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Abstract

Les skyrmions magnétiques sont des configurations tourbillonnantes de l’ai-

mantation, avec une taille nanométrique et une topologie non-triviale. Ces

structures ont été observées pour la première fois expérimentalement en

2009 [1]. Les skyrmions sont généralement stabilisés dans les matériaux

possédant une interaction Dzyaloshinskii-Moriya (DMI) en raison d’une

rupture de symétrie d’inversion spatiale. Cette rupture de symétrie peut

soit intervenir à la surface soit être intrinsèque au matériau. Les skyrmions

peuvent être considérés comme une solution du type soliton d’un champ

vectoriel continu de l’aimantation dans l’approximation micromagnétique

(théorie du continu). Par conséquent, ils ont tendance à se comporter comme

des quasi-particules rigides. En raison de leur topologie non-triviale, ils ne

peuvent pas être transformés de manière continue dans un état homogène.

Ceci leur confère une stabilité accrue et une grande résistance aux défauts du

matériau. En outre, des propriétés telles que les faibles densités de courant

nécessaires pour leur dépiégeage [2], leur taille réduite [3] et leur persistance

à température ambiante [4–6] ont donné un élan substantiel à l’étude des

skyrmions magnétiques tant du point de vue fondamental que du point de

vue de l’application.

La possibilité d’utiliser des skyrmions pour réduire davantage les di-

mensions dans la technologie CMOS contemporaine, conformément à la loi

de Moore, a engendré le domaine de l’électronique des skyrmions ou la

skyrmionique. Comme son nom l’indique, ce domaine vise à intégrer des

skyrmions dans des microprocesseurs contemporains, des mémoires à accès

aléatoire et dans des applications d’hyperfréquence (RF). Les skyrmions

ont aussi trouvé une application sous la forme d’unités de stockage d’in-

formations dans une nouvelle version de mémoire à base de registre de

décalage du type ≪ race-track ≫ [7], des dispositifs de nano-oscillateurs

de spin-torque (STNO) pour des applications hyperfréquences [8, 9], et des

dispositifs de type transistor et porte logique [10–12]. Ils sont également pro-

metteurs dans le calcul non conventionnel, comme les dispositifs neuromor-

phiques, le calcul de réservoir et le calcul stochastique [13]. Il existe encore

des défis importants liés à la compréhension des propriétés des matériaux

skyrmioniques et les caractéristiques intrinsèques d’un skyrmion pour une
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intégration complète dans de nouveaux dispositifs. Cependant, les résultats

obtenus à partir de différentes études théoriques et expérimentales sur les

skyrmions sont assez encourageants.

La plupart des géométries de matériaux considérées jusqu’à récemment

en nanomagnétisme et en spintronique étaient bidimensionnelles (2D), en

raison de la facilité de fabrication et de caractérisation dans ce type de

géométries. Grâce au progrès atteint dans les techniques d’élaboration et

de simulation [14] au cours de la dernière décennie, la possibilité d’obtenir

des configurations tridimensionnelle (3D) complexes de l’aimantation [15]

dans les nanostructures ferromagnétiques dans des géométries 3D a sucité

l’intérêt de la communauté du nanomagnétisme. Dans le cas des skyrmions

magnétiques, suivant une tendance générale du nanomagnétisme, la majo-

rité des études scientifiques, ainsi que des applications de dispositifs, sont

basées sur des géométries essentiellement planes ou 2D. Cependant, avec

les progrès récents, il est possible d’étudier les géométries 3D dans les-

quelles les skyrmions 3D peuvent être stabilisés. La thèse présentée ici vise

à étudier les skyrmions 3D dans de telles géométries de ferromagnétiques

non centrosymétriques à l’aide de simulations micromagnétiques par la

méthode des éléments finis (FEM). Les matériaux ferromagnétiques non-

centrosymétriques, par exemple FeGe, possèdent une interaction DMI in-

trinsèque qui peut stabiliser les skyrmions 3D de type Bloch. Dans notre

étude, nous trouvons de multiples états d’équilibre chiral et des effets dyna-

miques de l’aimantation complexes dans les géométries nanoscopiques 3D

fondamentales de ces matériaux, comme discuté en détail dans la partie

résultats. La thèse est principalement divisée en trois parties, à savoir la

théorie, les méthodes et les résultats. La première partie décrit la théorie

du micromagnétisme et des skyrmions magnétiques 3D, la deuxième partie

contient les méthodes numériques utilisées pour la mise en œuvre des simu-

lations micromagnétiques FEM / BEM, et la troisième partie contient les

principaux résultats obtenus grâce à nos études sur les géométries nanosco-

piques 3D de FeGe, un ferroaimant non-centro-symétrique.

La théorie du micromagnétisme [16] décrit les structures de l’aimanta-

tion sur l’échelle de longueur submicrométrique dans les matériaux magnétiques.
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Les échelles de longueur considérées sont suffisamment grandes pour que la

structure atomique du matériau soit ignorée (approximation du continu)

mais suffisamment petites pour résoudre des structures magnétiques telles

qu’une paroi de domaine, un vortex, ou dans notre cas, un skyrmion magnétique.

L’hypothèse centrale du modèle est que les forces d’alignement dans le

matériau magnétique sont suffisamment fortes pour maintenir l’aimanta-

tion parallèle sur une échelle de longueur caractéristique bien au-dessus de

la constante du réseau cristallin. Ceci est justifié par l’effet dominant de

l’échange ferromagnétique sur les échelles de longueur courte. L’énergie to-

tale d’un système magnétique dépend de la disposition de l’aimantation,

et elle est composée de plusieurs contributions en fonction des propriétés

respectives des matériaux. Alors que certaines de ces contributions, comme

l’énergie de désaimantation et l’énergie Zeeman, peuvent être décrites par

la magnétostatique classique, d’autres comme l’énergie d’échange, la DMI

et l’énergie d’anisotropie magnétocristalline ont une origine quantique.

Pour simuler les géométries nanoscopiques d’un matériau non-centrosymétrique,

nous considérons les interactions suivantes. Premièrement, l’échange fer-

romagnétique, qui favorise l’alignement homogène de l’aimantation, avec

des moments magnétiques parallèles. Deuxièmement, l’interaction DMI in-

trinsèque du matériau (du type dit ≪ bulk ≫), qui favorise la disposition

hélicöıdale de l’aimantation. Troisièmement, les interactions magnétostatiques,

qui favorisent la formation de structures de fermeture de l’aimantation. En-

fin, l’interaction Zeeman, qui favorise l’alignement de l’aimantation dans la

direction d’un champ magnétique appliqué extérieurement. Pour les études

présentées dans la thèse, nous considérons le matériau comme isotrope

et ignorons l’apport de l’anisotropie magnétocristalline. Les interactions

mentionnées ci-dessus contribuent individuellement à l’énergie totale du

système, et une dérivée fonctionnelle de l’énergie totale par rapport à l’ai-

mantation donne le champ effectif total observé dans le matériau.

La dynamique de l’aimantation est décrite par l’équation de Landau-

Lifshitz-Gilbert (LLG) [17] en tenant compte du champ effectif total calculé.

L’équation comprend deux termes : un terme de précession, qui décrit la

giration de l’aimantation autour du champ effectif, et un terme d’amortis-
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sement phénoménologique, qui décrit la relaxation de l’aimantation dans la

direction du champ effectif. Ainsi, l’équation LLG décrit l’évolution de l’ai-

mantation dans le temps, y compris les effets dynamiques tels que les ondes

de spin, les modes oscillatoires normaux de l’aimantation et les processus de

renversement de l’aimantation. En présence d’un courant polarisé en spin,

l’équation LLG peut être étendue pour inclure le couple de transfert de spin

supplémentaire (spin-transfer torque, STT) suite aux travaux de Zhang et

Li [18]. La valeur locale du STT agissant sur l’aimantation dépend de la

distribution spatiale de l’aimantation et de la densité de courant.

Bogdanov et al. [18–22] ont obtenu une solution analytique pour la

configuration d’aimantation d’un skyrmion axisymétrique (par exemple,

dans le plan xy), qui est homogène le long de la direction perpendiculaire

(dans la direction z). Le terme d’énergie totale, qui comprend les contri-

butions de l’interaction d’échange ferromagnétique, du DMI, de l’aniso-

tropie magnétocristalline, de l’interaction magnétostatique et de l’énergie

Zeeman, est minimisé pour ces solutions, où l’expression de la contribution

énergétique DMI est exprimée comme une combinaison d’invariants de Lif-

shitz dont la forme dépend de la symétrie du cristal. En outre, l’interaction

magnétostatique est approximativement représentée comme un terme local,

sous la forme d’une anisotropie effective, et par conséquent, les solutions

sont supposées être axisymétriques [18]. De cette manière, cinq solutions

primaires pour les configurations des skyrmions magnétiques sont obtenues

et leur composante d’aimantation dans le plan est représentée sur la figure

ci-dessous.

Sur les cinq configurations magnétiques prédites pour le skyrmion, seules

trois ont été observées expérimentalement jusqu’à présent, correspondant à

(a), (b) et (e), qui sont respectivement de type Bloch, de type Néel et anti-

skyrmion. Les skyrmions de Bloch sont observés dans des ferromagnétiques
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non centrosymétriques de type B20 tels que FeGe, MnSi, etc. [1, 23, 24], et

les études présentées dans cette thèse sont basées sur ce type de matériaux ;

FeGe pour être exact.

Près de deux décennies après la prédiction théorique de Bogdanov et

al., les travaux fondateurs de Mühlbauer et al. [1] en 2009 ont présenté une

première observation expérimentale d’un réseau régulier de skyrmion (SkX)

dans le MnSi massif, à l’aide d’expériences de diffusion de neutrons aux

petits angles (SANS). Ce travail a été suivi d’une étude d’imagerie dans

l’espace réel du réseau skyrmion dans un film mince de Fe1−xCoxSi par

Yu et al. en 2010 [23] à l’aide de la microscopie électronique à transmission

Lorentz, comme illustré dans la figure ci-dessous.

Les deux études tracent un diagramme de phase de différents états

magnétiques stabilisés dans la géométrie en fonction du champ magnétique

externe et de la température (l’image ci-dessus montre le diagramme de

phase pour des couches minces de Fe1−xCoxSi). Les skyrmions sont observés

dans un état cristallin du type skyrmion (SkX) formant un arrangement de

triangles (réseau hexagonal).
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L’interaction des électrons de conduction avec une configuration d’ai-

mantation topologiquement non triviale d’un skyrmion donne lieu à des

phénomènes de transport intéressants. Le spin des électrons de conduction

suivent les changements de direction de l’aimantation sous-jacente du skyr-

mion. Dans ce processus, le spin de l’électron gagne une phase de Berry

quantique [25], qui le dévie de la direction du mouvement le long du champ

électrique appliqué et induit une contribution supplémentaire d’effet Hall

connue sous le nom d’effet Hall topologique (THE). De même, les skyrmions

sont trâınés le long de la direction du courant électrique à travers le STT et

montrent un mouvement transversal, connu sous le nom d’effet Skyrmion

Hall (SkHE), comme homologue de l’effet Hall topologique. Sur la base de

l’équation LLG, qui tient compte des effets STT, on peut écrire une équation

de mouvement pour une configuration de skyrmion rigide selon l’équation

de Thiele [26]. Ceci s’est avéré utile pour prédire la dynamique à la fois du

cristal de skyrmion et de la configuration isolée d’un skyrmion dans la ma-

jorité des cas. Peu de temps après l’observation expérimentale de la phase

de cristal skyrmion (SkX) dans MnSi, Yu et al. [2] ont rapporté le mouve-

ment entrâıné par le courant de la phase SkX en 2012. On a observé que les

skyrmions se déplaçaient à de très faibles densités de courant (de l’ordre de

106 A m−2) par rapport aux valeurs requis pour le déplacement de parois de

domaine magnétiques précédemment étudiées. Par ailleurs, le mouvement

des skyrmions isolés dans la géométrie de nano-pistes confinées s’est montré

prometteur car le SkHE a été contrecarré par un effet de répulsion du bord

conduisant à un mouvement de skyrmion dans la direction du courant ap-

pliqué [7]. Ces observations ont donné une impulsion substantielle à l’étude

des skyrmions magnétiques pour les applications de dispositifs de mémoire

telles que la géométrie de piste de décalage du type ≪ race track ≫ pour les

skyrmions. Cependant, les skyrmions sont expulsés des bords du matériau

en raison du SkHE à des densités de courant élevées, ce qui pose toujours

un défi pour leur intégration complète dans les dispositifs.

Au cours des dernières décennies, la modélisation numerique est devenue

un outil essentiel et bien établi, à égalité avec l’expérimentation et la théorie,

pour comprendre les phénomènes de la physique de la matière condensée et
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de nombreux autres domaines scientifiques. En magnétisme, les simulations

micromagnétiques ont largement contribué à la compréhension des struc-

tures magnétiques statiques et de la dynamique de l’aimantation dans des

systèmes de plus en plus complexes. Jusqu’à récemment, les chercheurs uti-

lisaient des simulations pour compléter et contribuer à l’interprétation des

données expérimentales. Cependant, les simulations micromagnétiques ont

évolué pour devenir un outil efficace et fiable pour prédire le comportement

des systèmes magnétiques à l’échelle nanométrique.

La théorie du micromagnétisme définit un ensemble d’équations différentielles

partielles non linéaires dans l’espace et le temps, qui ne peuvent être résolues

analytiquement que pour des cas simplifiés. En général, la solution des

équations statiques et dynamiques du micromagnétisme nécessite des méthodes

numériques. Puisque nous nous intéressons à l’étude des géométries nano-

scopiques 3D, nous utilisons une approche numérique basée sur les éléments

finis (FEM). En FEM, on subdivise la région magnétique en une collection

d’éléments simplex (tétraèdres pour le cas 3D) qui représentent des cellules

de discrétisation pour la simulation, résultant en un maillage tétraédrique

irrégulier. Les sommets du maillage sont connus comme les nœuds de discrétisation.

À partir des nœuds, il est possible d’interpoler linéairement par morceaux la

valeur d’une fonction à l’intérieur des éléments du maillage à l’aide de fonc-

tions de forme. De plus, nous visons à calculer le champ effectif total dans

le matériau. Celui peut être obtenue en suivant la formulation faible des

équations aux dérivées partielles et l’implémentation numérique ultérieure

par la méthode de Galerkin. Une fois le champ effectif calculé, la dynamique

de l’aimantation peut être obtenue en intégrant l’équation LLG.

Il est important de choisir la taille de cellule individuelle du maillage

suffisamment petite pour résoudre avec précision les structures magnétiques.

Pour les matériaux dépourvus d’anisotropie magnétocristalline (comme dans

notre cas), la taille caractéristique des cellules de discrétisation ne devrait

pas dépasser une longueur correspondant à environ la moitié de la longueur

d’échange magnétostatique, donnée par la l’expression ls =
√

2A/µ0M2
s (

Ms est l’aimantation de saturation et A est la constante de rigidité d’échange).

Dans le cas des matériaux ferromagnétiques non-centrosymétriques, la période
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hélicöıdale à longue portée ( ld) est également une échelle de longueur

intéressante car elle décrit la longueur correspondant à une rotation complète

d’hélices d’aimantation dans le matériau. Cette longueur peut être exprimée

par ld = 4πA/|D|. Pour les études présentées dans cette thèse, le matériau

d’intérêt est le FeGe, et pour ce matériau, on obtient ls= 9,7 nm, ld = 70

nm. Pour la discrétisation, nous choisissons une longueur caractéristique

maximale du maillage égale à 4,3 nm (à partir des paramètres du matériau

FeGe indiqués dans le tableau ci-dessous).

Paramètres du matériau FeGe

Saturation magnetization

(Ms)

384 kA m−1

Exchange stiffness (A) 8.87 × 10−12 J m−1

DMI constant (D) 1.58 × 10−3 J m−2

Les études de simulation présentées dans cette thèse ont été réalisées

avec notre logiciel micromagnétique à base d’éléments finis (FEM) développé

en interne. Notre progiciel micromagnétique, nommé tetmag, a été développé

à l’IPCMS de Strasbourg par R. Hertel, dont l’équipe a une longue tradi-

tion dans la conception et l’optimisation de logiciels micromagnétiques [27–

29]. Le logiciel implémente à la fois la parallélisation basée sur les proces-

seurs CPU et les processeurs graphiques (GPU) pour un calcul accéléré. En

outre, les matrices de type H2 sont utilisées pour une gestion efficace de la

mémoire dans les calculs magnétostatiques [30]. Pour valider et comparer

les résultats obtenus avec notre logiciel de simulation, nous avons collaboré

avec d’autres collègues travaillant sur ce domaine. En particulier, nous avons

réalisé des études de simulation statique sur la structure d’un skyrmion se

formant dans un disque FeGe d’une taille spécifique et comparé en détail

les résultats obtenus avec différents codes [31]. Ce test a donné un accord

parfait entre les profils skyrmion aussi bien que les énergies obtenus d’une

part avec notre code tetmag et, d’autre part, avec ceux calculés en utili-

sant d’autres logiciels micromagnétiques bien établis tels que MuMax3 [32]

ou OOMMF [33]. La réalisation de telles comparaisons est une procédure

bien établie dans le micromagnétisme numérique, où divers problèmes dit
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≪ standard ≫ sont couramment utilisés pour comparer les résultats obtenus

à partir de différents codes [34]. Une comparaison réussie avec les résultats

obtenus par d’autres équipes permet de fournir une confiance scientifique

élevée et améliore la crédibilité des résultats numériques obtenus avec un

logiciel de simulation.

L’étude de la structure 3D de l’aimantation dans des matériaux non-

centrosymétriques a révélé une variété de nouvelles structures comme les

tubes skyrmion, les bobbers chiraux et les structures de points de Bloch

dans les aimants hélicöıdaux [35, 36]. Dans ces types de matériaux, cepen-

dant, l’impact du confinement nanométrique 3D et les effets de taille finie sur

les états magnétiques n’avait pas encore été étudié en détail. Pour étudier

l’influence du confinement 3D à l’échelle nanométrique sur les états de l’ai-

mantation se formant dans un matériau hélimagnétique, nous réalisons des

simulations micromagnétiques par éléments finis sur des nanosphères de

FeGe. Malgré la simplicité de la forme géométrique, on trouve des struc-

tures magnétiques très complexes dans de telles nanosphères, qui varient en

fonction de la taille des particules et du champ appliqué. Cette complexité

résulte des propriétés magnétiques intrinsèquement chirales du matériau

non-centrosymétrique et des contraintes imposées par la taille finie de l’échantillon.

Nous présentons la distribution des états fondamentaux de l’aimantation

en fonction du rayon de la nanosphère et du champ magnétique externe.

De plus, nous étudions l’impact des interactions magnétostatiques sur ces

structures magnétiques, car elles jouent un rôle central dans le cas de na-

noparticules ferromagnétiques.

En faisant varier le rayon de la nanosphère et le champ magnétique

externe de 40 à 100 nm et de 0 à 250 mT, respectivement, nous obtenons

cinq états magnétiques d’équilibre principaux dans le système, à savoir,

hélicöıdal, méron, skyrmion, bobber chiral et état de saturation. En tant

qu’états fondamentaux (états d’énergie minimale), ils sont obtenus dans

l’ordre présenté ci-dessus avec un champ externe croissant à un rayon de

nanosphère constant.

L’état hélicöıdal est caractérisé par une rotation continue de l’aiman-

tation selon un axe presque perpendiculaire au champ appliqué. Alterna-
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tivement, l’agencement de l’aimantation peut être interprété comme une

séquence périodique de domaines étroits alternés, pointant le long et op-

posé à la direction du champ magnétique externe, et séparés par des parois

de Bloch avec le même sens de rotation. Les domaines alternés peuvent être

visualisés à l’aide d’iso-surfaces correspondant à mz = 0, et ces iso-surfaces

peuvent être considérées comme des parois de domaines hypothétiques séparant

les domaines. Nous utilisons cette représentation pour montrer les états

d’aimantation d’équilibre dans l’image ci-dessus. Dans l’état hélicöıdal, la

distance entre les deux domaines pointant dans la même direction cor-

respond à une rotation complète d’aimantation, c’est-à-dire à la longueur

ld du matériau. L’interprétation de l’état hélicöıdal comme une structure

magnétique avec des domaines alternés est utile afin de comprendre l’évolution

de la structure à mesure que le champ appliqué est augmenté. Les struc-

tures de domaine magnétique réagissent à une augmentation du champ

externe de telle sorte que les domaines orientés parallèlement au champ

augmentent en taille, au détriment de domaines orientés de manière anti-

parallèle à celui-ci. La transition d’un état hélicöıdal à un état méron avec

une intensité de champ externe croissante peut être comprise dans ce sens.

La structure méron peut être décrite comme une forme hybride de deux

structures chirales différentes, spécifiquement, d’une moitié hélicöıdale et

de l’autre moitié comme un état skyrmion. En ce sens, l’état méron peut

être considéré comme une structure transitoire ou intermédiaire entre ces

deux états. L’augmentation supplémentaire du champ externe augmente la

tendance à étendre les régions dans lesquelles l’aimantation est orientée le

long de la direction du champ. Cette tendance est équilibrée par la nécessité
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du système de préserver les spirales magnétiques induites par l’interaction

combinée de l’interaction DMI et de l’échange ferromagnétique. Dans la

représentation avec les iso-surfaces, l’évolution d’un état méron dans un

champ externe croissant peut être interprétée comme une deuxième flexion

de ces parois virtuelles vers l’intérieur, les reliant maintenant aussi du côté

opposé et résultant ainsi en un noyau central circulaire dans lequel l’aiman-

tation est orientée opposé à la direction du champ appliqué. La configura-

tion symétrique axiale qui en résulte est l’état de skyrmion. Si le champ

externe est encore augmenté, le domaine circulaire environnant, dans lequel

l’aimantation est orientée le long du champ externe, continue de crôıtre,

et le noyau central de l’état de skyrmion pointant dans la direction op-

posée du champ rétrécit en taille, se terminant maintenant dans un point

de Bloch. Une telle structure est connue comme un état de bobber chiral

[38]. En analysant plus en détail la structure de l’aimantation en prenant

une section transversale horizontale au-dessus et en dessous du point de

Bloch, on trouve les structures magnétiques sur ces sections transversales

correspondant à celle d’un skyrmion Bloch 2D et à un état de saturation

2D, respectivement. Par conséquent, on peut considérer cette configuration

comme un état magnétique de transition entre le skyrmion et l’état de satu-

ration. Enfin, à un champ externe élevé, la contribution d’énergie Zeeman

domine et la majeure partie de l’aimantation s’aligne dans la direction du

champ appliqué, résultant dans un état de saturation.
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Dans le paragraphe précédent, l’évolution de la configuration de l’ai-

mantation des différents états magnétiques a été discutée en fonction d’un

champ externe croissant. Cependant, la stabilité de ces structures dépend

également de la taille des particules. Pour étudier cette dépendance, nous

avons effectué de nombreuses simulations qui nous ont permis de déterminer

les plages de stabilité des cinq états, comme résumé dans le diagramme de

phase présenté dans la figure ci-dessus. Le diagramme affiche la configura-

tion à plus faible énergie (les états fondamentaux) en fonction du champ

magnétique externe et du rayon des nanosphères.

De façon remarquable, la phase skyrmion n’existe pas dans les na-

nosphères de FeGe en dessous d’un rayon de 65 nm. Cette taille est com-

parable à la période hélicöıdale à longue portée ld (70 nm) du matériau,

qui à son tour signifie une rotation complète de l’aimantation. Bien qu’il

n’y ait pas de connexion directe entre la structure d’une spirale de spin et

l’état de skyrmion, il est intuitivement clair qu’une structure de skyrmion

ne peut pas se former dans un échantillon qui est trop petit pour permettre

deux rotations complètes de l’aimantation sur le diamètre de la sphère. La

tendance de la disparition successive de phases d’équilibre se poursuit alors

que nous diminuons encore le rayon. En dessous d’un rayon de 50 nm, les

phases bobber-chiral et méron cesse également d’exister. À cette taille, le

diamètre de la nanosphère se rapproche de ld, et par conséquent, seules la

phase hélicöıdale (aux champs externes inférieurs) et la phase de saturation

(aux champs externes supérieurs) sont stables. Pour des rayons inférieurs à

40 nm, seule la phase de saturation reste car la taille des particules tombe en

dessous de ld, ne laissant ainsi pas la place pour une seule rotation complète

de l’aimantation. Une distinction claire des cinq configurations principales

mentionnées ci-dessus n’est possible que dans des tailles de particules allant

jusqu’à un rayon d’environ 90 nm. Dans des nanosphères plus grandes, des

structures hybrides apparaissent, qui peuvent contenir, par exemple, à la fois

une structure méron et skyrmion, ou un skyrmion ainsi qu’un bobber chiral.

À ces plus grandes tailles, l’impact de la forme sphérique de la particule sur

la structure magnétique diminue et on observe une transition progressive

vers un quasi-continuum d’états d’aimantation chiraux tridimensionnelles,
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comme cela se produirait dans le matériau massif.

Après avoir décrit les différentes structures magnétiques et leur forma-

tion résultant des interactions concurrentes de l’énergie Zeeman, de l’échange

ferromagnétique et du DMI, nous discutons maintenant de l’impact du

champ dipolaire (magnétostatique) sur ces configurations et leur distribu-

tion. Pour analyser l’impact des interactions magnétostatiques, nous avons

recalculé le diagramme de phase en excluant le champ de désaimantation et

la densité d’énergie magnétostatique de la simulation. Nous avons constaté

que cela ne modifie pas les résultats de manière appréciable, ce qui donne es-

sentiellement le même diagramme de phase. Ainsi, pour illustrer davantage

l’impact quantitatif du champ dipolaire (ou son absence), nous représentons

l’énergie provenant du champ dipolaire en pourcentage de l’énergie totale

pour les états d’équilibre respectifs. On constate que pour tous les états

fondamentaux, l’énergie de désaimantation ne dépasse pas 10% de l’énergie

totale. Ceci indique que, bien que non strictement négligeables, les inter-

actions magnétostatiques ne jouent pas un rôle dominant dans la forma-

tion des configurations magnétiques et leur distribution en tant qu’états

d’équilibre. L’énergie de désaimantation ne devient appréciable que pour

les petits rayons et les champs élevés, où les particules sont dans un état

presque saturé. Dans les autres états d’équilibre, la nature hélicöıdale - in-

duite par l’interaction DMI - des structures de l’aimantation réduit déjà

l’énergie magnétostatique en formant des états similaires à des domaines

qui alternent périodiquement. Ainsi, au moins pour les ferromagnétiques

non-centrosymétriques de géométrie nanosphèrique, nous concluons que les

interactions magnétostatiques ne jouent pas un rôle dominant dans la sta-

bilisation et la distribution des états fondamentaux de l’aimantation.

Récemment, le skyrmion et le bobber chiral (ChB) ont été proposés

comme structures magnétiques pouvant potentiellement représenter des unités

fondamentales de stockage d’information qui pourraient être utilisées dans

des nouveaux dispositifs de mémoire non-volatiles du type ≪ race-track ≫. Il

a été démontré que ces deux types de structures peuvent coexister et qu’elles

possèdent des empreintes digitales de magnétotransport différentes [37, 38],

ce qui renforce leur intérêt pour un dispositif de mémoire. Ici, nous discu-
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tons d’un mécanisme pour basculer de manière contrôlable entre les deux

états dans une géométrie de disque FeGe en utilisant de courtes impulsions

de champ externe. Sur la base de notre étude des nanosphères (décrite dans

les paragraphes précédents) nous comprenons que, de manière générale, si

le champ externe est augmenté, l’état ChB devient énergétiquement favo-

rable par rapport à l’état skyrmion. Nous utilisons ce fait pour basculer

entre les deux états en appliquant une impulsion gaussienne supplémentaire

qui permet au système de surmonter la barrière d’énergie séparant les deux

états.

La conversion d’un skyrmion vers un état ChB est étudiée dans un disque

FeGe de rayon 80 nm et d’épaisseur 70 nm. Tout d’abord, nous stabilisons

l’état de skyrmion en appliquant un champ magnétique externe constant de

190 mT dans la direction z positive. L’état skyrmion est l’état fondamental

à cette valeur de champ (et l’état ChB est un état d’équilibre métastable).

Nous augmentons le champ externe à 220 mT à partir de 190 mT, modifiant

ainsi la différence d’énergie entre les deux états. Avec l’augmentation du

champ externe, la différence entre les énergies du skyrmion et de l’état ChB

diminue et change de signe. Même si les deux configurations ont changé

leur rôle d’état fondamental et d’état métastable, la transition réelle du

skyrmion à l’état ChB nécessite de surmonter une barrière d’énergie, car

l’état ChB héberge un point Bloch qui doit être injecté. Nous appliquons

une impulsion de champ gaussien d’une intensité de 350 mT et d’une durée

de 235 ps dans la direction y positive pour y parvenir. L’application d’une

impulsion de champ externe nuclée un point de Bloch à la surface supérieure

de l’état skyrmion, convergeant finalement vers l’état ChB. De même, l’in-

version du processus ramène le système à l’état de skyrmion. Tout d’abord,

nous réduisons le champ magnétique externe à 190 mT à partir de 220 mT.

Ensuite, nous appliquons une impulsion de champ de forme gaussienne d’une

intensité de 350 mT et d’une largeur de 150 ps, dans la direction z négative,

pour surmonter la barrière d’énergie. De cette manière, nous pouvons al-

terner entre le skyrmion et l’état ChB en modifiant d’abord la différence

d’énergie des deux états en changeant l’intensité du champ externe statique

et enfin en surmontant la barrière menant à la transition avec de courtes
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impulsions de champ externe.

Il est bien connu que les skyrmions magnétiques sont proposés comme

étant des candidats idéaux pour le stockage de donnés dans des nouveau

dispositif de mémoire nanométriques fonctionnant sur le principe d’un re-

gistre à décalage (≪ race-track memory ≫). Cependant, il est nécessaire

d’afronter quelques défis tels que le SkHE qui fait que le skyrmion est dévié

perpendiculairement à la direction du courant appliqué [39] de même que

la diffusion du skyrmion [40] qui entrave considérablement ce progrès. Pour

obtenir le contrôle de la position des skyrmions, différentes méthodes ont été

proposées, par exemple, l’introduction d’encoches sur les bords pour éviter

la diffusion du skyrmion [41] et le mouvement du skyrmion en utilisant des

anti-ferromagnétiques synthétiques (SAF). Les SAF contiennent des couches

de skyrmions couplées de manière antiferromagnétique, qui annulent ainsi le

SkHE [42]. Cependant, ces méthodes posent leurs défis individuels tels que

la possibilité d’expulsion du skyrmion au niveau des encoches ou l’exigence

d’une grande précision pour fabriquer des matériaux SAF.

