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Abstract 

 

 

Software defect prediction is one of the most explored research topics in software 

engineering. Modern software applications are often overly complicated and prone to failures. 

Software defect prediction (SDP) can alert on the risk of failure of a software component in 

the initial stages of development and help developers to appropriately schedule and prioritize 

their test efforts, reduce costs, and ensure software quality. Traditional statistical software 

defect prediction tools are always time-consuming and ineffective. We argue that machine 

learning algorithms with its ability in learning, classification, knowledge representation, etc. 

can capture useful properties of code that are difficult to extract by humans or other 

alternative research methods. However, the performance of machine learning tools varies 

depending on the quality of input data. Since the programming languages of modern 

applications hold increasingly complex characteristics which are difficult to understand, it is a 

prerequisite to provide a powerful representation of code analysis that can explore deeply the 

code software artifacts and capture useful information from different levels of abstraction of 

the programs. For these reasons, many efforts have been made to propose an efficient defect 

prediction tool, but the achievements do not represent yet high performance. 

In this thesis, we focus on software defect prediction and propose a novel deep learning-based 

technique to enhance existing defect prediction approaches. To build predictive models, 

previous studies focused on classic machine learning algorithms and handcrafted traditional 

features (i.e., software metrics). The software metrics are designed manually to capture the 

static properties of the code. Such methods are time-consuming and inaccurate since they fail 

to capture the semantic meanings of programs. Recently, researchers exploited deep learning 

algorithms based on either tree representations of programs or precise graphs representing 

program execution flows. However, these models do not offer high performance and do not 

cover all types of bugs. They often fail to capture intra-procedural dependencies. Indeed, 

several bugs are related to these dependencies. Such information is important in modelling 

program functionality and can lead to a more accurate defect prediction.  

The training procedure requires a sufficient historical data from a project to build a prediction 

model. Therefore, it is not practical for new projects, which have no or not enough historical 



 

data. An alternative solution is to train a prediction model by using data from other projects. 

The traditional approaches are based on metrics to select appropriate projects whose 

characteristics are close to the new project. However, the metrics are not enough to capture 

meaningful information from projects and then choose the best candidates that generalize well 

the new project. The differences between projects in several aspects such as the architecture, 

developer experience, coding style, the functional, etc. makes the selection task more 

complicated. 

In this thesis, the emphasis was placed on two main tasks: First, to bridge the gap between 

programs' dependencies and defect prediction features, we propose an end-to-end deep 

learning algorithm to learn a powerful code representation including different levels of 

abstractions of code such as the syntax, the semantic and the dependencies automatically from 

code and further train and construct defect prediction classifier by using these complex 

features. The experimental results indicate that our approach can significantly improve the 

existing defect prediction approaches. Second, we propose a novel method to choose the best 

candidate projects for the project that lacks historical data. We evaluate the effectiveness of 

our method on 10 open-source projects. Results show that selecting carefully the projects can 

boost the performance of existing techniques and even of our proposed defect prediction 

framework, which considers all the other available projects and does not involve any selection 

strategy of projects. 

 

Keywords: Defect Prediction; Deep Learning; Code Property Graph; Graph Convolutional 

Neural Network; Abstract Syntax Tree; Control Flow Graph; Program Dependency Graph; 

Program Analysis. 
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FIRST CHAPTER 

1 INTRODUCTION 

1.1 Research context 

Modern software applications are increasingly subject to failures during releases of their 

upgrades due to the growth of software scale and complexity. In fact, developers should 

constantly make modifications to these software applications by including new functionalities 

or fix defects to ensure their corrective and developing maintenance. However, these 

modifications can complicate the software system further and give rise to the introduction of 

new defects. Defects arising from that particular software have a significant impact on 

business credibility and may lead to fatal consequences such as loss of time and additional 

costs, and even health problems in critical software. According to a published survey [1], [2], 

worldwide software management spent about $3.7 trillion in 2013 and 23 % of this cost was 

attributed to quality assurance and testing. Moreover, the authors of this study [3] estimated 

that the bugs occurred in the software application cost the US economy about $59.5 billion 

every year, and improving the testing procedure can save more than a third of such amount. A 

noticeable example that shows the importance of effective testing phase would be the $125 

million NASA spacecraft which was lost in space because of a small data conversion bug [4]. 

Similarly, another example of a critical system is the Therac-25, a radiation therapy machine 

for dealing with cancer patients. Bugs introduced in the control system of Thrac-25 in 1980s 

resulted in increased time for producing radiation leading to several injuries and even deaths. 

All these statistics highlight the importance of quality assurance and software testing.  

 

Due to the scarce resources, program budgets, and tight release schedules, the inspection of 

the entire code source is often challenging, and testing all units is not practical. To ensure 

high software quality and reduce costs, early prediction of defects is often necessary. 

Furthermore, detecting a software bug after the commissioning of the software system is 100 

times more costly than detecting it during development [5]. Thus, localizing, and fixing 
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defects at an earlier stage become an urgent requirement to improve the software quality and 

maximize customer satisfaction. To this purpose, software defect prediction is used to predict 

whether a source code artifact contains defects in the initial stages of development. This helps 

the developers to appropriately rank software components for inspection. Based on such 

ranks, developers expend less effort in inspecting the software components’ source code that 

is potentially defective. 

The challenges behind the defect prediction subject have made it an interest research area 

since the beginning of the software era. Firstly, researchers are contributing their efforts to 

mainly improve the effectiveness of the predictive models (i.e. having a higher accuracy in 

prediction) to quickly narrow down the most likely defective parts of software codebase [6]–

[8] at coarse granularity levels such as file [7], module; or package [8]–[11]. In this field, 

several studies perform prediction at file-level. This means that they build predictive models 

by analysing a training software history data in previous releases and use the developed model 

to predict whether files in future releases are prone to defects or not. Then, the research defect 

prediction studies are driven towards performing finer-grained level defect prediction which 

is represented by the so-called just-in-time software defect prediction (JIT-SDP) (i.e., short-

term prediction at commit level, line level, etc). With this strategy, developers can have 

immediate feedback [12] and quickly narrow down the most likely defective 

commits/lines/etc.  

In practice, software defect prediction cannot work well in certain cases like for legacy 

systems or new projects which lack data history or has no data at all. A promising and popular 

solution, known as cross-project defect prediction (CPDP); is proposed to deal with the 

shortage of training data. The underlying idea behind the cross project is to build the training 

model by using historical data from other projects (i.e., source projects), and then predict the 

defects in the prevalent project (or target project) which has insufficient data. Cross-project 

defect prediction has become a recent trend in software defect prediction [13]–[15], and many 

researchers are been investigating ways to improve its prediction performance which is 

always low. This is due to the differences between source and target projects in terms of 

domain, architecture, coding style, programming language, and developer experience. 

Zimmerman et al. [16] conducted 622 cross-project predictions among 12 real applications 

and concluded that only 21 experiments (about 3.4% predictions) could reach better 

performance. Therefore, several questions have been arisen in how to meet the challenges 

posed by CPDP and improve its effectiveness. Recommended solutions included selecting 
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suitable source projects, instead of randomly choosing one or a set of sources projects and 

proposing methods that minimize the data distribution difference between the source and 

target projects as well as selecting relevant features and improving the prediction model or 

classifier. 

 

1.2 Traditional approaches and limitation 

The defect prediction studies fall into two main directions: firstly, by applying metric-based 

methods which manually design software metrics to extract features (predictors) from source 

artifacts (i.e., files, changes, packages, etc.) and investigating many machine learning 

algorithms to build predictive models on the metric data and discriminate defective code from 

non-defective code. Secondly, by using either tree-based program representation or control 

flow graph-based representation and deep learning networks, thereby, applying them 

automatically to learn distinguishing features from either trees or graphs.  

Metric-based techniques mainly focus on designing manually and arbitrarily discriminative 

features or a new combination of features called software metrics to measure some properties 

of source code. For example, Halstead metric based on numbers of operators and operands 

[17]; McCabe’s metric estimates the complexity of a program by assessing its control flow 

graph [18] and; CK metrics that are based on function and inheritance counts [19]. Moreover, 

process metrics quantify many aspects of historical development archived in software 

repositories (version control and bug tracking systems) [20]–[22] such as code metric churn 

code [23], code entropy [24], change churn [25] and, change features [9] based on a number 

of lines of code added or, removed. Although several robust learning algorithms such as 

Naive Bayes (NB), Decision Tree (DT), Dictionary Learning [10], Support Vector Machine 

(SVM), and Neural Net-work (NN) are applied for software defect prediction, these predictors 

have not achieved high performance [11] since they are based on metrics which have several 

definitions and ambiguous counting and are manually and arbitrarily selected by each 

researcher. Also, all the above-mentioned metrics do not reveal the syntax and semantics of 

the code.  

 

Thereafter, the input data provided to the classifier no longer concern traditional metrics but 

represent the syntax and semantic elements of the program by exploiting tree representation 
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of programs – The Abstract Syntax Trees (ASTs). Then, deep neural networks are applied to 

automatically learn to distinguish features from ASTs since their architecture can effectively 

capture complex non-linear features. Tree-based methods significantly outperform metrics-

based software. Wang et al. [12] leverages a deep belief network (DBN) in learning semantic 

features from token vectors extracted from programs‟ ASTs. Li et al. [26] proposed a tree-

based convolutional neural network to extract structural information of ASTs to improve 

defect prediction.  

The AST-based methods are flawed as they do not reveal all the types of software defects in 

the programs, especially those induced by the execution process of programs. AV Phan et al. 

[27] proposed an application of a graphical data structure namely control flow graphs (CFG) 

to SDP. In the field of machine learning, the quality of input data directly affects the 

performance of classifiers. Considering this, CFG provides enhanced results relative to 

previous studies based on metrics and ASTs.  

Although CFGs perform well, they are only able to capture the execution process within a 

program and do not identify the intra-procedural dependencies. In other words, they cannot 

capture the behaviour of the program. However, many bugs are directly related to the 

dependencies within the program [20], [28]. A recent study on file-level proved that syntax 

and semantics are not enough to cover several types of bugs, thus, suggesting the combination 

of semantic and structural features to improve the prediction accuracy [29]. Structural features 

are related to the dependency information in the programs. To conclude, both AST and CFG 

features do not cover all the types of defects in programs to respond to the constant evolution 

of software programs in terms of complexity. 

A code program with different dependencies between data can have the same semantics and 

syntax. For example, in Figure 1, an implementation of a simple functionality in a human 

resources context whose purpose is to compute the salary increase percentage is illustrated. 

The value of the raise variable should be assigned to the display function. However, it is 

missing in file1.java. Thus, it will never be displayed on the users’ screen. This is obviously a 

logical bug, which can happen in real cases just as it did at McDonald’s1. From a technical 

point of view, the raise variable's value is assigned but never used, making it a dead 

assignment. In general, this weakness could be an indication of a significant logic error in the 

program or a deprecated variable that was not removed and is an indication inferior quality of 

 
1 https://www.mbs.news/a/2020/02/a-bug-made-orders-for-mcdonalds-in-france-practically-free-videos.html   
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assessment. Figure 1 depicts two Java files file1.java and file2.java, both having the same 

syntax and sematic. Thus, using traditional features to represent these two code snippets such 

as process metrics or static code metrics or AST have identical feature vectors. However, 

dependency information is different. Features that can discriminate such structural differences 

should have significant impact on the improvement of prediction accuracy. Taking the 

example in Figure 1, features that ensure that any variable assigned in the program has a 

dependency relationship, and so it is used by another instruction should be meaningful. It is 

therefore important to highlight the dependencies of data or of control in the program, 

allowing the deep learning algorithm to learn all the failures related to the dependencies. Such 

information may help to select expressive features for defect prediction. Specifically, it may 

be significant for selecting defective artifacts (files, packages, changes, etc.) and ameliorate 

the defect prediction process. 

Deep learning has proved its efficiency in developing more accurate defect prediction models 

by leveraging selected expressive features generated automatically from the source code. 

These features are used to train and construct the defect prediction models [30]–[32]. 

However, the existing prediction models do not provide an optimum performance whether at 

file or change level. Moreover, in the case of cross project, the problem of defect prediction is 

generally considered as a specific case of transfer learning which aims to retrieve knowledge 

from the training data (i.e., one or a set of source projects) and transfer it to a target project. 

However, the majority of the existing cross project approaches does not mimic any strategy to 

select the suitable source projects for the target project, which can lead to impairment of the 

performance and the effectiveness of cross-project defect prediction. 
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Figure 1: A motivating example. The variable increase corresponds to the difference between the new 
salary and the old salary. The raise percentage which is defined by the variable raise is computed in 
line 4 in both file1.java and file2.java. 

1.3 Research objectives 

With reference to the above context and the limitations of the existing defect prediction 

approaches, this research targets to improve the existing software reliability practices and 

provide a more complete prediction technique that detects diverse types of bugs more 

efficiently and effectively. Therefore, our research objectives can be summarized as follows:   

 

• Propose a more reliable prediction model in terms of decision at both file-level and 

change-level defect prediction. In other words, providing an end-to-end defect 

prediction model that can determine defective artifacts (files or changes in this 

research) by extracting meaningful features directly from the source code. These 

features encode the properties of programs and are used by deep learning 

algorithms to train and construct defect prediction models.  
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• Choose the most appropriate source projects in the case of cross-project defect 

prediction to improve the feasibility and the performance of the prediction model.    

 

1.4 Research questions 

To achieve the above-stated objectives, answering the following fundamental research 

questions is required: 

1. Considering the dependency information intra programs, do they improve the 

performance of prediction models on file-level? 

2. Considering the dependency information intra methods, do they improve the 

performance of prediction models on change-level? 

3. Is end-to-end deep learning based on graph analysis allowed to improve the quality of 

defect prediction models?   

4. What criteria should be used to construct the dataset of external projects? 

5. How qualification models and matching functions can contribute to build prediction 

model for cross projects? 

 

1.5 Scientific problem 

Defect prediction has gained much attention and has been considered especially important in 

the field of software engineering. It involves the preparation of data in which useful features 

are extracted directly from source code; and use machine learning algorithms, more 

specifically, deep learning algorithms that take features as input to train the defect prediction 

models.  

Exploring and analysing the structures and semantic meanings of programs helps to boost the 

quality of the learning as well as the effectiveness and the performance of software defect 

prediction. Therefore, providing a suitable and relevant representation of code that aims to 

select the best set of features is a big challenge due to the complexity and the comprehension 

of rich information of programs. In addition, it is important to apply a suitable deep learning 

algorithm which can train automatically complex features of different types to provide an 

end-to-end defect prediction modelling process. The existing approaches do not formulate the 
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program well resulting in less exposure of several types of bugs. This may undermine the 

results of defect prediction model.  

Therefore, the main research problem that this research addresses is how to represent the 

source code by considering the dependency information within programs, to permit a better 

exploration of the source code and improve qualitatively and quantitatively the detection of 

several types of bugs.  

 

1.6 Contribution 

The main contribution of this work is to design a full automated framework for defect 

prediction at different granularities, i.e., file-level and change-level, in two settings: within-

project defect prediction and cross-project defect prediction. The proposed framework aims to 

explore deeply the code to discover maximum bugs to improve the quality of prediction. 

Consequently, the framework avoids investigating a huge amount of time and cost spent to 

release error-free software to the end users. We present the list of contributions hereafter:  

 

1. Exploring deeply the code for defect prediction to detect the three defect typologies 

i.e. syntactical, semantic and dependency information by leveraging a proposed 

concept of code property graph [22] that merges properties of abstract syntax trees, 

control flow graphs and program dependence graphs into a single entity structure. This 

graphical program representation allows expressing patterns linked to defective code 

including the three typologies. After a systematic literature review using the keywords 

"code property graph" and "defect predict" on WoS, ScienceDirect and Scopus, we 

can assume that this research introduces for the first time the concept of code property 

graphs in the field of defect prediction. The experimental results prove that leveraging 

code property graphs is effective in developing high-performance classifiers.  

 

2. Propose an end-to-end automated prediction model on file-level and change-level for 

software defect prediction to automatically learn graph-based expressive features that 

are fed to the deep learning algorithm “the deep graph convolutional neural network 

DGCNN”. 
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3. Demonstrating the inability of the traditional features in automatically extracting 

distinct types of bugs and especially those which are related to the dependencies from 

files and code changes.  

 

4. An extensive evaluation under both the non-effort-aware and effort-aware scenarios; 

performed on Java projects demonstrating the empirical strengths of our model for 

defect prediction and shows that our approach achieves a significant improvement for 

within-project defect prediction and cross-project defect prediction.  

 

5. Propose a project selection framework to choose meaningful projects based on 

structural and semantic information hidden in the code and the global knowledge of 

the projects, instead of using all the available projects.  

 

6. An extensive evaluation performed on 10 large-scale Java project from Promise 

dataset [33] confirming the effectiveness of our framework in selecting similar source 

projects and demonstrates that our framework outperforms previously succeeded 

CPDP baselines and also our approach without making any selection of source 

projects beforehand.  

 

1.7 Thesis scope 

In this thesis, the proposed approaches for enhancing software reliability are analysed only on 

Java projects. Hence, they might not work for other programming languages, e.g., C++, script 

languages and assembly languages. Moreover, these suggested solutions are restricted to the 

examination of software bugs gathered from software histories from same projects or different 

projects. However, they cannot be generalized for other certain types of defects such as real-

time bugs from concurrency bugs and embedded systems.  
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1.8 Manuscript organization 

This dissertation consists of 5 chapters. After the introduction in the chapter 1, the rest of the 

content is organized as follows: 

 

Chapter 2: Background  

This chapter provides the background including the basic concepts of all subjects addressed in 

this thesis to formulate the defect prediction framework. It starts with describing the defect 

prediction foundations such as the defect prediction process and the main defect prediction 

approaches. Next, the different basic concepts of program analysis including the abstract 

syntax tree, the control flow graph and the program dependency graph that aim to analyse and 

model robustly the code are explained. Then, how these representations are transformed and 

merged into a single and powerful representation, code property graph, from which the 

complex features are extracted, is described.  

Finally, an overview of deep learning and its different architectures, specifically, graph neural 

network that train and construct the predictive model by considering input multi-scale graph-

based representation without losing information is illustrated.    

 

Chapter 3: Related Work    

This chapter is dedicated to the literature review. It introduces proposed and current 

approaches to the problems confronted above. The first and second area of research is related 

to file-level defect prediction and change-level defect prediction in two settings within-project 

and cross-project defect prediction, respectively. First, a brief discussion on the traditional 

proposed methods that aim to select useful features representing the code properties by 

considering recent research papers is given. Then, considerable shortcomings that these 

solutions suffer from are analysed and illustrated, followed by highlighting the eventual 

contributions that can be achieved. Different traditional machine learning algorithms as well 

as the deep learning architectures used by most of researchers to train and construct their 

prediction models are also presented. Next, we demonstrate the interest of the novel deep 

learning algorithms applied to graphs, including the deep graph convolutional neural network. 
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Finally, we present the study on the cross-project feasibility as well as the specific approaches 

dedicated to cross-project.   

 

Chapter 4: An end-to-end deep learning defect prediction over 

code property graphs 

This chapter depicts our proposed framework to automatically learn expressive features from 

both code files and code changes in order to determine defective files and changes in an 

earlier stage of the development phase before the production of the system. This framework 

provides a suitable and powerful representation of code by merging three basic concepts of 

program analysis into code property graph exploring deeply the code files and changes, and 

express patterns linked to diverse types of bugs. Then, the designing features are fed to the 

deep graph convolutional neural network to build the defect prediction model that can predict 

whether a file/or change is buggy or not. The experiment results proved that our approach 

significantly improves the existing works.  

 

Chapter 5: A source project selection framework for cross-

defect prediction 

This chapter describes our novel methodology for selecting the best candidate source projects 

among several available projects to improve the cross-prediction performance. The selection 

is based on computing both high-level similarity and low-level similarity between the source 

projects and the target project. Finally, the chosen projects have the highest distribution 

difference between source projects and the target project. We evaluate our methodology on 

open-source projects and the results prove that our approach can boost the cross-prediction 

performance.  

Chapter 6: Conclusion and perspectives 

This chapter summarizes this research and highlights the challenges of this thesis that can be 

revised into future work. 
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SECOND CHAPTER 

 

2 BACKGROUND 

This chapter gives the background and the defect prediction foundations related to our 

objective of leveraging deep learning techniques based on graphs to ameliorate existing 

software quality practices. In the section 2.1, an overview of the software defect prediction 

process as well as the investigated defect prediction tasks in this thesis is provided followed 

by a broad overview of the architecture of the program analysis methodology adopted in the 

first stage of defect prediction (i.e., pre-processing phase) to extract the useful features from 

the source code in section 2.2. Deep learning-based techniques and more especially graph 

based deep learning methods such as Deep Graph Convolutional Neural Network are also 

covered in section 2.3.  

 

2.1 Defect prediction process 

A defect is a bug or an error in a program that causes the software product to cease operation 

in the manner requested by customer and developer when executing the system. The existing 

defects in software products are increasing over time, and are inevitable due to various 

reasons like poor communication between developers, incomplete requirement specification 

[34], [35], lack of user input [34], [36], [37], unclear and inadequate objectives and goals  

[34], [35]. 

Software defect prediction is adopted as a solution to improve the software quality and avoid 

the failure of the project. It alerts the developers about the presence of failures in software 

components (file, package, module, change, etc.) during the initial stages of the development 

of a software system. Thus, it helps the developers to devote extra resources and time to the 

non-defective software artifacts and, consequently, allowing companies to save money and 

resources. In general, constructing a defect prediction model needs a large amount of 
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historical data from a project to exploit the source code and express patterns linked to 

defective code. These patterns are expressed by traditional features (metrics) or by features 

collected from classic representation of code. The instances with the features corresponding to 

the software component and labels (buggy or not) are used to train machine learning 

classifier. Then, the trained model is applied to predict new instances as defective or not. The 

set of instances used to build model is referred to the training set and those are used to 

evaluate the built models is referred to the test set. However, for the project that has just 

started and do not have enough historical data or for the legacy systems in which history data 

are not available, building a predictive model is a challenging task. Therefore, the prediction 

model can be built by using history data from other projects (source projects) to predict 

defects to the project (target project) that lacks data. Figure 2 gives an overview of software 

defect prediction process and the three phases of software defect prediction modelling (i.e., 

pre-processing, model construction, and model validation). To build a prediction model, the 

first step is to extract features from data instances gathered from software archive. Depending 

on defect prediction granularity, the data instances can represent method instances, package 

instances, code change instances, source code file instances, etc. The features are useful data 

that serve to mine the code and its characteristics. These data can represent various levels of 

abstraction such as software development process, complexity, structural information, etc. 

Then, to constitute the training and test corpus, data instances are labelled as non-defective or 

defective according to whether the instance data includes bugs or not. Generally, the defect 

data are always noisy, and a mislabelling data detection method is needed to reduce the noise. 

Besides, the deep learning algorithm (DGCNN in this work) takes as input only numerical 

data, and the input vectors should have a same length. Thus, a mapping approach is required 

to map between tokens and integers. In the phase of model construction, after setting the deep 

learning parameters, the defect prediction models are built by using the training set to train the 

data. Finally, the defect prediction model is validated by using the test and performance 

metrics to assess the model performance.  

In this thesis, we consider the following defect prediction tasks described in Table 1. Table 1 

shows their abbreviations. 
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Table 1: Defect Prediction tasks 

Defect Prediction Level Within-project Cross-Project 

File-level WPDP WPCP 

Change-Level WCDP CCDP 

 

 

2.1.1 File-level defect prediction 

File-level defect prediction is among the most adopted prediction techniques in the literature 

[10], [38]–[42]. File-level defect prediction is a traditional prediction technique that conducts 

long-term prediction at a coarse grained-level. Its process is typically as described in the 

Figure 2. The software history data represents the previous releases of the project. During the 

file-level defect prediction, the first step is to label each file as buggy or clean based on post-

release defects accumulated from bug tracking system, and extract code properties from these 

files. The feature extraction techniques commonly used in the literature to train the machine 

learning based classifiers, can be divided into two types: one is by using traditional metrics 

which are designed manually, and the second is by applying automatically learned features 

from either arborescence-based structure or graph-based structure. According to these feature 

extraction methods, the level of code properties understanding differs. This means that by 

ensuring an effective representation of code, the better extraction of useful features of diverse 

types (semantic, structural, etc.) can be guaranteed. More details are provided in the next 

chapter state of the art. The prediction models are built by analysing software archives during 

previous releases and the developed model is used to predict whether files in the future 

releases are prone to defects or not. In this work, we evaluated the performance of DGCNN-

based semantic and dependency features on both file-level within-project defect prediction 

(WPDP) and file-level cross-project defect prediction (CPDP). 
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Figure 2: Defect Prediction Process 

 

2.1.2 Change-level Defect prediction 

Just-in-time defect prediction (JIT-DP) or change-level defect prediction has attracted more 

attention than the file-level defect prediction which conducts predictive models in an 

extremely late stage of the software development cycle, e.g., predicting faulty-proneness of 

files during releases of upgrades. The program modules are continuously modified and a 

thousand lines of code are made by several developers from one version to another, so it is 

quite difficult for developers to identify and repair potential defects in such a file [43]. JIT-DP 

has a more fine-granularity and the prediction can be executed once the code changes are 

committed [44]. JIT-SDP has several advantages compared to file-level defect prediction: 1) 

it is more practical as it reduces the risk of introducing new defects during the commit. 2) 

Developers can inspect code changes with limited effort and fix bugs when the code changes 

are still fresh in their minds.  Same as file-level defect prediction, change-level defect 

prediction process contains three main steps:  
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• Pre-processing phase: Label each change as buggy or clean based on previous 

commits and extract the features that represent the code changes. Then, reduce the 

noisy data by applying mislabelling data detection method and finally perform a 

map between tokens and integers.  

