4.4 is simplified as a flat disk target surrounded by the flat 

neighbour. The target has the nadir reflectance of the city, and the environment has the albedo 

of the forest (Table 4.1). The focus of FOV is fixed at altitude 80 km while the sensor altitude 

(i.e., image plane) varies from 0.5 km, 1 km, 5 km, 10 km to 50 km (Figure 4.7).  
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Figure 4.7. Sensors at five altitudes (0.5 km, 1 km, 5 km, 10 km, 50 km). The focus of the 

sensor is set at altitude 80 km to eliminate differences due to the change of sensor FOV. 

Figure 4.8 shows that the adjacency radiance increases with the sensor altitude, which is 

consistent with the increase of atmosphere amount in the sensor FOV. Table 4.3 shows the 

average adjacency radiance �̅�adj  of the target and the adjacency perturbation 𝜁adj  for each 

altitude. At near infrared band, 𝜁adj is 4.5% for the sensor at 0.5 km while it increases more 

than two times to 14.7% for the sensor at 50 km. The average 𝜁adj of the four Sentinel-2A bands 

for the sensor at 50 km is around 3 times larger than that of the sensor at 0.5 km. It is interesting 

to note that the difference of the adjacency effect between 1 km and 5 km (1.1% at blue band) 

is larger than that from 5 km to 50 km (0.4% at blue band) although the altitude difference of 

the latter is much larger. This is because the atmospheric scattering between 1 km and 5 km is 

stronger than that from 5 km to 50 km. This non-linear relationship also stresses that using the 

same parameters (e.g., (Reinersman and Carder, 1995) suggest the PSF generated for a sensor 

at 20 km is applicable to the analysis of images acquired by satellite) to correct the adjacency 

effect presenting in different remote sensing platforms can introduce errors. This error increases 

with the scattering albedo of the neighbouring surface and the atmosphere. 
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(a)
  (b)

  

(c)
  

(d)
  

Figure 4.8. The adjacency radiance at five sensor altitudes (0.5 km, 1 km, 5 km, 10 km, 50 

km) for four bands (blue: a), green: b), red: c), near infrared: d) of Sentinel-2A satellite. 

 

Table 4.3. The average adjacency radiance �̅�adj  (W/m2/sr/ 𝜇 m) and the adjacency 

perturbation 𝜁adj (%) for the sensor at altitude 0.5 km, 1 km, 5 km, 10 km, and 50 km. 

Band 
0.5 km  1 km  5 km  10 km  50 km 

�̅�adj 𝜁adj  �̅�adj 𝜁adj  �̅�adj 𝜁adj  �̅�adj 𝜁adj  �̅�adj 𝜁adj 

B 0.35 1.1%  0.47 1.4%  1.07 2.5%  1.41 2.7%  1.67 2.9% 

G 0.46 1.4%  0.61 1.8%  1.65 4.1%  2.13 4.8%  2.41 5.1% 

R 0.26 0.7%  0.32 0.8%  0.60 1.5%  0.71 1.8%  0.78 1.9% 

NIR 1.28 4.5%  1.58 5.5%  3.58 11.7%  4.31 13.7%  4.75 14.7% 

 

4.4.4 Impact of the absorption attenuation 

The adjacency effect in satellite images is often corrected by a convolution with the PSF 

𝑃𝑆𝐹(P0, P), that is, the probability that a photon reflected by a point P is scattered into the 

instantaneous FOV of a point P0. However, some approaches (Mekler and Kaufman, 1980) and 
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(Reinersman and Carder, 1995) neglect the atmosphere absorption attenuation when deriving 

𝑃𝑆𝐹(P0, P). Here, we study the impact of absorption attenuation using the case of the sensor at 

50 km in section 0. To simulate the result without absorption attenuation, we set the single 

scattering albedo of both aerosols and molecules as 1. Figure 4.9 confirms that the neglect of 

the absorption leads to overestimate the adjacency effect. Here, the overestimate of the 

adjacency perturbation is 0.1%, 0.6%, 0.2%, 2.0% in absolute and 3%, 12%, 11%, 14% in 

relative respectively for the blue, green, red and near infrared bands (Table 4.4). 

 

(a)
  

(b)
  

(c)
  

(d)
  

Figure 4.9. The adjacency radiance simulated with and without absorption attenuation for 

the blue (a), green (b), red (c), and near infrared (d) bands of Sentinel-2A satellite. 

Table 4.4. Average adjacency radiance �̅�adj (W/m2/sr/𝜇m) of the target city and adjacency 

perturbation 𝜁adj(%)=�̅�adj/�̅�tot for cases with and without absorption attenuation. 

Band 
No absorption  With absorption 

�̅�adj 𝜁adj  �̅�adj 𝜁adj 

B 1.9 3.0%  1.7 2.9% 

G 3.4 5.7%  2.4 5.1% 
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R 1.0 2.1%  0.8 1.9% 

NIR 6.4 16.7%  4.7 14.7% 

4.5 Conclusions 

This work generalizes the DART-Lux radiative transfer theory and implementation for both 

land surfaces and the atmosphere. We start from the formal solution of the radiative transfer 

equation in the medium and develop it to get the same path integral formulation as at surfaces. 

Then, we demonstrate the unified path integral over paths that consist of vertices at surfaces 

and in media. This integral is further solved in the frame of the bidirectional path tracing 

algorithm. To simulate the remote sensing observations with atmospheric and adjacency effects, 

we also propose an Earth-Atmosphere system in which the target scene is placed at the bottom 

centre and is surrounded by the atmosphere and a neighbouring land surface. The forward 

random walk is disactivated for this new system because it risks slowing down the computation 

and introducing bias.  

 

Its atmospheric radiative transfer modelling is assessed by the widely used and validated model 

MODTRAN. In particular, the simulated TOA spectral reflectance spectra from 0.32 to 2.5 𝜇m 

for a standard USSTD76 atmosphere is compared. The average relative difference between 

DART-Lux and MODTRAN is 0.38% for viewing zenith at nadir, 0.40% for viewing zenith at 

30° and increases to 0.91% for viewing zenith at 60°. The slight difference is mainly due to the 

different methods in modelling the multiple scattering, transmission, atmospheric refraction, 

and Earth curvature. 

 

Based on this new DART-Lux modelling, we studied the impact of the 3D structure, sensor 

altitude, and atmosphere absorption attenuation on the adjacency effect. The experiment field 

is represented by a target city and a surrounding forest. Results show that the adjacency effect 

increases with the increase of (1) the neighbour albedo, (2) the atmosphere scattering and (3) 

the sensor altitude. For example, the adjacency perturbation at near infrared band is 7 times of 

that at red band, because the neighbour albedo at near infrared band is 13 times larger. The 

adjacency perturbation at blue band is 1.5 times larger than that at red band although they have 

similar neighbour albedo, because the atmosphere scattering (single scattering albedo) at blue 
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band is 1.1 times stronger. In addition, the average adjacency effect of the four Sentinel-2A 

bands for the sensor at 50 km is around 3 times larger than that of the sensor at 0.5 km. The 

impact of the 3D structure and the absorption attenuation is less important compared to the 

above-mentioned three factors. However, they are not negligible for high accuracy atmospheric 

correction algorithms. They would be much larger in presence of topography. In our study, with 

a flat surface, the neglect of the 3D structure can lead to an error of the adjacency perturbation 

𝜁adj up to 0.8% in absolute and the neglect of the absorption attenuation can overestimate the 

adjacency perturbation up to 2.0% in absolute. 

 

The new DART-Lux modelling greatly enhances the usefulness of DART for calibration and 

validation activities related to Earth observation satellite missions, especially the correction of 

the adjacency effect due to the atmosphere scattering and land surface heterogeneity. For very 

homogeneous land surfaces (e.g., dense forest, crop field), a hybrid method is also designed as 

an alternative fast option (cf. Annex B). Its central idea is to couple the discrete ordinates 

radiative transfer in the atmosphere and the Monte Carlo radiative transfer at land surface to 

simulate TOA and sensor images. 
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4.Appendix A  The default atmosphere dimension 

In the current implementation, the default TOA altitude is 50 km, and the default atmosphere 

horizontal dimension is 500 km × 500 km (cf. section 4.2.1). Is the default dimension (X × Y 

× Z) a good representation of a quasi-infinite atmosphere? To answer this question, we did two 

sensitivity studies to show the impact of the atmosphere dimension on the simulated radiance. 

The sensitivity study of TOA altitude is conducted with MODTRAN, a USSTD76 atmosphere 

with rural aerosols, 0.5 ground albedo for all bands from 0.32 to 2.5 𝜇m, nadir solar and viewing 

directions, and sensors at 40 km, 45 km, 50 km, 55 km, 60 km, and 70 km. Figure 4.A.1 shows 

the closeness of the radiance spectra simulated at all sensor altitudes. Table 4.A.1 shows the 

average relative errors compared to observation at 100 km. As expected, the error decreases 

with the increase of sensor altitude, with very accurate results at 50 km altitude, i.e., 𝜀 = 0.07%. 

 

 

Figure 4.A.1. TOA radiance spectra for the sensor altitude at 40 km, 45 km, 50 km, 55 km, 

60 km, 70 km, and 100 km, simulated by MODTRAN. The ground albedo is 0.5. The 

atmosphere model is USSTD76, with rural aerosols. 
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Table 4.A.1. The mean relative error 𝜀 of radiance spectra in Figure 4.A.1 compared to the 

reference spectrum observed at 100 km. 

Sensor altitude 40 km 45 km 50 km 55 km 60 km 70 km 

𝜀 0.17% 0.07% 0.07% 0.06% 0.03% 0.01% 

 

The sensitivity study of the impact of the horizontal dimension D𝑋𝑌 of the atmosphere is done 

with DART-Lux for a 0.5 ground albedo, USSTD76 atmosphere, rural aerosols, and nadir solar 

and viewing direction. The horizontal dimension is set at 20 km, 50 km, 100 km, 200 km, and 

500 km. Figure 4.A.2 indicates that a small value of the horizontal dimension such as 20 km 

leads to lower TOA reflectance in visible domain. The average relative errors compared to the 

reference result simulated with D𝑋𝑌 = 10000 km are computed in Table 4.A.2. It shows that 

D𝑋𝑌 = 500 km is a good approximation of infinite parallel atmosphere. 

 

 

Figure 4.A.2. DART-Lux simulated TOA reflectance with the atmosphere horizontal 

dimension D𝑋𝑌 setting as 20 km, 50 km, 100 km, 200 km, and 500 km. The ground 

albedo is 0.5. The atmosphere model is USSTD76, with rural aerosols. 

 

Table 4.A.2. The mean relative error 𝜀 of all reflectance spectrums in Figure A.2 compared 

to the reference spectrum simulated with D𝑋𝑌 = 10000 km. 

D𝑋𝑌 20 km 50 km 100 km 200 km 500 km 

𝜀 7.74% 3.59% 0.55% 0.45% 0.08% 
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4.Appendix B  Computation of atmospheric properties (Part I) 

The DART atmosphere SQL database stores vertical profiles of the atmospheric constituents: 

temperature 𝑇𝐷𝐵(𝑧), pressure 𝑃𝐷𝐵(𝑧), number density 𝑁𝑚𝑖,𝐷𝐵
(𝑧) per gas 𝑚𝑖, relative density 

𝜌𝑚,𝐷𝐵
𝑠 (𝑧) of scattering gases to air at standard temperature and pressure, and aerosol extinction 

coefficient profile 𝛼𝑝,𝐷𝐵
𝑒 (𝑧) at 550 nm. They are given at 36 altitude levels (0 to 25 km with 1 

km interval, 30 to 60 km with 5 km interval and 3 levels at 70 km, 80 km and 100 km) for: 

- six standard atmospheres (Anderson et al., 1986): (1) TROPICAL: Tropical (15°N annual 

average), (2) MIDLATSUM: Mid-Latitude Summer (45°N July), (3) MIDLATWIN: Mid-

Latitude Winter (45°N January), (4) SUBARCSUM: Sub-Arctic Summer (60°N July), (5) 

SUBARCWIN: Sub-Arctic Winter (60°N January), and (6) USSTD76: US Standard 1976. 

- five aerosol models (Shettle and Fenn, 1979): (1) Rural, (2) Urban, (3) Maritime, (4) 

Tropospheric and (5) Fog.  

 

The DART atmosphere SQL database also stores the spectral optical properties of the 

atmospheric constituents (i.e., gas: vertical absorption transmittance 𝒯𝑚𝑖,𝐷𝐵
𝑎 (𝜆) per gas 𝑚𝑖 , 

vertical scattering transmittance 𝒯𝑚,𝐷𝐵
𝑠 (𝜆) ; aerosol: vertical optical depth 𝜏𝑝,𝐷𝐵(𝜆) , single 

scattering albedo 𝜔𝑝,𝐷𝐵(𝜆), asymmetry factors of double Henyey-Greenstein phase function) 

from 10 to 40000 cm-1 with a spectral resolution of 1 cm-1. They were derived from MODTRAN 

simulations and LOWTRAN source code for the six standard atmospheres and for the five 

aerosol models per standard atmosphere. The optical properties and vertical profiles of gases 

and aerosols derived from reanalysis datasets (e.g., ECMWF reanalysis: https://www.ecmwf.int) 

and measurements (e.g., Aeronet: https://aeronet.gsfc.nasa.gov) can also be imported into the 

DART atmosphere database. 

 

The atmospheric properties at any altitude z are interpolated by the multi-quadric radial basis 

function (Press et al., 2007) using the vertical profiles and the optical properties in the SQL 

database. The band (central wavelength 𝜆, bandwidth ∆𝜆) mean optical properties (i.e., vertical 

absorption transmittance 𝒯𝑚𝑖

𝑎 (𝜆) of each gas 𝑚𝑖, gas vertical scattering transmittance 𝒯𝑚
𝑠(𝜆), 

aerosol vertical optical depth 𝜏𝑝(𝜆)) are computed (trapezoidal integration) using the database 

spectral vertical transmittance 𝒯𝑚𝑖,𝐷𝐵
𝑎 (𝜆′) , 𝒯𝑚,𝐷𝐵

𝑠 (𝜆′)  and optical depth 𝜏𝑝,𝐷𝐵(𝜆
′)  at 1 cm-1 

spectral resolution in the spectral bin ∆𝜆: 

https://aeronet.gsfc.nasa.gov/
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𝒯𝑚𝑖

𝑎 (𝜆) =
∫ 𝒯𝑚𝑖,𝐷𝐵

𝑎 (𝜆′) 𝑑𝜆′
𝜆+∆𝜆/2

𝜆−∆𝜆/2

∆𝜆
,   𝒯𝑚

𝑠(𝜆) =
∫ 𝒯𝑚,𝐷𝐵

𝑠 (𝜆′) 𝑑𝜆′
𝜆+∆𝜆/2

𝜆−∆𝜆/2

∆𝜆
 

𝜏𝑝(𝜆) =
∫ 𝜏𝑝,𝐷𝐵(𝜆

′) 𝑑𝜆′
𝜆+∆𝜆/2

𝜆−∆𝜆/2

∆𝜆
                                                                   

(4.B.1) 

 

The extinction coefficient 𝛼  (i.e., total 𝛼𝑒 , absorption 𝛼𝑎  and scattering 𝛼𝑠  extinction 

coefficient) per layer 𝑗 is computed such that their use with Beer’s law gives the band vertical 

transmittance and optical depth computed in Eq. (4.B.1). 

 

𝛼𝑗,𝑚𝑖

𝑎 (𝜆) =
− ln (𝒯𝑚𝑖

𝑎 (𝜆))

𝑧𝑗 − 𝑧𝑗−1
∙
∫ 𝜎𝑚𝑖

𝑎 (𝜆) ∙ 𝑁𝑚𝑖,𝐷𝐵
(𝑧)𝑑𝑧

𝑧𝑗
𝑧𝑗−1

∫ 𝜎𝑚𝑖

𝑎 (𝜆) ∙ 𝑁𝑚𝑖,𝐷𝐵
(𝑧)𝑑𝑧

∞

0

 

𝛼𝑗,𝑚
𝑠 (𝜆) =

− ln(𝒯𝑚
𝑠 (𝜆))

𝑧𝑗−𝑧𝑗−1
∙
∫ 𝜎𝑚

𝑠 (𝜆)∙𝑁𝑚
𝑠 (𝑧)𝑑𝑧

𝑧𝑗
𝑧𝑗−1

∫ 𝜎𝑚
𝑠 (𝜆)∙𝑁𝑚

𝑠 (𝑧)𝑑𝑧
∞
0

=
− ln(𝒯𝑚

𝑠 (𝜆))

𝑧𝑗−𝑧𝑗−1
∙
∫ 𝜌𝑚,𝐷𝐵

𝑠 (𝑧)𝑑𝑧
𝑧𝑗
𝑧𝑗−1

∫ 𝜌𝑚,𝐷𝐵
𝑠 (𝑧)𝑑𝑧

∞
0

  

𝛼𝑗,𝑝
𝑒 (𝜆) =

𝜏𝑝,𝐷𝐵(𝜆)

𝑧𝑗−𝑧𝑗−1
∙
∫ 𝛼𝑝,𝐷𝐵

𝑒 (𝑧)𝑑𝑧
𝑧𝑗
𝑧𝑗−1

∫ 𝛼𝑝,𝐷𝐵
𝑒 (𝑧)𝑑𝑧

∞
0

  

(4.B.2) 

 

Newton-Cotes integration method (Abramowitz and Stegun, 1948) is used in Eq. (4.B.2) with 

10 interpolated equal-distance values per layer assuming that the absorption cross-section 

𝜎𝑚𝑖

𝑎 (𝜆) of gas 𝑚𝑖  only depends on wavelength. The gas scattering cross-section 𝜎𝑚
𝑠 (𝜆) only 

depends on wavelength and gas composition (Bodhaine et al., 1999). Therefore, 𝜎𝑚
𝑠 (𝜆) ∙ 𝑁𝑚

𝑠 (𝑧), 

with 𝑁𝑚
𝑠 (𝑧) being the number density of scattering gases at altitude 𝑧, is proportional to the 

relative density of scattering gases 𝜌𝑚,𝐷𝐵
𝑠 (𝑧). 

 

Then, the total gas extinction coefficient 𝛼𝑗,𝑚
𝑒 (𝜆), aerosol absorption 𝛼𝑗,𝑝

𝑎 (𝜆) and scattering 

𝛼𝑗,𝑝
𝑠 (𝜆) extinction coefficient and total extinction coefficient 𝛼𝑗

𝑒(𝜆) are computed per layer: 

 

𝛼𝑗,𝑚
𝑒 (𝜆) = 𝛼𝑗,𝑚

𝑎 (𝜆) + 𝛼𝑗,𝑚
𝑠 (𝜆),   𝛼𝑗,𝑚

𝑎 (𝜆) =∑ 𝛼𝑗,𝑚𝑖

𝑎 (𝜆)
𝑚𝑖

                     

𝛼𝑗,𝑝
𝑎 (𝜆) = 𝛼𝑗,𝑝

𝑒 (𝜆) ∙ (1 − 𝜔𝑝,𝐷𝐵(𝜆)),    𝛼𝑗,𝑝
𝑠 (𝜆) = 𝛼𝑗,𝑝

𝑒 (𝜆) ∙ 𝜔𝑝,𝐷𝐵(𝜆) 

𝛼𝑗
𝑒(𝜆) = 𝛼𝑗,𝑚

𝑒 (𝜆) + 𝛼𝑗,𝑝
𝑒 (𝜆)                                                                         

 

The layer mean temperature is the average of the layer upper boundary temperature 𝑇𝑗
𝑈 and the 

lower boundary temperature 𝑇𝑗
𝐿: 𝑇𝑗 =

𝑇𝑗
𝑈+𝑇𝑗

𝐿

2
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4.Appendix C  Computation of atmospheric properties (Part II) 

The use of constant properties per layer is a good approximation commonly used in the radiative 

transfer calculations, although there is no discrete atmospheric vertical profiles in nature. Here 

we present the computation of continuous properties in each atmospheric layer. A polynomial 

is used because it is invertible (e.g., to compute stochastic free path) and easy to derive. 

 

The optical depth at relative altitude ℎ (ℎ = 0 at the bottom of layer 𝑗 and ℎ = Δ𝑧𝑗 at the top, 

Figure 4.C.1) can be described by a three-degree polynomial: 
 

𝜏𝑗(𝜆, ℎ) = 𝐴𝑗(𝜆)∙ℎ
3 + 𝐵𝑗(𝜆)∙ℎ

2 + 𝐶𝑗(𝜆)∙ℎ + 𝐷𝑗(𝜆) 

 

The corresponding extinction coefficient can be derived through derivation: 
 

𝛼𝑗
𝑒(𝜆, ℎ) = −

𝑑𝜏𝑗(𝜆, ℎ)

𝑑ℎ
= −3𝐴𝑗(𝜆) ∙ ℎ

2 − 2𝐵𝑗(𝜆) ∙ ℎ − 𝐶𝑗(𝜆) 

 

The four boundary conditions: 𝜏(𝜆, 0) = ∆𝜏𝑗(𝜆), 𝜏(𝜆, Δ𝑧𝑗) = 0, 𝛼𝑗
𝑒(𝜆, 0) = 𝛼𝑧𝑗−1

𝑒 (𝜆),

𝛼𝑗
𝑒(𝜆, ∆𝑧𝑗) = 𝛼𝑧𝑗

𝑒 (𝜆)  with ∆𝜏𝑗(𝜆) = 𝛼𝑧𝑗
𝑒 (𝜆) ∙ Δ𝑧𝑗  and 𝛼𝑧𝑗−1

𝑒 (𝜆)  and 𝛼𝑧𝑗
𝑒 (𝜆)  are discrete 

quantities computed in 4.Appendix B leads to: 

𝐴𝑗(𝜆) =
2∆𝜏𝑗(𝜆)−(𝛼𝑧𝑗−1

𝑒 (𝜆)+𝛼𝑧𝑗
𝑒 (𝜆))𝛥𝑧𝑗

𝛥𝑧𝑗
3   

 
𝐵𝑗(𝜆) =

−3𝐴𝑗(𝜆)𝛥𝑧𝑗
2+𝛼𝑧𝑗−1

𝑒 (𝜆)−𝛼𝑧𝑗
𝑒 (𝜆)

2𝛥𝑧𝑗
  

𝐶𝑗(𝜆) = −𝛼𝑧𝑗−1
𝑒 (𝜆)   𝐷𝑗(𝜆) = ∆𝜏𝑗(𝜆)  

 

 

Figure 4.C.1. DART horizontally homogeneous atmosphere layer with layer thickness Δ𝑧𝑗. 

The upper and lower boundary parameters are marked. 

The continuous temperature profile is represented by a linear equation using the upper and 

bottom boundary temperatures: 

𝑇𝑗(ℎ) = 𝑇𝑗
𝐿 +

𝑇𝑗
𝑈 − 𝑇𝑗

𝐿

Δ𝑧𝑗
∙ ℎ 
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4.Appendix D  Radiance estimate for pure atmospheric environment 

For the semi-infinite plane-parallel atmosphere, illuminated by parallel sunlight and observed 

by an orthographic camera, the radiance estimate 𝐹IS
(𝑗)
= ∑ [

�̃�𝑒(𝑟𝑛→𝑟𝑛−1)∙�̃�(𝑟0↔𝑟1)∙𝑊𝑒
(𝑗)(𝑟0→𝑟1)

�⃖�(𝑟0)∙�⃖�(𝑟1)
∙∞

𝑛=1

∏
�̃�𝑠(𝑟𝑘→𝑟𝑘−1→𝑟𝑘−2)∙�̃�(𝑟𝑘−1↔𝑟𝑘)

�⃖�(𝑟𝑘)
𝑛
𝑘=2 ] (Eq. (4.15)) can be simplified.  