Nous constatons que, dans les ferromagnétiques non-centrosymétriques,

il est possible de contraindre les skyrmions à la région souhaitée de la

géométrie du matériau avec de simples modulations d’épaisseur dans le

matériau. Notre étude sur les nanosphères [43], ainsi que des études simi-

laires sur diverses géométries d’éléments en couches minces de ferromagnets

à symétrie d’inversion spatiale brisée [5, 36, 44–47] révèlent la dépendance

de la stabilité de l’état de skyrmion tridimensionnel à la fois en fonction de

champ appliqué et des dimensions géométriques du matériau. Ainsi, on peut

affirmer qu’il est possible de créer des régions préférentielles où, à un champ

magnétique externe donné, la formation d’un skyrmion est énergétiquement

favorable. Dans un premier temps, nous calculons le diagramme de phase

d’une géométrie de film rectangulaire de FeGe en modifiant l’épaisseur du

film et le champ magnétique externe pour obtenir la distribution des états

d’énergie minimale.

Dans le processus de calcul du diagramme de phase, nous obtenons

quatre états principaux d’équilibre magnétique, à savoir, l’état hélicöıdal,

bimeron, skyrmion et saturation, comme indiqué ci-dessus. On retrouve
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également la coexistence de ces états fondamentaux dans cette géométrie

tels que l’état hélicöıdal-bimeron, bimeron-skyrmion et skyrmion-ChB. Les

configurations magnétiques des états d’équilibre primaire présentent des si-

militudes avec celles obtenues dans l’étude des nanosphères. L’état hélicöıdal

représente des domaines alternés en raison de la présence d’hélices magnétique

dans le système. L’état bimeron peut être interprété comme un skyrmion

lateralement étiré, avec la même charge topologique qu’un skyrmion. L’état

skyrmion est celui des skyrmions 3D bien connus de type Bloch. Dans l’état

de saturation, qui se produit à des champs externes élevés, où la majeure

partie de l’aimantation pointe dans la direction du champ externe. Nous

nous intéressons principalement au skyrmion et à l’état de saturation car

le but est de créer des régions dans la géométrie où l’état de skyrmion

est énergétiquement favorable, tandis que l’état de saturation est favorable

partout ailleurs.

Le diagramme de phase ainsi obtenu est représenté sur l’image ci-dessus.

Le diagramme montre une frontière claire entre le skyrmion et l’état de

saturation. On peut observer qu’à un champ externe fixe, l’état de saturation

devient énergétiquement préférable en augmentant l’épaisseur du film. Nous

traçons en outre la densité d’énergie totale des deux états à un champ

externe constant de 650 nm en modifiant l’épaisseur du film de 30 à 60 nm.

Le graphique confirme que, à champ externe constant, l’état de skyrmion est

énergétiquement favorable par rapport à un état de saturation si l’épaisseur

de film est faible.

En utilisant cette argumentation, tout d’abord, nous proposons un moyen
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de contraindre les skyrmions dans des cavités cylindriques symétriques dans

un film de FeGe, en forme semblable à l’envers d’un nanodot avec un rayon

20 de nm comme le montre l’image ci-dessus. L’épaisseur de la couche dans

les cavités est de 30 nm alors qu’elle est de 60 nm partout ailleurs. Selon le

diagramme de phase du film présenté précédemment, à une valeur de champ

externe de 650 mT, l’état de skyrmion est l’état fondamental à 30 nm tandis

que l’état de saturation est l’état fondamental à 60 nm. Par conséquent, les

cavités représentent des positions énergétiquement favorables pour les skyr-

mions. A l’aide de cette modulation d’épaisseur à champ externe constant,

nous montrons qu’il est possible de contrôler la position des skyrmions.

Comme le montre l’image ci-dessus, il est possible de forcer les skyrmions,

dans une certaine mesure, à former des agencements non naturels tels qu’un

agencement diagonal ou un agencement en treillis carré. Ces agencements

sont bien différents par rapport à la structure hexagonale qui se forme na-

turellement dans une couche homogène. De plus, les skyrmions conservent
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leur nature topologique lorsqu’ils sont piégés dans les cavités. Cette pos-

sibilité de générer des endroits préférentiels pour les skyrmions peut avoir

des implications sur le développement de dispositifs, par exemple dans les

applications magnoniques, où la diffraction de Bragg des magnons dépend

de la disposition des skyrmions, ou dans les pistes du type race-track pour

déterminer la position des skyrmions et ainsi contrer leur diffusion. Cela

étant dit, les cavités ne représentent que des emplacements énergétiquement

préférés pour les skyrmions, qui peuvent également se former dans d’autres

parties de la géométrie. De plus, il n’est pas toujours possible de piéger les

skyrmions dans les cavités comme, par exemple, dans la géométrie illustrée

en bas à gauche dans l’image ci-dessus où nous n’avons pas pu stabiliser les

skyrmions dans les deux cavités proches aux limites de l’échantillon à cause

de la répulsion des skyrmions aux bords [48]. De plus, le espacement des

cavités dans la géométrie est également important en raison de la répulsion

skyrmion-skyrmion [48], et par conséquent, nous avons gardé une distance

minimale de 70 nm (correspondant à la valeur ld de FeGe) entre les cavités.

Deuxièmement, de la même manière, nous constatons qu’il est possible

de contraindre les skyrmions à des chemins minces symétriques creusés dans

ces éléments de couches de FeGe comme le montre l’image ci-dessus. Ici

aussi, l’épaisseur des chemins minces est de 30 nm alors que pour le reste

du film elle est de 60 nm. À un champ externe de 650 mT, les skyrmions sont

contraints au chemin central. De plus, nous calculons la barrière d’énergie

rencontrée par un skyrmion isolé, par exemple, dans une géométrie de che-

min linéaire (en bas à gauche dans l’image ci-dessus). La présence d’une

telle barrière oblige les skyrmions à former un arrangement linéaire arti-
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ficiel par rapport à l’arrangement hexagonal naturel (voir en bas à droite

dans l’image ci-dessus). Pour calculer la barrière d’énergie, nous calculons

l’énergie totale du système lorsque la configuration (artificiellement stabi-

lisée) d’un skyrmion isolé se déplace à travers la barrière d’épaisseur le long

de la largeur dans la géométrie du trajet linéaire. Cependant, ce processus

n’est pas trivial car il nécessite que la configuration skyrmion soit stabilisée

à des positions intemédiaires, pare exemple où une moitié de la configura-

tion skyrmion est sur la barrière épaisse tandis que l’autre moitié est sur le

chemin d’épaisseur plus faible. Pour stabiliser une telle configuration, nous

fixons le noyau du skyrmion à une position définie en appliquant un champ

local dans une petite région dans laquelle le noyau du skyrmion pointe dans

la même direction. Ensuite, nous relaxons le système et calculons l’énergie

totale du système. Avant d’évaluer la valeur finale de la barrière d’énergie,

nous soustrayons la contribution énergétique Zeeman du champ externe lo-

cal qui est utilisé pour fixer la position du skyrmion.

Nous répétons la même procédure pour calculer la barrière d’énergie ren-

contrée par un skyrmion isolé dans un film d’épaisseur uniforme, c’est-à-dire

en l’absence de barrière d’épaisseur, et la traçons avec le calcul précédent

en fonction de la coordonnée y (le long de la largeur) du centre de skyr-

mion, comme montré dans l’image ci-dessus. On constate qu’en présence

de la barrière d’épaisseur, la configuration skyrmion isolée fait face à une

barrière d’énergie deux fois plus élevée par rapport à une couche d’épaisseur
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uniforme.

La dynamique des skyrmions contraints est étudiée comme une pro-

chaine étape logique. Nous divisons l’étude en principalement deux par-

ties. Premièrement, nous constatons qu’il est possible de contrer le SkHE

indésirable avec des barrières d’épaisseur dans une géométrie de piste en

forme de ≪ H ≫. Un skyrmion isolé, stabilisé dans le chemin central d’épaisseur

faible, est déplacé à l’aide d’un courant polarisé en spin. Deuxièmement,

nous étudions le fréquence des modes d’aimantation des skyrmions géométriquement

contraints et constatons que celle-ci dépend de la barrière induite par la

géométrie du matériau.

La possibilité de contrer (ou d’annuler) le SkHE indésirable en présence

d’un courant polarisé en spin a fait l’objet d’intenses recherches récemment,

comme indiqué précédemment. L’expulsion de skyrmion des bords du dis-

positif en raison de SkHE est un obstacle à des applications par ailleurs

prometteuses dans les dispositifs de mémoire. Nous constatons que les mo-

dulations d’épaisseur qui ont été utilisées précédemment pour contraindre

géométriquement le skyrmion à des cavités minces ou des chemins minces

peuvent également être utilisées pour contrer le SkHE en présence d’un cou-

rant. Inspirés de la géométrie de la trajectoire linéaire, nous proposons une

nouvelle géométrie de rail en forme de H, avec des barrières d’épaisseur sur
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les bords latéraux, comme le montre l’image ci-dessus. Tout d’abord, un

skyrmion isolé est stabilisé dans le chemin central et plus mince en présence

d’un champ externe de 700 mT appliqué le long de la direction z. Ensuite,

le skyrmion est déplacé à l’aide d’un courant appliqué dans la direction x.

A titre de comparaison, nous répétons la même simulation pour une piste

d’épaisseur uniforme et constatons que le skyrmion nécessite une densité

de courant quatre fois plus élevée pour être expulsé des bords en présence

d’une barrière d’épaisseur. De plus, nous étudions la dépendance de la vi-

tesse du skyrmion dans la piste H en fonction de la densité de courant et

le rapport α/β. Dans les deux cas, nous trouvons une relation linéaire pour

la vitesse du skyrmion, qui peut être expliquée plus précisement à l’aide

de l’équation de Thiele, pointant vers une configuration de skyrmion rigide

dans la géométrie de la voie H. Ainsi, en utilisant des simples modulations

d’épaisseur dans la géométrie, nous montrons qu’il est possible de créer un

puits de potentiel unidimensionnel pour les skyrmions qui peuvent guider

leur mouvement le long de la piste et contrer l’effet SkHE.

L’étude des modes dynamiques des configurations magnétiques dans

les nanoparticules a été d’un grand intérêt dans le micromagnétisme, à la

fois du point de vue de la physique fondamentale et aussi pour l’applica-

tion. Ces études ne révèlent pas seulement les propriétés magnétiques du

matériau, mais aussi l’interaction de la configuration de l’aimantation avec

les ondes électromagnétiques peut indiquer des transitions de phase pos-

sibles. Ainsi, nous étudions comment le confinement géométrique influence

les modes intrinsèques d’un skyrmion. Nous proposons une géométrie d’un

disque nanométrique avec une barrière d’épaisseur au bord (≪ disque avec

barrière ≫) pour obtenir un skyrmion isolé et géométriquement contraint.

Dans le cas d’un disque avec barrière, on obtient principalement deux modes

latéraux et deux modes respiratoires. Ces types de modes peuvent également

être identifiés dans l’analyse des oscillations des skyrmions libres (dans de

nanodisques sans barrière d’épaisseur). Cependant, leur fréquence et am-

plitude dépendent de la géométrie du matériau, c’est-à-dire de la largeur

de la barrière d’épaisseur, et s’écartent significativement de la fréquence

et de l’amplitude des modes de skyrmions dans des disques sans barrière
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d’épaisseur. La dépendance de la fréquence des modes à la largeur de la

barrière d’épaisseur ouvre la possibilité de régler la fréquence des modes,

en fonction de la géométrie choisie. Par exemple, à l’instar des nano-cavités

de rayon uniforme présentées dans l’étude précédente, on peut proposer

des nano-cavités de rayons variables avec des skyrmions géométriquement

contraints au centre, où les modes collectifs peuvent montrer plusieurs pics

de fréquence correspondant à la distribution des rayons.

Pour conclure, nous présentons une étude complète des skyrmions tri-

dimensionnels dans des géométries confinées. Nous identifions divers états

magnétique représentant un équilibre énergétique comme l’état hélicöıdal,

(bi-)méron et bobber chiral, qui sont stabilisés dans des matériaux hébergeant

des structures hélimagnétiques tridimensionnelles. Nous utilisons la dépendance

au champ externe de la stabilité du skyrmion pour étudier la possibilité de

basculer enter un état de skyrmion et un bobber chiral. Nous utilisons aussi

le fait que l’énergie du skyrmion dépendent de la géométrie pour contraindre

les skyrmions dans des régions souhaitées. Cette possibilité de manipuler la

position des skyrmions peut être très utile pour des applications dans les

dispositifs. Par exemple, le concept des skyrmions contraints statiquement

dans différents agencements de ≪ poches ≫ ou dans des chemins étroits

peut trouver des application dans le stockage magnétique. Il ouvre aussi la

voie a un développement de méta-matériaux magnoniques à base de cristaux

artificiels de skyrmion. Ces contraintes géométriques influencent aussi la dy-

namique des skyrmions, comme nous l’avons démontré dans une géométrie

de dispositif de registre à décalage en forme de H, où elles peuvent contrer

l’effet SkHE. De plus, la possibilité d’influencer la fréquence des modes

magnétiques des skyrmions en fonction de la géométrie du matériau peut

être intéressante pour des dispositifs hyperfréquences.
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Introduction
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The study of magnetic skyrmions belongs to the broad subject of magnetism and

magnetic materials, possibly one of the oldest physics branches. Not only has the study

of magnetism and magnetic materials struck the curiosity of philosophers and scientists

over the centuries, but it has also found practical application as early as the late 11th

century in making magnetic compasses for navigation, which practically shaped the

history of the world [49]. Until the last century, the study’s focus was to explore and

understand the properties of bulk magnetic materials due to the limitations of fabrica-

tion, characterization, and simulation techniques ; however, the last century has seen a

shift of interest towards the study of nanomagnetism and spintronics [50, 51].

The study of nanomagnetism deals with geometries of magnetic materials with at

least one nanoscopic scale dimension. For example, the magnetism of isolated nano-

particles, nanodots, nanowires, thin films, and multilayers falls under this umbrella.

Nanomagnetism presents essential differences compared to the magnetism of macrosco-

pic samples. One can ascribe these differences to the changes from bulk geometry that

nanoscopic or mesoscopic scales present, i.e., dimensions comparable to characteristic

lengths, such as domain wall width, as well as broken translation symmetry at the

surface [52], as the surface to volume ratio increases. Another factor that modifies the

nanoparticles’ magnetic properties is that they are generally in close contact with other

physical systems [52], such as a substrate or a capping layer, in the case of most thin

films and multilayers. For the nanoparticles, they can be embedded in a solid matrix.

In both cases, the magnetic material atoms may feel a strong interaction with its im-

mediate neighborhood. Also, the presence of imperfections and defects becomes more

relevant due to reduced dimensions [53, 54]. The spin-wave spectra of samples of na-

noscopic dimensions are also modified [55], considering that the excitation wavelengths

are comparable to the dimensions of the nanoparticles. Moreover, the dynamic behavior

of nanometric size magnetic objects may also differ from macroscopic samples due to

thermal fluctuations under the usual experimental conditions. The phenomenon of su-

perparamagnetism [56, 57] is observed in magnetic nanoparticles if the thermal energy

becomes comparable to the particles’ anisotropy energy, leading to an effectively zero

measured magnetic moment.

Nanoscopic magnetic particles have found widespread applications in fields like geo-

logy, ferrofluids, and medicine ; however, without a doubt, the most successful applica-

tion has been in magnetic recording devices [58] brought about by spin electronics or
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spintronics [59]. The use of spin-valves in hard disk read heads was the first commer-

cial utilization. The spin-valves operate based on the giant magnetoresistive (GMR)

effect, for which Albert Fert and Peter Grünberg received the Nobel Prize in 2007. In

a device based on the GMR effect, two ferromagnetic layers sandwich a few nanometer

thick nonferromagnetic metal spacer. When the magnetization in the two ferromagnetic

layers is mutually parallel, the device is in a low resistance state and vice-versa. The

spin valve acts as a sensor in the magnetic hard disk’s (HDD) read-head, sensing tran-

sitions between bits as their magnetization reverses. The spin valves based on GMR

and advanced magnetic materials led to a tremendous increase in hard disk drives’

areal storage density. Even so, spin-dependent tunneling devices have now replaced the

GMR based spin-valve devices. An insulating barrier has replaced the metal spacer

in spin-valves, and hence, the room temperature magnetoresistance of the device has

increased by a factor of ten. These new devices are known as magnetic tunnel junctions

(MTJs) or tunneling magnetoresistance (TMR) devices. Moodera et al. and Miyazaki

& Tezuka [60, 61] introduced the MTJs utilizing amorphous AlOx as the barrier ma-

terial. Further, Butler et al. and Mathon & Umerski [62, 63] calculated that using

crystalline MgO(001) as insulating spacer leads to higher TMR. This has led to recent

room-temperature TMR values as high as 600-1000% [64, 65].

Next critical breakthrough of spintronics is the use of spin moments of the conduc-

tion electrons to influence ferromagnetic conductors’ magnetization orientation, known

as spin-transfer torque (STT). A spin-polarized current, where there is an unequal po-

pulation of spin-up and spin-down electrons giving it a polarization, exerts a torque

on the ferromagnetic material’s magnetization moments at high current densities. Ber-

ger [66] and Slonczewski [67] laid down the foundations of the STT effects used to switch

MTJs and generate oscillations of the magnetization in nano-oscillators. Further, it was

recognized that one could use STT to manipulate magnetic domain walls, leading to

the proposition of racetrack memory [68] by Parkin in 2008. The racetrack consists of a

ferromagnetic nanowire where the bits are encoded with alternating magnetic domains.

The domains move past the read and write units with the help of spin-polarized current

pulses. The lack of mechanical parts improves the longevity of the device and makes it

energy efficient. Hence, the concept of racetrack memory has the potential to replace

the current magnetic storage devices in the future. However, significant challenges like

Walker breakdown of domain walls and high depinning currents due to material de-
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fects limit its comprehensive commercialization. Magnetic skyrmions may solve these

challenges and prove a promising alternative to the magnetic domains as fundamental

information storage units in a racetrack memory.

Magnetic skyrmions are swirling magnetization configurations with non-trivial to-

pology. They are stabilized in the materials with Dzyaloshinskii-Moriya interaction

(DMI) due to the breaking of spatial inversion symmetry either at the material surface

or within the bulk. DMI is an anti-symmetric exchange interaction that competes pri-

marily with the symmetric exchange interaction to give chiral magnetization structures.

One can consider skyrmions as a static soliton solution of a continuous magnetization

vector field in the micromagnetic (continuum) approximation. Hence, they tend to be-

have as rigid quasi-particles. Due to their non-trivial topology, they possess topological

protection, meaning that they cannot be continuously unwound into a saturated state.

Topological protection increases skyrmion stability and is a crucial property for their

utilization as units of information storage. It provides a robust counter to the mate-

rial defects as well [69, 70]. Further, to displace the skyrmions, much lower current

densities (by order of two) are required compared to the domain walls [2]. Typically,

the diameter of a skyrmion ranges from a few hundred nanometers to a few nanome-

ters. Recently, an atomistic size skyrmion configuration has also been reported [71].

Hence, the properties mentioned above and the possibility of stabilizing them at room-

temperatures [4–6, 72, 73] have provided a great impetus to the study of magnetic

skyrmions from both fundamental physics and device application points of view.

The possibility of utilizing skyrmion to further downscale the contemporary CMOS

technology to keep up with Moore’s law has spawned the field of Skyrmion-Electronics

or Skyrmionics. As the name suggests, the field aims to integrate skyrmions into contem-

porary microprocessors, random access memories, and RF applications. Fert et al. [7]

proposed in 2013 the use of skyrmions as a unit of information in a novel racetrack

memory. As mentioned in the previous paragraph, the most significant improvements

were the reduced size of the skyrmions, their topological stability and relatively small

current densities required to displace them. Skyrmions have also found application in

spin-torque nano-oscillator (STNO) devices [8, 9]. In a nano-disc geometry, the skyr-

mions gyrate with the help of a spin-polarized current through the STT effect. As the

skyrmions behave as rigid quasi-particles, their arrangement in the disc can enable one

to tailor a complex periodic signal. Zang et al. [10–12], in 2015, with two separate
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publications, proposed the use of skyrmions in both logic gate devices and transistor

type devices. The logic gate device is based on the conversion of skyrmions into do-

main walls and vice-versa by modulating the width of skyrmion propagation channel,

while the skyrmion based transistor uses a voltage-controlled perpendicular magnetic

anisotropy to create a potential barrier for the skyrmion propagation, and hence, a

gate ON and a gate OFF state. Finally, skyrmions have shown promise in unconven-

tional computing, such as neuromorphic devices, reservoir computing, and stochastic

computing [13]. There are still significant challenges related to understanding the pro-

perties of the materials hosting the skyrmions and skyrmion’s intrinsic characteristics

for a comprehensive integration into new devices ; however, the results obtained from

different theoretical and experimental studies of skyrmions remain quite encouraging.

Due to ease of fabrication and characterization, most of the material geometries

considered until recently in the study of nanomagnetism and spintronics have been

2D. However, with the advances in experimentation and simulation techniques, it has

become possible to explore complex 3D geometries at nanoscopic scales, which has

piqued the magnetism community’s interest. We refer to a recent review [14] on the

subject, which thoroughly describes these advances. On the fabrication side, this change

is primarily driven by the development of techniques like focused electron beam induced

deposition (FEBID) [74], physical vapor deposition (PVD) on 3D scaffolds [75], and che-

mical methods [76, 77]. Characterization techniques such as nano-SQUID and magneto-

optical Kerr effect (MOKE) with micromanipulation have proved useful [78, 79]. The

highly ordered magnetization configuration of multiple nano-objects can also be charac-

terized through neutron small-angle scattering experiments by utilizing the reciprocal

space. This technique was utilized for the first observation of an ordered skyrmion

crystal phase in MnSi [1]. In the field of microscopy, the use of nano-tomography [80]

has shown promise. The 3D magnetization configuration can be constructed through

multiple 2D projections of the geometry by rotating it with respect to an axis. Concer-

ning the X-ray microscopy, where one can also study the magnetization dynamics,

transmission-X-ray photoemission electron microscopy (XPEEM) [81, 82] and magne-

tic X-ray tomography [83] have been used to study 3D nanoscopic geometries.

Given the progress in characterization and microscopy techniques to study 3D na-

nomagnetism, micromagnetic simulations remain a powerful tool for an in-depth un-

derstanding of static and dynamic properties of magnetization configuration in the
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geometry. Most often, the strategy to study the 3D magnetization configuration is to

compare its 2D projections, obtained from the characterization or the microscopy tech-

niques, with the corresponding micromagnetic simulations. The progress in computer

hardware and code development has boosted the field of simulations immensely. It has

become possible to simulate micron-sized geometries with a personal computer, which

used to require dedicated computational facilities up to a few years ago. The use of

graphical processing units (GPUs) for massively parallel computations has further im-

proved the time required for the calculations. The generation of large amount of data

in a short time due to improved computational speed has lead to new challenges, such

as, visualization, post-processing, and storage of the data. Further, the development of

hybrid micromagnetic and atomistic simulation techniques [84] for studying strongly

inhomogeneous magnetization configurations such as a Bloch point has made possible a

more general and universal treatment of different magnetic materials. The simulations

require the geometry to be spatially discretized. The finite element method (FEM) has

proved significant for the discretization of 3D shapes. As FEM uses an irregular mesh,

it is advantageous in modeling complex 3D geometries containing curvatures, compa-

red to the finite difference method (FDM), which uses a regular mesh. Considering the

progress in the field of micromagnetic simulations, as mentioned above, it has moved

past the point where researchers would only use it as an interpretation tool for different

magnetization related phenomenons. It has now emerged as an effective and robust tool

for predicting different static and dynamic magnetization phenomenons.

Following the general trend in nanomagnetism, most reported studies on magne-

tic skyrmions are based on essentially 2D material geometries, where interfacial DMI

stabilizes the skyrmions. The research on 2D geometries and interfacial DMI has been

motivated by the possibility of utilizing already mature fabrication, characterization,

microscopy, and simulation techniques. However, keeping in mind the recent progress of

the respective fields, as mentioned in the preceding paragraphs, it is possible to explore

the properties of 3D magnetic skyrmions in 3D nanoscopic geometries. In the studies

presented in this thesis, we explore the static and dynamic properties of skyrmions sta-

bilized by bulk DMI in nanoscopic 3D material geometries with the help of FEM/BEM

micromagnetic simulations. We use the material parameters corresponding to the well

studied FeGe, a non-centrosymmetric ferromagnetic material lacking inherent spatial

inversion symmetry, and hence, exhibiting bulk DMI, which in turn stabilizes 3D Bloch
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type skyrmions. For a fundamental 3D material geometry like a nanosphere, we find a

variety of equilibrium magnetization states, in addition to the skyrmion state, such as

a helical, meron, and chiral bobber state. Moreover, we find that the geometry of the

material plays a crucial role in the stabilization of the skyrmions, based on which we

propose a method to confine them to a desired region of the geometry by introducing

thickness modulations. We present a full study on statics and dynamics of the confined

skyrmions showing the method to confine them and their dynamic response when confi-

ned. Finally, we motivate the possible use of these properties in device applications,

such as a novel racetrack memory and RF applications.

The thesis is broadly divided into three parts. The first part describes the theory of

micromagnetism and 3D magnetic skyrmions in two separate chapters. The theory of

micromagnetism, which constitutes chapter 2, forms the underlying theory of different

interactions and energy terms required to simulate a ferromagnetic material lacking

inherent spatial inversion symmetry (FeGe in our case). As the micromagnetic theory

considers magnetization a continuous vector field, the description of the interactions

differs from the atomistic picture (Heisenberg model). In particular, we present the

micromagnetic description of exchange, bulk Dzyaloshinskii-Moriya (DMI), Zeeman,

and dipolar interactions. Further, we describe the utilization of the Landau-Lifshitz-

Gilbert (LLG) equation for studying the magnetization dynamics and its modification

to accommodate spin-transfer torque (STT) effects. Finally, we present the description

of relevant magnetic length scales, and briefly discuss other significant magnetization

structures such as magnetic domains and domain walls.

Chapter 3 outlines the analytical treatment of 3D magnetic skyrmions, their cru-

cial theoretical and experimental studies, and a collection of similar chiral magnetiza-

tion structures. The analytical treatment of skyrmions is further subdivided into two

parts : first, the static skyrmion solution stabilized by DMI, and second, the interac-

tion of conduction electrons with the skyrmions, which contains topological Hall effect,

skyrmion Hall effect, Thiele equation, and emergent magnetic and electric field in the

presence of skyrmions. As they have gathered considerable attention from the spintro-

nics community in the last few years, a vast pool of studies is present in the literature.

Considering the scope of this thesis, we present a short list of seminal works on 3D skyr-

mions. It includes studies on their observation, motion under spin-polarized current,

and dynamical magnetization modes. Finally, we recount chiral magnetization struc-
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tures, such as magnetic vortex, Bloch point, helical magnetization state, chiral bobber

state, dipole strings, and magnetic hopfions, which have attracted attention from the

community due to their unique topology and magnetic properties.

The second part contains the numerical methods used for the implementation of mi-

cromagnetic simulations. Chapter 4 outlines the theory of numerical implementation,

i.e., spatial discretization in the form of the finite element method (FEM) and temporal

discretization for integrating the LLG equation on FEM mesh nodes at discrete time

steps. Spatial discretization with the FEM method is vital for our study as the use

of irregular mesh helps us model three-dimensional geometries better. However, it is

not trivial to evaluate the total effective field generated due to material interactions

on an irregular mesh, which is used further for LLG integration. The section on FEM

starts with a summary of simplex elements that form the basis of an irregular mesh.

Then, we discuss the use of shape functions for piecewise linear interpolation of any

arbitrary function, their differentiation, and integration. Finally, we discuss the solution

of partial differential equations to evaluate the local effective exchange field and long-

range magnetostatic field. These subsections introduce the essential concept of weak

formulation of partial differential equations such as Laplace’s equations and Poisson’s

equation. The proceeding section, related to temporal discretization, outlines the nu-

merical integration of the LLG equation utilizing the total effective field calculated in

the previous section. Finally, we present a short description of tetmag code, which is

used as a numerical instrument for the FEM/BEM micromagnetic simulations.

Part three contains the main results obtained through our studies on 3D skyrmions,

divided into chapters 5-7. Chapter 5 describes the three-dimensional chiral magneti-

zation structures obtained in FeGe nanospheres focusing on five principal equilibrium

magnetization states : helical, meron, skyrmion, chiral bobber, and quasi-saturation.

We describe the magnetization configuration of each equilibrium state in detail and

schematically show the change in state with increasing external magnetic field. Thus,

we obtain a phase diagram of the ground states by changing the external magnetic field

strength and radius. The phase diagram depicts the dependence of equilibrium state

stability on the dimensions of the material geometry. Further, we obtain a cross-section

of the phase diagram in the form of two line-scans, one along the direction of constant

radius and another along the constant external field, to show the total energy density

of the ground states and metastable equilibrium states. We find that the total energy
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of ground state and metastable equilibrium states is close for specific phase diagram

regions. However, due to complex magnetization topology, a transition from one state

to another are often separated by a significant energy barrier. This finding could be of

interest to magnetic recording device applications. Finally, we explore the role of ma-

gnetostatic interactions by plotting the demagnetization energy as a percentage of total

energy for the ground states. We find that it stays below 10% for all the ground states,

and the phase diagram does not alter if one neglects the magnetostatic interactions.

Chapter 6 outlines the skyrmion-chiral bobber transition obtained in a nanodisc

geometry. Recently, the two states have been proposed as the units of information sto-

rage with distinct magneto-transport fingerprints. Hence, the possibility to dynamically

switch between the two states could be relevant from a memory device application point

of view. In chapter 5, we describe how a state becomes energetically preferable depends

on the strength of the external magnetic field. Utilizing this concept, we propose a

method to switch between the magnetization states with the help of an external field

pulse.

Chapter 7 describes the geometric confinement of 3D skyrmions through material

thickness modulations. While chapter 6 outlines the concept of energetically preferable

skyrmion state on the external magnetic field, this chapter explores the dependence of

skyrmion state stability on the material’s dimensions. The first section of the chapter

focuses on static skyrmion confinement in a rectangular geometry. We acknowledge that

if all three dimensions of the geometry are on a nanoscopic scale, the phase diagram

representing the magnetization ground states depends heavily on those dimensions.