• Model learning: Construct the predictive model by using the deep learning 

algorithm that takes the meaningful generated features as input.  

• Model validation: Predicting testing data to evaluate the constructed model. 

 

Different from file-level defect data, labelling change-level data are specified for each project’ 

s historical change and is stored in Version Control System (VCS) as buggy or clean by using 

the B-SZZ algorithm (i.e. the original SZZ approach) [45]. The aim of the algorithm is to 

make a further link of defect-fixing change to defect-introducing change. Bug-fixing change 

refers to the code which fixes the bug, while the bug-introducing change refers to the code 

that incorporates bugs. The bug introducing changes are identified by employing an 

annotate/blame technique provided by SZZ algorithm. This technique is commonly applied 

by several researchers [9], [46]–[49]. We label the bug-introducing changes as buggy, and 

others changes as clean. In this thesis, same as file-level defect prediction, we evaluate the 

performance of DGCNN-based semantic and dependency features on both change-level 

within-project defect prediction (WCDP) and change-level cross-project defect prediction 

(CCDP). 

 

2.2 Data representation 

Software defects are deeply hidden in programs’ semantics which can cause unexpected 

output and profound consequences after software’s commissioning. It is therefore required to 

exploit the source code and devise a useful representation of code that enables the developers 

to make mining of copious amounts of code and express patterns linked to defective code. 

Considering this, it cannot be expected from a system to automatically learn these patterns or 

meaningful features for defect prediction without ensuring a suitable representation that can 

be robustly extracted from code due to the rich information of programs possessed by the 

system. 
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As a solution, this section presents our methodology adopted in the data pre-processing stage 

for robust source code analysis, which sets as a foundation for our methodology of defect 

prediction. The key insight underlying this methodology is to explore deeply the programs by 

jointly considering account the syntax and semantic, control flow and data flow to discover 

the maximum of bugs and improve the quality of prediction. To this end, we combined classic 

ideas from compiler construction which are also known as classic concepts for analysing code 

robustly. Ultimately, we showed that our approach amounts to a useful tool for defect 

prediction by leveraging a joint representation of a program’s control flow, data flow, and 

syntax called code property graph. In fact, it enabled to reveal several types of bugs in the 

source code with respect to control flow, data flow, and syntax, to respond to the constant 

evolution of software programs in terms of complexity. 

In this section, we give an overview of the architecture of the program analysis methodology 

adopted in the data pre-processing stage. Then, we discuss how source code can be parsed and 

transformed into an intermediate graph-based program representation. Then, we show how 

the basic concepts of code representation can be combined into a meaningful representation to 

create the structural and semantic features for defect prediction.  

 

2.2.1 A code mining system 

Figure 3 depicts the code analysis architecture adopted in this work and gives the following 

key components of the method to produce an intermediate representation of the code.  

 

• LL Parser. The first step to robust code analysis. LL parsers called LL (K) parsers 

are a top-down parsers for a subset of context-free languages. LL (K) parser is a 

form of recursive descent parsing which recursively parse the input to make parse 

tree. This parsing technique does not require any backtracking and is known as 

predictive parser.  

• Code Property Graphs. To allow a deeply exploring of program and extracting 

complex patterns from code that combine syntax, control flow and data flow 

properties, the code property graph, a type of program representation was 

employed. This representation can be easily built from the output of LL (K) parser.  
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In the data pre-processing stage, the source code is firstly passed to the LL (k) parser to 

generate an intermediate comprehensive representation of the code, the code property graph. 

This graph including complex structural information helps to generate the best set of features 

for defect prediction. Then, graph based deep neural network techniques detailed in the next 

section are implemented to process graph data on the server side. In the following sub-

sections, we provide the necessary background information for each of our methodology 

components in greater detail. 

 

Figure 3: Overview of our architecture for robust code analysis methodology 

 

2.2.2 LL PARSER 

Automatic analysis of source code requires providing an intermediate comprehensive code 

representation that makes program properties explicit. Program analysis literature offer 

already several representations created for different purposes such as syntax analyse, control- 

flow and dataflow analyse, etc. All these representations are either directly or indirectly 

provided from a program’s parse tree. By contrast, to the best of our knowledge, the well-

known program analysis tools such as SOOT [50], Spoon [51], etc. carry out control-flow and 

data-flow analyses at an intermediate code or byte-code level rather than on an Abstract 

Syntax Tree (AST). However, operating these studies directly at the source code level or more 

precisely at the AST level can be beneficial since it makes it possible to deal with the source 

code. Additionally, there is no need to compile elevated level of abstractions during the 

translation to intermediate code. This is especially important for tools that are incorporated in 

interactive development environment as in our case. In fact, this type of analysis allows a 

faster computing time rather than on byte code by the application of interactive settings. For 
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example, if the user makes some actions in a program like code modifications, the model of 

the edited program which is typically AST will be kept in memory and will be updated in 

response to the modifications. However, a translation to byte code will need re-computation 

of information and consequently would potentially slow down performance in terms of 

response time [52]. To this end, it is more interesting to provide useful representations based 

on AST. First, we constructed the parse tree, which is later transformed into an abstract syntax 

tree (AST). Next, a control flow graph (CFG) was constructed from the abstract syntax tree to 

analyse the program’s control flow. Based on the information that control flow graphs 

includes, we can provide control and data dependencies as expressed by control dependency 

graph (CDG) and data dependency graph (DDG), respectively. In the following segment, we 

present how syntax, control flow and program dependencies are determined by these 

representations and how they are generated from the output of the parser. Figure 4 presents an 

overview of the representations we can generate based on the LL parser output and underlines 

their dependencies. 

 

Figure 4: Dependencies between program representations 

 

The first step in most software analysis projects is to parse the source code base. The main 

purpose of the parsers is to break the source code into components that can be converted into 

a target language.  Parsers take a chain of tokens as input and construct a data structure such 

as AST which represents the input and includes all the information from the target program.  

Generally, there are two kinds of parsers: top-down strategy and bottom-up strategy. A top-

down strategy begins from the parse tree’s root node and working down to the bottom leaves, 

following the rules of the formal grammar while the bottom-up parsing operates vice versa, 

beginning from the leaves and working up to the root. Most standard parsers use context-free 

grammar to describe languages. They are composed of a set of grammar rules. Production 
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rules are composed of a set of rewrite rules specifying symbol substitutions to convert 

nonterminal symbols into a set of either terminal or non-terminal symbols. A final 

representation of the input is generated when the rules are used recursively [53]. A terminal 

symbol is a standalone language construct, while a non-terminal symbol represents a 

syntactical phrase consisting of one or more terminal symbols and can include other allowable 

phrase structures. 

The most popular subclasses of grammars are LL (k) for top-down and LR (k) for bottom-up 

parsers [54]. For code analysis, we opted for LL parsers family in this work. The first “L” 

states that the input is read from left to right, the second “L” indicates that the parser 

generates the leftmost derivation for its AST; and “k” is the number of look-ahead symbols 

applied at each parsing step to make decisions by comparing the symbols that begin at each 

alternative. LL (k)  is limited to a fixed number of tokens of look-ahead to examine the entire 

remaining input rather than the LL (*) which can make decisions by providing deterministic 

strategy and using regular expressions, represented as deterministic finite automata (DFA). 

LL (*) parsers are a sort of recursive-descent parsers, designed from a set of recursive 

procedures where each implemented procedure corresponds to a production of the grammar. 

LL (*) strategy applies predictive parsing; meaning that it uses look-ahead that allows it to 

never backtrack and consequently it is able to run in linear time [54]. The main problem of LL 

(*) is that it performs grammar analysis statically that sometimes fails to find regular 

expressions with which it can distinguish between alternatives productions. To this end, an 

extension of LL (*) called Adaptive LL (*) or ALL (*) is proposed to address the problem of 

LL (*). It can, therefore, perform grammar analysis dynamically at runtime, before the 

generated parser executes. The idea behind ALL (*) prediction mechanism is to launch sub-

parsers to determine which path leads to a valid parse. It has therefore access to all remaining 

input sequences to make decisions in sequence recognition while the others perform grammar 

in a static way and must consider all possible input sequences (infinitely long). The ALL (*) 

algorithm is the foundation of the ANTLR 4 parser generator tool (ANTLR 3 is based upon 

LL (*)). In this work, we selected the ANTLR 4 to generate the useful representations from 

code.  
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2.2.2.1 ANTLR 4  

 

ANTLR (Another Tool for Language Recognition) parser is a powerful and flexible parser 

generator that accepts any context-free grammars. It is provided as a Java library to process, 

read, execute or convert structured texts or binary files. ANTLR 4 generates a recursive-

descent parser that uses an ALL (*) production prediction function. Currently, it generates 

parsers in Java or C#. It was released in January 2013 and has about 5000 downloads/month. 

Thus, ALL (*) is widely used by academic and industrial users. As we explained before, the 

main idea of ANTLR parser is to read an input grammar and convert it into a program which 

can recognize a text and process it according to the rules of the defined grammar. ANTLR has 

two distinct stages: lexical analysis and parsing targeting the regular language it recognizes. 

Acknowledging a phrase refers to determine its various elements and distinguish it from other 

phrases. To do so, the lexer creates tokens (vocabulary symbols) by breaking up the input 

streams into tokens on which the parser feeds off and tries to recognize the sentence’s 

structure. 

In our context, the lexer’ role is to understand the syntax of Java language while the parser is 

dedicated to checking the semantic and understanding the semantics of Java language by 

providing syntax trees which represent the sentences of the context-free. We take the 

following simple Java statement as an example: Length = 50; in the phase of lexical analysis, 

ANTLR analyses the input of characters and then collect them into tokens with tokens = 

{“Length”, “=”, “50”, and “;”}. In the syntax analysis, ANTLR assures that the token sticks to 

the rules of the grammar and recognizes that it is an assignment statement in this example. 

Then, it builds the parse tree which saves how the parser acknowledged the input sentence’ 

structure and components. The following diagram represented in Figure 5 illustrates the main 

steps of a language recognizer. 
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Figure 5: The data flow of the language recognizer 

 

To perform the parsing, there is a need to design grammar which includes the syntactic rules 

of the language. An example of a simplified abstract grammar is depicted in the Figure 6.  It 

represents an object-oriented form and illustrates the abstract classes Stmt and Expr, and 

subclasses for both statements and expressions such as IfStmt and MethodCall. The grammar 

uses a typical syntax with angle brackets to represent tokens, square brackets for optional 

children, and kleen star for list children. Children are either named with given names such as 

LValue and RValue that are the left and right children of the type of name AssignExpr, or with 

their types, such as Block child of a MethodDecl. Certain constructs are plotted as expressions 

in the grammar and may operate both as expressions and statements. For example, 

assignments and method calls fall in this category. The complete grammar for Java is 

disposable on the JastAdd web site [55]. 

2.2.3 Exposing Program Syntax 

Based only on structural and syntax program, prediction of software defects is often possible. 

To this end, syntax trees or parse trees are meaningful tool to extract syntactical properties of 

the code. These trees form the output of ANTLR parser, and all other classic representations 

considered in this work are generated based on them. We now shortly explain how the parser 

creates the parse trees and then outline their conversion into abstract syntax tress, a 

normalized and simplified syntax tree for static analysis.  
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Figure 6: A simplified Java abstract grammar 

 

We regard the code sample depicted in Figure 7 to illustrate the three basic representations in 

addition to the code property graph to expose the weakness and strengths of each 

representation. Particularly, the example depicts a function called printTaxableAmount, which 

reads inputs amount by calling the function getAmount (line3). This variable is then verified 

if it is greater than a 0 (line 4) before being applied in an arithmetic operation (line 5) and 

going to the function print (line 6). 

 

1. public void printTaxableAmount() {         
2.  

3.         int amount = getAmount();   
4.         if (amount > 0){   
5.             double VATAmount = 0.20 * amont;   
6.             print(VATAmount);   
7.         }   
8. }  

Figure 7: Example of code sample 

 

  

2.2.3.1   Parse trees  

 

Parse trees or concrete syntax trees are ordered, rooted trees that represents the syntactic 

structure of string according to some context-free grammar. It is always created as the next 

phase following the lexical analysis and can be easily illustrated when parsing source code 
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according to the defined grammar rules of the language in question. When performing 

grammar productions to acknowledge the input, a node is created for each meted terminal or 

non-terminal. We obtained the desired tree structure by connecting each node to its parent 

production. The root of the parse tree represents the general symbol of the grammar such as 

the start symbol. The interior nodes refer to the nonterminal symbols such as method call 

while the leaves refer to the terminals of the grammar which emerges as constants, and 

keywords such as for, if, 8, etc.  

Parse tree is the only representation that can be firstly generated from the text and thus is 

considered as the basis for the creation of the other classic representations presented in this 

section. Moreover, concrete syntax tree is considered as a concrete representation of the input 

as it saves all the information of the input, in another words, it is a grammatical copy of the 

code, token by token, in tree format.  It takes every little piece of sentence and translates it to 

a data structure; even the punctuations and whitespace like the end of line are represented in 

the parse tree by a punctuation symbol and empty box, respectively. However, parse tree 

structure is not an extremely useful representation to work with as it contains all the 

information of the text even those that are not important to analyze code and extract 

distinguishing patterns. For that purpose, we transformed the parse tree structure into more 

useful representations of program syntax, the abstract syntax tree (AST). 

 

2.2.3.2   Abstract Syntax Trees (ASTs) 

 

The abstract syntax trees neglect useless information in program which has no significant 

semantic meanings throughout the program, against the parse tree. Indeed, ASTs do not 

consider the punctuation symbols such as parentheses or braces. Moreover, ASTs do not 

differentiate between two variables which are declared either in a declaration list or by using 

two consecutive declarations. Thus, contrary to the parse trees, ASTs are conceived to be the 

same for both declarations. Finally, the AST always discards the inner nodes with a single 

non-terminal child node which makes it a compacted version of a concrete syntax tree. Thus, 

it is a tree representation that records the structure of the input and is insensitive to the 

grammar that produces it.  
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The AST is created as the final result of the syntax analysis phase and can be directly 

generated from parse trees. The parser may or may not always construct a concrete syntax 

tree, or parse tree. When it might need to construct a parse tree in between, the AST is 

realized by recursively walking the parse tree and determining translations of elementary 

parse trees into their corresponding abstract syntax trees. 

Therefore, depending on how the compiler was designed, the parser may directly go straight 

onto generating an AST, or syntax tree [56]. However, AST will be always generated as the 

output of the parser, and no matter how many passes it might need to take in order to do so.   

 

ASTs form the basis of many code representations as they serve as the first intermediate 

representations provided by parsers. Despite the syntax and the structural information that 

they explore from the source code, they do not show the control flow or the data dependencies 

of programs. Consequently, in the field of SDP, they may not reveal many types of defects in 

programs, as defect characteristics are deeply hidden in programs’ semantics. 

 

2.2.4 Exposing Control Flow   

The control flow graph (CFG) [57] exposes its control flow: i.e., all the statements which can 

be executed following the conditions which must be traversed through a program where the 

abstract syntax tree is not well suited to study statements interaction and establish the 

execution order of the statements , a major requirement to model defect patterns in programs. 

A control flow graph is a directed graph used in program analysis for determining properties 

and behaviour of program without executing it. The CFG nodes represent a basic block that 

explicit a linear segment of statements (both control and non-control statements) and 

conditions and the directed edges indicate the transfer of control from one instruction to 

another. The statements have one entry point (the first instruction carried out) and one exit 

point (the last instruction carried out) while the conditions are the instructions that require to 

be encountered for a particular path of execution. Unlike ASTs, the edges in CFGs are not 

ordered but rather need to be labelled and, more precisely, the statement node has one 

outgoing edge labelled Ɛ while the condition node has two outgoing edges labelled true and 

false.  
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Figure 9 shows an example of the control flow graph constructed from the code sample 

printTaxableAmount. The control flow graph begins with a start node identified by START 

and ends with an exit node designated with EXIT. Moreover, each statement is represented by 

a node. The illustrated example involves four non-control statements, the declaration of 

amount and VATamount, the call of print, and the invocation of the method 

printTaxableAmount. There also exists one control statement provided by if (amount > 0). 

The non-control statement is linked to just one other node via the edge labelled as Ꜫ. The 

control statements have two labelled outgoing edges. The labels take the values true or false 

to specify under which condition the next block will be executed. 

 

Control flow graphs can be generated directly from ASTs. To do this, it is required to give 

information about all keywords the language provides to permit developers to modify control 

flow, e.g., the keywords while, for, if, break, etc. Having this information, ASTs can be 

translated into control flow graphs by performing the following two step procedures: 

 

• Structured control flow. In this step, the first version of control flow is provided 

by operating control flow statements such as for, if or while. This can be made by 

determining for each control flow statement how the abstract syntax tree is 

translated into a control flow graph and then the defined rules are recursively 

applied to all statements in the abstract syntax tree. 

• Unstructured control flow. In this step, the control flow graph is rectified by 

introducing unstructured control flow defined by jump statements. Operating jump 

statements is easy after producing the first version of control flow graph as all the 

required information such as all loops, the targets of break and continue, and the 

labels which refer to go to statements are known. In fact, the complete control flow 

graph is provided by simply introducing other control flow edges from jump 

statements to their targets, and thus constructs the final control flow graph. 

 

Control flow graph has been widely used for various problems including malware analysis 

[58], [59] and, software plagiarism [60], [61]. Moreover, it is considered as a standard code 

representation in reverse engineering to help in program understanding. In the field of defect 

prediction, method-based-CFG may be beneficial for distinguishing patterns. The following 

paper [27] proposes to leverage CFG for detecting faulty source code written in C language 
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2.2.5 Exposing dependency information  

The existence of control flow graphs is a pre-condition for the creation of program 

dependence graphs which play a crucial role in our method to fix and predict defect patterns 

in the program.  

 

2.2.5.1   Program Dependence Graphs (PDGs) 

A program dependence graph proposed by Ferrante [62], is a graphical-representation of a 

single method in a computer program that demonstrates program semantics and facilitates 

program comprehension. Indeed, it shows data and control dependence between instructions 

in a program in that method. The nodes correspond to the nodes in CFG of the program 

(declarations, conditional statements, function calls, etc.) and the edges represent both the 

data dependency and control dependence corresponding to the influence of one variable on 

another variable and the influence of statements on the values of variables respectively. 

Therefore, PDG is a combination of a Data Dependency Graph (DDG) and a Control 

Dependency Graph (CDG).  

 

Two types of dependencies are expressed from control flow: data and control dependencies. 

The data dependence exhibits the correlation between instructions with respect to the usage 

and production of data. As shown in the example below, if it exists data dependence between 

two statements, a variable in one statement may has an incorrect value if we reverse the two 

statements.   

d = 4; 

c = d * 3; 

 

The first statement declares the variable ‘d’ which is applied by the second statement, so the 

second statement depends on the first one. This dependence is called a direct dependence. 

Reversing the two statements can generate an error.  
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The second type of dependency is control dependence. It is used to determine statements that 

may be carried out before a given statement is carried out. For example:  

 

if (x > 3) 

y = 10; 

  

The execution of the second instruction always provides the same results; however, it depends 

on the first instruction. This type of dependence is called control or indirect dependence.  

 

As an example, Figure 10  depicts the program dependence graph corresponding to the code 

sample. The program dependency graph holds a node for each program statement like the 

control flow graph; however, the right sequence of statement execution can no longer be 

obtained from it. Rather, we see the dependence between statements under the outgoing edges 

from the statements identifying variables to the statements using these variables. As an 

example, we see in the Figure 10, the variable amount is defined by the first statement, and it 

is applied in the statement of definition of VATamount as well as the predicate. This predicate 

is itself linked to the print-function and the statement defining the variable VATamount by a 

control-dependence edge, showing that both the statements are only performed if the predicate 

executes to true.  

 

PDG provides indication on the connectivity inside each method of the software. Without 

such interactions, software will not be able to perform its required tasks in those methods. 

Such connectivity can be eventually a major contributor to the appearance of bugs and to the 

difficulty to maintain such software. Therefore, analysing the dependences between 

instructions inside each component may be helpful for distinguishing faulty patterns from 

non-faulty ones. 

Both of PDG’ edges can be determined based on the control flow graph, and, in the case of 

control dependencies, the post dominator [57]. 
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Calculation of data dependencies- Intra-procedural data dependences is defined in terms of 

def-use chains [63]. A def-use chain determines all possible uses of a variable, for each 

definition of that variable. By this way, all the information about the variables that concern 

their definitions is propagated to all of their uses. A definition of a variable means that the 

statement affects a value to the variable, while a variable used refers to any statement which 

accesses the variable’s value. Thus, in the Data Dependence Graph, statements represent 

nodes and def-use chains refer to the edges. So, creating a DDG edge is simply a way of 

striking the uses for each definition of a variable. 

 

2.2.6 Code property graph 

To recognize and extract patterns linked to diverse types of defective code (i.e., syntactic 

defective code, semantic defective code, defective code related to the dependencies); it is 

required to exploit deeply the source code and ensure a powerful representation of code that 

can be robustly extracted from code. Such representation should be able to automatically learn 

these patterns or meaningful features for defect prediction. The existing studies adopt either 

AST or CFG to represent the code and extract useful defective patterns which will be fed to 

the deep learning algorithm. However, these representations allow either to extract the 

syntactical properties of code that are derived from AST or control flow from CFG; and none 

of them can represent the dependencies within the program. The three basic concepts of 

program analysis including AST, CFG and PDG introduced in the previous section are 

complementary to provide rich information of programs. Each of them stores and provides 

certain properties of the software; nevertheless, a single representation alone is not able to 

detect all types of errors and predict quality of the developed software with the least amount 

of possible human efforts. In order to take advantage of the benefits of these representations, 

we merged these three representations into a common entity structure called code property 

graph (CPG), first introduced by Yamagushi et al. [22]. Such a structure combines the 

strengths of each representation; and consequently, it allows patterns to be analysed based on 

the combination of syntax, control, and data flow. After a systematic literature review using 

these keywords ("code property graph" and "defect prediction") on WoS, ScienceDirect and 

Scopus, we can assume that this work introduces first the concept of code property graphs in 

the field of defect prediction. The code property graph use the concept of property graph [64] 
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which forms a basic representation of structured data in many graph databases, as for example 

Neo4J, ArangoDB, and OrientDB. The key insight underlying the code property graph is to 

reveal several types of bugs in the source code with respect to syntax, semantic, control flow 

and data flow to respond to the constant evolution of software programs which are 

increasingly prone to failures. Consequently, the concept of CPG serves as a basis for our 

framework that allows discovering the maximum of bugs and improving the quality of 

prediction. Furthermore, the concept of code property graphs has proven its success in other 

works in the field of vulnerability detection [22], [65]–[70]. 

In this section we define the property graph as an abstract data type, including the basic 

operations to construct the code property graph. In addition, we detail how the classic 

program representations described in the previous section can be modelled as instances of 

property graphs; and merging them by using the same contextual properties for the 

construction of the code property graph.  

 

Formally, a property graph is defined as follows. 

  

Definition 1.  A property graph [64] is a directed, edge-labelled, attributed graph G= (N, E, δ, 

β) where N is a set of nodes and E ⸦ (N × N) represents a set of edges which are labelled by 

an edge labelling function γ assigning a label to each edge from Σ (i.e., γ: E → Σ) and 

properties can be assigned to both nodes and edges from keys to values by using the function 

β where (β : (N × E) × K→ V); K is a set of property keys and V is related to the property 

values.  

A key k ϵ K is affected to each node, where only vertices A, C and D have property values 

These properties can be used for linking a graph with other graphs. 

 

   

2.2.6.1     Model the Abstract Syntax Tree as Property 

Graph  

AST forms the basis of many code representations as it provides detailed information about 

the software code. We, thus, start the building of the joint data structure by modelling AST as 
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property graph GA= (NA, EA, δA, βA) where NA corresponds to the tree nodes and EA 

represent the tree edges which are labelled as AST edges by applying the labelling function 

δA. As explained previously, we assigned to each AST node a key property by using βA to 

model the AST as property graph. We can thus define property keys for several types of AST 

nodes such as the string property code and name which are corresponding to the code snippet 

the node represents (e.g., statement, expression, operand, operator, etc.) and the name of 

represented object (e.g., method name), respectively. Moreover, we define some properties 

that indicate where the code can be found like the keys order and line-number which represent 

the order structure of the tree and the line where the code can be found. As a result, the 

property keys are defined as: KA = {code, name, order, line number, etc.} while the set of 

property values VA is given by all the operator and operands, statements and expressions, 

method name and the natural numbers.  

 

2.2.6.2     Model the Control Flow Graph as Property   

Graph 

 

CFG nodes represent blocks of instructions that correspond to the statements and expressions 

in AST. Hence, we express the CFG as property graph to prepare its incorporation into a joint 

data structure GC= (NC, EC, δC, βC), where δC reflects the edge labelling function that 

assigns a label to each edge in the CFG property graph from the set ΣC = {true, false, ϵ} while 

βC defines the properties assigned to each CFG node which only takes these property values 

VA = {Stmt, expression} for the key code.  

 

2.2.6.3     Model the Program Dependency Graph as 

Property Graph 

The PDG represents data and control dependencies among statements and expressions. 

Therefore, PDG has the same nodes as CFG, but it does not represent the same edges. For this 

purpose, we defined PDG property graph as follows: GP= (NP, EP, δP, βP), where we simply 

identify a new set of edges EP and properties compared to CFG. We have therefore a new 

edge labelling function δP which assigns the values of data and control dependencies from the 
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set ΣP = {C, D}. Moreover, we added the properties symbol and evaluation to indicate the 

corresponding symbol to each data dependency and the state true or false evaluation of the 

expression to each control dependency.  

 

 

2.2.6.4     Merging the representations AST, CFG and 

PDG 

 

As the last step, we merged the three representations into a unique data structure called Code 

property graph which maps all the code elements into various levels of abstraction, including 

AST, CFG and PDG. This joint data structure provides a much deeper understanding of code 

source and how the various components interact with each other. This understanding allows a 

more effective analysis of the code source for the extraction of errors. This is especially 

effective for improving the performance of the prediction model and identifying complex 

bugs of distinct types and especially those which are related to the dependencies.   