 

If all vertices (exclude the vertex at the light source and at the sensor) are in the medium, we 

have the expressions 

 

�̃�(𝑟0 ↔ 𝑟1) ∙ 𝑊𝑒
(𝑗)(𝑟0 → 𝑟1)

�⃖�(𝑟0) ∙ �⃖�(𝑟1)
=

𝒯(𝑟0 ↔ 𝑟1) ∙
cos 𝜃𝑖

𝑟0

‖𝑟0 − 𝑟1‖2
∙
𝛿(Ω0 − Ωd)

𝐴img
1

𝐴img
∙
𝛿(Ω0 − Ωd)
‖𝑟0 − 𝑟1‖2

∙ 𝛼𝑒(𝑟0 → 𝑟1) ∙ 𝒯(𝑟0 ↔ 𝑟1)
=

1

𝛼𝑒(𝑟0 → 𝑟1)
 

𝑓𝑠(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)∙�̃�(𝑟𝑘-1↔𝑟𝑘)

�⃖�(𝑟𝑘)
=

𝛼𝑠(𝑟𝑘→𝑟𝑘-1)∙
𝑃(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)

4𝜋
∙
𝒯(𝑟𝑘-1↔𝑟𝑘)

‖𝑟𝑘-1−𝑟𝑘‖
2

𝑃(𝑟𝑘-2→𝑟𝑘-1→𝑟𝑘)

4𝜋
∙
𝛼𝑒(𝑟𝑘-1→𝑟𝑘)∙𝒯(𝑟𝑘-1↔𝑟𝑘)

‖𝑟𝑘-1−𝑟𝑘‖
2

 =
𝛼𝑠(𝑟𝑘→𝑟𝑘-1)

𝛼𝑒(𝑟𝑘-1→𝑟𝑘)
∙
𝑃(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)

𝑃(𝑟𝑘-2→𝑟𝑘-1→𝑟𝑘)
 

 

Besides, the direct connection of the light source indicates 

 

�̃�𝑒(𝑟𝑛 → 𝑟𝑛−1) ∙ 𝑓𝑠(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2) ∙ �̃�(𝑟𝑛−1 ↔ 𝑟𝑛)

�⃖�(𝑟𝑛)

=
𝐸𝑠 ∙ 𝛿(Ω𝑛−1 − Ω𝑠) ∙ 𝛼𝑠(𝑟𝑛 → 𝑟𝑛−1) ∙

𝑃(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2)
4𝜋 ∙

𝒯(𝑟𝑛−1 ↔ 𝑟𝑛)
‖𝑟𝑛−1 − 𝑟𝑛‖2

𝛿(Ω𝑛−1 − Ω𝑠) ∙
cos 𝜃𝑜

𝑟𝑛

‖𝑟𝑛−1 − 𝑟𝑛‖2

= 𝐸𝑠 ∙ 𝛼𝑠(𝑟𝑛 → 𝑟𝑛−1) ∙ 𝒯(𝑟𝑛−1 ↔ 𝑟𝑛) ∙
𝑃(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2)

4𝜋
 

with 𝐸𝑠 is the solar constant at TOA, Ω𝑠 is the solar direction.  

 

Under the assumption that the scatterers are isotropic, i.e., the reciprocity is verified 

𝑃(𝑟𝑘→𝑟𝑘−1→𝑟𝑘−2)=𝑃(𝑟𝑘−2→𝑟𝑘−1→𝑟𝑘) and extinction coefficients do not depend on direction. 

It is usually the case for atmospheric molecules and particles. We finally derive the form that 

is consistent with the SSA method in (Spada et al., 2006). 

 

𝐹IS
(𝑗)
= ∑[𝐸𝑠 ∙ 𝒯(𝑟𝑛 ↔ 𝑟𝑛−1) ∙

𝑃(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2)

4𝜋
∙∏

𝛼𝑠(𝑟𝑘)

𝛼𝑒(𝑟𝑘)

𝑛−1

𝑘=1

]

∞

𝑛=1

 

 



Polarization modelling relies on the wave-like properties of radiation. It improves the accuracy 

of the simulation of remote sensing signals. It helps us in increasing the information content 

that can be extracted from remote sensing signals. It is very useful for the interpretation of 

existing polarimetric satellite missions and for the design of future missions, for example, the 

GCOM-C satellite (2017) of Japan Aerospace Exploration measures polarimetric radiation with 

the SGLI polarization imager (Imaoka et al., 2010). The GaoFen-5 satellite (2018) of the 

Chinese Space Agency is equipped with the DPC polarimetric camera (Li et al., 2018). Both 

the METOP-SG-A satellite of the European Space Agency and the OTB-2 satellite of the 

National Aeronautics and Space Administration are scheduled to be launched by 2023. The 

former is a successor of POLDER mission, equipped with a 3MI polarization imager (Fougnie 

et al., 2018). The latter is equipped with a MAIA polarization imager (Diner et al., 2018). 

 

After a description of the fundamental principles of light representation and the mathematical 

description of polarized radiative transfer, this chapter details the modelling of the atmosphere 

and land surface polarized radiative transfer in DART-Lux. This new modelling is validated 

with reference atmosphere models of the international polarized radiative transfer (IPRT) 

intercomparison project. Finally, the impact of atmosphere polarization on radiometric 

measurements is discussed. 

Chapter 5  

Modelling of polarization 
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5.1 Theoretical background 

5.1.1 Light representation and the rotation matrix 

As stated in section 1.1, the standard representation of the monochromatic plane wave is: 

 

𝑬 = 𝐸𝑥𝑃�̂�𝑃 + 𝐸𝑦𝑃�̂�𝑃 
 

with 𝐸𝑥𝑃 = 𝐴𝑥𝑃 ∙ 𝑒
−𝑖(𝑘𝑧𝑃−𝜔𝑡−𝛿𝑥𝑃) and 𝐸𝑦𝑃 = 𝐴𝑦𝑃 ∙ 𝑒

−𝑖(𝑘𝑧𝑃−𝜔𝑡−𝛿𝑦𝑃). 

 

The polarization state of a monochromatic plane wave is usually described by the Stokes vector: 

 

𝑺 = [

𝐼
𝑄
𝑈
𝑉

] =
1

2
√
𝜀

𝜇
⋅

[
 
 
 
 
𝐸𝑥𝑃𝐸𝑥𝑃

∗ + 𝐸𝑦𝑃𝐸𝑦𝑃
∗

𝐸𝑥𝑃𝐸𝑥𝑃
∗ − 𝐸𝑦𝑃𝐸𝑦𝑃

∗

𝐸𝑥𝑃𝐸𝑦𝑃
∗ + 𝐸𝑦𝑃𝐸𝑥𝑃

∗

𝑖(𝐸𝑥𝑃𝐸𝑦𝑃
∗ − 𝐸𝑦𝑃𝐸𝑥𝑃

∗ )]
 
 
 
 

 (5.1) 

 

𝑺 is defined with respect to the wave reference coordinate (�̂�𝑃, �̂�𝑃, �̂�𝑃) with �̂�𝑃 always the 

direction of propagation (Figure 1.1). Radiation interaction transforms 𝑺 into a new Stokes 

vector 𝑺′. The representation of this transformation in an absolute reference system relies on a 

representation in a local reference system that is derived from the absolute reference system 

through rotations. The components 𝐼 and 𝑉 of a Stokes vector are invariant to any rotation 

around �̂�𝑃 conversely to the linear polarization components 𝑄 and 𝑈. Figure 5.1 illustrates an 

anticlockwise rotation 𝜂 ∈ [0, 2𝜋)  of axes �̂�𝑃  and �̂�𝑃  around �̂�𝑃.  It transforms 𝐸𝑥𝑃�̂�𝑃  into 

𝐸𝑥𝑃′ �̂�𝑃
′ , 𝐸𝑦𝑃�̂�𝑃 into 𝐸𝑦𝑃′ �̂�𝑃

′ , and 𝑺 into the new Stokes vector 𝑺′. 

 

𝐸𝑥𝑃′ = 𝐸𝑥𝑃 cos 𝜂  + 𝐸𝑦𝑃 sin 𝜂   and   𝐸𝑦𝑃′ = 𝐸𝑦𝑃 cos 𝜂 − 𝐸𝑥𝑃 sin 𝜂  (5.2) 

 

 

Figure 5.1. Rotation of the wave reference coordinate (Figure 1.1) with respect to the 

direction of propagation �̂�𝑃=�̂�𝑃×�̂�𝑃. 𝜂>0 indicates anticlockwise rotation around �̂�𝑃. 
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The new rotated Stokes vector is defined by substituting Eq. (5.2) into Eq.(5.1):  

 

𝑺′ = 𝐑(𝜂) ⋅ 𝑺 
 

with  
 

𝐑(𝜂) = [

1 0 0 0
0 cos 2𝜂 sin 2𝜂 0
0 − sin 2𝜂 cos 2𝜂 0
0 0 0 1

] (5.3) 

 

This rotation matrix verifies: 𝐑(𝜂1)⋅𝐑(𝜂2)=𝐑(𝜂1+𝜂2), 𝐑(𝜂±𝜋)=𝐑(𝜂) and 𝐑-1(𝜂)=𝐑(-𝜂). 

5.1.2 Scattering matrix and phase matrix 

A radiative interaction modifies the polarization state of the radiation. The associated change 

of the Stokes vector is commonly represented by a 4×4 transformation matrix, known as the 

Mueller matrix (Mueller, 1948). Its 16 components result of the essential optical properties of 

the scattering surface / volume. They can be derived from physical principles (e.g., Fresnel’s 

law), solving Maxwell’s equations (e.g., Rayleigh scattering, Mie theory) or measurements.  

 

Here, the change of polarization state due to absorption is neglected and the angular distribution 

of the polarized scattering is described with two Mueller matrices (Mishchenko et al., 2006):  

- Phase matrix 𝐏 in the absolute reference system: 𝑺(scat) = 𝐏⋅𝑺(inc), with Stokes vectors 𝑺(inc) 

and 𝑺(scat)  defined with respect to their respective wave reference coordinate in absolute 

coordinate system: (�̂�𝑃
(inc), �̂�𝑃

(inc), �̂�𝑃
(inc))  for 𝑺(inc)  and (�̂�𝑃

(scat), �̂�𝑃
(scat), �̂�𝑃

(scat))  for 𝑺(scat) 

(Figure 5.2 and Figure 5.4). 

- Scattering matrix 𝐌 (Eq. (5.4) in the wave reference system: 𝑺′(scat) = 𝐌⋅𝑺′(inc), with Stokes 

vectors 𝑺′(inc) and 𝑺′(scat) defined with respect to their respective wave reference coordinate 

in local coordinate system: (�̂�𝑃
′(inc), �̂�𝑃

′(inc), �̂�𝑃
′(inc)) for 𝑺′(inc) and (�̂�𝑃

′(scat), �̂�𝑃
′(scat), �̂�𝑃

′(scat)) for 

𝑺′(scat) (Figure 5.2 and Figure 5.4). 

 

𝐏 = [

𝑃11 𝑃12 𝑃13 𝑃14
𝑃21 𝑃22 𝑃23 𝑃24
𝑃31 𝑃32 𝑃33 𝑃34
𝑃41 𝑃42 𝑃43 𝑃44

]    and   𝐌 = [

𝑀11 𝑀12 𝑀13 𝑀14
𝑀21 𝑀22 𝑀23 𝑀24

𝑀31 𝑀32 𝑀33 𝑀34

𝑀41 𝑀42 𝑀43 𝑀44

] (5.4) 
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5.1.3 The vector integral formulation 

The transfer of the polarized radiation in a medium can be mathematically described by  

 

𝑑𝑳(𝑟, Ω)

𝑑𝑠
= −𝛼𝑒(𝑟, Ω)𝑳(𝑟, Ω) + ∫ 𝐏(𝑟, Ω′ → Ω) ∙ 𝑳(𝑟, Ω′)𝑑Ω′

4𝜋

+
𝑑𝑳𝑒(𝑟, Ω)

𝑑𝑠
 (5.5) 

 

where the extinction matrix 𝐊𝑒(𝑟, Ω) is reduced to the extinction coefficient 𝛼𝑒(𝑟, Ω). This 

approximation is valid for particles that are macroscopically isotropic and mirror-symmetric 

(Mishchenko et al., 2006). It is less accurate for macroscopically anisotropic particles. Any 

direction is defined by its unit vector Ω(𝜃, 𝜑)  in the absolute spherical coordinate; 

Ω(𝜃, 𝜑) = �̂�𝑃 if Ω represents the radiation direction. 

 

At the surface, the corresponding vector form is: 

 

𝑳𝑜(𝑟, Ω) = 𝑳𝑒(𝑟, Ω) + ∫ 𝐏(𝑟, Ω′ → Ω) ∙ 𝑳𝑖(𝑟, Ω
′)

4𝜋

𝑑Ω′ (5.6) 

 

Eq. (5.5) and Eq. (5.6) are similar to their scalar forms (cf. section 1.5). They only differ because 

radiation is represented by the Stokes vector and scattering is represented by the phase matrix 

𝐏(𝑟, Ω′ → Ω). Therefore, the scalar radiative transfer modelling deduction method (cf. Chapter 

3 and Chapter 4) can be used to get the integral formulation of the polarimetric measurement: 

 

𝑳(𝑗) = ∫ 𝒇(𝑗)(�̅�)
𝒟

𝑑𝜇(�̅�) (5.7) 

 

𝒟 is the generalized path space and 𝜇 is the generalized area- and volume-product measure (cf. 

section 4.1.3). The vector-contribution function 𝒇(𝑗)(�̅�) is defined by: 

 

𝒇(𝑗)(�̅�𝑛) = 𝑾𝒆
(𝑗)(𝑟0→𝑟1)∙�̃�(𝑟0↔𝑟1)∙ [∏�̃�𝒔(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)∙�̃�(𝑟𝑘-1↔𝑟𝑘)

𝑛

𝑘=2

] ∙�̃�𝒆(𝑟𝑛→𝑟𝑛-1) (5.8) 

 

with the importance matrix 𝑾𝒆
(𝑗) = 𝑊𝑒

(𝑗) ∙ 𝐝𝐢𝐚𝐠(1, 1, 1, 1)  and the vector bidirectional 

scattering matrix �̃�𝒔 equal to the phase matrix. 
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5.2 Surface and volume scattering 

Scattering is the major process that changes the polarization state of radiation. This section 

presents the procedures to compute the phase matrix 𝐏 at surfaces and in media in the absolute 

coordinate system. It also defines common scattering matrices 𝐌 in local coordinate system. 

5.2.1 Volume scattering matrix 

For volume polarimetric scattering, the scattering matrix 𝐌 is defined in the scattering plane 

(�̂�𝑃
(inc)

, �̂�𝑃
(scat)

) (Figure 5.2) with the axes �̂�𝑃
′(inc)

 and �̂�𝑃
′(scat)

 of the incident and exit wave reference 

systems defined in (�̂�𝑃
(inc)

, �̂�𝑃
(scat)

). The rotation matrix 𝐑(π-σ1) around the axis �̂�𝑃
(inc)

 transforms 

(�̂�𝑃
(inc)

 �̂�𝑃
(inc)

,�̂�𝑃
(inc)

) into (�̂�𝑃
′(inc)

, �̂�𝑃
′(inc)

, �̂�𝑃
′(inc)

), whereas the rotation matrix 𝐑(-σ2) around the axis 

�̂�𝑃
(scat)

 transforms (�̂�𝑃
′(scat), �̂�𝑃

′(scat), �̂�𝑃
′(scat)

) into (�̂�𝑃
(scat)

, �̂�𝑃
(scat)

, �̂�𝑃
(scat)

). The scattered Stokes vector 

𝑺(scat) is calculated in three steps from the incident Stokes vector 𝑺(inc) (Chandrasekhar, 1960): 

1) Calculate the incident Stokes vector in scattering plane reference: 𝑺′(inc)=𝐑(𝜋 − 𝜎1)∙𝑺
(inc). 

2) Calculate the exit Stokes vector in the scattering plane reference: 𝑺′(scat) = 𝐌∙𝑺′(inc). 

3) Calculate the exit Stokes vector in the absolute reference: 𝑺(scat) = 𝐑(−𝜎2)∙𝑺′
(scat). 

 

Figure 5.2. Scattering plane (�̂�𝑃
(inc)

, �̂�𝑃
(scat)

) of the incident and scattered radiation, scattering 

phase angle 𝛾= arccos(�̂�𝑃
(inc)∙�̂�𝑃

(scat)), and reference systems of the incident (�̂�𝑃
(inc), 

�̂�𝑃
(inc), �̂�𝑃

(inc)) and scattered (�̂�𝑃
(scat), �̂�𝑃

(scat), �̂�𝑃
(scat)) Stokes vectors.  

The three-step approach leads to the scattered Stokes vector:  
 

𝑺(scat) = 𝐑(−𝜎2) ∙ 𝐌 ∙ 𝐑(𝜋 − 𝜎1) ∙ 𝑺
(inc) = 𝐏 ∙ 𝑺(inc) 
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with the phase matrix: 
 

𝐏 = 𝐑(−𝜎2) ∙ 𝐌 ∙ 𝐑(𝜋 − 𝜎1) (5.9) 

 

(Mishchenko et al., 2006) gives the reciprocity relationship of the phase matrix 𝐏:  
 

𝐏(Ω′ → Ω) = ∆3 ∙ 𝐏
T(Ω → Ω′) ∙ ∆3 (5.10) 

 

with T the matrix transpose operator, and ∆3 such that: 
 

∆3= ∆3
T= ∆3

−1= [

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

] 

 

(Mishchenko et al., 2006) prove that the phase and scattering matrices of medium with 

macroscopically isotropic and mirror-symmetric properties do not depend on the incident 

direction and orientation of scattering plane. They only depend on the phase angle between the 

incident and scattered directions 𝛾=arccos(�̂�𝑃
(inc)∙�̂�𝑃

(scat)) (Figure 5.2).  

 

The two volume scattering matrices implemented in DART-Lux are given below. 

 

Rayleigh scattering matrix. It is expressed in Eq. (5.11) (Mishchenko et al., 2006): 
 

𝐌 = ∆.

[
 
 
 
 
 
 
 
3

4
(1+ cos2 𝛾) -

3

4
(1- cos2 𝛾) 0 0

-
3

4
(1- cos2 𝛾)

3

4
(1+cos2 𝛾) 0 0

0 0
3

2
cos 𝛾 0

0 0 0 ∆′
3

2
cos 𝛾]

 
 
 
 
 
 
 

+ (1-∆). [

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] (5.11) 

 

with  ∆=
1−𝛿

1+𝛿/2
,   ∆′=

1−2𝛿

1−𝛿
, and 𝛿  the depolarization factor that considers the potential 

anisotropy of molecules. We choose 𝛿 = 0.0279 following (Young, 1980). The scattering 

matrix can be expressed as a product of the Rayleigh scattering phase function 𝑀11 and the 

so-called reduced Rayleigh scattering matrix 𝐌𝐫. Then, we have: 𝐌 = 𝐌𝐫∙𝑀11. 

 

Double Henyey-Greenstein scattering matrix. Following (Adams and Kattawar, 1993; Liu 

and Weng, 2006; Sun et al., 2016; Tynes et al., 2001), it is the product of the double Henyey-

Greenstein scattering phase function (Eq. (4.13)) and the reduced Rayleigh scattering matrix 

𝐌𝐫. It is an approximation for simulating polarized scattering of aerosols. 
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5.2.2 Surface scattering matrix 

Figure 5.3 shows the geometric configuration in the surface reference system (i.e., index “′”) with 

indication of the parallel and perpendicular reflectance and transmittance of the amplitude of the 

parallel and perpendicular electric fields in (a), and the adapted incident and exit wave reference 

coordinate in (b). 

 
 

Figure 5.3. (a) Coordinate system at local surface adapted from (Collett, 1971; Hecht, 1987). 

The parallel (//, red colour) and perpendicular (, blue colour) components of the 

incident (E), reflected (r) and transmitted (t) radiation are marked. (b) adaptation of 

coordinate with DART-Lux definition (�̂�𝑃
′ = �̂�𝑃

′ × �̂�𝑃
′ ), with incident (inc), reflected 

(refl) and transmitted (trans) directions marked in the superscript. 

The scattering matrix is defined in the surface reference system. The parallel component is in the 

incidence plane that contains the radiation direction and surface normal (Figure 5.3). 𝑺(scat) 

(Figure 5.4) is computed in three steps: 

(1) Calculate the incident Stokes vector in surface reference system: 𝑺′(inc) = 𝐑(𝜎1) ∙ 𝑺
(inc). 

(2) Calculate the exit Stokes vector in surface reference system: 𝑺′(scat) = 𝐌∙𝑺′(inc). 

(3) Calculate the exit Stokes vector in the absolute reference: 𝑺(scat) = 𝐑(−𝜎2)∙𝑺
′(scat). 

 

It leads to the scattered Stokes vector:   
 

𝑺(scat) = 𝐑(−𝜎2) ∙ 𝐌 ∙ 𝐑(𝜎1) ∙ 𝑺
(inc) = 𝐏 ∙ 𝑺(inc) 

 

with the phase matrix: 
 

𝐏 = 𝐑(−𝜎2) ∙ 𝐌 ∙ 𝐑(𝜎1) (5.12) 

a) b) 
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Figure 5.4. Absolute reference system (𝑥, 𝑦, 𝑧) and surface reference system (𝑥′, 𝑦′, 𝑧′). 𝑧′ 

is the surface normal, noted �⃗�  in Figure 5.3. The wave reference is (�̂�𝑃
(rad)

, �̂�𝑃
(rad)

, �̂�𝑃
(rad)

) 

in the absolute reference system and (�̂�𝑃
′(rad), �̂�𝑃

′(rad), �̂�𝑃
′(rad)

) in the surface reference 

system (the rotation matrix 𝐑 links them), with (rad) = (inc) for the incident wave and 

(scat) for the scattered wave.  

Two surface scattering matrices implemented in DART-Lux are given below. 

 

Lambertian scattering. It is due to perfect diffuse surfaces; i.e., matter where multiple 

scattering generates isotropic unpolarized radiance. Hence, any radiation, polarized or 

unpolarized, scattered by a Lambertian surface is unpolarized. Its scattering matrix is: 

 

𝐌 =
𝑓𝑠(𝑟, Ω

′ → Ω)

cos 𝜃′
∙ [

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] (5.13) 

 

with 𝑓𝑠(𝑟, Ω
′→Ω) the Lambertian BSDF and 𝜃′ the zenith angle of the incident direction Ω′. 

 

Specular scattering. For an optically smooth surface (cf. specular material in section 3.3.3), a 

strong specular reflection produces or changes the state of polarization. The Fresnel’s equation 

represents this effect. (Collett, 1992, 1971) extends it to a scattering matrix 𝐌 (Eq. (5.14)) for 

modelling polarized reflection and transmission on specular surfaces. 𝑝∥ or 𝑝𝑥𝑝 is the amplitude 

coefficient for the electric field vector parallel to the plane of incidence. 𝑝⊥  or 𝑝𝑦𝑝  is the 

amplitude coefficient for the electric filed vector perpendicular to the incidence plane (Figure 
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5.3). They are computed according to the Fresnel’s and Snell’s laws. For example, we have: 

 𝑝𝑥𝑝 = √ℛ𝑥𝑝 (Eq. (1.26)) for reflection and 𝑝𝑥𝑝  = √𝒯𝑥𝑝 (Eq. (1.35)) for transmission.  