Hence, we plot a phase diagram to obtain the ground states for the rectangular geo-

metry by keeping lateral dimensions constant and changing the thickness and external

field. Typically, we find that the skyrmion state is more stable in thinner rectangular

films at a given external field, confirmed by a percentage DMI energy plot of ground

states. Finally, based on the phase diagram, we present static skyrmion confinement in

the regions of reduced film thickness of circular pocket and thin path shape. The next

two sections focus on calculating the energy barrier profile (skyrmion potential well)

faced by an isolated skyrmion in the linear path geometry (one of the example geo-

metry). First, we mathematically model the magnetization profile of an isolated Bloch

type skyrmion. Then, we use the modeled magnetization configuration to calculate the

system’s total energy as the skyrmion moves across the thickness barrier. We repeat the

9



process for a rectangular film without the thickness barrier and compare both energy

profiles. As expected, we find a much higher energy barrier in the presence of thickness

modulation. Finally, the last section outlines the dynamics of confined skyrmion. In

the first subsection, we propose a novel H-shaped skyrmion racetrack geometry, with

thickness barriers at the edges to counter the unwanted skyrmion Hall effect (SHE). We

find that the maximum current density that can drive the skyrmions in the racetrack

increases by eight folds with the thickness barriers’ introduction. In the final subsection,

we study the dynamical modes obtained in a disc geometry with a thickness barrier

at the edge. The skyrmion is stabilized in the thin central part of the disk. First, we

identify all the magnetization modes and then calculate the dependence of these modes’

frequency and amplitude on the thickness barrier’s changing width. We find a collec-

tion of breathing, gyrotropic, and azimuthal modes within the 50 GHz range. Moreover,

we find that one can tune the frequencies and amplitude of these modes by adjusting

the thickness barrier’s width. Hence, in summary, we propose a way to confine the 3D

skyrmions, studied their dynamic properties, and motivated device applications.
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Chapitre 2

Micromagnetism
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W.F. Brown Jr. introduced micromagnetic theory [16] in 1963 to describe magneti-

zation structures of the sub-micrometer length scale in magnetic materials. The length

scales considered are large enough for the atomic structure of the material to be ignored

(the continuum approximation) and yet small enough to resolve magnetic structures

such as a domain wall, a vortex, or in our case, a magnetic skyrmion. It allows not only

to calculate these magnetization structures but also predicts their existence. In contrast

to purely quantum mechanical theories, such as density functional theory, micromagne-

tics does not account for the electronic structure of the material and the origin of the

magnetic moment. Instead, it uses the magnetization as a material parameter, which is

defined as the density of magnetic moments. The purpose of micromagnetic theory is

to determine the spatial structure of the magnetization on a mesoscopic scale, as well

as its evolution in time. The model’s central assumption is that the aligning forces in

the magnetic material are strong enough to keep the magnetization parallel on a cha-

racteristic length scale well above the lattice constant. In practice, this assumption is

justified by the overwhelmingly dominant effect of the ferromagnetic exchange on short

length scales. Exceptions in which this assumption does not hold, in a bulk ferromagnet,

are rare (for e.g., Bloch points). The total energy of a ferromagnetic system depends

on the arrangement of the magnetization , and it is composed of several contributions

depending on the respective material’s properties. While some of these contributions,

like the demagnetization energy and the Zeeman energy, can be described by classi-

cal magnetostatics, others like the exchange energy, DMI, and the magnetocrystalline

anisotropy energy have a quantum mechanical origin.

The dynamics of the magnetization was described by Landau and Lifshitz [85].

Later, Gilbert [17] derived an equivalent description using a different damping formu-

lation. The resulting Landau-Lifshitz-Gilbert equation describes the evolution of the

magnetization in time, including dynamic effects such as spin waves, normal oscillatory

modes of the magnetization, and magnetization reversal processes. Thus, micromagne-

tic theory is a fundamental tool for the investigation of the structure and dynamic

behavior of nanoscale systems.

In this chapter, we present the fundamental aspects of the micromagnetic theory.

We start by describing the terms involved in calculating the total energy, which are used

for our study, and the effective field resulting from the respective energy terms. Also, we

present the Landau-Lifshitz-Gilbert (LLG) equation which takes into account the total
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2.1 Energy terms

effective field, due to the energy contributions, which acts on the local magnetization

by exerting a torque. Further, we discuss the extension of LLG equation for the spin-

polarized currents.

2.1 Energy terms

In micromagnetism, the magnetization is represented by a continuous directional

vector field M(x) , meaning that it has a constant length Ms, where Ms is the satura-

tion magnetization of the material. Often, the reduced magnetization is used, defined as

m(x) = M(x)/Ms as representing the vector field. The micromagnetic problem thus

consists in determining the direction of m(x) at each position x. For static configura-

tions, one can achieve this by minimizing the free energy of the system. We describe

all the contributions to the free energy in this section which are used in our study. As

is commonly done in micromagnetic theory, we neglect the entropy contribution in our

study, which is a good approximation of temperatures far below the Curie point.

2.1.1 Exchange energy

The characteristic property of ferromagnetic materials is, typically, a non-vanishing

macroscopic magnetization, even for a vanishing external field. From an atomistic point

of view, If the magnetic moments are coupled exclusively by their dipole-dipole in-

teraction, the resulting magnetization always vanishes for a vanishing external field.

However, in ferromagnetic materials, the magnetic moments are subjected to symme-

tric exchange interaction arising from a quantum mechanical interaction of electrons.

This effect energetically favors either their parallel or antiparallel alignment. One can

attribute the origin of the energy contribution to the respective two-particle system’s

Coulomb energy.

The Heisenberg model gives the classical description of the exchange interaction

which holds on an atomistic level. A detailed derivation of the same can be found

in reference [86]. In Heisenberg formulation, the exchange energy of two neighboring

magnetic moments si and sj is defined as

Eex
ij = −Jijsi · sj (2.1)
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2.1 Energy terms

Where, Jij denotes the exchange integral for the respective magnetic moments. The

exchange integral Jij depends on the distance of magnetic moment sites. Hence, nearby

moments provide significant contributions to the exchange energy, usually next neigh-

bors. Performing a transition to the continuum representation, ∆x is introduced as a

small parameter describing the inter-atomic distance. Considering a continuous norma-

lized magnetization field m(x) = M(x)/Ms, where Ms is the saturation magnetization

of the material, the exchange energy associated with coupling of magnetization at po-

sition x is given by [87]

Eex
x = −

J

2
m(x) · m(x + ∆x) (2.2)

= −
J

2

[

1 −
1

2

(

∇mT · ∆x
)2
]

+ O(∆x3
i ) (2.3)

One can obtain the expression 2.2 by applying the unit-vector identity (n1−n2)2 =

2 − 2n1 · n2 and performing a Taylor expansion of the vector field. We neglect the

higher-order terms of the Taylor expansion represented by O. Finally, one may integrate

equation 2.2 to obtain a continuous expression for the total exchange energy while

considering a regular spin-lattice, i.e., regular spacing of the spin sites ∆x as well as

identical J for each site. In the most general form, the procedure results in the following

equation [87]

Eex = C +

∫

Ωm

3
∑

i,j=1

Aij
∂m

∂xi

∂m

∂xj
dx (2.4)

The coefficients of the matrix Aij depend on the crystal structure and the resulting

exchange couplings of the magnetic body’s moments. C is a constant of the integration,

and it is usually neglected since it is independent of m and a constant offset to the

total energy. For cubic and isotropic lattice structures, the exchange coupling constants

Aij simplify to the scalar ferromagnetic exchange constant A.

Eex =

∫

Ωm

A
3
∑

i=1

(

∂m

∂xi

)2

dx (2.5)

Even though the energy expression is derived with specific lattice structure as-

sumptions, it accurately describes many magnetic materials [88]. One can argue that
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2.1 Energy terms

equation 2.5 exactly represents the lowest order phenomenological energy expression

that penalizes inhomogeneous magnetization configurations.

2.1.2 Dzyaloshinskii-Moriya interaction

Dzyaloshinskii [89] and Moriya [90] discovered that neighboring spins could inter-

act through an antisymmetric exchange interaction in addition to the regular sym-

metric exchange interaction discussed in Section 2.1.1. Hence, it is referred to as the

Dzyaloshinskii-Moriya interaction (DMI). It is a superexchange interaction caused by

strong spin-orbit coupling in material systems lacking spatial inversion symmetry. In

Heisenberg formalism, one can write the general antisymmetric exchange energy of

neighboring atomistic magnetic moments si and sj as

EDMI
ij = dij · (si × sj) (2.6)

Here, the vector dij depends on the symmetry of the system. For this study, we

are interested in materials that inherently lack spatial inversion symmetry, known as

non-centrosymmetric ferromagnets [23, 91]. For these materials, one can represent the

vector dij as

dij = −d∆x̂ (2.7)

Where, d is a scalar DMI coupling constant, and ∆x̂ = ∆x/|∆x| is a unit vector

pointing from the atomic site i to atomic site j. With the help of equation 2.7,for a

continuous normalized magnetization vector field m(x), one can write the energy term

EDMI
x at position x as [87]

EDMI
x = −

d

2
∆x̂ [m(x) × m(x + ∆x)] (2.8)

= −
d

2
∆x̂

[

m(x) × (∇mT ∆x)
]

. (2.9)

Similar to section 2.1.1, assuming isotropic DMI coupling d and lattice spacing ∆x

results in the energy’s continuous formulation as follows.

EDMI =

∫

Ωm

Dm · (∇ × m)dx (2.10)
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2.1 Energy terms

The coupling constant D depends on the atomistic coupling constants d and the

lattice spacing ∆x.

Generally, in micromagnetism, the total energy contribution of DMI can be ele-

gantly expressed through a phenomenological approach based on Lifshitz invariants

(LIs). The LIs are derived from general considerations of the properties of the thermo-

dynamic potential in second-order phase transitions. Their detailed form depends on

the symmetry properties of the crystal [92, 93].

L
k
ij = mi

∂mj

∂k
−mj

∂mi

∂k
(2.11)

where i, j, k ∈ {x, y, z}. Further, one may express EDMI for the bulk in terms of

Lifshitz invariants as :

EDMI =

∫

Ωm

D(Lx
zy + L

y
xz + L

z
yx)dx =

∫

Ωm

Dm · (∇ × m)dx (2.12)

The antisymmetric exchange interaction competes with the symmetric (ferroma-

gnetic) exchange interaction in ferromagnets to give chiral magnetization configura-

tion, such as spin helical states or magnetic skyrmion states, which we will discuss in

section 5.1.

2.1.3 Demagnetization energy

The demagnetization energy, also known as magnetostatic energy or stray-field

energy, considers the dipole-dipole interaction of a magnetic system. This energy contri-

bution owes its name to the property of magnetic systems, which energetically favors

macroscopically demagnetized states if subject to dipole-dipole interaction alone. For a

continuous magnetization, the demagnetization energy can be obtained from Maxwell’s

equations. In the absence of an electric current, Maxwell’s macroscopic equations give

∇ · B = 0 (2.13)

∇ × Hdem = 0 (2.14)

Further, one can express the magnetic flux B in the form of Hdem and M as follows.
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2.1 Energy terms

B = µ0(Hdem + M) (2.15)

It can be followed from the equation 2.13 that the magnetic field Hdem is conser-

vative, and hence one can be express it in terms of a scalar potential Hdem = −∇u.

Inserting the scalar potential and equation 2.15 in equation 2.13, we obtain the Poisson

equation.

∆u = ∇ · M (2.16)

The solution of the Poisson equation has the following form.

u(x) = −
1

4π

[
∫

Ωm

∇′ · M(x′)

|x − x′|
dx′ −

∫

∂Ωm

M(x′) · n

|x − x′|
ds′

]

(2.17)

Here, ds′ measures the surface area of the boundary of x′ and n is a outward-normal

vector to the surface. In analogy to the electric field, the terms ρ = −∇ · M and σ =

M · n are often referred to as magnetic volume charges and magnetic surface charges,

respectively. Once we obtain the scalar potential, we can solve for the demagnetization

field. Thus, one may write the demagnetization energy as follows.

Edem = −
µ0

2

∫

Ωt

M · Hdemdx (2.18)

The factor of 1/2 in the above equation is typical for self-energy terms. It is required

in order to account for the double-counting problem that arises from the fact that

magnetic moments within the sample are both the source of magnetostatic fields and

subjected to them. On an atomistic scale, the dipolar interaction between a magnetic

moment at a site i and another moment at a site j should only be counted once. In the

integration of the volume in the continuum model, this is accounted for by the factor

1/2. The equation 2.17 highlights two essential properties of magnetostatic energy.

First, the total magnetostatic energy of a ferromagnetic body is always positive [94].

Second, it is essential to look at the magnetic volume and surface charges as magnetic

potential sources. Hence, a stable magnetization configuration tends to minimize these

charges’ formation to minimize the magnetostatic energy. The magnetization will align
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2.1 Energy terms

with the boundaries such that M · n tends to zero ; minimizing ∇ · M to an extent

possible. This is known as the pole avoidance principle [94]. The consequence of this

principle is the formation of closure domain configurations in magnetic systems above

a critical size [95].

2.1.4 Zeeman energy

The energy of a ferromagnetic body depends on the external field. The correspon-

ding energy contribution is referred to as Zeeman energy. It is dependent on the relative

orientation of the magnetization to the external magnetic field. According to classical

electromagnetics, one can write the expression of Zeeman energy as follows.

EZee = −µ0

∫

Ωm

Msm · Hextdx (2.19)

Here, µ0 is the vacuum permeability and Hext is the external magnetic field.

2.1.5 Effective field

We have introduced different energy termes involved in the micromagnetic forma-

lism of an isotropic non-centrosymmetric ferromagnet, summarized as follows.

Etotal = Eexc + EDMI + Edmg + EZee (2.20)

To obtain a magnetization configuration corresponding to a local minimum of total

energy, one must address the variational problem of total energy concerning magneti-

zation, mathematically represented by δEtotal = 0. Moreover, one also needs to account

for the non-linear constraint |m| = constant imposed by a fundamental assumption

of micromagnetism, which conserves the absolute value of magnetization in space and

time.

In a non-equilibrium magnetic configuration, the magnetization undergoes a pre-

cessional motion around an effective field before relaxing along its direction. One can

calculate the contribution of the external magnetic field and demagnetization field to

this effective field from Maxwell’s equations. However, exchange interaction and DMI

contributions need to be constructed from thermodynamic principles. W. F. Brown Jr.

introduced the effective field as a variation of energy functional with the magnetization.
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2.2 Dynamics of magnetization

Heff = −
1

µ0Ms

δE[m]

δm
(2.21)

Here E is the total energy functional from equation 2.20. Hence, we can write

different contributions to the effective field from all the different energy terms discussed

in section 2.1 as

Heff =
2A

µ0Ms
∇2m

︸ ︷︷ ︸

Exchange

−
2D

µ0Ms
(∇ × m)

︸ ︷︷ ︸

DMI

+Hdmg + Hext (2.22)

Where A is exchange stiffness constant and D is DMI constant.

2.2 Dynamics of magnetization

In micromagnetics, the magnetization dynamics is described by the Landau-Lifshitz-

Gilbert (LLG) equation. This equation describes the spatially resolved motion of the

vector field of the magnetization in an effective field. One obtains the equilibrium

magnetization configuration by determining when the torque exerted by the effective

field vanishes.

2.2.1 Landau-Lifshitz-Gilbert equation

We consider a homogenous effective field Heff exerting a torque τ on the magne-

tization M .

τ =
dL

dt
= M × Heff (2.23)

Where L is the angular momentum of the magnetization expressed as

L = −
M

γ0

(2.24)

Here, γ0 is the gyromagnetic ratio, given by γ0 =
g|e|µ0

2m
, where e is the electron

charge and m is the electron mass. The Landé g-factor [96] is 2 when the moment is
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2.2 Dynamics of magnetization

Figure 2.1 – Schematic representation of the magnetization precession around the

effective field according to the LLG equation (equation 2.26) with the precession term

shown in red and relaxation term shown in blue.

purely due to the electron spin. In most ferromagnetic materials, g is 2, indicating that

the orbital contribution to the magnetic moment is negligible [88]. The change of the

magnetization in time is then related to the torque by

dM

dt
= −γ0τ = −γ0 [M × Heff ] (2.25)

In addition to the precession, dissipative processes damp the motion of the ma-

gnetization. On the atomic scale, these are attributable to spin diffusion, spin-orbit

coupling, interactions with magnons or phonons, or misaligned atomic spins. Such dis-

sipative processes can be accounted for within micromagnetic theory by introducing a

phenomenological damping term. In the case of the Gilbert [17] equation (2.26), the

damping is proportional to the rate of change of the magnetization dM
dt .

dM

dt
= −γ0 (M × Heff ) +

α

Ms

(

M ×
dM

dt

)

(2.26)

Typically, α is considered constant. Its theoretical determination is a rather com-

plex problem [97] since it encompasses effects from many different sources. In the equa-

tion 2.26, the time derivative of the magnetization is present on both sides of the equa-

tion. One can transform it by replacing dM
dt on the right-hand-side. Thus, we obtain

the following representation after rearrangement.
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2.2 Dynamics of magnetization

dM

dt
= −γ′ [M × Heff ] −

α′

Ms
M × [M × Heff ] (2.27)

where γ′ and α′ are defined as

γ′ =
γ0

1 + α2
(2.28)

α′ =
αγ0

1 + α2
(2.29)

One can visualize the evolution of magnetization according to Fig. 2.1. There are

two terms involved : the precession term is perpendicular to the magnetization and

the effective field, while the damping term is perpendicular to the magnetization and

the precession term, which aligns the magnetization toward the effective field. Both

terms preserve the norm of the magnetization. In a numerical context, the Landau-

Lifshitz form of the equatuion of motion (equation 2.27) has the advantage because it is

explicit, while the mathematically equivalent Gilbert form (equation 2.26) is implicit.

The explicit form allows for the ease of computation of the right-hand-side of the

equation.

2.2.2 Current induced dynamics

Moving charges in a ferromagnet can induce a magnetic field (Oersted field), which

can, in turn, influence the state of the magnetization. Besides this traditional interaction

between electrical currents and the magnetization, given by the induced magnetic field

(which enters in the LLG equation in the form of an effective Zeeman field), Slonczewski

and Berger [66, 67] have predicted that a spin-polarized electric current can also directly

influence the magnetization. As the current flows through a ferromagnet, the local

magnetization exerts a torque on the spins of the conduction electrons, consequently

aligning them with the magnetization direction. In turn, the spins exert a reaction

torque on the magnetization, which is proportional to the current density known as spin-

transfer torque (STT). This torque causes the displacement of the magnetic structure.

Because the electron dynamics is much faster than that of the magnetization, the

spins of conduction electrons generally align with the local magnetization, leading to

an adiabatic spin torque. Deviations from this process are also possible, mainly when
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2.3 Magnetic structures

the electron spins cannot adapt to the local magnetization, for example, in narrow

inhomogeneous magnetic structures.

In this study, we use the effects of spin-polarized currents flowing in the sample

to displace magnetic skyrmions. Experiments show that skyrmions move under the in-

fluence of relatively small spin-polarized current densities compared to domain walls [2].

This is one of the characteristics that led to the proposition of using skyrmion as a fun-

damental unit of information in nonvolatile memory devices, like race-track memory [7].

One can account for the STT effect with the addition of two additional terms to the

Gilbert’s equation. According to Zhang and Li [98], the LLG equation takes the form :

dM

dt
= − γ0 [M × Heff ] +

α

Ms
M ×

[

M ×
dM

dt

]

−
1

Ms
2
M × [M × (u · ∇) M ] (2.30)

−
β

Ms
M × (u · ∇) M

Here, u stands for :

u =
JPgµB

2eMs
· je (2.31)

Further, J is the current density, je is its direction of the electron flow, P is the

degree of polarization, µB the Bohr magneton, g is the Landé g-factor, and e the

electron charge. The expression for u has the units of m/s, which one can interpret as

the electron spins’ velocity. The first additional term to Gilbert’s equation describes

the adiabatic spin torque. The second term accounts for the non-adiabatic processes,

and one can quantify it by the dimensionless parameter β, also called the degree of

non-adiabaticity. Its specific form differs in Gilbert and the LLG equation. If written

in the explicit LLG equation, the factor β is present in both additional terms [99].

2.3 Magnetic structures

2.3.1 Characteristic lengths

The fundamental assumption of micromagnetism is a continuous and smooth change

of magnetization in the magnetic material. The assumption is well-founded as the ferro-

magnetic exchange interactions forbid any abrupt change in magnetization over a length
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2.3 Magnetic structures

comparable to the interatomic distance. While the ferromagnetic exchange preserves

a nearly parallel alignment of magnetic moments on an atomistic length scale, other

micromagnetic terms can lead to inhomogeneities of the magnetization on larger length

scales. The exchange length describes the outcome of such competing interactions and it

can be interpreted as the typical length scale on which magnetic inhomogeneitiues can

unfold. The exchange lengths are derived from analytic calculations of one-dimensional,

ideal domain wall profiles. Nevertheless, they also serve as useful estimate for the typi-

cal size of other types of inhomogeneities, such as, e.g., magnetic vortices. An exception

are Bloch points, which represent topological defects in the magnetization field. At the

center of a Bloch point structure, the magnetzation direction changes abruptly, on an

atomic length scale, by 180°. In bulk materials or extended films, magnetocrystalline

anisotropy and ferromagnetic exchange interaction play a dominant role as compared

to magnetostatic interactions. Considering a first-order uniaxial anisotropy, one obtains

the magnetocrystalline exchange length, also called the Bloch wall parameter.

lK =

√

A

Ku
(2.32)

Here, A is exchange stiffness, and Ku is anisotropy constant. In soft-magnetic mate-

rials, the ferromagnetic exchange interaction competes primarily with the magnetostatic

term, which tends to form flux-closure patterns. The competition between the exchange

and demagnetizing energy terms yields the magnetostatic exchange length.

lexc =

√

2A

µ0M2
s

(2.33)

Here, again, A is exchange stiffness, and Ms is saturation magnetization. In the

present work, we investigate materials (non-centrosymmetric ferromagnets) hosting chi-

ral magnetization structures stabilized by DMI. The competition between symmetric

ferromagnetic exchange and anti-symmetric DMI leads to magnetization helix struc-

tures in these materials. One full rotation of the magnetization in such helix structures

at represent a characteristic length scale known as the long-range helical period ld. In

such systems, ld plays a role that is comparable to the exchange length in ferromagnets.

It describes the typical extension or periodicity of spin spirals, skyrmions, and other

helical structures. One can write an expression for ld as follows [100].
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2.3 Magnetic structures

ld = 4π
A

|D|
(2.34)

Here, A is the exchange stiffness and D is the DMI constant of the material. We

present a further discussion of common chiral magnetization structures hosted by these

materials in section 3.3.

2.3.2 Magnetic domains and walls

A fundamental property of ferromagnetic materials tend to form differently oriented

and homogeneously magnetized regions known as magnetic domains [88]. In the fra-

mework of domain theory, the regions separating these domains are planar defects at

which the magnetization direction changes abruptly. The concept of magnetic domains

was first introduced by Weiss based on the so-called molecular field [101]. Later it has

been extended by micromagnetic theory, according to which domain walls possess an

internal structure and a finite extension resulting from the interplay of different energy

contributions.

In this section, we discuss the two basic types of domain walls in ferromagnetism,

namely, the Bloch wall and the Néel wall. The Bloch [102] and the Néel wall [103]

can be described analytically with one-dimensional models. The head-to-head or the

tail-to-tail domain walls have been the focus of experimental and numerical studies

for the past few years, especially in long and thin soft-magnetic strips and elongated

samples [104].

Bloch wall

In a bulk ferromagnetic sample with uniaxial anisotropy, the typical domain walls

are Bloch walls [88, 102, 105]. One may characterize it by a rotation of the magneti-

zation parallel to the domain wall plane, where the magnetization orientation inside

the domains is also parallel to the domain wall plane (Fig. 2.2(b)). This type of ro-

tation is divergence-free, and hence, zero volume magnetic charge. In the limit of an

infinitely extended geometry, surface charges are negligible too. In such a situation, an

idealized one-dimensional model can be used to describe two magnetic domains in an

infinitely extended volume, in which only the interplay between exchange interaction

and magnetocrystalline anisotropy defines the domain wall shape.
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2.3 Magnetic structures

Figure 2.2 – (a) Néel domain wall depicting in-plane rotation of magnetization going

from one domain to the other, and (b) Bloch wall showing the out of plane rotation of

magnetization (parallel to the domain wall plane) going from one domain to the other.

In the case of a first-order uniaxial anisotropy with positive anisotropy constant, one

may write an expression for the angle θ between the magnetization and the easy-axis

(z-axis in this case) as :

tanθ = exp

(

y
√

A/Ku

)

(2.35)

According to Lilley’s definition [106], the Bloch domain wall width is

∆DW = π

√

A

Ku
(2.36)

Note that this width is π times the corresponding exchange length.

Néel wall

In section 2.3.2, we neglected the magnetostatic interaction in discussing the ma-

gnetization configuration of the domain wall. However, in realistic samples, especially

those relevant for device applications, magnetic charges play a significant role. In a one

dimensional approximation, where the magnetization direction only depends on the

distance from the domain wall center, L. Néel derived in 1953 a domain wall transition

in thin films [103]. In the Néel wall, the magnetic structure is determined by the com-

peting exchange and magnetostatic interactions. Néel demonstrated [103] that in thin
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films, a domain wall type with an in-plane rotation of the magnetization (Fig. 2.2(a))

has lower energy than the Bloch wall. Thus the expression for theta for the domain

wall, in one-dimension (along the y-axis), is given as :

cosθ = tanh

(

y
√

2A/µ0M2
s

)

(2.37)

Here, θ is defined as the angle that the magnetization subtends with respect to the

z-axis. Further, the rotation of magnetization is confined to yz-plane. Like in the case

of the Bloch wall, the denominator of tanh on the right side of the equation 2.37 gives

the exchange length.
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Magnetic skyrmions
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(a) (b)

Figure 3.1 – Magnetization vector fields of two-dimensional (a) Bloch skyrmion and

(b) Néel skyrmion.

Magnetic skyrmions (Fig. 3.1) are topological soliton solutions of the magnetization

vector field. The term skyrmion has its origin in the theory of nucleons proposed by Tony

Skyrme in 1962 [107, 108]. Since then, many condensed matter branches have adopted

the concept of a skyrmion [109–112] to explain different physical phenomenons, where

ferromagnetic materials are a recent one.

Traditionally, researchers have obtained soliton solutions in nonlinear wave equa-

tions [113]. In these wave equations, for a particular case, the nonlinear term essentially

cancels out the dispersion term, and hence, yields a wave that retains its shape as it

propagates through the medium, almost like a single particle. Unlike a magnetic skyr-

mion, most of the soliton solutions are obtained in a dynamic case. Hobart-Derrick

theorem [114] states that it is impossible to obtain stable localized soliton structures

in most condensed matter systems. However, in the case of magnetic skyrmions, the

Dzyaloshinskii-Moriya interaction (DMI), an anti-symmetric exchange interaction, pre-

vents its collapse to a magnetic singularity.

DMI is present in magnetic materials that lack spatial inversion symmetry in the

lattice structure or interface. It is a three-site exchange interaction mediated between

two atoms through a neighboring atom having strong spin-orbit coupling on an atomic

scale. Based on chiral symmetry breaking and magnetization configuration obtained in

magnetic materials hosting DMI, one can provide a micromagnetic description of DMI

in terms of Lifshitz invariants [18, 115].
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k
ij = mi

∂mj

∂k
−mj

∂mi

∂k
(3.1)

Where, i, j, k ∈ {x, y, z} and m is the unit vector in the direction of magnetization.

When included in DMI energy contribution, the above term favors rotational modula-

tion of magnetization in (i,j)-plane and propagation vector along the k-direction. In the

case of a non-centrosymmetric ferromagnet (as in the case of studies presented here),

the expression for bulk DMI energy density is given as eDMI
3D = D(Lx

zy + L
y
xz + L

z
yx) =

D(m · (∇ × m)), where D is the DMI constant. The bulk DMI can form magnetization

helices with a propagation direction along all three axes and the rotation plane per-

pendicular to it (like a Bloch domain wall). Hence, the magnetization configuration of

the skyrmion obtained in these materials is known as a Bloch skyrmion. Similarly, in

the case of an interface induced DMI, one can write the expression for energy density

as eDMI
2D = D(Lx

xz −L
y
yz). Here the magnetization helices propagate in two dimensions,

i.e., in xy-plane, with the plane of rotation along the propagation direction (like a Neel

domain wall). Hence, the skyrmion configuration obtained in this case is known as a

Néel skyrmion.

The magnetization configuration of the skyrmion has a non-trivial topology. It is

impossible to continuously unwind a skyrmion to a ferromagnetic configuration without

introducing a magnetic singularity (such as a Bloch point) or a discontinuity (material

boundary). This unique property of the skyrmions gives them topological stability,

which is interesting from both the scientific and application point of view. It is possible

to mathematically classify the magnetization configuration based on topology with a

skyrmion number. One can express it as :

Q =
1

4π

∫

m · (
∂m

∂x
×
∂m

∂y
)dx dy (3.2)

Here, m is a unit vector field in the magnetization direction of the material. One

can understand equation 3.2 as a stereographic projection of the magnetization confi-

guration from a plane to a unit sphere. The skyrmion number of a skyrmion is |Q| = 1,

which implies that the directions of the magnetization of a skyrmion can wrap the

whole sphere once when projected stereographically. Similarly, one can calculate the

skyrmion number of other magnetization configurations with non-trivial topologies,

such as a magnetic vortex which skyrmion number |Q| = 1/2 or a hedgehog Bloch
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point with skyrmion number |Q| = 1. Recently, Rybakov et al. [116] showed through

numerical calculations that it is possible to stabilize magnetization configuration with

skyrmion number |Q| ≥ 2 in materials with non-zero DMI. However, there has been no

experimental observation of these magnetization structures.

3.1 Analytic treatment of magnetic skyrmions

3.1.1 Static skyrmion solution

Bogdanov et al. [18–22] obtained an analytical solution for the magnetization confi-

guration of an axisymmetric skyrmion (for example, in xy-plane), which is homoge-

neous along the perpendicular direction (in the z-direction). The total energy term,

which includes contributions from ferromagnetic exchange interaction, DMI, magneto-

crystalline anisotropy, magnetostatic interaction, and Zeeman energy, is minimized for

the solutions, where the expression for the DMI energy contribution is expressed as

a combination of Lifshitz invariants, whose specific form depends on the crystal sym-

metry. Further, the magnetistatic term is represented as a local term, in the form of

an effective anisotropy term, and hence, the solutions are assumed to be axisymme-

tric [18]. This local magnetostatic field model, which is used to approximate the effect

of the long-range dipolar interaction, is helpful for analytic calculations, but it is not

always an accurate estimate, especially in flat confined geometries where the geometry’s

shape affects the skyrmion configuration. However, the analytical solutions capture the

essence of skyrmion configuration to a great extent.