As each statement and expression is represented by a node in each of the three graphs and the 

AST is the only one of the three representations, which introduces additional nodes, 

statements and expressions are therefore served as transition points from one representation to 

another. We can thus incorporate CFG and PDG into AST through the statements and 

expressions. As explained above, each node is assigned by a property key and its 

corresponding set of property values such as the key code and its property values (for-

statement, while-statement, if-statement, etc.) and the key-property line and the corresponding 

property values (line-number, etc.) that indicates where the code can be found. For example, 

to link the AST and CFG we get the property of each node of CFG and we search in AST the 

nodes that have the same property value as well as the same line number of codes. Then, we 

add the edges of CFG in AST between the two nodes (source node and target node). Figure 12 

illustrates the corresponding CPG to the code sample in Figure 7. The property values of the 

node corresponding to the statement {if (amount > 0)} are IF-Statement and 3. In the AST, 

we add the edges (in-coming edges and out-going edges) of CFG and PDG. Same process to 

merge the AST and PDG to construct the code property graph. Figure 11 shows the process to 
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merge the blocks of AST1, CFG2, and PDG3 to construct the node merge node in code 

property graph. Formally, a property graph is defined as follows. 

  

Definition 2.  A code property graph is a property graph G= (N, E, δ, β) constructed from 

the merging of the three representations AST, CFG and PDG of source code where:  

N = NA , 

E = EA ⸦ EC ⸦ EP, 

δ = δA ⸦ δC ⸦ δP and 

β = βA ⸦ βC ⸦ βP 

 

 
 

Figure 11: The merging process to construct the merging node from AST 1, CFG 2, and PDG 3 
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Figure 12: The code property graph corresponding to the listed code sample 

 

2.3 Deep Learning 

Deep learning (DL) is increasingly investigated by academic researchers and industrial 

practitioners in recent years into terms of software engineering (SE) tasks due to its 

remarkable success in resolving a broad range of problems from software documentation, 

software language modelling, testing, predicting defects in software, etc. According to the 

surveys [71], [72], since 2015 and especially in the years that followed, the number of papers 

that include DL in SE have increased significantly, from 11 papers in 2017 to 28 papers in 

2018 and 35 in 2019. This proves the immense importance given by researchers to apply the 

deep learning techniques in software engineering. The usage of DL focuses mainly on three 

problems: documentation, testing, and defect prediction. The bibliography analysis conducted 

in the survey [72] indicate that 8.6% or about 9 papers among 81 papers cover deep learning 

for defect prediction problem. We give more details of these works in the next chapter 

Literature. The application of DL for DF was motivated primarily by the weakness of 

traditional machine learning algorithms. Indeed, DL can model high-level data representation 

based on multiple layers of Neural Networks (NN) while machine learning is based on 

structured data. To better understand this, we aim to predict whether the software instance 

such as file, code change, etc. introduces bugs or not in this thesis. To this purpose, we need 

to extract meaningful features from history data that represent fault-prone instances from not 

fault-prone, and then train and build the prediction model. We applied several feature 

extraction methods to extract relevant features, and this is where the difference between 
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learning approaches cannot be applied directly to graphs and need to be transformed into 

regular data forms (i.e., same fixed data). For example, although the Convolutional Neural 

Networks are capable to extract multi-scale features, they cannot operate on irregular data 

structures defined in a non-Euclidean space. Thus, the graphs should be transformed to be 

processed by CNNs. However, the structural information of the graphs can be lost, and 

redundant information can be involved during the transformation process. The key factors 

(i.e., local connectivity, shared weights, and the use of multi-layer) that distinguish the CNN 

algorithms motivate to generalize them to graphs for several reasons: 1) most of graphs are 

locally connected, 2) the shard weights limit the computational cost, and the multi-layer 

structure allows to process hierarchical patterns. To this purpose, there has been a great 

interest to adapt convolutional neural networks to the graph domain to properly carry out 

feature learning on graphs directly [81]–[85]. A novel architecture is proposed, called graph 

convolutional neural network (G-CNN) that extends the CNN by adding a pre-processing 

layer called the disordered graph convolutional layer (DGCL). G-CCN has proved its 

effectiveness to extract useful features for graph classification [86]. 

Various approaches are proposed to generalize CNNs to graph-structured data [84], [86]–[91], 

and can be categorized into two strategies: spatial-based approaches and spectral-based 

approaches. Spectral methods typically transform the graph into the spectral domain by using 

the eigenvectors of the Laplacian matrix as the convolution operator. Most of the spectral-

based methods are restricted to same-sized graph structures and are always applied for vertex 

classification.  

Regarding the spatial-based methods, they can be employed to real-word graph classification 

problems as they are not limited to fixed-sized graph structures. These methods generalize the 

graph convolution operation by using the neighbourhood information from the graph data 

space. However, they still need to further transform the multi-scale features learned from 

graph convolution layers into same-sized representations which can be managed by the 

standard CNN. To reach this target, the learned local-level vertex features are aggregated 

from the graph convolution operation as global-level graph features by applying a 

SumPooling layer. 

To overcome the above limitations of the existing spatial-based Graph Convolutional 

Network, a novel spatially-based Deep Graph Convolutional Neural Network (DGCNN) is 

developed by Zhang et al [92] to store more vertex information. They proposed a new 

SortPooling layer whose aim is transform the learned vertex features from the spatial graph 
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convolution layers into a same-size local-level vertex structure, by sequentially storing a 

number of vertices with prior orders. Then, the standard CNN model followed by a SoftMax 

layer can be directly performed on the obtained fixed-sized graph structure.  

 

2.3.2 Deep Graph Convolutional Neural Network 

(DGCNN) 

Deep Graph Convolutional Neural Network (DGCNN) is a new architecture of convolutional 

neural network that takes graphs of arbitrary structure as inputs. This new proposed 

architecture tackles two main challenges: 1) how to gather robustly relevant features 

describing rich information involved in graphs and 2) how to sequentially read these graphs in 

a consistent order. Graph convolution layers aim to extract the local substructure from nodes 

and define a consistent node ordering. The extraction of this information is inspired by the 

Weisfeiler-Lehman sub-tree kernel approach (WL) [93]. Then, to address the second 

challenge, a Sortpooling layer is used to sort the node features under a predefined order and 

unifies input sizes. Thus, a fixed and ordering representation is achieved and then, standard 

convolutional and dense layers can be introduced to read ordered graph representations and 

make the prediction. In this thesis, we apply DGCNN as feature extractor from code property 

graphs to train a model which predicts whether the new instance (file or change) is buggy or 

not. As described in the previous section, the vertex labels of the code property graphs contain 

rich complex information of programs. For example, in CPG, each vertex is an instruction 

that may include instruction name, and many operands. Additionally, each instruction can be 

seen by other perspectives including instruction types and functions, besides its contents. 

Thus, a powerful deep learning architecture such as DGCNN is required to directly process 

these graphs. A complete architectural view of DGCNN is presented in Figure 13. In the 

remaining section, we explain in detail the three consecutive stages to be performed by the 

DGCNN: 1) the convolutional layers, 2. the Sort-pooling layer of DGCNN, and 3) the 

traditional convolution and dense layers reading the sorted graph depictions. 
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Figure 13: The overall structure of DGCNN [92] 

2.3.2.1     Convolutional layers 

As indicated above, there is a theoretical relationship between the DGCNN model and the 

WL algorithm [93]. The procedure aims to extract features from various parts of graphs.  Its 

operation is determined as follows: the key idea of WL is to concatenate the colour of a vertex 

with the colours of its neighbours, then to store the concatenated labels lexicographically to 

attribute to each vertex a new colour (i.e., a new label). This operation is reiterated until the 

maximum iteration h is reached. The vertices having the same labels or converge to the same 

colour are considered as non-distinguished and share the same structural role in the graph. 

WL is applied to verify the isomorphism of graphs, so the graphs which have the same set of 

WL colours at any iteration, are considered as similar. Furthermore, the similarity between 

two graphs is identified by the computation of the kernel function in WL method [93]. 

However, DGCNN approach differs from of WL in the uses of only a soft version of the 

approach. Indeed, the kernel function is not computed and the use of colours is not the same: 

the DGCNN approach concatenates the generated colours in the form of a tensor Zt (with t = 

1, .., h) horizontally in a tensor Z1: h (h being the number of iteration / convolution performed) 

[92]. 

 

2.3.2.2     SortPooling 

 The main purpose of the SortPooling layer is to sort the feature descriptors, each representing 

a vertex, in a consistent order before feeding them into the standard 1-D convolutional and 

dense layers. The issue here is the sorting the vertices. To classify images, the pixels are 

stored according to their spatial order. However, in text classification, the alphabetical order is 

adopted to arrange the words. For graphs, the vertices are sorted following their structural 

roles within graph as determined by the WL algorithm. The SortPooling layer serves as a 

bridge between the convolutional layers and standard neural network by back propagating 
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loss gradients and consequently achieves an end-to-end learning. More precisely, the layer of 

SortPooling takes as input, the output of the convolutional layers which is the tensor Zt 

(Z1...h) of size n * ∑ct, where each line represents the feature descriptor, and each column 

refers to the feature channel. To order the vertices of the graph, the SortPooling layer sort the 

Zt by starting by the last channel Zh in descending order. Then, the output of the layer is a 

tensor k * ∑ct, where k represents an integer to be defined.  

2.3.2.3     The traditional convolutional layer 

a 1-D convolution (Conv1D) layers is added. Then the output of sort pooling is reshaped, Zsp 

of size k ∑ (𝑐𝑡)ℎ1  with every row signifying a vertex and each column depicting a feature 

channel, to a vector of size k ∑ (𝑐𝑡)ℎ1  𝑥 1. After this the vector is fed into an entirely 

connected 1 layer perceptron for classification of graph. 
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THIRD CHAPTER 

 

3 Related Work 

There exists a plethora of research whose objective is to improve software quality. In recent 

years, increasing studies have been conducted to build accurate predictive models. Several 

trends have been emerged from software defect prediction studies and have evolved over 

time. Firstly, most of researchers focus on proposing an efficient and precise classifier at file 

level for academic and industrial application. As mentioned in the previous chapter, this 

means that they build predictive models by analysing software history data in previous 

releases and use the developed model to predict whether files in future release are prone to 

defects or not. However, this kind of prediction has the limitation in terms that this traditional 

prediction model could be more interesting before the product release for the purpose of the 

quality assurance. Indeed, the prediction would be more effective and helpful if we can 

predict bugs whenever the source code is changed. To remedy this limitation, a recent defect 

prediction research is represented by the so-called just-in-time software defect prediction 

(JIT-SDP) (i.e. short-term prediction at commit level) [94]–[96]. With this strategy, 

developers can have immediate feedback [95] and quickly narrow down the most likely 

defective commits once code changes are committed. 

Another limitation has been existed for defect prediction. It is too difficult to build prediction 

models for some projects typically new projects or legacy ones which have not enough 

historical data available to train models. This limitation is considered among the most difficult 

problems in defect prediction studies [16]. To resolve this issue, prior works have proposed 

various cross-project defect prediction models, i.e. models trained using historical data from 

other projects [41], [97]–[99]. In the cross defect prediction study, researchers have conducted 

another interesting topic which concerns the study on cross-prediction feasibility [16], [100]. 

In this thesis, we will address three actively studied topics in recent years: 1) software defect 

prediction at file level, 2) software defect prediction at change level or just-in-time defect 

prediction, and 3) the feasibility of cross-prediction. To conduct these three topics, 
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researchers have investigated various pre-processing approaches and have focused on 

machine learning models to train historical data. Machine learning algorithms have been 

widely used in the last years to improve the accuracy of the prediction models [7], [24], [25], 

[38], [101]–[103]. As explained in the previous chapter, pre-processing is a step in the defect 

prediction process where we extract meaningful features from instances generated from 

software archives. The traditional methods for program analysis proposed in the pre-

processing step can be classified into three categories: metric-based methods, tree-based 

methods and graph-based methods.  

In this chapter, we give an overview of the different existing research of leveraging deep 

learning models to ameliorate software reliability. The reminder of this chapter is as follows: 

Section 3.1 represents different axes covered in this research. In section 3.2, we present 

different traditional pre-processing methods used in the literature to extract features from the 

code. Section 3.3 reviews various defect prediction models based on machine learning and 

especially deep learning in software engineering. Section 3.4 presents various approaches for 

cross-project defect prediction. Finally, based on this literature, we identify and discuss the 

current challenges faced by researchers. 

 

3.1 Overview of various research axes  

Table 2 lists the representative research axes in software defect prediction. Proposing pre-

processing techniques is especially important research branch in defect prediction studies. 

These techniques including feature extraction [104], normalization [41], [103], and handling 

noise [105], [106] and can improve the performance of the prediction. Many studies have 

focused firstly on proposing distinct categories of metrics to develop prediction models. 

Software metrics are quantifiable or countable measurements that can be applied to 

characterize properties of a software product and predict the quality of software [107].  

Generally, the widely adopted metrics are code metrics and process metrics [108]. Code 

metrics provide a snapshot of software, whereas process metrics take the software changes 

over time. Then, these techniques are evolved over time and the researchers exploit the source 

code by representing the program by abstract syntax trees or control flow graphs to mine large 

amount of code’ syntax and semantics. 
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As mentioned above, most defect prediction studies are conducted based on the most 

meaningful subfield of machine learning, deep learning. It has been widely used in last years 

in many traditional software engineering such as software testing [109], [110], defect 

prediction [30]–[32], and documentation [111], [112]. It has proved its efficiency in 

developing more accurate defect prediction models by leveraging selected expressive features 

automatically generated from the source code and then these features are used to train and 

construct the defect prediction models. 

 
Table 2: Representative research axes in software defect prediction 

Granularity Type Categories Methods 

 
 
 
 
 

File/Change 

 
 
 
 

Within/Cross 

Pre-processing 

techniques  
(Feature-extraction, 
normalization and noise 
handling) 

Metrics: process metrics, 
code metrics, network 
metrics. 
AST based methods 
CFG based methods 

Algorithms/ models Classic machine learning 
Deep learning (DBN, 
CNN, etc.) 

Pre-processing  

(Transfer learning) 

NN filter, TCA+, etc. 

Cross Feasibility  Decision Tree 

 

 

Defect prediction models tried to locate bugs at different granularities. Most of them 

investigate traditional file-level defect prediction and made meaningful contributions by 

proposing new representations of code or exploiting different machine learning. 

Subsequently, researchers have focused on finer granularity such as change-level that can give 

more accurate and earlier feedback to developers.  

The existing research studies described above are verified under within prediction setting, i.e., 

prediction models are trained and tested in the same project. However, for the new project, 

locating bugs becomes a tedious task for researchers due to the lack of historical data. To 

address this issue, various approaches are proposed such as Nearest Neighbour (NN) [16], 

TCA+ [41], etc.  

According to many studies [16], [100], cross-prediction is very hard to achieve. Determining 

the feasibility of the cross project can play a crucial role for cross-project defect prediction. 

This research branch was not deeply investigated despite its importance. Only, a handful of 

studies are conducted to deal with this problem such as decision trees, etc.  
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3.2 Traditional pre-processing techniques  

In this section, we highlight some current traditional pre-processing techniques in the area of 

software defect prediction. These techniques play a significant role to build the prediction 

model and improve its performance.  

The following subsections present the different adopted approaches to select features from the 

source code.  

 

3.2.1 Software Metrics  

Most software metrics can be classified into two kinds: code metrics and process metrics: 

Code metrics are directly collected from the source code and process metrics are gathered 

from historical data recorded in software repositories such as issue tracking system and 

version control [113]. 

 

3.2.1.1 Code metrics (or product metrics) 

Code metrics are calculated directly from the source code. The presumption here is that the 

more complex the code, the more they are bug-prone as they are more hard to understand and 

to change [7]. Several metrics are proposed by the researchers to measure the code 

complexity. 

Halstead computes the software complexity of a module by proposing size metrics based on 

the number of operators and operands [17]. These metrics have been widely used in defect 

prediction literature [99], [103], [114]. 

McCabe designs a software module by a directed flow graph where each program statement is 

represented by a node and the flow of control between two statements is represented by an 

arc. Different form of Halstead metrics measures quantity and volume of code. McCabe 

introduced the cyclomatic metric to analyze the complexity of source code structure by 
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considering the complexity of the control paths i.e., it computes the number of nodes, arcs, 

and connected components in control flow graph of program. 

A set of metrics have been proposed for object-oriented languages to build a prediction 

model. The most popular metrics for object-oriented programs are CK metrics proposed by 

Chidamber and Kemerer [19]. Its underlying assumption is to quantify the complexity and the 

size of distinct aspects of object-oriented program at class level. This metric is composed of 

six metrics and was applied by many studies to build prediction models  [7], [20], [38], [101], 

[105], [106], [115]–[119]. 

Another widely used metric in the literature to assess the size of a software system is lines of 

the code (LOC) [7], [38], [103], [114], [120], [121]. Several types of lines of code are 

proposed to count several types of lines such as loc-comments, loc-code-and-comments, etc.  

 

3.2.1.2 Process metrics 

Process metrics have been employed by several researchers to enhance the performance of 

defect prediction. Software defects often change in time as the software evolves. Indeed, 

many researchers considered that the use of process metrics such as code changes may be 

interesting on the evolution version [122]. Version control systems (VCS) such as GIT, CVS, 

or SVN, store detailed information about the change: the files that have been changed, the 

names of developers, the manual log message, etc.  

Many researchers have focused on these evolution metrics. Nagappan and Ball [25] applied 

eight representative code churn metrics to measure the amount the quantity of code change, 

and the experimental results show so that these metrics are considered as good predictors to 

predict the defect density of bug-proneness. Moser et al. [123] proposed different history 

metrics such as the number of revisions, ages of files, and past fixes to predict defects and 

concluded that they are more efficient predictors than code metrics when performing 

experiments on the Eclipse project. Hassan [24] used entropy metrics to predict new changes 

and compared them with two change metrics (the number of previous faults and previous 

revisions on six open-source projects). The experimental results showed that the complexity 

metrics outperformed the two changed features. However, this experimentation revealed the 

weakness of the evaluation as the comparison was between complexity metrics and those by 

only two change metrics. Moreover, Rahman et al. [108] investigated a number of evolution 
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metrics such as code change, committer/developer information, etc., and indicated that 

process metrics outperformed code metrics because of stagnation of code metrics. Also, 

Madeyski et al. [124] extracted process metrics from software change history, such as the 

number of revisions, modified lines, and defects in the previous versions, and concluded that 

the process metrics could improve the prediction performance than product metrics. Graves et 

al [125] retrieved process metrics from software change history and concluded that they 

performed better than static code metrics. Kamei et al. [95] selected 14 change metrics of 

different categories such as size, history, experience, etc. and developed logistic regression 

models to predict commits as buggy or not. Later on, they extended their work and evaluated 

the feasibility of their proposed method in a cross-project context [115]. Qiao et al. [126] 

proposed two new process metrics that change the degree of classes and the defect rates of 

historical packages for software defect prediction in object-oriented programs. The authors 

made comparisons between their proposed process metrics and code metrics as long with 

other process metrics to show the effectiveness of their approach. Kim et al. used text-based 

metrics accumulated from change in logs, file names, and the identifiers in deleted and added 

source code; then applied support vector machine SVM to predict whether a change contains 

bugs or not [96]. Some researchers such as Stanic et al. [127] used combinations of process 

metrics and code metrics, and their results showed that the combination of these metrics could 

predict more defective files. Shivaji et al. [104] investigated combinations of churn metrics, 

object oriented metrics, textual features and static code metrics while Bird et al. [128] 

employed combinations of developer contribution network metrics.  

3.2.1.3 Other metrics 

Researchers have proposed another kind of measures based on network measure [20], [129]. 

Zimmermann et al. [20] generated dependency graphs and conducted network analysis 

measures such as betweenness, closeness, and degree of centrality on that graph. Their results 

demonstrated that network measures are better in predicting more bug-prone binaries than 

process and code metrics. Qu et al. [130] proposed network embedding technique called 

node2defect to learn structural features into low-dimensional vector space. The node2defect 

used traditional software engineering traditional metrics such as lack of cohesion in methods 

(LCOM), coupling between object classes (CBO), and depth of inheritance tree (DIT) to learn 

structural features into vectors. Then, it concatenated the learned vectors with other traditional 
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metrics to predict bugs more accurately. Meenely et al. [129] used a set of developer metrics 

extracted from developer social network that represents the structure of the collaboration 

between developers. This study indicates that there is a correlation between software failures 

and developer network metrics.  

3.2.1.4 Discussion 

At present, researchers have designed various traditional metrics extract code properties and 

describe the characteristics of software evolution. Table 3 summarizes the representative 

metrics by category. The code metrics such as CK, size, Hastead, McCabe and OO metrics 

are mainly used as predictors for file-level defect prediction. Due to the stagnation of these 

metrics, process metrics are proposed for just-in-time defect prediction to describe the 

evolution characteristics of software. Most of these metrics appeared in 2000s when software 

repositories such as issue tracking systems and version control became popular. The subject 

of metrics is still an open debate today. Despite the proposition of several metrics in the field 

of defect prediction, no research can prove that there is one set of metrics that outperforms all 

the others. Furthermore, even the combination of these metrics does not provide optimal 

performance in identifying defects as they rely on the performance in each single feature 

involved in the combination. To conclude, there is still no consensus about the best set of 

metrics (predictors) for software defects. 

 

                         Table 3: Representative metrics by category 

 

Category 

 

 

Metrics 

File-level defect prediction 

 

CK, size, Hastead, McCabe  

OO metrics  

 

Change-level (just-in-time) defect 

prediction 

Code metric churn (), change () 

Change entropy () 
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3.2.2 Software defect prediction methods based on 

trees and graphs 

Recently, several approaches have proposed more advanced methods based on trees and 

graphs to analyze the source code. Furthermore, they have applied deep learning techniques 

(i.e., CNN, DBN) to generate automatically meaningful features. It is no longer about the 

traditional manually designing features (methods based on metrics) that are fed into classifiers 

to identify code defects but, instead, it is more about the features that are captured 

automatically from the source code and that can have richer representations of programs and 

conduct a more precise prediction. Among those approaches are those that convert the code 

source into AST and others that convert the code into CFG. The abstract syntax tree includes 

semantic and structural information specifying the hierarchical relationship among different 

components in the source code [131]; while the control flow graph represents all the paths 

that can be crossed during the program execution. In previous studies of software defect 

prediction, Wang et al [12] applied a deep learning model (DBN) to automatically learn 

features over AST. For file level defect prediction, they first parsed the source code into AST 

and then created token vectors from the AST node. Finally, they built defect prediction based 

on the token vectors. According to the evaluation, their approach outperformed traditional 

metric-based methods. Li et al [26] introduced an approach for defect prediction performing 

deep learning (i.e. CNN) for structural and semantic feature extraction. Similarly, to Wang’ 

approach, they recorded AST nodes to build the token vectors that will be fed to the deep 

learning algorithm. However, instead of recording the names of AST nodes, they extracted 

values to build the token vectors. The framework known as Defect Prediction via 

Convolutional Neural Network (DP-CNN) outperforms existing defect prediction methods 

such as DBN and defect prediction metrics. Shi et al. [132] proposed a framework called 

Multi-perspectives tree embedding MPT-embedding. They represented the code as AST from 

multiple perspectives and used the convolutional neural network CNN to construct the defect 

prediction model. For a better exploitation of the tree structure AST and better capture of 

many level of syntactic and semantic information in source code, Dam et al. [133] proposed a 

tree-based long short-term neural network (TB-LSTM) that can acquire vector representation 

of the whole AST.  Fan et al [134] extracted relevant features from the AST and considered 

that they contain significant syntaxes and semantics information. As a result, they applied 

bidirectional long short-term memory (Bi-LSTM) with attention mechanism to capture 
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defective programming patterns.  To build the token vectors, they recorded plain text in the 

source code for method invocations nodes and extracted the node types for control flow 

nodes. All the nodes of declarations are simply recorded as node names. Chen et al. [135] 

leveraged a deep learning cross-project defect prediction method, called “DeepCPDP”. This 

method represents the source code by a simplified AST to extract token vectors and apply the 

Bi-directional Long Short-Term Memory neural network (BLSTM) to build the classifier. 

Nguyen et al. [136] examined changes at the AST level. 

Unlike other researchers who have represented the code in the form of AST, Anh et al. [27] 

adopted the graph based representation to extract meaningful features. Indeed, they 

represented the code as CPG and used the deep learning network DGCNN to learn semantic 

features. The results of the experiment showed that the CFG based methods outperformed 

tree-based methods as they captured the execution process of programs. To sum up, the 

studies based on trees and graphs described above allow considering only account the syntax 

and semantic information and the program execution processes. Therefore, they can cover 

more typologies of bugs, typically syntactic and semantic bugs or those related to the 

execution processes. 

3.2.2.1 Discussion 

A significant number of researchers have made contributions, mainly in data-pre-processing 

phase in which they explore the source code to make mining of large amount of code and 

extract meaningful features to use machine learning techniques that take the expressive 

features as input to identify code defects and build predictive models [39]. In the beginning, 

they applied traditional metrics. Then, they focused on using tree representations of programs 

or precise graphs representing program execution flows. The contribution of the AST based 

code representation was important compared to the traditional metrics as it provides 

significant semantic and syntactic information. Therefore, AST based methods can capture 

more bugs and especially those related to syntactic and semantic defects which traditional 

metrics often fail to detect. Although CFG based methods has given better results compared 

to techniques based on AST and metrics, they only capture the execution process within the 

program and do not provide information related to the relationships between components intra 

program modules. In other words, they are not able to capture the behaviour of the program. 
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To sum up, existing models do not offer high performance and do not cover all types of bugs. 

