
HAL Id: tel-03977604
https://theses.hal.science/tel-03977604v1

Submitted on 7 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A testing framework for executable domain-specific
languages

Faezeh Khorram

To cite this version:
Faezeh Khorram. A testing framework for executable domain-specific languages. Modeling and Simu-
lation. Ecole nationale supérieure Mines-Télécom Atlantique, 2022. English. �NNT : 2022IMTA0332�.
�tel-03977604�

https://theses.hal.science/tel-03977604v1
https://hal.archives-ouvertes.fr

Thèse de doctorat de

L’École Nationale Supérieure Mines-Télécom Atlan-
tique
Bretagne Pays de la Loire - IMT Atlantique

École Doctorale N°601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Faezeh KHORRAM

A Testing Framework for Executable Domain-
Specific Languages

Thèse présentée et soutenue à IMT Atlantique - Campus de Nantes, le 12
Decembre 2022
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)
Thèse N°2022IMTA0332

Rapporteurs avant soutenance :
Mme Anne ETIEN Professeur des universités, Université de Lille, France
M. Juergen DINGEL Professor, Queen’s University, Canada

Composition du Jury
Président : M. Antoine BEUGNARD Professeur, IMT Atlantique, France
Examinateurs : Mme Anne ETIEN Professeur des universités, Université de Lille, France

M. Juergen DINGEL Professor, Queen’s University, Canada
M. Benoit BAUDRY Professor, KTH Royal Institute of Technology, Sweden
M. Javier TROYA Associate Professor, Universidad de Málaga, Spain
M. Erwan BOUSSE Maître de conférences, Nantes Université, France

Directeur de thèse : M. Gerson SUNYE Maître de conférences HDR, Nantes Université, France
Co-encadrant de thèse : M. Jean-Marie MOTTU Maître de conférences, Nantes Université, France

i

Acknowledgments

This thesis reached its final milestone thanks to the support of many people. I
should start with my parents who did whatever they could to build the path for
their children’s growth, my family members who encouraged me along the way,
and my husband who gave me the strength and courage to tackle the challenges.
My sincere thanks to them.

I heartily appreciate Dr. Ali Pouyan and Dr.Raman Ramsin for recognizing my
potential a long time ago, educating me on how to think wider and deeper, and
motivating me to have higher goals for my life.

I would use this opportunity to express my special gratitude to my dear su-
pervisors Prof. Gerson Sunyé, Dr. Jean-Marie Mottu, and Dr. Erwan Bousse for
their constant support, guidance, and patience. I am also thankful to all NaoMod
members especially Dr. Massimo Tisi for the positive energy and motivation that
he speared into the team.

I was fortunate to be a Marie-Curie Early Stage Researcher in the Lowco-
mote European project which gave me many wonderful international opportunities.
Thanks to the Lowcomote, I had international collaborations one with JKU uni-
versity of Linz under the supervision of Prof. Manuel Wimmer, and one with the
Universidad Autónoma de Madrid under the supervision of Prof. Juan de Lara, and
Prof. Esther Guerra. My special thanks to them and to Dr. Antonio Garmendia
and Dr. Pablo Gómez-Abajo who had an undeniable role in the success of our
collaborations.

Finally, many thanks to the jury members, Prof. Anne Etien, Prof. Juergen
Dingel, Prof. Benoît Baudry, Prof. Antoine Beugnard, and Dr. Javier Troya for
their thoughtful questions which brought up many new ideas and for awarding me
the precious title of Dr.

ii

Dedication

To Yousef, you were besides me all along the way.
To my parents, we were waiting for this moment for a long time.

Résumé long en français

Contexte
Les logiciels occupent le rôle central de l’ère de la transformation numérique. Ils
sont utilisés de manière exponentielle dans des domaines complexes tels que les
systèmes cyber-physiques (CPS) ou l’Internet des objets (IoT). Cependant, la
croissance de la complexité entrave la collaboration productive entre les personnes
impliquées dans le cycle de vie du développement logiciel. En particulier, en raison
de l’émergence de domaines interdisciplinaires, les parties prenantes apportent
généralement des compétences diverses provenant de plusieurs domaines. Parvenir
à une compréhension commune du système par tous les acteurs est alors difficile.

La modélisation des logiciels et des systèmes est aujourd’hui considérée comme
une solution viable pour relever ces défis. Elle permet d’avoir différentes repré-
sentations d’un même système pour différents objectifs grâce à des moyens d’abs-
traction adaptés. L’ingénierie dirigée par les modèles (IDM) est un paradigme
de développement logiciel qui utilise les modèles comme artefacts de développe-
ment essentiels [125]. En particulier, l’IDM encourage l’utilisation de modèles au
moment de la conception et propose ensuite des techniques de transformation de
modèles et de génération de code pour automatiser leur transition vers un système
déployable [35]. Les processus IDM reposent généralement sur des langages de
modélisation dédiés (LMD) pour la définition des modèles [88, 104]. Les LMDs sont
des langages logiciels conçus pour des domaines techniques ou applicatifs spécifiques,
et donc adaptés pour être utilisés par des experts du domaine [56]. Bien que ces
langages permettent notamment aux experts du domaine de s’impliquer dans le
cycle de vie du développement, un défi est que pour chaque LMD nouvellement
développé, un environnement de modélisation complet doit être fourni pour utiliser
efficacement le LMD [51, 101]. Ainsi, des plateformes dédiées appelées ateliers de
langage ont émergé pour définir des langages qui peuvent directement bénéficier
d’un support d’outils prêts à l’emploi [29, 51]. Le succès de l’IDM dans la gestion
de la complexité et dans l’implication directe des experts du domaine dans le cycle
de vie du développement a conduit à son adoption dans différents domaines indus-
triels [73, 151] ainsi qu’à l’émergence de plateformes de développement Low-Code

iii

iv RÉSUMÉ LONG EN FRANÇAIS

(LCDP) [48, 138, 144]. Un LCDP est un environnement de développement basé sur
l’IDM, généralement sur le cloud, qui peut être utilisé par des non-programmeurs
pour créer des applications logicielles. Comme les LCDP ciblent généralement
différents domaines d’application, ils offrent différents LMD pour développer des
applications.

L’IDM réduit la quantité de travail manuel par le biais d’une automatisation de
nombreuses tâches, ce qui permet de réduire les erreurs humaines dans le système
final. Cependant, les modèles de conception peuvent toujours comporter des défauts
et si ces défauts ne sont pas résolus au début de la phase de conception, ils seront
propagés à tous les modèles/codes ultérieurement générés à partir des modèles de
conception. S’il est parfois possible de remonter depuis un défaut découvert dans le
système final jusqu’aux modèles sources, il s’agit d’un effort très complexe, long et
coûteux. Il est donc nécessaire de procéder à la vérification et à la validation (V&V)
des modèles de conception. Parmi les techniques de V&V existantes, certaines
sont utilisées pour évaluer les caractéristiques statiques des modèles, comme la
conformité des noms d’entités aux normes de nommage. Cependant, pour les
modèles de conception décrivant les aspects dynamiques des systèmes, appelés
modèles comportementaux, des techniques de V&V dynamiques sont nécessaires. Ces
techniques reposent sur l’exécution des modèles, ce qui signifie que leur application
réservée aux LMDs qui comportent une sémantique d’exécution, tels que les LMDs
avec une sémantique translationnelle (c’est-à-dire la compilation vers un langage
exécutable) ou une sémantique opérationnelle (c’est-à-dire l’interprétation directe).
Dans cette thèse, nous nous concentrons sur les LMDs à sémantique opérationnelle,
appelés LMDs exécutables (LMDx).

Énoncé du problème
Parmi les techniques de V&V dynamique, le test est la principale méthode utilisée
pour évaluer les systèmes logiciels [12]. Le test consiste à exécuter des systèmes
dans des scénarios intéressants et d’observer s’ils se comportent comme prévu. Un
LMDx doté d’outils de test permet à ses utilisateurs, c’est-à-dire les experts du
domaine, d’examiner l’exactitude des comportements modélisés le plus tôt possible.
Cependant, parmi les nombreux LMDx existants, seuls quelques-uns offrent des
outils de test [74, 75, 87, 97]. Étant donné un LMDx, ses experts de domaine
peuvent tester les modèles conformes si (i) les concepts de domaine peuvent être
utilisés dans la spécification des cas de test ; et (ii) les cas de test peuvent être
exécutés à l’unisson avec les modèles testés. Les concepts de domaine et les moyens
d’exécution diffèrent généralement d’un LMDx à l’autre. Cette diversité et cette
hétérogénéité entraînent un travail coûteux, sujet aux erreurs et non réutilisable
lors de la fourniture d’un support de test pour un LMDx [101]. Par conséquent,

ÉNONCÉ DU PROBLÈME v

dans un contexte où l’ingénierie de nouveaux LMDx est récurrente, il est nécessaire
d’adopter une approche systématique pour fournir un support de test pour chaque
LMDx donné.

Une solution prometteuse consiste à disposer d’un environnement de test qui
soit générique en ce qui concerne les LMDx qu’il supporte, et qui soit en même
temps utilisable par les experts du domaine de tout LMDx donné. Le principal défi
à relever pour proposer un tel environnement de test est de fournir un langage de
test répondant à trois exigences :

• Req#1 : il doit permettre aux experts du domaine d’écrire des cas de test
pour les modèles en permettant l’utilisation des concepts du domaine pour
définir (i) comment un modèle sous test doit être exécuté ; et (ii) quels
résultats doivent être attendus de l’exécution.

• Req#2 : il doit être capable de lancer l’exécution du modèle à tester selon
les besoins des cas de test.

• Req#3 : il doit fournir des moyens de vérifier si le modèle testé se comporte
comme prévu par les cas de test.

En résumé, un environnement de test générique répond à ces exigences s’il peut
adapter automatiquement son langage de test aux concepts, aux utilisateurs et aux
possibilités d’exécution d’un LMDx donné.

Le fait de pouvoir écrire et exécuter des cas de test pour des modèles ne garantit
pas l’efficacité des cas de test définis. Dans le domaine des langages de programma-
tion, plusieurs activités de test avancées sont généralement réalisées pour améliorer
l’efficacité des tests, telles que (i) la mesure de la qualité des tests pour s’assu-
rer que les cas de test définis sont suffisamment bons [12], (ii) le diagnostic des
tests échoués pour localiser les fautes [150], (iii) ou encore l’amélioration des tests
pour renforcer les cas de test à différentes fins, comme la détection des défauts
de régression [42]. Les techniques existantes pour mener à bien ces activités sont
principalement développées pour chaque langage individuellement et sont fondées
sur leurs environnements de test respectifs, car elles doivent manipuler directement
les cas de test et le système testé. Par conséquent, l’exploitation de techniques de
test avancées dans le contexte des LMDx se heurte à nouveau au défi de la diversité
et de l’hétérogénéité des LMDx. Néanmoins, un avantage supplémentaire de la
proposition d’un environnement de test générique pour les LMDx, tel que décrit
précédemment, est de permettre l’adaptation de ces techniques supplémentaires di-
rectement pour tout LMDx. Nous considérons donc trois exigences supplémentaires
pour un environnement de test convaincant :

vi RÉSUMÉ LONG EN FRANÇAIS

reads

uses

conforms to

Manually-
defined artefact

Component

depends on

user action

Domain
Expert

Executable
Domain-Specific

Language
(xDSL)

conforms to

Language
Engineer Legend

defines

defines

Test Quality
Evaluator

Test Debugger

Test Amplifier Te
st

 R
un

ne
r

uses

Testing Language ch.3

ch.3
ch.4

ch.5

ch.5

Model Under Test specific to Test Cases

Figure 1 : Une vue d’ensemble de l’environnement proposé mettant en œuvre les
contributions de la thèse

• Req#4 : il doit fournir des moyens de mesure de la qualité des tests pour
évaluer la capacité des cas de test du modèle à (i) s’appliquer à différentes
parties d’un modèle ; et (ii) détecter les défauts potentiels du modèle.

• Req#5 : il doit permettre aux experts du domaine de déboguer un cas de
test qui a échoué afin de localiser le défaut du modèle testé.

• Req#6 : il doit améliorer automatiquement les cas de test écrits par les
experts du domaine pour renforcer leur capacité de détection des erreurs.

Contributions
Dans cette thèse, nous proposons plusieurs contributions pour répondre aux exi-
gences susmentionnées, toutes mises en œuvre dans un nouvel environnement
de test générique pour les LMDx. La figure 1 présente une vue d’ensemble de
l’environnement que nous proposons. Nous considérons un ingénieur de language
qui définit un LMDx (à gauche) et a besoin d’un environnement de test pour son
LMDx afin de permettre aux experts de domaine, qui utilisent le LMDx pour définir
des modèles (à droite), de tester efficacement leurs modèles.

Pour permettre la définition de cas de test pour les modèles exécutables (Req#1),
l’environnement s’appuie sur le Test Description Language (TDL), un langage
standardisé pour la spécification des descriptions de test [98]. Ce choix a été fait
pour deux raisons principales. Premièrement, TDL n’est pas lié à un langage
particulier pour la définition du système à tester, il représente donc un candidat

CONTRIBUTIONS vii

intéressant pour l’écriture générique de cas de test pour tout modèle exécutable.
Deuxièmement, TDL a été conçu comme un langage simple pour les testeurs
n’ayant pas de connaissances en programmation, ce qui en fait un bon choix pour
les experts du domaine travaillant sur des modèles. Cependant, pour appliquer
TDL à un LMDx donné, l’expert du domaine doit d’abord définir les concepts
nécessaires spécifiques au domaine, avant de pouvoir écrire des cas de test pour
les modèles définis par le LMDx. Pourtant, cette tâche exige une connaissance
des éléments internes du LMDx et, comme il est peu probable que les experts
du domaine les connaissent, il s’agit d’une tâche coûteuse et sujette aux erreurs.
Dans l’environnement que nous proposons, nous générons automatiquement une
bibliothèque TDL spécifique au domaine à partir de la définition d’une LMDx
donnée. Une telle bibliothèque peut être utilisée par l’expert du domaine pour
écrire des cas de test pour les modèles conformes au LMDx considéré (répondant
à la Req#1). Nos contributions pour la définition des cas de test donnent lieu
au composant Testing Language de l’environnement (en haut au centre de la
figure 1) et seront détaillées dans le chapitre 3.

Une fois les cas de test définis, ils doivent être exécutés sur les modèles testés
(Req#2) et les résultats doivent être produits en vérifiant si les modèles se sont
comportés comme prévu par les cas de test (Req#3). L’exécution de ces tâches
complexes nécessite des connaissances sur la façon d’exécuter un modèle et d’obser-
ver son comportement, ce qui est en fait fourni par le LMDx auquel le modèle testé
se conforme. Comme TDL est conçu comme un standard indépendant du langage,
il ne fournit aucun support pour ces tâches. Dans cette thèse, nous proposons
une sémantique opérationnelle pour TDL qui est capable d’exécuter des cas de
test sur des modèles exécutables tout en étant découplée de tout LMDx spécifique
(répondant à la Req#2). Elle fournit également plusieurs facilités pour interroger
le comportement d’un modèle lors de son exécution par un cas de test et ainsi
produire les résultats de l’exécution du test (répondant à la Req#3). Le composant
Test Runner de l’environnement (dans le coin inférieur droit de la Figure 1) offre
les facilités d’exécution des tests qui seront présentées dans le Chapitre 3.

Afin de mesurer correctement la qualité des cas de test écrits (Req#4), l’envi-
ronnement de test que nous proposons fournit pour les LMDx à la fois des moyens
pour effectuer un calcul de la couverture [12] ainsi qu’une analyse de mutation [79],
deux techniques déjà bien connues dans le domaine des langages de programmation.
La première mesure la part du modèle à tester qui est exercée par un cas de test
TDL donné, tandis que la seconde analyse la capacité des cas de test à trouver les
défauts potentiels du modèle (répondant à la Req#4). Pour les deux approches,
les résultats d’exécution des tests produits par le composant Test Runner sont
analysés pour calculer la qualité des cas de test exécutés. Le composant Test
Quality Evaluator de l’environnement (au centre de la figure 1) réalise cette

viii RÉSUMÉ LONG EN FRANÇAIS

partie de nos contributions, présentée plus loin dans le chapitre 4.

Si les cas de test échouent sur un modèle, en supposant que le cas de test est
correct, il y a un défaut dans le modèle testé qui doit être corrigé. L’environnement
proposé aide les experts du domaine à localiser les défauts des modèles testés
(Req#5) en proposant deux approches. Tout d’abord, il offre une approche manuelle
basée sur le débogage interactif permettant aux experts du domaine de déboguer un
scénario de test en même temps que son modèle testé afin d’observer progressivement
la réaction du modèle à la réception des requêtes du scénario de test. Deuxièmement,
comme le débogage manuel est fastidieux pour les cas de test de modèles complexes
et/ou de grande taille, l’environnement proposé fournit également une adaptation de
l’approche de localisation de défauts appelée “Spectrum-based Fault Localization”
(SBFL) [150]. SBFL est une approche automatique qui calcule la probabilité que
chaque partie d’un programme (e. g., une instruction d’un programme Java) soit
défectueuse, sur la base des résultats des cas de test et de leurs informations de
couverture correspondantes. Les contributions mentionnées précédemment pour
tester des modèles et mesurer leur couverture nous ont permis d’adapter SBFL au
contexte des LMDx. L’approche proposée calcule le classement des éléments des
modèles en fonction du degré de suspicion à partir de deux ingrédients : les résultats
des tests produits par le Test Runner et les mesures de couverture générées par le
Test Quality Evaluator (répondant à la Req#5). Le composant Test Debugger de
l’environnement (au centre de la Figure 1) fournit les deux approches de débogage
proposées qui seront présentées dans le Chapitre 5.

Le test et le débogage d’un modèle contribuent à le rendre correct dans une
version donnée, mais il existe toujours un risque de régression, c’est-à-dire des fautes
ajoutées lors des futures évolutions du modèle. Les experts du domaine peuvent
mesurer la capacité de leurs jeux de tests à détecter les fautes potentielles grâce à
nos outils d’analyse de mutation. Lorsque les cas de test existants ne sont pas assez
solides, il est nécessaire d’améliorer les tests pour pouvoir détecter l’apparition de
régressions, ce qui est une tâche complexe pour les experts du domaine (Req#6).
L’environnement proposé fournit une approche générique d’amplification des tests
qui améliore automatiquement la capacité des cas de test à détecter les régressions.
Plus précisément, il génère de nouveaux cas de test en modifiant les cas de test
existants écrits manuellement à l’aide d’un ensemble de modificateurs proposés,
puis évalue le niveau d’amélioration à l’aide d’une analyse de mutation (répondant
à la Req#6). Le composant Test Amplifier (au centre de la figure 1) ajoute à
l’environnement les fonctionnalités d’amplification de test que nous proposons et
qui seront présentées au chapitre 5.

MÉTHODOLOGIE DE RECHERCHE ix

Méthodologie de recherche
Pour mener cette recherche, nous avons suivi la méthodologie de recherche de la
science du design (DSRM) [118] et les lignes directrices de la science du design [70].
Nous avons en effet réalisé les six activités principales de l’approche DSRM pour
chaque partie de nos contributions qui seront détaillées dans chaque chapitre de
cette thèse :

1. Identification et motivation du problème : Nous avons étudié l’espace du
problème en fournissant son contexte et en rassemblant une vue d’ensemble
des approches existantes dans le contexte des environnements de test pour les
LMDx. Enfin, nous avons identifié les forces et les limites de l’état de l’art.

2. Définir les objectifs d’une nouvelle solution : Nous avons identifié les prin-
cipales exigences pour fournir une approche systématique aux ingénieurs
linguistiques afin de fournir un environnement de test pour leurs LMDx.

3. Conception et développement : Nous avons conçu un environnement de test
générique pour les LMDx qui répond aux exigences identifiées.

4. Démonstration : Nous avons implémenté l’environnement proposé pour le
GEMOC Studio, un atelier de langage et de modélisation pour les LMDx [29].

5. Evaluation : Pour évaluer la généricité de l’environnement en ce qui concerne
les LMDx supportés, nous avons évalué empiriquement chacun des composants
proposés sur plusieurs LMDx de différents domaines d’application.

6. Communication : Les résultats de cette thèse sont publiés dans deux revues
scientifiques, deux conférences de haut niveau et un workshop.

Contexte de la thèse
Cette thèse a été réalisée dans le cadre du projet européen Lowcomote1 [138], un
réseau de formation innovant (ITN) pour former la prochaine génération d’experts
en plateformes d’ingénierie low-code évolutives. Une partie des contributions est le
résultat de détachements internationaux prévus par le projet Lowcomote. Premiè-
rement, le calcul de la couverture et la localisation automatique des défauts (i. e.,
SBFL) ont été réalisés en collaboration avec le département d’informatique de ges-
tion - génie logiciel (WIN-SE) de l’université JKU (Linz, Autriche). Deuxièmement,

1www.lowcomote.eu, This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
n°813884.

www.lowcomote.eu

x RÉSUMÉ LONG EN FRANÇAIS

l’analyse des mutations et l’amplification automatique des tests sont le résultat
d’une collaboration avec le groupe de recherche Miso de l’Université autonome de
Madrid (Madrid, Espagne).

Contents

Résumé long en français iii
Contexte . iii
Énoncé du problème . iv
Contributions . vi
Méthodologie de recherche . ix
Contexte de la thèse . ix

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Contributions . 4
1.4 Research Methodology . 6
1.5 Context of the Thesis . 7
1.6 Outline of the Thesis . 7
1.7 Scientific Production . 8

2 Background & State of the art 9
2.1 Model-Driven Engineering . 9
2.2 Domain-Specific Languages (DSLs) 10

2.2.1 Running Example: Arduino DSL 10
2.2.2 Abstract Syntax . 10
2.2.3 Execution Semantics & Operational Semantics 13

2.2.3.1 Content-based operational semantics 15
2.2.3.2 Event-driven operational semantics 18
2.2.3.3 Behavioral interface 18

2.2.4 Model Execution Tracing . 21
2.3 Testing . 23

2.3.1 Terminologies . 23
2.3.2 Test Description Language 25

2.3.2.1 TDL limitations 28
2.3.3 Testing Frameworks for DSLs 28

xi

xii CONTENTS

2.3.3.1 DSL-specific approaches 28
2.3.3.2 Generic approaches 31
2.3.3.3 Limitations . 31

2.3.4 Test Quality Measurement 32
2.3.4.1 Coverage computation 32
2.3.4.2 Mutation analysis 34

2.3.5 Fault Localization . 35
2.3.5.1 Interactive debugging 36
2.3.5.2 Spectrum-Based Fault Localization (SBFL) 37

2.3.6 Test Amplification . 39
2.4 Conclusion of the state-of-the-art 43

3 Test Case Definition and Execution 47
3.1 Introduction . 47
3.2 Overview . 48
3.3 Samples of TDL Test Cases . 50

3.3.1 A Sample Test Case for a Non-Reactive Model 50
3.3.2 A Sample Test Case for a Reactive Model 51

3.4 TDL Library Generator . 53
3.4.1 Description of the Library Generator 53
3.4.2 Generation of the xDSL-Specific Types Package 54
3.4.3 Generation of the xDSL-Specific Events Package 56
3.4.4 Generation of the Common Package 58
3.4.5 Generation of the Test Configuration Package 59
3.4.6 Using the TDL Library to Write Test Cases 61

3.5 TDL Operational Semantics for xDSLs 62
3.5.1 Adapting TDL Semantics to Model Execution 63
3.5.2 Required External Components 65

3.5.2.1 Overall architecture 66
3.5.3 Test Execution Algorithm of the TDL Interpreter 67

3.6 Test Result Reporter . 71
3.7 Tool Support . 71
3.8 Evaluation . 72

3.8.1 Experiment Setup . 73
3.8.2 Evaluation Data . 75
3.8.3 Evaluation Result . 76
3.8.4 Threats to Validity . 77

3.9 Conclusion . 77

4 Test Quality Measurement 79
4.1 Introduction . 79

CONTENTS xiii

4.2 Coverage Computation . 80
4.2.1 Constructing the Coverage Matrix 82

4.2.1.1 Analyzing the xDSL definition 82
4.2.1.2 Initializing the coverage matrix for the models’ tests. 83
4.2.1.3 DSL-specific coverage rules 83
4.2.1.4 Finalizing the coverage matrix for the models’ tests 86
4.2.1.5 Generating a coverage matrix for the running example 87

4.2.2 Definition of Artefacts . 87
4.3 Mutation Analysis . 89
4.4 Tool Support . 91
4.5 Evaluation . 93

4.5.1 Experiment Setup . 94
4.5.2 Evaluation Result . 95
4.5.3 Threats to Validity . 97

4.6 Conclusion . 97

5 Test Case Debugging and Improvement 99
5.1 Introduction . 99
5.2 Overview . 100
5.3 Manual Debugging of Models’ Tests 102

5.3.1 Adapting Interactive Debugging for TDL 102
5.3.2 Initialization and Coordination of Two Interactive Debuggers 104

5.4 Automatic Debugging of Models’ Tests 105
5.5 Test Amplification for Executable Models 106

5.5.1 Scope . 108
5.5.2 Approach Overview . 109
5.5.3 Test Case Modification . 110

5.5.3.1 Modification of primitive data 110
5.5.3.2 Modification of event sequences 111

5.5.4 Assertion Generation . 112
5.5.5 Amplification Example . 112
5.5.6 Test Case Selection . 114

5.6 Tool Support . 115
5.6.1 Debugging Tool . 116
5.6.2 Amplification Tool . 118

5.7 Evaluation . 119
5.7.1 Evaluation of Debugging Approaches 119

5.7.1.1 Experiment setup 119
5.7.1.2 Evaluation result 120
5.7.1.3 Threats to validity 121

5.7.2 Evaluation of the Test Amplification Approach 122

xiv CONTENTS

5.7.2.1 Experiment setup 122
5.7.2.2 Evaluation result 123
5.7.2.3 Threats to validity 127

5.8 Conclusion . 128

6 Conclusion and Perspectives 129
6.1 Conclusion . 129
6.2 Limitations and Possible Improvements 130
6.3 Perspectives . 132

A Ecore to TDL Transform Rules 137

B Example 2: xPSSM 149
B.1 Running Example 2: PSSM . 149
B.2 xPSSM Abstract Syntax . 149
B.3 Event-Driven Semantics of xPSSM 152
B.4 xPSSM-Specific TDL Library . 154

List of Figures 159

List of Tables 161

Bibliography 163

Chapter 1

Introduction

1.1 Context

Software applications are the main player in the era of digital transformation. They
are exponentially used in complex domains such as Cyber-Physical Systems (CPS)
or the Internet of Things (IoT). The growth of complexity hinders productive
collaboration among the actors of the software development lifecycle. Especially,
due to the emergence of interdisciplinary domains, stakeholders usually provide
diverse expertise from various domains, hence providing a shared understanding
for all of them has turned into a challenge.

Software and systems modeling has been seen as a viable solution to tackle
these challenges. It allows having different representations of the same system
for various objectives through convenient means of abstraction. Model-Driven
Engineering (MDE) is a software development paradigm that uses models as pivotal
development artifacts [125]. In particular, MDE promotes the use of models at
design time and then offers model transformation and code generation techniques to
automatize their transition to a deployable system [35]. MDE processes commonly
rely on Domain-Specific Languages (DSLs) for the definition of models [88, 104].
DSLs are software languages made for specific technical or application domains, thus
tailored to be used by domain experts [56]. While these languages provide specific
support for the domain experts to involve them in the development lifecycle, one
challenge is that for each newly developed DSL, a complete modeling environment
has to be provided to efficiently and effectively use the DSL [51, 101]. Thus,
dedicated platforms called language workbenches have emerged to define languages
that can directly benefit from out-of-the-box tool support [29, 51]. The success
of MDE in managing complexity and in the direct involvement of domain experts
in the development lifecycle yields its adoption in different industrial domains [73,
151] as well as to the emergence of Low-Code Development Platforms (LCDPs) [48,

1

1. Introduction

138, 144]. An LCDP is an MDE-based development environment typically on the
cloud that can be used by non-programmers to build software applications. As
LCDPs usually target different application domains, they offer different DSLs to
develop applications.

MDE reduces the amount of manual work by providing automation (e. g.,
automatic code generation), and this ultimately results in fewer human mistakes
in the final system. However, the design models may still have faults and if such
faults are not resolved early in the design phase, they will be propagated to all
the subsequent models/code generated from design models. While it is sometimes
possible to trace a fault discovered in the final system back to the source models,
it is a very complex, time-consuming, and expensive endeavor. Therefore, there
is a need for performing early Verification & Validation (V&V) of design models.
Among the existing V&V techniques, some are used to evaluate the static features of
models, such as asserting that the entity names conform with the naming standards.
However, the design models describing dynamic aspects of systems, the so-called
behavioral models, require dynamic V&V techniques. These techniques rely on the
execution of the models, which means their application is supported by DSLs with
execution semantics, such as DSLs with translational semantics (i. e., compiling to
an executable language) or operational semantics (i. e., direct interpretation). In
this thesis, we focus on DSLs with operational semantics, referred to as executable
DSLs (xDSLs).

1.2 Problem Statement
Among dynamic V&V techniques, testing is the primary method used for evaluating
software systems [12]. It involves executing systems in interesting scenarios and
observing whether they act as expected. An xDSL with testing facilities allows
its users, i. e., the domain experts, to investigate the correctness of their modeled
behavior as early as possible. However, among many existing xDSLs, only a few
provide testing facilities [74, 75, 87, 97]. Given an xDSL, its domain experts can test
the conforming models if (i) the domain concepts can be used in the specification of
test cases; and (ii) the test cases can be executed in unison with the models under
test. Both the domain concepts and the execution facilities usually differ from one
xDSL to another and this diversity and heterogeneity cause costly, error-prone, and
non-reusable work when providing testing support for an xDSL [101]. Therefore,
in a context where the engineering of new xDSLs is recurrent, there is a need for a
systematic approach to provide testing support for every given xDSL.

One promising solution is having a testing framework that is generic regarding
its supported xDSLs and at the same time is usable by the domain experts of
any given xDSL. The main challenge when proposing such a testing framework is

2

1.2. Problem Statement

providing a testing language that meets three requirements:

• Req#1: it must enable the domain experts to write test cases for models by
allowing the use of the domain concepts in defining (i) how a model under
test should be executed; and (ii) what results should be expected from the
execution.

• Req#2: it must be able to launch the execution of the model under test as
needed by the test cases.

• Req#3: it must provide facilities to investigate whether the model under
test behaves as expected by the test cases.

In summary, a generic testing framework fulfills these requirements if it can
automatically adapt its testing language to the concepts, users, and execution
facilities of a given xDSL.

Being able to write and run test cases for models does not guarantee efficient
testing of models. In the realm of programming languages, several advanced
testing activities are usually performed to improve test efficiency, such as test
quality measurement to make sure the defined test cases are good enough [12], test
failure diagnosis to find the location of faults when test cases fail [150], and test
improvement to strengthen the test cases for different purposes such as in detecting
regression faults [42]. The existing techniques for carrying out these activities
are mainly developed for each language individually and are founded on their
supporting testing frameworks because they need to directly manipulate test cases
and their system under test. Therefore, leveraging advanced testing techniques for
the context of xDSLs faces again the challenge of xDSLs diversity and heterogeneity.
Nevertheless, an additional benefit of proposing a generic testing framework for
xDSLs as described earlier is enabling the adaptation of these supplementary
techniques directly for any xDSL as well. So we consider three more requirements
for a compelling testing framework:

• Req#4: it should provide test quality measurement facilities for evaluating
the ability of the model’s test cases in (i) exercising different parts of a model;
and (ii) detecting the potential model’s faults.

• Req#5: it should enable the domain experts to debug a failed test case in
order to localize the fault of the model under test.

• Req#6: it should automatically improve the test cases written by the domain
experts to strengthen their fault detection ability.

3

1. Introduction

reads

uses

conforms to

Manually-
defined artefact

Component

depends on

user action

Domain
Expert

Executable
Domain-Specific

Language
(xDSL)

conforms to

Language
Engineer Legend

defines

defines

Test Quality
Evaluator

Test Debugger

Test Amplifier Te
st

 R
un

ne
r

uses

Testing Language ch.3

ch.3
ch.4

ch.5

ch.5

Model Under Test specific to Test Cases

Figure 1.1: An overview of the proposed framework implementing the thesis
contributions

1.3 Contributions
In this thesis, we propose several contributions to fulfill the aforementioned re-
quirements, altogether implemented in a novel generic testing framework for
xDSLs. Figure 1.1 presents an overview of our proposed framework. We consider
a language engineer who defines an xDSL (on the left) and needs testing support
for his/her xDSL in order to enable the domain experts, who use the xDSL for
defining models (on the right), to efficiently test their models.

To offer facilities for the definition of test cases for executable models (Req#1),
the framework relies on the Test Description Language (TDL), a standardized
language for the specification of test descriptions [98]. This choice was made
for two main reasons. First, TDL is not tied to any particular language for the
definition of the system under test, hence it represents an interesting candidate for
generically writing test cases for any executable model. Second, TDL was designed
as a simple language for testers lacking programming knowledge, making it a good
fit for domain experts working on models. However, to apply TDL to a given
xDSL, the domain expert must first define the needed domain-specific concepts,
before being able to write test cases for the models defined by the xDSL. Yet,
this endeavor requires having knowledge of the internals of the xDSL and since
the domain experts are unlikely to be knowledgeable of it, this is a costly and
error-prone task for them. In our proposed framework, we automatically generate
a domain-specific TDL library from the definition of a given xDSL. Such a library
can be used by the domain expert to write test cases for models conforming to
the considered xDSL (fulfilling Req#1). Our contributions for test case definition

4

1.3. Contributions

yields to the Testing Language component of the framework (on top center of
Figure 1.1) and will be detailed in Chapter 3.

Once test cases are defined, they must be executed against the models under
test (Req#2) and the results must be produced by verifying whether the models
behaved as expected by the test cases (Req#3). Performing these complex tasks
requires knowledge of how to run a model and how to observe its behavior which is
indeed provided by the xDSL that the model under test conforms to. As TDL is
designed as a language-independent standard, it does not provide any support for
them. In this thesis, we propose an operational semantics for TDL that is able to
run test cases on executable models while being decoupled from any specific xDSL
(fulfilling Req#2). It also provides several facilities to interrogate the behavior of a
model in its execution by a test case and thus produce the test execution results
(fulfilling Req#3). The Test Runner component of the framework (on the bottom
right corner of Figure 1.1) offers the test execution facilities that will be presented
in Chapter 3.

To properly measure the quality of the written test cases (Req#4), our proposed
testing framework provides for xDSLs both Coverage Computation [12] and Muta-
tion Analysis [79], two techniques already well known in the realm of programming
languages. The former measures how much of the model under test is exercised
by a given TDL test case, while the latter analyzes the ability of the test cases
in finding potential model faults (fulfilling Req#4). For both approaches, the
test execution results produced by the Test Runner component are analyzed to
calculate the quality of the executed test cases. The Test Quality Evaluator
component of the framework (at the center of Figure 1.1) realizes this part of our
contributions, later introduced in Chapter 4.

If test cases fail on a model, assuming the test case is correct, there is a fault
in the model under test that must be fixed. The proposed framework helps the
domain experts in localizing the faults of the tested models (Req#5) by proposing
two approaches. First, it offers a manual approach based on interactive debugging
allowing the domain experts to debug a test case along with its model under test at
the same time to observe gradually the model’s reaction to the reception of requests
from the test case. Second, as manual debugging is cumbersome for the test cases
of large and/or complex models, the proposed framework provides an automatic ap-
proach using Spectrum-Based Fault Localization (SBFL) techniques [150]. SBFL is
an automatic approach that calculates the probability of each program’s component
(e. g., statements of a Java program) being faulty, based on the results of test cases
and their corresponding coverage information. Our generic facilities for testing
models and measuring their coverage enabled us to adapt SBFL for the context of
xDSLs. The proposed approach indeed calculates the suspiciousness-based ranking
of the model elements using two ingredients: the test results produced by the Test

5

1. Introduction

Runner and the coverage measurements generated by the Test Quality Evaluator
(fulfilling Req#5). The Test Debugger component of the framework (at the
center of Figure 1.1) provides both proposed debugging approaches that will be
presented in Chapter 5.

Testing and debugging a model under test ensures the correctness of its current
version, but there is always a threat of regression faults i. e., the faults that
may occur in future updates of the model. The domain experts can measure the
strength of their written test cases in detecting potential faults through our provided
mutation analysis facilities. When the existing test cases are not strong enough,
test improvement is required to make the model safe from regression faults which is
a complex task for the domain experts (Req#6). The proposed framework provides
a generic test amplification approach that automatically improves the ability of the
written TDL test cases in detecting regression faults. More specifically, it generates
new test cases by modifying existing manually-written test cases using a set of
proposed modifiers and then evaluates the level of improvement using mutation
analysis (fulfilling Req#6). The Test Amplifier component (at the center of
Figure 1.1) adds our proposed test amplification facilities to the framework which
will be presented in Chapter 5.

1.4 Research Methodology
To conduct this research, we have followed the Design Science Research Methodology
(DSRM) [118] and the guidelines for design science [70]. We indeed performed the
six main activities of the DSRM approach for each part of our contributions which
will be detailed in each chapter of this thesis:

1. Problem identification and motivation: We investigated the problem space by
providing its related background and gathering an overview of the existing
approaches in the context of testing support for xDSLs. At the end, we have
identified the strengths and the limitations of the state-of-the-art.

2. Defining the objectives of a new solution: We identified the main requirements
for providing a systematic approach for language engineers to support their
xDSLs with testing facilities.

3. Design and development: We designed a generic testing framework for xDSLs
that fulfills the identified requirements.

4. Demonstration: We implemented the proposed framework for the GEMOC
Studio, a language and modeling workbench for xDSLs [29].

6

1.5. Context of the Thesis

5. Evaluation: To assess the genericity of the framework regarding its supported
xDSLs, we empirically evaluated each of the proposed components on several
xDSLs of different application domains.

6. Communication: The results of this thesis are published in two scientific
journals, two top-rank conferences, and one workshop.

1.5 Context of the Thesis
This thesis has been carried out as a part of the Lowcomote European project1 [138],
an Innovative Training Network (ITN) for training the next generation of experts
in scalable low-code engineering platforms. Parts of the contributions are the
outcome of international secondments planned by the Lowcomote project. First,
the coverage computation and the automatic fault localization (i. e., SBFL) parts
were done in collaboration with the Department of Business Informatics – Software
Engineering (WIN-SE) at JKU University (Linz, Austria). Second, the mutation
analysis and the automatic test amplification parts are the results of collaboration
with the Miso research group of Universidad Autónoma de Madrid (Madrid, Spain).

1.6 Outline of the Thesis
We initially provide the background and a running example along with the state-of-
the-art in the context of this thesis in Chapter 2. The contributions of this thesis
are then presented in chapters 3, 4, and 5:

• Chapter 3: presenting the provided facilities for the definition (Section 3.4)
and execution (Section 3.5) of test cases for executable models.

• Chapter 4: introducing the test quality measurement facilities, including the
proposed coverage computation approach (Section 4.2) and the mutation
analysis support (Section 4.3).

• Chapter 5: explaining the manual (Section 5.3) and automatic (Section 5.4)
test debugging facilities as well as the proposed test amplification approach
(Section 5.5).

At the end, we conclude the thesis in Chapter 6 with a discussion on possible
future research directions.

1www.lowcomote.eu, This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
n°813884.

7

www.lowcomote.eu

1. Introduction

1.7 Scientific Production
The outcome of this thesis is published in two journals, two conferences, and one
workshop.
— International journal

1. Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé. Ad-
vanced Testing and Debugging Support for Reactive Executable DSLs. Soft-
ware and Systems Modeling (2022).

2. Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé. Adapt-
ing TDL to Provide Testing Support for Executable DSLs. The Journal of
Object Technology, 20(3), pp.6:1-15, 2021.

— International conferences

1. Faezeh Khorram, Erwan Bousse, Antonio Garmendía, Jean-Marie Mottu,
Gerson Sunyé, Manuel Wimmer. From Coverage Computation to Fault Local-
ization: A Generic Framework for Domain-Specific Languages. Proceedings
of the 15th ACM SIGPLAN International Conference on Software Language
Engineering (SLE), 2022.

2. Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, Pablo
Gómez-Abajo, Pablo C. Cañizares, Esther Guerra, Juan de Lara. Automatic
Test Amplification for Executable Models. Proceedings of the ACM/IEEE
25th International Conference on Model Driven Engineering Languages and
Systems (MODELS), 2022.

— International workshops

1. Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé. Challenges & Opportu-
nities in Low-Code Testing. Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, 2020, Virtual.

8

Chapter 2

Background & State of the art

This section starts with a brief introduction on Model-Driven Engineering (MDE)
(Section 2.1) and provides background of the DSLs considered in the scope of this
thesis (Section 2.2). Meanwhile, we introduce a running example that will be used
across this thesis. We then provide the testing background and state-of-the-art
that is needed to understand the contributions of this thesis (Section 2.3).

2.1 Model-Driven Engineering
MDE is a software development paradigm that makes use of models as the pivotal
development artifacts in order to manage complexity through abstraction [125]. A
model provides a representation of some aspect of a system for a specific objective,
such as providing a human understandable vision of some aspect of a system to
involve the non-technical domain experts actively in the development lifecycle [57].

To define models, specific languages are used which can be classified in two
groups:

• General-Purpose Languages (GPLs): the languages that cover a broad range
of concerns and can be used to model many aspects of a system. For example,
the Unified Modeling Language (UML) has been proposed by the Object
Management Group (OMG) [116].

• Domain-Specific Languages (DSLs): the languages specialized for a particular
application domain, hence enabling domain experts to create a system using
the concepts they are familiar with [56]. For example, Business Process Model
and Notation (BPMN) is a DSL for modeling business processes [112]. The
person who defines a DSL is often called language engineer and the language
user who defines models using the DSL is referred to as domain expert.

9

2. Background & State of the art

As DSLs are tailored to be used by domain experts, MDE processes usually
rely on them [88, 104]. To build a system following the MDE principles, a domain
expert first models the application using DSLs. Afterwards, the models are usually
automatically transformed to either intermediate models (through model-to-model
transformation) or source code (through model-to-text transformation), resulting
in a deployable system. Abstraction along with automation provides simplicity,
reusability, higher accuracy, complexity management, lower cost, and faster release
time [35].

2.2 Domain-Specific Languages (DSLs)
A DSL is defined by a syntax, specifying what can be modeled using the DSL, and a
semantics, defining the meaning of syntax constituents. More precisely, the syntax
part comprises an abstract syntax, determining the concepts of a particular domain
along with their relationships, and a concrete syntax specifying a representation
for the abstract syntax elements to be used by the domain expert (e. g., providing
graphical or textual symbols). Therefore, the semantics essentially provides meaning
of the abstract syntax. Please note that the concrete syntax is left aside from this
thesis.

2.2.1 Running Example: Arduino DSL
This thesis uses a sample DSL designed for modeling Arduino boards along with their
behaviors as a running example. Arduino1 is an open-source company that offers
hardware boards with embedded CPUs, and with different modules (e. g., sensors,
LEDs, actuators) that can be attached to a board. An Integrated Development
Environment (IDE) is available to develop programs (called sketches) for such
boards in C or C++. However, a DSL specifically defined for Arduino would help
in developing the Arduino programs using required concepts rather than technical
C instructions. In subsequent sections, we present the definition and the usage of
an Arduino DSL.

2.2.2 Abstract Syntax
The abstract syntax of a DSL is usually defined as a metamodel2. Generally, a
metamodel is made of a set of metaclasses, each containing a set of features. A
feature can be either an attribute typed by a primitive type or a reference to

1https://www.arduino.cc/
2There are also other ways of defining an abstract syntax such as using grammars, but this

thesis focuses on metamodels.

10

https://www.arduino.cc/

2.2. Domain-Specific Languages (DSLs)

Figure 2.1: An excerpt of the abstract syntax of an Arduino DSL

another metaclass. Moreover, a metamodel possesses a static semantics, which is
a set of structural constraints that must be satisfied by conforming models, such
as multiplicities, containment references, or more complex constraints. There are
specific languages to define metamodels and this thesis supports OMG’s Meta-
Object Facility (MOF) [113] and Ecore [132].

Example: Arduino abstract syntax. Figure 2.1 shows an excerpt of the
abstract syntax of an Arduino DSL3 as a metamodel. The root element is a Project
which may contain several Board and Sketch elements. A Board represents an
Arduino physical board. It contains several DigitalPin elements, each associated with
one Module, such as LED, InfraRedSensor, PushButton, and Buzzer. The intended
behavior of the boards must be defined using Sketch elements. A Sketch may
contain a Block that may comprise several Instructions such as ModuleAssignment
for changing the state of a Module and Control instructions to define conditional
behaviors (e. g., using If or While).

3Inspired from https://github.com/mbats/arduino

11

https://github.com/mbats/arduino

2. Background & State of the art

if button1 == 1

if infrared sensor == 1
else

buzzer = 1 buzzer = 0buzzer = 0buzzer = 0white LED = 1 white LED = 0

Figure 2.2: An example of an Arduino model representing a basic intrusion alarm
system. It has a defect since the buzzer is not ringing as expected when the sensor
detects an obstacle (it is highlighted in red where buzzer is mistakenly set to 0)

Modeling. Considering a DSL’s abstract syntax as a metamodel, a model can
be defined by instantiating the metaclasses of the metamodel and specifying values
for their features to satisfy the static semantics—it is similar to the instantiation
concept in Object-Oriented Programming (OOP) Languages such as Java. This
is commonly referred as the conformity relationship between a model and its
metamodel.