 

𝐌 =

[
 
 
 
 
 
 
𝑝⊥
2+𝑝∥

2

2

𝑝⊥
2-𝑝∥

2

2
0 0

𝑝⊥
2-𝑝∥

2

2

𝑝⊥
2+𝑝∥

2

2
0 0

0 0 𝑝⊥𝑝∥ 0

0 0 0 𝑝⊥𝑝∥]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑝𝑦𝑝
2 +𝑝𝑥𝑝

2

2

𝑝𝑦𝑝
2 -𝑝𝑥𝑝

2

2
0 0

𝑝𝑦𝑝
2 -𝑝𝑥𝑝

2

2

𝑝𝑦𝑝
2 +𝑝𝑥𝑝

2

2
0 0

0 0 𝑝𝑥𝑝𝑝𝑦𝑝 0

0 0 0 𝑝𝑥𝑝𝑝𝑦𝑝]
 
 
 
 
 
 

 (5.14) 

5.3 Vector bidirectional light transport 

Although the consideration of polarization can change the radiation intensity, it almost does not 

change how radiation propagates in the environment. Therefore, the path sampling method 

presented in Chapter 3 and Chapter 4 can be applied for polarized radiative transfer. Free path 

sampling (cf. Eq. (4.8)) is used for light transmission. The exit direction is sampled according 

to Eq. (3.25) and Eq. (4.11) for the light scattering where the related scattering function is 

replaced by the first element of the corresponding bidirectional scattering matrix �̃�𝒔. The major 

difference between the vector and scalar modelling is the evaluation of the integral estimate. 

Unlike scalar computation, one cannot change the order of multiplication for vector calculations. 

Hence, the throughput is computed differently for the light and adjoint transports. 

 

Light transport. In the light transport, the contribution function is computed straightforwardly. 

The emitted radiation from the light source is represented by the Stokes vector. Then, it is 

multiplied by a phase matrix, which gives a new Stokes vector after each scattering event. The 

probability is a scalar quantity that is the same for both vector and scalar modelling. Then, the 

vector throughput (Stokes vector) is computed incrementally as: 

 

𝑻(�̅�0) = �̃�𝒆(𝑝0 → 𝑝1)                                                                                     

𝑻(�̅�1) =
�̃�𝒆(𝑝0 → 𝑝1)

𝑝 (𝑝0)
∙
�̃�(𝑝0 ↔ 𝑝1)

𝑝 (𝑝1)
                                                           

⋯                                                                                                                       

𝑻(�̅�𝑘) =
�̃�𝒔(𝑝𝑘−2 → 𝑝𝑘−1 → 𝑝𝑘) ∙ �̃�(𝑝𝑘−1 ↔ 𝑝𝑘)

𝑝 (𝑝𝑘)
∙ 𝑻(�̅�𝑘−1)                
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Adjoint transport. It is a mathematical “trick” because there is no adjoint transport in nature. 

Although the adjoint bidirectional scattering matrix �̃�𝒔
 ∗  should be used if reciprocity is not 

verified, which commonly occurs for vector scattering, �̃�𝒔  is used instead because �̃�𝒔
 ∗ 

computation is very expensive (Eq. (5.10)). Also, the throughput is stored in a matrix instead 

of a Stokes vector. It is incrementally evaluated as: 

 

𝑻(�̅�0) = 𝑾𝒆
(𝑗)(𝑞0 → 𝑞1)                                                                               

𝑻(�̅�1) =
𝑾𝒆

(𝑗)(𝑞0 → 𝑞1)

�⃖�(𝑞0)
∙
�̃�(𝑞0 ↔ 𝑞1)

�⃖�(𝑞1)
                                                     

⋯                                                                                                                        

𝑻(�̅�𝑘) = 𝑻(�̅�𝑘−1) ∙
�̃�𝒔(𝑞𝑘 → 𝑞𝑘−1 → 𝑞𝑘−2) ∙ �̃�(𝑞𝑘−1 ↔ 𝑞𝑘)

�⃖�(𝑞𝑘)
                

 

Path connection. Once the two vertices in the bidirectional random walk is mutually visible, 

the two vertices are connected by a connection matrix: 

𝑪𝑠,𝑡 = �̃�𝒔(𝑞𝑠−1 → 𝑞𝑡−1 → 𝑝𝑡−2) ∙ �̃�(𝑝𝑠−1 ↔ 𝑞𝑡−1) ∙ �̃�𝒔(𝑝𝑠−2 → 𝑝𝑠−1 → 𝑞𝑡−1) 

 

and the corresponding estimate of the polarimetric measurement is then computed by: 
 

𝑭𝑠,𝑡 = 𝑻(�̅�𝑡) ∙ 𝑪𝑠,𝑡 ∙ 𝑻(�̅�𝑠) 

5.4 Results 

5.4.1 Evaluation by intercomparison 

DART-Lux modelling of polarization has been validated by comparing it with the benchmark 

results of the phase A of IPRT (https://meteo.physik.uni-muenchen.de/~iprt/doku.php?id=start) 

for two study cases (cf. case B1 and B2 in (Emde et al., 2015)). Case B1 considers Rayleigh 

scattering in a standard atmosphere (5.Appendix A), and case B2 considers Rayleigh scattering 

as well as molecule absorption in a standard atmosphere (5.Appendix B). Both cases model 

plane parallel multi-layer atmosphere (30 equal-thickness layers from 0 to 30 km) and are given 

the layer optical depth of the corresponding atmosphere. Ground albedo is zero to emphasize 

the atmosphere signal. Solar zenith and azimuth angles are 𝜃𝑠=60° and 𝜑𝑠=0°, respectively. 

Viewing directions are for all the upper hemisphere at TOA level with zenith (𝜃𝑣∈[0°, 80°]) 

and azimuth (𝜑𝑣∈[0°, 360°]) with 5° steps. Benchmark results of the six participant models 

https://meteo.physik.uni-muenchen.de/~iprt/doku.php?id=start
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(i.e., 3DMCPOL, IPOL, MYSTIC, PSTAR, SHDOM, TROPOS) are shown in 5.Appendix A 

for case B1 and 5.Appendix B for case B2. Differences were assessed with the relative root 

mean square difference ∆𝑚=
√∑ (𝑋test

𝑖 −𝑋ref
𝑖 )

2𝑁
𝑖=0

√∑ (𝑋ref
𝑖 )

2𝑁
𝑖=0

 where 𝑋 can be a Stokes component and 𝑁 is 

the total number of directional observations. We found a high-level consistency with ∆𝑚 < 0.6%. 

 

DART-Lux results were compared with the average (AVG), minimum (MIN) and maximum 

(MAX) values of the six participant models in the phase A of IPRT. Figure 5.5 shows the polar 

plot of the Stokes components of IPRT-AVG and DART-Lux, for case B1, and their differences 

are also plotted. DART-Lux appears to be consistent with benchmark results in the IPRT project. 

The relative root mean square difference for the four Stokes components is ∆𝑚(𝐼)=0.18%, 

∆𝑚(𝑄)=0.22%, ∆𝑚(𝑈)=0.17%, and ∆𝑚(𝑉)=𝑁𝑈𝐿𝐿. Figure 5.6 shows the corresponding line 

plot along a specific viewing azimuth angle 𝑉𝐴𝐴=0°, 45°, 90°. Table 5.1 shows differences. 

∆𝑚 is commonly less than 0.2% with the exception of ∆𝑚(𝑄)=0.54% at 𝑉𝐴𝐴=0°.  

 

IPRT-AVG 

 

DART-Lux 
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DART-Lux – IPRT-AVG 

 

Figure 5.5. Case B1 results of the mean value of the six participant models in IPRT and 

DART-Lux modelling. The difference is also shown. 

 

 

 

 

Figure 5.6. DART-Lux and IPRT-AVG Stokes components for three viewing azimuth angles: 

𝑉𝐴𝐴=0°, 45° and 90°. Component 𝑉 is not shown as there is no circular polarization.  
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With the same comparisons as in the case B1, the polar plot of Stokes components and the 

associated difference as well as the line plot for the case B2 are shown in Figure 5.7 and Figure 

5.8. Table 5.1 gives the differences. Similar to case B1, the difference ∆𝑚 is commonly less 

than 0.2% with exception ∆𝑚(𝑄)=0.76% at 𝑉𝐴𝐴=0°. 

 

IPRT-AVG 

 

DART-Lux 

 

DART-Lux – IPRT-AVG 

 

Figure 5.7. Case B2 results of the mean value of the six participant models in IPRT project 

and the DART-Lux modelling. The difference is also displayed. 
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Figure 5.8. Comparison between DART-Lux and IPRT-AVG in for three viewing azimuth 

angle 𝑉𝐴𝐴 = 0°, 45° and 90°. The profile for component 𝑉 is not displayed since 

there is no circular polarization.  

 

Table 5.1. Relative root mean square difference ∆𝑚 between DART-Lux and IPRT-AVG 

for Case B1 and B2 of the phase A of IPRT. Both differences for the whole viewing 

hemisphere and for a specific azimuth angle are evaluated.  

Region Case B1 Case B2 

Hemisphere   

𝐼 0.18% 0.16% 

𝑄 0.22% 0.22% 

𝑈 0.17% 0.16% 

𝑉 - - 

VAA =   0°   
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𝐼 0.05% 0.21% 

𝑄 0.54% 0.76% 

𝑈 - - 

𝑉 - - 

VAA = 45°   

𝐼 0.16% 0.15% 

𝑄 0.25% 0.19% 

𝑈 0.15% 0.17% 

𝑉 - - 

VAA = 90°   

𝐼 0.04% 0.26% 

𝑄 0.08% 0.12% 

𝑈 0.05% 0.05% 

𝑉 - - 

 

5.4.2 Impact of polarization on the radiance measurement 

Based on this new vector modelling, it is possible to evaluate the impact of polarization on 

radiance measurement. This quantitative analysis is very useful for the design of Earth 

observation satellite missions and the retrieval of land surface variables from Earth surface 

observations. It gives the error of the scalar approximation. The impact on the spectral 

measurements is evaluated based on the modelling of TOA reflectance spectra from 0.32 to 2.5 

𝜇m of a USSTD76 atmosphere. Figure 5.9 illustrates the comparison between vector DART-

Lux and the scalar DART-Lux for three viewing directions (0°, 30°, and 60°) in the solar plane 

(solar zenith 𝜃𝑠= 60°). The error varies with the viewing geometry: ∆𝑚(0°)=1.02% , 

∆𝑚(30°)=2.21% and ∆𝑚(60°)=0.86%. The angular impact of polarization is analysed in the 

following study. Here, we focus on the spectral impact. For all three viewing directions, the 

error of scalar approximation decreases with the increase of wavelength. For example, for the 

30° viewing zenith, the relative error is 4.6% at 0.33 𝜇m, and continuously reduces to 0.1% 

at 0.7 𝜇m. Indeed, polarization is only due to scattering and this phenomenon decreases with 

the increase of wavelength. One can also note a slight decrease of error before 0.33 𝜇m. This is 

because, in this spectral region, ozone absorption greatly attenuates the intercepted energy for 

scattering and thus decreases the polarization. The impact of angular measurements is evaluated 

based on the modelling of case B1 and B2 in IPRT. Figure 5.10 illustrates the angular variation 

of the differences between the vector and scalar modelling for the two cases. The scalar 
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approximation tends to underestimate the backscattering and overestimate the forward 

scattering. Quantitatively, the neglect of polarization leads to a 2.7% average relative error for 

case B1, and a 4.1% error for case B2. We can also note that the error is the largest in the solar 

plane (𝑉𝐴𝐴 = 0°) and decreases for viewing directions away from the solar plane (Table 5.2). 

 

(a)
 

(b)
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(c)
 

Figure 5.9. TOA scalar (red solid line) and vector (black dashed line) DART Lux reflectance 

from 0.32 𝜇m to 2.5 𝜇m with 10 cm-1 spectral interval for viewing zenith angle at nadir 

(a), 30° (b) and 60° (c). Solar zenith 𝜃𝑠=60°. USSTD76 atmosphere. Ground albedo is 

0.5 at all wavelengths. The residual “scalar DART-Lux - vector DART-Lux” is plotted 

(blue solid line) with the relative root mean square difference is indicated.  

Case B1                                                       Case B2 
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Figure 5.10. Component 𝐼 of vector DART-Lux and scalar DART-Lux for three viewing 

azimuth angles 𝑉𝐴𝐴=0°, 45° and 90° and for the whole upper hemisphere.  
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Table 5.2. Relative root mean square difference ∆𝑚 of component 𝐼 between vector and 

scalar DART-lux for Cases B1 and B2 of the phase A of the IPRT project. Differences 

are for the whole viewing hemisphere and for three view azimuth angles. 

Region Case B1 Case B2 

Hemisphere 2.72% 4.11% 

VAA =   0° 3.54% 5.38% 

VAA = 45° 2.83% 4.19% 

VAA = 90° 1.89% 2.98% 

5.5 Conclusions 

Polarization is a major radiation characteristic. In addition to scalar intensity, information on 

linear and circular polarization improves the physical understanding of remote sensing 

observations, including their relationship with land surface parameters. This chapter adapted 

the theory and algorithm of atmosphere and land surface polarized radiative transfer modelling 

to DART-Lux. The DART-Lux atmosphere polarized radiative transfer modelling has been 

validated with six benchmark vector atmospheric radiative transfer models of the IPRT 

intercomparison project. The average vector DART-Lux relative difference is less than 0.2% 

with most IPRT benchmark results with few exceptions reaching 0.6%. The results of polarized 

radiative transfer modelling in land surfaces are under the preparation. 

 

The error of scalar approximation was evaluated by comparing simulations of vector DART-

Lux and scalar DART-Lux. The scalar approximation tends to underestimate backscattering 

and to overestimate forward scattering. This error is wavelength dependent. It generally 

decreases with the increase of wavelength since the scattering that gives rise to polarization 

decreases with the wavelength. For USSTD76 atmosphere, with oblique illumination at 60° sun 

zenith angle and 30°view zenith angle, the relative error of TOA reflectance spectra is 4.6% 

at 0.32 𝜇m; it decreased down to 0.1% at 0.70 𝜇m.  

 

In short, the new vector radiative transfer modelling is more accurate than the scalar modelling. 

It improves DART capacity for better interpretation of remote sensing signals and preparation 

of polarimetric satellites.  
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5.Appendix A  IPRT case B1: Rayleigh scattering 

The case B1 of the phase A of IPRT considers a standard atmosphere with only Rayleigh 

scattering, i.e., no absorption extinction. The depolarization factor (Eq. (5.11)) is set to 0.03. 

The atmosphere is modelled with 30 layers, each with 1 km thickness. Typical scattering optical 

depth at wavelength 0.450 𝜇m is given for each layer. Ground albedo is zero to emphasize the 

atmosphere signal. The solar zenith and azimuth angles are 𝜃𝑠=60° and 𝜑𝑠=0°, respectively. 

The viewing direction is set over the whole upper hemisphere at TOA level with zenith (𝜃𝑣∈

[0°, 80°]) and azimuth (𝜑𝑣∈[0°, 360°]) 5° steps. 

 

The atmosphere vertical profiles and benchmark results of the six participant models 

(3DMCPOL, IPOL, MYSTIC, PSTAR, SHDOM and TROPOS) are publicly available at: 

https://www.meteo.physik.uni-muenchen.de/~iprt/doku.php?id=intercomparisons:b1_rayleigh. 

Below, we display the results for these models (Figure 5.A.1) and their difference with the 

recommended benchmark model MYSTIC (Figure 5.A.2). 

 

3DMCPOL

 

IPOL

 

https://www.meteo.physik.uni-muenchen.de/~iprt/doku.php?id=intercomparisons:b1_rayleigh
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MYSTIC

 
PSTAR 

 

SHDOM 

 

TROPOS

 

Figure 5.A.1. Polarized results (case B1) of six participants in the IPRT project. Stokes 

components 𝐼, 𝑄, 𝑈, 𝑉 are marked. 
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3DMCPOL − MYSTIC 

 
IPOL − MYSTIC 

 
PSTAR − MYSTIC 

 

SHDOM − MYSTIC 

 

TROPOS − MYSTIC

 

Figure 5.A.2. Difference between participant models (Figure 5.A.1) and the recommended 

benchmark model MYSTIC. Stokes components 𝐼, 𝑄, 𝑈, 𝑉 are marked. 
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5.Appendix B  IPRT case B2: Rayleigh scattering and molecular absorption 

The case B2 of the phase A of IPRT considers a standard atmosphere with Rayleigh scattering 

and molecular absorption. The depolarization factor (Eq. (5.11)) is set to 0.03. The atmosphere 

is modelled with 30 layers, each with 1 km thickness. Typical scattering optical depth at 

wavelength 0.325 𝜇m is given for each layer. Ground albedo is zero to emphasize the 

atmosphere signal. Solar zenith and azimuth angles are 𝜃𝑠=60°  and 𝜑𝑠=0° , respectively. 

Viewing directions are over the whole upper hemisphere at TOA level with zenith (𝜃𝑣 ∈

[0°, 80°]) and azimuth (𝜑𝑣 ∈ [0°, 360°]) 5° steps. 

 

The vertical profiles of the atmosphere and the benchmark results of the six participant models 

are publicly available through the link: https://www.meteo.physik.uni-

muenchen.de/~iprt/doku.php?id=intercomparisons:b2_absorption. Below, we display the 

results for the six atmospheric radiative transfer models (Figure 5.B.1), namely 3DMCPOL, 

IPOL, MYSTIC, PSTAR, SHDOM and TROPOS and their difference with the recommended 

benchmark model MYSTIC (Figure 5.B.2). 

 

3DMCPOL

 
IPOL

 

https://www.meteo.physik.uni-muenchen.de/~iprt/doku.php?id=intercomparisons:b2_absorption
https://www.meteo.physik.uni-muenchen.de/~iprt/doku.php?id=intercomparisons:b2_absorption
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MYSTIC

 
PSTAR 

 

SHDOM 

 

TROPOS

 

Figure 5.B.1. Polarized results (case B2) of six participant models in the IPRT project. 

Stokes components 𝐼, 𝑄, 𝑈, 𝑉 are marked. 
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3DMCPOL − MYSTIC 

 
IPOL − MYSTIC 

 
PSTAR − MYSTIC 

 
SHDOM − MYSTIC 

 
TROPOS − MYSTIC

 

Figure 5.B.2. Difference between participant models (Figure 5.B.1) and the recommended 

benchmark model MYSTIC. Stokes components 𝐼, 𝑄, 𝑈, 𝑉 are marked. 
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This dissertation is motivated by the need to better understand the functioning of land surfaces 

at different spatial and temporal scales. This knowledge is crucial in many fields, such as 

agriculture, urban and ecosystem dynamics, water, carbon and energy cycles, global change, 

etc. Land surface functioning is typically represented by a number of parameters (e.g., 

temperature, biomass, photosynthesis efficiency, etc.) and some of them can be derived from 

remote sensing observations through some inversion techniques or based on the application of 

RTMs that simulate remote sensing observations and/or the radiative budget of the observed 

surfaces (i.e., natural and urban landscapes). These RTMs also improve the understanding of 

some land surface processes. The increasing need of accurate information about land surfaces 

at different spatial and temporal scales combined with the continuous advances of remote 

sensing instruments boost the improvement of accuracy in the simulation of remote sensing 

observations. So far, two types of improvements are particularly needed: (1) more accurate 

radiative transfer modelling with better computer efficiency (i.e., computer time and memory) 

in particular for large-scale studies (i.e., large-scale landscapes); (2) more realistic 3D 

representation of land surfaces, accounting for their 3D complexity and the different spatial 

scales.  

 

The design (i.e., the discrete ordinates method) of the initial version of DART (i.e., DART-FT) 

is not able to adapt the required improvements. On the other hand, in the last decades, scientists 

have greatly accelerated the radiation transfer modelling in complex 3D environment, with 

consideration of complex radiation mechanisms such as anisotropic scattering. The 

improvements in the display of the realistic artificial world in video games illustrates this 

progress. Considering this progress, in collaboration with DART team, I have developed in 

DART a new vector Monte Carlo radiative transfer mode, called DART-Lux, which has 

adapted the latest advances in computer graphics. The adapted approach transforms the 

radiative transfer problem as a multi-dimensional path integral problem and solves it based on 

Conclusions and perspectives 
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the bidirectional path tracing algorithm. To estimate this integral, it generates a group of 

stochastic paths that connect the light sources and the sensor and combines them with the 

multiple importance sampling. The originality is that each path is generated by connecting two 

sub-paths, one starting from the light sources and another one starting from the sensor. Each 

path of length 𝑛 (i.e., path with 𝑛 edges) can be generated in at most 𝑛 + 2 ways, with each 

way having specific advantages and disadvantages depending on the experimental and 

instrumental configurations. A robust and efficient 3D radiative transfer modelling for a wide 

variety of scenarios is then realized by weighting and summing the contribution of all possible 

paths that are generated in different ways. 

 

In addition to describing the theoretical formalism, this manuscript also details the 

implementation of a variety of useful light sources (e.g., sun, sky), sensors (e.g., perspective 

camera, orthographic camera, BRF camera) and BSDF models (e.g., Lambertian, RPV, 

specular, mix). It presents how to sample the path vertices and to generate stochastic path 

samples based on the importance sampling principles. Furthermore, it demonstrates how to 

evaluate the final measurements incrementally without any redundant computations. 

 

The preliminary implementation of DART-Lux was evaluated through the cross comparison 

with DART-FT. Three land surfaces were considered, the schematic scene was created by 

DART itself, the actual urban scene was provided by the Toulouse townhall, and the actual 

forest scene was derived from RAMI. DART-Lux and DART-FT have very good agreements 

for the three land surfaces with reflectance difference less than 1% in relative. The great interest 

of DART-Lux is that it is in general at least hundredfold times faster and much less costly in 

memory allocation. Indeed, DART-Lux only tracks the light paths that contribute to 

observations whereas DART-FT tracks all possible paths starting from the light sources until 

they are absorbed or exit the scene. In addition, DART-Lux uses a cloning method that largely 

reduces the memory allocation if the scene contains a lot of elements (e.g., tree) that are similar 

by shifting and/or rotation. In this case, only one 3D element per “type” of tree is stored in 

memory. In contrast, DART-FT straightforwardly loads all elements of the scene into memory. 

Because of its Monte Carlo algorithm, DART-Lux converges with the increase of number of 

samples. A sensitivity study showed that image mean values converge much faster than pixel 
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values, and that the convergence is all the faster if the scene elements have low reflectance 

values. 

 

In a next step, the path integral problem for both surfaces and volumes are unified. It shows the 

probability to generalize the theory and algorithm of DART-Lux for land surfaces with 

atmosphere or any other media (e.g., turbid vegetation, fluids). Then, I designed a quasi-finite 

Earth-Atmosphere system (default dimension: X × Y × Z = 500 × 500 × 50 km) with the 

target scene in its bottom centre. It allows one to model the adjacency effect due to the 

neighbouring surface of the studied scene, homogeneous or not, and the atmosphere. Then, I 

described how to compute the continuous atmospheric profiles and the atmospheric optical 

properties, how to characterize the scattering distribution of atmospheric constituents, how to 

sample a free path and a scattering direction in presence of medium as well as how to generate 

stochastic paths and to evaluate their contribution efficiently. The accuracy of the atmospheric 

radiative transfer modelling was evaluated by the reference model MODTRAN. For the 

standard USSTD76 atmosphere, the difference of TOA directional reflectance spectra from 

0.32 to 2.5 𝜇m between DART-Lux and MODTRAN is less than 1% in relative. Based on this 

new modelling, I studied the impact of the adjacency effect on observations at four Sentinel-

2A bands, which is of relevance to the calibration of remote sensing images. Results show that 

we can quantify how the adjacency perturbation increases with the increase of (1) the albedo of 

the surrounding surface, (2) the atmosphere scattering for example the more or less large optical 

depth of gases and aerosols and (3) the sensor altitude. The impact of the 3D structure of the 

surrounding landscape and the atmospheric absorption is less important but is still not negligible. 