They often fail to capture intra-procedural dependencies. Indeed, several bugs are directly 

related to these dependencies. Such information is important in modelling program 

functionality and can result to a more effective and accurate defect prediction. To thoroughly 

explore program structure and semantics and detect defective programming patterns, it is 

required to devise a more complete prediction technique which can extract several types of 

bugs. This should help to mitigate the fragility of current learning methods based on either 

trees or graphs to extract meaningful features from the source code and improve the quality of 

prediction.  

To this effect, it is of paramount importance to conceive an efficient source code 

representation able to make mining of large amounts of code and provide simultaneously 

different project characteristics belonging to structural, semantic, and intra-dependencies 

aspects. Indeed, we need to merge all these aspects in our code analysis representation as each 

aspect has its own benefits and highlights specific bugs. Moreover, none of them can fully 

replace the others. Table 4 presents a comparison between the target solution and the existing 

feature extraction methods. As it is shown in the table, the target method should highlight all 

the various aspects of programs including the syntax and the semantic information, the 

execution process and the intra-procedural dependencies. Contrary to metric-based methods, 

they do not deal with any aspect expect the static code properties and some software evolution 

characteristics. Furthermore, the designed metrics may not be highly correlated with class 

labels or redundancy. These all can affect the effectiveness and efficiency of the prediction 

model. As for other methods, they are not complete either because they also lack certain 

aspects such as the syntactic aspects for CFG based methods and the execution process for 

AST based methods.   

As reported in the previous chapter, the code property graph representation meets all these 

criteria. Indeed, taking in consideration this code representation should logically significantly 

improve the prediction quality. We confirm this hypothesis in the following chapter.   
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       Table 4: A comparison between the target method and the existing feature extraction methods 

 Traditional 

metrics 

AST based 

methods 

CFG based 

methods 
The target solution  

Syntactic 

information 
x 

√ 

 
x √ 

Semantic 

information x 
√ 

 

√ 

 √ 

Execution 

 process x X 

√ 

 √ 

Intra-procedural 

dependencies 
x X 

x √ 

3.3 Software Defect prediction models 

3.3.1 Traditional Machine learning algorithms 

Machine learning models have been extensively used in the literature to predict the fault-

proneness of software systems since they have achieved enormous success in solving real-

world problems of software engineering. Therefore, a variety of traditional machine learning 

algorithms such as Decision Trees, Logistic Regression, Naïve Bayes, Random Forest, etc. 

are published to develop software fault prediction models. The ultimate objective of machine 

learning techniques in defect prediction is to find relevant defective pattern extracted directly 

from code and improve the model accuracy. Depending on what to predict, we categorize 

machine learning models into two types, classification, and regression. Classification models 

determine defect-proneness while regression models predict the number of defects. In this 

study, we highlight on classification problems and try to classify which modules are prone 

defects in a software system. To do this, it is required to have a labelled dataset with 

meaningful features to identify defective from non-defective modules. To create this dataset, 

feature extraction methods are applied to extract useful features, and then train the model. 

Traditional learning algorithms are usually applied on lots of information provided by 

metrics-based methods to extract software bugs information. Erturk et al. [137] used McCabe 

software metrics with the algorithms SVM and ANFIS (new adaptive model proposed) to 

predict defects. In the paper of Naidu et al. [138], the defect was categorized into five 

parameters such as Program length, Volume, Time, Difficulty, Estimator , and Effort. They 

applied ID3 classification algorithm, to classify defects. Aleem et al. [139] used around 
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fifteen data sets from PROMISE data repository and applied a collection of machine learning 

algorithms such as (Random Forest, , Support Vector Machine (SVM), Naive Bayes, 

Ensemble Classifier  (Bagging and Boosting), etc.) to the selected datasets. They suggested 

that SVM and bagging had high performances and accuracy by measuring the performance of 

each method. Ghouti et al., [140] proposed a software prediction model based on Probabilistic 

Neural Network (PNN)  and SVM and used Promise datasets for evaluation. Their results 

showed that predictive performance of PNN outperforms SVM for any size of datasets. Guo 

et al., [141] applied ensemble approach (Random Forest) to predict defective software 

components. They compared their approach’ performance against other existing machine 

leaning approaches involved in NASA datasets. Azeem et al. [142] discussed the utilization of 

several machine learning techniques such as regression, classification, clustering, and 

association in software bug prediction but did not supplied a comparative analysis of these 

approaches. Okutan and Yildiz [143] used PROMISE data repository and suggested that most 

powerful metrics for software are response for lines of code, class, and lack of coding quality. 

Wang et al. [144] compared only ensemble classifiers for software defect prediction. 

Traditional learning approaches are proven to be useful to assess software quality and predict 

predictive software components. However, they fail to extract and exploit meaningful features 

automatically from the code. In other words, the features are handcrafted (i.e., manually 

encoded) with traditional machine learning approaches as they rely on metrics. To remedy 

this issue, Deep learning techniques are proposed recently to select automatically the features 

through neural networks [145]–[147]. 

3.3.2  Deep Learning in software engineering 

Deep Learning is a subfield of Machine Learning that depends on many layers of Neural 

Networks (NN) to represent high-level representations [148]. Currently, there are several 

types of NNs, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks 

(RNN), Deep Reinforcement Learning, Auto-Encoders, and Generative Adversarial 

Networks. Deep learning techniques have been drawn increasing attention in software 

engineering due to their powerful feature learning capability, and have been successfully 

applied and revealed remarkable improvement in several fields like documentation [111], 

[112], [149], testing [109], [110], [150], malware classification [151], [152], software 

traceability [153], defect prediction [12], [30]–[32], etc. Researchers are investigating the 



70 

application of DL to address traditional problems in Software engineering [153]–[163]. 

According to a study [72], the number of papers concerning deep learning and software 

engineering constantly increases over years. The work [162] used recurrent neural networks 

(RNN) to explore source code and showed its effectiveness. They later extended the RNN 

models published in [164] to detect code clones. The authors in this paper [165] proposed a 

special RNN Encoder-Decoder model to remedy the API call sequence recovery problem 

based on the natural language queries of the user. Besides, the researchers applied RNN 

Encoder-Decoder for identifying common faults in C programs in this study  [166].  

Deep learning techniques have been widely applied also in defect prediction [72]. In this field, 

researchers have explored the performance of different deep learning algorithms for learning 

semantic features  [26], [167]–[170]. For example, Wang et al. [12] applied deep belief 

networks (DBN) on token vectors retrieved from programs’ ASTs to learn semantic features 

automatically for file-level defect prediction. Their findings proved that the deep features-

based technique outperforms traditional software metrics on average 14.2% in F-score. A 

longer version of their work is proposed in this paper [32]. Among the improvements, they 

applied DBN to automatically learn semantic features for just-in-time defect prediction and 

extended their experiments by including four open-source commercial projects. Dam et al. 

[171] suggested that LSTM is a more efficient predictive model for source code. They 

claimed that features based on metrics do not extract the multiple levels of semantics in the 

code. Then, they extend their work in [133] and relied on the usage of a tree-structured LSTM 

network to better match with AST representation of the code. The experiment results 

confirmed the effectiveness of the proposed method on file-level for both within and cross-

project. The performed evaluations included real projects provided by an industrial partner 

(Samsung). Wen et al [170] leveraged RNN to learn features for change-level defect 

prediction task. The experimental results indicated that the RNN-based features showed better 

results compared to traditional change-level defect prediction features. Li et al. [26] proposed 

an approach for defect prediction called DP-CNN in which the authors employ CNN to 

extract patterns involving syntactic and semantic information from programs and combine 

traditional features with CNN-learned-features to improve the file-level prediction accuracy. 

Their evaluations showed that DP-CNN can outperform DBN-based defect prediction model. 

Hoang et al. [30] described an end-to-end deep learning framework, called DeepJIT, which 

automatically captures features from commit messages and code changes. DeepJIT 

outperforms the state-of-the-art benchmark by around 10% in terms of F1. Tong et al. [31] 
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claimed that Stacked Denoising Autoencoders (SDAEs) was never used in defect prediction. 

They proposed a novel two-phase software defect prediction based on SDAEs and two-stage 

ensemble learning to obtain more representative and robust features. The experimental results 

showed that their novel approach is significantly effective compared to the traditional 

software metrics. Zhou et al. [172] suggested a new deep forest model to predict defects by 

transforming random forest classifiers into a layer-by-layer structure. Mou et al. [160] 

investigated the applicability of deep learning to model complex structure of programs and 

demonstrated that deep learning can extract different levels of programs' structural 

information. Finally, Yang et al. [49] leveraged DBN from a set of traditional change metrics 

such as code deleted, modified directories, metrics related to developers ‘experience, 

modified directories, files before/after changes, etc. to predict a commit as a buggy or not. 

This work is proposed to overcome the weakness of Logistic Regression (LR) which cannot 

merge features to generate new one.  

 

3.3.3 Graph convolutional neural network 

The above-mentioned deep learning algorithms have proved their effectiveness to 

automatically explore complex structures of features. However, none of them can tackle graph 

data. They require transforming the graphs into a fixed data structure. Standard convolutional 

neural networks (CNNs) are considered among available deep learning techniques. They are 

widely used in different fields such as object recognition, image classification and semantic 

segmentation. However, they can only learn fixed-sized local structure of data, so they cannot 

manage graph-based data, whose neighbourhoods are uneven. As the deep learning networks 

have proved a great success in machine learning, their application have been generalized for 

processing the data representation in graph domain [82]–[85], [173]. The novel deep learning 

networks applied on graphs are called Graph Convolutional Networks (GCNs). According to 

this study [86], GCNs are important and worth investigating. They have emerged as a 

powerful novel architecture to learn highly relevant features on graph data directly. In the 

literature, numerous methods have been proposed to apply CNN to graph-structured data to 

exploit rich information involved in graphs. These methods can be classified in two main 

categories: a) spectral and b) spatial strategies. The spectral-based approaches use the 

eigenvectors of the Laplacian matrix as the convolution operation to transform the graph into 

a spectral domain. Bruna et al [87] have performed a spectral filter by multiplying the graph 
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by a series of filter coefficients to apply a graph convolution network. Unfortunately, most of 

spectral-based methods cannot be applied on graph-structured data with same number of 

vertices. On the other hand, special-based methods are not limited to same-sized graph 

structures. The main aim of these methods is to find an operation on the neighbouring vertices 

and convert the convolution of the graph data into spatial structure [174]–[176]. Duvenaud et 

al [175] performed a spatially-based GCN by identifying a spatial graph convolutional 

operation on 1-layer neighbouring vertices. Atwood and Towsley [174] have carried out a 

spatially-based GCN by applying convolution operation on different layers of neighbouring 

vertices rooted at a vertex. Spatially based methods still require a further transformation of the 

learned local-level features from graph convolutional layers into fixed-sized representations to 

perform the standard classifiers. They therefore sum up the learned local features as global-

level graph features by using the Sumpooling layer. However, spatially based methods are 

low performing on graph classification since it is hard to learn multi-scale and rich local 

information from global features. To overcome these limitations of current spatially based 

GCN methods, Zhang et al. [92] proposed a novel spatially based Deep Graph Convolutional 

Neural Network (DGCNN) to retain more vertex information through its new proposed 

SortPooling layer. The purpose of the SortPooling layer is to convert the extracted irregular 

vertex (i.e., unordered vertices) from the spatial graph convolutional layers into a fixed-sized 

local-level vertex by consecutively keeping a number of vertices with prior orders. DGCNN 

model reaches better performance compared to the existing state-of-the-art GCN models as it 

can extract complex graph information locating in local-level vertices.  

In the field of defect prediction, Phan et al [27] have applied DGCNN directly on control flow 

graph (CFG) to learn semantic features. In CFG, each vertex is an instruction which may 

contain many operands and instruction name. To directly treat such graph characteristics and 

avoid losing significant information, the directed graph convolutional neural network is 

designed. Due to the enormous success of the graph convolutional networks and especially 

DGCNN in exploiting complex information resident in graph structure, we adopted the 

application of DGCNN to deeply explore the semantic meanings as well as the dependencies 

and therefore formulate an end-to-end deep learning approach. As explained above, we expect 

to leverage a joint representation of a program’ syntax, control flow and data flow called code 

property graph which makes mining of complex and enormous amounts of code. The vertices 

of CPG represent statements, predicates, operands, and operators, etc. while the edges of CPG 

involve the edges of AST, CFG, and PDG. This common entity structure maps various code 



73 

elements that lead to a better understanding of code structure and how the various components 

interact with each other. Moreover, it allows extracting diverse levels of bugs. This structure 

will be fed directly to the deep learning algorithm DGCNN to build predictive model. The 

code property graph is a complex data structure that can be easily exploited by DGCNN to 

learn diverse types of bugs. Contrary to the above standard deep learning models which 

require transforming data structure into vectors, a lot of information can be lost.   

 

3.4 Specific approaches for cross defect 

prediction 

3.4.1 Cross prediction feasibility 

Developing an accurate and effective prediction model is considered challenging for projects 

where there is not enough data. To overcome this issue, an increasing number of papers have 

proposed the cross-project defect prediction (CPDP) in which machine learning models use a 

bunch of training data from multiple projects [41], [177], [178]. In most cases, the data 

distribution between various projects cannot meet similar distribution hypothesis. 

Consequently, a CPDP model cannot easily extract generalizable properties of defective 

software components in one or set of source projects, so that the defect prediction on target 

project is always ineffective and unstable. 

Many researchers have conducted many empirical studies to explore the feasibility of CPDP. 

They claimed that it is necessary to select relevant source projects, features or instances 

whose characteristics are remarkably close to the target project to improve the predictive 

model accuracy. Indeed, if the source-project data are selected carefully, the CPDP can work 

even better than WPCP [100], [179]. Alternatively, large irrelevant data can lead to low 

efficiency. For this, cross-prediction topic is considered as a challenging task as, there are 

only few cross-prediction combinations that work [16]. Zimmerman et al. [16] carried out 622 

cross-projects experiments on real large-scale projects, and found only 21 experiments (3%) 

could achieve satisfactory performance due to the data distribution difference between the 

source and target projects. He et al [100]  also conducted a study on cross-project application 

with the aim to select the most suitable cross-project models among all existing models to 

predict defects on target projects. He found that only 0.3 % to 4.7% of cases can reach 
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satisfactory performance depending on different classifiers. These studies confirmed the 

importance to tackle the cross-prediction feasibility.  

3.4.2 Transfer learning approaches  

To address the limitation of data distribution in CPDP models and improve the cross-

prediction feasibility, researchers should strive to create a bridge from source projects to 

target projects to reduce the heterogeneity between them. To do this, most of researchers rely 

on using transfer learning techniques which is considered among the interesting areas of 

machine learning [180]. The ultimate objective of transfer learning techniques is to transfer 

knowledge from a domain with sufficient training data to another domain with insufficient 

training data to construct a learning model. In this field, researchers have proposed 

increasingly studies to improve the performance of CPDP. A systematic literature review [14] 

provides a detailed study on the representative techniques of transfer learning for cross-defect 

prediction. These proposed solutions aim to improve the CPDP performance by relying on 

different strategies. These strategies are shown as follows. Some approaches focused on 

metric value transformation. For example, Cruz et al. [181] applied metric value 

transformation by using power transformation to the metric values.  

Other approaches are based on the selection of relevant instances from the source project that 

are similar to the target project. For example, Turhan et al. [179] converted the metric data 

into value ‘logarithm and then used the nearest-neighbour filter (NN Filter) to select the 

similar instances to the target. In the data pre-processing phase, he focused on feature 

selection, instead of feature mapping by applying the NN filter. The basic idea of NN filter is 

to select the source instances which have the similar data characteristics to assess data to 

avoid having irrelevant samples. Peters et al [182] applied Peters filters to select source 

instances. Ma et al [98] investigated the homogenous set of cross project metrics by applying 

a data gravitation mechanism to adjust the weights of training instances. They leveraged the 

Transfer Naive Bayes (TNB) to build a classifier on the adjusted cross data. The weights of 

the training instances are computed according to the similarity between the source instances 

and the target instance. To calculate the similarity between them, data gravitation mechanism 

is used. In other words, they stored the min and max values of each feature attributes of the 

target data, and the resemblance is estimated by the number of feature attributes of a source 

instance whose feature attributes’ values are between min and max values of the 
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corresponding target feature attribute. Then, the weights were computed according to the 

formulation of data gravitation [183]. The more weight of a source data means the more 

similarity to target data. Finally, the TNB is employed with new probabilities by using these 

weights either filtering features or instances of the source project that are irrelevant for the 

target project. Amasaki et al. [184] explored the influence of data simplification by 

eliminating irrelevant and redundant information. Chen et al [185] adjusted the data 

distribution between source projects and target project by employing the data gravitation 

method [183]. The mechanism of this method is to reshape (re-weighting) the instances of 

cross data (i.e., data of source projects) and make them close to the within data (i.e., data of 

the target project). Then, they used the transfer boosting learning called TrAdaboost [186] to 

refine the weights of source projects and build an effective defects classifier with a restricted 

amount of labelled data in the target project. Yuan et al [187] proposed an approach called 

ALTRA which aim to reduce the great data distribution difference between source projects 

and target project by using firstly burak filters to select the most similar labelled instances 

from source projects, then applying active learning to highlight significant unlabelled 

instances from the target project, and finally applying TrAdaboost to identify weights of 

labelled instances of both source and target project and constructing the prediction models via 

the weights. Some methods are based on feature selection or feature mapping. Yu et al. [188] 

used correlation-based feature selection to select features which are very close to those of the 

target project. Nam et al [41] applied the transfer component analysis (TCA) technique to 

CPDP. Instead of selecting appropriate source projects, TCA makes the distribution of the 

features between a given source project and the target project similar by mapping the features 

data from both projects into a common latent space. They further extended their approach to 

TCA+ with a data pre-processing phase in which they managed the data distribution 

divergence between the projects by adding decision rules.   

Some other approaches focus on the selection of relevant source projects. Herbold et al. [189] 

proposed a training data selection (TDS) technique to select suitable source projects by using 

NN filter and measuring the Euclidian distance between the data distributions of the source 

and target projects. He suggested that TDS plays a significant role in CPDP. The results 

showed that TDS approach can significantly improve the prediction performance by a 

percentage of 18%.  Liu et al. [190] proposed a method called TPTL which achieves to 

enhance the CPDP performance by selecting two source projects that are considered as the 

best candidates for the target project as they share similar characteristics, and then, applying 
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the transfer learning algorithm to construct a two-phase transfer learning model. Krishna et al. 

[191] applied the concept of bellwether to select the best candidate among several source 

projects and construct with it the transfer learner.  

As described above, a lot of related works have been proposed on WPDP, and each of them is 

based on either feature selection or instance selection or project selection. In this research, we 

mainly focus on project selection.  

3.5 Discussion 

A significant number of contributions have been proposed to tackle the CPDP challenge by 

applying different strategies including the selection of source projects, instances, or features 

to alleviate the great distribution data between source project candidates and the target 

project. TCA + is considered as the state-of-the-art transfer-learning method for CPDP [41]. 

However, TCA +’performance is unstable and depends on the selected source projects. It 

means that the source projects candidates should be carefully considered, instead of randomly 

selecting one or many source projects. In this way, the performance of CPDP methods could 

be substantially improved. Additionally, the ability to identify similar projects from which the 

learning can be performed is of high importance even for the other proposed methods.    

Nevertheless, all the proposed approaches, including TCA + are based on metrics to choose 

the source instances, projects or features whose data characteristics are remarkably close to 

those of target project. It was proved in the subsection 3.2.2, that the metrics do not provide 

high performance to extract meaningful code properties and patterns linked to defective code. 

Therefore, several metric-based methods fail to detect numerous types of bugs. Drawing on 

this observation, we assumed that applying approaches based on metrics to CPDP setting to 

select the most adequate source projects and extract useful patterns from them may alter the 

selection of projects and consequently, degrade the prediction quality considerably. The 

problem of detecting similar open-source projects is considered as an obviously difficult 

problem, since it implies the need to consider several parameters to detect similarities among 

open-source projects. Therefore, it is essential to establish more solid criteria, such as 

structural and semantic information and dependencies hidden in the source code, the 

organizational aspect of the project, etc. for a best selection of suitable source projects. We 

can categorize all these project aspects into two main types of software similarity 

computation, i.e., high-level similarity and low-level similarity (more details in chapter 5). 
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From the above CPDP state-of-the-art analysis, we noticed that none of the CPDP methods 

consider these aspects while choosing the appropriate project. They performed a filtering 

based on the metric calculation.  

To resolve this issue, a flexible framework is required for calculating similarities among 

projects by using all these aspects to identify project characteristics. This helps to improve the 

cross-project feasibility and provide a more strong and effective training for the project that 

has insufficient historical data. Moreover, it helps to detect several types of defects linked to 

many levels, i.e., structural bugs, semantic bugs, etc. for target projects for target projects.  

3.6 Synthesis 

In this chapter, we analysed existing research work in software defect prediction extracted 

from the state-of-the-art analysis. We classified these works into three main research areas 

including 1) software defect prediction on file-level, 2) software defect prediction on change 

level, and 3) cross-project defect prediction methods.  

We first analysed different approaches applied to represent the source code and extract useful 

features from it. These approaches are categorized into traditional metric-based approaches 

and traditional approaches based on trees or graphs. Then, we studied the benefits and 

drawbacks of each category. The methods based on metrics are easy and simple to compute 

but they cannot extract meaningful properties of code such as semantic and structural 

information, despite the importance of these aspects for modelling program functionalities. 

Moreover, these methods mainly focus on the manual and arbitrary selection of metrics which 

alter the prediction process. Based on this observation, other traditional methods are proposed 

to represent the source code. These methods are based either on trees or graphs. The trees 

based methods fail to extract the execution process of code while the graph based methods 

provided by CFG fail to extract the intra procedural information. Both of them have its 

advantages and none of them can replace the other.  

From this analysis, we concluded the need to consider simultaneously structural and semantic 

information in addition to intra-dependencies to deeply mining the code. Secondly, we 

discussed different learning algorithms used in constructing a prediction model. There are 

traditional learning algorithms and deep learning algorithms. Contrary to traditional learning 

models, deep learning methods can extract automatically meaningful features from the code. 

We also addressed a specific field of deep learning, i.e., graph based convolutional neural 
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network, which can tackle complex graph data. Based on above data, we noted that a 

powerful and effective deep learning algorithm is required to leverage automatically complex 

graph features from the code to construct a prediction model of high quality. Finally, we 

discussed the different transfer learning methods proposed for cross-project defect prediction. 

We also showed the importance of selecting adequate training projects that are like the target 

project, which has inadequate historical data, instead of selecting arbitrary source projects. On 

these terms, we highlighted the need to consider multiple criteria including structural and 

semantic information as well as dependencies hidden in the code and consider various levels 

of project description such as the organizational level, project’s usage, etc. to select the 

suitable source projects. 

From the above analysis, we propose the following research direction: 

 

- Propose a more reliable prediction model in terms of decision. 

- Enhance the structure and the semantic meanings of the code to detect the maximum 

types of bugs and improve the performance of the prediction models. 

- Choose the optimum source project in the case of cross-project to improve the feasibility 

and the performance of the prediction model 
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FOURTH CHAPTER 

 

4 An end-to-end deep learning 

defect prediction over code 

property graphs   

 

This chapter presents our proposed end-to-end deep learning framework for developing 

reliable software by detecting potential bugs. This framework extracts semantic features as 

well as the dependencies between software components; and then used a deep graph 

convolutional neural network DGCNN to learn and build defect prediction models on these 

semantic and dependency features.  This framework is applied at file and change granularities 

and is conducted in two settings: within-project defect prediction and cross-project defect 

prediction. 

 

4.1 Motivation 

Software defect prediction techniques have been proposed to ensure corrective and evolutive 

maintenance of modern software applications while minimizing software development costs 

[192]. Any modification in such software applications may give rise to the introduction of 

new failures. Thus, developers should regularly check that the software application does not 

involve new defects. Unfortunately, the inspection of the entire code is often challenging and 

testing all units is not practical due to the limited resources and the tight schedules. To this 

end, localizing and fixing bugs at earlier stage become an urgent requirement to improve the 

software quality and make the software-free with least cost.  
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Software defect prediction models use software history data to learn and build the software 

models which can predict whether new instances of code, e.g., file or change in this work, 

include defects or not.  

All the above mentioned methods fall into two main direction: one is applying metric based 

methods which design manually software metrics to extract features (predictors) from history 

instances (files from previous releases or previous commits) and traditional machine learning 

are investigated to build predictive models on the metric data and discriminate defective 

instance from non-defective instance; while the second is using either programs‟ tree 

representations or control flow graphs to extract relevant semantic features and deep learning 

networks are further applied to automatically learn distinguishing semantic features from 

either ASTs or CFGs.  

Metric-based techniques mainly focus on designing manually and arbitrarily discriminative 

features or a new combination of features called software metrics to measure some properties 

of source code. For example, Halstead metric based on numbers of operators and operands 

[17]; McCabe’s metric estimates the complexity of a program by assessing its control flow 

graph [18]; CK metrics based on function and inheritance counts [19]; code change features 

[9] based on a number of lines of code added, removed, etc. Although several robust learning 

algorithms have been applied for software defect prediction, involving Naive Bayes (NB), 

Decision Tree (DT), Dictionary Learning [10], Support Vector Machine (SVM), and Neural 

Net-work (NN), the predictors have not achieved so high performance [11] since they are 

based on metrics which have several definitions and ambiguous counting and are manually 

and arbitrarily selected by each researcher. 