‘The board’s behavior, modeled on the bottom of Figure 2.2 using a Sketch
element, is: “if button1 is pressed, the white LED turns on and then if the
infrared sensor detects an obstacle, the buzzer alternates between noise/silence
periods twice (i. e., reporting an intrusion). Otherwise, the white LED turns off”.
Note that turning on/off an LED and a buzzer—the ‘white LED=1’, ‘buzzer=1’,
‘white LED=0’, and ‘buzzer=0’ in Figure 2.2—are indeed instances of Module-
Assignment. We intentionally inject a defect in this model where buzzer should be
set to 1 but it is mistakenly set to 0, meaning that the buzzer turns on but does
not alternate between noise/silence states (highlighted in red in Figure 2.2). We
aim to detect this defect with a test suite written and executed using our proposed
approach.

12

2.2. Domain-Specific Languages (DSLs)

2.2.3 Execution Semantics & Operational Semantics
The engineering of each DSL is commonly supplemented with a modeling environ-
ment that offers several services to assist the domain expert in modeling. Using
the abstract syntax of a DSL, the domain experts can model particular aspects
of a system. Among the existing DSLs, a large portion of them enable modeling
the dynamic aspects of systems and the resulting models are so-called behavioral
models (e. g., state machines [114], activity diagrams [115], and process models [24,
111]). If it was possible to execute behavioral models, the modeling environment
could also provide dynamic Verification and Validation (V&V) techniques, such
as debugging and testing. As a result, the domain expert could then analyze the
behavioral models as early as possible and ensure the correctness of the modeled
behavior early in the design phase.

To offer these facilities for a DSL, the DSL must provide an execution semantics
which defines how to run its conforming models. In general, two main approaches
are used for the definition of execution semantics:

• Translational Semantics: considering a target executable DSL, it transforms
the models to target executable models or code using a compiler.

• Operational Semantics: it defines what are the possible runtime states of a
model under execution and how such a runtime state changes over time to
run the models directly through an interpreter.

A DSL with an execution semantics is called an executable DSL (xDSL) and its
conforming models are referred to as executable models (xModels). Our objective
is to provide model-level testing support in order to perform early dynamic V&V
using the domain concepts so as to be able to detect faults as soon as possible.
This is achievable when the model can be executed by itself, hence for DSLs with
operational semantics. Accordingly, this thesis focuses on those DSLs and thereafter,
the term xDSL only refers to DSLs with operational semantics. Moreover, the term
“model” from now on refers to an executable model.

The operational semantics of an xDSL comprises two parts: (i) the definition of
the possible runtime states of a model under execution; and (ii) a set of execution
rules defining how such a runtime state changes over time.

Runtime State Definition. To define the runtime state, several approaches
are introduced so far that are all based on extending the abstract syntax [22, 68,
69, 78, 102, 130]. In this thesis, we consider the runtime state to be defined in
a separate metamodel that introduces new classes and/or new features for the
existing classes of the abstract syntax (later referred to as dynamic features)4. In

4The other ways to define the runtime state include using imports or inheritance relationships.

13

2. Background & State of the art

the literature, such a metamodel is referred to as dynamic metamodel [68, 69] or
runtime metamodel [22, 130]. Extending the abstract syntax with the dynamic
metamodel is performed by a non-intrusive extension mechanism, such as the
UML package merge [116] in which two metamodels are merged by combining
their classes; if two classes have the same name, they are combined in a class
containing the properties from both originating classes. The metamodel resulting
from merging the dynamic metamodel to the abstract syntax is called execution
metamodel [30].

Execution Rules Definition. The execution of a model can be driven by
changing its runtime state over time which is usually performed by a model
transformation. A model transformation is usually defined at the metamodel level
and comprises a set of rules, each one defining a subset of changes from a source
to a target metamodel. When the source and the target metamodels are different,
the transformation is called exogenous and otherwise endogenous. In general, by
executing a model transformation on one or several source models (i. e., conforming
to its source metamodel), one or several target models (i. e., conforming to its target
metamodel) will be generated. However, there are endogenous transformations
that do not create new target models but directly modify the source models which
are named in-place.

To define a model transformation rule, two types of model transformation
languages may be used:

• Declarative languages: each model transformation rule is composed of a
source and a target pattern. When the source pattern can be found in a
source model, it will be transformed as specified by the target pattern (e. g.,
ATL [82] or VIATRA [40]).

• Imperative languages: model transformation rules are indeed referred to as
operations, each containing a sequence of statements altogether performing
a change on the target model. There is usually one entry point operation
that is called to start the transformation and operations may call each other,
specifying the order of their application (e. g., Kermeta [78]).

The execution rules of an operational semantics are usually defined as an in-place
endogenous transformation whose input is a model conforming to the execution
metamodel that is modified during the execution by applying the transformation
rules; the transformation is endogenous so its source and target metamodels are
the same (i. e., the execution metamodel) and it is in-place, so the input model is
directly modified.

In general, for every class of the xDSL’s abstract syntax that has a runtime
behavior, one execution rule is defined to implement such behavior. An execution

14

2.2. Domain-Specific Languages (DSLs)

main(Project)
execute(Block)
execute(If)
execute(ModuleAssignment)
changeLevel(DigitalPin)

Content-Based Execution Rules
b

a

<<imports>>

Figure 2.3: Definition of runtime state and execution rules for a content-based
semantics of the Arduino DSL

rule that performs a change on a running model in according to the execution
metamodel is called a step rule and an execution step is the application of a step
rule (Section 2.2.4 on page 21 will provide more details).

In this thesis, we only consider xDSLs with discrete-event operational semantics
(i. e., not continuous). Generally, these semantics can be defined as content-based or
event-driven [93]. The former kind executes a model using an initial runtime state
for the model that must be provided before the execution starts. The latter kind
runs a model through an environment able to interact with the model execution
using event occurrences. In the following, we clarify their differences.

2.2.3.1 Content-based operational semantics

A content-based semantics defines how to run a model in a closed environment,
where only an initial runtime state is provided to the model before it is started.
The execution rules of a content-based semantics comprise at least one rule acting
as a starting point for the model execution, usually called the main(). This rule can
trigger other execution rules (if any), and each may call other rules and perform
observable execution steps in order to finalize the execution.

15

2. Background & State of the art

Content-based semantics of Arduino DSL. Figure 2.3 shows a content-
based semantics for the Arduino DSL, comprising the runtime state definition (the
dynamic metamodel in part (a)) and an excerpt of the execution rules (part (b)).
The dynamic metamodel (part (a)) introduces new features for the metaclasses
of the Arduino metamodel (already shown in Figure 2.1 on page 11) and will be
merged into it. The DigitalPin has a dynamic feature named level which represents
the state of its Module. For example, pressing a button, sensing an obstacle by a
sensor, turning on an LED and a buzzer means the level of their DigitalPin is equal
to 1. Thus to run the Arduino model of Figure 2.2 on page 12 using this semantics,
we should set the level of the pins we want to be enabled to 1, before the execution.
For example, to satisfy the if condition of the sketch part, the button must be
pressed, so we should set the level of button1 to 1 before execution starts. Also,
to keep the track of changes of the level of DigitalPin elements during execution,
we defined the pinChanges dynamic feature that is an ordered list.

Listing 2.1 on page 17 shows the implementation of the execution rules (part
(b) of Figure 2.3 on page 15), written in Kermeta [78]. This language uses aspect
weaving to extend a class with new features and/or execution facilities. The entry
point main() rule (line 4)—that must be annotated with @Main as in line 3—is
defined for the Project class (line 1). For each Sketch of a Project, it calls the
execute() rule for its containing block (defined in line 10) which itself runs the
instructions of the block in order.

According to the Arduino metamodel (Figure 2.1 on page 11), If conditions
are a kind of Instruction. Such inheritance relationships can also be used when
defining execution rules. For example, as can be seen in line 14, the If_Aspect
extends the Instruction_Aspect and overrides its execute() rule (line 18). Note
that a specific annotation namely @OverrideAspectMethod must be used to specify
overriding (line 17). Moreover, the @Step annotation is required to distinguish a
step execution rule from others (such as line 16).

For example, when the execution of the Arduino model of Figure 2.2 on page 12
starts, first the main() rule is called on the root Project object. This results in
calling the execute(block) and then the execute(if button1==1) (i. e., implemented
in line 18). As the level of the button1 is 1, the condition of the if is satisfied,
so the body of the if that is a Block is executed. As can be seen on the bottom
of Figure 2.2, the body of the first if statement starts with a ModuleAssignment.
Therefore, according to listing 2.1 on page 17, the execute() rule of the Module-
Assignment_Aspect (line 28) is called which turns on the white LED because the
current value of its pin (= 0) is different from the value i. e., asked to be assigned (=
1). More precisely, the changeLevel rule of the DigitalPin_Aspect (line 37) is called
in line 33 which adds a copy of the white LED to the list of pinChanges (line 40).

16

2.2. Domain-Specific Languages (DSLs)

1 @Aspect(className=Project)
2 class Project_Aspect {
3 @Main
4 def void main() {
5 _self.sketches.forEach[s|s.block.execute]
6 }
7 }
8 @Aspect(className=Block)
9 class Block_Aspect {

10 def void execute() {
11 _self.instructions.forEach[i|i.execute]
12 }
13 }
14 @Aspect(className=If)
15 class If_Aspect extends Instruction_Aspect {
16 @Step
17 @OverrideAspectMethod
18 def void execute() {
19 if (_self.condition.isSatisfied()){
20 _self.block.execute()
21 }
22 }
23 }
24 @Aspect(className=ModuleAssignment)
25 class ModuleAssignment_Aspect extends Instruction_Aspect{
26 @Step
27 @OverrideAspectMethod
28 def void execute() {
29 val DigitalPin pin = _self.module.eContainer
30 val previousValue = pin.level
31 pin.level = _self.operand.evaluate
32 if (pin.level != previousValue){
33 pin.changeLevel
34 }
35 }
36 }
37 @Aspect(className=DigitalPin)
38 class DigitalPin_Aspect {
39 @Step
40 def void changeLevel(){
41 _self.getProject.pinChanges.add(EcoreUtil.copy(_self))
42 }
43 }

Listing 2.1: An excerpt of the content-based execution rules for the Arduino DSL,
written in Kermeta

17

2. Background & State of the art

Figure 2.4: Behavioral interface metamodel [93]

2.2.3.2 Event-driven operational semantics

Although it is possible to execute a model solely based on its content, there are many
cases requiring dynamically interacting with a running model, e. g., for running
a co-simulation with other models [37, 93]. This requires the xDSL’s operational
semantics to have a real event-driven behavior that precisely specifies how one
can interact with a running model, and how the said model should react. In this
thesis, we consider that this aspect is handled by a language component called
a behavioral interface, which we introduce in the next section as the foundation
for the event-driven semantics of an xDSL. In the remainder of the thesis, xDSLs
with content-based semantics are called non-reactive xDSLs, while xDSLs with
event-driven semantics are called reactive xDSLs.

2.2.3.3 Behavioral interface

The behavioral interface of an xDSL specifies the types of events that are sent to and
received from conforming models during their execution. It must be implemented by
the execution rules of xDSL’s operational semantics. While different approaches can
be used to define such an interface (e. g., [44], [93]), this thesis uses the metalanguage
proposed by Leroy et al. [93] whose concepts are presented in Figure 2.4. This
metalanguage specifies a BehavioralInterface as a set of Events:

• Accepted events: specify what can be accepted by a running model.
• Exposed events: determines the observable reactions of a running model.

Each Event can have a set of parameters. The type of an EventParameter is indeed
a metaclass of the xDSL’s abstract syntax.

18

2.2. Domain-Specific Languages (DSLs)

execute(Block)
execute(If)
execute(ModuleAssignment)
changeLevel(DigitalPin)
press(PushButton)
release(PushButton)
detect(InfraRedSensor)

Event-Driven Execution Rules

<<implementedBy>>

b

a

<<imports>>

c

Figure 2.5: Definition of runtime state, execution rules, and behavioral interface
for an event-driven semantics of the Arduino DSL

Event-Driven Semantics of Arduino DSL. Figure 2.5 presents an event-
driven semantics for the Arduino DSL: the runtime state definition (part (a)), an
excerpt of the execution rules (part (b)), and a behavioral interface (part (c)). The
Kermeta implementation of the first three execution rules (i. e., execute (Block),
execute (If), and execute (ModuleAssignment)) are the same as the ones shown in
lines 8-36 of Listing 2.1 on page 17, and the rest (i. e., changeLevel (DigitalPin),
press (PushButton), release (PushButton), and detect (InfraRedSensor)) are presented
in lines 2-22 of Listing 2.2 on page 20.

The behavioral interface (Figure 2.5(c) on page 19) comprises four events, all
implemented by the execution rules (Figure 2.5(b)):

• accepted event button_pressed : requests for pressing a button (implemented
by press(PushButton) rule (line 4)).

• accepted event button_released : requests for releasing a button (implemented

19

2. Background & State of the art

1 @Aspect(className=PushButton)
2 class PushButtonAspect{
3 @Step
4 def void press() {
5 _self.pin.level = 1
6 _self.project.sketches.forEach[s|s.block.execute]
7 }
8 @Step
9 def void release() {

10 _self.pin.level = 0
11 _self.project.sketches.forEach[s|s.block.execute]
12 }
13 }
14 @Aspect(className=InfraRedSensor)
15 class InfraRedSensorAspect{
16 @Step
17 def void detect(){
18 _self.pin.level = 1
19 _self.project.sketches.forEach[s|s.block.execute]
20 }
21 }
22 @Aspect(className=DigitalPin)
23 class DigitalPin_Aspect {
24 @Step
25 def void changeLevel(){
26 }
27 }

Listing 2.2: An excerpt of event-driven execution rules for Arduino DSL, written
in Kermeta

by release(PushButton) rule (line 9)).

• accepted event IRSensor_detected : requests for detecting an obstacle by a
sensor (implemented by detect(InfraRedSensor) rule (line 17)).

• exposed event pin_level_changed : notifies changes of the level of the Digital-
Pin elements (implemented by changeLevel(DigitalPin) rule (line 22)).

For example, to run the Arduino model of Figure 2.2 on page 12 using this
event-driven semantics, the occurrences of the Arduino’s behavioral interface events
must be communicated with the model during its execution. One can send a press
event for the button1 which resulted in calling the press(PushButton) execution rule
(line 4). It executes the block of each Sketch and similarly to what we described
earlier in Section 2.2.3.1 on page 15 with content-based semantics of the Arduino
DSL, the condition of the first if statement will be satisfied, so the white LED will

20

2.2. Domain-Specific Languages (DSLs)

be turned on. This results in calling the changeLevel() rule (line 25) and is exposed
by an occurrence of the pin_level_changed event.

The definition of a semantics for the Arduino DSL makes this language exe-
cutable. From now on, we refer this Arduino xDSL as xArduino. Figure 2.6 shows
its complete definition: its abstract syntax (a), its content-based semantics ((b.1)
and (b.2)), and its event-driven semantics ((c.1), (c.2), and (c.3)).

2.2.4 Model Execution Tracing
A model execution trace tells what happened during the execution of the model,
usually in a form of a sequence of information that is captured during the execu-
tion [72]. Such information could vary for different contexts and needs, and could
be composed of various pieces of information, each related to the execution from
a specific point of view. Among different existing definitions for model execution
traces [72], this thesis relies on the one provided by Bousse et al. [31, 32]: an
execution trace is a sequence of following information about a specific execution:

• execution states reached during the execution;
• changes made to the execution state of the executed model, such as the

change in a value of a dynamic property, or the creation of a dynamic object;
• input and output event occurrences;

More precisely, we explained earlier that a model execution is driven by making
calls to the execution rules of an xDSL operational semantics on the objects of the
model, and this resulted in changes of the model’s runtime state (i. e., changes of
the value of its dynamic properties). Therefore, considering an executed model
that conforms to an xDSL, the model execution trace specifies which execution
rules of the xDSL’s semantics were called by which elements of the model on which
runtime state, as well as keeping the calls sequence (as shown in Figure 2.7).

Particularly for the reactive xDSLs, i. e., xDSLs with a behavioral interface, the
execution trace of their conforming models also contains the occurrences of both
accepted and exposed events.

For example, in Sections 2.2.3.1 and 2.2.3.2 on pages 15 and 18, we described a
sample execution of the Arduino model of Figure 2.2 with non-reactive and reactive
xArduino, respectively. The generated execution trace for each execution is:

• generated by non-reactive execution: execute (project (pinChanges = {}))
» execute (block) » execute (if)» execute (White LED = 1) » changeLevel (White
LED (level=1))

• generated by reactive execution: button_pressed (button1 (level=0)) » press
(button1 (level=0)) » execute(block) » execute(if)» execute(White LED =

21

2. Background & State of the art

Event-Driven Execution Rules

<<implementedBy>>

a

main(Project)
execute(Block)
execute(If)
execute(ModuleAssignment)
changeLevel(DigitalPin)

Content-Based Execution Rules

execute(Block)
execute(If)
execute(ModuleAssignment)
changeLevel(DigitalPin)
press(PushButton)
release(PushButton)
detect(InfraRedSensor)

c.2

b.2

b.1 c.1
<<merges>><<merges>>

<<imports>>

<<imports>>

d

Figure 2.6: An overview of the Arduino xDSL definition

22

2.3. Testing

Figure 2.7: An excerpt of the execution trace metamodel [31, 32]

1) » changeLevel(White LED (level=1)) » pin_level_changed (White LED
(level=1))

2.3 Testing
In this section, we provide the background and the state-of-the-art for testing
models in general (Sections 2.3.1-2.3.3 on pages 23-28) and also for specific test-
ing techniques supported by our proposed testing framework, including coverage
computation (Section 2.3.4.1 on page 32), mutation analysis (Section 2.3.4.2 on
page 34), interactive debugging (Section 2.3.5.1 on page 36), fault localization
(Section 2.3.5 on page 35), and test amplification (Section 2.3.6 on page 39).

2.3.1 Terminologies
In this section, we define a number of terms that will be used later in this thesis.
They are general terms of software testing mainly taken from the Ammann et al.
book [12] and are adapted to the context of this thesis when needed.

Verification vs Validation. First of all, it is important to distinguish verification
from validation:

• Verification: it evaluates whether individual parts of the system behaves
correctly regarding the requirements and specifications.

• Validation: it evaluates whether the final system behaves as intended.

Testing can be done for verification (e. g., unit testing, integration testing) or
validation (e. g., acceptance testing). In this thesis, our focus is on testing for
verification of behavioral models.

23

2. Background & State of the art

Fault vs Failure. A fault is a static defect in the software that usually originated
from design or implementation mistakes. A failure refers to the incorrect behavior
of the software with respect to its expected behavior. Therefore, faults are the
cause of failures.

Testing vs Debugging. The difference between fault and failure determines the
difference between testing and debugging. Testing involves executing systems and
observing whether they behave as expected or expose a failure. In case of a test
failure, debugging helps to find the faults causing the failure.

Test Case, Test Data, Test Oracle, Test Suite. A test case is a set of all
necessary information for a single complete execution and evaluation of the system
under test. In general, a test case involves two kinds of data:

• input data: the input values that are required for the initialization and the
execution of the system under test.

• expected output data: the result that must be produced by the system under
test if it behaves as expected by the test case.

Moreover, a test oracle is a part of a test case that controls if the system behaves
correctly. It verifies actual outputs against the expected output data e. g., checks
the intermediate states, or the events exposed by the system under test. Also, a
set of test cases are commonly referred to as a test suite.

Test Engineer. Defining test cases for a system requires knowledge about the
system’s behavior, so usually the designer of the system is a good person for
defining test cases [12]. In software testing area, the system under test is a program
implemented by a technical developer using a programming language. Accordingly,
a test engineer is usually a technical expert who performs several tasks:

• defining test input data, expected output data, and test oracles,
• producing executable test cases and running them on the system under test,
• analyzing test results and determining if there is a fault in the system,
• reporting results to developers who are in charge of debugging the system.

In the context of this thesis, the system under test is indeed a behavioral model
defined by a domain expert. One of our objectives is to enable the domain experts
to perform early testing of the models they defined. Therefore, a test engineer is
also a domain expert in the scope of this thesis.

24

2.3. Testing

Executable Test Case. An executable test case (also called executable test
script [12]) performs a set of tasks automatically including, running the system
under test with the test input data, getting the results produced by the system,
comparing the results with the expected output, and preparing a clear report.
Therefore, executable test cases increase the automation and usually reduce the
costs, hence test engineers try to automate as many test cases as possible. This
thesis aims at providing facilities for domain experts to define executable test cases
for behavioral models.

Testing Framework & Testing Language. Executable test cases may be
defined as Unix shell scripts, input files, or through a specific tool that is able to
control the execution of the system under test. We call testing framework a tool
that provides several facilities for test engineers:

• A software library to write executable test cases,
• A test runner to execute test cases,
• Supplementary services to analyze the test execution results.

We refer the language used for the specification of the testing library and the
test cases as the testing language. A testing language could be either the same as
the language used for the definition of the system under test or different from it.
Therefore, it could be a programming language such as Java that is used in the JUnit
testing framework, or a test-specific language such as Gherkin that is introduced by
the Cucumber testing studio5, or the standard Test Description Language (TDL)
and Testing and Test Control Notation version 3 (TTCN-3) introduced by the
European Telecommunications Standards Institute (ETSI) [63, 98]. This thesis
uses TDL as the testing language of the proposed testing framework, introduced in
the following.

2.3.2 Test Description Language
The Test Description Language was introduced by the European Telecommuni-
cations Standards Institute as a generic language for describing test cases. It
aims at filling the gap between the abstract test requirements and the complex
code of executable test cases to provide a common understanding of test cases for
different stakeholders. TDL supports describing test objectives derived from system
requirements and defining test cases that refine those objectives [98]. The standard
semantics of TDL provides a loose semantics written in natural language [52] and
a precise translational semantics using TTCN-3 as a target language [53] which is
also standardized by the ETSI. A reference implementation of TDL is also provided,

5https://cucumber.io/docs/gherkin/

25

https://cucumber.io/docs/gherkin/

2. Background & State of the art

Figure 2.8: An excerpt of the TDL metamodel [52]

containing a standard abstract syntax, textual and graphical concrete syntax, and
tools for model validation, and transformation to TTCN-3, among others. It is built
atop the Eclipse Modeling Framework (EMF) and is available as an open-source
project6

Figure 2.8 on page 26 presents the main elements of the TDL abstract syntax as
a metamodel, and listing 2.3 on page 27 shows a conforming sample TDL model7
written in TDL textual concrete syntax. A Package is the root element of a TDL
model, hence the container of all other elements (such as tdlModel in line 1). To
define a complete test case, three main pieces of information are required:

TDL Test Data. The first step in defining test data is to determine the required
data types. TDL does not provide any concrete data type since its main objective is
to be generic and platform-independent. So the testers should define their required
types using the DataType element (such as Page_Request and Page_Response
in lines 3 and 4), then instantiating them using DataInstance to define test data,
both the input data that will be sent to the System Under Test (SUT) during
test case execution (such as not_existent_page_request in line 21), and the
expected output data that will be used to define the oracle of the test case (such
as error_404 in line 22).

TDL Test Configuration. A test configuration specifies a communication
protocol between the test suite (later referred to as the test system) and the SUT.

6https://labs.etsi.org/rep/top/ide.
7taken from TDL website: https://tdl.etsi.org/

26

https://labs.etsi.org/rep/top/ide.
https://tdl.etsi.org/

2.3. Testing

1 Package tdlModel{
2 //data types
3 Type Page_Request;
4 Type Page_Response;
5
6 //test configuration
7 Test Configuration web_conf{
8 create Tester test_browser of type Web_Browser;
9 create SUT tdl_website of type Web_Server;

10 connect test_browser.socket to tdl_website.socket;
11 }
12 Component Type Web_Server having{
13 gate socket of type Web_Port;
14 }
15 Component Type Web_Browser having{
16 gate socket of type Web_Port;
17 }
18 Gate Type Web_Port accepts Page_Request, Page_Response;
19
20 //test data
21 Page_Request not_existent_page_request;
22 Page_Response error_404;
23
24 //test cases
25 Test Description page_not_found uses configuration web_conf {
26 test_browser.socket sends not_existent_page_request to

tdl_website.socket;
27 tdl_website.socket sends error_404 to test_browser.socket;
28 }
29 }

Listing 2.3: An example TDL model (taken from TDL official website)

TDL follows a component-based approach, hence a TestConfiguration comprises two
or more ComponentInstances (such as web_conf configuration in lines 7-11), one in
the role of SUT (such as tdl_website in line 9) and the rest as Tester (such as
test_browser in line 8). It also defines the Connections between the components
(line 10). A ComponentInstance is typed by a ComponentType, which determines the
component communication channels using the so-called gates (such as Web_Server
and Web_Browser in lines 12-17). Accordingly, it contains at least one gate (i. e.,
GateInstance) that is instantiated from a GateType. A GateType defines what kind
of data can be exchanged through its instances (such as Web_Port in line 18).

TDL Test Description. To describe the behavior of a test case, the Test-
Description element should be instantiated. For example, page_not_found Test

27

2. Background & State of the art

Description in lines 25-28 checks whether tdl_website responds with a 404 (page
not found) error, when it receives a request for a non existent page. It uses one of the
previously defined TestConfiguration instances, and contains a sequence of Behavior
elements. Currently, twenty types of behavior are defined in the TDL standard
for describing expected behavior, failure upon deviations by default, actions and
interactions, and alternative, parallel, iterative, conditional, interrupting, defaulting,
and breaking behaviors. For example, lines 26 and 27 are instances of the Message
behavior. When the Message is sent from the tester component to the SUT, the
sent data is test input data (line 26) and otherwise is considered as an expected
output and the Message is thus equivalent to an assertion.

Moreover, TDL allows (i) importing a Package into another Package (using
ElementImport); (ii) extending a PackageableElement (for example, it is possible
to define an inheritance relationship between StructuredDataTypes by defining
Extension elements for them); and (iii) annotating Elements using Annotation.

2.3.2.1 TDL limitations

The presented example shows that TDL can be used to describe test cases in a
high level of abstraction, hence it is a good fit to be used by domain experts but
also challenging due to several reasons. First, all the required data types (e. g.,
lines 3–4) and test configurations (e. g., lines 7–11) have to be manually defined by
the domain expert. However, this effort is costly and error-prone and the domain
expert is unlikely to be knowledgeable enough for doing it.

Second, the TDL test cases are not directly executable. While a translational
semantics using TTCN-3 as a target language exists for TDL [53], this semantics
is only partial, and mainly aims to manage test cases for software systems com-
municating through common protocols (TCP, UDP, TELNET, SQL, HTTP, etc.).
Therefore, to use TDL for testing executable models, a new execution semantics is
required.

2.3.3 Testing Frameworks for DSLs
A testing framework for an xDSL enables testing the models conforming to the
xDSL. In the literature, there are both testing frameworks for particular xDSLs
and generic testing frameworks that are applicable to a wide range of xDSLs. In
this section, we provide an overview of their state-of-the-art.

2.3.3.1 DSL-specific approaches

Mens et al. propose a specific methodology for designing and early testing executable
statecharts [103]. In the design phase, several tasks have to be performed, some of

28

2.3. Testing

which are required for the testing phase such as defining the execution scenarios,
implementing the mapping between the steps of the scenarios and the statechart
test primitives (in Python), and writing unit tests (in Python). The scenarios and
the unit tests will then be executed on the statecharts to verify their behavior.
Although they support a complete process of designing and validating statecharts,
the testing activities should be performed by a technical tester as coding in Python
is required.

Iqbal et al. [75] aim at enabling the domain expert to perform testing of Real-
Time and Embedded Systems (RTES) as well as reducing the cost of testing on real
platforms. They propose the use of modeling languages—UML Profile for Modeling
and Analysis of Real-time and Embedded Systems (MARTE) and Object Constraint
Language (OCL)—for simulating the execution environment and the hardware
platform, but not modeling the software system under test. Therefore, their
approach improves the involvement of the domain experts in testing by allowing
early testing of the real RTES systems in a simulated environment. Hili et al.
propose an approach for interactive monitoring of real-time and embedded systems
modeled using UML Real-Time (UML-RT) [71]. Their approach enables different
external components such as tools for data collection, animation, simulation,
analysis, adaptation, and control to monitor the execution of the code generated
from a UML-RT model. As one of their case studies, they show how the approach
can be used to observe the functional behavior of the generated code. Therefore,
although they do not provide any testing approach for writing test cases, they show
how the approach can be applied for testing purposes. Moreover, they are focusing
on monitoring the behavior of the code generated from a model, not the executable
model itself.

To tackle the inherent complexity of testing domain intensive cloud applications,
a configurable test DSL is proposed by Santiago et al. [124]. Given an abstract
definition for a cloud application (including its user interface, user interactions,
data setup, environment, and platform configuration) using the domain concepts,
it generates a specific test DSL and a testing toolset named Legend for authoring,
executing, and debugging test cases for cloud applications [86].

In the context of measurement systems, a specific DSL named Sequencer is used
in the NASA awarded measurement system (DEWESoft) which enables adjusting
measurements and creating measurement procedures. To provide testing support
for the Sequencer DSL, Kos et al. propose a specific testing framework named
Sequencer Testing Tool (SeTT) [87]. The SeTT tool enables the domain expert
to define test cases for each part of the measurement system. It indeed allows
augmenting test elements such as assertions into the Sequencer models.

To define test cases for the executable business processes that are modeled using
Web Services Business Process Execution Language (WS-BPEL) or BPMN2, Lübke

29

2. Background & State of the art

and Van Lesson propose a specific testing approach [97]. They use a metamodel
extension technique to add test-specific elements (e. g., assertions) to the BPMN
metamodel. To ensure the test models have deterministic behaviors, they enforce
some control-flow restrictions. The domain expert can define test cases as BPMN
models in which there is one Pool describing the process under test and other
Pools specifying the test case behavior. The Pools communicate with each other
by exchanging messages. To execute such test models, the technical information
for running the physical operations of the process under test must be provided in
advance.

A sizable amount of work is proposing testing approaches for fUML [115] which
are described below. A Behavior-Driven Development (BDD) framework enables
describing the requirements as executable user stories and the acceptance criteria
as executable scenarios attached to the user stories. Lazăr et al. propose a BDD
framework for fUML by defining a UML profile for BDD and a BDD library
comprising executable commands required when describing fUML scenarios [91].
The framework allows the domain expert to define fUML models following a BDD
approach, meaning that he/she first defines executable fUML stories and scenarios
and then describes the fUML models satisfying them.

Arnaud et al. propose a testing approach for fUML where the behavioral
scenarios of a system are first described using UML sequence diagrams enriched with
timing properties that are described in the UML MARTE constraint language [18].
These diagrams describe the communications between the different components of
a system, and each component is itself described using fUML activity diagram. In
this work, a testing tool is provided which automatically evaluates the conformance
of the fUML activities with the sequence diagrams and their timing constraints. In
addition, they generate test input data from the sequence diagrams and use them
to test the behavior of the activity diagrams automatically.

Mijatov et al. propose a functional testing framework to validate the behavior
of fUML models [106]. For describing test cases, they provide an executable test
specification language that supports using temporal expressions for the precise
selection of the runtime states to be asserted, using OCL queries for specifying
complex assertions on the runtime states of a system that behaves concurrently,
and verifying the execution order of the activity nodes for concurrent systems.

Iqbal et al. introduce a simulation and test generation approach for the fUML
activity diagrams containing Alf8 code [74]. At first, the fUML models are translated
into Java code. Afterward, the test input data is generated automatically from the
Java code, enabling an exhaustive simulation of the fUML models. Finally, using
the provided simulation, the test cases along with the test oracle are auto-generated
satisfying 100 % coverage of the Java code.

8Action language for fUML

30

2.3. Testing

2.3.3.2 Generic approaches

When a grammar-based DSL has a translational semantics, if the target language
(i. e., a General-Purpose Language (GPL)) provides a unit testing framework (e. g.,
JUnit for Java), then the work of Wu et al. provides a unit testing framework for
that DSL [152]. It requires the language engineers to define the mapping algorithms
between the testing actions of their DSL and the target GPL. Accordingly, the
framework can translate test cases from DSL code to GPL which enables using the
GPL testing tools for executing test cases on the generated GPL code of the model
under test. It also translates the test results from the GPL code to the DSL, to
report the result using the domain concepts. Therefore, this approach is useful for
compiled DSLs and performs testing at the code level.

Sometimes, defining the expected output of a system for a given input data is
not possible or is too expensive. This problem is referred to as oracle problem and
to test systems with oracle problem, metamorphic testing technique is usually used.
This technique tests a system based on the relationships between multiple inputs
and their outputs. Cañizares et al. propose a generic approach for providing a
metamorphic testing environment for a given xDSL automatically [36]. They offer
a specific DSL namely Gotten to write metamorphic relations (i. e., test cases in
the metamorphic testing approach). The language engineer must define how to run
the metamorphic relations on a model and how to validate if a relation is satisfied.

The work of Meyers et al. is the closest to our work [105]. They propose a
generic testing approach for xDSLs with discrete-event semantics i. e., reactive
xDSLs. Given an input xDSL, it generates an xDSL-specific testing language by
extending the abstract syntax of the xDSL with a limited set of testing features.
To execute each test case written using this language, the operational semantics
of the xDSL must be instrumented specifically for it. Instrumentation means new
execution rules (i. e., for test case execution) must be added to the xDSL’s execution
rules. This in turn requires the language engineer to enrich the abstract syntax of
the xDSL with event-related concepts to specify where new rules must be added.

2.3.3.3 Limitations

To sum up, many testing frameworks aim at providing testing facilities for behavioral
models. Among them, some perform testing at the code level (i. e., the code
generated from behavioral models) [71, 74, 103, 152], thus they are not usable
by domain experts who do not have the technical knowledge to work with the
generated code. In contrast, some allow testing at the model level by enabling the
domain experts to describe test cases using the DSL they are familiar with [18,
86, 87, 91, 97, 106, 124]. Although they promote usability for the domain experts,
they lack reusability since a new testing language must be engineered for each new

31

2. Background & State of the art

DSL, representing a costly and error-prone work.
To solve the reusability issue, more generic approaches have also been proposed

which target a wide range of xDSLs. However, they expose particular constraints
that make their use limited and/or difficult. More precisely, the work of Wu et
al. [152] needs a bidirectional compiler between a given grammar-based compiled
DSL and its target executable language, and the approach proposed by Cañizares et
al. [36] is only applicable for metamorphic testing and does not provide any test
execution facility by itself. Also about the work of Meyers et al. [105], as it requires
changing the xDSL definition for each test case to be able to execute it, their
approach is neither directly applicable to a given xDSL nor easily usable by the
domain experts.

Lastly, all the existing testing frameworks in the context of xDSLs are mainly
focused on providing test case definition and execution facilities. However, a
proper testing framework must also support its users in performing post-execution
activities, such as measuring quality, debugging in case of test failure, and improving
when the quality is low. In the remainder of this chapter, we provide the background
for each of these concerns because they will be discussed in this thesis.

2.3.4 Test Quality Measurement
The number of potential inputs for most programs is large and cannot be explicitly
enumerated. Therefore, it is not always feasible to perform a complete testing
of a program and there is a need for a stop criterion that determines how much
testing is required to reach a certain level of confidence in the program’s verification.
Test quality measurement techniques aim at providing such a criterion. Measuring
the quality of a test suite often helps to decide whether the test suite should be
improved, and how much effort should be put into this endeavor. In the realm
of programming languages, coverage computation and mutation analysis are two
popular means of test quality measurement [12] which are introduced in this section.

2.3.4.1 Coverage computation

Coverage computation is a test quality measurement technique which analyzes
how much of the system under test is exercised by a given test case based on a
given criterion. There are many coverage metrics in the literature, and each of
them observes the system execution from a different perspective. For example, in
the context of programming languages, statement coverage metric computes the
percentage of the statements of the software that are executed and method coverage
metric calculates the percentage of the methods whose at least one of their inner
statements is executed [12].

32

2.3. Testing

The most used approach for measuring coverage of software programs is in-
strumentation in which additional code that does not change the behavior of the
program is added to the program to collect information about whether some re-
quirement have been met. For example, listing 2.4 shows a Java program and
listing 2.5 shows how it is instrumented to capture if the body of an if block has
been reached during an execution (line 4 is added) [12].

1 public int main (A, B){
2 int m = A;
3 if (A>B){
4 m=B;
5 }
6 return (m);
7 }

Listing 2.4: Original function
(taken from [12])

1 public int main (A, B){
2 int m = A;
3 if (A>B){
4 Mard: "if body has been reached"
5 m=B;
6 }
7 return (m);
8 }

Listing 2.5: With instrument (taken
from [12])

Coverage Computation for programming languages. In the context of
programming languages, several coverage frameworks are already proposed. For
example, Misurda et al. [107] propose a tool called Jazz for testing Java programs
and measuring their coverage using a dynamic instrumentation technique. This
technique inserts and deletes instrumentation during the execution of the program
as needed by the considered coverage metric. Bordin et al. [28] introduce the
Couverture tool which is able to measure structural coverage from detailed execution
traces produced by a virtualized execution platform. CodeCover is a well-known
coverage tool proposed by Patil et al. [117] for Java and COBOL languages which
supports several coverage metrics including, statement coverage, branch coverage,
loop coverage, and condition/decision coverage. While most of the instrumentation-
based tools work at the byte code level, meaning that they instrument the byte
code generated from the source code, CodeCover instruments the source code itself
to produce more accurate measurements.

Sakamoto et al. [123] propose an extensible tool called Open Code Coverage
Framework (OCCF) aiming at providing coverage computation for those programs
implemented by several programming languages, such as web applications. It is
customizable for new programming languages and supports both a set of existing
test coverage criteria and the addition of new developer-defined test coverage.
Their evaluation on eight programming languages (C, C++, C#, Java, JavaScript,
Python, Ruby and Lua) demonstrated the benefits of using generic approaches for
computing coverage.

33

2. Background & State of the art

Coverage Computation for DSLs. The benefits of using coverage computation
in the context of software testing motivated its usage in the context of model testing.
Accordingly, several research efforts have proposed the use of existing coverage
criteria for specific modelling languages, e. g., logic coverage for State Machines [50],
data-flow coverage for executable UML models [145], branch coverage for activity
diagrams [27], among many others. However, to the best of our knowledge, there
is no generic coverage criteria for executable models. Also, this topic is not yet
discussed within the context of language workbenches [51].

2.3.4.2 Mutation analysis

Mutation analysis is a popular test quality measurement technique, which follows
this idea: if we inject artificial faults into a program, an existing test suite that
can find these faults is probably good enough at discovering real faults [47]. The
artificial faults are defined in the form of mutation operators which perform small
modifications (e. g., flipping > by < in an expression or changing the value of
constants) on the source code. They are systematically applied on a program to
produce a set of mutants (i. e., faulty programs). Afterward, the program’s test
suite is run on each mutant. If there is at least one test case in the test suite that
its execution is different for the program and the mutant, we conclude the test
suite has detected the fault of the mutant, and the mutant is said to have been
‘killed’ by the test suite. Finally, a mutation score is calculated as follows:

mutation score = number of killed mutants

number of generated mutants

This mutation score is a criterion for measuring the quality of the test suite [13].

Mutation Analysis for programming languages & DSLs. Providing muta-
tion analysis for a specific language requires:

• a way to define mutation operators for the language and apply them on the
programs defined by the language to generate mutants.

• a way to execute programs’ test suites on the mutants and calculate their
mutation score.

Accordingly, we can find many efforts in the literature introducing mutation
operators for specific programming languages (e. g., C [4, 80], C++ [46], Java [34,
85]) as well as modeling languages (e. g., UML class diagrams [64], UML state
machines [7], finite state machines [95, 119], Petrinets [54]). The mutation analysis
of model transformations, part of xDSLs, has also been considered. Mottu et al. [109]
introduced a set of mutation operators dedicated to model transformation testing

34

2.3. Testing

but remaining language-independent. Their mutation operators are metamodel-
based, considering the metamodels involved in a model transformation (cf page 14)
instead of the transformation language. It has then been adapted to specific
model transformation languages such as ATL (Guerra et al. [65]). The problem
of generating model transformation mutants with a generic approach has also
been studied by Aranega et al. [14]. It also investigated how to define mutation
operators for any DSL in a systematic approach [9]. Gómez-Abajo et al. propose a
specific language named WODEL which allows to define mutation operators for
any metamodel-based DSL [61].

Moreover, several approaches and tools are proposed so far for the systematic
application and execution of mutants and test suites, such as Proteum for finite
state machines [55], MoMut for UML state machines [89], and WODEL-Test [62]
that is a generic tool which automatically provides a mutation testing environment
for any metamodel-based DSL if (i) the language engineer defines the mutation
operators for his/her DSL using WODEL language; and (ii) there is an existing
testing framework for the DSL which provides facilities for testing DSL’s conforming
models. This thesis uses WODEL-Test as it is a generic tool which can be applied
on DSLs considered in the scope of this thesis (will be discussed in Section 4.3 on
page 89).

For example, listing 2.6 shows a few of the xArduino mutation operators that
we defined using the WODEL language [61] in the context of this thesis. It starts
with specifying the mutant generation mode which could be a specific number or
exhaustive to generate all the possible mutants (line 1). A WODEL file also needs
to know the output path for saving the generated mutants (the in path in line 2),
the path to the input model (the from path in line 3), and the path to the input
metamodel (the metamodel path in line 4). The presented mutation operators act
as follows:

• cmar: if the input model has at least one ModuleAssignment instance and at
least two Module instances, it generates a mutant by changing the module
reference of the ModuleAssignment to another Module.

• cbbo_equal: if the input model has at least one BinaryBooleanExpression
instance that its operator is not ’equal’, it generates a mutant by changing
the operator to ’equal’.

• cic: if the input model has at least one IntegerConstant, it generates a mutant
by changing the value of the constant to a random integer.

2.3.5 Fault Localization
When a test case fails, assuming the test case is correct, there is a fault in the
system under test that must be fixed. To fix this fault, we need to first find its

35

2. Background & State of the art

1 generate exhaustive mutants
2 in "data/out/"
3 from "data/model/"
4 metamodel "/../arduino.ecore"
5
6 with blocks {
7 cmar "Changes ModuleAssignment reference to another module" {
8 m = select one Module
9 modify one ModuleAssignment where {module <> m} with {module = m}

10 }
11 cbbo_equal "Changes Binary boolean expression operator: equal" {
12 modify one BinaryBooleanExpression where {
13 operator in [’sup’, ’inf’, ’infOrEqual’, ’supOrEqual’, ’AND’,

’OR’, ’Different’]
14 } with {operator = ’equal’}
15 }
16 cic "Changes the value of integer constant"{
17 modify one IntegerConstant with {value = random-int(2,4)}
18 }
19 ...
20 }

Listing 2.6: Some of the xArduno mutation operators implemented in WODEL

location and this can be performed using two sets of techniques [150]:

• Traditional techniques: they are usually applied for manual fault localization
of small programs.

• Advanced techniques: they are commonly used for automatic fault localization
of large and/or complex programs.

According to a recent survey on software fault localization techniques, interactive
debugging is a popular traditional technique, and the mostly used advanced tech-
nique is Spectrum-Based Fault Localization (SBFL) [150]. This thesis considers
these two approaches which are explained in the following.

2.3.5.1 Interactive debugging

Interactive debugging involves manual control and observation of an execution
with the help of an interactive debugger. Such debugger provides services to
pause and unpause the execution through breakpoints—i. e., conditions upon which
the execution must be paused, such as “reaching a specific model element"—and
prepares information to observe the execution, such as the current stack of method
calls or the values of all existing variables [150]. An execution can be represented as

36

2.3. Testing

a sequence of execution steps (e. g., a sequence of statements), and a step may itself
contain a sequence of inner steps (e. g., method calls, leading to more statements).
Based on this representation, an interactive debugger also provides a common set
of operators to perform step-by-step observation of an execution, such as:

• The resume operator, to continue the execution until a breakpoint is reached.
• The step over operator, to continue the execution until the end of the current

step or until a breakpoint is reached, hence ignoring the possible inner steps.
• The step into operator, to continue the execution until either some inner step

is reached (if any) or when the current step ends.

Note that a typical interactive debugger offers other services as well, such as
conditional breakpoints or the ability to query/change the model runtime state.
Yet, this thesis focuses only on the above-described stepping operators—which are
the most essential services of an interactive debugger—and leaves other debugging
services for future work.

Interactive Debugging for DSLs. Providing debugging facilities for domain-
specific languages has been investigated by several works. In a nutshell, there are
approaches for debugging both executable UML models [37] and executable EMF
models [30]. According to a recent survey on UML model execution [37], 21 out of
82 solutions are concerned with providing debugging facilities at the model level,
13 of which offering tools as well. Bousse et al. [30] introduce a generic omniscient
debugging approach for executable DSLs. More specifically, their approach can
be configured for a given xDSL and then can be used to perform forward and
backward debugging of its conforming executable models. In this thesis, we use
this generic approach as it supports the xDSLs considered in the context of this
thesis (i. e., xDSLs defined according to the definitions given in Section 2.2 on
page 10). It is worth mentioning that, all the existing works in the context of
model-level debugging are focusing on debugging one model at a time while this
thesis is concerned with debugging two models—a test case and its model under
test—interactively (will be discussed in Section 5.3 on page 102).