 

The Monte Carlo radiative transfer modelling in the plane parallel atmosphere is very accurate 

since nearly no approximation is required, but it is usually long compared to the discrete 

ordinates radiative transfer mode. In configurations where the adjacency effect is not so 

important or the studied landscape is spatially homogeneous, I designed a hybrid method that 

efficiently couples the atmospheric radiative transfer of DART-FT (i.e., discrete ordinates in 

the atmosphere) and the Monte Carlo radiative transfer in the land surface. This method is very 

fast for simulating satellite and airborne observations. It simulates satellite images very close 

to these simulated by DART-FT with difference below 1% in relative. Its accuracy in the 

thermal infrared region was assessed by MODTRAN using realistic atmospheric profiles 
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provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The 

average difference between the hybrid method and MODTRAN is less than 1 K in the region 

from 3.5 to 20 𝜇m, with differences usually less than 0.2 K for major thermal bands in satellite 

missions such as Landsat 8, Sentinel-3, and TRISHNA. 

 

Finally, I introduced the modelling of polarization in the atmosphere based on the 

characterization of the polarized light by Stokes vector and the adaptation of the bidirectional 

path tracing formalism. The surface and volume scattering are characterized by the scattering 

matrix that are derived from Maxwell’s equations. This new modelling was assessed by the 

benchmark results in the frame of IPRT intercomparison initiative. For standard USSTD76 

atmosphere, DART-Lux simulates accurate TOA directional Stokes vector components with 

difference commonly below 0.2% in relative compared to benchmark results, with only a few 

exceptional differences up to 0.6%. I also investigated the impact of polarization on the radiance 

intensity. Results show that the scalar approximation tends to underestimate the backscattering 

and overestimate the forward scattering. Also, this error is wavelength dependent. It generally 

decreases with the increase of wavelength since the scattering that gives rise to polarization 

decreases with the wavelength. 

 

DART-Lux greatly enhances the DART capability for studying the land surface functioning 

and for preparing Earth observation satellite missions. It can accurately simulate polarimetric 

remote sensing observations of kilometre-scale complex land surfaces coupled with plane-

parallel atmosphere. Also, it well simulates the anisotropic scattering (e.g., specular reflection, 

aerosol peak forward scattering) and the thermal emission (e.g., atmospheric heterogeneous 

emission, thermal infrared hot-spot). DART-Lux has already been successfully used in 

scientific studies about vegetation functioning (e.g., forest and crop photosynthesis and SIF 

emission), urban studies (e.g., inversion of satellite images), the cross comparison and 

benchmark of RTMs (e.g., RAMI-V2), and the preparation of satellite missions (e.g., CNES and 

ISRO TRISHNA satellite mission, ESA next generation Sentinel-2 and LSTM satellite 

missions, NASA CHANGE mission).  

                                                 

2 I managed the participation of CESBIO (France), NASA GSFC (USA) and CAS (China) in RAMI-V. 

The proposed measurements of abstract and actual canopies were all simulated. This work is not 

presented in this manuscript. 
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Despite its versatility, DART-Lux should be further improved in several directions: 

- Jacobian matrices. These matrices store the derivative of the observed radiation with 

respect to scene parameters (e.g., reflectance, transmittance, temperature, illumination 

direction). They are very useful for sensitivity studies, and for retrieving land surface 

parameters from space. The differentiable radiative transfer modelling can compute them 

relying on the formalism presented in Chapter 3. Indeed, instead of estimating the path 

integral, DART-Lux estimates the derivative of the path integral with respect to scene 

parameters while using the same path samples and probability densities. 

- Integrating the measured and modelled directional distribution of reflectance factor: current 

directional scattering distributions of surface and volume implemented in DART-Lux are 

mostly derived from geometric optics, electromagnetic theory, and empirical analysis. 

Sometimes, they cannot reproduce the scattering patterns of certain media or surfaces. 

Besides, there are available scalar and polarimetric measurements of directional 

distributions from laboratory or field experiments. Several microscale RTMs, such as those 

that model the leaf optical properties as a function of its cellular structure, are also able to 

simulate particle and surface scattering distribution function and even the scattering matrix.  

- Extending vector radiative transfer modelling at land surfaces: the specular surfaces, such 

as the water, architecture windows, leaf surface waxes, etc., can produce strong 

polarization signature, either from scattering or from emission. Knowing that the 

consideration of polarization in the interaction mechanisms alters the radiation intensity 

and brings more information about the target. It is thus important to extend current vector 

radiative transfer modelling to land surfaces. 

- Optimizing the radiative budget modelling: the DART-Lux modelling is very optimal to 

simulate remote sensing observations. However, it is less efficient to simulate the radiative 

budget, because the adapted approach relies only on the bidirectional path tracing. It treats 

all surface elements for which the radiative budget needs to be computed as a sensor and 

this computation is even more intensive than DART-FT. It is thus necessary to design a 

new modelling that avoids generating redundant light paths. It will allow one to couple 

DART radiative budget with models that simulate land surface energy and gas fluxes, such 
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as the DART-EB model (Belot, 2007) that is presently being redesigned in CESBIO 

(Nguyen, 20223), the global land surface model ORCHIDEE (https://orchidee.ipsl.fr) and 

the urban surface model SOLENE (https://aau.archi.fr/crenau/solene).  

 

 

 

 

                                                 

3 Nguyen Thang, 2022, Development of a 3D energy budget model inspired by SCOPE model. CESBIO. 

Internal report is in preparation. 

https://orchidee.ipsl.fr)/
https://aau.archi.fr/crenau/solene
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Cette thèse est motivée par la nécessité de mieux comprendre le fonctionnement des surfaces 

terrestres à différentes échelles spatiales et temporelles. Ces connaissances sont cruciales dans 

de nombreux domaines, comme l’agriculture, la dynamique urbaine et des écosystèmes, les 

cycles de l’eau, du carbone et de l’énergie, le changement global, etc. Le fonctionnement des 

surfaces terrestres est en général représenté par des paramètres de surface (e.g., température, 

biomasse, efficacité de la photosynthèse) dont certains peuvent être dérivés de mesures de 

télédétection via des techniques d'inversion ou d'assimilation basées sur l'emploi de MTRs qui 

simulent les mesures de télédétection et/ou le bilan radiatif des surfaces observées (i.e., 

paysages naturels et urbains). De plus, ces MTRs permettent d'améliorer la compréhension 

physique de certains processus des surfaces terrestres. Le besoin urgent de paramètres de 

surface de plus en plus précis à différentes échelles spatiales et temporelles, combiné au progrès 

continu des instruments de télédétection, nécessite d'améliorer la précision des simulations des 

mesures de télédétection. A ce jour, deux types d’améliorations sont en particulier nécessaires : 

(1) modélisation plus précise des MTRs, avec une meilleure efficacité informatique (i.e., temps 

de calcul et volume mémoire) en particulier pour les études à grande échelle (i.e., grands 

paysages); (2) représentation plus réaliste des surfaces terrestres avec prise en compte de leur 

complexité 3D, avec une adaptation aux différentes échelles spatiales d'analyse. 

 

Le concept de base (i.e., méthode des ordonnées discrètes), de la version initiale de DART (i.e., 

DART-FT) ne permet pas d'apporter les améliorations requises. Par contre, durant ces dernières 

décennies, les scientifiques ont beaucoup accéléré la modélisation du transfert radiatif dans les 

environnements 3D complexe, avec prise en compte de mécanismes radiatifs complexes 

comme la diffusion anisotrope. L'amélioration des jeux vidéos illustre les progrès réalisés. 

Compte tenu de ces progrès, en collaboration avec l'équipe DART, j'ai donc développé dans 

DART un nouveau mode Monte Carlo de transfert radiatif vectoriel, appelé DART-Lux. 

L’approche adoptée transforme le problème du transfert radiatif en un problème d’intégrale 

Conclusions et perspectives 
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multidimensionnelle et le résout avec une approche basée sur l’algorithme de tracé de rayons 

bidirectionnel. Pour estimer cette intégrale, DART-Lux génère un groupe de trajets de rayon 

stochastiques entre les sources de lumière et le capteur et les combine avec l’échantillonnage 

préférentiel multiple. Une originalité est que chaque trajet de rayon est généré en reliant deux 

sous-trajets, l’un partant de la source ou des sources de lumière et l’autre partant du capteur. 

Tout trajet de longueur 𝑛 (i.e., chemin avec 𝑛 arêtes) peut être généré d’au plus 𝑛 + 2 façons, 

chacune ayant des avantages et inconvénients spécifiques selon les configurations 

expérimentales et instrumentales d'observation. Une modélisation du transfert radiatif 3D à la 

fois robuste et efficace pour une grande variété de scénarios est obtenue en pondérant et 

additionnant la contribution de tous les trajets possibles générés de manières différentes. 

 

En plus de décrire le formalisme théorique de DART-Lux, ce manuscrit détaille sa mise en 

œuvre avec différentes configurations de sources lumière (e.g., soleil, ciel), de capteurs (e.g., 

caméra perspective, caméra orthographique, caméra BRF) et de modèles BSDF (e.g., 

Lambertian, RPV, spéculaire, mixte). Il présente aussi la manière d'échantillonner les sommets 

de trajet et de générer des échantillons de trajet stochastiques basés sur les principes 

d’échantillonnage préférentiel. De plus, l'approche adoptée pour évaluer les mesures finales de 

manière incrémentielle sans aucun calcul redondant est aussi présentée. 

 

La mise en œuvre préliminaire de DART-Lux a été évaluée par comparaison avec DART-FT. 

Trois types de surfaces terrestres ont été considérés : scène schématique créée par DART, scène 

urbaine réelle fournie par la mairie de Toulouse et scène forestière issue de RAMI. Les 

simulations DART-Lux et DART-FT des trois surfaces concordent très bien avec une 

différence relative de réflectance inférieure à 1 %. Le grand intérêt de DART-Lux est qu’il est 

en général au moins cent fois plus rapide et beaucoup moins coûteux en allocation mémoire. 

En effet, il ne suit que les trajets de rayon qui contribuent aux observations alors que DART-

FT suit tous les trajets de rayon possibles à partir des sources de lumière jusqu’à ce qu’elles 

soient absorbées ou sortent de la scène étudiée. De plus, DART-Lux utilise une méthode de 

clonage qui réduit énormément le volume mémoire requis si le paysage simulé comprend 

beaucoup d’éléments (e.g., arbre) similaires à une homothétie et/ou rotation xyz près. Dans ce 

cas, un seul élément 3D par "type" d'arbre est stocké en mémoire. Par contre, DART-FT charge 

tous les éléments de la scène en mémoire. En raison de son algorithme Monte Carlo, DART-
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Lux converge avec l’augmentation du nombre d’échantillons. Une étude de sensibilité a montré 

que les valeurs moyennes des images convergent beaucoup plus vite que les valeurs des pixels, 

et que la convergence est d’autant plus rapide que les réflectances des éléments de la scène sont 

faibles. 

 

Dans une étape suivante, la gestion du problème de l’intégrale pour les surfaces et les volumes 

a été unifiée. Cela montre la possibilité de généraliser la théorie et l’algorithme de DART-Lux 

aux surfaces terrestres avec atmosphère et tout autre milieu (e.g., végétation turbide, fluide). 

J'ai ensuite créé un système Terre-Atmosphère quasi-infini (dimension par défaut : X × Y × Z 

= 500 × 500 × 50 km) où le paysage terrestre étudié se trouve au bas au centre. Il permet de 

modéliser l’effet d’adjacence dû au voisinage du paysage étudié, spatialement homogène ou 

non, en présence d'atmosphère. J'ai décrit comment calculer les profils atmosphériques continus 

et les propriétés optiques atmosphériques, comment caractériser la distribution de diffusion des 

constituants atmosphériques, comment échantillonner un parcours libre et une direction de 

diffusion en présence de milieu et aussi comment générer des trajets stochastiques et évaluer 

efficacement leur contribution. La précision de la modélisation du transfert radiatif 

atmosphérique a été évaluée avec le modèle de référence MODTRAN. Pour un modèle standard 

de l’atmosphère USSTD76, la différence relative des spectres de réflectance directionnelle 

TOA de 0.32 à 2.5 𝜇m entre DART-Lux et MODTRAN est inférieure à 1%. Cette nouvelle 

modélisation m'a permis d'étudier l’impact de l’effet d’adjacence sur les observations de quatre 

bandes du satellite Sentinel-2A, ce qui est utile pour l’étalonnage des images de télédétection. 

Les résultats montrent que nous pouvons quantifier comment l'effet d’adjacence augmente avec 

l’augmentation de (1) l’albédo de la surface autour de la surface étudiée, (2) la diffusion de 

l’atmosphère par exemple du fait de la plus ou moins grande épaisseur optique des gaz et 

aérosols, et (3) l’altitude du capteur. L’impact de la structure 3D du paysage étudié et 

l’absorption atmosphérique est moindre, mais peut jouer un rôle non négligeable.  

 

La modélisation Monte Carlo du transfert radiatif dans l’atmosphère plane parallèle est très 

précise, car elle ne requiert quasiment pas d'approximation. Par contre, elle requiert de plus 

grands, voire beaucoup plus grands, temps de calcul que la méthode des ordonnées discrètes. 

Dans des configurations où l’effet d’adjacence n’est pas trop important ou que le paysage étudié 

est spatialement homogène, j’ai conçu une méthode hybride qui couple efficacement le transfert 
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radiatif atmosphérique de DART-FT (i.e., ordonnées discrètes dans l’atmosphère) et le transfert 

radiatif Monte Carlo dans les surfaces terrestres. Cette méthode est très rapide pour simuler des 

observations satellitaires et aéroportées. Elle donne des images satellites très proches de celles 

simulées avec DART-FT avec une différence relative inférieure à 1%. Sa précision dans la 

région de l’infrarouge thermique a été évaluée avec MODTRAN et des profils atmosphériques 

fournis par le Centre Météorologique Européen ECMWF. La différence moyenne entre la 

méthode hybride et MODTRAN est inférieure à 1 K dans la région de 3.5 à 20 𝜇m, avec des 

différences généralement inférieures à 0.2 K pour les bandes thermiques des missions 

satellitaires telles que Landsat 8, Sentinel-3 et TRISHNA. 

 

J'ai introduit de la modélisation de la polarisation dans l'atmosphère à partir de la représentation 

du rayonnement polarisé par le vecteur de Stokes et en l'adaptant au formalisme du suivi de 

rayon bidirectionnel. Les surfaces et l’atmosphère sont caractérisées par une matrice de 

diffusion dérivée des équations de Maxwell. Cette modélisation a été évaluée à partir de 

simulations de modèles de référence réalisées dans le cadre de l’initiative d’intercomparaison 

IPRT. Avec le modèle standard d’atmosphère USSTD76, DART-Lux simule avec précision les 

composantes vectorielles Stokes directionnelles TOA : différence relative en général inférieure 

à 0.2 % par rapport aux simulations de référence, avec de manière exceptionnelle quelques 

différences jusqu’à 0.6 %. J'ai également étudié l’impact de la polarisation sur l’intensité de 

rayonnement. Les résultats montrent que l’approximation scalaire a tendance à sous-estimer la 

diffusion vers l’arrière et à surestimer la diffusion vers l’avant. De plus, cette erreur dépend de 

la longueur d’onde. Elle diminue généralement avec l’augmentation de la longueur d’onde, car 

la diffusion qui donne lieu à la polarisation diminue avec la longueur d’onde. 

 

DART-Lux renforce considérablement la capacité du DART à étudier le fonctionnement des 

surfaces terrestres et à préparer des missions satellites d’observation de la Terre. Il permet de 

simuler avec précision des observations de télédétection polarimétrique de surfaces terrestres 

complexes à l’échelle kilométrique couplées à une atmosphère plane parallèle. En outre, il 

simule bien la diffusion anisotrope (e.g., réflexion spéculaire et diffusion vers l’avant des 

aérosols) et l’émission thermique (e.g., émission hétérogène atmosphérique et hot spot 

infrarouge thermique). DART-Lux a déjà été utilisé avec succès dans des études scientifiques 

sur le fonctionnement de la végétation (e.g., photosynthèse et émission SIF des forêts et 
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cultures), les études urbaines (e.g., inversion d’images satellites), la comparaison croisée et le 

benchmark des MTRs (e.g., RAMI-V4), et la préparation de missions satellitaires (e.g., mission 

TRISHNA de CNES et ISRO, LSTM et nouvelle génération des satellites Sentinel-2 de l’ESA, 

et mission CHANGE de la NASA). 

 

Malgré sa polyvalence, DART-Lux doit encore être amélioré dans plusieurs directions :  

- Matrices Jacobiennes. Ces matrices stockent la dérivée des luminances des couverts par 

rapport aux paramètres de la scène (e.g., réflectance, transmittance, température et direction 

solaire). Elles seront très utiles pour les études de sensibilité et pour récupérer des 

paramètres des surfaces terrestres depuis l’espace. La modélisation différentiable du 

transfert radiatif doit permettre de les calculer à partir du formalisme présenté au chapitre 

3. Ainsi, en plus d’estimer une intégrale, DART-Lux pourrait estimer la dérivée de 

l’intégrale par rapport aux paramètres de la scène en utilisant les mêmes échantillons de 

trajet et densités de probabilité. 

- Intégration de distribution directionnelle de facteurs de réflectance mesurés ou issus de 

modèles : les distributions directionnelles de surfaces et volumes (e.g., modèles 

lambertiens, RPV, Hapke, etc.) actuelles de DART-Lux sont surtout dérivées de l’optique 

géométrique, de la théorie électromagnétique et de l’analyse empirique. Cependant, elles 

ne peuvent pas reproduire les motifs de diffusion de certains milieux ou surfaces. En outre, 

il existe des mesures scalaires et polarimétriques directionnelles de terrain ou en laboratoire. 

De plus, les MTRs à micro-échelle qui modélisent les propriétés optiques foliaires en 

fonction de leur structure cellulaire simulent la fonction de distribution de diffusion des 

particules et de la surface et même la matrice de diffusion.  

- Extension de la modélisation du transfert radiatif vectoriel aux surfaces terrestres : les 

surfaces spéculaires, telles que l’eau, les fenêtres d’architecture, les cires de surface des 

feuilles, etc., peuvent produire un fort signal de polarisation par diffusion ou par émission. 

Vu que la prise en compte de la polarisation dans les mécanismes d'interaction modifie 

                                                 

4 J’ai géré la participation de CESBIO (France), NASA GSFC (USA) et CAS (Chine) à RAMI-V. Les 

mesures proposées des canopée abstraits et réels ont toutes été simulées. Ce travail n’est pas présenté 

dans ce manuscrit. 
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l’intensité du rayonnement et apporte donc des informations sur la cible, il est important 

d’étendre la modélisation actuelle du transfert radiatifs vectoriel aux surfaces terrestres. 

- Optimisation de la modélisation du bilan radiatif : DART-Lux est très efficace pour simuler 

les observations de télédétection. Cependant, il est beaucoup moins efficace pour simuler 

le bilan radiatif, car l'approche adoptée ne peut s'appuyer sur le suivi de rayons 

bidirectionnel. Elle traite tout élément de surface dont l'on veut calculer le bilan radiatif 

comme un capteur, avec des temps de calcul supérieurs à ceux de DART-FT. Il est prévu 

de concevoir une nouvelle modélisation qui évite de dupliquer les calculs de trajets de 

rayons. Elle permettra de coupler DART-Lux avec des modèles de simulation des flux 

d’énergie et de gaz des surfaces terrestres, comme le modèle DART-EB (Belot, 2007) en 

cours de développement au CESBIO (Nguyen, 20225), le modèle de surface urbaine 

SOLENE (https://aau.archi.fr/crenau/solene) et le modèle global de surface terrestre 

ORCHIDEE (https://orchidee.ipsl.fr). 

 

 

 

 

                                                 

5 Nguyen Thang, 2022, Développement d'un modèle de bilan d'énergie 3D inspiré du modèle SCOPE. 

CESBIO. Rapport interne en préparation. 

https://aau.archi.fr/crenau/solene
https://orchidee.ipsl.fr)/
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A.1 Radiative properties of molecules and particles 

Any medium such as the atmosphere, made up of countable objects (e.g., molecules, particles) 

can scatter, absorb and emit radiation. The proportion that accounts these processes depends on 

the nature of the objects (shape, size, density, etc.), the wavelength, and the incident direction. 

Quantities that describe the radiative properties of these objects are briefly described below.  

 

Size parameter 𝝌. It is a key criterion to characterize the scattering behaviour in media. It is 

the ratio of the object dimension to the radiation wavelength. Let 𝑑 be the diameter if the object 

is spherical, and the diameter of the sphere with the same volume or surface area as the object.  

 

 

𝜒 =
𝜋𝑑

𝜆
 

 

Number density or Concentration 𝑵𝒄 [1/m3]. It is an intensive quantity used to describe the 

degree of concentration of countable objects (e.g., particles, molecules, etc.) in the physical 

space. It is defined as the number of objects per unit volume. 

 

Extinction cross section 𝝈𝒆(𝛌,𝛀) [m
2]. It is the area perpendicular to the direction Ω of the 

radiation that intersects it. It generally differs from the particle geometrical cross section. It 

depends on the radiation wavelength and the particle permittivity, shape, and size. It is called 

spherical if it does not depend on the incident direction Ω. It is the sum of the absorption 

extinction cross section 𝜎𝑎(𝜆, Ω) and the scattering extinction cross section 𝜎𝑠(𝜆, Ω). 

 

𝜎𝑒(λ, Ω) = 𝜎𝑎(𝜆, Ω) + 𝜎𝑠(𝜆, Ω) 

Annex A  
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Extinction coefficient 𝜶𝒆(𝝀, 𝛀) [1/m]. It defines the spectral attenuation of radiation by a 

medium in a direction Ω . We have 𝛼𝑒(λ, Ω) = 𝛼𝑎(λ, Ω) + 𝛼𝑠(λ, Ω)  with 𝛼𝑎(λ, Ω)  the 

absorption coefficient and 𝛼𝑠(λ, Ω) the scattering extinction coefficient.  

 

𝛼𝑒(λ, Ω) = 𝜎𝑒(𝜆, Ω) ∙ 𝑁𝑐,    𝛼𝑎(λ, Ω) = 𝜎𝑎(𝜆, Ω) ∙ 𝑁𝑐,𝛼𝑠(λ, Ω) = 𝜎𝑠(𝜆, Ω) ∙ 𝑁𝑐  

 

The total extinction, absorption, and scattering coefficients of a multi component medium (e.g., 

the atmosphere) are the sums of the corresponding coefficients per individual component i.  

 

𝛼𝑒(λ, Ω) =∑𝛼𝑒,𝑖(λ, Ω)

𝑖

=∑𝜎𝑒,𝑖(𝜆, Ω) ∙ 𝑁𝑐,𝑖
𝑖

 

𝛼𝑎(λ, Ω) =∑𝛼𝑎,𝑖(λ, Ω)

𝑖

=∑𝜎𝑎,𝑖(𝜆, Ω) ∙ 𝑁𝑐,𝑖
𝑖

 

𝛼𝑠(λ, Ω) =∑𝛼𝑠,𝑖(λ, Ω)

𝑖

=∑𝜎𝑠,𝑖(𝜆, Ω) ∙ 𝑁𝑐,𝑖
𝑖

 

 

Single scattering albedo 𝝎(𝛌,𝛀). It is the ratio of the scattering coefficient to the extinction 

coefficient in direction Ω for wavelength λ. It is said spherical if scattering is isotropic. 

 

𝜔(λ,Ω) =
𝛼𝑠(λ, Ω)

𝛼𝑒(λ, Ω)
=
𝜎𝑠(λ, Ω)

𝜎𝑒(λ, Ω)
 

 

Sometimes, the single scattering albedo is averaged over the 4𝜋 space to represent the fraction 

of the radiation lost due to scattering (Chandrasekhar, 1960), we have 

 

�̅�(λ) =
1

4𝜋
∫ 𝜔(λ,Ω)𝑑Ω
4𝜋

 

 

Optical depth 𝝉(𝛌,𝛀). It is a measure of the distance the radiation will travel in a medium. It 

is the product of the extinction coefficient and distance along the line of sight in a medium.  