Thereafter, the input data provided to the classifier no longer concern traditional metrics but 

represent the syntax and semantic elements of the program by exploiting tree representation 

of programs – The Abstract Syntax Trees (ASTs). Then, deep neural networks are applied to 

automatically learn to distinguish features from ASTs since their architecture can effectively 

capture complex non-linear features. Tree-based methods significantly outperform software 

metrics-based. Wang et al. [12] leverages a deep belief network (DBN) in learning semantic 

features from token vectors extracted from programs’ ASTs. This paper [26] proposed a tree-

based convolutional neural network to extract structural information of ASTs to improve 

defect prediction. 
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The AST-based methods are also not perfect because they do not reveal all the types of 

software defects in the programs, especially those induced by the execution process of 

programs. Phan et al. [27] proposed an application of a graphical data structure namely 

control flow graphs (CFG) to SDP. In the field of ma-chine learning, the quality of input data 

directly affects the performance of classifiers. Regarding this, CFG provides enhanced results 

relative to previous studies based on metrics and ASTs.  

Although the good performance of CFGs, they are only able to capture the execution process 

within a program and do not identify the intra-procedural dependencies, in other words they 

cannot capture the behaviour of the program. However, many bugs are directly related to the 

dependencies within the program [20], [28]. Therefore, both AST and CFG features do not 

cover all the types of defects in programs and especially those are related dependencies to 

respond to the constant evolution of software programs in terms of complexity. 

 

To bridge the gap between program’s intra-procedural dependencies and defect prediction, 

this thesis applies the powerful representation code property graph that merges classic 

concepts of program analysis including abstract syntax trees, control flow graphs, and 

program dependencies graphs into a common entity structure to represent the properties of the 

programs, and then performs DGCNN on code property graphs to automatically learn defect 

features. The key insight underlying this approach is to perform a suitable representation of 

code that can explore deeply the code by jointly taking into account the syntax, semantic, and 

control flows well as the intra-procedural dependencies of code to discover the maximum of 

bugs and improve the quality of prediction. The code property graph has proven successful in 

the field of vulnerability detection as it enables to efficiently mine large amount of code 

properties [22]. We also need to examine the code characteristics as comprehensively as 

possible, not to perform vulnerability analysis, but to feed the deep learning algorithm to 

improve prediction model accuracy. Therefore, we perform the CPG to carry out a more 

precise analysis of code and consequently predict different types of bugs. Furthermore, the 

application of the DGCNN enables to explore large-scale graphs and operate rich and 

complex information of vertices and edged like code property graphs.   

 

We examine our DGCNN-based approach that generates features including semantic and 

dependency information on both file-level defect prediction task (i.e., predict whether files in 
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a current version is buggy or clean) and change-level defect prediction task (i.e., predict 

whether a current code commit is buggy or clean). Most of existing defect prediction 

approaches are carried out on these two levels [9], [41], [48], [99], [193]–[197]. Investigating 

these two tasks enables us to better qualify our approach compared to other existing defect 

prediction features and methods in the literature. For file-level defect prediction, we stand for 

the source files from history data by using code property graph to extract features including 

semantic and dependency information, while for change-level defect prediction, we represent 

the code change by using code property sub-graphs extracted from code property graphs. 

Besides, we evaluate our approach in two settings: within-project defect prediction [9], [47], 

[48], [197] and cross-project defect prediction [41], [99], [194], [196].  

4.2 Background 

4.2.1 Bug fixing change  

After reporting a bug on an Issue Tracking System (ITS, e.g., JIRA and Bugzilla), changes are 

made to fix this bug. During bug-fixing changes, many lines are changed, removed or added. 

These lines are called bug-fix lines. Several existing heuristics are used to identify bug-fix 

changes [198]–[200]. For example, If the change log includes the bug identifier as recorded in 

its corresponding ITS, then such a change is considered as bug-fixing.  

4.2.2 4.2.2. Bug-introducing changes 

Bug-introducing changes refer to code changes that possibly lead to a bug fix change in the 

future system. The bug-introducing change holds a set of lines that are added, modified or 

deleted. These lines are called bug-introducing lines.  

4.2.3 The SZZ Algorithm 

SZZ is a widely used algorithm in software engineering community to detect changes that are 

likely to introduce defects. The original approach (B.SZZ) was introduced by Śliwerski et al. 

[201]. SZZ aims to make a further link of bug-fix changes to bug-introducing changes based 

on historical data from issue tracking systems (ITS) and versioning. The SZZ algorithm 

consists of two subsequent parts: 
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In the first part, the SZZ approach retrieves all the bug identifiers from the bug report stored 

in ITS and then checks whether the change log includes the bug identifier [202]. The most 

recent change of the commit involving the bug identifier is considered as buggy, otherwise it 

is clean. For the projects which do not have a properly maintained ITS, SZZ considers that the 

changes whose commit messages involve the keyword “fix” as bug-fixing changes. Then, for 

each of the identified bug-fixing commits, SZZ extracts the modified lines in the source code.  

In the second part, SZZ identifies the bug-introducing changes. For this, SZZ uses the diff 

command provided by the control version system CVS (e.g., git) to determine the lines that 

have been modified (to fix defects) between the bug-fixing commit version and its previous 

version. Then, SZZ algorithm employs the git blame/annotate functionality to trace back the 

change history and recover the change that introduced the bugs. i.e., the bug-introducing 

change. The improvement version of SZZ and provided by Kim et al [46] does not consider 

the non-semantic lines involving comment lines, blank, and format modifications, to avoid the 

mislabelling of the changes. 

A representative example is shown in Figure 14: An example of a change committed in a file. that 

stands for three code snippets. The first commit version, 15cf5s, is the commit that introduces 

bugs; the bug is introduced in line 15 where the if statement represents an incorrect condition. 

The second change, 6scf27d, inserts code to the print() function in line 18,19, and 20 after the 

bug was identified. The third change, 27cdf37, modified the two lines 15 (the buggy line) and 

19 to fix bugs. 

Figure 14 shows how the SZZ algorithm works to introduce the bug-introducing change. 

Firstly, SZZ identifies the bug-fixing commit 27cdf37 after looking the bug ID #134 within 

the log for a commit with the commit message. The bug ID corresponds to the notified bug 

#134 in the issue tracking system. Then, by using the diff and annotate/blame functionality, 

SZZ identifies the bug-introducing changes. In this example, lines 15 and 19 are the lines that 

have been changed to fix the bugs so there is a doubt that a bug was introduced in these two 

lines. The two lines have been included in two different commits. However, line 19 was 

inserted in a commit after the bug was reported, so the bug-introducing commit is the one that 

changed line 15. Therefore, SZZ deducts that 15cf5s refers to the bug-introducing change.   
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Figure 14: An example of a change committed in a file. 

 

4.3 Approach 

In this part, we will establish our proposed defect prediction approach depending on the code 

property graph, providing granular detail and a thorough understanding of data flows. The 

basic goal is to recognize if a source file or source code change has any defects or not by 

developing semantic features including dependency information from the source code or 

changed code snippets directly. These features are mobilized by using DGCNN to make the 

defect prediction better. The overall workflow of our proposed framework for generating 

semantic features based on code property graphs for both file-level defect prediction (inputs 

are source files) and change-level defect prediction (inputs and code changes) are depicted in 

Figure 15 and Figure 16 respectively. For file-level defect prediction, the source code is 

analysed and converted for the training as well as the testing source files into the Abstract 

Syntax Trees (ASTs), Program Dependency Graphs (PDGs), and Control Flow Graphs 

(CFGs). After this, these three representations are combined to form a common entity 

structure known as the Code property Graph (CPG). Hence, our approach takes CPG node 

tokens from the source code of both training and test source files as the input and generates 

features including semantic and dependency information. Then, the generated features are 

applied to build the prediction model. Note for change-level defect prediction, the input data 

that will be fed to the DGCNN algorithm are code property sub-graphs. Since the context and 

syntax information of changed code snippets is often incomplete, building AST, CFG, and 
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PDG for these changes directly from code is challenging. Therefore, the learning is carried 

out with sub-graphs of code property graphs that represent the code change, to consider the 

structural and semantic information characterizing the potential buggy changes and clean ones 

(details are in Section 4.3.2). DGCNN requires input data in the form of integer graphs. To 

this purpose, we build a map among integers and complex tokens and convert the token 

graphs (i.e., the nodes and edges contain labels) into numerical graphs (i.e., the nodes and 

edges contain numerical values) by applying the word-embedding. By manipulating these 

input graphs in the learning phase, the semantic, as well as dependency details about source 

code/or change code are automatically developed by the DGCNN. Then, the defect prediction 

models are generated via the training set, depending on the given features and their 

performance is analysed on the test set in the evaluation phase. Finally in the prediction 

phase, the high-quality model indicates the probability for every code file/or code change, if 

the file/or commit is defective or not.  

The framework is mainly composed of five steps: 1) labelling and data extraction, 2) parsing 

source code (source files for file-level defect prediction and change code snippets for change-

level defect prediction) into CPG to extract features, 3) encoding the token graphs into 

numerical graphs, 4) Using the DGCNN to develop defect features, and construct the 

classifier to identify if the software component (code files or code changes) are defective or 

clean. We outline the details of each step in the overall framework in the following sub-

sections. 

 

Figure 15: The overall file-level defect prediction 
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Figure 16: The overall just-in-time defect prediction 

 

4.3.1 Labeling and data extraction  

In this step, we give a label to each file/ or commit as buggy or clean.  For file-level defect 

prediction, the labelling process is based on post-releases defects from a Bug Tracking 

System (BTS) by linking bug reports to its bug-fix changes. Files associated with these bug-

fixing changes are considered as buggy. Otherwise, the files are labelled as clean.  

Different from file-level defect prediction, labelling change-level defect prediction needs to 

further link bug-fixing changes to bug-introducing changes. Therefore, we could identify the 

bug-introducing changes from bug-fixing changes by exploiting the annotation/blame 

technique provided by the versioning control system SZZ algorithm. These techniques are 

widely applied by several existing studies [9], [46]–[49]. We firstly identify bug-fixing 

changes by inspecting the log message of each commit and issue tracking system. However, 

for the projects which have not a well maintained BTS, we followed the same labelling 

process of existing studies [32] and considered the commit messages that have the keyword 

“fix” as bug-fixing changes. Then, lines which are deleted or modified to fix a bug are 

considered as buggy lines, and the most recent change that introduced those faulty lines (i.e., 

most recent change after reporting a bug) is considered as a bug-introducing change. Same as 

other works, we label buggy-introducing changes as buggy and the others as clean.  
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4.3.2 Parsing source code  

4.3.2.1 Parsing source code for files  

This step involves the parsing of our Java source code into the ASTs, CFGs as well as the 

PDGs by employing a LL parser. The LL parser is a descending parser using the context-free 

grammar. Therefore, a powerful and flexible parser generation tool is used, known as 

ANTLR. This tool is most used in academics for reading, processing, executing, or translating 

the organized texts and the binary documents. It offers the lexer and the parser that targets the 

normal language known by it. For our context, the lexer is found to be interesting in 

understanding the Java language‟ syntax by generating tokens representing the whole 

sentence, whereas the parser plays a role in understanding the Java language‟ semantic by 

generating the syntax trees representing the context-free sentences.  

After using the ANTLR tool, every file source is converted into the AST to capture the 

syntactic details from the source code. In the program, every node exhibits a construct that 

occurs in it. In chapter of background, it is well explained that we have the root representing 

the entire source file and its children as a top priority of each file i.e., the imports, class 

statements, etc. Every tree node has its own AST type for labelling, such as Block, while, if, 

for, declaration, as well as AST name i.e., the class and method name.  

The CFGs can be developed by operating the ASTs i.e., the designed control nodes such as 

while, if, try or for, are considered to develop a primary CFG. Then the unstructured control 

nodes, including the break, continue, or go-to, are considered to complete its build-up.  

After this, PDG is developed from the CFG. The PDG contains similar nodes as that of CFG 

however they are interacted by 2 ways, i.e., the control flow and the data dependence. So, it 

can be said that the PDG is a merge of CDG and DDG. The CDG is calculated from the CFG 

by using a control dependence assessment, calculating the most powerful post dominator for 

the various circumstances within the CFG. The computation of DDG is performed by taking 

the data flow analysis, usually by reaching the definitions, by which the defuse pairs can be 

developed, which are comprised of the edges in DDG.  

Finally, all the information about the three representations is stored into a unique 

representation CPG through the AST nodes of declaration and expressions as explained in the 

section data representation in the background chapter. Hence, we get every file code 
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represented as the CPG, “the graph of graphs”. Usually, its nodes mainly match the AST 

nodes however the edges represent the AST edges and both CFG and PDG edges. The nodes 

and edges of CPG are taken as complex tokens having preserved structural, dependency as 

well as contextual in-formation and utilize these graphs as the DGCNN inputs. 

 

4.3.2.2 Parsing source code for changes 

For change-level defect prediction, the objective is to represent the code change by a suitable 

representation as code property graph and extract meaningful features that will be fed to the 

deep learning algorithm for learning the typology of bugs that occurred in previous commits. 

Since the syntax information of change data is often incomplete, building AST, CFG, and 

PDG for these changes directly from code is challenging. Therefore, the learning is carried 

out with sub-graphs of code property graphs that represent the code change, to take into 

account the structural and semantic information characterizing only the potential buggy 

changes and clean ones. To do this, we follow the same parsing process as for file-level and 

represent each file that introduced changes as a code property graph. Then, we extract the 

code property sub-graph from the code property graph, which represents only the code 

changes, instead the complete code of the file that introduced changes. To do this, we select 

only the nodes which are made from changed lines and all their direct neighbours as well as 

all the corresponding edges. Figure 17 represents the code property graph to the 

corresponding sample code in file1.java. The sample code is the same example given in 

chapter 1. It is about an implementation of a simple functionality in a human resources 

context whose purpose is to compute the salary increase percentage. As explained in chapter 

1, this example makes a dead assignment, and this weakness could be an indication of a 

significant logic error in the program or an indication of poor quality. In Figure 17, the nodes 

of the sub-graph are coloured in red. The nodes in dark red represent the code change while 

the nodes in light red represent the direct neighbours. The code property sub-graphs are 

constructed by following the steps below: 1) we identify firstly all the lines that have been 

changed. For each file that represents the last version of the files before introducing changes, 

we annotate all the modified or deleted lines corresponding to their changed lines by adding a 

comment with a specific format: « //[Unique-Identifier]_T » with T = {M (modified), D 

(deleted)}. Figure 18 depicts a sample of code change that introduces a bug. As we can see in 
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file2.java in Figure 18, line 5 was modified by adding the variable raise to fix the logic bug 

described above. Thus, we annotate the line 5 in Figure 18,   by adding the specific comment 

and the variable T takes the value M to indicate that this line has been modified. 2) In the 

second step, we need to store whether the nodes representing the CPG of each file is making 

from a changed line or not. Therefore, we assign the type T affected to the changed line to its 

corresponding node in CPG. Taking the example of the code sample in Figure 17, the node 

corresponding to the print () function is assigned by the character M which is given as an 

annotation in the corresponding line 5. 3) Finally, we select only the nodes having the type M 

or D and all their direct neighbours as well as all the corresponding edges to extract the code 

property sub-graph that represents only the code change of the file.  

 

 
 

 

 

Figure 17: A motivating example. The variable increase corresponds to the difference between the 
new salary and the old salary. The raise percentage which is defined by the variable raise is computed 
in line 4 in both file1.java and file2.java.   
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Figure 18: The identification of change introducing bugs. The unique identifier is to separate the 
original comment from the specific one in the file introducing bugs, and the characters M and D 
represent the modified line and deleted line respectively. 

 

4.3.2.3 Encoding token graphs  

The numerical graphs are required by the DGCNN as input therefore the generated token 

graphs are not forwarded to the DGCNN directly. A token vector is used to represent the 

vertex label in CPG. Because it’s not just a simple token as it comprises of intricate 

information, representing in instruction that may include several parts such as the name of 

instruction or different operands. Moreover, every instruction can be observed in the form of 

types of functions of instruction.  

To use the DGCNN for generating complex features, it is essential to construct a map among 

the integers and the token, followed by the encoding of token graphs in the integer graphs by 

using a well-known method, known as Word2Vec [21]. Every token is linked with an 

exclusive integer identifier. By this, similar tokens are kept by one identifier and the various 

tokens are kept under different method names and class names. Furthermore, the input vectors 

are required by the DGCNN to maintain an equal length. As there is a possibility of different 

lengths of our converted integer vectors, we add 0 to every integer vector to equalize all the 

lengths and to maintain a consistent length as the longest vector. There is no impact of adding 

0 because the range of encoding takes starts from 1 to the total types of tokens.  

Furthermore, the infrequent tokens are usually not considered because they are developed for 

files/changes, not for every file/change. Therefore, only those tokens are encoded that are 

present in three or more than three numbers, while 0 is assigned for others. 

Note that in this work, we perform the same token mapping process for both file-level and 

change-level defect prediction. However, the token vectors that represent the nodes and edges 

of token graphs for file-level are those from code property graphs while for change-level are 

those which represent the code property sub-graphs. 
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4.3.2.4 Employing Deep Graph Convolutional Neural 

Networks DGCNN   

In this step, we employ the DGCNN to generate automatically the features and construct the 

predictive model by taking as input the code property graph representing each file or the code 

property sub-graph representing the commit. 

 

4.3.2.5 Building Classifiers and Performing Defect 

Prediction  

 

The process mentioned above, permits to generate the semantic features automatically such as 

the intra-procedures dependencies for every file/change in training data as well as the test 

data. The classifier can be built and trained by using their features as well as their labels i.e., 

defective or clean, and then the test data is used to analyse this classifiers’ performance. 

 

Note that k-fold cross-validation is extensively used validation method by researchers. The 

process of cross-validation is as follows: 1) Divide the dataset into 10 folders randomly; 2) 

use 9 partitions as training set and one partition as test set; 3) repeat the process by changing 

the test set until all data have a predicted label; 4) performing the evaluation by comparing the 

predicted labels and the real labels of the data.   

 

However, according to these papers [48], [204], the k-fold cross-validation has two issues in 

practice, and especially, for change-level defect prediction. Changes C1-C7 are committed 

following a certain order in time, where C1 is firstly committed and C7 is the most recently 

committed. Dots represent the buggy changes, and circles represent clean changes. The 

narrows link each bug-fixing changes to its corresponding bug-introducing changes (buggy 

changes). For example, C7 fixes the bug in C6, therefore C6 is buggy.  
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Figure 19: Demonstrating the issues arising from the use of cross-validation method to change-level 
defect prediction 

 
  

The first problem of the method is that it may use future data to make the prediction. For 

example, in some iterations, the k-fold cross validation can use C2-C7 to predict whether C1 

is buggy or not, which cannot represent a practical case as the prediction is made just after the 

C1 is committed, C2-C7 do not exist yet.  

Then, cross-validation can introduce biased dataset. For example, C3 will be labelled buggy 

change following the Figure 19. However, in practice, when we will predict whether C4 is 

buggy or not at time t predict, we will have only the information of that moment t predict. 

Therefore, C3 should be labelled clean as C5 is not available yet at that time. So, it is not 

relevant to consider C3 as buggy when we predict C4 at time t predict because we won’t know 

that C3 is buggy at time t predict.  

 

To conclude, the k-fold cross validation may make the evaluation inaccurate as it regularly 

incorporates nontrivial bias for assessing defect prediction models. Besides, it could also 

make the evaluation incorrect for change-level defect prediction as the changes respect a 

certain order in time and the k-fold cross validation method can use data from future 

knowledge which must not be recognized at the time of prediction.  

 

To conclude, we do not apply the k-fold cross validation in our work to avoid the validation 

problem described above. For file-level defect prediction, we evaluate our proposed DGCNN-

based features and other existing traditional features by building prediction models with data 



93 

from different historical releases, while for change-level defect prediction, we gather training 

and test data according to the time order as explained later in section 4.4.2.2 to construct and 

assess the prediction models.   

 

4.4 Experiments and results 

 

In this section, we evaluate the effectiveness of our proposed semantic and structural features 

based on graphs for both file-level and change-level defect prediction and compare it with the 

state-of-the-art-methods. The experimental environment for the generating features is an 

Intel(R) Core (TM) i5-M540 CPU @2.53 GHz with 8.0 GB RAM laptop running Windows 

8.1 (64Bits). And the experimental environment for the deep learning execution is an Intel® 

Xeon® E3-1220v5 1CPU (4C/4T) with @3GHz 32GB RAM and GeForce GT 710 1GB GPU 

running Linux CentOS 7 (64 Bits). Initially, we present the different scenarios that our 

experiment takes. Then, we detail the used standard datasets and the experiment setup. After 

this the baseline techniques are presented and the evaluation criteria for used performance are 

described. Then, we evaluate the impact of the tuned parameters of DGCNN on the 

performance of our proposed technique for file-level defect prediction. Finally, research 

questions (RQ) are proposed and answered. 

 

4.4.1 Research scenarios  

Our evaluation experiments are performed under four different prediction scenarios to 

compare and explore the effectiveness of our proposed approach with traditional existing 

methods. The following Table lists the investigating different scenarios which are presented 

in the form of four research questions. All the investigated questions have the following 

format. 

RQi (1 ≤ i ≤ 4): Do DGCNN-based semantic and dependency features extracted from code 

property graph outperform traditional semantic features at the <level> <setting> under both 

the non-effort aware and effort-aware evaluation scenarios. 
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For example, RQ1 is investigated to evaluate the performance of the proposed approach 

DGCNN-based features extracted from CPG at the file-level within-project under both the 

non-effort aware and effort-aware evaluation scenarios.  

 

  Setting 

  Within-project Cross-project 

Level 
File-level RQ1 RQ2 

Change-level RQ3 RQ4 

 

4.4.2  Dataset 

 

In this section, we list the different datasets used for assessing the method’s performance 

‘applying DGCNN on code property graphs’ for file-level and change-level defect prediction. 

Specifically, for file-level defect prediction, the datasets are achieved from the publicly 

accessible data from PROMISE repository which are widely used by researchers to assess 

file-level defect prediction models [10], [40], [41], [194], [196]. For change-level defect 

prediction, we have selected only four java projects from six existing widely used datasets for 

evaluating change-level defect prediction tasks [9], [48], [197] as our proposed approach is 

limited to Java language.  

The major justification for using these widely used datasets for the assessment of defect 

prediction models for both file-level and change-level defect prediction is that permit us a 

direct comparison between our approach and the existing models of defect prediction on the 

same datasets; and thus, a process-safe evaluation is obtained. 

 

4.4.2.1  Dataset for file-level defect prediction 

We select all the open-source Java projects from the publicly accessible data PROMISE 

collected by Jureczko an Madeyski [33] for the evaluation of our experiments for file-level 

defect prediction. These evaluation projects released different versions from the repository. A 

huge domain of applications is covered in these projects, including XML parser, enterprise 

integration, text search engine library, and text editor. Dataset also consists of the version 

numbers, files class name, and well as their defective labels. The project’ different versions 
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can be extracted from GitHub if it is available or from their official websites and can be 

applied in our framework. For each project, we need the number versions that constitute the 

source code archive from which we extract token graphs from the code property graphs of the 

archive data to feed our DGCNN-based generation features. In total, we gathered 10 Java 

projects. The Table 5 indicates each detail of this project, such as the project’s description, 

number of files, versions, and an average defective rate for each file. The average number of 

files range from 122 to 815. The buggy rate has at least 9.4% and as highest as 62.9% value. 

The major justification for using these datasets is that they have been widely used in previous 

file-level deep learning-based defect prediction studies [205], [206]. Therefore, it permits a 

direct comparison between our approach and the existing models of defect prediction on the 

same datasets and thus a process-safe evaluation is obtained. 

The second dataset used for file-level defect prediction task includes some GitHub projects2. 

These projects are named large-size datasets. Table 6 shows details of each project in GitHub 

repository in terms of description, version, average number of files and average defective rate. 

The versions of GitHub projects are represented by the day when their corresponding defect 

data is gathered. Finally, other Java projects are applied in our experiments. The projects 

DrJava, Genoviz, Jmri, Jmol, and Jppf are collected from a dataset introduced by Shippey et 

al. in their proposed approach ESEM in the paper [207]. Table 7 defines each project. 

 

 

Table 5:  Details of the evaluated projects for file level defect prediction from Promise Repository 

Project Description  Versions Average # 

Source 

Files  

Average 

Buggy Rate 

(%) 

LUCENE Java based build tool  2.0, 2.2, 2.4 488 13.4 

LOG4J Logging library for Java 1.0, 1.1 122 29.1 

IVY Dependency management library 1.4, 2.0 296.5 9.4 

JEDIT Text editor designed for programmers 3.2, 4.0, 4.1 297 27.4 

CAMEL Enterprise integration framework 1.2, 1.4, 1.6 815 22.5 

SYNAPSE Data transport adapters 1.0, 1.1, 1.2 211.7 25.5 

ANT Java based build tool 1.5, 1.6, 1.7 463.7 21.0 

XERCES XML parser 1.2, 1.3 446.5 15.7 

XALAN A library for transforming XML files 2.4, 2.5 763 32.6 

POI Java library to access Microsoft format files 1.5, 2.5, 3.0 354.7 62.9 

 
 
 
 
 
 

 
2  http://www.inf.u-szeged.hu/~ferenc/papers/GitHubBugDataSet/ 
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Table 6:  Details of the evaluated projects from GitHub repository 

Project Description Versions 

Average 

Source 

Files 

Average 

Buggy 

Rate (%) 

BROADLEAFCOMMERCE Entreprise eCommerce Framework 2013-09→2014-10 2114 8.19 

ELASTICSEARCH Distributed RESTfu search engine 2013-08→2014-02 4664 19.15 

HAZELCAST 
Highly scalable data distribution 

platform 
2013-11→2014-11 1710 10.00 

NETTY 
Event-driven asynchronous 

network application framework 
2013-02→2014-02 1136 18.57 

ORIENTDB Multi model database system 2013-06→2014-06 1635 9.68 

 

 
Table 7: Details of the evaluated projects from shippey [207] 

Project Website Versions 

Average 

Source 

Files 

Average 

Buggy 

Rate 

(%) 

DrJava 

 

http://drjava.org/ 

 

2008→2009 814 20.4 

Genoviz https://sourceforge.net/projects/genoviz/ 6.0→6.1 704 32.4 

Jmri 

 

http://jmri.sourceforge.net/ 

 

2.4→2.6 2241 23.3 

Jmol 
http://jmol.sourceforge.net/ 

 
6.0→7.0 291 43.7 

JPPF 
http://jppf.org/ 

 
5.0→5.1 1621 15.4 

 
 

4.4.2.2 Dataset for change-level defect prediction 

We selected four Java open-source: Jackrabbit, Lucene, Jdt (from Eclipse), and Eclipse 

platform among six widely used projects for evaluating change-level defect prediction tasks. 