2.3.5.2 Spectrum-Based Fault Localization (SBFL)

SBFL is a popular advanced fault localization technique that uses the results of test
cases and their corresponding code coverage information to estimate the likelihood
of each program component of being faulty. Depending on how the coverage is
computed (i. e., the coverage metric), the examined components could be different.
For example, when SBFL uses statement coverage for a Java program, it calculates
the probability of each program’s statement being faulty [150]. Generally, each

37

2. Background & State of the art

SBFL technique introduces an arithmetic formula that is based on a set of values
which are computed from the test verdict and coverage information:

• NCF : number of failed test cases that cover a statement
• NUF : number of failed test cases that do not cover a statement
• NCS: number of successful test cases that cover a statement
• NUS: number of successful test cases that do not cover a statement
• NC : total number of test cases that cover a statement
• NU : total number of test cases that do not cover a statement
• NS: total number of successful test cases
• NF : total number of failed test cases

For example, a well-known formula is Tarantula [81], defined as:

(NCF /NF)/(NCF /NF + NCS/NS)

It follows the idea that the elements executed by more failed test cases are more
likely to be faulty, and the ones executed by more passed test cases are less likely
to have a fault. For instance, Table 2.1 shows an example of using the Tarantula
SBFL technique to find the fault of a Java program (this sample is taken from
reference [150]). The program (column 2) takes a natural number namely a as
input. If it is greater than 1, then its addition to 1 and its multiplication by 2
will be printed. Otherwise, its minus from 1 and the number itself will be printed.
The program has a bug in statement s7 where the a number is not doubled. This
should be noted that, as SBFL considers each line of the program as a statement,
the way of writing the program may have a direct impact on the result produced
by SBFL techniques.

Table 2.1 presents three test cases of the program (tc1, tc2, tc3 in columns 3-5)
along with their execution result in the last row; the first two test cases are passed
(i. e., S for Successful) but the last one is failed (i. e., F for Failure). Moreover, the
coverage status of each program statement by each test case is determined using
the “•” symbol. Using these test verdict and coverage information, the values
for NCF and NCS parameters are calculated. Considering statement s7, one failed
test case has covered this statement (NCF = 1) and no passed test cases cover
it (NCS = 0). These values are then used for computing the suspiciousness score
of each statement based on Tarantula technique. Afterward, the statements are
ranked based on their score and the top-ranked ones are the most likely ones to be
faulty. As can be seen, the statement s7 is correctly ranked first.

SBFL for DSLs. Finding faulty elements of models has already been investigated
in the literature. Wang et al. [146] propose the application of spectrum-based and
mutation-based fault localization techniques for declarative models implemented

38

2.3. Testing

Table 2.1: An example showing the suspiciousness values computed using the
Tarantula technique (taken from reference [150] © 2016 IEEE)

Code with a bug at s7 tc1 tc2 tc3 NCF NCS Susp Rank
s1 input(a) • • • 1 2 0.5 3
s2 i = 1; • • • 1 2 0.5 3
s3 sum = 0; • • • 1 2 0.5 3
s4 product = 1; • • • 1 2 0.5 3
s5 if (i < a){ • • • 1 2 0.5 3
s6 sum = a + i; • 1 0 1 1
s7 product = a ∗ i; //bug • 1 0 1 1
s8 } else { • • 0 2 0 10
s9 sum = a− i; • • 0 2 0 10
s10 product = a/i; • • 0 2 0 10
s11 } • • 0 2 0 10
s12 print(sum); • • • 1 2 0.5 3
s13 print(product); • • • 1 2 0.5 3

Test Execution Results S S F

in Alloy. Although BLiMEA [16] and Ebro [15] detect errors in models based
on evolutionary algorithms and not SBFL, Arcega et al. [17] compare these pro-
posed tools for bug localization and show that the combination of these tools
outperforms existing approaches. Some studies detect the faulty element in model
transformations based on SBFL [96, 142]. Troya et al. [142] present an approach to
apply SBFL to locate the faulty rule in a model transformation and evaluate the
effectiveness of their approach by comparing a large set of different state-of-the-art
SBFL techniques, which is also reused in the context of our work. Nevertheless, to
the best of our knowledge, there is no generic approach providing advanced fault
localization facilities for xDSLs.

2.3.6 Test Amplification
Test amplification refers to all the existing techniques aiming at enhancing manually-
written test cases based on a specific goal, such as improving the coverage of changes
or increasing the accuracy of fault localization [42]. A subset of these techniques
focuses on improving manually-written test cases to avoid regression faults. Given
a test suite for a system, such techniques create new test cases by modifying the
test input data of existing test cases, and then run the system with this modified
data to put the system in unexplored states. For each new test case, an oracle is
generated by inferring assertions from the resulting execution trace of the system.

39

2. Background & State of the art

As new test cases are based on the current behavior of the system, these techniques
can effectively strengthen regression testing [43, 153].

For example, Listing 2.7 on page 40 shows a Java class named Stack which
is a simple implementation of a stack that stores unique elements in the elems
array. Using the push and pop methods, we can perform the standard push and
pop operations on the stack. Also we can check if the stack is full or empty using
the isFull and isEmpty methods, respectively. Listing 2.8 on page 40 shows a test
case for the stack Java class that has no assertion. It might be generated by an
automatic test case generation tool and is only useful to detect uncaught exceptions
or violations of some predefined contracts. Using a test amplification approach,
a test case like the one shown in Listing 2.9 on page 41 can be generated. As
can be seen, comprehensive assertions based on the current version of the system
under test are added to the initial test case. These assertions are indeed helpful in
detecting regression faults introduced in future program versions.

1 public class Stack {
2 private Comparable [] elems;
3 public Stack() { ... }
4 public void push(Comparable i) { ... }
5 public void pop() { ... }
6 public boolean isFull () { ... }
7 public boolean isEmpty () { ... }
8 }

Listing 2.7: Example of a toy class (taken from [42])

1 public class StackTest {
2 @Test
3 public void test1 () {
4 Stack s1 = new Stack();
5 s1.push(’a’);
6 s1.pop();
7 }
8 }

Listing 2.8: An initial JUnit test case for the toy class of Listing 2.7 (taken from [42])

Since test amplification may generate large amounts of test cases, it is important
to keep only the relevant ones. When the goal is to increase test case effectiveness
in detecting regression faults, an efficient technique for identifying relevant test
cases is mutation analysis, already described in Section 2.3.4.2 on page 34. We
use mutation analysis to check the degree of improvement that test amplification
provides, and as selection criterion for the most effective amplified test cases.

40

2.3. Testing

1 public class StackTest {
2 @Test
3 public void test1 () {
4 Stack s1 = new Stack();
5 assertTrue(s1.isEmpty());
6 assertFalse (s1. isFull ()) ;
7 s1.push(’a’);
8 assertFalse (s1.isEmpty());
9 assertFalse (s1. isFull ()) ;

10 s1.pop();
11 }
12 }

Listing 2.9: An augmented JUnit test case (taken from [42])

In the following, we provide an overview of the state-of-the-art related to
test amplification including, test input data modification, test amplification for
regression testing, and test case generation for behavioral models.

Test Input Data Modification. Data mutation testing [127] is a method
inspired by the classical mutation testing for generating large test suites from a
seed of a small set of test cases. The difference lies in how and where the mutation
operators are applied. In mutation testing, the mutation operators are applied to
the source code of a program to measure the adequacy of the test suite. Instead,
data mutation applies mutation operators to the test input data for generating
new test cases.

In the last years, this method has been applied for different purposes [135, 155,
157]. Sun et al. [135] propose a methodology for generating metamorphic relations.
These relations are created by applying data mutation in the input relation. Then,
a combination of constraint validation and generic mapping rules is used to generate
output relations. Similarly, Zhu [157] introduces JFuzz, an automated framework
for Java unit testing that combines data mutation and metamorphic testing for
deriving and expressing metamorphic relations. Xuan et al. [155] present a proposal
for detecting program failures by reproducing crashes through data mutation. In
contrast to the previous approaches, their work does not focus on generating new
test cases, but on updating the existing ones for triggering crashes on the program
under study and therefore, finding errors.

Generating input test cases is also essential for fuzzy testing [156], which consists
of generating random input data as a test case, and monitor the program for crashes
or failing assertions. Fuzzers—the programs generating the inputs—can generate
new inputs from scratch or modify existing ones using data mutation.

41

2. Background & State of the art

Test Amplification for Regression Testing. Several approaches use test
amplification for regression testing. Xie [153] presents a framework for augmenting
test suites with regression oracle checking. His proposal is supported by a tool, called
Orstra, which focuses on asserting the behavior of JUnit test cases. For this purpose,
Orstra amplifies automatically generated test suites by systematically adding
assertions for improving their capability of avoiding regression faults. DSpot [43]
targets the automatic amplification of JUnit test cases. It combines input space
exploration [139] with regression oracle generation [153] techniques. The former
is applied for putting the program under test in never explored states, and the
latter aims at generating assertions for those new states. Given a set of manually-
written JUnit test cases, DSpot generates variants of them which improve the
mutation score. On the basis of DSpot, Abdi et al. [1] propose Small-Amp, an
amplification approach for the Pharo Smalltalk ecosystem. Ebert et al. [126] provide
a test amplification tool for Python. To this aim, the authors rely on the DSpot
design, combining with Small-Amp features to alleviate the shortcomings related
to dynamically typed languages.

Assis et al. [20] present an approach for test amplification of cross-platform
applications. For this, the authors use four test patterns that analyze well-known
features of a mobile application. The test input data is a sequence of events that is
exchanged with the SUT and the input modifiers are defined using a set of test
patterns specific to mobile applications.

Test Case Generation for Behavioral Models. Some researchers use MDE
or other automated means to generate test cases from modeling artifacts, most
notably from requirement models, use cases, or activity diagrams [11, 90, 122, 143].
Most of these efforts follow one of two main approaches for test case generation:
path/coverage analysis [90, 122], or category partition [122, 143]. The former
approach is based on analyzing all possible paths of behavior in the source model,
and the latter partitions the requirements under test and generates test cases for
combinations of such partitions. Differently from the objective of this thesis, these
efforts are specific for models of system functional requirements, they do not assume
an initial set of test cases, and do not propose any test case improvement technique.

Outside requirements modeling, test case generation for behavioral models has
been handled using different methods. For example, Frolich and Link [58] generate
test cases from Statecharts by translating the Statecharts into a planning problem,
and using a planning tool to find test cases as solutions to the problem. Ahmadi and
Hili [6] present an approach to automatically test components of UML-RT models
with respect to a set of properties defined by state machines, and apply slicing to
reduce the size of the components with respect to the properties. Rocha et al. [121]
generate JUnit test cases from sequence diagrams via a transformation of the latter

42

2.4. Conclusion of the state-of-the-art

into extended finite state machines. From fUML activity diagrams, Iqbal et al. [74]
generate test cases with input data to cover all executable paths of the diagrams,
together with their expected output. The interested reader can consult [5] for a
recent survey on model-based testing using activity diagrams, including test case
generation. In summary, test case generation for behavioral models has been tackled
in the literature, but the proposals are normally language-specific. Moreover, these
proposals do not target test amplification (i. e., improving an existing test suite).

Also in the modeling area, some research efforts focus on test case generation
for model transformations, or transformation models. A test case in this scenario
comprises an input model to the transformation and an oracle function. For example,
Giron et al. [59] use software product lines and input metamodel coverage to generate
a reduced set of test cases for transformations; Guerra and Soeken [66] use constraint
solving to generate test models and partial oracles from declarative transformation
specifications; Al-Azzoni and Iqbal [8] apply test case prioritization for regression
of transformations based on an analysis of the transformation rules’ coverage; and
Troya et al. [141] infer likely metamorphic relations for ATL transformations, which
can be used for metamorphic testing. The approach proposed by Troya et al. relies
on the traces of the transformation executions to derive the metamorphic relations.

In summary, all existing test input data modification and test amplification
approaches and tools target programs implemented by programming languages
such as Java [43], Pharo Smalltalk [1], and Python [126]. However, this thesis aims
at providing test amplification for executable models defined by xDSLs. Moreover,
we find a variety of approaches for test case generation in the modeling area, but
to our knowledge, test case improvement for xDSLs is not investigated yet. A
potential test amplification approach for models can be a complement to these
existing test case generation approaches to improve the quality of their generated
test suites for regression testing.

2.4 Conclusion of the state-of-the-art
In this chapter, we presented all the material that are required to understand
the contributions of this thesis as well as to situate our work within the related
research work. In this section, we conclude this chapter by presenting a short
and scoped systematic review of existing approaches that, as far as we know,
aim to answer one or multiple of the challenges stated in the problem statement
(discussed in Section 1.2 on page 2). These approaches were all initially introduced
in Section 2.3.3 on page 28 and here we extract their features considering the
objectives of this thesis. Table 2.2 presents our considered features and the possible
alternatives for each of them, including:

43

2. Background & State of the art

• Scope: a testing framework can be either DSL-Specific or generic, meaning
that it is either defined for a particular DSL or applies to a wide range of
DSLs.

• xDSL type: the xDSLs supported by testing frameworks can be different
regarding their execution semantics. They can be compiled DSLs having a
translational semantics or interpreted DSLs having an operational semantics.

• Testing level: the definition of test cases can be supported in different levels
including, the model-level i. e., defining test cases for the models conforming
to the supported xDSL, or the code-level i. e., defining test cases for the code
generated from the model or interpreting the model.

• Test engineer: the person who is enabled to define test cases can be a
domain expert i. e., the user of the supported xDSL who defines the model
under test and is not usually a programmer, or a technical programmer who
has the expertise of a programming language (mainly when code-level testing
is supported).

• Test language: the language used for defining test cases can be a modeling
language that provides the domain concepts, or a programming language such
as Java.

• Test executability: a testing framework supports the definition of executable
test cases if it offers test execution on the models, oracle validation i. e.,
automatically examining whether the model under test behaved as expected
by an executed test case, and automatic reporting i. e., producing a meaningful
test execution result for the test engineer.

• Advanced facilities: a testing framework with advanced facilities supports
quality measurement of test cases, test debugging of failed test cases, and test
amplification to improve the written test cases.

Table 2.2 also presents the status of each related work regarding the mentioned
features. Overall, among the 13 related works:

• ten are DSL-specific [18, 71, 74, 75, 87, 91, 97, 103, 106, 124] and three are
generic to some extent [36, 105, 152].

• six are supporting compiled DSLs [71, 74, 75, 87, 124, 152], six interpreted
DSLs [18, 91, 97, 103, 105, 106], and the work of Canizares et al. [36] targets
both compiled and interpreted DSLs.

• nine allow to define test cases for the models [18, 36, 75, 87, 91, 97, 105, 106,
124] and the rest support code-level testing [71, 74, 103, 152].

44

2.4. Conclusion of the state-of-the-art

Table 2.2: An overview of the state-of-the-art

Paper
Scope xDSL

type
Testing

level
Test

engineer
Test

language
Test

executability
Advanced
facilities

D
SL

-S
pe

ci
fic

G
en

er
ic

C
om

pi
le

d
D

SL
s

In
te

rp
re

te
d

D
SL

s

M
od

el
-le

ve
l

C
od

e-
le

ve
l

D
om

ai
n

ex
pe

rt

Te
ch

ni
ca

lp
ro

gr
am

m
er

M
od

el
in

g
la

ng
ua

ge

Pr
og

ra
m

m
in

g
la

ng
ua

ge

Te
st

ex
ec

ut
io

n

O
ra

cl
e

va
lid

at
io

n

A
ut

om
at

ic
re

po
rt

in
g

Q
ua

lit
y

m
ea

su
re

m
en

t

Te
st

de
bu

gg
in

g

Te
st

am
pl

ifi
ca

tio
n

Mens et al. [103] • • • • • • • • •
Iqbal et al. [75] • • • • • • • • • • •
Hili et al. [71] • • • • • • •

Santiago et al. [124] • • • • • • • •
Kos et al. [87] • • • • • • • • •

Lubke and Van
Lessen [97] • • • • • • • •

Lazar et al. [91] • • • • • • • •
Arnaud et al. [18] • • • • • • • • • •

Mijatov et al. [106] • • • • • • • •
Iqbal et al. [74] • • • • • • • • • •
Wu et al. [152] • • • • • • • • •

Canizares et al. [36] • • • • • • •
Meyers et al. [105] • • • • • • •

• nine enable the domain expert to write test cases for models (the ones
supporting model-level testing) [18, 36, 75, 87, 91, 97, 105, 106, 124] and the
rest require a programmer to define test cases (the ones supporting code-level
testing) [71, 74, 103, 152].

• nine use/define a modeling language for the definition of test cases [18, 36,
75, 87, 91, 97, 105, 106, 124] while five use a programming language [71,
74, 75, 103, 152] (the work of Iqbal et al. [75] uses both a modeling and a
programming language).

• all the 13 approaches support test execution, 11 of them offer oracle valida-
tion [18, 74, 75, 87, 91, 97, 103, 105, 106, 124, 152], and nine of them provide
automatics reporting [18, 74, 75, 87, 91, 97, 103, 106, 152].

• quality measurement is mentioned in three related work [18, 74, 75], test
debugging is supported by six approaches [71, 75, 87, 103, 124, 152] (four of
them indeed rely on the debugging facilities of their considered programming
languages [71, 75, 103, 152]), and two approaches consider improving test
cases but not necessarily with test amplification technique [18, 74].

In this thesis, we aim at proposing a generic testing framework for intereprted
DSLs which allows the domain experts to define executable test cases for models and

45

2. Background & State of the art

provides advanced testing facilities for them. To the best of our knowledge, none of
the existing approaches fulfill simultaneously all the requirements we considered.

46

Chapter 3

Test Case Definition and
Execution

3.1 Introduction
A testing framework must at least include (i) a way to write test cases, and (ii)
a way to execute such test cases in unison with the programs or models under
test. Providing these testing facilities for a given new xDSL remains an expensive
and error-prone task due to three interconnected challenges. First, to allow the
domain expert to write test cases for models, a testing language must be defined,
generated, or identified. In particular, this testing language must somehow allow
the domain expert to use domain concepts to define how a model under test should
be executed, and what results should be expected from the execution. Second, the
execution semantics of this testing language must somehow be connected to the
execution semantics of the considered xDSL, for the testing language to demand the
execution of models as needed. Third, this testing language must provide facilities
to analyze the runtime behavior of the tested model and to compare it with the
expected one.

A recent effort of the European Telecommunications Standards Institute (ETSI)
led to the creation of the Test Description Language (TDL) [98]. Since TDL is
not specific to any specific GPL or xDSL, it represents an interesting candidate
for generically writing test cases for executable models. In addition, TDL was
designed as a simple language for testers lacking programming knowledge, making
it a good fit for domain experts working on models. Unfortunately, TDL fails to
fully address the three aforementioned challenges:

• because of its genericity, TDL requires the domain expert to first define the
required domain-specific concepts, before being able to write test cases.

47

3. Test Case Definition and Execution

• the TDL standard does not provide any clear way to make TDL test cases
able to execute models conforming to a given xDSL.

• the TDL standard relies on a simple representation of the expected observable
behavior of the system under test and does not provide any efficient way to
analyze an arbitrarily complex runtime behavior of a tested model.

In a context where the engineering of new xDSLs is recurrent, a desirable
solution would be generic test case definition and execution facilities that can be
systematically applied to any given xDSL, indeed be used for testing the models
conforming to the xDSL. In this section, we address the above-mentioned limitations
and thereby propose such generic testing facilities for xDSLs. We use TDL as a
testing language by relying on three main contributions.

First, we provide a model transformation to automatically generate a TDL
library—i. e., all the TDL boilerplate code that the domain expert would otherwise
write by hand—from the definition of an xDSL. Such generated TDL library can
be used by the domain expert to write test cases for models (conforming to the
considered xDSL) using the domain concepts.

Second, we provide an operational semantics for TDL, adapted to the testing
of executable models. To be compatible with a wide range of diverse xDSLs, this
operational semantics for TDL is not coupled to any specific xDSL, nor to any
specific metaprogramming approach used to define the considered xDSL.

Third, the approach provides three different methods to interrogate the runtime
behavior of the tested model: (i) relying on model comparison; (ii) relying on the
xDSL’s behavioral interface as it defines the observable events that a running model
may expose; and (iii) relying on an Object Constraint Language (OCL) interpreter.
This enables the definition of oracles for executable models in TDL test cases.

In the following, we first present an overview of our proposed testing facilities
for xDSLs (Section 3.2). We then describe what should a TDL test case look like
through examples in Section 3.3. Afterward, each provided facility is individually
detailed in Sections 3.4, 3.5, and 3.6. Section 3.7 presents our tool support
and Section 3.8 shows an empirical evaluation of the provided facilities. Finally,
Section 3.9 concludes this chapter with an outline for future work.

3.2 Overview
Figure 3.1 presents an overview of our proposed testing facilities for xDSLs1,
supporting the definition and the execution of TDL test cases for the conforming

1Elements of the Figure are written in italic in the text.

48

3.2. Overview

Model Under Test

executes

Execution
Engine

imports

TDL Test Cases

Domain-Specific
TDL Library

TDL
Library Generator

TDL Model

Domain
Expert

reads

Operational
Semantics

Behavioral
Interface

Abstract Syntax

xDSL

implemented by

conforms to

Language
Engineer

TDL Abstract
Syntax

defines

asks to show
results

asks to
generate

library

imports

sends/receives
event occurrences

runs OCL queries

runsTDL
Interpreter

asks to
execute model

reads

asks to run
test cases

conforms to

uses
Event

Manager

evaluates

Query
Evaluator

uses

Manually-
defined Artefact

Generated
Artefact

Existing
Tool

Proposed
Tool

depends on

produces

user action

Legend

defines 1

2

Test Results

uses

Test Result
Reporter

3
defines

Figure 3.1: An overview of the proposed test case definition and execution facilities

executable models. At the top left corner, we assume that an xDSL either non-
reactive or reactive was implemented by a language engineer according to the
definitions given in Section 2.2. On the right, the domain expert uses the provided
xDSL to define an executable model and wishes to write TDL test cases for this
model to ensure it behaves as expected.

The TDL Library Generator (label 1) automatically generates a domain-specific
TDL Library that the domain expert can then use to conveniently write test cases
for executable models conforming to the given xDSL. This library provides all
the data types required for the specification of test data, a set of default test
configurations, elements for requesting the execution of the models under test, and
elements for writing OCL queries [41] in the TDL test cases. Moreover, when the
given xDSL is reactive, hence having a behavioral interface (at the top left corner),
the generated library also provides an event-compatible TDL package comprising
the required elements for writing and executing event-driven TDL test cases for
reactive models. As shown in Figure 3.1, the library generator requires as input
data the definition of the xDSL. In particular, the abstract syntax, the part of the
operational semantics defining the possible runtime states of the conforming models,
and the behavioral interface (for reactive xDSLs). More details are provided in
Sections 3.4.

Executing TDL test cases on the models is the role of the TDL Interpreter
component (label 2). This interpreter is based on an operational semantics for
TDL, adapted to the testing of executable models. For this purpose, it is connected
to three external components: the Execution Engine, the Query Evaluator, and the
Event Manager. We assume that the Execution Engine exists and provides services
to trigger the execution of a model conforming to an xDSL. In particular, that this

49

3. Test Case Definition and Execution

engine is able to load a model, load an xDSL, and execute the model using the
operational semantics of the xDSL. Here, the execution engine is used by the TDL
Interpreter to start the execution of a model, to get the content of the model, or to
set the model in a specific runtime state.

We also consider that the Query Evaluator can evaluate OCL queries [41]. This
component is used by the TDL Interpreter to evaluate queries written inside TDL
test cases, so the query validation result can be used as part of the oracle of a TDL
test case. Finally, we assume that an Event Manager exists and provides services
to interact with a running reactive model. More precisely, given a reactive xDSL,
it enables the external tools such as testing tools to exchange events conforming to
the xDSL’s behavioral interface with the models conforming to the xDSL’s abstract
syntax at runtime. We provide a detailed explanation of the TDL Interpreter in
Section 3.5.

At the end of the test execution, the TDL Interpreter produces a report of
test results. The Test Result Reporter component (label 3) visualizes this report
in a user interface as well as serializes it as a persistent file. Accordingly, the
domain expert can use this component to investigate the test execution results. In
Section 3.6, more details are given.

With everything in place, the domain expert can use the generated domain-
specific TDL library to write test cases, can then use the TDL interpreter to
execute them, and can see the results and save them. In subsequent, we describe
what should a TDL test case look like through examples. Then we introduce each
proposed component in detail.

3.3 Samples of TDL Test Cases
Depending on how the operational semantics of an xDSL is defined (i. e., content-
based when the xDSL is non-reactive, event-driven when the xDSL is reactive),
its conforming models will be executed differently. As already mentioned in
Section 2.2.3, the execution of a non-reactive model is performed in a closed
environment while a reactive model can interact with the external environment
during its execution (based on the xDSL’s behavioral interface). This difference
has a direct impact on how we write and execute test cases on models. To make
this difference clearer, we wrote one test case for the xArduino sample model in
two styles, as presented below.

3.3.1 A Sample Test Case for a Non-Reactive Model
Closed execution of non-reactive models means (a) it is possible to provide an
initial runtime state for the model before its execution is started; and (b) it is

50

3.3. Samples of TDL Test Cases

possible to retrieve the final runtime state of the model at the end of its execution.
Therefore, in a prospective test case of a non-reactive model, the test input data
and the expected output are both the model under test in different runtime states.
For example, if we define such a test case for the xArduino model of Figure 2.2 on
page 12, it would look like Figure 3.2(a). It is defined as a scenario of exchanging
messages between a Test Component and the System-Under Test (SUT), in this
case, the xArduino model. This test case checks whether the LED turns on when
the button is pressed and whether the alarm alternates between noise/silence
periods when the sensor detects an obstacle.

First, the test component sets the model in a specific runtime state where the
button1 and the infrared sensor are turned on. Then it requests for running
the model under test and retrieving its runtime state after the execution. The test
case expects to observe that the white Led turns on and the buzzer turns on and
off two times. This expected output is defined as a list of changes of the level of
whiteLedPin and buzzerPin, captured as the value of pinChanges dynamic feature
(i. e., part of the runtime state definition already shown in Figure 2.3 on page 15).
The assertion fails because due to the defect of the model (highlighted in red in
Figure 2.2 on page 12), the buzzer turns on and off only one time.

3.3.2 A Sample Test Case for a Reactive Model
As the behavioral interface of a reactive xDSL defines how to interact with the
conforming models, a prospective test case for a reactive model should be described
as a scenario in which the test system sends instances of accepted events to the
model and checks whether the model sends back the expected exposed events
instances. For example, Figure 3.2(b) shows such a test case for the xArduino
model of Figure 2.2 on page 12, considering its reactive execution.

The test data are instances of the events specified by the behavioral interface of
the xArduino DSL (Figure 2.5(c) on page 19). The values of the events’ parameters
are elements of the xArduino model with values for their runtime features, such as
buzzerPin element with value 1 for its level feature. This test case has the same
logic as the test case of Figure 3.2(a). Due to the defect of the xArduino model
(highlighted in red in Figure 2.2 on page 12), the first three assertions pass but the
last two fail; their corresponding arrows in Figure 3.2(b) are highlighted in green
and red, respectively.

Therefore, depending on how the operational semantics of an xDSL is defined
(i. e., content-based when the xDSL is non-reactive, event-driven when the xDSL
is reactive), test cases for its conforming models must be defined and executed
differently. In the remainder of the section, we explain how our proposed approach
provides facilities for the domain expert to write such test cases for any executable
model.

51

3. Test Case Definition and Execution

Test
Component

SUT
(xArduino model)

{button1Pin (level = '1'),
IRSensorPin (level = '1')}

runModel

getModelState

project (pinChanges = {
 whiteLedPin (level = '1'),
 buzzerPin (level = '1'),
 buzzerPin (level = '0'),
 buzzerPin (level = '1'),
 buzzerPin (level = '0') })

(a) The TDL test case when executed by the xArduino
content-based semantics. It has one failed assertion (high-
lighted in red).

Test
Component

SUT
(xArduino model)

IRSensor_detected (infrared sensor)

pin_level_changed (buzzerPin == 1)
pin_level_changed (buzzerPin == 0)

button_pressed (button1)
pin_level_changed (whiteLedPin == 1)

pin_level_changed (buzzerPin == 1)
pin_level_changed (buzzerPin == 0)

(b) The TDL test case when executed by the xArduino
event-driven semantics. It has two passed and two failed
assertions (highlighted in green and red, respectively).

Figure 3.2: A potential TDL test case for the xArduino model of Figure 2.2 on
page 12 that is written in two styles to be executed by two different xArduino
execution semantics.

52

3.4. TDL Library Generator

3.4 TDL Library Generator
This section presents the TDL Library Generator, whose role is to produce a TDL
library specific to a given xDSL. We first present how the component works and
then explain what are the contents of the generated TDL library. Afterward, we
show how such a library can be used by the tester (i. e., the domain expert) to
write test cases for models conforming to the xDSL.

3.4.1 Description of the Library Generator
Figure 3.3 illustrates a detailed overview of the TDL Library Generator. As
can be seen, the generator reads the definition of an xDSL and produces a TDL
library specific to the xDSL providing a set of TDL elements for the tester. More
specifically, the TDL library generated for each given xDSL contains a set of TDL
Packages:

1. xDSL-Specific Types Package, containing the TDL data types required for
the specification of test data. They are generated by a model transformation
from the Ecore metamodel of the xDSL (i. e., its abstract syntax and the
parts of its operational semantics defining the possible runtime states of the
conforming models) to TDL.

2. xDSL-Specific Events Package, having the TDL definition of the events
of the xDSL’s behavioral interface. They are needed for the specification of
test data when testing reactive models. This package is generated through a
model transformation from behavioral interface of the given xDSL to TDL.

3. Common Package, providing TDL elements common to any given xDSL,
including a set of elements for performing operations on the model under test
and elements for enabling the use of OCL queries in the test cases.

4. Test Configuration Package, providing a default test configuration to be
used by the TDL test cases written for executable models.

The xDSL-Specific Events Package is generated solely for reactive xDSLs while
the others are generated for any xDSL (i. e., either non-reactive or reactive). As can
be seen in Figure 3.3, the Common Package and the Test Configuration Package
are provided by a code generator (it only requires the name of the xDSL as input).

In what follows, we present in order how each package is generated. At the end,
we show how they can be used for writing test cases for executable models.

53

3. Test Case Definition and Execution

Abstract Syntax

Runtime state

definition

Behavioral Interface

xDSL

<<extends>>

TDL Library Generator

Ecore to TDL
Transformer

Domain-Specific

TDL Library

xDSL-Specific
Types Package

Generated
artifact

User-provided
artifact

Proposed
Tool

produces dependency

L
e

g
e

n
d

reads

defines

runs uses

Behavioral Interface
to TDL Transformer

xDSL-Specific
Events Package

TDL Code
Generator

Common
Package

Test Configuration
Package

Figure 3.3: Detailed overview of the TDL library generator

3.4.2 Generation of the xDSL-Specific Types Package
As discussed in Section 2.3.2 on page 25, to use TDL for a specific domain, all data
types required for the specification of test data have to be defined beforehand. Yet,
in the context of testing executable models, we can observe that these data types
are in fact already defined as part of the definition of the considered xDSL, both
in the abstract syntax and in the definition of the possible runtime states in the
operational semantics. It is therefore possible to infer the required TDL data types
from this information.

As explained in Section 2.2 on page 10, we consider that the Ecore metamodel
of the xDSL includes the abstract syntax and is extended by merging the definition
of the possible runtime states of conforming models. Accordingly, we rely on a
model transformation from Ecore to TDL to automatically generate the required
TDL data types for testing executable models conforming to a given xDSL.

A summary of the transformation rules is shown in Table 3.1. Each rule takes
one element from the left column and transforms it into an element of the same
row of the right column. In a nutshell, the objective of this transformation is to
transform each Ecore EClass into a TDL data type, either simple or structured. An
EClass containing EStructuralFeatures (i. e., attributes and references) is transformed
to a StructuredDataType containing Members, each of which corresponds to one
feature of the EClass. To distinguish abstract classes from concrete ones and
dynamic features from static ones, annotations are generated and assigned to
the corresponding element. An inheritance relationship between two classes is
transformed into an Extension relationship in TDL. The transformation generates

54

3.4. TDL Library Generator

Table 3.1: Outline of the Ecore to TDL transformation rules

Source Ecore
element Target TDL element

EClass with no
EStructuralFeature SimpleDataType

EClass containing
EStructuralFeature

StructuredDataType containing one Member per
EStructuralFeature

Abstract EClass an Annotation of ‘abstract’ AnnotationType is set
to its corresponding DataType

Inherited EClass an Extension of the DataType generated for each
of its super classes, assigns to its related DataType

EStructuralFeature
(EAttribute and
EReference)

Member contained in the StructuredDataType that
is generated for its container EClass. Its type is the
DataType corresponding to the feature eType

Dynamic
EStructuralFeature
(having a ‘dynamic’
EAnnotation)

an Annotation of ‘dynamic’ AnnotationType is set
to its corresponding Member

EDataType SimpleDataType
EEnum SimpleDataType

EEnumLiteral SimpleDataInstance that its type is the
SimpleDataType of the related EEnum

EPackage Package containing all the generated elements as
packagedElement

simple TDL data types for Ecore primitive data types (EDataType) and Enums, and
EnumLiterals are transformed to the instances of the TDL data type corresponding
to their related enum. Finally, an Ecore EPackage is transformed to a TDL Package
that is the root container of all the generated TDL elements.

We used the ATL language [82] to define the transformation rules. An excerpt
of this transformation is shown in Listing 3.1 on page 56, with the ATL code for
transforming a concrete Ecore class containing features and superclasses, to a TDL
structured data type containing members and an extension for each of its super
classes. This rule has several calls to other transformation rules that are provided
in Appendix A.

Listing 3.2 on page 57 presents the TDL DataTypes generated from the Ecore
metamodel of the non-reactive xArduino (Parts (a) and (b.1) of Figure 2.6 on
page 22). The abstract Annotation element is for specifying the TDL DataTypes
generated for an abstract EClass, such as Project (line 6) and Board (line 7).

55

3. Test Case Definition and Execution

1 rule concreteInheritedClass2structuredType {
2 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
3 and class.eSuperTypes.notEmpty()
4 and not class.abstract)
5 to type: TDL!StructuredDataType(
6 name ← class.name,
7 member ← class.eStructuralFeatures→ collect(f |
8 if (f.isDynamicFeature)
9 then thisModule.dynamicFeature2annotatedMember(f)

10 else thisModule.staticFeature2member(f)
11 endif),
12 extension ← class.eSuperTypes → collect (st | thisModule.

superClass2extension(st)))
13 }

Listing 3.1: Example of an Ecore to TDL transformation rule

Moreover, to distinguish the TDL DataTypes generated for the dynamic elements,
an Annotation named dynamic is defined and assigned to them, such as the pin-
Changes member of the Project (line 5) and the level member of the DigitalPin
(line 10).

The only difference between the Ecore metamodel of the non-reactive and
reactive xArduino is the pinChanges dynamic feature i. e., defined only for non-
reactive xArduino (refer to Figure 2.6 on page 22). Consequently, the xDSL-specific
types package for the reactive xArduino (generated from parts (a) and (c.1) of
Figure 2.6 on page 22) would be the same as listing 3.2 but without the pinChanges
Member, as shown in listing 3.3 on page 57. Using these generated packages, the
domain expert can easily define model elements along with their runtime states in
TDL and use them as test data.

3.4.3 Generation of the xDSL-Specific Events Package
As discussed in Section 3.3.2 on page 51, to write test cases for a model conforming
to a reactive xDSL, we need to use the events of the xDSL’s behavioral interface as
test data types. This means the testing language should support using the events
for the definition of test data. Since our approach uses the TDL testing language,
we need the definition of the events in TDL, which we provide by the xDSL-Specific
Events package.

This package is automatically generated by a transformation from the be-
havioral interface metamodel (already shown in Figure 2.4 on page 18) to TDL.
Table 3.2 shows the outline of the transformation rules. In a nutshell, a Behavioral-
Interface is transformed to a TDL Package that is the container of other elements.

56

3.4. TDL Library Generator

1 Package xArduinoTypes_nr {
2 Type Project (
3 boards of type Board,
4 sketches of type Sketch,
5 pinChanges of type DigitalPin with {dynamic;}
6) with {abstract;};
7 Type Board (pins of type DigitalPin) with {abstract;};
8 Type Sketch (block of type Block);
9 Type DigitalPin (

10 level of type EInt with {dynamic;},
11 module of type Module
12) with {abstract;};
13 Type Module (
14 _name of type EString
15) with {abstract;};
16 Type PushButton extends Module();
17 Type InfraRedSensor extends Module();
18 ...
19 }

Listing 3.2: Some of the TDL data types generated for the non-reactive xArduino

1 Package xArduinoTypes_r {
2 Type Project (
3 boards of type Board,
4 sketches of type Sketch
5) with {abstract;};
6 ...
7 }

Listing 3.3: Some of the TDL data types generated for the reactive xArduino

Each Event is transformed to a StructuredDataType which is annotated according
to the EventType and comprises Members generated for the EventParameters. To
assign the type of Members, the content of the previously generated xDSL-Specific
Types Package is used by creating an Import element.

Listing 3.4 shows the xDSL-Specific Events Package generated for the behavioral
interface of the reactive xArduino (Figure 2.6(c.3) on page 22). To distinguish
accepted events from exposed events, two Annotation elements are generated (lines 4-
5). For each event of the behavioral interfaces, a TDL Type is produced (lines 7-13).
Each event is annotated with one of the Annotation elements according to the type
of the event.

The parameters of the events are transformed to Members of the TDL Types.
For example, line 7 shows the Member generated for the button parameter of the

57

3. Test Case Definition and Execution

Source BI element Target TDL element
Behavioral-
Interface Package containing all the other generated elements

- Import the xDSL-Specific Types Package
EventType AnnotationType

Event StructuredDataType containing one Member per event
parameter and an Annotation based on it type

EventParameter Member. Its type is set using the TDL DataTypes
provided by the imported Package

Table 3.2: Behavioral interface to TDL transformation rules

1 Package xArduinoEvents {
2 Import all from xArduinoTypes_r;
3
4 Annotation AcceptedEvent;
5 Annotation ExposedEvent;
6
7 Type button_pressed (button of type PushButton)
8 with {AcceptedEvent;};
9 Type button_released (button of type PushButton)

10 with {AcceptedEvent;};
11 Type IRSensor_detected (sensor of type InfraRedSensor)
12 with {AcceptedEvent;};
13 Type pin_Level_Changed (pin of type DigitalPin)
14 with {ExposedEvent;};
15 }

Listing 3.4: TDL elements generated for the xArduino behavioral interface

button_pressed event. Since the parameters are references to the model elements,
their type conforms to the xDSL’s abstract syntax. Thanks to the generated
xDSL-Specific types package, we have the definition of all the required data types
in TDL. Therefore, we can use them to assign the type of the Members. To this
end, this package is imported to the xDSL-Specific events package (line 2) and its
content i. e., the TDL Types generated for the xArduino metamodel is used several
times (e. g., PushButton in line 7 or InfraRedSensor in line 11).

3.4.4 Generation of the Common Package
This package contains common elements that are not specific to the given xDSL,
but provide common testing facilities for any xDSL. As shown in Listing 3.5,
the Verdict Type (line 2) along with several instantiations of it (lines 3-5) are

58

3.4. TDL Library Generator

defined to be used for test verdict assignment. This Package also provides elements
for performing several operations on the model under test (later referred to as
model execution commands), including runModel for executing the model (line 8),
resetModel for resetting its state to the default (line 9), and getModelState for
getting its current state, i. e., the content of its dynamic features (line 10). To
enable the tester to use OCL queries in the test cases, this package provides a data
type named OCL (line 12) and an instantiation of it (line 13). This instantiation
uses the question mark TDL symbol (?) for the context and query attributes,
meaning that a value must be given to them when the oclQuery instance is used.

1 Package common {
2 Type Verdict;
3 Verdict PASS;
4 Verdict FAIL;
5 Verdict INCONCLUSIVE;
6
7 Type modelExecutionCommand;
8 modelExecutionCommand runModel;
9 modelExecutionCommand resetModel;

10 modelExecutionCommand getModelState;
11
12 Type OCL (context of type EObject , query of type EString);
13 OCL oclQuery (context = ? , query = ?);
14 }

Listing 3.5: TDL common package for all xDSLs

3.4.5 Generation of the Test Configuration Package
In TDL, a test case must refer to a test configuration defining what is the system
under test, and how to communicate with it. In particular, a test configuration can
define what are the available communication gates, each gate allowing specific types
of messages. In the present approach, we consider that three kinds of messages can
be exchanged with the model under test:

1. model execution commands related to the execution of the model and getting
access to its runtime state.

2. OCL commands related to the execution of the OCL queries.
3. Event-based commands related to the exchange of the event occurrences with

a running reactive model.

Accordingly, given an xDSL, our generator will generate a TDL Test Configura-
tion Package introducing these gates and components for the xDSL, along with a

59

3. Test Case Definition and Execution

1 Package testConfiguration_nr {
2 Import all from common;
3
4 Gate Type genericGateType accepts modelExecutionCommand;
5 Gate Type oclGateType accepts OCL;
6 Component Type component having {
7 gate genericGate of type genericGateType;
8 gate oclGate of type oclGateType;
9 }

10 Annotation MUTPath;
11 Annotation DSLName;
12
13 Test Configuration xArduinoConfiguration_nr {
14 create Tester tester of type TestSystem;
15 create SUT arduino of type MUT with {
16 MUTPath : ’TODO : Put the path to the MUT’;
17 DSLName : ’non-reactiveArduino’;
18 };
19 connect tester.genericGate to arduino.genericGate;
20 connect tester.oclGate to arduino.oclGate;
21 }
22 }

Listing 3.6: TDL test configuration package generated for the non-reactive xArduino

test configuration that makes use of them. Listing 3.6 shows the Test Configuration
Package generated for the non-reactive xArduino. It has two Gate Types, in-
cluding genericGateType for exchanging modelExecutionCommands (line 4) and
oclGateType for exchanging OCL queries (line 5) which are provided by the common
Package (imported in line 2). There is a Component Type comprising one gate
instance for each Gate Type (lines 6-9).

Finally, a Test Configuration is defined containing two Component Instances, one
of the Tester kind (line 14) and one of the SUT kind (lines 15-18). The SUT requires
information about the model under test, including the path to the model under
test (the MUTPath annotation in line 16) that should be set by the domain expert,
and the name of the DSL that the model conforms to (the DSLName annotation in
line 17) which is automatically set by the TDL Library Generator based on the
given xDSL, here the non-reactive xArduino. The test configuration also specifies
how the test system connects to the SUT through the definition of the Connections
between their Gate instances (lines 19-20).

Listing 3.7 presents the Test Configuration Package generated for the reactive
xArduino. Similarly to the one generated for the non-reactive xArduino (Listing 3.6
on page 60), it has the two Gate Types for exchanging model execution commands
(line 5) and OCL queries (line 6). In addition, it has a specific Gate Type for

60

3.4. TDL Library Generator

1 Package testConfiguration_r {
2 Import all from common;
3 Import all from xArduinoEvents;
4
5 Gate Type genericGateType accepts modelExecutionCommand;
6 Gate Type oclGateType accepts OCL;
7 Gate Type reactiveGateType accepts button_pressed , button_released ,

IRSensor_detected ,pin_level_changed ;
8 Component Type component having {
9 gate genericGate of type genericGateType;

10 gate oclGate of type oclGateType;
11 gate reactiveGate of type reactiveGateType;
12 }
13 Annotation MUTPath;
14 Annotation DSLName;
15
16 Test Configuration xArduinoConfiguration_r {
17 create Tester tester of type component;
18 create SUT arduino of type component with {
19 MUTPath: ’TODO : Put the path to the MUT’;
20 DSLName: ’reactiveArduino’;
21 };
22 connect tester.genericGate to arduino.genericGate;
23 connect tester.oclGate to arduino.oclGate;
24 connect tester.reactiveGate to arduino.reactiveGate;
25 }
26 }

Listing 3.7: TDL test configuration package generated for the reactive xArduino

communicating events i. e., reactiveGateType (line 11). The TDL definition
of the events is provided by the xArduinoEvents Package (imported in line 3).
Accordingly, the definition of the Component Type (lines 8-12) is extended with
a new instance of the reactiveGateType (line 11). The definition of the Test
Configuration element (line 16) is similar to the one generated for the non-reactive
xArduino (line 13 of listing 3.6 on page 60) but for two differences: the name of the
DSL is changed (the DSLName annotation in line 20) and a new connection between
reactive gates is added (line 24).

3.4.6 Using the TDL Library to Write Test Cases
In Section 3.3, we described an overview of two test cases for the xArduino sample
model (Figure 2.2 on page 12): (i) Figure 3.2(a) for its non-reactive execution; and
(ii) Figure 3.2(b) for its reactive execution. By using the TDL Library generated
for the xArduino, the domain expert can write such test cases in TDL that will be

61

3. Test Case Definition and Execution

executable. They are shown in (i) lines 14-29 of listing 3.8; and (ii) lines 14-29 of
listing 3.9, respectively.