 

𝜏(λ, Ω) = ∫ 𝛼(λ, 𝑟, Ω)𝑑𝑟
𝑟2

𝑟1

 

 

with 𝛼(λ, 𝑟, Ω) the extinction coefficient at position 𝑟 along direction Ω. 
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Transmittance 𝓣(𝝀,𝛀). It is the ratio of the transmitted radiant flux to the incident radiant flux 

along the line of sight for a given wavelength in a medium. According to the Beer’s law, the 

transmittance is the exponential of the minus optical depth along the line of sight. 

 

𝒯(𝜆, Ω) = 𝑒−𝜏(λ,Ω) 

A.2 Radiative properties of surfaces 

A radiation intercepted by a surface is reflected, transmitted, or absorbed. A surface also emits 

radiation as thermal emission over the spectrum and can emit fluorescence radiation in some 

spectral range. The proportion that accounts these processes depends on the surface nature and 

geometry, the wavelength, and the incident direction. Quantities that describe the radiative 

properties of surfaces are briefly described below. 

 

Reflectance 𝓡(𝝀). It is 
reflected radiant flux by a surface

incident radiant flux onto the surface
. There exists several definitions. 

 

Table A.1. Geometry of the incoming (dashed line) and reflected radiation (solid line) used 

to define the reflectance and reflectance factor, adapted from (Schaepman-Strub et al., 

2006). A radiation can be along a unique direction, in a cone or in a hemisphere. 

Incoming/Reflected Directional Conical  Hemispherical 

Directional 

   

Conical 

   

Hemispherical 
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- Reflectance factor 𝝆(𝝀): ratio of the radiant flux reflected by a surface to that reflected into 

the same reflected-beam geometry by a white (lossless) and diffuse (Lambertian) standard 

surface, irradiated under the same conditions. It can be larger than 1, especially for strongly 

forward reflection such as specular surfaces. Different reflectance and reflectance factor 

terminologies (Table 1.B.1) are used depending on the measuring geometries (i.e., along a 

unique direction, in a cone or in a hemisphere).  

 

- Bidirectional reflectance 𝓡𝐃𝐃(𝝀, 𝛀
′ → 𝛀): ratio of the reflected radiant flux 𝑑Φ𝑟(𝜆, Ω

′ →

Ω) from a surface into a viewing direction Ω due to the direct incident radiant flux 𝑑Φ𝑖(𝜆, Ω
′) 

in direction Ω′ to the direct incident radiant flux (directional-directional case in Table 1.B.1).  

 

ℛDD(𝜆, Ω
′ → Ω) =

𝑑Φ𝑟(𝜆, Ω
′ → Ω)

𝑑Φ𝑖(𝜆, Ω
′)

=
𝑑𝐿𝑟(𝜆, Ω

′ → Ω) ∙ cos 𝜃 𝑑Ω𝑑𝐴

𝑑𝐿𝑖(𝜆, Ω
′) ∙ cos 𝜃′ 𝑑Ω′𝑑𝐴

 

 

- Bidirectional reflectance factor 𝝆(𝝀,𝛀′ →  𝛀):  ratio of the reflected radiant flux 

𝑑Φ𝑟(𝜆, Ω
′ → Ω) from a surface into a direction Ω due to direct illumination from direction 

Ω′ to the flux 𝑑Φ𝑟
Lamb(𝜆, Ω′ → Ω) scattered by a white and Lambertian surface (directional-

directional case in Table 1.B.1) under the same direct illumination from direction Ω′.  

 

𝜌(𝜆, Ω′ → Ω) =
𝑑Φ𝑟(𝜆, Ω

′ → Ω)

𝑑Φ𝑟
Lamb(𝜆, Ω′ → Ω)

=
𝑑𝐿𝑟(𝜆, Ω

′ → Ω) ∙ cos 𝜃 𝑑Ω𝑑𝐴

𝑑𝐿𝑟
Lamb(𝜆, Ω′ → Ω) ∙ cos 𝜃 𝑑Ω𝑑𝐴

 

 

- Bidirectional reflectance distribution function (BRDF): ratio of the reflected radiance 

𝑑𝐿𝑟(𝜆, Ω
′ → Ω)  by a surface into a direction Ω  to the incident irradiance 𝑑𝐸𝑖(𝜆, Ω

′)  in 

direction Ω′ that causes 𝑑𝐿𝑟(𝜆, Ω
′ → Ω).  

 

𝑓𝑟(𝜆, Ω
′ → Ω) =

𝑑𝐿𝑟(𝜆, Ω
′ → Ω)

𝑑𝐸𝑖(𝜆, Ω′)
=

𝑑𝐿𝑟(𝜆, Ω
′ → Ω)

𝐿𝑖(𝜆, Ω′) ∙ cos 𝜃′ 𝑑Ω′
 

 

Because 𝑑𝐸𝑖(𝜆, Ω
′)=𝜋∙𝑑𝐿𝑟

Lamb(𝜆, Ω′ → Ω) for a white and Lambertian surface, we have: 
 

𝜌(𝜆, Ω′ → Ω) = 𝜋 ∙ 𝑓𝑟(𝜆, Ω
′ → Ω) 

 

- Directional-hemispherical reflectance 𝓡𝐃𝐇(𝝀, 𝛀): ratio of radiant flux 𝑑Φ𝑟(𝜆, Ω → 2𝜋+) 

reflected to the surface upper hemisphere 2𝜋+  by a surface to the incident radiant flux 

𝑑Φ𝑖(𝜆, Ω)  (directional-hemispherical case in Table 1.B.1) in direction Ω  that causes 

𝑑Φ𝑟(𝜆, Ω → 2𝜋+).  
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ℛDH(𝜆, Ω
′) =

𝑑Φ𝑟(𝜆, Ω
′ → 2𝜋+)

𝑑Φ𝑖(𝜆, Ω′)
=
∫ 𝑑𝐿𝑟(𝜆, Ω

′ → Ω)
2𝜋+

∙ cos 𝜃 𝑑Ω𝑑𝐴

𝐿𝑖(𝜆, Ω′) ∙ cos 𝜃′ 𝑑Ω′𝑑𝐴
 

 

Because 𝑑𝐿𝑟(𝜆, Ω
′ → Ω)=𝐿𝑖(𝜆, Ω

′)∙ cos 𝜃′ ∙𝑓𝑟(𝜆, Ω
′ → Ω)𝑑Ω′ is the radiance in direction Ω 

due to the direct incident radiant flux 𝑑Φ𝑖(𝜆, Ω
′), we have  

 

ℛDH(𝜆, Ω) = ∫ 𝑓𝑟(𝜆, Ω
′ → Ω) ∙ cos 𝜃 𝑑Ω

2𝜋+
 

 

- Albedo or bi-hemispherical reflectance 𝓡𝐇𝐇(𝝀): ratio of the radiant flux 𝑑Φ𝑟(𝜆, 2𝜋
− →

2𝜋+) reflected from a surface into the surface upper hemisphere to the incident radiant flux 

𝑑Φ𝑖(𝜆, 2𝜋
−) from the surface lower hemisphere (hemispherical-hemispherical case in Table 

1.B.1).  

 

ℛHH(𝜆) =
𝑑Φ𝑟(𝜆, 2𝜋

− → 2𝜋+)

𝑑Φ𝑖(𝜆, 2𝜋−)
=
∫ 𝐿𝑟(𝜆, 2𝜋

− → Ω)
2𝜋+

∙ cos 𝜃 𝑑Ω𝑑𝐴

∫ 𝐿𝑖(𝜆, Ω′)2𝜋−
∙ cos 𝜃′ 𝑑Ω′𝑑𝐴

 

 

Because ∫ 𝑑𝐿𝑟(𝜆, Ω
′→Ω)

2𝜋+
∙ cos 𝜃 𝑑Ω = 𝐿𝑖(𝜆, Ω

′)∙ℛDH(𝜆, Ω
′)∙ cos 𝜃′ 𝑑Ω′, the directional-

hemispherical reflectance is related to the bi-hemispherical reflectance by: 

 

ℛHH(𝜆) =
∫ 𝐿𝑖(𝜆, Ω

′) ∙ ℛDH(𝜆, Ω
′) ∙ cos 𝜃′ 𝑑Ω′

2𝜋−

∫ 𝐿𝑖(𝜆, Ω′)2𝜋−
∙ cos 𝜃′ 𝑑Ω′

 

 

For isotropic illumination: ℛHH(𝜆) =
1

𝜋
∫ ℛDH(𝜆, Ω

′) ∙ cos 𝜃′ 𝑑Ω′
2𝜋−

  

 

Transmittance 𝓣(𝝀). It is the ratio of the transmitted radiant flux through a surface to the 

incident radiant flux. As for the reflectance terminology, it exists different definitions of 

transmittance depending on the geometry of the incident and the transmitted radiation.  

 

- Bidirectional transmittance 𝓣𝐃𝐃(𝝀, 𝛀
′ → 𝛀): ratio of the radiant flux 𝑑Φ𝑡(𝜆, Ω

′ → Ω) 

transmitted through a surface in direction Ω  to the incident radiant flux 𝑑Φ𝑖(𝜆, Ω
′)  in 

direction Ω′ that causes 𝑑Φ𝑡(𝜆, Ω
′ → Ω). The transmittance in a medium (cf. Annex A.1) is 

a special case of 𝒯DD with same incident and transmitted direction. 

 

𝒯DD(𝜆, Ω
′ → Ω) =

𝑑Φ𝑡(𝜆, Ω
′2𝜋− → Ω)

𝑑Φ𝑖(𝜆, Ω′)
=
𝑑𝐿𝑡(𝜆, Ω

′ → Ω) ∙ cos 𝜃 𝑑Ω𝑑𝐴

𝑑𝐿𝑖(𝜆, Ω′) ∙ cos 𝜃′ 𝑑Ω′𝑑𝐴
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- Bidirectional transmittance distribution function (BTDF): ratio of the transmitted 

radiance 𝑑𝐿𝑡(𝜆, Ω
′ → Ω)  through a surface in a direction Ω  to the incident irradiance 

𝑑𝐸𝑖(𝜆, Ω
′) in direction Ω′ that causes 𝑑𝐿𝑡(𝜆, Ω

′→Ω). If the wavelength changes after the 

transmission (e.g., refraction), the wavelength in vacuum 𝜆0 should be used instead of the 

wavelength in medium 𝜆 that changes with the refractive index. 

 

𝑓𝑡(𝜆, Ω
′ → Ω) =

𝑑𝐿𝑡(𝜆, Ω
′ → Ω)

𝑑𝐸𝑖(𝜆, Ω′)
=

𝑑𝐿𝑡(𝜆, Ω
′ → Ω)

𝐿𝑖(𝜆, Ω′) ∙ cos 𝜃′ 𝑑Ω′
 

 

- Directional-hemispherical transmittance 𝓣𝐃𝐇(𝝀, 𝛀): ratio of the transmitted radiant flux 

𝑑Φ𝑡(𝜆, Ω → 2𝜋−)  through a surface into the surface lower hemisphere 2𝜋−  due to the 

incident radiant flux 𝑑Φ𝑖(𝜆, Ω
′) along direction Ω′ to the incident radiant flux.  

 

𝒯DH(𝜆, Ω
′) =

𝑑Φ𝑡(𝜆, Ω → 2𝜋−)

𝑑Φ𝑖(𝜆, Ω′)
=
∫ 𝑑𝐿𝑡(𝜆, Ω

′ → Ω)
2𝜋−

∙ cos 𝜃 𝑑Ω𝑑𝐴

𝐿𝑖(𝜆, Ω′) ∙ cos 𝜃′ 𝑑Ω′𝑑𝐴
 

 

- Bi-hemispherical transmittance 𝓣𝐇𝐇(𝝀):  ratio of the transmitted radiant flux 

𝑑Φ𝑡(𝜆, 2𝜋
− → 2𝜋−)  through a surface into the surface lower hemisphere 2𝜋−  to the 

incident radiant flux Φ𝑖(𝜆, 2𝜋
−) from the surface lower hemisphere 2𝜋−.  

 

𝒯HH(𝜆) =
𝑑Φ𝑡(𝜆, 2𝜋

− → 2𝜋−)

𝑑Φ𝑖(𝜆, 2𝜋−)
=
∫ 𝐿𝑡(𝜆, 2𝜋

− → Ω)
2𝜋−

∙ cos 𝜃 𝑑Ω𝑑𝐴

∫ 𝐿𝑖(𝜆, Ω′)2𝜋−
∙ cos 𝜃′ 𝑑Ω′𝑑𝐴

 

 

Absorptance 𝓐(𝝀). It is the ratio of the absorbed radiant flux by a surface to the incident 

radiant flux. Its definition depends on the geometry of incident radiation. 

 

Directional absorptance 𝓐𝑫(𝝀, 𝛀). It is the ratio of the absorbed radiant flux 𝑑Φ𝑎(𝜆, Ω) by a 

surface to the direct illumination radiant flux 𝑑Φ𝑖(𝜆, Ω) from direction Ω. 

 

𝒜𝐷(𝜆, Ω) =
𝑑Φ𝑎(𝜆, Ω)

𝑑Φ𝑖(𝜆, Ω)
 

 

Hemispherical absorptance 𝓐𝐇(𝝀). It is the ratio of the absorbed radiant flux Φ𝑎(𝜆, 2𝜋
−) by 

a surface to the incident hemispherical radiant flux Φ𝑖(𝜆, 2𝜋
−). 

 

𝒜H(𝜆) =
Φ𝑎(𝜆, 2𝜋

−)

Φ𝑖(𝜆, 2𝜋−)
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Because the radiant energy conservation, the sum of reflectance, transmittance, and absorptance 

is equal to one. Therefore, we have: 

 

𝒜D(𝜆, Ω) = 1 − ℛDH(𝜆, Ω) − 𝒯DH(𝜆, Ω)   and   𝒜H(𝜆) = 1 − ℛHH(𝜆) − 𝒯HH(𝜆)  
 

Emissivity 𝜺(𝝀). The emissivity is the ratio of the emitted radiant flux by a surface to the 

emitted radiant flux emitted by the blackbody at the same temperature and wavelength. It 

characterizes the efficiency of the emission of a surface compared to the blackbody. The 

definition of the emissivity terminologies depends on the geometry of emitted radiation. 

 

Directional emissivity 𝜺𝐃(𝝀,𝛀). The directional emissivity is the ratio of the emitted radiant 

flux 𝑑Φ𝑒(𝜆, Ω) by a surface in a given direction Ω to the emitted radiant flux 𝑑ΦB(𝜆, Ω) of the 

blackbody under the same condition. 

 

𝜀D(𝜆, Ω) =
𝑑Φ𝑒(𝜆, Ω)

𝑑ΦB(𝜆, Ω)
 

 

Hemispherical emissivity 𝜺𝐇(𝝀). It is the ratio of the radiant flux Φ𝑒(𝜆, 2𝜋
+) emitted to the 

surface upper hemisphere 2𝜋+  by a surface to the corresponding blackbody radiant flux 

ΦB(𝜆, 2𝜋
+). 

 

𝜀H(𝜆) =
Φ𝑒(𝜆, 2𝜋

+)

ΦB(𝜆, 2𝜋+)
 

 

Under thermodynamics equilibrium conditions, according to the Kirchhoff’s law, we have  

 

𝜀𝐷(𝜆, Ω) = 𝒜D(𝜆, Ω)    and    𝜀H(𝜆) = 𝒜H(𝜆)  

 

Blackbody. It is an idealized physical body that absorbs all incident radiation, regardless of its 

wavelength or incident angle. At thermal equilibrium (i.e., constant temperature 𝑇), it emits an 

isotropic blackbody radiance 𝐿B that follows the Planck’s law: 

 

𝐿B(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5
∙

1

exp (
ℎ𝑐
𝜆𝑘B𝑇

) − 1
 

 

with ℎ = 6.62607015 × 10−34 J/Hz is the Planck constant, 𝑘B = 1.380649 × 10
−34 J/K 

is the Boltzmann constant, 𝑐 is the speed of light. 
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Brightness temperature 𝑻𝐁(𝝀, 𝛀)  [K]. The brightness temperature is the equivalent 

blackbody temperature that emits the same monochromatic radiance at wavelength 𝜆 along 

direction Ω in the thermodynamics equilibrium conditions as the measurement 𝐿(λ, Ω). 

 

𝑇B(𝜆, Ω) = 𝐿B
−1(𝜆, 𝐿(λ, Ω))

A.3 Sensor and measurement equation 

A sensor is a device that outputs a signal due to the sensing of a physical phenomenon. Here, 

we focus on sensors that are sensitive to radiation energy. The quantities that characterize the 

sensor and the measurement are briefly described below. 

 

Field of view (FOV) [sr]. It is a solid angle through which a sensor captures the radiation. 

 

Sensor spectral response 𝑺(𝝀) [S/𝝁m]. It is the output signal per unit wavelength interval. 

The unit S suggested by (Nicodemus, 1978) can be volt, ampere, etc., depending on sensors. 

 

Flux responsivity 𝑾𝒆
(𝒋)(𝒓, 𝝀, 𝛀) [/m2/sr]. It is the sensor response for pixel 𝑗 , in terms of 

measured radiance, to the incident radiant flux at the entry of the sensor. It depends on the 

incident position 𝑟, the direction Ω and the wavelength 𝜆 of the radiation. 

 

𝑊𝑒
(𝑗)(𝑟, 𝜆, Ω) =

𝑑𝐿(𝑗)

𝑑Φ(𝑟, 𝜆, Ω)
 

 

Measurement equation. It gives the measured radiance as a function of the incident radiant 

flux at the receiving aperture: 

 

𝑑𝐿(𝑗)(𝜆, Ω) = 𝑊𝑒
(𝑗)(𝑟, 𝜆, Ω) ∙ 𝑑Φ(𝑟, 𝜆, Ω) = 𝑊𝑒

(𝑗)(𝑟, 𝜆, Ω) ∙ 𝐿(𝑟, 𝜆, Ω) ∙ cos𝜃𝑑Ω𝑑𝐴 
 

for all incident direction in FOV and for the whole aperture surface that receives the radiation. 

 

𝐿(𝑗)(𝜆) = ∫ ∫ 𝑊𝑒
(𝑗)(𝑟, 𝜆, Ω) ∙ 𝐿(𝑟, 𝜆, Ω) ∙ cos𝜃𝑑Ω𝑑𝐴

Ω𝛢

 

 

The measured radiance 𝐿(𝑗) for a spectral band ∆𝜆 is the integral of 𝐿(𝑗)(𝜆) over ∆𝜆.
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B.1 Rapidly simulate TOA and sensor images 

The Monte Carlo method presented in this chapter is relatively accurate in terms of the radiative 

transfer calculations since nearly no approximation is needed. However, it is usually long to 

converge. For example, the simulation of the 3D scenario in section 4.4 with atmosphere is 10 

to 100 times longer to converge compared to the case without atmosphere. On the other hand, 

for the simple plane-parallel atmosphere, the discrete ordinates method is more efficient than 

the Monte Carlo method to compute the upwelling and downwelling radiation, but it is more 

approximate to compute the surface-atmosphere coupling. For the cases of relatively 

homogeneous the land surfaces (e.g., dense forest, city), with small or no adjacency effects, we 

designed a hybrid method that couples the discrete ordinates radiative transfer in the atmosphere 

with the Monte Carlo radiative transfer at land surfaces (Wang and Gastellu-Etchegorry, 2021). 

 

B.1.1 Theory and algorithm 

DART-FT simulates sequentially the atmospheric radiative transfer and land surface radiative 

transfer and couples them. Figure 2.3 illustrates the 5 major steps of its radiative transfer 

modelling in the coupled Earth-atmosphere system in order to simulate TOA and sensor images 

(Grau and Gastellu-Etchegorry, 2013; Wang et al., 2020):  

(1) Sun illumination followed by atmosphere scattering and thermal emission. 

(2) Land surface radiative transfer modelling.  

(3) Surface-atmosphere radiative coupling.  

(4) Land surface radiative transfer of atmosphere backscattered radiation.  

(5) Transfer of upward radiation from BOA to sensor and TOA. 

Annex B  

The hybrid method 
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In this hybrid method, the DART-FT atmospheric radiative transfer modelling realizes the steps 

1, 3 and 5 of the five major radiative steps (Figure 2.3), while DART-Lux land surface radiative 

transfer modelling realizes the steps 2 and 4, plus an additional step 6. Steps 1 to 5 give spatially 

averaged radiance values conversely to step 6 that gives images. These steps are detailed below. 

 

1) DART-FT atmospheric radiative transfer modelling. TOA direct irradiance 𝐸TOA
dir  gives diffuse 

radiance 𝐿TOA
diff (Ω𝑛

↑ ) per discrete upward direction Ω𝑛
↑ , BOA direct irradiance 𝐸BOA

dir , BOA diffuse 

irradiance 𝐸BOA
diff  and BOA diffuse radiance 𝐿BOA

diff (Ω𝑛
↓ ) per discrete downward direction Ω𝑛

↓ . 

 

2) DART-Lux land surface radiative transfer modelling. It uses two light sources: sunlight with 

direct irradiance 𝐸BOA
dir  and anisotropic light from the sky with BOA diffuse radiance 

𝐿BOA
diff (Ω𝑛

↓ ) (cf. direct sun light and the anisotropic light from the sky in section 3.3.1). The 

surface average radiance 𝐿BOA
scene(Ω𝑛

↑ ) per discrete upward direction Ω𝑛
↑  is computed based on 

the radiance map (Figure B.1) generated by the BRF camera (cf. section 3.3.2). Pixel (𝑖, 𝑗) 

gives the radiance 𝐿(Ω𝑖,𝑗) for direction Ω𝑖,𝑗 on the hemisphere (Figure 3.9.b), which allows 

one to compute the upward radiance 𝐿BOA
scene(Ω𝑛

↑ ) along any discrete direction Ω𝑛: 

 

𝐿BOA
scene(Ω𝑛

↑ )=
∫ 𝐿(Ω)∙ cos 𝜃∙ sin 𝜃 𝑑𝜃𝑑𝜑
∆Ω𝑛

∫ cos𝜃 ∙ sin𝜃 𝑑𝜃𝑑𝜑
∆Ω𝑛

=
∑ ∑ 𝐿(Ω𝑖,𝑗)∙ sin(2𝜃𝑖)∙ sin∆𝜃 ∙∆𝜑

𝑗1
𝑗=𝑗0

𝑖1
𝑖=𝑖0

cos 𝜃𝑛
𝑐 ∙ ∆Ω𝑛

 (B.1) 

 

where solid angle ∆Ω𝑛 covers pixel region from line 𝑖0 to 𝑖1 and from column 𝑗0 to 𝑗1. The 

effective zenith angle 𝜃𝑛
𝑐 of direction Ω𝑛 verifies: cos 𝜃𝑛

𝑐 ∙ ∆Ω𝑛 = ∫ cos 𝜃 ∙ sin 𝜃 𝑑𝜃𝑑𝜑
∆Ω𝑛

. 

 

Figure B.1. Radiance map simulated by the BRF camera. It has 𝑁𝜃 lines and 𝑁𝜑 columns. 

The value of pixel (𝑖, 𝑗) is the scene radiance along direction Ω𝑖,𝑗. The black rectangle 

outlines the region of a solid angle ∆Ω𝑛 of discrete direction Ω𝑛. 𝜃𝑖 and 𝜑𝑗 represent 

the zenith and azimuth angle at centre of pixel (𝑖, 𝑗) respectively. 
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3) DART-FT atmospheric radiative transfer modelling. It computes transfer functions: TFBA-BA 

(i.e., BOA downward radiance 𝐿BOA
coupl

(Ω𝑛
↓ ) caused by BOA upward radiance 𝐿BOA

scene(𝜔𝑛
↑)) 

and TFBA-TOA (i.e., TOA radiance 𝐿TOA
coupl

(Ω𝑛
↑ ) caused by BOA upward radiance 𝐿BOA

scene(Ω𝑛
↑ )). 