For the analytical description of the magnetization configuration of the skyrmion,

the orientation of the magnetization is expressed in polar co-ordinates while the spatial

variable is expressed in cylindrical co-ordinates.

m(r) = m(sin θ cosψ, sin θ sinψ, cos θ) (3.3)

r = r(ρ cosφ, ρ sinφ, z) (3.4)

Thus the axisymmetric solutions obtained by minimizing the total energy of the sys-

tem is given by θ(ρ), ψ(φ). As mentioned above, the expression of DMI energy contri-

bution depends on crystal symmetry, which reflects in the dependence ψ(φ) of the

solutions. The in-plane projection of the five magnetization configurations correspon-
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3.1 Analytic treatment of magnetic skyrmions

Figure 3.2 – The image shows in-plane projections of magnetization in five possible

solutions to skyrmion configuration depending on crystal symmetry. The vale of ψ(φ)

is mentioned below respective configuration as well as the type of crystal symmetry.

Note that in (c) and (d), value of constant ψ1 depends on the competing DMI, along

orthogonal directions, predicted for the respective crystal symmetries. The image is

adapted from reference [22].

ding to the different values of ψ(φ) is shown in Fig. 3.2. After integrating over φ in the

expression of total energy, one obtains the relationship θ(ρ) as follows :

A

(

d2θ

dρ2
+

1

ρ

dθ

dρ
−

1

ρ2
sin θ cos θ

)

−
D

ρ
sin2 θ + f(θ) = 0 (3.5)

The function f(θ) has no dependence on ρ and represents contribution from ma-

gnetocrystalline anisotropy, stray field and external magnetic field. Equation 3.5 can

be solved from the boundary conditions θ(0) = π and θ(∞) = 0 to obtain the full

solutions for the magnetization configuration of the skyrmion. It is important to note

that equation 3.5 give no stable solution for the skyrmion configuration for D = 0.

Out of all the five predicted magnetization configuration for the skyrmion (Fig. 3.2),

only three have been observed experimentally up till now, corresponding to Fig 3.2(a),

(b) and (e). The first one is the Bloch type skyrmion, corresponding to Fig 3.2(a).

These skyrmions are observed in B20-type non-centrosymmetric ferromagnets such as

FeGe, MnSi and Cu2OSeO3 [1, 23, 24]. The studies presented in this thesis is based on

these type of materials ; FeGe to be exact. The second type is the Néel type skyrmions,

corresponding to Fig 3.2(b). This type of skyrmion is typically stabilized at the interface

of a ferromagnets and a material having strong spin-orbit coupling (such as a heavy

metal) for example Fe/Ir interface. The induced DMI due to spatial inversion symmetry

breaking at the interface stabilizes the skyrmion. Further, a bulk material known to host

Néel skyrmions is GaV4S8 [117]. The third configuration is known as an anti-skyrmion,
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3.1 Analytic treatment of magnetic skyrmions

corresponding to Fig 3.2(e). This type of skyrmion is observed in Heusler compound

with D2d crystal symmetry [118].

3.1.2 Skyrmion in presence of conduction electrons

The interaction of conduction electrons with topologically non-trivial skyrmion ma-

gnetization configuration gives rise to interesting transport phenomena. The spin of

a conduction electron follows the skyrmion’s underlying smoothly varying magnetiza-

tion. In the process, the electron’s spin gains a quantum-mechanical Berry phase [25],

which deflects it from the direction of motion along the applied electric field and in-

duces an additional Hall effect contribution known as the topological Hall effect (THE).

Similarly, the skyrmions are dragged along the electric current direction through the

spin-transfer torque and show a transverse motion, known as the skyrmion Hall effect

(SkHE), as the topological Hall effect’s counterpart.

One can detect the skyrmion formation in a material by monitoring the change in

the Hall resistivity. In conventional metallic ferromagnets, the Hall resistivity consists

of two different terms, namely the normal Hall effect (NHE), which is proportional

to the magnetic field, and the anomalous Hall effect (AHE), which is proportional

to the magnetization of the material. However, in the presence of topologically non-

trivial magnetization configurations, there appears an additional contribution to Hall

resistivity, whose magnitude depends on the configuration, termed as topological Hall

effect. This physical phenomenon can be understood elegantly by using the concept

of an emergent magnetic field associated with the non-trivial topology [119]. For a

smoothly varying magnetization, the emergent magnetic field can be calculated as :

Be
i =

h

8πe
ǫijkm · (∂jm × ∂km) (3.6)

Here, m represents the unit vector field in the magnetization direction, and ǫijk

is the totally antisymmetric tensor. Comparing equation 3.6 and equation 3.2, one

can obtain the emergent magnetic field’s value induced by an individual skyrmion as

φsky = h
eQ. The emergent magnetic field acts like a classical magnetic field, and hence,

the expression of THE resistivity is given by :

ρT = PR0B
e
i (3.7)
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3.1 Analytic treatment of magnetic skyrmions

Here P is the spin polarization, and R0 is the normal Hall coefficient.

In addition to THE, the flow of conduction electrons leads to the dynamics of skyr-

mions. The flow of conduction electrons provides spin-transfer torque to the underlying

spin texture through the adiabatic exchange of spin-angular momentum, which causes

the longitudinal motion of skyrmions along the electric current direction. Furthermore,

as a counterpart to THE, skyrmions move in the opposite direction of the deflected

electrons. One can draw a similarity of this motion with the Magnus force felt by a

spinning object traveling through a medium. This transverse motion of skyrmions with

respect to the current direction is termed as the skyrmion Hall effect (SkHE).

Based on the LLG equation, which accounts for spin-transfer torque effects (equa-

tion 2.30), one can write an equation of motion for the skyrmions according to the

Thiele equation [26] :

G × (ve − vd) + D(βve − αvd) + F = 0 (3.8)

G is gyromagnetic coupling vector, D is the dissipation force tensor, and F is

the force experienced by the magnetization configuration from the surroundings. The

constants α and β represent the Gilbert damping and non-adiabaticity of the material,

respectively. Further, ve represents the velocity of the electrons, and vd is the skyrmion’s

total drift velocity. The first term of the equation captures the skyrmion’s transverse

motion with respect to the current direction, and it is typically zero for topologically

trivial magnetization configurations. Iwasaki et al. [120] derived an expression for vd

in terms of ve, for a skyrmion crystal state, given as follows :

vd = vd
‖

+ vd
⊥

(3.9)

vd
‖

=

(

β

α
+

α− β

α3(D/G)2 + α

)

ve (3.10)

vd
⊥

=
(α− β)(D/G)

α2(D/G)2 + 1
(ẑ × ve) (3.11)

vd
‖

and vd
⊥

represent the parallel and perpendicular components of skyrmion drift

velocity with respect to the current direction.

Since individual skyrmions carry emergent magnetic flux, their motion also induces

an emergent electric field in analogy to Faraday’s law [119].
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Ee
i =

h

4πe
m · (∂im × ∂tm) (3.12)

The emergent electric field of the moving skyrmions can act as a current dependent

suppression of THE. According to Faraday’s law, one can also express the emergent

electric field as Ee
i = −vd × Be

i , where vd is the skyrmions’ drift velocity. Hence, the

total force on the conduction electrons can be expressed as F = qEe
i + qve × Be

i =

q(ve − vd) × Be
i , where ve is the electron velocity. Hence, one may infer that the

topological Hall resistivity is decreased by a fraction of the ratio between charge carrier

and skyrmion velocities ve/(ve − vd).

3.2 Studies involving statics and dynamics of 3D skyr-

mions

The study of skyrmions presented in this thesis concerns three-dimensional skyr-

mions (Bloch skyrmions) stabilized in bulk materials lacking spatial inversion symme-

try. Hence, this section’s focus will be to present an overview of essential studies on

static and dynamic properties of three-dimensional skyrmions. Apart from bulk ma-

terials, skyrmions have been stabilized and studied extensively in metallic films and

multilayers [70], where they are stabilized primarily by DMI induced at the material

interface. The study of different topologically non-trivial magnetization configurations,

including skyrmions, in achiral materials stabilized due to competing interactions, has

also gathered traction in recent years [121–123].

3.2.1 Skyrmion observation and stability

The seminal work of Mühlbauer et al. [1] in 2009 presented a first experimental

observation of skyrmion crystal (SkX) in bulk MnSi, with the help of small angle

neutron scattering experiments (SANS). Following the study was a real space imaging

of SkX in Fe1−xCoxSi thin film in 2010 using Lorentz transmission electron microscopy

by Yu et al. [23]. Both the studies plot a phase diagram of different magnetization

states stabilized in the geometry with changing external magnetic field and temperature

(Fig. 3.3). In the bulk MnSi sample, the SkX was observed in a small pocket just

below the material’s ordering temperature (Tc = 29.5 K), also traditionally known as
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3.2 Studies involving statics and dynamics of 3D skyrmions

(a) MnSi phase diagram (b) Fe1−xCoxSi phase diagram and LTM images

Figure 3.3 – The image shows phase diagram between external magnetic field and

temperature for (a) bulk sample of MnSi, where we see that the SkX state is stabilized in

a small pocket know as the A-phase, and (b) thin film of Fe1−xCoxSi with thickness less

than long range helical period. The inset show LTEM images of the helical, skyrmion

crystal and field-polarized phase. (a) has been adapted from reference [1] and (b) has

been adapted from reference [23]

the A-phase. In the A-phase, skyrmions are observed in a two-dimensional triangular

(hexagonal) lattice arrangement. Except for the SkX, the phase diagram shows a helical

phase, a conical phase, and a field polarized phase. The helical phase is observed at

low external fields (below Tc), where the magnetization helix formation is due to the

competing symmetric exchange interaction and anti-symmetric DMI. With increasing

external field, the propagation direction of magnetization helices aligns with the field

direction giving the conical phase. Finally, by further increasing the external field, one

obtains the field-polarized phase, where the magnetization mostly points in the field

direction. In the study of thin films of Fe1−xCoxSi as well, three primary magnetization

phases are reported, namely, the SkX phase, the helical phase, and the ferromagnetic

(field-polarized) phase. However, there is a stark difference in the stability of the SkX

phase. In the case of a bulk sample, the SkX phase is observed only in a small pocket

below Tc, while in the thin film geometry, it ranges throughout the phase diagram.

There have been a series of theoretical studies on isotropic chiral magnets carrying
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bulk DMI to explore different magnetization ground states with changing film thick-

ness [35, 36, 46]. The phase diagram between the external magnetic field and the film

thickness where the lateral dimensions are infinite and the thickness in quantized shows

increasing skyrmion stability with decreasing film thickness (Fig. 3.4). Further, the stu-

dies on confined geometries of isotropic chiral magnets [43, 45], where all the dimensions

are finite, show that skyrmions have even higher stability in confined geometries. Based

on the fact that the skyrmion stability depends on film thickness, in part III, we present

a way to confine three-dimensional skyrmions to a desired region of the geometry. The

skyrmions’ enhanced stability in confined geometries and control over its position can

prove beneficial for nanotechnology device applications [124]. It is also interesting to

note that the thickness dependence of a magnetic ground state in the chiral magnets

give rise to magnetization configuration such as a chiral bobber state (ChB) [35, 125]

and a staked spin spiral state (StSS) [36]. The magnetization configuration of a ChB

state resembles a three-dimensional skyrmion state, which terminates in a Bloch point,

whereas the StSS state represents a conical state in bulk with a helical modulation at

the surface.

Over time, researchers have identified the possibility of obtaining metastable skyr-

mion configuration far from thermodynamic equilibrium. In materials with bulk DMI

such as Fe1−xCoxSi [126], Co8Zn8Mn4 [127], MnSi [128], and Cu2OSeO3 [129], studies

have shown that it is possible to stabilize a skyrmion phase, with the help of rapid field

cooling, even though it is not the thermodynamic ground state. The obtained skyrmion

phases were found deep within the field polarized state or at a zero external field or

even a reversed external field.

Seki et al. [24] reported the first experimental observation of SkX state in a chi-

ral multiferroic material (Cu2OSeO3) with Lorentz transmission electron microscopy.

Cu2OSeO3 is a non-centrosymmetric ferrimagnet hosting bulk DMI. It was observed

that the change from a helical to a field-polarized or a skyrmion phase leads to a cor-

responding change in material polarization along the field direction. Hence, changing

electric polarization in the material corresponding to the magnetization phase can be

used to manipulate the magnetization with an electric field. For example, one can use

a spatial electric field gradient to displace isolated skyrmions in such systems, which

can, in turn, be a very promising avenue for low energy device applications.
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Figure 3.4 – The image shows a phase diagram, calculated through numerical si-

mulations, of a chiral magnet plotted between an external magnetic field and the film

thickness. It is interesting to note that the SkX phase becomes more prominent with

decreasing film thickness. Hence, one can conclude that the stability of a skyrmion

depends on the dimensions of the host material. The image is adapted from ref. [36]
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3.2.2 Skyrmion motion under electric current

Soon after the experimental observation of the skyrmion crystal (SkX) phase in

MnSi, Yu et al. [2] reported the current-driven motion of the SkX phase in 2012.

The skyrmions were observed to move at very low current densities (of the order of

106 A m−2) compared to the previously studied magnetic domain walls. This observa-

tion gave a substantial impetus to the study of magnetic skyrmions for memory device

applications such as skyrmion based racetrack geometry [7]. Another important ob-

servation regarding the skyrmion motion was its lateral deflection, perpendicular to

the current direction, i.e., skyrmion Hall effect (SkHE). Due to its non-trivial topo-

logy, the skyrmions feel a Magnus force in addition to the force along the direction of

the spin-polarized current. This phenomenon was explained theoretically based on the

conduction electrons acquiring a Berry phase while adiabatically aligning their magne-

tic moments with the smooth skyrmion magnetic texture [119] and arguments derived

from the Thiele equation [26] as discussed in section 3.1.2.

The first numerical study to understand the motion of SkX in chiral magnets was

reported by Iwasaki et al. [120] in 2013. Including the in-plane STT term, the LLG

equation (Section 2.2.2) gave the evolution of magnetization in the material. Further,

based on the Thiele equation, the authors derived the total drift velocity of the SkX

in the direction of the current (vd
‖

) and perpendicular (vd
⊥

) to it, as described in the

previous section (Section 3.1.2). Both vd
‖

and vd
⊥

depend on α and β, the Gilbert

damping constant, and the non-adiabaticity constant. It was observed that for small

values of α, vd
‖

becomes independent of β/α and proportional to the current density.

Moreover, when β = α, vd
⊥

becomes zero.

As an extension of the motion of SkX under an inplane spin-polarized current, Iwa-

saki et al. [130] numerically evaluated the motion of an isolated skyrmion in a confined

racetrack-like geometry. The authors reported a repulsive interaction of the skyrmions

with the edges using a one-dimensional model, which is essential to understand the

stability and shape of skyrmions in confined geometries, as well as their utilization

in race-track memory [69]. Qualitatively, the repulsion originates due to the opposite

magnetization orientations at the skyrmion and the material boundary. Hence, in the

presence of a current along the track’s length, the skyrmion’s motion can be assumed

to be one dimensional due to the repulsive force from the lateral boundaries cance-

ling SkHE. In such a condition, the value of vd
‖

becomes directly proportional to β/α,
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Figure 3.5 – Current density vs drift velocity of an isolated skyrmion, with and

without impurities, moving along the length of a racetrack-like geometry under the

influence of an in-plane current. The current is applied in x-direction and the skyrmion

moves along the same direction. Due to the repulsive forces from the material boundary,

the skyrmion hall effect is suppressed and the drift velocity becomes proportional to

the current density as well as the ratio β/α. The image is adapted from reference [130]

and the current density (Section 7.4.1). However, above a critical current density, the

isolated skyrmions get expelled at the material boundary due to SkHE.

The skyrmions have to be driven at high velocities (current densities) in skyr-

mion based memory devices to keep up with contemporary technological requirements.

Hence, the expulsion of skyrmions due to SkHE has become an obstacle in realizing

memory devices, often in confined geometries, based on isolated skyrmion motion with

an in-plane applied current. Various approaches have been put forward in recent years

to tackle this problem, all related to the motion of two-dimensional skyrmions (Néel

skyrmions) stabilized through interfacial DMI. One proposed solution is to use synthe-

tic anti-ferromagnets (SAF), which utilize an anti-ferromagnetically exchange-coupled

ferromagnetic bilayer as the skyrmion transmission channel instead of a monolayer

track [42]. The topological charge carried by the coupled skyrmions is opposite, and

hence, experience opposite deflections perpendicular to the current direction, essentially

canceling the SkHE.

Another way to counter the SkHE can be by enhancing the energy barriers at

the track lateral edges. In part III Section 7.4.1, we propose a way to confine three-
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dimensional skyrmions (Bloch skyrmions) in an H-shaped racetrack geometry. The skyr-

mions stay confined to the desired central thin track as the enhanced energy barriers

at the edges due to thickness modulations counters SkHE (Fig. 7.12).

The Berry phase picked up by the electrons while traversing the smooth magnetiza-

tion configuration of a skyrmion shows up as an additional term in the measurement of

Hall resistivity of the material, except for normal Hall effect and anomalous Hall effect,

known as topological Hall effect. Neubauer et al. [131] reported the topological Hall

effect in the A-phase of MnSi in 2009. It was shown that the device’s Hall resistivity

increased with the onset of the SkX phase (A-phase). Subsequently, in 2012, Schulz

et al. [119] reported that the motion of SkX in MnSi, in the presence of an in-plane

current, leads to a decrease in the Hall resistivity. These observations form the basis

for experimental detection of SkX (also the isolated skyrmions in confined geometries)

stabilization and motion by transport measurements.

3.2.3 Dynamical modes of magnetic skyrmions

The first numerical study of magnetization modes in a two-dimensional skyrmion

crystal state (SkX) was presented by Mochizuki [132] in 2012. While ignoring the de-

magnetization field contribution, the author obtained three primary modes, two lateral

and one breathing mode, for SkX. The two lateral modes represented a gyrotropic mo-

tion of all the skyrmions in counter-clockwise (CCW) and clockwise (CW) direction

around the center. These modes were excited with an in-plane external magnetic field

pulse. The breathing mode (B) was excited with an out-of-plane field pulse, which leads

to a contraction and expansion of the skyrmion core. A detailed numerical study focu-

sing on the breathing modes of an isolated skyrmion in a confined nanodot geometry

was presented by Kim et al. [133] in 2014. The authors reported that the frequency

of the modes depends on the DMI of the material and external magnetic field, which

presents a way to detect the skyrmion states experimentally. Following the numeri-

cal studies, microwave absorption experiments using a coplanar waveguide on bulk

samples of Fe1−xCoxSi, FeGe, MnSi, and Cu2OSeO3 [134–137] confirmed the presence

of the three magnetization modes.

In contradiction, it has been derived analytically by Guslienko et al. [139] in a nano-

dot that out of the two lateral modes of an isolated skyrmion, only one is a gyrotropic

mode. The other is an azimuthal spin-wave mode. The authors also derived that the
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Figure 3.6 – Simulation of different dynamical magnetization modes of an isolated

skyrmion, obtained in a thin disc geometry of chiral magnets having bulk DMI. Mode

A and mode B are the two primary lateral modes excited with an in-plane magnetic

field pulse. Mode A is a gyrotropic mode, while mode B is an azimuthal mode. An out

of plane field pulse excites mode C which is a radial (breathing) mode. For high values

of Gilbert damping (α), the higher order modes (D-M) are suppressed. The image is

adapted from reference [138].

gyrotropic mode frequency depends on the nanodot radius, and the gyration direction

depends only on the polarity of the skyrmion core [139]. In a numerical study by Xuan

et al. [140], the skyrmion’s gyrotropic motion, as it relaxes towards the equilibrium, has

been further investigated in a thin disc geometry (Fig. 3.7(a)-(b)). In addition to the

findings reported earlier, it was observed that the frequency of skyrmion gyration de-

pends on the distance of the skyrmion center from the disc center. Hence, the skyrmion

follows a non-uniform gyration motion in a spiral orbit as it relaxes towards the center

of the disc. Further, it corroborates that the skyrmion’s non-uniform motion can be ex-

plained with the help of the Thiele equation [26], and the skyrmion mass is zero. Beg et

al. [138] reported an extensive collection of dynamical modes of an isolated skyrmion in

a thin disc geometry below 50 GHz regime (Fig. 3.6). The collection of modes includes,

as previously discussed, two lateral and one breathing mode. The authors found one

of the lateral modes to be gyrotropic, and the other an azimuthal mode. Further, it

was observed that the frequencies of the modes depend on the disc diameter and the

strength of the external magnetic field used to stabilize the skyrmion.

The observations mentioned above diverges from the motion of a bubble skyrmion

in confined geometries [142–144]. The bubble skyrmion shows a hypocycloid trajectory

when perturbed from the equilibrium position (Fig. 3.7(c)). The hypocycloid trajectory
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Figure 3.7 – The graphs compare gyrotropic motion of a perturbed (a)-(b) skyrmion,

stabilized by DMI, and (c) a bubble skyrmion, as it relaxes towards the center in

the nanodot geometry. (a) shows the x and y co-ordinate of the skyrmion center and

(b) shows corresponding evolution of x co-ordinate with time. One can observe that

the motion is a non-uniform gyrotropic motion. (c) shows the hypocycloid gyrotropic

motion of the skyrmion bubble. Image (a) and (b) are adapted from reference [140].

Image (c) has been adapted from reference. [141].
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can be interpreted as a superposition of two gyrotropic modes, with different frequen-

cies, in opposite directions (CW and CCW). To explain this motion with the Thiele

equation, one must consider the skyrmion’s effective mass. It can be argued that the

difference in gyrotropic modes of skyrmion stabilized by DMI and a bubble skyrmion

comes from the magnetization configuration’s rigidity. The DMI stabilized skyrmions

are typically smaller in size and more rigid in comparison to the bubble skyrmions.

This may lead to suppression of internal degree of freedom, and hence, fewer excitation

modes.

Although not in this study’s scope, a full magnonic spectrum of SkX is fascinating

from both theoretical and application point of view. A comprehensive discussion of

the topic can be found in the reviews [145] and [137]. Another interesting development

is the recent studies suggesting that individual skyrmion strings (three-dimensional

skyrmions) can function as magnonic waveguides [146–148]. It has been found, both

theoretically and experimentally, that the skyrmion strings show a non-reciprocal pro-

pagation of spin excitations along their length, suggesting that they can also be used

as robust information transmission lines.

3.3 Chiral magnetization structures in 3D

As discussed in the previous sections of this chapter, in ferromagnets with bro-

ken spatial inversion symmetry (non-centrosymmetric ferromagnets), competition bet-

ween bulk DMI [149] and ferromagnetic exchange interacts give rise to chiral three-

dimensional magnetization structures. In this section, we list some of the chiral ma-

gnetization configurations, except for the 3D magnetic skyrmion, which are relevant

to the studies presented in part III. Typically, one may characterize two-dimensional

chiral structures with skyrmion number Q, which considers their non-trivial topology.

However, since we are primarily interested in three-dimensional chiral structures, it is

not intuitive to use only Q in each case. Instead, we utilize iso-surfaces, which separates

magnetization regions, pointing in and opposite direction of the external magnetic field,

to classify the magnetization structures.

44



3.3 Chiral magnetization structures in 3D

Figure 3.8 – The image shows a magnetic vortex in a permalloy disc of radius 50 nm

and thickness 5 nm.

3.3.1 Magnetic vortex

Magnetic vortices are regions where the magnetization circulates in a plane around

a central point known as the vortex core. They usually develop in extended thin films

or sufficiently large thin-film elements (Fig. 3.8). The structure closes the magnetic flux

and is divergence-free, making it a favorable magnetization configuration to minimize

the magnetostatic energy. In the center of the vortex, the magnetization turns out of

the plane. It allows for a smooth change of the magnetization and prevents a singu-

larity of the center’s micromagnetic exchange energy. According to the pole avoidance

principle [105], the nanometer-sized core amounts to only a small surface charge.

Analogous to the domain wall width [106], one can define the radius of a vortex

core as :

rcore =

(

dsin(φ)

dr

)

−1

(3.13)

Here φ is the polar angle of the in-plane magnetization at r = 0. In their variational

approach for a film of thickness h, Usov and Peschany [150] derived vortex radius as

follows :

rcore = 0.68lexc

(

h

lexc

)1/3

(3.14)

45



3.3 Chiral magnetization structures in 3D

Magnetic vortex has a topologically non-trivial magnetization structure. Like a

magnetic skyrmion that possesses skyrmion number Q = ±1, a magnetic vortex carries

a skyrmion number Q = ±1
2
.

3.3.2 Bloch point

Bloch points were first found or predicted by Feldtkeller and by Döring [151, 152].

Later, Arrott, Heinrich and Aharoni predicted that Bloch points would form and pro-

pagate during the magnetization reversal in soft-magnetic naonowires [153]. It was then

confirmed in simulation studies by Hertel in 2002 [154, 155]. Recent experiments [156]

have evidenced the formation of Bloch points in magnetic nanowires. A. Hubert [88]

described the Bloch point as a micromagnetic point singularity, around which one finds

all the possible magnetization orientation on an arbitrary shell containing the Bloch

point. This definition leads to an abrupt change in magnetization at the atomic scale

as the shell’s radius approaches the dimensions of the lattice constant. Bloch point is

considered a micromagnetic singularity as it violates the fundamental assumption of

micromagnetism, where the magnetization varies smoothly at the atomic scale. In the

micromagnetic framework, Bloch points are studied by keeping the value of satura-

tion magnetization (Ms) constant [151, 152, 157] or allowing a local modulation in its

value [158]. Due to the abrupt change in the magnetization, the symmetric exchange

interaction that tends to align the magnetization in a single direction gets strongly

frustrated. In the micromagnetic picture, this leads to an infinite value of the local

exchange energy density. However, integrating the energy density over a volume gives

a finite value of exchange energy [159]. Hence, for our study, we assume the value of

saturation magnetization constant when studying chiral magnetization configurations

such as a chiral bobber (section 5.1.4), which contains a Bloch point.

Analytically, Döring and Feldtkeller [151, 152] derived the magnetization configu-

ration equations for a Bloch point.
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3.3 Chiral magnetization structures in 3D

Figure 3.9 – Sketch of three types of (anti)Bloch points generated by varying the

values of magnetization at poles p, influx angle γ, and vorticity n, with the help of

equation 3.15.

mx = cos(Φ)sin(Θ)

my = sin(Φ)sin(Θ)

mz = cos(Θ) (3.15)

Θ = p θ + π (1 − p)/2

Φ = n φ+ γ

Here θ is the azimuthal angle, φ is the polar angle, p is the magnetization pointing

in and out of the Bloch point at the poles, n is the magnetization’s vorticity around

the Bloch point, and γ is the influx angle of the magnetization. For n = +1, we obtain

a Bloch point magnetization (Fig. 3.9), while for n = −1, we obtain a anti-Bloch point

structure.

One finds Bloch points commonly in materials hosting DMI. Magnetization confi-

guration, such as a chiral bobber [35] or a dipole string [160], contains Bloch points,

stabilized by the anti-symmetric exchange interaction DMI. Moreover, they play an es-

sential role in creation and annihilation of magnetic skyrmions, as the skyrmions cannot

be uniformly unwound into a ferromagnetic configuration [161].

3.3.3 Helical state

In the absence of or at low values of the external magnetic field, materials with

bulk DMI stabilize helical state. At these external field values, DMI and ferromagnetic

exchange interaction dominate, giving rise to magnetization spiral. One full rotation of
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3.3 Chiral magnetization structures in 3D

Figure 3.10 – Helical state obtained in a thin film of FeGe at a small external field in

the −z-direction of strength Hz = −10 mT. The color-scheme represents value of the

z-component of the magnetization. Further, we show the iso-surfaces corresponding to

mz = 0 separating magnetization pointing in and opposite direction of the external

magnetic field. The axis of the magnetization helices in the helical state is oriented

perpendicular to these iso-surfaces.

such a magnetization helix corresponds to the long-range helical period of the material

ld (equation 2.34). As shown in Fig. 3.10, one can describe the helical state as forming

alternating domains pointing in and opposite to the external field direction, separated

by iso-surfaces. For a non-centrosymmetric ferromagnet, the helical state is always

stable if the material geometry is larger than ld, as discussed in section 5.2.

3.3.4 Chiral-bobber state

The chiral bobber (ChB) state shares a great deal of similarity with a three-

dimensional skyrmion state. It resembles the magnetization configuration of a skyrmion

the terminates in a Bloch point. Fig 3.11 shows the iso-surface representation of the

ChB state in material with spherical geometry. The region above the Bloch point re-

sembles a skyrmion state, while the region below it resembles a quasi-saturation state

along the direction of the external field. Typically, ChB state requires a material thi-

ckness of the order of ld to stabilize [35]. The skyrmion state and the ChB state can

co-exist in confined geometries of non-centrosymmetric ferromagnets[37]. The magne-

tization structure and the impact of the external field on it are described in detail in

section 5.2.
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3.3 Chiral magnetization structures in 3D

Figure 3.11 – The image shows a chiral bobber state obtained in a nanosphere of

FeGe of radius 70 nm at an external field in the z-direction of strength Hz = 200 mT.

The color-scheme represents the magnetization at the surface in z-direction and the

iso-surfaces corresponding to mz = 0. Here, one can see that ChB state resembles a

skyrmion tube that terminates in a Bloch point.
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3.3 Chiral magnetization structures in 3D

(a) Dipole string. (b) Hopfions.

Figure 3.12 – The magnetization configuration of (a) dipole string, where two Bloch

points of opposite topological charge are connected with a skyrmion tube configura-

tion.(b) hopfions of different Hopf index H, where the iso-surfaces corresponds to the

polar angle component of magnetization while the color-scheme corresponds to the

azimuthal angle. The image (a) is adapted from reference [160] and the image (b) is

adapted from reference [125].
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3.3 Chiral magnetization structures in 3D

3.3.5 Other chiral magnetization structures

The list of different chiral magnetization configurations goes beyond the ones dis-

cussed here. To mention a few, for example, a meron state, where the magnetization

configuration resembles a half skyrmion and half helical state (with skyrmion number

Q = ±1
2
). Merons are typically unstable (unless geometrically confined) and often ob-

served in a coupled state known as Bi-merons [162] (with skyrmion number Q = ±1).