Using the generated data types (the xArduinoTypes_nr package imported
in line 3 of listing 3.8, and the xArduinoTypes_r package imported in line 3 of
listing 3.9), the domain expert can define model elements to use them as test data,
such as using DigitalPin data type to define different pins of the xArduino model
(lines 6-11 of listing 3.8) or using InfraRedSensor data type to define the infrared
sensor element (lines 8-11 of listing 3.9).

The test case for the non-reactive xArduino uses the xArduinoConfiguratio_nr
(line 14) provided by the testConfiguration_nr package i. e., imported in line 4.
Likewise, the test case for the reactive xArduino uses the xArduinoConfiguratio_r
(line 14) provided by the testConfiguration_r package i. e., imported in line 5.

Both test cases are defined as a sequence of exchanging data and/or requests
between the gates of the Tester and SUT component instances. When test data is
a model execution command or a runtime state, it should be exchanged through
the genericGate of the components (such as lines 15-24). When the data is either
an OCL query or an expected output related to the query evaluation result, the
oclGate should be used, such as lines 25-28 of listing 3.8 where the tester queries
the level of the buzzer pin and expects it to be ‘0’.

In addition, when test data is an event instance (i. e., in the test cases of reactive
models), they must be exchanged through the reactiveGate of the components.
For example, in listing 3.9, the xArduinoEvents package is imported (line 4) which
allows using the event instances as test data (lines 15-17). In line 15, the tester
sends a button_pressed event for the button1 to the model under test, so the
event is used as test input data. Afterward, an assertion is defined where the
expected output is a pin_Level_Changed event for the whiteLedpin (line 17), so
the event is used as expected output; according to the TDL semantics, when the
sender of a TDL Message is the component instance with the SUT role, the Message
is an assertion and its carried data is the expected output.

So far, we have presented the result of using the proposed facilities for providing
testing support for the xArduino DSL. To better demonstrate the genericity of the
approach, another example is provided in Appendix B for a different xDSL named
xPSSM that is a reactive xDSL for describing UML state machines.

3.5 TDL Operational Semantics for xDSLs
In this section, we present an operational semantics for TDL tailored for the testing
of executable models. We initially present how we refined the execution semantics
provided in the TDL standard for the testing of executable models, We then define

62

3.5. TDL Operational Semantics for xDSLs

1 Package TestSuite4nonReactive {
2 Import all from common;
3 Import all from xArduinoTypes_nr;
4 Import all from testConfiguration_nr;
5
6 //test data
7 Project project (pinChanges = ?);
8 DigitalPin IRSensorPin(_name = "IRSensorPin");
9 DigitalPin whiteLedPin (_name = "whiteLedPin", level =?);

10 DigitalPin button1Pin (_name = "button1Pin");
11 DigitalPin buzzerPin (_name = "buzzerPin", level =?);
12
13 //test cases
14 Test Description test1 uses configuration xArduinoConfiguration_nr{
15 tester.genericGate sends {
16 button1Pin (level = ’1’), IRSensorPin (level = ’1’)}
17 to arduino.genericGate;
18 tester.genericGate sends runModel to arduino.genericGate;
19 tester.genericGate sends getModelState to arduino.genericGate;
20 arduino.genericGate sends project (pinChanges = {
21 whiteLedPin (level = ’1’),
22 buzzerPin (level = ’1’), buzzerPin (level = ’0’),
23 buzzerPin (level = ’1’), buzzerPin (level = ’0’)
24 }) to tester.genericGate;
25 tester.oclGate sends oclQuery
26 (context = buzzerPin, query = "self.level")
27 to arduino.oclGate;
28 arduino.oclGate sends ’0’ to tester.oclGate;
29 }
30 }

Listing 3.8: A TDL test case for the non-reactive execution of the running example

the operational semantics itself and explain how it is decoupled from both the
xDSLs and the metaprogramming approaches used for their implementation.

3.5.1 Adapting TDL Semantics to Model Execution
The TDL Standard consists of several documents: the TDL metamodel, the TDL
graphical syntax, the TDL exchange format, the UML profile for TDL, the mapping
from TDL to TTCN-3, among others2.

Two parts of the standard are related to the semantics of TDL. First, the
metamodel document [52] specifies the abstract syntax as a metamodel, and its
associated semantics using natural language. It introduces the basic principles

2https://tdl.etsi.org/index.php/downloads

63

https://tdl.etsi.org/index.php/downloads

3. Test Case Definition and Execution

1 Package TestSuite4reactive {
2 Import all from common;
3 Import all from xArduinoTypes_r;
4 Import all from xArduinoEvents;
5 Import all from testConfiguration_r;
6
7 //test data
8 InfraRedSensor IRSensor(_name = "infrared sensor");
9 DigitalPin whiteLedPin (_name = "whiteLedPin", level =?);

10 PushButton button1 (_name = "button1");
11 DigitalPin buzzerPin (_name = "buzzerPin", level =?);
12
13 //test cases
14 Test Description test1 uses configuration xArduinoConfiguration_r{
15 tester.reactiveGate sends button_pressed (
16 button = button1) to arduino.reactiveGate;
17 arduino.reactiveGate sends pin_Level_Changed (
18 pin = whiteLedPin (level = ’1’)) to tester.reactiveGate;
19 tester.reactiveGate sends IRSensor_detected (
20 sensor = IRSensor) to arduino.reactiveGate;
21 arduino.reactiveGate sends pin_Level_Changed (
22 pin = buzzer_pin (level = ’1’)) to tester.reactiveGate;
23 arduino.reactiveGate sends pin_Level_Changed (
24 pin = buzzer_pin (level = ’0’)) to tester.reactiveGate;
25 arduino.reactiveGate sends pin_Level_Changed (
26 pin = buzzer_pin (level = ’1’)) to tester.reactiveGate;
27 arduino.reactiveGate sends pin_Level_Changed (
28 pin = buzzer_pin (level = ’0’)) to tester.reactiveGate;
29 }
30 }

Listing 3.9: An event-driven TDL test case for the reactive execution of the running
example

of TDL and describes all the test-specific concepts included in the TDL abstract
syntax, categorized as Foundation, Data, Time, Test Configuration, and Test
Behavior. For each concept, the semantics, the relationship with other concepts,
the properties, and the static constraints are also provided. Second, the mapping to
TTCN-3 document is essentially a translational semantics for TDL using TTCN-
3 as a target language. While this semantics does allow the execution of TDL
test cases, it is only partial and mainly aims to manage test cases for software
systems communicating through common protocols (TCP, UDP, SQL, HTTP, etc.).
Therefore, we deemed this translational semantics too distant from the aim of this
work—i. e., the testing of executable models. Instead, we solely used the execution
semantics described in the metamodel document as the reference specification for

64

3.5. TDL Operational Semantics for xDSLs

the operational semantics we propose.
However, as previously explained, our approach aims to cover two additional

concerns: managing the execution of models (both non-reactive and reactive), and
managing OCL queries. As these concerns are not covered by the standardized
TDL semantics, we have to make adaptations for the operational semantics we
propose. In Section 3.4, the TDL Library Generator, takes these concerns into
account by generating specific data types (ModelExecutionCommand and OCL in the
Common Package and the content of the xDSL-Specific Events Package) along with
gate types accepting data conforming to them (genericGateType, oclGateType,
and reactiveGateType in the Test Configuration Package). Accordingly, our
operational semantics must be able to interpret such generated elements which is
presented in Section 3.5.3.

In addition, to specify the result of a test case execution, we support the
verdicts provided by the TDL metamodel document, including PASS, FAIL, and
INCONCLUSIVE [52]. PASS and FAIL correspond to observing valid and invalid
behaviors of the SUT, respectively, while INCONCLUSIVE is used when neither
pass nor fail can be assigned. For instance, if the tester sends a syntactically wrong
OCL query to the SUT, the TDL Interpreter will interrupt the test case execution
and the verdict will be assigned as INCONCLUSIVE.

It should be noted that at the moment, we do not support all the TDL elements,
such as complex Behavior concepts (e. g., Parallel, Exceptional, Periodic). These
concepts enable the tester to define different types of tests such as load tests and
distributed tests, so we consider them as future work.

3.5.2 Required External Components
As illustrated in Figure 3.1, the TDL Interpreter needs connections with three
external components. We assume they already exist and provide services as follows:

• Execution Engine: provides services to manage the execution of the models
such as running the model, resetting its state to default, and getting its
current state. This component uses the operational semantics of an xDSL to
execute its conforming models.

• Query Evaluator: can trigger the evaluation of an OCL query on a model
and retrieves the result.

• Event Manager: provides services to send event occurrences to a running
reactive model and to receive event occurrences exposed by the model. As
running the model is performed by an execution engine, this component is
also connected to the execution engine to communicate event occurrences
with running models.

65

3. Test Case Definition and Execution

OCLInterpreter

+ setUp()
+ runQuery(context, query)

TDLInterpreter

<<interface>>
EventManager

+ setUp(MUTPath, DSLPath)
+ processAcceptedEvent(event)
+ getExposedEvent(event): Event
+ sendStopEvent()

<<interface>>
ExecutionEngine

+ setUp(MUTPath, DSLPath)
+ executeModel()
+ setModelResource(resource)
+ getModelResource():Resource
+ launchModelDebugger()
+ getExecutionTrace(): Trace

[1] executionEngine [1] eventManager

[1] queryEngineimplements

<<abstract>>
AbstractExecutionEngine

- MUTResource: Resource

ALEEngine JavaEngine ...

Figure 3.4: Class diagram showing the associations of the TDL Interpreter

The TDL Interpreter is connected to the execution engine to interpret the model
execution commands used in a TDL test case and is connected to the query evaluator
to interpret the OCL queries written in a TDL test case and to use the query
evaluation result when required by a test oracle. These two connections enable our
approach to run TDL test cases on ‘non-reactive’ models. The third connection is
necessary for executing event-driven TDL test cases on ‘reactive’ models. The Event
Manager must be configurable for a given reactive xDSL and allow external tools
(e. g., testing tools) to interact with the xDSL’s conforming models based on the
xDSL’s behavioral interface using two services: sending accepted event occurrences
to a running model, and receiving its observable reactions as occurrences of the
exposed events.

3.5.2.1 Overall architecture

The UML class diagram presented in Figure 3.4 shows the overall architecture of the
TDL interpreter. As already illustrated in Figure 3.1, an execution engine uses the
operational semantics of an xDSL to execute its conforming models and an event
manager uses the behavioral interface of an xDSL and is connected to an execution

66

3.5. TDL Operational Semantics for xDSLs

engine. To implement the operational semantics and the behavioral interface,
different metaprogramming approaches—i. e., one or several metalanguages used in
a particular fashion— can be used. Consequently, various execution engines and
event managers may exist, each supporting a specific metaprogramming approach.
To make the TDL Interpreter agnostic to this heterogeneity, we defined its required
interfaces.

The ExecutionEngine interface can be used for setting up the execution engine
based on the model under test (i. e., the model to be executed) and its conforming
xDSL, for executing the model, for setting the model in a specific runtime state,
and for getting its current state. Please note that the other two methods of the
interface are required for other contributions of this thesis that will be explained in
the next chapters. Following the terminology of popular frameworks such as EMF,
we call resource the artifact that contains the model to load and execute. A resource
may be a file or a URL to access the model remotely or a database connection.
The ExecutionEngine interface is partially implemented by the AbstractExecution-
Engine class, and then further specialized for each metaprogramming approach (in
Section 3.7 examples of metaprogramming approaches are given). Therefore, our
proposed approach is not restricted to a specific execution engine but can support
all the existing ones. The EventManager interface comprises methods for setting
up for a specific model and its conforming reactive xDSL, accepting an event to
process on the model, retrieving an expected exposed event from the events exposed
by the model, and stopping the communication with the model and releasing the
resources. Finally, we also rely on a specific interface for the OCL Query Evaluator,
here with the class named OCLInterpreter.

3.5.3 Test Execution Algorithm of the TDL Interpreter
In this section, we provide the details of the TDL Interpreter definition, mainly
its test execution algorithm. Algorithm 1 shows the main loop, which requires as
input a TDL package containing the set of TDL test cases to execute. For each
test case, its test configuration must be activated first (line 3) using Algorithm 2.
As can be seen, the path to the model under test and the name of the DSL are
first retrieved from the annotations of the SUT component. Then, based on the
connections between the gates, the required external components are instantiated
and configured, including the Execution Engine, the OCL Interpreter, and the
Event Manager.

Continuing with the main loop in Algorithm 1, after activating the test configu-
ration, the test case behavior should be executed (line 4). The execution semantics
of a behavior depends on its type. For instance, to execute a Message behavior
(line 5), according to its source gate, the argument is treated differently. When the
source gate belongs to a Tester Component, the argument is a request for the model

67

3. Test Case Definition and Execution

Algorithm 1: The TDL Interpreter main loop
Input:
package: the TDL package containing the TDL test cases to be executed

1 begin
2 foreach testcase ∈ package.testCases do
3 testcase.configuration.activate()
4 foreach behavior ∈ testcase.behaviors do
5 if behavior is Message then
6 sourceGate← behavior.source
7 targetGate← behavior.target
8 if sourceGate.component.role is Tester then
9 request← behavior.argument

10 targetGate.sendRequestToSUT(request)
11 else if sourceGate.component.role is SUT then
12 testOracle← behavior.argument
13 targetGate.assert(testOracle)

14 else if behavior is <other behavior types> then
15 ...

under test (line 10), and when it belongs to a SUT Component, the argument is
the expected result to be asserted (line 13).

Sending Requests to the SUT (shown in Algorithm 3): Depending on which gate
of the SUT component is used for sending a request, the TDL Interpreter selects
which external component (configured in Algorithm 2) should be used. Then, it
checks whether the request can be accepted by the gate. Three cases are possible:

1. if the gate is a generic gate and the request is a model execution command
(line 2), the configured engine should be used to run the command (line 3).

2. if the gate is an OCL gate and the request is an OCL query (line 4), the
configured OCLInterpreter should be used to evaluate the query on the model
(line 7). It should be noted that the query is evaluated on the model in its
latest runtime state (line 6).

3. if the gate is a reactive gate and the request is an accepted event, the
configured eventManager should be used to process the event.

Asserting the Expected Output (shown in Algorithm 4): The TDL Interpreter
asserts whether an expected output data is equal to the real output data (i. e., the
data received from the model under test). Depending on which gate of the SUT
component is used for the assertion, the output data has different semantics:

68

3.5. TDL Operational Semantics for xDSLs

Algorithm 2: Activating test case configuration
Input:
configuration: TDL test configuration to be activated

1 begin
2 MUTPath← configuration.sutComponent.MUTPath

DSLName← configuration.sutComponent.DSLName foreach
connection ∈ configuration.connections do

3 if connection between generic gates then
4 engine←new ExecutionEngine()
5 engine.setUp(MUTPath, DSLName)
6 if connection between OCL gates then
7 OCLInterpreter ← new OCLInterpreter()
8 OCLInterpreter.setUp()
9 if connection between reactive gates then

10 eventManager ← new EventManager()
11 eventManager.setUp(MUTPath, DSLName)

Algorithm 3: Sending a request to the SUT
Input:
gate: the gate for sending requests to SUT,
request: the request to be sent

1 begin
2 if gate is generic gate & request is modelExecutionCommand then
3 engine.runCommand(request)
4 if gate is OCL gate & request is OCL query then
5 query ← createQuery(request)
6 MUTResource← getMUTResource()
7 OCLInterpreter.runQuery(MUTResource, query)
8 if gate is reactive gate & request is accepted event then
9 event← createEvent(request)

10 eventManager.processAcceptedEvent(event)

• generic gate: the expected output is indeed a specific runtime state of the
model under test. So the TDL Interpreter retrieves the current state of the
model from the context of the engine (line 3), and then checks whether the
model state is as expected (lines 4-7).

• OCL gate: the expected output is the expected query evaluation result,
so it should be checked against the result generated by the OCLInterpreter
(lines 9-12).

• reactive gate: the expected output is an exposed event expected to be received

69

3. Test Case Definition and Execution

Algorithm 4: Asserting expected output
Input:
gate: the gate for receiving data from SUT,
expectedOutput: the expected output data to be asserted
Output :
verdict: the assertion result

1 begin
2 if gate is generic gate then
3 currentState← engine.context.resource
4 if currentState == expectedOutput then
5 verdict← PASS
6 else
7 verdict← FAIL

8 if gate is OCL gate then
9 queryResult← OCLInterpreter.result if

queryResult.equals(expectedOutput) then
10 verdict← PASS
11 else
12 verdict← FAIL

13 if gate is reactive gate & expectedOutput is exposed event then
14 expectedEvent← createEvent(expectedOutput)
15 exposedEvent← eventManager.getExposedEvent(expectedEvent)
16 if exposedEvent != NULL then
17 verdict← PASS
18 else
19 verdict← FAIL

from the model under test. Accordingly, the EventManager is requested to
retrieve that event from the events exposed by the model (lines 14-15). If it
retrieves nothing, the assertion fails (line 19).

In addition to the above-mentioned conditions, there are some specific cases that
may lead to the interruption of the test case execution. This happens for instance
when the test system sends a syntactically wrong OCL query to the SUT, or the
exchanged event does not conform to the behavioral interface of the xDSL specified
by the test configuration, or when the running external component throws some
exception. In these cases, the TDL Interpreter interrupts the test case execution
and sets the verdict to INCONCLUSIVE.

70

3.6. Test Result Reporter

Figure 3.5: Test result metamodel

3.6 Test Result Reporter
At the end of the test execution, the Test Result Reporter component produces a
report in a specific format presented in Figure 3.5. A test execution result is indeed
captured as a TestSuiteResult for each test suite (i. e., a TDL Package element),
comprising a set of TestCaseResult for each test case (i. e., a TDL TestDescription
element). Each TestCaseResult has a value as PASS, FAIL, or INCONCLUSIVE,
and a description about the test case execution result. It also comprises a set of
TestBehaviorResult for each of the test case’s containing Behavior elements, with a
value and a description.

3.7 Tool Support
The proposed components of this chapter (shown in Figure 3.1) are implemented
as part of the GEMOC Studio [29], a language and modeling workbench defined
on top of the Eclipse Modeling Framework (EMF). TDL is also implemented using
EMF technologies, making it easier to make both work together3.

To transform Ecore to TDL, we used the ATL transformation language [82] and
to transform behavioral interface to TDL, we used the implementation of Leroy
et al. [93] for the behavioral interface definition (i. e., also a part of the GEMOC
Studio) and we implemented the transformation in Java. For the TDL interpreter,
we used Xtend [49] to implement the execution rules of the TDL operational
semantics. To evaluate the OCL queries, we used the Eclipse OCL API [41] and
for the Event Manager, we used an existing tool of the GEMOC Studio [93].

The GEMOC Studio supports several metaprogramming approaches for imple-
menting the operational semantics of xDSLs. This includes Java-based languages (
Kermeta [78], Xtend [49], and pure Java), the Action Language for EMF (ALE) [92],

3https://labs.etsi.org/rep/top/ide

71

https://labs.etsi.org/rep/top/ide

3. Test Case Definition and Execution

xMOF [102], and a combination of a Java-based language with the MoCCML lan-
guage [45]. Each of these approaches is supported by a dedicated execution engine.
Hence, a significant part of the implementation of the TDL Interpreter is dedicated
to managing different execution engines properly. For instance, the TDL Interpreter
must read the xDSL definition in a GEMOC-specific .dsl file to discover the used
metaprogramming approach, in order to start the correct execution engine accord-
ingly. This should be noted that our current implementation supports Java-based
languages and ALE among others.

After running a test suite, the execution result will be saved as an XMI file
in the format given in Figure 3.5. In addition, we provide a user interface for
the domain expert which visualizes the result. For example, Figure 3.6 shows a
screenshot of the resulting tool. The source code is available on a public GitLab
instance4. In the project explorer on the left, there are two projects, one containing
the xArduino model (shown in Figure 2.2 on page 12) and another containing a
TDL test suite written for it using the facilities presented in this chapter.

There are GUI icons in the toolbar and the menu bar allowing the user to
choose an xDSL and run the TDL Library Generator for it. To use the tool for
testing the xArduino model of Figure 2.2 (shown on page 12), we initially run the
generator for the xArduino DSL and the generated TDL packages can be seen in
Project Explorer (label 1). Here we show the execution of a test suite containing
five sample TDL test cases (label 2), one of which is already described in Listing 3.9.
We provided a view to report the test execution result along with some useful
information for the user (label 3). As can be seen, the first test case failed because
due to the defect of the model, the buzzer does not turn on and off for the second
time (label 4).

3.8 Evaluation
We designed and performed an empirical evaluation of our approach to consider its
genericity by answering the following research questions:
RQ#1 Does the approach provide testing facilities for xDSLs in which their
abstract syntax is designed for different domains?
RQ#2 Does the approach provide testing facilities for both non-reactive and
reactive xDSLs?
RQ#3 Does the approach provide testing facilities for xDSLs in which their
operational semantics is implemented using different metaprogramming approaches?

4https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/
testing_framework

72

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/testing_framework
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/testing_framework

3.8. Evaluation

5

2 3

4

1

Figure 3.6: A screenshot of the provided testing tool running on the GEMOC
Studio modeling workbench for the running example

3.8.1 Experiment Setup
Setup for RQ1. In the first research question, we aim to investigate whether
the provided facilities can be used for xDSLs from different domains. Accordingly,
we chose five xDSLs each covering a different domain:

• xFSM: A small language for designing Finite State Machines (FSM) for
processing strings (taken from GEMOC official samples).

• xArduino: A language for simulating Arduino boards and their execution
logic (described in Section 2.2).

• xBPMN: a representative of the Microflow DSL5, a real-world xDSL intro-
duced by the Mendix LCDP for modeling the application logic by data-flow
modeling. It contains elements to perform CRUD operations on data objects,
to show UI pages, to make choices, etc., and its graphical syntax is based on
the Business Process Model and Notation (BPMN) standard.

• xMiniJava: A minimal implementation of Java based on the MiniJava
project6, allowing the definition of simple Java programs that can be executed
directly by an execution engine rather than JVM. Note that it is not a typical
xDSL and is defined just for experimental purposes as we will see in the
following.

5https://docs.mendix.com/refguide/microflows
6https://www.cambridge.org/resources/052182060X

73

https://github.com/eclipse/gemoc-studio/tree/master/official_samples/K3FSM
https://docs.mendix.com/refguide/microflows
https://www.cambridge.org/resources/052182060X

3. Test Case Definition and Execution

Table 3.3: Evaluation data for testing facilities

Non-Reactive xDSLs Reactive xDSLs

xFSM xBPMN xAr-
duino

xMini-
Java

xAr-
duino xPSSM

xD
SL

Si
ze

Abstract syntax size
(n. of EClasses) 3 39 59 76 59 39

Operational
Semantics size (LoC)

K3: 110
ALE: 90

ALE:
318

K3: 667
ALE:421

K3:
1042 K3:768 K3: 975

Behavioral Interface
size
(n. of Events)

- - - - 7 4

Te
st

ed
M

od
el

s

Number of tested
Models 5 2 4 6 6 65

Size range of tested
models
(n. of EObjects)

7-133 26-46 15-59 31-571 18-59 13-154

Te
st

A
rt

ifa
ct

s

TDL Library size
(LoC generated) 76 170 210 189 251 203

Total n. of test cases 45 6 14 77 22 216
Test case numbers
range of test suites 7-16 2-4 2-4 4-25 3-4 1-81

Size range of test
suites(LoC) 50-157 33-50 25-64 33-188 30-132 25-1311

• xPSSM: A partial implementation of the Precise Semantics of UML State
Machines (PSSM) [114] which supports modeling of discrete event-driven
behavior.

Setup for RQ2. The objective of the second research question is to validate
the practicality of the proposed testing facilities for both non-reactive and reactive
xDSLs. Among the xDSLs introduced above, the operational semantics of xFSM,
xBPMN, and xMiniJava are non-reactive, of xPSSM is reactive, and we used
two implementations of xArduino semantics, one non-reactive and one reactive.
Altogether, we used four non-reactive xDSLs and two reactive xDSLs for RQ2 as
shown in Table 3.3.

Setup for RQ3. The third research question is about the support of the provided
test execution facility from different metaprogramming approaches used for the
implementation of xDSLs’ execution rules. We considered that the execution
rules can be implemented by Kermeta (K3) or ALE metaprogramming approaches.

74

3.8. Evaluation

As shown in Table 3.3, we used two different implementations of the xFSM and
non-reactive xArduino semantics (K3 and ALE), and one implementation for the
rest of the xDSLs (K3 or ALE).

We used the xFSM with Kermeta3 semantics [134] and with ALE semantics [133]
from the GEMOC official samples. For the non-reactive xArduino, we used the
open source project of the xArduino with Kermeta semantics [21], and then we
implemented its semantics using the ALE language.

We designed the xBPMN language based on the definitions given in Section 2.2
and implemented its semantics using the ALE language. The xMiniJava imple-
mentation is taken from the GEMOC samples [137] and for the xPSSM, we used
the implementation provided by the behavioral interface project [136], both with
Kermeta semantics. We made minor modifications to these existing xDSLs to
match the assumptions described in Section 2.2. The definition of all xDSLs is
available in a public GitLab instance7.

3.8.2 Evaluation Data

As presented in Table 3.3, the considered xDSLs have different sizes as the number
of classes specified by their abstract syntax and the number of Lines of Code
(LoC) of their operational semantics. For the two reactive xDSLs, their behavioral
interfaces have different sizes as the number of events.

For each xDSL, we need a set of conforming models to be tested. Using each
xDSL, we defined a couple of models in different sizes as their number of EObjects,
including 5 xFSM models with 7 to 133 objects, 2 xBPMN models with 26 to 46
objects, 4 non-reactive xArduino models with 15 to 59 objects, and 6 xMiniJava
models with 31 to 571 objects (taken from sample MiniJava programs8), 6 reactive
xArduino models with 18 to 59 objects. For the xPSSM DSL, the PSSM standard
provides a set of UML state machines, each with a small test suite for asserting that
a PSSM implementation executes the models as expected, indeed in compliance
with the standard [114]. We used a subset of them (60 models) which represent
an event-driven behavior using solely state machines. In addition, we manually
defined four larger state machines9 for a total of 65 xPSSM models (60+5) with 13
to 154 number of EObjects.

7https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/
Language_Workbench

8https://www.cambridge.org/resources/052182060X/
9We used samples from: https://www.uml-diagrams.org/state-machine-diagrams.html

75

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/Language_Workbench
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/Language_Workbench
https://www.cambridge.org/resources/052182060X/
https://www.uml-diagrams.org/state-machine-diagrams.html

3. Test Case Definition and Execution

3.8.3 Evaluation Result

All the research questions are targeting the genericity of the proposed testing
facilities, but from different perspectives: (RQ1) considering different domains;
(RQ2) considering different model execution approaches (i. e., non-reactive and
reactive); and (RQ3) considering different metaprogramming approaches. To answer
them, we applied our proposed testing facilities to all considered xDSLs following
the same process. First, we executed the TDL Library Generator component for
each xDSL and it successfully generated a domain-specific TDL library for each
of them. The number of LoC of each generated library is presented in Table 3.3.
Most noticeably of all, it can be seen that, unsurprisingly, the size of the generated
TDL Library increases with the size of the xDSL. For example, the TDL library
of the reactive xArduino is the largest one with 251 LoC. This highlights one
benefit of using our approach since the generated library provides all the TDL
boilerplate code that the domain expert would otherwise write by hand. Therefore,
the proposed approach reduces the cost of providing testing support for a given
xDSL.

Second, using each generated TDL library, we wrote a set of TDL test cases for
each considered model. In total, we wrote 45 test cases for 5 xFSM models, 6 test
cases for 2 xBPMN models, 14 test cases for 4 non-reactive xArduino models, 77
test cases for 6 xMiniJava models, 22 test cases for 6 reactive xArduino models,
and 216 test cases for 65 xPSSM models (60 of them are transformed from the
standard PSSM test suites [114] to TDL and the rest are defined manually). As
can be seen in Table 3.3, the size of the written test suites ranges from 25 to 1311
LoC.

Lastly, we executed the TDL test cases on the models using the TDL Interpreter
component. For all the test cases, the test verdicts were set and the test results
were reported using the graphical view provided by our tool. We also manually
verified that we obtain the expected verdict for each test case. All the tested
models, their test cases, and their test execution results are publicly accessible on
a public GitLab instance10.

In conclusion, we successfully used the proposed approach for all xDSLs whose
abstract syntax represents different domains and whose execution semantics was
implemented in different styles (non-reactive and reactive) and also in different
metaprogramming approaches (K3 and ALE). Therefore, we can conclude that our
approach is not tied to only one specific xDSL, and thus satisfies the genericity
aspect.

10https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/
Modeling_Workbench

76

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/Modeling_Workbench
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/Modeling_Workbench

3.9. Conclusion

3.8.4 Threats to Validity
In evaluating the genericity feature, we only considered six languages, so there is
an external threat that the testing facilities might not work as expected for other
modeling languages. Additionally, we defined our testing facilities considering the
GEMOC Studio as a reference for the xDSL implementation. As there are also
other language workbenches [51], additional studies are required to validate the
portability of the proposed facilities.

Our proposed approach aims to support domain experts in writing and executing
test cases for their executable models. To validate its usability for the domain
expert, a user study should be performed. Accordingly, a threat exists regarding
the approach usability and we consider it for our future work. However, as our
approach uses TDL which is a standard testing language particularly defined for
non-technical testers, and as we support using the domain concepts in writing TDL
test cases, we tried to take the usability feature into account.

3.9 Conclusion
Providing testing facilities for any given xDSL is a challenging task concerning
the diversity of xDSLs. This diversity originates from both, the domain described
by the xDSL abstract syntax and the approach used for the implementation of
its semantics. This chapter introduced our contributions for the definition and
execution of test cases for executable models defined by metamodel-based xDSLs.
We used the TDL standard testing language for describing test cases and provided
solutions to specialize TDL for testing executable models conforming to xDSLs.
Indeed, we proposed a TDL library generator that generates a domain-specific TDL
library for a given xDSL, allowing the domain expert to write test cases for testing
the executable models conforming to it. We also provided an interpreter for TDL
to execute TDL test cases on executable models. Our evaluation on several various
xDSLs demonstrated that the provided facilities realize the genericity aspect. In
conclusion, we observed that our generic test definition and execution facilities for
xDSLs advance the testing tool support for existing as well as emerging xDSLs.

Discussions and Improvements. In this chapter, we explored the proposed
test case definition and execution facilities on a certain set of xDSLs, and we tested
their conforming models in some specific ways; based on their runtime state, their
exchanging events, and using OCL queries. In chapter 6 on page 129, we will
explain the limitations of the facilities for other situations and introduce possible
improvements for them. We also noted in Section 3.5.1 on page 63 that the TDL
interpreter does not currently support all the elements of the TDL standard abstract

77

3. Test Case Definition and Execution

syntax. By completing the definition of the TDL interpreter, we can write and
execute more complex TDL test cases to control different features of the model
under test.

Moreover, being able to write and execute test cases is the first step in testing
models and it is not adequate. The written test cases must be evaluated to make
sure they are good enough at exercising the majority of the model elements and at
detecting their potential faults. These concerns are discussed in the next chapter.

78

Chapter 4

Test Quality Measurement

4.1 Introduction
When test cases do not find any bug, while it may verify the correctness of the
tested model (in the best case), it may also highlight weaknesses of the test suite
(in the worst case). Therefore, there is a need for evaluating the quality of the
test suites to efficiently test a system. In the realm of programming languages,
coverage computation and mutation analysis are two popular means of test quality
measurement [12]. The former measures how much of the system under test is
exercised by a given test suite [12], while the latter analyzes the ability of the test
suite in finding potential faults [79].

Although test quality measurement techniques have existed for a long time
for GPLs, to our knowledge, they are still understudied when it comes to xDSLs.
One possible solution is to develop them “from scratch” for each and every xDSL.
For instance, one can design a coverage metric tailored only for a State Machines
xDSL—where a state is considered covered when it is reached during the execution
of a state machine [147]—and can create associated tools. But undertaking this
effort for each new xDSL is a costly and error-prone task, which adds up to the cost
of making the xDSL itself. Regarding mutation analysis, while a recent approach
aims to provide mutation analysis for xDSLs [62], this approach is incomplete as
it is not yet able to actually run test cases on the generated mutants. Therefore,
more generic solutions, as available for other concerns for xDSLs, are considered
beneficial.

To properly measure the quality of the TDL test suites written for models, we
offer both Coverage Computation and Mutation Analysis techniques for xDSLs as
part of our proposed testing framework. For coverage computation, we propose
a generic approach in which the coverage of a model’s test suite is calculated by
analyzing the model’s execution traces. It also allows the language engineers to

79

4. Test Quality Measurement

customize the generic coverage measurements for their xDSLs. In Section 4.2 on
page 80, more details are provided.

For mutation analysis, we provide an integration of our testing facilities with a
generic model mutation framework named WODEL proposed by Gómez-Abajo et
al. [62]. WODEL allows the definition of mutation operators for a given metamodel-
based xDSL which are then used by WODEL mutant generator to produce mutants
out of any conforming model. Our integration handles the execution of a model’s
test suites (i. e., written by our testing facilities) on the mutants generated by
WODEL for the model, and produces the result such as the mutation score, and list
of the mutants killed by each test case, among others. More details are presented
in Section 4.3 on page 89.

4.2 Coverage Computation
Regardless of the xDSL used for the definition of an executable model, every model
can be formally defined as a specific kind of graph, the so-called type graph, in
which model elements are defined as nodes, and different types of edges exist to
specify containment, inheritance, and cross-references [25]. When executing a
model, the result can systematically be captured in an execution trace, using a
fixed and generic format, which keeps track of the model’s exercised elements—i. e.,
nodes of the corresponding type graph. Based on this perspective, and through
an analysis of the xDSL definition itself, it is apparent we can adapt the node
coverage metric—from structural graph coverage criteria [12]—for the context of
xDSLs, hence reasoning about the model coverage in a generic way. Indeed, we can
define a new coverage metric that generally considers models’ elements as software
components to be covered.

In this section, we introduce a new coverage computation approach for the
context of xDSLs. It can be used for computing the coverage measures for any
model, regardless of the xDSL used for its definition. Figure 4.1 displays an overview
of the proposed approach which has the same roles as the previous chapter (shown
in Figure 3.1 on page 49): a language engineer (at the top) who defines an xDSL,
and a domain expert (at the bottom) who defines models (using the xDSL) and
test cases for them, and wishes to evaluate the quality of his/her written test cases
in terms of coverage.

Using the Coverage UI component (label 1), the domain expert can request for
computing the coverage of his/her written TDL test cases. This component asks
the TDL Interpreter (label 2, i. e., already proposed in Section 3.5 on page 62) to
run test cases and to generate the execution trace of the model under test. The
xModel Coverage Computation component (label 3) then generates the coverage
matrix of each model’s test case using two sources of information. First, from the

80

4.2. Coverage Computation

uses

uses xModel Coverage
Computation

Model under test refers to Execution
Traces

Domain Expert

Manually-
defined Artefact

Generated
Artefact

Existing
Tool

Proposed
Tool

depends on

produces

user action

Legend

reads

Coverage
Matrix

DSL-Specific
Coverage Rules

(optional)

reads

asks to
run tests

asks to compute
coverage

Coverage
 UI

defines uses

reads
TDL

Interpreter

Operational Semantics

implemented by

Behavioral Interface

Abstract Syntax

xDSL

Language Engineer

definesdefines

imports

imports

conforms to

specific to

TDL test cases 1

3

2

4

Figure 4.1: An overview of coverage computation approach

definition of the given xDSL, it recognizes which classes of the abstract syntax
are used by each execution rule of the operational semantics. This is required to
recognize what are the “traceable” elements of the model, i. e., elements whose
execution may be captured in the trace. Second, it analyzes the execution trace of
the tested model to extract the model’s elements that are captured in the trace,
meaning that they are covered by the test case and the “traceable” elements that
are not captured in the trace are not covered.

In addition to what can be considered in a generic coverage metric, specific
coverage aspects may be required for particular xDSLs. To this end, the approach
allows the language engineers to optionally define specific coverage rules for their
xDSL (label 4). Accordingly, the xModel Coverage Computation component uses
such rules, if they are available, to update the generated coverage matrix according
to the specific needs of the xDSL. At the end, the Coverage UI component visualizes
the computed coverage in a user interface for the domain expert and can also save
the coverage matrix in a persistent file.

81

4. Test Quality Measurement

4.2.1 Constructing the Coverage Matrix
Given a TDL test case executed on a model conforming to an xDSL, we need
information about the model execution to construct its coverage matrix which can
be accessed from two main sources: the definition of the xDSL and the model
execution trace.

4.2.1.1 Analyzing the xDSL definition

As explained in Section 2.2.3 on page 13, given an xDSL, the execution of a con-
forming model is performed by calls to the execution rules of the xDSL operational
semantics. Each execution rule uses specific classes of the xDSL’s abstract syntax.
This means that, when running a model, the execution of its individual elements
will be captured in a trace only if there is at least one execution rule defined
for either a direct or inherited type of the element. Therefore, by analyzing the
definition of an xDSL, we can identify the classes of its abstract syntax for which
instances can be considered traceable, and thus whose coverage by a test case can
be detected using an execution trace. Algorithm 5 shows this analysis with an
xDSL as input and a list of classes namely traceableTypes as output. Its output
will be used for the coverage computation of the models which are defined by its
input xDSL.

Algorithm 5: Finding the traceable types of an xDSL
Input:
xDSL.syntax : the abstract syntax of the xDSL,
xDSL.semantics: the operational semantics of the xDSL
Output :
traceableTypes: classes of the xDSL’s abstract syntax for which the
execution of their objects can be traced

1 begin
2 foreach rule ∈ xDSL.semantics do
3 traceableTypes.add (rule.class)

// Checking inheritance relationships
4 foreach class ∈ xDSL.syntax do
5 if class /∈ traceableTypes
6

∧ class.allSuperClasses → exists (c|c ∈ traceableTypes) then
7 traceableTypes.add (class)

82

4.2. Coverage Computation

4.2.1.2 Initializing the coverage matrix for the models’ tests.

After running a test case on a model, we compute its initial coverage using the
model’s execution trace. Please note that coverage can be only computed for passed
or failed test cases (not the ones with an inconclusive result). We described in
Section 2.2.4 on page 21 that such a trace is a sequence of called execution rules on
the elements of the model [31, 32] (also shown in Figure 2.7 on page 23). Therefore,
by analyzing the trace, we can extract the model’s elements covered by the test
case.

For example, if we run the TDL test case of listing 3.9 on page 64, on the
xArduino model of Figure 2.2 (shown on page 12), it results in running the
xArduino model itself by calling rules of the reactive xArduino semantics (part
(b) of Figure 2.5 on page 19) as follows. When the test case sends a request for
pressing button1 (sending button_pressed(button1) event to the xArduino model),
first the press(button1) rule is called, which results in a set of consecutive calls:
execute(sketch), execute(if), and execute(White LED=1) that turns on the White
LED by calling changeLevel(whiteLEDPin (level=1)) because the button1 is pressed
(it also resulted in exposing an occurrence of the pin_level_changed event for the
whiteLEDPin).

Next, the test case requests to put the infrared sensor in the state of detecting
an obstacle (sending IRSensor_detected(infrared sensor) to the xArduino model).
This results in a call of detect(infrared sensor) which triggers the sequence execute(if),
execute(buzzer=1) that turns on the alarm (by calling the changeLevel(buzzerPin
(level = 1)) which then exposes an occurrence of the pin_level_changed event
for the buzzerPin), execute(buzzer=0) that turns off the alarm (by calling the
changeLevel(buzzerPin (level = 0)) which then exposes an occurrence of the pin_-
level_changed event for the buzzerPin), execute(buzzer=0), that must turn on the
alarm for the second time but due to the defect it does not, and execute(buzzer=0).

This set of calls is captured in an execution trace of the xArduino model as
shown on the top of Figure 4.2 on page 84. Using this trace, we can construct the
initial coverage matrix of the test case of listing 3.9 on page 64. As displayed on the
bottom of Figure 4.2, we consider the elements captured by the trace as “covered”
(highlighted in green) and the rest (highlighted in yellow) will be examined in the
next steps of coverage computation described in subsequent.

4.2.1.3 DSL-specific coverage rules

In addition to what can be considered in a generic coverage metric, specific coverage
aspects may be required for particular xDSLs [108]. So far, we considered an element
is covered solely based on what we were able to observe in the execution, i. e., if
it was captured in a trace. However, this information may also allow deducing

83

4. Test Quality Measurement

Figure 4.2: Coverage of the xArduino model of Figure 2.2 on page 12 by the TDL
test case of listing 3.9 on page 64 based on its execution trace (covered elements
are highlighted in green, and yellow-highlighted elements will be examined in the
next steps of computation)

that other elements (e. g., referenced, contained by elements in the trace) can be
considered as covered as well.

To provide this customizability, our approach optionally allows a language
engineer to define a set of DSL-specific coverage rules for a given xDSL (shown
at the top right corner of Figure 4.1 on page 81). More specifically, we propose a
dedicated metalanguage for defining such rules whose concepts are presented in
Figure 4.3 on page 85. Given the abstract syntax of an xDSL in the form of a
metamodel, a DomainSpecificCoverage can be defined for different Contexts each
pointing to a metaclass of the xDSL’s abstract syntax. For each Context, several
Rules can be defined and we are currently considering two families of rules:

• Inclusion rules: a covered object, may induce that other objects are covered
as well (see CoverageOfReferenced and CoverageByContent rule types).

• Exclusion rules: an object is ignored from coverage computation under a
certain condition (see Ignore and ConditionalIgnore rule types).

84

4.2. Coverage Computation

Figure 4.3: DSL-specific coverage metamodel

Given an object conforming to a Context (directly or by inheritance), each type
of rule acts as follows:

CoverageOfReferenced. From the coverage of the given object, we infer the
coverage of its referenced objects (i. e., the value of its reference feature). Accordingly,
the type of the reference will be added to the list of traceableTypes (i. e., output
of Algorithm 5 on page 82).

CoverageByContent. Inferring the coverage of the given object from the coverage
of its contained objects (i. e., the value of its containmentReference feature). The
object is covered if:

• multiplicity = ALL: all of its contained objects are covered.
• multiplicity = ONE: at least one of its contained objects is covered.

85

4. Test Quality Measurement

This rule also updates the list of traceableTypes by adding the metaclass of the
Context to it.

Ignore. The object will be ignored from coverage computation, by considering it
as “not-traced”, except when the rule specifies not to ignore it if it conforms to the
subclasses of the context (ignoreSubtypes= false).

ConditionalIgnore. The object will be ignored from coverage computation, by
considering it as “not-traced”, when it is contained by an object that:

• condition = INCLUSION: conforms to one of the containerType classes.
• condition = EXCLUSION: does not conform to any of the containerType

classes.

These rules are applied in order repeatedly until a fixed point is reached i. e.,
until the coverage matrix becomes steady.

For example, Listing 4.1 shows some of the rules we have defined for the Arduino
xDSL. The CoverageByContent rule specifies that a Block object is covered if at least
ONE of its contained Instruction elements is covered. According to the definition
of the xArduino event-driven semantics ((c.1) and (c.2) parts of Figure 2.6 on
page 22), there is no execution rule for the Expression class. Indeed Expression
objects are evaluated inside other rules such as the execute(If). According to this
information, we defined a CoverageOfReferenced rule specifying that whenever an
If object is covered, its condition that is an Expression is also covered. We also
defined an Ignore rule to ignore instances of Module from coverage computation as
they are just representatives of physical elements.

4.2.1.4 Finalizing the coverage matrix for the models’ tests

At the last step of coverage computation, we identify “not-covered” objects as
follows. Given an object with an unspecified coverage status, it is “not-covered”
if its type is traceable—contained in the traceableTypes list— and “not-traced”
otherwise. Please note that we computed the traceableTypes in the previous steps,
by analyzing the xDSL operational semantics (algorithm 5 on page 82) and running
the xDSL-specific coverage rules if we have any (Section 4.2.1.3 on page 83).

Finally, we generate a complete coverage matrix for the whole test suite of the
model by merging the coverage matrices produced for each of its test cases.

86

4.2. Coverage Computation

1 DomainSpecificCoverage ArduinoCoverageRules{
2 Import metamodel arduino
3 Context Block{
4 CoverageByContent{
5 containmentReference instructions
6 multiplicity ONE
7 }
8 },
9 Context If{

10 CoverageOfReferenced {reference condition}
11 },
12 Context Module{
13 Ignore {ignoreSubtypes true}
14 }
15 }

Listing 4.1: Examples of Arduino-specific coverage rules

4.2.1.5 Generating a coverage matrix for the running example

An excerpt of the result produced by each of the above-mentioned steps for some
of the objects of the xArduino model of Figure 2.2 (shown on page 12) is provided
in Table 4.1. As can be seen:

• the button1 object is considered as covered after trace analysis (Step 1), but
is then ignored after updating the coverage matrix by the Arduino-specific
coverage rules (Step 2).