These projects have enough change histories to construct and evaluate change-level predictive 

models and are frequently used in the literature. We rely on the SZZ algorithm (described in 

the background section) to label the bug-fixing changes of these projects.  

Table 8 shows the details about these evaluated projects in terms of LOC and the number of 

changes. The LOC of the files and their corresponding number of changes include only Java 

code source. We focus only on classifying source code changes in the change-level defect 

prediction setting. Our DGCNN-based features generation is not applicable on other 

http://jmri.sourceforge.net/
http://jmol.sourceforge.net/


97 

languages. Thus, we cannot select the two remaining evaluated projects to perform our 

experiments as their source codes are written in C language.  

 

Table 8: Selected Java open-source Projects for change-level defect prediction. LOC is the number of 
lines of code. First Date is the date of the first commit of a project. Last Date is the date of the last 
commit of a project. Changes are the number of changes. 

Projet LOC First Date Last Date 
Change

s 

Average Buggy rate 

(%) 

JDT 1.5M 
2001/06/0

5 

2012/07/2

4 
73K 20.5 

Lucene 828K 
2010/03/1

7 

2013/01/1

6 
76K 23.6 

Jackrabbit 589K 
2004/09/1

3 

2013/01/1

4 
61K 37.4 

Platform  2001/20 2007/12 64K 25 

 

The data used for change-level defect prediction are often imbalanced, i.e. the training dataset 

contains fewer buggy instances than clean instances [9], [95], [208], [209]. As it is shown in 

the Table 8, the average ratio does not exceed 37.4 percent. The imbalanced data can 

introduce noise/bias and lead to a poor prediction performance [48]. The imbalance data issue 

is an open question that should be investigated by researchers and remains our future work. 

However, in this thesis, we only follow the same settings as Tan and Wang’ paper (i.e. we 

apply the online change classification process instead of time sensitive change classification) 

[48]. The online change classification process allows us to overcome the issues of the k-fold 

cross-validation method described above and to have a fair comparison in our evaluation 

experiments. 

To classify a change that is committed at time tpredict i.e., the change that represents the test set, 

time sensitive change classification uses the changes committed before that time as training 

set to build models. However, this method has three limits. Firstly, the training set can 

introduce noise data, meaning that many changes can be mislabelled. For example, in the 

Figure 19, C3 is labelled as clean at the time prediction tpredict while it is buggy in practice. 

The labelling of C3 depends on the information that we have at time tpredict, and currently C5 

that fix the bugs in C3 does not exist yet. Typically, bugs take years to be discovered and 

fixed [210]–[212]. Therefore, many buggy changes in the training set, and especially those are 

committed close to the time prediction will be mislabelled as they would not have been 

discovered and fixed yet.  Secondly, the prediction performance of time sensitive change 
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classification relies on the training set, meaning that the training set picked up from a time 

period may do not represent the changes from other period of time. Finally, the changes 

considered in the test set may be different from those of the training set in terms of 

development characteristics such as programming style, developer experience, etc. especially 

when they are committed over a long duration. So, this can make difficult to construct more 

accurate prediction models as the training set may be too old compared to the test set.  

To address the three limitations, Tan et al [48] proposed a new approach called online change 

classification. This approach leaves a gap between the training set and the test set which 

allows a more balanced training set and let to have more time for buggy changes to be found 

and fixed. In this way, as it shown in Figure 20, each project has several runs. Each run is 

composed of a training set, test set and a gap between the two sets. The gap is based on the 

setting values present in the Tan et al. ‘paper [48].  The gap’ values are between 0.2 year and 

1.0 year. By using this method, the prediction is applied on multiple test sets; to avoid being 

dependent on a particular test set. Besides, the training set is constantly updated with new data 

when starting a new prediction. For each run, the data following the training set is added to 

the training set in the previous run. So, the training set and the test are more susceptible to 

have similar characteristics for building more accurate prediction models. The result is 

therefore the average performance of these runs.  

Figure 20 depicts an execution of two runs adopted in the paper [48]. The second run 

combines the data included in the training set in the first run and the data from time T2 to T3 

to construct the training set for the second run (i.e., the training set in the second run is 

constituted of changes from T1 to T3).  We followed the Tan et al. ‘paper in the time settings. 

Indeed, the duration of the update-time (i.e., T2 to T3) is the same as the duration of each test 

set. The gap is from T3 to T5 in the second run. The test set in the second run is composed of 

the most recent changes from T5 to T6. The recent time prediction is T6; therefore, the 

labelling of the changes that constitute the new training set depends on the information 

available at time T6. 
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Figure 20: Example of runs 

4.4.2.3 Baseline methods  

Baselines for evaluating file-level defect prediction 

To assess the performance of semantic and dependency features for file-level defect 

prediction, we camper the semantic and dependency features with traditional semantic 

features based on AST. It is interested to set a comparison with approaches based on CFG 

such as the approach proposed in the paper [27]  but a comparison cannot be made for this as 

it targets to design a method for identifying the defective source code implemented in C 

language. Regarding the features based on software metrics, we do not compare the extracted 

features with these because they have been compared already in previous studies [12], [26], 

[68]. In these studies, thorough deep learning used to learn the defect predicting features 

automatically outperforms software metrics. Finally, we just established a comparison of our 

method with the given baseline methods: 

• DBN [12]]: The state-of-art technique depending on the AST nodes that applies 

the DBN i.e. the Deep Belief Network on source code to capture the semantic 

features to predict the defects.  

• DP-CNN [26]: a structure that develops the semantic and structural features 

automatically by using source code and combines the traditional metrics for a 

precise software defective prediction. 

• TCA+: is proposed by Nam et al [41]. It is considered one of the state-of-the-art 

methods in cross-project defect prediction. The core objective of this method is to 

reduce the data distribution between the target project and the available candidate 

source projects.  
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• Node2defect: is proposed by Qu et al. [130]. It uses network embedding technique 

to automatically learn structural features and the machine learning Random Forest 

to predict defects. 

• MPT-embedding: it is a deep learning method which represents the code by AST 

from multiple perspectives and apply the CNN to construct the defect prediction 

model [132].  

• Seml: It is a framework that combines word embedding and deep learning LSTM 

for predicting defects [213]. 

 

Baselines for evaluating change-level defect prediction 

The performance of semantic and structural features based on graphs proposed for change-

level defect prediction; is evaluated by comparing it with the given baseline methods:  

 

▪ DBN-based features [179]: This method tokenize code changes by considering 
different combinations among the three different types of tokens (added, deleted, and 
context) and then perform the DBN algorithm.  
 

▪ CBS+ [214]: a simple supervised predictive model that leverages the idea of both the 
supervised model (EALR) [10] and the unsupervised model (LT).  
 

 

4.4.2.4 Performance evaluation criteria 

To analyze the precision of the predictive models, we used the non-effort-aware and the 

effort-aware analysing metrics. 

 

Metrics for Non-effort-aware Evaluation 

In the case of non-effort-aware, three performance metrics were used that are commonly 

adopted by previous studies to analyze the models of defect prediction [10], [39], [41], [48], 

[103], [205], [215]. These measures include recall, precision, and F1 score, and are described 

as follow:  

 

Precision depicts the ratio of accurately predicted defected files to all the files predicted 

as defective. It can be calculated as:  
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         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = true positivetrue positive+false positive              (1) 

 
 

Recall presents the ratio of accurately predicted defected files to all of the true defected 

files. It can be calculated as:  

 

                                     𝑅𝑒𝑐𝑎𝑙𝑙 = true positivetrue positive+false negative                  (2)        

 
  

F-measure calculates the weighted harmonic average of the precision and recall. It can be 

computed as 

 

                                 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2∗Precision∗RecallPrecision+Recall                                (3) 

 

In these equations the true positive number exhibits the total amount of defected files (or 

changes), which are defected truly, whereas the false positive exhibit the amount of predicted 

defected files (or changes) that was clean. The false negative represents the amount of 

predictive non-defected files (or changes) while they were defective in real. The two measures 

recall, and precision may be incomplete to compare defect prediction models. For example, if 

all the files (or changes) are predicted as defective then a high recall will be obtained as 1 

with low precision; or if the predicted instances have higher confidence values as defective 

instances than a higher precision score is obtained with low recall. Thus, to overcome these 

issues, a trade-off can be seen among the metrics precision and recall by computing the F1 

measure. F1 score is considered as a complex measure of the precision and recall, to measure 

the performance of defect prediction. Hence the greater F1 measure the better will be the 

prediction performance. 

 

Metrics for Effort-aware Evaluation 

Under the effort-aware scenario, we use the PofB20 metric [9] for identifying the accurate 

percentage of defects observed by monitoring the first 20% lines of code. Hence, the 

monitored lines of code and total discovered defects are collected until the inspection of 20% 

lines code is completed for every instance of test data. In the end, the total percentage of 

identified defects is referred to as the PofB20 score. Usually, a higher level of this score is a 
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good sign, indicating the approach performance to be analysed. Hence the developer can 

detect the bugs by just inspecting the few numbers of source codes. 

 

4.4.2.5 Parameter Settings for Training a DGCNN 

Like several deep learning algorithms [173], [216], [217], DGCNN requires well-tuned 

parameters for an effective training, i.e. 1) the number of hidden layers, 2) the number of 

nodes in each hidden layer, and 3) the number of iterations (i.e. epochs).  In this section, we 

evaluate the impact of these parameters on the performance of the proposed defect prediction 

model.  

 

Setting parameters for file-level defect prediction 

To tune these parameters, we conduct experiments by varying the values of the three 

parameters on five different projects: camel (1.2, 1.4), ant (1.5, 1.6), jEdit (4.0, 4.1), poi (1.5, 

2.5), and lucene (2.0, 2.2). For each project, we train and build the DGCNN defect prediction 

model, with respect to the specific values of the parameters, by using the older version of the 

project as training set and the newer version as test set. Finally, we compute the average F1 

score of the five projects for file-level defect prediction to study the impact of the three 

parameters on the performance of the proposed approach.  

 

Setting the number of hidden layers and the number of nodes in each hidden layer. 

We tune the number of hidden layers and the number of nodes in each hidden layer together 

as they interact with each other. In the experiment, we set the number of hidden layers to 7 

discrete values that include 2, 3, 5 10, 20, 50, and 100. For the number of nodes in each 

hidden layer, we set 7 discrete values which are 16, 32, 64, 128, 256, and 512. The number of 

iterations (or number of epochs) takes the value 50 and remains constant during the evaluation 

of these two parameters.  

 

Figure 21 shows the average F1 score when tuning the two parameters together for file-level 

defect prediction. By fixing the number of nodes in each hidden layer and by varying the 

number of hidden layers, all the average F1scores form a convex curve. Most curves reach a 
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peak at the point where the number of hidden layers takes the value 3. When the number of 

hidden layers remains fixed while varying the number of nodes in each layer, the best values 

of F1 scores are reached when the number of nodes in each layer is 32 (the best values are 

represented by the top line in Figure 21). Therefore, we select the number of hidden layers as 

3 and the number of nodes in each layer as 32. 

 

 

Figure 21 : File-defect prediction performance with different number of hidden layers and number of 
nodes in each hidden layer 

 

Setting the number of epochs.  

The number of epochs is considered as an important parameter for constructing an effective 

DGCNN. This parameter is related to the number of rounds of optimization that are applied 

during training to adjust the weights and reduce the error rate. Generally, the more the number 

of epochs is increased, the more the error rate decreases. However, too many epochs may 

cause an over-fitting and a slow training time. Therefore, it is necessary to make a 

compromise between the number of epochs and the execution time cost. We select the same 

projects to carry out the experiments to tune the number of epochs for file-level defect 

prediction. We set the number of epochs to 10 discrete values including 1, 10, 20, 50, 100, 

200, 300, 500, 1000, and 5000. We evaluate this parameter by using the error rate. Figure 22 

shows that when we increase the number of epochs, the error rate decreases slowly while the 

time cost raises exponentially. In this study, we set the number of epochs to 200 when the 

error rate takes the value 0.16 and the time cost is equal to 40.4 seconds 

 



104 

 

Figure 22: Average error rates and time cost when tuning the number of epochs 

 

 

Setting parameters for change-level defect prediction 

Note that for change-level defect prediction, we perform the same parameter tuning process 

and then we select the best parameter values as the file-level defect prediction. The selected 

parameter values are 200 for the number of epochs, 32 for the number of nodes in each layer 

and 3 hidden layers. 

4.4.2.6 Experiment setup for file-level Within-Project 

defect Prediction 

 

We performed numerous experiments to analyze our approach’s performance in file-level 

within-project defect prediction and comparing it with already existing methods. We have 

developed models for defect prediction according to the standard process of defect prediction 

mentioned in the approach part. To analyze the precision of developed defect prediction 

models, the test data is utilized.   

As per the state-of-the-art [32], [133], we use the following files; having 2 successive versions 

for each project described in Table 5, the oldest one is used as a training set, and the newest 

one as a test. The number of epochs is another significant feature for developing the defect 

predicting classifier. We set the epoch numbers to 200 just to have a trade-off among the cost 

of time and the iteration numbers. As explained in the previous sub-section, we acquire a 

suitable performance during the prediction classifiers learning stage. In the end, every 
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experiment was repeatedly conducted for 10 iterations and the means of results were given. In 

the end, every experiment was repeatedly conducted for 10 iterations and the means of results 

were given.  

4.4.2.7 Experiment setup for file-level Cross-Project 

defect Prediction 

Developing precise prediction models for the new projects is a challenging task because the 

new projects don’t possess sufficient data for training. To sort out this issue, the approach of 

cross- project defect prediction is used by the literature.  

The objective of cross-project methods is to train the predictive models by utilizing the data 

of existing projects, known as source projects. After this, the trained models are used for 

predicting the defects in new projects, known as target projects. Yet it’s challenging to 

provide a precise cross-project defect prediction because the source and the target projects 

don’t possess similar characteristics and the features possess various distributions [40]. 

One just wonders if it’s possible to use our proposed method, based on the CPG in cross-

project defect prediction to identify the patterns of defects that suggest if the trained features 

from a project can be used to predict a new project.  

To our belief, the proposed semantic features can be used in cross-project however it is better 

to confirm its efficiency. So, the performance is evaluated for these features such as syntax, 

data, and control flow of cross-project defect prediction, by using the training data from 

source project, leading to develop model for defect prediction on target project.  

We selected the DBN_CP [32] and TCA+ [41] as baselines and compared them with our 

method from the perspective of the cross-project. DBN_CP is a technique proposed by Wang 

et al. [32] to measure the performance of the semantic features in cross-project defect 

prediction; and TCA+ is considered one of the state of the art methods in cross-project defect 

prediction [41]. The generation process of the test pairs is described as follows: we select each 

version from one project as a target project and all the other versions from the other projects 

as a source project. For example, we take ANT 1.5 as a target project. We select all the 

versions from other projects to predict ANT 1.5 except the versions from the project ANT. In 

total, 606 pairs are composed. 
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4.4.2.8 Experiment setup for Change-level Within-

Project defect Prediction 

For each project listed in Table 8, we used the training data to construct the predictive model 

based on semantic and structural features and apply it to the test data to analyze the accuracy 

of the built model. As explained in the section dataset for change-level defect prediction, the 

change-level data are always imbalanced which led to a poor prediction performance. To 

overcome this issue, we used the online change classification process. In this way, we 

generated the semantic and dependency features and constructed the defect prediction model 

by using the training set, for each run of a project listed in Table 8. Then, we evaluated the 

performance of the model on the test data in this run. The global performance is measured by 

the average performance of all the runs. 

 
 

4.4.2.9 Experiment setup for Change-level Cross-

Project defect Prediction 

To develop just-in-time defect prediction models (or change-level defect prediction) for the 

projects which are in their initial development, and they have not enough training data, the 

state-of-the-art proposes change-level cross projects. The objective of cross-project methods 

is to train the predictive models by utilizing the data of existing projects, known as source 

projects. After this, the trained models are used for predicting the defects in new projects, 

known as target projects. 

To this end, we proposed the approach code property graph-based features for change-level 

cross-project defect prediction. Specifically, for each project, we select the test dataset in all 

runs as a target project and we use the training dataset in all runs from the other projects as a 

source project to constitute the test pairs in the change-level cross-project. An example of a 

test pair can be as follows: A test dataset from Run 1 of Project A and the training dataset 

from both run 1 and run 2 of project B, etc. In total, 1120 test pairs are constituted.  

To evaluate our proposed approach CPG based features, we selected the DBN_CCP [32] and 

CBS+ [214] as baselines and compared them with our method from the perspective of the 

cross-project. 
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4.4.3  Results and analysis 

In this section, we present the results of our experiments. Particularly the evaluation of 

efficiency of the CPG-based features proposed for file-level defect prediction and change-

level defect prediction under different evaluation scenarios; by setting a comparison of the 

proposed approach with the state-of-the-art method and by answering the following given 

research question (RQ). 

 
 

4.4.3.1 RQ1: Do code property graph-based features 

learned from DGCNN outperform traditional features for 

file-level within-project defect prediction? 

 

Non-effort-aware evaluation 

A file-level within-project defect prediction models based on DGCNN is built to answer to 

this question and then the purpose of six sets of features was compared, i.e., the semantic 

features containing the data and control flow, which are learned automatically by DGCNN, 

DBN, DP-CNN, Seml, node2defect, and MPT embedding. The two baselines feature DBN, 

and DP-CNN are based on the AST, and the baseline Mt embedding is based on AST from 

multiple perspectives to extract structural and semantic features. The baseline Seml extracts 

the features from the code based on word embedding from AST while the baseline 

node2defect used network measures to extract code properties. The main reason to compare 

these is to verify the efficiency of deep learning methods depending on graphs, especially the 

graphs of code property in the defect predicting software. During our research, 16 sets of 

experiments were conducted for the defect predictions on those given in Table 1, and in each 

of the two versions were used from a similar project. As we have mentioned that the older 

versions are used for training the predictive models and the latest versions are used for 

evaluating the trained models as test sets. The results are displayed in Table 9  indicating the 

F-measure of the file-level within-project defect predicting experiments. The maximum F1 in 

all the six sets of features is exhibited in bold.  
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By considering the example of synapse project, after using synapse 1.1 as the training set, and 

using synapse 1.2 as the test set, the F1 of defect prediction is 87.9%, while the F1 is only 

56.3%, 55.6%, 51.5%, 55.46, and 67.2% from the baselines DBN, DP-CNN, Seml, MPT-

embedding, and node2defect, respectively. Moreover, it can be observed in Table 9 that 

mostly out CPG based approaches get the maximum F measures, indicating that the CPG-

based DGCNN is valuable in defect predicting field.  

For comparing this, we observed that the only difference is in the learning of features, i.e., the 

similar parameters and the similar training, as well as test sets, was used. But the various 

classifying algorithms are used to apply, and various techniques of code representation have 

been used. 

Overall, our CPG-based features acquire an F1 of 75.6%, whereas the F1 of 65.57% has been 

achieved by the node2defect features, and an F1 of 62.08% has been acquired by MPT-

embedding feature. Regarding the other baselines, we have an F1 of 61.5, 60.8%, and 58.83% 

have been reached by DBN features, DP-CNN features, and Seml, respectively. All these 

outcomes demonstrated that automatically learned CPG- based semantic features involving 

data and the control flow; and the detailed learning algorithm DGCNN can improve the defect 

prediction F1 by almost 14%, 14.8%, 16.77%, 13.52%, and 10.0% as compared to DBN, the 

DP-CNN, Seml, the MPT-embedding, and node2defect, respectively. 

We conducted extra experiments on GitHub projects to extensively evaluate our approach on 

different size of projects. These projects are used to evaluate the effect of Seml approach 

[213]. Table 10 shows the F1 values obtained by our approach and Seml with the GitHub 

projects. As it is shown in the Table 10, our approach outperforms significantly Seml on all 

projects in term of F1 score. On average, our approach achieves an F1 score of 77.68% which 

is 45.16% higher than the one of Seml approach. Finally, we carried out a third experiment in 

which we compare our approach with the baseline Node2defect on other Java projects. Table 

11 details the experiment results obtained in our experiment. We can observe that our 

approach exceeds considerably the approach node2defect on every Java project in term of F1 

score. Therefore, our approach reaches an F1 of 78.76% while the Node2defect has an F1 of 

65.56%. So, it improves the Node2defect by 13.2%. 
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Table 9: a comparison among F1 scores of the developed CPG- based features and the baselines of 
traditional features (DBN and DP-CNN, Seml, MPT-embedding, and Node2vec) is set for the defect 
prediction within-project. The F1 is calculated in percent and the highest scores of F1 are presented in 

Project 
Versions 

(Tr→T) 

CPG-

DGCNN 

F1 

DBN 

F1[10] 

DP-

CNN         

F1 

Seml 

MPT-

embeddin

g 

Node2defect 

ANT 
1.5→1.6 

1.6→1.7 
78.2 92.8 N/A N/A 59.7 61.5 

CAMEL 
1.2→1.4 

1.4→1.6 
79.0 57.8 50.8 48.95 48.35 53.5 

JEDIT 
3.2→4.0 

4.0→4.1 
80.1 59.4 58.0 59.95 63.76 59.6 

LOG4J 1.0→1.1 82.1 70.1 N/A 68.5 74.6 N/A 

LUCENE 
2.0→2.2 

2.2→2.4 
60.1 71.2 76.1 68.05 76.54 80 

XALAN  2.4→2.5 49.7 59.5 69.6 59.4 56.51 76.7 

XERCES 1.2→1.3 80.2 41.1 37.4 35.4 31.51 N/A 

IVY 1.4→2.0 86.5 35.0 N/A N/A N/A 40 

SYNAPSE 
1.0→1.1 

1.1→1.2 
87.9 56.3 55.6 51.5 55.46 67.2 

POI 
1.5→2.5 

2.5→3.0 
72.2 72.1 78.4 78.9 83.34 86.1 

Average 
 

75.6 

 

61.5 

 

60.8 58.83 62.08 65.57 

  

Table 10: F1 scores obtained by our approach and the baseline Seml approach in GitHub projects  

Project 
Versions 

(Tr→T) 
Our approach Seml 

BROADLEAFCOM

MERCE 
2013-09→2014-10 88.4 23.7 

ELASTICSEARCH 2013-08→2014-02 58.8 38.3 

HAZELCAST 2013-11→2014-11 79.6 36.5 

NETTY 2013-02→2014-02 77.3 31.2 

ORIENTDB 2013-06→2014-06 84.3 32.9 

Average 77.68 32.5 

 

Table 11: F1 scores obtained by our approach and the baseline Node2defect  

Project 
Versions 

(Tr→T) 
Our approach Node2defect 

DrJava 2013-09→2014-10 81.9 66.5 

Genoviz 2013-08→2014-02 73.5 68.2 

Jmri 2013-11→2014-11 84.9 74.6 

Jmol 2013-02→2014-02 75.7 60 

JPPF 2013-06→2014-06 77.8 58.5 

Average 78.76 65.56 
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Effort-aware evaluation 

In this type of evaluation, a new experiment was conducted on the same dataset and 16 pairs 

of defect prediction were rerun within the project as presented in Table 12, by computing the 

metric PofB20. This leads to the analysis of the first 20% lines of code.  

As mentioned earlier, the PofB20 indicates the identified number of defects by monitoring the 

first 20% lines of code standardized to the number of defects in the dataset of the project. In 

Table 12, the PofB20 values of the defect predicting models for file-level within-project are 

displayed with the CPG-based features. Our CPG-based features are compared with the 

featured based on DBN, or CNN. In Table 12, the improvement has been on an average of 

18.8% points.  

Our code property graph-based features automatically learned from DGCNN enhance the 

performance of file-level within project defect prediction models under both non-effort-aware 

and effort-aware evaluation.  

 

 
Table 12: the PofB20 values of both CPG-based features and the features based on baseline DBN are 
displayed for file-level within-project defect prediction. The highest PofB20 scores are presented in 
bold. 

Project 
Versions 

(Tr à T) 

CPG-DGCNN 

F1 

DBN 

F1[10] 

ANT 
1.5 à 1.6 
1.6 à 1.7 

18.9 
59.5 

44.3 

50.2 

CAMEL 
1.2 à 1.4 
1.4 à 1.6 

49.4 
26.1 

33.2 
30.1 

JEDIT 
3.2 à 4.0 
4.0 à 4.1 

75.5 
60.8 

40.1 
32.6 

LOG4J 1.0 à 1.1 60.0 25.0 

LUCENE 
2.0 à 2.2 
2.2 à 2.4 

58.4 
75.1 

32.1 
37.9 

XALAN  2.4 à 2.5 14.8 24.5 

XERCES 1.2 à 1.3 17.3 09.1 

IVY 1.4 à 2.0 15.0 28.3 

SYNAPSE 
1.0 à 1.1 
1.1 à 1.2 

67.3 
76.1 

29.6 
32.5 

POI 
1.5 à 2.5 
2.5 à 3.0 

80.9 

58.8 

38.7 
25.5 

Average 
 
50.9 

 
32.1 
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4.4.3.2 RQ2: Do code property graph-based features 

learned from DGCNN outperform traditional features for 

file-level cross-project defect prediction? 