Complex magnetization configuration, such as a dipole string [160] (Fig. 3.12(a)), where

a skyrmion tube terminates in two Bloch points (with opposite topological charge)

as opposed to a single one as in ChB state, has been proposed to be stable in non-

centrosymmetric ferromagnets. Further, it has been shown that higher-order symmetric

exchange interaction can stabilize another group of chiral magnetization configurations

known as hopfions [125] (Fig. 3.12(b)) through theoretical calculations.
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Deuxième partie

Methods
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Chapitre 4

Numerical implementation
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Over the past few decades, computer modeling has become an essential and well-

established tool, on equal footing with experiments and theory, to understand pheno-

mena in condensed matter physics and many other scientific domains. In magnetism,

micromagnetic simulations have significantly contributed to the understanding of static

magnetic structures and the magnetization dynamics in increasingly complex systems.

Until recently, researchers used simulations to complement and contribute to the inter-

pretation of experimental data. However, micromagnetic simulations have evolved into

an efficient and reliable tool for predicting the behavior of magnetic systems on the

nanoscale.

As introduced in the preceding part, the micromagnetic model defines a set of non-

linear partial differential equations in space and time, which can only be solved analy-

tically for simplified cases. In general, the solution of both static and dynamic micro-

magnetics requires numerical methods. However, memory and time efficient numerical

implementation is challenging due to a few properties of the micromagnetic equations.

Firstly, the demagnetization field is difficult to calculate rapidly and efficiently because

it is a long-range dipolar interaction. A simple numerical implementation of such an

interaction has a computational complexity of problem scaling as O
(

n2
)

, where n is

the number of simulation cells. Various methods have been proposed to reduce this

complexity to O(n log(n)) [163] or even O(n) [164] ; however, they remain non-trivial.

Secondly, the exchange interaction adds a local coupling with high stiffness due to its

second order in space. The competition of the long-range demagnetization field with the

local exchange field is crucial for simulating realistic magnetization structures ; howe-

ver, it will have high computational demand on the numerical time-integration solvers.

Finally, most of the energy contributions’ nonlinear nature leads to a complex energy

landscape, making it challenging to seek energy minima, especially when simulating

quasi-static processes efficiently.

The magnetism community has developed a fair amount of numerical solutions for

tackling the micromagnetic equations. Typically, these methods require different dis-

cretizations for space and time. Among the spatial discretizations, the most popular

methods applied to micromagnetics are the Finite Difference Method (FDM) and the

Finite Element Method (FEM). For both methods, one subdivides the magnetic region

into a collection of simulation cells resulting in a cell mesh. However, the requirements

for the mesh differ significantly for both methods. While the FDM uses a regular cu-
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4.1 Spatial discretization - Finite element method

(a) Finite Difference Mesh (b) Finite Element Mesh

Figure 4.1 – The figure compares (a) finite difference mesh with (b) finite element

mesh of a sphere. The finite element mesh is able to discretize the geometry better with

a fewer number of cells compared to the finite difference mesh.

boid mesh, the FEM utilizes an irregular tetrahedral mesh, see Fig. 4.1. Independent

from the discretization method, one has to choose the cell size sufficiently small to

accurately resolve magnetization structures. For materials lacking magnetocrystalline

anisotropy, this characteristic length (corresponding to individual cell size) should be at

least half of the magnetostatic exchange length given by length ls =
√

2A/µ0M2
s (Ms

is the saturation magnetization and A is the exchange stiffness constant). The material

under investigation in the present study is FeGe, and for this material, we obtain the

characteristic length of the mesh to be 4.85 nm. Also, for our study, we use the FEM

method for spatial discretization. While it is possible to use either FDM or FEM for

the spatial discretization to compute the effective field through the respective energy

contributions, another class of algorithms are required to compute the time evolution

of M , according to the LLG.

4.1 Spatial discretization - Finite element method

4.1.1 Simplex Elements

For finite element method calculations, the given sample’s volume is entirely divi-

ded into non-overlapping basic elements. Further, a set of basis functions are defined

to interpolate between a function’s values at the vertex points, also referred to as

nodes. For example, in a one-dimensional sample, a simplex element is a line segment.

55



4.1 Spatial discretization - Finite element method

For the line segment, the two endpoints serve as nodes between which the discreti-

zed function values are linearly interpolated. It is possible to introduce higher-order

interpolations [165] using additional nodes. In two and three dimensions, the simplex

element for linear interpolation is the triangle and tetrahedron, respectively. Here, the

nodes for interpolations are its corner vertices. By definition, a simplex element has

d+1 vertices if d is the spatial dimension.

4.1.2 Mesh Generation

It is essential to have a high-quality finite element mesh to reduce numerical errors

in the calculations. In contrast to the finite difference method, the mesh generation for a

finite element simulation is remarkably involved. Hence, we did not develop and imple-

ment a proprietary mesh generator but use the freely available program GMSH [166],

which is licensed under the terms of the GNU General Public License [119], to generate

meshes containing tetrahedra as simplex elements for our three-dimensional geometries.

In GMSH, an ASCII file describes the sample’s geometry employing 1D, 2D, or 3D

geometric entities. Points define 1D elements, such as lines or curves. Similarly, several

(n-1) dimensional entities define n-dimensional elements that eventually provide a 3D

object shape. The meshing algorithm of GMSH starts with 1D elements and subdivides

them into line segments with a user defined characteristic length. This characteristic

length should be small enough to resolve all the magnetization structures forming in

the system to be studied. The 1D mesh serves as a seed for the subsequent Delaunay

triangulation [167], which provides a triangular mesh on the sample’s surface. This

surface mesh then represents the starting point for generating a 3D mesh assembled by

a generalized 3D Delaunay algorithm. The manual of the GMSH project [166] describes

the details of the underlying techniques.

4.1.3 Shape functions, their differentiation and integration

Shape function

The finite-element method’s essence consists of approximating an unknown function

u(x) through a piecewise linear approximation ũ(x). Each tetrahedral element within

the mesh defines a unique non-overlapping finite element. The unknown function’s dis-

cretized values are calculated at the vertices (or discretization nodes) i of each element

e. Within an element, the unknown function’s value is represented as follows.
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4.1 Spatial discretization - Finite element method

u(x) ≃ ũ(x) =
4
∑

i=1

N e
i (x)ũe

i (4.1)

= (N e
1 (x)N e

2 (x)N e
3 (x)N e

4 (x))















ũe
1

ũe
2

ũe
3

ũe
4















= N e(x)ũe

Here, ũe
i represents the discretized value of u(x), and N e

i (x) represents the shape

function for node i. The row matrix N e(x) is the element’s shape function matrix.

The shape functions N e
i interpolate the computed function between the nodes of the

element. The shape functions of the following form is written for a linear interpolation.

N e
i (x) =

1

6Ve
(ai + bix+ ciy + diz) (4.2)

Here, x is the node position vector, and Ve the volume of the tetrahedral element.

For each node i, the coefficients depend on the shape of the finite element and are

normalized such that :

N e
i (xj) = δij (i, j = 1, . . . , 4) (4.3)

We show the examples of shape functions in one and two dimensions schematically

in Fig. 4.2. Above written equations (equation 4.3) are a set of linear equations that

yield the coefficients for defining the shape functions. Hence, one may compute the

value of the shape functions at a given point x from the coordinates of each vertex of

the tetrahedron within an element e as follows.

N e
i (x) =

1

6Ve
det















1 x y z

1 xi+1 yi+1 zi+1

1 xi+2 yi+2 zi+2

1 xi+3 yi+3 zi+3















(4.4)

For example, coefficient bi will be :
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4.1 Spatial discretization - Finite element method

(a) (b)

Figure 4.2 – Schematic representation of linear element shape functions in (a) one

dimension and (b) in two dimensions in an element e, according to the equation 4.2

and 4.3. Notice that, at each point within the element, the sum of all the shape functions

is equal to 1.

bi = −
1

6Ve
det











1 yi+1 zi+1

1 yi+2 zi+2

1 yi+3 zi+3











(4.5)

The three other coefficients are obtained similarly through cyclical permutation.

The above equation represents a transformation from Cartesian coordinates to a lo-

cal coordinate system (barycentric coordinates) in which a weight is assigned to each

discretization point based on its surrounding volume.

Higher-order interpolation functions can be used as well, for example, quadratic

functions. While these result in higher numeric accuracy, higher interpolation functions

are not necessary to accurately calculate the magnetization dynamics. One may increase

the density of discretization points to improve the accuracy of a simulation.

The linear shape functions provide a basis for the piecewise linear representation of

functions within each discretization element. Hence, the shape functions are the only

space-dependent terms. Thus the operations such as differentiation and integration

are performed only on the shape functions. Further, one may covert these operations

utilizing the coefficient comparison into linear algebra problems.
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4.1 Spatial discretization - Finite element method

Differentiation

Using the shape functions, one may write a partial differentiation with respect to,

e.g., y-direction of the function ũ(x) at a point x within an element e as follows.

∂ũe

∂y
=

4
∑

i=1

ũe
i (x)

∂N e
i

∂y

=
4
∑

i=1

ũe
i (x)ce

i (4.6)

The value of ci is in accordance with the equation 4.2.

Generally, one needs to compute the gradient of a function. In that case, the equa-

tion 4.6 becomes a matrix multiplication. For individual elements, one may write the

gradient as follows.

∇ũe(x) =















be
1 ce

1 de
1

be
2 ce

2 de
2

be
3 ce

3 de
3

be
4 ce

4 de
4

























ue
x

ue
y

ue
z











= Beũe(x) (4.7)

During a preprocessing step in the micromagnetic code, we calculate and store these

matrices in order to use them in the main program every time we perform a gradient

operation.

Integration

Like the differentiation, one performs the integration on the shape functions. For a

finite element of volume Ve, one can integrate a function ũ(x) as follows.

∫

Ve

ũe(x)dV =

∫

Ve

4
∑

i=1

ũe
i (x)N e

i (x)dV =
4
∑

i=1

ũe
i (x)Ve

∫

Ve

N e
i (x)

Ve
dV (4.8)

The normalized integral
∫

(Nn/Ve)dV = 1/4 within the tetrahedral element is inde-

pendent of its shape and represents each node’s volume fraction. Hence, one can rewrite

equation 4.8 as :
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4.1 Spatial discretization - Finite element method

∫

Ve

ũe(x)dV =
1

4
Ve

4
∑

i=1

ui(x) (4.9)

Below, we also discuss a set of integrals that are important for calculating effective

fields corresponding to long-range and local interactions in magnetic materials. Firstly,

A characteristic integral resulting from the computation of second-order derivatives,

giving a 4 × 4 stiffness matrix Ke. One can express the components of the matrix as :

Ke
ij =

∫

Ve

∇N e
i ∇N e

j dV =
x,y,z
∑

α

ce
iαc

e
jαVe (4.10)

where i = 1, . . . , 4 and j = 1, . . . , 4. The terms ce
iα correspond to the components of

the matrix Be in equation 4.7, with α = x, y, z. Secondly, another often-encountered

integral is the mass matrix M e. One can express the components of the matrix as [168] :

M e
ij =

∫

Ve

NiNjdV =
1

5
(a+ δij)Ve (4.11)

We calculate these matrices as well during the preprocessing step.

4.1.4 Exchange field

As we mentioned previously in equation 2.22, one can write an effective exchange

field expression as follows.

Hexc =
2A

µ0Ms
∇2m (4.12)

Besides, at the surface ∂S of the material hosting exchange interaction, the boun-

dary condition on the effective exchange field given by Rado and Wertmann [169]

dictates :

∂m

∂n

∣

∣

∣

∣

∂S

= 0 (4.13)

First, we convert the partial differential equation 4.12 into an equivalent weak form

by multiplying each side by an arbitrary test function u and integrating over the ma-

gnetic volume V .
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4.1 Spatial discretization - Finite element method

∫

V
uT Hexc dV =

∫

V

2A

µ0Ms
uT (∇2m) dV (4.14)

The components of vector u are three arbitrary test functions u(x), u(y), and u(z).

Considering the above equation holds for an arbitrary test function, the equation 4.12

and equation 4.14 are the same.

Applying the integration by parts identity to the equation 4.14, we obtain :

∫

V
uT Hexc dV = −

2A

µ0Ms

∫

V
(∇u)T ∇m dV +

2A

µ0Ms

∫

∂S
uT ∇m dS (4.15)

However, the boundary condition dictates that the surface integral at the material’s

boundary be zero (equation 4.13). Hence, one can rewrite the above equation as :

∫

V
uT Hexc dV = −

2A

µ0Ms

∫

V
(∇u)T ∇m dV (4.16)

Thus, the solution is weak in the sense that it has lower requirements of diffe-

rentiability than in the original form. Instead of requiring two-fold differentiability

(equation 4.12), the function only needs a square-integrable first derivative.

To solve the equation 4.16 numerically, we divide the region V intoN finite elements.

For simplicity, we represent Hexc to varying only in x-direction in the equation 4.16.

N
∑

e=1

∫

Ve

uxHexc,x dV = −
2A

µ0Ms

N
∑

e=1

∫

Ve

∇ux∇mxdV (4.17)

Here, we integrate the equation for the volume of individual elements and sum it

over all the total volume elements. With the help of equation 4.2, one can represent the

quantities ux, mx, and Hexc,x within the basis of the shape functions in each element

e :
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4.1 Spatial discretization - Finite element method

ue
x(x) ≃

4
∑

i=1

ui
xN

e
i (x)

me
x(x) ≃

4
∑

j=1

mj
xN

e
j (x) (4.18)

He
exc,x(x) ≃

4
∑

l=1

hl
xN

e
l (x)

(4.19)

This method of converting a continuous operator problem to a discrete one is known

as the Galerkin method. Hence, one can rewrite equation 4.17 as :

N
∑

e=1

4
∑

i=1

4
∑

l=1

ui
xh

l
x

∫

Ve

N e
i N

e
l dV = −

2A

µ0Ms

N
∑

e=1

4
∑

i=1

4
∑

j=1

ximj
x

∫

Ve

∇N e
i ∇N e

j dV (4.20)

This equation must hold for any value set ui given the arbitrary test functions.

Hence, one can solve the equation by comparing the coefficients of ui
x on both sides.

This comparison converts equation 4.20 into four linear equations within each element.

However, the stiffness matrix (equation 4.10), also known as the Galerkin matrix, which

appears on the right-hand side, is not diagonal and requires solving the full system of

linear equations. We use a mass-lumping technique to increase the calculation speed,

allowing diagonalization of the matrix [165, 170]. This approximation assigns a homoge-

nous exchange field within each element and yields Ke
ij

= Ve/4 for the stiffness matrix.

For sufficiently small cell sizes, the approximation holds well [170].

Thus we can write the expression for the exchange field hl at each node l in equa-

tion 4.20 as :

hl
x = −

2A

µ0Ms

4
∑k

e=1 Ve

k
∑

e=1

(x,y,z
∑

α

cn
iαc

n
jα

)

mj
xVe (4.21)

In the above equation, Ve is the volume of the element e containing the node i,

while
∑k

e=1Ve/4 is the volume associated with the node i, computed over all k elements

containing this node (the support of node i). One can rewrite the equation 4.21 in short

as :
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4.1 Spatial discretization - Finite element method

hi
α = A

ij
·mj

α (4.22)

for each component α = x, y, z with :

A
ij

= −
2A

µ0Ms

4
∑k

e=1Ve

k
∑

e=1

(x,y,z
∑

α

cn
iαc

n
jα

)

Ve (4.23)

The matrix A is sparse and can thus be stored compactly. Similarly, we calculate

the effective field for another local interaction used in our study, i.e., DMI [171]. The im-

plementation of the effective field of the DMI in our code has been tested and compared

with other codes in a dedicated standard problem with results [31].

4.1.5 Magnetostatic field

Some effects in micromagnetism prohibit a treatment by simple matrix-vector mul-

tiplications. The most prominent example is the calculation of the demagnetizing field,

according to equation 2.17. Instead of performing a two-fold volume integral to calcu-

late the field resulting from the magnetostatic long-range interaction, it is numerically

more convenient to calculate the magnetostatic scalar potential by solving the partial

differential equation using the Galerkin Method. As introduced in Section 2.1.3, U is

the solution of the Poisson equation :

∆U = −∇ · M (4.24)

However, outside the volume of the magnetic material, the above equation will be :

∆U = 0 (4.25)

Furthermore, one needs to satisfy the following condition at the boundary of the

magnetic material.

U in = Uout (4.26)
(

∇U in − ∇Uout
)

· n = M · n (4.27)
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4.1 Spatial discretization - Finite element method

In addition to these conditions, the scalar potential should decay to zero at the

infinity (open boundary condition).

lim
x→∞

U(x) = 0 (4.28)

Hence, Poisson equation is solved in the complete space IR3, which is not trivially

possible with the FEM as it applies only to finite regions. Fredkin and Koehler [172, 173]

developed a hybrid finite element/boundary element method to tackle this problem,

which does not require considering any nodes outside the magnetic volume.

In this method, we split the potential U into two parts :

U = U1 + U2 (4.29)

Further, one can solve for U1 as :

∆U1 = −∇ · M (4.30)

∇U in
1 · n = M · n (at the boundary) (4.31)

Here, the equations of U1 are defined only in the magnetic region and the boundary

of the magnetic region. The part U1 is zero outside the magnetic region. Due to the

constraints imposed on U by equation 4.26, one can write the equations for U2 as :

Uout
2 − U in

2 = U in
1 (4.32)

∇U in
2 · n = ∇Uout

2 · n (4.33)

∆U2 = 0 (4.34)

Here, U2 is generally non-zero all over the space, except as one approaches infinity.

Poisson equation for U1 can be written in the weak form using a test function v, to

solve for the demagnetizing potential U1 inside the magnetic volume V .

∫

V
v∆U1 dV = −

∫

V
∇ · M (4.35)
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4.1 Spatial discretization - Finite element method

Integrating by parts,

∫

V
∇v · ∇U1 dV −

∫

∂S
v(∇U1 − M) dS =

∫

V
∇v · M dV (4.36)

Using the Neumann boundary condition equation 4.30, we obtain

∫

V
∇v · ∇U1 dV =

∫

V
∇v · M dV (4.37)

One can solve the above equation by expanding its terms in terms of a local basis

defined by the shape functions, as described in section 4.1.4. The calculation involves

the stiffness matrix on the left-hand side, while the matrix Vn

r Be on the right-hand

side.

According to potential theory, one can evaluate U2 in terms of U1, as follows.

U2(x) =
1

4π

∫

∂S
U1(x′)

∂G(x,x′)

∂n(x′)
dS (4.38)

Here, G(x,x′) = 1/ |x − x| is the Green’s function. The integral equation 4.38 holds

for every point x within the magnetic body ; however, the integration at each discretiza-

tion point inside the body is computationally expensive. Instead, one can evaluate the

expression at the magnetic material’s boundary, yielding Dirichlet boundary conditions

for the Laplace equation 4.32 within the magnetic volume. Approaching the boundary

from inside the volume, one can express U2 as [125] :

U2(x) =
1

4π

∫

∂S
U1(x′)

∂G(x,x′)

∂n(x′)
dS +

(

Ω(x)

4π
− 1

)

U1(x) (4.39)

Here, Ω(x) is the solid angle subtended by the surface at the point x. Thus, one

can evaluate the values of U2 from the values of U1 through integration over the sample

surface. The discretization of the potentials U1 and U2 transforms the above integral

into a matrix multiplication :

U i
2 = DijU

j
1 (4.40)
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The analytic integration of the Green’s function over a triangular boundary element

was performed by Lindholm [174]. The Laplace equation for U2 is then solved within

the sample using the finite-element method.

The matrix D is dense in the sense that it is mostly populated. Therefore, an in-

crease in the number of boundary nodes leads to a quadratic increase in the memory

size required to store the matrix. Typically this defines the limiting size of the micro-

magnetic problems. However, matrix compression methods have been developed, which

reduces the size of such dense matrices without noticeable loss of accuracy. A very effi-

cient method involves using H
2 hierarchical matrices [30] for large scale magnetostatic

calculations.

4.2 Temporal discretization - Integration of LLG equation

After one calculates the total effective field due to different interactions is each

node of the FEM mesh, the magnetization’s time evolution at respective nodes can be

computed using the Landau-Lifshitz-Gilbert (LLG) equation. The time integration of

the LLG equation, based on a discretized magnetization distribution at a time t thus

yields the distribution at a later time t+ ∆t. The simplest numeric integration method

is the Euler method, where the magnetization at time t + ∆t is computed based on

a single previous value. Generally, however, explicit methods are not stable, and one

needs to resort to implicit schemes.

4.3 Simulation software

The simulation studies presented in this thesis have been carried out with our

custom-developed micromagnetic finite-element (FEM) software. Our micromagnetic

software package, named tetmag, has been developed at the IPCMS in Strasbourg by

R. Hertel, whose team has a long-standing tradition in designing and optimizing micro-

magnetic software[27–29]. The purpose of this code development is to have a precise,

flexible, and adaptable numerical instrument that allows to perform research studies on

the properties of the magnetization on the nanoscale. Although the development of the

micromagnetic code was not part of this thesis, we describe here the main ingredients

and properties of the codes, in order to provide insight into this software with which

the results have been obtained.
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4.3.1 General framework

The micromagnetic simulation code that is used in this thesis can be regarded as a

significantly modernized and entirely rewritten version of the previous TetraMag code,

which was also originally written by R. Hertel, and which was then further developed

in the former Micromagnetic Simulations team in Jülich, Germany [29, 175]. Results

obtained with the TetraMag code have been published in dozens of publications over

the past years, and some of the former team members are still using that code for their

research.

4.3.2 Code architecture and basic features

The new tetmag software is programmed mainly in C++ [176] in an object-oriented

fashion [177, 178]. This modular code design allows for a large flexibility in changing

or adding features of the code, since it makes it particularly easy to insert, modify,

or optimize dedicated classes treating specific subtasks, without interfering with the

overall architecture of the code. The software thereby also becomes orderly structured

and easily maintainable. Internally, the code is rather compact, owing also to the use

of high-level libraries like Eigen [179] and boost [180].

The code is thread-parallelized with OpenMP [181], which makes it possible to

deploy it to large-scale computing facilities for efficient parallel computing. In fact,

many results in this work were obtained through calculations performed on the Me-

soCenter High-Performance Computing Facility of the University of Strasbourg [182].

In addition, the code also provides the option to cunduct GPU-based massively pa-

rallel computations. This is achieved by implementing CUDA [183] and in particular

the Thrust framework [184] for GPU acceleration. The choice on whether the GPU or

the CPU version of the code is used depends mainly on the size of the problem. Large

problems involving a few million finite elements can often be conducted more efficiently

on GPUs.

The interface with the user is based on simple, human-readable ASCII input files in

which various simulation parameters and problem specification are stored. The finite-

element meshes used for the simulations can be generated with the freely available

gmsh [166] or netgen [185] software. For the visualization of the results, we use the

immensely powerful ParaView [186] application, which is equally freely available and

which, over the past years, has advanced to a de-facto standard solution for the analysis
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and representation of FEM results.

4.3.3 Numerical Implementation of the DMI term

A central task of the micromagnetic code is the efficient calculation of the effective

field terms and the partial energies. In section 4.1 we already reported on the details

of the FEM implementation of various micromagnetic energy terms and their corres-

ponding effective fields [27]. In spite of a few modernizations and strategical changes

regarding the architecture of the code, the principles of how to calculate these effec-

tive field contributions numerically, in the context of a FEM formulation using linear

simplex elements, has essentially remained the same as in the previous TetraMag code.

The only energy term that has been newly implemented is the “bulk” DMI term

EDMI =

∫

Dm (∇ × m) dV (4.41)

alongside the corresponding effective field term

µ0Heff = −
1

Ms

δEDMI[m]

δm
= −

2D

Ms

· (∇ × m) (4.42)

By applying the principles described in section 4.1 on how to perform numerical

integrations and differentiations with the FEM, implementing this additional term and

the effective DMI field is straightforward.

To validate and compare the results obtained with this newly implemented feature,

we have collaborated with other colleagues working on this domain. In particular, we

performed static simulation studies on the structure of a skyrmion forming in a FeGe

disk of a specific size and compared in detail the results that were obtained with various

codes[31]. This test yielded a perfect agreement between the skyrmion profiles and

energies obtained with our tetmag code and those calculated with other well-established

micromagnetic software frameworks such as MuMax3 [32] or OOMMF [33]. Performing

such comparisons is a well established procedure in computational micromagnetism,

where various Standard Problems are commonly used to compare the results obtained

from different codes [34]. A successful comparison with results obtained by other teams

helps providing a high scientific confidence and credibility of the numerical results

obtained with a simulation software.
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4.3.4 Improved magnetostatic field calculation

Our micromagnetic software allows for simulations involving a large number of de-

grees of freedom, which can extend up to several millions. While in finite-difference

simulations, which benefit from comparatively low memory requirements due to their

regular discretization grid, such large numbers of discretization cells may not be parti-

cularly unusual, problems of such size are difficult to handle with FEM micromagnetic

simulations. In our new code, extending the problems towards much larger sizes has

become possible owing to the use of H2 hierarchical matrices [187]. This matrix com-

pression method substantially reduces the amount of data storage and computation

time that is involved in the application of certain linear operators, which in the FEM

formulation take the form of dense matrices and vector-matrix multiplications. A dense

matrix of this type occurs in the hybrid FEM-BEM formalism [172] that we use for the

calculation of the magnetostatic long-range interaction. This is the only dense matrix

involved in the code, all the other matrices are very sparse. Therefore, this part of

the algorithm can represent a bottleneck or a limiting factor for larger simulations. As

the problem size grows, the dense matrix -in its original form- results in huge memory

and computation requirements, which typically limit the size of problems that can be

treated in terms of both hardware resources and computation time. In our code, these

limitations have been largely removed by replacing the dense matrices with H2-type

matrices. A detailed description of the implementation of the H2 matrix compression

scheme in our micromagnetic code is given in Ref. [30]. From a practical perspective,

the most important result is that we obtain a nearly linear scaling of the memory requi-

rements as a function of the degrees of freedom. This allows us to treat large problems

in acceptable time and by using limited computational resources.

4.3.5 Integration in time

As discussed in section 4.2, the evolution in time of a magnetic structure represen-

ting a non-equilibrium state is governed by the Landau-Lifshitz-Gilbert (LLG) equa-

tion. In numerical simulations, this temporal evolution is performed stepwise, such that

the changes in time occur at discrete points in time, separated by a time interval ∆t.

In a slightly simplified way, one can say that after each time step ∆t, the effective

field values are updated according to the new magnetic configuration, and the torque

distribution acting on the magnetization changes accordingly. In practice, most of the
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effective field values are typically also refreshed at intermediate time steps, such that

∆t is subdivided into smaller intervals. Moreover, the time step is usually not constant.

For the sake of simplicity, we can ignore these aspects in this discussion, as they concern

mathematical details that depend on the specific integration scheme that is being used.

Primarily because of the irregular structure of the discretization mesh, the LLG

integration typically results in a mathematically stiff problem in FEM formulations,

especially when the damping constant is low. This is a particularly challenging situa-

tion, since in these cases an accurate integration in time requires very small time steps.

Accordingly, we need to use relatively advanced mathematical tools to address this

problem. Our standard integration method is an adaptive Dormand-Prince algorithm

[188], i.e., a mixed 4th / 5th order Runge-Kutta-type ODE (ordinary differential equa-

tion) integration scheme. Importantly, the algorithm uses adaptive time steps, such

that a variable step size is used as a function of the error that is involved. In practice,

because of this, we can see huge differences in the computation time depending on

the magnetic configuration. For instance, simulations involving the propagation of a

Bloch point tend to be much slower than simulations on the propagation of spin waves,

which only consider small-angle variations around an equilibrium state. In spite of the

adaptive time step, the explicit form of the Dormand-Prince scheme does not always

allow for a stable integration, especially when low damping constants and high local

torques are involved. In these cases, we use (semi-)implicit schemes, either the Adams

method or the BDF (backwards-difference formulation) [189]. These non-explicit ODE

integration schemes tend to be somewhat slower than the explicit ones, but they pro-

vide very high numerical stability, which in our case means that we can simulate, e.g.,

the current-driven magnetization dynamics of non-trivial magnetic structures at very

low damping values.
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Chapitre 5

Three-Dimensional Chiral Magnetization

Structures in FeGe Nanospheres
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The study of 3D magnetization structure in non-centrosymmetric materials has re-

veled a variety of new structures like skyrmion tubes, chiral bobbers and Bloch point

structures in helimagnets [35, 36]. In these material types, however, the impact of 3D

nanoscale confinement and finite-size effects on the magnetization states has not yet

been investigated in detail. It is known that helical states and hexagonal skyrmion lat-

tices can develop in two-dimensional, extended thin films [1, 5], and that the additional

degree of freedom that is present in thicker films can give rise to complex magnetization

configurations such as skyrmion tubes and chiral-bobbers [35, 36, 46]. Moreover, pat-

terned thin-film elements can host a variety of complex chiral structures [45], including

isolated skyrmions [190], spin spirals, and “horseshoe”-type structures [191]. Previous

studies on finite-size effects in skyrmionic magnetic material have addressed the im-

pact of the film thickness or the lateral size of thin-film elements, but were generally

restricted to flat geometries.

To study the influence of nanoscale 3D confinement on the magnetization states for-

ming in a helimagnetic material, we perform finite-element micromagnetic simulations

on FeGe nanospheres. In spite of the simplicity of the geometrical shape, we find highly

complex magnetic structures in such nanospheres, depending on the particle size and

the applied field. This complexity results from the inherently chiral magnetic properties

of the non-centrosymmetric material and the constraints imposed by the finite size of

the sample.

The general problem addressed in this study, i.e., identifying the size dependence

of the magnetic ground state, has a long tradition in micromagnetic theory and simu-

lations [192–195]. The question of how a magnetic structure is affected by the particle

size is often related to the concept of the single-domain limit [196–199], i.e., the critical

size below which the magnetization in a particle remains homogeneous. This, in turn, is

connected to the concept of micromagnetic exchange lengths, which provide material-

specific estimates of the characteristic size of fundamental magnetic microstructures,

like the width of domain walls or the size of magnetic vortex cores.

In the case of non-centrosymmetric magnetic materials with intrinsic chiral proper-

ties, the long-range helical period ld = 4πA/ |D| plays a role similar to the exchange

length in ferromagnets. It represents the length of magnetization spirals forming as a

compromise between the ferromagnetic exchange and the antisymmetric exchange due

to the Dzyaloshinsky-Moriya interaction (DMI). The constant D denotes the strength
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5.1 Magnetic equilibrium states

FeGe material parameters

Saturation magnetization

(Ms)

384 kA m−1

Exchange stiffness (A) 8.87 × 10−12 J m−1

DMI constant (D) 1.58 × 10−3 J m−2

Table 5.1 – Material parameters for micromagnetic description of FeGe.

of the DMI, i.e., the tendency to form helical structures, and A is the ferromagnetic

exchange constant. The functional form of ld is different from that of the magnetosta-

tic exchange length ls =
√

2A/µ0M2
s (Ms is the saturation magnetization), because

it describes a periodic, constant modulation instead of the usual kink-type transition

with a tanh-type profile. Nevertheless, it can be expected to have similar implica-

tions on the size-dependence of magnetic structures, namely that chiral and skyrmionic

structures develop in particles with sizes exceeding ld by a sufficient amount. For the

studies presented in the thesis, the material of choice is FeGe. It is a well studied non-

centrosymmetric ferromagnet [45] with material parameter listed in Table. 5.1. Using

these material parameters, one obtains the value of ls ≃ 9.5 nm and ld ≃ 70 nm.