• the if object is covered based on the trace analysis (Step 1).
• the button1 == 1 Expression does not have any status at first (Step 1) but

it is then updated to covered after running the Arduino-specific coverage
rules (Step 2) because when the if object is covered, its referenced expression
element must be considered as covered.

• the white LED = 0 ModuleAssignment is not covered by the test case (Step
3)

At the end, the final coverage matrix is equivalent to the content of Table 4.1
modulo columns 3 and 4.

4.2.2 Definition of Artefacts
To preserve the genericity of our proposed approach, this section introduces a generic
definition for the coverage matrix of the models’ tests, presented in Figure 4.4.
Coverage can be computed after running a test case on a model and once a test
case is executed, two artifacts will be generated first: the test execution result and

87

4. Test Quality Measurement

Figure 4.4: Definition of artifacts

88

4.3. Mutation Analysis

Object Type
Step1
Initial

Coverage

Step2
Updated
Coverage

Step3
Final

Coverage
button1 PushButton Covered NotTraced NotTraced

if If Covered Covered Covered
button1==1 Expression - Covered Covered

white LED=0 Module-
Assignment - - Not-

Covered
Table 4.1: An excerpt of the coverage computation for the running example (changes
of the step in bold)

the model execution trace. We keep these two artifacts related to each other by
connecting the test result metamodel of Figure 3.5 on page 71 to the execution
trace metamodel of Figure 2.7 on page 23 through adding a reference from the
TestCaseResult to the execution Trace of its tested model.

Once coverage is computed for an executed passed or failed test suite, a TestSuite-
Coverage is generated which includes one TestCaseCoverage for each of its executed
test cases. Both of them have a list of ModelObjectCoverageStatus instances, each
specifies the coverage status of one object of the model for the test case/test suite.
The coverage status for the elements is either COVERED, NOTCOVERED, or
NOTTRACED.

4.3 Mutation Analysis
To provide mutation analysis in a generic model testing approach, four features are
required: (1) definition of mutation operators for a given xDSL; (2) a process to
generate mutants out of a given model under test (i. e., conforming to the considered
xDSL) by applying the mutation operators; (3) a way to execute the model’s test
suite on each generated mutant; and (4) a way to calculate the mutation score
for the test suite. Recently, a framework named WODEL-Test was proposed by
Gómez-Abajo et al. which is able to support most of these features [62]. More
specifically, WODEL-Test allows a language engineer to define mutation operators
for her/his xDSL if the abstract syntax is provided as a metamodel (feature 1).
Then, it automatically generates mutants for the models conforming to that xDSL
by applying the defined mutation operators (feature 2).

However, WODEL-Test does not provide any testing facility and thus fails at
providing feature (3). It indeed assumes there is an existing testing framework for
the given xDSL which allows writing test suites for the conforming models and

89

4. Test Quality Measurement

defines

defines

reads Mutation Analysis
4Model Under Test

specific to

TDL Test Cases

xDSL Abstract Syntax

imports

Mutation Operators
for xDSL

Mutant
Generator

2

WODEL-
Test Engine

TDL
Interpreter

Connector

Test Runner

conforms to

Language
Engineer

uses

Domain Expert

Manually-
defined Artefact

Generated
Artefact

Existing
Tool

Proposed
Tool

depends on

produces

user action

Legend1

3reads

Analysis
ResultMutants

ch.3

Figure 4.5: An overview of the integration of the TDL Interpreter with WODEL-
Test [62], resulting in a mutation testing tool

provides an interface to run such test suites and get the result. Based on this
assumption, WODEL-Test generates an environment for the domain experts to
run their written test suites on the generated mutants and to get their mutation
scores (feature 4). As our proposed testing facilities realizes this assumption, we
can offer a complete mutation testing framework for any xDSL through integration
with WODEL-Test.

Figure 4.5 shows how we achieved this integration, where the same roles and
artifacts as our testing approach (Figure 3.1 on page 49) are involved. There is
only one additional task for the language engineers to define mutation operators
for their xDSLs (label 1). The WODEL Mutant Generator uses these operators to
produce mutants from the conforming models (label 2).

As mentioned above and shown in Figure 4.5, WODEL-Test requires a test
runner (label 3) implementing a specific interface that determines how to run a test
suite on a mutant and how to decide whether the given mutant is killed by the test
suite. Accordingly, we have connected our TDL Interpreter to the WODEL-Test
engine by defining a connector that implements the interface and performs three

90

4.4. Tool Support

operations:

1. it receives a TDL test suite and a mutant from the WODEL-Test and runs
the test suite on the mutant using the TDL Interpreter.

2. it receives the test execution result from the TDL Interpreter and sets the
mutant as ‘killed’ if there is at least one test case in the test suite that is
failed on the given mutant.

3. it provides the final mutation testing results in conformance to the WODEL-
Test result templates.

It is worth mentioning that for this integration, we added some extra features
in our TDL Interpreter component. As described in Section 3.4 on page 53, the
TDL Interpreter runs a TDL test case on the model that is persisted in the path
specified in the test configuration of the test case (the value of the MUTPath in
listings 3.6 and 3.7 on pages 60 and 61). Consequently, to execute the test case on
another model, we need to modify the test configuration. However, for mutation
testing, a TDL test case must be run on several models i. e., the original model and
the mutants generated for it, without modifying the test case definition—including
the test configuration. To this end, we provide an optional service in the TDL
Interpreter to be able to run a test case on a specific model while ignoring the
model path specified in the test configuration.

The result of our provided integration is realized by the Mutation Analysis
component (label 4). Using this component, the domain experts can measure the
ability of their TDL test suites in detecting potential faults in the models.

4.4 Tool Support
We implemented our proposed quality measurement features as part of the GEMOC
Studio [29]. For generating the execution trace of an executed model, we used a
generic execution trace management tool for xDSLs proposed by Bousse et al. [31, 32]
which is also part of the GEMOC Studio. All the proposed components (the xModel
Coverage Computation, the Coverage UI, and the Mutation Testing components),
are implemented in Java and are connected using the Eclipse extension point
mechanism. For the DSL-Specific Coverage Rules metalanguage, its metamodel is
defined in Ecore [132], its concrete syntax is defined by Xtext1, and its semantics
is implemented in Java.

For the Mutation Analysis, as WODEL-Test framework is also implemented
using EMF technologies [62], we easily integrated it into our testing framework.

1https://www.eclipse.org/Xtext/

91

https://www.eclipse.org/Xtext/

4. Test Quality Measurement

More specifically, we implemented a connector in Java (shown in Figure 4.5 on
page 90) which connects the WODEL-Test engine to our TDL Interpreter.

1

4

5

2

3

(a) Coverage Computation Tool

1

2

3 4

(b) Mutation Analysis Tool (using WODEL-Test facilities [62])

Figure 4.6: Screenshots of the provided quality measurement tools running in the
GEMOC studio modeling workbench for the running example

Figure 4.6 displays two screenshots of the provided facilities running in the
GEMOC studio modeling workbench for the running example. A screenshot of
the coverage tool is shown in Figure 4.6(a) and its source code is available on a
public GitLab instance2. In the project explorer on the left, there are two projects,

2https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/
coverage_computation

92

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/coverage_computation
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/coverage_computation

4.5. Evaluation

one containing the xArduino model (shown in Figure 2.2 on page 12) and another
containing a TDL test suite written for it using our testing facilities presented
in Chapter 3 on page 47. The coverage matrix can be persisted as an XMI file
conforming to the format presented in Figure 4.4 (on page 88) upon the request of
the user—the user can select the related option in the run configuration (label 1).
For each executed test case, a copy of its model under test is also saved and its
objects are referenced by the generated ‘testCoverage.xmi’ file (labels 2 and 3).

We provided a graphical view for displaying the coverage measures computed
for the test cases as well as for their test suite (label 4). For each element of the
model under test, it shows its coverage status for all the tests, green for COVERED,
red for NOTCOVERED, and yellow for NOTTRACED elements. Moreover, the
last row (label 5) provides the percentage of the traceable elements covered by each
test case and also by the whole test suite (i. e., 100 %). The user can also use two
filter options, one to find all the elements with a specific coverage status (Coverage
Filters on the left), and another to find the coverage status for a specific type of
the elements (Model Element Filters on the left).

Figure 4.6(b) shows how mutation analysis appears in the tool. Its source
code is available on a public GitLab instance3. Here, we analyzed a TDL test
suite (containing five test cases) for the correct version of the xArduino model of
Figure 2.2 on page 12. Note that we first defined 36 mutation operators for the
xArduino DSL which will be introduced in Section 4.5.1 on page 94. Under the
xArduino project (label 1), one folder per applied mutation operator exists, each
containing mutants generated by WODEL-Test through applying that operator.
The results of running the TDL test suite on both the original model and the
generated mutants are as follows. The global result (label 2) reports that 64 mutants
are generated by applying 30.56 % of mutation operators (11 out of 36). Among
them, 62 are killed by the TDL test suite, so its mutation score is 96.88 %. The
tool also reports the mutants killed by each test case and the alive mutants (label 3)
as well as the test suite execution result for each mutant (label 4).

4.5 Evaluation
In this section, we aim at evaluating both proposed test quality measurement
facilities. The main objective of our proposed testing framework is genericity
regarding its supported xDSLs. Accordingly, our first research question is:
RQ1: How much genericity is supported by the approach in providing test quality
measurement features for xDSLs?
Moreover, for the proposed coverage computation approach, we aim to answer two

3https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/
mutation_analysis

93

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/mutation_analysis
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/mutation_analysis

4. Test Quality Measurement

Non-Reactive xDSLs Reactive xDSLs
Total

xFSM xMiniJava xArduino xPSSM

Tested
models

Number of tested models 5 6 6 65 82
Size range of tested models (n. of EObjects) 7-133 31-571 18-59 13-154 7-571

Test
Artifacts

Total number of test cases 45 77 22 216 360
Test case numbers range of test suites 7-16 4-25 3-4 1-81 1-81

Coverage
Number of DSL-specific coverage rules - 4 8 13 25
DSL-specific coverage size (LoC) - 26 50 75 151
Number of test suites with computed
coverage 45 77 22 216 360

Range of computed test suites’ coverage 100% 98.08-100% 100% 100% -

Mutation
Analysis

Number of mutation operators 5 113 36 30 184
Number of generated mutants 289 181 394 12,087 12,951
Number of killed mutants 194 120 375 9,989 10,678

Table 4.2: Evaluation data for coverage computation and mutation analysis

further questions:
RQ2: How much customization is needed in order to have the intended coverage
computations for xDSLs?
RQ3: To what extent is the result of the coverage computation component valid?

We performed an empirical study of our proposed approach to answer the
research questions which is presented in this section.

4.5.1 Experiment Setup
Setup for RQ1. For the first research question, we aim to investigate whether
the quality measurement facilities can be used for different xDSLs. Accordingly,
from the xDSLs used for the evaluation of our testing facilities in Section 3.8
on page 72, we chose xFSM, xMiniJava, reactive xArduino, and xPSSM because
they are from different domains, their operational semantics is implemented in
different ways (i. e., xFSM and xMiniJava are non-reactive and xArduino and
xPSSM are reactive) and they have different sizes (as written in Table 3.3). We
already introduced them in Section 3.8.1 on page 73.

Since our objective here is to evaluate the quality of the test suites using the
proposed approaches, we used all the TDL test suites written in Section 3.8 on
page 72 for the models conforming to each xDSL. Altogether, 360 test cases for
82 executable models (Table 4.2).

Moreover, for evaluating the mutation analysis facility, we need a set of mutation
operators for each considered xDSL as well as mutants generated out of the models
using the operators. As Table 4.2 presents, using WODEL language [61], we

94

4.5. Evaluation

defined 5 mutation operators for the xFSM, 113 for the xMiniJava, 36 for the
xArduino (introducing faults only in the Sketch part of the models and ignoring the
physical-related concepts), and 30 for the xPSSM (based on previous work on state
machine mutation [55, 62, 95, 119, 128]) —cumulatively 184 mutation operators for
our considered xDSLs. We then applied the operators on each considered model
and WODEL generated a total of 12,951 mutants for our 82 models.

Setup for RQ2. The second research question is targeting the required cus-
tomization for coverage computation when using the proposed approach for various
xDSLs. Therefore, for RQ2, we also consider the four xDSLs chosen in the setup
for RQ1, aiming at investigating which one of them needs customization and how
the proposed approach allows it.

Setup for RQ3. One way to answer RQ3 is to compare our coverage computation
component with an existing coverage tool. As xMiniJava is a Java-like xDSL, each
xMiniJava model is indeed a Java program and test cases of the xMiniJava models
can be defined as JUnit tests for the equivalent Java programs. So we can compare
our coverage computation approach with an existing Java coverage tool. For this
comparison, we have chosen CodeCover [117] as it is an open-source coverage
tool supporting JUnit tests of Java programs 4. Among different coverage metrics
provided by CodeCover, we use statement coverage as it is the closest to our metric.
CodeCover uses source code instrumentation approach to compute statement
coverage [117].

We transformed test cases of xMiniJava models—according to Table 4.2, 77 tests
for six xMiniJava models—to JUnit tests for equivalent Java programs. We reused
the Java programs provided by the MiniJava project5.

Evaluation data. The evaluation data is accessible from a GitLab repository6.

4.5.2 Evaluation Result
Answering RQ1. In the first research question, we aim to evaluate whether the
coverage computation and the mutation analysis facilities can be used for evaluating
the quality of the test cases written for different models defined by various xDSLs.
To answer RQ1, we used the prototype presented in Section 4.4 on page 91 for four
different non-reactive and reactive xDSLs.

4http://codecover.org/documentation/references/javaMeasurement.html
5https://www.cambridge.org/resources/052182060X/#programs
6https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/

publications-data/SLE22-paper-data

95

http://codecover.org/documentation/references/javaMeasurement.html
https://www.cambridge.org/resources/052182060X/#programs
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/publications-data/SLE22-paper-data
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/publications-data/SLE22-paper-data

4. Test Quality Measurement

We executed the test cases on models, a total of 360 test cases on 82 models. We
observed that our Coverage Computation tool successfully computed their coverage
and saved the coverage measurements in XMI files. Afterward, we executed the
Mutation Testing component which resulted in running 360 TDL test cases on
12.951 mutants generated from 82 models, cumulatively. This indeed includes two
steps for each model: (1) executing the TDL test suites provided for the model on
both the original model and its generated mutants; and (2) reporting the mutation
analysis result, such as percentage of the applied mutation operators, number of
the generated mutants, mutation score (i. e., percentage of killed mutants), and test
execution result for each mutant. The Mutation Testing component successfully
identified the mutants killed by the related test cases and computed the mutation
score of each considered test suite. In total, among 12.951 mutants, 10.678 of them
were killed by our 360 written test cases (82.45 %). One of the main reasons for
not reaching a 100 % mutation score was that some of the mutants had equivalent
behavior to the original model, so the test suites were not able to kill them.

Answering RQ2. Given an xDSL, the initial coverage measurements of its
conforming models (i. e., computed based on the execution traces) may not be as
detailed as needed by the domain experts. In the second research question, we are
questioning the level of required customization for each xDSL to have the intended
coverage measurements for their conforming models. For xMiniJava, xArduino, and
xPSSM their operational semantics do not provide enough information about the
models’ executions required for realizing the intended coverage measurements. To
overcome this, we used the DSL-Specific Coverage Rules metalanguage for defining
coverage rules, and in total, we have implemented 25 coverage rules of different
types in 151 LoC. Therefore, using a few LoC, we efficiently realized the intended
coverage computation for our xDSLs.

Answering RQ3. The third research question targets the validity of our pro-
posed xModel Coverage Computation component. To answer it, we compared the
coverage matrix generated by our proposed component for the xMiniJava tests with
that of generated by CodeCover for the statement coverage of equivalent JUnit tests.
For example, Table 4.3 lists the coverage percentage for five randomly selected tests
calculated by each tool. With our approach, it is calculated by dividing the number
of covered model elements by the total number of traceable elements while with
CodeCover is the percentage of covered Java statements. The slight differences
between the results are because of some additional lines of code that CodeCover
considers while they are not a statement (e. g., the closing curly brace of the if
statements). We manually verified that the coverage status of each Java statement
by each JUnit test is the same for its equivalent xMiniJava element by its related

96

4.6. Conclusion

Test Cases Our Coverage CodeCover Coverage
test 1 23/33 = 69.70% 24/35 = 68.57%
test 2 7/36 = 19.44% 7/43 = 16.28%
test 3 28/49 = 57.14% 31/56 = 55.36%
test 4 51/54 = 94.44% 55/60 = 91.67%
test 5 46/119 = 38.66% 57/144 = 39.58%

Table 4.3: Coverage for a set of tests calculated by our approach and CodeCover

test, meaning that our approach provides the same result for the end user. This
result shows the validity of our approach.

4.5.3 Threats to Validity
Similarly to the threats to the validity of our evaluation in Section 3.8.4 on page 77,
here we also have an external threat that the proposed quality measurement
facilities might not work as expected for other modeling languages or in other
language workbenches. In addition, we have used the DSL-specific coverage rules
metalanguage for three xDSLs, hence there is a threat that it may not be adequate
for defining coverage rules for other xDSLs. Also, the validity of our coverage
computation approach is compared with one existing coverage tool. As there exist
other tools like JaCoCo [76] and Cobertura [38], we can further support the validity
of our approach in the future by comparing it with other existing tools.

4.6 Conclusion
In this chapter, we added test quality measurement support to our proposed testing
framework by introducing a generic coverage computation approach for a wide
range of xDSLs as well as integrating our tool with a generic model mutation tool
(i. e., WODEL). Given an xDSL, (i) we compute the coverage of the tests for a given
model by analyzing the xDSL definition, the execution trace of the tested model,
and the xDSL-specific coverage rules (if available); and (ii) we can compute the
mutation score of the tests for a given model if the mutation operators are provided
for the xDSL. In conclusion, we observed that an automated and customizable
approach for test quality measurement enriches the DSL definition with further
V&V techniques at a reasonable cost. More precisely, a language engineer just
provides the coverage rules (it is even optional) and the mutation operators for
his/her xDSL, and then the test quality measurement facilities are enabled for all
of its conforming models.

97

4. Test Quality Measurement

Discussions and Improvements. Quality measurement techniques are the
enabler of many V&V techniques such as test case generation, improvement,
minimization, selection, and prioritization, among others. Accordingly, in chapter 6
on page 129, we introduce several interesting lines of research that can be followed
in the future.

In addition to that, we have identified some limitations in the contributions
of this chapter. Our proposed coverage computation approach allows language
engineers to define DSL-specific coverage rules, but it does not currently detect
potential conflicts between the rules. For example, the metalanguage must prohibit
the definition of inclusion and exclusion rules for the same context metaclass.
Conflict detection is also essential for the application of coverage rules because
they are currently applied in order repeatedly until a fixed point is reached i. e.,
until the coverage matrix becomes steady. This means in case of having rules with
conflicts, it is probable that the execution enters into an infinite loop.

Although test quality computation helps to measure the strength of the written
test cases, there are still other concerns that must be addressed. When test cases
fail on a model, it means the model has a defect that must be first localized and
then fixed. After debugging, all test cases pass on the model, but if they are not
strong enough (based on the result of the quality measurement), test improvement
is needed. In the next chapter, we discuss these concerns.

98

Chapter 5

Test Case Debugging and
Improvement

5.1 Introduction
A failed test case is an alert for the domain expert that tells there is a defect in
the model under test causing the failure. For trivial test cases, the test report
may provide adequate information about the cause of failure but localizing faults
can be more difficult for more complex test cases. Therefore, there is a need for
fault localization techniques to help the domain expert in finding the faults. In
addition, although by testing and debugging a model we can ensure the correctness
of its current version, there is always a threat of regression faults, meaning that
the model may be affected by faults in future updates. With mutation analysis, we
can measure the strength of the existing test suites in detecting potential faults,
and so checking if an improvement is required. However, improving a test suite is
a complicated task for the domain expert.

To meet these needs, there are several well-known techniques in the context
of software testing. For fault localization, there are both manual and automatic
techniques, such as interactive debugging and Spectrum-Based Fault Localization
(SBFL), respectively [150]. The former allows the tester to perform a step-by-step
observation of the System Under Test (SUT) behavior as triggered by the test case.
The latter provides a suspiciousness-based ranking of the SUT’s components (e. g.,
statements of a Java program) using the results of test cases and their corresponding
coverage information. Also, test amplification techniques have recently emerged,
that aim at automatically improving existing manually-written test suites towards
a specific goal e. g., to increase the accuracy of fault detection [42]. However, to the
best of our knowledge, they are not yet adapted for the context of model testing.

Leveraging these techniques in the context of model testing faces some challenges.

99

5. Test Case Debugging and Improvement

For manual fault localization using interactive debugging, while there are interesting
debugging approaches for models [30, 37], none is able to support the step-by-
step execution of a failed test case along with the step-by-step execution of the
tested model to help the domain expert in localizing the fault causing the test
failure. For adapting SBFL, the barrier roots in the limitations of existing testing
frameworks and coverage computation approaches in the context of xDSLs as
already mentioned in Sections 3.1 and 4.1 on pages 47 and 79, respectively. Lastly,
the test amplification techniques are mainly developed for specific programming
languages (e. g., Java [43], Pharo Smalltalk [1], and Python [126]) and they are not
yet studied for the context of xDSLs.

On the foundation of our proposed facilities for test case definition, execution
(Chapter 3), and evaluation (Chapter 4), this chapter offers interactive debugging,
SBFL fault localization, and test amplification techniques generically in the context
of xDSLs. The interactive debugging facility coordinates the initialization and
the online interplay of two debugger instances to debug a TDL test case along
with its model under test. The SBFL facility reuses an existing collection of SBFL
techniques [142] and calculates the suspiciousness-based ranking of the models’
elements. The test amplification facility automatically improves a given TDL
test suite of a model in detecting potential regression faults. In the following,
we first introduce an overview of our proposed facilities in Section 5.2. We then
provide more details about each in the subsequent sections: interactive debugging
in Section 5.3 on page 102, fault localization in Section 5.4 on page 105, and test
amplification in Section 5.5 on page 106.

5.2 Overview
Figure 5.1 shows an overview of our proposed test debugging and amplification
facilities. Using the Interactive Debugging component (label 1), the domain expert
can debug interactively the test case and its model under test at the same time,
hence observing gradually the model’s reaction to the reception of requests from
the test case. To this end, this component controls both the test case execution
by the TDL Interpreter (i. e., already proposed in Section 3.5 on page 62) and the
model execution by the Execution Engine (at the bottom left). More details are
provided in Section 5.3 on page 102.

Through the Fault Localization UI component (label 2), the domain expert
can request for running the Fault Localization component (label 3). It provides
an automatic debugging approach by applying a set of collected Spectrum-Based
Fault Localization (SBFL) techniques taken from [142]. It reads the test results
produced by the TDL Interpreter and the coverage matrix constructed by the
Coverage Computation component (i. e., already proposed in Section 4.2 on page 80)

100

5.2. Overview

Model Under Test specific to TDL Test Cases

asks to
execute
model

Interactive Debugging

Manually-defined
Artefact

Generated
Artefact

depends on produces user action

debugs failed
test cases

Domain Expert

Le
ge

nd

controls

Model
Debugger

controls

Test
Debugger

finds faulty
model elements

improves
test cases

executes

TDL
Interpreter

executes

Execution
Engine

Coverage
Computation

reads reads

Fault
Localization

CoverageTest results

Suspiciousness ranking
runs

Fault Localization UI

3

select
amplified
test cases

asks to
run new
test cases

Test
Amplification

4

Regression
TDL test suite

Mutation
Analysis

reads

Proposed
Tool

Existing
Tool

1

reads

2

ch.4ch.4ch.3

Figure 5.1: An overview of the test debugging and amplification facilities

to generate the suspiciousness-based ranking of the model’s elements. Such ranking
helps in debugging the model as it directly positions the location of the faults. In
Section 5.4 on page 105, more details are given.

Finally, to improve the TDL test cases (i. e., written by the domain expert) in
efficiently detecting potential regression faults, we propose an automated approach
for amplifying TDL test suites of executable models. As shown in Figure 5.1, the
Test Amplification component (label 4) generates a regression TDL test suite for
the model under test which is an improved version of the initial TDL test suite
regarding finding regression faults. This component relies on the TDL Interpreter
for the execution of new test cases and on the Mutation Analysis component (i. e.,
already proposed in Section 4.3 on page 89) for selecting those new test cases
improving the initial mutation score. In Section 5.5 on page 106, we explain the
details of our test amplification approach.

101

5. Test Case Debugging and Improvement

5.3 Manual Debugging of Models’ Tests
In the context of software testing, most of the popular testing frameworks (e. g.,
JUnit) are compatible with interactive debugging facilities (e. g., jdb1). Among
other possibilities, this allows the tester to perform a step-by-step observation of
the SUT behavior as triggered by the test case. But for this to work, it must be
possible to execute step-by-step not only the SUT but also the test case itself. In
other words, it must be possible to perform interactive debugging for both the test
case and the SUT in unison. When the test case and its SUT are both implemented
using the same language (such as Java programs and their JUnit test cases), this
is trivial to achieve by using a single debugger instance, since both the SUT and
the test case are then executed as one single executable program. However, in
the context of this thesis, the test case and the SUT are two different executable
models conforming to two different languages. This means debugging models’ test
cases needs:

1. being able to debug an executable model itself.
2. initializing two debugger instances at the same time, one for the test case and

another for the model under test, while making sure the debugging services
remain consistent when used in two different debuggers, and coordinating the
communication between the two debuggers.

To the best of our knowledge, the first matter is already addressed for both EMF [29,
30] and UML [37] models, and we use the interactive debugging approach proposed
by Bousse et al. [30] as it supports the xDSLs considered in the context of this
thesis. More specifically, their approach can be configured for a specific xDSL and
then can be used to debug its conforming executable models. However, the second
challenge is still open and the remainder of this section explains our proposal to
resolve it.

5.3.1 Adapting Interactive Debugging for TDL
When running a TDL test case with an interactive debugger, as soon as the
execution reaches a point where the test case makes a request to the model under
test (e. g., a TDL message sending an event to a reactive model under test), one
can expect to be able to “jump” from the debugger of the TDL test case to the
debugger of the model under test, and to switch to observing the model’s behavior.
More precisely, this can be expected when the modeler either sets a breakpoint
inside the model under test or wishes to step into the processing of the request
sent to the model by the test case (e. g., an event). To meet these expectations

1https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html

102

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html

5.3. Manual Debugging of Models’ Tests

in our approach, we make the following minor adaptations to common interactive
debugging services (the one previously introduced in Section 2.3.5.1 on page 36)
for debugging TDL test cases of executable models:

• The resume operator: It continues the test case execution until a breakpoint
is reached either in the test case or in the model under test.

• The step over operator: It continues the execution until the end of the
current step or until a breakpoint is reached in the test case or in the model
under test.

• The step into operator: It continues the execution until either some inner
step is reached (if any) or the current step is ending. If in the current step,
the test case sends a request to the model under test, the step into operator
pauses the execution inside the model under test at the very beginning of
processing the sent request.

For example, Figure 5.2 illustrates an interactive debugging scenario for the
running example using our redefined debugging services. Here we see a situation
where the modeler has set a breakpoint (shown as a filled colored circle) in the faulty
TDL test case (previously shown in Figure 3.2(b) on page 52), on the TDL message
that sends an IRSensor_detected event for the infrared sensor to the xArduino model
under test. When the test case execution reaches this TDL message, it pauses
because of the breakpoint. The modeler may wish to investigate how this event
will be processed in the xArduino model. So by using the step into operator, the
execution pauses at the beginning of processing said event by the xArduino model
i. e., the if infrared sensor == 1 condition (label 1).

As the if condition is satisfied, the execution enters into its body. Thereafter
using the step over operator in the model debugger, the modeler can observe first
the buzzer turns on by executing the buzzer = 1 ModuleAssignment (label 2) and
then it turns off due to executing the buzzer = 0 ModuleAssignment (label 3). By
using the step over operator once again, the faulty buzzer = 0 ModuleAssignment
will be executed (label 4). At this point, the modeler observes that instead of
setting the buzzer to 1 (i. e., turning on the buzzer for the second time), it is
again set to 0, hence discovering the defect in the value of the ModuleAssignment.
From now on, the domain expert can use either the step over operator to continue
with step-by-step model debugging or the resume operator. In both cases, when
the model execution reaches the end of the if statement, the test case debugger
resumes, so the next TDL message can be executed (i. e., the TDL message after
the breakpoint).

103

5. Test Case Debugging and Improvement

Test
Component

SUT
(Arduino xModel)

IRSensor_detected (infrared sensor)

pin_level_changed (buzzerPin == 1)

button_pressed (button1)

pin_level_changed (WhiteLedPin == 1)

if button1 == 1

if infrared sensor == 1
else

buzzer = 1 buzzer = 0 buzzer = 0 buzzer = 0white LED = 1 white LED = 0

1

step into

2 3 4

step over step overstep over

step over

pin_level_changed (buzzerPin == 0)

pin_level_changed (buzzerPin == 0)

pin_level_changed (buzzerPin == 1)

5

step over

Figure 5.2: A sample scenario of performing interactive debugging for the running
example

5.3.2 Initialization and Coordination of Two Interactive
Debuggers

As previously mentioned, debugging a TDL test case requires two interactive
debugger instances, one for the test case and one for its model under test. This
section explains how we spawn and coordinate them using a sample scenario shown
in Figure 5.3. The domain expert starts the process by requesting to debug a
TDL test suite containing at least one TDL test case. This results in initializing
a debugger for the test suite, preparing the TDL Interpreter, and pausing the
execution where reaching the first breakpoint (if any). In the scenario of Figure 5.3,
it pauses at the very beginning of the test suite execution as we configured a
breakpoint there. Then, the domain expert can use the step over service of the
debugger to start the execution of the first test case.

As described in Section 3.5 on page 62, for test case execution, the TDL
Interpreter first activates the test configuration of the test case. In general, two
situations may happen:

• the test case is for a non-reactive model: an instance of a model execution
engine must be configured.

• the test case is for a reactive model: an instance of an event manager must
be configured.

Hereupon, the internal behavior of the test case can be executed step-by-step using
the services of the test case debugger, such as step into. It is also possible to put a
breakpoint on the test case and resume the execution.

When the test component requests an execution in the model under test, if the
domain expert wants to observe the model’s behavior upon receiving that request,
a second debugger is required to be initialized for the model. To do this, we added
new functionalities to our TDL Interpreter component. As shown in Figure 5.3,
the first time the domain expert chooses the step into operator (in the test case
debugger) when the test component sends a request to the model (e. g., requesting

104

5.4. Automatic Debugging of Models’ Tests

UI td: TestCase
Debugger

ti: TDL
Interpreter

md: Model
Debugger

me:Model
Executor

Domain
Expert

debug testSuite
initialize (tdl, testSuite)

initialize(testSuite)

StepOver the initial elements of the test suite
to reach the first test case

executeTestCase(testCase)

activateConfiguration()

configure(dsl, model)

StepInto the internal elements of the test case

run model / send event

initialize()

suspend()

execute step

Step starting

Loop
Debugging the execution step triggered by the request

step terminated
resume

Loop

initialize/ resume

StepInto the test case

Figure 5.3: One possible interactive debugging scenario for a TDL test case written
for an executable model

model execution or sending an accepted event), the TDL Interpreter initializes
a debugger for the model. Hereafter, the TDL Interpreter pauses and resumes
the model debugger according to the debugging services chosen by the domain
expert in the test case debugger, based on their redefined semantics presented in
Section 5.3.1 on page 102. It also deactivates the test case debugger for the active
time of the model debugger to ensure their consistency.

5.4 Automatic Debugging of Models’ Tests
Manual debugging is cumbersome for test cases of large and/or complex models,
thus there is a need for advanced techniques which can help in finding the models’
faults. This section proposes an automatic model debugging approach based on the

105

5. Test Case Debugging and Improvement

Spectrum-Based Fault Localization (SBFL) techniques [150]. To apply SBFL for
finding faults in a model, we need the execution result and the coverage information
of the model’s test cases (as already described in Section 2.3.5.2 on page 37). Using
our proposed generic testing framework, we can define test cases for any executable
model and the framework automatically produces both the test execution result
and the test coverage measurements—described earlier in Sections 3.6 and 4.2 on
pages 71 and 80, respectively. Therefore, it enables us to also offer SBFL for the
context of xDSLs.

As already mentioned in Section 2.3.5.2 on page 37, SBFL is usually applied
at the statement level for software programs, meaning that it uses the statement
coverage of a program and calculates the suspiciousness of each statement [150]. In
this thesis, we adapt SBFL for the context of xDSLs by substituting the notion of
statement with the more generic concept of model element, resulting in redefining
SBFL parameters as follows:

• NCF : number of failed test cases that cover the model element
• NUF : number of failed test cases that do not cover the model element
• NCS: number of successful test cases that cover the model element
• NUS: number of successful test cases that do not cover the model element
• NC : total number of test cases that cover the model element
• NU : total number of test cases that do not cover the model element
• NS: total number of successful test cases
• NF : total number of failed test cases

The resulting Fault Localization component of our testing framework is shown
at the center of Figure 5.1 on page 101. Considering a TDL test suite of a model,
this component uses the test execution result generated by the TDL Interpreter
and the coverage matrix produced by the Coverage Computation component to
calculate the suspiciousness-based ranking of the model’s elements using SBFL
techniques. Currently, we support 18 existing SBFL formulas shown in Table 5.1
which have been collected by Troya et al. [142] by investigating primary studies
proposing concrete SBFL techniques.

5.5 Test Amplification for Executable Models
In this section, we propose a generic, automated approach for amplifying test suites
of executable models for regression testing. Our approach only supports reactive
xDSLs as explained below.

106

5.5. Test Amplification for Executable Models

Table 5.1: Supported SBFL formulas (taken from [142])
Technique Formula
Arithmetic Mean [154] 2(NCF ×NUS −NUF ×NCS)

(NCF + NCS)× (NUS + NUF) + (NCF + NUF)× (NCS + NUS)
Barinel [2] 1− NCS

NCS + NCF

Baroni-Urbani &
Buser [149]

√
NCF ×NUS + NCF√

NCF ×NUS + NCF + NCS + NUF

Braun-Banquet [150] NCF

max(NCF + NCS, NCF + NUF)
Cohen [110] 2× (NCF ×NUS −NUF ×NCS)

(NCF + NCS)× (NUS + NCS) + (NCF + NUF)× (NUF + NUS)
DStrar [148] (NCF)∗

NCS + NF + NCF

Kulczynski2 [110] 1
2 × (NCF

NCF + NUF

+ NCF

NCF + NCS

)

Mountford [149] NCF

0.5× ((NCF ×NCS) + (NCF ×NUF)) + (NCS ×NUF)
Ochiai [3] NCF√

NF × (NCF + NCS)
Ochiai2 [19] NCF ×NUS√

(NCF + NCS)× (NUS + NUF)× (NCF + NUF)× (NCS + NUS)
Op2 [110] NCF −

NCS

NS + 1
Phi [100] NCF ×NUS −NUF ×NCS√

(NCF + NCS)× (NCF + NUF)× (NCS + NUS)× (NUF + NUS)
Pierce [150] (NCF ×NUF) + (NUF ×NCS)

(NCF ×NUF) + (2×NUF ×NUS) + (NCS ×NUS)
Rogers &
Tanimoto [99]

NCF + NUS

NCF + NUS + 2(NUF + NCS)
Russel-Rao [120] NCF

NCF + NUF + NCS + NUS

Simple matching [150] NCF + NUS

NCF + NCS + NUS + NUF

Tarantula [81]
NCF

NF

NCF

NF
+ NCS

NS

Zoltar [77] NCF

NCF + NUF + NCS + 10000×NUF ×NCS

NCF

107

5. Test Case Debugging and Improvement

5.5.1 Scope
As already mentioned in Section 2.3.6 on page 39, there are three main steps to
amplify test cases for regression testing:

• creating new test cases by modifying the test input data of existing test cases.
• executing the new test cases on the system under test and capturing the

system’s reaction to the new data through its execution trace.
• generating test oracles for the new test cases by analyzing the execution trace.

Therefore, to amplify the test cases of a given model, we need a clear definition
of test data—both test input data and expected output (i. e., for generating test
oracles—as well as the model’s execution trace.

In the context of xDSLs, test data definition differs between non-reactive and
reactive xDSLs. For a non-reactive xDSL, it relies on the definition of xDSL’s
runtime state e. g., in the TDL test case of Listing 3.8 on page 63, buttonPin
(level = ’1’) is the test input data and project (pinChanges = whiteLedPin
(level = ’1’), ...) is the expected output. However, for a reactive xDSL, it is
based on the definition of xDSL’s behavioral interface e. g., in the TDL test case
of Listing 3.9 on page 64, button_pressed (button1) is the test input data and
pin_level_changed (whiteLedPin (level = ’1’)) is the expected output.

We also already mentioned in Section 2.2.4 on page 21 that an execution trace
of an executable model captures several different pieces of information, one of which
is the set of changes in the model’s runtime state during the execution. According
to the definitions given in Section 2.2.3 on page 13, the runtime state definition
merges with the abstract syntax resulting in an execution metamodel. This means
that part of the execution trace related to the changes in the model’s runtime state
comprises instances of the execution metamodel that each can also be seen as a
graph (the so-called type graph as introduced in [25]). However, an execution trace
of a reactive model also captures all the occurrences of the exposed events (i. e., the
event occurrences exposed by a running reactive model) as a list.

Therefore, for generating oracles from the execution trace of a non-reactive
model, we should perform a graph analysis which is a complex task; as explained
above, the oracles must be defined based on the changes of the model runtime
state which are captured in the model execution trace as instances of the execution
metamodel so as graphs. While for reactive models, we can just simply analyze
the list of the exposed events occurrences. In this section, we introduce a test
amplification approach for reactive xDSLs, while supporting non-reactive ones is
left to future work.

108

5.5. Test Amplification for Executable Models

Test Case
Modifier

specific to

Manually-Written
TDL Test Suite

New test cases
(without assertions)

New test cases
(with assertions)

if mutation score <1

added to

Selected amplified
TDL test cases

Model Under Test

Assertion
Generation

Execution
traces

Assertion
Generator

data flow

Domain
Expert

xDSL

Abstract
Syntax

imports

Operational
Semantics

implemented by

Behavioral
Interface

Language
Engineer

defines

uses

Mutant
Generator

imports

Mutation
Operators

reads

reads

Test Case Selector
conforms to

defines

dependency
2

1 3

4

Regression
TDL test suite

reads

reads

Manually-defined
Artefact

Generated
Artefact

Legend

Proposed
Tool

Existing

Tool

Intermediate
Artifact

TDL
Interpreter

ch.3

Mutation
Analysis

ch.4

Figure 5.4: An overview of the test amplification approach

5.5.2 Approach Overview
Figure 5.4 shows an overview of our proposed approach with the same roles as the
previous chapters (e. g., Figure 3.1 on page 49). First, a language engineer (on
the top center) who defines a reactive xDSL according to the definitions given in
Section 2.2 on page 10 and a set of mutation operators for the xDSL. Second, a
domain expert (on the top left) who defines a model (using the xDSL) and a TDL
test suite for them.

The first component of the approach is the Test Case Modifier (on the left side).
It takes the manually-written test suite and the model under test, and generates
new test cases by modifying the given test suite (label 1). This modification involves
changing the test input data and removing the existing assertions since they are
no longer valid due to the data changes. As the test input data are specific to the
xDSL that the tested model conforms to, this component uses the xDSL definition
for performing the modification. The new test cases are then given to the TDL
Interpreter (on the bottom left) (i. e., already proposed in Section 3.5 on page 62)
to execute the test cases on the model and produce their execution traces (label 2).

Our second component is called Assertion Generator (on the bottom right) and
follows the idea of regression oracle checking [153]. In this technique, assertions are
generated based on the execution traces to improve the strength of the regression

109

5. Test Case Debugging and Improvement

testing. Accordingly, after running each new test case, our proposed component
analyzes the execution trace of the model under test to generate assertions for the
test case based on the model’s reaction to the new test input data. Again, as the
execution trace comprises data conforming to the xDSL that the model conforms
to, this component also uses the abstract syntax and the behavioral interface of
the xDSL definition, this time for generating assertions. At the end, its output is a
set of new test cases with assertions for regression testing (label 3).

The Test Case Selector is the third component of the approach (on the right
side). It is in charge of filtering the generated test cases based on some given
criteria. Currently, we consider the ability of new test cases in improving the
fault localization capability, so this component uses the Mutation Analysis facility
already presented in Section 4.3 on page 89. Accordingly, it uses the WODEL
mutant generator which produces mutants out of the model under test if the
language engineer provides a set of mutation operators for the xDSL (on the top
center) [62]. It then runs the new test cases on the mutants using the Mutation
Testing component and keeps those improving the initial mutation score (i. e., the
mutation score of the given manually-written TDL test suite). The process can be
iterated on the selected new test cases based on some stop criteria such as reaching
a 100 % mutation score (label 4).

5.5.3 Test Case Modification
The first step of our test amplification process is the modification of existing test
cases. This involves performing two tasks on each test case of the considered test
suite: modifying the test input data and removing the assertions. The former aims
at putting the model under test in unexplored runtime states, and the latter is
required since changing the input data makes the existing assertions invalid.

For the former task, we call modifier an operator that, when applied to a specific
element of an existing test case, generates a new test case that is identical to the
former one but for a single modification. A modifier can be applied multiple times
on the same test case, yielding a different result depending on the chosen element
of the test case. As some modifiers may produce too many different new test cases
from a single test case, each modifier may possess its own application policy, which
tells on which elements and how many times the modifier will be applied on each
test case. In the proposed approach, we use the following sets of modifiers.

5.5.3.1 Modification of primitive data

We adapt two existing sets of modifiers for modifying test input data that comprise
primitive values: (1) the operators proposed by Danglot et al. in [43] for the
amplification of JUnit test cases, and (2) the modifiers used by the Pitest mutation

110

5.5. Test Amplification for Executable Models

testing tool [39] for putting Java programs in new runtime states. The resulting
modifiers are as follows:

• A numeric value n is replaced by either 1, −1, 0, n + 1, n− 1, n× 2, n÷ 2,
or with another existing value of the same type.

• A string value is modified by either adding a random character, removing
one of its characters randomly, arbitrarily replacing one of its characters with
a random character, or replacing the string with a random string of the same
size.

• A boolean value is negated.

Each of these modifiers is applied as many times as possible on each considered
test case. For instance, the integer modifier will be applied 16 times on a test case
containing an event occurrence with two integer parameters (2× 8 possibilities).

5.5.3.2 Modification of event sequences

As explained in Section 3.3.2 on page 51, the test input data of a TDL test
case written for a reactive model is composed of a sequence of event occurrences.
According to the reactive xDSL the tested model conforms to, such occurrences
are instances of the accepted events of the xDSL’s behavioral interface. Each event
occurrence may have a set of parameters pointing to the model elements. Following
these considerations, we propose the following modifiers to generate new test cases
by modifying the input event sequences of a given test case:

• Event Duplication: Duplicate an existing event occurrence. Applied on each
possible event occurrence of the test case.

• Event Deletion: Removes an event occurrence. Applied on each possible
event occurrence of the test case.

• Event Permutation: Performs a permutation of two random event occurrences
to generate a new test case.

• Event Creation: Creates a new event occurrence in the test case. First, the
available accepted events of the xDSL’s behavioral interface that are not used
in the test input data of the given test case are collected. The availability is
verified by analyzing whether, for the unused events, a value can be set to
their parameters using information from the model under test. If possible, this
operator adds new event occurrences to the input event sequence by creating
all the possible instances of the available accepted events. In particular, it
generates one new test case per event addition as well as a new test case
containing all the new instantiated event occurrences. In the latter case,

111

5. Test Case Debugging and Improvement

when several new event occurrences are added, this new input is modified
using other operators such as event duplication, event deletion, and event
permutation to generate more new test cases.

• Event Modification: Analyzes the model under test to find alternative values
for the parameters of the events (i. e., other values of the same type). If
any are found, the values of the event parameters are replaced with the
alternatives. With each possible modification, it generates a new test case.

The output of this step is a set of new test cases but still without any assertion.
As mentioned in Section 5.5.1 on page 108, our approach requires execution traces
to generate regression assertions. Accordingly, we execute each new test case on
the model under test using the TDL Interpreter to capture an execution trace
(label 2 in Figure 5.4 on page 109).

5.5.4 Assertion Generation
As explained in Section 5.5.1 on page 108, the execution trace of a reactive model
comprises a sequence of exposed event instances, according to the behavioral
interface of the xDSL that the model conforms to. Since the test cases are
implemented in TDL, the assertions must be generated in TDL as well. Thus, the
main role of the assertion generator is to transform the exposed event instances
to TDL elements. This transformation uses the definition of both the behavioral
interface and the abstract syntax of the xDSL because event instances conform
to the behavioral interface and may carry EObjects of the model under test, each
conforms to the abstract syntax metamodel.

5.5.5 Amplification Example
For example, Figure 5.5 on page 113 demonstrates the correct version of the
xArduino sample model (Figure 2.2 on page 12). Thus here the TDL test case of
Figure 3.2(b) on page 52 passes, as shown in Figure 5.6 on page 113. However,
this test case is checking the Sketch part of the xArduino model, except for the
else part, so considering a regression fault in the else part such as Figure 5.7 on
page 114, the test case would not be able to find the fault.