Non-effort-aware evaluation 

This question is specifically answered to validate the efficiency of our approach for the file-

level cross-project defect prediction. Our techniques were compared with two state-of-the-art 

software cross-DP models as F1 on the standard datasets i.e. the DBN-CP [32] and TCA+ 

[41]. DBN-CP develops the semantic features, whereas the TCA+ is a model based on metric, 

using the PROMISE features.  

To conduct an un-biased comparison, a similar approach as that of Wang [32]  was applied to 

conduct the experiment on CPDP. As described in section 4.4.2.6, to considerably examine 

the performance of our DGCNN-based features extracted from CPG, we select the training 

project from all projects for each target project. This means that for each version from one 

project, we use all the versions from other projects for training to form all test pairs in the 

cross project. This experiment involves 606 test pairs.  

The results of the average F1 scores of our approach CPG-based features and the baseline 

DBN are displayed in Table 13. Our approach delivers better performance than DBN in 

almost all projects (9 out of 10), with an improvement of the F1 score of 13.8%. This outcome 

demonstrates that our proposed approach improves the baseline DBN significantly on file-

level cross-project defect prediction. 

 

Effort-aware evaluation 

During this evaluation, we conduct the same experiment as Wang [32]  to calculate PofB20 

on CPDP for our proposed approach. Table 14 presents the scores of PofB20 for the cross-

project DP. For every target project, we applied the other whole source project in the form of 

a training set and computed the PofB20, hence almost 606 runs were performed. 
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Table 13: F1 scores of our CPG-based features are compared with the baselines DBN-CP of file-level 
cross-project for all projects. Where the F1 is calculated in percent and the highest F1 scores are 
presented in bold 

Source Target 
CPG-DGCNN 

F1 

DBN 

F1[10] 

All Others 

ANT 69 .77 57.3 

CAMEL 61.08 46.1 

JEDIT 79.04 49.7 

LOG4J 61.2 56.2 

LUCENE 48.7 43.9 

XALAN  59.65 46.2 

XERCES 76.55 39 .7 

IVY 70.41 41.4 

SYNAPSE 61.07 50.2 

POI 45.29 63.2 

Average 
 

63.28 

 

49.39 

 

As presented in Table 14 the scores of PofB20 range from 29.3 to 57.8 % across the 

experiments.  

During the comparison of cross-project CPG based features with the features based on DBN-

CP; we concluded that our approach achieved a better PofB20 in every experiment. This 

improvement depicts an average of 16% points. 

Table 14: presents PofB20 values for CPG based features and the features based on DBN-baseline for 
the cross-project DP. The maximum PofB20 score is indicated in bold. 

Source Target 
CPG-DGCNN 

F1 

DBN 

F1[10] 

All Others 

ANT 57.8 28.3 

CAMEL 29.3 32.7 

JEDIT 55.2 23.2 

LOG4J 45.3 28.6 

LUCENE 55.1 30.5 

XALAN  44.8 37.6 

XERCES 41.7 29.1 

IVY 52.2 26.5 

SYNAPSE 36.0 21.8 

POI 38.0 36.7 

Average 
 

45.5 

 
29.5 
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Our code property graph-based features automatically learned from DGCNN enhance the 

performance of file-level cross-project defect prediction models under both non-effort-aware 

and effort-aware evaluation. Therefore, our approach is able to capture common 

characteristics of defects including syntax, semantics, and intra-procedural dependencies 

across projects.   

 

4.4.3.3 RQ3: What is the improvement made by the 

code property graph? 

To respond to this question, we performed an ablation study to explore the contribution 

introduced by CPG. Therefore, we conducted different experiments and used separately 

different combinations to train the neural network as follows: we removed the PDG, and we 

carried out experiment with only AST and CFG. Then, we also removed the CFG and 

performed experiment with only AST. For each experiment, we check the prediction results. 

Table 15 shows the effect of code property graph. Taking as example the project Synapse, 

when using only AST to represent the code, an F1 score of 74.6 is reached. By combining 

AST with CFG, an F1 score of 83.9 is achieved. Thus, more types of defects are covered. By 

further integrating the three code graphs, an F1 score of 87.9 is attained. So, more different 

types of defective patterns are detected. 

 

The ablation study carried out confirms our idea of having a rich graph to better predict bugs. 

Indeed, the poorer the graph is in structural and semantic information, the poorer the quality 

of the prediction. Therefore, this study demonstrates the great impact of code property graphs 

to improve the prediction results and detect different types of defective patterns. 

 

Table 15: F1 score of three different experiments: AST based features, AST+CFG based features and 
AST+CFG+PDG based features 

Project 
Versions 

(Tr→T) 

AST 

F1 

Ast+CFG 

F1 

AST+CFG+PDG 

ANT 
1.5→1.6 

1.6→1.7 
67.7 70.8 

78.2 

CAMEL 
1.2→1.4 

1.4→1.6 
70.2 73.7 

79 

JEDIT 
3.2→4.0 

4.0→4.1 
59.4 66.5 

80.1 
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LOG4J 1.0→1.1 64.53 58.7 82.1 

LUCENE 
2.0→2.2 

2.2→2.4 
54.6 55.1 

60.1 

XALAN  2.4→2.5 42.78 46.84 49.7 

XERCES 1.2→1.3 59.9 67.2 80.2 

IVY 1.4→2.0 60.9 66.96 86.5 

SYNAPSE 
1.0→1.1 

1.1→1.2 
74.6 83.9 

87.9 

POI 
1.5→2.5 

2.5→3.0 
68.7 70.1 

72.2 

Average 
 

62.33 

 

65.98 

 

75.6 

 

4.4.3.4 RQ4: Do code property graph-based features 

learned from DGCNN outperform traditional features for 

change-level within-project defect prediction? 

Non-effort-aware evaluation 

To address this question and validate the effectiveness of our proposed structural and 

semantic features based on graphs, we need to compare it with the baseline methods. As 

explained in the experiment setup, we apply the same settings as Wang‟ paper experiment to 

collect multiple runs and make the training set more balanced [23]. 

Then, for each project, we use the training data from each run to train and construct the 

DGCNN based predictive model and evaluate it on the test data in this run. Finally, we 

indicate the overall performance by computing the average of these runs. As the code source 

of both baselines is not available, we take the values from their experiment results provided in 

their papers and we consider only Java datasets. Thus, we compare our approach with DBN 

and CBS+ on the available Java datasets (Jackrabbit, Lucene and JDT) and (JDT and 

Plateform) respectively; and pick the available values of DBN and CBS+.  

Table 16 shows the F1 results of both. It can be observed that our CPG- based features 

outperform significantly all the baseline methods in each project, indicating that deep 

semantic and structural features learning based on DGCNN is valuable in defect prediction on 

change-level within-project. It can improve DBN based change features on average of 20.86 

percentage points and CBS+ on average of 34.1 percentage points. 
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Table 16: F1 scores of our approach are compared with the baseline methods for change-level defect 
prediction where the F1 is calculated in percent and the highest F1 scores are presented in bold.  

Project Approach F1 score 

Jackrabbit 
DBN 49.9 

CPG-based 74.55 

Lucene 
DBN 39.7 

CPG-based 61.55 

JDT 

CBS+ 32.9 

DBN 41.4 

CPG-based 57.48 

Platform 
CBS+ 35.1 

CPG-based 78.72 

Average (Jackrabbit, 

Lucene, JDT) 

DBN 43.66 

CPG-based 64.52 

Average (JDT 

Platform) 

CBS+ 34 

CPG-based 68.1 

 

 

Effort-aware evaluation 

We further conducted a new experiment for change-level within-project defect prediction by 

computing the PofB20 metric. In Table 17, the PofB20 values of the defect prediction models 

related to code change are displayed with the CPG-based features as well as with the baseline 

DBN-based features. The PofB20 score varies from 33 to 49 percentage points. Compared to 

DBN, our approach achieves an improvement on average of 11.8 percentage points. 

 

Our code property graph-based features automatically learned from DGCNN enhance the 

performance of change-level within project defect prediction models under both non-effort-

aware and effort-aware evaluation.  
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Table 17: PofB20 values of our approach are compared with the baseline methods for change-level 
within-project defect prediction where the PofB20 are calculated in percent and the highest PofB20 
scores are presented in bold. 

Project 

CPG-based 

features 

F1 

DBN-based 
features 
F1 

Lucene 33.3 28.1 

Jackrabbit 33 27.9 

JDT 49 23.8 

Average 38.4 26.6 

4.4.3.5 RQ5: Do code property graph-based features 

learned from DGCNN outperform traditional features for 

change-level cross-project defect prediction? 

Non-Effort-aware evaluation 

We answer this question to validate the efficiency of our approach for change-level cross-

project defect prediction. We compare our technique with the baselines DBN-CPP  [32] and 

CBS+ [214]. To conduct an un-biased comparison, a similar approach as that of Wang [32] 

was applied and which is also similar to the CBS+.  Therefore, we select the data of the 

training set of one run from a source project and the test set of one run from a different project 

to prepare the trial pairs. For example, to build a prediction model to the target project 

Jackrabbit, we select the training set from the source projects Lucene and JDT. 

During this evaluation, we compute the PofB20 metric on change-level cross-project defect 

prediction for our proposed approach as well as the DBN-CPP. 

 

Table 18: F1 scores of our CPG-based features DBN-based features for change-level cross-project 
defect prediction. The F1 metrics are calculated in percent. 

Source 

Project 

Target 

Project 

CPG-based 

features 

F1 

DBN-based 
features 
F1 

All projects 

Jackrabbit 72.69 44.4 

Lucene 63.84 31.3 

JDT 70.94 33.3 

Average 69.15 36.3 
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Table 19: F1 scores of our CPG-based features and traditional features CBS+ for change-level cross-
project defect prediction. The F1 metrics are calculated in percent. 

Source 
Project 

Target 
Project 

CPG-based 
features 

F1 

CBS+-based 
features 
F1 

All 
projects 

JDT 70.94 30.8 

Platform 73.05 33.3 

Average 71.99 32.05 

 

Table 18 presents the average F1 scores of the CPG based features with those of DBN-CCP on 

three projects. The higher score of F1 among them is displayed in bold.  The results show that 

our approach significantly improves the average of F1 by 32.85 percentage points for three 

projects. Moreover, we provide comparison results of CPG-based features and CBS+ for 

change-level cross-validation in Table 19. Compared to CBS+ on two projects, our approach 

achieves a better F1 score on average of 39.94 percentage points. 

 

Effort-aware evaluation 

Table 20 presents the scores of PofB20 for the change-level cross-project DP. For every target 

project, we applied the other whole source project as a training set and computed the PofB20. 

As presented in Table 20, the scores of PofB20 range from 39.6 to 43.7 % across the 

experiments. During the comparison of cross-project CPG based features with the features 

based on DBN-CP; we concluded that our approach achieved a better PofB20 in every 

experiment. This improvement depicts an average of 20.7 points. 

 

Our code property graph-based features automatically learned from DGCNN enhance the 

performance of cross-project defect prediction models under both non-effort-aware and effort-

aware evaluation. Therefore, our approach is able to capture common characteristics of 

defects including syntax, semantics, and intra-procedural dependencies within code changes 

across projects.   
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Table 20: PofB20 scores our CPG-based features for change-level cross-project defect prediction. The 
PofB20 metrics are calculated in percent. The best values are in bold. 

Source 
Project 

Target 
Project 

CPG-based 
features 

 

DBN-based 
features 

 

,All 
projects 

Jackrabbit 42.0 19.3 

Lucene 39.6 18.1 

JDT 43.7 25.6 

Average 41.7 21 

 

4.4.3.6 Time cost of the deep learning approach based 

on code property graph 

This question leads to the study of the efficiency of our approach which is an important 

indicator to assess whether the approach is good enough.  

We measure therefore the time taken for file-level DGCNN-based features generation process 

described in the sections 4.3.2.4 and 4.3.2.5.  Moreover, we keep track of the time cost for 

tuning the DGCNN parameters in our experiments. The other operations, involving parsing 

source code, merging into code property graphs, mapping token graphs and predicting 

defects, are all common operations, so we do not examine their costs. 

As mentioned in section 4.4.2.5, we tune the three parameters (the number of nodes in each 

layer, the number of hidden layers, and the number of iterations) for training the DGCNN. To 

identify the best combination among the three parameters, we performed 6*7*10 experiments. 

Thus, the time cost of the tuning process is about 33 hours.  

Table 21 presents our method‟ time cost on the ten datasets for generating features process. 

By considering the example of the two experiments performed on the two sets of the project 

Lucene which is lucene 2.0 →2.2 and lucene 2.2→ 2.4, the calculated average execution time 

is of value 120 seconds.  

For every project, the execution time automatically developed features based on DGCNN lies 

in the range of 26 sec (jedit) to the 417 sec (xalan). 
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Table 21: Time cost of generating features involving the semantics and the intra-procedural 
dependencies of the source code 

Project Generating features process 

Time (s) 

LUCENE 120 

LOG4J 45 

IVY 132  

JEDIT 26 

CAMEL 242  

SYNAPSE  78,5  

ANT 116  

XERCES 257 

XALAN 417  

POI 172 

Average 160.5 

 

Moreover, we monitor the time cost for generating features for change-level defect prediction. 

Contrary to file-level defect prediction, changes always have fewer lines than source files. 

Thus, the time cost for changes is smaller than those for files. The average time of our 

experiments performed for change-level is about 26.6 seconds. 

 

Our CPG based features learned automatically from the DGCNN is applicable in practice 

4.4.4 Threats to validity 

4.4.4.1 Internal validity 

Threats to internal validity involve potential errors that may have occurred in the code 

implementation of our proposed approach and study settings. Hence, to develop the semantic 

feature with the dependency information, we must present the source code within the data 

structure known as CPG involving the AST, PDG, and CFG. As the original implementation 

of CPG is not released, so we have implemented a new CPG version. Though we have 

followed the methods given in previous studies [22], yet the newly developed CPG version 

may not reflect each detail of the actual CPG. 

Therefore, we have consulted with the writer of PROGEX3 by email; about the basic details 

of implementation and this was the beginning of our framework implementation. We are 

 
3 https://github.com/ghaffarian/progex   
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confident that the CPG implementation is quite close to the original CPG, because the 

PROGEX includes the basic features which were useful for us to implement the merge of 

graphs. Moreover we don’t possess the basic source code to copy the technique of Wang et al. 

[12], Jian et al.[26], and Huang [115] therefore we have allowed ourselves to consider the 

results they gave in their papers. For change-level defect prediction, we have followed the 

same experiment settings just as it is applied in [32] in carrying out a comparison with our 

approach and we have realized a supplementary comparison by retrieving the results of [115]. 

Furthermore, we have relied on the results of the SZZ algorithm for labelling data. SZZ is the 

most widely used algorithm and available in literature. It is known that this technique may 

introduce intrinsic imprecisions [218]. Thus, the mislabelled data may affect the accuracy of 

our results. To mitigate this threat, we use Google java format4 to ensure that any source code 

differences considered are based on unified format rules. 

 
 

4.4.4.2 External validity 

The external validity indicates the normalization of our research outcomes. In this study, we 

conducted our experiments only on java open source projects among 38 projects, initially 

collected by Jureczko and Madeyski [33] witch are very used by almost papers that deal with 

file-level SDP studies [12], [26], [133]. This can influence the generalizability of our results 

as these datasets do not represent all the software projects. So, our approach could produce 

better or weaker performance for other projects that are not applied in the experiments. To 

mitigate this threat, we select projects that vary considerably in their domains, complexity, 

popularity, sized and average defects rate. Yet, as the performance of our approach is 

considered as un-known in projects composed in any other language, further studies are 

required to make our proposed approach more common in the future; by performing more 

experiments on a variety of projects whether propriety software or commercial one written in 

other languages for example PHP, C++, and Python.  

In the context of cross-project analysis, the pairwise do not mimic any strategy to select the 

training dataset from the available projects (i.e., select only the projects which have same 

characteristics as the target project whose data are insufficient). We mitigate this threat by 

 
4 https://github.com/google/google-java-format   
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forming all the possible test pairs from the available projects in the experiments for cross 

project to extensively analyze the performance of our approach.  

 

4.4.4.3 Construct validity 

In terms of the construct validity regarding suitability of evaluation criteria for performance, a 

standard measure of performance is used for predicting the defects, commonly used in 

previous studies [219]–[221], including the PD, precision, PF, precision, Balance, F1 

measure, MCC, G-measure, AUC, G-mean1, G-mean2 and G-measure. We used only three 

performance measures in our experiments that are precision, recall, and the F1 measure. All of 

these measures cannot be used and in-fact these measures have not been used in any studies to 

analyze the SDP classifier. So, it may lead to any threats for constructing the validity. 

Furthermore, we admit that the statistical significance for our results can be verified by using 

several statistical analyses [222] and we have planned this for the future.    

4.5 Conclusion 

This chapter proposes an end-to-end deep learning algorithm to learn meaningful features 

involving syntactic and semantic information as well as intra-procedural dependencies. 

Typically, we employ DGCNN to automatically learn the features from token graphs 

extracted from the program files or code changes to construct a predictive classifier of a high 

quality. The key insight underlying the representation of the code by the code property graph 

is to provide a suitable and robust representation exploring deeply the program files/code 

changes and express patterns linked to different types of bugs. Then, the designing features 

are fed to the DGCNN to build the defect prediction model.  

We conduct evaluations on ten open-source projects for program files from the dataset 

Promise; and four open-source projects for codes changes. Both of them is performed under 

two different scenarios: non-effort-aware and effort-aware evaluation scenarios. The 

experiment results of program files proved that our approach significantly improves the 

existing works on average of 14.04 in F1 in the task of within-project defect prediction. 

Besides, it improves the cross-defect prediction techniques TCA+ on average of 10.68 in F1. 

Also, our approach can outperform traditional features un-der the effort-aware evaluation 

context.  
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Concerning the experiment results related to the code changes, the experiment values proved 

that our approach significantly improves the existing work DBN-based features and CBS+ on 

average of 20.86 and 34.1 in F1, respectively in the task of within-project defect prediction. 

Besides, it improves the cross-defect prediction technique DBN-CPP and CBS+ on average of 

32.85 and 39.95 respectively in F1. Also, our approach can outperform it under the effort-

aware evaluation context. 

In the future, we would like to extend our work and generate expressive features that include 

the semantics and the dependencies among program entities within multiple methods at other 

levels, such as module level and package level. In addition, it would also be interesting to 

generalize the performance of our framework proposed in this manuscript to open-source 

projects written in different languages, such as Python, C/C++, etc., and confirm its efficiency 

by performing statistical tests such as (Wilcoxon signed-rank test and Cliff's Delat Effect Size 

analysis). To be able to apply the statistics, we plan to implement the baselines considered in 

our experiments as their source codes are not available. Finally, we would like to address the 

CPDP challenges by proposing a strategy to select relevant training projects that have similar 

characteristics as the target project (this is the subject of the next chapter).  



123 

Fifth CHAPTER 

 

5 A source project selection 

framework for cross-project 

defect prediction  

 

This chapter presents our proposed three-phase methodology to select relevant source projects 

that have same characteristics as the target project to conduct the cross-project prediction task 

and improve its performance. In the first phase, we computed high-level similarity by 

performing a pair-wise qualification matching of the project ‘model. The qualification model 

of the project characterized the project in terms of organizational, reliability, etc. In the 

second phase, we computed the low-level similarity between projects by matching graphs 

representing the structural and semantic information of both source and target project. Finally, 

in the third phase, we performed our selection by considering both high- and low-level 

similarities. In the rest of this chapter, we present the motivation for the building of the 

framework to automatically choose source projects in section 1. We describe the 

implementation details of our framework in section 2. The experiment settings are presented 

in section 3. The experimental results are discussed in section 4 followed by the outline of the 

threads for validity in section 5. Finally, we conclude and propose perspectives to our work in 

section 6.  

 

5.1 Motivation 

Recently, several studies have proposed prediction methods to construct the prediction model 

based on a given training set. Later, they applied the prediction model to predict on a given 
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test set. To achieve a prediction of high quality, most of the research work requires meeting 

two assumptions: 1) the training set and the test set should be from the same project as they 

have similar data distribution; 2) there is enough historical data to be able to learn different 

defective patterns and construct an effective prediction model. Therefore, the prediction 

cannot work well on a new project or a project that has insufficient data. To resolve this issue, 

a promising solution, called cross-project defect-prediction is proposed in the literature. This 

method allows training the prediction model by using a training set from other projects (i.e., 

source projects) with enough historical data, and apply this model to predict the project 

lacking data (i.e., target project). The main challenges of CPDP reside primarily in the 

difference of data distribution between the source and target projects  [16], [41]. For example, 

a new project may involve several bugs in large-sized modules, while a stable project may 

have more bugs in small-sized modules following modifications made to update functions.   

From the state-of-the-art analysis, we derived two main conclusions in the field of cross-

project: 1) the metrics fail to extract meaningful properties linked to defective patterns from 

the code, and 2) selecting carefully valuable source projects which have similar data 

distribution as the target project, instead of considering all the projects, could improve 

considerably the prediction quality of cross-project. 

Moreover, as reported in the previous chapter, deep learning algorithms based on structural 

and semantic features have identified successfully defected files and changes. The experiment 

results have shown that our proposed approach has improved the F1 score measurement 

compared to other traditional methods under both within-project defect prediction and cross-

project defect prediction setting. 

Based on the above, we propose a novel framework of project selection by computing the 

similarities between project instances and extracting knowledge from the source projects. The 

similarity identification is established on the mismatch between the low-level details reflected 

in the structural and semantic information as along with the dependencies of the code and the 

high-level purpose reflected in the qualification and description of these source projects. This 

setting can help us to automatically detect closely related source projects for a given project. 

The key idea behind this framework can be briefly summarized as follows:  

  

- To the best of our knowledge, we are the first to propose a novel approach to select 

suitable application via structural and semantic information hidden in the code and 
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global knowledge of the applications. This approach performs a graph-matching 

representing structural and semantic aspect of the code to keep relevant instances in 

the source projects. These selected instances can effectively predict the target project 

and identify diverse types of bugs as they involve similar defective patterns as the 

target project.  

- To confirm the effectiveness of our framework in selecting similar source projects, we 

performed an experiment on 10 large-scale Java project from Promise and evaluated 

our approach by comparing it with previously succeeded CPDP baselines and our 

approach without making any selection of source projects beforehand.  

 

5.2 The proposed approach 

 

 

Figure 23: Framework of source projects selection for cross-project defect prediction 

 

In this section, we introduce the overall architecture of our proposed framework. Then, we 

describe the details of its components.   
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5.2.1 Overall architecture 

Figure 23 illustrates the overall process of the selection source project which operates in three 

steps: 1) computing the high-level similarity, 2) computing the low-level similarity, and 3) 

selecting the three best candidates. 

 

Phase-I: Computing high-level similarity: Initially, we have a collection of candidate 

source project as input of our approach. First, we use a qualification model based on metrics 

to assess all the candidate source software systems and evaluate their states related to different 

dimensions. For the target project, we use the same qualification model to characterize it. 

Then, to compute the similarity between a pair of source and target projects, we use the 

Euclidian distance. The details are showed in Section 5.2.1.1.  

 

Phase-II: Computing low-level similarity: In this phase, we compute the similarity between 

a pair of source and target project using source code. In the source project, each class is 

represented by the code property graph to consider simultaneously structural and semantic 

information as well as the dependencies in the code. In the target project, we extract the code 

property graph of each class as in the source projects. Then, we perform a pair-wise 

comparison between source project’s graphs and target project’s graphs by applying the graph 

edit distance.   

 

Phase-III: Selecting the best three source projects: The global similarity between a pair of 

each source and target project is obtained by a function defined as the weighted-sum of both 

high-level similarity and low-level similarity. We assign an important weight to the low-level 

similarity compared to the high-level similarity.  

 

5.2.1.1 Computing high-level similarity 

As mentioned before, the aim of this phase is to extract knowledge from source projects. We 

therefore used a qualification model based on the identification of the business, technical, data 

and organizational quality profiles. The high-level aspects/dimensions are described as 

follows: 
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• Business: represents the system value from the points of view of its direct and indirect 

users; where the direct and indirect users can be managers, end users, customers and 

so on.  

• Technical: evaluates the quality of the information systems architectures of the 

organization, the structure, performance, and interactions of the applications. 

• Data: describes the structure and interaction of the organization's sources of data, 

logical data assets and data management resources. 

• Technology: depicts the technology architecture layer of the organization. It represents 

the structure and interaction of the platform services and physical technology 

components. 

 

The identification of the characteristics and the related quality metrics describing the aspects 

are adopted from the software engineering process and the ISO 9126 standard [223]–[225]. 

Table 22 lists the characteristics and the related quality attributes used to assess them in each 

aspect.  