We consider spherically shaped nanoparticles of FeGe with particle radius between

40 nm and 100 nm, thereby extending previous studies on the formation of magnetic

structures in this material in the case of planar geometries [45, 200]. The spherical

shape serves as a simple, fundamental example of a 3D geometry that can host different

magnetization states. Moreover, such particles traditionally play an important role in

determining the size-dependence of magnetic structures [201].

5.1 Magnetic equilibrium states

By varying the radius of the nanospheres and the external magnetic field (applied

along the +z-direction) we obtain, for each combination of radius and external field,

a minimum energy equilibrium magnetization state. We first describe in detail the

different types of states that we observe. Afterwards, in section 5.2, we discuss their

distribution as a function of the external field and the particle size. Although, generally

speaking, the modifications that the lowest-energy magnetic structures undergo by

changing the size and the external field are not continuous, it is to some extent possible
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5.1 Magnetic equilibrium states

to interpret the appearance of different magnetization states as a gradual evolution

occurring as a result of a changing parameter. To describe such an evolution, we discuss

the magnetic ground states found at a fixed sphere radius of 80 nm whilst varying the

external magnetic field. The resulting magnetization states are arranged in the order

of increasing field.

5.1.1 Helical state

The helical state is characterized by a continuous rotation of the magnetization

along an axis perpendicular to the applied field. The magnetization helix is the direct

outcome of the competition between the symmetric ferromagnetic exchange interaction

and the anti-symmetric DMI. Alternatively, the arrangement of the magnetization can

be interpreted as a periodic sequence of narrow alternating domains, pointing along and

opposite to the direction of the external magnetic field, and separated by Bloch walls

with the same sense of rotation. These alternating domains can be visualized with the

help of iso-surfaces corresponding to mz = 0, as shown in Fig. 5.1a. In this picture, the

mz = 0 isosurfaces can be regarded as hypothetical domain walls separating domains

aligned parallel and antiparallel to the external field. Since the spatial rotation of the

magnetization is rather continuous than localized within domain walls, this interpreta-

tion of alternating domains is not strictly correct in micromagnetic terms. Nevertheless,

this picture can help to understand the transition towards other states, as described

later.

The slice of the magnetization configuration displayed in Fig. 5.1b) shows a right-

handed helix extending throughout the sphere, along an axis perpendicular to the

external field. One full rotation of this helix occurs on a distance corresponding to the

long-range helical period [202] of the material ld ≃ 70 nm. The line scan displayed in

Fig. 5.1c) shows that the computed data fits well with the assumption of a perfect spin

spiral, with sinusoidal oscillations of the mz component along the spiral axis. Minor

deviations from the ideal value are expected because the analytic calculation of the spin

spiral does not consider problem-specific aspects that are included in the simulation,

such as the spherical shape, boundary conditions [171], and the magnetostatic interac-

tion. According to our simulations, this helical state is energetically favorable at zero

or low external magnetic field, where the exchange energy and DMI dominate.
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Figure 5.1 – Helical state in a r = 80 nm FeGe sphere at Hext = 10 mT. The isosurface

representation in panel (a) displays the areas where mz is equal to zero. Panel (b)

shows the magnetization configuration on a slice through the equatorial plane, clearly

displaying a right-handed magnetization helix. This spin spiral (c) has a wave length

of 74.5 nm, which is in good agreement with the analytic long-range helical period of

ld = 70 nm of the material.
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Figure 5.2 – Three-dimensional meron structure forming as a magnetic ground state in

r = 70 nm at Hext = 30 mT. The mz = 0 isosurfaces are shown in (a). When compared

with the isosurfaces of the helical state [cf. Fig. 5.1a], one can notice that they display

a distinct curvature in the meron state. The magnetization configuration on a central

cross-section is shown in panel (b). The state can be interpreted as a combination of a

half-helical and half-skyrmion state [cf. Fig. 5.3]

.

5.1.2 Meron state

Interpreting the helical state as a magnetic structure with narrow, alternating do-

mains is helpful in order to understand the evolution of the structure as the applied

field is increased. Magnetic domain structures react to an increase of the external field

such that the domains oriented parallel to the field grow in size, at the expense of

domains oriented antiparallel to it. The transition from a helical state to a meron state

(Fig. 5.2) with increasing external field strength can be interpreted in this sense. The

increase of favorably oriented regions is recognizable in the isosurface representation,

as the previously almost parallel isosurfaces mz = 0 bend inwards and connect on one

side, cf. Fig. 5.4d,e.

This field-induced modification of the ground state structure is consistent with a

decrease of the Zeeman energy while allowing the magnetic system to preserve to a
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large extent a spiraling magnetic structure on the length scale ld, as favored by the

competition between ferromagnetic exchange and DMI. Note that in ordinary ferro-

magnets, without DMI, a gradual modification of a periodic domain structure in an

increasing external field would occur in a different way, namely by reducing or increa-

sing the distance between neighboring domain walls. Such a domain wall displacement,

however, would have a detrimental effect on the periodicity of the spin spirals, and is

thus not a viable channel in chiral magnetic materials.

An alternative interpretation of the meron structure consists in considering the

magnetization state as a hybrid form of two different chiral structures. More specifically,

the magnetization state can be split in two parts (cf. Fig. 5.2b), where one half of

the nanosphere appears to preserve the structure of a helical state, while the other

part displays the charcteristics of a skyrmion, which will be discussed in the following

section. In this sense, the meron state can be considered as an intermediate, transitional

structure between these two states. Meron structures are known from extended two-

dimensional system. In such thin films, theory predicts that merons are unstable in

isolation, and that instead bi-meron states should form [162]. However, here, the finite

sample size represents a stabilizing factor. We also note that similar examples of isolated

meron states have been reported in rectangular shapes [162] and in disc geometries [191],

where the structure was denoted as a “horse-shoe” state, for obvious reasons.

5.1.3 Skyrmion state

Further increasing the external field augments the tendency to expand the regions,

or domains, in which the magnetization is aligned along the field direction. This ten-

dency is balanced by the necessity to preserve spin spirals, as required by the interplay

of symmetric and antisymmetric exchange. In the isosurface representation, the evo-

lution of a meron state in an increasing external field can be interpreted as a second

inwards-bending of the isosurfaces, now connecting the isosurfaces on the opposite side,

thereby yielding a circular central core in which the magnetization points opposite to

the applied field (Fig. 5.4e,f). The resulting axially symmetric configuration is the skyr-

mion state.

The isosurface representation allows us to clearly visualize the separation of the

central skyrmion core from the bulk (Fig. 5.3a). This central, cylindrical region is

sometimes referred to as a skyrmion tube, or skyrmion line. The main features of the
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Figure 5.3 – A three-dimensional skyrmion structure is the magnetic ground state

in r = 80 nm at Hext = 110 mT. Panel (a) displays the skyrmion tube in the center,

visualized by mz = 0 isosurface. It separates the central core from the surrounding cir-

cular structure. The skyrmion tube undergoes a twist at the boundaries. This becomes

evident by analyzing the change in the position of the magnetic moments pointing in

a particular direction, as we move laterally on the skyrmion tube. The magnetic confi-

guration on a horizontal slice in the middle is shown in panel (b), displaying strong

similarities with the well-known magnetization texture of a two-dimensional Bloch skyr-

mion in thin films.

79



5.1 Magnetic equilibrium states

Figure 5.4 – Transformation of the magnetic ground state from a helical state (left)

into a meron state (middle) towards a skyrmion state (right) as the external field

increases. The top row (a), (b), (c) displays simulation results, where the top hemisphere

is removed to show the magnetic structure on the central plane. The color code, from

blue to red, denotes the magnetization component mz opposite and along the field

direction, respectively. The schematics in the bottom row (d), (e), (f), of the top view,

in a simplified way, show the evolution of equilibrium states as the field is increased.

The growth of the domains pointing in the direction of the field is not achieved by

a reduction of the width of the central domain, but by connecting the iso-surfaces,

yielding first the meron state and, at higher fields, the skyrmion state.
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Figure 5.5 – With increasing field, the skyrmion state (left) transforms first into the

chiral-bobber state (middle), which then further evolves into a quasi-saturation state

(right). In the simulated structures (a), (b), (c) half of the sphere has been removed

to display the evolution and disappearance of the skyrmion tube in the center of the

sample. The red and blue color code refers to the value of the magnetization component

mz along and opposite to the field, respectively. The schematics in the bottom row (d),

(e), (f) illustrate how the skyrmion core, representing a nano-domain aligned opposite

to the field, shrinks as the external field increases. This central domain first becomes

smaller as a Bloch point is injected, yielding the chiral bobber state, then it vanishes

completely, resulting in a quasi-saturation state with a DMI-induced twist on the sur-

face.
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static configuration are readily recognized by displaying the magnetic configuration on a

horizontal slice on the central plane, cf. Fig. 5.3b). The magnetization configuration on

the central slice shows obvious similarities with the well-known magnetization texture

of a two dimensional Bloch skyrmion in a thin film. However, the 3D structure in the

sphere has additional features. For instance, the magnetic structure undergoes a twist

along the axial direction, as shown in Fig. 5.3a), to reduce the DMI energy in the

nanosphere. A similar behavior was previously reported by Rybakov et al. [46] in the

case of thick extended films.

If the external field is further increased, the central core of the skyrmion state poin-

ting in the opposite direction of the field shrinks in size, and the surrounding circular

domain oriented along the external field grow. At a certain field, the axially symmetric

skyrmion state becomes unstable and transforms into a different magnetization confi-

guration known as a chiral-bobber state [35]. This structure retains to some extent

the central skyrmion core, which now however terminates in a Bloch point structure

[84, 203] inside the sphere, cf. Fig. 5.5d,e. The chiral-bobber state can thus be regarded

as a hybrid state combining skyrmion and Bloch point structure.

5.1.4 Chiral-Bobber state

To further analyze this magnetic configuration, we display in Fig. 5.6b the magnetic

structure on two horizontal slices, one above and one below the Bloch point. The

configuration on the upper slice resembles that of a skyrmion state, while the one

below corresponds to a nearly homogeneous configuration in which the magnetization

is largely aligned in the direction of the external field. Chiral-bobber structures have

been previously reported, both in theoretical [35] and experimental [37] studies, in

thick extended films of non-centrosymmetric ferromagnets. Recently, this magnetization

structure has attracted considerable attention as it has been proposed as a candidate

for a fundamental unit of information storage, along with the skyrmion state, in future

spintronics memory devices [190].

If the external field is further increased, the central core of the chiral-bobber state

shrinks in lateral direction until, at a certain field, the Zeeman energy dominates and

a quasi-saturated state becomes energetically favorable (Fig. 5.5e,f).
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Figure 5.6 – The chiral-bobber state shown here at Hext = 200 mT at r = 80 nm, is

a complex three-dimensional magnetization structure in which a skyrmion tube termi-

nates in a Bloch point. The conical shape of the residual skyrmion core is visualized

by the iso-surfaces corresponding to mz = 0, shown in panel (a). The magnetization

configuration of two slices, one above and one below the Bloch point is shown in (b).

On the slice above the Bloch point the structure is similar to the skyrmion state, while

below, the magnetization is almost saturated along the field direction.
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Figure 5.7 – Quasi-saturated magnetization state in r = 80 nm at Hext = 500 mT.

At such high external magnetic field, the Zeeman energy dominates and the bulk of

the magnetization is aligned in the direction of the field. However, a rather significant

deviation, which is primarily due to the DMI, occurs at the boundary near the equatorial

plane.
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5.1.5 Saturation state

This relatively simple equilibrium state, which is stable at large fields, is charac-

terized by the bulk of the magnetization pointing along the external magnetic field

direction, cf. Fig. 5.7. It resembles an ordinary ferromagnetic saturation state. Howe-

ver, near the surface the magnetization deviates, in particular along the equatorial

plane. This deviation is primarily due to the DMI, which tends to preserve a chiral

structure as far as possible in the presence of a strong external field. The slight curling

of the magnetization induced by the DMI is also favored by magnetostatics as the sys-

tem thereby reduces the magnetostatic surface charges and forms a weakly developed

vortex state. Furthemore, the particle surface plays a particular role in the curling of

the magnetization due to specific boundary conditions of the DMI interaction [171],

5.2 Phase diagram

In the previous section, we have identified five principal equilibrium states of the chi-

ral magnetization in a FeGe nanosphere, and described their evolution with increasing

external field. The stability of these structures, however, also depends on the particle

size. To investigate these dependencies, we have performed numerous additional simu-

lations. The numerical results allow us to determine the stability ranges of the five

states, as summarized in the phase diagram shown in Fig. 5.8. The diagram displays

the lowest-energy configuration as a function of the external magnetic field and the

radius of the nanospheres.

Remarkably, the skyrmion phase does not exist in FeGe nanospheres below the

radius of 65 nm. This size is comparable to the long-range helical period ld (70 nm) of

the material, which in turn signifies one full rotation of the magnetization. Although

there is no direct connection between the structure a spin spiral and the skyrmion

state, it is intuitively clear that the sample cannot host a skyrmion structure if it is

too small to accommodate two full rotations of the magnetization across the diameter

of the sphere. This trend of disappearing phases continues as we further decrease the

radius. Below the radius of 50 nm, the chiral-bobber and meron phase also cease to

exist. At this size, the nanosphere diameter approaches ld, and hence, only the helical

phase (at lower external fields) and the saturation phase (at higher external fields) are

stable. For radii smaller than 40 nm, only the saturation phase remains as the particle
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5.2 Phase diagram

Figure 5.8 – Phase diagram of the magnetic ground state of a FeGe nanosphere as

a function of the external magnetic field in mT and the radius in nm. The different

regions outline the parameter ranges in which respective magnetization states represent

the lowest-energy configuration.
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5.3 Phase diagram cross-sections : energy densities of stable and
meta-stable states

size falls below ld, leaving no room for even one full rotation of the magnetization.

A clear distinction of the five principal configurations mentioned above is only pos-

sible in particle sizes up to a radius of about 90 nm. In larger nanospheres, hybrid

structures appear, which can contain, e.g., both a meron and skyrmion structure, or a

skyrmion as well as a chiral-bobber. At these larger sizes, the impact of the particle’s

spherical shape on the magnetic structure diminishes and one observes a gradual tran-

sition towards a quasi-continuum of three-dimensional chiral magnetization states, as

it would occur in bulk material.

5.3 Phase diagram cross-sections : energy densities of stable

and meta-stable states

We plot the total energy densities of the equilibrium states : helical, meron, skyr-

mion, chiral bobber, and saturation state in a sphere of radius 70 nm with a changing

external magnetic field (Fig. 5.9) and at constant external field of strength 125 mT with

changing radius (Fig. 5.10). The equilibrium state with the least energy density repre-

sents the ground state, as presented in the phase diagram (Fig. 5.8). The total energy

density plots help us understand the energy landscape and meta-stability of different

equilibrium states with respect to the external magnetic field and nanosphere radius.

In general, the energy density of all the states decrease with increasing external field,

which points towards a vital role of Zeeman energy. In the case of changing radius at

constant external field, the energy densities increase with increasing radius. This points

towards the fact that the stability of a particular equilibrium state depends on both

external field as well as the material geometry. One can argue that the change in energy

density is due to a modification of the equilibrium states’ magnetization structure with

changing external field and nanosphere radius (even though the salient features re-

main the same). This phenomenon is well studied for skyrmion crystals [204–206] and

geometrically confined skyrmions [47].

First we study the energy density variation of the equilibrium states at constant

radius 70 nm. The helical state is the ground state for an external field of 0 mT to

62.5 mT. We interpolate between the two data-points at 50 mT and 75 mT that the

helical state is the ground state for the first half and the meron state for the second

half. Similarly, the meron state becomes the ground state for the field range from
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5.3 Phase diagram cross-sections : energy densities of stable and
meta-stable states

Figure 5.9 – Energy density of helical, meron, skyrmion and chiral bobber states in a

sphere of radius 70 nm within a field range from 0 mT to 250 mT. The respective ground

states is the configuration with the lowest energy density at a give external field (in

accordance to Fig. 5.8). Moreover, it shows the meta-stability of the equilibrium magne-

tization states with changing field. In particular, we note that the magnetization states

with non-trivial topology (skyrmion, chiral bobber, and meron) show meta-stability

with skyrmion states spanning across the field range.
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5.3 Phase diagram cross-sections : energy densities of stable and
meta-stable states

62.5 mT to 112.5 mT. The skyrmion state becomes the ground state from 112.5 mT to

137.5 mT, and the chiral bobber state from 137.5 mT to 262.5 mT. Further, to explore

the meta-stability of the four equilibrium states, we perform simulations, with each

equilibrium state as a starting configuration, to obtain a final stable configuration by

systematically changing the external field values from 0 mT to 250 mT. We plot the

results of the simulations in Fig. 5.9.

We observe that the skyrmion state and the chiral bobber state can be (meta-)stable

over a wide range of external magnetic fields. To be precise, the skyrmion state remains

stable for the whole field range. One can ascribe this increased (meta-)stability to the

non-trivial topology of the skyrmions. Once formed in the material, a skyrmion can

only be removed by pushing it out of the material boundary or with the help of a Bloch

point ; both of which presents an energy barrier. A similar argument is valid for the

chiral bobber state ; however, at zero external magnetic field, the chiral bobber state

denucleates through the Bloch point, first into a quasi-saturation and finally into a

helical state. The meron state is also obtained as a meta-stable state for a field range

of 75 mT beyond 112.5 mT. However, it is not stable below the field range, where it is

the ground state. It is important to note that the meron state also has a non-trivial

topology with a skyrmion number |Q| = 1/2. In contrast, the helical state, which has

a trivial topology, is only stable as a ground state.

Fig. 5.10 shows the energy densities of the equilibrium states at a constant exter-

nal field of strength 125 mT with changing radius from 40 nm to 100 nm. The quasi-

saturation state is the ground state from radius 40 nm to 52.5 nm, the meron state from

52.5 nm to 60 nm, and the skyrmion state from 60 nm to 100 nm. The chiral bobber state

is not a ground state for any radius at 125 mT, however it can form as a meta-stable

state over a long range of radius values from 50 nm to 85 nm. For the case of helical

state, we find that it is neither a ground state, nor a meta-stable state at 125 mT.

Focusing on the field value of 125 mT (inset Fig. 5.9), we obtain the skyrmion, the

chiral bobber, and the meron state with relatively close energy density values, with the

skyrmion state being the ground state. Even though the energy densities of the ground

and the meta-stable states are close, each state is separated by an energy barrier due to

its unique topology. The skyrmion state and the chiral bobber state has the important

difference of a Bloch point, while the meron state and the skyrmion state have different

skyrmion numbers Q. This can be potentially useful for memory device applications as
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meta-stable states

Figure 5.10 – The total energy densities of quasi-saturation, meron, skyrmion, and

the chiral bobber states at a constant external field of strength 125 mT for nanosphere

radius range 40 nm to 100 nm. The energy difference between the equilibrium states

shows that several states can be meta-stable. The ground state is defined as the stable

state with the lowest energy.
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5.4 Impact of magnetostatic interactions

Figure 5.11 – Demagnetization energy as a percentage of the total energy for different

magnetic ground states in the phase diagram. In all cases the maximum value remains

below 10% through out the phases. The percentage increases only slightly towards the

regions of small radius and high fields, where the nanosphere are in the saturation

phase.

the contemporary magnetic memory devices store information in magnetization states

of nanomagnets with comparable energy separated by a sufficiently high energy barrier.

5.4 Impact of magnetostatic interactions

Having described the various magnetic structure and their formation resulting from

the competing interactions of Zeeman energy, ferromagnetic exchange and DMI, we

now discuss the impact of the dipolar (magnetostatic) field on these configurations and

their distribution. To illustrate the quantitative impact of the dipolar magnetic field,

Fig. 5.11 displays the demagnetization energy as a percentage of the total energy for
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5.4 Impact of magnetostatic interactions

respective equilibrium states.

It is well known that, in the case of ordinary ferromagnets, the magnetostatic inter-

action has a decisive impact on the formation of inhomogeneous magnetic structures.

The size-dependent equilibrium structure in ordinary ferromagnetic nanoparticles is

primarily determined by the balance of the competing interaction of the magnetostatic

energy favoring flux-closure states and the ferromagnetic exchange that tends to prevent

imohomogeneities of the magnetization. The equilibrium structure is also impacted by

the strength of an external magnetic field, and thus the field- and size-dependent distri-

bution of magnetic states in nanoparticles is commonly summarized in phase diagrams

similar to ours [192]. However, in our case, the competition is primarily driven, on

one side, by the tendency to align the magnetization along the external field direction

and, on the other side, by the material’s tendency to develop spiralling magnetization

structures on the length scale ld, which in turn is the result of a balance between the

ferromagnetic and the antisymmetric exchange interaction. In this latter case, the role

of the demagnetizing field is not clear, and it is in fact often neglected in simulations

of chiral magnetization structures.

To analyze the impact of magnetostatic interactions on these configurations and

distribution, we recalculated the phase diagram by excluding the demagnetization field

and energy density from the simulation. Remarkably, we found that this does not al-

ter the results appreciably, yielding in fact essentially the same phase diagram (not

shown). This is consistent with the observation that relative impact of the demagneti-

zation energy, displayed in Fig. 5.11 as the percentage of total energy, is relatively small

for all equilibrium states. The demagnetization energy does not exceed 10 % of the total

energy for any of the states. This indicates that, although not strictly negligible, magne-

tostatic interactions do not play a dominant role in the equilibrium state configuration

and distribution. The demagnetization energy becomes only sizable in the upper left

part of the plot, i.e., towards small radius sizes and high fields, where the particles are

in a quasi-saturation state. In the other equilibrium states, the DMI-induced helical

nature of the magnetization structures already reduces the magnetostatic energy by

forming states similar to periodically alternating domains, or swirling patterns. The

balance between ferromagnetic exchange and DMI thus leads to the formation of ma-

gnetic structures which provide a fair amount of magnetic flux closure, so that the

demagnetizing energy of the DMI-induced structures remains relatively low. Dipolar
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5.4 Impact of magnetostatic interactions

fields therefore do not have a decisive impact on helical or chiral magnetization struc-

tures. In conclusion, our results indicate that neglecting the magnetostatic interaction

is a perfectly acceptable approximation in the simulation of magnetic materials with

strong DMI, at least in the case of three-dimensional nanoparticles. This is not ne-

cessarily true for flat and thin geometries, where demagnetizing fields generally play a

larger role, and where the magnetic surface charges generated by chiral structures have

a stronger impact on the total demagnetizing energy. Moreover, the reduced dimensio-

nality of thin films may lower the degree by which chiral or helical magnetization states

can achieve a partial magnetic flux-closure.
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Chapitre 6

Skyrmion-chiral bobber state switching
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In section 5.1, we discussed the different equilibrium magnetization states stabilized

in FeGe nanospheres. We argued how different equilibrium states become the ground

state with an increasing external magnetic field (Fig. 5.4 and Fig. 5.5). However, the

description only explains why a particular equilibrium state is the ground state at a gi-

ven external magnetic field and the nanosphere radius. It does not provide a mechanism

to transition from one state to the other.

Recently, both skyrmion and chiral bobber (ChB) have been proposed to be the fun-

damental information storage units in a novel non-volatile racetrack memory device.

They have been shown to co-exist and have different magnetotransport fingerprints [37],

strengthening their case for application in a memory device. Here, we discuss a mecha-

nism to switch between a skyrmion and a ChB state in a FeGe disc geometry by means

of an external field pulse.

Based on our FeGe nanosphere study (Section 5), we understand that the total

energy of these states depends on the external magnetic field for a particular material

geometry. It can be explained better with a phase diagram depicting the distribution

of these states with changing geometrical size and constant external magnetic field.

By changing the field appropriately, we switch the energetically preferred states (i.e.,

skyrmion and ChB) and facilitate the transition. We also require an external field pulse

and the change in the constant external field to overcome the energy barrier to switch

from one state to the other.

The skyrmion to ChB switching is studied in a FeGe disc of radius 80 nm and

thickness 70 nm. First, we stabilize the skyrmion state by applying a constant external

magnetic field of strength 190 mT in the positive z-direction. The skyrmion state is the

ground state at this field value (and ChB state is a meta-stable equilibrium state). We

increase the external field to 220 mT from 190 mT, modifying the difference between the

total energies of the two states. From section 5.3, we argue that with increasing external

field, this difference between the total energies of the states decreases. Although the

two states’ total energy difference has changed, the actual switching from skyrmion

to the ChB state requires overcoming an energy barrier (as the ChB state hosts a

Bloch point). We apply a Gaussian field pulse of strength 350 mT and width 235 ps

in the positive y-direction to achieve this. The application of an external field pulse

nucleates a Bloch Point at the top surface of the skyrmion state, ultimately converging

to the ChB state (Fig. 6.1). Similarly, reversing the process returns the system to the
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Figure 6.1 – The figure shows snapshots in time of skyrmion to ChB switching with

a constant external field of strength 220 mT in +z-direction. The first magnetization

state, on the top left, shows the skyrmion state. A black dot represents the Bloch point

nucleated in the switching process. We apply a Gaussian field pulse of strength 350 mT

and width 235 ps in +y-direction. The magnetization state’s evolution that follows is

shown in the snapshots (following the arrows chronologically).
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Figure 6.2 – The figure shows snapshots in time of ChB to skyrmion state switching

with a constant external field of strength 190 mT in +z-direction. The first magnetiza-

tion state, on the top left, shows the meta-stable ChB state. A black dot represents the

corresponding Bloch point. We apply a Gaussian field pulse of strength 350 mT and

width 150 ps in −z-direction. The magnetization state’s evolution that follows is shown

in the snapshots (following the arrows chronologically).
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skyrmion state. First, we reduce the external magnetic field to 190 mT from 220 mT.

Then, we apply a Gaussian field pulse of strength 350 mT and width 150 ps, in negative

z-direction (Fig. 6.2), to overcome the energy barrier. In this way, we can cycle between

the skyrmion and the ChB state by first changing the two states’ total energy difference

with a constant external field and finally overcoming the barrier leading to the switching

with an external field pulse. Interestingly, the Bloch Point always nucleates at the top

surface of the disc geometry in the ChB state for all the simulations carried out in an

above-described manner. Investigating this further, we find two principal reasons for the

breaking of symmetry ; first, the direction of the external magnetic field used to stabilize

the states, and second, the sign of DMI constant, which determines the handedness of

the chiral magnetization structures observed in the material. Reversing the direction

of the external magnetic field reverses the direction of the skyrmion core, and indeed

we find that the Bloch point now nucleates from the bottom surface. Changing the

sign of the DMI constant (i.e., from positive to negative) changes the handedness of

the skyrmion and the ChB state from right-handed to left-handed. Interestingly, we

find that, here as well, the Bloch point nucleates from the bottom surface. We observe

that the two Bloch points that form at the top and the bottom surface have different

polarities and similar vorticity. Whether the polarity influences the energetics and,

hence, leads to the Bloch point’s preferred nucleation remains to be further investigated.
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Figure 6.3 – The figure shows a graphical representation of the switching cycle

between skyrmion and ChB state. Starting from the skyrmion state on the top left, we

increase the external field to 220 mT. With the help of a field pulse in +y-direction,

we switch to the ChB state (bottom right). Similarly, to return to the skyrmion state,

we reverse the process. We decrease the field to 190 mT (bottom left) and apply a field

pulse in −z-direction to switch to the skyrmion state (top left).
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Chapitre 7

Geometric Skyrmion Confinement
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The phase diagram for the nanospheres (Section 5.2), as well as, similar studies on

the thin-film geometry ferromagnets with broken spatial inversion symmetry [5, 36, 44–

47] reveal the dependence of three-dimensional skyrmion state stability on both the

external magnetic field and the geometric dimensions of the material (radius in the

case of the nanospheres). Thus, one can argue that it is possible to create desired

regions of skyrmion stability by modulating the thickness of the material at a given

external magnetic field. These regions of stability will act as a potential well for the

skyrmions yielding control over their position in both static and dynamic cases.

Skyrmions have been proposed to be a great candidates for device applications like

non-volatile racetrack memory [7, 207], RF applications [208, 209], and recently, skyr-

mion based neuromorphic computing [210]. Much of this interest owes to their unique

properties such as topology stability [128], reduced size (sometimes comparable to ato-

mic scale) [3], room temperature availability [4–6], and desirable dynamic properties

(small depinning current density) [2]. However, to achieve comprehensive integration of

skyrmions in a device, it is imperative to attain control over their position and motion.

One can achieve this by constraining skyrmions to a desired region of the material

geometry.

Here, we show a way to manipulate the position of the skyrmions by modulating

the thickness of the material geometry. We start by simulating rectangular thin films

of FeGe with changing thickness and external magnetic field, keeping the lateral di-

mensions of the films constant. The simulation results help us plot a phase diagram

showing the magnetization ground state distribution (similar to the nanosphere study

in section 5.2) and the total energy density of the skyrmion and saturation state with

changing film thickness at constant external field. The focus of the study is primarily

the skyrmion state and the saturation state. The goal is to modulate the thickness of

the film in a way such that the skyrmion state is energetically favorable for the de-

sired region of confinement, and the saturation state elsewhere in the geometry, at a

fixed external magnetic field. To refine our understanding of skyrmion stability, we also

plot DMI as a percentage of total energy. DMI favors the formation of skyrmions and

the percentage DMI plot reveals skyrmion stability within the skyrmion phase. Using

the results obtained from the above-mentioned plots, we generate preferential sites for

skyrmions in the material by introducing dot-like pockets of reduced film thickness. We

show that these pockets can serve as pinning centers for the skyrmions, thus trapping
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7.1 Statically constrained skyrmions

or constraining skyrmions. Further, using the same results, we show static skyrmion

confinement in three example geometries. The example geometries comprise of films

of FeGe with a thin path carved out of them, which is the desired region of skyrmion

confinement. We simulate a linear path, an angular, and a curved path to emphasize

the fact that skyrmions stay confined irrespective of the complexity of the shape of the

desired region. As described earlier, the thickness modulation in the material, at a given

external magnetic field, creates a potential well which traps the skyrmions, and hence,

they stay confined to a particular region of the geometry. We calculate the energy bar-

rier profile of the potential well at a given external field in the linear path geometry by

artificially pinning the magnetization configuration of a skyrmion across the thickness

modulation. We calculate the total energy by relaxing the magnetization configuration

of the pinned skyrmion at each position (Section 7.3). A similar plot is obtained for

the rectangular geometry with uniform thickness, for comparison. Further, we show

dynamic skyrmion confinement in a novel H-shaped racetrack geometry, inspired from

static skyrmion confinement, where thickness barriers at the lateral edges of a thin

central track (desired region of skyrmion confinement) counter the unwanted skyrmion

Hall effect in the presence of an electric current. Also, we show that the motion of the

skyrmion on the H-track can be explained with Thiele equation. Extending the study

of dynamic skyrmion confinement, we show how it affects the magnetization modes

of an isolated skyrmion in a nanodisc geometry by comparing with already published

studies of skyrmion magnetization modes in a confined geometry. Hence, we present a

comprehensive study of geometrical skyrmion confinement starting with the skyrmion

stabilization in a desired region of the material geometry statically, and calculation of

the energy barrier for the skyrmion due to the thickness modulation. Then, we show

how it affects the dynamical modes of a confined skyrmions and utilize it to counter

skyrmion Hall effect in a modified racetrack geometry.