We applied our test amplification approach on the initial test case of Figure 5.6
and Figure 5.8 on page 114 illustrates the output generated as follows: In the
test case modification phase, the Event Creation modifier added a new event,
button_released (button1), to the input event sequence. Then, in the asser-
tion generation phase, a new assertion with expected output pin_level_changed
(white LED == 0) is generated because according to Figure 5.5 on page 113, by

112

5.5. Test Amplification for Executable Models

if button1 == 1

if infrared sensor == 1
else

buzzer = 1 buzzer = 0 buzzer = 1 buzzer = 0white LED = 1 white LED = 0

Figure 5.5: The correct version of the xArduino sample model (Figure 2.2 on
page 12)

Test
Component

SUT
(xArduino model)

IRSensor_detected (infrared sensor)

pin_level_changed (buzzerPin == 1)
pin_level_changed (buzzerPin == 0)

button_pressed (button1)
pin_level_changed (whiteLedPin == 1)

pin_level_changed (buzzerPin == 1)
pin_level_changed (buzzerPin == 0)

Figure 5.6: The TDL test case of Figure 3.2(b) on page 52 that is passed on the
xArduino model of Figure 5.5 on page 113

113

5. Test Case Debugging and Improvement

if button1 == 1

if infrared sensor == 1
else

buzzer = 1 buzzer = 0 buzzer = 1 buzzer = 0white LED = 1 white LED = 1

Figure 5.7: A regression fault in the xArduino model of Figure 5.5 on page 113

Test
Component

SUT
(xArduino model)

IRSensor_detected (infrared sensor)

pin_level_changed (buzzerPin == 1)
pin_level_changed (buzzerPin == 0)

button_pressed (button1)
pin_level_changed (whiteLedPin == 1)

pin_level_changed (buzzerPin == 1)
pin_level_changed (buzzerPin == 0)

button_released (button1)
pin_level_changed (whiteLedPin == 0)

Figure 5.8: An amplified TDL test case generated from the initial test case of
Figure 5.6 on page 113 by applying the event creation modifier. The last message
unsatisfies the assertion then the test case fails, hence finding the regression fault
of Figure 5.7

releasing the button the else part of the Sketch will be executed which changes
the level of the white LED to 0.

5.5.6 Test Case Selection
Up to this step, a set of new test cases has been generated, but not necessarily all
of them improve the quality of the test suite. In this step, we rely on mutation
analysis to evaluate whether a generated test case improves the quality of the test
suite. Figure 5.9 on page 115 shows the test case selection process. First, the

114

5.6. Tool Support

original
model

mutation
operators

model
mutants

amplified TDL
test case

killed by
amplified

alive

killed

current TDL
test suite

new
killed?

selected
TDL test
case

1

2

3

4

5

6 [yes] 7

new
killed

Figure 5.9: Selecting test cases using mutation analysis

original model under test is mutated using a set of mutation operators for the
xDSL (step 1). Then, the original test suite is evaluated on the mutants (step 2)
to yield a mutation score (step 3). We also keep track of the set of killed and alive
mutants.

Next, the process evaluates each amplified test case on the live mutants (step 4)
to check whether it fails on any of them (i. e., kills some mutant, step 5) or succeeds
(i. e., does not distinguish the mutant from the original model). The amplified
test case is selected if it kills at least one live mutant. In such a case, the process
incorporates the new killed mutants to the existing set of killed mutants, increasing
the mutation score (step 6), and iterates the process on the selected amplified test
cases (step 7). The process finishes based on some given stop criteria. Currently,
we iterate up to three times while the mutation score is less than 100 %.

For example, considering the xArduino model of Figure 5.7 on page 114 as a
mutant of Figure 5.5 on page 113, the initial test case of Figure 5.6 on page 113
passes on the mutant but the new test case of Figure 5.8 on page 114 fails on it.
This means that the new test case is able to detect the fault, and therefore that
the mutant has been killed, which increases the mutation score. Hence, the test
case is added to the regression TDL test suite of the xArduino model.

5.6 Tool Support
This section presents our tool support for debugging (Section 5.6.1 on page 116)
and improving (Section 5.6.2 on page 118) TDL test cases.

115

5. Test Case Debugging and Improvement

5.6.1 Debugging Tool
We have implemented both debugging approaches as part of the GEMOC Studio [29].
The Interactive Debugging component uses the model debugging framework of the
GEMOC Studio [29, 30] for the initialization of two debugger instances, and the
Eclipse debug platform2 for managing their communication and synchronization,
all implemented in Java.

The suspiciousness computation in the Fault Localization component is based on
that of provided by Troya et al. [142] for fault localization in model transformations,
now adapted for general model elements. Currently, our tool supports 18 SBFL
techniques but adding new ones is possible. Indeed within the literature, there are
approximately 30 SBFL techniques [110, 131, 150]. They all use the set of values
explained in Section 5.4 on page 105 (i. e., NCF , NUF , NCS, NUS, NC , NU , NS, NF)
to compute the suspiciousness-based ranking. Accordingly, any existing formula
defined using the aforementioned variables can be added to the tool.

Figure 5.10 displays two screenshots of the provided test debugging facilities
running in the GEMOC studio modeling workbench for the running example. The
(a) part shows the usage of the interactive debugging facility for the running
example. It displays two debugger instances, one for the TDL test suite (label 1)
and another for the xArduino model under test (label 2), both running using
GEMOC execution engines (label 3). Running the test suite in debug mode, we
chose the step into operator of the test case debugger where the test case wanted
to send an IRSensor_detected event for the infrared sensor to the xArduino model.
This paused the test case debugger on the first of the next TDL Message (i. e.,,
asserting a pin_level_changed event for the buzzerPin (at the center, line 21)) and
enabled a debugger for the model under test. Using the stepping operators of
the model debugger (label 2), we observed when the xArduino sample model has
received the said event from the test case, the condition of the second if statement
has been satisfied and the execution entered into its body. We then identified that
the value of the third ModuleAssignment is mistakenly 1 instead of 0 (label 4).

Figure 5.10(b) shows a screenshot of our SBFL tool. The source code is available
on a public GitLab instance3. To run SBFL on a tested model, we provided a
graphical view titled “fault localization” (label 1). It lists the traceable elements of
the tested model, their coverage status by each test case, the test execution result
(at the last row), and the required values for calculating the suspiciousness-based
ranking. The view has a drop-down list of the 18 supported SBFL techniques
(Label 2). When a technique is selected, the tool calculates the suspiciousness
score and the rank for all the model elements and shows the results in the last

2https://www.ibm.com/docs/da/rsar/9.5?topic=reference-orgeclipsedebugcore
3https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/

fault_localization

116

https://www.ibm.com/docs/da/rsar/9.5?topic=reference-orgeclipsedebugcore
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/fault_localization
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/fault_localization

5.6. Tool Support

1

2

3

4

(a) Interactive debugging facilities

1

2

3

4

(b) SBFL facilities

Figure 5.10: Screenshots of the provided test debugging tools running in the
GEMOC studio modeling workbench for the running example

two columns (label 3). Such ranking assists language users in debugging their
models by providing direct links to the location of the faulty elements. Indeed by
double-clicking on a row, the corresponding model element will be revealed in a
new window.

For example, if we chose Phi as a concrete SBFL technique, it calculates the first
rank for the second ModuleAssignment of the second if condition of the xArduino
model of Figure 2.2 on page 12 where the defect is located (label 4). Therefore,
the rank for the faulty element is correctly calculated to 1. However, there is
also another element with the same rank. This is a common output returned

117

5. Test Case Debugging and Improvement

1

3

4

5

6

2

Figure 5.11: A screenshot of the results produced by our test amplification tool

by SBFL techniques, due to the so-named tied elements [150]. One common tie-
breaking strategy for software programs is ordering based on line numbers in a text
editor [150] and we support ordering based on model element position in a tree
editor (i. e., provided by Ecore model editor).

5.6.2 Amplification Tool
We implemented our proposed amplification approach as part of the GEMOC
studio [29], in Java. The source code is available on a public GitLab instance4.
Using the provided tool, a domain expert can select an existing TDL test suite
and run the amplification process on it. For example, we applied the tool on a
TDL test suite for the xArduino sample model (label 1) that includes one test case
(label 3). Figure 5.11 shows the results produced by the tool (label 2):

1. the mutation analysis result for the initial test suite, including the mutants
killed by each of the test cases, and the list of alive mutants (label 4).

2. the amplified test suite comprising the initial test cases and the new test
cases (label 5).

3. the mutation analysis result of the amplified test suite, including the initial
mutation score, the final mutation score, the mutants killed by each new test
case, and the mutants that are still alive after the amplification (label 6).

4https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/test_
amplification

118

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/test_amplification
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/test_amplification

5.7. Evaluation

Please note that files (2) and (3) will be generated if at least one new test case is
produced by the test amplifier.

5.7 Evaluation
In this section, we first present our evaluation of the proposed debugging approaches
(Section 5.7.1 on page 119). Next, we introduce an empirical evaluation designed
and performed for the proposed test amplification approach (Section 5.7.2 on
page 122).

5.7.1 Evaluation of Debugging Approaches
Our main objective in evaluating the debugging approaches is to validate their
genericity regarding the supported xDSLs. Accordingly, our first research question
is similar to RQ1 of our evaluation in Section 4.5 on page 93 (for evaluating the
genericity of the proposed quality measurement techniques) which is:

RQ1: How much genericity do the debugging approaches provide regarding the
supported xDSLs?

In addition, as the proposed Fault Localization component is offering an au-
tomatic debugging facility, we aim to investigate its validity by answering the
following research question:

RQ2: How well can the proposed fault localization component find defects in a
set of models?

In the following, we describe the experiment setup, answer the RQs, and describe
threats to the validity of the experiments.

5.7.1.1 Experiment setup

Setup for RQ1. For RQ1, we aim to investigate whether the approaches can be
used for different xDSLs. Accordingly, we chose the four different xDSLs used in
Section 4.5.1 on page 94, including xFSM and xMiniJava non-reactive xDSLs, and
xArduino and xPSSM reactive xDSLs. In particular, we used 45 test cases of five
xFSM models, 77 test cases of six xMiniJava models, 22 test cases of six xArduino
models, and 156 test cases of five xPSSM models, altogether 300 TDL test cases
for 22 conforming models (as given in Table 4.2 on page 94). This should be noted
that we excluded the 60 standard xPSSM models from the evaluation because the

119

5. Test Case Debugging and Improvement

Non-Reactive xDSLs Reactive xDSLs TotalxFSM xMiniJava xArduino xPSSM
Models
&Tests

Number of tested models 5 6 6 5 22
Total number of test cases 45 77 22 156 300

Mutation
Analysis

Number of mutation operators 5 113 36 30 184
Number of generated mutants 289 181 394 324 1,188
Number of killed mutants 194 120 375 308 997

SBFL Number of fault localized mutants 194 119 370 304 987

Table 5.2: Evaluation data for fault localization

provided test suite for each xPSSM model only contains a single test case, while
SBFL needs multiple test cases for each model to be effectively applied.

For evaluating the debugging approaches on each considered model, there must
be at least one defect in the model and at least one of its related test cases must be
failing. For this, we used the evaluation result of our proposed Mutation Analysis
component, already presented in Section 4.5.2 on page 95, also shown in Table 5.2 on
page 120. More specifically, from 1,188 mutants generated out of 22 models through
the application of 184 mutation operators, we used those killed by the related TDL
test suites i. e., 194 xFSM mutants killed by 45 test cases, 120 xMiniJava mutants
killed by 77 test cases, 375 xArduino mutants killed by 22 test cases, and 308
xPSSM mutants killed by 156 test cases, for a total of 997 killed mutants.

Setup for RQ2. The second research question targets the validity of the fault
localization component. This needs to assess whether our fault localization compo-
nent correctly ranks the faulty element of a model as first. Accordingly, we used the
1.088 killed mutants provided in the setup for RQ1, and to know the exact location
of their injected fault, we used a tool named EMF Compare5 to automatically
find the faulty element of each mutant by comparing it with the original model.
This should be noted that we are not aiming for an empirical evaluation of the
performance of the different SBFL techniques and leave this to future work.

5.7.1.2 Evaluation result

Answering RQ1. As the Interactive Debugging component offers a manual
debugging facility for the domain expert, we also evaluated it manually. We used
it on both a set of failed TDL test cases of non-reactive models (such as the test
cases for the xFSM and xMiniJava models) and a set of failed event-driven TDL
test cases of reactive models (such as the test cases for the xArduino and xPSSM
models). In both cases, we effectively debugged the model under test in unison
with its test case, which ultimately helped us to localize the defect of the model.

5https://www.eclipse.org/emf/compare/

120

https://www.eclipse.org/emf/compare/

5.7. Evaluation

To perform fault localization using the SBFL facility, we run the 300 test cases
on the 997 killed mutants, and then we successfully used the SBFL techniques to
get the suspiciousness ranking of the elements of the mutants. As the examined
models/mutants are defined using different xDSLs, it gives us the confidence to
conclude that the approaches provide the expected genericity feature.

Answering RQ2. The second research question targets the validity of our
proposed Fault Localization component. For answering this question, we need
to investigate whether it can correctly find the faulty element of each mutant.
Accordingly, we checked the result of running the SBFL techniques on 997 killed
mutants from RQ1 to see the rank of the mutants’ faulty element calculated by
each SBFL technique. We observed that for 987 examined mutants (99 %), there is
at least one SBFL technique that calculated the rank of its faulty element as first,
hence showing the validity of our fault localization component.

As said earlier, we leave the performance evaluation of the different techniques
as subject to future work, but we could show that in principle the proposed facility
allows employing SBFL techniques for xDSLs. It is also worth mentioning that, since
the fault localization component uses the test results and the coverage measurements
produced by the TDL Interpreter and the coverage computation components (i. e.,
proposed in Sections 3.5 on page 62 and 4.2 on page 80, respectively), by answering
RQ2, we are also validating the effectiveness of those two other components.

5.7.1.3 Threats to validity

One common external threat to the validity of our evaluation is that the debugging
approaches might not work as expected for other modeling languages or in other
language workbenches (also mentioned in Sections 3.8.4 and 4.5.3 on pages 77
and 97).

While answering the second research question in Section 5.7.1.2 on page 120, we
observed that SBFL techniques can find the faulty element in a model. However, it is
not clear which technique outperforms the other. This requires a deeper comparison
between different SBFL techniques in an empirical evaluation to investigate their
efficiency. This could also be useful in recommending the best techniques that offer
the best ranking of the faulty elements given our coverage measurements.

In a recent survey on software fault localization [150], it is mentioned that
SBFL is incapable of locating bugs that are caused by missing code. Accordingly,
we ignored the mutation operators that define faults as the removal of models’
elements and all the generated mutants have faults resulting from modification.
This threatens the validity of our fault localization facility for models that are
faulty because of missing elements. To overcome this threat, we should extend the
facility with other fault localization techniques in the future.

121

5. Test Case Debugging and Improvement

Table 5.3: Setup for evaluating test amplification approach

xArduino xPSSM

Models
& Tests

Number of tested models 6 65
Size range of models (#EObjects) 18-59 13-154
Initial test suite size (#test cases) 22 216
#generated mutants 394 12,087

5.7.2 Evaluation of the Test Amplification Approach
Next, we evaluate our proposed test amplification approach, aiming to answer the
following research questions (RQs):

RQ1 How much genericity is provided by the provided approach in terms of the
supported reactive xDSLs?

RQ2 To what extent do the generated test cases increase the mutation score of
the original, manually-written, test cases?

RQ3 To what extent do the size and the quality of the original test suites impact
the amplification result?

In the following, we describe the experiment setup, answer the RQs and describe
threats to validity of the experiments. The evaluation data is also accessible from
a public GitLab repository6.

5.7.2.1 Experiment setup

Setup for RQ1. For the first research question, we intend to evaluate the
applicability of our approach to two different reactive xDSLs, xArduino and xPSSM,
already presented in Section 3.8.1 on page 73. As our approach relies on mutation
analysis, we used the sets of mutation operators defined in Section 4.5.1 on page 94
for each xDSL i. e., 36 for xArduino and 30 for xPSSM. For each xDSL, we used the
set of models provided by Section 3.8.2 on page 75. As summarized in Table 5.3, 6
xArduino models and 65 xPSSM models (60 standard xPSSM models + 5 manually
defined models).

Setup for RQ2. The second research question aims to assess the ability of the
proposed approach for improving manually-written test cases. For this, we used
the test cases provided by Section 3.8.2 on page 75. Cumulatively, 22 test cases
for the xArduino models and 216 test cases for the xPSSM models, where 60 of

6https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/
publications-data/MODELS22-paper-data

122

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/publications-data/MODELS22-paper-data
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/publications-data/MODELS22-paper-data

5.7. Evaluation

them were the TDL versions of the test cases provided by the standard PSSM test
suite [114].

As explained in Section 5.5.6 on page 114, our approach relies on mutation
analysis to measure the degree of achieved improvement in the test suite quality.
Accordingly, we used the Wodel mutant generator [60] to apply the defined
mutation operators to the considered models. Wodel generated 394 and 12,087
mutants for the xArduino and the xPSSM models, respectively.

Setup for RQ3. The third research question aims to investigate whether the
size and the quality of the initial test suite impacts the amplification result. In this
regard, we classified our provided TDL test suites into four categories:

1. Small Size Medium Quality (SSMQ): having one test case with mutation
score < 80 %

2. Small Size High Quality (SSHQ): having one test case with mutation score
≥ 80 %

3. Medium Size Medium Quality (MSMQ): having more than one test case with
mutation score < 80 %

4. Medium Size High Quality (MSHQ): having more than one test case with
mutation score ≥ 80 %

The rationale for selecting 80 % as the threshold to classify a test suite as having
medium or high quality is because improving the mutation score beyond 80 % is
significantly time-consuming for developers [129], and thus not necessarily worth
the effort depending on the context.

For every category and xDSL, Table 5.4 presents the number of original test
cases (column 3), the number of generated mutants (column 4), the number of
mutants killed by the original test cases (column 5), and the original mutation
score (column 6). The provided numbers are cumulative numbers, and the scores
are the average scores considering all provided models and test suites. It should
be noted that, when possible, we intentionally reduced the mutation score of an
MSHQ test suite to have a new version of it as MSMQ or SSMQ (i. e., if reducing
the mutation score had resulted in keeping only one test case in the new version of
the test suite).

5.7.2.2 Evaluation result

Answering RQ1. The purpose of the first research question is to assess whether
the approach can amplify test cases for various xDSLs. To answer this question, we
used the prototype presented in Section 5.6.2 on page 118 for the two considered

123

5. Test Case Debugging and Improvement

Table 5.4: Evaluation result for amplifying test suites with different sizes and
qualities

#
O

ri
g.

te
st

ca
se

s

#
G

en
er

at
ed

m
u-

ta
nt

s

#
K

ill
ed

m
ut

an
ts

by
or

ig
.

te
st

ca
se

s

O
ri

g.
m

ut
at

io
n

sc
or

e

#
N

ew
am

pl
.

te
st

ca
se

s

#
N

ew
ki

lle
d

m
u-

ta
nt

s
by

am
pl

.
te

st
s

M
ut

at
io

n
sc

or
e

im
pr

ov
em

en
t

R
eg

re
ss

io
n

te
st

su
it

e
si

ze
(#

or
ig

.
+

#
am

pl
.)

R
eg

re
ss

io
n

te
st

su
it

e
gl

ob
al

sc
or

e
(o

ri
g.

+
im

pr
ov

.)

SS
M

Q xArduino 4 148 60 44.08% 8 65 42.85% 12 86.93%

xPSSM 43 5,653 4,022 71.99% 101 400 8.69% 144 80.68%

SS
H

Q xArduino 1 15 13 86.67% 1 2 13.33% 2 100.00%

xPSSM 18 2,205 1,873 84.38% 36 133 7.13% 54 91.51%

M
SM

Q

xArduino 2 231 106 45.89% 3 125 54.11% 5 100.00%

xPSSM 44 4,229 3,385 74.23% 55 459 14.26% 99 88.49%

M
SH

Q

xArduino 6 241 222 91.10% 3 19 8.90% 9 100.00%

xPSSM 156 4,453 4,249 93.28% 47 88 3.17% 203 96.45%

xDSLs and executed the test amplification tool on the 71 test suites. For 67 of
them, new test cases were successfully generated—a total of 244—improving their
original mutation score between 3.17 % and 54.11 % on average, based on the initial
setup (detailed results are given shortly after, when answering the next research
questions). Therefore, we can conclude that the approach does provide a certain
level of genericity, i. e., the approach is not solely dedicated to a single specific
xDSL, and can be applied to at least two different ones.

It is also worth mentioning that, to support an additional xDSL with our test
amplification approach, the only additional cost for the language engineer is to
define a set of mutation operators for the xDSL. These operators are defined once
and can be reused for other purposes, such as test quality measurement [47, 67]
and fault localization based on mutation analysis [150].

Answering RQ2. To answer the second research question, we must evaluate the
degree of improvement provided by the generated test cases. Figure 5.12 presents
the results for the selected 71 test suites using bar charts. Figure 5.12(a) displays

124

5.7. Evaluation

the result for the 11 test suites of manually defined models, that is, 6 xArduino
models (A bars) and 5 xPSSM models (P bars). We have obtained mutation
score improvements for all test suites, ranging from 4.06 % (P4) to 55.10 % (A4).
Additionally, the final mutation score for 5 test suites (A1-A4 and A6) reaches
100 % after amplification. Figure 5.12(b) shows the result for the 60 test suites from
the PSSM standard [114]; where each test suite has only one test case. Except for
4 cases (bars 37, 45, 50 and 53), the mutation score is improved, reaching 100 % for
2 test suites (bars 9 and 47). This also means that, even when starting from small
test suites with just one test case, the approach is able to provide improvement.
These results reveal the success of our test amplification approach in improving
the mutation score of the models’ test suites. However, the rate of improvement is
different case by case, as we will discuss while answering RQ3.

Answering RQ3. Given a test suite to be amplified, its size (i. e., number of
test cases) and quality (i. e., mutation score) may influence the level of improvement
that our approach provides. The third research question targets this matter and to
answer it, we run the experiment in four different setups. Table 5.4 lists detailed
numbers related to our experiment. First, we compare the results for the test
suites of the same size but with different qualities (SSMQ vs SSHQ, and MSMQ
vs MSHQ). As can be seen, the number of new test cases (column 7) and the
average improvement (column 9) for high-quality tests is less than the one of
medium-quality tests. This is due to the fact that high-quality test suites need
less improvement. However, the final mutation score of the regression test suite
(last column) – the sum of the original score and the score improvement – is
higher for high-quality tests. For example, for xArduino, the mutation score of
SSMQ test suites is improved from 44.08 % to 86.93 %, but for the SSHQ ones, it
is improved from 86.67 % to 100 %. Note that the scores refer to the average score
of all considered test suites in each category. Also for xPSSM, the mutation score
for the SSMQ test suites improves from 71.99 % to 80.68 %, and for the SSHQ ones
from 84.38 % to 91.51 %. This could imply that, when the original test cases have
higher quality, there is more room for test amplification. By amplifying high-quality
tests, it is more probable to generate new effective test cases.

Second, we compare the results for the test suites with different sizes but similar
qualities (SSMQ vs MSMQ, and SSHQ vs MSHQ). According to the numbers in
the last column, the final mutation score is higher when the original test suite has
more test cases. For instance, comparing the final mutation score of the xArduino
test suites, for SSMQ is 86.93 % while for MSMQ is 100 %, and for both SSHQ
and MSHQ is 100 %. Likewise, for the xPSSM test suites, the final mutation score
is 80.68 % for SSMQ but 88.49 % for MSMQ, and 91.51 % for SSHQ but 96.45 %
for MSHQ. Therefore, for test suites with more test cases, it appears that there is

125

5. Test Case Debugging and Improvement

0.00%

25.00%

50.00%

75.00%

100.00%

A1 A2 A3 A4 A5 A6 P1 P2 P3 P4 P5

mutation score improvement initial mutation score

(a) Mutation score improvement for 11 test suites of manually defined models: 6 xArduino
models (A bars) and 5 xPSSM models (P bars)

0.00%

25.00%

50.00%

75.00%

100.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

mutation score improvement initial mutation score

(b) Mutation score improvement for 60 existing test suites from the PSSM standard [114]

Figure 5.12: Mutation score improvement by test amplification

126

5.7. Evaluation

more chance to generate new test cases improving the mutation score. A possible
explanation is that our approach runs the amplification on every test case of the
original test suite, each time by applying all the possible modifiers to generate as
many new test cases as possible. Hence, the more available initial test cases, the
more generated test cases, and the more chances for improvement of the test suite
quality.

5.7.2.3 Threats to validity

In addition to the external threat to the validity of our evaluation regarding the
considered xDSLs (i. e., mentioned several times in Sections 3.8.4, 4.5.3, and 5.7.1.3
on pages 77, 97, and 121), we list here multiple other threats. First, we kept
iterating the amplification process while improvements were observed, meaning
that the input for the next iteration is the output of the current iteration. Meaning
that among all the new test cases generated in the current iteration, we only keep
those improving the mutation score for the next iteration (label 4 in Figure 5.4 on
page 109). Without this test case selection criterion (i. e., iterating from label 3 of
Figure 5.4 on page 109), the number of generated test cases increases exponentially
after a few iterations. However, the non-effective test cases (i. e., test cases not
contributing to improving the mutation score in the current iteration) might
become effective in the next iterations since a combination of several modifiers
is applied to them. It is also worth mentioning that we experimented the tool
for up to 3 iterations while the mutation score is less than 100 % to avoid a huge
experimentation time; nonetheless, we may reach higher mutation scores with more
iterations. Note that the users of the tool are allowed to change this stop criterion.

Next, we used the modifiers presented in Section 5.5.3 on page 110. Other more
complex modifiers could be devised, which may show more effectiveness in fault
localization. This should be investigated in the future, but we have shown that our
proposed modifier set is enough to produce effective amplified test cases.

Moreover, as discussed in Section 5.5.2 on page 109, we assume that a set of
mutation operators has been provided for each considered xDSL. Depending on
the quality of these operators (e. g., their metamodel footprint) the diversity of the
generated mutants would differ, leading to variations in the effectiveness of the
test amplification tool. It would be interesting to consider other test case selection
criteria such as increasing coverage.

Lastly, in the best scenario, amplified test cases must be approved by the
developers who wrote the original test cases [42]. Accordingly, there is a need for a
user-centric evaluation to assess the value of the generated TDL test cases from
the user’s perspective.

127

5. Test Case Debugging and Improvement

5.8 Conclusion
In this chapter, we have presented facilities for debugging and improving test
cases of executable models. We offered approaches for both manual and automatic
debugging of models’ test cases as well as a test amplification approach targeting
the regression testing of models. The proposed facilities are generic and applicable
to any xDSL and are evaluated on several different xDSLs. The evaluation result
showed the benefits of the facilities in debugging failed test cases and improving
them in finding potential faults (as given by the mutation score).

Discussions and Improvements. In this chapter, we demonstrated the ef-
fectiveness of the SBFL techniques for localizing faults of the executable models.
However, a deeper investigation is required to identify the most efficient ones in
the context of xDSLs. Moreover, the proposed test amplification approach can be
expanded with more advanced features. For example, input modifiers changing
event sequences may need to create dynamic objects following certain criteria which
can be offered using search-based techniques, such as MOMoT [26]. It is also
beneficial to make explicit and extensible the set of input modifiers, possibly via a
dedicated DSL.

In general, the result of the test amplification approach can be influenced by
several different parameters such as the kind of input modifiers, their application
policy, the number of iterations of the amplification process, the test oracle genera-
tion technique, and the test selection criteria and more empirical evaluation are
needed to measure the impact of each.

128

Chapter 6

Conclusion and Perspectives

6.1 Conclusion

An executable DSL with testing support allows its users, i. e., domain experts, to
ensure the correctness of their modeled behavior as early as possible. However,
providing a testing framework for an xDSL faces several challenges. First, to enable
the domain experts to accomplish testing of their models, a testing language is
required that supports the use of domain concepts in the definition of test cases,
the execution of test cases on the models, and the comparison of models’ behavior
against their test case expectations. As the domain concepts, the model execution
facilities, and the observable behavior of executed models differ from one xDSL
to another, providing such a testing language for each and every xDSL is a costly
and challenging endeavor. Moreover, to perform model testing efficiently, a testing
framework should provide at least three other important features: test quality
measurement to evaluate the strength of test cases, test debugging to find the cause
of test failure, and test improvement to strengthen the written test cases when
needed.

In this thesis, we proposed a generic testing framework for xDSLs that sys-
tematically realizes each of the aforementioned needs for any given xDSL. At its
core, the framework relies on the standardized Test Description Language (TDL),
and can automatically generate a TDL library for a considered xDSL. This library
allows domain experts to define executable test cases for conforming models. We
also provided a test execution engine dedicated to running TDL test cases on
executable models which also generates the test execution results. In addition
to these essential facilities, we proposed three supplementary services to help the
domain experts in efficiently testing models. First, we provided generic test quality
measurement facilities for xDSLs. In particular, we proposed a generic approach
for computing the coverage of TDL test cases and we integrated our approach

129

6. Conclusion and Perspectives

with a model mutation framework [62] to offer mutation analysis to any xDSL.
Second, for debugging failed test cases, we introduced both a manual debugging
approach based on interactive debugging and an automatic fault localizer using
SBFL techniques. Third, to automatically improve the quality of those written test
cases that are not strong in finding regression faults, we proposed a generic test
amplification approach. From an existing test suite, this approch produces new
test cases that improve input test suite in detecting regression faults.

To sum up, this thesis supports language engineers in providing comprehensive
testing facilities for their xDSLs in a systematic manner. Once the proposed
framework is applied to a given xDSL, the xDSL users (i. e., domain experts) can
define test cases for the conforming models, run test cases on models and get the
results, measure the quality of test cases, debug the failed test cases, and improve
the written test cases for regression testing.

6.2 Limitations and Possible Improvements
In this section, we introduce the limitations we identified in the work presented in
this thesis, along with possible solutions for improving them.

Genericity regarding supported xDSLs. The genericity of the framework is
assessed by its application on six different DSLs, but to assure its practicality for
other modeling languages, more experiments are needed. For example, evaluating
the framework on xDSLs with a larger amount of dynamic features and consequently,
for testing models with more complex runtime states. In addition, while at the
moment we tried testing executable models each conforming to a single xDSL, it
would be very interesting to study the possible use of the framework on xDSLs
that are a composition of several interconnected xDSLs, which means the test
execution engine must be able to interact with several connected models that are
co-executing. Lastly, we defined our framework considering the GEMOC Studio as
a reference for the xDSL implementation and we built our tool on top of it. In fact,
the GEMOC Studio only allows building DSLs based on Ecore, and using a handful
of metaprogramming approaches such as Kermeta [78], Xtend [49], and ALE [92],
among others. In the literature, there are also other language workbenches [51],
and investigating the portability of the provided framework on other workbenches
would be beneficial.

Usability. In this thesis, two roles were considered, the language engineers who
use the proposed framework to offer testing facilities for their xDSLs and the domain
experts who are the end users of the provided facilities. We aimed at moderating
the endeavor of language engineers by proposing a generic testing framework as

130

6.2. Limitations and Possible Improvements

well as easing the model testing activities for domain experts by supporting domain
concepts and providing automation. However, a user study must be conducted to
evaluate the framework usability from the point of view of both considered roles.
This user study is also essential for the parts of our contribution related to test
amplification because as discussed by Danglot et al. [42], amplified test cases must
be approved by the developers of the original test cases who are the domain experts
in the context of this thesis.

Reliability of mutation analysis result. In this thesis, we used mutation
analysis for both measuring the ability of test cases in detecting potential faults
(Section 4.3 on page 89) and selecting the most efficient amplified test cases regarding
fault detection improvement (Section 5.5 on page 106). Therefore, it is important
to obtain reliable mutation analysis results. However, this result may vary subject
to the mutation operators because depending on the quality of the operators (e. g.,
their metamodel footprint), the diversity of the generated mutants would differ,
leading to variations in the mutation analysis result. To deal with such a situation,
one possible solution could be a systematic generation of mutation operators for
any given xDSL. For example, Troya et al. [140] investigated systematic mutation of
ATL model transformations and this research can be followed but for the context of
xDSLs. As mutation operators perform small modifications to a model to generate
mutants, an interesting solution could be inferring them utilizing model editing
operations for metamodels as introduced by Kehrer et al. [83].

Efficiency of SBFL techniques. A common output returned by SBFL tech-
niques is detecting several elements with the same suspiciousness, called to be tied
to the same position in a ranking [150]. As model elements ranking is used by
the domain experts to find faulty elements, the more tied elements lead to more
effort for detecting faults. The best case scenario is when the first tied element
is faulty and the worst case scenario is when the last tied element has the fault
since all the other tied elements must be examined to find the fault. One common
tie-breaking strategy for software programs is ordering based on line numbers in
a text editor [150] and we support ordering based on model element position in
a tree editor (i. e., provided by Ecore model editor). However, there are other
techniques such as confidence-based and data dependency-based strategies which
can be considered in the future to improve efficiency.

Another concern lies in the choice of the SBFL technique. As already mentioned
in Section 5.6.1 on page 116, there are approximately 30 SBFL techniques in the
literature [110, 131, 150] and we currently implemented 18 of them in our framework.
Currently, the domain expert must manually choose a random technique from the
list of available techniques and it is not clear which technique can produce a better

131

6. Conclusion and Perspectives

ranking of elements. To efficiently apply SBFL techniques in the context of xDSLs
and to recommend the best technique to the domain expert for a given model, we
need to know which technique outperforms the other for a given xDSL or a given
model. Grasping such information requires a deeper comparison between different
SBFL techniques in an empirical evaluation. An investigation is needed to find out
if there is a meaningful relationship between an SBFL technique and the features
of a given xDSL such as its application domain, the structure of its abstract syntax,
its semantics and the kind of behavior that can be expressed by its conforming
models, and the kind of defects that may occur in its conforming models.

The impact of different parameters in amplification results. In our
proposed test amplification approach (Section 5.5 on page 106), there are several
parameters that may affect the final result. First, we have defined a set of test
data modifiers to generate new test input data and we obtained promising results
in our evaluation. However, an empirical evaluation is needed to measure the
effectiveness of each modifier both individually and in combination with other
modifiers. This can be achieved by analyzing the final amplified test cases and
investigating the kind of modifiers contributing to generating them and the kind
of mutants killed by each amplified test case. Second, we experimented with the
tool for up to 3 iterations while the mutation score is less than 100 % to avoid a
huge experimentation time; nonetheless, we may reach higher mutation scores with
more iterations. Third, we do not currently measure the execution overhead of the
amplification tool and it is beneficial to investigate in which situations the provided
improvement is worth the execution overhead.

6.3 Perspectives
In addition to the possible improvements for resolving the existing limitations, we
can vision several perspectives to continue the work of this thesis in the future.

Testing support for compiled executable DSLs. As already mentioned
in Section 2.2.3 on page 13, the execution semantics of DSLs can be defined as
translational (i. e., comilation) or operational (i. e., interpretation). This thesis
focused on DSLs with operational semantics as our objective was to offer early
testing of models using the domain concepts. Supporting compiled DSLs can widen
the scope of our contributions to many other DSLs, however, the challenge is the
dependency of these DSLs on an arbitrarily different target language. In particular,
as all their execution facilities are indeed relying on those of their target language,
the dynamic V&V techniques can be performed on the target language, thus using
the target domain concepts. This challenge is also discussed by Bousse et al. for

132

6.3. Perspectives

domain-level observation and control of compiled DSLs [33]. They propose the
definition of a feedback manager for the compiled DSLs that can translate the
execution steps and states of a target language back into the source domain. It is
apparent that on the basis of their approach, it is possible to offer testing facilities
for compiled DSLs as well, but a challenge remains unsolved: the translation of
test input data (e. g., input events) towards the target domain, and likewise for
output data of the target domain back to the source domain.

Broadening test oracle definition approaches. Our provided facilities for
test case definition and execution allow the specification of test oracles as to what
should be accepted by a model and how the model should react. Also, they are
de facto constrained by how test cases are made in TDL i. e., as a sequence of
expected output (e. g., expected events). However, there are several interesting
other ways of defining test oracles for asserting different kinds of behavior, such
as specifying what should not be accepted/retrieved by/from a model. Also for
testing models with concurrent execution, test oracles are commonly defined as
temporal properties (e. g., using Linear Temporal Logic (LTL) [23] or OCL queries
extended with temporal logic [158]) and runtime monitoring is needed to evaluate
them. In a recent work by Leroy et al. runtime monitoring is offered generically for
xDSLs considered in the scope of this thesis [94], hence arising a new opportunity
for extending the proposed test case definition and execution facilities.

New coverage metrics, rules, and facilities. There are many coverage metrics
in the literature for software programs [12] and some are adapted for particular DSLs,
such as logic coverage for State Machines [50], data-flow coverage for executable
UML models [145], branch coverage for activity diagrams [27], among many others.
On the other hand, to overcome the xDSLs heterogeneity challenge, we introduced
a new generic coverage metric based on model elements which is applicable to
any model. However, this metric may not offer the same benefits as some existing
coverage metrics such as branch coverage, which gives information on traversed
execution paths. An interesting line of research would therefore be to provide
a systematic approach to adapt different existing coverage metrics for any given
xDSL.

Another noteworthy point regarding coverage is the definition of DSL-specific
coverage rules. The coverage computation service of the framework supports
language engineers in defining them by proposing a dedicated metalanguage. This
metalanguage allows the definition of both inclusion and exclusion coverage rules,
but the technique used for specifying the inclusion and exclusion conditions is now
limited to containment relationships between elements. One language engineer
may need to specify a specific condition based on several parameters e. g., querying

133

6. Conclusion and Perspectives

the runtime state of an executed model to specify a particular state upon which
a coverage rule must be applied. This requires an extension of the proposed
metalanguage to support the definition of more sophisticated coverage rules for
DSLs.

Lastly, this thesis offered coverage computation for both measuring the quality
of test cases and applying SBFL fault localization techniques. However, many
other coverage-based techniques can be envisioned for the future, such as test
minimization, test selection [10], and test prioritization [108]. Additionally, coverage
improvement can also be considered as test selection criteria of our test amplification
approach (instead of mutation analysis) as discussed in the following.

Test amplification for other objectives. According to a recent survey on
test amplification [42], amplifying test cases is performed hitherto for different
objectives, such as improving coverage, reproducing crashes, detecting new faults,
and localizing existing faults, among others. Accordingly, various techniques are
applied so far, including: analyzing the body of test cases and/or the system under
test, modifying the test execution process, concolic and symbolic execution, and
search-based heuristics [42]. In this thesis, we aimed at improving the quality of
test cases in detecting new potential faults by generating new test cases through
analyzing test cases and their model under test. An interesting research line would
be extending the proposed test amplification approach for other objectives such as
improving coverage. Also, the approach can be recast as a search process based on
genetic algorithms. This way, crossover operators for the TDL test cases would
need to be defined, input modifiers would be used as mutation operators, and the
fitness function would be driven by mutation score improvement. It can be then
investigated which strategy has a better result and/or performance.

Automatic test case generation. The main difference between test case gener-
ation techniques and test amplification approaches is the kind of input they use
for the generation of test cases. The former uses the specification of the system
under test while the latter functions on the existing manually-written test cases.
As a model is indeed a specification of a system, a plenty of model-based test case
generation techniques are already introduced in the literature [108]. To advance
our proposed framework with automatic test case generation, we need to discover
the state-of-the-art for generic techniques that can be applied to different models.