Then, 𝐿BOA
coupl

(Ω𝑛
↓ ) is extrapolated to infinite coupling order radiance 𝐿BOA

coupl(∞)
(Ω𝑛

↓ ) using the 

Earth scene albedo ℛHH and atmosphere backscattering albedo ℛHH
′ .  

 

𝐿BOA
coupl(∞)

(Ω𝑛
↓ ) =

1

1 − ℛHH ∙ ℛHH
′ ∙ 𝐿BOA

coupl
(Ω𝑛

↓ ) 

with ℛHH =
∑ 𝐿BOA

scene
(Ω𝑛
↑
)∙cos𝜃𝑛

𝑐 ∙∆Ω𝑛
Ω𝑛
↑

𝐸BOA
dir +𝐸BOA

diff    and   ℛHH
′ =

∑ 𝐿BOA
coupl

(Ω𝑛
↓
)∙cos𝜃𝑛

𝑐 ∙∆Ω𝑛
Ω𝑛
↓

∑ 𝐿BOA
scene

(Ω𝑛
↑
)∙cos𝜃𝑛

𝑐 ∙∆Ω𝑛
Ω𝑛
↑

  

 

The backscattered irradiance 𝐸BOA
coupl(∞)

 is computed accordingly using 𝐿BOA
coupl(∞)

(Ω𝑛
↓ ): 

 

𝐸BOA
coupl(∞)

=∑ 𝐿BOA
coupl(∞)

(Ω𝑛
↓ ) ∙ cos 𝜃𝑛

𝑐 ∙ ∆Ω𝑛
Ω𝑛
↓

 

 

4) DART-Lux Land surface radiative transfer modelling. It uses a single light source: the 

extrapolated anisotropic light from the sky with radiance 𝐿BOA
coupl(∞)

(Ω𝑛
↓ ). It computes the 

scene radiance per upward direction Ω𝑛
↑  using Eq. (B.1), which is added to 𝐿BOA

scene(Ω𝑛
↑ ) 

giving 𝐿BOA
scene,coupl

(Ω𝑛
↑ ). 

 

5) TFBA−TOA  is applied to compute direct transmitted radiance 𝐿TOA
dir (Ω𝑛

↑ )  and scattered 

radiance 𝐿TOA
coupl

(Ω𝑛
↑ ) per upward direction using 𝐿BOA

scene,coupl
(Ω𝑛

↑ ).  

 

6) DART-Lux Land surface radiative transfer modelling. It uses two light sources: sunlight with 

irradiance 𝐸BOA
dir  and anisotropic light from the sky with BOA diffuse radiance 𝐿BOA

diff (Ω𝑛
↓ ) +

𝐿BOA
coupl(∞)

(Ω𝑛
↓ ). It gives BOA upward radiance images 𝐿BOA(𝑖, 𝑗, Ω𝑛

↑ ). It gives: 

- TOA radiance images: 𝐿TOA(𝑖, 𝑗, Ω𝑛
↑ )=𝐿BOA(𝑖, 𝑗, Ω𝑛

↑ )∙
𝐿TOA
dir (Ω𝑛

↑ )

𝐿BOA
scene,coupl

(Ω𝑛
↑ )
+𝐿TOA

diff (Ω𝑛
↑ )+𝐿TOA

coupl
(Ω𝑛

↑ )  

 

- TOA reflectance images:  ℛBOA(𝑖, 𝑗, Ω𝑛
↑ ) =

𝐿BOA(𝑖,𝑗,Ω𝑛
↑ )

𝐸BOA
dir +𝐸BOA

diff +𝐸BOA
coupl(∞)  

ℛTOA(𝑖, 𝑗, Ω𝑛
↑ ) =

𝐿TOA(𝑖, 𝑗, Ω𝑛
↑ )

𝐸TOA
dir
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The simulation of the sensor plane image is exactly the same, one only needs to replace the 

quantities and equations at TOA level by those at the SENSOR level. 

 

B.1.2 Consistency test with DART-FT 

The accuracy and efficiency of the hybrid method are assessed by comparing it with DART-FT 

for a 30 m × 30 m plot of Järvselja Birch forest (summer) from RAMI experiment (https://rami-

benchmark.jrc.ec.europa.eu; (Widlowski et al., 2015)) (Figure B.2). This plot contains 91 trees: 

50 birch trees, 18 linden trees, 15 aspen trees, 5 spruce trees, and 3 ash and maple trees (Figure 

E.2). We did not consider the full 100 m × 100 m birch forest with its 550 million of facets 

because it would have required too much computer memory and time for DART-FT.  

a)   b)  

Figure B.2. The 30 m × 30 m plot of Järvselja birch forest. a) Spatial distribution of tree 

species. b) DART 3D mock-up. 

DART-FT and DART-Lux simulations are conducted with direct sun illumination (𝜃sun =

36.6°, 𝜑sun = 270.69°), THKUR TOA irradiance spectra (Berk et al., 2008), a 0.125 m spatial 

resolution and 4 spectral bands (blue: 0.44 𝜇m, green: 0.55 𝜇m, red: 0.66 𝜇m, NIR: 0.87 𝜇m), 

with 6 scattering orders at most. The atmosphere model is mid-latitude summer (Anderson et 

al., 1986) and the aerosol model is rural (Shettle and Fenn, 1979). Specific optical properties 

were assigned per tree species. Here, DART-Lux is run with 800 samples per pixel and DART-

FT is run with 62500 illumination rays per pixel, and 1000 discrete directions. DART-FT and 

DART-Lux BOA colour composite images are shown in Figure B.3.a, d. The associated scatter 

plot of BOA pixel reflectance (Figure B.4.a) gives {R-squared > 0.92 and bias  0.01}. 

https://rami-benchmark.jrc.ec.europa.eu/
https://rami-benchmark.jrc.ec.europa.eu/
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Densities of scatter points are shown by colours in order to stress that most points are on the 

diagonal. TOA colour composite images are shown in Figure E.3.b, e. The associated scatter 

plot of TOA pixel reflectance (Figure B.4.b) gives {R-squared  0.92 and bias  0.01}. Scatter 

points outside the diagonal are mainly due to DART-Lux Monte Carlo noises and to DART-FT 

discretization. By averaging the image resolution from 0.125 m to 1.0 m, which more or less 

mitigates these effects, scatter plots become more linear, with {R-square > 0.998 and bias  

0.0002} (Figure B.4.c). We also assessed the BRF accuracy in the solar plane by computing the 

average absolute relative “DART-Lux - DART-FT” BRF difference 
 

𝜀=̅
1

𝑁𝜃𝑣
∙∑

|𝜌DART−Lux(𝜃𝑣) − 𝜌DART−FT(𝜃𝑣)|

𝜌DART−FT(𝜃𝑣)𝜃𝑣

∙100% 

 

with 𝑁𝜃𝑣  viewing directions in the solar plane with zenith angle step ∆𝜃𝑣 = 2°. Here, 𝜀 ̅is 

1.0% at BOA level and 0.8% at TOA level. 

 

a)  b)  c)  

d)  e)   f)  

Figure B.3. Nadir colour composite images of the forest plot shown in Figure D.2. DART-

FT BOA (a) and TOA (b) images. DART-Lux BOA (d) and TOA (e) images. DART-

FT and DART-Lux BOA (c) and TOA (f) BRFs at NIR band in the solar plane, with 

2° zenith angle step. 
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The results show that the hybrid method and DART-FT are consistent. In terms of efficiency, 

the hybrid method has two major advantages: much smaller computer time and RAM. In this 

simulation, DART-FT takes 86.35 hours and 305.5 Gb RAM on a server (Intel Xeon E5-2687W 

@ 3.1 GHz, 40 cores) for steps 2 and 4 in Figure 2.3 whereas the hybrid method takes only 2.3 

minutes and 1.2 Gb RAM to simulate the spectral nadir image or the spectral radiance map (i.e., 

steps 2, 4 and 6 take a total of 6.9 minutes). Compared to DART-FT, the hybrid method reduces 

the computer time by a factor of 750 and reduces the required RAM by a factor of 255. Since 

the atmospheric radiative transfer modelling for stratified 1D atmosphere in steps 1, 3 and 5 

takes much less time than the Earth surface radiative transfer modelling in steps 2 and 4, the 

hybrid method greatly accelerates the simulation with homogeneous atmospheric effect. 

 

a)  b)  c)  

Figure B.4. Pixelwise comparison of DART-FT and DART-Lux nadir images at NIR band. 

a) BOA. 0.125 m resolution. b) TOA. 0.125 m resolution. c) TOA. 1.0 m resolution. 

B.2 Validation by intercomparison with MODTRAN 

In the frame of the preparation of CNES and ISRO TRISHNA satellite mission, the accuracy 

and performance in the thermal infrared region is particularly important. In this context, we 

conducted an intercomparison with MODTRAN (brightness temperature accuracy 1 K) in [3.5 

𝜇m, 20 𝜇m] region with realistic atmosphere profiles from ECMWF (European Centre for 

Medium-range Weather Forecasts) reanalysis dataset: ERA-Interim 

(https://apps.ecmwf.int/datasets/). These profiles include the pressure, temperature, specific 

humidity (mass of water vapour per kilogram of moist air, nearly equal to mass mixing ratio 

within a few percent) and O3 mass mixing ratio (mass of ozone per kilogram of dry air) at 60 

ECMWF model levels (https://www.ecmwf.int/en/forecasts/documentation-and-support/60-

https://apps.ecmwf.int/datasets/
https://www.ecmwf.int/en/forecasts/documentation-and-support/60-model-levels


ANNEX B: THE HYBRID METHOD 

 173 

model-levels) as well as the surface albedo, skin temperature over France (49°N, -1°W, 44°S, 

7°E) and the Mediterranean Sea (37°N,12°W, 34°S, 26°E) from 01/06/2018 to 31/08/2018. 

These data were averaged over time and space and the vertical profiles were interpolated into 

37 altitude levels (1 km interval from 0 to 25 km, and 5 km interval from 30 to 80 km) that are 

configured in both DART and MODTRAN. The number density profile 𝑁𝑚𝑖
(𝑧) of other gases 

(N2, CO2, CO, CH4, N2O, O2, NH3, NO, NO2, SO2, HNO3, CFC12, CFC13, CFC14, CFC22, 

CFC113, CFC114, CFC115, CLONO2, HNO4, CHCL2F, CCL4, N2O5) and the relative density 

profile 𝜌𝑚
𝑠 (𝑧) of scattering gases are adjusted by MODTRAN based on the MIDLATSUM 

atmosphere and the actual pressure and temperature profile from ERA-Interim dataset. 

 

Figure B.5.a shows the pressure, temperature, H2O, O3 and CO2 number density profiles for 

three summer atmospheres in the mid-latitude region: France, Mediterranean Sea, and the 

standard MIDLATSUM atmosphere. Figure B.5.b shows the corresponding maximum 

difference values of profiles per altitude level. Temperature varies up to 10 K at around 11 km, 

water vapour mass varies up to 38% at the Earth surface and O3 mass varies up to 40% at around 

16 km. The averaged continental surface albedo and skin temperature of France are 0.132 and 

292 K, respectively. For the Mediterranean Sea, they are 0.07 and 296 K, respectively. 
 

a)  

https://www.ecmwf.int/en/forecasts/documentation-and-support/60-model-levels
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b)  

Figure B.5. a) Vertical profiles of pressure (mb), temperature (K), and H2O, O3 and CO2 

number densities (atm-cm/km) for three summer atmospheres: France, Mediterranean 

Sea and MIDLATSUM atmosphere. b) Maximum difference of vertical profiles. 

DART and MODTRAN were run in full radiance mode (simulation with solar radiation and 

thermal emission), with the same sun viewing angle (𝜃sun = 30° , 𝜑sun = 225° ), surface 

parameters, discrete altitude levels, pressure, temperature profiles and gas number density 

profiles. Eq. (E.2) indicates how the gas optical depth was adjusted in DART using the user-

defined density profiles 𝑁𝑚𝑖
(𝑧) and 𝜌𝑚

𝑠 (𝑧). 

 

𝜏𝑚𝑖

𝑎 (𝜆) =

{
 
 

 
 − ln (𝑡𝑚𝑖,𝐷𝐵

𝑎 (𝜆)) ∙
∫ 𝜎𝑚𝑖,𝐷𝐵

𝑎 (𝜆, 𝑧) ∙ 𝑁𝑚𝑖
(𝑧)𝑑𝑧

∞

0

∫ 𝜎𝑚𝑖,𝐷𝐵
𝑎 (𝜆, 𝑧) ∙ 𝑁𝑚𝑖,𝐷𝐵

(𝑧)𝑑𝑧
∞

0

, 𝑚𝑖 = H2O, CO2, O3, CH4, N2O

− ln (𝑡𝑚𝑖,𝐷𝐵
𝑎 (𝜆)) ∙

∫ 𝜎𝑚𝑖

𝑎 (𝜆) ∙ 𝑁𝑚𝑖
(𝑧)𝑑𝑧

∞

0

∫ 𝜎𝑚𝑖

𝑎 (𝜆) ∙ 𝑁𝑚𝑖,𝐷𝐵
(𝑧)𝑑𝑧

∞

0

,          𝑚𝑖 ≠ H2O, CO2, O3, CH4, N2O

 

𝜏𝑠(𝜆) = − ln (𝑡𝑚,𝐷𝐵
𝑠 (𝜆)) ∙

∫ 𝜌𝑚
𝑠 (𝑧)𝑑𝑧

∞

0

∫ 𝜌𝑚,𝐷𝐵
𝑠 (𝑧)𝑑𝑧

∞

0

                                                                                           

(B.2) 

 

Note that 𝑚𝑖 represents 13 gases (H2O, O3, N2, CO2, CO, CH4, N2O, O2, NH3, NO, NO2, SO2, 

HNO3) and the sum of other minor gases (CFC12, CFC13, CFC14, CFC22, CFC113, CFC114, 

CFC115, CLONO2, HNO4, CHCL2F, CCL4, N2O5).  

 

Figure B.6 shows the MODTRAN and DART TOA nadir radiance spectra over France and 

Mediterranean Sea and the corresponding residuals. The mean absolute difference (MAE) of 

brightness temperature is 1.0 K for both cases. Table B.1 shows the differences between DART 

and MODTRAN for the thermal infrared bands of three Earth observation satellites for TOA 

thermal spectra over France, all of them are ≤ 0.2 K. We can also note that the residuals 
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between DART and MODTRAN over [3.5 𝜇m, 5.0 𝜇m] region where solar radiation contributes 

most to TOA radiance is relatively small (< 0.1 W/m2/sr/𝜇m for both cases). Also, the 

corresponding MAE of brightness temperature in this spectral region is less than 1.0 K. 

 

a)  

b)  

Figure B.6. TOA spectral radiance of DART compared to MODTRAN with ECMWF 

reanalysis profile and surface parameter. a) France. b) Mediterranean Sea.  
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Table B.1. TOA brightness temperature difference (DIFF) between DART and 

MODTRAN in the TIR bands of three Earth observation satellite missions for realistic 

atmospheric profiles over France (Figure E.6.a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Satellite Launch date Organization 
Central 

wavelength 
Bandwidth 

Sensitivity 

(NeDT) 
DIFF 

Trishna Foreseen CNES+ISRO 8.6 𝜇m 0.35 𝜇m 0.3 K@300 K 0.13 K 

 2024-2025  9.1 𝜇m 0.35 𝜇m 0.3 K@300 K 0.11 K 

   10.3 𝜇m 1.0 𝜇m 0.3 K@300 K 0.04 K 

   11.5 𝜇m 1.0 𝜇m 0.3 K@300 K 0.19 K 

Landsat 8 2013 NASA 10.9 𝜇m 0.6 𝜇m 0.4 K@300 K 0.20 K 

   12.0 𝜇m 1.0 𝜇m 0.4 K@300 K 0.17 K 

Sentinel-3 2016 ESA 3.74 𝜇m 0.38 𝜇m 0.08 K@270 K 0.15 K 

   10.95 𝜇m 0.9 𝜇m 0.05 K@270 K 0.18 K 

   12.0 𝜇m 1.0 𝜇m 0.05 K@270 K 0.15 K 
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Many of the integrals arise in the radiative transfer modelling are difficult or impossible to 

evaluate directly. For example, to compute the exit radiance from a surface according to Eq. 

(1.21), we must integrate the product of the incident radiance and the BRDF over the upper 

hemisphere. This is almost impossible because the incident radiance distribution is never 

available in close form due to the complex direct and indirect illumination in realistic 

environment. Monte Carlo integration methods provide effective solution to this kind of 

problem. They use randomness to evaluate integrals with a convergence rate that is independent 

of the dimensionality of the integrand. It is robust and flexible to deal with smooth or 

discontinuous, low- or high-dimensional integrand. This chapter first reviews the basic concepts 

of probability theory. Then, we introduce the Monte Carlo integration and the variance 

reduction methods that have proven useful in radiative transfer modelling. 

 

Good references about the probability theory and the Monte Carlo methods are (Hammersley, 

2013), (Rubinstein and Kroese, 2016) and (Kalos and Whitlock, 2009). (Veach, 1997) and 

(Pharr et al., 2016) are good sources of Monte Carlo methods and techniques that are used in 

the radiative transfer modelling.  

C.1 A review of probability theory 

C.1.1 Random variables 

A random event is an event with a countable set of random outcomes. Probability is a numerical 

measure of the chance of happening of the event, it is a number lying between 0 and 1, both 

Annex C  

Monte Carlo integration 
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inclusive. The notation for probability of event 𝐸𝐴  is ℙ(𝐸𝐴) . Also, the notation for the 

probability of event 𝐸𝐴 on condition that event 𝐸𝐵 happens is ℙ(𝐸𝐴|𝐸𝐵), it is also called the 

conditional probability of 𝐸𝐴 given 𝐸𝐵.  

 

In many cases, the outcome of a random event can be mapped into a numerical value, such 

value is called random variable. We will generally use capital letter to denote random numbers, 

with exceptions made for a few Greek symbols that represent special random variables. The 

random variable 𝑋 can be discrete (e.g., 𝑋 ∈ {1, 2, 3, 4, 5, 6} in dice roll game) or continuous 

(e.g., 𝑋 ∈ [0, 360]  when one chooses a random horizonal direction]. Applying one-to-one 

mapping function 𝑓 to a random variable 𝑋 results another random variable 𝑌: 

 

𝑌 = 𝑓(𝑋) 

 

In the radiative transfer modelling, continuous variables are common, such as the directional 

radiance, the BRDF, the scattering phase function. However, there are still moments we need 

to deal with discrete variables. For example, we might need to select a random light source from 

a group of light sources according to their emission power. We might need to select a random 

pixel among all pixels on the image plane. In these cases, we map the 𝑛 discrete variables 𝑋𝑖 

( 𝑖 ∈ {1, 2, 3,⋯ , 𝑛} ) that represent the discrete random events to a continuous, uniformly 

distributed random variable 𝜉 ∈ [0, 1], i.e., 𝜉 = 𝑓(𝑋𝑖 ) (Pharr et al., 2016), choosing 𝑋𝑖 if 

 

∑ℙ(𝑋𝑗)

𝑖−1

𝑗=1

≤ 𝜉 <∑ℙ(𝑋𝑗)

𝑖

𝑗=1

 

 

Since the discrete random variables in the radiative transfer modelling can be always converted 

to the continuous random variables, below, all random variables are supposed to be continuous.  

C.1.2 Probability distributions 

The random variable 𝑋 is associated with the cumulative distribution function (CDF) 𝑃𝑋(𝑥) 

that is the probability that a value from the variable’s distribution is less than or equal to some 

value 𝑥. 

 

𝑃𝑋(𝑥) = ℙ(𝑋 ≤ 𝑥) 
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The derivate of the cumulative distribution function is the probability density function (PDF) 

𝑝(𝑥) that describes the relative likelihood of the random variable to have some value 𝑥. 

 

𝑝(𝑥) =
𝑑𝑃𝑋(𝑥)

𝑑𝑥
 

 

The probability density function, the cumulative distribution function and the probability are 

related by  

 

ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑝(𝑥)𝑑𝑥
𝑏

𝑎

= 𝑃𝑋(𝑏) − 𝑃𝑋(𝑎) 

 

For a list of random variables 𝑋1,⋯ , 𝑋𝑛, we can accumulate them into a random vector �̂� =

(𝑋1, ⋯ , 𝑋𝑛) . The corresponding notations for random vector are the joint cumulative 

distribution function  

 

𝑃𝑋(�̂�) = 𝑃𝑋(𝑥1, ⋯ , 𝑥𝑛) = ℙ(𝑋𝑖 ≤ 𝑥𝑖 , ∀ 𝑖 = 1,⋯ , 𝑛) 

 

and the joint probability density function 

 

𝑝(�̂�) = 𝑝(𝑥1, ⋯ , 𝑥𝑛) =
𝜕𝑛𝑃𝑋(𝑥1,⋯ , 𝑥𝑛)

𝜕𝑥1⋯𝜕𝑥𝑛
 

 

So, for any Lebesgue measurable subset 𝒟𝑛 ∈ ℝ
𝑛 (ℝ is the set of all real numbers), we have 

the relationship: 

 

ℙ(�̂� ∈ 𝒟𝑛) = ∫ 𝑝(𝑥1, ⋯ , 𝑥𝑛)
𝒟𝑛

𝑑𝑥1⋯𝑑𝑥𝑛 

 

Suppose we have another 𝑛 -dimensional random vector �̂� = 𝑓(�̂�)  that is the one-to-one 

mapping of �̂�  by the bijection 𝑓  ( 𝑌𝑖 = 𝑓𝑖(�̂�), ∀ 𝑖 = 1,⋯ , 𝑛 ). The corresponding joint 

probability density function is 𝑝(�̂�). The two probability densities are then related by 

 

𝑝(�̂�) = 𝑝(𝑓(�̂�)) =
𝑝(�̂�)

|𝒥𝑓(�̂�)|
 

 

where |𝒥𝑓(�̂�)| is the absolute value of the Jacobian determinant of bijection 𝑓: 
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𝒥𝑓(�̂�) =
𝜕(𝑓1, ⋯ , 𝑓𝑛)

𝜕(𝑥1,⋯ , 𝑥𝑛)
=

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 

 

 

C.1.3 Marginal and conditional distributions 

For a list of random variables 𝑋1,⋯ , 𝑋𝑛 , if it so happens that the joint probability density 

function is the product of the probability density function of each variable 

 

𝑝(𝑥1, ⋯ , 𝑥𝑛) =∏𝑝(𝑥𝑖)

𝑛

𝑖=1

 

 

these random variables are so called independent. Otherwise, some random variables can be 

dependent, in this case, it is necessary to introduce the marginal probability density function 

and the conditional probability density function.  

 

Let 𝑋, 𝑌 be a pair of random variables, the corresponding joint probability density function is 

𝑝(𝑥, 𝑦). The marginal probability density function of variable 𝑋 is defined as the integral of 

𝑝(𝑥, 𝑦) over all values of variable 𝑌 

 

𝑝(𝑥) = ∫ 𝑝(𝑥, 𝑦)𝑑𝑦
𝑦

 

 

while the conditional probability density function of variable 𝑌 given 𝑋 is related by 

 

𝑝(𝑦|𝑥) =
𝑝(𝑥, 𝑦)

𝑝(𝑥)
 

 

The corresponding marginal cumulative distribution function and the conditional cumulative 

distribution function are represented by 𝑃𝑋(𝑥) = ℙ(𝑋 ≤ 𝑥) and 𝑃𝑌|𝑋(𝑦|𝑥) = ℙ(𝑌 ≤ 𝑦|𝑋 = 𝑥), 

respectively.  