7.1 Statically constrained skyrmions

The material geometry under investigation is a rectangular FeGe film with lateral

dimensions 180 nm × 310 nm. For plotting the phase diagram for ground state distri-

bution, we consider films of uniform thickness, where the thickness varies from 5 nm to

75 nm in an increment of 5 nm. Similarly, the external magnetic field varies from 0 mT

to 900 mT in an increment of 50 mT. We also plot the percentage energy contribution of
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7.1 Statically constrained skyrmions

Figure 7.1 – The image shows the cross-section of the curved path, one of the three

example geometries for skyrmion confinement. The thickness of the path is 30 nm,

while the thickness everywhere else is 60 nm. The width of the path is 50 nm. These

dimensions stay the same for all the example geometries.

DMI to the total energy for skyrmion and saturation state as obtained from the phase

diagram.

For static skyrmion confinement, we first consider different arrangements of circular

pockets of reduced thickness in FeGe films. The film thickness corresponding to the

pockets is 30 nm, while it is 60 nm everywhere else. Second, we consider three example

geometries, each with a different shaped thin path (linear, angular, and curved shaped

path) carved out of FeGe films of uniform thickness (curved path as shown in Fig. 7.1).

Similar to the pockets, the thickness of the path is 30 nm, while the rest of the film

thickness is 60 nm for all three example geometries. The external magnetic field is kept

constant at 650 mT to obtain a stable magnetization configuration in all the cases.

7.1.1 Equilibrium magnetization states

We obtain four primary magnetization states : helical, bimeron, skyrmion, and sa-

turation state (not shown), as displayed in Fig. 7.2. The intermediate states, where the

magnetization configuration these primary states intermixes to give helical-bimeron,

bimeron-skyrmion, and skyrmion-chiral bobber states, are also presented in Fig. 7.2.

Hence, one observes a gradual transition of one magnetization ground state to the other

with respect to a changing external magnetic field on the phase diagram, presented in

section 7.1.2. The external magnetic field points in the negative z-direction. To illus-
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7.1 Statically constrained skyrmions

(a) Helical state (b) Helical-bimeron state (c) Bimeron state

(d) Bimer-skyrmion state (e) Skyrmion state (f) Skyrmion-ChB state

Figure 7.2 – The image shows iso-surface (mz = 0) representation of different

equilibrium magnetization states obtained in an FeGe film of lateral dimensions

180 nm × 310 nm. The thickness of the film varies from 5 nm to 75 nm and the ex-

ternal magnetic field varies from 0 mT to 900 mT. We plot the corresponding phase

diagram of these as the ground states, shown in Fig. 7.3.

trate the magnetization configurations of the equilibrium states, we use a color-coded

representation of the z-component of the magnetization (mz) and the iso-surfaces cor-

responding to mz = 0 (Fig. 7.2). Crudely, one can argue that the iso-surfaces correspon-

ding to mz = 0 represent a Bloch wall separating the magnetization regions, pointing

parallel and anti-parallel to the direction of the external magnetic field, capturing the

essence of the chiral magnetization configurations.

We briefly describe the magnetization configurations of the primary equilibrium

states, which bear similarities with the ones obtained in the study of FeGe nanosphere

presented in section 5.1. The description follows the order of equilibrium states obtained

as the ground states with increasing external magnetic field. First, at lower external

fields, we obtain the helical state as the ground state. This state comprises of chiral

magnetization helices formed due to competing symmetric ferromagnetic exchange and

anti-symmetric DMI. The handedness of the helices depends on the DMI present in

the material. The propagation vector of the helices in the helical state is always in the

plane perpendicular to the external field direction. Fig. 7.2(a) shows the iso-surface

representation of the helical state depicting the alternating domains, with respect to
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the external field, manifested due to the rotating magnetization of the helices. With an

increasing external field, the magnetization regions pointing in the external field’s direc-

tion expand and stabilize the bimeron state, shown in Fig. 7.2(c). The bimeron state is

similar to an elongated skyrmion state, where the two semicircles at the ends represent

two halves of a skyrmion while the central strip connecting the halves represents a

helical state. We obtained a meron state in the FeGe nanosphere study (section 5.1.2),

instead of a bimeron state, as one of the equilibrium states due to the finite size of the

nanosphere geometry. In general, for sufficiently large geometries, the bimeron state

is more stable [162]. The bimeron has a non-trivial topology with skyrmion number

|Q| = 1, the same as a skyrmion. Increasing the external field further, one obtains the

skyrmion state as the ground state, as shown in Fig. 7.2(e). The skyrmion state forms a

triangular/hexagonal lattice arrangement, also known as a skyrmion crystal. In the iso-

surface representation, a three-dimensional skyrmion depicts a tubular structure where

the iso-surfaces separate the skyrmion cores pointing in the opposite direction of the

external field. It is a well-known that the skyrmion magnetization configuration has a

non-trivial topology with skyrmion number |Q| = 1. Hence, it cannot be continuously

unwound into a saturated state, giving it topological stability. Even though we focus on

the skyrmion and the saturated ground states for the static skyrmion confinement, the

meta-stable skyrmion state may exist for a wide range of external field and film thick-

ness due to topological stability. In films with thickness greater than or equal to 60 nm,

another magnetization configuration mixes with the skyrmion state, namely the chiral

bobber (ChB) state. ChB state resembles a three-dimensional skyrmion state ; howe-

ver, it terminates in a Bloch point at one end. The skyrmion-ChB state (Fig. 7.2(f))

is the ground state at higher external magnetic fields and film thickness. It has been

reported that the stability of the three-dimensional skyrmions decreases with increasing

field and film thickness compared to the ChB state [35]. We find similar results in the

FeGe nanosphere study presented in section 5.3 and section 5.2. Finally, at critically

high external field values, one obtains the saturation state (not shown). This state’s

magnetization configuration is mainly oriented in field direction, except at the material

boundaries due to stray fields and DMI [171].
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(a) Phase diagram (b) Energy density at constant field 650 mT

Figure 7.3 – (a)The phase diagram of a rectangular FeGe film of lateral dimensions

180 nm × 310 nm with changing film thickness and external magnetic field. The regions

of the diagram represent different equilibrium magnetization states. The primary states

obtained are helical, bimeron, skyrmion and saturation state. However, the transition

from one state to another is gradual with mixing of the states. We also observe chiral-

bobber mixed with skyrmion state at higher film thickness and external field.(b) The

plot shows total energy density of the skyrmion and saturation state at 650 mT with

changing film thickness from 30 nm to 60 nm. The plot highlights the dependence of

skyrmions on the film thickness which is later utilized to constrain and confine them.

7.1.2 Phase diagram

The phase diagram as a function of the external magnetic field and film thickness

of an infinitely extended homogeneous FeGe film has been studied theoretically and

experimentally, as discussed in the chapter 3. However, Important changes in the phase

diagram appear if the dimensions if the dimensions of the material geometry are compa-

rable to the size of a few skyrmions (as in this study). Thus, we plot the phase diagram

to identify magnetic ground state distribution for the geometry at hand.

The various magnetic states described in the previous section are possible equili-

brium configurations of the magnetization forming in the FeGe films at different values

of the external field and the thickness. It is important to note that these magnetic
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structures are not uniquely determined by the film thickness and the field strength.

Because of this, in order to avoid possible misunderstandings, we did not specify the

values of the thickness and the field strength at which the states shown in Fig. 7.2 oc-

cur. In fact, several metastable states that can be significantly different from each other

are often possible under identical conditions, depending only on the magnetic history

of the sample or, in a numerical experiment, on the initial conditions of the simulation.

While it is generally not possible to identify a unique magnetization state that develops

in the thin-film element, micromagnetic simulations can be used to determine the type

of magnetic structure that has the lowest energy. The results of these calculations are

summarized in the phase diagram shown in Fig.7.3(a). The intersections of the grid

lines correspond to the simulation data points. We assume that the respective equili-

brium magnetization state is stable in an area of 5 nm × 50 mT, on the phase diagram,

with a data point at the center.

Although the magnetic structure at a specific thickness and field value is generally

not unique, the phase diagram helps identifying the most preferable structure as far

as the total energy is concerned. While at lower field values (below about 400 mT) the

phase diagram is rather complex, evidencing a multitude of possible magnetic structures

showing neither any clearly dominating state nor a significant thickness dependence,

the situation becomes simpler at larger field strengths (above about 600 mT). Two

main states emerge in these ranges of larger field values : the skyrmion configuration

and the quasi-saturated states. Moreover, these states are separated by a clearly defi-

ned boundary in the phase diagram, showing a distinct impact of the film thickness.

Specifically, if a field of 650 mT is applied, the formation of skyrmion structures will

be energetically favorable if the film thickness is below 50 nm, while a quasi-saturated

state will be the lowest-energy configuration at larger thickness values, as shown in

Fig. 7.3(b). This observation represents the fundamental of the concept of geometri-

cally constrained skyrmions that we present in this chapter. The idea is the following.

If the film thickness is locally modulated within a region of the geometry such that, at

a given field, the skyrmion structure is favorable in that thinner part while in the rest

of the sample the thickness is large enough to favor a quasi-homogeneous state, these

thickness modulations can be designed to constrain skyrmions. As we will show, this

patterning makes it possible to generate preferential sites of skyrmion stability and, to

some extent, achieve a geometric control of the skyrmion position within the geometry.
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Figure 7.4 – Distribution of DMI as a percentage of total energy density, for the skyr-

mion and the saturation phase, obtained while plotting the phase diagram (Fig. 7.3).

One can observe a decreasing percentage of DMI with increasing film thickness and ex-

ternal magnetic field as one transitions towards the saturation phase from the skyrmion

phase. The percentage DMI plot also explains the dependence of skyrmion stability on

the external magnetic field and thickness of the film.

7.1.3 Percentage energy contribution of DMI

Here, we plot the percentage energy contribution of the DMI to the total energy of

the relaxed magnetization states of the skyrmion and the saturation phase (Fig. 7.4).

The role of DMI in the stabilization of skyrmions in non-centrosymmetric ferromagnets

has been recognized theoretically [19, 211], and experimentally [1]. With increasing ex-

ternal field, the saturation state becomes energetically more stable, compared to the

skyrmion state, as the Zeeman energy dominates (discussed in section 5.1). Thus, the

percentage DMI contribution to the total energy, as it competes with Zeeman energy,

can indicate skyrmion stability with changing external field and film thickness. Even

though it is possible to exactly calculate the energy barrier faced by an isolated skyr-

mion for a particular thickness modulation (as presented in section 7.3), the percentage

DMI plot gives a rough idea of the same for a wide range of thickness and external

magnetic field.
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We find that DMI contributes more than 35% to the total energy at external ma-

gnetic fields lower than 550 mT for a film of thickness 40 nm. However, as the thickness

is decreased to 10 nm, the DMI dominates till 700 mT. Similarly, if the thickness is

increased to 70 nm, the DMI dominates only till 450 mT. Hence, with decreasing thick-

ness and decreasing external magnetic field, the DMI contribution to the total energy

increases, which includes the skyrmion phase. In contrast we find the saturation state

where DMI no longer dominates the energy contribution and falls below 10% of the

total energy. Even though not shown here, the percentage DMI contribution increases

further for the bimeron and the helical state as compared to the skyrmion state.

7.1.4 Geometrically constrained skyrmions in circular pockets

We now consider magnetic structures forming in a FeGe platelet of 60 nm thickness

containing dot-like cylindrical cavities within which the thickness is locally reduced to

30 nm. According to the phase diagram displayed in Fig. 7.3(a), at external field values

of about 650 mT, the insertion of these cavities results in a geometry that generates

specific regions where skyrmion structures are locally energetically favorable. This can

lead to the formation, or the trapping, of skyrmions that are geometrically constrained

to the regions in which the pockets have been introduced. Fig. 7.5 shows such a geome-

trically constrained skyrmion in a 60 nm thick platelet. The skyrmion remains confined

to the small region in which the thickness is reduced by 50 % through two cylindrical

pockets with depth of 15 nm and radius of r = 20 nm, inserted symmetrically on both

the top and the bottom surface of the film.

The geometrically constrained skyrmion, shown in Fig. 7.5, is stabilized by the geo-

metry for two reasons. Firstly, as discussed before, in this field range the skyrmion state

is generally favored because of the reduced film thickness. Secondly, the vortex-like ma-

gnetic configuration forming on the interior cylinder surfaces of the cavity helps pinning

the position of the skyrmion to the center of the pocket. This cylindrical flux-closure

structure thereby provides boundary conditions, albeit not in a mathematical sense,

which constrain the skyrmion to this dot-like geometry. By forming such a cylindrical

vortex structure, the magnetization finds a nearly optimal way to adapt to competing

micromagnetic interactions. It thereby satisfies both the tendency of the DMI to in-

troduce chiral, swirling patterns as well as the tendency imposed by the magnetostatic

interaction to form flux-closure structures with the magnetization aligned along the
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Figure 7.5 – (a) A skyrmion is formed at the base of the cylindrical pocket. At

the inner cylinder surface of the cavities, the magnetization circulates on closed loops,

thereby facilitating the formation of the skyrmion in the center. The semitransparent

representation of the surfaces shows the formation of the skyrmion in both pckets, on

the top and the bottom surface. The magnetic structure is displayed by arrows on the

sample surfaces. Some of the arrows have been remove in order to improve the visibility

of the structure. (b) View on the simulated skyrmion structure from inside the film. The

skyrmion core connects the bases of the cylindrical pockets in the positive z direction,

while the surrounding volume is magnetized in the negative z direction. The core of

the skyrmion is delilmited by a cylindrical isosurface mz = 0, shown here as a weak,

transparent contrast in order to preserve the view on the central magnetic structure.

Only a small subset of the computed arrows of the magnetization direction calculated

within the volume is displayed.
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surfaces. Without the geometric modification in the form of pockets on the surface,

the magnetic structure would be in a quasi-homogeneous state. The simulations show

that a symmetric insertion of these pockets on both the top and the bottom surfaces is

necessary to obtain the desired stability and localization of skyrmions. If the thickness

variation is introduced only on one of the surfaces, the pinning of skyrmions appears

to be much less effective.

If geometric modifications of the sample surface as described above can stabilize a

skyrmion that would otherwise not form, the question arises whether this effect can be

used to place skyrmions at specific positions where they might be generated or removed

in a controlled way through external manipulation. This could be of interest, e.g., for

device concepts in which skyrmions are utilized as binary units of information, in a

context similar to that of dot-patterned magnetic media for high-density data storage.

In this case, the skyrmion pockets would take the role of the magnetic nanodots in

bit-patterned media. While it is beyond the scope of this study to discuss the technical

feasibility of such storage media or to explore the ability to write and delete individual

skyrmion patterns into the pockets, we can show that, indeed, it is possible to stabilize

skyrmions in various geometrically predefined locations that could be addressed indi-

vidually. Fig. 7.6)(a)-(e) shows several examples of simulations in which the position of

skyrmions in a thin-film element can be predetermined by introducing several pockets

of the type discussed before. As shown in Fig. 7.6(e), our simulations predict the pos-

sibility to stabilize six skyrmions at well-defined positions, placed on a regular grid, in

our sub-micron FeGe platelet. Although the results shown in Fig. 7.6 may suggest a

nearly optimal geometric control of the skyrmion positions, it is important to note that

the pockets discussed here merely provide preferential sites for skyrmions. The latter

may or may not form or remain pinned at those sites. In particular, it is not sufficient

to thin-out a part of the sample in a sample to ensure the appearance of geometri-

cally constrained skyrmions. The purpose of such pockets could rather be to capture

existing skyrmions and to fix their positions at well-defined positions, similar to the

domain-wall pinning role that is played by notches in conventional racetrack-memory

devices. It should also be noted that the geometric trapping of skyrmions with such

pockets does not always work, in particular when the pockets are too closely packed

due to skyrmion-skyrmion repulsion [48, 212]. We also found that skyrmions cannot

be stabilized at positions too close to the lateral sample boundaries due to repulsion
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Figure 7.6 – Geometrically constrained skyrmions in FeGe platelets. By introducing

circular pockets at specific positions, skyrmions can be artificially stabilized at positions

that they would otherwise not attain. The geometric control, however, is not unlimited.

Attempts to pack skyrmions too closely or to place them too close to the sample

boundary can fail. This is shown in panel f), where skyrmions are stabilized only in the

three central pockets, while the two outermost pockets remain empty.

[48, 213]. An example of such a failed attempt is shown in Fig. 7.6(f). In spite of these

limitations, the ability to geometrically constrain skyrmions provides an attractive way

to obtain control over the skyrmion position in thin-film elements, which could have

important technological implications.

7.1.5 Geometrically constrained skyrmions on thin paths

With the help of the results obtained in section 7.1.2 and section 7.1.3, we choose

the values of film thicknesses of the path and the rest of the film for the example

geometries (geometry and dimensions of the curved path as shown in Fig. 7.1), which

show static skyrmion confinement at a fixed external field. The thickness of the thin

paths in the geometries is 30 nm, while the rest of the film’s thickness is 60 nm. The

desired regions of skyrmion confinement are the thin paths. By initiating the simula-

tions from random magnetization configurations, The magnetization states obtained

in the example geometries, at a uniform external magnetic field of strength 650 mT,

are shown in Fig. 7.7(a), 7.7(b), 7.7(c). According to the phase diagram, at 650 mT,

the skyrmion state is energetically favorable for the film thickness of 30 nm, and the
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(a) Curved path (b) Angular path

(c) Linear path (d) Uniform thickness (30 nm)

Figure 7.7 – (a)-(c) shows the magnetization states stabilized in the example geome-

tries with thin paths at a constant external magnetic field of strength 650 mT in −z

direction. One can see how skyrmions stay confined to the desired region of the geo-

metry. For comparison (d) shows hexagonal skyrmion lattice stabilized in the skyrmion

phase of a film of uniform thickness 30 nm, at 650 mT in −z direction.
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saturation state is energetically favorable for the film thickness of 60 nm. Here, we see

that the skyrmions stay confined to the thinner paths even though they form complex

shapes compared to the natural triangular/hexagonal lattice arrangement. For compa-

rison, Fig. 7.7(d) shows a triangular/hexagonal skyrmion lattice arrangement stabilized

in the film of uniform thickness 30 nm obtained in the skyrmion phase at 650 mT. As

mentioned earlier, it is crucial to emphasize that the skyrmion state favors a triangu-

lar/hexagonal skyrmions lattice arrangement and not the meta-stable isolated skyrmion

configuration. Hence, the skyrmions in the complicated example geometries, confined

to the thin paths, are moved from their equilibrium positions compared to a triangu-

lar/hexagonal lattice arrangement. To get an idea of this balance of forces, one needs

to understand the energy barrier posed by the thickness modulation. Thus, in the next

step, we mathematically model the magnetization structure of an isolated skyrmion.

Then, we utilize this modeled magnetization configuration to calculate the total energy

barrier faced by an isolated skyrmion as it moves across the thickness barrier in the

linear path geometry. The modeled isolated skyrmion configuration serves as an initial

magnetization configuration, whose core will be pinned at a definite position and the

rest of the magnetization relaxed through simulation. We obtain the total energies of

thus relaxed magnetization configurations to plot the energy barrier.

In conclusion, we have shown that skyrmions can be confined statically in the de-

sired region of material geometry through film thickness modulation, forming complex

shapes. The ability to manipulate the skyrmion position could be quite valuable for

skyrmion-based device applications, referred to as skyrmionics [124]. In the following

sections, we show that this strategy can be employed to counter the problem of the late-

ral drift motion due to skyrmion Hall effect in the skyrmion racetrack devices and fine-

tune the frequency of isolated skyrmion magnetization modes in nanodot geometries.

Further, as discussed in section 7.1.4, such thickness variations can also be employed

to create complex skyrmion arrangements in extended thin films compared to the na-

turally observed triangular/hexagonal lattice arrangement. These new arrangements

might show unique dynamic properties such as magnon scattering [145].

7.2 Modeling skyrmion magnetization configuration

To model the magnetization configuration of an isolated skyrmion, we choose the

skyrmion state stabilized in a linear path geometry as an example. Later, we will use
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(a) Linear path (b) Magnetization components of the line scan.

(c) Modeled skyrmion (d) Curve fitting of magnetization components.

Figure 7.8 – The figure describes the steps in modeling the magnetization configura-

tion of a skyrmion. (a)-(b) The red dashed line shows the line used to sample the three

magnetization components of a confined skyrmion in the linear path geometry, which is

along the y-axis. The graph showing the magnetization components of the line scan is

to the right. We note that my is virtually zero and mz resembles a Gaussian. Moreover,

mx and mz show a deviation from the bulk, near the edges of the geometry, due to

the boundary conditions imposed by DMI and magnetostatic interactions.(c)-(d) The

graph shows the Gaussian fit to mz and corresponding mx =
√

1 −mz
2, considering

my to be zero. The magnetization configuration of thus modeled skyrmion is shown to

the left.
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the same example geometry to calculate the energy barrier faced by the isolated skyr-

mion as it moves across the thickness barriers. First, we extract the three magnetization

components along a line across the skyrmion state, as shown in Fig. 7.8a. The line is

parallel to the y-axis of the material geometry. We plot thus obtained magnetization

components in Fig. 7.8b. Interestingly, the magnetization component along the line

my is virtually zero, in the skyrmion state, as the magnetization rotates perpendicular

to the radial direction. Secondly, we notice the bend in the remaining two magneti-

zation components (mx and mz) as we approach the boundary of the geometry. One

can attribute this bending to the boundary conditions imposed by the DMI [171] and

the magnetostatic interaction in the material geometries with finite dimensions. It is

not unique to the magnetization configuration of a skyrmion. To model the isolated

skyrmion, we ignore these boundary conditions and assume that the magnetization of

the skyrmion uniformly decays into a fully saturated magnetization state. With this

assumption, the values of mz can be represented as a Gaussian and mx as
√

1 −mz
2,

since my is virtually zero, as shown in Fig. 7.8d. The value of mz varies from +1 to -1

from the skyrmion center to the uniformly saturated state, respectively. Considering a

pure Gaussian, mz will attain the value -1 at an infinite distance from the center of the

skyrmion. Hence, we assume it to be a Gaussian from its values +1 up till -0.999, and

the distance between these values will be considered the radius of the skyrmion. To

find a curve that fits the data points for mz obtained through the line scan, we employ

a non-linear least squares method. The test function for the fit is as follows.

mz = a · exp

(

−
(y − b)2

c

)

+ d (7.1)

The test function represents mz as a function of y-coordinate (along the line scane

shown in Fig. 7.8a), where a, b, c, and d are the constants that we evaluate. Through

the non-linear fit for the magnetization configuration of a skyrmion in linear path

geometry, we obtain the values of the constants to be 2, 90, 330.74, and -1 respectively.

The values of a and d keeps the range of mz between +1 and -1. The value of b

represents the y-coordinate of the center of the skyrmion in the material geometry

reference frame and the constant c is a function of the radius of the skyrmion. As

mentioned above, if we assume that the Gaussian representation of mz is valid from +1

up till -0.999, and this range represents the radius of the skyrmion, then we can write
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Figure 7.9 – Here we show the snapshots of isolated skyrmion with pinned center,

in the linear path geometry (Fig. 7.7c), as it moves across the thickness barriers along

y-axis (cy represents the y co-ordinate of the skyrmion center). We calculate the total

energy of the system for each of the configuration snapshot and plot it as a function

of cy (Fig. 7.10) to calculate the energy barrier faced by the skyrmion to move from

thin path to the thickness barriers. Even though the center of the skyrmion in pinned

to the position, the rest of the magnetization distorts to minimize total energy.

c = rsky
2/ ln(2000). To model the magnetization configuration of the isolated skyrmion

in a three-dimensional geometry, we assume it to be circularly symmetric around the

direction of the external magnetic field, which is along the z-axis in our case. For the

plane perpendicular to the direction of the external field (xy-plane), the orientation of

in-plane magnetization moments resemble a magnetic vortex and the magnitude will be
√

1 −mz
2 . Further, the vorticity of the magnetization moments depends on the sign of

the DMI constant. Thus, we obtain an artificially created magnetization configuration

of an isolated skyrmon shown in Fig. 7.8c.

7.3 Skyrmion potential well

Here, we calculate the energy barrier faced by the skyrmion confined to the thin

path of linear path geometry (Fig. 7.7c). To calculate the energy barrier, we need

the values of the total energy of individual magnetization configurations, in which

an isolated skyrmion moves across the thickness barriers (Fig. 7.9). It requires us to

stabilize the skyrmion in regions of the geometry where otherwise it is unstable, such

as the thickness barrier. One way to calculate the barrier is to make use of the modeled

isolated skyrmion (discussed in Section 7.2) by artificially placing it at a definite length

117



7.3 Skyrmion potential well

Figure 7.10 – Total energy vs. the isolated skyrmion center, in the linear path geome-

try (Fig. 7.7c) and a uniform film of thickness 30 nm. We consider the total energy of a

quasi-saturation state, for both the geometries, as a reference and set its value to zero.

We find that the energy barrier posed by the thickness barrier is almost twice compared

to the uniform thickness, which explains the skyrmion confinement. The calculation of

the energy barriers is performed at a constant external field of strength 650 mT.
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intervals across the thickness barrier and calculating the total energy at each position.

However, the magnetization configuration of the skyrmion that we obtain from the

model (Section 7.2) is relatively rigid. Typically, the magnetization configuration of a

three-dimensional skyrmion can distort to minimize energy [46, 214]. Moreover, we had

assumed while modeling the isolated skyrmion that the rest of the material, except the

skyrmion, is in a fully saturated magnetization state along the direction of the external

field. The assumption is not correct for the boundaries of the material due to boundary

conditions imposed by the DMI and the demagnetization field.

We take another approach to calculate the energy barrier. To stabilize the isolated

skyrmion in a region of the geometry where it is otherwise unstable (e.g., the thickness

barriers), we begin the simulation with the magnetization configuration of the modeled

isolated skyrmion ; however, the magnetization of a small central religion of the skyr-

mion core (radius of 10 nm) is rigidly fixed in the opposite direction of the external

field, to pin the skyrmion at the position. Then, we let the magnetization relax to mi-

nimize the total energy of the system. In this way, the magnetization of the material

has the flexibility to attain a realistic configuration while keeping the skyrmion pinned

at the desired region of the geometry. We choose positions to pin the skyrmion center

at an interval of 5nm, in a way as mentioned above, across the thickness barrier of the

linear path geometry to calculate the energy barrier profile, as shown in Fig. 7.10. The

resulting magnetization configurations are presented in Fig. 7.9.

It is interesting to note that even though we had pinned the centers of the skyrmions

to the definite regions of the geometry to calculate the energy barrier, the magnetiza-

tion configurations of the skyrmions does distort in almost every case to minimize the

total energy at the respective positions (Fig. 7.9). This validates our assumption that

using the rigid magnetization configuration of the modeled isolated skyrmion, alone, to

calculate the skyrmion energy barrier is unrealistic. Further, letting the rest of the geo-

metry’s magnetization configuration relax gives the twist at the material boundaries,

an effect of the boundary conditions imposed by DMI [171].

The quasi-saturation or quasi-ferromagnetic state represents the magnetization confi-

guration in the absence of an isolated skyrmion. Hence, in calculating the energy barrier

posed by the thickness modulation, we take it as a reference and assume it has zero

energy. We show the total energy plot as a function of a co-ordinate of the skyrmion

center in Fig. 7.10. For comparison, we also show the total energy plot of a uniformly
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thick (30 nm) film, of the same lateral dimensions as the linear path geometry. It is

clear from the plot that the thickness modulation creates a potential well for the isola-

ted skyrmion, which leads to its confinement. The small energy barrier that exists for

the skyrmion in the geometry without a thickness modulation can be attributed to the

repulsion that an isolated skyrmion experiences from the boundaries [48, 130, 212, 213].

It is important to note that since the stability of the skyrmion state depends on the

external field, in addition to the film thickness, the energy barrier profile discussed here

will also depend on the same. The external field is kept constant at 650 mT for the

calculations presented here.

7.4 Dynamic skyrmion confinement

In this section, we study the confined dynamics of three-dimensional skyrmions due

to thickness modulation. We subdivide the study into primarily two parts. Firstly, we

study the possibility to counter unwanted skyrmion Hall effect, with thickness barriers,

in an H-shaped racetrack geometry. The isolated skyrmion is displaced with the help of

a spin-polarized current. Secondly, we investigate the impact of skyrmion confinement

on the frequency of magnetization modes in a disc geometry with a thickness barrier

at the edge.

7.4.1 Dynamic skyrmion confinement in H-track geometry

In recent years, magnetic skyrmions have received considerable attention from the

magnetism community due to their topological stability and particle-like nature. This

unique property makes them a promising candidate for nanotechnology applications,

such as nonvolatile memory devices [7]. Moreover, it is possible to displace skyrmions

with very low current densities (of the order of 1 × 106 A m−2) compared to domain

walls in confined geometries [2]. The skyrmion Hall effect (SkHE), where a skyrmion

drifts perpendicular to the direction of the applied spin-polarized current, is one phe-

nomenon that substantially impedes such progress [215]. On a modified racetrack geo-

metry of material FeGe, our calculations show that it is possible to counter SkHE by

adding a thickness barrier on the track edges and, thus, confine the skyrmions. Inspired

by the linear path geometry studied in static confinement (Fig. 7.7c), we propose a

racetrack geometry with thickness barriers at the lateral edges, as shown in Fig. 7.11.
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(a) (b)

Figure 7.11 – The figure shows the dimensions of the proposed H-track geometry.