Automatic co-evolution of models and test cases. In the realm of program-
ming languages, a software program and its test cases are usually both implemented
using the same language (such as Java programs and their JUnit test cases). Ac-
cordingly, when the program evolves, the compiler can detect inconsistencies in its

134

6.3. Perspectives

related test cases. In the context of this thesis, the test case and the model under
test are two different executable models conforming to two different languages
and this raises co-evolution challenges at two different levels: language level and
model level. Considering possible evolutions of a DSL implementation (i) changes
in its abstract syntax should be propagated to the TDL data types generated from
it; (ii) changes in its runtime state definition might require updates of the test
oracles defined based on the runtime state; (iii) for reactive xDSLs, changes in its
behavioral interface might need updates of the test oracles defined based on it; and
(iv) changes in its execution rules may impact the test case execution result as the
model execution trace could be affected, consequently, the results of all other parts
(i. e., quality measurement, debugging, and amplification) must be verified again.
The only available solution is re-executing the framework after each change, in
particular running the TDL Library Generator for updating the TDL data types
and running the other facilities for generating new results. However, changes in
the oracles must be recognized and performed manually by the domain experts at
the moment. They are also in charge of co-evolving models and their test cases,
meaning that when there is a change in a model, its related test cases need to
be checked manually to assure its compatibility with the recent changes in the
model. It is apparent that as the size and the number of models and their test
cases increase, co-evolving them becomes more difficult, and automated solutions
turn necessary [84]

135

Appendix A

Ecore to TDL Transform Rules

1 -- @nsURI Ecore=http://www.eclipse.org/emf/2002/Ecore
2 -- @path TDL=/org.etsi.mts.tdl.model/model/tdl.ecore
3
4 module ecore2tdl;
5 create OUT : TDL from IN : Ecore;
6
7 helper def: tokenNames: Sequence(String) = Sequence {
8 ’Package’, ’{’, ’}’, ’with’, ’perform’, ’action’, ’(’, ’,’, ’)’, ’on’,

’test’, ’objectives’, ’:’, ’;’, ’name’, ’time’, ’label’, ’constraints
’, ’Action’, ’alternatively’, ’or’, ’Annotation’, ’*’, ’?’, ’=’, ’
assert’, ’otherwise’, ’set’, ’verdict’, ’to’, ’→’, ’[’, ’]’, ’times’,
’repeat’, ’break’, ’Note’, ’create’, ’of’, ’type’, ’bind’, ’Component

’, ’Type’, ’having’, ’if’, ’else’, ’connect’, ’as’, ’Map’, ’in’, ’.’,
’new’, ’containing’, ’Use’, ’Signature’, ’Collection’, ’default’, ’+’,
’-’, ’/’, ’mod’, ’>’, ’<’, ’≥’, ’≤’, ’==’, ’!=’, ’and’, ’xor’, ’not’

, ’size’, ’Import’, ’all’, ’from’, ’Function’, ’returns’, ’instance’,
’returned’, ’Predefined’, ’gate’, ’Gate’, ’accepts’, ’sends’, ’
triggers’, ’calls’, ’responds’, ’response’, ’interrupt’, ’optional’, ’
mapped’, ’omit’, ’argument’, ’optionally’, ’run’, ’parallel’, ’
parameter’, ’every’, ’component’, ’is’, ’quiet’, ’for’, ’terminate’, ’
where’, ’it’, ’assigned’, ’Test’, ’Configuration’, ’Description’, ’
Implementation’, ’uses’, ’configuration’, ’execute’, ’bindings’, ’
Objective’, ’description’, ’Time’, ’out’, ’timer’, ’start’, ’stop’, ’
variable’, ’waits’, ’extends’, ’SUT’, ’Tester’, ’Message’, ’Procedure’
, ’In’, ’Out’, ’Exception’, ’last’, ’previous’, ’first’

9 };
10 helper def: enums: Set (Ecore!EEnum)= Ecore!EEnum→allInstances()→asSet()

;
11 helper def: enumLiterals: Set (Ecore!EEnumLiteral) = thisModule.enums→

collect(e | e.eLiterals);
12 helper context Ecore!EPackage def: basicDataTypes: Set(Ecore!EDataType) =

Ecore!EDataType→allInstances()→
13 select(type | not type.oclIsKindOf(Ecore!EEnum))→asSet();

137

A. Ecore to TDL Transform Rules

14
15 helper def: dynamicAnnotationType: TDL!AnnotationType = OclUndefined;
16 helper context Ecore!EStructuralFeature def: isDynamicFeature: Boolean =
17 if (self.eAnnotations→select(a | a.source = ’dynamic’ or a.source = ’

aspect’)→notEmpty()) then true else false endif;
18 helper context Ecore!EClass def: isDynamicClass: Boolean =
19 if (self.eAnnotations→select(a | a.source = ’dynamic’ or a.source = ’

aspect’)→notEmpty()) then true else false endif;
20 helper def: abstractAnnotationType: TDL!AnnotationType = OclUndefined;
21
22 rule simpleConcreteStaticClass2Type{
23 from class: Ecore!EClass (class.eAllStructuralFeatures.isEmpty() and

not class.abstract and not class.isDynamicClass)
24 to type: TDL!StructuredDataType(
25 name ← if (thisModule.tokenNames.includes(class.name))
26 then ’_’ + class.name
27 else class.name
28 endif)
29 do{
30 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
31 }
32 }
33 rule simpleConcreteDynamicClass2Type{
34 from class: Ecore!EClass (class.eAllStructuralFeatures.isEmpty() and

not class.abstract and class.isDynamicClass)
35 to type: TDL!StructuredDataType(
36 name ← if (thisModule.tokenNames.includes(class.name))
37 then ’_’ + class.name
38 else class.name
39 endif,
40 annotation ← dynamicAnnotation),
41 dynamicAnnotation: TDL!Annotation(
42 key ← if (thisModule.dynamicAnnotationType.oclIsUndefined())
43 then thisModule.eAnnotation2annotationType()
44 else thisModule.dynamicAnnotationType
45 endif,
46 annotatedElement ← type)
47 do{
48 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
49 }
50 }
51 rule simpleAbstractStaticClass2Type{
52 from class: Ecore!EClass (class.eAllStructuralFeatures.isEmpty() and

class.abstract and not class.isDynamicClass)
53 to type: TDL!StructuredDataType(
54 name ← if (thisModule.tokenNames.includes(class.name))
55 then ’_’ + class.name

138

56 else class.name
57 endif,
58 annotation ← abstractAnnotation),
59 abstractAnnotation: TDL!Annotation(
60 key ← if (thisModule.abstractAnnotationType.oclIsUndefined())

61 then thisModule.abstract2annotationType()
62 else thisModule.abstractAnnotationType
63 endif,
64 annotatedElement ← type)
65 do{
66 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
67 }
68 }
69 rule simpleAbstractDynamicClass2Type{
70 from class: Ecore!EClass (class.eAllStructuralFeatures.isEmpty() and

class.abstract and class.isDynamicClass)
71 to type: TDL!StructuredDataType(
72 name ← if (thisModule.tokenNames.includes(class.name))
73 then ’_’ + class.name
74 else class.name
75 endif),
76 abstractAnnotation: TDL!Annotation(
77 key ← if (thisModule.abstractAnnotationType.oclIsUndefined())

78 then thisModule.abstract2annotationType()
79 else thisModule.abstractAnnotationType
80 endif,
81 annotatedElement ← type),
82 dynamicAnnotation: TDL!Annotation(
83 key ← if (thisModule.dynamicAnnotationType.oclIsUndefined())
84 then thisModule.eAnnotation2annotationType()
85 else thisModule.dynamicAnnotationType
86 endif,
87 annotatedElement ← type)
88 do{
89 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
90 }
91 }
92 rule featuredConcreteStaticClass2Type{
93 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
94 and class.eSuperTypes.isEmpty()
95 and not class.abstract
96 and not class.isDynamicClass)
97 to type: TDL!StructuredDataType(
98 name ← if (thisModule.tokenNames.includes(class.name))
99 then ’_’ + class.name

139

A. Ecore to TDL Transform Rules

100 else class.name
101 endif,
102 member ← class.eStructuralFeatures→ collect(feature |
103 if (feature.eAnnotations.notEmpty() and feature.

isDynamicFeature)
104 then thisModule.dynamicFeature2annotatedMember(

feature)
105 else thisModule.staticFeature2member(feature)
106 endif))
107 do{
108 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
109 }
110 }
111 rule featuredConcreteDynamicClass2Type{
112 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
113 and class.eSuperTypes.isEmpty()
114 and not class.abstract
115 and class.isDynamicClass)
116 to type: TDL!StructuredDataType(
117 name ← if (thisModule.tokenNames.includes(class.name))
118 then ’_’ + class.name
119 else class.name
120 endif,
121 member ← class.eStructuralFeatures→ collect(feature |
122 if (feature.eAnnotations.notEmpty() and feature.

isDynamicFeature)
123 then thisModule.dynamicFeature2annotatedMember(

feature)
124 else thisModule.staticFeature2member(feature)
125 endif),
126 annotation ← dynamicAnnotation),
127 dynamicAnnotation: TDL!Annotation(
128 key ← if (thisModule.dynamicAnnotationType.oclIsUndefined())
129 then thisModule.eAnnotation2annotationType()
130 else thisModule.dynamicAnnotationType
131 endif,
132 annotatedElement ← type)
133 do{
134 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
135 }
136 }
137 rule featuredAbstractStaticClass2Type{
138 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
139 and class.eSuperTypes.isEmpty()
140 and class.abstract
141 and not class.isDynamicClass)
142 to type: TDL!StructuredDataType(

140

143 name ← if (thisModule.tokenNames.includes(class.name))
144 then ’_’ + class.name
145 else class.name
146 endif,
147 member ← class.eStructuralFeatures→ collect(feature |
148 if (feature.eAnnotations.notEmpty() and feature.

isDynamicFeature)
149 then thisModule.dynamicFeature2annotatedMember(

feature)
150 else thisModule.staticFeature2member(feature)
151 endif),
152 annotation ← abstractAnnotation),
153 abstractAnnotation: TDL!Annotation(
154 key ← if (thisModule.abstractAnnotationType.oclIsUndefined())

155 then thisModule.abstract2annotationType()
156 else thisModule.abstractAnnotationType
157 endif,
158 annotatedElement ← type)
159 do{
160 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
161 }
162 }
163
164 rule featuredAbstractDynamicClass2Type{
165 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
166 and class.eSuperTypes.isEmpty()
167 and class.abstract
168 and class.isDynamicClass)
169 to type: TDL!StructuredDataType(
170 name ← if (thisModule.tokenNames.includes(class.name))
171 then ’_’ + class.name
172 else class.name
173 endif,
174 member ← class.eStructuralFeatures→ collect(feature |
175 if (feature.eAnnotations.notEmpty() and feature.

isDynamicFeature)
176 then thisModule.dynamicFeature2annotatedMember(

feature)
177 else thisModule.staticFeature2member(feature)
178 endif)),
179 abstractAnnotation: TDL!Annotation(
180 key ← if (thisModule.abstractAnnotationType.oclIsUndefined())

181 then thisModule.abstract2annotationType()
182 else thisModule.abstractAnnotationType
183 endif,
184 annotatedElement ← type),

141

A. Ecore to TDL Transform Rules

185 dynamicAnnotation: TDL!Annotation(
186 key ← if (thisModule.dynamicAnnotationType.oclIsUndefined())
187 then thisModule.eAnnotation2annotationType()
188 else thisModule.dynamicAnnotationType
189 endif,
190 annotatedElement ← type)
191 do{
192 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
193 }
194 }
195
196 rule concreteInheritedStaticClass2Type{
197 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
198 and class.eSuperTypes.notEmpty()
199 and not class.abstract
200 and not class.isDynamicClass)
201 to type: TDL!StructuredDataType(
202 name ← if (thisModule.tokenNames.includes(class.name))
203 then ’_’ + class.name
204 else class.name
205 endif,
206 member ← class.eStructuralFeatures→ collect(feature |
207 if (feature.eAnnotations.notEmpty() and feature.

isDynamicFeature)
208 then thisModule.dynamicFeature2annotatedMember(

feature)
209 else thisModule.staticFeature2member(feature)
210 endif),
211 extension ← class.eSuperTypes → collect (st | thisModule.

superClass2extension(st)))
212 do{
213 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
214 }
215 }
216
217 rule concreteInheritedDynamicClass2Type{
218 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
219 and class.eSuperTypes.notEmpty()
220 and not class.abstract
221 and class.isDynamicClass)
222 to type: TDL!StructuredDataType(
223 name ← if (thisModule.tokenNames.includes(class.name))
224 then ’_’ + class.name
225 else class.name
226 endif,
227 member ← class.eStructuralFeatures→ collect(feature |

142

228 if (feature.eAnnotations.notEmpty() and feature.
isDynamicFeature)

229 then thisModule.dynamicFeature2annotatedMember(
feature)

230 else thisModule.staticFeature2member(feature)
231 endif),
232 extension ← class.eSuperTypes → collect (st | thisModule.

superClass2extension(st)),
233 annotation ← dynamicAnnotation),
234 dynamicAnnotation: TDL!Annotation(
235 key ← if (thisModule.dynamicAnnotationType.oclIsUndefined())
236 then thisModule.eAnnotation2annotationType()
237 else thisModule.dynamicAnnotationType
238 endif,
239 annotatedElement ← type)
240 do{
241 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
242 }
243 }
244
245 rule abstractInheritedStaticClass2Type{
246 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
247 and class.eSuperTypes.notEmpty()
248 and class.abstract
249 and not class.isDynamicClass)
250 to type: TDL!StructuredDataType(
251 name ← if (thisModule.tokenNames.includes(class.name))
252 then ’_’ + class.name
253 else class.name
254 endif,
255 member ← class.eStructuralFeatures→ collect(feature |
256 if (feature.eAnnotations.notEmpty() and feature.

isDynamicFeature)
257 then thisModule.dynamicFeature2annotatedMember(

feature)
258 else thisModule.staticFeature2member(feature)
259 endif),
260 extension ← class.eSuperTypes → collect (st | thisModule.

superClass2extension(st)),
261 annotation ← abstractAnnotation),
262 abstractAnnotation: TDL!Annotation(
263 key ← if (thisModule.abstractAnnotationType.oclIsUndefined())

264 then thisModule.abstract2annotationType()
265 else thisModule.abstractAnnotationType
266 endif,
267 annotatedElement ← type)
268 do{

143

A. Ecore to TDL Transform Rules

269 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.
toString());

270 }
271 }
272
273 rule abstractInheritedDynamicClass2Type{
274 from class: Ecore!EClass (class.eAllStructuralFeatures.notEmpty()
275 and class.eSuperTypes.notEmpty()
276 and class.abstract
277 and class.isDynamicClass)
278 to type: TDL!StructuredDataType(
279 name ← if (thisModule.tokenNames.includes(class.name))
280 then ’_’ + class.name
281 else class.name
282 endif,
283 member ← class.eStructuralFeatures→ collect(feature |
284 if (feature.eAnnotations.notEmpty() and feature.

isDynamicFeature)
285 then thisModule.dynamicFeature2annotatedMember(

feature)
286 else thisModule.staticFeature2member(feature)
287 endif),
288 extension ← class.eSuperTypes → collect (st | thisModule.

superClass2extension(st))),
289 abstractAnnotation: TDL!Annotation(
290 key ← if (thisModule.abstractAnnotationType.oclIsUndefined())

291 then thisModule.abstract2annotationType()
292 else thisModule.abstractAnnotationType
293 endif,
294 annotatedElement ← type),
295 dynamicAnnotation: TDL!Annotation(
296 key ← if (thisModule.dynamicAnnotationType.oclIsUndefined())
297 then thisModule.eAnnotation2annotationType()
298 else thisModule.dynamicAnnotationType
299 endif,
300 annotatedElement ← type)
301 do{
302 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
303 }
304 }
305
306 lazy rule superClass2extension{
307 from class: Ecore!EClass
308 to parent : TDL!Extension(
309 extending ← class
310)
311 }

144

312
313 lazy rule staticFeature2member{
314 from feature: Ecore!EStructuralFeature (feature.eAnnotations.isEmpty()

or
315 (feature.eAnnotations.notEmpty() and (not feature.

isDynamicFeature)))
316 to member: TDL!Member(
317 name ← if (thisModule.tokenNames.includes(feature.name))
318 then ’_’ + feature.name
319 else feature.name
320 endif,
321 dataType ← if (feature.oclIsKindOf(Ecore!EAttribute) and

thisModule.enums→excludes(feature.eType))
322 then thisModule.dataType2simpleType(feature.eType)
323 else feature.eType
324 endif)
325 }
326 lazy rule dynamicFeature2annotatedMember{
327 from feature: Ecore!EStructuralFeature (feature.eAnnotations.notEmpty

() and feature.isDynamicFeature)
328 to member: TDL!Member(
329 name ← if (thisModule.tokenNames.includes(feature.name))
330 then ’_’ + feature.name
331 else feature.name
332 endif,
333 dataType ← if (feature.oclIsKindOf(Ecore!EAttribute) and

thisModule.enums→excludes(feature.eType))
334 then thisModule.dataType2simpleType(feature.eType)
335 else feature.eType
336 endif,
337 annotation ← memberAnnotation),
338 memberAnnotation: TDL!Annotation(
339 key ← if (thisModule.dynamicAnnotationType.oclIsUndefined())
340 then thisModule.eAnnotation2annotationType()
341 else thisModule.dynamicAnnotationType
342 endif,
343 annotatedElement ← member)
344 }
345 unique lazy rule eAnnotation2annotationType{
346 from feature: Ecore!EStructuralFeature
347 to annotation: TDL!AnnotationType(
348 name ← ’dynamic’)
349 do{
350 thisModule.dynamicAnnotationType ← annotation;
351 }
352 }
353 unique lazy rule abstract2annotationType{
354 from class: Ecore!EClass
355 to annotation: TDL!AnnotationType(

145

A. Ecore to TDL Transform Rules

356 name ← ’abstract’)
357 do{
358 thisModule.abstractAnnotationType ← annotation;
359 }
360 }
361 rule enum2simpleType{
362 from enum: Ecore!EEnum
363 to type : TDL!SimpleDataType(
364 name ← if (thisModule.tokenNames.includes(enum.name))
365 then ’_’ + enum.name
366 else enum.name
367 endif)
368 do{
369 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
370 }
371 }
372 rule enumLiteral2simpleDataInstance{
373 from enumLiteral: Ecore!EEnumLiteral
374 to dataInstance: TDL!SimpleDataInstance(
375 name ← if (thisModule.tokenNames.includes(enumLiteral.name))
376 then ’_’ + enumLiteral.name
377 else enumLiteral.name
378 endif,
379 dataType ← enumLiteral.eEnum)
380 do{
381 thisModule.tokenNames ← thisModule.tokenNames.append(

dataInstance.name.toString());
382 }
383 }
384 unique lazy rule dataType2simpleType{
385 from dataType: Ecore!EDataType
386 to type : TDL!SimpleDataType(
387 name ← if (thisModule.tokenNames.includes(dataType.name))
388 then ’_’ + dataType.name
389 else dataType.name
390 endif)
391 do{
392 thisModule.tokenNames ← thisModule.tokenNames.append(type.name.

toString());
393 }
394 }
395 rule tdlPackage{
396 from package: Ecore!EPackage
397 to dslTypesPackage: TDL!Package(
398 name ← package.name.concat(’SpecificTypes’),
399 packagedElement ← package.eClassifiers.
400 union(thisModule.enums).
401 union(thisModule.enumLiterals).

146

402 append(thisModule.dynamicAnnotationType).
403 append(thisModule.abstractAnnotationType).
404 union(package.basicDataTypes→collect(t |

thisModule.dataType2simpleType(t))))
405 }

Listing A.1: Ecore to TDL transformation rules implemented in ATL

147

Appendix B

Example 2: xPSSM

This appendix shows the result of using the proposed testing framework for another
xDSL which is different from the xArduino.

B.1 Running Example 2: PSSM
UML State Machines is a well-known subset of the Unified Modeling Language
(UML) standard [116] commonly used to model systems with discrete event-driven
behavior. The Precise Semantics of UML State Machines (PSSM) is a standardized
extension of UML that defines a complete execution semantics for UML State
Machines [114]. Here, we rely on a simplified version of PSSM as our second
running example, referred to as xPSSM. xPSSM only contains elements related
to the reactive behavior of UML State Machines. Essentially, an xPSSM model
is a state machine that can process external occurrences of events and perform
behaviors in reaction. Figure B.1 shows an overview of different parts of the xPSSM
language definition, and we present each part in the reminder of this section.

B.2 xPSSM Abstract Syntax
Figure B.1(a) briefly shows the abstract syntax of xPSSM defined as a metamodel.
The root element is a CustomSystem. It contains one StateMachine and can have
several Signals which will be used in its StateMachine. A StateMachine comprises one
or more Region, each represents a behavior fragment that may execute concurrently
with other regions if they are owned by either the same State or StateMachine. A
Region is a graph comprising a set of Vertices interconnected by Transitions, which
determines the behavioral flow within the Region.

Pseudostate and State are two kinds of Vertex. Pseudostates are transitive,
meaning that the execution passes through them without pause. There are different

149

B. Example 2: xPSSM

<<implementedBy>>

Event-Driven Execution Rules c

d

<<imports>>

b

<<merges>>

a

 run(StateMachine)
 signalOccurrenceReceived
 (StateMachine, SignalOccurrence)
 fire(Transition)
 execute(Behavior)

Figure B.1: A reactive xDSL for a subset of UML State Machines conforming to
the PSSM specification [114] (referred to as xPSSM).

150

B.2. xPSSM Abstract Syntax

ATM.WithdrawCash

GetPin
entry/enterPinMsg

Card (cardPin, cardBalance)

ValidatePin GetAmount
entry/enterAmountMsg

CheckBalance
MakeWithdrawal

do/updateCardBalance

Wait
entry/insertCardMsg

[enteredPin != cardPin]/
 wrongPinMsg

Pin (enteredPin)

[enteredAmount > cardBalance]/
notEnoughMoneyMsg

Amount
(enteredAmount)

[enteredAmount <= cardBalance]

/deliverCash

[enteredPin >= cardPin]

Figure B.2: A sample xPSSM model for cash withdrawal from an ATM. It has a
defect since it does not validate the entered pin correctly (the wrong constraint is
highlighted in red where >= is used instead of ==)

kinds of Pseudostates such as initial, fork, join, terminate. In contrast, State
is a stable vertex which means when the execution enters them, it leaves when
either some event occurs that triggers a Transition moving to another State or
the StateMachine is terminated. A State may have entry, doActivity, and exit
Behaviors—in our simplified xPSSM, a Behavior is an empty element without any
substance. The entry and exit behaviors are executed when the State is entered
and exited, respectively. Execution of the doActivity behavior starts after the
entry Behavior (if any) has completed, and finishes when either it is completed or
the State is exited. FinalState is a special kind of State representing the completion
of its Region container.

A Transition connects a source vertex to a target one. It can contain three main
elements: a Constraint, a Behavior, and several Triggers. A Transition is enabled when
its guard Constraint (if any) evaluates to true, and its Behavior (if any) is executed
once the transition is traversed. The traversal of the transitions may depend on the
reception of the event occurrences. This is defined by allocating Trigger elements
to them. A Trigger specifies an Event such as SignalEvent whose occurrence (i. e.,
SignalOccurrence) enables the traversal of the transition containing the Trigger. The
SignalOccurrence contains values for the attributes of its associated Signal. When a
state machine receives a signal occurrence, all the enabled transitions that contain
a Trigger pointing to the related Signal will be traversed.

Figure B.2 shows an example model conforming to xPSSM. It describes a State-
Machine that models the behavior of withdrawing cash from an Automated Teller

151

B. Example 2: xPSSM

Machine (ATM). The bank Card, the entered Pin and the Amount of withdrawal
are Signals whose specific occurrences can be given to the state machine at runtime
using SignalOccurrences. The Card Signal has two attributes for its pin and balance.
This StateMachine has one Region comprising one initial Pseudostate, one FinalState,
seven States that three of them have entry Behavior (such as the insertCardMsg of
the Wait State) and one of them has a doActivity Behavior (the updateCardBalance
of the MakeWithdrawal State), and several Transitions which some require signal
occurrences to get enabled. For example, the transition from Wait to GetPin state
will be enabled once the state machine receives a SignalOccurrence for the Card
Signal. Also, the outgoing transition of the MakeWithdrawal state has a behavior,
namely deliverCash.

There are two conditions for a successful withdrawal. First, the entered Pin
must be equals to the Card’s pin. It is defined as a Constraint for the outgoing
transition of the ValidatePin state, but with a wrong operator (highlighted in red
in Figure B.2). Second, the entered Amount must be lower than equals to the Card’s
balance (i. e., the Constraint of the outgoing transition of the CheckBalance state).

B.3 Event-Driven Semantics of xPSSM
Figure B.1(d) shows a behavioral interface for xPSSM containing three event
definitions, implemented by the execution rules listed in part (c):

• accepted event run: triggers the initialization of its state machine parameter
(implemented by run(StateMachine)).

• accepted event signal_occurred : takes a signal occurrence as parameter and
triggers its corresponding execution steps in the state machine (implemented
by signalOccurrenceReceived (StateMachine, SignalOccurrence)).

• exposed event behavior_executed : notifies the execution of the Behavior ele-
ments (implemented by execute(Behavior)).

As an example, to execute the ATM.WithdrawCash state machine (Figure B.2),
event occurrences conforming to xPSSM’s behavioral interface should be communi-
cated to the state machine. One can first send a run event with the ATM.Withdraw-
Cash state machine as its parameter. This starts the execution and resulted in
activating the Wait state and executing its insertCardMsg entry behavior which
will be exposed by the model through a behavior_executed event. It is indeed the
state machine reaction to receiving the run event occurrence. As the current-
Vertex is the Wait state, an occurrence for the signal_occurred event must be sent
to the state machine with a Card instance to pursue.

152

B.3. Event-Driven Semantics of xPSSM

Test Component SUT
(ATM.WithdrawCash)

run (state_machine = ATM)

signal_occurred (
 state_machine = ATM,
 signal_occurrence = Pin (enteredPin = "2222"))

behavior_executed (behavior = insertCardMsg)

signal_occurred (
 state_machine = ATM,
 signal_occurrence =
 Card (cardPin = "1234", cardBalance = "1000"))

behavior_executed (behavior = enterPinMsg)

behavior_executed (behavior = wrongPinMsg)

oclQuery (query =
"self.statemachine.regions -> first().currentVertex")

FinalState: finalState

Figure B.3: A potential event-driven TDL test case for the xslePSSM running
example of Figure B.2, with two passed and two failed assertions.

An Event-Driven Test Case for the xPSSM Example Model Figure B.3
shows an event-driven test case for the ATM.WithdrawCash state machine (previ-
ously shown in Figure B.2). The test case aims to check that the ATM does not
accept an incorrect pin code, so it must be able to uncover the defect of the model.
As can be seen, the events used in the test case conform to the xPSSM’s behavioral
interface (Figure B.1(d)) and their parameters are references to the elements of
the ATM state machine.

First, the test component sends a run event to request the start of the execution
and expects to receive in return a behavior_executed event for the insertCardMsg
behavior. This assertion passes (the first green arrow in Figure B.3) because
according to Figure B.2, when the state machine initializes, the execution should
enter the Wait state, execute its entry behavior named insertCardMsg, and wait
there until one of its outgoing transitions can be traversed.

Next, the test component sends a signal_occurred event with an occurrence

153

B. Example 2: xPSSM

of the Card signal and expects to receive in return a behavior_executed event for
the enterPinMsg behavior. As the state machine execution is currently in the
Wait state, by receiving this event from the test component, the transition to the
GetPin state will be traversed. So the execution enters this state and runs its
entry behavior named enterPinMsg. Therefore, the second assertion also succeeds
(the second green arrow in Figure B.3).

Afterward, the test component sends another signal_occurred event with an
occurrence of the Pin signal and since the value of the entered pin (i. e., 2222) is
different from the the card’s pin (i. e., 1234), it expects to receive a behavior_executed
event for the wrongPinMsg behavior. According to Figure B.2, as the state machine
execution is currently in the GetPin state, receiving this event from the test
component resulted in traversing the transition to the ValidatePin state. At this
point, the constraints of its outgoing transitions are evaluated to check if they are
enabled. However, as explained earlier, the ATM state machine contains a defect:
an equality sign was mistakenly replaced by a superior-or-equal sign, leading to the
wrong constraint “enteredPin >= cardPin". Consequently, instead of enabling the
transition to the finalState, the one to the GetAmount state is enabled. Therefore,
the wrongPinMsg event is never observed, meaning that the third assertion of the
test case fails (the first red arrow in Figure B.3).

Finally, the test component sends an OCL query to check whether the current-
Vertex is the finalState. As described above, due to the defect of the model,
the execution is currently in the GetAmount state, so the assertion fails (the second
red arrow in Figure B.3).

B.4 xPSSM-Specific TDL Library
In this section, we present the content of the PSSM-specific TDL library produced
by our proposed testing framework (in particular, by its TDL Library Generator
component).

xPSSM-Specific Types Package: Listing B.1 presents an excerpt of the TDL
DataTypes generated from the Ecore metamodel of the xPSSM (Figure B.1(a)).

1 Package xPSSMTypes {
2 Type CustomSystem (
3 statemachine of type StateMachine,
4 signals of type Signal);
5 Type Signal (
6 attributes of type Attribute) ;
7 Type SignalOccurrence (
8 signal of type Signal,
9 attributeValues of type AttributeValue);

10 Type StateMachine (
11 _name of type EString,

154

B.4. xPSSM-Specific TDL Library

12 regions of type Region);
13 Type Behavior(
14 _name of type EString);
15 ...
16 }

Listing B.1: Some of the TDL Data Types generated for the xPSSM DSL

xPSSM-Specific Events Package: Listing B.2 shows the xDSL-Specific
Events Package generated for the behavioral interface of the xPSSM (Figure B.1(d)).

1 Package xPSSMEvents {
2 Import all from xPSSMTypes;
3
4 Annotation AcceptedEvent;
5 Annotation ExposedEvent;
6
7 Type run (state_machine of type StateMachine)
8 with{AcceptedEvent;};
9 Type signal_occurred (

10 state_machine of type StateMachine,
11 signal_occurrence of type SignalOccurrence
12) with {AcceptedEvent;};
13 Type behavior_executed (behavior of type Behavior)
14 with {ExposedEvent;};
15 }

Listing B.2: TDL elements generated for the xPSSM behavioral interface

Test Configuration Package: Listing B.3 demonstrates the test configuration
generated for the xPSSM.

1 Package testConfiguration {
2 Import all from common;
3 Import all from xPSSMEvents;
4
5 Gate Type genericGateType accepts modelExecutionCommand;
6 Gate Type oclGateType accepts OCL;
7 Gate Type reactiveGateType accepts run , signal_occurred ,

behavior_executed;
8 Component Type component having {
9 gate genericGate of type genericGateType;

10 gate oclGate of type oclGateType;
11 gate reactiveGate of type reactiveGateType;
12 }
13 Annotation MUTPath;
14 Annotation DSLName;
15
16 Test Configuration xPSSMConfiguration {
17 create Tester tester of type component;
18 create SUT statemachine of type component with {

155

B. Example 2: xPSSM

19 MUTPath: ’TODO : Put the path to the MUT’;
20 DSLName: ’ReactivePSSM’;
21 };
22 connect tester.genericGate to statemachine.genericGate;
23 connect tester.oclGate to statemachine.oclGate;
24 connect tester.reactiveGate to statemachine.reactiveGate;
25 }
26 }

Listing B.3: TDL test configuration package generated for the xPSSM DSL

Using the TDL Library to write Test Cases: For example, we used the
generated TDL library for the xPSSM to write an executable TDL test case for
the ATM sample model, presented in Listing B.4.

1 Package reactiveATM_testSuite {
2 Import all from common;
3 Import all from xPSSMTypes;
4 Import all from xPSSMEvents;
5 Import all from testConfiguration;
6
7 StateMachine ATM (_name = "ATM.WithdrawCash");
8 Behavior insertCardMsg (_name = "insertCardMsg");
9

10 Test Description test_wrongPin uses configuration xPSSMConfiguration{
11 tester.reactiveGate sends run (state_machine = ATM)
12 to statemachine.reactiveGate;
13 statemachine.reactiveGate sends behavior_executed (
14 behavior = insertCardMsg) to tester.reactiveGate;
15 tester.reactiveGate sends signal_occurred (
16 state_machine = ATM,
17 signal_occurrence = card_occurrence (
18 signal = Card,
19 attributeValues = {cardPinValue (value = "1234"),
20 cardBalanceValue (value = "1000")})
21) to statemachine.reactiveGate;
22 statemachine.reactiveGate sends behavior_executed (
23 behavior = enterPinMsg) to tester.reactiveGate;
24 tester.reactiveGate sends signal_occurred (
25 state_machine = ATM,
26 signal_occurrence = pin_occurrence (
27 signal = Pin,
28 attributeValues = {enteredPinValue (value = "2222")})
29) to statemachine.reactiveGate;
30 statemachine.reactiveGate sends behavior_executed (
31 behavior = wrongPinMsg) to tester.reactiveGate;
32 tester.oclGate sends oclQuery (
33 query = "self.statemachine.regions->first().currentVertex")
34 to statemachine.oclGate;
35 statemachine.oclGate sends finalState to tester.oclGate;

156

B.4. xPSSM-Specific TDL Library

36 }
37 }

Listing B.4: An event-driven TDL test case for testing the ATM withdraw cash
xPSSM model.

157

List of Figures

1 Une vue d’ensemble de l’environnement proposé mettant en œuvre les
contributions de la thèse . vi

1.1 An overview of the proposed framework implementing the thesis contri-
butions . 4

2.1 An excerpt of the abstract syntax of an Arduino DSL 11
2.2 An example of an Arduino model representing a basic intrusion alarm

system. It has a defect since the buzzer is not ringing as expected when
the sensor detects an obstacle (it is highlighted in red where buzzer is
mistakenly set to 0) . 12

2.3 Definition of runtime state and execution rules for a content-based
semantics of the Arduino DSL . 15

2.4 Behavioral interface metamodel [93] . 18
2.5 Definition of runtime state, execution rules, and behavioral interface for

an event-driven semantics of the Arduino DSL 19
2.6 An overview of the Arduino xDSL definition 22
2.7 An excerpt of the execution trace metamodel [31, 32] 23
2.8 An excerpt of the TDL metamodel [52] 26

3.1 An overview of the proposed test case definition and execution facilities 49
3.2 A potential TDL test case for the xArduino model of Figure 2.2 on

page 12 that is written in two styles to be executed by two different
xArduino execution semantics. 52

3.3 Detailed overview of the TDL library generator 54
3.4 Class diagram showing the associations of the TDL Interpreter 66
3.5 Test result metamodel . 71
3.6 A screenshot of the provided testing tool running on the GEMOC Studio

modeling workbench for the running example 73

4.1 An overview of coverage computation approach 81

159

List of Figures

4.2 Coverage of the xArduino model of Figure 2.2 on page 12 by the TDL
test case of listing 3.9 on page 64 based on its execution trace (covered
elements are highlighted in green, and yellow-highlighted elements will
be examined in the next steps of computation) 84

4.3 DSL-specific coverage metamodel . 85
4.4 Definition of artifacts . 88
4.5 An overview of the integration of the TDL Interpreter with WODEL-

Test [62], resulting in a mutation testing tool 90
4.6 Screenshots of the provided quality measurement tools running in the

GEMOC studio modeling workbench for the running example 92

5.1 An overview of the test debugging and amplification facilities 101
5.2 A sample scenario of performing interactive debugging for the running

example . 104
5.3 One possible interactive debugging scenario for a TDL test case written

for an executable model . 105
5.4 An overview of the test amplification approach 109
5.5 The correct version of the xArduino sample model (Figure 2.2 on page 12)113
5.6 The TDL test case of Figure 3.2(b) on page 52 that is passed on the

xArduino model of Figure 5.5 on page 113 113
5.7 A regression fault in the xArduino model of Figure 5.5 on page 113 . . 114
5.8 An amplified TDL test case generated from the initial test case of

Figure 5.6 on page 113 by applying the event creation modifier. The last
message unsatisfies the assertion then the test case fails, hence finding
the regression fault of Figure 5.7 . 114

5.9 Selecting test cases using mutation analysis 115
5.10 Screenshots of the provided test debugging tools running in the GEMOC

studio modeling workbench for the running example 117
5.11 A screenshot of the results produced by our test amplification tool . . . 118
5.12 Mutation score improvement by test amplification 126

B.1 A reactive xDSL for a subset of UML State Machines conforming to the
PSSM specification [114] (referred to as xPSSM). 150

B.2 A sample xPSSM model for cash withdrawal from an ATM. It has a
defect since it does not validate the entered pin correctly (the wrong
constraint is highlighted in red where >= is used instead of ==) 151

B.3 A potential event-driven TDL test case for the xslePSSM running
example of Figure B.2, with two passed and two failed assertions. . . . 153

160

List of Tables

2.1 An example showing the suspiciousness values computed using the
Tarantula technique (taken from reference [150] © 2016 IEEE) 39

2.2 An overview of the state-of-the-art . 45

3.1 Outline of the Ecore to TDL transformation rules 55
3.2 Behavioral interface to TDL transformation rules 58
3.3 Evaluation data for testing facilities . 74

4.1 An excerpt of the coverage computation for the running example
(changes of the step in bold) . 89

4.2 Evaluation data for coverage computation and mutation analysis 94
4.3 Coverage for a set of tests calculated by our approach and CodeCover . 97

5.1 Supported SBFL formulas (taken from [142]) 107
5.2 Evaluation data for fault localization 120
5.3 Setup for evaluating test amplification approach 122
5.4 Evaluation result for amplifying test suites with different sizes and qualities124

161

Bibliography

[1] M. Abdi, H. Rocha, S. Demeyer, and A. Bergel. “Small-Amp: Test amplifica-
tion in a dynamically typed language”. In: Empirical Software Engineering
27.6 (2019), p. 128. doi: 10.1007/s10664-022-10169-8.

[2] R. Abreu, P. Zoeteweij, and A. J. van Gemund. “Spectrum-Based Multiple
Fault Localization”. In: 2009 IEEE/ACM International Conference on Auto-
mated Software Engineering. 2009, pp. 88–99. doi: 10.1109/ASE.2009.25.

[3] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van Gemund. “A practical
evaluation of spectrum-based fault localization”. In: Journal of Systems and
Software 82.11 (2009), pp. 1780–1792. issn: 0164-1212. doi: 10.1016/j.
jss.2009.06.035.

[4] H. Agrawal, R. A. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. W. Krauser,
R. J. Martin, A. P. Mathur, and E. Spafford. Design of mutant operators
for the C programming language. Tech. rep. Purdue University, 1989.

[5] T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, and I. Porres. “Model-based
testing using UML activity diagrams: A systematic mapping study”. In:
Computer Science Review 33 (2019), pp. 98–112. doi: 10.1016/j.cosrev.
2019.07.001.

[6] R. Ahmadi, N. Hili, and J. Dingel. “Property-Aware Unit Testing of UML-RT
Models in the Context of MDE”. In: Proceedings of the 14th European Con-
ference on Modelling Foundations and Applications (ECMFA). Vol. 10890.
Lecture Notes in Computer Science. Springer, 2018, pp. 147–163. doi:
10.1007/978-3-319-92997-2_10.

[7] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran.
“Killing strategies for model-based mutation testing”. In: Software Testing,
Verification and Reliability 25.8 (2015), pp. 716–748. doi: 10.1002/stvr.
1522.

[8] I. Al-Azzoni and S. Iqbal. “A Framework for the Regression Testing of
Model-to-Model Transformations”. In: e-Informatica Software Engineering
Journal 15.1 (2021), pp. 65–84. doi: 10.37190/e-Inf210104.

163

https://doi.org/10.1007/s10664-022-10169-8
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1016/j.cosrev.2019.07.001
https://doi.org/10.1016/j.cosrev.2019.07.001
https://doi.org/10.1007/978-3-319-92997-2_10
https://doi.org/10.1002/stvr.1522
https://doi.org/10.1002/stvr.1522
https://doi.org/10.37190/e-Inf210104

Bibliography

[9] F. H. M. Alhwikem, R. F. Paige, L. M. Rose, and R. D. Alexander. “A
systematic approach for designing mutation operators for MDE languages”.
In: Workshop on Model-Driven Engineering, Verification and Validation
(MoDeVVa). 2016, pp. 54–59. url: https://eprints.whiterose.ac.uk/
106909/.

[10] B. Alkhazi, C. Abid, M. Kessentini, D. Leroy, and M. Wimmer. “Multi-
Criteria Test Cases Selection for Model Transformations”. In: Automated
Software Engineering 27.1–2 (2020), 91–118. issn: 0928-8910. doi: 10.1007/
s10515-020-00271-w.

[11] S. C. Allala, J. P. Sotomayor, D. Santiago, T. M. King, and P. J. Clarke.
“Towards Transforming User Requirements to Test Cases Using MDE and
NLP”. In: 43rd IEEE Annual Computer Software and Applications Confer-
ence (COMPSAC). IEEE, 2019, pp. 350–355. doi: 10.1109/COMPSAC.2019.
10231.

[12] P. Ammann and J. Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[13] J. Andrews, L. Briand, Y. Labiche, and A. Namin. “Using Mutation Anal-
ysis for Assessing and Comparing Testing Coverage Criteria”. In: IEEE
Transactions on Software Engineering 32.8 (2006), pp. 608–624. doi: 10.
1109/TSE.2006.83.

[14] V. Aranega, J.-M. Mottu, A. Etien, T. Degueule, B. Baudry, and J.-L.
Dekeyser. “Towards an automation of the mutation analysis dedicated to
model transformation”. In: Software Testing, Verification and Reliability
25.5-7 (2015), pp. 653–683.

[15] L. Arcega, J. Font, and C. Cetina. “Evolutionary algorithm for bug localiza-
tion in the reconfigurations of models at runtime”. In: Proceedings of the
21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems. 2018, pp. 90–100. doi: 10.1145/3239372.3239392.

[16] L. Arcega, J. Font, Ø. Haugen, and C. Cetina. “An approach for bug
localization in models using two levels: model and metamodel”. In: Software
and Systems Modeling 18.6 (2019), pp. 3551–3576. doi: 10.1007/s10270-
019-00727-y.

[17] L. Arcega, J. Font, Ø. Haugen, and C. Cetina. “Bug Localization in Model-
Based Systems in the Wild”. In: ACM Transactions on Software Engineering
and Methodology (TOSEM) 31.1 (2021), pp. 1–32. doi: 10.1145/3472616.

164

https://eprints.whiterose.ac.uk/106909/
https://eprints.whiterose.ac.uk/106909/
https://doi.org/10.1007/s10515-020-00271-w
https://doi.org/10.1007/s10515-020-00271-w
https://doi.org/10.1109/COMPSAC.2019.10231
https://doi.org/10.1109/COMPSAC.2019.10231
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1145/3239372.3239392
https://doi.org/10.1007/s10270-019-00727-y
https://doi.org/10.1007/s10270-019-00727-y
https://doi.org/10.1145/3472616

Bibliography

[18] M. Arnaud, B. Bannour, A. Cuccuru, C. Gaston, S. Gerard, and A. Lapitre.
“Timed symbolic testing framework for executable models using high-level
scenarios”. In: Complex Systems Design & Management. Springer, 2015,
pp. 269–282. doi: 10.1007/978-3-319-11617-4_19.

[19] F. Y. Assiri and J. M. Bieman. “Fault localization for automated program
repair: effectiveness, performance, repair correctness”. In: Software Quality
Journal 25.1 (2017), pp. 171–199. issn: 1573-1367. doi: 10.1007/s11219-
016-9312-z.

[20] T. B. de Assis, A. A. Menegassi, and A. T. Endo. “Amplifying Tests for
Cross-Platform Apps through Test Patterns”. In: The 31st International
Conference on Software Engineering and Knowledge Engineering, SEKE.
Ed. by A. Perkusich. KSI Research Inc. and Knowledge Systems Institute
Graduate School, 2019, pp. 55–74. doi: 10.18293/SEKE2019-076.

[21] Atlanmod. xArduino with Kermeta semantics. 2020. url: https://github.
com/atlanmod/eel/tree/master/Language_Workbench.

[22] N. Bandener, C. Soltenborn, and G. Engels. “Extending DMM Behavior
Specifications for Visual Execution and Debugging”. In: Software Language
Engineering. Ed. by B. Malloy, S. Staab, and M. van den Brand. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 357–376. doi: 10.1007/
978-3-642-19440-5_24.

[23] A. Bauer, M. Leucker, and C. Schallhart. “Runtime Verification for LTL and
TLTL”. In: ACM Trans. Softw. Eng. Methodol. 20.4 (2011). issn: 1049-331X.
doi: 10.1145/2000799.2000800.

[24] R. Bendraou, B. Combemale, X. Cregut, and M.-P. Gervais. “Definition
of an Executable SPEM 2.0”. In: 14th Asia-Pacific Software Engineering
Conference (APSEC’07). 2007, pp. 390–397. doi: 10.1109/ASPEC.2007.60.

[25] E. Biermann, C. Ermel, and G. Taentzer. “Precise Semantics of EMF
Model Transformations by Graph Transformation”. In: Proceedings of the
11th International Conference on Model Driven Engineering Languages and
Systems. MoDELS ’08. Toulouse, France: Springer-Verlag, 2008, 53–67. isbn:
9783540878742. doi: 10.1007/978-3-540-87875-9_4.

[26] R. Bill, M. Fleck, J. Troya, T. Mayerhofer, and M. Wimmer. “A local and
global tour on MOMoT”. In: Software and Systems Modeling 18.2 (2019),
pp. 1017–1046. doi: 10.1007/s10270-017-0644-3.

[27] P. N. Boghdady, N. L. Badr, M. A. Hashim, and M. F. Tolba. “An enhanced
test case generation technique based on activity diagrams”. In: The 2011
International Conference on Computer Engineering & Systems. IEEE. 2011,
pp. 289–294. doi: 10.1109/ICCES.2011.6141058.

165

https://doi.org/10.1007/978-3-319-11617-4_19
https://doi.org/10.1007/s11219-016-9312-z
https://doi.org/10.1007/s11219-016-9312-z
https://doi.org/10.18293/SEKE2019-076
https://github.com/atlanmod/eel/tree/master/Language_Workbench
https://github.com/atlanmod/eel/tree/master/Language_Workbench
https://doi.org/10.1007/978-3-642-19440-5_24
https://doi.org/10.1007/978-3-642-19440-5_24
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1109/ASPEC.2007.60
https://doi.org/10.1007/978-3-540-87875-9_4
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1109/ICCES.2011.6141058

Bibliography

[28] M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, T. Quinot,
J. Delange, J. Hugues, and L. Pautet. “Couverture: an innovative open
framework for coverage analysis of safety critical applications”. In: Ada User
Journal 30.4 (2009), pp. 248–255.

[29] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and B.
Combemale. “Execution Framework of the GEMOC Studio (Tool Demo)”.
In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering. Association for Computing Machinery, 2016,
84–89. doi: 10.1145/2997364.2997384.

[30] E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and B. Baudry. “Omni-
scient debugging for executable DSLs”. In: Journal of Systems and Software
137 (2018), pp. 261–288. issn: 0164-1212. doi: 10.1016/j.jss.2017.11.
025.

[31] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry. “A Generative
Approach to Define Rich Domain-Specific Trace Metamodels”. In: Modelling
Foundations and Applications. Ed. by G. Taentzer and F. Bordeleau. Cham:
Springer International Publishing, 2015, pp. 45–61. isbn: 978-3-319-21151-0.
doi: 10.1007/978-3-319-21151-0_4.

[32] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry. “Advanced
and efficient execution trace management for executable domain-specific
modeling languages”. In: Software and Systems Modeling (Feb. 2019), pp. 1–
37. doi: 10.1007/s10270-017-0598-5.

[33] E. Bousse and M. Wimmer. “Domain-Level Observation and Control for
Compiled Executable DSLs”. In: IEEE / ACM 22nd International Con-
ference on Model Driven Engineering Languages and Systems (MODELS).
Munich, Germany, Sept. 2019. doi: 10.1109/MODELS.2019.000-6.

[34] J. S. Bradbury, J. R. Cordy, and J. Dingel. “Mutation Operators for Concur-
rent Java (J2SE 5.0)”. In: Second Workshop on Mutation Analysis (Mutation
2006 - ISSRE Workshops 2006). 2006, pp. 11–11. doi: 10.1109/MUTATION.
2006.10.

[35] M. Brambilla, J. Cabot, and M. Wimmer. “Model-driven software engineer-
ing in practice”. In: Synthesis lectures on software engineering 3.1 (2017),
pp. 1–207. doi: 10.1007/978-3-031-02549-5.

[36] P. C. Cañizares, P. Gómez-Abajo, A. Núñez, E. Guerra, and J. de Lara.
“New ideas: automated engineering of metamorphic testing environments
for domain-specific languages”. In: Proceedings of the 14th ACM SIGPLAN
International Conference on Software Language Engineering. SLE 2021.
Chicago, IL, USA: ACM, 2021, pp. 49–54. doi: 10.1145/3486608.3486904.

166

https://doi.org/10.1145/2997364.2997384
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1007/978-3-319-21151-0_4
https://doi.org/10.1007/s10270-017-0598-5
https://doi.org/10.1109/MODELS.2019.000-6
https://doi.org/10.1109/MUTATION.2006.10
https://doi.org/10.1109/MUTATION.2006.10
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1145/3486608.3486904

Bibliography

[37] F. Ciccozzi, I. Malavolta, and B. Selic. “Execution of UML models: a
systematic review of research and practice”. In: Software and Systems
Modeling 18 (2019), 2313–2360. doi: 10.1007/s10270-018-0675-4.

[38] Cobertura. A code coverage utility for Java. 2022. url: http://cobertura.
github.io/cobertura/.

[39] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. “PIT:
A Practical Mutation Testing Tool for Java (Demo)”. In: International
Symposium on Software Testing and Analysis (ISSTA). See also https:
//pitest.org/quickstart/mutators, https://github.com/hcoles/
pitest. Saarbrücken, Germany: ACM, 2016, pp. 449–452. isbn: 978-
1-4503-4390-9. doi: 10.1145/2931037.2948707.

[40] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varro.
“VIATRA - visual automated transformations for formal verification and
validation of UML models”. In: Proceedings 17th IEEE International Con-
ference on Automated Software Engineering, 2002, pp. 267–270. doi: 10.
1109/ASE.2002.1115027.

[41] C. Damus, A. Sánchez-Barbudo Herrera, A. Uhl, and E. Willink. OCL
Documentation. Tech. rep. 2021, p. 227. url: http://download.eclipse.
org/ocl/doc/6.15.0/ocl.pdf.

[42] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and B.
Baudry. “A snowballing literature study on test amplification”. In: Journal
of Systems and Software 157 (2019), p. 110398. issn: 0164-1212. doi: 10.
1016/j.jss.2019.110398.