 

The marginal probability density function of variable 𝑌 and the conditional probability density 

function 𝑝(𝑥|𝑦) can be derived in the similar way. We can write another useful identity: 
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𝑝(𝑥, 𝑦) = 𝑝(𝑥) ∙ 𝑝(𝑦|𝑥) = 𝑝(𝑦) ∙ 𝑝(𝑥|𝑦) 

 

C.1.4 Expected value and variance 

The expected value or the expectation of a random variable 𝑋 is defined as the weighted average 

of all possible values: 

 

𝔼(𝑋) = ∫ 𝑥 ∙ 𝑝(𝑥)𝑑𝑥
𝑥

 

 

Also, the expected value of a random variable 𝑌 = 𝑓(𝑋) mapping from 𝑋 is defined as  

 

𝔼(𝑌) = 𝔼(𝑓(𝑋)) = ∫ 𝑓(𝑥) ∙ 𝑝(𝑥)𝑑𝑥
𝑥

 

 

The expected value scales linearly with a multiplicative constant  

 

𝔼(𝑎 ∙ 𝑓(𝑋)) = 𝑎 ∙ ∫ 𝑓(𝑥) ∙ 𝑝(𝑥)𝑑𝑥
𝑥

= 𝑎 ∙ 𝔼(𝑓(𝑋)) 

 

For a list of random variables �̂� = 𝑓(�̂�), �̂� = (𝑋1, ⋯ , 𝑋𝑛), the expected value of the sum of 

random variables 𝔼(∑ 𝑓(𝑋𝑖)
𝑛
𝑖=1 ) is equal to the sum of the expected value of individual random 

variable ∑ 𝔼(𝑓(𝑋𝑖))
𝑛
𝑖=1  (Eq. (C.1)). 

 

𝔼(∑𝑓(𝑋𝑖)

𝑛

𝑖=1

) = ∫ …∫ (∑𝑓(𝑥𝑖)

𝑛

𝑖=1

) ∙ 𝑝(𝑥1, … , 𝑥𝑛)𝑑𝑥1…𝑑𝑥𝑛
𝑥𝑛𝑥1

                     = ∑∫ …∫ 𝑓(𝑥𝑖) ∙ 𝑝(𝑥1, … , 𝑥𝑛)𝑑𝑥1…𝑑𝑥𝑛
𝑥𝑛𝑥1

𝑛

𝑖=1

=∑∫ 𝑓(𝑥𝑖) ∙ 𝑝(𝑥𝑖)𝑑𝑥𝑖
𝑥𝑖

𝑛

𝑖=1

                

= ∑𝔼(𝑓(𝑋𝑖))

𝑛

𝑖=1

                                   

 (C.1) 

 

where 𝑝(𝑥𝑖)  is the marginal probability density function of 𝑥𝑖 . If variables 𝑋1, ⋯ , 𝑋𝑛  are 

independent, we have expected value of the product of random variables 𝔼(∏ 𝑓(𝑋𝑖)
𝑛
𝑖=1 ) is 
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equal to the product of the expected value of individual random variable ∏ 𝔼(𝑓(𝑋𝑖))
𝑛
𝑖=1  (Eq. 

(C.2)). 

 

𝔼(∏𝑓(𝑋𝑖)

𝑛

𝑖=1

) = ∫ …∫ (∏𝑓(𝑥𝑖)

𝑛

𝑖=1

) ∙ 𝑝(𝑥1, … , 𝑥𝑛)𝑑𝑥1…𝑑𝑥𝑛
𝑥𝑛𝑥1

                 = ∫ …∫ (∏𝑓(𝑥𝑖)

𝑛

𝑖=1

∙ 𝑝(𝑥𝑖))𝑑𝑥1…𝑑𝑥𝑛
𝑥𝑛𝑥1

=∏∫ 𝑓(𝑥𝑖) ∙ 𝑝(𝑥𝑖)𝑑𝑥𝑖
𝑥𝑖

𝑛

𝑖=1

               

=∏𝔼(𝑓(𝑋𝑖))

𝑛

𝑖=1

                                  

 (C.2) 

 

The variance is a measure of dispersion of a random variable. Let a random variable 𝑌 = 𝑓(𝑋) 

mapping from 𝑋, its variance is defined as: 

 

𝕍(𝑌) = 𝔼 ((𝑌 − 𝔼(𝑌))
2
)                                                                                                     

= ∫ [𝑓(𝑥) − 𝔼(𝑓(𝑋))]
2
∙ 𝑝(𝑥)𝑑𝑥

𝑥

                                                              

= ∫ [𝑓(𝑥)2 − 2 ∙ 𝑓(𝑥) ∙ 𝔼(𝑓(𝑋)) + 𝔼(𝑓(𝑋))
2
] ∙ 𝑝(𝑥)𝑑𝑥

𝑥

                    

= ∫ 𝑓(𝑥)2 ∙ 𝑝(𝑥)𝑑𝑥
𝑥

− 2 ∙ 𝔼(𝑓(𝑋)) ∙ ∫ 𝑓(𝑥) ∙ 𝑝(𝑥)𝑑𝑥
𝑥

+ 𝔼(𝑓(𝑋))
2

= 𝔼(𝑌2) − 𝔼(𝑌)2                                                                                             

 (C.3) 

 

According to its definition, the variance is scaled by the square of a constant if all variables are 

scaled by this constant 

 

𝕍(𝑎 ∙ 𝑌) = 𝔼 ((𝑎 ∙ 𝑌 − 𝔼(𝑎 ∙ 𝑌))
2
) = 𝑎2 ∙ 𝕍(𝑌) 

 

For a list of independent random variables �̂� = 𝑓(�̂�), �̂� = (𝑋1, ⋯ , 𝑋𝑛), the variance of the sum 

of random variables 𝕍(∑ 𝑓(𝑋𝑖)
𝑛
𝑖=1 ) is equal to the sum of the variance of individual random 

variable ∑ 𝕍(𝑓(𝑋𝑖))
𝑛
𝑖=1  (Eq. (C.4)). 
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𝕍(∑𝑓(𝑋𝑖)

𝑛

𝑖=1

) = ∫ …∫ (∑[𝑓(𝑥𝑖) − 𝔼(𝑓(𝑋𝑖))]

𝑛

𝑖=1

)

2

∙ 𝑝(𝑥1, … , 𝑥𝑛)𝑑𝑥1…𝑑𝑥𝑛
𝑥𝑛𝑥1

   

                  = ∑∑∫ …∫ [𝑓(𝑥𝑖) − 𝔼(𝑓(𝑋𝑖))][𝑓(𝑥𝑖′) − 𝔼(𝑓(𝑋𝑖′))]
𝑥𝑛𝑥1

𝑛

𝑖′=1

𝑛

𝑖=1

∙ 𝑝(𝑥1, … , 𝑥𝑛)𝑑𝑥1…𝑑𝑥𝑛

=∑∫ [𝑓(𝑥𝑖) − 𝔼(𝑓(𝑋𝑖))]
2
∙ 𝑝(𝑥𝑖)𝑑𝑥𝑖

𝑥𝑖

𝑛

𝑖

                  

= ∑𝕍(𝑓(𝑋𝑖))

𝑛

𝑖=1

                                                                 

 (C.4) 

 

For a pair of random variables 𝑋, 𝑌, their correlation (joint variability) is measured by the 

covariance 𝐶𝑜𝑣(𝑋, 𝑌).  

 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝔼([𝑋 − 𝔼(𝑋)] ∙ [𝑌 − 𝔼(𝑌)])     

                                    = 𝔼(𝑋𝑌 − 𝑋𝔼(𝑌) − 𝑌𝔼(𝑋) + 𝔼(𝑋)𝔼(𝑌))

= 𝔼(𝑋𝑌) − 𝔼(𝑋)𝔼(𝑌)

 

 

The covariance is zero if 𝑋  and 𝑌  is independent. The variance is a special case of the 

covariance in which the two variables are identical, that is 

 

𝐶𝑜𝑣(𝑋, 𝑋) = 𝕍(𝑋) 
 

The upper boundary of the covariance is described by the famous Cauchy-Schwarz inequality 

 

𝐶𝑜𝑣(X, Y) ≤ √𝕍(X) ∙ 𝕍(Y) 

 

For a list of random variables �̂� = (𝑋1,⋯ , 𝑋𝑛), the variance of the sum of random variables 

𝕍(∑ 𝑋𝑖
𝑛
𝑖=1 ) can be alternatively represented by 

 

𝕍(∑𝑋𝑖

𝑛

𝑖=1

) =∑∑𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑖′)

𝑛

𝑖′=1

𝑛

𝑖=1

=∑𝕍(𝑋𝑖)

𝑛

𝑖=1

+∑ ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑖′)

𝑛

𝑖′=1,𝑖′≠𝑖

𝑛

𝑖=1

 (C.5) 

 

If variables 𝑋1, ⋯ , 𝑋𝑛 are independent, ∑ ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑖′)
𝑛
𝑖′=1,𝑖′≠𝑖

𝑛
𝑖=1 = 0, Eq. (C.5) can lead to 

the same conclusion as Eq. (C.5).  
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C.2 Monte Carlo integration 

C.2.1 The basic Monte Carlo estimator 

The idea of the Monte Carlo estimator is to evaluate an integral 

∫ 𝑓(𝑥)𝑑𝑥
𝑥

 

 

by independently drawing 𝑁 random samples 𝑋1, ⋯ , 𝑋𝑁 according to some probability density 

function 𝑝(𝑥) and then computing the estimate of the integral by: 
 

𝐹𝑁 =
1

𝑁
∑

𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

𝑁

𝑖=1

 (C.6) 

 

The estimate 𝐹𝑁 of the Monte Carlo estimator is a random variable whose properties depend on 

the number of samples. 𝑝(𝑥) must be positive when ever 𝑓(𝑥) is non-zero. In average, 𝐹𝑁 gives 

the correct estimate of the integral, we have 
 

𝔼(𝐹𝑁) = 𝔼(
1

𝑁
∑

𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

𝑁

𝑖=1

)

             =
1

𝑁
∑𝔼(

𝑓(𝑋𝑖)

𝑝(𝑋𝑖)
)

𝑁

𝑖=1

                           =
1

𝑁
∑∫

𝑓(𝑥)

𝑝(𝑥)𝑥

𝑁

𝑖=1

∙ 𝑝(𝑥)𝑑𝑥

    = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

 

 

Eq. (C.6) can be extended for 𝑛-dimensional integral 
 

∫ 𝑓(𝑥1, ⋯ , 𝑥𝑛)
𝒟𝑛

𝑑𝑥1⋯𝑑𝑥𝑛 

 

by independently drawing 𝑁  vector random samples �̂�1, ⋯ , �̂�𝑁  according to the joint 

probability density function 𝑝(𝑥1, ⋯ , 𝑥𝑛). The corresponding Monte Carlo estimator is  
 

𝐹𝑁 =
1

𝑁
∑

𝑓(�̂�𝑖)

𝑝(�̂�𝑖)

𝑁

𝑖=1

=
1

𝑁
∑

𝑓(𝑋1
(𝑖), ⋯ , 𝑋𝑛

(𝑖))

𝑝(𝑋1
(𝑖), ⋯ , 𝑋𝑛

(𝑖))

𝑁

𝑖=1
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C.2.2 Sampling random variables 

To compute the estimate 𝐹𝑁 of a Monte Carlo estimator (Eq. (C.6)), it is necessary to draw 

random samples from the predefined probability distribution. The most common approach is 

called the inversion method. Let 𝑃𝑋(𝑥) the cumulative distribution function of a distribution 

𝑝(𝑥) . A random sample 𝑋  can be computed through the inverse cumulative distribution 

function using a uniformly distributed variable 𝜉  in [0, 1)  (probability density function 

𝑝(𝑢𝜉) = 1). 

 

𝑋 = 𝑃𝑋
−1(𝜉) 

 

It is easy to verify that the random sample 𝑋 has the required probability density function 𝑝(𝑥). 
 

𝑝(𝑥) = 𝑝(𝑢𝜉) |
𝑑𝑢𝜉

𝑑𝑥
| =

𝑑𝑃𝑋(𝑥)

𝑑𝑥
 

 

This method can also be extended to draw random vector samples �̂� = (𝑋1,⋯ , 𝑋𝑛) , by 

computing the conditional and marginal distributions and inverting each random sample 𝑋𝑖 

separately. It can be generally represented by: 
 

�̂� = 𝑃𝑋
−1(𝜉) (C.7) 

 

We give an example of a two-dimensional random sample 𝑋, 𝑌, the corresponding marginal 

cumulative distribution function and conditional cumulative distribution function are 𝑃𝑋(𝑥) 

and 𝑃𝑌|𝑋(𝑦|𝑥) , respectively. The samples are derived using two uniformly distribution 

variables 𝜉𝑥, 𝜉𝑦 in [0, 1)2. 

 

𝑋 = 𝑃𝑋
−1(𝜉𝑥)       

𝑌 = 𝑃𝑌|𝑋
−1 (𝜉𝑦|𝑋) 

(C.8) 

 

Sometimes, there is no analytical expression of the probability density function, or its analytical 

integration is impossible. We can construct a piecewise-constant function that has a constant 

value in each small region piece in the distribution space and draw continuous random samples 

with the inversion method. Considering a case of a two-dimensional function 𝑓(𝑖,𝑗)(𝑥, 𝑦) 

defined over [0, 1]2 by an array of 𝑛𝑥 × 𝑛𝑦 values. 𝑐𝑖,𝑗 (𝑖 = 0,⋯ , 𝑛𝑥 − 1 and 𝑗 = 0,⋯ , 𝑛𝑦 − 1) 

denotes the value of 𝑓(𝑖,𝑗)(𝑥, 𝑦) over the region 𝑥 × 𝑦 = [ 𝑖/𝑛𝑥 , (𝑖 + 1)/𝑛𝑥) × [𝑗/𝑛𝑦, (𝑗 + 1)/

𝑛𝑦). We have: 
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𝑝(𝑖,𝑗)(𝑥, 𝑦) =
𝑓(𝑖,𝑗)(𝑥, 𝑦)

∫ ∫ 𝑓(𝑖,𝑗)(𝑥, 𝑦)𝑑𝑥𝑑𝑦
1

0

1

0

=
𝑐𝑖,𝑗

1
𝑛𝑥 ∙ 𝑛𝑦

∑ ∑ 𝑐𝑖,𝑗
𝑛𝑦
𝑗=1

𝑛𝑥
𝑖=1

𝑝(𝑖)(𝑥) = ∫ 𝑝(𝑖,𝑗)(𝑥, 𝑦)𝑑𝑦 =
1

0

𝑛𝑥 ∑ 𝑐𝑖,𝑗
𝑛𝑦
𝑗=1

∑ ∑ 𝑐𝑖,𝑗
𝑛𝑦
𝑗=1

𝑛𝑥
𝑖=1

                               

𝑝(𝑗)(𝑦|𝑥) =
𝑝(𝑖,𝑗)(𝑥, 𝑦)

𝑝(𝑖)(𝑥)
                                                                    

 (C.9) 

 

Both marginal and conditional distributions are piecewise-constant, the integrated cumulative 

distribution function are thus piecewise and continuous, with constant slope in each region. 
 

𝑃𝑋(𝑥) = ∫ 𝑝(𝑖)(𝑥)𝑑𝑥
𝑥

0

             

𝑃𝑌|𝑋(𝑦|𝑥) = ∫ 𝑝(𝑗)(𝑦|𝑥)𝑑𝑦
𝑦

0

 

 

Then, a pair of continuous random samples 𝑋, 𝑌 are drawn by Eq. (C.10) using two uniformly 

distribution variables 𝜉𝑥 , 𝜉𝑦 in [0, 1)2.  

 

𝑋 = 𝑃𝑋
−1(𝜉𝑥) =

𝑖

𝑛𝑥
+
𝜉𝑥 − 𝑃𝑋 (

𝑖
𝑛𝑥
)

𝑝(𝑖)(𝑥)
, ∀ 

𝑖

𝑛𝑥
≤ 𝑋 ≤

𝑖 + 1

𝑛𝑥
                                                

𝑌 = 𝑃𝑌|𝑋
−1 (𝜉𝑦|𝑋) =

𝑗

𝑛𝑦
+

𝜉𝑦 − 𝑃𝑌|𝑋 (
𝑗
𝑛𝑦
|𝑋)

𝑝(𝑗)(𝑦|𝑥)
, ∀ 

𝑖

𝑛𝑥
≤ 𝑋 ≤

𝑖 + 1

𝑛𝑥
,
𝑗

𝑛𝑦
≤ 𝑌 ≤

𝑗 + 1

𝑛𝑦
 

(C.10) 

 

In case that the cumulative distribution function is not invertible whereas it can be represented 

by the weighted sum of invertible element cumulative distribution functions 𝐹𝑖(𝑥) (Eq. (C.11)), 

a typical example is the double Henyey-Greenstein phase function (Eq. (1.13)). The random 

sample can be draw with the composition method (Rubinstein and Kroese, 2016). 
 

𝑃𝑋(𝑥) =∑𝑤𝑖

𝑛

𝑖=1

∙ 𝐹𝑖(𝑥) (C.11) 

 

where the weight satisfies  
 

𝑤𝑖 > 0 ∀ 𝑖, ∑𝑤𝑖

𝑛

𝑖=1

= 1 

 

Let 𝐹𝑖(𝑥) be the cumulative distribution function of variable 𝑋𝑖,  and let 𝑌 be a discrete random 

variable with ℙ(𝑌 = 𝑖) = 𝑤𝑖, independent of 𝑋𝑖, for 1 ≤ 𝑖 ≤ 𝑛. In order to generate 𝑋 from 
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𝑃𝑋(𝑥), we first generate 𝑌  with the inversion method or the alias method (Rubinstein and 

Kroese, 2016) and then, given 𝑌 = 𝑖, generate 𝑋𝑖 from 𝐹𝑖(𝑥) with the inversion method (Eq. 

(C.12)). 

𝑋 =∑𝐹𝑖
−1(𝜉𝑖) ∙ 𝐼{𝑌=𝑖}

𝑛

𝑖=1

 (C.12) 

 

where 𝐼{𝑌=𝑖} is an indicator function, it returns 1 if 𝑌 = 𝑖 and returns 0 otherwise. 𝜉𝑖  is a 

random variable uniformly distributed in [0, 1) . Similarly for multi-dimensional case 

𝑃𝑋(�̂�) = ∑ 𝑤𝑖
𝑛
𝑖=1 ∙ 𝐹𝑖(�̂�), �̂� is sampled by �̂� = ∑ 𝐹𝑖

−1(𝜉𝑖) ∙ 𝐼{𝑌=𝑖}
𝑛
𝑖=1 . 

 

Another basic approach to generate random samples are the acceptance-rejection method 

proposed by Stan Ulam and John von Neumann, it is adapted for sampling any distributions 

without the explicitly knowledge of the probability density function or the cumulative 

distribution function. A disadvantage is that this method may be less efficient, that is, many 

trials are rejected before one sample is accepted. Let a variable 𝑋 with an arbitrary probability 

density 𝑝(𝑥) . We can always bound it with a proposed probability density 𝑝∗(𝑥) using a 

constant 𝐶, that is 
 

𝑝(𝑥) ≤ 𝐶𝑝∗(𝑥), ∀ 𝑥 

 

Then, a pair of random variables 𝑋, 𝜉 are repeatedly sampled according to 𝑝(𝑥) and the uniform 

distribution on [0, 1), respectively. 𝑋 is accepted until the point (𝑋, 𝑌 = 𝜉𝐶𝑝∗(𝑋)) lies under 

𝑝(𝑋) . It is easy to verify that the sampled 𝑋  has distribution identical to 𝑝(𝑥)  since the 

probability that the sampled points (𝑋, 𝑌) are enclosed by the region 𝑦 = 0, 𝑦 = 𝑝(𝑥), 𝑥 = 𝑎, 

𝑥 = 𝑏 is equal to the enclosed area ∫ 𝑝(𝑥)𝑑𝑥
𝑏

𝑎
. Also, the closer 𝐶𝑝∗(𝑥) to 𝑝(𝑥), the more 

efficient the acceptance-rejection method, since the sample 𝑋 is less likely to be rejected. This 

method can also be extended to multi-dimensional sampling. 

C.2.3 Performance of estimators 

Eq. (C.6) are standard ways to estimate the value of an integral with random numbers, namely 

the basic Monte Carlo estimator. However, there are a variety of Monte Carlo estimators with 

different mathematical forms and different sample generating methods. They can be generally 

represented by: 
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𝐹𝑁 = 𝐹𝑁(𝑋1, ⋯ , 𝑋𝑁) 

 

where the 𝑋𝑖 are random variables, they are not necessarily independent and can have different 

distributions, 𝑁 is the sample size. It is necessary to design or to choose the desirable estimator 

𝐹𝑁 according to the application context. Thus, knowledge of their performance is very useful. 

Here we review some important properties of Monte Carlo estimators. 

 

Bias. The objective of a Monte Carlo estimator is to evaluate the estimand 𝐹(a quantity of 

interest). And a particular value of variable 𝐹𝑁 is called an estimate. The difference between 𝐹𝑁 

and 𝐹 is called error and the bias is defined as the expected value of the error. 
 

𝛽(𝐹𝑁) = 𝔼(𝐹𝑁 − 𝐹) = 𝔼(𝐹𝑁) − 𝐹 (C.13) 

 

An estimator is called unbiased if 𝛽(𝐹𝑁) = 0, ∀ 𝑁 ≥ 1. Otherwise, it is called biased.  

 

Consistency. An estimator is called consistent if the estimate 𝐹𝑁  converges to 𝐹  as 𝑁 

approaches infinity, that is: 
 

ℙ( lim
𝑛→∞

(𝐹𝑁 − 𝐹)) = 1 

 

For an estimator to be consistent, it is sufficient to have its expected value and variance go to 

zero when the sample size increases, that is 

 

lim
𝑛→∞

𝔼(𝐹𝑁) = lim
𝑛→∞

𝕍(𝐹𝑁) = 0 

 

Convergence rate. Usually, a desirable estimator should not be introduced with an expense of 

a large variance, the convergence rate describes how fast the standard error 𝜎 of estimates 

decreases (Hammersley, 2013). For a basic Monte Carlo estimator with independent samples 

𝑋𝑖, we have: 

𝕍(𝐹𝑁) = 𝕍(
1

𝑁
∑

𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

𝑁

𝑖=1

) =
1

𝑁2
𝕍(∑

𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

𝑁

𝑖=1

) =
1

𝑁
𝕍(

𝑓(𝑋𝑖)

𝑝(𝑋𝑖)
) =

1

𝑁
𝜎2 (

𝑓(𝑋)

𝑝(𝑋)
) 

 

Then, the convergence rate for a basic Monte Carlo estimator is 𝑂(1/√𝑁) since: 

𝜎(𝐹𝑁) =
1

√𝑁
𝜎 (
𝑓(𝑋)

𝑝(𝑋)
) 
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Efficiency. It is always possible to reduce the standard error of a Monte Carlo estimator by 

increasing the number of samples. However, to decrease the standard error of an estimator with 

convergence rate 𝑂(1/√𝑁) by a factor of 𝑘, the sample size needs to be increased 𝑘2-fold, that 

is, the computer time is increased 𝑘2-fold. An efficient Monte Carlo estimator optimizes both 

the convergence rate and the sample size. Following (Hammersley, 2013; Veach, 1997), the 

efficiency is defined as inversely proportional to the product of the variance and the time. 
 

𝜖(𝐹𝑁) =
1

𝕍(𝐹𝑁) ∙ 𝕋(𝐹𝑁)
 (C.14) 

 

C.3 Variance reduction method 

The design of efficient estimators is a fundamental research of Monte Carlo integration. A 

variety of methods have been developed to improve the efficiency of estimators which are 

commonly called variance-reduction method (cf. (Hammersley, 2013; Kalos and Whitlock, 

2009; Rubinstein and Kroese, 2016; Veach, 1997)), such as the stratified sampling, importance 

sampling, adaptive sampling, antithetic variates, etc. This section presents some most important 

unbiased variance reduction methods in Monte Carlo radiative transfer modelling. 