(a) shows the length of the skyrmion which is 800 nm. (b) shows the cross-section of

the H-track geometry. The thin central path, where we confine the isolated skyrmion,

is of thickness 20 nm. The barrier at the edges have a thickness 60 nm. The width of

the thin central path and the barriers is 40 nm.

Henceforth, we will refer to the geometry as an H-track geometry. The goal is to

study the motion of an isolated skyrmion in the thin central path. For the study,

we consider an H-track of length 800 nm (Fig. 7.11a). We show the cross-section in

Fig. 7.11b. The width of the thin path and both the thickness barriers is 40 nm. The

thickness of the thin path is 20 nm, while the thickness of the barriers is 60 nm.

First, we stabilize an isolated skyrmion at one of the thin central path’s ends at

an external field of 700 mT, starting from the modeled isolated skyrmion configuration

(Section 7.2) of diameter 40 nm. We chose a high value of the external magnetic field to

stabilize an isolated skyrmion, which is meta-stable in the given conditions. To study

the dynamics, we apply a current along the direction of the H-track geometry length. We

find that, on applying a current density, the isolated skyrmion indeed stays confined to

the thin central path (Fig. 7.12). The thickness barriers counter the unwanted SkHE and

keeps the isolated skyrmion confined, similar to the static case (section 7.1). Starting

from a minimal current density of the order 1 × 106 A m−2, the isolated skyrmion stays

confined until an unrealistic high current density of 8 × 1012 A m−2. In a uniformly thick

racetrack geometry of the same lateral dimensions as the H-track and a thickness of

20 nm (same as the thin central path), the isolated skyrmion gets expelled by the SkHE

at a current density of 2 × 1012 A m−2. The addition of thickness barriers increased the
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Figure 7.12 – The image shows time snapshots of isolated skyrmion motion in H-

track geometry. The applied current density is 4 × 1012 A m−2. One can see that even

at high current densities, the skyrmion stays confined to the thin central path.
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(a) (b)

Figure 7.13 – Dependence of skyrmion velocity on current density (j) and α/β ratio in

the H-track geometry. (a) For the plot between skyrmion velocity and current density,

we fix the values of α = 0.28 and β = 0.04. Similarly, (b) for the dependence of the

same on β/α, we fix the value of current density at 4 × 1012 A m−2. In both the cases,

we find linear dependence of skyrmion velocity. One can explain this analytically with

the help of Thiele equation.

maximum current density tolerance by a factor of four. We also study the current-

velocity relationship of the isolated skyrmion in the geometry. Fig. 7.13a shows the

skyrmion velocity plot with increasing current density. It reveals a linear relationship of

the skyrmion velocity with the current density. To investigate how the skyrmion velocity

depends on the current density, we kept the the value of Gilbert damping (α) = 0.28 and

coefficient of non-adiabaticity (β) = 0.04. Further, we study the dependence of skyrmion

velocity on the ratio β/α by keeping the current density constant at 4 × 1012 A m−2.

We keep the value of the β constant at 0.04 while changing the α value from 0.04 to

0.28. In Fig. 7.13b, we plot the data points of skyrmion velocity corresponding to the

β/α values. Similar to the current-velocity plot, the plot shows a linear relationship.

We study two more H-track geometry with a barrier thickness of 100 nm and 130 nm,

keeping the thin central path’s thickness the same (20 nm). However, the previously

discussed results of the skyrmion velocity dependence on current density and β/α ratio

remain unchanged.

It is possible to analytically obtain an expression for the isolated skyrmion velocity,

in a confining potential, based on the approach pioneered by A. Thiele [26]. Even

though the confining potential of thickness barriers distorts the skyrmion’s shape, the
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overall motion can be considered a steady-state motion. Hence, the following equation

of motion for the skyrmion is obtained, based on equation 2.30 [130, 216] :

G × (ve − vsky) + D(βve − αvsky) + F = 0 (7.2)

Here ve is the velocity of the electron (in the opposite direction and directly propor-

tional to the current density), and vsky typically represents the velocity of magnetization

configuration ; however, as we study an isolated skyrmion, we assign it to the skyrmion

velocity. G is the gyromagnetic coupling vector, which represents the Magnus force

(SkHE). For the magnetization configuration of a skyrmion, which is in the x− y plane

in our case, G = 4πQez, where Q = −1 (skyrmion number) and ez is a unit vector

in the z-direction. D is the dissipative force tensor. The components of the tensor are

Dxx = Dyy = D and otherwise zero. The final term F represents a force on the ma-

gnetization configuration from the surroundings, excluding the spin-polarized current.

One may simplify equation 7.2 by assuming no force along the H-track (x-axis), which

is also the current direction, as there is no thickness barrier. Further, one may assume

that the skyrmion velocity across the thickness barrier (y-axis) is zero due to the confi-

ning potential. Hence, we obtain the following expression for the skyrmion velocity in

x-direction :

vsky
x =

β

α
ve

x (7.3)

Where the velocity of electrons is proportional and opposite to the direction of

current density. Hence, we obtain a linear relationship of skyrmion velocity with both

current density and β/α, which is in agreement with the simulation data.

7.4.2 Magnetization modes of confined skyrmion

The study of dynamical modes of a magnetization configuration has been of great

interest from both fundamental physics and application point of view. Not only does it

reveal the magnetic properties of the material, but also the interaction of the magne-

tization configuration with electromagnetic waves (EMW), its stability, and possible

phase transitions.

The interaction of an incident EMW with the magnetization configuration occurs

through its oscillating magnetic field, which exerts a periodic torque on the components
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7.4 Dynamic skyrmion confinement

Figure 7.14 – The geometry of the disc with thickness barrier at the edge. (a) The

FEM mesh used to properly model the curvatures in the barrier disc geometry. (b)

The cross-section of the barrier disc geometry showing the central thin disc part with

thickness 10 nm and thickness barrier with thickness 50 nm. The width of the thick-

ness barrier is varied from 10 nm to 25 nm keeping the total diameter of the geometry

constant at 100 nm.

of the magnetization that are perpendicular to the field. Hence, the magnetization

configuration’s dynamical modes can affect the reflection and absorption of EMW. It

is possible to tune these properties by changing the material parameters such as the

magnetic anisotropy or the constant external magnetic field or the material geometry

(like the study presented here).

As mentioned above, the study of dynamical modes is also essential for detecting

magnetization phase transitions. In particular, the low-frequency dynamical modes can

be used as an indicator of the onset of a phase transition, where the frequency is driven

to zero as a function of applied field or other parameters.

Here, our aim is to study the impact of geometric confinement on the magnetization

modes of a confined isolated skyrmion. The skyrmion is stabilized in an FeGe disc

geometry with a thickness barrier of variable widths, at the edge (geometry is shown

in Fig. 7.14). To understand the impact of confinement the study is divided as :

1. We identify the different dynamical modes of confined skyrmion present in disc

geometry with thickness barrier at the edge.
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7.4 Dynamic skyrmion confinement

2. We analyze how the skyrmion confinement affects the frequencies and power of

the dynamical modes.

3. We compare the obtained modes of the confined skyrmion with an isolated skyr-

mion in a disc of uniform thickness, i.e., without a thickness barrier.

In the disc geometry, the barrier’s thickness is 50 nm, while the thin central region’s

thickness is 10 nm. The equilibrium position of the skyrmion is at the center of the disc.

The total width of the disc, i.e., the diameter, remains constant at 100 nm. However,

to understand the barrier’s impact on the dynamical modes of the confined skyrmion,

we vary its width from 10 nm to 25 nm in an increment of 5 nm. To stabilize the equi-

librium skyrmion states, we start the simulations from the modeled isolated skyrmion

configuration (Section 7.2) at the center of the discs and relax it in an external magnetic

field of 400 mT in the negative z-direction. We observe that the barrier’s width affects

the skyrmion core radius, where the skyrmion core shrinks with the increasing barrier

width. Thus, the changing magnetization configuration of the isolated skyrmion due to

geometrical confinement affects the modes’ frequency and power.

To obtain the magnetization modes, we first perturb the stabilized isolated skyr-

mion configuration by a small external field. Once the skyrmion has achieved a new

equilibrium in the presence of the perturbation, we remove it and let the skyrmion re-

lax to the original equilibrium position. This process of perturbing the skyrmion from

its equilibrium position and letting it relax back to the original equilibrium leads to

a magnetization configuration excitation, a superposition of the magnetization modes.

To obtain individual magnetization modes, we perform spatially resolved Fourier ana-

lysis. The magnetization dynamics of the isolated skyrmion due to the external field

perturbation is captured for 12 000 ps, at fixed intervals of 10 ps, at individual spatial

discretization points. Further, we subtract the original skyrmion equilibrium state’s ma-

gnetization, which essentially acts as a static background, from the dynamic calculations

to refine the magnetization excitation. The Fourier transform of the excitation yields

peaks in the power spectrum plot corresponding to different magnetization modes. We

perform a windowed Fourier back-transform for the modes’ frequency window to ob-

tain the individual modes’ time-domain dynamics. For the Fourier analysis presented

in this study, a python code developed by our group member Rajgowrav Cheenikundil

has been used.

The lateral modes are obtained by applying the small field in the x-direction, per-
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7.4 Dynamic skyrmion confinement

(a) Skyrmion state (b) CCW gyrotropic mode (c) CW azimuthal mode

(d) Edge mode (e) Disc breathing mode (f) Edge breathing mode

(g) Disc & edge breathing

mode

Figure 7.15 – Fourier amplitude in the form of δmz for all the dynamical magne-

tization modes obtained in the barrier disc geometry. For coherence, the width of the

thickness barrier is chosen to be 10 nm for the representation of the modes. (a) Isolated

skyrmion state stabilized in the geometry at 400 mT in negative z-direction. The color-

map represents the magnetization in z-direction for the skyrmion state. The image

serves as a reference for the amplitude of the magnetization modes shown in the follo-

wing images. (b)-(g) The Fourier amplitude of the six principal magnetization modes

shown with the help of δmz.
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7.4 Dynamic skyrmion confinement

(a) CCW gyrotropic mode (b) CW azimuthal mode (c) Edge mode

(d) Disc breathing mode (e) Edge breathing mode (f) Disc & edge breathing mode

Figure 7.16 – Distribution of power in the geometry for the six magnetization modes

of the barrier disc with the help of PSD. The gray iso-surface (corresponding to mz = 0)

represents the core of the skyrmion state stabilized in the geometry ; shown in order to

identify the regions of activity with respect to the skyrmion core.

pendicular to the constant external field in the negative z-direction. Similarly, the

breathing modes are obtained by applying the small field in the negative z-direction,

parallel to the constant external field. We choose the value of perturbation small enough

(50 mT compared to the constant external field 400 mT) so that the magnetization ex-

citation of the skyrmion stays in the linear regime. We also apply small field pulses of

a Gaussian profile in x and z-direction to study the possibility to excite the respective

modes with a field pulse.

We obtain six (three lateral and three breathing) principal dynamical modes of the

confined skyrmion : gyrotropic, asymmetric azimuthal, edge, breathing disc, breathing

edge, and breathing disc & edge modes. Note that in the following description of the

dynamical modes, we consider the magnetization dynamics with respect to the skyrmion

core polarity. As previously mentioned, the external magnetic field points in the negative

z-direction. Thus, the stabilized skyrmion core points in the positive z-direction, and

we evaluate the dynamics of the skyrmion from the bottom view.

The gyrotropic mode (Fig. 7.15(b)) represents the skyrmion center’s counter-clockwise

rotation. The Fourier amplitude of the corresponding magnetization dynamics is pre-

sented in Fig. 7.16(a), from which one may argue that the magnetization dynamics is li-
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7.4 Dynamic skyrmion confinement

mited to the skyrmion core, i.e., mz > 0. The asymmetric azimuthal mode (Fig. 7.15(c))

corresponds to a clockwise magnetization rotation, excluding the skyrmion core, i.e.,

mz < 0. The Fourier amplitude of the dynamics (Fig. 7.16(b)) shows that the skyr-

mion core remains inactive. The mode is referred to as asymmetric as it breaks the

axial symmetry along the z-axis. We find that the mode can not be excited with a

field pulse perpendicular to the skyrmion plane for a spatially uniform profile. Hence, a

spatially asymmetric pulse is required in order to excite the mode in such a case. Such

modes have been well studied in magnetic vortices, where the magnetization’s tempo-

ral evolution was resolved experimentally [217]. The lateral edge mode (Fig. 7.15(d))

resembles the asymmetric azimuthal mode at a higher frequency with little skyrmion

core activity. From the Fourier amplitude of the mode (Fig. 7.16(c)), one can see that

the mode is confined to the protruding thickness barrier edges and has a spatial node

at the center along the width. It is interesting to note that, with increasing barrier

width, the activity at the skyrmion core further diminishes, however, the total Fourier

amplitude increases. The breathing disc mode (Fig. 7.15(e)) represents the compres-

sion and expansion of magnetization configuration of the inner thin disc represented by

axially symmetric oscillation of change in mz, i.e., δmz. The magnetization dynamic is

primarily spread around mz < 0, as shown in Fig. 7.16(d) Fourier amplitude. Typically,

one may excite the breathing modes with an out of plane field pulse, which is valid for

all the geometries and all the breathing modes in our case. The edge breathing mode,

similar to the edge mode, shows a predominant activity in the thickness barrier edges

(Fig. 7.16(e)), with a node at the center. The value of δmz oscillates coherently at

both the edges and it is out of phase by π with the small oscillation at the thinner

disc (Fig. 7.15(f)). Finally, the edge & disc breathing mode shows activity at both the

central thin disc and barrier edges (Fig. 7.16(f)). It is interesting to note that, at the

edges, the δmz oscillations are out of phase by π and, in turn, both the edges are out

of phase by π
2

with the thinner disc (Fig. 7.15(g)).

To understand the impact of skyrmion confinement on dynamical modes, we plot

their frequencies and Fourier amplitude with changing thickness barrier width (Fig. 7.19).

Also, we compare the corresponding modes with the ones obtained in a disc with the

same lateral dimensions as the barrier disc, but with uniform thickness 10 nm (Fig. 7.17

and Fig. 7.18), where the thickness is related to the thinner disc part of the barrier disc

geometry (Fig. 7.14(b)). The external magnetic field remains constant at 400 mT for
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7.4 Dynamic skyrmion confinement

(a) Skyrmion state (b) CCW gyrotropic mode (c) CW azimuthal mode

(d) Breathing mode (e) Second order breathing

mode

Figure 7.17 – Fourier amplitude of four magnetization modes obtained in a disc

geometry of thickness 10 nm, at a constant external field 400 mT in negative z direction,

without thickness barrier at the edge. (a) The isolated skyrmion state stabilized at the

given external field in the disc geometry shown with the help of a color-map with respect

to mz. (b)-(e) The four magnetization modes of the skyrmion state represented with

amplitude of δmz. The CCW gyrotropic mode has frequency 1 GHz, the CW azimuthal

mode has frequency 5.58 GHz, and the breathing as well as the second order breathing

mode has frequencies 5.67 GHz and 22.91 GHz respectively.
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7.4 Dynamic skyrmion confinement

(a) CCW gyrotropic mode (b) CW azimuthal mode

(c) Breathing mode (d) Second order breathing

mode

Figure 7.18 – Geometric distribution of power in the disc geometry of uniform thi-

ckness for the for magnetization modes of the skyrmion state. The gray iso-surface

corresponds to mz = 0. With the help of the iso-surface, one may identify regions of

activity compared to the skyrmion core.

all the cases.

For the barrier disc geometry, in the case of CCW gyrotropic mode, the frequency

increases, and the amplitude decreases nonlinearly with increasing barrier width. The

The amplitude is maximum and frequency is minimum at 1 GHz in the case of uniformly

thick disc. We have already discussed how the thickness barrier can create a potential

well for an isolated skyrmion in section 7.3. Hence, we assume that the increasing

width of the thickness barrier leads to a steeper potential well, ultimately resulting

in a smaller amplitude and higher frequency of the gyrotropic mode with an identical

excitation. One can roughly compare it to an object’s harmonic motion obeying Hook’s

law with an increasing spring constant. However, it is crucial to keep in mind that

a rigid skyrmion’s particle treatment follows the Thiele equation [26], and hence, it

is non-Newtonian. For the CW asymmetric azimuthal mode, the frequency decreases

with increasing barrier width. On an average, the mode’s Fourier amplitude is 18 times

higher in the case of a uniformly thick disc compared to the disc with a thickness barrier.

In the barrier’s presence, it stays constant till width 20 nm and then becomes 1.5 times

for width 25 nm, which could be due to the change in region of maximum activity

from thinner disc region to the thicker barrier region with increasing barrier width.

Obviously, the barrier mode disappears as the barrier thickness is reduced to zero. It
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7.4 Dynamic skyrmion confinement

Figure 7.19 – The plot shows the trends in the frequency and Fourier amplitude of

the six magnetization modes of the skyrmion state in the barrier disc geometry with

changing barrier width. The plot confirms that the width of the barrier affects both

frequency and amplitude of the confined skyrmion modes. The possibility to tune the

skyrmion modes through material geometry can prove to be significant for communi-

cation and signal processing devices based on spintronics.
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7.4 Dynamic skyrmion confinement

follows a similar frequency and amplitude trend as the CW azimuthal mode with a

thickness barrier, where its frequency is always higher and the amplitude always lower

than the later. The disc breathing mode is observed in both the disc with and without

the thickness barrier. The frequency of the mode is always higher in the presence of

the barrier, however, the amplitude is lower up till the barrier width 15 nm and then

becomes higher compared to the disc without barrier. Although not shown explicitly,

we observe, with increasing barrier width, the region of maximum activity (Fourier

amplitude) of the disc breathing mode is no longer limited to the thinner disc region

(Fig. 7.16(d)) ; instead it is shared by the disc and the barrier region. We observe

this change going from 15 nm to 20 nm barrier width, which could be the reason for

the increase in the amplitude. Similarly, the initial increase and subsequent decrease

in the frequency of the mode can be attributed to this effect. As expected, the edge

breathing mode follows a similar trend for the amplitude and frequency as the edge

mode given the similar region of activity. The main difference is lower amplitude and

higher frequency. Also, the edge breathing mode is not observed in the disc without the

thickness barrier. Instead, in the case of the disc with uniform thickness, we observe a

higher order breathing mode with two spatial nodes in the radial direction with an in-

phase oscillation of the magnetization (Fig. 7.17(e) & Fig. 7.18(d)). Finally, the disc &

edge breathing mode shows an increasing frequency and a decreasing amplitude trend

with increasing thickness barrier up till barrier width 20 nm ; after which the mode is

not observed.

Hence, we see that the geometric confinement affects the frequency and amplitude

of different dynamical modes of the isolated skyrmion. Not only do we observe the novel

barrier modes, but the confinement also affects the frequency and the Fourier amplitude

of the previously known dynamical modes in a disc geometry of uniform thickness. One

may attribute this to the changing isolated skyrmion structure with changing thickness

barrier width (not shown). From a signal processing and communication device appli-

cation point of view, the possibility to tune the frequency of the modes by varying the

barrier width can be significant. Further, the CCW gyrotropic mode has been shown

to act as a soft mode for skyrmion core switching in confined geometry [138] or melting

of the skyrmion crystal phase in extended geometry [132]. One can drive down the mo-

de’s Fourier amplitude by introducing the thickness barrier, as discussed above. Hence,

one may argue that a thickness barrier enhances the skyrmion’s stability against an
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external perturbation, which is relevant to magnetic recording devices.
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Chapitre 8

Conclusion

135



With the increasing possibility to stabilize and study three-dimensional geometries

of magnetic materials due to substantial progress in fabrication, characterization, ima-

ging, and simulation techniques, in this thesis, our aim was to study the stabilization

and dynamic properties of three-dimensional skyrmions in confined geometries through

FEM/BEM micromagnetic simulations. The materials with bulk Dzyaloshinskii-Moriya

interaction (DMI) host three-dimensional skyrmions due to inherent spatial inversion

symmetry breaking (FeGe for our study, a B20 type non-centrosymmetric ferromagnet).

We found that the skyrmion state stability depends primarily on the external magne-

tic field strength (in the absence of magnetocrystalline anisotropy) and the material

geometry dimensions. Utilizing this fact, we propose a way to constrain the skyrmions

statically through geometry modulation and study their constrained state dynamics.

Further, due to competing symmetric exchange interaction and anti-symmetric DMI,

we found other chiral magnetization structures such as helical, (bi)meron, and chiral

bobber states in the 3D geometries of FeGe. Hence, in addition to studying the static

and dynamic properties of the skyrmions, we also present the study of (meta-)stability

and evolution of these states with varying external field and geometric dimensions.

The synopsis of the study presented in the thesis is as follows :

1. The study of chiral magnetization states, including skyrmion state, in FeGe

nanospheres ;

2. The study of skyrmion and chiral bobber state switching, two proposed funda-

mental units of information storage, in nanodisc geometry ;

3. The study of the static and dynamic properties of geometrically constrained

skyrmions, guided or pinned by means of film thickness modulation.

Three-dimensional chiral magnetization states in FeGe nanosphere are

presented in chapter 5. We found five principal equilibrium magnetization states : he-

lical, meron, skyrmion, chiral bobber, and quasi-saturation state, in FeGe nanosphere

geometry. The change in the magnetization structure of the ground state is described

with increasing external field, and a phase diagram of the equilibrium states as ground

states is presented with changing external field values and the nanosphere radius. We

further look at a cross-section of the phase diagram, where we found that the chiral

equilibrium states with non-trivial topology (i.e., skyrmion, chiral bobber, and meron

state) are stabilized as meta-stable states over an extended range of external field and

radius values. Finally, we study the impact of magnetostatic interactions on the sta-
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tes’ stability, where we found that it does not impact the phase diagram appreciably.

However, the impact of magnetostatic interactions cannot be ignored for flat confined

geometries. The study highlights the impact of the external field and material geometry

on the skyrmion state’s stability and others. We showed with the help of FeGe nanos-

pheres that it is possible to obtain five principle equilibrium states, including the 3D

skyrmion state, in isolation due to the finite size of the geometry. This opens an avenue

for the further study of the fundamental magnetic properties of individual equilibrium

states, for example, the magnetization modes.

Skyrmion and chiral bobber state switching is presented in chapter 6. Chap-

ter 5 discusses how the external magnetic field impacts the magnetization structures

of the skyrmion and chiral bobber states and the phase diagram regions where they

are the ground states. However, due to non-trivial topology and a Bloch point in the

chiral bobber state, one needs to overcome an energy barrier to switch between the

states. We found that it is possible to achieve this switching with magnetic field pulses

in a FeGe nanodisc geometry. First, we modulate the external field to adjust the total

energies of the skyrmion and chiral bobber state such that one becomes energetically

favorable over the other and then overcome the topological barrier with an additional

Gaussian field pulse. We found that the direction of the gaussian field pulse required for

the transition from skyrmion to chiral bobber state is perpendicular to the skyrmion

axis, while the chiral bobber to skyrmion state is parallel to the skyrmion axis. The

control over the switching of the two states with a field pulse may have technological

implications. The switching process discussed here involves complex Bloch point (BP)

dynamics. We find that the BP is injected from a fixed surface with regards to the

external field direction and the sign of the DMI constant. This points towards the fact

that both top and bottom surfaces of the 3D skyrmion have different contributions

to the total energy of the system, i.e., one surface has lower energy than the other.

Such asymmetry in the total energy contribution of a 3D magnetization structure of a

skyrmion has not yet been discussed in the literature and can be important from both

fundamental physics as well as application points of view.

The study of geometrically constrained skyrmions is presented in chapter 7.

This chapter proposes a method to constrain the skyrmions to the desired region of the

material geometry utilizing thickness modulations and the study of thus constrained

skyrmion dynamics. We begin the study with a phase diagram showing magnetization
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ground state distribution for a rectangular FeGe film with changing external field and

thickness ; the film’s lateral dimensions stay constant. We primarily focus on whether

the skyrmion or the saturation state is energetically favorable depending on the film

thickness at a constant external field. Above a specific external field value, the skyr-

mion state is energetically favorable in thinner films than the thicker ones. Hence, we

introduce local regions of reduced thickness in a relatively thick film, in the form of

circular pockets and narrow paths, as the desired regions of skyrmion stability. Once

these regions capture the skyrmions, they stay confined to them. First, we present the

study of cylindrical pockets of reduced thickness in the film. The pockets can be arran-

ged in various ways on a rectangular film to create a complex skyrmion arrangement

compared to the natural hexagonal skyrmion crystal —for example, a square lattice or

diagonal arrangement. Subsequently, we present the study of three example geometries

where a thin and narrow path is carved out of the thick films as the desired regions of

skyrmion stability. Again, we found that once the skyrmions are captured on the path,

they stay confined to it. The three path geometries mentioned above are linear, angled,

and curved path geometries, which again deviate from the natural hexagonal skyrmion

crystal arrangement. Further, we plot the energy barrier faced by the skyrmion due to

the thickness modulations in the linear path geometry at a fixed external field and com-

pare it with a film without thickness modulation. We found that the skyrmions indeed

face a substantially higher energy barrier in the former case. The study presented here

is especially useful where the control over the positions of the skyrmions is required to

form definite skyrmion arrangements. Two of such cases where the skyrmion arrange-

ment may be of interest are magnonics, where a particular skyrmion arrangement can

form a magnonics crystal whose magnon dispersion relation depends on the skyrmion

arrangement, and the emerging field of skyrmion based physical reservoir computing

where the nonlinear current-voltage relationship of the device due to anisotropic ma-

gnetoresistance (AMR) [218] depends on the arrangement and position of the skyrmions

in the physical reservoir.

To study the constrained skyrmions dynamics, we take inspiration from the linear

path geometry and propose a new H-shaped skyrmion racetrack where the skyrmions

stay confined to the thin central path when displaced with spin-polarized currents.

The thickness barriers at the lateral edges counter the unwanted skyrmion Hall effect

(SkHE), which typically pushes out skyrmions from the edges. In the presence of the
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thickness barrier, we found that it requires four times higher current density to expel

skyrmions from the edges due to SkHE. We plot the skyrmion velocity with current

density and beta/alpha ratio, and in both cases, we found that the velocity scales

linearly. We further show this relationship can be analytically derived from Thiele’s

equation for an isolated skyrmion motion in the track. With our preliminary calculations

(not presented in the thesis), we find that it is also possible to pin the position of

skyrmions on the thin central track with the help of shallow circular pockets with an

equidistant linear arrangement. The pinning of the skyrmions is essential to counter

the undesirable skyrmion thermal diffusion and form an ordered (and thus readable)

pattern of skyrmions on the track. With a finite square current pulse, the skyrmions

can be moved between the pockets preserving the pattern. Moreover, our preliminary

calculations show that it is possible to nucleate skyrmions in the H-track geometry from

cylindrical notches in the track by decreasing the total external field. In this way, one

can present a coherent skyrmion-based racetrack device concept where the thickness

modulations can be used to counter the unwanted skyrmion Hall effect and thermal

diffusion to form an ordered and readable skyrmion pattern on the track. The width of

the thin central track, the depth of the pinning pockets, the strength and profile of the

square current pulse, and different non-centrosymmetric ferromagnets as a material of

choice for the device are a few parameters that still needs to be studied comprehensively

to obtain a practical racetrack device. Finally, we study the constrained skyrmion’s

magnetization modes in a nanodisc geometry with the thickness barrier at the edge. The

geometry resembles the nano pockets discussed earlier ; however, we study an isolated

constrained skyrmion in the present case. We identify six modes, three lateral and

three breathing, two of which can only be observed in the thickness barrier’s presence.

Further, we found that one can tune the frequency of the modes and response to

an external perturbation by changing the thickness barrier’s width. This study can

be extended to obtain a geometry with multiple constrained skyrmions in pockets of

varying radii where the Fourier spectrum of the collective modes may show multiple

peaks corresponding to the distribution of the pockets’ radii. One can further opt to

create a fractal-based geometry, for example, where the thin pockets form an Apollonian

gasket, which has a large distribution of the radii for finite dimensions of the device

and hence obtain a large distribution of the eigenmode frequencies.

In conclusion, we present a comprehensive study of three-dimensional skyrmions
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in confined geometries. Besides, we also identify various equilibrium states like the

helical, (bi)meron, and chiral bobber state, that are stabilized in materials hosting

three-dimensional helimagnetic structures. We utilize the external field dependence of

the total energy of the skyrmion state to achieve controlled switching of the skyrmion

state to the chiral bobber state. Further, we utilize the geometry dependence of the total

energy to constrain skyrmions to the desired regions. This possibility to manipulate

the position of the skyrmions can be quite useful for device applications. The statically

constrained skyrmions in different arrangements of the pockets and the narrow paths

have the potential to form magnonic crystals and physical RC, as well as the dynamics

of the constrained skyrmions in the H-shaped racetrack geometry to counter SkHE and

the possibility to tune the frequency of the skyrmion magnetization modes in barrier

disc geometry may find application in magnetic storage and RF devices.
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Swapneel Amit PATHAK

Simulation of Three-

Dimensional Skyrmions in

Confined Geometries

Résumé

Dans les matériaux magnétiques non centrosymétriques, l'interaction Dzyaloshinskii-Moriya 

favorise les structures d'aimantation chirales telles que les états hélicoïdaux et les skyrmions. 

Cette thèse étudie l’effet du confinement géométrique tridimensionnel (3D) sur de telles 

structures en utilisant des simulations micromagnétiques par éléments finis. Une étude 

exhaustive examine les états d’aimantation se formant dans les nanosphères de FeGe en 

fonction de leur taille et du champ appliqué. On trouve une grande multiplicité d'états 

d’aimantation, ce qui pourrait être utile pour les dispositifs de mémoire multi-états. Il est 

ensuite démontré que des poches circulaires dans des couches étendues peuvent, grâce à 

l'effet du confinement 3D, agir comme sites de piégeage pour les skyrmions. Enfin, il est 

montré que des effets de confinement peuvent guider des skyrmions déplacés électriquement 

dans des dispositifs de type registre à décalage, évitant ainsi des déflexions indésirables.

Résumé en anglais

In non-centrosymmetric magnetic material, the Dzyaloshinskii-Moriya Interaction favors the 

formation of chiral magnetization structures such as helical states and skyrmions. In this 

thesis, the effect of three-dimensional (3D) geometric confinement on such chiral structures is 

investigated with finite-element micromagnetic simulations. As a first example, an exhaustive 

study discusses the magnetization states forming in FeGe nanospheres as a function of the 

particle size and the applied field. A surprisingly large multiplicity of possible magnetization 

states is found, which could be a useful feature for multi-state memory devices. The effect of 

3D confinement is then studied in a different context, demonstrating that circular pockets in 

extended films can act as pinning sites for skyrmions. Finally, it is shown that geometric 

confinement effects can also be used to guide electrically driven skyrmions in shift-register 

type devices, thereby preventing unwanted lateral deflections.