[43] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus. “Automatic
Test Improvement with DSpot: a Study with Ten Mature Open-Source
Projects”. In: Empirical Software Engineering 24.4 (2019), pp. 1–35. doi:
10.1007/s10664-019-09692-y.

[44] J. Deantoni. “Modeling the Behavioral Semantics of Heterogeneous Lan-
guages and their Coordination”. In: Architecture Centric Virtual Integration
(ACVI). Julien Delange and Jerome Hugues and Peter Feiler. 2016. doi:
10.1109/ACVI.2016.9.

[45] J. Deantoni, I. P. Diallo, C. Teodorov, J. Champeau, and B. Combemale.
“Towards a meta-language for the concurrency concern in DSLs”. In: 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2015, pp. 313–316. doi: 10.7873/DATE.2015.1052.

167

https://doi.org/10.1007/s10270-018-0675-4
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
https://pitest.org/quickstart/mutators
https://pitest.org/quickstart/mutators
https://github.com/hcoles/pitest
https://github.com/hcoles/pitest
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/ASE.2002.1115027
https://doi.org/10.1109/ASE.2002.1115027
http://download.eclipse.org/ocl/doc/6.15.0/ocl.pdf
http://download.eclipse.org/ocl/doc/6.15.0/ocl.pdf
https://doi.org/10.1016/j.jss.2019.110398
https://doi.org/10.1016/j.jss.2019.110398
https://doi.org/10.1007/s10664-019-09692-y
https://doi.org/10.1109/ACVI.2016.9
https://doi.org/10.7873/DATE.2015.1052

Bibliography

[46] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. García-Domínguez,
and J. J. Domínguez-Jiménez. “Assessment of class mutation operators for
C++ with the MuCPP mutation system”. In: Information and Software
Technology 81 (2017), pp. 169–184. issn: 0950-5849. doi: 10.1016/j.infsof.
2016.07.002.

[47] R. DeMillo, R. Lipton, and F. Sayward. “Hints on Test Data Selection: Help
for the Practicing Programmer”. In: Computer 11.4 (1978), pp. 34–41. doi:
10.1109/C-M.1978.218136.

[48] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and M.
Wimmer. “Low-code development and model-driven engineering: Two sides
of the same coin?” In: Software and Systems Modeling 21.2 (2022), pp. 437–
446. doi: 10.1007/s10270-021-00970-2.

[49] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow, W.
Hasselbring, and M. Hanus. “Xbase: Implementing Domain-Specific Lan-
guages for Java”. In: SIGPLAN Notices 48.3 (2012), 112–121. doi: 10.1145/
2480361.2371419.

[50] M. El qortobi, A. Rahj, J. Bentahar, and R. Dssouli. “Test Generation
Tool for Modified Condition/Decision Coverage: Model Based Testing”. In:
Proceedings of the 13th International Conference on Intelligent Systems:
Theories and Applications. 2020, pp. 1–6. doi: 10.1145/3419604.3419628.

[51] S. Erdweg, T. v. d. van der Storm, M. Voelter, L. Tratt, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J.
Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. Vergu, E. Visser, K. v. d. van der Vlist, G. Wachsmuth, and J. v. d. van
der Woning. “Evaluating And Comparing Language Workbenches: Existing
Results And Benchmarks For The Future”. In: Computer Languages, Systems
and Structures 44.Part A (2015), pp. 24 –47. doi: 10.1016/j.cl.2015.08.
007.

[52] ETSI ES 203 119-1. Methods for Testing and Specification (MTS); The
Test Description Language (TDL); Part 1: abstract syntax and associated
semantics. Version V1.6.1. Sophia-Antipolis, France: European Telecommu-
nications Standards Institute (ETSI), 2022. url: https://tdl.etsi.org/
index.php/downloads.

[53] ETSI ES 203 119-6. Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 6: Mapping to TTCN-3. Version V1.2.1.
Sophia-Antipolis, France: European Telecommunications Standards Institute
(ETSI), 2020. url: https://tdl.etsi.org/index.php/downloads.

168

https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1145/2480361.2371419
https://doi.org/10.1145/2480361.2371419
https://doi.org/10.1145/3419604.3419628
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.cl.2015.08.007
https://tdl.etsi.org/index.php/downloads
https://tdl.etsi.org/index.php/downloads
https://tdl.etsi.org/index.php/downloads

Bibliography

[54] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, and
E. Wong. “Mutation testing applied to validate specifications based on Petri
Nets”. In: Formal Description Techniques VIII: Proceedings of the IFIP
TC6 Eighth International Conference on Formal Description Techniques,
Montreal, Canada, October 1995. Ed. by G. v. Bochmann, R. Dssouli, and O.
Rafiq. Boston, MA: Springer US, 1996, pp. 329–337. isbn: 978-0-387-34945-9.
doi: 10.1007/978-0-387-34945-9_24.

[55] S. Fabbri, J. Maldonado, and M. Delamaro. “Proteum/FSM: a tool to
support finite state machine validation based on mutation testing”. In: Pro-
ceedings. SCCC’99 XIX International Conference of the Chilean Computer
Science Society. 1999, pp. 96–104. doi: 10.1109/SCCC.1999.810159.

[56] M. Fowler. Domain-specific languages. Pearson Education, 2010. url: https:
//martinfowler.com/books/dsl.html.

[57] R. France and B. Rumpe. “Model-driven Development of Complex Software:
A Research Roadmap”. In: Future of Software Engineering (FOSE ’07).
2007, pp. 37–54. doi: 10.1109/FOSE.2007.14.

[58] P. Fröhlich and J. Link. “Automated Test Case Generation from Dynamic
Models”. In: Proceedings of the 14th European Conference on Object-Oriented
Programming (ECOOP). Ed. by E. Bertino. Vol. 1850. Lecture Notes in
Computer Science. Springer, 2000, pp. 472–492. doi: 10.1007/3- 540-
45102-1_23.

[59] A. A. Giron, I. M. de Souza Gimenes, and E. OliveiraJr. “Evaluation
of Test Case Generation based on a Software Product Line for Model
Transformation”. In: Journal of Computer Science 14.1 (2018), pp. 108–121.
doi: 10.3844/jcssp.2018.108.121.

[60] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. “A tool for
domain-independent model mutation”. In: Science of Computer Program-
ming 163 (2018), pp. 85–92. issn: 0167-6423. doi: 10.1016/j.scico.2018.
01.008.

[61] P. Gómez-Abajo, E. Guerra, and J. de Lara. “Wodel: A Domain-Specific
Language for Model Mutation”. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing. SAC ’16. Association for Computing
Machinery, 2016, 1968–1973. doi: 10.1145/2851613.2851751.

[62] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. “Wodel-Test:
a model-based framework for language-independent mutation testing”. In:
Software and Systems Modeling 20 (2020), pp. 1–27. doi: 10.1007/s10270-
020-00827-0.

169

https://doi.org/10.1007/978-0-387-34945-9_24
https://doi.org/10.1109/SCCC.1999.810159
https://martinfowler.com/books/dsl.html
https://martinfowler.com/books/dsl.html
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1007/3-540-45102-1_23
https://doi.org/10.1007/3-540-45102-1_23
https://doi.org/10.3844/jcssp.2018.108.121
https://doi.org/10.1016/j.scico.2018.01.008
https://doi.org/10.1016/j.scico.2018.01.008
https://doi.org/10.1145/2851613.2851751
https://doi.org/10.1007/s10270-020-00827-0
https://doi.org/10.1007/s10270-020-00827-0

Bibliography

[63] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, A. Wiles, and C.
Willcock. “An introduction to the testing and test control notation (TTCN-
3)”. In: Computer Networks 42.3 (2003). ITU-T System Design Languages
(SDL), pp. 375 –403. issn: 1389-1286. doi: 10.1016/S1389-1286(03)00249-
4.

[64] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and O. Pastor. “Mutation
Operators for UML Class Diagrams”. In: Advanced Information Systems
Engineering. Ed. by S. Nurcan, P. Soffer, M. Bajec, and J. Eder. Cham:
Springer International Publishing, 2016, pp. 325–341. isbn: 978-3-319-39696-
5. doi: 10.1007/978-3-319-39696-5_20.

[65] E. Guerra, J. S. Cuadrado, and J. de Lara. “Towards effective mutation
testing for ATL”. In: 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems (MODELS). IEEE. 2019,
pp. 78–88.

[66] E. Guerra and M. Soeken. “Specification-driven model transformation test-
ing”. In: Software and Systems Modeling 14.2 (2015), pp. 623–644. doi:
10.1007/s10270-013-0369-x.

[67] R. G. Hamlet. “Testing Programs with the Aid of a Compiler”. In: IEEE
Transactions on Software Engineering 3.4 (1977), pp. 279–290. doi: 10.
1109/TSE.1977.231145.

[68] Á. Hegedüs, G. Bergmann, I. Z. Ráth, and D. Varró. “Back-annotation of
Simulation Traces with Change-Driven Model Transformations”. In: 8th
IEEE International Conference on Software Engineering and Formal Methods
(SEFM). 2010, pp. 145–155. doi: 10.1109/SEFM.2010.28.

[69] Á. Hegedüs, I. Z. Ráth, and D. Varró. “Replaying execution trace models for
dynamic modeling languages”. In: (2013), 71–82. doi: 10.3311/PPee.7078.

[70] A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design science in infor-
mation systems research”. In: MIS Quarterly 28.1 (2004), pp. 75–105. doi:
10.2307/25148625.

[71] N. Hili, M. Bagherzadeh, K. Jahed, and J. Dingel. “A model-based architec-
ture for interactive run-time monitoring”. In: Software and Systems Modeling
19 (2020), pp. 959–981. doi: 10.1007/s10270-020-00780-y.

[72] F. Hojaji, T. Mayerhofer, B. Zamani, A. Hamou-Lhadj, and E. Bousse.
“Model execution tracing: a systematic mapping study”. In: Software and
Systems Modeling 18.6 (Feb. 2019), pp. 3461–3485. doi: 10.1007/s10270-
019-00724-1.

170

https://doi.org/10.1016/S1389-1286(03)00249-4
https://doi.org/10.1016/S1389-1286(03)00249-4
https://doi.org/10.1007/978-3-319-39696-5_20
https://doi.org/10.1007/s10270-013-0369-x
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1109/SEFM.2010.28
https://doi.org/10.3311/PPee.7078
https://doi.org/10.2307/25148625
https://doi.org/10.1007/s10270-020-00780-y
https://doi.org/10.1007/s10270-019-00724-1
https://doi.org/10.1007/s10270-019-00724-1

Bibliography

[73] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. “Empirical
assessment of MDE in industry”. In: Proceedings of the 33rd International
Conference on Software Engineering. ACM, May 2011. doi: 10 . 1145 /
1985793.1985858.

[74] J. Iqbal, A. Ashraf, D. Truscan, and I. Porres. “Exhaustive Simulation and
Test Generation Using fUML Activity Diagrams”. In: Advanced Information
Systems Engineering. Ed. by P. Giorgini and B. Weber. Cham: Springer
International Publishing, 2019a, pp. 96–110. doi: 10.1007/978-3-030-
21290-2_7.

[75] M. Z. Iqbal, A. Arcuri, and L. Briand. “Environment Modeling and Simu-
lation for Automated Testing of Soft Real-Time Embedded Software”. In:
Software and Systems Modeling 14.1 (2015), 483–524. issn: 1619-1366. doi:
10.1007/s10270-013-0328-6.

[76] JaCoCo. JaCoCo Java Code Coverage Library. 2022. url: https://github.
com/jacoco/jacoco.

[77] T. Janssen, R. Abreu, and A. J. van Gemund. “Zoltar: A Spectrum-Based
Fault Localization Tool”. In: Proceedings of the 2009 ESEC/FSE Workshop
on Software Integration and Evolution @ Runtime. SINTER ’09. Amsterdam,
The Netherlands: Association for Computing Machinery, 2009, 23–30. isbn:
9781605586816. doi: 10.1145/1596495.1596502.

[78] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet.
“Mashup of metalanguages and its implementation in the kermeta language
workbench”. In: Software and Systems Modeling 14.2 (2015), pp. 905–920.
doi: 10.1007/s10270-013-0354-4.

[79] Y. Jia and M. Harman. “An Analysis and Survey of the Development of
Mutation Testing”. In: IEEE Transactions on Software Engineering 37.5
(2011), pp. 649–678. doi: 10.1109/TSE.2010.62.

[80] Y. Jia and M. Harman. “MILU: A Customizable, Runtime-Optimized Higher
Order Mutation Testing Tool for the Full C Language”. In: Proceedings
of the Testing: Academic Industrial Conference - Practice and Research
Techniques. TAIC-PART ’08. USA: IEEE Computer Society, 2008, 94–98.
isbn: 9780769533834. doi: 10.1109/TAIC-PART.2008.18.

[81] J. A. Jones and M. J. Harrold. “Empirical Evaluation of the Tarantula Auto-
matic Fault-Localization Technique”. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. ASE ’05. Long
Beach, CA, USA: Association for Computing Machinery, 2005, 273–282.
isbn: 1581139934. doi: 10.1145/1101908.1101949.

171

https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1007/978-3-030-21290-2_7
https://doi.org/10.1007/978-3-030-21290-2_7
https://doi.org/10.1007/s10270-013-0328-6
https://github.com/jacoco/jacoco
https://github.com/jacoco/jacoco
https://doi.org/10.1145/1596495.1596502
https://doi.org/10.1007/s10270-013-0354-4
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1145/1101908.1101949

Bibliography

[82] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. “ATL:
A QVT-like Transformation Language”. In: Companion to the 21st ACM
SIGPLAN Symposium on Object-Oriented Programming Systems, Languages,
and Applications. OOPSLA ’06. Portland, Oregon, USA, 2006, 719–720. doi:
10.1145/1176617.1176691.

[83] T. Kehrer, G. Taentzer, M. Rindt, and U. Kelter. “Automatically Deriving
the Specification of Model Editing Operations from Meta-Models”. In:
Theory and Practice of Model Transformations. Ed. by P. Van Gorp and
G. Engels. Cham: Springer International Publishing, 2016, pp. 173–188.
isbn: 978-3-319-42064-6. doi: 10.1007/978-3-319-42064-6_12.

[84] W. Kessentini, H. Sahraoui, and M. Wimmer. “Automated metamodel/-
model co-evolution: A search-based approach”. In: Information and Software
Technology 106 (2019), pp. 49–67. issn: 0950-5849. doi: 10.1016/j.infsof.
2018.09.003.

[85] S. Kim, J. A. Clark, and J. A. McDermid. “Investigating the Effectiveness of
Object-Oriented Strategies with the Mutation Method”. In: Mutation Testing
for the New Century. Ed. by W. E. Wong. Boston, MA: Springer US, 2001,
pp. 4–4. isbn: 978-1-4757-5939-6. doi: 10.1007/978-1-4757-5939-6_3.

[86] T. M. King, G. Nunez, D. Santiago, A. Cando, and C. Mack. “Legend:
An Agile DSL Toolset for Web Acceptance Testing”. In: Proceedings of the
2014 International Symposium on Software Testing and Analysis. ISSTA
2014. Association for Computing Machinery, 2014, 409–412. doi: 10.1145/
2610384.2628048.

[87] T. Kos, M. Mernik, and T. Kosar. “Test automation of a measurement
system using a domain-specific modelling language”. In: Journal of Systems
and Software 111 (2016), pp. 74 –88. doi: 10.1016/j.jss.2015.09.002.

[88] T. Kosar, S. Bohra, and M. Mernik. “Domain-Specific Languages: A Sys-
tematic Mapping Study”. In: Information and Software Technology 71 (Mar.
2016), pp. 77–91. doi: 10.1016/j.infsof.2015.11.001.

[89] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Jobstl, and H. Brandl.
“MoMut::UML Model-Based Mutation Testing for UML”. In: 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation
(ICST). 2015, pp. 1–8. doi: 10.1109/ICST.2015.7102627.

[90] S. Kriebel, M. Markthaler, K. S. Salman, T. Greifenberg, S. Hillemacher, B.
Rumpe, C. Schulze, A. Wortmann, P. Orth, and J. Richenhagen. “Improving
model-based testing in automotive software engineering”. In: Proceedings
of the 40th International Conference on Software Engineering: Software

172

https://doi.org/10.1145/1176617.1176691
https://doi.org/10.1007/978-3-319-42064-6_12
https://doi.org/10.1016/j.infsof.2018.09.003
https://doi.org/10.1016/j.infsof.2018.09.003
https://doi.org/10.1007/978-1-4757-5939-6_3
https://doi.org/10.1145/2610384.2628048
https://doi.org/10.1145/2610384.2628048
https://doi.org/10.1016/j.jss.2015.09.002
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1109/ICST.2015.7102627

Bibliography

Engineering in Practice (ICSE-SEIP). ACM, 2018, pp. 172–180. doi: 10.
1145/3183519.3183533.

[91] I. Lazăr, S. Motogna, and B. Pârv. “Behaviour-Driven Development of Foun-
dational UML Components”. In: Electronic Notes in Theoretical Computer
Science 264.1 (2010). Proceedings of the 7th International Workshop on
Formal Engineering approaches to Software Components and Architectures
(FESCA 2010), pp. 91–105. doi: 10.1016/j.entcs.2010.07.007.

[92] M. Leduc, T. Degueule, B. Combemale, T. van der Storm, and O. Barais.
“Revisiting Visitors for Modular Extension of Executable DSMLs”. In: 2017
ACM/IEEE 20th International Conference on Model Driven Engineering
Languages and Systems (MODELS). 2017, pp. 112–122. doi: 10.1109/
MODELS.2017.23.

[93] D. Leroy, E. Bousse, M. Wimmer, T. Mayerhofer, B. Combemale, and W.
Schwinger. “Behavioral interfaces for executable DSLs”. In: Software and
Systems Modeling 19.4 (2020), pp. 1015–1043. doi: 10.1007/s10270-020-
00798-2.

[94] D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, and B. Combemale. “Runtime
Monitoring for Executable DSLs”. In: The Journal of Object Technology
19.2 (2020), pp. 1–23. doi: 10.5381/jot.2020.19.2.a6.

[95] J.-h. Li, G.-x. Dai, and H.-h. Li. “Mutation Analysis for Testing Finite
State Machines”. In: 2009 Second International Symposium on Electronic
Commerce and Security. 2009, pp. 620–624. doi: 10.1109/ISECS.2009.158.

[96] P. Li, M. Jiang, and Z. Ding. “Fault localization with weighted test model
in model transformations”. In: IEEE Access 8 (2020), pp. 14054–14064. doi:
10.1109/ACCESS.2020.2966540.

[97] D. Lübke and T. van Lessen. “BPMN-Based Model-Driven Testing of Service-
Based Processes”. In: Enterprise, Business-Process and Information Systems
Modeling. Cham: Springer, 2017, pp. 119–133. doi: 10.1007/978-3-319-
59466-8_8.

[98] P. Makedonski, G. Adamis, M. Käärik, F. Kristoffersen, M. Carignani, A.
Ulrich, and J. Grabowski. “Test descriptions with ETSI TDL”. In: Software
Quality Journal 27.2 (2019), pp. 885–917. doi: 10.1007/s11219-018-9423-
9.

[99] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang. “Slice-based statistical fault
localization”. In: Journal of Systems and Software 89 (2014), pp. 51–62.
issn: 0164-1212. doi: 10.1016/j.jss.2013.08.031.

173

https://doi.org/10.1145/3183519.3183533
https://doi.org/10.1145/3183519.3183533
https://doi.org/10.1016/j.entcs.2010.07.007
https://doi.org/10.1109/MODELS.2017.23
https://doi.org/10.1109/MODELS.2017.23
https://doi.org/10.1007/s10270-020-00798-2
https://doi.org/10.1007/s10270-020-00798-2
https://doi.org/10.5381/jot.2020.19.2.a6
https://doi.org/10.1109/ISECS.2009.158
https://doi.org/10.1109/ACCESS.2020.2966540
https://doi.org/10.1007/978-3-319-59466-8_8
https://doi.org/10.1007/978-3-319-59466-8_8
https://doi.org/10.1007/s11219-018-9423-9
https://doi.org/10.1007/s11219-018-9423-9
https://doi.org/10.1016/j.jss.2013.08.031

Bibliography

[100] A. Maxwell and A. Pilliner. “Deriving coefficients of reliability and agreement
for ratings”. In: British Journal of Mathematical and Statistical Psychology
21.1 (1968), pp. 105–116. doi: 10.1111/j.2044-8317.1968.tb00401.x.

[101] T. Mayerhofer and B. Combemale. “The Tool Generation Challenge for Ex-
ecutable Domain-Specific Modeling Languages”. In: Software Technologies:
Applications and Foundations (STAF). Ed. by M. Seidl and S. Zschaler.
Cham: Springer International Publishing, 2018, pp. 193–199. isbn: 978-3-
319-74730-9. doi: 10.1007/978-3-319-74730-9_18.

[102] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel. “xMOF: Executable
DSMLs based on fUML”. In: International conference on software language
engineering. Springer. 2013, pp. 56–75. doi: 10.1007/978-3-319-02654-
1_4.

[103] T. Mens, A. Decan, and N. I. Spanoudakis. “A method for testing and
validating executable statechart models”. In: Software and Systems Modeling
18 (2 2019), pp. 837–863. doi: 10.1007/s10270-018-0676-3.

[104] M. Mernik, J. Heering, and A. M. Sloane. “When and How to Develop
Domain-Specific Languages”. In: ACM Comput. Surv. 37.4 (2005), 316–344.
issn: 0360-0300. doi: 10.1145/1118890.1118892.

[105] B. Meyers, J. Denil, I. Dávid, and H. Vangheluwe. “Automated testing
support for reactive domain-specific modelling languages”. In: Proceedings
of the 2016 ACM SIGPLAN International Conference on Software Language
Engineering. Association for Computing Machinery, 2016, pp. 181–194. doi:
10.1145/2997364.2997367.

[106] S. Mijatov, T. Mayerhofer, P. Langer, and G. Kappel. “Testing Functional
Requirements in UML Activity Diagrams”. In: Tests and Proofs (TAP).
Ed. by J. C. Blanchette and N. Kosmatov. Cham: Springer International
Publishing, 2015, pp. 173–190. doi: 10.1007/978-3-319-21215-9_11.

[107] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and M. L. Soffa.
“Demand-driven structural testing with dynamic instrumentation”. In: Pro-
ceedings of the 27th International Conference on Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2005, pp. 156–165.
isbn: 1581139632. doi: 10.1145/1062455.1062496.

[108] M. L. Mohd-Shafie, W. M. N. W. Kadir, H. Lichter, M. Khatibsyarbini,
and M. A. Isa. “Model-Based Test Case Generation and Prioritization: A
Systematic Literature Review”. In: Software and Systems Modeling 21.2
(2022), 717–753. issn: 1619-1366. doi: 10.1007/s10270-021-00924-8.

174

https://doi.org/10.1111/j.2044-8317.1968.tb00401.x
https://doi.org/10.1007/978-3-319-74730-9_18
https://doi.org/10.1007/978-3-319-02654-1_4
https://doi.org/10.1007/978-3-319-02654-1_4
https://doi.org/10.1007/s10270-018-0676-3
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/2997364.2997367
https://doi.org/10.1007/978-3-319-21215-9_11
https://doi.org/10.1145/1062455.1062496
https://doi.org/10.1007/s10270-021-00924-8

Bibliography

[109] J.-M. Mottu, B. Baudry, and Y. L. Traon. “Mutation analysis testing
for model transformations”. In: European Conference on Model Driven
Architecture-Foundations and Applications. Springer. 2006, pp. 376–390.

[110] L. Naish, H. J. Lee, and K. Ramamohanarao. “A Model for Spectra-Based
Software Diagnosis”. In: ACM Trans. Softw. Eng. Methodol. 20.3 (2011).
issn: 1049-331X. doi: 10.1145/2000791.2000795.

[111] OASIS. Web Services Business Process Execution Language Version 2.0. 2007.
url: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[112] Object Management Group. Business Process Model And Notation. Ver-
sion 2.0. 2010. url: https://www.bpmn.org/.

[113] Object Management Group. Meta Object Facility. Version 2.5.1. 2016. url:
https://www.omg.org/spec/MOF.

[114] Object Management Group. Precise Semantics of UML State Machines.
Version 1.0. 2019. url: https://www.omg.org/spec/PSSM/1.0/.

[115] Object Management Group. Semantics of a Foundational Subset for Exe-
cutable UML Models. Version 1.5. 2013. url: https://www.omg.org/spec/
FUML/1.5/.

[116] Object Management Group. Unified Modeling Language. Version 2.5.1. 2017.
url: https://www.omg.org/spec/UML/2.5.1/.

[117] A. H. Patil and N. S. Sidnal. CodeCover: A Code Coverage Tool for Java
Projects. 2013.

[118] K. Petersen, S. Vakkalanka, and L. Kuzniarz. “Guidelines for conducting
systematic mapping studies in software engineering: An update”. In: Infor-
mation and Software Technology 64 (2015), pp. 1–18. issn: 0950-5849. doi:
10.1016/j.infsof.2015.03.007.

[119] S. Pinto Ferraz Fabbri, M. Delamaro, J. Maldonado, and P. Masiero. “Mu-
tation analysis testing for finite state machines”. In: Proceedings of 1994
IEEE International Symposium on Software Reliability Engineering. 1994,
pp. 220–229. doi: 10.1109/ISSRE.1994.341378.

[120] Y. Qi, X. Mao, Y. Lei, and C. Wang. “Using Automated Program Repair for
Evaluating the Effectiveness of Fault Localization Techniques”. In: Proceed-
ings of the 2013 International Symposium on Software Testing and Analysis.
ISSTA 2013. Lugano, Switzerland: Association for Computing Machinery,
2013, 191–201. isbn: 9781450321594. doi: 10.1145/2483760.2483785.

175

https://doi.org/10.1145/2000791.2000795
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
https://www.bpmn.org/
https://www.omg.org/spec/MOF
https://www.omg.org/spec/PSSM/1.0/
https://www.omg.org/spec/FUML/1.5/
https://www.omg.org/spec/FUML/1.5/
https://www.omg.org/spec/UML/2.5.1/
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1109/ISSRE.1994.341378
https://doi.org/10.1145/2483760.2483785

Bibliography

[121] M. Rocha, A. Simão, and T. Sousa. “Model-based test case generation
from UML sequence diagrams using extended finite state machines”. In:
Software Quality Journal 29.3 (2021), pp. 597–627. doi: 10.1007/s11219-
020-09531-0.

[122] J. J. G. Rodriguez, M. J. E. Cuaresma, and M. M. Risoto. “A Model-Driven
approach for functional test case generation”. In: Journal of Systems and
Software 109 (2015), pp. 214–228. doi: 10.1016/j.jss.2015.08.001.

[123] K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki, and Y. Fukazawa.
“OCCF: A framework for developing test coverage measurement tools sup-
porting multiple programming languages”. In: 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. IEEE. 2013,
pp. 422–430. doi: 10.1109/ICST.2013.59.

[124] D. Santiago, A. Cando, C. Mack, G. Nunez, T. Thomas, and T. M. King.
“Towards Domain-Specific Testing Languages for Software-as-a-Service”.
In: 2nd International Workshop on Model-Driven Engineering for High
Performance and Cloud computing (MDHPCL). 2013, pp. 43–52.

[125] D. C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”.
In: IEEE Computer 39.2 (2006), pp. 25–31. doi: 10.1109/MC.2006.58.

[126] E. Schoofs, M. Abdi, and S. Demeyer. “AmPyfier: Test Amplification in
Python”. In: Journal of Software: Evolution and Process (2022). doi: 10.
1002/smr.2490.

[127] L. Shan and H. Zhu. “Generating Structurally Complex Test Cases By Data
Mutation: A Case Study Of Testing An Automated Modelling Tool”. In: The
Computer Journal 52.5 (2009), pp. 571–588. doi: 10.1093/comjnl/bxm043.

[128] F. Siavashi, D. Truscan, and J. Vain. “Vulnerability Assessment of Web
Services with Model-Based Mutation Testing”. In: 2018 IEEE Interna-
tional Conference on Software Quality, Reliability and Security (QRS). 2018,
pp. 301–312. doi: 10.1109/QRS.2018.00043.

[129] B. H. Smith and L. Williams. “On guiding the augmentation of an automated
test suite via mutation analysis”. In: Empirical software engineering 14.3
(2009), pp. 341–369. doi: 10.1007/s10664-008-9083-7.

[130] M. Soden and H. Eichler. “Towards a Model Execution Framework for
Eclipse”. In: Proceedings of the 1st Workshop on Behaviour Modelling in
Model-Driven Architecture. BM-MDA ’09. New York, NY, USA: Association
for Computing Machinery, 2009. isbn: 9781605585031. doi: 10 . 1145 /
1555852.1555856.

176

https://doi.org/10.1007/s11219-020-09531-0
https://doi.org/10.1007/s11219-020-09531-0
https://doi.org/10.1016/j.jss.2015.08.001
https://doi.org/10.1109/ICST.2013.59
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1002/smr.2490
https://doi.org/10.1002/smr.2490
https://doi.org/10.1093/comjnl/bxm043
https://doi.org/10.1109/QRS.2018.00043
https://doi.org/10.1007/s10664-008-9083-7
https://doi.org/10.1145/1555852.1555856
https://doi.org/10.1145/1555852.1555856

Bibliography

[131] H. A. de Souza, M. L. Chaim, and F. Kon. “Spectrum-based software fault
localization: A survey of techniques, advances, and challenges”. In: arXiv
preprint arXiv:1607.04347 (2016). doi: 10.48550/arXiv.1607.04347.

[132] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

[133] G. studio. xFSM with ALE semantics. 2021. url: https://github.com/
eclipse / gemoc - studio - execution - ale / tree / master / examples /
language_workbench.

[134] G. studio. xFSM with K3 semantics. 2021. url: https://github.com/
eclipse / gemoc - studio / tree / master / official _ samples / K3FSM /
language_workbench.

[135] C.-a. Sun, Y. Liu, Z. Wang, and W. K. Chan. “μMT: A Data Mutation
Directed Metamorphic Relation Acquisition Methodology”. In: Proceed-
ings of the 1st International Workshop on Metamorphic Testing. MET ’16.
Austin, Texas: Association for Computing Machinery, 2016, pp. 12–18. isbn:
9781450341639. doi: 10.1145/2896971.2896974.

[136] Tetrabox. examples-behavioral-interface. 2019. url: https://github.com/
tetrabox/examples-behavioral-interface/tree/master/languages/
statemachines.

[137] Tetrabox-Gemoc. MiniJava: a subset of Java as an executable DSL. 2022.
url: https://github.com/gemoc/minijava.

[138] M. Tisi, J.-M. Mottu, D. S. Kolovos, J. De Lara, E. M. Guerra, D. Di
Ruscio, A. Pierantonio, and M. Wimmer. “Lowcomote: Training the Next
Generation of Experts in Scalable Low-Code Engineering Platforms”. In:
STAF 2019 Co-Located Events Joint Proceedings: 1st Junior Researcher
Community Event, 2nd International Workshop on Model-Driven Engineer-
ing for Design-Runtime Interaction in Complex Systems, and 1st Research
Project Showcase Workshop co-located with Software Technologies: Applica-
tions and Foundations (STAF 2019). CEUR Workshop Proceedings (CEUR-
WS.org). Eindhoven, Netherlands, July 2019. url: https://hal.archives-
ouvertes.fr/hal-02363416.

[139] P. Tonella. “Evolutionary Testing of Classes”. In: Proceedings of the 2004
ACM SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA ’04. Boston, Massachusetts, USA: Association for Computing Machin-
ery, 2004, pp. 119–128. isbn: 1581138202. doi: 10.1145/1007512.1007528.

177

https://doi.org/10.48550/arXiv.1607.04347
https://github.com/eclipse/gemoc-studio-execution-ale/tree/master/examples/language_workbench
https://github.com/eclipse/gemoc-studio-execution-ale/tree/master/examples/language_workbench
https://github.com/eclipse/gemoc-studio-execution-ale/tree/master/examples/language_workbench
https://github.com/eclipse/gemoc-studio/tree/master/official_samples/K3FSM/language_workbench
https://github.com/eclipse/gemoc-studio/tree/master/official_samples/K3FSM/language_workbench
https://github.com/eclipse/gemoc-studio/tree/master/official_samples/K3FSM/language_workbench
https://doi.org/10.1145/2896971.2896974
https://github.com/tetrabox/examples-behavioral-interface/tree/master/languages/statemachines
https://github.com/tetrabox/examples-behavioral-interface/tree/master/languages/statemachines
https://github.com/tetrabox/examples-behavioral-interface/tree/master/languages/statemachines
https://github.com/gemoc/minijava
https://hal.archives-ouvertes.fr/hal-02363416
https://hal.archives-ouvertes.fr/hal-02363416
https://doi.org/10.1145/1007512.1007528

Bibliography

[140] J. Troya, A. Bergmayr, L. Burgueño, and M. Wimmer. “Towards systematic
mutations for and with ATL model transformations”. In: 2015 IEEE Eighth
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 2015, pp. 1–10. doi: 10.1109/ICSTW.2015.7107455.

[141] J. Troya, S. Segura, and A. R. Cortés. “Automated inference of likely
metamorphic relations for model transformations”. In: Journal of Systems
and Software 136 (2018), pp. 188–208. doi: 10.1016/j.jss.2017.05.043.

[142] J. Troya, S. Segura, J. A. Parejo, and A. Ruiz-Cortés. “Spectrum-based
fault localization in model transformations”. In: ACM Transactions on
Software Engineering and Methodology (TOSEM) 27.3 (2018), pp. 1–50. doi:
10.1145/3241744.

[143] M. Vieira, J. Leduc, W. M. Hasling, R. Subramanyan, and J. Kazmeier.
“Automation of GUI Testing Using a Model-driven Approach”. In: Proceed-
ings of the 2006 International Workshop on Automation of Software Test
(AST). ACM, 2006, pp. 9–14. doi: 10.1145/1138929.1138932.

[144] P. Vincent, K. Lijima, M. Driver, J. Wong, and Y. Natis. Magic Quadrant
for Enterprise Low-Code Application Platforms. Tech. rep. 2019.

[145] T. Waheed, M. Z. Z. Iqbal, and Z. I. Malik. “Data Flow Analysis of UML
Action Semantics for Executable Models”. In: Model Driven Architecture
– Foundations and Applications. Ed. by I. Schieferdecker and A. Hartman.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 79–93. doi: 10.
1007/978-3-540-69100-6_6.

[146] K. Wang, A. Sullivan, D. Marinov, and S. Khurshid. “Fault localization for
declarative models in Alloy”. In: 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE). IEEE. 2020, pp. 391–402. doi:
10.1109/ISSRE5003.2020.00044.

[147] S. Weißleder. “Simulated Satisfaction of Coverage Criteria on UML State Ma-
chines”. In: Third International Conference on Software Testing, Verification
and Validation. 2010, pp. 117–126. doi: 10.1109/ICST.2010.28.

[148] W. E. Wong, V. Debroy, R. Gao, and Y. Li. “The DStar Method for
Effective Software Fault Localization”. In: IEEE Transactions on Reliability
63.1 (2014), pp. 290–308. doi: 10.1109/TR.2013.2285319.

[149] W. E. Wong, V. Debroy, Y. Li, and R. Gao. “Software Fault Localization Us-
ing DStar (D*)”. In: 2012 IEEE Sixth International Conference on Software
Security and Reliability. 2012, pp. 21–30. doi: 10.1109/SERE.2012.12.

[150] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. “A survey on
software fault localization”. In: IEEE Transactions on Software Engineering
42.8 (2016), pp. 707–740. doi: 10.1109/TSE.2016.2521368.

178

https://doi.org/10.1109/ICSTW.2015.7107455
https://doi.org/10.1016/j.jss.2017.05.043
https://doi.org/10.1145/3241744
https://doi.org/10.1145/1138929.1138932
https://doi.org/10.1007/978-3-540-69100-6_6
https://doi.org/10.1007/978-3-540-69100-6_6
https://doi.org/10.1109/ISSRE5003.2020.00044
https://doi.org/10.1109/ICST.2010.28
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/SERE.2012.12
https://doi.org/10.1109/TSE.2016.2521368

Bibliography

[151] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer. “Modeling
languages in Industry 4.0: an extended systematic mapping study”. In:
Software and Systems Modeling 19.1 (Sept. 2019), pp. 67–94. doi: 10.1007/
s10270-019-00757-6.

[152] H. Wu, J. Gray, and M. Mernik. “Unit Testing for Domain-Specific Lan-
guages”. In: Domain-Specific Languages. Ed. by W. M. Taha. Springer Berlin
Heidelberg, 2009, pp. 125–147. doi: 10.1007/978-3-642-03034-5_7.

[153] T. Xie. “Augmenting Automatically Generated Unit-Test Suites with Regres-
sion Oracle Checking”. In: ECOOP 2006 - Object-Oriented Programming.
Ed. by D. Thomas. Vol. 4067. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2006, pp. 380–403. doi: 10.1007/11785477_23.

[154] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. “A Theoretical Analysis of the
Risk Evaluation Formulas for Spectrum-Based Fault Localization”. In: ACM
Transactions on Software Engineering and Methodology 22.4 (2013). issn:
1049-331X. doi: 10.1145/2522920.2522924.

[155] J. Xuan, X. Xie, and M. Monperrus. “Crash Reproduction via Test Case
Mutation: Let Existing Test Cases Help”. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015.
Bergamo, Italy: Association for Computing Machinery, 2015, pp. 910–913.
isbn: 9781450336758. doi: 10.1145/2786805.2803206.

[156] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. The Fuzzing
Book. Retrieved 2021-10-26 15:30:20+02:00. CISPA Helmholtz Center for
Information Security, 2021. url: https://www.fuzzingbook.org/.

[157] H. Zhu. “JFuzz: A Tool for Automated Java Unit Testing Based on Data
Mutation and Metamorphic Testing Methods”. In: 2015 Second International
Conference on Trustworthy Systems and Their Applications. 2015, pp. 8–15.
doi: 10.1109/TSA.2015.13.

[158] P. Ziemann and M. Gogolla. “OCL Extended with Temporal Logic”. In:
Perspectives of System Informatics. Ed. by M. Broy and A. V. Zamulin.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 351–357. isbn:
978-3-540-39866-0. doi: 10.1007/978-3-540-39866-0_35.

179

https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/978-3-642-03034-5_7
https://doi.org/10.1007/11785477_23
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/2786805.2803206
https://www.fuzzingbook.org/
https://doi.org/10.1109/TSA.2015.13
https://doi.org/10.1007/978-3-540-39866-0_35

Un environnement de test pour les langages dédiés
exécutables
Mots-clés: Ingénierie dirigée par les modèles (IDM), langage de modélisation dédié (LMD), tests de modèles,
mesure de la qualité des tests, débogage des tests, amplification des tests
Résumé: La croissance continue de la complexité des
logiciels soulève le besoin d’une gestion efficace de la
complexité. L’ingénierie dirigée par les modèles (IDM)
est un paradigme de développement qui répond à ce
problème par la mise en place d’une séparation des pré-
occupations à l’aide de modèles. Un modèle est une
abstraction spécifique d’un système qui peut être défini
par un langage de modélisation dédié (LMD). Un LMD
doté de fonctions d’exécution, appelé un LMD exécu-
table (LMDx), offre de de nouvelles possibilités dans
l’activité de modélisation en permettant l’utilisation de
techniques de vérification et de validation (V&V) dy-
namiques. Le test est la technique de V&V dynamique
actuellement la plus répandue dans le domaine du génie
logiciel. Bien qu’il existe de nombreux environnements
de test pour les langages de programmation, produire un
outillage de test pour un LMDx donné reste aujourd’hui
une tâche coûteuse et difficile.

Dans cette thèse, nous proposons un environnement

de test générique et réutilisable pour les LMD exécu-
tables. Étant donné un LMDx, l’environnement fournit
un langage de test qui prend en charge l’utilisation de
concepts spécifiques au LMDx dans la définition de scé-
narios de test. Cela permet aux utilisateurs du LMDx,
à savoir les experts du domaine, d’écrire des scénarios
de test pour leurs modèles. Les scénarios de test écrits
peuvent ensuite être exécutés sur les modèles, ce qui
entraîne la production de résultats des tests. Pour aider
davantage les experts du domaine à tester les modèles,
l’environnement proposé offre trois services supplémen-
taires : (i) la mesure de la qualité des tests pour s’assurer
que les scénarios de test écrits sont suffisamment bons ;
(ii) le débogage des tests pour localiser le défaut du mo-
dèle testé en cas d’échec du test ; et (iii) l’amélioration
automatique des tests pour renforcer la capacité des
scénarios de test à détecter des régressions introduites
dans les modèles testés.

A Testing Framework for Executable Domain-Specific
Languages
Keywords: Model-Driven Engineering (MDE), Executable Domain Specific Language (xDSL), Model Testing,
Test Quality Measurement, Test Debugging, Test Amplification
Abstract: The continuous growth of software com-
plexity raises the need for effective complexity man-
agement. Model-Driven Engineering (MDE) is a de-
velopment paradigm that meets this requirement by
separating concerns through models. A model is a spe-
cific abstraction of a system that can be defined by a
Domain-Specific Language (DSL). A DSL with execu-
tion facilities, referred to as Executable DSL (xDSL), en-
riches the modeling quality by enabling the employment
of dynamic Verification & Validation (V&V) techniques.
Testing is the most prevalent dynamic V&V technique
in the field of software engineering. While many testing
frameworks exist for general-purpose programming lan-
guages, providing testing facilities for any given xDSL
remains a costly and challenging task.

In this thesis, we propose a generic testing frame-
work for executable DSLs. Given an xDSL, the frame-
work provides a testing language that supports the use
of xDSL-specific concepts in the definition of test cases.
This enables the xDSL’s users, namely the domain ex-
perts, to write test cases for their models. The written
test cases can be executed on the models and the test
results will be produced. To further support the domain
expert in efficiently testing models, the framework offers
three supplementary services: (i) test quality measure-
ment to ensure that the written test cases are good
enough; (ii) test debugging to localize the fault of the
model under test in case of test failure; and (iii) au-
tomatic test improvement to strengthen the ability of
written test cases in detecting regression faults.

	Résumé long en français
	Contexte
	Énoncé du problème
	Contributions
	Méthodologie de recherche
	Contexte de la thèse

	Introduction
	Context
	Problem Statement
	Contributions
	Research Methodology
	Context of the Thesis
	Outline of the Thesis
	Scientific Production

	Background & State of the art
	Model-Driven Engineering
	Domain-Specific Languages (DSLs)
	Running Example: Arduino DSL
	Abstract Syntax
	Execution Semantics & Operational Semantics
	Content-based operational semantics
	Event-driven operational semantics
	Behavioral interface

	Model Execution Tracing

	Testing
	Terminologies
	Test Description Language
	TDL limitations

	Testing Frameworks for DSLs
	DSL-specific approaches
	Generic approaches
	Limitations

	Test Quality Measurement
	Coverage computation
	Mutation analysis

	Fault Localization
	Interactive debugging
	Spectrum-Based Fault Localization (SBFL)

	Test Amplification

	Conclusion of the state-of-the-art

	Test Case Definition and Execution
	Introduction
	Overview
	Samples of TDL Test Cases
	A Sample Test Case for a Non-Reactive Model
	A Sample Test Case for a Reactive Model

	TDL Library Generator
	Description of the Library Generator
	Generation of the xDSL-Specific Types Package
	Generation of the xDSL-Specific Events Package
	Generation of the Common Package
	Generation of the Test Configuration Package
	Using the TDL Library to Write Test Cases

	TDL Operational Semantics for xDSLs
	Adapting TDL Semantics to Model Execution
	Required External Components
	Overall architecture

	Test Execution Algorithm of the TDL Interpreter

	Test Result Reporter
	Tool Support
	Evaluation
	Experiment Setup
	Evaluation Data
	Evaluation Result
	Threats to Validity

	Conclusion

	Test Quality Measurement
	Introduction
	Coverage Computation
	Constructing the Coverage Matrix
	Analyzing the xDSL definition
	Initializing the coverage matrix for the models' tests.
	DSL-specific coverage rules
	Finalizing the coverage matrix for the models' tests
	Generating a coverage matrix for the running example

	Definition of Artefacts

	Mutation Analysis
	Tool Support
	Evaluation
	Experiment Setup
	Evaluation Result
	Threats to Validity

	Conclusion

	Test Case Debugging and Improvement
	Introduction
	Overview
	Manual Debugging of Models' Tests
	Adapting Interactive Debugging for TDL
	Initialization and Coordination of Two Interactive Debuggers

	Automatic Debugging of Models' Tests
	Test Amplification for Executable Models
	Scope
	Approach Overview
	Test Case Modification
	Modification of primitive data
	Modification of event sequences

	Assertion Generation
	Amplification Example
	Test Case Selection

	Tool Support
	Debugging Tool
	Amplification Tool

	Evaluation
	Evaluation of Debugging Approaches
	Experiment setup
	Evaluation result
	Threats to validity

	Evaluation of the Test Amplification Approach
	Experiment setup
	Evaluation result
	Threats to validity

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Limitations and Possible Improvements
	Perspectives

	Ecore to TDL Transform Rules
	Example 2: xPSSM
	Running Example 2: PSSM
	xPSSM Abstract Syntax
	Event-Driven Semantics of xPSSM
	xPSSM-Specific TDL Library

	List of Figures
	List of Tables
	Bibliography