Table 22: The qualification model 

 

ASPECT FACTOR ATTRIBUTE 

   

  Time to market 
   

  Profitability 
 

Economic 
 

 

ROI   
   

  Maintenance Cost 
   

  Pourcetage of high specialized 

 Specialisation functions 
 

Pourcetage of generic functions   
   

  Pourcetage of business logic 

 
Understanding 

understanding 
 

Pourcetage of business logic   

BUSINESS  
prioritizing   

  Pourcetage of Business Func- 

  tion Coverage rate 

 Usage 
Usage frequency   

   

  User satisfaction 
   

  Technical maturity 
   

  Skill levels 
   

 Organizational Response to change 
   

  Training procedures 
   

  Transparency 
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  Modularity 
   

  Simplicity 
 

Flexibility 

 

 
Self-documentation   

   

  Lack  of  technical  documenta 

  tion 

  Average responsiveness 

APPLICATION Application   Perfor- 

 

Average availability   
 

mance 
 

 

Batch SLAs met   
   

 Reliability Software reliability 
   

  Correcteness 
   

 Maintenability Testability 
   

  Modularity 

   Expandability 
    

 Application Obso- 
SW obsolescence  

lescence 
 

   

 Application Intero- Layout appropriatness 
  

 perability  Degree of standadization 
   
    

   Data Consistency 
    

 Data Integrity  Data Security 
    

   Auditability 
    

   Data Accessibility 
    

DATA   Data Availability 
 

Data Usage 
  

  

Data Quality    
    

   Data dependance 
   

 Data Interoperability Data Commonality 
   

 Data Obsolescence DB Obsolescence 
    

 

 
Operational 
Performance  

 

Storage performance  
 

 

   

   OS obsolescence 

TECHNOLOGY Obsolescence 
  

 

Hardware obsolescence 
  

   
    

   Software System Independence 
 

Portability 
  

  

Machine Independence    
   

  

 

The metrics values are used for evaluating the attributes. Let Mi be a generic metric, Xi is the 

value assumed by Mi and X1, X2,...., Xn are the values of the metrics M1, M2,...., Mn related to 

the attribute At. All the values are in interval [0.2, 0.8]. In this work, the metric values are 

affected arbitrarily, instead of being identified by an expert. At is computed as the average of 

the corresponding metrics. The same formulas are used for aggregating the values of the 

attributes and evaluating the values of factors or characteristics.  
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Each source project as well as the target project is represented by a vector containing the 

values of the factors. To compute the similarity between the two qualifications models 

corresponding to a pair of source project and target project (Ai ; B), we used the Euclidian 

distance of their related vectors. Ai represents the source project i; with i ∈ [1...k], and k  is the 

number of source projects; and B is regarded as the target project. 

 

 

5.2.1.2 Computing low-level similarity 

The implementation details of this sub-section can be found in the following algorithm. 

  

Algorithm 1 Pseucode for the method of the computation of low-level similarity 

Input:  

The number of source projetcs  K 
The number of instances in th target project B  S’ 
The minimum number of instances in all source projects Ai M 
Output: 

Generate code property graphs of each instance in project B  G’ 
Generate code property graphs of each instance in each source project G 
For i from 1 to K do 

 For j from 1 to M do  

  For l from 1 to S’ do 

     Graph-edit-distance (Gj , G’l) 
  end for 

 end for 

average-edit-distance (Ai , B) 
end for 
 

 

Initially, we have the number of candidate source projects K, the number of instances or files 

S’ in the target project B, and the minimum number of files M in all candidate source 

projects. We choose the minimum number of files in all source projects to have a same 

number of files in all projects and consequently a fair comparison between each source 

project with the target project.    

For each instance (i.e., file) of each source project, we generated the code property graph G 

by merging the three representations AST, CFG and PDG as explained in the previous 

chapter. We do the same for the target project and extract the CPG G’ for each instance. 
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Then, to compute the similarity between each source project with the target project, we 

compared each source graph G in M with each graph G’ in S’ by using the common graph 

similarity called Graph Edit distance. Therefore, the similarity between each source project Ai 

in K and target project B is obtained by averaging the edit distance results.  

Applying a mapping between CPG of each source project with the target project enabled to 

compute the similarity by considering the structural and the semantics of the code. More 

details of the graph edit distance are available in the following sub-section.   

 

Graph Edit Distance. It is the base of inexact graph matching and is widely used by 

researchers to pattern recognition and analysis. It is a way of measuring the similarity 

between pairwise graphs by transforming a graph into another one by a finite sequence of 

graph edit operations. The edit operations may include edge insertion, node substitution, node 

deletion, etc.  A cost is given to each edit operations. The cost of edit operation sequence is 

the sum of costs given to all operations in the sequence.  The number of changes and its cost 

required for transforming a graph into another graph is not unique, but the minimum cost is 

retained. Thus, the graph edit distance between these two graphs corresponds to the least cost.      

5.2.1.3 Selecting the three best source projects 

In this phase, we measured the global similarity between each candidate source project and 

target project and select the best three candidates. For this, we assigned weights to both high 

and low similarities, but the low-level similarity value is given the greater weight. In this 

work, we gave 0.2 to the high-level similarity value and 0.8 to the low-level similarity value. 

5.3 Experiment setting 

In this section, we evaluated the performance of our candidate source project selection 

framework and compared it with the stat-of-the-art cross-project defect prediction baselines as 

along with our proposed file-level cross-defect prediction framework, but without any 

strategy for selecting the best candidate source projects. 

Initially, we present the standard datasets and then the experiment setup. After this the 

baseline approaches are described and the evaluation criteria for used performance are 

explained. 
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. 

5.3.1 Dataset  

Similarly to the file-level defect prediction, we evaluated our framework of source project 

selection using the defect datasets Promise repository collected by Jureczko an Madeyski 

[33], as listed in Table 5 in the sub-section 4.4.2. We have, therefore 10 open-source Java 

projects. Each project contains releases and in total we have 32 distinct releases. Each 

instance in respective project release corresponds to a Java class or Java file and one instance 

is represented as a graph, specifically, as a code property graph. Each file is linked to a label, 

i.e., clean, or defective. 

5.3.2 Experiment setup 

We performed the cross-project practical usage as described in previous studies [13], [100], 

[190], [226]. Specifically, for one cross-defect prediction execution, we considered one 

version from a project as a target project, and all versions of all other projects as the candidate 

source projects, except the release chosen for the target project.  

5.3.3 Baselines 

In this study, we evaluated our proposed cross-project framework including a source project 

selection strategy by comparing it with some succeeded CPDP approaches such as TCA+, 

TPTL, TDS, and our cross- project framework without any source project selection strategy. 

 

TDS. [189] performed distance-based strategies to select the best suitable training data based 

on distributional characteristics of the target data. They first use the EM algorithm to create 

meaningful clusters whose data characteristics are close to the target’s data. Then, they apply 

the Euclidean distance for determining the most similar candidates. TDS is considered as the 

most related work for source project selection. 

 

TCA+. This baseline is proposed by Nam et al. [41]. The core objective of this method is to 

reduce the data distribution between the target project and the available candidate source 

projects. Firstly, they proposed the basic TCA which normalize the both data of source 
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projects and target project by selecting one method among normalization methods such as 

min-max normalization or Z-score normalization, and then it learns a nonlinear function to 

apply it on the normalization data to map the source project and the target project into a latent 

space.   

 

TPTL. This baseline is proposed by Liu et al. [190]. The method two-phase transfer learning 

model selects two source projects whose data distribution are very similar to the target. The 

chosen projects are considered as he best projects as it is estimated that they have the highest 

performance in terms of F1 score and PofB20 indicators. After that, they leverage TCA + to 

construct two prediction models based on the two chosen projects and further improve the 

prediction performance by combining the two models.  

 

DBN-based CPDP. This method is proposed by Wang [32]. Different from standard CPDP 

baselines which rely on metrics to capture meaningful defective patterns from projects, this 

approach is based on semantic information provided by AST. However, they do not mimic 

any practical use case, without a strategy to select considerable projects from all projects; and 

perform the cross-project by taking all the combinations possible compound of the target 

project and all the available source projects.  

5.3.4 Evaluation criteria 

We adopted the same evaluation metrics used in the previous chapter that are the F1-score 

measure and the cost-effectiveness measure PofB20. Moreover, as explained in the previous 

chapter, these metrics are widely applied by the literature. We refer to the sub-section 4.4.2.4 

for more details.  

5.4 Result analysis 

In this section, we mainly investigate whether our proposed project selection framework is 

effective or not. We check the performance of our framework by comparing it with our file-

level cross defect prediction without any strategy for selecting the source projects. Also, we 

evaluate how much improvement can achieve over the baselines. As we have mentioned that 
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the target project (a version of a project) is used as test set while the versions of the selected 

projects are used for training the prediction model to the target project. 

Table 23 and Table 24 show the F1-score and the PofB20 of our CPDP with project selection 

versus our CPDP without any project selection strategy and 4 baselines.   

Table 23 indicates that our CPDP with project selection achieves a significant improvement 

over our CPDP without any project selection strategy and the other baseline models. As it is 

shown in the table, our method always obtains the best value of F1 score which range from 

63.66 to 85.94 through 42 datasets. Our approach outperforms our CDPD without project 

selection, DBN-based CPDP, TPTL, TCA+, and TDS by 11.08%, 24.97%, 26.94%, 27.63%, 

34.72%, respectively. We can notice that the structural and semantic aspects are important to 

take them into account in selecting useful defective patterns from either same project or 

external projects. Also, carefully selecting projects can ameliorate the results even the 

approaches are based on metrics. This can be clearly observed from the results since our 

method shows large improvement in comparison with the two baselines TCA+ and TDS 

which are based on metrics and slightly less with the method TPTL which relies on metrics 

but includes a strategy for selecting source projects.  

 

Table 23: F1-score comparison of our CPDP with project selection versus our CPDP without project 
selection and 4 baselines (DBN-based approach, TPTL, TCA+, and TDS) 

Target Selected projects  

DGCNN 

With 

project 
selection  

DGCNN  

without 
Selection 

DBN-

based  
approach 

TPTL TCA+ TDS 

ANT 

ANT_1,5 

IVY_1.4; XALAN_2.4; 

SYNAPS_1.2  

Xerces_1.2; 

LUCENE_2.2 

81.60 69,77 57,30 42,40 42.5 38,08 

ANT_1,6 

CAMEL_1.6; 

XALAN_2.4; JEDIT_3.2 

JEDIT_4.1; 

SYNAPSE_1.0 

ANT_1,7 

SYNAPSE_1.0; 

JEDIT_3.2; 

SYNAPSE_1.1; 

SYNAPSE_1.2; 
LUCENE_2.2 

SYNAPSE 
SYNAPSE_1,0 

LUCENE_2.4; IVY_1.4; 

LUCENE_2.0 
LOG4J_1.1; 

72.03 61,07 50,20 43,30 44,83 50,76 
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LOG4J_1.0 

SYNAPSE_1,1 

LUCENE_2.0; 

CAMEL_1.4; POI_1.5; 

LOG4J_1.1; 

LUCENE_2.2 

SYNAPSE_1,2 

LUCENE_2.2; POI_2.5; 

JEDIT_3.2; 

LOG4J_1.1; IVY_1.4 

CAMEL 

CAMEL_1,2 

ANT_1.7; 

SYNAPSE_1.0; IVY_1.4 

XALAN_2.4; 

LOG4J_1.0 

70.85 61,08 46,10 24,60 31,47 27,06 

CAMEL_1,4 

ANT_1.5; XALAN_2.4; 

POI_2.5;  

ANT_1.7; IVY_1.4 

CAMEL_1,6 

ANT_1.6; LOG4J_1.0; 

JEDIT_4.1;  

ANT_1.7; IVY_1.4 

IVY 
IVY_1,4 

ANT_1.7; JEDIT_3.2; 

XALAN_2.4; 

SYNAPSE_1.2; 

ANT_1.5 
77.93 70,41 41,40 41,56 43,00 31,56 

IVY_2,0 

LUCENE_2.2; 

LUCENE_2.4; 

SYNAPSE_1.1; 

JEDIT_3.2; JEDIT_4.1 

LOG4J LOG4J_1,0 

ANT_1.6; 

LUCENE_2.2; 

ANT_1.7; 
CAMEL_1.6;  

SYNAPSE_1.2 69.88 61,20 56,20 64,73 57,43 46,00 

LOG4J_1,1 

POI_1.5; CAMEL_1.4; 
SYNAPSE_1.0; 

SYNAPSE_1.2; 

CAMEL_1.6 

JEDIT 

JEDIT_3,2 

ANT_1.7; CAMEL_1.4; 
ANT_1.5; 

XALAN_2.4; ANT_1.6 

85,94 79,04 49,70 38,50 39,20 23,38 

JEDIT_4,0 

ANT_1.5; ANT_1.6; 
XALAN_2.4 

ANT_1.7; CAMEL_1.4 

JEDIT_4,1 

CAMEL_1.6; 
CAMEL_1.2; ANT_1.6; 

XALAN_2.4; ANT_1.5 

LUCENE 

LUCENE_2,0 

SYNAPSE_1.1; 
LOG4J_1.0; IVY_1.4;  

SYNAPSE_1.2; 

SYNAPSE_1.0 

63,66 48,70 43,90 64,36 59,70 60,76 



135 

LUCENE_2,4 

ANT_1.7; CAMEL_1.2; 

LOG4J_1.1 

LOG4J_1.0; POI_1.5 

POI 

POI_1,5 

SYNAPSE_1.1; 

ANT_1.7; CAMEL_1.4; 

LUCENE_2.0; 

LUCENE_2.4 

65,15 45,29 63,20 61,15 55,90 51,75 
POI_2,5 

JEDIT_3.2; 

SYNAPSE_1.1; 

SYNAPSE_1.0 
IVY_1.4; LOG4J_1.0 

POI_3,0 

CAMEL_1.4; 

LUCENE_2.2; 
SYNAPSE_1.0 

LOG4J_1.1; 

LUCENE_2.0 

XALAN 

XALAN_2,4 

CAMEL_1.4; ANT_1.5; 
ANT_1.7 

CAMEL_1.6; ANT_1.6 

72,05 59,65 46,20 51,60 49,47 44,62 

XALAN_2,5 

POI_3.0; POI_1.5; 
SYNAPSE_1.0; 

LUCENE_2.0; 

LOG4J_1.1 

XERCES 

XERCES_1,2 

LUCENE_2.4; 

JEDIT_4.1; ANT_1.5; 

CAMEL_1.6 

84,52 76,55 39,70 41,96 39,60 22,43 

XERCES_1,3 

ANT_1.5; ANT_1.6; 

JEDIT_4.1; 

CAMEL_1.6; 

XALAN_2.4 

Average 

  

74,36 63,28 49,39 47,42 46,73 39,64 

 

 

Our CPDP with project selection always shows the best cost-effectiveness in terms of PofB20 

in Table 24. The Table 24 shows the PofB20 scores which vary from 39.12 to 65.14 with an 

average of 54.16. The DGCNN based approach with project selection outperforms the 

DGCNN approach without project selection and the baselines DBN-based approach, TPTL, 

TCA+ by 8.62, 24.66, 34.5, and 34.96, respectively.  
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Table 24: PofB20 comparison of our CPDP with project selection versus our CPDP without project 
selection and 4 baselines (DBN-based approach, TPTL, TCA+, and TDS) 

Target Selected projects  

DGCNN  

with 

project 

Selection 

DGCNN 

Without  

selection  

DBN-

based  

approach 

TPTL TCA+ TDS 

ANT 

ANT_1,5 

IVY_1.4; XALAN_2.4; 

SYNAPS_1.2  

Xerces_1.2; 
LUCENE_2.2 

65,14 57,83 28.3  24.32 28.1 13.58 

ANT_1,6 

CAMEL_1.6; 

XALAN_2.4; 
JEDIT_3.2 

JEDIT_4.1; 

SYNAPSE_1.0 

ANT_1,7 

SYNAPSE_1.0; 

JEDIT_3.2; 

SYNAPSE_1.1; 

SYNAPSE_1.2; 

LUCENE_2.2 

SYNAPSE 

SYNAPSE_1,0 

LUCENE_2.4; 

IVY_1.4; LUCENE_2.0 

LOG4J_1.1; 

LOG4J_1.0 

44,23 36,01 21.8  23.83 19.2 22.73 

SYNAPSE_1,1 

LUCENE_2.0; 

CAMEL_1.4; 

POI_1.5; 
LOG4J_1.1; 

LUCENE_2.2 

SYNAPSE_1,2 

LUCENE_2.2; 

POI_2.5; JEDIT_3.2; 

LOG4J_1.1; IVY_1.4 

CAMEL 

CAMEL_1,2 

ANT_1.7; 

SYNAPSE_1.0; 

IVY_1.4 

XALAN_2.4; 

LOG4J_1.0 

39,12 29,34 32.7  21.77 14.8 9.8 

CAMEL_1,4 

ANT_1.5; 

XALAN_2.4; POI_2.5;  

ANT_1.7; IVY_1.4 

CAMEL_1,6 

ANT_1.6; LOG4J_1.0; 

JEDIT_4.1;  

ANT_1.7; IVY_1.4 

IVY IVY_1,4 

ANT_1.7; JEDIT_3.2; 
XALAN_2.4; 

SYNAPSE_1.2; 

ANT_1.5 58,30 52,19 26.5  14.76 20.1 11.5 

IVY_2,0 

LUCENE_2.2; 

LUCENE_2.4; 
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SYNAPSE_1.1; 

JEDIT_3.2; JEDIT_4.1 

LOG4J 
LOG4J_1,0 

ANT_1.6; 

LUCENE_2.2; 

ANT_1.7; 

CAMEL_1.6;  

SYNAPSE_1.2 
53,86 45,27 28.6  22.66 19.1 15.7 

LOG4J_1,1 

POI_1.5; 

CAMEL_1.4; 
SYNAPSE_1.0; 

SYNAPSE_1.2; 

CAMEL_1.6 

JEDIT 

JEDIT_3,2 

ANT_1.7; 

CAMEL_1.4; 

ANT_1.5; 

XALAN_2.4; ANT_1.6 

62,47 55,21 23.2  23.88 21.8 7.64 

JEDIT_4,0 

ANT_1.5; ANT_1.6; 

XALAN_2.4 

ANT_1.7; 

CAMEL_1.4 

JEDIT_4,1 

CAMEL_1.6; 

CAMEL_1.2; 

ANT_1.6; 

XALAN_2.4; ANT_1.5 

LUCENE 
LUCENE_2,0 

SYNAPSE_1.1; 
LOG4J_1.0; IVY_1.4;  

SYNAPSE_1.2; 

SYNAPSE_1.0 
67,62 55,13 30.5  20.96 15.6 6.26 

LUCENE_2,4 

ANT_1.7; 

CAMEL_1.2; 

LOG4J_1.1 

LOG4J_1.0; POI_1.5 

POI 

POI_1,5 

SYNAPSE_1.1; 

ANT_1.7; 

CAMEL_1.4; 

LUCENE_2.0; 

LUCENE_2.4 

48,62 37,99 36.7  13.55 14.92 6.12 

POI_2,5 

JEDIT_3.2; 

SYNAPSE_1.1; 

SYNAPSE_1.0 
IVY_1.4; LOG4J_1.0 

POI_3,0 

CAMEL_1.4; 

LUCENE_2.2; 

SYNAPSE_1.0 

LOG4J_1.1; 

LUCENE_2.0 

XALAN 

XALAN_2,4 

CAMEL_1.4; 

ANT_1.5; ANT_1.7 

CAMEL_1.6; 

ANT_1.6 

54,88 44,79 37.6  19.1 15.5 13.45 
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XALAN_2,5 

POI_3.0; POI_1.5; 

SYNAPSE_1.0; 

LUCENE_2.0; 

LOG4J_1.1 

XERCES 

XERCES_1,2 

LUCENE_2.4; 
JEDIT_4.1; ANT_1.5; 

CAMEL_1.6 

47,36 41,67 29.1  15.1 22.5 5.93 

XERCES_1,3 

ANT_1.5; ANT_1.6; 

JEDIT_4.1; 

CAMEL_1.6; 

XALAN_2.4 

Average 

  

54,16 45,54 29.5  19.99  19.2    

 

5.5 Threats to validity 

5.5.1 Internal validity 

Threats to internal validity refer to potential errors that may have occurred in the code 

implementation and the replication of code property graph algorithm and study settings. 

Hence, to select the best candidate source projects involving same structural and semantic 

defective patterns as the target project, we applied a graph matching based on the CPG 

representation to compute the low-level similarity between the concerned projects. As 

explained in the sub-section 4.4.4.1, the original implementation of CPG is not released, so 

we re-implemented a CPG version by ourselves by following the methods given in previous 

studies [22]. Nonetheless, the newly developed CPG version can have errors that we are 

unknown of. 

However, we have double checked with the writer of PROGEX5 by email that our CPG 

implementation involves the basic concepts. Moreover, we have taken into consideration the 

results of the baseline models from their related papers [32], [41], [189], [190]. Besides, to 

qualify the projects and compute the high-level similarity, we needed experts from related 

projects to assign values to the metrics. But, since we do not have these experts, we identified 

an interval ranging from 0.2 to 0.8 to fulfill the metric values arbitrarily. These could bias the 

results.  

 
5 https://github.com/ghaffarian/progex   
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5.5.2 External validity 

The external validity is related to the generalization of our research outcomes. In this 

research, we conducted our experiments only on Java open source projects from Promise 

repository collected by Jureczko and Madeyski [33], which were extensively used in previous 

CPDP studies. However, our approach performance could vary if we used different datasets 

from different repositories or closed projects. To mitigate this threat, we planned to examine 

our selection of project framework on varied datasets written on different languages besides 

Java language in future studies. Moreover, the graph matching algorithm can be the threat to 

validity. We selected graph edit distance as the graph matching algorithm to compute the low-

level similarity between a pair of source project and target project. However, the choice of 

graph matching algorithm can affect the performance of our proposed selection project 

approach. Therefore, our approach should be investigated by other graph matching 

algorithms. Another threat is the choice of baselines. We selected these baselines due to their 

superior performance compared to other CPDP approaches in latest studies or their broad 

usage as baselines in previous CPDP research. Thus, selecting these baselines can reflect the 

state-of-the-art of existing CPDP research.  

 

5.5.3 Construct validity 

In this study, we only considered the two commonly applied evaluation metrics, F1 score and 

PofB20, to analyze the performance of our approach.  

In future studies, we plan to use other performance indicators such as AUC, balance, etc. to 

evaluate our CPDP framework including project selection. Furthermore, other statistical 

performance indicators should be explored in all our experiments to better rank our approach 

as well as baselines.  
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Sixth CHAPTER 

6 Conclusion and perspectives  

 

6.1 Conclusion 

In the field of software defect prediction, the researchers aim to construct a prediction model 

of high quality. As a result, they attempt to provide advance knowledge of code and apply the 

best learning models based on the data extracted from the code. Consequently, many 

contributions have been made to ameliorate the code representation. Accordingly, deep 

learning models are becoming increasingly popular in improving current software defect 

prediction practices. In this dissertation, our research work ensures the continuity of these 

initiatives.  

 

In chapter 3, we saw that a considerable number of defect prediction studies draw on either 

handcrafted traditional metrics or either tree-based representation or graph-based 

representation to characterize the software program and extract useful features from it. 

However, all these traditional representations often fail to capture the intra-procedural 

dependencies into a program, and such a capability is required for constructing a more 

powerful classifier. Indeed, the accuracy of approaches is widely influenced by the quality of 

the input data no matter which data the deep learning model used. Contrary to the classic 

machine learning algorithms, one of the main advantages of deep learning model, specifically 

of the graph convolutional network is the lack of requirement for any handcrafted features. 

This algorithm can also perform the learning by automatically exploring graph-based features 

with complex structures. 

To bridge the gap between program’ dependencies and defect prediction features, we 

proposed in chapter 4 a framework that leverages graph based deep learning techniques to 

learn simultaneously semantic and syntactic representation including dependency information 
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automatically from source code, and further construct and train defect prediction classifiers 

based on these complex features. This framework is proposed for two levels, file-level, and 

change-level, under two settings, within-project, and cross-project. We evaluated the 

effectiveness of the graph based deep learning defect prediction approaches on open-source 

projects. Our experiment results confirm that the learned complex features including 

semantic, syntactic and dependency information can significantly outperform the current 

defect prediction models. In the case of cross project, we examined our framework by 

combining all the pairs of source projects and target projects. In fact, the pair-wise cross-

project predictions do not mimic any strategy to select the source training project from all 

source projects. However, as it was concluded in chapter 3, carefully selecting the candidate 

source projects instead of randomly choosing one or several source projects, can significantly 

ameliorate the quality of cross-project. 

Many approaches have been proposed to tackle the CPDP challenges. Their main aim is to 

alleviate the large data distribution between source projects and target project by proposing 

different strategies. However, all these strategies are based on traditional metrics, and none of 

them consider the semantics and the dependencies in the software program. Furthermore, 

none of them qualify the source projects in terms of various aspects such as organizational, 

technical, and functional aspects, etc.  

To solve this issue, we propose in chapter 5, a framework of source project selection which 

leverages a selection of best candidate source projects based on semantic and structural 

representation of code to detect meaningful defective patterns; and the external qualification 

of projects in terms of distinct aspects to extract a global knowledge of projects. Evaluations 

on open-source projects demonstrate that our defect prediction framework including a source 

project selection strategy can improve our defect prediction framework without any strategy 

for selecting source project and the existing defect cross-project approaches.   

6.2 Future Work 

The application of deep learning algorithms based on a solid code representation like the code 

property graph show promising results to improve the software defect prediction. Based on 

the findings published in this thesis, we have determined eventual directions for future 

research.  



143 

Further improvements and generalizing the proposed end-to-end deep learning framework 

based on code property graph is needed. As our proposed framework shows successful results 

in this thesis compared to the existing defect prediction frameworks, we aim to improve the 

code representation by considering inter-procedural dependencies in program (i.e., the 

dependencies between classes). This help to detect more complex bugs which are linked to 

inter-dependencies. Moreover, we aim to implement our framework on other     

Leveraging code property graph and deep learning method to tackle the automatic 

program challenges.  Previous research have proved that the use of deep learning with a 

powerful representation of code could solve several software analytics issues such as software 

defect prediction (the subject of this thesis), malware classification [152], [227], software 

traceability [153], test report classification [156], etc. Along this direction, we plan to explore 

the application of code property graph and deep learning on the problem of automatic 

program. The main objective of this research field is to automatically find a solution to 

software bugs without any human intervention. This topic has been investigated by many 

researchers over the years [228], [229]. But most of current methods cannot fix complex bugs 

[230]. The basic insight of this topic is that the open-source projects have thousands of bug-

fixing history records (i.e., patches). We can extract important knowledge from these patches, 

and then exploit them to automatically fix new bugs. Therefore, the application of deep 

learning could automatically explore the past efforts of developers and then help to fix similar 

bugs in a new project.   
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