C.3.1 Importance sampling 

The importance sampling refers to the sampling of a random variable according to the 

importance of the distribution of the integrand 𝑓(𝑥), that is, the probability density function 

𝑝(𝑥) is similar to 𝑓(𝑥). Ideally:  

𝑝(𝑥) =
𝑓(𝑥)

∫ 𝑓(𝑥)𝑑𝑥
𝑥

 

 

It leads to an estimator with zero variance since: 
 

𝐹𝑁 =
1

𝑁
∑

𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

𝑁

𝑖=1

= ∫ 𝑓(𝑥)𝑑𝑥
𝑥

 

 

is equal to the desired integral for any sample points 𝑋𝑖 and for any sample size.  

 

Unfortunately, it is not practical because we must evaluate the desired integral in advance in 

order to derive the probability density whereas the integral evaluation is the objective of the 
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estimator. Nevertheless, it proves that the variance can be reduced if 𝑝(�̂�) is close to 𝑓(�̂�) for 

one- and multi-dimensional estimators. There are several strategies to reproduce a probability that 

is close to 𝑓(𝑥). For low-dimensional integration, we can construct a discrete approximation of 

𝑓(�̂�), such as a piecewise-constant function, then the probability densities of each variable can 

be derived similarly as in Eq. (C.9). Another commonly used strategy is to discard or to 

approximate some parameters in the integrand. For example, we can discard the incident radiance 

in the integration Eq. (1.21). We can approximate the product of microfacet distribution 

function and the masking-shadowing function by the Schlick approximation (Schlick, 1994).  

 

Since the most distributions or functions in the radiative transfer modelling are not uniform or 

isotropic, the importance sampling is widely used. It is particularly useful for some distribution 

where the probability density is large in a small region. A typical case is the estimate of exit 

radiance from a specular surface.  

C.3.2 Multiple importance sampling 

The multiple importance sampling was introduced by (Veach, 1997) to increase the reliability 

and efficiency of Monte Carlo integration, especially for high-dimensional integral problem 

such as the radiative transfer modelling. The idea is to combine more than one importance 

sampling estimator to evaluate the same integral. It is very useful when the distributions of the 

values of parameters in the integrand are not known at the time the estimator is designed. In 

this case, it is difficult to predict a probability density that is similar to the integrand. For 

example, we can construct two importance sampling estimators to estimate the integral of Eq. 

(1.21), the first one is constructed by discarding the incident radiance and the second one is 

constructed by discarding the BRDF. An estimate of the first estimator is like: 

 

𝐿𝑟(Ω) =
𝐿(Ω′) ∙ 𝑓𝑟(Ω

′ → Ω) ∙ cos 𝜃′

𝑝(Ω′)
, with 𝑝(Ω′) =

𝐿(Ω′) ∙ cos 𝜃′

∫ 𝐿(Ω′) ∙ cos 𝜃′ 𝑑Ω′
2𝜋+

 

and an estimate of the second is like: 
 

𝐿𝑟(Ω) =
𝐿(Ω′) ∙ 𝑓𝑟(Ω

′ → Ω) ∙ cos 𝜃′

𝑝(Ω′)
, with 𝑝(Ω′) =

𝑓𝑟(Ω
′ → Ω) ∙ cos 𝜃′

∫ 𝑓𝑟(Ω′ → Ω) ∙ cos 𝜃′ 𝑑Ω′
2𝜋+

 

 

It happens that the first estimator is far more efficient if the light source is small and the BRDF 

is diffuse, and the second estimator is far better when the light source is large and the BRDF is 
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specular. In this case, we can combine the two estimators by some weights that are proportional 

to the efficiency of the estimators.  

 

The general form of multiple importance estimator is a weighted sum of 𝑛  importance 

estimators 𝑓(𝑋𝑖,𝑗)/𝑝𝑖(𝑋𝑖,𝑗), each with a sampling method using the probability density function 

𝑝𝑖(𝑥) and is weighted by a weighting function 𝑤𝑖(𝑥). 
 

𝐹𝑁 =
1

𝑁
∑

1

𝑛𝑖
∑𝑤𝑖(𝑋𝑖,𝑗) ∙

𝑓(𝑋𝑖,𝑗)

𝑝𝑖(𝑋𝑖,𝑗)

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 (C.15) 

 

with 𝑁=∑ 𝑛𝑖
𝑛
𝑖=1  the total number of samples and 𝑛𝑖≥1 the number of samples for estimator 

𝑓(𝑋𝑖,𝑗)/𝑝𝑖(𝑋𝑖,𝑗). For this estimate to be unbiased, the weighting functions must verify two 

conditions: (1) ∑ 𝑤𝑖(𝑥)
𝑛
𝑖=1 =1 whenever 𝑓(𝑥) > 0; (2) 𝑤𝑖(𝑥)=0 whenever 𝑝𝑖(𝑥)=0 so that: 

𝔼(𝐹𝑁) = 𝔼(
1

𝑁
∑

1

𝑛𝑖
∑𝑤𝑖(𝑋𝑖,𝑗) ∙

𝑓(𝑋𝑖,𝑗)

𝑝𝑖(𝑋𝑖,𝑗)

𝑛𝑖

𝑗=1

𝑛

𝑖=1

) =
1

𝑁
∑

1

𝑛𝑖
∑𝔼(𝑤𝑖(𝑋𝑖,𝑗) ∙

𝑓(𝑋𝑖,𝑗)

𝑝𝑖(𝑋𝑖,𝑗)
)

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 

=∑∫ 𝑤𝑖(𝑥) ∙
𝑓(𝑥)

𝑝𝑖(𝑥)
∙ 𝑝𝑖(𝑥)𝑑𝑥

𝑥

𝑛𝑖

𝑗=1

= = ∫ (∑𝑤𝑖(𝑥)

𝑛𝑖

𝑗=1

) ∙
𝑥

𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

 

 

The appropriate weighting functions are crucial to the performance of the multiple importance 

estimator. (Veach, 1997) proves that the power heuristic weighting function works well to 

estimate the exit radiance (Eq. (1.21)) from a surface with a wide range of roughness, 𝑘=2 is a 

reasonable value. 

𝑤𝑖(𝑥) =
(𝑛𝑖 ∙ 𝑝𝑖(𝑥))

𝑘

(∑ 𝑛𝑖′ ∙ 𝑝𝑖′(𝑥)
𝑛𝑖
𝑖′=1

)
𝑘 

 

C.3.3 Russian roulette 

The Russian roulette is a useful method to decrease the sample density where the integrand is 

small. It increases the efficiency of an estimator by increasing the likelihood that each sample 

will have relatively large contribution to the final estimate. Its general form is 

𝐹𝑖
𝑅𝑅 = {

1

𝑞
∙ 𝐹𝑖,    𝜉 ≤ 𝑞

0,           𝜉 > 𝑞
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with 𝐹𝑖 an estimate of the original estimator 𝐹𝑁=∑ 𝐹𝑖
𝑁
𝑖=1  and 𝐹𝑖

𝑅𝑅 an estimate of the estimator 

𝐹𝑁
𝑅𝑅 using Russian roulette. 0<𝑞≤1 is the surviving probability defined so that the sample is 

rejected if its contribution is small. 𝜉 is a random variable uniformly distributed on [0, 1). 

 

It is obvious that the Russian roulette estimator is unbiased whenever 𝐹𝑁 is, since: 
 

𝔼(𝐹𝑁
𝑅𝑅) =∑𝔼(𝐹𝑖

𝑅𝑅)

𝑁

𝑖=1

=∑[𝑞 ∙ 𝔼 (
1

𝑞
∙ 𝐹𝑖) + (1 − 𝑞) ∙ 0]

𝑁

𝑖=1

=∑𝔼(𝐹𝑖)

𝑁

𝑖=1

= 𝔼(𝐹𝑁) 

 

whereas it increases the variance: 
 

𝕍(𝐹𝑁
𝑅𝑅) =

1

𝑁2
𝕍(∑𝐹𝑖

𝑅𝑅

𝑁

𝑖=1

) =
1

𝑁2
∑∑𝐶𝑜𝑣(𝐹𝑖

𝑅𝑅 , 𝐹𝑖′
𝑅𝑅)

𝑁

𝑖′=1

𝑁

𝑖=1

                                                                  

=
1

𝑁2
∑∑[𝔼(𝐹𝑖

𝑅𝑅 ∙ 𝐹𝑖′
𝑅𝑅) − 𝔼(𝐹𝑖

𝑅𝑅) ∙ 𝔼(𝐹𝑖′
𝑅𝑅)]

𝑁

𝑖′=1

𝑁

𝑖=1

                                                  

=
1

𝑁2
∑ ∑ [𝔼(𝐹𝑖

𝑅𝑅 ∙ 𝐹𝑖′
𝑅𝑅) − 𝔼(𝐹𝑖

𝑅𝑅) ∙ 𝔼(𝐹𝑖′
𝑅𝑅)]

𝑁

𝑖′=1,𝑖′≠𝑖

𝑁

𝑖=1

+
1

𝑁2
∑𝔼(𝐹𝑖

𝑅𝑅 ∙ 𝐹𝑖
𝑅𝑅)

𝑁

𝑖=1

=
1

𝑁2
∑ ∑ [𝔼(𝐹𝑖 ∙ 𝐹𝑖′) − 𝔼(𝐹𝑖) ∙ 𝔼(𝐹𝑖′)]

𝑁

𝑖′=1,𝑖′≠𝑖

𝑁

𝑖=1

+
1

𝑁2
∑

𝔼(𝐹𝑖
2)

𝑞

𝑁

𝑖=1

                         

=
1

𝑁2
∑∑[𝔼(𝐹𝑖 ∙ 𝐹𝑖′) − 𝔼(𝐹𝑖) ∙ 𝔼(𝐹𝑖′)]

𝑁

𝑖′=1

𝑁

𝑖=1

+
1 − 𝑞

𝑞 ∙ 𝑁2
∙∑𝔼(𝐹𝑖

2)

𝑁

𝑖=1

                        

= 𝕍(𝐹𝑁) +
1 − 𝑞

𝑞 ∙ 𝑁2
∙∑𝔼(𝐹𝑖

2)

𝑁

𝑖=1

> 𝕍(𝐹𝑁)                                                                   

 

 

Nevertheless, the Russian roulette method reduces the computer time by a factor 1 − 𝑞 since 

only around 𝑞 ∙ 𝑁 estimates are really computed. According to Eq. (C.14), if the increase of 

variance due to the Russian roulette is less than a factor of 1/𝑞 , the overall efficiency is 

increased. It is particularly useful to optimize the efficiency of the stochastic process in radiative 

transfer modelling. Indeed, the energy of the radiation decreases almost exponentially through  

its interactions (absorption, scattering) in the environment, we are facing the problem that the 

𝑘-th interaction takes the same time as the first interaction while its contribution to the final 

measurement is much smaller. After certain interactions, the radiation trajectory can be cut off 

by the Russian roulette since the increase of variance is less than the decrease of computer time. 
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D.3 Article 3 
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D.4 Article 4 
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D.5 Article 5 
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DART-Lux development is a collaborative work constantly contributed by physicists (Gastellu-

Etchegorry Jean-Philippe, Kallel Abdelaziz, Paugam Ronan, Reigaieg Omar, Yang Xuebo, Yin 

Tiangang), remote sensing researchers (Benromdhane Najmeddine, Boitard Paul, Malenovsky 

Zbynek, Zhen Zhijun, …), and computer scientists (Chavanon Eric, Guilleux Jordan, Lauret 

Nicolas). The following table details my contributions to DART-Lux since the first idea in 2018.  

 

Table E.1. Indication of the works I have done (red colour) and where my contribution has 

been important (blue colour). 

Annex E  

My contributions to DART-Lux 

Date Contribution(s) 

2019-04  - Theory and algorithm (Georgiev et al., 2012; Pharr et al., 2016; Veach, 1997) 

- Parallel sun light  

- Preliminary validation tests 

2019-12 - Isotropic/anisotropic sky light modelling 

2020-04 - LiDAR laser and receiver modelling 

- LiDAR waveform modelling 

- SIF emission 

2020-08 - BRF camera modelling 

- Hybrid atmospheric RT method to simulate satellite and airborne images 

2020-12 - Monte Carlo atmospheric radiative transfer modelling 

2021-04 - LiDAR modelling with atmosphere 

2021-08 - RPV model 

2021-12 - Atmospheric thermal emission 

2022-04 - Specular surface BSDF 

- Microfacets rough surface BSDF 

- Atmospheric polarized radiative transfer  

2022-08 - Land surface polarized radiative transfer 
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Since the emergence of pioneering 3D RTMs designed to simulate the radiative transfer in land 

surfaces in the 1980s, their functionalities are continuously improved and completed with 

respect to the increasing requirements of scientific and societal applications. At the same time, 

many new 3D RTMs are developed. Table F.1 lists major characteristics of some of the best 

3D RTMs as provided by their authors.  
 

Table F.1 Functionalities of 3D RTMs (Green: YES; Orange: POSSIBLY; Red: NO), with 

corresponding references. 

Model name Radiative transfer method(s) References 

DART MC/DOM 
(Gastellu-Etchegorry et al., 1996) 

(Wang et al., 2022) 

DIRSIG MC 
(Kraska, 1996) 

(Goodenough and Brown, 2017) 

Eradiate MC (https://www.eradiate.eu/site/) 

FLiES MC 
(Kobayashi and Iwabuchi, 2008) 

(Gao et al., 2022) 

FLIGHT MC 
(North, 1996) 

(Hornero et al., 2021) 

LCVRT MC 
(Kallel and Gastellu-Etchegorry, 2017) 

(Kallel, 2020) 

LESS MC (Qi et al., 2019a) 

Librat MC (Lewis, 1999) 

MCScene MC 
(Richtsmeier et al., 2001) 

(Richtsmeier et al., 2017) 

RAPID Radiosity 
(Huang et al., 2013) 

(Huang, 2018) 

Raytran MC 
(Govaerts et al., 1996) 

(Widlowski et al., 2006) 

WPS MC 
(Zhao et al., 2015) 

(Zhao et al., 2022) 

Annex F  

Functionalities of 3D RTMs 

https://www.eradiate.eu/site/
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The following tables provide a list of the acronyms and variables utilized in this thesis. The 

acronyms are listed alphabetically. The variables are arranged alphabetically starting with 

English letters, followed by Greek letters.  

 

Acronym Description 

BDPT Bi-directional path tracing 

BRF Bidirectional reflectance factor 

BRDF Bidirectional reflectance distribution function 

BSDF Bidirectional scattering distribution function 

BTDF Bidirectional transmittance distribution function 

BOA Bottom of atmosphere 

CDF Cumulative distribution function 

DART Discrete anisotropic radiative transfer 

DART-FT Classic discrete ordinates radiative transfer mode of DART model 

DART-Lux New Monte Carlo radiative transfer mode of DART model 

DBT Directional brightness temperature 

DEM Digital elevation model 

ECMWF European centre for medium-range weather forecasts 

FOV Field of view 

IPRT International polarized radiative transfer 

LiDAR Light detection and ranging 

MIS Multiple importance sampling 

PDF Probability distribution function 

Annex G  

Nomenclature 
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PSF Point spread function 

RAMI Radiation transfer model intercomparison 

RMSE Root mean square error 

RPV Rahman-Pinty-Verstraete reflectance model 

RTM Radiative transfer model 

SIF Solar induced fluorescence 

TOA Top of atmosphere 
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Symbol Description 

𝒜(𝜆)  Absorptance 

𝒜𝐷(𝜆, Ω)  Directional absorptance 

𝒜H(𝜆)  Hemispherical absorptance 

𝐴  All surfaces of the scene 

𝐴img
(𝑗)

  Area of pixel 𝑗 

𝑐  Speed of light 

𝑐0  Speed of light in vacuum 

𝐶𝒟𝑛  Contribution to radiance measurement of the (𝑛 − 1)-th scattering order 

𝐶𝑜𝑣(𝑋, 𝑌)  Covariance of variable 𝑋 and 𝑌 

𝒟  Set of all light paths 

𝐷m(Ωf)  Microfacet distribution function 

𝒟𝑛  Set of paths of length n 

𝐸(𝜆)  Irradiance 

𝐸BOA  Irradiance at bottom of atmosphere 

𝐸BOA
dir   Direct irradiance at bottom of atmosphere 

𝐸BOA
diff   Diffuse irradiance at bottom of atmosphere 

𝐸TOA
dir   Direct irradiance at top of atmosphere 

𝔼(𝑋)  Expected value of variable 𝑋 

𝐹IS
(𝑗)

  Estimate of the importance sampling 

𝐹MIS
(𝑗)

  Estimate of the multiple importance sampling 

𝑓𝑟(𝜆, Ω
′ → Ω)  Bidirectional reflectance distribution function 

𝑓𝑡(𝜆, Ω
′ → Ω)  Bidirectional transmittance distribution function 

𝑓𝑠(𝜆, Ω
′ → Ω)  Bidirectional scattering distribution function 

𝑓𝑠
∗(𝜆, Ω′ → Ω)  Adjoint bidirectional scattering distribution function 

𝒇𝒔(𝜆, Ω
′ → Ω)  Bidirectional scattering matrix 

𝒇𝒔
∗(𝜆, Ω′ → Ω)  Adjoint bidirectional scattering matrix 

𝑓𝑠(𝜆, Ω
′ → Ω)  Generalized scattering distribution function 

𝑓𝑠
∗(𝜆, Ω′ → Ω)  Generalized adjoint scattering distribution function 

�̃�𝒔(𝜆, Ω
′ → Ω)  Generalized scattering matrix 

�̃�𝒔
∗
(𝜆, Ω′ → Ω)  Generalized adjoint scattering matrix 

𝑓(𝑗)(�̅�)  Measurement contribution function of path �̅� at pixel 𝑗 
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𝒇(𝑗)(�̅�)  Vector measurement contribution function of path �̅� at pixel 𝑗 

g  Asymmetry parameter of scattering phase function 

𝐺(𝑟′ ↔ 𝑟′′)  Geometric term 

�̃�(𝑟′ ↔ 𝑟′′)  Generalized geometric term 

𝐺m(Ω,Ωf)  Masking-shadowing function 

𝐼(𝜆)  Radiant intensity 

𝒥𝑇  Jacobian determinant 

𝐊𝑒(𝜆, Ω)  Extinction matrix 

𝐿(λ, Ω)  Radiance 

�̃�(λ, Ω)  Generalized effective radiance 

�̃�(λ, Ω)  Generalized effective radiance vector averaged over particle state 

𝐿𝑖(λ, Ω)  Incident radiance 

𝐿𝑟(λ, Ω)  Reflected radiance 

𝐿𝑡(λ, Ω)  Transmitted radiance 

𝐿𝑜(λ, Ω)  Exit radiance 

𝐿𝑒(λ, Ω)  Scalar thermal emitted radiance 

𝐿adj  Adjacency radiance 

�̅�adj  Average adjacency radiance of the study area 

𝐿B(𝜆, 𝑇)  Blackbody emission 

ℳ  All surfaces or volumes of the scene, depending on the vertex location 

𝑀(𝜆)  Exitance 

𝐌(𝜆, Ω′ → Ω)  Scattering matrix 

𝐌𝐫(𝜆, Ω
′ → Ω)  Reduced Rayleigh scattering matrix 

𝑛(𝜆)  Refractive index 

𝑃(𝜆, Ω′ → Ω)  Scattering phase function 

𝐏(𝜆, Ω′ → Ω)  Phase matrix 

ℙ(𝐸𝐴)  Probability of event 𝐸𝐴 

𝑃𝑋(𝑥)  Cumulative distribution function of variable 𝑋 

𝑃𝑌|𝑋(𝑦|𝑥)  Conditional cumulative distribution function of variable 𝑌 given 𝑋 

𝑝(𝑥)  Probability density function of variable 𝑋 

𝑝(𝑦|𝑥)  Conditional probability density function of variable 𝑌 given 𝑋 

�̅�𝑁𝑣   Light sub-path with 𝑁𝑣 vertices 
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𝑄(𝜆)  Perpendicular/parallel polarization 

�̅�𝑁𝑣   Sensor sub-path with 𝑁𝑣 vertices 

ℛ(𝜆)  Reflectance 

ℛDD(𝜆, Ω
′ → Ω)  Bidirectional reflectance 

ℛDH(𝜆, Ω)  Directional-hemispherical reflectance 

ℛHH(𝜆)  Albedo 

𝐑(𝜂)  Rotation matrix, 𝜂 > 0 indicates anticlockwise rotation 

�̅�  Light path connecting the light source and the sensor 

�̅�𝑠,𝑡  Light rath generated by connecting a light sub-path with 𝑠 vertices and a 

sensor sub-path with 𝑡 vertices. 

𝑆(𝜆)  Sensor response 

𝑺(𝜆)  Stokes vector 

𝑇  Temperature 

𝒯(𝜆)  Transmittance 

𝒯DD(𝜆, Ω
′ → Ω)  Bidirectional transmittance 

𝒯DH(𝜆, Ω)  Directional-hemispherical transmittance 

𝒯HH(𝜆)  Bi-hemispherical transmittance 

𝑇B(𝜆, Ω)  Brightness temperature 

𝑇(�̅�𝑠)  Throughput of sub-path �̅�𝑠 

𝑻(�̅�𝑠)  Throughput vector of sub-path �̅�𝑠 

𝑇(�̅�𝑡)  Throughput of sub-path �̅�𝑡 

𝑻(�̅�𝑡)  Throughput matrix of sub-path �̅�𝑡 

𝑈(𝜆)  Diagonal polarization 

𝑉(𝜆)  Circular polarization 

𝑉(𝑟′ ↔ 𝑟′′)  Visibility function between vertices 𝑟′ and 𝑟′′ 

𝑉  All volumes of the scene 

𝕍(𝑋)  Variance of variable 𝑋 

𝑊𝑒(𝑟0, Ω0)  Importance function 

𝑊𝑒
(𝑗)(𝑟0, Ω0)  Importance function in the support of pixel 𝑗 

𝑾𝒆(𝑟0, Ω0)  Importance matrix 

𝑾𝒆
(𝑗)(𝑟0, Ω0)  Importance matrix in the support of pixel 𝑗 

𝑤𝑠,𝑡(�̅�𝑠,𝑡)  MIS weight of path sample �̅�𝑠,𝑡 

𝛼𝑒(λ, Ω)  Extinction coefficient 
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𝛼𝑎(λ, Ω)  Absorption extinction coefficient 

𝛼𝑠(λ, Ω)  Scattering extinction coefficient 

𝛿(𝑥)  Dirac function 

∆𝑚  Relative root mean square difference 

𝜀(𝜆)  Emissivity 

𝜀D(𝜆, Ω)  Directional Emissivity 

𝜀H(𝜆)  Hemispherical Emissivity 

𝜖  Efficiency of a Monte Carlo method 

𝜁adj  Adjacency perturbation 

𝜃  Zenith angle 

𝜆  Wavelength of radiation 

∆𝜆  Spectral region or bandwidth 

𝜆0  Wavelength of radiation in vacuum 

𝜇(�̅�)  Area-product measure of path �̅� 

𝜈  Frequency of radiation 

𝜉  Random variable between 0 and 1 

2𝜋+  Surface upper hemisphere that contains the incident radiation 

2𝜋−  Surface lower hemisphere that contains the transmitted radiation 

𝜌(𝜆)  Reflectance factor 

𝜌(𝜆, Ω′ → Ω)  Bidirectional reflectance factor 

𝜎𝑒(λ, Ω)  Extinction cross section 

𝜎𝑎(𝜆, Ω)  Absorption extinction cross section 

𝜎𝑠(𝜆, Ω)  Scattering extinction cross section 

𝜏(λ, Ω)  Optical depth 

𝜑  Azimuth angle 

Φ(𝜆)  Radiant flux 

𝜒  Size parameter 

𝜔(λ,Ω)  Single scattering albedo 

Ω  Direction vector 

 


